Now from Trio, the R2000 general coverage receiver. By taking all the superb features of the R1000 and combining them with the latest in micro-processor control Trio have, in one step, completely revised the standard by which short wave receivers are judged. Among the many features provided for the discerning listener are programmable scan, memory scan, memory retention of the mode set for a memory scan, memory retention of the mode set flor a
particular frequency and last, but not least. Trio have included particular frequency and last, but not least. Trio have included
an FM mode - why FM after all this time and our repeated comment that for a shortwave broadcast receiver FM is not really necessary. Take a look at the rear panel of the R2000: a socket marked VHF converter. Wouldn't it be superb if Trio produced a VHF converter covering from 118 to 174 MHz then you would require FM, you would also require AM. Study the features and I am sure you will agree the Trio R2000 is the receiver for you.
Continuous Coverage from 150 KHz to 30 MHz .
Use of an innovative up conversion digitally controlled PLL circuir provides maximum ease of operation and superb receiver performance. Front panel up/down band switches allow easy selection within the full coverage of the receiver. The VFO is continually tunable throughout the full 150 KHz - $\mathbf{3 0} \mathrm{MHz}$ range.

All modes SSB. CW, AM and FM.
To give full listening potential USB, LSB, CW, AM, and FM
switch allows two types of memory storage: when the "auto M" switch is off, data is memorized by pressing the " $M$ in"' switch; when the "auto $M$ " switch is on the frequency being used at that time is automatically memorized.
Memory Scan.
Scans all memory channels or may be user programmed to scan specific channels. Frequency, band and mode are automatically selected in accordance with the memory channel being scanned.
Programmable Band Scan.
Scans automatically within the programmed bandwidth. Memory channels 9 and 0 establish the scan limit frequencies. The hold switch interrupts the scanning process. However, the frequency may be adjusted using the tuning knob whilst in the scan hold position.
Littium Battery Momory Back Up.
Memory and VFO information is maintained by an internal lithium battery (estimated life, five years), a most important feature when moving the receiver from location to location.

## Clock Display with Integral Timer.

Two 24 hour quart clocks are built in to allow for programming two different time zones. An integral timer is provided for on and off switching of the receiver.


are provided for easy selection by push buttons having adjacent led indicators.

## Adjustable Tuning Rate.

Tuning speed switches enable the tuning rate to be in either $50 \mathrm{~Hz}, 500 \mathrm{~Hz}$ or 5 kHz steps. A frequency lock switch is included to guard against accidental shitt.
Ten Momories Store Froquency, Band and Mode Dats.
Each of the ten memories can be tuned by the VFO, thus operating as ten built in digital VFO's. The original memory frequency can be recalled by simply pressing the appropriate memory channel key. All information on frequency, band. and mode is stored in the selected memory. The "auto $M$ "

Three Built in Filters with Narrow/Wide Selector.
In the AM mode 6 KHz wide or 2.7 KHz narrow may be selected. In the SSB mode 2.7 KHz is automatically selected. In the CW mode 2.7 KHz is again chosen and if the optional YG455C filter is installed then 500 Hz in the narrow position. in the FM mode 15 KHz bandwidth is automatically selected. Other important features are: squeich on all modes, noise blanker, a large 4 inch front, mounted speaker, tone control, RF attenuator. AGC switch, high and low impedance antenna terminals, optional 13.8 V DC operation, record jack and, of course, provision for a VHF converter.

R2000 £391 inc. VAT. Carr. $£ 5.00$

## FROM TR10.

## LOWE ELECTRONICS

Chesterfield Road, Matlock, Derbyshire. DE4 5LE. Telephone 0629 2817, 2430, 4057, 4995. Telex 377482.

# ok, it was always a good receiver, but now with FM the SRX 30D, todays rig, yesterdays price. 



- Extended coverage $200 \mathrm{kHz}-30 \mathrm{MHz}$.
- Digital readout in large green display units which give true unambiguous frequency information - even when you switch sidebands or use the clarifier.
- All new frequency synthesis using Plessey SL 1600 ICs for a new high standard of performance.
- All new audio system which produces outstandingly good quality on the built in speaker, and is capable of driving external hi fi speaker units for ever better sound.
- All new IF filters with optimum bandwidth for mode in use. Automatic filter selection from mode switch.
We predict that the SRX 300 will be a landmark in low cost, high performance SWL receivers. Just consider how much you should pay for a receiver covering $200 \mathrm{kHz}-30 \mathrm{MHz}$ with accurate digital readout; high performance FM USB/LSB/AM with switched filters; drift cancelling frequency synthesis; built in mains supply and built in speaker; high quality construction and advanced design - and so much more.
SRX 30D NOW WITH FM STILL £215.00, carr. £5.00

From Daiwa yet another aid to operating. In addition to the notch, SSB and CW filters, the AF6OGK is equipped with a PLL tone decoder; when the tone frequency of the CW signal and the free running frequency of the PLL tone decoder are the same a locked signal is generated. This locked signal keys an audio oscillator which then reproduces the received CW signal. However, there is a tremendous difference between the produced signal and the received one no noise and, of course, no fading. ANOTHER PIECE OF EQUIPMENT TO ENHANCE YOUR LISTENING.
AF 606K
$£ 56.50$ inc. VAT, carr. $£ 5.00$


## we now stock the vibroplex range of morse keys

THE VIBROPLEX IAMBIC - PRESENTATION £92.50 - DELUXE £62.18 - STANDARD £49. 20, THE BRASS RACER EKI £99.00 THE BRASS RACER IAMBIC £66.50, THE PRESENTATION $£ 99.50$, THE ORIGINAL - DELUXE $£ 66.50-$
STANDARD £53.20, THE VIBRO-KEYER-DELUXE £62.18 - STANDARD £49.20 ALL INC. VAT CAR. £5.00
FOR THE ENTHUSIAST THESE PRODUCTS REQUIRE NO MORE DISCUSSION FOR THE NOVICE 'VIBROPLEX' IS NOT A MARITAL AID


Now from Daiwa, a new 2 metre monitor receiver. Using PLL synthesized circuitry, the SR1000E covers the entire amateur band in 5 KHz steps. It provides for today's amateur a small convenient means of monitoring activity on the busy 2 metre band. Compact and supplied with earphone, mounting bracket, the SR1000 provides for you mobile or fixed your contact with the 2 metre band.
$£ 72.50$ inc. VAT, carr. $£ 2.25$

> LOWE IN LONDON, Open monday to saturday, six days a week lower sales floor, Hepworths, Pentonville Rd, London. telephone 01. 837.6702 LOWE IN GLASGOW, Open tuesday to saturday 4,5 Queen Margarets Rd, Glasgow. telephone 041.945. 2626



TR3500
COMPACT SIZE AND LIGHT WEIGHT
Measures only $66 \mathrm{~W} \times 168 \mathrm{H} \times 40 \mathrm{Dmm}$ with a weight of 540 grams including Ni Cd battery pack. $\times 168 \mathrm{H} \times 40 \mathrm{~mm}$

## LCD DIGITAL FREQUENCY READOUT

Easy to read in direct sunlight, or in the dark. Vitually no current drain (much less than LED's). Displays transmit and receive frequencies and memory channels. "Display includes four "Arrow" indicators: "F. LOCK" (Frequency Lock), "REV" (Repeater Reverse), "PROG. S" (Programmed Scan), "MS" (Memory Scan).

## TEN CHANNEL MEMORY

Nine memories may be operated in simplex mode, or with transmit frequency offset permitting access to repeaters.
LITHIUM BATTERY MEMORY BACK-UP
No loss of memory in case of complete discharge for removal of the Ni-Cd batteries. Current lapproximately 1 microampere) to maintain memory supplied by buit-in separate lithium battery, with estimated life of more than 5 years. MEMORY SCAN
Scans only those channels (maximum 10) in which frequency data is stored. Stops on "Busy" channel, resumes scan automatically approximately 2 seconds after signal goes off, or when "MS"' key is pressed. The "STOP"'key or the PTT switch may be used to cancel the scan function. LCD displays memory channel number and "MS" arrow while memory scan in use.
PROGRAMMABLE BAND SCAN
Scan bandwidth (lower and upper frequency limits) and scan steps of 5 kHz and larger ( $5,10,15,20,25 \mathrm{kHz}$, etc.) may be programmed. Scan automatically locks up on busy channel and resumes approximately 2 seconds after signal goes off or when "PROG. S" key is pressed. "STOP" key or PTT switch cancels scan function.
UP/DOWN MANUAL SCAN
UP/DOWN manual scan in 5 kHz steps.
FREQUENCY COVERAGE
Covers 430.00 - 439.995 MHz in 5 kHz steps.
TONE BURST SWITCH
The TONE BURST switch activates the $1,750 \mathrm{~Hz}$ repeater access tone oscillator.
TX OFFSET SWITCH
Selects simplex or repeater operation (operator pre-programmes repeater OFFSET MAX $\pm 9.995 \mathrm{MHz}$ ).
HI/LOW POWER SELECTION
HI/LOW Dower output switch allows operation at 1.5 W or, for extended battery life, 300 mW .
REVERSE OPERATION
"REV" switch shifts the receiver to the transmit frequency, and the tranmitter to the receive frequency. Usefulf for checking signals on the input of a repeater, to determine if you are within simplex range.
aUTO/MANUAL SQUELCH
Selector switch on threshold control allows selection of automatic or manual squelch operation
BATTERY INDICATOR
LED battery condition indicator flashes when battery charge level approaches nominal discharged battery potential.
' SWITCHES
"F. LOCK" switch prevents accidental loss of chosen frequency when in "LOCK" position. "TX. STOP" switch prevents accidental transmission if PTT switch is accidentally pressed in handling
SWN ECC IS accidentally presse
Allows antenna changeover to be quick and easy.
ACCESSORIES INCLUDED

- Flexible rubberised antenna with BNC connector.
- 400 mAH Ni-Cd battery pack.
- AC charger
- P4ug for external microphone and speaker.
- Hand strap.


## "compatible"

## the two metre $\mathbb{E}^{\circ}$ seventy centimetre handhelds from Trio.

TR2500 $£ 220.80$ inc. VAT, carr. $£ 5.00$
TR3500 £ 238.51 inc . VAT, carr. $£ 5.00$

PRICES AND SPECIFICATION SUBJECT TO CHANGE WITHOUT NOTICE.

MAL ORDER EREOLHURST WैAY THE EASY WAY - THE B ITEMS LISTED BELOW
TO ORDER ANY OF IOSING A CHEQUE OR PHONE SIMPLY WRITE ENCLOSING A CREDIT CARD NO AND QUOTE YOUR C
WE DO THE REST!

WELZ SP 15M

$\begin{array}{ll}\text { WELZ } \\ \text { SP15M SWR-PWR Meter H.F./2M 200W } & 3200 \text { CEP } \\ 1100\end{array}$
$\begin{array}{llll}\text { SP } 15 \mathrm{M} & \text { SWR-PWR Meter H.F/2M 200W } & 3200 & 1.00 \\ \text { SP45M } & \text { SWR-PWR Meter 2M/70cm 100W } & 45.00 \\ & \text { SW. }\end{array}$ SP45M SWR-PWR Meter 2M. SOCm 1 KW SP300 SWR-PWR Meter H.F. 2 M/70cm $\begin{array}{llll:l}\text { SP400 } & \text { SWR-PWR Meter ZMITOCm } & \text { 150W } & 65.00 & 11.50 \\ \text { SP10X } & 61.95 & \end{array}$ SP10X SWR-PWR Meter H.F./2M SP380 SWR-PWR Meter H.F/2M/TOEm $\begin{array}{ll}\text { AC38 } & \text { A. T.U. } 35 \text { to } 30 \mathrm{MHz} 400 \mathrm{~W} \text { PEP } \\ \text { CT } 15 A & 15.50 \text { W Dummy Load (P. 259) }\end{array}$ $\begin{array}{ll}\text { CT 15A } & \text { 15:50W Dummy Load IPL 259) } \\ \text { CT } 15 \mathrm{~N} & \text { 15/50W Dummy Load (N type }\end{array}$
CT $300 \quad 3001 \mathrm{kWW}$ Dummy Load 250 MHz (SO239)
SWR - POWER METERS

## Model 110 H.F/2M Calibrated Power

|  | Reading |
| :---: | :---: |
| YW-3 | H.F./2M Twin Meter |
| UH74 | 2M170 |
| T435N | 2M/70CM Twin Meter 120W |
| DAIWA C | H F/2M Cross Poin | DAIWA CN6204 HF/2M Cross Pointe

DAIWA CN630
$2 \mathrm{M} / 70$ Cross Pointers DUMMY LOADS
DL30 PL259 3OW MAX DL30 PL259 30W MAX
WELZ CT $15 A$ 50W MAX PL259 WELZ CT15N 50 W MAX N type

T100 $100 W$ MAX 450 MHz | T 200 | 200 WMAX | 450 MHz |
| :--- | :--- | :--- |
| 000 |  |  | DL600 600 W MAX 350 MHz

WELZ CT $300 \quad 1000 \mathrm{~W}$ MAX $\quad 250 \mathrm{MHz}$
$\qquad$ $\begin{array}{ll}\text { YAESU } & \\ \text { FT1 } & \text { Superb H.F. Transceiver } \\ \text { FT980 } & \text { H. Tranceiver } \\ \text { FT902DM } & 16010 \mathrm{~m} 9 \text { Band Transceiver }\end{array}$ FC902 All Band A.T.U. SP901 External Speaker $\begin{array}{ll}\text { FT } 102 & 16010 \mathrm{M} 9 \text { Band Transceiver } \\ \text { FT } 707 & 8 \text { Band Transceive } 200 W \text { Pep }\end{array}$ FT 7078 Band Transceiver 200W
FP707 Matching Power Supply $\begin{array}{ll}\text { FP707 } & \text { Matching Power Supply } \\ \text { FC707 } & \text { Matching A.T.U./Power Me }\end{array}$ Matching A.T.U./Power Meter
MMB2 $\begin{array}{ll}\text { FRG7 } & \text { GT 707 } \\ \text { FRG7700 } & \text { General Coverage Receiver } \\ 200 K \mathrm{KHz}_{2}-30 \mathrm{MHz} \text { Gen. Coverag }\end{array}$ FRG7700 $200 \mathrm{KHz}-30 \mathrm{MHz}$ Gen. Covera FRG 7700 MAs above but with Memornatit
FRT 7700 Antenna Tuning Unit FRT 7700 Antenna Iuning Unit
FRA 7700 Acrive Antenna Unit
FT208R 2 M $M$ Mrnthesised Handheid FT208R 0cm F.M Synthesised Handhel $\begin{array}{ll}\text { FT708R } & \text { 70cm F.M. Synthesise } \\ \text { NC7 } & \text { Base Trickle Charger } \\ \text { NCB }\end{array}$ $\begin{array}{ll}\text { NC8 } & \text { Base Fast/Trickle Charger } \\ \text { NC9C } & \text { Compact Trickle Charger }\end{array}$ FBA2 Batt. Sleeve for use with NC $7 / 8$ FNB2 Spare Battery Pack
$\begin{array}{ll}\text { FT3 } & \text { 12V DC Adaptor } \\ \text { FT } & \text { 2M Synthesised Multimode }\end{array}$ FT $780 \mathrm{R} \quad 70 \mathrm{~cm}$ Synthesised Multimode FTz90R T1.6MHz Snift FT $790 \mathrm{R} \quad 70 \mathrm{~cm}$ Portable Multimode CSC1 Soft Carrying Case NC11C 240 V AC Trickle Char FL2010 Matching 10W Linear Nicads 2.2 AMP HR Nicads
FF5010X
H. F Low Pass Filter 1 kW
 FSP1 Mobile External Speak

## YH77 Lightwerght Headpho

 OTR24D World Clock (Quartz) $\begin{array}{ll}\text { YM244 } & \text { Speaker/Mic 207/208 } 708 \\ \text { YD148 } & \text { Stand Mic. Dual IMP } 4 \text { PIn Plug }\end{array}$ YM38 As 34 but up/down Scan ButtonsFDK VHFIUHF EQUIPMENT $\begin{array}{ll}\text { Multi } 750 \mathrm{E} & \text { 2M Multimode Mobile } \\ \text { Expander } & 70 \mathrm{~cm} \text { Transverter for M750E }\end{array}$

## PRAE Suwer Suplies

4 AMP
12 AMP
VHF Wavemeter 130.450 MHz
TELEREADERS IC
TASCO CWR 610
TASCO CWH
TONO 500
TONO 500
TONO 9000
$61.95 \quad 11.50$
$21.95 \quad 10.75$

49.0011 .00 | 59.00 |
| :---: |
| $6.95 \quad 11.00$ | $6.95 \quad 10.75$

$11.95 \quad 1075$ $45.00 \quad 12001$ 1349.00
1115.00

\section*{$\begin{array}{rr}11.50 & 1050 \\ 11.50 & 10.50 \\ 14.30 & 10.50 \\ 34.00 & 10.75 \\ 52800 & 1-1 \\ 75.00 & 1-1 \\ & \\ 5.00 & 10.50 \\ 6.95 & 10.751 \\ 11.95 & 10.751 \\ 22.95 & 10.75 \\ 34.00 & 10.751 \\ 29.95 & 11.50\end{array}$ <br> | 11.50 | 10.50 |
| :--- | :--- |
| 11.50 | 10.50 |
| 14.30 | 10.50 |
| 34.00 | 10.75 |
| 5280 | $1-1$ |
| 75.00 | $i-1$ |
|  |  |
| 5.00 | 10.50 |
| 6.95 | 10.751 |
| 11.95 | 10.75 |
| 2295 | 10.75 |
| 34.00 | $10.75 i$ |
| 2.95 | 1.50 | <br> $\begin{array}{ll}11.50 & 10.50 \\ 11.50 & 10.50 \\ 14.30 & 10.50 \\ 34.00 & 10.75 \\ 5280 & 1-1 \\ 75.00 & 1-1 \\ & \\ 5.00 & 10.50 \\ 6.95 & 10.751 \\ 11.95 & 10.75 \\ 2295 & 10.75 \\ 34.00 & 10.75 i \\ 29.95 & 1.50\end{array}$ <br> $\begin{array}{rr}11.50 & 10.50 \\ 11.50 & 10.50 \\ 14.30 & 10.50 \\ 34.00 & 10.75! \\ 5280 & 1-1 \\ 75.00 & 1-1 \\ & \\ 5.00 & 10.50 \\ 6.95 & 10.75! \\ 11.95 & 10.75! \\ 2295 & 10.75! \\ 34.00 & 10.75 i \\ 29.95 & 11.50\end{array}$ <br> $\begin{array}{rr}11.50 & 10.50 \\ 11.50 & 10.50 \\ 14.30 & 10.50 \\ 34.00 & 10.75! \\ 5280 & 1-1 \\ 75.00 & 1-1 \\ & \\ 5.00 & 10.50 \\ 6.95 & 10.75! \\ 11.95 & 10.75! \\ 2295 & 10.75! \\ 34.00 & 10.75 i \\ 29.95 & 11.50\end{array}$ $+. \infty$}

$\begin{aligned} & 885.00 \\ & 135.00\end{aligned} 1$.
$\begin{array}{r}135.00 \\ 31.00 \\ \hline 11\end{array}$
785.00

| $509.00 \mid-1$ |
| :--- |
| 11200 |
| 5.00 | $\begin{array}{l:l}12.00 & 15.00 \\ 85.00 & 11.00\end{array}$


| 16.10 | 11.001 |
| :---: | :---: |
| 199.00 | $1-1$ |

335.00
399 399.00 37.0011 .00 199.00 i $\begin{array}{ll}229.00 & 1 .-1 \\ 24.10 & 11.50\end{array}$ (0.75) $3.05 \quad 10.50$ $\begin{array}{ll}17.25 & 10.75) \\ 13.40 & (0.75)\end{array}$ 369.00 409.00
265.00

325.00 | 5.00 | - |
| :--- | :--- |
| 5.00 | - | 11.001 $\begin{array}{ll}25 & 11.00 \\ 45 & 10.75\end{array}$ $\begin{array}{lll}3.45 & 10.751 \\ 8.00 & 10.751\end{array}$ $59.00 \quad 11.201$ 250 (-) $23.00 \quad 11.001$ N

¢
¢ $(0.75)$
$10.75)$
$(1)$ $\begin{array}{lll}9.90 & 10.75 \\ 9.90 & 10.75\end{array}$ 28.00 $16.85 \quad 10.75$ $21.10 \quad 11.50$ $24.90 \quad 11.50$ 259.00
199.00 $\begin{array}{ll}\mathbf{0} & 1-1 \\ \mathbf{0} & 1-1\end{array}$ Yaesu Low Pass Fiter FF5010X 1 kW
ANTENNA BITS -
H1:Q Balun 1:15kW pep (PL259 Fitting)
7.1 MHz Traps Pair
Polyprop Strain insulators
Small Egg Insulators
4 mm Polyester Guy Rode

$$
\text { (strength } 400 \mathrm{~kg} \text { ) per met }
$$

$$
\begin{array}{ccc}
\text { IStrength 400kg) per metre } & 0.18 & 10.041 \\
75 \mathrm{ohm} \text { Twin Feeder - Light Duty - Per Metre } & 0.16 & 10.04 \\
\hline
\end{array}
$$

$$
\begin{array}{lll}
300 \mathrm{ohm} \text { Twin Feeder - Per Metre } & 0.14 & 10.04 \\
\text { URM } 67 \text { Low Loss } 50 \text { ohm Coax - Per Metre } & 0.60 & 10.20
\end{array}
$$

$$
\begin{array}{llll}
\text { URM } 67 \text { Low Loss } 50 \text { ohm Coax-Per Metre } & 0.60 & 10.20 \\
\text { UR76 } 50 \mathrm{ohm} \text { Coax - Per Meve } & 0.25 & 10.051
\end{array}
$$

$$
\begin{aligned}
& \text { UR } 7650 \text { ohm Coax - Per Merre } \\
& \text { Please send total postage indicated. Any excess }
\end{aligned}
$$


Amateur band transceiver/General coverage receiver

| TRF |  | 1154.00 | -) |
| :---: | :---: | :---: | :---: |
| TS930S | New Transceiver |  |  |
| TS8305 | 160.10M Transceiver 9 Bands | 678.00 | (-) |
| VFO230 | Digital V.F.O. with Memories | 231.00 | 12.001 |
| AT 230 | All Band A TU/Power Meter | 129.00 | 12.001 |
| SP230 | External Speaker Unit | 39.00 | 11.50 |
| DFC230 | Dig. Frequency Remote Controller | 179.00 | 11.501 |
| TS430S | 160.10M Transceiver | 695.00 | 1-1 |
| TS 1305 | 8 Band 200 W Pep Transceiver | 531.00 | 1-1 |
| TSI30N | 8 Band 20 W Pep Transceiver | 433.00 | (-1) |
| VF0120 | External V.F.O. | 93.61 | 11.507 |
| TL120 | 200 W Pep Linear for TS 120 V | 159.00 | 11.50 |
| M8100 | Mobite Mount for TS 130120 | 17.70 | (1.50) |
| SP120 | Base Station External Speaker | 25.00 | (1.50) |
| AT130 | 100W Antenna Tuner | 88.50 | (1.50) |
| PS20 | AC Power Supply - T\$130V | 54.90 | (2.50) |
| PS30 | AC Power Supply - TS 1306 | 96.00 | (5.00) |
| MC50 | Dual Impedance Desk Microphone | 29.44 | 11.501 |
| MC35S | Fist Microphone 50K ohm IMP | 14.00 | (0.75) |
| MC30S | Fist Microphone 500 ohm IMP | 14.00 | (0.75) |
| LF30A | H.F. Low Pass Filter 1kW | 20.00 | (1.00) |
| TR9130 | 2M Synthesised Multimode | 411.00 | 1-1 |
| BO9A | Base Plinth for TR9130 | 37.26 | (1.50) |
| TR7800 | 2M Synthesised F.M. Mobile 25W | 257.00 | 1-1 |
| TR7730 | 2M Synthesised F.M. Compact Mobile. 25W | 268.00 | 1-1 |
| TR2300 | 2M Synthesised F.M. Portable | 144.00 | 1-1 |
| V82300 | 10 W Amplifier for TR2300 | 6200 | 11.50 |
| MB2 | Mobile Mount for TR2300 | 20.00 | 11.50\% |
| TR3500 | 70 cm Handheld | 23800 | 1-1 |
| TR2500 | 2M F.M. Synthesised Handheld | 220.00 | ( - ) |
| ST2 | Base Stand | 49.45 | (1.50) |
| SC4 | Soft Case | 13.00 | 10.50 |
| MS 1 | Mobile Stand | 30.20 | (1.00) |
| SMC 25 | Speaker Mike | 15.40 | 11.00 |
| PB25 | Spare Battery Pack | 23.60 | 1.00 |
| TR8400 | 70cm F.M. Synthesised Mobile Transcelver inc. PS 10 | 299.00 | 1-1 |
| PS10 | Base Station Power Supp. for 8400 | 64.00 | 12.001 |
| TR9500 | 70 cm Synthesised Multimode | 428.00 | 1-1 |
| R2000 | $200 \mathrm{KHz}-30 \mathrm{MHz}$ Receiver | 391.00 | 1-1 |
| R600 | Gen. Cov. Receiver | 244.00 | (-1) |
| SP100 | External Speaker Unit | 26.90 | 11.50 |
| HC 10 | Digital Station World Time Clock | 64.40 | 11.50 |
| HS5 | Defuxe Headphones | 21.85 | 11.00 |
| HS4 | Economy Headphones | 10.80 | (1.00) |
| SP40 | Mobile External Speaker | 13.57 | 11.00 |


| ROTATORS |  | ¢ | C\&P |
| :---: | :---: | :---: | :---: |
| Hirschman RO250 VHF Rotor |  | 39.95 | 12.00 |
| 95028 Colorotor (Med. VHF) |  | 56.95 | 12.00 |
| KR400RC Kenpro - inc. lower c |  | 110.00 | 12.50 |
| KR600RC Kempro - inc lower clamps |  | 145.00 | (3.00) |
| DESK MICROPHONES - |  |  |  |
| SHURE 4440 Dual Impedance |  | 39.00 | 11.50 |
| SHURE 526T MKII Power Microphone |  | $53.0 \times$ | 11.50 |
| ADONIS AM 303 Preamp Mic. Wide Imp. |  | 29.00 | 1-1 |
| ADONIS AM 503 Compression Mic 1 |  | 39.00 | 1-1 |
| ADONIS AM 802 Compression Mic. Meter |  |  |  |
| 30 P |  | 59.00 | 1-1 |
| MOBILE SAFETY MICROPHONES |  | 21.00 | 1-1 |
| aDONIS AM 2024 Head Band + Up/Dow |  | 31.00 | 1-1 |
| ADONIS AM 202F Swan Neck + Up/Down |  |  |  |
| Butions |  | 33.00 | 1-1 |
| TEST EQUIPMENT |  |  |  |
| Drae VHF Wavemeter 130 |  | 27.50 |  |
| DMB1 Trio Dip | Meter | 67.60 | 10.75 |
| MMO50500 Dig. Frequency meter |  | 75.00 | (-1 |
| Co-AXIAL SWITCH-_ |  |  |  |
| 2 Way Diecast | (V.H.F.) SA450 | 10.00 | (0.75) |
| 2 Way Diecast | with N sockets | 1295 | 10.75 |
| 2 Way Toggle | V.H.F.) | 6.00 | 10.50 |
| WESTERN 5 Wa | ay 1KW Switch | 13.95 | 11.00 |
| HELICAL ANTENNAS $\qquad$ <br> 2M BNC or PL259 (state which required) 2M Thread for TR2300 or FT 290R istate whichl 70 cm BNC |  |  |  |
|  |  | 4.50 | 10.50) |
|  |  |  |  |
|  |  | $\begin{aligned} & 4.50 \\ & 4.50 \end{aligned}$ | $\begin{aligned} & 10.50 \\ & 10.50 \end{aligned}$ |
| MICROWAVE MODULES |  |  |  |
| MMT144, 28 | 2M Transverter for HF Rig | 109.95 | 1-1 |
| MMT43228S | 70 cm Transverter for HF Rig | 159.95 | 1-1 |
| MMT 432 144R | 70 cm Transverter for 2M Rig | 184.00 | (-) |
| MMT 70, 28 | 4M Transverter for HF Rig | 119.95 | 1-1 |
| MMT 70144 | 4M Transverter for 2M Rig | 119.95 | 1-1 |
| MMT 1296144 | 23 cm Transverter for 2 M Rig | 184.00 | 1-1 |
| MML 144/30 | 2M 30W Linear Amp | 69.95 | $1-1$ |
| MML 144/100S | 2M 100W Lihear Amp $\{10 \mathrm{~W}$ | 139.00 | ( - |
| MML 144,100.S | 32M 100W Linear Ampl3W |  |  |
|  | I/P) | 159.00 | -1 |
| MML432/30 | 70 cm 30 W Lin. Amp (3W I/P) | 99.00 | 1-1 |
| MML 43250 | 70 cm 50 W Linear Amp | 109.95 | 1-1 |
| MML432 100 | 70cm 10100W Linear Amp | 228.64 | 1-1 |
| MM2001 | RTTY to TV Converter | 169.00 | 1-1 |
| MM4000 | RTTY Transceiver | 269.00 | ( - ) |
| MMC5028 | 6M Converter to HF Rig | 29.90 | 1-1 |
| MMC7028 | 4 M Converter to HF Rig | 29.90 | (-) |
| MMC 144128 | 2 M Converter to HF Rig | 29.90 | 1-1 |
| MMC43228S | 70 cm Converter to HF Rig | 37.90 | (-) |
| MMC432144S | 70 cm Converter to 2 M Rig | 37.90 | 1-1 |
| MMC 4351600 | 70 cm ATV Converter | 27.90 | 1-1 |
| MMK 1296/144 | 23 cm Converter to 2 M Rig | 69.95 | (-) |
| MMDO50\%500 | 500 MHz Dig. Frequency Meter | 75.00 | 1-1 |
| MMD600P | 600 HMz Prescaler | 29.90 | 1-1 |
| MMDP1 | Frequency Counter Probe | 14.90 | 1-1 |
| MMA 28 | 10 M Preamp | 16.95 | 1-1 |
| MMA 14dV | 2M RF Switched Preamp | 34.90 | (-1 |
| MMF144 | 2M Band Pass Filter | 11.90 | (-) |
| MMF432 | 70cm Band Pass Filter | 11.90 | 1-1 |
| MMS1 | The Morse Talker | 115.00 | (-1 |

D70 MORSE TUTOR $£ 56.35$


| DAT | ROOUCTS |  |  |
| :---: | :---: | :---: | :---: |
| PC1 | Gen | 137.42 | 1 |
| VLF | Very Low Frequency Converter | 29.90 | (-) |
| F. 1 | Frequency Agile Audio Filter | 79.35 | (-) |
| FL2 | Multi mode Audio Filter | 89.70 | (-) |
| FL3 | Audio'filter + Notch | 129.00 | (-1) |
| SP/B | Auto RF Speech Clip. Trio Plug) | 8280 | , |
| ASP/A | Auto RF Speech Clippers (Yaesu Plug) | 8280 | 1-1 |
| D75 | Manually controlled RF Speech Clipper | 56.35 | (-) |
| RFC/M | RF Speech Clipper Module | 29.90 | 1-1 |
| 070 | Morse Tutor | 56.35 | 1-1 |
| AD 270 | Indoor Active Dipole Antenna | 47.15 | 1-1 |
| AD370 | Outdoor Active Dipole Antenna | 64.40 | 1-1 |
| MPU1 | Mains Power Unit | 6.90 | (-1 |
| MK | Keyboard Morse Sender | 137.42 | (-1) |
| RFA | Broadband Preamplifier | 33.92 | (-1 |
| Codecall | Selective Calling Device (link prog) | 32.20 | (-1 |
|  | (switch prog) | 33.92 | (-) |

MAIL ORDER

## KEEP AHEAD WITH THE FT-102!

Once again YAESU lead the field with the exciting FT-102

HF transceiver- no other manufacturer offers so many innovative features.

Better Dynamic Range
The extra high-level receiver front end uses 24 VDC for both RF amplifier and mixer circuits allowing an extremely wide dynamic range for solid copy of the weak signals even in the weekend crowds. For ultra çlear quality on strong signals or noisy bands the high voltage JFET RF amplifier can be simply bypassed via a front panel switch, boosting dynamic range beyond 100 dB . A PLL system using six narrow band VCOs provides exceptionally clean local signals on all bands for both transmit and receive.
Total IF Flexibility
An extremely versatile IF Shift/Width system, using friction-linked concentric controls and a totally unique circuit design, gives the operator an infinite choice of bandwidths between 2.7 kHz and 500 Hz , which can then be tuned across the signal to the portion that provides the best copy sans ORM, even in a crowded band. A wide variety of crystal filters for fixed IF bandwidths are also available as options for both parallel and cascaded configurations. But that's not all; the 455 kHz third IF also allows an extremely effective IF notch tunable across the selected passband to remove interfering carriers, while an independent audio peak filter can also be activated for single-signal CW reception.
New Noise Blanker
The new noise blanker design in the FT-102 enables front panel control of the blanking pulse width, substantially increasing the number of types of noise interference that can be blanked, and vastly improving the utility of the noise blanker for all types of operation.
Commercial Quality Transmitter
The FT-102 represents significant strides in the advancement of amateur transmitter signal quality. introducing to amateur radio design concepts that have previously been restricted to top-of-the-line commercial transmitters; far above and beyond government standards in both freedom from distortion and purity of emissions.
Transmitter Audio Tailoring
The microphone amplifier circuit incorporates a tunable audio network which can be adjusted by

the operator to tailor the transmitter response to his individual voice characteristics before the signal is applied to the superb internal RF speech processor.
IF Transmit Monitor
An extra product detector allows audio monitoring of the transmitter IF signal, which, along with the dual meters on the front panel, enables precise setting of the speech processor and transmit audio so that the operator knows exactly what signal is being put on the air in all modes. A new "peak hold" system is incorporated into the ALC metering circuit to further take the guesswork out of transmitter adjustment.
New Purity Standard
Three 6146 B final tubes in a specifically configured circuit provide a freedom from IMD products and an overall purity of emission unattainable in twotube and transistor designs, while a new DC fan motor gives whisper-quiet cooling as a standard feature. For the amateur who wants a truly professional quality signal, the answer is the Yaesu FT-102
New VFO Design
Using a new IC module developed especially for Yaesu, the VFO in the rT-102 exhibits exceptional stability under all operating conditions.
A. SP-102 EXTERNAL SPEAKER/

AUDIO FILTER
The SP-102 features a large high-fidelity speaker with selectable low- and high-cut audio filters allowing twelve possible response curves. Head phones may also be connected to the SP-102 to take advantage of the filtering feature, which allows audio tailoring for each bandwidth and mode of operation to obtain optimum readability under a variety of conditions.
B. FC-102 1.2 KW

ANTENNA COUPLER 1.2KW band-switched L-C pi-network antenna coupler


## Achitevr aticironics  for YAESU MUSEN <br>  <br> or attractive H.P. terms readily available for on-the-spot transactions. Full demionstration facilities. FAST, Free Securicor delivery <br> FT-290R/FT-790R 2m \& 70cm



10 memories, 2 VFO's, LCD display, $C$ size battery, easy car mounting tray FT-290R 0.5 low/2.5 high watts out FT-790R 0.2 low/ 1.0 high watts out (incorporates speech compressor),

FT-230R/730R 2m \& 70 cm FM mobiles


- Two independent VFO's - 10 memories - Priority function Memory and band scan - $12.5 / 25 \mathrm{KHz}$ steps $(25 / 100 \mathrm{KHz}$ FT-730R) - Large LCD readout.

FT-480R/ 780R $2 \mathrm{~m} \& 70 \mathrm{~cm}$ mobiles


The most advanced 2 metre and 70 cm mobiles available today - USB, LSB, FM, CW full scanning with priority channel, 4 memory channel, dual synthesized VFO system.

For full details of these new and exciting models, send today for our latest SHORT FORM CATALOGUE, All youneed do to obtain the latest information about these exciting developments from the World's No. 1 manufacturer of amateur radio equipment is to send 36 p in stamps and as an added bonus you will get our credit voucher value $£ 3 \cdot 60$-a 10 to 1 winner!


communications receiver


YAESU's top of the range receiver. All-mode capability USB, LSB, CW, AM and FM 12 memory channels with back-up. Digital quartz clock feature with timer. Pictured here with matching FRT-7700 Antenna tuner and FRV7700 VHF converter.

## AGENTS

North West - Thanet Electronics Ltd Gordon, G3LEQ, Knutsford (0565) 4040 Wales \& West-Ross Clare, GW3NWS, Gwent (0633) 880146

As factory appointed distributors we offer youwidest choice, largest stocks,quichest deal and fast sure service right.through-

## EAs man (1) BY GREDIT GABD OR GHEQUE

 HV ANTENNA|  |  |  |  |
| :---: | :---: | :---: | :---: |
| AX210N | 10 ele. yagi for 2 m crossed | 74.95 | ) |
| H810F2T | 2 ele .10 mmono band beam | 51.50 | (n/c) |
| H810F3T | 3 ele . 10 mmono band beam | 74.95 | ( $\mathrm{n} / \mathrm{c}$ ) |
| H815F2T | 2 ele. 15 m mono band beam | 60.66 | (n/c) |
| HB15F3T | 3 ele. 15 m mono band beam | 93.46 | (n/c) |
| HB15M2SP | VP mini size 15 m 2 ele. | 69.50 | ( $\mathrm{n} / \mathrm{c}$ ) |
| HB15M3sP | VP mini size 15 m 3 ele. | 102.30 | (n/c) |
| H834D | 4 ele tri band beam 10/15/20m | 222.90 | ( $\mathrm{n} / \mathrm{c}$ ) |
| H833SP | 3 ele. tri band beam 10/15/20m | 192.50 | ( $\mathrm{n} / \mathrm{c}$ ) |
| H835C | Tri band array 10/15/20m | 283.95 | ( $\mathrm{n} / \mathrm{c}$ ) |
| H835T | 5 ele. 10/15/20m | 278.50 | ( $\mathrm{n} / \mathrm{c}$ ) |
| MV384 | Vertical for 10/15/20m | 37.99 | ( $\mathrm{n} / \mathrm{c}$ ) |
| MV4BH | Vertical for 10/15/20/40m | 48.90 | ( $\mathrm{n} / \mathrm{c}$ ) |
| MV58H | Verical for 10/15/20/40/80m | 63.95 | ( $\mathrm{n} / \mathrm{c}$ ) |
| MLA4 | Loop antenna 10/15/40/80 | 105.60 | ( $\mathrm{n} / \mathrm{c}$ ) |
| S022 | Phased 2 ele. swiss quad 2 m | 58.95 | ( $\mathrm{n} / \mathrm{c}$ ) |
| Sovor | 6 ele quagi 2 m | 45.75 | (nic) |
| Sayob | 8 ele. quagi 2 m | 52.75 | (n/c) |
| H8210S | 10 ele dual driven yagi 2 m | 47.99 | ( $\mathrm{n} / \mathrm{c}$ ) |
| TE214 | 14 ele. long yagi 2 m | 74.40 | $(\mathrm{n} / \mathrm{c}$ ) |
| SSL720 | $9 \times 2$ ele. (18) slot fed 70 cm | 77.20 | ( $\mathrm{n} / \mathrm{c}$ ) |
| H823SP | 2 ele. tri band beam 10/15/20m | 135.60 | ( $\mathrm{n} / \mathrm{c}$ ) |
| SSL218 | $9 \times 2$ ele. (18) slot fed 2 m | 144.79 | ( $\mathrm{n} / \mathrm{c}$ ) |
| TPH2 | Phasing harness 2 m | 17.25 | ( $\mathrm{n} / \mathrm{c}$ ) |
| aYu10 | 10 ele. quagi 70 cm | 67.90 | ( $\mathrm{n} / \mathrm{c}$ ) |
| 50007 | 70 cm 2 ele. phased swiss quad | 66.99 | ( $\mathrm{n} / \mathrm{c}$ ) |
| S010 | 5 wiss quad 10 m | 97.50 | ( $\mathrm{n} / \mathrm{c}$ ) |
| SQ15 | Swiss quad 15m. | 106.90 | (n/c) |
| yaesu antennas |  |  |  |
| Base |  |  |  |
| RSL145GP | fit wave base ant. 2 m | 21.20 | (1.50) |
| HF Mobil |  |  |  |
|  |  |  |  |
| RSL3.5 | 3.5 MHz resonator \& whip | 12.21 | (0.50) |
| RSL7.0 | 7.0MHz resonator \& whip | 11.80 | (0.50) |
| RSL14.0 | 14.0 MHz resonator \& whip | 11.45 | (0.50) |
| RSL21.0 | 21.0MHz resonator \& whip | 11.20 | (0.50) |
| RSL28.0 | 28.0MHz resonator \& whip | 11.00 | (0.50) |
| RSL2A | Mast to suit above. | 5.00 | (0.50) |
| RSM2 | Gutter mount/Feeder/PL259 suit above | 10.94 | 10.75) |
| VHF Mobile |  |  |  |
| RSL145 | 2 m if wave fibreglass whip | 12.10 | 10.501 |
| RSL145S | 2 m wave steel whip foldover | 9.25 | (0.50) |
| RSL150SS | 2 m i wave PL259 shock spring | 3.90 | 10.501 |
| RSM2 | Gutter mounv/Feeder/PL259 (RSL145) | 10.94 | 10.75) |
| RSM4M | Heavy duty mag/Feeder/PL259 | 13.25 | (1.00) |
| UHF Mobile |  |  |  |
| RSL435S | \% wave antenna | 15.50 | (0.50) |
| ANTIFERENCE ANTENNAS |  |  |  |
|  |  |  |  |
| TAP3009 TAP3677 | f wave 3db snap-in hinged whip | $\begin{aligned} & 11.42 \\ & 15.64 \end{aligned}$ | $\left(\begin{array}{l}\text { (3.00) } \\ \text { (3.00) }\end{array}\right.$ |
| TAP3002 | $\frac{1}{1}$ wave unity gain snap-in hinged whip | 8.81 | (3.00) |
| UHF Mobile |  |  |  |
| TAP3462 | dover $\frac{1}{2}$ wave 3db | 9.89 | (3.00) |
| TAP3697 | Sover $\frac{1}{4}$ wave 5db | 18.40 | (3.00) |
| K220 | Mag mount/Feeder to suit above | 10.73 | (2.00) |

Please send your order direct to Dept. C F at our main address below, including carriage charges where applicable and your full delivery address.

| Antennas Various/Accessories |  |  |  |
| :---: | :---: | :---: | :---: |
| HQ1 | Mini beam 10/15/20m 2 ele. 1 kW | TBA | (4.00) |
| C4 | Vertical 10/15/20m | 48.50 | (3.00) |
| G4MH | Mini beam 10/15/20 | 85.00 | (4.00) |
| KTLM-4 | Gutter mount/Cable assy. SO239 | 6.90 | (0.50) |
| DATONG PRODUCTS |  |  |  |
| PC1 | 50 KHz to 30 MHz receive converter | 137.42 | (0.50) |
| VLF | Very low frea. converter | 29.90 | (0.50) |
| FL1 | Frequency agile audio fitter | 79.35 | (0.50) |
| FL2 | Multimode audio filter | 89.70 | 10.50) |
| ASP/A | Auto RF speech clipper (YAESU) | 82.80 | 10.50) |
| ASP/8 | Auto RF speech clipper (TRIO) | 89.70 | (0.50) |
| D75 | Manual RF speech clipper | 56.35 | (0.50) |
| RFC/M | RF speech clipper module | 29.90 | (0.50) |
| D70 | Morse tutor . . . . . | 56.35 | 10.50) |
| AD270 | Active dipole RX ant. (indoor) | 47.15 | (0.50) |
| AD370 | Active dipole RX ant. (outdoor) | 64.40 | \{0.501 |
| MK | Morse keyboard | 137.42 | 10.50) |
| DC144/28 | 2 m converter | 39.67 | (0.50) |
| RFA | 8roadband preamplifier | 33.92 | (0.50) |
| MPU | Mains power unit | 6.90 | (0.50) |

## TOKYO HY POWER

TOKYO HY POWER
HC 150 HF ATU SWR/Power meter

| HC150 | HF ATU SWR/Power meter 200W PEP | 62.50 | (n/c) |
| :---: | :---: | :---: | :---: |
| HC2000 | HF 2 kW ATU SWR/Power meter 6 POS ant. switch. 6 to 1 vernier high Q coils 2 kW peak 1 kW continuous | 276.55 | Inde. |
| Antenne Rotatore \& Accestories |  |  |  |
| SU2000 | Light duty rotator | 3495 | 13.501 |
| 9502 | Channel master med duty up to 8 ele. | 57.00 | 13.501 |
| 9523 | Alignment bearing for 9502 | 14.38 | 11.251 |
| KR400 | Med/Heavy duty $180^{\circ}$ meter (inc. lower casting) | 90.85 | 13.50) |
| KR400RC | Med/Heavy duty $360^{\circ}$ meter Load $200 \mathrm{Kg} 1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}-2^{\prime \prime}$ masts | 102.35 | 13.501 |
| CASting | Lower casting set (400RC) | 15.00 | $11.25)$ |
| KR600RC | Heavy duty $360^{\circ}$ meter Load 200 Kg Rot $600 \mathrm{Kg} / \mathrm{cm}$ Brake $4000 \mathrm{Kg} / \mathrm{cm} 1 \frac{1}{2}{ }^{\prime \prime}-\mathbf{2 " m a s t s}^{\prime \prime}$ | 136.85 | (3.50) |
| Antenna Switcher |  |  |  |
| SA450 | SO239 connectors 1 in 2 out | 9.75 | (0.50) |
| SA450N | N" type connectors 1 in 2 out | 12.75 | (0.50) |
| Baluns |  |  |  |
| 8L50A | RAK 50 ohm ferrite BALUN 1:1 $1.8-38 \mathrm{MHz} 1 \mathrm{~kW}$ | 12.88 | (1.50) |
| W2AU | 1:150 ohm 3-40M ${ }^{\text {chz }} 1 \mathrm{~kW}$ | 14.99 | (1.50) |
| Dummy Loads |  |  |  |
| 130 | 30 W DC 500MHz PL259 | 6.61 | (0.50) |
| T100 | 100W DC 500MHz SO239 | 20.12 | (1.00) |
| T200 | 200W DC 500MHz SO239 | 31.36 | (1.50)- |
| T210 | Wide band 10W 1.2G-2.4G | 24.50 | (0.75) |
| AW05 | Pocket RF wattmeter 5W up to 500 MHz 8 NC | 19.75 | (1.00) |
| Filters |  |  |  |
| AKD | Hi-pass blocks $0-200 \mathrm{MHz}$ RF interference to UHF above 400 MHz | 5.50 | (0.50) |
| Linear Amplifiers |  |  |  |
| YAESU |  |  |  |
| FL1 10 | HF 160/B0/40/20/15/10m 100W (10W drive) | 155.25 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2100Z | HF ware 1200w PEP, SSB lkW CW, 400W AM/FM/FSK | 449.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2010 | 2 mVHF 10 W linear | 54.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2050 | 2 mVHF 50 W linear 10 W drive | 115.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL7010 | 70 cm UHF 10W linear | 91.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| TOKYO HY POWER |  |  |  |
| HL32V | VHF 30W linear 1-5W drive HI-LOW output . | 53.50 | ( $n / \mathrm{c}$ ) |
| HL82V | VHF linear preamp output meter' 2-12W in 35-85+ out. | 144.50 | ( $\mathrm{n} / \mathrm{c}$ ) |
| HL160V | VHF linear preamp output meter 1-10W in 160W+ out | 242.40 | ( $\mathrm{n} / \mathrm{c}$ ) |
| HL45U | UHF linear preamp 2-15W in $10-45 \mathrm{~W}$ out | 119.75 | (n/c) |
| Adonis Microphones Mobile/Base |  |  |  |
| MM202S | Mobile safety mic. (non scanning) | 23.00 | (1.00) |
| MM202HD | Mobile safety mic. (scanning) . | 30.00 | (1.00) |
| AM502 | Desk mic. (compressor selectable) | 45.94 | (1.00) |
| Miscellaneous |  |  |  |
| Mutec |  |  |  |
| SNLI44S | 2 m preamp RF switched | 33.90 | (1.00) |
| RPCB | 144UB FT22 1/225 front end boatd | 64.50 | (1.25) |
| Ni -cads |  |  |  |
| AA | AA size Ni-cad | 1.00 | (0.20) |
| C | C size Ni-cad | 2.40 | (0.30) |
| NC1850 | Ni -cad charger ( $4 \times \mathrm{C}$ or $4 \times \mathrm{AA}$ ) | 9.50 | (1.00) |
| DRAE PRODUCTS |  |  |  |
| DRAE4 | 4 amp PSU | 30.75 | (2.00) |
| DRAE6 | 6 amp PSU | 48.00 | (2.50) |
| DRAE12 | 12 amp PSU | 74.00 | (3.00) |
| DRAE24 | 24 amp PSU | 105.00 | (4.00) |
| DRAE WM | $135-450 \mathrm{MHz}$ wavemeter | 27.50 | (1.00) |
| " N " Connectors (Silver Plated) |  |  |  |
| N58 | "N"Male connector RG58 | 2.25 | (0.25) |
| N8 | "N" Male connector RG8 | 2.40 | (0.25) |
| N308 | " N " T adaptor (three female) | 2.40 | (0.25) |
| N307 | "N" L adaptor (1 male 1 female) | 2.40 | (0.25) |
| N306 | "N" Double female adaptor | 1.90 | (0.25) |
| N310 | N" Double male adapior | 2.50 | (0.25) |
| N8304 | N' Female to 8NC male adaptor | 2.10 | (0.25) |
| N402 | N' Plug to \$0239 | 2.05 | (0.25) |
| N403 | N' Socket to PL259 | 2.00 | (0.25) |
| N404 | "N" Socket to SO239 | 1:80 | (0.25) |
| Speakera/Headphones |  |  |  |
| Various |  |  |  |
| RT650 | 4 ohm, 8 ohm 3W nom 6W max | 6.50 | (0.50) |
| MS60 | 3 W nom 5 W max ...... | 7.50 | (0.50) |
| S2 | Headphones (cobalt magnets) | 5.75 | (0.50) |
| YAESU |  |  |  |
| YH55 | Headphones Low $Z$ | 10.00 | (0.50) |
| YH77 | Lightweight headphones Low $\mathbf{Z}$ | 10.00 | (0.50) |

2OOW PEP
HF 2 kW ATU SWR/Power meter
6 POS ant. switch. 6 to 1 vernier
high $Q$ coils 2 kW peak 1 kW continuous
Antenne Rotatore \& Accessories
SU2000 Light duty rotator

| HC150 | HF ATU SWR/Power meter 200W PEP | 62.50 | (n/c) |
| :---: | :---: | :---: | :---: |
| HC2000 | HF 2 kW ATU SWR/Power meter 6 POS ant. switch. 6 to 1 vernier high Q coils 2 kW peak 1 kW continuous | 276.55 | Inde. |
| Antenne Rotatore \& Accestories |  |  |  |
| SU2000 | Light duty rotator | 3495 | 13.501 |
| 9502 | Channel master med duty up to 8 ele. | 57.00 | 13.501 |
| 9523 | Alignment bearing for 9502 | 14.38 | 11.251 |
| KR400 | Med/Heavy duty $180^{\circ}$ meter (inc. lower casting) | 90.85 | 13.50) |
| KR400RC | Med/Heavy duty $360^{\circ}$ meter Load $200 \mathrm{Kg} 1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}-2^{\prime \prime}$ masts | 102.35 | 13.501 |
| CASting | Lower casting set (400RC) | 15.00 | $11.25)$ |
| KR600RC | Heavy duty $360^{\circ}$ meter Load 200 Kg Rot $600 \mathrm{Kg} / \mathrm{cm}$ Brake $4000 \mathrm{Kg} / \mathrm{cm} 1 \frac{1}{2}{ }^{\prime \prime}-\mathbf{2 " m a s t s}^{\prime \prime}$ | 136.85 | (3.50) |
| Antenna Switcher |  |  |  |
| SA450 | SO239 connectors 1 in 2 out | 9.75 | (0.50) |
| SA450N | $\mathrm{N}^{\prime \prime}$ type connectors 1 in 2 out | 12.75 | (0.50) |
| Baluns |  |  |  |
| 8L50A | RAK 50 ohm ferrite BALUN 1:1 $1.8-38 \mathrm{MHz} 1 \mathrm{~kW}$ | 12.88 | (1.50) |
| W2AU | 1:150 ohm 3-40MHz 1 kW | 14.99 | (1.50) |
| Dummy Loads |  |  |  |
| 130 | 30 W DC 500MHz PL259 | 6.61 | (0.50) |
| T100 | 100W DC 500MHz SO239 | 20.12 | (1.00) |
| T200 | 200W DC 500MHz SO239 | 31.36 | (1.50)- |
| T210 | Wide band 10W 1.2G-2.4G | 24.50 | (0.75) |
| AW05 | Pocket RF wattmeter 5W up to 500 MHz 8 NC | 19.75 | (1.00) |
| Filters |  |  |  |
| AKD | Hi-pass blocks $0-200 \mathrm{MHz}$ RF interference to UHF above 400 MHz | 5.50 | (0.50) |
| Linear Amplifiers |  |  |  |
| YAESU |  |  |  |
| FL1 10 | HF 160/B0/40/20/15/10m 100W (10W drive) | 155.25 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2100Z | HF ware 1200w PEP, SSB lkW CW, 400W AM/FM/FSK | 449.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2010 | 2 mVHF 10 W linear | 54.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2050 | 2 mVHF 50 W linear 10 W drive | 115.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL7010 | 70 cm UHF 10W linear | 91.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| TOKYO HY POWER |  |  |  |
| HL32V | VHF 30W linear 1-5W drive HI-LOW output . | 53.50 | ( $n / \mathrm{c}$ ) |
| HL82V | VHF linear preamp output meter' 2-12W in 35-85+ out. | 144.50 | ( $\mathrm{n} / \mathrm{c}$ ) |
| HL160V | VHF linear preamp output meter 1-10W in 160W+ out | 242.40 | ( $\mathrm{n} / \mathrm{c}$ ) |
| HL45U | UHF linear preamp 2-15W in $10-45 \mathrm{~W}$ out | 119.75 | (n/c) |
| Adonis Microphones Mobile/Base |  |  |  |
| MM202S | Mobile safety mic. (non scanning) | 23.00 | (1.00) |
| MM202HD | Mobile safety mic. (scanning) . | 30.00 | (1.00) |
| AM502 | Desk mic. (compressor selectable) | 45.94 | (1.00) |
| Miscellaneous |  |  |  |
| Mutec |  |  |  |
| SNLI44S | 2 m preamp RF switched | 33.90 | (1.00) |
| RPCB | 144UB FT22 1/225 front end boatd | 64.50 | (1.25) |
| Ni -cads |  |  |  |
| AA | AA size Ni-cad | 1.00 | (0.20) |
| C | C size Ni-cad | 2.40 | (0.30) |
| NC1850 | Ni -cad charger ( $4 \times \mathrm{C}$ or $4 \times \mathrm{AA}$ ) | 9.50 | (1.00) |
| DRAE PRODUCTS |  |  |  |
| DRAE4 | 4 amp PSU | 30.75 | (2.00) |
| DRAE6 | 6 amp PSU | 48.00 | (2.50) |
| DRAE12 | 12 amp PSU | 74.00 | (3.00) |
| DRAE24 | 24 amp PSU | 105.00 | (4.00) |
| DRAE WM | $135-450 \mathrm{MHz}$ wavemeter | 27.50 | (1.00) |
| " N " Connectors (Silver Plated) |  |  |  |
| N58 | "N"Male connector RG58 | 2.25 | (0.25) |
| N8 | "N" Male connector RG8 | 2.40 | (0.25) |
| N308 | " N " T adaptor (three female) | 2.40 | (0.25) |
| N307 | "N" L adaptor (1 male 1 female) | 2.40 | (0.25) |
| N306 | N ${ }^{\prime}$ " Double female adaptor | 1.90 | (0.25) |
| N310 | N" Double male adapior | 2.50 | (0.25) |
| N8304 | N' Female to 8NC male adaptor | 2.10 | (0.25) |
| N402 | N' Plug to \$0239 | 2.05 | (0.25) |
| N403 | N Socket to PL259 | 2.00 | (0.25) |
| N404 | "N" Socket to SO239 | 1:80 | (0.25) |
| Speakera/Headphones |  |  |  |
| Various |  |  |  |
| RT650 | 4 ohm, 8 ohm 3W nom 6W max | 6.50 | (0.50) |
| MS60 | 3 W nom 5 W max ...... | 7.50 | (0.50) |
| S2 | Headphones (cobalt magnets) | 5.75 | (0.50) |
| YAESU |  |  |  |
| YH55 | Headphones Low $Z$ | 10.00 | (0.50) |
| YH77 | Lightweight headphones Low $\mathbf{Z}$ | 10.00 | (0.50) |


| HC150 | HF ATU SWR/Power meter 200W PEP | 62.50 | (n/c) |
| :---: | :---: | :---: | :---: |
| HC2000 | HF 2 kW ATU SWR/Power meter 6 POS ant. switch. 6 to 1 vernier high Q coils 2 kW peak 1 kW continuous | 276.55 | Inde. |
| Antenne Rotatore \& Accestories |  |  |  |
| SU2000 | Light duty rotator | 3495 | 13.501 |
| 9502 | Channel master med duty up to 8 ele. | 57.00 | 13.501 |
| 9523 | Alignment bearing for 9502 | 14.38 | 11.251 |
| KR400 | Med/Heavy duty $180^{\circ}$ meter (inc. lower casting) | 90.85 | 13.50) |
| KR400RC | Med/Heavy duty $360^{\circ}$ meter Load $200 \mathrm{Kg} 1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}-2^{\prime \prime}$ masts | 102.35 | 13.501 |
| CASting | Lower casting set (400RC) | 15.00 | $11.25)$ |
| KR600RC | Heavy duty $360^{\circ}$ meter Load 200 Kg Rot $600 \mathrm{Kg} / \mathrm{cm}$ Brake $4000 \mathrm{Kg} / \mathrm{cm} 1 \frac{1}{2}{ }^{\prime \prime}-\mathbf{2 " m a s t s}^{\prime \prime}$ | 136.85 | (3.50) |
| Antenna Switcher |  |  |  |
| SA450 | SO239 connectors 1 in 2 out | 9.75 | (0.50) |
| SA450N | $\mathrm{N}^{\prime \prime}$ type connectors 1 in 2 out | 12.75 | (0.50) |
| Baluns |  |  |  |
| 8L50A | RAK 50 ohm ferrite BALUN 1:1 $1.8-38 \mathrm{MHz} 1 \mathrm{~kW}$ | 12.88 | (1.50) |
| W2AU | 1:150 ohm 3-40MHz 1 kW | 14.99 | (1.50) |
| Dummy Loads |  |  |  |
| 130 | 30 W DC 500MHz PL259 | 6.61 | (0.50) |
| T100 | 100W DC 500MHz SO239 | 20.12 | (1.00) |
| T200 | 200W DC 500MHz SO239 | 31.36 | (1.50)- |
| T210 | Wide band 10W 1.2G-2.4G | 24.50 | (0.75) |
| AW05 | Pocket RF wattmeter 5W up to 500 MHz 8 NC | 19.75 | (1.00) |
| Filters |  |  |  |
| AKD | Hi-pass blocks $0-200 \mathrm{MHz}$ RF interference to UHF above 400 MHz | 5.50 | (0.50) |
| Linear Amplifiers |  |  |  |
| YAESU |  |  |  |
| FL1 10 | HF 160/B0/40/20/15/10m 100W (10W drive) | 155.25 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2100Z | HF ware 1200w PEP, SSB lkW CW, 400W AM/FM/FSK | 449.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2010 | 2 mVHF 10 W linear | 54.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2050 | 2 mVHF 50 W linear 10 W drive | 115.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL7010 | 70 cm UHF 10W linear | 91.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| TOKYO HY POWER |  |  |  |
| HL32V | VHF 30W linear 1-5W drive HI-LOW output . | 53.50 | ( $n / \mathrm{c}$ ) |
| HL82V | VHF linear preamp output meter' 2-12W in 35-85+ out. | 144.50 | ( $\mathrm{n} / \mathrm{c}$ ) |
| HL160V | VHF linear preamp output meter 1-10W in 160W+ out | 242.40 | ( $\mathrm{n} / \mathrm{c}$ ) |
| HL45U | UHF linear preamp 2-15W in $10-45 \mathrm{~W}$ out | 119.75 | (n/c) |
| Adonis Microphones Mobile/Base |  |  |  |
| MM202S | Mobile safety mic. (non scanning) | 23.00 | (1.00) |
| MM202HD | Mobile safety mic. (scanning) . | 30.00 | (1.00) |
| AM502 | Desk mic. (compressor selectable) | 45.94 | (1.00) |
| Miscellaneous |  |  |  |
| Mutec |  |  |  |
| SNLI44S | 2 m preamp RF switched | 33.90 | (1.00) |
| RPCB | 144UB FT22 1/225 front end boatd | 64.50 | (1.25) |
| Ni -cads |  |  |  |
| AA | AA size Ni-cad | 1.00 | (0.20) |
| C | C size Ni-cad | 2.40 | (0.30) |
| NC1850 | Ni -cad charger ( $4 \times \mathrm{C}$ or $4 \times \mathrm{AA}$ ) | 9.50 | (1.00) |
| DRAE PRODUCTS |  |  |  |
| DRAE4 | 4 amp PSU | 30.75 | (2.00) |
| DRAE6 | 6 amp PSU | 48.00 | (2.50) |
| DRAE12 | 12 amp PSU | 74.00 | (3.00) |
| DRAE24 | 24 amp PSU | 105.00 | (4.00) |
| DRAE WM | $135-450 \mathrm{MHz}$ wavemeter | 27.50 | (1.00) |
| " N " Connectors (Silver Plated) |  |  |  |
| N58 | "N"Male connector RG58 | 2.25 | (0.25) |
| N8 | "N" Male connector RG8 | 2.40 | (0.25) |
| N308 | " N " T adaptor (three female) | 2.40 | (0.25) |
| N307 | "N" L adaptor (1 male 1 female) | 2.40 | (0.25) |
| N306 | N ${ }^{\prime}$ " Double female adaptor | 1.90 | (0.25) |
| N310 | N" Double male adapior | 2.50 | (0.25) |
| N8304 | N' Female to 8NC male adaptor | 2.10 | (0.25) |
| N402 | N' Plug to \$0239 | 2.05 | (0.25) |
| N403 | N Socket to PL259 | 2.00 | (0.25) |
| N404 | "N" Socket to SO239 | 1:80 | (0.25) |
| Speakera/Headphones |  |  |  |
| Various |  |  |  |
| RT650 | 4 ohm, 8 ohm 3W nom 6W max | 6.50 | (0.50) |
| MS60 | 3 W nom 5 W max ...... | 7.50 | (0.50) |
| S2 | Headphones (cobalt magnets) | 5.75 | (0.50) |
| YAESU |  |  |  |
| YH55 | Headphones Low $Z$ | 10.00 | (0.50) |
| YH77 | Lightweight headphones Low $\mathbf{Z}$ | 10.00 | (0.50) | KR400 Med/Heavy duty $180^{\circ}$ meter KR400RC Med/Heavy duty $360^{\circ}$ meter CASTING Load $200 \mathrm{Kg} 1 \frac{1}{2}^{\prime \prime}-2^{\prime \prime}$ masts KR600RC Heavy duty $360^{\circ}$ meter Load 200 Kg Rot $600 \mathrm{Kg} / \mathrm{cm}$ Brake $4000 \mathrm{Kg} / \mathrm{cm} 1 \frac{1^{\prime \prime}}{}{ }^{\prime 2} \mathbf{2 ' m}^{\prime \prime}$ mauts 136.85 (3.50)


| HC150 | HF ATU SWR/Power meter 200W PEP | 62.50 | (n/c) |
| :---: | :---: | :---: | :---: |
| HC2000 | HF 2 kW ATU SWR/Power meter 6 POS ant. switch. 6 to 1 vernier high Q coils 2 kW peak 1 kW continuous | 276.55 | Inde. |
| Antenne Rotatore \& Accestories |  |  |  |
| SU2000 | Light duty rotator | 3495 | 13.501 |
| 9502 | Channel master med duty up to 8 ele. | 57.00 | 13.501 |
| 9523 | Alignment bearing for 9502 | 14.38 | 11.251 |
| KR400 | Med/Heavy duty $180^{\circ}$ meter (inc. lower casting) | 90.85 | 13.50) |
| KR400RC | Med/Heavy duty $360^{\circ}$ meter Load $200 \mathrm{Kg} 1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}-2^{\prime \prime}$ masts | 102.35 | 13.501 |
| CASting | Lower casting set (400RC) | 15.00 | $11.25)$ |
| KR600RC | Heavy duty $360^{\circ}$ meter Load 200 Kg Rot $600 \mathrm{Kg} / \mathrm{cm}$ Brake $4000 \mathrm{Kg} / \mathrm{cm} 1 \frac{1}{2}{ }^{\prime \prime}-\mathbf{2 " m a s t s}^{\prime \prime}$ | 136.85 | (3.50) |
| Antenna Switcher |  |  |  |
| SA450 | SO239 connectors 1 in 2 out | 9.75 | (0.50) |
| SA450N | $\mathrm{N}^{\prime \prime}$ type connectors 1 in 2 out | 12.75 | (0.50) |
| Baluns |  |  |  |
| 8L50A | RAK 50 ohm ferrite BALUN 1:1 $1.8-38 \mathrm{MHz} 1 \mathrm{~kW}$ | 12.88 | (1.50) |
| W2AU | 1:150 ohm 3-40MHz 1 kW | 14.99 | (1.50) |
| Dummy Loads |  |  |  |
| 130 | 30 W DC 500MHz PL259 | 6.61 | (0.50) |
| T100 | 100W DC 500MHz SO239 | 20.12 | (1.00) |
| T200 | 200W DC 500MHz SO239 | 31.36 | (1.50)- |
| T210 | Wide band 10W 1.2G-2.4G | 24.50 | (0.75) |
| AW05 | Pocket RF wattmeter 5W up to 500 MHz 8 NC | 19.75 | (1.00) |
| Filters |  |  |  |
| AKD | Hi-pass blocks $0-200 \mathrm{MHz}$ RF interference to UHF above 400 MHz | 5.50 | (0.50) |
| Linear Amplifiers |  |  |  |
| YAESU |  |  |  |
| FL1 10 | HF 160/B0/40/20/15/10m 100W (10W drive) | 155.25 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2100Z | HF ware 1200w PEP, SSB lkW CW, 400W AM/FM/FSK | 449.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2010 | 2 mVHF 10 W linear | 54.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2050 | 2 mVHF 50 W linear 10 W drive | 115.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL7010 | 70 cm UHF 10W linear | 91.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| TOKYO HY POWER |  |  |  |
| HL32V | VHF 30W linear 1-5W drive HI-LOW output . | 53.50 | ( $n / \mathrm{c}$ ) |
| HL82V | VHF linear preamp output meter' 2-12W in 35-85+ out. | 144.50 | ( $\mathrm{n} / \mathrm{c}$ ) |
| HL160V | VHF linear preamp output meter 1-10W in 160W+ out | 242.40 | ( $\mathrm{n} / \mathrm{c}$ ) |
| HL45U | UHF linear preamp 2-15W in $10-45 \mathrm{~W}$ out | 119.75 | (n/c) |
| Adonis Microphones Mobile/Base |  |  |  |
| MM202S | Mobile safety mic. (non scanning) | 23.00 | (1.00) |
| MM202HD | Mobile safety mic. (scanning) . | 30.00 | (1.00) |
| AM502 | Desk mic. (compressor selectable) | 45.94 | (1.00) |
| Miscellaneous |  |  |  |
| Mutec |  |  |  |
| SNLI44S | 2 m preamp RF switched | 33.90 | (1.00) |
| RPCB | 144UB FT22 1/225 front end boatd | 64.50 | (1.25) |
| Ni -cads |  |  |  |
| AA | AA size Ni-cad | 1.00 | (0.20) |
| C | C size Ni-cad | 2.40 | (0.30) |
| NC1850 | Ni -cad charger ( $4 \times \mathrm{C}$ or $4 \times \mathrm{AA}$ ) | 9.50 | (1.00) |
| DRAE PRODUCTS |  |  |  |
| DRAE4 | 4 amp PSU | 30.75 | (2.00) |
| DRAE6 | 6 amp PSU | 48.00 | (2.50) |
| DRAE12 | 12 amp PSU | 74.00 | (3.00) |
| DRAE24 | 24 amp PSU | 105.00 | (4.00) |
| DRAE WM | $135-450 \mathrm{MHz}$ wavemeter | 27.50 | (1.00) |
| " N " Connectors (Silver Plated) |  |  |  |
| N58 | "N"Male connector RG58 | 2.25 | (0.25) |
| N8 | "N" Male connector RG8 | 2.40 | (0.25) |
| N308 | " N " T adaptor (three female) | 2.40 | (0.25) |
| N307 | "N" L adaptor (1 male 1 female) | 2.40 | (0.25) |
| N306 | N ${ }^{\prime}$ " Double female adaptor | 1.90 | (0.25) |
| N310 | N" Double male adapior | 2.50 | (0.25) |
| N8304 | N' Female to 8NC male adaptor | 2.10 | (0.25) |
| N402 | N' Plug to \$0239 | 2.05 | (0.25) |
| N403 | N Socket to PL259 | 2.00 | (0.25) |
| N404 | "N" Socket to SO239 | 1:80 | (0.25) |
| Speakera/Headphones |  |  |  |
| Various |  |  |  |
| RT650 | 4 ohm, 8 ohm 3W nom 6W max | 6.50 | (0.50) |
| MS60 | 3 W nom 5 W max ...... | 7.50 | (0.50) |
| S2 | Headphones (cobalt magnets) | 5.75 | (0.50) |
| YAESU |  |  |  |
| YH55 | Headphones Low $Z$ | 10.00 | (0.50) |
| YH77 | Lightweight headphones Low $\mathbf{Z}$ | 10.00 | (0.50) |


| HC150 | HF ATU SWR/Power meter 200W PEP | 62.50 | (n/c) |
| :---: | :---: | :---: | :---: |
| HC2000 | HF 2 kW ATU SWR/Power meter 6 POS ant. switch. 6 to 1 vernier high Q coils 2 kW peak 1 kW continuous | 276.55 | Inde. |
| Antenne Rotatore \& Accestories |  |  |  |
| SU2000 | Light duty rotator | 3495 | 13.501 |
| 9502 | Channel master med duty up to 8 ele. | 57.00 | 13.501 |
| 9523 | Alignment bearing for 9502 | 14.38 | 11.251 |
| KR400 | Med/Heavy duty $180^{\circ}$ meter (inc. lower casting) | 90.85 | 13.50) |
| KR400RC | Med/Heavy duty $360^{\circ}$ meter Load $200 \mathrm{Kg} 1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}-2^{\prime \prime}$ masts | 102.35 | 13.501 |
| CASting | Lower casting set (400RC) | 15.00 | $11.25)$ |
| KR600RC | Heavy duty $360^{\circ}$ meter Load 200 Kg Rot $600 \mathrm{Kg} / \mathrm{cm}$ Brake $4000 \mathrm{Kg} / \mathrm{cm} 1 \frac{1}{2}{ }^{\prime \prime}-\mathbf{2 " m a s t s}^{\prime \prime}$ | 136.85 | (3.50) |
| Antenna Switcher |  |  |  |
| SA450 | SO239 connectors 1 in 2 out | 9.75 | (0.50) |
| SA450N | $\mathrm{N}^{\prime \prime}$ type connectors 1 in 2 out | 12.75 | (0.50) |
| Baluns |  |  |  |
| 8L50A | RAK 50 ohm ferrite BALUN 1:1 $1.8-38 \mathrm{MHz} 1 \mathrm{~kW}$ | 12.88 | (1.50) |
| W2AU | 1:150 ohm 3-40MHz 1 kW | 14.99 | (1.50) |
| Dummy Loads |  |  |  |
| 130 | 30 W DC 500MHz PL259 | 6.61 | (0.50) |
| T100 | 100W DC 500MHz SO239 | 20.12 | (1.00) |
| T200 | 200W DC 500MHz SO239 | 31.36 | (1.50)- |
| T210 | Wide band 10W 1.2G-2.4G | 24.50 | (0.75) |
| AW05 | Pocket RF wattmeter 5W up to 500 MHz 8 NC | 19.75 | (1.00) |
| Filters |  |  |  |
| AKD | Hi-pass blocks $0-200 \mathrm{MHz}$ RF interference to UHF above 400 MHz | 5.50 | (0.50) |
| Linear Amplifiers |  |  |  |
| YAESU |  |  |  |
| FL1 10 | HF 160/B0/40/20/15/10m 100W (10W drive) | 155.25 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2100Z | HF ware 1200w PEP, SSB lkW CW, 400W AM/FM/FSK | 449.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2010 | 2 mVHF 10 W linear | 54.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL2050 | 2 mVHF 50 W linear 10 W drive | 115.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| FL7010 | 70 cm UHF 10W linear | 91.00 | ( $\mathrm{n} / \mathrm{c}$ ) |
| TOKYO HY POWER |  |  |  |
| HL32V | VHF 30W linear 1-5W drive HI-LOW output . | 53.50 | ( $n / \mathrm{c}$ ) |
| HL82V | VHF linear preamp output meter' 2-12W in 35-85+ out. | 144.50 | ( $\mathrm{n} / \mathrm{c}$ ) |
| HL160V | VHF linear preamp output meter 1-10W in 160W+ out | 242.40 | ( $\mathrm{n} / \mathrm{c}$ ) |
| HL45U | UHF linear preamp 2-15W in $10-45 \mathrm{~W}$ out | 119.75 | (n/c) |
| Adonis Microphones Mobile/Base |  |  |  |
| MM202S | Mobile safety mic. (non scanning) | 23.00 | (1.00) |
| MM202HD | Mobile safety mic. (scanning) . | 30.00 | (1.00) |
| AM502 | Desk mic. (compressor selectable) | 45.94 | (1.00) |
| Miscellaneous |  |  |  |
| Mutec |  |  |  |
| SNLI44S | 2 m preamp RF switched | 33.90 | (1.00) |
| RPCB | 144UB FT22 1/225 front end boatd | 64.50 | (1.25) |
| Ni -cads |  |  |  |
| AA | AA size Ni-cad | 1.00 | (0.20) |
| C | C size Ni-cad | 2.40 | (0.30) |
| NC1850 | Ni -cad charger ( $4 \times \mathrm{C}$ or $4 \times \mathrm{AA}$ ) | 9.50 | (1.00) |
| DRAE PRODUCTS |  |  |  |
| DRAE4 | 4 amp PSU | 30.75 | (2.00) |
| DRAE6 | 6 amp PSU | 48.00 | (2.50) |
| DRAE12 | 12 amp PSU | 74.00 | (3.00) |
| DRAE24 | 24 amp PSU | 105.00 | (4.00) |
| DRAE WM | $135-450 \mathrm{MHz}$ wavemeter | 27.50 | (1.00) |
| " N " Connectors (Silver Plated) |  |  |  |
| N58 | "N"Male connector RG58 | 2.25 | (0.25) |
| N8 | "N" Male connector RG8 | 2.40 | (0.25) |
| N308 | " N " T adaptor (three female) | 2.40 | (0.25) |
| N307 | "N" L adaptor (1 male 1 female) | 2.40 | (0.25) |
| N306 | N ${ }^{\prime}$ " Double female adaptor | 1.90 | (0.25) |
| N310 | N" Double male adapior | 2.50 | (0.25) |
| N8304 | N' Female to 8NC male adaptor | 2.10 | (0.25) |
| N402 | N' Plug to \$0239 | 2.05 | (0.25) |
| N403 | N Socket to PL259 | 2.00 | (0.25) |
| N404 | "N" Socket to SO239 | 1:80 | (0.25) |
| Speakera/Headphones |  |  |  |
| Various |  |  |  |
| RT650 | 4 ohm, 8 ohm 3W nom 6W max | 6.50 | (0.50) |
| MS60 | 3 W nom 5 W max ...... | 7.50 | (0.50) |
| S2 | Headphones (cobalt magnets) | 5.75 | (0.50) |
| YAESU |  |  |  |
| YH55 | Headphones Low $Z$ | 10.00 | (0.50) |
| YH77 | Lightweight headphones Low $\mathbf{Z}$ | 10.00 | (0.50) |



## SWR/Power Metere

SWR/PO
YAESU
YS200
YS2000
$52.90 \quad \mathrm{Vn} / \mathrm{c})$
Other Makes
RF2000 Twin meter 3.5-150MHz F/Scale
YM1X Twin meter 3.5-150MHz F/Scal

Amateur Electronics UX 504-516 Alum Rock Road-Birmingham 8 Telephone:021-327 1497 or 021-327 6313 Talex:334312 PERLEC G

## Carriage charges

 shown apply to UK mainland only.All prices include VAT

All prices subject to alteration without notice.

# WATERS $\mathcal{f}$ STANION ELECTRONICS 



## THE NUMBER ONE FM RIG-NOW EVEN CHEAPER!



M700AX

- Full coverage of 144 to 148 MHz in 5 kHz steps
- Concentric frequency control selectors - "aircraft style"
- Full 25 watts power output continuously variable down to 9 watt
- Receiver sensitivity better than $0.3 \mu \mathrm{~V}$ for 20 dB
- Single channel memory frequency instantly programmable
- 1750 Hz tone-burst, 600 kHz repeater shift, reverse repeater
- Large LED display and illuminated meter
- Complete with mic, mounting brackets, DC leads etc

FULL FACTORY WARRANTY

## FDK 2M ALL MODES-NOW EVEN GREATER VALUE



M750X

- Full coverage $144-148 \mathrm{MHz}$ in 5 kHz and 100 Hz steps
- High quality USB, LSB, CW, FM for base or mobile
- Power output 10 watts switchable 1 watt on all modes
- Receiver sensitivity better than $0.3 \mu \mathrm{v} / 20 \mathrm{~dB}$ and $0.15 \mu \mathrm{~V} / 10 \mathrm{~dB}$
- Dual programmable VFO's, 600 kHz shift, automatic tone burst
- Automatic scanning and up/down frequency microphone control

Complete with mic, mounting brackets and DC leads, etc
£269!
Carriage free

## FULL FACTORY WARRANTY

NEW
MIZUHO SB2X 2M SSB PORTABLE


- 144.25-144•35MHz VXO frequency control
- 2 m SSB/CW internal battery powered portable. 0.2 w output
- Receiver sensitivity better than 15 dB for $0.5 \mu \mathrm{v}$
- Built-in microphone with optional external mic socket
- Noise blanker circuit and built in CW
key
- BNC aerial socket/headphone socket/
external psu socket.
- Base station performance from a
pocket portable
£89!



## NEW



NEW
AIRBAND BASE/MOBILE MONITOR


- $110 \mathrm{MHz}-139 \cdot 995 \mathrm{MHz}$ in 5 kHz steps
- Covers all AM channels including beacons
- Clear LED digital readout display
- Sensitivity better than $0.5_{\mu \mathrm{v}}$ for 10 dB
- 12 v DC power requirement. 400 mA
- Automatic scanning facility. Built in speaker
- Complete with mobile mounting bracket and DC cable

FDK ATC720
AIRCRAFT MONITOR

- 118-136MHz AM portable aircraft
- 25 kHz steps controlled by
thumbwheel switch
- Sensitivity better than 1 microvolt
- Internal long lasting rechargeable ni-

Plug in helical whip and external
earpiece socket

- Auto tracking front-end tuning for
good image rejection
- Supplied complete with AC charger and aerial
plus free list of UK airband frequencies.

Ideal remote speaker for mobile operation
8 ohm impedance. Ultra slim construction

- Includes "magic" memo pad

Fits onto sun visor with special velcro straps
Makes mobile copy much easier and more enjoyable

NEW ADONIS MOBILE SPEAKER



## EAST LONDON HAM STORE 

 G4JDT HARVEY
## DRESSLER AMPLIFIERS

These are high power 240 V linears using 4C $\times 150$ or 4C $\times 250$ or $4 \mathrm{C} \times 350$ Eimac Tubes NOT using the grounded Grid system.
Fully protected, no thernal damages to PA finals possible


## DRESSLER AMPLIFIERS

U7070cm
D200c 2 mtr 125 wfm 200 w PEP D200 2 ntr 300 wfm 600 w PEP D2005 2 mtr 400 wfm 1 KW PEP

GASFET DRESSLER PRE-AMPS

| WV2GAAS 150W | $\mathbf{£ 4 0 . 0 0}$ |
| :--- | ---: |
| VV200GAAS 750W | $\mathbf{£ 6 9 . 0 0}$ |
| VV200GAAS 1KW | $\mathbf{£ 7 9 . 0 0}$ |
| VV2RPS SO259 | Non-switching $\mathbf{£ 2 2 . 0 0}$ |
| VV2RPS N Type | $\mathbf{£ 2 4 . 0 0}$ |
| VV7RPS SO259 | $\mathbf{£ 2 2 . 0 0}$ |
| VV7RPS Type | $\mathbf{£ 2 4 . 0 0}$ |
| VVInterface | $\mathbf{£ 1 8 . 0 0}$ |

Powered by the linear or with separate interface.
$0.7-0.9 \mathrm{~dB}$ signal to noise 0.2 dB insertion loss

NOW MORE FOWER £ 2855.00 $\mathbf{~} 500.00$ £ 500.00 £600.00<br>MOR NER 00 00 00.00

## AVAILABLE SOON NEW MODELS

YAESU FT767 6-2-70 Transceiver X Band working facility + price t.b.a.
TRIO/KENWOOD TR7930/7950 25/50W FM Mobiles
TR3500 70cms Portable + R2000 Receiver



## ALL ACCESSORIES AVAILABLE - PLUGS SKTS CO-AX 2MTR COLINEAR E31.50, 70CM COLINEAR £31.50

PRICESTNCLUDE VAT AT THE PRESENT RATE OF 15\%

## TONE SQUELCH UNIT MODEL PTS-1

Designed to wire-in to the microphone and loudspeaker lines of existing FM or AM transceivers, Model PTS-1 provides a second independent squelch system.
The squelch operates only when the incoming signal carries a prearranged tone of precisely the correct frequency. Thus two transceivers, each fitted with ModeI PTS-1, will respond only to each others transmission protecting the user from undesired interruptions
The system is ideal for Raynet groups, club nets, or groups of friends who wish to monitor for each others signals over long periods.
Sixty-four tones in the range from 1747 to 2330 Hz are selectable by a DIL switch and a built-in notch filter removes the tone from received signals.
Model PTS• 1 is built to high standards using 9 ICs on a glass fibre PCB. A full data sheet is now available
Unit price: $\mathbf{£ 3 9 . 9 9}$ + VAT ( $\mathbf{£ 4 5 . 9 9}$ inclusive) (Note-a unit is required for each radio in the group).


## COMPACTRECEIVING ANTENNAS

 MODELS AD270/370Datong Active Antennas solve the age-old probiem of finding space for a 'good' receiving aerial. Model AD370 mounted on a roof top or Model AD270 in a loft will give similar sensitivity to much arger conventional aerials yet are only $\mathbf{2}^{1 / 2}$ and 3 metres long respectively.
Moreover they do not suffer from interference a problem with conventional dipoles because it is hard to maintain good balance over a band of frequencies.
Although active antennas were introduced to the amateur market by Datong only a few years ago they have long been used by military and commercial receiving stations. The performance
 specifications achieved by the Datong AD2
active antennas selling for ten times the price-a point which is not lost on our many active antennas selling
professional customers. sensitivity and that the antenna does not invent signals which are not there.
Datong Active Antennas represent an advanced solution to a common problem and so far as we know have no serious competition in terms of performance at the price. \{Reviewed in Rad. Com., June 1982)

GENERAL COVERAGE RECEIVER CONVERTER MODEL PCi1
Once upon a time it was the norm to use a ten metre receiver to receive the two
metre band. Now, large numbers of special purpose two metre SSB rigs are in use and conversion the other way becomes a very attractive possibility.
With the addition PC1 each of these two metre SC1 each of these two metre ( ${ }^{\prime}$ ( 50 kHz to $30 \mathrm{MHz}^{\prime}$ ) also tend to have very not cheap and it makes good sense to get the most out of them. They andling Each very good performance in terms of sensitivity. selectivity, and big signal designed not to degrade them at all. The result, your two metre SSB rig receives below 30 MHZ as well as it receives on two me tres. And compared to many medium cost general coverage sets, that is saying a lot!
Try this test Listen on twenty metres after the band goes dead in the evening. With many general coverage receivers the band never dies It remains populated with phantoms generated by the receiverf from the many very strong signals on forty metres. This is the kind metre rif hat the higher quality receivers minimise. and that goes for PC1 plus a good tw metre rig. Reviews: Rad. Com.. April 1982.

## BROADBAND PREAMPLIFIER

MODELRFA

Model RFA is designed to improve slightly 'deaf' receivers within the range 5 to 200 MHz . It includes rf . activated in/out switching so that it can be used to improve The sensitivity of low power transc
(less than 20 watts PEP) simply by connecting it in series with the aerial. Most receivers have nearly adequate sensitivity. Adding Model RFA will give a useful improvement in signal-to-noise ratios without causing too easy overload on
 strong signals. The gain is fixed at 9 dbs for this reason.
Conventionally most preamplifiers have been designed for single narrow frequency bands. By using modern broadband techniques wide coverage is achieved without compromising the noise performance. for use on fixed amateur bands such as the $14,21,28,56,70$ and 144 MHz bands


HIGH PERFORMANCE 2 METRECONVERTER

MODEL DC 144/28
Again strong signal performance is the key to the design of Model thekey to th.
Where conventional converters use a dual gate mosfet as a mixer the Datong uses a balanced pair of Schottky diodes fed with nearly 10 $\mathrm{m} W$ of local oscillator at 116 MHz Where other converters use open wound colls, he Dalong cols arein screening cans on a plated through
board
The result: an unusual freedom from spu
a spurious-tree dynamíc range of 90 dbs .
As the Rad Com. reviewer wrote "With a 3 db noise figure and 90 db dynamic range the Datong DC144/28 is one of the best 144 MHz converters currently available", Rad. Com., April 1982.
Model DC144/28 is available either as a tested PCB module, as illustrated, or fully cased in a diecast aluminium box.


ALL DATONG PRODUCTS ARE DESIGNED AND BUILT IN THE U.K.

| PRICES All prices include delivery in U.K. basic prices in f are shown with VAT inclusive prices in brackets. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FL3 | 112.50 | (129.37) | AD370 | 56.00 | ( 64.40) | Codecall |  |  |
| FL2/A | 34.00 | ( 39.67) | AD270+MPU | 45.00 | ( 51.75) | (Linked) | 28.00 | ( 32.20) |
| FL1 | 69.00 | ( 79.35) | AD370+MPU | 60.00 | ( 69.00) | Codecall |  |  |
| FL2 | 78.00 | ( 89.70) | MPU | 6.00 | ( 690) | (Switched) | 29.50 | ( 33.92) |
| PC1 | 119.50 | (137.42) | DC144/28 | 34.50 | ( 39.67) | Basic DF System | 149.00 | (171.35) |
| ASP | 72.00 | ( 82.80) | DC144/28 |  |  | Basic Mobile |  |  |
| VLF | 26.00 | ( 29.90) | Module | 28.00 | ( 32.20 ) | DF System | 159.00 | (182.85) |
| D70 | 49.00 | ( 56.35) | Keyboard Morse |  |  | Complete Mobile DF |  |  |
| D75 | 49.00 | ( 56.35) | Sender | - 119.50 | (137.42) | System | 214.00 | (246.10) |
| RFC/M | 26.00 | ( 29.90) | RFA | 29.50 | ( 33.92) | PTS1 | 39.99 | ( 45.99) |
| AD270 | 41.00 | ( 47.15) | See previous advertisement or price list for further details |  |  |  |  |  |

Data sheets on any products available free on request - write to Dept S.W DATTONG ELECTRONICS LIMITED

Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE, England. Tel: (0532) 552461

## - SMC SERVICE:- FREE FINANCE-FREE CREDIT COVER-GUARANTEE

Earning the title 'The Communicators' in the amateur, commercial and marine fields was not gained easily, and we guard our reputation as jealously today, as we did a quarter of a century ago. Maintaining our reputation requires service with a capital ' S '. We offer free Securicor delivery on major equipment, take Access and Barclaycard over the phone, and have superb demonstration facilities.

On many regular priced items for an invoice over £ 120 we provide free finance, $20 \%$ down (balance over 6 months) or $50 \%$ down and the balance over a year; you pay no more than the cash price. Where this service is not available we have taken the worry out of finance:- enter a personal loan agreement - remember the deposit can be as low or lower than your monthly instalments - for 12 months to 3 years (at a typical APR rate of $31.8 \%$ ) and in the event of sickness, accident, compulsory redundancy or death your credit is covered by SMC. If you have Access, Barclay or Bankers card, or a UK call sign and you bring your licence with you, or it appears in the call book, it's INSTANT.
Should you need a radio repaired, remember we have our own expert 10 man service department, equipped with over a hundred thousand pounds of spares and test equipment, and as the importer of most of our merchandise we are in daily contact with the manufacturer

We are proud to be the largest representative in. Europe of Yaesu Musen of Japan who produce the most diverse line of amateur radio equipment in the world. With them, communications is their only business not a sideline, thus they provide you with premium products at the forefront of technology.
We are also proud to be chosen as UK representatives by such fine manufacturers as The Japan Radio Company, KDK, Nag, Hansen, Kenpro, TTE, Leson, Telewand, Dengineer, Comet, Fitlay, and Hokushin of Japan, plus HyGain, CDE, Gem Quad, Channel Master, Mirage, ETO, Dentron, MFJ, Van Gordon and KLM from the Americas.
The items illustrated here form only a tiny fraction of our range: 200 stock lines of Yaesu Musen equipment, 600 different antennas, masts, rotators, coaxes, etc., etc., plus 300 general items of communications equipment, selected as offering the best value in the world from: Jaybeam, Mini Beam, G4MH, Mosley, G-Whip, Bantex, Ascot, Strumech, Microwave Modules, JIR. Bearcat. Delica, Ashidavox, Hi Mound, ICS, Datong, RSGB publications amongst others.
We trust the outline of our services, recommendations from another amateur (aspiring or veteran) or a visit to your nearest SMC store will convince you to give us a chance to serve. SMC, your single stop source.

## JRC TRANSCEIVER JST100

* 160-10 Metres (inc WARC) plus standard service Rx.
* SSB, CW FSK, 100 Watts output (adjustable).
* Two 10 Hz step digital variable frequency oscillators.
* Split frequency or cross mode single frequency operation.

- 3 PLL's (inc BFO) locked to 10 MHz reference.
* 11 Channel memory retains operating freq. and mode.
- Listen on memory (fix Tx on VFO), microcomputer control.
* Display of memory contents during operation. Up/down/lock.
* Pass band tuning, tuneable notch, 10-20dB attenuator.
- Adjustable noise blanker, switchable AGC, calibrator.
- Adjustable RF output, RF speech processor, Vox.
* Comprehensive metering including compression level.
- Small 300(W), 327(D), 130(H), mm. 10Kg. NBD500 Mains PSU. NFG97 A.T.U NVA88 Ext. speaker. CFL 260600 Hz filter. CHG43 Desk mic. CFL 230300 Hz filter. CHG44 Hand mic. KY3A Morse key.


## JRc COMMUNICATION RECEIVER NRD $515 £ 825 \mathrm{inc}$.

* 30 MHz to 100 kHz or lower. 100 Hz steps.
* PLL digital VFO, stable ( 50 Hz AWU).
* Backlasn iree, 10 kHz rev, 50 OHz analogue calib
* Fast tune up/down switch, dial lockout.
* SSB (USB/LSB), CW, AM, RTTY.
* 6 and $2.4 \mathrm{kHz}, 600^{*}$ and $300^{*} \mathrm{~Hz}$ @ 6dB.
- Passband tuning $\pm 2 \mathrm{kHz}$ for SSB and CW.
* Variable BFO on CW for preferred tone.
* Modular plug in design with mother board.
* High reliability - low power schottky \& CMOS
* Designed for maximum ease of operation.
* Noise blanker. $0-10-20 \mathrm{~dB}$ attenuator.
* Small ( $140 \times 340 \times 300 \mathrm{~mm}$ ), light $7 / 2 \mathrm{~kg}$, rugged. PROFESSIONAL MONITOR


Up conversion, 70.455 MHz and 455 kHz . $\star$ No R.F. amplifier, balance U310 mixer. * Crystal filter before first IF amplifier. * Transceiver provisions; mute, trip, etc. * Frequency data input/output port. CQE515 Junction unit (NCM to NHD). NVA515 External 3W speaker.
CFL260 600 Hz mechanical filter.
CFL230 300 Hz crystal filter.
NHO518 $96(4 \times 24)$ channel memory unit. NCM515 Remote frequency keypad, LCD readout. Up/down step tuning, 4 chan. memory.
S.M.C. (Humberside)

247A Freeman Street,
Geimsby, Lincolnshire. Grimsby (O472) 59388
9.30-5.30 Monday-Saturday Tel: Totton (0703) 867333, Telex: 477351 SMCOMM G, Telegram:

## LEEDS

S.M.C. (Leeds) 257 Otley Road,
Leeds 16, Yorkshire.
9.5 .30 Monday-Saturday

## CHESTERFIELD

S.M.C. (Jack Tweedy) Ltd. 102 High Street,
New Whittington, Chesterfield. Chesterfield ( 0246 ) 453340
9-5 Tuesday-Saturday

## BUCKLEY

S.M.C. (T.M.P.)

Unit 27 Pinfold Workshops,
Pinfold Lane, Buckley.
Pinfold Lane, Buckley.
Buckley ( O244) 549563
$9.30-5.30$ (Lunch 1.30 ) Tues.Sat


## FT ONE $£ 1,349$ inc. <br> VAT @ 15\% \& SECURICOR

## FT980 $£ 1,115$ inc. $\begin{gathered}\text { vat } 15 \%\end{gathered}$ q SECURICOR



- Rx $150 \mathrm{kHz}-30 \mathrm{MHz}$.
$\star \mathrm{T} \times 160-10 \mathrm{~m}, 9$ bands $\times 3 \times 500 \mathrm{kHz}$ Aux bands.
- All modes AM, CW, LSB, USB, AFSK \& FM (inc.)
* IF shift \& variable bandwidth $2.6 \mathrm{kHz}-300 \mathrm{~Hz}$.
$\star$ Inbuilt keyboard operation + scanning.
$\star$ Switchable attenuator $10,20,30 \mathrm{~dB}$.
$\star$ Audio peak + notch filter -40 dB .
$\star$ RF processor and Auto mic gain control.
- 3rd order IMD -40 dB at 100 W PEP.
* AFSK shift $170,425,850 \mathrm{~Hz}$ selectable.
* Multi channel memory + programmable scan limits.
* Optional computer interface available.
$\star$ Notch filter in IF (AGC immune to hetrodynes).
* Full break in keying. $500 / 600 / 700 \mathrm{~Hz}$ beat.
$\star$ Unique analogue scale of digital type.
* Comprehensive twin meter metering.
* Memory retains mode information.
$\star$ 160-10 metres including new allocations.
$\star$ Variable IF bandwidth 2.4 kHz down to 300 Hz .
* Audio Peak and independent notch controls.
* AM, FSK, USB, LSB, CW, FM, (Tx and Rx).
* Semi-break in, inbuilt Curtis IC Kever.
* Digital* plus analogue frequency displays.
- VOX built-in and adjustable.
* Instant write in memory channel.
$\star$ Tune up button ( 10 sec , of full power).
- Switchable AGC and RF attenuator.
* 350 or 600 Hz CW, 6 kHz , AM filters included!
* Claritier (RIT) switchable on Tx, Rx or both.
* Plug in modular, computer style constructor.
* Fully adjustable RF Speech processor.
* Ergonomically designed with necessary LEDS.
$\star$ Incredible range of matching accessories.
$\star$ Universal power supply $110-234 \mathrm{~V}$ AC and 12 V DC.


F902DM £885 inc.

FT102 $£ 785$ inc.

VAT@15\%
q SECURICOR

1.8-3.5-7-10-14-18-21-24.5-28MHz

- All modes: - LSB, USB. CW. AM $\ddagger$, FM $\ddagger$, ( $\ddagger$ Option board). * Front ena: extra high level, operates on 24V DC.
* RF stage bypassable, boosts dynamic range over 100 dB ! - Variable bandwidth $2.7 \mathrm{KHz} \rightarrow 500 \mathrm{~Hz}$ and IF Shift. Fixed bandwidth filters, parallel or cascade configurations. - IF notch ( 455 KHz ) and independent audio peak. $\star$ Noise blanker adjustable for pulse width.
* External Rx and separate Rx antenna provisions. * Three 61468 in special configuration - 40 dB IMD! * Extra product detector for checking Tx IF signal. * Dual meter, peak hold ALC system.
* Mic amp with tunable audio network.

SP102: - Speaker, Hi and Lo AF filters, 12 responses! FV102- VFO, 10 Hz steps and readout, scanning, QSY. FC102: - ATU, 1.2KW, 20\% 2001200 W FSD PEP, wire. FAS-1-4R: -4 way remote waterproof antenna selector.
$\star$ Selectable CW fixed bandwidth CW-W and CW-N*
$\star$ Semi-break in with sidetone for excellent CW.
$\star$ Digital* plus analogue trequency displays.
$\star$ 180W PIP and - 31dB 3rd order intermod.
$\star$ RF speech processor fitted - adjustable level.

* VOX built-in and is adjustable from the front panel.

Wide dynamic range for big signal handling.
$\star$ High usable sensitivity, for those weak ones.

* Superb noise blanker - adjustable threshold.
* Attenuator; 0-10-20dB, AGC; slow-fast-off.
$\star$ Clarifier (RIT) switchable on Tx, Rx or both.
$\star$ Low level transvertor drive output facility.
* Universal power supply $110-234 \mathrm{~V}$ AC and 12 V DC*
- Incredible range of matching accessories.
$\star$ N.B. - 6 models: Digital/Analogue - AM/FM options.

* $150(\mathrm{~W}) \times 50(\mathrm{H}) \times 176$ (D)mm.!
* Up/down, memory/band scanning. * Easy "write-in" memory channels. * Memory back-up " 5 year"' lithium cell. * Ten memories with priority functions. * Supplied with scanning microphone. * Illuminated "'any angle" LCD display. * Display to 100 's of Hz and functions. * Two completely independent VFO's * Operation between memory and VFO. * Full reverse repeater function. * Manual and automatic tone burst. * Large "full sound" internal speaker. * Concentric volume and squelch.
* Multimode USB, LSB, FM, CW
$\star 100 \mathrm{~Hz}$ backlit LCD Frequency display
* 10 memory channels ' 5 year' backup
$\star$ Any Tx/Rx split with dual VFOs
$\star$ Up/down tuning from microphone
* AF output 1W@10\% THD
* Bandwidth 2.4 kHz and $14 \mathrm{kHz} @-6 \mathrm{~dB}$
* LED's; 'On Air', 'Busy'. m/c meter; S, PO.
* $58(\mathrm{H}) \times 150(\mathrm{~W}) \times 195$ (D) 1.3 kg )
SMC2.0C Nicad 2.0A/hr "C'"... £2.35
SMC8C Slow Charger ( 220 mA ) . . $£ 8.80$
MMB 11 Mobile Mount . . . . . . . . . . $£ 22.25$
CSC1A Softcarrying case ...... £3.45
FL2010 Linear Amplifier 2 m 10W . $£ 59.00$
FL7010 Linear Amplifier 70cms .. $£ 91.00$

Ills. c/w SCl station. consol and YD 148 mic .

FT480R $£ 369$ inc.
VAT @ 15\%
\& SECURICOR

* USB-LSB-CW-FM (A 3j, A1, F3).
* 30W PIP A 3i, 10/1W out A1F3.
* Any Tx Rx split with dual VFO's.
* Four easy write-in memory channels.
* Memory scanning with slot display.
$\star$ Up/down tuning/scanning from mic.
* Priority channel on any memory slot.
* Digital RIT. Advanced noise blanker.
* Satellite mode allows tuning on Tx.
* Semi break in with side tone.
* Very bright blue 100 Hz digital display.
* Display shows Tx \& Rx freq (inc RIT).
* String LED display for " S " and PO.
$\star$ LED's; "On Air" Clar, Hi/Low, FM mod.
* Size (Case): $8.3^{\prime \prime} \mathrm{D}, 2.3^{\prime \prime} \mathrm{H}, 6.9^{\prime \prime} \mathrm{W}$.

* $144-146 \mathrm{MHz}$ (143.5-148.5 possible) $\star \pm 600 \mathrm{kHz}$ standard repeater solit. $\star$ Excellent dynamic range and sensitivity. * $\mathrm{FM} ; 25,121 / 2,1 \mathrm{kHz}$ steps.
* SSB; 1,000, 100, 10 Hz steps.
- $430-434 \mathrm{MHz}$ ( $440-445$ possible)
$\star$ GaAs Fet RF for incredible sensitivity.
$\star \mathrm{FM} ; 100 \mathrm{kHz}, 25 \mathrm{kHz}, 1 \mathrm{kHz}$, steps.
* SSB; 1,000, 100,10Hz steps. $\star$ FT780R 1.6 fitted 1.6 MHz Shift $\mathbf{£ 4 0 \leftrightarrows} \mathrm{inc}$.
* Any split + or - programmable
$\star$ Ten memory channels ' 5 year' back up
$\star$ Up/down manual tuning. Memory scan
* Manual or auto scan for busy/clear
* Priority channel with search back
$\star$ Scan between any two frequencies
$\star$ Auto scan restart. 1.750 Hz tone burst
$\star$ Built in condenser microphone
* 500 mW to int/ext speaker
* External speaker/mic. available
$\star 168(\mathrm{H}) \times 61(\mathrm{~W}) \times 39(\mathrm{D}) \mathrm{mm}$
* C/w Quick change NiCad pack, helical
$\star$ Four easy write-in memory channels
* Rxpriority channel (auto check)
* Scanning band/memory empty/busy
$\star$ Up/down tuning/scanning from mic.
$\star$ Optically coupled tuning control
* Manual and automatic tone burst
$\star$ String LED's for 'S' and PO, 7 status LEDs
* $11 / 2 \mathrm{~W}$ of audio to internal/external speaker FT720 Control Head
$\star 3.3(4.3){ }^{\prime \prime} \mathrm{D} \times 6^{\prime \prime} \mathrm{W} \times 2(2.2)^{\prime \prime} \mathrm{H}$ S72 Switching box
* Pushbutton band change Auto steps/splits. E72S Extensíon cable, 2 m long E724 Extension cable, 4 m long MMB3 Mobile Mounting bracket for deck
£199
VAT@15\%
\& CARRIAGE

IIIs. c/wS72 and two E72S cables

FT708R
£229
VAT @ 15\%
\& CARRIAGE
$\star 430-440 \mathrm{MHz}$ (440-450 option).
$\star 25 \mathrm{kHz}$ synthesizer steps.
$\star \pm 7.6 \mathrm{MHz}$ EU split standard.

* 1W or 100 mW RF output.
* Rx:20mA squelch, 150 mA (max AF).
$\star$ Tx: 500 mA at 1 WRF.
$\star 0.4 \mu V$ for 12 dB SINAD.
* 144146 MHz ( 144148 MHz possible).
* $121 / 2 \mathrm{kHz}$ synthesizer, 600 kHz shift.
$\star 0.3 \mu \mathrm{~V}$ for 20 dB quieting.
$\star$ R×0.5. T×RV 3.5A, RVH 6.5A.
* $5.8(6.5)^{\prime \prime} \mathrm{D} \times 6^{\prime \prime} \mathrm{W} \times 2(2.2)^{\prime \prime} \mathrm{D}$.
> $430-434 \mathrm{MHz}$.
$\star 25 \mathrm{kHz}$ synthesizer steps, 1.6 MHz shift.
$\star 0.5 \mu \mathrm{~V}$ for 20 dB quieting.
- R×0.5A, T×4.5A.
* $5.8(6.5)^{\prime \prime} \mathrm{D} \times 6^{\prime \prime} \mathrm{W} \times 2(2.2)^{\prime \prime} \mathrm{D}$.

2 and/or 70!
FT720RU
£229 inc.

## *NEW - FT726R VHF/UHF DEVELOPMENT OF THE DECADE

The FT726R is a revolutionary combination of a full feature VHF/UHF transceiver with the deluxe facilities (which you have always wondered why were only available on HF transceivers) such as IF shift and variable bandwidth for SSB and CW operations incorporated, plus a full duplex option for the ultimate cross band and satellite transceiver!

The transceiver main frame accepts 3 modules, 2 metres'(standard), $430-440 \mathrm{MHz}$ and six metres (options). Modes catered for are SSB-CW-FM with optimum
provisions made for each: 20 Hz steps for SSB/CW, selectable steps for FM (also preset and programmable repeater splits), plus a A \& B VFO system with no less than 10 memory channels.
Surely the development of the decade in VHF/UHF transceiver technology.
FT726R(2) Transceiver incorporating 145 MHz
£649.00
SAT 726 Full duplex cross band unit
£82.80
$430 \mathrm{~T} 726 \quad 430-440 \mathrm{MHz}$ Module
50T726 Six metre module
£208.90
£ 157.15

## 12 MEMORY RECEIVER: - FRG7700M; $£ 399$ inc.

$\star 30 \mathrm{MHz}$ down to 150 kHz (and below)

* 12 Channel memory option with fine tune.
$\star$ SSB (LSB/USB), CW, AM, FM.
* $2.7 \mathrm{kHz}, 6 \mathrm{kHz}, 12 \mathrm{kHz}, 15 \mathrm{kHz}$, @ - 6dB.
$\star 3$ Selectivities on $A M$, squelch on FM.
* Up conversion, 48 MHz first IF
* 1 kHz digital, plus analogue, display.
* Inbuilt quartz clock/timer.
* No preselector, auto selected LPF's.
* Advanced noise blanker fitted.
* Antenna 5008 to $1.5 \mathrm{MHz}, 508$ to 30 MHz .
* 20 dB pad plus continuous attenuator
* Switchable A.G.C. Variable tone

'7700 THE ONE WITH FM!
Non memory version $£ 335$
* 110 and 240 V ac, 12 Vdc option.
* Signal meter calibrated in "S" and SIMPO * Acc; Tuners, Converters, LPF, Memory. FRT $7700 ; 150 \mathrm{kHz}-30 \mathrm{MHz}$, Switch, etc. FRV7700A; 118-130, 130-140, $140-150 \mathrm{MHz}$. FRVTTOOB; $118-130,140-150,50-59 \mathrm{MHz}$. FRV7700C: $140-150,150-160,160-170 \mathrm{MHz}$. FRVT700D; $118-130,140-150,70-80 \mathrm{MHz}$. FRV7700E $118-130,140-150,150-160 \mathrm{MHz}$. FRVT700F $118-130,150-160,170-180 \mathrm{MHz}$. FF5; 500 kHz (for improved VLF reception). MEMGR7700; 12 Channels (internal fitting). FRATIOO; Active Antenna.

FT707 £509 inc.

VAT @ 15\%
\& SECURICOR
$\star 80-10$ metres (including 10, 18 and 24 MHz bands).
$\star$ USB-LSB-CWN-AM (Tx and Rx operation).

* 100W PEP. $50 \%$ power output at 3:1 VSWR.
* Full "broad band" no tune output stage.
* Excellent Rx dynamic range, power transistor buffers.
* Rx Schottky diode ring mixer module.
* Local oscillator with ultra-low noise floor.
* Variable IF bandwidth - 16 crystal poles.
$\star$ Band widths $6 \mathrm{kHz} *, 2.4 \mathrm{kHz}-300 \mathrm{~Hz}$. $(600-350) \mathrm{Hz}$ *
* AGC; slow-fast switchable VOX built-in.
* Semi-break in with side tone for excellent CW.
- Digital ( 100 Hz ) plus analogue frequency display.
* LED Level meter reads: S, PO and ALC.
* Indicators for: calibrator, fix, int/ext VFO.
$\star$ Receiver offset tuning (RIT-clarifier) control.
* Advanced noise blanker with local loop AGC. "Option

> 2 M . 12 VDC compact $2 \frac{2}{18}{ }^{\prime \prime} \times 63 / 8^{\prime \prime} \times 73 / 18$ ". 25W (+ adjustable low power), $12 \frac{1}{2} \mathrm{kHz}$ steps. 10 "year long" memories for "crystal control". Display reads to 100's of Hz or channel number. Sensitivity $<0.2 \mu \mathrm{~V}$ for 12 dB SINAD $(0.14 \mu \mathrm{~V}$ typical). Single knob frequency selection. 20 steps rev. Rapid QSY button, end to end in a single turn. Digital RIT 1 kHz steps, adjusted from main tuning. 2, 5 slot memories, simplex, cross or 600 kHz split. Memories entered by pushing main tuning knob. +600 kHz split. Instant repeater input monitor. Band scan between front panel selectable, limits. * Scan stop requires squelch open and centre zero. * Scanning and up/down tuning on the microphones. * Reprogrammable; steps, tone, splits, and coverage. * C/W mic. "Easy out'" mobile mount and handbook.


## GRIMSBY

S.M.C. (Humberside) 247A Freeman Street, Grimsby, Lincoinshire. Grimsby (0472) 59388 9.305 .30 Monday-Saturday

## STOKE

S.M.C. (Stoke)

76 High Street.
Talke Pits, Stoke.
Kidsgrove ( 07816 ) 72644
9-5.30 Tuesday-Saturday

## LEEDS

S.M.C. (Leeds)

257 Otiey Road,
Leeds 16. Yorkshire.
Leeds (0532) 782326
9-5.30 Monday-Saturday

## CHESTERFIELD

S.M.C. (Jack Tweedy) Ltd.

102 High Street,
New Whittington, Chesterfield.
Chesterfield (0246) 453340
9-5 Tuesday-Saturday

## BUCKLEY

S.M.C. (T.M.P.)

Unit 27 Pinfold Workshops. Pinfold Lane, Buckley.
Buckley (0244) 549563
$9.30-5.30$ (Lunch 1.30 Tues- Sat

# STEPHENS-JAMES LTD. 47 WARRINGTON ROAD, LEIGH, LANCS. WN7 3EA Telephone (0942) 676790 

THE ONL Y APPROVED TRIODEALER FOR NORTH WEST ENGLAND


TR7730 the new compact 2m Transceiver £268.87


The TS930S latest transceiver from Trio Price: £1154.00 inc. VAT.


## TR2300

R2300 2 m Synthesised Portable Transceiver. We have ost count of the number of this model we have sold over the last 12 months. Hikers, campers, climbers, you can hear them all over the country and reliability which is the essence of TRIO equipment.

## JAYBEAM

5Y/2M 5 element yagi. . . . . . . . . . . . . . . . . $\quad$ [14.38
8Y/2M element yagi
$[17.83$
$10 Y / 2 \mathrm{M} 10$ element.
PBM $/ 14 / 2 \mathrm{~m}$. 14 element Parabeam.
$5 \times Y / 2 m$. 5 element crossed yagi.
$8 X Y / 2 \mathrm{~m}$. 8 element crossed yagi.
$10 X Y / 2 \mathrm{~m}$. 10 element crossed yagi.
Q4/2m. 4 element Quad
Q6/2m. 4 element Quad.
D5/2m. 5over 5 slot fed yagi.
D8/2m. 8 over 8 slot fed yagi
MBM 48 . ground plane.
MBM89/70cms. Multibeam
. 70 cms . Multibeam
$\mathrm{C} 5 / \mathrm{m}$. Colinear
E 24.15
f 55.78
£28. 18
£ 35.65 £46.00
f 29.33

## $£ 29.33$ $£ 39.10$

 $£ 39.10$$£ 25.30$ f 25.30
£ 34.50
c8/70cm Colinea
15/1296 23 cm Antenna 8 element 2 m quad. £12.65 £35.65 £ 48.88 £54.63 $£ 54.63$
f 6210 £44.85


## J.R.C. NRD515D

General coverage receiver 100 KHz to 30 MHz fully synthesised. Digital readout PLL synthesiser with rotary typa encoder pass band tuning - modular con struction.
£986.00
NEW 24 CHANNEL MEMORY UNIT

## NSD515 TRANSMITTER

+ NBD515 power supply


## 00 Watts output. US8/LSB-CW-RTTY. Mic impedenc

 600 ohm - Antenna impedence 50 ohmFrom the same Company, Japan Radio Company, comes the new JST-100 Digitally-synthesised H Transceiver. All amateur Bands 160 through to 10 M 100 watts output AM-USB/LSB-CW-RTTY. Three phase locked loop circuits including BFO circuit are phase locked with stable 10 MHz standard crystal oscillator, ensuring superior frequency stability and accuracy.

## J.R.C. JST 100

New digitally-synthesised, microcomputer-based ransceiver. 11 channel memory - two digital VFO's 100 watt PEP. CW - SSB - AM - RTTY - passband tuning - notch filter

## TRIO

TS830S HF Transceiver. ............
AT230All band Antenna Tuner/SWR AT230All band Antenna Tuner/S DFC230 Digital remote control. TS 130 Solid State HF Transceiver TS 130 V Solid State HF Transceiver. PS20 Power supply PS30 Power supply AT130 Antenna Tuner TL922 2 KW Linear Amplifier. TR2300 Portable $2 m$ Transceiver. TR2500H Hand Held 2m Transceiver. TR7730ne compact $2 m$ Transceiver TR1O TR9130 2 m Transceiver. TR9500 70 cm Multimode Transceiver RG00 Solid State Receive
Ro00 Solid State Receiver.
TR3500 7 Ocm Handheld Transceiver TS430S HF Transceiver.

Full range of TRIO Accessories stocked

DATONG PRODUCTS
PCI General Coverage Converter Low Frequency Converter.
FL1 Frequency Audio Filter
FL2 Multi-Mode Audio Filter.
Automatic RF Speech Clipper.
RF Speech Clipper
070 Morse Tutor.
AD370 Active Antenna (outdoor) AD270 Active Antenna lindoor). 2M Converter.
Keyboard Morse Sender.
$£ 678.00$
$£ 129.00$
$£ 39.00$
$£ 170.86$
$£ 531.00$
$£ 433.32$
$£ 54.97$
$£ 96.37$
$£ 88.55$
$£ 694.99$
$£ 144.44$
$£ 220.80$
$£ 268.87$
$£ 411.24$
$£ 428.49$
$£ 1154.00$
$£ 244.00$
$£ 391.00$
$£ 238.51$
$£ 691.00$
[ـ_


## MOD. 1210 S

SOLID STATE STABILISED POWER SUPPLIES Maximum ratings quoted. Prices include postage. Model 12510 -15V 5 amp. ............... $£ 29.50$ Model 15654-15V 5 amp Twin Meter.... $£ 40.00$ $\begin{array}{ll}\text { Model } 1210 S 4-20 \mathrm{~V} \\ 10 \mathrm{amp} \text { Twin Meter. } & £ 75.00\end{array}$

## RECEIVERS AND TRANSCEIVERS

SR9Tunable 144-146MHz Receiver. .
R512 Aircraft Band Scanning Receiver. . .
Regency Digital Flight Scan Symthesised Aircraft Band Recerver
AR22 2 m Hand
An22 m Hand Hold Receiver.
R528 Hand Held Aircraft
FXI Station Wavemeter.
2-way Antenna Switch 330 MHz
2-way Antenna Switch 330 MH
3 way Antenna Switon 330 MHz
FDK 750 E Transceive
DL5050 watt 5 ohm Dummy Load
DL5050 watt 5 ohm Dummy Load. . 1 Ki .
$2-400 \mathrm{MHz}-50$ chms
WH. 2 VHF Wavemeter
DL600Dummy load.
SR10002m Receiver.

## £ 46.00

 $£ 136.00$£215.00 £ 199.00 183.00
$\mathbf{1} 68$ 168.50
$\mathbf{5} 34.00$
$£ 34.00$
$£ 5.00$
$£ 5.00$
$\mathbf{£ 1 0 . 0 0}$ $£ 10.00$
$\mathbf{£} 199.00$ £ 199.00
$£ 299.00$ $\mathbf{£} 99.00$
$\mathbf{£} .50$
£38.00
£ 24.50
$\mathbf{f} 24.50$
$\mathbf{£} 29.50$
$£ 72.50$

LANCASHIRE \& THE NORTH WEST'S LEADING RETAILER IN AMATEUR RADIO. 20 YEARS SERVING THE AMATEUR'S BY AMATEURS SPECIALISING ONLY IN AMATEUR RADIO EQUIPMENT


The new TS830S, the latest from TRIO. A high performance, very affordable HF SSB/CW transceiver with every conceivable operating feature built in for 160 through 10 metres (including the new three bands). The TS830S combines a high dynamic range with variable bandwidth tuning (VBTI, IF shift and an IF notch fitter, as well as very sharp filters in the 455 KHz second IF. Together with the optional VFO230 (remote digital display VFO) which provides split frequency operation and 5 memories for frequency hold, the amateur has available today's advanced technology linked to the proven reliability and exceptional linearity of a valve PA.

- VBT vanable bandwidth turing
- IF notch fitter
- IF Shít
- Vanious fintor options

Built in digital display

- 1463 fina with RF negative feed-back
- Optional Digital VFO for increased flexibility
- PF varive PLL system of frequency generation
- RF speech processor
- Adjustabie noise blanker level
- Adjustabie audio tone
- RF attenuato
- SSB monitor circuit
- Expanded frequency coverage


## ADVERTISERS' INDEX

Amateur Electronics UK. . . . . . . 623, 624, 625
J. Birkett. . . . . . . . . . . . . . . . . . . . . 675

BNOSElectronics . . . . . . . . . . . . . 636
Bredhürst Electronics . . . . . . . . . . . . 622
British National Radio and
Electronics School . . . . . . . . . . . 670
Buywell Radio . . . . . . . . . . . . . . . . . 674
Colomor Electronics Ltd. . . . . . . . . 674
Datong Electronics Ltd. . . . . . . . . . 629
Dewsbury Electronics . . . . . . . . . . . 667
Granville Mill . . . . . . . . . . . . . . . . . . 675
G2DYM Aerials . . . . . . . . . . . . . . . . 674
G3HSC (Rhythm Morse Courses) . . 674
G3RCQ Electronics . . . . . . . . . . . . . 675
D. P. Hobbs Ltd. . . . . . . . . . . . . . . . 675

KW Ten-Tec Ltd. . . . . . . . . . . . . . . . . 670
Leeds Amateur Radio . . . . . . . . . . . 672
H. Lexton Ltd. . . . . . . . . . . . . . . . . . 628

Lowe Electronics Ltd.
front cover, inside front cover, 621
McKnight Crystal Co.,Ltd. . . . . . . . 674
Microwave Modules Ltd. . . . . . . . . . 636
MuTek Ltd. . . . . . . . . . . . . . . . . . . . . 669
Northern Amateur Radio Societies
Association.
P.M. Electronic Services . . . . . . . . . 669

Quartšlab Marketing Ltd. . . . . . . . : 666
Radio Shack Ltd. . . . . . . . . . . . . . . . 666
Radio Society of Great Britain . . . . . 667
R.T.\&I.Electronics Ltd.. . . . . . . . . 671

Selectronic Services . . . . . . . . . . . . . 671
S.E.M. . . . . . . . . . . . . . . . . . . . . . . 668

Small Advertisements . . . . . . . . . . 673, 674
South Midlands Communications Ltd. $630,631,632,633$

South Wales Communications (Hasterry) Ltd668
Spacemark Ltd. ..... 672
Stephen-James Ltd. ..... 634
S.W.M. Publications . . . . . . inside back cover back cover, $672,673,674,676$
Trade Announcement ..... 673
Tuition - Peter Bubb ..... 675
Uppington Tele/Radio (Bristol) Ltd. ..... 672
Reg Ward \& Co. Ltd. ..... 675
Waters \& Stanton Electronics ..... 626, 627
Geoff Watts ..... 675
W. H. Westlake ..... 675
W.P.O. Communications ..... 672

# SHORT WAVE MAGAZINE 

(GB3SWM)
ISSN: 0037-4261
VOL. XL FEBRUARY, 1983 No. 472

## CONTENTS

Page
Editorial - Licensing ..... 637
VHF Bands, by N. A. S. Fitch, G3FPK. ..... 638
A Microprocessór Controlled Morse Decoder, Part III, by Peter Lumb, G3IRM. ..... 642
The Ant Products "Silver 70'S Seventy-Centimetre Antenna - Product Review. ..... 646
Improvements to the Yaesu-Musen FRG-7 Receiver, by R. K. Seaton, BRS51218. ..... 648
Basics for the SWL and R.A.E. Candidate, Part IX. ..... 650
Some Simple Transceiver Switchery ..... 652
Communication and DX News, by E. P. Essery, G3KFE. ..... 654
Converting the Icom ICB1050 CB Transceiver to Ten-Metres FM, by H. Allison, G3XSE ..... 656
Some Vertical Additions. ..... 657
Making the Most of an SSB Transmitter, by J. V. Moss, B.Sc., G4ILO. ..... 659
Clubs Roundup, by "Club Secretary". ..... 661
"A Word in Edgeways" - letters to the Editor. ..... 664
New QTH's. ..... 665

[^0]
## Short Wave Magazine Ltd.



## B.N.O.S

ELECTRONICS

100 WATT 2 METRE LINEAR
AMPUFIER $\vee J 100$ PL $£ 107.00$


* MOBILE MOUNT
* $2 \times$ PL259 PLUGS SUPPLIED * 1-10 Watts RF input, $+80 \%$ overioad protection, Linear all mode operation, RF switched. FM \& SSB delay switch, low noise Mos Fet Pre Amp 12dB gain. Linear and Pre Amp independently switched, also straight through operation. Now manufactured in the UK by BNOS Electronics with full parts \& service back up.


## high quality nicad batteries

| Type |  | $1-9$ | 10.24 | 25-99 |
| :---: | :---: | :---: | :---: | :---: |
| ' $\mathrm{AA}^{\prime}$ ' | 0.5Ah | 0.90 | 0.85 | 0.82 |
| 'C' | 2.2Ah | 2.40 | 230 | 220 |
| SUB 'D' | 1.5Ah | 2.30 | 215 | 2.00 |
| '0' | 4.04h | 3.40 | 3.20 | 3.05 |
| PP3 | 0.11 Ah | 4.25 | 4.00 | 3.80 |
| PC. 3 PP3 CHARGERS |  |  |  |  |
| NICAD CHARGERS |  |  |  |  |

AC. 1 Charges up to $4^{\prime} A A^{\prime}$ cells. 55.90 MC. 2 Charges up to $4 \times$ ' $A A^{\prime}$ ' ${ }^{\prime} C^{\prime}$ ' or ' $D$ ' cells or any combination of the
above as well as PPYs.
$\mathbf{E 8 . 5 0}$ PC. 3 Charges 1 or 2 PP3 cells

All battery prices include VAT, and FREE postage on orders over 55 ; for orders postage on orders over $£ 5$; for orders

## BNOS 'A' SERIES POWER SUPPLIES

Primarily designed and ideally suited for both amateur and professional mobile transceivers. Now extending our range to meet a growing requirement the model 12/6A and 12/40A have been introduced.
The ' $A$ ' series of fixed voltage ( 13.8 V ) power supplies are designed to operate at full rated current continuously with voltage regulation better than $0.1 \%$. Short Circuit protection, foldback current limit and over voltage crowbar protection circuits are incorporated, along with full R.F. protection, to minimise equipment damage due to user error or equipment failure.

All of the 'A' series of power supplies incorporate output current meters, well rated output spade terminals (with integral 4 mm socket on 6A and 12A models).


12/6A * NEW * £48.30

- 13.8V, 6A continuous output
* 7A maximum output current
* 10A current meter
* 10A output terminals
* LED shut down indicator
- fully protected

12/25A
f125.45

- 13.8V, 25A continuous output
- 30A maximum output current
* Large 304 current meter
* 30A output terminals
* LED shut down indicator
- fully protected


## 12/12A

£86\% - 13.8V, 12A continuous output * 15A maximum output current Large 20A current meter 15A output terminals * LED shut down indicator * fully protected

12/40A $\star$ NEW $\star \mathbf{£ 2 5 5 . 4 0}$ - $13.8 \mathrm{~V}, 40 \mathrm{~A}$ continuous output - 50A maximum output current - Large 50A current meter - Large output voltmeter - LED shut down indicator - LED out of regulation indicator Output sensing terminals - fully protected

BNOS Electronics. Dept SW. Greenarbour, Duton Hill. Gt Dunmow. Essex. CM6 3PT. Tel (0371 84) 767. All prices inclusive of VAT: SAE for further details. POSTAGE FREE ON ALL MAINLAND UK ORDERS OVER $£ 5$; for orders under $£ 5$ please add 60 p for $P \& P$.

U.H.F. CONNECTORS

PT. No.
BU 01 Plugs PRICE BU01A (UR67.........4" cable BU O1A Reducer for $00.2^{\prime \prime}$ cable. 0.12 BU 018 Reducer for $00.25^{k}$ cable. 0.12 BU 02 as BU 01 but with metric thread. BU 03 PL259 for O $0.2^{\prime \prime}$ cable. . . . 0.56 BU 04 PL259 push on connector. . 0.8 BU 05 PL259 elbow plug for $00.2^{\prime \prime}$ cable.
Sockets
BU 11 SO259 square flange ...... 0.40 BU 12 SO259 single hole, inside BU 13 SO259 single hole, outside nut....................... 0.47 Couplers
BU 21 back to back femaie. . . . . . . 0.57
BU 22 back back male.
BU 23 male to female elbow
BU 241 male, 2 female ' $T$ '
BU 25 3female ' $T$
BU 26 temale ti..................... female to female lightning Adaptors
BU 31 UHF plug to BNC plug. . . . . 1.75
BU 32 UHF plug to BNC socket. . . 1.15
BU 33 UHF socket to BNC plug.
BU 34 UHF socket to BNC socket. 1.64
BU 36 UHF plug to $N$ socket. . .... 2.90
BU 37 UHF socket to N plug. . . . . . . 2.90
$\begin{array}{ll}\text { BU } 37 & \text { UHF socket to N plug. ....... } 2.90 \\ \text { BU } 39 & U H F \text { socket to phono/car aerial }\end{array}$ socket. . .

BL 01 PL259 connector, 50 ohm impedance 30 W , 50 ohm impedance sous $\max ^{\text {tinuous }}, 150 \mathrm{MHz}$. vSWR less than 1.2:1.....6.78

## PREAMP TRANSISTORS

3SK88 $145 \mathrm{MHz}, 26 \mathrm{~dB}$ gain, 1.1 dB
BF981 $145 \mathrm{MHz}, 18 \mathrm{~dB}$ gain 07 CB
BFR91 N.F....................... 438
BFR91 $432 \mathrm{MHz}, 18 \mathrm{~dB}$ gain, 1.9 dB

## Licensing

Good news from the Home Office is that the issue and conversion of licences is now, at last, completely up to date. We hope that the situation which pertained recently of some people having to wait months for their licence to be issued can be avoided in the future.

While we realise, naturally, that the flood of new licence applications must have presented considerable problems to the Licensing Branch - only organised to cope with the average number of applications of previous years - it does appear that Home Office reaction time to the problem was very slow indeed.

Still with licensing, the Home Office has announced amended application requirements. Essentially it is a streamlining (and, with luck, a speeding-up) of the system; for example, instead of having to produce a birth certificate you will only be required to state your age on the application form. A more important change, perhaps, is the abolition of Class-C and D licences (ie. reciprocal, G5 + 3 calls): overseas applicants will be issued with their own G4 or G6 callsigns, included in the normal Class-A or B licence streams. In other words, the British nationality requirement is being dropped which is a very good idea. Not having to produce birth certificates or passports at the 'consumer end' will certainly save trouble, if nothing else.

Don't forget that the closing date for entries for the May R.A.E. is 15th February. Late entries can be arranged (though not necessarily in all cases), but at an increased fee. Better check with your local examination centre now.

Thanks to all those who wrote in response to "Your Assistance, Please" (this page, November 1982 issue). Some of the pearls will be appearing in print shortly!


# VHF bands 

NORMAN FITCH, G3FPK

## The 1982 Tables

EACH year, the regular participants in the Annual Table seem to do even better. This is probably due to improved equipment as much as to better conditions, and perhaps better awareness of the possibilities of periods of anomalous propagation. Another important factor is the undoubted increase in overall activity, particularly on 70 cm .

In the Four Band Table, the first three places are the same as last year, 1981. Syd Harden, G2AXI, with 231 points, was followed by Bill Hodgson, G3BW, with 206, just three ahead of Arthur Breese, GD2HDZ. Dave Sellars, G3PBV, who was tenth in 1981, was fourth in 1982, due to more 4 m . success and it was by far his best effort.

G2AXI's 63 points gained Syd top spot on 4 m . with GD2HDZ just two points behind. G3BW, with 51 pts., was third. On 2 m . eight readers made the magic "ton', compared with only three in 1981. Bryn Llewellyn's, G4DEZ, performance was quite outstanding and his total of 120 pts . is a real challenge; to work 41 countries in one year on VHF is a fine achievement. Walt Davidson, GW3NYY, was second with 108 pts . and it is nice to see Mick Cuckoo, G6ECM, in third spot with 105 pts. In 1982, 21 readers worked 20 or more countries compared with 13 in the previous year.

On 70 cm ., Chris Easton, G8TFI, was the comfortable leader with 84 pts. and 21 countries in the year. Graham Taylor, G4JZF, was second with 75 pts. and third spot went to G2AXI with 71 pts. Of the 32 entrants, 14 got to double figures in the countries column compared with 9 the previous year. On 23 cm . top honour goes to Pam Rose, G8VRJ, whose 25 points beat G3PBV by five. Russ Clarke, GWRCCF, was third with 17 pts.

The first 1983 listings will start next issue, retaining the four band format. The countries are the 78 administrative ones in G, GD, GI, GJ, GM, GU and GW, plus the 26 in the Irish Republic. The countries are the DXCC ones plus IT9 (Sicily) and GM (Shetlands). There is no requirement that detailed lists of counties and countries worked have to be submitted. As with the Squares Table, QSOs via repeaters and artificial satellites are not recognised, but $E-M-E$ contacts can be counted for points.

## VHF Convention

The venue for the RSGB's 1983 VHF Convention is Sandown Park Racecourse, in Esher, Surrey, as in the past two years. The date is March 26 and doors will open at 1030 . Generally the format will follow the successful pattern of previous years comprising a large trade show all day and three lecture streams in the afternoon, rounding off with an informal Social Evening in the Cavalry Room. The Society has taken up the suggestion made in this feature last May that an equipment test facility be provided and more details will be published next month.

The three lecture streams are:- "A" The GB3SS SSB repeater, RF radiation hazards, and the VHF Committee forum. "B" - Field Aligned Scatter Propagation (F8SH), Phase 3B satellite, and Computers for the VHF amateur. The " C " stream is the microwave one and will cover Introduction to Microwaves, the new microwave bands and "back yard" microwave $E-M-E$.

Tickets in advancecan be obtained from Mr . B. Rider, G4FLQ, of the $R S G B$ Membership Services Section at Alma Houses, Cranborne Road, Potters Bar, Herts., EN6 3JN. Convention and Exhibition only is $£ 1.00$ ( 75 p for under-18s), for the whole affair including buffet supper the cost is $£ 8.50$ and for the evening only, it is $£ 8.00$. All enquiries about the exhibition should be addressed to Norman Miller, G3MVV, at Avon, Gardiners Lane, Crays Hill, Billericay, Essex.

## Awards Notes

Dave Sellars, G3PBV, from Newton Abbot in Devon, was the recipient of VHF Century Club Certificate No. 33 for 70 cm ., issued on December 20, 1982. He first came on the band from Northampton in Sept. 1965 and, " . . . ended up using a 3 CX 100 A 5 tripler driven by a QQV06-40A - a fearsome beast producing a good 10 watts of NBFM or CW. The antenna was a 14-ele. Jaybeam', Dave returned to the band from the present QTH in Nov. 1970 with $3 w$. of NBFM and CW and 10 -ele. Jaybeam and made some reasonable contacts. Best DX heard was OE2OML in GH square. SSB operation started in Aug. 1979 with a Microwave Modules transverter into two 10 -ele. Jaybeams. Later the power was increased to 50 w . and in June, 1981, a 23-ele. H.A.G. aerial was erected.

The site is 620 ft . a.s.l. but poor to the west and extreme north. One GM in XO has been heard, one EI worked, but neither GD nor GI heard. Country tally is 14 worked plus LX and OE heard and Dave's best DX is OK2BFH/P (JJ) at $1,572 \mathrm{kms}$. Future plans include increasing the power to the legal limit and improving the receiving performance.

## Beacon News

The Anglesey 6 m . beacon GB3SIX, has been on continous 24 -hour service since Dec. 28 last and reception reports should go to John Wilson, G3UUT (QTHR). On 70 cm . French beacon FX3UHF (ZH53a) is reported by G3PBV and G8TFI on 432.950 MHz . On 23 cm ., G3PBV copied the Belgian beacon ON5SHF (BK39j) on New Year's Eve. Dave did not mention the frequency which should be $1,296.880$ MHz .

## Contests

The 432 MHz Fixed Contest is scheduled for Feb. 6 from 1000 to 1500 and is a two section event for either single or multi-operator stations, The weekend of Mar. $5 / 6$ sees the $144 / 432 \mathrm{MHz}$ affair starting at 1400 and lasting 24 hours. This one is a two class event, either fixed station or all other.

## The Satellite Scene

The Soviet satellite ISKRA 3 "died" well before the January issue of the Magazine appeared. It was switched to transponder mode for a few short periods before Christmas but indications are that it burned up on re-entry on Dec. 22. According to Pat Gowen, G3IOR, the

| TWO METRES ANNUAL TABLE |  |  |  |
| :---: | :---: | :---: | :---: |
| Final Placings at December 31, 1982 |  |  |  |
| Station | Counties | Countries | Total |
| G4DEZ | 79 | 41 | 120 |
| GW3NYY | 81 | 27 | 108 |
| G6ECM | 80 | 25 | 105 |
| G4JZF | 82 | 22 | 104 |
| G8RZO | 77 | 25 | 102 |
| G8RZP | 77 | 25 | 102 |
| G3FPK | 76 | 25 | 101 |
| G8VR | 62 | 38 | 100 |
| GM80EG | 74 | 25 | 99 |
| G8TFI | 79 | 20 | 99 |
| G2AXI | 73 | 24 | 97 |
| G4ARI | 73 | 24 | 97 |
| G3BW | 75 | 22 | 97 |
| G8LFB | 72 | 24 | 96 |
| G3PBV | 67 | 23 | 90 |
| G6DER | 72 | 18 | 90 |
| G6ADH | 65 | 21 | 86 |
| G8HHI | 67 | 19 | 86 |
| G6FSH | 71 | 15 | 86 |
| G8VFV | 66 | 18 | 84 |
| GD2HDZ | 68 | 16 | 84 |
| G4MEJ | 59 | 24 | 83 |
| G8ULU | 61 | 22 | 83 |
| G6ADE | 65 | 16 | 81 |
| G4ROA | 67 | 14 | 81 |
| GW3CCF | 62 | 12 | 74 |
| G4MUT | 53 | 20 | 73 |
| GM4CXP | 51 | 21 | 72 |
| G3FIJ | 54 | 18 | 72 |
| G4KLX | 53 | 18 | 71 |
| G8RWG | 54 | 12 | 66 |
| G6CGY | 51 | 14 | 65 |
| G8XTJ | 52 | 11 | 63 |
| G6AJA | 49 | 13 | 62 |
| G8VRJ | 46 | 15 | 61 |
| G8KAX | 49 | 12 | 61 |
| GW3CBY | 44 | 15 | 59 |
| G8WUU | 41 | 15 | 56 |
| G4NBS | 44 | 9 | 53 |
| G4NRG | 37 | 15 | 52 |
| GW8TVX | 39 | 11 | 50 |
| GM4COK | 28 | 20 | 48 |
| G6HDD | 40 | 7 | 47 |
| G8ZYL | 35 | 8 | 43 |
| G8XHL | 30 | 9 | 39 |
| G8LXY | 30 | 7 | 37 |
| G4FKI | 23 | 10 | 33 |
| GW4HBK | 14 | 5 | 19 |

somewhat unsuccessful $R S-1$ and $R S$-2 satellites which were launched on Oct. 26, 1978, may still be heard occasionally. Telemetry from either has been copied and some transponding has been heard.
A Soviet vessel has been sent to the Antarctic to exchange personnel at the several Russian bases. The new people include several radio amateurs and Leonid Labutin, UA3CR, went with them to oversee the setting up of equipment suitable for operating through the present $R S$ satellites. It seems that $R S-5$ is being used to accept messages from the various 4 K 1 base stations, these messages then being retrieved when $R S-5$ is over the U.S.S.R. A request has been made that $R S-5$ not be used generally for the time being. A number of satellite buffs have reported difficulty in accessing $R S-6$ lately, but there are no problems with $R S-7$ and $R S-8$. It is worth repeating that 100 watts effective radiated power from the aerial is quite sufficient for any presently orbiting satellite, i.e. 100 w . to an omnidirectional radiator or 10 w . to a 10 dB . gain aerial. At close range, particularly when activity is low, far less power is necessary. Mondays are QRP days. 10w. e.r.p. maximum - and Wednesdays are "no go" days unless you are participating in prior-booked experiments.

The January 5 recorded status report on UOSAT from The University of Surrey mentioned boom deployment "shortly". No later information is to hand and anyone interested can telephone Guildford. (0483) 61202 for the latest information including current orbital predictions.

Concerning the Phase $3 B$ satellite, a letter from Jan King, W3GEY, has now been received containing the long-awaited information about the $L$-transponder. The power output at 436 MHz is now $40-50 \mathrm{w} . p . e . p$. at $30 \%$ eificiency with third order intermodulation products some 35 aB down. The $1,269 \mathrm{MHz}$ receiving aerial is a four-turn helix with a gain of approximately 11 dBi . There is an omnidirectional, crossed turnstile emergency aerial with a "gain" of zero to -10 dBi , depending upon direction. The 436 MHz Tx - and Rx - aerial is a three-dipole array giving a gain of 9.5 dBi and there is also a sleeved dipole, 0 dBi , with a very uniform pattern. AMSAT is suggesting the 24 cm . uplink requires 28.8 dBW e.i.r.p. and, with a 70 cm . aerial of 13 dBi or more gain, the user signal-to-noise ratio should be 17 dB . The noise figure of the $24-\mathrm{cm}$. Rx is 3 dB or better in an assumed bandwidth of 2.4 kHz .

The $U$-transponder should require an uplink capability of 21.5 dBW on 70 cm . The satellite's Rx n.f. is 5 dB . or better and, with a station 2 m . aerial of 10 dBi . gain, a 20 dB . $\mathrm{S} / \mathrm{N}$ user ratio is suggested. All user aerials must be of right-hand circular polarisation by I.E.E.E.


This picture, received recently from Jaybeam Ltd., shows their back-mounted Type MBM28 antenna for the 70 cm . band orientated horizontally for operation in the lower, or "DX", end where its total of 28 elements is claimed to give considerable signal enhancement. For the FM simplex and repeater segment of Seventy above 433 MHz the unit should be vertically orientated; in this plane the back-mounted design is especially valuable by reducing the effect of local obstacles, which in man-made environments are predominantly vertical in character.
definition. Jan describes the 2 m . Tx aerial as, "a funny 3-way Yagi arrangement", developed by experiment and which has a gain of 7.0 dBi . There is also a quarterwave, linear monopole. The high gain 2 m . aerial can be expected to introduce as much as 6 dB of spin modulation on the downlink at times.
The -105 dBm AGC threshold represents the composite signal level input to the transponder at which the AGC activates. Above this level, the gain of the satellite's Rx is reduced to eliminate distortion due to power amplifier overload. With no signals present, the system noise output is 13 dB below full output.
To translate some of the above into practical terms, your $1,269 \mathrm{MHz}$ transmiting set-up could be a 20 w RF signal into a 12 -turn helix made from 3 to 5 mm . rod with an overall diameter of $71 / 2 \mathrm{~cm}$. and a winding pitch of 5.2 cm . The reflector diameter would be 18.9 cm . so it would make a compact system. Brief information on helical aerials can be found in the RSGB's VHF-UHF Manual.

AMSAT-UK's Annual General Meeting is on April 9 at London House, Mecklenburgh Square, off Guildford Street, London, W.C. 1 at 1300. Lunch can be bought in London House from midday at a sensible cost.

## Moonbounce

As operators improve their station equipment, many more folk are getting interested in $E-M-E$ communication. To make such contacts on 2 m . is a formidable challenge since, although path losses are less than they are on higher frequencies, the physical size of the aerial system
required can be somewhat daunting. Of course, you can let the "big gun" at the other end do much of the work for you. The philosophy of Dave Olean, K1WHS, is to run very high power into a huge aerial array so that stations running about 300 w . to a single, long Yagi may be able to work him on 2 m .

Fortunately the Moon's orbit is not circular, its perigee being $362,000 \mathrm{kms}$. and its apogee, $406,400 \mathrm{kms}$. and this equates to a difference of 2 dB in the path loss, a considerable amount when dealing with marginal reception. The weekend of Jan. $1 / 2$ was a perigee period and

70 CENTIMETRES ANNUAL TABLE

| Final Placings at December 31, 1982 |  |  |  |
| :---: | :---: | :---: | :---: |
| Station | Counties | Countries | Total |
| G8TFI | 63 | 21 | 84 |
| G4JZF | 58 | 17 | 75 |
| G2AXI | 52 | 19 | 71 |
| G6ADE | 53 | 16 | 69 |
| G8RZO | 48 | 16 | 64 |
| G8RZP. | 48 | 16 | 64 |
| G4ROA | 46 | 14 | 60 |
| G3PBV | 44 | 14 | 58 |
| GD2HDZ | 45 | 13 | 58 |
| G3BW | 48 | 10 | 58 |
| G8ULU | 37 | 16 | 53 |
| G4NBS | 45 | 8 | 53 |
| G4MUT | 38 | 12 | 50 |
| G8HHI | 34 | 13 | 47 |
| G8VRJ | 33 | 11 | 44 |
| GW3CCF | 35 | 7 | 42 |
| G4BVY | 29 | 11 | 40 |
| G8KAX | 28 | 9 | 37 |
| G6ADH | 26 | 7 | 33 |
| G6DER | 26 | 6 | 32 |
| G3FIJ | 25 | 3 | 28 |
| GW3NYY | 19 | 7 | 26 |
| G8WUU | 18 | 6 | 24 |
| G4NRG | 12 | 6 | 18 |
| G8LXY | 16 | 2 | 18 |
| GW3CBY | 13 | 2 | 15 |
| G8XHL | 11 |  | 14 |
| GM4COK | 5 | 6 | 11 |
| G4FK1 | 9 | 1 | 10 |
| GM4CXP | 6 | 3 | 9 |
| G6CGY | 4 | 2 | 6 |
| G4KLX | 3 | 1 | 4 |

ANNUAL VHF/UHF TABLE


Three bands only count for points. Non-scoring figures in italics.
encouraged a lot of activity. For example, on the morning of the 2nd, Clive Penna, G3POI, worked WA2GSX, SM4GVF, WA8ZHE, WA3USC, W7IUV and KY4Z. At 2200 on the 2nd, Clive had a sked with RA3YCR but heard nothing from the Russian, even though he was receiving his own echoes well. G3POI has received a QSL card from KG6DX in Guam who received Clive's signals between 2200 and 2230 at RST 519. The KG6 uses four Cushcraft 'Junior Boomer'' aerials and a masthead preamplifier and appears to be active on $E-M-E$. G3POI is the second English station to complete a Worked All Continents on 2 m ., thanks to a QSO with YV5ZZ on Dec. 26. This brought Clive's country total to 59 !
On Dec. 29, OZ4VV heard G3POI calling " $C Q$ " at 3 dB above the noise. He called Clive using just 300w. and two 9 -ele. Tonna Yagis, and was just about detectable. It is now relatively easy to install a masthead preamp. with a noise figure below 1 dB . A couple of correctly made NBS 12-ele. Yagis with 15 ft . booms could give 15 dB of aerial gain over a dipole and such a system would enable many of the bigger $E-M-E$ stations to be heard.

In the U.K., we are at some disadvantage with the normal power limit of a trivial 100 w . at the aerial in A1A mode. Of course, higher power permits have been granted to a few amateurs specifically for $E-M-E$ research, but it has been a tedious and lengthy process. Naturally there is the real risk of more potential interference to radio and TV receivers, so those who have to sort out these problems are understandably not over-enthusiastic about scores more people running a kilowatt. However, it has to be recognised that, licensed to do so or not, quite a few VHF/UHF operators are using far more power than 100 w . The interference problem has been overdone, in your scribe's opinion, since usually one would elevate the aerial system for serious $E-M-E$ work so that much less RF would be fired at surroundings TVs, etc., than by tropo. operat ors running 400 w . p.e.p. of SSB. No doubt this topic will be aired at the forthcoming VHF Convention, during the RSGB VHF Committee forum.

José $\mathrm{M}^{\text {a }}$. Gené, EA3LL, sent a colour print of his $E-M-E$ aerial array which comprises four, 21-ele. home made Yagis. He uses a $D 432$ preamp. with 0.6 dB n.f. and on the Tx side, runs a pair of 4CX250R valves at one kilowatt. The following
stations have been worked:- On Oct. 10, 1982, WA8ONQ and WAlJXN/7; on Nov. 6, KB8RQ, KIWHS, SM7BAE, KR5F, WA1JXN/7 and W5UN, and on Nov. 7, DK4XI, YU3USB, F6BSJ, I2ODI, HB9SV, UA1ZCL and K1MNS.

As readers will know, the station 4UIITU at the I.T.U. Headquarters in Geneva, has separate $D X C C$ country status. Geoff Grayer, G3NAQ, operates this station quite often and writes that they now have four 19 -ele. Cushcraft "Boomers" on 2 m . Moonbounce QSOs have been made with SM7BAE, WA1JXN, WSUN, VE7BQH and KI7D, and signals have been identified from I2ODI and WA9KRT. Geoff would be glad to make $E-M-E$ skeds for perigee weekends preferably in the "quiet"' hours, say 2300 to 0800 GMT, when city noise is lowest, and when the Moon is at an elevation of $20^{\circ}$ or more. The QTH is:Dr. G. H. Grayer G3NAQ, c/o I.A.R.C., P.O. Box 9, CH-1211 Geneva 20, Switzerland. An s.a.e. with a U.K. first class stamp would be appreciated with the first. letter.

## Meteor Scatter

Staying with 4U1ITU, the station was active in the December Geminids shower with G3NAQ and Pierre Pasteur, HB9QQ, at the controls. They operated throughout the night of Dec. 13/14 and again on the evening of the 14th. They had problems, such as the aerial connector catching fire and a tape recorder malfunction. From 2100 on the 13th through 0800 on the 14th they completed QSOs with DK6AS, DL7YS, YU2EZA, HG1YA, SM5CMU and OZ1ASL. Skeds with OZ4VV, UK3AAC, ON6UG, were unsuccessful and no final $R$ 's were received from LZ1AB. On the 14th, from 1700 to 2400, G4IJE, UC2ACA and SM7BAE were worked. Nothing was heard from LA9BM, DF5HC and SM6EOC and only a few pings from G8OPR. 4U1ITU plans to be QRV in future major showers and skeds are sought. Two minute periods are preferred and CW speed should not exceed 700 1.p.m. with the present equipment.

John Hunter, G3IMV, added FC square via an SSB QSO with IW5AVM in the Quadrantids, to bring his 2 m . total to 324 . G3POI was on during the Geminids and completed with ZB2BL (XW) for country no. 58. Other completed skeds were LA6QBA (GV); LA1K (FW); OH1ZAA (KV) and OH7UE (OW), a new square. Because of the gales, Clive was not on for the Quadrantids.

Mark Turner, G4PCS, operated G3UNU, The University of Nottingham Radio Society's club station, during the Geminids and thinks the successful sked. on FM mode with F1JG (CD) could be a G-to-F 'first''? In the period Dec. 11 to 14, he completed with OK3CPY (JI) and OH3MF (MU) on CW, while SSB yielded

I4MKN (GE); [W5ACZ (FD); I4YNO (FE) OH3TR (LV) and OK1FM (GJ). A test on SSB at 0150 on Dec. 14 with G8WPD over a 58 km . back scatter path went through in 12 mins. with the Derbyshire hills eliminating tropo. signals. Both aerials were pointing northeast for this test. Mark asks if this is the shortest ever MS contact?

Random operations saw nine QSOs for G3UNU with YU3ZV (HG?): YU7AJH (JF); YU7AR (KF) in 10 secs ; IlANP (EE); I4XCC (GD); YU3ES (GF); F1KFN (CF) and OE3OKS in 10 secs., all SSB. CW mode brought IIKTC (EF). Mark suggests this shower peaked between 0300 and 0800 on the 14 th but that activity was down on some previous years.

Paul Turner, G4IJE, (Essex) got his 50th country - 4UIITU - on Dec. 14 and also made on SSB QSO with EA7AG (YW18b). He reckons the shower to have been "par for the courses", but better than in 1981. His three Quadrantids skeds failed but he did complete one random contact with OH3MF. There was a lot of random SSB operation with some folk using. 144.400 MHz instead of the old ' 200 frequency, and Paul thought the operating was "exemplary". Martin Adams, G4IYA, (Kent) worked 4U1ITU in the Quadrantids by "tail ending" G8VR. He heard UQ2GLO and several YUs on the random frequencies.

## Two Metres

The mail bag was not so large this month and it seems that the Post Office took a long while to deliver the January issue of the Magazine, many readers not getting their copies until after our deadline.

G3PBV reckons 1982 to have been a good year for propagation with good Auroras, and Sporadic $E$ and tropo. openings in unusual directions. Dave remarks that the year ended, and 1983 began, with some good tropo. even though activity was low. The lift started on Dec. 29 towards Spain with many stations working into VD square. The next day it was the turn of central France and by the 31st, the ONs and PAs were there. Signals into Newton Abbot were strong up to about 800 kms . but not much further. The HB9HB beacon was copied. Dave heard weak Ar's on Dec. 21 and 23.

## 23 CENTIMETRES ANNUAL TABLE

## Final Placings at December 31, 1982

| Station | Counties | Countries | Total |
| :--- | :---: | :---: | :---: |
| G8VRJ | 20 | 5 | 25 |
| G3PBV | 14 | 6 | 20 |
| GW3CCF | 14 | 3 | 17 |
| G8HHI. | 14 | 2 | 16 |
| G8KAX | 11 | 4 | 15 |
| G2AX1 | 13 | 2 | 15 |
| G4NBS | 11 | 1 | 12 |
| G3BW | 6 | 4 | 10 |
| GW8TVX | 6 | 3 | 9 |
| GW3CBY | 4 | 3 | 7 |
| GD2HDZ | 3 | 3 | 6 |
| G4ROA | 3 | 1 | 4 |

FOUR METRES ANNUAL TABLE

| Final Placings at December 31, 1982 |  |  |  |
| :--- | :---: | :---: | :---: |
| Station | Counties | Countries | Total |
| G2AXI | 56 | 7 | 63 |
| GD2HD | 54 | 7 | 61 |
| G3BW | 45 | 6 | 51 |
| G3FIJ | 42 | 4 | 46 |
| G4ARI | 40 | 5 | 45 |
| G3PBV | 35 | 7 | 42 |
| GW4HBK | 35 | 7 | 42 |
| G8VR | 24 | 3 | 27 |
| G4FKI | 21 | 2 | 23 |
| G4MUT | 15 | 4 | 19 |
| GW3CBY | 12 | 4 | 16 |
| GM4CXP | 8 | 3 | 11 |
| G4BVY | 9 | 2 | 11 |
| G4NRG | 1 | 1 | 2 |

G4PCS's report on G3UNU activity mentions tropo. into OZ and SM on Dec. 1, to GP, HP and IQ squares. In the Dec. 7 $A r$ the weak event lasted from 1634 to 2010 and GMs were worked, along with LAs in CU and FT and SM5 in HT. The QTFs for GM were $15-27^{\circ}$, for the CU and HT sq., $15^{\circ}$ and for FT sq., $35^{\circ}$. Between 1940 and 1950, very strong signals were heard at $60^{\circ}$ from EN sq. On Dec. 8, another weak event occurred and the first QSO was with RQ2GAG (MQ) at 1814 , QTF $35^{\circ}$. At 1901, SM6CMU (FR) was heard at $347^{\circ}$. SM4 and SM5 stations were worked in GT and HT. Another weak $A r$ on the 10th. produced on SM5 (HS) at 2024 (QTF 0 ${ }^{\circ}$ ), and GI and GM stations with QTFs $30-45^{\circ}$.

Mick Cuckoo, G6ECM, (Kent) was quite busy on the band in December. In a brief tropo. opening on the 1 st, the GB3ANG beacon was 20 dB over S 9 for half an hour, but only GM8BDX (YP19e) was worked. In the contest on the 5 th, Mick made 191 QSOs, best DX being DF8AE and DL3YBP, both in EM. He caught the $A r$ on the 10 th and worked GI6DRK (WO34a); GI8YDZ (WP67b); GM4JCM (YQ45b) and GM8GFF (YP04d). On Dec. 30, F1BUU (ZE08a) was a new sq. and FIEAN (AG22f); FlGYA/P (BF16g) and F1YJ (BH12c) were also contacted. The next morning, the good tropo. conditions had rotated to the east, bringing QSOs with DB5OE (FL22h); DF4DC (EL22j); DF8AE again and DK50Z (EM60c). A further 42 stations in DJ, DK and DL were worked.

John Pilags, G8HHI, (Hants.) added a few more for the Annual Table in the Dec. 10 Ar with GM4JCM (Fife); GI6DRK (Tyrone) and GM8GFF (Lothian) between 1925 and 1958. GI8YDZ (Antrim) was also contacted. John wished HB9AEN/P (DG13b) ''Season's Greetings' at 0152 on Jan. 1, but nothing else of much interest was worked in the opening. Chris Easton, G8TFI, (Gloucs.) reckons the only "real DX" worked at the year end was EAIED (VD). French stations in BJ, CH, DH, ZE and ZF were heard on the 30 th with propagation moving eastwards the following day, before fading out. Chris, with G4NBS and G4NWT, put G4NXO on the air for the Dec. 5 Contest, as mentioned last month. They made 410 QSOs worth 3,700 poins,
with many GMs and 98 continentals worked.

At G3FPK, the Dec. 8 Ar was discovered at 1720 but was generally a weak event, and the one on the 10th was discovered around 1900. A big $A r$ was reported on the 17 th in Sweden at 1310 and heard in London at 1415 . Another one was found on the 23 rd , from 1650 to at least 1730 with QTFs $350-360^{\circ}$.

## Seventy Centimetres

G3PBV was hearing beacons on Dec. 31 from distant parts, but activity was nil. The previous day, F1EZQ (CH) was worked.

In Geneva, 4 U 11 TU is active on 70 cm . When G3NAQ erected the four 2 m . Yagis, he also put up a 19-ele. Tonna Yagi underneath. The station comprises a Yaesu FT-101 transceiver, driving a Microwave Modules transverter and Geoff's PA which gives about 50 w . output. A K2RIW-type amplifier should soon be available and it is hoped to work towards $E-M-E$ capability on this band if the necessary aerials are forthcoming. A subframe of the 2 m . aerial support has the correct spacing for mounting four 70 cm . Yagis.

## Twenty-Three Centimetres

It seems that the end-of-1982 tropo. failed to create any significant activity on the band, even though distant beacon reception was reported. Congratulations to Adrian Chamberlain (Coventry) who is now G4ROA (ex-G6ADC). He is the only correspondent to report any activity. His best DX up to Jan. 2 is G3TDG in Kent, worked on Dec. 24.

## Six Metres

As this is being compiled, the situation concerning the 6 m . permits is that the RSGB's VHF Committee has selected the forty licensees from the near two hundred applicants and that the list has been agreed with the Home Office. It has been sent to the B.B.C. with a request that a prompt comment be made in days, rather than weeks. It was a matter of protocol to inform the B.B.C. as prime users of this band at present. It is inconceivable that any grave objections could be raised by the Corporation at this stage since there is no question of interference as the permits will be for operation outside TV broadcasting hours.

## Finale

That's about it for this month. The Squares Table will be back next time along with the 23 cm . All-time one, so please update your scores for that. All your news, claims etc. by Feb. 2, and for the April issue by Mar. 2 - both very early dates -to:- "VHF Bands", SHORT WAVE MAGAZINE, 34 High Street, WELWYN, Herts., AL6 9EQ. 73 de G3FPK.

## A MICROPROCESSOR CONTROLLED MORSE DECODER PART III

Peter Lumb, G3IRM

## The Processor Unit

THIS unit consists of six integrated circuits. It accepts the Morse timing clock referred to in the first part of this series, together with Morse code at TTL levels. The Morse clock is keyed by the code input so that the pulses can be stored in the microprocessor and converted into special code (the Morse holding code) which again is stored in the processor; this code is then converted into ASCII which is output to the display unit. The processor also measures the length of spaces, ignores marks of less than five pulses and transfers the dot count to an output port which is used to control the automatic speed control circuits. It also generates pulses to control the display such as inserting spaces when required.
The 8085A used is a revised version of the earlier 8080A. The latter required an external clock generator (an 8224) and a system controller (an 8228) to make it work. All three IC's are now combined in the 8085A but at the expense of a small complication due to the fact that the 8085A still has only 40 pins. The low addresses and data lines are multiplexed on the same pins and have to be split again into separate lines and the control signals have to be generated by a separate small IC. A 74LS373 can be used to demultiplex the address/data lines and a 74LS42 can be used to generate the four control signals required. These signals are MW (memory write), MR (memory read), $\overline{\text { I/OW }}$ (input/output write) and $\overline{\mathrm{I}} / \mathrm{OR}$ (input/output read). The bars over the symbols indicate that the control is active low, meaning that, for example, to write into memory the signal must go low; at all other times it must be high.
Although not essential in this case, it is usual to use all address lines to determine the addresses to be applied to the memory and this can be done quite simply by a 74LS05. The cost of including this extra device is so small that it is well worth the coppers it costs. The inputs of five of the inverters are taken to the five highest address lines so that the OR'ed output connected to pin 10 of the 74LS132 gates only goes high when all five high addresses are low, an essential for correct access to the memory. Decoding circuits on address lines controlling memories can be quite complicated but owing to the simple nature of the whole circuit, and the fact that only one memory is used, some liberties can be taken. The remainder of the decoder consists of two NAND gates forming part of a 74LS132. Provided that the output of the OR'ed inverters is high, gate 1 is enabled when either MR or MW is low and the output of gate 2 is high. The output of gate 1 is then low, enabling the memory from which it can be concluded that the memory can be accessed when either MR or MW is low. The microprocessor will not allow both to be low at the same time. $\overline{\mathrm{MR}}$ is connected to $\overline{\mathrm{OE}}$ (output enable), on the memory via IC5 to allow data to pass from the memory on to the data lines and MW is connected to $\overline{W E}$ (write enable), again via IC5 to allow data to be written into the memory.
The remaining device is a programmable peripheral interface (PPI) which has three ports, any one of which can be made to act as either an input or an output. One of the ports can even be split into two ports four bits wide, and each bit in this port can be set and reset separately. There is no need to go into details as to what this rather clever device can do: suffice it to say that for the

Table 3

| 1 | PA3 | 14 | PC0 | 22 | PB4 |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 2 | PA2 | 15 | PC1 | 23 | PB5 |
| 3 | PA1 | 16 | PC2 | 24 | PB6 |
| 4 | PA0 | 17 | PC3 | 25 | PB7 |
| 10 | PC7 | 18 | PB0 | 37 | PA7 |
| 11 | PC6 | 19 | PB1 | 38 | PA6 |
| 12 | PC5 | 20 | PB2 | 39 | PA5 |
| 13 | PC4 | 21 | PB3 | 40 | PA4 |

All PA pins are for connections to input/output port A and the remainder are the corresponding pins for ports B and C . The connection to pin 17 has been shown in the circuit diagram.
purpose of the Morse decoder port A is made to act as an input, port B as an output and port C is split so that the lower half acts as four separate outputs and the upper half acts as an input. No wiring alterations are required to change use, everything being controlled by the program written into the memory. In a similar way to that used to decode the address lines to the memory, the addresses are also decoded to control the PPI. In order to read or write information through the ports, address line A7 must be high; this is inverted by the remaining inverter in the 74LS05 and applied to pin 6 of the PPI. To tell the PPI which port is to be used address lines A 0 and Al are also used. The codes required are therefore 10000000 to 10000011 inclusive. In octal these are 200 to 203 and a look at Table 2 will show that three of these are used at addresses 003, 005 and 007.

To avoid making the circuit diagram in Fig. 4 confusing all the address and data lines have been omitted. The circuit can be assembled on a piece of Veroboard measuring 120 mm . square by first making all the connections shown and then laying the address and data lines on top of the existing wiring. All A0 points should be joined together as should all other corresponding address and data lines. In addition the lines must be joined to a 24 -way pin strip to correspond to the leads on the memory board. The unconnected pins on the 8255 A are listed in Table 3 and will be wired at a later date. The MW, MR, I/OW, $\overline{\mathrm{I} / \mathrm{OR}}$ and CE must also be connected and, with the exception of $\overline{M W}$, must be


The Processor Board

connected to the tag strip to correspond to Fig. 1. MW, will be switched at a later date but for the purposes of checking it must be connected to the tag strip by a temporary connection. This temporary connection stays in place until an interrupt controller is added to the processor board; it is convenient to put the wire on the back of the board. Fig. 5 shows the layout of the processor board, the dot on each 1 C indicating pin 1 from the top. It will be noted that pin 1 is always in the same place and, although this may mean some wires are a little longer than necessary (and some may be shọrter!), it makes wiring much easier when counting pins on the rear of the board. Be sure to leave space on the board for the other IC's to be added later. A large board can be used and the surplus cut away when all wiring is completed.

## Checking the Processor Board

In keeping with the writer's usual practice, arrangements have been made to check the operation of the board so far. Make up two Minicon 12-way sockets with lengths of wire to correspond to all data pins on the programmer board as well as a pair of wires on
one set of power pins. Temporarily solder one set of data wires to the corresponding pins on port A of the 8255A and the other set to port B . Connect the two power lines to the processor board. The memory board programmed as Table 2 should then be plugged into the processor board and the flying leads from port A connected to the data switches on the programmer and the leads from port B to the indicator pins on the programmer. If power is now applied the 8085 A will automatically reset itself to the first address, due to the presence of the components connected to pin 36 , and will then carry out the program; in can be reset again at any time by momentarily taking pin 36 to 0 v . (this will later be joined to a tag for connection to a push switch on the front panel). Provided the connections have been made correctly, some of the indicator diodes will light and it will be noted that these correspond to the data switches which are set high. Change the switches and reset the processor and the diodes will immediately change to correspond to the new data.

The program first instructs port A in the 8255A to act as an input, port B as an output and port C as input/output as
mentioned above. This takes up the first four addresses. Addresses 004 and 005 input the data on the switches and addresses 006 and 007 output the data through port B to the indicators. Address 010 then stops operations until the reset is again shorted to 0 v . A simple variation would be to delete the HLT at address 010 and substitute:

| Octal <br> address | Decimal <br> address | Data <br> octal | Data <br> binary | Mnemonic. |
| :---: | :---: | :---: | :---: | :---: |
| 010 | 8 | 303 | 11000011 | JMP |
| 011 | 9 | 004 | 00000100 |  |
| 012 | 10 | 000 | 00000000 |  |

After reprogramming the board mount it on the processor board and reconnect the power supply. The indicators will again show the data on the switches but the processor will not halt as it did previously. The new instruction at 010 tells it to jump back to address 004 and carry out the same operation; it therefore continually inputs and outputs the data on the switches. No halt instruction is now required as the processor is in a loop from which it cannot escape without further modifications to the program. It the data switches are now altered the indicators will follow immediately without the need to reset each time.

## The Automatic Speed Controller

Fig. 6 is the circuit diagram of this part of the circuit, which can be assembled on the same board as the processor circuits as it only needs five small IC's. The 74LS90 is not really necessary as the capacitor on the Morse clock oscillator (74LS624) can be increased. However, at slow Morse speeds this needs an electrolytic which is not as stable or small as the polyester capacitor used. The oscillator is voltage controlled by the voltage applied to pin 13 from the ZN 428 which is a digital-to-analogue converter. By applying digital signals between 0000 and 1111 to the input pins 11 to 14 , the output of the converter can be varied from about zero volts to 2.3 v ; these digital inputs are provided by a binary counter in the form of a 74LS193. A data line decoder is also needed to drive this counter though this is not the same data as is provided by the microprocessor data lines. Data is provided by port C (low) on the 8255A. The speed capacitor on the 74LS624 is not on the board but is connected by leads to the speed switch


Fig. 5 PROCESSOR BOARD LAYOUT


The Filter Board

Table 4


| 74LS624 <br> input <br> voltage | 74LS90 <br> output <br> frequency |
| :---: | :---: |
| 0.03 | 64 |
| 0.18 | 73 |
| 0.33 | 85 |
| 0.48 | 99 |
| 0.63 | 116 |
| 0.78 | 132 |
| 0.94 | 151 |
| 1.09 | 170 |
| 1.24 | 190 |
| 1.39 | 210 |
| 1.54 | $233-$ start |
| 1.69 | 254 |
| 1.84 | 277 |
| 1.99 | 300 |
| 2.14 | 323 |
| 2.29 | 347 |



Fig. 6 AUTOMATIC SPEED CONTROLLER CIRCUIT

## Tables of Values

Fig. 4
$\mathrm{R} 23, \mathrm{R} 28, \mathrm{R} 29=1 \mathrm{~K}$
$\mathrm{R} 24, \mathrm{R} 26, \mathrm{R} 27=10 \mathrm{~K}$
$\mathrm{R} 25=47 \mathrm{~K}$
$\mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7=0.01 \mu \mathrm{~F}$ disc, at
various points on the board
$\mathrm{C} 8=33 \mu \mathrm{~F}$ tans.
$\mathrm{C} 9=10 \mu \mathrm{~F}$ tant.
$\mathrm{IC} 8=8085 \mathrm{~A}$
$I C 9=74 L S 42$
$I C 10=74 L S 373$
$I C 11=74 L S 132$
$I C 12=74 L S 05$
$I C 13=8255 A$
$D 4=1$ N4148
$X 1=$ about 6 MHz (not
$\quad$ critical)

Fig. 6
$\mathrm{IC15}=74 \mathrm{LS} 193$
$R 30=390 R$
IC16 $=$ ZN 428
$\mathrm{IC17}=74 \mathrm{LS} 624$
$\mathrm{IC} 18=74 \mathrm{LS} 90$


Fig. 7 PROCESSOR TO SPEED CONTROLLER CONNECTIONS
via Minicon connectors; the switch is on the front panel. Use a $0.33 \mu \mathrm{~F}$ capacitor for testing.

## Checking the Speed Controller

At this stage no connections are made between the processor section and the speed controller and it may be advisable to remove the 8085A and 8255A from their sockets for safety. Temporarily connect pins 14 and 15 on the 74LS42 to 0 v . and connect pin 13 to D2 switch on the programmer. Connect a voltmeter to pin 13 on the 74LS624 and a digital frequency meter, if one is available, to pin 12 on the 74LS90. It is useful to provide test points on the board for this purpose. Switch D2 high and the meter should read approximately 1.54 v . and the frequency meter 233 Hz . The frequency can, of course, vary slightly from this figure depending on the accuracy of the $0.33 \mu \mathrm{~F}$ capacitor used in the voltage controlled oscillator. When the speed controller is connected to the microprocessor section a pulse is generated early in the program which takes the place of the switch and sets the voltage controlled oscillator to its starting frequency (in this case about 233 Hz ).

Return D2 switch to zero, connect pin 15 to the negative-going pulse provided by the programmer and remove the low on pin 14 of the 74LS42. If the programming microswitch is now pulsed the voltage and frequency readings will increase and the results obtained should be fairly near those given in Table 4. When the readings have reached a maximum the voltage and frequency readings will jump to a minimum and the cycle will repeat. Connecting the input pulse to pin 14 of the 74LS42 instead of pin 15 will reverse the direction in which the readings move. Ignoring the lowest five readings which the processor will be programmed to ignore, the range over which the decoder will track is from 132 to 347 Hz , a range of well over $2: 1$ so it will follow Morse which varies from about 12 to 28 w.p.m. with some safety margin. Substituting a different timing capacitor will vary the range covered.

As both the processor and the speed controller have been checked they may be connected together now; the connections required are shown in Fig. 7.
to be continued

## PRODUCT REVIEW

# THE ANT PRODUCTS "SILVER 70" SEVENTY CENTIMETRE ANTENNA 

0N the LF and HF bands it is possible to achieve surprisingly good results with simple wire antennas, but at VHF and UHF , anyone interested in working any distance will need a gainy, directional antenna. Over the years many manufactures have offered such products and names like Jaybeam, Tonna, Cushcraft, KLM, T.E.T., H.A.G., Cue Dee, etc., come to mind. A relative newcomer to this group is the British company, Ant Products, from Pontefract in West Yorkshire who sent one of their new Silver 70, 432 MHz antennas for review.

## Electrical Specification

The claimed gain is 16 dBd (i.e. gain over a half-wave dipole), the front-to-back ratio 24 dB , the half-power beam widths being $22^{\circ}$ in the horizontal, or E , plane and $24^{\circ}$ in the vertical, or H , plane. Referred to 435 MHz , the boom length between the front director and reflector elements is 3.83 wavelengths. The
bandwidth is quoted as in excess of 10 MHz for a VSWR not exceeding $2: 1$ and the feed point impedance is 50 ohms.

## Physical Description

The boom is made from 15 mm . square aluminium tube and is in two pieces which are spliced together by two, short U-shaped clamps bolted through the boom to make a total length of 2.68 m . Two identical diagonal braces, also of 15 mm . tube, are singlebolted through the boom and, with a short round piece of tube inserted in the bottom joint, makes for a rigid structure when fixed to a stub mast.

The reflector and twelve directors are stainless steel rods approximately $21 / 2 \mathrm{~mm}$. diameter, with the ends de-burred neatly. All directors are the same length and the first three launcher elements are close spaced, but with the spacing increasing to D6. Between D6 and D12, the spacing is constant at about 0.39 wavelengths. The thirteen parasitic elements are fixed to the boom with U-shaped plastic clips which are supplied already fixed to the elements.

The novel driven element consists of a triangular piece of double-sided fibreglass PCB material. Along the top of one side there is a continuous strip of track about 6 mm . wide forming the actual radiator, while on the reverse side there is a short length of track forming the Gamma-match feed, using the capacitance between the two tracks. The Gamma-match track is routed to the inner conductor of a silver-plated N -type socket bolted to the PCB and the centre of the driven element is grounded to the plug body. All the copper tracks are silver plated. The feed system is thus pre-tuned and optimally matched for 50 ohms cable. A vinyl shroud is provided to protect the connection. For fixing the antenna to a stub mast, two robust galvanised steel clamps are supplied suitable for masts up to two inches in diameter.

Some of the "Silver 70" aerial components. From top to bottom, the galvanised steel mast clamps and aluminium boom splice; the fibreglass driven element with vinyl plug shroud below; three of the parasitic directors and the reinforcing tube which slides into the bottom joint of the braces.

Photo: T. Traill


A new series article, ''The Whitfield"' transceiver, by Ian Keyser, G3ROO, starts in the March issue of Short Wave Magazine. Make sure of your copy now!


General view of completely assembled aerial. The overall boom length is $\mathbf{2 . 6 8}$ metres. The splice can be seen just in front of the mast.

Photo: T. Traill


Close up of the plastic clip with element inserted, showing key which positively locates the assembly into the hole pre-drilled in the boom.

## Assembly

The Silver 70 came in a $3^{1 / 2} \mathrm{in}$. square box, $5^{\prime}-8^{\prime \prime}$ long via Securicor Limited. The assembly instructions are clear and adequately illustrated with diagrams. It took only a quarter-hour to put it together and when fitted to a stub mast, the boom was quite straight and rigid. All the parasitic elements fitted very positively into their proper positions and, as can be seen in the photograph, the plastic clips have a small key moulded on which fits into the holes in the top of the boom. It is intended that all the parasitic elements should be fitted with the "open" side facing the front, a point not actually noted in the instructions, but obvious from the diagrams. The driven element has to be aligned over a mark scribed on the boom and is secured by a single screw.
A reel of plastic tape is provided for taping the coaxial feeder along the boom, down the brace and to the stub mast. The plug shroud should be filled with silicone grease but you will have to provide your own. The weight of the assembled antenna was 1.15 $\mathrm{Kg}\left(2^{1 / 2} \mathrm{lbs}\right.$.) to which has to be added the stub mast, feeder and N-plug which are not supplied. The area for wind loading is quoted as 0.83 sq. feet $\left(0.077 \mathrm{~m}^{2}\right)$ which is quite low. The antenna "parked" itself with the boom in the direction of the wind.

## Protection

The manufacturer states that it is not really necessary to protect the silver-plated driven element, but that it can be given a light coat of clear varnish but not polyurethane lacquer which tends to detune the system, low frequency. The plastic clips and stainless steel elements require no protection but if desired, the boom and braces may be sprayed with varnish before element assembly to inhibit the inevitable discolouration due to weathering of aluminium.

## Conclusion

The manufacturer revealed that the 16 dBd gain figure was arrived at by substitution between a half-wave dipole and the Silver 70. With the latter, 16 dB of attenuation were necessary in the receiving system to achieve the same p.d. across the input from a remote signal source. No facilities for gain testing were available to the reviewer and even if they had been, one has to be very wary about making any definitive gain measurements. Indeed, without the facilities of a professional antenna measuring range, it would be foolish and misleading for any reviewer to get involved in "the numbers game". This antenna is a straightforward Yagi with a 3.9 wavelengths boom: no trigonal reflectors but a rather ingenious driven element, nevertheless. Professionally measured gains of similar antennas with boom lengths of 3.2 to 4.5 wavelengths are typically between 13.4 and 14.4 dBd for the best specimens, so it would seem to be a remarkable achievement if the claimed gain can be substantiated.

However, gain is not everything; mechanical design and durability are very important considerations and in these respects the Silver 70 is to be highly recommended. The product carries a two years guarantee against mechanical and electrical defect. All parts are available as spares from the makers or their dealers. The current price of the Silver 70 is $£ 31.95$, including V.A.T. but not carriage. The company also makes the $Z L 8, Z L 12$ and Norcone 512 antennas, and has now introduced a range of 6,8 and 10 -element, 2 m . Yagis. We are indebted to Messrs. Ant Products of All Saints Industrial Estate, Baghill Lane, Pontefract, W. Yorks. for the loan of this review antenna.
N.A.S.F.

Please mention "Short Wave Magazine'z when contacting
Advertisers - it helps you, helps them and helps us.

## IMPROVEMENTS TO THE YAESU-MUSEN FRG-7 RECEIVER

## ADDING A 2.6 kHz BANDWIDTH SB FILTER

R. K. SEATON, BRS51218

ALL designs have compromises and shortcomings. In general we live with them; however when a little thought and a few pounds are applied to these shortcomings, improvements are possible.


Fig. 1 PART OF FRG-7 ORIGINAL CIRCUIT

The FRG-7 is an excellent design in most respects. Indeed it is still holding its own despite the availability of the broadband, digital breeds. However since purchasing and using the FRG-7 I found the selectivity at 6 kHz simply too broad for SSB/CW reception on the very crowded amateur bands, particularly now


Fig. 2 DUAL FILTER CIRCUIT


Fig. 3 COMPLETE CIRCUIT


Table of Values
Fig. 3
FL 2' = CFM455J1 (Murat) RLA', RLB' = DPDT sub-min. OUB type with 12 v . coil

RI' $=2 \mathrm{~K} 2,1 / 4$-watt
DI', DR' $=1$ N4004
NBFM decoder $=e . g . \mathrm{FM} 80$
Also: solid PVC-covered copper wire, and PCB or Veroboard; all components available from Ambit International, 200 North Service Road, Brentwood, Essex CM14 4SG.
the diminishing sunspot cycle tends to drive everybody down to the lower frequencies.

A suitable SSB filter is readily available, having a bandwidth of 2.6 kHz and of the same physical size as the one fitted at the factory. It is electrically similar, with a slightly higher input impedance at 2 K , as opposed to 1.5 K of the one fitted. If the receiver is only required for amateur use it is a simple matter to remove the existing and replace it with the new. Ideally the input resistor, R420, should be changed from 1.5 K to 2 K , but in reality it makes little difference to the performance of the receiver, see Fig. 1.' I considered doing this, but decided the receiver would be rather limited and consequently I came up with the following modifications.
Investigation of the construction of the receiver showed two spare switch wafers on the mode switch. Whilst this is adequate for switching the two filters, I considered the wiring would be too long and preferred instead to use a relay, as can be seen from the circuit in Fig. 2. A small printed circuit was made, although 1 see no reason why Veroboard should not be used, as long as the leads. are kept short. Details of the layout are shown in the associated diagram, Fig. 5.


Fig. 4 COMPONENT LAYOUT


Fig. 5 SUGGESTED PCB LAYOUT (To scale)

The first job, having identified FL1 and R420 on the IF circuit board, is to very carefully remove them. I recommend the use of a lightweight soldering iron and a spring-loaded solder sucker for this job. Any damage caused to the PCB or filter more than outweighs the cost of these simple tools, which I consider absolutely necessary for any electronics work.

These components along with the new filter, relay and resistor are fitted to the PCB as shown in Figs. 4 and 6. Solid PVC-covered wire is soldered onto the input, output and earth points of the original filter and then onto the new PCB - to points 4,3 and 2 such that the latter is suspended below the existing board; these wires are kept as short as possible. By using solid wire this arrangement is quite satisfactory and no other mechanical support is needed. A tapping is taken from the junction of D2 and D3 to the input of one of the spare wafers on the mode switch. The output from the switch is taken to RLA on the PCB point 1 and is wired such that the relay is energised when the LSB or USB/CW selections are made. Should it be thought preferable, a switch could be fitted to the rear panel to give a change of selectivity as required.

From the design of PCB, Fig. 5, it can be seen that a further relay RLB can be fitted to the board. This is to enable a narrow band frequently modulation (NBFM) decoder to be fitted as shown in Fig. 3. These decoders are now readily available usually based on the MC3357 IC, which is an NBFM IF system and detector. The input to this decoder is directly from C417, the output taken directly to the volume control via the relay RLB. As can be seen from the circuit in Fig. 3, this relay is again energised from the mode switch using the other set of contacts and energising the relay when the AM/ANL mode is selected. I used a design of decoder originally intended for the $\mathrm{RX} 80^{2}$ and experienced no problems - the AF output from the decoder being similar to that of the FRG-7's detectors.

Reversion to the original receiver circuitry is extremely simple. No chassis modifications are needed, thus allowing a pristine receiver to be sold, should such a thing be contemplated - for with these modifications a very versatile receiver is produced.

## References

[1] FRG-7 Instruction Manual, Yaesu-Musen Co. Ltd.
[2] Radio Communication, October 1981.

AKD produce a range of anti-TVI filters, and shown here is the HNF2 which is stocked pre-tuned to some of the more common interfering frequencies. Full details of AKD "Blackline" filters are available from Telecomms, 189 London Road, North End, Portsmouth (tel: 0705-660036), who are exclusive distributors of the range.


# BASICS FOR THE S.W.L. AND R.A.E. CANDIDATE, PART IX 

SUGAR-COATED THEORY

FOR this session of Basics we're going to have a change of diet; which is to say we are now going to look at aerials and transmission lines. If W5JJ's piece back in the December issue tangled you up, then stay with us and we'll try and sugar-coat it a bit - though we have to admit that this is one part of the RAE syllabus where most candidates go glassy-eyed, and also an area where lots of professionals can, and do, get well bogged down.

Let's do a bit of revision first! Recall for a moment that if you surround a wire hanging vertically by a piece of paper covered in iron filings, and then passed a direct current through the wire, the filings took up a pattern of circles with the wire at the centre: Fig. 1(a). Recall also that if we have two plates separated by air, and we put a DC potential between them a field will exist between the plates: Fig. 1(b). Upon these two facts hang the Law and the Prophets of Aerials.

Looking at Fig. 1 again, it seems pretty clear that if we were to apply an alternating current, we would have both electric and magnetic fields existing at the same time, and that they would be at right angles to each other. Lots of books draw a diagram of this and we believe that trying to do so on a flat piece of paper causes more confusion than it removes, so we are just going to ask you to think about it . . . the magnetic field is, as it were, co-axial with the wire, like the sheath round the inner of a bit of co-ax cable, while the electric field is t'other way about.
When we come to talk about why an aerial radiates, we say that the two fields build and collapse just as they would in any piece of wire, but that while they are considered in isolation they are insignificant in aerial terms; but when we consider the two together, then we find that at a distance the 'radiation field' set up by them is far stronger than the local fields, and that this is the one that does the trick for us. Take this for truth - the detailed truth and the associated mathematics are a bit too mind-boggling for us to bother with! Any piece of wire with an RF current flowing along it will produce a radiation field unless it is screened, although as we shall see, there are ways and means of making an aerial radiate well.
So - back to earth again, and we must consider just what we mean when we talk of an aerial system. In essence, it will consist of four parts, namely, something to 'match' the transmitter to the feeder, so that all the output from the transmitter is taken up by the feeder; the feeder itself, which may comprise coaxial cable -all-same the stuff we use to join the TV aerial to the set - or 'parallel line' which may be open-wire, or the 300 -ohm stuff often called 'ribbon' because of its resemblance to that article of feminine adornment, or close-spaced looking rather like the parallel-conductor lamp-cord sold from the electrical counter at Woolworth's and similar emporia. Next we have another 'matching' device, this one being arranged to ensure maximum transfer of power from the feeder into the aerial; and finally we have the aerial itself.
Some of these four parts may be redundant or hidden in some way not obvious from a scan of the circuit; for instance the simplest possible arrangement would be an end-fed aerial fed off the transmitter output terminal, where the ATU has disappeared into the transmitter PA tank, the feeder is just not there at all, and since there isn't any feeder there's nothing to match it to the aerial - two out of four eliminated, one disappeared, and one hanging out of the window! However, all four of these elements are closely related to that old friend the 'resonant circuit' which will make it a bit easier.

## Transmission Line

Imagine two pieces of wire stretched tightly, one above the other, in free space and stretching from where we sit away in a straight line to infinity. Imagine we have a signal generator and that we connect it to our end of the line and switch on. RF will travel from the generator along the line. We know from what we have already learned that the conductors will each look like an inductor, and we also know that each conductor will have capacitance between itself and the other conductor. If we started with the generator at zero frequency and gradually raised the frequency towards the RF range, we would find that at RF the ratio of voltage from the generator to current would become a constant, and referring again to memory we will recall that $\mathrm{E} / \mathrm{I}=$ R. So, the generator will think that it is connected to a resistor rather than a transmission line. Let us now alter the spacing between the wires, and try again. Again we will see the same thing, but the ratio of $\mathrm{E} / \mathrm{I}$ will be different, so the generator will think it is seeing a resistor still, but one of a different value. The value of the imaginary resistor the generator sees is called the 'characteristic impedance' of the line.
Now imagine we can find a perfect resistor equal to the characteristic impedance of the line, and a pair of cutters, and that we can hack off the far end of the line a few feet away from the generator; then solder the resistor in place of the bit we have cut away, between the upper and lower conductor - as in Fig. 2(c). The generator still thinks it is looking into the original line.

Summing up as far as we have gone, then, we have seen that at Rf the line has a characteristic impedance which is a function of the physical dimensions of the line and is independent of frequency as long as we are talking of RF.

Now consider the RF going down the line to infinity again. As long as the generator is supplying power, we have RF going down the line and heading into the great blue yonder looking for infinity. If our RF is, for example, at 30 MHz then we can imagine that as we stand at a given point on the line a wave of voltage and one of current, in phase with each other, go tramping past us, and the positive, say, peaks of voltage will pass at the rate of thirty million a second; since they are travelling at the speed of light, that means each positive peak is ten metres behind its predecessor and ten metres in front of its successor in a never-ending wave emanating from the generator and heading off for infinity. The ratio $\mathrm{E} / \mathrm{I}$, we have agreed, is a constant, so as E reaches a peak, so does $I$, and both reach zero together, rising simultaneously to a peak in the opposite direction, so $\mathrm{E} / \mathrm{I}$ will always be 50 if the line impedance is 50 ohms for example.


Fig. 1 (a) Iron filings round a wire carrying current indicate the direction of the magnetic field relative to the wire


Fig. 1 (b) Similarly the electric field between two wires (plates)

Now, imagine that some nasty soul suffering from TVI comes along and cuts your line off short just out of sight. What's going to happen? When the generator begins, the RF will flow out of the generator until it hits the open-circuit end, obviously. Equally obviously, it then has only one way to go - back to the source!

Clearly there isn't any current at an open-circuit; to achieve this, the forward going wave hitting the $0 / \mathrm{c}$ and the reflected wave setting off towards the generator must be equal and opposite. Observe, before we leave the broken end, that we have a wave travelling towards the break, and another travelling away from the break, and that both are similar save for the phase reversal which is required for no-current at the open-circuit. All the outward power turns round and heads back to the generator, since we are assuming a perfect line and a perfect open-circuit (and a Good Fairy to hold up the broken ends exactly where they were before the cutter-fiend attacked!)

Leaving the Good Fairy for a moment doing her duty, let us step back exactly one quarter-wavelength from the break and look at the current waves heading out and back from this new viewpoint. Clearly the reflected wave left the generator two quarter-waves in time earlier than the wave heading out to the break: if a current maximum in the positive direction is passing at a particular instant, then we would expect that a half-wave back, or further on, at the same instant, there would be a negative peak of current wave. However we have a break, and as we have seen a phase reversal at the break, the reflected wave will also be at a current maximum a quarter-wavelength back from the break, and this will always be so. Let us go back now a half-wavelength from the break and we will see a situation where the outward and reflected current waves always add up to zero; a quarter-wave further back towards the generator (i.e. a three-quarter wavelength back from the break) we will again see the situation we saw at a quarter-wavelength back from the break. If we repeat this observation lots of times and record our results we will see that there appears to be a wave on the line which is standing still and this is the thing we call a 'standing wave' on the line. Note clearly, the standing wave is only the result of the forward-going wave hitting the break and causing a reflected wave to travel back towards the generator.

We can now remake our line, and we will see the standing wave disappear, as all the forward waves continue their merry way to infinity. Re-enter, stage left, the Villain, but this time he has both cutters and soldering iron, and he cuts us off from infinity and in addition solders the ends of our part of the line together, giving us a short-circuit. The Villain departs the scene laughing evilly. What now?

Clearly, this time the short-circuit is a point of maximum current so there is no phase reversal at the short. Stepping back a quarter-wave, therefore, and applying somewhat similar arguments as before, we see a point of zero current; half-wave back from the short there is a current maximum, three-quarter waves back another current minimum, and so on. Again we have 'standing waves'. Again the standing wave is no more than the result of the outgoing and reflected waves each travelling their allotted paths. Repair the line, so that the outgoing RF heads for infinity and nothing comes back, and lo! the standing wave again disappears.

Our next experiment is to cut the wires and join the u pper and lower conductors by a perfect resistor; applying power, again we find there are no standing waves, if the resistor is equal in value to the characteristic impedance of the line, which confirms our assumption that the generator can't tell the difference between a properly terminated transmission line and an infinite-length one.

Note a couple of interesting things about this: a quarter-wave open-circuit transmission line looks like a series-tuned circuit at resonance from its other end; and a quarter-wave of transmission line with its end shorted looks like a parallel-resonant tuned circuit from the other end - zero impedance and infinite impedance respectively.

Of course, our practical transmission line is terminated in an aerial, and the aerial will usually 'look like' neither pure resistance


Fig. 2(f). Shows standing waves of voltage and current due to an open circuit at the end of a transmission line, over one wavelength from the open circuil end; note the different scale. In Figs. 2(d) and 2(f), If refers to current from generator towards load, $I_{R}$ to current reflected.
nor short nor open circuit, but rather will it appear to be resistance and capacitance in series or resistance and inductance in series; but anything other than a perfect resistive termination of value equal to the characteristic impedance of the line will still give rise to standing waves, and this can be proven by applying arguments similar to the ones just discussed. This is rather convenient, insofar as the average amateur radio station is not equipped with the necessary tools to deal with oddball aerial systems, so one designs a system such that it should, when correctly set up, yield a 1:1 standing-wave ratio (i.e. no standing waves), and then confine one's setting-up procedure to 'pruning' until the SWR comes down to the desired figure.

Perhaps now we should explode a couple of myths. The first one is that a high SWR is of itself a bad thing: a solid-state transmitter may object and require some sort of tuner to get it to produce output power, but that is a function of the transmitter not the SWR. The second is that a high SWR involves losses in the transmission line. This is not so at all in a perfect line, and all we can say is that losses due to a given SWR increase as the line in question becomes lossy of itself. Thus, we have a very convenient way of checking that a transmission line is as good as it should be - put a whiff of power up it with an open-circuit at the aerial end, and one should see a very high SWR; as the line deteriorates with age, particularly with coaxial, the SWR seen at the transmitter gets lower and the time has come to throw it away, or at best examine it carefully and cut out all the deteriorated bits, keeping the best parts for odd jobs around the shack.

So far, we've been talking about a couple of wires in free space and magic to hold them in that correct place relative to each other. The reality is different; there will always be some infill between the wires, to support them at the desired distance apart, and sometimes the infill will be complete, as for example with soliddielectric coaxial cable. The effect of this infill will be to slow down the speed of the wave travelling along the line. For example, solid polythene reduces the speed by a factor of 0.66 , and so we say the polythene cable has a 'velocity factor' of 0.66 . The lowloss, semi-airspaced coaxial will show a velocity factor of around 0.8 , and even open-wire line will have a velocity factor of around 0.98 , due to the inevitable small amount of supporting material. Moral: if you are using anything other than solid polythene, make quite sure you know its velocity factor, and mark it before you put it in the junk-box, lest it give you a surprise some time in the future!

Now, as to the formula by which you can calculate the characteristic impedance of a transmission line. Assuming air dielectric, the two-wire parallel conductor line characteristic impedance, $\mathrm{Z}_{\mathrm{O}}$, is given by:
$\mathrm{Z}_{\mathrm{O}}=276 \log _{10}(2 \mathrm{~S} / \mathrm{d})$, where $S$ is the spacing between the two conductors and $d$ is the diameter of the conductors. In the case of concentric lines (coax) the formula modifies to:
$\mathrm{Z}_{0}=138 \log 10(\mathrm{D} / \mathrm{d})$, where $D$ is the inside diameter of the outer conductor, and $d$ is the outside diameter of the inner conductor.

In either case, if we have dielectric other than air (i.e. a dielectric constant of greater than unity) then we must multiply the righthand side by the square-root of the dielectric constant. For polythene this is 2.3 , and so our $\mathrm{Z}_{0}$ would be $1.5(=\sqrt{2} .3)$ times the figure calculated from the formula given. The velocity factor derives from the same source, being in this case $1 / 1.5=$ 0.66 .

From the theory to the practice now, while the fevered brow cools a little (mine, not yours!) Coaxial cable has to be bought, but open-wire line can be home-brewed very easily. Bought parallelwire feeder, particularly of the 'ribbon' variety is very prone to show change of loss with change of the weather (the effect shows as high SWR when the feeder is wet), and the 'clear' stuff is rather inclined to deteriorate through ultra-violet light quite rapidly. If you buy coaxial cable, be sure what you are getting: poor-quality coaxial will be lacking in two main areas, namely the number of strands forming the braided outer conductor will be considerably reduced, which increases the amount of 'RF leakage' out of the cable, and the quality of the PVC outer jacket (in the cheaper cables, one may find the plasticiser leaches out of the PVC, so that the jacket becomes porous and the braid corroded). In sum, there is a lot to be said for being unfashionable and using home-brew open-wire line, especially now the XYL's hair-curlers are made of low-loss polythene!
to be continued

## SOME SIMPLE TRANSCEIVER SWITCHERY

## ADDING A VARIABLE RF ATTENUATOR <br> FACILITY TO THE TRIO TS-530S <br> TRANSCEIVER WITHOUT REMOVING THE COVERS

MANY of the imported 'black box' transceivers benefit in the receive mode from use of RF attenuation, particularly if they are fed from a gainy antenna system well tuned to the frequency in use. The Trio TS-530S is no exception and Trio, recognising this, have wisely provided a front panel switch that introduces approximately 20 dB of attenuation. This switch, although useful, is obviously restrictive and there are times when the need is felt for a device more variable in its characteristics; this is most evident when using the lower frequency bands especially after dark when overloading of the front-end can give rise to distortion.

Any easy way of discovering if a transceiver can benefit reception-wise from use of a variable RF attenuator is to first remove both microphone and key and temporarily hook up a $5-10,000$-ohm linear potentiometer between the antenna input
and ground, as shown in Fig. 1, and with the antenna connected to the slider. The normal RF gain control is not always overhelpful at reducing noise levels and can therefore be left well advanced for the test and using the simple attenuator for overall gain. Making certain that no RF can be emitted and by listening on Top Band, 80 and 40 metres in turn, it may well be found that signals come through cleaner and sweeter as the potentiometer slider is slowly moved towards ground.

Clearly this simple test set-up, although often revealing, cannot be left in situ since it would not take kindly to an accidental injection of even a few watts of RF from the transceiver!

## Adding a Variable Attenuator Facility

The inbuilt switchable attenuator of the TS-530S - see Fig. 2 when in the 'in' position places a fixed resistor potentiometer across antenna and ground to feed the RF unit, whereas in the 'out' position the antenna is applied to the RF unit direct.

At first sight it seems easy enough to open the line at point ' $X$ ' and make appropriate amendments, but on removing the covers it is soon evident that neither the relay nor the switch is easily got at!

Fig. 1



Nor may it be prudent to attemptoto do so particularly if the transceiver is under warranty or if one contemplates disposing of the rig at a later date; potential buyers of used apparatus are often chary of 'modded' equipment and experience shows that in general any changes made to commercial gear are best accomplished in such a way that they can be easily removed to leave the apparatus in its original condition.

Fortunately the TS-530S transceiver lends itself to the addition of an external add-on attenuator unit and the facility can be incorporated without even removing the covers!

At the rear of the transceiver a spare inbuilt relay is available via the appropriate DIN Accessory Socket - that works in step with the antenna changeover relay and this can be used to suitably switch into circuit an added unit on 'receive' only. However even a very basic attenuator of the kind shown in Fig. 1 requires three terminals if it is to be completely isolated during the 'transmit' function, therefore the inbuilt relay cannot itself be used directly. It can be used, though, to switch a 2-pole changeover relay fitted to the outboard unit and many junk boxes contain suitable specimens - remembering that contacts must be capable of

handling RF. The energising voltage can usually be picked up either from any small existing PSU being used to drive a keyer or other station accessory; or the DIN 'Remote' socket at the rear of the transceiver can possibly be made use of where, as the handbook shows, some low DC voltage points exist.

Looking at Fig. 3, changeover relay RLA/2 is energised only when the transceiver is placed at 'transmit' whereupon the rig operates as if the add-on unit was not present. On 'receive', however, relays cease to be active and the antenna and receiver sections immediately come under the influence of the attenuator.

Of course relays need not be used at all and a suitable manually operated changeover switch could be used instead; this would be satisfactory provided the operator remembered to always change it over correctly prior to transmitting for failure to do so would rapidly destroy the attenuator components!

## The Attenuator Section

The simple attenuator of Fig. 1 is not ideal and preferable by far is to use one that can be bypassed at will whilst additionally possessing several 'steps' and still maintaining a fairly level impedance over its range. Over the years many suitable attenuator circuits have appeared in various publications and reference can be made to various textbooks such as editions of the American ARRL Handbook and/or the RSGB publication Amateur Radio Techniques by Pat Hawker, G3VA. Various designs can be found that can be adopted or tried out and it will be found that most consist of but a palmful of resistors and some switching to provide optional levels of attenuation of from $0-40 \mathrm{~dB}$ approximately.

## Conclusion

Built into a small metal box such an add-on device would be located directly after the transceiver between any SWR meter or ATU or combination unit using 50 -ohm coaxial cable. In use considerable benefit should be apparent in the receive mode as noisy distortion-breeding signal accompaniments are attenuated and, as already mentioned, it may well be found that control of RF gain is more conveniently accomplished using the attenuator rather than the transceiver RF gain control which may then be left well advanced.

On a more cautionary note, where CW is the preferred operating mode a little thought will show that on 'transmit' less strain will be put on the outboard relay contacts if, instead of using semi-break-in (via the Vox button), the send/receive switch is used thus enabling the contacts to change over gently before any RF is keyed.

## Corrections

There are two errors in Part VI of "Plug In Your Soldering Iron and Begin Here"' in the November, 1982, issue: in Fig. 1 on p. 480 diode D2 should be reversed (shown correctly in Fig. 3), and in Fig. 2 on p. 481 there should be a connection on the copper side of the board between the non-grounded ends of R1 and C2.

In "A Power Supply for the Yaesu FT-707"' (p. 601, January, 1983 issue) there are three omissions in the pin numbering for IC1 in Fig. 1 and these are: base TR1 to pin 10, R7 to pin 6, and junction R7/C6 to pin 5. Also, in the first line of the article the word 'transceiver' should read, of course, 'transverter', and in the Table of Values SW1 $=R S 338-305$. The text implies that an SCR should be shown in Fig. 1; however, this is not the case - but for the benefit of those who may wish to build the power supply using an SCR, a suitable circuit will be published shortly.

# COMMUNICATION and DX NEWS 

E. P. Essery, G3KFE

WINTER conditions have been with us on the air this month, of course, although the Festive Season was blessed with weather mild enough to allow those who lost aerials in the earlier gales to put 'em back up - followed by enough high winds to have brought some down again! This month, due to Christmas no doubt, we seem to be a bit low on the current pile of contributors; G4AKY we know to be away out of the country on holiday, and we hear that G3NOF has been QRT for a couple of months through illness - get well soon, Don, and all our thoughts are with you. On t'other hand we have lots of nice chatty letters with no mention of DX - something to do with the Season, doubtless!

However we must commence the monthly examination of the bands, so for a change let us begin, as it were, in the middle.

## Forty

Must be the first time ever that we've started here! GW4OFQ (Llandeilo) says he hasn't a lot to report as his amplifier went on the blink; but 80 watts of SSB into the G5RV around the 0800 period got out to JA3EMU, JA4CQS, JA4IKD, plus, at 2300 z a contact with ZD7BW.

As far as your scribe went, it was a matter of no more than a quick listen once or twice in the evenings; but a wander through the bottom few kilohertz with the function switch at CW showed there to be various East Coast Ws, VKs (one as early as 1930 z in the evening) and various other manifestations from Africa, and South America, not to mention weak JA stuff.

## Eighty

A long and newsy letter from Chris at G4BUE (Upper Beeding) indicates he has been continuing to play with his 3.5 MHz sloper beams, encouraged by the fact that his highest attachment point can be wound up to 80 feet. At this height, such signals as 5T5TO, VK3NC, VK6HD, YB5AES, UM8MCU, UI8BI, and lots of JAs and Ws were taken, and on one evening eight JAs were taken in a halfhour. Then gales took out two of the four of them, so the top was lowered to forty feet, and the remaining two were compared with an inverted-vee with the apex at the same height; again the slopers, even with the feedpoint all but on the ground, still managed to outperform the vee, both at DX and in the 'local' sort of eighty-metre signals in EU. Bear in mind that G4BUE is a QRP man, normally only turns the Big Rig on in dire emergency;
five watts input to G4BUE is high power!
By the time this comes to be read, the G4BUE aerials will all be taken down, and a similar design erected for another band - and we are promised that, as he has kept the notes of what he has done, he will let us have a write-up on it all, for which we wait with baited breath!

As far as old G3KFE was concerned, it was only CW, and all that swam into our ken was EU and just one W - we were really only checking out aerials and it was too early for sense - who was immediately swamped under a chorus of massed choirs from Mittel-Europa.
GW4OFQ and his 80 watts SSB wandered lonely as a cloud around the upper end of Eighty until he was able to snap up EP2TY for tea, OY5J and VK3DWJ as snifters before dinner, 3V8AL as the port went round, 5T5TO as a nightcap, and A4XFF around 0200 when a touch of insomnia crept in.
Now we turn to G2NJ (Peterborough) who remarks on the way The Gang made room at the bottom end of the band in the small hours of December 20 for DF2QS: heard at 0135 first, he sent "CQ SP de DF2QS" and got no reply, but at intervals he also sent "Vy 73 SP Best Wishes for New Year." We admire the thought, and we admire that it was done in such a manner that no licence rule was broken (think about that - it's all in the words!) and, above all, for the kindly way in which all of Europe stood aside for fifteen minutes while the message was sent. We are sure many SPs will have been listening round, and equally sure the word will have been passed; and we are also sure that the fact that the channel stayed clear implies tacit agreement by Russian amateurs too.

On a different tack, G2NJ says he worked a crop of QRP stations, of which the best was F6CRK in Auxerre, with whom Nick had a 30-minute QSO through the contest QRM. G2NJ also notes the /P activities of G2CNN, worked a half-dozen times since June from various places, and this month worked from Southend where he had just put up the aerial and connected the HW-8 in freezing weather - and he was on the same spot on Christmas Day. Not many of us would dare go in the shack on December 25!

## Here \& There

EU CW Association has declared 1983 to be the 'Year of the CW Novice', and as part of the programme the G-QRP Club offers a G-QRP Club Novice CW Award for which all the contacts must be made in

1983, and on CW. Basically, you have to work fifty stations; for Class-A the applicant must have been using five watts DC power input or less, and for Class-B anything up to the legal limit for the station in power-input. Applications to consist of a list of stations contacted, including date and band used, the list to be countersigned by one other amateur who has seen the relevant log entries; and for Class-A entries there must be a declaration that no more than five watts input were used when making the claimed contacts. Send 50p in stamps from U.K., or 3 IRCs from the rest of the world, to G8PG, Communications Manager, G-QRP Club, 37 Pickerill Road, Greasby, Merseyside L49 3ND, England.

On the question of Heard Is., the latest news we have is that the British vessel Cheynes 2 left Hobart, Tasmania on January 2 and was to arrive Heard about 18th. Calls to be used were those of Jim SmithVK0JS, Kirsti Smith VK0NL, and (while aboard the boat, for RTTY, and for six-metre and satellite operating, from Heard itself) VK0SJ. You will have to be quick, though, after reading this, as their closing date was to be about two weeks after they arrive. Operators include Jim and Kirsti, WA8MOE, W7SE, and OE1LO.

About February 1, the opposition Heard Is. expedition, with operators K8CW, N4BQW, and VK3DHF, will be arriving on the island and we hear their operation is down to last for over a month, which must put them dangerously close to the limit for withdrawal from Heard; they will sign VK0HI.
Spratly has to be one of the places one would like to hear from; and we hear that there is a possibility of operation from there in March by a DU operator.

VR6TC, many will have noted, was honoured in the New Year Honours list with an MBE for his work at Pitcairn as radio operator.

## Thirty Metres

Only one direct report, from ZB2GR in Gibraltar, who writes to say that he has tried the arrangement proposed in "Getting Out on 10 MHz " in the December issue of Short Wave Magazine with his 18-AVT; ZB2GR couldn't manage the $3 / 4$-wave proposed in the article so made do with just the $1 / 4$-wave. He says he's only had a few QSOs with the set-up as yet, but he seems to have covered much of Europe with it, and he is lavish in praise of the originator of the scheme.

## Top Band

As far as your scribe goes, since last he operated the band on this aerial, a new noise has appeared and covers the whole band to a depth which even covers most of the fish-fone and Hi-Fix noises . . . and which seems to elude our attempts to find it!

G4BUE says that by the time this is with the readers he will have got his quarterwave sloper set-up operational on Top Band, so that should give us a good new signal on the band - who knows, Chris may even be able to penetrate our local noise and make a QSO! Like most of us, Chris had his work cut out over Christmas, getting the youngster's radio-controlled car working and playing Space Invaders on a Vic-20 home-computer - but G4BUE says he bought the computer for other things and, please, has anyone got any programs which could be useful in the amateur radio context?

G2HKU (Minster, Sheppey) says that at this time of year he is always rather busy with other activities, so the shack has been deserted largely; but Ted did find a few minutes for SSB contacts with PAOPN and PAOSE, plus some CW to OZ1LO, OZ1EXZ, SP1ADM, ZB2EO, EI9J, UT5AB, LA5RBA, EZ2BAO. OZ5RM, OL4BDY, and OK1DTM.

GW4OFQ took a look around the band in mid-evening, and connected with RP2BEP, RA3DEX, and OK1DOK, plus one late-night session in which at 0200 z he raised VEIBNN, also SSB.

## "CDXN" deadlines for the next three months:

March issue-February 3rd April issue-March 3rd May issue-April 7th

Please be sure to note these dates.

## Snippets

Often we have the pleasure of receiving visits from overseas readers to our little backwater of Welwyn which once was a direct part of the old Great North Road in coaching days (just peep at that hill to the south of us, and think of horse-drawn stages being dragged up that - or of the difficulties there must have been in controlling them down it, for that matter). Some while ago here we met a reader from West Australia, who now writes to let us know he has passed the tests and gained the call VK6NUJ: O. G. Millard, Unit 19, 64 Hastings Street, Scarborough, West Australia 6019. Congratulations are in order from us, and thanks for his kind words. Let us hope to hear VK6NUJ on the bands before long, and to have a QSO.

## Twenty

GW4OFQ looked over the band's SSB end around 0800 z and worked JA5KAM, JA9LS, ZL3ACT, VK2DHF: then around 1600 he managed A71AD, and M1C, with 1700 as the time for his latest contact, with TF5TP.

SSB for G2HKU meant ZL3RS and ZL3FV, but for a change Ted turned to QRP on CW to work IT9CJB and OE1AKU.
G4BUE had to take to the full power available in order to make his SSB contact with FB8XAB - but it gave him County Number 298 for one more towards that Magic Number.
G4LDS (Chelmsford) says he has a new toy in the shape of a ZX81 home computer which is intended for the shack in due course. Some time was, however, spent in the shack, and it was noticed while tuningup that the SWR had changed for the worse. After a while this situation went back to normal so doubtless some damp had got into the traps. On 14 MHz , QSOs were had with WB7OZA/MM in the Mediterranean, UA9DC, OZ1DAF, OK3ADX, CN8EL/MM, who was 200 km south of Canary, LA7BF, and A4XX.

## 21 MHz

G2HKU reckons the Poltava thing has been more of a nuisance than ever of late, and notes that some DX-ers won't work Russians in consequence. Full power CW gave Ted CW contacts with ZB2EO, JM1APN, ZL1AGZ, HG100KZC, JT0GM, and ZL1BGT, while a short blast with the QRP rig produced a CW contact with JTOGM.
GW4OFQ mentions just one SSB contact on this band, with J73HA on SSB around 1500 z one afternoon.

Another one with just one QSO to mention is G4BUE, who was rather chuffed to raise the 9 N 38 expedition on CW, to make country number 216 on QRP - five watts input or less.

G4LDS changed the driver bottle in his FT-101 and says he found that this brought the power output up on $21 / 28$ MHz by nearly twenty watts. Chris worked VP8ANT, VO1BG. VE3AMT, CX9CB, VP8APK twice, VE3BWY (who, by the way, wrote this column for a short while just after the War), HC2HM, K2OZ, N1BGA, G4KXL/DU1, WA5HOD, and A4XX. The VP8APK contacts were of interest insofar as he had been previously worked as ZC4DY, and also because he was installing a Band 2 VHF FM BC transmitter which Marconi's had got out to VP8 in record time, and so Chris was able to tell colleagues who worked on it here at home how it was progressing in VP8.

## Ten Metres

Proving your conductor a liar by still 'giving' with the DX, although admittedly
not as well as in the past two years. Consequently, still a favourite with the contributors.
GW4OFQ looked around with his SSB and "G5RV", and worked J3AH, VP2VD, and HK3AWY.

G4BUE found conditions on the Sunday of the ARRL 28 MHz contest rather good, so he decided to go to the milliwatt level of QRP at which, as he says, one is amazed to work any DX. His 100 milliwatts worked 19 States, including W6, and at the ten milliwatts level QSOs were made with UB5VAZ, CN8CY, UA9QBT, and KX4R, which has sparked-off a serious intent to try and make a WAC with ten milliwatts input. Just think of it Worked All Continents on ten milliwatts! On the Saturday, the band was by no means so good, and it was quite impossible to raise Ws in the contest with less than 350 milliwatts, even including some of the 'regulars' who always hear Chris if he calls them.

G4HZW (Knutsford) continues to stick to Ten and his TS-820 and two-element Quad, mostly SSB but some CW too. The month of December was reckoned to be pretty reasonable although poorer than previous years, this being noticeable by way of a shortage of the Pacific stations. Among those worked we note 3B8FK, 5Z4CL. 7P8CM, 7Z2AP, 9N38, 9J2BO. A4XJM, A71BH, C6ADV, CQ7OF (Portugal), G4KXL/DU1, EP2TY, HG5ZC who had ten watts to a dipole, HS1ABD, HK8BVN, JA6GGD, JA9YBA, JA3YQP, JR6WOL, LU1E, LU4DQ, M1V, PT7KW, UA0ADR, UK0AMM, UA0AIS, UAOSAU, UA9s, UJ8JKU, UK8MAF, UH8HCS, RH8HCV, UK7PAL, RL7PAD, RL7PCV, V2ARO, VO2CW, VE1-2-3-4-5-6-7, VE3MVQ, who was using five watts to a converted CB rig, VK2-3-4-5-6, VP2VA, VS6IW, all W call areas, Z26JC, ZL4AS, ZS3MS, ZS1FM, ZS4GL, and ZS6AYG. In addition Tony noted the evening openings to SM around 2300 z as a bonus offering.
Ten for G2HKU looked like CW contacts with LU4DQ, N6HG, KF0M, K6LL/7, K7NHV, and N7CW.

The final offering comes from G4LDS, who worked WB2UVH, KA2HTV, W5AYL, VE1ACK, UB5VFO, RA9CPQ, 4N1R(YU1DZ), UA1TDW, RA9MAQ, RB5CCO, UB5RDB, G4KXL/DU1, W0KJ, K6LL, W1BFA, W4QQU, 6W8JB, WB8QEA, W4GCB, UC2AFZ, and 4XHK.

## Complete

That's the bottom of a thinner pile than usual - hope those contributors suffering seasonal indigestion will feel better by next time! Deadlines for the next few offerings are in the 'box', and are as always to arrive, addressed to your scribe, "CDXN", SHORT WAVE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ.

# CONVERTING THE ICOM ICB1050 CB TRANSCEIVER TO TEN-METRES FM 

H. ALLISON, G3XSE

0F all the legal FM CB transceivers available in this country it seems fitting that one of the easiest to convert to amateur use should be the one bearing the well-respected Icom name. Having used the FT-220 two-metre rig on Ten via the excellent Microwave Modules transverter I became interesed in something smaller to use mobile.

Amateurs who have used the legal FM CB system - (hang your heads in shame!) may be interested to know that on ten metres your nominal four watts will go much further. This is due to many factors. For starters there is much less traffic on the frequency so a weak signal is not so likely to be stamped on by anyone else; secondly there are no aerial restrictions; and thirdly, by-and-large amateurs are gentlemen. Thus, mobile-to-mobile, range on Ten can be twenty miles or so, mobile-to-base up to fifty; and all the foregoing under 'dead band' conditions. When it is open, 28 MHz FM simplex can go right round the world on milliwatts. As a bonus there are ten-metre repeaters in the States accessible both on ten and two metres. In good conditions it is possible to work somebody hand-portable in the Bronx who is on two whilst you are driving in the U.K., and all with only a few watts!

## Where is $\mathbf{2 8} \mathbf{~ M H z}$ FM?

The action is centred around 29.6 MHz , the calling channel. The repeaters have their outputs $u p$ from this channel, with the inputs 100 kHz lower. Channel spacing is 10 kHz , and deviation normally 5 kHz .

## How to Get Going

Interested? Now for the good news. You can join in the fun for, at the most, $£ 30$; you may be lucky and get away with less. What you need is an Icom ICB1050 FM CB set. Put on your false beard and dark glasses, plus trilby hat, turn up your collar, look round to make sure nobody is about to recognise you - and sneak into your local CB shop. Do not be fobbed off with anything less than a real, live, genuine Icom ICB1050 (the only known possible alternative at the moment being the SMC 'Oscar' (new range) equipment. Get out the handbook and check that it has (a) three crystals and (b) that delightful Motorola chip, the MC145106. If in luck pay up, and wipe your feet on the way out, making sure you are not seen leaving with a CB set in your hand.

## Circuit Description

What you have bought is a double-conversion superhet ( 10.695 $\mathrm{MHz} / 455 \mathrm{kHz}$ ) and single heterodyne FM transmitter. The block diagram is helpful, though much improved if you draw in the feed from the VCO to the 16 MHz mixer, which seems to be missing.

To help explain what is happening, let us consider a transmission on CB channel $40,27.99125 \mathrm{MHz}$, which we will call 27.991 MHz ; let us also assume that the VCO is on frequency, that is 10.240 MHz low of the required frequency, or 17.751 MHz . This is mixed with the 'Tx' crystal of 19.961 MHz , to give 0.790 MHz . Since the synthesizer runs in 10 kHz steps this is equivalent to a binary count of 79 , which is 1001111 . If you run a 'scope or Avo along the programmable divider inputs of the MC145106 chip you will find, surprise, binary 79. Note, pin 17 is the least significant digit, pin 9 (permanently grounded) the most significant digit. The actual binary count goes from 40, which is channel one, to 79 which is channel 40 . Warning: do not listen to the CB frequencies if checking this out; it could destroy your sanity.

If the program ran high enough, 29.6 MHz would be a count of ( 29.6 - $10.240-16.961$ ) divided by 10 kHz , i.e. 239.9 , known as 240 , and we're going to be 1 kHz out; this is binary 0111100000 . Channel 25 of the legal CB is 001000000 ; thus if we 'hold up' pins 10,11 and 12 via a 10 K resistor, we are on 29.6 MHz - sneaky, eh? Connect up your aerial and 12 volts, and turn on the shack HF rig; tune the latter to 29.6 MHz . Link pins 10-11-12 and then from them, via 10 K resistor, to pin 1 of the MC145106. Whilst holding the Transmit button down, unscrew the core of T202, the VCO, until a signal is heard on 29.6 MHz . Now tweak the Tx strip for maximum output; T209, T301, T303, T307, about four watts. On receive, tweak T101 and T102.

Now the bad news; the Icom will now transmit and receive up from 29.6 MHz , but not down; this is due to a wrong count from the channel select switch. To deal with this problem, unsolder the green lead from pin 13 and discard, unsolder the violet lead from pin 13 and transfer to pin 11, The rig will now step down in 10 kHz steps to channel 9 , which is 29.440 MHz . Ignore channels 1 to 9; channel 35 is the band edge. The slight count error can be eradicated with CT202 on Tx and CT201 on receive.

## Results

Super! A pre-amp will help, as will a linear, but, barefoot, within an hour of modification and with only a vertical dipole, contacts had been made across town, across Russia, and across to U.S.A. On all sets modified, RV303, the deviation control, can be set to maximum, i.e. fully clockwise. Repeater working can be effected either by winding down ten notches from the repeater output frequency when transmitting, or you can switch in a 16.861 MHz crystal for repeater working in place of the 16.961 MHz fitted, a feat easily accomplished by the use of the Hi-Lo switch.

Editorial footnote: any CB-er who might feel a bit uptight at G3XSE's remarks on CB should be aware that they are at least a little tongue-in-cheek: G3XSE is himself a practising CB-er!

". . . told him he should have a fan on that linear. . . ."

## Jaybeam Catalogue

Jaybeam's new "Amateur Radio Antennas" catalogue is now published and contains technical details, including VSWR graphs, of their entire range of amateur antennas. The catalogue is available from most Jaybeam stockists, or direct from Jaybeam Ltd., Dept. AM/CAT, Kettering Road North, Northampton NN3 1EZ, the envelope marked "SWM/1" and containing a medium-sized s.a.e. with a $12^{1 / 2}$ p stamp.

## SOME VERTICAL ADDITIONS

## MORE ‘CUT AND TRY' FOR EXPERIMENTERS

IF you like experimenting with antennas - and most of the radio amateur fraternity do - then the short article entitled "Getting Out on 10 MHz " which appeared in the December, 1982, issue of this journal may have been of interest.
The arrangement described consisted of nothing more than adding to an existing 5-band vertical antenna a length of wire (approximately three-quarters of a wavelength overall at 10.12 MHZ) in an inverted ' $V$ ' configuration using a separate timber mast to support it.

The original diagram is repeated here - see Fig. 1 - the added wire length chosen permitting the same section of coaxial cable that feeds the vertical to accommodate the 10 MHz wire, since this, too, must offer a low impedance in respect of this frequency at point ' A '. The physical distance between the vertical antenna and the additional timber will of course depend partly on the height of the latter and partly on the above-ground feed point of the existing vertical; a few pencil and ruler sketches made beforehand soon reveal the best spacing whilst remembering that point ' $B$ ' should be at a high point in the interests of maximum radiation.

The manner of adjusting the added 10 MHz wire for a low SWR indication is described in the earlier article; it consists basically of gradually shortening the wire at the insulator end until a satisfactory 'in the shack' reading results - say $1 \cdot 5: 1$, or better.

## Incorporating Top Band

Clearly if sufficient wire could be added to the system at the insulator end it would be possible to load up and operate on 160 metres. This would, however, immediately throw the earlier carefully set up adjustments for 10 MHz into disarray and as such is impracticable. One could of course fit a switch at the end of the

10 MHz section to bring in or remove any additional wire, but trips to and from the garden end do not appeal ondark, wet winter nights!

A more refined approach to the problem would be to fit one side of a suitable frequency trap to the end of the 10 MHz wire and then add sufficient further wire to accommodate Top Band to the other side - see Fig. 2. Such a trap if carefully resonated at 10 MHz would act as an automatic frequency switch; it is not over-difficult to construct a suitable item.

## Making a 10 MHz Trap Coil

For precise frequency checking of trap coils use of an accurately calibrated GDO (grid-dip oscillator) is called for, but in cases where no such item is available (provided construction is identical with that described here) good results should be obtained at 10 MHz . The items required are:-
(I) A 7 -ft. length of 18 s.w.g. copper wire with PVC insulation 3 mm . thick.
(2) An oddment of standard plastic waste pipe $2 \cdot 5-\mathrm{in}$. long, $1 \cdot 5-\mathrm{in} . \mathrm{i} / \mathrm{d}$ and $1^{11} / 16-\mathrm{in} . \mathrm{o} / \mathrm{d}$.
(3) One 47 pF high voltage capacitor - say 4 kV .
(4) A short length of fine cord or string.
(5) One 2-terminal plastic block connector.

Anchor the wire firmly at one end of the 'former' then tightly close-wind on exactly 13 turns and secure. Attach the connector to the 'start' together with one lead-out of the capacitor placed inside the former; solder the other capacitor lead-out to the coil end. If a GDO is available the coil should now show a pronounced 'dip' slightly lower in frequency than 10 MHz and this is satisfactory. To raise the resonant frequency take the length of cord or string and, commencing at either end, force-wind it between a few turns at a time re-checking with the GDO until resonance is noted at, say, 10.12 MHz when the overall winding length will be approximately 1.75 inches. Thereafter snip away the superflous cord and seal the turns against movement. If there is any tendency for the assembly to be pulled apart when external connections are made attach a stiff cord tensioner to take the strain between each end. Solder some 20 to $30-\mathrm{ft}$. of aerial wire to the


Figure 1 Not to scale

## Orders sent to "Short Wave Magazine" Publications Dept. are despatched by return

coil end remote from the connector and attach the connector to the end of the 10 MHz antenna wire. Place the trap in a suitable plastic container (filched from the kitchen perhaps) and seal ends well. Extend the added wire horizontally or as convenient and anchor.


## Adjustments

At the station tune up on 10 MHz and note that, due to the trap, the tuning and other transmitter adjustments are virtually identical with previous tests.

Retune the equipment to a Top Band frequency - say 1.960 MHz or thereabouts - into a $50-\mathrm{ohm}$ dummy load and adjust for optimum working. Exchange the dummy load for the antenna feed and without altering any of the transmitter controls obtain a low SWR indication by means of the station ATU; use of an ATU will normally be obligatory on this band.


Fig. 2

## Conclusion

The apparatus used in connection with this and the earlier short article consisted of a Butternut HF5V-III vertical antenna covering $80,40,20,15$ and 10 metres, a Trio TS-530S transceiver and a Trio AT-200 combined SWR/power-meter with incorporated and optional switchable ATU.

The Butternut vertical was initially adjusted in conjunction with its radial system for low SWR indications over the five bands covered by it and in the CW patches; the 10 MHz and Top Band additions were made later as described so providing a 7-band system using a single coaxial feed line. Moving up the band on Eighty to the SSB section makes use of the ATU necessary if it is essential to maintain a low SWR, and this also applies to 160 m . On all other bands the RF can be beneficially pushed into the system direct, the worst SWR indication being 2:1. The whole caboodle is capable of being squeezed into quite a small garden space, but where space is no problem clearly the added wire need not be bent and some benefit might result when operating on Top Band. At a great many locations, however, existing antennas for this band can already be said to be 'laying on the ground' since to get them up but an eighth-wavelength above it requires mast heights of some $60-\mathrm{ft}$ !

Super results might not be obtained DX-wise with this simple arrangement on 160 m . but at least it makes possible contacts with locals who still prefer the band to 2 m . FM!

Hopefully other types of vertical antenna can be adapted; no guarantee can be given performance-wise of course, but if the desire to experiment has been stimulated, so be it - after all that is what the hobby is all about. No mention has been made regarding the 18 and 24 MHz bands since at present special restrictions apply to them.


David Jolly, G3TJY, sent us this photo, as a satisfied user, of an L.J.E. D-LAY-5 rotor brake delay, fitted to his Ham II control box. Designed for C.D.E. rotors, Models CD-44, CD-45, Ham II, Ham III and Tailtwister, G3TJY says he finds it invaluable, automatically delaying brake action for 5 seconds. Full details of the D-LAY-5, which costs around 20 U.S. dollars, are available from Lance Johnson Engineering, P.O. Box 7363, Kansas City, Mo. 64116, U.S.A.

# MAKING THE MOST OF AN SSB TRANSMITTER 

## SPEECH PROCESSING EXPLAINED

J. V. Moss, B.Sc., G4ILO

SINGLE sideband is second only to CW as the most effective mode of transmission for communication over difficult paths. One of the reasons for the superiority of CW is that $100 \%$ of the output power is used to carry information. In SSB transmission, speech peaks must be kept below the maximum peak power rating of the transmitter in order to avoid peak clipping, which would result in splatter. The peak-to-mean ratio of a voice waveform may be as much as $5: 1$, which means that a correctly driven transmitter rated at 100 W p.e.p. could have an average power output as low as 20 W .

(a) Normal speech

(b) Compressed speech

Fig. 1 MODULATED SSB RF ENVELOPE

Voice peaks convey very little useful information. It is the average power level which reflects how well a signal will be copied at the other end. One of the most effective ways to improve the talk power of a station without the need for an expensive, powerhungry linear amplifier is to artificially reduce the peak-to-mean ratio of the voice waveforms, and hence increase the average power. This can be done either by clipping or compression, at AF or RF.


Fig. 2 SPEECH COMPRESSOR

Fig. 1 shows a sample of the output of a modulated SSB transmitter, with and without speech compression. It can be seen that the overall shape of the modulation envelope, as generated by the interaction bet ween the many different frequencies making up a complex speech waveform, is basically the same in both cases: The sharp peaks, which are present to a varying extent in all speech waveforms, have been limited or clipped in Fig. 1(b) to allow the modulation to drive the transmitter to something like twice the original power. This increase in power can also be seen when the transmitter is modulated by noise. It is a characteristic of speech processed signals that background noise sounds louder in the pauses between speech. This is not normally a problem over distant propagation paths, where it is usually masked by general noise and QRM.

There are four basic methods of achieving speech processing. Fig. 2 shows the block diagram of an audio compressor. This is one of the simplest speech processor circuits, and is often built into the casing of a microphone, when it is known in the CB world as a 'power mike'.

The circuit contains a detector which produces a DC voltage related to the level of audio. This voltage is used to control the gain of a preceding amplifier stage and hence keep the output constant above a certain threshold. The time-constant of the control voltage, determined by the capacitance, C , in the detector circuit, is generally fairly slow, and so the compressor will not substantially alter the peak-to-mean ratio of syllabic voice waveforms. It will, however, hold the average output at a constant level, either when the operator moves away from the microphone, or if he becomes too enthusiastic and starts to shout!


If the time-constant of the control voltage is reduced in an attempt to design a compressor which can reduce the peak-tomean ratio of voice waveforms, problems with stability and dist ortion ensue. These problems can be overcome, for example, by the use of feedforward, rather than feedback, techniques. The effect is similar to that obtained by the use of audio clipping (Fig. 3), which is commonly used in FM modulators, but which has certain limitations, particularly for SSB work.

Clipping a waveform produces harmonics. Many of the harmonics of a clipped audio waveform will still fall within the audio passband, for example, an 800 Hz wave will produce harmonics at $1600 \mathrm{~Hz}, 2400 \mathrm{~Hz}, 3200 \mathrm{~Hz}$, etc. These harmonics will degrade the quality of the original audio, and waste power, although their effect may be reduced by following the limiter with a low-pass filter with a sharp cut-off at about 3 kHz . Nevertheless, the resulting audio can sound far from natural, and although an audio clipper may be effective at keeping the power meter at ahealthy reading, it may often result in reduced intelligibility at the other end.

Most SSB transmitters have automatic level control (ALC). This is a form of RF speech compression (Fig. 4). A detector coupled to the transmitter output produces a voltage which varies in proportion to the RF power out. This voltage is used to control the gain of one or more driver stages, in order to prevent the output devices from being overdriven. As with an audio compressor, the capacitance in the detect or circuit determines the time-constant of the control voltage. This is usually fast enough to allow a limited amount of compression, perhaps 3dB, but fast peaks, in conjunction with too much mic. gain, will still get through, resulting in splatter and TVI.


Fig. 4 RF COMPRESSION (ALC)

Any form of compression will introduce distortion and, in the output stages of a transmitter, where there are no narrow filters, this will result in some widening of the bandwidth required by the transmission. It should also be remembered that distortion generates harmonics, and harmonics of the transmit frequency will fall in other, possibly non-amateur, bands, providing a potential cause of TVI. It is therefore preferable that all speech processing takes place before the crystal filter, so that the selectivity curve of this filter determines the bandwidth of the transmitted signal, and allowing the RF stages to operate in as linear a manner as possible.


Fig. 5 RF CLIPPING

RF clipping is the most effective way of increasing the average power output of an SSB transmission without increasing the bandwidth. The clipping can take place either at the IF, just before the crystal filter (Fig. 5), or in an outboard unit, in the microphone lead. Whichever method is adopted, the principle is the same. The incoming audio is translated to SSB at a high frequency, greater than 100 kHz . The SSB signal is then clipped. The harmonics which are produced (for example, a 9 MHz IF would result in harmonics at 18 MHz , etc.) are removed by the sharp selectivity of the SSB filter which immediately follows. The SSB signal is then either heterodyned to the wanted frequency, in a built-in unit, or translated back to audio again, in the case of an add-on device.

An RF clipper should not alter the tonal quality of the transmitted audio at all, although the person at the receiving end will become aware of breath and background noises, as the difference in level between these and full modulation will have been reduced.

| ALC <br> COMPRESSION <br> USED | RF <br> CLIPPING <br> USED | AVERAGE <br> POWER OUTPUT <br> $(100 W$ PRP Tx) | EFFECTIVE <br> POWER <br> GAIN |
| :---: | :---: | :---: | :---: |
| 0 dB | - | 15 W | 0 dB |
| $3 \mathrm{~dB}(\mathrm{max})$ | - | 30 W | 3 dB |
| 0 dB | 18 dB | 50 W | 5 dB |
| 0 dB | $24 \mathrm{~dB}($ max $)$ | 60 W | 6 dB |

Table 1: EFFECTIVE POWER GAIN WITH RF COMPRESSION \& RF CLIPPING

The sort of improvement which can be obtained using RF clipping can be seen from Table 1, which was derived from practical results using an average-reading power meter, a 100 W p.e.p. SSB transmitter and a commercial outboard RF clipper. It can be seen that a doubling of average output power was obtained using RF clipping, rather than ALC (RF compression). The results will vary from rig to rig, and will also be affected by the operator's voice characteristics, but a transmitter with poor ALC or low mic. gain could be expected to produce an even greater improvement of perhaps 6 dB . A 100 W transmitter could thus be made to perform more like 400 W !

In order to obtain the full benefit of an RF clipper, the device must be properly set up. If the output from it is too high, the transmitter ALC will be working to keep the RF output down to the rated level, causing unnecessary distortion and possibly splatter. The output control of the clipper should be slowly advanced, while whistling into the microphone (preferably using a dummy load!), until the power output indicator just reaches the reading which it will normally reach on a whistle without the clipper connected. Advancing the output control beyond this point will not produce any more RF output, due to the action of the ALC.
RF clipping can increase the effective power output of a transmitter by 2 to 4 times. Even a correctly set up clipper will sound unnatural to local stations however, and it is a matter of personal choice as to when to switch in speech processing. A linear will produce the same increase in talk power without any degradation of audio quality, but at much greater cost.

However it must be remembered that an amateur is judged by the quality of his signal, in much the same way as people are judged by their appearance in real life. Intelligent use of speech processing can enhance the reputation of an amateur and his station; indiscriminate use of speech processing can only do the opposite.

I.C.S. Electronics Ltd. announce the availability in the U.K. of the KT-2, a new low-cost microprocessor controlled keyer/trainer from A.E.A Inc. of Seattle, U.S.A. It can be programmed in keyer mode to act as a normal electronic keyer, or will simulate a mechancial 'bug' key. Sidetone frequency, Morse speed and character weighting are all individually programmable. In trainer mode, code groups can be sent at gradually increasing speed in either slow code or fast code modes. The KT-2 Morse Keyer/Trainer costs $£ 89.00$ inc. VAT, plus $\mathbf{£ 2 . 5 0}$ post/packing and insurance, and is obtainable from I.C.S. Electronics Ltd., P.O. Box 2, Arundel, West Sussex BN 18 0NX. (Tel: 024365-590.)

# CLUHS ROUNDUP IBy "club Secretary" 

ANICE large clip of reports, so let us get straight into them with no more ado.

## The Mail

We kick off with the report from Abergavenny, where the Hq is still at Penyfal Hospital, in the room above Male Ward 2 every Thursday evening. The club also advise that they are registered for the RAE - entries to the Hon. Sec. by February 15 for the May exam; late entries may be taken subject to the usual late-entry extra fee. Their RAE class runs on Tuesday evenings at the Seminar room, Nevill Hall Hospital.

February 15 is the date for Acton, Brentford \& Chiswick, as usual at Chiswick Town Hall, High Road, Chiswick. The subject is a discussion on the most suitable aerials for G3CCD's F0UT site in France.

Addiscombe is primarily a contest club, who foregather every Tuesday evening in "The Woolpack", Gloucester Road, Croydon; details from the Hon. Sec. or just turn up from 2100 onwards.

The Axe Vale crowd have moved to the Cavalier Inn, West Street, Axminster, where they are to be found on the first Friday of every month.

For details of the Aylesbury Vale doings we must refer you to the Hon. Sec. - see Panel - as they have just had their AGM.

The Biggin Hill Hq is the Memorial Library, where on February 15 they have Pat Hawker, G3VA to come along and talk about "The Secret Listeners."

It is the Community Centre in Victoria Street, next to the bus station, where they have a booking on the first and third Monday in each month. This is Braintree.
B.A.R.T.G. looks after the interest of those involved in RTTY, whether old-fashioned teleprinter, new fangled home-computer or specialised electronic machine or even AMTOR; details from the Hon. Sec. - see Panel.

## Rally

February 6 is the date for one with a difference, we are told. This is the Bury rally at their Hq at Mosses Community Centre, where they hope the collection of stalls and the bring-and-buy will contrive to result in a veritable Aladdin's Cave for the homebrewer or buyer. The Hon. Sec. will tell you more - and throw in details on the club, too, for that matter!

Down to Devon, Caradon Hill Repeater Group are based in the general area of Launceston and Holsworthy; details from the Hon. Sec. - see Panel.

For Cheltenham we must refer you to the Hon. Sec. - see Panel - as we understand a move of Hq is afoot and we don't have the latest details.

At Chesham the Hon. Sec. was re-elected at the AGM; and it is to him we must refer you for details of the club, its Hq and dates.

Cheshunt still have their place at Church Room, Church Lane, Wormley, on Wednesday evenings. For February they have natter sessions on 2nd and 16th. February 9 sees G8NDR on state-of-the-art video recording, while on 23rd G4MIU talks about engineering workshop practice.
The Green Room, Fernleigh Centre, 40 North Street, is home to the Chichester lot; an ATV evening is down for February 1, and on 17th G3YHM will be guiding them through the intricacies of building a QRP transceiver.

Looking now at Colchester, we find them on February 10 at Colchester Institute, Sheepen Road, when various members will combine to discuss the construction of amateur radio equipment; on 24th, G4LSP talks about club motor racing.

It is always the first Thursday of the month for Cornish; the venue is the SWEB Clubroom, Pool, Camborne. Sad to say we don't have the February details, as we mislaid our copy of the Cornish Link - shame on us! What we can say from personal experience is "Get there early if you want a seat!" The room is always filled to bursting with some sixty-plus members in attendance each month.

As to Crawley they alternate their main meetings at Trinity United Reformed Church Hall, Ifield, with informals at members' homes. Details on everything from the Hon. Sec. at the address in the Panel.

Like Crawley, Cray Valley seem to have had a fine year to look back over at their February meeting at Christchurch Centre, High Street, Eltham. Details for February from the Hon. Sec. - see Panel.

February 19 is AGM time at Crystal Palace and they hope to have the RR there, too, to answer any questions on RSGB matters that may arise. The venue is, as usual, All Saints Parish Room, at the junction of Beulah Hill and Church Road, Upper Norwood, opposite the old ITA mast.

We now head for Derby and that means the top floor at 119 Green Lane every Wednesday evening. February 2 is a junk sale, and on 9th they have a night-on-the-air. Technical topics come on 16th, and on 23rd they have a film show.

Deadlines for "Clubs'' for the next three months-

> March issue-January 28th
> April issue-February 25th
> May issue-March 25th
> June issue-April 29th

Derwentside wrote to send their Seasonal Greetings, as did so many others, and we are pleased to hear that they are doing better than ever at the R.A.F.A. Hq, Sherburn Terrace, Consett, every Monday evening.
Anyone interested in the hobby is welcome to the Doncaster club, who have their base at Gertrude Bell Hall, Church Street, Armthorpe, Doncaster, every Monday evening.
We don't have the latest from Echelford, so we have to refer you to the Hon. Sec. for the details and dates. See Panel for his details.
A "Beginners Evening" is down for Edgware on February 10, and a talk on D/F by G4GYS on February 24. The Hq is at 145 Orange Hill Road, Burnt Oak, Edgware.
The Farnborough crowd are based on the Railway Enthusiasts Club, Access Road, off Hawley Lane, near the M3 bridge; they are to be found there on the second and fourth Wednesday each month.
If you want to join the Glenrothes club, you head for Provosts Lane, Leslie, Fife, on any Wednesday evening; we notice they have a limited-numbers visit set up on February 16 to the BBC's MW station at Falkirk.

We have a note from the Gloucester club about an award, details of which we have passed to $C D X N$. However, it includes the name and address of the Hon. Sec. - so no doubt he would be pleased also to give details of the club and its activities; his details are in the Panel.

Anyone interested in home-brew or QRP operation should be a member of the G-QRP Club; its leading light, of course, is our old friend and contributor G3RJV - and nearly 1600 members can't mean anything but a lively and interesting club and magazine. Details from the Hon. Sec. - see Panel.
"The Five Bells", East Finchley is the home these days of the Grafton Radio Society, where they are to be found on second and

## Names and Addresses of Club Secretaries reporting in this issue:

AVERGAVENNY: D. F. Jones, GW3SSY, 2 Dalwyn House, Llanover Road Blaenâvon, Gwent NP4 9HY. (0495-791617)
ACTON, BRENTFORD \& CHISWICK: W. G. Dyer, G3GEH, 188 Gunnersbury Avenue, London W3 8LB. (01-992 3778)
ADDISCOMBE: P. Hart, G3SJX, 42 Gravel Hill, Croydon, Surrey CR05BD. (01-656 9054)
AXE VALE: P. L. Peach, G3GOS, The Firs, Goldsmiths Lane, All Saints, Axminster, Devon. (Axminster 34259)
AYLESBURY VALE: M. J. Marsden, G8BQH, Hunters Moon, Buckingham Road, Hardwick, Aylesbury, Bucks.
BIGGIN HILL: I. Mitchell, G4NSD, 37B The Grove, Biggin Hill, Westerham, Kent TN16 3TA. (09594-75785)
BRAINTREE: M. Jones, G6DFZ, 26 Anson Way, Braintree. (Braintree 44168)
B.A.R.T.G.: E. Batts, G8LWY, 27 Cranmer Court, Richmond Road, Kingston-on-Thames.
BURY: M. Bainbridge, G4GSY, 7 Rothbury Close, Bury, Lancs. BL8 2TT. (061-761 5083)
CARADON HILL: C. Bartram, G4DGU, 23 Tuckers Park, Bradworth, Holsworthy, Devon EX 22 7TL. (0409-24543)
CHELTENHAM: J. Holt, G3GWW, The Old Rectory, Brimpsfield, Glos. (Witcombe 3435)
CHESHAM: J. Alldridge, G6LKS, 15 Wichcote Gardens, Chesham, Bucks. (Chesham 786935)
CHESHUNT: R. Frisby, G4OAA, 2 Westfield Road, Hoddesdon, Herts. EN11 8QX.
CHICHESTER: T. M. Allen, G4ETU, 2 Hillside, West Stoke, Chichester, Sussex PO18 9BL. (West Ashling 463)
COLCHESTER: F. R. Howe, G3FIJ, 29 Kingswood Road, Colchester. 10206 70189)

CORNISH: J. Vinton, G6GKZ, Cheriton, Alexandra Road, St. Ives, Cornwall. (Penzance 795860)
CRAWLEY: D. L. Hill, G4IQM, 14 The Garrones, Worth, Crawley, West Sussex RH 10 4YT. (Crawley 882641 )
CRAY VALLEY: P. J. Clark, G4FUG, 42 Shooters Hill Road, London SE3. (01-858 3703)
CRYSTAL PALACE: G. M. C. Stone, G3FZL, 11 Liphook Crescent, London SE23 3BN. (01-699 6940)
DERBY: Mrs. J. Shardlow, G4EYM, 19 Portreath Drive, Darley Abbey, Derby. DE3 2BJ. (0332-556875)
DERWENTSIDE: P. Howes, G8WEJ, 26 Hadrians Way, Ebchester, Co. Durham DH8 OPE.
DONCASTER: B. Coupe, G8GTG, 9 School Lane, Auckley, Doncaster DN9 3JR. (Doncaster 770663)
ECHELFORD: A. Matthews, G3VFB, 13A. King Street, Twickenham. (01-892 2229)
EDGWARE: H. Drury, G4HMD, 11 Betchworth Lane, Northwood, Middx. (Northwood 22776)
FARNBOROUGH: I. Ireland, G4BJQ, 118 Mychett Road, Mychett, Camberley, Surrey. (Farnborough 543036)
GLENROTHES: A. Givens, GM3YOR, 41 Veronica Crescent, Kirkcaldy, Fife KY1 2LH
GLOUCESTER: A. J. Martin, 12 Redwood Close, Podsmead, Gloucester GLI STZ.
G-QRP: Rev. G. C. Dobbs, G3RJV, 17 Aspen Drive, Chelmsley Wood, Birmingham B37. (021-770 5918)
GRAFTON: J. W. Chambers, 12 Sylvan Avenue, Finchley, London N3 2LE. (01-346 5841)
GREATER PETERBOROUGH: F. Brisley, G4NRJ, 27 Lady Lodge Drive, Orton Longueville, Peterborough. (0733-231848)
GUILDFORD: Mrs. H. Mullenger, G40JO, 23 Foremans Park, Ash, Aldershot, Hants. (Aldershot 20384)
HARLOW: Miss P. Mann, G4KVR, 23 School Green Lane, North Weald, Essex.
HARROW: C. D. Friel, G4AUF, 17 Clitheroe Avenue, Harrow, Middx. HA2 9UU. (01-868 5002)
HASTINGS: G. North, G2LL, 7 Fontwell Avenue, Little Common, Bexhill-on-Sea. (Cooden 4645)
HAVERING: A. Negus, G8DQJ, 17 Courtenay Gardens, Upminster, Essex RM14 1DH. (Upminster 24059)
HEREFORD: S. Jesson, G4CNY, 181 Kings Acre Road, Hereford. (Hereford 273237)

IPSWICH: J. Tootill, G4IFF, 76 Fircroft Road, Ipswich, Suffolk IP1 6PX. (0473-44047)
I.R.T.S.: S. Nolan, EI7CD, 68 Ratoath Estate, Ratoath Road, Dublin 7.

JERSEY: P. Taylor, GJ6BUK, 1 Don Terrace, Don Road, St. Helier, Jersey. C.I.

KSC: P. J. Fay, G3AKG, 116 Lowfield Road, Caversham, Reading RG4 0PB. (Reading 476718)

LINCOLN: Mrs. P. Rose, G8VRJ, Pinchbeck Farmhouse, Mill Lane, Sturton-by-Stow, Lincoln LN1 2AS (Gainsborough 788356)
LOTHIANS: E. Evans, GM6JAG, 4 BurdiehouseStreet, Edinburgh. 1031-664 5403)

MACCLESFIELD: D. Lucas, G6HLQ, 62 St. Austell Avenue, Macclesfield, Cheshire. (Macclesfield 28610)
MAIDENHEAD: R. Hemmings, G3VCT, 107 Chalklands, Bourne End, Bucks. (Bourne End 21036)
MALTBY: I. Abel, 52 Hollytree Avenue, Maltby, Rotherham, Yorks.
MELTON MOWBRAY: R. Winters, G3NVK, 32 Redwood Avenue, Meiton Mowbray. (Melton Mowbray 63369)
MIDLAND: N. Gutteridge, G8BHE, 68 Max Road, Quinton, Birmingham B32 1LB. (02 1-422 9787)
MID-WARWICKS: Mrs. M. Palmer, G8RZR, 12 Edmondes Road, Woodloes Park, Warwick CV34 5TX. (Warwick 499730)
NORFOLK: P. Gunther, G8XBT, 6 Malvern Road, Norwich NR1 4BA. (Norwich 610247)
NORTH WAKEFIELD: S. Thompson, G4RCH, 3 Harlington Court, Morley, LS27 ORT. (O532-536603)
NOTTINGHAM: P. G. Chapman, G4IJL, c/o ARCON. Woodthorpe House, Mansfield Road, Sherwood, Nottingham.
PONTEFRACT: N. Whittingham, G4ISU, 7 Ridgedale Mount, Pontefract WF8 ISB.
REIGATE: C. S. Barmes, G8FEE, 25 Hartswood Avenue, Woodhatch, Reigate, Surrey RH2 8ET
RHYL: B. Jones, GW8OYT, 6 Rhodfa Maes Hir, Rhyl. (Rhyl 37284)
ROYAL NAVY: M. Puttick, G3LIK, 21 Sandyfield Crescent, Cowplain, Portsmouth, Hants. PO8 8SQ.
SHARP COMPUTERS: M. Fitzgibbons G8VHB, 27 Roughwood Road, Kimberworth Park, Rotherham, S. Yorks S61 3RE.
SOUTH DORSET: A. Prior, G6HEL, 3 Greenways, Dewlish, Dorchester, Dorset DT2 7LP.
SOUTHDOWN: J. Pitt, G6BGT, 18 Kingsmere Court, Hurst Lane, Eastbourne. (Eastbourne 643463)
SOUTH POWYS: J. Thomas, 41 Uplands, Brecon, Powys LD3 9HT. (Brecon 3815)

STEVENAGE: T. Bailey, G6CRF, 187 Archer Road, Stevenage, Herts.
STOURBRIDGE: M. Davies, G8JTL, 25 Walker Avenue, Quarry Bank, Brierley Hill. (Lye 4019)
STRATFORD-ON-AVON: D. Boocock, G8OVC, 181 Lower Binton, Stratford-on-Avon. (Siratford-on-Avon 750584)
SUNDERLAND: A. Everard, G8PCD, 19 Roker Park Road, Sunderland, Tyne \& Wear.
SURREY: R. Howells, G4FFY, 7 Betchworth Close, Sutton, Surrey SM1 4NR. (01-6429871)
SUTTON \& CHEAM: G. Brind, G4CMU, 26 Grange Meadow, Banstead.
SUTTON COLDFIELD: A. Turner, G8TUR, 10 Jervis Crescent, Sutton Coldfield, W. Midlands B74 4PW. (021-353 2061)
SWALE: B. Hancock, G4NPM, Leahurst, Augustine Road, Minster, Sheerness, Kent ME12 2NB. (Minster 873147)
THAMES VALLEY: J. Axe, G4EHN, 65 Ridgway Place, Wimbledon, London SW19 4SP. (01-946 5669)
THANET: I. Gane, G4NEF, 17 Penshurst Road, Ramsgate, Kent. (Thanet 54154).

THORNBURY: A. Jones, G8AZT, 9 Queens Walk, Thornbury, Nr. Bristol. TORBAY: Mrs. M. Rider, 7 Kingston Close, Kingskerswell, TQ12 5EW. (08047-5130)
TYNEDALE: K. Hatton, G4IZW, 8 Alnwick Street, Newburn, Newcastle NE15 8PT. (0632-678828)
VALE of WHITE HORSE: I. White, G3SEK, 52 Abingdon Road, Drayton, Abingdon, Berks. (0235-31559)
VERULAM: A. Gray, G4DJX, 44 Sherwood Avenue, St. Albans. (St. Albans 54190)

WACRAL: L. Colley, G3AGX, Micasa, 13 Ferry Road, Wawne, Nr. Hull, Yorks. HU7 5XU.
WAKEFIELD: R. C. Sterry, G4BLT; 1 Wavell Garth, Sandal Magna, Wakefield. (Wakefield 255515)
WEST KENT: P. Reeve, G4GTN, 2 Court Road, Tunbridge Wells, Kent. (Tunbridge Wells 24689)
WORCESTER: A. C. Lindsay, G4NRD, 11 Durcott Road, Evesham, Worcs. WR1 1 6EQ. (Evesham 41508)
WORTHING: Mrs. J. Lillywhite, 41 Brandon Road, Worthing, W. Sussex BN13 2PS.
GREAT YARMOUTH: A. Besford, G3NHU, 49 Blake Road, Gt. Yarmouth, Norfolk NR30 4LT.
YEOVIL: D. L. McLean, G3NOF, 9 Cedar Grove, Yeovil, Somerset, (Yeovil 24956
YORK: K. R. Cass, G3WVO, 4 Heworth Village, York.
fourth Fridays. The venue is in East End Road, a half-mile east of Manor Cottage on the North Circular Road.

On February 17, the Greater Peterborough lads will be at Southfields Junior School, Stanground, Peterborough, to see one of two video talks, the final choice depending on factors outside their control.
One of the places your scribe always recalls is the Guildford venue, which is at the Model Engineers' Hq in Stoke Park - he's been there in connection with the models, but never for amateur
radio! February 11 is down for G4KET to talk about the business of electricity supply.

We lack an update for Harlow, but we can say that their place is at Mark Hall Barn on First Avenue, and that they are to be found every Tuesday evening. There is normally something organised during the month, interspersed with natter sessions and the club transmitter operation.

Harrow don't have any programme data in the current issue of the Newsletter, but on the front page is the main detail: Harrow

Arts Centre, in either the Belmont or Roxeth Room, every Friday evening.

The Hastings club seem now to have concentrated their activities at Ashdown Farm Community Association, and they appear to be there on more than one evening each week; for the rest we must refer you to the Hon. Sec. to clarify. His address and details are in the Panel.

We get our Havering club data in person - like theman comes and sticks it in our ear! All of which having been said, he forgot this month, leaving us simply to say they are at Fairkytes Arts Centre every Wednesday, and that normally there is something organised every other week, the intervening ones generally being down for a natter.

Hereford's AGM falls on February 4, at County Control, Civil Defence Hq, Gaol Street, Hereford; since they meet on the first and third Friday that gives 18 th for the other February date.

The Ipswich gang now foregather at the "Rose \& Crown", 77 Norwich Road, at the junction with Bramford Road. The regular meetings are on the second and last Wednesday in each month, but there is a chance that there may be some members there on other Wednesdays doing a Morse class.

The national society for Eire is I.R.T.S. and they know all that is going on in EI-land, so they are the folk to tell you where the local clubs are to be found. The Hon. Sec. would be pleased to give you all the gen - see Panel for his details.

The Jersey meetings are on Friday evenings at Le Hocq Tower, St. Clements - more details from the Hon. Sec. at the address in the Panel.

KSC is a club whose membership is open to Catholic radio amateurs and SWLs world-wide; details from the Hon. Sec. - see Panel.

At Lincoln the venue is the City Engineers Club, Central Depot, Waterside South, where the group foregather on the second and fourth Wednesday of the month; on other Wednesdays they have an RAE class and Morse practice.

On the second and fourth Thursday of the month, amateurs in the Edinburgh area head for the Lothians Hq at the Drummond High School; February 10 is down for a talk about "Jack's Black Box" by GM8GEC, while on 24th the virtues of QRP as a way of life will be explained by GM3OXX.

The Macclesfield arrangements are to meet at St. Andrews Old School, St. Andrews Road, Brough Street West, on the second Tuesday of the month for the 'formal' with talk, films, or whatever; and on the fourth Tuesday they have an on-the-air session at the same venue.

The February 3 talk at Maidenhead was still to be finalised at the time of their letter - doubtless they have a speaker organised by now; and on February 15, Richard Eaton of the Post Office will talk about "Current Developments in Satellite Communications". The Hq is at the Red Cross Hall, The Crescent, Maidenhead.

Fridays at the Methodist Church Hall, Blyth Road, is the thing for amateurs in Maltby - details from the Hon. Sec. at the address in the Panel.

There is a quiz evening on February 18 for the members of Melton Mowbray, at the St. John's Hq in Asfordby Hill. Melton Mowbray.

The Midland gang have their own place at 294A Broad Street, Birmingham, where they have a monthly meeting - February 15th G4JBB on the new pay phone. However, you can be pretty sure of finding someone at the Hq on any weekday evening as well.

If you are in the Leamington area, then you should know about Mid-Warwickshire; they are to be found at 61 Emscote Road, Warwick, on the first and third Tuesday evenings.

The weekly gatherings of the Norfolk crowd at Crome Centre, Telegraph Lane East, Norwich, alternate between 'short meetings' - February 2 and 16 - and the more formal sessions. The first of these will be on February 9 and is an initial HF Field Day meeting, and on 23rd there will be a talk on RAEN by G3HRK and G3PYN.

Thursdays at Carr Gate Working Men's Club is the North Wakefield arrangement; February 3 is a Computer Club night, on 10th they have home-brew (no, not best bitter, son!), followed on 17th by 'nothing confirmed.' That leaves February 24 when G3SDY will be talking about HF mobile.

Nottingham group are at Sherwood Community Centre, Woodthorpe House, Mansfield Road, Sherwood, Nottingham, on Thursday evenings - visitors welcome.

The club room of the Pontefract lads is at Carleton Community Centre; February 3 is down for the completion of some homeconstruction, or showing off the already-complete; on 10th the club station will be on the air, and on 17th they have a quiz. Projects evening is on 24th, and on March 3 G 3 HCW will be talking about HF aerials.

January 18 is the date for Reigate, and the venue the Constitutional and Conservative Centre, Warwick Road, Redhill. As for the topic, G3JKF will be talking about the antenna vector processor.

If you are in the Rhyl area, the locals foregather at the 1st Rhyl Scouts Hq in Tynewydd Road, on the second and fourth Thursday of each month; the latter is the 'formal' one, with talk and films or whatever, while the other one sees the club rig in use or something practical going on.

Did you serve in the Royal Navy, or in the Merchant Service, or even in a foreign navy? Then, you are eligible for membership, in one grade or another, of the Royal Navy Amateur Radio Society, and of course of the subsidiary groups at HMS Belfast, or in other parts of the world. Details from the Hon. Sec. - see Panel.

If you are into Sharp Computers as well as amateur radio contact the Hon. Sec. at the address in the Panel, as he has news for you!

Down in Dorset the local brogue is quite strong, but there is no mistaking the message from the South Dorset Hon. Sec. "come and join us!" Unfortunately we don't have the current details of the programme, so we must refer you to him - he is in the Panel.

At Brecon, one hopes, the Hon. Sec./Treasurer has by now received the confirming call he has been waiting for; if you want to ask him yourself, why not go and visit the South Powys gang at Concorde House, The Street, Brecon, on the first or third Tuesday of the month - and you could volunteer a talk or something like that yourself!

For the latest details on the Stevenage group we must refer you to the Hon. Sec. - see Panel - as they have now moved to a new Hq address.

On to Stourbridge, where they now foregather at the Cross Inn, Hagley Road, Oldswinford; February 7 is down for a natter and on 21 st the subject is still to be arranged at the time of writing.

10 GHz and how to get going on this band is the matter in hand for Stratford-on-Avon on February 10, while on 28th there is a junk sale. The Hq these days is at the Control Tower, Bearley Radio Station.

Mondays, Thursdays, and Sunday mornings are the times when the Sutherland crowd get together at the Brewery Yard, Westbourne Road, Sutherland; of these the 'main' gathering is on the Mondays.

Surrey will have a talk and discussion on OSCAR 8 with G4GTO on February 7, and on 21st there is the usual informal meeting. Both are at TS Terra Nova, 34 The Waldrons, South Croydon, on the Mess Deck on the first floor.

Over to Sutton \& Cheam where the meetings for February are not specified in the Newsletter we have on hand - so we have to refer you to the Hon. Sec. for the needful. His address is in the Panel, of course.

A change of Hq address is noted for Swale; they now have their meetings at Nina's Restaurant, 43 High Street, Sittingbourne, every Monday evening.

It is the Thames Valley Golden Jubilee year in 1983; on February 1 G4NNS will be giving a talk on a DX-pedition to Andorra, at Thames Ditton Library Meeting Room, Watts Road, Giggs Hill, Thames Ditton.

We head now for Thanet, where our records show the Hq as being Birchington Village Hall; February 4 is a talk on test gear, 11th a visit to the Police Hq at Maidstone, and on 18th a talk on the history of VHF operating. Confirm that venue, though, with the Hon. Sec. - see Panel.
"The White Horse", on the main A38, Grovesend, Thornbury on the first Wednesday of each month, is full of local amateurs; for the February date they have a talk on Raynet.

Torbay have informals every Friday evening, plus a 'main' meeting on the last Saturday of the month, at Bath Lane, rear of 94 Belgrave Road, Torquay; the latter, for February will feature a talk on Teletext by G8HHS.

Up at Tynedale the gang have a place at the Falcon Hotel, Prudhoe-on-Tyne, Co. Durham on the first Tuesday of each month, in the room at the end of the bar; this booking is firm, we understand for the whole of 1983.

Looking at the Vale of White Horse newsletter, we see they are based on the "White Hart" in Harwell Village, every Tuesday in the upstairs meeting-room. The 'formal' for February is on 1st, and is down for G4PMK to talk about getting started on 23 cm .

The latest issue of the Verulam newsletter doesn't give the February details, so we must refer you to the Hon. Sec. - see Panel.

WACRAL is a group of amateurs and SWLs who are all committed Christians; they keep in touch by way of an annual gettogether, and nets both in the local and world-wide sense. Details from the Hon. Sec. - see Panel.

A visit to Radio Aire's studios is down for February 8 in the Wakefield calendar, and on 22nd they are 'at home' for a discussion on Amateur Radio; the Hq is at Holmfield House, Denby Dale Road, Wakefield, and the indications are that they are highly chuffed with things now the period of disruption due to the refurbishment of the building is completed.

West Kent have their main meetings at the Adult Education Centre, Monson Road, Tunbridge Wells. On February 4 they have their Energy Conversion Competition which, to judge by the Rules, should be quite entertaining, and on the 18th they have Richard Scott of the Open University, talking about "Micros - a Wider View."

February 7 sees the Worcester lot at the Oddfellows Club in New Street, where G3PQR will talk about matching aerials and SWR. Then on 21st, the informal will be at the "Old Pheasant" in New Street. Looking forward, the Worcester Mobile Rally for 1983 will be on July 10 at Droitwich High School, Ombersley Road - details from G8ASO.

Tuesdays at the Amenity Centre, Pond Lane, Worthing is the time to find the Worthing club in session. We were amused at the bit a member spotted in the back of someone's car: "Support Mountain Rescue - Get Lost!"

The Great Yarmouth club has its base at the STC Sports and Social Club, Beevor Road, South Denes; for the dates we must refer you to the Hon. Sec. - see Panel.

It is always interesting to hear about a club from somewhere else, and this time we heard about Yeovil from the newsletter of another club, and a member who has just moved down to the West; he rates the Yeovil club $100 \%$ by the sound of it. They foregather at Building 101, Houndstone Camp, on Thursdays, and we gather they have several rooms available to them for various activities. For February, the first three Thursdays are all down to G3MYM - how they make the lad work! - and all on widely different topics. February 24 is the odd one out, when they have a natter night and committee meeting.

Finally, the Happy Gang at York; every Friday evening finds them at the United Services Club, 61 Micklegate, York.

## Finis

Once again we have seen the bottom of the pile - how nice to see the desk-top once a month! Deadlines for the next issues are in the 'box' in the piece, and are to arrive, addressed to "Club Secretary", SHORT WAVE MAGAZINE, 34 High Street, WELWYN, Herts. AL6 9EQ. 73, BCNU.

# " $A$ Word in Edgeways" 

## Letters to the Editor

The views expressed here are not necessarily those of the Editor, nor should they be taken to represent any particular SHORT WAVE MAGAZINE policy.

Dear Sir-I feel there is a need for a bit of retraining in the art of communication: many QSO's are ruined by over-enthusiastic stations, in their hunt for that new country or prefix, calling over other stations already on the air. There are many licensed amateurs today who have not spent time as an SWL; you can always tell the licensed ex-SWL by the altogether different style of operating.

A novice licence could be a good idea, perhaps CW-only on $160 / 10 \mathrm{~m} ., 10$ watts input; or each new licence should be on the air for the first 6 months on 10 watts input until confidence is gained for higher power operation. It's interesting to note that JA and W novices seem to be much better than many EU's.

Chris Baker, G4LDS
Dear Sir-Commenting on Mr. McIntyre's, GI3YDH, letter in the January issue, may I suggest that he should think very seriously of taking up Amateur Radio - in all its aspects? And to Susanne Tilley (same page), it is pretty obvious that a cure for her problems would be to take up CB!

After all, Amateur Radio is still a fascinating, challenging game -for those of us who want to take part without wishing to change the rules to suit ourselves. So let's stop squawking into our "hand helds" and get to know the subject in depth; any effort put into it will be repaid a thousand-fold, and it beats jogging any day!

Nev Kirk, G3JDK
Dear Sir-Three cheers for Short Wave Magazine for publishing the letter from GI3YDH in the January issue. There speaks a man after my own heart!

Not only is the whole spectrum (SSB or CW) taken over by the contest operators, but it frequently brings out the worst in many of them. Bad manners and, to say the least, questionable operating practices are painfully evident.

The question Mr. McIntyre should be asking is not what are the contest operators trying to prove, but rather who are the people who organise them in the first place - and who gives them the authority to proclaim that on certain weekends the amateur bands may not be used for their prime purpose.

I have been sounding-out opinions on this subject for years and it is my conclusion that if space were allocated to contests according to popularity then they would be fortunate to find themselves with 10 kHz .

The answer is to restrict contests (if, indeed, we have to have them) to a particular range of frequencies and place the onus of policing these frequencies upon the contest organisers. Contest operators would surely think twice about operating outside their allocated spectrum if, by doing so, their scores were invalidated by an adverse report from a monitoring station.

If the present trend continues and any old Tom, Dick or Harry is permitted to announce a "contest weekend" then I may well be joining Mr. McIntyre on CB , together with (if my enquiries reflect the true state of fellings) about $90 \%$ of the Amateur Radio fraternity.
E. Longden, G3ZQS

Address your letters for this column to "A Word in Edgeways", SHORT WA VE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ.

## NEW QTH's

This space is for the publication of the addresses of holders of new callsigns, or change of address, in EI, G, GJ, GU, GI), GI, GM, and GW of stations not already listed. All addresses published here will appear in the U.K. section of the American "CALL. BOOK' in preparation. Please write clearly on a separate slip and address to QTH Section. Be sure to give correct County designation and post-code. In the case of direct subscribers needing Change of Address, please state for card index adjustment. Address items for this space to: "QTH Section," SHORT WAVE MAGAZINE, 34 HIGH STREET, WELWYN, HERTS. AL6 9EQ.

EI6ES, T. A. Bluett, Convent Road Clonakilty, Co. Cork.
EI9EW, W. Furlong (ex-EISATB), Gobbinstown, New Ross, Co. Wexford.
G3CJC, K. McGowan, 6 Hilltop Crescent, Cosham, Portsmouth, Hants. PO6 1BD freissue).
G4KTI, R. K. Taylor, 63 Peace.Road, Stanway, Colchester, Essex. CO3 5HL.
G4MQJ, D. J. Slater, 71 Wyggeston Street, Burton-on-Trent, Staffs. DE13 0SD.
G4MTQ, A. P. Tapp, (ex-G8TFZ), 55 Frobisher Drive, Saltash, Cornwall. PL12 4 PN .
G4MUT, T. M. Hackwill, (ex-G8WRD), 59 Rivermead Road, Woodley, Reading. RG5 4DH.
G4MWF, P. R. Wilkinson, 28 Ibberson Avenue, Maplewell, Barnsley, S. Yorkshire. S75 6BJ.
GI4MXW, D. J. McKinney, 2 Kernan Park, Portadown, Craigavon, Co. Armagh. BT 63 5QY.
GI4MYT, W. Stewart (ex-GI8WCB), 11 Fairway Gardens, Castlereagh, Belfast. BT5 7PS.
GI4NFH, R. Jennings, 117 Belsize Road, Lisburn, Co. Antrim. BT27 4BS.
G4NFT, G. C. McAvoy, 5 Lytchett Way, Upton, Poole, Dorset. BH16 5LS.
G4NKO, S. Harding, (ex-G6DEX), 15 Burgess Walk, St. Ives, Cambs. PE17 4AS. (Tel: 0480-61112).
Gl4NRB, W. J. Watson, (ex-GI8XUZ), 6 Cromwell's Highway, Lisburn, Co. Antrim. BT27 5DH.
G4NYZ, J. Battle-Welch, 7 Harrison Road, Headless Cross, Redditch, Worc. B97 5BP.
GW4OFQ, R. Hunter, 6 Banc-Y-Dderwen, Broad Oak, Carmarthen, Dyfed. SA32 8QJ.
GM4OHE, W. Armer, "St. Malo", 4 Landsdowne Gardens, Hamilton, Lanarkshire. ML3 7DH. (Tel: Hamilton 423289).
(ifoIS, (i. F. Reid, 65 Rowelfield, Luton, Beds. LU2 9HL
G400S, J. Ball, 21 Wellinger Way, Leicester, LE3 IRG.
G4OTE, M. B renda Grayson, (ex-G8KOT), 88A Kaye Lane, Almondbury, Huddersfield, W. Yorkshire. HD5 8XU.
GI4OTG, A. H. McNeice, 148 Doagh Road, Newtownabbey, Co. Antrim, BT36 6BA.
GM40XP, D. B. Latto, 11 Hawthorn Street, Leven, Fife. KY8 4QE. (Tel: 0333-29I2I).
G4PNM, A. J. Wixon, "Buena Vista", 170 Woodlands Road, Bedworth, Warks. CV12 0ND.
G4ROA, A. J. Chamberlain, (ex-G6ADC), 16 Okehampton Road, Styve Chale, Coventry. CV3 5AU.

GM5MZV, M. Pozzo, 18 Wholequarter Avenue, Redding, Falkirk, Stirlingshire. FK2 9XX.
G6DLE, P. M. Baggett, 21 Buttons Farm Road, Penn, Wolverhampton, W. Midlands. WV4 5LR.
G6IFN, L. A. S. Rouse, 69 Shackerdale Road, Wigston, Leicester. LE8 1BR.
GGINM, K. J. O'Reilly, 72 Grosvenor Road, Meir, Stoke-on-Trent. ST3 5ND.
G6IUD, R. Bracey, 13 Mallard Crescent, Church Lane, Kingsbury, London. N.W.9.
G6IYD, D. J. A. Noakes, 33 Falcon Way, Ashford, Kent. TN24 2UP.
GW6JJN, R. Berry, 149 Dyffryn Road, Saron, Ammanford, Dyfed. SA18 3TN. (Tel: 0269-5722).
G6JXU, R. W. Jeffrey, Wayside Cottage, North Common, Chailey, Lewes, Sussex. BN8 4DR.
GM6KNP, D. McKenzie, 19 Manse Road, Ardersier, Inverness, IV1 2SH.
G6LBN, D. Butcher, 7 Victoria Street, Lytham, Lytham-St.-Annes, Lancs. FY8 5DZ.
G6LJL, C. J. Westrop, 106 Nunnery Street, Castle Hedingham, Essex. CO9 3DP. (Tel: 0787 60269).
G6NHY, K. Marriott, 21 Rockwood Crescent, Hucknall, Nottingham. NG15 6PW.
G6NUO, S. Clark, 90 Hamstead Road, Great Barr, Birmingham. BA35BN.
GI6NVG, J. W. McIntyre, 19 Castlemurray, Strabane, Co. Tyrone. BT82 9SH.
G6PNU, S. H. Jennings, K.T.N., 24 Pershore Tower, Lower Beeches Road, Northfield, Birmingham. B31 5LA.
G8sGP, G. L. Wheeler, "The Vine", Raw, Fylingthorpe, Whitby, North Yorkshire. YO22 4PP. (Tel: Whitby 880552).

## Change of Address

El3VDD, Mrs. Gillian Hutchinson (GI8MIV), 40 Oldstone Hill, Muckamore, Co. Antrim. BT41 4SB.
EI4DJ, D. Hutchinson (GI4FUM), 40 Oldstone Hill, Muckamore, Co. Antrim. BT41 4SB.
G2YV, D. M. Whitehouse, "Lyndale", The Close, Clifford Chambers, Stratford-uponAvon. CV37 8HS. (Tel: 0789-68503).
G3ASJ, T. G. Kelsey, 22 Main Street, Stamford Bridge, York. YO4 1AB. (Tel: 0759-72328).
GM3HZA, R. M. Corcoran, 6 Castle Park Gardens, Fairlie, Ayrshire. KA29 0AE.
G3LZE, M. J. Henry, "Elberry", Half Acre, Williton, Somerset. TA4 4NX.
G3NDJ, C. R. Delhaye, 35 Cokeham Lane, Sompting, Sussex.

G3NUA, J. Hogg, 16 Moorton Close, Naisberry Park, Hartlepool, Cleveland. TS26 0PJ
G3RJX, B. G. Elcocks, 213 Perry Wood Road, Great Barr, Birmingham, West Midlands. B42 2BL.
G3RNM, F. W. Pallant, Calves Croft, Nightingale Lane, Storrington, Sussex.
G3SYZ, A. W. G. Rogers, "Draycott", Primrose Hill, Fairlight, Hastings, East Sussex. TN35 4DN.
G3UVS, C. A. Mitchell, 30 Southway Lane, Roborough, Plymouth, Devon. PL6 7DJ.
GW3ZDW, R. Hyde, (ex-G3ZDW), 12 Livingstone Way, St. Athan, Barry, South Glamorgan. CF6 9JG.
G3ZOH, B. R. George, 5 Conifer Close, Orpington, Kent. BR6 9QD.
G4BUS, R. Prosser, "Greynam", Coursers Road, Colney Heath, St. Albans, Herts. AL4 OPA. (Tel: Bowmans Green (0727) 24457).

G4EJT, A. E. Kilner, 9 Laurel Close, Prestwood, Bucks. HP16 9DX.
GI4ERM, K. Bones, 42 Cloverdale Crescent, Lambeg, Co. Antrim.
G4FKH, G. Williams, 63 Stanthorpe Road, Streatham, London. S.W.16.
GI4FUM, D. Hutchinson (EI4DJ), 40 Oldstone Hill, Muckamore, Co. Antrim. BT41 4SB.
G4GCU, Z. Kowalczyk, 15 Wilton Green, Lazenby, Middlesbrough, Cleveland.
G4HMD, H. D. Drury, 11 Batchworth Lane, Northwood, Middlesex. HA6 3AU.
GM4HVU, J. A. H. Brown (ex-G4HVU), Delgany, Old Cambus, Cockburnspath, Berwickshire. TD13 5YS.
G4IKJ, Mrs. Joan M. Henry, "Elberry", Half Acre, Williton, Somerset. TA4 4NX.
G4ILR, C. J. Howett, The Jayes, The Street, Erpingham, Norfolk.
G4IQM, D. L. Hill, 14 The Garrones, Worth, Crawley, West Sussex. RH10 4YT. (Tel: Crawley (0293)/ 882641).
G4IRV, J. A. Hastie, Bonera Platt, The Street, High Halstow, Rochester, Kent. ME3 8SG.
GW4KGI, J. N. Wright, 46 The Sale, Woodlands, Abergele, Clwyd.
G4LDV, R. V. Davis, "Tudor Lodge", 65 Alum Chine Road, Westbourne, Bournemouth, Dorset. BH4 8DU.
G4MSS, R. Levenscote, 7 Lea Court, Huntsmans Close, Rochester, Kent. MEI 2RF.
G8JBZ, P. J. Bradbury, 52 Moss Park Avenue, Werrington, Stoke-on-Trent, Staffs. ST9 0 EP .
GI8MIV, Mrs. Gillian Hutchinson, (EI3VDD), 40 Oldstone Hill, Muckamore, Co. Antrim. BT41 4SB.


## TRIO NEW R-2000 RECEIVER



ALSO EARLY DELIVERY ON TRIO TS-430 NEW ALL SINGING, ALL DANCING TCVR.


$$
\begin{aligned}
& \text { YAESU - ICOM - FDK - KDK - DATONG - HUSTLER } \\
& \text { - SHURE - ASTATIC - HY-GAIN - TELEX - } \\
& \text { MICROWAVE MODULES - HAL }- \text { DAVTREND - } \\
& \text { AVANTI and }
\end{aligned}
$$

EVERYTHING ELSE IN AMATEUR RADIO


TR7A High Performance Transceiver


TR-5 Amateur Transceiver 188 BROADHURST GARDENS. - LONDON NW6 3AY

Cables: RadioShack, NW6.
Telex: 23718

FOR QUALITY CRYSTALS - AT COMPETITIVE PRICES. POPULAR FREQUENCIES IN STOCK

2 METRE STOCK CRYSTALS. Price $£ 1.96$ for one crystal. $\mathbf{~} 1.74 /$ crystal when two or

|  | HCEJ | HCEN | HC25U <br> 30pF and | HC25U <br> 20pF and | $\begin{aligned} & \text { HC2EU } \\ & 2 \mathrm{FF} \end{aligned}$ | $\begin{aligned} & \text { HC68 } \\ & 2614 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 30pF TX | 30pF TX | 40pp TX | 3 ppr RX | 20pF TX | SR RX |
| RO | 4.0277 | 8.0555 | 12.0833 | 14.9688 | 18.1250 | 44.9666 |
| R1 | 4.0284 | 8.0569 | 12.0854 | 14.9916 | 18.1281 | 44.9750 |
| R2 | 4.0291 | 8.0583 | 12.0875 | 14.9944 | 18.1312 | 44.9833 |
| R3 | 4.0298 | 8.0597 | 12.0895 | 14.9972 | 18.1343 | 44.9916 |
| R4 | 4.0305 | 8.0611 | 12.0916 | 15.0000 | 18.1375 | 45.0000 |
| R5 | 4.0312 | 8.0625 | 12.0937 | 15.0027 | 18.1406 | 44.0083 |
| R6 | 4.0319 | 8.0638 | 120958 | 15.0055 | 18.1437 | 45.0166 |
| R7 | 4.0326 | 8.0652 | 120979 | 15.0083 | 18.1468 | 45.0250 |
| S8 | - | - | 121000 | 14.9444 | 18.1500 | 44.8333* |
| S9 | - | - | 121020 | 14.9472 | 18.1531 | 44.8416* |
| S10 | - | - | 121041 | 14.9500 | 18.1562 | 44.8500* |
| S11 | 4.0354 | 8.0708 | 121062 | 14.9527 | 18.1593 | 44.8583* |
| S12 | - | - | 121083 | 14.9555 | 18. 1625 | 44.8666* |
| S13 | - | - | 121104 | 14.9583 | 18.1656 | 44.8750* |
| S14 | - | - | 121125 | 14.9611 | 18.1687 | 44.8833* |
| S15 | - | - | 121145 | 14.9638 | 18.1718 | 44.8916* |
| S16 | - | - | 12.1167 | 14.9667 | 18.1750 | 44.9000* |
| S17 | - | - | 12.1187 | 14.9694 | 18.1781 | 44.9083* |
| S18 | - | - | 121208 | 14.9722 | 18.1812 | 44.9166* |
| S19 | - |  | 121229 | 14.9750 | 18.1843 | 44.9250* |
| S20 | 4.0416 | 8.0833 | 12. 1250 | 14.977 | 18.1875 | 44.9333 |
| S21 | 4.0423 | 8.0847 | 12.1270 | 14.9805 | 18.1906 | 44.9416 |
| S22 | 4.0430 | 8.0861 | 12.1291 | 14.9833 | 18.1937 | 44.9500 |
| S23 | 4.0437 | 8.0875 | 12.1312 | 14.9861 | 18.1968 | 44.9583 |
|  |  | SR = S | as Rescona | - HC |  |  |

Alsa in stock: RO to R7 and S8to S23for following: Belcom FS 1007, FDK TM56, Multi 11 Quaitz 16 and Multi 7, Icom IC2F, 21, 22A and 215, Trio Kenwood 2200, 7200. Uniden 2030 and Y aess FT2FB, FT2 Auto, FT224, FT 223 and FT 202
Also in stock $4 \mathrm{MHHz} T X$ in HCEU for 145 EMHz . Icom crystals $T X$ for 146.6 MHz (RRO). 44MHz RX crystals in HC6 for 145.8 and 145 (RRO). All at above price.
4. NETRE CRYSTALS for 70.26 MHz in HC6/U at $52.25 . \mathrm{TX} 8.78250 \mathrm{MHz}$. RX 8.7466 or 29.78 MHz in stock.

TOm CRYSTALS in stock 8.0222 and 12.0333 in HC6 £1.86. Pye Pocketione PF 1, PF2. PF70 and Wood and Douglas £4.50 a pair or TX £2.25, RX £2.50, SU8 (433.24)RBO, RB2, RB4, RB6, RB10, RB11, RB13, RB14 and RB15.
CONVERTER CRYSTALS IN HC 18U at £286. In stock 38.666, 42.000, 70.000,96.000, $101.000,101.500,105.666$ and 116.000 MHz . $26.000 \mathrm{HC6£2.00}$ TONE BURST AND I.F. CRYSTALS in HC $18 / \mathrm{JU}$ at $£ 225$ in stock. 7.168 MHz for 1750 kHz and 10.245 MHz for $10 . \mathrm{MHz}$ IF's.

MADE TO ORDER CRYSTALS SINGLE UNIT PRICING

| Fundamentals | Price Group | Adyustrment Tolerance ppm | Frequency Ranges | Price and Delivery A $\square$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 200 (total) | 10 to 19.909 kHz | - | [2300 |
|  | 2 | 200 (total) | 20 to 29.999 kHz | - | £18.60 |
|  | 3 | 200 (total) | 30 to 159.999 kHz | - | f10.60 |
|  | 4 | 200 (total) | 160 to 999.999 kHz | - | £6.00 |
|  | 5 | 50 | 1.00 to 1.499 MHz | f10.50 | f6.00 |
|  | 6 | 10 | 1.50 to 1.999 MHz | ¢4.75 | f4.40 |
|  | 7 | 10 | 2.00 to 2.599 MHz | £4.75 | f4.40 |
|  | 8 | 10 | 2.60 to 3.999 MHz | [4.55 | £4.10 |
|  | 9 | 10 | 4.00 to 20.995 MHz | £4.56 | £400 |
|  | 10 | 10 | 21.00 to 24.999 MHz | 16.00 | ¢5.40 |
|  | 104 | 10 | 25.00 to 30.000 MHz | c8.50 | - |
| 3rd OVT | 11 | 10 | 21.00 to 59.999 MHz | c4.56 | £4.00 |
| 5th OVT | 12 | 10 | 60.00 to 99.999 MHz | ¢6.00 | £4.50 |
|  | 13 | 10 | 100.00 to 124.995 MHz | c8. 16 | E5.50 |
| 5th, 7th 8 | 14 | 20 | 125.00 to 149.995 MHz | - | ¢8.00 |
| SthOVT | 15 | 20 | 150.00 to 225.000 MHz | - | £7.50 |

Unless otherwise requested fundamentals will be supplied with $30 p F$ losd capscity and overtones for series resonance operation.
FREQUENCY STANDARDS in stock $£ 275, \mathrm{HC} 6200 \mathrm{kHz}, 456 \mathrm{kHz}, 1000 \mathrm{kHz}, 5.000 \mathrm{MHz}$ and $10000 \mathrm{MHz} . \mathrm{HC} 13100 \mathrm{kHz}, \mathrm{HC} 18100 \mathrm{kHz}, 7.000 \mathrm{MHz}, 10.700 \mathrm{MHz}, 48.000 \mathrm{MHz}$ and 100.00 MHz . $4.0000 \mathrm{HC} 18 £ 2.00$ HOLDERS - Please specify when ordering - 10 to $200 \mathrm{kHz} \mathrm{HC13} \mathrm{U}, 17 \mathrm{Ckz}$ to 17 MHz HC 6 or HC33/U, 4 to $225 \mathrm{MHz}, \mathrm{HC} 18$ and HC25.
Where holders are not specified crystats above 4 MHz will be supplied in HC25/U.
DELIVERY Column A 3 to 4 weeks. Column 86 to 8 weeks.
DISCOUNTS. $5 \%$ mixed frequency discount for 5 or more crystals at B delivery. Price on application for 10 or more crystals to same frequency specification. Special rates for bull purchase schemes including FREE supply of crystals used in UK repeaters.
The above prices apply to small quantities of crystals for amateur use. We would be pleased to quote for larger quantities or crystals for professional use.
EMERGENCY SERVICE SURCHARGES (to be added to A delivery prices), 4 working days f 12.6 working days $£ 7.8$ working days f .513 working days $£ 3$. Surcharges apply to each crystal not each order and are subject to VAT.
CRYSTAL SOCKETS HCE/U and HC25U 20p. MINIMUM ORDER CHARGE £1.50.
TERMS. Cash with order, cheques and postal orders payable to OSL Lid. All prices include postage to UK and Irish addresses. Please note Southem Irish cheques and postal orders are no longer acceptable. Please send bank draft in pounds Sterling.

## PRICES ARE EX VAT. PLEASE ADD 15\%

Telephone: 01-690 4889 (9-5) 24 hr . Ansafone: Erith (03224) 30830
Telex: 8813271 GECOMS $\mathbf{G}$ (Attention QUARTSLAB).

# DEWSBURY <br>  

Work U.S REPEATERS either home or mobile, with the DE 48006 watt FM TRANSCEIVER. Price $£ 46.25$ plus $£ 2$ post and packing. 6 month warranty. MAKE TEN YOUR LOCAL CHAT BAND


We are also stockists of DAIWA - WELTZ - DAVTREND - TASCO TELEREADERS - MICROWAVE MODULES ICS AMTOR - AEA PRODUCTS - DRAE
Dewsbury Electronics, 176 Lower High Street, Stourbridge, West Midlands.
Telephone: Stourbridge (0384) 390063. After Hours: Kidderminster (0562) 851255

National Amateur Radio Oonvention National Exhibition Centre, Birmingham Saturday 5th March 10am to 6pm, Sunday 6th March 10am to 5pm FEATURING

Introduction to Amateur Radio for Beginners.

Annual RSGB HF Convention.
Major Exhibition of Amateur Equipment \& Components.

Lectures on Propagation, VHF and Microwaves.
Forum for VHF and Repeater Enthusiasts.


## S. E. UNION MILLS, ISLE OF MAN

PLEASE NOTE that all our Dual Gate MOSFET 2 metre PRE-AMPS including the POWER/PRE-AMPS have always used the BF 981. We have never used the $35 K 88$ because of its inferior performance. We always say that our competitors are about two years behind us.


## SENTINEL 2M LINEAR POWER/PRE-AMPLFIERS

Now feature either POWER AMP alone or PRE-AMP abone or both POWER AND PREAMP or STRAIGHT THROU when OFF. Plus a gain control on the PRE-AMP from $O$ to 20 dB . N.F. around 1 dB with a neutralised strip line DUAL GATE MOSFET.
Ulitra LINEAR for all modes and R.F. or P. T. T. switched. 13.8 V nominal supply. SO 239 sockets.
Three Models
7. SENTINEL 35 Twelve times power gain. $3 W \mathbb{N}$ 36W OUT. 4 amps. Max. drive 5W. $6^{\prime \prime} \times 21 / 4^{\prime \prime}$ front panel, $41 / 4^{\prime \prime}$ deep. $£ 6250 \mathrm{Ex}$ stock.
2 SENTINEL 50 Five times power gain. 10W IN 50W OUT. Max. drive 16W 6 amps. Same size as the Sentinel $35, £ 74,50 \mathrm{Ex}$ stock.
3. SENTINEL 100 Ten times power gain. 10W IN 100 W OUT. Max. drive 16 W . Size: $61 / 2^{\prime \prime} \times 4^{\text {" }}$ front panel, $312^{\prime \prime}$ deep. 12 amps. $£ 100 \mathrm{Ex}$ stock.
POWER SUPPLIES for our linears $6 \mathrm{amp} £ 3412 \mathrm{amp} £ 49$.
SENTINEL AUTO 2 METRE or 4 METRE PRE-AMPLIFIER
Around 1dB N.F. and 20 dB gain, (gain control adjusts down to unity) 400 W P.E.P through power rating. Use on any mode. 12 V 25 mA . Sizes: $11 / 2^{\prime \prime} \times 21 / 4^{n} \times 4^{\prime \prime}$ $£ 28.00^{\circ} \mathrm{Ex}$ stock.
PA5 Same specification as the Auto including 240 V P.S.U. $£ 33.00{ }^{*}$
SENTINEL STANDARD PRE-AMPLIFIER $£ 15.00^{+}$Ex stock.
PA3. 1 cubic inch p.c.b. to fit inside your equipment. $£ 10.00 \mathrm{Ex}$ stock.
70 cm versions of all these (except PA5 $£ 4.00$ extra. All ex stock.
S.E.M. TRANZMATCH

The most VERSATILE Ant. Matching system. Will match from 15-5000 Ohms BALANCED or UNBALANCED at up to 1 kW . Link coupled balun means no connection to the equipment which can cure TV1 both ways. SO 239 and 4 mm connectors for coax or wire feed. $160-10$ metres TRANZMATCH $£ 69.60$. 80.10 metres $£ 6260$.
EZITUNE buitt in for $£ 1950$ extra. (See below for details of EZITUNE) Al ex stock EZITUNE built in for $£ 19.50$ extra. (See below for details of EZITUNE). Al ex stock. 3 WAY ANTENNA SWITCH 1 Kw SO239s. Good to 2 metres. $£ 15.00$. Ex stock. S.E.M. 2 METRE TRANZMATCH. $51_{2}{ }^{*} \times 2^{*}, 3^{\prime \prime}$ deep. SO 239 © 24.90 Ex stock.

## S.E.M. EZITUNE

You won't appreciate how good it is until you've used it!
Clean up the bands by tuning up without transmitting.
Connects in aerial lead, produces $\mathrm{S} 9+(1-170 \mathrm{MHz})$ noise in receiver. Adjust A.T.U or aerial for minimum noise. You have now put an exact 500nms into your transceiver Fully protected, you can transmit through it, save your P.A. and stop QRM. $£ \mathbf{2 5 . 0 0} \mathbf{~ E x}$ stock. P.c.b. + instructions to fit in any A.T.U. \& 1950. Ex stock.
S.E.M. AUDIO MULTIFILTER

To improve ANY receiver on ANY mode. The most versatile filter available. Gives "passband " tuning, "variable selectivity"' and one or two notches. Switched Hi-pass, Lo-pass, peak or notch. Selectivity from 2.5 KHz to 20 Hz . Tunable from 25 KHz to 250 Hz . PLUS another notch available in any of the four switch positions which covers 10 KHz to 100 Hz . 12 V supply. Sizes: $6^{\prime \prime} \times 2 \%^{\prime \prime}$ front panel, $3 \not / 2^{"}$ deep, all for only E57.00 Ex stock.
SENTINEL AUTO H.F. WIDEBAND PRE-AMPLIFJER $2.40 \mathrm{MHz}, 15 \mathrm{~dB}$ gain. Straight through when OFF. $912 \mathrm{~V} .21 / /^{\prime \prime} \times 11_{2}^{\prime \prime} \times 3^{\prime \prime} .200 \mathrm{~W}$ through power. $£ 19.55^{\circ} \mathrm{Ex}$ stock.
SENTINEL STANDARD H.F. PRE-AMPLIFIER. No R.F. switching. £1262*Ex stock. S.E.M. IAMBIC KEYER

The ultimate auto keyer using the CURTIS custom LSICMOS chip. Tune and sidetone Switching. £3450 Ex stock. Twin paddle touch key. $£ 1250$ Ex stock. S.E.M. VISA 80 METRE RECEIVER

Already a great success. Only $211^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} .12 v$. operation I.W. o/p. If you want an 80 m . ( $3.5 \times 3.8 \mathrm{MHz}$ ) Rx this is for vou. Still only $£ 39$.
FREQUENCY CONVERTERS FROM 10 kHz to 2 metres in stock
12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS
Prices include VAT and detivary. C.W.D. or phone your credit card number for same day service.

- ineans Belling lee sockets, add E 1.90 for SO239s or BNC sockets. Ring or wite for more information. Place orders or request information on our Ansaphone at chasp rate times.


# P.M. 

PRICES SHOWN EXCUDDE VAT
2ALEXANDER DRIVE, HESWALL WIRRAL MERSEYSIDE, LGI GXT
ELECTRONIC SERVICES

## UK CUSTOMERS PUEASE ADD 15\%

CRYSTALS MANUFACTURED TO ORDER
Prices shown are for "one off', to our standard amateu specs., closer tolerances are available. Please send us details of your requirements.
A Low frequency fundamentals in $\mathrm{HC} 13 / \mathrm{U}$ or HC 6 U

Total tolerance $\pm 100$ ppm. $0^{\circ}$ to $70^{\circ} \mathrm{C}$ 6.0 to $9.99 \mathrm{kHz} \mathrm{HC13/U}$ 10to 19.99kHzHC 13 J $20 \mathrm{to} 29.99 \mathrm{kHzHC} 13 / \mathrm{U}$ 30 to 59.99 kHzHC 13 U 60 to $79.99 \mathrm{kHz} \mathrm{HC13} \mathrm{U}$ 80 to $99.99 \mathrm{kHzHC13} \mathrm{U}$ 100 to $159.9 \mathrm{kHzHC} 13+6 \mathrm{U}$ 60 to 399.9 kHz HC6/U 400 to $499.9 \mathrm{kHz} \mathrm{HC6/U}$ 500 to 799.9 kHz HC6U

107280
$£$ $£ 32.80$
$£ 31.00$ £ 23.08
f 21.08 f 21.73 £ 15.69 E 13.69
f 13.08 f 13.08
f11.32 $£ 11.32$
$£ 7.83$ £ 7.00
f 7.83 f 7.83
B High frequency fundamentals/overtones
Adj. tol. $\pm 20 \mathrm{ppm}$. Temp. tol. $\pm 30 \mathrm{ppm}-10^{\circ}$ to $+60^{\circ} \mathrm{C}$ 300 to 999.9 kHz (fund) HCE U $+60^{\circ} \mathrm{C}$ 1.0 to 1.499 MHz (fund) $\mathrm{HC6} / \mathrm{U}$ 1.5102 .59 MHz (fundi HC6U .610 20.94 MHz (fund) HCGU 3.4 to 3.99 MHz (fund) HC $18825 / \mathrm{U}$ .01021 MHz (fund) All holders .0 to 21 MHz (fund) All holders 21 to 25 MHz (fund)
18to 63 MHz fund 60 to $105 \mathrm{MHz}(50 / \mathrm{T}$ 55: $125 \mathrm{MHz}(50 / \mathrm{T}$ 1250 100MHz 149 to 180 MHz (90/T) 180 to 250 MHz (90/T)
f 11.25
f 5.36
$£ 5.36$
f 4.87
£ 4.87
f 6.75
$£ 6.75$
$£ 5.36$
$f 5.36$
$f 4.87$
£ 4.87
$f 7.31$
£ 7.31
$\mathbf{f} .00$
$£ 9.00$
$£ 4.87$
$£ 4.87$
$£ 5.61$
$£ 5.61$
$\mathbf{£ 8 . 4 4}$
f 8.44
f 8.62
f8.62
f 1275
f 12.75
f 13.50
Delivery - Mid range 1 MHz to 105 MHz normally $4 / 6$ weeks. Other frequencies $6 / 8$ weeks.
Holders: Low Frequencies 6 to 150 kHz HC13 U, 150 kHz to 3.4 MHz HC 6 U . 3.4 MHz to $105 \mathrm{MHz} \mathrm{HC} 6 / \mathrm{U}, \mathrm{HC} 18 / \mathrm{U}$ or HC25/U, over $105 \mathrm{MHz}-\mathrm{HC} 18 / \mathrm{U}$ and $\mathrm{HC} 25 / \mathrm{U}$
$\mathrm{HC} 33 / \mathrm{U}$ (wire end $\mathrm{HC} 6 / \mathrm{U}$ ) is available on request as per
HCGU.
HC17/U (Replacement for FT 243 a available as per HC6/U at 350 surcharge on the HC6/U price
Uniess othervise specified, fundamentals willibe supplied to 30pf circuit conditions and overtones to series resonance.

## EXPRESS SERVICE

Many types of made to order crystals are available on our "EXPRESS SERVICE" - with delivery of three days on our class " $A$ " service. Telephone for details.

## COMMERCIAL AND PROFESSIONAL CRYSTALS

 NEW FASTER SERVICEWe are now supplying crystats to most commercial and MIL specifications in the range 1 MHz to 60 MHz ordered in
small quantities in $21 / 2$ weeks AT NO EXTRA CHARGE. small quantities in $21 / 2$ weeks AT NO EXTRA CHARGE. for that VERY URGENT order.
We can also supply crystals for commercial applications e.g. Microprocessor, TV, etc., at very competitive prices. e,g. Microprocessor, T, etc., at very competitive prices. return, alternatively telephone or telex our Sales Engineer Mr . Norcliffe who is normatly available in the office for technical enquiries between 4.30 and $6.30 \mathrm{p} . \mathrm{m}$.

TERMS: CASH WITH ORDER - MAIL ORDER ONLY. PRICES INCLUDE P. \& P. \{BRITISH ISLES\} EXCEPT WHERE STATED - OVERSEAS CHARGED AT COST.

| CRYSTAL FREQUENCY RANGE USE (TX or RX) and HOLDER <br> OUTPUT FREQUENCY |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 144.4(433.2) | b | e | b | e | e | b | e | e | e | e | e |
| 144.800 | e | e | e | e | e | c | c | c | e | c | e |
| 144.825 | e | e | e | e | e | e | e | e | e | e | e |
| 144.850 | e | e | e | e | e | e | e | e | e | e | e |
| 145.000/ROT | a | c | a | c | c | b | e | b | e | a | $c$ |
| 145.025/R1T | a | c | a | e | e | b | e | b | e | e | e |
| 145.050/R2T | a | c | a | e | e | b | e | b | e | e | e |
| 145.075/R3T | a | c | a | e | e | b | e | b | e | e | e |
| 145.100/R4T | a |  | a | e | e | b | e | b | e | e | e |
| 145.125/R5T | a | c | a | e | e | b | e | b | e | e | e |
| 145.150/R6T | a | c | a | e | e | b | - | b | e | e | e |
| 145.175/R7T | a | c | a | e | e | b | e | b | e | - | e |
| 145. $200 \%$ R 6 R | a | c | a | e | e | b | b | b | $a$ | e | c |
| $145.300 / \$ 12$ | e | e | e | e | e | e | e | e | e | e | e |
| 145.350 ${ }^{\text {S } 14}$ | e | e | e | e | e | e | e | e | e | e |  |
| 145.400/S 16 | e | e | e | e | e | e | - | e | e | e | e |
| 145.425/S17 | e | e | e | e | e | e | e | e | e | e | e |
| 145.450 S 18 | a | e | a | e | e | b | b | $b$ | a | a | e |
| 145.475/S19 | a | e | a | e | e | b | b | b | a | - | e |
| 145.500/S20 | a | c | a | c | c | b | b | b | a | a | c |
| 145.525/S21 | a | c | a | c | c | b | b | b | a | , |  |
| 145.550/S22 | a | c | a | c | c | b | b | b | a | a | c |
| 145.575/S23 | a | c | a | c | c | b | b | b | a | - | c |
| 145.600 ROR | a | c | a | c | c | e | b | b | a | - | c |
| 145.625/R1R | e | e | e | c | c | e | b | - | a | , |  |
| 145,650 R 2R | e | e | e | c | c | e | b | - | a | a |  |
| 145.675/R3R | e | e | e | c | c | e | b | e | a | a | c |
| 145.700/R4R | e | e | e | c | c | e | b | e | a | , | c |
| 145.725/R5R | - | e | e | e | c | e | b | e | a |  | c |
| 145.750/R6R | e | e | e | c | c | e | b | - | a | a | c |
| 145.775/R7R | - | e | - | e | c | e | $b$ | e | a | a | c |
| 145.800/R8R | - | c | a | c | c | b | b | b | a | a | e |
| 145.950 3 S 38 | a | e | e | c | e | e | - | e | - | - | e |

PRiCES: (a) $\mathbf{£ 2 . 1 5 , ( b )} £ \mathbf{2 5 5}$, (c) $£ \mathbf{2 . 8 0}$, and (e) $£ 4.87$.

AVAILABILITY: (a). (b), (c) stock items, normally available by return (we have over 5000 items in stock). (e) $4 / 6$ weeks normall but it is quite possible we could be able to supply from stock. N.B. Frequencies as listed above but in alternative holders and/or non stock loads are available as per code (e).

ORDERING. When ordering please quote (1) Channel, (2) Crysta frequency. (3) Holder, (4) Circuit conditions (load in pf). If you cannot give these, please give make and model of equipment and channel or output frequency required and we will advise if we. have details

## DOUBLE BALANCED MIXER

We are now stocking two new double balanced mixers which are pin compatible with both the MD 108 we used to stock and also the SBL1, but have much superior specifications covering $£ 6.09$. The M8 is hermetically sealed @ $£ 7.83$.

## 70 cm CRYSTALS

Due to the much higher multiplication involved compared with 2 metres all our stock 70 cm crystals are to much higher tolerances than our standard amateur spec. We are stocking the following channels: RBO, RB2, RB4, RB6, SU8, RB10, RB11, RB13, RB14, RB15, SU18, and SU20, TX \& RX for use with:- PYE UHF Westminster (W15U), UHF Cambridge (U10B), Pockettone (PF 1) and UHF PF70 Range, and STORNO COL/COM 662 all at £2.55.
For other channels and/or equipments crystals can be made to order to the same closer tolerances as our stock range at a cost of $\mathbf{\Sigma 5 .} 72$ for frequencies up to 63 MHz and $\mathbf{£ 6 . 5 8}$ for $63-105 \mathrm{MHz}$, or to our standard Amateur specifications see "CRYSTALS MANUFACTURED TO ORDER" prices opposite

4 m CRYSTALS FOR $70.26 \mathrm{MHz}-\mathrm{HC} 6 \mathrm{U}$ TX 8.7825 MHz and $R X 6.7466 \mathrm{MHz}$ or $29.7800 \mathrm{MHz} £ 255$ 10.245 MHz "ALTERNATIVE" $1 . F$. CRYSTALS - £2.55. For use in Pye and other equipment with 10.7 MHz and 455 kHz I. Fs to get rid of the "birdy" just above 145.0 MHz . In HC6/U, HC18/U and HC25/U

## CRYSTAL SOCKETS (LOW LOSS

HC6U and HC13U 250 each. HC25 U 20 p each plus 200 p. \& p. per order (p. \& p. free if ordered with crystais).

CONVERTER/TRANSVERTER CRYSTALS - HC18U at $£ 3.00,38.6666 \mathrm{MHz}(144 / 28), 42 \mathrm{MHz}$ ( 7028 ) $58 \mathrm{MHz} \cdot(144) 28), 70 \mathrm{MHz}$ ( $144 / 4$, 71 MHz (144/2, $34 / 28$ $105.6666 \mathrm{MHz}(1,296 / 28)$ and $116 \mathrm{MHz}(144 / 28)$.

TEST EQUIPMENT FREQUENCY STANDARD CRYSTALS 200 kHz and 455 MHz in HC6U $£ 3.50$
100 kHz in $\mathrm{HC} 13 / \mathrm{U}$ and 1 MHz in HC6/U £295 5 MHz in HC6 J and 10 MHz and 10.7 MHz in HC 6 U and HC25U £2.80.

## CRYSTALS FOR MICROPROCESSORS

 Please let us know your requirements e.g. $4 \mathrm{MHz} \mathrm{HC18/L}$ 1 nff $£ 200$ : 100 off $£ 1.10$. 1000 off 99p; 2500 off $50 p$.
## AERIALS

MULTI BAND INVERTED 'V' DIPOLE - 80 Thru' 10 metres Rated @ 2kW - Oniv 26m long. £3200 + VAT ( $£ 36.80$ inc: VAT) p. \& p. $£ 3.00$.

## THE ARAKI RANGE OF AERIALS

## 10 metre whip only 1.3 metre

long with magnet
10 metre whip only 1.3 metre
long with guttermount 2 metre $\% / 8 \lambda$ whip with magmount
2 metre $\% / 8 \lambda$ whip with guttermount
2 metre $1 / 4 \lambda$ whip with
magmount
whip with
2 metre $1 / 4 \lambda$ whip with guttermount

Base Station Aerials
$2 \mathrm{~m} / 6 \lambda$ groundplane 3.5 dB gain $\quad £ 18.95 \mathrm{p}$. \& p. $£ 3.50$ The Araki Range are handmade of top quality anticorrosion treated aluminium or stainless steel.


> IC211/251 front-ena board
> If you read G8LEF's article in October's SWM you'll appreciate that fitting one of our FT221/225 front-end boards in a 211 or 251 is quite an involved operation! To simplify this we've custom designed a front-end board for the Icom transceivers which incorporates all the features required for (relatively) simple instalation and superb performance.
> The rf circuitry is an updated version of that used in our outstandlingly successful $\mathrm{FT} 221 / 225$ front-end whilst an on-board antenna changeover relay minimises losses ahead of the $n$ amplifier.
> Solid state dc switching allows easy interface with the icom circuitry.
> For those with doubts about their ability with a soldering iron we've also negotiated a fitting service at extra charge
> RPCB251ub $£ 69.90$ inc VAT
> Over the years there have been many claims of 'less than 1 dB noise figure' from the less reputable manufacturers of 144 MHz equipment. Although the gullible may have been taken-in, we suspect that most people rightly dismissed these claims as advertising hyperbole! The situation has changed! After secretly supplying our SLNA 144 series of preamps with sub-dB noise figures (and checking our production measurements rather carefully! we' re pleased to announce that we are now supplying our 144 MHz preamps with a typical noise figure of . our competitors!)

##  HETKOROD Of

## Introducing a New Concept in HFcommunications <br> A NEW SERIES WITH NEW FEATURES, NEW PERFORMANCE, AND ALL 9 HF BANDS.

CONTINUING THE SUCCESS OF A GREAT RANGE OF TRANSCEIVERS BACKED BY

The OMN1-C
(Top of any class) Covers 10-160 Metres including the new WARC bands. 200 watts DC input.
Now also available, KW + TEN-TEC 227. 228 and 229 ATU's. Please ask for details.


KW + TEN - TEC ARGOSY HF SSB/CW TRANSCEIVER 10-80 metres, 100 watts (Switchable to 10 watts). Notch Filter. Full break-in on CW. Automatic normal sideband selection plus reverse. 12-14v D.C. input. All solid-state.
A WINNER AT LOW COST.

Come to KW for all your other amateur radio requirements KW service and guarantee - KW maintains the tradition of service the company is renowned for. Output-transistors unconditionally guaranteed for 12 months. The KW + TEN-TEC units offered above are introduced as a prelude to fully UK essembled equipment.

- (A full range of accessories is available for KW + TEN - TEC equipment) Other KW units available
KW 107 Supermatch KW trap dipole KW traps KW Balun KW antenna switch.


## KW TEN-TEC LTD

Vanguard Works. Jenkins Dale.Chatham ME4 5RT Tel:0634-815173 Telex:965834. KW COMM G

. . . . . and discover a new one for yourself. If you're experienced or even a beginner our skilled preparation will enable you to obtain a G.P.O. Licence.
British National Radio \& Electronics School, Reading, Berks. RG1 18R - - FREE brochure without obligation from:- -

British National Radio \& Electronics School READING, BERKS. RG1 1BR

Name
Address
swizsic

MASHFR HTHOYRONTCS NOW!
The PRACHICAT way!

You will do the following:
Build a modern oscilloscope
Recognise and handle current electronic components

- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state
 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of Radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.


## Newdob?NewCareer?NewHobby?

 Getinto HlectronicsNow!

# Northern Amateur Radio Societies Association 

The Society is holding its 21st Exhibition at Pontins Holiday Village, Southport on Saturday, 19th March, and Sunday, 20th March, 1983. This was formerly the Belle Vue Exhibition. The Exhibition will open at 11.00 a.m. each day. Trade stands featuring all types of Radio/Electronic Equipment.

FEATURES
Inter-Club Quiz
Grand Raffle
Construction Contest
RSGB Bookstall
N.A.R.S.A. and Trophy

Amateur Computers Demonstration Station
J. Birkett

Radiotronics
Amateur Radio Exchange
Johns Radio
New Cross Radio
Wilson Valves
C.B. Electronics
S.O.T.A.

The Computer Junk Shop
W. H. Westlake
D.S. Electronics
B.N.O.S. Electronics
D. Currrie (Printer)
G. Jackson
W. E. Griffiths

Waters \& Stanton
Ham Radio Today
Garex Electronics
P.L.M. Communication Supplies

Tricon Supply Co.
Electro Supplies

Admission to the Exhibition will be 60 p per day or $£ 1.00$ for two days. Lots of 20 tickets or more booked in advance from Mike Bainbridge G4GSY, 7, Rothbury Close, Bury, Lancs. BL82TT., can be obtained at a $20 \%$ discount by sending the appropriate cash and s.a.e.
Chalets are available if booked direct from Pontins, Tel: 070477165 and can be equipped for self catering if you so wish. Charges vary from $£ 10.00$ plus VAT (for 2 person chalet) to $£ 26.00$ plus VAT (for 6 person chalet), larger family chalets are available.
Family entertainment will be available during the day while 'Residents' will be able to enjoy evening entertainment. Talk in will be on S22 and other available simplex channels.
Car parking is free but please follow the parking attendants instructions and the notices to prevent congestion.
ENJOY YOURSELF AT THIS FAMILY WEEK END EXHIBITION.

## SELECTRONIC SERVICES

THE FINEST ANTENNAS IN THE WORLD ARE NOW AVAILABLE
No hi-fi specifications here, just antennas that are stronger, last longer and work better than any other antenna available today.

## HF anternas

10 MHz Broadside, similar to classic bobtail array (1OBBDA): gain 5dBd with this wire array at only E41.25
14MHz Brosdsida, same specifications as 10BDA (14/BDA): E36.25.
4 m Ouads
4 Ele quad (4/4EO): gain 7dBd, f 58.50
6 Ele quad (4/EEQ): gain 9dBd, £60.50
2m Quads
4 Ele quad (2/4EQ): gain 7dBd, £45.25
8 Ele quad (2/8EO): gain 12dBd, long yagi spacing (124t boom), 66250
All quad antennas have glass fibre booms and supports for strength and less corrosion and less affect on performance.
Hellix range
$70 \mathrm{cms}, 6$ turn $(6 / 70 \mathrm{H})$ : gain $12 \mathrm{dBd}, \mathrm{f} 42.85$
$\begin{array}{ll} & 12 \text { turn }(12 / 7 O H) \text { : gain } 16 \mathrm{dBd}, \mathrm{f} 46.85 \\ 23 \mathrm{cms}, & 6 \text { turn }(6 / 23 H) \text { : gain } 12 \mathrm{dBd}, \mathrm{f} 34.50\end{array}$
12 turn (12/23H): gain 16dBd, £35.50
20 tum ( $20 / 2 \mathrm{xH}$ ): gain 17dBd, £37.50
Helix range uses glass fibre booms and comes complete with 'N' plug and socket. All Helix antennas have a 502 feed impedance suitable for satellites, tropo, FM repeaters and ATV.
Stecked collineer arrays
$70 \mathrm{cms}, 16$ Ele ( 70 SC 16): gain 14dBd, e45.20
20 Ele (701SC20): gain 16dBd, f49.20
$23 \mathrm{cms}, 16$ Ele (23/SC16): gain 13dBd, £ 43.50
20 Ele (23/SC2O: gain 14.5dBd, £38.50

## Coming soonl

Due to the mestive response to our previous advertisements and many plase for an HF Due to the massive response to ow previous and is not a rotatuble dummy load on $20 \mathrm{~m}^{\prime \prime}$, minibeam at a reesonabie price that works and is not a rotatabla dumny load on 20 m , We are pleseed to say that research and dovelopment of a very high performance constructional techniques. wo use wiw entiure that they witil lest for years.
Thenks for the interest you have shown. Any auggestions? Plense ring. (As long as they Thenke for tha interest you haveshown. Any suggestions? Piomse ring.

Over 40 new antennasa to come
The most comprehensive range of antennas to suit every operator and every climatic condition.
Please enclose a stamped addresed envelope with all enquiries.
For further information contact.
Unit BT50155B, Perry Avenue, ..Teesside Industrial Estate, Thornaby, STOCKTON-ON-TEES, Cleveland TS 17 GLN. Tel: (0642) 760093.

## R. T. \& I. ELECTRONICS LTD. <br> Ashrime Old Hel, Ashvily Road, London E11 4DX Td. 01-539 4ess Nearest Station: Leytonstone (Central Line)

We te MAN DISTRBMTORS for AVO, MEGGER. TAYLOR and SUUNAN RETPIMENTS FULIY OVERHAULED EQUPMENT

## TRIO JR310 AMATEUR B.S. RECEIVER. . . . . . . . . . . . . . . . . . . . . . . . . . . £ 126.50

EDDYSTONE 730/4. RECENER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126.50
EDDYSTONE $680 \times$ RECEIVER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149.50
EDDYSTONE 940 . RECEIVER f 149.50
f 166.75
EDDYSTONE 940. RECEIVER... f23690
EDDYSTONE 88012 RECEIVER.
EDDYSTONE 1001. RECEIVER.. £420.00
EDDYSTONE 83017. RECEIVER.
£517.50
EDDYSTONE 9SOR 27-240MMz, RECEIVER.
P.O.A.

EDDYSTONE $990 S 230-870 \mathrm{Mhz}$. RECEIVER
P.O.A.
POA

HAMMARLUND MODEL SPGOOIX RECEIVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245.00 HAMMARLUND MODEL HQ170. AMATEUR B.S. RECEEIVER. . . . . . . . . . . . . . . . . . . 213.90


YAESU FRG-7700 Receiver
E269.00
YAESURY

AVO \& MEGGER EOUIPMENT (A Few Examples)
AVO Oigital Mutimeter Model DA211.
. $£ 67.85$
AVO Digital Multimeter Model DA212

E94.76
f15500
AVO Digital Multimeter Model DA117 Auto Range. . . . . . . . . . . . . . . . . . . . . . . . . . . € 185.00
AVO Digital Multimeter Model DA 118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231.72
Taylor Analogue Multimeter Model 131
£231.72
.$£ 21.96$
Taylor Analogue Multimeter Model 131
. $£ 21.96$
.$£ 28.52$
Cases for AVO. TAYLOR \& MEGGER instruments in stock. Send for Details.
We also repair all types of instruments. Trade and Educational enquiries invited.
SINCLAIR DM235 Digital Multimeter.
c60. 38

Mains Adaptor for DM 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
SINCLAIR PDM35 Pocket Digital Multimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39. 88
BROWNS TYPE F HEADPHONES, $4 \mathrm{~K}, 2 \mathrm{~K}$ \& 150 hms E 29.95 per pair. RUBBER EARPADS £ 3.26 per pair
SHURE MICROPHONES, 401A, £16.56; 202, £15.18:201, £14.49. Full details on request.

## CROTECH OSCILLOSCOPES IN STOCK.

TMK METERS: Model TP 105, £20.41. Model 500TU-B, £3太.36. Model TW20CB, £41.63. Model TP5SN, E23.57. Model 700, £71.30. Also in stock Leather Cases for above. Model 7008, £ 78.16 . Full details on request.

In preant conditions we regrot that EL prices are subyect to ateration without notice. PRICES INCLUDE VAT AND CARRIAGE. Terms: C.W.O., Approved Monthly Accounts, Hire Purchase and Part Exchange. Special facilities for export. HOURS $-\mathbf{9 . 3 0 \mathrm { mm } - 5 . 3 0 \mathrm { pm } \text { MON.FRI FLOSED SATURDAYS }}$

LEEDS AMATEUR RADIO LEEDS AMATEURRADIO BRITISH MADE
QUALITY PRODUCTS
For Amateurs \＆Professionals

## The sign of fine communications

Retail Sales 27 Cookridge Street．Leeds LS2 3AG．Tel． 452657

## NE W LIGHTWEIGHT <br> TRAP KITS

7 MHz for traditional 5－band dipole $80-10 \mathrm{~m}$ ． 3． 5 MHz covers six bands $160-10 \mathrm{~m}$ ．Each kit rated 500W and complete with centre piece and end insulators and full instructions． $£ 17.20 \mathrm{inc}$ ．VAT each． p\＆p $£ 2.00$

## NEW

## LAR NOISE BRIDGE

 Know your antenna fre－ quency．Check the im－ pedance．Adjust tuned circuits，etc．This easy to use unit comes to use unit comes complete with comprehensive ap plication notes．£31．00 inc．VAT
p\＆p $£ 2.00$

VHF OMNI－MATCH $144-174 \mathrm{MHz}$ ．The ATU for the 2 －metre man． Enables one antenna to cover the whole band． Ends laborious antenna pruning．Tunes out SWR at the operating position．Handles 750 W
£29．50 inc．VAT p\＆p $£ 2.00$

## RECEIVER ATTENUATOR

$0 \mathrm{~dB}-50 \mathrm{~dB}, 10 \mathrm{~dB}$ steps，reduces Rx Intermodulation Distortion due to strong signals，can improve reception of weak signals．
$£ 21.50$ inc．VAT
pधp $£ 2.00$

CRYSTAL CALIBRATOR Outputs at $1 \mathrm{MHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}$ ． Giving strong calibration pips beyond 150 MHz ．
£29．50 inc．VAT p\＆p $£ 2.00$

LEEDS AMATEUR RADIO MAIL ORDER \＆SERVICE DEPT．
60 GREEN ROAD．MEANWOOD LEEDS LS6 4JP．TEL． 782224
Please send 60 p for Anterna Catalogue
1 aumborise vou to deort my Barclaycard／Accoss．
UA Buoger Acoount with the amount of［
Ny No is


Signature

## NEW！ <br> SAMSON ETM－8C MEMORY KEYER

－8memories（each one will store approx． 50 Morse characters）－can run once only，o epeat continuously．Easy chaining of memory texts to build up longer message sequencas．Keypad control of memories，REPEAT，\＆key－down TUNE functions． Speeds $8-50 \mathrm{wpm}$ ，self－completing，variable（weighting）ratio．Normal or squeeze keying with the well－known built－in Samson fully－adjustable precision twin padde unit． －Uses 4 AA betteries：only $1 \mu \mathrm{~A}$ idling current－Why switch off？－Keys tx by reed elay or transistor．Sidetone oscillator．Complete C－MOS keyer \＆controls on on PCB（ICs in sockets）．New style case， $41 / 2^{\circ} \mathrm{W} \times 2^{2} \mathrm{H} \times 6 \%$＂D．ETM－8C，£124．96． ETM－3C C－MOS KEYER．Used worldwide for years by Pro．\＆Amateur stations．Fully adjustable Samson twin paddes built in for nornal or squeeze keying．8－50 wpm．Relay or transistor keying．Sidetone． $1 \mu \mathrm{~A}$ idling current luses 4 AA betts．l．ETM－3C，£88．88．
JUNKER PRECISION HAND KEY．Still going strong after 50 vears in professional use． Front of back contacts，fully adjustable．Hinged cover．Free－standing．£41．65．
BAUER SINGLE－PADOLE UNIT． $1 \%_{4}^{*} \times 2^{*}$ base for home－built El－bugs．Adjustable aps／tensions．£ 13.86.
All prices INCLUDE delivery UK and 15\％VAT．Please send a stamp with enquiries
SPACEMARK LTD．
Thornfield House，Delamer Road，Altrincham，Cheshire．（Tel；061－9288458）

## PROP：A L BAILEY G3WPO <br> WPO COMMUNIEATIONS

We have KITS AND MODULES for the discerning amateur with a special range for the visually handicapped amateur．All with G3WPO COMPREHENSIVE INSTRUCTIONS and SERVICE．

2 METRE MONITOR RECEIVER－An economical high sensitivity FM 6 channel crystal controlled receiver（Tx and PA to follow）in module form．RF Helical filter，Xtal 10.7 and multi pole ceramic 455 kHz filters．All inductors prewound，+12 V DC supply required． COMPLETE KIT with FREE S20 crystal ONLY E29．95 with 40dB skirts ceramic filter or $£ 34.95$ with 70 dB filter．Also $£ 34.95 / £ 44.95$ built． 156 MHz marine version also available （no crystals supplied（ 0.70 ）．
TWO－TONE OSCILLATOR－built and cased unit essential for checking your SSB rig linearity and PEP output（with a scope）．Switched tones and balance／／evel controls． Internal or external power $+9-14 \mathrm{v}$ DC．Low distortion design at $\mathrm{£} 17.95(0.70)$ ．
IAMBIC KEYER－A start－you－off ready－built and cased unit with dot／dash memories and automatic keying polarity selection to $\pm 250 \mathrm{v}$ at 50 mA ．Speed $8-50 \mathrm{wpm}+$ with tune up switch．Negligible standby consumption from PP3 or external 9－14v DC．Requires suitable paddle such as Bencher or MK704（not supplied）．Only E19．95（0．70）．
VHF PRESCALER－Upgrade your counter with our $150 \mathrm{MHz}+$ divide by 10 unit in a very small enclosure at very small pricel Featured in July 1982 RadCom．Kit $£ 5.09$ or built £6．10（0．40）．
RX80 ATU－Featured in August 1982 RadCom．Complete kit for this antenna țuning unit for the RX80 or any other HF receiver－ideal for the SWL．$£ 23.42$（1．50）including metal case and drilling instructions．Most parts available separately
CAPACITY ADD ON UNIT－Another RadCom feature（September 1982）being a clever little unit which will enable most DFM＇s with an accessible gate pulse to measure capacitance from 1 pF to 1000 uF ．CMOS．Kit with case／instructions f 11.65 （0．70）．

We also manufacture ready buitt equipment specifically designed for the VISUALLY HANDICAPPED AMATEUR，including a TALKING FREQUENCY COUNTER（HF／VHF） AUTOMATIC VSWR／POWER METER and BROMA－as published in September＇ 79 RadCom（HM Government Approved unit）．All at sensible prices－more details available on request．

All prices include VAT．Units ex－stock or we notify you by return of delivery date（except handicap aids which are normally to order 2－3 weeks）．Postage given in brackets（max any order $£ 1.50$ \}. Further details available for $9 \times 4$ s．a．e．DISCOUNTS available to Clubs for 5 off any unit．We also can supply all RS COMPONENTS range－write for details．MAIL ORDER ONLY．Cash with order please．

557732 G2BAR HAM BAND AERIALS BRISTOL

2 METRE
5／FD 5Element gFD 8 Element 1／JP＇J＇Pole．
70 cms
7／FD 7 Element
7／FD 7Element 11／FD 11 Elemen 12tt．3Guys 12 ft ． 3 Guys
18 ft .6 Guys

£ 11.78
f14．58
$f 11.30$
£11．30
f 14.58
$£ 14.00$
£ 18.00

HF．BLAMS GAMMA MATCH 10 METRE
2Element Array．．．．．．．．．．．．．．．．． 40.50 3Element Array

## 15 Metre

2Element Array 30 METRE
2Element Array 3Element Array．

## 12－14 PENNYWELL ROAD，BRISTOL BS5 OTJ



L•Vム・Vム・Vム・Vム・Fム・Fム・

## PRACTICAL HANDBOOK OF VALVE RADIO REPAIR

by Chas．E．Miller

One of the latest titles in the＂Newnes Technical Book＂series， this book contains historical and technical information， together with a comprehensive and detailed description of fault－finding and repair techniques，on a wide range of vintage broadcast bands receivers from the $1920^{\prime}$ s to the $1950^{\prime} \mathrm{s}$ ．The basic information is of great value in the restoration of valved amateur bands receivers，too．Published in hardback． 221 pages
£ 14.80 inc． $\mathrm{p} / \mathrm{p}$ Publications Dept
Short Wave Magazine Ltd．， 34 High Street，Welwyn，Herts．AL6 9 EQ．


#### Abstract

("SITUATIONS" AND "TRADE') $\mathbf{2 5 p}$ per word, minimum charge $\mathbf{5 3 . 0 0}$. No series discoumt. All charges payable with order. Insertions of radio interest only sccepted. Add 50 per cent for Bold Face (Heavy Type). No responsibility accepted for transcription errors. Box Numbers $40 p$ extra. Send copy, whth remittance, to the Classified Dept., Short Wave Magavine Lid., 34 High Street, Wetwyn, Herts. AL6 9EQ.


## TRADE

Aerials: simple but efficient. Try our $150-\mathrm{ft}$. lengths of multistrand wire, supplied with instructions for 4 different aerial designs, $£ 5$ including p/p.-Halbar, 14 Conway Crescent, Bedford.

CALL SIGN LAPEL BADGES professionally engraved, by return of post, $£ 1.50$ cash with order (state name and callsign).-AYLMER-KELLY (S), 2 Pickwick Road, Corsham, Wilts. SN12 9BJ.

Listener and QSL cards, quality printing on coloured and white gloss card at competitive prices. Send s.a.e. for samples.-S. M. Tatham, "Woodside", Orchard Way, Fontwell, Arundel, West Sussex.

March issue: due to appear February 25th. Single copies at 85p post paid will be sent by first-class mail for orders received by Wednesday, February 23rd, as available.-Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

Personalised QSL's, 1000 for $£ 13.75,5000$ for $£ 46.20$. Jumbo logs available, send s.a.e. for samples.-Printshop, 89 Derwent Street, Consett DH8 8LT.

Courses-RADIO AMATEURS EXAMINATION, City and Guilds. Pass this important examination and obtain your licence, with an RRC Home Sudy Course. For details of this and other courses (GCE, professional examinations, etc.) write or phone: THE RAPID RESULTS COLLEGE, Dept. JV2, Tuition House, London SW 19 4DS. Tel. 01-947 7272 (9a.m. to 5 p.m.) or use our 24-hr. Recordacall Service, 01-946 1102, quoting Dept. JV2.

QSL cards. Sample pack and price list forwarded on receipt of 22p stamp.-Derwent Press, 69 Langstone Drive, Exmouth, Devon EX8 4HZ.

DIY QSL's, 100 mixed designs, $£ 1.90$. Eight designs, coloured card. Please send s.a.e. for samples.-RWW, P.O. Box 11, Romsey SO5 8XW.

## READERS ADVERTISEMENTS

$10 p$ per word, minimum charge $£ 1.50$ payable with order. Add $\mathbf{2 5}$ per cent for Bold Face (Heavy Type). Phense write cleatly, using full punctuation and recogniged abbreviations. No responsibility Cecepted for trascription errors. Box numbers Hified Dept., Short Wave Magazine Led., 34 High Street, Wetwyi Herts. AL6 9®Q.

## READERS

Selling: Yaesu FT-480R 2m. multimode transceiver, mint, little used, £300. Microwave Modules MMT432/144R 70 cm . transverter, $£ 110$. Icom IC-2E 2 m . handheld, with charger, case, helical, 2 spare batteries and base charger, £120. - Ring Mash, GW8JAO, Cardiff 21021 ext. 63, daytime only.
Wanted: FT-290R or FT-790R. Also require accessories (linear. car mount, wavemeter, SWR, aerial, etc.)-Ring Collins, 01-579 9455.

Wanted: Eddystone 770R VHF receiver, or similar. - Clements, 66 Cliff View Road, Lewisham, London S.E. 13 (Tel: 01-692 2637).

Wanted: Collins TCS-12 transmitter and control units, anything considered, even junk. Other ex-W.D. equipment considered. Ring Cookson, Kidderminster 3674.
For Sale: AR88D as new, with manual, speaker, tools, DC supply and valves. Offers over $£ 100$ from collectors/museums. Racal RA-17, mint, $£ 295$ or near offer. Barlow-Wadley XCR-30, $£ 130$. Wanted: ICF-2001. - Ring Higgins, 0943-600737.

## TRADE ANNOUNCEMENT

A major company dealing only with the trade has recently negotiated the sole U.K. Rights to an established range of Amateur Transceivers and will be initiating a new marketing policy involving a National Dealership Network offering: -

* Products at a realistic price
$\star$ Units to cover all Amateur Bands
* Full service and technical back up
* A Nationally co-ordinated advertising campaign
$\star$ Full range of branded accessories

If you want a dealership don't hesitate, write now to P.O. Box 5784, SHORT WAVE MAGAZINE LTD., 34, High Street, Welwyn, Herts. AL6 9EQ
(All enquiries will be treated as Private and Confidential)


## QUARTZ CRYSTALS IN 24 HOURS ANY FREQUENCY $\mathbf{2 - 5 0} \mathbf{~ M H z ~ F O R ~} £ 4$ inc.

New fast service for C.W.O only (state holder style). Clock oscillators for microprocessors in stock from $£ 9.30$.

McKnight Crystal Co Ltd. Hardley Industrial Estate
Hytho, Southampton SO4 6ZY Tel. 0703848961

## G2DYM ANTI-INTERFERENCE ANTI-TVI TRAP DIPOLES inc. WARC NEW BANDS <br> TRANSMITTING \& S.W.L. MODELS \& KITS DATA SHEETS LARGE SAE. AERIAL GUIDE 50p. Callers Welcome. <br> Tel: 03986-215

GZDYM, UPLOWMAN, TIVERTON, DEVON

## ALL <br> VALVES <br> \& TRANSISTORS <br> Call or phone for a most courteous quotation <br> 01-749 3934 <br> We are one of the largest stockists of valves etc. in the U.K <br> COLOMOR ELECTRONICS LTD. LONOOOLHAM

## MORSE MAOE BY THE RHYTHM METHOD!

FACT NOT RCTION -
No expensive equipment required only a turntable
If you start RIGHT you will be reading amateur and commercial Morse within a month. (Most students take about three weeks). That's why after 25 YEARS we still use three scientifically prepared special records with which you cannot fail to leam the MORSE RHYTHM automatically. It's as easy as learning a tune. $18 \mathrm{w} . \mathrm{p} . \mathrm{m}$. in 4 weeks guaranteed. Complete course comprising $2 \times 12^{\prime \prime}+$ $1 \times 7^{\prime \prime}$ multi-speed records + books $\&$ II.K. p.o. $£ 7.00$. Overseas, sufficient for 750 grms.). Despatch by retum trom:-S. Bennett, G3HSC, (Box 14), 46 Green Lane, Purley, Surrey CR2 3PO. 01-660 2896.

## URGENTLY WANTED TO BUY

Collins 75A4, KWS 1, KWM1 and 2, All S. line equipment, Hallicrafters and Hammarlund Receivers, National NCX5 and National Receivers, Central Electronics Exciters and RX equipment, plus all late model Jap Rx's/Tx's. Bring or send to:-

## BUYWELL RADIO, 3 CASTLE SQUARE، SHEFFIELD S 1 2FZ. Tel. 22505 (0742).

## AMATEUR RADIO

## by Gordon Stokes and Peter Bubb The Lutterworth Press are the publishers of this book, which is intended for those wishing to study for the R.A.E. and comprises nineteen chapters, plus Introduction and Index, covering the basic, technical material the would-be candidate needs to obtain a 'pass'. Copiously illustrated with simple diagrams and excellent plates. Published in hardback. 192pages <br> £9.60inc. p/p <br> SHORT WAVE MAGAZINE LTD. 34 HIGH STREET, WELWYN, HERTS. AL6 9EQ

Sale: Trio R-600 receiver, new model, $£ 190$. Sony ICF-2001 receiver, computer tuning, $£ 112$. Both "as new", in original cartons and with manuals.-Ring O'Farrell, 051-931 1001 after 6 p.m.

Selling: Lowe DS-10 scanning marine receiver, 10 channels, pocketable, asking price £50. - Pain, 7 Trinity Crescent, Upper Tooting, London S.W.17. (Call evenings after 7 p.m.)
Selling: Grundig Satellit 2100 receiver with headphones and SSB attachment, mint condition, $£ 75$ or near offer. - Ring Pearce, Ludlow (0584) 5645.
Wanted: Trio TX-310, must be in good order. Details and price please. - Rose, 15 Lynchets Road, Amesbury, Salisbury, Wilts.
For Sale: Codar PR-40 preselector, as new, £9. - Ring Hopkins, Reigate 48812 (Surrey).
Exchange: Yaesu FT-290R 2m. portable transceiver, with nicads, charger, $5 / 8$-wave magmount and mobile whip, 5 months old, unused, boxed, in mint condition, for good general coverage receiver, or £200. - Ring 04215-60195.
Sale: Tono MR-250W 144 MHz linear and preamp., 200 watts output, solid-state, $£ 195$. Wanted: Bird 43 VHF/UHF elements. - Ring John, G8KAX, Hornchurch 57782 evenings.

Sale: Lowe SRX-3OD receiver, with UL- 1000 Tuner and Trio HS-4 headphones, £185. - Ring Peter, Leamington Spa 832352.

March issue: due to appear February 25th. Single copies at 85p post paid will be sent by first-class mail for orders received by Wednesday, February 23rd, as available. - Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

For Sale: Yaesu FT-707 with 25 amp . power supply, Astatic 104, Yaesu desk mic. and some accessories, $£ 500$. - Ring Waltham Cross 24748.
Selling: KW Electronics Model 101 SWR meter, 52 -ohm, $£ 18$. Manuals: FT-DX400, £5; IC-202, £4; Wilcox-Gay oscillator, multiplier, instruction books, $£ 4$ pair. Small $2 \mathrm{~m} .1 / 4$-wave whip, with gutter mount, feeder and connector, $£ 4$. Garex modulator OC35 outputs, suit QQVO3-10, '3-20A, £4. Transformer, 230v. to 6 v . at 18A, $£ 5$. Russian U4324 multimeter for spares, $£ 3$. Ring Edwards, G3MBL, 01-445 4321.
Clearing shack, many useful components, send s.a.e. for details. - Baraclough, 46 Highfield Road, Corfe Mullen, Wimborne, Dorset BH21 3PG.
Exchange: Trio 9130 25-watt multimode transceiver, three months old. Belcom LA-106 2-metre 180-watt SSB linear. G2DYM SWL trap dipole. Marconi 1100 valve voltmeter. Lowe shack alarm. 70 cm . transverter from 28 MHz . Wanted: HF transceiver and accessories, or will sell any of the above items. Ring G6LEJ, Peterborough 231639.
For Sale: Yaesu FT-101ZD(FM) transceiver, four months old, excellent condition, boxed with handbook, $£ 580$. - Ring Taylor, 01-639 5576.
Selling: KF-430 70 cm . transceiver, 12 channels, 9 xtal 'd, $£ 125$. IC2E handheld with hi-power nicads etc., $£ 140$. Also W.W.II equipment, cheap prices to clear. - Ring Mogford, GW4PCO, 0639-820356.
For Sale: Strumech $60-\mathrm{ft}$. telescopic galvanised mast, $£ 250$. Also head unit, rotator, antenna etc. Offers? - Simmons, G4AVB, QTHR. (Tel: 0889-881594).
Sale: SX-200N scanning receiver, almost new, original box, $\mathbf{£ 2 0 0}$. - Ring Moffat, Salisbury (0722) 3032. (Wilts.)

Selling: Collins R. 390 receiver, $0.5-32 \mathrm{MHz}$, very good working order, $£ 575$ or very near offer. Delivery negotiable. - Ring Grantham, Darlington (0325) 67068.
Sale: Trio R-600 digital general coverage receiver, brand new, unused, £175. - Spokes, 7 Belfour Road, Blackbird Leys, Oxford.
For Sale: Proven RTTY transceive program and circuits for the ZX81 with no alterations to the computer. Send s.a.e. for details. - Strachan, GM4CUZ, 15 Campfield Road, Broughty Ferry, Dundee DD5 2NG.


## HIGH QUALITY CABLES

PYE PF 1 Pocketfone Batteries. New .
Yellow 9v. RX .
PL259s for UR 7
E250Red 18. TX
Peducers for 6 bove
Reducers for above . . . . . . . . . . UR. . . . .
PL 259 s with built in reducer 4 Or UR
18.TX...................

UR43etc
30p each 4 pin Chassis Mike Sk
UR43, $50 \mathrm{ohm}, 20 \mathrm{p}$ per metre (post $3 \mathrm{p} / \mathrm{m}$ )
UR76, 50 ohm , stranded conductor, 200 per $\mathrm{m}(3 \mathrm{p} / \mathrm{m})$
UR67, 50 ohm thick, low loss, 50 p per $\mathrm{m}(5 \mathrm{p} / \mathrm{m})$
UR95. Miniature Ny'on 50 ohm , 25 p per m (1p/m)
UR 70,75 ohm 5 mm dia, 20 p per $\mathrm{m}(3 \mathrm{p} / \mathrm{m})$

RG213U, 50 ohm 10.3 mm dia, low loss, 45 p per $\mathrm{m}(6 \mathrm{p} / \mathrm{m})$
LOW LOSS UHF TV FEEDER, 20 p per $\mathrm{m}(3 \mathrm{p} / \mathrm{m})$
75 omm DOUBLE SCREENED 8 mm dia COAX, $25 p$ per $m(4 \mathrm{p} / \mathrm{m})$
300 ohm TWIN RIBBON FEEDER, $12 p$ per $\mathrm{m}(2 \varphi / \mathrm{m}) 75 \mathrm{hm}$ TWIN FEEDER, 18 p per $\mathrm{m}(2 \mathrm{p} / \mathrm{m})$ 14 SWG HD COPPER AER 1 AL WIRE, 20 p per $\mathrm{m}(21 / \mathrm{p} / \mathrm{m})$
STRONG PVC COVERED AERIAL WIRE, ©o per $\mathrm{m}(21 / \mathrm{p} / \mathrm{m})$
ALL UNIRADIO CABLES ARE TO BS 2316 SAE for LISTS or Sample of any of above
W. H. Westlake, G8MWW, Clawton, Holsworthy, Devon

| G6KOC | $\begin{aligned} & \text { D.P. } \\ & \text { FDK } \end{aligned}$ |  |
| :---: | :---: | :---: |
| ICOMICEE 2 m Handheld <br> ICOM 490 70 cm Mandhald. <br> ICOM 400 E 70 cm Mobile multimode <br> TRIO R1000Gen. Coverage Rx TR1O R600 Gen. Coverage Rx <br> TRIO R600 Gen. Coverage Rx TRIO R2000 Gen Coverage Rx <br> YAESUFRG7/00Gen. Coverage Rx <br> YAESU FT 290 R 2 m Portable, multi. .. YAESU FT 490 R 70 cm Portable, multi. <br> FDK $700 E X 2 \mathrm{~m} 25 W$. mobile FDK $750 E 2 \mathrm{~m}$ Mobile multim <br> FDK $750 E 2 \mathrm{~m}$ Mobile multimode. RE37 Airband Rx. VFO +2 xtals. <br> AZDEN, PCS $3003 W 2 \mathrm{~m}$ Handheld. <br> 5\% Off all ICOM prices until 28th FEB. <br> ALL TELEPHONE AND MAIL ORDERS DESPATCHED BY RETURN ACCESS, BARCLAYCARD + CREDIT TERMS AVAILABLE 13 St. Benedict's St., Norwich. Tel. 615786 Ooen 9 a.m. $=5.30$ p.m. Mon. - Sat. Cosed all day Thursday, |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |



## RADIO AMATEUR PREFIX-COUNTRY-ZONE LIST

published by GEOFF WATTS
Editor of "DX News-Sheet" since 1962
The List you have always needed, the list that gives you everything, and all on one line! For each country: -
a. its DXCC "status"
e. the continent
b. the normal prefix
f. the "CQ" Zone No.
c. the special prefixes
g. the ITU Zone No.
d. the ITU callsign block allocation

Full information on Antarctic stations, USSR Klub-stations, obsolete prefixes used during the past 10 years, and much more.
The List can be kept always up-to-date because ample space has been provided for adding every new prefix, each new ITU allocation, etc.
Everything arranged alphabetically and numerically in order of prefix. Ideal for Contest operators and SWL's.
Tell vour Club-members about it. Order an extra copy for that overseas friend. 15 pages. Price 750 (UK), overseas (air mail) $\$ 2.00$ or 5 IRCs.

## GEOFF WATTS

62 BELMORE ROAD, NORWICH NR7 OPU, ENGLAND

## PORTABLE MAST GOVERNMENT SURPLUS

 32ft. Heavy Duty AluminiumComprising:-
Eight $-4 \mathrm{ft} . \times 2 \mathrm{in}$. Interlocking Tubular Sections.
Eight - Galvanised Ropes.
Four - 27 in . Steel Guy Securing Stakes.
Base Plate and Various Accessories.
All packed in strong marine ply in carrying storage container.
$£ 46$ including carriage and VAT.
'GRANVILLE MILL' Vulcan Street, Oldham OL1 4EU.
Telephone No. 0616521418 \& 0616330170.
R.A.E. ** TUITION * * R.A.E.

Obtain the highly coveted Amateur Radio Licence. Personal tuition, specifically paced to achieve this result, is available in Georgian Bath. This is a five day course leading from basic principles, through the City \& Guilds syllabus, to examination level. The classes, held on the outskirts of this beautiful City, are essentially small: so each student is able to receive the required amount of tuition. Instruction is given by G3UWJ specialist in personial tuition and co-author of 'Amateur Radio'. For more than a decade students of all ages and walks of life have benefited from these courses and are now licensed amateurs.
For further details please write, enclosing a S.A.E., to:
PETER BUBB - tuition
58 Greenacres, Bath, Avon, BA1 4NR. or telephone 022527467
Success is a journey. It begins with one small step. Take that step NOW.

J BIRKETT ${ }^{13 \text { TTHE STRAIT }}$

CRYSTALS HC25 4990, 51 10, 5226, 5263, 5300, 5770, 5867.5, 5893, 5975, 5978, 6020. | STALS HC25 |
| :--- |
| $6340,7805,7836 \mathrm{kHz}$. All 11 each. HC 61 |
| $2510,2704,2820,2940,3262,3755,3790$, | 6340, $7805,7836 \mathrm{kHz}$. Al £ 1 each. He $4155,4195,4205,4290,4360 \mathrm{kHz}$. At 1 each. $10 \times 4,500 \mathrm{kHz}$, $£ 1.50,600 \mathrm{kHz} @$

 VHF LOW MOISE FETS 400 MHz J304 similar to $2 \mathrm{~N} 3819 @ 6$ for E 1
50 OHM BNC PUSH ON PLUGS 3 for $£ 1.15$, 50 OHM BNC SOCKETS 3 for $£ 1.15$.
BS $\times 19$, BS $\times 20$, BS $\times 21$, BC 548 , BC 549, BC 558 , ZTX108, ZTX 213 , ZTX 342 , ZTX450, 2N706. All at 6 for 50 .
$X$ BAND GUNN DIODES with data @ $£ 1.65$, J BAND GUNNS @ $£ 1.65$.
LBAND DIODES @ 40p, S BAND DTODES @ 40p, X BAND DIODES 49p.
SUB-MIN. TUBULAR TRIMMERS 0.5 to 3 pt @ 15p. TETFER 10pf TRIMMERS @ 18p.
SUB-NAN. TUBULAR TRIMMERS 5.5 to 3 SI @
SOLOER IN FEED THRU'S 5, 27,300, 1000of. All at 20 p doz.
VHF AERIAL SWITCHING PN DIODES with circuits at $40 p$ each.
UHF RUBBER DUCK AEPIALS around 450 MHz at 60 o each.
CERAMIC PLATE CAPACTTORS $1.5,1.8,3.9,4.7,5.6,6.8,12,15,18,22.27,33,39,44$, $56,68,100,180,220,330,1000,1200,1800,2200,3300,4700 \mathrm{pf}, 0.01 \mathrm{f}$. All $63 \mathrm{v} . \mathrm{w}$. 250 doz .
MULLARD VHF POWER $570 B L Y, 40$ watt, 28 volt with data @ $£ 6.50$, BLW29, 175 MHz , 13 volt, 15 watt with data @ £4.50, BLY83 @ £4.95, BLY55, $175 \mathrm{MHz}, 4$ watt, 13 volt with data @ $£ 2.50$, BLY 90,50 watt, 12 volt with data @ $£ 7.50, \mathrm{BL} 997,4$ watt 24 volt with data @ £3
LEMCO TUBULAR CERANIC 1000pf 5 CO v.w. at 50 for 55p.
Please add 30 p for post and packing $L$ dess otherwise stated. Orders over $£ 3$ post free.

## Have you got all these ARRL titles on your shelf?

Solid State Design for the Radio Amateur.
Electronics Data Book ..... £3. 15
Antenna Book, new 14th edition. ..... £6.50
Understanding Amateur Radio. ..... £4.05
FM and Repeaters for the Radio Amateur. ..... £3.70
The Radio Amateur's Handbook 1983. soft cover ..... £11.40
The Radio Amateur's Handbook 1983 hard cover ..... £14.85
Antenna Anthology ..... £3. 15
Hints and Kinks temp. O/S
Learning to Work with Integrated Circuits. ..... £1.70
Radio Frequency Interference. ..... £2.40
Solid State Basics for the Radio Amateur ..... £4.05

# Available from SHORT WAVE MAGAZINE 

## Publications Dept.,

34 HIGH STREET, WELWYN, HERTS. AL6 9EQ. Telephone: Welwyn 5206/7.

## £5.60 <br> $-4$

## SIMPLE, LOW-COST

## WIRE ANTENNAS

## by William Orr, W6SA1

## Now with data on the new amateur bands!

This excellent and thoroughly recommended handbook is the publication on the practical approach to building aerials. After starting with aerial fundamentals there are discussions and descriptions of ground-plane, end-fed, DX dipole, vertical and wire beam antennas, plus coverage on a universal HF antenna system and working DX with an 'invisible aerial'"; the SWR meter and coaxial cable also have chapters to themselves.

The whole book is presented in an authoritative, immensely clear, readable and enjoyable manner with the emphasis on the practical throughout - to the extent that even the chap who can hardly strip a piece of co-ax need not feel at all left out! Just as practical for the SWL, too!

$$
\text { 192pages } \quad £ 4.45 \text { inc. post }
$$ Order from

> Publications Dept.

Short Wave Magazine Ltd. 34 High Street, Welwyn, Herts. AL6 9EO

# BETTER SHORT WAVE RECEPTION 

by William I. Orr W6SAI and Stuart D. Cowan W21X

## Latest 5th Edition

In the latest edition of this excellent work for all those who own.(or intend to own) a radio receiver, these two wellknown and respected writers have produced chapters covering: the radio spectrum and what you can actually hear world-wide; the tuning of a shortwave receiver; the business of buying a receiver, both new and secondhand; a description of the SW Rx in non-technical terms, together with receiver adjustment and alignment; DX-ing above 30 MHz ; a description of the VHF receiver; building and adjusting efficient aerials; reception techniques.

Thoroughly readable and "digestible", this book is without doubt a very valuable addition to the bookshelf of any SWL.

160pages
$£ 3.95$ inc. post.
Order from:
Publications Dept.
Short Wave Magazine Ltd. 34 High Street, Welwyn, Herts. AL6 9EQ


## Technical Books and Manuals

## (ENGLISH AND AMERICAN)

| N |  |
| :---: | :---: |
| Antenna Handbook (Orr and Cowan) | E4.55 |
| Practical Aerial Handbook, 2nd Edition (King) | ¢9.15 |
| Beam Antenna Handbook | ¢4.35 |
| Cubical Quad Antennae. 2nd Edition | E3.90 |
| Simple Low Cost Wire Antennas, by Orr | E4.45 |
| Aerial Projects (Penfold) | E230 |
| 73Dipole and Long-Wire Antennas (E. M. Noll) | ¢5.45 |
| Antenna Book (ARRL) new 14 th Edition | £6.50 |
| The (ARRL) Antenna Anthology | £3.15 |
| Two-metre Antenna Handbook, F. C. Judd G2BCX ..................................... | £5.35 |
| HF Antennas for All Locations (RSGB), new title | £6.10 |
| How to Build Hidden, Limited-Space Antennas That Work, by WB4KTC (Tab). | £7.65 |
| The Antenna Construction Handbook for Ham, CB and SWL (Tab) | £5.55 |
| BOOKS FOR THE BEGINNER |  |
| Amateur Radio (Lutterworth Press). | ¢9.60 |
| Questions and Answers on Amateur Radio, by F. C. Judd G28CX | £225 |
| Electronics O \& A (Newnes), 2nd Ed. | £235 |
| Elements of Electronics, Book 1 | ¢250 |
| Elements of Electronics, Book 2 | ¢250 |
| Elements of Electronics, Book 3 | ¢250 |
| Elements of Electronics, Book 4 | £3.35 |
| Elements of Electronics, Book 5 | E3.35 |
| Solid State Short Wave Receivers for Beginners (R. A. Penfold) | £1.50 |
| Beginners Guide to Radio (8th Edition) | E4.50 |
| Beginners Guide to Electronics, new 4th Edition | E4.50 |
| Beginner's Guide to Amateur Radio (Newnes), new title. | £4.40 |
| Guide to Amateur Radio, 18th Edition (RSGB) | O/S |
| Morse Code for the Radio Amateur (RSGB) | £1.20 |
| Understanding Amateur Radio (ARRL) | £4.05 |
| Radio Amateur's Examination Manual, Latest 1athedition (RSGB) . | £3.35 |
| General |  |
| Projects in Amateur Radio and Short Wave Listening (Newnes) . | £3.65 |
| How to Build your own Solid State Oscilloscope (Rayer). | £1.75 |
| How to Make Walkie Talkies ( | £1.75 |
| How to Build Advanced Short Wave Receivers (Penfold) | S |
| Better Short Wave Reception, (5thEd) | £3.95 |
| FM\& Repeaters for the Radio Amateur (AR | £3.70 |
| Easibinder (to hold 12 copies of "Short Wave |  |
| Magazine' 'together) | £4.65 |
| Oscar - Amateur Radio Satellit | E4.30 |
| World Radio \& TV Handbook 1983 Edition. | y |
| The World's Radio Broadcasting Stations and |  |
| European FM/TV (Newnes) | £6.60 |
| World DX Guide | £5.40 |
| Guide to Broadcasting Stations (18th Edition) | £4.30 |


| Radio Stations Guide |  |
| :---: | :---: |
| Long Distance Television Reception (TV-DX) for the Enthusiast (revised edition) |  |
| Solid State Basics for the Radio | E4.05 |
| Introduction to Radio DXing | ¢230 |
| Radio Amateurs DX Guide (14th Edition) | £235 |
| Electronic Test Equip | E20 |
|  |  |

## HANDBOOKS AND MANUALS

Radio Communication Handbook, Vols. 1 and 2
combined (paperback), RSGB ................ £11.05
Teleprinter Handbook. New 2nd Ed. (RSYB) ..... £ 13.70
TVIManual (2nd Edn.) (RSGB) . . . . . . . . . . . . . . . . . £ 1.85
Working with the Oscilloscope . .................. $£ 4.60$
The Radio Amateur's Handbook 1983 (ARRL), soft cover
£ 11.40
The Radio Amateur's Handbook 1983 (ARRL), hard cover.
£14.85
Learning to Work with Integrated Circuits (ARRL). £1.70
Weather Satellite Handbook ..................... $\quad \mathbf{5 5 . 4 0}$
Single Sideband for the Radio Amateur (ARRL)... O/S
Test Equipment for the Radio Amateur (RSGB) ... £5. 75
Amateur Radio OperatingManual (RSGB) 2ndEd ... $\mathbb{£ 4 . 9 5}$
Practical Electronics Handbook (Newnes) ....... $£ 4.40$
Oscilloscopes - How to Use Them, How They
Work (Newnes) ................................ $\mathbf{E 4 . 4 5}$
Work (Newnes)................................... (Newnes), new title . . . . . . . . . . . . . . . . . . . . . . .
The Complete Shortwave Listener's Handbook, 2nd Ed. (Tab).
£14.90

## USEFUL REFERENCE BOOKS

Solid State Design for the Radio Amateur (ARRL) . £5.60
Foundations of Wireless and Electronics, 9 th
Edition (Scroggie)............................. $£ 7.10$
Amateur Radio Techniques, 7th Edn. (RSGB) .... £6.00
U.K. Call Book 1983 (RSGB) ...................... . . . 5.25

Hints and Kinks (ARRL) . . . . . . . . . . . . . . . . . . . . . . 0/S
Radio Data Reference Book (RSGB) . . . . . . . . . . . . . 0/P
Electronics Data Book (ARRL) . . . . . . . . . . . . . . . . . . £3. 15
Radio Frequency Interference (ARRL). . . . . . . . . . . $£ 240$
Amateur Radio Awards, (RSGB) . . . . . . . . . . . . . . . $£ \mathbf{£ 3 . 4 0}$
Electronics Pocket Book, 4th Edition (Newnes) . . . £6.20

## VALVE AND TRANSISTOR MANUALS

Towers' International Transistor Selector, latest Edition (Up-Date No. 2)
£10.60
Semiconductor Data Book, 11th Edition (Newnes) E7.10
International Transistor Equivalents Guide . . . . . . . $\quad \mathbf{£ 3 . 3 5}$
International Diode Equivalents Guide ............ $£ 260$

## VHF PUBLICATIONS

VHF Handbook, Wm. I. Orr W6SAI. . . . . . . . . . . . . 0/s VHF/UHFManual (RSGB) 3rd Edition . . . . . . . . . . . $\quad \mathbf{£ 8 . 6 0}$

# Publications Dept. <br> 34 High Street, Welwyn, Herts. AL6 9EQ - Welwyn (043871) 52067 


[^0]:    Editor: PAUL ESSERY, G3KFE/G3SWM Advertising: Charles Forsyth

    Published at 34 High Street, Welwyn, Herts. AL6 9EQ, on the last Friday of the month, dated the month following.

    Telephone: 04-3871 5206 \& 5207
    Annual Subscription:
    Home: $£ 9.00,12$ issues, post paid
    Overseas: $£ 9.00$ ( $£ 17.00$ U.S.), post paid surface mail

    Editorial Address: Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ, England.

    Prices shown in advertising in this issue do not necessarily constitute a contract and may be subject to change.

    ## AUTHOR'S MSS

    Articles submitted for Editorial consideration must be typed double-spaced with wide margins on one side only of A4 sheets. Photographs should be lightly identified in pencil on the back with details on a separate sheet. All drawings and diagrams should also be shown separately, and tables of values prepared in accordance with our normal setting convention - see any issue. Payment is made for all material used, and it is a condition of acceptance that full copyright passes to the Short Wave Magazine, Ltd., on publication.

