

Jow from Trio, the R2000 general coverage receiver. By aking all the superb features of the R1000 and combining hem with the latest in micro-processor control Trio have, in ne step, completely revised the standard by which short dave receivers are judged. Among the many features rovided for the discerning listener are programmable scan, lemory scan, memory retention of the mode set for a articular frequency and last, but not least, Trio have included n FM mode - why FM after all this time and our repeated omment that for a shortwave broadcast receiver FM is not zally necessary. Take a look at the rear panel of the R2000: a ocket marked VHF converter. Wouldn't it be superb if Trio roduced a VHF converter covering from 118 to 174 MHz ten you would require FM, you would also require AM. tudy the features and I am sure you will agree the Trio 2000 is the receiver for you.
ontinuous Coverage from 150 KHz to 30 MHz .
se of an innovative up conversion digitally controlled PLL ircuit provides maximum ease of operation and superb iceiver performance. Front panel up/down band switches low easy selection within the full coverage of the receiver. he VFO is continually tunable throughout the full 150 KHz 30 MHz range.
11 modes SSB, CW, AM and FM.
o give full listening potential USB, LSB, CW, AM, and FM
switch allows two types of memory storage: when the "auto M " switch is off, data is memorized by pressing the " M in" switch; when the "auto M " switch is on the frequency being used at that time is automatically memorized.
Memory Scan.
Scans all memory channels or may be user programmed to scan specific channels. Frequency, band and mode are automatically selected in accordance with the memory channel being scanned.
Programmable Band Scan.
Scans automatically within the programmed bandwidth. Memory channels 9 and 0 establish the scan limit frequencies. The hold switch interrupts the scanning process. However, the frequency may be adjusted using the tuning knob whilst in the scan hold position.
Lithium Battery Memory Back Up.
Memory and VFO information is maintained by an internal lithium battery lestimated life, five years), a most important feature when moving the receiver from location to location. Clock Display with Integral Timer.
Two 24-hour quartz clocks are built in to allow for programming two different time zones. An integral timer is provided for on and off switching of the receiver.

프를
 NEW

RPDOD

> GENERAL
> COVERAGE
> RECEIVER

te provided for easy selection by push buttons having djacent led indicators.

, djustable Tuning Rate.

uning speed switches enable the tuning rate to be in either $0 \mathrm{~Hz}, 500 \mathrm{~Hz}$ or 5 KHz steps. A frequency lock switch is ucluded to guard against accidental shift.
en Memories Store Frequency, Band and Mode Data.
ach of the ten memories can be tuned by the VFO, thus perating as ten built in digital VFO's. The original memory equency can be recalled by simply pressing the appropriate lemory channel key. All information on frequency, band, nd mode is stored in the selected memory. The "auto M"

Three Builh in Filters with Narrow/Wide Selector. In the $A M$ mode 6 KHz wide or 2.7 KHz narrow may be selected. In the SSB mode 2.7 KHz is automatically selected. In the CW mode 2.7 KHz is again chosen and if the optional YG455C filter is installed then 500 Hz in the narrow position. In the FM mode 15 KHz bandwidth is automatically selected. Other important features are: squelch on all modes, noise blanker, a large 4 inch front mounted speaker, tone control, RF attenuator. AGC switch, high and low impedance antenna terminals, optional 13.8V DC operation, record jack and, of course, provision for a VHF converter.

All in all, a truly remarkable receiver.

FROM TRIO.

£ 370 inc.vat

LOWE ELECTRONICS

Chesterfield Road, Matlock, Derbyshire. DE4 5LE. Telephone 0629 2817, 2430, 4057, 4995. Telex 377482.

ok, it was always a good receiver, but now with FM the SRX 30D, todays rig, yesterdays price.

- Extended coverage $200 \mathrm{kHz}-30 \mathrm{MHz}$.
- Digital readout in large green display units which give true unambiguous frequency information - even when you switch sidebands or use the clarifier.
- All new frequency synthesis using Plessey SL 1600 ICs for a new high standard of performance.
- All new audio system which produces outstandingly good quality on the built in speaker, and is capable of driving external hi fi speaker units for ever better sound.
- All new IF filters with optimum bandwidth for mode in use. Automatic filter selection from mode switch.
We predict that the SRX 300 will be a landmark in low cost, high performance SWL receivers. Just consider how much you should pay for a receiver covering $200 \mathrm{kHz}-30 \mathrm{MHz}$ with accurate digital readout; high performance FM USB/LSB/AM with switched filters; drift cancelling frequency synthesis; built in mains supply and built in speaker; high quality construction and advanced design - and so much more.
SRX 30D NOW WITH FM STILL $£ 215.00$, carr. $£ 5.00$

From Daiwa yet another aid to operating. In addition to the notch, SSB and CW filters, the AF606K is equipped with a PLL tone decoder; when the tone frequency of the CW signal and the free running frequency of the PLL tone decoder are the same a locked signal is generated. This locked signal keys an audio oscillator which then reproduces the received CW signal. However, there is a tremendous difference between the produced signal and the received one no noise and, of course, no fading. ANOTHER PIECE OF EQUIPMENT TO ENHANCE YOUR LISTENING.

Now from Daiwa, a new 2 metre monitor receiver. Using PLL synthesized circuitry, the SR1000E covers the entire amateur band in 5 KHz steps. It provides for today's amateur a small convenient means of monitoring activity on the busy 2 metre band. Compact and supplied with earphone, mounting bracket, the SR1000 provides for you mobile or fixed your contact with the 2 metre band.

SR 1000E

$£ 72.50$ inc. VAT, carr. $£ 2.25$

There were shepherds abiding in the field, keeping watch over their flocks by night. And lo, the angel of the Lord came upon them, and the glory of the Lord shone about them, and they were sore afraid.
And the angel said unto them, 'fear not, for behold I bring you good tidings of great joy, which shall be to all people. For unto you is born this day, in the city of David, a Saviour which is Christ the Lord".
And suddenly there was with the angel a multitude of the heavenly host, praising God, and saying:
'Glory to God, glory to God in the highest, and peace on earth, goodwill towards men'.

A PEACEFUL CHRISTMAS TO OUR FRIENDS.

LOWE IN LONDON, Open monday to saturday, six days a week lower sales floor, Hepworths, Pentonville Rd, London. telephone 01.837.6702 LOWE IN GLASGOW,

Open tuesday to saturday 4,5 Queen Margarets Rd, Glasgow. telephone 041.945. 2626

TR3500
COMPACT SIZE AND LIGHT WEIGHT
Measures only $66 \mathrm{~W} \times 168 \mathrm{H} \times 40 \mathrm{Dmm}$ with a weight of 540 grams including NiCd battery pack.
LCD DIGITAL FREQUENCY READOUT
Easy to read in direct sunlight, or in the dark. Vitually no current drain (much less than LED's). Displays transmit and receive frequencies and memory channels. Display includes four "Arrow" indicators: "F. LOCK" (Frequency Lock), "REV" (Repeater Reverse), "PROG. S" (Programmed Scan), "MS"' (Memory Scan).
TEN CHANNEL MEMORY
Nine memories may be operated in simplex mode, or with transmit frequency offset permitring access to repeaters.
LITHUM BATTERY MEMORY BACK.UP
No loss of mernory in case of complete discharge for removal of the Ni-Cd batteries. Current (approximately 1 microampere) tomaintain memory supplied by buit-in separate lithium battery, with estimated life of more than 5 years. MEMORY SCAN
Scans only those channels (maximum 10 in which frequency data is stored. Stops on "Busy" channel, resumes scan automatically approximately 2 seconds after signal goes off, or when "MS" key is pressed. The "STOP" key or the PTT switch may be used to cancel the scan function. LCD displays memory channel number and "MS" arrow while memory scan in use.
PROGRAMMABLE BAND SCAN
Scan band width (lower and upper frequency limits) and scan steps of 5 kHz and larger ($5,10,15,20,25 \mathrm{kHz}$, etc.) may be programmed. Scan automatically locks up on busy channel and resumes approximately 2 seconds after signal goes off or when "PROG. S" key is pressed. "STOP" key or PTT switch UP/DOWN MANUAL S
UP/DOWN manual scan in 5 kHz steps.
FREQUENCY COVERAGE
Covers $430.00-439.995$
Covers $\mathbf{4 3 0 . 0}$ - 439.995 MHz in 5 kHz steps.
The TONE BURST SW
The TONE BURST switch activates the $9,750 \mathrm{~Hz}$ repeater access tone TX OFFSET SWITCH
Selects simplex or repeater operation loperator pre-programmes repeater OFFSET MAX +9.995 MHz).
HI/LOW POWER SELECTION
HI/LOW power output switch allows operation at 1.5 W or, for extended battery life, 300 mW .
REVERSE OPERATION
"REV" switch shifts the receiver to the transmit frequency, and the tranmitter to the receive frequency. Useful for checking signals on the input of a repeater, to determine if you are within simplex range.
AUTOMANUAL SQUELCH
Selector switch on threshold control allows selection of automatic or manual squelch operation.
BATTERY INDICATOR
LED battery condition indicator flashes when battery charge level approaches nominal discharged battery potential.
TWO "LOCK" SWITCHES
"F. LOCK" switch prevents accidental loss of chosen frequency when in "LOCK" position. "TX. STOP" switch prevents accidental transmission if PTT switch is accidentally pressed in handling.
BNC ANTENNA TERMINAL
Allows antenna changeover to be quick and easy.
ACCESSORIES INCLUDED

- Flexible rubberised antenna with BNC connector.
- 400 mAH Ni -Cd battery pack.
- AC charger
- Plug for external microphone and speaker
- Hand strap.

66 compatible"

the two metre ${ }^{\circ}$ seventy centimetre handhelds from Trio.

TR2500 £207.00 inc. VAT, carr. $£ 5.00$
TR3500 £220.00 inc. VAT, carr. £5.00

EAST LONDON HAM STORE H. LEXTON LIMITED
 191 FRANCIS ROAD LEYTON E. 10 TEL 01-558 0854 TELEX 8953609 LEXTON G

DRESSLER AMPLIFIERS

These are high power 240 V linears using $4 \mathrm{C} \times 150$ or $4 \mathrm{C} \times 250$ or $4 \mathrm{C} \times 350$ Eimac
Tubes NOT using the grounded Grid system.
Fully protected, no thermal damage to PA finals possible.

DRESSLER AMPLIFIERS
07070 cm 200 wfm 400 PEP 0200 c 2 mtr 125 wfm 200 w PEP 02002 mtr 300 wfm 600 w PEP
$£ 495.00$
£285.00
$£ 495.00$
$£ 6000$

GASFET DRESSLER.PRE-AMMS

VV2GAAS 150W	$£ 40.00$
VV200GAAS 750W	$£ 69.00$
VV2000GAAS 1KW	£79.00
VV2RPS SO259	Non switching $£ 22.00$
VV2RPS N TYpe	$£ 24.00$
VV7RPS SO259	$£ 22.00$

. $0.7-0.9 \mathrm{~dB}$ signal to noise
0.2 dB insertion loss

WE WOULD LIKE TO WISH A MERRY CHRISTMAS

 AND A PROSPEROUS NEW YEAR TO ALL OUR CUSTOMERS

Once again YAESU lead the field with the exciting new FT-102 HF transceiver-no other manufacturer offers so many innovative features.

Better Dynamic Range
The extra high-level receiver front end uses 24 VDC for both RF amplifier and mixer circuits, allowing an extremely wide dynamic range for solid copy of the weak signals even in the weekend crowds. For ultra clear quality on strong signals or noisy bands the high voltage JFET RF amplifier can be simply bypassed via a front panel switch. boosting dynamic range beyond 100 dB . A PLL system using six narrow band VCOs provides exceptionally clean local signals on all bands for both transmit and receive.

Total IF Flexibility

An extremely versatile IF Shift/Width system, using friction-linked concentric controls and a totally unique circuit design, gives the operator an infinite choice of bandwidths between 2.7 kHz and 500 Hz , which can then be tuned across the signal to the portion that provides the best copy sans QRM, even in a crowded band. A wide variety of crystal filters for fixed IF bandwidths are also available as options for both parallel and cascaded configurations. But that's not all; the 455 kHz third IF also allows an extremely effective IF notch tunable across the selected passband to remove interfering carriers, while an independent audio peak filter can also be activated for single-signal CW reception. New Noise Blanker
The new noise blanker design in the FT-102 enables front panel control of the blanking pulse
width, substantially increasing the number of types of noise interference that can be blanked, and vastly improving the utility of the noise blanker for all types of operation.
Commercial Quality Transmitter
The FT-102 represents significant strides in the advancement of amateur transmitter signal quality. introducing to amateur radio design concepts that have previously been restricted to top-of-the-line commercial transmitters; far above and beyond government standards in both freedom from distortion and purity of emissions.
Transmitter Audio Tailoring
The microphone amplifier circuit incorporates a tunable audio network which can be adjusted by the operator to tailor the transmitter response to his individual voice characteristics before the signal is applied to the superb internal RF speech processor.
IF Transmit Monitor
An extra product detector allows audio monitoring of the transmitter IF signal, which, along with the dual meters on the front panel, enables precise setting of the speech processor and transmit audio so that the operator knows exactly what signal is being put on the air in all modes. A new "peak hold" system is incorporated into the ALC metering circuit to further take the guesswork out of transmitter adjustment.

New Purity Standard
Three 6146 B final tubes in a specifically configured circuit provide a freedom from IMD products and an overall purity of emission unattainable in twotube and transistor designs, while a new DC fan motor gives whisper-quiet cooling as a standard feature. For the amateur who wants a truly professional quality signal, the answer is the Yaesu FT-102.
New VFO Design
Using a new IC module developed especially for Yaesu, the VFO in the FT-102 exhibits exceptional stability under all operating conditions.

ANCILLARY EQUIPMENT

SP-102 EXTERNAL SPEAKER/AUDIO FILTER
The SP-102 features a large high-fidelity speaker with selectable low- and high-cut audio filters allowing twelve possible response curves. Headphones may also be connected to the SP-102 to take advantage of the filtering feature, which allows audio tailoring for each bandwidth and mode of operation to obtain optimum readability under a variety of conditions.

FC-102 1.2 KW ANTENNA COUPLER
FV-102DM SYNTHESIZED, SCANNING EXTERNAL VFO

YAESU's FT-101ZD WITH FM is still rolling off the line as fast as YAESU can produce - thanks to its very comprehensive specification and competitive price. Incorporates notch filter, audio peak filter, variable IF bandwidth plus many other features.

FT-ONE SUPER HF TRANSCEIVER

HF transceivers - the superb FT-ONE provides continuous RX coverage of $150 \mathrm{KHz}-30 \mathrm{MHz}$ plus all nine amateur bands (160 thru 10 m). All-mode operation LSB, USB, CW, FSK, AM, *FM 10 VFO system • FULL break-in on CW audio peak filter . notch filter • variable bandwidth and IF shift keyboard scanning and entry • RX dynamic range over 95dB! and NO band switch!!!
*OPTIONAL

$\square \square \square$
 ANTENNA SYSTEMS

TET HF antennas are unique in that they employ dual driven elements with the following distinct advantages-

- Improved gain over conventional arrays.
- Broader bandwidth with lower SWR.
- Enhanced front to back ratio.
- Better matching into solid state transceivers without an A.T.U.
- High power handling capacity.
- All this plus superb mechanical construction.
See recent issues for full details of models and prices but more importantly listen on the bands for the ever-increasing numbers of delighted users of TET antennas.

an S.A.E. will do the trick

YOUR LOCAL TET STOCKISTS

Amateur Radio Exchange. 373 Uxbridge Road, Acton, London W3	Amcomm Services, 194A Northolt Road, South Harrow, Middlesex	Bredhurst Electronics, High Street, Handcross, Haywards Heath, West Sussex RH17 6BW	Stephens James Ltd., 47 Warrington Road, Leigh, Lancs. WN7 3EA	Uppington Tele Radio. 12-14 Pennywell Road, Bristol BS5 OJT

AGENTS

North West - Thanet Electronics Ltd. Gordon, G3LEQ, Knutsford (0565) 4040 Wales \& West-Ross Clare, GW3NWS, Gwent (0633) 880146
East Anglia-Amateur Electronics UK, East Anglia, Dr. T. Thirst (TIM) G4CTT, Norwich 0603667189
North East - North East Amateur Radio, Darlington 032555969
Shropshire-Syd Poole G3IMP, Newport, Salop 0952814275
Amateur Ilectronics UK
504-516 Alym Rock Road-Birmingham 8 Telephone:021-327 1497 or 021-327 6313 Telex:334312 PERLIC G
Opening hours: 9.30 to 5.30 Tues. to Sat. continuous- CLOSED all day Monday.

We wish our many customers and friends a most happy Xmas and an increasingly解 prosperous New Year.越

STEPHENS-JAMES LTD. 47 WARRINGTON ROAD, LEIGH, LANCS. WN7 3EA Telephone (0942) 676790
 Wishing you a Very Merry Christmas \& Peaceful New Year

THE ONLY APPROVED TRIODEALER FOR NORTH WEST ENGLAND

TR7730 the new compact 2m Transceiver £247.94

TR2300

TR2300 2m Synthesised Portable Transceiver. We have lost count of the number of this model we have sold over the last 12 months. Hikers, campers, climbers, you can hear them all over the country and reliability which is the es sence of TRIO equipment. $£ 1 \mathbf{3 5 . 0 0}$

JAYBEAM

5Y/2M 5 element yagi
10Y/2M 10 element.
PBM/14/2m. 14 elementParabeam
$5 X Y / 2 \mathrm{~m}$. 5element crossed yagi. $8 X Y / 2 \mathrm{~m}$. Belement crossed yagi $10 X Y / 2 \mathrm{~m}$. 10 element crossed yagi. $04 / 2 \mathrm{~m} .4$ element Quad
$06 / 2 \mathrm{~m} .4$ element Quad
D5/2m. 5 over 5 slot fed yag
08/2m. 8 over 8 slot fed yagi.
UGP/2m. ground plane
MBM48/70cms. Multibeam.
MBM88/70cms. Multibeam.
TAS \%" $\% \mathrm{~m}$. Whip mobile.
C $5 / \mathrm{m}$. Colinear.
$C 8 / 70 \mathrm{~cm}$. Colinear
解解. Antenna.

J.R.C. NRD515D

General coverage receiver 100 KHz to 30 MHz fully synthesised. Digital readout PLL synthesiser with rotary type encoder pass band tuning - modular construction.
f985.00

NEW 24 CHANNEL MEMORY UNIT

From J.R.C. the new JST 100 digitally-synthesised HF transceiver. 11 channel memorv - two VFO's microcomputer based control - 100 watts

NSD515 TRANSMITTER

+ NBD515 power supply
100 Watts output. USB/LSB-CW-RTTY. Mic impedence 600 ohm - Antenna impedence 50 ohm.
From the same Company, Japan Radio Company comes the new JST-100 Digitally-synthesised HF Transceiver. All amateur Bands 160 through to 10 M 100 watts output AM-USB/LSB-CW-RTTY. Three phase locked loop circuits including BFO circuit are phase locked with stable 10 MHz standard crystal oscillator, ensuring superior frequency stability and accuracy.

The TS930S latest transceiver from Trio Price: $£ 1078.00$ inc. VAT.

TRIO

TS8306 HF Transceiver. SP230 Speaker
DFC230 Digital remote control.
TS 1305 Solid State HF Transceiver, TS 130 V Solid State HF Transceiver.
PS20 Power supply.
PS30 Power supply. AT130 Antenna Tuner. TL922 2 KW Linear Amplifier. TR2300 Portable $2 m$ Transceiver TR2500 Hand Held 2 m Transceiver. TR7730ne compact 2 m Transceiver. TR9500 70 cm Multimode Transceiver. TS930S HF Transceiver... R600 Solid State Receiver R2000 Solid State Receive
TR3500 70cm Handheld Transceiver

Full range of TRIO Accessories stocked.

DATONG PRODUCTS
PCI General Coverage Converter
f137.42 Low Frequency Converter.
£29.90 FL1 Frequency Audio Filter. FL2 Multi-Mode Audio Fiffer. Automatic RF Speech Clipper.
RF Speech Clipper
D70 Morse Tutor.
E 79.35

AD370 Active Antenna (outdoor). AD270 Active Antenna (indoor). 2M Converter
Keyboard Morse Sender.
.

HYGAIN
12AVO Vertical
14AVT Vertical
18AVT Vertical
TH3UNR Tribander Beam
TH2MKS 2 element Tribander.
TH3MK3 3 element Tribander
TH6OXX Tribander.
TET
HB33SP 3 element Tribander
$£ 189.23$
HB34D 4 element Tribander.
MV38H Vertical
ANTENNAS

MV4BH Vertical
180269
$f 40.25$
MV5BH Vertical.
$\ddagger 40.25$
SQ222 element Quad 2M
$£ 71.25$
$£ 55.67$
TE214 14 element Yagi 2M $£ 67.00$
MINIPRODUCTS
HO1 Minibeam.
$£ 119.00$
G9MH Minibeam.
$£ 56.00$
$£ 82.50$
ACCESS \& BARCLAYCARD facilities. Instant HiP service. Licensed Credit Broker - quotations upon request.
Try our new "Overnite" service for $£ 6.00$. Guaranteed 24 hour service if order placed before 11 a.m. (except 24 hour ser
North GMI.
Part exchange always welcome. Spot cash paid for good clean equipment. If you have equipment surplus to your requirement we would be pleased to sell this on commission for you

Shop Hours: 9.30 to 5.30 Monday to Friday
4.30p.m. Saturday

No parking problems. Turn at the Greyhound Motel on the A580 (East Lancs.) Road. S.A.E. with all enquiries. $25 p$ will bring you latest information and prices. Postage carriage extra.

ALL OUR PRICES INCLUDE VAT
SEND S.A.E. FOR OUR UP-TO-DATE SECONDHAND LIST.

FULL RANGE OF DIAWA ANTENNA ROTATORS, SWR METERS, AUTOMATIC ANTENNA TUNERS, WELLZ SWR METERS AND ATU'S IN STDCK.

DRAKE
MN7ATU/RF Meter 250Watts $£ 124.20$
MN2700 ATU 2 KW .
DL 300 Dummy Load 300 Watts
DL 1000 Dummy Load 1 KW
TV 3300 Low Pass Filter.

470 ohm Feeder
470 ohm Feeder.
$\mathbf{E} 18.90$
+18.90

TS830S
HF SSB TRANSCEIVER

£632.00

The new TS830S, the latest from TRIO. A high performance, very affordable HF SSB/CW transceiver with every conceivable operating feature built in for 160 through 10 metres (including the new three bands). The TS830S combines a high dynamic range with variable bandwidth tuning (VBT). IF shift and an IF notch filter, as well as very sharp filters in the 455 KHz second IF. Together with the optional VFO230 (remote digital display VFO) which provides split frequency operation and 5 memories for frequency hold, the amateur has vailable today's advanced technology linked to the

* VBT veriable bandwidth tuning
* IF notch fitter
- IF Shift
- Various mer options
- Buit in digital display
-
- Optional Digital VFO for increased flaxibility
- RF
- RF speech processor
- Adjustabie noise blanker level
- Adjustable audio tone.
- RITIXIT
- RIT/XIT
- SS8 monitor circuit
- Expanded frequency coverage

MODELPTS-1

TONE SQUELCH UNIT MODELPTS-1

Designed to wire-in to the microphone and loudspeaker lines of existing FM or AM transceivers, Model PTS-1 provides a second independent squelch system.
The squelch operates only when the incoming signal carries a prearranged tone of precisely the correct frequency. Thus two transceivers, each fitted with Model PTS-1, will respond only to each others transmission protecting the user from undesired interruptions.
The system is ideal for Raynet groups, club nets, or groups of friends who wish to monitor for each others signals over long periods.
Sixty-four tones in the range from 1747 to 2330 Hz are selectable by a DIL switch and a built-in notch filter removes the tone from received signals.
Model PTS-1 is built to high standards using 9 ICs on a glass fibre PCB. A full data sheet is now available.
Unit price: $£ \mathbf{£ 9 . 9 9}+$ VAT ($£ 45.99$ inclusive) (Note - a unit is required for each radio in the group).

MODEL AD270/370

COMPACT RECEIVING ANTENNAS MODELS AD270/370 Datong Active Antennas solve the age-old problem of finding space for a good receiving aerial. Model AD370 mounted on a roof top or Model larger conventional aerials yet are only 2% and 3 metres long respectively
Moreover they do not suffer from interference picked up by the feeder cable; such pick-up can be a problem with conventional dipoles because it is hard to maintain good balance over a band of frequencies.
Although act Although active antennas were introduced to the amateur market by Datong only a few year commercial receiving stations. The performance specifications achieved by the Datong AD270/370 are very close to those of "professional" active antennas selling for ten times the price - a point which is not lost on our many professional customers.
The advanced design ensures two things: that you don't miss signals through inadequate sensitivity and that the antenna does not invent signals which are not there. Datong Active Antennas represent an advanced solution to a common problem and so far as we know have no serious competition in terms of performance at the price. (Reviewed in Rad. Com., June 1982)

GENERAL COVERAGE RECEIVER CONVERTER MODEL PC 1

Once upon a time it was the norm ouse a ten metre receiver to receive the two metre band. Now, large numbers of special purpose wo metre SSB rigs are in use and conversion the othe attractive possibility With the addition of Model
 SSB each of these two metre SSB rigs becomes a really good general coverage receiver (from 50 kHz to 30 MHz !) Two metre SSB rigs are not cheap and it makes good sense to get the most out of them. The also tend to have very good performance in terms of sensitivity, selectivity, and big signal handling. Each of these features is just as vital for short wave reception and Model PC1 is designed not to degrade them at an. The resul, MHz as well as it receives on wom
coverage sets, that is saying a lot!
Try this test. Listen on twenty metres after the band goes dead in the evening. With many general coverage receivers the band never dies. It remains populated with phantoms generated by the receiver from the many very strong signals on forty metres. This is the kind of effect that the higher quality receivers minimise, and that goes for PC1 plus a good two metre rig. Reviews: Rad. Com., April 1982.

BROADBAND PREAMPLIFIER

 MODEL RFA Model RFA is designed to improve slightly'deaf' receivers within the range 5 to 200 MHz. Hincludes r.f. activated in/out switching so that it can be used to improve the sensitivity of low power transceivers (less than 20 watts PEP) simply by connecting it in series with the aerial Most receivers have nearly adequate sensitivity. Adding Model RFA will give a ratios without causing too easy overioad on
 this reason.
Conventionally most preamplifiers have been designed for single narrow frequency bands. By using modern broadband techniques wide coverage is achieved without compromising
the noise performance.
Model RFA is ideal for improving VHF scanners, HF receivers, mobile radio systems as well as for use on fixed amateur bands such as the 14, 21, 28,56, 70 and 144 MHz bands
 a spurious-free dynamic range of 90 dbs
As the Rad. Com. reviewer wrote "With a 3 db noise figure and 90 db dynamic range the Datong DC144/28 is one of the best 144 MHz converters currently available", Rad. Com. April 1982.
ilable either as a tested PCB modute as illustrated or fully cased in a diecast aluminium box

ALL DATONG PRODUCTS ARE
DESIGNED AND BUILT IN THE U.K.

PR1CES All prices include delivery in U.K. basic prices in E are shown with VAT inclusive prices in brackets.								
FL3	112.50	(129.37)	AD370	56.00	(64.40)	Codecall		
FL2/A	34.00	(39.67)	AD270+MPU	45.00	(51.75)	(Linked)	28.00	(32.20)
FL1	69.00	(79.35)	AD370+MPU	60.00	(69.00)	Codecall		
FL2	78.00	(89.70)	MPU	6.00	(6.90)	(Switched)	29.50	(33.92)
PC1	119.50	(137.42)	DC 144/28	34.50	(39.67)	Basic DF System	149.00	(171.35)
ASP	72.00	(82.80)	DC144/28			Basic Mobile		
VLF	26.00	(29.90)	Module	28.00	(32.20)	DF System	159.00	(182.85)
D70	49.00	(56.35)	Keyboard Morie			Complete Mobile DF		
D75	49.00	(56.35)	Sender	119.50	(137.42)	System	214.00	(246.10)
RFC/M	26.00	(29.90)	RFA	29.50	(33.92)	PTS 1	39.99	(45.99)
AD270	41.00	(47.15)	Seeprevious adv	risement	or price lis	or further details.		

Data sheets on any products available free on request - write to Dept S.W. DATONG ELECTRONICS LIMITED

Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE, England. Tel: (0532) 552461

WELZ SP15M

SP15M	SWR-PWR Me
SP45M	SWR-PWR Meter $2 \mathrm{M} / 70 \mathrm{~cm} 100 \mathrm{~W}$
SP200	SWR-PWR Meter H.F. $/ 2 \mathrm{M} 9 \mathrm{~kW}$
SP300	SWR-PWR Meter H.F. $/ 2 \mathrm{M}$
SP400	SWR-PWR Meter 2M/70cm 150W
SP10X	SWR-PWR Meter H.F. $/ 70 \mathrm{~cm}$ compact
SP380	SWR-PWR Meter H.F / $2 \mathrm{M} / 70 \mathrm{~cm}$
AC38	A. T. U. 3.5 to 30 MHz 400 W
CT15A	5/50w Dummy Load (PL 259)
CTI5N	15/50W Dummy Load IN type
Ст 300	3001 kW Dummy Load 250 MHz (SO239)

$\underset{\text { Model } 110}{\text { SWR - POWER METERS }}$ H. F. 2 CM Calibrated Power $\begin{array}{ll} & \text { Reading } \\ \text { YW-3 } & \text { H.F./2M Twin Meter } \\ \text { UH74 } & \text { 2M/7O } \\ \text { T435N } & \text { 2M/70CM Twin Meter 120W } \\ \text { DAIWA CN620A } & \text { H.F./2M Cross Pointers }\end{array}$ daIWA CN630 2M/70 Cross Pointers DL30 PL259 30 W MAX WELZ CT15A 50W MAX PL259
WELZ CT15N 50 W MAX N type $\begin{array}{ll}\text { T100 } & 100 \mathrm{NMAX} \\ \mathrm{T} 200 & 250 \mathrm{NHH} \mathrm{MAAX}\end{array}$

YAESU	
FT1	Superb H.F. Transceiver
FT9020M	160 10M Band Transceiver
FC902	All Band A.T.U.
SP901	External Speaker
FT102	160.10M 9 Band Transceiver
FT707	8Band Transceiver 200W Pep
FF707S	8Band Transceiver 20w Pep
FP707	Matching Power Supply
FC707	Matching A.T.U./Power Meter
MMB2	Mabile Mounting Bracket for
	FT707

$\begin{array}{ll}\text { FRG7 } 70 & \text { General Coverage Receiver } \\ \text { FRG } 7700 & 200 \mathrm{KHz}-30 \mathrm{MHz} \text { Gen. Coverage }\end{array}$ Receiver
fRG 7700 MAs above but with Memories FRT 7700 Antenna Tuning Unit

FT200R ZM F.M. Synthesised Handheld FT 708 R 70 cm F.M. Synthesised Handheld
$\begin{array}{ll}\text { NC7 } & \text { Base Trickle Charger } \\ \text { NC8 } & \text { Base Fast/Trickle Charger }\end{array}$
NC9C Compact Trickle Charger
FBA2 Batt. Sleeve for use with NC7/8
FNB2 Spare Battery Pack
FT480R 2M Synthesised Multimode
FT $780 \mathrm{R} \quad 70 \mathrm{~cm}$ Synthesised Multimode
FP80 Matching 230 N AC Power Supply
FT290R 2 m Portable Multimode
MMB11 Motite Mounting Bracke
$\begin{array}{ll}\text { NC11C } & \text { Soft Carrying Case } \\ 240 v ~ A C ~ T r i c k l e ~ C h a r g e ~\end{array}$
FL2010 Matching 1OW Linear
Nicads 2.2 AMP HA Nicads
FF501DX H.F. Low Pass fitter IKW Each
FSP1 Mobile. External Speaker 8 ohm
YH55 Headphones 8 ohm
YH77 Lightweight Headphones 8 ohm
$\begin{array}{ll}\text { QTR240 } & \text { Wond Clock (Quartz) } \\ \text { YM24A } & \text { Speaker/Mic 207/20870 }\end{array}$
$\begin{array}{ll}\text { YM24A } & \text { Speaker/Mic 207/208708 } \\ \text { YD148 } & \text { Stand Mic. Dual IMP } 4 \text { Pin Plug }\end{array}$
YM38 As 34 but up/down Scan Butions
FDK VHF/UHF EQUIPMENT-
Multi 7OOEX 2MF.M. Synthesised 25 W
Multi TOOEX
$\begin{array}{lll}\text { 2M M.M. Synthesised 25N } & & \\ \text { Mobile } & 169.00 & - \\ \text { 2M Muttimode Mobile } & 289.00 & - \\ \text { 70cm Transverter for M750E } & 199.00 & \end{array}$
Expander
Power Supplies
4 AMP
6 AMP
12 AMP
24 AMP
VHF Wavemeter 130.450 MHz
$\begin{array}{ll}27.95 & 11.50 \\ 44.95 & 12.00\end{array}$
£ CEP
29.00 $29.00 \quad 11.00$
45.00 45.0011 .00
59.00

11.50 $59.00 \quad 1.50$ | 79.00 |
| :--- |
| 59.00 |
| 1.50 | $19.95 \quad 10.75)$ $49.00 \quad 11.00$ $\begin{array}{cc}59.00 & 11.00 \\ 6.95 & 10.75\end{array}$ $11.95 \quad 10.75)$ $44.00 \quad 12.00$

$11.50 \quad 10.50$
$\begin{array}{ll}11.50 & 10.50 \\ 10.50\end{array}$
$\begin{array}{ll}11.50 & 10.50 \\ 14.30 & 10.50 \\ 34.00 & 10.75\end{array}$
$34.00 \quad(0.75)$ 5280
71.00
$\begin{array}{ll}5.00 & 10.501 \\ 6.95 & 0.751\end{array}$

6.95	10.75
11.95	10.75

$\begin{array}{ll}2295 & 10.75 \\ 34.00 & 10.75\end{array}$ 429511.00

1295.00 895.00

$\begin{aligned} & 855.00 \\ & 135.00\end{aligned} 1-$
$\begin{array}{r}135.00 \quad 11.50 \\ 31.00 \\ \hline 1.50\end{array}$
31.00
725.00
725.00
569.00
486.00
$\begin{array}{ll}485.00 & 1-1 \\ 125.00 & 15.00\end{array}$
$85.00 \quad 11.00$
$16.10 \quad 11.00$ 199.00 |-1
329.00
409.00
$409.0011-1$
37.00
36.40
11.00
209.00

219.00
26.88
1.30

26.88
44.10
1.30

$\begin{array}{ll}8.00 & 10.75) \\ 3.05 & 10.50\end{array}$
17.25 (0.75)
$13.40(0.75)$
$\begin{array}{rr}459.00 & (-1 \\ 63.00 & (1.50)\end{array}$
$249.00 \quad(-1)$
2225
$\begin{array}{ll}3.45 & (0.75) \\ 3\end{array}$
$\begin{array}{r}8.00 \\ \hline\end{array}$
$64.40 \quad 1.20$
2501030 23.0011 .00
$\begin{array}{ll}9.96 & 10.751\end{array}$ $\begin{array}{ll}9.90 & 1.75) \\ 9.90 & (0.75)\end{array}$ 9.90
28.00
(10.75) $\begin{array}{ll}28.00 & (1.00 \\ 16.85 & (0.75)\end{array}$ $21.10 \quad(1.50)$ $4.90 \quad(1.50)$
69.0012 .00 99.00
24.95
13.00

Amataur band transceiver

TRIO-
TS930S New Transceiver

TRIO-	
TS930S	New Transceiver
TS830S	$160110 M$ Transceiver 9 Bands
VFO230	Digital V. F.O. With Memories
AT230	All Band ATU/Power Meter

1078.00 \{ Digital V.F.O. With Memories
All Band ATU/Power Meter SP230 External Speaker Unit

Dig. Frequency Remote Controller
160-10M Transceiver
8 Band 200 W Pep Transceive
External V.F.O.
zoOW Pep Linear for TS 120 N Mobile Mount for TS 130:120
Base Station External Speaker
100W Antenna Tuner
AC Power Supply - TS 130 N
MC50 Dual Impedance Desk
MC35S Fist Microphone 50K ohm IMP
$\begin{array}{ll}\text { MC30S } & \text { Fist Microphone } 500 \text { ohm } \mid \text { MP } \\ \text { LF30A } & \text { H.F. Low Pass Filter } 9 \mathrm{~kW}\end{array}$
TR9130 2M Synthesised Multimod
BO9/9A Base Plinth for TR9000/9130
$\begin{array}{ll}\text { TR7800 } & \text { 2M Synthesised F.M. Mobitg 25W } \\ \text { TR7730 } & \text { 2M Synthesised F.M Compl }\end{array}$
TR2300 M M Syile. 25W
$\begin{array}{ll}\text { VB2300 } & \text { 10W Amplifier for TR } 2300 \\ \text { M82 } & \text { Mobile Mount for TR } 2300\end{array}$
TR2500 2M F.M. Synthesised Handheld ZMF.M. Sy
$\begin{array}{ll}\text { SC4 } & \text { Sott Case } \\ \text { MS1 } & \text { Mobile Stand } \\ \text { SMC25 } & \text { Speaker Mike }\end{array}$
PB25 Spare Battery Pack
TR8400 70cm F.M. Synthesised Mobile
Base Station Power Supp. for 800
$\begin{array}{ll}\text { PS } 10 & \text { Base Station Power Supp. } \\ \text { TR9500 } & 70 \mathrm{~cm} \text { Synthesised Multimode }\end{array}$
R $10000200 \mathrm{KHz}-30 \mathrm{MHz}$ Receiver
R1000 Gen. Cov. Receiver
$\begin{array}{ll}\text { SP100 } & \text { External Speaker Unit } \\ \text { HC10 } & \text { Digital Station World Time Clock } \\ \text { HS5 } & \text { Deluxe Headphones }\end{array}$
HS4 Economy Headphories
MORSE EQUIPMENT
HK707 Up/Down Key
EK 129 Ellase Oscillator
EK121 Elbug
EK150 Electronic Keye $\stackrel{\text { CEP }}{1-1}$ $\begin{array}{ll}883.00 & 1-1 \\ 99.00 & (3.00\end{array}$ $499.00 \quad 1-1$

TELEREADERS
TONO 550
TONO 9000 E
¢ CEP
189.00
$1-1$ RDTATORS Hirschman RO250 VHF Rotor $\begin{array}{llll} & 39.95 & 12.00 \\ \text { Hirschman RO250 VHF Rotor } & & 3.90 \\ 95028 & \text { Colorotor (Med. VHF) } & 55.00 & 12.00 \\ \text { KR400RC Kenpro - inc. lower clamps } & 99.95 & (2.50\end{array}$ KR4000RC Kenpro - inc. lower clamps $99.95 \quad 12.50$
$139.95 \quad 13.00$

DESK MICROPHONES
ES
SHURE 4440 Dual Impedance
SHURE $526 T$ MK II Power Microphone SHURE 5267 MK 11 Power Microphone
ADONIS AM 303 Preamp Mic. Wide Imp. ADONIS AM 303 Preamp Mic. Wide 1
ADONIS AM 503 Compressor Mic 1 ADONIS AM 802 Compression Mic + Meter 30/P
$39.00(1.50$

MOBILE SAFETY MICROPHONES
ADONIS AM 2025 Clip-on
ADONIS AM 202F Swan Kneck + Up/Down Buttons $202 H$ Head Band + Up/Down
ADONIS AM 202 Buttons
\qquad Crae VHF Wavemeter $130-450 \mathrm{MHz}$ DMB1 Trio Dip Meter MMD $50(500$
$(500 \mathrm{MHz})$
$\begin{array}{lll}\text { Co-AXIAL SWITCH } \\ \text { 2Way Diecast (V.H.F.) SA450 } & 10.00 \quad 10.75\end{array}$

2 Way Diecast with N sockets	1295	$10.75)$
2 Way Toggle IV.H.F.	6.50	10.50

16.9511 .00

MELICAL ANTENNAS
2M BNC or PL 259 (state which required) 2M BNC or PL 259 (state which required)
2M Thread for TR2300 or FT 290 (start which)
70 cm BNC $\begin{array}{ll}4.50 & 10.50 \\ 4.50 & 10.50\end{array}$
4.5010 .50

MICROWAVE MODULES $\begin{array}{ll}\text { MMT 1442 } 28 & 2 \mathrm{M} \mathrm{Transverter} \mathrm{for} \mathrm{HF} \mathrm{Rig} \\ \text { MMT43228S } & 70 \mathrm{~cm} \text { Transverter for HF Rig } \\ \text { MMT 432 } 144 \mathrm{R} \\ \text { MOcm Transverter for } 2 \mathrm{M} \text { Rig }\end{array}$ $\begin{array}{ll}\text { MMT } 7028 & 4 \mathrm{M} \text { Transverter for HF Rig } \\ \text { MMT } 70144 & 4 \mathrm{M} \text { Transverter for } 2 \mathrm{M} \text { Rig }\end{array}$ $\begin{array}{ll}\text { MMT70144 } & 4 \mathrm{M} \text { Transverter for 2M Rig } \\ \text { MMT1296.144 } & 23 \mathrm{~cm} \text { Transverter for } 2 \mathrm{M} \text { Rig }\end{array}$ MML 14430 2M 30W Linear Amp MML $144 / 10062 \mathrm{M}$ 100W Linear Amp flow MML 144/100LS 2M 100W Linear Amp 13W MML 43220 70m 20 W Lin. Amp (3W I/P) $\begin{array}{ll}\text { MML } 432 / 50 & 70 \mathrm{~cm} 50 \mathrm{~W} \text { Linear Amp } \\ \text { MML432/100 } & 70 \mathrm{~cm} 10100 \mathrm{~W} \text { Linear Am }\end{array}$
MMZ001 RTTY to TV Converter $\begin{array}{ll}\text { MM44000 } & \text { RTTY Transceiver } \\ \text { MMC5028 } & \text { GM Converter to MF Rig }\end{array}$ $\begin{array}{ll}\mathrm{MMC} 5028 & 6 \mathrm{M} \text { Converter to MF Rig } \\ \mathrm{MMC} 7028 & 4 \mathrm{M} \text { Converter to HF Rig }\end{array}$ MMC144;28 2M Converter to MF Rig MMC432/28S 70 cm Converter to HF Rig
MMC432/144S 70 cm Converter to 2 M Rig MMC432/144S 70 cm Converter to 2M Rig
MMC $435 / 600 \quad 70 \mathrm{~cm}$ ATV Converter MMK 1296/144 23cm Converter to 2 M Rig MMDO50500 500 MHz Dig. Frequency MMD6008 600HMzPrescale MMDP1 Frequency Counter Probe MMA28 10M Preamp MMA 144V 2 M RF Switched Preamp MMF $144 \quad$ 2M Band Pass Filter MMF432 70 cm Band Pass Fitter 109.95
159.95 159.95 119.95
184.00

DATONG PRODUCTS

AT	RODUCTS		
PC1	Gen. Cov. Convtr. HF on 2M Rig	137.42	$1-1$
VLF	Very Low Frequency Converter	29.90	$1-1$
FL1	Frequency Agile Audio Filter	79.35	(-1)
FL2	Multi-mode Audio Fitter	89.70	1-1
ASP/B	Auto RF Speech Clip. (Trio Plug)	8280	(-)
ASP/A	Auto RF Speech Clippers (Yaesu Plug)	8280	(-)
D75	Manually controlled RF Speech Clipper	56.35	(-)
RFC/M	RF Speech Clipper Module	29.90	(-)
	Marse Tutor	56.35	-)
AD270	Indoor Active Dipole Antenna	47.15	(-)
AD370	Outdoor Active Dipole Antenna	64.40	(-1
MPU1	Mains Power Unit	6.90	(-)
MK	Kayboard Morse Sender	137.42	(-)
RFA	Broadband Preamplifier	33.92	1-1
Codecall	Selective Calling Device (link prog)	3220	1-1

D70 MORSE TUTȮR $£ 56.35$

Amcomm Services,
194, Northolt Road, South Harrow. Middlesex HAO 2EN.
Telephone: 01-864 1166,
Telex: 24263.

SMC SERVICE

Free Finance on most substantial items. Importer guarantee on all Yaesu Musen. Free Securicor on major Yaesu items. Access and Barclaycard over the 'phone. Biggest branch/agent/dealer network. Ably staffed and equipped service dept. Securicor 'B Service' contract at $£ 4.49$. Biggest stockist of amateur equipment. 24 years of communications experience.

FREE FINANCE

On regular priced items from: Yaesu, Ascot SMCHS, CDE, HyGain, Channel Master, Hansen, SMC, MFJ, KLM, Mirage and HiMound, on invoices over $£ 100$ SMC offers Free Finance! How is it done? Simple, pay 20%, split the balance equally over 6 months or pay 50% down and split the balance over a year.

You pay no more than the cash price!!

GUARANTEE

Yaesu's own warranty does not extend outside Japan. Repairs are the responsibility of the UK retailer. SMC's guarantee is backed, as UK distributors, by daily contact with the factory and many tens of thousands of pounds of spares and test equipment. Avoid hawkers offering sets without serial numbers, spares, service or advice back-up.

FT980 ALL MODE HF TRANCEIVER

\star Rx $150 \mathrm{kHz}-30 \mathrm{MHz}$.

* Tx $160-10$ met 9 bands $+3 \times 500 \mathrm{kHz}$ Aux bands * All modes AM, CW, FM, LSB, USB, AFSK. * IF shift + variable bandwidth $2.6 \mathrm{kHz}-300 \mathrm{~Hz}$. \star Inbuilt keyboard operation + Scanning. \star Switchable attenuator $10,20,30 \mathrm{~dB}$. \star Audio peak + notch filter -40 dB .
* RF processor and Auto mic gain control. * 3rd order IMD - 40dB at 100 W PEP. \star AFSK shift $170,425,850 \mathrm{~Hz}$ selectable. * Multi channel memory + programmable scan limits. \star Optional computer interface available.
* 30 MHz down to 150 kHz (and below).
* 12 Channel memory option with fine tune
* SSB (LSBB/USB), CW, AM, FM.
* $2.7 \mathrm{kHz}, 6 \mathrm{kHz}, 12 \mathrm{kHz}, 15 \mathrm{kHz}, @-6 \mathrm{~dB}$.
* 3 Selectivities on $A M$, squelch on $F M$.
* Up conversion, 48 MHz first IF
* 1kHz digital, plus analogue, display
* Inbuilt quartz clock/timer
* No preselector, auto selected LPF's.
* Advanced noise blanker fitted.
- Antenna 5008 to $1.5 \mathrm{MHz}, 50 \Omega$ to 30 MHz
- 20 dB pad plus continuous attenuator.
* Switchable A.G.C. Variable tone

'7700 THE ONE WITH FM!
* 110 and 240 V ac, 12 Vdc option.
* Signal meter calibrated in "S" and SIMPO * Acc; Tuners, Converters, LPF, Memory. * FRT7700; $150 \mathrm{kHz}-30 \mathrm{MHz}$, Switch, etc
* FRV77004; 118-130, 130-140, $140-150 \mathrm{MHz}$.
* FRV77008; $118-130,140-150,50-59 \mathrm{MHz}$.
* FRV7700C; $140-150,150-160,160-170 \mathrm{MHz}$
- FRV77000; $118-130,140-150,70-80 \mathrm{MHz}$.
* FRV7700E $118-130,140-150,150-160 \mathrm{MHz}$
* FRVTIOOF $118-130,150-160,170.180 \mathrm{MHz}$
* FF5: 500 kHz (for improved VLF reception).
- MEMGRT700; 12 Channels (internal fitting).
* FRA7700; Active Antenna.

$\star 144-146 \mathrm{MHz}$ (144-148 possible).

* 25 watts RF output (Low 2.5W).
$\star 150(\mathrm{~W}) \times 50(\mathrm{H}) \times 176$ (D) mm .1 .3 Kg .
* Selectable $12 \frac{1}{2}$ or 25 kHz steps.
* Up/down, memory/band scanning.
* Ten Memories with priority function.
* Easy "write-in" memory channels
* Large illuminated "any angle" LCD display.
\star Display to 100 s of $\mathrm{Hz}+$ special functions.
* Two independent VFO's.
\star Operation between memory and "other" VFO.
* Memory backup " 5 year" lithium cell.
$\star \pm 600 \mathrm{kHz}$ and/or simplex.
* Manual and automatic tone burst.
* Large "full sound" speaker.
* Concentric volume/squelch controls.

FT230R $£ 239$ inc.
VAT @ 15\%
\& SECURICOR

SOUTH MIDLANDS COMMUNICATIONS

S.M. HOUSE, OSBORNE ROAD, TOTTON, SOUTHAMPTON, SO4 4DN, ENGLAND Tel: Totton (0703) 867333, Telex: 477351 SMCOMM G, Telegram: "Aerial" Southampton

CHESTERFIELD
S.M.C. (Jack Tweedy) Ltd. 102 High Street,
New Whitington, Chesterfield
Chesterfield (02461 453340
9.5 Tuesday-Saturday

BUCKLEY
S.M.C. (T.M.P.)

Unit 27 Pinfold Workshops,
Pinfold Lane, Buckley.
$9.30-5.30$ (Lunch 1.30) Tues- Sat
S.M.C. (Humberside)

247A Freeman Street
Grimsby, Lincolnshire
Grimsty (0472) 59388
$9.30-5.30$ Monday-Saturday

LEEDS

S.M.C. (Leeds) 257 Otiey Road, Leeds 16 , Yorkshire.
Leeds (0532)
9.580 Manday-Saturday

Rx: $150 \mathrm{kHz}-30 \mathrm{MHz}$. Continuous general coverage Tx: $160-10 \mathrm{~m}$ (9 bands) or $1.5-30 \mathrm{MHz}$ commercial. All Modes: AM, CW, FM* FSK, LSB, USB.
10 VFO's!!! Any Tx-Rx split within coverage. Two frequency selection ways, no bandswitch. Main dial, velvet smooth, 10 Hz resolution. Inbuilt keyboard with up/down scanning. Dedicated digital display for RIT offset. Receiver dynamic range up to 100 dB !!! SSB: Variable bandwidth and IF shift. 300^{*} or $600 \mathrm{~Hz}^{*}, 2,400 \rightarrow 300 \mathrm{~Hz}, 6 \mathrm{kHz*}, 12 \mathrm{kHz}{ }^{*}$ Audio peak and notch filter. FM squelch. Advanced variable threshold noise blanker. 100W RF, key down capability, solid state. Mains and 12VDC. Switch mode PSU built in. RF processor. Auto mic gain control. VOX. Last but not least full break-in on CW.

FT902DM £885inc.

* Variable IF bandwidth 2.4 kHz down to 300 Hz . * Audio Peak and independent notch controls. * AM, FSK, USB, LSB, CW, FM, (Tx and Rx). * Semi-break in, inbuilt Curtis IC Keyer. * Digital plus analogue frequency displays. - VOX built-in and adjustable. Instant write in memory channel.
Tune up button (10 sec, of full power). Switchable AGC and RF attenuator. 350 or $600 \mathrm{~Hz} \mathrm{CW}, 6 \mathrm{kHz}, \mathrm{AM}$ filters. Clarifier (RIT) switchable on Tx, Rx or both. Plug in modular, computer style constructor. Fully adjustable RF Speech processor.
- Ergonomically designed with necessary LEDS.
* Incredible range of matching accessories.
\star Universal power supply $110-234 \mathrm{~V}$ AC and 12 V DC.

FT102 £699 inc.

160-10 metres including new allocations

* Variable IF band width 2.4 kHz down to 300 Hz
* Selectable CW fixed bandwidth CW-W and CW-N*
* Semi-break in with sidetone for excellent CW.
* Digital plus analogue frequency displays.
* 180W PIP and - 31dB 3rd order intermod.
* RF speech processor fitted - adjustable level.
* VOX built-in and is adjustable from the front panel.
* Wide dynamic range for big signal handling.
* High usable sensitivity, for those weak ones.
* Superb noise blanker - adjustable threshold.
* Attenuator; 0-10-20dB, AGC; slow-fast-off.
* Clarifier (RIT) switchable on Tx, Rx or both.
* Low level transvertor drive output facility.
* Universal power supply $110-234 \mathrm{~V}$ AC and 12 V DC*
* Incredible range of matching accessories
* 6 models: Digital/Analogue - AM/FM options.

1.8-3.5-7-10-14-18-21-24.5-28MHz
\star All modes: - LSBe USB, CW, AM \ddagger, FM \ddagger, (\ddagger Option board) * Front end: extra high level, operates on 24 V DC.
\star RF stage bypassable, boosts dynamic range over 100 dB !
\star Variable bandwidth $2.7 \mathrm{KHz} \rightarrow 500 \mathrm{~Hz}$ and IF Shift \star Fixed bandwidth filters, parallel or cascade configurations - IF notch (455 KHz) and independent audio peak \star Noise blanker adjustable for pulse width \star External Rx and separate Rx antenna provisions * Three 61468 in special configuration - 40 dB IMD! * Extra product detector for checking Tx IF signal * Dual meter, peak hold ALC system
* Mic amp with tunable audio network
* SP102: - Speaker, Hi and Lo AF filters, 12 responses!
\star FV 102: - VFO, 10 Hz steps and readout, scanning, QSY.
- FC102: - ATU, 1.2KW, 20/200/1200 W FSD PEP, wire.
\star FAS-1-4R: - 4 way remote waterproof antenna selector.
FT1017D 635 inc. Vate $^{15 \%}$

* $80-10$ metres (including 10, 18 and 24 MHz bands).
* USB-LSB-CWN-AM (Tx and Rx operation).
\star 100W PEP. 50% power output at $3: 1$ VSWR.
* Full "broad band" no tune output stage.
* Excellent Rx dynamic range, power transistor buffers.
* Rx Schottky diode ring mixer module.

L Local oscillator with ultra-low noise floor.

* Variable IF bandwidth - 16 crystal poles.
* Band widths $6 \mathrm{kHz}{ }^{*}, 2.4 \mathrm{kHz}-300 \mathrm{~Hz},(600-350) \mathrm{Hz}^{*}$
* AGC; slow-fast switchable VOX built-in.
* Semi-break in with side tone for excellent CW.
\star Digital $(100 \mathrm{~Hz})$ plus analogue frequency display.
\star LED Level meter reads: S, PO and ALC.
* Indicators for: calibrator, fix, int/ext VFO.
\star Receiver offset tuning (RIT-clarifier) control.
* Advanced noise blanker with local loop AGC.
* Multimode USB, LSB, FM, CW
* 100 Hz backlit LCD Frequency display * 10 memory channels ' 5 year' backup \star Any Tx/Rx split with dual VFOs * Up/down tuning from microphone * AF output 1W @ 10\% THD * Bandwidth 2.4 kHz and $14 \mathrm{kHz} @-6 \mathrm{~dB}$ \star LED's; 'On Air', 'Busy'. m/c meter; S, PO $\star 58$ (H) $\times 150$ (W) $\times 195$ (D) (1.3 kg) SMC2.2CNiCad 2.2A/hr, "C" SMC2.0C NiCad 2.0 A/hr " ${ }^{\prime}$ " SMC8C Slow Charger (220 mA) MMB 11 Mobile Mount
CSC1 Soft carrying case 3.45 FL2010 Linear Amplifier 2 m 1ow 64.40 FL7010 Linear Amplifier 70cms 99.65

TOS
2.35 8.80 22.25 3.45

FT290R £249 inc.

VAT @ 15\% \& POSTAGE

- 144 146MHz (144 148) possible - 2.5W PEP, 2.5W RMS $/ 300 \mathrm{~mW}$ out FM: 25 kHz and 12.5 kHz steps SSB: 1 kHz and 100 Hz steps $\pm 600 \mathrm{kHz}$ repeater split 1750 kHz burst

FT790R f295 inc. EX-StOCK

VAT @ 15\%
\& POSTAGE

- Integral telescopic antenna * Rx, $70 \mathrm{~mA}, \mathrm{Tx} ; 800 \mathrm{~mA}$ (FM maximum)
$430-330 \mathrm{MHz}$ ($440-450$ alternative) 1W PEP, 1 W/ 250 mW FM/CW out FM: 100 kHz and 25 kHz steps SSB: 1 kHz and 100 Hz steps 1.6 MHz shift with input monitor, 1750 Hz burst Rx; $100 \mathrm{~mA} / 200 \mathrm{~mA}$. Tx; 750 mA max BNC Mounting $1 / 2 \lambda$ flexi antenna

* USB-LSB-CW-FM (A 3j, A1, F3)

2 or 70 !
144146 MHz ($143.5-148.5$ possible).

* $\pm 600 \mathrm{kHz}$ standard repeater split.
* Excellent dynamic range and sensitivity.
* FM; 25, 121/2, 1 kHz steps.
* SSB; 1,000, 100, 10 Hz steps.
$\star 430-434 \mathrm{MHz}$ ($440-445$ possible).
* GaAs Fet RF for incredible sensitivity.
* FM ; $100 \mathrm{kHz}, 25 \mathrm{kHz}, 1 \mathrm{kHz}$, steps. * SSB; 1,000, 100,10Hz steps. * FT780R 1.6 fitted 1.6 MHz Shift f. 459 inc.
* String LED display for "S" and PO.

ڤ LED's;"On Air"Clar, Hi/Low, FM mod.
\star Size (Case): $8.3^{\prime \prime} \mathrm{D}, 2.3^{\prime \prime} \mathrm{H}, 6.9^{\prime \prime} \mathrm{W}$.

2 or 70!

FT208R £ 199 inc.

VAT@ 15\% \& POSTAGE
$\star 144.146 \mathrm{MHz}$ ($144-148$ possible).

* Keyboard entry of frequencies/splits
\star LCD digital display with backlight
* Any split + or - programmable
* Ten memory channels ' 5 year' back up
\star Up/down manual tuning. Memory scan
* Manual or auto scan for busy/clear
* Priority channel with search back
* Scan between any two frequencies
\star Auto scan restart. 1.750 Hz tone burst
* Built in condenser microphone
* 500 mW to int/ext speaker
* External speaker/mic. available
* $168(\mathrm{H}) \times 61(\mathrm{~W}) \times 39(\mathrm{D}) \mathrm{mm}$
* C/w Quick change NiCad pack, helical

Four easy write-in memory channels

* Rxpriority channel (auto check)
* Scanning band/memory empty/busy
* Up/down tuning/scanning from mic.
* Optically coupled tuning control
* Manual and automatic tone burst
\star String LED's for 'S' and PO, 7 status LEDs
* $11 / 2$ W of audio to internal/external speaker FT720 Control Head
* $3.3(4.3)^{\prime \prime} \mathrm{D} \times 6^{\prime \prime} \mathrm{W} \times 2(2.2)^{\prime \prime} \mathrm{H}$ S72 Switching box
* Pushbutton band change Auto steps/spits E72S Extension cable, 2 m long E721 Extension cable, 4 m long MMB3 Mobile Mounting bracket for deck

2 and/or 70! FT720RV £245inc. \& $\begin{gathered}\text { VAT@ } 15 \% \\ \text { SECURICOR }\end{gathered}$
$\star 144-146 \mathrm{MHz}(144-148 \mathrm{MHz}$ possible). * $121 / 2 \mathrm{kHz}$ synthesizer, 600 kHz shift. $\star 0.3 \mu \mathrm{~V}$ for 20 dB quieting.

* $\mathrm{R} \times$ 0.5. T×RV 3.5A, RVH 6.5A.
* $5.8(6.5)^{\prime \prime} \mathrm{D} \times 6^{\prime \prime} \mathrm{W} \times 2(2.2)^{\prime \prime} \mathrm{D}$.

- $430-434 \mathrm{MHz}$.

$\star 25 \mathrm{kHz}$ synthesizer steps, 1.6 MHz shift.

* $0.5 \mu \mathrm{~V}$ for 20 dB quieting.
* $R \times 0.5 A, T \times 4.5 A$.
* $5.8(6.5)^{\prime \prime} \mathrm{D} \times 6^{\prime \prime} \mathrm{W} \times 2(2.2)^{\prime \prime} \mathrm{D}$.

FT708R £219 inc. ,
$\star \pm 7.6 \mathrm{MHz}$ EU split standard.
1W or 100 mW RF output. $\star R x=20 \mathrm{~mA}$ squelch, 150 mA (max AF). VAT @ 15\% * Tx: 500mA at 1W RF. \& POSTAGE $\quad \star 0.4 \mu \mathrm{~V}$ for 12 dB SINAD.

STOKE

S.M.C. (Stoke)

76 High Street.
Talke Pits, Stoke.
Kidsgrove (07816) 72644
9.5.30 Tuesday-Saturday

LEEDS

S.M.C. (Leeds) 257 Ottey Road, Leeds 16 , Yorkshire. Leeds (0532) 782326 9-5.30 Monday-Saturday

CHESTERFIELD

S.M.C. (Jack Tweedy) Ltd. 102 High Street, New Whittington, Chesterfield. Chesterfield (0246) 453340 9-5 Tuesday-Saturday

BUCKLEY

S.M.C. (T.M.P.)

Unit 27 Pinfold Workshops.
Pinfold Lane, Buckley.
Buckley (0244) 549563
$9.30-5.30$ (Lunch 1.30) Tues- Sat

CONNECTORS COAXIAL.

BNC-N-UHF INTERSERIES ADAPTORS		
UG255	UHF socket - BNC plug	£1.76 0.50
UG273	UHF phug - BNC socket	£1.76 0.50
S0\|25	UHF socket - 2.5 mmjack	10.790 .50
S0/35	UHF socket - 3.5 mmjack	f0.79 0.50
SD/MF	UHF socket - N socket	¢1.960.50
UG148	UHF socket - N plug	¢2.25 0.50
UG83	UHF plug - N socket	\$1.960.50
UG201	N plug - BNC socket	£3.280.50
UG349	N socket - BNC phw	£3.160.50
UG608	N socket - BNC socket	¢2.59 0.50
BNC.PLUG 50 ohms		
UG88	Standard type 5.5 mm	£0.78 0.50
UG959	Large type 11.2 mm	£3.22 0.50
BNC SOCKET SOOHMS		
UG290	Standard, 4 hole type	£0.78 0.50
UG1094	Nut fixing type	£0.76 0.50
UG89	Free cablaend, 5.5 mm	£0.94 0.50
BNC COUPLER 50 OHMS		
UG914	Back to back female	£1.07 0.50
UG481	Back to back male	\$1.660.50
UG274	'T' 2 femate 1 mate	E2.23 0.50
SMC3FBNC	'T' 3 female	E2.02 0.50
UG306	Elbow. Male - Female	\$1.86 0.50
BNC CABLES 500HMS		
BNC18BNC	$1.5{ }^{\prime}$ RG58, BNC ends	¢255 0.50
BNCJ6BMC	3.0' RG58, BNC ends	¢2.65 0.5
BNCSBRDC	3.0' RG58, BNC/Clips	¢250 0.50
UHF PLUG		
PL259	Standard type 11.2 mm	$¢ 0.550 .50$
PL259P	Pusch on type 11.2 mm	10.790 .5
UG175	Reducer 5.0 mm	¢0.140.5
UG178	Reducer 5.6 mm	10.140.5
PL259R	Reduces type 5.0 mm	10.670 .5
PL259A	De hure type 11.2 mm	11.500 .50
PL2598	De-ture type 5.0 mm	11.130 .50
PL259SL	'Solderless' 11.2 mm	¢0.63 0.50
PL259SS	'Soiderless' 5.0 mm	\$0.83 0.50
PL259E	Angle type 5.0 mm	¢0.95 0.50
Pl259M	Metric type standard 11.2mm	¢0.75 0.50
PL259PM	Panel mount 4 hote	E1.07 0.5
UHF SOCKET		
S0239F	Standard 4 hole fux	¢0.48 0.50
S0239F3100	4 hole PTFE Aupiate	£0.970.50
S0239	2 hole fixing type	£0.480.50
S0239M1	Nut fixing inside type	\$0.59 0.50
SD239ND	Nutt fixing outside type	¢0.59 0.50
S0239E	Free angle type 5.0 mm	f1.010.50
	Free cable end 5.Orm	£2.22 0.50
M $\times 913 / \mathrm{C}$	Dust Cap chw chain	£0.480.50
MX913m	Dust Cap metric type	¢0.460.50
UHF COUPLER		
PL258	Back to back female	£0.910.50
PL274	Back to back chassis	£1.070.50
SMCPLIPL	Back to back male	£1.38 0.50
M359	Eltow male - fermate	£1.070.50
M358	'T' 2 femate 1 mate	11.380 .50
M358AF	'T' 3 female	£1.70 0.50
M45s	'x' 3 femate 1 male	E2.13 0.50
UHF CABLES		
PL36PL	3.0' RG58, PL259 ends	£1.85 0.50
N PLUG 50.OHMS		
UG536	Small type 5.5 mm	\$2.82 0.50
UG21	Standard type 11.2 mm	¢1.550.50
N SOCKET 50 OHMS		
UG58	Standard 4 hole fix	£0.94 0.50
UG1052	Free cable end 5.5 mm	\$2.86 0.50
UG23	Free cable end 11 mm	£1.70 0.50
M $\times 131 \mathrm{C}$	Oust cap chw chain	£0.46 0.50
N COUPLER 50 OHMS		
UG107	'T' 2 termate 1 male	£3.74 0.50
UG2a	'T' 3 femate	£3.160.50
UG57	Doubte male adaptor	¢2.70 0.50
UG29	Double fermale adaptor	f2.13 0.50
UG27	Ebow mate - female	£2.240.50

CABLES, RADIO FREQUENCY

COAXIAL 50 OHM CABLE

URM95	Solid centre 2.2 mm	pm	¢0.23
UP43	Solid centre 5.0mm	plm	10.25
UR43/100	Drum 100m UR43	100 m	E24.15 2.20
UR76	Stranded core 5.0mm	phom	10.28
UR76/100	Drum 100m UR76	100 m	\$28.45 2.20
RG58U	Stranded core 5.0 mm	pm	10.29
RG58U100	Drum 100m RG58U	100 m	£27.60 2.20
RG213	Low loss 10.2 mm	p/m	10.62
RG213/100	Drum 100m RG213	100m	\{57.50 4.50
UR67	Low loss 10.2 mm	p/m	$E 0.67$
UR671100	Drum 100m UR67	100 m	¢62.10 4.50
COAXIAL 75 OHM CABLE			
307EP	Economy 4.3 mm	pm	¢0.21
307EP1100	Drum 100m 307EP	100 m	¢18.40 2.20
UR70	Stranded light	pim	¢0.30
UR701100	Drum 100mUR70	100m	£27.60 2.20
UR39	Medium duty 7.8 mm	pim	¢0.44
UR39/100	Drum 100m UR39	100 m	\$41.40 3.40
UR57	Low loss 10.2mm	pim	$£ 0.69$
UR57/100	Drum 100m UR57	100 m	£65.55 4.50
BALANCED TWIN CABLE			
302	75 ohms light duty	pim	10.17
302:100	Drum 100m 302(75)	100 m	¢14.95 2.20
306	3000 hms Ribbon	pim	¢0.20
306/100	Drum 100m 3061300)	100 m	¢17.25 2.20

ANTENNA/MAST FITTINGS/PARTS

ANTENNA WIRE

ANTENNA	WIRE
CU14SWG	Hard Drawn Copper
CU71029H	Hard Drawn Stranded
CU71036	CAO Copper Stranded
CUTER	CUTEerylene Braid About 3mm0
CU1029S	Soft Copper Stranded (Radiais)

p/m $\quad 0.20$

Cu71036 Hard Drawn Stranded

CUITER CUTErylene Braid About 3 mmO BALUN TRAMSFORMERS
BN86 Hy-Gain 1:1 3-30MMz Ferrite $\mathbf{E 1 5 . 5 8} 0.90$
H101 VanGorden 1:1 3.30 MHz Ai $\mathbf{1 0 . 0 0}$ Free
DIPOLE CENTRE PIECE

C

 $\begin{array}{lll}\text { AJU } & \text { HO type clw fitting } & \text { PL259 etc } \\ \text { Potyprap. clamp and lug type } & \mathbf{£ 7 . 9 9} \mathbf{0 . 8 0} \\ & \mathbf{1 . 0 9} \mathbf{0 . 5 5}\end{array}$INSULATORS END STRAIN

SMCP2	Polypropylene 3 inch
PDRC3	Porcelain 3 inch
SMCP1	Polypropylene 8.5 inch
EG38	Porcelain Egg 1.5 ins

$\begin{array}{ll}\mathbf{1} 0.55 & 0.45 \\ \mathbf{1 0 . 6 7} & 0.45 \\ \mathbf{1} 2.24 & 0.45 \\ \mathbf{f 0 . 4 4} & 0.45\end{array}$
LIGHTNING ARRESTORS
\qquad
$\begin{array}{llr}\text { SMC566 } & \text { Spark SO239;PL259 in line } & \mathbf{£ 2 . 9 9} 0.55 \\ \text { SMC567 } & \text { Spark SO239;S0239 in line } & \mathbf{~} 2.990 .55\end{array}$
CABLE GRIPS

CG5	Bulidog Grip $5 \mathrm{mmD}\left(0.1875^{\prime \prime}\right)$ Galy		f0.17 0.55
CG6	Bulliog Grip 6mm0 ($0.125^{\prime \prime}$) Galy		$f 0.180 .55$
HD9	Brass Line Clamp for copoer wire		f0.55 0.55
WALL BRACKETS (STANO OFF'S]			
W12	$12^{\prime \prime} \mathrm{c} / \mathbf{w}^{\text {2 }}$ U Bots T Section	Pr_{7}	T.O.S 2.60
W18	$18^{\prime \prime} \mathrm{chw} 2^{\prime \prime}$ U Bohs T Section	Pr	¢10.06 2.60
W21	$21^{\prime \prime} \mathrm{ctw} 2^{\prime \prime} \mathrm{U}$ U Bots T Section	Pr	¢10.92 2.60
W21HD	$21^{\prime \prime} \mathrm{HO}$ c/w 2 " U Bolts D with Brace	Pr	£12.92 2.10
W24	$23^{\prime \prime} \mathrm{chw} 2^{\prime \prime}$ U Bols I Section	Pr_{7}	\$13.23 2.80
W24HD	24** H0 ciw 2"U Bots with Brace	Pt	\$15.48 2.80

DS6	$6 \mathrm{~mm}(1) \mathrm{lins})$		¢0.32 0.55
DS8	$8 \mathrm{~mm}(3 / 18 \mathrm{ins})$		10.370 .55
DS10	$10 \mathrm{~mm}(3 / \mathrm{mins}$)		¢0.47 0.55
DS11	11 mm ($7 / \mathrm{mins}$)		£0.75 0.55
GUY ROPES			
HTS3	HT Steel 3mmD 1×19 BS 720 Kg		50.20
HTS4	HT Steel 4 mmD 1x 19 BS 1258Kg		¢0.32
HTS5	HT Stael $5 \mathrm{mm0} 1 \times 19$ BS 2000Kg		¢0.25
HTS8	HT Stael $6 \mathrm{mmD} 1 \times 19$ BS 2875 Kg	pim	f0.48
X 150	Rustproof 3 mmo Multistrand	150 m	£20.59 2.60
FE7X186100	Galvanised 7 by 18 Gauge	100	56.902 .80
FE7X186300	Gakranised 7 by 18 Gauge	300	\$20.13 4.20
TPS3	Terylene 3mmD ES 70 Kg	pom	f0.10
TPS4	Teryene 4 mmD BS 295 Kg	p / m	0.15
TPS6	Terylene 6mmD BS 570 Kg	pim	f0.22
TPS8	Teryene 8mmD BS 1110 Kg	p/m	¢0.37
GUY STAKES			
GS18	18*'T' section 38x38x5mm Gavv.		¢4.082.10
GS27	$27^{\prime \prime}$ T' section $38 \times 38 \times 5 \mathrm{~mm}$ Garv.		¢5.64 2.50
GS36	$36^{\prime \prime}$ T' section $51 \times 51 \times 6 \mathrm{~mm}$ Garv.		¢10.64 3.70
GUY TENSIONERS			
TPR933	Turnouckle 115x8mm, 4.5"		£2.70 0.90
RS 150×10	Tumbuckle $150 \times 10 \mathrm{~mm}, 6^{\prime \prime}$		£5.12 1.30
MAST FITTINGS $112{ }^{\text {c M M M }}$ MS $\}$			
SMCMP3	Guy Plate 3 hole		$£ 1.380 .75$
SMCMP4	Guy Plate 4 hole		£2.19 0.75
SMCMB3	Guy Band 3 hook		¢1.61 0.85
SMCMB4	Guy Band 4 hook		£2.24 1.05
SMCMC1	Cap. Cast Alloy		£3.74 0.80
SMCMBPI	Base Plate Alloy Stoe		¢5.580.95
THIMBLES			
THIM30	Gakv. 30mm DA $11.25{ }^{\text {" }}$) for Wire		¢0.180.50
THIM3 8	Gak. 38 mm 0A 11.5 ") for Wire		$f 0.210 .50$
THIM44	Gakr. $44 \mathrm{mmDA}\left(1.75{ }^{\text {" } 7 \text { for Wire }}\right.$		f0.23 0.50
THIM 51	Gakr. $51 \mathrm{~mm} 0 \mathrm{~A}\left(2.0^{\prime \prime}\right)$ for Wire		£0.28 0.50
F1235	Nyton 30 mm OA $11.25{ }^{*}$) for Terysene		¢0.20 0.50
F985	Nyton 38mm DA $1.55^{\prime \prime}$) for Terylene		£0.240.50
MASTING			
Al32×16G	Ahminum 1.25"16 Gauge	pim	¢1.83
Al38×16G	Aluminum 1.50" 16 Gauge	p / m	¢2.21
AL49X7G	Alumimum Nom $2^{\prime \prime} 7$ Gauge	pm	¢4.54
MISCELLANEOUS HARDWARE			
RBD20	Rawibott 8 mm Both		£0.510.50
RBE19	Rawhoth 10mm Both		10.610 .60
PSS25	Pulley 25 mmm winch		¢0.76 0.50
PSS38	Pulley 38 mm winch		¢0.94 0.50
SMC53	Mast to boom clamp 1.2" to 1"		£1.73 1.40
SMCE3	Mast to boom damp 1.2" to 1.25"		¢2.19 2.10
SMC73	Mast to boom clamp 1.2" to 1".H.O.		£2.82 2.10
SMC59/15	Mast sleeve 15" for $2^{\prime \prime}$		\$6.61 2.10
SH63	Shap hook $63 \mathrm{~mm} \mathrm{D/A}$		$£ 0.990 .50$
UBDLT2	'U' Bolt 2" Centre 9mm Gatv.		¢0.46 0.60
ER4	Earth rod copperweld 4', chw Clamo		¢6.15 2.10
SMC2LK	Double lashing kit		\$13.80 2.50
SMCCP 1	Cross over plate 5"x5"x\%"		¢4.77 1.90

CARRIAGE

Carriage charges (shown after the item price) are for the manland only lexcluding posil and the rates shown are for one off of the item. Where more than one article is odered, total freight charge is likely to be mich lower than the sum of the individual charges.
Cables, ropes and masting are normatly despatched by Roadline Carriage is $\mathbf{\$ 2 . 0 0}$ to $7 \mathrm{~K}_{g}$ thereatter add an extra $\mathbf{£ 0 . 1 5} \mathrm{per} \mathrm{Kg}$. (Mainland).
Where Securicor delivery an an item. or any number of items combined, is pos sible
(i.e., less than $25 \mathrm{Kg} / 55$ iths and $5^{\prime} 6^{\prime \prime}$ long) it is charged at $£ 4.49$ per lot.

If in doubt of carriage send a cheque crossed, "not more than E.
ALL PRICES INCLUDE VAT @ 15\%.

ANTENNA ROTATORS.				
MR500	Kenpro el	vation Meter callt $\pm 90^{\circ}$	¢86.29	Free
NR400	Kempro b	box as KR500	¢86.25	Free
RLD3	SMC. Bet	Auto control	£38.53	Free
A830	COE, Ofts	Tum and Push	$¢ 51.75$	Free
9508	Channel	ster, Ofiset	f74.75	Free
95028	Channel	aster, offset	£54.63	Free
KR250	Kenpro, B	1 Twist Swith	£44.85	Free
4840	COE	Tum and Puat	665.55	Free
Mratuorc	Kenpro	Roend meter 360°	¢90.85	Free
AR68	COE	5 position preselector	[113.85	Free
C045	COE	$8 \times 4 \mathrm{~cm}$ meter readout	\$113.85	Free
KR600RC	Kenpro	Round meter 360°	¢132.25	Free
Ham 4	COE	$8 \times 4 \mathrm{~cm}$ meter readout	\$189.75	Free
KR2000RC	Kenpro	Heaw Diuty 360° meter	f241.50	Free
T2X	COE	$8 \times 4 \mathrm{~cm}$ meter readout	£270.25	Free
H300	Hy Gain	Digitai readout	¢ 451.95	Free

ROTOR ACCESSORIES			
C0562	Bearing COE AR30 atc.		£7.76 1.2
AK 121	Adaptor Kit, CDE Bell to plate		\$4.60 0.9
50425	ClampsfU Boits ST CDE AR40 etc.		¢4.95 1.2
50483	Clamps/UBotrs HD COE CD45 Ham 4		\$7.36 1.8
51472	Mast Mount Kit ST COE HAM4 etc.		¢12.08 2.1
51467	Mast Mount Kit HOCDE T 2 X etc.		¢24.15 2.1
9523	Support Bearing Channel Master		\$14.38 1.7
9525	Rotary Beaning Channel Master		¢14.381.2
KS050	Rotary Bearing 1\%" Kenpro		¢12.25 1.4
KSO65	Rotary Beaning 2" Kenpro		¢17.65 1.8
KCO3日	Lower Mast Clamp KR400, KR600		¢9.95 1.7
RC5W	5 Way AR30 AR40 KR 400 RC	pim	£0.35
RC6W	6 Way KR250/400/500/600RC	p.m	¢0.48
RC8W	8 Way CD45 Ham 4 T2X KR2000RC	pm	¢0.52

ANTENNAS VHF/UHF MOBILE

ASCOT Full range. SAE List

BANTEX Full range. SAE List

SMC-HS			
SMC118M	Colinear 2M 11/8	7dB\% $9.7{ }^{\circ}$	\$28.35 2.20
SMC6P2T/PL	Telescopic 2M PL259	OdBY	¢3.45 0.50
SMC6P2T/BMC	Telescopic 2M BNC	OdB\%	$¢ 3.970 .50$
SMC2HIPL	Helical 2M PL259		¢3.45 0.50
SMC2H;BMC	Helicai 2M BNC		14.430 .50
SmCHS430	\% λ 432MHz "Handie'	2.5dB ${ }^{\text {\% }}$	¢5.75 0.60
SMCA	ge $70 \mathrm{MHz} \times \lambda$	OdBY 3.4 ${ }^{\circ}$	\$7.65 1.80
SMC2aw	Ee 144MHz \% 2 d	OdB $\times 1.6$	£2.30 1.30
SMC2NE	Ee 144MHz \%hd	3.0dB ${ }^{\text {4.3 }}$	¢0.90 1.80
SMC2VF	El 144MHt $/ 2 \lambda$	$3.0 \mathrm{~dB} \times 3.5{ }^{\circ}$	\$8.63 1.80
SMC79F	Ele 144MHz \%h	$4.5 \mathrm{CB} \times 5.7$	¢12.25 1.80
SMC78B	Ele 144MHz M dall	$5.6{ }^{\prime}$	\$12.65 1.80
SMC78SF	Ele 144MHz \%hed stort	$4.7{ }^{\prime}$	¢12.25 1.80
SMC88F	Ele 144MHz \% λ	5.2dB\% 6.5	116.101 .80
SMC258	Ee 432MHz 2x\%d	5.5 dB \% 3.1'	f11.50 1.80
SMC358	Ge 432 MHz 3 x \% λ	6.3dB\% $4.7{ }^{\circ}$	¢14.95 1.80
SMC70N2M	144 and 432 MHz	2.7dB\%-5.1dB \%	¢14.20 1.80
SMCHS770	144/432 duplexer, 50	W, 30dB, 0.5 dt	\$13.40 1.30
SMCSDMM	Magnetic base ciw 4M	cable	$¢ 8.451 .20$
SMCSOWM	Wing mount base		¢3.45 0.72
SMCGCCA	Gutter clip, ciw 4M RG	58, PL259	¢8.80 1.20
SMCTMCAS	Trunk mount ciw 6M cidec		¢7.30 0.95
SMCSOCAL	Cable assembly 239M,	6M cabie	¢4.20 0.50
SMCBSO	Bumper strap stainless		¢7.71 1.00
HS88BK	Bumper mount 144MH	z extension tube	\$16.50 1.50
M $\times 913$ /M	Dust cover fits SMCOC		¢0.46 0.50
YCGA	Cable grip athesvie (5		\$0.45 0.50

\section*{

JAYBEAM Full range. SAE List
G4MH MINI BEAM
MINI BEAM
MUSLEY Full range. SAE List.
SMC - HS ANTENNA
SMCHF5V Vertical-10.15.20-40-80M $\quad 15.7$ 'H $£ 40.25 \quad 2.30$
SMCHF58 Radial kit loaded $\quad 6.5^{\prime} \cdot 7.3^{\prime} \quad £ 29.902 .30$
$\begin{array}{llll}\text { SMCHF3VMB Vertical } 10.18 .24 \mathrm{M} & 100 \mathrm{~W} \text { pep } & 16 . \mathbf{o n}^{\prime} \mathrm{H} & \mathbf{\$ 4 7 . 9 0} 2.30 \\ \text { SMC3Y10150203 ele } 10.15 \text {. Dipole 20M } & 13.2^{\prime} \mathrm{B} & \mathrm{E} 134.95 & 5.00\end{array}$

ANTENNAS VHF/UHF FIXED

Full range. SAE List
ANTENNAS HF MOBILE
Full range. SAE List
MASTS AND TOWERS

WATERS \& STANTON ELECTRONICS

18/20 MAIN ROAO, HOCKLEY. ESSEX. TEL (0702) 206835

CALL IN AT OUR SUPER STORE LARGEST STOCKS IN SOUTH EAST

TELEPHONE YOUR CREDIT CARD NO. SAME DA Y DESPATCH

SEND CHEQUE OR P.O. BY RETURN DESPA TCH

NOW STOCKING DRAGON COMPUTERS - £199

TRIO - Official UK Dealers New R600 RECEIVER

It really is a fantastic performer!

	(60-10	сап.
TS830S	160-10m transceiver. 694.00	n.c.
VFO 230	Digital VFO. 215.00	5.00
AT 230	All band ATU. 119.00	5.00
TS530	160-10 metre transceiver. 534.00	5.00
VFO 240	External VFO. 9200	5.00
PS30	AC power supply for TS1805. . . . 88.50	5.00
TS130S	8 band 200W mobile transceiver 525.00	n.c.
TS130N	8 band 20W mobile transceiver. 445.00	n.
TL120	200W pep linear. 144.00	200
MB100	Mobile mount. 17.00	1.00
VFO 120	Extemal VFO. 85.00	200
SP120	External speaker unit. 23.00	200
AT130	100 w antenna tuner. 79.12	1.30
MC50	Deluxe desk microphone...... 25.75	1.50
MC35S	Fist mic. 50K impedance. 13.80	0.75
MC30C	Fist mic. 5000hm impedance. . . . 13.80	0.75
LF304	HF low pass filter. 17.90	1.00
TST80E	$2 \mathrm{~m} / 70 \mathrm{~cm}$ all-mode duobander. . 748.00	n.c.
TR9000	2 m multimode mobile. 359.00	n.c.
809	Base plinth for TR9000. 34.96	200
TR7800	2 m FM synthesised mobile 25W284.00	200
TR2300	2 m FM synthesised portable. . . 166.00	2.75
TR2500	2 m FM handheld transceiver. . . 207.00	200
R1000	Gen. Cov. Receiver. 297.00	п.c.

YAESU - Good stocks. Good prices \& on the spot service LATEST FRG7700 IN STOCK

\section*{£299
 carr. $\mathbf{f} 5$

 | FT102 | 160-10m9 9band trans. FM. . . . 725.00 | n.c. |
| :---: | :---: | :---: |
| FT1012D | as above with digital FM. 645.00 | 5.00 |
| FT707 | 80.10 m 8 band trans. $10 \mathrm{w} \cdot \cdots549 .00$ | 5.00 |
| FP707 | 230v AC PSU. 125.00 | 5.00 |
| FC707 | 160-10m atu. 85.00 | 200 |
| FV707DM | Digital vfo for FT 707. 203.00 | 5.00 |
| MM82 | Mobile mount. 16.00 | 1.00 |
| FL21002 | 160-10m 1200 watt linear. 425.00 | 5.00 |
| FT9020M | 160-10m 9 band receiver. 8885.00 | n.c. |
| FC902 | All band ATU. 135.00 | 5.00 |
| FT208 | 2M FM synthesised handheld. . 209.00 | n.c |
| FT708 | 70 cm synthesised transceiver. . 219.00 | n.c. |
| NC9C | Compack trickle charger. 8.00 | 1.00 |
| FT480R | $2 \mathrm{~m} 10 \mathrm{wSSB} / \mathrm{CW} / \mathrm{FM}$ transceiver365.00 | 200 |
| FT290R | $2 m$ portable synthesised multimode 249.00 | n.c. |
| NC11C | 240N trickle charger. 8.00 | 0.75 |
| FRG7 | General coverage receiver. . . . 199.00 | n.c. |
| FRG7700 | 1981 version of FRG7000. 329.00 | 5.00 |
| FRG7700 | Antenna tuning unit. 37.85 | 0.75 |

ICOM - the full range stocked
IC720A DELUXE HF TRANSCEIVER
FDK - Sole UK Distributors
2M ALL-MODE M750E

	FREE CREDIT ON THE ABOVE MOOEL	
MT00AX M. 750E	2m FM 25w 12 $1 / 2 / 25 \mathrm{kHz}$ trans. . 169.00 $2 \mathrm{mFM} / \mathrm{SSB} / \mathrm{CW} 144146$ trans.	n.c.
Expander	70 cm transceiver. 199.00	n.c.
PS750	230 v AC Gamp psu. 69.00	2.50
T1200	$2 \mathrm{~m} / \mathrm{FM}$ synthesised handheld transceiver. 149.00	n.c.
PII	2 mFM 6 channel portable. 109.00	c.
Palm IV	7 Cm FM 6 channel portable. . . 125.00	.c.
TB1	1750 Hz tone burst. 10.00	n.c
TM56B	2 m FM monitor. 89.00	n.c.
CC2	Case for Palm II/IV. 6.75	0.750
BC2	230N AC battery charger. 4.50	0.750
Xtals	for Palm II and Palm IV.. 3.00	0.750

FDK M700AX - 2M FM 25W

AZDEN - Sole UK distributors The amazing PCS 3000 with remote control head - SAE for brochure

Purpose designed for R1000, R300, FRG 7 and FRG 7700 . BIG PRICE REDUCTIONS ON: TS830, TS130S, FRG7700, PCS3000, PCS300, M700AX.

Prices correct at time of going to press. Carriage charges in brackets.

ADVERTISERS' INDEX

Amateur Electronics UK.............511, 512, 513
Amcomm Services 517, 560
J. Birkett 559

BNOS Electronics 559
Bredhurst Electronics.................. 516
British National Radio and
Electronics School.................. 558, 560
Buywell Radio 562
Cambridge Kits 559
Colomor Electronics Ltd. 562
Datong Electronics Ltd. 515
Dewsbury Electronics 561
Granville Mill 563
G2DYM Aerials 562
G3HSC (Rhythm Morse Courses) ... 562
D.P.Hobbs Ltd. 559

Johns Radio 563
K.W. Communications Ltd. 554

Leeds Amateur Radio 558
H.Lexton Ltd........................... 510

Letchworth Components 563
London Car Telephones Ltd.. 563
Lowe Electronics Ltd.
front cover, inside front cover, 509
Microwave Communications Ltd.... 556
Microwave Modules Ltd. 555
MuTek Ltd. 558
P.M. Electronic Services 556

Polemark Ltd. 558
Quartslab Marketing Ltd. 554
Radio Shack Ltd. 524
R.T.\& I.Electronics Ltd. 556
S.E.M. 555

Selectronics.............................. 557
Small Advertisements $560,561,562$
South Midlands Communications
Ltd.............................518, 519, 520, 521
South Wales Communications
(Hasterry)Ltd........................ 557
Spacemark Ltd.......................... 559
Stephen-James Ltd...................... 514
S.W.M. Publications
inside back cover, back cover, 562, 563, 564

Tuition — Peter Bubb 559
Uppington Tele/Radio (Bristol)
Ltd.557
Reg Ward \& Co. Ltd. 563
Waters \& Stanton Electronics 522
Geoff Watts 559
W.H. Westlake 562

SHORT WAVE MAGAZINE

(GB3SWM)

ISSN: 0037-4261
Vol. XL DECEMBER, 1982 No. 470

CONTENTS

Editorial 525
VHF Bands, by N. A. S. Fitch, G3FPK 526
Plug In Your Soldering Iron and Begin Here, Part VII, by Rev. G. C. Dobbs, G3RJV 530
Getting Out on 10 MHz 535
The Datong Multi-Mode Filter, Model FL3 - Equipment Review 536
A Microprocessor Controlled Morse Decoder, Part I, by Peter Lumb, G3IRM. 538
"G9BF Calling" 540
Communication and DX News, by E. P. Essery, G3KFE 541
Line Termination in Aerial Design, by C. C. Drumeller, W5JJ 544
Basics for the SWL and R.A.E. Candidate, Part VIII 548
Aspects of Amateur Radio, by Les May, G4HHS 549
Clubs Roundup, by 'Club Secretary'" 550
Editor: PAUL ESSERY, G3KFE/G3SWM
Advertising: Charles Forsyth

Published at 34 High Street, Welwyn, Herts. AL6 9EQ, on the last Friday of the month, dated the month follo wing.

Telephone:04-3871 5206 \& 5207
Annual Subscription:
Home: f8.40, 12 issues, post paid Overseas: $£ 8.40(\$ 17.00$ U.S.), post paid surface mail

Editorial Address: Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ, England.

Prices shown in advertising in this issue do not necessarily constitute a contract and may be subject to change.

AUTHOR'S MSS

Articles submitted for Editorial consideration must be typed double-spaced with wide margins on one side only of A4 sheets. Photographs should be lightly identified in pencil on the back with details on a separate sheet. All drawings and diagrams should also be shown separately, and tables of values prepared in accordance with ournormal setting convention - see any issue. Payment is made for all material used, and it is a condition of acceptance that full copyright passes to the Short Wave Magazine, Ltd., on publication.

Short Wave Magazine Ltd.

RADIO SHACK for DRAKE

R.L. DRAKE EQUIPMENT

Collins KWM-380 Transceiver

3-500Z
MN-2700
MN-75
WH-7
AK-75
AA-75
B-1000
DL-300 DL-1000 CS-7

7805

7805
Manuals HS-75
FL-250 FL-500 FL-1500 FL-400 CRYSIAA-A 1549 AC-4
FF-1 34-PNB CW MOD. RCS-4 DC-PC9 PS-3 SD-AUTO 240/120 At
Carriage: A £1; B £2; C f

TR7A High Performance Transceiver

R7A $\quad \mathbf{0}-30 \mathbf{M H z}$ Receiver
 ${ }_{5.00}^{11.85}$
Linear/PSU/Tubes. 1 kw 619.85 잉 $\boldsymbol{T}^{\text {TR-5 Amateur Transceiver }}$ mplifier 1 DAY STOCKTAKING SALE NEW YEAR'S BANK HOLIDAY MONDAY JAN. 3RD.
'ing: COLLINS, - Y. YAESU, CALLERS ONLY 0900-1800 hrs.

300 in stamps for price list and details of regular lines

EDITORIAL

Cover Price

Increases in many of our costs mean that, regretfully, we have to announce that cover price of Short Wave Magazine will be 60 p with effect from the January, 1983, issue; annual subscription rate will be $\mathbf{£ 9 . 0 0}$ (2nd Class post). Current subscribers will not, of course, pay the new rate until their sub. falls due for renewal. Single copies posted firstclass from Welwyn will cost 85 p.

Owing to circumstances entirely beyond ourcontrol, this issue of S. W.M. could be a few days late arriving at your newsagent or through your letter-box, and we apologise for any inconvenience caused by this possible delay.

Christmas

The Festive Season is nearly with us once again (hard to believe!), and so the entire staff of Short Wave Magazine would like to take this opportunity to wish all our readers, advertisers and trade friends a very Happy Christmas and a Peaceful and Prosperous New Year.

VHF BANDS

NORMAN FITCH, G3FPK

APART from a very good tropo. lift at the end of the month, October was a rather average period, with no spectacular Auroras. Indeed, these seem to have virtually ceased due to a significant decline in geomagnetic activity. As this is being edited, we seem to be in for an unsettled, depression-type weather period with scant prospect of any immediate good tropospheric openings. Time, then, to dwell a little on the content of this feature.
Only one letter referred to the repeater scene, the writer stating he regarded them, ". . . as non-news, only occasionally useful, generally used by people using poor equipment. . $"$. A few contributors have indicated similar sentiments over the air, so it would seem that your scribe's conclusion that repeater users' needs are adequately catered for in the various groups' publications is valid.

During a very long telephone conversation, another regular reader made a number of points. One was the suggestion that past events, such as a major sporadic E opening, should be studied again in the light of later reports and when space was available. Another topic boiled down the difficult question of what is DX? He pointed out that for an east coast station to work across the North Sea to PA or OZ is no great achievement in reasonable conditions, but for someone in the Midlands or west of England, for example, it represents good DX. However, one has to consider more than the geography. For instance, it is no great achievement for G3FPK to work into Scotland on VHF, but were the station located a few hundred yards away, it would virtually be an impossibility.

Your scribe has always tried to assume the role of reporter, first and foremost. Last month's events left little room for additional comments, for example. Part of the monthly effort is to encourage those new to VHF to improve their station and operating capabilities, mostly by chronicling what others have done. Looking back seven years, it is rewarding to see how well many readers have done, perhaps through the friendly challenges of the annual table and the cumulative squares listings.

It is the aim to try to mention everyone who has taken the trouble to write and,
space permitting, list some of what they have worked. Letters range from neatly typed, long and detailed accounts of the month's activity, to hastily scribbled, lastminute notes, but all are read carefully and edited to produce, hopefully, a balanced and interesting feature, bearing in mind coverage of all bands from 50 MHz upwards, and including satellite activities.

It seems it would be welcome if it were made clear which mode, i.e. CW or SSB/FM, was used in reported QSOs. In the case of G6 and G8 contributors, this is obvious, but not so with Class A licensees. There have been suggestions that home computer use in amateur radio be covered. While these can be usefully employed in CW work, such as high speed MS schedules, this would seem to be outside the scope of "VHF Bands". However, the Editor would welcome further manuscripts on this aspect of the hobby and one thinks of computer programs for tracking Phase 3 satellites, including automatic aerial azimuth and elevation control, contest log keeping and scoring, working out distances from QTH locator information, etc. Meantime, if any readers are using home computers in their day-today station operation, please mention this.

Award News

This section is non-news this time and it is a rare month when nobody has been elected to the VHF Century Clubs or added to their QTH Squares Century Club tally. An application from an overseas reader for QTHCC membership had to be postponed since some of the QSLs were for portable operation. Our rule sheet does make it clear that all confirmations must relate to QSOs from the same location, normally the home QTH. However, if you have operated long enough from an alternative QTH, like a summer home, or during a stint working overseas, or from the same portable site as some contest groups do, then you can submit claims for these places, too. Full details of the rules of the two, basic VHF/UHF awards can be obtained by sending an s.a.e. to the Welwyn address.

Beacon Notes

Main news on the home front is the reappearance of the Cornish beacons, GB3CTC, now putting good signals into the London area from the new site on Hensbarrow Downs, to the north of St. Austell. The locator is XK46d. The 4 m . one is on 70.030 MHz with 40 w .e.r.p. to a 2-ele. Yagiat 45° azimuth and F1A keying. The 2 m . one is on 144.915 MHz with 40 w . e.r.p. to a 3-ele. Yagi at 45° QTF. The 70 cm . one is on 432.970 MHz with 5 w . e.r.p. to a 4 -ele. Yagi at $45^{\circ} \mathrm{QTF}$, with F1A keying. The 2 m . beacon has A1A keying. The aerial height is 320 m . a.s.l. Thanks to Brian Bower, G3COJ, for the foregoing information.

Satellite News

The latest information concerning the launch of the Phase $3 B$ satellite is that it has slipped again, now being between April 17 and 20, 1983. The launch vehicle will be ARIANE L-06, not $L-07$ as reported previously. As intimated last month, some details are now available of the tested performance of the transponders and beacons of the Phase 3B package, and these were passed on to your scribe by G3AAJ on Oct. 17. First, though, the orbit. Because the overall weight of the satellite is lower than expected, it will be able to carry 52 kg . of fuel. This means that the expected inclination is 63.4° and the argument of perigee 230° to 235°.

Next the various beacons. At $0^{\circ} \mathrm{C}$, the frequency of the engineering beacon was 145.9880 MHz , dropping to 145.9870 at $25^{\circ} \mathrm{C}$. Its nominal output power was 1.5 w . with the transponder on and 3.0 w . with it off. The engineering beacon frequency at $0^{\circ} \mathrm{C}$ was 145.8105 MHz , and at $25^{\circ} \mathrm{C}$, 145.8100 . The power out was 4.0 w . at $-20^{\circ} \mathrm{C}, 1.8 \mathrm{w}$. at $+25^{\circ}$ and 1.0 w . at $+45^{\circ}$.
The Mode " B " transponder's 435 MHz Rx has a noise figure of 3.0 dB at $25^{\circ} \mathrm{C}$ and the a.g.c. threshold is $-105 \mathrm{dBm}(-108$ dBm at $0^{\circ} \mathrm{C}$). The power output of the 145 MHz Tx is 50 w .p.e.p. at $25^{\circ} \mathrm{C}$ dropping to 42 w . at $0^{\circ} \mathrm{C}$. A 435.100 MHz signal into the Rx translated to 145.903 MHz from the Tx at 25° and to 145.906 MHz at $0^{\circ} \mathrm{C}$. The other transponder is to be known as Mode "L", presumably since 1 to 2 GHz was known as "L-Band". (Under the latest designation, this is " D-Band".) The 1,269 MHz Rx has a $n . f$. of 3.0 dB , plus/minus 0.1 dB . and the 436 MHz Tx output of 32 w . p.e.p. is lower than expected.

Unfortunately, up to the time of editing, no information is available concerning the all-important aerial parameters. A tiny illustration of the satellite seemed to show what looked like a bicone for $1,269 \mathrm{MHz}$ so would not be very gainy. With any luck, having recently been advised of the current address of AMSAT's Engineering Director, some first-hand aerial information may be available for the next issue.

According to the $A R R L$, which now manages the Oscar 8 satellite, the telemetry indicates its battery to be a bit "rubbery", whatever that means. Nevertheless, 0-8 seems to be working all right. UOOSAT, or $U-O-9$, is now firmly under the control of the command station at the University of Surrey. Telemetry at 45.5 and 300 Bauds has been transmitted on 145.825 MHz at weekends. The CCD Camera and Imaging Unit were tested on Oct. 14 by using a picture dump. However, interference from FM stations operating in the satellite sub-band messed things up a bit. Spindown manoeuvres continue and, in the weekend of Nov. 6/7, G3AAJ advised that the spin rate around the Z -axis was
one revolution in 12.93 seconds, and the Z-axis angle to the orbit plane, 90°. In spite of low e.h.t., the radiation counters are still working satisfactorily.
The Russian satellites continue to operate well. Quite a few British stations can be heard regularly through them on the 10 m . downlink but very few reports are ever received from users. Since 10 m . is frequently open to the U.S.A., there is often QRM from FM operators using the recognised downlink sub-band. For example, at 1520 on Oct. 10, G4KGE was heard at G3FPK working a W station on FM on 29.475 MHz .
It now seems pretty definite that the gibberish signals heard on 29.502 MHz emanate from the otherwise defunct $O-7$. AMSAT sources suggest that the times do coincide with particular orbits. However, it seems that the transponders are dead, so these observations can only be of curiosity value.

Contests

The only event left this year is the 144 MHz Fixed Contest scheduled for Dec. 5, from 0900 to 1700 . There are two sections; Single-op. and Multi-op. Radial ring scoring and all permitted modes with entries to G5HD ($Q T H R$). It is just possible this issue will reach you before Nov. 28, in which case you may like to participate in the Verulam ARC's 2 m . contest which is from 0900 to 1300 . Report/serial number/county to be exchanged, using the administrative counties and not the postal ones. One point per contact, but G3VER is worth 10. Final score is no. of QSO points multiplied by total of U.K. counties worked. Countries outside the U.K. count as additional counties. Logs to G3JKS, (QTHR) postmarked no later than Dec. 13.

Ted Double, G8CDW, the BARTG's Contests and Awards Manager, has sent along the results of the Autumn RTTY Contest. The Single-op. section attracted 23 entries and was won by G3NNG, who made 62 QSOs worth 544 points. Runner up was G4NQC who had one more QSO but whose score was 423 pts . The Multi-op. section saw nine entries and was won by G4IVV/A with 862 pts. from 78 QSOs. G2BRS/P, 555/61, was second. Over 170 stations were active, over 110 from the U.K. A frequent comment on the entries referred to operators using micro systems who fail to appreciate the need to manually send line-feed and carriage-return signals, vital to avoid "corrupt copy" especially when a mechanical device, such as a Creed 7 , is in use at the receiving end. The BARTG Spring VHF/UHF Contest is during the April $9 / 10$ weekend, next spring; more details nearer the date.

ANNUAL VHF/UHF TABLE

Three bands only count for points. Non-scoring figures in italics.

Sporadic E

H. Irwin, GI8ROJ, (Armagh) reports that he, and GI5MPS, heard I4TDK calling "CQ DXE's" on 144.300 MHz for about a minute at 1145 local time on Oct. 10, at about S4. During a post-mortem afterwards, the two GIs, with their beams pointing south-east and edge-on to each other, received very strong "back scattertype signals" from each other for a few minutes, which sounded very Auroral. Looking back through the solar data for that day, the critical frequency was 12 MHz at the Appleton Laboratory, the solar flux was declining, and the geomagnetic \mathbf{A} index was unsettled. It will be most interesting to read of any other reports of possible E 's propagation that day.

Four Metres

Tim Raven, G4ARI, (Leics.) is the only correspondent this month who mentions 4 m . and his report lists five more counties
and three countries added back in August and September for the 1982 table. It would make for a more balanced feature if more reports were received on this "Cinderella" band.

Two Metres

The main feature in October was the excellent tropo. lift at the end of the month. Syd Harden, G2AXI, (Hants.) worked two new, 1982 countries on the 30th, OK1KHI/P and Y38ZA. He had nòt worked much earlier due to revamping the aerial system and only got his act together on the 29th. Bill Hodgson G3BW, (Cumbria) wrote just before the lift to say how difficult it is now to find new squares as most of the wanted ones are around the $2,000 \mathrm{~km}$. range. However, he did complete an MS QSO with OK2KZR (IJ34j) via random meteors and is now just two short of his double century.

Clive Penna, G3POI, (Kent) was looking for very long distance QSOs in the

OCATOR SQUARES TABLE				
Station	23 cm .	70 cm .	2 m .	Total
G3VYF		117	307	424
GJ4ICD	1	102	223	326
G3JXN	46	91	137	274
G3XDY	30	86	131	247
G3COJ	30	82	150	262
G3PBV	17	81	159	257
G8ATK	15	81	129	225
GJ8KNV	12	76	191	279
G8RZP		76	147	223
G8KBQ	4	75	161	240
G8RZO	-	75	148	223
G2AXI	9	72	120	201
G4BVY	9	72		81
G8HH1	11	70	132	213
G4JZF	-	68	140	208
G6ADE	-	64	70	134
G8ULU	-	62	91	153
G3NAQ	-	58	128	186
G8PNN	25	57	104	186
G4NBS	13	57	90	160
G4HFO	-	57	92	149
G8FMK	16	57	71	144
G8KAX	14	52	80	146
G4MUT		50	69	119
LA8AK	23	49	195	267
G8CXQ	-	47	143	190
G4ERX	6	46	121	173
G4NQX	-	46	111	157
GD2HDZ	13	46	91	150
G4MCU	-	44	158	202
GW3NYY	-	42	169	211
G4GFX	7	40	103	150
G8VRJ	16	38	101	155
G4NFD		36	138	174
G3BW	5	35	198	238
G31MV	-	34	322	356
G6ADC	-	34	58	92
G4HMF	-	32	140	172
EA3LL	-	30	252	282
G6ADH	-	29	124	153
G3FIJ	-	29	90	119
$\mathrm{G4PCl}$	-	28.	165	193
G6HKT	-	28	62	90
GM4COK	-	26	194	220
GM4CXP	-	26	159	185
G40AE	-	26	157	183
GM8BDX	-	24	53	77
G8WUU	-	22	70	92
G4NWT	-	22	55	77
G8SRL	-	21	83	104
G8LXY	-	20	34	54
G4IGO	-	19	245	264
G8WPD	-	19	120	139
G8ZSU	2	18	65	85
G6DER	-	17	67	84
G6HTJ	-	17	66	83
G4ERG	-	16	235	251
GW3CBY	5	16	79	100
G4MJC	-	12	108	120
9 HIBT	-	11	210	221
G6DDK	-	11	122	133
G4NRG	-	9	51	60
G4KLX	-		74	79
G8XQS	-	4	76	80
G8VR	-	3	216	219
G4LDY	-	4	41	44
G3POI	-	-	379	379
DK3UZ	-	-	304	304
G41JE	-	-	286	286
SP2DX	-	-	280	280
G4DEZ	-	-	231	231
G3CHN	-	-	224	224
GFPK	-	-	192	192
GW4EAl	-	-	187	187
G3KEQ	-	-	186	186
GJ8SBT	3	-	161	164
G8LFB	-	-	147	147
G6ECM	-	-	138	138
G8TGM	-	-	122	122
G8XIR	-	-	112	112
GM41PK	-	-	111	111
GM80EG	-	-	109	109
G4MEJ	-	-	105	105
G4GHA	-	-	104	104
G4MWD	-	-	95	95
G8RWG	-	-	83	83
G8WPL	-	-	79	79
G8VFV	-	-	76	76
G6CNX	-	-	63	63
G8XMP	-	-	62	62
G4PEM	-	-	50	50
G6ABB	-	-	49	49
G8ZYL	-	-	46	46

Starting date January 1, 1975. No satellite or repeater QSOs. "Band of the month", 70 cm .
lift and did manage OH5LK in NU37g on the 30 th . At $1,960 \mathrm{~km}$., this represents his best ever tropo. DX although he was hoping to break the magic $2,000 \mathrm{~km}$. barrier. He reckons that if some of the bigger OH folk had been on, he could have done it. UQ2GCG (LR) was another rewarding contact. These were CW contacts.

Dave Sellars, G3PBV, (Devon) heard a few ON and Dstations in DK square on the evening of the 29th, before going on to 70 cm . At 1030 on the 30 th he heard OE5XDL (HI) with a terrific pile-up which he could not crack before a necessary shopping trip. Coming back around 1200 , he got DF9RJ (GI) and OK1KKH/P (HJ). Later on, DJ8YZ (EN), Y24XN/'P (GK) and OK1KRA (HK) were contacted. At 1630, OK2BFH/P (JJ) was called for a long time. He was calling for Gs, but kept going back to PAs! Dave remarks that he is always amazed ". . . at the way the OKs rush up to the mountain tops as soon as the bands start to open up'". He reckons they must be well organised.
It is some while since John Quarmby, G3XDY, (Suffolk) has been in contact. He updates his squares totals, increased in ". . . various bursts of activity over the past few months using a variety of mediocre, temporary aerials". Latest DX was on the 30th with OK2BLE/P (JJ33g) on CW. Other loud OKs were worked. Ray Elliott, G4ERX, (Essex) is another reader who had not reported for some time and he also worked OK2BLE/P at 1,296 km. Another one was SM5CBN (HS56c) at $1,198 \mathrm{~km}$.

In up-dating his Annual Table scores, Tim Raven, G4ARI, included S1AD as a new country. This one was commented upon in a previous column and we are not counting it for anything. Adrian Chamberlain, G6ADC, (Coventry) has sent along a copy of a QSL from this station, located on "The Principality of Sealand". John Fitzgerald, G8XTJ, (Bucks.) also refers to SIAD suggesting that, as it is outside U.K. territorial waters, we have no jurisdiction over it. He says they have tried to join the United Nations but, as they have failed, they cannot join the I.T.U. and sign the treaty, therefore licence themselves, in effect. This confusion over territorial waters has your scribe puzzled since, in the current dispute with Denmark over the E.E.C. Fisheries Agreement, the Government, in the guise of Peter Walker, has clearly stated we have 200 miles of territorial waters. If so, then Prince Roy, Princess Joan, and their chums are illegal immigrants and SIAD is a pirate station, surely?
John Cleaton, G4GHA, (Dorset) is a 'White Stick operator"' and is very pleased to have passed the hundred mark in his squares tally, now at 104. His gear comprises a Trio TS-700S and 6-ele. Quad at 30 ft . New squares on the 30 th were DL6NAA (FK), OK1KKH (HJ), DK5GX
(DI) and OK1KHI (HK), all worked on SSB.
Ken Osborne, G4IGO, (Avon) can always be relied upon to work some of the better DX. Referring to the Sept. 26 Ar, he did not get on till 1610 but then worked HG1YA (IH), Y22LI (FL), HG8CE (KG), YU7AR (KF), FIGAR (ZG), SM7DLZ (IQ) and SM7GEP (HR), all over 1,000 km . This event finished at 2100 , with QTFs of $70-75^{\circ}$, but 50° for SM. On Oct. 1 between 1830 and 1850, a couple of GMs were heard, with another session from 2233 to 2311 when SM4GVF (HT) was contacted. GMs in XQ, YQ and YR were heard at 25°.
In the Oct. 30 tropo., G4IGO lists the following worked:- OK1s KHI/P, KSL, ATQ, KRA, MBS and MG, all in HK square; OE5XDL (HI); OK1KKM/P and 'AZ in HJ; Y21VC/P (HN); OK1KPL (GJ); OK1s KPU/P and IBI/P in GK; Y31QM/A (GL); OK2KZR/P (IJ); OK1DJW/P (IK) and OK2SBL and OL7BDQ in JJ. Ken did not identify the modes, but most would seem to be on CW.

Paul Turner, G4IJE, (Essex) continues to make regular MS QSOs and in October, had skeds. with DJ5MS (GI) on the 9th, 12th and 16th. Also on the 9th, LA6QBA (GV) was new, as was SM3JGG (HV) on the 22 nd. Other successes were:- 10 th, OE3CEW (II); 17th, OK1MAC (HJ); 20th, special event station OK6WW (GK); 23rd and 30th, DL3MBG (GI); 27th, OZ1FDH (GP) all these on CW. On the 29th, YU3ZV (HG) was worked on SSB. He used 100 w . and sixteen 11-ele. Yagis, all home made and being half of an $E-M-E$ array!
Jon Stow, G4MCU, (Essex) first noticed the tropo. lift on Oct. 29 when OE2KMM was heard weakly and on 70 cm . too. On the 30th', Jon lists:- 0945 OK1KHI/P on SSB; 1018 OK2KZR/P on CW; 1111 OE5XDL on SSB; then at 1253 OK2EH (JJ); 1304 OK1DJW/P; 1447 OK1AWL/P (HJ) and 1512 Y31QM/A, four new ones, all CW. Subsequent QSOs included OK1KSL (HK); OK2BLE/P; Y26LI (FL) on CW and OK1MBS; Y24XN/P; Y25VL/A (GL); DL2AX and DD8NG, both in FK and on SSB.

Tony Collett, G4NBS, (Bucks.) has not written for some time but says he has missed all the good openings. Back on Aug. 16, he worked EA2JG (YC) for a new square, however. For G6ADC, OK1KHI/P was a new square and new 1982 country. Mick Cuckoo, G6ECM, (Kent) got five new squares on Oct. 30, viz:- OE5XDL (HI); DL6NAA (FK); OK1KKH/P (HJ); OK1MBS (HK); and OK2BFH/P (JJ). The band was open towards the east and south-east from 0615 till 1900 for him and other nice contacts included HB9AEN/P (DG); Y21VC/P; Y38ZA; OK2VIL/P (JJ); OKs in GK and HK and a number of DLs.

Mike Hearsey, G8ATK, (Surrey) did spend a little time on 2 m . on the 30th and
lists:- OK1KRA and 'KHI/P; Y24XN/P and OK1KPU in GK; DG7YBN (EM) and Y48VD (GM). Jim Rabbits, G8LFB, (London) worked OE2KMM (GH16c) and DL1MAX (FI24b) on the 29th and the next day notched up another eight squares. His list includes seven OKs: OE5s XDL and 'VHL, the latter in GI58b; and eight Y stations in GK, GL, GM, HM and HN. F6CVN (CI23b) was a new French square to bring Jim's total to 147.

Jackie, G8RZO, and John, G8RZP, Brakespear now have a new aerial tower up at 45 ft . with two 9-ele. Tonna Yagis on top, after prolonged hassles with planning applications. Their notes cover activities from August through the end of October in which period they both added another 15 squares. The more recent new ones were EISEG (VM) in the Sept. 26 Ar, Y23DI (GL) and OE5XDL on Oct. 30. Pete Godfrey, G6ULU, (Kent) spent most of the time on 70 cm . in the end-of-October lift but did come onto 2 m . to work OKlKPU/P in GK for a new 1982 country.

Rod Burman, G8ZSU, (Surrey) runs 75 w . to an indoor 4-ele. Yagi and did quite well in the tropo. lift, adding seven more squares. His QSOs included HB9AEN/P; OK1KHI/P; DL6NAA (FK); OK1KPU/P and stations in CH, CI and CJ, with OZ heard. He is still trying to persuade the wife to agree to the 6-ele. Swiss-Quad-Yagi being erected outside. GI8ROJ's letter preceded the tropo. affair but he did well in the Sept. 26 Ar, noticed around 1400 GMT . He has a mediocre site, the gear comprising a Liner-2 with 3SK88 preamp., 50 w . amp. and 13 -ele. Tonna at 45 ft . When near neighbour GI8RLE came on neither could work much so they compromised by both operating from the latter's, better QTH. A goodly assortment of D, F, OE and U.K. stations were -worked, such as OE2KMM (GH); DF9RJ (GI); OE5OLL (GI) and F6BSJ (CG) being very good Ar DX on SSB from Armagh. Both operators are now thinking about "crunch proof" front ends!

Seventy Centimetres

The October-end tropo. gave G2AXI OK1MXS/P and Y22ME on the 30th for two new 1982 countries and Syd devoted most time to $70 \mathrm{~cm} . \mathrm{G} 3 \mathrm{COJ}$ found 70 cm .
conditions poorer than on 2 m . on the 30th, but between 1935 and 2105, Brian worked OK1MXS/P (HK); Y23FG (FM); OK2JI/P (IJ) and Y23JK (FK). G3PBV also worked OK1MXS/P but Dave's best DX was OK2BFH/P (JJ) at $1,572 \mathrm{~km}$. He missed Y22ME but did work his first East Germans, Y23KK/P (FK) and Y24XN/P (GK). DC7QH and DL9UT in GM in Berlin were also contacted. The Cumulatives sessions on Oct. 8 and 24 were poor, activity-wise, but the contacts made were over good DX. The best session was Nov. 1 with 12 worked.
Mike Lee, G3VYF, (Essex) added another four squares on the 30th: OK2VPB/P (JJ); Y22ME (HM); SMOFZH (JT) and SMODJW (IS) to make it 117 on the band. G3XDY heard SMODJW working down to AG square $1,700 \mathrm{~km}$! John managed Y24XN/P and OK2JI/P himself on the 30 th . G4MCU is QRP on 70 cm . with about $21 / 2 \mathrm{w}$. of CW at the bottom of the feeder. Nevertheless, Jon managed $\mathrm{Y} 24 \mathrm{XN} / \mathrm{P}$ and HB9AMH/P (on SSB). Unfortunately, OK2VIL/P did not copy Jon's call correctly so is listed as a "gotaway". He heard the OKOEA beacon at S7 at 2050 on the 30 th on about 432.94 - should be 432.96 - in HK18d. OZ2ALS (EQ79c) beacon on 432.983 MHz was S2 at 2250 .

G4NBS was on for the Cumulatives on Oct. 8 and 16 and worked 35 and 27 stations, respectively. G6ADC lists ON7OW (CK) and F1EZQ (CH) as new on the 30th. Keith Hewitt, G6DER, (S. Yorks.) did not date his letter which refers to the contest in which he worked some new G counties for the table, the first QSO being F6CTT/P (AJ). G8ATK was on from 1722 to 2128 on the 30th but lists only one OK, OKIMXS/P. Mike worked Y22ME and Y23FG (FM), most of the rest being Ds in the E, F and G squares.

G8RZO/RZP have each added 14 more squares since August, seven in the Oct. 30/31 period for Jackie, and nine for John. The pick of the crop were DJ9HO (FK); OE2CAL (GH); Y23FG; OE3XVA/3 (HH) and OK1MXS/P. It is interesting to note they were still able to work the DX when conditions had folded for those in London and further west.

Chris Easton, G8TFI, (Gloucs.) found conditions "super to the east with some noticeable ducts forming on the 30th''. He
worked thirty squares and is now up to 94 . Five stations in JJ were worked at 1,485 km . along with II, IJ, FJ, HM, etc. Stations to the west of Nympsfield seemed to be doing well, but not those in ZL square and to the east. ON4YZ said he heard an OH on the 30th. Y24XN/P was an outstanding signal throughout with 40 w . to a 6 -ele. Yagi 100 m . a.g.l. Chris is now using a muTek GLNA 432 Gasfet preamp. in a home made waterproof box up the mast and hears 7 dB of sun noise. He had 69 QSOs in the Nov. 1 leg of the Cumulatives, best DX being EK sq. Operating -/P with G4NXO in AL sq. in the contest, they made 328 QSOs with many Germans in En and Fn worked.

G8ULU worked DC9NH (FJ) and DF6NA (EJ) on the 29th and on the morning of the 30th, OK1MXS/P following a tip-off via the telephone from G8RZO. During the evening, Pete got Y24XN/P, Y23FG and SM0DJW which, at $1,250 \mathrm{~km}$., is his best DX. The rare Armagh county is now available with GI8RLE who has 10 w , to an 88 -ele. Multibeam.

Gigahertz Bands

The bad news is the loss of part of the 13 cm . band, namely 2.30 to 2.31 GHz , withdrawn on Oct. 1 in the U.K. The beacons can be operated therein till Dec. 31, 1983. G3COJ and G3PBV both report little DX on 23 cm . during the Oct. 29/31 period. In the Cumulatives, G3PBV has only heard G4HWA/P (Berks.) but who never seemed to beam west! G6ADC is now on 23 cm . with an $M M$ transverter and D15 aerial. Adrian is planning a second D15 at any time. The only station listed worked on the 30th by G8ATK is DJ6GQ (EI13j) at 1812.

Derek Brown, G8ECI, (Lincs.) is now back home and QRV on 23 cm . from AN square with one watt and a Heliax fed 23-ele. F9FT beam.

Deadlines

All your news for the January issue by Dec. 8 please and for the February piece, by Jan. 5. The address is:- "VHF Bands", SHORT WAVE MAGAZINE, 34 High Street, WELWYN, Herts. AL6 9EQ. 73 es Happy Christmas de G3FPK.
muTek Ltd. announce the availability of the RPCB251ub complete front-end replacement board for the Icom IC-251 and IC-211 144 MHz transceivers, which uses advanced circuit design techniques to provide a combination of low noise figure with superior dynamic performance. Full details are obtainable from muTek Ltd., Bradworthy, Holsworthy, Devon EX22 TTU. (0409-24543.)

PLUG IN YOUR SOLDERING IRON AND BEGIN HERE PART VII

A GUIDE FOR THE INEXPERIENCED IN THE METHODS, TECHNIQUES, PITFALLS AND FOLKLORE OF BUILDING EQUIPMENT, WITH PRACTICAL PROJECTS TO BUILD ALONG THE WAY

REV. G. C. DOBBS, G3RJV

IN the days of my youth when I was busily building up little receivers with valves and plug-in coils we used to think that a 'real constructor' was someone who had built a superhet receiver; most of us were building up regenerative receivers. I guess these days the direct-conversion receiver is usually seen as the simple end of the receiver range. We looked at the building of a simple direct-conversion receiver in Parts V and $V I$ of this series (Short Wave Magazine, Oct. and Nov. 1982) so perhaps it is natural to go on to building a superhet receiver. These articles also discussed the design and making of printed circuit boards and a simple superhet will provide a good testing ground for those techniques.

This series is not written as an introduction to radio theory, there are many books and better authors to be consulted to seek such information, but a block diagram of a superhet receiver, shown in Fig. 1, will illustrate some of the background to the receiver in this article. Incidentally, knowledge of theory, or the lack of it, need not be the barrier that many people think it is for the building of radio equipment. I have never received any formal training in radio theory, my formative years were filled with useful subjects like Greek and Medieval Church History. What radio theory I have comes from reading up what I required to know to do the things I wanted to do, and most of all from building up items of equipment.

The block diagram of Fig. 1 shows an 80 metre amateur band superhet receiver. The signal on the 80 metre band is tuned by input tuned circuits and fed into a miver. Here it is mixed with a signal generated by a variable frequency oscillator (VFO) which tunes 455 kHz higher than the input frequency from the aerial. The output from the mixer contains the input signal, the VFO signal and two mixed frequencies - the input minus the VFO and the input plus the VFO. The input signal minus the VFO signal will be at 455 kHz over the whole tuning range of the band. This is the intermediate frequency (IF), and this signal is tuned and amplified by an IF amplifier and passed to a second, balanced, mixer. This mixer also receives a signal from another oscillator, the beat frequency oscillator (BFO) which is tuned close to the IF of 455 kHz . We require to extract the audio
content of the IF signal and if the BFO is tuned off the IF by the required audio frequency, this will emerge as a beat note. The radio signals are thus detected, this form of detection only being suitable for CW (Morse) or single-sideband (SSB) signals. As these form the bulk of amateur traffic on this band, the method is ideal. The resultant audio signals are then amplified to suitable listening levels.

Obviously such a receiver contains more tuned circuits than our direct conversion receiver and has critical components like the IF filter. Would-be superhet receiver builders may be put off by the expensive items they see in commercial receivers. In the receiver to be described here use has been made of cheaply available components. Although the receiver is a simple one of its type, the prototype handled very well on the 80 metre band and was inexpensive to build. Some time ago I designed a direct conversion receiver for Short Wave Magazine called the "Direx", so following that line of naming I have called this little receiver the "Superex". The complete circuit diagram for the receiver is shown in Fig. 2.

The Superex Receiver

The circuit is about the simplest arrangement for an amateur bands superhet. One of the most expensive components in such circuits can be the IF filter: this circuit has made use of a cheap ceramic filter which contains two tuned circuits and a ceramic plate resonator. The VFO is very simple being the same circuit employed for the PCB80 direct conversion receiver featured in Part V of this series. It should be possible for anyone who built that receiver to use the same VFO for this circuit by simply altering the setting of the core in the tuning coil. The audio amplifier from the PCB80 could also be used for this receiver, thus saving the building of another circuit board. The two IF transformers used in the prototype were culled from old transistor radios; once again the idea is to get hold of the components as cheaply as possible. The receiver follows the method of construction advised with the PCB80 receiver: it is built in small sections, each on its own printed circuit board capable of being tested in its own right.

Following the usual method of section-by-section construction for a receiver, begin at the output and work to the input; the receiver is described board by board. Parts V and VI of this series dealt with the making-up of printed circuit boards from a circuit diagram. For this project I have not given any printed circuit board track layouts-did the reader get the message in the previous sections? However to provide a little aid a layout diagram of the top of each board is given. The housing of the receiver is also left to the ingenuity of the reader and could be based upon the advice given for the housing of the PCB80 receiver.

The Audio Board

The layout diagram for the audio board is shown in Fig. 3. This is the obvious starting point for the receiver as the board can be tested as an audio amplifier. The audio board circuit, Fig. 2 , shows that a three-transistor audio amplifier is used. Some of the readers of my previous offerings to this magazine will recognise it as the audio board I used for the "Ben" transceiver, a little rig for the 10 MHz band described in Short Wave Magazine for January 1982. To the charge of lack of originality I

Fig. 1 BASIC 80 m SUPERHET

Table of Values

Fig. 2
$\mathrm{RI}=820 \mathrm{R}$
$\mathrm{R} 2, \mathrm{R} 14=100 \mathrm{~K}$
R3, R5, R6 = 100R
$\mathrm{R} 4=39 \mathrm{~K}$
$\mathrm{R} 7=10 \mathrm{~K}$
$\mathrm{R} 8=220 \mathrm{~K}$
$\mathrm{R} 9=2 \mathrm{~K} 2$
R10 $=1 \mathrm{M}$
$\mathrm{R} 11=2 \mathrm{~K} 7$
R12 $=82 \mathrm{~K}$
R13, R18 $=1 \mathrm{~K}$
R15, R17 = 220R
$\mathrm{R} 16=470 \mathrm{R}$
$\mathrm{Cl}=15 \mathrm{pF}$
$\mathrm{C} 2, \mathrm{C} 5, \mathrm{C} 8, \mathrm{C} 12=0.01 \mu \mathrm{~F}$ C3, C4, C6, C7, C17, C18,
$\mathrm{C} 21=0.1 \mu \mathrm{~F}$
$\mathrm{C} 9=2 \mu \mathrm{~F}$, tant.
$\mathrm{C} 10=50 \mu \mathrm{~F}$, tant.
$\mathrm{C} 13=2.2 \mu \mathrm{~F}$, tant.
$\mathrm{C} 14=220 \mathrm{pF}$
$\mathrm{C} 15, \mathrm{C} 16, \mathrm{C} 20=100 \mathrm{pF}$
$\mathrm{C} 19=0.001 \mu \mathrm{~F}$
RV1 $=10 \mathrm{~K}$ lin
RV2 $=1 \mathrm{~K}$ preset
RV3 $=5 \mathrm{~K} \log$
$\mathrm{VC1}, \mathrm{VC} 2=2$-gang 200 pF , see text
VC3 $=25 \mathrm{pF}$ variable, air-spaced
D1, D2 = 1N914
$\mathrm{ZD} 1, \mathrm{ZD} 2=6.8 \mathrm{~V}$. zener
FL1 $=455 \mathrm{kHz}$ filter, see text
1FT1,1FT2, = see text
$\mathbf{L}=40$ turns, 36 s.w.g., plus 5 turns on $3 / 16^{\prime \prime}$ dia. former with core. $\mathbf{L} \mathbf{2}=40$ turns, 36 s.w.g., tapped at 30 turns, on $3 / 16^{\prime \prime}$ dia. former with core. L3 $=10$ turns plus 35 turns, 36 s.w.g., on $3 / 16^{\prime \prime}$ dia. former with core. RFC1 $=8$ turns, 40 s.w.g. (or similar) on ferrite bead.
can only reply that this circuit has become my standard receiver audio board. It is high gain, low noise and simple to build. It would be possible for the constructor who has built the PCB80 receiver to begin with the audio amplifier used in that circuit for the Superex receiver then perhaps add this circuit later.

The discerning reader will have noticed that TR4 in the audio amplifier is a PNP transistor: in fact, TR3 and TR4 are a complimentary pair of transistors. Several types of transistor will work well in this circuit. Apart from the BC318/BC321 combination given in the table of values, BC171/BC251 and BC414/BC416 have been used with success in the amplifier. The output transistor type is not critical either, in this case the same type as TR 3 has been used. The amplifier is designed for medium to high impedance headphones. I have several pairs of phones with an impedance of 200 to 500 ohms all of which do the job well. If only 8 -ohm phones are available, try adding a transistor output transformer, taken from a scrap AM transistor radio with transformer output. The electrolytic capacitor C10 was a tantalum bead type, but these are expensive and a normal electrolytic type can be used, with the correct working volt age and correct polarity connections.

The diagram in Fig. 3 should assist in laying out the printed circuit board. Like all layouts it will depend upon the available components and their physical size. This layout is quite compact and several of the resistors are mounted vertically to save space but a larger layout may be easier for a beginner. Remember that TR4 is not only a PNP type but it is also mounted "upside down" with the emitter to the top of the board. When the board is completed, after the usual check over against the circuit diagram, it may be tested as an audio amplifier. Apply power and try the "hummy finger test" - a finger on the input of C9 should produce lots of hum in the phones. The sophisticated can

Fig. 4 VFO BOARD (actual size).
try feeding in an audio signal to test amplification, though the signal should be quite small as this circuit can overload.

The VFO Board

The VFO board may be built next as this can be tested in its own right. The circuit exactly matches that used in the PCB80 receiver. The constructor can use the same VFO if required. The PCB80 VFO will give the required coverage (3.955 to 4.455 MHz) by merely adjusting the core in the coil L3. A full account of building up a VFO was given in Part V of this series. The main point is to build it physically strong and rigid - the worst problems with a VFO usually arise from the way it is built rather than any other single factor. (I have a three-year-old son who is a cross between a demolition engineer and a caveman and I imagine putting the VFO into his hands as I build it). The board layout is shown in Fig. 4.

The coil former is a surplus $3 / 16^{\prime \prime}$ diameter former with a slug. The type used has a five pin base and a screening can. Any similar former can be used, and on this circuit board the screening can is not important as the whole VFO board is mounted into a screened box. VC3 is probably the most difficult component to find in the whole receiver. Lovely airspaced low value variable capacitors can be very expensive, Jackson Bros. make a fine example, but such components are to be hunted out from cheap sources and hoarded. The combination of C14 and the adjustment available with the core of L3 should give the desired frequency coverage, but if not, the value of C14 can be adjusted. Increasing C14 lowers the frequency and decreasing it raises the frequency. The two capacitors C14 and C15 are in the tuned circuit of the VFO and should be of good quality. The ideal types are either good silver mica or polystyrene capacitors.
The VFO circuit is fitted with voltage stabilisation in the form of a zener diode ZD1. This does help to overcome drift, although in the initial tests of the receiver a 12 volt battery was used without ZD1 present in the circuit and the receiver seemed quite stable enough. The completed board is mounted in a stout box which should also house VC3. The board is firmly fixed inside the box with small screws, 4 or 6 BA , and held above the base of the box with standoffs. Use hefty bits or wire to join VC3 to the board and remember that the connection which goes to the moving plates on VC3 must be the ground connection, an obvious point but not a few have wondered why their VFO would not " O " when all the time the variable capacitor was shorted out.

Fig. 3 AUDIO BOARD (actual size)

Fig 5 BFO BOARD (actual size)

Fig. 6 MIXER/IF BOARD (actual size)

When finished and in the box, the VFO can be tested. Power should be applied and the output can be checked using a diode RF probe feeding a meter. Using the simple RF probe described in Part IV of this series, I measured some 10 volts peak-to-peak of RF output from the VFO before it was connected into the receiver. The frequency can be checked by listening for the signal on a receiver; this will also allow the range of the VFO to be checked. Those with frequency counters, or friends with frequency counters, can check the output directly on the counter readout.

The BFO Board

As oscillator boards can be checked when built, the next board to attempt is the BFO board. The circuit, Fig. 2, is very simple and is based upon a standard 455 kHz IF transformer. The tuned circuit of the IFT is in the drain of the FET transistor, TR7, and the output from the coupling winding is fed back into the base of TR7 via a capacitor C19. This provides the feedback path to maintain oscillations. Correct phasing of this feedback path must be used and the capacitor C19 is taken to the end of the coupling winding at the same side of the IFT as the side of the tuned winding that goes to the drain of TR7. This is illustrated in both the circuit and layout diagrams. Any standard 455 kHz IFT will serve for IFT2; I used one taken from an old AM portable radio. The BFO need not be a screened box, but it is important to take the screened can (which should be on the IFT) to ground to prevent stray radiation of the signal.

A suitable layout for a printed circuit board is shown in Fig. 5. Again the layout depends upon available components and the obvious one that might differ is the IFT. When the board is completed it may be tested by looking at the output on a meter via the RF probe. The prototype gave some 10 volts of output, peak-to-peak, before it was connected into place in the receiver. Eventually the BFO will be tuned a little off 455 kHz to give the beat note, but for testing leave the core slug as found as this will probably be on 455 kHz . If a receiver is available that will tune 455 kHz , this can be used to listen to the signal from the BFO - and naturally the output could be viewed on a frequency counter.

The Mixer/IF Board

This is the largest board and forms the heart of the receiver. The main component worthy of note is the filter FL1. Following the usual principle of using what is cheaply available, FLI is a surplus item. It is a ceramic filter sold by J. Birkett of Lincoln at 50 p (order as " 455 kHz Filter" and do not forget to enclose 30 p for postage; the address of the stockist appears at the end of this part). The filter is housed in a red plastic case which has a white spot of paint as a locator, the position of which is shown in the
layout diagram, Fig. 6. On first inspection and testing the filter proved to have a centre frequency of 452 kHz , so forget all I have said about 455 kHz ! In fact this is so close to 455 kHz that I shall continue to use the more usual 455 kHz as the named frequency.

Looking at the circuit within the dotted lines on Fig. 2 marked for the Mixer/IF Board, the volume control ("audio gain" to we informed amateurs!) is not mounted on the board but is a front panel control. The board is best built by starting at the output end, that is C21 backwards. This will enable those constructors with a signal generator or signal on 455 kHz to test as building proceeds (I built as far back as C 4 for my first section of this board). The board can be tested by injecting a signal at the IF frequency into C4. The BFO and the audio amplifier should be connected to the Mixer/IF Board for this test. No signal generator? Well, I didn't have one when I built my first superhet. If so, the idea is to press on in faith and set up the whole lot at the end. The ultra cautious might even like to try building up a copy of the BFO to provide a signal source for testing the IF strip.

TR2 is a simple IF amplier using a dual gate MOSFET transistor. The 40673 is named as the type, but I used a cheap equivalent from J. Birkett, although I believe his stocks of these are near, or at, an end. The spare gate at the top of the circuit is used as a means of controlling the gain of the stage. In this circuit RV1, a front panel control, becomes the IF Gain control. The ouput from TR2 goes into the tuned winding of IFT 1; this is yet another surplus IFT, culled from the ever useful scrap AM radios. The coupling winding feeds a couple of diodes which act as a passive balanced mixer, with RV2, a board mounted preset control, providing a degree of balance adjustment. R7 is the output load and RFC and C8 decouple any RF signal present on the output. All very clever, isn't is? With a signal tuned near 455 kHz feeding into C 4 it should be possible to adjust the frequency of the injected signal to mix with the BFO and produce quite a distinct tone in the audio amplifier. The function of RV1 can

Fig. 7 INPUT BOARD (actual size)
also be checked - bet you connected it the wrong way round and clockwise decreases the gain!

The filter FLI can now be added to the circuit; its mounting is shown in Fig. 6. I do not know much about this filter except that it is cheap, has two tuned circuits for input and output and a ceramic plate in the middle. I guess it is very similar to the Toko CFT455C filter and this filter could be used in the circuit; in fact many of the Toko 455 range of filters would probably do the job, but they all cost hard earned money. As for the bandwidth, again I use subjective data, but I reckon it must be at least the 6 kHz of the CFT455C. I base this on its performance in the circuit and a quick look at the response on an oscilloscope. With the filter in place a signal can be injected into the circuit via the input of FL1; IFT 1 may require a little peaking with the core to obtain the maximum output. Do not be overconcerned about the signal losses in the filter - after all that is what TR2 is all about.

Finally the mixer stage TR1 can be added to the board. Once again the cheaper equivalent to the 40673 was used in the prototype. Signal generator owners or borrowers can now test the board at the signal frequency of the 80 -metre band. The VFO must be connected to the mixer and a signal on 80 metres injected into TR1 on the bottom gate in the circuit. Swish about to find the signal with the VFO or if the calibration on your signal generator is as bad as mine, swish the signal generator about to find the frequency of the setting on the VFO. A little readjustment of IFT1 and IFT2 may help here, but leave the final adjustments until the receiver is completed.

The Input Board

Fig. 2 shows the circuit used to tune the input signal to the required frequencies on the 80 -metre band. It is a simple two stage bandpass filter made up from two tuned circuits L1/VC1 and L2/VC2, loosely top coupled by a low value capacitor C1. Although only one tuned circuit might have been used for such a simple receiver, the arrangement of Fig. 1 offers a much tighter input circuit for very little extra expense. The two coils are wound on the $3 / 16^{\prime \prime}$ diameter coil formers mentioned above. L2 has a tapping to match into the gate of TR1, and L1 has a small input winding to match the usual low impedance aerial input. VC 1 and VC 2 are two sections of a ganged polycon variable capacitor of the type used in cheap AM radios, yet again a component to raid from a scrap receiver. The value of the one I used seemed to be about 180 to 200 pF which is usual for such components. The cores in L1 and L2 will provide adjustment to match suitable variable capacitors. I have described the use of such components before in this series and pointed out that the ones to look for are those with longer than usual control shafts. Many such AM radio tuning capacitors have very short shafts and these can present problems when wanting to add a control knob.

The layout of the input board is shown in Fig. 7. What could be simpler? Once again it helps if the formers with the bases and screening cans can be found. When I was raking through my junk to find the IF transformers I came across some old IFTs which were wound on formers which would have been ideal for LI and $\mathrm{L} 2 ; 3 / 16^{\prime \prime}$ diameter formers in cans are very common, so look around -I bet you regret throwing out some of those old 1960's transistor radio boards now. If screened formers cannot be found, unscreened ones will do, but some form of screening ought to be mounted between L1 and L2 as they are mounted quite close together and inductive coupling could occur, masking the effect of Cl .

Although L1 and L2 will be set up in the final tidying up of the receiver, it is possible to check the frequency coverage and adjust the input board on its own. A signal on 80 metres can be injected into the small winding of L1 and the output measured with the RF.probe. Set VC1 and VC2 about two-thirds closed and adjust L1 and L2 for a peak in the output. The prototype setting was done with the variable capacitor about two-thirds meshed, but if the value of the available polycon variable is higher VC1/2 might have to be opened further to set the coils on
the band. The important thing is to ensure that the whole of the 80 m . band can be tuned by the control. A cruder, but quite effective, way to set up the board without a signal source is to put it onto the front of an existing 80 -metre receiver. Try coupling the output of L2 via a capacitor, say 100 pF , into the receiver and use a small antenna on the input of L 1 or tune a weak signal: the cores should make enough difference in signal level to enable them to be peaked by ear.

Setting-up the Receiver

This bit can be fun, or not, depending upon your state of humour. The important point to remember is to make small adjustments at a time and note how far the adjustment has been made, so that the original condition can be restored if required. We are not winding up a clockwork toy, but optimising a piece of technology . . . Begin by injecting a low level signal on the 80 -metre band, try the end of the band you favour or just the middle of the band. If no signal source is available, remember the oscillator from the transmitter you built some time ago might be useful as a signal on the band. The work required to be done is to peak up the input coils, peak up IFT1, adjust the BFO beat note and set the mixing level with RV2. Assuming that the input coils are not far off their settings, park RV2 in the middle of its travel and begin with the BFO note.

One of the problems with the BFO is that it only requires to be set very slightly off the filter frequency. Probably some 800 Hz off the frequency to give a good beat when tuning from the high end of the band to the low. This involves very small adjustments of the core in IFT2. It is possible to get harmonic beat notes which may seem correct but produce "birdies" - nice juicy signals permanently parked on useful frequencies on the band. Assume that the IFT is tuned near enough to 455 kHz and try minor movements of the core to get the correct beat note. If a signal on the band is being used, look for an unmodulated carrier or a clear Morse signal to adjust the BFO; tune it in from either side and adjust until the signal can be resolved without problems. The peaking of IFT1 is very simple: adjust a little at a time for maximum signal. The balance control RV2 can be adjusted at this time but 1 prefer to make the adjustment in use with a weak signal. It takes a lot to beat "adjustments on the hoof"

Sophisticated superhet builders will speak of tracking problems and trimming and padding . . . but let them. This simple receiver has the VFO control VC3 as the main tuning control, and as the frequency is changed the input can be peaked up if required with VC1/2. Hopefully if L1 and L2 are similar coils with the same number of windings, they will tune the same frequency as each other over the whole band. All we are required to do is peak them, either using the centre of the band or a favoured part of the band and trust to luck that they track each other over the whole band . . . they will! All of this may sound complex, but really the receiver is easy to set up, with a little care. The prototype was built in unseemly haste and set up in about 5 minutes without problems.

The completed receiver deserves a case and a slow-motion drive for VC3 with a calibrated scale. It may not beat the latest Far Eastern grey boxed receiver - although it would not be difficult to beat some of the medium priced modern receivers I have heard - but it is "of your own hands". The constructor forgives the little shortcomings of his equipment because he identifies with it; but the shortcomings of a $£ 500$ box, and there always are some, just mean frustration and a compulsive desire to throw it across the room. The Superex is certainly a useful little receiver on 80 metres.
to be concluded

Components Source. J. Birkett, 13 The Strait, Lincoln. (0522-20767).

GETTING OUT ON 10 MHZ

IT MIGHT BE FAIRLY EASY TO ERECT A SEPARATE ANTENNA FOR THE 10 MHz BAND, BUT IT COULD BE EVEN EASIER TO MAKE USE OF EXISTING ARRANGEMENTS WHERE A VERTICAL IS IN USE TO ELIMINATE THE NEED FOR EXTRA CABLE. IT'S WORTH A TRY, ANYWAY!

STATIONS using 5-band vertical antennas in conjunction with a decent radial system might find results obtained on the newish 10 MHz band are not good due to the mismatch not catered for in a vertical designed primarily for $80,40,20,15$ and 10 metres.
Verticals are usually good DX performers when carefully set up and it is not unusual to find the larger 5-band types mounted fairly close to ground, the coaxial cable either lying on the ground or even buried in it on the way to the station.
This was in fact the case at one location examined recently and where the vertical - a Butternut HF5V-III - stood on the lawn some 40 ft . from the shack and had been adjusted to provide direct SWR readings of better than $2: 1$ on each of the five bands in the

CW segments so that no ATU was required.
The 10 MHz band was accommodated by running out a sloping wire approximately 72 ft . long from the antenna 'hot' connection to a distant support and thence towards ground, inverted ' V ' fashion as indicated in Fig. 1, the length being close to 0.75λ at 10 MHz and thus presenting a low impedance to the cable. Theoretically the wire could be any odd number of $1 / 4 \lambda$ lengths at 10 MHz and in some restricted locations only one approximately 24 ft . - may be possible. The 0.75λ dimension however should confer maximum radiation at points ' A ' and ' B '.

Adjustments

In setting up a similar arrangement and in order to avoid use of a tuner or ATU, the station rig would be set up initially for optimum 50 -ohm output at, say, 10.12 MHz or thereabouts in the usual way in conjunction with a dummy load. In exchanging the dummy load for the antenna the SWR noted may be unsatisfactory necessitating a slight shortening of the overall length of the added wire. Progressively snipping off a few inches at a time from the far end and re-checking on a 'cut and try' basis should result in a final low SWR indication. It might be thought that the additional wire would adversely affect previous SWR adjustments for the other bands, but this does not appear to be so since the antenna end of the coaxial cable apparently 'sees' an unsuitable impedance presented on bands other than 10 MHz ; no switching seems necessary therefore, the wire being left permanently connected.

Figure 1 Not to scale

Shown here is one of the latest products of that imaginative and prolific company, Datong Electronics Ltd. It is the Model DF, which adds Doppler direction-finding capability to existing VHF/FM communications receivers or transceivers. Applications include tracking mobile transmitters, locating interfering signals, locating transmitters with stuck microphones, search and rescue. Designed as an external accessory, Model DF needs access only to the antenna and external speaker terminals of the receiver; no internal connections or modifications are required. Operating frequency range covers from 20 to 200 MHz , and a typical mobile system involves four magmount quarter-wave whips mounted in a square array on a vehicle roof, and connected to Model DF's magmounted head unit; bearings are continuously displayed on a circular array of 16 LEDs on the control and display unit located close to the receiver, the control/display unit and head unit being connected by a single co-ax cable. For further details contact the designers and builders, Datong Electronics Lid., Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE.

EQUIPMENT REVIEW

$$
\begin{aligned}
& \text { THE DATONG MULTI- } \\
& \text { MODE FILTER MODEL FL3 }
\end{aligned}
$$

THERE are two basic approaches to controlling selectivity in radio receivers, The first method is to provide the desired filtering at radio frequencies in the IF chain, and frequencies from 50 kHz upwards have been used. Modern crystal filters at the popular IFs of 9 and 10.7 MHz can have excellent shape factors when properly terminated, but can be quite expensive, particularly those for narrow, CW bandwidths. The second method is to do the filtering at audio frequencies.

Datong Electronics Limited have been marketing suitable audio filters for some years and introduced their FL1, Frequency Agile Filter in the mid-1970s. It was reviewed in the July 1976 issue of the Magazine. The FL2 appeared in 1980 and a report on its use by three operators was published in the October 1980 edition. The innovation of the $F L 1$ was that it included a circuit that automatically scanned the AF spectrum and locked on to an interfering heterodyne in addition to the normal peaking and notching functions. The later $F L 2$ did not incorporate this scanning feature but the manufacturer subsequently introduced the FL2/A Automatic Notch Filter Module. This can be added to an FL2 to turn it into an FL3, or it can be used by itself with other equipment. The FL3 reviewed here is the original FL2 with the FL2/A built in.

Description

The FL3 consists of independent, five-pole elliptical function high-pass and low-pass filters, a two-pole peak or notch filter, a two-pole, constant-Q automatic notch filter and a two watts protected output stage. The HPF amd LPF feature linear voltage tuning from 200 to $3,500 \mathrm{~Hz}$ with a minimum stop band rejection of 40 dB . In CW mode, the bandwidth of the LPF is halved to 100 to $1,750 \mathrm{~Hz}$. The cut-off rates are 40 dB in 500 Hz at 2 kHz and 40 dB in 120 Hz at 200 Hz . The peak/notch filter has a constant bandwidth of 200 Hz at the -6 dB points and is linearly tunable between 200 and $3,500 \mathrm{~Hz}$. The notch depth is 30 dB . The automatic notch filter sweeps the range 200 to $4,000 \mathrm{~Hz}$ and locks on to the undesired whistle in less than a second with a 40 dB notch. The overall gain of the FL3 is unity.

The DC supply voltage range is 10 to 15 at 400 mA maximum. (N.B. In the caption to Fig. 2, an 8-20v. DC supply is mentioned. However, Messrs. Datong advise a 15 v . maximum since an IC in the $F L 2 / A$ module is only rated to 16 v .) The LM380 AF output stage is short circuit proof and delivers two watts into eight ohms with a 15 v . supply. A phono socket is provided from which output for a tape recorder can be taken at a source impedance of 680 ohms. No circuit diagrams were provided, so it can only be stated that the FL3 incorporates 29 ICs, mostly state-variable, multioperational amplifiers. The input impedance is 5,000 ohms.

Connections

The FL3 is designed to go between the output stage of the receiver and a loudspeaker or head phones. In practice, this means plugging the unit into the extension loudspeaker or head phone socket on the set and using an extension 'speaker. Alternatively, head phones can be plugged into the socket on the FL3. Two, one metre long screened leads with phono plugs on one end, and a 3.5 mm jack plug for the power supply are supplied. For this review, a 13.8 v . stabilised supply was used taken from the accessory socket of the station transceiver.

Results

Most of the reviewer's HF bands operation is in CW mode, often winkling out weak DX signals and trying to crack DXpedition pile-ups, so the FL3 was first tried in this mode. There are two ways to use the FL3 on CW. First, by pressing the "CW" button, the two-pole filter in peak mode is connected in series with the high-pass and low-pass filters giving an effective twelve poles of filtering with a domed response. The AF note is peaked by the middle knob, the bandwidth being varied from 100 to $1,750 \mathrm{~Hz}$ by the right hand knob. The skirt selectivity at the -6 dB points for this range is 70 to 700 Hz and at the lowest bandwidths, ringing occurred on the higher speed CW signals - an unavoidable phenomenon to do with the mathematics of the business. Once accurately tuned to a stable signal using the minimum practical bandwidth, copy was excellent with signals standing out remarkably above the noise.

The second CW reception method is CW(2) brought in by simultaneously pushing the "CW" and "SSB' buttons when only the HPF and LPF are in circuit. This combination gives a flat-topped response, as in SSB reception, with the centre frequency and bandwidth controlled as before. This method is useful in net operation when not everyone is on the same frequency. For RTTY reception, the "CW" and "SSB + NOTCH' buttons are pressed. This combination again brings in the two-pole filter as for "CW" but used as a notch filter, enabling unwanted signals in between the "Mark'" and "Space" signals of wide deviation RTTY signals to be greatly reduced.

When used in narrow bandwidth of about 500 Hz , i.e. 1 kHz as marked on the dial, a faint whistle of about 1 kHz pitch was noticed. The intensity varied with the setting of the centre and right hand controls and the note was randomly intermittent. This impaired copy of very weak signals since the reviewer's gear is set up for optimum CW performance with an 800 to $1,000 \mathrm{~Hz}$ beat note.

For voice reception, there is a variety of options available. With the "SSB"' button only pressed, the HPF and LPF are in circuit, their respective cut-off frequencies being controlled by the centre and rights hand knobs. For general use, the LPF was left set to about 2.5 kHz and only reduced when severe interference was encountered. Although nothing can be done to eliminate parts of an unwanted, overlapping signal within the passband, the overall readability of the desired signal was improved by reducing the cutoff frequency of the LPF to attenuate "monkey chatter."

Fig. 1. Front view of the Datong FL3 Multi-mode Audio Filter, showing the neat front panel layout. The overall size is 184 mm . wide, 44 mm . high and 153 mm . deep, the wrap-around case being anodised aluminium. The front panel is matt black with white and yellow legends.

Fig. 2. View of the FL3 from the rear, with the automatic notch filter board detached. The sockets on the rear panel, from left to right are, Input, Tape output, 8-20v. DC supply and Output.

Photo: T. Traill

Occasionally, a heterodyne whistle came in the passband and here the notch filter was extremely effective. This function is brought in by pushing the "SSB + NOTCH" button. Because of the narrow notch width of 200 Hz , accurate tuning was essential so Datong's suggestion of using the "SSB + PEAK" button first to peak the offending signal was adopted. Then, pushing the former button invariably eliminated the heterodyne.
The other way to cope with an unwanted whistle is to use the auto-notch feature which is independent of the manual notch function. Provided the interfering signal exceeded about 20 mv . peak-to-peak, this automatic "zapping'' of some 40 dB was quite dramatic. However, unwanted signals just below this threshold were often louder than the weak signal being copied, so the manual notch filter was a better bet. With no signal for the autonotch scanner to latch on to, a slight swishing noise was audible as it swept the band. It needed a steady signal to process and would not lock on to a CW signal, even if it was being keyed very fast. Perhaps something akin to slow AGC could be incorporated to overcome this slight drawback.

Other Uses

Being a purely audio processing device, the FL3 can be used with other audio equipment. For example, if a tape recording is
found to contain an unwanted whistle within the 200 to $4,000 \mathrm{~Hz}$ scanning range of the auto-notch filter, it can be switched in to "zapp out" the tone. One Continental VHF meteor scatter operator uses an FL2 when playing back slowed down, high speed CW and reckons he gets a worthwhile improvement in signal-tonoise ratio by using the filter in narrow CW mode.

Conclusions

There must be thousands of communications receivers in use which are stable and sensitive enough for today's crowded bands, but which could use better selectivity. Such sets can be "souped up" by installing better crystal filters, and perhaps extra ones for different bandwidths, but this involves some internal surgery and can be a costly exercise. There is no doubt that such receivers would benefit greatly from the quite painless addition of a Datong FL3 Multi-mode Filter, which would provide continuously variable bandwidth, passband tuning, peak and notch filtering and an automatic notch filter option. At $£ 112.50$, plus VAT, it would be a cost effective acquisition and if the auto-notch facility is not wanted, the FL2, at $£ 78$, plus VAT, is still available.

The manufacturer of the FL3 is Datong Electronics Limited of Spence Mills, Mill Lane, Bramley, Leeds, LS13 3HE, to whom we are indebted for the loan of this sophisticated filter.
N.A.S.F.

Fig. 3. Top view of the FL3 with case removed. The main, lower printed circuit board contains the original FL2 circuitry and is a double-sided fibreglass board. The FL/2A automatic notch filter module is the "upside-down', board, fitted sandwich fashion and occupying the left half of the unit.

Photo; T. Traill

A MICROPROCESSOR CONTROLLED MORSE DECODER, PART I

Peter Lumb, G3IRM

IN the November 1971 issue of the American magazine Ham Radio W7CUU and K7KFA described their automatic radiotelegraph translator and transcriber, alternatively called the 'automatic fist follower'. The article laid down the basic principles needed to read Morse code digitally and print the results on paper tape. Each stage was described in detail and partial circuit diagrams given, but apart from saying that TTL devices were employed no details of the actual types used were given. Suffice it to say that a look at the photographs showed that a large number of them was employed. When the article was written large scale integration devices were few and far between and those that were available were expensive. The writers also admitted that "the ICs used in the AFF were scrounged from cast-off vendor's samples and surplus computer circuit boards". Since reading the article the present writer has experimented with automatic Morse decoding and hereby acknowledges all the assistance obtained from the original article.

The first G3IRM decoder used a circuit put together from the partial diagrams in the Ham Radio article but substituted some large scale integration ICs to reduce the total count. The paper tape printer used by W7CUU and K7KFA was expensive so the writer's version used a video monitor as a display. Although the circuit worked well, and still works well, there are one or two problems which can cause confusion so these will be mentioned at the outset. Inter ference, as in normal reception of Morse code, is the main problem and this is admitted by the original authors. The only way to overcome it is to incorporate adequate filtering in the receiver and any audio filters used. The other form of interference (QRN) is also troublesome as this is treated by the decoder as a series of dots and the display thus shows a series of the letter E, each one produced by a pulse of interference. Again noise filtering in the receiver can help. However, due to the clever things that microprocessors can do, an attempt has been made in this new design to reduce trouble from this source. This will be explained when the programming of the microprocesor is described later in this series of articles.

The other problems encountered are caused by poor Morse code being received and there is a lot of this to be heard on the air. Everyone has heard DROM sent as one word and it is too much to expect that an automatic decoder will know that it is meant to be DR OM (and CQ sent as TR MA). This is not too serious as the meaning can be guessed. What is much worse is when the operator does not leave adequate spaces between letters. Once again the decoder cannot be expected to know what is intended and it has to do the best it can. The highest number of dots and dashes per letter recognised by the writer's original design was six so that if, for example, letters P and L were joined together the decoder would accept this as $\cdot-\cdots$ which is a symbol not recognised in Morse code; the last two dots of the letter L are omitted. The decoder also included a conversion to change the code received into ASCII (the American standard code for information interchange) which could be used by the video display unit. The result of this conversion produced something on the display but it could never, of course, be the letters PL. It could be any letter, figure or one of the many miscellaneous symbols in the ASCII
depending on which letters had been joined. The problem has been partially overcome in the new design by training a microprocessor to recognise these strange symbols, reject them, and then print out a dash in the same way as a Morse operator may write a dash for a missing letter. The philosophy is that having nothing is better than having something quite wrong and misleading.

Basic Principles

All Morse code is built up from one unit, namely, the dot and the length of this can vary for various reasons. One of these is a variation in sending speed and hand-sent dots may be of differing length. So the first thing to do is to provide some method of measuring the length of each dot. In digital circuits this is done by the system clock or oscillator being gated by the signal so that each dot (or dash) may let through a number of pulses. The original design used six pulses to the dot and the present one uses ten, though this could be varied; however, ten is a convenient number. From this it can be deduced that thirty pulses represent a perfect dash. Some leeway must be provided as each dot may not be the same length as all others so any number of pulses between five and fifteen is recognised as a dot and any number above fifteen is treated as a dash. In the original design a dot consisted of any number of clock pulses between one and twelve; the reader will thus note that even the shortest of dots allowing only one clock pulse to pass was accepted and this could be caused by an interference pulse resulting in a print out of the letter E. It will also be noted in due course that in the present design a count of less than five clock pulses is not accepted as a valid mark and is rejected by the microprocessor program. One of the beauties of microprocessors is that these numbers can easily be changed by the program without any rewiring. This part of the program provides some immunity from interference though it is by no means perfect. In a similar way clock pulses are counted during spaces to determine space length and this will be further explained when the program is discussed.

A feature of the earlier designs was an automatic system to vary the clock speed with the speed of sending. This was done by a counter and digital-to-analogue converter, so that if a count of less than six (ten in the new design) was obtained when a dot was received the decoder assumed that the speed of sending had increased and automatically increased the frequency of the clock to compensate. A long dot resulted in a lower clock frequency. This most useful feature has been retained in the present design but much more modern devices have been used. Note that only dots affect the automatic speed control.

The Present Design

It will have been gathered from the title of the article and the text so far that this decoder employs a microprocessor, in fact, it uses an 8085A by Intel. But before going further the author must make more acknowledgements for assistance received. In order to develop a program some form of development system must be used. However, once the program has been written, the development system can be disregarded so anyone who may care to duplicate this decoder need have no fears that it will be necessary to buy a microcomputer before the program can be used. A simple programmer will be described later in this article which is all that will be needed to set up the decoder. An excellent book on the 8080A microprocessor (a forerunner of the 8085A) is the 8080 A Bugbook published by Howard W. Sams and Co. Inc. in the United States and written by Rony, Larsen and Titus. The book contains the circuit diagram of the MMD-1 microcomputer designed by the authors together with an enormous amount of information about the 8080A system. The 8085A is an improved 8080A and is somewhat simpler to use. Both devices use the same programming instructions so that any program developed on the MMD-1 can be used in a system using the 8085A with only minor amendments. It can safely be said that without the generous help given the author by Jon Titus

KA4QVK this Morse decoder may never have been built. As a result of reading the 8080A Bugbook and other books by the same authors the writer has become fascinated by the things that can be done by microprocessors. They can be programmed to do things other than play silly games!

Memories

At this point a short discussion on memories used in conjunction with microprocessors may not be out of place. Basically there are two types, the read only memory (ROM) and the read/write memory (R / W). The ROM must be programmed and the program cannot be altered when in use; it is only possible to read information out of it. The program in some types can be erased and new programs written into the device. The R/W memory on the other hand can have information written into it and read from it, and this information can be changed at any time. Unfortunately when the power is switched off all the information in the R/W memory is lost; it is therefore usual in microprocessor systems to provide both types of memory, a ROM to contain the permanent program and a R /W memory to store information temporarily as the program is being run.

The 8085A contains a number of general purpose memories known as registers but these are only capable of holding small amounts of information. In the present design these registers have been used to the full and it would be possible to build the decoder using only a single ROM. This would have to be programmed and the instructions for programming ROMs are usually complicated and would be expensive for the amateur to reproduce just to program the one ROM for this decoder. As mentioned above the ROM cannot be altered in use and this would make it impossible for the microprocessor to make alterations to the program as it goes along. The advantages of being able to do this will become apparent when the program is discussed.
However, all is not lost as there are CMOS R/W memories available which consume very little power in the standby mode and it has been possible to use a single R/W memory to provide all the storage needed by the decoder. Various CMOS R/W memories could be used as the device is mounted on a separate small circuit board which can be plugged into.the main board. It

Table of Values

Fig. 1
R1, R2, R3 $=10 \mathrm{~K}$
R4 $=4 \mathrm{~K} 7$
$\mathrm{R} 5=470 \mathrm{R}$
$\mathrm{C1}, \mathrm{C} 2=47 \mathrm{pF}$
$1 \mathrm{C} 2=74 \mathrm{LS} 123$

TR1 $=$ BC107 or similar
1C3 $=$ CD4040
$\mathrm{IC1}=74 \mathrm{LSOO}$
Note: R4, R5, TR 1 and D1 are duplicated on each data line (front row); SW4 is duplicated on each data line (rear row)
must be emphasised, though, that only CMOS R/W memories can be used as a battery back-up system is employed. A small nicad battery is used so that when power is disconnected the battery takes over and maintains information in the memory, the battery being trickle charged when power is available. The current consumed by CMOS memories is so low in the standby mode that the battery will ensure the information can be stored almost indefinitely but can still be altered at any time either by using the programmer to be described next or "on the run" as the decoder is being used. It will also be appreciated that should the battery fail or become disconnected the program will be lost and the memory will have to be reprogrammed using the programmer.

The CMOS Programmer

This simple programmer is all that is needed to set up the decoder although other test equipment is an advantage if fault finding is needed. It is assumed that the reader will have at least a multimeter. The circuit diagram is given in Fig. 1 and consists of three integrated circuits, a few transistors, switches, resistors and light emitting diodes. It will be noted that the unit consists of two sections, one of which is used for programming and the other for verifying the program when it has been entered in the memory. The 74LSOO is wired as two separate set/reset flip flops which are used to debounce the two microswitches used to
increment the memory address and produce the programming pulses. All switches make and break a few times when they are changed over the two flip flops ensure that only the first make or break is recognised. The second IC is a dual monostable used to produce one negative going pulse at pin 4 whenever the programming switch is pressed, and at the same time a positive going pulse at pin 5 . The other half of the IC produces a negative going pulse at pin 12 when the address microswitch is pressed; this pulse is fed to a CMOS binary counter chain in the CD4040 IC. This device consists of twelve flip flops connected in a row, each one of which divides the frequency presented to it by two; the output from each flip flop is available for external use. At the rear of the board are two rows of twenty-four connecting pins (the writer used Minicon connectors as they are small, easy to use and reasonably priced); the matching sockets can be glued to a piece of board and used as edge connectors. There is nothing special about the order in which the pins are used, they just happen to be in the same order as used by the writer in his version of the MMD-1 microcomputer so that memories can be interchanged. All the address pins together with the two power lines and $\overline{\mathrm{CE}}$ are common to both sets of connectors. The memory board to be programmed is plugged into the rear row of pins. When the programming has been carried out the board is transferred to the front row of pins for verification. Although the data pins are the same for both rows they are not connected together. The rear (programming) pins are each connected to a changeover switch so that each pin can be connected to either Ov or +5 v . The data pins for verifying the program are each connected to a simple light emitting diode display so that the state of each bit of memory can be checked. A reset switch is also provided to set the CD4040 at the first address in the memory before programming or verification can commence.

The programmer has other uses apart from its original purpose. By making up a connector for the data output lines it can be used to monitor the output of digital circuits. The switches are available for use as inputs to integrated circuits. A binary counting sequence is available at the address pins counting from zero to 2048, and if a connection is made to pin 1 of the CD4040 this can be extended to 4096 . The outputs from pins 4 and 5 of the 74LS123 are connected to separate sockets on the board and these can be used to provide negative and positive going pulses for clocking counters and similar purposes.
Finally, the following is a list of useful literature which can be consulted in relation to this series of articles.

Magazines articles:

"Automatic Radiotelegraph Translator and Transcriber", by Clarence Gonzales K7CUU and Richard A. Vogler K7KFA, Ham Radio, November 1971.
"'Iprom", Elektor, December 1981.
"Audio Processor for Reception", by Don E. Hildreth W6NRW, Ham Radio, January 1980.
"'The KC2FR QRM Fighter", QST, July 1982.
Books:
"The 8080A Bugbook".
"The 8085A Cookbook".
"Microprocessor Interfacing with the 8255 PPI Chip".
" $8080 / 8085$ Software Design" (2 volumes).
The above five books are by various authors of the Blacksburg Group published by Howard W. Sams and Co. Inc.
"8080 Microcomputer Experiments", by Howard Boyet, published by Delithium Press.

"G9BF CALLING"

VERY disappointed with letter from floating critic in November issue. Ticket every bit as authentic as original, paternal G9BF. As for criticism of use of CO in Tx, this shows sad lack of gen on Moonbounce techniques. Narrow bandwith essential in Rx for best S / N ratio, so rock in Tx is a must, even though it does go a bit against the grain! As mentioned in March column, old push-pull 813 Tx going FB and giving this Russian Woodpecker a bit of stick. Thought had been called by it once, but turned out to be 5H5SI, or HS5IH. Not sure as his fist not too good; could have been 5 E 5 HH .
Editor still trying to make out "G9BF Calling" waste of time, but fan mail shows many want to read about real AR. Far too much of this black box stuff killing off FB hobby. As example, local lad who works as service bod for a dealer, says some lids can't even replace a dial lamp or fuse, these days, so take rig back to shop! All this fault of R.A.E. now utter farce. Urgent need to introduce practical part in exam, like repairing deliberate fault in a BC-610 Tx or R1155 Rx. Can't learn about AR from books; essential to get cracking with pliers and soldering iron, preferably under guidance of a good Old Timer.
Now for the Big Project. The big tranny acquired for the QRO Tx proved perfect. Admiralty spec. very conservative, with lovely ceramic terminals on the secondary. As about 3 kv , at 3 A . needed for 20 m . Moonbounce PA, choke imput filter in PSU adopted. Spent one morning humping Dad's old gear around in the garden shed and unearthed super swinging choke. The label said " $3 / 15 \mathrm{H} .3 \mathrm{~A}$." and couldn't believe my luck. Also found box full of $8 \mathrm{mFd}, 600 \mathrm{v}$. oil-filled paper condensers, and a dozen 2 k .

100w. vitreous enamelled resistors, ideal for the bleeder chain. Next goodie was a big kilovolt meter the size of a small dinner plate: ex-power station, I reckon.

Final design of PSU uses full wave rectifiers - lots of 800 v . 5A. diodes equalising resistors, etc. - the swinging choke and six 8 mFd . smoothing Cs in series. Nailed/screwed all the big stuff onto the L.N.E.R. luggage trolley, soldered up long lines of rectifiers between tranny and choke, supported by milk bottles, mid way. Used eight bleeders in series and wired in dinner plate meter. Quick flash on the calculator showed $40-50 \mathrm{~A}$. off the mains at full load, so used old ceramic insulated knife switch in primary of tranny, like they use in power stations.

Moment-of-truth time had arrived. Being more cautious than the OM, bunged 20A Variac in primary side. Took a swig of home brewed beer, then banged over the knife switch. Nothing! For one moment thought that primary on tranny was O / C, but then saw I'd forgot to switch on mains to the Variac. Repeated performance. Success; nothing went bang, no smoke, just nice hum so cranked up Variac to 240 v . Hum a bit louder, but nothing to worry about. Also a bit of a pong but only bleeders getting warm. Voltmeter read 3.15 kv . and just the ticket.

G9BF now QRL completing big $3 \times$ PL-172 PA chassis. Found rusty spin drier in shed, but motor in good nick. Unbolted drum and replaced it with fan blades to make super fan to cool the bottles with potent blast of air. Should be finished soon and ready for testing into the end-fed Zepp antenna. Am hoping to persuade troop of local Boy Scouts to help put up rhombic in field for eventual Moonbounce tests.

Back to the workshop. 73 de G9BF.

COMMUNICATION and DX NEWS

E. P. Essery, G3KFE

THE word of the month this time must be 'happenings'! First off, then, the Americans have now got 10 MHz ; General, Advanced and Extra class licences only, allowed A1A and F1B modes only in the ranges 10.100 to 10.109 MHz and 10.115 to 10.150 MHz ; the gap is reserved to government services and barred to US amateurs. Power input maximum 250 watts, starting 1900 z on October 28.

On a totally different tack, we have a letter from GM8OLV (Prestwick) who enclosed a page from the magazine Do It Yourself for October 1982, in which Peter Blackwell FIAS discusses the changes to town planning laws, and one paragraph contained the sentence "Full exemption is also given to fireproof radio sheds of quite a size and their freestanding tower masts". Now, we hope no-one rushes out on the basis of this remark and builds a new shack and sixtyfoot crank-up tilt-over mast with Quad on top before looking at Building Regulations on the one hand and getting professional advice as to what these apparently magic words can be taken to mean in practice. The desire to deregulate is clear, as the Minister has expressed it on umpteen occasions; but there is a strong body of opinion in the 'powers that be' which still wants to regulate everything. So - the motto must be 'Gang Warily'.

The Bands

The general consensus seems to be that the conditions through October and early November were considerably improved on the summer; but of course it has to be said that the lowered sunspot number is having a noticeable effect on propagation. Nevertheless, we have reports on all bands which radiate optimism and pleasure at the state of play. So - let's look them over, starting at the higher end.

Ten Metres

Nice to hear again from G2ADZ (Chessington) who laments his lack of time for radio and writing at present. Bill offers a list of Ten-metre beacons or stations with some twenty-odd call-signs and frequencies, which we will list up in detail for next time. On a different tack, G2ADZ mentions the events on Ten around July 14, and refers to the noise build-up as being in smooth gigantic waves. Among the more interesting QSOs of late, Bill offers S1AH, S83AH,

3D6AK, 3B8FG, SV5OX (Rhodes), ZK2VU, 4K1A, J2OZ, KL7EZ not in Alaska, and of course shoals of VK, CE, ZS, PY and spasmodic W. Gotaways included FK8CCO, CR9VT, and ZD7BW.

The first letter from G4HZW (Knutsford) just missed for last month so we have two of his to look at. Tony reckons that September was very poor for DX openings, although there was an interesting $A r$ event during the Scandinavian contest; but the highlight of the month was the receipt, through the Bureau, of not one but two cards from Mongolia to complete the full set of cards for WAZ on 28 MHz only. Turning to the October report, this month saw some very good days, but more disturbed ones. The band didn't seem too good on the weekend of the CQ WW contest, as the skip was favouring the Europeans and so blotting out DX heard weakly underneath. Nonetheless, the G4HZW haul for the month included 4M3AGT, 4T4O, N1GL/6Y5, 9I1BO, 9N1WW, $9 \mathrm{Y} 4 \mathrm{VT}, \mathrm{A} 92 \mathrm{C}, \mathrm{AH} 0 \mathrm{~B}$ (Mariana Is.), CE6EZ, CN8MC, CX4BW, CX8CS, EA7TV, HD8GI (Galapagos), HK5BCZ, HL9AZ, H44PT, HZ1AB, KP4BO, KH2AY, KB7IJ/KH2, KH6IBA twice, JAs, LUs, M1Y, OH0W, P47N, PYs, UA9s, RH8EAK, UK7PAL, UK7NAQ, U9H, UA0s, all W call areas, VP2EC, VP9AD, VQ9PG, VS6IW, VKs, YB0ACL, ZD7BW, ZLs, ZSs, and a brace of ZY calls. Life in the old band yet!

A return to the fold for G4BUE (Upper Beeding) who seems to have got the gardening bug out of his system for the moment, although aerial-farming is also being practised. On Ten, the activity was mainly in the CQ WW contest - yes, G4BUE does own a microphone! - in which Chris reckons conditions were excellent; five watts SSB with the Argonaut brought in VS6, EA9, CN8, YV, LU, 9Y4, VP2E, FM7, CE, HK, UF6, 4Z4, HZ, A4, ZS, EA6, ZD7, Z23, HH, V3 and ZF.

G2BON (Aldridge) runs an IC-701 into a G5RV aerial, and sticks to SSB; this method yielded contacts with ZS1HE/P, UK7PAL, FM0HOR (Martinique), UA0WAM, 9N1MM, CN8MC, NP4A, FM7CD, N1GL/6Y5, VP2EC, C53CG, 5W1DQ, OX3BX, KL7NX, KA5JSA, VK9NS, VK7GE, WA6SOV, VK2QT, VK3ST, YI1BGD, 6W8EX, VK5AWC, VK4AHE, 4U1VIC, VK3DHV, PT7BZ, and ZF2FL on Grand Cayman.

G4MVA (Snainton) has been playing with his Guy Wire Doublet; the 300 -ohm ribbon between the aerial and the entry to the house - some 14 feet of it - has had the centre web removed, and is now located by 4 -inch spacers every 18 inches. In the loft it continues to the ATU in 300 -ohm ribbon. The proof of the pudding is, as always in the eating, and Glyn says that it loads up beautifully at the ATU and gives reports averaging a couple of S-points up on the previous arrangement; the first station heard after the mod was DJ5SI/T5, who was raised on the first call. The ten watts of CW accounted for W5TG, KC5JS (Arkansas), W5GWI, KA3CRC who had two watts, LU9CV, and ZS6BWK; gotaways included PYOSP (St. Paul Rocks), S83H, ZF2BN, HZ1HZ, and VP5WW.
At G2HKU (Sheppey), eight of the nine HF bands were visited, which is quite a pile of activity; naturally it meant not so much on each band, so on 28 MHz Ted was CW only to raise CX8DR and LU7XP.

GI4MXW (Portadown) spent the odd evening hour at the rig, and found conditions during the month generally up, with the best improvement being on Ten. Aurora helped with contacts with GD3GMY and GW3NNF for a couple of new countries, plus more normal propagation to UF6FCZ, LU9CV, A4XJQ, UR2QD, 4N9OLY, EA9JV, UP2DM, OH0W, 4X6DF, VP9AD, CN8MC, 4M3AGT, K6OJ/P/C6A, 9K2BE, J6LOV, VP2EC, 9Y4LL, VD3GCO, VP5B, N1GL/6Y5, FM7CD, VOICM, and the odd European.

We turn next to G4NKM/A; Steve was on holiday at Great Ellingham, Norfolk, where he had a 150 -foot wire and the FT-7. This, with SSB, raised WA5KVO, VE2AJD, UB5VEJ, RH8HCV, UK6LAI, and LZ1BK, while a gotaway was J20DU.

G4LDS (Chelmsford) had his rig away at 'the doctor's' for a while, but it didn't stop him getting into the DX; Chris found himself booking in V3DX, SVOCT, 5N22ATW, TR8JD, CN8MC, ZS6PT, VP5B, 8P6KX, K6OJ/C6A, 9Y4VT, V3TV, VP2EC, 6Y5IC, W3BTX/PJ2, N1GL/6Y5, NP2A, ZF2GI, EA4LH/CE3, YV2AMM, KB7IJ/KH2, JT1BG, SV0AU, HZ1AB, LU4F, VP9IB, WA6ZVO/PJ4, and W8OK/VE2 for Zone 2 at last!

Xtal Ball

A tour of Africa is projected by F6BBJ and F5MF, and at least nine and possible eleven stops are projected; the only snag being that we don't yet have dates and details! They propose to concentrate on the LF bands and CW, although not exclusively.

BY1BC operation by VE7BC seems to have been a bit of a frost; he couldn't operate SSB as they had severe TVI problems, so his contacts - which were not very many-were all on CW. Operation from BY1PK continues, but is a bit erratic as the shack is being rebuilt - and the aerial is not as high as would be desired, being only six feet above a metal roof. However, we have it that part of the rebuild activity may well involve hoisting the aerial up a few feet, which would help the BY signals enormously.
That Heard Is. business; some time ago we remarked that someone should grip the WIA and VK9JS groups and make them combine forces. They haven't and so now we see the strong possibility that either both expeditions will arrive, and then QRM each other seriously, or the funds will not be enough to let either expedition get away (though if concentrated earlier there would have been enough to get at least one group to Heard Island). Our own sympathies lie, if anything, with the Jim Smith group, although The DX Bulletin suggests that the support be offered in terms of funds to the WIA party, on the rather tenuous grounds that this group is being supported by a couple of American DX foundations. The whole affair seems quite crazy to this old buffer.

New Bands

Not a lot has been reported, but we will summarise what we have to hand. G3ROO (Dover) has been concentrating on 10 MHz with his version of the Tunbridge transceiver for this band, running five watts of CW. October 17 was the first day of QRP operation and yielded only Europeans, but a second go on October 20 produced QSOs with VE2LI, VK2DU, VK2PA and VE1AST. October 24 found the G3ROO signals getting over to VE6HH, VK3XU, and, best of all FK8EB, who came back to a one-by-one call after lots of Gs had called him without success.

G2HKU offers a QSO with OK1FAE on 10 MHz , and with G3LCK on both 18 and 24 MHz bands, just to see that the rig worked OK.
GI4MXW listened on the new bands, but reckons his timing was wrong and so nothing of interest was raised.

Another one to not mention any contacts specifically was G 4 NKM , who says that he found 10 MHz not dead but
just empty of amateur signals, while on 18 and 24 MHz he found only G contacts.

Reading through DX News Sheet for the past few weeks seems to give us a better overall picture of what is to be had on these bands. On 18 MHz , FK8EB, HB0BFN/M, OY7ML, and FC9VN were reported in the issue dated October 19, while 24 MHz seemed to be the province of VP8ANT, HBs, GJ3EML and FC9VN. As early as October 5's issue, VP8ANT was reported as having worked, on 18 MHz , DL, F, G, GI, GM, GW, HB9, HB0, OX and PA, while on 24 MHz he found F, G, GI, GW, GM, HB9, LU and OE , the time slot being around 1700-1800z.

"CDXN" deadlines for the next three months -

January issue - December 2nd
February issue - January 6th
March issue - February 3rd

Please be sure to note these dates.

Top Band

Our first stop must be to mention the CQ WW 160 -metre contest; the CW leg is over January 28-30, and the SSB affair is over February 25-27. The rules are revised to take into account the changes in Top Band both in USA and world-wide. Two classes are allowed, single-op and multiop, the latter with a maximum of five operators. Exchange $\mathrm{RS}(\mathrm{T})$ and QTH - State for Ws, Province for VEs, and country for the rest of us. No serial number. Contact with stations in one's own country two points, other countries in the same continent five points, stations in other continents ten points. Multiplier, the sum of U.S. States, VE provinces, and DX countries. Final score, the sum of QSO points times the multiplier, less deletion of three contacts for every duplicate, false or unverifiable contact, and a second multiplier for every one lost by the above action. Logs to go forty contacts to the page, and carry time GMT, station worked, exchange each way, and columns for QSO points claimed and multipliers claimed. Mailing deadline is February 28 for CW entries and March 31 for the SSB section, envelope marked on the outside CW or SSB as may be appropriate, addressed to CQ 160 Contest, 76 North Broadway, Hicksville, NY, 11801, U.S.A. As this is a really major change in the rules, perhaps readers will pass on the story to any Top Band friends who they think may enter.

G2HKU operated CW to raise 4UIITU, OK1KCU, UQ2GCN, UP2BCG, EA8AK, EA9EU, PA0PN, EA1KC, EA6CE, UB5MGT, EA3CCN,

OHOW, and YU3EF, while his CW reached out to SM5AHK, PA0PN, RC2ICC, OX5RM, OZ5PA, SM6EHY, OZ1W, GM3HBT, and U2G.
Time was a bit tight for G4AKY (Harlow) at deadline time, so instead of his usual digest he passed on Xerox copies of the relevant \log pages. One is immediately struck by the amount of information Dave encodes into his log pages, the reason for this being his serious and continuing interest in propagation on this band. For example, one observes that while in QSO with OLOCKC on September 29, HZ1AB was heard on 1.861 MHz . October saw contacts with: UM8MAZ, 5N8ARY, UA9FKW, VE3JPN, W4AH, U2G (during this last QSO UM8MAZ was heard again), EZ9FAC who was QRP with five watts, G6CJ on his ZL skeds, RA9UAS, WA2SPL, 5N8ARY again, K2GNC, VE1ZZ, VE1YX, WA2SPL again, ZB2EO, I3MAU on SSB, DL0HSC/5B4, UF6FHC, UA9SJL. In amongst this we note that most of the better-known EU calls appear, and the painstaking business of listening out for the ZL skeds; on these lines the time of sunset or sunrise is noted to the nearest minute, and frequencies used for transmit and receive, so that it is possible to deduce that G4AKY was probably heard one morning by ZL1AH. On a different tack, the log also shows that G4AKY has a pirate pinching his call - the pest calls himself Peter and claims to be located in Wellington.

G4OBK (Chorley) replies to our recent appeal for more news on Top Band; Phil runs an FT-101E, a 230 -foot end fed for the lower bands, and a G4MH Minibeam for the HF bands. Phil confesses to a liking for CW , and finds that it is getting to be steadily more fun as his receiving abilities improve. Countries worked include such as PA, DL, YU, OZ, OL, HB0 and IO3 for a couple of new countries on the band, EA, OH, F6CTT who was a booming great signal, UK2RDX, OE5HE, HB9CM, EA8, W8LRL for another new one, LXIYZ, 4UIITU and EA9EU for yet more new ones, YZ1E and UA3PFN; the mode seems to have been split between CW and SSB with, notably, the W8LRL QSO being on sideband. Not many of us come on Top Band to make our first W QSO on Phone!
Another first report comes from GW4OFQ (Llandeilo), who has a G5RV aerial with an FT-101ZD as the prime mover and on Top Band this set-up reached out to UQ2GFU and DF4GA.

Fifteen

Staying with GW4OFQ, Roger was on the band around 0900 to work a string of JAs, VK7KF, VK2PY, 5N9ACO, followed at 1500 by 5Y4ITU and 9K2BE; then at 2100 KP 2 AD was hooked.

GI4MXW raised some new countries
on this band, and mentions QSOs completed with CT2EF, VE8YH, VE7DGI, VE6OU, IT9GSF, OH0W, UL7BAW, ISOKKX, N1GL/6Y5, 4Z4DX, JY9RC, IO5OYY, 4N5CYZ, VO1QU, and DJ6QT/P/CT3.

It was QRP all the way for G2HKU, who used his four watts of CW to work K8IF, K4AHK, KM9Q, and VE3BNJ.

We come next to a bit of a surprise, finding G2ADZ has been listening on this band; he heard BY1PK calling CQ at the lower frequency, raising a pile-up and then calling CQ a little further up the band to enjoy a QSO in peace! Others noted were several VKs, some with the AX prefix, and YAlCP.

G4BUE next. Chris has been on SSB, with QRP of five watts from the Argonaut; VP2M, 8P6, ZS, VP5, VP2V, VP9, HZ, 4Z4, and ZF all raised in the contest.

G2BON comes in to bat now; Tom used his SSB to get to AX9NYG, VK2XT, DU1CPL, PP2ML, FY7AN, P29CH, VS6KH, TU2LE, VE2FOU, DJ6QT/CT3, VESGF, N1GL/6Y5, and ZF2FL.

The aerial mods at G4MVA seem to have been doing the trick on 21 MHz , as Glyn mentions his contacts on CW with all W call areas, including WA7CWM (Nevada), K7ZA (Washington), AF7F (Oregon), a string of 'sixes', K5POW (Oklahoma), 5Y4CS which was a 'special' for the ITU conference in Nairobi, 9H1R, SV0BE/9, G3KTJ/VP9, KA4TAU who was running 400 milliwatts and didn't belive Glyn's call (!), JAs, SV5OX, V3CQ, DL0HSC/5B4, FY7CG, and C31XO who came back to a CQ call.

G4LDS mentions his QSOs with EC4AVC, VE1TG, ZS6BRZ, VP5B, ZS5IV, VK4VU, JH6SOR, FM7CD, CN8CX, VO2CW, N1GL/6Y5, VP2EC, and HH 2 CQ .

Now Twenty

While it carries much of the world's DX traffic, it has to be admitted that the proportion has fallen over the peak sunspot years. However, we still have some reports to mention.

GW4OFQ makes life easier for your scribe by his use of different coloured inks. Roger offers QSOs with FY7BO, ZL3ADA in the morning, and on return from work he worked J28DN, TU2JL, JA6FKY, PY0ZZ, 4K1A, 5Z4RL, 9X5PP, ZD7MG, 8Z1AB, VK6VU, ZD9BV, KC4USV, TG9GI, and YIlBGD.

GI4MXW found conditions on other bands so good that he didn't have much left for Twenty, but he did work

N1GL/6Y5, OH0W, IS0XIE, 4X4EC, UG6LQ, N2BZQ/P/X, A4XJO, and UF6FFF.

G2HKU tried SSB for the contacts with ZB2FA/MM, HB9CIX/M, KL7FE, ZL3RS and ZL3FV, but turned to CW for K6DDO, VE3DEP, W5HE, G8NF/W4, VK2CX, UA6AOO, and HB9QO/EA.

We have already mentioned G4BUE's activity on SSB in the contest with the Argonaut on 28 and 21 MHz , but the beast didn't seem to cut the mustard on Twenty with ZC4 and A4 on QRP, and the Big Rig needed to raise J20DU after a long time unsuccessfully trying with low power. This, deduces G4BUE, requires some investigation of the 14 MHz aerial's workings.

G4MVA worked CW and ten watts to EA9KM, TA1ES who was QRP, U2G, DJ6SI/T5, FP8HL, and KP40; the gotaways included 5B4CY (Glyn reckons this one might have been a pirate), 4 K 1 A , HI8BFP, and KL7H.

Eighty \& Forty

G4LDS has a random Best Bent Wire up, and on 7 MHz this raised some Europeans, while on 3.5 MHz it sought out UL7LCW in Zone 17, and some more EUs. G4NKM/A, as already noted, was in Norfolk, and his long-wire was put on the air around 0100 on CW on 7 MHz to work 4NOLY and UC2CFZ.

Back in April 1979 we mentioned G2VF (Southampton) using a Joyframe aerial; Bob now writes to say that with it he has made some 1700 QSOs using 30 watts, to collect 65 different awards, all with the Joyframe in the shack.

G2NJ (Peterborough) found himself in improved conditions in the early afternoons when he likes to operate, and as a result he worked some twenty-odd pre-war calls on CW. Among the QRP stations, Nick mentioned G2CNN, G5JP, and G4GCB in Belper who was a handsome 579 on one watt of RF.

We have a long report on the LFs from SWL D. A. Whitaker (Harrogate) which details stations heard on Top Band in the contest; during the contest period he heard 64 countries on $7 \mathrm{MHz}, 54$ on 3.8 MHz , and forty on Top Band.

Turning to GW40FQ, we have a list on 7 MHz , including YB5BZX, UJ8JCQ, W1-4, and PJ9EE, while on Eighty ZD7BW, PY7WTD, D44BC, YV3BRF, 6 Y 5 HN , VP2EC, 5B4JE, 5N8ARY, ZL4AP and all W call areas were worked.

The fall of the leaves, wryly comments G14MXW, gets a bit more of his trapped dipole out of the foliage and relatively into the clear. David mentions working LX1AI, OH0W, CT2AK, GD5CQV,

LX1BW, and EW6V, while a quick blast in the last half-hour of the contest caused him a pile-up of EUs looking for a GI multiplier. 7 MHzshowed with 4N9OLY, HW8WE, HW6EYS, UR2FU, UP2BHC, OHOW again, IO3MAU and M1Y for a new country.

The list from G2HKU covers more territory than any other this time, with only 3.5 MHz missing; on Forty CW raised U2G and W1AXA, while SSB also worked the trick with U2G.

G4BUE has, as already indicated, been aerial-farming; the pole at the top of the tower has been lengthened by some twenty feet, and has the beam at its lower end, the upper part being used to support sloper arrays, as Chris wrote them up in the G-QRP Club magazine some time back. What it boils down to is that the top of the slopers can now be as high as eighty feet. They have not yet been tried at this height, but at 60 feet the results are quite fair, with some JAs worked at $1600 z$, and UAOYAE in Zone 23 hooked at 1700z, for a useful QSO.

Eighty at G2BON meant SSB contacts with D44BG, EA9GS, K1PT, WB2DHY, KR2N, HH2WW, K1JX, AB1A, W1ZM and WIFC. On Forty the bag included OH0W, 5T5TO, YV5EUX, VK9NS, VE7SZ, KM4K, PT7WA, DJ6QT/CT3, NP4A, N4RJ, K2IGW, KS8S, N2AA, W3LPL, K1CC and N4ZC.

G4MVA doesn't have room for a 3.5 MHz dipole, so he loads up the 7 MHz aerial; this is enough to work all around EU , while on 7 MHz of course it comes into its own: GU3AAM, WA6GKJ/KP4, HW6 (CYV) on SSB, LX1JAQ in J-O-T-A, R4ASK, DL0HSC/5B4, YV4DDT, RK3ABO, VP2VDH, and 4U1ITU. Gotaways included VP5JNX, VU9TTC and ZL1JJ/K, heard at 2343z.

QRP

From G4BUE we have the revised dates for the 1983 QRP club sessions. The Spring QRP Activity Weekend is now down for March 19/20 on CW, while the SSB Late Spring Activity Weekend is down for May 7/8. The late Summer CW QRP Activity Weekend, which is intended to promote intercontinental QRP contact is on 10/11 September 1983. All dates for the diary.

Finale

So-that's is for another month. Dates are in the 'box', and are to arrive, addressed to your scribe, "CDXN", SHORT WAVE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ. 'Bye now.

LINE TERMINATION IN AERIAL DESIGN

DISCUSSING THEORY, FACT - AND THE MYTHS
\section*{C. C. DRUMELLER (W5JJ)}

Abstract

Editorial note: this authoritative article was first published in the October, 1975, issue of SHORT WAVE MAGAZINE but is, of course, equally appiicable to today's solid-state PA's.

ALMOST any good text on transmission lines will tell you about the effect of terminations that do not match the characteristic impedance of the line. Also almost all will stop when they've told you about the five classic terminations. These are (a) An open circuit, (b) A short circuit, (c) A resistance equal to the line impedance, Z_{0}, (d) A resistance greater than Z_{0}, and (e) a resistance less than Z .

Just why they stop there is hard to say, for these five do not define the load seen by a large majority of coaxial transmission lines used by stations in Amateur Radio! What usually is "seen" is a complex load, one involving resistance plus either capacitive reactance or inductive reactance.

Let's pause for a moment and consider why the antenna most often forms a complex load. There are, of course, some types of antennas that present little reactance. Usually these are of the travelling-wave types, non-resonant varieties such as the rhombic or the Beverage. Resonant antennas, the garden variety most of us use, such as the half-wave Hertz or the quarter-wave Marconi, display reactance at their feed points when operated at other than their resonant frequencies. Consider, for the moment, a halfwave Hertz antenna cut for 3850 kHz . Have it centre-fed and mounted approximately 0.15 wavelength above an ideal ground. It will then present a load to its feedline of very nearly 52 ohms, and that load will be purely resistive. Such a termination would be ideal for use with the type of cable most often encountered in Amateur Radio.

However, few radio amateurs operate their stations on a single frequency. Most of us roam over a quite wide range of frequencies within a band. Suppose we move the transmitter frequency from 3850 kHz to 3750 kHz . The antenna now is too short to resonate on the operating frequency. Instead of presenting a purely resistive load, it now acts as if the resistance had a value of capacitance in series with it - just how much capacitance, or, better stated, capacitive reactance, depends upon several factors. Perhaps the most significant of these factors is the ratio of length to diameter of the antenna wire (or other conductor). The larger the diameter, the less will be the intrusion of reactance. Of course, when you make that diameter larger you also affect both the feed point resistance (make it lower) and the resonant frequency (also. make it lower).

Had you made the move from 3850 kHz to 3950 kHz , you would have caused the feed-point impedance to appear as a resistance in series with an inductive reactance (or inductor).

Feed Point Impedance

So we've seen that as we've departed from the resonant frequency of the Hertz antenna, the feed point impedance changes in nature, from purely resistive to partly-resistive, partlyreactive. Not only the nature of the load changes but also its magnitude.
At 3850 kHz the wavelength is 77.92 metres. A height of 0.15 wavelength would be 11.688 metres or 38 feet and 4.1 inches, a reasonable figure for an antenna owned by an operator who doesn't also own an interest in a structural steel company. Not all antennae offer such an ideal relationship between height and the impedance of their feedlines. Therefore we must be aware of the effect of line terminations.

Perhaps it is best to start with a review of the five classical graphs showing the effect of terminations upon the voltage along a transmission line. Such graphs are usually plotted from data obtained by passing a voltage probe detector along a length of slotted transmission line, often encompassing at least one wavelength. These data normally are plotted right to left, using the load as the right-hand (starting) point. The plot is identified in terms of electrical degrees, with 0° being, of course, the starting point. A point a quarter-wave back from the load, that is, to the left of the load, is marked as 90°, a half-wave back, 180°, a fullwave back, 360°.

Reflected Wave

As all texts tell us, an RF wave originating from the generator (off-scale to the left of the graph) contains voltage and current manifestations. These are in phase coincidence; therefore they represent power. Should this wave continue on down the transmission line, undiminished, for an infinite distance, this relationship would be unchanged. The transmission line, though, has a termination. If this termination is purely resistive, and if that resistance is of a magnitude that precisèly equals the characteristic impedance of the line; then all the power contained in the wave (called the incident wave) is dissipated in the load. This doesn't happen often! More often, for one reason or another, part of the power 'bounces off"' the load (is reflected back). This reflected wave is unlike the incident wave in that it has its voltage and current phasors 180° out of phase. The reflected wave travels back to the generator, where it adds to the incident wave and loses its identity.
The analysis of the interaction between the phasors depicting the incident wave and those for the reflected wave although complex is highly interesting. It's not too rough when the assumption of a lossless line is made; without this, it can be downright hairy! Fortunately, for the amateur HF bands, such an assumption is valid. Keep in mind that the length of transmission

Fig. 1. Voltage standing waves on transmission line terminated in an open circuit, Note that the position of minimum voltage points is more easily established.

Fig. 2. Voltage standing waves on transmission line terminated in a short circuit-note that the minimum voltage points are more sharply defined than the maximum points.
line always should be thought of in terms of wavelength (not feet) and that for lines less than several wavelengths, losses are too low to worry about.
You need only to glance at a series of graphs, Figs. 1-5, which depict the results of the interaction between the voltage phasors. These are the five classic graphs, ones that should be as familiar as A BC. Let us now go to another series of graphs shown in Fig. 6. These show the transmission line equivalents of discrete components, such as capacitors and inductors.
how a reactive load affects the Voltage Standing Wave pattern. Several effects are shown. Note that the voltage goes to zero at the minimum spot. This is as though the load were zero or infinity, as depicted in Figs. 1 and 2. Note also that the relative position of the minimum voltage point is shifted laterally, the direction of the shift being determined by the nature of the reactance.
As mentioned earlier, real-life loads most often consist of resistance plus reactance. Be sure to remember that only the resistive component of this impedance can accept power;
E^{-}

Fig. 3. Plot of voltage on transmission line terminated in a pure resistance equal to the characteristic impedance of the line-this assumes a "lossless" line, a valid assumption with short lines measured in terms of wavelengths.

Now look at the information we've collected. The antenna, which, at its feed point, can be considered as a resistor ranging from a few ohms to over a hundred ohms; it also may have either a capacitor or an inductor effectively in series with that resistance. Graphs of the voltage along a transmission line, ranging from the extremes (Figs. 1 and 2) to the almost fictitious "matched line'(Fig. 3) to the moderate in-betweens (Figs. 4 and 5). Taking the transmission-line equivalents of capacitors and inductors, let us see what they can tell us about real-life situations involving antennas and feed lines.

The graphs of Fig. 6 show how short sections of transmission lines behave as lumped components, giving the effect of capacitors or inductors. The latter two portions of the series depict the effect of using reactive components as line terminations. These reactive components can be either the real article or short sections of lines. It doesn't matter, because the effect is just the same. The important thing to notice in Fig. 6 is
therefore it is only that component of the antenna load that affects the ratio between $E_{\text {min }}$ and $E_{\text {max }}$, which, in turn, determines the Voltage Standing Wave Radio (VSWR).

Line Termination

With these facts in mind, let's talk about the truly important effect of line terminations. It's not the VSWR that might be brought into being, at least, not directly. In the HF spectrum (3 MHz to 30 MHz) the dissipative losses engendered by a reasonable VSWR, say 5:1 or less, are too low to give concern unless one is using a feed-line many wavelengths long. The real concern lies with having a load acceptable to one's transmitter.

It is not difficult to design a transmitter that will function properly with a wide range of antenna loads. To build such a transmitter, however, costs a bit more than for one with a quite limited scope. In today's highly competitive market,

RF FROM GENERATOR
RESISTIVE LOAD

EQUAL TO TWICE
LINE Z

Fig. 4
Fig. 4. Voltage standing waves on a line terminated in a pure resistance of twice the line impedance. Note that the minimum voltage points are at the same position as in Fig. 1, but the magnitude does not go to zero, nor is the maximum voltage as high.

Fig. 5. Voltage standing wave on a transmission line terminated in a pure resistance of half the impedance of the line. The position of minimum voltage points correspond with those of Fig. 2, differing only in magnitude.
manufacturers cut costs wherever they can . . . and today's buyer has been conditioned to accept as "state of art" transmitters that will load into purely resistive loads of between 25 ohms and 100 ohms ($2: 1$ VSWR). Fortunately, most transmitters with tuned outputs will cope well with a greater range of resistances and even with a moderate amount of reactance. This is not true of transmitters having untuned outputs, a breed increasing in numbers and popularity. So with one of these, be prepared to accept certain limitations!

Why is the element of reactance so important? Because very many antenna-feeding combinations result in a load being presented to the transmitter that departs from the ideal of 52 -ohms non-reactive.

To see one reason why, look at Fig. 7, which is much like Fig. 1 but with some significant details added. The second portion is like Fig. 4 but with the additional information. Looking at Fig. 7A you'll note three significant items. At $0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$, and 360° the line "looks like" a pure resistance to a generator hooked on to any of these five points. Of course, the resistance appears as infinite at $0^{\circ}, 180^{\circ}$ and 360°; and as zero at 90° and 270°. But the important thing is that it is non-reactive at these points. Looking further, you'll see that from 0° to 90° it "looks like" a pure capacitive reactance, between 90° and 180° as a pure inductive reactance, and that these conditions are repeated every 180° down the full length of a line.

Of course, we don't make much practical use of open-circuit
lines; so let's look at Fig. 7B to see what a transmitter would "see"' at the sending end of a typical transmission line. This'll give you a clue as to why some people put such great trust in "magic" lengths of feed lines! With only "eyeball evaluation" you can see that between approximately 60° and 75° the voltage doesn't deviate drastically from that of a matched line, as shown in Fig. 3. The area between approximately 105° and 120° shows the same small voltage variation but with opposite reactive component. And as depicted in Fig. 7C, the impedance along the line varies roughly in the same manner as does the voltage. Now, it should be clear that a line cut to one of these lengths (or at half-wave intervals farther on down the line) has a strong probability of presenting an acceptable load to the average transmitter having a tuned output. This suggests that feedline length may be an important factor in enabling a transmitter to load properly. It is, but only if the line's termination is not matched to the line. With a matched termination, line length is immaterial excepting only for the factor of attenuation. Line attenuation is important in the UHF and VHF bands but can be ignored in the HF and MF ranges unless extraordinarily long runs are made.

Loading

Still another facet of the effect of reactance must be considered. Most transmitters using valves in the final stage and having a tuned output circuit use either a pi or $p i$ - L net to perform the dual

Fig. 7. Plots of reactance, resistance plus reactance and impedance on a line-see text.
function of providing frequency discrimination and effecting an impedance match between the feedline and the load impedance demanded by the PA. The valves want a purely resistive load. When the plate tank circuit is tuned to resonance, all reactance is cancelled. But with a feedline attached, some additional reactance is coupled in. This must be cancelled by an equal and opposite reactance provided by the plate tank circuit. Usually a variable capacitor is the tunable component, and in some instances this capacitor must be varied so much in an attempt to cancel the induced reactance that it cannot bring the plate circuit into resonance. And, as you know, a non-resonant plate tank can cause PA valves to draw excessive (and sometimes fatal) plate current.
This leads into the domain of the facts and myths relating to the effects of line mal-termination and their ancillary VSWR's. The facts are simple: Besides the mal-tuning resulting from the effort to cancel induced reactance, the extremes of C and L used to transform very high or very low values of feedline load impedance to that demanded by the PA may result in excessive circulating current in the tank. This can (and does) cause coils to get so hot as to melt their supporting material and collapse. At the other extreme, the voltage developed across a very small value of output capacitance may be high enough to cause flashing across its plates. These effects, though, are seldom encountered.

Reflected Power

Which brings us next to the myths. The hoary one of reflected power being lost power has been so thoroughly punctured by many writers that we'll skip it as being unworthy of mention! Another one, often heard, tells of blown valves. In well over a half-century of association with amateur and professional radio, this writer has never encountered an authenticated instance. It's easy to see, however, if one were a bit slow in one's reactions, a plate circuit detuned to draw excessive plate current could "cook" a valve quickly!

Still on the subject of myths, there are several relating to measuring VSWR that die slowly. One is that accurate measurements can be made only at the junction of feed-line and antenna. This, like many old wives' tales, has a basis of fact. If a transmission line is long, in terms of wavelengths, line attenuation
will mask differences between the voltage of the incident wave and that of the reflected wave, thereby causing the indicated VSWR to be less than it really is. This is a matter of consideration only when line attenuation is high, a factor seldom encountered on the amateur HF bands. The other slow-dying myth holds that valid VSWR measurements can be made only at designated spots along the transmission line, usually stated at quarter-wave or a halfwave, depending upon who's relating the tale. Here, again, there's a slight basis of fact. If you're interested in knowing what is the feed-point impedance of your antenna, and you're exploring this quest with some form of an RF impedance measuring device, such as a Noise-Bridge, an Antennascope, etc., the restriction holds true. That is, the actual feedpoint impedance can be measured only at the feed-point or at half-wave intervals back down the transmission line. There are ways of making correction factors so as to enable measurements to be taken at any point along a line, but these are too complex for casual inquiries.

But don't confuse these feed-point measurements with VSWR appraisements. The magnitude of the VSWR is ascertained by comparative measurements of the incident wave and the reflected wave, sampled by some variety of directional coupler. These waves co-exist at all points along the line; therefore the ratio between the two may be ascertained with equal ease and accuracy at any point along the line.

The effect of transmission line terminations may be summed up in five simple statements. The termination must contain a resistive element in order to accept power. If the magnitude of the resistive component does not equal the characteristic impedance of the line or if the termination contains a reactive element, a portion of the generator's power will be reflected back to the generator, where it is added to the forward power for another assault on the load. The presence of reactive components in the termination will cause the positions of voltage minimum and maximum points to be shifted from their expected locations on a line. Mal-termination causes appreciable power losses in lines that are many wavelengths long, negligible losses in moderate-length lines. The most weighty effect of mal-termination often lies in creating a sending-end impedance that is not compatible with capabilities of the transmitter.

BASICS FOR THE S.W.L. AND R.A.E. CANDIDATE, PART VIII

SUGAR-COATED THEORY

WE must now turn our attention to the FET, or Field Effect Transistor. Why anyone wanted it to be called a transistor at all is a mystery, as its physics are very different. The ordinary transistor is bipolar; in other words both electrons and holes have equal importance in the workings. Not so in a FET, so we'd better make a clean start.

Starting from a chunk of semi-conductor material, which may be silicon, let us make a 'channel' of n-type material, as shown in Fig. 1, and let us give it a 'gate' of p-type also as shown in Fig. 1. If we connect a battery with its positive end to the top of the channel and its negative to the bottom, the upper connection is called a drain and the lower one the source. (Sometimes 'emitter' is used as a loose term for the source and 'collector' for the drain.) Now we take another battery and connect it between source and gate such that the gate is negative relative to the source-old-timers will recognise this immediately as the normal way of things with a triode valve. Just as with a valve, zero bias corresponds to high drain current; increase of bias causes a depletion layer to form at the p-n junction, and so the current through the channel reduces. We have dreamed up an ' n-channel depletion-mode junction FET' - or you might see it called a JUGFET. By making the channel of p-type material, and the gate of p-type, we would have a p-channel depletion-mode device, and of course the voltages would have to be reversed all round. Fig. 2 shows symbols for both these types.

So much for junction-gate FETs for the moment. There is another breed of FET, known as an 'insulated-gate FET' or IGFET (or metal-oxide semiconductor FET or MOSFET). Again we have p-channel or n-channel depletion-mode types, but in addition we can have p-channel or n-channel 'enhancement-mode' devices, where the increase of bias increases instead of decreasing the channel current. The difference between the junction gate depletion-mode FET and the IGFET is just simply that the gate of the IGFET is insulated from the channel - see Fig. 2. Thus the gate resistance is very high - higher than that of a valve indeed, and that makes it very vulnerable to static while being handled, although lots of IGFETs do in fact have gate protection diodes to make things a little easier.

Returning to the depletion-mode devices, the characteristics are, in general, very much like those of a valve, and indeed the use of an FET as replacement for the valve is often possible with only very minor changes in circuit, to allow for the different electrode voltages of valve and FET. On the other hand, because the characteristics show more gentle curves than the bipolar transistor, it is not surprising to find, in general, that the drain voltage on a FET is higher than the collector voltage on a bipolar. Looking at the symbols, all of which are shown for the n-channel case, observe the difference between the enhancement-mode and the depletion-mode IGFETs; in the former case the heavy line is broken, and the latter continuous. This reflects the difference in the construction, insofar as the enhancement-mode device doesn't have a complete channel, and so the gate must be pushed for several volts towards the drain voltage in order to make the p-type material become intrinsic and then to look like n-type to complete the 'channel', which will disappear again if bias reduces towards zero.

Complications: some types will have a connection to the substrate, and of course there are the well-known dual-gate IFGETs. Study the drawings and it won't seem too complicated!

Normal FET devices are very definitely low-power animals, but over the past year or so various makers have brought to birth
so-called 'Power FETs' all of which are essentially junction-gate devices with structures modified so as to cope with high currents, high voltage, and the dissipation of power; these power devices are much used in switch-mode power supplies, and it does rather seem that this is where we might see the HF PA stages of the future, once we have got over the present wave of "don't-tune-'em-up, just-pray" bipolar designs.

Why bother with the FET when we already have the bipolar transistor? A Good Question! The characteristics of the FET (or the valve for that matter) are way ahead of the conventional transistor when used as a mixer, and the high input impedance also is useful. Perhaps most important, in terms of the professional electronics field, is the use of the Complementary MOS (CMOS) type of construction where p-channel and n-channel MOS devices are used on the same chip in various useful forms of integrated circuit in which the current drain is at a minimum, except when the devices are switching states; this enables much more computing power to drive off a given power supply as compared with, say, the older TTL logic. However, more of integrated circuits in due course.

Right now, we have to consider the use of any of these devices in a practical circuit, and here we must accept that in general, the circuit comes in two quite separate parts, which must be considered separately. The first exercise is to take our 'active' device, be it valve, FET or transistor, and provide it with the DC voltages at each pin in order to make it capable of the task we mean it to carry out; and the second part of the exercise is to inject and extract the signals (whatever they may be) in such a fashion that we don't upset the DC conditions and so stop the thing from 'perking' properly. With valves alone, we often find ourselves in the position where, because all valves require positive HT and zero-to-negative voltage, we have to use such subterfuges as feeding in and/or extracting signals by way of transformers or capacitors. When we come to the transistor and the FET we have somewhat more flexibility, at least in theory, insofar as we can use $p-n-p$ and $n-p-n$ devices in pairs to ease our problems, and indeed manufacturers produce 'complementary pairs' of transistor types which comprise an $n-p-n$ and a $p-n-p$ device which have similar characteristics

Integrated Circuits

We will deal fairy briefly with these, at least for the moment, and expand as appropriate in future articles.

Integrated circuits fall, essentially, into distinct types: Linear and Digital. The Linear IC can be regarded as a circuit like an amplifier, which produces at its output a faithful reproduction of what appears at its input (or, at least, it tries to, and succeeds if you give it a sporting chance!) while the Digital IC is only interested in producing an output which is near the HT rail voltage or near the earth rail voltage, and receiving inputs of the same nature. Such ICs are the stuff of the digital computer, and binary arithmetic, and appear in our shacks within such items as frequency counters. Of late there has been a trend to turn analogue ('linear') signals into digital equivalents for processing, but this latter development needn't concern us at the moment.

Turning back to the analogue or linear IC, we find various types: firstly the operational amplifier, or more often 'op-amp' which may be regarded as nothing more than a packet of gain-lots of it, as it comes, and reducible by suitable circuit

Fig. 1 Construction of a FET

Fig. 2 Symbol of JFET and IGFET (n-channel)
design. These appear in, for example, 'active' audio filters, as part of the audio gain in direct-conversion receivers, and such. Things like comparators (which compare to signals) don't much concern us, but 'voltage regulators' most definitely are of interest. One takes an ordinary un-regulated DC supply, derived from wobbly and dirty mains, and puts it through a voltage regulator, to find on the output side a stable and clean voltage will 'stay put' as the load current changes. Old-time stabilised PSUs were heavy things in their own chassis, but the modern regulator IC is a thing the size of a transistor - indeed it most commonly comes in a standard transistor type of package; some give out a standard voltage (5 or 12 volts, for example) and some are so arranged that they can be adjusted to suit requirements between wide limits. The more useful ones al so usually include a 'fold-back' protection circuit such that if the current drawn rises beyond the limits the IC, as it were, turns off so that no damage occurs to the circuit the IC is powering up - very handy in a bench PSU when you are playing with a new circuit and a transistor in the circuit tries to go into thermal runaway! - or if you drop a screwdriver across the printed-circuit. All you have to do is remove the screwdriver, switch off and then on again, and you are back in business.
to be continued

ASPECTS OF AMATEUR RADIO

A PERSONAL VIEW
LES MAY, G4HHS

SOME time ago a friend gave me a pile of Short Wave Magazines dating back to the late 1940 's and through to the early seventies. These have given a fascinating glimpse into the development of amateur radio over the past thirty-five years. The now almost universal use of the pi-output, the growth of SSB and the steady decline of AM are all catalogued together with the more recent explosive growth of FM on VHF. As a fairly recently licensed amateur, I sometimes wonder if some of our radio 'pundits' did not have their thinking arrested during the period covered.

The implication seems to be that if newly licensed amateurs were limited to 10 watts of CW for a year or so before being turned loose with QRO and phone then all that ails amateur radio (does it ail?) would be put right. But what is it really like to get a call today? What are the differences?

At first sight it might appear that the introduction of the ' B ' licence has had the effect of bringing about the supposed lowering of standards. The dogma goes that a ' B ' licence is very much second best and that 2-metre FM-ers are all ill-mannered lads who have turned the band above 145 MHz into a glorified citizens band. But how true is this? Apart from the repeater burpers I have only come across one case of really bad manners, a G3 +3 who had, it seems, one crystal only and that nearly, but not quite, on the S20 calling channel used in this area. When politely reminded
that he was hogging the calling channel he could only mutter darkly about CB-ers and that his licence said nothing about channels anyhow. True, but how about FM at the CW end of the band? What is sauce for the goose . . . For many amateurs the emphasis is on communication and FM works best when it is channellised, so why not adopt the sensible procedure and designate calling and working channels? There seems good sense in using 2 -metres and 70 cm . FM for local nets and mobile working, by both ' A ' and ' B ' class licensees. A few watts of RF can give BBC-quality reception with manageable aerials. As for a ' B ' licence being second best it certainly is not an open and shut case. The G8 or G6 who casts his eyes on the higher frequency bands meets problems just as difficult to overcome as passing the Morse Test. Many "linears" for VHF and UHF are homebuilt and SWR meters for 70 cm . and above are not exactly off-the-shelf items.

Perhaps the change that has affected all of us most profoundly has been the much greater choice of commercially built gear and the money in our pockets to buy it.

Would SSB have swept aside AM so completely if off-the-shelf gear had not been available, or FM become the most common mode for 2 m ? A glance at S.W.M. for the middle 1950's reveals perhaps four or five commercially built receivers and maybe three transmitters regularly advertised. One of the latter, the Panda, being built less than half a mile from where I now sit. Today the story is very different.

The clock cannot be turned back to some valve-filled golden yesterday. Our bands are quite wide enough to accommodate all modes and both classes of licence given reasonable good sense and an absence of bigotry. It may still be quite true that with careful buying one can put together a 25 or 30 watt CW rig for $£ 10-20$, but who really tries to sell CW as a pleasure in itself? If the new G 4 or G6 goes out and buys a glossy new rig he is simply following a trend already well established. Glossy ads. hint at the exotic DX to be worked when a speech processor, linear or beam is added. Is it any wonder we fall for it?

If being super-modern and sophisticated is the criterion then CW hardly looks to be in the running. Its appeal must lie in some other quarter and what better reason than to work all that exotic DX on the HF bands. But if that is the only reason for going to the trouble of learning Morse the key will go straight back in the drawer after the test. Perhaps a better argument for CW is its simple elegance. It is difficult to improve one's technique in shouting down a microphone, but to send and receive good Morse means that technique must continue to develop after the magic ' A ' licence drops through the door.

Earlier I mentioned that CW does not seem to be in the running as a modern technique. This is far from the case. The recent availability of a wide range of general purpose ICs has lead to the development of an armoury of add-on devices to improve the communication effectiveness of CW . From simple one-stage active filters through devices which produce a stereo CW signal giving a spatial distribution to the various signals in the receiver pass band, to coherent audio filters, and finally to fully coherent CW where in effect the receiver "knows" when a dot, dash or space can be expected to start by careful control of the transmit, receive and timing functions. I have purposely left out the increasing use of computers to send and receive CW because this approach seems to lack the sense of personal involvement which gives a lot of pleasure.

I found learning Morse quite difficult and my QSOs are still sometimes hesitant affairs. The test was one of the more nerve racking experiences of my life and knowing nothing of "activity nights" on two-metres it took me more than eight hours to find my first QSO when my G4 call arrived. Having finally passed the Morse Test it is easy to forget just how difficult it can be for some people.

There are probably as many reasons for becoming an amateur as there are amateurs. Only by co-operation and mutual respect can we make best use of the available frequency space - which is after all a finite resource. That is unless someone has found a way of booking their private channel!

CLUBS ROUNDUP By "Club Secretary"

AVERY short preamble this time - just enough to remind everyone of the need for regular up-date and, of course, to wish all Clubs, and their Officers and Members, a Very Happy Christmas and Prosperous New Year.

The Clubs

The first one is Abergavenny, where the gang are still based on the room above Male Ward 2 in Pen y Fal Hospital every Thursday evening, while Tuesday evenings are for the RAE class which is held at Nevill Hall Hospital, also in Abergavenny; and locals could note that the club is registered as an RAE centre for the examination - the Hon. Sec. (see Panel) has all the details you may require.

Now to Acton Brentford \& Chiswick, on December 21, at Chiswick Town Hall, when the gang will have a demonstration of the Icom IC-720A by G3CCD.

The Atherstone group have a talk by Richard Margoschis on December 9, designed to make them get the best out of their tape recorders - the venue, according to our records, being the Tudor Centre, Coleshill Road.

Aylesbury Vale have only the Christmas Dinner on 28th as their December event, unless the Hon. Sec. has anything else up the sleeve, and on January 25 they have an AGM, at Stone Village Hall. For the rest, the Hon. Sec's address and phone number are in the Panel.

If you want to find the Bedford club, you start out by looking for a pub called "The Case is Altered" and the club house is within 100 yards of you. More details from the Hon. Sec. at the address in the Panel.

Christmas Dinner is in prospect for Biggin Hill club on December 21; for January it is the AGM, at the usual Biggin Hill Memorial Library Hq.
A new Publicity Secretary takes over at Braintree, where they seem to have a large supply of YL/XYLs for these tasks! The group are based on the Community Centre, which is next door to the Bus Station in Braintree's Victoria Street, and foregather on the first and third Monday of each month.
B.A.R.T.G. look after the interests of the chaps who have the RTTY facility in their stations, whether by old-fashioned teleprinter or new-fangled electronics; and one has to wonder how a non-member can operate an effective RTTY station! Details from the Hon. Sec. - see Panel.

The Bury club don't shout much about themselves, but at the last count they had over eighty members current on the books. They have their AGM, at Mosses Youth \& Community Centre, Cecil Street, Bury, on December 14, but the same venue will find them every Tuesday evening informally.

Next, Caradon Hill Repeater Group have their Christmas gettogether on December 9 at the "Arscott Arms", Chapmans Well, which lies about four miles to the north of Launceston, Cornwall, on the Holsworthy Road. Visitors would seem to be welcome - details from the Hon. Sec., see Panel.

At Cheltenham it all happens at the Old Bakery, Chester Walk, Clarence Street, Cheltenham; and in that we must include the AGM on December 2.
Every Wednesday the Stable Loft of Bury Farm is opened up to admit a group of Chesham radio hams. This hide-out is to be found in Pednor Road, Chesham - ring the Hon. Sec. for details.

Cheshunt is much easier to find - the Church Rooms, Church Lane, Wormley, Cheshunt - just be sure the 'Church Lane' you have got is in Wormley! Any Wednesday evening will find them. Thus, December 1 is down for G4MAS to talk about Town \&

Country Planning, and on 15th they have a video show. December 8 and 22 are both down for a natter and the 29th date is cancelled.

Turning to Chichester they seem to have happily settled into their new Hq at Fernleigh Centre. December 7 sees a talk on the GB3PH repeater in the Long Room, and on 16th they have the Annual Christmas Social and the presentation of the Marcuse Trophy, in the Green Room.

The Clifton club gather each Friday evening in the New Cross Inn, Clifton Rise, London SE14, where they have an upstairs room.

Colchester have their home in the Staff Common Room, Colchester Institute, Sheepen Road, where they get together on alternate Thursday evenings.

We are in fact overdue for an up-date from Conwy Valley; they meet on the second Thursday in each month at Green Lawns Hotel, Bay View Road, Colwyn Bay, if the last data we had is still correct. For details, contact the Hon. Sec. - see Panel.

For the Cornish gang, December is set apart for the Christmas Party, with films, at the SWEB Clubroom, Pool, Camborne; the date for the festivity being December 2 .

We don't have the latest for Crawley, as their programme isn't normally announced that far ahead. However, we can say that they alternate between the informals at members' homes, and the 'main' meeting at Trinity Church Hall, Ifield, on the second Wednesday of each month.

The move of Hq by the Crystal Palace club has paid off, says the Hon. Sec., with numbers up. December 18 sees the Christmas Party and film show, at All Saints Church Parish Hall, Upper Norwood, which is almost opposite the ITA mast, Beulah Hill/Church Road.

Deadlines for "Clubs" for the next three months -

January issue - November 26th
February issue - December 31st
March issue - January 28th
April issue - February 25th

Please be sure to note these dates!

Our next stop is Dartford Heath D/F, where the main reason for the club's existence is D/F hunting, although they do in fact have other activities. There is a monthly meeting at the "Malt Shovel" in Eynsford - they have December 8 for the regular one and another on 22nd is down as an EGM; full details from the Hon. Sec.

We turn now to Derby, and here the club are based on the Top Floor of 119 Green Lane, Derby, where they are to be found on Wednesday evenings. Details of the month's programme can be obtained from the Hon. Sec. - see Panel.

Every Monday evening sees the members of the Derwentside group converging on the club Hq at the R.A.F.A. in Consett, where they have a club station and all the trimmings - not to mention a steadily rising membership.

A new Hon. Sec. - see Panel - writes in on behalf of the Doncaster club, based on Gertrude Bell Hall, Church Street, Armthorpe, Doncaster, every Monday evening.

Now we head for Douglas Valley, and this means Shevington Conservative Club; on December 2 they have another talk by G3KTJ. The club catchment area is basically the Skelmersdale district.

Every second Monday and last Thursday in the month, the Echelford lot forgather at The Hall, St. Martins Court, Kingston Crescent, Ashford, Middlesex. December 13 is down for a talk by the RR, G8HMG, and on 30th G4NNS will talk about the role of the microcomputer in amateur radio.

A junk sale is down for December 9 at Edgware, followed on

December 13 by a club participation in the Harrow D/F Hunt on Top Band. The club Hq is at 145 Orange Hill Road, Burnt Oak, Edgware.

December for Farnborough shows a Chairman's Evening on 8th, and on 22nd a Christmas Social Evening with wives and girlfriends, at the Railway Enthusiasts Club, Access Road, off Hawley Lane, this venue being near to the M3 bridge, Farnborough.

Up to GM now, to Glenrothes in the Kingdom of Fife; they are at Provosts Land, Leslie, on Wednesdays.

Some 36 years ago the Grafton club was first formed, and hundreds of people have passed the RAE under their classes; nowadays they foregather at the "Five Bells" pub, East End Road, which is about a half-mile east of Manor Cottage on the North Circular Road, on second and fourth Fridays. December 10 is down for the annual Construction Contest.
A much newer group is the one at Greater Peterborough where for the latest details we must refer you to the Hon. Sec. - see Panel for his details.
The G-QRP Club must be one of the strongest in the country, with over 1000 members, united by their interest in QRP working and home-construction. Details of this one from the Hon. Sec. - see Panel.
At Guildford, G3OLM will be talking and demonstrating his model aerial farm on December 10 - the venue is the Guildford Model Engineers Hq at Stoke Park, and the normal routine is to meet on second and fourth Fridays.
The Harlow lads and lasses have their Hq at Mark Hall Barn, First Avenue, Harlow, every Tuesday evening, and they nearly always have something set up for your entertainment; indeed the club is stronger now than for years.

At Harrow, December 2 is down for the Christmas Dinner, December 10 for a talk on orienteering, a D/F Hunt with three other clubs on December 12, and on December 17 there is a talk, the subject and speaker yet to be announced. The Hq is at Harrow Arts Centre, High Road, Harrow Weald, and the club have the use of all the facilities there.
The Hastings data needs to be looked at with some care; all meetings except the 'main' one are now held at Ashdown Farm Community Centre. This main meeting is on the third Wednesday at West Hill Community Centre, but the club are to found at Ashdown Farm Centre on the other Wednesday, on Tuesdays for an RAE class, and on Friday evenings for a chat night.

Havering have their base at Fairkytes Arts Centre, where on December 1 they have a surplus sale, followed on 8 th by an Informal. On December 15 they have a video lecture programme, combining the G6CJ "Aerial Circus' and "The Secret Listeners", which leads to December 22 for a Christmas Party. Sad to say there's nowt on December 29 as the Hq will be closed for the holiday.

County Control, Civil Defence Hq, Gaol Street, is the ominous-sounding address of the Hereford club - but it must be OK as they've been there for years! December 3 is down for a normal meeting and on 17th they have the Christmas Quiz.

Over in EI, the I.R.T.S. is the place to address all enquiries about amateur radio in Eire, and in particular about local clubs. The Hon. Sec's address is in the Secretaries Panel.

A new one to be announced is called KSC Amateur Radio Group; it is open to all Catholic amateurs and is on the lookout for new recruits. Details from the Hon. Sec., G3AKG, at the address in the Panel.

We turn now to one of the clubs in the Leeds district, this one in fact being called Leeds \& District; it is based on Old Hall Golf Club, Woodhall Lane, Pudsey, where they are to be found on any Monday evening.
Up North again, to Lothians, where they now gather at Drummond High School, Edinburgh, on the second and fourth Thursday of each month at 7.30. December 9 is down for a talk, which had not been completely finalised at the time of their letter.

J-O-T-A 1982, October 16th and 17th. Above, David, Jackson G4HYY passes the GB2TOD (Todmorden High School) microphone to Elizabeth Hall, the Yorkshire County Guide Commissioner, who took advantage of the new regulations on greetings messages to talk to GB2CWR near Loch Ness. Below, G4HYY's 151/2-year-old daughter Kathryn, G6LHY, seen operating the GB2TOD 144 MHz station. G6LHY is a Brownie Young Leader and hopes to have a G4 call before long.

Photos by G6NIJ

The Macclesfield gang are to be found on the second and fourth Tuesday of each month at St. Andrews Old School Hall, St. Andrews Road, Brough Street West.
Turning to Maidenhead, they meet at the Red Cross Hall, The Crescent, Maidenhead. December 2 is the Home Construction Contest, and on 21st they have the Christmas Social.

Another new one for mention now; this one is Maltby, where they foregather in the Methodist Church Hall, Blyth Road, Maltby, every Friday evening. More details if required from the Hon. Sec. - see Panel for his details.
The Merion crowd will be at Nannau Country Club, Llanfachreth, near Dolgellau on December 2 to hear GW6DDF talking about "Dirty Work on an Oil Rig, or Mud Galore" - and on 11th they hope to have regained their appetites enough to cope with the Christmas Dinner at Nannau Hall.
December 17 is the date for the Melton Mowbray crowd, at the St. Johns Hq, Asfordby Hill, and the business a bring-andbuy sale, with a raffle for the ladies and the presentation of the G3FDF Trophy.

A new Hon. Sec. takes over at Mexborough - see Panel - and as we have no other current news of the club we must refer you to her for the latest details of programme and venue.

We turn now to Midland where they have their own place at 294A Broad Street, Birmingham; but we have to refer you to the Hon. Sec. for the current details of meetings, save that we know

Names and Addresses of Club Secretaries reporting in this issue:

ABERGAVENNY: D. F. Jones, GW3SSY, 2 Dalwyn Houses, Llanover Road, Blaenavon, Gwent NP4 9HY. (0495-791617)
ACTON, BRENTFORD \& CHISWICK: W. G. Dyer, G3GEH, 188 Gunnersbury Avenue, Acton, London W3 8LB. 101-992 3778
ATHERSTONE: T. Court, G41AG, Wood View, Breach Oak Lane, Corley Ash, Coventry CV7 8AU. (Fillongley 41814)
AYLESBURY VALE: M. J. Marsden, G8BQH, Hunters Moon, Buckingham Road, Hardwick, Aylesbury. (0296-641783)
BEDFORD: Miss J. Ferguson, G6JJT, 4 Hotch Croft, Cranfield, Beds. (Bedford 751397)
BIGGIN HILL: I. Mitchell, G4NSD, 37B The Grove, Biggin Hill, Westerham, Kent TN16 3TA. (09594-75785)
BRAINTREE: A. Williams, G6CIV, 12 Silver Street, Silver End, Essex. (Silver End 83516)
B.A.R.T.G.: E. Batts, G8LWY, 27 Cranmer Court, Richmond Road, Kingston-on-Thames
BURY: M. Bainbridge, G4GSY, 7 Rothbury Close, Bury, Lancs. BL8 2TT. (061-7615083)
CARA DON HILL: C. P. Bartram, G4DGU, 23 Tuckers Park, Bradworth, Holsworthy, Devon EX22 7TL. (0409-24543)
CHELTENHAM: J. Holt, G3GWW, The Old Rectory, Brimpsfield, Glos.
CHESHAM: J. Alldridge, 15 Wichcote Gardens, Chesham, Bucks. (Chesham 786935)
CHESHUNT: R. Gray, G6CNV, 2 Sacombe Green Road, Sacombe, Ware, Herts. SG12 0JN. (Dane End 254)
CHICHESTER: T. M. Allen, G4ETU, 2 Hillside, West Stoke, Chichester, Sussex PO18 9BL. (West Ashling 463)
CLIFTON: R. Hinton, 42 Sutcliffe Road, Welling, Kent.
COLCHESTER: F. R. Howe, G3FIJ, 29 Kingswood Road, Colchester. (0206-70189)
CONWY VALLEY: J. N. Wright, GW4KGI, 46 The Dale, Woodlands, Abergele. (Abergele 823674)
CORNISH: J. Vinton, G6GKZ, Cheriton, Alexandra Road, St. Ives, Cornwall. (Penzance 795860)
CRAWLEY: D. L. Hill, G4IQM, 14 The Garrones, Worth, Crawley, W. Sussex RH 10 4YT. (Crawley 88264I)
CRYSTAL PALACE: G. M. C. Stone, G3FZL, 11 Liphook Crescent, London SE23 3BN. (01-699 6940)
DARTFORD HEATH D/F: A. R. Burchmore, G4BWV, 49 School Lane, Horton Kirby, Dartford, Kent DA4 9DQ
DERBY: Mrs. J. Shardlow, G4EYM, 19 Portreath Drive, Darley Abbey, Derby DE3 2BJ. (0332-556875)
DONCASTER: B. Coupe, G8GTG, 9 School Lane, Auckley, Doncaster DN9 3JR. (Doncaster 770663)
DOUGLAS VALLEY: D. Harrison, 3 Hallcroft, Birch Green 2, Skelmersdale, Lancs. WN8 6QB. (Skelmersdale 21814)
ECHELFORD: A. Matthews, G3VFB, 13A King Street, Twickenham. (01-892 2229)
EDGWARE: H. Drury, G4HMD, 11 Batchworth Lane, Northwood, Middlesex. (North wood 22776)
FARNBOROUGH: 1. Ireland, G4BJQ, 118 Mychett Road, Mychett, Camberley, Surrey. (Farnborough 543036)
GLENROTHES: G. Lucas, GM4EJI, 135 Wellshot Road, Kennoway, Fife.
GRAFTON: J. W. Chambers, 12 Sylvan A venue, Finchley, N3 2LE. 101-346 584I)
GREATER PETERBOROUGH: F. Brisley, G4NRJ, 27 Lady Lodge Drive, Longueville, Peterborough, Cambs. (0733-231848)
GUILDFORD: Mrs. H. M. Mullenger, G4OJO, address wanted. (Aldershot 20384)
G-QRP: G. C. Dobbs, G3RJV, 17 Aspen Drive, Chelmsley Wood, Birmingham B37. (021-770 5918)
HARLOW: Miss P. Mann, G4KVR, 23 School Green Lane, North Weald, Essex
HARROW: C. D. Friel, G4AUF, 17 Clitheroe Avenue, Harrow, Middlesex HA2 9UU. (01-868 5002)
HASTINGS: G. North, G2LL, 7 Fontwell Avenue, Little Common, Bexhill-on-Sea. (Cooden 4645)
HAVERING: A. Negus, G8DQJ, 17 Cortenay Gardens, Upminster, Essex RM14 1DH. (Upminster 24059)
HEREFORD: S. Jesson, G4CNY, 181 Kings Acre Road, Hereford. (Hereford 273237)
I.R.T.S.: S. Nolan, EI7CD, 68 Ratoath Estate, Ratoath Road, Dublin 7.
K.S.C.: P. J. Fay, G3AKG, 116 Lowfield Road, Caversham, Reading RG4 OPB. (Reading 476718)
LEEDS (\& District): A. Alexander, G6CJI, 22 Lichfield Road, Dewsbury, West Yorks. WF12 7NA.

LOTHIANS: M. Evans, GM6JAG, 4 Burdiehouse Street, Edinburgh. (031-664 5403)
MACCLESFIELD: D. Lucas, G6HLQ, 62 St . Austell Avenue, Macclesfield, Cheshire SK10 3NN. (Macclesfield 28610)
MAIDENHEAD: R. Hemmings, G3VCT, 107 Chalklands, Bourne End, Bucks SL8 5TL. (Bourne End 21036)
MALTBY: I. Abel, G3ZHI, 52 Hollytree Avenue, Maltby, Rotherham, Yorks.
MEIRION: R. Halhead, GW3KOR, Bryn Derw, Golf Road, Dolgellau, Gwynedd.
MELTON MOWBRAY: R. Winters, G3NVK, 32 Redwood Avenue, Melton Mowbray LE13 ITZ. (Melton Mowbray 63369)
MEXBOROUGH: Mrs. G. Drohan, 5 Swinburne Avenue, Adwick-leStreet, Doncaster, S. Yorks. DN6 7DJ
MIDLAND: N. Gutteridge, G8BHE, 68 Max Road, Quinton, Birmingham B32 1LB
MID-WARWICKSHIRE: Mrs. M. Palmer, G8RZR, 12 Edmondes Road, Woodloes Park, Warwick CV34 STX. (Warwick 499730)
NORFOLK: P. Gunther, G8XBT, 6 Malvern Road, Norwich NR1 4BA. (Norwich 610247)
NORTH WAKEFIELD: S. Thompson, G6ELC, 3 Harlington Court, Morley, LS27 0RT. 10532 536633)
NOTTINGHAM: M. C. Shaw, G4EKW, 50 White Road, Nottingham NG5 IJR
PLYMOUTH: Mrs. P. L. Day, G4KYY, 46 Beatrice Avenue, Saltash, Cornwall PLI 2 4NG
PONTEFRACT: N. Whittingham, G4ISU, 7 Ridgedale Mount, Pontefract, W. Yorks. WF8 1SB
R.A.I.B.C.: Mrs. F. Woolley, G3LWY, 9 Rannoch Court, Adelaide Road, Surbiton, KT6 4TE
R.A.T.E.C.: R. Marsh, G8TYH, 43 Jenny Lane, Woodford, Cheshire SK 17 1PE
REIGATE: C. S. Barnes, G8FEE, 25 Hartswood Avenue, Woodhatch, Reigate, Surrey RH2 8ET
ST. HELENS: D. Filer, G4OAM, 9 Heswall Avenue, Clock Face, St. Helens WA9 4DR. (Marshalls Cross 820471)
SHARP COMPUTERS CLUB: M. Fitzgibbons, G8VHB, 27 Roughwood Road, Kimberworth Park, Rotherham S61 3RE
SOUTH DORSET: A. Prior, G6HEL, 3 Greenways, Dewlish, Dorchester, Dorset DT2 7LP
SOUTHDOWN: J. Pitt, G6BGT, 18 Kingsmere Court, Hurst Lane, Eastbourne. (Eastbourne 643463)
SOUTH POWYS: J. Thoms, 41 Uplands, Brecon, Powys LD3 9HT. (Brecon 3815)
SPEN VALLEY: I. F. Jones, G4MLW, 54 Milton Road, Liversedge, Heckmondwike, W. Yorks. (Heckmondwike 409739)
STEVENAGE: T. Bailey, G6CRF, 187 Archer Road, Stevenage, Herts
STOURBRIDGE: M. Davies, G8JTL, 25 Walker Avenue, Quarry Bank, Brierley Hill. (Lye 4019)
STRATFORD-ON-AVON: D. Boocock, G8OVC, 181 Lower Binton, Stratford-upon-Avon, Warks. (Stratford-on-A von 750584)
SUNDERLAND: A. Everard, G8PCD, 19 Roker Park Road, Sunderland, Tyne \& Wear
SURREY: R. Howells, G4FFY, 7 Betchworth Close, Sutton, Surrey SMI 4NR. (01-642 9871)
THAMES VALLEY: J. Axe, G4EHN, 65 Ridgeway Place, Wimbledon, London SW19 4SP. (01-946 5669)
THANET: I. B. Gane, G4NEF, 17 Penshurst Road, Ramsgate, Kent. (Thanet 54154)
THORNBURY: A. Jones, G8AZT, 9 Queens Walk, Thornbury, Nr. Bristol
TORBAY: H. Davies, G4DZH, 18 Bowland Close, Paignton, Devon TQ4 7RT. (Paignton 523063)
VALE of WHITE HORSE: I. White, G3SEK, 52 Abingdon Road, Drayton, Abingdon, Berks
VERULAM: A. Gray, G4DJX, 44 Sherwood Avenue, St. Albans. (St. Albans 54190$)$
WACRAL: L. Colley, G3AGX, Micasa, 13 Ferry Road, Wawne, Nr. Hull, HU7 5XU
WEST KENT: P. Reeve, G4GTN, 2 Court Road, Tunbridge Wells, Kent. (Tunbridge Wells 24689)
WORCESTER: A. C. Lindsay, G4NRD, 11 Durcott Road, Evesham, Worcs. WR11 6EQ. (Evesham 41508)
WIRRAL (WEST KIRBY): N. McLaren, G4OAR, 596 Woodchurch Road, Oxton, Birkenhead. (051-608 1377)
YEOVIL: D. L. McLean, G3NOF, 9 Cedar Grove, Yeovil, Somerset.
YORK: K. R. Cass, G3WVO, 4 Heworth Village, York.
they have a Christmas Party on December 7. For the rest, refer to the Hon. Sec. - see Panel for his details.

At Mid-Warwickshire we have it that their Hq is at 61 Emscote Road, Warwick, on the first and third Tuesday evenings; December 21 is a social evening.

Norfolk come next, and they are at Crome Centre, Telegraph Lane East, weekly. On December 1 they have an RSGB Film, and on 8th there is a short meeting. "Bring the ladies" on December 15, and on 22nd and 29th they again have short meetings.

Turning to North Wakefield, they have Thursdays booked in at Carr Gate Working Men's Club; December 2 is informal, and on 9th they have the Christmas Dinner. That leaves December 16,23 , and 30 , all of which are down for natter evenings to get the festivities out of the way.

Nice to hear again from Nottingham, who used to be so regular with their reports. They still have their home base at Sherwood Community Association, Woodthorpe House, Mansfield Road, Sherwood, Nottingham, and the weekly programme for December looks like: 2nd, a forum; 9 th a talk on

VHF Propagation; 16th the Christmas Quiz; and on 23rd and 30th they will have the rig on the air if enough people want a break from the festivities.

Tamar Secondary School, Paradise Road, is home to the Plymouth crew. For the dates, we must refer you to the Hon. Sec. - see Panel.

There are only three December meetings of the Pontefract club; December 2 is an informal, and on 9th they have a cheese and wine party for members and wives. Another informal occurs on December 16, and the meetings on 23rd and 30th are both scrubbed out. The venue is the Carleton Community Centre.

Next, a new club - although frankly we wonder whether this is a club as we define 'em or not! It calls itself the "Radio Amateur Computer Club for Sharp MX-80K Owners", and is aimed at those who own one of these devices, and it is intended to act as a focal point for the interchange of programs, interfaces and indeed everything to do with the specified machine. Details obtainable from G8VHB at the address in the Panel.

Next we come to R.A.I.B.C. which caters so well for the blind and disabled adherents to our hobby - not to mention the Supporters and Representatives who also get much fun out of it. Details from the Hon. Sec. - see Panel.
R.A.T.E.C. is a club whose full name is Radio Amateurs Technical Engineering Club; they foregather on Monday evenings at the British Legion Club, Moor Lane, Woodford, Cheshire. Associate members are also welcome, and they receive the six editions of the news letter published each year. Details from the Hon. Sec. - see Panel.

On to Reigate and the Constitutional and Conservative Club, Warwick Road, Redhill. The next date is December 21 when they have "A Constructional Contest with Wine and Cheese" - we wonder what they can make from those?

Every Thursday evening, the St. Helens crowd head for the Conservative Rooms, Boundary Road; for the rest of the gen we must refer you to the Hon. Sec. - see Panel.

It seems an age since we last heard of South Dorset group, but they are still in residence at the Civilian Canteen, Army Bridging Camp, Wyke Regis, Weymouth, where their next get-together will be on December 7, for the Annual Club Quiz.

The Southdown Hq is at the Chasley Home for Disabled ExServicemen, Southcliffe, Eastbourne, on the first Monday in the month; we don't know what they have set up for December, so a call to the Hon. Sec. is needed here.

Another new one is called South Powys, and this one is based on Concorde House, Brecon, where they have booked the first and third Tuesday of each month, and the committee are now busy organising a programme; they would like to hear from any visitors to the area, and of course potential new members. Details from the Hon. Sec. - see Panel.

As he promised in his last letter the Hon. Sec. of Spen Valley has sent us a programme of events at Old Bank Working Men's Club, Mirfield, West Yorkshire. December 9 is a committee-and-project night, and on December 23 they have their Christmas Social Evening.

A change of venue for the Stevenage club; they have moved, after some twenty-odd years, and now have their Hq at T.S. Andromeda, Shephall View, Stevenage; December 7 is the next date given and we understand they have a social evening also planned for this month - details from the Hon. Sec. - see Panel.

The Stourbridge group now foregather at the Cross Inn, Hagley Road, Oldswinford, on the first and third Monday of each month; December 6 is a natter session and on 20th they have a talk on "Sleighs on 70 "' which sounds to be a Christmas jollity.

Heading for Stratford-upon-Avon we find the locals have their place at the Control Tower, Bearley Radio Station, which lies on the road to Henley-in-Arden. They have a CW evening on December 13 (this is a talk, we gather), and on 27th, the normal meeting is cancelled.

If you are in Sunderland, and want to look up the locals, head for the Brewery, Westbourne Road, Sunderland; and for the dates and details we refer you to the Hon. Sec. - see Panel for his details.

Surrey have their place at T.S. Terra Nova, 34 The Waldrons, South Croydon, on first and third Mondays. December 6 is rumoured to be a "Silly Question Evening" which should be educational, and on 20th they have an informal, which we gather may QSY to some local ale-house. Details from the Hon. Sec. - see Panel. Incidentally, G8YLF recently passed his Morse test - at the tender age of seventy-six. Shame on the rest of us! Congratulations, and long may John enjoy his G4 call.

On now to Thames Valley; Thames Ditton Library meetingroom is the place, in Watts Road, Giggs Hill; Thames Ditton, on December 1, when they have a junk sale.

At Thanet they have bookings on December 3 for a talk on DX operating, and on 17th there is the Christmas Party. The venue is Birchington Village Hall.

Next we have Thornbury, where they have the first Wednesday of each month at the "White Horse", Grovesend, Thornbury. For December the talk will be on synthesizer techniques.

December's main meeting at Torbay will be the Christmas Party, on the last Saturday of the month; in addition they have informals every Friday evening; all are at the club Hq, Bath Lane, rear of 94 Belgrave Road, Torquay.

Now we head for the Vale of White Horse where the first Tuesday of December sees a social evening, while the third Tuesday is informal; the Hq is at the "White Horse" in Harwell Village.

Heading now to Verulam, the club have their AGM at the R.A.F.A. Hq in New Kent Road, St. Albans, on December 21.

WACRAL is a group of committed Christian radio amateurs and SWLs of all denominations, held together by nets and a newsletter worldwide. Details from the Hon. Sec. - see Panel.

Alternative Fridays at the Adults Education Centre, Monson Road, Tunbridge Wells is the form for West Kent; details from the Hon. Sec. - see Panel.

Worcester have been getting very good attendances at club meetings of late; find them at the Oddfellows Club, New Street on December 6 for a talk on microwaves, and on December 22 at the "Old Pheasant", New Street, for an informal.

Wirral (West Kirby) is a club based on the Irby Cricket Club Hq , where on December 8 they have a Chairman's Night.

Yeovil seems to have missed us out this month, but we can tell you that they have a place in Building 101, Houndstone Camp Yeovil, where they are to be found every Thursday evening.

Finally, York; the venue is the United Services Club, 61 Micklegate, and the gang get together every Friday evening.

Finis

That's the lot again, and it remains only for us to remind the laggards about updates, to tell you the deadline dates are in the 'box' as usual, and that they are dates to arrive; and of course, everything should be addressed to "Club Secretary", SHORT WAVE MAGAZINE, 34 High Street, WELWYN, Herts. AL6 9EQ

Morse Course

Bradford and Ilkley Community College inform us that they are to run a course specifically to prepare students for the Post Office Morse examination. The one-year course starts on 12th January 1983, and classes are on Wednesdays from 7-9 p.m. Prospective students should contact the Course Tutor, P. Nurse, whose address is Bradford and Ilkley Community College, Division of Electrical \& Electronic Engineering, Great Horton Road, Bradford, West Yorkshire BD7 1AY.

Continuing the success of a great range of transceivers backed by KW Service.
The OMNI-C (Top of any class) the DELTA (an excellent "work-horse" for Home station or Mobile) the ARGOSY (mobile or Home station the fast selling rig in the UK today) the ARGONAUT (amazing performance at low-cost).

THE

The OMN I-C, comprehensive facilities. Superb SSB with 8 pole filter eall 6 present HF bands (+ all 3 new bands $10.18+24.5 \mathrm{MH} 2$) covering 10-160 meters 02 speed CW break-in facility enew "hang" AGC for smoother operation 200 watts max input power osize $5 \frac{1}{2} \times 141 / 2 \times 14$ inches deep.
Come to KW for all your other amateur radio requirements KW service and guarantee - KW maintains the tradition of service the company is renowned for. Output transistors unconditionally guaranteed for 12 months. The KW+TEN. TEC units offered above are introduced as a prelude to fully UK assembled equipment.

* (A full range of accessories is available for $K W+T E N-T E C$ equipment)
Other KW units available KW 107 Supermatch KW trap dipole KW E-Z match KW traps KW Balun KW antenna switch.

KW TEN-TEC LTD

Vanguard Works, Jenkins Dale, Chatham ME4 5RT Tel:0634-815173 Telex:965834 KW COMM G

FOR QUALITY CRYSTALS - AT COMPETITIVE PRICES. POPULAR FREQUENCIES IN STOCK

2 METRE STOCK C

	HC6JU	HC6/U	HC251U 30 pF and	HC25IU 20pF and	HC25U 25 pF and	$\begin{gathered} \mathrm{HC6} \\ 25 \\ \hline 25 \end{gathered}$
	30pF TX	30pF TX	40pF TX	30pF RX	20pF TX	SR RX
RO	4.0277	8.0555	120833	14.9888	18.1250	44.9666
R1	4.0284	8.0569	120854	14.9916	18.1281	44.9750
R2	4.0291	8.0583	120875	14.9944	18.1312	44.9833
R3	4.0298	8.0597	120895	14.9972	18.1343	44.9916
R4	4.0305	8.0611	12.0916	15.0000	18.1375	45.0000
R5	4.0312	8.0625	12.0937	15.0027	18.1406	44.0083
R6	4.0319	8.0638	12.0958	15.0055	18.1437	45.0166
R7	4.0326	8.0652	12.0979	15.0083	18.1468	45.0250
S8	-	-	12.1000	14.9444	18.1500	44.8333*
S9	-	-	12.1020	14.9472	18.1531	$44.8416{ }^{*}$
S10	-	-	121041	14.9500	18.1562	$44.850{ }^{*}$
S11	4.0354	8.0708	121062	14.9527	18.1593	44.8583*
S12	,	-	12.1083	14.9555	18.1625	44.8666*
S13	-	-	12.1104	14.9583	18.1656	44.8750*
S14	-	-	12.1125	14.9611	18.1687	44.8833*
S 15	-	-	12.1145	14.9638	18.1718	$44.8916{ }^{*}$
S 16	-	-	12.1167	14.9667	18.1750	$44.900{ }^{*}$
S17	-	-	12.1187	14.9694	18.1781	44.9083**
S18	-	-	12.1208	14.9722	18.1812	44.9166*
S19	-	-	12.1229	14.9750	18.1843	44.9250^{*}
S20	4.0416	8.0833	12.1250	14.9777	18.1875	44.9333
S21	-4.0423	8.0847	12.1270	14.9805	18.1906	44.9416
S22	4.0430	8.0861	12.1291	14.9833	18.1937	44.9500
S23	4.0437	8.0875	12.1312	14.9861	18. 1968	44.9583
		SR = S	S Resonan	* HC25		

Also in stock: RO to R7 and S8 to S23 for following: Belcom FS 1007, FDK TM56, Multi 11 Quartz 16 and Multi 7, Icom IC2F, 21, 224 and 215, Trio Kenwood 2200, 7200. Uniden 2030 and Yaesu FT2FB, FT 2 Auto, FT 224 , FT 223 and FT 202
Also in stock 4 MHz TX in HCG/U for 145.8 MHz . Icom crystals TX for 145.6 MHz RRO). 44 MHz RX crystals in HC6 for 145.8 and 145 (RRO). All at above price
4 METRE CRYSTALS for 70.26 MHz in HCG/U at $£ 225$. TX 8.78250 MHz . RX 6.7466 or 29.78 MHz in stock

70 cm CRYSTALS in stock 8.0222 and 12.0333 in HC6 £1.85. Pye Pocketfone PF1, PF2 PF70 and Wood and Douglas $£ 4.50$ a pair or TX $£ 225$, RX $£ 250$, SU8 (433.2) RBO, RB2, RB4, RB6, RB10, RB11, RB13 $\overline{3}$ R R14 ${ }^{-1}$ and RB15
CONVERTER CRYSTALS IN HC 18/U at £2.85. In stock 38.666, 42.000, 70.000,96.000, $101.000,101.500,105.666$ and 116.000 MHz . $26.000 \mathrm{HC} 6 £ 2.00$ TONE BURST AND I.F. CRYSTALS in HC18U at $£ 2.25$ in stock. 7.168 MHz for 1750 kHz and 10.245 MHz for 10.7 MHz IF's.

PuartSLab

MARKETING LTD
P.O. Box 19

Erith
Kent DA8 1LH

MADE TO ORDER CRYSTALS SINGLE UNIT PRICING

Unless otherwise requested fundamentals will be supplied with 30 pF load capacity and overtones for series resonance operation.

FREQUENCY STANDARDS in stock $£ 275, \mathrm{HC} 6200 \mathrm{kHz}, 455 \mathrm{kHz}, 100 \mathrm{kHz}, 5.000 \mathrm{MHz}$ and 10.000 MHz . HC $13100 \mathrm{kHz}, \mathrm{HC} 181000 \mathrm{kHz}, 7.000 \mathrm{MHz}, 10.700 \mathrm{MHz}, 48.000 \mathrm{MHz}$ and 100.00 MHz . $4.0000 \mathrm{HC} 18 £ 2.00$ HOLDERS - Please specify when ordering - 10 to $200 \mathrm{kHz} \mathrm{HC13} \mathrm{U}, 170 \mathrm{kHz}$ to 170 MHz HC6 or HC33U, 4 to $225 \mathrm{MHz}, \mathrm{HC} 18$ and HC25.
Where holders are not specified crystals above 4 MHz will be supplied in $\mathrm{HC} 25 / \mathrm{U}$. DELIVERY Column A 3 to 4 weeks. Column B 6 to 8 weeks.
DISCOUNTS. 5\% mixed frequency discount for 5 or more crystals at B delivery. Price on application for 100 more crystals to same frequency specification. Special rates for bulk purchase schemes including FREE supply of crystals used in UK repeaters.
The above prices apply to small quantities of crystals for amateur use. We would be pleased to quote for larger quantities or crystals for professional use.
EMERGENCY SERVICE SURCHARGES (to be added to A delivery prices). 4 working days £12 6 working days $£ 7.8$ working days £5. 13 working days $£ 3$. Surcharges apply to each crystal not each order and are subject to VAT.
CRYSTAL SOCKETS HC6/U and HC25U 20p. MINIMUM ORDER CHARGE £1.50.
TERMS. Cash with order, cheques and postal orders payable to QSL Lid. All prices include postage to UK and Irish addresses. Please note Southem Irish cheques and postal orders are no longer acceptable. Please send bank draft in pounds Sterling.

PRICES ARE EX VAT. PLEASE ADD 15\%
Telephone: 01-690 4889 (9-5) 24 hr . Ansafone: Erith (03224) 30830
Telex: 8813271 GECOMS G (Attention QUARTSLAB).

S.E.M.
 UNION MILLS, ISLE OF MAN
 Tel: MAROWN (0624) 851277

Going to exhibitions lets us meet our customers, giving us valuable "feed back" Comments like "your Power/Pre-amps are the BEST". "MY SENTINEL 35 exceeds your spec", or "I experiment with antennas and your TRANZMATCH \& EZITUNE matches ANYTHING', make it all seem worthwhile. So thanks to everybody in LEICESTER who came to buy, look, or pass comment.

SENTINEL 2M LINEAR POWERUPRE-AMPLIFIERS

Now feature either POWER AMP alone or PRE-AMP abone or both POWER AND PREAMP or STRAIGHT THROU when OFF. Plus a gain control on the PRE-AMP from 0 to 20 dB . N.F. around 1 dB with a neutralised strip line DUAL GATE MOSFET.
Ultra LINEAR for all modes and R.F. or P.T.T. switched. 13.8 V nominal supply. SO239 sockets.
Three Models:

1. SENTINEL 35 Twelve times power gain. $3 W$ IN 36 W OUT. 4 amps . Max. drive $5 W .6^{n} \times 2 \%^{*}$ front panel, $4 \%{ }^{\prime \prime}$ deep. $£ 6250$ Ex stock.
2 SENTINEL 50 Five times power gain. 10W \mathbb{N} 50W OUT. Max. drive 16W 6 amps. Same size as the Sentinel $\mathbf{3 5}$. $£ 74.50 \mathrm{Ex}$ stock.
2. SENTINEL 100 Ten times power gain. 1OW IN 100 W OUT. Max. dive 16 W . Size: $6 \%_{2}{ }^{\prime \prime} \times 4^{4}$ front panel, $31 / 2^{-2}$ deep. $12 \mathrm{amps} . £ 100 \mathrm{Ex}$ stock.
POWER SUPPLIES for our linears $6 \mathrm{amp} £ 34,12 \mathrm{amp} £ 49$.
SENTINEL AUTO 2 METRE or 4 METRE PRE-AMPLIFIER
Around 1 dB N.F. and 20 dB gain, (gain control adjusts down to unity) 400 W P.E.P. through power rating. Use on any mode. 12V 25 mA . Sizes: $1 \frac{1}{2^{\prime \prime}} \times 214^{n} \times 4^{\text {n }}$ £2800" Ex stock.

SENTINEL STANDARO PRE-AMPLIFIER E $15.00^{\prime \prime}$ Ex stock.
PA3. i cubic inch p.c.b. to fit inside your equipment. $£ 10.00 \mathrm{Ex}$ stock. 70 cm versions of all these lexcept PAS $£ 4,00$ extra. All ex stock.
S.E.M. TRANZMATCH

The most VERSATLLE Ant. Matching system. Will match from 15-5000 Ohms BALANCED or UNBALANCED at up to 1 kW . Link coupled balun means no connection to the equipment which can cure TV1 both ways. SO 239 and 4 mm connectors for coax or wire feed. 160.10 metres TRANZMATCH $£ 69.60$. 80.10 metres $£ 6260$. EZITUNE built in for $£ 19.50$ extra. (See below for details of EZITUNE). All ox stock. 3 WAY ANTENNA SWITCH 1 KW SO239s. Good to 2 metres. $£ 15.00$. Ex stock. S.E.M. 2 METRE TRANZMATCH. $5 \frac{1}{2^{\prime \prime}} \times 2^{\prime \prime}, 3^{\prime \prime}$ deep. SO239s $£ 24.90$ Ex stock.

S.E.M. EZITUNE

You won't appreciate how good it is until you've used it!
Clean up the bands by tuning up without transmitting.
Connects in aerial lead, produces $\mathrm{S} 9+(1-170 \mathrm{MHz})$ noise in receiver. Adjust A.T.U. or aerial for minimum noise. You have now put an exact 500 hms into your transceiver. Fully protected, you can transmit through it, save your P.A. and stop QRM. £25.00* Ex stock. P.c.b. + instructions to fit in any A.T.U. \& 1950. Ex stock.

S.E.M. AUDIO MULTIFILTER

To improve ANY receiver on ANY mode. The most versatile fitter available. Gives "passband" tuning, "variable selectivity" and one or two notches. Switched Hi-pass, Lo-pass, peak or notch. Selectivity from 2.5 KHz to 20 Hz . Tunable from 2.5 KHz to $\mathbf{2 5 0}$ Hz . PLUS another notch available in any of the four switch positions which covers 10 KHz to 100 Hz . 12 V supply. Sizes: $6^{\prime \prime} \times 2 夕^{\prime \prime}$ front panel, $3 \not / 2$ deep, all for only £57.00 Ex stock.
SENTINEL AUTO H.F. WIDEBAND PRE-AMPLIFIER $2-40 \mathrm{MHz}, 15 \mathrm{~dB}$ gain. Straight through when OFF. $912 \mathrm{~V} .2 \%^{\prime \prime} \times 11 / 2^{\prime \prime} \times 3^{*}$. 200 W through power. £19.55"Ex stock.
SENTINEL STANDARD H.F. PRE-AMPLIFIER. No R.F. switching. £1262" Ex stock. S.E.M. IAMBIC KEYER

The ultimate auto keyer using the CURTIS custom LSICMOS chip. Tune and sidetone Switching. $£ 34.50$ Ex stock. Twin paddle touch key. $£ 1250$ Ex stock.
S.E.M. VISA 80 METRE RECEIVER

Already a great success. Only $21_{2 \prime \prime}^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$. 12 . operation t.W. o/p. If you want an 80 m . $(3.5 \times 3.8 \mathrm{MHz}) R x$ this is for you. Still only $£ 39$. FREE CONVERTERS FROM 10 kHz to 2 metres in stock
12 MONTHS COMPLETE GUARANTEE INCLUDING ALL TRANSISTORS.
Prices include VAT and detivery. C.W.O. or phone your credt card number for same day service.
-Means Belling Lee sockets, add $\mathrm{£1.90}$ for SO239s or BNC sockets. Ring or write for more information. Place orders or request intormation on our Ansaphone at cheap rate times.

OPPORTUNITIES WITH MICROWAVE COMMUNICATIONS

MCL provide a wide range of microwave link equipment for the UK and export markets. We are part of the M/A COM GROUP of companies who have sales in excess of $\$ 800$ million and are specialist suppliers to the broadcast companies, public utilities and security organisations both in the United Kingdom and overseas.
Due to continued expansion we are able to offer many interesting and challenging opportunities to
 experienced engineering personnel.

DEVELOPMENT

 Senior Circuit Design Engineer - ideally mid 20's to mid 30 's with a minimum HNC level qualification - must have several years relevant design experience in Baseband IF and RF circuitry. Some experience in digital techniques would be advantageous.Salary would not be a limitation for the right applicant. Junior Circuit Design Engineers with minimum of 18 months experience in industry designing baseband IF or RF circuitry.

Salary c. £7-10k

PRODUCTION

Production Engineers with several years experience of production problems on Video and or Telephony Microwave Systems. Experience with production control methods would be an advantage.

Salary c. $£ 8-10 \mathrm{k}$

MARKETING

Marketing Engineers to prepare and submit quotations for Microwave Video and Telephony Equipment. Training will be given in System Engineering and there are excellent career development prospects with opportunities for overseas travel. Salary c. $£ 7-10 \mathrm{k}$
All the above posts will carry excellent fringe benefits including free BUPA and assistance with relocation if required.
Please apply with brief career summary to date, quoting reference BM 1'82
To: VILMA NYSS
PERSONNEL MANAGER
MICROWAVE COMMUNICATIONS LIMITED DUNSTABLE LU5 4SX BEDFORDSHIRE

TEL: 0582601441

If you would like to know more about these opportunities or our company, please telephone our Chief Engineer Tony Tooley on 0582872385 or our Marketing Director Brian Meade on 044285 470, outside office hours.

-

2, ALEXANDER DRIVE, HESWALL, WIRRAL, MERSEYSIDE, LG1 GXT. Telephone: 051-342 4443. Telex: 627371. Cables: CRYSTAL BIRKENHEAD.

Prices exclude VAT - U.K. customers please add 15\% VAT Commercial and Professional Crystals

New Faster Sarvice

We are now supplying crystals to most commercial and MIL specifications in the range 1 MHz to 60 MHz , ordered in small quantities, within 2% weeks AT NO EXTRA CHARGE. We also have an even faster EXPRESS SERVICE for that very urgent order. We can also supply crystals for commercial applications e.g. Microprocessor, TV etc., at very competitive prices. Let us know your noeds and we will send a quote by retum, atternatively telephone or telex our Sales Engineer Mr. Norcliffe whois normally available in the affice for technical enquiries between 4.30 and $6.30 \mathrm{p} . \mathrm{m}$.

$$
\begin{aligned}
& \text { Cryatals Marnufactured to Order to Ampateur Specification } \\
& \text { HC13N. } 8380 \quad 1.5 \text { to } 259 \mathrm{MHz} \text { (fund) HC6 }
\end{aligned}
$$

20 to 29.99 kHz HC13U.
20 to 29.99 kHz HC 13 U .
30 to 59.99 kHzHC 13 U .
30 to $59.95 \mathrm{kHz} \mathrm{HC13U}$.
60 to $79.99 \mathrm{kHz} \mathrm{HC13U}$.
80 to $99.99 \mathrm{kHz} \mathrm{HC13JU}$
100 to $149.9 \mathrm{kHz} \mathrm{HC13N}$
150 to 159.9 gHz HC6U
15010159.9 kHz HC6U.

400 to 499.9 kHz HC6U.
500 to 799.9 kHz HC6N. 800 to $999.9 \mathrm{SHz}^{2} \mathrm{HCE}$ HCEU. 1.0 to 1.499 MHz HC6N. . £ 11.25 180to $250 \mathrm{MHz}(90 /$ T) HC 18 G $25 / \mathrm{U}$. . . £ 13.50 900kHz 800 kHz - Adj. tol. $= \pm 20 \mathrm{ppm}$, Temp. tol. $= \pm 30 \mathrm{ppm}-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. Unloss otherwise specified fundamentals will be suppled to 30 pf circult conditions and
overtones to series resonance.
DELIVERY: 1 MHz to $105 \mathrm{MHz}-4 / 6$ weeks, other frequencies -68 weeks. Prices shown are for "one off" to our standard amateur specifications, closer tolerances are available. Please send us details of your requirements.

4 METRE, 2 METRE AND 70 CENTIME TRE STOCK CRYSTALS
We stock crystals for 70.26 MHz on 4 m . On 2 m we stock ROthru R8and S 18 thru S24. For 70 cm we have RBO thru RB15plus SU8, SU18 \& SU20. For full details of the above stock crystals plus details of our Converter, Marker and Atemative IF crystals, crystal socitets and our ÁERIAL RANGE see page 498 November Short Wave Magazine or send SAE to the above address.

YAESU

S.W.C.	Helping where it hurts		YES IT'SFREEI
	List		12 Pay-
	Price	Deposit	ments
FT ONE	£1,295	¢650	£53.75
FT 902 DM	£885	£400	£41.00
FT 1012DAM	¢650	£325	£27.10
FT 1012DFM	£665	£325	£28.40
FT 101zD	£635	¢325	£25.90
FT 707	£569	£290	£24.20
FT 102	¢725	£370	£29.59
FL 2100 Z	£425	£215	£ 17.50
FRG 7700	£329	£170	£13.25
FT 4808	£379	£190	£15.90
FT 230R	£235	£126	¢9.20
FT 290R	£249	£125	£10.40

South Wales Communications Ltd.
4 02915-552

LARGEST STOCK OF AMATEUR RADIO EQUIPMENT IN WALES

G3LJD Bristol (842463) GW4NVO Cwnbron (61022) On line GW6MKI

IC730
IC251
£883

IC290E
IC2E
$£ 366$
$£ 159$
350

Why wait. Order
Antennas. Order your entire station needs, including
Antennas etc., calculate 50\% deposit and balance over
12 mths. interest free.
Don't Like Finance. Contact us for a Cash Price Best Part Exchange Prices. Second Hand m
usually in stock. Contact us for up to date list.

FT 102
Continuing a tradition of excellence from the of excellence from th
Yaesu Musen stable. Price $£ 725$ inc.
Learning Marse? Here's the answer facilities include repeat last letter, continuous morse, group of five random letters, speed
$+\quad$ space control practice oscillator built-in P.S.U.
£46.90 inc. vat $+\mathrm{p} \& \mathrm{p}$.

MAIL ORDERS EXPRESS
Merry Xmas to all our Friends, Customers and Readers CRAIG-Y-MASTER PENYCAE MAWR NEAR USK GWENT

IN ASSOCIATION WITH THE HASTERRY LTD GROUP OF ENTERPRISES

OSCAR ANTENNAS

2 Metre multi $/$ collin 6.5 db Base 70 cm multi $\%$ co/lin 6.8 db \% 2 Metre Whip Fold Over Mobile 7/4 Ball Joint Base $7 / 4 \mathrm{cmall}$ Joint Base
70 Stage Colinear 10 Metre Fold Over Whip 10 Metre Fold Over Whip 15 Metre Fold Over Whip 20 Metre Fold Over Whip Gutter Mount with Keys Boot Lip Base Mount Cable Ass. C/W PL259

AZTEC ANTENNA KITS

DO IT YOURSELF KITS
2 m multi \% co/lin 6.5 db base 2 m 4 element quad 2 m 2 element Yagi HBSCV $2 m 5$ element Yagi 2 m 6element Yagi $6 m 6$ element Yagi
2 m 8 element $Y a g i$
$2 m 8$ element Yagi
Porta Mast with Guys $11^{\prime} 6^{\prime \prime} \times 1^{\prime \prime}$
Porta Mast with Guys $17^{\prime} 6^{\prime \prime} \times 11 / 2^{\prime \prime}$
Porta Mast with Guys $23^{\prime} 3^{\prime \prime} \times 2^{\prime \prime}$
£ 12.99 ($£ 2.20$
1299 (E2.20 E12.99 (E2.80 £16.99 (£3.20) £6.90 ($£ 1.80$ £14.99 (£2.20 £ 16.99 ($£ 2.50$ £ 24.60 ($£ 3.60$)
 £10.90 (£2.80

PAN ANTENNA PRODUCTS

FIBRE GLASS SPREADERS FOR H/BREW ANTENNAS O.D TUBE I.D. PER MTR.P + Pmtr $\begin{array}{lll}9.5 \mathrm{~mm} & \text { TUBE } & 6 . \mathrm{D} . \\ & & 6.35 \mathrm{~mm}\end{array}$ $\begin{array}{lll}16.2 \mathrm{~mm} & " & 12.2 \mathrm{~mm} \\ 19.0 \mathrm{~mm} & " & 12.7 \mathrm{~mm}\end{array}$ $\begin{array}{lll}19.0 \mathrm{~mm} & & 12.7 \mathrm{~mm} \\ 25.4 \mathrm{~mm} & \text {. } & 19.4 \mathrm{~mm}\end{array}$ $38.1 \mathrm{~mm} \quad \ddot{\square}$ 9.5 mm SOLID' ROD 10.0 mm
16.2 mm 19.4 mm ER MTR.P + Pmt 4 pole spider up to $2^{\prime \prime}$ boom up to 1" spreader
8 pole boomless up to $1^{\prime \prime}$ spreader $£ 16.60$

G2BAR HAM BAND AERIALS.

2 metre Folded Dipole YAGI
5 FD. 5 element Square section Boom
9/FD. 8 element Reinforced Boom.

2 metre 'J' POLE

1/JP. $1 / 4$ wave matching sections, enclosed connectors with half wave radiator 15 mm square elements. .
70 cms , Folded Dipole YAGI'S
6/FD. 6 element square section boom.
11/FO. 11 element reinforced boom.

PORTOMASTS

$12 / 4$ telescoping aluminium tubing extended to $12^{\prime} 6^{\prime \prime}$ mast including 3 guys and ground pegs.
18^{\prime} Portomast with 6 guys and ground pegs
TELESCOPING ALUMINIUM TUBNG OD.
sizes quoted price per foot.

\%"@290. - $1 / 2 *$ @ 24 p. PLUS VAT @ 15% \& P.P.
15 mm . square section @ 29 p .
H.F.YAGI BEAMS

2 element YAGI Beams
Driven and director elements. Boom to slement clamps
Tubular Gamma Match tuning unit supplied.
10 metre - 2 element array.
15 metre -2 element array.
20 metre -2 element array.
3 element YAGI Beams
10 metre - 3 element array.
15 metre - 3 element array.
20 metre-- 3 element array.
Well designed and constructed
Boom to Mast; bracket plate; 4 U Borts... $\mathbf{~} 4.60$ £200 PLEASE SENO 30p. STAMPS FOR DESCRIPTIVE LEAFLETS.

TET AERIAL SYSTEMS

HIGH GAIN 2 metre HB9CV Type Swiss Quad. Stacked Array 16 DB Gain. Super Multi Bend Systems for HF. Frequencies Dual Driven Elements - Highest Gain of them all. 'J' BEAM
2 Metre and 70 cms . Home Base Robust and top of the class.
'G' WHIP
Foremost HF, Bands Mobile Antennas.
YAESU
We stock and have available for your approval YAESU. VHF \& HF Receivers Convertors and Transceivers including the outstanding FT102 and accessories.
Call and meet us - we are 2 minutes off the City End of M32.
UPPINGTON TELE-RADIO (Bristol) LTD.
12-14 Pennywell Road, Bristol BS5 OTJ.
Tel. 557732

SELECTRONIC SERVICES

THE FINEST ANTENNAS IN THE WORLD ARE NOW AVAILABLE
No hi-fi specifications here, just antennas that are stronger, last longer and work better than any other antenna available today.

HF antennas

10 MHz Broadside, similar to classic bobtail array (10/BDA): gain 5dBd with this wire array at only $£ 41.25$
14 MHz Broadside, same specifications as 1 CVBOA (14/BOA): $£ 36.25$.

$4 m$ Quads

4 Ele quad (4/4EO): gain 7dBd, £58.50
6 Ele quad (4/6EO): gain 9dBd, £60.50
2m Quads
4 Ele quad (2/4EO): gain 7dBd, f45. 25
8 Ele quad (2/8EO): gain 12dBd, long yagi spacing (12ft boom), £62.50
All quad antennas have glass fibre booms and supports for strength and less corrosion and less affect on performance.
Helix range
$70 \mathrm{cms}, 6$ turn $(6 / 70 \mathrm{H})$: gain $12 \mathrm{dBd}, \mathrm{f} 4285$
$\begin{array}{ll} & 12 \text { turn (} 12 / 7 \mathrm{OH} \text {): gain } 16 \mathrm{dBd} \text {, £46.85 } \\ 23 \mathrm{cms}, & 6 \text { turn }(6 / 23 H) \text { : gain } 12 \mathrm{dBd}, \mathrm{f} 34.50\end{array}$ 6 turn (6/23H): gain 12dBd, £34.50
12 turn (12/23H): gain 16dBd, £35.50 12 turn (12/23H): gain 16dBd, £35.50
20 turn (20y23H): gain 17dBd, $£ 37.50$
Helix range uses glass fibre booms and comes complete with ' N ' plug and socket. All Helix antennas have a 50Ω feed impedance suitable for satellites, tropo, FM repeaters and ATV.
Stacked colinear arrays
70cms. 16 Ele (7OYSC 16): gain 14dBd, £45.20
$\begin{array}{ll}20 \text { Ele (70/SC20): gain 16dBd, } £ 49.20 \\ 23 \mathrm{cms}, & 16 \text { Ele (23/SC 16): gain 13dBd, f43.50 }\end{array}$
20 Ele (23/SC20): gain 14.5dBd, $£ 3850$

Coming soonl

Due to the massive response to our previous advertisements and mitny pleas for an HF minibeam "et a reasonable price that works and is not a rotatable dummy load on 20 m "! we are pleased to say that ressearch and development of a very high performance we are pleased to say that research and development of a very high performance
minibeamis well advanced. The price will be considerably lower than its competitors and constructional techniques. we use will ensure that they wiw last for years.
Thanks for the interest you have shown. Any suggestions? Please ring. (As long as they are decent). We hope to visth most rallys and axhibitions during 1983.

Over 40 now antennes to come
The most comprehensive range of antennas to suit every operator and every climatic condition.
Please enclose a stamped addresed envelope with all enquiries.
For further information contact:
Selectronic Services.
Unit BT50.55B, Perry Avenue, Teesside Industrial Estate, Thornaby, STOCKTON-ON-TEES, Cleveland TS 17 GLN. Tel: (0642) 760093.

CW/RTTY COMMUNICATIONS TERMINAL Standard features include

- Integral high resolution video monitor
- Professional keyboard with many special functions
- Real-time clock (constantly displayed)
- Transmit and receive both CW (morse) and RTTY (teleprinter) Users callsign programmed in
Receive CW speed tracking and display
- Self checking facility
- Char. by char. or 'page' transmission modes
- Stylish two tone matal cabinet

OTHER OPTIONAL FEATURES

- Printer interface board (Centronics compatible)
- On-board 40 column printer (12v)
- Extemal 80 column printer (SEIKOSHA GP100A)

Forget all those messy wires, the MICRODOT now offers a totally integrated communications system. Write for full details to: POLEMARK LTD., Lower Gower Road, Royston, Herts. SG85EA. Tel. Royston (0763) 47874

THE PROFESSIONALS ARE HERE!

TRIO and ICOM APPROVED DEALER Leeds Amateur Radio
27 Cookridge Street, Leeds LS2 3AG. Tel. (0532) 452657 (Shop) The sign of fine communications

LAR ANTENNA

 NOISE BRIDGEUseable beyond 144 MHz
Resistance up to 220 ohms
£ 31 inc. VAT
P\& P £2-00
Please send 60 p for catalogue \& price list
I enclose cheque for $£ \quad$ Mail Order (O532) 782224 to purchase

Name
Address

Post to Leeds Amateur Radio, 60 Green Road, Meanwood, Leeds LS6 4JP. Please make P.O.s and cheques payable to Leeds Amateur Radio.
I authorise you to debit my Barclaycard/Access/LAR Budget Account with the amount of f
My No. is

Signature

IC211/251 front-end board

If you read G8LEF's article in October's SWM you'll appreciate that fitting one of our FT221/225 front-end boards in a 211 or 251 is quite an involved operation! To simplify this we've custom designed a front-end board for the lcom transceivers which incorporates all the features required for (relatively!) simple installation and superb performance.
The rf circuitry is an updated version of that used in our outstandlingly successful FT221/225 front-end whilst an on-board antenna changeover relay minimises losses ahead of the rf amplifier
face with the Icom circuitry.
For those with doubts about their ability with a soldering iron we've also negotiated a fitting service at extra charge.
RPCB251ub £69.90inc VAT
The Best Got Better!
Over the years there have been many claims of 'less than 1dB noise figure' from the less reputable manufacturers of 144MHz equipment. Although the gullible may have been taken-in, we suspect that most people rightly dismissed these claims as advertising hyperbole! The situation has changed! After secretly supplying our SLNA144 series of preamps with sub-dB noise figures land checking our production measurements rather carefully! we're pleased to announce that we are now supplying our 144 MHz preamps with a typical noise figure of 0.9 dB ! We've done this by careful attention to our production engineering and by giving the 3SK 88 the order of the boot! The new device is the BF981, which has both better dynamic and noise performance at 144 MHz than the ' 88 or any consumer gasfet we' ve tried (now watch our competitors!).

SLNA144s E33.90inc VAT

BNOS
professional stabiliseo POWER SUPPLES. NEWI

13.8V 12 or 25 AMP CONTINUOUS RATING, OVER VOLTAGE CROWBAR, FOLD-BACK CURRENT LIMIT, SHORT CIRCUIT PROTECTION, AMMETER, RF PROTECTEO, REGULATION BETTER THAN 0.1%.

V-J 100 PL
100 WATT 2 METRE LNEAR AMPUFIER

* NEW FEATURES *
* MOBLLE MOUNT *
- $2 \times$ PL2 250 PLUGS SUPPLIED *

1-18 Watts RF input 10 dB gain linear all mode operation. Receive preamp 12dB gain, straight through operation. Size: $145 \times 80 \times 180 \mathrm{~mm}$.

BEREC (EVER READY) NICADS At Discount Prices.

At Discount Prices.				AA Type charger up to 4AA cells $£ 5.90$			
Type	$1-9$	10.24	26-99				
' A A' 0.5 AH	0.90	0.85	0.82	MULTI CELI CHARGER ' 5.90			
'C' 22 AH	240	230	220	Charges up to 4 , ' $A A$ ', ' C ' or ' D ' cells and any combination of the above +1 PP3 at any time. Cell Test Facility included.			
Sub 'D' 1.2 AH	2.30	2.15	200				
'D' 4.0 AH	3.40	3.20	3.05				
PP30.11 AH	3.90	3.65	3.40				50
PRE AMP TRANSISTORS				FERRITE PINGS (FX 1566)			
3SK 88 1.1dBN	F. Typ	45M Mz	¢1.15		1-9	10.24	25-99
BF981 0.6dB	F. Typ	45M Hz	£1.38	Sman	0.42	0.38	0.35
BFR91 1.9dBN	F. Typ	32MHz	£1.50	Large	0.80	0.76	0.70

Access and Barclaycard: All prices inclusive of VAT: SAE for further detaits. B.N.O.S. Electronics, Dept. S.W., Greenarbour, Duton Hill, Gt. Dunmow, Essex CM6 3PT. Tel: 037184767.

R.A.E. ** TUITION ** R.A.E.

Obtain the highly coveted Amateur Radio Licence. Personal tuition, specifically paced to achieve this result, is available in Georgian Bath. This is a five day course leading from basic principles, through the City \& Guilds syllabus, to examination level. The classes, heid on the outskirts of this beautiful City, are essentially small: so each student is able to receive the required amount of tuition. Instruction is given by G3UWJ specialist in persorial tuition and co-author of 'Amateur Radio'. For more than a decade students of all ages and walks of life have benefited from these courses and are now licensed amateurs.
For further details please write, enclosing a S.A.E., to:
PETER BUBB - tuition
58 Greenacres, Bath, Avon, BA1 4NR.
5day courses or telephone 022527467
revision courses privato individual tuition
introduction to electronics (non-axam course)

ANTENNA FAULT?

LOSING DX? Poor reports? Check FAST with an Antenna Noise Bridge, MEASURE resonance $1-150 \mathrm{MHz}$ and radiation resistance $2-1000$ ohms, GET answers - MORE DX, £ 18.60.
RARE DX UNDER ORM? DIG it OUT with a Tunable Audio Notch Filter, between your receiver and speaker, BOOST your DX/QRM ratio, 40 dB notch, hear WEAK DX, £16.40.
V.L.F.? EXPLORE $10-150 \mathrm{KHz}$, Receiver $£ 19.40$.

MAKE THEM HEAR YOU, Speech Compressor $£ 15.30$.
LINEAR OKAY? Check with a Two Tone Oscillator, f 13.90 .
SIGNAL GENERATOR, $10 \mathrm{~Hz}-200 \mathrm{KHz}$, sine, square, $£ 19.70$.
Each fun-to-build kit includes all parts, printed circuit, case, postage, etc.; money back assurance so GET yours NOW.
CAMBRIDGE KITS, 45 (SM) Old School Lane, Milton, Cambridge.

G๕KOC D. P. HOBBS (NORWICH) LTD. GЗНЕО RADIO COMPONENT SPECIALISTS

YAESU FT2SOR 2 m T/Ceiver
YAESU FRG77000.15-30 MHz Gen. Cov. Rec. Clock, Timer, Oigital Display
TR1O R1000 Gen. Cov. Rec. $200 \mathrm{kHz}-30 \mathrm{MHz}$.
TRIO RE00 Gen. Cov. Rec
SX 200N Scanning Receiver 26 to 512 MHz
DAIWA SR9 2Metre or Marine Monitor Receivers. VFO + 11 fixed positions "ASDEN" PCS 3002 m FM Handheid
SL $16002 m$ VHK. 16 Channel Scanning Monitor Receiver
FDK $700 E X 2$ Metre FM T/Ceiver Dig. Display. Scan, Tone-Burst, etc
FDK $750 E 2$ Metre FM/SSB CW T/Ceiver Dig. Display, Tone-Burst, etc,
Jaybeam Aerials, Test-Mators Microphoitions.
Jransverters, Linears, Preamps, etc., for 2 Metres/70cms, Bantex Aeriels.
Prices include VAT. All Mail Orders to Norwich. Barclay Card \& Access.
13 St. Benedict's St., Norwich. Tel. 615786
Open 9 a.m. - 5.50 p.m. Mon. - Sat. Closed all day Thursday
£249.00
£329.00
£297.85
£236.00
£ 284.50
$f 4600$
f E 4600
f184.00
. 139.50
£ 109.00
$£ 299.00$
$£ 49.95$
.. 49.95

NEWI

SAMSON ETM-8C

 MEMORY KEYER- 8 memories (each one will store approx. 50Morse characters) - can run once only, or repeat continuously. Easy chaining of memory texts to build up loncer messege repeat continuously. Easy chaining of memory texts to build up longer message
sequences. Keypad control of memorias, REPEAT, \& key-down TUNE functions. Speeds 8-50 wpm, seff-completing, variable (weighting) ratio. Normal or squeeze keying with the well-known buit-in Samson fully-adjustable precision twin paddle unit. - Uses 4 AA batteries: only $1 \mu \mathrm{~A}$ idling current - Why switch off? - Keys tx by reed relay or transistor. - Sidetone oscillator. - Complete C-MOS keyer $\&$ controls on one PCB (ICs in sockets). New style case, $4 / /^{*} \mathrm{~W} \times 2^{2} \mathrm{H} \times 6 \mathrm{~K}^{*} \mathrm{D}$. ETM-8C, £124.86.
ETM-3C C-MOS KEYER. Used worldwide for years by Pro. \& Amateur stations. Fullyedjustable Samson twin paddles built in for normal or squeeze keying. 8-50 wpm. Relay or transistor keying. Sidetone. 1ュA idling current (uses 4 AA batts.). ETM-3C, Ee3.86. JUNKER PRECISION HAND KEY. Still going strong after 50 years in professional use. Front \& back contacts, fully adjustable. Hinged cover. Free-standing. £41.66.
BAUER SINGLE-PADDLE UNIT. $1 \%{ }^{\prime \prime} \times 2^{*}$ base for home-built E-bugs. Adjustable gaps/tensions. £13.86.
All prices INCLUDE delivery UK and 15\% VAT. Ploese send a stemp with enquiries. SPACEMARK LTD.
Thomfield House, Delamer Road, Altrincham, Cheshire. (Tel: 061-9288458)

RADIO AMATEUR PREFIX-COUNTRY-ZONE LIST
 published by GEOFF WATTS
 Editor of "DX News-Sheet" since 1962

The List you have always needed, the list that gives you everything, and all on one line! For each country: -
a. its DXCC "status" e. the continent
b. the normal prefix
f. the "CQ" Zone No.
c. the special prefixes
g. the ITU Zone No.
d. the ITU callsign block allocation

Full information on Antarctic stations, USSR Klub-stations, obsolete prefixes used during the past 10 years, and much more.
The List can be kept always up-to-date because ample space has been provided for adding every new prefix, each new ITU allocation, etc.
Everything arranged alphabetically and numerically in order of prefix. Ideal for Contest operators and SWL's.
Tell your Club-members about it. Order an extra copy for that overseas friend. 15 pages. Price 600 (UK), overseas (air mail) \$2.00 or 5 IRCs

GEOFF WATTS
62 BELMORE ROAD, NORWICH NR7 OPU, ENGLAND

Information tor Trio R1000 owners

We don't have to tell you how good the receiver is - neither do we have to tell you its missing one essential feature - FM! But no longer. Amcomm have specially designed a unit to complete your listening pleasure. Its small and can be installed with minimum time and effort. It comes with simple and concise instructions which can be understood by the most non-technical of users.

The FM1000 is available now post free at $£ 15.99$ including VAT from Amcomm.

SHOWROOM OPEN TUESDAY TO SATURDAY 10.00-6.00.

MASMHR HTFOMRONICS NOW!
 The PRAGYICAT way!

You will do the following:

- Build a modern oscilloscope
- Recognise and handie current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of Radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

NewJob?NewCareer?NewHobby?

 GetintoElectronics Now!

Please send your brochure without any obligation to NAME ADDRESS

POST NOW TO:
BritishNational |Radio\&Electronics School Readins,Berks.RG1 lBR

READERS ADVERTISEMENTS

10p per word, minimum charge $\mathbf{E 1 . 5 0}$ payable with order. Add 25 per cent for Bold Face (Heavy Type). Please write clearty, using full punctuation and recognised abbreviations. No responsiblity scepled for transcripion errors. Box Nambers 40p extra. Sead copy, with remittance, to

READERS

Sale: Several new Cathodeon 10 MHz xtal oven oscillator units (PCB mounting), £19 each. - Ring Chamberlain, Crawley (0293) 515201.

Wanted: Manual for 1944 R.C.A. AR88D receiver, good condition. - Box No. 5782, Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.
Selling: Sony ICF-6700L receiver, 11 months Sony guarantee, £125. - Flat 2, 19 Chesham Road, Brighton, Sussex.
Wanted: Two-metre transverter, Europa, Microwave Modules etc. - Acton, 32 Hillcrest Avenue, Winshill, Burton-on-Trent. (Tel: 0283-63767).
For Sale: FT-480R 2-metre multi-mode transceiver, with 40 w . linear and AT-145 ATU, all 15 months old, $£ 350$. - Ring Terry, G40XD, 0462-35248 after 6 p.m.
Closing Down: Trio 9R-59DS receiver. PSU, $350 \mathrm{v} .150 \mathrm{~mA}, 6 \mathrm{v}$. 3 A 3 times, $400 \mathrm{v} .100 \mathrm{~mA}, 4 \mathrm{v} .3 \mathrm{~A}, 12 / 6 \mathrm{v} .7 \mathrm{~A} ;$ PSU, 12 v .3 A , two units regulated, two outputs. No. 10 crystal calibrator. $21 / 2$-inch oscilloscope. Offers invited. - Rolls, 23 Brandreth Avenue, Dunstable, Beds.
Wanted: General coverage receiver, R-1000, FRG-7700 or similar. - Ring Oxby, Leeds (0532) 675489.
Wanted: S/H Signal R. 528 6-channel scanner receiver. - Ring Robins, 01-998 4336 (Ealing).
For Sale: Test equipment, good condition, with some manuals: Taylor Model 62A signal generator, £80. Marconi TF-329G Q-meter, £60. Marconi TF-894A audio tester, £30. Wayne-Kerr B-521 component bridge, $£ 60$. Marconi TF-1342 low-capacitance bridge, £30. Heathkit IM-102 digital multimeter, £50. Schlumberger 1250 frequency counter, $£ 20$. Will sell the lot for £250. - Ring Zoltowski, Ruislip 75769.
Sale: Yaesu FR-DX400 amateur bands Rx with spare valves, speaker and handbook, £150. SR-9 2 m . mobile Rx with magmount antenna, £33. G3HSC Morse Tutor, £5. Various Rad Coms, text books, valves, components, etc: offers. - Ring Garlick, Pontefract 795821.
Selling: A.E.A. MBA-RO CW/RTTY/ASC11 reader, as new (purchased July), guarantee, £145. - Ring Dubois, 0767-80291 evenings.
Selling receivers: Redifon R-408 marine receiver; Hammarlund, $£ 135$. VHF Rx, $70-300 \mathrm{MHz}, £ 85$. Marconi universal bridge, $£ 35$. Avo multimeter, £25. - Ring Wright, Wigan 55948.
Sale: FT-225RD, fixed channel xtals fitted, muTek front-end, very good condition, $£ 525$. - Ring Threapleton, Stamford (0780) 52504.

For Sale: Icom IC-215 2m. FM portable transceiver, 3w., 13 channels fitted, with nicads, charger and helix, £90. - Ring 0702-614122.
Selling: TR-7800 2m. FM transceiver, 25 watts. - Arnfield, G8BHW, QTHR. (Tel. Leighton Buzzard 374928).
Offering: R.C.A. AR88LF communications receiver, 75 kHz to $30.5 \mathrm{MHz}, 12$-valve, original, unmodified, with speaker and full data. Any reasonable offer acceptable. - Ring Recks, Brighton (0273) 737076.

Wanted: New licensee urgently requires external VFO-30 for Trio TR-7200G. - Ring 021-426 2177.
For Sale: Complete station, all bought new Dec. 1980, hardly used. Drake TR-7 transceiver, PS-7 power supply, SL-1800 and SL-6000 fitted, plus NB-7 and AUX-7, MN-2700 tuner, B-1000 balun and AK-75. HAL DS-3100, ASR and ST-6000. - Ring Walton-on-Thames 55157.
Wanted: Ex-Army R. 210 receiver with ATU. - Ring Wigan 38865.

TS 830S... 632.04
TS 130S. . $£ 492.89$
TS 130V . $£ 397.90$
TR 9500 .. $£ 395$
TR 2300 ... 135.01
FULL RANGE OF TRIO EQUIPMENT ALWAYS IN STOCK. FULL DEMONSTRATION FACILITIES ON HF - VHF - UHF - ANTENNAS.

HOME OF THE FAMOUS G4CLX MORSE KEYBOARD IN USE NATION WIDE.

FULL AFTER SALES SERVICE. OTHER GOODIES BY DAIWA - WELTZ - DATONG - TONO - AND OTHERS. CALL AND SEE TONY G4CLX IN THE BRIGHTEST, NEWEST EMPORIUM IN THE MIDLANDS.

SEND SAE FOR FREE U.K. REPEATER CARD. ESSENTIAL FOR MOBILE OPERATION.

Dewsbury Electronics

176 LOWER HIGH STREET STOURBRIDGE, WEST MIDLANDS.
 Telephone: STOURBRIDGE (STD 0384) 390063

G2DYM ANTI-INTERFERENCE ANTI-TVI TRAP DIPOLES inc. WARC NEW BANDS TRANSMITTING \& S.W.L. MODELS \& KITS data sheets large sae. AERIAL GUIDE 50p. Callers Welcome.
 Tel: 03986-215

GZDYM, UPLOWMAN, TIVERTON, DEVON

URGENTLY WANTED TO BUY

Collins 75A4, KWS 1, KWM1 and 2, All S. line equipment, Hallicrafters and Hammarlund Receivers, National NCX5 and National Receivers, Central Electronics Exciters and RX equipment, plus all late model Jap Rx's/Tx's. Bring or send to:-

BUYWELL RADIO, 3 CASTLE SQUARE, SHEFFIELD S 1 2FZ. Tel. 22505 (0742).

```
POPULAR QUALITY LINES IN PLUGS AND SOCKETS, ETC.
```



```
REDUCERS for dowe for LAP43176 (8 ar mone
    REDUCERS f
    14P Pachl MiKE PUGS As ured on mast ins
    4PWN MIIE SOCRESS to ft thove, chescres moum
    4F
    2x SO238 COUPLEA 2Sockots beck to back in line 70
    2x PL259 COLPLEA 2 Plugs beck to beck
```

 W. H. WESTLAKE, G8MWW, CLAWTON, HOLSWORTHY, DEVON

ALL VALVES \& TRANSISTORS

Call or phone for a most courteous quotation
 01-749 3934
 We are one of the largest stockists of valves etc. in the U.K.

COIOMOR EIECTRONICS ITD. 170 golithik road LONDON W12

[^0]Selling: Entire station comprising: Heathkit SB-100 transceiver, SB-600, SWR bridge, D-104 mic., Diamond $10-80 \mathrm{~m}$. trapped vertical, LP filter, $£ 250$ or near offer. - Ring Griffin, 0733-203169 evenings.
For Sale: Datong 2 m . converter, unboxed, £15. Microwave Modules MM2001 RTTY to TV converter, used once, £130. Ring Williams, 0376-23604 after 6 p.m.
Wanted: Racal RA-17L receiver in good condition. Details and price please. - Newland, 34 Francis Avenue, Colwyn Bay, Clwyd LL2 2 4WW.
January issue: due to appear December 31st. Single copies at 85p post paid will be sent by first-class mail for orders received by Wednesday, December 29th, as available. - Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. Al6 9EQ.
Sale: Icom IC-255E 2m. FM transceiver, with regulated DC power supply, very little used, original packing, $£ 150$ cash only. Box No. 5780, Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ. (Or ring Brookside 2894).
Selling: KW-2000B, very good condition, $£ 195$. FRG-7, excellent condition, $£ 125$. IC-202S, very good condition, $£ 130$. MK-123 Rx/CW-Tx, $2 / 20 \mathrm{MHz}, \mathrm{PSU}, \mathrm{£} 55$. - Alder, G4GMZ, QTHR. (Tel: 02602-2649).
Sale: Yaesu FT-107M with all WARC bands, plus FC-107 ATU and FP-107E PSU, $£ 650$ or near offer. Trio TS-780 2 m . and 70 cm . multimode, with pre-amps. fitted on both bands, $£ 675$ or near offer. Pye W.15AM Westminter, low-band 6-channel AM, with all accessories, in mint condition, $£ 80$ or near offer. - Ring John, G8KBQ, 0458-33145 after 5 p.m.
For Sale: Trio TR-2300, excellent condition, complete with nicads and accessories, £125. Or any offers? - Ring Jones, Devizes (0380) 3087.

Selling: Owing to unforeseen circumstances, Trio R-1000 with HS-4 headphones and Partridge Joyframe multiband triangle antenna and tuner, as new, $£ 300$ cash. Buyer collects, or add $£ 20$ for Securicor delivery. - Ring Brighton 727431 any evening.
Wanted: TS-130/TS-520/TS-820 or similar HF transceiver. Also FRG-7700 or similar receiver, and multimode 2 m . transceiver. Ring Godwin, 0246-473086 day, 0773-874768 evenings.
For Sale: HRO Senior, with six bandspread coils, spare valves, service manual, unmarked and unmodified. Offers? - Ring Hurrell, Seaford 891195.
Sale: Yaesu FRG-7700 receiver, mint condition, as new, boxed with handbook, £240. - Ring 01-639 5576.
Wanted: Collins "S Line", including linear, KWM-2, 51J3/4, 51S1, KWS-1. For Sale: K.W. Viceroy Tx, 180w. p.e.p., 150 w. CW, with original PSU, £55. Marconi Falcon marine SSB Tx, 150 w. p.e.p., solid-state, with TT-100 PA and matching Rx, manual, $£ 80$. - Clappison, 190 Victoria Avenue, Hull HU53DY. (Tel: 0482-43353).
Wanted: Urgently by terminally ill beginner, operating handbook for Yaesu FRG-7, good price paid. - Box No. 5781, Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ. (Or ring Romford 40571).
Sale: Vintage communication receiver National HRO, working, good condition. Offers? - Ring Doughty, 01-950 1481 (Watford).
Wanted: Communications receiver in mint condition (VHF/UHF, FM). - Ring Knudsen, Lymington (0590) 76603.
Selling: FT-901 transceiver, with AM and CW filters, $£ 550$. YO-901 Monitorscope including Panadaptor, £195. IC-730 with IC-PS20 240v. power supply, $£ 495$. All in mint condition and no mods history. - Ring Price, G3KDH, Tring 3505.
For Sale: Bearcat 250F scanning receiver, good condition, $£ 120$ or near offer. - Dawes, 3 Chestfield Road, Chestfield, Whitstable, Kent. (Tel: Chestfield 2123).

\section*{COMMUNICATION EQUIPMENT IN THE SOUTH WEST
 | FT 1. | £1295.00 | YAESU | FT290. | £24900 |
| :---: | :---: | :---: | :---: | :---: |
| FT 1012DFM | £685.00 | | FT208. | £209.00 |
| FT9020M. | c885. 00 | | FT480. | £379.00 |
| FC902. | . 1135.00 | | FRG7 | f199.00 |
| FT707. | £569.00 | | FRG7700. | f329.00 |
| FC707. | £85. 10 | | FRG7700M | £40900 |
| FP707. | £125.25 | | FT708. | £219.00 |
| FT102. | ¢725.00 | | FT790. | £29900 |
| FT230. | 1239.00 | | FT780. | f459.00 |
| Allother Ya | ucts also | ked. | Insta | vailable. |

Ancillary equipment stocked include:
Microwave Module \& Mutek products, Icom, Drae P.S.U.s \& Wavemeters, SEM range. Jaybeam aerials, Shure microphones, Himound morsekeys, plugs, sockets, rotators, cables, etc. Comprehensive range of valves.

```
REG. WARD \& CO. LTD.
GEORGE STREET, AXMINSTER, DEVON EX135DP
Reggassw Telephone (0297) 33163 Rodnoy gelw
```


PORTABLE MAST GOVERNMENT SURPLUS 32ft. Heavy Duty Aluminium

Comprising: -
Eight $-4 \mathrm{ft} . \times 2 \mathrm{in}$. Interlocking Tubular Sections.
Eight - Galvanised Ropes.
Four - 27in. Steel Guy Securing Stakes.
Base Plate and Various Accessories.
All packed in strong marine ply in carrying storage container.
£46 including carriage and VAT.
'GRANVILLE MILL'
Vulcan Street,
Oldham OL1 4EU.
Telephone No. 0616521418 \& 0616330170.

SERVICE MANAGER

London Car Telephones at Croydon are seeking an experienced Service Manager for their expanding repair facilities.

Applicants should have a sound knowledge of the PMR business with previous experience in a managerial capacity.
Please send C.V. to J. S. Clark or phone 01-6804444 for an application form.

> London Car Telephones Ltd., 9/13 Lower Addiscombe Road, Croydon, Surrey CRO 6PO.

IItthbootth Eleftronic Components
LISTS 65p. VALVES CAN BE SUPPLIED IN OUANTITY. (TRADE WELCOME). VALVES EABC8078p, EBC81/89p, EBF80772p, EBF89/90p, ECC81/90p, ECC82/75p, ECC83/70p, ECC84/65p, ECC85/70p, ECC89/E1, ECC189/92p, ECH35/f1.75, ECH42/£1.25, ECH81/65p, ECH83/90p, ECH84/70p, EF39/£ 1.35, EF80 50 p, EF85/520, EF86/720. EF89/f 1, EF183/67p. EF 184/67\%, ECL80/58p, ECL82/76p, EL34/f 1.55, EL84/66p, EZ8O/65p, EZ81/75p, IS4/52p, IS5/60p, IL4/5ep, IR5/78p, IT4/54p, 3S4/72, UABCBO/76p, UBF89/85p, UCH42/f1.50, UCH81/85p, UBC81/Gep, UCC85/65p,

 GBEGE1, 6BO7A/E1.50, 6BZG/£1.75, 6CB6A/E1.45, 6J5GT/80p, 6u6750,6K7/£ 1.25, GLGGT/E1.25, GFGGT/E1.75, 6SAT/E1.35, 6SG7/E1.18, ©SL7GT/90p, 6SN7GT/B9p, 6V6GT/960, 6O7/£1.10, 807/£1.45, 811A/E22, 813/£32, DAF96/62p. DF96/630, DL96/95p, OA2/80p, OB2/950, OC3/ 1.35p, OO3/£1.60, PY5004/ 1.75, VALVE SOCKETS', B7/75p, B7GEB9A chassis 20p ea. B7G 4 B9A skirted 28p, B7G PCB ceramic 25p, B10B PCB 12p, 5 way tag strips 7p, 10 way tag BOARDS 5ep, 1 mm PVC sleeving $6 \mathrm{p} / \mathrm{M}, .1 / 600 \mathrm{v}$ AX polyesters $5 \mathrm{p}, 10 / 48 \mathrm{p}, .01 / 100 \mathrm{~V}$ AX poly 10/32p, PP3 clips $6 \mathrm{p}, \mathrm{DIODES}$ OA91/9p, IN4002/5p, IN4005/6p, IN4007/6p, 240v PRI Transformers SEC 250-0-250v $80 \mathrm{~mA}+0.6 .3 \mathrm{v}, 4 \mathrm{~A}+0.5-6.3 \mathrm{v}, 2 \mathrm{~A}, £ 4.10,240 \mathrm{~V}$ PRI, SEC $60-0 \mathrm{~V} 500 \mathrm{~mA} £ 1$. 240 V PRI, SEC $90-9 \mathrm{~V} 200 \mathrm{~mA}$ £1. VALVE output (multi ratio) PRI 50mA SEC 3R £2.50. 8uF/350v ELECT CAP 16p, $1 / 2 w$ RESISTOR CARBON 47R-1M E12 + $2.2 \mathrm{M} 810 \mathrm{M} 1 / 1 \mathrm{p}$ ea. 1 w CARBON RESISTORS 47P-1M E12 6p ea.. IFT $11465 \mathrm{kHz}, 1.6 \mathrm{MHz}, 10.7 \mathrm{MHz}, \mathrm{f} 1.35$. ADD VAT 15%. Post 50p unless stated. TEL (O4626) 70354 \& 79681. SPIRELLA BUILDING, BRIDGE ROAD, LETCHWORTH, HERTS. SG6 4ET, ENGLAND.

J O H N S R A D I O \rightarrow Tel. No. 0274-684007
Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford, BD 11 2ER LARGE PURCHASE OF RACAL EOPT. COMMUNICATIONS RECEIVERS.
$50 \mathrm{kc} / \mathrm{s}$ - $30 \mathrm{mc} / \mathrm{s}$ in 30 bands 1 MHz wide. RA 17 - E 175 . RA 11 E $-£ 225$, a faw sets available as new at $£ 75$ extra. All receivers are air tested and calibrated in our workshop. supplied with full manual, dust cover, in fair used condition. New black metal louvred cases for above sets $£ 25$ each. RA218 - SSB-IS8 \& fine tune for RA117- $£ 50$. TRANSMITTER DRIVE UNIT MA $791.5 \mathrm{mc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$ SSB-ISB-DSB-FSK-CW - $£ 150$. AERIAL TUNING UNHT \& protection unit MA 1978 - $£ 25$ to $£ 50$. DECADE FREQUENCY GENERATORS MA3503 (solid state synthesiser for MA79 or RA117 - RA217 RA1217 - $£ 150$ to $£ 200$. MA 250 - $1,6 \mathrm{mc} / \mathrm{s}$ to $31.6 \mathrm{mc} / \mathrm{s}-£ 150$ (Now) MA255G precision frequency standard - $5 \mathrm{mc} / \mathrm{s} 1 \mathrm{mc} / \mathrm{s} 100 \mathrm{khz}$ - $£ 100$ to $£ 250$. RA 70 \& PV78 frequency shift convertor - £50. DNERSITY UNIT MA168 new \& boxed contains product detector for SSB \& BFO - £25. Most above supplied with full manuals. RACAL. SPARES new $\&$ boxed - RA17 Chassis - £20. IIF. Strip - £15. Calibrator - £8. OSCILOSCOPES COSSOR COU150- $35 \mathrm{mc} / \mathrm{s}$ - Twin Beam - Solid State - $£ 175$ with manual. EXTEL TRANSTEL MATRIX PRINTERS 5 level baudot code, accepts speeds up to 300 bauds, supplied set to 50875 bauds switched, tested with manual E165. TEKTRONIX OSCILLOSCOPE 647 \& 647 A Solid State $50 \mathrm{mc} / \mathrm{s}$ and $100 \mathrm{mc} / \mathrm{s}$ bandwidth - $£ 250$ and $£ 350$, tested circuit and instructions.
IMAGE INTENSIFERS - MULLARD - G.E.C. or E.E. type XX 1060 very high gain selffocusing image intensifier assembly for night vision systems. Minimum luminance gain 35.000 . Supplied as received from govemment supplies in original box (used) with data sheets - $£ 12$ ea. (p\&p + V.A.T. $=£ 5.25$) ALL ENQUIRIES S.A.E. V.A.T. \& DELIVERY EXTRA. PLEASE PHONE FOR DEMONSTRATION.

[^1]
AMATEUR RADIO OPERATING MANUAL
 New Second Edition

Most of the chapters in the new 2nd edition of this popular

 RSGB title by R. J. Eckersley, G4FTJ, have been revised and updated. Chapters cover: the Amateur Service; setting up a station; operating practices and procedures; DX; contests; mobile, portable and repeaters; amateur satellites; RTTY; SS/TV; special event stations; with appendices and index. Extract from a review in "Short Wave Magazine": ". . . . this book should be of greatest interest and use to the newly licensed amateur with little, practical operating experience, to whom it can be thoroughly recommended".208pages Publications Dept.
E4.95inc. p/p

Short Wave Magazine Ltd.,

SIMPLE, LOW-COST

WIRE ANTENNAS

by William Orr, W6SA1

Now with data on the new amateur bands!

This excellent and thoroughly recommended handbook is the publication on the practical approach to building aerials. After starting with aerial fundamentals there are discussions and descriptions of ground-plane, end-fed, DX dipole, vertical and wire beam antennas, plus coverage on a universal HF antenna system and working DX with an "invisible aerial"; the SWR meter and coaxial cable also have chapters to themselves.

The whole book is presented in an authoritative, immensely clear, readable and enjoyable manner with the emphasis on the practical throughout - to the extent that even the chap who can hardly strip a piece of co-ax need not feel at all left out! Just as practical for the SWL, too!
192 pages
$£ 4.45$ inc. post

Order from

Publications Dept.

Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EO

BETTER SHORT WAVE RECEPTION

by William I. Orr W6SAI and Stuart D. Cowan W21X

Latest 5th Edition

In the latest edition of this excellent work for all those who own (or intend to own) a radio receiver, these two wellknown and respected writers have produced chapters covering: the radio spectrum and what you can actually hear world-wide; the tuning of a shortwave receiver; the business of buying a receiver, both new and secondhand; a description of the SW Rx in non-technical terms, together with receiver adjustment and alignment; DX-ing above 30 MHz ; a description of the VHF receiver; building and adjusting efficient aerials; reception techniques.

Thoroughly readable and "digestible", this book is without doubt a very valuable addition to the bookshelf of any SWL.

160 pages
$£ 3.95$ inc. post.
Order from:
Publications Dept.
Short Wave Magazine Ltd. 34 High Street, Welwyn, Herts. AL6 9EO

PPractical Aerial Handbook, 2nd edition £9.15
©Two-Metre Antenna Handbook. £5.35
Quuestions and Answers on Amateur Radio £225
Beginners Guide to Radio, 8th edition $£ 4.50$
BBeginners Guide to Electronics, 3rd edition. $£ 4.50$
OElectronics Q. \& A., 2nd edition. £2.35
©Beginners Guide to Amateur Radio, new title £4.40\}
Projects in Amateur Radio and Short Wave
Listening .
£3.65
GGuide to BroadcastingStations, latest 18thedition. . £4.30
$\delta^{\text {The World's Radio Broadcasting Stations and }}$
European FM/TV Guide. £6.60 §
Semiconductor Data Book, new 11th edition.£7.10
Foundations of Wireless and Electronics, 9th edition $£ 7.10$)
SPractical Handbook of Valve Radio Repair, new
title. £ 14.900
Practical Electronics Handbook £4.40
Electronics Pocket Book, new 4th edition. £6.20
O Oscilloscopes - How to Use Them, How They Work.
prices include postage and packing
Publications Dept.
SHORT WAVE MAGAZINE LTD. 34 HIGH STREET, WELWYN, HERTS. AL6 9EO

WORLD RADIO/TV HANDBOOK 1982

The World's only complete reference guide to International Radio \& Television Broadcasting Stations. It includes: Frequencies, time schedules, announcements, personnel, slogans, interval signals and much more besides of value to the listener.
Lists all International short-wave stations, including frequencies, for each country; foreign broadcasts, long and medium wave stations (AM broadcast Band), TV stations and domestic programmes. Long recognised as the established authority by broadcasters and listeners. It is the only publication that enables you to identify BC stations quickly and easily. Enables you to fill more pages in your log book on the SW BC bands and helps you add more BC-station OSL cards to your collection.

£11.15

(The above price includes postage and packing).
from
SHORT WAVE MAGAZINE 34 High Street, Welwyn, Herts. AL6 9EO

CALL BOOKS		
INTERNATIONAL: RADIO AMATEUR CALL BOOKS (1982)		
\} Foreign ('‘DX') Listings		
U.S. Listings . £ 13.00		
U.K. Callbook, 1983 Edn. (RSGB) £5.25		
\} MAPS		
"'SHORT WAVE MAGAZINE" DX ZONE MAP (GREAT CIRCLE) in colour. New 1OCh edition £4.35		
amateur radio map of world mercator Projection Much DX information - in colour. Latest 14th edition. . £1.10		
$\left\{\begin{array}{l}\text { RADIO AMATEUR MAP OF THE U.S.A. AND NORTH } \\ \text { AMERICA State Boundaries and Prefixes, size } 24^{\prime \prime} \times 30^{\prime \prime}, \\ \text { paper. Latest 7th edition } 95 p\end{array}\right.$		
RADIO AMATEUR'S WORLD ATLAS in booklet form, Mercator projection, for desk use. Gives Zones and Prefixes. Latest 11th edition. \qquad		
\{ LOG BOOKS		
\{ (The above prices include postage and packing)		
Available from: Publications Dept. Short Wave Magazine		
34 High Street, Welwyn. Herts. AL6 9E0		
Tel: Welwyn (043871) 5206/7		
(Counter Service, 9.30-5.00 Mon. to Fri.) (Giro A/c No. 547 6151)		

Technical Books and Manuals

(ENGLISH AND AMERICAN)

AERIAL INFORMATION

tenna Handbook (Orr and Cowan)	£4.55
Practical Aerial Handbook, 2nd Edition (King)	£9.15
Beam Antenna Handbook	0/5
Cubical Quad Antennae. 2nd Edition	£3.90
Simple Low Cost Wire Antennas, by Orr	£4.45
Aerial Projects (Penfold)	£230
73 Dipole and Long-Wire Antennas (E. M. Noll)	£5.45
Antenna Book (ARRL) new 14th Edition	£6.50
The (ARRL) Antenna Anthology	£3.15
Two-metre Antenna Handbook, F. C. Judd G2BCX	£5.35
	£6.10

BOOKS FOR THE BEGINNER

Amateur Radio (Lutterworth Press).................. F. C. Judd G2BCX
Transistors Q\&A (Newnes), new edition $£ 205$
Electronics Q\&A(Newnes), 2nd Ed................ . $£ 235$
Elements of Electronics, Book 1..................... . $\mathbf{£ 2 5 0}$
Elements of Electronics, Book 2. £250
Elements of Electronics, Book 3. £250
Elements of Electronics, Book 4. $£ 3.35$
Elements of Electronics, Book 5. $£ 3.35$
Solid State Short Wave Receivers for Beginners
(R. A. Penfold) $£ 1.50$
Beginners Guide to Radio (8th Edition) $£ 4.50$
Beginners Guide to Electronics, अrd Edition £4.50
Beginner's Guide to Amateur Radio (Newnes),
new title......................................
Guide to Amateur Radio, 18th Edition (RSGB)
Morse Code for the Radio Amateur (RSGB)
Understanding Amateur Radio (ARRL)
Radio Amateur's Examination Manual, Latest 10th edition (RSGB).
$£ 4.40$
0/S
£1.20
£4.05
£3.35

GENERAL

Projects in Amateur Radio and Short Wave Listening (Newnes)
£3.65
How to Build your own Solid State Oscilloscope (Rayer).
£1.75
How to Make Walkie Talkies (Rayer) $£ 1.75$
How to Build Advanced Short Wave Receivers (Penfold)
Better Short Wave Reception, (5th Ed).......... £3.95
FM \& Repeaters for the Radio Amateur (ARRL)
Easibinder to hold 12 copies of "Short Wave Magazine" together).
£4.65
Oscar - Amateur Radio Satellites................ $£ \mathbf{£ 4 . 3 0}$
World Radio \& TV Handbook 1982 Edition $£ 11.15$
The World's Radio Broadcasting Stations and European FM/TV (Newnes)
£6.60
World DX Guide . $£ 5.40$
Guide to Broadcasting Stations (18th Edition).

Radio Stations Guid
Long Distance Television Reception (TV-DX) for the Enthusiast (revised edition)

Solid State Basics for the Radio Amateur (ARRL)
An Introduction to Radio DXing
£225
..................

Radio Amateurs DX Guide (14th Edition)
£4.05
Electronic Test Equipment Construction (Rayer) . .
O/S
Power Supply Projects (Penfold)
£205
£205

HANDBOOKS AND MANUALS

Radio Communication Handbook, Vols. 1 and 2 combined (paperback). RSGB
£11.05
TVIManual (2nd Edn.) (R'SGB) $£ 1.85$
RTTY Handbook (73Magazine)................... O/S
Slow Scan Television Handbook (73Magazine) .. O/S
Working with the Oscilloscope
The Radio Amateur's Handbook 1983 (ARR) soft
The Radio Amateur's Handbook 1983 (ARRL) soft
cover . aveilable shortly
Learning to Work with Integrated Circuits (ARRL). £1.70
Weather Satellite Handbook £ 5.40
Single Sideband for the Radio Amateur (ARRL) ... O/S
Test Equipment for the Radio Amateur (RSGB) ... £5.75
Amateur Radio Operating Manual (RSGB) 2nd Ed . . . $£ 4.95$
Practical Electronics Handbook (Newnes)
Oscilloscopes - How to Use Them, How They Work (Newnes)
£4.45
Practical Handbook of Valve Radio Repair (Newnes), new title
£14.90

USEFUL REFERENCE BOOKS
Solid State Design for the Radio Amateur (ARRL) . $£ 5.60$
Foundations of Wireless and Electronics, 9th Edition (Scroggie).
£7.10
Amateur Radio Techniquess, 7th Edn. (RSGB) £6.00
U.K. Call Book 1983 (RSGB)

Hints and Kinks (ARRL)
£3. 10
Radio Data Reference Book (RSGB) O/P
Electronics Data Book (ARRL) £3. 15
Radio Frequency Interference (ARRL)
£240
Amateur Radio Awards, (RSGB)
£3.40
Electronics Pocket Book, 4thEdition (Newnes) £6.20

VALVE AND TRANSISTOR MANUALS
Towers' International Transistor Selector, latest
Edition (Up-Date No. 2)
£ 10.60
Semiconductor Data Book, 1 1th Edition (Newnes) £7.10
International Transistor Equivalents Guide. £3.35
International Diode Equivalents Guide
£260

VHF PUBLICATIONS
VHF Handbook, Wm. I. Orr W6SAI $£ 4.25$
VHF/UHF Manual (RSGB) 3rd Edition
$£ 4.25$
$£ 8.60$

34 High Street, Welwyn, Herts. AL6 9EQ-Welwyn (043871) 5206.7

[^0]: 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

 ## S.W.M.:' DX ZONE MAP

 New 10th Edition!Great Circle Projection on durable, quality, paper for wall mounting, $333 / 4 \mathrm{in}$. wide by $241 / 2 \mathrm{in}$. deep. Giving essential DX information - bearing and distance of all parts of the world relative to the U.K., the Zone areas into which the world is divided for Amateur'Radio purposes, with major prefixes listed separately. Distance scale in miles and kilometres. Time scale in GMT. Marking of Lat./Long. close enough for accurate plotting. Hundreds of place names, mainly the unusual ones, and most of the rare islands.

 Prefixes correct to August 1982
 Price $£ 4.35$ inc. p / p
 Publications Dept.
 Short Wave Magazine Ltd.,
 34 High Street, Welwyn, Herts, AL6 SEO.

[^1]:

 ## EASIBINDERS

 To hold together 12 copies of "Short Wave Magazine".
 Strongly made with stiff covers, and bound in red Wintrel Achina, these handsome binders have the title and date frame blocked in gold on the spine. Price $£ 4.65$ including post/packing.

 ## Publications Dept.

 Short Wave Magazine Ltd., 34 High Street, Welwyn, Herts. Al6 SEQ.

