

VOL. XXXIX
FEBRUARY 1982
NUMBER 12

Now from Trio another superb piece of equipment to compliment the existing range of amateur and general coverage receivers the Trio R600.
A simple to use general coverage receiver covering 150 KHz to 30 MHz in 30 bands at an amazingly affordable price. Use of PLL synthesized circuitry provides high accuracy of frequency $G+$ excellent stability with the maximum ease of operation.
RGCOFEATURES are:

- 150 kHz to 30 MHz continuous coverage, AM, SSB, or CW.
- 30 bands, each 1 MHz wide, for easier tuning
- Five digit frequency display, with 1 kHz resolution.
- 6 kHz IF fiter for AM (wide), and 27 kHz fiters for SSB, CW, and AM (narrow).
- Up-conversion PLL circuit, for improved sensitivity, selectivity, and stability.
- Communications type noise blanker eliminates pulse type noise.
- RF Attenuator allows 20 db attenuation of strong signals.
- Tone control.
- Front mounted speaker.
- "S" meter, with 1 to 5 SIMPO scale, plus standard scate.
- Coaxial, and wire antenna terminals for 2 MHz to 30 MHz . Wire terminals for 150 kHz to 2 MHz .
- $100,120,220$, and 240 VAC, 5060 Hz . (Selector switch on rear panel) \& alternative 12 Volt dc operation.

Other features include carrying handle, record jack \& head phone jack.

For those of you who want more than a supert general coverage receiver, the R1000 is just the rig, with all the performance of the R600 but having a higher specification. The R1000 is your ticket to a trip around the world, courtesy of the short wave broadcast stations.

LOWE ELECTRONICS

CHESTERFIELD ROAD, MATLOCK, DERBYSHIRE DE4 5LE Telephone: 0629 2817/2430

NRD 515HF Receiver now available
matching amateur band transmitter ring for details.

ULT000

£ 39.50 inc. VAT

The UL-1000 is a new concept receiving station accessories and will help any keen listener to improve the performance of his station, particularly in the difficult conditions existing in the medium wave band (500 $\mathrm{KHz}-1.6 \mathrm{MHz}$).
The UL-1000 is a self-contained variable gain, tuned pre able gain, tuned pre amplifier suitable for use with various aerial systems. A particular feature of the UL-1000 is the use of a high 0 loop aerial for the $500 \mathrm{KHz}-1.6 \mathrm{MHz}$ band.

Price £ 1090. 20 NSD515

TR9000 The exciting TR9000 2-metre all-mode transceiver combining the convenience of FM with long distance SSB and CW in a very compact, very affordable package. Because of its compactness the TR9000 is ideal for mobile installation, add on its fixed station accessories and it becomes the obvious choice for your shack.

TR9000

£394.00 inc. VAT. Securicor carriage $£ 5.00$

TR9500 The TR9500, a 70 cm multimode mobile giving SSB, FM and CW operation in a compact rig based on the phenomenally successful 2 metre 9000. Combining the convenience of FM with the "DX ability" of SSB on the 70cm band this is the rig all discerning VHF and UHF amateurs have been waiting for.

TR9500

$£ 449.88$ inc. VAT. Securicor carriage $£ 5.00$

TR7800 Trio's remarkable TR7800 2-metre FM mobile transceiver provides all the features you could desire for maximum operating enjoyment. Frequency selection is easier then ever, and the rig incorporates new memory development for repeater shift, priority, and scan. The TR7800 by Trio, the only FM mobile.

TR7800

£284.97 inc. VAT. Securicor carriage $£ 5.00$

HEAD OFFICE AND SERVICE CENTRE

Chesterfield Road, Matlock, Derbys. Tel. 06292817 or 2430.
Open Tuesday-Friday 9-5.30, Saturday 9-5.00. Closed for Junch 12.30-1.30.
For all that's best in ham radio, contact us at Matlock.
For full catalogues send 70 p in stamps with your address. Mark enquiry SWM.

$+10$
 TRIO
 pacesetter in amateur radio

We've handled a lot of equipment in our time as radio amateurs but the TS830S really took us by storm. As you will hear if you listen on the air, its reputation is high all round the world. We think the TS830S is exactly right for the operator who has carefully considered all the features necessary for top performance, put aside all the gimmickry and found the TS830S.
This rig offers you all band coverage; true frequency readout on all modes; variable bandwidth and passband tuning; rugged, reliable 61468 valves in the PA; top quality both in construction and design; and, above all, the Trio reputation for giving you the best equipment at a reasonable price. Thousands of happy users worldwide will confirm that if you want total satisfaction, try the TS830S. Send for comprehensive details today.

TS 8305

£694.30 inc. VAT. Securicor carriage £4.50

A recent addition to the Trio HF range, and proving amazingly popular is the new TS530S. Designed as a "little brother" to the TS830S, the TS530S uses the same PLL system, same RF boards, same readout system and many other features of the 830 but without the variable bandwidth facility. You do, of course, have the famous Trio I.F. shift system for dodging the QRM.
We really believe that the TS530S is the finest mid-price HF base station transceiver on the market and we would like the opportunity to prove it to you. Why not call us, or call in person to see and try out this super rig.
If you like to read lists of features, how about $160-10$ metres including new bands : passband tuning on all modes: 61468 PA tubes for low intermod: low power tune up: digital readout shows true frequency at all times : VOX buitt in: CW sidetone : speech processor : noise blanker : etc., etc.

TS5305

$£ 534.98$ inc. VAT. Securicor carriage $£ 4.50$

Abstract

For the keen mobile/portable enthusiast, the "no-tune" solid state transceiver has proved irresistible, and the Trio TS 130 is probably the best of the bunch. When the original TS120 was introduced, there were gasps of amazement at Trio's achievement in making a first class HF rig in such a small size. With the advent of the TS130S, the mobile rig really comes to maturity. Imagine an 8 band transceiver with digital readout, I.F. shift, vox, speech processor, single conversion PLL derived transmitter and receiver, 100 W output, red hot receiver - and all in a package you can carry on the palm of one hand. it's really a staggering thought. The unquestioned excellence of Trio design and manufacture shows in every aspect of the TS130S - why not see it and try it for yourself.

TS130S.V

£525.09 inc. VAT. Securicor carriage $\mathbf{£ 4 . 5 0}$

TS130V £445.05 inc. VAT.

The compact DFC230 Digital Frequency Controller provides maximum efficiency and flexibility for mobile and fixed operation by combining a 20 Hz step digital VFO with 4 memories. 20 Hz step digital VFO: - Four memories: Frequency can be transferred from VFO to memory or from memory to VFO. -Built-in digital display: Shows digital VFO or memory frequency. - Perfect for mobile installation. - UP/DOWN manual scan: Frequency can be shifted with UP/DOWN microphone (supplied with DFC-230) or with FAST STEP switch on front panel. - Cross-operation switch: Allows split-frenquency operation, with transceiver VFO on transmit and DFC230 (VFO or memory) on receive, or vice versa. - RIT (receiver incremental tuning). - RIT, VFO, and MEMO indicators: LEDs show functions in operation. Compatibility with TS830S, TS $120 \mathrm{~S} / \mathrm{V}$ and TS $130 \mathrm{~S} / \mathrm{N}$.

DFC230

$£ 179.86$ inc. VAT. Securicor carriage $£ 4.50$

SMC SERVICE

Free Finance on many items. Two year guarantee on Yaesu. Free Securicor on major Yaesu items. Access and Barclaycard over the Access and Barclaycard over the
telephone. Biggest Branch, Agent telephone. Biggest Branch, Agent
and Dealer network. Ably staffed, and Dealer network. Ably staffed, Services" Securicor contract at $£ 3.90$!! Biggest stocks of amateur equipment in UK. Twenty-two years of professional experience.

FREE FINANCE

On regular priced items from; Yaesu, Ascot SMCHS, CDE HyGain, Channel Master, Hansen, HyGain, Channel Master, Hansen,
SMC, MFJ, KLM, Mirage and Hy SMC, MFJ, KLM, Mirage and Hy
Mound, on invoices over $£ 100$ SMC offers Free Finance! How is it done? Simple, pay 20%, split the balance equally over 6 months or pay 50\% down and split the balance over a year. You pay no more than the cash price!!

GUARANTEE

Yaesu's own warranty does not extend outside Japan. Repairs are the responsibility of the UK dealer selling the set. SMC's two year guarantee is backed, as UK distri butors, by daily contact with the factory and many tens of thousands of pounds of spares and test equipment. Avoid-hawkers offering sets without serial numbers, without spares, service or advise back-up

YAESU MUSEN

As UK Agents, we show some major Yaesu items; VHF multimode hand portable, general coverage Rxs, multimodes for VHF and UHF FM, Tx/Rxs for VHF, UHF and VHF/UHF, HF transceivers (SSB, CW, FSK, AM, FM) and a fistful of VHF and UHF handhelds. NB: 150 Yaesu accessories complement the above super range.

The FT-ONE is the culmination of an all-out design project, without the usual cost constraints, a revolutionary blend of computer and RF technology.

GENERAL COVERAGE, ALL SOLID STATE

The FT-ONE is a full-coverage all mode transceiver, equipped for reception between $150 k \mathrm{~Hz}$ and 29.99 MHz , and transmisaion on all nine amateur bands. For commercial use the FT-ONE may be programmed to tranamit throughout 1.8-29.çMHz range.

KEYBOARD FREOUENCY ENTRY
Fully digitally synthesised, the FT-ONE uses a front panel keyboard for initial frequency entry. Frequency change is then accomplished via the main tuning dial or the pushbutton scanner, with tuning in either 10Hz or 100Mz steps. The FTONE permits extremely fine tuning and instant band changes.
DUAL VFO SYSTEM
Ten digital VFO's with memory are provided, in conjunction with an A-B selection scheme that allows instant recall of any transmit, receive, or transceiver frequency. For splitfrequency oparation, the operator may select TX on VFO-A and RX on VFO-B, automatically storing the calling and fistening frequancies. For net oparations, a non-volatile memory board is available as an option, feliminates the possibility of dumping).
FULL CW BREAK-IN
Recent advances in solid-stato rechnology have made full CW break-in reliable anough to be incorporated into the FT-ONE. You can select traditional semi-break-in for use with amplifiers not equippad for full high-speed break-in.

SWITCHING REGULATED SUPPLY

Extremsly compect and light in waight, the switched mode power supply reduces substantially the space required to produce the operating vohages used in the FT-ONE. It is highly officiont, uniqualy stable and provides superb reliability.

'ELITE' CLASS PERFORMANCE

In addition to the full break-in and suparb receiver fitters, the FT-ONE is packed with subtle virtues that others might have overlooked. Rear panol jacks allow the use of both an external receiver and an independent recelve antenne, when scanning, automatic hahing on a recolved signal may be programmed, an optional Curtis 8044 koyor board is available and there is oven a microphome squalch (AMGC) to raduce backeround noise pickup between words and sentoncesl

GAN/INTERCEPT OPTIMIZED RECEIVER

Utilizing up-conversion with a firat IF of 73MHz, tho FT-ONE RF amplifior stage uses push-pull power transiators configured to produce a typical output intercept of +40 dBm . The firat mixer utilizes a diode ring module followed by a low noise post amp, for optimum noice figure consistent whth moderfi day intercept requirements. Tho resuk is a receiver with a typical two-tone dynamic range well in excess of ged: (14MHz, CW bandwidth). Additional gain tailoring is provided via PIN diode attenuator controlled from the front panol.

FILTER READY FOR COMPETITION

Three fiter bandwidthe are available for CW operation fiwo for FSKJI, using optional GaOHz or 300Hz crystal fiters. Fither insartion losses are equalised and an audio poak and notch filter is standard. Both If Shift and Variable Bandwidth aro provided, and two CW fiters may be cascaded, for competition-grade selectivity. For SSB work, the Variable Bandwidth eliminatos costly 1.5xHz or 1.8kHz fihers.

EXPANDED OPERATING DISPLAYS

Digital displays for the VFO frequency, memory channel, and RIT offset are provided. The large front panel meter provides easy viewing of transcaiver oparating parameters, including finals collector currant, input vohage, FM discriminator, processor compression, and forward/reflected relative power.

NON OPTIONS

Remember with your FT-ONE the noise blanker, apeech processor and power supply are all buith-in, not options.

SOUTH MIDLANDS COMMUNICATIONS

S.M. HOUSE, OSBORNE ROAD, TOTTON, SOUTHAMPTON, SO4 4DN, ENGLAND Tel: Totton (0703) 867333, Telex: 477351 SMCOMM G, Telegram: "Aerial" Southampton

GRIMSBY
S.M.C. (Humberside) 247A Freeman St. Grimsby, Lincolnshire. Grimsty (0472) 59388
106 Tuesday-Saturday

STOKE-ON-TRENT
S.M.C. (Stoke) 76 High Street. Talke Pits, Stoke Kidsgrove (07816) (72644) 9-5.30 Tuesday-Saturday

LEEDS
S.M.C. (Leeds) 257 Otley Road, Leeds 16, Yorkshire. Leeds (0532) 782326
$9-5.30 \mathrm{Monday}$-Saturday

CHESTERFIELD
S.M.C. (Jack Tweedy) LTD 102 High Street, New Whittington, Chesterfield. Chesterfield (0246) 453340 $9-5$ Tuesday-Saturday

WOODHALL SPA
S.M.C. (Jack Tweedy) LTD 150 Hormcastle Road. Woodhall Spa, Lincoinshire. Woodhall Spa (0526) 52793 9-5 Tuesday-Saturday

Bangor

Tandrage John GI3KDR
$\begin{array}{ll}\text { Tandragee } & \text { Mervyn GIWWY } \\ \text { Edinburgh } & \text { Jack GM\&GEC }\end{array}$

Stourbridge Redcar

Brian G32UL (03843)5917 Simon G4EOS (0642)480808

Buckley Swansea
Buckley

Howarth
Peter
Howarth $\begin{array}{lll}\text { GW3TMP } & \text { (O244) } 549563 \\ \text { GW\&EBB } & (0792) 872525\end{array}$ GW3TMP (O244)549563

FT1012D $£ 635$ inc.
 VAT@ 15\%

2 year Guarantee and Free finance available
$\star \quad 160-10$ metres including new allocations.

* Variable IF bandwidth 2.4 kHz down to 300 Hz
* 8 pole filters for razor edge selectivity.
* Selectable CW fixed bandwidth CW-W and CW-N*
* Semi-break in with sidetone for excellent CW.
* Digital plus analogue frequency displays.
* 6146 BPA 's with GdB of negative feedback
* 180W PIP and - 31dB 3rd order intermod.
* RF speech processor fitted - adjustable level.
* VOX built-in and is adjustable from the front panel.
* Wide dynamic range for big signal handling.
* High usable sensitivity, for those weak ones.
* Superb noise blanker - adjustable threshold.
* Attenuator; 0-10-20dB, front panel switch.
\star AGC; slow-fast-off, front panel switchable.
* Clarifier (RIT) switchable on TX, RX or both.
* Low level transvertor drive output facility.
* Universal power supply $110-234 \mathrm{~V}$ AC and 12 V DC*
* Incredible range of matching accessories
* 6 models: Digital/Analogue - AM/FM options
*Option.

2 year Guarantee and Free finance available

* 160-10 metres (including 10, 18, and 24Mhz).
\star USB-LSB-CWW-FSK-AM multi-mode.
* Full broad band "no tune" power amplifier.
* 240W PIP. 75 per cent power output at 3:1 VSWR.
* 12 memory channels with clarifier on memory.*
\star Digital Memory Shift gives offset from memory. *
* Up/down scanning control from microphone.*
\star Variable IF bandwidth -16 poles of selectivity.
\star Bandwidths: $6 \mathrm{kHz} *, 2.4 \mathrm{kHz}-300 \mathrm{~Hz}, 600 \mathrm{~Hz}-300 \mathrm{~Hz}$. *
* Selectable CW "'fixed" widths CW-W and CW-N.*
* Tunable Audio Peak (AFP) and Notch filter
* Diode ring mixer for very high Rx dynamic range.
* Noise blanker - front panel adjustable threshold.
* AGC; slow-fast-off switchable from the front panel.
* Attenuator O-20dB, plus RF gain on front panel,
\star RF speech processor fitted - front panel adjustable.
\star Digital (100 Hz) plus analogue frequency displays.
\star Meter Reads; Vcc, Ic, ALC, Compression and SWR
\star Semi-break in with side tone. Vox built in.
\star Choice of built-in or separate power supply units.

FT902DM £885inc.
VAT@ 15\% \& SECURICOR
2 year Guarantee and Free finance available

* 160-10 metres including new allocations.
* Variable IF band width 2.4 kHz down to 300 Hz
* Audio Peak and independent notch controls.
$\star A M, F S K$, USB, LSB, CW, FM, (TX and RX).
* Semi-break in, inbuilt Curtis IC Keyer.
\star Digital plus analogue frequency displays.
* 6146B's with negative feedback.
* VOX built-in and adjustables.
* Instant write in memory channel.
* Tune up button (10 sec, of full power).
* Curtis Keyer - lambic, single or straight.
* Switchable AGC and RF attenuator.
* Optional 350 or 600 Hz CW, 6 kHz , AM filters.
* Clarifier (RIT) switchable on TX, RX or both.
* Audio Peak and tunable notch filter
* Plug in modular, computer sfyle constructor.
* Fully adjustable RF Speech processor.
* Ergonomically designed with necessary LEDS.
* Incredible range of matching accessories
* Universal power supply $110-234 \mathrm{VAC}$ and 12 V DC.
*Option.

FT 707 £569 inc. $\begin{gathered}\text { VAT@ } \text { GSECURICOR }_{15 \%}^{1}\end{gathered}$

2 year Guarantee and Free finance available

* $80-10$ metres (including 10, 18 and 24 MHz bands).
* USB-LSB-CWW-CWN-AM (Tx and Rx operation).
* 100W PEP. 50% power output at $3: 1 \mathrm{VSWR}$.
* Full 'broad band" no tune output stage.
* Excellent $R x$ dynamic range, power transistor buffers.
* Rx Schottky diode ring mixer module.
* Local oscillator with ultra-low noise floor.
* Variable IF bandwidth - 16 crystal poles.
* Bandwidths $\Omega 6 \mathrm{kHz}, 2.4 \mathrm{kHz}-300 \mathrm{~Hz} 600-350 \mathrm{~Hz}$ *
\star AGC; slow-fast switchable from the front panel.
* VOX built-in and adjustable from the front panel.
\star Semi-break in with side tone for excellent CW.
* Digital $(100 \mathrm{~Hz})$ plus analogue frequency display.
* LED Level meter reads: S, PO and ALC.
* Convenient concentric AF/FR gain controls.
* Indicators for: calibrator, fix, int/ext VFO.
\star Receiver offset tuning (RIT-clarifier) control.
* Advanced noise blanker with local loop AGC.
$\star 25 \mathrm{kHz}$ crystal calibrator feature
* Internal, xtal or external VFO control.

FT720RV f 245 inc. vareis\%
2 year Guarantee and Free finance available

FT720 Control Head

* Four easy write-in memory channels
* Rx priority channel (auto check)
* Scanning band/memory empty/busy
* Up/down tuning/scanning from mic.
* Optically coupled tuning control
* Manual and automatic tone burst
* String LED's for 'S' and PO7 status LEDs
* $11 / 2 \mathrm{~W}$ of audio to internal/external speaker
* $3.3(4.3)^{\prime \prime} \mathrm{D} \times 6^{\prime \prime} \mathrm{W} \times 2(2.2)^{\prime \prime} \mathrm{H}$

720RV 1OW, deck. 720RVH 25W, deck

* 144 146MHz (144.148 MHz possible)
* $121 / 2 \mathrm{kHz}$ synthesizer steps, 600 kHz shift
* $0.3 \mu \mathrm{~V}$ for 20 dB quieting
* Rx0.5A. Tx RV 3.5A, RVH 6.5A
* $5.8(6.5)^{\prime \prime} \mathrm{D} \times 6^{\prime \prime} \mathrm{W} \times 2(2.2)^{\prime \prime} \mathrm{D}$

720RU 10W, 70 cm . deck

- $430-434 \mathrm{MHz}$
$\star 25 \mathrm{kHz}$ synthesizer steps, 1.6 MHz shift
* $0.5 \mu \mathrm{~V}$ for 20 dB quieting
* Rx0.5A T× 4.5A
* $5.8(6.5)^{\prime \prime} \mathrm{D} \times 6^{\prime \prime} \mathrm{W} \times 2(2.2)^{\prime \prime} \mathrm{D}$ S72 Switching box
* Pushbutton band change
* Auto change of steps/splits

FT480R(2m) FT780R(70cm.)

2 year Guarantee and Free finance available
\star USB-LSB-CW-FM (A3i, A1, F3).

* 30W PIP A3j, 10/1 W our A1 F3.
* Bandpass filter no tune design.
* Bandwidth 2.4 kHz and 14 kHz at -6 dB .
* Semi break in with side tone.
\star Very bright blue 100 Hz digital display.
* Display shows Tx \& Rx freq (inc RIT).
* String LED display for " S " and PO.
* Digital receiver offset tuning.
* Advanced effective noise blanker.
* Memory scanning with slot display.
* Up/down tuning/scanning from mic.
* Priority channel on any memory slot.
\star Satellite mode allows tuning on Tx.
* Scanning for busy or clear channels.
* Size (Case): 8.3" D, 2.3" H, 6.9" W.
* LED's; "On Air" Clar, Hi/Low, FM mod.
* Matching PP80 Mains PSU available.

FT480R

FT290R £249 inc. | vare |
| :---: |
| sscuicicon |

2 year Guarantee and Free finance available

* 144146 MHz ($144-145$ possible)
* Multimode USB, LSB, FM, CW
* 2.5W PEP, 2.5W RMS/300m W
* LED's, "ON AIR", "BUSY"
\star Moving coil meter for S \& PO
* Integral telescopic antenna
* Width 2.4kHz \& 14kHz @ 6dB
\star Optically coupled main tuning
* 100 Hz backlite LCD display
* 10 memory channels
* "Five year" memory backup
* FM: 25 kHz and 12.5 kHz steps
* SSB: 1 kHz and 100 Hz steps
* Any TX/RX split with dual VFOs
$\star \pm 600 \mathrm{kHz}$ split, $1,750 \mathrm{kHz}$ burst
* Mobile bracket available
* Matching 10W linear Amplifier
* Up/down tuning from mic.
* AF output 1W @ 10\% THD
$\star 58(\mathrm{H}) \times 150(\mathrm{~W}) \times 195(\mathrm{D})(1.3 \mathrm{~kg})$
* RX, $70 \mathrm{~mA}, \mathrm{TX}, 800 \mathrm{~mA}$ (FM max)
* $8^{\prime \prime}$ C" Nicads or Drys Internal
* 8.5-15.2V DC External
* Scan on memory ($\pm 10 \mathrm{KHz}$)!!
\star Long battery life SMC $2.2 \mathrm{~A} / \mathrm{Hr}$

2 year Guarantee and Free finance available
$\star 144-146 \mathrm{MHz}$ (143.5-148.5 MHz possible).
\star Excellent dynamic range sensitivity.
\star FM; 25, $12 \frac{1}{2}, 1 \mathrm{kHz}$ steps.

* SSB; 1.000, 100, 10Hz steps.
* Any TX Rx split with dual VFO's.
- $\pm 600 \mathrm{KHz}$ standard repeater split.
* Four easy write-in memory channels.

\dagger FT780R 1.6 fitted 1.6 MHz Shift $£ 459$ inc.
* $430-434 \mathrm{MHz}$ ($440-445$) possible.
* GaAs Fet RF for incredible sensitivity.
* NMOS four bit micro control.
* $F M ; 100 \mathrm{kHz}, 25 \mathrm{kHz}, 1 \mathrm{kHz}$, steps.
* SSB; $1,000,100,10 \mathrm{~Hz}$ steps.
* Repeater access by use of dual VFO's.
* Four easy write-in memory channels.

2 year Guarantee and Free finance available
* "Industry Standard" value for money Rx.
* 30 MHz to 500 kHz in One MHz bands.
* SSB (LSB/USB), CW, AM.
\star Sensitivity $A M ; 0.7 \mu \vee 10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ at 30%.
* Selectivity; $\pm 3 \mathrm{kHz}$ at - 6dB.
\star Stability; 500 Hz after 30 minutes.
* Triple conversion, drift cancelling.
* Direct frequency readout to 5 kHz .
* Fine tuning control.
* AGC; DC amplified, 3 stage control.
* AF; Powerful 2 watts of audio.
* Forward facing internal speaker.
* Record socket "volume independent"
* Well calibrated "sharp" preselector.
* AM automatic noise suppression circuit.
« Antenna Hi to $1.6 \mathrm{MHz}, 50$ ohm to 30 MHz .
- 3 position RF attenuator.
* 3 position AF filter (LP, WBP. NBP).
- 110/240VAC and 12Vdc.
* Lights; battery economy switch.
* Illuminated edge type "S' meter.
$\star 2$ IC, 9 FET, $13 \mathrm{Tr}, 16 \mathrm{D}$ ($9 \mathrm{Ge}, 5 \mathrm{Si}, 2 \mathrm{Z}$).
* Weight; 7 Kg (without batteries).
* Dimensions; $340(\mathrm{~W}) \times 153(\mathrm{H}) \times 285(\mathrm{D}) \mathrm{mm}$.
\star Optional battery holder.

FRG7700 £329 inc.

VAT @ 15\%
2 year Guarantee and Free finance available

* Wide coverage, All mode receiver.
$\star 30 \mathrm{MHz}$ down to 150 kHz (and below).
* 12 Channel memory option with fine tune.
* SSB (LSB/USB), CW, AM, FM.
- $2.7 \mathrm{kHz}, 6 \mathrm{kHz}, 12 \mathrm{kHz}, 15 \mathrm{kHz}$, @6dB.
* 3 Selectives on $A M$, squelch on $F M$.
\star Up conversion, 48 MHz first IF.
* 1 kHz digital, plus analogue, display.
* Quartz clock/timer, advanced noise blanker.
* No preselector, auto selected LPF's.
\star Antenna 5000 hm to $2 \mathrm{MHz}, 500 \mathrm{hm}$ to 30 MHz .
* 20 dB pad plus continuous attenuator.
* 110 and 240 Vac and 12 Vdc option.
* Switchable speed A.G.C. system.
* Signal meter calibrated in "S" and SIMPO
* Accessories; Tuners, Convertors, LPF, Memory.
* FRT7700; $150 \mathrm{kHz}-30 \mathrm{MHz}$, Attenuator, Switch etc.
* FRV7700A; 118-130, 130-140, 140-150MHz.
* FRV7700B; 118-130, 140-150, $50-59 \mathrm{MHz}$.
* FRV7700C: $140-150,150-160,160-170 \mathrm{MHz}$.
- FRV $77000 ; 118-130,140-150,70-80 \mathrm{MHz}$.
\star FRV7700E; $140-150,150-160,118-130 \mathrm{MHz}$.
\star FRV7700F; $150-160,170-180,118-130 \mathrm{MHz}$.
\star FF5; 500 kHz (for improved VLF reception).
* MEMGR7700; 12 Channels (easy internal fitting).

FT208R(2m) FT708R(70cm).

2 year Guarantee and Free finance available

* 4 bit CPU chip frequency control
* Keyboard entry of frequencies/splits * LCD digital display with backlight * Ten channels of memory
* Memory back up five-year lifetime cell * Up/down manual tuning
- Manual or auto scan for busy/clear Priority channel with search back * Memory scanning feature * Scan between any two frequencies * Auto scan restart
* Quick change NiCad pack * $1,750 \mathrm{~Hz}$ tone burst
* Built in condenser microphone
* 500 mW AF to int/ext speaker
* External speaker/mic available
* Keyboard offers 16 tone DTMF
* $168(H) \times 61(W) \times 39(D) m m$
- C/w NiCad pack, helical

SOUTH MIDLANDS COMMUNICATIONS
 S.M. HOUSE, OSBORNE ROAD, TOTTON, SOUTHAMPTON, SO 4 4DN, ENGLAND

GRIMSBY			STOKE-ON-TRENT S.M.C. (Stoke) 76 High Street, Talke Pits, Stoke. Kidsgrove (07816) (72644) 9-5.30 Tuesday-Saturday	LEEDS		CHESTERFIELD		WOODHALL SPA		
S.M.C. (H 247A Freerm Grimsby, Li Grimsby 10 10-6 Thursc	mbersid n St. colnshire 2) 59388 y-Saturd			S.M.C. (Le 257 Otley Ro Leeds 16, Yo Leeds (0532) 9.5.30 Mond	eeds) oad, orkshire. 782326 day-Saturday	S.M.C. (J 102 High S New Whitti Chesterfiel 9-5 Tuesda		S.M 150 Woo Woo 9-5	C. JJack T Homcastle R dhall Spa, dhall Spa 105 Tuesday-Satu	Tweedy) LTD Road, incolnshire. (0526) 52793 turday
Bangor Tandragee Edinburgh	John Mervyn Jack	GI3KDR GIWWY GM8GEC	(0247) 55162 (0762) 840656 (031665) 2420	Stourbridge Redcar	SMC AGENTS Brian GZZUL Simon G4EOS	$\begin{aligned} & \text { S } \\ & \text { (03843) } 5917 \\ & (0642) 480808 \end{aligned}$	Buckley Swansea Buckley	Howarth Peter Howarth	GW3TMP GW8EBB GW3TMP	$\begin{aligned} & 10244) 549563 \\ & 10792) 872525 \\ & 10244) 549563 \end{aligned}$

WATERS \& STANTON ELECTRONICS

18/20 MAIN RDAD. HOCKLEY. ESSEX. TEL (0702) 206835

4,000 SQ FT DEVOTED TO RADIO COMMUNICATION 24 HOUR TURN ROUND ON ALL ORDERS!
 'SUCH NICE PEOPLE'
 5 miles from Southend-on-Sea

Why not bring the whole family for a day out?

SHORT WAVE LISTENER RECEIVERS HF \& VHF

R1000 Dig. syn. 200 kHz -30MHz AC $240 \mathrm{~N} / 12 \mathrm{~V}$ DC AM/CW/SSB 297.00 (-1

R600
FRG 7700
FRG7
SRX300
TM56B
M0008
M161
MF083

Dig. syn. $200 \mathrm{kHz}-30 \mathrm{MHz}$ AC $240 \mathrm{~N} / 12 \mathrm{~V}$ DC AM/CW/SSB Dig. syn. $200 \mathrm{kHz}-30 \mathrm{MHz}$ AC $240 \mathrm{~W} / 12 \mathrm{~L}$ DC AM/CW/FM/SSB 319.00 (-) Analogue tuning $500 \mathrm{kHz}-30 \mathrm{MHz} 240 \mathrm{~V}$ AC/12v DC AM/CW/SSB 189.00 (5.00) Dig. syn. $200 \mathrm{kHz}-30 \mathrm{MHz}$ AC 240 V AM/CW/SSB 195.00 2 m bandFM scan. $12+14$ chan. 10 xtals 7itted 12 V DC $/ 240$ AC $89.00(1.00)$ 2 m band FM scan. 8 chan. 2 firted. Handheld nicads + charger 39.00 (1.00) 2 m band FM 16 chan . scan. 2 fitted. Car mounting 12 v DC 2 m band FM 8 scan. chan + FM broadcast. 12vD
$55.00(1.00)$ 85.00 (1.00)

Bearcat

$\mathrm{S} \times 200 \mathrm{~N}$
SR9
AR22
AR22M
F×213
Ingersoll
R517
R528

220 FB Monitor $68 \mathrm{MHz}-512 \mathrm{MHz}$. Dig. readout $240 \mathrm{~V} / 12 \mathrm{~N}$ Monitor $26 \mathrm{MHz}-512 \mathrm{MHz}$. Dig. readout FM/AM 240V/12V 2 mFM Mon. Tuneable +11 chan 12 vDC car mount 2 m FM syn. handheld. Including nicads \& charger Marine version of above
Tuneable aircraft monitor. Handheld (less dry cells) MW/VHF broadcast and aircraft monitor
Professional air monitor. Tuneable +3 channels. Handheld Protessional air monitor. 6 scan. channels (xtals extra)
229.00 (2.00) 260.0012 .001 46.00 (1.25) $89.00(2.00)$ 95.00 (2.00) $13.50 \quad 11.001$ $12.95(1.00)$ $49.50(1.00)$ $69.50(1.00)$

2M VHF FM \& MULTIMODE TRANSCEIVERS

TR9000 B09 TS770E TR7730 TR7800 TR7850 TR2300 TR2500 FT480R
$2 m$ Dig. readout. FM/SSB/CW $10 w$ irans. 12vDC Matching base plinth for above $2 \mathrm{~m} / 70 \mathrm{~cm}$ dual band base station. Dig. readout $230 \mathrm{~N} / 1 \mathrm{~N}$ 2 m Digital readout. 25w FM transceiver. 12v DC 2 m Digital readout. 25w FM withkeypad entry 12v DC 2 m Digital readout. 40 w vers,on of above 2 mFM iw portable. 80 chan, with case and $A C$ char 2 mH 'held. Dig. r'dout with keypad entry. Nicads \& char 2 m Dig. readout. $\mathrm{FM} / \mathrm{SSB} / \mathrm{CW} 10 \mathrm{w}$ trans. 12 VDC
374.00 (200) $34.95(1.50)$ 784.00 (-) 247.00 (200) 284.00 (200) 314.0012001 166.75 (-) 207.00 (-) 365.0012 .001

FT290
FT208 M700EX M750E EXP430 T1200 PCS3000 PCS300
AR245

2m Portable transceiver. 3W FM/SSB/CW 12v DC 2 m FM handheld. Digital readout keypad entry $2 m 25 w$ FM transceiver. Digital readout. 12vDC $2 \mathrm{~m} 10 \mathrm{FM} / \mathrm{SSB} / \mathrm{CW}$ Digital readout 12VDC 70 cm 10 w expander unit for above 2 m 4 w FM handheld. Digitai readout inc. charger 2 m 25 w FM computer controlled transceiver. 12vDC 2 m 3 w FM handheld with nicads and charger 2 m 5 w FM handheld with nicads and charger
249.00 (-) 209.001 199.00 I 289.00 (-) 219.00 I -$179.001-1$ $219.001-1$ 184.00 (-) 178.00 (-1

TS830S 9band 100 w o/p trans. 240 VAC . Digital readout VFO230 Matching remote VFO for above
TS530S 9 band 100 w o/p SSB/CW trans. 240 NAC . Dig. readout AT230 9band ATU power meter and coax switch for above TS130N 8 band SSB/CW 10 w solid state rig. 12VDC
TS130S Asabove but 100w output
$20 a m p$ DC power supply for above. 240 V AC input 100 W 8 band ATU for TS 130 series inc. SWR meter 1.5-30MHz solid state all mode rig. 240 AC
$694.00(-)$ 215.0015 .001 534.0015 .001 $119.00(5.00)$ 445.00 (-) $525.00(-1$ 89.0015 .001 79.0012 .001 $1.259 .00(-)$

FT101ZFM 9 band $1000 / \mathrm{p}$ SSB/CW/FM trans. 240 AC FT1012DFM As above but digital readout FT9020M 9 band 100 w o/p transceiver AM/SSB/CW/FM FC902 9band ATU power meter and coax switch FL2100z 9band 1 kw linear. 240 V AC FT 1070 MS 9 band 100 w solid state trans. 12v DC FT 7078 band 100 w solid state trans. 12vDC EP707 Matching AC 240, psu for above FC707 8band ATU
$590.001-1$ $640.00(5.00)$ $885.00(-)$ $135.00(-)$ $425.00(-1$ $799.00(-)$ $549.00(-)$ 125.00 (5.00) $85.00 \quad(2.00)$

MAIL ORDER

FASTEST IN THE BUSINESS
TEL: (0702) 206835
MAIL ORDER SLIP to: Waters \& Stanton Electronics, Main Road, Hockley, Essex.
Name.
Goods required
Address

Please rush me the above. Cheque enclosed for $£$.

Model PC1
 way to listen to to all ith bands. not to mention everything else from For sheer value for For sheer value for
money there is no money there is no
better way to get high better way to get high
pertomance general coverage reception. Ahter all what a waste it is if your expensive 2 metre al-mode ng covers one band only? ATTENTION VHF SCANWER OWNERSI
Ond you know that Model PC1 will extend the coverage of your $\mathrm{S} \times 200$ type scanner to include all the long, medium and short wave bands as weil? This without the extra expense of a complete new recelver

- MNIATURE RECEIVING aNTENNAS

It you don't have enough space to put up traditional receivng antennas our ctive antennas are the answer. They need no Hesults are quite comparabte to tull size conventional antennas but the space saving is enormous the indoor version (AD270) is 3 metres long and the outdoor version (AD370) is 2 metrer long
 antennas are any interterence
picked up by the leeder is refected. Because ol their wide trequency coverage Oatong Active Anternas are ideal accessories
for modem general coverage conmicalien for modem general coverage communications recervers

CC 141 not juti another. Mode the overioad and problems expenienced by cor ivention conveners if uses a Schonixy
drode balanced mixer wis of local oscillator mixrer with about 7 dbm Model DC144/28 with a 3SKB8 ! 1 . amplitier. gives an
 M Model DC144/28 is availabte enther as a comptete cased unir (die cast box
SO239 connectors) or as a ready buit and tested PCB modute MODEL DTO: THE GO-ANYWHERE MORSE CODE TRAINER
For building up your morse conde reception speed there is no betler method
You leam the code with the characters at nornal speed but with an extra
delay between each one. As you improve you reduce the "DELAY" until, with it tully reduced, you tind you are reading coode at the chosen speed

An imporiant feature is that the
An imporfant teature is that the
unit is comptetery portabte. This allows you to practise wherever aillows you op practise wherever
and whenever you tind it most
convenient The convenient The all-CMOS
design gives aboul 60 hours design gives about 60 hours ol
practice from a lowcost pp3.

PRICES: All prices include delivery in U.K basic prices in £ are shown with VAT inclusive prices in brackets.

FL1	$59.00(6785)$	MPU	$6.00(6.90)$
FL2	$78.00(89.70)$	DC144/28	$31.00(35.65)$
PC1	$105.00(120.75)$	DC144/28	
ASP	$69.00(79.35)$	Module	$25.00(28.75)$
VLF	$22.00(25.30)$	Keyboard Morse	
D70	$43.00(49.45)$	Sender	$112.20(129.00)$
D75	$49.00(56.35)$	RFA	$25.50(29.32)$
RFC/M	$23.00(26.45)$	Codecall	
AD270	$33.00(37.95)$	(Linked)	$24.00(27.60)$
AD370	$45.00(51.75)$	Codecall	
AD270+MPU	$37.00(42.55)$	(Switched)	$25.50(29.32)$
AD370+MPU	$49.00(56.35)$		

VARIABLE SELECTIVTY FOR ANY RECEIVER
Have a book at these curves (and the others in our data sheof) and see why a U.S. reviewer commented that the FL2 is "moeredible - it's like coystal fitter
off-tune "monkey chatter", unwanted tones and sundry "bu can wipe out SSB, while for CW the ulta-steep skints allow you to use wider bandwidths for a given rejection of of-tune signals. This makes tuning easier and reduces listening fatigue.
Model FL2 costs little more than a single speccal accessory filter yet it offers better performance, extreme versatity, and can be used with any -R S.

Products not shown in this advertisement Model Datest 1 Transistor Tester
Model Datest 2 Transistor Tester RF Speech Processor Model D75 Model RFC/MRF. Speech Processor PCB Module Model MPU Mains Power Unit Accessory Leads
Model VLF
Model FL1

ALL DATONG PRODUCTS ARE
DESIGNED AND BUILT IN THE U.K.

"CODECALL" SELECTIVE CALLING DEVICE The new Oatong Codecail adds "selective call "to any radio
voice channel. A single seff-contained unit at each end of the voice channel. A single self-contained unit at each end of the
link sends or receives a coded audio signal. When the correc link sends or receives a coded audio signal.
code is received. the receiver bleeps loudly.
The only connection needed to a transcelver is to the externa loudspeaker jack. Sending is via direct audio into the microphone.
"Codecall"" allows totally silent stand-by operation yet with
confidence that when that specific call comes, you won't Oniss it. by three 16 -way panel switches selected by internai link This practically eliminates talse alams. Full details free on request.
Availability: late January
Price per unit: Link programmable $£ 24.00+$ VAT ($£ 27.60$ Switch programmable $\mathbf{\Sigma 2 5 . 5 0}+$ VAT (E29.32)

Data sheets on any products available free on request - write to Dept S.W. DATONG ELECTRONICS LIMITED
Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE, England. Tel: (0532) 552461

 *
 acknowledged unbeatable reputation. 160 thru 10 metres including the new WARC bands All-mode capability, SSB, CW, AM, FSK and FM transmit and receive. Teamed with the FTV - 901R transverter coverage extends to $144 \& 430 \mathrm{MHz}$.

FRG-7 General coverage receiver

 reputation. YA'ESU's famous FRG-7 out-performs many a more expensive set. Rugged and reliable, it features high sensitivity and Wadley loop stability - a delight to use for the established amateur and new SWL alike

or attractive. H.P. terms readily available for on-the spot transactions. Full demon
stration facilities. Free Securicor delivery

[^0]

FT-ONE SUPER HF TRANSCEIVER

This is the latest and most exotic product from YAESU's superb design team. The new FT-QNE provides continuous RX coverage of $150 \mathrm{KHz}-30 \mathrm{MHz}$ plus all nine amateur bands (160 thru 10 m). All mode operation LSB, USB, CW, FSK, AM,*FM•10 VFO system•FULL break-in

AGENTS

 NORTH WEST THANET ELECTRONICS LTO GOROON G3LEO WALES \& WEST ROSS CLARE GW3NWS. GWENT 106331830146 east anglia amateur electronics uk east anglia. OR T THIRST (TIMI GUCTT NORWICH 0692650866 northe East amateur radio DARLINGTON OSES 56969amateur electronics uk kent
KEN MCINNES G3FE THANET 108431291297
Amateur Electronics UX
508-516 Alum Rock Road-Birmingham 8 Telephone: 021-327 1497 or 021-327 6313 Telex: 337045
Opening hours: 9.30 to 5.30 Tues. to Sat. continuous - CLOSED all day Monday.

DO YOUR SHOPPING

NEW FROM TRIO
 General Coverage receiver

TRIO ————
TS830S $160-10 \mathrm{~m}$ Transceiver 9 Bands $\begin{array}{ll}\text { VFO230 } & \text { Digital V. F.O. With Memories } \\ \text { AT } 230 & \text { All Band ATU/Power Meter }\end{array}$ $\begin{array}{ll}\text { AT } 230 & \text { All Band ATU/Power Meter } \\ \text { SP230 External Speaker Unit }\end{array}$ SP230
DFC230 Dig. Frequency Remote Controller YK 88 C
YK 88 CN $\begin{array}{ll}\text { YK88CN } & 270 \mathrm{~Hz} \text { CW Filter } \\ \text { TS130S } & 8 \text { Band } 200 \mathrm{~W} \text { Pep Transceiver }\end{array}$ $\begin{array}{ll}\text { TS } 1305 & 8 \text { Band } 200 \mathrm{~W} \text { Pep Transceiver } \\ \text { TS } 130 \mathrm{~N} & 8 \text { Band } 20 \mathrm{~W} \text { Pep Transceiver }\end{array}$ VFO 120 External V.F.O. $\begin{array}{ll}\text { TL120 } & \text { 200W Pep Linear For TS } 120 \mathrm{~V} \\ \text { MB } 100 & \text { Mobile Mount for TS } 130120\end{array}$ SP120 Base Station External Speaker AT 130 100W Antenna Tuner
$\begin{array}{ll}\text { PS } 20 & \text { A.C. Power Supply - TS } 130 \mathrm{~N} \\ \text { PS } 30 & \text { A. P. Power Supply - TS } 1305\end{array}$
PS30 A.C. Power Supply - TS 1305
$\begin{array}{ll}\text { MA5 } & 5 \text { Band Mobile Aerial System } \\ \text { MC50 } & \text { Dual Impedance Desk Mic }\end{array}$
MC35S Fist Microphone 50K OHM IMP
$\begin{array}{ll}\text { MF30s } & \text { Fist Microphone } 5000 \mathrm{HM} \text { IM } \\ \text { H.F. Low Pass Filter } 1 \mathrm{~kW}\end{array}$
TR9000 2 m Synthesised Multimode $\begin{array}{ll}\text { B09 } & \text { Base Plinth for TR9000 } \\ \text { TR7800 } & 2 \mathrm{~m} \text { Synthesised FM }\end{array}$ $\begin{array}{ll}\text { TR7730 } & 2 \mathrm{~m} \text { Synthesised F.M. Mobile 25W } \\ 2 \mathrm{~m} \text { Syn. F.M. Cmpt. Mble. } 25 \mathrm{~W}\end{array}$ TR2300 2 m Synthesised F.M. Portable VB2300 MB2 $\begin{array}{ll}\text { TR2500 } & \text { Flexible Rubber Ant. for TR2300 } \\ \text { 2m F.M. Synthesised Handheld } \\ \text { ST2 } & \text { Base Stand }\end{array}$ £23

$\begin{array}{ll}\text { ST4 } & \text { Sott Case } \\ \text { MS1 } & \text { Mobile Stand }\end{array}$

SMC25 Speaker Mike
PB25 Spare Battery Pack
TR $8400 \quad 70 \mathrm{~cm}$ F.M. Syn. Mobile T'ceiver
$\begin{array}{ll}\text { PS } 10 & \text { Bse. Station Power Supp, for } 8400 \\ \text { TR9500 } & 70 \mathrm{~cm} \text { Syntheised Mult }\end{array}$
TR $9500 \quad 70 \mathrm{~cm}$ Synthesised Multimode
R1000
Syn. $200 \mathrm{KHz}-30 \mathrm{MHz}$ Receive
$\begin{array}{ll}\text { R1000 } & \text { Syn. } 200 \mathrm{KHz}-30 \mathrm{MHz} \text { Receiver } \\ \text { SP100 }\end{array}$
$\begin{array}{ll}\text { SP } 100 & \text { External Speaker Unit } \\ \text { HC } 10 & \text { Digital Station World }\end{array}$
$\begin{array}{ll}\text { HC } 10 & \text { Digital Station World Time Clock } \\ \text { HS5 } & \text { Deluxe Headphones }\end{array}$
HS4 Economy Headphones
SP40 Mobile External Speaker
R600 Gen. Cov. Receiver
ICOM H.F. Mobile Transceiver 8 Band
IC7204 H.F. T'ceiver \& Gen. Cov. Rec.
PS 15 Power Supply for 720A
IC251E $2 m$ Multimode Base Station
IC25E
2m Syn. Compact $25 W$ Mobl
IC25E 2 m Syn. Compact 25W Mobile IC 290 E Im Multimode Mobile
$\begin{array}{ll}\text { ICL1/2/3 } & \text { Soft Cases } \\ \text { ICHM9 } & \text { Speaker/Microphone }\end{array}$
$\begin{array}{ll}\text { ICHM9 } & \text { Speaker/Microphone } \\ \text { ICBC } 30 & 230 \mathrm{~V} . \mathrm{A} . \mathrm{C} . \text { Bse. Charger and Hod }\end{array}$
ICBC25 230 V.A.C. Trickle Charger
ICCP1 Car Charging Lead
$\begin{array}{ll}\text { ICBP2 } & \text { GV Nicad Pack for IC2E } \\ \text { ICBP3 } & \text { 9V Nicad Pack for IC2E }\end{array}$
ICBP4 Empty Case for $6 \times$ AA Nicads
IC8P5 11.5V Nicad Pack for ICzE
$\begin{array}{ll}\text { ICDC } 1 & 12 \mathrm{~V} \text { Adaptor P } \\ \text { ICML1 } & 10 \mathrm{~W} \text { Booster }\end{array}$
T.V. INTERFERENCE AIOS

Toroid Filter $\mathrm{T} . \mathrm{V}$. Down Lead Low Pass Fitter LP30 100 W
Trio Low Pass Filter LF304 1 kW
Yaesu Low Pass Filter FF5010X 1 kW
ANTENNA BITS
H1. Q Balun 1:15kW Pep (PL259 Fitting) T Piece Polyprop Dipole Centre
Ceramic Strain insula
Small Egg Insulators
Large Egg insulators
75 OHM Twin Feeder - Light Durty - Per Metre
300 OHM Twin Feeder - Per Metre
URM 67 Low Loss 50 OHM Coax - Per Metre UR76 50 OHM Coax - Per Metre Please se
refunded

AMATEUR T.V. CONVERTER MMC 435/600 plug into your TV $£ 27.90$

MMT 144/28	2 m Transverter for HF Rig	99.00
MMT43228S	70 cm Transverter for HFRig	149.00
MMT432/144R	70 cm Transverter for 2 m Rig	184.00
MMT 70.28	4 m Transverter for HF Rig	115.00
MMT 70.144	4 m Transverter for 2 m Rig	115.00
MMT1296:144	23 cm Transverter for 2 m Rig	184.00
MML144/25	2 m 25 W Linear Amp (3W I/P)	59.00
MML144/40	2 m 40 W Linear Amp (10W I/P)	77.00
MML144 1005	2 m 100W Lin. Amp (10WI/P)	12900
MML432 20	70 cm 20 W Lin. Amp (3 W I/P)	77.00
MML432/50	70 cm 50 W Lin. Amp (10W $/ 1 / \mathrm{P}$)	119.00
MML432 100	70 cm 100 W Linear Amp (10W I/P)	228.64
MM2000	RTTY to TV Converter	169.00
MM4000	RTTY Transceiver	269.00
MMC50128	6 m Converter to HF Rig	27.90
MMC70 28	4 m Converter to HF Rig	27.90
MMC 144/28	2 m Converter to HF Rig	27.90
MMC432/28S	70 cm Converter to HF Rig	34.90
MMC432/144S	70 cm Converter to 2 mm Rig	34.90
MMC435/600	70 cm ATV Converter	27.90
MMK 1296:144	23 cm Converter to 2 mm Rig	59.80
MMD050550	500 MHz Dig. Freq. Meter	69.00
MMD600P	600 HMz Prescaler	23.00
MMDP1	Frequency Counter Probe	11.50
MMA 28	10 m Preamp	14.95
MMA 144V	$2 m$ RF Switched Preamp	34.90
MMF 144	2 m Band Pass Filter	9.90
MMF 432	70 cm Band Pass Filter	9.90
MMS 1	The Morse Talker	115.00

DATONG D70MORSE TUTOR

£ 49.45 inc VAT

DATONG PRODUCTS			
PC1	Gen Cov. Convtr. HF on 2m Rig	120.75	
VLF	Very Low Frequency Converter	25.30	-1
FL1	Frequency Agile Audio Filter	67.85)
FL2	Multimode Audio Filter	89.70	1
ASP/B	Auto RF Speech Clip. (Trio Plug)	79.35	1
ASP/a	Auto RF Speech Clippers (Yaesu Plug)	79.35	
D75	Manually con. AF Speech Clipper	56.35)
RFC/	RF Speech Clipper Module	26.45	1-1
D70	Morse Tutor	49.45	(-1
AD270	Indoor Active Dipole Antenna	37.95	1-1
AD370	Outdoor Active Dipole Antenna	51.75	$1-1$
MPU1	Mains Power Unit	6.90	1-1
MORSE EQUIPMENT			
MK704	Squeeze Paddle	10.50	10.50
HK707	Up/Down Key	10.50	10.501
HK704	Deluxe Up/Down Key	14.50	10.501
EKM1A	Practise Oscillator	8.75	10.501
EK 121	Elbug	29.95	10.50)
EKM12A	Matching Side Tone Montor	10.95	(0.50)
EK 150	Electronic Keyer	74.00	(-)
DESK MICROPHONES			
SHURE 44	4D Dual Impedance	33.00	11.50
SHURE 52	$6 T$ MK II Power Microphone	46.00	11.50
ADONIS A	M 502 Compression Mic 1 O/P	39.00	$1-$
ADONIS A	M 601 Comp. Mic + Meter $10 / \mathrm{P}$	49.00	1 -
ADONIS A	M 802 Comp. Mic + Meter 3 O/P	59.00	1 -
MOBILE SAFETY MICROPHONES \qquad ADONIS AM 2025 Clip-on ADONIS AM 202F Swan Kneck + Up/Down Buttons ADONIS AM 2024 Head Band + Up/Down 8uttons			
		20.95	1
		30.00	(-1
		30.95	
CONNECTORS - INTER-SERIES ADAPTDRS			
BNC Plug to SO239 £ 1.75			
BNC Socket to PL259		£ 1.75	
ENC Plug to PL259		¢1.75	
BNC Socket to SO239		£ 1.75	
8NC Socket to N Plug		¢ 3.50	
8NC Plug to N Socket		f3.50	
SO239 to N Plug		¢3.00	
PL259 to N Socket		¢3.00	
Minimum postage 30 . connector in addition.		add	50 per

MAIL ORDER

AMCOMM

by two way FREEPOST

LINEAR AMPLIFIERS

$2 \mathrm{M} 10-80 \mathrm{P} \quad 144 \mathrm{MHz}$ 10W input/80W output with 9 dB preamp $2 \mathrm{M} 25-150 \mathrm{P} \quad 144 \mathrm{MHz} 25 \mathrm{~W}$ input/ 150 W output with 9dB preamp $2 \mathrm{M} 10-150 \mathrm{P} \quad 144 \mathrm{MHz}$ 10W input/ 150 W output with 9 dB preamp 144 MHz 3 W input/150W output with 9 dB preamp
£ 138.00
£ 184.00
£209.88
£209.88

ICOM

IC 720 Allband Tcvr	$£ 799.00$
IC 73010 -80Mts incWARC	$£ 529.00$
IC 2902 m multi mobile all mode $£ 329.00$	
IC $251 E 2 \mathrm{~m}$ Tcvr	$£ 449.00$
IC 45170 cms Tcvr	$£ 539.00$

MICROWAVE MODULES	
MMT 432 285	£ 149.00
MMR 432/144R	£ 184.00
MMT 28/144	£ 199.00
MMT 144/28	¢99.00
MMC 28/136	£27.90
MMC $28 / 156$	£27.90
MMC 28/144	¢27.90
MMC 144/any IF	27.90
MMC 144/2BLO	¢29.90
MMC 70rany IF	£ 27.90
MMC 432 28 S	$£ 34.90$
MMC 432/144S	£34.90
MMC 1296/any IF	£ 32.20
MMC 050 500	£69.00
MMA 28 preamp	£14.95
MMA 144 V preamp	£34.90
MMV 1296/28	¢ 32.20
MML 144/100linamp	£ 142.60
MML 432/100linamp	¢228.85
MML 144/25 linamp	$£ 59.00$
MML 432/50linamp	£ 119.00
MM 2000	£ 169.00
MMSI	£115.00

YAESU CONVERTERS 7700 Series

Model A

f63.00
£69.00
E65.00
£66.00

ModelB
ModelD
$£ 72.50$
£ 39.50
£92.50
£65.00
£ 16.50
£ 13.50
pid.

UNADILLA/REYCO
 Antenna Traps

Precision moulded coil forms stainless - hardware - Aluminium tube irridit finish - Coated aluminium wire. Fully waterproofed.
Available $7 / 14 / 21 \mathrm{MHz}$
£ 12.99

W2AU BALUN

$3.5 / 30 \mathrm{MHz} 2.5 \mathrm{Kw}$ with Lightning Arrestor-Suitable Vees, Yagis, Doublets, Quads, etc. £ 12.99

JAYBEAM ANTENNAS

TR3HF 3EL Beam
VR3HF 3Band Vert
VR3HF 3Band Vert $\quad £ 48.00$
LR1/2M 5Ele Yagi
$8 \mathrm{Y} / 2 \mathrm{~m} 8 \mathrm{Ele}$ Y agi
10Y/2M 10Ele Yagi
5XY/2M 5Ele X Yagi
8XY/2M 8Ele X Yagi
X6/2M/X12/70cm Duo band X Yagi
Q4/2M 4 Ele Quad
06/2M6Ele Quad
05/2M Double 5Slot Yagi
£ 25.50

JGP2/M Ground Plane
£ 36.90
£ 22.85
Various harness available

SWR/POWER METER

Welz SP $1001.8-160 \mathrm{Mhz} 3$ ranges to 1 Kw
$£ 59.00$ Welz SP $3001.8-500 \mathrm{Mhz} 3$ ranges to 1 Kw
Hansen FS 710 1.8-60Mhz
1.5 Kw
£ 79.00
£78. 20
Hansen FS 500H 1.8-60Mhz 2 K
PEP meter $\quad 144.432 \mathrm{Mnz}$ £60.95 Reece VHF 74 144-432 Mhz 10 w
£ 17.50
Oskerbloc SWR 200 to 30 Mhz 2 K
£ 41.00
SWR $253.5-150 \mathrm{Mhz} \quad$ £ 12.94

AMCOMM SERVICES

194 NORTHOLT ROAD, SOUTH HARROW, MIDDX. Telephone: 01-864 1166, 01-422 9585 Opposite South Harrow Tube Station on Piccadilly Line

Showroom Opening Hours
 Tuesday to Saturday 9-5.30 Sunday by Appointment

All items over £100 available on easy terms at List Price

FDK Multi 700EX
$£ 189.00$
FDK Multi 750 E
$£ 289.00$
Send 500 for our bumper bundle literature

No Quibble Guarahtee Same Day Despatch All Items Advertised

SHURE MICS

201	Hand ceramic omnidirectional high impedance Hand ceramic noise reducing high impedance	$£ 17.38$
401 A	Hand controlled magnetic high impedance	$£ 18.21$
401 B	Hand controlled mag. Iow impedance (200 ohms)	$£ 18.21$
444	Desk adjustable height controlled magnetic	$£ 38.96$
$526 T$	Desk controlled response transistor preamp	$£ 51.30$

DAIWA		
CNA	1001 Auto ATU 200wRMS	$£ 128.00$
CNA	2002 Auto ATU 1KwRMS	$£ 185.00$
CN	620 RF Power Meter 1.8 to	
CN	150 Mhz 1Kw	$£ 49.99$
	630 RF Power Meter 140-450	
SR11	Mhz 200w	$£ 69.00$
	Scanning Receiver	$£ 49.00$

STILL HELPING WHERE IT HURTS			
Here's a list below to make buying easier for you Work it out yourself - You'll see - It really is easy!			
'And Guaranteed for two years' ${ }^{\text {a }}$			
	List		12 Pay-
Product	Price	Depôsit	ments
Yaesu FT 1	£1,295	£600	£ 57.91
Yaesu FT 9020M	£885	£399	£40.55
Yaesu FRG 7700/S	£329	¢ 139	£15.89
Yaesu FRG 7700/M	£409	£ 180	£ 19.01
Yaesu FT 1012D/FM	£665	£300	£ 30.41
Yaesu FT 1012D/AM	£650	£275	£31.29
Yaesu FT 1012/FM	£590	£ 250	£ 28.27
Yaesu FT 1012/AM	£575	£225	£ 29.15
Yaesu FL 21002	£425	£185	£ 20.08
Yaesu FT 480R	£379	£185	£ 16.18
Yaesu FT 707	£569	£ 230	£28.27
Yaesu FT 290	£ 249	£120	¢10.82
Standard C78	£219	£ 99	£ 10.04
Standard C58	£ 247	£ 107	¢11.69

If you dont like easy payments call 01.4229585 for quote

Choose your AMTECH here	
Amtecc 100 Mobile Match	
Amtech 200Random Wire ATU 10. 160m 200w pep	
Amtech 300Random and Coax Fed ATU 300w pep	$£ 29.95$
Amtech CW 250- The most outstanding CW filter available	$£ 43.95$
Amtech Channelguard - A plug in device to eliminate those	$£ 24.90$
unwanted stations	Decoder
Amtech FM7: FM Demodulator for FRG 7	Sender

ANTENNAS

Wide range in stock including JAYBEAM - HYGAIN - GOTHAM - TELECON HOKUSHIN etc.
Bantex $5 / 8$ mobile whip complete antenna
$£ 9.99$ Bantex $1 / 4$ w mobile whip complete antenna

NO POSTAGE REQUIRED

AMCOMM SERVICES (S1). FREEPOST,
HARROW HA2 OBR.
Please send me ...
at ...enclosed chéque/P.O. for
..or charge my VISA / ACCESS
Nr..
Name ..
Address ..
\qquad
| ..Post Code...

STEPHENS-JAMES LTD. 47 WARRINGTON ROAD, LEIGH, LANCS. WN7 3EA Telephone (0942) 676790

LANCASHIRE \& THE NORTH WEST'S LEADING RETAILER IN AMATEUR RADIO. 20 YEARS SERVING THE AMATEUR'S BY AMATEURS SPECIALIZING ONLY IN AMATEUR RADIO EQUIPMENT

THE ONLY APPROVED TRIO DEALER FOR NORTH WEST ENGLAND

TR7730 the new compact 2 m Transceiver

TR2300

TR2300 2 m Synthesised Portable Transceiver. We have lost count of the number of this model we have sold ove he last 12 months. Hikers, campers, climbers, you can essence of TRIO equipment

JAYBEAM

5Y/2M 5 element yag
8Y/2M element yagi
10Y/2m 10 element
PBM/14/2m. 14element Parabeam
$5 X Y / 2 \mathrm{~m}$. 5 element crossed yagi
$8 X Y / 2 \pi$. 8 element crossed yagi
$10 \mathrm{XY} / 2 \mathrm{~m}$. 10element crossed yag
$04 / 2 \mathrm{~m} .4$ element Quad
0612 m .4 element Quad
D5, 2 m . 5 over 5 siot fed yagi
D8/2m. 8 over 8 slot fed yagi
UGP/2m. ground plane
MBM48/70cms. Muttibeam
MBM8870cms. Muttibeam
C5/m. Colinear
C $8 / 70 \mathrm{~cm}$ Coline
015/1296 23cm. Antenna
Carriage on Antennas $£ 4.50$
f166. 75

TR7800

Continuing TRIO's policy of presenting the Radio Arnateur with the finest equipment available, we were pleased to announce the NEW TR 78002 m FM Mobile Transceiver. 15 memory channels - Priority channels with simplex $\pm 600 \mathrm{KHz}$ or non-standard operation "Priority alert" bleeps when signal on M14 priority channel. Frequency coverage $144.00,145.955$ in switchable 5 KHz or 25 KHz steps. Front keyboard for selecting frequencies, programming memories and controlling scan function. ALL THIS and MORE for

TRIO R1000

R1000 Receiver The latest general coverage from Trio. Frequency coverage 200 KHz to 30 MHz in 30 bands. Using an advanced PLL system. Full digital readout. Three filters 12 KHz for $\mathrm{AM}-6 \mathrm{KHz}$ narrow $A M$ and 27 KHz SSB. Also incorporates a noise blanker. Operation is from $100-240 \mathrm{VAC}$ or 12 VDC .

TR9000

TR9000 is a compact lightweight 2 mtr . FM USB/LSB/CW Transceiver with an outstanding array of functions. FM1 for 25 KHz steps (for mobile use) FM2 for Microcomputer control giving many advanced features Buit in 5 -channel memory. New type microphone with UP/DOWN switching. Built in high performance. N. Blanker. Side tone for CW.
£374.90

TRIO

TS830 HF Transceiver. S5 530 S HF Transceiver. SP230 Speaker
DFC230 Digital remote control
R82 Recelver.
TS1306 Solid State HF Transceiver
TS130V Solid State HF Transceiver PS 30 Power supply
AT130 Antenna Tuner
TL922 2KW Linear Amplifier TL922 2 KW Linear Amplifier...
TR2300 Portable 2 m Transceive TR2300 Portable 2 m Transceiver. RR7730ne compaci $2 m$ Transceiver R 780025 compact $2 m$ Transceiver R 785040 watt 2 m FM Transceiver R 90002 zm Multimode Transceiver TR 950070 cm Multimode Transceive TR 840070 cm FM Mobile Transceiver R1000 Solid State Receiver Full range of TRIO accessories siocked

DATONG PRODUCTS
PCI General Coverage Converter. $£ 120.7$
Low Frequency Converter. FL1 Frequency Audio Filter. Automatic RF Speech Clipper. Automatic RF Speech Clipper. R Speech
70 Morse Tutor.
Active Antenna (outdoor) AD270 Active Antenna (indoor).

Keyboard Morse Sender
f 694.83 119.83 534.98 f 34.96 £ 179.86 589.00 E525.09 844.05 $£ 49.45$
f 88.55
£ 88.55
f 79.12
$\begin{array}{r}\text { £ } 79.12 \\ \mathbf{f} \\ \hline\end{array}$
f166. 75
£ 166.75
-247.94
-247.94 -314.87
449.88
f334.88
£ 297.86
f235.00
£89. 70
£ 79.35
f 26.45
E49.45
£51.75
£37.95
£ 37.95 35.65

MOD. 1210 S

SOLID STATE STABILISED POWER SUPPLIES Maximum ratings quoted. Prices include postage
Model $12510-15 \mathrm{~V} 5 \mathrm{amp} \quad \mathbf{~} \mathbf{2 9 . 5}$ Model 15654.15 V 5 amp Twin Meter . . . $\quad \mathbf{£ 4 0 . 0 0}$ Model 12105420 N 10 amp Twin Meter $£ 75.00$

RECEIVERS AND TRANSCEIVERS

SR9 Tunable 144-146 MiHz Receiver R512 Aircraft Band Scanning Receiver Regency Digital Flight Scan Synthesised Aircraft Band Receiver
Yaesu FRG7Receiver
'Sky ACE' Hand Held Aircraft Band Receiver.
AR22 2 m Hand Held Receiver R528 Hand Held Aircraft Receive FXI Station Wavemeter
2-wav Antenna Switch $3 \mathbf{3 0 M H z}$
2-wav Antenna Switch $3-30 \mathrm{MHz}$
FDK 700EX Transceiver
FDK 750 E Transceiver
DL5050 watt 5 chm Dummy Load
DL500 Durnmy Load/Wattmeter 1 Kw
3.400 ohms
£ 46.00 £135.00
f215.00
f 49.50
f83.00
f68. 50
f68.50
f 28.00
f 5.00
E5.00
£ 10.00
$\mathbf{f} 199.00$
f199.00
$\begin{array}{r}\mathbf{£} 6.50 \\ \hline\end{array}$
0.50

J.R.C. NRD515D

General coverage receiver 100 KHz to 30 MHz fully synthesised. Digital readout PLL synthesiser with rotary construction er pass band tuning - modula Matching Transmitter Solid State 100 Watts available.

ACCESS \& BARCLAYCARD facilitios. Instant HP service. Licensed Credit Broker - quotations upon request.
Try our new "Overnite" service for $£ 6.00$. Guaranteed 24 hour service if order placed before 11 a.m. (excep North GM
Part exchange always welcome. Spot cash paid for good clean equipment. If you have equipment surplus to your requirement we would be pleased to sell this on

Shop Hours.
Shop Hours: 9.30 to 5.30 Monday to Friday
No parking problems. Tum at the Greyhound Motel on the A580 (East Lancs.) Road. S. A.E. with all enquiries. 250 will bring you latest information and prices. Postage carriage extr

AIL OUR PRICES INCIUDE VAT SEND S.A.E. FOR OUR UP-TO-DATE SECONDHAND

FULL RANGE OF DIAWA ANTENNA ROTATORS, SWR METERS, AUTOMATIC ANTENNA TUNERS, WELLZ SWR METERS AND ATU'S IN STOCK.

MN7 ATU/RF Meter 250 Watts
MN2700 ATU 2 KW .
f124.20
DL 300 Dummy Load 300 Watts
DL 1000 Dummy Load 1 KW
TV 3300 Low Pass Filter
132' top with 470 ohm Feeder
207.00
£20.70
£ 37.95
f 18.40
£23.00
TRIO TS530S NEW £534.98 ALL BAND HF TRANSCEIVER

TS830S

HF SSB TRANSCEIVER

 £694.83The new TS8sos, the latest from TRIO. A high performance, very affordable HF SSB/CW transceiver with every conceivable operating feature buit in (s) The through 10 metres fincluding the new three bands). The TS830s combines a high dynamic range with variable bandwidth tuning (VBT), IF shift and an IF notch iiter, is Together with the optional VFO230 (remote digital display VFO) which provides split frequency operation and 5 memories for frequency hoid, the amateur has available todays advanced technology linked to the proven reliability and exceptional linearity of a valve PA

* VBT variable bandwidth tuning
* IF notch filte
- IF Shift
- Built in digital display
* 61468 final with RF negative feed-back
* Optional Digital VFO for increased flexibility
* Innovative PLL system of frequency generation
* RF speech processor
- Adjustable noise bianker level
- Adjustable audio tone
- RF attenuato
* RITIXIT
* SSB monitor circuit
- Expanded frequency coverage

$\star 150 \mathrm{KHz}-29.999 \mathrm{MHz}$ ，FULL COVERAGE HIGH
STABILITY DUAL PLL SYSTEM
＊AUTOMATIC BAND PASS FILTER SELECTION
＊ 3 FILTERS FOR AM RECEPTION
＊FAST／SLOW AGC SWITCH
＊NARROW BAND FM RECEPTION CAPABILITY
－TIMER FACILITIES
＊SINPO CODED SIGNAL STRENGTH METER

cadive EAST LONDON HAM STORE HARVEY DAVE

EXCLUSIVE TO US IN THE UK 1kW input 600W ssb 350FM 2MTR LINEAR!!

BUILT-IN POWER SUPPLY, ELECTRONIC WARM UP, VARIABLEINPUT ATTENUATOR. ADAPTS EXCITERS FROM 2W-25W. RADIAL BLOWER. LED'S FOR READY, TX, OVERLOAD, PTT \&RF VOX with VARIABLEDELAY CHOICE OF EIMAC TUBES. 4×1504 OR $4 \mathrm{C} \times 2508$ OR $4 \mathrm{C} \times 250 \mathrm{R}$. ELECTRONIC PLATE CURRENT FUSE - NO THERMAL DAMAGE OF P.A. TUBE POSSIBLE. SIZE; H. 88 mm , W. 318 mm . D. 372 mm . FROM $£ 300.00$
$\begin{array}{lllll}\text { D } 70 \mathrm{C} & 70 \mathrm{cms} . & 10 \mathrm{~W} \text { in - } 200 \mathrm{~W} \text { out } & \mathbf{£ 4 8 9} & \text { All these linears have adjustable inputs and outputs and they are all fully } \\ \text { D } 200 \mathrm{~S} & 2 \mathrm{mtr} . & 1 \mathrm{~kW} \text { p.e.p. ssb. (} 650 \mathrm{FM} \text {) } & \mathbf{5 9 9} & \text { protected. }\end{array}$ D $200 \mathrm{~S} \quad 2 \mathrm{mtr}$. 1 kW p.e.p. ssb. (650 FM)
D 200 2mtr. 500 W p.e.p. ssb. (400 FM) £475
D 200 C 2 mtr . 350 W p.e.p. ssb. (150 FM) £300 protected.
ALSO AVAILABLE: 18db Gasfet masthead preamplifier which suits the output of these linears anc which is also powered by them via the antenna co-ax.

ICOM FM MOBILES

IC24G
IC25E

£ 165.00 £259.00

ICOM 720A G/C

IC7204200W
PS15Power Supply
£883.00 PS15Power Supply $\quad \mathbf{9 9 . 0 0}$ PS20P/S with speaker $£ 130.00$
IC 730 See panel, below left

CB Now stocking dnt 40 channel CB rigs + handhelds + Base Station. We don't only sell these but we have an in car fitting service
if needed and a full service back up. These sets are designed in Germany and built by a German Company

ICOM

hF TRANSCEIVERS
IC 730200 W
C2KL 500 W linear
IC 2 KLPS Power Supply

ICOM

ACCESSORIES
BP5IIV Pack
BP4 Empty case for 6XAA
BP3 STO Pack
BP2 6V Pack
BC3 Base Charger
DC1 12 V adaptor
WM9 Mic speaker
CP1 Mobile Charging load LC $1 / 2 / 3$ cases
BC30 base charger
MMLI 10W Booster

TRIO/KENWOOD

TS830S HF Transceiver TS 130 HF Transceiver TR8400 UHF mobile TR9500 UHF Multimode TR 7800 VHF mobile TR 7840 HP FM 2 m TR7730 2m FM TR9000
$£ 586.00$ $£ 839.00$ 211.00

FT 1 FT902 DM FT101Z POA FT101ZDFM FT1012DAM ${ }^{\circ}$ FT 707 200W PEP FP707PSU FC707 ATU 0 FV707 DM VFO

FT707 + FP707 + FC707
SPECIAL PRICE POA

FT277ZD Soco all extras inc $£ 753.00$ FT7670X FT902 OM Soco FC902 ATU
FV901 DM VFO
SP901 speaker
Y0901P Scope

FTV901 Transvertor

FT 208 VHF

FT708 UHF

All accessories available
FT 290 Multimode

- £249.00

FRG 7700 + Opt memory
POA

MICROWAVE MODULES
MMA 144 V 2 m Preamp $\quad £ 34.90$ MML $144 / 25$ RF AMP $\quad £ 59.00$ MML 144/40 £ \quad 77.00 MML 144/100S New with Preamp MMT 432/144
2-70 Transverter £184.00 MMT 28/144 10 m Transverter $£ 99.00$

MM 4000 RTTY

SEE IT WORKING AT OUR SHOP $£ 269.00$ + keyboard Full range stocked

STANDARD

C8800 $2 m+r$ Mobile C7800 70cm Mobile C 7870 cm Portable
C58 2mtr. Port ssb/FM CMB8 Mounting tray CL8 Carry case Battery charger Battery charge
Set Nicads.

ROTATORS ETC

dIawa
DR7600X $£ 135.00$

DR7500R £ 105.00
KENPRO
KENPRO
KR250
E44.00
$\begin{array}{lr}\text { KR400 } & £ 94.00 \\ \text { HAM IV }\end{array}$
HAM IV $£ 189.00$
CHANNEL MASTER $9502 \quad £ 50.00$
CN620 1.8-150MHz Pwr/swr £52.00
CN2002 2.5 kW PEP auto ATU
£ 190.00

SWAN/CUBIC

$102 \mathrm{~B} \times 235 \mathrm{~W}+\mathrm{PS5} \quad £ 800.00$ 103BX WARC 235W £ $1,000.00$ PS6 Power Supply $£ 145.00$ 150MX Digital 15002 Linear ST2A ATU
sT3A ATU
HF Mobile ant 561.00
$£ 406.00$
\qquad
$£ 80.00$

RECEIVERS ALL ON SPECIAL OFFER-POA
R1000
FRG7700 Kenwood
FRG 7700
IC 2001 L
Memory
Sony
\qquad
ALL POA ARE ON SPECIAL OFFER. PHONE HOT LINE 01-556 1415

ADVERTISERS' INDEX

Amateur Electronics UK. 636, 637
Amateur Radio Exchange........ 644
Amcomm Services................ 639
J. Birkett. 684

BNOS Electronics............... 684
Bredhurst Electronics............. 638
British National Radio and
Electronics School. 679
Peter Bubb. 682
Cambridge Kits. 683
Catronics Ltd.. 675
Colomor Electronics Ltd... 682
Datong Electronics Ltd.. 635
Granville Mill. 684
G2DYM Aerials. 682
G3HSC (Rhythm Morse Courses). . 683
D. P. Hobbs Ltd.................. . 684

Johns Radio. 684
K. W. Communications Ltd.. 678

Lee Electronics Ltd............... . 641
Leeds Amateur Radio............ 681
H. Lexton Ltd.................... . 642

London Car Telephones. 683
Lowe Electronics Ltd. front cover,
inside front cover, 629
Myers Electronics. 682
North West Communications. 641
Partridge......................... . . . 679
P. M. Electronics Services. 676

Polemark Ltd............. 680
Quartslab Marketing Lid......... . 678
Radio Shack Ltd.. 677
R. T. \& I. Electronics Ltd.. 680
S.E.M. 677

Small Advertisements. 681, 682, 683
South Midlands Communications
Ltd. 630, 631, 632, 633
Spacemark Lit.................... 684
Stephen-James Ltd................ . 640
S.W.M. Publications. back cover, inside back cover, 676, 680, 683

Telecom
684

Thanet Electronics Ltd.. 675
T.M.P. Electronics. 684

Uppington Tele/Radio (Bristol) Ltd.. 679
Reg Ward \& Co. Ltd. 680
Waters \& Stanton Electronics. 634
Geoff Watts. 676
W. H. Westlake. 682

SHORT WAVE

 MAGAZINE(GB3SWM)

ISSN: 0037-4261

Vol. XXXIX
FEBRUARY, 1982
No. 460

CONTENTS

PageCommunication and DX News, by E. P. Essery, G3KFE 645
A High Performance Power Supply and Control System for 4CX350/4CX250 Amplifiers, Part VIII, by J. H. Nelson, B.A., G4FRX and M. C. A. Moroney, B.Sc 648
A Simple Speech Pre-Amplifier, by D. G. Blake, Tech(CEI), G3MWV 654
The Icom IC-730 Transceiver - Equipment Review 655
The 'True' Measurement of Morse Speed - Words per Minute, or Dots per Second? by I. T. Wood, G4MCN. 659
"Ben" - The Little Transceiver for Ten, Part II, by Rev. G. C. Dobbs, G3RJV. 661
A Receiving Pre-Selector for the Low Frequency Bands, by P. C. Cole, G3JFS 664
Clubs Roundup, by 'Club Secretary' 666
Bill Corsham, G2UV - Obituary 669
"A Word in Edgeways" - Letters to the Editor. 670
VHF Bands, by N. A. S. Fitch, G3FPK 671

Editor: PAUL ESSERY, G3KFE/G3SWM Advertising: Charles Forsyth

Published at 34 High Street, Welwyn, Herts. AL6 9EQ, on the last Friday of the month, dated the month following.

Telephone:04-38715206\&5207
Annual Subscription:
Home: f8.40, 12 issues, post paid
Overseas: $£ 8.40$ (\$17.00 U.S.), post paid surface mail
Editorial Address: Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ, England.

Prices shown in advertising in this issue do not necessarily constitute a contract and may be subject to change.

AUTHOR'S MSS

Articles submitted for Editorial consideration must be typed double-spaced with wide margins on one side only of A4 sheets. Photographs should be lightly identified in pencil on the back with details on a separate sheet. All drawings and diagrams should also be shown separately, and tables of values prepared in accordance with our normal setting convention - see any issue. Payment is made for all material used, and it is a condition of acceptance that full copyright passes to the Short Wave Magazine, Ltd., on publication.

Short Wave Magazine Ltd.

Spring may be only just around the corner as you read this, but writing it in the middle of the pre-Christmas freeze-up, we find it hard to believe. However, it isn't just severe winter weather that stops our friends and customers coming to see us here in Ealing...

It may be inconvenient for other reasons, or else they
may already know precisely what they want. To meet their needs, therefore, we have developed our mail-order operation so that we can virtually guarantee same-day dispatch on any orders received by 4 pm ... and we've even found a way of offering our post and telephone customers a cup of Brenda's coffee!

right across the band now offers all these optional extras Memory facility - FRT-7700 Aerial Tuning Unit at only £37.85 Four VHF converters running from 50 MHz up to 170 MHz .
BASIC RECEIVER $£ 319$ inc. VAT
and FREE HELISCAN AERIAL.
Converter specifications - Phone for prices.
FRV-7700A $\quad 118-130 \mathrm{MHz} \quad 130-140 \mathrm{MHz} \quad 140-150 \mathrm{MHz}$ FRV-7700B $\quad 118-130 \mathrm{MHz} \quad 140-150 \mathrm{MHz} \quad 50-60 \mathrm{MHz}$ FRV-7700C $\quad 140-150 \mathrm{MHz} \quad 150-160 \mathrm{MHz} \quad 160-170 \mathrm{MHz}$ FRV-7700D $118-130 \mathrm{MHz} \quad 140150 \mathrm{MHz} \quad 70-80 \mathrm{MHz}$

ATV-2 TV TRANSCEIVER

 Available only from us, this has been developed from the very popular ATV-1 TV Transmitter and it represents a real triumph of miniaturised solid-state technology.So simple to go on the air, transmitting or receiving high-definition fast-scan video .. Camera or VCR in at one end, 70 cm antenna and normal domestic TV out of the other, connect to 12 v , and there you are ... who needs the BBC?
What's more, it's made for us in Britain by WOOD \& DOUGLAS, who are building up a tremendous reputation internationally for high-quality design and construction.
Just look at all these features:
2-channel input from video camera or recorder in B/W or colour (switchable on front panel) - Separate gain controls on both input channels

- Pre-set, adjustable video and modulation controls inside unit
- Built-In receive converter-just connect direct to UHF TV for instant ATV reception - Bult-In diode changeover for Tx/Rx
- Microphone socket for announcement of video Tx on 70 cm (switchable between audio and videol
- Video transmitter gives full $3 w$ PSP output - Spurious better than 50 dB down - Unit housed in steel case and constructed on high-quality fibreglass PCB - Full range of matching accessorres available soon

Just look at the price ONLY £119

ATV-1 still available for Tx only (with diode c/o for Rx converter) at just $£ 87$.

2 NORTHFIELD ROAD, EALING, LONDON, W13 9SY.

Tel: 01-579 5311 Closed Wednesday, but use our 24-hour Ansafone service. So easy for Overseas visitors. Northfields is just seven stops from Heathrow on the Piccadilly Line.

Credit card sales by telephone

Prices are correct as we go to press but may vary because of exchange rate fluctuations. Please phone for up-to-date information. All prices include VAT, but pfop/carriage are extra.

Just around the corner from the Rugby Ground.

COMMUNICATION and DX NEWS

E. P. Essery, G3KFE

DOUBTLESS there will be two things readers will recall in years to come about January 1982 and the month preceding it: the opening of our new 10 MHz band, the first new allocation at HF since we got 21 MHz around a quartercentury and more ago; and the weather, the like of which we have not seen before Christmas in the writer's lifetime. Arising from which, G3KFE has staked his one small claim to DX history . . . there can be little doubt that his was the first 10 MHz aerial to fall victim to gravity!

Various people we know have made their preparations for the new band's opening in various ways; for myself, the existing ATU and another piece of wire were to be fed from the existing rig, which had merely to have a link removed to open up the transmit facility. We know of at least one TS-520S owner who is progressing with a suitable modification, and others are building a separate rig for the band or transverters. On the aerial side of things improvisation has been the order of the day and we hear that, for example, a G5RV aerial has been persuaded to take $R F$ at 10.1 MHz . Others have been putting up dipoles or Best Bent Wire aerials. So far, we do not seem to have seen an enormous degree of activity on the band, but it does seem to have the feel of a useful bit of spectrum-space for our use.
And of course, the third memory of the end of 1981 must be the agony of the SPs. Lots of them playing in the contest of that fateful weekend on the Saturday, almost none on the Sunday . . . and none heard by the writer since then. All we can do is to realise that if we do come across one - and he would hardly be foolhardy enough to come up on Phone - the best we can do is not to transmit his callsign at all, but, simply a BK de G3--- and then to be sure that the copy on his signal is taken down 100% letter-perfect, and if possible taped as well to back up. One thing is for sure, and that is he won't be transmitting for fun, but hoping and praying his message will be received and understood and disseminated in the Free World. One must make quite sure that no damfool journalist is asinine enough to publish the SP callsign in any press report. They - the scribblers - won't know that a callsign is a name-and-address for the secret police to come and collect.

The Bands

Outdoor shacks quite went out of fashion last month! Similarly, anyone living near enough to power-lines will have had a thin time of it; even the normally
quieter high-voltage lines have been kicking up a mighty din, as the volts breakover the snow on the insulators. We have turned the shack chair round and doused the light, and watched it happening over on the horizon. Those with an indoor shack, warmth, and no nearby overhead power lines to disrupt don't know just how lucky they have been.

All the close-disharmony aside, band conditions have been just about what one would expect at this time of the year; typically deep-winter conditions as much on Ten as on Top Band. Ten almost certainly dead before one has time for a bite and a dive into the shack, Top Band free of much of the summer static and open to DX at, for Top Band, civilised hours, before midnight. So - let's have us a peep at things as seen through the eyes of our correspondents.

Top Band

Just a couple of reports this time and one passing reference. G4AKY (Harlow) offers some 89 stations, all of which are DX in one or another way, two of them on SSB, and three Gotaways. Summarising it, we may say the CW log began at VK6HD, through European and Asiatic Russians, FC9VN, KP4KK/DU2, W1, 2, 3, 4, 8, VEs, V0, KV4FU, TF30F, HI8DAF, and including much smaller fry. On SSB, GI20QR and W2HCW were raised, but JA2GQO, KB8AC, and KV4FZ all got away.

Our other Top Band entrant is G2HKU (Minister) who apologises for lack of activity as he has been building a toy caravan - the ones he saw in the shops were not what Ted wanted to give his grand-daughter!

A new reporter on this band is G4NKM, who was G8EIU. Welcome aboard, Steve. The gear is an IC-720, HW-7, ATU and an assortment of aerials covering Top Band right up to UHF. Now, G4NKM lives in West Wickham, in Kent, and he felt an ambition to work G4AKY; an ATU was lashed-up, and one RF-burn later(!) G4NKM was in business - but instead of G4AK Y he has had to settle for GM4DMK at 0100 .

Ten

The other end of the spectrum, so far as $C D X N$ goes. Our first mention must be with the Ten-UK group, and their activities. They have some 55 members, but no affiliated clubs despite having circulated all the known ones. They have various articles in the pipeline with various
publications, and they have had a stand at the Harlow Rally. If their latest newsletter is the average they are aiming at then this group is well-worth joining.

Looking at the satellite position on Ten, we have OSCAR 8, UOSAT-OSCAR 9 almost ready to 'come on stream' and, most recently, no less than six RS ones RS 3-8 and we hear that these have been used by some EU amateurs. More details elsewhere.
Now we look at the words of G3RKH (Retford) who wonders how things on this band will pick up during the spring. Since his last report, G3RKH has worked KA7BAU (Wyoming), KA7BPD (Idaho), W7EOI (Montana), P29NUK, AP2P, 5Z4WL, 7X4AN, KV4AD, Z23JO (first day of the new Prefix), CR9AN, ZP5JB, KB7XJ (Nevada), and DUIRD, not to mention pages and pages of small-fry like East Coast Ws and so on.

[^1]We turn from one reverend gentleman to another, now; from G3RKH to G3RJV. George has been playing in the QRP Winter Sports and took 'Ben', as he forecast, on to 10 MHz for the first few hours of its existence - of which more anon. On Ten, five watts input hooked up with WB2RZU, KM8X, VE3ABT, and AK 4 Z ; and during the period of the Sports most of these stations were raised several times, notably WB2RZU and KM8X, and they were two-way QRP. As G3RJV comments, with his aerial system five watts is enough to make many good QSOs.

Now we turn to new reporter G4NKM, who says his HF QSOs so far have all been SSB - he has only tried CW on two metres! The first fortnight's operations on HF gave 28 MHz contacts with WA4RXC, UA9AAP, and UQ2OP.

G3NOF (Yeovil) has been off the air with rig troubles, but on Ten, Don says he found SP openings to VK around 1200-1300, to an accompaniment of an occasional obbligato from CR9, VS6 and VU, not to mention South America. The Ws came in at about 1130 and stayed until

1800, with W6 and W7 types appearing at 1600. Don's \log of SSB contacts included CN8CY, CN8EA, DU1RD, HK3DDD, HK0EHM, HK0FBF, FP8HL, HC8MD, HP1XAW, J3AH, K6AXC, K6YRA, KN6M, KV4JC, N6FX, TI2CC, VK3AKR, W6MEF, W6POC/7, W7EQI, W1BLQ/7, W0YK, WA7VGT, YV1DQU, YV4BDD, 3B7CF, and 8P6OR.

G4LDS starts with a summary of his first year on Ten, while apprehensively looking out of the window at the snow on the aerials. The first eleven months on the band have given 103 countries worked and 61 confirmed. The QSO tally seems to have been VK6AXG, W6QL/8R1, KA5JZF, K70XB, WOGWL for three new States, VK2DOG, 9HIFZ, VU2OF, PP5VK, CN8EA, 3V8AA, W6s assorted, some more VKs, A4XJC, A4XJO, CSISL, DU1RD, who turned out to be a fellow-member of WACRAL, VE3s, more Ws, VP2MFZ, 6J6J, V3ME, LU3FAN, TG9GI, more VKs with a YO8 slipped in for interest, JY9AF, Z22JK, ZS6PS, LA3FL/MM (the Royal Viking ship in the Caribbean), 4U1UN, W6MEF, UA6LHB, UA9EJ, and VU2GJ.
Our next stop must be with G2DHV (Sidcup) who seems to have at last beaten the Post Office into submission over his unwanted telephone wires - and as expected, the beam now behaves a bit more like 'the book' says. George only operates CW these days, although he does listen to Phone now and again. Ten gave with KASDL, WB7UYW in Las Vegas, WB6SAR, N7DDX (a YL in Las Vegas), CX7BBB, N6EPK/2, and VE1SEW who faded out before the QSO was really over.

Final reporter for this band was G4HZW (Knutsford) who was somewhat puzzled when he tripped over the beacon-and-downlinkery of the Russian RS3-RS8 satellites; as he puts it "good luck to the Reds for adding a bit more interest to the band". In terms of actual QSOs, Tony mentions 6J6J, W6YB/3D6, AP2A, CR9AN, GU4LJC, GM4FDM, both on back-scatter, HK4BKB, J28DL, JAs, JG3QGI early one morning, JR6UGZ (Okinawa), JX6BAA, NP4CC, umpteen Ws in most States, PA0GN for a new country, PJ2VR, YV3IUP, KH6AT, KB7IJ/KH2, KH2AP, SP5BR (perhaps his last SP for a while), TF3YH, UI8CAJ, UA9s, VO2CW, some UA and UK0 in interesting places, VS6CT, VS6GZ, VS6DT, VK1-6, VK8RF and VK3NYG (Cocos-Keeling), V3ME, XE1MX, HI8GB, HI3AMF; ZL2AAG, ZL4BO, ZL2AAG all on long-path, ZF2AG, and ZS6AND. All on CW save for VK5NJR. As a postscript, Tony comments "plenty of CB-ers interloping and to be blasted out back to their own territory".

Comments

We do hear some odd reasons for absence at times . . . G4LDS says he missed
the sked contact between Chelmsford Essex and Chelmsford Mass. - because it was Christmas Day and he hadn't finished the washing-up!

G3RKH may be a parson but he has a nice line in dry humour - discussing his Lid of the Month (a YU of well-known vintage trying for VK3NYG and failing completely, MC and all) he adds "It's like driving a car - you must assume everyone else is a congenital idiot. Still, it's better listening to that than clearing snow off the drive"!

Out to VP8 now. VP8WA writes again to make mention of the position of the VP8s, vis-a-vis LU3ZY. There is a treaty, the Antarctic Treaty which covers the operations of LU and VP8 stations. However, the South Sandwich Is. are outside the Treaty area, and S. Sandwich is wholly and only owned by the British Crown. Thus, in no way can the position of LU3ZY be legal with that callsign. VP8WA says they have the information through their own Territory Government, although they point out the U.K. Government are responsible. What he is saying, in DX-ers lingo, is that LU3ZY is a pirate, and in no way should a QSO with him be considered as valid for DXCC credit.

Now some results: the CQ WW 160 contest 1981 shows again a thin entry from U.K. but lots of quality. GD4BEG made 180117 points for European winner (compare W8LRL at 164912 for Stateside winner, and World high NP4A at 439200 points) followed up by G3SZA and G3ZYY/A all over the 100 K points, while for the multi-op categories we hear GM3IGW at 106132 and G3RPB at 94824. Congratulations all.

Crystal Ball Dept.

We hear that as The Gambia is totally surrounded by Senegal, there is a likelihood of the two countries merging; this would delete C5 and 6W8 from the current DXCC list, so get at them before the time runs out! It is believed that the new Senegambia will sign 6W8.

Since January 1 it has been possible to submit 1A0KM for DXCC credit, and we hear that there is some reconsideration of the position of AD0S/KH5 Palmyra cards, there having been some documentation submitted to ARRL.

This should make the old-timers sit up - we hear by way of $T D X B$ that Gus Browning was going to spend the winter hitting various spots in the Caribbean as pre-training for an extended DX-pedition. This should be great - but we must add that we wonder whether Gus still has the physical stamina at his age to cope with the conditions at most of today's "most wanted' DX spots. We hope so, because the operating standards of this wizard are something to recall.

Those rumours about a pending Navassa DX-pedition sponsored by IDXF
were all bunkum - this from IDXF to $T D X B$, and who are we to argue?

This long-awaited and long rumoured DX-pedition to ZA is, at the time of writing, stalled for one bit of paperwork which will give the permitted days of operation, and they are still hopeful of being on during February.

9Y4KG, Lloyd and Iris Colvin, made some 9000 contacts before they went QRT. They told $T D X B$ that "Trinidad features complicated, time-consuming and costly customs procedures". It seems it took eight days to get their gear released to them.

On that Bouvet operation, we hear that it has been put off for at least a year by the German team involved; it seems their request for donations to the tune of 36000 dollars ahead of the start fell on stony ground. This old square isn't surprised!

Early December-time saw a station signing ZA2HAM on 14 and 21 MHz , but all the signs are that this one was Phoney Phred again. Phred sure gets about!

YIIAS is OK though, and expects to be in Iran for a couple of years. Best day for him is a Friday when he is off work all day.

Lloyd and Iris have been raising a fair old dust at the time of writing, signing this time W6QL/8RI.

10 MHz

Our nice new band. Quite a few people have been on it and we hear that G3HTA has worked DL, F, G, GI, GM, GW, HB, LA, OE, OY, OZ, VK, YU, ZD8, ZL 4U, and 5 N , with two other countries heard in SM and LX.

G3RJV took his Ben to work on the band, right at the opening hour, and found, at first, chaos. His rig managed a few Gs in the opening hours, with some Europeans later in the day, and he says it was surprisingly like 7 MHz without the hassle; he was also interested to note that some of the stations worked quite obviously hadn't used a key for some time. To bring some SSB ops back on to CW can't be a bad thing.

We have already indicated our own involvement on this band, but we have to admit that we agree with G3RJV, that an awardless, phoneless, HF amateur band will be a revelation to those who have only known the overcrowding and ill-temper of the other bands on SSB. In between the fireworks we heard quite a few G and European signals on, even with the aerial lying on the snow.

Eighty \& Forty

For daylight DX you don't normally head for 3.5 MHz but G2NJ reports hearing SM2CBS knocking off a brace of JAs at 1400 z on CW.

At G2HKU we notice just two CW contacts mentioned, with PP7IV and ODSLX. Sad to say, after mentioning these two, Ted notes that his wife had a fall on an icy unmade road, and broke a wrist.

Most of the HAB and WAB operation seems to occur on 80 and 40 , so maybe this is as good a place as any to mention the letter from GW3SSY (Blaenavon) in which he says that Ordnance Survey do a 1:625000 map in two sections called "Map of Great Britain (Local and Government Areas)". These two maps show all the counties and administrative areas within the Ordnance Survey grid marks - very handy for the out-of-the-way little places WAB-wise, and you soon learn not to disregard local signals which might be out /M or /P.

G4NKM just tried out Eighty, and raised SP4PIN and DL3YBM around $0100 z$ for a good starter.

G3RJV looked at both bands with his Argonaut 515, which has displaced the old Argo 505 in the shack. QRP on Eighty looked like EI6BA, G3SYC, G4CTS, F9YZ, GD3FXN, G3VTT, EI6BA, OK2BMA, G3ZWH, G4IYL, (twice), G3TKO, G4HCP, again G3VTT, and GW3SB. The 7 MHz log includes G8PG, G4JZO, GM3OXX, G4JRC, GM3OXX again, G4CQK, G4JRL, ON6MC, a couple more QSOs with GM3OXX and ON6ML.

Snippets

G3KPO recently did a trip round the globe, and he says he was quite surprised at the places in which he found people looking for Gs; for example VS6BS calling G stations daily on 21155 kHz at 1300 z , while on the other side of the world KH6IJ, now retired, looks for Gs on 28015,21015 and 14015 kHz daily between 0900 and $1000 z$ on whichever spot seems best. KH6IJ lives at the foot of an extinct volcano, and G3KPO ventured into the crater to take photos. Over in Bangkok, HSIWR is looking for SS/TV stations in G land, which should be pretty easy as he runs a 3 -element beam atop a 140 foot tower!

Scarborough club, says G4EDR, celebrate their 50th anniversary this year, and so they are offering a certificate to commemorate. You must work G4BP (the club station) and five members to claim the award, details of which are available from G4EDR at 39 Clarence Drive, Filey, N. Yorks., YOI4 0AZ.

We have an advance view of the QSLs going out for those who worked the OE2VEL/OE1ETA DX-pedition to the Pacific; they have quite a bit of interesting information on the places visited, and it might well rate a little piece to itself.

A special-activity station, signing GB2SDD will be put on by the British Steel Corporation Amateur Radio Section

One of the QSL's going out to those who worked the recent OE2VEL/OE1ETA DX-pedition to the Pacific; see "Snippets".
(Port Talbot) to celebrate St. David's day. There is to be continuous operation for the full 24 hours of March. 1. There is an award, involving working the GB station, plus extra GWs, to the tune of ten for G applicants, seven for European stations, and five for the rest of the world. Log extracts to be sent to GW3EOP, QTHR, along with 80 p , or 5 IRCs, or two dollars US for the certificate. The GW stations must be worked during March and April 1982.

14 \& 21 MHz

Trying to get it all in before the red pencil has to fall. . . .
G3RKH first. John mentions JA and VK on 21 MHz , and on Twenty he found himself talking to EP2TY, KL7LB, TF3A, HV3SJ, and KH6BB. The latter was the last one for the 1981 WAS, and in fact but for New Mexico there could be a WAS in three months.
G2DHV is sticking in the main to Ten, but he does mention that 21 MHz is noisy and full of UAs; for all that, VE7CIQ, WD6CVC, KL7IWS, KA7AQM, and W7LI were heard, while on Twenty a QSO was made with VE2WQ on CW for a pleasant surprise, and VU2 BK was heard.

Just to show the difference, G4LDS tried Twenty once in a while, and this collected him up 5B4LD (who admits to being GM4DIV at home), then S8IWCC, 5N8ASS, ZD7SD, 5N9GM, and ZSIVX, these six all being the fruit of one speculative CQ call. Then came 9H1MRL, where the ops wait their own calls.

For G3NOF, activity was non-existent on Twenty, with no QSOs recorded; but on 21 MHz the short path to JA, VK and the Pacific was open on occasions and of course the usual Ws, with the West Coast surfacing around $1700 z$. Don made SSB QSOs with CR9AN, FK8DH, JDIBAT (Marcus Is.), U18FFF, UJ8JCT, P29FV, W7KTI, ZF2AG, 3A2EE, and 8P6AH.

On now to G2HKU who mentions sked contacts in the mornings with ZL3FV and ZL3RS on SSB, with UA0KBC, VE7NH and W9RKP falling to the CW.

G4NKM passes over 14 MHz tersely: never liked the band - UP3ME and UB5ZCE worked. 21 MHz is preferred and here he brought down IIYUM, YU4EBL, UA0QDH, JA5SCQ, WB0HUR, 5B4KB, W6USG, LUIDRC, mostly taken in the afternoons.

That leaves us with G3RJV and his QRP set-up. He keyed on Twenty with CT4CH, IOSKK, SM6AMQ, I7CCT, DK5RY, and DJ3PT. Turning to 21 MHz , George notes CT4CH, OK1DKW, PJ1ZB, OK2BMA, the latter three times - all taken during the QRP Winter Sports.

Finale

So there it is for another time; let's hope that by next month all fallen aerials (including mine) will be up again, and that snowshoes and skis will have been packed away again! The date is in the 'box', and the address, as ever "CDXN", SHORT WAVE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ. BCNU!

A HIGH PERFORMANCE POWER SUPPLY AND CONTROL SYSTEM FOR 4CX350/4CX250 AMPLIFIERS, PART VIII

CONCLUDING THE SERIES

JOHN H. NELSON, B.A., G4FRX, and M. C. A. MORONEY, B.Sc.

IN the final variant, the drive circuitry was mounted on a small PCB which was placed back-to-back with another PCB carrying the inductors; this can be seen from the photographs. The mains filter was also mounted inside the box. Mains connexions into and out of the thyristor stack were made with EP series connectors which were removed from some surplus equipment: these were used because the current involved, as discussed, is quite high.

Finally, it is worth mentioning a few practical points about the EHT unit in general. More because one was available than out of any necessity, a 15 H 500 mA choke was used in the final design and is shown as L401 in Fig. 6. There is no reason why a simple capacitor bank, provided that it has a value greater than about 30 $\mu \mathrm{F}$, cannot be used as the entire EHT smoothing, since ripple is not a large problem with any tetrode and regulation is looked after by the system itself. Not that a tetrode amplifier is particularly sensitive to poor regulation anyway, but under certain circumstances of use as linear amplifiers, the 4CX family seem to
produce slightly more consistent intermodulation performance with a regulated supply such as this one. The supply would come into its own, however, if used as part of the power supply for a travelling-wave tube, where regulation and ripple content are more important than they are for a tetrode.

C423 and RV401, which are used to adjust the flashover trip point, will of course have the full output potential of the unit on them. For this reason, it is suggested that they are set up on the low-voltage transformer, as discussed shortly, and no attempt is made to adjust RV401 when the system is in use for high-voltage service unless the insulation of its spindle and/or the tool used to adjust it can be guaranteed beyond doubt at the output voltage.

Other than these points, the EHT unit can be built as any other EHT supply, with the addition of the thyristor stack box. Naturally, this implies the normal construction techniques which one would use for high voltages, the main points of which are careful work, no dry joints or sharp edges (which could cause corona) good insulation and "finger-proof" metalwork. If the rectifier stack is built on a PCB, it is well worth giving the track side a coating of anti-corona aerosol spray and mounting the board off the chassis with either nylon bolts or pillars of some kind. It is worth remembering that the ripple current ratings of the smoothing capacitors will need derating if they are closer than about 15 mm . to each other.

Another point to consider is how to convey the EHT to the amplifier, bearing in mind the voltage ratings of the usual types of connectors. The UHF series (PL259) are only rated for 500 V , and so are some BNC connectors; some N-type connectors are rated for use at 2000 V DC but not the bakelite-insulated ones, and it should not be automatically assumed that any old N-type will handle the voltage. The best connectors seem to be the PET series, which are available from the usual sources - they are rated to 3 kV and have been used at G4FRX with no problems for some years.

For EHT cable, the simplest solution seems to be the inner core and insulation of ordinary coaxial cable, preferably UR67 or UR43; the latter will fit a PET 100 connector with no difficulty and should prove very reliable.

So let us now assume that the system has been built and is ready for setting-up. The circuit may look a little complicated, but it will be found that getting it all working is very simple.

A general view of the control unit note the feedthrough capacitors used to take connections into and out of the box. The unit contains all the control electronics, trip sense amplifiers, low-voltage regulators for the op-amp supplies and everything necessary to drive the SCR stack. It is basically Figs. 2, 3, 4 and 7.

Looking into the control unit. The 3423 trip sense amplifiers are the vertical row of ICs to the left of the photograph, with the 741 op-amps in two horizontal rows at the top of the board, The 14-pin DIL IC in the second row is the CA3046 transistor array used in the analogue multiplier. Power supply regulators can be seen on the bottom wall of the box adjacent to the smoothing capacitors and fuses. 10-turn vertical presets are used in the prototypes and are visible in the photographs. For reasons of space, the mains transformer is not mounted in the box; its secondary voltages are taken into the rectifier via the three feedthroughs visible at lower right.

Setting-up

The following discussion assumes that at every stage there is no equipment fault and that no component decides to depart for another world during the procedure. The voltages in use tend, if nothing else, to make any failures of a rather explosive nature, and constructors are advised to keep the EHT and mains sections as far away as possible from each other when the EHT transformer is in circuit. Old hands tend to play this game "one hand only"', keeping the other hand in the pocket; the cynic, of course, will say that they only lose one arm at a time that way

The first step is to remove the EHT transformer and replace it with a low voltage transformer, for example a $24-0-24 \mathrm{~V}$ component. This will reduce the possibility of a disaster during the remainder of the process. At the same time R423 and R425 should be bridged by 10 K resistors so as to match the feedback to the lower output voltage. The mains supply to the thyristor stack and transformer should be disconnected at first, and only connected where indicated in the procedure. Carry out the following steps: 1. Set RV1, RV2, RV3, RV101, RV201, RV401, RV501, RV502, RV503, at minimum; RV102, RV103, RV104, RV301 at maximum.
2. Disconnect test points TP101, 102 and 103.
3. Switch on. Check the power supply rails for +15 and -15 V . LED201 should light after a short delay, indicating that the output of IC3 has gone from positive to negative. Check that the output of IC4 is rising and that it stabilises at 10 V ; the voltage across D11 should stabilise at about 5 V . Leave the voltmeter across D11.
4. Switch off, wait 20 seconds and switch on again. The voltage across D11 should initially be zero and should rise to 5 V .
5. Connect a voltmeter, set on a low AC range, to the output of the gain multiplier at TP103. Ground the input at TP102. Connect a 6 V AC source, such as a heater transformer, to the input of TP101, and adjust RV102 for minimum output at TP103. Then ground the input at TP101 and connect the AC source to TP102; RV103 is then adjusted for minimum output at TP103. Finally, ground both TP101 and TP102 and adjust RV104 for zero volts at TP 103. When this is done, return to the beginning of this step and repeat it all - then pass to the next item.
6. Switch off and reconnect test points TP101 and TP102.
7. MAKE SURE that the mains is disconnected, and then connect up the mains feed to the thyristor stack.
8. Connect a voltmeter across the primary of the substitute transformer and switch on. Adjust RV1 so that the meter needle just rises from the end-stop and then back off RV1 by a fractional
amount - this sets up the ramp voltage. Switch off and disconnect the voltmeter.
9. Connect the output side of test point TP103 (i.e. the side connected to R116) to the -15 V rail via a 100 K resistor, to give +10 V on the output of IC104. Connect a 40 W lamp across the primary of the substitute transformer. Switch on, and adjust RV201 to make the lamp glow as brightly as possible: RV201 should then be backed off fractionally. If RV201 is set too high, the lamp will rapidly flash, which indicates unstable operation. This step sets the maximum possible pedestal voltage, so that the main thyristors cannot be overrun. Switch off.
10. Disconnect TP103 from the -15 V rail and reconnect it to the output of the gain multiplier. Connect a voltmeter to the output of the unit, and another one between test point TP101 and ground, leaving TP 101 connected to the gain multiplier. Switch on and leave for one minute to allow the soft start to operate and stabilise. 11. Adjust RV104 until the output voltmeter is just beginning to lift off its endstop; note that a reducing value of RV104 gives an increasing output.
12. Raise RV1 so that the output voltmeter indicates 18 V . Adjust RV2 for the maximum gain commensurate with stable operation, and then back RV2 off by about 20% of this setting. Adjust RV3 to give zero volts at test point TP101, and whilst doing so maintain the output at 18 V by adjusting RV1.
13. Connect a 24 V 3 W lamp across the output of the unit and raise the setting of RV101 to the maximum commensurate with stable operation (i.e. the lamp not flickering). Check dynamic stability by removing the load and then replacing it.
14. Switch off for 10 seconds and then switch on again to check that the soft start is working. Reset the output voltage to 15 V via RV1.
15. Increase the load with more lamps until they represent something of the order of an 800 mA load. Then increase the setting of RV501 until the unit just trips at this current.
16. Adjust the load so that the output is 750 mA . Increase the setting of RV502 until the unit just trips at this current.
17. Remove the load from the unit. Increase the setting of RV401 until the point is reached at which a $0.47 \mu \mathrm{~F}$ capacitor connected to the output of the unit will cause a trip. Obviously, the capacitor must be removed and discharged between adjustments.
18. Raise the output of the unit to 24 V and raise the setting of RV503 to check the operation of the over-voltage trip. Return RV503 to minimum after this step.
19. Switch off, disconnect the mains supply and all the test equipment; you may wish to award yourself some refreshment at

General view of the SCR stack box. The heatsinks carrying the main thyristors are rated at 4 degrees C per watt, and TO220-style devices were used in this particular version. Note the two vertical PCBs carrying the main electronics and the inductors used for dV/dT protection and RFI suppression. The photograph shows one of the engineering prototypes before wiring was complete.
this stage, especially in view of what is to come! Remove the substitute transformer and install the real one; and from this point on, you have got to be very careful. Connect a 40W mains lamp across the primary of the EHT transformer and a suitable voltmeter across the output of the unit. Set RV1 at minimum. Remove the 10 K resistors which were used to shunt the feedback chains. Take a careful look round and switch on.
20. Let the soft start operate by waiting for a minute or so, and then slowly increase the setting of RV1 to give 200 V output (note that this part of the procedure assumes the use of a $2000-0-2000 \mathrm{~V}$ transformer, so that the voltages given in this section may be adjusted pro-rata to suit your own particular component). As discussed earlier, do not be surprised if either the transformer or the rectifier stack makes a certain amount of noise. Adjust RV2 for maximum gain commensurate with stable operation and then back it off by about 20%. Next, connect a voltmeter between test point TP101 and ground and adjust RV3 to give zero volts at TP101; this will require a continuous adjustment of RV1 to maintain 2000 V output. Re-check the setting of RV2 and then again RV3.
21. Increase the output to 2500 V , and increase the setting of RV503 until the unit trips; you may like to note the lack of drama with which everything quietly switches off. Remove mains input, wait 30 seconds and switch on again. Observe the soft start working, and then note the output voltage at which the overvoltage trip operates. Decrease the setting of RV1 a little and switch off.
22. MAKE SURE that the unit is switched off and that the capacitor banks are discharged.
23. Make up two banks of load resistors, each consisting of eight 60 W domestic lamp bulbs wired in series with a switch. The switches must be connected in the earthy side of the line and should be fitted through an earthed metal plate to protect you from shock: they will also need to be fairly robust and capable of breaking the inevitable arc. Connect both load banks to the output of the unit, after reading step 22 again.
24. Switch on, let the soft start wind up and set the output to 2000 V . Turn on one load bank and then turn it off again to check the stability at zero load. If there is instability, set RV101 to minimum and repeat step 20. If the unit is stable, turn on both load banks in turn and adjust RV101 for maximum gain commensurate with stable operation: it should then be backed off a little. Stability can be checked fully with step load changes using both load banks - in fact, most of the prototypes have been extremely docile in this respect, and it should easily be possible to set the unit up for only a few tens of volts change at 2000 V between no load and full load. The unit in use at G4FRX is completely stable except for a very minor instability just after starting up and passing through about 100 V , and the regulation is such as to give a drop of about 14 V at 2000 V when going to a 500 mA load from no load.
25. Switch off, let all the capacitors discharge and then remove all the test equitment. Take another look round to check that everything is in order, and then replace all covers, lids, etc. The unit is now ready for use, so you may now relax, make some tea and stand-down the emergency services!

Conclusions

After the completion of the setting-up, the system should prove flexible and useful in service, as well as affording good protection to the valves (drive to the thyristors ceases about 3 microseconds after a trip occurs, and all power is removed after a period of between 5 microseconds and 20 milliseconds, depending on the point in the mains cycle reached by the thyristors).

The general principles described in the article should be useful in other areas, since it would seem that the SCR is still a much misunderstood device amongst the amateur fraternity; certainly the author knows a great deal more about them now than he did when this project was commenced, but that seems to be the beauty of home-brewing. For those who find it a rather baroque way of doing an essentially simple job, please remember that this way is

The rectifier stack used in the prototypes; note the equalising resistors and capacitors. The latter are rather vocal when thyristor drive is in use! Note also the "antiMurphy" fuses in clips at one end of the board. Correct fusing, for semiconductors is most important, and is discussed in the text.
only one of infinitely many, and is described as much to demonstrate the general principles of power control with thyristors, and bring out some points which are sometimes forgotten about high-voltage supplies, as to describe a 4CX350 anode supply. Having said that, however, the performance of a 4CX amplifier which is correctly set up and whose power supply is put together in a purposeful manner, bearing in mind some of the points which have been discussed in this series, should be essentially that of which the valves are inherently capable; that is to say, very much better than represented by the majority of highpower transmissions heard on VHF and UHF.

In a future article, we hope to discuss a switched-mode power supply with all the performance of this one but in about one-tenth of the size - however, the prototype looks like being an even better broadband noise jammer than the prototype of this one was!

Acknowledgments

The author wished to acknowledge with gratitude the efforts of Michael Moroney, Melvyn Noakes, G4JZQ, Dave Crisp G8IXG,

Norman Fitch G3FPK, and his YL Elaine. Thanks are also due to his many friends at EMI-Varian and Eimac, for data and facilities.

APPENDIX

Phase control with thyristors

Thyristors control the amount of power delivered in an AC circuit by "chopping" the waveform of the supply. This is achieved by switching the thyristor on for only the latter part of each half-cycle. At the end of the half-cycle the thyristor will automatically switch off as the current falls to zero - this process is known as "commutation". The delivered power is modulated by moving the point in the half-cycle at which the thyristor switches on; the principle is shown graphically in Fig. A1, which describes the waveforms around a full-wave phase controlled rectifier.

Thyristors are switched on by a positive pulse at the gate of about 3 V amplitude and a current of about 50 mA for the larger

Looking into the SCR stack box. This contains the Fig. 5 circuitry, and again is shown prior to wiringup for clarity. The cylindrical component in the centre of the box is the mains filter (see text) and the vertical $P C B$ at the left of the photograph carries L301, 302 and 303. To the left and right of the mains filter are the RFI suppression and dV/dT protection components for the main thyristors. The PCB at the bottom of the photograph is that shown elsewhere, carrying the phase control and drive circuitry. The mains input and output connectors (Cannon XM series in this variant) are seen at upper right, and the two feedthrough capacitors carry current from the control unit to the optoisolator on the PCB.

devices. The transition from the non-conducting (blocking) state to the conducting (on) state takes about a microsecond.

The ramp and pedestal control circuit

This is a means of providing gate pulses for the thyristor which are synchronised with the AC waveform but which have a variable phase relationship. As such, it differs little from other phase control circuits but this particular configuration lends itself to control by an external voltage.

Refer to Fig. A2. The supply to the control circuit (V_{s}) is obtained from a rectified sine wave source which is in phase with the main AC source. This is dropped through a resistor $\left(\mathrm{R}_{\mathrm{f}}\right)$ and stabilised by a zener diode to give the main supply voltage $\left(V_{1}\right)$ to the circuit.

The unijunction transistor will trigger when the voltage $\left(\mathrm{V}_{2}\right)$ at its emitter reaches a fixed proportion of V_{1}. This relationship is defined by the equation:
$\mathbf{V}_{\mathrm{f}}=\mathbf{V}_{1} \frac{\left(\mu \mathrm{R}_{\mathrm{BB}}+\mathrm{R}_{\mathrm{B} 1}\right)}{R_{B 1}+R_{B 2}+R_{B B}}+0.5 \mathrm{~V}$
where:
$V_{f}=$ the value of V_{2} to trigger the unijunction
$\mu=$ the intrinsic standoff ratio for the unijunction (about 0.64)
$\mathrm{R}_{\mathrm{BB}}=$ the inter-base resistance of the unijunction (about 10 K)
When the unijunction transistor triggers, it discharges the capacitor through $\mathrm{R}_{\mathrm{B} 2}$, producing a voltage pulse at the top end of $R_{B 2}$. Since V_{1} collapses to zero at the end of each half-cycle (because the supply is not smoothed) a pulse will appear at $R_{B 2}$ and the capacitor will be discharged at some point in each half-cycle for any value which V_{2} reaches.
The intention of the circuit is that the pedestal voltage should appear on the capacitor at the very beginning of each half-cycle, and then the capacitor should ramp up from this voltage via the ramp control until it reaches V_{i} and the unijunction triggers; the ramp control is preset, so fixing the ramp. The pedestal voltage is varied so as to achieve phase control.
The point from which the ramp supply is taken will determine the gain characteristic of the circuit. If, as shown, it is taken from V_{s}, where V_{s} is large by comparison with V_{f}, then the ramp voltage will correspond with the integral of the supply waveform. This will give a linear relationship between the pedestal voltage and the output of the thyristor stack, although the relationship between phase angle (at the trigger point) and the pedestal voltage would

Resultant waveform. Note strong harmonic content

Al VIAVEFORMS FOF FULL WAVE THYRISTOF PHADE LCNTFIDL

be distinctly non-linear. This is the correct mode of operation for the power supply described in the main text.
The design of the circuit must allow for a relatively small source impedance for the pedestal voltage, so that it can build up rapidly at the start of each half-cycle. It must also allow for a current to flow through the ramp control which is greater than the peakpoint current for the unijunction transistor, that is to say the current which flows into the emitter when it is just on the point of triggering. If this criterion is not met, the unijunction will not trigger since the capacitor voltage will not be able to reach V_{f}.

The four-quadrant multiplier; theoretical background

The design for the multiplier used in this unit is borrowed directly from G. B. Clayton's book "Operational Amplifiers", although the actual origin is believed to be earlier than this. (Ref. 2,4 .) The circuit analysis is as follows:

Referring to Fig. A3, the base-emitter voltages of the four transistors must sum to zero because of the collector-base shorts on TRI and TR4. Thus:
$V_{E_{1}}-V_{E_{2}}+V_{E_{3}}-V_{E_{4}}=0$
Now, the emitter-base voltage of a transistor is linked to the collector current by the equation:
$-\mathrm{V}_{\mathrm{E}}=2.3 \times \frac{\mathrm{kT}}{\mathrm{q}} \log _{10} \frac{\mathrm{IC}}{\mathrm{I}_{\mathrm{o}}}$
where:
$\mathrm{k}=$ Boltzmann's constant
$\mathrm{T}=$ absolute temperature in degrees K
$\mathrm{q}=$ electronic charge in coulombs
$\mathrm{I}_{\mathrm{c}}=$ collector current
$\mathrm{I}_{0}=\mathrm{a}$ constant for the transistor
We can re-state Equation 2 as:
$-V_{E}=-k_{2}+k_{1} \log _{10} I_{c}$
where:
$\mathrm{k}_{1}=2.3 \frac{\mathrm{kT}}{\mathrm{q}}$
and:
$\mathrm{k}_{2}=\mathrm{k}_{1}\left(\log _{10} \mathrm{I}_{0}\right)$
Substituting Equation 3 in Equation 1 we get:
$k_{1} \log _{10} I_{1}-k_{1} \log _{10} I_{2}+k_{1} \log _{10} I_{3}-k_{1} \log _{10} I_{4}=0$
and thus $\log _{10}\left(I_{1}-I_{2}+I_{3}-I_{4}\right)=0$
and: $\log _{10} I_{1}+\log _{10} I_{3}=\log _{10} I_{2}=\log _{10} I_{4}$
and antilogging:
$I_{1} I_{3}=I_{2} I_{4}$
Note that this is only true if all the transistors are identical and at the same temperature, which is one reason for using a transistor array such as the CA3046.

Referring back to Fig. A3, and comparing it to Fig. 3 in the main text, V_{x} is the voltage at TP101, V_{y} is the voltage at TP102 and V_{s} is the supply voltage. It will be seen that we have two "tail reference'' currents. One is set by a transistor to vary with V_{x} in the relationship:
$I_{\text {REFI }}=2\left(I_{R}+I_{x}\right)$
where: $\quad I_{R}=\frac{V}{R_{1}}$
and: $I_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{a}}}$
and the other is set by a resistor to give:
$\mathrm{I}_{\mathrm{REF} 2}=2 \mathrm{I}_{\mathrm{R}}$
Where I_{R} is set by design to be the same as for the other tail reference current.

If we now examine the currents in Fig. A3, we have:
$I_{1}=I_{y}+I_{R}$
$\mathrm{I}_{3}=2\left(\mathrm{I}_{\mathrm{R}}+\mathrm{I}_{\mathrm{k}}\right)-\mathrm{I}_{2}$
$I_{4}=2 I_{R}-I_{1}=I_{R}-I_{y}$.
Substituting these relationships in Equation 7 and carrying out a phenomenal amount of rearranging, we get:

$$
\begin{equation*}
I_{2}=I_{X}+I_{y}+I_{R}+\frac{I_{x} I_{y}}{R} \tag{8}
\end{equation*}
$$

A3 A MODEL OF THE FOUR QUADRANT MULTIPLIER

A4 SINGLE (HALF) CYCLE WAVEFORMS FOR Fig. 2

but we already know that:
$\mathrm{I}_{2}=\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}}+\mathrm{I}_{\mathrm{R}}+\mathrm{I}_{\mathrm{o}}$
and thus, substituting this in Equation 8:
$L_{0}=\frac{I_{x} I_{V}}{I_{R}}$
Now $I_{x}=\frac{V_{x}}{R_{\lambda}}, I_{y}=\frac{V_{2}}{R_{r}}, I_{R}=\frac{V_{s}}{R_{1}} \quad$ and $V_{0}=\frac{I_{0}}{R_{0}}$,
thus, substituting this in Equation 9:
$\frac{V_{u}}{R_{u}}=\frac{\frac{V_{x}}{R_{v}} \times \frac{V_{y}}{R_{v}}}{\frac{V_{s}}{R_{\mathrm{t}}}}$
Re-arranging this we find that:
$V_{0}=\left[\frac{R_{1} R_{0}{ }^{j}}{R_{x} R_{y} V_{s}}\right] V_{x} V_{y}$
For a constant supply voltage, we may re-state the above as:
$\mathrm{V}_{\mathrm{o}}=\mathrm{kV} \mathrm{V}_{\mathrm{x}} \mathrm{V}_{\mathrm{y}}$
where k is a constant .

References

1. "SCR Manual." Various authors: General Electric Company (USA), fifth edition, 1972.
2. Clayton, G.B., "Operational Amplifiers". Butterworth, 1971.
3. Clayton, G.B., "Linear Integrated Circuit Applications."

Macmillan, 1975.
4. Gilbert, B., "Analogue Multiplier". New Electronics, 10, 38.

A SIMPLE SPEECH PRE-AMPLIFIER

D. G. Blake, Tech(CEI), G3MWV

Anumber of Oriental grey boxes have a low sensitivity microphone input circuit. This becomes very apparent when replacing the standard hand microphone with a high quality desk unit such as the Kenwood model MC-50. On most transceivers the mic. gain controls are set to maximum and it is necessary to talk quite close to the microphone, for full modulation.

To overcome this problem a simple pre-amp as shown in Fig. 1 has been incorporated into the author's transceiver input circuit. It was built on a small section of matrix board using very short leads.

The input impedance being 50 K ohms, the output can be adjusted between 500 ohms and 2 K ohms, R1's value should be selected to match the microphone input impedance of the transceiver, i.e. 600 ohms for the Trio TS-700 series. Note the liberal use of RF decoupling capacitors.

The frequency response of this pre-amp is excellent, being nearly flat from 70 Hz to 20 kHz , the frequency response of the transmissions being controlled by the normal roll-off audio bandpass of the transceiver in use. Local stations say that this preamp gives natural voice characteristics on G3MWV's transmissions using both FM and SSB.

Table of Values

Fig. 1

R1 = see text
$R 2=47 \mathrm{~K}$
$\mathrm{R} 3=100 \mathrm{~K}$
$\mathrm{R} 4, \mathrm{R} 5=330 \mathrm{R}$
$\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 5=1000 \mathrm{pF}$ disc
$\mathrm{C} 2=0.22 \mu \mathrm{~F}$
$\mathrm{C} 4, \mathrm{C} 6=47 \mu \mathrm{~F}$ tant.
$\mathrm{C} 7=10 \mu \mathrm{~F}$ tant.
$\mathrm{RFCl}=5 \mu \mathrm{H}$ VHF choke
$\mathrm{TR} 1=\mathrm{BC} 149$

Fig. 9

An engineer at the BBC's monitoring centre at Caversham checks the tuning on one of the Racal RA-1792 HF receivers used for listening to Polish news broadcasts.

Equipment Review

THE ICOM IC-730 TRANSCEIVER

THE Icom IC-730 HF bands transceiver is primarily aimed at the mobile market in competition with the Yaesu Musen FT-707, reviewed in the November, 1980 issue of the Magazine, and the Trio TS-130S. It can be directly connected to the car battery and for home use, an AC Power Supply is available.

Packaging and Accessories

The equipment received consisted of the transceiver with handheld microphone type IC-HM7, the AC PSU type IC-PS 15 and the desk microphone type IC-SM5. The manufacturer's packings were in the usual cartons with expanded polystyrene supports, these in turn packed in a single carton by Messrs. Thanet Electronics Limited and safely delivered by Securicor Limited.

The Manuals

The transceiver manual is a 29 page, high quality A4 size production, logically starting with the specifications and descriptions of the IC-730's functions and features. The installation section is clearly illustrated with numerous diagrams and the following one describes, in detail, the functions of all the operating controls. The fifth section covers operating instructions and includes diagrams showing how to connect the matching IC2 KL linear amplifier. The circuit description comes next followed by inside views of all the various boards with all the important components and adjustment points identified. There is a section on trouble-shooting followed by a block diagram. The last page shows the numerous accessories that are available, if required.

Icom provide a separate, double-sided, fold-out schematic diägram with all components identified with values and many semi-conductor terminal voltages are indicated. Finally, there is an Al size board layout sheet identifying every component on each of the p.c.b.'s, including pin-out diagrams of the semiconductors. The AC PSU manual is a leaflet containing the specifications, connexion information, schematic and block diagrams.

Descriptions

241 mm . wide by 94 mm . high and 275 mm . deep, with the tuning knob projecting another 25 mm ., the IC-730 is virtually identical in size to the Yaesu FT-707. A retractable foot tilts up the front panel to 42 mm . above the operating surface.

There are 25 selectable functions on the front panel. Below the bright green, six-digit frequency display is the tuning knob. No analogue readout is provided, but the skirt of the tuning knob is divided into 50 divisions. Immediately to the right are six push buttons and from top to bottom these are: - Normal/Split, for either transceive or split frequency working; VFO selection; 1 $\mathrm{kHz}, 100 \mathrm{~Hz}$ and 10 Hz tuning rates, which equate to $100 \mathrm{kHz}, 10$ kHz and 1 kHz frequency change per tuning knob revolution, and the Dial Lock button. This latter disconnects the VFO knob electronically.

On the extreme right the top slide control is the IF Passband Shift. The 12 -way band selector is immediately underneath and is continuously rotatable. At the bottom right is the RIT knob with its selector button to its left. RIT on is indicated by an adjacent LED. To the right of the meter is the function push button. The

S-meter function is automatically selected on receive mode. On transmit mode, either ALC or relative power output can be selected. A red LED comes on when on transmit. To the left of the meter is the Mode switch, immediately above the Power push button. The two buttons to the left of the tuning knob are Frequency Write-in and Memory Set/Recall. The five buttons below these from left to right are:- Transmit/Receive, VOX, Noise Blanker, AGC Time Constant and Preamplifier Selection. At the bottom left is the eight pin Microphone Socket and next to it the Headphone jack socket. The two concentric controls under the buttons are Mike Gain/RF Power and RF Gain/AF Gain.

On the top of the case is a removable access cover under which are six more "pots" and three slide switches. The "pots" are for CW Sidetone Level, VOX Gain, VOX Delay, Anti-VOX, PLL Reference Oscillator fine adjustment, and the SWR Set control. The slide controls cover Speech Compressor on/off, SWR Switching and the selection of Narrow or Wide band noise blanking. The eight sockets on the rear panel are for 13.8 volts DC power input, Antenna, Earth, Key, Accessories, External Loudspeaker, External ALC input and Memory Back-up.

The AC PSU measures 180 mm . wide by 110 mm . high and 290 mm . deep. A tilt-up foot is provided, but no on/off switch, this being accomplished from the transceiver. At the back are the Fuse, Earth terminal and flying leads to the house mains and the IC-730. Power on is indicated by a red LED on the front panel.

Circuit Description

The amateur bands covered are the "old" 3.5 to 28 MHz ones and the three new, WARC ones at 10,18 and 24 MHz . As supplied, the transmit function was disabled on the new bands. The reviewer is always very keen to see how the new generation of receivers and transceivers compare to earlier, valved gear and how the designers cope with the conflicting requirements for high sensitivity, strong signal handling and the "Russian Woodpecker." Icom's approach to the dynamic range problem is to feed the incoming signal straight to the first, double-balanced diode mixer, via one of six Low Pass Filters and one of eight Band Pass Filters. An optional preamplifier stage can be switched in between these two filter networks. The first IF is 39.7315 MHz and there are third overtone crystal filters before and after the 3SK81, dual-gate MOSFET IF amplifier stage. Some 39 MHz signal is taken after the second filter to the noise blanker circuit which comprises amplifying stages, a noise detector and blanker gate control. Its AGC time constant can be selected to deal with either wide or narrow band noise.

The second local oscillator is a VXO. Its frequency is varied through a digital-to-analogue converter by the output signals from a Central Processing Unit - CPU - between 30.71901 and 30.72000 MHz in 10 Hz steps, and between 30.7181 and 30.7200 MHz in 100 Hz steps. The resulting second IF is 9.0115 MHz and this signal is fed through the AM crystal filter. Optional SSB and narrow CW filters can be fitted, selectable by the front panel mode switch. They were fitted in the review model. The 2nd IF signal is amplified before being fed to the IF Passband Shift circuit, where it is mixed with a 9.4665 MHz LO to give a 455 kHz signal. This is then routed to either a ceramic filter for AM reception, or to a mechanical filter for SSB and CW modes. The 455 kHz signal is re-mixed with the 9.4665 MHz LO to get back again to 9.0115 MHz . If shift of plus/minus 1.5 kHz is achieved by varying the frequency of the 9.4665 MHz LO. When the FL-30 crystal filter is fitted, the IF Shift becomes a Pass Band Tuning system.

SSB and CW signals are demodulated in a product detector IC, using separate crystal oscillators for USB, LSB and CW modes. AM detection is by diode rectification. The AF signal is routed through an active Low Pass Filter to cut out unnecessary higher audio frequencies. AGC voltage is derived from part of the IF signal which is rectified, amplified and applied to the 39 and 9 MHz IF stages. Short and long time constants can be selected.
The transmitting chain commences with the HM-7, hand-held dynamic microphone which includes a single stage amplifier to
provide the required 120 mV AF to the IC-730's speech amplifier IC. This IC incorporates the speech processor circuitry. The output is fed to the balanced modulator - alias product detector in receive mode - to produce a 9 MHz DSB, suppressed carrier signal in SSB mode. On AM and CW, the BM is unbalanced. The microphone output is also applied to the VOX stages. Semi-break-in CW operation is achieved through the VOX control stage and an 800 Hz sidetone signal is fed to the receiver AF output IC for monitoring purposes.

The whole point of a transceiver is to use as many stages as possible in both receive and transmit functions, so much of the $T x$ chain of the IC-730 is the reverse of the Rx one. In Tx mode, a buffer amplifier is introduced between the $9.4665 / 9.0115 \mathrm{MHz}$ mixer and the crystal filter in the 9.0115 MHz IF chain, this buffer being keyed on CW by a switching transistor. Another buffer amplifier is used in the 39 MHz IF and this is ALC controlled. The 1st Rx DBM and BPFs are used in the Tx chain, the signal then being fed to the broadband PA stages. The output transistors are a pair of 2SC2097s in push-pull, with negative feedback. Any undue rise in the temperature of these is detected by a thermal switch which controls the speed of the cooling fan. The VSWR is detected and, if high, the ALC voltage is increased to effectively reduce power to a safe dissipation level. The panel meter can be switched to read either relative power output or ALC level, from the front panel, or VSWR by means of slide switch below the top access cover on the case. No means of measuring the final transistors' collector voltage or current is provided.

The CPU IC in the Logic Module is a μ PD650, 4-bit microcomputer and processes date received from the up/down signal detection control, dial clock control, tuning rate and input/output control circuits. A photochopper, directly connected to the tuning knob, generates the dial clock signals. The CPU puts out the necessary output signals to control the tuning steps, digital display, operating frequency etc., from data received from the function switches.

The Phase Locked Loop LO operates at 13.667 MHz and is tripled twice to 123 MHz . The VCO circuit covers 132 to 139 MHz , the difference mixing product being $9-16 \mathrm{MHz}$. This signal is fed to the programmable divider in the TC9125 PLL IC and
divided down to 10 kHz and compared with the 10 kHz signal derived from the 9 MHz crystal oscillator. The progammable divider is controlled by the frequency data from the CPU. The VCO output is fed to a divide-by-ten circuit to result in a 13.2 to 13.9 MHz signal in 1 kHz steps. RIT is achieved by VXO control of the 13.667 MHz CO by a varactor diode.

The IC-730 incorporates a Premix Unit in which the 13.2 to 13.9 MHz signal from the PLL unit is mixed with a further LO signal selected by the band switch, this mixer providing the appropriate 1 st LO frequency. All signal switching is done with 1SS53 diodes.

Construction

The IC-730 is another masterpiece of miniaturisation. The top and bottom U-shaped covers are removed by undoing eight and four cross-head screws respectively. Underneath the top cover are the Main Unit and Detector Unit p.c.b.'s. This "layer" is on a tray that can be hinged open to gain access to the Logic Unit, Display Board, 2nd IF and 2nd LO Unit boards. Underneath the bottom cover are the Mike, Sensor, RIT, PLL, Premix Unit and BPF Unit boards. The RF Unit board is on the left hand side, viewed from the top front. Access to the LPF, Accessory and PA Units is gained by undoing another eight screws.

The p.c.b.'s are of SRBP material, rather than fibreglass. All components are clearly identified by white lettering. Inter-board connexions are by harnesses and numerous plugs and sockets. The Accessory socket on the rear panel is a 24 -pin one but with only 11 active pins. It appears to be of the same pattern as Maplin Electronic Supplies Ltd's "Multicon" range, so more poles could be fitted, if required, and a mating plug and pins purchased.

Performance

The receiving function was first put through its paces. The S-meter scale is calibrated to 59 , then plus 20,40 and 60 dB . Tests with the Heath IG-42 signal generator revealed an exceptionally constant sensitivity over the eight amateur bands. In the AM mode, without the preamplifier, S 9 was indicated when a $30 \mu \mathrm{~V}$ signal, plus/minus one microvolt, was applied to the Antenna socket. In SSB mode S9 required another 4 to $6 \mu \mathrm{~V}$. Sensitivity across each band was absolutely constant. On the 24.5 MHz

Top view of the Icom IC-730transceiver showing the Main Unit p.c.b. which accommodates the Tx mike amplifier, VOX and CW sidetone stages, the Rx AF stages and the common IF strip. At the rear left is the 455 kHz mechanical filter for SSB. The six "pots" for VOX, etc., are accessible through a trap door in the top of the case. The Detector Unit p.c.b. occupies the right-hand third of the area and the vacant space at the front, left corner is for the optional frequency calibrator marker. The RF Unit is mounted vertically on the left side and includes the $\mathbf{R x}$ preamplifier, first mixer and 39.7315 MHz first IF stages.

Underneath the Main Unit p.c.b. are the Logic Unit board, nearest the bottom of the picture; and the Second IF Unit p.c.b. with spaces for the optional SSB Passband Tuning and Narrow CW filters (added later) to the right rear. The Second Local Oscillator board is under the screening box at the left.

band, $30 \mu \mathrm{~V}$ gave an S 9 indication, $180 \mu \mathrm{~V}$ S $9+20 \mathrm{~dB}, 910 \mu \mathrm{~V}$ $\mathrm{S} 9+40 \mathrm{~dB}$ and 15 mV S $9+60 \mathrm{~dB}$. This corresponds to steps of $15.6,14.1$ and 24.3 dB respectively. The gain of the preamplifier stage averaged out at 9.5 dB .

With so many oscillators in operation, it would be a miracle not to find a few 'birdies" in some bands, so a careful tuning session was undertaken across all, eleven bands, using a screened dummy load in place of an antenna. No spurii were noticed on the 10 and 24.5 MHz bands. A total of sixteen were discovered in the others, four of which were not in U.K. amateur allocations, though. Most of these were quite insignificant in level and would usually be masked by general band noise and traffic.

The antenna system used was a makeshift contraption made from half the driven element of a tri-band beam, set vertically about five feet over the lawn and with three sets of radials for the 14,21 and 28 MHz bands. This was matched through an $L A R$ Modules Limited "HF Omni-Match" ATU. This set up could also be tuned up on the new 10 MHz band with surprisingly good results. The first impression when using the 10 Hz tuning rate was one of poor selectivity until it was realised that one turn of the VFO knob was only a change of one kilohertz. Some weeks after receiving the transceiver, the narrow CW and passband tuning filters were added. The former has a -6 dB bandwidth of 600 Hz and a $6 / 60 \mathrm{~dB}$ shape factor of 2.5 and is an essential accessory for serious CW operation in crowded bands.
There are still a number of American amateurs using AM in the 29 MHz band and these came in very well on the AM detector. Also, FM signals can be acceptably slope-detected. The speech quality on both AM and SSB was remarkably good from the little loudspeaker in the lid of the IC-730. The volume was quite adequate and the AF stage can deliver two watts to a bigger, external 'speaker for car use, if necessary.

There are two VFOs selected by a front panel push button and the tuning range per band is 700 kHz . Split frequency operation anywhere in any one band is possible by use of the NOR/SPT
button. In the SPT position, with the 28.5 MHz band selected, for example, one could transmit on VFO B on 28.405 MHz and listen on VFO A on 29.095 MHz . Pushing the VFO Select button would reverse this. The frequency of the unused VFO remains fixed at whatever frequency it was on before switching to the other one. This is a very useful feature when one wants to keep monitoring a particular frequency from time to time. VFO A has one memory. The particular frequency is first dialled up and then the MEMO button pushed in. The frequency is written in by depressing the WRITE button, then the MEMO button can be released. A different frequency can be retained in the memory on each band. The manual states that the RIT control has a range of plus/minus 800 Hz but it was found to be plus $/$ minus 1.7 kHz , which is no bad thing.

The noise blanker dealt very effectively with ignition-type pulse interference and with some other kinds of electrical QRM. In many cases, an S9 noise level, which completely masked weak signals, was virtually wiped out by use of the noise blanker. The manual suggests that the noise blanker in wideband mode, ". . . will work for woodpecker's noise . ..". When these OTHR pulses were actually in the band being used, some 30 dB reduction was obtained, making an otherwise impossible situation, tolerable. However, these pulses can be heard as a background over large parts of the band at a lower level and the blanker seemed to have little effect on these. It is possible for very strong signals to operate the noise blanker themselves, when wide bandwidth is used, causing distortion. However, if a signal is that strong, the blanker need not be used.

As supplied, the IC-730 has an IF Shift control. This moves the entire passband up or down about the nominal IF. It is very useful in removing splatter from a signal on one side, but you can bring up similar interference on the other side. With the FL-30 filter installed, the IF Shift becomes Pass Band Tuning in which the skirt of the filter nearest the BFO frequency stays where it is, and the PBT control narrows the actual bandwidth continuously by up to 800 Hz .

Bottom view. The boards from left to right are the Bandpass Filter Unit, Premix Unit and PLL Unit, shown here with the clip-on screening covers removed. The screw for altering the "feel" of the tuning knob can be seen on the bottom below the knob and can be accessed through a hole in the bottom cover of the case.

The specification states that on SSB and CW , the sensitivity is better than $0.3 \mu \mathrm{~V}$ for a $10 \mathrm{~dB} /(\mathrm{S}+\mathrm{N}) / \mathrm{N}$ ratio. With a 2.4 kHz bandwidth, this equates to a noise figure of about 6 dB which is considerably better than what is generally deemed to be usable on the HF bands. Dynamic range is also very important and can be calculated knowing the intercept point and receiver noise floor figures. The IP of the first mixer in the IC-730 is +18 dBm . The noise floor. N_{o}, without the preamplifier and assuming Icom's sensitivity figure to refer to the with-preamp. case, would be -124 dBm . The spurious-free dynamic range, DR, can be calculated from $\mathrm{DR}=2 / 3\left(\mathrm{IP}-\mathrm{N}_{\mathrm{o}}\right)$ and yields a figure of 94.7 dB . The other important parameter is the maximum input power, Pi , which will produce 3 rd order IMD products just equal to the noise level, this being given by $P_{i}=1 / 3\left(21 P+N_{o}\right)$. In this case, the figure is -29.3 dBm , or approximately $750 \mu \mathrm{~V}$ across 50 ohms. In the model tested, $750 \mu \mathrm{~V}$ signal would be indicated by $\mathrm{S} 9+40 \mathrm{~dB}$ on the S-meter scale, to put matters into perspective. Calculations apart, what really counts is how the IC-730's Rx performed in the role of amateur bands receiver and this can be summed up in one word, "Impressively."

Next the transmitting function was investigated, first tests being to measure the power output on the various bands. For these tests, a 50 ohms dummy load was used but, although the specified output impedance is given as 50 ohms, the only frequency where a near 1:1 VSWR was indicated between transceiver and load was 3.4 MHz . Accordingly, the ATU was used. On each of the eight bands, the power output was constant over the whole of the particular band and the results are shown in Table 1. The loss through the ATU at 3.4 MHz was 6%, so it may be assumed that the actual power outputs are some 6% higher than indicated.

The claimed carrier suppression in SSB mode is given as, "More than 50 dB below peak output," and as supplied, this was
achieved. Judicious twiddling of the two carrier balance controls inside improved this to -62 dB in the USB mode at the expense of a slight degradation on LSB. This latter figure represents a mere 63 micro watts.

The VOX circuits were very easy to set up following the instructions in the manual. On both SSB and CW, operation was very clean. Tests with both local and distant stations verified that the AF speech processor very effectively increased the talk power without introducing distortion. As observed on the station monitoring oscilloscope, the fan noise did come up somewhat in pauses in the speech, and the increase in average signal was confirmed. The CW keying wave form was text book stuff and quite click and thump free. On another station receiver, the first indication of a signal was when one actually tuned it in; there just were not any clicks to indicate its presence way out of the passband.

The RF Power control was very smooth and gave a 10 dB power reduction in perfect agreement with the 10 to 100 watts figures quoted.

Although now primarily a VHF operator, the reviewer has always been a keen DX hunter on the HF bands, most of the available countries having been long since confirmed. Consequently new ones are hard to find and likely to be DXpeditions which thousands are also trying to work. With the rather crude antenna system described, however, a couple of welcome, all-time new countries were worked on 20 m . CW: ZK2AD, who gave a generous 599 report from Niue, and ZL4PO/C on Chatham Is., who offered 559. The respective pileups were cracked after no more than half a dozen calls, so there is no doubt that the IC-730 delivers the goods.

Although it can be of little serious interest for HF band users, AM mode is included for transmission as well as reception. The manual does not give any proper guidance on setting up the

Table 1. CW power output from the IC-730 into a 50 ohms dummy load. For matching purposes, an aerial tuning unit was used which introduced a loss of about 6% at 3.4 $\mathbf{M H z}$, so the above figures are a little conservative.

Frequency MHz	Power output Watts
3.65	93
7.05	89
10.12	68
14.17	97
18.12	82
21.22	104
24.94	131
28.60	115

IC-730 for this transmission mode. Without a 'scope, it would be difficult to get it right, but once done, the picture revealed a perfect AM signal, more than adequate to tell the illegal AM CB-ers to clear off the lower end of the 10 m . band!

Use with a VHF Transverter

Icom provide an accessory, the IC-EX205 TRV Unit, enabling the IC-730 to be matched to a VHF or UHF transverter requiring a 28 to 30 MHz driving source. All the accessories come with a little instruction manual covering installation and, where necessary, setting up. The descriptions and illustrations are quite clear but installation of the EX 205 proved to be a very fiddly job as one has to delve inside the LPF Unit. All it is is a simple, two-pole changeover relay and a few plugs and sockets. When the transceiver is switched to the 10 m bands, and pins 10 and 11 shorted together at the accessory socket, the relay is activated and re-routes the antenna lead from the SO-239 socket to the ALC socket instead, at the same time disabling the main PA stage.

The low level 28 MHz output is just 150 mV across 50 ohms, which is half a milliwatt and insufficient for any popular transverter known to this reviewer. The Microwave Modules range can be quite easily modified to work from this tiny signal, however, but those with "Europa" type transverters are faced with the problem of getting over 20 dB more gain. A possible solution is to run the IC-730 at its lowest, 10 watts level and feed the Tx output through a 20 dB attenuator. A changeover relay is needed to route the IC-730's antenna socket to either the transverter's Rx output, or its Tx input through the attenuator. If 12 v . relays are used for this and for the aerial change over, they can be powered from the 13.8 v . at the accessory socket. This socket also has relay contacts brought out.

The transceiver was used with a Datong 2 m . converter, as reviewed in the August, 1981 issue of the Magazine and, with proper attention to gain control settings, proved to be a near "bomb-proof" combination. It is intended to box up the interface unit and use the IC-730 Datong converter/Europa transverter combination as the main VHF station.

Power Supply

The IC-PS15 AC PSU was originally intended for the earlier IC-720 transceiver which it matches in height. It accepts mains voltages between 100 and 240 at 50 or 60 Hz and uses a large, standard 550 VA transformer with two, tapped 117 v . primaries. The entire supply current is regulated, the output voltage being set by a potentiometer inside the case. The pass transistors are two 2SD797s in parallel mounted on a large heatsink which forms the rear end of the unit. Regulation is excellent with only a 50 mV change in output voltage between receive current and full power drain on transmit; a regulation of 0.36%.

Conclusions

One minor disadvantage with this transceiver, controlled as it is by a microcomputer, is that on switching off the power, all the memories are lost. For example, if the set were tuned to 14.285 MHz and switched off, when switched on again the display would read 14.089 .5 if on USB mode. In the mobile installation, this can be overcome by connecting the car battery to the Memory Back-up terminal on the rear panel when frequencies in VFOs A and B, and the Memory will be retained, even with the set switched off. For base station use, Icom offer the BC-10A accessory, which is powered from the house mains. The transmit button is quite close to the power switch and the reviewer has switched the whole lot off once or twice, instead of switching to transmit, thus losing all the frequencies. That apart, the IC-730 is very easy to drive.

Icom Inc. obviously have very innovative designers who seem to think their designs through more thoroughly than'do some of their rivals. Typical examples are the transverter drive facility, and provisions for operating the matching IC-2KL amplifier and ICAT500 Automatic Antenna Tuning Unit. The IC-730 has an impressive specification and excellent all round performance, so can be throughly recommended both as a home station and as a compact mobile transceiver.
N.A.S.F.

THE 'TRUE' MEASUREMENT OF MORSE SPEED - WORDS PER MINUTE, OR DOTS PER SECOND?

I. T. WOOD, G4MCN

THERE is an appreciable difference in the speed at which randomly generated letters and plain text messages are sent if the unit of measurement is 'words per minute'. For example, it is necessary to receive random five letter groups at least at ' 15 w.p.m.' in order to take plain English text at ' 12
w.p.m.' Conversely, it is necessary to send random groups at only ' 10 w.p.m.' in order to acquire the correct pace for sending plain language at ' $12 \mathrm{w} . \mathrm{p} . \mathrm{m}$.' The reason for this difference is due to the decidedly non-equal use of each letter of the alphabet made by the English language. The unit of measurement 'words per minute' is ambiguous; a more appropriate unit would be 'dots per second'. In perfectly spaced morse a dot length of 0.1 seconds, or 5 dots per second, is equivalent to a plain language transmission at 12 w.p.m. and also satisfies the morse test requirement to send fifty numerals in one-and-a-half minutes.

Whilst preparing for the morse test for radio amateurs by listening to local and foreign slow morse transmissions and also to computer generated signals, appreciable differences have been noted between passages sent at what purport to be the required twelve words per minute.

Randomly generated characters have the advantage that the reader cannot anticipate subsequent letters. However, after some time training the ear to coded information, the listener is likely to have difficulty when interpreting plain language text. An initial part of this problem is undoubtedly due to his allowing the mind

The dot lengths of the letters of the alphabet

Fig. $1 a$

Illustration of the number of dof units in the letters. inter-letter and inter-word spacing of the phrase 'Morse Code'

Fig. 1 b
to read the letters he has written rather than copy what is coming. Less obviously, randomly generated character groups tend to have a more complex dit-dah structure than plain language words and so allow the mind a longer time to interpret them. For example, in perfectly spaced morse - in which a dah is equal to three dots, the inter dit-dah space is one dot, inter-letter spaces are equal to three dots, and inter-word spaces are seven dots long the random letter group FXZKC has a total length of 63 dot units; the word "teeth"' has the same number of letters but is only 27 dot units long. Is this not untypical example, if the speed of transmission is measured in characters per second ($12 \mathrm{w} . \mathrm{p} . \mathrm{m}$. is equal to 60 characters per second) it might appear that in order to cram five random letters into five seconds it would be necessary to more than double the speed of dot transmission relative to that needed to send the word "teeth". Alternatively, if the dot speed is kept constant, the random combination is sent over a time 63/27 longer than the plain word, so allowing the mind considerably more time to transform the sound into the characters.

The average dot length of twelve groups of five randomly generated characters is easily calculated. If all twenty-six letters of the alphabet are analysed into their 'dot lengths', for example:

$$
A^{\prime}(.-) \text { is } 1+1+3=5 \text { dots long, and }
$$

' Z ' $(--\ldots)$ is $3+1+3+1+1+1+1=11$ dots long,
then since random generation of letters implies by definition that each letter has an equiprobable chance of being selected, the average random letter will be 8.23 dots long. The average text of twelve five random letter groups will thus be
$12 \times 5 \times 8.23+12 \times 4 \times 3+11 \times 7=715$ dots long, allowing for the correct inter-letter and inter-group spaces. Transmission of this 60 letter code in one minute will result from a dot length of 0.084 seconds. The average length of a random letter is thus 0.69 seconds (8.23×0.84).

It is well known, and used by Morse when designing his code, that the English language does not use the letters of the alphabet with equal preference and that the letters $\mathrm{E}, \mathrm{T}, \mathrm{A}, \mathrm{O}, \mathrm{N}$ are the most frequently occurring - four of these letters have the simplest dotdash structures. A frequency count was carried out on an 1800 character extract from a narrative section of an English novel and the two letters E and T , both single symbol morse characters, were found to account for almost one quarter of the total of 1800 letters in the sample. Three quarters of this total comprised the ten letters E,T,A,O,S,N,H,I,R,D which occurred 242, 171, 149, 122, 116, 111,88 and 77 times respectively. All these letters have relatively simple dot-dash structures. By assigning the dot length appropriate to each letter in the sample it is found that the average length of a letter in a plain language text is 6.02 dot units long. Hence, allowing for inter-letter and inter-word spaces, a sentence comprising twelve plain language five letter words will have a length of
$12 \times 5 \times 6.02+12 \times 4 \times 3+11 \times 7=582$ dot units.
When these sixty letters are sent in one minute the corresponding length of a dot is 0.103 seconds; the average length of a plain text letter is then 0.62 seconds (6.02×0.103).

A similar analysis of the numerals shows that in order to send ten groups of five digits in one-and-a-half minutes the length of the dot unit must be 0.098 seconds.

An appropriate time setting for the length of a dot when preparing for the Post Office morse test is thus 0.1 second. This setting will have a true rate of 5 dots per second (five dits and five spaces) and is equivalent to plain text sent at $12 \mathrm{w} . \mathrm{p} . \mathrm{m}$. , this rate also corresponds to the required speed for numerals. It is important to note that this dot rate will generate only 50 random letters per minute; in such groups there will be many of the more complex morse characters than are found in plain text and also a dearth of short bursts of E's and T's that occur so often in plain language. Hence it is easier to read than plain language and in order to receive text at 12 w.p.m. it is necessary to be able to interpret random letters sent at 15 w.p.m. Conversely, it is necessary to send random letter groups at only 10 w.p.m. (50 random letters per minute) in order to achieve the same pace of sending that is equal to plain language of 12 w.p.m.

In contrast, a test sentence such as "she has sixteen hissing geese" when sent at the correct pace, with a dot length of 0.1 second, represents a character speed - over that phrase - of almost $16 \mathrm{w} . \mathrm{p} . \mathrm{m}$. A most useful learning exercise is to acquire a computer generated tape in which only characters from the ten most frequently occurring letters are randomly selected.

Whilst the 'words per minute' unit of measurement has the virtue of apparent simplicity, it is obviously ambiguous and a more appropriate unit of measurement would relate transmission speed to 'dots per second'.

"BEN"-THE LITTLE TRANSCEIVER FOR TEN, PART II

CONCLUDING THIS LOW-COST TRANSCEIVER FOR THE NEW 10 MHZ BAND WITH A DESCRIPTION OF THE TRANSMITTER SECTION

REV. G. C. DOBBS, G3RJV

IWONDER how many radio amateurs are aware that the word "amateur"' comes from the same Latin root as the French word "amour". Sadly in popular usage "amateur" often seems to imply someone who is not so skilled as a professional exponent of the particular subject. What it really means is someone who does something for the love of it. Obviously there must be radio amateurs who love their expensive commercial equipment; they possibly polish it lovingly and display it with pride, inviting their friends to view the box they use "to talk to the world". But it is the home constructor who has the real love affair with his equipment. He builds up the relationship slowly with soldering iron and wire cutters, nurses it through teething troubles, is patient about its little shortcomings. The homemade rig is his friend: it might not be beautiful, but he loves it.

Sorry . . . I was getting carried away. Back to Ben. The first part of this article (S.W.M., Jan 1982) described the project in outline and gave details of the receiver portion of this project. The transceiver is a superhet design making use of the inexpensive TV colour burst crystal with a frequency of 4433 kHz as an intermediate frequency, and is well suited to be a first superhet transceiver project for a constructor. The transmit circuits are relatively simple and are shown in the circuit diagrams of Figs. 1,2 and 3.

The Circuits

Fig. 1 shows the transmit mixer circuit. The VFO which is common to both transmitter and receiver sections, was described in Part I. It has a frequency coverage of 5.667 MHz to 5.717 MHz , that is 4433 kHz below the desired band range. Hence the transmitter input has to be mixed with a 4433 kHz signal so that the sum of this signal and the VFO signal produces a transmitter input on the band. TR 1 is a simple crystal oscillator which follows the design of the oscillator in the receiver BFO . L 1 and C 2 form a tuned circuit at 4433 kHz giving the drain of TR1 an RF load. CT1 is included across the 4433 kHz crystal, X1, so that it can be pulled slightly to provide a matching transmit and receiver

Fig. 1 TRANSMIT MIXER CIRCUIT
frequency for correct transceive operation. The mixing is performed by a dual gate MOSFET, TR2, which is one of the cheap equivalents to the 40673 sold by J. Birkett of Lincoln. The output from the crystal oscillator is coupled through C3 into gate 1 , and the VFO signal is fed into gate 2 . The resultant outputs appear at the drain of the dual gate MOSFET and the sum of the two signals, on the required band, is tuned by L2 and C5. A small winding on L2 couples the signal to the main transmit board.

The main transmit board circuit is shown in Fig. 2. It has three stages: a pre-driver, a driver and the power amplifier. The two driving stages are tuned and both are keyed. This may seem a fussy circuit for a simple QRP transmitter, the transmit section with the devices recommended here is capable of some 3 watts DC input power, but even in the simplest transmitters sometimes "belt and braces'" can be helpful. Both driver stages work in Class-A and are based upon a circuit by Wes Hayward, W7ZOI, in the Ham Radio for November, 1974. It is useful to have an extra stage thus reducing the required gain per stage as an aid to stability. Also Class-A stages have the advantage of maintaining linearity and although this is a CW-only transmitter, spurious components in the signal are greatly reduced in a linear circuit. Filtering the output of the mixer with a single tuned circuit (L2/C5) is technology at its lowest! So the added protection of two linear driver stages is worthwhile and tuning their outputs, as in this circuit, is also wise.

Tuning both driver stages and having a fixed pi-network ($\mathrm{L} 3 / \mathrm{C} 7 / \mathrm{C} 8$) at the output of the PA means that the bandwidth of this amplifier chain is somewhat restricted, but in a band 500 kHz wide this is hardly a problem. In practice the difference in output over the entire band was hardly measurable. The PA is delightfully simple, a single transistor, TR3, with an RF choke load feeding a fixed pi-network to give a 50 ohms output. Quite a selection of transistors was tried for TR3, the final choice falling

to an unknown junk box type; a fuller description of the devices suitable for TR3 is given later in the section on building the transmit board.

Although it would be simpler to have manual switching from transmit to receive on the transceiver, semi-break-in is so easy to add that it was used for Ben. Full break-in with instantaneous change over, and "listening between the dits" is obviously better, but full break-in circuits to avoid PA stage damage and nasty plops in the audio involves complex sequencing which can be a minefield to the unwary. The Change-Over Circuit of Fig. 3 is one that I have used many times and has appeared over and over again in QRP transmitter circuits. TR1 and TR2 are a couple of pnp transistors used as DC switches controlled by the key through R1 and R2; C1, 2 and 3 help to provide a little shaping to the keying to give a pleasing transmitted note. TR1 gives the keyed 12 volts for the transmit driver stages. TR2 switches TR3, which is a relay driver. TR3 has a time delay circuit in its base, formed by R3, RV1 and C 4 . The result is that when the key is pressed the relay switches in but on release there is a slight delay before it falls back again. This gives a small time hold to prevent the relay clattering in and out with the keying.

RV1 is adjusted to a desired time delay which ensures that when the operator stops keying at his usual CW speed, the change-over can occur, as the relay falls out. For those concerned about the number of diodes around TR3 (D2, 3 and 4) the facetious answer is "why not . . . they are cheap enough." The real answer is that D2 acts as a diode clamp to reduce spikes as the relay field collapses. Remember the induction coil at school? Well a similar effect when the field in the relay drops can give hefty voltage spikes which could damage TR3, but D3 holds these down to some 0.7 volts. Diodes D3 and D4 do a sort of zener diode job and provide a cut off voltage of some 1.4 volts for TR3. This reduces the static current in TR3 which if too high could cause the relay to drop out when the bias decays across the timing circuit. So at 6 p for the three, they do a good job!

Fig. 4 TRANSMIT MIXER LAYOUT (actual size)

Table of Values
Fig. 1
$R 1=47 \mathrm{~K}$
$\mathrm{C} 2=450 \mathrm{pF}$
$\mathrm{R} 2=56 \mathrm{R}$
$\mathrm{C} 3=100 \mathrm{pF}$
$\mathrm{R} 3=150 \mathrm{~K}$
$\mathrm{C} 5=68 \mathrm{pF}$
CT1 $=80 \mathrm{pF}$ trimmer

TR1 $=2$ N3819
$\mathrm{TR} 2=40673$
R5 $=390 \mathrm{R}$

Coil data: $\mathrm{L} 1=25 \mathrm{t}, 30 \mathrm{~s} . w . g . ; \mathrm{L} 2=25 \mathrm{t}, 30 \mathrm{~s} . \mathrm{w} . g$. (secondary $=4 \mathrm{t}$). Both wound on $3 / 16^{\prime \prime}$ former with core.

Fig. 2

R1, R2, R6 = 220R
R3, R7 $=1 \mathrm{~K}$
R4, R5 $=100 \mathrm{R}$
$R 8=47 R$
$R 9=56 R$
R10 $=39 \mathrm{R}$
$\mathrm{Cl}, \mathrm{C} 3, \mathrm{C} 6=0.01 \mu \mathrm{~F}$
$\mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5=0.1 \mu \mathrm{~F}$
$\mathrm{C} 7, \mathrm{C} 8=310 \mathrm{pF}$
CT1, CT2 $=3-60 \mathrm{pF}$
Mullard trimmers
TR1 $=2 \mathrm{~N} 3904$
TR2 $=$ BFY51
TR3 $=$ see text
$\mathrm{RFCl}=8 \mathrm{t}$ on a ferrite bead

Coil data: $\mathrm{L} 1=22 \mathrm{t}, 22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. centre tapped (secondary $=2 \mathrm{t}, 22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. PVC covered). L2 $=22$ t, 22 s.w.g. (secondary $=2 t, 22$ s.w.g. PVC covered). L3 $=13 \mathrm{t}, 22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. Note: All coils wound on T-50-6 cores.

Fig. 3
$\mathrm{C} 4=68 \mu \mathrm{~F}, 16 \mathrm{v}$. tant.
$\mathrm{R} 1, \mathrm{R} 2=2 \mathrm{~K} 2$
$\mathrm{R} 3=10 \mathrm{~K}$
RV1 $=10 \mathrm{~K}$ preset
D1 to D4 $=1$ N914
TR1,TR2 = BCY31 (2N2906
$\mathrm{C} 1, \mathrm{C} 2=0.01 \mu \mathrm{~F}$
$\mathrm{C} 3=10 \mathrm{nF}$
TR3 $=$ BFY51

Fig. 8
$\mathrm{Cl}=100 \mathrm{pF} . \mathrm{C} 2=0.01 \mu \mathrm{~F} . \mathrm{D} 1, \mathrm{D} 2=$ germanium diode $(e . g .1 \mathrm{~N} 34 \mathrm{~A})$

Construction and Testing

The construction of the transmit circuits followed the principles used in the receive sections of Ben. Build a little at a time and test as the construction proceeds. Four boards were built: a mixer board, a transmit board, a change-over board and a small board for the pi-network circuit. The prototype Ben used home produced printed circuit boards, which are very simple to make, see Part I. However it is quite possible to build any of the circuits on perforated board or even plain insulated board drilled to fit the components with soldered wire interconnections. The layout obviously depends upon the physical size of the available components, the prototype layouts are shown in Figs. 4 to 6. The important thing in a simple project like Ben is to avoid spending money. Make use of what is available cheaply, or better still for nothing. Then amend the layout to suit the components to hand.

The layout for the Transmit Mixer Board is shown in Fig. 4. The crystal oscillator stage TR1, which is as for the receiver BFO

Fig. 5 TRANSMIT BOARD LAYOUT (actual size).
circuit described in the first part of this article, should be built first. The actual layout for the prototype used a small HC25U crystal which came from a scrap TV chassis, but there is room on the board to use the more common HC6U mounting for the surplus TV 4433 kHz crystals. CT1 is a postage stamp type trimmer and such trimmers have variation in physical size, so CT1 may determine if the board size has to be increased. L1 is wound on a $3 / 16^{\prime \prime}$ diameter former with a slug mounted in a small aluminium can. These are sold cheaply as a surplus item by J. Birkett of Lincoln. The capacitor C2 which forms the tuned circuit $\mathrm{C} 2 / \mathrm{Ll}$ is mounted under the board across the pins of the coil former bearing the winding of L1.

The oscillator circuit should be built as far as C3 and then tested, to follow the "build a bit - test a bit"' philosophy. The output of the oscillator can now be tested. It is possible to listen to the output on a receiver which tunes 4433 kHz , or for the fortunate it can be checked with a frequency counter. The tuned circuit L1/C2 needs to be peaked to the output frequency, and the easiest way to do this is to use a diode RF probe. This is a simple piece of test equipment which will be used to test the transmitter during construction; the circuit is shown in Fig. 8. The probe feeds a multimeter set on a low voltage scale, and a scale should be chosen which gives an adequate reading. If no voltage scale is low enough a low current reading scale can be used. The probe should be built using short connections either with stiff wire or on a small tag board; a screened lead to the input side is also useful. Connect the probe to the output of the oscillator, between the output side of C3 and earth. The core of L1 is then adjusted to give a peak in the output recorded on the meter.

The mixer stage TR2 can now be built. L2 is wound on a similar former to that used for Ll and the 40673 dual gate MOSFET can be the inexpensive equivalent sold by J. Birkett. Once again the tuned circuit capacitor, C 5 , is mounted under the coil on the board reverse side. Take care to ensure the correct polarity for the 40673. A lot has been said about the delicate nature of dual gate

Fig. 6 CHANGEOVER CIRCUIT BOARD (actual sizel.

MOSFETs and indeed the earlier types were necrophilic. The 40673 is diode protected and I have connected them wrongly by mistake but the device has lived, though I don't advise you test this statement.
When completed the whole mixer board can be tested. For such a test the VFO from the receiver section, described in Part I of the article, is required. This is connected via a screened lead to the board as shown in Fig. 4. The sum of the two frequencies, from the VFO and the crystal oscillator, has to be tuned as an output by L2/C5. This has the potential problem that the second harmonic of the VFO is close to the required sum of these frequencies on 10.1 MHz. In practice this proved no real problem and in fact I could not find the second harmonic of the VFO as an output when tuning L2. However it is worthwhile identifying that the output being tuned is the required one in the 10.1 to 10.15 MHz range. This can be done by listening on a receiver which covers these frequencies or using a frequency counter. Once again the tuned circuit is aligned with the diode RF probe. This is connected across the small winding which accepts the output from L2. There should be a considerable peak as L2 is tuned, with its core, onto frequency. We now have an output on the required band, and the transmit board will amplify this to a usable level.
The layout for the transmit board is shown in Fig. 5. This layout is quite compact as the boards were required to fit into an old case I used to house the prototype. Cases, boxes and hardware in general can be the most expensive items when building radio equipment. So don't hesitate to use old cases and boxes. The prototype Ben was built in a rather neat case, the front of which was peppered with holes. Just put on a new front panel, redrill and they are as good as new. It may be that constructors with a little more space to play with may want to make the transmit board a

Fig. 7 TRANSMITTER FILTER BOARD
little larger, in which case the general layout will still serve-just stretch it out a little. Naturally with RF circuits the board should be reasonably compact to reduce lead lengths and interstage distances. It will be noticed that toroid cores are used for the coils in the transmit circuitry. For transmit circuits these are a better bet having close fields which reduce radiation problems from the windings. I tend to use these formers (obtainable from TMP Electronics) for transmit circuitry, but they are not cheap so the surplus canned formers described in the mixer board section replace the toroids for receiver and less critical circuits. The toroid cores require a variable capacitance to alter the tuned circuit, so CT1 and CT2 are used to tune the outputs of the first two stages of the transmit board.
The transmit board should be built a section at a time, beginning with the pre-driver stage TR1 as far as the output winding on L1. When this section has been completed the probe is connected across the secondary winding of L1 and the output peaked with CT1. The stage around TR2 can now be built and the output from L2 peaked with the RF probe. The PA stage TR3 is relatively simple and should give no trouble. There is considerable folk lore about transistor PAs, regarding their ability to destroy transistors at will and oscillate cunningly at very high frequencies. With a little care this circuit should do neither. Build it carefully and it is as tame as a Church of England vicar . . . what am I saying!

A word about component choices may be helpful. The transistor used for TR3, which is a QRP output stage, can be chosen from a variety of devices. The final choice for the prototype was an unknown computer switching transistor which gave some 2 watts of RF output. This is of little help to the general constructor so a transistor holder was wired into the TR3 position and a range of transistors was tried. The results below refer to actual RF output measured with a homemade RF meter and the DC input power can be expected to be about twice the value quoted.

Transistors which gave 1.5 watts of RF output or more include: 2N3553, 2N4427, BLY33, BSX61, 2N5108. Transistors which gave 1 to 1.5 watts of RF output include: BFY51, 2N3866, 2N2102 and some examples of the 2 N 3053 .
The RF Choke RFC 1 in the collector of TR3 is homemade from 8 turns of 30 s.w.g. enamelled wire on a ferrite bead. TR3 requires a heat sink, a suitable "star type" heat sink should serve the purpose well. An ultra-cautious constructor could safeguard against parasitic oscillations in the PA by slipping a ferrite bead onto the base wire of TR3. This is common practice amongst some solid state PA builders, but I have never done it and it did not seem necessary in this circuit.

When the transmit board has been built as far as the output capacitor C6, the whole board can be tested. The PA stage will not like being run without a load, so a dummy load will have to be applied to the output. This ought to be a non-inductive resistance of about 50 ohms capable of handling 2 watts. A single carbon resistor or a made-up value of low wattage types can be used. This is connected between C6 and earth and the probe is connected across this load. Apply power to all the circuits under test including the PA stage and a considerable output should be noted on the meter. Switch the keyed 12 volt line on and off. When the supply to TR1 and TR2 of the transmit board is off there should be no output shown on the meter. If there still is a reading this will probably mean the PA is oscillating and the problem may be with the layout, or in some cases particular transistors might cause this problem; none of the transistors I tried oscillated in the PA even with a transistor holder used at TR3. Key the transmit board and listen to the output on a receiver and also try tuning either side of the signal to hunt for "nasties". The transmitter is completed by building up the simple pi-network filter as shown in Fig. 7. C7 and C8 are made up from two silver mica capacitors, the very small dipped mica types can present heating problems if used in this circuit. A final test can be made with the probe connected to the transmit output point, again a load of some 50 ohms should be placed across the output.
The Change-Over Circuit board now remains. This is a very simple switching circuit and should present no problems. The choice of relay is open to variation. Using such a circuit I havehad good results from miniature 12 volt relays with coils ranging from about 500 ohms to 1,000 ohms. The layout in Fig. 6 is quite compact and the actual layout used by other constructors will depend upon the physical size of the relay. The layout is not critical, but if long leads are to be used for the 12 volt keyed line a decoupling capacitor of about $0.1 \mu \mathrm{~F}$ would be a recommended addition. The leads for the antenna change-over operation should be screened and as short as possible. This board ought to be tested for correct switching action before it is wired into the rest of the transceiver circuitry.

Another task which ought to be performed before the circuits are finally wired up to the change-over board is to set the frequency of the transmitter in relation to the receiver. Both share a common VFO and the transmit signal is obtained by mixing with
the transmit mixer board crystal oscillator. CT1 on the crystal oscillator section of the transmit mixer board needs to be adjusted so that the frequency being transmitted corresponds to that being received. For this to be set all the receiver circuits (see Part I) need to be switched on at the same time as the transmit mixer circuit board and stages TR1 and TR2 of the transmit board. The PA is not required for this test so the 12 volt transmit line to the PA should not be connected. With these circuits on, CT1 is adjusted to give the required beat note in the receiver. The circuit boards may now be interconnected via the change-over board or direct to the 12 volt line as required. There are four power lines: 12 volts, 12 volts (receive), 12 volts (transmit) and 12 volts (keyed), these must be connected as indicated in the cir cuit diagrams.

Conclusion

The transceiver is now ready for use. The output of the transmitter is fixed pi-network tuned for 50 ohms output, so must either feed a correct impedance aerial for the band, for example a dipole, or be fed via a suitable ATU to match the aerial.
The transceiver is a QRP device and what better for a projected all-CW, no-contest, band. A neat little transceiver for a neat little band. See you on 10 MHz !

Components: Most should be obtainable from J. Birkett, 25 The Strait, Lincoln, LN2 1JF. Toroid cores from TMP Electronics, Unit 27, Pinfold Workshops, Pinfold Lane, Buckley, Clwyd CH7 3PL.
References: "Solid State Design for the Radio Amateur" (ARRL), obtainable from Short Wave Magazine Publications Dept.

A RECEIVING PRESELECTOR FOR THE LOW FREQUENCY BANDS

A SIMPLE CIRCUIT FOR IMPROVED FRONT-END SELECTIVITY

P. C. COLE, G3JFS

THE pre-selector unit to be described here was designed to improve the front-end selectivity of a simple medium and short wave radio that suffered from spurious signals and severe cross-modulation when it was connected to an efficient aerial. Despite its simplicity the circuit works well and it can be recommended for use with any receiver that needs better selectivity and some extra gain at the signal frequency. As the circuit is easy to build and to get working it could be a worth while weekend project for the home constructor.

Circuit Description

Fig. 1 shows the circuit of the pre-selector with component values to cover the frequency range of approximately 1.4 to 5.00 MHz . Incoming signals from the appropriate input socket Input 1 for an high impedance source such as an end-fed wire, or Input 2 for a low impedance coaxial feeder - are applied to the top capacity coupled tuned circuits $\mathrm{VCl} / \mathrm{L} 1$ and $\mathrm{VC} 2 / \mathrm{L} 2$ which determine the overall selectivity characteristics of the pre-selector.

Input 1

Input 2

Fig. 1
The circuit of the preselector as built to cover a frequency range of 1.4 to 5.00 MHz . Other frequencies can be covered by proper choice of L1 and L2.

Table of Values

Fig. 1
$\mathrm{Rl}=1 \mathrm{~K} 5$
$R 2=330 \mathrm{R}$
$\mathrm{C} 5=4.7 \mu \mathrm{~F}$ electrolytic
$\mathrm{R} 3=680 \mathrm{R}$
$\mathrm{TCl}=4.5-20 \mathrm{pF}$ trimmer, 15 V working
$\mathrm{R} 4=33 \mathrm{R}$
TR 1 $=2 \mathrm{~N} 3819$
$\mathrm{C} 1=10 \mathrm{pF}$ cer. $\mathrm{VC1}, \mathrm{VC2}=$ twin-gang variable capacitor, $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4=0.1 \mu \mathrm{~F}$
$20-350 \mathrm{pF}$ each section
LI, L2 $=60$ turns 30 s.w.g. enamel covered wire close-wound on $3 / 8$ " da. dust-cored former; L1 is tapped at 8 turns from the earthy end.
Note: All resistors are $1 / 4$-watt.

After passing through these tuned circuits the signals are then amplified by TR1, an N-channel FET, which is directly coupled to the pap transistor TR2 connected as an emitter follower. Signal output is taken from the emitter of TR2 via the DC blocking capacitor C 4 to the input of the main receiver. The combination of TR1 and TR2 has the advantage of a high input impedance to minimise damping of the tuned circuits, a low output impedance suitable for connecting directly to the input of most receivers and good isolation between input and output. Also the circuit gives some gain to make up for losses in the coupled circuits, and boosts the signal level if an inadequate aerial such as a whip or short indoor wire has to be used for reception.

Construction

The circuit is quite stable and the component values are not critical. Any preferred method of construction may be used, but whatever the assembly technique chosen the layout should be arranged to minimise stray coupling between the tuned circuits
and to keep the input and output sockets well separated.
Fig. 2 shows the layout used for the prototype which was built with junk box components on a piece of Veroboard $130 \mathrm{~mm} x$ 65 mm . The construction was quite conventional except that sockets were used for TR1 and TR2 so that different types of transistor could be tested in the circuit.

Power Supply

The unit was designed to operate from a nominal +9 volt supply but this is not critical and anything from 6 to 12 volts will give good results. Current consumption at 9 volts is about 6 mA and this is best obtained from the main receiver or from a separate low voltage power supply, rather than from a battery.

Alignment

Alignment consists of setting the two tuned circuits to cover the required frequency range, and adjusting the coupling between them for the desired selectivity. Because of the simple coupling arrangement used the tuned circuit response will change with frequency and some compromise will be inevitable if the full tuning range of the specified variable capacitor is to be used. Alternatively the tuned circuits can be aligned to favour a relatively narrow range of frequencies such as a single amateur band.
The completed preselector is best adjusted with a signal generator but it is quite easy to use on-the-air signals or external noise if test equipment is not available. Connect an aerial (or signal generator) to the input of the preselector and run a coaxial cable from the output socket to the input of the main receiver. Set

Continued on p. 670.

Fig. 2
The component layout for the preselector. Components are assembled on a piece of Veroboard $130 \mathrm{~mm} \times 65 \mathrm{~mm}$.

Fig. 3
A simple representation of the change in selectivity over the frequency range of the preselector due to the increase of coupling between the tuned circuits as the frequency is increased.

CLUBS RROUNDUP By "Club Secretary"

THIS is the first piece to be actually written in 1982; we thought we would have a "light" month with the deadline falling over the Christmas/New Year break, but . . . we nearly drowned in 'em!. Here we go again, then, as briefly as we may.

From the Top . . .

Acton, Brentford \& Chiswick will be taking a look at the eternal problem of "Aerials for Restricted Spaces" under the expert guidance of G3IGM; Chiswick Town Hall, High Road, Chiswick, London W4, at 7.30 on February 16.

The mobile operators among us-and that must be a sizeable percentage-should be members of A.R.M.S., which caters for mobileers, here and overseas. Details from the Hon. Sec.-see Panel.

By the time this reaches you, the Aylesbury Vale group will have had an AGM; so about all we can say is to go to Elmhurst Youth Centre, Fairfax Crescent, Aylesbury, on the last Tuesday of the month, or to contact the Hon. Sec.-see Panel for his address.

At Barking the Hq is at Westbury Recreation Centre, Westbury School, Ripple Road, Barking. The 'main' meeting is on Thursdays, but the club rooms are open on Mondays, Tuesdays, and Wednesdays also for various activities. February 11 is down for junk sale-that should fetch 'em!.

The Barry College of Further Education group has a place in the Annexe, Weycock Cross, which they say is next to the zoo, on Thursdays. The first Thursday is usually given over to a talkdemonstration, and the third one to a surplus sale; they have a good shack and a keen contest group as well. Details from the Hon. Sec.-see Panel.
B.A.R.T.G. caters for the RTTY buffs, whether their interests lie in the old-fashioned clanking variety or the more 'with-it' VDU or home-computer set-up; quite interesting to observe on a recent issue of CQ Magazine a chap using a bug key as his RTTY keyboard! Details of the club from the Hon. Sec.-see Panel.
Now to Bolsover; there is a pub called "The Angel" in this town, in which foregather the more angelic ones among the local amateur radio fraternity, every Wednesday evening; the general rule is try and fix up something once or twice each month, and let the other dates be informals.

Next we head up to the Borders gang, and we must ask you to contact the Hon. Sec. (see Panel), as at the time of writing there was a hang-up over the Hq premises and they were looking for somewhere else.
Now Bournemouth, who are now based on Kinson Community Centre, Pelhams, Milhams Road, Kinson, Bournemouth; for the rest we must refer you to the Hon. Sec.-see Panel.

A changed front for the Brighton newsletter; but it hasn't got a February programme in it, so all we can say is "every second Wednesday commencing at 7.45 ," at 47 Cromwell Road, Hove. For the rest-the Hon. Sec. at the address in the Panel.

February 22 is down for a talk by Ross Clare, GW3NWS about HF linear amplifiers; the club is Bristol City RSGB group; the venue is the Queens Building in the University of Bristol.

Now to Cambridge; the locals have a booking at the Visual Aids Room of the Coleridge Community Centre, Radegund Road, off Coleridge Road. In addition they have the use of the Tower Room for the club station G2XV. Normally, the gathering of the clans is on every Friday evening.

February in Chelmsford is the first Tuesday, at Marconi College, Arbour Lane, for a Black Box evening.

We must now head for Cheltenhiam, and the Old Bakery in Chester Walk, Clarence Street. On February 4, G4BVY will talk about Receiver Performance and on 19th there is a Natter Nite.

Now we turn to Chesham, and at the time of writing about all we can do is refer you to the Hon. Sec. at the phone number shown in the Panel. On the other hand we know their Hq is at Church Room, Church Lane, Wormley, and we know that there are natter evenings on February 3 and 17, while on February 10 Dave Woollard will be talking about Aerials, and on 24th, to round off the month, G8JDU will be talking about Sierra Leone.

Down to the coast now, and Chichester where they have a home at the Spitfire Club in Tangmere on the first and third Mondays of each month. Thus February 1 is a film showing how oil rigs are constructed and installed; on 15th, G8DHE will be explaining all about UOSAT, and demonstrating how to decode the data transmission from the bird.

At the time of writing, the Chiltern programme had, against the date February 24, the words 'How about offering to give a lecture?"'a good thought. The group are based on the John Hawkins' Furniture Works, Victoria Street, which lies off Oxford Road (A40) in High Wycombe.
February 19 is the date when the Hon. Treasurer of Clifton will be putting on a video show of technical matters. Meetings on Fridays at the New Cross Inn, which is at the junction of New Cross Road and Clifton Rise, London.
Colchester are at Colchester Institute, Sheepen Road, Colchester, on February 4 to hear G4MOV talk about Freedom, and on 18th for a talk on Raynet, given by G3AJS and G3GNQ.

Deadlines for "Clubs" for the next three months-

March issue-January 29th
April issue-February 26th
May issue-March 26th
June issue-April 30th
Please be sure to note these dates!

The Conwy Valley club will welcome a member of British Telecom on February 11, and their topic will be Radio Interference and the Radio Amateur, with a questions-andanswers session straight afterwards. The venue is Green Lawns Hotel, Bay View Road, Colwyn Bay.

Change!

This happens at Cornish where they have the meeting on February 2 which is a Tuesday (instead of the usual Thursday), to welcome $E T S$ video equipment and tapes for a display and show. As always the venue is the SWEB Club Room, Pool, Camborne.

Another change is the name and address of the secretary at Coventry; unfortunately he missed out telling us the February programme and the venue. However our card-index says BadenPowell House, 121 St. Nicholas Street, weekly on Fridays.

At Crawley the venue is the United Reformed Church Hall in Ifield, alternating with informals in each other's homes. For more details, try the Hon. Sec.- see Panel.

Cray Valley still foregather at Christchurch Centre, High Street, Eltham SE9, and we believe the form to be the first and third Thursday in each month.

A bit of difficulty for the Crystal Palace group-G3FZL was ill at the time of writing the newsletter, and so G4AVV had to step into the breach to remind us that it all happens on the third Saturday in the month at Emmanuel Church Hall, Barry Road, East Dulwich, 7.30 for 8 p.m.

The top floor of 119 Green Lanes, Derby, belongs to Derby, and they fill it up on Wednesdays; a junk sale on 3rd, a talk by G2CVV on 10th, a visit from Lowe Electronics on 17th, and on 24th the Night-on-the-Air.

Names and Addresses of Club Secretaries reporting in this issue:

ACTON, BRENTFORD \& CHISWICK: W. G. Dyer, G3GEH, 188 Gunnersbury Avenue, Acton, W3 8LB. (01-992 3778)
A.R.M.S.: N. A. S. Fitch, G3FPK, 40 Eskdale Gardens, Purley, Surrey CR2 IEZ.
AYLESBURY VALE: M. J. Marsden, "Hunters Moon", Buckingham Road, Hardwick, Aylesbury, Bucks.
BARKING: A. Sammons, G8iZN, 80 Lyndhurst Gardens, Barking, Essex IG11 5BZ. (01-594 2471)
BARRY (College of F. Education): J. A. Share, GW3OKA, 3 Uplands Crescent, Llandough, Penarth, South Glamorgan. (0222-702455)
B.A.R.T.G.: E. Batts, G8LWY, 27 Cranmer Court, Richmond Road, Kingston-on-Thames.
BOLSOVER: D. Brocklehurst, G8KIF, 33 Cheshunt Drive, Clowne, Nr. Chesterfield, Derbyshire S43 4JG. (0246-811666)
BORDER: A. M. McCreadie, GM8YPI, 16 Fancove Place, Eyemouth, Borders TD 14 5JQ (Eyemouth 50492)
BOURNEMOUTH: A. Bagley, G4EKE, 8 Larks Rise, Ferndown, Wimborne, Dorset BH22 9 QU .
BRIGHTON: G. Miles, G3VBE, 65, Montgomery Street, Hove.
BRISTOL RSGB: A. Capper, 1 Northover Road, Westbury-on-Trym, Bristol BS9 3LW. (Bristol 501014)
CAMBRIDGE: D. Wilcock, G2FKS, 19 Cavendish Avenue, Cambridge CB1 4UP. (0223-247220)
CHELMSFORD: A. Reeve, G4KQE, 9 Abraham Drive, Silver End, Witham. (Silver End 83094)
CHELTENHAM: G. Cratchley, G4ILI, 47 Golden Miller Road, Prestbury, Cheltenham. (Cheltenham 43891)
CHESHAM: A. Scott, G8PUC, 8 Lynton Road, Chesham, Bucks. HP 5 2BU. (0494 785625)
CHICHESTER: S. Talbot, G8FCX, 31 Pier Road, Littlehampton, West Sussex BN17 5LW. (Littlehampton 5082)
CHILTERN: P. B. Stears, G4LMM, 127 Hughenden Avenue, High Wycombe, HP13 5SS. (0494-24095)
CLIFTON: R. A. Hinton, 42 Sutcliffe Road, Welling, Kent. (01-301 1864)
COLCHESTER: F. R. Howe, G3FIJ, 29 Kingswood Road, Colchester (0206-70189)
CONWY VALLEY: J. N. Wright, GW4KGI, Eleven, Bryn Derwen, Abergele. (Abergele 823674)
CORNISH: A. C. French, G8TUJ, 12 Pentalek Road, Camborne. (Camborne 717343)

COVENTRY: D. R. Farn, 14 Corfe Close, Clifford Park, Coventry CV22JG. (Coventry 618648)
CRAWLEY: D. L. Hill, G4IQM, 6 Reigate Close, Pound Hill, Crawley, W. Sussex RH10 3TZ. (Crawley 88264I)
CRAY VALLEY: P. J. Clark, G4FUG, 42 Shooters Hill Road, London SE3. (01-858 3703)
CRYSTAL PALACE: G. Cluer, G4AVY, 24 Patterson Road, Upper Norwood, SE19. (01-653 4340)
DERBY: Mrs. J. Shardlow, G4EYM, 19 Portreath Drive, Darley Abbey, Derby DE3 2BJ. (0332) 556875)
EDENBRIDGE: K. Hawkins, G3ZMC, 19 Forge Croft, Edenbridge, Kent. TN8 5BW. (Edenbridge 863005)
EDGWARE: H. Drury, G4HMD, 39 Wemborough Road, Stanmore, Middx. (01-952 6462)
EX-G Radio Club: F. W. Fletcher G2FUX, 53 St. Ives Park, Ringwood, Hants. BH24 2JX. (Ringwood 3561)
EXMOOR: D. Jones, "Loughrigg", East Street, South Molton, Devon.
FAREHAM: B. Davey, G4ITG, 31 Somervell Drive, Fareham, Hants. PO16 7QL. (Fareham 234904)
FARNBOROUGH: I. Ireland, G4BJQ, 188 Mychett Road, Mychett, Camberley, Surrey. (Farnborough 43036)
G-QRP: Rev. G. C. Dobbs, G3RJV, 17 Aspen Drive, Chelmsley Wood, Birmingham B37. (021-770 5918)
HARROW: C. D. Friel, G4AUF, 17 Clitheroe Avenue, Harrow, Middx. HA2 9UU. (01-868 5002)
HASTINGS: G. North, G2LL, 7 Fontwell Avenue, Little Common, Bexhill-on-Sea.
HAVERING: A. Negus, G8DQJ, 17 Courtenay Gardens, Upminster, Essex RM14 1DH. (Upminster 24059)
HEREFORD: S. Jesson, G4CNY, 181 Kings Acre Road. Hereford. (Hereford 3237)

HORNDEAN: D. Bernard, 33 Greenfield Crescent, Cowplain, Portsmouth, Hants. (Horndean 593429)
HULL: Mrs. H. V. Cunliffe, 12 Pearson Avenue, Hull. (0482-447355)
IPSWICH: J. Tootill, G4IFF, 76 Fircroft Road, Ipswich, Suffolk IP1 6PX I.R.T.S.: J. Upton, E18Z, 11 Cardiffscastle Road, Finglas, West, Dublin 11. ISLE OF WIGHT: 1. Moth, G4MBD, "Claygate", Collwell Road, Freshwater, I.o.W. (Freshwater 753948)
KIDDERMINSTER: A. F. Hartland, G8wOX, 22 Granville Crescent, Offmore Farm, Kidderminster. (Kidderminster 61584)
MALVERN HILLS: R. Dixon, G4BVY, 9 Wyche Road, Malvern, Worcs. (Malvern 62900)
MEIRION: Mrs. J. Jones, GW8SYX, 25 Fford Dyfrig, Tywyn, Gwynedd. (Tywyn 701402)
MELTON MOWBRAY: R. Winters, G3NVK, 32 Redwood Avenue, Melton Mowbray, Leics. LE13 1TZ. (Melton Mowbray 3369)
MEXBOROUGH: 1. Abel, G3ZHI, 9 Grove Terrace, Maltby, Rotherham, Yorks.
MIDLAND: N. Gutteridge, G8BHE, 68 Max Road, Quinton, Birmingham B32 1LB. (021-422 9787)
MID-SUSSEX: J. Brooker, G3JMB, 20 Farnham Avenue, Hassocks, Sussex.
MID-ULSTER: D. Campbell, GI8XQO, 109 Drumgor Park, Craigavon, Co. Armagh, Northern Ireland BT65 4AH.
PONTEFRACT: N. Whittingham, G4ISU, 7 Ridgedale Mount, Pontefract, West Yorkshire WF8 ISB.
R.A.I.B.C.: Mrs. F. Woolley, G3LWY, 9 Rannoch Court, Adelaide Road, Surbiton KT6 4TE.
SIL VERTHORN: C. J. Hoare, G4AJA, 41 Lynton Road, South Chingford, London E4 9EA. (01-529 2282)
SOUTHAMPTON: A. Sillence, G4MYS, 80 Coxford Drove, Coxford, Southampton SOl 6FB.
SOUTH BIRMINGHAM: T. Scrimshaw, G8RGQ, 10 Somerdale Road, Northfield, Birmingham. (021-454 8312)
SOUTHDOWN: R. E. Holtham, G4EKS, 2 Benbow Avenue, Eastbourne, E. Sussex BN23 6AB. (Eastbourne 31620)
SOUTHGATE: Mrs. V. Austin, G4MCD, 89 Chaseville Park Road, Winchmore Hill, London. (01-360 5832)
STEVENAGE: S. Clarke, G8LXY, 126 Putteridge Road, Stopsley, Luton. Beds. LU2 8HQ.
STIRLINGSHIRE (Falkirk): G. Stewart, GM6CRQ, 2 Mayfield Mews, Falkirk.
SURREY: R. Howells, G4FFY, 7 Betchworth Close, Sutton, Surrey SM1 4NR. (01-602 9871)
SWANSEA: R. Williams, GW4HSH, 114 West Cross Lane, Swansea, SA3 5NQ. 10792-404422)
THAMES VALLEY: M. C. Bell, G8RLB, 6 Park Road, Hampton Hill, Middx. TW 12 1HD. (01-977 6122)
THANET: I. B. Gane, G4NEF, 17 Penshurst Road, Ramsgate, Kent. (Thanet 54154)

TORBAY: H. Davies, G4DZH, 18 Bowland Close, Paignton, Devon TQ4 7RT. (Paignton 523063)
TYNESIDE: J. Dingwall, G4ILW, Tyneside Radio Society, Community Centre, Vine Street, Wallsend.
Vale of The White horse: I. White, G3SEK, 83 Portway, Didcot, Oxon. OX1I 0BA.
VERULAM: G. Dale, G3PZF, 16 Palfrey Close, St. Albans. (St. Albans 57665)

WACRAL: L. Colley, G3AGX, Micasa, 13 Ferry Road, Wawne, Nr. Hull, Yorks. HU7 5XU.
WAKEFIELD: R. C. Sterry, G4BLT, 1 Wavell Garth, Sandal Magna, Wakefield. (Wakefield 255515)
WEST KENT: B. P. Castle, G4DYF, 6 Pinewood Avenue, Sevenoaks, Kent TN14 5AF. (Sevenoaks 56708)
WIMBLEDON: E. G. Allen, G3DRN, 30 Bodnant Gardens, Wimbledon. (01-947 3914)
WIRRAL: G. Lee, G3UJX, 30Manor Drive, Upton, Wallasey. (051-6771518) WORCESTER: D. Pritt, G8TZE, 15 Paxhill Lane, Twyning, Nr. Tewkesbury, Glos.
YEOVIL: D. L. McLean, G3NOF, 9 Cedar Grove, Yeovil, Somerset.
YORK: K. R. Cass, G3WVO, 4 Heworth Village, York.

On now to Edenbridge where they foregather on February 9 for an informal; the venue is the conference room of the Women's Institute in Station Road, Edenbridge, Kent.

The Edgware lot have the second and fourth Thursday of each month at Watling Community Centre, 145 Orange Hill Road, Burnt Oak. February 11 is an Introduction to Amateur Radio, to be given by G3SJE; and on 25th they have the new ARRL Film "World of Amateur Radio." On a personal note it was interesting to see some words by G3SVE, not heard of for some 15 years or so!

If you (or your parents) were born or naturalised in U.K. and domiciled abroad, then you are eligible to become a member of the Ex-G Club-details from the U.K. Hon. Sec., at the address in the Panel.

Exmoor is a place one thinks of in terms of holidays and walking boots. The club in South Molton has its Hq at "Loughrigg", East Street, South Molton, every Thursday. They have a station on VHF and an RTTY section is brewing up.

Fareham have weekly meetings at Portchester Community Centre on Wednesdays; we have in front of us a six-month programme which stops short at January-hint for an up-date?

At Farnborough the gang foregather at the Railway Enthusiasts Club on February 10 for a talk by G4HGJ on his QRP transmitter, while the detail of the 24th meeting was still unconfirmed at the time of their ketter. Doubtless the Hon. Sec. will be pleased to tell you-see Panel.

The flea-power artists in amateur radio are, or should be, members of the G-QRP Club, now heading for 1300 members
largely by virtue of their excellent magazine Sprat and its interesting contents, as well as the thrill of QRP working. Details from the Hon. Sec. at the address in the Panel.
It's off to Harrow now, where the new PRO has managed to give us the January details . . . it happens to us all sometimes! However, we know they are at the Harrow Arts Centre (Roxeth Room) in High Road, Harrow Weald.
Hastings next. They have a 'main' meeting at West Hill Community Centre, Hastings on the third Wednesday of each month. In addition they have weekly meetings on Mondays and Fridays at their own place at 479 Bexhill Road, St. Leonards-onSea.

The weekly meetings of the Havering club at Fairkytes Art Centre, Billet Lane, Hornchurch are held every Wednesday, and the general rule is to alternate informals with lectures. Details from the Hon. Sec.-see Panel.

A paid-up membership of 66 says Hereford club have the formula for success-they have been building slowly but steadily ever since they first began reporting. They meet in County Control Civil Defence Ha, Gaol Street, Hereford, on February 5 for the AGM and on 19th for an Informal.
On we go now to Horndean where the venue is the Merchiston Hall, on the second Thursday of every month with various interesting activities set up. More details from the Hon. Sec.-see Panel.

The change of venue at Hull should be noted; they are now based on West Park Recreation Centre, Walton Street, Hull. For the other details, we must refer you to the Hon. Sec.-see Panel.
Now to Ipswich and their excellent newsletter, "QUA". Find them on the second and fourth Wednesdays in each month at the "Rose \& Crown", which is at the junction of the A45 Norwich Road and Bramford Road. The room is, in fact, detached from the public bars so junior members are always welcome.

Sad to say the IRTS Hon. Sec. has had to resign, so for the moment we have taken the liberty of putting in the President's name and QTH in the Panel - hope he won't mind! IRTS is the national society for Eire and they can give you all the details about amateur radio activities in the Republic.

Tuesdays and Fridays at Unity Hall, near the Sloop Inn, Wootton Bridge are the Isle of Wight details. For more, contact the Hon. Sec.-see Panel.

From Kidderminster this time we have only a note of the new slate of officers. However, the card-index says Aggborough Recreation Centre, Hoo Road, on alternative Tuesdays.

On the second Tuesday of each month, there is a meeting at the "Red Lion", Great Malvern, of the Malvern Hills group; they start at 7.30 with some Morse and the meeting proper is down for 8 p.m.

Over to GW now, and Meirion, where we see they have February 4 down for a film show, at the Royal Ship Hotel, Dolgellau.

It's February 19, the big night for the Melton Mowbray group; the Hq being at the St. John Ambulance Hall, Asfordby Hill, Melton Mowbray.

The Mexborough crowd are based on the Harrop Hall, Dolcliff Road, Mexborough every Friday evening; for more details, contact the Hon. Sec.-see Panel.

Thoroughness is the word at Midland, where we not only have a copy of Probe but a letter too! This last gives us February 16 for the RSGB video-tape called "The Secret Listeners". Nice to see also from the Wise Old Man of Midland that he intends to 'do summat' about bringing their and our deadlines into sync! Useful chap that wise old man-he designed our nicad charger, although we wouldn't like him to see our construction of it!

Now we must turn our attention to Mid-Sussex, in their hideaway in Marle Place Further Education Centre, Leylands Road, Burgess Hill; they have just had their AGM so the Hon. Sec. will have to be contacted for all the latest details-see Panel for his address.

Mid-Warwickshire is another name for the Leamington/ Warwick area. They are based at 61 Emscote Road, Warwick, on

At the Thames Valley A.R.T.S. annual party, Alan Watson G4DZS (centre) was presented with the Cullen Trophy for the year, which is contested annually by Thames Valley and Sutton \& Cheam societies during the RSGB Affiliated Societies Contest. On the left is Alan Mears G8SM, the Thames Valley President, with Bob Tillen G3MES, Sutton \& Cheam's President, on the right.
the first and third Tuesdays; for February, this means February 2 for the AGM and February 16 for G8UKT to chat about Top Band D/F.

Mid-Ulster foregather chez GI4BAC in Banbridge, Co. Down; sharp at 3 p.m. on the first Sunday in the month.

February 4 and 18 it is at Pontefract; the first for a Construction Evening-bring along your latest masterpiece-and on the latter date G8CJS will be talking about fast-scan TV. Carleton Community Centre is the place, on the top floor.

Our next is a 'must'; R.A.I.B.C.- the club for the invalid and blind members of the amateur radio fraternity whether they be licensed or SWL. Obviously if you have a disabled person who is a potential member, you pass him on to the Hon. Sec.-but lots of helpers and representatives are needed, plus lots of donations to help keep the good work going. Details from the Hon. Sec.-see Panel.

A novel idea appears in the programme for Silverthorn for February 12-they have a film show and talk to be given by the Scotch Whisky Association, and the Hon. Sec. adds a postscript - "don't forget to bring a glass!" This is at Friday Hill House, Simmons Lane, Chingford, London E4.

On to Southampton now, where February 10 is down for a talk by G30ZT on the Intruder Watch. The venue is the Toc H, Little Oak Road, Bassett, Southampton.

The South Birmingham lot have their Hq at Hampstead House, Fairfax Road, West Heath. The first Wednesday is the main meeting each month-a surplus sale this time. In addition they have an HF Night-on-the-Air every Thursday evening, and every Friday is an open evening.

The Southdown chaps are based on the Chaseley Home for Disabled Ex-Servicemen, Southcliff, Eastbourne, where they are to be found on the first Monday of each month.

The Southgate group will be hearing all about Raynet on February 11, the speaker being G8PRR. The Hq address these days is St. Thomas Church Hall, Prince George Avenue, Oakwood. All welcome, contact the Hon. Sec. for details.

We haven't an update from Stevenage although we know they are based on British Aerospace Plant B in Six Hills Way, twice monthly; for the rest we must refer you to the Hon. Sec.-see Panel.

New Club

Stirlingshire (Falkirk) foregather on the first Tuesday in each month; details of the venue and so on from the Hon. Sec.--see Panel for his details.

On to Surrey now, at their Hq, 24 The Waldrons, South Croydon. February 1 is not settled as to programme at the time of writing, while the February 15 is an informal.

Swansea next-quite a crop of GWs this time! Try the first and third Thursday in the month, Room ' N ' fourth floor, Applied Sciences Building, Swansea University College, where on February 18 GW4HNT will talk about the causes and cures of TVI.

On February 2, the Thames Valley group have the Monster Surplus Sale-everything from junk to first-class. This is at Dittons Library Meeting-Room, Watts Road, Thames Ditton.

On alternative Fridays the Radio Club of Thanet members head for Birchington Village Centre; February 12 is a bring-and-buy, while on 26th there is a talk on aerials.

Torbay reckon to have had a very good year one way and another; find them at Bath Lane (rear of 94 Belgrave Road), Torquay, every Friday evening for the informals plus a monthly Saturday business-and-lecture formal meeting.

Slowly we whittle the pile down, noting some familiar 'fists' on the way-one of these belongs to the Hon. Sec. of Tyneside; they still have the same old routine, of meeting every Monday evening, at the Community Centre, Wallsend-which is also the address for the Hon. Sec. (see Panel).

The Vale of the White Horse venue is the "White Hart" in Harwell village, every Tuesday with the first one in each month a formal. For February this will be G3SEK talking about facts and fancies about Yagi aerial design.

Another familiar one is Verulam; but we miss the extra letter that gives us the latest programme! We can tell you that they are at the Charles Morris Memorial Hall, Tyttenhanger Green, Tyttenhanger, near St. Albans, on the fourth Tuesday in each month.

WACRAL is the name of a club for committed Christians of any denomination, anywhere in the world, who are active amateurs or SWLs-details from the Hon. Sec.

At Wakefield they will be at Hq on February 9 for a talk on UHF by G3HCW, and on 26th for a junk sale. The Hq address is: Holmfield House, Denby Dale Road, Wakefield.

If you are a West Kent member attending the meeting on February 5, you will find yourself in to a discussion and planning session on HF/VHF Field Days. The Adult Education Centre, Monson Road, Tunbridge Wells, is the spot, on alternative Fridays. On the Tuesdays following the Friday meetings, they have an informal in the Drill Hall, Victoria Road, Tunbridge Wells.

Nice to see Wimbledon picking up again - they have the second and last Fridays in each month at the St. John Ambulance Hall, Kingston Road.

Now Wirral who have their new venue settled; first and third Wednesdays at Minto House School, Birkenhead Road, Hoylake. The dates are February 4 for a discussion on the contests for 1982, while on 18th they have an exhibition of members equipment.

Worcester have G6CBP to talk about TVI and some of the remedies on the first Monday in February, at the "Old Pheasant", New Street, Worcester.

Yeovil seem to be well settled in Building 101 at Houndstone Camp every Thursday, with G3MYM being the mainstay of the talks-but a popular one, obviously. On the 35 th aniversary of the club formation, October 4, 1981, they put G3CMH and G8YEO on the air and worked 126 stations in 52 countries and all six continents.

At York they are 'at home' to visitors and members at the United Services Club, 61 Micklegate, York, on every Friday except the third one in each month. The gang are keen on showing the flag; and the word seems to be getting around the other organisations in the area, which will keep them busy in 1982.

Finale

The end of another pile. Lots, it will be noted, need updating, so let's have your news, to arrive by the dates shown in the box, addressed as ever to your scribe, SHORT WAVE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ. Cheerio!

OBITUARY

BILL CORSHAM, G2UV

WIILLIAM Edward Frederick Corsham, G2UV, died suddenly on December 12, 1981.
Bill started his interest in amateur radio during World War I, when he left his job in the GPO to join the Signals Regiment, and found himself serving at the training establishment near Bletchley, where such new things as spark transmitters were to be seen and used.

On return to the GPO the interest was maintained, and at the second try a licence was obtained and Bill became 2UV. On the operating side, the early gear was spark and tonic-train, until some ' R ' type valves were acquired; at that time there was a maximum of ten watts of CW allowable, with HT from dry batteries or a hand generator. Next came telephony, and like many other experimenters in those pre-BBC days, records and the occasional "live" artists were broadcast.
By now, 2UV was active in Harlesden Wireless Society, a member of the British Wireless Relay League and, already, President of the GPO Mount Pleasant Wireless Society. In 1921, 2UV took part in the first Transatlantic Tests and met Godley of ARRL, when the latter came over to operate in the tests, first from Wembley and then from Ardrossan. Bill then organised BWRL's Round-Britain Tests in 1922, meeting up with R. D. Spence of Huntly, Aberdeen (with whom he shared third place in the Transatlantics).

It was in 1922 that 2UV produced the first ever QSL card in Europe, and almost certainly the world. Technically, Bill was using a three-valve receiver in 1921 while most of the competitors were using 5 or 6 ; and thus he set a trend of simplification in receivers.

On the "political" front, he realised that to have in existence BWRL, plus the Amateur Radio Research Association and the Radio Transmitter Society was hardly conducive to the advancement of the hobby, and so he worked hard to bring first BWRL and then the others under the umbrella of the RSGB's T \& R Section; thus Bill Corsham may be said to have been instrumental in the formation of RSGB in the form in which it was to carry the flag until W.W.II; 2UV and 2DX (present G2DX, Ken Alford) were the first, joint, Traffic Managers. In 1924, experimenters were not allowed contacts with stations abroad, and in a broadcast talk given over 2LO on June 12, 1924 Bill changed the final words from the agreed script of his talk, to virtually challenge the Post Office to withdraw licences on this point - they did not take him up, and another point had been won.

All his working life was spent at the Post Office, latterly with the Travelling Post Office as security superintendent, retiring before the Great Train Robbery; the hours were such that most of his "wireless work" was done at unusual times of the day. During W.W.II his first-class Morse naturally brought him into RSS, in which he specialised in Japanese transmissions.

G2UV was elected a Vice-President of RSGB in 1973, after he had collaborated largely in the history of the early days in "The World at their Fingertips", which was published by RSGB with G6CL as the writer. He was a founder-member of RAOTA, and was to be seen at RSGB, RAOTA and Harrow club functions regularly; latterly his efforts were largely aimed at putting the affairs of the Radio Amateur Old-Timers Association on to a footing which would enable it to survive his passing. Perhaps the last event in that chain was the obtaining of the call-sign G2OT as the club call of RAOTA.

That, in brief, was the life of G2UV, Bill Corsham; we must add that Bill was a very wise counsellor in the background of amateur radio affairs. His wisdom sat lightly on him, and his pleasant nature made him liked in all the circles in which he moved. His death has made a gap in the Amateur Radio movement which will be very hard indeed to fill.

' A Word in Edgeways"

Letters to the Editor

The views expressed here are not necessarily those of the Editor, nor should they be taken to represent any particular SHORT WAVE MAGAZINE policy.

Dear Sir - It takes a lot to stir me from my usual lethargy so that I put pen to paper (or, more accurately, finger to typewriter key); however, G8ADD and G8SUH et al ("A Word in Edgeways" January 1982) have provided the incentive!

How 8ADD can have the nerve to accuse 3RKH of not showing Christian charity then launch into such a divisive diatribe beggars understanding.
Where, 8ADD, do you get the data to justify your claim that "probably more than 90% " of Class A licensees have forgotten their CW? My own experience certainly does not support such a claim. Of the Class A licensees that I know personally, the majority use CW at some time albeit, in some cases, infrequently. I should add that I am not a keen CW operator who only talks to other keen CW operators. In fact, I use the mode only occasionally although I do use it and would be capable of passing the test.

No one is prepared to make us a present of the considerable part of the HF spectrum that has been allocated to the amateur service without there being some good reason for so doing. One of the justifications, perhaps the only real one, for amateur radio is that it provides a means by which a country can establish a pool of experienced operators at little or no cost to the government concerned. Without this justification, it is unlikely that we would have emerged from the last WARC as strong as we did.

Note, however, that the words I used were "experienced operators". This does not mean being capable of pressing a button and talking into a microphone - anyone capable of operating a telephone is able to do this. Listen round the HF part of the spectrum some time, not just the amateur bands, and you will find out just how much traffic is still carried by CW - not because it is "fun" or of quaint interest but because it simply remains one of the most effective communication modes. The 'experienced operators'' then, are those capable of using CW telephony operators can be trained very easily when required.

Remember, we do not have any rights to the amateur bands, our privileges are granted only because the governments of the world can see that they gain benefits from the service. The pressures on this meagre resource, the HF spectrum, are enormous; the justifications for allocating space in this area have, consequently, to be compelling.

Let us now consider 8ADD's comments on the $4 \mathrm{~m} ., 6 \mathrm{~m}$ and 10 m bands.

Firstly, the 4 m band is an anomalous one since it has been "loaned"' to us by the military, on their terms, and is not part of the general Home Office or WARC allocations. Even having lost 200 kHz of it, we still have 475 kHz more than any other country in Europe. That we have retained any part of the band is due to the efforts put in by the RSGB.

Secondly, the 6 m bands. Agreed, we seem to have lost the initial skirmish for the band. I cannot, however, accept that there is "no chance of getting our hands on it'" until a positive allocation has been made to another service and they have started to make use of it.

Thirdly, the 10 m band. The level of intrusion has already shown a reduction since the introduction of the legal $C B$ service. I suspect that a significant part of the problem that we used to have, resulted from ignorance rather than intent. As the legal service
becomes more accepted and the pre-legalisation rigs fall into disuse, it is likely that the level of intrusion will continue to fall. Those of us capable of operating on 10 m , however, need to keep a watchful eye on the band during the years of sunspot minimum.

It is probably significant that, whilst gloating over the "loss" of bands, 8ADD does not mention the granting three new HF bands - one of which is in use now. Before the WARC, there was a very real fear that political pressures from other HF users would result in the existing HF bands being whittled down. It is only because of the efforts put in by the various national amateur radio societies, particularly the RSGB, that we not only kept the old bands but also gained some new ones.

Perhaps the reason for 8ADD's liber querulus is evident in his comment "dinosaurs on the DC bands" - sour grapes?

Turning now to 8SUH and co. I rather take issue with their statement "when a determined body legally pursues its aims" in connexion with the legalisation of CB. Legally? Really? If 8SUH thinks that that particular pursuit was legal, I would hate to hear his definition of illegality!

The commercial pressures and rampant law breaking that led to the allocation of 27 MHz to CB have done both amateur radio and CB itself a disservice. In time, when the novelty value has worn off and the "cowboy" operators have returned to whatever activities they indulged in before $C B$, the hard core of CB'ers with a genuine need for the service will be left with a quite unsuitable lump of the spectrum in which to pursue their legitimate interests.

It seems unfortunate that the Class B licence has become accepted merely as a stepping stone on the way to a "full" licence. This was not the original intention, when it was recognised that there was a need for an experimenter's licence - not as a second class substitute for a Class A licence but as an end in itself. There are still plenty of fields to conquer on all amateur bands, let us go our individual ways to satisfy our own, legitimate, interests without complaining about what other people can or can't do.

Anthony Plant, G3NXC

Address your letters for this column to "A Word in Edgeways", SHORT WA VE MAGAZINE, 34 High Street, Welwyn, Herts. AL6 9EQ.
(continued from p. 665)
TCl to its minimum capacity, $\mathrm{VC} 1 / 2$ to maximum capacity and adjust the dust cores of L1 and L2 for maximum output from a signal of about 1.4 MHz . Next tune in a signal around 4.5 MHz and after setting $\mathrm{VCl} / 2$ for maximum output increase the capacity of TC1 for slight overcoupling, which will produce a double-humped frequency response as shown in Fig. 3(c). With this setting of TC1 the selectivity curve will vary with increasing frequency from undercoupling, through critical coupling, to overcoupling, as shown in Fig. 3. This is the best compromise that can be reached without using a much more elaborate coupling arrangement, but in practise it does give very good results. If it is desired to favour a narrower band of frequencies it is suggested that TC 1 is set to give slight overcoupling at the centre of the chosen band as this will give the best rejection of unwanted signals.

Results

With this pre-selector you can expect to get a considerable improvement in RF selectivity, with an accompanying increase in gain and sensitivity, when it is used with the simpler type of general coverage receiver that does not have an RF stage ahead of the mixer. Other frequency ranges can be covered by fitting suitable coils and the circuit has been used in various applications at frequencies from 15 kHz to 10 MHz .

VHF BANDS

NORMAN FITCH, G3FPK

Soviet Space Spectacular

DECEMBER 18, 1981 saw the launch of the second series of Soviet amateur radio $R S$ series satellites when six were put into successful polar orbits. They are officially identified as $\mathrm{RS}-3$ through $R S-8$. As usual, no prior warning was received of the launch, nor was any orbital information forthcoming from the U.S.S.R. However, the periods, apogees and perigees and track separations are now known with sufficient accuracy to enable long term orbit predictions to be compiled.
$R S-3$ and $R S-4$ have not been heard in transponder mode, so far, and it is suggested they are purely experimental satellites. Initially, their telemetry frequencies were 29.321 and 29.360 MHz , respectively. The other four all carry 2 m to 10 m transponders and $R S-5$ and $R S-7$ have 'robots' on board. With $R S-5$, the 29.331 MHz channel is often heard in an idling mode, interspersed with the message, "CQ, CQ de RS-5," followed by the 2 m uplink frequency to be used. This "robot" could be the $R S-0$ referred to last month. $R S$-7's "robot" is on 29.341 MHz and indicates a QSU of 145.840 MHz .

The idea of these "robots" is that you call them on 145.83 or 145.84 MHz in reply to their CQ calls and they will send you back a report and QSO number. However, you have to allow for the Doppler shift on your own 2 m . signal of plus/minus 3.42 kHz . The Doppler shift of the spacecrafts' 10 m signals is plus/minus 0.69 kHz . Calls should be sent at the same speed as the "robot" sends, in the form;- "RS-5 de G3FPK AR." If it does not receive your call properly, it may send "QRM," etc. At certain times, the QSO information stored by the computer is transmitted down to Moscow, or wherever, so that the QSLs can be sent out from Box 88. On a recent AMSAT 80 m net, someone reported that $R S$-5's telemetry channel on 29.452 MHz was being used for the 'robot' operation and the 29.331 MHz one for TLM.
$R S$-6's TLM is on 29.411 or 29.453 $\mathrm{MHz} ;$ RS-7 also uses 29.501 MHz , while $R S$-8 operates on 29.461 and 29.502 MHz . The mean altitudes of the six spacecraft varies from $1,628.4 \mathrm{kms}$. for $R S-3$ to $1,684.3 \mathrm{kms}$: for $R S-8$. For the moment, your scribe is working on the following data for the period and track separation
for $R S$ - 3 to 8 respectively;- 118.519 m . and 29.7547°; 119.396 m . and 29.974°; 119.555 m . and $30.0134^{\circ} ; 118.718 \mathrm{~m}$. and 29.8026°; 119.198 m . and 29.9254° and 119.763 m . and 30.0663°.

AMSAT-UK has a nightly net on 80 m from 1900 , nominally on $3,780 \mathrm{kHz}$ but liable to shift due to QRM. Latest news, both "official" and from individual observers, is disseminated concerning $0-8$, $U-0-9$ and $R S-3$ through 8 . There is also the net on Sunday mornings from 1015 on the same frequency. Those wanting reference orbits for any spacecraft are advised to get them from this source as any published data, particularly for $U-0-9$ does get out-of-date rather quickly.

From G3FPK, a number of QSO's have been made through $R S$ - 5 through 8 . Using about 50 watts RF output to 10 dB . of aerial gain, access at extreme range is quite easy. Tests carried out on early orbits showed one's signal was automatically attenuated if the transponder's receiver received too strong a signal. Access has been achieved at $2,500 \mathrm{kms}$. range with as little as 5 w . RF output, although one's 10 m signal tends to be rather weak and easily missed! Rapid fading is quite bad and it is possible to get, say, the letter K on CW , received with the middle dot missing. It can be quite difficult to read calls accurately. SSB signals often sound like VHF signals do when an aircraft causes flutter fading.

Based upon the average altitude of all the satellites, the slant range is $4,882 \mathrm{kms}$. and the sub-satellite point $4,165 \mathrm{kms}$., giving a maximum ground range of 8,330 kms . This brings in range of the U.K. the entire Indian sub-continent, all of Africa north of latitude 20° south, almost all the U.S.A. and Canada, nearly all of Asiatic Russia, to Peking in China. On occasions, the 10 m downlink signals have been copied when the spacecraft are over northern Japan, but of course that is well out of range of access for the 2 m up-link signals. The orbits are posigrade with an inclination of 82.96° to the Equator. This means that ascending node passes - those coming from the south - cross the Arctic region to the east of the North Pole, whereas $A-0-8$ and $U-0-9$ do so on the western side, known as retrograde orbits.
There is no Soviet confirmation of the actual up- and down-link frequencies but it seems that the following applies;$R S-5$, 145.915-950 up and 29.405-440 down; $R S-6,145.910-950$ up and 29.405-445 down; $R S$-7, 145.955-999 up and 29.455-500 down; $R S-8,145.970-999$ up and 29.470-500 down. These are rather tentative and, no doubt, over the next few weeks, users will carry out their own tests to confirm the foregoing, taking account of Doppler shifts.

As to availability, from London, orbits which cross the Equator going north between 226 and 299° west are out of range and these occur between 0155 and 0740

GMT approximately, at present.

VHF Convention

By the time this appears, the 1982 RSGB VHF Convention will be only seven weeks away. The date is Saturday, March 20 and the venue, the same as last year, the Sandown Park Racecourse in Esher, Surrey. The doors open at 1030 and this year the Trade Show will occupy the Tote Hall on the ground floor, with twice as much area as in 1981. The catering will be much better this year, following last year's short-comings which were due to a misunderstanding by the caterers about the estimated attendance.

As usual, there will be three afternoon lecture streams from 1415 to 1715 . The "A" stream comprises Oscar Bächman, SM5CHK, on Antenna Gain Measurements; John Nelson, G4FRX, on The 4 CX250/350 series of valves and PSUs, as featured in his articles in the Magazine; and the VHF Contests Committee Forum. Stream "B" starts with Amateur Satellite Research and Development by an AMSAT-UK team led by Ron Broadbent, G3AAJ. This is followed by: Pilot SSB, The Replacement for FM? by David Holmes, G4FZZ, the last lecture being Meteor Scatter, by David Butler, G4ASR. The " C ", stream is the Microwave one and begins with Peter Tunbridge, G8DEK, on Solid State Power Generation at Microwaves. The second talk is in two parts. First is Heath Rees, G3HWR, on The Implications of the New Microwave Allocations, followed by Charles Suckling, G3WDG, on GASFET Preamplifiers for the Microwave Bands. The last talk is Mobile Systems for 1.3

70 CENTIMETRE ANNUAL TABLE			
Final Placings at December 31, 1981			
Station	Counties	Countries	Total
G8TFI	60	13	73
G8FMK	56	11	67
G8HHI	48	12	60
G8VLQ	45	14	59
G8RZP	46	12	58
G2AXI	46	10	56
G8GXE	46	9	55
GD2HDZ	45	9	54
G3PBV	43	9	52
G8RZO	40	11	51
G3BW	41	7	48
G6ADC	43	5	48
G4JZF	42	5	47
G4MUT	34	11	45
GW3NYY	35	10	45
G8KAX	32	8	40
G4IGO	30	7	37
G8WUU	31	4	35
G3FIJ	28	4	32
G3CO	22	5	27
G8LXY	20	6	26
GW3CBY	17	6	23
G4FKI	16	4	20
G8TIN	12	3	15
G4MJC	5	4	
G4GXL	7	2	9
G8VR	6	1	7
G4LDY	4	,	5
G6CSY	3	1	4
G8SKY	2	1	3
GM4COK	2	1	3
GM4CXP	1	1	2

GHz by Graham Murchie, G4FSG, and Mike Walters, G3JVL. Something for everyone in that lot, no doubt.

It is hoped to arrange ad hoc meetings for specialist groups. There is a PA system in the Tote Hall which will be used for such announcements. The Echelford Radio Club will provide talk-in stations on VHF and UHF. It seems that many people do not want a band and dancing during the evening social so this year there will just be background music by a pianist. The social will be a buffet supper in the Cavalry Room from 7 to 11 p.m., with tables and chairs and a bar, so that folk can drink, eat and natter in a convivial atmosphere.

Prior booking for this year's Convention is being handled by the RSGB Headquarters office, and tickets for the Convention only are $£ 1.00$ (75 p for the under eighteens) or $£ 7.00$ for the Convention and Buffet. As usual, tickets can be bought at the door for the Convention. However, if you decide only then to attend the Buffet, it will cost you an extra $£ 7.50$ on top of your $£ 1.00$, so it would certainly pay to book in advance.

Tabular Matters

Congratulations to Syd Harden, G2AXI, the clear winner of the 1981 Annual VHF/UHF Table contest with 207 points. Bill Hodgson, G3BW, with 194 points, just beat his rival, Arthur Breese, GD2HDZ, who notched up 192, for second place. G2AXI also topped the 4 m individual table with 67 points, Syd being the only entrant to work nine countries on the band. GD2HDZ was second with 56 pts. and John Baker, GW3MHW, third with 52 . On 2 m , the first three all made over 100 points. Walt Davidson, GW3NYY, won with 108 points, and Bryn Llewellyn, G4DEZ, was second with 104. Both MS operators, their country totals were 30 and 31 respectively. Rob Mackean, G4HAO, was third with 103 points and worked 82 of the British Isles counties and regions. Highest country score for 1981 was that of Ken Willis, G8VR, with 32.

Chris Easton, G8TFI, heads the 70 cm table with 73 pts. including 13 countries, ahead of Ray Cox, G8FMK, with 67 pts. John Pilags, G8HHI, was third with 60 pts. Ten operators included scores for the 23 cm band which was introduced to enable Class B licensees to compete with those able to operate on 4 m on a fairer basis. G8FMK headed this table with 31 points, and Tony Collett, G8GXE, was second with 22 , and G8HHI third with 18 pts.
The 1982 Annual Table will embrace the same bands. All readers may participate, scores representing counties and countries worked on the various bands. Scores for all four bands may be submitted, but only the highest three will count in the total column. The counties and regions are the 78 listed in Radio Communication every January, plus the 26 EI ones. As far as

countries are concerned, the ARRL's $D X C C$ list is used, but with Sicily (IT9) and the Shetland Is. (GM) counting as extra countries. The first listings for 1982 will appear next month.

The QTH Squares Table will re-appear in March, too. This has become quite lengthy now so those few participants from whom nothing has been heard the previous twelve months will be deleted. They can always re-enter any time. Since the Annual Table will probably be short, initially, we will publish the latest All-Time 23 cm . Table in March, so please update your scores.

AMSAT-UK Notes

AMSAT-UK secretary Ron Broadbent, G3AAJ, advises that the P.C.B's for the NBFM Rx and TV Rx interface units as described in the UOSAT Handbook should be available in mid-February. It is now hoped to have Volume 2 of The Best of Oscar News ready in a couple of months. Of interest to clubs and schools are the sets of twenty, colour, 35 mm . slides
of the building and launch of UOSAT at $£ 3.20$ including postage. Also for schools, a leaflet is available describing the educational aspects of UOSAT, for the "price" of an s.a.e. The Annual General Meeting is scheduled for Saturday afternoon, April 3, at London House, as last year and members will receive formal notification in the next Oscar News which should be despatched shortly after this appears.

Contest News

The 432 MHz Fixed Contest is on Feb. 7 from 1000 to 1500 and is all-mode with radial ring scoring. Usual $\mathrm{RS}(\mathrm{T})$ and serial number, QTH locator and QTH information to be exchanged. There are two sections;-Single-op. and Multi-op. The March $6 / 7$ weekend sees the $144 / 432$ MHz and s.w.l. contest, for which further details will appear next month.

Cumulatives are established contests on the UHF and SHF bands and serve to generate activity, as well as enabling those who cannot participate in the longer,
single events, to indulge in a little friendly competition. This idea has been extended to 70 MHz and the first session is on Jan. 31. The remaining five are on Feb. 14, Mar. 14 and 28, Apr. 11 and 25. The times are all 100 to 1200 local. Rules and scoring as for normal contests of this type, with participants choosing the best three sessions for their entry.

Saturday, March 20, from 1900-2300, is the period of the first of the 1982 AGCW DL VHF/UHF CW Contests, this one being on 432 MHz . This is a Single-op. only affair with three categories. " A " is less than 3.5 w . RF; " B " is less than 25 w . and " "C" is over 25w. Exchange to consist of RST and serial no., class and QTH locator, e.g. $579022 / \mathrm{C} / \mathrm{ZL} 60 \mathrm{j}$. The scoring per QSO is;-Class "A" with Class " A " 9 pts; " A " with " B " 7 pts; "A" with "C" 5 pts; "B" with "B" 4 pts; "B" with "C" 3 pts. and "C'" with "C" 2 pts. QSO's with stations not sending a complete report are worth 1 pt . There are multipliers; each primary QTH locator square worked is worth one point and each DXCC country worked counts an extra five points. The final score is the QSO points times the sum of the multiplier points. All logs to Edmund Ramm, DK3UZ; P.O. Box 38; D-2358 Kaltenkirchen; Fed. Rep. of Germany, to be mailed not later than the last day of the following month. The 2 m events are on June 26 and Sept. 25.
DK3UZ has sent the results of the 2 m AGCW-DL Contest on Sept. 26, 1981 in which no G stations entered the Class " A " part. In Class "B" there were 28 entries and G4GGV (ZL37g) came 17th. with 1,334 points, and G5HD (XK09d) last with 36. G4KWQ (YM30b) came 8th. out of 12 in the Class "C" part with 1,334 pts.
Tony Haas, G4LDY, has sent the results of the Harlow Club Contest held last Aug. 29 and 30 in which the overall winner was John Brakespear, G8RZP, (Kent) with 13,720 pts. Alan Nottage, G8KPZ, (Kent) was 2 nd. with $12,650 \mathrm{pts}$. and The GD4IOM Contest Group, 3rd., with $10,608 \mathrm{pts}$. It seems that most participants liked the two session event and this format will be retained this year. The scoring system did confuse some folk and will be clarified next time. Winner on the 29th. was G8KPZ and on the 30th., G8RZP took the honours.

Six Metres

John Baker, GW3MHW, was surprised, like most of us, that the solar flux was still as high as 305 on Dec. 9 , some two years after the peak of cycle no. 21. He mentions that, on Dec. 7, W0SF received BBC TV sound on Channel 3 on 53.25

MHz. John had many $10 / 6 \mathrm{~m}$. crossband QSOs with the W5, 8 and 0 call areas, many at great strength. On the 8th., the W6s were working to the East Coast and the nearer Ws were making crossband QSOs with Europe. On the 12th., GW3MHW contacted TF3T at 1149 for the first GW/TF $10 / 6 \mathrm{~m}$ QSO, and a couple of minutes later, he worked 8 P 6 CX for the first GW/8P6 QSO. The YV5 beacon was heard at 1250 .

6 m . conditions remained good to Dec. 16, but tailed off as the solar flux fell. Even with the S.F. down to 138, VE1YX got his signal across the "pond," and on the 23rd., John had a QSO on SSB with him at RS 52 , with the S.F. at 153. By the 27th., 6 m . was in full swing again and on the 31 st., 8 P 6 KX and 8 P 6 MH , on 50.115 MHz , were working many Gs and Europeans. After three years of trying, VEIYX worked ZD8TC on 6 m . SSB on Dec. 28. There are now 82 countries on 6 m . and GW3MHW has now made 423 crossband QSOs.

Four Metres

On Dec. 8, EI6AS, EI6DT, G3APY, G2AOK and GW3MHW made $4 / 6 \mathrm{~m}$. crossband QSOs with VE1ASJ. John Baker's contact was the last, at 1353 and was a "first" GW/VE 4/6m. effort. Most 70 MHz reports were RST 339 with strong E 's on the Canadian side, as well as F2layer propagation. G3ENY, (Salop) is now back on 4 m . with 50 w . and a dipole, while G6XM, (Wilts.) is listening and expects to be transmitting soon. George Haylock, G2DHV, (Kent) reports very poor conditions on the band.

Two Metres

First, the MS happenings. The Geminids and Quadrantids showers are now over and a number of readers managed to work Polish stations before their licences were suspended when Martial Law was declared. For Bryn Llewellyn, G4DEZ, (Essex) many Geminids skeds failed due to icing or wind damage to the aerials. A successful test on sporadic meteors was made with SM3BIU (HX) on Dec. 10, and in the shower proper, he completed with OK3KFF (II), IlANT (EE) and OH5IY (NU) on the 12th. In the Quadrantids, on Jan. 2, Bryn completed with LA1K (FX), and on the 3rd., with OHIAA (LU) on SSB; OH6NU (MW) ; LA8OW (EU) and DF7RG (GI). Bryn remarks on the continuing activity on the random MS SSB frequency of 144.200 MHz in the January shower and singles out OH5NW who was S9-plus- 20 dB . for 45 seconds. G4DEZ's station now comprises the Yaesu FT-

TWO METRE ANNUAL TABLE			
Final Placings at December 31, 1981			
Station	Counties	Countries	Total
GW3NYY	78	30	108
G4DEZ	73	31	104
G4HAO	82	21	103
G4IGO	67	31	98
G3BW	69	29	98
G3FPK	74	22	96
G8VLQ	69	26	95
G4JZF	74	21	95
G8RZO	68	21	89
G8RZP	68	21	89
G8VFV	68	18	86
G2AXI	65	19	84
G3PBV	60	23	83
G8FMK	66	17	83
GD2HDZ	67	15	82
G8HHI	62	19	81
G8XMP	64	17	81
G8TFI	66	14	80
G8VR	44	32	76
G8WUU	61	15	76
G3FIJ	60	15	75
GM4COK	52	22	74
GW3CBY	58	15	73
G6ADC	62	11	73
G8RWG	57	15	72
G4GXL	55	15	70
GW8TVX	55	15	70
G6AJA	58	9	67
G8TGM	48	18	66
G8GXE	55	11	66
G4LDY	52	12	64
G4ARI	54	10	64
G8XTJ	52	11	63
G8RZA	50	12	62
G4MUT	49	12	61
G8TRW	47	11	58
G6ABB	44	12	56
G6ECM	44	11	55
G8KAX	43	11	54
G8SKG	39	10	49
GM4CXP	35	13	48
G3CO	39	8	47
G8TIN	40	7	47
G4MJC	29	11	40
G8LXY	33	6	39
G8MBI	28	9	37
G4FKI	20	5	25
G6CSY	21	4	25
GM4ELV	10	3	13

225RD and Tempo 6N2 amplifier with a pair of 16 -ele. Tonna Yagis, spaced at $12^{\prime}-10^{\prime \prime}$, up at 36 ft .
Rob Mackean, G4HAO, (Liverpool) made four QSOs in the Quadrantids on Jan. 3. LA3WU (CU); OZ1DSK (EP); DL7AN (GM) and IV3HWT (GF), all between 1200 and 1730. Rob suggests this shower peaked in the afternoon as all his morning skeds were abject failures. Ken Osborne, G4IGO (Bristol) mentions two MS contacts on Jan. 3; EA3ADW (BB) and YU3ULM (GF). Ken has worked HGIYA several times but cannot get a QSL. Anyone else had better luck?
In the Geminids, Paul Turner, G4IJE, (Essex) had two completed SSB MS skeds; SM0GWX (JT) and OZ2ZB (EQ) on Dec. 13. On Dec. 9, UK2RDX (MT) was a new country and square, and the same day, an MS back scatter QSO with GW3NYY (XL) was completed when both were beaming towards YP square. YU7AJH
(JF) and SP6AZT (IL) were worked on Dec. 10 and 11 respectively. The 12 th. brought OK3KFF (II); HG2SU (JH) and his first G station; SP8AOV (LL). The 13th. brought YU2IQ on random SSB (HE) and YU7QED (KF) on CW. YU3ES (GF) and 16WJB (HC) were worked on the 20th., LA1K (FX) for a new square on the 22nd., YU3ES again on the 26th., both stations only running 25 w ! The 30th. brought YU1ONB (KE) and DF7RG (GI).

In the Quadrantids, Paul got four new squares on Jan. 3; I2AV (EF); 13YXQ (FF) on SSB; UA2FAY (KO) by "tail-ending" G8VR's sked and the star turn, and best ever MS DX, UA3LAW (PO). The QRB is $2,056 \mathrm{kms}$. and Paul got a 22 sec . burst at S 9 to complete the QSO in 50 mins. To round off, YU3ES was again worked on random SSB. Paul reckons the Geminids shower was fairly good, but not spectacular, while the Quadrantids appeared to have two peaks; the one, as predicted, around 1400, with a second at 22-24 GMT.

Graham Taylor, G4JZF, (Staffs.) had one QSO in the Geminids with IV3HWT for country no. 22 and the 118 th. square. George Gullis, G8MFJ, (Wilts.) had a letter from Pavel Chmelar, OK2SGY (IJ) asking for skeds with stations in XM, XN, YM, YN and ZM squares. His address is;-Jana Svermy 35, 7570101 Valasske Mezirici, Czechoslovakia. CW or SSB modes. From the 20 m . VHF net, your scribe gleaned that OK1DPB (HK) runs 300 w . output to a 16 -ele. Yagi, with a 1.2 dB., BFT66 preamp. on receive. UK2RDX (MT) runs 500w. to a 9-ele. Yagi and the Rx has a 2N5397 1st. RF stage.

There were no significant Auroras in this period and tropospheric propagation was somewhat mediocre. An end-of-year note from Table winner Syd Harden, G2AXI, reveals little radio activity in the last three months. G2DHV (Kens) writes that he has called 16 stations on CW and had no replies, which he cannot understand. George's aerial is a rotatable, 6 -ele. Yagi. In frustration, he monitored the Oscar 8 satellite and was amazed at the strength of the 10 m . downlink signals, considering the low power and long distances involved. He heard seven countries, including a UA3.

FOUR METRE ANNUAL TABLE			
Final Placings at December 31, 1981			
Station	Counties	Countries	Total
G2AX1	58	9	67
GD2HDZ	49	7	56
GW3MHW	44	8	52
G3BW	42	6	48
G3F1J	41	5	46
G4FK1	37	5	42
G8VR	32	3	35
GW3CBY	27	6	33
G4AR1	18	2	20
G3CO	14	3	17
G3PBV	3	2	5
GM4CXP	3	1	4

Dave Sellars, G3PBV, (Devon) reckons 1981 to have been a poor year for tropo. with E 's not too good for his area. He mentions G8FMK's achievements in the tables using all home built gear. Dave remarks on the fact that several times a lift has occurred a day after our deadline for letters, citing Dec. 3. In the Fixed Contest on Dec. 6 , conditions were flat with 68 stations worked at an average QRB of 200 kms . He was quite surprised on Dec. 13 when, after G3CHN had read the GB2RS news bulletin, Roger was called by G3ZSS/PA0 in the Hague. There was a blizzard at the time and the barometer was reading about $28.8^{\prime \prime}$

G4HAO's total of 82 counties over 1981 is quite remarkable as Rob was only at his Liverpool home for 22 weeks. He is now well set up for MS work, so the countries score should be even better this year. G4IGO reckons 1981 to have been slightly better than 1980, with much more ionospheric DX. Ken worked 133 of the 158 squares heard. G4JZF commented upon the notes about his local inter ference problem, mentioned last month, and says it read as if it was his amplifier which was at fault. It was somebody else's, though. Sorry for the ambiguous reporting, Graham. (Cries of "Resign!"). The Dec. 6 Contest saw a slight increase in the number of QSOs but a drop in points due to the indifferent conditions from Cannock.

Jon Stow, G4MCU, (Essex) now has 93 squares confirmed of the 118 worked. Martyn Hunt, G6AJA, (Cumbria) is just one year on the band and has thoroughly enjoyed it. His station comprises a Yaesu FT-221R and 12-ele. ZL-Special. Welcome to another new correspondent Mick Cuckoo, G6ECM, from Herne Bay in Kent who, since he was licensed last September, has managed 44 counties and 11 countries on the band using the Icom IC-206E and Microwave Modules 144/100S amplifier and 8 -ele. Yagi at 185 ft. a.s.l. He found December a quiet month after some nice DX on Nov. 3 via tropo.

John Lemay, G8KAX (Essex) remarks that he has not known 2 m . so poor for so long as recently, so has worked nothing new lately. Neil Clarke, G8VFV, (W. Yorks.) also has not worked anything new from Sept. 4 last. John Fitzgerald, G8XTJ, (Bucks.) had a go in the Dec. 6 contest and remarks on some of the grotty signals. One local with an overdriven amplifier and speech processor turned up too much, deprived him of a QSO with GM8YJU. In submitting his final 1981 scores, Arthur Breese, GD2HDZ, refrains from comments on recent conditions as they would be unprintable!

Another new reader is Russ Clarke, GW3CCF, from Gwernymynydd in Clwyd, who will feature in the tables this year. His station comprises the FDK 750 with Expander, covering 2 m . and 70 cm . and he hopes to get on 23 cm . too, later on.

23 CENTIMETRE ANNUAL TABLE
Final Placings
at December 31, 1981

Station	Counties	Countries	Total
G8FMK	28	3	31
G8GXE	17	5	22
G8HH1	16	2	18
G3PBV	12	3	15
G8KAX	11	3	14
G3BW	7	5	12
GD2HDZ	5	4	9
G2AXI	7	1	8
GW8TVX	5	2	7
GW3CBY	3	2	5

UHF Bands

Little to report this month on 70 cm . and up. DF3RU (FJ49j) is looking for 70 cm . MS skeds. Karl runs four, 19-ele. Yagis and also mentioned $A r$ contacts. G2AXI hopes to have a go soon at finishing his 23 cm . gear. G3PBV heard FXIUHF (BI) on Dec. 3, but weakly, but DDIEK (DL) was a good signal. On 23 cm ., GB3BPO was S9-plus, and GB3AND, GB3CLE and GB3MLE were all quite strong, so Dave concentrated on this band working G4GLN, G3MCS and G8FMK. QSB was slow and deep with diversity reception effects notable between Newton Abbot and G4MAW in Paignton. Dave reckons the new 23 cm . repeaters will be useful propagation indicators and thinks the "meandering carrier" near 1,297.225 MHz recently might have been GB3WX at Brighton.

G 4 MCU is now up to 32 squares on 70 cm . the latest being GW3NYY (XL) worked on Dec. 3. That day saw activity from G8FMK and produced QSOs with G4HPU (Ipswich), G4CCH (Humberside), G4MAW and G3PBV in Devon. On the evening of the record low temperature in Shropshire, GB3CLE was very strong but there was no activity. Ray's 70 cm . aerial lost directivity for a few days due to snow, but the 23 cm . one, usually adversely affected by rain and freezing fog, was unaffected. A high level of construction is anticipated in 1982 and a 13 cm . Tx is contemplated. In a letter dated Dec. 6 , which missed last month's piece, Reg Woolley, GW8VHI, (W. Glam.) informs that G8DPV is QRV from Cornwall on 70 cm . with 50 w . and a 48 -ele. Multibeam. Also, EI9Q is waiting for a 2 x 4 CX 250 B amplifier for 70 cm . and masthead pre-amp. Dick has a pair of 88 -ele. Multibeams up.

Deadlines

An early deadline for the March feature. It is Feb. 3. For the following month it is Mar. 3. All your letters and table scores to;-"VHF Bands," SHORT WAVE MAGAZINE, 34 High Street, WELWYN, Herts. AL6 9EQ. 73 de G3FPK.

As featured in this mon the © PICOM IC-730A

ICOM s answer to your HF mobile
problems - the IC-730. This new $80 \mathrm{~m}-10 \mathrm{~m}$. 8 band transceiver offers 100W output on SSB $A M$ and $C W$ Outstanding receiver pertormance is achieved by an up-conversion system using a high IF of 39 MHz offering excellent image and If interference rejection. high sensitivity and above all. wide dynamic range Bult in Pass Band Shift altows you to continuously adjust the centre frequency of the IF pass band virtually eliminating close channel interference Dual VFO s with 10 Hz .100 Hz and 1 kHz steps allows effortiess tuning and what s more a memory is provided for one channel per hand Further convenience circults are provided such as Norse Blanker. Vox. CW Monitor APC and SWR Detector to name a few
A built in Speech Processor boosts talk power on transmit and a switchtable RF Pre-Amp is a boon on todays crowded bands Full metering. WWV reception and connections for transverter and linear control almost completes the IC- 730 s impressive facilties

Buy direct from us, or our agents and get two years full warranty on all ICOM models. Thanet Electronics
 143 Reculver Road, Herne Bay, Kent. Tel: 0227363859
 CD ICOM

- your one-stop shopping centre for Complete Equipment from 'Trio' \& 'Philips', Accessories from 'Jaybeam' and 'Microwave Modules', Components, Kits and the 'Video Genie' Microcomputer system.
Recommended by Catronics Experts - Best Value-for-Money in Microcomputers - the

Why not pay us a personal visit? CATRONICS are 300 yards from Wallington Railway Station (London Bridge or Victoria). Frequent buses from Croydon and Sutton. Three big car parks within 100 yards. Hire purchase facilities available on equipment. Credit Cards accepted. Mail orders are normally dealt with on day of receipt. All prices INCLUDE VAT.

CRYSTALS MANUFACTURED TO ORDER

Prices shown are for "one off"', to our standard amateur specs., closer tolerances are available. Please send us details of your requirements.
A Low frequency fundamentals in HC13U or HC6U Total tolerance $\pm 100 \mathrm{ppm} .0^{\circ}$ 10 $70^{\circ} \mathrm{C}$ 6.0 to 9.99 kHzHC 13 u £ 3280 10 to $19.99 \mathrm{kHzHC13} \quad \mathrm{U} \quad \mathrm{J} .00$ 20 to $29.99 \mathrm{kHzHC} 13 \mathrm{U} \quad \mathrm{E} 23.08$ 301059.99 kHzHC 13 U 601079.99 kHzHC 13 U E 23.08
E 21.73 $801099.99 \mathrm{kHzHC13U}$ E 15.69
E 13.08 100 to $159.9 \mathrm{kHzHC} 13+6 \mathrm{U}$ $160 \mathrm{to} 399.9 \mathrm{kHzHC6U} \quad \mathrm{E} 7.83$ $40010499.9 \mathrm{kHzHC6/U} \quad \mathrm{E} 7.00$ 500 to $799.9 \mathrm{kHzHC6U} \quad \mathrm{E} 7.83$
B High frequency fundamentals/overton
Adj. tol. $\pm 200 \mathrm{pm}$. Temp. 101. $\pm 30 \mathrm{ppm}-10^{\circ} 10+60^{\circ} \mathrm{C}$ 800 to 999.9 kHz (fund) $\mathrm{HCSU} \quad \mathbf{~} \mathbf{1 1 1 . 0 1}$ 1.0 to 1.499 MHz (fund) HCGU E11.25 1.510259 MHz (fund) $\mathrm{HCG} / \mathrm{U}$ 2.6to 20.99 MHz (fund) HCEU 3.4 to 3.99 MHz (fund) HC 18 g 25 U
4.0105 .99 MHz (fund HC 18 g 25 4.0105 .99 MHz (fund) HC 18 \& 25
6.0 to 21 MHz (fund) All hoiders 6.0 to 21 MHz (fund)
21 to 25 MHz (fund) 25 to 30 MHz (fund) 60 to $105 \mathrm{MHz}(50 \mathrm{~T}$ 605 105 $\mathrm{MHz}(50 / \mathrm{T})$ 125 to $125 \mathrm{MHz}(50 \mathrm{MH})$ 125 to $180 \mathrm{MHz}(70 / \mathrm{T})$ 149 to $180 \mathrm{MHz}(90 / \mathrm{T})$
180 to $250 \mathrm{MHz}(90 / \mathrm{T})$
Delivery - Mid range 1 MHz to 105 MHz norma weeks. Other frequencies 618 weeks
Holders: Low Frequencies 6 to $150 \mathrm{kHz} \mathrm{HC13U}, 150 \mathrm{kHz}$ to $3.4 \mathrm{MHz} \mathrm{HC6U}, 3.4 \mathrm{MHz}$ to $105 \mathrm{MHz} \mathrm{HC} \mathrm{6U,HC} 18 \mathrm{U}$ or $\mathrm{HC} 25 / \mathrm{U}$, over 105 MHz - HC 18 U and $\mathrm{HC} 25 / \mathrm{U}$.
HC 33 U (wire end HC6/U) is available on request as per HC6U.
HC 17/U (Replacement for FT243) available as per HC6/U at 350 surcharge on the $H C 6 / U$ price.
Unless otherwise specified, fundamentals will be supplied to 30pf circuit conditions and overtones to series resonance.

CRYSTALS FOR PROFESSIONAL USE
We can supply crystals to most commercial and MIL specifications, with an express service for that urgent order. Also for commercial use, eg TV or computer crystals, etc, we can supply at very competitive prices. Please send S.A.E. for details or telephone between 4.30 .7 pm and ask for Mr. Norcliffe

EXPRESS SERVICE

Many types of made to order crystals are available on our "EXPRESS SERVICE" - with delivery of three days on our class " A " service. Telephone for details.

CRYSTALS FOR MICROPROCESSORS

Please let us know your requirements e.g. 4 MHz HC 18 U 1 off £2.00; 100 off $\mathbf{f 1} 10$; 1000 off 99p; 2500 off 50 p.

ANZAC MD-108 DOUBLE BALANCED MIXER
5 to 500 MHz Supplied with full details for only $\mathbf{£ 6 . 9 5}$.

TWO METRE CRYSTALS

CRYSTAL FREQUENCY RANGE USE (TX or RX) and HOLDER OUTPUT FREQUENCY											
144.4 (433.2)	b	e	b	e	e	b	e	e	e	e	e
144.800	e	e	e	e	e	c	c	c	e	c	e
144.825	e	e	e	e	e	e	e	e	e	e	e
144.850	e	e	e	e	e	e	e	e	e	e	e
145.000RROT	a	c	a	c	c	b	e	b	e	a	c
145.025/R1T	a	c	a	e		b	e	b	e	-	e
145.050/R2T	a	c	a	e	-	b	e	b	e	e	e
145.075/R3T	a.	c	a	e	-	b	e	b	e	-	e
145.100 R 4 T	a	c	a	e	-	b	e	b	e	e	e
145.125/R5T	a	c	a	e	e	b	e	b	e	-	e
145.150/RET	a	c	a	e	e	b	e	b	e	e	e
145.175/R7T	a	c	a	e	e	b	e	b	e	e	e
145.200/R8R	a	c	a	e	e	b	b	b	a	e	c
$145.300 /$ S 12	e		e	e	e	e	e	e	e	e	e
145.350/ 14 $^{\text {1 }}$	e	e	e	e	e	e	-	e	e	e	e
145.400. S 16	e	e	e	e	-	e	e	e	e	e	e
145.425/S 17	e	e	e	e	e	e	e	e	e	e	e
145.450/S 18	a	e	a	e	e	b	b	b	a	-	e
145.475/S 19	a	e	a	e	e	b	b	b	a	a	e
$145.500 / 520$	a	c	a	c	c	b	b	b	a	a	c
145.525 S 21	a	c	a	c	c	b	b	b	a	a	c
1455501522	a	c	a	c	c	b	b	b	a	a	c
145.575/S23	a	c	a	c	c	b	b	b	a	a	c
145.600 ROR	a	c	a	c	c	e	b	b	a	a	c
145.625/R 1R	e	e	e	c	c	e	b	e	a	a	c
145.650R2R	-	e	e	c	c	e	b	e	a	a	c
145.675/R3R	e	e	e	c	c	e	b	e	a	a	c
145. 700 R 4R	e	e	e	c	c	e	b	e	a	a	c
145.725/R5R	e	e	e	-	c	e	b	e	a	-	c
145.750 R6R	e	e	e	c	c	e	b	e	a	a	c
145. 775/R7R	e	e	e	-	c	e	b	e	-	a	c
145.800/R8R	a	c	a	c	c	b		b	,	a	e
145.950/S38	a	e	e	c	e		,	-	,	a	e

PRICES: (a) £2.15, (b) £2.55, (c) £280, and (e) £4.87.

AVAILABILITY: (a), (b), (c) stock items, normally available by return (we have over 5000 items in stock). (e) $4 / 6$ weeks normally N.B. Frequencies as listed above but in alternative holders and/or non stock loads are available as per code (e).

ORDERING. When ordering please quote (1) Channel, (2) Crysta frequency, (3) Holder, (4) Circuit conditions (load in pf). If you cannot give these, please give make and model of equipment and channel or output frequency required and we will advise if we have details

TERMS: CASH WITH ORDER - MAIL ORDER ONLY PICES INCLUDE P. \& P. (BRITISH ISLES) EXCEP WHERE STATED - OVERSEAS CHARGED AT COST

70 cm CRYSTALS

Due to the much higher multiplication involved compared with 2 metres all our stock 70 cm crystals are to much higher tolerances than our standard amateur spec. crystals. We are stocking the following channels: RBO, RB2, RB4, RB6, SU8, RB10. RB11, RB13, RB14, RB15, SU18, and SU20, TX \& RX for use with:- PYE UHF Westminster (W15U), UHF Cambridge (U10B), Pocketfone (PF1) and UHF PF70 Range, and STORNO COLCOM 662 all at £ 255 .
For other channels and/or equipments crystals can be made to order to the same closer tolerances as our stock range at a cost of $£ 5.72$ for trequencies up to 63 MHz and $£ 6.58$ for $63-105 \mathrm{MHz}$, or to our standard Amateur specifications see "CRYSTALS MANUFACTURED TO
ORDER" prices Opposite. ORDER" prices opposite.

4 m CRYSTALS FOR $70.26 \mathrm{MHz}-\mathrm{HCGU}$ TX 8.7825 MHz and $R \times 6.7466 \mathrm{MHz}$ or $29.7800 \mathrm{MHz} £ 2.55$ 10.245 MHz '"ALTERNATIVE'" I.F. CRYSTALS - $£ 255$. 10.245 MHz "ALTERNATIVE" I.F. CRYSTALS -- £255. 455 kHz I.F.s to get rid of the "birdy"' just above $145 . \mathrm{MHHz}$, In HC6U, HC18U and HC25U.

CRYSTAL SOCKETS (LOW LOSS)
HC6U and HC13U 25 p each. HC25/ 20 p each plus 200 p. \& p. per order (p. \& p. free if ordered with crystals). CONVERTER/TRANSVERTER CRYSTALS - HC18U All at $£ 3.30,38.6666 \mathrm{MHz}(144 / 28), 42 \mathrm{MHz}(7028)$, $58 \mathrm{MHz}(144 / 28), 7 \mathrm{MMHz}^{(144 / 4), 71 \mathrm{MHz}(144 / 2), 96 \mathrm{MHz}, ~}$ 1, 296, 432 144), 101 MHz (432 28), $101.50 \mathrm{MHz}(434 / 28)$, $105.6666 \mathrm{MHz}(1,296028)$ and $116 \mathrm{MHz}(144 / 28)$ TEST EQUIPMENT FREQUENCY STANDARD CRYSTALS 200 kHz and 455 MHz in HC6U $£ 3.50$
100 kHz in HC 13 U and 1 MHz in HC6U £295 5 MHz in HC 6 U and 10 MHz and 10.7 MHz in HC 6 U and HC25 U £280.

AERIALS

MULTI BAND INVERTED ' V ' TRAPPED DIPOLE 80 Thru' 10 metres - Rated @ 2 kW - Only 26 m Iong. Introductory offer $£ 3200+$ VAT ($£ 36.80$ inc. VAT) p. \& p. $£ 2.00$.

THE ARAKI RANGE OF AERIALS

10 metre whip only 1.3 metre ong with magnet 10 metre whip only 1.3 metre long with guttermount 2 metre m / s
2 merre $5 / / \lambda$ whip with guttermount
2 metre $1 / 4$ ג whip with magmount
2 metre $\lambda \lambda$ whip with guttermount
nagmount band whip with $\underset{2 \mathrm{~m} / 70 \mathrm{~cm} \mathrm{D}}{\mathrm{D}}$

guttermount

$2 \mathrm{~m} 3 / 8$ Base Statlon Aerials $2 \mathrm{~m} / 8+6$ groundplane 3.5 dB gain $70 \mathrm{~cm} 5 / 6+5 / 6$ colinear 6 dB gain

The Araki Range are handmade of top quality anti-
corrosion treated aluminium or stainless steel.

PLEASE ENCLOSE S.A.E. WITH ALL ENQUIRIES

 To hold together 12 copies of the new-size "Short Wave Magazine" are now available.
 Strongly made with stiff covers, and bound in red Wintrel Achina, these handsome binders have the title and date frame blocked in gold on the spine. Price $£ 4.65$ each, including post/packing.
 Publications Dept.
 Short Wave Magazine Ltd.,
 34 High Street, Welwyn, Herts. AL6 9EO.

RADIO AMATEUR PREFIX-COUNTRY-ZONE LIST

published by GEOFF WATTS
Editor of "DX News-Sheet" since 1962
The List you have always needed, the list that gives you everything, and all on one line! For each country: -
a. its DXCC "status"
b. the normal prefix
c. the special prefixes d. the ITU callsign block allocation
e. the continent
f. the "CQ" Zone No.
g. the ITU Zone No.

Full information on Antarctic stations, USSR Klub-stations, obsolete prefixes used during the past 10 years, and much more
The List can be kept always up-to-date because ample space has been provided for adding every new prefix, each new $\mid T U$ allocation, etc Everything arranged alphabetically and numerically in order of prefix. Ideal for Contest operators and SWL's.
Tell your Club-members about it. Order an extra copy for that overseas
friend. 15 pages. Price 60p (UK), overseas (air mail) \$2.00 or 5 IRCs
GEOFF WATTS
62 BELMORE ROAD, NORWICH NR7 OPU, ENGLAND

COLLINS KWM-380
PRICE $£ 1,595.00$ inc. VAT.

DRAKE TR-7 AND PS7,
FULL COVERAGE ALL BANDS
£ 995.00 inc. VAT.

BEARCAT 220 FB $£ 198.95$ inc. VAT.

DON'T MISS THE SPECIAL OFFERS ON THIS EQUIPMENT! LIMITED STOCKS

AND EVERYTHING ELSE IN AMATEUR RADIO
Just around the corner from West Hampstead Station, Jubilee Line. 30p in stamps for full list + details.
S.E.M. ACTIVE MULTIFILTER

Will improve ANY receiver on ANY mode. Gives "passband tuning" \& "variable selectivity". Switched Hi-pass, Lo-pass, peak or notch. Selectivity $25 \mathrm{KHz}-20 \mathrm{~Hz}$ tunable from $2.5 \mathrm{KHz}-250 \mathrm{~Hz}$. PLUS another notch which can be used in any switch position and covers $100 \mathrm{~Hz}-10 \mathrm{KHz}$. $\{57.00 \mathrm{Ex}$ stock.

S.E.M. EZITUNE

"In my fifty years on the air, this is the most useful gadget l've ever seen". Connects in aerial lead, produces $S 9+(1-170 \mathrm{MHz})$ noise in receiver. Adjust A. T.U. For minimum you can transmit through it, to save your P.A. \& stop QRM. $\mathbf{£ 2 5 . 0 0}$. Ex stock.
S.E.M. TRANZMATCH

The most VERSATILE transmatching system. Will match from 15 to 50000 hms BALANCED or UNBALANCED at Up to 1 kW . Link coupled balun means no connection Ox ax or wire feed. 160.10 metres $£ 65.00$. 8010 metres $£ 58.00$. EZITUNE builh-in $£ 19.50$ extra. All Ex-stock.
S.E.M. 2 METRE TRANZ MATCH
$512^{\prime \prime} \times 2^{\prime \prime}$ front panel. $3^{\prime \prime}$ deep. 50239 s. $\mathbf{f 2 5} 30$.
THE SENTINEL AUTO Mk $\| 2$ or 4 METRE PRE-AMPLIFIER
These include NEW PROTECTION circuit to give MAXIMUM LEGAL through power rating. Completely new third generation DUAL GATE MOSFET pre-amp giving 1dB N.F. and 2008 gain with GAIN CONTROL and OFF switch (straight through when OFF) High Q tuned circuits for high selectivity. 12V. 25 mA .

SENTINEL STANDARD Mk II 2 or 4 METRE PRE-AMPLIFIER
Same as the AUTO above less R.F. switch 12 V 5 mA . $£ 15.00^{*}$ Ex stock.
PA3
ONE cubic inch miniature 2 matre pre-amplifier. Same circuit as above. External gain can be added. Full instructions. $£ 7.96 \mathrm{Ex}$ stock
70 cms versions of all these pre-amps $£ 4.00$ extra. Marine Band Ex stock.
Other frequencies to order.
SENTINEL 2 METRE LINEAR POWER AMPLIFIER/PRE-AMPLIFIER
These units use the latest techniquas and transistors for highest reliability and performance. Infinite SWR PROTECTED devicas. ULTRA LINEAR, all modes A F switched. Same POWER GAIN at lower drive powers. Supply 13.8V nominal. SO2398. Three models.
Twelve times Power gain. 3 W IN 36W OUT. 4 amps. Max. drive $5 \mathrm{~W} .6^{\prime \prime} \times 2 \%^{\prime \prime}$ front panel, 4/2" deep. $\mathbf{1 5 7 . 5 0}$ Ex stock.
2. SÉNTINEL 50

Five times power gain. 1OW IN 50W OUT. Max. drive 10W. Same size as the Sentinel 35. £ 89.50 Ex stock.

3. SENTINEL 100

Ten times power gain. 1OW IN 100 W OUT. Max. drive 16 W . Size: $6 \frac{1}{2} 2^{\prime \prime} \times 4^{\prime \prime}$ front panel, $3 / 2^{"}$ deep. 12 mpss . Price: $£ 100 \mathrm{Ex}$-stock.
All available less pre-amp for $£ 8.00$ less.
SENTINEL H.F. WIDEBAND PRE-AMPLIFER
2.40MHz. 15 dB gain. Ideal for 15 and 10 metres and OSCAR or an ACTIVE AERIAL. 912 V . Size: $2 \%^{\prime \prime} \times 11^{\prime \prime} \times 3^{\prime \prime}$. Two versions.

1. STANDARD

Performance as above. $£ 10.00^{*}$ Ex stock.
Same per
Same performance as above with a change over relay r.f. operated by your transceiver for direct connection in your aerial co-ax. $£ 16.93^{\circ}$ Ex stock.

FREQUENCY CONVERTERS
SENTINEL DUAL GATE MOSFET 2 METRE OR 4 METRE CONVERTERS
N.F. 2 dB . Gain 30 dB . IFs 2 metres: $2-4 \mathrm{MHz}, 46 \mathrm{MHz}, 2830 \mathrm{MHz} .4$ metres: 28.28 .7 MHz .912 V . 15 mA . f 24.73 Ex stock.

SENTINEL $\times 2$ METRE CONVERTER
Same as above plus mains power supply. £2880 Ex stock.
70 cm to $28.30 \mathrm{MHz} £ 2880$.
SENTINEL L.F. CONVERTER
$10 \mathrm{KHz}-2 \mathrm{MHz}$ IN. 2830 MHz OUT. 912 N 5 mA £ 20.80 Ex stock.
SENTINEL TOP BAND CONVERTER
1.823 MHz IN. 1414.5 MHz OUT. 9.12 V 5 mA . £20.80 Ex stock.
S.E.M. LAMBIC KEYER

The ultimate auto keyer using the CURTIS custom LSICMOS chip. Tune and sidetone Switching. $£ 30.00$ Ex stock. Twin paddle touch key. $£ 1250 \mathrm{Ex}$ stock.
S.E.M. Morse practice osc.; boxed. $£ 8.50$. Morse key $£ 3.75$.
S.E.M. EUROPA C 2 METRE TRANSVERTER.

100W. Tx. 2dB NF Rx. £ 126.50.
12 MONTHS COMPLETE GUARANTEE.
Prices include VAT and delivery. C.W.O. or phone your credit card number for same day service.

- means Belling Lee sockets, add $£ 1.90$ for 50239 sor BNC sockets. Ring or write for more information. Place orders or request information on our Ansaphone at cheap rate times.

Ne: Whorkibo
 NOW+TEN:TEC

Introducing a New Concept in HFcommunications

A NEW SERIES WITH NEW FEATURES, NEW PERFORMANCE, AND ALL 9 HF BANDS. CONTINUING THE SUCCESS OF A GREAT RANGE OF TRANSCEIVERS BACKED BY KW SERVICE The OMNI-C
(TOP of any class) The DELTA (an excellent "workhorse'" for Home station or Mobile) The ARGONAUT (amazing performance ALUN at low-cost)
Come to KW for all your other amateur radio requirements KW service and guarantee - KW maintains the tradition of service the company is renowned for. Output-transistors unconditionally guaranteed for 12 months. The KW + TEN-TEC units offered above are introduced as a prelude to fully UK essembled equipment.
黄 (A full range of accessories is available for $K W+T E N-T E C$ equipment) Other KW units available
KW 107 Supermatch KW trap dipole KW E-Z match KW traps KW Balun KW antenna switch

KW + TEN - TEC ARGOSY HF SSB/CW TRANSCEIVER $10-80$ metres, 100 watts (Switchable to 10 watts). Notch Filter. Full break-in on CW. Automatic normal sideband selection plus reverse. 12-14v D.C. input. All solid-state. For the price of $£ 320.00+V A T$. A WINNER AT LOW COST.

KW COMMUNICATIONS LTD
Vanguard Works. Jenkins Dale, Chatham ME4 5RT Tel:0634-815173 Telex:965834 KW COMM G

FOR QUALITY CRYSTALS - AT COMPETITIVE PRICES. POPULAR FREQUENCIES IN STOCK - MADE TO ORDER 10 kHz to 225 MHz . RB15 Pocketfone crystals now in stock.

Also in stock: ROto R7 and S8 to S23 for following: Belcom FS 1007, FDK TM56, Multi 11 Quartz 16 and Multi 7, Icom IC2F, 21, 22A and 215, Trio Kenwood 2200, 7200 . Uniden 2030 and Yaesu FT 2FB, FT 2 Auto, FT224, FT223 and FT202
Also in stock 4 and 8 MHz TX in HC6/U for 145.8 MHz . Icom crystals $T X$ for 145.6 MHz (RRO). 44 MHz RX crystals in HC6 for 145.8 and 145 (RRO). All at above price.
4 METRE CRYSTALS for 70.26 MHz in $\mathrm{HC} 6 \cup \mathrm{U}$ at $\mathbf{£ 2 2 5}$. TX 8.78250 MHz . RX 6.7466 or 29.78MHz in stock.

70 cm CRYSTALS in stock 8.0222 and 12.0333 in HC6 $£ 1.85$. Pye Pocketfone PF 1, PF2. PF 70 and Wood and Douglas $£ 4.50$ a pair or TX $£ 225$, RX $£ 250$, SUB(433.2) RBO, RB2, RB4, RB6, RB 10, RB 11, RB13, RB 14 and RB 15.
CONVERTER CRYSTALS IN HC $18 / \mathrm{U}$ at $£ 285$. In stock $38.666,42.000,70.000,96.000$. $101.000,101.500,105666$ and 116.000 MHz .
TONE BURST AND I.F. CRYSTALS in HC $18 \cup \mathrm{U}$ at $\mathbf{~} 225$ in stock. 7.168 MHz for 1750 kHz
and 10.245 MHz for 10.7 MHz IF's.
FREQUENCY STANDARDS in stock $£ 275$, HC6 $200 \mathrm{kHz}, 455 \mathrm{kHz}, 1000 \mathrm{kHz}, 5.000 \mathrm{MHz}$ and 10.000 MHz . HC $13100 \mathrm{kHz}, \mathrm{HC} 181000 \mathrm{kHz}, 7.000 \mathrm{MHz}, 10.700 \mathrm{MHz}, 48.000 \mathrm{MHz}$ and 100.00 MHz

IMADE TO ORDER CRYSTALS SINGLE UNIT PRICING

IFundamentals	Price Group	Adjustment Tolerance ppm	Frequency Ranges	Price and Delivery	
	1	200 (total)	10 to 19.599 kHz	-	£23.00
	2	200 (total)	20 to 29.999 kHz	-	£16.50
	3	200 (total)	$3010 \quad 99.999 \mathrm{kHz}$	-	£ 10.50
	4	200 (total)	10010999.999 kHz	-	£6.00
	5	50	1.00 to 1.499 MHz	£9.00	£6.00
	6	10	1.50 to 1.999 MHz	£4.75	£4.20
	7	10	2.00 to 2599 MHz	£4.75	£4.00
	8	10	2.60 to 3.599 MHz	£4.55	£3.70
	9	10	4.00 to 20.599 MHz	£4.55	£ 3.60
	10	10	21.00 to 24.000 MHz	f6.00	f 5.40
Fd OVT	11	10	21.00 to 59.999 MHz	¢4.55	f 3.60
5 th OVT	12	10	60.00 to 99.999 MHz	£5.00	¢4.00
	13	10	100.00 to 124.999 MHz	£6. 15	£5.20
5th, 7th \&	14	20	125.00 to 149.999 MHz	-	£6.00
9th OVT	15	20	150.00 to 225.000 MHz	-	£7.50

Uniess otherwise requested fundamentals will be supplied with 30pF load capacity and overtones for series resonance operation. HOLDERS - Please specify when ordering - 10
DELIVERY Column A 3 to 4 weeks. Column B 6 to 8 weeks
DISCOUNTS. 5\% mixed frequency discount for 5 or more crystals at B delivery. Price on application for 10 or more crystals to same frequency specification. Special rates for bulk purchase schemes including FREE supply of crystals used in UK repeaters.
EMERGENCY SERVICE SURCHARGES (to be added to A delivery prices). 4 working days $\mathbf{£} 126$ working days $£ 7.8$ working days $£ 5.13$ working days $\mathbf{£} 3$ (maximum of 5 crystals
CRYSTAL SOCKETS HC6/U and HC25/U 16p. MINIMUM ORDER CHARGE £1.50.
TERMS. Cash with order, cheques and postal orders payable to QSL Ltd. All prices include postage to UK and Irish addresses. Please note Southern Irish cheques and postal orders are no longer acceptable. Please send bank draft in pounds Sterling.

PRICES ARE EX VAT. PLEASE ADD 15\%

The silicon 'Chip', the microprocessor, and the whole field of modern electronics will revolutionise every human activity over the next decade If you are looking for a new job or career, promotion, your own businese or simply want to keep abreast of modern developments - you will need to marter the subject. It devolone donely and fficiently in a practical way. ca bo don knowledge is needed. Write to uew No previous knowledge is needed
without the alightest obligation.
without the alightest obligation. . . . at home, for over 40 years!

MASTER ELECTRONICS LEARN THE PRACTICAL WAY BY SEEING AND DOING
 - Buiding an oscilloscope. Recognition of components

- Underztanding circuit diagrams. Handling all types Solid State 'Chıps - Carry out over 40 experiments on basic circuits and on digital electronics.
- Teating and servicing of Radio, T.V.. Hi.Fi and all types of modern computerised equipment.

MASTER MICROPROCESSORS

LEARN HOW TO REALLY UNDERSTAND MICROPROCESSORS, HOW THEY WORK AND THEIR APPLICATION TO COMPUTER TECHNOLOGY,

- Complete Home Study Library - Programming
- Special Educational Microprocessor Equipment supplied
- Services of skilled tutor available throughout course

MASTER THE REST

- Radio Amateurs Licence Logic/Digital techniques - Examination courses (City \& Guilds etc.) in electronics
- Semi-conductor technology
- Training Kits (Signal Generators, Digital Meters etc.)

BECOME A

 RADIO AMATEURLearn how to become a radio amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.
No previous knowledge required.

188 Newington Rd., Ramsgate, Kent CT12 6PZ, England. Tel. 084353073 For Technical Info. 084362839

G2BAR HAM BAND AERIALS.

2 metre Folded Dipole Y AGI 5 FD. 5 element Square section Boom. 8 FD. 8 element Reinforced Boom.	$\begin{aligned} & \text { Price ir } \\ & £ 9.78 \\ & £ 1258 \end{aligned}$	$\begin{aligned} & \text { c. VAT } \\ & \text { £ } 1.40 \end{aligned}$
2 metre 'J' Pole		
$1 / \mathrm{JP}$. $1 / 4$ wave matching sections, enclosed connectors with half wave radiator 15 mm square elements.	£9.78	"
70 cms . Folded Dipole YAGI's 6/FD. Gelement square section boom. 11/FD. 11 element reinforced boom.	$\begin{aligned} & £ 9.20 \\ & £ 12.58 \end{aligned}$	"
H.F.YAGI BEAMS 2 element YAGI Beams		
Driven and director elements. Boom to element clamps		
Tubular Gamma Match tuning unit supplied.		
10 metre - 2 element array.	£34.50	E6.00
15 metre - 2 element array	£42.50	,
20 metre - 2 element array	£52.50	
3 element YAGI Beams		
10 metre - 3element array.	£46.00	"
15 metre - 3element array	£57.00	"
20 metre - 3element array.	£68.00	'*
Well designed and constructed		
Boom to Mast; bracket plate; 4U Bolts.	£4.60	£1.40
Trapped Vertical $1 / 4$ wave 300 watt. 10-15-20 metres. Tuned Slim Line Traps -		
PORTOMASTS 1214 telescoping aluminium tubingextended		"
to 12'6* ${ }^{\prime \prime}$ mast including 3guys and ground pegs.	£ 12.00	f 1.40
18 ft . Portomast with 6 guys and ground pegs...	£16.00	..
@ 15% and P.P.		
4 + METRE RANGE 1/2 Wave Centre Fed Dipole		
$15^{\prime \prime}$ Boom section and Mast bracket	£ 5.75	£1.40 P.P.
2 Element Folded dipole YAGI with	$\text { £ } 10.35$	"
Boom and Mast bracket supplied.		
4 Element Folded dipole YAGI with raflector 2 Directors Boom and Mast bracket supplied.	£16.10	£6.00
6 Element Folded dipole YAGI with reflector and 4 directors		
3 Section and mast bracket supplied	£27.60	£6.0

UPPINGTON TELE-RADIO (Bristol) LTD. 12-14 Pennywell Road, Bristol BS5 OTJ. Tel. 557732
Please send 300 stamps for descriptive leaflets.

ALL BRITISH MICROPROCESSOR CONTROLLED TERMINAL UNIT FOR CW AND RTTY

FEATURING

Integral five inch VIDEO MONITOR
Professional KEYBOARD with numerous special functions
Real-time CLOCK
On board DEMODULATOR and MODULATOR (CW, FSK, AFSK)
DECODE and ENCODE both CW (Morse) and RTTY (Baudot)
Automatic SPEED TRACKING on receive
THREE SPEED SETTINGS on transmit for each mode
Both send and receive SPEED DISPLAY on screen
SCREEN STORE and RECALL function
PORTABLE - runs from 13.8 Volts (ideal for rallies)
Highly ROBUST in smart black cabinet with carry handle
Your CALL SIGN programmed in for 'DE' (Here is) function
SPECIAL FUNCTIONS include 'Quick brown fox' generator
'CQ CQ CQ' key QRZ? (who are you?) key
AR AS KN VA VE barred characters
One year NO-QUibble GUARANTEE.
ALL THIS AT A MUCH LOWER PRICE THAN COMPARABLE IMPORTED PRODUCTS
£395
inc. VAT and carriage
(Dealer enquiries welcome)
For full technical specification write to
POLEMARK Ltd., 148-150 High Street, Barkway, Royston, Herts. SG8 8EG

REG. WARD (G2BSW) \& CO. LTD.
 South West Stockists for

YAESU - SWANCUBIC - KDK
YAESU PRICES

$$
\text { KDK FM } 2025 \quad £ 199.00
$$

Ancillary equipment sțocked include: DRAE, P.S.U.s, wavemeters, SEM range of products, Shure microphones, Jaybeam aerials, cables, rotators, plugs, sockets, comprehensive range of valves.
Please check prices and availability before ordering. VAT included in all prices - carriage extra.

TERMS: CASH/CHEQUE WITH ORDER.
ACCESS/BARCLAYCARD/TRUSTCARD ACCEPTED.

> H.P. ALSO AVAILABLE.

GEORGE STREET, AXMINSTER, DEVON EX 13 5DP Telephone (0297) 33163

BETTER
 SHORT WAVE RECEPTION

by William I. Orr W6SAI and Stuart D. Cowan W21X
New 1981 (5th) Edition!
In the latest edition of this excellent work for all those who own (or intend to own) a radio receiver, these two wellknown and respected writers have produced chapters covering: the radio spectrum and what you can actually hear world-wide; the tuning of a shortwave receiver; the business of buying a receiver, both new and secondhand; a description of the SW Rx in non-technical terms, together with receiver adjustment and alignment; DX-ing above 30 MHz ; a description of the VHF receiver; building and adjusting efficient aerials; reception techniques.
Thoroughly readable and "digestible", this book is without doubt a very valuable addition to the bookshelf of any SWL.

160 pages
$£ 3.80$ inc. post.

Order from:

Publications Dept.
Short Wave Magazine Ltd. 34 High Street, Welwyn, Herts. AL6 9EO

("SITUATIONS"AND "TRADE')

20p per word, minimum charye $£ 2.40$. No series discount. All charge payable with order. Insertions of radio interest only accepted. Add 50 per cent for Bold Face (Heavy Type). No responsibility accepted for transcription errors. Box numbers 40p extra. Send copy, with remitance, to the (lassified Iep1., Short Wave Magarine Lid., 34 High Sireet. Welwyn Herts. Al6 9EQ:

TRADE

Simple, cheap, efficient long wire aerials. Use our multistrand wire, instructions supplied. $150-\mathrm{ft}$. lengths, $£ 5.00$ including postage.-Halbar, 14 Conway Crescent, Bedford MK41 7BW.

Listener and QSL cards, quality printing on coloured gloss cards, at competitive prices. Send s.a.e. for samples.-S. M. Tatham, "Woodside", Orchard Way, Fontwell, Arundel, West Sussex.

Amateur Equipment bought and sold, cash waiting. Contact G3RCQ. Hornchurch 55733 evenings.

SWR problems? The VHF Antenna-Tune, designed for two metres, will sort them out, $£ 28.95$ inc. postage. Missing DX? SWL's should be using the Antenna Tune/Select, $£ 27.65$ inc. postage. Please send s.a.e. for full details. - PJ Communications, 159a High Street, Maldon, Essex CM9 7BS.

Want to learn Morse? Our C90 Morse cassette (2-12 w.p.m.) complete with data is the solution. Only $£ 4.00$.-Midland Electronic, 70 Bloomfield Drive, Athlone, Westmeath, Ireland.

March issue: due to appear February 26th. Single copies at 80p post paid will be sent by first-class mail for orders received by Wednesday, February 241h, as available.-Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.

Good second-hand equipment always wanted. Come to AMATEUR RADIO EXCHANGE for the best deal. - 2 Northfield Road, Ealing, London W13 9SY. (Tel: 01-579 5311.)

QSL cards. Sample pack and price list forwarded on receipt of 22p stamp. - Derwent Press, 69 Langstone Drive, Exmouth, Devon EX8 4HZ.

Courses - RADIO AMATEURS EXAMINATION, City and Guilds. Pass this important examination and obtain your licence, with an RCC Home Study Course. For details of this and other courses (GCE, professional examinations etc.) write or phone: THERAPID RESULTS COLLEGE, Depi. JV1, Tuition House, London SW 194DS. Tel: 01-9477272 (9a.m. to 5 p.m.), or use our 24-hr Recordacall Service, 01-946 1102, quoting Dept. JV1.

Sunny RYDE, I.o.W., modern self-catering holiday flatlets, aerials available. Over 100 feet a.s.l-G G3KPO, "Arlington House", Pellhurst Road, Ryde. (Dial-a-brochure: 0983-62513).

Personalised QSL's: 1000 for $£ 11,5000$ for $£ 38$. Log books available. Send s.a.e. for samples.-Printshop, 89 Derwent Street, Consett DH8 8LT.

Automatic Morse decoder, low cost easy-build 9 v . circuit, accepts audio input or practice key, gives continous readout on 12 -character alphanumeric display. Send $£ 3.95$, plus large s.a.e. for fully detailed 17-page construction manual. Parts and PCB available. - N. MacRitchie (Micros), 100 Drakies Avenue, Inverness IV2 3SD. (Tel: 0463-221194).

DIY QSL's, 100 mixed designs, $£ 1.90$. Eight designs, coloured card, s.a.e. samples.-RWW, P.O. Box 11, Romsey SO5 8XW.

Buy from the Short Wave Specialists every time ... you'll get good service from professionals who know your hobby well. For example:

your Barclaycard, Access or LAR Creditcard number. Altematively, call in for a chat. The shop is just 10 minutes from Leeds City Station and there's easy parking if you travel by car. *Instant HP for licensed Amateurs. "Extended Credit Terms Available. A QUOTATION ON ALL CREDIT ITEMS IS AVALLABLE
*Open Mon-Fri 9.15-6.00 pm, Saturday 9.15-5.30 pm

POST NOW!

Send 50p for Catalogue and Price List.
I enclose cheque for Σ \qquad Plus 50p for Brochure
to purchase
"delete if not applicable.

Name
Address

Post to: Leeds Amateur Radio, 60 Green Road, Meanwood, Leeds LS6 4JP. TO BARCLAYCARD/ACCESS/LAR
I authorise you to debit my Barclaycard/Access/
LAR Budget Account with the amount of Σ
My No. is

Signature

TRIO DISTRIBUTOR, LAR are area distributors for CUSHCRAFT, Antenna Specialists, ICOM, Microwave Modules.
R.A.E. ** TUITION ** R.A.E.

Obtain the highly coveted Amateur Radio Licence. Personal tuition, specifically paced to achieve this result, is available in Georgian Bath. This is a five day course leading from basic principles, through the City \& Guilds syllabus, to examination level. The classes, held on the outskirts of this beautiful City, are essentially small: so each student is able to receive the required amount of tuition, Instruction is given by G3UWJ specialist in personal tuition and co-author of 'Amateur Radio'. For more than a decade students of all ages and walks of life have benefited from these courses and are now licensed amateurs.
For further details please write, enclosing a S.A.E., to:
PETER BUBB - tuition
58 Greenacres, Bath, Avon, BA 1 4NR.
5day courses refresher courses or telephone 022527467
revision courses private individual tuition
introduction to electronics (non-exam course)

1st GRADE COMPONENTS AND ACCESSORIES By Return

HIGH STAB RESISTORS. E12 RANGE, $1 / 4$ W Carbon Film. 1 R to 10 M .1 p each. WIREWOUND PRESET CONVERGENCE POTS. 5 Ω. 208. 808. 100Ω. Only 15p each WIREWOUND PRESEIDERNVERGENCE POTS. 5M. 202. 80
PRESET CARBON SLIDR POTS. 150 K .2 M 2.4 M 7 . 8p each.
UNIMARK A.C. ADAPTOR. Ideal for powering small transistor radios and calculators. Output 6 V .100 M .A. Fitted with calculator plug. $£ 1.75$ each. p.p. 35 p . Two for $£ 3$ post free.
BC182A Transistor 9p. IN4148 Diodes. 40 each. REED SWITCHES. 1/4 amp. Length 20 mm . Dia. 2 mm . 17 p each.
LOUDSPEAKER BARGAINS. 16Ω eliptical. $13 \times 20 \mathrm{~cm}$. Top manufacture. Should be $£ 5$. Our price $£ 2$ postage 60 , 308 Round Loudspeakers. 10 cm dia. Only $£ 150$. p.p. 60 p. G.P.O. Type TELEPHONES (Modern). As new. Black. Only £4. Car. £1.75.

Send 40 p for GREEN CAT. Contains 1000 s of new components and accessories both radio, S.W. and Electronic at unbeatable prices.
NEW ELECTRONIC DISCOUNT CENTRE open at 12Harper Street. Leeds 2. Above Union Jack Clothing Store. Amateurs and Electronics enthusiasts Welcome. Open 9 to 5 Weekday and Sats. Tel Leeds 452045 ,
Please add 15p in $\boldsymbol{£}$ postage unless otherwise stated. V.A.T. included in prices. Dept. S.W. MYERS ELECTRONICS. 12 Harper ST. Leeds LS 2 TEA.

G2DYM ANTI-INTERFERENCE ANTI-TVI TRAP DIPOLES inc. WARC NEW BANDS TRANSMITTING \& S.W.L. MODELS DATA SHEETS LARGE SAE. AERIAL GUIDE 50p. Callers Welcome.
 Tel: 03986-215
 GZDYM, UPLOWMAN, TIVERTON, DEVON

```
UR4350 ohm
CABLE OFFERS
```

UR43 50 ohm
UR7650 ohm siranded conductor
UR70 75 ohm low loss
UR95 50 ohm Miniature.
300 ohm twin Ribbon
75 ohm iwin feeder.

CABLE OFFERS

Postage indica

Call or phone for a
 most courteous quotation
 01-749 3934

We are one of the largest stockists of valves etc. in the U.K.

COLOMOR ELECTRONICS LONDON W12

READERS' ADVERTISEMENTS

10p per word, minimum charge $£ 1.50$ payable with order, Add 25 per cent for Bold Face (Heavy Type). Please write clearty, using full punctuation and recognised abbreviations, No responsibility accepted for transcription errors. Box Numbers $40 p$ exira. Send copy, with remittance, to the Classified Dept., Short Wave Magazine Lid., High street, Welwyn. Herts. AL6 9EO.

READERS

For Sale: Airmec Type 701 RF signal generator, $£ 45$. Eagle AG-71 AF signal generator, $£ 25$. Heathkit OS-1 oscilloscope, $£ 20$. Can deliver.-Ring Wood, Brentwood 231918.
Selling: Complete station: FT-101ZD (AM), FC-902, YP-150, EK-150, FT-207R, NC-2, Creed 7B, RTTY terminal unit, $£ 835$ the lot. Will split.-Ring Webb, Watford (0923) 36332 evenings.
Receivers for Sale: Realistic DX-100L, mint and boxed, $£ 65$. KW-201, £85. Barlow-Wadley XCR-30 Mk. II, £65; with FM, $£ 75$. Sanyo RP-8880 de-luxe, 9 bands (cost $£ 190$), mint, $£ 125$. Trio 9R-59, £50.—Ring Moscrop, 01-534 3460.
Sale: FR-100B Rx, $80-10 \mathrm{~m}$., good condition, $£ 125$ or near offer.-Ring Campbell, 0306-889693 evenings, 01-921 7100 day.
Selling: FT-225RD, 18 months old, £425. Wanted: Eddystone 888A, must be in first class condition.-Tibbert, G3RKZ, 32 Prescot Close, Mickleover, Derby
Wanted: KW-108 Monitorscope, serviceable/unserviceable. Details and price please.-Ring Taylor, 0642-550074 daytime.

For Sale: Racal RA-117, very good condition, recently serviced and re-valved to maker's spec., receipts available, guarantee 6 months to run, $£ 220$ or very near offer.-Ring Draper, Hornchurch 43676.

Sale: Telequipment D. 56 oscilloscope, 5 -inch tube, two separate TB s and TB delay, with manual, excellent condition, $£ 180$. Modern Tektronix'scope trolley, adjustable, perfect, $£ 70$.-Ring Dominey, Erith 30556 (Kent).

Exchange: FT-101ZD/FM, 7 months old, perfect, for KW 2000A/B/E or 2 m . multimode. Or W-H-Y? With cash adjustment. - Ring Hamer, G3LMQ, Coventry 504982 anytime. Sale: Eddystone 940 Rx, $£ 130$. Trio JR- 599 Custom Special, $£ 150$. Trio JR-500SE, with speaker, $£ 50$. Homebrew 80 m . DC Rx, $£ 7$. Buyers to inspect and collect, please.-Ring Lindars, 01-647 6157.

For Sale: Icom 1C-22A 2m. transceiver, 11 channels fitted, xtal toneburst, $£ 85$. Two-metre 40 -watt PA, $£ 15$. Power supply, 3 amp., £8.-Ring Rix, Kings Lynn 841398.
Sale: Eddystone EC-10 Mk.II, with mains unit and manual, perfect condition, 60 hours use since new, £88.-Ring Normington, 07456-2581.

Wanted: No. 19 Set Mk. III and ancillary equipment, any condition but unmodified. Also "Practical Wireless", March 1966.-Ring Wuille, Worthing (0903) 41810 after 6 p.m.

Selling: Yaesu FT-200 transceiver, $80-10 \mathrm{~m}$., good condition, plus spare valves, $£ 230$.-Ring Raine, Bracknell 56574.

Sell or Exchange: Model control gear: 6-channel Futaba complete, 2-channel $\mathrm{Rx} / \mathrm{Tx}, 48^{\prime \prime} \times 12^{\prime \prime}$ boat with 10 cc engine, $5-\mathrm{ft}$. span Hawker Hurricane with OS61 (needs finishing) with some spares.-Lowson, 39 Lordburn Place, Forfar, Angus. (Tel: 0307-64619).
For Sale: Sony ICF-7600W paperback-size receiver, AM/FM, 5SWS mains unit, boxed, $£ 50$.-Ring Brighton 506866.
Sale: HAC/SW receiver, assembled, unused, $£ 15$. Daiwa aerial tuner, $£ 15$. Both, $£ 28$. - Ring Turner, Headleydown 713019.
Sale: AR88D receiver, working order, needs some attention, $£ 33$ or near offer. Valves QQVO6-40, $£ 8$; pair TT21's, OK for linear, £8.-Ring Parsons, Fareham (0329) 287969.

Selling: Eddystone 840 C , very good condition, unmarked condition, $£ 70$ or near offer. Buyer collects.-Ring Armstrong, Ruislip 74349.
March issue: due to appear February 26th. Single copies at 80p post paid will be sent by first class mail for orders received by Wednesday, February 24th, as available.-Circulation Dept., Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.
Sale: Atlas 180 transceiver, $180-20 \mathrm{~m}$. , good £185.-Grieveson, Spinney Bank, Kings Sutton, Banbury, Oxon. OX 17 3RL.
For Sale: Vibroplex Lightning bug key, mint condition, £29. Katsumi MK-1024 programmable keyer, $£ 60$. Icom IC-251E, mint, £400. Eddystone 880/2 30-band receiver, good condition, £195.-Ring Michalak, Nottingham 582358 after 7 p.m.
Selling: Liner-2, 144.1-144.55 MHz, with Pye mic., Belcom PSU, and manual, £80. AM-10B Tx, FM, £10. Both "or near offer".-Ring 0462-813615.
Sale: Communication receivers, general coverage 0.5 to 30 MHz ; AM/SSB: Yaesu FR-101S, £370; FRG-7, £120; Barlow-Wadley XCR-30, $£ 90$.-Ring Scanlon, 01-578 7069.
For Sale: ARRL "Radio Amateurs Handbook", 1959, £4. Type F aircraft Morse Key, £3.50. Early Hunts capacitance, resistance analyser, working, £10. Admiralty handbook "Wireless Telegraphy", 1931, £6. Pye PTC-3302 Tx, AM, $68-174 \mathrm{MHz}$, not complete, details, £5. Wanted: FT-101B.-Edwards, G3MBL, QTHR. (01-445 4321).
Wanted: Most urgently, for small research project: QSL's (amateur and commercial), envelopes, etc., used postally pre-and post-war from Iceland, Greenland, Faroes, Jan Mayen, Spitzbergen, Bear Is., and Scandinavia.-Box No. 5752, Short Wave Magazine, 34 High Street, Welwyn, Herts. AL6 9EQ.
Wanted: RSGB "Radio Communication Handbook", Volume 4. Tuner unit for Joystick with RF meter combined. Any information on Hallicrafters S.27. Details of condition and price, please.-Ring Bagley, G4HQD, QTHR. (Tel: Peterborough 237966).

For Sale: 40 -ft. tower, $£ 60$. Gem Quad, $£ 65$. Rotator, $£ 25$. Buyer collects.-Ring Blake, G3MWV, 0263-512872.
For Sale: K. W. Vespa Mk. II with PSU and KW-202 Rx with 'Q' multiplier, best offer around $£ 250$ secures. Also Codar AT-5 Tx and Microwave Modules 2-metre converter, any reasonable offer secures.-Ring Mills, 024269-288.

MORSE MADE BY THE RHYTHM METHOD!

factnot fiction -

No expensive equipment required only a turntable
If you start RIGHT you will be reading amateur and commercial Morse within a month. (Most students take about three weeks). That's why after 25 YEARS we still use three scientifically students take about three weeks. That's why atter 25 YEARS we stiw use three screntifically prepared special records with which you cannot fail to learn the MORSE RHYTHM automatically. It's $1 \times 7^{\prime \prime}$ multi-speed records + books. $£ 550$ plus (U.K. p.p. $+75 p$. Overseas, sufficient for 750 grms.). Despatch by return from: - S. Bennett, G3HSC, (Box 14), 45 Green Lane, Purley, Surey CR2 3PQ. 01-660 2896.

Mobile Radio Bench Engineers

We are looking for experienced top quality bench engineers. We offer good salaries for the right people. Expanding company offering opportunities for promotion. Full fringe benefits. Contact J S Cark 01-680 5555.

LOSING DX?

RARE DX UNDER QRM? DIG it OUT with a Tunable Audio Notch Filter, between your receiver and speaker, BOOST your DXIORM ratio, 40 dB notch. bypassed when off. HEAR the WEAK DX, £13.80.
ANTENNA FAULT? Poor reports? Check FAST with an Antenna Noise Bridge, MEASURE resonance $1-150 \mathrm{MHz}$ and radiation resistance $2-1000$ ohms, accurate ANSWERS directly. MORE DX, £ 15.70.
Each fun-to-build kit includes all parts, printed ctrcunt, case, postage, etc. instructions, money back assurance so GET yours NOW
CAMBRIDGE KITS, $45(5 B)$ Old School Lane, Milton, Cambridge.

SIMPLE, LOW-COST WIRE ANTENNAS

by William Orr, W6SA1

Now with data on the new amateur bands!

This excellent and thoroughly recommended handbook is the publication on the practical approach to building aerials. After starting with aerial fundamentals there are discussions and descriptions of ground-plane, end-fed, DX dipole, vertical and wire beam antennas, plus coverage on a universal HF antenna system and working DX with an "invisible aerial"; the SWR meter and coaxial cable also have chapters to themselves.

The whole book is presented in an authoritative, immensely clear, readable and enjoyable manner with the emphasis on the practical throughout - to the extent that even the chap who can hardly strip a piece of co-ax need not feel at all left out! Just as practical for the SWL, too!

192pages

$£ 4.45$ inc. post
Order from
Publications Dept.
Short Wave Magazine Ltd.
34 High Street, Welwyn, Herts. AL6 9EQ

BNOS

100 WATT 2 METRE LINEAR AMP.
1-18 watts RF in 10 dB gain. Linear all mode operation receive pre amp 12 dB gain straight through operation. Size $145 \times 80 \times$ 165 mm . $\quad \mathbf{1 0 5}+\mathbf{£ 3} 30 \mathrm{p} \& \mathrm{p}$. R\&EW MAGAZINE PROJECTS. BUILT CASED \& TESTED 30WATT 2 METRE LINEAR AMP. 2-3 Watts RF in 20-30 Watts RF out. Linear all mode operation. Built in pre-amp $\quad £ 55+£ 2 \mathrm{p} \& p$. CONVERTERS
$2 \mathrm{~m}-28 \mathrm{MHz}$ IF $£ 22.95 £ 1 \mathrm{p} \& \mathrm{p}$. $70 \mathrm{cms}-28 \mathrm{MHz}$ IF $£ 23.95 £ 1 \mathrm{p} \ddagger \mathrm{p}$. Dual purpose $70 \mathrm{cms}-2 \mathrm{~m} / 70 \mathrm{cms}$. UHFTV (CH52) £29.50£1p\&p. SEND SAE FOR FURTHER DETAILS "SEE US AT ALL MAJOR RALlles in 1982.

PRDFESSIOMAL STABILISED PSU'S $13.8 \mathrm{v} \quad 12 / 25 \mathrm{amp}$ continuous ating, over voltage crowbar, fold-back current limit, short circuit protected, shut down indication, current meter regulation better than 0.1%. 12 AMP PSU $£ 74+£ 3.50$ p $£ p$ 25 AMP PSU $£ 109+£ 2.50 \mathrm{p} \mathrm{\& p}$ NI-CAD BATTERIES + CHARGERS AA 0.5 AH $£ 1.00$ ea: 10 for $£ 9.50$. 2.2 AH $£ 235$ ea: 8 for $£ 16.80$ 4.0 AH £ 3.75 ea: 8 for $£ 28.00$ PP30.11 AH E3.80. Multi way charger: suits all above $£ 7.85 \mathrm{f} 1 \mathrm{p}$ AA size charger takes up to 4 cells f5. 25 f 1 pfo
BMOS ELECTRONICS OEPT. SW Greenabour, Duton Hill, Gt Dunmow, Essex CM6 3PT. Tel: (037184) 345 . barclay card welcome electronics

PORTABLE MAST EX USA GOVERNMENT SURPLUS 32ft. Heavy Duty Aluminium

Comprising: -
Eight $-4 \mathrm{ft} . \times 2 \mathrm{in}$. Interlocking Tubular Sections.
Eight - Galvanised Ropes.
Four - 27in. Steel Guy Securing Stakes.
Base Plate and Various Accessories.
All packed in strong marine ply in carrying storage container.
£46 including carriage and VAT.

> 'GRANVILLE MILL'
> Vulcan Street, Oldham OL 1 4EU.

Telephone No. 0616521418 \& 0616330170.

JOHNS RADIO

Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford, BD11 2ER Tel. No. 0274684007 - Demonstration by Appointment
LARGE PURCHASE OF RACAL EQPT. COMMUNICATIONS RECEIVERS.
$500 \mathrm{kc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$ in 30 bands 1 MHz wide. RA 14 L - £ 175 . RA $11 \mathrm{EE}-\mathrm{f} 225$, a few sets available as new at $£ 75 \mathrm{extra}$. RA $217+$ Speaker Amplifier (RA 317 - $£ 380$. All receivers are air tested and calibrated in our workshop, supplied with full manual, dust cover, in fair used condition. New black metal louvred cases for above sets $£ 25$ each. SIDEBAND CONVERTORS RA63-£50. RA98A - SSB-ISB new and boxed - $£ 75$. RAg90 - $£ 75$ RA218 - SSB-ISB \& fine tune for RA117 - £50. TRANSMITTER DRIVE UNIT MAT9 $1.5 \mathrm{mc} / \mathrm{s}$ - $30 \mathrm{mc} / \mathrm{s}$ SSB-ISB-DSB-FSK-CW - £ 150 . AERIAL TUNING UNIT \& protection unit MA 1978 - $£ 25$ to $£ 50$. DECADE FREQUENCY GENERATORS MA3508 (solid state synthesiser for MA79 or RA117 - RA217 - RA1217 - £150 to £200. MA250 $1.6 \mathrm{mc} / \mathrm{s}$ to $31.6 \mathrm{mc} / \mathrm{s}-\mathbf{~} 150$. (New) MA259G precision frequency standard - $5 \mathrm{mc} / \mathrm{s}$ $1 \mathrm{mc} / \mathrm{s} 100 \mathrm{khz}$ - £ 100 to E 250 . RA70 \& PV78 frequency shift convertor - f 50 DIVERSITY UNIT MA 168 new \& boxed contains product detector for SSB \& BFO - $£ 25$ L.F. CONVERTOR RA 137 - f 50 to f 75 . Most above supplied with full manuals. RACAL SPARES new \& boxed - RA17 Chassis - £20. I.F. Strip - $£ 15$. Calibrator - $£ 8$. OSCILLOSCOPES COSSOR CDU150-35mc/s - Twin Beam - Solid State - $£ 175$ with manual. EXTEL TRANSTEL MATRIX PRINTERS 5 level baudot code, accepts speeds up to 300 bauds, supplied set to 50 \& 75 bauds switched, tested with manual £ 165. Latest Government release - MARCONISIG GEN TF955A2-AM \& FM $1.5 \mathrm{mc} / \mathrm{s}$ - $220 \mathrm{mc} / \mathrm{s}$ covered in 5 bands - crystal check facilities, supplied in A1 condition tested, circuit and instructions - $£ 100$. TEKTRONIX OSCILLOSCOPE 647\& 647A Solid State $50 \mathrm{mc} / \mathrm{s}$ and $100 \mathrm{mc} / \mathrm{s}$ bandwidth - $£ 250$ and $£ 300$, tested circuit and instructions.

TMP ELECTRONIC SUPPLIES

STOCKIST OF YAESU, JAYBEAM, HY-GAIN, AMIDON CORES, KDK, FDK, MICROWAVE MODULES, RSGB BOOKS, ASP,

LEADER, CUSHCRAFT, DAIWA, HANSEN
New Premises now open, full demonstration facilities, Access, Barclaycard, H.P. Licenced Credit Broker. I can supply anything from a PL259 to a FT-1.

HOWARTH JONES GW3TMP
UNIT 27, PINFOLD WORKSHOPS, PINFOLD LANE, BUCKLEY, CLWYD CH7 3PL.
TEL: BUCKLEY (0244) 549563.
Open Tuesday-Friday 9.30-5.30. Saturday 9.30-4.00, Lunch 1.00-2.15.

J. BIRKETT ${ }^{2 \text { ETHE STRAAT }}$

 LINCOLN LN2 1JF. Tel. 20767SOME USEFUL LINEAR R.F. POWER TRANSISTORS
MULLARD BLW 64 FT 900 MHz , 15 WATT, 24 VOLT. With data @ $£ 7.50$
MULLARD HF-VHF BLW GOR 1.610 175MHz, 45 WATT, 125 VOLT . With data @ 67.50 MULLARD BLY 9050 WATT, 12.5 VOLT, 550 MHz . With data @ f 7.50
MULLARD HF POWER BLW 711.6 to 28 MHZ , 130 WATT, 28 VOLT . With data @ $£ 12.60$ GREENPAR PUSH ON BNC PLUGS @ 40p.
U.S. ARMY OC 30 TYPE $7010 \mathrm{kHz} @ 50 \mathrm{p}$, FT 271 TYPE 285 kHz @ 400

ITT CRYSTAL FILTER TYDe 538 ACB 1.4 MHz at $£ 5$ each.
455 kHz CRYSTAL FILTER BW 7 kHz @ 50 p . FM4 40.7 MHz CERAMIC FILTER © 50 p MINIATURE WIRE ENDED R.F. CHOKES 2.2, 3.3, 4.7, 10, 15, 22, 33, 39 U.H., 1 MH, $10 \mathrm{MH}, 22 \mathrm{MH}$. All at 100 each
PISTON TRIMMERS 2 10 12pf @ 25p. 3to 25pf @ $25 p$.

TRW VARACTOR DIODES PC 124. No details@ 50p.
X BAND DIODES @ £ 1.65, J BAND GUNN DIODES @ £ 1.65
FERRITE RINGS Dia. $11 / 2^{*}$ int. dia. $1^{* *}$ approx. at 60p each
SUB-MINIATURE ERIE WEE-CON DISCS $1000 \mathrm{pf} 30 \mathrm{~V} . \mathrm{w}$., @ 6 for 18 p .
TANTALUM BEAD CAPS. 2.2uf 35v.w., @ 10p, 4.7uf 16v.w., @ 10p, 22uf 25v.w.. @ 25p, 00 ut $20 . w ., @ 400$
WOM A Bif
WOOD AND DOUGLAS KITS AVAILABLE FOR CALLERS.
Please add 30p for post and packing. Orders over E3post free.

g4dsg D.P. HOBBS (NORWICH) LTD. RADIO COMPONENT SPECIALISTS
 VAESU FTZ90R 2mT/Ceiver
 G3HEO
 £ 249.00

YAESU FRG7 $0.5-30 \mathrm{MHz}$ Gen. Cov. Rec. 1 MHz Segments
YAESU FRG 77000.1530 MHz Gen. Cov. Rec. Clock, Timer, Digital Display
TRIO R1000 Gen. Cov. Rec. $200 \mathrm{kHz}-30 \mathrm{MHz}$
YAESUFT 480 R All mode 2 m T/CEIVER.
SX200N Scaming Receiver 26 To 512 MHz
DAIWA SR9 2 Metre or Marine Monitor Receivers. VFO +11 fixed positions SOUND - AIR FM Marine BCh. Scanning Rec. with 3 preset Ch SL 1600 . $\mathbf{2 m}$. VHK. 16 Channel Scanning Monitor Receiver
FDK $700 E X 2$ Metre FM T/Ceiver Dig. Display. Scan, Tone-Burst, etc
FDK $750 E 2$ Metre FM/SSB CW T/Ceiver Dig. Display, Tone-Burst, etc
R517 Airband Rec. Tuneable +3 Fixed Xtal Positions
Transverters, Linears, Preamps, etc., for 2 Meteres $/ 70 \mathrm{cms}$, Bantex Aerials.
Prices include VAT. Al Mail Orders to Norwich. Barclay Cerd \& Access.

13 St. Benedict's St., Norwich. Tel. 615786 Open 9 a.m. - 5.50 p.m. Mon. - Sat. Closed all day Thursday.
Also Visit D.P. Hobbs Ltd., 11 King St., Luton. Telephone 20907. Closed all day Wednesday.
£ 199.00
£209.00

1799.00

£264.00
f46.00

£46.00
£ 85.10

f 39.50
f 18900
$f 199.00$
$£$
£49.75
onverters.

TELECOM

ICOM - YAESU - TRIO - SOMMERKAMP

6 NEW ST., BARNSLEY, S. YORKS. Phone: 0226-5031/382320

Technical Books and Manuals

（ENGLISH AND AMERICAN）

AERIAL INFORMATION
Antenna Handbook（Orr and Cowan）． $£ 4.45$
Practical Aerial Handbook，2nd Edition（King）． E． 7.95
Beam Antenna Handbook $£ 3.95$
Cubical Quad Antennae．2nd Edition £3．15
Simple Low Cost Wire Antennas，by Orr． £4．45
73 Vertical Beam and Triangle Antennas（E．M． Nolli） 0／S
73 Dipole and Long－Wire Antennas（E．M．Noll）．． £ 4.35
Antenna Book（ARRL）13th Edition． ¢4．15
The（ARRL）Antenna Anthology． f3．15
Two－metre£4．85
BOOKS FOR THE BEGINNER
Amateur Radio（Lutterworth Press）． 9.60
Questions and Answers on Amateur Radio，byF．C．Judd G2BCX
Transistors Q \＆A，new Edition（Newnes）£225
Elements of Electronics，Book 1. 250E205
Elements of Electronics，Book 2.
Elements of Electronics，Book 3 ع250
Elements of Electronics，Book 4 E3．35
Elements of Electronics，Book 5 ． £3．35
Solid State Short Wave Receivers for Beginners （R．A．Penfold）． £1．50
Beginners Guide to Radio（8th Edition） £4．35
Beginners Guide to Electronics． £3．70
Beginners Guide to Microprocessors and Computing £205
Course in Radio Fundamentals，（ARRL） £3．10
Guide to Amateur Radio，18th Edition（RSGB） £290
Ham Radio（A Beginners Guide）by R．H．Warring． £4．10
Morse Code for the Radio Amateur（RSGB） ع 1.20
Understanding Amateur Radio（ARRL） £4．05
Radio Amateur＇s Examination Manual，Latest Sth edition（RSGB）． E3．00
GENERAL
Projects in Amateur Radio and Short WaveListening（Newnes）．£3．30
How to Build your own Solid State Oscilloscope （Rayer）． £1．75
How to Make Walkie Talkies（Rayer）． £1．75
How to Build Advanced Short Wave Receivers （Penfold） £ 1.40
Better Short Wave Reception，new 1981 （5th）Ed． ع3．70FM \＆Repeaters for the Radio Amateur（ARRL）．
Easibinder（to hold 12 copies of＂Short Wave Magazine＂together）new A4 size． £4．65
Oscar－Amateur Radio Satellites £ 4.30
World Radio \＆TV Handbook 1982 Edition． avaliable
An Introduction to Radio DXing． £2．30
Radio Amateurs DX Guide（14th Edition）． f 2.05
The World＇s Radio Broadcasting Stations and European FM／TV（Newnes）new title £ 6.10
World DX Guide £5．40
Guide to Broadcasting Stations（new 18th Edition） £3．40
Radio Stations Guide．

Long Distance Television Reception（TV－DX）for the Enthusiast（revised edition）Rayer．Power Supply Projects（Penfold）£205
HANDBOOKS AND MANUALSRadio Communication Handbook，Vol I（5thEdition）（RSGB）．．．．．．．．．．．．．．．．．．．．．．．．．．．Radio Communication Handbook，Vol II（5th£9．65
Edition）（RSGB）． £ 8.50
TVI Manual（2nd Edn．）（RSGB） £1．85
Radio and Electronic Laboratory Handbook by Scroggie－Johnstone，latest 9th Edn． E21．25
RTTY Handbook（73 Magazine）． O／S
Slow Scan Television Handbook $0 / 5$
8.05
The Radio Amateur＇s Handbook 1982 （ARRL）soft £9．25
cover．
cover．
The Radio Amateur＇s Handbook 1982 （ARRL）hard
cover AmeShortwave Listener＇s Handbook．．．．．．．．．．．．．．．
Learning to Work with Integrated Circuits（ARRL）．$£ 5.50$
Weather Satellite Handbook． £1．70
Single Sideband for the Radio Amateur（ARRL）． 5．
Amateur Radio Operating Manual（RSGB） £5．75
Practical Electronics Handbook（Newnes）． £ 4.40
Oscilloscopes－How to Use Them，How They Work（Newnes） ¢3．85
USEFUL REFERENCE BOOKS
Solid State Design for the Radio Amateur（ARRL）． f5．20
Foundations of Wireless and Electronics，9th Edition（Scroggie） £6．15
Amateur Radio Techniques，7th Edn．（RSGB）．．．． £6．00U．K．Call Book 1982 （RSGB）．
Hints and Kinks（ARRL） £4．60
Radio Date Reference Book（RSGB） f4．80
Electronics Data Book（ARRL）． £3．15
Radio Frequency Interference（ARRL）． E240
Amateur Radio Awards，（RSGB） £3．40
Electronics Pocket Book，new 4th Edition（Newnes）E6． 20
VALVE AND TRANSISTOR MANUALS
Towers＇International Transistor Selector，latestEdition（Up－Date No 2）£ 10.40
Radio Valve and Semiconductor Data（10th Edition） £4．35
International Transistor Equivalents Guide £3．35
VHF PUBLICATIONS
VHF Handbook，Wm． 1 Orr． f 3.85
VHF Manual（ARRL）0／P
VHF／UHF Manual（RSGB）3rd Edition． £8．60

[^0]: As factory appointed distributors we offer you-widest choice,
 largest stocks,quichest deal and
 fast sure service right through-

[^1]: "CDXN" deadlines for the next three months -

 > March issue - February 4th April issue - March 4th
 > May issue - April 1st

 Please be sure to note these dates

