INSIDE! FREE I/6 DOUBLE-SIDED BLUEPRINT

QUALIFY FOR THE CIVILIAN RADIO RESERVE WITH THIS WONDERFUL NEW BOOK WIRELESS TRANSMISSION FOR AMATEURS

contains full technical and practical details of

ACCORDING TO THE BLUEPRINT

Go according to the blueprint. When everything is screwed in place and soldered tight, check over wiring, contacts, leads. Fix up the aerial, earth and power. Throw the switch, push the button. Everything O.K. ? Should be if you've gone according to the blueprint-and if you've got the right valves. What does the designer say about that? Just this. F. J. Camm, designer of this week's. A.C. Push Button 4, exclusively specifies four Tungsram valves. They are the TX4, the VP4B, the DDPP4B, and the APV_{4}. So now, get those four Tungsram valves, and see that any other valves you need are Tungsrambecause Tungsram do everything that a good valve should do, well-go according to the blueprint, and everything will be O.K.

manufactured at tottenham, london
The valve with the name behind it!
The Tungsram Electric Lamp Works (Great Britain), Ltd.,
82, Theobalds Road, London. 'Phone Holborn 3563
SOLE DISTRIBUTORS TO THE TRADE FOR GT. BRITAIN AND EIRE: SIEMENS ELECTRIC LAMPS \& SUPPLIES LTD., 39, UPPER THAMES ST., E.C. 4

A. F. BULGIN \& CO., LTD., ABBEY RD.,BARKING, ESSEX. RIPPLEWAY 3474

MAKING A STAND-BY TRANSFORMER-p page 123

ROUND the WORLD of WIRELESS

Push-button Tuning

IN this issue we give constructional details of our new push-button receiver, a four-valver embodying the superhet circuit. As we have pointed out in varions articles on the subject of automatic station selection-or push-button tuning as it is now comnonly known--there are various methods by which the station selection may be carried out. In our last push-button sct a special form of mechanisin was incorporated in whicls pre-set condensers were used as the station selectors. Whilst this is a sound schems and is employed in many commercial receivers, there is much to be said for the form of tuning in which the normal tuming condenser is moved to the station scttings. 'I'he motortunerl receivers embody this scheme, the condenser being turned by an electro-motor, and in another form a dial (similar to the automatic telephone dial) is employed and this turns the condenser. In the new sets described in this issme another type of -mechanism is used, and by means of cams the tuning condenser is rocked from one position to anotler as the buttons are operated. Thus stations settings are very definite, and tuning cannot vary. You may be certain of always getting a station at its correct tuning setting when the buttons are operated. Full details will be found commencing on page 135.

Italian Design

T FE Italian Radio Exhibition which 1 closed at the end of last month was very successful, but an important point which was noticed was that only a dozen sets incorporated automatic funing. In all of these, ten stations were provided for, and in one case a novel eight-band receiver was seen in which eight buttons were provided and each of these gave a station on one of the bands, thus providing sixty-four stations in all by means of eight buttons.

W2XAD Power Increase

C
ONSTRUCTIONAL alterations are now complete and the modified transmitter at W2XAD is expected on the air at the end of this month. The new power rating is 100 kW compared with the original 18 kW . and it is hoped that greatly improved reception will be experienced in this country as a result of the change.

Streamlined D.F. Aerial
THE new Marconi streamlined D.F. aerial has now been fitted to the first British machine-the Lockheed Electra which carried the Prime Minister on his first visit to Herr Hitler. This machine is equipper with a complete Marconi installation of short and medium-wave transmitters and receivers.

No Royal Variety Broadcast

IT is announced, now definitely, that no broadcast of the Royal Variety Performance can be permitted. This is stated to be the result of a petition by the

Theatrical Managers' Association and the Cinematograph Exhibitors' Association arising out of the loss of trade during the last broadcast of this important event. It is stated that the loss would undoubtedly lead to unemployment amony artists and others connected with the theatrical profession.

"Jam" From America

FOR the fist tine, an authentic American the B.B.C. on November 5th. It will last
for forty minutes and it is stated that the players will include such well-known artists as Bob Hackett, "Fats" Waller, Gene Krupa, Joe Marsala, Benny Goodman, and Mezz Mezzrow. For the benefit of those who do not know what a "jam session" is, it mav be stated that it is a gathering of werformers who play without music and who improvise on well-known tunes. taking it in turns to play the solo lead. Ilic performance is entirely impromptu.

"Snowdon"

ΛDRAMATIC feature in three episodes, which will deal with the Snowdon of history and of legend, will be broadcast in the Welsh programme on October 26 th. The production will be by T. Rowland Hughes.

Making a Film

CECIL FORD, on October 26th, will telt Northem Ireland listeners some of his experiences in making a film in Ireland. He was at one time a medical student with a predilection for the stage and decided to abandon tlite attraction of the latter for the haid work of the former, when he was tempted with a film offer.

Another Thriller

IN a country cottage some thirty miles outside London a young couple are packing up for a journey to the Continent. The wife is hypersensitive, and the husband takes criminology as his pastime. The ceriness of a partially-dismantled house plays on the nerves of the newly-married wife. This is the basis of a new thriller to be broadcast on October 20th, in the Regional programme.

Brass Band Question Time

THE scries called "Brass Band Question Time," which began last spring, will shortly be resumed in the Midland programme. Denis Wright, the well-known composer and adjudicator, will again answer questions sent in by brass band enthusiasts. The principal subject for discussion on Octoluer 24 th will be rehearsals, and joints raised will be illustrated by the Coventry Colliery Band in a Birmingham studio.

ROUND the WORLD of WIRELESS (Continued)

Italy's Powerful S.W. Transmitters

OOctober 28th, the new Italian shortwave transmitting station at Prato Smeraldo, near Rome, will be officially inaugurated. It will be one of the most powerful and best equipped stations in Europe. The power of the two present transmitters, each of 25 kW , will be in: creased to 50 kW , and other improvements are also being introduced. These two transmitters will work on wavelengths between 15 and 25 metres.

The most important development in the new Prato Smeraldo station will be the installation of two new 100 kW short-wave transmitters, equipped with all modern improvements, which will work on wavelengths between 25 and 50 metres.

U.S.A. and the Crisis

 TT is reported that during the international crisis American listeners were k kept informed hourly of the developments. Talks, from all points of view, of the various aspects of the situation, and "on-the-spot" reports from the European cities most vitally affected were broadcast throughout each day.Canadian Radio Network WORK on the Canadian Broadcasting Corporation's new $50-\mathrm{kW}$ transmitter at Watrous, Saskatchewan, is being speeded up. It is"stated that the station will cost about $£ 50,000$, and will serve listeners in Saskatchewan.
The 5 kW station at Lulu Island, near Vancouver, is to be modified in order to provide better listening facilities for inland British Columbia.
A.R.P. in the West PROGRESS in Somerset Pwill be discussed by G. U. Farrant, chairman of the A.R.I. Sub-Committee of the Somerset County Council, on October 27th in the Western programme. second talk in the series.

Winning Military Band to Broadcast

 W/ITH a programme including the testpiece of the competition, the wining band in the eighteenth Military Band Championship to be held at Belle Vue, Manchester, on October 8th will broadcast on October 23 rd .
New B.B.C. Appointment

WE are informed that the Rev. J. W. Welch. Ph.D., will succeed the Rev. F. A. Iremonger, D.D., as Director of Religion from April 1st, 1939. Since 1935, Dr. Welch has been Principal of St. John's College, York. At the end of the War he was serving with the F.A.C., and on leaving the Arny entered Knutsford Ordination Test School. From 1921 to 1926, he studied at Sidney Sussex College and Westoott House, Cambridge, and in 1926 he was

Mr. C. H. Middleton, the popular radio broadcaster on gardening subjects.

Dr. Iremonger, who is retiring, has been in charge of the Corporation's religious work since May, 1933.

"A La Carte"

ANOTHER mixed menu of light fare will be provided in "A La Carte," on October 28th, when the artists will be Jack Train, comedian ; the Three Nomads, in close harmony; Dorothy Holloway, in a "Lady Leamington" sketch; and Ruby Taylor and Frances Keyte, in piano duets. This broadcast will be given in the Western programme.

Bath Radio Pageant

N October 20th, a feature programme will be broadcast in honour of the reopening of Bath Assembly Rooms. The programme has been prepared by Froom Tyler, whose radio play, "Terror from the Sea," was recently revived in the Regional programme with marked suceess. Bath's long and brilliant story through the oen-
turies will be presented as a " pageant for radio," and the principal feature will be Bath in its eighteenth-century glory under its benevolent dictator, Beau Nash.

Variety from Bedford

THEATRE variety on October 2äth will
be broadcast from the Royal County Theatre, Bedford, where Frank Terry is presenting a new revue, "The Pleasure Cruise." Mr. Terry's concert party has broadcast over a hundred times.

Organ Recital from Leeds

NE of the cinema organ recitals to be broadeast to Northern listeners during the next few weeks is that by Cecil Chadwick who, on October 25th, will be at the organ of the Paramount Theatre, Ieeds, to give a programme of popular tunes.

An Intimate Revue

MARTYN C. WEBSTER will act as compère of an intimate revue entitled "Between You and Me and the Mike" to be broadcast on October 24th. The artists will be: Courtney Hope, of Wellingborough ; Mary Pollock and Joan Carter; Hugh Morton; Fred Forgham and Hal Bryant; with Harry Engleman and Jeila Brittain at two pianos.

New Philips Colour Cartoon

IN our issue dated 15th October we referred to a new cartoon film to be issued by Messrs. Plilips Lamps. Unfortunately, this film was erroneously described as a George Pal puppet production, and we are now informed by Messrs. Philips that this is actually a colour cartoon produced by Fischerkösen.

SDIVE THIS!

PROBLEM No. 318

Atkins decided to convert lis two-valve battery recelver into an all-mains model, und accordingly obtaiued an H.T. battery eliminator and atrickle charger. He connected the charger across the accumulator for the L.T. supply, and repluced the H.'T. battery by the unit. As he also wished to diapense with the grid-bias battery he connected a variable resistance between the G.B. negative terminal of, the transformer and earth. He was uningly fitted a 10,000 -ohm variable component with a view to adjusting this to obtain the desired voltage. He found, however, that very distorted siguals were received. Why was this? Three books will be awarded for the first three correct solutions opened. Address your envelope to The Fditor, Practioal and Anateur Wineless, Geo. Newnes, Ltd. Tower House, Southampton street, Strand, London, W.G.2. Envelopes must bc marked Problem No. 318 in the top left-hand corner and must be posted to reach this office not later than the first post on Monday, October
$24 t h, 1038$. $24 t h, 1038$.

Solution to Problem No. 317

When Matthews mounted his resistance on the metal chassis he overlooked the fact that the spindle was live," and as this was joined to the arm which was via the joined to the anode, he was carthing the anode hy including insulating washers in the mounting. The following three readers successfully solved Problem No. 216 and books arc accordingly being forwarded to them:
B. Reynard, 50, Baliour Road, North End, Portsmoutlt. J. A. West, "Normandy," New Strect, Castle Prom wich, Birmingham.
M. Brading, 5, Blver View, Renwerris Lane, Falnouth, In the 9
Transposed the words 'triode' and 'pentode, 315 the printers solution shonld, of course, have read '. pentode. The relare the output pentode hy a triode. The correct prize vine thers were as announced int tre following issue.

Making a Stand-by Transformer

 pleted transformer.
read like a polar explorer's stock list, but they will all be found necessary as the winding progresses.
You will require Chatterton's compound, solder, soldering iron, resin flux, oiled silk or Empire cloth, Systoflex sleeving, scissors, pencil, paper, glasspaper, and a small amount of insulating varnish.

Windings

The heavy galnge wires are wound first, and are usually the most troublesome. Starting with 16 gange D.C.C. enougb wire must be threaded through the lefthand cheek to allow for conneetion to the panel.
Ten turns are wound on carefully, the wire being straightened as it feeds off the reel. On completing the tenth turn, wind the remaining nine turns back over the first layer, and bring both ends of the winding through the same cheek.

The heater windings must be prevented from touching the rectifier heater secondary, since a high potential exists between these two. This is best achieved by securing the "turn-back " with a strip of tape, holding it down with a dab of Chatterton's compound.

The rectifier heater winding is then
and in view of this the primary tapping system has been simplified in line with the usual practice in commercial components.

Tappings

The primary is therefore tapped at $207 \frac{1}{2}, 222 \frac{1}{2}$ and $237 \frac{1}{2}$ volts, thus enabling the transformer to be used on any 50 -cycle supply between 200 and 250 volts pressure.

Full-wave rectification, with its consequent simplification of the smoothing system is specified, and a 4 -volt winding will deliver up to 8 amps. for valre heaters without undue heating up.
The complete specification may therefore be briefly tabulated, as follows :
 volts.
H.T. Secondary, Tapped for $350-0-350$ volts, delivering 300 v 100 mA . D.C.
Rectificr heater, 4 volts at 2.5 amps .
Valve heater, 4 volts at 8 amps .
The total power consumption, assuming an efficiency of 80%, is calculated from tha secondary dissipation.
Primary Watts $=(300 \times .1)+(4 \times 2.5)+$. $(4 \times 8) \times \frac{100}{80}=90$.
The primary current is determined by $\frac{\mathrm{W}}{\mathrm{E}}=\frac{90}{207 \frac{1}{2}}=.43 \mathrm{amp}$.
The fundamental formula for the turns per volt figure is $\frac{1}{\text { turns per volt }}=4.44 \times$ $10^{-5} \times \mathrm{f} \times$ core section \times flux density, and in this case works out to 4.5 turns per volt.

We can safely assume a current density of $2,000 \mathrm{amps}$. per sq. inch for the conductors, so that the necessary data may conveniently be tabulated as on this page.
The most convenient bobbin for home constructors is probably the layer-wound type, each separate winding following on top of the preceding one and being insulated from it with oiled silk or varnished linen.

Former Construction

Dimensions for a former of this type are given in Fig 1, and it should be realised that this item needs as much care in con. struction as the winding process. The former is constructed of $1 / 16 \mathrm{in}$. sheet bakelite, but any good quality fibre will suit.
The end cheeks are made first. The nost satisfactory method of cutting the centres will be to drill the square out, and then file up to fit. The holes for lead-out wires should be drilled after the centres are cut. The four strips forming the tunnel of the former must be fitted carefully into position, and the assembly should be rigid when completed.
If a semi-liquid fixative is used, the edges in contact must be roughened with a coarse grade of glasspaper to obtain a better surface for adhesion. A wooden mandrel must be provided for winding, since the strain of manipulating the thick secondary wires may cause the former to collapse. A suitable type is shown in Fig 2, but the constructor can, with the exercise of a little ingenuity, readily improve on this device.
It cannot be too strongly urged that the forner must be soundly constructed and assembled. Hasty work usually results in the con-

WIRING DATA					
Winding	Current	Volts	Turns	Wire Gauge	Covering
Primary	. 43 A ${ }^{\prime}$	$\begin{aligned} & 207 \frac{1}{1} \\ & 2222 \frac{1}{2} \\ & 237 \end{aligned}$	$\begin{array}{r} 935 \\ 1,000 \\ 1.065 \end{array}$	$(2618 \mathrm{in} .$	Enamelled single silk
H.T.	. 1 A	350	1,500	. 0092 in .	Enamelled
Secondary		350	1,500	(34 S.W.G.)	single silk
Rectifier heater	2.5 A	4.2	19	(17 S.W.G.)	D.C.C.
$\begin{aligned} & \text { Value } \\ & \text { heater } \end{aligned}$	8.0 A	4.2	19	. 064 in. (16 S.W.G.)	D.C.C.

pleted winding collapsing when being ironed up.

Construction is started by arranging the wise reel conveniently for feeding and having all material to hand before actually starting work. The items required may

wound in a similar manner, but starting from the opposite side; the ends are terminated through the right cheek of the former.
A prevalent cause of transformer failure is breakdown between windings. Over the two heater coils, therefore, put on two layers of oiled silk or Empire cloth; ensuring that all turns of the secondary windings are adequately covered. Exercise particular care tlat at no place is the primary winding liable to slip down between the insulating layers, and the bakelite cheeks of the former.

To the start of the primary a flexible lead is made by twisting together scveral strands of thin wire and soldering them to the main 26 gauge winding. This operation may leave sharp edges which are apt to penetrate the insulation covering the joint. Ensure that the soldering is smoothly finished, and cover with a small fold of tape before proceeding with the winding.
(Contimued on bage 130)

The Amateur Transmitter

In this Article, the Oscillator and its Function, Making a Simple Test Chassis, and Instructive Experiments are Dealt With =
By L. O. SPARKS

THE first essential of any transmitter is a generator of suitable electrical oscillations; and the most simple generator, so far as the amateur is concerned, is the thermionic valve.

This type of oscillator, in its most elementary form, is not unknown to all con. structors. Any detector valve employing reaction can produce oscillations which usually indicate their existence by producjing, among other effects, a howl or whistle in the loudspeaker.

Such oscillations are undesirable, and not suited for the purpose in question, for it is vital, from the transmitting point of view, for the oscillations to conform to definite pre-determined standards, the most essential of which is constancy of frequency.

Oscillators can be classified under two main headings, namely, those which depend on inductive coupling to provide the necessary feed-back to create the oscillations, and those which make use of capacity coupling.

It is not possible in this article to deal in detail with all types of valve oscillators; therefore, readers should study Chapter IV of "Wireless Transmission for Amateurs" (price 2 s .10 d . post free), which gives circuits and operating data of all the various types.

The circuit most suited for the early experiments of the beginner is shown in

Fig. 1.-The fundamental T.P.T.G. oscillator circuit without crystal control.
Fig 1. It is known as the " tuned-plate tuned-grid": oscillator, and it depends for its operation on capacity coupling, this being provided by the internal capacity of the valve.

As the name implies, tuned circuits are used in the grid and anode circuits, a state of oscillation being produced when both of these are tuned to a common frequency.

A slight variation of Fig. 1 is shown in Fig. 2, where it will be seen that the grid circuit is not tuned. The arrangement is known as the "T.N.T." circuit, and to enable the desired conditions to be produced with only one tuning control, the grid coil has to be designed and constructed so that its inductance and self-capacity are sufficient to approach the resonant point through which the anode circuit can be tuned.

Chassis Layout

In Fig. 3 is shown the layout of a simple chassis. If a chassis is not a vailable, then a baseboard can be used, but whichever method of construction is adopted, it would be as well to start with fresh material, as it will be put to good service later on.

On the chassis are mounted two brackets for supporting two variable condensers; behind these are fixed three valveholders, two four-pin and one five-pin, the latter being in the centre. These are intended for coil and valveholders, and they should be so located that the leads from the condensers to the coils and from the coils to the valve are kept as short and direct as possible, without cramping the com: ponents too much. The dimensions given for the chassis should be taken as a guide. No inductive coupling between the coils must take place. The other components required to start with include a grid condenser and leak, a small by-pass condenser-mica dielectric-and, say, a switch. It is assumed that the constructor has by him a good millianmeter, preferably of the multirange type or, failing this, one having a maximum reading of 50 mA . The object of the chassis layout is to provide a means of carrying out tests with as many oscillator circuits as possible, with the minimum of trouble, and for this reason it is advisable to make use of battery-operated valves.

At this stage, one is not concerned with power output. In fact, every precaution must be taken to see that the oscillations produced are not capable of causing interference to nearby listeners.

Oscillator Circuit

The theoretical circuit of the first test oscillator can be taken from Fig. 1, with the addition of the milliammeter which must be connected in series with the anode H.T. supply, to indicate the variations in the current in that circuit.
The two variable condensers can be .0001 mfd . or .00015 mfd ., or values approaching these. They are not critical, at this stage, as the frequency of the oscillations is not of vital importance, provided it is within the amateur band.

Coils

The coils can be standard four-pin shortwave components, the two having identical windings. Home-constructed components can, of course, be used, provided that tho formers on which they are wound arc of good quality. The same stipulation applies to the grade of variable condensers.

Fig. 2.-A slight modification of Fig. 1, knowa as the T.N.T. circuit. The grid coil is untuned.

For various reasons, the valve should be of the pentode type. Any efficient L.F. type will do so long as the maker's figures for maximum anode current are not exceeded.

When the constructional work has been completed, valve and coils. fitted, and batteries connected, switch on and watch the meter. What will happen? This must be found out by carrying out systematic experiments, making adjustments, noting behaviour of anode meter, and recording your observations.

See how the tuning of the circuits effects things; note the sharp variations in anode current, and then apply the simple test given below.

Make a coil of wire, just sufficiently large to pass over and along the anode coil, and solder the ends to a small screw-type holder of the pocket lamp type. For safety's sake, cover the wire, which should be of 16 or 18 gauge, with a piece of systoflex and into the holder fit a low-consumption bulb. Fuse bulbs rated at 60 mA up to pocket. lamp bulbs can be tried, the final selection depending on the valve in use, the H.T. applied and the power generated.

Tests should be made by passing the loop over and down the anode coil. Note the results and at the same time watch the anode current meter.

After making observations with the components specified, try varying the value of the grid-leak and the ratio of inductance to capacity of the anode tank circuit.

Different screen voltages for a given anode voltage should also be tried, but in keeping with the other experiments the meter and lamp loop must be used and noted.

One word of warning regarding the construction of the chassis. If a metal or Metaplex chassis is used, the bracket supporting the anode tank tuning condenser must be insulated, otherwise a short-circuit will result.
Next week we will deal with the things which should happen with the circuit in question, and thus provide the means of checking observations.

The
 "P.W."
 Deat Aid

New Valve Types have Recently Been Released which may be Used to Improve the Performance of the Deaf Aid By W. J. DELANEY

IN June last we described a useful twovalve deaf aid in which two triodes were employed. In the original model a 1.5 -volt. biasing cell was used in conjunction with the microphone, and sub: sequently we gave detaila for improving the sensitivity by using a higher voltago for this purpose. It will be found that with the higher voltage the background noise from the mike becomes greater and in some cases this may be found a disadvantage. It is, however, highly desirable that the maximum degree of amplification shall be obtained with a hearing aid of this type, but at the time it was not possible to obtain any greater amplification without either using more valves or using a higher voltage.H.T: battery. Both of these would have meant a general increase in the size of the aid, and in the majority of cases the size is of the greatest importance. Mèssrs. Mullard now announce the issue of two new Midget deaf-aid valves, one of the screenedgrid type and the other a power valve.
types of ap-paratus.Accordingly, it "is possible to use the valve in this way in the-P.W: Aid. In this case the circuit will remain unchanged, and the S.G. pin of the valveholder is simply joined to the top cap of the valve, the simplest way of doing this being connect short length of flex to the S.G. termi-

Fig. 1.-Modified theorelical circuit of the deaf aid.

It is thus now possible to increase the amplification without sariously modifying the design of this useful little aid, in most cases the necessary increase in amplification being obtained merely by replacing the first valve by the new S.G. model.

Screen-grid L.F. Stage

There are two methods of using an ordinary S.G. valve as an L.F. componentone of which is simply to connect it in cireuit with a high-impedance anode load, and the other in which the valve is used as a triode by strapping screening-grid and anode. In this way a lower impedance is obtained with a fairly high amplification factor, but the characteristics are considerably changed. The L.F. quality is not nearly so good when this connection is used with the particular valve referred to, but in most cases high-quality of amplification is not needed. For speech and for all normal purposes where reproduction takes place through ordinary headphones high quality is not needed and, in fact, cannot be obtained without very special giving approxithe same degree of amplification but with a reduction in the general background noise. The sensitivity of the mike is obviously reduced, and thus it will be necessary to speak closer to it, or to place the aid closer to a radio set where it is used primarily for amplifying the normal speaker signals.

Normal Circuit Arrangement
If it is desired to use the valve as a normal S.G. comtponent it will be necessary to obtain another by-pass condenser (a value of .01 mfd. will be suitable) and a 10,000 ohm half-watt resistance. The S.G. terminal is that which on the original valve was the anode and thus the resist. ance must be joined between this terminal and the H.T. positive line, whilst the lead from the transformer must be disconnecterd from that terminal and joined instead to

Fig. 2.-How the original wiring is altered to adopl the circuil shown in Fig. I.
and taken through a hole in the chassis and provided with a top-cap connector as in the previous instance.

The amplification will not be so great as would be obtained if the anode load impedance were increased and the only way to do this is to use a parallel-fed (Continued on page 142)

SHORT-WAVE SECTION

AN EXPERIMENTAL BAND-SPREAD

 FOUR-VALVERIn This Article Sufficient Data is Given to Enable Readers to Undertake the Construction of an Efficient Receiver in Experimental Form, for Use in Conjunction With a Moving-coil Speaker.

LOUDSPEAKER reception of worldwide short-wave broadcasting and telephony is an attractive proposition, but many associate this class of reception with powerful mains-operated multi-stage receivers of the superheterodyne type, and of high output. This idea is a mistaken one, as it is possible for those who have suitable components to hand to build a receiver capable of providing satisfactory results.

Fig. 1 shows the theoretical circuit diagram. It consists of a stage of untuned high frequency, followed by a regenerative detector, and two stages of low-frequency amplification, both being transformercoupled. It will be noted that a high-value variable resistance is wired across the grid to the earth line. The value of this

Fig. 1.-The theoretical circuit referred to in this article. be modified. reasons.
simple yet efficient parallel method of band-spreading, a 15 mmfd. Raymart type condenser being used. The amount of spread depends upon personal requirements, and the band-spread condenser can

For example, on the 40 -metres band it should be about 80 degrees. Standard 4 -pin coils should be used. If it is desired to use home-made ones these should bo wound to standard and published data. Do not build an experimental receiver, and incorporate experimental coils, for obvious

Layout of Components

Whilst a good circuit is desirable, so also is a good layout, in which we must avoid the bunching of components, yet keep wiring short and direct. Fig. 2 shows a suitable layout. It will be noted that the cores of the respective L.F. transformers are at right angles to each other in order to reduce the possibilities of interaction, and consequent instability. This also applies to the L.F. choke, the metal shrouds of which should be earthed.
.The basic form of con. struction used, and recommended, is that of a com. plete metal chassis and panel assem.
resistance is important. If too low in value a considerable reduction in volume will result, whilst too high a value will cause erratic control.

This resistance controls the signal input, aids stability, and also safeguards against overload, and consequent distortion.

Resistance-fed transformer coupling combines the advantages of transformer and R.C.C., and in this instance the first L.F. stage is resistance-fed transformercoupled. In addition, L.F. output choke arrangements are also included, and consequently stability, other things being equal, is assured.
Referring to the circuit, to use straight transformer coupling in both stages, and cutting out the L.F. choke, will result in incurable instability, and is therefore inadvisable.

Naturally, we desire in the interests of general utility to cover as wide a range of wavelengths as possible. The H.F. chokes used therefore should be chosen from amongst the 10 -metres or below, to 160 metres types.

Band Spreading

In a receiver of this type ease of tuning is essential, and this is provided by the
bly, but, if desired, foil-lined plywood may be used.
The H.F. chokes and fixed condensers, etc., may. be fitted on the underside of the chassis, or supported by the associated wiring, whilst baseboard or chassis-type valveholders can be used.
The general arrangement of panel components assures that wiring will be kept reasonably short and direct. Owing to the fact that the physical dimensions of com. ponents.as used by individual experimenters will differ, slight modifications in layout may be necessary:
A receiver of this type will provide reason. ably good volume but, if desired, the power valve may be replaced by an L.F. pentode. In any case, good class L.F. transformers should be used, the second being of a higher ratio, for example, seven to one if a pentode is used.

Operation

With regard to operation, this is with but one exception exactly as in the case of an $0 . V-1$ receiver, the exception being that
the volume control is of the pre-detector type, and must be used with discretion. The mistake that a fully open volume control means full volume in all instances, should be avoided. The purpose of this system is to avoid detector overload and consequent distortion.
I do not advise the use of headphones on four valves, unless the input is reduced. In doing so, however, the sensitivity is also reduced. It is better, therefore, to use the three-valve output, and retain the higher standard of sensitivity. An L.F. volume control could, of course, be incorporated as a refinement, if desired.

A four-valve receiver built along the lines suggested in this article, and used in conjunction with an H.T. battery eliminator, will prove to be an ideal DX set which, at a later date, could be converted to T.R.F. at comparatively low cost.

Voltage Adjustment

In conclusion, just a few remarks concerning voltage adjustment, The relation between the screen and anode of the H.F. S.G. valve is important and is a matter for experiment. The following data will help. H.T. $+3-120$ to 150 volts; H.'T. $+2-$ 100 volts; H.T. $+1-50$ to 80 volts.
Once the correct operating, voltages have been found, attention can be paid to bandcoverage and calibration. . Slow motion dials should be fitted to the tuning and reaction condensers, respectively, in the interests of easy operation and reaction control.

The pre-detector volume control should be fully open for the reception of the weaker transmissions, but will require adjustment on powerful European transmissions in order to avoid distortion.

If it is desired to experiment with the detector stage, from a point of view of the quality obtained when the detector is partlyloaded, fully loaded, or over-loaded, it will be desirable to fit an L.F. volume control, and this may be the standard half-megohm component joined across the L.F.-transformer secondary.

ig. 2.-A suggested layout for the 4 -valver.

A FINE TECHNICAL LIBRARY OF STANDARD WORKS

Withe Price. By Post, Wireless Service Mannal . 5/. 5/0 Wireless Transmission for Amatears $2 / 6 \quad 2 / 10$ Sixty Tested Wireless Circuits . . 2/6 2/10 Wireless Coils, Chokes and Trans.
formers and How to Make Them . 2/6 $2 / 10$
Wireless Constructor s Encyclop
Everyman's Wireless Book . . . 3/6 3/10
Television and Short-Wave Handbook 3/6 $3 / 10$
ON YOUR RXAVELENGTH

$$
\begin{aligned}
& \text { The Crisis } \\
& \text { OW that the palpitating hearts of } \\
& \text { those poor creatures who suf- } \\
& \text { fered a severe attack of nerves because } \\
& \text { they imagined that a war was about } \\
& \text { to take place have returned to their } \\
& \text { normal habitats, wireless dealers all. } \\
& \text { over the country are being inundated } \\
& \text { with requests to take back the goods, } \\
& \text { such as wireless sets, surplus of bat- } \\
& \text { teries, accumulators and torches } \\
& \text { which were purchased as a result of } \\
& \text { the panic. I advise those dealers to } \\
& \text { have nothing to do with such a syston. } \\
& \text { Many of these pitialjle people were } \\
& \text { buying up stocks with an idea of } \\
& \text { creating a local "corner," and retail- } \\
& \text { ing the goods at a fabulous profit. }
\end{aligned}
$$

A Clean Up

MR. OGILVIE, according to a report, promises to make some drastic changes in the B.B.C. In the first place he does not feel that it is proper for members of the B.B.C., most of whom are well paid, to spend their time flirting with outside jobs, and using their position with the B.B.C. to obtain jobs in the theatres and in journalism. As soon as the air has advertised their names sufficiently they desert the B.B.C. I wish him success in that venture, for neither the theatre nor journalism has room for these hot-house creations, which may appear to be the genuine bloom but lack the sweet fragrance and the characteristics of the real flower. I am glad to know also that Mr . Ogilvie promises to improve the programmes. The revenue of the B.B.C. is three and a half million pounds a year, so it should be able to do something worthy of the change.

This rich country of ours, which can afford to give three per cent. of the total national revenue to Czechoslovakia, should also remember that charity begins at home.

Unnecessary Programme Cuts

1.W. P., of Chipstead, claims a portion of my space for the following :
"I should be grateful if you would allow me to comment on the words of S.. M. F., under the heading 'Unnecessary Programme "Cuts" by B.B.C.' I agree that the B.B.C. should use more discretion in the 'fading out' of programmes, and heartily endorse his opinion of the

By Thermion

case in question, i.e., that delaying the Epilogue would not seriously disorganise the programme.
${ }^{6}$ But I definitely dislike the way in which the writer criticises the Epilogue itself in an unnecessarily scornful manner. The 'prayers' he speaks of are in reality portions of Scripture read by experienced broadcasters such as the Rev. Iremonger, or one of the announcers.
" There is much too much criticism of the B.B.C. Sunday programmes, which are perfectly balanced and suitable to the day which should be treated differently from the others, because it is a day of rest, and appointed as the day on which we should all specially devote ourselves to the worship of God. Let those who scorn Christianity and all appertaining to it remember that 'God is not mocked.
"At least, let them show a spirit of fairness and pay some respect to those who wish to believe in the Bible. A belief which has flourished for close on 2,000 years cannot be the 'dope' and 'trash' which the superior modern being would like to make it.
"This is a spontaneous outburst prompted by S. M. F's letter; and the first time I have written to you. Practical and Amateur Wireless is a fine magazine, and your column an especially good part of it."
I am sorry, but I do not subscribe to the obsolete views expressed in this letter.

Prize

OFFER a prize of a book to be selected by the competitor from our list of wireless publications for the best letter entitled " What I would do if I were Director-General of the B.B.C." These letters should contain constructive criticism, and not be merely critical. If you feel that something is wrong you should make suggestions as to how it should be put
right. I shall act as judge and my decision is final, of course. Address letters to me and mark the words "Competition" in the top left-hand corner. I must receive them not later than October 3ist, and letters should not exceed 300 words in length. I shall also award a number of consolation prizes.

The Clubs

NOW that the wireless season from the point of view of the constructor is in full swing, I hope that all of my unattached readers will join a club; if there is not one in your district I hope you will do your best to form one. Most other hobbies have their clubs, and I would ask secretaries not to make the club programme entirely technical. Do not forget the annual dinner, dances, and social evenings; they all help to keep the club spirit alive. Members do not wish always to be hearing lectures on the functions of thermionic valves. Clubs should also be discriminating in their selection of lecturers. A number of wireless firms are glad to oblige by sending skilled people to lecture at local clubs, but they require plenty of notice. Let your club work to a plan, and well ahead, so that the members know well in advance what dates to keep open. Above all, charge a reasonable subscription, not too low, to keep out the undesirable element. Avoid cliques. Expel members who do not turn up for four weeks in succession. Make it a privilege to belong to the club. You will only keep the members together if you have a good programmc.
Helping the Blind.
THOSE people who help the blind through the medium of the National Institute for the Blind may rest assured that their contributions are being well administered. The Institute's report for the past year, a copy of which I have just received, shows a record of service which seems to cover every need of the sightless population, beginning in infancy when the blind baby enters a Sunshine Home, and continuing to an old age of peace in the special homes for this purpose.

A new venture during the year was the erection of a school journey centre for childreth from elementary
schools for the blind. For those young people who would normally go to a public school, the Institute has two fine establishments of the kindWorcester College for the boys, and Chorleywood College for the girls. The curriculum is that of any ordinary public school, and some of the students pass on to the universities.

As a result of such opportunities, many blind people are now able to enter certain professions, and become useful members of the community. One branch of training by the Institute has given the public the service of a body of expert blind masseurs, whose blindness is said to be an actual asset in their work.

Perhaps the Institute's most spectacular achievement is in the field of literature. During the year more than 800,000 copics of embossed volumes and periodicals were issued; the 25 periodicals including magazines, technical journals, and four weekly newspapers. There was steady progress also in the production of talking-books. At the end of the period, the talking-book library contained 183 titles and circulated 200 sets of records weekly.

In connection with the "Wireless for the Blind" fund, which was founded by the National Institute for the Blind, it is gratifying to note that during the year over 6,000 loudspeaker sets and relay installations were issued, which made it possible to meet the new need for sets, and to make a substantial advance towards replacing obsolete headphone sets with loud-speaker sets of modern design. The total number of sets supplied by the Fund since its inception in 1929 has now reached 36,500 , of which more than 18,000 are still headphone sets. The sets are distributed through the local societies, which install them in the homes of the blind, and maintain them where necessary.

More Humour (?)

HAVE received the following
letter from G. H., of Bourne End
"I wonder if the following humorous (?) howlers and other types of sayings of one of my friends will bring a smile to your weary features?
(i) A Thermopile is Thermion's banking account.
(ii) Thermodynamics, Thermion at work. (Horrible thought Thermostatics.)
(iii) Hystercsis, the result of overexcitement.
(iv) Earthed conductor, the sequel to the case of the Murdered Bus Driver.

Notes Test Bench

Silly Mistakes

W^{E} have before deall with the problems which can arise when slips or silly mistakes are made in wiring. A very common instance of this is when a receiver has been overhauled or otherwise examined and when re-installed the listener forgets to connect the aerial and earth and spends much time and thought. in trying to locate a fault which does not exist. An instance of this occured recently where a receiver had been sent in by a reader as it failed to give satisfactory results. The output was a pushpull slage (Q.P.P. double valve) and flexible leads were led out of the chassis for connection to the speaker. There were three leads, wo for the anodes and one H.T., and the constructor had knotled one of these-obyiously to indicate the H.T. positive lead. When the receiver was lested it certainly gave very bad resulis, and afler an inspection it was discovered that the knolled cord was one anode lead and thus the speaker had been wroingly connected. When properly joined up results were-up to standard.

High-resistance Joints

MOST constructors are aware that high-resistance or poor joints can cause troubles in a receiver, but in certain cases it is possible for such a joint completely to preevent signals from. being ablained. An example of this nccurred recerily. when a superhet was being serviced. The receiver had worked when first made, but signals had weakened and finally stopped. : The wiring was examined from point to point and all components lested, without locating the trouble. Finally, it was discovered that a comnction in the anode circuit of the oscillator stage was very badly made, a corrosive flux having been used, and a high resistance had devel.oped, sufficienlly baid to prexent the valve from oscillating. As the set was a superhet-this obviously prevented it from working.

Wiring Interaction

IN most houses the-electric-light wining vuns through metal conduit in the walls, and as this conduit is earthed limle hum is picked up should any radio apparatus be placell near it. Where cab-tyre wiring is employed, however, it is possible to piction hum by speaker leads, aerial or earth leads, or even on the set wiring, if the set is placed close to the wall where such viring is buried. A case recemly occurred where a listener kept hearing a loud buzz al odd intervals and eventually found that his indoor aerial ran parallel with the electric-bell wiring in the next house.
(v) Anions are things one finds in a garden.
(vi) A post office box is a large cylindrical object painted red and found at street corners.
(vii) A floating battery is a number of guns on a ship.
"He would also like to know if they used Gauss's Theorem when designing gas masks.
"After that I think I might make an approximate reversion to normality, and say how much I enjoy reading your articles, and hope that you will continue to write until you are in a state of R.I.P. or A.R.P., or whatever the current term will be then.
"Should your article fail to appear one week I shall know that my modest epistle has had a perverse effect upon your nerves, which must be sorely tried by some of the literature which arrives for your perusal."

$8{ }_{4}^{3}$ Million Wireless Licences

T is interesting to note that 642,047 wireless receiving licences were issued by the Post Office during September. This figure represents a net increase of 68,294 in the number of licence holders during the month after making allowance for expired licences and renewals. This is over Ioo per cent. greater than the increase established in August. The total number of licences in force at the end of Scptember, 1938 , was $8,75^{8,050}$ as compared with $8,347,24^{\circ}$ at the end of September, 1937, an increase during the year of 410,810 . During the month there were 480 successful wireless prosecutions.

Television at Work

WHAT is, perhaps, the most popular feature of television, "Picture Page," reaches its 180 th edition on November 3 rd. In it, famous people are interviewed, interesting occupations are demonstrated, and there is so much entertainment material in the series that it has been decided to include it in the new broadcast feature called "Tclevision at Work."

Thomas Woodrooffe, of the B.B.C.'s Outside Broadcast Department, will go to Alexandra Palace with the intention not only of arranging for listeners on the sound side of broadcasting to hear "Picture Page," but also to describe exactly how it is being televised. He will tell listeners all about the studio and the various television gear; what is going on outside the picture that television viewers are seeing. The studios are not unlike a small cinema set. They are equally hot and possibly more tense.

Activities Abroad

THAT this country is maintaining her television lead is readily established by referring to the reports of activities in other parts of the world. Czechoslovakia had started a close investigation of the television position, but the recent national crisis has now relegated this to the background. In Germany, although a good exhibition effort was made in Berlin, the authorities are experiencing difficulty with the working of the new 441 -line transmitter. It broke down during the Berlin show, and for two or three days a reversion, to the 180 -line standard was made. Preparations are now being made to put the studios in service, but since all the technical staff are under the jurisdiction of the Post Office it makes it difficult for the programme staff, who are under another loody, to work in close co-operation. The same thing happened in the early days of broadcasting, and adjustments will have to be made to ensure really harmonious working. Belgium so far has not taken any stens to establish a television service, and at their recent exhibition no mention was made of any development in this connection. After a promising start, Italy seems to have reached a state of impasse, and the work being undertaken in Russia is being kept specially secretive at the moment. At the Paris exhibition, although several television receivers were on show, only one or two were priced, and these varied from 5,000 to 11,000 francs. The pictures were of good quality, but at the moment there does not seem a great desire on the part of the manufacturers to take advantage of the Eiffel Toner service. This may be due to the short programme hours, which so far only total six hours per week, while there is no 'satisfactory schedulc like that operating from Alexandra Palace. In America the 1R.C.A. are certainly spending a good deal of time and money in carrying out field tests and relays, while in addition the public are now being given the opportunity of witnessing demonstrations, and official guides describe the equipment. Apart from the marketing of one small picture receiver, however, there has been no effort to make a real breakaway from experiment as opposed to some form of public service. It is felt generally that the New York exhibition which opens in the spring of next year will signalise some meritorious move in this direction, but until then the American public will have to be patient and hope that the service, when it does commence, will háve justified the interminable delays which now seem to be irrevocably linked with television in that country.

Special Screens

IT aiming at the development of brighter pictures both for domestic receivers, and big screen work, there are many inventors who are pinning their faith in incandescent screens, as distinct from those which make use of the principles of fluorescence. Each scheme has its own set of inherent difficulties, and these are in turn being eliminated gradually with the result that before
long it should be possible to make a direct comparison between the pictures reconstituted by either method. In the case of the incandescent screens it is most important to prevent the heat generated at each elemental area from spreading to neighbouring points, as this only results in a blurring of the picture with a consequent loss of the finer detail. Special woven

Varying Designs

TT is both interesting and instructive to compare and contrast the varying number of receiver designs which have been employed in the sixty or so types of television sets which are now on the market. For this purpose no notice need be taken of the projection type cathode ray tube models, as obviously they are in a class by themselves both from the point of view of picture size and cost. Taking a rough survey of the sixty models it was found that less than 25 per cent. had provision for indirect viewing. In the early days of the sets used for the high-definition service, picture observation via a mirror inclined at 45 degrees was quite popular. It was soon noticed, however, that some of the mirrors used were too thick, and this gave an annoying double image which resembled a ghost or the so-called "ringing" effect. This has been cured by using surface-silvered mirrors, but they are rather costly, and must not be subjected to the ordinary glass cleaning pro-

Ruby Moule, an attractive seventeen-year-old Brixton girl, was a recent "discovery", of Television, being described as "the readymade television girl" by Gerald Cock, the Television Director. Now, after being given many television engagements by the B.B.C., she is to be given a chance in filmdom, in the shape of a film-lest. In our illustration Miss Ruby Moule is seen busy ironing at her Brixton home. She is unspoiled by the publicity.
screens have been tried with a fair degree of success, but there is another type in which tiny spirals of special wire, treated subsequently by chemical action and heat, are built up in elemental form. It is claimed that by this method the subsequent electronic bombardment brings about a very rapid rise to conditions of incandescence and this has the two-fold purpose of preventing heat spread and also reduces the "lag" effect which is another inherent defect of this type of picture formation,
was a direct became apparent at Olympiai of the cathode-ray tube, and more careful disposition of the chassis round the glass bulb. A much bigger electrical strain is being placed on the time-base generator as a result of this short-tube design, however, and it is known that some manufacturers have viewed this change with doubt as to its serviceability over a long period of time. A much stronger. deflecting pulse is necessary in order to cover the picture area and swecp.

Televiews

 but that in no way detracts from the initiative of the staff who are making a gallant effort to prove the value of television as a real news medium. The pleasure of watching an event recorded on celluloid,
Real Enterprise

 THE B.B.C. outside broadeasts tele vision department are to be congratulated for the enterprise they have shown recently in bringing television to the fore as a medium for the dissemination of up-to-date news. The departure and arrival of the Prime Minister at Heston aerodrome is a case in point. Although carried out at short notice, coupled with adverse weather conditions, the cameras were on the spot, ahd embled viewers to witness scenes which and shown subsequently on a news reel in a cinema, is tempered very materially by the knowledge that the result has been learned beforehand from the newspaper or wireless. Much of the thrill of expectancy is missing, and this is where television scores so heavily over its film rival.
A Super Electron Microscope

AFEW weeks ago the attention of readers was drawn to a new form of electron microscope in which the usual principles of elec-

Mr. Fred Hartley, whose broadcasting and recording quintet is well-known. has just bought a car. Nothing remarkable about that-except that the car is a 1901 De Dion Bouton. The reason is that Mr. Hartley is to enter for the London-Brighlon "Old Crocks" race in November. Recently the occupants of Broadcasting House were astonished to see the musician arrive in splendour in the old veteran. In the illustration Mr. Fred Hartley and his wife are seen arriving at Broadcasting House in the De Dion Bouton car. tron image formation and focusing were combined with the storage principles of the Iconoscopecamera mosaic, so as to produce images of good brilliance and detail under conditions of im. perfect illumination. It is now learned that in Germany a superclectron microscope has been manufactared by Siemens and Halske which gives a degree of magnification bitherto thought impossible. Thi normal electronic magnification is one of 2,000 dia. meters, but for special work the accelerating voltage is raised to 100,000 volts. Under these extrene conditions the degree of mag. nification becomes 30,000 diameters, which is about six times as great as that furnished by the best optical methods. It is for this reason that considerable research is being directed towards this offshoot of television. It is realised that for certain forms of
no verbal description on the ordinary broadcast band could have made so vivid. There is no doubt that similar events will occur, although it is hoped they will be the result of more pleasant circumstances, and it is certain that the O.B. department will be ready to show their initiative, and have the vans ready to broadcast the events for home visual consumption. All this work must be coupled with the very ambitious programme which has been drawn up for employing the two outside broadcast van units during the autumn months. No doubt, the weather will play a big part in ensuring the complete success, or otherwise, of the items selected when judged from the point of view of picture quality in the home,
medical investigations, advanced physics research, and many astronomical applications, a microscope of this character is invaluable, and will enable improvements to be made on the results obtained hitherto by optical means. Apart from work with ordinary forms of visiblo illumination, the electron microscope has the added advantage of being workable with either infra-red or ultra-violet illumination. It is merely a case of changing the photo-electric character of the cathode surface so that it is responsive to light in either region of the spectrum scale. Furthermore, the cost of a high magnification instrument with considerable versatility should be much less than an optical equivalent having a more restricted use.

MAKING A STAND-BY
 TRANSFORMER
 (Continued from page 123)

Primary

Then wind on the first 935 turns of the primary, feeding the wire evenly over the whole surface to be covered. The winding face should be kept as level as possible, so do not "lump" the turns. When 935^{-}tuins are on, clean the wire and make the first tap, paying special attention to the soldering. Cover the lead-out wires with sleeving, and always make the taps on the top of the former between the broad flanges.

From this $207 \frac{1}{2}$ volt tapping, ivind on 65 more turns and make the second tapping, then continue with a further 65 turns to finish the primary. The completed winding is covered with two layers of oiled silk as before.

Finally, the H.T. secondary is wound, the three connections being taken out on the opposite side to the primary taps. Two more layers of cloth cover the secondary winding and the whole is fairly heaily doped with a good insulating varmish.
Remove the mandrel before doping, however, or your work will be wasted.

Ironing

Dry out the completed bobbin thoroughly for several hours before ironing up. If convenient, leave it to dry overnight before the fire, or stand it on a sheet of newspaper over the hot-water storage tank.
The former illustrated will require approximately 90 pairs of .014 in . stampings, type 99 , obtained from Magnetic and Electrical Alloys, Ltd., of Wembley, Middlesex.
These may be assembled in threes, but the stray field is lessened by interleaving the "T" and " U " pieces alternately.

A skeleton framework is used for assembly. The terminal panel is of $\frac{1}{2} \mathrm{in}$. bakelite sheet, the connections from the windings being taken through Systoflex sleeving to the appropriate tags on the panel. Finally, the irons are given a coat of varnish to prevent rust.

It may be observed that the calculated voltage for the heaters is in excess of the specification. This is merely to compensate for I R drop in the windings when on load.

Finer Points of Construction

In conclusion, it may be as well to recapitulate the finer points of construction.

The wire must be wound with an even tension and speed in winding is to be deprecated. Careful work will ensure a firwi bobbin without stray loops of wire to be tucked away. Do not attempt to distort the bobbin when wound, or it will probably collapse.

THIS week's specially enlarged PRACTICAL MOTORIST is a fully illustrated and alphabetically arranged guide to the Earls Court Show. Latest developments in engines and coachwork, and all new accessories are described and explained. At the Exhibition this Show Cuide will be invaluable, and if you cannot visif the Show it will bring Earls Court to you!

Get To-day's

THE PIECE YOU HAVE just cut off. now when the

 WINTER COMES AND ALL the leaves have
:37b
and then the set goes DEAD and you say

‘NEXT TIME I'LL FIT

Exide - 置npoca

RADIO ACCUMULATORS AND DRY BATTERIES'

Exide tells you with the Charge Indicator when juice is getting low-instead of waiting for the thing you most want to hear and then fading away. And Exide's only proper companion in any set is Drydex - the H.T. battery that lasts so long and fades so very gradually that it, too, gives you plenty of warning. Exide and Drydex are the pair that still keep going when the rest have stopped.

From reputable dealers and Exide Service Stations, Exide Service Stations give service on every make of battery. The Chloride Electrical Storage Company Ltd. (Exide and Drydex Batteries), Exide works, Clifton Junction, nr. Manchester. Also at London. Manchester, Birmingham, Bristol, Glasgow, and Belfast.

A Car Radio Hint

MOST conmercial car radios draw from the accumulator about 5 amps. This is usually dealt with in ono of two ways: (1) By leaving the carefully balanced charging rate of the dynamo alone, and running the risk of a flat battery, or (2) by adjusting the control brush to cover extra current required; this method may, however; have the unfortunate result of buckling the battery plates if the radio is not in constant use. A glance at Fig. 1 will

explain how to overcome this "snag" of car radio.

The Relay

An old 6-volt eut-onit, which may be obtained from any "car breaker," will serve this purpose admirably. The only modification necessary is simply to remove the heavy current winding, taking care not to damage the fine voltage winding or the points ; this will leave you with an excellent relay designed to stand up to constant use without overheating. Should the constructor wish to build the relay from parts found in any "junk box," the fundamental details are shown in Fig. 2. Approximately 18 layers of 60 turns each of the specified wire will be suitable.

How to Safeguard the Accumulator from Overload

The Resistor

This, again, may be found among the "stock in trade" of any reader. A littlo experimenting will soon ascertain the correct value to give the desired drop. A 1.5 ohm 10-watt radio resistor will drop the current 5 amps . when radio is "off"; it is not recommended to go beyond this value, as some generators tend to reverse polarity when a resistance of greater magnitude is placed in the earth lead.

Mounting and Wiring

Once the relay is ready it only remains DISCONNECT to solder the connoctions. If an old FROM EARTH. cut-out is used a cover will be provided, but if the constructor has assembled the relay it would be advisable to "can" it in order to protect it from

Fig. 2.-Consiructional details of the relay.
condensed oil, dust, etc. Fig. 3 indicates the method of mounting the resistance on the relay cover B, and also the whole on the strap, or brush-inspection cover of the dynamo A. With this cover off the dynamo brushes are accessible, and once
the earthed brush is recognised it is a simple matter to remove the brush holder and inscrt some insulating washers underneath to insulate the whole from carth on the "pot" of the dynamo. From this brushholder an insulated wire should be taken out of the dynamo at any convenient point

Fig. 3.- Mounting the parts on the dynamo.
to one side of the resistor, which is also connected to the upper point of the relay. While the brush-inspection cover is removed the "third" or "control" brush can be adjusted to give the extra. 5 amps which will be needed when the radio set is in use, and automatica!!y earthed when the radio switch is in "off" position. It is to this switch (dead side) that the only wire connecting the unit to the set is needed.
A little experimenting with resistance and brush position may be necessary to attain the desired result, i.e., with engine revs. equal to $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., and all lights and radio " on " (or off), the ammeter should remain in central position.

IMPORTANT BROADCASTS OF THE WEEK

I NATIONAL (261.1 m. and $1,500 \mathrm{~m}$.)
Weinesday, October 19th.-Symphony Con. cerl from the Queen's Hall, London.
Thursiay, October 20th.-Variely from the Lyceum Theatre, Sheffield.
Friday, October 21st.-Special concert programme.
Saturday, October 22nd.-Music Hall programme.

REGIONAL (342.1 m.)
Wednesday, October 19 th.-Variety from the New Hippodrome Thealre, Coventry.
Thursday, October 20th.-Concert Party programme, from the Royal Hall, Harrogate.
Friday, Oclober 21st.-Orchestral programme.
Saturday, October 22nd.-Chimber Music.
MIDLAND (297.2 m.)
Wednesday, October 19th.- Variety from the New Hippotrome. Theatre, Coventry:
Thursday, October 20th. -The House of Grevis, a play.
Friday, October 21 st. -Old Time Dance Music.-
II Salurday, October 22ud.-Orchestral pro. gramme.
(NORTHERN (449.1 m.)
Wednesday, October 19th.-Music of the People: A concert by Wigan Folk.

Thursday, October 20th.-Robert Owen, a radio biography.
Friday, Oclober 21st.-Speech from the University, Durham.

TELEVISION FEATURES

Outside Broadcasts

A WEEK'S series of outside broad casts from the grounds of Alexandra Palace will be opened on the afternoon of October $22 n d$ by vieucers being taken on a tour of one of the mobile television units. Studio cameras will picture the complete operation of the unit arriving outside the Palace and setting up its equipment as if it were about to televise an outside feature.

Viewers will have the opporlunity of seeing the four vans which make up a unit--the transmitter, the power van for generating current where this is not available from mains supply, the scanning van, and the fire escape aerial which can be run up to a height of eighty feet in about 30 seconds. Cables will be run out and camerns and microphones set $u p$, and once this has been done the engineers will hand over to the producer waiting to begin the transmission. The total weight of the four vans of the outside broalcast unit is over 30 tons.

Saturday, October 22nd.-Spotlight on Sport: Arsenal v. Preston North Endan eye-witness account from London.

IVEST OF ENGLAND (285.7 m .)

Wednesday, October 19th. -The Use of the Land.-2, The Government and Agricullure, a discussion.
Thursday, October 20th.-Bath, fealure programme.
Hriday, October 21st.-Choral programme.
Saturday, October 22nd.-Personal Reke. tionships.-3, The Employer and his
Secretary, a dialogue.

WELSH (373.1 mr .)

Wednesday, October 19th.-Macheth, a tragedy by William Shakespeare (in Welsh).
Thursday, October-20th.-Orchestral concert.
Friday, October 21st.-Night Express.1, Night Express Murder: a vadio serial in six episodes, based on L. A.
Knight's novel, Night Express Murler.
Saturday, October 22nd.-Concert Party programme.

SCOTTISH (391.1 m.)

Wedncsday, October 191h.-Shudents Songs: choral programme.
Thursday, October 20th.-Gaelic Concert.
Frilay, October 21 st.-Organ music from the Capitol Cinema, Aberdeen.
Saturday, October 22nd.-Band concert.

(2i) Bypurs YOUR IDEA

 THAT DODGE OF YOURS!

 THAT DODGE OF YOURS!}
A. Circular Cutting Tool

HRE is a useful dodge for cutting large holes in a metal chassis. All that is needed to make it is a hacksaw blade (about $\frac{1}{2}$. wide), some sheet brass or steel ($\frac{1}{16} \mathrm{in}$. thick), and some metal rods about ${ }^{3} \mathrm{i}$ in. diameter.
Two brass dises are cut, slightly less than the required diameter of the hole. A length

A handy lool for culting largs-diameter holes in a metal chassis.
of hacksaw blade is cut off just sufficiently long to allow it to go round the dises and meet without overlapping. Holes are then drilled in the centres of the dises to allow a pointed rod to be soldered in. The blade is soldered round the dises, leaving about $\frac{1}{6} \mathrm{in}$. of blade projecting at the bottom. The handle can be a tap wrench, or it can be made as shown in the sketch.
To use the tool, first drill a hole in the centre of the required hole so that the pointed end of the central rod can he inserted. Using this as centre the tool is rotated backwards and forwards until the metal is cut through.-D. Twivey (Market Rasen, Lincs).

A Simple Output H.F. Filter Unit

WHEN dismantling an iron-clad type electric bell the other day, it occurred to me that I might take advantage

A useful output H.F. filtef unil can be made as shown here.

Every Reader of "PRACTICAL AND AMATEUR WIRELESS" must have originated some little dodge which would interest other readers. Why not pass it on submitted, and for every other item publisherd on this page we will pay half-a-guinea. Turn on this page we will pay half-a-guinea. Turn in to us addressed to the Editor, "PRAC TICAL AND AMATEUR WIRELESS," George Newnes, Ltd., Tower House, South ampton Sireet, Strand,W.C.2. Put your name and address on every item. Please note that every notion sent in must be original. Mark envelopes "Radio Wrinkles." DO NOT enclose Queries with your wrinkles.

of the casing for the construction of an output loudspeaker filter unit.
Removing the armature movement and rewinding the bobbins until they were full,

Many uses can be found for these handy clips.

A Dodge for Metal Chassis Construction

TT is often necessary to retain in position one or more componeuts when working out the design of a new chassis, and recently I resorted to the use of some hastily made clips in aluminium for use in the manner illustrated. These clips proved, however, to be too weak, being made of $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. , but the value of a set of these made of suitable sheet brass soon became apparent. I obtained some strip brass, cut a number of different lengths, and bent the clips to the shape required, Now, when I require to position, say, a condenser mounted on an adjustable bracket, it is a very simple matter, and the comparisons to be made with regard to the other component positions is facilitated. The holding in position of the front panel, and chassis, as illustrated, is another of the advantages to be found in the use of this simple clip system. -H. L. Atkinson (Olney).

A Dual-control Device

MANY constructors who have a volume control with a long spindle, may wish to use the volume control as an on-off switch in addition to its usual function. This is quite a simple matter, the only parts needed, besides the volume control and toggle switch, are one dise of metal (thin brass plate), about 11 to $1 \frac{1}{2} \mathrm{in}$. diameter, with a hole in the centre to correspond with the size of the volume-control spindle; and one brass bush with fixing screw. The circular plate, which is soldered to the brass bush, is indented, as shown, to form a cam which engages in a slot cut in the switch dolly. The method of mounting the parts is clearly indicated in the accompanying with 36 d.s.c. wire, constituted the means of obtaining the H.F. chokes. By retaining the iron pole pieces a winding capacity to earth was obtained by taking the earth lead to a solder tag fitted to the side of the shroud, as illustrated. The easily removable lid provided the mount for the terminals, and two ebonite insulating bushes ensured adequate protection against short circuit. As will be seen from the drawing, the connections to the receiver are very simple, and when connecting up, the unit should preferably be inside the cabinet with the earth connection obtained from the usual socket. -B. N. Davies (Royston).

Coils, Chokes \& Transformers

Price $2 / 6$ —by post $2 / 10$
sketch.-R. Johnson (Lancaster).

Leaves from a Short-wave Log

Finland's Bigger Voice in the Ether THE results of broadcasts on short waves of the Iahti programmes have proved so satisfactory that the Suomen Yleisradio has applied to the Finnish Government to add a 50 -kilowatt short-wave transmitter to its radio network. In regard to medium waves, Abo is to be endowed with the 40 -kilowatt transmitter formerly used at Lahti, and the power of the Viborg station is to be doubled.

Short-wave Station for Lithuania

THE 60-kilowatt short-wave transmitter which is being erected near the capital (Kaunas), for the re-broadcact of the long-wave programmes, is nearing completion, and should begin to test within the next few weeks. The channels allotted for this service are : $\mathbf{L Y Z 2}, 31.5 \mathrm{~m}$. ($9.523 \mathrm{mc} / \mathrm{s}$) ; LYZ3, 25.21 m . ($11.9 \mathrm{mc} / \mathrm{s}$) ; and LYZ4, 19.6 l m . ($15.3 \mathrm{mc} / \mathrm{s}$). The 7-kilowatt long-wave station LYX, $1,961 \mathrm{~m}$. ($153 \mathrm{kc} / \mathrm{s}$) is to be replaced by a 120 . kilowatt transmitter at a cost of roughly £36,000.

A Call from West Africa

IT is reported that a short-wave transmitter has been opened by the French. Colonial authorities at Macenta, in French Guinca (West Coast of Africa) ; it was officially inaugurated at the beginning of September. The call-signs are: TXC5, $51 \mathrm{~m} .(5.882,3 \mathrm{mc} / \mathrm{s})$; TXC6, 40.5 m . $(7.407 \mathrm{mc} / \mathrm{s})$; and TXC7, $34.5 \mathrm{ma} .(8,695$ me/s).
Will Radio Luxembourg Relinquish Long Waves?
A CCORDING to the Lucerne Plan Radio Luxembourg was allotted a channel in the lower medium-wave band but has always hroadcast on its present channel. As the Parliament of the Grand Duchy has approved the decisions taken at the recent Cairo Radio Conference at which this question was again raised, it will be interesting to seo whether Luxembourg's high-power station will agree to an altered frequency, or whether it will still continue to work on the long-wave band.

Norway Orders Two 100 -kilowatters

TE Stavanger station, at present working on 20 kjlowatts, is to be given a transmitter five times that power; the new plant will be erected at Ulanhaug, in the vicinity of that city. Work has also been started on the 100 -kilowatt station to be erected at Vigra. It is hoped that both transmitters will be working in the early spring of 1939 .

Radio Tunis

THE 30-kilowatt broadcasting station which the French authorities have built at Dedieida (near Tunis, North Africa) is now testing daily on 345.6 m . ($868 \mathrm{kc} / \mathrm{s}$) between G.M.T. $10.00-12.00$, and from 18.00-20.00. . It had been hoped to carry out the inaugural ceremony on October 2nd, but in view of the international political situation it has been postponed to a later date. The power of the station can be increased to 40 kilowatts at short notice.

Radio Tananarive Tries Out New Channels
FRENCH wireless papers report that Radio Tananarive (Madagascar) has abandoned its former wavelength of 49.96 m . to work on 31.96 m . $(9.385 \mathrm{mc} / \mathrm{s})$, and $27.36 \mathrm{~m} .(10.965 \mathrm{mc} / \mathrm{s})$. The transmissions are now made between G.M.T. 05.3005.45 ; 08.30-09.30, 15.00-16.00 on weekdays, and on Sundays from G.M.T. 07.30 09.00 ouly.

Another Spanish Wavelength

RADIO REQUETE DE VITTORIA (Spain), a Nationalist station formerly operating on $42.69 \mathrm{~m} .(7.027 \mathrm{mc} / \mathrm{s})$ is now broadeasting daily from G.M.T. 17.30 on 25.02 m . ($11.991 \mathrm{mc} / \mathrm{s}$).

Ankara Now Tests Daily

TAP, Ankara (Turkey), is now carrying out experimental broadcasts every day at G.M.T. 10.00 , and again at G.M.T. 20.00 , on $31.7 \mathrm{~m} .(9.465 \mathrm{mc} / \mathrm{s})$. Announcements are made in English, French and German, the call being: This is Radio Ankara, Experimental Station. All reccption reports should be addressed to Poste de Radiodiffusion TAP, Direction Générale des Postes, Télégraphes et Téléphones Ankara (Turkey).

New Polish Short-waver

DRING the recent international crisis transmissions were heard from a Polish station on $48.86 \mathrm{~m} .(6.14 \mathrm{mc} / \mathrm{s})$. In official lists this channel is allotted, amongst others, to a 5 -kilowatt station under construction at Torun (Poland), and possibly the plant may have been brought into operation.

Another French Harmonic

R ADIO NORMANDIF is occasionally heard on about 30 m . This would appear to be the 7th harmonic, namely about $30.37 \mathrm{~m} .(9.877 \mathrm{mc} / \mathrm{s})$.

Powerful Signals from Bogota

$B^{\text {ROADCASTS from HJN, Bogota }}$ (Colonibia), can now be tuned in at good strength towards G.M.T. 23.00 nightly. The station giving its call as Radio Nactional de Bogota works on $49.5 \mathrm{~m} .(6.06 \mathrm{me} / \mathrm{s})$ with a power of 1 kilowatt. Announcements are made in the Spanish language with an occasional call in English. All reception reportt should be addressed to Radio Nacional HJN, Ministerio de Correos y. Telegrafos,: Begota (Colombia). The distance from London is approximately 5,290 miles.

Philippine Programme Schedule

$K^{\text {ZRM, M, Manila, operates daily from }}$ K. G.M.T. $10.00-15.00$ on 31.35 m . $(9.57 \mathrm{mc} / \mathrm{s})$. It is best to tune it in on Sundays when WIXIE, Millis, working on the same channel, starts one hour later.

New American Transmitter

ATER many weeks of exhaustive tests, the new $50-\mathrm{kW}$. transmitter, KNX, at Torrance, California, was recently put into service. Linked with the KNX studios in Hollywood, the new transmitter completes one of America's most elaborate broadcasting units.

Short-wave Enthusiasts to Call London

THE greatest short-wave radio link-up in history is to take place in London next month. Amateurs in all parts of the world who have short-wave transmitting licences are co-operating with the Tnternational Short-wave Club to call Olympia from November 2 nd to 26 th.
Postcards are already being dispatched to short-wave enthusiasts overseas inviting them to state the hours most suitable to them for transmission, so that it will be possible to announce to visitors the times and from what countries messages may be expected.
The Club is arranging to establish a new receiving station-Olympia-on a site covering 370 sq . ft . in the Leisure Section in the Empire Hall. The station will be equipped with some of the latest and most efficient types of receiver, constructed by members of the Club, covering ultra-short and short wavelengths, and will be used to ascertain the possibilities of radio reception in this vast steel-framed building.
Before November 2nd British transmitters will be chatting to far-off friends about arrangements for the link-up. Listeners in this country who possess receivers covering the short waves will be able to listen to these conversations. At the same time, they can qualify for an interesting competition which will be run in connection with the Club scheme. Ordinary listeners are to be invited to see how many stations they can log during certain hours.
In addition to amateur short-wave broadcasts the recognised short-wave stations in America, South America and Australia will be broadcast from the I.S.W.C. stand during the above period.

MR. D. W. YOUNG has been appointed manager of the radio department of the Bath branch of Duck, Son and Pinker, Ltd., the well-known music and radio house. For the past five years he has been manager of the radio service department, and he now replaces Mr. S. R. Lewin, who has been promoted to the managership of the Bristol premises.

M^{R}R. BERT BRYAN has purchased the radio business of H. Austin Stor'y, Itd., of Southsea. He is the brother of Mr. Harry Bryan, the well-known managing director of Selecta Gramophones, Ltd.
 representative for Deeca Radio and Television, Ltd., has changed his private address to " Deloraine," Heathwood Road, Cardiff.

PRACTICAL WIRELESS SERVICE MANUAL

By F. J. CAMM.

From all Booksellers 5/- net, or by post $5 / 8$ direct from the Publishers, Gcorge Newnes, Lid. (Boox Dept.), Tower House, Southampion Sireet, London, W.C.2.
 model. the specified parts; if he is unable to make the receiver substantiate those claims. It is a policy which I made one of the foundation stones of this journal, and the fact that the journal is still in existence and as virile as ever is evidence of the soundness of that policy. This policy

THE double-sided blueprint given with this week's issue represents my latest effort to satisfy the tug-ofwar between those in favour of battery and mains receivers. It represents, too, the culmination of many months of work and experiments with pushbutton systems, and continues my practice of only placing before my readers designs which I can personally guarantee.

For the first time in the history of radio journalism you have a doublesided blueprint, and thus I hope to satisfy everyone of those many thousands of constructors who continue to build receivers because they know that they can obtain more lasting results and better performance than from the average commercial receiver of comparable price. These two receivers will enhance the high reputation already enjoyed by Practical and Amateur Wireless receivers; they are also intended to signalise the passing of another Practical and Amateur Wireless Birthday-our sixth! Readers have not the same large choice of wireless journals which they had when this journal first appeared on the market, and because of the acquisition to our ranks of many thousands of new readers as a result of other journals falling by the way, I want to assure every reader of this journal that I am conscious of my responsibility to produce receivers which are satisfactory in every way.

I do not publish details until the minutest factor satisfies me. I launch these two new receivers with my personal backing that they will do what I claim for them, and again that backing is supported by my personal guarantee to test and adjust free of charge any receiver which a
is supported by another almost equally as important, namely, that of specifying only those parts which are the successful links in the chain of design. I merely ask that you use those parts so that you will obtain the same successful results. Do not destroy the balance of the circuit by taking liberties with that list! It may seem an unimportant matter, but a component which introduces a longer lead may also introduce complications and instability which will cause you hours of work, and finally you will find that you will have to chase those defects right through the circuit in an unsuccessful endeavour to chase them out of it.

I have done that work for you. All of the bugs have been chased out of the Push-button Four, and you should use the components and their arrangement exactly as printed here, and shown on the blueprint.

The Circuit

I have already given in earlier issues brief details of this receiver, and you will observe that it is a superhet. employing the latest type of combined frequency changing valve -a triode-pentode. Both sets are four-valvers, although the mains set has a rectifying valve ; but in this, a combined double-diode-pentode is employed as against the double-diode-triode and separate pentode of the battery set. Mains valves are relatively more efficient, and thus the performance does not suffer due to the loss of one stage of amplification.
One of the bugbears encountered by the home constructor in making an all-wave set is that usually a number of coils and separate padding condensers are required. In this receiver I have selected a unit with the coils already mounted on a special plate with their associated

This underside view of the mains model shows the disposition of the various components.
trimmers. The coils are of the 3range type, covering approximately 19 to 55 metres, 200 to 550 metres, and 850 to 2,000 metres.

A large station-name scale measuring no less than 7 in . by 5 in . is employed, and it is accurately calibrated

DETALLED LIST OF COMPONENTS FOR THE MAINS MODEL

One enamelled steel chassis 11 lin . by $8!\mathrm{in}$. by 28 in ., withaerial-earth strip

 fitted, 5s. 6d. (Peto-Scott).One special all-wave tuning unit with switches, filter unit, etc., type P.B.4 18s. 6d. (Peto-Scott.)
One 6-pt. purh-button mechanism with station plate, knob, buttons and escutcheon, 20s. (Peto-Scott.)
One two-gang bar-type condenser, 00043 mfd . each section, with special mounting bracket, 4s. 6d. (Peto-Scott.)
One station-named scale and drive, brackets, driving drum, pointer and cord, 4s. (Peto-Scots.)
One special potentiometer mounting bracket, 4d. (Peto-Scott.)
Two I.F. transformers, types BP. 122 and BP.123, 7s. 9d. each. (Varley.) One mains transformer, type P.B.4, 20s, (Heayberd.)
Fixed condensers:
One at .0001 mid., type $451,1 \mathrm{~s}$. (T.C.C.)
One at .0002 mid, type 451, 1s. (T.C.C.)
Four at .006, type M, 1s. 6d. cach. (T.C.C.)
One at .01 mfd., type 451 , 1 s . (T.C.C.)
One at . 02 mfd., type $451,1 \mathrm{~s}$. (T.C.C.)
Three at .1 mfd., type $341,1 \mathrm{ls} 4 d.$. each. (T.C.C.)
One 8.8 mfd . electrolytic, trpe $712 / 3,63$. (T.C.C.)
One 25 mfd . electrolytic, type FT, 1s. 6 d . (T.C.C.)
Fixed resistors:
One at 100 ohms, 1-watt type, 1s. (Erie.)
Two at 150 ohms, 1 -watt type, ls. each (Erie.)
One at 200 ohms,
One at 200 ohms, $\frac{1}{2}$-watt type, 1s. (Erie.)
One at 20,000 ohms, $\frac{1}{t}$-wart type, 1s. (Erie.)
Thiee at 25,000 ohms, $\frac{1}{2}$-watt type, is. each. (Erie.)
Thiee at 25,000 ohms, -watt type, 1 s . each. (Etie.)
One at 50,000 ohms, 1 -watt type, 1s. (Erie.) (Erie)
Four valvsholders, three 7 -pin and one 5-pin, types V1 and V2, 3s. (Clix).
One volume control 100,000 ohms, Lab. type, 3s. (Erie.
One volume control, 500,000 ohms, with on/off switch, 3 s . 6 d . (Erie.)
Two dial lamps 6.3 volts, 3 amp.,9d. each. (Bulgin.)
Connecting wire, length of screened braid, mains flex and plug, 5s. (PetoScott.)
Four valves :
One type TX4; (Tungstam.)
One type VP4-B. (Tungstam.)
One type DDPP4B. (Tungstam.)
One sype APV4. (Tuingsram.)
One type APV4. (Tungsram.)
One energised loudspeaker, Type EM/PB. (w.B.)
for use with these coils and the tuning condenser specified.

The push-button mechanism is of the mechanical type which operates
ment necessary with this system. In the present system accurate tuning is guaranteed under all conditions, for it also incorporates an ingenious clutch mechanism which throws out the pushbutton gear when jt is desired to change over to manual tuning. This clutch can be operated by a flick of the finger.

Notice that there is tone control on both sets. It is a tone control which operates over wide limits of frequency and thus enables the listener to adjust the tone according to the nature of the transmission, and to his own inclinations in that respect.
Interference is taken care of by the intermediatefrequency filter in the aerial circuit, which prevents in-
terference on a wavelength corresponding to the I.F. used. This is a common failing with some modern receivers. Fading troubles are prevented by means of full A.V.C. in both of the receivers.

Notwithstanding all of these advantages the receiver is comprised of a most compact assembly, the chassis being less than 12 in . in length and only $8 \frac{1}{2}$ in. wide. The construction has been specially simplified.

Constructional Details

The theoretical circuit has already

been explained, and all that now remains is to cover the various constructional features. The accompanying illustrations show how the receiver is built up, the chassis, push-button unit, tuning dial, coil unit, etc., all being supplied as separate items. The following remarks apply to both the mains and battery receivers, but

The battery
where any special reference is needed it will be covered separately. Assuming that all of the parts have been. obtained, the first thing is to mount the coil unit and the filter unit on the chassis with the bolts provided. The
blueprint will be of assistance in showing the correct way round for the coil unit, although it will be found that to enable the switch to be fitted there is only one position for the coil unit. The filter unit is bolted to the chassis just in front of the coil assembly, and the switch-locating plate is next bolted to the front runner of the chassis. In this connection note carefully that the switch-locating plate and the moving plate on the switch must both be accurately aligned, and therefore the flat operating

the mains circuil.
spindle should be first placed in the switch unit, turned to its maximum position in a clockwise or an anticlockwise direction, and the locating plate then so placed on the chassis that the switch may be operated over the full movement. This is so that there are two "clicks" as the switch is turned in either direction. When

theoretical circuit.

this type of switch has been employed in previous receivers we have found that some constructors fail to attend to this point, with the result that they cannot obtain either the short or the long-wave band.

Mounting the Condenser
The gang condenser is supplied with a special mounting bracket, and it should be bolted to the top of the
push-button mechanism is in use the knob has to be pushed to the left.)

When this part of the assembly has
push-button unit, which is then fastened to the chassis with the two bolts provided, placing the rubber washers on each side of the chassis. Next screw on the two runners which hold the dial, but do not fit the dial just yet. The special driving drum should now be fitted to the condenser spindle and the cord attached to the drum by passing through the two holes provided and knotting on the inside. The cord should be taken down and round the righthand spindle so that it is fairly tight when the right-hand spindle is pushed to its right-hand position. It will be noted, of course, that this spindle is on a rocking bracket so that it may be pushed to the right or left. (When the automatic fitted, 4s. 6d. (Peto-Scott) 18s. 6d. (Peto-Scott). cord, 4s. (Peto-Scott). (Erie).

Four valveholders,

Fixed resistors: 3s. 6d. (Peto-Scott).
Four valves:
One TP23 (Mazda).
One 210 VPT (Cossor)
One 220 HPT (Cossor)

DETAILED LIST OF COMPONENTS FOR BATTERY MODEL.

One enamelied steel chassis, 11 in. by $8_{2}^{4} \mathrm{in}$. by $2_{4}^{3} \mathrm{in}$, with aetial-eath strip
One special all-wave tuning unit with switches,' filter unit, etco, type P.B.4,
One 6-pt push-button mechanism with station plate, knob, buttons and escutcheon, 20s. (Peto-Scott).
One two-gang bar-type condenser, . 00043 mfd . each section, with special
mounting bracker, 4s. 6d. (Peto-Scott).
One staiion-named scale and drive, brackels, driving drum, pointer and
One special potentiometer mounting bracket, 4 d . (Peto-Scott).
Two I.F. transformers, types B.P. 122 and B.P.123, 7s. 9d each (Vatley)
One volume control, 500,000 ohms, with on-off switch (Lab. Type), 3s. 6 d .
One volume coptrol, 100,000 ohms (Lab. type), 3s. (Erie)
One fusc-holder, type S.E.S. 38,4 d. (Bulgin).
One fuse bulb, 9d. (Bulgin).
Four at . 0001 mfd., type $690 \mathrm{~W}, 8 d$. each (Dubiliet).
One at . 002 mfd ., type $4601 / \mathrm{S}, 1 \mathrm{~s}$. (Dublies).
One at .01, type $4601 / \mathrm{S}, 1 \mathrm{l}$. (Dubilier)
Two at .05 mid., type $4602 / \mathrm{S}, 1 \mathrm{~s}$. 3d. each (Dubilier).
Five at. $1 \mathrm{mfd} .$, type $4603 / \mathrm{S}, 1 \mathrm{~s} .4 \mathrm{~d}$. each (Dubilier).
One at 2 mfd., type 3016 (Electrolytic), 1s. 6 d . each (Dubilier).
Three at 5,000 ohms, $\frac{1}{1}$-watt type, 1s. each (Erie).
One at 10,000 ohms, I-watt type, Is, (Erie).
Two at 30,000 ohms, $\frac{1}{2}$-watt type, 1s. each (Erie).
Two at 50,000 ohms, \bar{f}-watt type, Is. each (Erie).
One at 100,000 ohms, $\frac{1}{\text {-watt type, } 1 \mathrm{l} \text {. (Brie). }}$
One at 250,000 ohms, $\frac{1}{2}$-watt type, 1 s . (Erie).
Five at 500,000 ohms, 2 -watt type, 1s. each (Erie).
Five at 500,000 ohms, $\frac{2}{2}$-watt type, 1 s . each
One at 1 megohm, t-watt type, 1 s . (Erie).
Three top-cap connectors, type P.41, 2d. (Bulcin)
Length of flex, wire for connection, length of screened braid, screws, etc.
after which the valveholders and the large mains-smoothing condenser may be fitted in their correct positions. The small special bracket for the volume control is next attached on the left of the dial-mounting bracket, and the tone-control potentiometer attached to the chassis runner in a line with the wave-change switch.

Wiring Details

The receiver should now be ready for wiring, and this will have to be carried out in a systematic manner to prevent omission of wires or wrong connections. The coil unit is supplied ready wired, but one or two additional leads have to be made to it, and these are clearly shown in the bueprint, which should, as in all cases of receiver construction, bé studied in conjunction with the theoretical circuit. It is easily possible to mistake a component such as a fixed condenser, where two or more have identical values in a circuit, and by referring to the theoretical diagram when a given point is to be wired, a cross-check is obtained which will prevent any ambiguity which might eventually lead to trouble.

In the battery wiring diagram one wire on the chassis has been shown as an open line, as distinct from the solid line used for the remainder of the wiring. This is the earth return lead to which various components are joined, and a similar wire is found in the mains version. This lead should be made with a length of bare tinned *opper wire, as heavy in gauge as possible-say, 16 or 18 S.W.G. Make certain that it is quite clean before móunting, and then join it to the soldering tags shown on the wiring diagram. Note that it is joined to the mounting plate of the coil unit. By connecting a soldering lug to the bolts holding down the I.F. transformer you remove the necessity of scraping away the enamel on the chassis to earth the screening cans of these components, and the bare wire is taken up through a. hole in the chassis and soldered to the wiping contact on the two-gang condenser to ensure that a reliable eqarth connection is obtained from this component. In this way the chassis is not relied upon for earthing purposes, and more stable operation is ensured

Two leads are soldered to the lower tags on the gang condenser for subsequent connection to the coil unit, but if you do not possess one of the small soldering irons which will go into the space available, you will have to attach these leads before the gang condenser is mounted on the push-button unit. As the resist-
ances are all of the colour-coded type it may be advisable to repeat here the colour code which is employed for these components. The body is taken as the first figure, then the tip colour, and finally the dot which will be found on the body. Thus the small resistances with a green body, a black tip and a yellow spot have a value of 5 , plus one nought, plus four noughts, or in other words, 500,000 ohms.

Underside view of the ballery model of the Push-bulton 4.

Yellow	.	4	0000
Green	-	5	00000
Blue	\cdots	6	000000
Violet	\cdots	7	-
Grey	\cdots	8	-
White	\therefore	9	-

The fixed condensers are all clearly marked with their respective values, and the only point which should be emphasised is that in the 25 mfd . electrolytic used in the mains set the red ring (also marked with a series of plus signs) should be joined to the cathode of the valve and the other end joined to the common earth wire. The two red and the black leads from the rectangular $8-8 \mathrm{mfd}$. condenser in the mains set are clearly identified on the blueprint. In the battery receiver the electrolytic
condenser is also connected so that the negative side is joined to the earth wiring.

Mounting the Condenser

When the wiring is completed the dial may be attached by ordinary paper-fasteners or with bolts and nuts on the " Z" runners provided-holes being found provided for this purpose. All that is necessary is to see that the hole in the centre of the dial coincides with the spindle of the condenser, and then the point may be pushed over this and temporarily locked with the set-screw provided. The condenser vanes should be turned

THE VERSATILE DIODE

In this Article the Functions and Uses of the Diode Valve are Clearly Explained

I^{T}- has often happened that technical progress has apparently rung the death knell of some particular device, only for further technical progress to bring it back into use again, and it is to be assumed that we have not seen the last of such occurrences.
One of the most striking examples is that of the diode valve. The diode has, of course, had a long run where H.T. rectification is concerned, but we are referring to the low-voltage diode, or diode detector. This example is of particular interest, because the diode was the very first of all valve types to come into practical use. The arrival of the triode put the receiving diode completely out of use, and for a long time it appeared tọ be as extinct as the dodo. Yet to-day we find that not only is the diode to be regarded as practically the standard type of detector in receivers that have adequate pre-detector amplification, but we depend upon the action of diodes to produce auto-control effects that were not even dreamed of in the days when the diode first came into use. Admittedly, present-day diodes are a great improvement on the original valves, which were of low-vacuum type, but it

Fis. 2. - A:C. and D.C. components are shown here and suggested values are: $-R_{1}=0.5$ meg.; $R_{3}=2 \mathrm{meg} ; R_{3}=1 \mathrm{meg} ; C_{1}=.0001 \mathrm{mfd}$; $C_{2}=.01 \mathrm{mfd} . ; \quad C_{3}=.05 \mathrm{~m} \mathrm{~d}$.
cannot be denied that, in making the diode such an important device of modern radio, wo have resurrected something from the "dark ages."

The Diode as Demodiulator

Fig. 1 is the fundamental diode detector circuit. LC is the radio-frequency input circuit, and the R.F. yoltage developed across this circuit is applied between anodo and cathode of the diode, via the condenser C1. The diode will conduct only when its anode is positive with reference to tho cathode (strictly speaking, we should say only when the anode is not more negative to cathode than about 1 to $1 \frac{1}{2}$ volts, dependent upon the particular valve). Rectification will take place, and with an unmodulated R.F. input a steady direct current will flow through the load resistance R1. The direction of electron movement through R1 will be from the LC end to the cathode end, and the direct voltage produced across R1 will therefore act as a potential difference between anode and cathode, the anode becoming negative to cathode.
With a modulated R.F. input the current in the load resistance and, therefore, the voltage across it, will rise and fall with the
modulation variations of R.F. amplitude. The potential difference across R1 will now be a fluctuating direct voltage, but it is legitimate to regard this as corresponding to

Fig. 1.-The fundcmental diode circuil. a steady voltage upon which is superimposed an alternating voltage. It is the latter which forms the output voltage where a stage of detection is concerned, and in the circuit of Fig. 1 it is applied to the succeeding valve via C2.

The modern diode has come into favour as a detector mainiy because of its comparative freedom from amplitude distortion. It is necessary, if freedom from distortion is desired, that the R.F input should not be too small. The rectification characteristic of a diode is remarkably straight except for low input voltages (when it is decidedly curved).

Producing a "Control" Voltage
A number of features of modern radio practico demand that the signat itself shall develop a direct voltage, dependent upon the carrier amplitude of the signal but independent of the modulation, and that this voltage shall be employed for certain, control purposes.
The most common and familiar example of all is that of automatic volume control (A.V.C.), in which the direct voltage referred to is used for negative biasing in the grid circuits of the pre-detector stages so that the H.F. gain of the receiver becomes dependent upon the cairier strength of the

Fig. 4.-In this circuil two diodes are used-one for the signat rectification and one for bias.

signal, the gain automatically falling with increase of carrier amplitude and rising with decrease of the latter.
The fact that the effective impedance that a valve sets up between its electrodes is a factor that influences the characteristics and behaviour of the circuits associated with the valve is not new knowledge and, from the early days of valves, it has been recognised that valve input and output impedances must be allowed for in circuit design work. It is only in recent years, however, that the idea of using a valve deliberately for resistive or reactive shunting purposes and, further, of automatically controlling the magnitude of the shunt effect has become an idea of great practical utility.
A valve arranged to act as an automatically controlled damping shunt on a tuned circuit represents a simple case of automatic selectivity control. Again, by making a valve act as a capacity shunt on an oscillator circuit it becomes possible to influence the generated frequency of the oscillator, and to obtain automatic frequency control.

With all these automatic systems it is.
\qquad
(Continued from previous page)
Average component values are shown in the caption to Fig. 2.

Delayed Rectification

It is necessary with many modern diode applications that a diode should keep out of action until the R.F. input has renched a certain pre-determined amplitude tevel. Such " delayed" action is easily arranged by applying negative bias to the diode anode (relative to its cathode). With a biased diode the positive alternations of applied R.F. voltage will have at least to equal the bias voltage before the valve will come into action, and a "delay"' of any desired degree can be secured by "appropriaite adjustment of the bias voltage. "The most common example is that of delayed-A:V.C. This demands two diodes: one, with no bias, for the normal signal detection, and the other, with bias, for the production of the auto-control voltage. A fundamental circuit, using a double-diode-triode valve, is shown in Fig. 3. This circuit provides diode signal detection, delayed A.V:C., and L.F. amplification. Note that the resistance in the cathode lead provides bias both for the triode and the A.V.C. diode.

Signal Muting (Q.A.V.C.)

The diode figures prominently in many circuit arrangements that have been devised for completely suppressing all signals (or interference) below a certain amplitude, thus giving silence while the

the anode the internal resistance can be made to drop to a comparatively low value. In Fig. 4, D1 is a signal detector having R1 as its load resistance. Across Rl is shunted another diode valve, D2. "The anode of D2 is biased negatively (preferably adjustable by manual control). The diode D2 is so connected up that the rectified voltagc produced across R1 by the signal diode, D1, tends to make the cathode of D2 negative with reference to its anode or, what amounts, to the same thing, to make the anode of' D2 positive, with reference

Fig. 5.- A signal limiter built round two diodes.
to cathode. While an R.F. input is being applied to DI, therefore, the actual potential difference between anode and cathode of D2 will be the difference between the biasing voltage and the voltage produced across R1 by D1, while the actual polarity of the resultant voltage on D2 will depend upon which of the two component voltages is the greater.

So long as the rectified signal voltage across R1 is less than the bias voltage on D2 the latter will be non-conductive, and will have negligible shunting effect on R1. Whenever the rectified voltage across R1 exceeds the bias on D2, however, the anode of the latter will become positive with reference to the cathode, and D2 will become conductive, heavily shunting Rl. Fig. 4 thus represents a limiting circuit, D1, which, with its associated load resistance, will be able to handle signals normally only when these are below a certain amplitude. For any input above this value D2 will come into play and drastically reduce the detector output. As it stands, the circuit of Fig. 4 is unsuitable for broadcast work,' but for morse reception it "can be usefully employed to cut down the effects of bad interference, particularly that caused by high amplitude pulses of short duration.

Opposed Detection

Limiting produced by directly-opposed detectors is no novelty. Old-hand marine o perators will remember a receiver of 1916 vintage which used two crystal detectors in opposition for limiting purposes.

Fig. 5 shows a modern version of the idea in which two diode detectors are arranged in such a. way as to rectify oppositely. If the two detectors have identical characteristics, and one were not biased there would, of course, be no reception at all, but it will be observed that one diode, D2, has a "delay" bias upon it.

So long as the input amplitude keeps below the delay voltage, D2 will be kept out of action and D1, with its load resistance will function normally. When D 2 . is brought into play, however, by any input that exceeds the bias voltage, its rectification, being opposite to that of D1, will cut the output.

This limiter, too. is unsuitable for
broadcast reception in the simple form shown in Fig. 5, but it has useful applications for communication work.

Differential Detection

In Fig. 6 the two diodes D1 and D2, forming the two halves of a double diode valve, are shown as separately operating on two independent H.F. inputs. In the diagram the + and - marks indicate the polarities of the rectified voltages produced across the two load resistances, R1 and R2, by D1 and D2, respectively. The two diodes have a common cathode, and it is easy to appreciate from Fig: 6 that if output leads (A and B) are taken from the diode anode ends of R1 and $\dot{R} 2$, respectively, that the resultant output voltage will always be the difference between the voltage across $R 1$, and the voltage across R 2 ; moreover, the polarity of the resultant voltage between A and B will depend upon which of the two component voltages is the greater.

Assiuming similar diode characteristics and equal load resistances it should be obvious that an arrangement such as that of Fig. 6 provides discrimination between the two H.F. inputs in so far as the value and polarity of a "control " voltage taken off. AB is concerned. If the two H.F. inputs are equal, the voltages across R1 and $R 2$, respectively, will be equal, and the voltage between A and B will be zero. If H.F. input (1) exceeds H.F. input (2) a voltage will be set up between A and B which will be the greater, the greater tlie difference between the two H.F. inputs, and B will be positive to A. If, however, H.F. input (2) exceeds H.F. input (1), then A will be positive to \mathbf{B}.

Fig 7.-A success/ul output meter rēctifier using a diode value.

A differential system such as this has very important application in autofrequency control systems.

The Diode as Output Meter Rectifier
In illustration of the versatility of the diode it can be mentioned that it can be used as a rectifier for an output meter.

This may be welcome news to some readers who possess a D.C. voltmeter, and would like to be able to usc the latter as an output meter (for ganging work, etc.). Fig. 7 illustrates a circuit that has been very successfully employed.

WIRELESS CONSTRUCTOR'S ENCYCLOP/EDIA

$5 /-$ or $5 / 6$ by jost from
Gcorse Nivencs, Lid., Tower House. Southamplon St,,

PILOT PUSH-BUTTON 4 KITS

BATTERY AND A.C. MODELS EXACT TO MR. F. J. CANMIN'S SPECIFICATION

Supplied pre-set for six medium and loig-wave stations-Press-bution escutcheon.

7-STAGE BATTERY 4.VALVE MODEL 903.

 Matched P.M. movingi, coil spenker, enmplete with transo
Cormer, 21/- extra, or ssme deposit, butind
E5, 12.6 former, $\mathbf{2 1 / - \text { extra, or same deposit, buts add }} 1 / 5$ to each monthy payment. $\mathbf{1 2 . 6}$ 4-VALVE A.C. MODEL 905. metree. Station-mamed uial. 4 -valve 6 -etage eunverhet circuit. Anning. Volume and ione sontrols. Chasets size, 11 man. w.i
 C. 0. D. Terms, $5 /-$ down and 18 monthly payments of $8 / 10$,
 8-STAGE A.C. ALL-WAVE MODEL 909. (As illustruted). Advanced 6 -valve 8 -sthge A.C. superbet with

A "TROPHY" provides shortwave reception at its BEST. TROPHY 3. As illustrated. Highly eflelent self-container shortHavers. Speaker incolporated. metres. Auprlied with tuners for 12. 52 mietres.
BATTERY MODEL. Cath or O.O.D., 25150 , or
 and 18 monthly paymenents of $7 / 9$. N.B. - It colls requlred for complete corerage, 6.2.j50 metres, add 1 .

TROPHY 5. A powerful, highly sensitire B-ralve A.C. communication recelver, recommerded to the short-wave " IInm " and beginner
alike, Wave-ranze $10-550$ metres, Band-surcad tuntue, No coil alike, Wave-range 10-550 metres, Band-sprrad tuning. No coil
changing. Self-contained spenker. Pleasing metal cabinet. Cash or changing. Aeifeontained spenticr. Pleasing metal cabinet. Cash or NEW TROPHY 8 for A.C. Mains, Rond now for detalls of this new 8 -valve popular short-wave communicati
List price 12 gas. Ycurs for leas than $4 /-$ weekly.

INMEDIATE DEAIVERY-CASH-CQD. or H.R

Author's kit of first specified parts as detailed below, including drilled chassis, Push-button unit, condenser, etc., all knobs, wire flex and screws. Less valves, cabinet and speaker.

Balance in 12 monthly payments of 9/-
THESE ARE THE PARTS SPECIFIED and USED by Mr. F. J. CAMM and INCLUDED in KIT "A."

1 PETO-SCOTT Ready drilled enamelled steel chazsis "ith Aerial and Earth atrip fitted.
PETO-SCOTT Special all-wave tuning unit type PB. $\AA_{\text {, }}$
omplete with switches, filter-unft, condensers and
1 PETO-SCOTT $\begin{gathered}\text { 6.point Pueh-Bution Unit with } \\ \text { change-over mechanign, sfation plate, knob, }\end{gathered}$
change-over mechanisn,
buttons and cscutchcon
ndenser, 00043 mfd .
PETO-SCOTT Station-bame ercale complete with
PETO-SCOTT Speciai potentiometer cord.
1 PETO-SCOTT Speciai potentiometer bracket and

ERIE Lith. volume coutrol, in 0,000 ohms.
ERIE Lith volume coutrol,
BULGIN fuseholder type 8ES. 38
BULGIN Fuse bulb
CLIX valveholdera, type V. 1 and ${ }^{1}$ V. 2 , (2) $\overline{5}$-pin and DUBTLFER With terninals 0001 nufd. flxed condensers type 690 W DUBILIER tubular condensers, . $002, .01$, (2) . 05 , DUBILLER 2 méd electrolytic condenser, type 3016 ERIE l-watt resistors, (3) 5.000 , (2) 30,000 ohms $\ldots 0$, 230000 , (5) 500,000 , 1 mers.
BULGIN top cip connectors type F .41
BULGIN top cap connectors type P. 41 screened braid and screws.
KIT " A," OASH OR

KIT "B" of 4 specified valves. Less cabinet and speaker. Cash or C.O.D. 17: 1:03 and 12 monthly payments of $12 /$. of $12 /-$

KIT" C" and specificd Peto-Scott walnut finish consoletic cabinet, less speaker,
monthy paymenis of $14 / 3$
 Stentorian Junior speaker. Cash or C.O.D. carriage paid, $£ 9: 18: 6$, or yours for 17/-down and 12 :
monthly payments of $17 / \%$. monthly payments of $17 /=$.

Peto-Scott "P.B.4" CABINET

As specified and recommended by Mr . Camm for the modern "PP. P. 4." Battery and A.C.
receivers. Supplied readydrilled. Beauti-
ful walnut finish CASH or COD ful walnut finish. CASH or C.O.D. SPECIFIED SPEAKER
W.B. Junior Stentorian model as hrst
specified and recommended for all types of sets for use as sole or extension speaker. Cash or C.O.D. 32/6, or yours 2/6

A.C. MODEL

KIT "A " cas. c... £7:7:0

12/9

Balance in 12 morthly payments of $12 / 9$.
Comprising all parts exclusively specified by Mr F. J. Camm for the mains model, including ready drilled steel chassis, all-wave tuner, push-button unit. condenser, station-name scale, mains transformer, wire flex, screws and mains lead and rlug. Less 4 specificd valves, $43 / 6$.
to each monthly payment

- CHECK OVER YOUR AERIAL. invest now in this peto -scott all. WAVE OUTFIT. Absolute-
ly easentinl for present. day
good listenlag. Complete outat for instant erection with
all aerial and lead-ln wire, all aerial and lead-in yire,
traneformer, insulators, and tranaformer, insulators, and
instructions, Lisi value $87 / 6$.
Guecial Price $17 / 6$ cash or $2 / 8$ down and 7 month's paydown and
ments of 2,0

KIT-BITS included in Kit "A"
Peto-Scott ready-drilled steel chassis ... 5/6 2 Varley I.F. Transformers, Types BP122 and 123
Heayberd mains iransformer," Type P.B. 4
$15 / 6$
$20 /=$
RECOMMENDED SPEAKERS
A special offer of well-known manufacturer's mains energised speakers, providing high quality reproduction and particularly recommended for Mr. Camm's amazing W.B. Type EMPB 21/-, Cash or C.O.D.

-Something Everyone Needs!!-

 AVOMINOR TESTMETER

Universal A.C./D.C. Model (Ihratrated) fieet, ranges. In bakelite case on rubler Cash or C.O.D. ${ }^{2}$ en/10/0,
or $10 /$ down or 10/- down aud II
monthly payments of
D. 10 Mains and Battery

Model (10 ranges), $22 / 510$ (1) or $2 / 6$ down and 11 Down

FREE

Peto-Scott affers only the best in
radio at lowest cash prices and most convenient terms. Send covering the quality apparatus described mention your precise needs and we will
quote by return.

PETO-SCOTT CO. LTD. Tat. Clisold 8895 77 (Pr.W.9), CITY ROAD, LONDON, E.C. 1

Please send me...Dh/C.D. or H.P.
for which I enclose x

Please sead me details of.
Name.
Address

POST COUPON FOR ORDERING LISTS.

The Trichinopoly 5-kW Station

THE new $5 \cdot \mathrm{~kW}$ medrum-wave station, to be opened in January, 1939, embodies a number of recent technical developments which have not previously been used in broadcasting, except at the Bombay, Lahore, and Delhi stations. The studio station (Trichy) is being connected with the transmitting station by special telephone wire circuits so that the

The special lines drawn from the Trichy Shrivayan Electric Corporation.
programme originating in the studios, centrally placed in the town, could be led into the transmitting station, and there radiated. The transmitting station is located at the sixth mile in Trichy-Tanjore Road, so that the signal strength will be sufficient at all times to overcome all electrical and atmospheric disturbances.

Air-cooled Valves

The Trichy station is intended to give a first-grade direct service to Trichy, and for a station of this power (5 kW) the distance it should be located from a city does not vary apprecially with the range of ground con-
ductivities met with in practice. The wave therefore travels a greater distance along the earth before reaching the city, and is influenced to an appreciable extent by the ground conductivity.

The 5 kW medium-wave transmitter in Tricly is the sccond station of this power to be put into operation with air-cooled valves. The power limit for stations with air-cooled valves has been about 2 kW . Above this, power valves with water-cooled anodes have been employed.

The use of water cooling involves considerable additional complications, which it is very desirable to avoid, such as pumps, water-cooling systems, and water piping, from the valves to the pumps and cooling system.

In the Trichy equipment the valves are used with air blast cooling. Four valves are used in the radio-frequency output stage, and four valves in the main manipulator stage. The smaller valves in lowpowered stages are cooled by natural air circulation.

The transformers that supply power to station.

The A.I. Radio Station.

The Aerial System

In the past the aerial system of a broadcasting transmitting station has generally taken the form of two masts supporting an aerial wire centrally located between them. The cssential difference between the masts themselves and the vertical aerial wire being that whereas the masts are not insulated from the earth, the aerial wire was insulated. If the mast could be insulated from the earth it could evidently itself act as the radiating element. This is the present and latest model of aerial for broadcasting transmitting stations. It is such a mast that has been used in Trichy. Its use has been made mechanically possible by the development of suitable ceramic insulators having at the same time the required electrical properties, and great strength in compression. The economic advantage of this development is very evident as a single mast only is required instead of two, and there is no mechanical load to be withstood at the top of the single mast, whereas the horizontal pull required to hold up the acrial system on the two-mast system may be several tons in magnitude, and hence require a considerably heavier design of mast. By a suitable choice of a mast height the service area of a high-power broadcasting system may be considerably improved, and an increase of direct ray field strength obtained. The modulation system is high power Class B.

THE "P.W." DEAF AID
 (Continued from page 125)

L.F. transformer arrangement. Unfor. tunately the maximum effects are not obtainable without increasing the size of the H.T. battery and space does not permit of this. However, for those who wish to experimentin this direction a resistance from 50,000 to 150,000 ohms may be used, with a small tubular condenser of about .01 mfd . as the coupling component. The new circuit arrangement is seen in Fig. 3 and although the voltage drop through the resistance greatly lowers the voltage on the valve anode, the effect of the change is fairly well marked. If a larger case can be adopted, and the question of portability does not arise, it is possible to use a much larger H.T. battery and to obtain greatly improved results from this particular stage, feaving the voltage on the output valve at the maximum of 40 recommended by the makers. It may be pointed out that the new valves are not screened as in the casc
of the original valves, but no difficulty will be experienced from this in the particular model referred to.

The Output Stage

In the output stage it is then possible

Fig. 3 (left). The S.G. valve may be parallel-fed as shown. Fig. 4 (right). Connections to the valve-holder of the S.G. valve.
the original first valve, each of which has its own points of merit. For quality the new output valve should be used, whilst for increased amplification the original first valve may be employed. In the latter case the bias resistance should be modified, a value of 850 ohms having been found suitable. For the new valve the original bias resistance may be left in circuit or one of 1,000 ohms may be used.
One or two queries have been raised regarding the type of condenser used across this bias resistance, and whether an electrolytic component would be preferable. In this circuit, however, no advantage would be obtained by replacing the condenser which was originally specified. It must be remembered that the earpiece cannot obviously give quality of reproduction comparable with a loudspeaker of modern design.

SAVE £1 oove PUSH-BUTTON 4

ALL POST ORDERS BY RETURN

KITT ${ }^{208} 85^{2}$
Comprising
Peto-Scott $\begin{aligned} & \text { specified } \\ & \text { Chassis, }\end{aligned}$ OR YOURS
Condenser,Push-bution FOR movement, Coils and scale and Varley. I.F.'s etc., as detailed below but . less valves and

7/6
 DOWN

Balance in 12 monthly payments of 7/3.
EVERY PART GUARANTEED
MATCHED, PROVED, TESTED.
THESE ARE THE ITEMS IN KIT I
Any part avail ableseparately. Orters over
BATTERY MODEL
1 Peto-Scott ready-drilled enamelted stecl chassia
1 Peto-Seott Special All-ware tuning noit Lrve PB.
complete with switches, filter unit, condenscrs
Peto-Scott 6 -polnt puah-bution unit with change
and essutcheon
1 Peto-Scott 2-gang Bnr t
1 Peto-Scott station-name scale complete with irive.
Pracket, drom pointer and corr
2 Varley J.F trausformers type BP. 122 and BP. 123
1500,000 ohms volume
1500,000 ohms volume control with or-/0ff switch
1 Fuseholder and fuse bulb
4 Valveholdera, (르) 5-pm nad (2) 7-1
. O001 mud. fixed condensers

$\frac{1}{5} 2 \mathrm{mid}$ electrofytic condense
11 t -watt resistors, 10,000, (2) $50,000,100,000$,
$2 \mathrm{j} 0,000$, (5) $500,000,1$ meg.
top cap conneters
top cap conveetors
ecreened braid
KIT "1" Casin OR C.OD
4 Specified values E1-16-0
KIT "2" comprising all components as Kit
but with 4 British matched and guaranteed valv with characteristics to Mr. Camm's specifications, with characteristics to $12 / 6$ r. Camms specifications.
Cash or C.O.D., $\$ 5 / 12 / 6$ down and 12 monthly paynients of $9 / 9$.
PB4 SPEAKER.-Special offer, Limited supply of well-known makers P.M.'s with 8 in . cone and
matching transformer, $15 / \mathrm{m}$. Terms available matching transformer, $15 /$-. Terms available when purchasing with other goods. Cash, C.O.D., carriage paid or add $2 / 6$ to kit deposit
A.C. MODEL
N.T.S. KIT "1,"-Comprising all first specified Peto-Scott and Varley components, with new-type
heavy-duty B.T.S. mains transformer with voltage heavy-duty B.T.S. mains transformer with voltage
selector incorporated; wire flex and screws, etc. Cash or C.O.D. $£ 6 / 6 / 0$ or $11 /$, down and 12 monthly payments of $11 /=$.
4 matched, tested and guaranteed British valves, A.C. PB4 Spealrer.-Special offer Rola energised type with matching ransformer, $12 / 6$. COVERING
SEND FOR COMPLETE LISTS COM ASSEMBLED PRESS-BUTTON A.C AND

Super Electric CLOCK AMAZING OFFER. Well-known BRITISH MANUFACTURER'S SURPLUS STOCK. LIST VALUE 42/-
 CASH

This bandsome clock with YEAR's give-away price. Precision, silent movement. Beautiful french polished case $7^{*} \quad \pm 6^{\circ}$. Kodern iace wh hsecond,
minute, and hour hiands. For A.C. Thinute, and hour hands. For A . STANDARD MODEL. $12 / 6 \mathrm{cash}$ BIUS Gd. DRstage MODEL 14/6 cask, plus 6ju. postage.

- N.T.S. CHASSIS BARGAINS REPLACE YOUR OLD SET AT THES COST PRSCE 5-VALVE ALL-WAVE R/GRAM CHASSIS GUARANTEED FULLY TESTED. This 1939 6-stage all-wave super-heterodyne provides wonderful selectivity and quality reproduction on radio and gramo. 3 wavebands $18-2,100$ metres. Illuminated on radio and gramo. 3 wavebands $18-2,100$ metres. lluminated station-name dial, similar to illustration. A.V.C., Tone Control, 3 watts output. Size $11 \frac{1^{\prime \prime}}{2} 1.8 \frac{1^{\prime \prime}}{2}$ h., $8 \frac{3^{\prime \prime}}{}$ "deep. Pick-up sockets. Complete $40-100$ cycles. Yours for $5 /$ - down and 18 monthly payments of $6 / 3$, Or with matched moving-coil speaker, $\mathrm{E} 6 / 5 / 0$ cash or C.O.D., or $5 /-$ down and 18 monthly payments of $7 / 11$

4-VALVE BATTERY MODEL List Value
s7:7:0
BARCAIN
$79 / 6$

27.714

Amazingly effient 4 walve S.G Bandpas " B" output chassis giving volume equal to a mains dial as illustrated above. Woriderful range. Low H.T. consumption. Yours for $5 /$ down and 15 monthly payments of $6 /$ or with matched speaker, of $7 / 6$.
N.T.S. KITS

VALVES FREE!!
short-wave 4-VALVE S.G. BANDSPREAD S/W KIT CITTMALUEEA:I:G: BAREAIN 49/6 Complete as illustrated with coils for $12-94$ melres nind British A magnificent receiver for efficient short-wave work. Selling in thousamds. Kit with easy-to-follow instruction for $3 / 6$ down and 12 monthly payments of $4 / 3$.
plays its all important part in the simplification bandspreading plays its all important part in the simplification of short-wave
reception on this splendid N.T.S. receiver. Complete kit with reception on this splendid N.T.S. receiver. Complete kit with and' 12 monthly payments of $3 / 9$.

ALL-WAVE "WORLD" S.G. 3 KIT Wave-range 9-2000 metres. Designed for famous B.T.S. self-locating inductors. Amazing station-getter on the short, medium and lons waves, Kit absoutely and FREE S.G., S.C., and Pentode valves. List value £4 12 s . 6 d . SARGAIN $47 / 6$ or yours for $4 /=$ down and 12 monthly payments of $4 / 4$.
WORLD S.G.4, monore apobitionsts odedel with Pre E.E: S.G. Det., s.a. audio and Pentode output. All componente supplied
extra to 3 -valve verstion heluding station-rame diak 4 valves
 given FREE. Cast or

FREE Get your Copy NOW

 The new N.T.S. radio booklet contains useful data for constructors and full descriptions, with photographs, of the complete range of Bandspread and "World " kits, amplifiers, famous-name sets and chassis, everything available at amazing ba4-WATT BATTERY AMPLIFIER

New 4-valve class "B amplifier for speech and
gramo. Full oulput requires 150 v . H.T. battery or

watts. For microphone or pick-up. Size 7 in. high, 4 in . wide, 10 in . long. For A.C. Mains $200 / 250$ volts $40 / 80$ cycles. Complete with 4 valves, ready for immediate use. Iist Value, © $/ 10 / 0$. EARGAIN, Cash or C.O.D. \$3;10/0, or $5 /=$ down and 12 monthly payments of $6 / 3$
MICROPHONES. Transterse currenttype for use with above amplifiers, OR FOR USE
W'ITH YOUR PRESENT RADIO. WITH YOOR IPRESENT RADIO. Faithful reproduction at all musical and and ready for instant attachment Table Model, $25 /$, or $2 / 6$ down and 10 monthy paymenta of $2 / 6$. or $2 / 6$ down and 12 monthly

NEW 5-IN-1 WAYE PENTA-KIT $\underset{\text { LIST : VALUE }}{\text { Li }}$ BARGAIN $42 / m$

You can build alternatively a short-wave adapi

 value-for-money kit, supplied complete with 5 coils for $9-2000$ metres, supplied complete with coils dial, etc. and 3 matched British valves GIVEN FREE. Yours for $2 / 6$ down and 12 monthly payments
AMAZING VALUE FOR $4 / 11$

 SPECIAL NEW OFFER.-Bargain parcels comprising universatlychassis, transformer, 6
resistances, fixed condensers, 2 - or 3 -gang tuning condenser, reaction condenser potentiometer, and coil ; for battery or mains sets. State which when ordering. Amazing value £ £ £'s. Yours for $4 / 11$, post 9 d . Order early.

New CrimezSalesco

| 56 (P.W.8), LUDGATE HILL, LONDON E.c. 4 Plense send me CASH/C.O.D./H.P.

Itogether with your Frec new Illustrated Short-W ave and Amplifier Booklet and Bargain Lists. NAME

ADDRESS

ORDER EARLY. LIMITED STOCKS

Self-capacity Self-inductance

A Simple Explanation of the Desirability and Otherwise of Capacity and Inductance in Coils, Chokes, Condensers, and Resistors

CAPACITY-more correctly capac-itance-is the property possessed by a component for "storing" elcetricify. Self-capacity is defined similarly, except that it generally refers to the capacity existing within one component (usually a condenser) instead of between two separate parts, such as two connecting wires, or between one component and another. Additionally, the term selfcapacity is most frequently applied in radio parlance to capacity which is unwanted or unnecessary. Thus it is customary to speak of the self-capacity of a coil, while referring simply to the capacity of a condenser.
electricity would be stored because the air or other insulation between them would be subjected to an electrical stress. That electricity is stored could be proved by disconnecting the battery and connecting a very sensitive galvanometer in place of it ; a small reading would be obtained.

by The Experimenters

Although the wires are insulated from each other, the insulation would not prevent the passage of high-frequency current, as is well known by

Inductance can be briefly defined as the "electrical inertia" of a component; the tendency of that component to resist sudden changes of the current passing through it. Self-inductanco is the inductance possessed by a single component and, in the same way as self-capacity, the term is most frequently used when dealing with the unwanted inductance. The inductance possessed by a condenser, for example, would normally be described as self-inductance.

The above brief explanations should not be considered as highly accurate in the technical sense; the definitions are rather those developed by common usage. They do, at any rate, serve our present purpose when we consider the effects of self-capacity and self-inductance on the behaviour of different components in wireless receiver circuits.

Simple Condenser

A simple condenser, having a certain amount of capacitance, can be formed by laying two wires side by side, as shown in Fig. 1. The wires are insulated from one another, and if a battery were connected. between the two wires a certain amount of
short-wave experimenters who often use a simple condenser of this kind between the aerial lead-in and the input tuning coil. Due to the alternating current of a signal the condenser is constantly charged and dis. charged, the fluctuating potential of the lead-in being transferred to the coil.

Coil Self-capacity

From this simple outline it will be appreciated that capacity must exist between the turns of a coil. This is shown in Fig. 2, where dotted condensers are

Fig. 2.-Capacily between adjacent lurns of a coil is equivalent to connecting a small condenser in parallel with the winding. used to represent the capacity between the turns. From this it is evident that a coil nust have a certain amount of self-capacity. The actual capacity can be reduced by increasing the space between the turns and by using wire of smaller gauge. Unfortunately, however, both of these expedients have disadvantages: increasing the spacing makes the coil unduly long and also reduces the inductance for any given length of winding. To compensate for the loss of inductance a greater length of wire must be used, so that resistance losses arise. By using thinner wire

Fig. 1.-Two parallel wires form a small condenser, which can be charged and discharged.
the area is cut down but resistance losses are again increased.

Practical Data

Somewhere between the two extremes can be found a fairly "happy medium." Thus, for short-wave coils it is usually very satisfactory to use wire of about 22 -gauge and to space the turns by a distance equal to the diameter of the wire. For mediumwave coils wire of about 30 -gauge is suitable and the turns can be placed side by side. In winding long-wave coils still smallergauge wire-about 36-can be used and the turns arranged in hank fashion. Even then it is better to place them approximately in layers so that turns near to opposite ends of the winding are not close together ; this is because the capacity effect is increased when the two adjacent wires are at widelydiffering potentials. Another practical method of reducing sclf-capacity of a longwave winding is by separating the winding into three or four sections in series. The two points just raised are illustrated in Fig. 3.

Self-capacity and Tuning Range

But after reading the above you might ask what ill effect self-capacity in a coil produces. One of the most serious in tuning coils for the broadcast ranges, as well as in short-wave coils, is that the tuning range with a given condenser is restricted. The wavelength to which a coil-condenser circuit tunes is proportional to the product of the capacity and inductance in parallel. Therefore the widest tuning range is obtained when the capacity variation is greatest. In other words, the lower the minimum capacity for any given maximum the greater the capacity ratio and the greater the tuning "coverage." In this respect the design of the tuning condenser cannot be overlooked, becausc if it has a comparatively high minimum capacity this is almost equivalent to a high coil self-capacity.

Self-capacity is also troublesome, if it reaches a high value, in H.F. chokes. The purpose of these is to impede the passage of H.F. current whilst allowing an easy path to L.F. and direct current. But since

Fig. 3.-Self-capacity of a coil can be Jeduced by increasing the spacing of The tarns, usiñg finêr gauge wire or, in the case of a pile winding, by dividing the winding into a number of sections.
a capacity provides a fairly easy path for H.F., a choke with a high inductance value might be of little use if its sclf-capacity is also high. To a lesser degree the same argument can be applied to an L.F. transformer or L.F. choke, which should offer a high impedance to L.F. currents, but not to direct current. This is one important factor which limits the uscful step-up ratio for which an L.F. transformer can be designed. If the ratio is very high there must be a large number of secondary turns ; and a larger number of turns means a higher self-capacity.

Condenser Self-inductance

Self-inductance is an essential in coils, chokes, and transformers, but in condensers it is generally a nuisance. Thus, if the by-pass condenser between the screening grid and earth shown in Fig. 4 had an appreciable eapacity it would not provide the required low-impedance path to earth for H.F. currents. All condensers have a certain amount of inductance, but those described as "non-inductive" have so low a value that it can be ignored for most practical purposes. Nevertheless, if a capacity of .1 mifd. were suitable in the position indicated in Fig. 4 when the receiver were intended for medium- and long-wave reception only, it would generally be desirable to reduce the capacity to .01 mfd . if the set were required principally for short-wave work. It is not simply because a smaller capacity is better for short waves, but because a smaller selfinductance is a practical essential in the interests of efficiency. At the same time it will be remembered that the impedance or reactance of a condenser becomes less as the frequency of the current applicd to it is increased. For example, a $01 . \mathrm{mfd}$.
(ron-inductive) condenser has a reactance of about 15 ohms at $1,000 \mathrm{kc} / \mathrm{s}$.- equivalent to 300 metres-and of only 1.5 olims at $10,000 \mathrm{kc} / \mathrm{s}$.-or 30 metres.

It is because of the higher self-inductance of older type condensers that nearly all patterns of fixed condenser now used for wireless work are of the so-called noninductive type; due to their design the self-inductance is insufficient to be any detriment.

Self-inductance of Resistors
Self-inductance is a term that can also be applied to resistors of certain types. It is clear that if a resistor is made from a spiral or coil of resistance wire it must have self-inductance comparable to that of a coil. The inductance is not of any consequence when the resistor is used in a D.C. circuit for voltage-dropping, or in the heater circuit of an A.C./D.C. circuit, but it might prove very troublesome if used in the anode circuit of an R.C. coupled detector valve in a short-wave circuit, as a potentiometer in a screening-grid circuit, or as a by-pass resistor in a " bottomcapacity " band-pass filter. In both cases its imperdance (resistance to alternating
current) would vary over wide limits instead of remaining constant. In exceptional cases the inductance value might be such as to tune the resistor to a particular frequency within the range handled; at that frequency the component would offer an almost infinite impedance.

Join Newnes' Practical Group !

PRACTICAL MOTORIST

The owner-driver's journal which tells you how to repair, overhaul and obtain the best performance from your car. 3d.-Every Friday.

PRACTICAL MECHANICS

The only English journal of its type. It deals with every branch of Science, Mechanics, Invention, Model-making, Chemistry, Astronony, Photography, Television.
6d.-Every Month.

THE CYCLIST

The leading weekly for every Cyclist, Clubman, Utility Cyclist or Tourist. Join "The Cyclist" Road Club and also take advantage of the FREE Insurance.
2d.-Every Wednesday.

For that little extra sensitivityand that little extra top responsethat slight extra 'forwardness'that slight extra smoothnesswhich add so MUCH to your set's value,

FOLLOW MR. CAMM'S EXAMPLE AND USE A

Fitted with Litz Wound Iron Cored high "Q" Coils, and high quality Mica Di-electric Trimming Condensers.
B_P. 122 I.F. Transformer 465 k.c.
B.P. 123 B.F. Transformer 465 k.c. (with Top Grid Lead) PRICE 7/9 $t+$ Valley
Varley Tuning Coils are available for all types of Receivers. Blue Prints are supplied of following receivers. Price 6d. each.

No. 1 (B.P.111) Mains Superhet (110 k.c., I.F.).
No. 2 (B.P.112) Battery Superhet (465 k.c., I.F.).
No. 3 (B.P.113) 3-valve Mains with band-pass luning. One H.F. valve.

No. 4 (B.P.114) S.G. Bahtery 3 with Pentode Output valve.
Na. 5 (B.P.120) All-wave Mains Superhet (465 k.c., I.F.)

Write for Catalogue and full details of Coils and I.F. Transformers.

VARLEY (Props. Oliver Pell Control Ltd.), Cambridge Row, Woolwich, S.E. 18 .
rtene forward complete Calalozue of Componenter
Nome.
\qquad
\qquad

A REVIEW OF THE LATEST GRAMOPHONE RECORDS

H.M.V.

ERNEST LOUGH, who as a Temple Church chorister made the famous recording of "Hear My Prayer," is steadily building up a reputation for natural, unforced singing. His baritone voice is attractive, and both the songs on his latest record, Quilter"s "Now Sleeps the Crimson Petal" and Tchaikovsky's "None but the Weary Heart,", will please his admirers-H.M.V. B 8792

Gigli sings a popular Neapolitan song Tosti's "Marechiare" and Rossini's "La Danza "-H.M.V.DA 1650. The tune of this Tarantella is familiar to all who have seen the ballet "La Boutique Fantasque." Richard Crooks is very pleasing in two straightforward ballads, "To one Away" and "All my Heart"--H.M.V. DA 1653.

One would hardly link the name of Benny Goodman with eighteenth-century chamber music. Still, " believe it or not," he joins with the Budapest String Quartet in Mozart's Quintet in A (K 581) for clarinet and strings. It proves Benny Goodman to be a musician of the very highest class and an exponent of the clarinet in chamber music-H.M.J'. D.B 3576.78 .

Light Music

THERE is an unusually large choice for those for whom "the tune's the thing." "The Fleet's Lit Up" is established at the London Hippodrome as a big success, and the original artists of the theatre cast have recorded the hits exclusively for H.M.V. Frances Day sings "How do you do, Mister Right?" and "It's a'lovely "-H.M.V. B 8790, Adele Dixon and Ralph Reader have a catchy, duet "Hide and Seek," and "Mary Read" is sung by Adele Dixon with chorusH.M.V. B8791. All the best tunes from the show are played in a bright selection by Geraldo's London Hippodrone Or-chestra-H.M.V. C 2028. Frances Day has auother record of two of the song hits of the moment: "Music, Maestro, Please" (introduced in the new Palladium Crazy Show, "These Foolish Things") and "A-tisket, A-tasket."-H.M.V. B8793.
John Garrick, who is regarded as the rising star of musical comedy, makes an excellent impression in his first H.M.V. record of two songs from "Maritza". "Vienna so Gay" and "Hey Gipsy, play Gipsy "-H.M.V. B8787, and Maxine Sullivan contimues her unique syncopated versions of popular songs with "L'amour, Toujours L'amour" and "St. Lonis Blues"一H.M.V. B 8789 . A feature of the latest record by the Comedy Harmonists is the clever use of vocal accompaniments in which the voiees support the piano with a most intriguing effeet. They sing di Capua's "Ah! Maria, Mare" and "Guitarren, spielt auf," a jolly song of the student type-H.M.V. B 8794. The Three Musketeers extract a lot of fun from a song that used to be a stock favourite at homely parties, "The Old Bassoon." This is coupled with the melodious "Ballerina,"
in which they are assisted by Rae Jenkins: Buskers-H.M.V. BD 586.

There is a first class playing and recording in the record by the Coldstream Guards Band of "Under the Double Eagle" march and "The Forge in the Forest,"? and Reginald Foort serves up his own arrangement of some of Mendelssoln's Melodies on the B.B.C. Țheatre OrganH.M.V. BD 587.

Swing and dance music are particularly rich in good tunes. Jack Hylton and his Orchestra commence a new series of H.M.V. records, and there are the first of the records made by "Fats" Waller during his recent visit to this country. Several of the best tunes of the moment are also available in strict dance tempo without vocal, so that you ean take your choice.

Decca and Brunswick

THE thought of the Gay 'Nineties cheers one up in these 'ungay' days. The eminent Frank Luther parades before us three dises, Decea F 6791-3. the choicest sclection of songs from the Gay 'Nineties, and he sings them perfectly. Frank Luther is assisted by his wife, Zora Layman and The Century Quartet.
"Music, Maestro, Please" on Decca $F 6777$ is a new tune that shapes well for being a " hit," and is played by Lew Stone and his Band with Al Borvlly as the vocalist. The coupling is "The Red Maple Leaves." Greta Keller, too," has recorded "Music, Maestro, Please" on Decca F 6783, and she couples it with " Lamplight."

One complete work is published this month, and it is a first recording of a very important musical work-The Bruckner String Quintet in F Major. This is a big scale work of symphonic dimensions. A leaflet written specially for Decea by Dr. Mosco Carver (who knew Bruckner personally) deals very fully with the Bruckner Quintet. It is played by the Prisca Quartet on Decca X 220-5.
On Brunswick [O 2640 and $O 2641$ are recorded three tunes from the film " Dr. Rhythm," which stars Bing Crosby. "On the Sentimental Side" can be regarded as the big tune, but the other three are excellent numbers featuring Bing Crosby.

Rex

OU will like Gracie Fields" recording Maestro, Please" on Rex 9377, and Biliy Cotton and his band have made two excellent records-Rex 9371.2 which include a couple of popular tunes "A-tisket, A-tasket" and "The Red Maple Leaves." Sandy Powell, the popular radio comedian, is extremely funny in a comedy sketch "Sandy Buys a House" Maxwell Stewart's Ballroom Melody play "I Won't Tell a Soul" (slow fox-trot) and "I'm Sorry I Said I Love You" (waltz), both of which are in strict dance tempoRex 9373.

NOTES FROM THE TRADE

New Clix Lamp Adaptors
BRITISH MECHANICAL PRODUC.
TIONS, LTD., who are of course, responsible for the wide range of Clix components, are now taking over the manufacture and marketing of the complete range of "Safeways" products. Two items of interest to the radio amateur are illustrated herewith, and are two-way light adaptnss, by means of which an

ordinary electric lamp and a radio set or other apparatus may be connected to a single lighting point. In one of these adaptors, both points are independently operated, as distinct from the usual pattern where it is only possible to switch off one point. In the second model suspended cords enable the switching to be carried out without stretching or getting on a chair or otherwise reaching up to an awkwardly situated lamp-holder. Two springs are fitted at the top of the cords and hold them away from the lamp, and this also prevents the beads at the end of the cords from jumping up and hitting the lamp when switching on or off-a failing with some other types of cord-operated switches. This particular device costs 2 s . 9d. and the former costs 2 s . 3d. The simple type with a single switch is also available at 1s. 10d.

Halford Radio

FOR those listeners who need a radio chassis, without cabinet, or who require a special cabinet made to some particular design, the Halford products should appeal. Special cabinets are available, made to period designs or to suit existing furnishing lay-outs, and the special Phantom XV radio chassis represents a very high standard in modern radio design. This has twin circuit control, giving superhet arrangements for long-range listening, or a straight circuit for quality. Dual intermediate frequencies are used so that the best I.F. for a given wave-band may be
adopted, and the chassis, complete with 12 in . speaker, costs 55 guineas. With 16 in . Super Cinema speaker, the price is 75 guineas. The output is rated at 20 watts.

Servisol Microphone

\triangle TRANSVERSE-CURRENT microphone, measuring $4_{1}^{\frac{3}{1} \mathrm{i}}$. by $2_{4}^{3} \mathrm{in}$. by 13 in . and claimed to have a very fine response curve, is announced by Servisol, L.td., of 64, Myrtle Street, Liverpool, at 15 s . The case is finished in cellulose enamel in a stone-yellow tint and the diaphragm-protecting grille is finished in red. Four eyelets are fitted to facilitate mounting, and a special matching transformer, mounted on a base to hold a 9 -volt biasing battery, is available at 6s. An important claim is that feedback does not occur when the mike is used in the same room as the speaker, even at high volume levels.

New Ferranti Car Aerial

A^{N} addition has been made to the Ferranti range of car radio aerials, and the new model is designed for underchassis mounting. It consists of a tinned steel tube $\frac{1}{2} \mathrm{in}$. in diameter and about 4 ft . in length. It is fixed in position by means of a heavy canvas ribbon, rubberised to prevent absorption of moisture. To avoid the aerial rod striking obstructions, the front end is curved, and as the rod is suspended and not rigidly fixed it will ride obstructions without damage. The price is 10 s . 6d., and full instructions for fitting and connecting are supplied with it.

Mazda Valve Changes

FDISON SWAN ELECTRIC announce E. some changes in the voltage ratings of the SP41 (H.F. Pen.) and the AC/6Pen (tetrode output) valves. The operating conditions of the two valves are not different, and it will be remembered that the former valve is designed specifically for use in the H.F. and I.F. stages of television receivers and similar equipment. The anode of the output valve is at the top of thie valve so that it may more readily withstand peak voltages such as may be met with in the output stage of a time base for magnetic seanning.

" Autostil" Distiller

SERVICE agents and battery-charging operators will be interested in the "Autostil" water distiller, which is available from Runbaken Electrical Products. This avoids the storage of carboys and the other difficulties attendant upon the ưse of distilled water at charging stations. The distiller is electrically operated, entirely automatic, and only requires to be filled with ordinary tap water. The output of distilled water is guaranteed chemically pure, and the apparatus switches off automatically if the supply of tap water is not replenished. The output is one pint of distilled water per hour and the consumption 500 to 600 watts. With electricity at 3 d. per unit, the cost of the distilled water would be approximately 3 d . per gallon. The standard model costs 17 10ss and the non-automatic model is $£ 610 \mathrm{~s}$. The overall dimensions are 2 ft . by lft . 8 in ., with a depth of 103 in . It weighs $16 \frac{1}{2}$ bs. The apparatus may also be used for medicinal purposes, and an additional charge of 10s. is made for the necessary modifications.

IT WILL PAY YOU TO WRITE TO US
 for Full Specifications, Price Lists and Terms for the New 1938/9
 ARMSTRONG MODELS.

These Chassis
incorporate very many refinements usually found only in more expensive sets.

WE ARE GIVING

DAILY DEMONSTRATIOHS OF THE NEW ARMSTRONG CHASSIS

from $10 \mathrm{a} . \mathrm{m}$. to $5 \mathrm{p} . \mathrm{m}$. It's well worth

LR ALL-WAVE CHASSIS
Model A W93PP. Pre-Amplifier and 8 Watts Resingaved CASH PRICE $21 /=$ with
CASH PRICE
E10.10.0 or $\mathbf{2 1 / =} \begin{gathered}\text { with order and } 12 \\ \text { payments of } 17 /-.\end{gathered}$
ARMSTRONG PRESS-BUTTON
 nstantaneous Press-Button) Turing. Short Waven frem 15
to 50 m . Coraplete with 81a. Matched M.C. Speaker. CASH PRICE $12 / 6$ with order and 12 monthis \&7.18.6 or $\quad 12 / 6 \begin{aligned} & \text { with order and } \\ & \text { payments of } 13 / 4 .\end{aligned}$

THE NEW "W.B." CHASSIS AND CABINET SPEAKERS
are now available. Fully Mllustrated Price Lists and particulars sent on request.

\star WE CAN SUPPLY

on the most farourable well-known seta, Speakers, alro the famous scott Taggart $8 . T .900$ Kit (e\&lll the best Battery All-wate Kit $)$, and all domesti
Electrical
Et duipment.

CASH OR C.O.D. ORDERS DELIVERED BY RETUEN OF POST

The Editor does not necessarily agree with the opinions expressed by his correspondents. All letters must be accompanied by the name and address of the sender (not necessarily for publication).

Inventors!

To Thermion :

CIR,-Continuing my "bombardment," I must thank you for the insertion, in extenso, of my letter re Diomagnetic Spring-controlled Aerial Invention! I hope it tickled many other readers. Up to now, you have only known me as an inventor, and a poet??? The sketch vill convince you that I am also an aritist (of sorts). If it tickles you a bit, and even caüses the stern and austere visage of that Great Annihilator of Inventors, Mr. Camnt, to register a fleeting smile, I will be more than repaid.

Poor inventor. He must be feeling very indignant with Practical and Amateur Wireless and my humble self this week! But if it prevents him from wasting any more of his money, we are both amongst his best friends.
In dashing off my little cartoon, I have had to take it for granted that Mr. McC. is from beyond the "Border."
Help, help! I can feel myself going all loopy again! A fresh attack! Forgive me, I must get it off my chest !

If McC. should be Scotch it's not such a botch,
But if from the Emerald Isle,
The stuff that he spills about all his ills Should be written in different style.
There! Out of breath a little, but otherwise all right again.
Cheerio!-K. T. H. (Birkenhead).

A Reader's Thanks

CIR,-I wish to thank all those who S answered my request for a correspond. ent, which appeared in the October lst issue of Practical and Amateur WireLess, and regret that I cannot answer everyone separatcly.-S. W. Salt (Surbiton).

An Experimental Set

CIR,-I only began to take your journal this year, and much enjoy its contents, for I find there is always something to be gained from its pages. I have had a receiver (S.W.) some time now, and am wondering if the method I have adopted for coupling the H.F. stage to the detector is the best. The set is as follows:
H.F. pentode with separate reactor valve, triode detector, parallel-fed transformer coupled to pentode, choke coupled to output terminals. I am using 6-pin coils (Eddystone) for both H.F. and Det.
The aerial is coupled to coil through a J.B. neutralising condenser, and the anode of the H.F. pentode receives its potential through an S.W. H.F. choke, its output being transferred through another J.B. neutralising condenser to the primary of the detector 6 -pin coil. I notice in most of the S.W. receivers in your paper a pentode or S:G. valve is used as detector. I get
jolly good selectivity from the arrangement I am using. I understand the H.F. pentode is more sensitive as detector than a triode. I have tried running the H.T. to anode of H.F. pentode through primary of 6 -pin coil, but although signal strength is greatly improved, selectivity falls off terribly.

Tuning is by J.B. S.W. special conden-sers- 0001 mfd . Reaction on both circuits is applied by .00015 mfd . Polar. The whole receiver is built on an aluminium chassis, with all wiring underneath. Coilholders and valveholders are on D9 insulation pillars;

Wumman, cum her-r-r-r-rel Hae ye been messin' wi' the tenson springs o my diomagnetic Acr-r-r-r-r-i-a-l? For bye, hoo mony times maun Ah tell $u c$ that ye canna get the
 pr-r-r-operly if yedinna gie the wir-r-r-es a wee bighten up?

grid coupling conds., . 00005 m fd., coupled direct across coil holders and valveholders. I mostly use headphones, although the nearer broadcast stations in Lurope simply tear through.

I am not appending a \log, as I have done little listening this year so far, I mean the latter part. What I have done has been mostly on 10 metres. I don't know whether the 10 m . band is very active yet; I switched on on the 21st of last month and the first 10 m . signal was W6NLS ealling G6DH, Essex. I listened to this contact for some time. I have heard several W4 and 5 and 1 and 2 s , but these are about all ; of course, I haven't listened a lot, but last year on the same date I logged a good number of 10 m . chaps. I had thought maybe the set had deteriorated with standing during the summer. (Of course, it's a battery set.) You must excuse me if my remarks are apt to be incoherent. Well, I had better say 73's to you. I will just name the valves in order ; also I have not vèrified any stations I have logged.

Hivac VP215; reactor valve, Hivac

L210; det., Mazda L2, met.; output, Hivac Harries Y220.

I may say I have no means of exchanging ideas here, as although I know the district well I have not come across any pals who are interested in messing about with S.W. receivers.-H. Allanson (Freckleton, nr. Preston).

A DX Log from N. Ireland

SIR,-I include the prefixes of stations received at the Home QRA (Belfast) in my school holidays. They are áll on 20 m . and all 'phone except the CR7 which: was on C.IV.
CE, CN1, CN8, CO, OR7, CT1, CT2, CX: EA; EA9, EI, ES ; F3, FS, FA, FI8, FT4; G, GI, GM, GW ; HA, HB, HC, HH, HK ; 1 ; J2, J6; K4, KA; LA, IU, LX. LY; NY; OA, OH, OK, ON, OQ5, OZ ; PA, PIK, PY; SM, SP, SU' SV; TF, TI; U; VE1, 2, 3, 4 ; VK2, $3,4,7 ; V 0,1,2,6 ; V P 1, V P 2, V P 3$, VP6, VP9, VQ4, VR6, VS7, VU; W1, 2, $3,4,5,6,7,8,9$; XE ; YR. YU, 'Y \mathbf{V}, ZP, ZE1. The RX was an 0 - F .Pen., with a Hivac SG220SW as detector. The antennas were indoor doublet and outdoor inverted "L" about 25 ft . high.-T. 'D. Alsdwell (Armagh, N. Ircland).

Radio Ankara

SIR,-I have just roceived an acknowledgment of my report to Radio Ankara. This station informed me that I was the first listener who had reported the artion of the S.W. transmitter.
The details of the transmitters are as follows :
$15,195 \mathrm{kc} / \mathrm{s}$ and $0,465 \mathrm{kc} / \mathrm{s}$ on the short wave, and $183 \mathrm{kc} / \mathrm{s}$ on the long wave. Announcements will be made in English.
The long-wave transmitter has a power of 120 kW . All QSLs should bo addressed to : Radio Ankara. Türk Mükendisler, 5, No Lu Oda, Atatürk Úrani, Yeni Sehir, Ankara, Turkey.-P. S. (Croydon).

CUT THIS OUT EACH WEEK.

 -THAT an ordinary flash-lamp bulb may be

 illuminated by the radiations from an ordinary oscillating coil.-THAT the efficiency of a receiver with H.F stages is affected considerably by the efficiency of the earth system.
single stage into a push-pullyo to convert a handling reasons, the additional H.T. load must be borne in mind.
-THAT the above point is of especial interest to those listeners who use a mains unit.
-THAT ordinary moving-coil speakers may be joined in parallel to improve response. -THAT in cases such as the above the two speakers should be chosen with differen response curves.

The Editor will be pleused to consider articles of a practical nature suitable for publication in PRactrical and Amatedr Wireless. Such articles should be written on one side of the paper only, and shoull contain does not hold himself responsible for manuscripls, Editor offort will be made responsible for manuscripts, every pffort will be made to relurn them if a slamped and
addressed envelope is enclosed. All correspondence intended for the Editor should be addressed: The Editor Practical and Ayatedr Wireless, George Epoter Lid., Tover House, Soulhampton Street, Strand, W.C.2 Owing to the rapid progress in the design of wireless apparatus and to our efforts to keep our readers in touch with the latest developments, we give no varranty that apparatus deseribed in our columne is not the subject of letters patenit.
Copyright in all drawings, photographs and articles published in Practical. and Asiatetr Wreeless is specifically rescrued throwghout the countries sigvatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly
forbidden.

Radio Clubs and Societies

Club Reports should not exceed 200 words in length and should be received

First Post each Monday morning for publication in the following week's issue.

DOLLIS HILL RADIO COMMUNICATION SOCIETY A the meeting on October 4 th, Mr. A. Turner in the very early days of wireless telegraphy encomintered in the very early days of wireless telegraphy, and began
his lecture on "Short-wavej Transmitters and his lecture on "Short-wavej Transmitters The following programme has been arranged : November 1st, Mr. D. N. Corfleld (G5CD), lecture and November 15th, Mr. A. Turner, M.I.R.E. (G2XO), continuing his lecture on "Short-wave Transmitters and Receivers.
November $29 t h$, Junk Sale.
December 13th, Exhibition of bome-constructed apparatus.
Deceluher 2 ith, no meeting on this evening.
Meetings are held at Braintcroft Schools, Warre Rond, N. W. 2 , at 8.15 p.m., and visitors are always welcome. Membership fee is 2s. Gid. yearly from date
of joining, and further particulars may be ohtained of joining, and further particulars may be obtained
from the Hon. Sec., Mr. E. Eldridge, 79, Oxgate Grom the Hon. Sec., Mr. ${ }^{\text {E. }}$.

THE CROYDON RADIO SOCIETY

THE following are a few important lates in the immediate future
Tuesday, October 25 th, Loudspeaker night.
Tuesday, November 1st, Mullard Valve Lecture (subject to confirmation).
Tuesday, November 8th.-Lecture and Demonstration by Mr. Stuart Davis of the Davis Cinema, Croyion. Recording and Quality reproduction with his new amplifier will take place.
PRACTICAL AND AMATEUR WIRELESS readers are particularly invited to the loudspeaker night on October 25 th . A very representative collection of members own construction, and commercial models expected. Complete programmes until Cliristmas are expent in the new fixture card which is available for any interested reader of this paper. Hon. pub. sec. E. L. Cumbers, Maycourt, Camplen Road, S. Croydon.

RADIO, PHYSICAL AND TELEVISION SOCIETY

 DURING the 1937-38 session the society held successful field-day was lelti in the Dorking district, successful feld-day was hefit in the Dorking district, Croydon Aerodrome Transmitting Station and afterwards visited the Aerodrome itself, and saw some of the receiving apparatus. Although most of the lectures have dealt with radio there have been a number oflectures upon other scientific subjects, including chemistry, electric furnaces and the rubber plantation industry. Many of the radio lectures have been upon ultra-short wave and micro-wave transmitters and receivers.
The committee are now making arrangements for the 1938-39 session, which is about to commence. Interesting lectures are belng arranged, and it is anticipaten more interesting than ever.
and more interesting than ever.
New nembers will be especially welcome at this time
of the year There is no entrance fee, and an anumal subscription of 7 s . 6d. entittes one to many privileges which include free technical advice, frec morse instruction, free translation from or into various Janguages, and free calibration of instruments. Further particulars ean be obtained from the hon. secretary at the society's leadquarters, 72a, North End Road, W. 14, or new members are invited to call at headquarters any Frlday evening at 8.15 p.m. without formality-

BRADFORD SHORT-WAVE CLUB

THE third annual general meeting was held on Friday, October 7 th, when the officers were
olected for season $1938 / 9$, as follows: Secretary, Simonard ; with H. Simpson and R. Hudson also on the committee, whilst J. S. Johnson (G3KB) was elected to take claarge of the construction conmittee. Rapid strides are being nade with the club's transmitter, aud it is expected to be ready for 'phone operation this week.
Dates so far booked for the winter syllalbus are Friday, November 11th, GGXI, "Transmitting Autennas." Friday, December 16th, Mr. A. C. All particulars regarding the cluh may be obtained from the secretary, and a hearty welcome is extended to anyone interested to visit the club at its clubroons, Bradford Moor Council School, Killinghall Road, Bradford, every Friday evening. Hon. Sec., G. Walker,
33, Napier Road, Thornbury, Bradford, Yorks.

THE EXETER AND DISTRICT WIRELESS SOCIETY A^{T} the last meeting of the above society, held on Mouday, October 3rd, varlous members brought lons their short-wave sets for demonstration, dis brouglit, and members were particularly interested in those operated on ultra-high frequencies, ie $56 \mathrm{mc} / \mathrm{s}$ and $112 \mathrm{mc} / \mathrm{s}$. Both straight and super-regenerative sets were shown and tried, A slight alteration in propramme has been arranged, which is that Messrs. Voigt are giving a demonstration of their loudspeakers on November 21st. This is one of the most interesting lectures that the society has ever been able to obtain, and it is hoped that members will come in full force. Meetings are held every Monday at 8 p.m., at 3, Dix's Field, Exeter, and all those interested should get in touch with the secretary, Mr. W. Ching, 9, Sivell Place,
Heavitree, Exeter.
EASTBOURNE AND DISTRICT RADIO SOCIETY ON I'uesday, October 4th, a meeting of this soriety was held at the Cavendish Senior Sclool. Exporiments with the society's 5-metre transmitter were quickly adapted for battery operation. It was decided to fix an aerial for the transmitter at the Cavendish Senior School.

There was also a display chassis, shown by Mr. superhet. The working as oscillator consisted of a triode-pentode, variable-niu H.F. pentode working as I.F. amplifler, a double-diode working as second detector, and A.V.C. rectifier, followerl by a pentode-output salve, and, of T. G. R. Dowsett, 48 , Grove Roal, Eastbourne, T. G.
Sussex.

ASHTON AND DISTRICT AMATEUR RADIO SOCIETY THIS recently-formed society continues to flourisle meetind the membership how totals 27. At a invited for gramme. A list was compormulating the winter proin which each nember was particularly interested, and from the resulting material lectures will be given by competent members. The treasurer (G3NX) brouglit along a midget CO Tx, measuring 6in. by 6 in . by 6 in . This has been specially built for portable use in the summer, and with animput or 8 or battery H.
on $7 \mathrm{mc} / \mathrm{s}$.
More enthusiastic members are required, and interested amateurs desiring to join should either communicate with the secretary or attend at the clubroom at the "Commercial Hotel," Old Street, Ashiton-underLyne. Meetings are held every alternate Tednesdar at $8 \mathrm{p} . \mathrm{m}$. Secretary, K . Gooding (G3PM), 7, Broadbent A venue, Ashton-under-Lyne, Lancs.
SOUTHEND AND DISTRICT RADIO AND SCIEN-
THis society, with visitors from the Ilford, Brentheld their all-night direction-finding contest. About 50 enthusiasts in 15 cars set out at midnight to find the transmitter ; Mr. Pugh ppas the only one successfu, and found the apparatus in the excellent time of 3 hours 23 minutes. The transmitter was reached by going along a grass lane for half a mile, the lane then ran out of a wood, across a clearing and into the wood ngain. At the edge of the clearing and the wood a ditch ran parallel, and twelve yards from the clearing ; the transmitter was concealed in the ditel with a coat, and some brolled from a tent in the middle of the wood. These trolled frome of experiences with breakfast and a general cxchange The society
The society has just been fortunate enougli to find of Southend. Transport from any part of Essex would bring members within a hundred yards of the new meeting place in the Southend High Street. It is hoped that we slall now have the support of many ent husiasts wholive in outlying districts. Hon. Secretary, J. M. S. Watson (GGCT), 23, Eastwood Bonievard, Westeliff-on-Sea, Essex.
[READ
"THE CYCLIST"
2d. Every Wednesday

BARGAIHS! BARGAINS! BARGAINS!

 junk-bor of Coils, Magnets, Wire, Ohoker, Condengers. Switches,
etc., mostly ex-W.D. parts worth a hot more than 10 lus. $\% /$, or
 of payel, illuminated plain dial, lin. needle, back lantp and
braket, For D.. anode tuning current, or test galro.
A.R.P. Helps. Yortable fleld 'phone in leather cuse, witl sling,

Range-finders, $\mathbf{E 6}$.
TELEPEINES.
or wall, house
-For nul purposes. Table
 stem, sd. 3in. stand-orl s/w insolators, 6 ,
Portable vale sets kitt assembed in suitease,
partly wired, spealer, aerial, and all parts, less valves, $21 / \mathrm{m} /$ Metsi rectifiers, chassis
lype, $180 \mathrm{v}, 30 \mathrm{~m} / \mathrm{a}$ output, $5 /$. Lightning
Arrestors, make aerial anfe, $1 / \mathrm{c}$
 9d. H.F. twin chokes, mains, 9 d . Rugby and other coils in 1 stock.
All wave enths in 2 -pin, $1 / 3$. Dual-range 200/2,000, $1 / 6$. M.I.C. concert eoisg, set of 4, $2 / 6$, aerial, react., long, elhort nad mult iple
$1 / 6$ S/W Formers ribbed and slotted, $4 d$.
 MANS, $60 /$ alternators, Rotaries and Motors all Sizes tor use. NEWTON GRYPTON TEN-GUINEA switch, 15 v. to 30%. 3 raeters and theos. 10 to 70 cells. steel mups. gale sp/10/-.
and plated wheel-controls, $55 / 10 / \mathrm{F}$. cells, 1 to 3 s.mps., meters
 floish new. f6/10/-:
B.T.H. TUNGAR
B.T.H. TUNGAR

 Volt controls, ELI2 15/-.
WESTINGEOUSE A.C. METAL RECTI-
FIERS. Wall FIERS. Wall type in, Steel case, 12 jim
by 19 in , $200 / 230$ volts. A.C. maine to 40 volts, 3 amps D.c. for 40 Radio Cells.
 output, $£ 6 / 17 / 6$. Pine model also for A.C.
mains with D.C. output of 280 volts, 9.01
ma., $£ 7 / 2 / 8$. Two 50 volt circuits, encl

UNITS ONLX. Westinghouse Metal Reclifler
Units, 11 fl y. 75 amp., $35 / \mathrm{m} . \mathrm{5}$ volts 15 SMALL CHARGERS. From A.C. mains to 8 volis $1 \mathrm{H}_{2}$ amps., $20 /-$ Tungar ECC 230 v. A.

 10 amps., Type $\mathbf{O}, 35 /-$; 16 volts 30 amps., Type TB, $50 /$. Kindly
atmite vour wauls and we will send lipt of suitahhe gear. Rtate Vour wauls and we will send ligh of suitahe qear.
STATIC CONVERTERS. A.C. to D.C. 40 wnts output, steel cased. Itput 230 roits A.C. 50 cycles, output 440 velts $60 / \mathrm{JOO} \mathrm{man}$. D.C.
with ralves, $45 / \mathrm{C}$. A.O. mains to D.C. 120 watts at $\frac{1}{2}$ amp. for $220{ }^{2}$ rene, steel clad with raires, $50 /$ A.C. mains. For Raylio Cell Circtits and ten 12 -volt 10 amp.
Car Batts. D.C. output 100 volts 20 amps. Salc, 182. Rmaller
A. O. D.C., M.G. motor-coupled to 8 amps. 16 volts D.C. Cien A.O.j.C., M.G. motor-coupled to 8 amps. 16 voits D.C. Gien.,

ELECTRADIX RADIOS

218, Upper Thames Street, London, E.C.4

Engilletrsi vix mixis Glide cholice of home-study courses in engincering covering all branches, incluling Radio, Tele

 duction, etc, and which alone gives the Regulations for Quali* Success Free! SuccessfulGuaranteed.

Practical and Amateur Wireless BLUEPRINT SERVICE

mains Operated.		
wo-valye: Blueprints, 1s. each.		
A.C. Twin (D (Pen), Pen)	-	PW18
A.O.-D.C. Two (SG, Pow)		PW31
Selectone A.C. Radlogram Two (B, Pow)		PW13
Three-valve: Blueprints, 1s. each.		
Double-Diode-Triode Three (HF		
Pea, DDT, Pen)		PW23
D.C. Ace (SG, D, Pen)		PW25
A.C. Three (SG, D, Pen)		PW29
A.C. Leader (HF Pen, D, Pow		PW35C
D.O. Premier (HF Pen, D, Pen)	31.3.34	PW35B
Ublque (IFH'Pen, D (Pen), Pen)	28.7.34	PW36A
Armada Majns Three (HE Ped, D,		
F. Jr Camm's A.C. All-Wave Silver		
Souvenir Three(HF Pen, D, Pen) 1	11.5435	W50
"All-Wave" A.C. Three (D, 2		
LF (ICO)		W3 4
A.C. 1986 Sonotono (HF Pen, IT		
Pen, Westector, Pen)	-	PW53
Mains Record All-Wave 3 (HF)		
Yen, D, Pen) ... $\quad .0$	5.12.30	PW70
All-World Ace (HF Pen, D, Pen) 2	28.3.37	PW80
		PW20
A.O. Fury Four Super (SG, SG, D, PWiad		
		PW34D
A.C. Hall-Mark (IIF Pen, D,	24.7.37	PW45
Universal Hall-Mark̇ (HF' Pen, $\ddot{\mathrm{D}}$, 24.7 .37 PW		
Push-Pull)	9.2 .35	PW 47
A.C. All-Wave Corona Four ., B	6.11 .37	PW81

9.1 .37
27.8 .38
Operated

Operated.
19.2 .88
27.8 .38
$24 . \overline{9.38}$
24.4 .37
-
22.5 .3
29.5 .37
12.6.37
13.4 .35

June '35
8.8 .95
$21 . \overline{3} 36$
14.8.37
31.10 .30
8.12.30
4.12 .37
28.8 .37
22.1.38
20.3 .38
30.4 .38
8.9.38
1.5 .37
8.5 .37
6.1.34
26.9 .30
9.10 .87
12.2.38
3.9.38

PW31A
PW85
PW93
PW36B

PW2
PW10
PW34A
PW35
PW37
PW39
PW41
PW48

PW49

PW51
PW53

PW55

PWG1

PW69
PW72
PW82
PW78
PW8:
PW87
PW89
PW02

PW4

PW17
PW34B
PW34C
PW 46
PW67
PW79
PW83
PW00

PW18
.

 Econorybe Three (SG, D, Pen).. "P W.M."
W.M." 1934
tandard Three
1035. Tb 6see (SA, D, Trans) © Mar Pen) . .
PTP Three (Pen, "D, Pen)
Certainty Three (SG, D, Pen) .
Minitute Three (SG, D, Trans)
All-Wave Winning Three (SG,
\mathbf{D},
All-Wave Wioning Three (SG, $\dot{\mathrm{D}}$, Pen)
Four-val
Four-valye: "Blueprints, 1 s, od. each.
65s. Four (SG, D, RC, Trans) ..
"A.W." Idcal Four (2 SG, D, Pen) 10.9.33 Crusader'sA.V.O. 4 (2HF, D, QP2í) (Pentodo and Class B Outputs for Self-contained Four (SG, D, LiF,
 LLF,Trans)

The M.K. Four (SG, SG, D, Pen) Mar. '35
Lhe Auto Straight Four (HF Pen,
IFF Pen, DDT, Pen) .. \quad Ap
Fivo-valve: Blueprints, is. 6 d , sach.
Super-qualfty Five ($2 \mathrm{HF}, \mathrm{D}, \mathrm{RO}$,
Super-quality Five ($2 \mathrm{HF}, \mathbf{D}$, IRO,
Trans)
Class B Quadradyne (2 S $\dot{G}, \mathrm{D}, \mathrm{L} \dot{\mathrm{K}}$,
New Class B) B Five (2 SG, D, L $\ddot{\mathrm{F}}$,
5.6 .37
5.6 .37

Battery Sets: Blueprints, 1 s . each
F. -valve Superh 13.7 .35
27.2.37

PW 40
PW52 PW52
PW58

PW75
Mains Sets : Blueprints, is, each.
A.C. $£ 5$ Superhet (Three-valve)..
.12.34
PW43
Oniversal 55 Superhet (Three-valve) 1.12
F. J. Camm's A.C. $£ 4$ Superhet 4 31.7.37
F. J. Camm's Universal 14 Super-
"Qualitone" Universal Four .. $16 . \overline{1.37}$
SHORT.WAVE SETS.
One-valve: Blueprint, 1 s .
Simple S.W. One-valver.
Midget Short-wave Two (D, Pen)
9.4.39 PW88
$-\quad$ PW38A
(D) (1F Pen), Pen)
27.8.38 PW01

Experimenter's Short-wave Three

. 7.8 .97 एW63
(HE Pen, D (Pen), Pen) ..
1.10 .38

PW68
Three-valve: Blueprints, 1s. each.
F. J. Camm's HLF Three-vaive

Portable (HF Pen, D, Pen) Portable (SG D Pen
Four-valve: Blueprint, 1s.
Imp" Portable 4 (D, LIF, LE,
10.6.37
19.3 .38

MISCELLANEOUS.
B. W. Converter-Adapter (1 valve) \qquad PW48A
AMATEUR WIRELESS AND WIRELESS MAGAZINE CRYSTAL SETS.
Biueprints, 6d. each.
Four-station Crystal Set. .. 23.7.38 AIV 127 1934 Crystal Set
50 -mile Crystal Set
One-valve: Blueprints, 1 s . each.
B.B.C. Speciation -vaiver

One-vaiver (Class B)
Two-valve: Blueprints, is. each."
Melody llanger Two (D, Trans).
Full-volume Two (SG det., Pen) Lucerne Minor (D, Pen).
A Modern Two-valver
Class
New Britain's Favourite Thre
(D. Trans, Class B) ...

Trane) Cofl Three (SG, D,
Fan and Family T'hree ($\dot{\mathrm{D}}, \mathrm{Tran}$, Class B).
Lucerne Kanger (SG, D, Trans)...
25 bs . Three: De Luxe Version
(SG, D Trans)
Lucerne Straight Three (D, ic̈.

Wireless League: Three (115
.11 .34
AW451
WM271
WM337
WM351
WM35!
WM371
WM38
WM393
WM396
WIM 400
A WT 370
AW402
AW421
AW445゙
WM331

WM350
WM3s
WM38!
WM401

- WM320
- Hु31310

RHETS.	
Modern Super Senior	WM375
'Varsity Four Oct. '35	WM395
The Request All-Waver June'36	WM407
1935 Super Five Battery (Superhet) - WM378	
Mains Sets: Blueprints, 18. 6d, each.	
Heptode Super Three A.C. . . May. 3 t	WM359
" W.M.'? Radiogram Super A.C.	WM363

Four-valve: Blueprints,

Midget Class 13 lortable (SG, $\mathbf{1 ,}, 20.5 .33$
Holiday Portabe (SG D,
Class B) Portable (SG, D, LF, - AW303
Tramily Portable (HF, D, BC,
Tra
Pr
QP21). Portable ($2 \mathrm{SG}, \mathrm{D}$, WM803 Tyers Portable (SGi, D, 2 Trans) .. - WH367 SHORT-WAVE SETS-Battery Operated.
One-valve: Blueprinis, is. each.
S.W. One-valve converter (Price 8d.)
S.W. One-ralver for America $\quad \ldots$
Rome Short-Waver
S.W. One-ralver for America
Rome Short-Waver

AW423
AW45\%
Two-valve : Blueprints, is. each.
Ultra-short Battery Two (SG det.,
Pen) ..Fib. '36.
Home-made Coll Two (D, Pen) -. AW 410
Three-valve: Blueprints, 1 s . each.
World-ranger Short-wave 3 (D,
RC, Trans)
Experimenter's 5 -metre "Set ($\ddot{\mathrm{D}}$,

D, Pen)JJan. 19,'35 AW463

Four-valve: Blueprints, 13. 6d, each.
A.W. Short-wave World-Beater
(HF Pen, D, RC, Trans)
Emplre Short Waver (SG, $\mathbf{D}, \dot{\mathrm{C}}$,
AW 436
Trans)
Standard Foür-valver Short-wavér
(8G, D, LF, P) Mlar. ${ }^{\circ} 35$
Suparhet: Bluaprint, $1 \mathrm{~s}, 6 \mathrm{~d}$.
Simplned Short-waver Supar . Mains Operated.
Two-valye Blueprints, 1s. each.
Two-valve Mains Short-waver (D,
Pen) A.O.
" W.M." Band-spread Short-waver

W 453

Three-valvo: Blueprint, 1 s.
Enalgrator (SG, D, I'en)A.C. . - WM3す2
Enaigrator
Four-valve : Blueprint, is. 60,
Standard Four-valve, A.C. Short-
waver (SG, D, RC, Trans) . . Aug. '35 WM1391
MISCELLANEOUS.
$\begin{aligned} & \text { Linthusiast's Power Amplifier (1/6) }\end{aligned} \quad$ - WM387

| Listeners' 5-watt A.C. Amplifier | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(1 / 6)$ | WM392 |

Radio Unit " (2v.) for WM392 ... Not.'35 WM3U8
Harris Eiectrogram (battery am-
plifer) ($1 /-\rangle$ Concert A.C. 'Eiectro-
New Style Short-wave Adapter
Trickle Charger (ed.
Wist 103
rrickle Charger (0d.) $\quad \because \quad$..Jan. 5,'35
Buperhet Converter ($1 /-$)
B.L.D.L.C. Short-wavo Converter
(1/-) AIay'38 WM405
The W.M A. Short-wave Con. June'36 WM408
$\underset{\text { verter (i/-) }}{\text { The W. M. }}$
WM403

Valve Type Numbers
"I should be glad if you could identify for me the type of valve marked A.C./T.P. What is the price of this?"-A. A. H. (Harmondsworth).
UNFORTUNATELY valve nomenclature has not yet been standardised. Certain makers do adopt reference letters which indicate the type of valve, but in many cases it is impossible to tell what type of valve is indicated by reference to its type number. The letters T.P. in this case indicate a triode-pentode frequency changer, and in most cases the letter " P." indicates a power valve; P.P. a super-power valve; Q.P. or Q.P.P. a quiescent push-pull double pentode ; H.L. a general-purpose type ; and V.P. a variablemu H.F. pentode. From this no doubt you will be able to follow other valve types. The T.P. costs 11 s . 6 d .

Corona 4

"Having partially made the Corona 4, and having to put it away for some time, I now find that the Trlogen coils are unobtainable. As I wish to make this set, can you recommend any other make of coil that would suit for this receiver?" J. C. (New Malden).

U
NFORTUNATELY there is no similar type of coil now on the market and you will see that the blueprints for this and similar sets have been withdrawn on this account. There are other all-wave coils, but they are not complete with switching and do not incorporate the same terminal arrangements, and we are thus unable to recommend any substitutes in this particular case.

L.F. Instability

"For some time now I have been troubled with a continuous whistle in my straight three battery set which does not increase or decrease when either the tuning dial or the reaction is turned. Can you tell me what can be the cause of the trouble? " A. J. H. (S.E.1.).

AS the noise does not vary "hen controls are operated it would indicate that the trouble is due to L.F. instability. This is usually cured by reversing the connections to the secondary of the L.F. transformer feeding the output valve. A grid-stopping resistance may sometimes be included in the output grid lead with advantage.

A.C. Mains and D.C. Set

"I have a D.C. set and should like to know if thls can be adapted to work on

QUERIES and ENQUIRIES
 A.C. mains, and if so, by what method

 and approximate cost of conversion? W. C. A. (Douglas, I.O.M.).I^{T}T is possible to use a D.C. set with A.C: mains by connecting a special mains unit between the mains and the set. As yours is a commercial receiver, however, we advise you to write to the makers, who may be able to recommend a suitable

unit and also inform you whether any special precautions are necessary in this particular case.

Admiral 4 Receiver

"I am endeavouring to construct the Admiral 4-valve receiver. Firstly, is it possible to use two straight pentodes in place of the variable-mu H.F. pentodes for the H.F. stages? Secondly, in the theoretical circuit a 1 -mfd. condenser is shown between H.T. + and earth, but I cannot find this in the wiring diagram." R. J. F. (North Harrow).
\triangle LTHOUGH it is possible to use straight valves in such a set the use of variable-mu components is highly desirable. Cross-modulation and other troubles are likely to be experienced with simple valves, and furthermore overloading of the second valve or of the detector will take place at your address unless the H.F. input is satisfactorily controlled. The condenser referred to is merely a smoothing component across the H.T. supply and although it is not absolutely cssential, it should be used to avoid troubles from the H.T. battery when this becomes run down. The value is not actually critical and any value up to 4 mfds. may be used.

Mains Complications

- Your recent note on mains voltageconversion has prompted me to send the
following query. I wish to build a receiveri which is designed for operation from 110 volts A.C./D.C., and my mains are 240 volts D.C. Is it possible for me to put a higher resistance in the mains lead and thus get the set to work normally, or would the higher voltage which would be flowing through the rectifier portion of the valves upset operation and thus necessitate the addition of further resistances and con-densers?"-LL. R.J. (Dalston, N.1).
$\Delta \mathrm{S}$ the receiver is of the Universal mains type you could use it with the higher voltage mains by connecting a suitable line cord between it and your mains. Such a cord may be obtained from Messrs. Henry Ford Radio, Ltd., to whom we advise you to write for details. Their address is 22, Howland Street, Tottenham Court Road, London, IV.I.

The following replies to querien are given in abbreviated form rith our rules. or because the point raised is not of general interest.
W. J. D. (Burnham-on-Crouch). Ion could dismantle the present apparatirs and use the neon, but otherwise it is unsuitable. The device mentioned gave a requency of 1,000 c.p.s.
A. F. H. (Chichester). The eost would be approximately 1610 s ., exclusive of valves.
A. R. (Doncaster). Sixty Tested Wireles Circuits and the Service Manual rould le ideal for yout purpose.
P. L. W. (Blackheath). Faulty cathorle-fnsulation is the conmmonest, canse of the trouble mentioned. Have the valves tested
F. R. B, (Wythall). Pen At eosts 109. 6d., F.C. 4 is 11s. 6d., LW. 3 is 9s., 2D4A is 5s. 6d., and FP.B is 10s. Bd. (Bethnal Green). There is no blueprint for the set in question.
M. A. W. (Gorey, Co. Wexford). The apparatus mentioned could be used, but it should preferably be joined to the extension sockets or in other words fed from an output filter circuit. Perhaps it would be as Well to communicate with the makers regarding the most satisfactory way of using the combination.
G. F. Q. (Liverpool, 17). We think you refer to the Argon Charger in which a special Argon rectifying valve was employed. This was described in our issue ated May 28th last
D. B. B. (Edgware). A faulty condenser or a leaky trouble, but as it is a commercial receiver sous of the have it serviced by the inakers.
W. N. (Ward End). For an Artificial Acrial the jcence is 10 s . per annum. You must obtain this before you can obtain the full licence. Write to the Engineer: in-Chief, Radio Branch, G.P.O., Armour House, London E.C., for full details and application form
H. T. (Tamworth). The arrangement shonld be satisfactory, but bome experimental work may have to be caryied out in order to flnd a satisfactory layout. At the address mentioned you should get good results rom the London stations.
of the set we cannot adrise definitely further details of the set we cannot advise defmitely. In some cases acting in a similar mauiser to reaction, boosts signa strength.
G. F.S, A. (Rugby). The cost of $\mathrm{Kit} \mathbf{A}$ is $£ 24 \mathrm{~s} .0 \mathrm{~d}$. The address is 77, City Road, E.C.1.
E. F. (North Harrow). We have no defnils and the coils are obsolescent. We suggest you write to the makers who may still be able to supply data sheets. R. A. (Feltham). The rectifier will nees! an input of output on your transformer. An L.T. 7 or an L.I. 4 rectifies could be used

The coupon on page iii of cover

 must be attached to every query.
For Short and Ultra S/W Work !!!

In the recently published Catalogue of CLIX Components, amateurs and ex perimenters will find aul excellent range of Frequentite (Ceramic) complonents for use in Television worls and in all low-loss high efficiency circuits. Send for a copy now and please mention "Practical Wireless."

Nicw 193E-39 Booket frice on request.

TRIMMER CONDENSERS Here is another componeat in which the usc of "Frequentite" Ceramic is unrivalled. The unique design of vane permits the condenser to be suspended in the wiring without "sag" and risk of any disturbance through any possible movement of connecting leads.

$$
\begin{aligned}
& \text { Type } \\
& \text { TC I MIDGET } 3-30 \mathrm{mfds} \text {. } 6 \mathrm{~d} \text {. ca. } \\
& \text { TC } 2 \text { MIDGET } 4.50 \mathrm{mfds} \text {. } 6 \mathrm{~d} \text {. ea. } \\
& \text { TC } 3 \text { DOUBLE } 3.30 \mathrm{mfds} \text {. } 1 / 6 \text { ea. } \\
& \text { Nole: CLIX Components are specified for the } \\
& \text { "PUSH.BUTTON FOUR" described in this issue. } \\
& \text { BRITISH MECMANCAL PRODUCTIONS LTR. } \\
& \text { T9a Rochester Row, } \\
& \text { London, S.W.1. }
\end{aligned}
$$

> TO CYCLISTSI Your wheels will NOT keep round and true, maless the spokcs are tied with fine wire at the crossings AND SOL. $D E R E D$. This makes a much stroncer wheel. his simple with $F L U X I T E$-bu! IMPORTANT.

THE FLUXITE GUN

is always ready to put Fluxite on the solder litile pressure places the right quantity on the right spot and one charging lasts for ages. Price $1 / 6$.

ALL MECHANICS WTLI HAVE

FLUXITE
IT SIMPLIFIES ALL SOLDERTNG
FLUXITK LTD (Dept. W.P.) IRRAGON WORKS, BERMONDSEY STREFTT. S.E. 1

Miscellaneous Advertisements

Advertisement: are accepted for these columns at the rate of 3 d . per word. Words in black face and/or capitals are charged double this rate (minimum charge $3 /$. per paragraph). Display lines are charged at prepaid. All communications should be addressed to the Advertisement Manager, "Practical and Amateur Wireless," Tower House, Southampton Strect, Strand, London, W.C.2.

RECEIVERS, COMPONENTS AND ACCESSORIES

Surplus, Clearance or Secondhand, etc.

RADIOMART
 THE SHORT-WAVE SPECIALISTS

CHOKES.-Interleaved Ancrican Bmoothing Chokes. ${ }^{20} \mathrm{~h}$. Mrice $1 ; 11$. II Ingulation. The fiscat condensers mate i 15 mumid., $1 / 4$
 These are quality:
DUSBBACK Wire, byd., 6d., henry, 9d. Tesin-cored Solder PGirt., © $\mathrm{Cd}_{\text {, }}$ ferrened Flex, sinzle, 0.1. yd.; twin, 9d. Yd. Assorted W.B. Ein Permanent Mognt speakers at one-third Cost. Ex. W.B. Ein. Permsnent Magnet Speakers at one-third Cost. Ex. Trans(onuer 4), $12 / 6$.
SPEAKERS.-We carr:" larse stocks. Macnayox, $10: \mathrm{n}$. energised
 UTILITY 7is Fainous Micro Dials, 8 'g; Radiophore . Oon11

 TGE NEW RAYMART CATALOGUE shows dozens of N
 A splendid rauge of chortowave components is alwaya ready tor

RADIOMART

44, HOLLOWAY HEAD, BIRMINGHAM, 1

CONVERSION UNIT for operating D.C. Receivers 6 from A.C. Mains, fmproved type, 120 watt output at $£ 2 / 10 / 0$. Send for our comprehensive list of speakers, resistances and other components.
WARD, 46, Farringdon Street, L.ondon, E.C. 4
 Over Denny's the lboksellers. (Temple Lar 0338.)

B AKRUPT liargains. List free. All brand new goonk HSP. 103812 gin. A. C. malns superbets, $5 V, 2510 \mathrm{~s}$. HSP. 5 v. all-wave 14 gn. A.C. superhets, superhets, all-wave, 1938, 55 wave A.C./D.C. 4-barril superhets, 12t gus. 1938, 20 10s. Decca 5 v . all-wave transportables, A.C. D.C., $1038,00 \mathrm{~s}$. Truphonic 1938 all-wave 11 gn A. C. and A.C.ID.C. superhets, $£ 017 \mathrm{~s}$. 6id. Ferguson 5 y . all-wave A.C./D.C. chassis, complete speaker and valves, 7 Js. Full stock valves alt types; components. State requircments please.-Builin, 6 Stanford Avenuo, Brighton.

VALVES

NEW VILYES in Cartons.-GA7, 6FO, 6B7, 6AG, each : also many liritish.-G.W.3.K. Y, Brixtor Mount, Holyhead.

A MERICAN Valves in Sealed Cartons, all types, A. $5 / 4$, post paid.-Yalves, $661 / 3$, Harrow Road,

LOUDSPEAKER REPAIRS

I OUDSPEAKFR repairs, British, Ameriean, any Sinchair Bpeakers, Atma Grove, Copenlagen Strect, London, X. 1.
$R^{\text {EPAIRS }}$ in Moving Coil Speakers, Cones and Coils Quoted including Einninators. Loudspeakers Ropaired $4 /$; L.F. and Speech Transformers, $4 /$ /-, post paired Trale invited. Guaranted. Satisfiction. Prompt Service, Hstimates Free.-L.S. Repair Service, 5, Balham Grove, London, S.W.19. Battersea 1321.

RECEIVERS, COMPONENTS AND

 ACCESSORIESSurplus, Clearance or Secondhand, etcs

RADIO CLEARRANCE LTt.
 63, HIGH HOLBORN, W.C.1. Holbern 4631.

Large purdase BRAND NEW LISSEN RECEIVERS, available fin sealed cartons as from the makers Following Models a re a vailable ALL AT $£ 3 ; 19 / 6$ each. Model No. 8214, 4-valve A.C. Mains Superhet, tivo wavebands, fitted in Handsome Walnut Cabinet, ete. Model No. 8125, 5 -valve A.C. Mains Superhet, two Waveliands, ditto.
Modet No. 8130, 4 -valve A.C./D.C. T.R.F., three wa veland receiver
Model No. 8133, 4 -valve A.C./D.C. T.R.F., three wavehand, ditto.
Model 8111, 5 -valve A.C. Superhet, two waveluands, ditto.
Model No. 8110, 5 -valve A.C./D.C. Superhet Receiver Model No. 8169, 4 -valve Battery Superhet, $£ 3 / 10$.
The demand for above is sure to be heavy, order immediately to a void disaprointment.
Wearite Mains Transformers, standard for the season and exclusive to us, made to strict electrical standards, l'rimaries, Tupred luputs no0-250 volts, terew adjustment.
Type R.C.1., 250-0-250, $80 \mathrm{~m} . \mathrm{a} ., 4$ volts 2.5 amp . volts 4.5 amp ., $9 / 6$
Type R.C. $2,350-0-350,120$ m.a., 4 volts 2.5 ampi, Tol C. 10
Type R.C. $3 ., 350-0-350,150 \mathrm{~m} . \mathrm{a}$, , 4 volts. 2.5 amp. 4 volts 2 amp., 4 volts 1 amp., $12 /$
Type R.C.4, $500-0-500,150$ m.a., 4 volts 2 amp. 4 volts 2 nmp., 4 volts 2.5 amp., 4 volts 5.6 amp., $19 / 6$ TYpes R.C.1. and R.C.2., Drop Tlirough Types, Capped Types R.C.3. and 18.C.4., Uprigitt Mountiug tyles,
fully shrouted fully shronted
Wearite Auto Transformers, type R.C.5., fislly shrouded, input $100-110$ volts. Ontput $200-250$ रolts, 100 watts 12/- each.
Igranic Smoothing Chokes, $20 \mathrm{Hy}, 100 \mathrm{~m} . \mathrm{a}$., 500 olims, minshrouded, $3 / 9$ each.
Plessey Can type Electrolyties, 200 mfd ., 12 -rolt working, 1,- each.
Plessey Cardooard, wire end, Electrolytics, 8 mfd. 250 -volt working, 9 d . cach. © plus 4 mid., 450 v working, $1 /$
Special Purchase T.C.C. 16 pins 16 mfd., Cardboard Electrolytics, Wire Ends, Atted fect, 450 -volt working 500 -volt surge, $2 /-$ each
T.C.C. Cardboard Electrolytics, wire ends, 450 -volt working, 500 -volt surge, Common Negative
4 mfd ., $1 / 4$ each ; $6 \mathrm{mfl} ., 1 / 4$ ench : 8 mid., $1 / \mathrm{G}$ each 4 plus 4 mfd., $1 / 9$; 6 plus 4 mid., $1 / 8$; 8 plus 4 mfd. 1/9; 8 plus 8 mfd., $2 / 6$.
B.I. 8 plus 12 pius 50 mfl ., working voltages 8 plas 12,350 volts, 50 mfd .12 volts, $1 /-$ cach.
Hunts 1,000 mid. Cardboard Electrolytics, wiro ends peak voits $19.1 /$ each
Philips Can type Electrolytic Condensers, 1-hole fixing 16 mid. 320 volts, 00 . each. 25 mifd., 320 volts, 9d. each.
American Chassis mounting Valveholders, 5, © and 7 -pin, 2l. each.
t.c.c. Bias Condensers, Tubular Type, Wire Ends. 50 mfl, , 12 volt, $1 /-.25 \mathrm{mfd} ., 25$ volt, $1 /-.25$ nifit 50 volt, $1 / 3$. 50 imlid., 25 volt, $1 / 3$. 50 mfil., 60 volt, $1 / 6$.
Centralab Volume Controis, with switel, long spinidie sizes $1,000,5,000,10,000,25,000,50,000,101,000\}$ $250,000,500,000,2 / 3$ eacl
Plessey 3 -gang 0005 Straight Condensers, leas trimmers, $1 /$ - each
Plessey $405 \mathrm{k} / \mathrm{c}$ I.F. Transformers, fully screened 1/s each.
Igranic $465 \mathrm{k} / \mathrm{c}$ I.F. Transformers, iron cored, with trinmers, $1 / 0$
Yaxiey 6 Bank 4 Position Switch, each bank 5 contact
phas common, phas common, 2/6
t vailable this season, full range Ken-Rad American Valves, finest grade, equal to Ring Valves, from 3/0 each, enquiries invited.
Amsrican Valves, 12Z3, Nos. 55 and GB7 only, 1/9 cach.
Jarge Purchnse Xissen Valves, Brand Xew, Boxcd.

ACSC, $4 / 6$ each
132, $3 / 3$ cach.
SG 410, 2/- ench.
Alf orders $5 /$ or over post free, orders under $5 /$ mast be accompanied by a reasonable amount for postage, C.O.D. orilers under 5/-cannot be nccepted. Hours of business 9 a.m. to 7 pm . week-days, 0 . mm . to $1 \mathrm{p}, \mathrm{m}$. Saturdays. Knquirics 1 ld . stamp if reply expected.
RADIO CLEARANCE, LTD., B3, High Holborn, w.C.1. Holborn 4631.

CABINETS

MANUFACTURERS' surplus cabinets for Radioand varied stock Inspection Lonvited, or send particulars of your requirements, with measurements of chassis. Photos sent for selection. (No catalogue.) -H. L. Smith \& Co., Luti, 287-280, Edgware Road, Iomion, W.2. (Pad. 5891.)

NEW RECEIVERS, COMPONENTS AND ACCESSORIES

3 ANKRUPT STOCK. - Brand new 1938 radio sets in retail prices cartons with guarantees at less than half 261-3, Lichfleld Road, Aston, Birmingham.

BATTERY CHARGING PLANT

 2-voll, 15 s ; or send, requirenients for quotation.
-Brighton Radio Service, 34 , Middle Street, Brighton.

WANTED

W. Kx bury Road, S.E.6.

MISCELLANEOUS

LLL-WAVE 5 -valve snperhet, Midget, frame aerial, A univeras 200-250 V., £6. Cheap,-St. John,

I CAN teach the Morse Alphabet in one hour. GuaranCaed certain results. P.O. $5 /-,-34$, Haydn Road, Nottingham.

THE OUTLINE OF WIRELESS," by Ralph which Stranger. Firth Edition, 8s. 6d. -This book mended to all who desire to master the theory of Modern Wireless. At all Booksellers and Newsagents, or by post 98 . from George Newnes, Ltil. (Book Dept.), Tower House, Southampton Street, Strand, London, w.c. 2.

F VERYMAN'S WIRELESS BOOK, by F. J. Camm, E 38. d d An invaluable book of reference, explaining the oprration, upkeep and overhaul of ail types of wireless receiver. 200 illustrations. From ali Bookseilers and Newsagents, of by post 4s. from George
Newnes, Ltd. (Book Dept.), Tower House, SouthampNewnes, Lta. (Book Dept.), Tower House, Southampton Street, Strand, London, W.C.2.

THE PRACTICAL MOTORIST'S ENCYCLOPES1 DIA, by F. J. Camm, 3s. Bd. net. A lucid exporitlon of the principles, upkeep and repair of
every part of the car. 442 illustrations. From bookevery part of the car. 442 illustrations. From bookselicrs everywhere, or by post 4s. from George Newnes, Street, Strand, London, W.C.2.

TELEVISION-Newnes' Television and Shorttatively wave Hand book, by F. J. Camm, deals authoriScrews, Disce, etc.), Neon Lamps, The Cathode-Ray Oselllograph. How to build Short-wave and Ultra-short-wave Receivers. Fully illustrated, 3s. 6d. From your booksellers, or by post 4s. from George Newnes, Ltd. (Book Dept.), Tower House, Southampton Street, Strand, London, W.C.2.
SIXTY TESTED WIRELESS CIRCUITS, by F. J. S Camm, 2s. Gd.-This handbook contains every modern circuit complete with instructions for assembling, component ralues, and notes on operation. Obtainable at all Booksellers and Newsagents, or hy post 38 , from George Newnes, Ltd. (Book Dept.),
Tower House, Southampton Street, Strand, London, W.c.2.

ADVERTISEMENT INDEX

Armstrong Manufacturing Co.
Armsirong. Manufacturing Co. Teitish Institute of Engineering Technology Brilish Mecbanical Productions, Ltd.
Bulgin, A. F. \& Co., Lid.
Electradix Radios
Exide
Fluxite, Lid
Heayberd, F, C. \& Co.
London Radio Supply Co
New Times Sales Co.
Peto-Scott Co., Led.
Pix
Player's COM Cigareltes
Premier Supply Stores
Technologicsl Institute of Gt . Britain
Vungsram
Westinghouse Brake and Signal Co., Ltd
Whiteley Electrical Radio Co., Lid..
Cover iii

this issue! Then write for particulars of the
 HEAYBERD MAINS Transformer

Expressly designed to an exclusive speci-
Gication for this set and of the recognised high HEAYBERD standard. price £1.0:0
We are makers of Battery
Transformers, etc., Chargers,
for all
purposes.

F. C. HEAYBERD \& CO. 10, FINSB URY STREET; LONDON,E.C.2.

Moorgate Stat
TEL: MET. 7516.

EVERY PRACTICAL WIRELESS SERVICE MAN SHOULD HAVE

PRACTCAL WIREEESS SERVICE MANUAL
 By F. J. CAMM

A Complete, Practical and Up-to-date Work on the Testing of all Types of Wireless Receivers. 288 PAGES and OVER 220 PHOTOGRAPHS, DIAGRAMS, and PLANS.
From all Booksellers 5/- net, or by post $5 / 6$ direct from the Publishers, George Newnes, Ltd. (Book Dept.), Tower House, Southampton St., London, w.c.2.

FREE ADVICE BUREAU COUPON
This coupon is available until October 29th, 1938, and must accompany all Queries and Wrinkles.
Practical and amateur wireless, 22/10/38.

When writing to Advertisers

 please mention "Practical and Amateur Wireless"
PREMIER 1938-1939 RADIO
 MATCHMAKER UNIVERSAL
 OUTPUT TRANSFORMERS

11 Ratios from 13: 1 to $80: 1$. Designed to match

 any output valves, Triodes, 'Tetrodes or Pentodes, $\underset{\text { ringle or Push-Pull, Class "AB1," "AB2," or }}{\text { B }}$ bination. $5-7$ watte, $13 / 6 ; 10-15$ watts, $17 / 6$; 20-30 watts, $29 / 6$.Premicr Battery Chargers. Westinghouse Rectification. Complete Ready for use.
16/6: 6 volts at $\frac{1}{2}$ amp., 10\%; 6 voltsat $\frac{1}{4}$ amp., 1/. 6 vots at 1 amp., $19 / 6 ; 12$ volts at 1 amp., MOVING IRON METERS. ADAD range between 10 and $500 \mathrm{~m} / \mathrm{a}$. Also 1, 3 or 5 amps. Read A.C. or D.C. Flush Bakelite case, 2 in. diam, B.E.S.A. standard speciftcation 89. $5 / 9$ each.
UTILITY Micro Cursor Diais, Direct and 100-1 Ratios, $3 / 9$
PREMIER Short-Wave Condensers, all-brass construction, with Trotitul insulation, 15 mmf , $1 / 6$;

SHORT-WAVE COILS, 4 - and 6 -pin types, 13-26, $22-47,41-94,78-170$ metres, $1 / 9$ each, with circuit. Special set of S.W. Coils, $14-150$ metres, $4 /-$ set, with eircuit. Premier 3 -band S.W. coil, 11-25, 19-43, 38-86 metres. Suitable any type circnit, 2/6. COHL FORMERS, 4- or 0-pin low-loss, 1 - each. MOVING COIL SPEAKERE. Mägnavox 7in. P.M. Speakers, with Transformer, 8/11. Magnavox 8 Bn. P.M. Speaker, with Transformer, 10/6. Rola MAINS TRANSFORMERS. PTimary $200-250 \mathrm{v}$., Secondaries, $350-0-350 \mathrm{v} .90 \mathrm{~m} . \mathrm{a} ., 4 \mathrm{v} .2 \mathrm{a}$, , 4v. 5a. 4/6. Primary 230 v .-250v, only. Secondary 250 -
 Have you had our 1938 Catalogue, Handbook and Valve Manual? 90 pages of Radio sargains and Interesting Data. Price 6d.
ALL POST ORDERS TO: Jubilee Works, 167, Lower Clapton Road, London, E.5. Amherst 4723. CALLERS to :-Jubilae Works, or 165 Fleet Street, E.C.4. Central 2833, or 50, High Street, Clapham, S.W.4. Macauluy 2381 .

ARMSTRONG 7-STAGE

All-Wave Radiogram Chassis incorporating Pushbutton and Manual Tuning, supplied complete with 8in. Matched Moving=Coil Speaker, model A.W.3PB Price £7 18s. 6d. complete.
Call at our Showrooms and hear this latest Chassis.
Specification: New method of Push-button Tuning slation drift, principal Medium Wave Stations and Luxembourg can be obtained by the Push-button method All latest refinements, including large Tuning Scale calibrated in degrees and station-names on ail wavebands Short-wave covers all principal bands from 15.9 to 50 meares. Volume and Tone Controls work on Gramophone as well as Radio. Pick-up Leads may be permanently connected. Moving.coil speaker made especially for chassis.
 The abore is only one of inany atractive models and foll details ARMSTRONGMANUFACTURINGCO. 100, ST. PANCRAS WAY (Formerly King's Road), CAMDEN TOWN, N.W. 1.
2Phone: GULliver 3105.

ALL THE LATEST WELDING METHODS EXPLAINED

THIS invaluable new publication provides you with a reliable and practical reference on EVERY BRANCH OF WELDING．Developments in welding technique have been rapid during the past three years， and to－day welding is being employed to an ever－increasing extent in many industries．

Newnes＇COMPLETE WELDER deals with the very latest methods and equipment for forge－welding，oxy－acetylene welding and metal cutting，thermit welding and other non－electric methods，and also with electrical arc－welding， electrical resistance welding，and the atomic hydrogen process．

The IMPROVER，APPRENTICE and STUDENT will find this new work packed with vital knowledge that would in ordinary circumstances take years to learn．It is a real step to a key job！And the experienced craftsman will discover that the contents－the experiences of welding specialists in every sphere－provide an opportunity for greater knowledge that will definitely increase earning capacity．

The following is a brief outline of tbe main－headings of Newnes＇COMPLETE WELDER．
OXY－ACETYLENE WELDING（High－Pressure System and Low－Pressure System）．WATER GAS WELDING．FORGE WELDING．PROPANE GAS WELDING．THE THERMIT WELDING PROCESS． ELECTRIC ARC WELDING．ATOMIC HYDROGEN PROCESS．WELDING ELECTRODES．D．C．and A．C． ARC WELDING PLANT，RESISTANCE WELDING－ EQUIPMENT APPAS WELDING AND CUTTING EXAMINATION OF WELDS CASTIRON WEIDING EXAMINATION OF WELDS．CAST IRON WELDING． STEEL WELDING．WELDING OF NON－FERROUS METALS．SIFBRONZE WELDING．PREMAG LENE REGULATORS．OXYGEN CUTTING BY HAND TORCH，OXYGEN CUTTING MACHINES．
Over 1,000 illustrations and action photographs，and many useful Tables，Data，etc．
Written by Welders highly skilled in the various processes． INVALUABLE TO
MEN IN ELECTRICAL MANUEACTURE MOTOR AND AIRCRAFT WELDERS WELDING OPERATIVES
ENGINEERING AND SHIP－BUILDING WELDERS． STUDENTS－APPRENTICES－IMPROVERS．

GET YOUR COPY NOW！

I Please supply each week one copy of Newnes
1 important New Part Work COMPLETE WELDER， 1 1／－weekly．

I NAME ．．．
｜ADDRESS

COMPLETE WELDER is also obtainable direct
COMPLETE WELDER is also obtainable direct Trom the publishers，GEORGE NEWNES，LTD．， W．C．2．（ $1 / 2 \frac{3}{2} \mathrm{~d}$ ，each part post free．）Strand，London，｜ W．C．2．（1／2⿱亠䒑八刀 d．each part post free．）

[^0][^1]
[^0]: Gcorge Newnes，Lta．

[^1]: Published every Wednesday by Georgit Newnes，Limied，Tower House，Southampton Street，Strand，London，W．C．2，and Printed in England by The Newnes d Pearson Printwa Co．，LTD．，Exmoor Street，London，W． 10 ．Sole Agents for Australia and New Zealand：Gordon \＆GOTCH，LTD．Soutb Africa：Central News Agenox，LTd．Practical and Amateur Wireless can be sent to any part of the World，post free，for 17s．8d．per annum：six months，8s．10d．Registered at the General Post Office as a newspaper and for the Canadian Magazine Post．

