

WHETHER YOU SOLDER to(a) make things FLY

(b) make things FLOAT

(c) make things 200 M

success is certain with

FLUXITE

 A touch of Fluxite sets the seal on every soldering job-it's the sound, simple way to success. Fluxite, famous for fifty years, is as popular today as the best deserves to be-it's the automatic choice of engineers and mechanics the world over!Obtainable from all good-class Ironmongers and Hardware Stores

- Rebates
 - SLOTS
 - FILLETS - STRIPS
 - TONGUES 8: GROOVES

ARCOY RABBETTER
For use with any
Portable Electric Drisi E2.2.6 $\begin{gathered}\text { (Post and } \\ \text { packing } 2 / 6)\end{gathered}$ Complete with Saw Available from Stock

Depth of eutcer adjustable from 0^{0} to $\frac{z^{3 \prime}}{}$, Position of cutfrom wood edge adjustable from 0^{*} to ${ }^{1 *}$.

PARRY \& SON (Tools) STD.
329-333 OLD STREET LONDON, E.C. 1
SHOreditch 9422-3-4

FREE

Write for illustrated catalogue of complete range of "Leytools"

LEYTONSTONE JIG \& TOOL CO. LTD. LEYTOOL WORKS, CROWHURST ROAD, HOLLINGBURY ESTATE, Nr. BRIGHTON, SUSSEX
Also at LEYTON, LONDON.

[^0]
NOW

Yol can MA

BRITAIN'S MOST COMPREHENSIVE PRACTICAL COURSE IN RADIO • ELECTRONICS TELEVISION:

* Permanent Magnets in action *

PERMANENT MAGNETS

Made by James Nelll \& Company (Sheffleld) LImited and obtalnable from all tad distrlbutors

FOR A SENSE OF ACHIEVEMENT!

JOHNSON DO-IT-YOURSELF OUTFIT

See your own work come to life with a Johnson Do-ityourself Outfit! At last a range of easy-to-use photographic outfits for the keen photographer who wants to develop and print his own films. There are outfits for beginners and for the more advanced enthusiast. Each outfit has everything you need, including full, easy-tofollow instructions. Johnsons make a wide range of photographic equipment and chemicals, stocked by all photographic dealers. Price from £1.17.6 to $£ 5.12 .6$.

JOHNSONS
 OF HENDONLTD

SPECIAL HEAT RESISTING GRADE P.V.C. HEATING CORDS, Nylon centre, Copper/ Nickel conductor, woven glass braided. For soil warming, undercarpet heating, frost-free pipes, etc., etc. Supplied in $12,15,25$ and 30 ohms/yard. Price 1/- per yard, post free.
 NEON ILLUMINATED INDICATOR SWITCH. $2 \mathrm{amps}, 240 \mathrm{v} . \mathrm{A} . \mathrm{C} .10 / 6$ each, post free.
 FIT THIS TO YOUR ELECTRIC BLANKET AND BRING IT UP TO DATE
 THERMOSTATS. BW/1, 5 amps , 15/6. Post 8 d . stat, 15 amps 25/. Post 10 d . Model MB for Immersion Heaters, 15 amp. £2. Post $2 /$-. PF Room Thermostat, 15 amps , $£ 2$. Post $1 /-$. M.L. Greenhouse Thermostat, $10 \mathrm{amps}, 35 / \mathrm{F}$. Post $1 / \mathrm{F}$. P.J. Miniature Thermostat for Hotplates, 5 amps, 9/3. Post 9d.
 REPLACEMENT ELEMENTS for electric fires, irons, toasters, kettles, convector heaters, washboilers, ctc.
 TELEVISION SUPPRESSOR KIT, for appliances up to 1 amp., 3/6. Post Free.
 BI-METAL. Hi-Flex 45 3/16 in. x .010, 6d. per foot. Standard $1 \frac{18}{8}$ in. $x \frac{3}{16}$ in. x $.036,6 \mathrm{~d}$. Plus postage.
 MAGNETS. Sintered Bar Magnets of great power and stability $\frac{8}{8} \mathrm{in} . \times 3 / 16 \mathrm{in}$. x $1 / 16 \mathrm{in}$., 9d. each. 8/- doz. Post 9d.
 CAR HEATER ELEMENT. 6 in. $\times 1 \nmid \mathrm{in} .200 / 250 \mathrm{v}$. 100 w. $6 /$ each.
 THE TECHNICAL SERVICES COMPANY, Banstead, Surrey
 We can list only a tew items in this space. Send 6d. in stamps ior Catalogue and S.A.E. for enquiries.

THE "ULMIA" MITRE SAW
 Cuts with precision, Mitres, Half Mitres, Quarter Mitres and Squares
 A real necessity for accurate picture framing
 \star CUTS RIGHT AND LEFT HAND
 \star SPRING LOADED STOP AT ALL ANGLES

| No. 1 cuts up to $2^{\prime \prime} \times 2^{\prime \prime}$ | - | $\in 6$ | 0 | 0 |
| :--- | :--- | :--- | ---: | ---: | ---: |
| No. 2 cuts up to $4^{\prime \prime} \times 4^{\prime \prime}$ | - | $£ 11$ | 11 | 0 |
| No. 3 cuts up to $6^{\prime \prime} \times 6^{\prime \prime}$ | - | $£ 16$ | 5 | 0 |

Send P.C. for illustrated folder on "Tools for Mitreing"

S. Tyzack \& Son Ltd
 ONLY LONDON ADDRESS

341-345 OLD STREET, LONDON, E.C.I.
Telephone: Shoredirch 8301 (10 lines)

"Me and my Mole Wrench
On the car, in the house-everywhere I find this "third hand" of mine invaluable for a sure grip on all sorts of jobs, locking on to leave both my hands frec. Using the Mole Wrench as I wish-super pliers, clamp, hand-vice-I'll never find a more versatile tool for so many everyday tasks. The 7 in, is $12 / 6$, the 10 in. $15 /$ - from ironmongers, motor and motorcycle accessory dealers everywhere.
Make sure you get a genuine Mole Wrench-look for the name on it.

If in difficulty write to

PRECISION TOOLS

An Engineer's Clinomerer of great precision. Main scale is divided $0-20$ deg. in I deg. divisions and angles to within $\frac{1}{2}$ minute can be read speedily on the micrometer thimble. For their original military purpose aclip was fitted to the base but, this clip can be easily removed in the Machine Shop. Nete weighe 22 oz . Lengch of base 3 ? in

Ex-M.O.S. WALTHAM STOP WATCHES

A high quality $\frac{1}{3}$ second recorder with minute recorder reading $0-30$ minutes. Offered at fraction of cost. $\mathbf{Z 3 . 1 5 . 0}$.

OPTICAL TEST SET

Containing 36 earefully graded lenses of Crown glass. Focal lengths from 4 in , co 120 in . Dia. 47 mm . All in the new Vu-File transparent pack.

42/-
CHARLES FRANK LTD
67-75 SALTMARKET, GLASGOW, C.I Phone: BELL $2106 / 7$

Established 1907
Britain's greatest stocks of new, used and Ex-Gove. Optieal and Seientific Equipment. Send for illustrated catologue.

Centre Punches, Nail Sets, Spring Dotting Punches, Pin Punches, Model Makers* Punches and Auto. matic Centre Punches all shown on the illustrated leaflets which will be sent to you on request. Simply fill in the coupon and post to us today.

Please send me details of your Punches
NAME
ADDRESS

MOORE \& WRIGHT (Sheffield) LTD. Handsworth Road, Sheffield, 13.

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNTTES " is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new " ENGINEERING OPPORTUNTTIES " should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

MECH. ENGINEERING Gen. Mech. Eng.-Maintenance Eng. - Diesel Eng. Press Tool Design - Sheet Mefal Work - Welding Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Production Eng.
RADIO ENGINEERING General Radio - Radio \& TV Servicing - TV Eng. Telecommunications - Elec-tronics-Sound Recording-Automation-Practical Radio -Radio Amateurs' Exam. CIVIL ENGINEERING General Civil Eng. - Municipal Eng. - Structural Eng. Santiary Eng. - Road Eng. Hydraulics-Mining-Water Supply - Perroleum Tech.

ELEC. ENGINEERING General Electrical Eng. Installations - Drairghismanship - Illuminating Eng. Refrigeration - Elem. Elec. Science - Elec. Supply Mining Elec. Eng.

AUTO ENGINEERING

General Auto. Eng. - Auto. Maintenance \& Repair Auto. Diesel Maintenance Auto. Elecirical EquipmentGarage Management.

BUILDING

General Building - Heating \& Ventilation - Plumbing - Architecture - Carpentry - Painting \& Decorating Specifications \& Quantities - Surveying - Archirectural Draughtsmanship.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJEGTS INCLUDING CHEMIGAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY WORK STUDY, MATHEMATICS ETC.
Which qualification would increase your earning power? A.M.I.Mech.E., A.M.S.E., A.M.I.C.E., A.M.Brit.I.R.E., A.F.R.Ae.S., B.Sc., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., A.M.I.Chem.E., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.Mun.E., CITY \& GUILDS, GEN. CERT. OF EDUUCATION, ETC.
BRITISHINSTITUTE OFENGINEERINGTECHNOLOGY 410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, W.B.

You are bound to benefit from reading "ENGINEERING OPPORTUNTTIES," and if you are earning less than $£ 25$ a week you should send for your copy now-FREE and without obligation.

MECHANIGS

Editorial and Advertisemen Offices
" PRACTICAL MECHANICS" George Newnes Ltd., Tower House, Southampton Street, Strand, W.C. 2.
© George Newnes Lid., 1961
Phone: Temple Bar 4363 Telegrams: Newnes, Rand, London SUBSCRIPTION RATES including postage for one year Inland - 22 s per annum Abroad - 20s.6d. per annum Canada -

19s. per annum
Copyright in all drawings photographs and articles publishied in "Practical Mechanics "pis specially reserved tliroughout the countries signatory to the Berne Convention and the U.S.A. Reproduction or imitations of any of these are therefore expressly forbidden.

CONTENTS

Fair Comment

A Space Observatory

 570A Warm Bed this Winter
Books Received
A Dark Room Under the Stalrs
Puzzle Corner
L.B.S.C's $3_{2}^{\frac{1}{2} \mathrm{in} . \text { Gauge Even- }}$ ing Star
Science Notes
Make a Ventriloquist's Doll for a few shillings
A Dish Development Aid
582
Supe
A Radio-controlled Model Shooting Brake
Binoculars, Telescopes and their Lenses
A Self-tensioning Tripod .. 595
A Morse Practice Set .. 596
Building a Tape Deck
Automatic Operation of Curtains
Trade Notes
Your Queries Answered

CONTRIBUTIONS

The Editor will be pleased to consider articles of a practical nature suitable for publication in "Practical Mechanics." Such a ticles should be written anics. Such articles should be ziriten should include the name and address of the sender. Wrilst the Editor does not hold himself responsible for manuscripts, every effort will be made to return them if a stomped and addressed envelope is enclosed. Al correspondence intended for the Editor, should be addressed: The Editor, "Practical Mechanics," George Newnes, Lid., Tower House, Southampion Street, Strand, London, W.C.2.

FAIR COMMENT

THE ROBOT TEACHER

THE teaching profession has been in the news time and time again during the past few years and most of the publicity has been concerned with the grave shortage of teachers, particularly in technical and scientific subjects. The concern felt in Britain about this problem is not unique; it is felt in many other countries in the western world. One of the main reasons that there is a shortage of teachers is that only recently has the Government become alive to the fact that we are lagging far behind modern requirements for technicians and scientists. Now that the need has been recognised, it has become all too obvious that neither the teachers nor the teaching facilities are available. Recent events stemming from the teachers application for salary increases will be no help at all in a recruiting drive to interest more of the right people in taking up teaching posts-quite the contrary in fact. There is a programme in hand to expand the country's technical colleges, though it is difficult to understand what use this will serve without the trained personnel to teach in them.

We have watched these recent events with some disquiet and it was the thought that there may soon be a serious shortage in the most important profession that prompted us to wonder whether there might not be some alternative. We came to the conclusion that there can be no alternative to the teacher, but we did discover that there is a modern aid which could perhaps, if properly developed and used, relieve teaching staffs of some of the more routine instruction work.

The aid is known as a teaching machine and preliminary tests in America have produced some surprising results. The new teaching method was developed by Dr. B. Frederick Skinner of Harvard University and first introduced in 1954. The machines vary somewhat in appearance but basically there is a window in which frames containing questions appear. There is a space for the answer to be written by the student and a lever to pull to find out if the answer given was correct. When the lever is pulled the answer is moved under a glass plate so that it cannot be changed.

The system is worked by breaking down a course in any subject into the smallest possible individual items. Each item is printed on a frame and phrased so that it ends with a question or an incomplete sentence. The student reads each item in turn, answers the question and then checks to see if his answer is correct. One of the most important aspects of this method obviously lies in the preparation of the machine's programme and here, not only an expert knowledge of the subject being taught is necessary but also a sound knowledge of the teaching machine programme technique.

There seems to be little information available on the success of this method of teaching but one test on an algebra class produced surprising results. Using the machines, a course usually taking a year was covered by a junior high school class in one term. The subject was dropped completely for several months and then a test carried out. The students on an average retained about 90 per cent. of what they had learned from the machines.

It is emphasised that it should be possible to "programme" almost any subject on to a machine and scope could be further extended by combining the machine with film or closed circuit television so that the whole class could participate. The teacher would be released to take classes where discussion and experiment are essential.

570
 SPACE OBSERVATORY

THE world's first space observatory went into orbit during the last week of April, to open an entirely new branch of radio astronomy. It is a 95 lb . astronomy satellite-Explorer XIwhich carried into orbit a $7 \frac{1}{2} \mathrm{ft}$. radio telescope to track gamma radiation from the stars.

The radio telescope is designed to pick up gamma rays from the stars of the Milky Way, hundreds of millions of miles away, and from even deeper cosmic sources. These gamma rays-invisible electromagnetic waves of energy like radio waves-never reach the earth, as they are screened out by the atmosphere. But they are of intense interest to astronomers.

They are believed to radiate from radioactive substances hurled into space by " dying " stars, and are thus a clue to the composition and age of the stars. Since gamma rays travel in straight lines, undeflected by spatial magnetic fields, their source may readily be determined.

Description

Resembling an old-time street lamp, the Explorer XI looks unlike any satellite orbited to date. It combines, structurally, a 12 in . dia. $23 \frac{1}{2} \mathrm{in}$. long octagonal aluminium box mounted on a 6 in . dia., $20 \frac{2}{2} \mathrm{in}$. long aluminium instrument column. The box provides both a housing for the gamma-ray telescope and four of the external surfaces for the satellite's solar cells. The 44 in . long fourth-stage rocket remained with the satellite. This extension acts as a section of a transmitting antenna and provides the additional length and weight needed in attaining the Explorer XI's tumbling action. The fourth stage (burned out) weighs 12.81 b .

By

D. Fraser

Solar cells, which recharge the system's 12 nickelcadmium batteries, are also located around the face of a 17 in . dia. octagonal plate fitted on top of the box. A thin aluminium shield covers the end of the housing, protecting the telescope from damaging micrometeorites. This shield can be removed by radio command from the earth.

The gamma ray astronomy satellite tumbles end-over-end at the rate of about 10 times every minute. This motion enables the gamma ray telescope, aimed out through the end of the octagonal box, to scan a portion of surrounding space every six seconds.
Sun and earth sensors, peering out through small apertures in the micrometeorite shield, permit scientists on the ground to know at all times the exact orientation of the satellite with respect to the earth, sun and stars, thus pinpointing the direction from which gamma rays are coming. An insulated temperature sensor, also directed out through the thin shield, is designed to study the thermal radiation balance of a body in orbit.

To effect this necessary tumbling, or propellerlike action on achieving orbit, the satellite was equipped with a unique damping mechanism. This device, fitted into the after end of the fourth-stage rocket's motor case, is a hollow, mercury-filled cylindrical adaptor, resembling a retainer ring. When injected into orbit, the satellite was spinning about its longitudinal axis at about 380 r.p.m. Although it would eventually slow down and begin tumbling by the very nature of its structure, scientists wanted a controlled tumble, to begin shortly after the satellite had gone into orbit.

Data Reduction

The data transmitted by the satellite, and recorded by the Minitrack stations, is processed and reduced at Goddard Space Flight Centre.

The composite detected signal is separated into five channels by the use of filters. Discriminators convert this data to voltage amplitudes, which are displayed on an oscilloscope, then recorded on 35 mm . film.

An orbit's worth of data is processed in a little over ten minutes and recorded on about 36 ft . of film. Also, the light pulse characteristics, elapsed time, and time marks are recorded on binary tape in a format compatible with the experimenter's com-

The S-I5 (Explorer XI) being lowered into the shroud covering the upper stages of a funo II test vehicle.

 T is quite possible to, heat a bed by the simple apparatus of Fig. 1 in which an ordinary 40 W . lamp bulb is fixed inside a largish container.
The inside of the tin should be painted with cylinder black paint and if plastic covered wires are used they should be tested to make sure that the heat is not sufficient to soften the insulation. The earth connection is necessary and the warmer is only used before retiring.

The larger the container the higher the wattage that is permissible. Never use a high wattage lamp unless trials are carried out in a warm bedroom. The heater is then working under the worst conditions and will be quite safe in a cold bedroom.

Automatic Control

This may be by a time clock, by thermostat, or

Fig. 1.-A simple bed warmer. Note the earth

Fig. 2.-An improved bed warmer.

How to make your

By E. W. Monarch

both. It is also very easy to arrange for automatic switching off of any heater in a bed when a person gets in (Fig. 4). The helper springs must be very strong, motor valve springs are usually suitable and great care is necessary to ensure that the micro switch (Bulgin type S 502) is not pushed more than $0 \cdot 006$ in. beyond the "click" or it will be damaged.

On the back of the micro switch will be found three terminals. Use the one on its own and the paired one marked "Normally closed." A master switch or time switch is necessary if the heater is not always to be on when no one is in bed.

Fitting a Thermostat

An earthed cigarette or tobacco tin fitted with an insulated thermostat set about 140 deg. F. placed Ift. away from the warmer will give good automatic control. The wiring and the method for setting is shown in Fig. 5b, readers noting that a battery and torch bulb is used in lieu of mains. The thermostat illustrated in Fig. 3 is the Magstat and costs only a few shillings from Technical Services, Banstead, Surrey.

Using Radio Mains Droppers

It is quite possible to make use of a radio mains dropper of the $0 \cdot 2 \mathrm{~A}$. type as shown in Fig. 2. If the container is properly earthed by a green wire and a fused plug (IA) is used, the device is quite safe.

Automatic control may be by thermal balance or by a Magstat fitted as directed for the bulb heater. A suitable dropper is No. R24, available cheaply from Home Radio (Mitcham) Ltd., 187 London Road, Mitcham, Surrey.

Circuits for Simple Heaters

These are shown in Fig. 5 a suitable circuit for home use being at (a). Readers who wish to use the automatic thermostat may use circuit (b) and for absolute safety, to prevent someone getting into bed with the heater on, use circuit (c). Two pole switching may also be used for additional safety. If a metal bed (leg) is resting on the weight switch then make sure the bed is properly earthed. The black

Fig. 4.- A weight-operated switch for use under the leg of the bed. Heat goes off when anyone gets into bed.
Fig. 3.-(Left) How to set the thermostat with a basin of warm water.

Bed this winter

own electric blanket

mains lead is NOT switched by the thermostat, or the weight operated switch, but may be (optional) by the manual switch.

How an Electric Blanket Works

The heat is generated in a Nickel/Chromium resistance wire which is wound helically on a nylon supporting cable (Fig. 6 top). The heat generated by the small current (under IA) is then thermally conducted through a thin layer of protective fibre glass to a very strong and moisture resistant plastic covering.

Readers without experience should keep to either of the designs stipulated; the double-bed one being shown in Fig. 7 and the single-bed type in Fig. 9.

The two sizes described are roughly those available commercially, and in practice work well. Generally, electric blankets are made to be placed under the bottom sheet of the bed, being tied in position with tapes under the bed. They are intended for use before retiring, and should definitely never be used

MATERIALS

Base Cloth. Use strong cotton, canvas or blanket material After hemming all round to stop fraying the size will be either $30 \mathrm{in} . \times 6 \mathrm{in}$. or $5 \mathrm{rin} . \times 62 \mathrm{in}$.
Decorative Covering. This is not necessary for actual working. Twice the above size is required.
Heater Cable. Double Bed. 27 yd. of 15Ω per yd. cable. Single Bed. $27 y \mathrm{y}$. of 25^{Ω} per yd. cable. It should be Nylon/Chrome-Nickel/Glass/Plastic. Suitable cable is available from Messrs. Technical Services Ltd., Banstead. No other length or resistance values should be used.
Binding. 3oyd. of $\frac{1}{2} \mathrm{in}$. wide of contrasting colour to the base material. Cotton to suit.
Switch. A neon indicator type which can be laid on the pillow. The one illustrated came from Messrs. Technical Services Ltd., and the special-switch (no. S.320) made by Messrs. Arcoelectric Switches Ltd., West Molesey Surrey, is very suitable. Switches without a neon should not be used.
Terminal Block. Small two- or three-way, of strong plastic.
Leads. Two way plastic and cotton covered to take 2A. Fully flexible lead is necessary. The mains plug should contain a fuse rated at not more than IA.

when actually sleeping. A size larger than necessary is a danger, electric blankets must NOT be tucked inside a bed or folded over on top of themselves if they are too large.

The Base Cloth

The cloth is hemmed round the edges if there is likelihood of the material fraying as shown in Fig. 6 (bottom, left) or binding tape may be used as also shown. The cloth is then pinned with drawing pins down on the floor and the wire marks are carefully drawn on the material, using chalk, according to the plan of Fig. 7 or Fig. 9.

Binding tape is then sewn over the lines. The tin. portion in the middle of the tape acts as a tunnel for the heater wire and no stitches must enter it. Each length of tape is left with plenty to spare at one end as shown in Fig. 7.

Threading the Heater

This is done by taking five feet of garden wire, pulling it absolutely straight, making a round solder blob at one end and soldering the heater cable to it at the other.

Fig. 6.-The special heating cable used in blankets. Two methods of preventing the base material from fraying while making the blanket.

Fig. 7.-How the binding tapes are sewn in position. Make sure that no wire is less than 3in. from the edge of the blanket. Note the 'spare ends left free.
Fig. 5.-(Left) Three possible circuits for bed warming. (a) Simple arrangement, thermal balance control. (b) Thermostatic control. (c) As for (b) but with weight-operated "cut out."

Fig. 8.-How the resistance element is prepared for fitting in the terminal block.

Fig. 9.-Wiring plan of the single bed blanket.

Fig. 10.-Wiring plan of the two- or three-heat blanket with connections to C.S. 200 switch and neon indicator.

The heater is threaded according to Fig. 7 and 9. When completed take up the spare cable as far as possible by allowing plenty at the bends, etc. Do not cut any away.

The tapes, left long previously, are now sewn by hand over the wires just threaded. Care must be taken not to puncture the wire.

Connecting to the Mains

The method of connecting to the mains is shown in detail in Fig. 8. A "soft" plastic 2-way terminal block (Fig. 8) is obtained from the local radio shop. The central screw hole is used as in sewing a button and the block is sewn in place on the hem of the base cloth. Use good strong thread and if necessary reinforce the base cloth with canvas to prevent tearing.

The heater cable is now cut to the length required so that connections may be made to the block exactly as in Fig. 8. The P.V.C. cover is removed for about $1 \frac{1}{2}$ in., the heater wire is unwound carefully and the glass and nylon cut away. The heater wire is then wound helically round the P.V.C. so that when in the block the screw makes good contact and at the same time the wire cannot be removed by pulling. The wire is then covered with the binding tape in the same way as the rest of the heater.

The mains wire should be fabric covered, and is connected as in Fig. 8. No bare wires are permissible and the wire is then sewn securely along the hem for a distance of at least rin. Reinforce the base cloth as before if necessary. Melt sealing wax in terminal " heads."

Wiring the Switch

If the Technical Services neon switch is used, the two main wires from the blanket are connected to the terminals marked "load" and the two going on to the fused mains plug (rA. or 2A. fuse) are connected to the terminals marked "mains."

If using the Arcolectric S. 320 connect one pair of terminals to the mains, leave the others disconnected. If the neon glows wherever the switch is, then the mains are connected to the wrong pair of terminals. If the neon is switched, leave the mains connected, unplug and wire in the heater mains connection to the other terminals.

The wires must be securely anchored in both switches. Do not use switches not made for electric blankets and wire correctly with no bare wires. Plug into the mains using a fused plug.
Switch on the blanket switch and the neon should light up. Leave the blanket laid out flat for five minutes, when it should feel quite warm to the touch.

Using the Blanket

After test it may be covered in a decorative cloth; this is not absolutely necessary. It is intended that the blanket be placed under the bottom sheet of the bed. It may be anchored on the mattress by means of buttons, or tapes going under the mattress, and switched on and off when required. The switch is placed under the pillow when the blanket is not in use.

Automatic Control

The two blankets described can be automatically controlled.

Fig. 11.-Variable control of a blanket using a six position switch and an auto transformer of suitable wattage.

The Magstat already mentioned will do this job well and may be wired in one of the mains leads going to the switch by removing one from the block (Fig. 8) and taking it to the solder tag of the Magstat and returning one from the other tag to the terminal vacated. The thermostat should be placed midway between two heater wires about Ift . from the hem of the blanket.

It must be insulated by sewing P.V.C. material all over it and set to 140 deg. F. (Fig. 3).

The use of a time switch and a weight-operated safety switch can be arranged as in Figs. 4 and 5.

Two-heat Blankets

It is possible to arrange for one side of a bed to be heated more than the other by running the heater wire 5 in. apart on one side and 2 in. apart on the other. This is done with 27 yd . of 25Ω per yard cable and on No account should the 15Ω per yard cable be used or the hot side might overheat.

Two- or Three-heat Blankets

It is much more difficult, but quite possible, to make up a two-element blanket to the plan of Fig. I r, using two elements of 27 yd . (each) of 25Ω per yard cable and joining two ends together at the terminal block at "C" (Fig. 10). The other two ends go to spare terminals on a three-way block sewn on as before. Three-core cable leads to Arcoelectric Switch C.S. 200: this is a special series/parallel ${ }^{2}$-pole switch which will isolate the blanket at "OFF," and arrange to put in elements A and B with switch at "HIGH," element A only on "medium" and A and B in series on "low." The switch is mounted in a small wooden box with a warning neon lamp. The wiring of the system explained is shown in Fig. 10; the switch is clearly numbered.

No two wires of the heater network must be closer than in. and care is especially necessary at the connection end to keep the wires separated. 15Ω per yard cable must nor be used on this blanket but all the details previously given are relevant.

The wattage of the blanket is approximately: Low, 40 W.; Medium, 8oW.; High, i60W.

Auto-transformer Control

It is possible to get very great control of the heat given by an electric blanket by using a switched auto-transformer as shown in Fig. II. A lowwattage transformer is suitable, and one which will drive either of the single heat blankets was described in our article "Light As You Like It" in our June 1961 issue. Six heat positions are possible by rotating a switch.

"Aids to Machine-Shop Practice" by C. T. Bower, A.M.I.Prod.E. 192 pages. Price 18s. Published by Odhams Press Limited, London, W.C.2.

THIS book contains practical and up-to-date hints, new methods and novel ideas for engineers, machinists, draughtsmen and all concerned with engineering production. More than 200 ingenious hints and tips, designs for new devices, improved production methods, time-savers, and suggestions for simplifying work and increasing output are described. Drawings and photographs are included to show every essential detail. The items have been grouped into sections and cover the following subjects: Assembly methods, drawing office aids, drilling and tapping, gauging, grinding, handling methods, jigs, fixtures and attachments, lathework, maintenance, marking-out, milling, production methods and welding.
> "Beyond the Planet Earth" by Konstantin Tsiolkovsky. rgo pages. Price 15s. net. Published by Pergamon Press Ltd., Oxford.

TT was Konstantin Tsiolkovsky's description of outer space that Yuri Gagarin claimed most resembled what he saw from his space capsule. The first chapter of the book deals with this remarkable author's work and life. The story is science fiction and tells of a successful trip to the moon. It is a fascinating story and cannot fail to be of interest to the space-minded.
" Modern Arc Welding Practice" by J. A. Oates. 293 pages. Price 305. net. Published by Geo. Newnes Limited, Tower House, Southampton Street, London, W.C. 2.
Γ HIS book provides an up-to-date and concise source of reference for both student and professional welders. Both British and foreign welding methods are discussed as well as many techniques, such as stud welding, dot welding, submerged arc welding, etc. Welding processes as applied to such metals as titanium, cast iron, aluminium, special steels, and nickel are fully covered. The book is well illustrated and is divided into 21 chapters, with two appendices; the whole being arranged for easy reference and fully indexed.
" The Microscope and How to Use it" by Dr. Georg Stehli. 157 pages. Price r5s. net. Published by The Oak Tree Press Ltd., of London, W.x.
T HIS well illustrated book provides a thorough and interesting introduction into the field of microscopy. The first chapter deals with the construction of the microscope, its maintenance and its auxiliary tools. This is followed by chapters on using the microscope, examining simple preparations such as human hair, feathers, etc. Details are also given for exploring a drop of water, insect preparations, the microscopic structure of animals. Many other aspects of microscopy are covered. The book also contains a comprehensive index.

MANY photographer's use their bathroom as a darkroom and it has the distinct advantage of constant running water. It means, however, that the equipment has to be set up and dismantled after every printing session. I, too, was faced' with this problem and then I thought of converting the cupboard under the stairs.

The width of my staircase measured 2 ft .6 in . and this is quite a comfortable space to work in. First, I had to remove numerous built-in shelves, etc., and then plaster up the walls. The next step was to provide an enlarger bench. This needs to be a comfortable working height and will depend on whether you decide to sit or stand. Mine was 3 ft . 3 in . from the floor, but if you decide to sit, it will be correspondingly lower. My main reason for having it at this height was that I should be able to build a cupboard below to accommodate my printing papers, chemicals and other accessories.

The cupboard was made, using the back and two side walls. Frames were built and plugged and screwed to either side walls; then four 2 ft . 6 in . lengths were cut and fitted, two at the top and two at the bottom. A spirit level was used to check this framework both left to right and back to front and then a top, made of tongued and grooved boards, added.

Four supports, each 8 in . long were cut and positioned on top of this shelf at each corner and two longer lengths added horizontally to support the top shelf or working top, on which the enlarger rests. This top was also made of tongued and grooved boards. This provided a place on top for the enlarger and a space underneath for a dryer,

The shelf underneath the stairs and the dishes in position. Right can be seen the dish heater.

ROOM

trimmer and a box for negatives.

How the cupboard space below is divided up will depend on what is to be stored in it. I installed a single shelf about half-way down. Hardboard or 3 mm . plywood is quite suitable for general use, but considerable strengthening will be necessary if the shelf is to support heavy bottles.

In the limited space available, sliding doors are best for the cupboard. Special double groove moulding is available from most do-it-yourself stores to use as track for the doors. These latter were merely rectangles of hardboard cut to size and fitted with suitable handles.

UNDER THE STAIRS

"Wet" Bench

To accommodate the developing trays, a shelf is made to fit under the stairs, on the other side of the cupboard, as can be seen in the photograph. The front of the shelf is supported by means of a couple of stays, suspended from one of the upper stairs, the back being screwed to the underside of a lower stair.

Now, with the exception of electrical fittings, the darkroom is complete. A plug socket will be required on the shelf side for the dish heater and on the enlarger side another will be necessary for the enlarger and the safelight.

\section*{| PUZZLE |
| :---: |
| CORNER |}

Aparty of tourists in Egypt met two Arabs mounted on splendid horses. A wag in the party suggested to the Arabs that they should ride a race but that the prize of $£ 5$ should go to the owner of the horse that came in last. The challenge was accepted but it was soon seen that the race would last for hours. The

Arabs, too, realised this, and dismounted and conversed together. Then, to the tourists surprise, they remounted and rode off like the wind. The race was run, the $£ 5$ paid out, and everybody was contenteven the Arabs. Can you explain?

Answer

'7s.y u! әumes yorym

L.B.S.C's $3 \frac{1}{2} i n$. Gauge

EVENING STAR

Part 7. deals with the piston valve cylinders.

READERS building Evering Star have the choice of fitting either piston-valve or slide-valve cylinders. The full-size engine has, of course, piston-valve cylinders with long-travel valves, and this is the kind I prefer. At the same time, some folk -especially beginners-seem scared of tackling piston-valves because it is essential that the bobbins on the valves should be turned to an exact fit in the steam-chest liners. Actually, the job is no more difficult than turning the pistons to fit the cylinder bores, and that has to be done anyway, so why worry? Another argument is that piston-valves soon wear out, and start to blow badly; they cannot be packed like the pistons, as packing would catch in the ports. This is another illusion, as the following experience will show.

Some 26 years ago, I built a $2 \frac{1}{2}$ in. gauge $4-6-2$, to which I fitted a pair of experimental piston-valve cylinders of a special type in which the valves could be set by sight. The valves were $\frac{8}{8} \mathrm{in}$. dia. and to test the relative wearing qualities of the two metals, I made one valve of rustless steel, and the other of drawn phosphor-bronze. The liners were turned from cast gunmetal, bored and reamed in the usual way, no special treatment such as lapping or honing being used. Both valves were just turned to an exact sliding fit in the liners. The engine has one of my mechanical lubricators feeding into the cross steampipe between the cylinders, at the point where the steam enters from the boiler. The steam picks up the oil and carries it to the steam-chest of each cylinder as a fine spray.

A few evenings ago, time of writing, that same locomotive was tearing around my little railway,

hauling my weight at a speed equal to about $90 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. in full size, the valve gear almost in middle, and the exhaust sounding like a cat purring. There was not the slightest sign of a blow, yet nothing has been done to either valves or liners since the day they were put into the cylinders. I have had them out several times, at long intervals, for examination. Neither shows any appreciable wear. The simple explanation is, that the valves and liners have never been in actual contact; there has always been a film of oil between them, preventing wear and sealing the microscopic clearance against any passage of steam.

There isn't the slightest reason why anybody of average skill should not get the same results with piston-valve cylinders on Evering Star; but as it is my aim to try and please the greatest possible number of the good folk who follow my notes, I will describe a suitable pair of slide-valve cylinders for the benefit of those who prefer that type. No alterations will be required in the dimensions of the valve gear. Simply reverse the connections at the top of the combination lever, and set the return cranks to lead the main cranks instead of following them.

Machining the Cylinder Castings

On lathes of the Myford type, the easiest way of setting up the cylinder casting for boring and facing, is to mount it on an angle-plate as shown in Fig. 39. If the contact side of the casting isn't flat, smooth it off with a file. Check the location of the two coreholes. If approximately to the positions shown in Fig. 40, all right, let them be. If they are much out, smooth off one end of the casting with a file, plug the ends of the coreholes with bits of wood, mark out the correct centres of the bores on the wood, coat the cleaned-up end of the casting with marking-out fluid, and strike two circles showing the main and steamchest bores, with a pair of dividers. Bolt an angleplate to the lathe faceplate, and put the cylinder casting on it, securing it with a bar across its back, held down with a bolt at each end. If the slots in the angleplate dón't come right for the bolts, drill holes in the angleplate to suit. I've an angleplate which has become "more holey than righteous," and find it mighty handy!

Set the casting at right angles to the faceplateeasily done by application of a try-square-letting the end overhang the angleplate by 4 in . or so; then tighten the clamp bolts. Next set the larger corehole, or the marked circle, as the case may be, so that it runs truly. If the bolts holding the angleplate to the faceplate are left just slack endugh to allow the angleplate to be moved, this is an easy job. I can set it by eye, in two wags of a dog's tail, having done so many of them; but a scribing-block, or surface-gauge, standing on
the saddle or lathe bed, with the needle set to the edge of the corehole or marked circle, will show at a glance the amount and direction of adjustment needed. Be careful to avoid moving it when tightening the bolts.

It will be seen from Fig. 39 that the assembly is well off the faceplate centre, and if the lathe is started, there will be a fine imitation of an earthquake in the workshop. To prevent this, bolt a balance-weight of some sort to the faceplate, opposite the assembly. I use lead weights of various sizes and diameters, cast in lids of discarded tin cans, or in cut-down cans; the melted lead is poured in, left to cool, and then drilled $\ddagger \mathrm{in}$. or so through the middle. Slip the lathe belt off the pulley, and spin the mandrel by hand; you'll soon see if the job is balanced sufficiently

With a roundnose tool set crosswise in the sliderest tool-holder, face off the end of the casting, taking off half the difference between length of casting and finished job. Then set up a good stiff boring tool, and take a cut through the bore sufficiently deep to get well under the skin of the casting. Run at fairly slow speed, to avoid tool chatter, and have the cutting edge of the tool slightly above the centre-line, to avoid rubbing. Myford and similar lathes have self-acting movement to the saddle, and this should be used, with the gearwheels set up to give the finest available feed. If there is no self-act, the top slide must be used, and set so that it produces a parallel bore, before the casting is set up. This is easy. Chuck a piece of rod about $\frac{3}{4} \mathrm{in}$. dia. in the three-jaw, with about $2 \frac{1}{2} \mathrm{in}$. projecting. Set the top slide parallel with it, as near as you can judge, and with a narrow-ended roundnose tool, take a fine cut $\frac{1}{64} \mathrm{in}$. or less, along the rod. Take the diameter of this at each end with a " mike " or a pair of callipers. If the " mike" shows a variation of half a division (0.0005 in .) or less, or you can't detect any difference in the feel of the callipers, the slide is O.K. for the boring job. If there is any variation, adjust the top slide and repeat operation until you get it right. It will be time wellspent, as the bores must beparallel.

If a $\mathrm{I} \frac{\mathrm{in}}{\mathrm{in}}$. parallel reamer is available, bore until the business end of the reamer will just enter. If not, bore to finished diameter, taking the last two cuts without shifting the cross-slide. Then slacken the bolts holding the angleplate to the faceplate, and move the whole assembly until the steam-chest corehole, or
marked circle, is running truly; tighten the bolts, and repeat the boring operation. Don't on any account slacken the bolts holding the clamp bar, or the two bores will be out of line. To face off the other end of the casting, chuck a piece of rod a little over $1 \frac{1}{2} \mathrm{in}$. dia. and turn about rin. of it to a tight fit in the cylinder bore. Put the cylinder on it, rough end outwards, and face off with a roundnose tool until the casting is $2 \frac{3}{8} \mathrm{in}$. overall length. It is advisable to centre the rod with a centre-drill in the tailstock chuck, and support it with the tailstock centre while facing off, owing to the overhang. I use a Lecount expanding mandrel for this job, but such gadgets are not usually found in home workshops-too expensive nowadays!

Contact Side and Passages

Up-end the cylinder on the angleplate, putting a piece of thin sheet copper under it to prevent damaging the end. Fix it with a long bolt through the main bore, with a big washer and another bit of thin copper under the nut. Set the contact side parallel to the faceplate; a depth gauge applied at each end easily does that. Adjust the angleplate until the casting is central with the faceplate, to maintain as good balance as possible, then face off with a roundnose tool until the contact side is exactly in. from the edge of the main bore, as shown in the cross section (Fig. 40).

If the passages between cylinder bore and steamchest are not cored out in the casting, they must be drilled. File a flat in the edge of the bore, opposite the steam-chest, a full $\frac{3}{3} \mathrm{in}$. long and $\frac{1}{\frac{1}{2}} \mathrm{in}$. wide, and make three centrepops on it, $\frac{1}{8}$ in. apart. Hold the casting in a machine-vice on the drilling-machine

CONTACT SIDE OF CYLINDER.

BACK OF R.H. CYLINDER.

Fig. 40.-Details for machining the cylinder castings.

Fig. 41.-Steam chest liner.
table, set at such an angle that the line of the passage-ways will be vertical. Then drill with $\frac{1}{8}$ in. or No. 32 drill, into the bore of the steamchest, see longitudinal section (Fig. 40). The holes can also be drilled by hand, if the casting is held in the bench vice so that the line of the holes is horizontal. If the hand brace is then held horizontally, the holes will break through into the steam-chest in the right place.

Steam-chest liners

The liners (Fig. 4I) can be turned either from castings, or from drawn bronze or gunmetal rod I fin. dia. Cored stick, as used for making bearing bushes in automobile and similar work, can also be used, as it resists both heat and wear. Two pieces $3 \frac{3}{4} \mathrm{in}$. long are needed. Chuck in the three-jaw and, if solid rod or casting is used, face the end, centre, put a pilot hole through with $\frac{1}{4}$ in. drill, then open out with $\frac{g i n}{}$ drill. A cored casting, or piece of cored stick, should be opened up with a boring tool, in the same way as the cylinder casting was bored.

Next mount the liner on a mandrel between centres. A piece of $\frac{3}{4} \mathrm{in}$. round rod about 5 in . long is centre-drilled at each end, put between lathe centres with a carrier on one end, and about 4 in . of it turned down to a tight fit in the liner blank. Drive the liner on to it, not too tightly or you may damage it when getting it off. Put the lot between centres, and turn the outside of the liner to a press fit in the steam-chest bore, by the method I have already described for turning pins and wheel seats to a press fit, viz. turn about $\frac{1}{8} i n$. of the end to a tight push fit in the steamchest bore, and the rest with the collar on the crossslide handle within half-a-division of its original setting. If the lathe has no self-act, the top slide must be set to turn parallel by aid of " mike" or callipers applied to the ends of the liner.

Remove from mandrel, and chuck in three-jaw as truly as possible. Take a facing skim off the end,
 for-end, and repeat the operation, bringing the overall length to $3 \frac{5}{8} \mathrm{in}$. Now be very careful about the next bit. At $I \frac{1}{18} \mathrm{in}$. from the end, turn a groove $\frac{3}{32} \mathrm{in}$. wide and $\frac{1}{16} \mathrm{in}$. deep, with a parting-tool, and at $\mathrm{I} \frac{3}{16} \mathrm{in}$. farther along, turn another similar groove. The important thing is, that the width of the grooves, and the distance between the inner edges, must be exactly as shown, as they locate the steam ports. If a millingmachine is available, put a saw-type cutter ${ }^{\frac{5}{32}} \mathrm{in}$. wide on the arbor, grip the liner in a machine-vice on the table, and mill straight across the grooves to $\frac{1}{4} \mathrm{in}$. depth in one cut. Turn the liner over in the vice, and mill across the grooves again, so that the slots are exactly opposite, as shown in the cross-section of the liner. The openings left by the cutter in the bore of the liner, form the ports.

The job can be done in the lathe in similar fashion, with a $\frac{5}{32} \mathrm{in}$. cutter on a spindle between centres, and the liner held in a machine-vice at correct height, with the vice bolted to the lathe saddle. The slots may also be hand-filed with a thin flat file, the liner being held in the bench vice, bits of soft copper sheet being put between jaws and liner, to prevent damage. Chuck the liner again, and bore out the centre part to a shade under $\frac{11}{16}$ in. dia. so that the slightlytapered end of an $\frac{1}{16}$ in. parallel reamer will just enter. Finally, file two clearances across the outer ends of

the grooves, as shown in the drawing, to allow steam from the ports to get to the passages in the cylinder.

The liners can then be pressed into the steam-chest bores in the cylinder castings, using the vice as press, as previously described. Put pieces of soft sheet copper between jaws, and ends of liner and cylinder. Take great care to insert the slightly-reduced end of the liner in such a position that the clearances will line up with the passages in the cylinder when the liner is right home. Press in the liner until the entering end has gone right to the end of the cylinder. As the end projects through the casting for $\frac{5}{8}$ in. length, a block of metal or a piece of thick-walled tube at least $\frac{3}{4} \mathrm{in}$. long, with a $1 \frac{1}{8} \mathrm{in}$. hole in it, must now be placed between the end of the cylinder and the vice jaw, where the end of the liner will come through. The pressing can then be completed, the end of the liner entering the hole in the distance-piece as it emerges from the cylinder. Both ends should stand out exactly $\frac{5}{8}$ in. from the cylinder.

Reaming by Hand

The reaming should, by the good rights, be done in the lathe, when the cylinder is set up for boring; but the hole through the mandrel of the Myford or similar lathes usually found in home workshops, is far too small to allow reamers of the requisite sizes to be put through the bores. The only thing to do, is to ream by hand. Grip the cylinder in the bench vice, setting it level. Put a big tapwrench on the end of the reamer shank, enter it in the bore, and slowly turn and push at the same time. The great thing to watch, is avoiding any side or down pressure on the reamer, otherwise the bore will either become bell-mouthed or tapered. Hold the tapwrench loosely as it is turned and pushed, so that it kind of "goes its own way." A drop of cutting oil is a great help in getting a smooth finish. Don't attempt to reverse the reamer and pull it out, carry on until the business end goes right through the bore; then take off the wrench, and remove the reamer from the far end of the bore.

The narrow part of the liners can be reamed in the same way. It may be thought by inexperienced workers, that these might have been reamed before pressing in, but pressing always causes slight distortion, so it is preferable to ream after pressing.

There will be an oval boss on top of the casting, to which the steam pipe is attached. Smooth this off with a file, centrepop it, and drill an $\frac{1}{3}$ in. hole right through into the liner. The exhaust ways are cut through into the liner from the extreme ends of the upper recess in the contact side of the cylinder. These
(Concluded on page 591).

SOLEICLE 8

ing to the experts if a man had been inside the capsule he would have survived.

Bronze Case

A new rod material called bronze case in combination with hardened steel bushings is a new American engineering concept for piston and guide

Sharples Polariscope

THE Sharples $5 \frac{1}{2}$ in. dia. PolariL scope is unique in that it can be used as a diffused light or as a transmission instrument. The instrument has been designed for serious research work, university and technical college lecture purposes and as a practical engineers' tool for the assessment of designs. It is a very compact instrument mounted on its own

The Polariscope.
cabinet, which contains ample storage space for models and special loading equipment, etc.

Space Flight Rehearsal

THE photograph on the right showsthe mating of a Mercury capsule to an Atlas vehicle. The spacecraft is being placed on top of the Atlas rocket prior to the flight which took place some months ago. It was the first attempt by the National Aeronautics and Space Administration to put an unmanned Mercury spacecraft into an earth orbit. On this particular flight something went wrong with the Atlas rocket carrying the capsule, in which was a "dummy," and it exploded into flames. Accord.

Fig. 1.-The dressed doll in working position.
a central through hole for the doll's head stick.
A 12 in . length of $2 \mathrm{in} . \times 2 \mathrm{in}$. wood forms the base of the body frame and this is also drilled with two in. holes. Before fitting the two 12 in . dowel rods into shoulder and base blocks, the body former-this is an oval piece of plywood 12 in . long by 4 in . wide-must be drilled and glued to the dowels. Locate the body former halfway up the rods.

The Arms

These are made from four pieces of $2 \frac{1}{2} \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. wood each 8 in . long. Round off the corners of the two upper arm pieces and mark out and fret the hand and finger shapes as shown in the inset detail. Hand profiles are worked over with rasp and sandpaper to produce rounded knuckles and wrists. The complete forearms are attached to the upper arms with spring-loaded pivot bolts so that the arms will readily move and stay in any desired position. These pivots are 2 in . long tin. coachbolts with short coil springs under the washers and wingnuts. Fix the units to the shoulder-block with woodscrews put through drilled holes. The woodscrews also act as extra fastenings for the body dowels. Arms should move freely on the screws but without much sideplay.
The Legs
The thighs are made from 3 in. $\times \frac{1}{\frac{1}{2}} \mathrm{in}$. section wood gin. long; the lower legs from two gin. lengths of 1 in.

Make a VENTRILOQUIST'S DOLL for a few shillings

THE doll frame is completely joined (Fig. 3) so that the figure can sit, stand, bow and shake hands, etc., as the routine demands. Cut the shoulder block from a piece of 3 in. $\times 2$ in. planed wood to the 12 in . length given. Slope the shoulder section at 4 in . stations and taper them down to $1 \frac{1}{2} \mathrm{in}$. at the ends of block. Drill Iin . dia. holes as showntwo blind holes for the dowel frame at gin. centres and

dia. dowel. Shape the flat strips and attach to the base block with woodscrews. Drill and bolt the dowels to the knees, tightening the nuts of the pivot bolts just enough to permit the legs to hang straight under their own weight.
Saw the shoe formers from pieces of $\frac{1}{2}$ in. thick wood -plywood is best-measuring $4 \mathrm{in} . \times 2 \frac{1}{2} \frac{\mathrm{in}}{}$. and drill and glue them to the bottom of the leg dowels. Toes of the shoe formers are pointed so that the dummy can either be dressed with or without actual small shoes.

Doll's Head

An oval and a disc of 8 in . plywood are used to make the doll's face. Fig. 4. The oval piece measures 8in. $\times 6 \mathrm{in}$. across the widest points. Notice how the face tapers towards the jaw while the 6in. wide dimension is measured $2 \frac{1}{2}$ in. down from the top edge.
Mark out the movable jaw-2in. deep $\times 1$ inin. wide-and cut away cleanly with a fine fretsaw blade. This piece is fitted back into the head as shown by means of a pair of guide blocks and a slide strip which is screwed behind the movable jaw. The slide strip is a piece of $\frac{1}{2} \mathrm{in}$. plywood $2 \frac{1}{2} \mathrm{in}$. long \times rin. deep. It operates in the guides that are built up of tin. plywood strips with thin plywood retaining pads. Sandpaper the components so that the jaw slides' smoothly.

A light tension spring is screwed behind the head and jaw to keep the mouth closed. Operation of the jaw is effected by a thumb ring and an 8 in . length of black cord which is attached to the rear of the sliding strip.
A 6 in. dia. disc of plywood is sawn across the middle to make the two hat formers. These are fastened front and back of the head using strips of $\frac{1}{2} \mathrm{in}$. square

Head stick pivots
freely in hole

Paint finger nails on
one side of hand
wood for corner supports. Similar wooden blocks, sawn from \ddagger in. plywood, are attached behind the ears, which are located 5 in . up from the base of the face. The head is operated on a 12 in . length of 1 in . dowel which is secured to the back of the face via. a 2 in. cube wood block. Drill the dowel hole off-centre to give plenty of clearance between the head stick and the sliding jaw. Wood screws put in from the front of the face fasten the block in position.

Facial Details

Carve the doll's nose from balsa wood and glue it to the face covering the heads of the screws that hold the head-stick block. Mix up some light pink paintthe eggshell type of emulsion paint looks most realistic-and give the face one or two coats overall. The red lips are painted with a fine brush but it is best to colour the tip of the nose and cheeks with a little red paint on the tip of a finger.

Mark out the eyes and brows with black paint and finish with blue eyes having black pupils. The ears are pink too, but the centres are finished in a darker shade. At this stage, the hands and wrists of the doll should be painted and the finger nail markings put in. Hands are clenched so the nail marks are applied to the insides of the hands only.

The painted head is fitted to the body frame through the hole in the shoulder block and the dowel should be an easy fit. Cord and thumb ring pass in front of the shoulder block and are operated by the right thumb; while the right hand holds and works the head-stick (Fig: 4).

Dressing the Doll

The cheeky schoolboy type of character always appeals and it is suggested that the doll be dressed to suit.

Collar and cuffs can be made from stiff, white cardboard and the completed collar is cut away to fit across the shoulder block. A tie and a piece of "shirt" material are attached to the collar prior to fastening into the figure and a schoolboy cap completes the dummy (Fig. 4).

Seat the doll on your right knee by grasping the head-stick through a cut-away portion in the back of the dummy's coat. You'll quickly learn how to handle the figure by making him jump off your knee on to the floor and taking a bow. Practice the lip movements slowly by repeating the patter-both your own and the doll's-aloud without trying to hide your own lip movements. Get the feel of the thumb cord and twist the face each time the doll speaks to you. Normally, he looks at the audience.

The Art of Ventriloquism

A simple method of controlling your lips is to lightly touch your teeth together and part the lips slightly in a smile. This is the basic method used by performers although deviations are introduced to get over certain difficult letters. Repeat the alphabet keeping your lips still and you will find the only really difficult letters are B, M, P and W. B and P can be pronounced as HE .. : example Hetter instead of Better and Hancake instead of Pancake. Pronounce \mathbf{M} as N-Nichael in place of Michael-and say duggleyou for W.

All difficult words should be avoided and material should be written with this dodge in mind. Try to pitch your ventriloquist's voice a little high. Practise the script patiently and try to create the illusion of a real, cheeky boy.

A DISH

DEVELOPMENT

AID

By "Helios"

THE apparatus described here has been evolved to facilitate developing in darkness and at the same time provide for momentary inspection by the light of the dark green safelight. The method has been styled "Blackpool" because of the resemblance of the appliance to the Big Wheel at that resort.
Dimensions may be varied to suit the size of film normally handled by any particular user. A wheel capable of adjustment to take any width and length of film would be unduly complicated and, if more than one size of film is handled, then the construction of a suitable wheel for each size is recommended. They are very simple to make.

Construction

Start by cutting two IItiin. dia. discs of waterresistant hardboard and removing four sectors as can be seen in the sketch. Attach further segments of hardboard to form a rim $\overline{\mathrm{tin}}$. from the edge of the discs, using waterproof adhesive. This forms a track in which the film will lie. The discs are made into a drum (segments inside) by screwing to six pieces of $\frac{1}{\frac{1}{2}} \mathrm{in} . \times{ }^{1} \frac{1}{2} \mathrm{in}$. section wood, using nickel-plated screws. The distance between the inner sides of the two discs must be $2 \frac{1}{2} \mathrm{in}$. for 120 and 620 films. Three spacers are fixed about \ddagger in. in from the hardboard rim and one, shown inset in the sketch, is fixed level to the outside edge of the hardboard rim. It is to this spacer that the ends of the film are pinned. The other two spacers are fitted nearer the hub of the wheel.

The axle consists of a $\frac{3}{8} \mathrm{in}$. dia. hardwood dowel and the operating knobs are of wood or any convenient material. The stand on which the wheel turns is made of $\frac{1}{2} \mathrm{in}$. thick wood and the three pieces comprising it are fixed together with plated wood screws. There should be about $\frac{1}{2} \mathrm{in}$. clearance between the lower edge of the wheel and the top surface of the stand base.

The apparatus must be given two coats of cellulose paint before being used.

Using the Apparatus

Three dishes are filled to the correct depth with developer, plain water and fixer respectively and placed in a predetermined order close under the darkroom safelamp. The developing wheel, in position on its stand, should be on the darkroom bench at some distance. Switch off all lights including the safelamp and load the film on to the wheel in complete darkness. The free end, as it emerges from the spool, is pinned on first. Then the wheel is slowly rotated as the spool is unwound so that the film is wound on to the wheel emulsion side outwards. The end of the film attached to the paper backing is removed and pinned to the wheel which will now have turned full circle. The loaded wheel is now lifted from its stand, the dish of developer placed in position and the wheel replaced. The wheel is rotated during development, rinsing, fixing and washing by slowly twisting the knobs on the ends of the shaft. The fingers will not become contaminated by the solutions. Switching on the safelight for a short period will enable inspection of the film to be made, either on its emulsion (outermost) side or by looking at the reverse side through the cut-away sides of the wheel.

After use, wash the apparatus briefly and stand in a warm room to dry.

Airliner Engines

MORE speed means more efficiency. If this can be accomplished with fewer moving parts, together with economies in running operations, so much the better. These requirements appear to be fulfilled by the ramjet engine, and American aircraft designers are working today on ramjet engines that may be used for the 2,000 mile-per-hour airliners of tomorrow. (Fig. 1).
Airliners that can fly at such tremendous speeds are already in the advanced design stage, and it is only a matter of time before they will be built and put into operation. Such aircraft would travel from New York to London in two hours. Flights half-way around the world would take no more than half a day.

The Ramjet

The ramjet, engineers are now convinced, is one type of aircraft engine that can make such fast flights possible.
Ramjets are engines that operate most efficiently at speeds of 1,200 miles an hour and more. They are sometimes called " llying stovepipes" because of their cylindrical shape and simple interior arrangements.
Their simplicity of design eliminates complex control and lubrication systems, and they are potentially reliable because they have few moving parts. Other factors which make them interesting to aviation engineers are low initial cost, fuel efficiency, simple fuel control and light weight.
According to Mr. J. F. Drake of the Marquardt Aircraft Company-a leading American builder of ramjet engines-ramjets designed for use in aircraft
will operate at low temperatures with the emphasis on efficiency and long-life, rather than on maximum thrust. He said that long-service reliable ramjets for planes should not be too expensive or difficult to develop. (See Fig. 3.)

How It Operates

What is the difference between a ramjet engine and a turbojet? In a turbojet, a compressor operated by a turbine wheel, rotated at high speed by expanding hot gases, draws in great quantities of air. As the air is compressed, its temperature rises. The highlycompressed, heated air is fed into a combustion chamber, where it is mixed with fuel, and the mixture ignited. The hot gases of the combustion pass out of the rear of the engine at very high velocity and create a powerful forward thrust.
A ramjet is much simpler. The engine is, in effect, no more than a metal tube open at each end, and as can be seen from Fig. 2. there are few parts. Air enters the diffuser and is compressed by the ramming action of the high forward speed. Fuel is pumped through injectors and mixes with air as it passes to the flame holder, where burning starts. The high temperature expands the exhaust gases, which pass through the exit nozzle and are accelerated to several times flight velocity. Thrust results from the tremendous increase in the air's velocity between intake and exhaust.

There is one big snag: these engines will not function when standing still, and are inefficient at moderate speeds. They must move forward at very high speeds in onder to compress the intake air sufficiently.

Fig. 1.-(Left) Artust's drawing of a ramjet liner of tomorrow.

Fig. 2.-The ramjet engine.

Engineers are, however, busy with plans to overcome this basic drawback and some methods are already undergoing laboratory tests.

Ramjet turbojet

The Marquardt Aircraft Company is not relying exclusively on the use of new devices as a means to launching a ramjet plane. In one approach to the subject, it considers that conventional turbojet engines might be used on a $2,000-$ mile-an-hour jet airliner to take off, climb to altitude and pick up speed. Then, the pilot would shut off the turbojets and turn on the ramjets.

A possible ramjet-turbojet airliner for the 1970's, according to Marquardt officials, would probably be the size of the Boeing 707 or the Douglas DC-8, and
would carry 140 passengers, about the same as pre-sent-day jet airliners. At altitudes of 10 to 15 miles, the planes could cruise at three times the speed of sound (sound travels at 660° miles an hour at these heights). The ramjet would be cheaper to operate than today's jets, and 20 per cent. cheaper than a 2,000 mile-per-hour airliner powered entirely by turbojets.

One key claim made by Marquardt engineers is that at 2,000 miles an hour and at $60,000 \mathrm{ft}$., the ramjet engine will produce three to four times more thrust per pound of engine weight than the turbojet will. This greater thrust, they say, would pave the way for important savings in fuel costs. It is the ramjet's much more efficient power, they contend, thatalso would make possible non-stop flights of 6,000 miles.

Fig. 3.-Ramjet engine assembly line at Marquardt Aircraft Company in the U.S.

A RADIO CONTROILED MODEL
SHOOTNG BRAKE
By D. W. Aldridge

The radiator shell and lamp surrounds were made from sheet aluminium and the bumpers from aluminium tubing pressed nearly flat. The headlamps are the business ends of two hand torches, complete with reflectors and bulbs, and the rear lamps are two-cycle-type plastic rear lamps of the older type, suitably cut down.

Celluloid (from a model shop) was used for the windows. One window at the back, was, however, removed later as it was found useful for getting in quickly to switch on or off.

Rear "Axle" and Propulsion Unit

In building a model vehicle one of the difficulties to be faced is that of providing a differential between the two driven wheels to allow for the different distance each has to travel when turning a corner. The conventional mechanical method using bevel gears is all very well for those with workshop facilities, but a simpler method is necessary for the ordinary experimenter. The solution to the problem turned out to be quite simple and two electric motors were employed, one driving each rear wheel. Thus no mechanical differential was needed, the effect being obtained electrically as each motor drives as hard as it can when a corner is turned.

The motors used were Hughes 12 V . motors obtained, complete with gear assembly (final drive speed 150 r.p.m.), from Midland Instrument Co., Moorpool Circle, Birmingham 17. These are quite cheap and could be considered as being handmade for the job, being used almost without modification, the final drive shaft fitting into the dummy brake drum and wheel used. The wheels are $3 \frac{1}{2} \mathrm{in}$. dia., and are of the type used for model racing cars. As an alternative, tyre manufacturers are willing to supply model-sized replicas of their goods and naturally these look very realistic. Facilities are then required, however, to turn wheels to fit.

Springing

Springing of the conventional type would require workshop resources and, as before, a simple method has been evolved. The solution found was to mount both front and rear "axle" components on a piece of plywood and to pivot these at (at least) two points down the centre-line of the vehicle chassis. (Fig. r.) The pivoting is done simply by means of bolts fastened securely to the aluminium chassis but in oversize holes on the axle assemblies. The axles can, therefore, rock from side to side. The "spring" is
produced by compressing a piece of soft sheet rubber into the space between the "axle" board and the chassis. Transverse springing is thus provided and, in the writer's model, enables obstacles up to approximately rin. in height to be driven over without a wheel leaving the ground. No lateral springing is provided but the performance of the model with this simple method has been found to be quite acceptable.

Front Axle

This is constructed on a shaped piece of $\frac{1}{2} \mathrm{in}$. thick plywood and carries brass brackets at the ends to pivot what would be described in automobile practice as the "king-pins." The wooden " axle" also carries the steering motor and gearing. Fig. 3 shows the general arrangements used and readers will see how the line of the king-pin pivots, if extended, will meet the point where the tyre runs on the road. This ensures that when the steering is operated the wheels turn on fixed points (i.e. they do not roll round). The king-pins are made from $\frac{1}{2} \mathrm{in}$. square brass filed to suit and drilled and tapped to take the stub axles, pivots (top and bottom) and the radius arms for the steering. Due to the angle of the king-pins, the radius arms describe arcs approximately 20 deg. from the horizontal and in opposite directions. thus making it a difficult job to fix a track rod to link them together. The ideal solution would be ball and socket joints or universal couplings. However, the writer made do with pin jointsthe pin working in a rubber grommet to permit the necessary freedom of movement. This is not an ideal solution but is practical in the circumstances. Springing is arranged as already described, but to provide the effect of a torque bar (to stop the axle deflecting when striking an obstacle) a V-shaped piece of brass strip is also used to provide a third pivoting point. This is fastened securely in the centre and thus the whole axle is stabilised. The track rod (joining the two radius arms together for steering) is made of brass strip and carries an insulated striker to operate the two limit switches mounted behind on the wooden partition.

Steering Motor

A " Mighty Midget " motor is used for steering and provides adequate power through the gearing used. As in a full-sized car, the steering cannot be turned with the model stationary (except on polished floors) but when the model is moving steering is quite satisfactory.

The question of linkage from the wheels to the steering motor caused some difficulty but was solved as shown in Fig. 3. One of the "king-pins" fas extended upwards and fitted with a brass gear segment. This was cut from a large brass gear wheel taken from a piece of ex-Government equipment. It meshes with a pinion and a further worm gear reduction unit, finally being driven from the Mighty Midget motor. It will be seen that the whole of the steering gearing and drive is mounted on the front axle board. This makes a compact unit and saves additional linkage which would be required for a separately mounted unit. It is unlikely that readers will have available exactly similar pieces of gearing to those used by the writer but reproduction, using gears from model maker's suppliers or from mechanical construction toys, should enable the problem to be overcome.

Propulsion Batteries

Two scooter batteries are used to provide the 12 V . required for the propulsion motors. These have ample capacity for most purposes and enable the motor to be operated for over an hour (probably much longer) before needing recharging. They provide power also for the servo motors, lights, hooter, etc.-in fact, all- except the radio receiver and high voltage portion of the intergear unit. A conveniently placed switch should be provided to cut power off the propulsion motors when tuning up and separate switches both for the radio and for the intergear equipment. These could be combined.

Brakes

No brakes are fitted to the vehicle. It was found that there is sufficient drag in the gearing and motors, mainly caused by the pressure of the motor brushes on the armature, to bring the vehicle to a halt very quickly after power is switched off. The drag is. sufficient to hold the vehicle even on a moderate gradient. The difficulty of providing braking as a separate radio controlled feature, is therefore, avoided.

Electrical Linkage

Although most of the electrical equipment is contained in the lower chassis a small amount of the wiring, viz. that to the headlamps and hooter, is carried in the upper body. Linkage between the two, is, therefore, necessary and was arranged at the front of the chassis. Fixed contact strips are provided mounted on a piece of plywood and these are contacted by flexible brass fingers in the upper body which press on them when the two halves come together. A similar arrangement is used for the aerial which plugs into the upper body but requires connecting to the radio in the lower chassis. Users of super regenerative receivers will need a different arrangement here due to the much greater effect of the aerial on this type of receiver.

Next month a description will be given of the control equipment used.

L.B.S.C's $3 \frac{1}{2}$ in. Gauge EVENING STAR

(Concluded from page 580)
may be slot-drilled. Bolt an angleplate to the vertical slide on the lathe saddle, and set the cylinder end-up on it, securing with a bolt through the bore as previously described. The contact face is set at xight angles to lathe centres; put on the faceplate temporarily, and when the contact face is parallel to it, setting is O.K. A $\frac{5}{82} \mathrm{in}$. slot drill with just two cutting edges, held in the chuck, is the best tool for a quick clean cut. Adjust the vertical slide until the slot-drill is at the extreme end of the recess, then feed into cut by moving the lathe saddle, and traverse the casting across the slot-drill by moving the cross-slide. Cut the slot at the other end of the recess in same way, and put the reamer through the liner again to remove any burring.

If a vertical slide isn't available, the job can be done by hand. Drill three $\frac{5}{82} \mathrm{in}$. holes at the extreme ends of the recess, right through into the liner, and run them into a slot with a rat-tail file. Their exact position doesn't matter, as all they do is to let the steam out. The admission and exhaust are controlled by the piston-valve sliding over the ports.
(To be continued).

Fig. 1.-Various types of lenses.

FFFICIENT telescopes and similar items are not difficult to construct, when the principles are understood. Surplus or other lenses can thus often be put to good use.
Some of the most usual lenses are shown in Fig. I. " A " is a double convex lens, and will magnify. " B " is double concave, and is termed a reducing, or negative lens. It cannot throw a real image, but may be employed for various purposes. " C " is planoconvex, and has one flat side. It is a positive, or magnifying lens, similar to " A ". The plano-concave lens " D " is negative, or reducing, in the same way as "B".

An actual lens may be a simple, single glass, as shown at " E ", or it may consist of more than one lens, as shown at " F ". When the simple lens is used, it tends to break up light into a spectrum, in the same way as a triangular prism. As a result, objects away from the centre of view are not seen so well. In addition, the simple lens has a curved field-that is, rays passing obliquely through it are not all brought to the same point of focus. These defects are reduced by the lens at " F ", which is really two lenses of dissimilar glass. It is so made, that errors in one part of the lens are compensated for by the other part of the lens, As a result, it gives better definition, especially away from the centre of the field of view. Lenses which do not break up light badly are called achromatic.

Another lens is the meniscus, which is concave one side, and convex the other. If it is thicker in the middle than near the edges, it is positive, or magnifying. But if thinner at the middle, it is negative, or reducing, like " B " and " D " in Fig. 1 .

Focal Lengths

The magnification of the telescope or other instrument will depend largely on the focal lengths of the various lenses. If some lenses are to hand, the approximate focal lengths can be found as shown in Fig. 2.

Double convex, plano-convex, or convex meniscus lenses will throw a real image. When parallel rays enter the lens, the distance from lens to image is the focal length. The parallel rays should theoretically come from an object at infinity. In practice, some bright object a good distance away (such as the sun, or a distant lamp at night) will be convenient. White paper may be used for the screen. The distance between lens and screen is adjusted until the image is sharp, then measured. Lenses of long focal length have less sharply curved surfaces than do lenses of shorter focal length.
Negative lenses do not throw an image. Their focal length may be found with sufficient accuracy by measuring their diameter with compasses, and using this setting as the radius to draw a circle on the paper. That is, the circle is twice the diameter of the lens. The distance between lens and paper is adjusted until rays from a bright distant object are spread to fill the circle. The focal length is then measured, as explained. The focal length of negative lenses is often given the negative sign, e.g. -2 in.
The diameter of a lens does not indicate its focal length, though lenses of long focal length will usually be larger than short focus lenses. If the focal length of a lens is divided by its diameter, this gives its aperture, or F -number. For example, a 20 in . focus 2 in . dia. lens will be $\mathrm{F} / \mathrm{s} 0$. If the F -number is halved,

Fig. 2.-Finding focal length.

SIMPLE FORM OF TELESCOPE

PRACTICAL ARRANGEMENT SHOWING STOPS

Fig. 4.-Binocular prism erector.
the light transmitted is multiplied by four. A telescope with a 20 in . focus 2 in . dia. object lens (F / I) would thus provide four times the brilliance of one using a rin. dia. 2oin. focus lens ($\mathrm{F} / 20$). Both would, however, give the same magnification.

Telescope Magnification

The simplest form of telescope is shown in Fig. 3. To find its magnification power, divide the focal length of the object lens by the focal length of the eye-piece. For example, a 15 in . focus objective and iin. eye-piece would give $\times 15$.
It will be seen that magnification can be increased by using an object lens of longer focus, or an eye-piece of shorter focus. For example, a 3 oin. focus object lens with the rin. focus eye-piece would provide $\times 30$. The 15 in . object lens with a $\frac{1}{2}$ in. eye-piece, would also give $\times 30$ magnification.

The object lens throws an image, as described for Fig. 2. If a screen were placed here, this image would be seen. Instead, however, the eye-piece is focused upon this point, termed the " aerial image" in Fig. 3. The tube length needed, for infinity, is thus seen to be the object lens focal length, plus the eye-piece focal length. For objects nearer than infinity, the eye-piece has to be slightly farther from the object lens. A sliding tube or similar means of adjustment is thus required.

Stray light reflected from the inside of the telescope, black.

etc., would degrade the image. To prevent this, stops are placed at fairly frequent intervals, as in Fig. 3. The holes in these stops are just large enough to allow the required light rays to pass. The stops and inside of the tubes should be painted dull

Definition of the simple telescope can be improved by using achromatic lenses. The eye-piece may consist of two lenses, close together. Two lenses close together have a shorter focal length than either used singly. The combined eye-piece thus has a short focal length, which gives more magnification, with a given object lens, as already described.

The telescope in Fig. 3 is termed an astro, or astronomical telescope. It inverts the image. This is frequently considered of no importance in astronomy, but would be very undesirable for a terrestrial telescope. For this reason, the latter type has an erector system, which results in the image being the right way up. A terrestrial telescope can, of course, be used for astronomical observations.

In a telescope, lens erectors are usually employed, and are described later. An erector is practically essential in a telescope for ground observation, to provide an upright image. But there is some loss of light, and possibly of definition, in the erector system. It may therefore be decided to omit any erector lenses, when the telescope is for celestial observation only.

Binoculars

These are virtually two small telescopes, side by side. They may have individual focus, or may be coupled by a common focusing mechanism. Binoculars are usually given figures which denote the magnification, and object lens diameter in millimetres. For example, a 6×30 pair have a magnification of 6 , and the working diameter of the object lenses is 30 mm .

For a given power, larger object lenses gather more light, and thus give a brighter image A simple way of comparing brightness is to divide the object lens diameter by the magnification. The larger the resultant figure, the brighter the image. For example,

Fig. 5.-Opera glass type system.
with the 6×30 binoculars, the result is $5 ;$ with 10×40 binoculars, the result is 4 . The 10×40 binoculars would thus magnify 10 times, compared with 6 for the 6×30 binoculars, but the relative brightness would only be 4 , compared with 5 . This figure may be converted to geometrical luminosity by squaring it, which gives 25 for the 6×30, and 16 for the 10×40 binoculars.

The same calculation can, of course, be used with a telescope. Magnification can be found as described, and the working diameter of the object lens can be measured.

Binoculars are used for ground work, and an erect image is needed. Prism erectors are usually employed, and Fig. 4 shows how they are arranged. Light from the object lens passes through hole A, and is reflected back through hole B, where it reaches a second prism, which directs it through hole C. From there, it goes to the eye-piece. The prisms are mounted directly on the plate, or may be fixed together without a plate. One such assembly is necessary for each half of the binoculars. The prisms give no magnification, but result in the image being upright. It is possible to use prisms in this way in a telescope, and the instrument is then termed a prismatic telescope. A lens erector system is then not needed.

Another method of obtaining an erect image is shown in Fig. 5. The eye-piece is a negative lens, of shorter focal length than the positive object lens. As a result, this simple system gives an erect image. It is, however, limited to a useful magnification of about $2 \times$ to $4 \times$. It can have very good light transmission, and is thus often used in compact "opera" glasses, where limited magnification and a bright image are satisfactory. The object lens, or both object lens and eye-piece, should be achromatic, for best results.

Lens Erectors

Fig. 6 shows an erector consisting of two similar small lenses, fixed a small distance apart. The telescope tube is longer, so that the erector system can focus upon the aerial image thrown by the object lens. After passing through the erector, this image is turned over again, and is thus seen the correct way up.

Conjugate foci are those two distances from the lens which result in sharp focus. Referring to Fig. 2, one focal point will be very far away indeed, while the other is on the screen. As the object in front of the lens is brought nearer, the screen has to be moved slightly farther away, to maintain sharp focus. This continues until both object and screen are at the same distance from the lens. The distance from the object to the lens, or from the lens to the screen, will then be twice the lens' focal length. That is, the object will be four times the focal length of the lens away from the screen.

This is the condition of equal conjugate foci, shown at " A " in Fig. 6. The magnification of the telescope is then unchanged, though the image is erect.

If the object were now brought even nearer the lens in Fig. 2, the screen would have to be farther away, but the image on the screen would be enlarged. The conjugate foci now provide additional magnification, as shown at " B " in Fig. 6. As the distance between object lens and erector is very little changed, the telescope tube must be longer, to allow the eye-piece to be farther from the erector.

Practical Tests

When experimenting with various lenses, a simple optical bench will be useful. In its most easily constructed form, this can be a board with V-groove, or two pieces of board nailed together to form a Vgroove. Lenses can be set up in this groove, and held in small pieces of Plasticinc. Various combinations can then be tried, and measurements taken.

Very high magnification is easily obtained, but is not wise with small lenses, because the brightness will probably be too low. When high magnification is wanted, a large diameter object lens is needed, as this gives a brighter image, as explained.

Lenses may have one flat side, or unequal curvature. If so, the effect of turning over the lens should be tried. With simple lenses, the breaking up of light described cannot be eliminated. But if definition is very poor, check that the various lenses are as accurately as possible along the same optical axis, and not tilted or twisted.

For a fairly small telescope, the object lens will usually be about 15 in. to 30 in . focus. Lenses of much longer focus are used when high power is required. The lens will usually be some iin. to 2 in. in diameter, for a small telescope, though 2 in . to 3 in . will allow a brighter image to be obtained, as explained. For binoculars, or a single binocular-sized telescope, a much smaller object lens would be satisfactory, with a focal length of some 6 in . to 8 in . or so.

A positive eye-piece will usually have a focal length of in. or less. Short focal lengths increase magnification, but reduce brilliance. A pair of plano-convex lenses fixed with the convex surfaces facing each other will be suitable. Using two equal lenses, a suitable separation distance will be two-thirds the focal length of one lens.

Very many eye-piece combinations exist, with a view to obtaining high magnification, with good definition. When really excellent results are essential it is best to obtain a complete eye-piece. This will have two, three, or more lenses, accurately fitted, and arranged to compensate for each other. However, perfectly satisfactory results are obtained with homemade eye-pieces, if a little care is exercised.

P.M. BINDING OFFER

These self-binders, in which copies can be inserted as received, cost 10s. 6d, post free, from: Publisher (Binding Dept.), Geo, Newnes Ltd., Tower House, Southampton St. Strand, W.C.2.

THIS tripod," says its designer, J. C. Lowden, "folds into a small space, is light, compact and, most important of all, stable. It can be made at home using simple hand tools."

Construction

Each leg consists of three members, the split lower member and two upper side members. Use only well-seasoned hardwood, such as oak, ash or mahogany, for their construction.

Prepare one length of timber measuring $25 \mathrm{in} . \times{ }_{8} \mathrm{in} . \times{ }^{3} \mathrm{i}$ in. Set a marking gauge to half width of the broader face ($\frac{7}{8} \mathrm{in}$.) and scribe a line down the length of the timber, from one end, for a distance of $20 i n$. Along this line cut a fine saw-kerf through the thickness of the timber. The saw-kerf should be kept to minimum width. A fine-set, sharp tenon saw will remove the least wood, but many workers will prefer to have the cut "circular sawn," possibly at the timber supplier's.

At the lower (closed) end of the saw cut a No. 8 woodscrew, $\frac{8}{8} \mathrm{in}$. long, well countersunk and fully driven, will preclude any accidental splitting of the member.

A notch measuring $\frac{1}{4}$. wide by $\frac{1}{2}$. deep must be cut across the upper end of the member. The length ($\frac{7}{8} \mathrm{in}$.) of this notch must run transversely across the sawkerf, as shown inset in the sketch. The unsawn "foot" should be tapered off gently to a round section at the end. (See Fig. ra.)

The Upper Side Members

Prepare two pieces of wood, each ineasuring $25 \frac{1}{2}$ in. $\times \frac{13}{8} \mathrm{in} . \times \frac{7}{18} \mathrm{in}$. (see Fig. rb). Round off the lower ends. Working on the broader face, set a mortice gauge to a $\frac{1}{2} \mathrm{in}$. chisel. Scribe a double gauge line on the working face, beginning from the rounded end, for a distance of 4 in . Square across at a distance of rin. from the rounded end. Beginning from this line, work a groove exactly $\ddagger \mathrm{in}$. wide and $\ddagger \mathrm{in}$. deep along the face of the timber for a distance of $3-4 \mathrm{in}$. The groove should "step-down" quite abruptly at the lower end, but at the upper end of the groove the
groove too the walls should be cut away to form finger recesses.
A shorter groove to accept the free end of the spacer rod must be worked in the opposing face of the other upper side member.
At the upper (square) end of the first member, on the working face, gauge a line centrally, from the end, for a distance of 6 in. along the length. Beginning at a point $1 \frac{1}{2} \mathrm{in}$. from the square end, using the heel teeth of the tenon saw, cut a clean saw-kerf $4 \frac{1}{2} \mathrm{in}$. long and $\frac{1}{2} \mathrm{in}$. deep. This cut should be $\frac{1}{16} \mathrm{in}$. wide, as it is to accept a thin locking bar. At the lower end of the saw-kerf, work similar finger recesses to those on the lower groove, this time to give access to the locking bar.

A similar saw-kerf must now be cut on the opposing face of the other upper side member.
The spacer rod is merely a length of metal rod $2 \frac{3}{2} \mathrm{in}$. long \times tin. dia. At a point

A SELF-TENSIONING TRIPOD

by J.C.Lowden

$\frac{1}{2}$. from one end, drill a pivot hole large enough to accept a stout panel pin. Round off this end and square off the free end. Fit as shown, crop off the projecting head of the pin and punch down neatly.

The locking bar is prepared from a scrap of metal $\frac{1}{10}$ in. thick, 1 in. long \times tin. wide. Notch at one end, and drill at the other, as shown. Drive a panel pin through to act as a pivot. Another pin to engage the notch must be positioned in the other upper side member, in the same way.

Fig. 1.-(a) Lower leg split member. (b) Upper leg side member
fitted with spacer rod. (c) Details of the trumnion.

The Upper Plates

Prepare two similar plates from metal of about $\frac{1}{8} \mathrm{in}$. thick, $\mathrm{I} \frac{\mathrm{g}}{\mathrm{g}} \mathrm{in}$. long, and $\frac{1 \mathrm{~g}}{\mathrm{~g}} \mathrm{in}$ wide. On the centre line, $\frac{1}{2} \mathrm{in}$. from one end, drill a hole $\frac{f}{i n}$. clear dia. Draw a line across $\frac{5}{8} i n$. from the same end. This length will project above the end of the upper side member, and should be rounded off. Rebate the end of the wood and secure with three or four woodscrews.

Fig. 2.-The underside of the tripod table with one pair of trunnions in position.

Assembly

Provide two metal rivets at least rin. long and not exceeding $\frac{3}{18}$ in. dia., with a single fine washer for each. Drill the two lower members, at the rounded ends, to accept these rivets. The centre of the rivet hole should be $\frac{1}{2} \mathrm{in}$. from the extreme end of the member.

To locate the rivet holes in the lower split member, place the two members together and set the spacer firmly and squarely across the notch. Mark off through the rivet hole in the side member and drill. Before riveting, give the wooden parts one or two thin coats of French polish. Do not attempt to interpose a washer between the side members and the
split member. Close up the rivet firmly so that there is a positive hold between the members, just allowing a pivoting action.

Repeat the entire operation twice more to make three legs.

The Trunnions

Each trunnion is made as shown at Fig. Ic from a ${ }_{3} \mathrm{in}$. length of $\frac{1}{2} \mathrm{in}$. angle. One face is drilled and countersunk to take two stout woodscrews. The other face is drilled centrally and tapped $\frac{1}{8} \mathrm{in}$. Screw into this hole a small bolt for the full extent of the thread, leaving the unthreaded shank protruding within the angle. Cut off most of the thread which protrudes, and spread over the remainder to form a screw rivet. Cut off the head of the bolt, leaving about \ddagger in. protruding within the angle. Provide six such trunnions, rounding off the bearing face of each.

The Tripod Table

This is made from a disc of stout plywood of about 4 in. dia. (Fig. 2). Around the centre of the disc, describe an equilateral triangle of sides 2 in . The trunnions are located evenly, in pairs, along these sides, with $1+i \operatorname{in}$. between each pair of bearing faces.
These measurements will vary slightly for each individual worker, because of differences in timber, etc., but they are a useful guide. The trunnion pins will also have to be adjusted for length in each case.

The reader's favourite style of pan and tilt head, ball and socket camera carrier can be secured to the upper surface of the tripod table in the manner_most suited to himself.

A pair of light straps of webbing or leather will secure the three legs into a compact block for storage or carrying.

A Morse Practice Set

By Jameson Erroll

ANEON lamp is capable of generating highfrequency oscillations and, with the aid of a simple auxiliary apparatus, can be made to generate almost any frequency.

The apparatus shown in the sketch is connected to the mains and will work a loud speaker (low resistance for preference) or, of course, head-phones. Tr and T_{2} are mains terminals; R a variable grid leak of from 0.25 to $7 \mathrm{M} \Omega$ of the carbon-pellet variety since it has to carry a relatively heavy current; L is the neon lamp; K is the morse key; C a good quality ruby mica condenser of from 0.003 to $0.005 \mu \mathrm{~F}$ capacity; and T3 and T_{4} are the loudspeaker or head-phone terminal.

Care must be taken to shroud live terminals and connections and the key should have an ebonite knob and all metal parts enclosed in some form of insulated casing.
The lamp will pass less current when the smaller element appears to be glowing. Tuning by means of the variable grid leak will bring the note to the desired pitch; it can be varied from a few ticks per minute to many hundreds. A high pitch is more audible than a low one and is much easier to read.

By duplicating the apparatus and connecting the local terminals T_{3} and T_{4} to the distant speakers, two people may communicate with each other over a considerable distance, either from separate rooms or from each end of a garden; these connecting wires, must, of course, be insulated.

ATAPE recorder presents a particularly interesting problem to the amateur constructor, for it involves problems of widely differing kinds: electrical and electronic as well as the purely mechanical. It is hoped in this article to cut these problems down to size.

The suggestions which follow are made with the intention of simplifying the construction, but there is no reason why the result should not be comparable with the best domestic recorders in performance, if not ease in operation, assuming sufficient care is taken in building.

Building

Only the " bare bones " of the machine are given, but these essentials allow a wide scope for future additions and refinements. Fig. I, in fact, shows such a recorder, built in 1955, which has been subsequently modified both to increase its scope and to make operation easier.

Layout

The general form of the proposed layout can be seen from Fig. 2. The centres of the tape spools must be over $7 \frac{f}{f i n}$. apart from each other and more than 3 g in . clear of capstan, tape heads and other objects projecting above the deck.

The distance between capstan and heads must be kept as small as possible to avoid vibrations in this, most sensitive, stretch of tape. Unfortunately, the capstan motor gives rise to a magnetic field which can be picked up by the replay head to produce an objectionable "hum" and this, together with the previous consideration, can present a dilemma. The hum field due to the motor is largely directional in effect, however, so that any hum due to this cause may well be reduced by "swinging "the whole motor about the capstan spindle, fixing it temporarily and testing, until a position is found where the hum is at a minimum. It may be further reduced by mounting the power transformèr feeding the electronics as far from the heads as possible.

Capstan Motor

The capstan is the pulley which draws the tape past the heads, the tape being held in contact with the capstan by means of a rubber-faced pressure roller. The prime requirement of the motor driving the capstan is constancy of speed, without short term variations or long term drift. It is perfectly possible to use a geared gramophone motor to which must be added a capstan of suitable size in place of the turn-
table. The recorder illustrated in Fig. I employs a variable speed type of gram motor without turntable, and the short term speed variations appearing under use were measured as of the order of o.1 per cent.

Capstan

The capstan itself can be turned from any reasonably hard material: metal, plastic or even wood. The diameter depends on both the gram motor speed and the desired recording speed (see table 1). The usual choice of tape speeds for domestic recorders is between $1 \frac{7}{8}$ and 3 in. per second; the former being economic, the latter providing a higher maximum recording sound frequency useful for recording music. Both these alternatives could be made available by means of interchangeable capstans or a single stepped capstan arranged to slide vertically on the motor shaft.

The arm carrying the pressure roller must be of rigid construction, as any uncertainty in its shaft tends to cause the tape to wander up or down the

TABLE I			
Tape Speed (inches/sec.)	Capstan Speed (r.p.m.)	Capstan Diameter (inches)	Take-up Pulley Diameter (inches)
17	78	0.46	4.3
	$33^{\frac{1}{3}}$	1.07	1.9
$3{ }^{3}$	78	0.92	2.2
	$33^{\frac{1}{3}}$	2.13	0.95
712	78	1.84	1.1
	33 $\frac{1}{3}$	4.25	0.47

Fig. 2.-Suggested layouts.

Fig. 3.-Suggestion for feed and take-up reel mountings.

Fig. 4 (below).-Tape guide.

capstan. A double arm with twin bearings is the safest design. The simplest journal or needle bearings are suitable for the pressure roller as long as they are capable of withstanding the thrust. Ball or roller bearings should not be used due to the noise they generate. Failing anything more elegant for the rubber tyre of the roller, a $\frac{1}{\frac{1}{8}} \mathrm{in}$. layer of black insulating tape will serve, if the overlap is smoothed down with a file.

Feed and Take-up Spindles

The feed spool is accommodated on the shaft of the re-wind motor, (see Fig. 3). The best type of motor for this duty is a small induction motor such as is used to drive a gramophone (less any gearing). The commonest form of gramophone motor has a clockwise drive, which is unfortunate. A few motors of this type having anti-clockwise drive are available and, if one of these can be obtained, so much the better. If not, the difficulty can be solved by the method suggested in Fig. 2(b) which demands a twist in the tape. If this method is adopted, sufficient distance should be allowed between the full reel in situ and the entrance to the head unit to allow this twist to be maintained, especially on fast rewind. 6 in . or 7 in . between the reel centre and the input guide should be enough for this purpose. Additional guide pegs or rollers may be necessary, but this is unlikely.

Regardless of the particular direction of rotation of the motor chosen, the principle remains the same, namely: that with the tape in place, the motor must drive in a direction opposed to the normal run of the tape through the machine.

Apart from its use in fast rewind, this motor is lightly energised throughout the whole time that the recorder is switched on (see Fig. 5), this prevents the reel pulling round in jerks while the tape is running and also holds the tape under slight tension. No mechanical braking of any kind is envisaged. For this reason, the tape takes a finite time to stop when the drive is removed. This time lag may be a fraction of a second or even two seconds. If such a delay is considered objectionable some from of mechanical breaking or capstan declutching can easily be designed. It should be noted, however, that any vibrations arising from mechanical braking or control will be transmitted to the tape and will thus appear in the output; so that neither should be applied during normal running.

The Take-up Spool

Unlike the feed spool, its drive is not critical as regards vibration in the tape. Moreover, the drive is clockwise in direction.

Two forms of drive for this spindle are possible. In the first, power is taken from a pulley mounted on the capstan shaft and transmitted via a spring belt to the take-up spool. Assuming a capstan pulley diameter of zin., the appropriate take-up pulley diameter is given in Table 1. As the effective diameter of the take-up spool continually increases as the tape is wound on, some form of friction drive between pulley and spool is necessary. The problem here is that the clutch must have sufficient stiffness to drive the spool under the high-slip conditions existing when the reel is fully loaded whilst still allowing it to be driven back by the tape on fast-rewind. Needless to say, this

Fig. 5.-Power circuit diagram.
method of drive offers considerable scope for ingenuity.

A far more satisfactory form of drive is by means of a separate motor, and in this case a fast-forward drive can be arranged (see Fig. 5).

Heads

The record/replay (RP) head consists essentially of an electromagnet having a gap width of less than one
thousandth of an inch, and it is across the edges of this gap that the tape is drawn in order to record or play back. The common form of erase head is similar in appearance, but with a wider and longer gap. The magnet gaps are stabilised by the insertion of metal shims which can be seen in the highly polished surface of the pole-pieces, and it is these which must be brought into contact with the moving tape.

In setting up the heads, they should be mounted with the above mentioned gaps as nearly vertical as can be judged, and level with each other (with the vertical centre of both RP and erase pole-pieces the distance above the deck).

Unless long leads are necessary between tape deck and amplifier, a high-impedance head winding is to be preferred. Although it is being assumed that two heads are to be used (RP and erase) there is a large choice of differing types and combinations available. For example, three separate heads may be employed or all three functions may be combined into one head. Your supplier will doubtless be pleased to advise you on a suitable choice.

Remember that the quality of the RP head chosen will set a limit to the quality of the whole recorder so, before you buy, think what your aiming for. If your purpose is to record music you will need to pay more than would be necessary for a head to copy dictation. If you are a " hi-fi" enthusiast, the cost will be still greater.

Mu-metal or alloy screen-cans are often available to help in cutting down interference from stray magnetic fields. Although it is good economics to try the recorder before buying these, it is good sense to leave enough room about the heads to accomodate them should they later be found necessary.

One final word about the tape heads themselves.
(Concluded on page 604).

Fig. 6.-Power pack, oscillator and switching circuit.

AUTOMATIC operation of curtains
The curtains close and open with dusk and dawn. By E. V. King

THIS device will automatically draw the curtains in a room or a house at dusk, according to a pre-set photo-transistor control. When dawn arrives the curtains will automatically withdraw themselves to their former position.

Besides the obvious saving in labour this is a device which has certainly got the effect of making a house look occupied when it is empty.

How it Works
Refer to Fig. 1. A small electric motor operates on 24 V. D.C. and is geared down to drive a Meccano sprocket on which runs an endless chain which stretches right across the window about $\frac{1}{2} \mathrm{in}$. under and $\frac{1}{2}$ in. behind the plastic curtain runner. When the motor runs, one side of the chain goes one way while the other side goes in the reverse direction. The curtain (or curtain hook) is attached to the chain (see X and Y in Fig. r).

When the motor is running the curtain is prevented from being overdrawn by the limit switches S_{2} and S_{3} which are pushed to "OFF" by a small metal strip attached to the chain which is shown in Fig. 4 pushing S_{2} off. The gap between S_{3} and S_{2} is the amount the curtains will be moved. The
motor will reverse if the connections to the field winding are reversed. This is done automatically with darkness or light by the control box. At the same time the control box bridges the limit switch contacts so that once reversed the motor will start as required.

Any number of curtains may be pulled either way; the practical limit is about 8 ft . and is dependent on the strength of the endless chain. The motor is more powerful than is really required, but gives a slow steady motion unlikely to tear the finest of fabrics.

Adapting the Oster Motor
All the mechanism working the push rod and tappets is removed and both cams are cut off, leaving $\delta_{8}{ }^{\circ} \mathrm{in}$. of shaft on one drive. This operation can be done by holding the cam, not the motor, in the vice and using a hacksaw. However, the bearings inside are very brittle and it is best to take the gearbox to pieces, noting where the parts go and to cut the cams off while the bearings are quite free to move.

A small toy construction kit sprocket is then drilled to fit the projecting spindle and soldered in place using Baker's Fluid flux (Fig. I).

Fig. I (Left).-The motor, chain drive and curtain runner fitted with limit switches.
Fig. 3 (Right).-Circuit of motor and limit switches under pelmet.

WORKING NOTES

The cost of the unit in consumed electricity will be little more than Id. per week. It is left " on " continually.

The transistor is sensitive to heat and must not be placed in a hot place near a stove or fire, in a very hot loft or in direct sunlight. There is plenty of tolerance on working conditions and heat-wave periods will not give trouble.

The chain drive should be lightly oiled, but do not oil the fibre gears in the gearbox.

The motor is attached to a small board by passing screws through into the four holes behind the gearbox and the one behind the motor. This board will be fixed eventually on the left of the window, near the top, and may be covered (or almost covered) by the pelmet.

The motor field connections have to be severed to allow for external connections (labelled 4 and 5 in Fig. 1). Fig. 7 shows the two wires labelled " F " which have to be cut or unsoldered. The other wires must all be left intact.

Fixing the Chain Mechanism

The chain is not quite suitable as purchased and each link must be slightly closed up with pliers to make it more solid and stretchless. It need not be freely flexible as there is plenty of power available. Lengths are joined to make the requisite circle as in Fig. I. A small bracket is made up to take another sprocket mounted on a spindle or nut and bolt and this is fixed on the other side of the window alcove (see Fig. r).

A small metal plate is cut roughly to the plan of Fig. 5, using metal between $\frac{1}{16} \mathrm{in}$. and $\frac{1}{8} \mathrm{in}$. thick. This is bolted to the chain tightly and the bolts slightly riveted and filed smooth. The purpose of this metal strip is to actuate the spring levers of the limit switches (see Figs. I and 6).

Although the mechanism will function without,
Fig. 4.-Circuit of control box.

it is as well to fit some wooden guides (Fig. 5 (b)) to keep the metal strip on a horizontal path so that it cannot get out of alignment with the limit switches.

Fixing the Micro-switches

These may be fixed in any position provided that they will be operated by the metal strip on the chain and the distance between the spring leaves is exactly the pulling distance required on each curtain. Note, all curtains on one length of chain will pull the same distance either way.

The Control Box

It is possible to do away with some of this and to use a time switch. The light control, however, does take account of the actual conditions prevailing. In dark stormy weather the curtains will be drawn somewhat earlier; time switches will not do this.

The prototype box made by the author is shown in Figs. 2 and 8. The case is made of wood, hardboard and peg-board. Adequate ventilation must be provided and the small watch-glass window can be in any suitable position. The unit shown is made to be placed on a cool window-sill situated under the stairs. Naturally it cannot be placed where room lights will operate the curtains! Sufficient data for construction is shown in Fig. 8.

Mounting the Components

The layout is in no way critical. The box completely wired and the component positions are shown in Fig. 2. Dimensions of the panel holes for the parts used (see the parts list) are given in Fig. 8.

The rectifiers are mounted on brackets; make sure there is air space all round and that the original tension of the plates, as set by the manufacturers, is not altered. Inspect them before mounting to be sure of the red, black and green tags.

The electrolytic condensers are mounted on clips which should be obtained when ordering the components. Ri and R2 are soldered (use cored solder only) to the tag strip as shown in Fig. 2.

The transistor (Tr2) is soldered to the other tag strip by the two wires which are near together (base and emitter of Fig. 4) as shown in Fig. 2. Transistor, Tri, has the centre lead cut short and it is soldered to a tag strip as shown. There is no connection to the base of Tri. This tag strip is mounted on a piece of strip metal so that when the cover of Fig. 8 is put on the photo transistor (Tri) lies horizontally under the glass with the collector junction uppermost (if in doubt do not worry at this stage). A piece of white paper may be placed under Tri if used in dim lighting conditions.

The transformer is firmly mounted after an inspection to make sure of the mains and the $12-0-12$ voltage points. If it is a 12 V . transformer with two windings they must be joined in series (in phase) and the resultant voltage must be 24 V . If connected out of phase the resultant voltage will be zero. Check on a lamp or A.C. voltmeter.

The Relays

Relay No. 1 is of vital importance. If the one used in the prototype becomes unavailable, Relay No. 37 I from Messrs. A. T. Sallis, 93 North Road, Brighton, whilst heavier, will be ideal. The points may have to be changed round; one is metal and one plastic. Relay must be normally open.

Before mounting the relay make sure of the coil connections (P and Q) and the contact connections. If the resistance of the relay is less than $1,000 \Omega$ a resistance to make it up to this value must be inserted in one coil lead (R_{3}). It is not required with the 371 relay mentioned.

Testing Relay No. I

This relay must be tested as working before fixing. Connect the coil to a battery of 4 V . Adjust so that the relay pulls in nicely and the contacts make. Remember to insert R_{3} if necessary. With the Siemens H.S. type adjustment is very critical and if it will work on 6 V . it will suffice, but aim at 4 V ., operation if possible. Make sure the relays do not stick in. If they do, the "normal "contact should be screwed in to hold the armature off the magnet. It is useless to build the unit unless this relay is properly adjusted.

Relay No. 2

If purchased from a reputable dealer no testing will be required. A mounting bracket has to be made and the contacts very carefully sorted out before mounting.

In the wiring diagrams the contacts are numbered. The centre contact of each set is numbered 2 , and the normally open contact is marked I whilst the normally closed contact is marked 3. (Fig. 2, bottom left).

Thus in each case contact 2 is connected to 3 when the relay is not energised and to I when it is.

Wiring

Use Polythene-covered copper wire. If it is stranded, be very careful with the connections to the No. 2 relay to ensure no "whiskers" can cause short circuits. Readers with theoretical knowledge can work directly from Fig. 4. The positions of the actual wires on the board are unimportant. Others may get help from the perspective drawing.

Testing the Unit

Having made sure the control box is working, it is fitted with the lid. A book may be used to simulate darkness by sliding it over the glass. Work near a window or under a good I 50 W. electric lamp.

The three Oster motors bought by the author all had windings wound in one direction, but it is possible that others do exist. If so, they may revolve the wrong way and the limit switches would not stop the motor, the chain would break or the switches would be broken. It is best to have a trial without the chain. The motor should then revolve either way according to dark or light.
Inspect to make sure that with the drive as it is, the chain will move the metal plate correctly to cut out the motor. Try pushing the limit switch by hand first. One will operate with light and one with dark only. If the direction of rotation is wrong all that is required is a reversal of the field connections (black and purple wires).

When fitted up, the length of draw may be altered by the gap between S_{2} and S_{3}. Fig. 7.-The field connections are cut or unsoldered at F and F. The other wires are left intact.

Fig. 8.-A suitable design for the cabinet. It must be well ventilated.

Operating all Curtains from One Control Box

This is done by fitting separate relays (as Relay No. 2) and motors, chains, limit switches, etc., for each set of windows. The relays are operated by an
additional pair of n/o contacts on relay No. 2. Each unit will take rA. approx. of current when running and MRI will thus have to be made larger accordingly.

COMPONENTS

Motor. Oster type with gears and cams intact. 24 V . D.C. Obtainable from numerous surplus dealers for about 20s. The prototype uses No. Sir37R from Messrs. Milligans, 2 Harford Street, Liverpool, and No. 863 from Messrs. H. W. English, Rayleigh Road, Hutton, Brentwood, Essex. One motor only is required per unit.
Drive. Toy construction kit chain twice the length of the curtain run and two small sprockets.
S_{2} and S_{3}. Micro switches with levers. Change-over type will suit, one set of normally closed contacts is required in each case. Obtainable from Messrs. Henry's Radio Ltd., 5 Harrow Road, London, W. 2.
Wiring. A quantity of coloured connecting wire is required (see text), preferably blue, red, white, black, purple and brown. Walk-round stores can often supply this.
Curtain Runners. Plastic type which are self lubricating. Obtainable at walk-round stores.
Fuse (F_{1}). Any small type will suit; i.e. Si4if from Messrs. Milligans.
Sr. Slide type mains switch. Arcolectric S645. Obtainable from Messrs Arcolectric Switches Led., West Molesey, Surrey, or from dealers.
Neon, NI. Arcolectric S.L. 50.
Transformer, Tr. Any type to suit mains, having ${ }_{24} \mathrm{~V}$. 2A. secondary with a centre tap. Other taps will do no harm but are not necessary. NLi2rb from Messrs. Milligans would suit or use TMMI from Home Radio, 187 London Road, Mitcham, Surrey.
MRI. Metal rectifier, 24 V . at I or 2 A ., bridge type, full wave. Prototype uses No. 362 from Messrs. Benson, 136 Rathbone Road, Liverpool, 15.
MR2. Metal rectifier, ${ }_{12} \mathrm{~V}$. at $\frac{1}{2 A}$., bridge type, full wave. Prototype uses No. 363 from Messrs. Benson.
Cr. Electrolytic capacitor. 25 V . working, 200 to $300 \mu \mathrm{~F}$. Any type will suit, Messrs. Home Radio's EC8A will suit.

C2. Electrolytic capacitor. $12 \mathrm{~V} ., 200$ to $300 \mu \mathrm{~F}$. Any type will suit or use Home Radio's ECio.
Relay No. 1. Any relay which will positively pull in on 5 or 6 mA and fall out on 1 or 2 mA with a resistance of $\mathrm{r}, 000 \Omega$ or less. The prototype uses one of 100Ω obtained from Messrs. W. H. English which will operate easily on 2 mA . Siemens H.S. 500 plus 500 ohms will suit when carefully adjusted and is obtainable from Messrs. L. Wilkinson Lid., 19 Lansdowne Roąd, Croydon, Surrey.
This relay is the most important part of the equipment.
Relay No. 2. P.O. Type $3000,200 \Omega$, three sets of changeover contacts. Obtainable from Messrs. A. T. Sallis, 93 North Road, Brighton, Sussex, or other surplus dealers. The relay only trips once per 24 hours, so heavyduty points are not strictly required; switching is, however, inductive at IA.
RI. 100Ω IW. or more.
R2. 470Ω I W. or more.
R_{3}. If relay No. I is $\mathrm{I}, 00 \Omega \Omega \mathrm{R}_{3}$ is omitted (i.e. a wire is used in lieu) otherwise R_{3} is made of such a value as to make the relay up to $1,000 \Omega$. In the prototype it is 680Ω. $t W$. is suitable.

R4. $470 \Omega \frac{1}{2} \mathrm{~W}$.

C3. Paper type condenser, 0.5μ F. 350 V .
VRı. Potentiometer, $20 \mathrm{~K} \Omega$ in prototype, $10 \mathrm{~K} \Omega$ will suit.
Try. Photo transistor. Mullard OCP7I will suit.
Prototype uses ordinary OC7I with the paint scraped off.
TR2. Mullard OC72 or similar.
Terminal Block. 6 terminals. Any type will do or use two of block 263 from Messrs. H. Franks, 58 New Oxford Street, London, W.C.I, or use a tag strip.
A few odds and ends are also required; strip metal, tag strips, watch glass zin. dia. or a similar piece of Perspex, nuts, bolts, screws, washers, wood, peg board, hardboard, insulating tape, etc.

A SPACE
 OBSERVATORY

(Concluded from page 57r). components are fed into the electronic system which includes auto-coincidence circuits. These circuits, when commanded to do so from the ground, will cancel out all light flashes not related to incoming gamma rays from the forward direction.

The electronic system is quite versatile in that the experimenter on the ground can, by issuing the proper commands, observe other particles impinging on the telescope. The experimenter can also observe the performance of different parts of the electronic system.

Orbital Data

Explorer XI was launched from Cape Canaveral by means of a Juno II rocket, into a planned elliptical, low inclination orbit in order that (I) the initial spin axis of the payload would be in such a direction that the telescope would scan the sun during the early part of its lifetime; (2) it would have a lifetime in excess of six months; and (3) an appreciable fraction of the time would be spent below the inner Van Allen radiation belt.

Scientists planned that the satellite would orbit at an inclination near 28 deg. to the equator. Its lowest point above the earth is 300 miles and its highest about 700 miles. It is entended, in this orbit, to circle the earth every 98 minutes. Its orbital lifetime should be over three years.

Building a TAPE DECK
 (Concluded from page 599)

Although mechanically rigid, they should not be knocked about. Impacts can have an unfortunate effect on the magnetic properties of the iron circuit. Never touch the heads with a magnet or apply a direct current to the windings, as a " magnetised " head can introduce noise into the recording.

Tape Guides

These (see Fig. 4) are mounted at the points where the tape enters and leaves the heads, and they should be positioned as close to them as practicable. The function of these guides is to hold the tape at the correct level to cross the pole-pieces. They are adjustable for height, being set so that, in use, the gap of the RP head works within the strip of tape which has previously travelled over the erase gap. With double-track heads, the erase pole should neatly cover one half of the tape width.

The tension in the tape obtained from light energisation of the feed spool is often sufficient to hold the tape in intimate contact with the heads. It may be found, however, that this contact is insufficient (poor treble response), or that vibrations are set up in the tape due to lack of damping. In either case it will then be necessary to arrange a felt pressure pad to hold the tape in contact with the heads. The pressure on this pad must be as small as will correct the fault, as the active surface of magnetic tape is highly abrasive, and undue pressure would result in rapid wear of the heads.

Record/Playback Circuits

S_{3} is a two-pole, two-way switch of either toggle or rotary wafer type. (See Fig. 6.)

One and the same amplifier is used for the functions of recording and playing-back. In use, a screened or coaxial lead is carried from the " P " output of the recorder to the (high impedance) input of the amplifier. The output of the amplifier is lead to the " R " input. The actual connection of this lead at the amplifier depends entirely on the type of amplifier used. If it has a high impedance output, connection is made to this. If, as is more often the case, only loudspeaker terminals are available, one of the methods illustrated in Fig. 7 must be applied. The use of a microphone or L.S. transformer to match impedances may not be in the best interests of " fidelity" but it has the great advantage of requiring no modifications to the amplifier itself. If method $7(\mathrm{c})$ is used, three poles will be needed on switch S_{3}

Power Pack and Bias Oscillator

The purpose of the erase head is to "clear" the tape of any previous recordings so that it can be used again. Most erase heads require a supply of high frequency current to enable them to do their job. There are types of erase head which operate on permanent magnets, but even with these, an h.f. supply is necessary to " bias" the recording head.

It is normal practice to erase and record at the same time, and it is for this reason that the erase head is in the leading position; any other arrangement would be frustrating!

The schematic diagram of the oscillator and its power supply is given in Fig. 6. The coil $\mathrm{LI}_{\text {m m }}$ be layer wound on a $\frac{1}{2}$ in to $\frac{3}{3} \mathrm{in}$. former in a length of $\mathrm{r} \frac{1}{2} \mathrm{in}$. to give a frequency of about $50 \mathrm{kc} / \mathrm{s}$. L2, the secondary winding, is wound upon Li, the two windings being insulated from each other by a layer of empire

Fig. 7.-Three methods of connection to output stage of amplifier for "Record" input.
cloth or similar insulation. The number of turns on this secondary winding relates to high impedance heads, the tappings being to permit of adjustment to the levels of bias and erase voltage.

One pole of switch S3 automatically cuts out the bias and erase voltages when set to the playback position.

Final Warning

Apart from the dangers of electric shock which must always be faced when mains and h.t. voltages are present, mention should be made of one unusal hazard: The feed and take-up reels on fast running can attain a speed of the order of 1,000 r.p.m. Whatever method is used to mount these reels on their motors, it must be rigid and not introduce any serious unbalance, otherwise a tape reel may go flying across the room.

All metalwork with the exception of current carrying conductors should be earthed.

Ist. P.M. How-to-Make-It Book

By F. J. Camm

Containing easy-to-follow constructional details for a wide range of fascinating models including house telephones, door chimes, cycle trailer, loom, photographic enlarger, electronic organ, battery clock, etc. 320 diagrams and photographs.
15s. net
16s. by post
from
GEO NEWNES LTD.,
Tower House, Southampton Street, W.C. 2

EXPERIMENTAL SPRINGS?

That spring you want . . . in a hurry . . . where is it? Pick what you want, when you want it, from TERRY'S BOXES OF ASSORTED SPRINGS -our fine range of small boxed assortments of experimental springs. We can show you only a few from the range here. Send a postcard for our full list-and if ever you're stuck with a spring problem send it along to our Research Department-they'll gladly help you out.
 Light Compression Springs. 1^{17} to $4^{\text {T }}$ long, 22 to 18 S.W.G., $f^{\prime \prime}$ to $\hbar^{\prime \prime}$ diam. 7/6

ThreedozenA ssorted $1^{\prime \prime}$ to $4^{\prime \prime}$ long, $\frac{1}{2}^{\prime \prime}$ to $\frac{8}{8}^{\prime \prime}$ diam., 19G to 15 G . 6/6

Extra Light No. 757 pression, 1 gross Assorted, $\frac{1}{6}$ to $\frac{7}{15}$ diam., $\frac{1}{2 \prime}$ to $2 \frac{1}{2}^{\prime \prime}$ long, 27 to 19 S.W.G. 18 ;-

Have you a Presswork problem?

If so, the help of our Design Staff is yours for the asking.

Really interested in Springs?
Design and Calculations" 10th Edition tells all post free 12/6

Cut Production Costs with Terry's Wire CIRCLIPS. We can supply immediately from stock-from $t^{\prime \prime}$

in sizes to grip from $4^{\prime \prime}$ to 2°

Looking for good Hose Clips? Send for a sample of Terry's Security Worm Drive Hose Clip and price list.
HERBERT TERRY \& SONS LTD. Redditch, Worcs.

ASTRO OPTICS AND MECHANISMS

Parabolic Mirrors. $6^{\circ \prime}$ dla. 48° tocus. First grade, lowexpanalon. 2950.6° Spherical. 40° focus. $55 /-4^{*} \times 318330.4^{*} \times 4035 /-$.

 £9 ea. Short focus achromate from $8 /-$. See our listh. Planos, etc. from $3 /$-.
 Aluminised or silvered flats. 1° wide $8 / 6,1^{*} 5 /-, 3^{*} 8 / 8$.
 focuan 4 glawa New $35 /$. 11° and $2^{\prime \prime}$ focus ditto $30 /$. Varlable power eyeplece $1^{\prime \prime}$ to $1^{\prime \prime}$. Gives wider field, better definition, and easier to use than normal short focus
 focussing mount $45 /-$. See our lists for others.
Finder Telescopes. 6×30 ised focus (seml-aljustable) with or without crose-lne graticuie 45/= ea
Geared Eeads. Small light-welght type $8 / 8 \mathrm{ca}$. Medtum with 5° dia. circle, difided 360 deg. and michrometer drum 12/6 and 21/-. 7^{*} dla. ditto $80-1$ drive. $45 /-\mathrm{ea}$. $14^{*} 2$ apeed 90 to 1 and 1170 to 1. , divided 360 deg. Welght 84 lbs .812100 . Geared drives anitable for 6^{*} Astro " 8 copes, givag both movements with circles. £6 100 ea. Cost abour E 80 .
Geared Motors. 1 r.p.m. Miniature precision, Ideal for telescope drives, works from 6-12v DC at t-t amp. 15 Jb, torque. Constant apeed control electric clutch. Runs in 9 ball races. Costs over 220 ea. our price $35 /=$.
Scout 3 -draw Telescopes, 25×50. Used, optically pertect $£ 810$. Brand New 2810 . Astro-terreatial adaptora giving $40 \times$ terr. $60 \times$ astro. B0/-. extra. 6 -power to $120 \times$ astro. $80 \times$ terr. $£ 5.9$-power to $180 \times$ astro. $120 \times$ terr. 470 extrs.

Two-Power Tolescope, 24° 0.G. $15 \times$ and $30 \times$ Turret eyepleces. Prismatic. Weight 12 lb . 89 ea.
Flash $\$$ potters. A blnocular theodalite. 8×40 Cont over 2300 , Offer axceptional possibiltiea for Astro use. Photography, charting, etc. Neede seeing to be appreciated. In excellent condition £35 es. See our liste for detalls.
Dial Sights. Another very unefulitem for the expermenter. WIll set out any angle with pedision. $4 \times$ periscoptc optical aight. Giving a 360 deg. fleld of view from one Bxed positlon. Excellent condition $55 / \mathrm{m}$ ea. Ditto with aupertcial damage. offered for strippling $35 / 0$ ea.

DO YOU KNOW it in posalble to build a arot clana profesional model natro-scope giving powera from 80 to $400 \times$ infitely variable, complete with geared drives, for sa little as 245, and most ltema ready-made. Keen amateurs could reduce this to a little over £20. Eseentials are 6^{*} parabolic mirror. V.P. Eyepiece, and geared drive. Plane available ehortly at $4 / 6$ ea, Details tree to callers.
Projectors. Our latest design for 2×2 projectora ufing 100 w . lamp, gives brillance (15 ft , candles on 3ft. acreen) and definition out of thla world. Unmounted lens lita $38 / 6$ ea. Mounted kits requiring only lamp-house and slide carrier to complete $\$ 476$. Will demonstrate on your own blldes. Plans $2 /-$.
Mirron-Type Viewer Kits. (2 $\times 2$) the last pord in visual pertection. Bring your finest silde and your best viewer and compare results. Pians 1/-. Kit optics only 422 6. Back-projection slde. Vlewer 2×2. Plans 3/6, Lens kut $50 / \%$. How to Use Lensea and priams $2 / 6 \mathrm{ea}$. For 1001 itema of optical electrical and acientific equipment see our lists. Free for $\operatorname{s.A.E}$. 4 fd. stamp.

AREVIEW OF NEW TOOLS,

Butane Rlow Lamp

FROM Taymar Ltd., 2 Bombay Street, Manchester, I, we have received details of a new Butane blowlamp. The Taymax lamp, which is shown on the right, has a polished brass burner and will burn continuously for approximately 4 hours on the " throw away" cartridge. With the Standard burner shown, the cost is 35 s . 6 d . In addition a pencil flame burner for fine work (6 s .6 d .) and special burners for paint removing and soldering (4s. 6d. and 7s. 6d, respectively) are available. Butane refills cost 4s. 6d. This versatile unit cannot fail to be of use in any small workshop.

Screw Pitch Gauge

M OORE \& Wright (Sheffield) Ltd., Handsworth Road, Sheffield, I3, have recently added another screw pitch gauge to their range. It is a combination of Whitworth and Unified Gauges, each section having separate compartment. The tool contains 58 blades comprising 30 Unified blades and 28 Whitworth blades. The retail price is 26 s .6 d .

New Stanley Blade

SHOWN in action below, the new blade, for Stanley shapers, designed for faster stock removal on timber. It costs 3 s . and is interchangeable with the general purpose shaper-blade which should be used on harder materials such as metals. The manufacturers are Stanley Works (G.B.) Limited, Sheffield, 3.

Electrode Cabinets

THE photograph below shows the first electrode cabinet of its kind made. Marketed by Evanor Developments Ltd., of 2 Cecil Court, Enfield, Middx., it contains special density thermal plastics compartments of a beehive nature which ensure complete indifference to outside atmosphere, electrodes may be stored indefinitely at ambient temperatures.

Watson's Special Ojfers

POWER FOR ELECTRIC RAZOR from 12 to 24 v . batterics. Convertor suitable for $110 / 220 \%$ AC/DC Electric Razors. 15/6. Post 3/6.
NEW EX-W.D. H.D. BATTERIES. 6v. 75 amp. hour. Buit to high specification. Size overall $97^{\prime \prime} \times 6 t^{\prime \prime} \times 9^{\prime \prime}$. $57 / 6$ ea. Carr. 6/6. FRACTIONAL EIECTRIC MOTOR. 230/1/50, 2,500 r.p.m. Ideal for building electric fans, etc. 35/-. Post $2 / 6$.
FIELD TELEPHONFS. Type F. Fine units with a range of up to five mites. Ideal for internal and external communication. Each in carrying case. Complete with batteries. 69/6. Carr. $4 / 6$. ANCLLEPOISF. LAMPS. THREE jointed arms extending to $30^{\prime \prime}$. Spring clamp fixing $4^{\prime} 6^{\prime \prime}$ lead and switch. Suitable low, medium voltage for boats, caravans, ctc. 22/6. Post $2 / 6$.
COIL SPRING BELTS. $t^{\prime \prime} \times 12^{\prime \prime}$ extends to $15^{\prime \prime}$. Any number can be joined together. 20 for $4 / 6$. Post 9 d .
Hundreds of other Rargains. Send 6d. for Illustrated List. EASTERN MOTORS, ALDEBURGH, SUFFOLK. q Phone 51

ALL-TRANSISTOR POCKET $27 / 6$ LOUDSPEAKER RADIO

Don'r be put off by the ridiculously low price, it is made possible by the bulk buying of transistors, etc.
THE "CAPRI" RADIO covers all medium-waves including 'Home,' 'Light,' etc. Reliable and Lightweight-size only 4 tin. $x 27 \mathrm{in}$. $\times 1 \mathrm{litn} .1$ Works for months on 8 d . battery! Can be assembled in an hour of two with our easy plan! Complete set of parts including miniature speaker-ONLY $27 / 6$ plus $2 /$ P. \& P. (C.O.D. 2/-extra). Parts can be bought separately. Demonstrations daily-Money back guarantee.

CONCORD ELECTRONICS (Dept. P.M.4.) -210 Church Road, Hove, Sussex -

UNLIMITED OPPORTUNITIES exist today for "getting on " . . . but only for the fully trained man. Let.I.C.S. develop your talents and help you to success.

IT'S MUCH EASIER to study under expert guidance. An I.C.S. course directs your efforts and helps you along, step by step, until your goal is reached-and you're a fully tralned man.
With I.C.S., the largest and most successful correspondence school in the world, you get the most thorough postal training possible. Printed manuals, fully illustrated, make study easy ano progress sure. Moderate fees include all books.

Take the right course NOW!

ADVERTISUG
General Advertising, Copywriting Retail d Department store
ART
Oil \& Water Colour
Commercial Illustrating Figure Drawing

BUILDING

Architecture, Quantity Surveying Clerk of Works
Building Construction
\& Allied Tradea
CIVIL ENGINEERING
Highuay Enarg., Structural Engrg Concrete Engineering

COMMERCE

Book-Keeping, Office Trajning Accountaney. Costing Secretaryship, Storekeeping Shorthand \& Typewriting
DRAUGHTSMANSHIP
Architectural, Mechanical
Mathr. \& Machine Drawing Drawing Office Practice Structural Drawing
ELECTRONICS
Industrin 1 Electronics
Computers \& Maintenance
FARMING
Arable \& Liventock, Market Gdng. Farm Machinery Maintenance Pig \& Poultry Keeping
FIRE ENGINEERING
I.F.E. Examinations

Fire Bervice Promotion Exams.
GENERAL EDUCATION
G.C.E. Subjecte at Ordinary or Advanced Level
Good Englinh, Foreign Ianguages

HORTICULTURE
Complete Gardening
Flower d Vegetable Growing
MANAGEMENT
Busineas Management
Hotel Mrnagement. Foremanship
Office Management. Work Study
Induntrinl Management
Pereonnel Management
MECHANICAL \& MOTOR
ENGINEERINO
Engineering Mnthematice
Diesel Engines and Locomotives Workshop Practice, Refrigeration Running \& Maintenance, Welding Motor Mechanice
(many nther eublects)

PHOTOGRAPHY

Practical Photography
P.D.A. Examination

RADIO T.V: \& ELECTRICAL
Radlo Fervicing \& Fingineering T.V. Eervicing \& Fng., Electriciana Radio Construction (with kits) Basic Electrical Work
POLICE
Entrance Examination sELLING
Commerclal Travellera Salea Management, Retail selling
WRITING FOR PROFIT
Short Story Writing
Free-Lance Journalism
MANY OTHER SUBJECTS INCLUDING
Industrial Instrumentation Petroleum Production Textiles, Dresmaking etc.

INTENSIVE COACHING for all principal examinations including C.I.S., A.C.C.A., I.C.W.A., B.I.M., A.M.I.Mech.E., I.Q.S., Brit. I.R.E., City \& Guilds of London Institute, R.H.S., etc.

20,000 Metal Slitting Saws, 1-3/4 dia., $5 / 8^{*}$ hole, $.015^{\prime \prime}$ to $.060^{*}$ thick, 6 asstd. $8 / 9$, dozen $15 / \%$. Still cheap $\frac{a t}{100}$ double this price.
Dies, $9 / 16^{2} 5^{2-1} 4^{\circ}$ dia. Circular Spilt Dies, $9 / 16^{\prime \prime}$, $5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}, 7 / 8^{\prime \prime}$, $1^{\prime \prime}$ B.S.F. 30/- per N.r., also 26 Brass thread 0)-per set any thread, 3 sets E4. Actual value $£ 5$ per set
5,000 Hardened and Ground H.S Tool Bits, $1 / 4^{\prime \prime}$ square, 2-1/2" $^{\prime \prime}$ long. $15 /$ doz. $5 / 6^{\prime \prime}$ square, $3^{\prime \prime}$ long, $20 /$ doz. 3/8" square, $3^{* \prime}$ long, $25 /-$ doz. $7 / 16^{6}$ square. $3-1 / 2^{\prime \prime}$ long, $30 /-$ doz 3,000 H.S. Stralght Shank End Mills, approx. $3 / 32^{-}-1 / 2^{2}$ dia., outstanding value, 8 assorted, $£ 1$ the lot.

2,000 Small Twist Drills. approx. 1/32 ${ }^{\circ}-3 / 32^{\prime \prime}$. $4 /$ - doz. Approx. $1 / 16^{\prime \prime}$ | $1 / 32^{\circ}-3 / 32^{\prime \prime} .4 /-$ doz. Approx. $1 / 16^{\prime \prime}$ |
| :--- |
| $1 / 4^{2}$. |
| 162^{*} per doz. Approx. $9 / 32^{*}$ | 15/32" six for 10 /.

3,000 Circular Split Dies, $1^{\prime \prime}$ dia. cutting $1 / 4^{\prime \prime} 5 / 16^{\prime \prime}, 3 / 8^{\prime \prime}, 7 / 16^{\prime \prime} 1 / 2^{\prime \prime}$ Whit.. B.S.F., also brass thread. 26 thread and aill sizes and American N.F. 12/- Der set of 5 sizes. 2 sets $22 / 6 ; 4$ sets $42 / 6$. Taps to suit $12 / 6$ per set, either taper or second or plug. 1^{2} dia. stocks $6 /-$ each.
Metal Marking Punches, sizcs 3/32" $1 / 8^{\circ}$ and $1 / 4^{\prime \prime}$. figures $8 / 6$ per set letters. $25 /-$ pér set, any size; $1 / 2^{\prime \prime}$ flgures, $15 /$ - set.
SIx Tons Precision Ground Sllver Steel, 36° lengths: $1 / 4^{-} 9 / 3^{*}, 3 / 8^{-}$, $1 / 2^{\prime \prime}$ dia. $10 / 9$ lot. Also 13^{*} lengths $1 / 16^{\prime \prime}$ to $15 / 32^{*}$ dia.. doz. assorted, $5 / 6$. 1.000 H.S. Inserted Blade Expanding Reamers. $27 / 32^{*}$ to $31 / 32^{*} 18 / 6$ each; $31 / 32^{\circ}$ to $1-1 / 8^{*}$. 22/6 cach $1-1 / 8^{\prime \prime}$ to $1-9 / 32^{\prime \prime}, 27 / 6$ each; $1-9 / 32^{\circ}$ to 1-15/32 ${ }^{35}$. each.
H.S. Parting Tool Blades, 3/32" $3 / 4^{\prime \prime} \times 5^{\prime \prime}, 5 /-$ each.

£2 ORDERS POST PAID J. M. BURKE

192 Baslow Road, Totiey, Sheffield

SURPLUS BARGAINS MULTI-PURPOSE MOTORS. LOW voltage, with gearbos, 24 v. D.C., but good at 12 v. or lower. Two shafts, 4 and 16 R.P.M. at 12 v., 6 and 24 R.P.M. at 24 v. Operate 3 gets of cams and also plunger giving powerful lateral thrust. Takes under powerful Waral undily versatie motor. Rach 25/-, post 2\%.
 Bach 25/- post 2/-iRGING TRANSFORMERS, 11 v. and 17 v. A.C. (for 6 and 12 v. Charging at it amp.) Each 17/6, post 1/9.
 RBCTIFIERS to Buit above. Each 6/6. post $1 /$-. (These transformers and rectiflers will run above motors.) Send 3 d . stamp for list of other motors, transformers, pumps, lamps, switches, etc.
 MILLIGANS
 2 Harford Street, Mverpool, 3 Money Back Guarantee
 ROGERS
 31/33 NPLSON ST.
 Hbre Washers. 144 Assorted
 Metor Reotifers. AC. to D.C.
 Solt Tad Screws. 100 Aanorted
 Roctiliers. $6 / 12$ v. at 6 smps
 Wlaker Units. 6 or 12 volt
 Motortsed Water Pumps SOUTHPORT Motortsed Water Pumps $\quad . \quad \therefore 6 / 6$ Lotrument Cases. 1oin. I Sin. \bar{z} Gin. New $7 / 3$ Steel, Aluminlum, eto 10 P AGR LIST FREE. STAMP PLAKASE

Automatic (Time) Switches

New and reconditioned 15 day clockwork and electrio switches
trom 35/-
Stend S.A.E. for illugtrated detaila to
DONOHOE (TIMERS)
1 \& 2 UPPER NORFOLK ST. NORTH SHIELDS, NORTHUMBERLAND

HIGHSTONE UTILITIES 58, NEW WANSTEAD, LONDON, E. 11 . Compact, 12 volt, 1 smp . Trickle Charger built around its own 3 -pin plug. Fused primary and secondary. Complete with instructions. charging leads with crocodile clips, indicator lamp which decreases in brightness as charue increases. Either 13 amp . or 15 amp .3 pins, or free lead to make own connection, so/-, post 2%. Ex-R.A.F. 2-valve (2 volt) Microphone Amplifiers, as used in 'plane intercom. In self-contained metal case; can be used is make up a deaf aid ouifit, intercommunication system, or with crystal set. complete with valves and Fitting Instructions, $20 /-$ post $3 /-$. Hand Microphones, with switch in handle and lead, 5/6. Tannoy, $7 /$ - Similar Instruments, moving coil, 8/6. All pust 1/6. Mask lype with switch, $3 / 6$ post 6 d . Throas Mikes, $5 /-$. pist 7 d . Mike Buttons (carbon), 2/-* Moving coil, 3/6, post 4d.
Meters, 20 voit, 2 in ., m/c. $8 /-; 20 \mathrm{amp}$. 2 in.. m/c, 8/6; 3.5 amp ., 2 in . T.C., $6 /=$ 100 mA 2 in., m / c. 7/6, all post extra. $\operatorname{Meter}(\mathrm{L}, \& R$.) containing 2,500 microamp movements, $9 /-$, post $1 / 6$.
liell Transformers.-These guaranteed transformers work from any A.C. mains giving 3. 5 or 3 volts output at i amp. operate bulb, buzzer or bell. $9 /$-, posi 1/-, G.P.O. Telephone Hand Comb. Sets 12/6, post 1/6. Telephone Hand Generator, $8 / 6$, post $2 /$-. Telephone Bell, $3 / 6$, post 9d. S.B.C. Neon Indicator Lamps, for use on mains to show "live" side of switches, etc. $2 /$-, post 4 d . Diodes, $1 / 6$. . 0005 Variable Condensers, $2 / 6$, post 9 d . Headphones in Good Order, $6 / \approx$ Retter Quality, $7 / 6$ and 10/-. Balanced Armature Type (very sensitive), 13/6. All post $1 / 6$. New Sinkle Earpieces, 3/6. Bal. armature type, $4 / 6$, two of these will make an intercom. set. Ex-R.A.F. earpiece, 2/6. All post 6 d .
Money refunded if not completely satisfled. New Illustrated list sent on request with 3d. stamp and S.A.E. Letiers only.

RADID B(D)KS

NEW PICTORIAL APPROACH TO LEARNING
BASIC ELECTRICITY, 5 parts. bASIC ELECTRONICS. 6 parts. The Complete Set sent on payment of first instalment.
LEARN WHILE YOU PAY
FOIR ONLY $2 / 6$ PER WEEK
Write for FREE lliustrated Prospectus giving defails of instalmeni planl
BOYS' BOOK OF CRYSTAL SETS AND SIMPLE CIRCUITS, 3/- Post Free. 36 pages, 29 illustrations and plans. The know-how on constructing 12 different sets without any previous knowledke. ELECTRONICNOVELTIES, $5 / 6$ Post Free. SEND STAMP PORLISTS
SELRAY BOOK CO. (Dept. P.M.) 60 HAYES HILL HAYES, BROMLEY, KENT.

Cel. HURstway 1818.

RULES

Our Panel of Experts will answer your Query only if you comply with the rules given below A stamped addressed envelope, a sixpenny crossed postal order, and the query coupon from the current issue which appears at the foot of this page, must be enclosed with every letter containing a query. Every query and drawing which is stent must bear the name and address of the reader. Send your queries to the Editor, PRACTICAL MECHANICS, Geo. Newnes, Lid., Tower House, Southampton Street, Strand, London W.C. 2.

Heavy Wax

C
OULD you please supply a formula for a heavy wax to be applied liberally, which would protect the coachwork of a car against corrosion from salt spread on the roads during winter snow ?-B. A. Allen (Lancs).
THE following ingredients should provide a good protective wax for the purpose you have in mind:

The paraffin can be replaced by a mixture of Vaseline and ozakerite, the ratio being adjusted to give the required consistency. Melt on boiling water-bath and stir until the whole mixture is homogeneous. Pour into suitable moulds.

Storing and Drying Salt

IHAVE had delivered to me i cwt. of crystal salt (aqua) for use in a water softener, what vessel is best to store it in that will not rot, but will also keep the crystals dry? Also, the salt is rather damp, is there a method of drying it without impairing its properties.-A. E. Kimber (London, E.12).
A WOODEN keg or cask with a lid, as used in the heavy chemical industry for storing inorganic chemicals, is the most suitable vessel for storing your salt. You will not impair the properties of the salt by whatever method you use to dry it. You can do this by spreading it out in a thin layer on a warm dry day on boards, or you can batch dry it in the oven on metal trays. However, we do not think it is worth your while to trouble to dry it, as salt is just as effective whether damp or dry.

"Satin" Finish to Wood

IAM making a bedroom suite and wish to obtain details of the new type of "satin" finish which is belig used on modern furnishing. It has the appearance of wood that has been buffed and does not carry the high shine of wax
polish. I would also like to know whether a filler is used on the oak before the finish is prepared.-I. Jones (Lancs).
THE satin finish to which you refer is normally a synthetic resin or sprayed cellulose application. The former is obtainable from Messrs. Floor Treatments Ltd. under the proprietory name of " Gleem " and a single application only should be given so as to avoid the brilliant gloss that two coats will give. Sprayed cellulose is too well known to require much explanation, but it should of course be a single application of clear type. The timber should be rubbed down starting with a fine glass paper and then finishing with a very fine and "wet" and "dry" paper. This will afford an exceptionally smooth finish which does not normally require fillers.

Painting Sign Boards

IWISH to use the silk screen printing process in connection with the manufacture of sign boards. Would you please advise me as to the paint used in the process for work on metal, wood and paper.-S. C. Creed (Folkestone).
THE.normal type of silk screen paint will be suitable for your requirements and for exterior signs. A further screening with clear lacquer would be advisable.

[^1][^2]
Scaling Polythene

IHAVE tried sealing polythene chemically, but without success. Can you tell me how it can be done using a hot iron?-R. W. Rubie (Bristol).
THE usual way of sealing edges of polythene is to 1 use a heated wheel and run this along the seam. In some cases the wheel is serrated, and giving the impression of sewing.

Take a fairly heavy soldering iron and insert a small flat-rimmed wheel through the "bit" on an axle or cylindrical metal rod. The heat from the iron element will be conveyed to the wheel and the transferred heat from this will make a perfect seal.

Evacuating TV Tube

IWISH to start processing. TV tubes. My difficulty is to know how to extract the air back out of tube.-E. Dawes (Yorks.)
THIS process can only be carried out by using a Diffusion pump which will reduce the vacuum within the tube to the order of $10^{-6} \mathrm{~mm}$. mercury. This is approaching an absolute vacuum. Makers of this type of pump are: W. Edwards \& Co. Ltd., (High Vacuum), Manor Royal, Crawley, Sussex.

Colouring Glass

SCOME time ago I designed an imitation stained glass door, using lead strip and adhesive, but I have been unable to obtain transparent colours which do not fade. The door faces south. The colours are red, blue, and the greater part, amber. The colours supplied by the manufacturers of the lead strip almost faded away in a month, except the blue which retained its colour. Could you please tell me where I could obtain some fadeless colouring to suit my purpose.-R. Wilkinson (Hants).
$T \mathrm{HE}$ colouring matter in the solution painted on your door are aniline dyes and all of these are destroyed by the actinic rays in light, the blue and violet end of the spectrum being least affected. The remedy lies in avoiding all dyes and adopting artists tube colours as supplied by Winsor and Newton. Their range of permanent oil colours contains sufficient variety of colour to suit your purpose.

In use the colours must first of all be thinned out with a mixture of turpentine and Japan gold size, rather more thán half of the latter, and worked up into a syrup-like consistency. The colour can then
be floated on to the glass with soft camel hair brushes. The glass must be laid horizontally and kept so until the colour has set, which will take three or four hours. If the first coat is not deep enough a second can be applied when the first is quite dry. The gold size and turpentine can also be obtained from Winsor and Newton.

Damp Course

THE old house in which I live has no damp course. I am told that slate is the best material to use but this is expensive. What do you advise?-E. Featherstone (Lancs).
WE strongly advise the use of slate as damp course. It should be possible to pick up an odd lot of broken slate which you could trim to your purpose at not too great an expense.

The standard bituminous felt type is the next alternative. Write to the Building Centre, Store Street, Tottenham Court Road, London, W.C.I. for further particulars.

Anodising Almminium

IWISH to produce a bright anodised finish on small aluminium parts, could you please give me details of the process.-W. H. T. Green (Durham City).
THERE are many processes that can be used for anodising aluminium; but a simple and straightforward method is to make up an electrolyte of: Phosphoric acid (d.1.70) 1,000 c.c.
Hydrogen peroxide (30%) 50 c.c.
The treatment time is 5 minutes. If used anodically, an e.m.f. of 11 V . is employed at approximately 15 A. . sq . ft . This is for pure aluminium only. On duralumin type alloys the bath is used hot $\left(70^{\circ}\right.$ to $80^{\circ} \mathrm{C}$.) at 4 V ., 100 to $120 \mathrm{~A} / \mathrm{sq}$. ft. for 1 to 2 minutes. In. all electrolytic processes care must be taken to have the work clean and free from grease. Trichlorethylene is a good degreasant. After anodising wash well. Agitation of solution can be done by compressed air or mechanical stirrer. An aluminium-magnesium alloy -3 to 5 Mg . is the most satisfactory composition for the anode.

INFORMATION SOUGHT

Readers are invited to supply the required information to answer the following queries.

Bicycle Water Skis

IAM a water skiing enthusiast and have heard somewhere of water skis being fitted to a bicycle. Can you tell me how this was done or perhaps one of your readers could oblige?-G. Hyslop Helensburgh).
> "PRACTICAL MECHANICS"
> 2nd HOW-TO-MAKE-IT BOOK I5s. net. By post 16 s.

Geo. Newnes Ltd., Tower House Southampton Street, London, W.C. 2

SARIS
 AND $\mathbb{W} \mathbb{A} 4$

The pre-paid charge for small advertisements is 9 d . per word, with box number $1 / 6$ extra (minimum order $9 /-$). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southampton Street, London, W.C.2.

MODEL PARTS

"EVENING STAR" in $3 \frac{1}{2}$ " G.

Wilwau will make the complete range of castings for this fine L.B.S.C 2-10-0 loco. S.A.E. with enquiries appreciated.
W. K. Waugh, 31 Hillfoot Drive, Bearsden, Nr. Glasgow. Bea 2985

HOBBIES

CATALOGUE NO. I4 Government Surplus and Model Radio Control, over 500 illustrated items. $2 / 6 \mathrm{~d}$. (refunded on purchase).-Arthur Sallis Radio Control, North Road, Brighton.
NEWTONIAN TELESCOPE MAKING, $6^{\prime \prime}, 8 \frac{1}{2 \prime \prime}, 118^{\prime \prime}$ Glass discs, Grinding Kits, Plano-convex lenses, optical flats, Ramsden eye-pieces, Barlow lenses. S.a.e. for lists.-L. J. Mays, 20 Clover Road, Timperley, Altrincham, Cheshire.

PHOTOGRAPHY

BELLOWS, Camera, Enlarger, Process, Industrial Collapsible Machine Guards.-Beers, 4 St. Cuthbert's Road, Derby. (Tel. 41263).
DROJECTORS. Home Assembly Kits 1 all types and sizes and Stereo from $£ 6$ 28. 6d. Fan Base Kit $£ 3$ 7s. 6d. Opticals: Screens. S.a.e. Marshall Smith Lid., 64 Norwich Avenue, Bournemouth.

TELEVISION

Television Picture Tubes

Manufacturers' Guarantee Twelve Months

Tubes for All British-made Sets 10 inch
f4. o. 0
12 inch
14 inch
15 inch
16 inch
17 inch
21 inch
E5. 0. 0
f5. 10. 0
£7. o. 0
\&.7. о. o
£7. 0. 0
£8. 15. 0
Deposit 20/- plus $12 / 6$ carriage. Tubes for ALL H.M.V. and Marconi sets at reduced prices. Collaro C 604 speed Autochangers
£7. 15.0

Catiode Ray Tibe Senice

35 Broomwood Road
St. Paul's Cray, Kent
Orpington 21285

R ADIO Television Service Sheets. All Types valves. S.A.E. list, John Gilbert Radio, 20 Extension Shepherds Bush Market, London, W. 12. SHE 3052.

WATCHMAKERS

PRECISION Screwdrivers 0.50 mm . to 2.2 mm . 10 sizes $12 / 6$ set. Quality Eyeglasses 4/- each. Fine Hairspring Tweezers $12 / 6$ pair. Electric soldering irons for precision work $24 /$. Valuable Materials Assortments. Watches, Bracelets, Straps, etc., and we do a complete repairs service. Send for free illustrated lists to J. J. LAWSON, 95 Godwin Street, Bradford, I. (Phone 32075.)

WATCH PARTS

For all makes of watches, tools, instructional books, etc. Special Kits for beginners. Send 6d. for "Super Bargain Catalogue." T. G. LOADER (Dept. B.), Watchmakers' Mail Order Service, Milestone Road, Carterton. Oxford.

FOR SALE

A STRO TELESCOPE MAKING. Standard Ramsden Push-in Eyepieces, $\frac{1}{6} \mathrm{in} ., \frac{1}{2} \mathrm{in}$., $\frac{3}{4} \mathrm{in}$. , focus, $35 / \mathrm{-}$, with R.A.S. thread, $42 / 6$ ea. S.A.E. list, Object Glasses, Newtonian Mirrors, Diagonal Mounts, Focusing Mounts, Tripods, Mountings and Terrestrial Telescopes.-W. Burnet, Grand Sluice, Boston, Lincs.
HYPODERMIC SYRINGES, brand new 2 c.c. SIMA, excellent for oiling etc., $4 / 9$ each. Also needles, sizes 12,17 and 18 at $4 /$-per dozen.-G. Roger Smith, 16 Clyde Street, Liverpool 20.
SCREWS, nuts, washers. Grand assortment Brass, Steel. B.A., Whit., B.S.F., well below list price. Post Free, $2 \mathrm{lb} .7 /-$ Also $3 \frac{1}{2} \mathrm{lb},-11 /-7 \mathrm{lb}-20 /=$ both sent in storage tins.-R. G. McClelland (P.M.), I Beulah Road, Epping. Essex.
©TEAM Sports Car-modern-excellent performance, easy starting, no gears, silence, economy. Description in magazine, colour plate, also steam boats. Your copy with illustrated lists of drawings, castings, complete power units-only 5 s, post free-"Steam Power," Kirk Michael, Isle of Man, U.K.
CATALOGUE No. 41, Over 4,000 items, electrical, mechanical, material etc. $9^{\prime \prime} \times 3^{\prime \prime}$ S.A.E. please.-K. R. Whiston (Dept. P.M.S.), New Mills, Stockport.

OXY-ACETYLENE SETS

An exceptional Ex-Govt. bargain

B.O.C. type CH, complete WELDING and CUTTING outate, in elaborate fitted wooden carrying cabinets $24^{\prime \prime} \times 18^{\prime \prime} \times 10 \frac{1}{4}^{\prime \prime}$, wt. 60 lbs. contalning regulators, hoses, set welding tips, cutting nozzles, spannera, goggles, key and four extra gauges, etc. slightly used, bue guaranteed extra g/2.
$£ 20 \mathrm{C} / \mathrm{F}$.

CUMMINS \& JENNINGS
Tillingham (Tel 224), Southminster, Essex

FOR SALE continued

Brand new ex M.0.8. electric gramophono anits in heavy gauge metal cases fitted carrying handles and ocks, tinished black crackle. Heavyweight $200-250$ olt A.C. motor, plek up, 78 r.m.p. only, cost $£ 2$ ach, case alone worth more than my price, 35/-plus carriage. Dlto used 20 .
Brand new Dallmeger 4in. projection lenses especially leargner for 35 mm . transparency projectors, but will cover up to $21 i n$. square, original price $£ 7$, only e3, post 1/6.
in. Bi-Conver Glass Condensers $2 / 6$ each, post 6 d . Epidiascopes from 220 each.
Brand new Avominor moving coll Multirange A.C./ D.D. Test Meters fex M.O.S.) solid hide cave with houlder strap, leade and test prods, in original tropical packing llet over E11, pricé 25, poat 2/6. Brand new Kodak (ex Admirally) $7 \times$ B0 Prismatio Telescopes, focuring, in fitted wooden case with binocular eyeplece, fitted filters, cost over $£ 50$, due 2 another buge purchase, lower than ever price, 410 each, carriage $5 /$ -
Brand new Fxide (ex A.M.) 12 volt, 25 amp batteries. These are B.A.F. general purpose lead ach accumulatork, and are similar in construction to normal car battery. Very suitable for cars and vans, will start any vehicle. Nover been flled and in original troplcal packing. First charge instructions inciuded, cort about 810 , only $£ 210$ each, carriage $5 /$ -
Ex Admiralty brand new Pocket Stopwatches by Waltham and Smiths. Fully jewelled movements, the second, 60 reconde per rec., 30 minute recorder dial, winding button start, stop and re-set, Fatue $£ 8$, 45/-, poet $2 / \%$. Ditto, tarnished cases, but brand new 37/6, plus 2/-port.
Ex Admiralty brand new Pocket Stopwatches, Waltham. 6 meconda per rev., no recorder dial, accuracy greater than $1 / 10$ th second, Jewelled move: ment, in original box. windligg button etart, stop and re-bet, cost over £12, 19/6, post 2/-.
ExR.A.F. Aerial Film $9 / 1 \mathrm{in} . \times 300 \mathrm{tt}$. Pan, E3. 1601 t $35 /-$ Biln. $\times 47 \mathrm{ft} .8 /=, 24 \mathrm{ft} .5 / \%$. Ideal for cutting to smaller sizes. Perfect condition. Poet $1 / 6$.
Ex A.M, G. 45 Gun Cameras 24 volt. 24 n . Axed focus leas. 50 ft. magazine loading, complete pith magazine, new $£ 215$, ditto used $£ 2$. Both post $2 / 6$.
Ex A.M. GG8 Mark 3 Recorder Camera., $16 \mathrm{~m} . \mathrm{m}_{\mathrm{m}}$ made by Specto. Latest model with three shutter speerls, 2 or 16 1.p.A., bloomed 1 in. lens F. 1.2 with Iria to F.16, 24 volt. B0ft, magazine loarlng, complete with magazine in original tropleal packing, absolutely brand new, only \&5, post 2/6. Ditto used $\& 310$, post 2/6.
Atl poods supplied on 14 day money back guarantee
R. SANKEY, Reqal Chem, ATHERSTONE WARWICKS

Tel: Atheratome 2220/3210

NEW MAIL ORDERS 30 H.S. Drills* $31-60$ 18/.. 20 H.S. 61-80 20/\%. 1 lb brass screws 2 BA-8 BA mixed $7 / 6$. Ilb. steel above $5 / 6$. Wood chisels $\frac{1}{2}^{n}, \frac{3}{2}^{n}, \frac{1}{2}^{n}$. 8" $20 /$..-S. GRIMSHAW, 7 Hall Strcet. Gorton, Manchester 18.
A LUMINIUM LADDERS/STEPS. Gigantic offer, 400 models.-Sanco Led., 17 (PM) Boundary Road, Hove.

G
IANT BALLOONS. American manufacture, will inflate to ro-ft. diameter Two for $10 /$ or five for $20 /-$, post paid.Hradfords, Ramsey, Harwich, Essex.

HOME BOAT BUILDING

FULLY PREFABRICATED KITS TO ASSEMBLE A BOAT AT HOME, for two-berth Cabin Cruisers, fast runabouts, canoes, prams, Enterprise sailing dinghies. Leaflets from Wyvern Boats (Wessex) Ltd., Milborne Port, Sherborne. $\mathbf{B}^{\text {ROMLEY BOATS, Kits, Mahogany, }}$ 1 Silver Spruce, American Boat plans, 3 d. List.-Southlands Road, Bromley, Kent.

WOODWORKING

S^{A}AWBENCHES.-Cast Iron. Rise and Fall. 6in., f6.19.6. 8in, fio.10.-. Carriage extra.-Drysdale, 58 Commerce Road, Wood Green, London, N. 22. 6 IN'. SAWPLANE $£ 16$ ios., write for brochure from East Anglian Trading Co., 5 Guardian Road, Norwich.

TOOLS

37I6d. POST PAID

Choice of Specification:

Metric: $11-22 \mathrm{mms}$.
ARTHUR DRYSDALE \& CO. LTD. 58 COMMERCE RD., WOOD GREEN LONDON, N 22 BOWes Park 7221

TOOLS AND FITTINGS
Direct bulk purchase enables us to offer latest D. 500 Black \& Decker Drill and 20 -item multikit for only $\mathrm{E} 7 / 7 / 0$ complete, 2 years' guarantec. Hundreds of other electric and hand tools at trade prices. Large stocks of Picador products and all do-it-yoursclf electrical and mechanical parts. Let us know your requirements. 6d. stamps.
Khmer. RRODUCTS LTD.E.
Tideway 2449.
Callers Welcome.

SELECTA 2 SPEED DRILL

plus 13 attachments. Everything new. Full maker's guarantee.
$\in 12$ los. Od the lot. Carriage $3 / 6$ DRYSDALE
58 Commerce Road, London, N. 22 BOWes Park 7221

\star Eight 12-point Bi-heragonal Sockets from of to $\frac{1}{18}$ Whit.

- Hexagon Drive Bar and Drive Ratchet.
* Fitted metal Wall Case. PostFree All made from specially selected steel. ARTHUR DRYSDALE LTD.
Commerce Road; London, N. 22 80Wes Park 7221

TOOLS continued

BLACK \& DECKER D. 500 tin.

ELECTRICDRILL
Plus 10 attachments, everything new.
Full maker's guarantee.
BARGAIN 678 s . 6d. LOT. DRYSDALE
58 Commerce Road, London, N. 22 BOWes Park 7221

FX-GOVERNMENT Socket Sets \downarrow in. Drive. Nine A.F. Sockets extension flexible drive; Tommy Bar in steel case etc. at fri each, carriage 3s.-J. T. Leavesley Lid., Alrewas, Staffordshire. Phone: Alrewas 354/5/6.

FANTASTIC SOCKET SET OFFER

Genuine Hand Forged Chrome Vanadium 27 Piece King Hawk Socket Set in fitted steel carrying case. LIST PRICE \&10.19.6 OUR PRICE 6 gns. DRYSDALE
58 Commerce Road, London, N. 22 BOWes Park 7221

MISCELLANEOUS

D^{0}YOUR OWN SIGNWRITING. Black and gold transfer letters, zin., 3d., 1 in., $x \frac{1}{2} \mathrm{~d}$. $-\mathrm{BCM} /$ Rondo, London, W.C.I.

A QUALUNG and Compressor Equipment, Ballraces and Miscellaneous items. Lists 3d.-Pryce, 157 Malden Road, Cheam, Surrey.
WELL known and reputable model making company requires ideas in connection with scale model plastic construction kits and toys, suitable for plastic manufacture.-Replies to Box No. 17.

GOVERNMENT
 SURPLUS AND CLEARANCE

MAINS 230V. ELEC BELLS. Twin 6" 35/F.W. METAL RECTIFIERS. 12 V ., 1 amp . 5 2 amp 9/-. 3 amp 12/6, 4 amp 16/., 6 amp $22 / 6$. FERRITE ROD AERIALS, 5/-. L. \& M. $7 / 6$. VENNER SILVER ZINC ACCUMULATORS. H.105. 15/-. Six for 85/-

FURNACE. 200/230V. i N00 C. MUFFLE $6^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 4^{\prime \prime}$ high. Weight $2 \frac{1}{2} \mathrm{cwt}$. <12.10.0.
ATLAS $\frac{1}{2}$ ". AIR DRILLS. 84.10.0.
VACUUM PUMPS. HAMMOND ENG. CO 65.10.0.

TAPS, Taper 17^{2} Whit. 5/- each.
S.A.E. for Latest List 74.

HUGGETT'S LTD.

2/4 PAWSON'S ROAD
WEST CROYDON, SURREY

ELECTRICAL

ALL TYPES OF ELECTRICAL A GOODS at extremely competitive prices, e.g., 5 amp . Twin Cable, 35s. 100 yards; Lampholders, 7s. doz.; 5 ft . Battens, 49s.; quality and immediate dispatch guaranteed. Request list.Jaylow Supplies, 93 Fairholt Road London, N.i6. (Telephone: Stamford Hill 4384).

ELECTRICAL continued

SMALL ELECTRIC CIRCULATING PUMPS

Suitable for Washing Machines, Pot Washers, Fish Tank, Aerating, Garden Fountain or Waterfalls, etc. Comprising 120 watt shaded pole A.C. motor coupled to centrifugal pump. Maximum delivery, 250 g.p.h. Maximum head, six feet. Sultable for continuous running on $200 / 240$ volts. Silent running. New, not surplus. Price E3, postage $2 / 6$.-H. Middleton, 639 Abbeydale Road, Sheffield, 7.

NEW G.E.C. 1 h.p. electric motors $230-250$ volt 1.425 r.p.m. in original packing at less than balf list price. fis 158. each-1. T. Leavesley Lid., Alrewas, Staffordshire. Phone: Alrewas 354/5/6.'

BRAND NEW
 BROOK ELECTRIC MOTORS

Single Phase, $\frac{1}{3}$ h.p. 1,500 r.p.m. 67139 h.p. 1,500 r.p.m. 11076 H.P. TERMS $\frac{2}{3}$ h.p. 3,000 r.p.m. 101076 AVAILABLE h.p. I,500 r.p.m. 111169 h.p. 3,000 r.p.m. 611169 Fully guaranceed by makers, approval against eash. Carriage paid mainland. State voltage. P. BLOOD \& CO.

ARCH STREET, RUGELEY, STAFFS.

SITUATIONS VACANT

A M.I.Mech.E., A.M.Brit.I.R.E., City and Guilds, G.C.E., etc., bring high, pay and security. "No pass-no fee" terms. Over 95% successes. For details of exams and courses in all branches of Engineering, Building, Electronics, etc., Write for 148-page handbook-free - B.I.E.T. (Dept. 067 B), London, W.8. A DAPTABLE MEN of some mechanical aptitude wanted for work on optical instruments for use in surgery. Need not have had previous factory experience, near have had previous actory experienc.

EDUCATIONAL

"HOW AND WHY" of Radio and Electronics made easy by a new, non-maths. practical way. Postal instructions based on hosts of experiments and equipment building carried out at home. New courses bring enjoyment as well as knowledge of this fascinating subject. Free brochure from: Dept. I2.P.M., Radiostructor, Reading.

LEARN
 RADIO \& TV SERVICING
 for your
 OWN BUSINESS/HOBBY
 byanew exciting no maths system, using

 practical equipmentrecently introduced to this country. FREE Brochure from:
RADIOSTRUCTOR
 DEPT. G80, READING, BERKS.

PATENTS

PATENTING SERVICES. - Advice, Qualified agent.-C. L. Browne, II4 Greenhayes Ave., Banstead, Surrey.

DRAWER UNIT ALL STEEL stove Enamelled DARK GREEN OVERALL SIZE 42" HIGH 35* WIDE 112* DEEP
 each $5^{\prime \prime}$ wide $3^{\prime \prime}$ high $11 t^{\prime \prime}$ long. 54 dividers and 54 drawer cards with each unit. Extra dividers 6d. each.

£18

Deliveries FREE to England scolland and Wates SEND FOR SAMPLE DRAWER

N. C. BROWN LTD. Telephone:
GREEN LANE WING, HEYWOOD, LANCS \(\begin{gathered}HEYWOOI
69 (lines)\end{gathered}\)

(9) M C E

FOR WORKSHOP BARGAINS

2 Great HALF PRICE Offers

 G.E.C. $\frac{1}{4}$ h.p. ELECTRIC MOTORS
ALL BRAND NEW

Made by the world-famous General Elecric Company a guarantee of quality. BRAND NEW. Continuous rated, For 230/250 Volts, 1,440 r.p.m. A.C. Split Phase start induction Type. 2 in. $x+$ in, dia. Spindle, Can be operated in vertical position 100. Dia. 6 in.

Today's Value GAMAGES at least $£ 10 / 10 / 0$ PRICE

With our specially made Rase Plate, 20/- extra. If outside our van area Carr. \& Pkg. $7 / 6$.

If outside our van area Post \& Pkg. 9d. (two for 1/3).

* TOOL AND CAR ACCESSORY LIST FREE

GAMAGES, HOLBORN, LONDON, E.C.I. - HOL 8484

[^3]
Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly ot home in your spore time can be the means of securing substontial well-paid pramotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmarship
Jig \& Tool besign
Press Tool \& Die Design Sheet Metalwork Automobile Repairs Garage Management Works M'gmmt. \& Admin Practical Foremanship Ratefixing \& Fstimating Time \& Motion Study Engineering Inspection Metallurgy
Refrlgeration
Welding (all branches) Maintenance Engincering Steam Engine Technology 1.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship Machine Automobite Automoble Structural
Structural Engineer in
Mathematics (all stagea) Radio Technology
Telecommunications
Wiring \& Instaliation Television
Radio Servicing
Gen. Elec. Enganeerang
Generators \& Motors
Generation \& Supply Aircraft Mainten. Licences Aerodynamics Electrical Design
Ordnance Survey Dr'ship
BUILDING AND STRUCTURAL
L.I.O.B. A.S.S. A.R.S.H. A.I.O.B. A.B.A.S. A.R.S.H. A.A.L.P.A. A.F.S. A.R.S.H.
A.M.I.
Buiding Construction Building Construction Costs \& Accounts Surveying \& Levelling Clerk of Works Quantity Surveying

Builders' Quantities Carpentry \& Joiner Building Inspector
Building Draughtsmanshlp Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert of Education
Book-keeping (all stages) College of Preceptors
Woodwork Teacher
Metalwork Teacher
Housing Manager (A:I.Hsg.)

Common. Prelim, Exam.
A.C.I.S., A.C.C.S.
A.C.W.A. (Costing)

School Attendance Officer
Health Inspector
Clvil Service Exame.

BECOME A DRAUGHTSMAN - LEARN AT HOME

 AND EARN BIG MONEYMen and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

$+$
 OVER SEVENTY YEARS OF CONTINUOUS SUCCESS $*$

nattonal Institute of hhamerklig (In association with CHAMBERS COLLEGE-Founded 1885) (Dept. 29)

I48, HOLBORN, LONDON, E.C.I
SOUTH NRICA: E.C.S.A., P.O. BOX NO. 8417, JOHANNESBURG AUSTRALIA: P.O. BOX NO. 4570, MELBOURNE

132-PAGE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
t How to obtain money-making sechnical qualifications through special RAPID FULLYGUARANTEED COURSES.

MANY IWTERESTING COURSES

TO SELECT FROM!
A.M.I.Mech.E., A.M.I.M.I.,
A.M.Brit.I.R.E., A.M.I.P.E.,
A.M.I.C.E., A.M.I.Struct.E.,
A.M.I.Mun.E., M.R.S.H.,
A.M.I.E.D., A.F.R.A.S.S.,

London B.Sc., Degrees.
Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachatle.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

FOUMDED 1885 - FOREMOST TODAY

[^0]: Telephone: BRIGHTON 57011

[^1]: THE P.M. BLUEPRINT SERVICE
 12 FT. ALL WOOD CANOE. New Series. No. I. 4s.* COMPRESSED-AIR MODEL AERO ENGINE. NEW Series. No. 3. 5s. 6d.*
 AIR RESERVOIR FOR COMPRESSED-AIR AERO
 ENGINE. New Series. No. 3a. Is. 6d.
 "SPORTS" PEDAL CAR. New Series. No. 4, 5s. 6d.* F J. CAMM'S FLASH STEAM-PLANT. New Series. No. 5, 5s. 6d.*
 SYNCHRONOUS ELECTRIC CLOCK. New Series. No. 6, 5s. 6d.*
 ELECTRIC DOOR-CHIME. No. 7, 4 s . ${ }^{*}$
 ASTRONOMICAL TELESCOPE. New Series. Refractor. Object.glass 3 in . diam. Magnification $\times 80$. No. 8 (2 sheets),

 CANVAS CANOE. New Series. No. 9, 4s.*
 DIASCOPE. New Series. No. $10,4 \mathrm{~s}$. ${ }^{*}$
 EPISCOPE. New Series. No. $11,4 \mathrm{~s}$.
 PANTOGRAPH. New Series. No. 12, 2 s .*
 COMPRESSED-AIR PAINT SPRAYING PLANT. New Series. No. 13, 8s. *
 MASTER BATTERY CLOCK. Blueprints (2 sheets), 4s. Art board dial for above clock, Is. 6 d .
 OUTBOARD SPEEDBOAT. 11 s . per set of three sheets.
 P.M. TRAILER CARAVAN.* Complete ser, IIs.
 P.M. BATTERY SLAVE CLOCK, 2s. 6d.
 P.M. CABIN HIGHWING MONOPLANE, Is.,6d. THE MECHANIKART, 15 s .*
 The above blueprints are obtainable, post free from Messrs. George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C.2.

 * denotes constructional details a re available free with the blueprints.

[^2]: "Practical Mechanics" Advice Bureau.
 COUPON This coupon is available until Sept. 30th, 196r, and must be attached to all letters containing queries, together with 6 d . Postal Order. A stamped addressed envelope must also be enclosed. Practical Mechanics.

 September, 196x

[^3]: Published about the 30th of each month by GEORGE NEWNES LIMITRD, Tower House, Southampton Street, London, W.C.2, and Printed in England by The Garden City Press Limited, Letchworth, Hertfordshire. Sole Agents for Australia and New Zealand-Gordon \& Gotch (A/sia), Ltd. Sole Agents for South Africa and Rhodesia-Central News Agency Ltd. Subscription Rate (including postage): For one vear, Inland 22s.. Overseas 20s. fd.. Canada 19s. Rezistered for transmission by Canadian Magazine Post.

