Newnes Technical Aids

THAT

Experimental Spring YOU WANT IS WAITING FOR YOU IN THIS BOX...

If not, try another box in the Terry Assorted Springs range

We know exactly how difficult it is to find springs for experimental work . . . we've been making quality springs for over 100 years. So, we confidently offer you our excellent range of small boxed assortments which covers a very wide range.
We can only show a few boxes. Send us a p.c. for our full list. If ever you are stuck with a spring problem let our Research Department put their long experience at your disposal.

Have you a presswork problem?
If so, the help of our Design Staff is yours for the asking.

TARHYS for SPRINGS

Really interested in Springs?"'Spring Design and Calculations" 9th Edition tells all-post free 12/6.

HERBERT TERRY \& SONS LTD. Redditch, Worcs.
(Makers of Quality Springs, Wireforms and Presswork for over 100 years)

* Permanent Magnets in action* Dims and needlet

Avoid dangerous loose pins and needles - use a magnet as your pincushion. Every housewife can use a magnet for countless jobs about the home. Ask your tool dealer, for the new descriptive fiterature.

PERMANENT MAGNETS

Made by James Neill \& Company (Sheffield) Limited and obtainoble from all tooldistributors

DON'T LET SOLDERING TIE YOU UP IN KNOTS...

use

FLUXITE

Soldering ceases to be a knotty problem the moment you use FLUXITE. Solder flows on easily and smoothly-and stays on. For over half a century FLUXITE has been the choice of craftsman and engineer alike and, in this age, its reliability and speed has made FLUXITE even more in demand than ever.

FLUXITE Ltd., Bermondsey Street, London, S.E.I
G.M. 77

A REVOLUTIONARY NEW BRITISH INVENTION:

Instantly turns any gramophone

 into a first-class Tape-Recorderand back into a record-player in a moment!

You simply slip it on to your turntable and you are ready to record direct-from-radio or microphone . . the voices of your family . . . radio programmes... your favourite music-and you can instantly play it back through your own gramo-
phone or radio with Lifelike. Fidelity. Made by the people who designed and manufacture radar instruments for Viscounts and

Real hi-fi results", "Better than many so called hi-fir recorders. . 3 . These are typical comments of famous technical journals. This wonderful new invention means that any gramophone owner can now add superbly good tape
recording facilities to existing equipment at recording facilities to existing equipment, at a fraction of the usual cost. Full details, photos, Gramdeck Book. Send for your copy to layFREE and entirely without obligation:
 cape-recording and playing facilities to every gramophone owner, at ilttie extra cost.
"Ingenious-simple ... why on earth did no one think of before? - RECORDER.

ramdeck

GRAMOPHONE TAPERECOBDER WHY/

You＇ll find a hundred uses for the Rabone Nuflex ．．．a quality flexible 6 ft ．rule in compact case that fits snugly in your hand． The Nuflex has a sliding tip for absolute accuracy ．．．black figures on white enamel for easier reading ．．．stays rigid when you want it so ．．．flexes easily if required．
At 5／－it＇s top measure value！

RABONE

NUFLEX
SPRING STEEL RULE

Newnes NEW All－Embracing Repair Set

 1.450 CARS COMMERCIALS－TRACTORS Motorcreses Scooters
Use it Free

7－Day Test Without Obligation

 This ENTIRELY NEW publication provides all the essential repair and servicing data for over $\mathbf{1 , 4 5 0}$ models on our roads to－day．It has been writfen by forty specialists with the close co－operation of 85 leading firms．Com－ prising BRITISH AND CONTINENTAL CARS，COMMERCIAL VEHICLES， TRACTORS，etc．，it enables you to undertake any and every job－Engines，Components， Accessories and the Electrical side－efficient－ ly ，in minimum time，and to the satisfaction of your customers．Examine this new work free for 7 days－without obligation．QUICK－REF．DATA TABLES Throughout Newnes MOTOR REPAIR， quick reference is the keynote．Also for the first time in a work of this nature，servicing Data Tables have been compiled giving 90 DIFFERENT ITEMS for each make of vehicle－something like 100,000 entries ！
Everything you need for Profieable Servicing of Data arranged A－Z for quick reference to
models and components． 2,288 PHOTOS AND DRAWINGS and 250 Wiring Diagrams．

Case of 24 Quick－Ref．Wall Charts－from Trouble Tracing and Brake Layouts to Radio Fitting

3 Loose－Leaf Pocket Wallet of Wanted Data－－ always at instant call．

4
Free technical Consultancy Service for 2 years．Entitling you to specialised in－ worth pounds to yout

POST NOW－Absolutely no obligation！

多

GIVEN AWAY
 ＂MOTOR GYGLE

Servicing data for over 450 Models： Motor Cycles． Scooters，Mopeds and Light Cars． It includes data on
British and foreign carburettors，elec－ trical systems， fault finding，etc． Cloth bound for lasting wear． （Value 10／6．but yours free．）

George Newnes Ltd．，15－17 Long Acre，London，W．C．99．
（Use 2d．stamped unsealed envelope．）
Please send me Newnes MOTOR REPAIR including Wall Charts，Pocket Wallet and Free MOTOR CYCLE DATA BOOK without obligation to purchase．I wil return the set in 8 days or send $15 /$－deposit 8 days after delivery then fifteen monthly subscriptions of $20 /$－paying $£ 15.15 \mathrm{~s}$ ．in all．Cash price in $\mathbf{8}$ days is $£ 15$ ．

Name
Address
Tick $(\sqrt{ })_{\text {where apalicable }}$

Occupation
Your Signature
HouseOWNER
Houscholder
Livins with Parents
MR 36

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES " is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES " should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appointments Department.

WHICH OF THESE IS
 YOUR

MECHANICAL
ENGINEERING Gen. Mech. Eng.-Maino tenance - Draughtsman-ship-Heavy Diesel-Die \& Press Tool Work -Welding - Production Eng. Jig \& Tool Design - Sheet Metal Work- Works Management - Mining - Refrigeration - Metallurgy. AUTOMOBILE

ENGINEERING Gen. Automobile Eng.Maintenance \& Repairs-
High Speed DieselGarage Management. Quantities - Valuations.
WE HAVE A WIDE RANGE OF AERONAUTICAL COURSE C COURSES IN FORESTRY, TIMBER TECHNOLOGY, PLASTICS, G.P.O. ENG., TEXTILE TECHNOLOGY, ETC., ETC.

One of these qualifications would increase your earning power

WHICH ONE?

A.M.I.Mech.E., A.M.I.C.E., A.M.I.Prod.E., B.Sc., A.M.Brit.I.R.E, A.F.R.Ae.S., A.M.I.M.I., L.I.O.B., A.R.I.B.A. A.M.I.H. ${ }^{\&}$ V.E., M.R.S.H., A.R.I.C.S., A.M.I.E.D., CITY \& GUILDS, COMMON PRELIM., GEN. CERT. OF EDUCATION, ETC.

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W.8.
Phone: WEStern 9861

WHAT THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job.
- HOW to qualify for rapid promotion.
* HOW to put some valuable letters after your name and become a "key-man" quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
\$ WHERE today's real opportunities are ... and HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education of experience, YOU con succeed in any branch of Engineering that appeals to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," and if you are earning less than 620 a week you should send for your copy of this enlightening book now-FREE and without obligation.

POST NOW /8

то: B.I.E.T. 410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W. 8.

Please send me FREE and without
obligation, a copy of " ENGINEERING
OPPORTUNITIES." I am interested in
(state subject, exam., or career).
NAME
ADDRESS \qquad

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

FAIR COMMENT

THE AUTOMATION BOGEY

TTHE word "Automation " is a new one to most of us, or relatively new and from person to person interpretation of its meaning seems to vary a great deal. To the more optimistic it heralds a new age of economic prosperity, a higher standard of living, a shorter working week and more leisure. To others, particularly those who have already been affected by redundancy, it threatens unemployment with its attendant loss of living standard and privation. Few people apart from newspaper cartoonists visualise automation as an electronic robot, the gigantic steel figure with red flashing lights for eyes and a hollow booming voice, as dreamed up by the space fiction writers of a decade or two ago.

All these things are merely the possible effects of automation and there is no real reason why people should gloss over what it actually is by labelling it, " too technical." Complicated, many of its aspects certainly are, but, a lot of its more simple applications have been familiar to everyone for years. The thermostat is a simple form of automation-a type of automatic control; so is the valve in any of its forms, or the gyroscope. The automatic lift in your office building or the automatic safety device on your machine at work are both examples of automation and demonstrate the principle of automatic control, which it is visualised, may, some time in the distant future, result in the automatic factory.
This, however, is a long way off yet and the change over from manual to automatic control will, for a number of reasons, be necessarily a slow one. The worker's fear of becoming redundant overnight has no real justification. A certain amount of adjustment will be inevitable and the main trend will be towards higher skilled and better paid jobs. Arduous physical work has been eliminated in many spheres by the introduction of machines, for example, coal-cutting machines, mechanical grabs, fork lift trucks, snowploughs, and combine harvesters. Now automation will relieve man of some of the mental effort required in controlling this machinery. But just as machines cannot eliminate all physical work, neither is automation likely to replace completely man's intelligence.

It is true that some of the modern computers can answer problems in a few seconds that would require weeks of calculation on the part of a mathematician but the basic elements of the problem and procedure that the computer is required to follow must be provided by the operator and thus man must always be one jump ahead of any computing machine.
Provided the potentialities of this new advance in science and technology are intelligently harnessed to the country's economy, the results can only be beneficial. However many computers there are controlling however many machines, men will be required to maintain them, design them and to some extent operate them. There is no need to regard the advent of automation as a revolution; it is merely another step forward in the process of civilisation. The first machines were regarded with great suspicion by our ancestors and attempts were made to smash them before they took away craftsmen's employment. Eventually it became obvious that the advent of machinery was not a threat but a boon resulting in increased production and in turn benefiting the worker. In actual fact it was a long time before conditions in the factory became satisfactory, although this was no fault of the machines. Today standards of education are higher and it is reasonable to hope, therefore that automation will come to stay without too much disruption of the relations between management and labour.

Incidentally, it is not only in the field of production that the results of automation are likely to be noticed. Eventually aircraft, ships and trains may be driverless, a great deal of harvesting may become automatic, whole cities may be automatically temperature controlled and certainly the automatic shop is not far off.

The June 1960, issue will be published on May 31st. Order it now !

A. W. J. G.

Ord-Hume

LAST month introductory details of the Mechanikart were given and now we can proceed with the actual construction. Commence with the chassis.
The front and rear channel steel cross members are formed from 10 gauge mild steel. The front one is $28 \frac{1}{\mathrm{in}} \mathrm{i}$. in length and the rear one is 27 in . long. Mark and drill the $\frac{3}{8} \mathrm{in}$. holes in the lower flange of each, $9 \frac{5}{8} \mathrm{in}$. each side of the centre line in the front one and $7{ }^{\frac{5}{8}} \mathrm{in}$. each side from the centre of the rear. The true length of the side rails or longerons is $49 \frac{3}{3} \mathrm{in}$. These are made of 14 gauge mild steel and are $1 \ddagger i n$. broad \times iin. Lay them on their sides so that they face inwards (reference Fig. 1) and drill sing. dia. through the uppermost flange only at each end for bolting to the forward and rear cross members. Make absolutely certain that these holes are the same distance apart, otherwise the chassis will be out of true.

Obtain two lengths of hardwood such as ash or birch measuring $\frac{\mathrm{zin}}{\mathrm{in}} \times \mathrm{r}$ in. and shape them by rounding off two corners on the narrow dimension so that they fit snugly into the longerons.

Note that they are cut to stop just short of the four $\frac{3}{3}$ in. corner bolts. Scribe a centreline down the side of the longerons and mark off the positions of the holes as shown in Fig. 2. Transfer these locations from one longeron to the other so as to avoid discrepancies. Now drill straight through both steel and wood.

It is advisable to paint the longerons before inserting the wood filler as a protection against corrosion.

Loosely bolt the Iongerons to the rear cross member using $\frac{3}{8} \mathrm{in}$. bolts (plain shank of $\frac{1}{4} \mathrm{in}$.), plain washers and aircraft-pattern stiff-nuts.
Do not use plain nuts or shakeproof washers and do not rely on peening over bolts. The vibration in service is such that these locking devices might come loose, whereas the stiff-nut can be tightened if necessary. This is one reason why rivets have not been used anywhere in the assembly of this kart.
The seat (Fig. 3) should next be made, using 18 gauge mild steel plate. The curved flange

$1 \times 1 / 4 \times 14$ S.W G. mild steel channel
Fig. 1.-The side rails or longerons. The wood filler is held in place by the bolts which attach the various fittings through it.

Fig. 5.-Gusset (2 off, handed, 16g. M.S.).

Fig. 6.-Floor support (2 off, handed, 18g. M.S.).

Fig. 4.-Floor"(1 off, 18 g . M.S.).

at the rear should be formed last of all in order that the side flanges may help to stiffen the panel. Cut a piece of blockboard or hardwood with an 18 in . radius on one side and use this to dress the flange over. If a mallet and block of wood are used, the flange should not distort. Do not drill any holes in the flange for the present.
It will be seen that there is only one hole shown drilled in the seat side. This is to avoid misalignment of holes due to faulty marking out. Bolt the seat into place between the longerons using the one hole provided.
Next make up the foot tray (Fig. 4), again from 18 gauge mild steel. The depression in this permits a comfortable heel location. Place the tray in position on top of the longerons, put the front cross member on top of it and bolt down through with the two fin. corner bolts. Now mark with a pencil where the holes come on the wooden fillers at the lugs on the rear of the tray. Bend the tray up slightly and drill through $\frac{3}{10}$ in. dia.
Bolt through these lugs. Note that all bolts have their heads either on the outside of the frame or on the top, nuts being inside or underneath. This improves the appearance and also reduces protrusions which might injure another driver in a collision.

Make up the front gussets (Fig. 5) and the floor supports (Fig. 6). Clamp the floor supports in place underneath the floor whilst the bolt holes are drilled to match the holes in the longerons. Then bolt through the gusset, longeron and floor support. Again, do not
tighten up any nuts for the moment. This is to permit any slight movement required to align the parts.

The rear gussets (Fig. 7) are made next, and, having removed the rear cross member bolts, they are sandwiched between the longerons and the rear cross member and bolted up. Mark the centres of the two $\frac{3}{18} \mathrm{in}$. dia. holes in the gussets which pass down through the longerons, slip the gusset to one side and drill right through the longeron. Do not use the hole in the gusset to locate the drill as this will tend to elongate the gusset holes. The outboard ends of these gussets are located by the bolts which later secure the rear axles in place.
The next pieces to be made are the seat supports (Fig. 8) and the side gussets (Fig. 9). Offer the seat support into place and scribe through the holes in the flange at the rear for the bolt holes through the rear cross member. Remove the seat support and drill these holes in the rear cross member. Now assemble the seat supports and the side gussets.
Having made sure that the chassis is correctly assembled, tighten up the bolts and drill all the remaining bolt holes through the longerons.
Next month the fitting of the seat-back, engine mounting, stub axles, wheels and engine will be dealt with.

Fig. 3. (Top)-Seat (one off, 18 g . M.S.).

Fig. 7. (Above)-Gusset (2 off, Fig: 9.--Seat support (2 handed, 16 g . M.S.).
off, handed, 18g, M.S.).

1/4"B.S.F hex head bolt, plain washer and stiffnut

 front and rear

by A. E. Bensusan

THE dry mounting of photo prints is clean, simple and efficient. The print is trimmed to size and a sheet of special dry-mounting tissue-a shellac-coated thin paper-is placed over the back so that it slightly overlaps the edges. If a sheet of sufficient size is not available, two or more sheets may be used, placed edge to edge. Now, an old spoon, fitted with an insulating handle, or a clean soldering iron is heated and plunged on to the centre of the tissue to make it adhere to the print (Fig. 1). This should be done in the centre only.
Next trim the tissue so that the edge is about $\frac{1}{3} \frac{1}{2} \mathrm{in}$. inside that of the print, using a sharp knife or a razor blade and a metal straight edge (Fig. 2). Apply only the lightest pressure to avoid cutting the print. Place the print in its correct position on the mount, lift each corner in turn and tack the tissue down on to the mount with the heated spoon or soldering iron (Fig. 3).

The print and mount should now hold togèther in their correct

Fig. 1.-Tacking the tissue on to the print.

Fig. 2.-Trimming the tissue.
relationship while a double sheet of ordinary tissue paper is placed on top and the print ironed down with a domestic electric iron or flat-iron (Fig. 4). Work from the centre to one end, lift the iron off and apply a book or other flat object under hand pressure for about a minute (Fig. 5). Then repeat the process for the other end of the print.

Special attention can next be given to any parts which have failed to stick down. Keep the iron moving all the time and do not apply too much pressure or you will mark the print. If the print sticks to the tissue but the latter does not stick to the mount, insufficient heat is being applied. Too much heat makes the tissue stick to the mount but not to the print.

This is a good way of mounting your photographic prints says our expert.

Fig. 3.-Tacking the tissue on to the mount.

Fig. 4.-Ironing down the print.

Fig. 5.-Pressing dowen the print with a book.

THE smart picnic case, shown in Fig. 1, contains everything you need to ensure a successful picnic-excluding good weather! The contents can be seen in Fig. 2 and all these are readily obtainable from a very well-known nationwide multi-branch chemists. If items other than those shown in the photograph are being used, the partitions must be rearranged to suit, but the general principles of construction will remain the same. The wood parts should preferably be assembled using al butt joints and a waterproof glue such as "Cascamite" or "Aerolite." The maker's instructions regarding mixing and application should be carefully followed.

Construction

First assemble the four pieces of tin. plywood to form the outer case, glueing the joints and driving in rin. No. 16 panel pins on the skew or lin. No. 4 countersunk wood screws in previously drilled holes. Then glue

and pin in position the top and bottom sheets of $\frac{3}{16} \mathrm{in}$. plywood, using ${ }_{3}^{3} \mathrm{in}$. No. 20 panel pins or $\frac{3}{4}$ in. No. 4 countersunk screws. See Fig. 5 . When the glue is fully set, mark off a line $3^{3} \mathrm{in}$. from one face round all sides of the box and another $\mathrm{l} \frac{7}{8} \mathrm{in}$. from the opposite face. This will leave a gap of $\frac{1}{2}$. between the lines. Cut right round with a saw, keeping between the lines, and dress off both faces so that they come together squarely and closely all round. Then smoothly radius all edges and corners.

Clamp the two halves together with paper packing between them equal to four thicknesses of the leathercloth with which the outside is to be covered. Now mark off and locate the hinges, toggle fasteners and handle (Fig. 6). Drill through the rivet holes for securing them, inserting rivets in each hole as drilled to ensure register on assembly. Then remove fittings, rivets and clamps, and sand off any rough edges.

Fig. 2.-The case opened to show contents.

Saw through completed box cutting between chain dotted lines

It can be made for a few shillings

The Separator Place the deeper half of the case open side up and temporarily fit the four lining strips of $\frac{1}{3}$ in. plywood to the sides and ends (Fig. 3), putting paper equal to two thicknesses of leathercloth between the case sides and each strip. On the $15 \frac{3}{3} \mathrm{in}$. separator

Fig. 5. (top)-Separating box and lid.
Fig. 6.-Positioning hinges, fasteners and handle.
strip of \ddagger in. plywood mark the position of the other separator strips. Join together as shown in Fig. 4, dressing the ends as necessary to make the whole a push fit into the inside of the case. The whole should then be glued and pinned or screwed as was the outside of the case. The assembly may be put in the case to set and a thickness of paper should separate the interior from the case to prevent accidental glue adhesion. It is intended that the finished separator assembly should be removable for easy cleaning.

Covering

Lay the leathercloth for the outer covering on a flat surface and locate the bottom of the case so that there is at least 5 in．of leathercloth extending beyond the case on each side（A in Fig．7）．Mark round the case with pencil and with a straight edge extend the line of the long sides to the edge of the leathercloth．Cut the cloth along these lines from the corner of the case to the edge．Fold the cloth up the $21 \frac{1}{2} \mathrm{in}$ ．sides of the case and turn the ends along the other sides of the case，then cut two pieces of leathercloth to fill the gap on the ends between pencil marks（B）．

MATERIALS REQUIRED

亲in．plywood： 2 pieces 2 rin．$\times 5_{8}^{\frac{8}{8} \mathrm{in} .}$ 2 pieces ${ }^{5} \frac{1}{2} \mathrm{in}$ in．$\times{ }^{\frac{3}{8} \text { in }}$ I piece $1 \frac{1}{2} \frac{1}{2} \mathrm{in} . \times 3 \frac{6}{8} \mathrm{in}$ ． 2 pieces $10 \frac{1}{2} \mathrm{in} . \times 3$ 券in．
 2 pieces $3 \frac{1}{2} \mathrm{in} . \times 3 \frac{6}{8} \mathrm{in}$ ．

苗in．plywood： 2 pieces $21 \frac{1}{2} \mathrm{in} . \times 15 \frac{1}{2} \mathrm{in}$ ．
bin．plywood： 2 pieces 2 in．$\times 33^{\frac{6}{8} \mathrm{in}}$ ．

I piece 9 in ．$\times 3 \frac{3}{8} \mathrm{in}$ ．
${ }^{1}$ piece $12 \frac{1}{2} \mathrm{in}$ ．$\times 3 \frac{5}{8} \frac{\mathrm{~g}}{\mathrm{in}} \mathrm{in}$ ．
Miscellaneous：Leathercloth 54 in ．\times 36 in ．（outside）， $60 \mathrm{in} . \times 36 \mathrm{in}$ ．（inside）， glue，adhesive，panel pins，screws， plastic strip，fasteners，hinges，toggle fasteners，carrying handle．

Giving a Hand，submitted by Jameson Erroll．

ACERTAIN number of men decide to make the Luton Minor Aircraft de－ scribed in recent issues for the benefit of their flying club．Each gives the same amount of time and they work at uniform speed．When the job is completed they are so pleased with the result that they decide to shake hands with each other and invite the President，who was not one of them，to contribute 2s．6d．per handshake to club funds．When approached， however，he does some mental arithmetic and insists on contributing exactly $£ 9$ ，no more，no less，and also insists that this sum must be represented in 2 s ． 6 d．handshakes in which he will also participate．As a result，he shakes hands with a certain number of the men who did the job．

The problem is to discover how much longer the Aircraft would have taken to make if the men with whom the President shook hands had not assisted in the work．

Answer

：лачро чэва чдмм sривч әүечя

PRACTICAL MOTORIST

MAY ISSUE NOW ON SALE
Including Free Booklet，＂Economy Motoring＂

PRINCIPAL CONTENTS
Reducing Nolse Level in a Car
Map Boards（Rally Navigation Series） Studs and Nuts．
Cob Comfort．
A Brake Fluid Warning Light．
A＂Pre－Delivery＂Check on your New Car．
Overhauling the Singer Gazelle Gearbox．
Beginner＇s Guide to the Motor Car．
Sunbeam Mark III Overhaul．
Overhauling the Morris Oxford MO Series．
Choosing the Right Second Hand Car．
Garage Mechanic＇s Diary．
and many other interesting articles．

Man's most ambitious project

RUSSIAN engineers and weather men have drawn up plans for a fantastic scheme that would change the climate of all the Arctic countries. If their scheme is ever put into practice, lands which are now barren frozen wastes may in years to come be fertile farms. The key to this amazing proposal is a dam across the Bering Strait. A dam stretching from Siberia to Alaska, over fifty miles in length. A dam so big that it would dwarf any man-made structure in the world today.

Aim of the Scheme

What the Russians hope to achieve is the warming of the Arctic Ocean. They claim that when they have raised the temperature of this inhospitable sea they will also have eliminated the prime cause of most of the Northern Hemisphere's bad weather. Once the cause of the bad weather has been removed and the winters are milder, millions of square miles of frozen lands will thaw. This can then be used as farmland.

How It Would Work

To understand how this vast scheme would work it is necessary to understand the effect the oceans of the world have on the weather. Take, for example, two cities-Bordeaux and Montreal. Both these cities lie on roughly the same latitude. If other factors did not come into play, they should have more or less the same climate. In actual fact, however, these cities have quite different climates, the average winter temperature in Montreal being 16 deg. of frost, whereas Bordeaux has a mild 50 deg. F. average winter temperature. The reason for this difference is that Bordeaux lies in the
path of the warm Gulf Stream, whereas the eastern shores of Canada are washed by the icy Labrador Current. Warm seas and warm winters go together, and conversely cold seas mean cold winters.

What is true for these two cities is also true for the rest of the world. When a country is surrounded by warm seas, or when the

By R. N. Hadden

prevailing wind blows off a warm sea, the climate is mild. On the other hand when the seas are cold the climate is cold. This then is the theory behind the Russian plan-if they can warm the Arctic Ocean it follows that the climate of the northern countries will become milder.

Fig. 1.-Map showing Gulf Stream and
Labrador current.

Fig. 2. (Left)Rock filled section of dam as will be used at the two ends.

Fig. 3. (Right)The main section of the dam containing the pumps will be constructed of reinforced concrete.

Fig. 4.-Building a section.

Fig. 5.-Towing a section to the site.
as might be expected, this is an icy current. It is this current which gives Canada its cold winters.

Another important thing to note from this map is that the Arctic Ocean itself has very few currents. In other words it is a stagnant, icy sea, which stores up coldness which in turn freezes the winds before they blast down on the northern countries. It is this situation which the Russians hope to change.

The Russian plan is to build a dam across the Bering Strait, and to pump the cold water from the Arctic Ocean into the Pacific. They say that when they do this the Gulf Stream will not end its journey where it does, but will surge right across the Arctic and the North Pole, and in its turn be pumped into the Pacific. In doing so it will warm the whole Arctic Ocean and so eliminate the conditions which create the harsh weather. This too is shown in Fig. 1.

Affect on the Pacific

There is no doubt that this scheme would benefit Europe, Northern Canada, and Siberia, but what will happen to the countries which will lie in the path of the new current from the Bering Dam? Will they be condernned to freeze as the icy waters from the Arctic are pumped out? A glance at the map of the Pacific will show that, in fact, the problem does not exist. As will be seen, the land on either side of the Strait falls back very quickly, giving free access to the Pacific Ocean. Therefore the current from the Bering dam would be quickly spread out and lost in the vastness of the Ocean. For this reason the effect on the climate of the countries bordering the Pacific would be insignificant.

Practical Aspects

There are three main items which would have to be built to make the scheme a reality. They are the dam, the pumps, and the power stations to supply electricity for the pumps.
three-quarters of the length of the dam would be required to house the pumps, and that the pumps themselves would be 4 oft. in diameter.

The Two Ends

In view of the foregoing considerations it is probable that the dam would be designed in two parts. The ten miles nearest to either shore would be an earth-filled dam as shown in Fig. 2. An earth-filled dam would have several advantages for these sections. The first is that material for building it would be readily available on either shore. Another is that it would be comparatively easy to build, as in the early stages the material would be loaded into barges and towed out to position where it would be dumped. When the filling had reached the water surface the extra material required to finish the dam would be hauled out in giant trucks. When the dam was up to full height a facing of boulders would be laid to protect it from heavy seas.

The Centre

While an earth-filled dam would be fairly easy to construct it would not be suitable for housing the pumps. For this reason the centre portion of the dam containing the pumps would be made - from reinforced concrete. A sketch of the probable shape of this part of the dam is shown in Fig. 3.
In view of the difficulties which would be experienced in building the reinforced concrete part of the dam in the middle of the Strait under Arctic conditions, it has been suggested that it should

Fig. 6. -Section partly filled with water to bring it into a vertical position.
would be connected by land. It should even be possible to travel from Britain by land, as the Channel Tunnel will probably have been completed.

Pump Details

The next important part of the scheme to consider is the pumps. These pumps would be unusual in several respects. One unusual feature would be that they would not have to pump at great pressure. They would only have to take water from one side of the dam and push it out the other. However they would have to handle tremendous quantities; their output would not be measured in gallons per minute, but in tons per second. The most suitable type of pump for this duty would be the axial flow design, which is very similar to a ship's propeller, and would be about 30 ft . in diameter.

The electric motors to drive these pumps would also be unusual as they would be of the submerged type. This design would have the advantage of enabling a direct drive to be used. The motors would be giants, probably not less than 50,000 h.p. each. To prevent water getting into the windings and also to cool them, pressurised hydrogen would be circulated.

Power

To provide power for the pumps would be an engineering feat in itself. It is almost certain that atomic power stations would be used. These power stations would probably be of the fast breeder type, as the indications are that these would be the most economical to run. The constant load requirements of the pumps would be a great advantage as the power stations could run at constant load day in day out.

So much then for the practical engineering side of the scheme, the only thing that stands in the way of its realisation is obtaining the
agreement of all the countries concerned. This may be a much longer process than building the dam. The other question is who will pay for it? The Estimated cost is £600,000,000. Probably if the scheme goes ahead Russia, Canada and the U.S.A. will bear the cost between them.
That then is the Bering Dam scheme, it is certainly fantastic but no more so than sending a rocket round the moon. As one Russian engineer said, "When the cold war has thawed we can then set about thawing the Arctic."

Fig. 7.-Our artist's impression of the section in position and the pumps about to be installed.

NEWS AFLOAT

from home and abroad

A U.S. Johnson outboard motor in use on a dug-owt canoe.

Home

THE above "Flat-Afloat" was exhibited at the Daily Mail Ideal Home Exhibition earlier this year. It is completely unconventional in design and is a kind of caravan mounted on a catamaran type unsinkable hull. It is easy to steer and manoeuvre. There is no vibration from the $10 \mathrm{~h} . \mathrm{p}$. outboard motor, which enables the Flat to cruise comfortably at 5 m.p.h. Its accommodation includes two single and one double interior sprung berths, spacious storage room beneath the bunks, a built-in wardrobe, sideboard and store cupboard; gas cooker and gas lighting. Electric light, either mains or battery can easily be arranged. The basic price of this home afloat is $£ 795$.

Abroad

NE of the little-known tools in Africa's evolution is the outboard motor, which is mechanising the fishing fleets, propelling native craft up and down Africa's rivers. Along the coast of Angola, more and more outboard motors can be seen on the native dug-out canoes (see photograph left). Unusual methods often have to be used to adapt these engines to the narrow, roundsterned craft, but the advantages that the fisherman can derive are great.

How to Test the Shutter Speeds
on your
Camera

ACCURATE exposure has always been the first essential of good photography, and this is especially true where colour film is concerned. With colour film the usual tolerance in exposure is half a stop up or down.
However, it is not always appreciated that the setting of the aperture to an exact reading is of little use if the shutter speed itself is not accurate. For this reason, if there is any doubt about the accuracy of the shutter speeds, they should be checked before any film is wasted.

Fig. 2.-Copies of typical photographs taken when timing shutters. The one above shows an exposiore of $I / I T$ second and right $I / 25$ second. knowing the speed of rotation, the actual exposure time can be calculated.

In the tests made by the author the rotating arm was 12 in . long, and two 2.5 volt 0.3 amp flashlight bulbs were used. One bulb was at the end of the arm, and the other at the centre line of rotation. The speed of rotation was 1,1IO r.p.m. The set-up being shown in Fig. I, while Fig. 2 was copied from a typical photograph taken at $1 / 100$ second.

On the photographs obtained the actual points where the shutter starts to open and finally closes is quite definite, but the points

Basic Principle

The basic principle is that a small light at the end of a rapidly rotating arm is photographed. The photograph so obtained is in the form of a circle or part circle of light, depending on if the shutter remained open for a full revolution or only a part. This then is the key to the problem, the speed of the rotating light is set so that the photograph is of a part circle, and hence
close, require some care in location. It does of course, help to take the photographs in a darkened room.

The Results

To work out the results from the photographs obtained decide on the four points, shutter starts to open, shutter fully open, shutter starts to close, and shutter closed.

Fig. 3.-Working out the results.
Then draw lines from these points to the centre of the circle, which is located by the central light, and measure the angles, as shown in Fig. 3. Then the exposure can be worked out from the following formula :-

Shutter speed $=\frac{a+2 b+c}{12 N}$
Where $a=$ Opening angle

$$
\begin{aligned}
\mathrm{b} & =\text { Shutter fully open angle } \\
\mathrm{c} & =\text { Closing angle } \\
\mathrm{N} & =\text { Revolutions per minute }
\end{aligned}
$$

In the case shown the shutter speed was set to $1 / 100$ second, and $a=6.5^{\circ}, b=66^{\circ}$, $c=6.5^{\circ}$, and $\mathrm{N}_{1,110}$ r.p.m. This gives an actual exposure time of $1 / 90$ second, or in other words the speed is io per cent. slower than the nominal value, and the aperture must be reduced by $\mathbf{x} / \mathbf{1 0}$ of stop to correct for it.

When figures have been obtained for all speeds, they may be plotted on a graph to show the number of stops increase or decrease for each setting. This is shown in Fig. 4, from which it is seen that on average the camera tested required quarter of a stop decrease at each speed to give correct exposures. In practice an error of this amount is not serious and generally can be ignored.
(Concluded on page 341)

The Author using his bandsaw.

Aswill be seen from Fig. I this machine is a full-size, sturdy job made for hard work. It stands 5 ft . high, takes a 95 in. blade, has an 18 in. throat, will take wood up to 5 in . thick and-by the mere change of the driving belt and blade-will cut metal quickly and accurately.
Generally speaking, the bandsaw is used for cutting shapes in wood (or metal within reason) but it can be used for straight cuts if required. The wide throat permits work to be carried out up to the centre of 3 ft . wide panels and, with a $\frac{\mathrm{s}}{3} \mathrm{in}$. wide sawblade, circles down to a diameter of 3 in . can be cut internally. With external cuts considerably sharper curves are possible since the wood can be "wasted "away. Internal curves to which no outside entry is possible cannot be cut.
Metal cutting involves a specially hardened and close-toothed blade and a very much slower running speed. This latter is accomplished through two loose pulleys shown in Fig. 5. If the machine is to be built for wood cutting only, the loose pulleys and roin. driven pulley may be omitted and the overall length of the main frame reduced by about 6 in. Details of construction will, however, be given for the complete machine.

The Main Frame

This consists of a sheet of thin. plywood $38 \mathrm{in} . \times 28 \mathrm{in}$. braced as shown in Fig. 2 by $4 \mathrm{in} . \times \frac{1}{2} \mathrm{i}$. deal which serves not only to add strength and rigidity to the plywood but also to furnish a firm anchorage for the bandwheel bearing plates. The $\frac{1}{2} \mathrm{in}$. thickness is almost essential, so buy 1 in. timber and have it planed down to exactly. $1 \frac{1}{2}$ in. thick.

These braces when cut as shown in Fig. 2 may be screwed on from the back with a few screws at intervals. These screws serve more to keep the braces in place than as strong fixing mediums since the bolting on of the bearing plates also firmly fixes the braces to the plywood. The small block $3 \frac{3}{4} \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in}$. shown at the right of Fig. 2 carries part of the saw guide holder. Note also in Fig. 2 that two I in. wide grooves are shown, cut vertically in the top brace and at 45 deg . in the top of the side brace. These grooves are about $\frac{1}{2}$ in. deep and allow the adjusting nuts incorporated in the two top bandwheels to move freely up and down. This fitting will be explained later but the grooves may well be cut before the braces are secured to the plywood. The centre of the vertical groove is $5 \frac{3}{3}$ in. from the end of the top brace while the 45 deg. groove is central as shown. Note particularly that the ends of all three braces do not reach the sides

Jameon frroll describes the construction of a 4 -wheel BANDSAWH for
wood or metal
 with the covers removed showing general arrangement of the parts.

of the plywood by 8 in.; this is to accommodate the $4 i n . \times 3 i n$. sides to be added later; see Fig. 2. Holes to accommodate the bearing blocks should not be bored at this stage.

The gin. $\times 4$ in. $\times 1 \frac{1}{2}$ in. block to carry the bearing for the loose pulleys (Fig. 2) may also be fixed although it should not be bored. The filling block can be added later.

The Bandwheel Kit

It is almost impossible, and certainly not advisable for the anateur to attempt to make the bandwheels. Messrs. S. \& G. Sergent, Manufacturing Engineers of Costessey, Norwich, Norfolk, have produced two complete kits of parts-one for the wood-cutting model, and one for both wood and metal cutting. Reference to the "Materials Required" will show of what these kits consist. Figs. 3 and 4 show some of the parts supplied.

The bardwheels themselves are of strong construction and run smoothly in bronze bushed bearings force-fitted into substantial bearing plates which are easily fixed by means of four 3 in . \times in. Whit. bolts.

It will be seen that these wheels are of two types-adjustable and fixed. The bearings of the former ride in a slotted backplate and, through the medium of a tensioning bolt, have an adjusting range of about $3 i n$. This adjustment can easily be made from the front of the machine by means of a tommy bar (any length of metal under $\frac{5}{16} \mathrm{in}$. dia.) and can be locked firmly in position. Two of these adjustable bandwheels are used, so the combined range of tensioning is about 6 in . This liberal range perrnits the use of slightly shorter blades than the 95 in. one supplied and thus makes ample
allowance for the necessary shortening of the blade when it breaks and has to be brazed.

The saw guide holder has an extensive range of adjustment-well within the limits of the machine-and embraces a steel thrust wheel to take saw pressure and two ebonite saw guides to obviate side movement when rounding curves.

Fixing the Bandwheels

Beginning with the top right-hand wheel, adjust the tensioning screw to approximately half way so that the centre of the wheel is in the centre of the backplate. Fix the plate in position and mark and bore the $\frac{5}{18} \frac{\mathrm{in} \text {. holes for }}{}$ the bolts. These pass through the $4 \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in}$. brace and the plywood, and are fastened with washers and nuts.

The top left-hand wheel, also of the adjustable type, is fixed in a similar manner except that the tensioning bolt is screwed right home so that the wheel is at its highest possible point. Note that this backplate is fixed at 45 deg . in this case to allow the tensioning bolt to be reached easily, i.e. in the rightangled junction of the top and side braces. The first wheel having been fixed with its centre 6 in . from the edge of the plywood, the centre of the second wheel should approximate $15 / 16 \mathrm{in}$. from it-the distance is not critical within a f in. or so.

The remaining two bandwheels are not of the adjusting type and call for a different method of fixing. The bearing plates on these wheels carry behind them a bush housing which is roughly $1 \frac{1}{2} \mathrm{in}$. dia. It actually tapers slightly, being less than $1 \frac{1}{2} \mathrm{in}$. at the rear and a little over $1 \frac{1}{2} \mathrm{in}$. where it joins the plate. The
best way to bore a suitable hole for them is first to use a 2 in . centre bit for a depth of about $\frac{8}{8}$ in. and then continue right through with a $1 \frac{1}{2}$ in. bit. Fix as before with 3 in. x $\frac{5}{16}$ in. bolts, washers and nuts. To check up on distances, the saw may now be tried on the wheels. A slight adjustment of the tensioning bolt on the top right-hand wheel should make for a satisfactory fit. This tensioning bolt was substituted by a $5 \frac{1}{2} \mathrm{in}$. length of $\frac{5}{16} \mathrm{in}$. rod to the end of which was fixed a turning device.

LIST OF MATERIALS REQUIRED

For the Wood-cutting Saw only:
Kit BS 4 W from Messrs. S. \& G. Sergent, Manufacturing Engineers, Costessey, Norwich, Norrolk, which comprises two adjustable
bandwheels and two fixed bandwheels complete with bearings, etc., one saw guide holder, one "A" type sin. dia. Vee pulley, and one wood-cutting saw blade 95 in.
${ }_{8}$ piece $\frac{1}{2}$ in. plywood $32 \mathrm{in} . \times 28 \mathrm{in}$.
7 fr. deal 4 in. $x 1 \frac{1}{2}$ in. (for braces). 1 piece deal 6 in. $\times 4$ in. $\times 2 i n$. (bme).
7 ft deal 4 in . \times in. (for side frame).
I piece stiff fibre board 4 ft . 6 in . $\times 4 \mathrm{in}$. wide
I piece deal 15 in. \times rin. $\times \neq$ in. (table support).
I piece hardwood roin. $\times 5 \frac{1}{\mathrm{i}} \mathrm{in}$. \times iin. (trunnions)
I piece $\frac{1}{2}$. ply 24 in . x 14in. (table top).
3 pieces deal $30 \mathrm{in} . \times 3$ in. $\times 2$ in. (legs).
2 pieces hardboard $28 \mathrm{in} . \times 12 \mathrm{in}$. (top and bottom doors).
I piece hardboard $12 \mathrm{in} . \times 8 \mathrm{in}$. (side door).
I piece lin. plywood of size suitable for motor board.
3 pairs 1 lin. light hinges for doors.
${ }_{16}$ Whitworth bolts 3 in. $\times \frac{8}{8} \mathrm{in}$. with washers and nuts.
2 Whitworth coach bolts $3 \mathrm{in} . \times \mathrm{in}$. with washers and wingnuts.
Material for lower thrust wheel,
Several dozen assorted wood screws.
Grey matt paint for giving finished appearance to non-working parts.

For the Wood-cutting and Metal-cutting Saw: Kit BS ${ }_{4}$ WM from Messrs. S. \& G. Sergent which comprises the $\mathrm{BS}_{4} \mathrm{~W}$ Kit plus an additional bearing plate, a 6 in . length of lin. shafting, one 2 in. and two 10in. " A" type Vee pulleys, and a metal-cutting sawblade.
I piece
8 fin . 6 in . deal 4 in . \times, 38 in . $\times 28 \mathrm{in}$.
(for braces)
1 piece deal $\frac{1}{2} \mathrm{in}$. $\times 4 \mathrm{in}$. $\times 2$ fin. (filling block).
3 pieces deal 24 in . $x 3 \mathrm{in}$. x zin. (legs).
1 piece hardboard 28 in . $\times 12 \mathrm{in}$. (rop door).
" piece hardboard 28in. $x 18 \mathrm{in}$. (bottom door).
"A" type Vee belt 40 in . for connecting 2 in . wheel.
All other materials for the $\mathrm{BS}_{4} \mathrm{~W}$ machine not already mentioned plus four more bolts 3 in. $\times \frac{3}{6}$ in.
In addition to both the above lists, a driving belt of suitable length will be required for the wood-cutting machine, and two driving beits for the wood-curting and metal-cutting machine.

Easier adjustment was provided since it clears the rim of the bandwheel.

Fig. 2 should be constantly referred to when fitting the bandwheels, and at this stage they may be tested for alignment. Loosen the blade slightly, push it against all four wheel flanges, then re-tension-but not too tightly. Now revolve one of the wheels and note if the saw tends to move forward in its continuous passage around the wheels. It should not do so, but if it does, it may be necessary to pack one of the bearer plates slightly to give the wheel an upward cant. This is called tracking and should be repeated later when construction is sufficiently advanced to use the slow speed. The faster the blade travels, the easier it is to check on tracking, but any tendency to run out of true must be remedied before the machine is run at top speed: a badly-tracked blade which runs off at speed can be dangerous.

The saw guide holder may also be fixed at this stage and this should be done when the saw is in position and tightened up. Two 3 in. $\times \frac{3}{8} \mathrm{in}$. coach bolts with washers and flynuts fasten the holder to the machine. Three holes are bored in order to give ample vertical play and the slot in the holder permits height adjustment when the flynuts at the back are loosened. Take great care when boring these holes to ensure that the holder moves vertically in line with the saw; the ebonite blade guides are principally intended to check side play of the blade when under pressure and should not be used to correct a bad alignment of the holder.

The Loose Pulleys

In order to reduce speed considerably when cutting metal, a chain of 2in.-10in./2in.- Ioin. pulleys has been adopted. The loose pulleys -one 2 in . and one roin. on the same shaftrun in a bearing plate supplied with the kit, and this plate is fixed to the gin. $\times 4 \mathrm{in} . \times$ $1 \frac{1}{2}$ in. block as shown in Fig. 2. The distance of the centre of this bearing from the centre of the bandwheel carrying the roin. fixed pulley can vary slightly according to the size of Vee belt used. If this latter has to be bought, then buy a 4oin. belt and fix the two centres $10 \frac{1}{2}$ in. apart. This can be seen in Fig. 5 and a further diagram next month will make it clear. If, however, a 4 rin. or 42 in. belt happens to be available, it can be used by slightly increasing the distance between the two centres. Further information on this subject is given later when the question of fitting the motor is discussed.

After the bearing plate has been fixed, a filling block $5 \frac{1}{2} \mathrm{in} . \times 4 \mathrm{in}$. $\times 2 \frac{1}{2} \mathrm{in}$. is added as shown inset in Fig. 2. This is cut away to clear the bearing plate and is then fixed with four $3 \frac{1}{2} \mathrm{in}$. No. Io c'sk wood screws. This filling piece gives added support to the bottom of the side frame which carries considerable weight. The two loose pulleys are fixed to the 6 in . length of $\frac{5}{8} \mathrm{in}$. shafting by means of the grub screws, the shaft being passed through the
bush, and fixed on the inside of the machine with a $\frac{5}{8} \mathrm{in}$. collar. The roin. fixed pulley may now be attached to the shaft on the bottom left bandwheel (threading the belt on at the same time) and the 5 in. pulley fixed to the lower right bandwheel.

The Side Frame

This consists in the main of varying lengths of $4 \mathrm{in} . \times{ }^{\frac{3}{4}} \mathrm{in}$. deal and is shown in Fig. 2. The block " B " is a 6 in . length of 4 in . $\times 2 \mathrm{in}$. added to give support at the throat end and may, at this stage, be added together with the batten ${ }_{5} 5$ in. \times rin. $\times \frac{3}{4}$ in. which runs along the bottom edge of the throat and gives extra support to the table.

The throat may also be cut out now; it runs back to a depth of 18 in . and has a height of $6 \frac{1}{4} \mathrm{in}$.: note that the bottom outside corner is cut away in. in at 45 deg . to allow for part of the table tilting. In Fig. 2 it will be noticed that the side frames rest on the face of the plywood in some cases between the end of the braces and the edge of the plywood-and that these side pieces will, therefore, have to be screwed from the back of the plywood. To give them further support, where necessary, small but strong metal brackets are added; these can be seen in Fig. I.

Sides for the rounded corners are made from good quality fibre board about $\frac{1}{16} \mathrm{in}$. thick; they overlap the wooden sides by I $\frac{1}{3} \mathrm{in}$. to 2 in . and are firmly screwed into

Fig. 5.-Loose pulley arrangement.
them (about eight screws per corner) as well as being screwed into the edge of the plywood. It is advisable to punch holes in the fibre board to take the screws and also to drill the edge of the plywood a little so that the body of the screw does not force the laminations apart. Note that the lower front length of $4 \mathrm{in} . \times \frac{3}{4} \mathrm{in}$. is bevelled on its top edge to match up with the corner of the throat.

Since the machine is now becoming somewhat unwieldy and heavy to move about, it may well be mounted either on the bench or table or on legs with, perhaps, its own motor.
(To be contimued)

Exposure Measurement

(Concluded from page 338)

The result for I/500 second js interesting as it shows that the shutter is hardly open before it starts to close again. The total time from when the shutter just starts to open to when it is fully closed again is exactly double the rated exposure or I/250 second.

In general the opening and closing times at all speeds were equal, being about $1 / 800$ of a second. This was for a Syncro Compur shutter.

For the slower shutter speeds the speed of rotation has to be reduced, otherwise the photograph turns out 'to be a complete circle. For I/ro second and longer the author

THE materials required are one or two wood-centre spools (Agfa still use this type) and one or two all-metal spools, all 120 size. A photographic chemist will usually supply these free; a 35 mm . film cassette which will also be required can be obtained from the same source for about 6 d . The tools required are few and include a $\frac{1}{16} \mathrm{in}$. thick ward file and a penknife.

The Spool Adaptors

Note that the dimensions are given in millimetres; this is because spools are still made in metric sizes.
To make the adaptor shown on the left of Fig. 1, cut off the driving slot end of a wooden spool 21 mm . from the inside of the metal rim. Next cut a piece of thin sheet metal and wrap it around the body, using it as a safeguard and guide to make the 9 mm . dia. portion the correct length. Before finishing the diameter, file in the $2 \frac{1}{2} \mathrm{~mm}$. slot. Make another adaptor exactly the same and then finish and adjust both to make a spring push fit in the driving end of the cassette.
The other adaptor, shown on the right of Fig. I is made from a 120 metal spool. Mark off the 11 mm . dimension, notch around with a file, break off and smooth off the end and internal diameter. Two will be required.

The final adjustment is made by assembling both ends on the cassettes and making sure the overall length is correct by checking against an uncut 120 spool.

The Mask

It is, of course, not possible to detail a mask suitable for every 120 camera, but Fig. 2 shows the general method of construction. A piece of $\frac{1}{4}$. thick soft wood is cut an easy fit for the inside of the camera.
§\#

A rectangular hole, $24 \mathrm{~mm} . \times 36 \mathrm{~mm}$. (捼in. $\times \frac{{ }_{3}}{3} \mathrm{in}$.) is cut and the edges bevelled as shown. Two thin metal strips, set $1 \frac{15}{18}$ in. apart with the ends bent over to clip in between body and film rollers are cemented on to the wood. To do this rule two pencil lines ${ }_{68}{ }^{6} \mathrm{in}$. apart as guides to the edge of the wood, which is placed in the camera body while the strips are cemented; when tacky, the mask with the strips in place is removed and clamped under a weight. Finally a piece of black velvet is cemented on the sides of the wood, making the mask a push fit into the camera body. The 揞in. slot or gap prevents scratching of the film while the notched edges of the film slide over the metal strips and the original camera rollers.

The window or counter device registering the number of shots will no longer be of use, but it has been found in practice that $\frac{5}{8}$ of one complete turn of the winding , knob is exactly right. The total number of shots taken can be ticked off on a card numbered up to 36 and fixed to the camera or inside the everready case.

Changing the Film

If there is no windback mechanism, when all the exposures have been made and if the end of the film is still held in the now empty cassette, the film will have to be changed in a darkroom or changing bag-unless the last two or three exposures are sacrificed.
Often, however, when winding on the last
one or two exposures the film tag will free itself from the now empty cassette and may be wound right inside the take-up cassette, thus allowing the film to be changed in ordinary light.

The Viewfinder

The field of view will, of course be considerably smaller and the viewfinder must be marked off accordingly. It will be found that viewfinder dimensions will have to be reduced to about $4 / \mathrm{gth}$ of their previous size. The general effect of the conversion is the same as fitting a telephoto lens.

A Heat Guard for a Toasting Fork

THOSE of us who are not fortunate enough to possess electric toasters or who prefer toast made over a real fire will find the heat guard described here very useful. It is made from an aluminium disc 6 in . in dia Two size " oo " or " ooo " tool clips serve to secure the guard to the fork handle. The diagram is self explanatory.

P.M. BINDING OFFER

A^{S}a service to our readers we have arranged for self-binders to be supplied in which they may preserve the copies of this journal. Copies can be inserted as received, and you do not therefore have to wait for the completion of the volume. You secure the same all-time protection as with ordinary binding. The self-binders are in black waterproof and greaseproof cloth, attractively lettered in gold. This system avoids copies becoming damaged or mislaid. The Easibinder opens flat at any page of any separate edition and gives quick reference facilities.

When the volume is complete our annual index, published at is. 3d., should be inserted. Binders cost irs. 6 d ., post free. Orders should be sent to the Publisher (Binding Dept.), Geo. Newnes Ltd., Tower House, Southampton St., Strand, W.C.2.
 and then switch them off automatically. Various methods of operating the switch, including floor pads, light beams, etc., can be used. The control gear required can use relays, limit switches, heaters, bi-metal, motors or solenoids.

Latching Relay Unit

The current required for energising a relay must be D.C. unless special gear is fitted. Most apparatus to be described in this series uses a basic source of D.C. which may be obtained from batteries or from the mains. A suitable unit for this supply was described last month.

Latching relays are available from control gear manufacturers but since P.O. 3,000 relays of 200 are available so readily and cheaply from a number of firms, they are specified here. The relays are available from Messrs. W. Benson, Messrs. K. R. Whiston, Messrs. L. Wilkinson (Croydon) Ltd. and Messrs. Sallis (Brighton) Ltd.

Figs. II and 12 show the basic make-up of the unit and the P.O. relay. The circuit is given in Fig. 13 and the smaller parts are detailed in Fig. I4.

Mounting the Relay

In this particular case a rigid mounting is essential and the method used is the unorthodox one of passing small bolts through the gap between the coil and the metal frame. Fibre or similar washers are used to protect the coil insulation.

When purchased the relay may have upwards of eight sets of points, According to
the use in mind, some may be removed. In this case one set of normally open contacts are retained. If the others are left in position, they cut down the contact pressure on each set of points, but often this does not matter, as in switching small 60 watt lamps.

The armature is taken off and the copper

Constructing a latching relay unit and a thermal switch unit
 By E. V. King

rivet (see Figs. 1 I and 14) removed by drilling. An armature extension of brass or steel is made and screwed in position using a brass screw, or riveted using a copper or aluminium rivet. The screw or rivet is then nearly filed away so that the armature may nearly, but not quite, touch the electromagnet when it is energised. The tip of the armature extension is rounded to a radius, terminating in a knife edge, as shown in Figs. II and 14. The screw and lock nuts at P are adjustable for stiffness of the
armature pivot and should be left fairly loose, but locked.

Making the Latch

If the coil of Ry3 (Figs. II and 13) is energised with 24 v . D.C. the armature will pull in. A latch is fitted so that it holds it in even if the initial energising current is now switched off. The principle is that of the simple ratchet.
Refer to Fig. 14 for details of the parts. The latch is made of brass strip with a small plate of soft iron from a transformer stamping or cocoa tin soldered near one end. The end of the latch is bent round as shown and radiused on the outside (Figs. 14b and II). If the unit can be fixed upright; no springs will be necessary and gravity will be sufficient. If horizontal use is necessary a small spring (from a ball point pen) is located by a small nut and bolt (Fig. II). A bracket of brass and another small nut and bolt will anchor the other end of the spring. The pivot bearing is made from a piece of small bore copper, brass or steel tubing which is soldered in position. The axle for this is made from a bolt soldered to a small flat brass plate screwed to the base. A washer and lock nuts are applied above to keep the latch in position, see Fig. I4c.

At this stage test the latch. Hold the board upright. Energise Ry3, or push its armature in by hand. It should then be latched in by the "claw." In some cases it may be necessary to fit a small adjustable stop (Figs. II and 14d) so that the latch does not fall too far in the normal position.

Fitting the Delatching Magnet
A P.O. type 3,000 relay is dismantled and

Fig. 14.-Various parts of the latching relay.

Black
Fig. 15.-Using the relay for simple switching on and off with bell pushes.
the magnet is fixed in the position shown in Fig. 11 in the same way as described for the relay. The gap between the pole piece and the latch must be carefully set; it must be as small as possible, but at the same time it must be possible for the relay to pull in without the armature extension piece becoming jammed. If there is a tendency for the latch to stick to the pole piece when the latter is normal then a small copper rivet may be fixed on the armature (latch) opposite the pole piece, or a layer of adhesive tape fixed over the pole piece.

Wiring Up the Unit

The unit should be built on wood or a suitable laminate; metal should not be used Do not earth relay cores, etc. This must be remembered when adjusting.
Study Fig. 13 and wire up carefully as shown. This figure is drawn up the other way to show how a spring may be used in lieu of gravity to keep the latch under pressure.
Use insulated copper wire of about 16 s.w.g. for wiring up and soldered joints wherever possible, employ resin-cored solder, and on no account any acid flux or Baker's Fluid. If stranded wire is used then make sure no odd strands remain unattached at joints so as to cause shorts.

Testing the Unit

Connect terminals I and 2 to a 24 v . D.C supply, batteries or mains unit. 12 v . might
suffice for test purposes and a car battery is suitable.

Momentarily short terminals 3 and 4 with a loop of wire. The armature should pull over and the latch will fall over it holding it. Observe that the contacts connected to 7 and 8 are now closed and could switch on a light, etc. Now touch terminals 5 and 6 with the loop and the latch will release the armature Observe that the points connected to 7 and 8 are now open again in the normal position.

External Wiring

This is shown in Fig. 15. Any number of pushes may be fitted in parallel with those shown. Foot operation by momentary pressure may be arranged in a similar way to the staircase switch, but using a micro switch (Burgess Type BR/S.P.C.O.) mounted in one of the ways suggested in Fig. 16. Care must

Fig. 16.-Fixing microswitchesfor foot operation.
be taken that the travel is just enough to snap over the action as the over-travel is only $0 \cdot 007$ in. Full foot pressure on the plunger after this over-travel is reached might damage the switch. Three terminals will be found on the switch; use the two marked "normally open." Suitable switches are available cheaply as surplus from Messrs. Whiston and Messrs. Milligans, Liverpool.
The whole wiring system is only at 24 v . except wires connected to terminals 7 and 8 . 24 V . is not considered dangerous from the point of view of shock, but can cause fire. However, fuses are fitted in the 24 V . supply unit already described. Terminals 7 and 8 are wired in the mains/light circuit in place of a conventional switch. Good quality cable should be used and no bare wires are allowable. The wires to I and 2 may be quite small diameter as the maximum current required is well under $\ddagger \mathrm{amp}$. Bell wire is suitable if it is hidden, otherwise use Polythene-covered cable. 'The same wire will be quite suitable
for use with the "bell pushes" which are wired to 3 and 4 and 5 and 6 . A cheap and suitable press switch is Whiston's 3020c, or Arcoelectric S936.

The latching relay will require no maintenance other than point cleaning every $3-4,000$ operations. It is virtually everlasting. It will be used in the thermal delay device to be described later, and in automatic door opening control gear.

No heat is generated in the device and it may be completely enclosed in an earthed metal container such as a biscuit tin. Care must be taken that children cannot open it and touch the two live contacts (7 and 8 in Fig. 15).
In many cases it is desirable that a light should be on for a set time and then go off. For instance, an outside light lighting the path to a garage. Passage lighting is another case in mind. Pressure of a bell-type push operates the lamp for a predetermined period Two-way switching is sometimes not practicable.

Fig. 15 shows a latching relay wired to two bellpushes. The one wired to 3 and 4 is retained. This operates the system and the lamp lights. The bell push connected to 5 and 6 is replaced by a "thermal delay heater switch." Thus the latch is not lifted until some 30 secs. or I min . later.

Thermal Switches

These either come on, go off, or change over when heated. For this unit one coming on is required.
Various types are cheaply available for a few shillings. Messrs. Annakin market one, No. 1768, marked ro F/9618, the principle of operation is shown inset in Fig. 19. Current entering the coil ef heats up the bi-metal which bends and eventually joins the independent contacts h and g. It is not suitable for direct mains operations.

A valve type vacuum relay marked ($\mathrm{AP}_{541 \mathrm{IO}}$) is also available from Messrs. Annakin. This a better relay unaffected by dirt and external ambient temperature. The principal is much the same and the corresponding terminal connections may be seen in Fig. 17.
The Technical Services, Banstead, market a cheap form of bi-metal known as "Hi-Flex." This may be used for sensitive low current thermal switches. Thicker bi-metal marketed by the same firm will do for more robust instruments. Fig. 18 gives details of a homemade thermal switch. A small heater of a few few turns of 32 g Nichrome wire wound on a mica strip is mounted near the bi-metal. Contacts are fixed, one on the bi-metal and

Fig. 17.-A typical surplus vacuum time delay relay ($A P_{54103}$).

one so that as heated the two contacts touch. Control may be gained by altering the length of wire used and the distance of the heater from the bi-metal. Further control is available by a variable resistance in series with the heater. A home-made thermal switch for low currents is shown in Fig. I8.

A good snap-action thermostat is marketed by Messrs. Whiston as No. 3024B. This will last in this application for ever, is adjustable, and comes on when heated. This may be used with a small heater placed nearby with excellent results.

Mounting the Components

The components should be mounted on Ebonite, wood or some other insulator. The layout is shown in Fig. 19. This is not critical as long as the latching relay works by gravity if so intended. RI (which can be wired as in Figs. 19 or 21) is mounted on a tag strip away from the wooden base.

Fig. 18.- A home-made thermal delay switch
VRI is mounted so that the control may be external. Terminal blocks are fitted for safe wiring. The whole may be enclosed in a wooden case or earthed metal container. The amount of heat produced is very small and ventilation is not important ; a few holes may, however, be drilled if constant operation is envisaged.

Fig. 22.-Wiring of 'staircase or passage delayed lamp, using latching relay (Figs. 19 and 20) and D.C. unit

Wiring
The circuit is shown in Fig. 2I. Pick out contacts on the relay which are normally open. RI is necessary or you will burn out the heater fitted to the Annakin 1768 delay switch. When using home-made heaters it may not be necessary. VRI is a heavy-duty variable resistance. Messrs. Milligans market one as S 98 FA , suitable for this purpose.
Use all soldered connections, insulated copper wire and cored solder. Externally wire up as in Fig. I5 but omit the wires and bell push connected to terminals 5 and 6 which are non-existent on the unit under consideration (see Fig. 22).

Adjustment

On trial, the time delay may be too small or too large. Increase of VR 1 prolongs the delay. Further lengthening of the delay may be obtained by fitting a higher value to RI, say 20Ω. This will depend on the individual thermal switch. Further adjustment is available at the contacts. The more they are moved apart the more the delay period. Generally,
small insulator on the armature, the leaves between the contact springs and the sleeves which will be found round the screws holding the wafer assembly in place.
(To be continued)

The National Do-It-Yourself Magazine

 practical hodseholiderPrincipal Contents
Making the Best of Your Garden Swivel Table for the Kitchen
Maintaining the Drainage System
The Practical Ideal Home
A Pack-away Garden Shelter
Sandpit With a Dry Drain
Roundabout for Two
Getting the Best out of Your Frig.
Eye-level Kitchen Cabinets
Twin Beds
Writing Desk for the Family
Fencing Repairs
Garden Table to Seat Six
Making Room for the Bathroom
A Small Forge for Ornamental Iron Work A Modern Surround for Your Washbasin

* AMATEUR STAGECRAFT 歇

Special Effects

Devices to add to your repertoire of sound effects.
By C. C. Somerville

THE three basic ingredients which determine the mood in any production are; " Movement," "Spectacle" and "Sound." It is the producer's job to combine these to create a harmonious whole. The play carries its own movement and "Spectacle" has been dealt with when designing and building the scenery. It remains to consider "Sound," which obviously includes the actual dialogue of the characters, but there is more to it than that. Of course we assume that the cast all know their lines, but are we as sure of the revolver shot in the third act, or of the storm which opens the play?
Many plays call for special effects and their accurate suggestion helps to give reality to the performance. They must, however, be used with discretion. There is an old theatrical saying that sound effects, like scenery, should give the desired mood and then get out of the way.

Weather Effects

The weather with all its noise, ranging from the gentle patter of a summer shower to the crashes and downpour of a violent thunder storm, plays an important part in the plot of many a play. Just how to create these effects may well pose a problem to many amateur groups. This is a problem which may be tackled by any handyman

The various pieces of apparatus detailed in this article, though based upon professional machines, are so simplified that with a little ingenuity they may be built entirely from scrap. Few rigid dimensions are given since
size is largely governed by the materials available. The general rule is that the larger the machine; the louder the noise.

Rain Machine

The rain machine shown at Fig. 1 , is easily constructed from a large tin can, round biscuit tin or oil drum. Wooden slats are nailed at intervals around the inside of the tin and it is filled a third full with dried peas. The lid is soldered on, a handle run through the centre and then it is mounted upon a simple wooden stand as shown. By rotating the can the peas fall, hitting the slats to give the effect of rain. The intensity of the downpour is governed by the speed of rotation.

Thunder is easily simulated by suspending a sheet of galvanised iron from a suitable beam and shaking it to produce rolling thunder. For single crashes strike the tin in the centre with a rubber hammer or tennis shoe. The metal sheet should be approximately 4 ft . long and Ift. wide.

Wind Machine

The wind machine shown at Fig. 2 is constructed from a cylindrical drum consisting of two circular wooden ends, about 2 ft . in diameter, joined by wooden slats set 2 in . apart. This is mounted upon a wooden frame and heavy canvas stretched tightly against the drum which, when rotated by the handle, produces the sound of wind.

Fig. 3, illustrates a device which produces roars or the sound of creaking doors. Make a hole in the bottom of a large tin can, put a

cord through it and knot it securely, then fasten the can to a wooden board. Powdered resin is put on a cloth or a canvas glove worn by the operator. He then pulls up on the cord. The pitch is varied by the tautness of the cord.

Various other effects need little in the way of apparatus to produce a realistic sound. A pistol shot is easily simulated without the use of a blank cartridge by snapping a yardstick or thin board on a hard flat surface.

Breaking glass is imitated by dropping a piece of plate glass wrapped in a sack. A more elaborate job can be made filling a wooden box with broken glass and a few stones and then nailing the lid on. By dropping or tipping the box end on end, various crashes, breaking crockery, etc., can be produced.

Two half coconut shells clapped on a wooden board give the sound of horses walking or galloping on a hard road. For hoof-beats on a soft road or turf use wallboard. Place small wire nails or lead shot inside a flat metal tin, move back and forth and you have a train chugging along.

The Crash Machine

Perhaps the most elaborate piece of sound apparatus found in the average theatre is the Crash Machine illustrated at Fig. 4. Basically it is a football rattle on a very large scale. Hardwood slats are held in a frame as shown, a cylinder with wood strips nailed lengthwise is allowed to strike the ends of the slats for the sound of breaking wood or a crash. The wooden cylinder is made the same way and the same size as that of the Wind Machine, and is in effect a giant cog-wheel.

Common Sound Effects

Besides such elaborate machines there are many sound effects which can be purchased from novelty, music and chain stores. Bird calls, boat sirens, train and police whistles are the most common. You can also get dog barks, cow moos and baby calls. Small sirens of various kinds can be bought in cycle and hardware stores. A doorbell, push-button and dry battery, mounted on a baseboard make a useful device for ringing telephones and doorbells. Also it is quite remarkable the number of sounds which the human voices can imitate when aided by a microphone.

Obviously, all these effects will not be needed in a single production, but as time goes on you will acquire a useful repertoire of sound effects which will save a lot of experimentation and will give an added polish to the show.

Materials Used

It will be found that most of the above mentioned devices can be improvised from odd pieces of material found in the workshop or obtainable at a small cost from local trades people.

M
OST radio constructors, especially those whose interests lie in the building of delicate miniature equipment such as transistor receivers, must at some time or another have felt the need for a very lightweight soldering iron. Utilising parts from the " spares " box, the prototype cost only a few pence.

The Body

The body of the instrument may be of any metal tube of approximately $\frac{1}{4}$ in. bore. Brass, copper, steel or aluminium are all suitable materials, being stated above in the order of preference. This tube should be cut to length and its ends either turned or filed true.

The bit is simply a length of io or 12 s.w.g. copper wire, one end being filed to an angle of 30 deg. Around the bit is wound the heating element of resistance wire. If insulated resistance wire cannot be obtained, then bare wire may be used provided that a layer of insulating material is placed between the element wire and the bit. This layer should however, be thin or it will severely impede the passage of the heat from the element to the bit. A material suggested for this layer is thin asbestos sheet available from most model shops.

The Voltage

No wire size can be stipulated for winding the element since a number of factors must be taken into account, primarily, the voltage the iron is to function on, the current it is to draw and the type and properties of the wire to be employed.

It is not recommended that the voltage applied to such an iron should exceed 24 V ., due to its mode of construction, whilst a useful power to be aimed at should be in the region of $18-20$ watts. If it is made to operate from 6 v . then any 6.3 v . heater transformer capable of delivering about 3 amps. can be used to satisfy its power requirements. The radio-control enthusiast may find it very useful to construct one that will operate off a small accumulator. The iron will function equally well on A.C. or D.C.

Wire Gauge

Perhaps the simplest method of determining what gauge of wire to use and how much of it it is required is to take various types and gauges of wire and experiment with them by winding lengths around the bit and connecting them across the intended supply. A suitable piece of wire will take about 18 watts from the supply when heating up the bit sufficiently to melt solder, bearing in mind the fact that when the element is encased in the main body the heat will be retained longer and a higher temperature will be reached. The element and bit should not be allowed to get too hot, however, or their lives will be greatly shortened.

The Leads

For connection to the supply some flexible leads capable of carrying the working current, without themselves overheating, are required. One lead is bared for about $1 \frac{1}{2} \mathrm{in}$. and tightly twisted together with the inner end of the element wire (see sketch). It is of very little use soft-soldering this joint as the solder would simply melt-though silver soldering should prove satisfactory if it is thought to be necessary.

The whole element and bit assembly is now rolled in asbestos sheet until it is a tight fit in the main body of the instrument. The asbestos should cover both the element and the bared section of the lead out to prevent it from short-circuiting to the body of the iron. If difficulty is experienced when sliding the element assembly into the body, the tube can be split lengthways for about half of its length, using a fine hacksaw blade. The two halves are then opened out slightly and the element can be easily slipped in. The two halves are

Ideal for soldering miniature Radio Parts

then closed up again in the vice and bound with wire. The results are quite secure. When the element is in place, its outer wire end should be bared and connected to the body of the instrument, either by binding it with wire, or by using a small screw, fitting into a tapped hole in the body. The other flexible lead is connected to the back end of the tube by similar methods, or by soldering; this end of the tube will not attain sufficient temperature to melt the joint.

The Handle

A handle is next fashioned from a piece of wood or plastic tube of suitable dimensions. An ideal handle can be made from a length of garden cane. The body tube is bound with asbestos sheet until it is a tight fit inside the handle, a spot of adhesive being added to hold it in its place. At this point the asbestos
should form a fairly thick layer to prevent the handle from becoming uncomfortably hot. The guard on the handle is made from similar material to that employed for the handle itself, and is glued into position.

Completion

To complete the construction, the end of the tube nearest the bit is plugged with fireclay and a wooden plug is glued into the handle end to prevent the leads from being pulled out.

The prototype iron reaches working temperature in slightly less than 45 seconds from being switched on, and its heat capacity proves sufficient for most small soldering jobs.

No dimensions are quoted on the drawings because these depend purely upon the parts which are available.

THE craft was designed to explore the inland waterways of this country and, possibly at a later time, tidal estuaries and serene seas might be attempted.
The narrowest locks on British Waterways will take a boat of 6 ft . beam, so this was adopted for the cruiser.
As the boat was to be towed behind a small family car, careful consideration had to be given to the ease of loading and unloading from the trailer as well as the capability of the car to tow the vessel. It was estimated that the finished boat without the various living impedimenta and outboard motor would weigh about 6 cwt .
A cabin was required for sleeping and in which to eat, and this has a top on which sunbathers can recline. The design shows the cabin extending back to Frame 4, the cooking and toilet arrangements being restricted to the open well. By simple modification, the cabin could be extended another section aft and the cooking arrangements and a small toilet built into the additional section of cabin. Another arrangement would be to have small cabins fore and aft, separated amidships by a small open well.

The Engine

As the boat was likely to be moved about ashore so frequently it seemed better not to have the exterior encumbrances in the form of a propeller and rudder necessary with an inboard motor. The inboard motor, too, takes up valuable floor space. The obvious choice of motive power was therefore the outboard motor.

This cruiser is a " displacement" type boat, i.e. it passes through the water and not over the surface as would a speedboat. Because of this important fact the boat has a basic maximum speed no matter what engine is used. The marine engineer provides a simple formula which enables the maximum speed of a displacement-type hull, such as this, to be determined. The maximum speed in knots is equal to the square root of the length of waterline, multiplied by 15 .

Thus as this craft is about 15 ft . waterline the maximum speed will be $\sqrt{1} 5 \times 15=$ 5.8 knots.

Size of engine, then, is not of primary importance. The power thrust imparted by

Fig. 1.-Frame 1 braced in position on the building form.
the propeller is important and is closely bound up with engine design, reduction gears and design of the propeller itself. Bear in mind that a larger-capacity engine running at a small throttle opening will give a quieter and more economical cruising performance than a small-capacity engine running at full throttle. For cruising on inland waterways, an engine such as the British Seagull Century, Anzani Super Single 5 or other manufacturers' engines of similar rating can be recommended.

The frames are glued and bolted together, using 2 in. $\times \frac{1}{4} \mathrm{in}$. galvanised gutter bolts, with nuts and washers. For the glued work in the boat, one of the well-known waterproof glues such as Aerolite must be used. The skin is glued and screwed in place with $\frac{3}{4}$ in. \times No. 6 brass countersunk head screws. Some boat-
\qquad

 An . -

NEWNES PRACTICAL MECHANICS
builders economise by using galvanised steel screws instead of brass.

The Stem

From the diagrams it will be apparent that there are seven frames (including the transom) and a stem to support the skin of the boat. These items should be made first of all.

Details of the stem are shown in Figs. 2 and 4 and the timber to use is mahogany, $3 \frac{1}{2}$ in. $\times 2 \frac{1}{2}$ in. finished sizes after planing. The block used to bolt the two pieces together is cut from a piece of timber about 2 ft . in length and 6 in . wide and finished to $2 \frac{1}{2}$ in. thickness.

Fig. 4 gives the disposition of the first frame and the building form. In arriving at the angles to which the various parts of the stem should be cut it is better to set out the details of Fig. 4 to full size on one of the sheets of plywood to be used for the hull covering. The setting out of the timber is then very easy to achieve from this plan.

It will be noticed that the bolts holding the two parts' of the stem to the strengthening block are at right angles to these members. This makes it necessary to cut four steps on the inside edge of the block. The three parts may then be held in position with some large

Fig. 2.-Bolting the stem pieces together.

Fig. 3.-Side and half-plan elevations

Fig. 4.-The construction of the stem.
G-cramps to test the fitting together of the surfaces. Very careful adjustment must be made with a smoothing plane so that good mating is achieved between all surfaces.

Brass bolts are specified for holding together the three parts of the stem. It may be difficult to obtain such bolts and recourse may be had to using galvanised bolts. An alternative method is to use some lin. brass rod which is threaded each end and fitted with brass nuts and washers. The nuts on the outside ends must be countersunk into the stem about 1 in. This may seem a lot, but later when the stem is trimmed up to take the skin covering, a lot of wood has to be removed at these points. Nothing is so annoying in the progress of the work than to have to take out these bolts and deepen the holes in which the heads rest.

When all is bolted up satisfactorily in a dry state the assembly may be taken down and glue liberally applied to all mating surfaces and the stem then reassembled and set aside to dry.

Later the recess to take the hog may be cut and the stem is then ready to set up on the building form.

Frame Construction

Dimensions of the frames are given in Fig. 5 .
When constructing the frames it is advisable to draw out full-size plans of each frame on one of the sheets of plywood used for covering the hull. The angles of the ends of the individual members can thus be easily determined, sawn to shape and placed in position on the plan. The assembly can be temporarily held together with some small G-cramps whilst the tin. holes for the bolts are drilled (Fig. 6).

It is important to bear in mind the position of the chine batten and arrange that bolt holes do not come too close to the notch which takes these members.

When the frame is correctly assembled and bolted together, it may be taken apart and glue applied to the joints. The whole assembly is then bolted together again and finally placed in position on the full-scale plan to check for accurate reassembly.

The tie beams or stretchers at the upper or deck end of the side futtocks are only temporary, and at a later stage of construction, when the cabin is constructed, these pieces are removed. Therefore almost any odd pieces of timber about 3 in . \times rin. section can be used. If only new timber is available then of course these pieces may be used for interior fitments of the cabin later on.

Fig. 5-Details and dimenstons of the seven frames.

All height measurements to basic frame apex point

When the frames are assembled upon the building form, it is important to note that the sides of the frames or the side futtocks are on the end towards the stem and the bottom futtocks are towards the stern. The floor support ($20 \mathrm{in} . \times 5 \mathrm{in} . \times$ 矛in.) joining the bottom futtocks is towards the stem.
As each frame is glued together it is important to wipe away every trace of surplus glue with a damp cloth. This resin glue sets glass hard and will ruin the edges of cutting tools if it has to be planed away.

Whilst the frames are resting on the fullsize plan it is advisable to mark in quite clearly the position of the sheer batten on the side futtocks

It should be noted that the frames Nos. $1,2,3,5,6$ and 7 will have to have the outer edges of the side futtocks bevelled away to correspond with the curve of the chine and sheer battens. Frames I and 2 are particularly sharply bevelled and it is helpful to take off a good deal of this bevel before assembling the frames on the building form. Final truing of these bevels can only be done when all the frames are assembled in place.

The Transom

Frame 7 is called the transom and it is different from the other frames in that it is covered with $\frac{3}{4}$ in. plywood and a well has to be cut in order to accommodate the outboard engine. Additional battens have to be screwed and glued to the transom frame in order to strengthen the cut-away part of the plywood covering. Further filler pieces may then be secured on the other side of the frame, thus making the transom twice as thick as the

other frames. This additional strength is important as rigidity is necessary to cut down vibration from the engine throughout the boat to a minimum.

The building up of the transom should be carried out as described, but the plywood covering is left until the other skin panels are applied. The transom covering is put on last and will thus cover the ends of the sheer and chine battens and the ends of the skin covering.

The Building Form

When the frames and stem are completed, attention may be given to the setting up of these members on the building form. The finding of a suitable site for building such a boat as this is always difficult. A shed or other building with a level wooden floor is ideal. The frames could then be held directly to the floor with screws and bracing battens. Many readers will only be able to use the lawn at the back of the house, and such was the case with the boat shown under construction. Choose as level a site as possible and down the centre of it lay down a piece of $3 \mathrm{in} . \times 2 \mathrm{in}$. deal 16 ft . in length. By using odd pieces of wood as packing under the 3 in . $\times 2$ in., level up the batten with a spirit level (Fig. 7). The batten should also be dead straight from end to end and should be held in this position with some rin. \times rin. $\times 18 \mathrm{in}$. pegs driven into the ground on either side. Drive these pegs in at different angles. This will key the batten to

Fig. 7 (Left).-Levelling up the building form.

Fig. 8 (Below).-All the seven frames in position.

the ground so that it cannot be pulled up by tension applied to the frames when fixing the keelson and other longitudinal members. The pegs should be screwed to the batten.

Along this building batten, the position of each frame must be clearly marked and a line squared across. At these positions odd blocks of $3 \mathrm{in} . \times 2 \mathrm{in}$. are screwed, against which the top stretchers of the frame assemblies may be screwed. All the frames are 24 in . apart.

First of all erect Frame 1 in position and screw it to the block on the building batten. Brace the frame with odd pieces of $2 \mathrm{in} . \times \mathrm{I}$ in so that it is vertical both lengthwise and transversely and test down the centre line of the frame with a plumb line or a spirit level as used by a bricklayer. The frame should also be at right angles to the building form. This first frame must be very securely braced, as it must take quite a bit of pushing and pulling during the course of building.

The other six frames are erected in place and securely braced, vertical in two directions and square with the building form (Figs. I and 8).
(To be continued)

MATERIALS REQUIRED FOR THE HULL
These materials are listed in approximate order of being used so that the reader may order timber from time to time as required.

Materials for cabin and decks will be listed later in the series.

PREPARATIONS for making a silica garden are simple, although the mechanism by which it developes is a little obscure. If certain crystals are placed in a solution of sodium silicate (water-glass) a layer or shell of metallic silicate quickly forms to cover each crystal. The layer, however, being colloidal and of a semi-permeable nature causes the outside silicate solution to be drawn inside the shell by virtue of the osmotic pressure it gives rise to. Beyond a point the shell bursts and the strong solution inside is freed and immediately reacts with
the silicate solution to form a further shell. Thus long strings of burst shells grow out from each crystal to form the silica garden. All this bursting and re-growing takes place on a microscopic scale and the result as far as the naked eye can see is long, delicate growths of superb texture and form.

The Crystals

Several different types of crystals may be used, such
as manganese chloride, cobalt nitrate, and copper sulphate, the latter probably being the most readily available. The solution of sodium silicate used is quite weak, two or three teaspoonfuls in a small jar of water being quite sufficient. Some workers may wish to experiment to find the effects upon the growth of varying the strength of the solution.

The Container

As a novelty for observation only, a garden may be grown in a small, round jar, a one-pound size jam jar being quite suitable. As a subject for photographing, however, it will be necessary to use a flat-sided glass tank.

This may be quite simply made by sticking two sheets of glass to the front and back surfaces of a three-sided wood frame, the whole being assembled with Bostik. Alternatively the wood may be grooved for the glass if a suitable plough plane is available.

This is an ideal subject for close-up photography enthusiasts and as a novelty it will attract much attention.
 By G. I. Lilley

 Glass
wood parts should be given a good coat of varnish or paint, since otherwise the wood would absorb moisture and quickly warp away from the glass when the tank was filled.

A layer of silver sand in the base of the tank provides a natural-looking ground for the silica growth, and best results are obtained by using a black backing behind the tank. For a better quality picture it is a good plan to change the silicate solution for pure water before taking the photographs, since the former tends to become slightly cloudy after standing. This may beachieved by syphoning out with a small rubber tube while at the same time fresh water is being poured in the top.

The Antidote to Oil-Pollution
AFTER' recent experiments Polycell Limited state that their product Polyclens has been proved the most effective and economical means of dispersing oil-pollution from beaches, etc. It is a combination of sur-face-active agents and solvents, being neutral, non-toxic and completely safe to handle. It acts on all oils and once the oil has been dispersed it cannot re-form. The method used is to spray the Polyclens on the affected surface and allow time for emulsification and then hose off or wait for the incoming tide to wash it away. Polyclens has already been used with success on several of our beaches.

Transistors Aid Smoke Detection

ANEW pair of smoke control units using transistors is now available. The smoke alarm type CCSA is designed to fill the need for a low cost unit to enable the small installation to comply with the Clean Air Act at a low cost. The light beam projector throws a beam across the stack on to the photocell mounted in a receiver unit. The output from this cell (which varies with the amount of smoke passing up the stack) is passed to the Control Unit which contains a
transistorised amplifier and control relay as well as indicating lights, alarm set-point control and alarm checking switch. The smoke density indicator type CCSI unit provides all the alarm facilities of the CCSA type plus a smoke density meter. The makers are Photoelectronics (M.O.M.) Ltd., Oldfields Road, Sutton, Surrey.

Sound Level Meter

THE location of sources of noise and the determination of the exact nature of a given noise both demand the use of reliable instruments. The Type i400E Sound Level Meter, claimed to be the first commercial fully transistorised unit of this type in the world has been designed by Daw Instruments Ltd., of 99 Uxbridge Road, London, W.5, with the transport industry particularly in mind. By the replacement of all electronic valves with transistors powered by built-in dry batteries, the new instrument has been fully self-contained with an overall size of only $8 \frac{1}{4} \mathrm{in} . \times$ $5 \frac{3}{4}$ in. $\times 3^{\frac{3}{4}} \mathrm{in}$. and a weight of under 4 lb . It can be operated readily with one hand while the other is used to note readings.

Automorse

NOW ready for commercial release is a revolutionary Scandinavian invention that
enables anybody not conversant with telegraphy to operate a telegraph transmitter in morse code. The machine, called the Automorse, resembles a typewriter and has the same kind of keyboard. It is also used in the same way after having been connected to the transmitter. It is of great value in cases of emergency or where there is a shortage of trained personnel. In tropical areas and in northern regions where radio teleprinters do not work reliably owing to static, this machine will secure communication. It is equally useful as a means of communication on land, sea and in the air.

PLANETS and UNIVERSAL LIFE

By William Ellwood

Part one • the origin of the planets

SINCE Man first lifted his gaze to the mighty arch of the heavens, the stars and planets have symbolised for him the mystery of the Universe. He is, with them, an integral part of a vast plan conceived within the eternity of space and time.

In his search for truth, it is inescapable that Man should dwell upon the probability of life beyond the confines of his own planet. The stars in their millions testify to the possibility of planetary systems, wherein the very dust of the physical world may quicken into life; a life which is no frail, transient manifestation compared with life on Earth, but a vigorous and well developed form probably transcending ours in mental accomplishment.

As the quest for sentient life other than our own may lead us well beyond the confines of the Solar System, it is essential to consider how the latter evolved for at present it is the only concrete example of a planetary system that we are aware of. There are two diametrically opposed theories concerning the evolution of the Solar System, viz: the dualistic and monistic theories. Most other theories are but variants of these two. As the name implies, the dualistic concept involves the presence of two bodiesthe Sun and another star. The monistic concept relies entirely on the natural development of one star, that is, the Sun.

The Dualistic Theory

This is a concept of violence and accident which postulates a tangential collision between the Sun and a wandering star. Before and after impact matter was drawn from both bodies by the gravitational attraction of the respective stars. As the wanderer escaped it would take with it certain material from the Sun. Conversely, the Sun would retain within its gravitational field certain discrete masses of the extracted matter. These separate masses would be pulled into orbit around the Sun, thus becoming rudimentary planets.

At first view this theory seems feasible, but when analysed two great weaknesses emerge. Firstly, it fails to satisfy the known angular momenta of the planets. This angular momentum per ton of a planet is dependent on the planet's distance from the Sun and its velocity at right-angles to a line connecting planet and Sun. If the angular momentum per ton of the Earth is taken as unity, the respective values for the internal (Mercury) and external (Pluto) planets are about $0 \cdot 5$ and 6.0 . If the wandering star approached the Sun almost directly, its angular momentum relative to the Sun would be virtually nil.

Alternatively, if it passed within two or three million miles of the Sun, which is a reasonable maximum if one considers that the star's attractive power had to overcome the retentive power of the Sun; the angular momentum per ton of the star would still fall below 0.5 . This means that the average angular momen-

	Distance from Sun (in millions of miles)	Diameter (in miles)	Density (on scale Earth $=1)$
Mercury	36.0	3,100	0.93
Venus	67.2	7,700	0.90
Earth	$92^{\circ} 9$	7,913	1.0
Mars	$141^{\circ} 5$	4,200	0.71
Jupiter	483°	85,000	0.24
Saturn	886.0	71,000	0.12
Uranus	$1783^{\circ} \cdot 0$	31,000	0.25
Neptune	2793°	33,000	0.24
Pluto	3666.0	-	-

Table 1.-The Solar Planets.
tum per ton of the Solar planets is far in excess of that credited to the passing starwhich is supposed to have given them birth from the Sun.

The second weakness is the improbability of such a collision or " near miss " occurring. The nearest star to the Sun is some 25 million million miles away. Sir James Jeans computed that any given star would probably experience collison in 6×10^{17} years (600,000 million million years). From this we see, that should star collision be the means of creating planetary systems; then indeed the prospects for life in other parts of the Universe are greatly diminished. However, as the first weakness of the dualistic theory disproves that a wandering star was involved; and the second weakness further disproves or casts doubt on the theory: we must look elsewhere for a reasonable solution to the problem.

Our Star the Sun

Before discussing the second theory, we shall briefly review the Sun and its system

Fig. 1.-Solar prominences photographed from Sobral, Brazil in 1919 during a total eclipse of the sun. Photo: Royal Astronomical Society.
occasionally, vary in persistency and magnitude. Many of these cyclonic centres could, however, engulf the Earth, Uranus or Neptune.

Above the photosphere is another gaseous shell of flaming hydrogen, helium and calcium vapour, extending to a height of some 10,000 miles beyond the limits of the photosphere. This is called the chromosphere. In sudden eruptions called prominences, these flaming gases may attain heights of 400,000 miles above the photosphere, at velocities exceeding 20 miles per second (Fig. r).

Birth of the Planets

The monistic or star evolution theory related to the origin of the Solar System planets is by far the most acceptable from a scientific point of view. The theory was formulated by Thomas Wright of Durham and later adopted by Kant, the German philosopher. It proposed that the Solar System was at one time a diffuse nebula in which the heavier elements tended towards the centre. Many difficulties were encountered, however, when the rotational movement of the system had to be considered in conjunction with other essential requirements particularly that concerning the principle of conservation of angular momentum. Kant and Laplace in turn tackled the complex problem, but we shall pass immediately to a consideration of the theory as developed by Weizsacker.

The Sun's Nebula

He postulated the Sun in its early state to be surrounded by a gaseous shell or nebula, the latter being about the same diameter as the present Solar System. Both the Sun and this gaseous shell were imagined as possessing a common rotational movement. In time, the shell consisting of various gases and fine particles of matter would assume a disc form (See I and 2 of Fig. 2), orbiting in a plane approximate to the Sun's equatorial plane. The forces inherent in such an arrangement of close-orbiting particles would tend to slow up the faster circulating inner portions of the disc, thus causing them to draw nearer to the Sun; whilst the slower circulating outer parts would be speeded up, thereby causing them to move farther away from the Sun. In this we can see a transfer of angular momentum from the inner parts of the disc system to the outer parts. Annuli would be created. (See 3 and 4 of Fig. 2.)

Secondary Eddies

At this stage Weizsacker postulates the formation of elliptical vortices within each annulus or circulating band of particles (Fig. 3). The rotational movement of each vortice would be opposite to that indicated for the orbiting annuli. It is apparent from such an arrangement that the velocity gradient existing between an inner ring vortice and its neighbouring outer ring vortice, would be extremely steep due to the two vortical streams flowing in opposite directions. This would result in secondary eddies of an axial form. They would revolve in the opposite direction to the matter in the vortices, and therefore in the same direction as the annuli. These eddies would present favourable conditions for the condensation of particles stripped from the vortices. These condensation centres do in fact represent the primordial matter from which the Solar planets grew.
As the condensation of compounds is governed by the prevailing temperatures, it may be expected that water, carbon dioxide and similar compounds, along with heavier material in axial flow eddies situated between outer annuli; would condense together: whilst only the very heavy metal compounds would condense in those eddies nearer to the Sun. Thus, in the early stages, we see a distinct difference in the density of condensed matter as occurring in the internal and external parts of the system. Further tempera-

Movement in secondary eddy

Fig. 4.-A typical spiral galaxy, Messier 1o1, located in the constellation of the Great Bear. Photo: Dr. Ritchley, Mount Wilson.

COMPLETE RAWLPLUG

 OUTFITSIf you have not already used Rawlplugs-make a start now with the Rawlplug Popular outfit. This contains an assortment of No. 8 IN RAGGED AND IRREGULAR HOLES

Abstract

RAWLPLASTIC is the answer when you have to make a frm fixing in crumbly masonry, such as soft plaster or breeze block. Blow all the loose debris out of the hole, wet a little Rawlplastic and work it in with the fingers until it is like moist putty, then roll it into a cigar shape. Insert it in the hole and ram it tight with the blunt end of the tool provided. Pierce a hole in the Rawlplastic to provide a centre for the screw. Your fixture can then be screwed up. For a better grip make a deep hole and use a long screw. Rawlplastic is sold in handy cartons complete with ramming and piercing tool for $1 / 3$, in a handy tin for $2 / 6$ or you can have an outfit which also contains a Rawlplug No. 8 Popular tool and a selection of C'sk screws for 3/6. 1-1b. tins of Rawlplastic cost 8/6. Be sure you ask for Rawlplastic at your local Ironmongers or Hardware Stores.

Real Wood in Putty Form For modelling or repairing intricate mouldings. Filling flaws, splits and holes in wood, Rawlplug Plastic Wood is unsurpassed. It can be cut, planed and sanded, will take screws and nails, and what is more it will stick firmly to any nongreasy surface-metal, glass, vulcanite, plastic, earthenware, etc. $\frac{1}{4}-\mathrm{lb}$. tins $2 / 3$; $\frac{1}{2}-1 \mathrm{l}$. tins $3 / 9 ; 1-\mathrm{lb}$. tins $6 / 6$.

White adhesive for repairing tiles.
Kitchen and Bathroom tiles have an unfortunate tendency to fall out. This Rawlplug Tile Cement will firmly replace them without mess or trouble. It is white, strong and easy to use and quite suitable for fireside and hearth tiles. It is also used as a general purpose adhesive. $\frac{1}{4}-1 \mathrm{~b}$. tins $2 / 9 \mathrm{~d}$.

Animal glue of tremendous strength. This popular ready to use DUROGLUE is the handyman's friend. It can be used for that immediate need and replaced in the toolbox for another day. It is strong, reliable and for woodwork an ever ready aid to fixing and repairs. It is also suitable for many other materials but is not waterproof. $\frac{1}{2}-1 \mathrm{~b}$. tins $2 / 6$; 1-lb. tins $4 / 9$.

Rawiplug DUROFIX

Clear. Waterproof. Heatproof, Insulating All Purpose Adhesive. Handy tubes 1/-, large tubes $1 / 6 \mathrm{~d}$. DUROFIX is undoubtedly the finest value for money today. It has such a Wide range of applications from simple Woodwork repairs to fine china, porcelain and glassware that no home should be $2 / 9 ; 1-\mathrm{lb}$. tins $10 / 6$.
${ }^{\text {musmic }} 10 \frac{1^{\circ}}{2}$

For quick easy repairs to Metalware This scientiflc preparation in paste form can be applied in a few seconds and dries in a few minutes. Metal utensils in the house garage or garden can be put into good condition again by the intelligent use of Rawl plug PLASTIC METAL without heat or soldering iron. Why not try a tube? Not suitable for wireless or electrical connections.

DUROFAST $1 / 9^{\circ}$

Durofast is the new contact adhesive by Rawlplug. Ithas absolutely amazingstrength yet is so flexible you can even fix rubber soles to shoes with it. Durofast is ideal for fixing laminated plastics to cabinet tops and can also be used for fixing metal to metal or glass

Each Metalide drill is packed with an instruction leaflet in a strong plastio wallet with transparent window.

METADDDE for masonry drilling the easy way

Here is a cheap reliable masonry drill for the household handyman. Four sizes are made for use in a hand brace or suitable electric drill. Just what you need for that occasional domestic fixing job.

No. $8\left(3 / 16^{\prime \prime}\right)$	No. $10\left(7 / 32^{\prime \prime}\right)$	No. $12\left(1 / 4^{\prime \prime}\right)$	No. $14\left(9 / 32^{\prime \prime}\right)$
Green	Blue	Brown	Grey
Wallet	Wallet	Wallet	Wallet
$5 / 6$	$6 /=$	$6 / 6$	$7 /=$

[^0]

MULTI-HEAT BLOWER UNIT

HERE'S SOMETHING REALLY EXCITING POR THE PRACTICAL MECHANIC A compact Mains Blower Unit all ready for fitting into your own casing or ducting Enabling you to construct: Clothes Drying Cabinets, Forced Draught Convector Heaters, Pan Cooling for Warm Weather, Greenhouse Heaters and Ventilators all at a fraction of the cost of manufactured equivalents.
The unit comprises a top quality shaded pole motor of superb precision operating at a speed of 2,600 r.p.m., with a consumption of 18 watts. The rotor is die cast with a precision ground spindle in 'Oilite' bearings which are self aligning.
The Heater Unit consists of dual spirals which enables loadings of 1 or 2 kW . to be used. The 3-bladed fan is of the very latest acro-dynamic design and displaces 280 cubic feet per minute. A small resistance is incorporated in the motor circuit which allows the fan to run at half speed. This feature together with the dual elements allows of six different temperatures. Send us a 4d. stamp for details or we will send on 7 days' approval against remittance.

PRICE: $44 / 15 / 3$. Carriage \& Packing: $3 / 3$.
THE TECHNICAL SERVICES CO., BANSTEAD, SURREY
For other items, Heater Cables, etc., send 6d, for Cazalogue.

without my Mole Wrench. It's my third hand; always so very useful for repairs on my car and for all sorts of jobs in the house, too."
You see, it locks on the job at any pressure you wish, leaving both your hands free. Just touch the release lever and-presto!it's ready again for the next job-super pliers, vice, clamp, wrench all in one toolthe versatile, indispensable Mole Wrench.

7 inch, 12/6d. 10 inch, 15/-
From Iranmongers, Motor and Motor Cycle Accessory Dealers.
Make sure you ask for a genuine MOLE Self Grip Wrench, and look for the name on it.

if any diffealty write to M. MOLE \& SON LTD., B'EAM. 8.

would be

 completelylost...

Save
Hundreds of working hours in your Drawing Office, Workshop Estimating Department, etc., by using

OMARO SLIDE RULES

Here are a few of our models:-

Calculation of weights of steel sections
Multiple scales giving simultaneously
(a) Area of cross section.
(b) Weight per foot.
(c) Weight per length in feet ($1-10,000$ feet).
(d) Lengths per cwt.(s) and ton(s).
according to width and thickness.
These scales can also be used for any other section if weight/foot or area are known. See model P.l.

Model S.4a
Price 4/6d.
(post free)

Dimensions of British Association (B.A.) Screw Threads (in inches and millimetres), B.A. Screw Heads, Nuts and Bolts, 1, 188 values, dimensions, etc.

NEW Now available

Kosine Civil Engineering,Slide Chart
Side I Reinforced Concrete (Bending Calculations).
Side 2 Hydraulics.
K.2/K.4-Price Calculators- $15 / 6$ post free.
K.I/K.3-Steel and Iron Tube-Weight Calculator and Weight Calculator for Non-Ferrous Metal Tubes, $15 / 6$ post free.
K.I/K.2-Steel and Iron Tube-Weight Calculator and Price Calculator, price $15 / 6$ post free.
K.3/K.4-Weight Calculator for Non-Ferrous Metal Tubes and Price Calculator, price 15/6 post free.

Model M. 2
Price $7 / 6 \mathrm{~d}$.
(post free)

Arcs, Chords, Heights, Segments and Sectors of circle with the radius ($r=1$) and the angles at the centre of the circle from 0° to 230°. 2,642 values.

FREE GIFT

with every order of six or more Omaro Technical
Charts or Kosine Slide Rules, we supply free of charge a complimentary copy of our COCKTAIL SLIDE RULE (usual price 10/6) with 300 selected recipes. Please apply for your free copy when sending your order for Technical Charts and Slide Rules.

T(Continued from April issue) IE aluminium tubing is $\frac{5}{16}$ in. o.d. $\times 20$ gauge and it is secured to the rear face of the starboard wing main spar with aluminium clips every three feet or so. The tubing is easily bent to shape by hand, but the radius of the bends must be not less than about 3 in. to avoid kinking. Lead the two wing pipelines to the root end so that they protrude about $I \frac{1}{2}$ in. below the undersurface (Fig. 63).

The ends are joined with 3 in. lengths of reinforced rubber hose wired to their respective pipes which pass down the front wingpylon side struts, one per strut. See Fig. 57.

Get an assistant to watch the airspeed indicator and very gently blow into the openended tube of the pitot head until the person watching the instrument signals that the needle is pointing to about $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Place the tongue over the tube end, thus holding in the pressure. The instrument needle should remain steady for at least ten seconds. If the needle rapidly returns to zero, it is apparent that there is a leak somewhere in the pipeline. Try tightening the low pressure unions (if they are used) or checking the wiring-on of the rubber joints. Repeat the test until the line is satisfactory. An alternative method to test the pipeline is to use a manometer.

The Overtank Cowling

This is made of 18 gauge half-hard commercial aluminium sheet. The exact shape should first be found using stiff brown paper. The hole for the tank filler neck should be as small as possible and it is advisable to start by making this hole in the metal sheet, allowing a safe margin on all other dimensions. Position the metal with the filler neck protruding through the hole (do this with the cap off so the metal fits snugly round the actual neck), then strap the metal down to the longerons. The edges can thus be marked accurately, the metal removed and cut to size. Smooth the edges with wire-wool or emery cloth.
Having cut and trimmed it, paint the inside with primer and, when dry; fit the cowling, screwing it to the top longerons with $\frac{1}{2}$ in. R.H. brass woodscrews. The attachment at the front is achieved with pop-rivets through the firewall flange. Use $\frac{1}{8} \mathrm{in}$. dia. domed-head pop-rivets ${ }_{32}^{5} \mathrm{in}$. overall length. The local motor-repair works will most likely loan a pair of pop-rivet " lazy tongs " or pop pliers to do the job. Alternatively, the cowling can be bolted using 6 B.A. mushroom-headed bolts and stiff-nuts at about 3 in. pitch to the firewall flange.

Finally, the top instrument-panel attach-

Part 9 Deals Mainly wilh the Windscreen and Engine Cowlings

ment bracket is made and riveted to the cowling and the panel connected to it with the special rubber vibration mounting.

The Windscreen

This is made of $\frac{1}{8} \mathrm{in}$. thick clear Perspex sheet and is shaped so as to stand at an angle of 60 deg. to the overtank cowling to which it is attached.

The exact shape of the screen is shown in I in. squares in Fig. 64. Do not cut the Perspex to this shape until it has been curved.

Perspex sheet cannot be bent without heat as it is brittle. When softened by heat, it is easily spoiled by finger impressions and dirt and is readily distorted by uneven bending. It is therefore vital to do the job carefully and properly.

Make a paper pattern of the screen shape and obtain a rectangular piece of Perspex out of which the shape may be cut. Cut also two panels of clean thin aluminium or duralumin

Fig. 64.-True plan of the windscreen.

the same size and place the Perspex in the middle. Clamp up one end only between battens of wood.

Now find an old tin tray large enough to take the sandwich and about 4 in . in depth. Fill this with water and dissolve in it two or three pounds weight of ordinary cooking salt. The presence of salt raises the boiling point of the water.

Place the tray on a gas-jet and bring to the boil. Carefully put in the clamped-up sandwich. Use thick gloves or a kitchen ovencloth to avoid a scald. After boiling for about ten minutes, quickly remove the sandwich and, holding it by the clamped end, bend it to the desired radius over a cylindrical can or drum by pressing down on the other end with a batten of wood. This procedure is illustrated in Fig. 65. Do not force the bend-it may be necessary to reheat the sandwich several times before the right bend is achieved

When cooled, remove the aluminium panels and mark out the plan of the screen using the paper pattern and a chinagraph pencil. Take particular care not to scratch the surface and work on a cloth-covered table. Fretsaw to shape using a coarse blade. The saw should be woried slowly using the full length of the blade as otherwise the heat generated will tend to melt the plastic locally and trap the blade. Polish the edges.

Try the screen on the overtank cowling to see that the shape is correct and then fit the aluminium clips which mount the screen in place. Drill oversize clearance holes in the Perspex for the 4 B.A. bolts. The screen brackets are fitted to the overtank cowling with 4 B.A. bolts or pop-rivets, .but take care when drilling the holes-the fuel tank is close underneath. Temporarily fit the screen.

The wing pylon struts are now faired to a streamlined shape with plywood strips and doped fabric. Use red oxide cellulose tautening dope or clear "glider" dope and

Fig. 66.-Details of the strut fairings.
$2 \frac{1}{2}$ in. wide serrated linen aircraft tape. Thoroughly dope the fairing and the tube before winding on the fabric. Use plenty of dope. The process is shown in Fig. 66.

Engine Cowlings

The exact shape of these must be found by careful use of brown-paper patterns and patient fitting. All the cowlings are of 20 gauge half-hard commercial aluminium and they are all single-curvature, thus dispensing with difficult three-dimensional shaping.

Start with the lower cowling which can be cut from a 6 ft . $\times 3 \mathrm{ft}$. sheet of metal. Begin at the centre underneath, cutting a trapezoidal piece of paper which overlaps the underside of the fuselage by about 4 in. (this can be trimmed later and allows a margin in case the cowling has to be brought forward due to inaccurate cutting) and which reaches to the front of the carburetter in a straight line. Cut a "U" piece out of the paper to enable it to slot round the carburotter. Stick the paper with adhesive tape to the fuselage and the carburetter, keeping it as taut as possible. The sides are made in a similar manner, allowing a good margin of overlap at the fuselage and to the bottom paper pattern. Stick the paper to convenient parts of the engine, making cutouts for the magnetos, induction pipes and so on.

Do not try to save time and effort by marking out one half of the cowling and transferring this pattern to the other. Being a horizontally-opposed engine, the two cylinders are not in line and there is a variation between the two sides.
Stick the side patterns to the bottom pattefn, then remove the paper as one piece and lay it flat on the metal. Cut round the pattern using hand metal shears ("tin-snips"), preferably of the angled head type, allowing a full inch extra on the upper limits of the sides and also around the engine cut-outs.

Bend the metal from the centre-line as shown in Fig. 68. The fuselage end-or rear end-of the cowling forms three sides of a square, the corners folded to near rightangles, but at the front the sharp lower corners have merged into a curve. This is done using a batten of wood as a bending block, pivoting it at the rear end as a "vanishing point," and making a series of closelyspaced gradual bends.

Offer the cowling into place and mark where it touches the engine, trim it to suit and
if bends are spaced closely as shown, the

Fig. 67.-Arrangement of
the engine cowlings.

repeat again until, gradually, the cowling becomes a snug fit to the engine. Do not try to trim it to a perfect fit at one attemptcareful, patient fitting will be rewarded with a neat and pleasing finished cowl.

Allow $\frac{1}{2}$ in. clearance around the induction pipes. Bend in the sides at the front and strap them in place with transparent adhesive tape while the small curved "chin" cowling is made. Also strap this on and drill the holes straight through both thicknesses of metal for the securing screws.
Remove the cowling and rivet 2 B:A. anchor nuts behind the holes in the sides for the chin cowling at the front.
Fold up three rin. \times rin. angles of the same material as the cowling and rivet them with countersunk rivets to the cowling sides and bottom. As the cowling metal is quite thin, it is advisable to "dimple" the rivet holes rather than countersink them in the normal fashion. Dimpling can be done very
 outward appearance will outward appearance will

Fig. 68.-How to form the lower engine cowling.
simply by driving each rivet before clinching as shown in Fig. 69. Note how the ends of the reinforcing angles are trimmed to avoid placing undue stresses on the first and last rivets in the row.

Make and fit the anchor-nut brackets which fit to the firewall and to the engine mounting to take the 2 B.A. cowling screws. Note that the cowlings are not positively attached to the engine, thus permitting the engine to move slightly in its rubber mountings without damage to the cowlings.

Stick strips of felt around the top edges of the cowl sides at the front where they bend around the engine crankcase. Use a petrol and oil-resistant adhesive.

Drill a hole through which passes the chokecontrol lever and fit a rubber grommet in it. The cowling can now be fitted, the choke control rod threaded through its hole and the entire fitted to its brackets with pan-head 2 B.A. screws. Do not use ordinary cheeseheaded or round-headed screws as the small
heads will quickly tear through the aluminium in service.
The top cowling is very much simpler to make and again a paper pattern is employed and the cowling made from the centre-line.
The cowling fasteners are of the toggle type and must be a tight fit when locked. It is a good idea to fit a thin rubber sealing strip under the rear edge of the top cowling to rest on the support ledge after fitting the toggles so as to tension the cowlings in the locked position. The exhaust pipe and carburetter hot-air muff can now be fitted.

Inspection

The airframe of the Luton Minor is now complete save for covering and painting. This must not be attempted until after the aircraft has been examined by an approved inspector. Details of how to arrange this are available either from Phoenix Aircraft or the Popular Flying Association.

Prior to the visit of the inspector-who, incidentally, comes to advise and assist the constructor and not to obstruct-the amateur should carefully go over every part of the aircraft himself and look for insecure bolts, unlocked nuts or turnbuckles and so forth, paying particular attention to those parts of the airframe which will be covered and thus out of sight. See that the controls move freely and easily, that no cables chafe and that they are tight enough to be free from slack or sag without being so tight as to drum when plucked. A good test of this last mentioned item is to measure with the fingers as shown in Fig. 70. Do this on an unsupported length of cable at least 3 ft . from a pulley or fairlead.
Fit the anti-vibration discs to the pianowire bracing in the wings. These are of red fibre (not leather) and are laced with waxed thread.
(To be continued)

Fig. 69.-Forming the dimples for the rivets in the cowling stiffeners.

Fig. 70.-Checking the tension of a control cable. It should be possible to deflect the cable about $\frac{1}{8}$ in.

R E A D E R S，

The pre－paid charge for small advertisements is 6 d ．per word，with box number $1 / 6$ extra（minimum order $6 /=$ ）．Advertisements together with remittance，should be sent to the Advertisement Director，PRACTICAL MECHANICS，Tower House，Southampton Street，London，W．C．2，for insertion in the next available issue．

FOR SALE

HOUSE SERVICE meters，credit
 Road，London，E．C．1．
$\mathbf{A}^{\text {IR COMPRESSORS，single cylinder }}$ $\mathbf{A}^{\text {two stage }} 2 \frac{2 \mathrm{~b}}{}$ cu．ft．min．at up to 450 p．s．s．i．；suitable for spraying，etc．
condition as new but slightly store soiled
 Fowler Street，Nechells，Birmingham， 8

COMPRESSORS

Twin Cylinder $2 \frac{1}{2} \mathrm{cu} . \mathrm{ft}$ ．per min． 150
lbs．pressure，base mounting complete Wite for lis of Motors S．A．E．for list of Motors，gauges， Sarety valves，Air Line，ea

WHEELHOUSE
13 BELL ROAD，HOUNSLOW．

TELESCOPES，Eyepieces，Finders， Woodthorpe etc．S．A．E．for list．－ Road，Woodthorpe，Nottingham．
CVERLASTING BATTERIES， 2.5 v rechargeable mains， $37 / 6$ ．Torches，re－ chargeable mains，39／6．Dynamo－torches， 27／6．German microscopes， $100 / 200 / 300 \mathrm{x}$ ，， fitted case， $68 / 17 / 6$ ．Theranews，Tring， Herts．
A STRO TELESCOPE MAKING．－
 pieces， Object Glasses，Newtonian Mirrors，
Diagonal Mounts，Focusing Mounts Diagonal Mounts，Focusing Mounts
Tripods，Mountings and Terrestrial Tripods，Mountings and Terrestria Boston，Lincs．

GOVERNMENT SURPLUS AND
MANUFACTURERS CLEARANCE
MANUFACTURERS CLEARANCE
 2－ea，$\times 1-$ bore， $8 / 8$ ea．
HYDROMETERS．Acdd $3 /-$ ea． MIN．MOTORS，4yvo，reverafble． 1 ermanent magnet，tolally encloged，b／－ea．$\times 21^{\prime \prime} \times 1^{*}$ unused， $5 /$ ea， $48 /$ dog
PRISEME．Magnifying 1 frame， 2 Altere， $5 /$ ea． MORSE KEY8．Sron $11, ~ 2 / \% ~ M e d i u m ~ 8 /-~$
 each．
 MAN．E．S．BULBES．Suitable model Jlye，etc． 1／E each，10／－doz．
 H．H．F．CHASEIS．Parts useful model control，
etc．，contains over 50 components，coils，con－ etc．，contains over 50 components，resistors，ralve holdere，etc． $5 / 6$ ea． TOGGLS $8 W 1 T C E E S$ 1／－PANEL FUSE
HOLDERS， $1 / 6.12-W / A Y$ CONN．BLOCZS $1 / 6$ 8.5 BULB8， $8 / 6 \mathrm{doz}$ ．
 $37 / 8$ ea．Dual range $0-5 v, 0-100 \vee$ ．FsD
$20 / \mathrm{ea}$ ea－ $0-50$ Jicroamp．， $30 / \mathrm{e}$ each． $20 /$ e ea 0 － $0-50$ I．Iccroamp．， $30 /$ each．
FGRLRTEROD AERIAL8．M．Wave， $8 / 6$ ea I．TA．ASRIALS．New．\＄－element， $22 / 6$ ； gpaced，gd，per yd
HEADPHONES
HEADPHONES．Moving fron，low impedance
 TIf 3 for $8 / 6$.
JOB TIME CLOCE
 11／6； 4 amp， $15 /-500$ v．I amp．cont． $30 / 3$ DESK TELGPEONS DESAL BOXRS．Well ventiliated，Idea chargerw，power p
high， $8 / 8 \mathrm{ea}$ ． cockirw Lampg，Bakelite，B．B．C． $2 / 6$ ench．
1224 V．D．C．MOTORS GEARDD．Emall and powerful，4－8 r．p．m．＋ $20 / \mathrm{m}$ MICROSWITCHES，2／－ea．， $20 /$ per doz．
RUBBER ZORCHEs，Ex－Chmemas，legs betterien， $3 / 6$ es．
pRESSURE GAUGEs． 250 p．s．i．， $12 / 6 \mathrm{ea}$ ． 12－WAY P．V．C．Cable，screened and P．V．C． VENFER SILVBR－ZINC ACCUMULATORs． 05，15／－ea．New．Lipt 20／－each．
HUGGETTS
8／4 PAW8OI＇S ROAD，
CROYDON，BURREY．

FOR SALE（Continued）

STEEL SHELVING

RIGID \＆SELF－SUPPORTING
Keep your workshop tidy with one of the following units at a price you can afford

6 shelves adjustable at 1^{n} centres Stove Enamelled，Silver Grey or Green
All Carriage Paid．Cash with Order
GROSVENOR INDUSTRIES LTD．
77H，GROSVENOR ROAD LONDON，S．W．I VIC 4375

C ELLULOSE CEMENT，$\frac{1}{2 p t}$ ．tins $5 / 6$ post free．Sticks glass，metal，wood， ceramics，fabrics，etc．Heat 8 Acid proo
Drawer in box $6^{\prime \prime}$ w． $21^{\circ} \mathrm{h} .6 \mathrm{t}^{\prime \prime} \mathrm{d}$ ．six for $7 / 6$ post free．－Len Healey，146a，Old Road Clacton－on－Sea，Essex．
CHEAP GOVERNMENT SURPLUS Electrical Tools，Instruments，Optical Electrical Tools，Instruments，Optical Nuts，Boits，Screws，washers，etc．Fre K．R．Whiston（Dept．M．P．S．），New Mills， Stockport．
41 IN．PLANING and Rebating 4 Machines，ballraced，adjustable cu £6／10／－；other sizes at low prices．Build Spindles from cheaply；new rype Saw Spindles from 451－．Also combination lists and save pounds．－Ortan Lathes， lists and save poung，Norwich．
Costessey，

BRAND NEW

HYPODERMIC SYRINGES 5／1

WITH 2 SPARE NEEDLES excelient for precision oiling，etc． SIMA Serum Glass 2 c．c．
Each $5 / 1$ ．
Wonderful value． er doz． $54 /$－
SIMA Needles，Stainless Steel． Sizes 12,17 or 18 ．Per doz．4／－ All Orders Post Free．
G．ROGER－SMITH （Dept．7），Syringe Supplies，
LD FARM RD．，LIVERPO

FOR SALE（Continued）

$\mathbf{F}^{\text {LLEXBLE }}$ SHAFTSG Ginding | Wheele，Ceramic Insulatorss Covt |
| :--- |
| surplus；s．a．e．for list． S ．Midgeley | Hebden Road，Haworth，Keighley．

Coil Pack，3／9．Bargain incl． $3 \mathrm{w} / \mathrm{band}$ coil pack， 2 gang condensers， and pair 465 1．F．＇S，P．\＆P． $2 / 3$ ．
Press Button Coil Pack， $5 / 9,3$ w／band Press Button Coil Pack， $5 / 9,3$ w／band
F．M．and gram．P．\＆P． $1 / 6$ ．Wireless remiote control unit，E．MK． 11 Condi－ tion good，morse tapper，switched，jack plugs etc．LESS phone．P．\＆P． $3 / 6$ ． 19 Iford Lave，Mord，Essex．MAL in

WANTED

PKACTICAL MECHANICS．Dec－ Pember，1958，March，April 1959，ur－ gently required．Box No． 13.

Miscellaneous

A QUALUNG and Compressor Equip－ A ment，Ballraces and Miscellaneous
items．Lists 3d．－Pryce， 157 Malden items．Lists
Road，Cheam．
＂FORTUNES in FORMULAS，＂ $900-$ American American book of formulae． American technical hobby and other lists．－Herga Ltd．（Dept．P2），Hastings． $\mathbf{B}^{\text {ANDSAW，made and described by }}$ author in this issue，for sale 20 less author in this issue，for sale $f 20$ less motor．Buyer to arrange collection． Write：S．E．Boston， 3 Albany Road，
Leyton， 10 ． DO YOUR OWN SIGNWRITING． letters．－BCM／Rondo，London，W．C．1．

PROTECT YOUR CAR AT NIGHT ＇LITON＇
 PHOTOELECTRIC PARKING LIGHT SWITCH

will switch your lights on at dusk－
off at dawn，automatically，while you are at work，in bed，or away from home．Controlled by light．Transis－ torised．Avoid accidents，fires．Save KIT OF
$\begin{array}{ll}\text { KIT OF PARTS，} & 52 / 6 \\ \text { BUILTAND TESTE } & 576\end{array}$
Pat．Pending，Send 6d．＂stamp for pamphlef
＂St．John＇s Radio，＂ 156 St．John＇s
Hill，S．W．11．

PATENTS

PATENTING SERVICES．－Advice Qualified agent．－C．L．Browne， 114 Greenhayes Ave．，Banstead，Surrey NEW TOY IDEAS earn much higher Engineer long experience Licensing man－ ufacturers and periodically visiting U．S．A． is open to consider first class ideas．－Box 14 ．

ELECTRICAL

SELF STARTING Synchronous $S^{\text {LEA }}$ Motors， $200 / 260$ volts， 50 cycles Complete with detachable geared mecha－ nisms， $10 / \mathrm{e}$ each．－－James S ．Graham \＆ Co．， 64 King Charles Road，Surbiton． Surrey．

MINIATURE FLUORESCENT

 LIGHTING KITSfor 6 in ．， 9 in ．，and 12 in ．Fluorescent tubes． Unassembled，$£_{1} 12 \mathrm{~s}$ ． 6 d ．Assembled in White Control Gear Box，$£ 117 \mathrm{~s}$ ．6d． postage free．All Control Gear carries our Guarantee．For other Fluorescent Kits SPEAR BR08．Ltd．，Clan Works，Howard Rd， BROMLEY，Kent．（RAVensbourne B573）

MODEL ELECTRIC MOTORS， 9／9，v．3－6，＂Maximo＂＂ $13 / 9$ ，v． $6-9$ ；post $9 / 9$, v．3－6，＂Maximo，＂ $13 / 9$, v．6－9；post
paid．Size 1 i in．\times itin．，weight 1 izoz．， paid．Size $1 \frac{1}{2} \mathrm{in} . \times 1 \frac{1}{\mathrm{~s}} \mathrm{in}$ ，weight 1 立oz．，
drives boat propellers $1-1 \mathrm{i}$ in．，aeroplane drives boat propellers $1-1 \mathrm{in}$ ．，aeroplane
$5-8 \mathrm{in}$－Model Fiectric Motors（Dept． 5－8in．－Model Flectric Motors（Dept． P．M．10），＂Highiand，＂

ELECTRICAL（Continued）

BRAND NEW
 BROOK ELECTRIC MOTORS

Single Phase，$\frac{1}{t}$ h．p．I，500 r．p．m．E7． 10.0 H．P．TERMS AVAILABLE．
 h．p． 3,000 r．p．m．Ell． 0.0 cash．Carriage bai makers，approval agains P．BLOOD \＆CO
ARCH STREET，RUGELEY，STAFFS
A LL TYPES OF ELECTRICAL prices，e．g．， 5 amp ．Twin Cable， $35 /-100$ yards；Lampholders，7／－doz．； 5 ft Battens，49／－；quality and immediat despatch guaranteed．\quad Request list．－ Jaylow Supplies， 93 Fairholt Road Hill 4384．）

LET US INTRODUCE YOU

to an old thrill revived．Early experi－ menters derived much pleasure from simple radio circuits．Transistors enable you to recapture the old thrill．Radio can be made simply and cheaply using these devices．The only power is a small flashlamp battery lasting weeks． Our＂Notes on＂Transistors＂show you how．Send 8d．stamps to
MORCO EXPERIMENTAL SUPPLIES

SITUATIONS VACANT

A．M．I．Mech．E．，A．M．Brit．I．R．E．，City high and Gulds，G．C．E．N etc．，bring high，pay and security\％No pass－no
fee details of exams and courses in all branches of Engineering，Building，Electronics of Engineering，Wuilaing，Write for 148－page handbook－free －Etc．，Write for 148 －page handbook－ree

EDUCATIONAL

HOW AND WHY＂of Radio and Electronics made easy by a new non－maths．practical way．Postal instruc tions based on hosts of experiments and equipment building carried out at home New courses bring enjoyment as well as knowledge of this rascinating subject．Fre brochure from：Dept．

＊LEARN＊
 RADIO \＆T／V SERVICING

for your OWN BUSINESS／HOBBY
－by a new exciting no－maths－system sing practical equipment，recently intro duced to this counery．
FREE Brochure from：－
RADIOSTRUCTOR
DEPT．G80， 40 RUSSELL STREET， READING，BERKS． $5 / 60$

THE D．C．SHUNT MOTOR 1 explains in detail how it works and why， 28 pp．， 22 illustrations， $1 / 3$ post free． －Beak，

HOME BOAT BUILDING

EASY TO FOLLOW KITS to build Bunoat at home－Prams Dinghies and Runabouts，Canoes，Prams，Dinghics and from：Wyvern Boats（Wessex）Ltd．，Mil－ borne Port，Sherborne．
10 FT．CARTOP DINGHY，Hull Seats 10 Buoyancy Tanks，, $27 / 16 /-\mathrm{com}$ plete．Runabouts，canoes．Detains s．a．e． Lancs．

Build your own BANDSAW

with an
 S.G.S Unit

It's easy to make a bandsaw with the S.G.S. precision-made outfit ... and at a fraction of the cost of any othe bandsaw of similar size.
All working parts are supplied, as well as fulf working drawings for building the wooden frame. When constructed the BS 3 model illustrated above has a 27 in . throat and cuts wood up to 4 in . thick with out difficulty.
Price 69 - 19-6

ENGINEERS
DEPT. B.P.M. - OLD COSTESSEY
NORWICH - NORFOLK - NOR $51 X$

FOR CUTTTING curves and angles in metal, hardboard, plywood or plastic use "Dafiles." They have teeth all round catalogue contains numerous items to catalogue contains numerous items to stamp to: Dafiles Ltd., 37 Sheen Road, Richmond. Surrey.

SELECTA 2 Speed Drill plus 10 attachments Everything new. Full maker's guarantee. 412 l0s. the lot. Carriage 3 s 6 d . DRYSDALE
58 Commerce Road, London, N. 22.
PORTABLE POWEK TOOLS, new, used, bought, sold, exchanged, terms. - Arthur Drysdale \& Co. Lid., 58 Com(Bowes Park 7221.)
GENUINE DISPOSAL -Black and Decker D 500 Drill plus 10 attachments; everything new; foll maker's guarann
Box 9.

BLACK \& DECKER
 Plus 10 atrachments, everything Full maker's guarantee. Full maker's guarante. BARGAIN 67 85. $6 d$. LOT DRYSDALE
 58 Commerce Road, London, N. 22
 Telephono BOW 7221

JEWELLERY

JEWELLERY, simply made. Brooches, Also Marcasites, -Webbs Handicrafts, 46 Burnway, Hoı nehurch, Essex.

WOODWORKING

WOODWORKING MACHINES.-All Saw Benches, 7in., $4 / 15 /-; 8$ in., $f 5 / 10 /-$ 10 in ., complete motorised, $£ 30$.' Planers, 5 in ., 12 : Bowl Turning Heads, $4 ;$; with 8 in . Saw Tables, $f 7 / 10 /=$. Lathes, $f 7 / 10 /$ Combination Lathes, f.10/101-., Motors Pulleys, Belts, etc., 12 months' written and money refunded guarantee. 4 d . stamp for illustrated booklet.-James 1nns (Fingineers), Marshall St., Nottingham.
SAWBENCHES, 6 in . 1030 in . from $£ 7$ S^{A} Motorised, f.16. Petrol Portable. $\ell_{2} 29$. Bandsaws,
spindle and planer assembies. 14 . Saw spindle and planer assemblies. Chain Saws. Logging and Firewood Machines Motors, Engines. Deferred terms. Send 1/9d. for Handbook-Catalogue. List free
-Beverley Products, South Thoresby, 18 Alford. Lincs.

HOBBIES

NEWTONIAN THescope Making.6 in. Mirror Blank and Tool (cur plate glass, as cut), $35 /$-per pair; Grindin!
Polishing Kil (powder, pitch, rouge), $27 / 6$ Polishing Kii (powder, pitch, rouge), $27 / 6$: Rectangular Aluminised Opticals Flats,
$15 /$ each; all post free. S.A.E. for listis 15/- each; all post free. S.A.E. for lists
including Ramsden Eyepieces.-L. J including Ramsden Eyepieces-L. J. J
Mays $\&$ Co., 20 Clover Rd.. Timperley Altincham, Cheshire.

SEREN
 ASTRONOMICAL SUPPLIES

Warehouse Road.

Stebbing. Dunmow, Essex. EQUIPMENT for ASTRONOMERS Mirrors, cyepieces, focusing mounts spiders, etc. Do-lt-Yourseif kit S.A.E. for free details.

C ${ }^{\text {ATALOGUE }}$ Surplus and Model 14 Governmen over 500 illustrated items. 2/- (refunder on purchase). P/P 6d.- Arthu1 Sallis Radio Controi Lid.. 93(B), Nortl. Road, Brighton.
TEIESCOPE MIRRORS, σ° para bolised, quarter wave accuracy delivered.-Rock, 85 Watercall Avenue Coventry.

GILMOUR-VALE
GAS TORCHES
For Handierafts and
Industrial use. The No. 1 is an excellent alternative to a blowlamp,
clean, always ready for use and costs clean, always ready for use and costs
only $25 / 6$ for town gas or $33 / 6$ for only $25 / 6$ for town gas or $33 / 6$ for
Calor gas, money back guarantee Calor gas, money back guarantee.
Town Gas Torch for small work, $19 / 6$ Gas Soldering Iron 11/9
Details of these powerful torches and 10 page Instruction Book. 3d. stamp. Al materials supplied for meral jointing. price list in book.
G. M. VALE \& Co., 55 Park Road

Wellingborough, Northants.

HANDICRAFTS

PLASTER CAS'IING. Flexible rubbes moulds for hire from hd. per week Stamp for list-Pleasant Views, Cricktowell, Breconshire.
ROPICAL SHELLS, all sizes, for
Handicrafts, Ornament, Aquariums etc. Catalogue bd. Mixture $6 / 11 \mathrm{lb}$., post free.-Chapman, 14 Moreton Close, Tottenham, N. 15.

PHOTOGRAPHY

$2^{1 \mathrm{~N}}$. $\times 2$ IN. Projector and Enlarger details.-V. J. Cottle, 84a, Chaplin Road. Easton, Bristol, 5.
$B^{\text {ELLOWS, Camera, Enlarger, Process. }}$ Guards.-Beers, 4 St. Cuthbert's Road Duards. (Teers, 41263.). Cuthbert's Road. EXPOSURE METERS.-Build your exposure meter with $50 \times 37 \mathrm{~mm}$. phoroexll, $\mathrm{f} / 14$ to $\mathrm{f} / 32$., $1 / 1000$ th to 60 sec . film cell, $f / 14$ to 19 to 37 .,
speed, 19 to 37 des., component kits speed, 19 to 37 dey. B.S., conmponent kits $55 /-$ and $32 / 0$. All sizes of photocells in
stock, s.a.e. details. G. R. Products, 22 Runnymead Avenue, Bristol, 4 .
developing and prifing by POSTAPRINT AND as TRADE PRICES
Eoll Fume Dereloped $1 /$ - $38 \mathrm{~mm}, 2 /$ Quality Enlargements
Post Cerd 6d. \quad-Plate 1% Whole Plate $1 / 4$ Pinent Materials Oh esy or Matt
Cash with order plua id. postage ANTHONY PRICE, Trade Photographe 3 St. Cuthberts Rd., Lostock Ball, Preston, Lanct

WATCHMAKERS

WATCH REPAIR SERVICE, uncoupled with reasonable charges. Ppart coupled with reasonable charges. Par Hereford Watch Co., 13 St . Owen Street Hereford.
LEARN to be a Watch and Clock Lepairer in your spare time and
earn extra money at home, We can earn extra money at home, We can
supply everything you need at unbeatable prices, including instructional books. Swiss watchmakers' tools, watches, watch and clock movements, lathes, cleaning machines, we also have a fine selection clocks, c . c also have a fine selection of musical box movements and kits. Send
$9 \mathrm{~d}, \mathrm{P} . \mathrm{f}$. for bumper The Watchmakers Supply Company (Dept. P.M.), Carterton, Oxford.
(Dept. P.M.), Carterton, Oxford.
WATCH AND CLOCK REPAIRS.Trom W.W. Allondale, 81 Teviot Avenue. Aveley, Purffeet, Essex.
For all makes of
tional books of watches, tools, instrue ginners. etc. Special Kits for beCatalogue." T. G. LOADER (Dept. B), Walchmakers Mail Order Service Milestone Road, Carterton, Oxford

fREE DRAWINGS
 showing
 STEAM and HOT-WATER
 INSTALLATIONS

Readers of "Practical Mechanics" are offered, without charge or obligation. useful drawings showing correct installations of thermostatic control, steam trapping and automatic air venting equipment on a wide variety of steam and hotwater heating and process applications.
Ask for current list from which to select. SPIRAX-SARCO LTD.
(TECHNICAL DEPT.)
Cheltenham, Glos.

NEW CABLES FITTINGS

$1 / 044$ Twin Peryd. 25 yds. 50 yds. 100 yds.

Tel.: NEW Cross 7143 or 0890

TRANSFORMERS, $230 / 50 \mathrm{v} .1 \mathrm{a}, 250 / \mathrm{v}, 28 / 32 \mathrm{v} .4 \mathrm{a} .32 / 6$ each.
OUR WELL-KNOWN TRANSFORMERS. Inpui 200/240 v. Ourput tapped 3 to 30 volts 2 amps., or tapped 5.11 .17 volts 5 amps. $24 / 6$ each. P.P
 RELAYS. We have large stocks of assorted types from 3/-.
KEY SWITCHES from 3/. TOGGLE SWITCHES. DPDT, 3/6. MICRO
 16/-. 4 for 21/.
MAINS TRANSFORMER AND RECTIFIER, Output $12 \mathrm{v.,1}$ a., 19/6. P.P
W/W RHEOSTATS. 12 V. 5 a., $10 / 6$. 12 V. 1 a.i. $2 / 6$. P.P.
SET OF 7 H/S CHROME VANADIUM FULLL SIZE TWIST DRILLS, in wallet,
$1 / 16$ to tin., $/$.c Smaller size, 4//. TUBULAR HACK SAWS, $11 / 6$.
5in. SIDE CUTTERS, 5/-. 5in. PLATED ROUND NOSE TAPERED PLIERS, $5 /$ 7 in . PLATED FLAT NOSE TAPERED PLIERS, $8 / 6$.
8in. STEEL BLOCK PLANES. 11 in . Cutter Blade, $10 / 6$.
SET OF 6 PLATED WHT. OPEN END SPANNERS. $3 / 16$ to $\frac{1}{2} \mathrm{in}, 12 / 6$.
POCKET NEON TESTER with retractable screwdriver, $5 / \%$ for $11 / 6.3$ for 16
SPECIAL OFFER 6 or 12 v . relays with 4 make contacts, $6 / 2$ or $1 / 6$. $2 / 6$.

THE RADIO \& ELECTRICAL MART
29. STATION APPROACH, SUDBURY TOWN, WEMBLEY, MIDDX

A short cut for the tape recorder enthusiast

that up to 7 in . spools can be accommodated into the "field," some tolerance being allowed on the bearings for carrying the removal spindle as required. (See Figs. 6 and 7.) They are cut from tin. acrylic sheet. It was, however, later observed that when the 7 in. spools of recorded tape were inserted for erasure there sometimes remained a por-

The apparatus may equally well be constructed to take the spools inserted in a horizontal plane.

Wiring

Other than two suitable coils being found or made up to give a suitable " magnetic flux" no special components are needed. As will be seen by the internal wiring diagram (Fig. 1), the author included a standard threepin mains outlet a D.P.S.T. mains voltage toggle switch, an S.P. mains cartridge fuse, and a miniature Arcoletric neon indicator lamp; these latter being connected in the live lead.

MANY readers may well have come up against the question of removing effectively and quickly all traces of recorded matter from spools of recorded tape. Described here is a useful device which will completely erase tapes quickly, without waiting while, they are run through the tape deck.

Design

The present equipment was constructed to operate for short periods on standard electrical supply, 230/250v. 50 cycles A.C. current only, but no doubt readers could work out necessary modifications required in the coil formation and windings for alternative voltages and current supplies. Whilst D.C. supplies are now fast becoming obsolete, where such exist, a somewhat different coil technique would be required.

In its final form the present " eraser" is designed round the coils forming the magnetic field. After much trial and error a pair of coils complete with laminated pole pieces were taken from two surplus $24 / 28 v$: D.C. aircraft relays. All unnecessary parts were discarded and the pair of coils and pole pieces which remained were mounted opposite each other on a short length of $\frac{1}{2} \mathrm{in}$. square M.S. bar. (See Figs. 2, 4 and 9.)

This forms the heart of the " eraser."
Although this "eraser" was primarily intended for use with tape spools of maximum dia. 5 in., it was, nevertheless, so constructed
 non-erasure.

Fig. 2 (Right). -Details of the laminated cores.
tion of the tape near the hub and, particularly if the spool contained its maximum quantity of tape, a similar portion of
 ape near the perimeter, which still contained audible signs of

This fault can, however, be overcome in the event of an "eraser" being required for definite use of 7 in spools by broadening the magnetic field.

Every effort was made to give the completed "eraser" a very professional instrument finish. The cabinet, constructed of $\frac{3}{3} \mathrm{in}$. Obeche, was sprayed with three coats of coach finish black cellulose and mounted on rubber feet. The thin white " escutcheon," details of which can be seen in Figs. 5, 6 and 8, over the spool insertion slot was fret-cut from white opal acetate sheet, the top being sigin. black acrylic sheet with polished edges. Any colours may, of course, be used to choice. All screws visible were chrome-plated. The
All holes $6 B A$.
clearance

Do not switch on unless a spool of tape is in the spool carrier." The above, giving an outline of operating procedure, can, of course, be considerably condensed for engraving. Should a metal cabinet be preferred, a ferrous metal should not be used, aluminium being the most suitable.
When carrying out final wiring a good heavy power flex or 3.029 wire should be used, either rubber or P.V.C. covered, and as far as possible all wires kept apart and connections soldered either direct or via suitable solder tags. It is important to remember that the pair of coil windings should be connected in parallel, and that the coils must be so connected that they "pull" together and not repel. In order to make sure of this, before finally moun-

Fig. 7.-The spool bracket. ting both magnetic coils, one should be left free to move on the connecting bar. On switching on the current, it will be easily ascertained if the two magnetic coils are correctlv connected so as to be pulling towards each other.

Fig. 8.-Details of the top panel.

Fig. 5.-The
overlay escutcheon.

1 off in Brass CP or
Acetate sheet. $1 / 32$ maximum thickness
positioning of the components is not important and may well suit the reader's choice. The photograph of the completed eraser (Fig. 3) illustrates a suitable layout.

Fuse(thole fixing)

Fig. 6.-A perspective view of the case.

Operating

 InstructionsAn improvement might well be added in the form of a small engraved tablet reading: "TO ERASE. Switch on before inserting spool of recorded tape; revolve spool slowly by hand whilst fully inserted with spindle in position, for say, half a dozen complete revolutions. Do not switch off before removing spool after rotating.

The Cabinet
In case any reader wishes to reproduce a cabinet similar to that shown, the base was $8 \frac{3}{3} \mathrm{in} . \times 6 \frac{1}{4} \mathrm{in}$. with the two short sides $5 \frac{5}{\frac{5}{2} \mathrm{in} .} \times$ $3 \frac{1}{2} \mathrm{in}$. and the two long sides $8 \frac{1}{4} \mathrm{in}$. $X 3 \frac{1}{2} \mathrm{in}$. The top was made from acrylic sheet (black) and measures $8 \frac{1}{4} \mathrm{in}$. $\times 5 \frac{5}{8} \mathrm{in}$. The inside dimensions were $7 \frac{1}{2} \mathrm{in} . \times 4 \frac{7}{8} \mathrm{in}$, and small pieces of quadrant were fitted in each corner to which the top panel was screwed. As a refinement, four small rubber feet were screwed to the base, and the upper edges of this were rounded off. If coils cannot be obtained, a bobbin should be made to fit the laminations shown in Fig. 2 and these should be wound full with 22 D.C.C. wire. The resistance of the originals was 170Ω.

Fig. 9.-The spool in position.

Ask yourself these questions: Could I be making fuller use of my abilities ? Holding down a better job? Earning better money? If the answers are 'yes,' then face the position squarely. And do something about it-before it's too late!

MAKE YOUR DECISION

Once you are determined to succeed-and have decided to take actlon-nothing can stop you. But you need guldance. With the help of I.C.S. training you can reach the top faster and stay there longer.

TRAIN WITH I.C.S.

I.C.S. tuition is expert yet simple to follow, covers hundreds of Courses yet is completely individual. You work at home, as a 'class of one,' in your own spare-time. And you set your own pace. This is the way I.C.S. have coached many hundreds of thousands to success. They can do the same for YOU!

The many subjects which I.C.S. teach ore listed on the right. Complete the coupon below and post it off to us today. In return, we will send you a FREE BOOK with full detoils - without obligation.

FILL IN THIS COUPON TODAY

INTERNATIONAL CORRESPONDENCE SCHOOLS (Dept. 169L), Intertext House, Parkgate Road, London, S.W.II.
\qquad
NAME (Block letters please)
ADDRESS

OCCUPATION
Examination Squdents are coached until successful

ADVERTISING \& SALESMANSHIP

General Advertising, Copywriting, Radio \& T.V. Advertising, Commercial Travelling, Sales Management, Retail Selling, EXAMS. Joint Inter., A.A. \& I.P.A. Finals, I.S.M.A., U.C.T.A.'

ARCHITECTURE \& BUILDING

Architectural Design, Clerk of Works
Bldg. Construction, Bricklaying, Trade Courses,
EXAMS. R.I.B.A.(Inter.), R.I.C.S., I.Q.S. Inter., Final \& Dip. in Working-Up, L.I.O.B., Inst. Cik. of Wks.
ART
Art Training (basic), Commercial lllustrating, Oils Water-Colours, Figure Drawing, Lettering.
COMMERCIAL TRAINING Bookkeeping, Computer Programming, Costing \& AccountBookkeeping, Computer Programming, Costing aceount-
ancy, Office Training, Secretaryship, Shorthand, TypeEXAMS. I.C.W.A., C.I.S., C.C.S., A.C.C.A., Inst. Bkkeepers.
CIVIL ENGINEERING Highway Engineerlng, Structural Engineering, Reinforced Concrete Eng., Town \& Country Planning. EXAMS. I.C.E., I.Struct.E

DRAUGHTSMANSHIP (State Branch)
Drawing Office Practice, Mechanical Drawing.
Structrl. \& Arehitectrl.' Drwing., Maths. \& Machine Drawing.

ELECTRONIC ENGINEERING

 Basic Electronics Industrial Electronics \& T.V.,FARMING \& HORTICULTURE
Arable \& Livestock, Pig \& Poultry Keeping, Farm Machinery (Maintenance), Smallholding, Flower \& Vegetable Growing, Complete Gardening. EXAM. R.H.S. General.

FIRE ENGINEERING

EXAMS. Inst. of Fire Engrs., Fire Service Promotion:
GENERAL EDUCATIQN Languages, Good English. EXAMS. G.C.E. subjects at Ordinary or Advanced Level. E.J.B.C.P.

MANAGEMENT
Industrial Management, Business Management,
Office Management, Personnel Management,
Hotel Management, Work Study, Foremanship, Storekeeping, EXAMS. Brit. Inst. of Mangme. Inter., Final \& Cert. in Foremanship
MECHANICAL ENGINEERING
Wide range of subjects incl. :Workshop Practice, Diesel Engones, Refrgerat
Engineering Maths., Production Engineering.
C. \& G. Cert. in Machine Shop Engineering Foremanship,

MOTOR ENGINEERING
Motor Mechanics, Running \& Maintenance, Road Diesels, Owner Drivers.
PHOTOGRAPHY
The Amateur Photographer.
EXAM. P.D.A.
RADIO, T.V. \& ELECTRICAL
Radio Engineering, Radio Servicing, T.V. Servicing Eng. Practical Radio (with kits), Electricity Supply, Electricians, EXAMS. Brit.I.R.E., Soc. of Engrs., C. \& G. Certs, for Telecom. Technicians, Radio Amateurs, Radio Servicing (RTEB), Elec. Engrg. Practice, Electrical Installations.
WRITING FOR PROFIT
Short Story Writing, Free Lance Journalism,
AND MANY OTHER SUBJECTS Incl:
Police Entrance
Industrial Instrumentation
Petroleum Production
Dressmaking
Textiles
LEARN-AS-YOU-BUILD PRACTICAL RADIO COURSE. Build your own 4 -valve T.R.F. and 5 -valve superhet radio receiver Signal Generator and High-quality Multi-tester.

The ideal Build-it-yourself WELDING KIT

ONLY £25

 Complete with all Accessories as shownNew H.P. Terms £5 down and 6 monthly payments of $\$ 3.15 .0$,

Works from Standard Household Power Plug (10-15 amp. A.C.). Welds up to any thickness plate. Brazes down to 26 swg plate. Silver solders, Tins and Surface Hardens. Send Cash or Deposit for Immediate Delivery, or write for Fuller Details. Not a cheap choke set, but a full WELDING TRANSFORMER in heavy gauge welded steel case. Larger models available. 180 amp . 552 ($£ 10.10 .0$ deposit) and 360 amp . $£ 95$ (deposit by arrangement). Thousands in daily use in factories and workshops throughout the World.

7 DAYS' FREE TRIAL ON REQUEST

TAYLOR BROS. (MIDDLESBROUGH) LTD.
32 Baker Street, Middlesbrough, Yorks.
Tel. : 45241-2

SUPER CHASSIS pash 7916 or
5/1 initial payment and 19 weeks at 3/11
5 -valve superhet chassis, including 8in. P.M. speaker and valves. Four control knobs (tone, volume, tuning, w/change switch). Four w/bands with position for gram. p.u. and
extension speaker. A.C. Carr. and Ins., $5 / 6$.

BAKELITE

 CABINETSBrand new. Colour brown Attractive de-
sign. Size: 12 x ․ $5 \frac{1}{2}$ ".
 receivers, converCHASSIS I/=
6 or 8 valve latest type, midget valve design for A.M. or F.M. Brand new, Cadmium plated. Size: $\left.\left.12\}^{\prime \prime} \times 7\right\}^{\prime \prime} \times 2\right\}^{\prime \prime}$ Post and pack12 for $10 /$-, carriage $5 /-$.

Extension Speakers

In polished cabinet of attractive $19 / 9$
 design. Complete: fitted with $8^{\prime \prime}$ P.M. Speaker of highest quality, switch and flex. Ready for immediate use. Ideal for Bedroom, Kitchen, Workshop, etc. Ins. \& Carr. 3/9.

DUKE \& CO. (Dept. H.5) 621/3 Romford Rd., Manor Park, E. 12 ILf 6001/3 TERMS - NO DEPOSIT - INTEREST FREE Send for a FREE catalokue.

MAKE MONEY-making casts with VINAMOLD A GRAND SPARE-TIME OCCUPATION WITHOUT any previous experience you can mass produce any object from a chessman to a candlestick statuette or model ship, in plaster, resin, concrete, etc .- With "VINAMOLD," the flexible mould that gives the BEST results. Easy to work, can be used over and over again. Needs NO special equipment, provides a profitable and enjoyable spare-time occupation with minimum outlay.

Write for full details and instructions. Also available: New Plaster Hardener SP. 10 and very high-gloss Lacquer SP. 20.

VINATEX LTD. (DEPT. PM) Carshalton, Surrey.

Truly a sensation! The very WME GRSAT SST IAM/LY TGMT EARGA/WEVER!

 tastic price!) Emjoy the tuxaly of private rooms plus a porch, covered to protect you from sun or showers. Not only in colourOrange and Green (it will but a wonderful Heavy Ouality Duck tent completely profid against all weathers proofed roominess. Overall size $12^{\prime} 6^{\prime \prime}$ 6^{\prime} approx. Extending ${ }^{\prime} 6^{\prime \prime}$ x area. High walls ($6^{\prime} 6^{\prime \prime}$ slopiny to 5 , at ends) give spaciousness of a chalet! Weight approx. 65 lb. Also in magnificent white duck. Sent for 20 /- deposit

balance by 24 fortnghtly payments of $16 / 3$ plus carr. Cash price $£$ Wonderful two tone Orange and Green $42 /$ - extra. ARSOLUTELY COMPLEFE with flysheet, inner curtain, and sectional poles which form easily assembled framework, with self-adjusting guy-lines. AMAZING VALUE! Rubber-backed Groundsheet,
with eyelets $79 / 6$-this essential sent on approval. Tent folds into valise size $4^{\prime \prime} 9^{\prime \prime}$ $2^{\prime} 4^{\prime \prime}$ diam. for easy carrying. Refund guaranteed. Free Tent Catalogue on request. HEADQUARTER ANOGENERALSUPPLIES LTD. (DEPT. PMC/55), 196-200, COLDHARBOUR LANE, LOUGHBOROUGH JUNCTION, LÓNDON, S.E.5. Open all Saturday I p.m. Wednesday.

Now 5" Gapacity at No Extra Cost!

wil make your task to much
easier, and bring greater pleasure to your Furniture making Full guarded for safety. Thicknessing Attach ment and Extension Rollers available. SEND FOR FULL DETAILS (TO DEPT. BP/43)
$\mathbb{M} \mathbb{Y} \mathbb{I F}^{(}(0)$ IRIID
B EESTON
NOTTINGHAM

LETTERS to the EDITOR
 The Editor does not necessarily agree with the views of his Correspondents

Exakta Camera Repairs

SIR,-With reference to P. A. Carroll's W query in the February issue concerning his Kine Exakta camera. From personal experience I do not think he will obtain a book dealing with the Exakta focal plane shutter (although The Exakta Guide, by W. D. Emmanual, published by Focal Press, gives useful information of a general nature and also provides operating instructions). Also I do not think that it is advisable to attempt shutter, repairs oneself, unless one has equipment with which to measure blind speeds and exposure times. It is possible to attain, say, a "correct " exposure of $1 / 25$ th or some other speed, yet at the same time have the shutter blinds travelling too fast or too slow. Obviously too high a blind speed will impose an undue strain on the mechanism, and too low a speed will fail to "stop" movement. I would suggest that Mr. Carroll takes his camera to a photographic shop that is an agency for Exakta cameras.-J. J. Plumstead (Bristol, 3).

㽗. Th. amal Ifetirement

CIR,-A few minutes in my home would provide ample proof of the value of Practical. Mechanics, particularly the photographic section. It contains: horizontal enlarger; electric double-side print dryer; print washer with sloping trays; print washer sink adaptor; combined electric safelight and contact printer; portable lights and reflectors; electric touching-up box; portable switchboard. These and many more P.M. ideas are in spanking order.

I am approaching retirement age, but with all the P.M. ideas I have earmarked to make, boredom seems impossible.-C. A. Patrick (Barnsley).

Gas Turbine Engines

CIR,-I would like to expand your answer to the question of the mystery of the gas turbine (see query in your January issue). This same question used to puzzle me. Your answer did not say why a turbine overcomes its own compression and produces thrust; only that it did. This question is even more pertinent in the case of a ram-jet, which produces thrust without even a compressor to aid it.

To correct your questioner: in a gas turbine there is no pressure rise from combustion, but there is a great increase in velocity. The thrust of a gas turbine is a direct result of the increase of momentum (i.e. mass \times velocity) of the air passing through it. The final combustion chamber pressure is reached by a diffuser section between compressor and combustion chamber, which slows the flow down and therefore increases its pressure.
The reason why there is not a reversal of flow from high pressure to low is surprisingly ordinary and is simply that (a) the turbine is started by rotating it in the required direction, and (b) the turbine is physically made so that it functions most easily in that direction!

It is an interesting point that no man-made power unit is self-starting; they all have to be pre-started by some separate power supply, and, since it has been started, it is easier for the air to continue flowing in that direction rather than push against the compressor momentum.

One could ask, however, how does the turbine keep on going when it has to push just as hard rearwards against the turbine wheel, since the power absorbed by the turbine wheel must exactly equal that delivered
by the compressor? The answer is that this only occurs when the assembly has rotated up to its maximum speed; before this the turbine wheel is absorbing an excess of power over that generated in the compressor and therefore it must rotate in its direction, and thus create a uni-flow. This, however, only occurs because of the unsymmetricality of the gas turbine.
I firmly believe, though I do not think it has even been demonstrated, that a turbine could be made which would run in either direction of rotation. It would have to be made exactly symmetrical about a lateral centre plane positioned on the burner nozzle centre line. All the blading would have to be symmetrical about its own vertical centre lines.: Gas turbines have been made in which two centrifugal impellers of very similar shape have been mounted back to back, one compressing, the other expanding, thus approaching symmetricality, and they run quite efficiently.
The non-self-starting remark made in the query refers only to mechanised power plants; an electrical power plant consisting of battery and motor starts up as soon as fuel (acid) is poured into the battery cell.-M. Collinson (Bradford, 3).

Amatenr Rotocarafit Fillots

SIR,-I have read your letter from Mr. Taylor regarding Bensen Gyrocopters, and which appeared in your March 1960 issue. The simple answer to approval by the P.F.A. of this type of aircraft is that nobody has yet supplied adequate data regarding strength characteristics, blade flutter characteristics and other technical data necessary to ensure that the type is not a danger to its pilot or third parties. In any case, the Permit to Fly system for Ultra Light Aircraft does not, by Ministerial decision, apply to rotorcraft, therefore people wishing to fly Gyrocopters must deal directly with the Ministry of Aviation.
This is the ruling against which the P.F.A.
has protested, but the Ministerial view has so far been adamant.-Chairman, Popular Flying Association (London, W.1).

Amatear Nodelmahisag

SIR,-While looking through back numbers of P.M., I re-read your Fair Comment in the October issue where you discuss the tendency of the home hobbyist to interest himself in hobbies where there is a chance of financial return, to the exclusion of other less profitable interests. Modelmaking would, I suppose, be classified among these latter, and 1 wonder if this is the reason that there is less apparent interest in this subject in modern times? I. have been an enthusiastic modelmaker for a great many years and when I first started was a member of a thriving modelmakers' club. We took a pride in producing models which were true to scale in every detail; some worked and some did not. Accuracy, workmanship and appearance were the points on which we judged our success. Today's modellers seem to concentrate on boats only as test beds for radio control equipment, aircraft, not for appearance, but for the fun of flying them, and, models, not for their accuracy, but for their value as household ornaments, i.e. vintage cars and pseudo galleons, etc. I know there are still a great number of people enthusiastic about models for modelling's sake, but are their numbers declining?-R. J. Samson (Liverpool).

Madel Fort

WHILE watching my children making castles in their garden sandpit last. year I hit upon a novel way of improving the results which intrigued my children and may interest others. The battlements and gateway were made from odd scraps of wood and hardboard, and when added to a sandcastle made by children in the usual way the result as shown below can be quite impressive. - R. S. Beauchamp (Luton).

TRADE NOTES

A REVIEW OF NEW TOOLS, EQUIPMENT, ETC.

STEADFAST PAD SAW

DESIGNED to fit comfortably in the pocket, this is an occasional tool which can be used for a multitude of purposes. The three blades, which are pivoted, may be folded into the handle for convenience of carrying, the handle being of translucent amber plastic. As can be seen, the shorter blade has a knife edge and can be used for lino cutting, marking out, etc.; the other two are pad saw blades, one a fine tooth blade for hard materials, the other a coarse tooth blade for cutting sorter materials. The price of 6 s . includes the plastic carrying wallet. Replacement blades cost 3 s . per set of three. 'The makers are the well-known firm of J. Stead \& Co. Ltd. and the tool is available from most tccl dealers and ironmongers.

EVERYTHING FOR THE AMATEUR POTTER

WE have received a very interesting catalogue from the firm of J. W. Ratcliffe 8 Sons (Engineers) Ltd., Rope Street, Shelton New Read, Stoke-on-Trent, which details their whole range of pottery mpchinery, equipment and materials. This includes kilns, wheels, mou'ds, glazes, transfers, etc., etc. Of interest to the beginner is a special do-it-yourself beginner's pack which includes clays, various culcuis and glazes, moulds, brushes, tools and utensils. Details 0^{c} this equipment are available from the makers at the above address.

STANLEY TRIMMING KNIFE

SANI,EY WORKS G.B. LTD, have brought out a new version of tineir trimming knife. This has a wider selection of blades than its \quad redecessor, a new heavier alloy handle with a hole to facilitate hanging and a captive securing screw which cannot be lost. Replacing the five normal-duty blades previously supplied are three normalduty, one neavy-duty and one hooked blade. These together with the blade guard are carried in the handle. All the blades are double ensled. The price is unchanged at 6 s . and replacement blades are available.

PORTABLE HAND EMBOSSER

THE inan running a small business or a shop where labelling is used " to a large extent will find this hand embosser of interest. The Midgie" embosses letters and numbers on hard-wearing, corrosive and chemical resisting Vinyl red plastic tape. This has a pressuresensitive adhesive backing for application to most smooth and clean surfaces. The plastic labelling is self-feeding and cost per label is a few pence. The " Midgie," which is simple and quick in use, retails for $\{12$ 10s. and is available from the British Automatic Co., 14 Appold Street, I.ondon, E.C.z.

VALTOCK BLOWLAMP FITTING

THE many users of the well-known Valtock blowlamps will be 1 interested to see the new soldering iron attachment which has been produced to fit them. In the photograph it is shown fitted to the " 2000 " model but it is designed also to fit the "Major." As can be seen, the soldering bit is held firmly at the correct distance from the flame by means of a nickel-plated clip, it being used in the normal way. The price of the new fitting is 5 s . and it is available only from Valtock Itd., Regency House, Warwick Street, London, W. I.

" NUFLEX" POCRET RULE

THE flexible tape is made from pre-treated tempered steel and is provided with a white synthetic finish. This when graduated in jet black makes the rule particularly easy to read. A sliding tip is fitted to facilitate end-on measuring and the rule is housed in a robust green plastic case. The rules are available 6 ft . or 2 m . long, calibrated feet and inches in eighths; consecutive inches in sixteenths and thirtyseconds or consecutive inches in sixteenths, thirty-seconds and miliimetres. Replacement blades are easily fitted. The rule costs 5 s. from tool dealers, ironmongers, etc. The makers are John Rabone \& Sons Ltd.

THE ARDEN KART

KARTERS LTD., P.O. Box i, Havant, Hants, are distributing the new Arden Kart, which has a number of interesting features. These include a Vincent-Harper engine, interchangeable sprockets, detachable front and rear axle assemblies, a specially designed centrifugal clutch, a self-energising wedge type disc brake acting on both wheels, Ackerman type steering, a bucket seat of fibreglass reinforced plastic, a live rear axle and a robust underslung tubular steel frame. All enquiries should be made to the above address.

Pottery equipment available from 7. W. Ratcliffe Go Sons Ltd.

ASTRO TERRESTRIAL TELESCOPES Get you the best from BOTH worlds

SCOUT TELESCOPES. Alf brass, three draw. $25 \times$ 50 (2in. OG). With leather case and interchangeable $120 \times$ lestro BRAND NEW G13 101 Triple Pow 25 and $40 X$ terr. and $60 X$ astro, EII.
SCOUT TERRESTRIAL TELESCOPES. 25×50, as above. Brand New, $69 / 10 /=$ ea. Used from $\mathbf{E 7 / 1 0 / - .}$ VARIABLE POWER TELESCOPES, 5 to $15 \times$ Terr 2 in . OG. New and Boxed,' $£ 6 / 10 /-\mathrm{ea}$. Weight 101 b .
ELBOW TELESCOPES. 20×70. Built-in filters E11/10/-
AA DUAL TELESCOPES. 35×60 and 15×50 with geared elev. and panning adj., $£ 15$ ea.
RIFLE SIGHTS No. 42. $3 \times$, $35 /$ ea. Ditco No. 32 with E. \& W. adj., $63 / 15 /$.
A HUGE SELECTION OF EX-GOVT. TELESCOPES and OPTICS AVAILABLE. SEE OUR LISTS FOR DETAILS. G.G.S. RECORDING CAMERAS Mk. III. $/ / / .9$ bloomed lens, iris to $/ / 1.6$. 2 or 16 F.P.S. Variable shutter $50,-100$ or 300.50 ft, , 16 mm . magazine load. Brand new and tested OK. 24v. motor. In case with magazine, $\mathbf{E 5 / 1 0 / - \text { ea }}$ Used, tested OK, $64 / 5 /$. Can be supplied with reflex focusing device at $£ 3 / 10 /$ extra.
VARIO CAMERA SHUTTERS. Iris to 4.5 to 22. Speeds $25,75,200$ and B. Flash sync, and cable release sockets. New and boxed, less lens, $12 / 6$ each.
TELESCOPE MIRRORS. Parabolised. $6 \times 48 \mathrm{in}$. £9/5/-. $4 \times 31 \mathrm{in} . £ 3 / 3 /$ - Both aluminised and anodised. Flats from 3/6. Eyepieces from 8/6.
VARIABLE POWER EYEPIECES. \& to $\mathrm{E} 4 / 5 /$ - each. i to $\frac{1}{6} 3 / 5 /$.
MIRROR TYPE TERRESTRIAL TELSCOPES. 4 in. dia. 50 to 120 X . Make your own. Mirror, prism and VP eyepiece $\mathbb{E} / 7 / 6$. See our lists for similar Astro types.
MINIATURE GEARED MOTORS. 6 to $24 v$., one rev. per min., elec. clutch, speed governor. Precision gearbox fitted 9 ball races. Size only $1 \frac{1}{2} \times 1 \frac{1}{2} \times 3 \mathrm{in}$. grand new 30/- each or in case with relay and micro Brand new $\mathbf{3 0 / -}$ - each or in case
switches. New sealed carcons $\mathbf{E 2}$.

ROTARY VANE VACUUM or PRESSUREPUMPS. 60 lb. sq. in. R.A.F. 30/-. Post $4 /$ -
COMPRESSORS, 100 lb sq. in. 35/-. Post 4/-
TELESCOPE OGS. Triplet. Zeiss. 4 in . dia. $\times 14 \mathrm{in}$. ocus. 810.
SELF PRIMING PUMPS. SUITABLE FOR GAR-
DEN FOUNTAINS AND WATERFALLS. 400 g.p.h. 45/- each. 24v. D.C. working and perfectly safe. Larger types available with transformers, etc. See our lists.
INFRA RED MONOCULARS. Complete in case with power unit. Unused but faulty, $\{6$ dazen. Ditto, tested OK, $£ 2$ each.
GEAR PUMPS. For oil, with 24v. motor. Brand new £4/10/- each.
RECTANGULAR LENSES. For viewers, $31 \times 2 \frac{1}{2}$, 11/-; $2 \frac{1}{8} \mathrm{sq} ., 7 / 6$. Post $1 / 6$.
ELBOW TELESCOPES. 8×50. Make good telephoto lenses for any type camera. Bloomed, lever focus, lightweight. Latest Type. Brand New, 45 ea. Others from 63/5/-
TRIPODS. 3ft. with pan and tilt. Suit Seout Telescopes, 12/6 ea. Carr. 3/-.
SYNCHRONOUS MOTORS. 230 volt, A.C. One rev. per 24 hrs.. 17/6 ea
MIDGET MOTORS. 12 valt A.C. D.C. fitted governor and pulley and wire belt, $8 / 6$ ea.
RANGEFINDERS. VARIOUS TYPES. Sound but not guaranteed accurate, $\mathbf{6 3}$ ea. Carr. 7/6. Ditto checked OK., $£ 10$ ea.
LANDING LAMP MOTORS. Ideal for remote operation of garage doors, etc. 24 volt D.C. Brand New aperation of garage doors, etc.
$22 / 6$ ea. Used $17 / 6$. Posc $3 /$-.

MINIATURE MOTORS with fan. $12-24$ vols, Suit-

CAR AERIALS. Chrome 5 section telescopic, 4 ft 12/6. ea
CLINOMETERS. General purpose $0-90$ degrees. Gunmetal, $17 / 6$ ea
HAND GENERATORS. 6 to 24 volt D.C. Don't get stuck with flat bactery while on holiday, etc., these will get you going. Brand New, 21/-ea. Carr. 4/-
EXTRA WIDE ANGLE ORTHOSCOPIC EYEPIECES. No finer obtainable. Cost over $£ 30$ ea., 6 glass type in focusing mount. $\frac{5}{8}, 50$
ea. See our lists for others.
TELESCOPE OBJECT LENSES. $45 \mathrm{~mm}=\times 19 \mathrm{in}$ focus, $25 /-212 \mathrm{in}$. $\times 20 \mathrm{in}$., $55 / \mathrm{m}, 21 \mathrm{in}$. $\times 25 \mathrm{in}$., $60 / \mathrm{F}$. $3 \frac{1}{2} \mathrm{in} . \times 32, £ 14,105 \mathrm{~mm} . \times 15$, Zeiss, $\in / \mathbf{2}$. See our lists for others.
WATSON SERVICE MICROSCOPE. Standard Chrome and Black. Mech. stage. 2 oculars, 2 obl., $\$ 35$. PROJECTOR KITS. High efficiency lamp and condenser system aceurately matched to projection lens gives superlative results: Using 100 watt lamp we guaran-
tee results equal to and in many cases superior to 300 and 500 watt types.
LENSES only, unmounted. 35 mm , or 2×2 slides, Triple condenser and lens, $38 / 6$, post $1 / 6$. $2 \frac{1}{2}$ sq. Double condenser and lens, $31 / 6$, post $1 / 6$. For mounted sets and other types see our lists.
ASTRO TELESCOPE KITS. 45 mm . OG (achromat.), focusing eyepiece and tube, $\mathbf{E 2}$.
Booklets : HOW TO USE EX-GOVT. LENSES \& PRISMS." Nos. Projectors and Enlargers, 35 mm . to 2 t . 5 de
Back projection Table Viewer, $35 \mathrm{~mm} ., 3 / 6$.
ENLARGER, 35 mm , to 2 tin . 3/6. MIRROR TYPE TRANSPARENCY VIEWER, $2 / 6$.
LISTS FREE For STAMPED \& ADDRESSED ENVELOPE.

H. W. ENGLISH, 469 RAYLEIGH ROAD, HUTTON, BRENTWOOD, ESSEX Ehones: 1685 or sio

INSPECTION LAMP. Fits on forehead, leaving hands free, battery case clips on
belt. $7 / 6$, post $1 / 6$. Takes E.R. Batuery. belt. $7 / 6$, post $1 / 6$. Takes E.R. Battery.
No. $125,2 / 9$, post 9 d .
VACUUM PUMP AND COMPRESSOR VACUUM PUMP AND COMPRESSOR
Many Uses in Workshop or Laboratory. Many Uses in Workshop or Laboratory.
This is an Edwards type ${ }^{4}$ with $\frac{1}{2}$ in.
shaft, coupling, oil-filter and union for This is an Edwards lype ad with in.
shaft, coupling, oilf-fiter and union for
tubing, $£ 6.10 .0$., post $3 / 6$. tubig, f6.10.0., post $3 / 6$. volis, $1 / 6$ each, $12 /-$ doz.
TERM1NAL BLOCKS $4 /-$ doz., or box
of 50 for $15 /-.3-$ way, $6 /-$ doz., 50 for

METERS GUARANTEED F.S.D F.S.D. 4i88

ROTARY CONVERTERS: Input 12 D.C.
Output 230 A.C., 50 cy . 135 w . In fitted case wieh variabie resistance. 0j 300 volt-
meter. The ideal job for television where meter. The ideal job for television where A.C. mains are not available, $£ 10$, carr. 15/- Special connectors one fitted with
6it. heavy duty flex and clips for D.C. ROTARY CONVERTER input 12 v . or
24 v D.C. output 230 v . A.C. 135 wats, ${ }_{\text {e8. }}^{24}$ V. D.C. output 230 v. A.C., 135 watts,

GOVERNMENT SURPLUS BARGAINS

MULTI-PURPOSE MOTORS. LOw

 with gearbox, 24 V. D.C., but good at 12 v or12
v.
6 aeta of cama and aloo plunger giving powerful
literal thrust, Takes under 12 amp. Wonderfully versatilo motor. Each $25 /=$, post 2/-. BATTERY CEARGING TRANSFORMERS, 11 v . and 17 v. A.C. (for 6 and 12 v: Cbarghn at 1 ; amp.). Each 17/6, post $1 / 9$.
RECTIPIERS to suit above. Each \%/6, port $1 /-$. (These transformers and rectifers will run
above motors.) TELEPEONE HANDSETS (two in serier with
battery make intaroom.). Each $17 / 6$, poet $1 / 6$ TRIPODS 38 m , long. Very rigid (not tel acople). Easily adapt to camera, etc. Hach 12/6, post 2/6
MOTORS. $200 / 250$ Y. A.C./D.C. F.H.P.
approx. 80 watto. Eligh Speed, approx. 80 Watts. BLigh Speed, itm. Ahaft
(converted ex B.A.F. motor generator-puwer (convarled ex A.A.F. motor generator-p
about equal to ewtig machine motor), Usef addition to workehop. Each $30 /-$, noet $2 / 9$. Dynamotors. Input 12 r. D.C. Output 240
D.C. 20 watts, 18/0 each, poet $2 / 9$.
Sond 3d, shamp for list of other motors, trars

MILLICANS
 2 Harford Street, Liverpool, 3 Money Bact Gnarantee.

 months' "Same-as-Makers" Guarantee. GEAR PUMPS. Beautifully made units approximately 5 in. x 5in. $32 / 6$ each. SURVEYORS' LEVELS. Mahogany with brass fittings, 4 ft . long. Built-in spirit Designed for gun suryeying, useful for many purposes. $15 / 6$. Carr. $2 / 6$.
TRANSFORMERS. Input 230 or 110 v . A.C. Two separate outputs, 6 v. 36 w . Suitable for powering electric bells. models. etc. $17 / 6$. Post $2 / 6$. long, extends to 15 in . Any $1 / 8 \mathrm{in}$. $\times 12 \mathrm{in}$. joined together. 20 for $4 / 6$. Post 9d. PURTABLE TELEPHONES. Type F. Very fine self containcd units with a range or up to five miles. Ideal for all types of internal and external communication. Each in separate carrying case and complete with batteries and 100 ft . cable. Wire $2 /-$ per 100 ft . CLOCKS. Precision made instruments with setting for Hours and Days up to 26 weeks. Originally made for detonating mines, etc. Will operate from 3 v. dry battery. Really
special value. Price $30 /$ each. Post $3 /-$. - 3

15/6 carr. $3 / 6$

POWER UNIT for ELECTRIC RAZOR. From 12 to 24 volt batteries. Converter
suitable for $110 / 230$ A.C./D.C. Electric Razors. (Not suitable for Razors operat-

ing on A.C. only.)

EASTERN MOTORS

Aldeburgh, Suffolk

 Phone 51.
HIGHSTONE UTILITIES

 Ex-R.A.F. 2 -valve (2 volt) Microphone Amplifiers, as used in plane intercom. inself-contained metal case; can be used to self-contained metal case; can be used to
make up a deaf aid outfit, intercommunimake up a deaf aid outfit, intercommuni-
cation system, or with crystal set, comcation system, or with crystal set, com-
plete with valves and Fitting Instrictions, piete with valves and piting instructions, $3 /$. Useful wooden box with partitions to hold amplifier, $2 /$ extra. Amplifier, containing resistances, condensers, transformers, switches, etc., but less
valves, $10 /-$ post $3 /-$ Hand Microvalves, $10 /-$ post $3 /$ - Hand Micro-
phomes, with switch in handle and lead 5/6. Tannoy, 7/-. Similar instruments, moving coil, $8 / 6$. All post, $1 / 6$. Mask ype with switch, $3 / 6$ post 6 . Throat Mikes, $5 /-$ post 7 d . Mike Buttons (carSoldering Irons.-Heavy Duty Iron, 150 watts, $18 / 6$, post $1 / 6$.
 $2 \mathrm{in} . \mathrm{m} / \mathrm{c}$. $8 /-; 3.5 \mathrm{amp}, 2 \mathrm{in}$. T. C. $25 /-1$ 4 amp., 21 in., T.C. in case with switch,
$9 / 6 ; 100 \mathrm{~mA} 2 \mathrm{in} . \mathrm{m} / \mathrm{c}, 7 / 6$, all post ex-
 Bell Transformers. - These guaranteed transformers work from any A.C. mains giving 3,5 or 8 volts output at i amp., operate bulb, buzzer or bell. Will supply light in bedroom or larder, etc., $9 /-$ post $1 /$. Similar Transformer but output of 4 ,
8 or 12 volts, $13 / 6$, post $1 / 6$, BUZZERS for use with either the above or batteries ivory case, pleasing two note chime. Can be used with battery or with our 12 v . transformer, 19/4. New Ding Dong Chimes. Also housed in a pleasing ivory case. Operates on two $4 \frac{1}{2} y$. flat batteries.
fitted within the case, or by transformer, fitted within the case, or by transformer, G.P.O. Telephone Hand Comb. Sets. 12/6, post 1/6. Telephone Hand Generator, 8/6, post 22 -. Telephone Bell, 3/6, post 9d. mains to show "live" side of switches, etc. 2/6, post 4d. Mains Tester Screwdrivers, Determine positive or live terminals in any mains electric circuit $\quad 6 /$ - post 6t. 2/6. post 9d. Headphones, brand new. S. G. Brown, G. E.C., etc., super-sensitive, 23/- a pair. Headphones in Good Order. anced Armature Type (very sensitive), 13/6. All post $1 / 6$. New Sinple Earpieces, 3/6; Bal. armature type, $4 / 6$ (two of these will make an intercom. set). Ex-R.A.F. ear-
piece, $2 / 6$. post od. Money refunded if not completely satisfied.
HIGHSTONE UTILITIES
58, NEW WANSTEAD, LONDON, E. 11 . New hilustrated List sent on request

BASSETT - LOWKE LTD.

21, Kingswell Street, Northampton
London: 112 Hish Holborr, w.C. $1 \quad$ Manchester: 23, Corporation Street

YOU MAY HAVE LIVED ON EARTH BEFORE!

New places, or people you pass in the street, may seem oddly familiar to you. Have you known them in a previous life:
You wonder why you are living on earth to-day and for what purpose you are here. Certain secrets of life and mental development cannot be divulged indiscriminately. If you sincerely feel the need for instruction in the use of your higher creative endowment, you have reached the stage where the Rosicrucian teachings will be of practical value to you in your everyday life. Learn how to quietly impress your personality on others, to better your business and social position.
Use your own naturally endowed powers to achieve results you now think unattainable in your present state of untrained and undirected endeavour. Simple Rosicrucian teachings enable intelligent men and women to soar to new heights of achievement, new freedom, new contentmient in life.
Devoted to the attainment of the true Brotherhood of Mankind, The Rosicrucians are a Non-Religious, Non-Political, Non-Profit Making Fraternity.
You are invited, though not urged, to write for the free 32 page book - "The Mastery of Life," which has been written to give readers an outline of the world-wide scope and history of this non-commercial fraternity.
This invitation is not to be taken as an assurance that every applicant receiving "The Mastery of Life" will be approved for membership by the Dean of Students.

Please use the coupon below or write so:
 \section*{SCRIBE: T.M.Y.}

The ROSICRUCIANS (AмоRC)

25 GARRICK St.
 LONDON W C.2. ENGLAND

"CATALOGUE"
Our new Catalogue No. 14 has 500 items
nearly all illustrated. Radio Control, nearly all illustrated. Radio Control,
Government Surplus, efc. Price 2/-.
 GEARED TUNING UNITS. Small chassis $3 \frac{1^{\prime \prime}}{} \times \frac{31^{\prime \prime}}{} \times 6^{\prime \prime}$, containing 8 MF holders, 15 small chokes, condensers and resistances, 2 Crystal diodes (CV448). 2 tag strips. Attached to unit is a small sub-chassis which contains W.W. pot 500 ohms gear-driven to $3 \frac{1}{2}{ }^{\prime \prime}$ long lead screw with travelling block and limit switches. This unit makes an ideal rudder pormag motor. Price $17 / 6 \mathrm{~d}$., post $1 / 6 \mathrm{~d}$. pormag motor. Price $17 / 6 d$ of post $1 / 6 \mathrm{~d}$. RADIO CONTROL RECEIVERS built to our specification and incorporating a 354 valve and special high resistance relay. This has proved to be a reliable lightweight receiver and will operate successyards range. Weight 4 thozs. OA, size $3^{\prime \prime}$ $x 2 f^{\prime \prime} \times 2 t^{\prime \prime}$. Complete and ready for operation. With 4 way battery plug,
$59 / 6 \mathrm{~d}$., postage $1 / 9 \mathrm{~d}$. Battery to suit B. 114 Ever Ready, $8 /-$, post $1 / 3 \mathrm{~d}$. I.ANDING LAMP CONTROI. UNIT, consisuing of 24 volt motor with magnetic brake and reduction gear unit, which in
turn drives a quadrant arm normally supporting the lamp. The arni is operated through a 90° angle, and is fitted with limit switches to prevent over-run. This unit is ideal for the remote operation of windows and doors. New condition. Price 17/6d., post $3 /-$
SCR 522 CHASSIS. This is an 11 -valve chassis, complete except for valves and condensers, etc., variable tuning condensers, IFF Transformers and range selector. Suitable for converting for 2 -metres band. Price $8 / 6 d$., post $3 / 6 \mathrm{~d}$.
ROTARY CONVERTERS 2 l ROTARY CONVERTERS. 24 v . in 200 v . at $50 \mathrm{~m} . \mathrm{a}$. and 13 v . at 3 a . out. will 3 a. . from 230 v . D.C. mains. Ideal for model railways, battery charging, etc. Price $10 / 6 \mathrm{~d}$., post $3 / 6 \mathrm{~d}$. AUTO TRANSFORMERS. Type LB.
Government Surplus. Input $110-230$, output voltages as follows: $10,20,30,40$, $60.70,90,100,110,120,130,140,170$,
200.230 at approximately 3 amps. Price 200,230 at approx
$27 / 6 \mathrm{~d}$., post $3 / 6 \mathrm{~d}$.

ARTHUR SAIIIS RADIO
 93 North Rd. ,Brighton.
 Tel. 25680

[^1]

Undergrabind 睁ain Water Sturoage Tank

IAM contemplating building a rectangular tank to store between 6,000 and 7,000 gal. of rain water. It will be approximately 18 ft . long, roft. wide and 6 ft. deep, constructed with 6 in. concrete slabs and treated inside with waterproof cement.
Will one or two dividing walls built in ensure enough strength to withstand the pressure? What depth of concrete base do you suggest ? - W. J. Smyth (N. Ireland).
YOUR storage tank for rain water should be sunk into the ground and have a concrete lid with an access manhole for inspection and cleaning out if necessary. To build such a tank above ground will impose too much pressure on the sides even if you put in two honeycomb cross walls. Excavate for the tank and lay a 12 in . bed of waterproof concrete and on this build up the concrete block walls so that you have three-quarters of the tank as storage and the other quarter half filled with a filtering media, such as coarse sand or washed clinker. The outlet from the filter tank is at the bottom into the storage tank and the draw off pipe is vertical into the storage tank and terminates 6 in . to 9 in . from the bottom so that the pump does not pull up any possible sludge. When you have laid one course of blocks and they have set, plug the space between the outer face of the wall and the vertical face of the excavation with wet clay to reinforce the walk and prevent possible movement. Do this all the way up and then cover with a concrete roof which drains into the filter bed and thus adds to the catchment area.

Amperage from kVA

I^{N}N the course of my work I handle transformers and I wish to know how one finds the amperage from kVA or vice-versa. As an example a transformer is stamped: Primary 240v. I P.H. Secondary 200 v .6 kVA . Also how does one work out kVA on $415 \mathrm{v} \cdot 3$ phase circuits as simply as possible ?-J. Halls (Beds.) IN a single-phase transformer the full-load primary current is approximately equal to rooo \times kVA divided by the primary voltage; the full-load secondary current being equal to $1000 \times \mathrm{kVA}$ divided by the secondary voltage.

In a three-phase transformer the full-load primary current is approximately equal to $1000 \times \mathrm{kVA}$ divided by $1.732 \mathrm{~V}_{\mathrm{p}}$, where V_{p} is the primary voltage between phases. The full-load secondary current is equal to $1000 \times$ kVA divided by $1.732 \mathrm{~V}_{\mathrm{B}}$, where V_{8} is the secondary voltage between phases, or to $1000 \times$ kVA divided by $3 V_{n}$, where V_{n} is the secondary voltage between each phase and neutral.

Changing the Object
 Glass

TF the object glass of a 6×30 ex-Government eye cup focus binocular is removed and an object glass of larger diameter and longer focal length fitted

RULES

Our Panel of Experts will answer your Query only if you comply with the rules given below
A stamped addressed envelope,
a sixpenny crossed postal order, and the query coupon from the current issue which appears on the inside of back cover, must be enclosed with every letter containing a query. Every query and drawing which is sent must bear the name and address of the reader. Send your queries to the Editor. PRACTICAL MECHANICS, Geo. Newnes. Led. Tower House, Southampton Street. Strand. London. W.C. 2
in its place, by how much would the magnification be increased and how would it effect the field of view? The object glass I have in mind is of 44 mm . dia. and $8 \frac{1}{2} \mathrm{in}$. focal length, or 50 mm . dia 7/7 $\frac{1}{2}$ in. focal length.-L. R.Farrow (Glam). TO find the increase in magnification, divide 6 by the focal-length, in inches, of the 6×30 binocular objective, and multiply by 7 for the 7 in . lens, or $8 \frac{1}{2}$ for the $8 \frac{1}{2} \mathrm{in}$. lens.

The existing objective's focal length can be found by focusing a sharp image of a distant object (e.g., the sun) on a card, and measuring the distance from lens to card. 'To obtai nmuch increase in magnification, a lens of much longer focal length is required. All such normal lenses will give a smaller field of view

The P.M.
 Blueprint Service

12 FT. ALL WOOD CANOE. New Series, No. 1,4s.*
COMPRESSED-AIRMODELAEROENGINE New Series. No. 3, 5s. 6d.*
AIR RESERVOIR FOR COMPRESSED-AIR AERO ENGINE. New Series, No. 3a, Is. 6d. "SPORTS"'PEDAL CAR. New Series. No. 4, 5s. 6d.*
F. J. CAMM'S FLASH STEAM-PLANT. New SYNCHRONOUS ELECTRIC CLOCK. New NOUS ELECTRIC
Serles. No. 6. 5 s . 6 d .*
ELECTRIC DOOR-CHIME. No. 7, 4s.* ASTRONOMICAL TELESCOPE. New Series, Refractor. Object glass 3 in . diam. Magnification $\times 80$
No. 8 (2 sheets), 7s. 6 d .*

CANVAS CANOE. New Series. No. 9, 45.*

 DIASCOPE. New Series. No. 10, 4s.* EPISCOPE. New Series. No. II, 4s.* PANTOGRAPH. New Series. No. 12, 2s.* COMPRESSED-AIR PAINT SPRAYINC PLANT. New Series. No. 13. 8s.* MASTER BATTERY CLOCK. 8lueprints (2 sheers), 4 s.Art board dial for above clock, 1s. 6d. OUTBOARD SPEEDBOAT
IIs. per set of three sheets P.M. TRAILER CARAVAN.* Complete set, IIs.
P.M. BATTERY SLAVE CLOCK. 2s. 6d.* P.M. CABIN HIGHWING MONOPLANE Is. 6 d .*

The above blueprints are obtainable, post free, The above blueprints are obtainable, post free,
from Messrs. George Newnes, Ltd. Tower House, Southampton Street, Strand, W.C. 2. An * denotes constructional details are available free with the blueprints.
than the existing objective, as their larger diameter will not compensate for the increased focal length. With a given system, doubling the magnification will reduce the field of view to approximately one-half linear.

Terrestrial Telescope

AM hoping to make a terrestrial telescope with a 3 in. to $34 i n$. object glass and a magnification of about $\times 60$ to $\times 80$. It will be used mainly for marine purposes with a small boat club. and will be mounted semi-permanently. Can you give me details regarding focal length of the object glass, details of the erectors and the eyepiece?-D. J. Moore (Wilts). THE magnification of the proposed telescope can be found by dividing the focal length of the objective by the focal length of the eyepiece. If a magnifying erector is used, multiply by the power of this. The power of the erector may be found by dividing its back focus by its front focus. For infinity, distance between erector and objective equals objective focal length plus front focus of erector. Distance from erector to eyepiece equals back focus of erector plus focal length of eyepiece. Thus a wide range of lenses could give the magnification you require, especially as erector magnification can be modified easily. Suitable components, including ready-made assemblies, may be had from Charles Frank, 67-73 Saltmarket, Glasgow, C.1., and Holmes, Wilson \& Co., Martins Bank Chambers, 33 Bedford Street, North Shields, Northumberland. Making a telescope set at infinity by calculation only is possible when the exact focal lengths are known. Failing this, a little movement of the eyepiece is necessary, to secure sharp focus.

Transformer for Fairy Lights

T AM considering purchasing a mains
transformer, input $210 / 250 \mathrm{v}$. output $3,4,5,6,8,9,10,12,15,18,20,24,30 \mathrm{~V}$. Rating 3amps. I want to use this on a set of fairy lights connected in parallel using 20v. 3watt bulbs.

Would this transformer be suitable?H. Davis (Cumberland). A 3 WATT 20v. bulb takes a current of 0.15 amp . Consequently 13 such bulbs could be fed from the 20v. tappings on the transformer.

Boxing in a Flushing
 Cistern

THAVE a cast iron flushing cistern in a lavatory and have a great deal of trouble with it dripping condensation on to the floor. Can you tell me how to prevent this in some neat and not unsightly way?-A. J. Osman (Kent).
CONSTRUCT a framework made of I $\frac{1}{2}$ in. ($\times 2$ in. wood round sides and long enough to allow the bottom and the sides to be filled in with granulated cork or slag wool. Cover the sides and bottom with hardboard neatly finished on all sides. Give three coats of paint and finish to match existing colour scheme.

Small Honsehild Lift

TAM making a small household lift, using a motor and reduction gear. I wish to use a spring-operated brake on the motor but have some difficulty with the design of a suitable A.C. motor current solenoid to lift the brake off when power is supplied to the motor. The motor takes 230 v . 2 amps. so will you kindly let me have design particulars of a suitable solenoid through which I can pass the motor current? I would like $\frac{1}{8}$ in. movement in the motor brake arm against approximately a 5lb. spring.David Richards (Glam).
WE do not advise you to connect the brake-release coil in series with the A.C. motor, as the brake coil current and

Electromagnetic coil details.
magnetic pull would then fall on reduced motor load. We advise you to use an electromagnet coil which is connected across the motor terminals. We presume that the supply is 230 V . single-phase at 50 cycles. In this case you could use a laminated core of 1 sq. in. cross sectional area to the dimensions given below, the coil having 1,000 turns of $20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire.

A slot should be cut in each pole face, into which is fitted a short-circuited copper band to encircle half to two-thirds of the pole face. The purpose of the shading band is to avoid chatter. The cross sectional area of the band should be as small as will suffice, and may be in the region of $\frac{1}{8} \mathrm{in}$. $\times{ }_{16}^{\frac{3}{16}} \mathrm{in}$. It is important that the armature beds exactly on to the pole faces when the coil is energised. Maximum pull will be obtained, and the overheating of the coil avoided by limiting the air gap between the armature and field poles to a minimum.

P.M. Tape Hecorder Rectifier

IAM building the tape recorder detailed in the November 1959 issue of "Practical Mechanics." Could you tell me if the metal rectifier (STC type) is contact cooled? What value is it and has it a code number? What type, size and rating of speaker is best suited for use with the tape recorder?-A. Williamson (Manchester 20).

THE metal rectifier is proving difficult to obtain by many constructors, and it is permissible to use a substitute type (or alternatively, run the first stage from the A.C. heater line). A small type full-wave rectifier is required, rated at $6 \mathrm{v} \cdot 0.5 \mathrm{amps}$. and these can be obtained from several advertisers, where they are generally referred to as rectifiers for battery chargers. These rectifiers are not generally contact cooled, but are finned for the purpose.

Any good type of speaker is suitable, of about 8 in . or roin. dia., but if a better class of speaker is wanted, the W.B. 8ro is recommended.

Seasoning Apple Wood

T HAVE recently been given some old apple trees and have heard that this is a good wood from which to turn small articles. Can you tell me the correct method of seasoning-the wood is still very green? -James McQuillan (N. Ireland).

$A^{\text {P }}$
PPLE wood is used for dance floors and paving blocks and is very hard wearing, though a good deal depends on its water content. With reference to seasoning, the logs can be cross piled and small wood cleats fixed to the ends to prevent splitting. The wood can be built-up high on a concrete base and in the open away from buildings. The wood pile should have a roof of some description and the logs tested from time to time for water content. This process is known as natural seasoning.

Artificial seasoning is done in a kiln or oven, though only a large amount of wood would justify the expense of a kiln. We suggest that you send a sample of the wood to the Forest Products Research Laboratory, Princes Risborough, Aylesbury, Bucks. They will assess the water content and the time required for seasoning.

Light-Operated Switch

for a Car

BELOW is a light switch circuit for I2v. operation. Any idea how I can adapt or make one for using with my 6 v . car circuit?-N. Clark (Newcastle-on-Tyne).

12v. light-operated switch circuit.

WE see no reason why the circuit given should not work on 6 v . This depends to a large extent on the type of relay fitted. This should be of a type which will operate on a small current, i.e. pull in on about 2 mA and fall out on imA. The standing current in the circuit can be adjusted by use of a variable resistance in the emitter lead to the second transistor.
We suggest you use a barrier layer light cell in conjunction with the red spot transistor (instead of the photo-transistor) in the circuit given below. The relay must be able to pull in on 2 mA . Dull daylight will give 3 mA current and sunlight over 5 mA . The circuit is rugged and will give no trouble as long as a suitable relay is used. You would be advised to purchase the catalogue of Messrs. A. Sallis of Brighton with a view to obtaining a suitable relay, or Messrs. H. W. English of Rayleigh Road, Brentwood, Essex, will be able to supply a 2 mA one suitable for 8 s . 6 d .

Circuit using barrier layer light cell.

Baby Alarm

AM making the baby alarm which appeared in your March issue but would like to have a 40 watt light bulb attached to the head of our bed instead of the alarm bell, as my wife and I are both deaf and the light would wake us up when the baby cries. Also I wonder if a miniature microphone could be used instead of a loud speaker?-H. G. McWhinney (N. Ireland).

T is very easily arranged to have a 40 watt lamp in lieu of the alarm bell or small warning lamp. All you have to do is to connect the switched terminals in the lamp circuit. This is most easily arranged by taking one famp lead from one mains terminal and one lamp lead from one switched circuit terminal and then joining one main terminal

Altered circuit.

to one switched circuit terminal. Strictly speaking a high voltage type relay ought to be used, but it is unlikely that yours will break down and provided it is used in a bedroom away from concrete floors and water it would -be quite safe. A sketch of the circuit is given above.

The second part of your query is not so easily dealt with. When the prototype was made many months were spent evolving the circuit for this baby alarm and the conclusion was reached that all normal microphones will not work satisfactorily on the unit. It is possible to use a crystal microphone, in which case the loudspeaker transformer is omitted from the circuit and a one or two $\mathrm{M} \Omega$ resistor is fitted from pin 7 to central tag. This will not be so sensitive. If more sensitivity is required another valve wired exactly as Va is required; the problems involved in doing this are probably beyond the scope of the amateur. Feed back from one circuit to another may cause oscillations which would make the relay behave as if noise was present. We would suggest that you use a small moving coil P.M. speaker, say $3 \frac{1}{2}$ or 5 in . in diameter. Results will then not be far short of those published.

Treating a Glass Roof

T HAVE a glass roof comprising some $1,500 \mathrm{sq}$. ft. which I want to treat with a view to preventing glare from sunlight, still retaining as much translucency as possible. Due to interior fittings it would not be practicable to treat the inside and previous treatments by painting on the outside have peeled off in a few weeks. Perhaps you could recommend a more lasting preparation to suit my require-ments.-Edward Hughes. (Eire).

GOOD translucent, waterproof coating for your glass roof would be a solution of 1 part of bitumen in about 20 parts of naphtha. The bitumen should be allowed to remain in contact with the cold naphtha overnight, after which the mixture should be heated until near the boiling point of the naphtha. A dark solution will result, but when brushed on glass quite a good deal of light will be transmitted by it. The coating has the advantage of being highly waterproof. If too much light is transmitted the solution can readily be made stronger.

NEWDO-IT-YOURSELF
TRANING TECHNIDUE
iiRAOIO ELECTRONICS

You LEARN while you BUILD...
SIMPLE... PRACTICAL...FASCINATING.
ANNOUNCING-after many years of highly successful operation in the U.S.A. and in-Europe - the latest system in home training in electronics is now introduced by an ontirely new British training organisation. by $A T$ LAST - a compre-
hensive and simple way of learning-by practical means- the hensive and simple way of learning - by practical means - the theory. YOU LEARN BY BUILDING actual equipment with the components and parts which we send you. You advance by simple steps using high quallty equipment and performing a whole series of interesting and instrucMANUALS and our teaching staff employ the latest techniques for showing clearly how radio works in a practical and interesting manner. You really have fu whilst learning ! And you end by possessing a first rate plece ates and - very important - how to service and maintain it afterwards. A full library of magnificent 111 astrated text books are included with the Courses. IN FACT for the 'Do-
it-Yourself' enthuslast, the hobbyist, or those wanting help it-Yourselr enthusiast, the hobbyist, or those wanting help Instructional system is exactly what is needed and it can all be provided at very moderate cost. Easy payments available,
 Post the coupon now, for full details. There is no obligation

LOTS OF INSTRUCTIVE EXPERIMENTS AT HOME

RADIOSTRUCTOR
BRITAIN'S LEADING ELECTRONIC TRAINING ORGANISATION

GAMAGES

Self Contained FLEXIBLE SHAFT For the Industrial User for use with Electric Drill
 Designed to meet
the requirements of workshop owners, where a complete power-driven fexible shaft machine cannot be accommodated. Being
fully adaptable it fully adaptable to drilling machines, electric drills or
any prime mover Capable of drilling, filing, sanding, valve grinding, scratch brushing, ctc. $\frac{1}{d-i n}$, dia. Drill Chuck -in. shank on driving end. $\begin{aligned} & \text { long overall. } \\ & \text { Post \& Pkg. } 2 / 6\end{aligned} \quad / 8 / 0$ Similar to illustration but only for Home Handyman use. Post \& Pkg. 2/-, 4.5'6 TOOL AND MOTOR ACCESSORY LIST FREE

GAMAGES " 16 " ELECTRIC ARC WELDERS

For garage and maintenance work, agricultural machinery, heating engincers, ornamental iron or blacksmith's work, handicrafts or the home workshop. Welds material from $1 / 16$ in. thick or up to $\frac{1}{4}$ in. approx. $10 \times 13 \times 8 \mathrm{in}$. Weight approx 50 lb . Incorporates a heavy-duty transformer. Complete with cables, welder's equipment, electrodes and instructions. For $190 / 250 \mathrm{v}$. single-phase A.C. 5 to 10 amps, domestic supply, Runs $16 s w g$ rods continil ously. Will not weld thinner than $1 / 16$ in.

BARGAIN PRICE
Payments of $27 / 3$. C. $/ \mathrm{Pkg}, 7 / 6$ in G.B. if outside our extensive van delivery area F.M.65-A Combined Are Weiding \& Brazing Machine. New and improved model Brazes light sheet down to 26 swg-invaluable for work on car bodies. Even 5 a novice can operate this carbon brazing contact method. or 12 monthly payments of $43 / 9$.

Carriage Paid in G.B
GAMAGES, HOLBORN, LONDON, E.C.I HOL. 8484

SUPER "ADEPT" LATHE
For Model Makers, etc. The mandrel bear- are adjustable thon of ef for wear the man- chbt
drel nose is threaded do lake is chreaded tic. and is pored taper to accommo date the centre, which is removable and renewable. The tailstock has screw barrel. Removal of top slide converts the botrom side into boring or milling table. Acme Thread 12 dependen accurate vecd ways. Taistock moves on in Centres over centres 6 in. Length overall $13 \frac{1}{2}$ in. $7 / 140 \% 6$ $\begin{array}{ll}\text { or } 9 \text { monthly } \\ \text { Countershaft } 33 / 6 . & \text { payments of } \\ \text { Chuck } 31 / 6 . & 7 / 8\end{array}$

DRILL GRINDING JIGS

Capacity ${ }^{t}$ in. to $\frac{3}{4}$ in. Results equal 10 scale of five angles: 88° for thin. Has hard materials and coller thin sheet, 8° for $t-\mathrm{in}$. drills and smaller. 59° for general purposes. 49° for very soft materials. 30° for $/ \square /$ and formica.
If outside our van area,
Post \& Pkg. $1 / 6$

WEBLEY \& SCOTT LTD, 28 Park Lane, Handsworth, Birmingham 21 Telephone: West Bromwich 2821
One of the Windsor Group of Companies

TRIPLE PURPOSE SET
The Johnson " Vogue " dishes come in sets of three and are separately coloured: Orange, Grey, White. By these colours you will identify them for each processing job and retain them for specific chemicals. Strongly moulded in plastic, they are available in half plate and whole plate sizes: Prices:
SET OF $3 \frac{1}{2}$ PL. 6s. 9d. ; SET OF $3 \frac{1}{1}$ PL. $\mathbf{~ L 2 s . 9 d . ~}$
SOLD BY THE LEADING PHOTOGRAPHIC DEALERS

JOHNSONS
 OFHENDONLTD

FOR CONFIDENCE IN PHOTOGRAPHY

MIDLAND INSTRUMENT CO. BARR \& STROUD RANGEFINDERS, 1-metre base, 14X.as as illustrated and described in October P.M. New, unused condition, cost nearly $£ 200$. Our

price $£ 5$. Carriage: $100 \mathrm{~m} .7 / 6,200 \mathrm{~m}$. | price $£ 5$. Carriage: $100 \mathrm{~m} .7 / 6$. |
| :--- |
| $10 / \mathrm{l}, 300 \mathrm{~m} .12 / 6, ~ N . I . ~$ |

TRIPODS, stained wood or stcel, 40 in. Long, welght 5 bs . An ideal fold-
ing tripod for
fameras, telescopes, ing tripod for cameras, telescopes, heads to fit these tripods with 5 in. dia. base, has two micrometer conirol knobs, one rotating head through 360 deg. the other un to 50 der. elevation and 10 des. depression: heads are a perfect fit for all British and U.S.
type elbow telescopes, 12/6, post $2 /-$. TELEPHONE SETS, consists of two combined microphones and recefvers, coupled by 20ft. twin flex, providing perfect 2 -way communication. Self-
encrgised-no batteries required flex energised-no batteries required if hex quired. Complete set, ready for use, new, unused, 12/6, post paid.
DIAL SIGHTS, 4 X erect vision telescope viewer fitted cross graticule.
Free or locking 5 in . dia. 360 -deg. calibrated head with micrometer control down to 5 minute limit azimuth bearing. Also micrometer control 20-$0-20$ deg. elevation and depression. These instruments are ideal for clementary instruction in surveying. Wt. supplied in leather or metal cases, new or near new condition, 37/6, carriage $5 /-$. Tripods easily adapted to take these instruments 12/6, post $2 / 6$. Cannot be sent together as one parcel. HUGHES MOTORS, 12 v. 14 amp . shumt wound, reversing, fited tin dia. shaft. Spece 5.000 rep.m. Size 3 in.
long, 1 in. dia., wight 200 oz . Very shat N1tin. dia., weight $200 z$. Very
long,
superior cx-Gov, device motors, new, supcrior cx-Govt. device motors, new,
unused, $10 /-$ post $1 / 9,2$ for $20 /-$, unused, paid. Ditto fitted reduction gears giving a powerful final drive of either quired), $12 / 6$, posi $1 / 9.2$ for $25 /-$, post paid.
MIDLAND INSTRUMENT CO. MOORPOOL CIRCLE, BIRMINGHAM, 17
Tel.: HAR 1308

"GEDORE" SOCKET SETS

 Beautifully fitted metal box. Best quality by famous maker. Contains speed brace, ratchet, universal joint, small and long extension and 19 $t^{\prime \prime}$ Square Drive Sockets (10 Whitworth $\frac{3}{16}$ " to $\frac{3}{4}^{\prime \prime}$ and 9 American Sockets $\frac{7}{18}$ 年" A / F to $I^{\prime \prime} A / F$).
 Usually $£ 10.12 .0$.
 OUR PRICE 55.19 .6
 Inclusive of Post and Packing.
 ASHTON SAW \& TOOL CO.
 DEPT. L80, OLD STREET, ASHTON-UNDER-LYNE

KLAVARSKRIBO INSTITUTE (BZ.7),

206 Amyand Park Road, St. Margaret's, Twickenham, Middx.

ARCMOBILE

£17 $10 \quad 0$
Including delivery
A complete self-contained Arc Welder using standard flux-coated electrodes of 14g. and $16 \mathrm{~g}, 210 / 250 \mathrm{~V}$. A.C. Mains consumption 13 Anips. Welds sheet metal down to 22 g , and steel and iron section up to $3 / 16 i n$. thick in a single run. Heavier sections can be welded by mariable welding current by hand-wheel. Maximum welding current 65 Amps. Minimum 15 Amps. Weight 85 lbs.
Amps. Weight
Dimensions: 11 in . high, 12 in . wide, 13 in .
long.
HARMSWORTH. TOWNLEY \& CO.
JORDAN STREET, KNOTT MILL MANCHESTER. 15

Automatic (Time) Switches
Now and reconditionel 15 day olockwork and electric switch from 35/=
Sond S.A.E. for illuatrated details fo:DONOHOE (TIMERS)
1 \& 2 UPPER NORFOLK ST., NORTH SHIELDS, NORTHUMBERLAND

The backs for the man wha likes to make things for kimself-

Shows you how to make over 30 magnificent articles. 224 pages and 320 diagrams and illustrations.

THE 1st "PRACTICAL MECHANICS"

MAKE-IT BOOK
Edited by F. J. CAMM
'THIS is a book for the man who likes to make things for himself. It has been compiled from the columns of "Practical Mechanics," the monthly journal for the handyman and model maker. Everything herein described has been designed, built and tested in the " Practical Mechanics" workshop, and may thus be built with confidence.
CONTENTS : TAPE RECORDER. MASTER BATTERY CLOCK. ELECTRONIC ORGAN ELECTRIC WASHING MACHINE . HAND VACUUM CLEANER. ELECTRICALLY OPERATED GARAGE DOORS BAGATELLE TABLE REFLECTING TELESCOPE HARMONOGRAPH "DESIGNOGRAPH" $15 I N$. FOUR-HEDDLE HAND-LOOM POTTER'S WHEEL . POTTERY KILN . ELECTRIC OVEN. WESTMINSTER TUBULAR DOOR CHIMES . CYCLE TRAILER . PEDAL-CYCLE SIDECAR. PORTABLE AIR COMPRESSOR. WATER SOFTENER . SPANISH HAWAIIAN GUITAR . STEEL-STRINGED UKELELE , DOUBLESEATER CANOE. RADIO DEAF-AID UNIT. GARDEN POOL VERTICAL ENLARGER . PHOTO-ELECTRIC EXPOSURE METER . SYNCHRONISED FLASHGUN . COMBINED PRINTING BOX AND SAFELIGHT. DIASCOPES AND EPISCOPES - STEAM-DRIVEN MOTOR BOAT BALECTRIC WALL BRACKET INEXPENSIVE HOUSE TELEPHONES ELECTRIC GAS-LIGHTER - ADJUSTABLE DRAWING-TABLE . TOBOGGAN.

2 s .6 d . net (13 s .6 d . by post).

THE 2nd "PRACTICAL MECHANICS" HOW-TO-MAKE-IT BOOK

Edited by F. J. CAMM

THE great success of the first " Practical Mechanics ' How-To-Make-It' Book," which has run through several editions, has encouraged the publishers to produce this second volume, describing the construction of a wide variety of articles which will appeal to the home mechanic and model maker. Like the first volume, this has been compiled from the most popular features appearing in "Practical Mechanics," the established monthly journal for practical amateurs. CONTENTS : A REFLECTING ENLARGER . ONE-STRING FIDDLES . FOLDING STEPS AND AN EXTENDING LADDER AN ELECTRIC GUITARETTE A A MINIATURE BILLIARD-TABLE A SYNCHRONOUS ELECTRIC CLOCK. A GLOVE PUPPET THEATRE AN AUTOM ATIC GARDEN SPRINKLER . A MIDGET CAMERA. A POTTER'S WHEEL A CATAMARAN A ROWING MACHINE AN AQUALUNG HOME-MADE FISHING TACKLE. INSTALLING A TROPICAL AQUARIUM. A SNOW SCOOTER . UNDER-WATER PHOTOGRAPHY, A PAIR OF SKIS . PROJECTING TIME ON THE CEILING , A HARPOON GUN. SMALL WIND-POWER PLANTS. AN ELECTRIC HEDGE TRIMMER , BATHROOM SCALES, A FOLDING OUTBOARD MOTOR-BOAT. FLASH PHOTOGRAPHY. GAS-FIRED POTTERY KILNS A BACK PROJECTION EPISCOPE MOTORISING YOUR LAWN MOWER A SKELETON SYNCHRO-ELECTRIC CLOCK A VIEWER AND PRINTER FOR 35MM. FILM A CYCLE TRAILER AN ELECTRIC IMITATION COAL FIRE • A MECHANICAL POTATO PEELER . A HOMEMADE DUPLICATOR , MAKING RUBBER STAMPS. 15s. net (16s. by post).

These are the mast practical canstructars' baoks yet ... the articles are nat toys lut things of real use and value!

FROM ALL BOOKSELLERS

Published about the 30th of each month by GEORGE NEWNES LIMITED, Tower House, Southampton Street, Strand, London, W.C.2, and Printed in England by The Garden City Press Limited, Letchworth, Hertfordshire. Sole Agents for Australia and New Zealand-Gordon \& Gotch (A/sia), Ltd. Sole Agents for South Africa and Rhodesia-Central News Agency Ltd. Subscription Rate (including postage): For one year, Inland 20s., Overseas 18s. 6 d ., Canada 18 s . 6 d .

[^2]
Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly ot home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship Jig \& Tool Design Press Tool \& Die Design Sheet Metalwork Automobile Repairs Garage Management Works M'gmnt. \& Admin. Practical Foremanship Ratefixing \& Estimating Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance Engineering Steam Engine Technology I.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship Machine Automobile Automobil R/F Concret Structural Enginee้ring Mathematics (all stages)
Radio Techmology
Telecommunications Wiring \& Installation Television
Radio Servicing
Gen. Elec. Engineering
Generators \& Motors
Generation \& Supply Aircraft Mainten. Licences Aerodynamics Electrical Design
Ordnance Survey Dr'ship.

BUILDING AND STRUCTURAL

L.I.O.B.
A.I.A.S.
A.M.I.P.H.E. A.A.L.P.A.

Building Construction Costs \& Accounts
Surveying \& Levelling
Clerk of Works
Quantity Surveying
A.R.S.H. M.R.S.H. A.E.S. A.R.I.C.S. Builders' Quantities Carpentry \& Joinery Building Inspector Building Draughtsmanship Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert of Education Book-keeping (all stages) College of Preceptors Woodwork Teacher Metalwork Teacher Housing Manager (A.I.Heg.)

Common. Prelim. Exam A.C.I.S., A.C.C.S. A.C.W.A. (Costing) School Attendance Officer
Health Inspector Civil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME

 AND EARN BIG MONEYMen and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed " Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

National INSIITUTE OF ENGINEERING
(In association with CHAMBERS COLLEGE-Founded 1885) (Dept. 29)
148, HOLBORN, LONDON, E.C.I
SOUTH AFRICA : E.C.S.A., P.O. BOX NO. 8417, JOHANNESBURG AUSTRALIA : P.O. BOX NO. 4570, MELBOURNE

132-PAGE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains :

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
How toobtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY INTERESTING COURSES TO SELECT FROM!

A.M.I.Mech.E., A.M.I.M.I., A.M.Brit.I.R.E., A.M.I.P.E., A.M.I.C.E., A.M.I.Struct.E., A.M.I.Mun.E., M.R.S.H., A.M.I.E.D., A.F.R.Ae.S., London B.Sc., Degrees.

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Pree Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

Free Coupon

To: NATIONAL INSTITUTE OF ENGINEERING (Dept. 29), 148-150, Holborn, London, E.C.I.
Please Forward your Free Guide to
NAMB

ADDRESS
(Place a cross against
My general interest is in : (1) ENGINEERING
(2) AERO (3) RADIO (4) BUILDING the branches in which (5) MUNICIPAL WORK yous are interested.)
The subject of examination in which I am especially interested is

[^0]: The most efficient, precision made, long lasting masonry drill is the Rawlplug DURIUM (with the free re-sharpening service). We strongly advise this drill for continuous drilling (such as industrial operation) 13 Sizes are from No. 6 to No. 30; 4 Rawlbolt sizes and 11 sizes for drilling right through walls. Prices are from $9 / 6$ each. For drilling glass use the special DURIUM GLASS DRILL. Made in nine sizes from $\frac{1}{\prime \prime}^{\prime \prime}$ to ${ }^{\frac{1^{\prime \prime}}{2}}$ at $6 / 6$ to $10 / 6$ each. Free Re-sharpening Voucher with each drill.

[^1]: Huge Purchase High Speed Steel Tool Bits, hardened ready for use, essential to any lathe user, secure your stock now as these are really ${ }^{\text {n }}$
 good investment. $1 / 4^{\prime \prime}$ square, $21 / 2^{\prime \prime}$ good investment. $1 / 4^{\prime \prime}$ square, $21 / 2^{\prime \prime}$ long, $6 / 6$ per doz. $5 / 16^{\prime \prime}$ sq., $3^{\prime \prime}$ long,
 $8 / 6$ doz $^{\prime \prime} 3 / 8^{\prime \prime}$ sq., $3^{\prime \prime}$ long, $12 /-$ doz. Six doz. lots less 10 per cent.
 5,000 Taps, $1 / 8^{\prime \prime}$ to $3 / 8^{\prime \prime}$ dia., Assorted Threads. suit M.E. or experimenter, mostly fine threads, twenty
 One Ton Ground Sitver Steel, $13^{\prime \prime}$
 lengths, $1 / 16^{\prime \prime}$ 10 $15 / 32^{\prime \prime}$ dia. doz. lengths, $1 / 16^{\prime \prime}$ to $15 / 32^{\prime \prime}$ dia.. doz.
 5,000 Ball Races, standard o.d..
 $1 / 8^{\prime \prime}$ bore, $2 /-; 3 / 16^{\prime \prime}, 2 /-1 / 4^{\prime \prime}, 2 /-$ $1 / 8^{\prime \prime}$ bore, $2 /-; 3 / 16^{\prime \prime}, 2 /-1 / 4^{\prime \prime}, 2 /=$
 $3 / 8^{\prime \prime}, 2 / 6^{\prime \prime} ; 1 / 2^{\prime \prime} 3 / 6 ; 5 / 8^{\prime \prime}, 4 / 6$ cach. 6 or 9 mm , $1 /$ - each.
 2,000 Hand Reamers, sizes $5 / 16^{\prime \prime}$
 $3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}, 3 / 6$ each. Also $5 / 8^{\prime \prime}$ $3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}, 3 / 6^{\circ}$ each. Also $5 / 8$
 $11 / 16^{\prime \prime}, 4 / 9^{\circ}$ each. Extra Special Carb. Grinding Wheels Offer. $6^{\prime \prime}-7^{\prime \prime}$ dia. $1 / 4^{\prime \prime} \cdot 1 / \frac{2}{\prime}$,
 $3 / 4^{\prime \prime}$ thick, $1 / 2^{\prime \prime}$ or $3 / 4^{\prime \prime}$ hole, 10$)^{\prime}$. $3 / 4^{\prime \prime}$ thick, $1 / 2^{\prime \prime}$ or $3 / 4^{\prime \prime}$ hole, $10 /$ $30 /$-. Ass. grits for tool and cutter grinding
 2,000 Small H.S. Twist Drills,
 approx. $1 / 32^{\prime \prime}-3 / 32^{\prime \prime}$ approx. 1/32"-3/32", 4/- doz. Approx.
 $1 / 16^{\prime \prime}-1 / 4^{\prime \prime}, 7 / 6^{\prime \prime}$ doz. Approx. $9 / 32^{\prime \prime}-$ $1 / 16^{\prime \prime}-1 / 4^{\prime \prime}, 7 / 6$ doz.
 $15 / 32^{\prime \prime}$, six for $10 /$.
 3,000 Circular Split Dies, $1^{\prime \prime}$ dia, cutting $1 / 4^{\prime \prime}, 5 / 16^{\prime \prime}, 3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}, 1 / x^{\prime \prime}$ Whit. B.S.F., also brass thread, 26 $12 /$ - per set of 5 sizes, 2 sets $22 / 6$,
 4 sets $42 / 6$. Taps to suit $12 / 6$ per set either taper or second or plug. dia. stocks 6/- each.

 2,000 Straight Shank End Mills, size $1 / 8^{\prime \prime}, 5 / 32^{\prime \prime}, 3 / 16^{\prime \prime} 8^{\prime \prime} 7 / 32^{\prime \prime}, 1 / 4^{\prime \prime}$
 $5 / 16^{\prime \prime}, 15^{\prime \prime}-$ set, also $3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}, 1 / 2^{\prime \prime}$ ditto, $12 / 6$ set.

 All items brand new. £1 orders post paid, excedt overscas.

 ## J. BURKE

 192 Baslow Rd., Totley, Sheffield Inspection at Rear 36 Fituwilliam St.,

[^2]: "Practical Mechanics " Advice Bureau. COUPON This coupon is available until May 31st 1960, and must be attached to all letters containing queries, together with 6 d . Postal Order. A stamped addressed prvelope must also be enclosed. Practical Mechanics.

