

Newnes NEW All-Embracing Repair Set

FOR SERVICE MECHANICS - GARAGE OWNERS - MANAGERS - FOREMEN MOTOR ENGINEERS

CARS'COMMERCIALS•TRACTORS 1,51 Motor Grcles.Scooters-Mopeds-Light Cars $\begin{gathered}1948-1959\end{gathered}$

This entirily new publication provides all the essential repair and servicing data for over 1,450 models on our roads to-day-models from 1948 right up to 1959. It has been written by forty speciatists with the close co-operation of 85 leading firms. Including popular British and Continental cars, Commercial vehicles, tractors, motor cycles and scooters, it enables you to undertake any and every job-Engines, Components, Accessories and the Electrical side-efficiently, in minimum time, and to the satisfaction of your customers. Examine this new work Free for 7 days and check its money-making potentialities. Post the coupon to-day. You won't regret it !

For the First Time! Quick-Ref Servicing Data Tables-100,000 Entries
Now, for the very first time in a work of this nature, Servicing Data Tables have been compiled giving 90 DAFFERENT ITEMS FOR FACH MAKE OF VEHICLE. These comprise brakes, clutch, electrical. engine bearings, pistons and rings, torque-wrench settings, valves, suspension, ignition tune-up. carburettor settings, wheels and tyres, and much other important information.

40 EXPERTS SHOW YOU LATEST PRACTICE

lincluding engineers and specialists with Albion, Simms, Dunlop, Amal. David Brown, Cam Gears, Villiers, Alvis, Bristol, Hardy Spicer, ACDelco, Commer, Kartier, Meadow, Daimler, Jensen, Automotive Products, Westinghouse, Ford, Allard, Scammell, B.M.C. (Aus.), Stantard Cars, Borg-Warner, Demis. 7 enith.

DATA FOR. ALL THESE MAKES

A.C., A.E.C., Alira-Romeo, Allard, Alvis, ArmstrongSiddeley, Austin, Austin-Healey, Austin Lancer, Eedford, Berkeley, B.m.C., Bond Minicar, Bristol, Citrcen, Commer, Daimler, Dennis, Dedge, Fiat, Foden, Ford, Fordsen, Friskyspert, Coggomobit, Hillman, Holden, Number, Isetta, Ja£uar, Jensen, Jowett, Karrier, Land Rover, Lea-Francis, Leyland, Marshall, M.G., Mercedes-Benz, 謂etropelitan, Morris, Merris Major, Renaut, Rifey, Rever, Scammell, Scarab Mech. Horse, Singer, Standard, Sunbeam, Sunbeam Rapier, Thernycroft, Triumph; Unicar, Vaukhall, Volkswagen, 'Volvo, Wolseley. In addition 450 models of Moter Cycles, Scooters, Wopeds and Light Cars.

POST NOW - Absolutely no obligation 1

GEORGE NEWNES LTD., $15-17$ LONG ACRE, LONDON, W.C. 99 Please serd re Newnes motein blyalr inclediry Wall Charts. Pocket Walict and Free mosom creze cata mana without oblitation 10 purchase. I will return the get in 8 days or send $15 /$-ceposit 8 days after delivery, then fifteen inomthly qubscriptions of $20 /$ - ras ing $\{1515 \mathrm{~s}$. (ad. in all. Cash price in 8 days is $£ 15$.
Name wo
Address
Tick $(\sqrt{ })$ where applicable Housco WM: Occuration

Yout signatute
(Or your paren signs if you are moder 21.)

Time Saved is Money Gained! Newnes MOTOR REPAIR is arranged from start to finish in a simple alphabetical sys them for rapid reference to any particular engine. component or accessory The method employed is designed to avoid repetition, and cmables you to find with case exactly the I information required.

Everything you need for Profitable Servicing

4 Volumes in ereaceproof' bindings, 2,272 pages of Dita srianged A-Z for quick lerence to models and componenis. 2.288 PHOTOS AND DRAWINGS and 250 Wiring Diagrams.

Case of 24 Quick-Ref. Wall Charts-from Trouble Tracing and Brake Layouts to Radio Fitting.
Loose-Leaf Pocket Wallet of Wanted Dataalways at instant call.
"MOTOR CYCLE DATA BOOK" Over 4.50 Models
Motor Cycles, Scooters, Mo peds ardilight Cars Compiled in tabular form and winh melditional data on British and foreign carburettors, electrical systems, fauh frume ctc. Cloth bound for lasting wear. (Value $10 / 6$, bus yours frce.)

Free Technical Consu'tancy Service For 2 Vear:.
Entinling you to specialised information by post service that can be worth pourids

The Most All-Embracing Motor Repair Set ever published !

Could this be the spring you're looking for? Then you'll find it down below

Whatever you need in the way of springs youll find in the range of TERRY'SBOXESOFASSORTED SPRINGS - compression, expansion, long, short, light, heavythe lot.
Just the job for you experimental
people-a simply unlimited assortment from our tremendous range of springs of every variety. The boxes shown here are only a few examples-why not let us send you our illustrated list showing them all?

 Design \& Calculations" -

TERRY'S

ASSORTEDSPRINGS

Herbert Terry \& Sons Ltd, Redditch, Worcs. (Makers of Quality Springs, Wireforms and Presswork for over 100 years)

* Have you a Présswork problem? If so let us have it and we'll help to solve it for you.

TRIPLE PURPOSE SET
The Johnson "Vogue " dishes come in sets of three and are separately coloured: Orange, Grey, White. By these colours you will identify them for each processing job and retain them for specific chemicals. Strongly moulded in plastic, they are available in half plate and whole plate sizes : Prices :
SET OF $3 \frac{1}{2}$ PL. 6s. 9d. ; SET OF $3+$ PL. 12 s . 9d. SOLD BY THE LEADING PHOTOGRAPHIC DEALERS

```
JOHNSONS
OF.HENDONLTD
```

FOR CONFIDENCE IN PHOTOGRAPHY

SPECIALITIES for the

Model Enthusiasts

MARINE STEAM PLANT
For models up to $30^{\prime \prime}$ long. Double acting engine. Hard soldered boiler $9^{\prime \prime} \times 34^{\prime \prime} \times 41^{\prime \prime}$ high. Fireproof base. Price $\mathbf{3 . 1 7 . 6}$. Post free.

MILL ENGINE

Complete set finished parts, no special tools required. ${ }_{8}^{5 \times 1}$ bore by 1!" stroke.
Price ©4.0.0. Post free.
Write today to Bassett-Lowke for "Model Shipoing and Engineering Catalogue," a manual of great help to the model engineer. Price $2 \boldsymbol{6}$.

BASSETT-LDWKE LTD.
 18, Kingswell Street, NORTHAMFTON.

LONDON: 112, High Holborn, W.C.I. MANCHESTER: 28, Corporation St.

All crmplete with polyester filled choke fuoresmant tuhe aill reads. in fact, to switcer 80 wht. 549 plus 56 carriage and insuriale.
4 ft . 40 watt, 898 plus $\mathbf{\text { a }} 6$ carriage and insulathe.
ift. 40 patt. 396 pius 48 corriage and 2ft. 2 ค म
inst. 2n watt. 396 plus 46 carriase and Circular 10 insureance
Clroular (9) watl. 1046 phas 56 carclake and masurance.
These Cttinses are switable for hanuing or direct fixing-curwage and insurance apples for distances up to mill me extra.
and above ends carriage will bill

"Dim and Full" Switch

 Particularly useful for controlling photofiond lamps which have only a short lite at full briliance. This toggle switch has three pozitions : the frrst position puts two lamps in sertes ut hali brilliance for setting up, the second mostition 18 off and the third position full brilliance for the operation shots. Also usetul for controlling night liehts. beaters, atc., etc. Price26 each. Post 9d. Circuit diugram 26 earh.
Included.

Infra-red Heaters are simiple to make from They $\quad\rfloor$ instructions-uses from our easy to follow ments designed for the correct infra-red
wavelength (3 microns). Price for 750 watt eloment and instructions 15/8, plus 2/6 post element and instructions in heater $52 / 6$ plus

THE
FLEXIBLE
HICH
PEED HACKSAW

E100 Worth of Equipment 19/6

The famous R1154-unused but slightly soiled. Covers $200-500 \mathrm{kc} / \mathrm{s}$. $3-5.5 \mathrm{Mc}$ is and
$5.5-10$ Mels. Has unique "click ston" 5.5-10 Mc/s. Has unique "click btop mechanism. Wonderful breakdown value-
meters, relays, switches. Complete with valves-real bargain at 19/6, plus 10/-carr.

Motor Snip Miniature
motor 2lin..long x 1 y in . diameter. lamsnated poles
 and armature.
D.C. or off A.C. Operates off $20-30$ V. D.C. or of A.C. mains through resistance transformer.
Original cost at least 53 each. Snip Original cost at least 83 each Snip
price for one month only $8 / 6$. plus $1 / 6$ price for one month
postage and insurance

Variable Rheostat

Heavy duty slider resistor rated at
25 amps, Braic 25 amps. 'Basic ohms, Can be dividual requicements. Ideal fo
8.3. post $3 / 6$.
dimmer circuit, etc. Price 8'3. post $3 / 6$

BLADE

PLEXIBLE BLADE

J. STEAD \& CO. ITD. MANOR WORKS, SHEFFIELD, 2.

without my Mole Wrench. I's my third hand : always so very useful for repairs on my car and for all sorts of jobs in the house, too.
You see, it locks on the job at any pressure you wish, leaving both your hands free. just touch the release lever and-..presto !it's ready again for the next job-super pliers, vice, clamp, wrench all in one toolthe versatile, indispensable Mole Wrench.

7 inch, $12 / 6 \mathrm{~d}$. 10 inch, $15 /-$
From ironmongers, Motor and Motor Cycle Accessory Deaters.
Make sure you ask for a genuine MOLE Seff Grip Wrencli, and look for the name on it.

$$
\begin{aligned}
& \text { TRADE } \\
& \text { SELF-GRIPARK } \\
& \text { WIOLJTCIE }
\end{aligned}
$$

[^0]
would be

 completely lost...

ELECTRONIC PRECISION EQUIPMENT, LTD.

Post orders should be addressed to Dept. I, at 66, Grove Rd., Eastbourne. Personal shoppers, however, can call at
Electronies (Ruslip) Lud. Eleotronics(Croydon)Ltd
42-48, Windmill Rill, 266, London Road.
Pbone: RCISLIP j384 Pbode: CRO 65j8
Etal' day, Welnesday.
Hust day Woulnestay

Electronics Cinsbury
Parls) Latd. 29, Ptrard) Latd. Green Rd., 520, High Street. Finsbury Park, N. 4.1 . Mbnor Part, E, 12.

$232 \begin{gathered}\text { Carriage } \\ \text { EXTRA }\end{gathered}$

 £3 Deposit and eleven monthly payments of \&2.16.8
Presenting The Charies frank 4 INCH NEWTONIAN REFLECTOR

> An excellently-designed equatorially mounted astronomical telescope with precision F/8 alumninised spherical mirror and aluminised flat made in our own workshops. The eyepiece provided with this telescope is the famous 6 -element Erfle, which is considered to rank as one of the world's finest flat field eyepieces. Magnification $50 X$. Available as an exera. ! Ramsden eyepiece, giving ${ }^{\text {a }}$ magnification of approx. I $25 X$, price $37 / 6$.

Full details on request of New $8!$ inch Urameton Reflecting Telescope designed for us by Keith Donald, price $£ 220$
PRISMATIC MOON WATCH TELESCOPE made originally by Cooke. Troughton \& Simms for. Aircraft tracking. vertical and horizontal movements.
Worth approx. 660.
£6.15.0

CHARLES FRANK

67/75, SALTMARKET, GLASGOW, C.I.

GAMAGES

The Amazing New "CINTRIDE" ABRASIVE CABBIDE DISCS
A MUST for your Wolf, Bridges, Black \& Decker or Seleet Dritl kif.
Alrost ladentriettble' and with much greater annding powers than ordinury disos. Can be cleaned with a wire brush, over ant over again, saving both titue ald ungney.
3 Grides. Fine, Medimmand coarse. Giu. dinm. x $7 / 8 \mathrm{in}$. hore, $16 / 11$.

CINTRIDE CARbIDE abrasive flles

The 'Picador' ELECTRIC MOTOR RAIL ASSEMBLY
strousty mude in Pressed Riel.
Sutable for motors nip to Suttabie hor mosork ap to 1 h.p
Active wusion on belt is supplied by the welyht of the motor, matising
 de9:red. By nising a number of braoketa, oither somall mariues
may he driven from one moter
Brackets Overall dergth from Mane motor:
 per pair 24-

Electric GRINDING \& BUFFING MACHINES
1/16 h.p., sarpzan v. single.phate A.C. D.C. Uüverwal Mains

 As above but with Twin Grinders. 89.10.1 or 9 monthy Bpiutle Prive, 501- Couplisg $5^{\prime} 8$ exira SVAILABLE

You can't hello earning more!等

 WITH NEWNES
Radio \& TV Servicing

 NEW 1960 EDITION in six Volumes FREEFOR 7 DAYS

Ready for instant use aré thousands of diagrams-TV receivers from single band sets to latest 13 -channel 110°-tube models, including transportables and combined TV/FM sets. Also radios, including Transistor, and VHF/FM models, Radiograms, Portables, Transistor Personals, Tape Recorders Car Radios, Record reproducers (including Stereo).
Prove its amaxing value-examine it at home FREE for 7 days !

Here is the New Edition of Newnes Complete Library of Radio \& TV. Servicing Data. In six packed volumes, it provides all the circuits, data, component and layout diagrans you must have for speedy, efficient repair work, tuning and general mainten-ance-over 2,300 models pre-1954 right up to 1960. All the famous makes below are included everything you want for years to come. If you've never seen previous editions be sure to see this one--post coupon today! TELEVISION, RADIO, RECORD REPRODUCERS, TAPE RECORDERSAll these popular makesAce, Alba, Ambassador, Argosy, Armstrong, Baird, Banner, Beethoven, Berec,
Brayhead, Bush, Capitol, Champion, Channel, Collaro, Cossor, Cyldon, Dansette, Decca, Defiant, Dynatron, E.A.R., Eddystone, Ekco, Elizabethan, E.M.i., Emerson, English Electric, Ever Ready, Ferguson, Ferranti, G.E,C., Grundig, H.M.V., Invicta, K-B, MeCarthy, Mc. Michael. Marconiphone, Masteradio Motorola, Murphy, Pageant, Pam, Perdio. Peto Scott, Phileo, Philips. Pilot, Portadyne, Pye, Pye Telecommunications, Radiomobile, Rainbow, Raymond, Regentone, R.G.D., Robert's Radio, Sobell, Spencer-West, Stelfa, iStrad, Ulera, Valradio', Vidor, Walter, Webcor.

POST NOW No Cost-No Obligation

George Newnes Ltd., 15-17, Long Acre, London, W.C. 99
Send me Neunes RADIO AND TELEVISION SERVICING without obligation to purchase. 1 will return it in 8 dits or send $11 /$-deposit 8 days after delivery, then
twenty monilily subscriptions of $11 /-$ paying $£ 1111 \mathrm{~s}$. 0 d . in all. Cash price in 8 days is $\{110 \mathrm{~s}$. 0 d .

[^1]Aldress

Occipárion..
Your Signature
(Or Your Parent's Signature it under 21)
RV 97

TELESCOPE MIRRORS. 6 in . dia. $\times 48 \mathrm{in}$. focus. Parabolised. Aluminised and anodised. Edged and cencred. First frade. 69/5/- ea. Carr. a insur flats :rd exppicces see our lises.
4in. dia. x E lin. focus. Aluminised, edged and centred sccut telepiece, 17t6. Flar $6 / 6$. Used, optirally perfect, $17 / 25 /-$. As NEW with leacher Used, optirally perfect, 5 X eyepieces, $50 /$ - ea. extra. ELBOW TEMESCOPES 8×50. NEW and Boxed C35/- eow Dirro. Latest type bloomed lever focus. E5. Six other rvees avaiable. See olr lists
NEW f'k. II RECOFDRNG CAMERAS. 2 or 16 F.P.S. Variable shutrer, 50,100 or 11300 sec . FI 9 lens with iris 10 Fl6. 50ft. magazine loading, 24 v . moter driven. Complete in case with magazine. Brand new Cherked and guaranteed perfect. £8/te/- ea
BINOCULAPS. BRAND NEW WRAY 11
BINOCULAFS. BRAND NEW. WRAY 11×67 E32 Ross $13 \times 60,630$. Ross $7 \times 50, £ 21$. German 8×25, M/15'o. Ex-Gov. Types Briush and German also available. MICE OSCOPES. WATSON'S SERVICE, and similar sandard Lboracory types. Fram Є35. STIEN Miniazure microtcopes. 4 rurret abjectives 100 to
E $\mathrm{M} / 0 \mathrm{~m}$ Others availatle. cee our lists.
DRAW゙ NITINSTRUMENES. The pick of the best from is 6 to 6 blida see our tists POMHES. STEWART TURNER. ELECTRIC. 222-243 B.C. GMO G.P.H. 35 ft. hd. New E9/15/-

FUMES. EX-GOV. 24 v. D.C. 400 G.P.H. Self Priming with transformer and rectifier for A.C. mains. E6/13 - es Ditro 600 G.P.H.. 18 101-. 800 G.P.H. pump only. ES. See our lists for others.
SATTEPSES. Miniature. Silver Zinc. HIOS, IS/-
AMERICAN MINIATURE. $3 \times 36 \mathrm{v}$. plus $1 \times 6 \mathrm{v}$. in sealed tin lead acid. 151 -lot.
NIFE TYPE New
NIFE TYPE. New filled, 10 a . cell, 10%. 10 a . double cell. El.
TELESCOPE OBJECT GLASSES. 4 in , dia. $\times 15 \mathrm{in}$ forus. Triple achromat, $\mathbb{C l} 2$.
MINIATURE GEARED
MIN:ATURE GEARED MOTORS. 24 v . will run on 6 v.). Fitted elec. .clutch, speed governor. Size only $1 \frac{1}{2}$ in $\times 3 \mathrm{in}$. Contains 9 ball races. Bronze to steel worm gears. Final speed one rev, per minute. Brand new. 35/- ea Transformer co run this motor from A.C. mains given Free with each motor.
MOTOR AS ABOVE but in case with 700 ohm miniature relay and two micro switches, etc. E2 ea. in sealed cartons.
35 mm . or 2×2 PROJECTOR KITS. Lens sets only unmounced from $33 / 6$.
MOUNTED SETS. Only require addition of tamphouse and slide CARRIER to COMPLETE. When used with specified lamp (20 v .100 w) and transformer we guarantes light output on 3 ft . screen ar least 15 ft c candles. This is
better than many 300 and 500 w jobs. Check for yourself.

TRIPLE CONDENSER in mounts, and 4 in . focus len in mouncs. Price $C 4 / 7 / 6$. Lamp 5/- ea. Transform
ENLARGERS PROIECTORS $35 \mathrm{~mm} / 2$
ENLARGERS \% PROJECTORS. 35 mm . and 21 sq PLANS for 6 designs,
TRANSFORMERS. $200-250 \mathrm{~V}$. in. 50 v .20 a ou VALVES. Ex Gov. Mains type. New and used. Guaran MINIATURE HALF WAVE RECTIFIERS. M2X5 WX25. DCEAG, $W \times 6, W \times 12$ 2/- ea.
LANDING LAMP MOTORS. With geared hinge opening to 90 degs. Ideal for remote opening of garage djors, etc. 24 v. D.C. Brand new $17 / 6$ ea. $1 / 10 /$. 169% R.A.F. FBLM. 9 in. $\times 30$
62. 5 i, in. $x 47 \mathrm{ft}$. $10!-$

PHOTO CELLS. Two in sealed unit, bridge connected give $\frac{1}{2} v$. neg. or pos. up to 500 micro-amps. New and boxed, 15/- ea.
RECORDING CAMERAS. Mk. I. Single shot or 2 E.P.S. F4 lens. 24 v , motor driven. Magazine toad. Com plete in casc with magazine. Tested OK. E3/15/- ea. HELIOGRAPHS. Brand New. Complete in lovely leather case. Ideal for sports and pastimes. Cost 030 ea Give away price, 15 /- plus $3 / 6$ carr
SCFMIT TYPE PRO'ECTION UNITS. PRISFNG MIRROR, FLAT \& CORRECTOR PLATE All glass mounted in sealed unit. As used in Ferrani 24k4. Decca and other T.V. sets. Takes MW/62 tubs Brard New. $f 5$ ea.
CL: NOMETERS. General purpose. All Brass. 0-90 degs. 1718 ea. Cost 18 .
TIME SWITCH MOTORS. 233 v. A.C. 1 rev. per 24 hrs. $17 \mathrm{l}_{0}$.
RIPLAY SWITCH. Metropolitan Vickers. 230 v. A.C Contains 20 rev. per hr. motor with switch contacts Polarised relay, thermal relay or cut-out, high freq-rency Pelay mechanism with transformers. etc. and warning light. In glass fronted case as new. SPECIAL CLEARANCE BARGAIN. 37%.
ARDOMETER, OPTICAL RADIATION PYRO METER. $0-1,000$ c. Perfect. 15.
COMPRESSORS. 6H6. Aircraft piston type. 10016 q. in. Complete with spline shaft, 45/- ea

ROTARY VANE VACUUM PUMPS. Size $6 \mathrm{in} . \times 5 \mathrm{in}$ 35.- ea.

FLEXIBLE DRIVES. 23 ft . long. Inner and outer with mions. Brand new and boxed. 12 t6.
TOGGLE SWITCHES. 4 pole change-ovar. Centre off 230 v. 5 2. Luminous tip. |deal for mocor reversal single or three phase. etc. $2 / 6$ ea., $24 / \%$ doz. On-Off metal or three phase, etc. $2 / 6$ ea.,
toggles. $1 / \mathrm{ea}$. Bakelite, 10 d .

YAXLEY TYPE SWITCHES, I way 9 pos.' $1 / 9$.
MINIATUREROTARY. 2 way 6 pos. 4 w 3 p. $2 / 6$ ea BELLING LEE. 5 pin plugs and sockers. $2 /-\mathrm{pr}$., $18 /$ - doz VOLUME CONTROLS \& POTS. 12 assorted, $10 /$ New.
THREAD GAUGES. Plug and Caliper. Go-Nogo. Mostly new. Cost over 63 ea. Calipers over 67 . Calipers to clear at $30 /$ ea., mainly adjustable type. Plugs, $10 /$ ea State requirements. Low price for quantity
ZIESS. VERTICAL COMPARITOR. Reading to $1 / 10000 \mathrm{in}$. Perfect. $\mathbf{8} 0$.
LARGE COMMERCIAL PROFHLE PROJECTORS. Several from <40.
OPTICAL ULTRA CENTIFUGE. Laboratory instrument with camera, spare rotors and associated equipment Calters Only.
CAMBRIDGE Ph METER. EIS.
MOTOR BLOWERS. 12 v . (car heater), 33/\%. 24 v Ex-Gov. New, $27 / 6.12-24$ v. A.C./D.C. miniature motors with fan, 17/6 ez
ASTRO TELESCOPE KITS. 32 X . With $20 \mathrm{in} . \times 45 \mathrm{~mm}$ Achromatic O.G. and Orthoscopic eyepiece with paxolin tube. $50 /$ - ea. Or with $1 \frac{1}{}$ focus Keplar eyepiece, $43 /-$. $45 \times$ Ditto with 27 in . O.G. E3. Or with Keplar eyepiece 50\%.
INFRA RED MONOCULARS. For detecting I.R light sources. Tested O.K. 53/- ea.
INFRA RED BIN OCULARS. Wich power unit (12v. D.C.). Tested O.K. ©IO. Mast I.R. spares available.

WE HAVE MOST TYPES OF EX-GOVERNMENT OPTICAL EQUIPMENT AVAILASLE IN FAIR QUANTITY Including A.A. SCO?ES, GUNSIGHTS. RIFLE SIGHTS, PERISCOPIC SIGHTS. TANK PERISCOPES. PERISCOJIC \& STEREOSCOPIC BINOCULARS, FLASH SPOTTERS REFLECTOR SIGHTS (Single and twin tens zypes)motorised, etc Large Photo leases. VARIASLE PONER SCOPES (Straight and angle). ELBON TELESCOFES. Large precision sighting and levelling telescopes. DEPRESSION \& OTHER RANGEFINDERS. CALIBRATED GEARED HEADS. ALL TYPES SMALL MOTORS. CONVERTERS, DIAL SIGHTS, DIRECTORS, LIQUID COMPASSES SMALL SYNCHRONOUS MOTORS, SMIDT TYPE MIRROR PROIECTION SYSTEMS, OPTICAL FLATS RELAYS, MECHANISMS. ELECTRONIC. ETC. ETC. ETC. BOOKLETS-." HOW TO USE EX-GOVERNMENT LENSES AND PRISMS." Nos. I and 2. 2h ea.. post 6 . LISTS FREE on receipt of STAMPED and addressed
envelope.
H. W. ENGLISH, 469, Rayleigh Road, Hutton, Brentwood, Essex

Phone:
1685 or 810

Permanent Magnets in action*

Inake your dashboard

 a notice boardSimply place your "reminders" between a magnet and the dashboand. Illustration above shows the famous "Eclipse" Pocket Magnet. Ask for new publication P. M. $162 / 56$ which gives many other uses of magnets.

Now 5" Capacity at No Extra Cost!

PERMANENT MAGNETS

Mase by James 'Neill \& Company (Sheffield) Limited and obtainablefrom all tooldistributors

WEXX

You LEARN while you BUILD．．．SIMPLe．．．．PRACTICaL．．．．FASCINaTNe

Announcing－after many years of highly successlul operation in the U．S．A．and in Europe－the latest
system in home training in electronics（after complete adaptation）is now introduced by an entirely new British
training organisation．
At last－a comprehensive and simple way of learning－by practical means－the basic principles of radio and
electronics，with a minimum of theory．
You learn by building actual equipment with the components and parts which we send you．You advance by
simple steps using high quality equipment and performing a whole series of interesting and instructive experi－
ments．No mathematics！
Instruction Manuals and our teaching staff employ the latest techniques for showing clearly how radio works
in a practical and interesting mariner．You really have fun whilse learning！And you end by possessing a
first rate piece of home equipment with the full knowledge of how it operates and－very important－how to
service and maintain it afterwards，Such knowledge can also be used to service other person＇s equipment
if needed．
In fact for the＂Do－it－Yourself＂enthusiast，the hobbyist，or those wanting help with their radio career training
or toset up their own full or part－time servicing business－then this new and exciting instructional system is．
exactly what is needed and ip can all be provided at very moderate cost，easy payments available．Post the
coupon now，for full details．There is no obligation of any kind，
BUILD YOUR OWN RADIO EQUIPMENT HI－FIINSTALLATION＊TESTGEAR－AND LEARN AS YOU DO IT．

No Mathematios

LOTS OF
INSTRUCTIVE

EXPERIMENTS

AT HOMEI

To RADIOSTRUCTOR（Dept．G．28），I 46，Market Place，Reading，Berks I Please send full details of your Radio Equiipment Courses I without any obligation to：
NO FUSES to bother with when you fit a magnetic switch to your 12 －volt Train or
Model supply．Cuts out at 2 amps，on overload or dead short．Easily fitted．13／6 P．P．
3 OR WELL－KNOWN TRANSFORMERS．Input $200 / 240 \mathrm{v}$ ．Output tapped 3 to
F．W．METAL RECTIFIERS． 12 v ． 1 a ．，T／6． 3 a．， $13 / 6$ ． 4 a ．， $17 / 6 . \mathrm{a}$ a．， $27 / 6$.
$\begin{aligned} & \text { RELAYS．We have large stocks of assorted types from } 3 / \text {－．} \\ & \text { KEY SWITCHES from } 3 / m \text { ．TOGGLE SWITCHES．DPDT，} 3 / 6 \text { ．MICRO }\end{aligned}$
SWITCHES，M and B． $5 / 6$ ．
NICKEL NIFE BATTERIES． 1.2 v． 2.5 a．，6／－。P．P． $3 \times 29 \times \operatorname{lin}, 2$ for $11 / 6.3$ for
16／8． 4 for 21／．
MAINS TRANSFORMER AND RECTIFIER，Output 12 v．， 1 a．，19／6．P．P．
W／WRHEOSTATS， 12 v ．S a．， $10 / 6$ ． $12 \mathrm{v}, 1$ a．， $2 / 6$ ，P．P．
SET OF $7 \mathrm{H} / \mathrm{S}$ CHROME VANADIUM FULL SIZE TWIST DRILLS，in waller，
$\begin{aligned} & \text { 1／16 ro fin．} 6 / \ddot{\text { G }} \text { Smaller size，4／－} \\ & \text { sin．SIDE CUTERS，} 5 / \text {－．} 5 \mathrm{in} \text { ．PL }\end{aligned}$
Sin．SIDE CUTTERS， $5 /$－ 5 Sin ．PLATED ROUND NOSE TAPERED PLIERS， $5 /-$
7in．PLATED FLAT NOSE TAPERED PLIERS， $8 / 6$ ．
sin．STEEL BLOCK PLANES．I 1 in ．Cutter Blade， $10 / 6$.
SET OF 6 PLATED WHIT．OPEN SPANNERS， $3 / 16$ to in ．， $12 / 6$ ．
SPECIAL OFFER 6 or 12 v ．relays with 4 make contacts， $6 /=.2$ for $11 / \mathrm{s}$ ． 3 for $16 / \mathrm{m}$
4 for $21 / \mathrm{m}$ ．Small $12 / 24$ volt D．C．Geared Motor very powerful $3^{\prime \prime} \times 18^{\prime \prime}, 16 / 6$ ．P．P．

ALL POST PAIO．Post order only to

THE RADIO \＆ELECTRICAL MART

29．STATION APPROACH，SUDBURY TOWN，WEMBLEY，MIDDX．

＇ZYTO＇DO－IT－YOURSELF TOOL KIT

33／－FIRST PAYMENT
8 MONTHLY PAYMENTS
OF 41／6．CASH PRICE E16／10／0．
 341－345 OLD STREET，LONDON E．C．I

M\＆W ENGINEERS

PRECISION \＆HAND TOOLS

MEASURE UP TO ANY JOB

The next time you buy tools，remember that it pays to buy good tools，tools upon whose accuracy you can rely．Maw tools are made from the finest materials and are guaranteed to conform to British Standard Institution Specifications where they exist． The next time you buy tools ask your dealer for（MaW）Engineers Precision and Hand Tools．

Write for our tree catalogua，mentioning this；ourna
MOORE \＆WRIGHT SHEFFIELDI LTD．，HANDSWORTH ROAD，SHËFFELO．I3

Have you had your copy of
 "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" experience or training. ments Department.
N. ECHANICAL

ENGINEERING
Cen. Nech. Ene-Maintenonce - Draughtsman-ship-Heovy Diesel-Die \& Press Tool Work-Weld-ing-Production Eng.fig \& Tool Design-Sheet Metal Work-Works Manogement - Mining - Re. frigeration-Metallurgy. AUTOMOBILE

ENGINEERING Gen. Automobile Eng.-
Mointerance \& ReboirsMaintenance \& Reparrs-
High High Speed DieselCarkentry and Joinery-
Cuantifies - Valuations. WE HAVE A WIDE RANGE OF AERONAUTICAL COURSES AND COURSES IN FORESTRY, TIMBER TECHNOLOGY, PLASIICS, G.P.O. ENG., TEXTILE TECHNOLOGY, ETC., ETC.

One of these qualifications would increase your earning power WHICH ONE?
A.M.I.Mech.E., A.M.I.C.E., A.M.I.Prod.E., B.SC.; A.M.Brit.I.R.E. A.F.F.Ae.S., A.M.I.M.I., L.I.O.B., A.R.I.B.A., A.M.Y.H. \& V.E., M.K.S.H., A.R.LC.S., A.M.I.E.D., CITY \& GULLDS, COMMON PRELIM., GEN. CERT. OF EDUCATION, EIC.

THE BRITISH INSTITUTE OF

 ENGINEERING TECHNOLOGY

410A, COLLEGE HOUSE, 29-31, WRIGHTS LANE, KENSINGTON, W.8.
Phone: WEStern 9861 Gen. Elec. Eng.-Elemen tory \& Advanced Elec. Technology - Instafiations ply - MaintenonceDesign.

BUILDING
Gen. Building-Heating \& Gen. Bulding-Aeating \& Droughtsmanship - SurDraughtsmanship WorksCarbentry and foinery-

RADIO \& ELECTRONICS Gen. Radio Eng.-Radio Servicing. Maintenance \& Repairs - Telegraphy Telephony - TelevisionC. \& G. Telecommunica-tions-Electronic Eng.-Antomation-Digital Computars - Analogue Com-putars-Dota Processing Instrumentation CIVIL ENGINEERING Gen. CivilEng. - Sanitary Eng.-Erructural Eng.Rcad Eng. - Reinforceo Concrete-Geologr
is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES ", should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age,

> We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appoint-

WHICH OF THESE IS YOUR PET SUBJECT?

WHAT THIS BOOK TELLS YOU

* HOW to get a better paid, mare interesting job.
* HOW to qualify for rapid promotion.
* HOW zo put somé voluable letters after your name and become a "key-mon". quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
\& WHERE today's real opportunities are ... and HOW you can take advantage of the chances you are now missing.
t. HOW, irrespective of your age, education or experience, YOU can succeed in any bronch of Engineering that appeals to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," and if you are carning less than $£_{6} 20$ a week you should send for your copy of this enlightening book now-FREE and without obligation.

 Post Nows ro: B.I.E.T. 410A, COLLEGE hOUSE, 29-31, WRIGHT'S LANE, HENSINGTON, W. 8 .

Please send me FREE and without
obligation, a copy of " ENG INEERING
OPPORTUNITIES." I am interested in
(state subject, exam., or career).
NAME
ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

IHE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Practical Mechanics

"The Cyclist" and "Home Movies" are incorporated
M.ARCH, 1960

```
Editorial and Advertisement Offices
        "PRACTICAL MECHANICS"
    George Newnes, Ltd., Tower House,
    Southampton Street, Strand, W.C.z.
        (c) Gearge Newnes, Ltd., 1960
            Phone : Temple Bar 4363
    Telegrams:Newnes, Rand, London
        SUBSCRIPTION RATES
        licluding postage for one year
Inland = - - - 205. per annum
Abroad - . - - 185. 6d. per annum
Canada - - - - 18s. 6d. per annum
Copyright in all drawings, photographs and
Copyr:ght in al drawwings, photographs and
aricles pubitshed in thracrica? Mechamcunties
speciatly reserved Berne Convention and the
Sipnatory is the Berne Convention and the
    these are therefore expressly forbidden.
```


CONTENTS :

THE CYCLIST SECTION

Comments of the Month... ... $2 I$
A Touring Machine Specification 22

CONTRIBUTIONS
The Editor will be pleased to consider articles of a pructica! noture suitable for publication in
opractical Mechanics." Such articles should te writiten on one side of the paper only, and te written on one side of the poper only, and
should include the name and address of the sender. Whilst the Editor docs not hold himself responsible. jor manuscripo.s, every effort will be made to return them if a stamped and addressed envelope Is enclosed. All correspondence intended for the Editor should be addressed: The Editor. "Practical Mechanics," George Newnes, Lid., Tower House, Somhampron Sireet, Strand, Landon, IV.C.2.

FAIR COMMENT
 NEW SOURCES OF ELECTRICITY

IN many parts of the world scientists are carrying out experiments to find new ways of producing electricity. Several different processes are being worked on at the same time but the end in every case is the same-to replace the dynamo and the battery. The dynamo is an extremely efficient piece of apparatus and it produces electricity very satisfactorily, but driving it adds complications and expense. Hydro-electric power requires the construction of immensely expensive dams, and to drive the normal power station coal is burnt to provide steam, which drives a turbine, this in turn driving the generator. The atomic power plant merely substitutes a. new fuel. What is aimed at then in all this research is to produce electricity more efficiently.

One of the methods being experimented with independently by several scientists in America is based on the principle of converting heat to electricity by means of a thermocouple. Wires of two different metals are joined, one end is heated and the other cooled, and electricity flows-that is the principle of the thermocouple. An efficient method of keeping the two ends at different temperatures is by keeping part of the thermocouple in a vacuum, i.e. the diode valve. When modified this device can produce electricity from heat.

The new semi-conductors are being used to produce electricity in very much the same way. The crystal, when heated, gives up electrons to a new position where their surplus energy can be used as electricity. It is believed that the efficiency of these methods will be able to compare favourably with the conventional power plant within very few years. At the moment they produce electricity with about Io per cent. efficiency. Where heat normally wasted is available, even this relatively low efficiency can be very useful indeed. For example, the Russians are believed to have used this method in their Sputniks, the heat being provided by the sun.

Another revolutionary method of producing electricity is the use of the chemical battery or fuel cell. The normal battery can be used until its chemicals are exhausted and then has to be changed or electrically recharged. The new "battery " receives its chemicals from outside the cell and so long as they are provided it will generate electricity; its efficiency in theory could be nearly roo per cent.

The device is constructed similar to a battery. The cell contains potassium hydroxide-the electrolyte-in which are immersed two electrodes. Hydrogen is fed to one and oxygen to the other. In the ensuing chemical reaction water is formed and negatively charged electrons collect on the hydrogen-fed electrode. If an electric motor is connected electricity flows from the hydrogen electrode through the motor and back to the oxygen electrode. Power is increased by linking cells in series. Extensive research is at present in progress on other chemicals for these cells, including oil, and some 20 firms in the U.S. are working on practical applications for them. Scientists predict that the fuel cell may soon be powering-a new gearless, silent motorcar and eventually other forms of transport as well. It is of interest to note that the first practical demonstration of the cell was given by a British engineer, Francis T. Bacon.

"PRACTICAL HOUSEHOLDER" AT OLYMPIA

THE Ideal Home Exhibition opens at Olympia in a few days' time and all practical mechanics and home handymen are recommended to pay a visit to the bungalow erected by New Ideal Homesteads Ltd. in the Model Village. This lovely home has been furnished and equipped by "Practical Householder" with a special eye to the do-it-yourself enthusiast. All you home owners, we are sure, will find a great many practical and attractive ideas to take home with you.
The bungalow itself is particularly interesting because of its practical layout and design which aim to help the owner by necessitating minimum maintenance. The dream kitchen can be built by the amateur, as can much of the furniture; other do-it-yourself aspects include tiling and lighting.

The April, 1960, issue will be published on March 31st. Order it now!

Make It And See Your Transparencies At Their Best!

By P. R. Chapman

ALTHOUGH the most satisfactory method of viewing colour slides is undoubredly a projector, the latter is expensive and needs special setting up. A much cheaper alternative is the table viewer, shown in Figs. 1, 2 and 3.

The light source is a 15 watt "pygmy" lamp, diffused by an -opal glass screen in front of which the transparency is placed and viewed by a suitable lens.

The exact dimensions are not important, the ones given being those of the instrument constructed which was made to view $2_{4}^{3} \mathrm{in}$. $\times 2{ }_{4}^{3} \mathrm{in}$. slides in addition to 35 mm .

Base and Lens Carrier

The base consists of a piece of ${ }^{3} \mathrm{in}$. plywood, $7 \frac{3}{4}$ in. long X in. wide. To one end of this is fitted the lens carrier. This is made up from three pieces
of ${ }_{4}^{1} \mathrm{in}$. plywood, $2 \frac{1}{2} \mathrm{in}$. wide, and is marked A in Fig. 1. The viewing lenses are two double convex lenses of $3 \frac{1}{2} \mathrm{in}$. dia. and each of about 4 in . focal length, fitted into a cardboard tuhe (B). This latter can be made either by rolling up wide gummed paper strip or by using a piece of cardboard, bent and glued. The lenses are fixed in by glued cardboard strips. If they are cleaned on their inner surfaces before fixing, the lenses will remain clean, since they will be completely sealed. The tube with its lens assembly is then glued into the lens carrier, using cardboard spacers, if necessary, to centre it. Finally, a piece of $\frac{1}{8} \mathrm{in}$. plywood with a square hole in it, C is cut and screwed over the viewing side of the lenses. The hole should be of such a size that the edge of the nearer lens is just not visible at the corners.

The Lamphouse

The lamphouse is also made from $\frac{1}{4} \mathrm{in}$. plywood, being 4 in , high, 4 in . long and 4 in. wide (D). It is left open at the front and bottom, the back being bored to take a standard bayonet lampholder. The front is closed by a piece of wood with a hole $2, \mathrm{in}$. $X 2$ in. sq. On the inside of this, two strips of wood are glued to hold the opal glass in position, and on the outside two metal or wood guides to take the slides. These should be slightly more than $2 \frac{3}{4} \mathrm{in}$. apart or 2 in . apart if only 35 mm . slides are to be viewed. The lamphouse is painted matt white inside. It is held to the base by means of two screws, so that it may be easily removed for lamp Slide holder $\begin{aligned} & \text { so that it may be easily removed for lamp } \\ & \text { changing. In the oriyinal model, an }\end{aligned}$ was simply a piece of in. wood the size of a larger slide, with a hole ilin. $1 \frac{1}{2} \mathrm{n}$. and guides 2 in . apart

A folding leg made of stout iron wire is screwed to the baseboard as shown in Figs. 1, 2 and 3. When extended this holds the viewer at a suitable angle for use.

Opal glass is better than frosted glass and may be obtained from photographic dealers. Finally, the whole viewer may be painted a suitable colour.
The lens-to-slide distance depends upon the actual lenses used (probably from a magnifying glass) and may have to be varied in individual cases.

Figs. 2 and 3 are two photographs of the original viewer.

If Space is Restricted in Your Home this Design

will Interest You

BASICALLY the foldaway bench is a very narrew wall－side cabinet with a front which drops down making a useful bench and convenient tool cabinet， as shown in Figs． 4 and 5.

Begin with the two side pieces，which should be of weod 4 ft ． $7 \frac{1}{4} \mathrm{in}$ ．long， 6 in ．wide and in．thick．Make sure the ends are square and mark the tep edge for indens：－ fication purposes．Prepare the top 3 ft ． 6 in ． long $\times 6$ in．wide and sin．thick and the bottom 3 ft ． $4^{\frac{1}{2} \mathrm{in}} . X 6 \mathrm{in}$ ．and $\frac{1}{4} \mathrm{im}$ ． thick．No complicated joints are neces－ sary as the top is laid on the sides and glued and screwed to them and the bottom is also glued and screwed to the sides at a distance of Ift． $111_{4}^{1} \mathrm{in}$ ．froen the top edge．Next fix the rail to hold the bottom of the sides rigid．

The back of the cabinet，on to which hooks，etc．， may be fastened to holit your thois，can be made of either pegboard or $3 / 16 \mathrm{in}$ ． plywood a nd is fastened in place by means of small strips of wood about 3 in．\times in．glued and nailed or screwed around the back edge of the sides，top and bottom．When these are set，the back is glued and nailed on to them．This means that the back is set forwart from the wall by 矛in．which witl allow roóm for the protulision of

Fig．I（Beloru）－The legs consist of treo up－ nighes，trioo rails and one brace．
hooks if peghoard has been used．If ply－ wood is to be used for the back the strips could be somewhat smaller，say，$\frac{1}{2}$ in．square． The fixing of the back in the main frame will give the whole structure rigidity（see Figs， 2 and 3）．

Cut and fit the front which when open forms the bench．It should be made from $\frac{3}{3}$ in．block board which is easy to work and will provide a joint－free surface．Its size is 3 ft ． 6 in ．long $\times 2 \mathrm{ft}$ ，wide，and is should be joined to the hotom by two 2 in ．flap hinges．To fasten it in the closed

左
 － ＝ －

YOU NEED

Deal or，Medium Hardwood
z pieces 4 ft ． 7 in ．$\quad 6 \mathrm{in}$ ．hin．（sides）． \＆piece 3 ft． 6 in ． 6 in ．${ }^{3} \mathrm{in}$ ．（tep）．
1 piece 3 ft .4 in ． 6 in ．$\quad \mathrm{in}$ ．（bettem）．
1 piece 3 ft． 4 lin． 2 in ．in（rail）．
12 ft ． in ． in ．（back beading stops）．
1 piece of blockboard $3 f \mathrm{ft}$ ． 6 in ．$\times 2 \mathrm{ft}$ ． （bench）．
4 pieces 2 ft ． $7^{3 \mathrm{in}}$ ．$\times 2 \mathrm{in}$ ．$\times \quad \mathrm{in}$ ． （uprights）．
4 pieces 1 ft． 6 in ．$\quad 2 \mathrm{in}$ ． 1 in．（rails）．
2 pieces 2 ft． 8 in．$\times 2$ in． 1 in．（brace）．

Hardbuard

I piece（pegboard）ift．In ！in． 3fi． 4 in（back）．
2 pieces 2 ft ． $7 \mathrm{in} \times \mathrm{ft}$ ． 8 in ．（leg covers）

Miscetlaneous

I piece batten 2ft． 7 mm ． sin ．\times 粗．， six 2 in ．flap hinges，two small handles，glue．screws，paim，firtings as required．

Facing batten
Twide $\times 3 / 8^{\circ} \times 2-7$＂Fig． 2 （Lefo）－Fining the back ine the wurin frame and generul details．

Fug－ 3 （Below ）．－The completed beuch opened out ready for use．

 consists of two uprights and two rails and one brace-see Fig. I. Glue and screw the rails on to the uprights and then glue and screw the brace into position from the bottom hinge to the corner. If the two uprights are cut to the correct length first, then the remaining ends may be finished off after assembly. Cover the leg with a sheet of $\frac{1}{8}$ in. hardboard. The legs are then hinged on to the sides, so
either with paint or clear varnish and then it is ready for fixing in position. It should be firmly fastened to the wall with four 4 in . brackets fixed on the outside of the sides close to the top and about 18 in . up from the bottom. If there is a skirting board, cut cut a portion of the side so that it fits over it. If the skirting is thick, it may be necessary to set the back farther forward.

Hints and Tips

By L. J. Sidney

Transferring the Profile of a Moulding With a Pack of Cards
A LTHOUGH fuse-wire, tape solder, and plasticine have been used for this purpose, still one of the easiest ways is to

Transferring the profile.
use a pack of cards. Simply push the pack of cards, as shown above, over the moulding so that the edge of the pack assumes the shape of the moulding, transfer it to the wood and draw round it.

Louvred Drawer Handles the Easy Way I OUVRED drawer handles can be easily made from a wall-type banister rail of the cross-section shown above. It should

Draught Board with Slide-away Drawer

THIS draught board has a slide-away drawer fitted underneath for keeping the counters in and it can be made quite easily from scrap materials.
Make the top first. Cut a piece of $\frac{1}{4} \mathrm{in}$. plywood measuring $13 \frac{1}{2} \mathrm{in}$. square and divide this up into $\frac{1}{2}$ in. squares, using a pencil. Down the long edges of this top, on the underside, pin and glue strips of $\frac{1}{4}$ in. plywood $1 \frac{1}{4} \mathrm{in}$. wide, $13 \frac{1}{2} \mathrm{in}$. long. Check for squareness and fix the back piece in position which is r_{4} in. wide, 13 in. long. Then pin the $\frac{1}{2}$ in. square battens along the bottom edges of the sides as indicated.
Make the checkerboard pattern with $\frac{1}{2}$ in. squares of linoleum, plastic, or wood veneer fixed in place with impact adhesive. Cut the sliding drawer from $\frac{1}{4} \mathrm{in}$. plywood, measuring 13 in . $\times 13 \frac{1}{4} \mathrm{in}$. and bead the edges with strips of $\frac{1}{2} \mathrm{in}$. $\times \frac{1}{4} \mathrm{in}$. hardwood, on edge.
Cut your draughtsmen from Iin. dowel and paint in two contrasting colours.

The handle has a neat appearance.
be screwed to the front of the drawer with
$\frac{1}{2} \mathrm{in}$. projecting at each end to act as stops.

The haudle has a neat appearance.

PRACTICAL MECHANICS BINDING OFFER

A^{S} a service to our readers we have arranged for self-binders to be supplied in which they may preserve the copies of this journal. Copies can be inserted as received, and you do not therefore have to wait for the completion of the volume. You secure the same all-time protection as with ordinary binding. The self-binders are in black waterproof and greaseproof cloth, attractively lettered in gold. This system avoids copies becoming damaged or mislaid. The Easibinder opens flat at any page of any separate edition and gives quick reference facilities. When the volume is complete our annual index, published at is. 3d. should be inserted.
Binders cost 11s. 6d. post free. Orders should be sent to the Publisher (Binding Dept.), Geo. Newnes Ltd., Tower House, Southampton St., Strand, W.C.2.

* AMATEUR STAGECRAFT ${ }^{3} \mathrm{j}$ 11 Making and Using a Model

Use It to Plan Your Productions

AMODEL stage is an asset to any dramatic society. Both the producer and scenic designer will find such a model invaluable in planning their efrecis, and many technical snags and difficuties can be eliminated in advance and so avoid the usual dress rehearsal panic.

The construction of a model stage can
be elaborate or simple according to your calents. I have seen a quite efficient one produced from a cardboard dress box by children in a craft lesson. The one described here, however, is built in wood and will prove robust and effective for all normal requirements.

Framework

Fig. I shows the basic construction of this stage which is built upon a $\frac{5}{8}$ in. plywood base measuring $16 i n . X 2 i n$. On to this a framework of $\frac{1}{2} \mathrm{in}$. strip is erected to support the proscenium and backdrop. These are cut from hardboard, the backdrop measuring $16 \mathrm{in}, X 9{ }_{8}^{5} \mathrm{in}$. and the proscenium $16 \mathrm{in}, \times{ }_{4}^{5} \mathrm{in}$. The actual proscenium open-

By C. C. Somerville

ing or windew is r2in. long $\times 6 \mathrm{in}$. High and surrounded by an ornamental beading as indicated

Curtain

Once the framework has been completed

the front curtain can be tackled. A rear view of the mechanism involved can be scen at Fig. 2. The curtain was cut from a sheet of corrugated card with a wooden batten gleed along the top and bottom. When painted a deep blue it resembled a rich, pleated velvet drop. A point to note is that the curtain must be $\frac{1}{2}$ in. greater all round than the actual proscenium opering.

Lighting

The lighting for this miniature theatre consists of battens, floods and spotlights, all made with 2.5 volt flashlight bulbs. Thesc can be worked from a battery, but as a-large number will be required it is far better to power them from the mains using a stepdown bell transformer. The different types

Fig. 2 (Righr).Rear vierv of the proscerviun sherving curtain mechanismr.
Fig. 1.-The framezvork, of the model stage and the proscerrium.

Lead
counterweight
switch and is known as a circuit. The colours on the battens should, of course, be evenly distributed and not all clustered together.

A useful innovation for your theatre would be to have each block of lights on a dimmer. Wireless rheostats can be used effectively for this purpose and a simple circuit diagram is shown in Fig. 4.

This circuit uses three battens, each having a three-colour combination. Two of these battens are overhead battens, and the other is the footlight batien. Two floods are used, one at each side of the stage. Fig. 4 also shows the layout for a simple switchboard used in conjunction with the circuit.

The Scenery

The next step is the planning of the scenery. Curtains or traverses can be arranged by running them on wire, the ends being twisted round the side struts. These traverses can be moved backwards or forwards as required. Scenery is best painted on paper and subsequently mounted on stout cardboard, reinforced if necessary with wooden battens or plywood. The backscenes and "flats" or wing pieces are glued on to strips of wood 18 in . long and these hang across the side struts of the stage, as do the lighting battens. Fig. 3 will make this clear. Borders-the strips which hang down at the top to prevent the audience seeing the lights -are mounted on battens in the same way. Ground rows, similar to borders but running along the stage floor, are sometimes necessary. They are made to stand up by sticking their backs to blocks of wood. Flat cut out furniture and similar properties are made to stand in the same way.

Built-up or "solid" sets are always effective and not nearly so difficult to make as might be imagined. They can be produced successfully in cardboard. The secret is to make as much of the set as possible from one piece, by bending and cutting it rather than making it from separate pieces.

Painting

This is done in poster colours and is not the same for a "flat" scene as for a "solid" set. The latter produces its own shadows and may be painted in flat, even colours. But for flat scenery heavy shadows and perspective must be introduced. All the scene painting should be bold; avoid fussy detail. The aim of the scene is to represent the locale of the action and indicate the mood, but it must not intrude. It must always keep its place as background. When considering colours take into account the lighting which you intend to use. It is a waste of time to paint a scene in one colour and then light it

Fig. 6 (Left).-Preliminary sketch for composite scene. Fig. 7 (Above).-How Fig. 6 might be interpreted on a full-size stage.
arrangement of the same units a compleie change of scene can be achieved. A modern set using several different forms of scenery is illustrated at Fig. 6. A differrent interpretation is shown in Fig. 7.

The "Actors"

in another. At the same time weird effects of transformation are possible by painting a scene in deep reds and greens, and switching alternately between two lamps of the same colours. Red light turns the greens of the scene black and the reds become invisible. Exactly the opposite happens when a green light is shone on the scene.

Set Pieces

Furniture and set pieces will have to be made and it is useful to have on hand a few abstract solids, cubes, rectangles, cylinders, etc., which, when lit artistically, can be used to suggest modern expressionistic settings. Simple effects can be formed by grouping these in various ways and with a little re-

Cardboard figures, or even chessmen, may be used to represent the actors, and prior to working with his company the wise producer will experiment on his own. Crowd scenes or elaborate groupings are not always easy to visualise, but with a model, mistakes can be rectified without having to confuse the cast with countermanded orders.

Producers working in cramped circumstances, with scanty storage space for scenery, will find interchangeable scenic units invaluable as they can be used time and again in different positions to give different effects. These will, of course, be the result of experimentation on the model.

There is no end to the uses to which the model theatre can be put.

Fig. 4.-Lighting circuit diagram. Only blue circuit shown for clarity.

Fig. 5.-Details of the various lighting fittings.

Wing Support Pylons

THESE are in. dia. 17 s.w.g. with bolted attachment plates at the top. The front spar undersurface is 24 in . above the rop fuselage longerons. Make up the front pylon first. This consists of three tubes-the two side ones beirg identical in length. Time can be saved if the lower ends of the front and rear side pylon struts are completed first with the " U "piece welded in.
Set up the fuselage with the top longerons level fore and aft and also level at right-angles to the fuselage centre-line at the cockpit. This is known as, the "rigging posinion." All rigging and measurements will be taken with the aircraft trestled

in this manner.

Wing support trestle set $+3^{\circ}$
Take a pair of 3 ft . w:de trestles and to horizontal screw and clamp extension pieces to them to support one wing (either will

Fig. 46.-Setting the wing incidence prior to making the rear pylon on the job.
do) in its correct position and connect the front spar fitting to the front pylon (Fig. 46).

Make certain that the wing is at rightangles to the fuselage. This is most accurately done by establishing a fuselage
centre-line on the floor and transferring the front wing spar line to the floor, using plumb-bobs, cords and tacks. Using the ratio $3: 4: 5$ unit triangle system, work wiu the longest units possible to keep within the
 centre-line lengths, i.e., a 3 ft . unit giving 9ft, along the spar line from the intersection and $12 f t$. along the fuselage side, the third side being 15 ft . Measure with steell tape or wire.

Hold a straightedge against the lower surface of the wing spars and, with an adjustable level, set the wing at an angle of incidence of 3 . deg. (Fig. 46). Fix the wing trestles in this position and, without altering this setting or that of the fuselage, make up the rear pylon on the job. Watch carefully to see that the centreline of the pylons is exactly on the centreline of the fuselage.

When the pylons are completed, remove the wing, dismantle the pyloms (do not forget to label each strut) and paint or plate them before reassembly.

Wheel Brakes

If wheel brakes are to be fited, it should be done-at this stage. Fire the undercarriage and bolt on the brake asserblies. Do not fit the wheels yet. Each brake assembly is marked "Port" os "Starboard" and it is imperative that they be assembled to their respective sides.

It is advisable to use 5 cot, flexible stranded aircraft control cable for the actual operating cables. Cut lenglis for each side
and silver-solder a mippe to one end of each wire. Thread the wre through the brake assembly from the ownide (wheel side) leading it through the carm return spring and passing it out of the arsembly through the hole provided. Run the wire into a largediameter Bowden nu er cheath and, avoiding sharp bends, run crblt and sheath up the radius-rod on the ferurad side, lashing it at intervals wi'h wresed thread or plastic adhesive tape.

The cable and wewty enier the fuselage through a smo lil oval fro'e in the botom skin 3 in . inboard from the radius-rod fitting (Fig. 47). Fig. \$\% shews the two small brackets which locate the cable, adjusters and are attached to the inside faces of the sear rails at the front. The run of the cables is shown in Fig. 47. The brake pedal assembly which bolts to the rudder pedestal is illustraied in Fig. Fi and detailed in Figs. 49 and 50 .
The forward end of the brake cable wire is looped around a cable thimble, tightly bound for a length of rin. with 22 s.w.g. copper wire and soldered. A small shackle then connects it to the pedal lever.

Now fit the wheres; If they fout the brake sloces, unwizat the smatif star adiusing wheel

(accessible from the brake attachment back plate side) unill the shoes have contracted sufficiently to permit the wheel to slip on. By adjusting the star whecf, righten the ghoes so that the wheel is almost impossible to turn. Now slacken off three "notches" on the star wheel. The length of the operating cable is now adrusted' on the seat-rail cable adjusters to take up any slack.

The tailwheel assembly is next made and
fitted. The leaf-spring for this can be made from a 1934-type Austin 7 rear spring. This will have to be softened for drilling and then re-tempered.
The standard tailwheel for the Minor is the \sin. Phoenix type which has double shielded ball-races.

Attach the tailplane and elevator to the rear fuselage and bolt on the fin. Fit the rudder. To ensure perfect and accurate alignment, the attachment of the hinges to the fin may be left until this point. The rudder should swing freely without any tendency to bind. A minimum of $\frac{1}{4} \mathrm{in}$. gap should be left between the fin top rib and the underside of the rudder rib.

The Control Cables

The control cables in the fuselage are now made. The cable used is pre-formed flexible wire rope to specification W.9. Each control cable will have both ends looped to form an eye around a heart-shaped brass thimble.

a shackle, connecting it to, say, one of the elevator levers. Thread the other end through the pulleys to the control column. Pass the end around a second thimble through the eye end of a turnbuckle which is connected to the appropriate lug on the control column. Adjust the turnbuckle so that the last visible thread pitch at each end is five full turns inside the barrel. Holding a rule against the turnbuckle, screw it up so that the turnbuckle is $\frac{1}{2}$ in. shorter than the previous setting. This additional $\frac{1}{2} \mathrm{in}$. length of the cable must be allowed to counteract the shortening by approximately $\frac{1}{4} \mathrm{in}$. at each end when the cable is twisted in the sleeves. Pull the cable taut around the thimble and tie back as before. Mark the cable at the centre of the thimble with paint (Fig. 52). Remove the cable, untie the ends and proceed with forming the eye end splices as detailed earlier.

In making the control cables for the rudder, do not forget to thread each cable through a length of tin. o.d. copper or tungum tubing to form the fairlead through the fuselage sides before making the second eye end to each.

Lead the elevator cables into position, using thin string or thread and connect them up. Operate the elevators, using the control column, and see that the cables do -not foul any part of the structure throughout the full range of movement. Should they touch any fuselage members, try rerouting the cables or, if this does not rectify it, screw $2 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. strips of $\frac{1}{8}$ in. thick red fibre to the members as rubbing pads. No unsupported cable should be in such close proximity to any part of the airframe that any possible whip in the wire could bring it into contact with objects which might cause damage to, or be damaged by, the moving cable. If any doubt exists, make use of a fibre pad.

See that the slots in the pilot's seat are large enough to prevent cable-fretting.

Fit the rudder cables and shape the fairleads. Secure the ends of the fairleads with clips, as shown in Fig. 53, having first made sure that the cable runs in a straight line, in side elevation, between the rudder bar and the rudder lever. It is a mistake to lubricate the fairleads with oil or grease, as dirt will collect and act as a grinding medium inside the tubing, thus accelerating wear to both cable and fairlead.

Operate the rudder and check functioning. Should the cables tend to touch the fuselage
through a 3 in . length of $3 / 16 \mathrm{in}$. o.d. X 20 s.w.g. copper tube which has first been annealed and flattened to an oval section in the vice. The cable end is doubled back and threaded back through the tube. The thimble is put in place and the cable drawn taut. Make sure that the centre-mark denoting the length of the cable (explained farther on) is in fact central. Using a mallet and a wooden block, dress the copper sleeve to the wire.
Lightly clamp the splice vertically in the vice and heat with the soldering iron until it is possible to flow solder down through the sleeve around the wire. When it is thoroughly tinned and still molten, again dress the tube with the mallet. Take care not to spurt hot solder in your face. Avoid excessive heat in soldering as this would affect the strength of the cable.
Clamp the splice vertically in the vice so that about $\frac{3}{3}$ in. of the copper sleeve is firmly held in the jaws. Using either a hand-vice or a pair of smooth-jawed parallel grips, hold the other end of the sleeve again $\frac{3}{8}$ in. from its end and carefully give one and a half full turns, twisting cable and sleeve into a spiral. Unclamp and re-tin with the soldering iron. Trim the spare end back to the end of the sleeve. This splice is very strong and does not need to be pre-stretched before use.

Finding Cable Length

Fix the pilot's controls in the central or neutral position (stick vertical, rudder bar central) and clamp strips of wood across the tailplane and elevator, fin and rudder to hold them central. Make a loop in one end of a piece of the cable and tie it with thread. Pull this tight around a thimble and insert

Fig. 49.-Brake pedal details. Two are required (right and left handed).

Minor rigging, since there is ample pendulum stability.

Temporarify bolt the lift-struts by their lower ends to the fuselaze fittings and adjust the eye ends until about $\frac{3}{4} \mathrm{in}$. of thread is showing. By holding each strut agninst is respective top, strur fitting, is is possible to mark off the exact rength of thr strue. Remove he strues and the top fittings from the wing brackets. Cut the sirus to length and mark the positions of the bole holes. Press the top fitting into the srut end and drill the four holes, using a $3 / 32 \mathrm{zin}$ drikl.
Refir the struss to solder the wing and fuselage:
The four lift-struts are made from 2Z s.w.g. streamlined mild steel tubing. sectionn 2.5int X 1.250in. Each strut is approximately 74 in . in. length and has a screw adjustment at the lower end.
Start by cutting the streamlined tubing inte four piseces 6 ft . 2 in . long and form the lower ends. The threaded blocks are $\frac{1}{2}$ in. long, wrgin. in diamerer and are bored and tapped $\frac{1}{2}$ in. B.S.F. A local garage should be able to make these ups, alternatively they are available from Phoemix. Aircraft L.rd., together with the actuall adjustable eye end, which is turned from sin. square bar.

The strut end is slotted ons both sidies of the minor axis and on the forwars side of the major axis and dressed round the threaded block. Welc the block into the strut "rosette" faslivon. The 22. s.w.g. mild steel closer plate is theru edge-welded to the angled cut. This muse be done acc:arateh:

Braze in the eno short $3 / 16 \mathrm{in}$. dia. bore tubes which locate the bolts for the bracing wire fitting, Pt. No. 12 W . This assembly is illustrated in Fig. 54
Now make up the top fitting which picks up on the spar fittings. This is made separately from the strut and comprises a wrapper plate, a. web and two gussets, all made of 16. suv.g. mild steel plate, and a 4in. $\times 17 \mathrm{~S}_{\mathrm{L}} \mathrm{w}-\mathrm{g}$. steel tute. The steps in the making of this fitting are illustrated in Fig 55. Conneit these fixings to the liftstrut attachments on the wings.

Fitting Lift Strues

Set the fuselage in the rigging position with the wheels clear of the ground andt, with the aid of an assistant, offier up the wings, bolting the root-end fixtings, to the centre pyien fittings and supperting them just beyond the lift-strut attachment fittings with the reastles modified with exrension pieces.
Place a straightedge across the ribs on the top surface parallel to the mann-spar and, using a spirit-levelh, see that each wing is. horizontal. No dihedral is emplowed in the.

Fig. 53. -The copper fairlead zohich carries the rudder cable through the fuselage side. Bends must be gradual and smoork

Trimatil livainet

A Home-made Accessory for the Reflex User
 By F. G. Rayer

IN the attachment described here and shown in the heading, the finder lens, at the top, is of smaller diameter than the taking lens, which is at the bottom. This is to suit the lens mount diameters of the Zeiss Ikoflex, but with some cameras both lens mounts are of the same diameter. With other models, especially those with small aperture taking lenses, the finder lens may be larger than the taking lens. The actual diameters of the close-up lenses are of no importance, provided they are at least as large as the camera mounts, to avoid cut. off rowards the corners of the negative and viewing screen. Reference to the way in which the four parts of the attachment serve to hold the lenses will show how dimensions can be adjusted for other lenses.

Attachment Construction

The four main parts are shown in Fig. 1, and numbered for reference. The apertures in part I just clear the camera lens mounts. Correct sizes and positions for the holes can be found by placing the camera, lenses down, on the piece of material to be used, and carefully drawing round the lens mounts with a sharply pointed pencil. Bakelite or paxolin is satisfactory, and should be fairly thick so that the attachment can fit securely. in place.

The holes can be made with a washer cutter, fretsaw, or by drilling a ring of small holes and cleaning up with a file. The outside dimensions of the parts are not of much importance. Equal semi-circles can be drawn each end, before cutting the holes. Corners are then sawn off, and the piece filed to shape.

Part 2 can be of very thin paxolin Each hole is about 4 mm . smaller in diameter than the close-up lenses to be fitted, as it serves to keep them in position.

Item 3 has holes just large enough to clear the lenses, and is of similar thickness to the lenses themselves. Stout cardboard is satisfactory.

The front, part 4, is of moderately stout paxolin, and has holes of the same diameter as part 2. Parts 2,3 and 4 are best marked out directly from part I, compasses being used to scribe circles of the diameter required.

The four pieces are then placed together, and two holes are drilled through them all, to take 6 B.A. or 8 B.A. bolts. The pieces can then be bolted together, and the edges cleaned up with a file.

If it is necessary to change the lenses for another pair of different power, the attachment can be taken apart by removing the two small bolts. The holes in the front piece are bevelled slightly, and the edges of the holes in pieces 2,3 and 4 (front) are painted matt black.

Lens Powers

Close-up camera lenses are most generally available in 1, 2 and 3 Diopter powers,

Taking lens mount

To clear supplementary lenses

Fig. 1.-Parts required for the attachment and details of the spring clip. These can be altered to fit any camera. though other powers are also used occasionally. A 1 Diopter lens will take up from the nearest normal focusing setting of the camera. E.g., with the I Diopter lens in use, and the camera focusing set at infinity, the object will now require to be at a distance of 39.4 in . With the camera adjusted to its nearest focusing point (say, 3 ft .) the object needs to be at 18.8 in . A I Diopter lens thus allows continuous focusing from 39.4 in , to 18.8 in .

With a 2 Diopter lens, infinity on the camera will give a subject distance of 19.7 in ., while the 3 ft . setting will give 12.75 in. A 2 Diopter lens thus allows focusing from 19.7 in , to 12.75 in .

In the same way, a 3 Diopter lens will allow focusing from 13.1 in . to 9.6 in .

There is, of course, no need to bother about the exact distance of the subject, because focusing is carried out on the screen, in the usual way. But here the power of the lenses should be selected to suit the kind of close-up shots which are to be taken, unless two or three pairs of lenses are purchased.

Compensation for Parallax

With all twin lens reflex cameras, the lens throwing an image upon the focusing screen has a slightly higher viewpoint than the lower lens, which provides the image recorded on the
negative. This difference is usually about i $\frac{3}{4} \mathrm{in}$.

If an object is being photographed which compietely fills the focusing screen, about $1 \frac{3}{7}$ in. will be cut off the top of the object, on the negative. This can be avoided by always allowing a little free space above the object, on the screen. For example, if three fingers of one hand, side by side, are placed

Fig. 2.-The close-up attachment in position. close above the object, they should be visible on the screen. At a subject distance of 2oin., this would be approximately equivalent to leaving $\frac{1}{4} \mathrm{in}$. clear above the image of the object on the screen. But at shorter distances, or with very near subjects which completely fill the screen, parallax becomes more important. With still objects, very near the camera, the effect may be eliminated by raising the camera about $\mathrm{I}_{4} \mathrm{~B}_{\mathrm{in}}$., or lowering the object to a similar extent, before taking the shot. The distance between camera and object should not be changed when doing this.

If part I is not made very accurately, so that the attachment is loose on the camera, this can be corrected by fashioning a clip spring to fit round the bolts, as shown in Fig. I. This will press upon the bottom of the viewing lens mount. A fairly strong paper clip bent to shape will be suitable. Fig. 2 shows the completed attachment.

A Boon to the Busy Housewife

By A. F. Parker

COMPONENTS REQUIRED

One $1,000 \Omega$ twin coil relay, operating current i mA (A. T. Sallis, 93, North Road, Brighton), 7s. 6d. Buzzer or bell, 3 volt.
$4 \frac{1}{2}$-volt flash lamp battery.
Piece of brass $3 \frac{\mathrm{tin}}{\mathrm{in}} \times 2_{4}^{\frac{1}{\mathrm{in}}}$. (same gauge as thickness of 4 B.A. bolt heads).
Piece of Paxolin $3 \frac{1}{2} \mathrm{in}$. $x 21 \mathrm{in}$.
Piece of copper 3 l in . $x 2 \mathrm{i} \mathrm{in}$. (light gauge).
Length of waterproof cable (twin core).
Two wanderplugs and sockets.
No. 42 instrument case (A. T. Sallis).
drill the four corner holes 4 B.A. Insert bolts and screw up tight (sse Fig. 1).

Drill the remaining 22 holes to take line bef other uses, such as acting as a reminder to

Fig. I.-Layout of bolt heads and holes in top plate. 4 B.A. bolts, separate the three plates, and enlarge the holes in the brass plate only to $17 / 64 \mathrm{in}$. This will enable the $\frac{1}{4}$ in. dia. heads of the bolts to clear the holes. It is best to use a bench drill for this, as the holes must he precision drilled.

Enlarge No. I wanderplug hole in the brass plate to take a socket, also enlarge the remaining socket hole to completely clear the socket head. Enlarge the holes in the Paxolin to take the sockets, and also en'arge hole No. I (see Fig. 2) in
bring baby in from the garden, etc. It is very sensitive and will sound the alarm as the first drops fall.

Construction

Place the copper on the bench, Paxolin on the copper, and then the brass on the Paxolin. Clamp all three in the vice and
the copper plate to clear wanderplug retaining nut.
ing nut. when the plates are reassembled No. I socket makes contact with brass plate only, whilst No. 2 socket makes contact with copper plate only. Before assembling again, cut off the four corners of the copper plate so that the four corner bolts only make

Fig. 4.-Circuit details. A twin-coil relay should be used, as mentioned in the list of components. The single-coil version shown here is merely for illustration.

How It Works

The principle of-operation is simple. The first drop of rain whizh strities one of the bolt heads recessed in the top plate completes the circuit and causes the bell to ring.

Fig. 2.-The back plate made of light gauge copper.
.

Fig. 5.-The finished mechanism and top of the warning device.

THE unit described is a simple magnetic pick-up to convert a normal plectrum guitar for electronic playing. The cost is governed only by the price of six TV ion traps which form the basis of the unit.

Construction

A small size Elastoplast tin is used as a housing, out of which a hole must be cut and covered with an aluminium plate, as shown in Fig. I. The magnets removed from the ion traps are mounted inside the tin on the aluminium plate, using 6 B.A. steel bolts. These bolts, which are fitted heads outside, must be steel, although the nuts

Figs. I and 2.-Plan and underside views.
Fig. 3 (Right).-The completed pick-up.
are all north or south poles uppermost, that is, all the same way. This can easily be checked by standing them in a row so that they all repel one another, then transfer them as they stand to their fixings (Fig. 2).

The Coil

The coil consists of 1,000 turns of 38 s.w g. enamelled copper wire wound loosely on a temporary former. The diameter of the former must be carefully arranged so that the coil can be taped and moulded to fit closely round the magnets. It will be
necessary to tie the coil across its centre to keep it close to the magnets (see Fig. 3). When the coil is in place, a length of lightweight coaxial cable is passed through a hole in the casing and knotted. The coaxial screen is soldered to the casing as well as one end of the coil. The coaxial inner is soldered to the remaining end of the coil and the joint covered with a length of sleev-
 fit closely found the magnes. It will be

MATERIALS REQUIRED

6 TV ion traps Type IT6.

66 BA steel bolts.
Quantity of $38 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire.
Small size Elastoplast tin.
2ft. lightweight coaxial cable.

ing. When everything is in place (see Fig. 3) the whole assembly must be sealed up with a suitable wax to prevent acoustic pickup. If possible it is wise to make a continuity check before sealing. After sealing, the tin lid is fitted to the underside and the whole assembly painted a black gloss finish, with the exception of the aluminium plate and the lip of the tin lid.

Mounting

The completed pick-up should be mounted underneath and just clear of the strings at the end of the fingerboard. Various methods of fixing may be employed depending on the shape of the instrument. All plectrum guitar strings are steel cored, but most types are magnetic. If non-magnetic strings are used electric type strings must be bought.
Almost all guitar pick-ups can become dangerous if used with certain types of A.C./ D.C. (universal) amplifiers.

Experimental Electronic Telephone Exchange
BASICALLY the exchange will employ the principle of time division multiplex and switched highways for the ultimate connection, where each highway can carry up to 100 simultaneous conversations and sufficient highways are provided depending on the traffic of the exchange. The exchange lines are arranged in groups and each line in a group is connected by electronic gate circuits to the highway common to all lines in that group. Each highway in turn is able to be connected to any other, again by electronic gate circuits.
A magnetic drum is used as a semipermanent memory. This drum carries all the information relative to all subscribers' lines and junctions, acting in this respect as the exchange library.

Dounreay's "Hot" Laboratory

O NE of the world's most elaborate "hot " radioactivity laboratories is a vital feature of Britain's new something-fornothing fast breeder reactor at Dounreay, Caithness. No similar reactor has ever operated before and, because of its unusual features, it is essential for nuclear scientists to carry out laboratory examination of intensely radioactive fuel elements.
Everything in the laboratory is done by remote control, using closed-circuit television and protective windows.

Space "Weather"
THE American satellite, Explorer VI, has helped scientists to chart the weather of space in the earth's vicinity, by radioing signals back to earth. Previous to the satellite and rocket era it had been thought that changes in near-by space occurred slowly, if at all, but it has now been established that nuclear particles form winds and streams and violent changes take place. There are a few difficulties to be overcome before a completely accurate picture of the weather in space can be obtained.

New Ceramic

A CERAMIC made from powdered Aluminium oxide has recently been developed in America. It transmits light, is heat resistant, can be pressed into any shape and is very strong. Lucalox, as it is called, due to its poly-crystalline form, can withstand high heat without becoming deformed, thus extending the range of instruments now limited by the heat resistance of their components.

Single Atomic Particle Study

THE American Physical Society has

 described a method of observing single atomic particles, using the field ion microscope. Study of its behaviour may eventually prove, or disprove, the theory that it is related to that of the universe.
New Mining Method

FROM Russia comes news of a new hole sinking method. Using liquid explosives piped through an aperture in the drill bit, to which a detonator is added, rock is shattered and a shaft roft. in diameter sunk at the rate of 3 ft . every four minutes. Conventional methods are about one-tenth as fast.

AGLIDER is an aeroplane without an engine, and for this reason it must always fly "down hill." Yet in spite of starting with this seeming disadvantage the world gliding record for height is over 44,000 feet, while the record for duration of fight is over two days!
It may well be asked how are such achievements possible in a plane without an engine. The answer to this is that the glider is supported by the wind. Not wind as we normally know it, which blows parallel to the ground, but currents of rising air which blow vertically upwards.

Rate of Descent

When a glider is flying in a place where there is rising air, its normal rate of descent may be more than cancelled out by the rate at which the air is rising. It is, in fact, like a man walking down an escalator whith is moving upwards. The man's normal rate of descent may be, say, $3 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. but the escalator may be rising at $5 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. so that, in fact, after a short time he will find himself at the top of the stairs instead of the bottom.
The whole secret then in being able to fly a glider for any length of time is to find a place where there are strong currents of rising air. Obviously it will make it easier to remain airborne if the natural rate of descent of the glider is small. In most modern gliders the angle of flight is about one in 25 , in other words, if the glider starts off at $1,000 \mathrm{ft}$. in still air it will be able to fly for five miles before it has to land. Assuming that the glider flies at 40 m.p.h. this is equivalent to a rate of descent of about $2 \frac{1}{\mathrm{f} t}$. per second. If a glider is flying in air that is rising at, say, roft per second it will actually be gaining height at the rate of $7 \frac{3}{4} \mathrm{ft}$. per second.
The thing that the glider pilot has to do then to remain airborne is to fly in currents of rising air so that he is blown upwards. But here is the snag-how does he find the rising air, because for every place where there is a current of rising air there is some place else where there is a current of descending air, and it is impossible to tell one from the other by just looking.

The Variometer

The problem of being able to tell when the glider is in a current of rising air is not as difficult as may appear at first sight, as

Fig. 1.-The varioneter, showing how the green pith ball is blown up the fapering tube as the glider rises.

Fig. 2.-Glider hill soaring in rising air.

Fig. 3.-Glider flying in a thermal which has been started by the sun heating the air over a town.

a very ingenious instrument has been developed which will give an accurate indication of rise or fall. This instrument is called a variometer. It is quite true to say that the modern glider can do without almost any instrument with the exception of the variometer. With this instrument the pilot can tell whether he is rising or descending to an accuracy of within 6 in. per second.
Before going on to see how the glider pilot searches for rising air it is as well to take a quick look at the variomeser to see how it works. It consists basically of two flasks, rather like vacuum flasks, which are insulated to prevent temperature changes. These flasks are connested to two tapering tubes, as shown in Fig. 1. One tapering

How a Glider Flies

A Description of the Techniques a Glider Pilot Employs

By R. N. Hadden

tube has its bottom connezted to one flask, while the other has its top connected to the other flask. This is shown to an exaggerated scale in Fig. I. In each tube there is a pith ball, one coloured red, the other green.

When the glider is being carried upwards on a current of rising air the pressure is decreasing, and so air flows out of the flasks. The air flowing out of the flasks has the effect of blowing the green pith ball up the tube; the faster the air is flowing out of the flasks the higher is the green ball blown up the tube.

Exactly the opposite happens when the glider is descending. As it comes down from a high altitude to a lower one the pressure of the air which is increasing causes a flow into the flasks. This makes the red ball rise up its tube. The faster the descent the higher the red ball rises up the tube.

This, then, is the secret of remaining airborne. The pilot tries to fly in places where the green ball indicates ascent, and tries to avoid the places where the red ball indicates descent. Armed with this sensitive instrument the pilot is in a good position to remain in the air. However, he must still have some idea of where to look for rising air, and the best place is on a hillside.

Mill Soaring

Fig. 2 shows how wind blowing horizontally is deflected upwards by the hill. This is an ideal place for gliders because the lift is both-strong and continuous. The higher the wind the higher the lift, in a fresh wind gliders can fly at heights which can vary from 1,000 to $5,000 f$. above ground level. There are several places in this country which are fortunate enough to have ideal hillsides for gliding.

This type of gliding is known as hill soaring, and is the easiest type of soaring flight. All the pilot has to do is to fly up and down the hillside making sure that his variometer never indicates loss of height for any length of time. When duration records for gliding are set up it is usually by hill soaring. The record depends on how long the pilot can stay awake!

Cross Country Flyitg

Once a pilot has progressed as far as hill soaring he will never be satis ed until he has tried a cress country fight. This type of gliding is much more diri. It as the pilot has to try to find paiches of rising air in which to gain ncight to enable him
to fly farther across country. Every time he loses height he must look for more rising air to help him regain his altitude.
Looking for rising air is not always easy, but a useful tip can be had by watching seagulls. It will be found that seagulls do not soar in just any place, but that they

Fig. 4.-Cross country glider flight.
place where there is rising air. Very often the spot where there is rising air is over a ploughed field, a town, or power station.

Fig. 3 shows how a patch of rising air starts over, say, a town. The sun warms the town and the air just above it. As the air is u armed it gets lighter and starts to rise, while cold air flows in from the sides to take its place. Once the air starts to rise it does so quite quickly, often at a rate as high as roft. per second.

As the air continues to rise a point is reached where condensation starts to take place, and this is the beginning of a puffy white cloud. When condensation takes place the effect is to make the air rise even more quickly, and this continues right up to the top of the cloud. This type of rising air is known as a thermal.

If a pilot is hill soaring and he wants to make a cross country flight, first of all he will try to gain the maximum possible beight over the hill to give him a good start. When he is as high as he can go he will look out for a likely cloud, which may indicate that there is a thermal underneath. He then flies towards the place where he thinks he is likely to get lift. If he is lucky he will suddenly see the green ball of his variometer indicate a rise. When this happens he must start to circle to try to remain in the current of rising air. If he is lucky he will be able to climb a few thousand feet in the thermal before it weakens. When the lift dies off he will set off again in the direction in which he wants to go. When he has lost most of his height he will have to repeat the performance if he can find another thermal.

A sketch of a cross country glider flight is shown in Fig. 4. The pilot is launched at (a) and then hill soars at (b) until he sees a likely looking spot for a thermal under a cloud (c). At (c) the pilot climbs by circling in the thermal until he has enough height to set off at once again to try to find another thermal over the town at (d). And so he can go on as long as he can find thermals when he wants them.
the lift may extend to many thousands of feet. A glider pilot who is lucky enough to find himself in a standing wave will find that without any great effort on his part he has no difficulty in gaining, height. This type of lift is often characterised by a stationary cloud over the peak of the lift. Actually the cloud is not stationary but forms on the leading edge as quickly as it disappears from the trailing edge.

The Take-off and Landing

So far only the techniques of flying a glider once it is airborne have been discussed. However, the two most important aspects of gliding are taking off and landing. A glider can be launched by several means, the most sophisticated way of getting off the ground is to be towed by an aeroplane to the required height. However, the cost of this method is rather high and the more usual way is to use a motor-driven winch which can tow the glider up to $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The glider climbs
as quickly as possible until it is nearly over the winch, when the pilot releases the tow rope. Another way is to launch the glider by an elastic tow rope pulled by some of the club members.
Landing presents some problems especially for the cross country flyer, because once the lift fails the pilot must land whether he wants to or not, and he may only have a few minutes to choose where. Usually the pilot will try to find a good, open field iree from telephone and power cables. One advantage of landing a glider as compared with a powered plane is that its stalling speed is very low, sometimes as little as 30 m.p.h. If there is, say, a $10 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. wind blowing the actual speed over the ground is only $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. For this reason a glider can land in a remarkably short space.

In this article it has only been possible to give a very brief description of a few of the aspects of gliding. For this reason if anyone wants to obtain more information of where to glide or of clubs, they should get in touch with The British Gliding Association, 19, Park Lane, London, W.I.

A Cloud Street

Sometimes the pilot may be lucky enough to encounter what is known as a cloud street. These consist of a whole series of cumulus clouds so close to each other that the lift under them is almost continuous and very strong. In these conditions he can fly quickly along in a straight line under them ncither gaining nor losing height.

Another type of lift for gliders is what is known as a standing wave. It is really the equivalent in the air of the waves which can be seen in fast-flowing water which remains in a fixed position. When a standing wave forms in the air it is usually triggered off by some quite low hills, though

$\frac{\text { PUZZLE }}{\text { COBNER }}$

1.-The Christmas Present

AST Christmas a firm presented to its employees an envelope containing a certain number of pound notes. The total cost to the firm was $£ 4,427$ and all employees received the same amount of money. The name of the rooth man on the list was McPherson. How much did each man receive?

2.-How Long ?

TAKE out your watch and see how long it takes you to work out this multiplication sum: $\mathrm{I} \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 0$?

Answers

'1पุดก 'asmos jo 'วขuefor e je aas plnoys nox-z -sodu! s! uonnjos isIy ayl os 'ool jsej ie

THER WETHE

American Developments are Discussed by Donald S. Fiaser

AIR cushion vehicles may provide a new form of future transport and one such vehicle, the Curtis Wright air-car, one of a growing family of new mach ines designed to travel on a thin cushion of air over land, sea, marsh, sand, ice and snow, was demonstrated recently. Such machines, which do

they pleased. Farmers could transport food to market and manufac.urers cou!d make deliveries quickly and by the most direct route. The family vehicle could serve as transportation and as a pleasure craft, able to operate as a car or a boat. Any field would be a good road, any beach would be a good harbour,
"Ground effect" travel would be economical. The two engines, one for lift (a simple device to draw in and blow out air) and the other for propulsion, would be in a low horsepower range, inexpensive to produce and simple to operate. The two engines together would require less fuel than a car or a boat because they would use no power to overcome the friction that inhibits to-day's conventional vehicles.

The new Curtis Wright Corporation's four-passenger air-car.
not need wheels, tracks or hulls, have been developed in several countries. Here, for example, we have the SaundersRoe Hovercraft, which last June flew off the Isle of Wight at 30 m.p.h. It travels a few inches from the surface by forcing a cushion of air down: wards from a giant fan, while air jets propel it.
Scientists predict that this craft may eventually revolutionise transportation, with trains as fast as planes that fly above a rail that they never touch, and a super-fast, allpurpose vehicle that combines the advantages of a passenger car, speed boat, truck and helicopter.

U.S. Air Cushion Vehicles

In the United States several types of air cushion vehicles have been developed. Besides the four-passenger air-car, which is designed to travel at about $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. at about a foot from land or water surfaces, other vehicles planned, or in the process of development, include a small scooter, cars to travel at various heights above the ground, ocean-going passenger ships and freighters, and low-flying helicopters.

Ground Effect

The air cushion phenomenon, or "ground effect" as it is commonly called, is not new. Scientists have known for years that a jet of air forced out of the bottom of a vehicle against a hard surface, such as the ground or water, forms a cushion that reduces friction and provides lifting power.

This ground effect does not aid flight at high altitudes, but a vehicle designed to travel up to a few feet above the earth's surface can be continuously suspended in the

Pegasus I is a two-passenger, 850lb. car, designed for speedy travel 2 ft. above land or water. It lands smoothly on small wheels.

A small Curtis Wright air-car being flown over water.
First U.S. Model
One of the first successful "ground effect" cars in the United States was built by a scientist, Walter A. Crowley, who amazed his neighbours by flying his tubular steel vehicle ovè̀ roads and ponds.
Mr. Crowley is now with
air as long as a compressed air cushion is maintained beneath it. Freed of friction from land or water, the buoyant vehicle requires very little power to attain great forward speed.

Advantages

One of the great benefits of "ground effect" travel would be its convenience. A flying vehicle could ride above city streets and highways, which in many parts of the world are clogged with cars, vans, lorries and buses.

People isolated because of the lack of highways and bridges could "fly" wherever

America's first air-car being tried out on water. a company, Spacetronics, which is basing its two large ground cushion vehicles, which will be used for sea cargo service, on his work.
The Ford Motor Company has produced two vehicles, the lift for which is provided by "Levapads," flat circular plates that have compressed air forced out of their centre to form a cushion which keeps the vehicle an inch above the ground. Vehicles supported by this device travel on a smooth surface and may be best suited for rail transport.
Other vehicles being developed include vehicles for low-level flight, which would incorporate wheels and propellers as well as the air-cushion system. The U.S. Army is testing an air-cushion helicopter machine, which uses four propellers to form a cushion for take-off from the ground. In the air the propellers can be tilted for helicopterlike flight at altitudes above the air cushion.
The "flying jeep," developed by the Piasecki Aircraft Corporation, has two horizontal rotors housed in the front and rear. It should be able to fly at $150 \mathrm{~m} . \mathrm{ph}$., rise and descend vertically, hug the ground and thread its way between buildings and trees and under bridges. It would need no runway, but use its wheels, if desired, for takeoff and landing.
Will this type of craft ever completely replace conventional forms of transport? It is debatable, but most of us will live long enough to find out.

MANY owners of three- or four-speed players probably have lying idle an older type radiogram in which the turntable runs at 78 r.p.m. only. Many of these players may be modified to run at a lower speed and so act as emergency players in the event of breakdown of the more modern equipment. The writer owned an old Garrard single-speed player which he decided to modify, and the following article deals with the details of the modifications required.
variety. This must be mounted on the player deck in such a manner that the arm makes a tangent with the turntable for all positions of the head, with the needle at the point of contact. The position of the arm must be found by trial, and error to suit the requirements of the equipment in the reader's possession. The arm support was already part of the player, but it was found necessary to move it to a new position to suit the new arm.
It was found impossible to make the new

arm perform the operation of switching, and it was decided to build into the player a stop/start switch of the press button type. When the player is inverted, two wires will be seen coming to the motor from two points in the original radiogram chassis. One of these wires passes up through the deck to the switch, which is built on to the framework of the player. The wire from the other side of the switch passes down through the deck to a terminal on the motor. The other mains lead is connected directly to the other terminal on the motor. All these wires must be removed. They will probably be found to be in a poor condition, and in the interests of safety new wires should be used. If the player is to be used separately from the radiogram, two yards of twin flex will be required. One end of this flex carries a mains plug to suit individual requirements. At the other end, one lead goes directly to a terminal on the motor, and the other lead goes directly to the switch. The remaining terminal on the switch is connected to the other terminal on the motor (see Fig. 2).
If the player is to be left built into the original radiogram the mains plug is unnecessary, and the two ends of the wire are connected to the same points from which the original ones were removed.

The two leads from the turnover head are connected to an input plug to suit the amplifier or radio being used. Any screening on these leads must be connected to the earth end, i.e., the chassis side of the input plug.

Fig. I shows the modified player, which has already given many hours of pleasing reproduction of records.

Testing for Constancy
To test for constancy of speed and in order to be able to make critical adjustments, the turntable was timed successively for $100,200,500$ and 1,000 revolutions of the turntable. When the time taken for the turntable to perform any given number of revolutions is known, it is a matter of simple arithmetic to calculate the, number of revolutions per minute. The writer's results were: $45.2,44.87,44.91$ and 45.12 r.p.m. Obviously the slight discrepancies between these speeds were more likely to be due to personal errors than to variation in turntable speed, and it was concluded that the speed was constant at this setting. The position of the control arm at this setting was carefully marked.
It was found that a speed of 33 r.p.m. was ob*ainable, but that the braking action was harsh, resulting in inconstancy of speed. Some readers, however, may have a player which will provide constancy of speed at 33 r.p.m., and it is recommended that this speed be tried.

D. A. Collins Tells You How

A rubber stop was screwed into the mounting board just beyond the 45 r.p.m. mark to prevent the arm from being moved back accidentally beyond this position. The same procedure was used for finding, testing, and marking the 78 r.p.m. position of the speed control arm, and another rubber stop was used at the other end of the scale to limit the travel of the arm. Over a period of a week, a variation in mains voltage of 13 volts r.m.s., the largest encountered during this period, caused no appreciable change in speed at either setting.

Housing the Player

At this stage the writer bought a small cabinet. Readers who intend to house the finished player in the original radiogram

The Speed Control

The speed control on the original model operated over the range 70 to 86 r.p.m., and it was found that if the arm of the speed control, which was limited in its travel by a scale, was allowed to move farther back by the renoval of the scale, very smooth braking took place allowing lower speeds to be obtained. The object now was to test for constancy of speed at the settings available. The speed control arm was moved back until the turntable w a s revolving at a speed noticeably slower than 78 r.p.m., and a stop watch was employed to measure the speed. By trial and error methods a speed of 45 r.p.m. was obtained.
modified player.
cabinet will be saved most of the work of cutting the motor deck and of mounting the player. The original head was useless as far as 45 r.p.m. records were concerned, but this problem was easily overcome by buying a new head and arm of the crystal turnover

How to Make a Handy Screw Rack

A LENGTH of stiff cardboard tube obtainable from stores supplying drawing office equipment forms the basis of this handy rack for storing screws and pins, etc. Choose a tube with a large diameter and cut off a piece about 18 in . long. Mark off a quarter of its surface area with two straight lines then cut along the lines. In the two ends of the remainder glue and panel pin two "formers" which are made by fretsawing two circles of $\frac{1}{4} \mathrm{in}$. plywood and then cutting away one quarter of each. Similar pieces, equally spaced along the cut tube form the necessary pigeon holes. Two triangular $\frac{1}{4}$ in. plywood brackets screwed to each end are fixed to a hardwood batten glued down the length of the container. Screws through this and the tube hold the assembly to the wall or bench.

How to make the rack.

A SIMPLE EIPISCOPE

By Trevor Holloway

Show Your Holiday Snaps 3 ft.sx 4 fer.

focusing tube and the two reflectors.

The Baseboard

Although a size of $12 \mathrm{in} . \times 8 \mathrm{in}$. has been suggested, these dimensions are by no means binding and may be increased as desired.
The batten-holders should be screwed in plaze to allow the lamps to have at least rin.
clearance of the sides of the cover seation. Lamps are connected in parallel and a ventilation slot should be cut in the centre of the baseboard. Four small wooden blocks should be screwed at the corners to act as retaining blocks to keep the cover section in position. This means that the blocks will have to be inset according to the thickness of the wood used for the cover section.

P HOTOGRAPHS, picture postcards, cuttings from books and magazines, foreign stamps, coins and many other interesting objects can be screened in their natural colours with the aid of the simple episcope shown in Fig. I. Slides are not required

Briefly, the instrument functions as follows. The light from two electric lamps of the ordinary household variety shines on to the object to be screened. These light rays are reflected back through the lens in the focusing tube and directed on to the screen.

The size of the picture will be determined by the focal length of the lens and the power of the lamps. By using a $2 \frac{1}{2} \mathrm{in}$. reading glass as a lens and two 6o-watt lamps it was found by experiment that an ordinary $2 \frac{1}{4} \mathrm{in} . \times 3 \frac{1}{4} \mathrm{in}$. snapshot gave a clear and sharp reproduction about 3 ft . $\times 4 \mathrm{ft}$.

Reference to the cutaway view shown in Fig. 3 will give a general idea as to construction. The apparatus consists of a baseboard measuring i2in. long and 8 in . wide, on which the two lamps are mounted in battenholders (see Fig. 2). On top of the baseboard rests the cover section, which houses the lens and

Fig. I.-A view of the completed episcope.

Fig. 2 (Left).-The baseboard, showing batten lampholders, ventilation slot and locating blocks for the cover.

The baseboard should be mounted on two strips of wood in order to allow air to pass up through the ventilating slot Ventilation is necessary as the two lamps give off considerable heat which tends to curl photographs on the mounting flap.

Cover Section

Dimensions of the cover section should correspond with those of the baseboard, plus a height oi not less than 7 in . The rear panel is not a fixture, but hinged at the top so that it may be opened and used as the mounting board.

The two tin reflectors should be about sin. in length and curved to fit approximately half-way around the lamps. They may be cut from cocoa tins or similar containers and are secured to the underside of the roof of the cover by means of the flanges seen in Fig. 3.

Ventilation holes are also necessary in the roof of the cover section, and these should be screened with tin shields to prevent light escaping into the darkened room when the instrument is in operation.

The circular aperture for the lens tube cannot be cut until the exact diameter required for the lens plus the thickness of the lens tube is known.

Lens and Focusing Tube

Many multiple and surplus stores offer magnifying or reading glasses at reasonable prices. For the instrument described in this article, a lens of 2 in , or $2 \frac{1}{2} \mathrm{in}$. dia. is recommended.
(Concluded on page 274)

THIS month's cover shows the baby alarm in operation. If baby cries an electric bell commences to ring or an alarm light comes on; they continue until switched off. Other uses are to switch on any electrical device by the phone bell ringing, as a burglar alarm or to warn an absent teacher that his class is misbehaving.

Housing

Wood is suggested for this and the general appearance of the prototypes can be seen in Fig. I and on the cover. The units are a detector loudspeaker, control box and alarm unit.

PARTS REQUIRED

Those with little experience are advised to keep exactly to the specification of the prototype and not to use alternative parts.
One 8 in. moving-coil speaker, 3 ohms impedance, fitted in a wooden cabinet with very thin cloth cover in front, or better still, a metal grille or a few cross struts only
Tri-Standard speaker transformer used as a valve input transformer. If a multi-ratio type is
available it is very suitable.
Tri-Filament transformer, 6.3 v. at 3 amps. to suit A.C. mains used. With 200 to 240 volt although the valves will be a little under-run.
Valves :
V_{a} and V_{b} are EFsos and $2 \mathrm{Bg} G$ bases to suit are
V_{c} is a 6 X
is a 6×5 and an International Octal base to suit is required.
Capacitors :
$\mathrm{C}_{a} / \mathrm{Cb}_{\mathrm{b}}-8 / 32 \mu \mathrm{~F}$ or similar in one can, 350 V . working. If can is not isolated from tags it must
C_{c} be wrapped in tape. $25 \mu \mathrm{~F} \quad 12 \mathrm{v}$, working electrolytic capacitor.
$\mathrm{C}_{\mathrm{C}}-25 \mu \mathrm{~F} 12 \mathrm{v}$. working electrolytic capacitor.
$\mathrm{C}_{\mathrm{i}}-25 \mu \mathrm{~F}$ so v. working electrolytic capacitor.
Ce-or $\mu \mathrm{F}$ Sprague or Mica type coupling
$\mathrm{C}[-1 \mu \mathrm{~F}$ paper condenser, 350 V .
$\mathrm{C}_{\mathrm{g}}-25 \mu \mathrm{~F} 50 \mathrm{~V} . \mathrm{W}$. electrolytic capacitor.
C_{h}-.0I $\mu \mathrm{F} 350 \mathrm{v} . \mathrm{w}$. paper condenser. (No other value must be used in this position, even if sparking does occur at relay points.)
Resistors:
Resistors :
$R_{a}-100 \mathrm{~K} \&$ watt.
$\mathrm{R}_{\mathrm{b}}-470 \mathrm{~K} \Omega$
$\$$
$\mathrm{R}_{\mathrm{c}}-470 \Omega+$ watt
$\begin{array}{ll}\mathbf{R}_{\mathrm{d}}-1,000 \Omega \\ \mathbf{R}_{\mathrm{e}}-1,000 \Omega & \frac{1}{5} \text { watt. } \\ \text { wats or larger }\end{array}$
$R_{\mathrm{e}}-1,000 \Omega 5$ wats
$\mathrm{R}_{\mathrm{f}}-500 \Omega 3$ watts.
$\mathrm{R}-500 \Omega 2$ wats.
$\mathrm{Rg}_{\mathrm{g}}-470 \mathrm{~K} \frac{1}{2}$ watt.
$R_{h}-5,000 \Omega \frac{1}{4}$ watt (do not use another value even if small sparking at contacts persists).
RJ- $15,000 \Omega$ within $10 \%, 7$ watts or higher rating. If other relays are used instead of the 200Ω P.O. type 3000 this value will have to be modified. (See under relays.)
$\mathbf{V R}_{\mathrm{d}}$-Variable resistance 50 K or 25 K contacts must be isolated from earth. This is usually so, but some ex-Govt. variables have the middle tag earthed. This would make the chassis live to mains.
Knob for above (insulated type)
Anode Relay
Any delicate relay which will operate on is mA or less and will release on about $\frac{1}{2} \mathrm{~mA}$ will suit. If the coil resistance is less than $8,000 \Omega$ put a resistor in series to bring it up to this value. If the coil resistance is more, then leave the circuit as it is. One pair of n/o contacts are required.
The prototype used a surplus relay, 8,000 Ω, No. 2389, from Messrs. Annakin at a cost of 3 s . 6 d . P.O. type 3000 relays with coil resistances of 50 K or rooK fitted with one pair of contacts are quite suitable and the Siemens H.S. 1000 plus 1,000 SY type will do if the return spring is removed. S_{m}-Toggle switch, on/off
S_{i}-Toggle switch, on/off.
S_{t}-Toggle type throw-over single-pole (i.e., St-Toggle type thr
one-pole two ways).
The Second Relay (Auto Switch)
This is a P.O. type 3000 with a coil resistance of 200Ω from Messrs. W. Benson (Part 338) or Messrs. K. R. Whiston (Part No. 3003X) OR to order from Messrs. L. Wilkinson (Croydon) Ltd., two pairs of n/o contacts are required; others may be left in place or removed. If coil resistance of other value is used, alter value of \mathbf{R}; so that total of coil and resistance is $15,200 \Omega$ approx. If the resistance is above $15,000 \Omega$, leave out Ri and use a piece of copper wire instead.
3 two-terininal bl
6 v . electric bell.
6 v . panel lamp and holder (6 v .).
6 v . panel lamp and holder (6 v.). N . s . Red for 250 volts. Order through any radio dealer. Red glass is best with neons.
6 V . Transistor type battery. Insylate terminals with tape if it is in a metal box and not fixed down. Nuts, bolts, tags, solder, wire, etc.
Nuts, components are available from normal radio dealers such as Messrs. R.S.C., Leeds, except where other suppliers advertising regularly in Practical Wireless have been given

Control Box Chassis

A baking tin from a walk-round stores was used but any chassis $8 \mathrm{in} . \times 4 \mathrm{in}$. X 3 in. deep will suit. No electrical connections are made to the chassis, but if a metal case is made it should be earthed and isolated from the chassis by insulators.
The back control knob (sensitivity) must be of an insulating type with the grub screw filled with sealing wax. Alternatively, the shaft may be cut into a screwdriver type slot so that it may be set with ease, but resist tampering.

Twelve ventilation holes should be spread over the sides or metal grilles may be fitted. The mains consumption is only about 30 watts.

Positioning the Components

This is not vital provided the input transformer Tr_{1} is not put near or parallel to the filament transformer $\operatorname{Tr}_{\text {in }}$, The two E.F. 50 valves require $1 \frac{1}{4}$ in. dia: holes, the $6 \mathrm{X}_{5}$ one of $\mathrm{I} \frac{1}{8} \mathrm{in}$, and the condenser $\mathrm{C}_{2} \mathrm{C}_{\mathrm{b}}$ one roughly $\mathrm{r} \frac{1}{4} \mathrm{in}$. These holes may be cut with tank cutters, special chassis cutters or by drilling small holes round and filing the edges smooth when the middle has been removed. All these holes must be drilled and completed before mounting components.

The P.O. relay of Fig. 3 is shown with
a suitable mounting bracket. This is screwed to the chassis underneath the relay which is attached by two fixing studs. On
Fig. 1.The three completed units.

be inspected and tested beiore wiring in circuit.
The front panel is cut out of hardboard or a modern laminate or plastic. It is shown in Fig. I. Holes must be drilled to suit the switches and two holes filed together will make the necessary oblong hole for the decorative neon warning lamp (Arcolectric Type S.L. 50 for 250 ov .). The three two-terminal blocks are screwed in position. The panel is fixed upright to the sloping sides of the baking tin by using a fillet of wood as in Figs. 2 and 7.

The Components Mounted Inside

The filament transformer is mounted on one side as shown. A standard pentode output transformer may be used for this purpose (as in the prototype).
Make sure the fuses are insulated from the tin when they are mounted, and insert 2 -amp. fuses into the clips. $V R_{d}$ is mounted tightly in the centre position at the back.
Note the position of the central tag. This tag or pair of tags is mounted so that it is insulated from the tin. Special tags may be purchased from radio dealers, or one may

positive ic lighting, ts, electric d speaker
 tc.

Bridging wire

Screw Copper stud

Fig. 3.-The relay P.O. Type 3000.
be made from two paper clips, a piece of Perspex and a long nut and bolt (see Fig 4).

All other components are mounted "in air," between various solder tags on the components.

P.O. Relay Type 3000

These surplus relays are usually of 200 ohms resistance, as specified. Readers with

Fig. 5.-Adjusting the P.O. Type 3000 relay for use as an anode relay. Adjust so that relay pulls in on $1 \frac{1}{2}-2 m A$. with switch closed and falls out on $\frac{1}{2} m A$. with switch open.

Fig. 6.-Wiring of relays in baby alarm.
little experience should keep exactly to the specification.
In Fig. 3 note when tags e and f are connected to a D.C. supply the armature pulls in, contacts g and h come together and j and k do likewise. I and m are not required. If another bank of contacts is fitted they may be removed and kept as spares.

The locknut and nut on the armature retaining screw will govern the

Fig. 7.-Another view of the completed control unit.

Fig. 8.-Testing the transformer for connections. Tr, tags found go to central tag and V_{B} and V_{b} pins I and V_{c} pin 2. Tr, tags found go to speaker.

STEP-BY-STEP WIRING

The Filament Circuit

This is done with plastic covered wire. Various colours will help to avoid ambiguity. For the advanced experimenter the full circuit is given in Figs. 6 and 12 , and for the beginner step-by-step wiring follows :-
I. If the transformer $\mathbf{T c}_{j}$ is not marked test it as shown in Fig. 8 using a torch battery and flash lamp bulb.
2. Refer to Figs. 9 and 12 and wire red mains lead terminal to Fuse "A." Take other side of fuse to switch S_{m} on the front panel, make a small hole in the tin to pass the wire through. (In future this method will be assumed.)
3. Wire the other side of the switch to the neon lamp and to the primary side of Tri and from there to pins 3 and 5 on Vc.
4. Wire black mains terminal to fuse " \mathbf{B}."
5. Other side of fuse " B " to other side of neon, to other side of Tr_{i} primary, to Tr_{f} secondary (any tag) and to the central tag already referred to.
6. Wire pins 9 of both V_{a} and V_{b} to central tag.
7. Wire pin 7 of V_{c} to central tag also.
of V_{e} and on to the spare secondary 1 and to pin 2 of $V c$ and on to the spare secondary tag of the 9. Plug in
9. Plug in the valves and switch on. Ve should ight $u p$ but V_{a} and V_{b} will get slightly warm after

The H.T. Circult

1. Make sure pins 3 and 5 on Vc are connected to the "red" mains side of the filament transormer as detailed
${ }^{2}$ Connect pin 8 to a 500 ohm resistor (R_{p}) and large electrolytic condenser C_{b}. This condenser must be inspected. If the can is isolated all is well. If not, or if in doubt wrap can is isolated all is well. where it is mounted or the tin chassis will become ive to H.T., mains etc. There are three tags on it, the negative must be connected to the central iag. Now join the tag connected to the 500 ohm resistor to the other tag (higher capacity one) via a 1,000 ohms resistor (Re_{e}).
2. Switch on unit and leave for two minutes. Switch off. Short between junction of 500 and 1,000 ohm resistors to central tag with screwdriver or insulated wire. A big spark should jump. Voltage test should show about 300v. D.C with central tag minus polarity

The Wiring of V_{a} Circuit
I. Make sure of the Va_{a} location and that the valve base numbers are understood. All coding is done when looking at the bases from underneath, starting at the locating projection in the central bush and working in a clockwise direction as hown in Fig. IOa and b. Make sure pins I and 9 are already wired
2. Join pin 4 to central ta
3. Join R_{a} to pin 3, cutring the lead to about $\frac{1}{2}$ in. long.
4. Join C_{e} to pin 3 also, having sufficient sleeved wire to allow the condenser to lie underneath VRd in Fig. 9.
. Join R_{b} to pin 2 and at the same time. join C_{f} to pin 2.
Take other end of C_{1} to central tag
7. Join \mathbf{R}_{b} and \mathbf{R}_{a} together at the unused ends and connect to junction of R_{e} and C_{a} (in H.T. circuit).
8. Join secondary of $\mathrm{Tri}_{\mathrm{i}}$ to central tag and other side of winding to pin 7
9. Join two wires from Tri primary to terminal block A. If there is any doubt about the transformer windings refer to Fig 8 and test os shown 10. Take pin 6 to central tag via Rc. Connect also pin 6 to central tag via Cc noting that the positive side goes to pin 6 , this is very important. Some wiring is shown also in Fig. 8. Verify that pins 5 and 8 and the central spigot tag of the valve base are not used. Check wiring against the circuit of Fig. 12.

Wiring of Vb Circuit

1. Check that the anode relay is operating correctly as shown in Fig. 11 or, if a P.O. type with 50,000 ohms coils is used, as in Fig. Basically he relay must release on ma 2 mA it will do. A baby crying may take the current up to well over 5 mA according to the pitch of the cry.
Mics Check that C_{e} (already wired one end) is a Connect Sprague type and connect it to pin. 7. 3. Connect also to the central tag board via Rg. Fig. 8 and connect 6 to VRd exactly as shown in making sure the positive side goes to pin 6 .
2. Join the side tag (shown in Fig. 9) of VR V to control tag (Fig. 4) via R_{d}. Leave the other tag of VRd unused as shown.
3. Join pins 2 , 3 and 4 together and take a lead
to the coil tag d of Anode Relay. to the coil tag d of Anode Relay.
4. Connect c coil tag of anode relay to H.T. line at junction of Re_{e} and C_{R} already wired.
5. Join Cg across the anode relay coil from c to d making sure that the positive side is connected to c, that is to H.T.f.
6. Verify that pins 5 and 8 and control spigot 9. Verify that
the filament that pins 1 and 9 are already wired in the filament circuit.

Fig. 9.-Chassis from underneath, showing larger components and some wiring.
operating current, and should be set quite freely. Wire a $4 \frac{1}{2} v$, battery in series with the coil, tags marked e and f in Fig. 3, and make sure the relay pulls in and releases perfectly.

Anode Relay

The prototype shown in Fig. 2 is No. 2389 (8,000 ohm), but a P.O. type 3,000 may be used with a coil resistance of 50 k or rook. The anode relay must be adjusted to pull in on 1 or 2 mA and fall out on $\frac{1}{2} \mathrm{~mA}$. If it will pull in on I mA the instrument will be very sensitive.

If using the 8,000 ohm surplus type wire up as in Fig. II. Now by bending the stop get the armature so that it is within a few thousandths of an inch of the electromagnet. Then bend the spring and the contact stay so that there is very little pressure holding the armature off the electromagnet. The smaller the pressure the better. Now bend one contact until it almost touches the other. If this is done carefully the relay will pull in on I mA and fall out on $\frac{1}{2} \mathrm{~mA}$.

P.O. 3,000 As Anode Relay

The circuit of Fig. 5 can be used. Setting the relay is done by loosening or tightening the armature locking nuts, bending the contact stays which are springy and hold the armature open. The armature must be almost on the magnet and only very small gaps are necessary between the points. The relay should work on the same currents as those above.

Wiring

Full step-by-step details are given in the column 3 box on the previous page.

Testing the Detector

Plug in the valves and then have a good look underneath to make sure that all the soldered connections are still in place and not shorting. This is very necessary when using a thin tinplate chassis as it is inclined to warp when EFso valves are inserted.

Fig. 10.-(a) EF50 valve base and (b) 6X5 valve base. Both are drawn from underneath.

Switch on. Any signs of overheating show an error in the wiring and it should be rechecked. Switch off and connect a 3 ohm speaker to terminals A. Switch on and leave for two minutes to warm up. Turn VR_{d} fully clockwise and observe very carefully the contacts of the anode relay. They should be open. Less than $\frac{1}{2} \mathrm{~mA}$ will be flowing and the relay has been checked as releasing on this figure.

Watch the contacts very carefully and

BUCRDIPG vayR owit 5-4 berth

 This Concluding Instalment Deals Mainly with Exterior

 This Concluding Instalment Deals Mainly with Exterior Fittings and Building the Interior Layout

 Fittings and Building the Interior Layout} 1 Int

The Door

THE bottom door is a plain panel of hardboard on softwood framing. The upper door is glazed and is made from rebated softwood with dowelled mortise and tenon joints. Both are hung on ordinary steel flapback hinges which are allowed to protrude about $\frac{1}{2} \mathrm{in}$. so as to swing the doors clear of the van. The middle joint between the doors is made up by false rebates nailed on (Fig. 15).

By H. C. Piggin

taken over the painting, the more professional will be the final result. Plenty of patience, thin coats and good rubbing-down in between will give the best results.
A number-plate, it should be pointed out here, is a legal necessity. Rear lights and reflectors are needed only if the van is towed at night. And whilst on the subject of the law, it is as well to check on the car insurance policy to make sure that the "third party" is valid when a caravan is attached to the car. Wing mirrors on the

Fig. 15 (Left).-Details of the panelled lower door and the glazed upper door.

Fig. 16 (Above). - A photograph of the interior of the author's caravan.

Fig. 17 (Right).-Suggested typical layout for 3-4 berths. Couches and table make double bed. There is space for storage under couches and bunk.

Exterior Fittings

The " J"-type roof guttering is screwed on to the roof canvas overhang, being set on to half-dry paint.
The aluminium storm-strips over the opening windows are similarly fixed, together with those at the doors.
Ventilators are fitted to the outside, one over the sink and cooker unit, and one in the wardrobe. The positioning of these will depend on the interior layout, of course, and must be plotted carefully. It is as well to drill small holes through the hardboard at the corners of the vents so as to plot the position of any extra fixing battens of Iin, X in. sof twood which will have to be glued on to the interior of the skin. The surplus skin between the fixings is cut away with a padsaw.
The van should be primed and undercoated. However it is best to leave the final gloss until the van has been given a short tow to shake things down.

All bright aluminium waist and corner mouldings are screwed on to wet undercoat, any surplus being carefully rubbed off.

Naturally the more care that is

weight hardboard (nominally $1 / 16$ in thick or 3 mm . ply).
Where weight is carried, as on seats and beds, the longest unsupported run of framing is only 24 in . and some reinforcement of crossmembers is necessary.
Doors are framed-up in the simplest possible style, use being made of corrugated box-fasteners rather than complicated joints.
Walls are lined with 3 mm . ply; one of the pinky colours such as Japanese luan, or gaboon looks well and is relatively inexpensive. It may be left plain or lightly toned with polish. It should be fixed with small brass pins.

Where fixings cannot be obtained on existing framing, small rin. cubes of softwood can be glued on to the caravan skin at about 6 in. intervals. When cutting the plywood, the use of templates cut from stout paper is recommended for the awkward shapes.
In small vans it is advisable to keep the interior light in finish. The roof should be painted dead white, and all interior woodwork and

Fig. 21.-Dinette arrangement. By night table rests on battens C. BI lays on table and mattresses A fill
vide and $B 23$ in. wide. putly fixed and space. Mattresses A are 12 in . voide and B 23in. wide.
is built on to existing main- hardboard should be lacquered in pale tones frames wherever possible to -birch grey is very pleasant-perhaps save weight. Softwood fram- relieved occasionally by some brighter coning in. $\times \frac{3}{4} \mathrm{in}$. will be found trast here and there.
to be adequate for most pieces, Useful ideas can of ten be obtained by being panelled with light- inspecting commercially-built. caravans. ture and helps
to brace the roof. as also does one side of the cooker unit. It is desirable that both of these should be $k \in p t$ fairly central, within six inches or so one way or the dimensions otherwise are not critical.

All furniture is perman -

Fig. 20.-Details of a "hook-on" table.
of the van is so dependent on personal choice, only general guidance is given (Figs. 16 to 20). In this small van with its light construction, the wardrobe is essentially part of the main struc-
ture and helps cial expense of the equipment
past by the initial expense of the equipment
involved. The handyman is provided here involved. The book contains detailed instructions for making a wide range of equipment, including cameras and stands, lighting equipment, camera jigs and sets, darkroom equipment, enlargers, slide projectors, etc. There are also special chapters on using wood, materials and finishes, bellows construction, etc. Both photographs and drawings are used to illustrate the book and the last few pages are occupied by a list of fittings and materials and sources of supply and a comprehensive index.
Making a Start With Marionettes. By Eric Bramall. 111 pages. Price 12s. 6d. net. Published by G. Bell and Sons Ltd. HE experience and "know how" of an expert puppeteer are passed on to the amateur via the pages of this book. All
aspects of the subject are covered and there are chapters on construction, costumes, stringing, the stage, lighting, sets, scenery, stage properties and, finally, producing the play. Photographs and line drawings illustrate the book.

Electricity in Your Aquarium. By. L. Warburton. 116 pages. Price 7s, 6d, net. Published by Percival Marshall and Co. Ltd.
THE modern aquarium employs a multiplicity of devices, the majority of which are electrically operated. Heaters, thermostats, aerators, alarm gadgets, etc., all require the aquarist to possess a knowledge of electricity if he is to operate them efficiently and especially if things go wrong. Providing this knowledge is the author's primary aim, and his book should fulfil a long-felt want.

TTHE principle of the game is that a plane equipped with electric motor is suspended from a long arm, pivoted so that the plane follows a circular path. It carries three "bombs" or darts, each of which can be released at any point in the circuit, in attempts to secure highscoring hits on a target below.

The circuit is shown in Fig. I, and this will help to make the working of the model clear. To commence, the bomb release switches are closed. The three electromagnets then hold the darts under the plane. When the motor switch is closed, the propeller begins to revolve, and this causes the plane to follow its circuit round the supporting mast or tower upon the top of which the boom is pivoted. A motor speed control is fitted because it was found

To permit this, four pieces of copper or brass tube are necessary, each fitting into the others with a little clearance, as shown in Fig. 2. The actual diameter of these tubes is of no importance, provided at least one thickness of paper can be used as insulation.

Refcrring to Fig. 2, the axle should beabout 6 in. long, and brown paper or other insulation is wound round it until the smallest diameter tube is a fairly tight push fit. Insulation is then placed round the tube, and the next larger tube pushed on. This is then repeated until the four tubes are in position. Each tube is shorter than the next smaller diameter, as in Fig. 2, about $\frac{3}{3}$ in. clear being allowed for the contacts. At the bottom, the thinner tubes are also longer, so that leads may be soldered on. The largest tube of all is only about $\frac{3}{} \mathrm{in}$. iong and has a large washer soldered to it, ready drilled, to provide a flange.
This part of the model can be made quite easily, with success, if the ends of the tubes are clear of burrs or roughness which may cut the insulation. After the tubes have been assembled, a rest can be made with a battery and bulb to assure that each tube is insulated from its neighbours, and the axle.

Fig. 2.-Axle and silipring tubes.

Fig. 3 (Right).-Plan and side views of the contact assembly.
Four separate circuits are required, with the axle itself used as the common return.

Fig. 1.-The electrical circuit.
 to suit materials to hand. This also applies to the length of the boom, which governs the diameter of the circuit flown by the plane.

Masthead Slipring Tubes

Fig. 4.-The contact assembly mounted on its wood block.
drilled to clear the third tube. Three pillars about $\mathbf{r} \frac{1}{2}$ in. high hold a smaller piece of Paxolin, about $1 \frac{1}{2}$ in. \times Iin., which is drilled for the axle. Long bolts with spacing tubes sawn from ebonite or metal may be used instead of the pillars.
A strong bracket is bolted to the top piece as shown, and bears upon the top of the axle, which should be slightly domed. This takes the downward pressure of the boom and plane. A collar inserted between bracket and top piece prevents the rotating assembly being lifted off.

The four contacts are about ${ }^{\frac{1}{2} \mathrm{in}}$. long and $\frac{1}{4} \mathrm{in}$. wide, and cut from thin brass. The brass strips from $4 \frac{1}{2} \mathrm{~V}$. flat flashlamp batteries will do well. One strip is bolted to a small bracket under the assembly, and bears upon the large, short

The Base

A wooden block about 2in. $X 3$ in. \times $2 \frac{1}{2} \mathrm{in}$. high is cut, and a clearance hole is drilled. The assembly is then placed in this hole, and the flange screwed to the top of the block. At the bottom a larger piece of wood, say, $4 \mathrm{in} . \times 4 \mathrm{in} . \times{ }_{4}^{3}$ in. thick, will be useful when making a mast. If a constructional toy axle is used a wheel can be locked to the bottom, and held by grub screws, as in Fig. 2. This takes the downward weight of the boom, which rests on the axle, and which would otherwise tend to push it down inside the tubes.
The axle connection, or common return, should be identified by using a separate lead or flex of distinctive colour. The other four connections need not be marked, because a trial will immediately show which is the motor lead.
Projecting insulation which would prevent contact with the tubes is removed. If the model can be placed on a small table, and the darts dropped to the floor, a mast or tower about 2 ft . high will do. , But if the mast is to stand on the floor, it needs to be at least 3 ft . 6 in. high.

Contact Assembly

This has four brass strip contacts arranged to bear upon the upper exposed portions of the slipring tubes, as shown in Fig. 3. The bottom of the assembly is a piece of Paxolin about 2 in . $\times 2 \frac{1}{2} \mathrm{in}$. centrally

Fig. 5.-Details. of the magnets and darts.

Fig. 6.-The plane bottom, zvings, tailplane and rudder.
tube with flange. The other three strips are fixed to brackets of suitable height, and these can be cut from scrap metal. The strips are bent as shown to increase their resilience. The brackets are adjusted so that the strips bear well upon the tubes, then the 6B.A. bolts passing through the Paxolin are tightened. Additional nuts, bolts or tags should be provided for connecting the plane. If the top bracket is secured to one of the pillars, the common return connection can be taken from the bottom of this pillar.
The boom is made from Ift. interlocking
$=$
$=$

aerial rods of the type sold as surplus. One rod is bolted each side of the Paxolin, as shown in Fig. 3, being drilled for 8B.A. bolts. The rods must not touch the bolts holding the adjacent brackets. This is most easily assured by countersinking the boltheads when fixing these two brackets. Alternatively, washers can be placed, between boom rods and the Paxolin base of the contact assembly. It is shown completed in Fig. 4.

Bomb Magnets and Darts

The magnets may be wound, or obtained ready made, or taken from an old bell or buzzer. The actual size and gauge of wire will not be important provided they are powerful enough to hoid the carts with the operating voltage to be used. Fig. 5 shows the dimensions of suitable magnets, wound to capacity with 32 s.w.g. enamelled wire, for $I O V$. or similar veltage.
In the plane, a 12 V . mo:or was used,

an

a

Small darts of the usual type, available from sports shops, were used. A small strip of tinplate (tinned iron) about $\frac{1}{4}$ in. wide and bent to the shape shown in Fig. 5 is soldered to the brass body of each dart, near the point of balance. The darts then hang horizontally when the strips are placed against the cores of the energised magnets. This gives the most realistic appearance, and the flights and heavier weight at the point will make them turn and stick into the target board.
(Continued on page 265)

Amominaing

a new BAWLPLUG adhesive

 DuroIt's amazing! A touch-and it's fixed, fixed for good. DUROFAST sticks all kinds of materials including:-
WOOD - HARDBOARD - PLASTERBOARD • METAL - TILE - POTTERY plaster • p.V.C. - plastics - FAbrics - Cloth - Carpets - RUGS Paper - Card - parchment - leather - rubber, etc., etc.

A JOIN OF ENORMOUS STRENGTH

With durofast you can make joins even in flexible materials, and the join will bend freely with the material! durofast will fix shoe soles, and bend with the sole. And it won't give way in the rain, because durofast is waterproof and oilproof.
This amazing new Rawlplug adhesive is one that you will need in your toolkit. Get a tube from your usual Rawlplug stockist.

it Bonds instantly on contact!

 bend with the sole. And it won't give way in the rain, because durofast
UP-TO-DATE EDITION AMATING 'KNOW HOW'BOOK Rano. Inilision \& herical REPAIRS ESSENTIAL TO EVERY HANDYMAN, ENTHUSIAST getting the best from radio AND TELEVISION SETS AND SERVICE ENGINER!

Here is expert advice that will enable you to make the necessary adjustments or repairs in order to get the best possible performance from any radio or TV set.
EXPERTS EXPLAIN THE 'HOW' \& 'WHY'
Here, for the beginner and home handyman, are
 tions orear explana tions of the principles of electricity, radio and television; how
domestic appliances, radio and TV sets function, what can go wrong with them, and how faults can be

DETAILED, UP-TO-DATE INFORMATION
 FOR THE EXPERIENCED MAN The full, authoritative information given in this great volume covers modern methods of carrying out repairs and over hauls on domestic electrical equipment; recent developments in TV sets frequency modulation.

TRACKING DOWN TROUBLE

This grand book is invaluable for sets. Taults in radio and TV sets. Tells you all you want to Preliminary Tests to how to align R.F. and I.F, circuits. Deals fully with Instruments Used in Set Testing-explains How To Locate Faults by the most effihow to trace the cause of Noises, Distortion and Instability. Detailed information on Components and Loudspeakers and how to deal with
Checking input from Mains their faults.

See how to maintoin VACUUM CLEANERS and FLOOR POLISHERS, REFRIGERATORS, COOKERS and BOILING PLATES,

[^2]Here are clear, complete instructions

Here is just the practical, at-a-ylance guidance YOU need, whether you wish to know how to service radio and TV sets, install an extra lighting point, or repair any domestic electrical appliance. Explains, in simple language, basic principles and working of modern radio and TV sets and electrical appliances Shows how to test for faults and carry out maintenance and repair work by the most modern methods. Special section on frequency modulated receivers. 480 pages. Over 400 illustrations. Amazing value-Standard Edition, 18/v, or De Luxe, superb leathercloth, for only $2 /$ - extra. Prices inc. post, packing, etc.
All you need to know about
DOMESTIC ELECTRIC WIRING

Learn from these helpful pages how to carry out al kinds of installations and extensions-with efficiency and safety ! Complete guidance on conductors, insula tion, safety regulations, cables, earthing, practical work, fuses, ctc.

PAGES
OVER

ILLUSTRATIONS

HDO Thyision AND mammal Hopaiks

ALL THIS - AND MORE IN ONE GREAT VOLUME!

Comprehensive Contents Include

 Current. Voltage and Resistance Couls. Capacitors and Valves. Basic Radio-receiver Circuits. Preliminary Tests. Instruments for Set Testing. Locating Faults, Dynamic Testing. Tuned Circuit Alignment. Noises, Interlerence, Distortion and Instability. Components. Loudspeakers, Pick-ups. Gramophone Motors. Frequency Modulation. Television Curcuits and rest Gear. Cures. Aerials and Pre-amplifiers Maintenance of Domestic Electric Wiring. Small Appliances. Fires and Wiring. Small Appliances. Fires and Polishers. Rewinding Small Motors. Cookers and Boiling Plates. Washing Machines. Refrigerators. Electric Water Heaters. Battery Charging, etc.Junction Boxes
for lead-
Govered Cobles SMALL APPLIANCES
How to save time and temper (and money !) by repairing belis, door chimes, bed warm ers and blankets, hair dryers, toasters clocks, fans, kettles, irons; shavers, ctc

FIRES \& SPACE HEATERS

Full, easy-to-follow instructions for servicing small domestic fireswhether they be of the radiant, reflector or convector type.

WATER HEATING

All you should know about the various types of electric waterheaters and how to install them and keep them in perfect working order. Advice that
will save you POUNDS !

AERIALS AND

 PRE-AMPLIFIERSExpert advice on their selection, installation and maintenance.

DO THIS NOW!

Simply fill in form and post in 2d. stamped. unsealed envelope to Dept. E.A.35, People's Home Library, Basted, Sevenoaks, Kent. Offer applies in U.K. and Eire only, closes March 31 .
Full Satisfaction or No Charge Guarantee
NAME

ABNo TO W. TBM Yow

Dept. E.A.35, People's Home Library, Basted. Sevenoalis. Kent WITHOUT OBLIGATION reserve me "Radio. Telepision and Electrical Repairs" and send Invoice with " 100% Sitistaction or No Charge " Guarantee.

Cross out Edition NOT wanted: STANDARD/DE LUXE

block ietters

Full Postal
ADDRESS
Firmly affix
is maruin

March, 1960

If small children may work the model it is better to substitute "bombs" without sharp points. Darts with. blunt points will penetrate a strong paper target placed on a tray of sand, or ballbearings may be used instead of darts, and dropped into a partitioned box.
If the model is used from both batteries and a mains transformer, it will be found that a somewhat higher voltage is needed from the transformer to hold the darts, and this should be allowed for when choosing the transformer

The Plane

Bottom and wings are cut from threeplywood and tailplane and rudder from aluminium, to the dimensions in Fig. 6. The motor and propeller shaft are fixed to the bottom piece, and this is best done before adding the wings or other parts. In the model shown, the - motor projected

NEWNES PRACTICAL MECHANICS
or a trifle less towards the ends. A few trials will soon show if this will be suitable, and the pitch of a metal propeller can easily be modified as required. It will in any case probably be necessary to reduce the motor speed with the control resistance, to prevent the plane circling too rapidly.

A tinplate propeller can be soldered to the spindle. A plastic or wooden propeller, as used for flying models, could be a tight push fit.

Five 6B.A. bolts are fixed to the bottom of the plane, to form connecting points. The central magnet is located as in Fig. 7, a bracket being cut from scrap metal to hold it.

Fig. 9.-A view of the plane with cover removed.

Fig. 8:-Aeroplane covers and suspersion.
through a cut out, as in Fig. i, to keep height down, but this will not be necessary with some motors. It is fixed with brackets at such a height that the propeller shaft is about $\frac{1}{2}$ in, above the three-plywood botrom, and a coupling like that used with model boats supports the rear end of the shaft, a suitable bearing bracket holding the front end. A similar bearing bracket can also support the motor end. A solid coupling is not recommended because great care would then be needed to get the two motor bearings and shaft bearing exactly in line. But with some motors it would be possible to add a shaft with a solid coupling and dispense with the front bearing. This is particularly so with small model motors which could be nearer the front of the plane. The front of the shaft was threaded 6B.A. so that a metal propeller could be held with locknuts.

The Propeller

This is cut from aluminium, to the size shown in Fig. 7. After noting the direction in which the motor runs (which will be reversible with a permanent magnet motor operated from D.C.) the blades are given a fairly steep angle-about 45 deg..

The wings can then be screwed on, the magnets fixed. below them, and wired to the bolts, as shown. The common return connection should not be confused with the others, or difficulty will arise from motor or magnets being in series.

The shaped wooden front, shown in Fig. 8, has a channel cut to clear the shaft and coupling, and it is screwed on from below. A bracket is screwed to the top of this front piece, as seen in Figs. 8 and 9 , to suspend the plane.

The rear cover is cut from aluminium. After bending it to fit, a slot is cut for the rudder, which is secured with a rivet or small bolt. This cover can be lifted off without disturbing the working of the plane, and is used merely to improve appearance, and conceal the motor, etc., after wiring up. If suitably shaped it will clip on, and needs no fixing.

The Boom

This is made up by pushing other rods into the sockets of those bolted to the contact assembly. The rods are drawn together at the end, and held by the piece shown in Fig. 8, which folds round both rods and is clamped by means of a bolt. The projection is then bent down and formed into a loop to hold the plane, being clamped together by another bolt.

The boom is extended in the opposite direcrion by adding one rod each side, and a counterbalance weight is secured to these rods. This weight should be so adjusted, or slid along, until the whole rotating assembly approximately balances. With reasonably good balance, the plane will travel at about the same speed all the way round, even if the tower pivot axle is not absolutely vertical. Two pieces of wood or metal are clamped across the rods to prevent the weight moving.

Control Box

Layout and wiring of this item will be seen from Figs. 10 and II. The control panel

Fig. 10.-Top and underside views of the control panel.
carries four swarches, a wire-wround speed control or vaciable resistance, and five terminals for connecting up* the five-core flex passing to the masthead.

If the three bomb release switches are fitted as in Fig. so, they will te " off " when pulled forward', the motor switch being "on" in this position. For mansformer running it would be possible to ase springloaded push switches, which break the circuit when depressed allowing the darts to fall. The magnet circuits would then be restored automatically after the darts have fallen, ready for re-loading. In the interests of economy, ordinary switches are better for battery running. To commence, all the dollies are upwards in Fig. ro, this leaving the motor off, but the magnets on. The motor switch is then operated first, and the bomb switches as convenient.

Any variable resistance of about 5 ohmis, and able to carry the motor current without overheating, will suir the average A.C./D.C. type model motor. For economical permanent nagnet motors, run from D.C. only, a somewhat higher resistance will be necessary-say, is ohms maximum.

Connections and Supply

The five bolts in the plane are connected to the five points on the contact assembly

Fig. II.-Control box and dart bombs.
by means of thin flex or single strand bell wire. To avoid difficulty, ensure that the "common" lead goes to the axle contact.

A five-core flex lead about 6ft. long is then made up, and joined to the five leads emerging fromi the masthead fitting. A small insulated strip, with five bolts, will do well
to make connections here. The axle connection is' then taken on the terminal marked "Common" in Fig. 10. With the motor switch on, the other leads are touched on the " motor" terminal in Fig. 10_{5} until the motor is seen to run. The three magnet connections can then be made.

The two leads issuing from the control box may be taken to a battery or transformer, but if a transformer will always, be used this can be enclosed in the box, if this is deep enough.

The magnets were found to require just over $\frac{1}{4}$ amp. each, with the motor raking about $1 \frac{1}{2} \mathrm{amp}$. according to speed. A mains transformer with a number of tappings will be most convenient, as a suitable working voltage can then easily be found.
For battery running, a permanent magnet motor should be used, as mentioned, and will require less current. With battery operation it is easy to use one battery for the motor, and another for the magnets. If necessary, a different voltage mav then be used. To do this, connect both batteries to the "common return," but take one battery to the monor switch, and the other to the bomb release switches.

A fairly stout piece of softwood should be placed under the carget, which can be drawn or painted on card or paper. A central sector should have the highest score, with scores decreasing in both directions away from this.

The Automatic House-A BABY ALARM
 (Concluded from page 258)

I. Wire $C_{b t}$ to tag of contact a of the anode relas and connect it via \mathbf{R}_{t} to tag b . This is shown in Fig. 2, but the condenser is normally located upright at the side of anode relay. Use sleeving on the wires and make sure they cannot short.
2. Join contact a also to contact i on the P, O. relav, and continue the lead to the

Setting Up the Baby Alarm
The speaker is placed facing the baby, the nearer the beiter, but good operation with babies of average audio power is obtained at even 6ft. It is wired to block A.

The A.C. mains lead is wired to block C. Care should be taken about live (red) lead going to the correct terminal. Double insulation is provided, burthed for added safety. The unir may be in any convenient place.

A lamp or bell circuit is wired with a small dry battery as shown in Fig. 6 to block B, The lamp or bell is placed where the warning is required.

When baby is quiet both toggle switches are pur down. When baby cries the alarm will. be given and cannot be stopped until S_{y}, is put off. In quiet it may be put on again and the unit is reset, For very sensitive settings progressivelv rotate. VR, anti-clockwise putting S. on and off unti) the alarm iust does nor ring in silence.

Fig. 14 (Left) The bell box quith lid removed.
point marked $*$ in Figs 9 and 12. This is a high voltage lead and no shorts must be possible.
3. Join contact b of the anode relay to contact k of the P.O. relay and take a lead also to the coil tag e of the P.O. relay via \mathbf{R}_{f}. This resistor will get very hot in operation and must be fixed on stiff wires well away (say, in.) from V_{c} and P.O. relay coil. It can be seen in Fig. 2.
4. Join the other P.O. coil tag. f, to the switch on the panel S_{s}. Connect the other side of the switch to the central fogy under the chassis.
5. Join P.O. relay tags g and h to the terninal block B.

An Alarm Unit

A suitable alarm unit for putting on the television, etc., may be made in a wooden box or even an Oxo tín as shown in Figs. I and 14. This is fitted with a warning lamp and six volt bulb, a bell or buzzer and a change-over switch.

The switch may be set at whichever type of alarm is required, light or noise. A muting switch may be firted in one battery lead and a test button as shown in Fig. 13.

Ambient Noise

The sensitivity control can be set so that the relays do not operate until extra noise hits the speaker. Where jet aeroplanes or trains run near the house experimerrts will have to be carried out to find the best setting. generally it is not easy to deal with this type of interference.

Using Other Microphones

Other microphones are not suitable for use with this unit. The use of an 8 in . speaker is so that even small compression waves can be converted to elec:rical energy, most other microphones wauld require more amplification with attendant feed-back troubles.

Part 2 will deal with some ideas about automatic electric light switching.

$R E A B E R S$ O

The pre-paid charge for small advertisements is $6 d$. per word, with box number $1 / 6$ extra (minimum order $6 /-$). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southampton Street, London, W.C.2, for insertion in the next available issue.

PATENTS
DATENTING SERVICES. Advice. 114. Gualified agent. C. L. Browne

FOR SALE

HOUSE SERVICE METERS: credit from and prockyyinent available 221. City Road. London. E.C. A IRCRAFT CINE CAMERA, G45B, A MK. V fitted with f/3.5 triple anastagmatic lens, takes 25 ft . of
16 inm . film. fited with 24 v . motor, 16 exposures per sec., mint condition, brand new in maker's original pack ing trom the Tower Supply co., 6 . Field Rd.. London, E. 17 .

41 IN. PLANING and Rebating able cut. $£ 6 / 10 /-$; other slzes at low prices. Butld a circular saw cleaply; new type Saw Spindles from 45/- Also combination Woodlists and save pounds. Ortan Lathes, Costessey. Norwich
B. A. Screws, Bolts. Washers, Light Alloy ; parcel approximately postage 1/9, \quad P. E. McClelland, ${ }^{5 /-}$ Bexulah Rd., Epping. Essex.

GOVERNMENT SURPLUS AND MANUFACTURERS CLEARANCE
 MIYDROMETERS. AcId. 3 . 3 - ea

 on add rame. 2 Alters Kior Largirc 3/6. Iarge Cov. $10 /-$ GKRM, DidDLis, y- ea. iol- doz.
 SiN. E.S. BULBS. Model rlye. etc. 1/10 AINS EX. FAN OR BLOWER. 6 in .
 V.1H.F. CllAssis. Userul model con-
trol, contains over 50 components, colls,

 1,T.A. AGR1ALA. New. 3 element
$20.6: 5$ element. $27 / 6:$ co-ax cable

 cont. 3036 mm . discs. 10/- ea. METAL BOXES. Well ventilated.
Ideal chargers, power packs, etc. 11 .

 PV.C. Covered 2/8 Ydinc accumu. LATORS, H.105, 15\% New

HUGGEETT'S LIMITED 2/4. PAVMONS HOAN WEST

FOR SALE (Continued)
A ${ }^{1 R}$ COMPRESSORS, single cylinat der, two stage, $21 / 2 \mathrm{cu}^{\mathrm{ct}} \mathrm{ft}$ min at up to 450 p.s.s.i. suituble for spray slightly store solled : cost over sio bargan at $35 /-$ each. Alr Lines.
4oft., new, $30 /$ Cooper. 10. Fowler. 40 ft., new, $30 /-\quad$ Cuoper. 10, Fo
Street.

COMPRESSORS

Twin cralluder 23 cn. ft- per min. 150 Nus

 driving wheel, 30s.A. W. For lint of Motors, Gauger, swely valves,

WHEELHOUSE
13, Bell Road, Honnslow, Phone : HOU. 2501 .
1 TELESCOPES. Eyepieces, Finders, Woodthorpe Instruments, i2. Revesby Woodthorpe Instruments, 12. Rev
Road. Woodthorpe, Notingiam. POCKET CAMERAS, size $3 \frac{1}{2} \times 2 \downarrow \times$ Kodak ${ }^{2 \dagger}$ films, R. Lowes, Simonburn. Northuniberland.
NEW 1 Personal Pocket Heater. One incorporating Cigarette Liginter doors $12-24$ hrs. Simple, perfectly safe, nickel plated, compiete with velvet bag fuel measure and instruc tions. $9 / 11$ p.p. 7 d. Leaflet S.a.e.
Sydney Mail Order

EAS\|F\|ND ENGINEERS
comprehensive wall or zoble chart containing - DECIMAL \& METRIC EQUIVALENTS

- WHEELS FOR SCREWCUTTING
- TEMPERING colour guide
- STANDARD WIRE GAUGES
- WOOD SCREW DATA

I/9d.
From 5. W. SIMMONS, Poss Pai
37, Derwentwater Road, London, W.
A STRO TELESCOPE MAKING A Standard Rainsden Push-in Eye pieces, lin., tin., 3in. focus, $35 /$ 1ist Object Glasses, Newtonian
Mirrors, Dlagonal Mounts, Focusing Mirrors, Diagonal Mounts, Focusing
Mounts, Tripods, Mountings and Mounts, Tripods, Mountings and Grand Sluice, Boston, Lincs.
A PPARATUS AND CHEMICALS. pounds! Spectal offers: catalogue pounds Sree Scientific and Technical Supplies (Nottm.) Ltd. 286, Alfred St. Central Nottingham.
Flexible Shafts, Orinding Govt. surplus ; s.a.e. for list. S . Midgeley. Hebden Road, Haworth Keighley. NEW STEEL SHELVING, order size 6 frt. $11 \mathrm{igh} x$ the manuractures wide $x 12 i n$ deep with six shelves. In sllver grey or green, $\& 3$ delivered; white or
cream, 4 . order, delivery by return. Send for Grosvenor Road, London. S.W.i.

BRAND NEW
HYPODERMIC SYRINGES 5/1

WITH 2 SPARE NEEDLES excellent for precision oiling, etc. SIMA Serum Glass 2 c:c.
Wonderful value. Each 5/1.
SIMA Needles, Stainless Steel.
Sizes 12, 17 or 18. Per doz. 4
All Orders Post Free
G. ROGER-SMITH
(Dep. 7), Syringe Supplies, 38, OLDFARM RD., LIVERPOOL, 23

FOR SALE (Continued)
CHEAP GOVERNMENT SURPLUS Electrical of 300 tons Mechanical Nuts, Bolts. Screws, Wasliers, etc Free Iist 4,00 tems, 100 useful mixed
lots. K. R. Whiston (Dept. M.P.S.) lots. K. R. Whiston (Dept. M.P.S.)
New Milis.-Stockport.

MISCELLANEOUS

HVEN Practical mechanics must have holidays. Try
Reculver Lodge (P...), Beltinge,
Kent. (Herne Bay 70. .
A RUALUNG and Compressor Equipment, Ballraces and Mis157. Malden Road. Cheam.

INVENTOR with Anti-dazzle Device needs help with patents iees, please. J. Stroud.
Thetford. Noriolk.
FIRST CLASS Engineering Draw ings by qualified engineer; com pletely collfiential modiost fees
12.

DEVELOP IT YOURSELF. Mori-
Son's Vortex Dilve lifts vaneless metal saucers! ${ }^{\text {Sen a }}$ avallable from Lew Singer, 3. Kent Rd, Acton Green. London. w.4. $2 / 9$ is enough
MORTUNES in FORMULAS." 900 American American book of formule American technical hobby and other for lists. Herga Ltd. (Dept. P2) Hastings.

HOBBIES

CATALOGUE NO. 14 Governmen Surplus and Model Radio Con (refunded on purchase). P/P 6d. 93(B). North Road. Brighton.

SEREN
 ASTRONOMICAL SUPPLIES

Warehouse Road,
Stebbine, Dunnaw, Essex EQUIPMENT for ASTRONOMERS Mirrors, eyepieces, focusing mounts spiders, etc. Do-h.-Yourself kits S.A.E. for free detalls.

HANDICRAFTS

MARQUETRY VENEERS, 12 assor 3d. for list. Frank Coles (Veneers) 76. Rivington Srank Coles (

NEW MUSICAL BOX KITS

from 1919 complete.
Movements only from $11 / 9$.
Please send 3d. stamp, or call for new FREE illustrated brochure. Trade supplied. SWISSCROSS ITO. (Dept, V)

JEWELLERY

JEWELLERY, simply made Free catalogue, Also Marcasites Webbs Handicrafts, 46 . Burnway Hornchurch. Essex.

PHOTOGRAPHY

2IN. X 2IN. Projector and Enlarge for detalls. V. V. J. Cows, etc. S.A.E for detalls.
Chaplin Road, Easton. Bristol,
5.
5. $13^{\text {ELLUWS. Camera, Edarger, Pro }}$ 13 cess. Industrial Collapsible Machine
Cuthbert's Ruards. Beers.
Road.
Deroy. ITel
EXPOSURE METERS.-Build your Hight ewn double-range incident
 1/1000th to 67 deg. B.S.sec. film speed, ${ }^{19}$ and $33 / 6$. All sizes of photocells in stock. s.a.e. details. G. RR. Products,
22, Runnyniead Avenue, Bristol, 4

WOODWORKING

WOODWORKING MACHINES. All Saw Benches, 710.. \&4'15/\%;8in. $£^{5} 5 / 10 /-=10 \mathrm{in}$: complete motorised s30. Pianers. 5in. 812 ; Bowl Turn ing Heads, £4: with 8in. Saw Tables,
$£ 7 / 10 /-$ Lathes, $£ 7 / 10 /-:$ Combina$£ 7 / 10 \%$ Lathes, $£ 7 / 10 \%$: Combina-
tlon Lathes. $x 10 / 10 / \%$ Motors Pulleys, Belts. etc., 12 months written and money rerunded guaran-
tee. 4d. stamp for illustrated booklet. James Inns (Engineers) $\mathrm{S}^{\mathrm{A} W B E N C H E S,-8 i n}$. to 301 n . from SA £9; Motorised, £13; Petrol Portable, S44. Planers, Bandsaws,
Lathes, Saw Spindle and Planer Lathes, Saw. Spindle and Planer
Assemblies, Logging and Firewood Assemblies, Loging and Firewoos
Machines, Chain Saws, Engines. Machines, Chain Sawis, End $1 / 9$ for handiook, catalogue and bargain offers. List iree. Beverley Produ

TOOLS

DORTABLE POWER TOOLS, new used bought, sold, exchanged, 58 Commerce Road. Wood Green London. N.22. (Bowes Park 7221.)
CENUINE DISPOSAL.-Black and G ${ }^{\text {ENUINE }}$ Decker $\underset{\text { DISPOSAL.-Black }}{\text { D }}$ and attachments : everything new; ful maker's'guarantee ; bargain. \& lot.
Details from Box 9.

FIBREGLASS

PLASTIC UNITS

Experimental Glass Flbre Unit, $14 / 9$ Plastic Metal for Gear Casting, Plastic Dies etc, 14/3. Porcelain-hard Cold Settin Finish or ood preparation surfaces, baths washing machines, etc., $16 / 9 \mathrm{pt}$. in white
cream, black sky blue, red, clear and aluminium. S.A.E. for information list price list. etc. SILVER DEE PLASTIC (Dept. 3), Hartington, Stavele

FOREIGN STAMPS

1.000 DIFFERENT STAMPS lhis and othee. Request details of enclose postage. Paragon Stamps. 138 enclose postage. Paragon Stamps. 138
Oaklev Road Shirley. Southampton

CLASSIFIED (contd.)

ELECTRICAL

SELF STARTING Synchronous Complete with detachable geared mechanisms. 10/- each. James S. Road. Surbiton, Surrey. TLUORESCENT LIGHTING FITComplete range from $5 f t$ to $18 i n$. (a)so circulars) at lowest prices any-
where. S.A.E. for illustrated leaflets and list of Control Cear Kits. callers welcome. We are fluores. Dept. C. 125 A . Northicote Rd. London. S.W.11. (Battersea 8960.)

LET US INTRODUCE YOU

to an cild thridh revival. Biartry experinnegter

 at suall flakhianp bat ters lamt ing weeks. Our

MORCO EXPERTMENTAL SUPRLIES

MOLEL ELECTREIC MOTORS, $9 / 9, \quad$ amazingly powerful; "Maximo," $13 / 9$, v.6-9 post paid. Size 1 ifin. x ilin., wetght lioz. drives boat propeller's $1-1 \mathrm{lin}$., Motors (Dept. P.M.B. ""Hixhland," Alkrington Green, Middieton, Man chester.

BRAND NEW

BROOK ELECTRIC MOTORS
Single Phase, 1 h.p. 1,500 r.p.m. E7. 10.0
 AVAILABLE. h.p. 1,500 r.p.m. Ell. 0.0 Fully guaranteed by makers, approval gainst cash. Carriage paid mainland. State
ARCH PTREETOOD \& CO
A GL TYPES OF ELECTRICAL live goods at extremely competilive prices. e. 5 amp. Twin Cable. fit. Battens, $49 /-;$ quality and inmeiate despatch guaranteed Req Road. Jaylow Supplies. 93. Fairhole

WATCHMAKERS

WATCH REPAIR SERVICE, unspeed, rivalued for red rellability and Taterial supplied Hereford Watch Co., 13. St. Owen Street, Hereford.

WATCH PARTS

For all makes of watches, tools. Ingtruc.
 Whethansen Maib orter, serviec:

LEARN to be a Watch and Clock L. Repaiter in your spare time and earn extra money at home. We can unbeatable prices. includiny instructools, watches, watch and clock moven, ents, lathes cleaning mach ines, all spare parts for watches and clociks, etc. We also have a firte selection of musical box movements
and kits. Send 9d. PO for bumper and kits. Send 9d. P.O. for bumper makers Supply Company (Dept.

EDUCATIONAI

C. C.E. is the first step to nearly University Entrance. etc. Guaranteed
IC.S. con eling brings vou nome uition by experts. No books Write for Free prospectus: Inter nattonal Correspondence Schools Intertext House. Parkgate Road
(Dept. 54 C). London. SW. HOW AND WHY" of Radio and 1 Electronics made easy by a new. non-maths. practical way.
Postal instructions based on hosts Postal Instructions hased on hosts courses bring enjoyment as well as knowledge of this fasclnating sub
fect. Free broctrure from: Dept lect.m. Free brocture from: Dept
2P. Radiostructor, 40 Russell Street, Reading. Berks.

EDUCATIONAL (Continued)

LEARN

 RADIO \& T/V SERVICING
for your OWN BUSPNESS/HOBBY

- by a new exciting no-maths-system tical equipmenc, recently intro解

RADIOSTRUCTOR

 DEPT. G80, 46, MARKET PLACE READING, BERKS. $\quad 260$
SITUATIONS VACANT

A. M.I.Mech.E.. A.M.Brit.I.R.E., Cits high pay and security. ... No passno fee" teras. Over 95% successes. For details of exanns and courses in all branclies of Engineering, Building, Electronics etc.. write for 148-page
handbook free. B.I.E.T. (Dept. 9678), handbook- fr
London. F 8

MIDLANDS ELECTRICITY BOARD
 General Assistant Emplneer required in the Commarc
 Applicants should have had experionce In workshop practice. fneluding licting. lathe work. sheet metal work. welding lathe work. sheet metal work. Welding and brazing, with ability to produce experimental and prototyne apparatus. and manuracturtns processes woult be an atrantage.
 Salary within the range of efror 8728 Der annum according to qualifications and experience (N.J.B. Schedule Grade of I'EX). Superannuable.
 Appiy. by letter, within 14 days, stating salay and position to the Secretary, Midlands Electricity Board, Muck Hil, Halesowen, Nr. Birmingham.

Chartered patent agent in London requires Technical at least Advanced G:C.E. or Ordinary National Certificate standard in Chemistry. Plassics or Engineering. Previous patent experience desirable
Knowledue of not esseatial. but not esseatial. advantase. Write Box 307, Reynells. 44. Chancery Lane.

HOME BOAT BUILDING

LASY TO FOLLOW KITS to build Crulsers. Runabouts, Canoes, Prams. Dinghies and Enterprise Sulling Dinglices Brochure from: Wyvern Boats
Sherborne.
SOS GARAGE DOORS
 DOOR HOLDER
Automatie? Reliahled and So Convenient! ratovtays opemte sutomatraily to verurely hulita

 over fonir years. Kany to fi
Oaly 18^{-9} per pair (fir twe duray). Past Iree.
ROLLER RINK SUPPLIES, Dept. P. 4
ROLLER RINK SUPPLES, Dept. P.4,
$50 A$ Town Road. Hanley, Stoke-on-Trent
"ARCMOBILE arc welding sets

ARCMOBILE E17 100

Including delivery.
A complete self-contained Arc Welder haing standard fux-conted electrodes of 14 g . and 16 g . 210 r 200 V. A.C. Mains consumption 13 Amps. Welts sheet metal down to 2 g , and Eteel and iron section up to $3 / 16 \mathrm{~m}$. thick in a singie run. Heavier sections can be welded by multigle rums (building un). fnintlely variable welding current by handWheel. Maxtram welding current 65 Amps, Malmum 15 Amps. Welght 85 , lbs. Dimenslons: 112n. bitch. 12in, wide 13In: lons.

HARMSWORTH. TOWWLEY \& CO.

 JORDAN STREET, KNOTT MILL
HIGHSTONE UTILITIES

E.x-P.A.F. 2-valve (2 volt) Mieruphome Armplithers, as used in 'plane intercom. to make up a deaf aid outsit, intercon munication system, or with crystal set comps 20:- post 3 - Useful. wooden bo with partitions to bold amplifer, \&-extra. Amplifer, containing resistances, can. densers, transformers. switches, etc., but phomes, with switch in handle and lead
$5 / 6$. Tannoy $\%$. Similar instrumenss
 with switch. 3/6, post Get Thrwat Miken,
$\mathbf{5}$ - post 7i. Mike futrons (carbon). Moning coil, 3/6. pont 411 . Wuly fren, 150 wapis, 18 6t post $\frac{1}{6}$.
 win Th. Sol: 4 anip, 201 in , T.C. in casc Th6, all post extra, Meter (L. \& R.) containliell Trannformersen-These muaranteed transformers work from any A.C. mains riving 3,5 or 8 volts output at ${ }^{2}$ amp.
oporate bulb, buzzer or beh. Will supply oparate bulb, buzzer or bell. Will suppl Similar Transformer but output of 4.8 or 12
volts, 18,6. post 1,8. BUZZERR for use with volts, 18;6, post 1,6. BuZZARRS for use with
either the above or batteries. 4 . 3 post 5 il . either the above os Dustproor 4 ivory post pleasing two note chime. Can be used with battery or with our 12 v . transformer, 19/4 Nes Girae boag ehime. Also housed in a plessing ivory case. Oporates on two $4 \mathrm{~s} v$
flat batterles, fitted
within the case, or by

 mai. Neon bnalicator s,amag,
 Determine positive or live terminals in any
 radio recelver. atted with a permanent
crystal detector. IW post W -. Spare-Permanent Detectors, 2 - each. When ordered
separately, 26 . with cllps and screws. 210 . post 3μ - $2 / 8$, post 4 new S. A. Brown, G.E.C. etc., super-sersf
 Ha lauped A rmature TVue (very sensitive),
18 6. All post 1/6. W. wh *ing Furyiopew. 256. Bai. armaturo type, N6 (two of these wil make an imtaveom. Sets. Ex-A. A. F ear-
piece, $\%$. post 611 . Money refunded if not

HIGHSTONE UTILITIES
58. NEW W INSTE: SD. LOXDON, L. 11.

New Tlustrated List sant on reanes
3d. stamp and S.A.E. Letters only.

BUILD YOUR OWN CANOE
 Printed illustrated instructions 1/6

TYNE FOLDING BOATS LTD.
206 Amyand Park Road, St. Margaret's, Twickenham, Middx.

STUPENDOUS

 GOVERNMENTSURPLUS BARGAIN NEW DRAWING INSTRUMENTS COMPREHENSIVE SET FOR STUDENTS AND DRAUGHTSMEN
LIMITED STOCK containing Two $5!^{\prime \prime}$ Micro 3 -point Adjust ment Dividers, pen \& pencil extensions ; $6^{\prime \prime}$ Paralle! Rule; Screwdriver ; Spare Points: 5^{n} Ruling Pen; 4 ditto: $31^{\prime \prime}$ Springbow
Compass for Pern: ditto Pencit Compass for Pen: ditto Pencit:
Extension for Pen ; dito Pencil. In wallet.

37/6
SMITH \& HAMMOND LTD 5. Buckianhan Streit, Chaniug Cuere TRA 5083 Est. 40 years.

SERIES III
NUCLEAVE PRESS

CROPS RIVETS PUNCHES
Ask your
derails to
FITZNER LTD.
197199, KINGS ROAD,
KINGSTON-ON-THAMES

GOVERNMENT

SURPLUS BARGAINS
 volkage with geartox. ${ }^{2 A}$. D.C. Dow good at 12. Y. or lower. Two sharts.
ind 18 R.P.M. at 12 v.
and 24 R.P.M. at 24∇. Operate 3 sets or cams and aites
plunger
Epivig powerful lateral thrust planger giving powerful cateral thrust.
Takes under 1 amp. Wonderfuly versai

 poot herg will run abnve moters) (two in
 Each 25, post ziin. long. Very mstit (not telescopic). Easily adape tory meara
 approx. so watto. High Speed tin, shaft.
Converted ex R.A.F. motor generator - power alout equal to sewting machne motor, $)$ Userul add
Each ion- post 20.
Send 3at stann) for list of other motars
MILLEGANS
20 Harrowe Stwref. Liverpow, 3.

AUTOMATIC (TIME) SWITCHES
New and recondictoned 15 day clock from 35/-
DONOHOE (TIMERS) $1 \& 2$ UPPER NORFOLK ST. NORTH
SHIELDS, NORTHUMBERLAND

The Editor does not necessarily agree with the views of his correspondents.

Transport of the Future

$S^{I R}$,-I would like to offer my views in answer to your "Fair Comment" article in the September issue.

It is quite obvious that future transport will be in the air; one has only to view the vast expanse of open air to see it's the only direction we can go. I have been a motorist for 25 years and I was also a private pilot until recently. I know which form of travel 1 prefer, but unfortunately there are a number of difficulties which seriously restrict air travel.

First, I would like to point out that we -in this country are very slow on the uptake. where new inventions are concerned. I note with deep regret that nearly every device which is simple and cheap to build is being developed in the U.S. A. because it appears they have more foresight.

Besides the three projects you have mentioned there is one which I have taken a deep interest in, namely the "Bensen Gyrocopter." This has been developed in the U.S.A. and has been on the market for the past two years. So far there are only two on the British register, why? Well, to begin with we come against the first "snag;" this machine has not yet got full approval by the Popular Flying Association, although permits to fly have been granted.

Snag No. 2, and in my opinion, most important, having built this machine for a very modest sum, nobody mentioned that to fly it one must hold a pilot's licence. One Air Ministry spokesman stated that an "helicopter endorsement" is required. To obtain one would cost a tremendous sum, only to find that this machine is entirely different, being an autogiro.

As to the question of "free for all" this condition would never arise. Personal air travel can never. completely replace the car. Two points arise; these small machines are very restricted in many ways, the smaller and lighter they become the more they are restricted by the weather. Night flying is not very practicable for several reasons, i.e., cost of instruments, further licence endorsements, etc.-W. D. Taylor (Hants).

A Desigu from a loang Reader

7. S. Kidger's power-trick.

$S^{I R}$, -The photograph shown above is of $S_{\text {a power-truck I designed and built }}$ myself. It has three wheels and is of all metal construction, which is bolted together and not welded or brazed. It can be fitted with a 50 c.c. Power Pack engine or just left as an ordinary truck, with the engine it will do approximately $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on a flat surface. It is a one-seater and is fitted with a cable brake. The power-truck is easy to make and does not need a proper workshop. The wheels are 16 in. dia, and the rear two are sprung with 4 in . saddle springs and the

Lens Calculations

SIR,-Re Mr. Beresford's query concerning the formula connecting the radius of curvature, focal length, and refractive index of a lens (September, 1959).

This formula is :

$\frac{I}{f}=(\mu-\mathrm{I})\left(\frac{\mathrm{I}}{\mathrm{r}_{1}}-\frac{\mathrm{I}}{\mathrm{r}_{3}}\right)$
Where f is the focal length, μ is the refractive index and r_{1} and r_{2} are the radii of the two sides of the lens.
PROOF:

C is the centre of curvature.
O is a point object.
1 is the image (virtual).
$\frac{\sin i}{\sin r}=\mu \quad \therefore \frac{\sin i}{\sin a} \times \frac{\sin a}{\sin r}=\mu$
In triangles OCX and ICX
$\frac{\mathrm{OC}}{\mathrm{OX}}=\frac{\sin \mathrm{i}}{\sin \alpha} \quad \frac{\mathrm{IX}}{\mathrm{IC}}=\frac{\sin \alpha}{\sin \mathrm{r}}$
($\mathrm{I} \hat{\mathrm{x}} \mathrm{C}=\mathrm{A} \hat{\mathrm{x}} \mathrm{B}=\mathrm{r}$ vertically opposite angles)

For Rays Near the Axis

$$
\frac{O C}{O Y} \cdot \frac{I Y}{I C} \bumpeq \mu
$$

Object distance is \mathbf{u}; image distance is v .

$$
\therefore \frac{u-r}{u} \cdot \frac{v}{v-r}=\mu
$$

front one is pneumatic. A bicycle frame is used for the main construction as well as 4 ft . of I in. galvanised piping and fft . of brass piping. It weighs about 60 lb , and is 6 ft . long, Ift. roin. wide and 26 in . high.-J. S. Kidger (Glos). (Aged 15 years.)

Space Ratiders

SIR,-Thank you for your most interesting article entitled "Space Raiders," which appeared in your December, 1959, issue.

In this modern day and age, there are many problems which human imagination just cannot comprehend. There is a tendency to waive such happenings aside as "queer." One must, however, always allow for the curiosity of man. The universe as we see it is plainly physical; dead or nearly lifeless planets swinging round in their governed orbits. The chance of life as we know it on our planet existing anywhere else is most unlikely. Life after death is yet also debatable, but if true, happenings such as flying saucers may be common.

My real point is that if one met some peculiar object, one might be tempted to have a closer look. Any foreign object, flying saucer, etc., might take offence at being investigated by a human being and in all probability one would never be seen alive again.

Fear stems from unsound opinions and rash logic, rather than a clear cut and

$\therefore \mathrm{uv}-\mathrm{rv}=\mu \mathrm{uv}-\mu \mathrm{ur}$.

Divide by uvr
$\therefore \frac{I}{r}-\frac{I}{u}=\frac{\mu}{r}-\frac{\mu}{v}$
$\therefore \frac{\mu}{v}-\frac{\mathrm{F}}{\mathrm{u}}=\frac{\mu-\mathrm{I}}{\mathrm{r}}$
Refraction at first surface :
$\frac{\mu}{v_{3}}-\frac{I}{u}=\frac{\mu-I}{r_{1}}$ (equation I)

Refraction at second surface is from glass to air, therefore the effective refractive index is $\frac{I}{\mu}$
The first image now acts as the object.
$\therefore u=v_{1}$
$\therefore \stackrel{\frac{I}{\mu}}{\bar{v}}-\frac{I}{v_{2}}=\frac{\frac{T}{\mu}}{\mathrm{r}_{2}} \mathrm{I}$ (equation II)
To eliminate v_{1} multiply equation II by μ and add to equation 1 .
$\frac{\mathrm{I}}{\mathrm{v}}-\frac{\mathrm{I}}{\mathrm{u}}=(\mu-\mathrm{I})\left(\frac{\mathrm{I}}{\mathrm{r}_{3}}-\frac{\mathrm{I}}{\mathrm{r}_{2}}\right)$
But $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\therefore \frac{I}{f}=(\mu-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)$
The same formula may be proved for any lens if a sign convention is used for all the above symbols.-S. R. Broadfoot (Beds).
proved inquiry. In science all man-made problems dissolve in the pure light of common sense.-Sgt. A. Allison (B.F.P.O. 20).

PRACTICAL MOTORIST

March Issue Now on Sale

Principal Contents

Tracing Unusual Running Noises. Anti-theft Devices.
Lubrication and Your Car.
Fitting Accessories to Curved Body Surfaces. Simple Steering Gear Adjustments.
Overhauling the Mark I Consul, Zephyr and Zodiac.
The Beginner's Guide to the Motor Car: Ratly Navigation.
Overhauling the Jowett Javelin. Drive in by Electronics.
Choosing the Right Secondhand Car. An Inexpensive "Special." P.M. Data Sheets.

Refabricating a Commutator.
Sunbeam Mark III Overhaul.
Current Used Car Prices.

TRADE NOTES
 A REVIEW OF NEW TOOLS, EQUIPMENT. ETC.

Sufiety Lucoldrer Fires

TO prevent ladders from slipping there are on the market devices called the Augur Safe:y Ladder Feet. These com-

Augur safoty ladder feet.
prise steel brackets for bolting to the feet of wooden or metal ladders with uprights rin., I_{1}^{1} in. or $r \frac{1}{2}$ in. thick. Adaptors of simple design can be supplied to make the Augur Salety Ladder Feet suitable for the standard types of metal ladders. Intermediate universal links allow the ribbed, non-slip rubber pads to rest flat on the floor at all working angles and align them also on uncven and sloping floors. Square castings with bonded, non-slip pads made from oil resistant, ribbed rubber grip the floor firmly, prevent slipping, and do not stick to the floor. Augur Safety Ladder Feet are distributed by Vulcascor (Great Britain) Limited, 87/89, Abbey Road, London, N.W.8, and cost $£_{1}$ ys. Gd. per set. They are available from most ironmongers,

Corbider Filps aneal Disers

VRY much longer lasting and frec from the bugbear of a base material which tears easily, Cintride carbide files and discs are the newest form of abrasive for the handyman. Base sheets of steel, faced with an abrasive surface consisting of cemented carbide grains, form Cintridè's basic idea. These can be used with power drills and by hand to abrade a wide variety of materials, including niles, hardwoods, plastics, asbestos, leather, glass, firebricks and soft metal alloys.
The files, which are coarse on one side and fine on the other, will cut on both the forward and backward strokes and all these carbide abrasives are resistant to solvents and can thus be cleaned easily.

The discs, which are backed by a flexible steel plate and sheet rubber, are available in diameters of 5,6 and 7 in., with $\frac{1}{2} \mathrm{in}$. or $\frac{3}{6} \mathrm{in}$. centre holes, priced at 125s. 6 d., 16s. IId. and 19s. IId. respectively. The 14 in . long files cost 16s. 6 d . each from local stockists. The makers are Cintride Lid., Grange Lane Works, Sheffield, 5.

RETAILING at only 34 s. with integral alloy fuel tank, precision built and with a 12 months' guarantee, the new DaviesCharlton Bartam model engine is now available for the model flying enthusiast. The new machine will turn a $5 \frac{1}{4} \mathrm{in}$. $\times 3 \mathrm{in}$. propeller at well over 15,000 r.p.m. Instantaneous starting is ensured by the Quickstart, a device which cannot jam, is unbreakable and cannot foul the propeller. There is a new positive-action jet assembly; replaceable propeller bolt, special wear resistant steel cylinder and many other refinements. The manufacturers are Davies-Charton Limited, Hills Meadow, Douglas. I.O.M.

Accessories available are the Bantam muli-purpose spanner, price is. 6 d , , which furs cylinder head, glowplug, rear crankcase cover and acts as a screwdriver for the propeller bolt, and the Quicklip, a quick release positive connccior for glowplug operation that cannot short ihe battery. It costs, complete with leads, 5 s . 5 d .

THE MAHITILSTHE

THE Bormilathe is clained by the manufacturers to be a distinct breakaway from the orthodox in machine tools. It was designed with the requirements of the amateur market in mind. In the sphere of
metal working, it is a centre lathe with variable height of centres and with automatic sliding motion to the cross slide and full screw cutting capabilities: The tailstock can be set over for taper turning. By winding off the cross stide unit
 and substituting a milling table it offers the facilities of a small horizomal milling machine. By mounting an angle plate on the milling table, surfacing, boring and end milling can be carried out in a single setting. It may thus be used for machining simple press tools. For the wood-worker there is available a saw bench with tilting table and a special stub arbor for carrying the saws. This machine has many more advantages. A complete range of accessories is available. The basic machine costs $\$ 39$ 10s. The manufacturers are Murad Developments Limited, Stocklake, Aylesbury, Bucks.
The mu'ti-purpose Bormilathe.

H.S.S. DIABETER PISH HBBO ICMEES

W. H. MARLEX AND CO. a range of Marlco H.S.S. Diameter Push Broaches designed to replace reaming or boring of close tolerance holes on a production basis. They are made 10 precision rolerances from 18 p.r cent. T. high speed steel and complete the component bote to " U " hole tolerance, starting fiom a nominal drilled ho'e. The range. comprising four comp'cte sets, includes sizes from $3 / 1$ tin. to 1 in. Special sizes can be supplied on request. The prices of the seis range from $£_{4} 2 \mathrm{~s}$, to $£ 8$. The manufacturers are W. H. Marley \& Co. Limited, New Southgate Works, 105. High Road, London, N. II

GCTME FOMG HECDERSS

THE National Federation of Engineers' Tools Manufacturers has published its first "Guide for Buyers" which gives details of the suppliers of British made engineers' cutting tools. A feature of the publication is the alphabetical list of tools in four languages-English, French, German and Spanish. Overseas buyers will have no difficulty in finding in the Guide
the names and addresses of British supptiers of all types of engineers' cutting tools.

Part 4 of the Guide contains an ahphabetical list of trade marks, trade names and brand names.

Copies of the Guide may be obtained from the N.F.E.T.M., Light Trades House, Melbourne Avenue, Shefficld, 10, price. 5s each (including postage).

CATALOGUE

Our new catalogue No. 14 has 500 Itema
nearly all fllustrated. Radio Control Our new Catalague No. 14 has foo itema
neariy all ilustrated. Rado Control
Covernneat Surulus, etc. Price 2. . Refund on Order. Post 6d.

TIME DELAY UNITS

This unit consists of a small geared escape ment mechanism. Which is wound by press is elcetrn-matuetically released when $12-24$ e is applied, This ault will operate
from a 12 v. supply, and is ideally sutable for modification to a rudder unlt for mode motor-such as Ever Ready. The unit is
motornall die-cast box. approx mately 2 in. in a mmall dle-cast box. approximately $2 i n$.
x 2 in . square and 2 in . deep and is easily

12 VOLT MOTOR

CM 3 Type, 2 om r.n.m. approx. at 1 amp. under luad. 8 amp. notoad. Whin wo operaze on 6 volt atout hai oulput, weirgt high: ehate $1 \times$ anbin. dik ideal for boats up to
4π. Price $25 /-$ Post $1 / 6$. Brand New

MASTER CONTACTOR

in-hour clockwork movement with contacts that make and break every i-second. also searall contained in a neat metal container. frrms basis for making time switch, etc.
brand new $12 / 6$. post. 10 . This is an ideal brand new 12/6. post 10. This is an ideal unit for plugging into transmitter when
cerrying out receiver testa sinsle handed.
REMOTE CONTACTORS
12 v . to 24 \%. stepping mechanism, 120
impules for i rev. of pointer, हlars front, resetting control, on/of switch, fex, etc. will make an ideal o-120 magnetic counter tot coil winding, etc. Brand new $\% 6$.
nestare I'6, Has sound possibiltites as
electric pentulum mlock. Win work in electric pendulum mack. Contactor:
THO-PIN PLUG AND SOCKET This plug has a lockins device and onee the mposstble for them to come apart unless the knurled ring is rotated on the socket.
Fitted with 18in. length of cable and new and Fitted with $18 i n$. length of cable and new and
boxed. Price 8 , plus $1 /$ post. Sitable for
ARTHUR SALLIS coantriol LTD.

Tel. 25800°

A REVOLUTIONARY NEW BRITISH INVENTION:

Instantly turns any gramophone

 into a first-class Tape-Recorderand back into a record-player in a moment!

You simply slip it on to your turntable and you are ready to record direct-from-radio or microphone ... the voices of your family. . . radio programmes... your favourice music-and you canphone or radio with lifelite Fidelity Made by the people who designed and manu facture radar instruments for Viscounts and
Britannias, the amazing
Gramdech now brings full
tepe-recording and playing facllities to every pramopost.

- To:
- 29/3і,
"Ingenious - simple . . . why
"Ingenious-simple ...why
before!" - THE TAPE
RECORDER. NAME

"alled hi-for recorders. .". These are typical
comments of famous iechnical fournals. This
compler wonderful new invention means that any gramophone owner can now add superbly good tap fracrion of the nesual cos?. Full detaits, 'photemb, pecifications, Easy Terms, etc. are given in the Gramdeck Book. Send for your copy todayFREE and entirely without obligation.

GRAMDECK (Dept. PM/807)
WRIGHT'S LANE, LONDON,
E
$\longrightarrow \longrightarrow \longrightarrow$

TELEPHONES
 EASY TO FIX WIRING DIAGRAM

 FREETelephome vet Tspe B a 4

A" ringing and loud and clenr over any discable. Very handsets are as illus, and the set incemplete excent wi'e. 4 -core st gu. per yard or 2 -core
at 3 el per yard extra. Price 75 -set, post 3 BB, Bet an "Ho headphones comnected to
oreast microphones, with leads, plugs and ftted caurying cases. Join instruments together with two wires and 11 volt battery
for s super Intercom. 25 , post $3 / 6$. or super Intercom, P.O. Type bandsets, two P with usual use. Price $150-$, post on twin wire. The two handsets supplied are as llustratedt with onsor switch, buittin handle. Supplied complete with battery complete, excepting wire, $38 / 9$ T Twin fat
PVC wire, 3u). per yard ${ }^{\text {Twin }}$ flat PVC flexible, 4it. per yard; Twin Twisted Silk
 fex for clear speech. Transmitter Recelver Units, 46 ea. Twin Flex, 4il. yd. Post $1 /$. UNSTPICTION LANP leaving hands free,
belt $/$ /B. post 1 H.
No. 1215, 29, post 9 d.
 Ale. ID.C. Electric Kazons. (Not suthab CANVAS TOOL ROLL. ENGINEERS HAMMERS TWIN FLEX in lout yd. colls. Hent quatity. 25/日

EASTERN MOTORS Aldeburgh, Suffolk
a 21 vold biticrlew. Converter snitathe for $110 / 230$ Surging Een, slichuy und suif with three sumth gEAR PUMPS. Beautitully suade units apgroximSURVEYORS LEVELS, Mumagy, with braw
 Transformers. Iuput 430 or 110 v A.C. Two COIL SPRING BELTS. ITMin. x I Ioln. long, exlende SMALL D.C. MOTORS. 12 r. B, (anine.D.w. Aymo it. With 6.1 reiluetiwe gear, 11,6. Poot $\%$. ELECTRIC HORNS. Mtaydurl 14 T. Car Type

POWER UNIT FOR ELECTRIC RAZOR. FTOH 1s

 volits 125 amp. hours. In metal case $16 i n$ $x 8$ in. x Ith. Crwo wil make an idaal powet
supply for our 12 -volt Rotary Converters.

NEW CABBES \& FITTMGS

TOUGH RUBBER CABLES

Abstract

\section*{LONDON}

WHOLESALE WAREHOUSE 165 (P.M.), QUEENS ROAD, PECKHAM, S.E. 15

Tel. : NEW Cross 7143 or 00\%)

Flattenimg IPrspex

HAVE an ex-Government Chart Table Plotter Mk. I, part of which consists of a rectangle of Persper which may be rotated around for drawing courses and reading bearings on a chart or map.

This Perspex is fastened by a central brass disc to some radius arms. Either side of this fastening the material has curled up into a slight bow so that only a portion of the perspex is in contact with a flat table. 1 should be grateful for suggestions as to how it may be gattened and a recurrence of the bowing prevented. The Perspex rectangle is removable from the rest of the apparatus.-M. J. Gilkes (Brighton).
PERSPEX can be moulded into shapes under moderate elevation of temperature and we suspect that the warping has occurred where the metal is located because of heat transferred from the fingers through the highly conductive brass disc.

The deformation can be pressed out under weights after the Perspex sheet has been warmed. Further warping might be prevented by placing a strip of non-conducting material between the metal and the Perspex.

Binocular Prices

BINOCULARS of an 8×30 specification can cost from $£ 11$ to $£ 50$. What are the reasoms for these variations in price? -A. Briner (Croydon).
THE higher price, for the same specification, is caused by the maker having a higher standard of optical and mechanical precision. In many cases improvements such as lens blooming, or the use of special types of rare glass, etc., are found in binoculars of higher price. The extent to which the improvement is felt to justify the increase in price must be a matter of personal choice. In general, brilliance and definition, especially near the edges of the field of view, may be better in the higher priced binoculars.

Exposure Meter Connversion

I HAVE a Weston Master II Exposure Meter. As you know, the light scales on.this instrument read in candles to the square foot. Is there any methed whatsoever of using this meter whereby I can convert readings taken with it to foot candles?-J. M. Ryan (Eire).
THE Weston Master II is not suitable for
an accurate measurement of illumination
in this way. The following is a method by which an approximate indication of foot candles can be obtained: a reflected reading should be taken from a matt white surface, i.e., a sheet of blotting paper, and the resultant indication multiplied by four to give foot candles. As illumination of I lumen per sq. ft. equals I foot candle a surface "d" ft . from I candlepower will have illumination equalling $1 / \mathrm{d}$ squared lumens per sq. ft . This can form the basis of a check with an average candle.

Pre-set Rellrimging IDevice

I HAVE a Smiths electric clock movement that I wish to use as a master clock to ring school bells at a certain time each day. The bells are "mains" bells working off a transformer. Could you please help me with the circuit?-D. G. Jones (Yorks).
YOU should, of course, use a powerful I clock, preferably one having a long hour hand. We suggest that you mount on the clock face an annular ring of insulating material, such as Bakelite, in which radial holes about $\frac{1}{8}$ in. in diameter are drilled at the appropriate places (times). Through these holes screwed brass rods can be mounted, projecting inwards to touch the hour hand as it passes. All these contact rods should be connected together.
Presumably you will require the bells to ring for about a quarter of a minute only. This can probably be arranged by mounting, on a wheel which runs at about I r.p.m., a small cam which is arranged to close two light metal flexible contacts for about 15 seconds. Or perhaps it would be better to use a slower wheel to close contacts for a smaller portion of its revolution. These contacts should be connected in series with the hour-hand contacts to an insulated

terminal, the other terminal being mounted on the plates of the clock mechanism.
The clock could be connected in series with a low-voltage supply, a switch and the coil of a relay. The contacts of the relay will then energise the bell circuit, whether this is battery or transformer operated. It will, of course, be necessary to switch the bells off at night.

Srratofhed Spertacfe L.enses

DESPITE great care, the plastic lenses of my spectacles have become badly scratched.
Can you suggest any method of removing these scratches, say by some polishing process, or by coating the lenses with cellulose paint which does not require special skill or carry any risk to the lenses?-A. Gilston (Leeds).
THE extent to which the plastic lenses of your glasses can be renovated depends on the depth and severity of the scratches and also on the composition of the plastic material from which they are made. Merely superficial scratches can be removed by repolishing the lenses, an expert job, using a very fine abrasive powder, such as putty powder and rouge (iron oxide), together with a revolving soft circular mop. The application of cellulose lacquer would destroy the clarity of the lenses. The same applies to the surface application (no matter how carefully done) of any other transparent hard-setting solution. The only solution which you could use for such a purpose would be a solution of Canada balsam in benzene. This would take at least a week to dry, and the result would not be permanent. You can obtain small amounts of this solution from Messrs. Flatters \& Garnet, Ltd., Oxford Road, Manchester, 3, price about 3s. 6d, per oz. bottle. The only satisfactory job is to be sought in the skilled repolishing of the lenses by a competent optical firm, but if the lenses are deeply scratched it is doubtful whether this will be possible.

Restorimge at Witing Hesk

I HAVE acquired a portable writing desk,
veneered with brass binding and brass inlay.

Please advise me how to clean both brass and wood without damage and how to refix those parts of the inlay, strips about $\frac{1}{8} \mathrm{~m}$. wide $\times 3 / 16 \mathrm{in}$. deep, which are loose.

The P.M. Blueprint Service

12 FT. ALL WOOD CANOE. New, Series, COMPRESSED-AIRMÓDEL AER OENGINE New Series. No. 3, 5s. 6d.*
AIR RESERVOIR FOR COMPRESSED-AIR AIR RESERVOIR FOR COMPRESSED-AIR
AERO ENGINE. New Series. No. 3a, Is. 6 d . "SPORTS" PEDAL CAR. New Series. No. 4, 5s. 6d.*
F. J. CAMM'S FLASM STEAM-PLANT. New Series. No. 5, 5s. 6d.*
SYNCHRONOUS ELECTRIC CLOCK. NeW series. No. 6, 5s. 6d.* ELECTRLC DOOR-CHIME. No, 7, 4s.*

ASTRONOMICAL TELESCOPE. New Series,
Refractor. Obiect glass 3 in. diam. Magnification $\times 60$
No. 8 (2 sheets), 7 F . 6 d .*
CANVAS CANOE. New Series. No, 9, 4s.* DIASCOPE. New Series. No. 10, 4s.* EPISCOPE. New Series. No. 11, 4s.*
PANTOGRAPH. New Series. No. 12, 2s.*
COMPRESSED-AIR PAINT SPRAYING
PLANT. New Series. No 13, 8s.* MASTER BATTERY CLOCK.*
Art board dial for above clock, is. 6d.

OUTBOARD SPEEDBOAT

Ils. per set of three sheets. P.M. TRAKLET CARAVAN.* Complete set. Ils
P.M. BATTERY SLAVE CLOCK. 2s. 6d.* F.M. CABIN HIGHWINE MONOPLANE

The above blueprints are obrainable, post fres from Messrs. George Newnes. Led., Tower Hourse Southampton Streec, Strand, W.C.2. An * denotes constructianal details are ava loble free with the blueprin s.

Finally, how should I treat the box so that it will not need frequent polishing?-H. A. Andrews (Warwick).
W^{E} presume that the veneer is of burr walnut. If any of this is loose or blistered it should be lifted and carefully glued down again, using a cellulose type adhesive. The loose inlay strips, even if of brass, mav be refixed with adhesive, first clearing out any old glue that may remain. Critically examine the french polish on the wood veneer and other parts; if this is in bad condition, scratched or discoloured, dissolve it off with methylated spirit, including that on the brass inlay. If the brass is found then to need it, polish it with the very finest emery cloth, or possibly fluid metal polish. If the wood veneer needs rubbing down, use No. o glasspaper. With the woodwork clean and the brasswork bright it only remains to have the whole desk carefully french polished, letting the polish cover the brass inlay as well as the wood. White polish, with a little yellow polish in it, should be used.

Antrealing dyen

IWISH to construct an annealing oven for borrosilicate glass and would be greatly obliged for any help you can. give me on
(Suffolk)

YOUR annealing oven will have to be constructed of firebrick either in the form of slabs, if small, or of fireclay bricks if large. The shape will depend upon the form, size and quantity of the objects to be fired and annealed; also to some extent upon the heating, whether by a fire, by gas or by electricity. If the glass is in flat sheets then a stained glass artist's kiln would meet the case. Working drawings for two such kilns were given in "The Art and Craft of Stained Glass," by E. W. Twining (Pitman). If the objects to be annealed are few in quantity and are upstanding in the round, then a toolmakers' muffle could be used. It appears to us that the main thing to do is to so design a kiln that the objects placed in it can be raised to a temperature just below the melting point in as long a time a possible and then even more slowly allowed to cool. As you doubtless know, the cooling is the more important and this with objects of average size should not be less than, say, 24 hours. Preheating may take six hours, but both stages depend upon the size or mass, of the kiln materials. The larger and thicker the walls of the kiln the more perfect will be the annealing.

- Multimeter

I
WISH to make a multimeter, with a low mA moving coil meter, with selected resistors and shunts, etc. I should be pleased if you could tell me how to calibrate a scale, to read A.C. and D.C. volts, milliamps. and high and low ohms.-A. M. Stratton (Worcester).
YOU could use a full-wave, bridgeconnected copper-oxide rectifier connected with the moving-coil milliammeter as shown for the A.C. measurements. When A.C. is perfectly rectified a movingcoil instrument indicates the mean current, but if the scale is calibrated in r.m.s. values the reading will only be correct when the wave-form is sinusoidal and the external resistance is high. For A.C. milliamp readings the instrument should be calibrated against a standard instrument.
A.C. voltage readings can be obtained by connecting resistors in series with the setup. If I is the instrument current required to give full-scale deflection with voltage V the ohmic value of the series resistor required to give a multiplying power of io
is $9 \mathrm{~V} \div \mathrm{I}$ ohms. For D.C. voltage readings a similar scheme is used but the instrument is used without the rectifier. The instrument itself may be used with shunts for D.C. amp. readings in the usual way, 'but it is advisable to connect a resistor in series with the bridge and to shunt the whole circuit to read A.C. amps.

For measuring resistance a 1.5 -volt battery may be used. If I is the instrument current for full-scale deflection and r the resistance of the milliammeter it should be connected in series with a resistor of R ohms, R being equal to $\frac{1.5}{\mathrm{I}}-\mathrm{r}$ ohms. A scale of ohms may then be marked on the dial with its zero at full-scale deflection. The resistance scale can then be marked opposite the D.C. amps. scale, the resistance (ohms) to be

Circuit for a multimeter.
marked opposite a scale reading i amps.
being equal to $\frac{1.5}{I}-(\mathrm{R}+\mathrm{r})$.

AHoovimg Dpath Hange

IHAVE a drili--powered saw table which I use frequently for grooving at different depths. Couild you suggest some form of simple depth gauge which I could make? J. Douglas (Cardiff).

WE suggest that the device shown in the illustration would be of use to you. Take a piece of white close-grained wood (beech is excellent), $8 \mathrm{in} . X 2 \mathrm{in}$. $\times 1$ in. On one of the 2 in . sides scribe lines $\frac{1}{4} \mathrm{in}$. apart with a marking gauge and fill in the lines with black: any ball-point pen will do the job.

In use lay the block on the saw-table alongside the saw blade and sight the markings at eye-level against the maximum height of saw teeth for depth of cut, then tighten the saw table screws.

Layimeg an Parquet Flanor

IAM in the process of laying a parquet floor. 1 am , however, anxious to know whether ordinary glue is suitable for joining these pieces.

I should also like you to describe a suitable mastic upon which to lay these blocks. The floor is at present a fairly good boarded floor about 12 years old.-S. C. Harrild (Petts Wood).

ANY type of glue may be used for cementing down thí blocks of parquet floors, but we advise a good casein glue,since this is extremely strong, as well as waterproof and damp-proof. You can obtain a good casein glue under the trade-name of "Casco" from Messrs. Leicester, Lovell and Co., Ltd., $14 / 18$, Nile Street, London, N.2I. Your existing wood floor will be quite in order as a foundation for the blocks. Each block should be pre-drilled obliquely with a small hole through which a long thin nail can be driven when the block is finally positioned; care, of course, being tiken to punch the nail head below the wood surace of each block. The blocks will thus be casein olued to the wooden flooring and also nailed thereto, as well as cemented with casein to their adjacent blocks.
You will, we think, find casein glue as good as any for the purpose. for once the blocks are laid down and lightly nailed or pinned, there will be little strain on them. If, however, you require a stronger cement, you will find several for the purpose among the products of Dunlop Special Products, Ltd., Fort Dunlop, Erdington, Birmingham, 24, to whom we must refer you for further particulars.
You can, of course, use a mastic "bed" of soft bitumen to form a matrix in which to lav the parquet blocks, but this is a messy business. The bitumen is liable to get on the wood and to discolour and stain its upper surface and edges. Usually, the provision of such a matrix is not necessary. It would, however, be advantageous to brush a coat of creosote over the underlying floor boards and to allow it to dry in before commencing the parquet work, since the creosote would act as an efficient steriliser, besides dealing with any wood-boring insects which may exist in the present boarding.

A SIMPLE EPISCOPE

(Concluded from page 255)
It may be possible to obtain a length of cardboard postal tubing having a suitable inside diameter to serve as the focusing tube. If such a tuhe is not available, ma e one by pasting a strip of thick brown paper, around, say, a tin or other circular object of appropriate diameter. Three or forr layers of pasted paper will form a strong and rigid tube when dry.
The, lens should be-wedged firmly in position about rin. from the front end of thè tube.
Cut the lens tube hole in the front panel of the cover section. The tube shou'd fit "thumb tight" so that it may be slid in or out for focusing purposes.

If you pessess a folding camera, however, there is no need to buy a lens or make a focusing tube. Simply open the back of the camera and set the shutter to "time," then place the lens in alignment with the aperature in the front panel. Focusing can be achieved by the normal camera mechanism.

Operating

Two elastic bands slipped over the hinged mounting flap will serve to keep the majority of objects to be screened in position. Subjects for screening should, of course, be placed upside-down, but this will not correct the picture appearing on he screen right-to-left instead of left-to-right. This trouble may be rectified by setting a small mirror in front of the lens at an angle of 45 deg.

BARGAIN SPOT

MIXED FIHAES. A very good workshop assortment of regenerated Files. All sorts' 6° to 12°. 15:- per doz.
SCIREMPTPRIVERS. Oral Cabinet. Set of $4: 3^{\circ}, 4^{\circ}, 5^{\circ}$ and $6^{\circ}, 10^{\prime}$, Set of $5: 7^{\circ}, 8^{\circ}, 8^{\circ}, 10^{\circ}$ and 12°. $25 / \mathrm{F}$. Both Sets, $33 / 6$.
BRASS WOODSCREWY. No. $4 \times j^{\circ}$ CSK Cad. plated. 10 gross for 10 - or 2;-per gross, MOTORISTY MIXTUEF This very special mixture contains 1 gross Bolts and Sorew Steel $\frac{1}{2}^{*}-5 / 16^{\prime}$ and $3 / 8^{*}$ B.S.F. With nuts and washers, 432 parts in all, 20/- per parcel. FARMFRS' MIXTLIRE. As above but Whit. thread, 20/- per parcel.
HoUSFIOLIDERS' WINTURE. 5 gross of Mixed Stoel Wondscrews, 24 sheets Mixed IIOUSFIIOLDEFS' NDNTCRE. 5 gross of Mixed Stoel Wondscrews, 24 sheets Mixed and washers to+ft. 20/-per. parcel.
MIXED SPRINGS. Approx, 125 for 6
STPLIT PINS. Up to $1 / 8 \mathrm{in}$. dia. 1 gross mixed, 1/3. Over $1 / 8^{*}$ dia. 1 gross mixed, 2/6. C 4 BL E ENDS. Assorted gross, $3 / 3$.
SOLADER TAGS. Assorted gross, $3 /$.
CYELEFTS. Assorted gross, 2/-
GRUBSCRFIWS. Assorted gross. $3 / 2$.
AMERICAN THREAD SUREWG. Assorted gross, $3 / 6$
VTEE BEETS. From 2/6. Pulleys from $2 / 2$ each.
RFI.AY contains over 300 parts. very useful for breakmg down, 12 Tungsten Polnts, 12 Siver Points. Electro-magnet with 3 Coils, works on 6 volt, 5i- each, $48 /=$ doz.
CLTOU1\$. 24 v., 60 A. Ref. 5c/l616. Type D, 46 each, 22 per doz. A few without covers,
VOLUME CDNTROL, , Independent pre-set 30,000 and 30,000 ohms, 13^{*} dia. U.S.A., $8 /=$ doz., 72/m gross.
MAXIFLUX SOLENOID. Pulls over 200 lbs on 24 v. 3 a. or 8 lbs. on 3 v . 1a. W't. 4 lbs
DIMMER RFSISTANCE, With Switch 25 ohms, amp., 9d. each, $7 / 6$ per doz., 72: per gross.
H TTTERY CHARGING CLIPS. 25 amp. Cad. plated, marked + and -. ע6 per pair. TERMINAL BLOCK. 2 way $5-10 \mathrm{amp}$. with cover. $5 \mathrm{C} / 430$. 3 d . each, $2: 6$ per doz. 81 - for 50 . \&7 per 1.000 .
MaE, LIST POR Hex Socket (Allen) Screws, Nuts, Screws, Washers, Bolts, Silver Steel, Manganese Bronze Rod (high tensfle). Tools, Taps, Dies, Spltt Pins, Siver and Soft Solder. Cable, Motors. Swltches, Relays, Insulating Material. Studding. Self-tanping Screws, Copper Itbe, Pressure Gauges, Gears, Meters, Micro Switches, Plastic Belt. TN FACT, 4.000 ITE MS, 100 . HIXED HOTS. I.ISTS FIFR.

Add 2:6 postage with orders under $£ 1$ (surplus will be refunded). Orders over \&l post free (taland)

K. R. WHISTON,

(Dept. MP3), NEW MILLS, 'STOCKPORT

The ideal Build-it-yourself WELDING KIT

ONLY £25

Complete
with all
Accessories
as shown
New H.P. Terms 85 down and 6 monthly payments of $£ 3.15 .0$.

Works from Standard Household Power Plug (10.15 amp. A.C.). Welds up to any thickness plate. Brazes down to 26 swg plate. Silver solders, Tins and Surface Hardens. Send Cash or Deposit for Immediate Delivery, or write for Fuller Details. Not a cheap choke set, but a full WELDING TRANSFORMER in heavy gauge welded steel case. Larger models available. 180 amp . E 52 ($£ 10.10 .0$ deposit) and 360 amp . $£ 95$ (deposit by arrangement). Thousands in daily use in factories and workshops throughout the World.

I days' free trial on request
TAYLOR BROS. (MIDDLESBROUGH) LTD.
32 Baker Street, Middlesbrough, Yorks.
Tel. : 45211-2

DON'T LET SOLDERING LEAD YOU A DANGE

Soldering ceases to be a knotty problem the moment you use FLUXITE. Solder flows on easily and smoothly-and stays on. For over half a century FLUXITE has been the choice of craftsman and engineer alike and, in this age, its reliability and speed has made FLUXITE even more in demand than ever.

FLUXITE Ltd., Bermondsey Street, London, S.E.I с.м.83.
. . . practical, comprehensive, brilliantly illustrated, popularly priced-the perfect book for ALL aquarists

tropical FISH IN THE HOME

CHAPTER

1 AQUARIUMS

Importantre of Shape-Glass Sizes-Disinfectant-Cements-Failts -Water-Heating-Electrical Heating-Oil Heating-Coal Gas-Lighting-Artificial Light.
2 PLANTS AND LAYOUT
Sand-Fertilizing-Planting-Plants-Floating Plants-Rocks-Layout.
3 AQUARIUM MANAGEMENT
Green Water-Cloudy' Warer-Oxygen-Filhers-Metals-Tap Water \square_{pH} Value-Water Hardiness-Cleaning-Snails-Netting-Over-crowding-Change of Water-Petty Cruelfies-New Arrivals-Bullies -Feeding Quantity-Dry Food-Live Foods-Daphnia-Dried Daplinia -Cyclops-Mosquiro Larvir-Brine Shrimps-White Worms-Tubifex

SOME OF THE CONTENTS
by Douglas Gohm
F.Z.S:

T HE tremendous success of this book when it was first issued in this country made it clear that there was a real need for a book which went farther than an elementary booklet on the one hand and, at the same time, cost less than a highly priced tome on the other. The book, with its unsurpassed colour illustrations of fish, its tiberäl line drawings throughout the text' and its really extensive coverage of all aspects of the average aquarist's hobby, immediately found a wide market. As publishers, when we were still suffering from the post-war high price tendency, we were unable in the first edition to achieve the really popular price for which we had hoped.

This present cheap edition has been made possible by the success of the first. "Tropical Fish in the Home" is, therefore, now àvailable to you at exactly one half of the cost of the original volume and yet we have been able to completely revise and, indeed, enlarge the scope of the work. Hundreds of aquarists, beginners and more advanced enthusiasts throughout the country will find that this book now fits both their purpose and pocket. It is a volume you will consult daily in the course of your hobby as little problems arise. It is equally a book to be read for its interest and in anticipation of developments in your collection of plants and fish.
34 fish illustrated in full natural colour Chapter

Worms-Micro-Worm-Earth Worms-Blood Worms-RotifersGlass Worms-Conditioning-Feeding Young Fish:
4 DISEASES
White Spor-Wasting-Mourh Fungus-Fungus-Flukes-ShimmiesSwim Bladder-Dropsy-Pop-Eye-Wounds-IIch-Frayed Fins-Fin Rot-Costiasis-Constipation-Antibiotics-Enemies.
5 FISH
Classification-Breeding-Livebearing Tooth Carps-Oiher Lirehearers -Livebearer Hybrids-Egg-Laying Tooth Carps and Egg LayersCharacins - Oiher Characins - Carps or Minnows - Anabantids -Cichlids-Oiher Cichlids-Silversides-Nandids-Luaches-Catfish -Other Catfish.

Completely revised second edition

15s. net FROM ALL BOOKSELLERS

PEARSON LTD. Tower House, Southompton Street, London, W.C

FREE DRAWINGS

showing

STEAM and HOT-WATER INSTALLATIONS

Readers of "Practical Mechanics" are offered without charge or obligation, tions of thermostatic control, steam trapping and automatic air venting equipment on a wide variety of sleam and hot-
water heating and process applications. water heating and process applications.
Ask for current list from which to select. SPIRAX-SARCO LTD. (TECHNICAL DEPT.) Cheltenham, Glos.

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Ltd., Tower House,
 Southampton Strect, Strand, London, W.C. 2

Phone:
Témple Bar 4363

Telegrams:

Newnes, Rand, London

Vol. XXVIII
No. 450

COMMENTS OF THE MONTH

Utility Cycling Declines

5I is seldom that one sees the ord specialist cycle dealer's shop to-day. Most of them have been forced to combine their cycle business with the vending of some other commodity, radios, toys or mopedsusually the last. The obvious deduction is that they can no longer sell enough cycles to provide a living. Why then should this be so? The rise in the sales of scooters and mopeds indica es one obvious answer. The man who would at one time have bought a bicycle, now, due undoubsedly to the higher standard of living enjoyed by millions and the greatly improved hire purchase facilities, can afford to buy meshanised transport.

Another factor affccting sales of the nonlightweight dealer is the trend for sporting cyclists, clubmen and to a certain extent tourists, to buy lightweight frames, built to their own spacification. This has been encouraged by the difference in purchase tax rates which made it much cheaper for a rider to buy a frame and equip it himself. Here, again, the better financial status of the customer has its effect by allowing him to pur-hase the more expensive hand-built frame, etc.

The fact that there are fewer cyoles sold and, therefore, fewer cyclists on the roads is not only shown by figures, it is also Hoticeable to everyone who uses the road regularly. Cycle traffic to-day is, in fact, only 60 per cent. of the 1938 level. No wonder so many cycle dealers are having to turn to other products in order to make a living!

Bicycle Joint Publicity Scheme

Is anything being done to arrest the steady decline in home sales? A scheme designed for exactly that purpose is the bicycle joint publicity scheme introduced by the National Association of Cycle Traders and recent reports indicate that the Association is well satisfied with results so far. We quote part of the president's New Year message, "The bicycle joint publicity scheme has fulfilled is purpose to maintain and increase the sale of cycles. The plans for the coming year offer a greater attraction and impact to encourage more people to use cycles." Successful as the stheme has been in arresting the decline in home sales, it is possible that, given the enthusiastic co-operation of dealers and manufacturers, results could be even better.

The columns of newspapers contain many advertisements for motor cars and motor cycles but often none at all for bicycles. Traders may have found in the past that
this type of advertising is of little benefit to them, but it might be a different story if their advertisements were backing up publicity specially designed to sell cycling as a pastime.

Anyone fired with enthusiasm for cycling by reading national publicity on the subject is immediately going to ask, "Where can I buy a bicycle? ${ }^{\circ}$ An adjacent trader's advertisement should provide the answer.

Newspaper advertising, however, is not the only type open to the cycle industry and there are many other occasions when valuable publicity can be obtained in return for only a small outlay. Such an occasion was the recent Schoolboys' Own Exhibition and full use was made of the opportunity by the British Cycle Corporation, who had two stands there. One stand was an arresting display of cycles and included the actual machine used on a recent round the world trip.

Eileen Sheridan and David Duffield, the tricycle enthusiast, were in charge of the other stand which was laid out with obstacles as a bicycle testing ground. Youngsters were queueing (literally) to take part in the competition for the fastest round. The Y.H.A. also had a stand at the exhibition.

At the Camping and Outdoor Life Exhibition the cycling organisations were well represented, both the B.C.F. and the C.T.C. having stands. The International -Cycling Week on the Isle of Man was being publicised at a special booth and details of an allin travel, food and accommodation scheme were available.

Cycling most certainly comes under the heading "Outdoor Life" and it is to be thought that the cycle industry might have been better represented than it was Lightweight equipment for the cycle camping enthusiast was there in plenty, but where were the bicycles?

New Cycle Show

 SponsorThe news that the Daily Express is to sponsor the Cycle and Motor Cycle Show at Earls Court this year is very welcome. Lack of support and interest have become more noticeable over the last few years; this in spite of the inclusion of mopeds and
scoo:ers. The powerful support and the unequalled publicity potential of this national newspaper should give just the "shot in the arm" necessary. The recent Boat Show sponsored by this same newspaper was an eye-opener and the huge attendance owed more than a little to the continual publicity afforded by the pages of this daily.

Fausto Coppi Dies

Probably the greatest name in cycling and hero of cyclists the world over, "the Campionissimo," Fausto Coppi, died in January. In the immediate post-war years and right up to his death his name as a competitor was sufficient to pack the spectators into any cycle meeting. He was the ideal roadman and his style, his machine, his training methods and his diet were all studied by cyclists everywhere.

Among his 130 road event wins were the Tour de France twice, The Tour of Italy five times and the Tour of Lombardy five times. He held the world I-hour record for 14 years and won the world pursuit championship more than once; in 1953 he won the world road championship.

At the time of his death another great career lay before him as director of race teams, where his knowledge and experience would have been of immense benefit. The British firm of cycle manufacturers, ElswickHopper had also secured his services as technical adviser.

A virus contracted on a visit to Africa is believed to have caused his death from malaria in Tortona near his birthplace Castellania. Many hundreds came to pay their last respects to "the Campionissimo," including many famous names in cycling.

Wareham, Dorset-a busy sceise by the old bridge.

should be quite adequate for touring anywhere in the British Isles, but if at any time a super range of ten gears is required, it can be obtained by fitting a double chainring and change mechanism

Pedals and Mudguards

The type of pedals used is mainly a matter of individual choice, but whether they are metal or rubber, it is advisable to obtain good quality, especially the ball races. We prefer a metal "quill" type.

It is worth paying considerable attention to the mudguards as much of future comfort, particularly in wet weather, depends on them. If the shallow curved type are used, make sure they are wide. If the narrow type with deep sides are used, fit

A Touring Machine Specification

THE basis of any cycle is, of course, the frame, and here we would recommend the tourist to have a frame made by a reputable dealer to suit his personal measurements. Have it built in Reynolds 531 butted tubing. The size of a frame is measured from the top of the saddle pillar lug down the seat tube to the centre of the bottom bracket. To decide what size you need, take your inside leg measurement (say, 32in.). deduct crank length (7in.) and saddle depth (2in.) which leaves 23 in, as the frame size. Another important dimension to consider is the wheelbase. The shorter it is, the more lively the machine; the longer it is, the more comfortable. We consider 42 to 44 in . suitable for the tourist. Frame angles are also important for the same reasons and a good compromise between the lively and the comfortable is achieved with head and seat tube angles of 70 to 71 deg . The frame should be built to accommodate 27 in . dia. wheels and plenty of clearance left under the fork crown and between the rear wheel and chain stay bridge so that larger tyres may be fitted easily for winter riding. A frame built on these lines is shown in Fig. I.

Most tourists use multi-speed gears and if a derailleur is employed, the rear ends must be spaced wide enough to accommodate the wider hub required.
A special hand built frame gives the rider considerable choice regarding brazedon fittings. We would suggest a lamp boss on the front forks, oil nipples in the head, mudguard eyes halfway up front forks and seat stays and a rear lamp bracket on the chainstay. An oil nipple will be required on the bottom bracket, and pump pegs spaced 18 in . apart on the top tube. Finally, have fittings brazed on the down tube and on the chainstays for a derailleur gear, or else a special gear-type rear end fitted. We recommend the use of cantilever brakes, so only one hole, for fitting the front mudguard, need be drilled in the fork crown.

Brakes

Cantilever brakes are best for touring because of their unrivalled smooth and powerful braking action, their rigidity and freedom from "snatch", and the fineness of adjustment which is possible (see Fig. 2),

Wheels

Strength and lightness are the requirements for the tourist. There is no point in having wheels wider than $1_{4}^{1} \mathrm{in}$. and, in our opinion, the most suitable are $1 \frac{1}{1} \mathrm{in}$. Endricks, 27 in, dia. A good selection of tyres is available for these wheels and we select a medium tread open-sided tyre as being the most suitable.

We occasionally receive requests from readers to detail a cycle suitable for touring. This is largely a matter for personal preference, but here is our own specification.

Obtain the best hubs you can afford. In our opinion there is no particular advantage in wide flanges. The rear hub should be chosen to suit the type of gearing envisaged, i.e., with a long thread for a multi-speed block.

Chainset and Gearing

The strongest type of chainset is solid forged, i.e., the right-hand crank and the
them as close to the tyres as possible. Beware of narrow types with only a shallow curve; they are not very effective. A large mud flap is worth while on the front mudguard.

The Saddle

The range of different types of saddle available is very wide. At one extreme is the heavy, multi-sprung, padded cushion saddle and at the other is the ultra-narrow cutaway sprint type. Neither of these is suitable for touring. Our own preference is for a medium-wide unsprung leathertopped saddle of the type exemplified by

Rear ends to suit
Derailleur gear hub.
spider are made in one piece. The chainring is fitted to this type of chainset by means of bolts pasising through the arnis of the spider. This enables the chainring to be changed easily if required.

By making use of $3 / 32$ in. chain, chainring and block it is possible to obtain five-speed gears and this is, we think, the best arrangement for the tourist. Five gears

Fig. 2.-The cantilever brake.
the Brooks Bis. Comfortable riding so far as the accomplished tourist is concerned is not achieved by a padded saddle but by the rider becoming physically hardened.

Handlebars

A multiplicity of different shapes is available to the tourist. Some turn up, some turn down and some are flat. The shape chosen is largely a matter of individual preference but our choice is a pair of bends which turn down. They should have a tin. to sin. drop, have a good straight portion on top and not be too wide. These will give two riding positions, one on top and another on the hand grips for riding into a headwind or obtaining extra pulling power when hill climbing. etc.

Accessories

Our list is toeclips and straps, 18 in . pump, bell, lightweight dynamo, lighting outfit and regulation reflector, a good tool and puncture reparr kit, cape, leggings and sou'wester, and a capacious saddlebag. Splashguards for wet-weather riding are useful on both front and rear wheels.

(ryem mum neasar a Finus Clans Sheffield Produd =

PRICE $1 / 6$ complete spare llades $2 / 6$ per dozem
the inexpensive tool for all hacksaw work on steel, non-ferrous metals, etc.

Consult your local
Connult your futhet detain. of write diveot to:-

- Easy to use

D Easy to carry
Gets into all those-awkward spots

- Spare blades also available in High Speed Steel

HACK SAWS LIMITED
 AVEN WORKS GAPEL ST. SHEFFIELD. 6

Hugr Purchaser Mish Sweed steel Tael nits hardened ready for us. egeentral to any lathe user. secure
your stock now as these ere reall
8

 less 10 rer cent.
 Askorical Tirmads: suit M.E. or experimenter. mosti
ascorted,
$3 / 9$
One Ton Ground shiver steel, ${ }^{13}$ lenkths, 5.1
K.000 Hall Races. standard 0 . d..
 cor 9 mm.. $1 / \mathbf{l}^{2 / \text { eech }}$

Fxira socetal Cario Grinding

 o for \&1. past pald. Ass. grits for tool
and cutter grinding, also 5° dia. dish and cutter grinding, also ${ }^{5}{ }^{\circ}$
wheele. $1 / 2^{\circ}$ hole. $4 / 9$ each,
2,000 Small R.s. Twist Drius,
 3.000 Cireular Spiff Dies, $1^{1^{*}}$ dia. B.S.F., also brass thread. ot thread all Eizes und American N.F. $12 /-$ per set
of 5 sizes, 2 sets 22 6. 4 sets 4276 Taps
. to solt 128 per set, either taper or 2,000 stratht Shank Pind Mills,
 set.

All Jtems brand new, $£ 1$ orders post

J. BURKE

192 Raslow Rd., Totley, Sheffield Inszection at Hear 36 Fitzwhlitamst.,

3 ADJUSTABLE STEEL SHELVES

SUPPORT UP FO I $\frac{1}{2}$ CWT

Simpla Shelf Kit. Here's the kit you've been waiting for With the wonderful "Simpla" Shelf Kit you can quickly put up 3 big ($28 \mathrm{in} . \times 5 \frac{1 i n}{2}$) adjustable steel shelves! Rigid flush-tops capable of supporting up to $1 \frac{1}{2} \mathrm{cwt}$! All parts interlock. Just the thing for your garage, garden-shed, work-room, cellar or kitchen. Easy to fit. Easy to clean. Attractive Dove Grey finish. Made by one of the biggest steel equipment firms in Britain. Order from
Dept. P.M., Simpla Products Stirling Corner, Borcham Wood, Herts.

ROGERS ${ }^{-31 / 3 z \text { Stisunst }}$
Thread Gatures, 2 arms
Whitworth screws, 144 Asis td Fibre Washers. 144 Assorted Self Tap Serews. 100 Assorted Coppar livelw. 12 doz. Assorted 1 Saw bench Tolss, with ball race
 Atr Jacks. 5in. stroke Winker Units. Gor 12 volt Hains Transformers. 18y, $\%$, $\quad 6$ B Garnet Cloth. 41n. wide, Fer yd. 25. Colorised Water pumn ins … $\%$. 756 . Instrument Cuses. 128:7 in. 188, etc
 Pluys ir Sockeily. 7 point

 Races, Bolts, Valves, Pulleys, Pir 4,6 Brass, Steel, Aluminium; eys, Pumps. titerosting items? Stamp, please | $1 / 9$ |
| :---: |
| 18 |
| 18 |

KLAVAREKRIBO INSTITUFE (BZ.7) 67 HIGREURY NE W PARK, LONDON, N. 5

MIDLANB INSTRUMENT CO. BAKR \& STROUD RANGEFINDPIRs, 1 -metre base. 14X, as 11 ustrated and described in October P.M.
New, unused condition. cost pearly 8200

 long. welight 5 lbs. An fdeal folding tripod for cameras, telescones. etc.. 12t these tripods with $5 / \mathrm{F}$. h . dia. base. has two micrometer control knobs, one rotating head through 360 deg. the other
up to 50 deg. elevation and io deg. deup to 50 deg. elevation and 10 deg de-
pression : heads are a perfect fit for all pression : heads are a perfect fit for all
British and U.S. type elbow telescopes. THELEPRENE SETS consists of two combined microphones and reretvers,
coupled by 20it. twin fex, providing perfect 2 -way communlcation. Self. energised-no batterles required: flex can be extended up to 1 mille ifrequired. nunsed 12 ig post paid scope vicwer fitted cross vislon ticule Free or locking 5 in. dia. 360 -dey. callidown to 5 min with micrometer contro Also micrometer control $20-0-20$-deg elevation and depression. These instruments are ideal for elementary instrucorlsinally cost surveying. Weight price supplibed in leather or metal cases, new or near new condition, $3 \% / 6$. carriage 5%. Tridods easily adapted to take these sent together as one parcel. HUGHES MOTORS, 12 v , if amp shunt wound, reversing, fitted fin. dia. shaft. Speed 5,000 r.p.m. Size 3in superior ex-Govit. device motors, new. unused, 10 - post $1 / 9.2$ for 20^{\prime}, Dost paid. Ditto fitte rednction gears giving a powerful final drive of either 180 or 3230 post $1 / 9.2$ for ${ }^{25 / 2}$ post paid. 3. These contain the popular small motor used for model boals. etc... actuates the with variable time setting knob. 8 mart red and green indicators complete with lamps, soleno do start swicca, ete, etc. in grey metal cases, size 8in. $\times 43 \operatorname{in}$. instrument boxes faction of ortrinal

MIDLAND INSTRUMENT CO.

The Pistol you'll be proud to own!

Webley

AIR PISTOL

\star High Accuracy and Hitting Power

\star Perfect Balance
 * Robust Construction

Ideal for teaching elements of shooting, these pistols will give endless pleasure to both young and old. Their accuracy and efficiency, typical of all Webley Products, makes them the finest Air Pistols in the world.

Send for detailed Catalogue

WEBLEY \& SCOTT LTD.

28 Park Lane, Handsworth, Birmingham 21. Tel: West Bromwich 2821 One of the Windsor Group of Companies

FRENCH - SPANISH GERMAN-ITALIAN
Learned in Six Months by Pelman Method
have derived great benefit from Part in fact, I believe that with no other system would so much progress have been made, as the time at my disposal has been both limited and irregular. Thanking you for the care with which your Institute has corrected my work sheets, and for a very enjoyable course. (G.P. 643)
THIS letter is typical of hundreds received from readers who are learning languages by the Pelman method, which has revolutionised language teaching.

This wonderful method enables you to learn French in French, and so on, without using a word of English. The system is so simple that even a child can understand it: Grammatical complexities are eliminated and the whole of the instruction is given through the post.
The Peiman method is explained in four little books, one for each language
French, Spanish, German, Italian (Also Courses in Afrikaons and Urdu)
State which book you want and it will be sent to you by return, together with a specimen lesson, gratis and post free WELbeck 1411

POST THIS FREE COUPON TO-DAY

Pelman Languages Institute.
130, Norfolk Mansions. Wigmore St.,
Please send details of Pelman method of learning :

French, Spanish, German. Italian (Crosy oull three of these)

Name
Address

MAKE MONEY-making casts with

VINAMOLD

A GRAND SPARE-TIME OCCUPATION
WITHOUT any previous experience you can massproduce any object from a chessman to a candlestick, statuette or model slip, in plaster, resin, concrete. etc. . witl "VINAMOLD." the flevible mould that gives he BEST results. Easy to work, can be used over and profitable and enjoyable spare-time occupation with minimum oullay.

Write for full details and instructions. Also availoble New. Plaster Hardener SP. 10 and iery higliggloss Licquer
SP. 20.

VINATEX LTD. (DEPT. PM) Carshalton, Surrey.

[^3]
ASTRONOMICAL TELESCOPE

COMPLETE
AND
READY FOR USE

THIS POWERFUL REFRACTING TELESCOPE WILLSHOWYOUJupiter and its moons-satura and its system of rings-The lantastic faudscape of our own
nooon in creat detarl-Nebalae and Star Chasters invisible to the naked eye-and a host ol other astronomical marvela.
Lens system of high grade optical giass. Ma:nuflication 36X (1.000 times in area). Unbreak. able likhtweypht const rnetion. 1i lbs. in
alowing case (supplied). 2tt. \&iu. lous. Eith tetescope individually tested. Stamp with enquities please.
SPACE-ADS ${ }^{\text {Dom Mamax }}$

Here's a new interest for you . . .

> With many line and half-tone illustrations and eight pages of colour plates

THIS is a book for people who want to instil a new flavour into their hours of recreation, long weekends and holidyy-NOT for those who want to make money in their spare time.

Our roads today have become hot highways crowded winh carloads of dusty, irritable seekers after exjoyment; evem rivers and seas are full of people, and round almost every corner one meets prowlers pointing expensive cameras.
More selective souls who prefer not to go with the crowd will find in painting the rich, satisfying, absorbing pleasure which only a creative hobby can give. It will bring to them that inward peace which follows self-expression.
(And, to come down to a more sordid note, the cost of the necessary equipment is small compared with that of most hobbies.)
You don't have to have been "good at art at school"-in fact, you'll probably get on better if you weren't. It is true that problems do confront the beginner, but years of successful tutoring have acquainted the author with these and his book has all the answers. No better guide, mentor and friend could be found than "Paddy" Kerr. methods of instruction he evolved a new approach which has proved highly successful and has laught literally thousands to paint. He is wrell known for his allegorical paintings, and is an exhibitor as most important Exhibitions.

Only 15s. net (16s. by post FROM ALL BOOKSELLERS

or in case of difficulty use this handy Cash on Delivery order form-

[^4]
Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship	Elec. Draughtsmanship
Jig \& Tool Design	Machine
Press Tool \& Die Design	Automobile
Sheet Metalwork	Structural
Automobile Repairs	R/F Concrete
Garage Management	Structural Engincering
Works M'gmnt, \& Admin.	Mathematics (all stages)
Practical Foremanship	Radio Technology
Ratefixing \& Estimating	Telecommunications
Time \& Motion Study	Wiring \& Installation
Engimeering Inspection	Television
Metallurgy	Radio Servicing
Refrigeration	Gen. Elec. Enginecring
Welding (all branches)	Generators \& Motors
Maintenance Engincering	Generation \& Supply
Steam Engine Technology	Aircraft Mainten. Licences
I.C. Engine Technology	Aerodynamics
Diesel Engine Tcchnology	Electical Design

BUILDING AND STRUCTURAL

L.I.O.B. \quad A.I.A.S.	A.R.S.H. \quad M.R.S.H.
A.M.I.P.H.E. A.A.L.P.A.	A.F.S.
Buiding Construction	Buiders' Quantitics
Costs \& Accounts	
Surveying \& Levelling	Carpentry \& Joinery
Clerk of Works	Building lmspector
Quantity Surveying	Building Draughtsmanship
Heating and Ventilating	

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptors Woodwork Teacher Metalwork Teacher Housing Manager (A.I.Hsg.)

Common. Prelim. Exam.

 A.C.I.S., A.C.C.S. A.C.W.A. (Costing) School Attendance Officer Health Inspector Civit Service Exams.
BECOME A DRAUGHTSMAN-LEARN AT HOME

 AND EARN BIG MONEYMen and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

OVER SEVENTY YEARS OF * CONTINUOUS SUCCESS

NaTIONAL INSTITUTE OF ENGINEERING

(In association with CHAMBERS COLLEGE-Founded 1885)
(Dept. 29)
148, HOLBORN, LONDON, E.C.I
SOUTH AFRICA: E.C.S.A., P.O. BOX NO. 8AIT. JOHANNESBURG AUSTRALIA: P.O. BOX NO. 4570, mELBOURNE

132-PACE BOOK FREE!
 SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
* How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES

MANY IWTERESTING COURSES TO SELECT FROM!

A.M.I.Mech.E., A.M.I.M.I., A.M.Brit.I.R.E., A.M.I.P.E.,
A.M.I.C.E.,
A.M.I.Struct.E.,
A.M.I.Mun.E., M.R.S.H.,
A.M.I.E.D.,
A.F.R.Ae.S.,

London B.Sc., Degrees.
Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

4 Free Coupon

To: NATIONAL ITSTITUTE OF ENGINEERING (Dept. 29), 848-1 \% 0 , Holborn, London, E.CrI.

Please Forward your Free Guide to
NAME
ADDRESS

My general interest is in : (r) ENGINEERING
(2) AERO (3) RADIO (4) BUILDING
(Place a cross againse (5) MUNICIPAL WORK

The subject of examination in which I am especially interested is

[^0]: If eny dindedty writo to M. MOLE \& SON LTD., Bgam, 3.

[^1]: Name.

[^2]: Disconnecting Boilin
 WASHING MACHINES, etc.
 Plate on Cooker
 Do your own BATTERY CHARGING

[^3]: (G)ADQUARTER and Ceneral supplies ltd.
 (DEPT. PMC/53), '96-200, COLDHARBOUR LANE, LOUGHBOROUGH

[^4]: This is not-as mony people seem to thinh-an expensive pastime. Materials are recsonably priced-overheads to keep you going ore at a minimum. In return there are hours of creative pleasure and hoppiness for you.

