pactan o FEB 1960

contents

Foot Bellows for Brazing and Small Forges
Using Resin-bonded Glass Fibre Repairing a Clinker-built Boat Principles and Practice of Focusing Automation in America Choosing a "Mike Etc. Etc.

Transistor

 ModelControl
Receiver

Could this be the spring you're looking for?

Then you'll find it down below

Whatever you need in the way of springs youll find in the range of TERRY'SBOXESOFASSORTED SPRINGS - compression, expansion, long, short, light, heavythe lot.
Just the job for you experimental
people-a simply unlimited assoriment from our tremendous range of springs of every variety. The boxes shown here are only a few examples-why not let us send you our illustrated list showing them all?

Cut production-
Costs with Terry
W. Costs with Terry
Wire CIR CLIPS

Small Expansion Springs.

* Interested in Springs? Ninth Edition of "Spring
Design \& Calculations"post free $12 / 6$.

TERRY'S
 ASSORTEDSPRINGS

Herbert Terry \& Sons Lid, Redditch, Worcs.
(Makers of Quality Springs, Wireforms and Presswork for over 100 years)

末 Have you a Presswork problem? If so let us have it and we'll help to solve it for you.

MEASURE UP TO ANY JOB

The next time you buy tools, remember that it pays to buy good tools, tools upon whose accuracy you can rely. (M\&W) tools are made from the finest materials and are guaranteed to conform to British Standard Institution Specifications where they exist. The next time you buy tools ask your dealer for (M\&W) Engineers Precision and Hand Tools.

Wrise for our free catalogue, mentioning this iournal.
MOORE \& WRIGHT SHEFFIELD) LTD., HANDSWORTH ROAD, SHEFFIELD, 13

Contains 54 of these drawers, each $5^{\prime \prime}$ wide $3^{\prime \prime}$ high $11 \frac{1}{4}^{\prime \prime}$ long, 54 dividers and 54 drawer cards with each unit. Extra dividers 6d. each.

£18

DELIVERIES FREE TO ENGLAND SCOTLAND AND WALES SEND FOR SAMPLE DRAWER

N. C. BROWN LTD.

GREEN LANE WING, HEYWOOD, LANCS.
Telephone : 69018 (6 lines)

Band III Converters Suitable Wales, London. Midlands, North. Scotland. etc. All the parts meluding 2 EFB0 valves, colls, fine tuner. contrast control, condensers and reslstors. (Metal case available as an extra.) Price only 18/6, plus 2'6 post and insurance. Data please pend or avallable separately, $1 / 6$. sent ract wet is performing one you sens last wreh is performing magnificentls. We receive this sort of letter every
day of the week. so if you have hesitated day of the week. so If you have hesitated because you thought our kits too cheap you need hesitate no longer.

"Dim and Full" Switch

Particularly useful for controlling photoflood lamps which have only a short life at full brilliance. This toggle switch has three positions: the first position puts two lamps in series at half brilliance for setting up, the second pusition is off and the third position full brilliance for the operation shots. Also useful for controlling night lights, heaters, etc. etc. Price 2.6 each. Post 9d. Circuit dagram included.

A.C./D.C. Multimeter Kit

Ranges: D.C. volts $0-5$, $0-50,0-100,0-500,0-1,000$. A.5. volts, $0-1,000$, D.C. milliamps $0-5,0-100, \quad 0-500$. Ohms 0-50,000, with internal batterles. $0-500,000$ with external patteries. Measures A.C./D.C. volts. D.C. current and ohms. All the essential parts including metal case 2 in . moving coll meter, selected resistors. wire for shunts, range selector, swltches, callbrated scale and full instructions, prlce 19/6. plus $2 / 6$ post and insurance.

Cine Cameras

motorise (24 VAC) for 16 frames per second, contains fine f/8.5 triple an a stig. matic lens and spool to carry 25 ft . of firm-probable cos around $£ 150$, brand new and in sealed carton payments of $10 /$, post and insurance $3 / 6$.

Our 68-page H1-FI Catalogue is now being sent out to customers-gives detalls of the latest and best $\mathrm{H} 1-\mathrm{Fi}$ equipment with over 400 illustrations Price $2 / 6$ per copy which is refundable from purchases.

Building a Scope ?

3in. oscilloscope tube. American-made type No. 3FP7, octal base 6.3 V .6 amp . heater, electrostatic deflection, brand now and suaranteed. $15 /$ each. plus $1 / 6$ post \& ins.

Unique Opportunity to build Fine Transistor Set

Constructor's parcel: to build Pocket 6 Transistor Set as currently belnt sold at tone can parcellustrated, tuning dial, two gang tuning condenser, combined bakelite chassis/printed circuit and easy-to-follow circuit. Costing value $57 / 6$-offered while supplles last at only 29/6, plus $2 / 6$ post. Suitable for your own efrcutt or to butid original circuit. Au parts avaluale at tremendous pargain tremendous bargain.

Radio Stethoscope

This can be slipped into the pocket rather like a fountain pen. With it in most districts a recelver can be checked from the grid of the first valve right through to the output Without a signal generwill operate in both L.F. and R.F. cirouits without alteration. It is a complete faultfinder.
All the necessary parts to make this tracer
 9/6, post $1 /$-.

Crystal Mike by Acos

Model 39/1, this is ideal for tape or general amplifiers, complete with screened

Charging Switchboard

Offered at about one-twentleth of origlnal cost. This is an ex-Govermment switchboard. It contains three reverse current relays, one secondary ammeters and ammeter, variable resistors for controlling circults. These are in original cases. Price 22 15/=. Carr. 10/-

Gyro by Sperry

Made for use in Alroraft. This is an air-operated Gyro, it really is a Superb instrument, made to the closest limits of precision.
Brand new in orlginal air sesled pack price onis $15 /-$, plus $2 / 6$ post.

Versatile Wire
Single - strand 18 gauge with P.V.C. makes it rustproof. Extra strong. wlil stand tremendous straln. Ideal for gardentng, clothes
lines, indoor aerlals, lines, indoor aerlals, etc. etc. Also belng
steel alloy and bav steel a rey and havapproximately f ohm per yard this can be used for electrical work, soil heating, wrupping round water plpes, etc. New on drum containing $3,000 f$. Price $8 / 6$. plus 3/6 carr.

Electronics (Raislip) Lbd. 12-48, Windmull Eill. Ruislip. Middx.	Electronics (Croydon) Itd. 268, London Road,	Eleatronics (Pisabury Park) Lid. 29. Strond Green Rd.	Eloutronics (Mazor Pariz) Ltd.
Phone: RUIBLEP 3780	Phone: CRO 655s	ARChway 1049	520. High Street North. Manor Partr, E. 12.

without my Mole Wrench. It's my third hand ; always so very useful for repairs on my car and for all sorts of jobs in the house, too."
You see, it locks on the job at. any pressure you wish, leaving both your hands free. Just touch the release lever and-presto !it's ready again for the next job-super pliers, vice, clamp, wrench all in one toolthe versatile, indispensable Mole Wrench.

7 inch, $12 / 6 \mathrm{~d} .10$ inch, $15 /-$
from Ironmongers, Mator and Motor Cyete Accessory Dealers.
Make sure you ask for a genuine MOLE Self Grip Wrench, and look for the name on it.

I! any ôifliculty write to M. MOLE \& SON LTD., E'ELAB,
 (16) Electric ARC WELDER
 payments of
 in Ge Britain if oustion our
extensive van delivery orea.

Just right for Greenhouse, Garage,

ADJUSTABLE STEEL SHELVING

Load up to 150 lb rigidity: adiustable every $2 \frac{1}{2}$ in. ; 6 -
shelf unit. 72 in. high x 33i in. x 12 in, deep. Green finish. COMPLETE ready for assembly.

$\underset{\substack{\text { Bargain } \\ \text { price }}}{8 / 6}$

Port Corriage $7 / 9$ if utside our extensive an area.
Extra Shelves, 8/6
each. Corr. 2/6

Gamages Tool \& Motor Accessory List FREE on requess.
GAMAGES, HOLBORN, LONDON, E.C.I.
HOL 8484

IN THE BLUE \& WHITE TIN KOS

IN THE RED \& WHITE TIN Prices FIXATILE

From Irommongers and Hardware Stores
PURIMACHOS LTD. ST. PHILIPS, BRISTOL 2

MULTI-HEAT BLOWER UNIT

HERE'S SOMETHING RE ALLY EXCITING FOR THE PRACTICAL MECHANIC. A compact Mains Blower Unit all ready for fitting into your own casing or ducting Enabling you to construct: Clothes Drying Cabinets, Forced Draught Convector Heaters, Fan Cooling for Warm Weather, Greenhouse Heaters and Ventilators; all at a fraction of the cost of manufactured equivalents.
The unit comprises a ton quality shaded pole motor of superb precision oncrating at a speed of 2,600 r.p.m., with a consumption of 18 watts. The rotor is die cast with a precision ground spindle in 'Oilite' bearings which are self aligning. The Heater Unit consists of dual spirals which enables loadings of 1 or 2 kW . to be used. The 3-bladed fan is of the very latest aerodynamic design and displaces 280 cutic feet per minute. A small resistance is incorporated in the motor circuit which allows the lan to run at half speed. This feature together with the dual elements allows of six different temperatures. Send us a 4d. stamp for details or we will send on 17 days' approvat against remittance.

PRICE: 44/15/3. Carriage \& Packing: 3/3.
THE TECHNICAL SERVICES CO., BANSTEAD, SURREY
For other items, Heater Cables, etc., send 6d, for Catalogue.

Cowóla truly remarkable british invention !

 GramdeckGRAMOPHONE TAPE RECORDER

Turns any gramophone into a superb TAPE-RECORDER!

-and back into a record-player in a moment

srecial moving-coil microphone
and tape extra.
EASY TERMS

* Uses standard tapes
* Plays at $7 \frac{1}{5}$ " per sec. or three other speeds * Records direct from radio or microphone
* Erase and fast rewind
MADE BY THE FIRM
THAT MAKES RADAR
EQUIPMENT FOR
VISCOUNTS AND
BRITANNIAS

Gramdeck is completely new . . a revolutionary invention that instantly turns your gramophone into a tape-recorder and back into a gramophone at will ! You simply slip it on to your turntable and you are ready to record direct-from-radio or microphone . . . the voices of your family
radio programmes . . . your favourite musicand you can instanly play it back through your own gramophone or radio with Lifelike Fidelity. The anazing Gramdeck brings full taperecording and playing facilities to every gramophone owner, at little extra cost.

Send for informative free book
This wonderfal new invention means that any gramo phone owner can now add superbly good laperecording facilities to existing equipment me a fruction of the usual cost. Full details, photos. specitications, Easy Terms; etc., are given in the Gramdeck Brok,
Send for your copy today-FREE and entirely without Send for your copy today-FREE and entirely without obligation.

PRAISE FROM THE PRESS

"Real hi-fi results . ; reproduction excellent Radio \& T/V Retallers': Review. "Provides the same recording and playback quality as many high priced tape recorders."-Radio Review. "A British challenge to tape recorder firms."-Daily Express "Better than many so-called hi-fi recorders. Amateur Cine World.

FREE BOOK-POST NOW :

I would like to know how to turn my gramophone into a first-class tape-recorder . . please send me the Gramdeck Book-FREE and without obligation. (Write ir you prefer not to cut page.)
NAME.
ADDRESS

G
ramdeck
GRAMOPHONE TAPE RECORDER
(Dept. PM1,8061, 29, WRIGHT'S LANE, LONDON, W. 8
GRAMDECK'TURNS A TURNTABLE INTO A TAPE-RECORDER

DON'T LET SOLDERING LEAD YOU A DANGE

FLUXITE

Soldering ceases to be a knotty problem the moment you use FLUXITE. Solder flows on easily and smoothly-and stays on. For over half a century FLUXITE has been the choice of craftsman and engineer alike and, in this age, its reliability and speed has made FLUXITE even more in demand than ever.

IT

SIMPLIFIES
ALL
SOLDERING

FLUXITE Ltd., Bermondsey Street, London, S.E.I G.м.83.

The ideal Build-it-yourself WELDING KIT

ONLY £25

 Complete with all Accessories as shown
New H.P. Terms

 \&5 down and 6 monthly payments of $£ 3.15,0$.

Works from Standara Household Power Plug ($10-15 \mathrm{amp}$. A.C.). Welds up to any thickness plate. Brazes down to 26 swg plate. Silver solders, Tins and Surface Hardens. Send Cash or Deposit for Immediate Delivery, or write for Fuller Details. Not a cheap choke set, but a full WELDING TRANSFORMER in heavy gauge welded steel case. Larger models available. 180 amp . $£ 52$ ($£ 10.10 .0$ deposit) and 360 amp . $£ 95$ (deposit by arrangement). Thousands in daily use In factories and workshops throughout the World.

7 DAYS' FREE TRIAL ON REQUEST

TAYLOR BROS. (middlesbrough) LTD.

32 Baker Street, Middlesbrough, Yorks.
Tel. : 45241-2

Made by James Neill \& Co. (Sheffield) Ltd and obtoinable from oll tool distributors

"PRACTICAL
 MECHANICS" READERS
 SAIVE 20_{A} YEAR AT LEAST! WITH THIS AMAZING DO-IT-YOURSEIF GUIDE ODHAMS

MOTORMANUAL
Complete How, Why and What of Car Ownership and Trouble-free Motoring

LEARN HOW YOUR CAR WORKS

In order to be a perfect driver and before you can learn how to carry out adjustments of any kind, you need a complete understanding of how and why every part of your car works. Experts explain, in erystal-clear detail, with the aid of unique " see how " illustrations and speclally prepared "exploded" drawings, the exact construction, function and working principle of the various (o) $\begin{aligned} & \text { engine } \\ & \text { ponents, the gear- } \\ & \text { box, the trans- }\end{aligned}$ mission, electrical and fuel missions, brakes, steering gear,
ctc., etc.

InCREASE YOUR MOTORING

 SKILL AND PLEASUREHere, in the pages of this helpful book, is sound, professional advice that will help you to improve your motoring pleasure and comfort, and motoring pleasure and co

IEARN HOW TO GET MORE M.P.G.
In addition to showing how you can carry out your own car maintenance and repair jobs, this comprehensive manual is packed with practical guidance and useful tips that will enable you to get more miles per gallon, longer life from batteries and tyres, etc. - the vital know how" that will save you pounds every

Make sure YOUR car is

 roadworthy!

Whether or not your car is liable to undergo compulsory testing in the near future, it is vital that you take steps NOW to ensure that your brakes, lights, steering gear, etc. ${ }^{\text {in }}$ are all
inoroughly roadworthy condition. Simply and clearly, this grand book shows you just HOW to set about it !
BRAKES Full instructions on how to check and adjust brakes, carry out relining-for the cost of the replacement lining only !
STEERING How to overhaul the steering gear and remedy defects. Faulitiracing chart, steering angles and geometry.

LIGHTS How to test the lighting circuit, check lamips and accessories, set your lamps as required by the Light ing Regulations.

Here's the amazing book that will help you to SAVE POUNDS-ENJOY BETTER MOTORING ! Already proving itself indispensable to thousands-experienced most helpful and easy-to-follow book of its kind. Tells most helpful and easy-to-follow book of its kind. Tells pictures, all you need to know about how your car works and how to keep it in perfect running order. Will save its trifling cost hundreds of times over! Make sure of your copy NOW ! Standard Edition, bookcloth 16/-; or De Luxe, superb leathercloth, at nominal extra cost of $2 /-$.

Prices include postage, packing, etc.

THE BIGGEST
 MONEY-SAVER EVER!

Learn from this grand, lavishly illustrated volume how to maintain and repair your car, and safeguard your valuable investment. Shows how YOU can (many major jobs, too !) with complete SUCCESS ! CONTENTS INCLUDE: The car simply explained; Leaming to drive; Carburettors and fuel systems; Engine maintenance; Fault tracing; Engine repairs and overhaul; Electrical equipment; Transmission and Tyres. Bodywark etc and Tyres; Bodywork, etc.

HOW TO GET MAXIMUM

 PERFORMANCEExperts show you, in clear detail, how to care for your car so that you get the best passible performance from it. How to service and tune the carburettor, decarbonizing, timing the engine, etc.

KEEP YOUR CAR YOUNG!

Learn how to reduce wear and tear by timely atten-
tion, obviate the risk of a costly breakdown-add tion, obviate the risk of a costly breakdown-add years to the life of your car : A complete troubletracing chart enables you to recognize the danger signals of impending trouble and trace them to their
source-a step-by-step procedure that never fails.
EXPERT ADVICE FOR 'L’-DRIVERS

All you want to know about the car and how to drive it, with skill and and how to drive it, ditions. Valuable addite that will increase your confidence and help you to pass the
Driving Test.

DO THIS NOW!

Simply fill in form, indicating Edition required, and post in 2d. stamped. unsealed envelope to Dept. EA 23, People's Horse Offer applies in UKK and Eire Offer applies in U.K. and Eire
only, closes tenruars og Hurry !

To: Dept. EA 23, People's Home Library, Basted, Sevenoaks, Kent | WITHOUT OBLIGATION reserve me * Odhams Motor Manual "" and send Invoice with " 100% Satisfactiou or No Charge Guara
| Cross out Edition NOT required: Standard/DE LUXE
| block letters
NAME..
Full Postal
| ADDRESS

BUYING A CAR?

Here's valuable advice Experts tell you what to look for when buying a new or secondhand car, what tests to make, points to consider for maximum comfort and running economy. A complete survey of the £.s.d. of car ownership.

ASTRO-TERRESTRIAL TELESCOPES
 Get you the best from both worlds
 SIX POWER. THEFE DRAW: 2 in . O.G. With interchangeable lenses and eyepieces giving $25,40,50$ and 80 X terrestrial and 60 and 120 X astro. Weight $2 \frac{1}{2} \mathrm{Ib}$. Length open 30 in .

 closed 101 in. Corflele with case and sling. Mint condition, 613.10 .0 . Used, perfect condition, 612.15 .0 . Second-hand, guaranteed sound, no case, $£ 11$. 10.0SCOUT TELESCOPE as above, 20×50, used, perfect, 67/10/-. 6 power kits 10 suit (Mk. II only). \&5. High power High power eyepicces to fit any cype of draw scope, 50% A. State size of rube or send old eyepiece.
A.A. DUAL TELESCOPES: 35×60 and 15×50 on common base. In transit case. New condition. 115 ca
PRISMATIC SCOPE. Two turret eyepicees 30 and $15 \times$ 2 in. O.G. All Brass. Weight 10 rb . Brand New. $\subset 10$ ea ELBOW TELESCOPE. No. 8 Mk. boxed, $£ 3 / 5 \%$. Other iypes available.
$15,23,30 \mathrm{X}$. Sin. O.G With Triple turrec eyepieces with micromicter adi. Complete with tripod, and complet in AMERICAN N3 VP SCOPE. $10-20 x$. $2!\mathrm{in}. \mathrm{O.G}$ Elaborate geared base with finder scops. Weight 40 lbs in two eransit cases, $\in 20$ STEREOSCOFIC BINOCULAR TELESCOPES No. I Mk. I, No. 3 Mk . II and German types from $\mathrm{E} \mid 2 / 10 /$ FINDER TELESCOPE. Inverted image. O.G. and eye focus. Cross line. 5×30, 43 ea .
RIFLE SIGHTS. No. 32 Mk. 1 with E. and W. adj. Used. C3/15/-. Reronditioned, $65 / 10 /$.
RIFLE SIGHTS No. 42 35/- used. C2/10/- as new.
ASTRO TELESCOPE KIT. 20in. focus OG achro ASTRO TELESCOPE KIT. 20in. focus O.G. achro matic. 45 mm . dia., tube 10 suit and focusing eyepiece C. the lot. Ditto, with 27 in. O.G., 50 HELIOGRAPHS. 3 mirrors. Geared head adaprable for tele. or camera, brass mounts, etc., plus lovely leasher case for sports or pastimes. Mint condition. The bes
buy of the century. $15 /$ - ea., plus $3 / 3$ carr. Cost $\{30$ ea buy of the century, $15 /$-ea., plus $3 / 3$ carr. Cost $£ 30$ ea.
TRIPODS. 36 in. lightweight, with P. and T. New, $17 / 6$. Medium, extending to 5 ft , 50%.
PHOTO CELLS. Two cells in sealed unit fitted terminals bridge circuit gives about $\$$ volt neg. or pos., and up to 500 micro amps. New and boxed, $15 /$ por. Elect. Driven. I 1 in F4 lens. Runs 2 frames per sec. or single shots. Tested O.K, with magazine in wood case, ©3/i5/- ea.
MOTOR BLOWERS. 24 volt A.C.7D.C., will run on 12 volt O.K. Brand New and boxed as specified for 27/6.

MINIATURE GEARED MOTORS. A.C./D.C. Dual voltage. 6 to 24 . Elec. Clutch, speed governor, size $1 \frac{3}{2}$. x 1! x 3in. Gunmetal to steel worm-type gears running in 9 ball races, transmit tremendous power to final drive by 1 in . spindle. Final speed I r.p.m. Ditto as above but in case with miniature relay and micro switches, brand new sealed cartons, $\ell 2$ ea
RANSEFINDERS
RANSEFINDERS. Various types in good condition but not guaranceed. Average 36 in . long. $£ 3$ ea.
TELESCOPE O.G.'s. $2 \neq i n$. diam. $\times 20$ focus. New chromats, 55/- ea. 25in. focus, 65,- ea. Orthoscopi evepieres focus, plain mounts, $17 / 6$ ea
per 24 mours 22.6 Ditto firsed automatic self re per 24 hours. 22 , 6 ea. Ditto fitted automatic self-com ROIS 351×50 BINOCULARS. Bloomed Mint con ROis 7×50 BINOCULARS.

-:ENSOLT 10×50 PRISMATICS. Perfect condition

 GIL, I5; with case.GERMAN 6×30
dilion. A super lightwaight glass. Compares favourably with $7 \times 50 € 12$ per pr. with case.
FLASH SPOTTERS. Super precision unit, consisting of a pr. of 8×40 binocular telescope mounted on stand fitted with totally enclosed self-illuminated dials, and movements faund in high-class theodolites. In perfect condition. $£ 20$ ea. Could be easily converced to a high. power telescope by changing the O.G.'s. Supplied for this UENAR Variable a 10 mins. 250 v. 5 a. SPDT. Panel mounting. New and boxed. 10/- ea.
SELF PRIMING PUMPS. Ideal for garden fountains and waterfalls. 24 Y. D.C. 3 in , outlet, $45 / \circ$ ea. 1 i in , outlet $5 /$. Mains transiormer and heavy duty 5a, bridge rectifier TELEPHONE HAND SETS. G.P.O. Desk pattern carbon. New and boxed. $17 / 6$ ea
PILOTS' PULL OUT COCKPIT LAMPS, gfe. flex on spring-loaded reel in case with brass lampholder for spot or broad beam. Ideal for emergency inspection for cars ctc. Brand New and boxed, 10/. ea.
TRANSFORMERS. 230 v . A.C. $3 \times 6 \mathrm{v} .10 \mathrm{a}$., $30 / \mathrm{F} .50 \mathrm{v}$. TRANSFORMERS, 230 v . A.C.
$20 \mathrm{a} . \mathrm{C} / 10 / \mathrm{c} .8 \mathrm{v} .10 \mathrm{z}, 21 \%$

ARTY DRAWING BOARDS. Braced, cornered, fitted canvas cover and case. Complete with brass rulers centring pins. Size $21 \frac{1}{2}$. 59. New, $40 / \mathrm{e} \mathrm{ea}$. Ditto 30 in sa. New, 50% ea. Used, $30 /$-.
A.C. AMMETERS. 6 in . Switchboard type. 0-15, 50 ea. $0-30,45 /-, 0-50,62$. The above work equally well on D.C. Brand New. Cose $£ 8$. MIDGET MOTORS. 12 v. A.C./D.C. with pulley and wire belt. 8 P6 ea.
AMERICAN MIDGET ACCUMULATORS. 3×36 $1 \times 6 \mathrm{v}$. in sealed tin. Ready charged only need filling with acid. 15/- ea. (Set of 4)
SENSITIVE HIGH-SPEED RELAYS. SPDT. All contacts (platignum) adjustable also spring tension. Will work on $1 \mathrm{~m} . \mathrm{A}$. or 11 V ., $8 / 6 \mathrm{ea}$.
GEARED MOTS, $0-90$ degs. Gunmetal in case, $12 / 6$ ea r.p.m. Size 7 in . $x 3 \mathrm{in} \times 3 \mathrm{in}$. Moror in ${ }^{2}$. $3 t$ and gearbox in aluminium, $22 / 6$ ea. $5 / 8$ th focus. Bloomed New and boxed. Plain mount, 35/- ea.
IGNITION COILS. Lucas 12 v . New, $12 / 6 \mathrm{ea}$
LAMPS. S.B.C. D.C. $12 \times .6 \mathrm{w} ., 12 / \mathrm{w}$ doz. $12 \mathrm{v}$. frosted, $18 /-$ doz. M.B.C. 6 y., $9 /-$ doz. 28 y., $6 / \cdot$ doz. Holders M.B.C., 3/- doz. S.B.C., Batten type, $12 /$ AMMETERS, 21 sq. frush. $20-0-20,50-0-50$, D.C. M.C $8 / 8$ ea. Volts $0-40,8 / 6$. 3in. circular flush. $0-300$ V. A.C $25 / \cdot$ D.C. MA. O-100, up to $500,12 / 6$ ea.
GEARED MEADS.
GEARED HEADS. All types in stock suitable for rele scope mounts up to 12 in . dia, from $8 / 6$ to $£ 25$
HAND BEARING LIQUID PRISMATIC

C COMPASS. Mk. I11. 63/5/- ea
PROJECTOR \& ENLARGER KITS, Do it yoursel Plans for 6 designs, 21-. 24 sq . lens kir, $33 / 6.35 \mathrm{~mm}$., $35 / 6$ Mounted sets, only require lamphouse and slide carrier to complete, from $73 / 6$. The high efficiency 35 mm . projec tors at $90 /-$ set, using
or surpass most 300 w . types. (15 ft . candles on 3 ft . sercen.) THE DOZALL or 12 in 1 Oprical Unit. Ex-Gove. Suits all cameras. First-class results as $2 \frac{1}{2} X$ tele-photo $6 X$ close-up lens. $16 X$ microscope. $2 \frac{1}{2} X$ focusing magnifier Stercoscopic viewer, 2 in ., 4 in . and variable focus projection lenses. 5 X magnifier. Slide viewer, etc. Achromatic lenses throughout, 55/. ea., complete with instructions and exposure guide.
H. W. ENGLISH, RAYLEIGH ROAD, HUTTON, BRENTWOOD, ESSEX

Phone:
1685 or 810

> BASSETT-LOWKE Miniature Rotary Pump for Lubrication, Water Tanks, Fountains, etc.

Height $1 \frac{1}{2}$ in. Depth of body lin. Overall 2 sin . Width over shaft 2 lin. Shaft S/32in. dia. Pulley 3 in . dia. Weight 41 oz . Can be used in any position and flow is reversible. Price 61.17 .6.

> ACCURATE MACHINE CUT GEARS
> | Flat gears 40 pitch. 10, 15, 20 and - upwards in tens to 120 teeth. 10 -tooth | gears bored $3 / 32 \mathrm{in}$., all others | $5 / 32 \mathrm{in} .10,15$ and 20 teeth steel-all | others brass. Prices $2 / 1$ to $10 / 9$ each. Also available: Brass Worm Gears, Right Angle Mitre Bevel Gears, I Ratchets, Rack and Shaft, Collars and Reduction Bevels in various sizes.

SMALL ROTARY PUMP

 A compact design most useful where small volumes of fluid are to be handled. At 3,000 r.p.m. it will raise 8 pints of water to a height of 1 ft . per minute. Fine jets projected to 5 ft . Suitable for miniature fountains and waterfalls, for free lubrication of machinery and cutters or for circulation for cooling or heating. Unaffected by average temperatures and requiring minimum attention, it can be kept under a head of fluidThé Bassett-Lowke Miniature Rotary Pump produces circulation for water tanks at the rate of not more than 180 pints per hour. Outdoors it has a wide range of uses, including supplying pressure for garden fountains and waterfalls. Also ideal for providing lubrication feed for tathe tools, etc.

Everything for your choice at the
BASSETT-LOWKE model shops
LONDON: 112, High Holborn, W.C.I. MANCHESTER: 28 , Corporation St
Write for leafles \& catalogues to Head OHice: I8, Kingswell St, NORTHAMPTON

THE RADIO \& ELECTRICAL MART
29. STATION APPROACH, SUDBURY TOWN, WEMBLEY, MIDDX,

WI EM

DO=IT-YOURSELF TRAINING TECHNIQUE iARAOIO E ELECTRONICS

You LEARN while you BUILD... sImple....PRacticas.... .fascinating

Announcing-after many years of highly successful operation in the U.S.A. and in Europe-the latest
system in home training in electronics (after complete adaptation) is now introduced by an entirely new British
training organisation.
At last-a comprehensive and simple way of learning-by practical means-the basie principles of radio and electronics, with a minimum of theory.
You learn by building actual equipment with the components and parts which we send you. You advance by simple steps using high quality equipment and performing a whole series of interesting and instructive experimints. No mathematics !
Instruction Manuals and our teaching staff employ the latest techniques for showing clearly how radio works in a practical and interesting manner. You really have fun whilst learning ! And you end by possessing a first rate piece of home equipment with the full knowledge of how it operates and-very important -how.to
service and maintain it afterwards. Such knowledge can also be used to service other person's equipment if needed.
In fact for the " Do-it-Yourself" enthusiast, the hobbyist. or those wanting help with their radio career training exactly what is needed and it can all be provided at very moderate cost, easy payments available. Post the coupon now, for full details. There is no obligation of any kind.

BUILD YOUR OWN RADIO EQUIPMENT HI-FIINSTALLATION \star TESTGEAR-AND

Wo Mathematics To RADIOSTRUCTOR (Dept. G.28), I 46, Market Place, Reading, Berks Please send full details of your Radio Equipment Courses without any obligation to
Name...

BRASS, COPPER, BRONZE, ALUMINIUM, LIGHT ALLOYS

Rod, Bar, Sheet, Tube, Strip, Wire 3.000 Standard Stock Sizes. NO QUANTITY TOO SMALL List on application.
H. ROLLET \& CO. LTD. 6. CHESHAM PLACE, LONDON. S.W. 1 SLOane 3463
Also al LIVERPOOL LEEDS MANCHESTER BIRMINGHAM

Avert sumer hacksaw a First Class Sheffield Product = PRICE $1 / 6$ complete
spume sues $2 / 6$ Pet ozeren the inexpensive tool for all hacksaw work on steel, non-ferrous metals, etc.

- Easy to use
- Easy to carry
- Gets into all those awkward spots
- Spare blades also available in High Speed Steel

Have you had your copy of

"Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Enginecring. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES "s should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appointments Department.

WHICH OF THESE IS YOUR
 PET

A. ECHANICAL

ERGINEERING Cen. Nech. Eng.-Mainrenance - Draughtsman-ship-Heary Diesel-Die \& Press Tool Work-Weld-ing-Production Eng.Mig \& Tool Design-Sheet Metal Work - Works Man gement - Mining - ${ }^{\text {g }}$ R AUTOMOBILE

ENGINEERING
Gen. Automobile Eng.Maintenance \& RepairsHigh Speed DieselGr.age Manosement

ELECTRICAL
ENGINEERING Gen. Elec. Eng. Elementory \& Advanced Elec. Techrology - installations -Droughesmanship-SupDly - Maintenance -

BUILDING

Gen. Building-Heating \& Ventilation - Architectural Droughesmonship - Sup-vering-Clerk of WorksCorpentry and joineryOuontilies Valuations.

WHAT THIS BOOK TELLS YOU

I HOW to get a better paid, more interesting job.

* HOW to qualify for rapid promotion.
* HOW to put some valuable letters after your name and become a "key-man" quickly and casily.
\& HOW to benefit from our free Advisory and Appointments Depts.
* WHERE today's real opportunities are... and HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering thot appeals to you. 144 PAGES OF EXPERT CAREER-GUIDANCE ELECTRONICS Gen. Radio Eng.-Radio Servieing. Maintenance \& Repoirs - TelegraphyTelephony - TelevisionC. \& G. Telecommunica-tions-Electronic Eng.-Automarion- Digina Com-purars-Dato Processing -putors-Daio Processing Instrumentation.
CIVIL ENGINEERING Gen. Civil Eng. - Sanitory Eng--Structural Eng.Rood Eng. - Rein

WE HAVE A WIDE IRANGE OF AERONAUTICAL COURSES AND COURSES IN FORI:STKY, TIMBER TECFINOLOGY, PLASTICS,
G.P.O. ENG., TEXIILE TECHNOLOGY, ETC., ETC.

One of these quatifications would increase your earning power

> WHICH ONE!
A.M.I.Met. ${ }^{\text {, A.M.I.C.E. A.M.I.Prod.E., B.Sc., A.M.Brit.I.R.E. }}$ A.F.R.AE.S., A.M.I.M.I. L.I.O.B., A.R.R.B.A. A.M.I.H. \& V.E., M.R.S.M., A.R.I.C.S., A.M.I.E.D., CITY GULDD, COMMON PRELIM., GEN. CERT. OF EDUCATION, ETC.

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

410A, COLLEGE HOUSE 29-31, WRIGHT'S LANE, KENSINGTON, W. 8.
Phone: WEStern 9861

Please send me FREE and without obligation, a copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME
ADDRESS.

WRITE IF YOU FREFER NOT TO CUT THIS PAGE

LHE B.I.E:T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Vol. XXVII

```
Editorial and Advertisement Offices "PRACTICAL MECHANICS" George Newnes, Lid., Tower House, Southampton Street, Strand, W.C.2. (c) George Newnes, Led, \(\mathbf{1 9 6 0}\)
Phone : Temple Bar 4363
Telegrams : Newnes, Rand, London SUBSCRIPTION RATES
Including postage for one year
Inland - - - 20s. per annum Abroad \(=-\quad=-18 s .6 d\). per annum
Canada . . . - 18s. 6d. per annum
Copyright in all drawings, pherographs and arricles published in "Practica" Mechanios" is specially reserved throughout the comntries siepatory in the Berne omvention and the U.S.1, Reproduction or imitations of any of these are therefore erpressly forbidden.
```


CONTENTS:

$\begin{array}{lllll}\text { Fair Comment } . . . & . . & 197 \\ \text { A Transistor Radio } & \text { Control } & \\ \text { Receiver }\end{array}$
Using Resin-bonded Glass Fibre 200
Repairing a Clinker-built Boat... 203
Science Notes 204
Building Your Own 3-4 Berth Caravan

205
Choosing a "Mike " 207
Building the Luton Minor ... 209
Foot Bellows for Brazing and Small Forges

Principles and Practice of Focusing
The Use of D.C. Motors on A.C. 217
Automation in America 220
Puzzle Corner 222
Letters to the Editor 225
Trade Notes 226
Your Queries Answered 229
The CYCLIST SECTION
Comments of the Month $\mathbf{I} 7$
Riding With the C.T.C.
18

CONTRIBUTIONS

The Edirar woill be pleased 10 consider articles of a pracrica! nature sturable for publication in "Practical Mechanics." Such articles should be wristen on one side of the paper onlv, and should include the name and address of the sender. Whilst rhe En'itor does not hold himself responsible for manuscrip:s, every effort veill be made to return them if a stamped and addressed envelope is enclosed. All correspondence inreuded for the Editor should be addrassed: The Edivor, "Practical Mechanics, Georse Newnes. Lid. Tower House, Southamplon Streef, Sirand, Londorts W'.C. 2

FAIR COMMENT

MAN-MADE FOOD

THE idea that the population on the Earth might one day exceed its capacity for food production is not new ; in fact it has been discussed for many years. Now, however, it has gone far beyond the idea stage. In about 60 years' time the Earth's present population will double, if the rise in the birth-rate continues, and it will be impossible, by conventional agriculture, to feed so many people. The fearful spectre of starvation has always haunted some part or other of the human race, but now it would seem that man, as a whole, is threatened.
Obviously, some new method of food production must be found and found quickly. It is comforting to know that work has already been started on the problem.

A dish quite commonly found on the menu in Thailand is plankton. This comprises millions of tiny marine organisms, which can be harvested in fine nets trawled behind boats. Scientists have already found that its fishy taste can be eliminated. The amount of plankton known to be in the vast storehouse of the sea is almost inexhaustible.

The sea, of course, also provides ; nan with a vast quantity of food in the form of fish, and although modern science has enabled the quantity of fish caught to be increased, the whole fishing industry could be revolutionised by the introduction of fish farms. If some way could be found of building sea fences (electric fences, perhaps) shoals could be kept in one area, the natural feeding amenities improved and the fishes' enemies kept out. The quantity of fish on the farm could be kept always at a certain level and the surplus taken out with nets for consumption as required.
Another source of food has been established in algæ, an example of which is the green scum seen on ponds, etc. Despite its unwholesome appearance this is completely edible and has ten times the calorific value of wheat. It can be grown in huge shallow trays both cheaply and quickly.

Finally, scientists have a master plan to make food on a factory scale synthetically by imitating the process of photosynthesis used by plants. The raw materials used will be water, air and mineral salts and the products will be the basic food elements, fats, proteins and carbohydrates. Further processing will turn these into synthetic meat, bread, etc.

The taste of food will not be neglected either. The basic substances which give foods their characteristic flavour will be analysed and incorporated in the new synthetics. Nor is there any reason why the texture of natural foods cannot be imitated. Even the most fastidious of gourmers will not have cause for complaint.

PRIZE FOR FIRST MAN-POWERED FLIGHT

MAN-POWERED flight has been much in the news of late, and the Man-powered Aircraft Group of the Royal Aeronautical Society has been interested in the problem for some time. To encourage other interested persons or groups a prize of $£ 5,000$ has now been offered by Mr. Henry Kremer for the first successful flight of a man-powered aircraft designed, built and flown within the British Commonwealth under conditions to be laid down by the Royal Aeronautical Society.

In the past, our readers have frequently surprised us with their ingenuity, and we hope that the challenge of man-powered flight and the large reward so generously offered will capture the interest of more than one "practical mechanic." We should be pleased to hear from anyone who has experimented with this type of craft.

INDEXES FOR VOL.UME 26

ACOMPREHENSIVE index for volume 26 of Practical. Mechanics, which incorporates issues dated from October, 1958, to September, 1959, inclusive, is available price is. 3d. from Post Sales Dept., George Newnes, Ltd., Tower House, Southampton Street, London, W.C.2. We would also remind readers that attractive self-binders for Practical. Mechanics are available, price irs. 6 d . Copies can be inserted as received.

The March, 1960, issue will be published on February 26th. Order it now!

Transistor Model Control Receiver
 By F. G. Rayer

Only One Transistor is Used and Power is Obtained from $4 \frac{1}{2} \mathrm{~V}$. Dry Batteries

T
HIS receiver is for short rance control only, and can be fitted in quite smal boats or other models, as it is only approximately $1 \frac{1}{3} \mathrm{in}, X I \frac{3}{3} \mathrm{in} . \times 3 \mathrm{in}$, including the relay. A good approximation of the size can be gained from Fig. 6. The current needed is under 2 mA , at $4 \frac{1}{2} \mathrm{~V}$., and this can be obtained from three small dry cells in series

A small mobile model can be run indoors, while small boats can be operated successfully on small garden or sailing ponds which are unsuitable for large models. The receiver
is intended for such purposes, where the
range is small, and high sensitivity is not needed As a guide to the results to expect a single valve transmitter drawing 30 mA at 230 V , and equipped with a 3 ft . aerial was found to cause a current change of about .2 mA in the receiver, when the latter was used with no aerial at all, at about 8 ft . to loft range. This was easily sufficient for a small model indoors, because the usual type of model control relay can be adjusted to open and close with a ImA current change. With a longer transmitter acrial,
or an aerial on the receiver, range can easily be increased. But this is scarcely necessary when working a model within the confines of an average room

The circuit is shown in Fig. 2, and uses a crystal diode which provides bias for a cheap red-spot type transistor. The relay is the popular twin-coil 3,400 ohm model control type. Receiver adjustment is extremely easy, compared with a super-regenerative valve set. But more careful setting of the relay is required, because the current change is not very great.

Fig. 1.-An enlarged perspective view of the completed receiver showing some of the principal wiring.

Fig. ,2.-The theoretical circuit.

Receiver Construction

Any small coil tunable to $27 \mathrm{mc} / \mathrm{s}$ will do. It can be self-supporting, or consist of eleven turns on a $\frac{3}{4}$ in. diameter former. A notched and ribbed former simplifies winding, but is not essential. Wire of 22 to 18 s.w.g. or so is satisfactory. For a selfsupported coil, 18 to 14 s.w.g. will be more rigid.
Receiver wiring is shown in Figs. I and 4.
The aerial tapping is at about the centre of
the coil. If a very short aerial is used, this can be taken directly to the diode end of the coil.
The transistor leads are left reasonably long, and soldered to tags which serve as junction points for other wiring. Short, stiff connections support the 30pF air-spaced trimmer.

The tag board is held by a $41 / 2 \mathrm{~V}$ long boit, as shown in Fig. 5. A bracket and Paxolin strip support the coil. This type of relay is often sold with a metal bracket forming a base plate, and holding tags for winding and relay connections, and it is only necessary to bolt the Paxolin strip to this. Note that battery positive is common to this bracket, through the tag mounting bolt.

Further aid for wiring can be obtained from Fig. 3.

Receiver and Relay Adjustment

A piece of ebonite rod or tube should be shaped to engage with the rotating tap of the trimmer. A $2 \mathrm{~mA}, 5 \mathrm{~mA}$ or similar meter

Fig. 3.-Photograph of the completed receiver.

Fig. $4 \underset{\text { (Right).-Wiring }}{\text { details. }}$

Fig. 6.-A photograph giving an approximate idea of size.
is connected in series with the battery. The transmitter is then switched on, and the trimmer rotated until a dip in current is observed on the meter. This will be from ${ }^{\frac{1}{2}} \mathrm{~mA}$ or so, according to the transistor, down to 1 mA or so, depending on range. If an aerial is added, or changed, or any modification made which may change stray capacity across the coil, the receiver should be re-tuned. The correct tuning point is that where the meter falls to the lowest reading.
The relay should be adjusted so that the movement of the armature is extremely small, and the distance between armature and bobbin poles should also be as small as possible. Armature tension is then set so that the armature is just held when the transmitter is off. Keying the transmitter will then cause the relay armature to be released, up to such distance (depending on aerial, etc.) where the current drop becomes too small to work the relay. This point will be the maximum working range of the equipment, and the model must, therefore, be kept within this limit. Most models, even of very small size, can easily carry a stiff vertical wire some 12 in . or so long, as aerial without this looking out of place. This will usefully increase range, compared with that achieved with no aerial at all.

No licence is necessary to operate a radio control receiver, but one will be required to operate a transmitter. This must be obtained from the following address: Radio and Accommodation Department, Headquarters Building, G.P.O., St. Martins-le-Grand, London, E.C. .

There are no tests to be passed or other complications and the licence is valid for five years.

MARCH ISSUE ON SALE SHORTLY
PRACTICAL HOUSEHOLDER
Principal Contents:
A Timber Workshop; Antique Room; Bathroom Stool;
Doctor in the House; Colourful Garden Paths, Smoky
Chimneys, Planning an Ideal Kitchen; A Garden Water
Pump; Tap Maintenance; Exciting Wallpapers for 1960:
Fitment for a Recess; A Modern Standard Lamp; TV
Cabinet for the Lounge, Making a Nursing Chair: A Serving
Hatch; Winter Concreting, Etc., Etc.

A Description of Some of the Basic Procedures

THIS material is still comparatively new when considered in relation to wood and metal, but offers numerous advantages such as ease of working, strength and lightness and simple repair techniques. It is basically a combination of glass fibre material and a cold cure liquid resin used in conjunction with a hardener or catalyst. Other materials will Be found useful in the various aspects of using resin-bonded glass

fibre, but these will be dealt with as the need for them arises.

Making Moulds

The one item that is, in almost every case, essential is some sort of mould and this, of course, varies a great deal according to the laminate being made.
The simplest form of mould is that used for moulding a flat panel and in this particular case a sheet of glass can be used, covered with wax-polish to facilitate the removal of the finished laminate. It will be noticed that one side of the panel is smooth, i.e., the side in contact with the sheet glass, while the other shows the pattern of the material used. The principle applies throughout all glass fibre moulding work-one side takes on the same surface as the mould, while the other surface depends upon the work of the constructor.

Male or Female ?

1 This question of a smooth or rough surface is one of the deciding factors between the use of a male or female mould. If a smooth outer surface is required, such as for a boat hull, a female mould must be used, see Fig. r. If an item such as a hand basin is being built up requiring a smooth inner surface, a male mould must be used (Fig. 2). The terms "male" and "female" are always used to describe moulds and refer to whether the laminate is made over them or in them. A female mould is more often used as it is the outside of the laminate which usually has to be finished, as in a car body. These are far more difficult to make than a male mould. The problem is sometimes solved by making a male mould first,
laminating over it to form a female mould and using this to produce the final laminates, see Fig. 3. The female mould made in this technique can be used over and over again, but the male mould is possibly no longer required and may be scrapped.
Male moulds are often made on a temporary basis, with their future destruction in mind. Thus a wide variety of materials can be used, including cardboard, wood, modelling clay, plaster of paris, and wire netting. Fig. 4 shows a typical mould for making a car body. A wooden frame is covered with chicken wire, which is used to support plaster of paris, sanded smooth when set. In cases like this, where it is obviously impractical to make a female mould, the finished lami-
 nate can be formed over the male mould, using suitable fibre glass materials and being finished with disc sander and files, etc.

Whatever technique is used, the surface of the mould which is to impart the final surface to the laminate must be finished as smooth as possible, because all imperfections will be faithfully transferred to the laminate. Smoothing can be done by using shellac or mould release agent on the mould to avoid a porous surface and small inequalities, this being finally sanded when dry.
Sometimes it is possible to use the actual article being copied as the mould, e.g., a motorcar wing or boat hull could be used as a male mould for a laminate and this used as a female mould for making the copy. This was the technique shown in Fig. 3.
Other more complicated and more accurate techniques are used in industry, but the foregoing is in general the best method for the amateur.

Making a Laminate

As already described, the mould should be coated with shellac to eliminate porosity and this should be followed by a coat of release agent, so that the laminate can be removed when it is finished. As a final step before starting the laminate proper a gel coat is applied, i.e., a layer of resin, plus 10 per cent. Thixotropic paste resin, with no glass fibre. Catalyst should be added to the resin as per the maker's instructions, but in general this can be a quick-serting mix as it does not take long to apply. Use a brush to put on an even coat and allow to gel. While this is taking place, wash out the brush with methylated spirits or cellulose thinners. When the surface has reached a firm, tacky state, another coat may be applied and left to set to the same state of tackiness.
Mix the resin and catalyst to impregnate the glass, making sure when adding the catalyst that sufficient time is allowed for
impregnation. Now apply the first lamination coat, add the glass fibre to the wet surface, smoothing out any wrinkles and creases. When thoroughly mixed it should be painted or rather pressed into the first layer of glass mat by means of the fingertips or a roller or by using a stippling action with the brush. Make sure that the glass cloth is completely covered and thoroughly saturated. There must be no air bubbles left and the cloth should adhere closely to the mould.

Apply a second coat of laminating resin with a brush. This is followed by the second layer of glass mat and the impregnating coat of resin. This will take longer to saturate the glass cloth but will do so after about ten minutes i stippling and rolling will cause $^{\text {sen }}$ the layer to settle down smoothly. This procedure should be repeated until the desired thickness is built up. Leave the completed laminate to harden for about 24 hours and then start removing it by easing it away from the mould round the edges. Judicious treatment with a soft-headed mallet may help and finally a thin knife blade or a screwdriver will help to ease the two apart.

Trimming

Use a hacksaw blade for trimming or, better still, an electric saw or abrasive wheel. Do not use tinsnips. For any finishing work which may be required, sharp coarse-cut files can be used and either Surform or Stanley shapers will be found useful. This can be followed by treatment with "wet or dry" auto papers, used for rubbing down cellulose, followed by an ordinary metal polish.
Before painting, all traces of release agent must be removed by washing with warm water, as they will prevent adhesion of paint.

Reinforcements and Stiffeners

When it is required to add rigidity to a large flexible panel, ribs may be bonded to either surface. They may be of any form-

Fig. 3.-The sequence of using a male mowld, then using the resulting female laminate as a mould to form the final laminates.

Fig. 5-Three examples of bonded ribs for reinforcement.
round, wooden dowels, hollow metal tubes, square section wooden bars or a preformed tube made from glass scrim and resin. Alternatively, the rib may be left hollow. The method of including these ribs can be seen in Fig. 5. The ribs are best planned in advance and included as the lamination pro-

Fig. 6.-Methods of
including nuts, bolts and brackets in a laminate.
ceeds, but they can be added to an existing sheet, provided the surface is well roughened before bonding the reinforcement to the surface with layers of glass and resin.
Panels which have to be bolted together may have either the bolts or the threaded nuts included in their fabrication, as shown

Fig. 4 (Left).-A typical temporary mould for moulding a car body.

Fig. 8 (Right).) -The procedure for repairing tears and splits.
in Fig. 6. Similarly, brackets may be included in the laminare by spreading the ends and covering with layers of glass and resin.

Jointing

Fig. 7 shows butt and lap joints. The procedure is first to clean the surfaces with a wire brush or sanding disz. Then put the sheets into position and cover the area of the joint with glass cloth and resin as shown. The method of adhesion of a lap joint is a layer of resin, but unless the sheets are to be very close, they should have a layer of glass ribbon in between.

Riveting and screwing procedures are the same as for other materials.

Repairing with Glass Fibre

Varying methods of repair of damage to glass fibre structures are employed according to the nature of the damage. Where the laminate has not been fractured, but surface cracks have appeared, one or two sheets of tissue-thin glass fibre should be used. Cut these until they overlap the crack by about 2 in. on each side. Brush the resin and hardener over the area to be covered and apply the glass tissue, stippling until well-saturated. Repeat the process if necessary and leave to dry for about 24 hours. Finally sand the repair with a disc sander to the surrounding contour and finish with "wet or dry" paper, using soap as a lubricant. Finally, finish to match the surrounding area.

Repairing Tears and Splits

Use a thicker type of glass material for this repair, cut about 2 in. wide. Three pieces will be required and they should be laid as shown in Fig. 8, after roughening the base material. The same procedure of laying each piece of glass cloth on a coat of resin and impregnating it with more resin must be followed, also the same technique of sanding and finishing. The only difference in procedure is that all rough and jagged holes must be filed down or cut away before sanding the area surrounding the repair to avoid splits remaining.

Large Holes and Contoured Surfaces

In repairing large holes, it is usually necessary to have access to the underside of the part to be repaired, so that some support for the glass mat repair material may be arranged. With flat surfaces, this can be a permanent application of glass fibre on the under surface. With a curved surface the

An Ion Rocket for Space Travel

A Three Million mp.p. Space Ship Visualised

support must be shaped to conform to the existing contour. It can be prefabricated from almost any suitable material and to ensure easy removal the shaped surface should be coated with release agent.

Trim or file away the jagged edges of the hole and sand the surrounding area. Put the support into position and apply a coat of resin mixed with hardener over the support and the surrounding area. Place a piece of glass mat, shaped to fit the hole, in position and thoroughly impregnate it by stippling. If necessary insert further layers to fill the hole. When this has been done. a larger piece of a size sufficient to overlap the area of the hole by about 2 in , all round is positioned and stippled to saturate in the usual way. Sanding, finishing and painting are as previously described.

Skinning Wooden Boats, etc.

The terms "skinning " or "sheathing" refer to the process of enclosing the wooden hull of a boat or covering a caravan roof or commercial vehicle body with a skin of glass fibre and polyester resin. This process preserves the woodwork against deterioration and rot and, in the case of boat hills, gives extra protection against termites and marine borers, gives extra waterproofing and water tightness and reduces the maintenance and repainting necessary.

Woven glass fibre cloth is best for this operation and the number of layers required depends upon the strength required and the size of the boat. Boats up to 14 ft . long require only one layer; it makes no difference whether they are clinker- or carvelbuilt.

Preparing the Boat Hull

Allow to dry out thoroughly and remove all paint and varnish with a disc sander. Leave the surface rough and remove all metal fittings. Any protruding nails or rivets must be punched below the surface and cracks, holes and joints filled with a mixture of resin, hardener and filler powder, mixed to the consistency of putty.

Cut the glass cloth to the size required -it should be laid in a fore and aft direction along the hull and athwartships when covering decks. At least 2 in. overlap must be allowed for each piece. Precutting is important because the pot life of the resin after the hardener has been added is only about 45 minutes at 68 deg. F.

Start with a gel coat of the resin (plus Thixotropic paste resin as before). When this has been evenly applied with a brush and has become tacky, smooth the glass cloth into position over the area being covered using drawing pins to hold it if necessary. This is followed by the impregnating coat, which should also have colour included if required. This is stippled into the glass cloth, making sure that it is completely saturated and that there are no air bubbles and no creases or folds left on the surface. Use the minimum amount of resin that will saturate the glass cloth. When a satisfactory surface has been obtained, leave to harden for between 12 and 24 hours.

Finishing

Trim off all ragged edges with a hacksaw, file, etc., and sand them smooth, finally sealing with resin mixture. Give the whole hull a final coat of resin mixture. When this is dry sand down ready for polishing or painting. Replace the metal fittings with a litt!e resin mixture round the screws for waterproofing. The boat should only be. skinned on the outside, as a double skin would cause rot.

This article is reproduced by kind permission of Douglas Holt, Ltd., Vulcan Way, New Addington, Surrey, who supplied the material on which it is based.

THE illustration below is an artist's conception of an ion rocket vehicle of the not-too-distant future. As big as to-day's generation of inter-continental ballistic missiles, it would be propelled through the vacuum of space at thousands of miles an hour by a few pounds of thrust.

The propulsive force for such a vehicle would be provided by the discharge of ionised particles, rather than gas as in conventional rockets. The wing-shaped attachments to the vehicle illustrated are radiators to reject excess heat. The
alkali metals cesium and rubidium.
Vaporised; the propellent would be fed into an electrically charged chamber. There, an electric arc or a metallic plate generating 100 times the heat of a large electric stove would knock loose an electron from. each molecule of vaporised propellent. In losing an electron, each molecule would assume a positive charge and its remaining bulk thus become an ion.

The newly created ions would be pulled out of the ionising chamber by the attraction of an electro-static field and

An artist's conception of an ion rocket vehicle of the future.
direction of flight would be controlled by swivelling rockets.

Rocketdyne, a division of North American Aviation Inc, has a team of scientists and engineers studying ion propulsion and designs for nuclear rocket engines. It says that "practical steps" have been taken towards the first ion rocket vehicle.

How it Works

Project engineers foresee ion rocket craft being, thrust through space by a light-giving current of charged particles a million times greater in number and weighing 350,000 times as much as the stream of electrons in a television picture tube.

A stream of "heavy" ions accelerated through a thrust chamber to velocities of 400,000 miles an hour could produce about one pound of thrust. This force would be ineffective for propulsion at sea level, but in space it would suffice to accelerate a five-ton vehicle to speeds of thousands of miles an hour.

A Rocketdyae engineer says a rocket engine that could create ions and harness them for propulsion would employ a chemical propellent whose molecules offered the highest possible weight. He suggests as the best propellents uranium tetrachloride, thorium, mercury and the
then jolted by 12,000 volts to effective velocities of 300,000 to 400,000 miles an hour.

The current of speeding ions would be harnessed for propulsion by being directed through a cylindrical thrust chamber roughly 2 ft . 9 in . in diameter. Propulsive force would come from the vehicle's reaction to the escape of ions from the chamber.

A further view held is that ion propulsion would supplement the capabilities of chemical and nuclear rocket engines and that development of a usable ion rocket engine would be centred in thrust chamber investigations, propellent studies and the development of high specific power generation systems.

It is interesting to note that Rocketdyne is thus planning a unit with only a few pounds of thrust at the same time as it is working towards a rocket engine in the one million to one-and-a-half million pound thrust class. This is the engine ordered by the National Aeronautics and Space Administration for American space exploration in unmanned, or perhaps, manned, vehicles-by the mid-nineteensixties. The projected ion engine would be capable of acceleration to three million m.p.h. and would operate on a "commonly obtainable " material costing 1s. 9d. to 4s. per pound.

for the stringers (one on the port side, one on the starboard); and of a size sui.able for the tingles which were to cover the cracks on the outside of the boat. A supply of $1 \frac{1}{2}$ in. copper nails and roves (washers) was provided, together with 3 iin. brass woodscrews for the new knees, Tar and paint were purchased. The tools needed were simple ones: two hammers of medium weight, a 2 lb . maul, pincers for nipping off the surplus nail and a tool improvised from a 2 in . length of iron piping, the bore of which was just wide enough to take the shank of the copper nails. This tool was used to force the rove firmly over the shank of the nail and into the frame before the final riveting process (see Fig. 4). In addition, a roft. length of fall pipe was fitted with tightly-fitting wooden plug at one end and a coke brazier was improvised from an
old coal-scuttle. These formed the steaming apparatus.

Fitting the Frames

The site of each frame was first given a coat of tar and allowed to dry. The new frames having been sawn to the correct size, the fall pipe was arranged as shown in Fig. 5 and water poured into it until it nearly overflowed. The brazier was then lighted, the end of the pipe ligitly plugged with rag and the water brought to boiling point. The frames were then entered into the pipe, first securing a piece of string to their ends for withdrawal purposes. After about 15 minutes, the frames were extracted one at a time, carried quickly to the boat and made to conform to the curve of the boat by applying pressure from the feet and from the weight of the maul applied at the position of maxinum curvature across the bilge. The nailing positions had been previously marked on the outside of the boat with a piece of chalk and holes drilled with a $1 / 16 \mathrm{in}$. drill. The first nails were

Fig. 2 (Left).-Details of the nailing points.

entered where the curve was most abrupt.
After the nails had been hammered home, a copper rove was slipped over each of their shanks, forced nome with a hammer and the tool previously described, and the surplus nipped off with the pincers. The end was then riveted. Having fitted all the frames, the stringers were put into the steamer and fitted in a similar manner to the new frames. It should be carefully noted that, in the case of the frames, the nailing points are located through the overlap of the strakes. (See Fig. 2.)

Fitting the Tingles

The boat was turned upside down and the tingles were checked for size and shape over the cracked parts of the strakes. They were then put into the steamer, withdrawn when ready and nailed into place, commencing in the middle and working towards each end alternatively. (See Fig. 6.) Roves were fitted and the nails were riveted in the usual way.

The Knees

A piece of oak grown to an L-shape was cut into the required number of similar
pieces and shaped with one of the new shaping tools. Great care was needed to arrive at as accurate a shape as possible, using a cardboard template. On completion the knees were drilled to take 3 in. brass woodscrews. (See Fig. 3.)

Painting

The bottom of the boat, both inside and
out, was given three generously applied coats of hot tar. The rest of the boat was given a priming coat and two topcoats of boat-paint. When dry, she was moored and allowed to fill with water. After three days the shrunken woodwork had completely taken-up and the boat was thoroughly seaworthy.

Unbreakable Mainspring

SAMUEL FOX AND COMPANY, LIMITED, a subsidiary of The United Steel Companies, Limited, have developed a new stainless alloy specifically for the manufacture of watch and instrument springs. Known as Fortinox, the new alloy is already being used in the large-scale production of stainless unbreakable mainsprings for watches and precision instruments.

Previously, unbreakable stainless spring alloys have had to be imported into this country.

World's Longest Moving Sidewalk

FNGINEERING history will be made early this year when Australia's firstand the world's longest-moving sidewalk is built in Sydney.
It will be more than 700 ft . long and will run underground from a car parking station in the Domain to a subway.
A Newcastle firm, Morison and Bearby Pty. Ltd., has secured a contract with the Sydney City Council for the construction and installation of the sidewalk at a cost of
approximately $£ 86,000$. Sydney's sidewalk a twin-track type, will have a capacity of 600 minute (about $1 \frac{1}{2}$ m.p.h.). Passengers will persons a minute and will travel at 132 ft . a when fully loaded.

The second mobile oil drilling platform to be conszructed in the United Kingdom has been built at Wallsend-on-Tyne. The $£ 500,000$ Triton contains 1,500 tons of steel, has been built for operations in water depths up to $120 f t$. and is fitted with four retractable legs, each of 200 ft. in length and 8 ft . in diameter.

This Instalment Concludes Body Construction and Deals with Making the Windows

(Continued from the January issue).
roof, must all be faired-off to the main run of the curve and slopes so as to get the maximum surface for setting-

THE tops of the side-frames have to be "nipped-in" two inches on to the headboards of the ends. This places the side under slight tension, and helps to give rigidi.y and stability.

The middle spars of the end frames are attached to the corner bends with small right-angle brackets, as can be seen in Fig. 9 b (January issue). This saves cutting an awkward joint which might weaken the bend.

The Roof Framing

The three roof bends can have their curves shaped whilst the sides are being
down the roof surface.

Wheel Boxes

It is useful to build these in before the van is skimned. The construction is quite simple and shown in detail in Fig.. 12.

Skinning the Caravan

At this stage the frame appears unduly fragile and not very rigid, but the application of the skin will soon correct this.

On the van shown, the skin is $\frac{1}{8} \mathrm{in}$. thick "tempered" hardboard, which is entirely weatherproof in itself, and has a long life.
and fixing should begin at the middle of each panel, working outwards to the edges and corners, making sure that all kinks are removed and that the work lies flat. Panels should not butt up tight against each other; a gap of $\frac{1}{3} \mathrm{in}$. is permissible.

On the caravan all hardboard edges should be bedded on to a good layer of mastic sealer, and all points filled with this substance well pressed home.

Before painting, the hardboard should be primed with special hardboard sealer paint. All nails should be driven flush or a little below the surface. All holes and blemishes should be stopped up after priming (putty will do) and rubbed down well.

Bearing in mind these general points,
 completed.

The roof bends are set down into their sockets, being held with cramps until the screws are put in.

It is as well to offer everything on screws only at first, leaving the final gluing unil all adjustments have been made.

Finally, the ends of all rafters are fairedoff to the sides. The ends of the roof-bends are cut level. and are joined across with finishing strips of 1 in. \times in. soft wood, glued and nailed into place (Fig. II).

The rafters and the centre roof-bend, together with all other protrusions on the

Fig. Ir. - General view of roof framing.

Hints About Hardboard

A few general points about the fixing of hardboard will be found useful. Each board should be well soaked with water for at least 48 hours; the backs should be sprayed quite wet, and the boards stored back to back. This treatment, together with adequate fixing battens (the recommended distance is Ift. 3 in ., but the 1 ft . 6 in . of the framing seems adequate), will help to prevent distortion. The best nails to use are the special hardboard nails with square shanks and "lost heads" made in coppered steel. They shquld be used at 3 in. to 4 in . intervals,

the windows being cut out beforehand. Then the ends were dealt with, being allowed to overlap the sides at the corners.

The Roof

The roof was put on in two pieces, these being offered to the job, marked off and cut. The first piece is fairly easy, being adjusted to the middle of the centre roof bend first and trimmed off at the edges after fixing. The second piece has to be adjusted to give a neat joint against the first at the centre. This is best done by trial and error; the hardboard is easily cut and planed. Again it is better to allow the roof to overhang at the eaves, and to make this tidy after fixing. All sharp corners should be glasspapered off, and all nails made flush before applying the roof canvas.

This is plain canvas and need not be of excepional quality. It should be 4 yd . long and 6.t. 6 in . wide. From one end strips 4 in . wide are cut, which are used first to seal the central joint, and any others if the roof has been put on in smaller sections.

The canvas can be fixed either with an adhesive, or bedded down on to wet paint. A liberal coat of either is applied along the joints, and the canvas strips are pressed firmly into place. When the sealing strips are dry, the main canvas is rolled and placed conveniently at one end of the roof. An area about Ift, or so wide at a time is painted with adhesive and the canvas is

Fig. 12.-Simple
Fig. 12.-Simple
construction of construction of
the wheel box.

Tempered hardboard
lining. All well
painted two coats bitumen on
outsides.

to leave an overhang of about $1 \frac{1}{2}$ in. This is turned under and pressed on to fresh adhesive at the eaves, being fixed with copper tacks at 3 in . to 4 in . intervals. At the ends the canvas is taken right under the overhang, and is glued and tacked into the finishing strips.

When dry, the canvas is given a priming coat of lead-base paint as soon as possible. This may be followed with several more coats at the time of painting the whole van.

The Windows

All surplus spars across door and window spaces should be cut away, and the inner edge of the spaces rendered smooth.

The spaces for the door and openingwindows should be primed and any holes stopped. They may then be undercoated to help seal the hardboard. One excellent finish for these edges is to glue strips of Formica along them.

After finishing the spaces they should be most carefully measured and the making of the doors and windows put in hand.

The windows are simple enough, being plain, rebated soft-wood, with dowelled bridle-joints at the corners, as shown in Fig. 13. The hardwood glazing strips are fixed with raised-head bronzed screws, using mitred corners as shown. It is as well to make up the whole window before glazing. This is done with $240 z$, glass on ordinary linseed putty, and it is necessary to prime all parts where the putty is going.

The fixed-window frames are nailed into place before glazing, and the openingwindows are best hung without the glass. If the frames have not been made too tight little difficulty will be had with fitting these.

Each of the opening windows requires two friction staysets and at least one screwup type of window-fastener of the type shown in Fig. 14.
(This short series will be concluded next month.)

[^0]A
TAPE recording system may be considered as a chain, and as with most chains, it is only as strong as its weakest link. In electrical systems, the weak links are at points where electrical energy is transformed into some other form of energy or vice versa. Distortion is generally introduced due to non-linearity in the characteristic of the transfer device. In electro-acoustic systems such as record players and radio receivers, the loudspeaker is a particularly weak link and while the tape recorder shares this weakness, it can show yet another, the microphone. It does not matter to what expense one is prepared to go over the rest of the equipment, the quality of reproduction will be as good, and only as good, as the microphone. There are, however, different types of microphone and, as may be expected,
use under all conditions. A description of the various types of microphones available and their uses, with particular reference to tape recording, follows.

The Carbon Microphone

The carbon microphone is probably the best known of all microphones, and is certainly the earliest. It.consists, as shown in Fig. Ia, of two plates, and between them a number of loosely packed carbón granules. One of the plates forms the diaphragm and a connection, while the other plate forms the second connection and the backing plate to the instrument. The microphone works on the principle that sound waves falling on the diaphragm cause a pressure to be applied to it, so that the carbon granules become compressed, thus decreasing the resistance of the microphone. The resistance of the microphone thus follows inversely the amplitude of the sound pressure applied to the diaphragm. Owing to the inverse nature of resistance in Ohm's Law, the current flowing from the microphone is a replica, both in amplitude and frequency, of the original sound.

This type of microphone suffers from the disadvantage that it must be polarised. Studying Fig. Ia again, we see the necessity of the battery in the microphone circuit, In order to keep this polarising voltage away from the circuit which follows, a microphone transformer is connected into the circuit. The secondary of this transformer would be wound to match the circuit

Fig.:1.-(a) Carbon microphone, (b) carbon microphones in push-pull. a

operated microphone. A similar instrument, but one capable of much better quality, is the condenser microphone, which consists basically of two plates insulated from one another. One plate forms the diaphragm, while the other becomes the backing plate. The instrument is virtually a condenser, with capacity between the two plates. Sound waves falling upon the diaphragm, deflect it so that the capacity of the instrument varies. Since capacity is itself a passive quality, it is neeessary to polarise the microphone, and amplifiers intended to work with condenser microphones, usually bleed a D.C. voltage from the H.T. line as. a polarising source. This potential, is usually of the order of $120-180$ volts, and in order to keep it from the grid of the first valve, a blocking condenser of suitable value is connected between the microphone and the grid.

This Question is

 Discussed with Par. ticular Reference to Tape Recording By B. F. Wilkinson
Choosing

Fig. Ib shows a more elaborate circuit, using a special kind of microphone, consisting basically of two carbon elements with a common diaphragm between. When a sound pressure wave falls upon the diaphragm in the direction shown by the arrows, the resistance of microphone A decreases, while that of microphone B increases. This means that is becomes larger while i_{2} becomes smaller. In responding to the negative half cycle of pressure the conditions become reversed. In this way the output of the microphone is considerably greater than for a standard carbon instrument.

Now carbon microphones have important uses in telephone systems, where their robustness is a considerable advantage, and they are also used in radio. telephone systems. While they can be used in magnetic recording systems, they can only be recommended for use in systems recording speech only, owing to the poor quality of reproduction. While the output is good, carbon instruments tend to be noisy. Sound waves cause the carbon granules to be compressed, and this motion gives rise to a harshness of tone, which would not be tolerated in a system where quality was required.

The Condenser Microphone

The output of the carbon microphone depends on the deflection of the diaphragmthat is, the farther the diaphragm is moved by the sound pressure the greater the output. This kind of microphone is known as a pressure-

With most microphones, the output is a function of the active area of the diaphragm, and the frequency response is an inverse function of the area. This means that to increase the output, it is necessary to increase the diaphragm area, but in doing this the frequency response falls off in the region of the higher frequencies. In the case of the condenser microphone, however, while the output is a function of the diaphragm area, it is also a function of the polarising voltage. So that we can improve the frequency response by reducing the -size of the
diaphragn, and keep the output at a reasonable level by increasing the polarising voltage.

The condenser microphone is particularly suitable to tape recording due to its good frequency response, especially at low frequencies (below 30 c.p.s.) and sensitivity. It should be remembered, however, that it cannot be used alone, with long lengths of coaxial cable, as the cable itself has capacity which must not be allowed to approach the capacity of the microphone. If we assume the capacity of the condenser microphone to be $50 \mu \mu \mathrm{~F}$, then at a frequency of 1,000 c.p.s. the impedance will be 3 Megohms. Coaxial cable has a capacity of about $30 \mu \mu \mathrm{~F}$

and small, and for this reason are suitable for portable recorders, where convenience is an important consideration.

Dynamic Microphones

All the microphones we have so far discussed depend for their output on the amount by which the diaphragm is deflected. Dynamic microphones operate on the dynamo effect, namely that an e.m.f. is induced in a conductor, when the conductor cuts or is cut by a magnetic field. A further extension is that the e.m.f. induced is proportional to the rate at which the lines are cut. Thus, in microphones working on this principle, the output depends not on the diaphragm deflection, but on its velocity.

Anyone who has taken a headphone to pieces will know that it consists of a magnet, pole pieces wound with coils, and a thin iron diaphragm. The diaphragm is balanced in such a way that there is a very small gap between it and the pole pieces to allow movement. There are microphones working on this principle. Sound waves falling on the diaphragm cause it to vibrate, varying the distance with the pole pieces. This creates a variation in the magnetic circuit, which in turn induces e.m.f.s in the coils
per foot. Thus 12 ft . of coaxial cable will constitute a serious drop in output, since the cable impedance at 1,000 c.p.s. will be approximately . 5 Megohm. If it is desired to use more than a short length of microphone cable, it is necessary to use either a preamplifier at the microphone, or a cathode follower, in order to reduce the impedance to a suitable level for transmission over long distances. As to the cost, a reasonable instrument can be bought for between $£ 6$ and $£ 12$, but a really good one may cost up to £250. Finally, it should be remembered that being high impedance instruments, condenser microphones should be kept away from electrostatic fields, and should be handled carefully as they are easily damaged mechanically.

The Crystal Microphone

The last of the pressure-operated microphones we shall discuss is the crystal or piezo-electric microphonc. The principle is the piezo-electric effect, which is that carefully selected and cut slices of certain types of crystal, namely quartz, Rochelle salt and tourmaline exhibit the property that when compressed between two metal plates, a potential difference is developed between the plates. If a diaphragm is fixed to one plate, then the sound-pressure waves falling on it can be made to distort the crystal, thereby generating small potential differences. Fig. 3 shows the principle of the crystal micro phone.

Crystal microphones are particularly popular, but it should be pointed out that input circuits should be properly designed to receive them, as they have a tendency to accentuate the higher frequencies. Being of the high impedance type, they require no matching transformer, but may feed the grid of the first valve directly. Like condenser microphones they cannot be used with long leads, although up to about roft. is generally possible without loss. For leads longer than this, it would be necessary to use a preamp. with a low impedance output. Crystal microphones are susceptible to heat and damp and should be treated carefully in this respect. They are popular with manufacturers of average tape recorders as they are not expensive-a good one may be bought for as little as $\dot{\text { E } 2 . ~ T h e y ~ a r e ~ l i g h t ~}$
wound around it.
Unless one is using an old high resistance headphone as a microphone, most of the microphones

Fig. 4--Dynamic microphone.

Fig. 5.-Balanced armature microphone.
higher frequencies, but they are not suitable for the recording of music.

Perhaps the most popular of all microphones is the moving coil microphone. The instrument is internally similar to a loudspeaker, except that it is smaller. The diaphragm is a cone, generally of paper, carry a light coil. The coil is wound on a thin paper cylinder and is suspended between the poles of a powerful magnet. The coil moves with the diaphragm, and its motion within the magnetic field induces e.m.f.s in it. Most moving coil microphones are of the low impedance type, as it is essential that the inertia of the coil be kept as small as possible. Moving coil microphones are particularly suitable for use with tape recorders, but they must feed a low impedance circuit. Some instruments are designed to feed high impedance inputs by the inclusion in the stand of a matching transformer. However, this immediately limits the amount of cable with which the microphone can be successfully used. They are better than crystal microphones as regards sensitivity to heat and damp, but must not be knocked or treated roughly, as this is liable to alter the orientation of the coil in the magnetic field and thus affect the output.

The Ribbon Microphone

All the microphones we have so far discussed are omni-directional, that is they tend to pick up sound from all directions. Now we come to two microphones which can be used to restrict the sound pick-up from certain directions. The ribbon microphone is of the dynamic type, and consists simply of a piece of extremely thin corrugated metal ribbon suspended between the poles of a powerful magnet. Sound waves falling normal to the surface of the ribbon induce e.m.f.s between its ends, but sound waves falling normal to either edge do not appreciably affect the diaphragm. Thus there are dead spots on either side of the microphone. Advantage is taken of this by arranging the wanted signal to be at right
angles to any undesirable noise
of this type are of the low resistance type, and can be found in ex-Government equipment, usually as intercom instruments. Being low impedance, they are suitable for use with long leads, but are generally only capable of rather low quality. They can, however, be used successfully with dictation machines or portable tape recorders where only speech reproduction is required.

Balanced Armature Microphone

The balanced armature microphone (Fig. 5) can be considered as a more advanced version of the previous type. The diaphragm does not itself

Fig. 6.-Moving coil microphone.
which may be present. So that if a programme was being recorded in a hall the ribbon microphone on the stage could be positioned such that the audience would not form part of the magnetic circuit, but has attached to it a thin bar connected to an arm of soft iron between the pole pieces of a magnet. The bar follows the movement of the diaphragm, and the arm follows the movement of the bar, causing variations in the magnetic circuit. These microphones are of the low impedance type and are generally found in ex-Government telephone equipment. For recording systems where speech only is considered they are admirable due to a good output and a tendency to accentuate the
be picked up as effectively as the artist. Since the ribbon is fairly short, it follows that the impedance of the instrument will be very low. It is in fact so low that a special transformer is needed.

Ribbon microphones are very delicate and cannot stand rough handling. Although they are difficult to manufacture, a good one can be obtained for £10 to £12. The frequency response is good, but if the sound source is close to the diaphragm there is a
(Concluded on page 222)
 diameter, this deforming can be resisted to a large extent. Special tube-bending machines are available which almost eliminate deformation of the cross-section of the tube.

Thin tubing is the hardest to bend, for the inner radius tends to buckle. Some expensive machines are made which make use of a " mole" which is a shaped rod

Fig. 37.-The three stages in marking out, cutting and finishing a tube fork-end.
slipped inside the tube and which follows up the bend, ensuring a smooth, uniform section.

Thin steel tubes can be bent using a wellgreased spring whose outside diameter is the same as the inside of the tube.

Other methods include the use of a fusible alloy or low-melting-point metal which fills the tube, is bent with the tube and then flowed out by immersing the bent tube in boiling water or oil.

The method which the amateur can best adopt is to plug one end of the tube with wood, pack the tube tightly with sand (it must be dry sand) and plug the other end. The tube is then heated with a torch or blow-lamp and bent over a radiused former. Make the former of durable wood such as oak.

Alternatively, the amateur may enlist the assistance of a co-operative plumber and his tube-bending machine. Remember to use the right bending former and follower for the diameter being bent.

Slotting Tubes

To slot the end of a tube as, for example, to take a "U" insert, mark out the full width of the slot from the centre-line of the tube on each side (Fig. 37) and drill a hole to mark the termination of the slot.

Now cut with the hacksaw and finish off with a thin flat file to size. On largediameter tubes, it is better to hold the saw at an angle and cut each slot individually, eliminating the chance of inaccurate cutting of the cther side.

Part 6.-Completing the Fuselage and Attaching the Tailplane

Fig. 38 shows the right method to employ when flattening the ends of tubes symmetrically or asymmetrically. If tubes are to be closed completely flat at the end, always heat the tube red hot first. Crush the end, using a block of wood, end-grain on. Never hit direct with the hammer.
When cutting a narrow slot in a tube as, for example, to weld in a single 16 s.w.g. plate, use two hacksaw blades together in the saw. Cut carefully, for one blade will be slightly tighter in the frame than the other.

Use a hacksaw blade with the right number of teeth per inch when cutting tubing. Very thin tubes can be sawn by keeping the hacksaw at a tangent to the surface all the way round by rotating the tube as it is cut. Remove the internal burrs

Fig. ${ }^{38 .-}$ How to flatten a tube end in a vice. Heat tube cherry-red before and after forming.

with a half-round smooth file.
Where one tube meets another, the meetDrill one V/4"dia hole

Fig. 40.- Fig for aligning drill when boring holes.
ing tube should be filed to a snug fit all round (Fig. 39). This is done with a round or half-round bastard file.

Preparing for Metal Fittings

The next job is to glue in the corner blocks between the fuselage longerons and the side bracing at the engine bulkhead.

These blocks must be a true and accurate fit.

Fit the rudder bar which pivots on the support bracket bolted to the top of the rudder bar support cross-member in the front fuselage and the $\frac{1}{2}$ in. spruce web between it and the engine bulkhead.
The top decking of $3 / 32$ in. plywood can now be glued and tacked into place on top of the cross-member and plan-bracing at the nose.
If it is desired to cover the plywood structure of the fuselage with madapolam fabric to preserve and strengthen it (this is strongly advisable in very hot or humid climates), the fabric should be applied to the sides and bottom at this stage. Instructions for doing this will be given later on. In any case, it is recommended that a 2 in . wide serrated edged fabric tape be doped to the lower corners along the fuselage length, around the edges of the stern-post and engine bulkhead and along the top longerons from the engine to the seat-back to seal the edges against moisture and preserve the wood.
 fittings must be drilled accurately. Ideally, an electric drill should be used. Back up the member being drilled with a flat piece of scrap wood so that the drill passes through into it. This way, the drill will-not tear the surface grain as it breaks through.

A useful jig can be made to ensure perfect alignment of the drill. This is shown in Fig. 40. The jig is placed over the pencilled location of the hole and the drill bit carefully centred through it.

All bolts in the fuselage pass from the outside inwards and all nuts are on the inside. Where no fitting backs on to the inside, make use of large duralumin "penny" washers to avoid crushing the timber. Trim them to fit if necessary, but always see that the trimmed edge is smooth and straight otherwise the nut will pull it into the surface grain and cause damage. Unless 'otherwise specified, mild steel hexagonheaded cadmium-plated bolts are used with a plain shank of such a length that no more than one thread-pitch shall come into contact with the wood through which they pass. Use self-locking stiff nuts except where otherwise stated.
Begin assembling the engine mounting bulkhead brackets, the wing pylon fittings, the undercarriage and lift-strut brackets and the fish-plates which join the fin-post to the stern-post. Fit also the reinforcing gusset, Pt. No. 8F, having first drilled the solid ash block to take the tailwheel leaf spring. The shield plate, Pt. No. 9F, is also fitted.
Assemble and fit the control column and

Fig. 41.-Control column and bracker assembly its bracket (Fig. 4I). Do not fit the swivelling aileron cable pulleys and their brackets to the fuselage sides until the wings are fitted later.

The Rear Decking

Cut out all the decking formers from $\frac{1}{8}$ in. plywood (grain vertical) and fix these in place to the fuselage cross struts. Cut notches for the stringers in the first one (immediately above the bulkhead at the rear of the cockpit) and the last one (at the forward end of the tailplane table). Lay in the spruce stringers and, keeping them straight, mark where they touch each of the other formers and cut notches.

The curved seat-back former must be fitted next. Leave the ply protruding above the longerons at least 8 in . at the centre and then spile off the developed curve of the decking. Do this with a batten of wood held against the first two decking formers as shown in Fig. 42.

Fig. 43.-Attaching the stringers to the curved seat back former.

> Mark at intervals with

Cut along dotted line with a fretsaw. Keep spiling batten parallel to fuselage $\$$.

Fig. 42.-Hcw to mark out the curve of the seat back former.

Cut the curved ply back to this line and mark the positions of the stringers. Do not notch the ply here-the ends of the stringers are supported behind the ply by the special saddle-gussets.

Glue all the stringers into place and fit the saddle-gussets (Fig. 43). Strengthen the seat-back ply on the aft side with shaped pieces of $\frac{1}{4}$ in. thick spruce which will also provide a larger gluing surface for the curved rear decking of plywood which is fitted next.

Bend a sheet of fore-and-aft grained $1 / 16$ in. ply over the decking and tie it with string round the fuselage whilst marking the shape with a pencil. Leave plenty of spare on the front and rear edges which can be trimmed off later. Cut a scarf on the fuselage side plywood where the decking skin will meet it, transfer the exact location of the scarf to the skin, remove it and cut the scarf on the port and starboard sides of it. Remember that this skin will be scarfed on the "inside."

Glue it on, stapling the ply to each stringer, starting from the top centre one,

Strap the ply round the fuselage to avoid unevenness due to the spring of the ply. Use tacking strips to apply setting pressure to the scarfs at each side.

When the glue has set, trim back the excess ply to the correct line and scollop the rear edges between the stringers as shown on the plan. This can best be done with a very sharp modelling knife followed by a rub with a piece of glass-paper wrapped round a cardboard or metal tube of the right diameter.

Finish off by scolloping all the decking formers (except the last) in the same manner between the stringers. This will prevent the edges of the formers from showing through the fabric covering. Likewise carefully sandpaper each stringer to remove the sharp corners. This can be done before fitting them if preferred but, if so, remember not to radius the edges over the front portion of the stringers to which the ply deck is glued.

Tailplane Attachment

The front tailplane attachment fittings are now offered up to their correct locations on the rear top longerons. The tailplane decking is not yet fitted, so pack under the top flange of the fittings with scrap $1 / 16 \mathrm{in}$. ply.

February, 1960
Drill and temporarily fit the two front fittings, making certain that a line stretched between them is exactly at right angles to the fuselage centre-line.

Put on the tailplane and bolt the two front spar lugs to the fuselage fittings. Now position the rear spar fittings and mark their locations. Remove the tailplane and drill the bolt holes for these rear brackets. Take off the four attachment brackets, cut and fit the tailplane table and, when set and trimmed to size, finally bolt on the brackets.

Make the inspection panel in the port side of the fuselage at the tail and position the tailplane again. Offer up the elevator and mark the location of the slot in the tailplane table through which protrudes the elevator lever.

The bracket which locates the leading edge of the fin and the top elevator cable pulley is next fitted to the last decking. former. Fit the fin, ensuring that it is vertical to the fuselage. This is best checked with a spirit level across the longerons and a plumb bob.

Cut the slot for the elevator lever in the fin base rib.

Now make the cockpit seat (Fig. 44) and temporarily fit it to the brackets on the seat rails screwed to the cockpit floor.

Three laminations of $1 / 8^{\prime \prime}$ short-grained ply glued to seat ply to support seat all round.
Fig. 44.-The pilot's seat. It is hinged by the attachment brackets to allow access to the luggage compartment behind the seat.

The Undercarriage

Start by making the main leg-axle assembly. Flatten the end of the leg tube and spile the shape of the interpenetration with the axle tube. This is shown in Fig. 45. Repeat the spiling for both sides of the axle tube and cut out the oval-shaped hole using a drill, a rat-tail and a half-round file. Work carefully so that the leg tube is a snug fit inside the axle holes. See that the angle is correct and weld all round, top and bottom. Now measure off the length of the leg and complete the top end where it picks up in the fuselage brackets. The collar assembly and brake-drum back-plate (if brakes are to be fitted) are welded together. Thread the assembly on to the axle and weld it to the axle from the brake-drum end only.

Shape the inboard end of the axle tube where it connects to the tension strut assembly.

Set up the leg on the bench. Take a piece of $\frac{3}{4} \mathrm{in}$. $\times 17$ s.w.g. T. 45 tube to make the radius rod, bend the end and form it for attachment to the fuselage lug. File the other end to a snug fit between the axle tube and the axle collar assembly and tack-

NEWNES PRACTICAL MECHANICS

Fig. 45.-How to mark out the undercarriage leg-to-axle penetration.

Locate tubes on bench in correct positions using nails. \& of axle.
 centre-lines for lower side of axle.
weld it. The points to watch before proceeding further are (a) that the ends of the leg and radius rod are the correct distance apart, (b) the axis of the leg and radius rod is true and dead in line, (c) the centre-line of the axle is at right-angles to the plane of the undercarriage so that the wheel will not "toein " or "toe-out," and (d) that the angle formed by the leg and the axis of the leg frame is ninety degrees.

The tie tube is next filed to shape and tack-welded into place. Since the tube is larger in diameter than the radius rod, this end should be slightly flattened to avoid a bulge at the join. Repeat this procedure for the other, opposite-handed, undercarriage frame.

Welding Up the Frame

If the constructor enlists the services of somebody else to weld up the undercarriage, tell the welder the gauges of the various tubes to be welded.

In welding up the side frame, preheat the tubing if possible to minimise distortion. After the welding is complete and before cooling off, pass the welding torch up and

Spile: made from scrap steel sheet:

Hôld spile against leg and mark axle with scriber Repeat at close intervals round upper side of tube. (underneath can be marked off with dividers later).

W
HEN joining metals together soft soldering often does a good job and is adequate for many repairs in the household, but if the particular article needs greater strength, perhaps under conditions of high temperature, then brazing or hard soldering is much more satisfactory. Brazing is no more difficult than soft soldering; it is sometimes easier, and certainly neater in appearance. A gas blowpipe or hand torch will be needed, and foot bellows to supply the air blast. The latter give much more control over the flame than any other means. Those who like doing decorative iron and metalwork generally, will find the bellows can handle a small forge, work crucible furnaces for bronze and brass melting-in fact, give ample blast for most purposes including laboratory work and bench glassb.owing.

Figs. I and 2.-Details of the top and bottom of the feeder bellows and reservoir bellows respectively.

Construction

Fig. 4 is a cut away perspective view of the bellows, showing the position of the various parts and the working angles of feeder and

Foot Bellow Goo Eraysing and Small Forget H

reservoir. The first thing to tackle is the main woodwork, which comprises the baseboard, 19in. long, roin. wide X rin. in

Fig. 3.-Hinge plates.
finished thickness, and four identical pieces intended for the bellows boards, $13 \frac{1}{2}$ in. long, roin. wide $\times \frac{3}{8}$ in. in finished thickness. All these boards should be straight grained. The cheaper and softer hardwoods like Japanese oak are quite suitable, but Spanish mahogany is ideal for the purpose as it does not warp. "Canary pine" is nearly as good. Having decided on the kind of wood to suit pocket and purpose, the four bellows boards should be clamped together and dressed to shape. The semi-circular ends can be cut out with a bowsaw, or failing that, the job can be done by cutting away the surplus wood in triangles with the panel saw or fine cross-cut and trimming up with plane and rasp.

Two small upholsterer's seating springs of standard pattern can be procured at this stage as the diameter of the ends determine the size of the recesses that are cut $\frac{3}{2 n}$. deep on the inner faces of the pair of boards selected for the feeder bellows. These recesses accommodate the diameter varies from $2 \frac{1}{3}$ in to ${ }^{x}$ in Instead of recesses, rings of $3 / 16 \mathrm{in}$. thick

Gauze or perforated zine
plywood can be cut with a fretsaw to the required size allowing a rim of $\frac{3}{8} \mathrm{in}$. across, and then fixed with screws or panel pins in position as shown in Fig. 2. A hole is cut through the top board, 4 in . $\times-4 \frac{1}{2}$ in. This can be done by boring with brace and bit 2 hole at each corner and sawing out the piece with a pad or bow-saw; the corners being finished with a sharp chisel. The bottom board of the feeder has a hole $\mathrm{I}_{\frac{3}{4} \mathrm{i} \text { in. in }}$ diameter and the positions of both holes will be clear by referring to Fig. I.
The pair of boards intended for the reservoir can now be tackled and the work here consists of two holes in the top board, one $\frac{3^{3}}{3}$ in. in diameter and the other $1 \frac{3}{4}$ in. The bottom board has a large hole 4 in . X 5 in . cut near the hinge end to act as a sort of manho'e. The positions are made clear in Fig. 2.

The Hinges and Metalwork

Each pair of boards needs, now to be hinged together and the best way to do this is to cut from a piece of $20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. sheet brass four blanks each of the two shapes

Descritid
 A. Lutm they are a suitable Bench GI Blowing

as in Fig. 5, the ends being turned back to form the hinge pins. No difficulty will be experienced in hingeing up each pair of boards if they are laid flat on the floor or bench, end to end and the rib with its hinges screwed down in this position. We now have two separate units each having a pair of boards and a stiff iron rib capable of free . movement. An opportunity should be taken at this stage to grease the hinges and stain the woodwork.
Two pairs of stays or supports will be required, and these are shaped as in Fig. 6, the long ones having a half twist near the base. The section of these stays is $\frac{5}{8} \mathrm{in} . \times{ }_{8}^{2} \mathrm{in}$., but any other convenient size may be chosen as long as the result is sturdy. Mild steel strip of the above size can be worked cold, the twist being managed by fixing the strip in a vice and applying an iron clamp or a pair of tongs. Do not forget that each of the long stays needs a left- and righthanded twist respectively. The shorter supports only need bending. The holes can now be drilled and countersunk, and the two pairs laid aside until needed.

Material for Bellows

The first thing to do is to make a stiff brown paper template of the shape needed for the two covers. A pair of the hinged boards should be taken and propped open to a distance at the mouth of roin. and temporarily fixed in this position.

With the paper on the floor the unit can be rolled from one side right over to the other, whilst marking the resulting shape with a soft pencil. The template is shown in Fig. 7 and should be arranged with 2 in , overlaps round the hinged end of the boards. The leather used is strong, soft calf skin with no thin patches, but a visit to a n upholsterer's might be worth while as very often good leather in sufficiently large pieces is stripped from upholstery which needs recovering. Enough should be bought to make two pieces the size and shape of the template; two extra pieces $I^{\frac{3}{4}} \mathrm{in}$. \times roin.; and four strips $\frac{5}{5}$ in. wide $\times 4 \mathrm{ft}$. long will also be required though the latter can be made up from shorter pieces if 4 ft . lengths prove difficult to get. This strip can be a little thicker

Covering the Bellows

Assuming the leather to be cut to the shapes required, take one of those intended to cover the body of the bellows and damp it equally and on both sides with a wet cloth. Rest a pair of the bellows boards with the hinges on the floor and the semi-circulai ends pointing upwards. Having hammer and nails handy, commence covering by placing the leather in a central position on the apex of the boards with equal amounts of leather at either side. With a piece of the strip resting on top of this and on the edge, drive in two nails with the heads spaced $5 / 16 \mathrm{in}$. apart. Open the bellows and keep the iron rib, from now onwards, to one side as it must not interfere at this point with the stretching of the leather. Drive in two more nails with the cover and strip in position on the apex of the other board. The two boards can now be propped open with a piece of wood. This done, the bellows should be tipped over on to its side and the cover stretched by pulling towards the hinged end. Nailing can be continued, doing a few inches at a time alter-

Fig. 5.-Wire ribs to support leather covering.
Fig. 6 (Below).The supporting brackets. The long pair are right and left handed.

Spring anchorage

Manhole cover

Fig. 4.-A perspective view of the bellows cut away to show the valves and springs.
with advantage than that used for the body of the bellows. About rlb. of clouthead bellows nails will be required, the length being $\frac{3}{4} \mathrm{in}$. with a $\frac{1}{2} \mathrm{in}$, head.
nately at both sides until the hinged end or the corners are reached. The overlaps can be folded over and one of the pieces of leather $\frac{3}{4} \mathrm{in}$. by roin . fixed firmly over them with adhesive. The hinged end is now completed by folding the four strips over along the edge and nailing. Before setting the bellows aside to dry, put your hand inside and pull up the iron rib into mid-position; the stretched leather will hold it quite firmly here without further worry, and after some weeks of use the bellows will develop a neat, concertina appearance as in Fig. 4.

The Valves and Springs

When both bellows have been covered and are quite dry, they should be fastened together, that is, the bottom board of the feeder and the top of the reservoir screwed together. Drill six holes in the top board of the reservoir and in a rectangle about the valve hole; the size of this rectangle should be that which is conveniently dealt with from the reservoir "manhole." The holes should be countersunk on the inside of the reservoir. Cut a leather ring with a hole I $\frac{3}{4} \mathrm{in}$. in diameter, thoroughly grease it and place it in position over the reservoir valve hole; put the two bellows units together so that they overlap $7 \frac{1}{4} \mathrm{in}$., or until the two forles coincide, and drive in six $I \frac{1}{2} \mathrm{in}$. countersunk head woodscrews. The operation will be easily done if the reservoir is flattened or compressed as far as it will go.

The feeder springs can now be pushed through the valve hole and clipped into position with the ends resting in the recesses. This should hold the bellows out to full capacity.

Two valves are needed; the intake

Fig. 9. After putting a little grease on the spring and plate contact and staining the woodwork, the valve frame should be fixed on the top of the feeder bellows by screws spaced about 2 in. apart. It is a good plan to grease the contacting surfaces before fastening up to make the unit airtight. A piece of wire gauze should be fixed over the outside of the valve to prevent the entry of foreign matter. The reservoir communicating valve is shaped as in Fig. 8, with a $\frac{1}{4}$ in. overlap, and is treated in the same manner as the feeder valve; the card disc being $\mathrm{I} \frac{1}{2}$ in. in diameter. This valve or flap is fixed directly to the inner face of the top reservoir board. The pressure of the spring should be a little stronger than that fixed to the feeder valve.

Finishing

A piece of $\frac{1}{4}$ in. thick plywood can now be cut 5 in. X 6 in., this "manhole cover" being fixed over the reservoir hole by screws spaced 2in. apart. Two rings of plywood亲in. thick are now fixed to the baseboard and the underside of the reservoir. These provide the anchorage for the reservoir spring and are fixed in the position shown in Figs, 2 and 4. This spring is the large standard pattern with a diameter at the ends of about 4 in .

The whole bellows unit is fastened to the baseboard in the proper working position by fixing the two small angle irots under the feeder, and the two long ones to the top of the reservoir, with ample clearance for the bellows to inflate without abrasion at the sides. The reservoir spring is placed in position.

A short piece of brass tube $\frac{1}{2}$ in, bore,

on the feeder and the communicating valve on the reservoir. The intake valve is built on a piece of $\frac{1}{4} \mathrm{in}$. plywood 5 in . $\times 5 \frac{1}{2}$ in., the hole being 2 in . $X 3$ in., the effect being a rectangular frame. A piece of leather is cut $2 \frac{3}{4} \mathrm{in}$. $\times 3 \frac{3}{4} \mathrm{in}$., and a piece of stout card I 7 in . $\times 2 \mathrm{zin}$. on the long side of which, and near the edge, a friction plate of thin timplate or brass is fixed. This can be done by cutting a pair of tabs on the piece, bending them at right-angles, tongueing through and flattening over. The card is now stuck centrally and firmly over the piece of leather, the friction plate, of course, being on the outside. The completed leather flap is fixed to the underside of the plywood frame on one of the long sides; a thin strip of plywood being screwed down or nailed to hold the leather edge firmly. We have now a sort of trap door with a leather hinge. A light spring made from a length of clock or watch mainspring is fixed to the plywood frame with the free end resting lightly on the friction plate. This spring should be so adjusted that it gives only sufficient pressure to keep the valve lightly closed, so that the slightest air pressure from the other side will open it.

The whole valve assemtly is shown in
fitted with a brass plate at one end, is screwed to the top of the reservoir and over the delivery hole; a leather washer will make the faces airtight. The top surface of the feeder bellows where the foot is applied can be shod with an iron plate, a piece of thick rubber tread, or with strips of iron.

Hand Torch and Hearth

Very good-and expensive-hand torches can be bought, but one can be made from standard gas fittings as in Fig. Io. The right-angled bend on the air pipe shown by a dotted line, is done by cutting out a

45 deg. wedge leaving about $\frac{1}{4}$ in. of metal to bend over when the join is soldered up airtight.

The central jet tube is fixed by a plug of hardwood or brass inside the air pipe. For the air jet itself a motor-cycle carburetter jet is suitable, drilled out to about I/I6in. in diameter. Interchangeable jets of various sizes are an advantage. A combined forging and brazing hearth made from an old metal bowl if big enough, is shown in Fig. II. The rough filling is done with a $1: 3$ mix of portland cement and sand with pieces of broken brick. This should be left to dry out before putting on a smooth layer of $\frac{3}{4}$ in. thick of fireclay. This can be boughtin powder form at your local builders' merchants quite cheaply and is mixed to a workable consistency with diluted waterglass. Allow the hearth to dry out naturally before subjecting to heat.

Brazing and Forging

The job to be brazed should be packed around with small coke to conserve and reflect the heat, and the pieces to be joined held firmly by clamps or wire. The flux can be borax, and the surplus can be washed off with warm water after the joint is made. Special brazing spelter or just plain brass wire can be used, and the aim should be to use as little as possible leaving no ragged lumps to be filed down. Just a word of warning. The heat from large brazing jobs can be considerable, and to protect the eyes a pair of tinted glasses should be worn, The coke packing too sometimes spits and crack3, shooting off small particles. Precaution never belittles achievement.

This is too big a subject to do more than touch upon, and the interested reader should purchase a good handbook dealing with every operation. The bellows and hearth described will handle a lot of work including iron and steel welding up to $\frac{3}{3} i n$. diameter rod. The aim should be to pro-duce a smonth steady blast without blowing the fire about, and this means skill in placing and packing the coke or breeze and regulating the air supply.

Fig. 1 1.-Section of hearth.

PRRNCIPLES ANO PR FOCUSNG

J. Lowden Gives a Full Explanation for the Benefit of the Camera User

made by hand movement of the lens panel along the rail, fine focus by rack and pinion

focus is obtained by movement of the lens. Conversely, when the lens is fixed, focus may be obtained by movement of the focal plane or, more correctly, by movement of the negative lying upon the focal plane. Despite the excellent performance of cameras which have used the method, focal plane focusing has not been widely used.

Helical Screw Focusing

Miniature camera lenses, designed for tiny negatives, can be mounted in internal fitted or sliding tubes. For precise control of movement these tubes are " married" with a multi-start screw thread of coarse pitch. Motion is given by partial rotation of the thread, by means of a small lever, the exact

Fig. I (A).-The lens at normal closest focus-about 3 ft. ; (B) using double extension, lens distant twice its focal length from negative, giving life-size image; (C) distant view-lens closer to negative than at (A).
or screw thread feeds. Focus is checked by observing the image directly through the lens, a screen of ground glass being placed temporarily in the focal plane. The screen can be replaced by a negative (usually plate or cut film) at will.

Hand or Stand Cameras

These are smaller and handier and have a small pointer directly below the lens. This pointer slides along a scale calibrated in distances, thus allowing the user the choice of focusing by measurement or on the screen. Although a few types of roll-film cameras do employ this type of focusing, entire lens movement is more usually found on plate apparatus:

Focal Plane Focusing
When the position of the negative is fixed,

(c)
can be interchanged. range focused being shown on a circular scale. The helical screw found in high - class miniatures is a miracle of precise screw design and cutting. One of the great advantages of helical s c r e w focusing is the ease with which lenses

The Extension

The amount of lens movement permitted by the bellows is known as the extension.

Most cameras extend far enough to permit sharp focus on a subject as close as 3 ft . (see A in Fig. 1).

Good hand and stand cameras usually have an auxiliary rail fitted upon which the lens can be racked out until it is at a distance not less than twice its focal length from the negative (B). This "double extension" permits very close-up work, with life-size images of small objects. A camera which offers triple extension will give "larger than life" photos of very small objects at the closest quarters. Such a camera is

Fig. 4 (left).Ranged to give clear focus on copy No. I, f/4.5 (Above) Range unchanged, f/9 (Right) Range setting unchanged, f/22.
an invaluable tool for the naturalist, philatelist, etc.

Extension Tubes

Miniature cameras with interchangeable lenses can be given fantastic extension by the use of extension tubes. One end of the tube screws into the camera body flange while the other end carries the lens.

Front Cell Focusing

A box camera user, wishing to take a "close-up" at about 5 ft ., places a supplementary lens in front of the main lens. The effect of this is to change the focal length of the lens to give sharp definition at this close range.

In a more ambitious camera the lens is a compound of two or more elements (Fig. 2). The lens is described as being of a definite focal length, and for most purposes it is just that. But the focal length of the unit can be changed by alteration of the distance between the two elements. This principle is utilised in "front cell focusing." The rear element (B) is fixed, but the front element (A) is mounted in a cell with a helical screw. Rotation of the helical screw gives a controlled "fore and aft" movement of the front cell, thus adjusting the focal length of the entire lens,

This adjustment is translated into distance shown in the normal way on a circular scale engraved upon the lens mount. An example of this lens is shown in Figs, 2 and 3.

Front cell focusing is virtually the rule on nonspecialist roll-film and 35 mm . cameras. The shutter and diaphragm are usually sealed between the two elements of the lens.

The front cell is always secured so that it cannot inadvertently be unscrewed by the user, and the two elements should never be separated unless it is absolutely essential, as the helical thread is a multi-start type, and if it is not re-united in exactly the same

Fig. 6.-The split image system. (Left) The horizontal splitting of the image. (Right) The image accurately aligned.
the iris Depth of field is a vital factor in the taking of any picture, and the user m ust be skilled in its application to make the best use of his instrument. The three photos (F i g . 4) show how depth of field varies as the $f / N o$. is changed.

The table on the right gives a few examples of the depth of field given by three lenses of popular focal lengths at different distances and apertures.

Range	f 3.5	$f 9$	118
4 ft .	$\begin{gathered} 3^{\prime} 9^{\prime \prime} \\ \text { to } \\ 4^{\prime} 3^{\prime \prime} \end{gathered}$	$\begin{gathered} 3^{\prime} 6^{\prime \prime} \\ \text { to } \\ 4^{\prime} 8^{\prime \prime} \end{gathered}$	$\begin{gathered} 3^{\prime} 1^{\prime \prime} \\ \text { to } \\ 5^{\prime} 8^{\prime \prime} \end{gathered}$
10 ft	$\begin{aligned} & 8^{\prime} 9^{\prime \prime} \\ & \text { to } \\ & I^{\prime \prime} 8^{\prime \prime} \end{aligned}$	$\begin{gathered} 7^{\prime} 4^{\prime \prime} \\ \text { to } \\ 15^{\prime \prime} 9^{\prime \prime} \end{gathered}$	$\begin{gathered} 5^{\prime} 9^{\prime \prime} \\ \text { to } \\ 37^{\prime} 0^{\prime \prime} \end{gathered}$
50 ft .	$\begin{aligned} & 29^{\prime} \\ & \text { to } \\ & \infty \end{aligned}$	$\begin{gathered} 17^{\prime} 8^{n} \\ \text { to } \\ \infty \end{gathered}$	$\begin{aligned} & 10^{\circ} 9^{\prime \prime} \\ & \text { to } \\ & \infty \end{aligned}$

3 ins. (7.5 cm .). 21 in . square

Range	¢ 3.5	f 8	116
4 ft .	$\begin{aligned} & 3^{\prime} 10^{\prime \prime} \\ & \text { to } \\ & 4^{\prime} 2^{\prime \prime} \end{aligned}$	$\begin{gathered} 3^{\prime} 8^{\prime \prime} \\ \text { to } \\ 4^{\prime \prime} 4^{\prime \prime} \end{gathered}$	$\begin{gathered} 3^{\prime} 5^{\prime \prime} \\ \text { to } \\ 5^{\prime} 0^{\prime \prime} \end{gathered}$
12 ft	$\begin{aligned} & 11^{\prime} 0^{\prime \prime} \\ & \text { to } \\ & 14^{\prime} 0^{\prime \prime} \end{aligned}$	$\begin{gathered} 10^{\prime} 0^{\prime \prime} \\ \text { to } \\ 16^{\prime} 0^{\prime \prime} \end{gathered}$	$\begin{gathered} 8^{\prime} 0^{\prime \prime} \\ t 0 \\ 25^{\prime} 0^{\prime \prime} \end{gathered}$
50 ft .	$\begin{gathered} 35^{\prime} 0^{\prime \prime} \\ \text { to } \\ 140^{\prime} \end{gathered}$	$\begin{gathered} 23^{\prime} 0^{\prime \prime} \\ \text { to } \\ \infty \end{gathered}$	$\begin{gathered} 15^{\prime} 0^{\prime \prime} \\ \text { to } \\ \infty \end{gathered}$

Range	f 3.5	$f 8$	$f 16$
4 ft .	$\begin{aligned} & 3^{\prime} 10^{\prime \prime} \\ & \text { to } \\ & 4^{\prime} 1^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3^{\prime} 8^{\prime \prime} \\ & \text { to } \\ & 4^{\prime \prime} 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3^{\prime} 6^{\prime \prime} \\ & \text { to } \\ & 4^{\prime} 8 \frac{1^{\prime \prime}}{} \end{aligned}$
12 ft .	$\begin{aligned} & 10^{\prime} 10^{\prime \prime} \\ & \text { to } \\ & 13^{\prime \prime} 6^{\prime \prime} \end{aligned}$	$\begin{aligned} & 9^{\prime} 9^{\prime \prime} \\ & \text { to } \\ & 15^{\prime \prime} 8^{\prime \prime} \end{aligned}$	$\begin{gathered} 8^{\prime} 2^{\prime \prime} \\ \text { to } \\ 22^{\prime} 9^{\prime \prime} \end{gathered}$
50 ft .	$\begin{aligned} & 34^{\prime} \\ & \text { to } \\ & 99^{\prime} \end{aligned}$	$\begin{aligned} & 26 \\ & \text { to } \\ & \infty \end{aligned}$	$\begin{aligned} & 16^{\prime} 9^{\prime \prime} \\ & \text { to } \\ & \infty \end{aligned}$

Tables worked to great extents can be found in most good standard reference books. The serious worker should never be without the depth of field table for his particular lens, especially if he is working at short range.

The main point to be observed in this table is the much greater depth of field given by the lens of short focal length as compared to those of longer focal length. The miniature worker, tackling the same subject as, say, the " 120 " worker, can obtain the same depth of field using a much wider aperture. Thus he can use a much higher shutter speed and obviate the risk of a blurred picture either by camera shake or by subject movement. Otherwise, if he chooses to use the same shutter speed as his "bigger brother," and the same aperture, he has the advantage of a much greater depth of field, and therefore a much greater tolerance of error in range.

Focusing Scales

On most up-to-date front cell focus lenses will be found a Depth of Field Indicator. The circular scale carries two sets of " f " numbers with a datum arrow between them. The datum arrow points to the distance setting scale. When the range is selected the scale then shows the depth of field at any given aperture.

Visual Inspection

By far the most efficient method of determining the depth of field is by inspection of the image shown on a ground glass screen. Half an hour of this fascinating observation teaches more about the principle
(Concluded on page 222)

THE electricity supply in most districts is now A.C., the standard domestic supply being 240 volts single-phase at 50 cycles. Most practical mechanics at some time or other wish to introduce electrical power into the home workshop for driving tools, or may wish to drive some domestic appliance which they have made. These requirements are well catered for by various motor manufacturers and small tool makers.
However, there are occasions when it may be desired to make use of an existing D.C. motor, or where a D.C. motor can be obtained at low cost, as from an exGovernment surplus stores, and the question arises as to whether this can be utilised on an A.C. supply or can be modified so that it can be used on such a supply.

The first thing to be borne in mind is that the design of a small motor is quite

By J. L. Watts

its conversion can be considered. A series motor has field coils of comparatively thick wire which are connected in series with the armature, so that the same current passes through the armature and field coils in turs. Often the two field coils are connected on either side of the armature, i.e., one coil is connected between one brush holder and one terminal, as in Fig. 1. The speed of a series motor varies appreciably on a varying load.

A shunt motor has field coils of fairly thin wire, the field coils being connected in series with each other. The complete set of field coils may be connected in parallel with the armature at two terminals, as in Fig. 3: Alternatively one end of the field windings may be connected to a common terminal with the armature as at A in Fig. 2, with a separate (third) terminal Connected to the field windings alone. The speed of a shunt motor does not fall very greatly from no load to full load.

Checking the Motor

Connections

It is usually possible to trace the internal connections to identify whether the motor is a series or a shunt machine. If this is impracticable the

Fig. 1.-Comnections of a two-pole series motor.

Fig. 2.-Contections of a two-pole shunt motor.
a complex operation and is carried out by experts. Once a design has been prepared the manufacturer also carries out fairly exhaustive practical tests to ensure that the performance of the machine is within close limits of certain standards. It is most unlikely, therefore, that an amateur can modify a machine for a different purpose than that for which it was expertly and economically designed without some deterioration of the performance, to say the least. In particular some reduction of output must be expected, and often the conversion is so impracticable as to be not worth attempting.

However, there are cases when it may be possible to adapt a D.C. motor so that it can be used on A.C. to serve the user's purpose; even if its power output is less than before, or if it cannot be run continuously due to the temperature rise of the machine being greater than before. It will be realised that, since the design details of the motor are generally unknown, the performance under different conditions cannot be accurately predicted, and some experiment may be necessary in order that the machine may be used.

Types of D.C. Field Windings

In general it is not worth while attempting to modify a motor of more than one horse-power, and fractional horse-power motors are usually of the two-pole type to which this article refers. A small D.C. motor may have series or shunt connected field windings, and it is necessary to know how the field windings are connected before
type of motor can be identified by the use of a battery and some device for indicating a small current, such as a low-reading ammeter, voltmeter, or telephone receiver. The brushes should be removed from their holders, or raised clear of the commutator, and the test circuit connected as in Fig. 3. If current is indicated by the ammeter or voltmeter needle, or by a click in the telephone receiver when the test circuit is

Fig. 3.-Method of testing connections of field windings.
closed, this indicates that the motor is a shunt machine.

The Field Iron System

A D.C. motor has its armature core constructed of thin laminations. In some cases the field poles and yoke are cast in one piece; in other cases the poles are built up of laminations bolted to a mild steel shell. Sometimes the complete field system is built up from laminations as indicated in Fig. 4. It is important

to ascertain whether the field iron system is completely laminated or not. In a D.C. motor the magnetic flux which passes through the yoke between the poles is unidirectional, and has a constant value on a given load. In an A.C. motor the magnetic flux through the yoke is alternating. When an alternating magnetic flux is passed through a solid iron yoke it induces eddy currents in the yoke, which cause unwanted heating and loss of efficiency. These eddy currents depend, on the magnetic flux density and the frequency of the alternating magnetic flux. It follows that a motor which has a solid iron field system, or solid parts such as the yoke, may overheat

Fig. 4.-A laminated stator field system.
due to eddy currents if run for a long period when converted for use on A.C. This is one possible limitation.

Possible Motor Conversions

All D.C. motors have a commutator and brushes and have salient (projecting or shaped) poles. The only types of singlephase A.C. motors which have a commutator and brushes are series and repulsion types of motors. In the latter category are plain repulsion motors, repulsion-induction motors, and repulsion-start-induction motors, Series A.C. motors usually have salient poles, whilst repulsion types have a laminated slotted stator iron system. Repulsion-start-induction motors have a special centrifugal device which short circuits the commutator as the motor accelerates at starting, which device is not fitted on a D.C. motor.
A.C. induction motors (including capacitor types of motors) do not have a commutator; instead they have a rotor which is fitted with a shozt-circuited squirrel-cage winding. Apart from the rather inefficient shaded-pole and reluctancestart types of induction motor, the stator system of an induction motor is quite different from that of a D.C. motor. The speed of an induction motor on a varying load does not vary to anything like the same degree as that of a series o: a plain repulsion motor. The speed of a repulsioninduction motor also does not vary greatly

Fig. 5.-Operation of a particular series motor on D.C. and A.C.
on a varying load within the range of the machine.

The possibilities to be considered are, therefore, conversion of a D.C. motor to a series A.C. or plain repulsion motor (with considerable variation of speed on a varying load); a repulsion-induction motor (generally only practicable if the machine has two separate armature windings as in the case of a rotary transformer); or a rather inefficient shaded-pole or reluctance-start motor.

Conversion of the Supply

The other possibilities are to convert the A.C. to D.C. to feed the machine at its normal voltage. In this case the horse-power, temperature rise and speed/torque characteristics will be practically unchanged. This solution may be particularly desirable if a high percentage of the rated horse-power is required, a fairly constant speed is required, the motor has a solid yoke, or is a very low voltage machine having few commutator segments and fairly large brushes. In the case of a very low voltage motor a suitable source of supply may be an accumulator, which can be charged from the A.C. mains through a transformer and rectifier.

A D.C. motor may also be fed direct from a full-wave bridge-connected metal rectifier energised from the A.C. mains through a suitable transformer. The mean D.C. voltage output of the rectifier on load may be about 75 per cent. of the applied A.C. voltage from the transformer secondary windings, but as the voltage is pulsating it is not possible to predict the performance of the supplied motor accurately. Consequently, it is best to feed the rectifier through a tapped transformer so that the voltage can be adjusted if necessary.

Operation of an Unmodified D.C. Series Motor on A.C.

It may be possible to operate a series D.C. motor on roughly the same voltage A.C. without much alteration, particularly if the field iron system is completely laminated. Apart from the laminated field system of a series A.C. motor, this machine is usually designed to operate with a lower magnetic flux density in the field system than in the case of a series D.C. motor. There are two reasons for this. First, the A.C. magnetism induces a voltage in the field windings on A.C. which reduces the voltage applied to the armature, causing the motor to run at reduced speed on a given current. This effect tried out.
is indicated in Fig. 5, which refers to the operation of a particular series D.C. motor, with laminated field, on the same voltage A.C.

On a given çurrent the speed is reduced. The horsepower is proportional to the product of speed and torque, and is also reduced. Since overheating will be experienced if the motor is loaded so that it takes a greater current than that for which it was designed there is, therefore, a limitation of horsepower. In the case of a motor designed as a series A.C. machine the field magnetism is usually limited by winding the field coils with rather fewer turns than would be used on a corresponding D.C. motor.

Reduction of Field Flux

When a series D.C. motor is to be used on a somewhat similar voltage A.C. the field magnetism obtained with a given armature current can be reduced by connecting a

Fig. 6.-Use of a diverter resistor with a series
motor.

Ae-connected field coll

Fig. 7. - Reconnection of series field coils in parallel with each other.
connection with a series A.C. motor is that completely sparkless commutation is difficult to obtain because the alternating field flux induces a voltage in each armature coil as it is short circuited by its commutator segments passing under the brushes during commutation. This

TABLE I.-APPROXIMATE FULL-LOAD CURRENTS OF D.C. MOTORS

Rated horse-power	Full-load current at 110 volis		Full-toad current at 220 voles		Full-load current at 240 voles	
1/30	0.65 amps.		0.32 amps .		0.3 amps.	
1/20	0.77	*	0.38	n	0.35	"
1/16	0.92	"	0.46	"	0.42	"
1/12	1.15	"	0.56	\cdots	0.54	"
1/10	1.3	"	0.65	"	0.6	"
$1 / 8$	1.54	"	0.77	"	0.72	${ }^{*}$
1/6	2.1	"	1.0	"	0.92	*
1/4	2.7	'	1.35	"	1.24	"
1/2	5.1	"	2.55	"	2.34	,
I	9.1	"	4.55	"	4.2	,

induced voltage causes an induced current to pass between the commutator segments and brushes. The value of the induced voltage is proportional to the value of the field magnetic flux, its frequency, and to the number of turns in each armature coil. In addition to designing a series A.C. motor to have a comparatively low field flux the machine is usually designed with a comparatively small number of turns in each armature coil. This means that, for a given voltage, the commutator has a fairly high number of segments.

Thus some sparking may occur at the brushes when a series D.C. motor is used on A.C., particularly if the number of commutator segments is
diverter resistor across the field coils, so that only part of the armature current passes through the field coils. This is one method which may be adopted to run a series D.C. motor on A.C. to raise its speed, although the torque will be reduced thereby. This method is particularly desirable if the field system is not completely laminated. Fig. 6 shows how this may be done. It is first necessary to connect the two field coils on the same side of the armature, taking care that the current enters each field coil at the same lead as before. The resistor should be capable of carrying at least half the motor current without overheating, and various values of resistance may be

A second method of reducing the field current on a given armature current is by reconnecting the two field coils in parallel with each other, with the set of field coils in series with the armature, as in Fig. 7. Again care must be taken that the current enters each field coil at the same lead as before. With this arrangement the field current through each field coil is halved to reduce the magnetic field flux, thus raising the motor speed, with reduction of motor torque.

Commutation Difficulties
 One inherent difficulty

TABLE 2,-TURNS PER SQUARE INCH WITH VARIOUS

Size of wire s.w.g.	Ordinary double- cotton covered	Double- silk covered	Single silk and enamel	Single silk covered	Enamelled
16	171	216	201	221	219
17	222	277	256	287	286
18	286	384	359	400	388
19	384	540	500	567	550
20	450	655	610	692	670
21	565	815	755	865	850
22	730	1,040	975	1,110	1,110
23	860	1,369	1,300	1,480	1,500
24	975	1,600	1,560	1,770	1,800
25	1,110	1,890	1,890	2,110	2,150
26	1,370	2,350	2,300	2,560	2,650
27	1,550	2,800	2,740	3,180	3,180
28	1,760	3,330	3,300	3,850	3,900
29	1,960	3,850	3,800	4,500	4,550
30	2,400	4,500	4,500	5,300	5,550
31	2,600	5,000	5,100	6,000	6,300
32	2,830	5,625	5,810	6,800	7,300
33	3,080	6,400	6,600	7,800	8,400
34	3,450	7,300	7,700	9,000	10,000
35	3,700	8,400	8,900	10,300	12,000

rather low. The induced current, and consequent sparking, may possibly be minimised by slightly shifting the brushes round the commutator if the brush position is adjustable. In any case the induced current can be limited by using brushes of high resistance, such as the Morgan Crucible Company's grade I.M. 3 brushes. High resistance brushes are generally advisable on all single-phase A.C. commutator motors.

In some cases it may be practicable to reduce the sparking by limiting the number of commutator segments which are covered by each brush, even though this reduces the contact area and increases the nominal current density in the brush. The effect can easily be tested by simply filing away opposite sides of the brush for a very short distance from the contact face, as in Fig. 8 , The brush thickness should be reduced by a very small amount each time, and the motor should then be run for an appreciable time to see whether the brushes overheat due to increased current density. If they do, or sparking is worsened, the reduced area can easily be filed off to provide a greater surface area of contact. Thus sparking may limit the use of a D.C. motor on A.C. particularly if there are not many commutator segments.

It will be appreciated that if the field system is laminated, and the Brush machine well insulated, it may be possible to run a series D.C. motor on a slightly higher voltage A.C.; the increased volt drop on the field windings automatically reducing the voltage applied to the armature. If a series D.C. motor is to be used on a much higher voltage A.C. the best plan is to feed it with D.C. of the correct voltage from an accumulator or rectifier, as mentioned above, particularly if the field is not completely laminated and there are not many commutator segments.

Rewinding the Field Coils

If the field is completely laminated, and there are ample commutator segments, the armature is well insulated and robust, and the motor is designed for at least half the A.C. voltage, it may be possible to use the existing armature with rewound field coils. In this case the field coils could be rewound with about 75 per cent. of the original number of turns, using the same size of wire as before. Alternatively the field coils may be connected in parallel or used with a diverter resistor.

If the series motor is designed for a much lower voltage than the A.C. supply it may be possible to feed the machine through a step-down transformer at no more than twice the rated voltage, possibly with reconnected field coils or a diverter resistor. High resistance brushes, brush shift, or reduced brush thickness may be advisable. It is best to feed the motor through a tapped transformer in this case, and the motor should not be used on a drive which can become unloaded.

Conversion of a Shunt Motor into a Series A.C. Motor

It is impracticable to operate a shunt D.C. motor on A.C. without modification. If the rated voltage does not differ very greatly from that of the A.C. supply it may be practicable to rewind the field coils to

TABLE 3-CURRENT LOADING OF CONDUCTORS WITH VARIOUS CURRENT DENSITIES

$\begin{array}{\|c} \text { Size of } \\ \text { wire } \\ \text { s.w.g. } \end{array}$	Diameter (in.)	$\begin{gathered} \text { Sectional } \\ \text { area } \\ \text { (square } \\ \text { inch) } \end{gathered}$	Current loading with current densities of			
			$\begin{gathered} 2,000 \\ \text { amps. } \\ \text { p.s.s.i. } \end{gathered}$	$\begin{aligned} & 3,000 \\ & \text { amps. } \\ & \text { p.s.i. } \end{aligned}$	$\begin{aligned} & 4,000 \\ & \text { amps. } \\ & \text { p.s.i. } \end{aligned}$	$\begin{gathered} \text { 5,000 } \\ \text { amps. } \\ \text { p.s.s.i. } \end{gathered}$
16	0.064	0.00322	6.4	9.7	13	16
17	0.056	. 0.00246	4.9	7.4	10	12
18	0.048	0.00181	36	5.4	7.2	9.1
19	0.040	0.001256	2.5	3.8	5	6.3
20	0.036	0.001018	2.0	3.1	4.1	5.1
21	0.032	0.000804	1.6	2.4	3.2	4.0
22	0.028	0.000616	1.2	1.8	2.5	3.1
23	0.024	0.000452	0.9	1.4	1.8	2.2
24	0.022	0.000380	0.76	1.1	1.5	1.9
25	0.020	0.000314	0.63	0.94	1.3	1.6
26	0.018	0.000254	0.50	0.76	1.0	1.3
27	0.0164	0.000211	0.42	0.63	0.84	1.1
28	0.0148	0.000172	0.34	0.52	0.69	0.86
29	0.0136	0.000145	0.29	0.43	0.57	0.72
30	0.0124	0.000121	0.24	0.36	0.48	0.60
31	0.0116	0.000106	0.21	0.32	0.42	0.53
32	0.0108	0.0000916	0.18	0.27	0.37	0.46
33	0.0100	0.0000785	0.16	0.23	0.31	0.39
34	0.0092	0.0000665	0.13	0.20	0.27	0.33
35	0.0084	0.0000554	0.11	0.17	0.22	0.27

convert it into a series motor. The two field coils must be connected to create poles of opposite polarity. Again, if the field system is not completely laminated the motor may overheat on a prolonged run, sparking may be experienced if the number of commutator segments is low; high resistance brushes, brush shift or reduced brush thickness may be advisable.

The first need is to ascertain the full-load current of the motor; if this is not marked on the machine a value may be obtained from Table I. It may be noted that the full-load current of a given size of motor is approximately inversely proportional to its rated voltage. The difficulty in connection with designing new field coils is that the design of the armature is unknown, so only an approximate indication can be given; which may need modification as the result of experiment.

The radial air gap clearance between the centre of each pole face and the armature should first be measured by means of feeler gauges $=r$ inch. Then if I (amps.) is the full-load current, the number of turns for each field coil may be made very roughly equal to $7,500 \times r$. An increased number of turns will reduce the speed, and vice versa. It is suggested that the largest size of wire be used which can be accommodated on each pole with the required number of turns. Table 2 provides a guide as to the turns which can be accommodated per square inch with close winding; although allowance must be made for getting the coils into posi-
tion, etc. A current density of about 3,000 to $4,000 \mathrm{amps}$. per square inch may be satisfactory, and Table 3 provides a furiher guide to the wire which may be used. When used as a series motor the speed will change considerably on changed load.

Conversion to a Repulsion Metor

Another possibility is the conversion of a

(a) Shaded-pole

(b) Reluctonce-stort

Fig. IO.-Modification of laminated field systems for operation on A.C.
series or a D.C. shunt motor into a plain repulsion motor. In this case also, the speed will vary considerably with the load. One advantage of such a conversion is that it can of ten be adopted even if the voltage of the D.C. motor is much different from that of the A.C. supply. However, it is usually only practicable if the brushes can be shifted something like 90 degrees round the commutator. High-resistance brushes, and/or reduced brush thickness may be advisable.

The field coils will require rewinding in most cases. The area of each of the two pole faces should first be measured=A square inches per pole. For a two-pole motor which is to be used on V volts at a frequency of f cycles per second the number of turns on each field pole may be made very roughly equal to $\frac{375 \times \mathrm{V}}{\mathrm{A} \times \mathrm{f}}$. Again the largest size of wire should be used which can be accommodated with the required number of turns. The two new field coils should be connected in series with each other in such a way that they create poles of opposite magnetic polarity. The brushes should be short circuited together as in Fig. 9, by means of a substantial copper conductor. The performance of the machine will very largely depend on the brush position, which is likely to be critical. The effect of slight changes of brush position up to about 90 deg. in either direction should be tried. The direction of rotation will also depend on the brush position. The converted machine is likely to overheat on a prolonged run if the field system is not completely laminated.

Modified Repulsion Motor

If the field system is not completely laminated, and the armature is wound for approximately the same voltage as the A.C. supply, an improved perfomance may be obtained by feeding the brushes (not shortcircuited) from the supply, and short circuiting the new field windings instead. Small rotary transformers can sometimes be converted by connecting the mains-voltage brushes to the supply, possibly in parallel with the field windings; the low-voltage brushes being short circuited together and shifted round the commutator.

Conversion to an Induction Motor

If the field system is completely laminated (Concluded on page 222)

AUTMO the Latest Trends

SOME North American modern mechanical methods, devised to shortcut old-time procedures would have seemed fantastic not so many years ago. Today, scientists have perfected electronic equipment that not only thinks for itself, but for everyone else as well. Many of the new uses to which electronics are being applied, a few of whith are reported here, stagger the imagination.
In the United States, the Louisiana Light and Power Company are constructing a fully-automatic $225,000 \mathrm{~kW}$ electrical powergenerating station where all phases of operation, from start-up-right through operations -to shut-down, will be controlled automatically by a special electronic computer. While the real advantage of automation, in this respect, is faster reaction and greater sensitivity, it is interesting to note that the new station will be staffed by a complement of only three human operators for safety and maintenance.

Automatic Letter Sorter

Another unusual electronic machine-an automatic letter sorter-is now being used by the U.S. Post Office Department. (See Fig. I.) This machine sorts 18,000 letters per hour, and arranges them so that the addresses on the envelopes can be read.

The operator then types an abbreviation for the address, which appears on the back of the envelope. After that the machine takes over entirely. An electro-mechanical optical device looks up the destination for each address and routes a letter correctly in "one-tenth of a second,
"Pathway in the Sky" is the name given by the U.S. Navy to an electronic computer, developed to simplify an airline pilot's task of reading the complicated instrument panels of modern planes.

When the pilot feeds a few basic facts into it, this machine combines them with all the other information that the dials and gauges would normally supply. It then shows the pilot an image of a roadway on a television screen mounted on his windshield. As long as as he follows this imaginary road he will be on a safe flight-path.

Studying Wolves

In an effort to solve some of the mysieries surrounding the wolf, one of Canada's most savage and relentless killers, Ontario's Department of Lands and Forests has hit on a novel plan. With the aid of biologists, an electronic-age Peeping Tom programme is being started to find out some of his willo '-the-wisp habits. It will involve trapping the wolves alive and then releasing them with a small radio transmitter that will broadcast a constant beep-beep to reveal at any time the whereabouts of the ghostly wolves.

Cigar-size transmitters attached to a leather collar will be fastened to the wolves. A transmitting aerial will form a loop around the collar which will be expansible and stretch as the wearer grows. When the wolf's radio battery begirs to weaken, the biologists should know his habits so well that they can retrap him and replace the power unit. Similarly, when he dies they will follow the "beep" and take the transmitter for use again.

Another remarkable electronic machine, a high-speed electronic brain, is now being used by New York City as a superhuman payroll clerk. It is a mammoth new electronic chequewriting and computing system that handles the payroll for the city's 190,000 employees. (See Fig. 3).
The machine computes each employee's gross pay, the amount to be witheld for income-tax, Social Security, pension contributions and other expenses, and then writes a cheque for the correct amount.

Electronic Book-keeping System

Banks are now relying more and more upon various electronic machines to do their book-keeping. The National Cash Register Company in the United States, for example, has

Fig. I (Above).-The automatic letter sorting machine being used in a Washington post office.
supplied more than 2,000 of them, and the Burroughs Corporation has orders for 2,000 machines of a similar nature.

One of the United States' largest toll road systems has found it necessary to use an electronic book-keeping system to look after its operations because the original accounting staff found themselves hopelessly overloaded with work. The system-the New York State Throughway Authority-must analyse more than $46,000,000$ trips a year, using some 16,000 different combinations of toll rates based on the weight of the vehicle and the length of its joumey.

Money-changer

Just coming into wider use in the United States is an electronic money-changer which can both read and count. (See Fig. 2.) This is used in connection with vending machines which, in recent years, have been used to sell an increasing number of different products. These machines can also take your photograph or record your voice, and in some places will even park your car. They have one important limitation, however, they can handle only metal coins, which means that the customer must have the the exact number and kind of coins required.

Fig. 2 (Above).-This electronic cashier which gives change for dollar bills, will accept wrinkled, crumpled or torn bills bui rejects counterfeits.
Fig. 3 (Below).-Payroll cheques for New York city's 190,000 employees, being delivered by an elec $\$$ tronic computing machine.

The electronic money-changer solves the problem by changing paper money into coins of different values. It can also be combined with a standard vending machine so that it will accept a bill, deliver the desired article from the machine, and return the correct change in coins. The device can be adjusted to take one particular kind of bill so precisely that it will reject foreign bills and even well-made counterfeits.

A WONDERFUL MONEY－SAVING OPPORTUNITY FOR EVERY READER OF PRACTICAL MECHANICS

FULL LENGTH FULL SIZE！

In addition to the sclections listed above， Scientific Book Club members have received books by these great authors： Dr．J．Bronowski，Prof．J．B．S．Haldane， Richie Calder，Sir Harold Spencer Jones，Dr．Julian Huxley，Leonard Cotterell，Kenneth Walker．

Now＇s the time to join the SCIENTHFIC Hool：Club

121 CHARING CROSS RD．，LONDON，W．C： 2

$$
\begin{aligned}
& \text { A FIRST-RATE BOOK } \\
& \text { EVERY MONTH FOR }
\end{aligned}
$$

Each month，the Scientific Book Club brings to its members the fascinating story of the march of modern science，told in thoroughly dependable books by the

르냅｜｜⿺𠃊⿳亠二⿺𠃊八土
FIREE GIFT
GENUINE FAMILY－SIZE

When you join the Scientific Book Club you can obtain a genuine INSULEX BAG（keeps hot food hot and cold food cold） friee by enrolling two friends as members．Send your friends names and addresses with 5 s ．
（4s．plus 1 s ．postage）for front－rank scientific writers of our time－vivid，vital，constructive contributions to Man＇s unceasing struggle to solve the problems of the Universe．And although the ordinary editions of these books are sold to the general public at $12 / 6,15 /$－or $21 /$－，THE PRICE TO MEMBERS OF THE SCIENTIFIC BOOK CLUB IS ONLY 4／－．Remember， too，that Scientific Book Club selections are full－length and unabridged． They are printed on good quality paper，well－bound，with an attractive picture jacket．These are，we say with certainty，books that you will be glad to read，proud to own．The Scientific Book Club brings these great books to you each month；helping you to build up，at remarkably low cost，a first－class collection of scientific books．Now is the time to join ！

EXCELLENT PRODUCTION
Legible modern type is used for ali Scientific Book Club selections．The pages are designed with ample margins and every book is carefully planned for comfortable reading．The Scientific Book Club＇s selections have been widely praised for the high standard of their production．

FILL IN THIS ENROLMENT FORM TODAY

To the Scientific Book Club， 121 Charing Cross Road，London，W．C．2．
I wish to．join the Scientific Book Club and agree to purchase the selected book issued each month to members at a cost of 4 s ．（postage 1 s ．），I agree to continue my membership for a minimum of six books and thereafter until I cancel．

You may enrol through your usual bookseller if he is－a inember of the Booksellers＇Association．
［．］－will pay for selections on receipt．
Prac．Mechs．Feb． 60
Or if you wish to save time，postage and postal－órder costs，you may send an advance subscription．Six months＇30s．＇twelve months 60s．
\square＊enclose $30 \mathrm{~s} . / 60 \mathrm{~s}$ ．（strike out amount not applicable）．
＊Place $\sqrt{ }$ in the space above，as required
The Scientific Book Club is owned and controlled by Foyles． the world－famous boöksellers．

[^1]Address
Overseas enrolments should be accompanied by an advance subscription．
Prices as for inland（except South Africa．Australia，New Zealand）

PRINCIPLES AND PRACTICE OF FOCUSING

(Concluded from page 216)
of focusing and depth of field than all the text books ever written.

Selestive Focusing

By careful definition of the depth of field the worker can decide what shall be sharp and well defined in his picture, and what shall be hazy and blurred. If you musi pose your model against a wall, the patterned paper or harsh brickwork can be subdued by careful use of the iris diaphragm

The miniature, with it. vast depth of field, is sometimes at a disadvantage in this respect.

Estimating Range

The whole secret of accurate focus lies in good rangefinding. If the object you are photographing is under 6 ft . allay measure it. Depth of field at such short range is reckoned in inches and there is little permissible margin 0_{i}^{-}error. A 6 ft . spring steel rape costs little, and takes up little room. "Pacing" the distance, if the range over 6 ft ., is adequate.

CHOOSING A "MIKE"
 (Concluded from page 208)

tendency 10 exaggerate the bass notes Ribbon microphones are not recommended for outdoor work on account of their fragility and also because of their sensitivity to air currents. While they are far superior to crystal microphones, they are only really of much use in tape recording in conjunction with high fidelity equipment.

Finally, we have a remarkable microphone which does not boast quality but is of great use in recording speech in high ambient noise levels. It is known as the noise cancelling microphone. These instruments generally consist of a dynamic element, with the diaphragm extended away so that sound waves may fall on both sides of it. In a high ambient noise level sound falls on both sides of the diaphragm, the result being that it is virtually unaffected. When in use the microphone is held close to the mouth, so that speech is permitted to fall only upon the front face of the diaphragn. The microphone thus picks up the speech, but not the noise. Such instruments are used in aircraft and industrial applications where communication is necessary in high ambient noise. So far as tape recording is concerned, this type of microphone is useful for interviews out of doors where it is desired to eliminate background noise. Noise cancelling microphones can be obtained in various impedances depending on the input impedance of the circuit they will feed.

Rangefinders

In these very useful devices the images from two mirrors or prisms are made to converge before a single eyepiece, and the range is read off on a scale. Two different types are shown in Figs. 5 and 6. Rangefinders are not expensive, and if treated with care they are very reliable.

The coupled rangefinder is included in top class cameras. The scene is viewed through the rangefinder, and as the images are made to coincide, so the lens is brought into accurate focus. Practically every format of camera, even folding cameras, can be fitted with a coupled rangefinder. The lens can always be set independently of the rangefinder if required.

Reflex Cameras

For ease and accuracy of focusing the reflex type of camera is in a class by itself. Reflexes are divided into two distinct groups, the single lens and the twin lens.

In the single lens type the lens is unobscured by the shutter. Light transmitted by the lens falls upon a silvered mirror which is set at an angle of 45 deg . to the

USE OF D.C. MOTORS ON A.C. (Concluded from page 219)

it is just possible that a D.C. motor can be converted into a single-phase induction motor even if designed for a much different voltage than that of the A.C. supply. However, the output is likely to be much reduced and the starting torque may be so low that the motor will not start against load.

For conversion to an induction motor the brushes and their holders should be removed and a few turns of bare copper wire wrapped tightly round the commutator to short circuit the segments. If the conversion proves satisfactory this wire may be soldered to the segments. The field coils will require rewinding, and the suggestions made for converting a D.C. motor to a repulsion motor may be adopted in this connection. When switched on to a single-phase supply after spinning the rotor by hand it should run in whichever direction it is started. A twopole motor should run at practically 3,000 r.p.m. on a 50 cycle supply, and the speed should not vary greatly on load. The motor can be used in this way if it is not required to be self-starting
It may be practicable to make the motor self-starting when practically unloaded by increasing the air gap under half of each pole face by about 0.040 in . so that the motor operates as a reluctance-start motor. One pole of such a motor is shown in Fig. Iob. Since the motor will run in the direction of the untouched half of each pole face, the forward half of each pole should be untouched. The conversion may be unsatis-

PRACTICAL MOTORIST February Issue Now On Sale

Principal Contents:
Top Overhaul: Holiday Motoring ; Fiat 600 Maintenance : Ford Popular Modifications: Lubrication and Your Car; The Beginner's Guide to the Motor Car; Sunbearn Mark III Overhatu; Rally Navigation: Ford Consul. Zephyr and Zodiac Maintenance : Overhauling the Jowett Jatelin: Choosing the Right Second-hand Car: Practical Motorist Data Sheets: Simple Steering Adjustments: Current Used Car Prices.
lens axis and the image is reflected on to a ground glass screen on the top of the camera body. Focus, which may be by entire lens movement or occasionally front cell movement, is checked visually The screen is usually hooded to assist vision. At the moment of exposure the mirror is raised to allow the light to fall upon the fabric of the shutter blind, and then the shutter operates. As the travel of the blind ends, the mirror is lowered back into position.

Twin Lens Reflexes

The twin lens reflex is essentially a pair of identical cameras, one mounted above the other. All focusing is done by means of the upper unit. In the top class twin lens reflexes, the focusing lens and the taking lens are mechanically linked, so that as focus is made and checked visually through the viewing lens, the taking lens is automatically in focus.

Whatever type of camera is used, accuracy of focus is vital if gooci work is ever to be achieved. Any error is indelibly recorded on the negative, and no amount of manipulation in the enlarger or after-treatment of the print can improve matters.

factory if the insulation between the stampings is much damaged, however.

Anvther method of making the motor self-starting is by converting it to a shadedpole motor. A slot about $3 / 32 \mathrm{in}$. Wide X about $5 / 32 i n$. deep may be cut in each pole face about one-third of the pole face from the leading tip of the pole. The motor will run in the direction shown in Fig. 10a, which refers to one pole of a two-pole motor. A few turns of bare copper wire are then wrapped round the leading part of each pole face to form a shading band, as shown. The ends and opposite sides of the wires should be soldered together to form shortcircuited turns. As a very rough approximation the total cross sectional area (in square inches) of the short-circuited turns on each pole may be made equal to $\frac{N \times a}{10}$, where N is the number of turns of insulated wire on each pole and a the cross sectional area of the isulated wire.

It must, however, be repeated that, due to the various limitations inentioned, too much must not be expected from any D.C. motor which is converted for use on A.C.

1.-Railway Problem

Two railway trains, one 400 ft . long and the other 200 ft . long, run on parallel rails. When they travel in opposite directions they pass each other in five seconds; when running in the same direction the faster train passes the other in 15 seconds. What is the speed in miles per hour of each train?

2.-Changing a Three-penny Piece

Including the use of farthings, how many ways of giving change for a three-penny piece can you think of? Don't be in a hurry; it is quite easy to miss a few.

Answers

 วนо дамо|s วч1
10 зечı 'Y'd'ur sųiri/\& pur $L \tau$ pur uien rassej ayl jo paads ayl s! ' 4 'du sulii/9 pue $t s$ snul. $q \cdot d \cdot u$ suili/乏 pur $L z$
 uI y-d'ur syrif/6 pue is 30 ' 15000 os

READERS SALES AND WANTS

The pre-paid charge for small advertisements is 6 d . per word, with box number $1 / 6$ extra (minimum order $6 / \mathrm{h}$). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southampton Street, London, W.C.2, for insertion in the next avallable issue.

FOR SALE

A STRO TELESCOPE MAKing. Atandard Ramsden Push-in
 S.a.e. list. Object. Glasses from 10/6; Eyepieces from 15/6. New Focusing Mounts. Tripods Terre trial Telescopes and Microscopes. W Burnet. Grand Sluice. Boston. Lincs.

FLexible Shafis. Grinding Gout surs ceramic. Insulators. Govt. Surplus s. s.a.e. for list. Sors.
Midgeley, Hebden Road, Haworth, Keíghley
$41^{1 N}$. PLANING and Rebating able cut, $£ 6110$-: other sizes at 10 prices. Build a circular saw cheapiy; new type saw spindles from 45/-A Also combination Wood working Lathes. Send stamp for Costessey, Norwich.
B.A. Screws, Bolts Washers Light Alloy: 'parcel approxinatel 21 b . mixed sizes and lenfths $5 /$ postage ${ }^{1 / 9}$. P. E. McCleiland, Beulah Rd., Epping, Essex

GOVERNMENT SURPLUS AND

 manuFacturers clearance vacuum pumps enwards

 chaters. tran control, etcio 3 , oisi

 Ink oat io onvi
 Works Ormer and rectinier. 1.0., 12 v v. 16.

 are you on oifi mating list ?
HUGGETT'S LIMITED
24. PANSON: ROADD

FOR SALE (Continued)
A IR COMPRESSORS, single cylin A der, two stage, $21 / 2$ cu. ft. min at up to 450 p.s.i. sultable for spraying, etc.; condition as new hut
 bargain at 35% Cach. Air Lines 40 t., new, $30 /-. \quad$ Cooper. 10, Fowle
Street. Nechels. Birmingham, 8 . CHEAP GOVERNMENT SURPLUS Electrical of 300 tons Mechanical Electrical Tools, Instruments. Optical Nuts, Bolts. Screws. Washers, etc lots. K. R. Whiston (Dept. M.P.S.) New Mills. Stockport

THE "SOLASCOPE" unique 12 in 1 dia. Double Side Rotary Space Guide, beautifully illustrated in muit colours with 1.000 facts and figures covering the Solar System. Limited
quantity
10% each inciuding p and quantity 10/, each inciuding piand
p. Solascope,
44,
London Kingston, Surrey.

$a=8=5 \times 10$
 BRAND NEW
 HYPODERMIC SYRINGES 5/1

WITH 2 SPARE NEEDLE
excellent for precision oiling, etc.
SIMA Serum Glass 2 c .
Wonderful value. Per Each 5/1
SIMA Needles, Stainless Steel.
Sizes 12,17 or 18 . Per doz. 4/
All Orders Post Free
G. ROGER - SMITH
(Depr. 7), Syringe Supplies,
38, OLD FARM RD., LIVERPOOL, 23
T ElesCopes, Eyepieces, Finders Mounts, etc. S.A.E. for list. Woodthorpe Instruments, 12 , Rev.
Road, Wood horpe, Nottingham.
COMPRESSORS FOR SALE-Twin C4 Piston with tank, $2 \frac{1}{c}$ c.f.p.m. s4. Single Cyl., E 2.
Motors. S.A.E. types
S. Wheclliouse, 13, Bell Road, Rounslow (HOU 3501.)
A PPARATUS AND CHEMICALS. A Gligantic price reductions. Save pounds! Special offers; catalogue
free Scientific and Technical Supplies (Nottm.), Ltd., 286 . Alfred St Central Nottinkham

STEAM CARS, highly. efficient, described in detall, also Steam Launches and small stationary power; complete engineering draw lngs of modern light steam car power unit; magazine; ilsts of drawings, castings, etc., 4/6. "' Steam U.K.

POCRET CAMERAS, Size $3 \frac{1}{2}-24$ Kodak films. R. Lowes, Simonburn Northumberland.
NEW STEEL SHELVING, order slze direct th the manufactureis, deep with skx shelves. In sllver grey or green. \&3 delivered; white or cream, sta Any stze made to order, delivery by return, Send for
list to Grosvenor Industries Ltd. 77 list to Grosvenor Industries Ltd.; ${ }^{77}$
Grosvenor Road, London, S.W.i.

HOUSE SERVICE METERS, credit from and prock. Universai Electrical from stock. Universal Electrical.
221, Clty Road, London, E.C.1.

FOREIGN STAMPS

1,000 DIFFERENT STAMPS this and other gifts with approvals; Oakley Road, Shirley, Southampton.

WOODWORKING

WOODWORKING MACHINES. Al Saw cast-iron constructed. Complete Saw Benches, 7 in. $£ 4 / 15 /-$; 8 in. £30. Planers, sin complete motorsed ing Heads 84 , with 8in. Saw Tables $\varepsilon 7 / 10 / \sigma$ Lathes, $£ 7 / 10 /-:$ Coinbina tion Lathes,
Pulleys, Belts, etc., in months written and money refunded guaran tee. 4d. stamp for illustrated book let. James Inns (Engineers)

SAWBENCHES, 8in. to 30 in . from SE9; Motorised, $£ 13$; Petrol Portable, sa4. Planers, Bandsaws. Lathes. Saw Spindle and Planer Assemblies, Logging and Firewood Machines, Chain Saws, Engines, Motors, deferred tern)s. Send $1 \% / 9$ for handbook, catalogue and bargain South Thoresby, 47, Alford, Lincs.

TOOLS

PORTABLE POWER TOOLS, new - used, bought, sold, exchanged 58. Commerce Road Wood Green London, N.22. (Bowes Park 7221.) CENUINE DISPOSAL.-Black and OT Decker D 500 Drill plus 10 attachments; everything new; full
maker's guarantee ; bargain, sit Details from Box 9 .

HOBBIES

CATALOGUE NO. 14 Government Surplus and Model Radio Control, over 500 illustrated
(refunded on purchase).
items.
P/P \quad 6d (refunded on purchase). P/P 6d
Arthur Sallis Radio Control Ltd. $93(\mathrm{~B})$. North Road, Brighton

SEREN ASTRONOMICAL SUPPLIES
 Warehouse Road.

Stebbing, Dunmow, Essex. EQUIPMENT for ASTRONOMERS Mirrors, eyepieces, focusing mounts, spiders, etc. Do-li-Yourself kin
S.A.E. for free details.

NEWTONIAN Telescope Making.-
Gin. Mirror Blank and Tool (cut plate gin. Mirror Blank and Tool (cut plate glass, as cut),
Grinding
Polishing
Kit pitch, rouge), 27/6; Rectangular all post free. all post free. ${ }^{\text {including Ramsden Eyepieces. I. J. }}$ Muys \& Co., 20, Clover Rd., Timperley, Altrincham, Cheshire

FIBREGLASS

PLASTIC UNITS

Experimental Glass fibre Unic. $14 / 9$ Plastic Metal for Gear Casting. Plastic Dies, etc.i. 14/3. Porcelain-hard Cold Setting Finish for food preparazion surfaces, baths washing machines, etc., $16 / 9$ pt. in white. cream, black, sky blue, red, clear and aluminium. S.A.E. for information list (Dept. 3), Hartington, Staveley, Chester

MARQUETRY VENEERS, 12 assor 3d. for list. Frank Coles (Veneers) 3d. for list. Frank Coles (Veneers)

NEW MUSICAL BOX KITS

FROM $19 / 9$ COMPLETE.
Movements only from $11 / 9$.
Please send 3d. stamp, or call for new FREE illustrated brochure. Trade supplied. WWISSCROSS LTO. (Dept.

WATCHMAKERS

Watch repair service. un speed, rivalled for rellability ahd
chasonable with
reasonable charges. Part jobs welcoined Co., 13, St. Owen Street, Hereford

WATCH PARTS

For all makes of watches, tools, instruc zinners,
 Watchmakers Mall order service
-.

EARN to be a Watch and Clock 1 Repairer in your spare time and earn extra money at home. We can supply everything you need at unbeatable prices, including instruc-
tional books. Swiss watchmakers tools, watches, watch and clock movements, lathes, cleaning machnes, all spare parts for watches and clocks, etc. We also have a fine selection of musical box movements and kits. Send 9d. P.O. for bumper bargain catalogue. The WatchP.M.), Carterton, Oxford.

JEWELLERY

JEWELLERY, simply made, Free catalogue. Also Marcasites Vebbs Handicrafts, 46, Burnway, Hornchurch, Essex.

PHOTOGRAPHY

2IN, X 2IN. Projector and Enlarger or Castings, Bellows, etc. S.A.E. Chaplin Road, Easton, Bristol. 5 . BELLOWS. Camera, Enlarger, Pro Machine Guards. Beers 4 . St Cuthbe
41263.1

HOME BOAT BUILDING

WASY TO FOLLOW KITS 10 build Cr a Boat at home-for Cabin Dinghies and Enterprise Salling Dinghies Brochure from: Wyvery Boats (Wessex) Lid Milborne Port Sherborne.

MODELS

DERIOD " HISTORICAL MODELS models, Horizontal Minl Engine C.1850-Trevithick Type Vertical Engine at Science Museum London C. 1815 -also Hick Oscillating and Hick Vertical. both at Great Exhibition, 1851 Curious Horizonta feld: drawings full size. fult fleld drawings full size. filly Power- or Puliey-driven Hacksaw Kennedy " Bender or kit to make Workshop comfort, by safe and economical Eiectrical Tubular Heat ers. Illustrated leafets from istamp apprectated): Woking Precision
Models Co.: 32. Mount Hermon Road
woking

CLASSIFIED (contd.)

MISCELLANEOUS

A QUALUNG and Compressor Equipellaneous Items. Lists 3d. Pryce, 57. Malden Road. Cheam.

FORTUNES in FORMULAS," $900-$ American technical hobby and other pooks covering every interest. Stamp
for Iists. Herga Lid. (Dept. P2), for lists.
Hastings.

PROTECT YOUR CAR AT NIGHT "LITDN"

PHOTDELECTBTC TARKINE LIGETT SWMTCI

will switch your 1lghts on at dusk-off
at dawn, automatcatly, whul rou are
at work in bed or away from home. at work. In bed. or away from nome.
controlled by light. Transistorised. Controlled hy light. Transistorised. Avold acc:dents, fines.
battery
Kit of PARTS,

BUILT AND TESTED, $57{ }^{\circ} 6$
Pat. Pending, Send ©d, stamp for pamphlet.

EDUCATIONAL

Gi. O.E. Is the first step to nearly University Entrance, etc. Guaranteed I.C.s. coaching brings you home tuition by experts. No books to buy
Write for Free prospectus: Inter Write for Pree prospectus: interIntertext House, Parkgate Road (Dept. 521C). London. S.W.11.
$B^{U I L D}$ YOUR OWN HI-FI at homel 3 At last, for reasonable cost, the chance to make your own quality the knowledge to service and maintain it. Free brochure from: Dept 20.PM. Radiostructor, 40, Russell Street. Reading, Berks.
HOW AND WHY " of Radio and Hew. Electronics made easy by a Postal instructions based on hosts of experiments and equipment bulld ing carried out at home. wea knowledge of this fascinating sub ject. Free brochure from: Dept Street, Reading, Berks.

* LEARN *
 RADIO \& T/V SERVICING

for your OWN BUSINESS/HOBBY

- by a new exciting no-maths-system, actical equipment, recensly intro-
duced to this councry. FREE Brochure from :RADIOSTRUCTOR DEPT, G80. 46, MARKET PLACE READING, BERKS.

SITUATIONS VACANT

A. MI.Mech.E., A.M.Brit.I.R.E., Cit! high pay and security. "No passno fee terms. Over 95% successes. For detalts of exams and courses in Electronches of Engineering, Building. Electronks eft." BIE T. (Dept 9678) London, W. 8 . B.1.E.I. (Dept. 9678)

CHARTERED PATENT AGENT in London requires Teclinical Asslstant of Eritisli nationality and at least Advanced G.C.E. or Ordinary National Certincate standard In Chemistry, Physics or Engineering previous patent experience desirable languages also an advantage, Write
Box 307. Reynells. 44. Chancery Lane,

ELECTRICAL

A LL TYPES OF ELECTRICAL tive prices, at extremely competi35: - 00 yords: Lampholders $7 /$-doz. 5 ft . Battens $99 /-$ quality and immediate despatch guaranteed. Request list. Jaylow Supplies. 93 , Furrholt Road, London, N.16. (Teleplione: Stamford Hill 4384.)
SELF STARTING Synchronous Complete with detachable cycles Complete "ith, detachable geared Graham \& Co.. 64, King Charles Road, Surbiton, surrey.
WLUORESCENT LIGHTING FITComplete for workshop and home Complete range from st. io $18 i n$ where. S.A.E. for illustrated leaflets and list of Control Gear Kits.
callers welcome. We are fuorescent Lighting Specialists: E. Brill Dept. C. 125 A . Northcote Rd. London. S.W.11. (Battersea 8960.)
MODEL ELECTRIC MOTORS, 9/9. \quad v,3-6; "Maximo." 13/9, v,6-9 post paid. Size 1 tin. x itin., welght lioz: drives boat propellers l-11in. aeroplane $5-81$. Model Electric Motors (Dept, P.M.7). "Highland." Alkrington Green, Middleton, Man chester.

BRAND NEW
BROOK ELECTRIC MOTORS
Single Phase, \& h.p. 1,500 t.p.m. E7,10,0
 AVAILABLE. h.p. I,500 r.p.m. EII, 0.0 Fully guaranceed p. 3,000 r.p.m. E.m. 0.0 against cash. Carriage paid mainfand. State

ARCH PTREOOD \& CO
ARCH STREET, RUGELEY, STAFFS

PATENTS

DATENTING SERVICES, Advice. 114. Qualified agent. C. L. Brownenayes Ave. Banstead.
Surrey.

GOVERNMENT

 SURPLUS BARGAINS MILTI-PURPOSE MOTORS. Low voltage with gearbox, 24 v. D.C. but good at 12 V . or lower. Two sharts. at 24 v. Operate 3 sets.or cams and also plunger giving powerful lateral thrust Takes under 1 amp. Wonderfully versathe motor. Each $25 /$ post $2 /-12$LOW VOH.TAGE, BATTERY CHARGING TRANSFORMERES, 11 y. and 17 V. A.C. (for post 10. Charstas athor RECTIFIERS to suit above. Each 7/8
post y. (These transformens and recti-

 (not telescopic). Easily adapt to camera MOTURS. $200 / 200$ V. A.C.ID.C. F.H.P approx. 80 watts. High Speed. Iin. shart:
(Converted ex R.A.F. motor generator - power about equal to sewink mentine motor.) Useful addition to workshop. Each 30-, post 29.
Send ad, stamp for Hat of other motors. MILLIGANS
2. Rarford Street, Liveryond,

SERIES III
 NUCLEAVE PRESS

CROPS RIVETS PUNCHES Ask your Sole Manufacturert.
WITZNER LTD. 197-199 KINGS ROAD KINGSTON-ON-THAMES METAIS \& ACCESSORIIES

ALUMINIUM BRASS, COPPER STEEL etc. Sheets, Angles, Sections etc.

CLAY BROS. \& CO. Depr. H. 6a, Spring Bridge Road, Ealing, W. 5 2 mins. Eating Broadway 5 (P) PERSONAL SHOPPERS WELCOMED

REED ORGAN or ACCORDION in 3 months New Home method. Definitely the easiest if you have never
played a note, you
will be able to read

KLAVARSKRIBO INSTITUTE (B2.7),
67 HIGHBURY NEW PARK, LONDON, N.

BUILD YOUR OWN CANOE

Printed illustrated instructions $1 / 6$
TYNE FOLDING BOATS LTD.
206 Amyand Park Road, St. Margaret's, Twickenham, Middx.

"ARCMOBILE" arc welding sets

ARCMOBILE U 617100

Incudinas delivery

A complete self-contained Arc Welder using slandard flux-coated electrodos o 14 g . and $16 \mathrm{~g}, 2102250$ V. A.C. Mains consumption 13 Amos. Welds sheet metal down to 22 g , and steel and iron section up to $3 / 16 \mathrm{in}$ thick in a singie rum. Heavier sections can welded by muliple runs (building up) nnantely variable welding current by hand wheel, daximum welding current 65 Amps Minimum 15 Amps. Welght BE lbs. Dimenstons: 11 in . high, 12 in . Wide 13 in . tong
HARMSWORTH, TOWMEY \& CO.
ORDAN STREET, KNOTT MILL MANCHESTER, IS

FREE

CORRESPONDENCE COURSES IN STEAM
rwo courses : (1) A simplified Course for the practical man in need of basic information about steam and steam applications (2) An Advanced Course for those with a ackground of technical training. There is o charge or obligation. Details on request 10 :

SPIRAX-SARCO LTD

(TECHNICAL DEPT.) Cheltenham, Glos.

FREE Send for FREE Garage \& Portable tothorities

 STOP ${ }^{\text {ammat booms }}$

So Quick: So Reliuble ! and- 50 Convenient \& Automtays operate antomatically to securely hoid a
door fully open againat high winda preventiug door folly openg againat high winda preventing afinger. Patent 786,038, with benews. Euny to tit.

Ouly $8 / 3$ each. 15/- per pair. Post Free.
Sndisfection or noney hark guarawnech, ROLLER RINK SUPPLIES, Dept. P.M. I, 50A Town Road. Hanloy. Stoke-on-Trent

Letters to the Editor

The Editor does not necessarily agree with the views of his correspondents.

Mary

Celeste

A Naval Man's Theory

$S^{I R}$, - I read in your December issue the article on page 129 on "Space Raiders." Being a practical navigator and having commanded a gunboat in the Royal Indian Marine, H.M.S. Sussetta, I consider there are points which "Theorist" may not have thought essential to portray in his article about the Mary Celeste.

The brigantine Marv Ccleste had a cargo of spirits on board. Now vessels carrying this cargo have to have plenty of ventilation to allow the alcoholic fumes to disperse. Unfortunately Captain Briggs had had very bad weather for the first part of his voyage. To have opened the hatches (as brigantines are not like modern steamers and replete with ventilators) would have had suicidal results, the ship would have been swamped and foundered. The ship's \log (this has to be entered up each day at noon and the position stated) had not been entered up for over a week.

The cabin details are correct except that in the depositions of the Dei Gratia crew no mention was made about the stove being warm or that there was a cat on board. This latter is very interesting as under the Laws of Oleron-in the 12th century and accepted today in the 2oth century-a ship's cat on board could be defined as a member of the crew and a legal dispute could have arisen as to whether all the missing crew
were lost. I saw a number of years ago in Sea Breezes-a maritime monthly-this case set out. The writer reproduced photostat copies of Vice-Consul (U.S.A.) Spragges's (at Gibraltar where the case was tried) reports and no cat was mentioned.

The strange mark was actually in the quarter not the bow-and it seemed as if a heavy weight had rubbed against a mooring chock in the ship's rail around the stern counter

My reconstruction of the case is this: The spirits in the casks burst upwards on a seemingly fine morning and carried away the hatches, a great cloud of vapour from the fumes rising. The crew, except the helmsman and the officer on watch, would be at breakfast and this tremendous explosion startled everyone. The boat, in these craft, generally hung on davits over the sierri, was hastily lowered. Putting everyone in, the master took his chronometer and sextant. As it was tbought to be only a temporary measure, perhaps he did not see to the provisioning and water supply. If another explosion occurred they were clear and could perhaps return. To make this sure, he ran a painter from the bow of the smaller boat through the quarter chock on to a bitt or perhaps round the main mast. The wind was still choppy and the vessel, having nobody to steer her,
was flung about by the wind, first on one course and then on another. Captain Briggs waited too long to return on board. A position arose where the boat and the ship were at opposite angles and at this precise moment one of the vessels found itseli in the hollow of two seas and the other on top of a following sea. The strain proved too much and the painter snapped. The brigantine at once freed from her heavy tow-the laden, waterlogged boatjumped away and fled on the new tack, being speedily lost to sight. The laden boat, half filled with water through the seams and probably shipping a quantity over the gunwales, gradually sank lower and lower, and took her inmates to "Davy Jones's Locker."

In those days ships' boats were seldom inspected and many had never been in the water for "years. Until the planks swelled the water would have flooded in.-George Percival Kaye, F.R.G.S., former Lieu-tenant-Commander R.N.

Is It Worth While?

SIR,-This question is asked about space research in Fair Comment in the December issue and in my opinion, it is not! Surely our scientists would be far better employed trying to find out more about our own planet-particularly about what lies under the earth and at the bottom of the sea.-E. D. (Tooting).

Mary
 Celeste No Mystery

 SIR,-Re "Space Raiders" in the December, 1959, issue. "Theorist's" choice of the Mary Celeste incident is rather unfortunate since there is no mystery at all as to what happened. The truth was suspected at the time and was confirmed by statements from two surviving members of the crew, Jack Dossel and John Pemberton in 1917 and 1925 respectively. The complete account is given in "The Great Mary Celeste Hoax," by Laurence J. Keating (published in 1929), and a short summary, is included in "Myth and Mystery," by Rupert Furneaux (published 1955).At the Admiralty inquiry at Gibraltar the Admiralty Proctor, Mr. Flood, was far from satisfied with the evidence. For one thing the Dei Gratia disembarked an uninamed passenger at Gibraltar and again the condition of the cabin as found by Mr. Flood did not agree with the statement made by Mr. Deveau, the mate of the Dei Gratia. In the event Captain Moorhouse was awarded the relatively small sum of $£ 1,700$, less costs, not for salvage but for "rendering assistance to a distressed vessei." He can hardly have been satisfied with this but he does not seem to have made any complaint.

There is one error of fact in Theorist's account, there was no child on board. Capt. and Mrs. Briggs had only been married two years and had no children; the small size of the female garments found was due to the size of Mrs. Briggs who was practically a dwarf!

Briefly what happened was this; the mate and crew of the Mary Celeste, with the exception of the cook, John Pemberton, deserted in New York, The Dei Gratia
and the Mary Celeste, both under charter to the same firm, were lying alongside each other in harbour and Briggs arranged with Moorhouse to borrow three of his crew in return for Moorhouse taking on board some surplus cargo which the Mary Celeste could not carry. They agreed to meet at the Azores where Briggs expected to be able to engage new hands. The remainder of the crew consisted of the mate, Hullock, and three rather unsavoury characters, Sanson, Dossel and Venhold. Mrs. Briggs met with an accident and died and her husband took to drink, Venhold went overboard in a fight with the mate; during the night of November 26th the ship ran into a submerged hulk and while this wreckage was being cut away Briggs disappearedeither by accident or design. Near to the Azores, Hullock, Dossel and Sanson left the ship, presumably in the missing boat, leaving on board Pemberton and the three Dei Gratia men. It is significant that just before Dei Gratia sighted the supposed derelict the freighter Ebro had "spoken" to both ships. The mysterious passenger landed at Gibraltar was Pemberton who sailed almost at once for the Far East. Sanson died in New York in 1873, Hullock at Curaçao in 1887. A member of the Dei Gratia crew made a statement to the New York police in 1903 but was not taken seriously. The marks on the hull were presumably made by the submerged hulk.
The story has, of course, become a myth which loses nothing in the telling and the popular account in fact owes more to Conan Doyle's short story than to Mr. Flood's inquiry.-K. R. Matthews (Northumberland).

Mirror Silvering Dificult

SIR,-We would venture to disagree with the advice given to $\$$. N. Gaythorpe in "Your Queries" who asks about resilvering astro mirrors. It is not at all easy to silver a mirror adequately and quite ${ }^{-}$difficult to polish the silver deposit to give anything approaching the 90 per cent. maximum reflectivity required; the silver coating tarnishes in a few weeks. It is far preferable to have the mirror aluminised professionally-the cost is often less than the cost of the chemicals for silvering, and the coating will last for years at about 70 per cent, efficiency. A suitable aluminiser, whom we have found most reliable is Messrs. High Vacuum Deposits Ltd., Forest Road, Barkingside, Essex.-pp. Seren Astronomical Supplies, D. G. Hinds.

Freshwater Aquarium

SIR,-Your reply to a querist in the October issue on an aquarium problem interested me greatly.
I think that it is the opinion of experienced aquarists that three plants as suggested for a tank $18 \mathrm{in} . \times 1$ in. $\times 12$ in, would be insufficient; a dozen would be more appropriate.
Regarding Hydra, this is an enemy to the fishkeeper, and should on no account be tolerated, as it preys on most fishes and live foods. It is also difficult to eliminate in a tank without stripping it down and sterilising, as any broken bit of Hydra soon develops into a complete individual Hydra.-J. E. Morris (Bath).

Indexes for Vol. 26 Now Ready Price 1/3d.

TRADE NOTES
 a REVIEW OF NEW TOOLS. EQUIPMENT, ETC

Aran Shanley Mamosorers

A
STRONG, serviceable and yet economically priced claw hammer has been introduced as part of the Stanley "Handyman" range of tools. Hickory handles are fitted. Two sizes are available: 200z., costing los. and $160 z$., costing 9 s .

Stanley are now also producing Warrington hammers in four sizes. The handles are made of selected, young, straight-grained ash, the heads are rim-chamfered to minimise the danger of chipping and hardened and tempered on the faces and peins. The four sizes of Stanley Warrington hammers are 80z., 100z., 120 z . and 140 z . They retail at 7 s .6 d ., 7s. 9d., 8s. and 8 s . 6d. respectively.

Handles are pre-shrunk and treated to make them impervious to moisture. This prevents shrinking, the commonest cause of loose hammer heads. All, with the exception of the smallest size of Warrington, are triple-wedged.

Remte Screne-casp Remonorer:

TOHNSONS OF HENDON LIMITED, \int Hendon Way, Hendon, London, N.W. 4 , have placed on the market a flexible rubber bottle screw-cap remover. This appliance fits over the screw cap and by means of its ridged surface obtains a firm grip and enables even the most obstinate screw caps to be removed. The Johnsons bottle screw-cap remover can be purchased at 9d. each from any good chemist, photographic dealer or store.

The Johnsons bottle screw-cap remover in use.

Wiusen Tornla Protections

ANOVEL and unique method of preventing rust formation on the inside of water tanks of 100 to 1,500 gallons capacity has been evolved by Southern Metalife Lid., Station Square, Harrogate, Yorks. In this case the Metalife has been cast in a solid form, so as to form an anode in a cathodic protection system.
The solid Metalife Anodic Metal Unit is easily installed by anyone in a few minutes and the tank need not be emptied or put out of action. Once installed the unit will give $8-12$ years' service, depending on the exact size of the tank and the type of water, and needs no further attention. All the metal below the water line will be protected even ii the water is so hot that coatings and galvanised iron break down. Any rust that has already formed in the tank will be removed. Details are obtainable from the above address.

Adolyen Sitrel Sturipa

THIS steel strip, which is sold in 18 in . and 6ft. lengths, can be used for making and fixing shelf brackets, pipe

All-purpose steel strip.
clips, plant supports, shop window displays, cxhibition stands and laboratory apparatus, etc. It can also be used to repair furniture, doors, racks, ladders and many other firstaid jobs around the home and workshop. The strip is manufactured by Addy Products Limited, from 16 g . mild steel and is rustproofed. The 18 in , strip retails at is, 3d. net. The foft. lengths are of electro-zinc galvanised steel and retail at. 5 s . net. Addyco all-purpose steel strip is obtainable from most ironmongers or tool merchants.

\int HREE new screwdrivers are being produced by Messrs. J. Stead and Co., Lid., Manor Works, Cricket Inn Road, Sheffield, 2, for use with Phillips recess-head wood screws as well as metal screws. They are fitted with cabinet handles of plastic and are particularly suitable for use with self. tapping screws. They cost 5s, 4d., 7s, 6d. and 9 s . 3d, according to size.

THE "Carol" tape recorder produced by Contronics Limited, of Garth Works, Deepcut Bridge Road, Blackdown, Nr. Aldershot, Hants, uses the new B.S.R. tape deck. Tape spools up to $5 \frac{3}{i n}$. are also used, giving a total playing time with standard tape of $1 \frac{1}{2}$ hours, at the single speed of $3^{\text {lin. per sec. The two-tone red }}$ and grey case has gilt fittings and incorporates a $7 \mathrm{in} . \times 4 \mathrm{in}$, speaker. The amplifier has radio and microphone inputs, with an extension loudspeaker output. The "Carol" is suitable for $200-240$ v. A.C. only. The price, complete with 850 ft . tape, spare spool and crystal misrophone, is 19 guineas.

Ppefirises Durthoceral Enetosis

TT was recently announced that the new 1960 range of Perkins streamlined motors is now available on hire purchase terms. The announcement was made at the recent opening of a new British plant, specially equipped to produce the Perkins outboard motors. The modern production methods used in this plant have enabled Perkins to slash the prices of their petrol outboard motors by amounts varying up to 20 per cent.

- Homer Phootogrernhly="

THE fifth edition of "Home Photography," published by Johnsons of Heudon Limited, Hendon Way, London, N.W.4, is now available. The book discusses action, architectural and colour photography, etc., and also gives instructions for developing and printing. Available from most photographic dealers, this well illustrated, 104 page book costs 3 s.

Neur Thorrmostert Plogy

A HANDY device for controlling the heat of electric kettles, percolators. soldering irons, drying cabinets, blankets, carpet underlay heating or any other electrical heating appliance not fitted with a built-in thermostat has recently been introduced by Messrs. Sunvic Controls Lid., 10, Essex Street, London, W.C.2. Known as the "Reguplug," this device comprises either a 15 A (round pin) or 13A (flat pin, fused) three-pin plug with a built-in heat regulator. The "Reguplug" will maintain heat at any desired level between zero and full, and is for use on $220 / 240 \mathrm{v}$. A.C.

It costs 35 s. for the 15 A type. 37 s . 6 d , for the 13 A version and is on sale at Electricity Board showrooms, electrical retailers, etc.
(Left)-The 13 A flat pin, fused Reguplug.

FOR MAKING AND mending anything

(1)
PER HANDY TUBE

1/6 per large tube $2 / 9$ per $\frac{1}{4} \cdot \mathrm{lb}$. tin 10/6 per $9-\mathrm{lb}$. tin Commercial size tubes 5 /.

If it can be stuck Durofix will stick it because it is a universal adhesive which is heatproof. waterproof and being transparent makes almost invisible joins. Valuable ornaments and trinkets can be repaired. When dry and hard it will not become tacky in the hands so it is ideal for sports goods. Once you have proved how useful and reliable Durofix really is, you will never be without a tube in your home.
Durofix Thinner and Remover 1/6 per 2 oz. bottle.

 PLASTIC WOOD

3
FOR FILLING AND MAKING WOOD GOOD

It is surprising how many uses you can find for Rawlplug Plastic Wood in the home. Filling cracks and flaws, making woodwork good before decorating, repairing furniture, making models and so on. Plastic Wood dries hard and can be cut. planed. sanded, painted and varnished like real wood. You can even drive nails and screws into it.
Colours:- Natural, Oak, Mahogany and Walnut.
Plastic Wood Softening Fluid $1 / 6$ per 2 oz. bottle.

$2 / 3$ per $\frac{1}{4} \cdot \mathrm{lb}$, tin $3 / 9$ per $\frac{1}{2}-\mathrm{lb}$. tin $6 / 6$ per $1-\mathrm{lb}$. tin

3 sizes of rawlplugs in one carton $2 / 3$
This very useful assortment of Rawlplugs in three gauges and three leng ths provides 50 No. 8, 10 and 12 fixings for $2 / 3$. The window carton is divided into three compartments and the lid incorporates a Rawlplug and Screw gauge making it easy to select the right drill and screw to use. Get one now for your tool box.
for masonry drilling the easy way
 hold handyman. Four sizes are made for use in a hand brace or suitable electric drill. Just what you need for that occasional domestic fixing job.
Each Metalide drill is panked No.'8(3/16") $\operatorname{No.10(7/32^{\prime \prime })|}$ No. $12\left(1 / 4^{\prime \prime}\right) \mid$ No. 14 (9/32") with an Instruction leaflet in a strong plastic wallet with transparent window.

'g Green Gren	No. $10\left(7 / 32^{\prime \prime}\right)$	No. $12\left(1 / 4^{\prime \prime}\right)$	No. $14\left(9 / 32^{\prime \prime}\right)$
Blue	Brown	Grey	
$5 / 6$	Wallet	Wallet	Wallet
5	$6 / 6$	$6 / 6$	$7 / 6$

The most efficient, precision made, long lasting masonry drill is the Rawlplug durium (with the free re-sharpening service). We strongly advise this drill for continuous drilling (such as industrial operation). 13 stzes are from No. 6 to No. 30: 4 Rawlbolt sizes and 11 stzes for drilling right through walls. Prices aro from $9 / 6$ each. For drilling glass use the special durium glass dnLl. Made in nine stzes from $\frac{1}{8}^{\prime \prime}$ to $\frac{1}{2}^{\prime \prime}$ at 6/6 to 10/6 each.

Free Re-sharpening Voucher with each drill.

The handiest of handy outfits for the household handyman

In this attractive box there are seven of the

 most popular Rawlplug products complete with a 64 page Instructional booklet: Rawlplugs, a No. 8 Metallde Masonry Drill. Durofix, Duroglue, Plastic Wood, Fuse Wire and six Rawlnuts (for making strong xings to thin and hollow materials)
Rawiping DO-IT-YOURSELF OUTFIT-12/6

Don't Scrap it-Solder it

No handyman should be without this sturdy electric soldering iron which can be supplied with standard bit at $32 / 6$ or Pencil or Hatchet bit at $33 / 6$. Voltages 100/110, 200/220, $230 / 250$ Volts. Universal A.C./D.C. Consumption 110 Watts.

The books for the man who likes to make things for himself-

Shows you how to make over 30 magnificent articles. 224 pages and 320 diagrams and illustrations.

THE Ist "PRACTICAL MECHANICS"

Edited by F. J. CAMM
'THIS is a book for the man who likes to make things for himself. It has been compiled from the columns of "Practical Mechanics," the monthly journal for the handyman and model maker. Everything herein described has been designed, built and tested in the "Practical Mechanics" workshop, and may thus be built with confidence.
CONTENTS : TAPE RECORDER
MASTER BATTERY CLOCK . ELECTRONIC ORGA ELECTRIC FASHING MACHINE . HAND VACUUM CLEANER . KI.ECTRICAI.LY OPERATED GARAGE DOORS BAGATELLE TABLE . REFILCTING TFLESCUPE HARMONDGRAPH "DESIGNOGRAPH" ISIN. FOUR-IEDDIEE HAND-LOOM POTTER'S FHEEL. POTTERYKILN. ELECTRIC OVEN. WESTMIVSTER TUBULAR DOOR CHIMES C CICLE TRAIIER . PEDAL-CYCLE SIDECAK PORTABLE AIR COMPRESSOR. WATER SOFTENER. SPANISH HAWAHAN GUITAR . STEELSTRINGED UKELELE UOUBLESEATER CANOE RADIO DEAF-AID UNIT GARDEN POOI VERTICAL ENLARGER . PHOTO-FLECTRYC EXPOSUKG METER FLASHGUN COMBINED PRINTING BOX AND S.AFELIGIIT EPISCOPES STEAM-DRIVEN MOTOK BOAT ELECTRIC WALL' BRACKET INEXPENSIVE HOUSE TELEPHONIS ELFCTRIC GASLIGHTEK DR.4FING.TABIEE TOBOGGAN. i2s. 6d. net (13s. 6d. by post).

DIASCOPES AND

SYNCHRONISEI ADIUSTABEL:

Details for making 35 valuable articles throughout 192 pages. 306 illustrations.

Edited by F. J. CAMM
THE great success of the first "Practical Mechanics " How-To-Make-It' Book," which has run through several editions, has encouraged the publishers to produce this second volume, describing the construction of a wide variety of articles which will appeal to the home meehanic and model maker. Like the first volume, this has been compiled from the most popular features appearing in "Practical Mechanics," the established monthly journal for practical amateurs.
CONTENTS : A REFIECTING ENLARGER ONE-STRING FIDDLES . FOLDING STEPS AND AN EXTENDING LADDEK AN ELECTRIC GUITARETTE A A MINIATURE BILLIARD-TABLE. A SYNCHRONOUS ELECTRIC CLOCK A GLOVE PUPPET THEATRE AN AUTOMATIC GARDEN SPRINKLER A MIDCET CAMERA A POTTERS WHEEL A CATAMARAN A ROWING MACHINE AN AQUALUNG HOME-MADE FISHING TACKLE. INSTALLING A TROPICAL AQUARIUM. A SNOW SCOOTER. UNDER-HATER PHOTOGRAPHY A PAIR OFSKIS. PROJECTING TIME ON THECEILING . A HARPOON GUN . SMALL WIND. POWER PLANTS. AN ELFCTRIC HEDGE TRTMMER. BATHROOM SCALES . A FOLDING OUTBOARD MOTOR-BOAT. FLASH PHOTOGRAPHY. GAS FIRED POTTERY KILNS. A BACK.PROJECTION EPISCOPE MOTORISING IOUR LAWN MOUER A SKELETON SYNCHRO-EIECTRIC CIOCK A VIERER AND PRINTER FOK 35 MM FILA! A CYCIF TRAILER AN ELECTRIC IMITATION CO IL FIRE • A MECHANICAL POTATO PEELER A A HOME-MADE DUPLICATOR. MAKING RUBBER STAMPS. I5s. net (16s. by post).

Jhese are the most practical constructors' books yet . . the articles are not toys but things of real use and value!

Commertingr Flashine Indic:aters

IAM going to fix on my motor cycle a flashing direction indicator set. I have on the machine an A.C. generator with rectifier for D.C. battery (Varley) 6 volts 9 amps. (A). What is the best way of tapping the existing circuit so that I am able to keep the accumulator charged up during my trips which are not of long duration?C. W. Pool (Birmingham, 11).

THE indicator circuit could be connected direct to the terminals of the battery, or to any two terminals in the circuit which are connected directly to the battery.

If you find that the machine is not used sufficiently to keep the battery charged we suggest that you obtain or make a battery charger with D.C. output, which can be fed from your home supply and connected directly to the battery terminals. Alternatively if your home supply is A.C. you could use a step-down transformer to supply the A.C. side of the rectifier on the machine, fitting a switch to disconnect the A.C. side of the vehicle wiring while the external charger is being used.

Camera Repair at Home

I
HAVE a 35 mm . Exakta camera (prewar) fitted with a 2.8 Tessar lems. The front of the lens needs repolishing. Could I do the job myself? Could you recommend a cheap book on the focal plane shutter of this camera? The slow speeds seem all right but $1 / 250,1 / 500$ and $1 / 1,000$ sec. are out of order, only exposing part of the negative. Could I repair this myself? -P. A. Carroll (Ireland).
A TTEMPTS to repolish the lens to remove scratches are unwise because changes in curvature will spoil definition. Small scratches will not reduce definition, and their area, compared with that of the lens surface, is normally so small that the loss of contrast they cause is of no importance at all.

Servicing information is usually available to repairers, etc., only. Incorrect operation of a focal plane shutter at high speeds may arise from dried lubricant on the blind wind mechanism, dirt, etc., a weakened spring, wear or incorrect setting of the speed adjusting trip mechanism, or from a blind losing its flexibility. Whether or not you could
correct this defect depends on your own skill and care, and the actual cause.

Cmtting Toughemed filass

WISH to cut some car windows from toughened glass. Can you tell me the correct method ?-L. Conway (Lincs).
THIS operation is difficult unless you are skilled. It should be carried out in a room of moderate temperature (not cold) and the orthodox diamond used. Having made your cut tap along the cut very cautiously and avoid uneven strain by failing to support the waste piece evenly.

Additional Circuit

I
LIVE in a four-roomed house with the ordinary lighting points, i.e., two downstairs, two bedrooms, with a two-way light for stairway all run from the fuse box situated in the living-room.

I wish to run an extra light under the stairs and put a power plug in the kitchen. There are no power plugs at all anywhere in the house.

Can I do this job from the present lighting circuit without rumning any leads from the front room fuse box?

The two-way switch for the stairway is situated at the doorway leading from the front room to the kitchen.--C. Dillon (Blackpool).
TT will be necessary to run a separate circuit for the power socket-outlet, this being fed through a double-pole switch with fuse in the live pole (assuming the supply is A.C. with its neutral point permanently and efficiently earthed). The supply authority should be asked to inspect the new circuit and to connect it to the supply.

An additional lighting circuit may be fed

RULES

Our Panel of Experts will answer your Query only if you comply with the Rules given below
A stamped addressed envelope, a sixpenny crossed postal order, and the query coupon from the current issue which appears on the inside of back cover, must be enclosed with every letter which is sent must bear the name and address of the reader. Send your queries to the Editor, PRACTICAL MECHANICS, Geo. Newnes, Led.: Tower House, Southampton Screet, Strand London, W.C.2.
from a live (L) and a neutral (N) point on the existing lighting circuit, through 3/0.029 cables. The lamp switch must be connected in the live pole. The L and N points will. be available at the fuse box. If the cxisting ceiling rose in any room has three terminals it is also likely that the L and N points will be available at the ceiling rose; otherwise the N point will be available at the ceiling rose and the L point at the lamp switch.

In order to locate the L and N points you may proceed as follows: Connect two leads to a lampholder, in which is placed a mains-voltage lamp to act as a test lamp. Remove the lamp connected to the ceiling rose, together with the ceiling-rose cover and the cover of the lamp switch, which shounld be switched off. Connect one lead of the test lamp to a sound earthing point, such as a main cold water pipe. Place the other lead in turn on each terminal of the ceiling rose. If the lamp lights on one terminal that is an L point. If the test lamp fails to light repeat the test at the lamp switch to find the L terminal there. Having found the L terminal hold one test lamp lead in contact with the L terminal and place the other lead in turn on the contacts of the ceiling rose. The test lamp will then light when connected between L and N points to which the new lighting circuit may be connected.

Polychromatic. Cellulose Lacquer

WISH to spray my bicycle with a polychromatic cellulose. I am told that clear cellulose mixed with tinted aluminium dust dries with a very good finish. Could you please give me some advice on spraying and what amount of aluminium is required for mixing with $\frac{1}{2} \mathrm{pt}$. cellulose.

Can you suggest a source of supply for these materials?-John Dewar (Harrogate). TN order to obtain a polychromatic cellulose lacquer mix together about equal parts (by measure) of clear cellulose lacquer and tinted aluminium powder. The resulting mixture is then sprayed on the metalwork, care being taken that the spraying mixture is not too thick. You can obtain cellulose lacquers from any firm of paint and varnish dealers. Usually, aluminium dust can be obtained from the same source.

The P.M. Blueprint Service

12 FT. ALL WOOD CANOE. Naw Series,
No. 1, 4 s .
COMPRESSED-AIRMODELAEROENGINE New Series. No. 3, 5s. 6d.*
AIR 'RESERVOIR FOR COMPRESSED-AIR AERO ENGINE. New Series. No. 32, Is. $6 d$. " SPORTS " PEDAL CAR. New Series. No. 4, 5s. 6d.*
F. J. CAMM'S FLASH STEAM-PLANT. New Series. No. 5, 5s. 6d.*
SYNCHRONOUS ELECTRIC CLOCK. New Series. No. 6, 5s. 6d.'
ELECTRIC DOOR-CHIME. No. 7, 4s.*

ASTRONOMICAL TELESCOPE. New Series
Refractor. Object glass 3 in . diam. Magnification $\times 80$ No. 8 (2 sheets), 7 s .6 d .
CANVAS CANOE. New Series. No. 2, 4s: DIASCOPE. New Series. No. io, 4so* EPISCOPE. Now Series. No. II, 4s.*
PANTOGRAPH. New Series. No. 12, 2s. ${ }^{*}$
COMPRESSED-AR PAINT SPRAYING
PLANT. New Series. No. 13, Bs. MASTER BATTERY CLOCK.* Blueprimes (2 sheets). 4 s.
Art board dial for above clock, Is. 6d,

OUTBOARD.SPEEDBOAT
Ils. per set of chrec sheets.
P.M. TRAILER CARAVAN.* Complete set. Ils.
P.M. BATTERY SLAVE CLOCK 2s. bd:* F.M. CABIN HIGHWING MONOPLUANE Is. 6d."

The above blueprints are obtainable, pose free, from Massrs. George Newnes, Lid.. Tower House, Southampion Street, Strand, W.C. 2.
An * denotes constructional details are ovalable free

Watrerproovins Mishine Jimes

DLEASE could you kindly give me a formula using benzene and copper naphthenate for sea-proofing hemp lines? H. D. Griffiths (Llanelly).
A SOLUTION of 10 parts of copper naphthenate in 90 parts of white spirit, paraffin or benzene makes quite a good waterproofing preparation for sea and river fishing lines. The copper naphthenate is soaked cold in the required amount of solvent overnight, after which the solvent is heated and the naphthenate is stirred until its solution takes place. The lines are then soaked for about 12 hours in the solution. They are afterwards hung up to dry in a current of air. Such lines will be quite waterproof, but, unfortunately, the naphthenate may render them toxic to fish, vegetable or other forms of marine life.

It may be possible for you to use the naphthenate solution at one half of the above strength, that is to say five parts of the naphthenate in 95 parts of the solvent, but, usually, a 10 per cent. solution, such as the above-mentioned one, is of all-round efficiency and application.

CY Car lRadio on a 19 I IBattery

INOW have a new car with a 12 V battery and want to operate my 6 V radio. I am told there are several methods. What do you suggest? W. L. Edwards (Sheffield, 2) N our opinion, the best method would be to use half the battery (i.e., make a tapping at 6 volts). Although this arrangement would provoke uneven charging of the battery, we feel that a balance would quickly be restored during the periods when the radio is not in use.

Dropper resistors are employed for this purpose, of course, but the actual value of the resistor is governed by the average current taken by the receiver when working at full 6 volts. You should have this measured on an accurate meter and compute the resistance value in ohms by dividing the voltage to be dropped by the resistor (i.e., 6 volts) by the current reading in amps. Heavy resistance wire will need to be used to produce the dropper; an electric fire element provides a good basis for the component, which should be mounted with due regard to ventilation.

Crackie and Matt Bhack Paints

T HAVE constructed a projector for 35 mm . colour slides and I wish to complete it by painting the inside matt black and the outside casing black crackle.

1. Please supply a formula of a good quality matt black paint, which is heat quaisting and suitable for brass sheet and aluminium alloy sheet.
2: Can you furnish the name of a supplier or manufacturer of a good-quality black crackle or shrivel paint.
2. Please suggest treatment for the bright metal surface to achieve maximum adhesion of the paint.-Eric Ryding (Preston).
TOR painting the inside of the projector we know of nothing better than and light vegetable carbon, made into a paint with a mixture of Japan gold size, one part, and pure turpentine, three parts. As an alternative brown shellac in methylated spirit, with the same vegetable black powder added, may be used. Line the inside of the lamp housing with asbestos cardboard and treat this with either one or the other
of the blacks or with water colour "poster" black or even Indian ink.

There are numerous crackle finishes available; one is available at most paint stores under the trade name "Krackle," and another made by Pinchin Johnson and Co., 4, Carlton Gardens, London, S.W.1.

Marking the surfaces with emery cloth. fairly coarse, rubbed on in all directions, provides quite a good key for paint.
 I WISH to either make or buy' a continuous ringing bell similar 10^{-}one produced several years ago and now discontinued. The bell was battery operated and continued ringing when the first contact had been broken. Would you also advise me regarding the best battery to use. I am using a $7 \frac{1}{2} \mathrm{~V}$ battery which, at the moment, allows 3 amps. to flow when connected directly to the bell and only 1 amp. when used in circuit in which I wish to use it. This does not give a very good ring. What larger battery can I use in safety without burning out the bell? I assume that most battery operated bells work on $4 \frac{1}{2} \mathrm{~V}$. I used $7 \frac{1}{2} \mathrm{~V}$ to overcome the resistance in my circuit. The resistance is essential and will not vary. -E. Smith (Southampton).
IN view of the remarks in your letter it would appear that the resistance of the wiring is at least three times that of the bell, which accounts for the comparatively low bell current. Better operation would be obtained by replacing the bell wiring by new wiring having a cross-sectional area about three times that of the present wire. Alternatively, you could use a battery of

Modification for standard bell.

about 20 volts, although this method is rather uneconomical.

You might be able to obtain a continuousringing bell from one of the following firms: Gent \& Co. Ltd., Faraday Works, Leicester.
Phoenix Telephone \& Electrical Works, 38, Newman Street, London, W. I.

Ever-Ready Co. (G.B.) Ltd., Hercules Place, Holloway, London; N.7.

Cox-Walkers Ltd., North-Eastern Electrical Works, Darlington,
It is also possible that you could modify a standard type of bell by fitting a small lip A at the bottom of the armature B as in the sketch. A weighted contact C is pivoted at D. so that, when the push-button switch E is pressed and the armature B is attracted by the coils F the contact C swings down to make contact with a fixed contact G. The contact C could be reset by means of a lever, cord or similar device.

Underwater C'annera

HAVE boxed and waterproofed my camera for underwater photography and I am fitting a film winding knob and focusing mount. I am, however, puzzled about the eye level viewfinder which, after several attempts is still not accurate. I would welcome any information.-Peter Hayes (Manchester).
THE eye-level viewfinder you have constructed is inaccurate, but you do not give a precise account of the exact trouble. To start with here are details of a simple wire frame viewfinder which is constructed

out of thick copper wire. The dimensions of front frame depends on the size of the negative format. If it is $I_{2}^{\frac{1}{2}}$ in. X in. the size of the front would be 3 in. $\times 2$ in. The distance between the plane of this frame and the rear sight depends on the focal length of the camera lens and is in the same proportion as the front frame, i.e., since the focal length of my lens is 2 in . the separation is 4 in . This finder will give an approximate size of the field of view, although it must be remembered that every frame finder will give a field that includes slightly more than is actually photographed at close distances whilst at a distance slightly more is included on the photograph than is indicated by the finder.

If this "field of view" is the trouble then the proportion given before should eliminate the trouble. The other inaccuracy is one of parallax since the viewfinder is mounted a considerable distance higher than the lens. The only way of compensating for this is to set up the camera at the distance it will most likely be used away from an object, so that the camera is pointed in a horizontal line at it. The "eyepiece" of the finder is then raised or lowered until the centre of the frame is coincident with the object. The wires can be attached to the camera casing in many ways but perhaps one of the most convenient is to drill holes in the wood of such a size that a small piece of copper tubing can be firmly cemented in place. The inside diameter of the tubing must be of such a size that the ends of the wire are a good firm fit, if too small then the ends can be pinched with a pair of pliers. If this is done then the finder can be dismantled for easy storage. A crosssectional enlarged diagram of this is shown here.

I WISH. to cut letters and designs on the back of silvered glass, i.e., old mirrors, how do I remove the silver, without scratching the glass, or rotting the edge of the remaining silver?

What adhesive will stick two pieces of glass together, such as finger pulls on sliding doors?-H. Dilloway (Portsmouth). HIS is a very difficult art and involves substance to use. The principle involved is to cut stencils from thin strips of lead and to seal the possible interspaces between the lead and the glass with beeswax. The mirrored silver surface is then removed with nitric acid, all traces of which must be removed before taking away the lead stencils.

A strong medium for sticking glass is Canada balsam. This is best applied by holding a fairly hot flat iron on either side of the pieces of glass (blotting paper between) and then squeezing out all air bubbles from the pre-heated-Canada balsam after it has been applied to the inner surfaces.

MIDLAND INSTRUMENT CO
 trated and deserited in in ictober P:M

 ong, welght 5 lbs. An deal foldin 18.6. post 29. Correct brass heads to oit these tripods with $5 \frac{1}{1 n}$, dia hase has two micrometer control knobs, one
rotalmg head through 360 deg., the other ap to 50 deg , elevation and 10 der de pression : Meads are a perfect fit for all British and U.S. type elbow telescopes
$18,5$. post $2 /-$.
THDEPHONE SETS, consists of two combined microphones and receivers perfect 2 -way communication. Sell energlaed-no batteries required: flex
onn be extended up to 1 mile if required Complete get, ready for use. new. unused, $12 / 8$, post paid
DIM, N16its, $4 x$ or scope viewer fitted ares vision tele ing 51 n . dia. $360-\mathrm{dey}$ call brated head with micrometer contro Also ta 5 minute limit azimuth bearing. Also micrometer control $20-0-20-$ deg
elavation and depression. These instru elavation and depression. These instru
ments are Ideal for elementary instruc ments are jdeal tor elementary instruc orisinally cost \&60, our price supplied
in leather or metai cases, new or near in leather or metai cases, new or near Iripods easily adapted to take these
instruments 12.6 . post $2 / 6$. Cannot be
 shunt wound, reversing, fitted bin. dia long. 111 n . dta., weight 200 z . Very superior ex-Govt. device motors. new, unusedi. $10 /$, post $1 / 9.2$ for 20 , , post paid
Ditto fitted reduction Ditto fitted reduction gears giving a r.p.m. (state which required). $12 / 6$. post 1/9. 2 for 35 -i post paid. 35. These contain the popular small motor repeating exposure timer mechanism, with variable time setting knob. Smart red and green indicators complete with in grey metal cases, size 81 n . 41 in in., new. unused. supplied in wood
instrument boxes. faction of original

MIDLAND INSTRUMENT CO. BIRMINGRASI 17

RIVEING SYSTEMS ITO.

Jordan Street, Knott
FREE POCKET MANUAL " How to fit STEAM

TRAPS"

Unique guide to the correct selection and installation of steam traps for mains drainage, heating systems, process steam units of alt kinds; including best conden sute-lifting installations. Concise directions clear illustrations. Cópies free on requesi to

SPIRAX-SARCO LTD. (TECHNICAL DEPT.) Cheitenham. Glós

AUTOMATIC (TIME) SWITCHES

and reconditioned 15 day clock
work and dectric switches from 35/-
SONOHOE (TIMERS) \& 2 UPPER NORFOLK ST. NORTH SHIELDS, NORTHUMBERLAND

Presenting The CHARIES FraNK 4 INCH NEWTONIAN REFLECTOR

An excellently-designed equatorially mounced astronomical telescope with precision F/8 aluminised spherical mirro workshops. The eyepiece provided with this telescope is the famous G-element Erfle, which is considered to rank as one of the world's finest flat field eyepieces. extra ; $\dot{l}^{\prime \prime}$ Ramsden eyepiece, giving magnificasion of approx. $125 X$, price $37 / 6$.

532 CARRIAGE EXTRA

£3 Deposit and II monthly payments of £2.16.8

HIGHSTONE UTILITIES

 in self-contained metal case: can be used munication system, or with crystal set complete with valves and Fitimg Instruc with partitions to hoid amplifier, $8 /-$ extra Amphifier, containing resistances. con densers, transformers, switches, etc. but thonem, with switch in bandle and lerat 5. 6. Tannoy, 71 - Slmilar instruments with switch, $3 / 6$, penst GA. Tiranat Wike Moving coll, 3\%, post $4 d_{*}$ Soldering irouls. Illestry Duty Irun, 150 heterw. 20 pamp, 2 in., m/s. 86 ; $25 \mathrm{~V}, 2 \mathrm{in}$ $\mathrm{m} / \mathrm{c}, 8 / 1 ; 150 \mathrm{v} .2 \mathrm{in} . \mathrm{m} / \mathrm{c}, 1106: 2.5 \mathrm{amp}$.
 ing 2,500 microamp movements, M-, post $1 / 6$ Brall Transforniers. - These guaranteed transformers work from any A.C. main
givtigg 3.5 or 8 voits outpur at operate bulb, buzzer or bell. Whl supply light in bedroom or larder, etc., 94 , port 14 Similar Transtormer but output of 4,8 or 12 alther the above or hatteries. 43 , post 5 fil Bik Ken Climmo. Dustoproof ivory casc pleasing two note chime. Can be used with hattery or with our 12 v . transiormer, 154 . New Diug Bung Chime. Also housed in pleasing ivory case. Operates on two 4i y fransformer, $21 / 7$, hoth post $1: 6$. post $1 / 6$ Telephone itand Tienerathor S.B.C. Neon indientore lanmpus for use or mains to show "live" side of switchna, etc Q/6. post 4d: Jlains Tester Serrewilivers Determine posilive or live terminals in an
mains electrle corcuit, $8 / 8$, post 611 . Crystal Setw. Our latest model is radio recelver, fitted with a permanen crystal detector. 12/6. post 1/- Spare Perm separatoly. 2:6: with clips and screws $2 / 10$ post 3d, 13todes, 2.6. .0005 Variathle Cun denser, 2w. post pi, Ileadphones. brand tive. 28: a pair. Ileadulanes in Gonot Orier, 6 - DEATter Qually, \%/6 and 10 M Balancect Arntature TVike (very sensitive) 13/6. Aal armature kype Sinkle liaruleces plece, $8 \cdot \beta$ intercom, seth. Ex-R.A.F. ear
highstone UTILITIES
58. NEW WANGTEAD. LONDON, E. 11 New lllustrated List sent on request
3 d, stamp and S.A.E. Letters only.

 the world's largest correspondence school

Planning Club Runs

WHERE shall we go this Sunday? This is, the vexed question which the Club Runs Captain must ask himself every week. The question is a vexed one, not because there is a shortage of places to visit, but because it is almost impossible to please every member, even if two or three runs are scheduled. Many factors complicate the selection. There may be one or two groups away on local courses on which they have been timetrialling early in the morning. All the riders will not be up to the same standard and will wish to travel different distances and at different speeds and, to make things more difficult, it is preferable to have all the club meeting some time during the day. Finally a café or restaurant must be selected which can provide the club with lunch and tea.
Too often the result is either one section of the club having to ride long distances at high speed in order to rendezvous with the others or else one group having to wait and kill time until joined by the remainder.

It is not good enough, as some clubs do, to make out a list of Sunday runs months in advance and then adhere religiously to it regardless of weather conditions and other circumstances. For instance a roo-mile run to the coast may have been decided several weeks earlier and then when the weekend arrives, it is found that several members have entered a road race in another area. A large section of the club want to go and see the race and in addition, the weather is unsuitable for a day by the sea. Obviously the majority of members will follow their own inclination and watch the race and, however disappointing this may be to the club runs organiser, he cannot insist on members attending the official club run. It is discipline of this sort which drives an independent cyclist away from the club and turns him into a lone rider.
On the other hand, if runs are not decided until the club meeting immediately prior to the weekend, members unable to be at the club meeting will not know where the Sunday run is to be. A member who turns up at the meeting place on Sunday morning to find that the scheduled run has been changed and that everyone has left earlier for another destination is likely to be considerably annoyed and perhaps leave the club because it is badly organised.

Altogether the club runs organiser's job is not an enviable one. What, then, can he do to overcome some of these difficulties? They cannot all be overcome and the first
step is to make sure that club members realise this. Point out to them, via the club magazine or notice board, that club runs are arranged to fit in with as many groups as possible but that it is not always possible to accommodate everyone. Next ask the Racing Secretary to pass on the movements of the various teams who are out at events to the Runs Captain. This will ensure that he doesn't choose the wrong route through lack of knowledge of members' movements. Perhaps the most important thing is to make sure that the weekend's runs are posted where everyone can read them; outside a local cycle dealer's shop or outside the clubroom for instance. Sometimes a tobacconist will allow the use of his "Sales and Wants" advertisement board. It is useful too if
find two routes to a given spot, which are different in length and difficulty, far more easily than if the object of the run was merely a straight dash along a main road.
The position of Runs Captain is one of the most responsible and exacting in the club organisation. Not only must he have an exact knowledge of the surrounding countryside and what can be seen there, but he must also be prepared to sacrifice his own preferences to suit the pace, cababilities and interests of the majority. Also, although discipline is a word which can only be very distantly associated with the pastime of cycling, the Runs Captain should have a certain amount of authority. Enough merely to ensure that the pace is suitable for everyone and that members are prevented from annoying other road users.

Fortunate indeed is the club which has a Runs Captain with all these qualifications and it would be well if members remembered some of his difficulties before they criticised his planning because it does not coincide with their own arrangements.

B.A.R. Audience. Can It Be Controlled?

As we have now come to expect the B.A.R. Concert this year presented a very high standard of entertainment and the prize-giving was well arranged and spectacular. The only note of discord was-as usual-struck by the audience, or part of it.

Noise was continual and missiles were thrown on to the
someone who has knowledge of the runs can be contacted by telephone.

With regard to the actual planning of the run itself, it is difficult to make any general observations as every case is different. But if the clubman's habit of taking the most direct route is broken, a big step has been taken towards overcoming the route difficulties. A devious route among the minor roads and lanes will provide a run free from petrol fumes and motor traffic, on which there is a much better chance of appreciating the beauties of the countryside and the picturesque architecture of villages, away from the commercialisation and ribbon development of the main road. The main advantage so far as the Runs Captain is concerned is that, using minor roads, he can
stage.
This sort of thing is so easy to start and impossible to halt. An appeal is useless. Stopping the concert savours of cutting off one's nose to spite one's face. One solution might be to double the price of tickets and point out that the price is necessary to brib: the artistes to put up with the behavour of the audience.

Everyone will agree that the andience's reaction must be controlled sufficiently to give the artistes a chance, bat it would be a pity to curb it altogether. It is so seldo. that one hears a really uninhibised ascie ce to-day, as were those who used to attend the old-time music hall. The artistes. Ion might regard it as a challenge! If you please such an audience they are not stingy with their appreciation.

T'HE CYCLISTS' TOURING CLUB is well known and its badge, shown in the heading, may be seen on appointed hotels, resthouses and cafés throughout the British Isles. For its members the C.T.C. issues rail, sea and air tickets, makes seat reservations, obtains foreign currency, passports, etc., and arranges organised tours in all the popular European countries.

The C.T.C. is, in fact, a travel organisation specialising in the needs of cycle tourists. But it is more than that. In addition, it does much to promote, assist, and protect the use of cycles on the roadsand has been doing so ever since 1878 , long before the first motor-car appeared, and when machines like the Boneshaker and the PennyFarthing were "modern."

The C.T.C. sees that the cyclists' point of view is heard in Parliament and among local authorities. It is represented on the Minister of Transport's Committee on Road Safety, and on committees of the Royal Society for the Prevention of Accidents. It is a foundermember of the Alliance Internationale de Tourisme.

Safe Cycling

One of the most recent actions of the C.T.C. was to publish a leaflet, based on official government statistics, which shows that, contrary to the impression which many people have, the bicycle is actually the safest vehicle on the road. Cyclists have by far the best record so far as freedom from accident is concerned, and it is actually more dangerous to travel as a motor-vehicle passenger than on a bicycle.

The Cyclists' Touring Club has also issued literature calling attention to bad road surfaces, particularly at road edges, and to the use of studs and steel plates which, by causing skidding in wet weather, are a great danger to cyclists.
C.T.C. members are insured free against third-party risks up to $£ 10,000$ anywhere in the world, and can obtain additional personal, cycle and luggage insurances if desired. Free legal aid is given to any member who is hurt or whose cycle is damaged in a road accident.

Club Activities

Within the framework of the C.T.C. are over 50 District Associations, which provide members with the amenities of a local club but without payment of any extra subscription. Every C.T.C. member is automatically a member of the D.A. in whose area he resides, and may take part in all its activities.
The D.A.s further localise their activities by forming sections (there are over 300 of
them), and cater for all members who appreciate the companionship of like-minded cyclists in their particular district. There are sections for easy riders, hard iriders, campers, youth hostellers, photographers, juniors, veterans, etc.

In addition to week-end outings and holiday tours, the C.T.C. District Associations organise large-scale tourist trials, junior cycle trials, rallies and sports days, cyclerail excursions, map-reading competitions and other outdoor contests. During winter months there are attractive social programmes, dances, travel talks, film shows, etc.

For Youth

Many schools, youth clubs, etc., have cycling groups, and the C.T.C. works in collaboration with the Central Council of Physical Recreation and other organisations.

The Cyclists' Touring Club took a leading part in the development of the cycling
proficiency scheme which has been run for some years by the Royal Society for the Prevention of Accidents.

Competitions and Rallies

In addition to local activities mentioned earlier, the C.T.C. sponsors several important cyciing events on a national scale. Foremost of these is the British Cycle Tourist Competition.

Claimed to be the greatest all-cycling rally held anywhere in the world, the National rally of the Cyclists' Touring Club takes place at York every August, and annually attracts a crowd of about 20,000 .

Membership Subscriptions

Membership of the Cyclists' Touring Club costs 25 s. a year for adults, and 15 s . for persons under age 18 . Children under 15, if they have passed an approved cycling proficiency test, can join for 5 s . The address of the C.T.C. is 3, Craven Hill, London, W. 2.

THE P LE XIBLE HIGH SPEED HACKSAW

FLEXIBLEHIGH SPEED HACKSAW BLADE

Here is the perfect blade for the handyman produced to give maximum cutting power together with flexibility, thus eliminating breakage. The Steadfast Flexible High Speed blade is ideal for the "difficult" jobs - and it costs no more than any other High Speed 'blade
\star FLEXIBILITY

\star GREAT CUTTING POWER

* hardened teeth
* LONGER LIfE

Obrainable from Ironmongers, efc.

Pelmanism develops:--nntlative
-JUDGMENT WILL-POWER
PERSONALITT
-CONCENTRATION
-SELF-CONFIDENCE
-RELIABLE MEMORY

Pelmanism

climinates :-
Worry
Pessimism
Depression
Frustration
Forgetfulness
Weakness of Will

HOW TO LEARN

 LANGUAGESThe Pelman Languages Institure teaches French, German, Spanish and Italian without translation. The Pelman method is explained in four little books, one for each language. Write for the book that interests you and it will be sent to you by return, lesson gratis and post esson, gratis and posi free.
Pelman Languages Institute, 130. Norfolk Man sions, Wigmore Street, sions, Wigmore

TAKE UP PELMANISM

For Progress and Prosperity

PELMANISM is a working course in Practical Psychology directed to the needs of the average man and woman.

The Pelman Course is based on over 60 years intensive study concurrent with experience in dealing with the difficulties, failings, fears, aspirations and ambitions of more than a million men and women of all ages and occupations in all parts of the world.
You would like your affairs to prosper and your income to increase. Pelmanism will help you to achieve this and will enable you to develop that zest for living which comes with an awakened mind ; also, with quickened mental powers, your awakened ability will enable you to enjoy those purchasable pleasures that come with extra money.

Remember-Everyhing you do is
Pelmanism is a true philosophy of living for ordinary sensible people who wish to make the best of themselves at all times and under all circumstances.

The Pelman Course is simple and interesting and takes up very little time; you can enrol on the most convenient terms. The Course is fully described in a book entitled "The Science of Success", which will be sent, gratis and post free, on application to

PELMAN INSTITUTE

130, Norfolk Mansions, Wigmore St., London, W.I Established over 60 years WELbeck 1411/2

130, Noriolk Mansions, Wigmore Street London, W.I.
Please send me, gratis and post free, a copy of Name
(Block letters, please)
Address

All correspondence is confidential.
Pelman (Overseas) Institules: Delhi, Melbourne Durban, Paris, Amsterdam.

OHITM

 $\frac{1_{2}^{\prime \prime}}{2}$ CAPACITY [5" BENCH DRILL A PRECISION BUILT MACHINE TOOL WEIGHT 154 lb .

5 SPINDLE SPEEDS
(complete-3 phase)
(Chuck guard not included.) Pillar model olso available. Available from all machine cool merchants-

write now for full detalls, to the manufacturers :
W. J. MEDDINGS LTD., lpswich Rd., Trading Estate, Slough, Bucks. One of the Lorgest Monufocturers of Drilling Mochines in the U.K.

FOR YOUR CONVENIENCE - EASY NO DEPOSIT INTEREST FREE DEFERRED TERMS ON ALL GOODS

RECORD PLAYER CABINET R.P. 2
 A hosutifully styled cabinet, Made by a famous manufecturer. In $59 / 6$ 8 8in. deep. W'il take B.\&.B. Monarch 4 -speed Autochanaer and $7 \times 4 \mathrm{in}$. elliptical spaker and mont of the modera portable annpliters.
 A TV CHASSIS FOR SPARES
 ALL THIS FOR ONLY 9/6
 The Reaiators, incl, 7 rariable: Controls; Condenaers. inel. holders, 9-B7G, 5-B5G, 3 Octal: \& Tring. Mains: O.P. Liue, Frame, Chokén, 250 ma.. Metal Rect., 300 volt 250 nos: : Fuge Panel; Scanning Colla; Foens Magnet Plugs: ockets; Switch; Clansuic screws ; Tag Strlpe, etc. I.F. Strip

 in separate Power Pack can he unat without dimanting. Chansin have leen uwad, but were wortiagDUE (Dept. H.12) 621/3, Romford Rd.. Maror Pk., E. 12

These are extremely neat and compact water-cooled units complete with Centriugal clutch suitable for many Marine or Industrial purposes. Slightly used, tested before despatch and very special value METAL RECTIFIER BATTERY CHARGER.-Input 200/250/1/50 A.C output to charge 12 cells at 6 amp. Max In metal case, $18^{\prime \prime} \times 18^{\prime \prime} \times 8^{\prime \prime}$. Really exceptional value, $\mathbf{1 4 . 1 5 . 0}$. Carr. $7 / 6$. CHARGERS. Type R GATTERY Chargers.-Type R,G.C. 1290 volt at 8 amp . Control switchingsuitable from one G-volt battery to max. output. Tested and NEOPRENE SOUNDING BALLOONS -Uninflated 3 UUNG BALLOONS each. Post $1 / 6$. PRESSURE GAUGES. - In brass $0-120 \mathrm{ib}$ $18^{\prime \prime}$. diam. 6.6 each. Post 9d.
COIL SPRING BELTS.-1" $\times 12^{\circ}$ long. extends to $15^{\prime \prime}$. Any number cal be joined together. 20 for $4 / 6$. Pust 91 . WICO MAGNETOS. Single cylinder anti-clock rotation with impuise starter Brand new. 70/-. Post $3 /$ -
B.T.H. VERTICAL MAGNETOS. cylinder clock or anti-cluck. Brand New. i5.10.0. Post $3 / 6$.
Hundreds of other bargains available. Send 6d. Stamp for Illustrated List EASTERN MOTORS, ALDEBURGH,
SUIFFOLK

NEW CABIES \& FITTINGS

TOUGH RUBBER CABLES

LONDON
 WHOLESALE WAREHOUSE

165 (P.M.), QUEENS ROAD, PECKHAM, S.E. 15
Tel. : NEW Cross 7143 or 0899

SPEAK FOR YOURSELF

When You Go Abroad
THE pleasure of a visit abroad is greatly enhanced when you are not dependent on others for all you wish to say.
The problem of learning a Foreign Language in half the usual time has been solved. The Pelman method enables you to learn French, German, Italian and Spanish without translation.
By the Pelman system you learn French in French. German in German Spanish in Spanish, and Italian in Italian. English is not used at all. Yet the method is so simple that even a child can follow it
Grammatical complexities are eliminated. You pick up the grammar alniost unconsciously as you go along. There are no classes to attend. The whole of the instruction is given through the post.

Send for the Free Book
The Pelman method of learning languages is explained in four little books, one for each language

FRENCH SPANISH
(Also Courses in Afrikaans and Urdu.) You can have a copy of any one of lesson. gratis and post free, by sending for it io-day. WELbeck 1411

- post this free coupon today

Pelman Languages Institute. 130. Norfolk Mansions. Wigmore St London, W.I.
Please send details of Pelman method of learning
French, German. Spanisl, Italian (Cross ont three of these.)

Name

Address

BRILLIANT

 POSTGARD ENLARGEMENTS
purer -IN ONE AUTOMATIC OPERATION

 Bring new dimensions into your home photography easily and inexpensively. So finely is the focus fixed on these two Jumbo enlargers that perfect enlargements up to postcard size can be made. And the quick, simple operation required calls for no more skill than is needed in using a printing frame.
 Each model has a strong steel body finished in blue and grey Poly. chrome enamel and costs 2.4 .9.
 Model No. 1 for $21 \times 31 \mathrm{in}$. negatives. Model No. 2 for 35 mm . negotives.
 qumbo enlargers

FOR CONFIDENCE

IN PHOTOGRAPHY

JOHNSONS

1" ${ }^{\prime \prime}$ CAPACITY $15^{\prime \prime}$ BENCH DRILL A PRECISION BUILT MACHINE TOOL WEIGHT 154 Ibs. 5 SPINDLE SPEEDS $\underset{\text { Criche }}{\text { Case }} \mathfrak{E 3 7 . 5 . 0}$
Deposit: 33.14 .6 (3 phase) Balance in 8 monthly payments of: $£ 4.13 .3$ THE FINEST TOOL SHOPS IN LONDON!

Truly a sensation-made from super Duck. complete witgainst weather. Rtght wing
 5° porch. Each wink has curtain. Overali
dimensions $33^{\prime} \times 6^{\prime}$ wide $6^{\circ} 8^{\circ}$ high. $2^{6} 6^{\circ}$
 walls increasingionty payments of $20 / 3$,
balance 24 fortnighty
plur. 10% Complete with sectionai poles, pegs, etc. Approx. werght 60 lbs. Easilly transported on shoulder: Cash price
White
Wi guineas. carr. $10 /$. Green or , Willesden Green \&o Orange, rotproofed, $x 3.3 .0$ extra. Set of ${ }^{3}$ room ubherised Ground Sheets 53.3 .0 extra.

$$
\begin{aligned}
& \text { These essentials sent on approval LISTS, } \\
& \text { TENTS, ETC. TERMS. }
\end{aligned}
$$

(H)

- eidquarter and General supples lid. (DEPT. PMC/52). 196-200, COLDHARBOUR LANE, LOUGHBOROUGH
JUNCTION, LOFJDON, S.E.S. OPN all Saturday. i p,m. Wednesday

Tuse Pureliage Eith Speed Steet essential to any lathe user, secare your stock now as these are really rood investment. $1^{1 / 4^{*}}$ square. 2 1/2
long. 6,6 per doz. $5 / 16$ sq., 3° long, 876
 ess 10 per cent.
Assoried Thrends, $1 / 8^{*}$ to $3 / 8^{\circ}$ dia, menter mostly fine threads or expert
assorted, 3/9. engths. $116^{\prime \prime}$ to $15 / 32^{\prime \prime}$ dia., doz. assorted lenrths. 56
3.0co H.s. Morse Taner Shank nd Mills, $1 / 4^{\circ}$, $3 / 8^{\circ} 1 / 2^{\circ}$ dia, Worth M.T. Shank End Milis, $9 / 16^{\circ}$ No $5 / 8^{2}{ }^{2}$,
$11^{\circ} 16^{\circ}, 3 / 4^{\circ}, 7 / 8^{\circ}$ dia.. $30 /$ the set. Secure these now as at this ridiculous price ujck clearance is certain.
1/8.000 Ball Races, standard o.d. $3 / 8^{\circ} 2,6^{\circ} ; 1 / 2^{\circ}, 3 / 6 \vdots 5 / 8^{\circ}, 4^{\prime} 6^{\prime}$ each or $9 \mathrm{~mm} . .1 /$ each.
g,000 Fi.. 1an Reamers, slzes $17 / 64^{\circ}{ }^{\circ}$. 21/64 $-3 / 6$ each, $22 / 6$ the lot. Also
$17 / 32^{\circ}{ }^{21 / 32^{2}} 5 / 8^{\circ} .1116^{*}, 4 / 8$ each, $16 /-$ he lot. Both lots, $35 /$ -
Vixira Special Carb, Grinding $3 / 4^{*}$ thick. $1 / 2^{\circ}$ or $3 / 4^{-}$hole. $100^{1 / 2}$ the for \&1. post pald. Ass. grits for tool and cutter krinding, also 5° dia. dish theels, $1 / 2^{*}$ hole, $4 / 9$ each.
2,000 Small in.s. Twist Drille, pprox. $1 / 32^{*}-3 / 32^{\prime \prime}$, $4 /$ doz. doz. Approx. $16^{-1 / 1 / 4}$. $7 / 6$ per doz. Approx
$15 / 32^{2}$ six for $10 /-$.
2.000 Circular Split Dies, $1^{\text { }}$ dia. cutting $1 / 4^{\circ}, 5 / 16^{\circ}, 3 / 8^{\circ} .716^{\circ}$, 18° Whit.
B.S.F., also brass thread. 26 thread ali sizes and American N.F. 12/- per set
of 6 sizes. 2 sets $20 / 6,4$ sets $42 / 6$. Taps to suit $12 / 6$ per set, elther taper- or
second or plug. 1 . dia. stocks 6 ; each. 2.000 Straisht Shank End. Milla,
 All

J. BURKE

192 Baslow Rd., Totley, Sheffield inspectionat Rear 36 Fitzwilliam St shefliesd

"CATALOGUE"

Our new Catalogue No. 14 has 500 Itema neariy all inustrated. Radio, Contro.
Covernment Surplus, etc. Prtce $2 /-$. Mefand

TIME DELAY UNTTS

This unit conaists of a amall gearedlescapement mechanism, which is wound by press ing a button at the side of the case and is electro-magnetically released when
$12-24 \mathrm{v}$ is applied. This unit will operate from a 12π. supply, and is ideally suitable for modification to a rudder unit for moxiel boats, etc.. When fitted with a miniature
motor-such as Ever Ready. The unit. fs in a small die-cast box. approximately in $x 2 \eta \mathrm{in}$, square and 2 in . deep and is easily

12 VOLT MOTOR
CM 3 Type, 2,000 r.p.m. approx., at 1 amp. under load, 8 amp . no load. Will also opprat on 6 volt sbout half output. Weight 11 oz shaft i $\times 3 / 16 \mathrm{in}$. dla. Ideal for boats up to 4ft. Price 25j-. Post 1/6. Brand New

MASTER CONTACTOR

10-hour clock work movement with contacts that make and break every u-second, also fitted with thermal switch and suppresso forms basis for making time switch etc orand new 12/6, post $1 / 9$. This is an ideal unit for plugging into transmitter when carrying out recelver tests single handed

REMOTE CONTACTORS

12 v . to 24 v . stepping mechanism, 129 mpulses for 1 rev . of pointer, glass front will make an Ideal 0-120 magnetic counter or coll winding, etc. Brand new $7 / 6$ postage $1 / 6$ Has sound possibilities as electric pendulum elock. Will wor
conjunction with Master Contactor.

TWO-PIN PLUG AND SOCKET
This plug has a locking device and once the two portions are plugged together it 1 s knurled ring is rotated on the socket. Fitted with 18 m , length of cable and new and boxed. Priae $2^{\prime} 6$. plus $1 /-$ post, Suitable for
crailers, caravans, etc. $25 /-$ per doz. posit $2 / 6$.

ARTHUR SALLIS cointion LTD.
933 North lid. firishion. Tel. 25300

The SECRETS...MYSTERY...MAGIC...of conjuring are yours for the reading in this fascinating and comprehensive book-

by Nonman Hunter
edited by F. J. Camm

TIIS is without dpont the finest collection of fully explained trickes and illusions ever published, including the secrets of many famous acts which have baffled audiences for genewations.
Whether your ambition is to be a sucoessful amateur, entertaining your friends at parties, or whether you wish to progress from being a good home conjuror to stage work, here is a weathin of practical detail on the whole basis of the business.

The book is illustrated througthout with nearly 500 " how-to-do-it" diagrams and it is fully indexed. Contents include everything from the spectacular 'Sawing the Lady in Helf ' to simple Card Tricks with an ordinary pack. The book contains nearly 400 pages, packed with essentially practioal information. A glance at the contents list will show something of the scope of this important work-Mysterious Boxes, Conjuring with Flowers, Magic Wands, Forcing Cards, Vanishing Tricks, Coins, Billiard Balls, Bottles, Chemical Magic, Thimble Manipulation, Magic Cookery, Levitation, Magic Messages, Lamps and Candles, Watch Tricks, Knots, Picture Frames, Trays and Plates, Dice, Conjuring with Colours and Fats, Paper 'Tearing, Ring and Cigarette Tricks and even the secrets of Table lifting and the Supernatural.

With careful applicaion and study there is everything in this book to ensure your success as a comjuror.

Here is a book which will repay its purchase price many times over in sheer entertainment value and enjoyment.

15s. FROM ALL BOOKSELLERS

> .. or in case of difficulty send a remittance for 16 s . to the publishers, C. ARTHUR PEARSON LTD., Tower House, Southampton Street, London, W.C. 2

Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship

Jig \& Tool Design
Press Tool \& Die Design
Sheet Metalwork
Automobile Repalrs
Garage Management
Garage Management
Works M'gmnt. \& Admin. Works M'gmnt. \& Admi
Practical Foremanship Practical Foremanship
Ratefixing \& Estimating Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches)
Maintenance Engineering Maintenance Engineering Steam Engine Technology
I.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship Machine
Automobile
Structural
R/F Concrete
Structural Engineering
Mathematics (all stages)
Mathematics all stan
Telecommunications
Wiring \& Installation Television
Radio Servicing
Gen. Elec. Engineering
Generators \& Motors
Generation \& Supply
Aircraft Mainten. Licences
Aerodynamics
Aerodynamics Ordnance Survcy Dr'ship.

BUILDING AND STRUCTURAL

L.I.O.B. A.I.A.S.

Building Construction
Building Construction
Costs \& Accounts
Costs \& Accounts
Surveying \& Levelling
Clerk of Works
Quantity Surveying
A.R.S.H.
M.R.S.H.
A.F.S.

Builders' Qu.R.I.C.S. Builders' Quantities Carpentry \& Joinery Building Inspector Building Draughtsmanship Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptors College of Preceptor
Woodwork Teacher
Metalwork Teacher
Housing Manager (A.L.Hsg.)

Common. Prelim. Exam. A.C.I.S., A.C.C.S. A.C.W.A. (Costing)

School Attendance Officer
Health Inspector Civil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME

 AND EARN BIG MONEYMen and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

OVER SEVENTY YEARS OF CONTINUOUS SUCCESS \star

national INSTITUTE OF ENGINEERIMG

(In association with CHAMBERS COLLEGE-Founded 1885)
(Dopt. 29)
148, HOLBORN, LONDON, E.C.I
SOUTH AFRKCA : E.C.S.A., P.O. BOX NO. 8417, JOHANNESBURG AUSTRALIA: P.O. BOX NO. 4570. MELBOURNE

132-PAGE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
* How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY INTERESTING COURSES

 TO SELECT FROM!A.M.I.Mech.E., A.M.I.M.I., A.M.Brit.I.R.E., A.M.I.P.E., A.M.I.C.E., A.M.I.Struct.E., A.M.I.Mun.E., M.R.S.H., A.M.I.E.D. A.F.R.Ae.S., London B.Sc., Degrees.

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.
If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

$\underset{\sim}{\square}$ Free Coupon

To: NATIONAL INSTITUTE OF ENGINEERING (Dept. 29), 148-150, Holborn, London, E.C.I.
Please Forward your Free Guide to
NAME
ADDRESS

My general interest is in: (1) ENGINEERING
(2) AERO (3) RADIO (4) BUILDING
(5) MUNICIPAL WORK
you are innerested.)
The subject of examination in which I am especially interested is

FOUNDED I885 - FOREMOST TODAY

[^0]: Have you read our companion journals
 Practical Wireless and Practical Television:

[^1]: Name BLOCK LETTERS PLEASE

