Building the Luton Minor

for the "practical meghanice" reader who understands radio and television
 Great Moneremading opporturnity?

NEWNES

\section*{Radio \& TV
 Servicing

\section*{300 MODELS 1058-1989

300 MODELS 1058-1989 COMPLETE IN OME VOLUME

In response to the heavy demand more coples of Newnes latest volume have now heen printed. It contains the circults, component and chawsis Inyout diagrams for $\mathbf{3 0 0}$ popular Models- 672 puges of invaluabile data for TV Servicing. Rudio Servicing. Recort Reprodwcers (including Stereo). Tape Recorders, ete.

TELEVISIOA SERVICING DATA FOR-

Alta, Argosy, Eethoven, Bush, Cotsor, Cyldon. Detth. Defiant, Elveo, Fertuson, Ferranti, G.E.C. M.M.V., Invicte, R-P., McMichael, Mercontphone, Manter Als, Murphe, Pegeant, Pam, Fete Beett, Philco, Milot, Pori管dyne, Pre, คaymend, Imegentene, h.G.Di, Sobell, Spenter-West, Stella, Urer.

zWOV NECORD AND TAPE SERVICING DATAFOR-

Alba, Berec, Buah, Chompion. Celliare, Cower, Seeca, E.A.R., Edefotone Ewten Ever Rewup, Ferpuivn, Ferranti, Got. Gw Gfunlif. M.MnV thwittis $K=D_{4}$ McMichael, Marconiphone, Matternats Murphy. Pam, Perdib, PNitto, Anitpt, Plet, Portadrne, Pre Pre Telecommuniontent, Repentome, N.O.B hoberts" Nadio, Sobell, Jtella, Ultra, Vidiof, Walter.

RECENT DEVELOPMENTS SECTION

incluten : Piclure Tube Repaif, Cur haste Interfereme Supprenshth Valie and Picture Tube Batap
Heater Ratine sate connection 3, Equivalents

\section*{Pre-1953-1959 MODELS

Pre-1953-1959 MODELS FULL SET IM SEVEN VOLUMES

(including the 300 models in the whome orrlen) Here you have Newnes Complete Servicing Libraryearly popular models to 1959 -almost every ant you will ever be called upon to service. This data to absolutely invaluable. It is worth ifs weight in gold for years on end-helping you to increase your lncome by quicker servicing.

TELEWSTON SEAVEING DATA FOR-

Ace, Alba, Atnbunbelet, Argoby, Baim, Sanners Eethoven, Bruybid, Guh. ERampion, Cower Cylon, berth. Dering likee, a Mat, Enfly
 Invietw, Mas. MrCophy McMichat, Martanic thone, Mastefatio, Murphy, Papreaht, Pom, Peto

oven 2,30 popular

 WODEE8 Pre - 195J.1989 4,iso paces 4,250 CIROUITS, Dic. 2 MEARS Free Poutat Aeveery cervite

NEW
spanner wallets
for

scooters

FOR
CONTINENTAL
MAKES
5 Ring Spanners, short series, SMR $5 \mathrm{~W}, 6-15 \mathrm{~mm}$., in plastic wallet, polished chrome, 3 ls . 3d., bright nickel, 265. 3d. or 5 Open End Spanners SMO 5W, 22s. and 17s. 9d.

3 Spanners 6-11mm., Ring SMR 3W, 16s. 3d. and 13s. 9d., Open End SMO 3W, IIs. 6d., 9s. 6d. Open End Spanners in Cartons at slightly lower prices.
Also available in Whit. and B.S.F. sizes for Villiers engines and British Scooters.

BRILLIANT

POSTGARD ENLARGEMENTS

Bring new dimensions into your home photography easily and inexpensively. So finely is the focus fixed on these two Jumbo ealargers that perfect enlargements up to postcard size can be made. And the quick, simple operation required calls for no more skill than is needed in using a printing frame.
Each model has a strong steel body finished in blue and grey Polychrome enamel and costs $\mathbf{2} .6 .0$.

Model No. 1 for $27 \times 34 \mathrm{in}$. $(36 \times 9 \mathrm{~cm}$.) negatives Model No: 2 for 35 mm . negatives.
qumbo enlargers

FOR CONFIDENCE
IN PHOTOGRAPHY

The ideal Build-it-yourself WELDING KIT

ONLY £25
Complete
with all
Accessories
as shown
New H.P. Terms £5 down and 6 payments of £3.15.0.

> Works from Standard Household Power Plug ($10-15$ amp. A.C.). Welds up to any thickness plate. Brazes down to 26 swg plate. Silver solders, Tins and Surface Hardens, Send Cash or Deposit for Immediate Delivery, or write for Fuller Details. Not a cheap choke set, but a full WELDING TRANSFORMER in heavy gauge welded steel case, Larger models available. 180 amp , 55 ($\mathbf{E 1 0 . 1 0 . 0 \text { deposit) }}$ and 360 amp . 695 (deposit by arrangement). Thousands in daily use in factories and workshops throughout the World.

> 7 DAYS' free trial on request
> TAYLOR BROS. (mIDDLESBROUGH) LTD.
> 32 Baker Street, Middlesbrough, Yorks.

Tels: 45241-2

Could this be the spring you're looking for?

Then you'll find it down below

Whatever you need in the way of springs you'll find in the range of TERRY'SBOXESOFASSORTED SPRINGS - compression, expansion, long, short, light, heavythe lot.
Just the job for you experimentăl
people-a simply unlimited assortment from our tremendous range of springs of every variety. The boxes shown here are only a few examples-why not let us send you our illustrated list showing them all?

sion Springs. 1 " to 4" long, 22 to 18 S.W.G.. $t^{\prime \prime}$ to $\frac{1}{2}^{\prime \prime}$ diam. 6/6 each.	
No. 757. Extra Light Compression. 1 gross Assorted, fo to 7/16" diam. , " $^{\prime \prime}$ to 2 ' $^{\prime \prime}$ long. 27to 19 S.W.G. $15 /-$ each.	Assorted Small Expansion Springs, fo to $1 \frac{1}{2}$ " long, $3 / 32^{\prime \prime}$ to $3 / 16^{\prime \prime}$ diam., 21 G to 24G. 6/6 each.
No. 758. Fine Expansion Springs. 1 gross Assorted $\mathrm{f}^{\prime \prime}$ to $\mathrm{g}^{\prime \prime}$ diam., $1^{\prime \prime}$ to $2^{\prime \prime}$ long, 27 to 20 S.W.G. $15 /-$ each.	No. 753. 3 doz. Assorted Light Expansion. $1^{\prime \prime}$ to $\frac{z}{2 "}^{\prime \prime}$ diam., $2^{\prime \prime}$ to 6^{*} long, 22 to 18 S.W.G. $10 / 6$ each.

TERRY'S

ASSORTED SPRINGS

Herbert Terry \& Sons Ltd, Redditch, Woris. (Makers of Quality Springs, Wireforms and Presswork for over 100 years)

* Have you a Presswork problem? If so let us have it and we'll help to solve it for you. HT $26 E$
THE
"54"
DRAWER UNIT
ALL STEEL Stove Enamelled DARK GREEN
overall
SIZE 42" HIGH $36^{\prime \prime}$ WIDE 12^{*} DEEP
Contains 54 of these drawers, each $5^{\prime \prime}$ wide $3^{\prime \prime}$ high $114^{\prime \prime}$ long, perforated for dividers or plain sided, 54 dividers and 54 drawer cards with each unit. Extra dividers 6d. each.

£18

DELIVERIES FREE TO ENGLAND SCOTLAND AND WALES SEND FOR SAMPLE DRAWER

N. C. BROWN LTD.

GREEN LANE WING, HEYWOOD, LANCS.
Telephone: 69018 (6 lines)

A boon to model boat enthusiasts.
Ultra light Exhaust Manifolds, specially produced for the E.D. 2.46 e.c. "RACER" Engine. Designed for maximum efficiency, easy to fit, no filing required.

A length of plastic tubing should be attached to each of the two round exhaust tubes and the ends brought into a suitable container fitted in the model boat. Waste oil is thus collected, ready for disposal, instead of fouling the interior of the boat, or the water.

Write to Dept. P.M for illustrated lists giving full details of all
E.D. Engines, Radio Controls, Mechanisms, Spare Parts; Accessor. ies, etc.

Plastic Manifold tubing availa
Order from your model shop.
ELECTRONIC DEVELOPWENTS (SURAEV) LTD =

Some of the beautiful, interesting and useful items include fish tank models, sea shells and starfish; butterflies and moths; seasonal display flowers; model gardens and floating water lillies; etc.
All the models can be made from coloured paper and easily obtained materials of exceptionally low cost. The book is illustrated throughout with colour and monochrome photographs as well as many " step-by-step "
An essentially practical book which will be tremendously useful for educa-

All books obrainable from

- COLOURED PAPER DECORATION ${ }^{\text {a }}$ ($7 / 6 \mathrm{~d}$.	
- COLOURED PAPERCRAFT FOR IN	
MPSHADE AND PARCHMENT CRA	.
ASSE PARTOUT FOR SCHOOL	
ED STRIP AND PAPER MODEL	
E FOR SC	7/6d.

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES " is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engincering industry, irrespective of age, experience or training.

We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

MECHANICAL
ENGINEERING Gen. Mech. Eng.-Maintenonce - Draughtsman-ship-Heavy Diesel-Die \& Press Tool Work-Weld-ing-Production Eng.-Jig \& Tool Design-Sheet Metol Work-Works Management - Mining - Re-frigeration-Metallurgy. AUTOMOBILE

ENGINEERING Gen. Automobile Eng.Mointenance \& RepairsHigh Speed DieselGarage Manogement.

ELECTRICAL

ENGINEERIN Gen. Elec. Eng.-Elemen kory \& Advanced Elec Technology - Installations -Droughismanship-Supply - Maintenance Design.

BUILDING

Gen. Building-Heating \& Ventilation - Architectural Droughtsmonship - Sur-veying-Clerk of WorksCarpentry and joineryQuantities - Voluotion

RADIO \& ELECTRONICS Gen. Radio Eng.-Radio Servicing, Maintenance \& Repairs - Telegraphy Telephony - TelevisionC. \& G. Telecommunica-tions-Electronic Eng.-Automation-Digital Computors - Analogue Com-
putors-Data Processing-putars-Data Processing-
Instrumentation. CIVIL ENGINEERING Gen. CivilEng. - Sonitory Eng.-Structural Eng. Road Eng. - Reinforced Road Eng. - Reinf
Concrete-Geology.

WE. HAVE A WIDE RANGE OF AERONAUTICAL COURSES AND COURSES IN FORESTRY, TIMBER TECHNOLOGY, PLASTICS, G.P.O. ENG., TEXTHLE TECHNOLOGY, ETC., ETC.

One of these qualifications would increase your earnins power WHICH ONE ?
A.M.I.Mech.E., A.M.I.C.E., A.M.I.Prod.E., B.Sc., A.M.Brit.I.R.E. A.F.R.Ae.S., A.M.I.M.I., L.I.O.B, A.R.I.B.A., A.M.I.H. \& V.E, M.R.S.M., A.R.I.C.S., A.M.I.E.D., CITY \& GUILDS, COMMON PRELIM., GEN, CERT. OF EDUCATION, ETC.

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W. 8.
Phone: WEStern 986I

WHAT THIS BOOK TELLS YOU

\star HOW to get a better paid, more interesting job.

* HOW to qualify for rapid promotion.
* HOW to put some voluable letters ofter your nome and become a "key-man" quickly ond easily.
* HOW to benefit from our free Advisory ond Appointments Depts.
- WHERE todoy's real opportunities are . . . and HOW you can toke advantage of the chances you are now missing.
* HOW, irrespective of your age, educotion or experience. YOU con succeed in any branch of Engineering that appeals to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," and if you are earning less than $£ 20$ a week you should send for your copy of this enlightening book now-FREE and without obligation.

Please send me FREE and without
obligation, a copy of " ENGINEERING
OPPORTUNITIES." 1 am interested in
(state subject, exam., or career).
NAME
ADDRESS..

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Practical Mechanies

"The Cyclist" and "Home Movies" are incorporated SEPTEMBER, 1959

Editorial and Advertisement Offices "PRACTICAL MECHANICS *
George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C. 2 (C) George Newnes, Ltd., 1959

Phone: Tëmple Bar 4363
Telegrams: Newnes, Rand, London SUBSCRIPTION RATES including postage for one year
Inland - - - 20s. per annum
Abroad . . . 18s. 6d. per annum
Canada - - - 18s.6d. per annum
Copyright in all draweings, photographs and articles published in "Practical Mechanics" is specially reserved throughout the countries sienatory to the Berne Convention and the U.S.A. Reproduction or imitations of any of these are therefore expressly forbidden.

The P.M. 6in. Astronomical Re$\begin{array}{lccc}\text { flecting Telescope-mare } \\ \text { Adjustment } & \ldots & \ldots & . . . \\ 445\end{array}$
Building the Luton Minor Light Aeroplane
44^{8}
Workshop Hints and Tips ... 450
Making Tympani 451
Radio Navigation 453
Additions to the P.M. Junior Lathe

455
Puzzle Corner 456
Letters to the Editor 458
Science Notes $46 I$
Trade Notes 462
Your Queries Answered 465
THE CYCLIST SECTION
Comments of the Month
37
Wheel Building 38

CONTRIBUTIONS
The Editor will be pleased to consider arricles of a pracrical nature suditable for publication in Practical Mechanics." Such articles should be written on one sade of the paper only, and should include the name and address of the sender. Whist the Ediror does not hold himself responsible for manuscripts, every effort will be made to
return them it a famped and addressed envelope return them it a ramped and addressed envelope is enclosed. All correspondence mrended for the
Editor should be addressed: The Editor, Editor should be addressed : The Editor, Towactical Mechanics, George Newnes, Lid., London, W.C.z.

FAIR COMMENT
 PERSONAL TRANSPORT OF THE FUTURE?

AS the number of motorists in this country increases and the roads become more and more congested, the prospect of a quick and lasting solution to the problem becomes increasingly remote. So far all attempts to solve the problem have been made at ground level, but perhaps the ultimate answer lies not on the ground at all, but in the air.
This suggestion is prompted by reports received during the last few months relating to three different projects at present under development; two in.America and one in Britain. Each of these three projects relates to air travel for the individual, i.e., forms of air transport much cheaper and simpler than the conventional aeroplane.

The first of these is a form of helicopter which is being developed by the U.S. Army. It consists of little more than an engine and rotor fitted to the wearer by means of'a harness. The second system, also being perfected by the U.S. Army, is known as the "Buck Rogers," named after an American strip cartoon character. It is essentially a solid propellent rocket motor which is strapped to the back and early versions of it allowed men to run at $35 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., jump a 20 ft . trench or jump 8 ft straight into the air. It is expected that in its perfected form, the Buck Rogers will enable men to "fly" several miles at any height they choose, manœuure and land safely. The third project being developed is the flying bicycle and although this was considered impossible for several years, a new approach to the problem is being made by Beverley Shenstone, Chief Engineer of B.E.A., in collaboration with Terry Nonweiler, a Belfast University lecturer. A model has been built and from the results of experiments made so far the project is described as promising.

Individually, perhaps, none of these three is the answer to the problem of personal air transport, but they do indicate the direction in which current research and development is tending. Any of the three machines, or any combination of them, would take up less room than the present-day conventional car, so the householder's "hangar" is ready made. Probably the lawn in the back garden would provide sufficient take-off space and if the population of the country "took to the air " in sufficient numbers, office and factory buildings would be designed with flat roofs for landing and parking. Tandem and family vehicles would be the natural follow-up to the solo and incidentally there is a strong probability that an entire new field of sport would be created.

Of course, it may be argued that if everyone takes to the air in their own individual flying machines, the same overcrowding and congestion will inevitably result. It is true that some form of air control would have to be instituted, resulting in aerial roadways and fixed routes from place to place. This would be necessary to avoid the confusion caused by thousands of free-flying pilots, not to mention the new accident problem which would probably come into existence as a direct result of such a "free-for-all." But once order has been installed, it is doubtful whether there would indeed be any overcrowding as the air, instead of being two-dimensional as roads are, is three-dimensional and there is therefore much more room.

An opportunity to take this discussion further is offered to readers by our "Letters to the Editor" page, and we should be pleased to receive, publish and pay for your views in letter form. Will the roads of the future be in the air? What do you think?

BACK TO NORMAL

The printing dispute which has prevented normal publication of this Journal since the issue dated June has been settled and we shall now be able to publish monthly. The next issue will be published on September 30th.
We greatly regret the inconvenience which our readers have suffered. Nevertheless, we are glad that we are able, once again, to offer all the features that have been so popular with our readers for so long.

The October, 1959, issue will be published on September 30th. Order it now!

AGOOD burglar alarm must have the following features: It must guard and control all possible places where a burglar could enter. It should further have a compact control unit which gives a continuous alarm when contacts are disturbed, and from which it may be checked that all circuit wiring and all contacts are in order when setting the control unit. This unit should have the least possible number of press-buttons and switches.

Two Systems

There are two systems of wiring for burglar alarms: the closed circuit and the open circuit (see Fig. 2) and with each system a different type of control unit is employed.

The closed circuit consists of a continuous single wire loop through which a low voltage current passes. If this wire is cut-or any of the contacts opened the circuit is broken and the alarm bell rings.

Most manufactured burglar alarm sets operate on a closed circuit. It will be noted from Fig. 2 that in this system the electro magnet is under power the whole time the set is in operation. Therefore, special

Fig. 1.-Front view of the completed control box. batteries are required to supply D.C. because on A.C. the magnet will buzz.

To run a closed circuit system off the mains through a transformer and a rectifier is not possible in practice: each power cut will cut out the electro magnet, and the alarm rings as soon as the power comes on again. It, is possible to avoid this, but it presents more complications in the form of an automatic switch-over to batteries together with an indicator light to show that the unit is working on emergency power when this happens.

The actual control and guarding of all possible entries which can be doors, windows, rooflights, trapdoors in floors, etc., is done by means of contacts. The contacts can be of the mechanical type, they can also be photo-electric. All the contacts are connected to the circuit wiring, which starts at the control unit, and which in the case of a closed circuit returns to the unit. In an open circuit this is not necessary, but it is of great advantage if the wires also return to the unit.

The Open Circuit

In order to avoid the complications mentioned in connection with the closed circuit,

> Part I Commences Construction of the Control Unit By K. H. Albers

the open circuit system has been chosen for this article.

It is, in a way, the reverse of the closed circuit. Whereas the electro magnet in the closed circuit is constantly under power and thus holds a lever, which drops away or moves away from the magnet only if the magnet has no power-the magnet in the open circuit has no power until an alarm contact is made. Only then will it operate a lever, which in turn will operate the alarm.

Fig. 2.-The theoretical "open" (left) aind "closed" circuits.

Fig. 3.-A rear view of the control uit.
used for the loop of the open circuit, you will have a sort of fire alarm as well. As soon as the plastic covering has been destroyed by fire the wires will touch at this point and give the alarm. It would take much longer for fire to burn through or melt the metal of the wire, which would be necessary before alarm would sound in a closed circuit.

The greatest advantage of a home-made burglar alarm is, of course, that the system is known only to the constructor, and can have its own secret traps, e.g., a dummy control unit which, when the "off" button is pressed will give the alarm instead.

Wiring should be as unobtrusive as possible.

Control Unir (can be unnooked by lireing and
pulling forwands) pulling forworas)
Fig. 4.-The control unit mounted between twin battery housings.

Use proper insulated staples for fixing the wires as metal staples may cut through the plastic cover of the wire and give rise to faults.
The open circuit and the "Three-point System" will be the basis of construction.

The Control Unit

The control unit is the "brain" of the burglar alarm. Much more than the circuit wiring the control unit can have faults due to careless construction. Figs. I and 4 show the appearance of the control unit. which is housed in a wooden box. made to the approximate dimensions in Fig. 5. Looking at the front of the box there can be seen an up-and-down selector switch at the base; above this is a black pressbutton, then a red pressbutton, and at the top a curved Perspex indicator window with a green, a blue and a red coloured bulb behind.

The selector switch in the down position provides a "silent" alarm which is indicated by a red light at the control unit and b_{v} a buzzer at the side of the bed. If the selector switch is moved to the "up" position, the alarm bell will ring, and in addition to this a 250 v . light can be switched on an indicator box power of battery No. 2, The action of the red button switches the set "on." The selection switch can be moved before or after the set has been switched on.

Whichever type of alarm has been selected it will operate continuously. The fact that a door is quickly shut again does not make the slightest difference to this. To stop the alarm, or to switch off the unit at any desired time, the black button must be pressed again. From the section in Fig. 5 it can be seen that the -black and the red buttons. are coupled, and that the pressbutton lever which closes contacts 6 and 7 is moved into the opposite direction by pressing the black button. In theory, to switch the set on again it would onlv be necessary to press the red button, but to make quite sure that all is in order and that all contacts of the circuit are closed, black is always pressed first before red. There is nothing else to be remembered a fact which alone is of definite advantage. It is not possible to see by the position of the buttons whether or not the set is
 lit up and/or any door locks or door knobs the burglar is likely to touch electrified.

The actual setting of the control unit is done by first pressing the black button, the green light will show in the indicator window when the loop of the first wire of the circuit (and with that all contacts), and also battery No. I, are in order. The action of the black press-button sets the alarm lever in position over the magnet lever. Next the red button is pressed. The blue light will appear in the neutral loop if the circuit wiring is in order, this also checks the

switched on or off, if this is regarded as a disadvantage, then it will also be a disadvantage to a burglar. If in doubt press black and red again; no harm will be done.

Explaining the Circuit

In order to understand the mechanism fully it is necessary to studv the wiring diagrams A, B, C and D of Fig. 7. Of these B is perhaps best suited to show the arrangement of the various contacts.
First of all the key to the wiring diagrams:
1.--Battery No. 1, $6 v$.
2.-Battery No. 2, 6v.
3.-Flashlight bulb, painted green
4.-Flashlight bulb. painted blue.
5.-Flashlight bulb, painted red.
6. "On-off" spring contact, held in " on " position by the contact switch 7 .
7.-Prong-like contact switch, "on-off," operated by red and black press-buttons.
8.-A, B, C; a two-way. spring contact, operated by the rod of the red press-button. 9.-Spring contact, arranged under contact 8, also operated by the red press-button. (The combined arrangement of contacts 8 and 9-applicable also to contacts 10 and II - is shown in Fig. 6.)
10.-Spring contact, arranged under con* tact II, operated by the rod of the black button.

II $-\mathrm{D}, \mathbf{E}, \mathrm{E}$; a two-way spring contact, operated by the rod of the black pressbutton.
12.-Prong-like contact switch, set by the black button, but released by the action of the electro magnet, the switch controls the buzzer, red light and the bell.
13.-All the same as for switch 12, but better insulated, because this switch controls the 250 v , current which passes through the control unit. On no account should any parts of this switch come in contact with others.
14.-Two paints for the electro magnet.
15. Pari of the selector switch which controls the buzzer and red light.
16. Part of the selector switch which controls the bell.
17.-Proper 250 V . light switch coupled to the selector switch. At the base of Fig. 7 are five pairs of plug-points, see diagram A: for the buzzer, for the returning circuit, for the outgoing circuit, for the bell and for the 250v. light or current.

In Fig. $7(\mathrm{~A})$ is shown the complete wiring of the control unit with all contacts open (to avoid confusion). The different parts of the wiring are divided into wires of different " colours," but some of the wiring serves a dual purpose and serves two parts at once. Note that the colours of the wire have nothing to do with the colours of the light bulbs, or with the colours of the pressbuttons.
To follow the wiring from a single drawing and to understand how the contacts and wiring of the control unit work is difficult, hence the four stages.

Black Button Pressed

In B is shown the actual position of each contact switch, and of that part of the wiring which transmits current at the time when the black press-button is pressed down. The blue wire which is connected to the positive point of battery I carries this current to one point of contact 6 and to the E point of contact II. Contact 6 is not closed at present so the current ends there, but in contact II E is connected to F as long as the black button is pressed down. The current (positive) from battery 1 passes to point F and from here to the current-carrying point of the out-going alarm circuit wiring. From this point it passes through the circuit wire, through all
the contacts-if they are in orderand back to the returning circuit point. From this point the current goes to one point of contact 10 . This contact is closed while the black button is pressed down. And from contact 10 the current passes on to the green light bulb 3.

The red wire connects the negative points of both batterics, and leads go from it to one of the points of contact 7 and to point D of contact II. Both these contacts are not closed at present and the current ends at each of the points. The red wire also connects bulbs, 3, 4 and 5 . Of these, bulb 3 (green) lights up.

Note that from point F onwards the wire is not blue only, but it is a red-blue dual purpose wire (one single wire, of course, not twin wires).

Black Button Released

On releasing the black press-button both points in contact 10 are disconnected, and in contact II \mathbf{F} is disconnected from \mathbf{E} but is at once connected to point D. At this point the negative current from both batteries (the current has already been traced from the batteries to point D) passes on to point F and goes on over the same alarm circuit wire which has just been checked, back to one point of contact 10 , and finishes there.

Red Button Eressed

Pressing the red button as illustrated in C permanently closes contact switch 6 (until the black button is pressed again). The positive current from battery 1 now flows through contact 6 and from here passes to one point of the electro magnet. Contact switch 7 is closed permanently by the action of the red button, and the negative current from both batteries goes to the negative buzzer point and bell point. The positive current from battery 2 is carried by the green wire to contact 12 . This wire also branches to point C of contact 8 . Points A and C of this contact are connected as long as the red button is pressed down. From point A the current goes to the neutral point of the outgoing alarm circuit. If this circuit wire is in order the current will return to the unit and go on to contact 9. Contact 9, also connected while red is pressed down, passes the current on to bulb 4 , blue, and this bulb will now light up.

Red Button Released

On releasing the black press-button both 6 and 7 will remain closed. In contact 8 point A is now connected to point B, from B a link is formed to the negative point of the electro magnet. The releasing of the red button has also disconnected the points of contact 9 , and thus this wire will carry no current at present. This loop from point A in contact 8 to contact 9 is a dualpurpose wire; it has carried the positive current from battery 2 ; it is neutral at present (has no current); and it will carry the negative current from both batteries in case of an alarm (Fig. 7C).

The control unit is now set. To check over the contacts quickly: 6 is closed, 7 is closed, in 8 A is connected to $\mathrm{B}, 9$ is disconnected, 10 is disconnected, and in II, F is connected to D.

In the alarm circuit one wire carries the negative current from both batteries. The other wire is neutral and has no current.

> Next month's instalment will show how the alarm works and deal with the mechanical arrangement.

NEWNES PRACTICAL MECHANICS

Fig. 7.-(A) complete wiring diagram; (B) black button pressed down; (C) red button pressed down; (D) unit svitched on and alarm at set position.

B
EFORE starting your camping holiday, a careful inspection of the tent is essential to make sure that it is in a reliable condition. The tent should be unpacked, temporarily assembled and any weak or worn places or slight tears carefully noted.

Tears

Any tears should be prevented from extending further by drawing the edges together with strong carpet thread. The repair is then waterproofed and reinforced by patching both sides with tent canvas, making sure that the patches extend well over the tear and double-stitching them into position (Fig. 1).

Where difficulty is experienced in stitching due to the thickness of the material, the canvas patches may be fixed in position by means of an "impact" adhesive. Draw the tear together by means of stitching with a strong thread, as explained above, and cut out two canvas patches large enough to extend at least 2 in , around the tear (Fig, 2). Apply the adhesive to both the patches and the repair and well rub into the fabric. Allow a few minutes for the adhesive to become dry, then apply the patches, pressing firmly in from the centre and slowly working outwards until both the patches have strongly adhered. A light dusting with either french chalk or talcum powder will prevent the patches sticking to other parts of the material when the tent is folded away. Any weak or worn places can be similarly patched, making sure that the patching material is large enough to provide a big overlap.

Eyelet Repair

Trouble is sometimes experienced in the pulling away of eyelets from the surrounding material. A satisfactory repair is to remove the eyelet and apply a 6 in. stout canvas patch to both sides of the tent material. This can be secured by doublestitching or adhesive as previously explained. The eyelet is then placed upon the patch and its diameter marked out with a pencil (Fig. 3). A series of diagonal cuts is then made with a razor blade upon the material to correspond with the diameter of the eyelet (Fig. 4). The eyelet is then placed into position, and the cut sections from the inner patch are placed around the eyelet and tucked in between the two patches (Fig. 5). The sections from the outer patch are then brought around and through the ring and on to the inner patch. The sections are then strongly sewn into position. Adhesive can be used if difficulty in stitching
is experienced, but wherever possible in effecting tent repairs, it is preferable to use stitching and a strong thread for this purpose.

Reproofing

Tents can be quite successfully and easily reproofed with a special reproofing solution which is available for the purpose. Your local camping stockist will advise about this. Reproofing solutions are supplied colourless, or in a range of colours, the latter being slightly more expensive. Full instructions are supplied and the application is very simple indeed.

Washing

In general, before reproofing the tent, all loose dust, etc., must be removed with a stiff brush (Fig. 6), and if the material is much soiled, a washing with household soap and water is advised, well rinsing with clean water and allowing the material to dry thoroughly before applying the reproofing solution. A fine warm day should be selected when washing the tent, for when erected under these conditions the fabric dries quickly in preparation for reproofing. Where the material is badly grimed, a cleansing solution of hot water and soft soap can be used, brushing well into the fabric with a fairly stiff brush and following this by a thorough rinsing. Detergents can be used for removing obstinate or long-standing stains providing that every precaution is subsequently taken in the removal of all traces with the rinsing water. Detergents left in the material may be detrimental to successful reproofing. To ensure that the rinses are adequate, at least five to six should be given, sponging the last rinse down to remove as much of the warei as possible.

Applying the Solution

The reproofing solution should be applied to the tent material when it is dry after washing, by means of a fairly large flat brush, applying it freely so that it is fully absorbed by the fabric. The tent should be left in the open air-making sure that no rain is imminent-until the solution has dried out, whic'l is :una!ly 24 hours or so. In most instances it will be found that one application of solution suffices, but where the tent is in bad condition, it may be necessary to apply two coats of this solution to ensure a satisfactory degree of reproofing. In this instance, the first coat must. Lee dry before applying the second.

A tent should never be packed and stored whilst it is still damp.

Fig. 6.-Use a stiff brash to remeve dust, etc., prior to reproofing.

THE finished box is shown in Fig. r, and this should be studied along with Fig. 2 before commencing construction.

The box is constructed from $\frac{1}{2}$ in wood, except for the bottom and lid, which are of $\frac{1}{8} \mathrm{in}$. ply, and the two partitions of the pressure block compartment which are $1 / 16$ in. ply. Of course, thinner than $\frac{1}{2}$ in. wood may be used and in this case it is not necessary to alter any of the dimensions of the hox since none of these are vital.

Before assembling the box the $\frac{1}{4}$ in. hole for the sprocket axle should be drilled through the side (Fig. 3) and should be continued about half-way through the opposite side.

The whole box may now be assembled, leaving out for the moment the partition carrying the roller mount ing. The top edges of the box should be lined with felt to ensure that it is light tight when the lid is closed.

The pressure block is a piece of wood $1 \frac{3}{4} \mathrm{in}$ deep resting on a piece of foam rubber. The top edges of the block are rounded and it is covered with felt.

The Lid

An aperture $1 \frac{5}{8} \mathrm{in}$. $\times 1 \frac{1}{4} \mathrm{in}$. is cut out, as shown in Fig. 3. A 35 mm , mask is glued or screwed) over this on the inside of the lid. The two film guides should also be screwed into position. A hole to take the bolt for the clamping washer should also be drilled.

Film Winding Mechanism

This consists of a sprocket and a guide roller, both of which may be obtained from suppliers of projection

Fig. 1.-The completed film strip printer. sprocket should be tapped for this purpose. A locking collar (Fig. 2) prevents the axle A locking collar (Fig. 2) preve
from riding outwards. The knob may simply be of the type used in wireless, or more ambitious readers may wish to use a ratchet handle which can be seen in Fig. I. If the handle is made about $2 \frac{1}{2} \mathrm{in}$. long, one complete sweep of it will drive the film along one frame (nine the film along one

Fig. 2.-General arrangement of the printer, showing method of threading film through.

PRAM strip consists of at lemgth of positive film on which the mestatives are printed in the correct sequence.
HB. J. HOWICK
perforations). The exact length of the handle is best found by trial and error.

The guide roller is mounted, as shown in Fig. 2, and the spring should be such that the roller rests firmly on the sprocket. The roller should be capable of being raised about an inch to allow the film to be threaded (see Fig. 2).

Having fitted the roller, the partition seen in Fig. 2 should now be screwed into place. Notice that the partition is half an inch from the base and is rounded, the edge being lined with felt.

At this stage both the compartments

ETHF FO ASMALL POWER MACKSAW

 Build This Robust Machine for Your

 Build This Robust Machine for Your Home Workshop By Jameson Erroll

 Home Workshop By Jameson Erroll}
its size. Note that the crank on the reduced shaft (Fig. 4) has a throw of 2 in .

Saw Frame

The saw frame should first be made, and Fig. 2 gives constructional details while Fig. 3 is a closeuf photograph of the finished frame with a saw blade in position.
is a matter of trial and error, but is well worth taking pains about; the accuracy and clean cut of the saw depend on stability, and lack of vibration depends on well-oiled smoothly working parts. The 8 in. barbottom left-is a fixture at the lower part of the frame and carries one end of the saw. A slot is cut to receive it and a $3 / 16 \mathrm{in}$. threaded hole bored to carry a short bolt which will pass through the hole in the saw. It may be necessary to enlarge the holes in the saw very slightly as they are sometimes 3/16in. bare, but they are so near that the drill enlarges them easily in spite of cutting into

Note part of the connecting rod on the right. Metal shims are inserted between the top cross members and the vertical members in order that the slide bar (see Fig. 4) may pass easily but not loosely between them. It is impossible to advise on the thickness of these shims since everything depends on the smoothness and fractional thickness of the various pieces. They are all nominally " quarter-inch," - but minute variations not visible to the eye can cause over-tight or over-loose fitting. It

Fig. 2.-An exploded view of the save frame.
ing varying weight on the free end of the

hardened steel. The other end of the saw is held in a short movable block to whi: h . at the rear end, has been sweated or threaced a $3 / 16$ in, bolt about rin. long. A wash : and flynut enable the saw to be made tau: The block "A" is in. $X \frac{1}{4}$ in. X in. ans serves to prevent the blade holder working down when the flynut is tightened.

The Bracketed Pillar

The bracketed pillar, at the top of which the slide bar is pivoted (see Fig. 4) must be a really firm job and should not be less than fin. thick. The length of the slide bar is governed partly by the type of reduction gear used and, of course, the length of the

Fig. 1.-Two views of the finished hacksaw.
slide bar along which the frame runs. A stop, Block "B" in Fig. 4, prevents the saw cutting into the base when the work is finished.

Gear Reduction

Unless you possess a slow-speed motor of not less than one-third H.P. some form of reducing gear is the first essential. The saw should make from 70 to 100 strokes per minute, so that with a motor doing 1,425 r.p.m. a reduction of 18 to 20 to I is necessary. Suitable reducing gears can often be found advertised in the pages of this magazine, and one of the "worm and wheel" type is perhaps best since it is capable of transmitting high power in proportion to

Fig. 3.-A close-up viect of the saw
framie.

is part of a G cramp cut away as shown in Fig. 7. It will be seen that the female part of the thread and a short length of the adjacent body of the cramp have been incorporated in a metal block 2 in. $\times 1_{2}^{1} \mathrm{in}$. X ${ }_{4}^{3}$ in. A hole and slot are cut in the block as shown on the left of Fig. 6 and the sramp part filed until $: 1$ is a press fit; it is
connecting rod. It is a mistake to let the latter be too short in an endeavour to economise space; it should be sufficiently long to have a smooth, flowing movement, not a jerky one. At its far end the slide bar runs between two guides as shown, these same guides serving to control lateral movement of the 8 in . bar as well. See that these two guides line up with the bracketed pillar so that no "twist" is imparted to the blade. The adjustable end of the saw frame runs between two angle-iron guides as shown, and these, too, should be accurately aligned.

A trial run, first by hand and then by power, may be made at this stage and any tendency to vibration remedied. It will be found that the blade rides about $\frac{5}{8} \mathrm{in}$. or $\frac{3}{4} \mathrm{in}$. above the baseboard. This is intentional as it is intended to construct a cutting block which will be fastened to the baseboard and on which will be built up the vice for holding the work.

The sketch, Fig. 5, shows the cutting block in perspective; part of the front is cut away to give clearance to, the moving saw frame on its return stroke, but that part of the block situated between the vice jaws when fully open is continued to the front edge of the baseboard as an added support for the work being cut. The saw-kerf shown is actually cut by the machine itself after the cutting block is screwed to the baseboard.

Details of the Vice

The fixed jaw of the vice is a 2 in . length of 2 in . angle-iron screwed to the baseboard adjacent to the edge of the cutting block. The movable jaw, of which Fig. 6 gives further detail, is a 2 in . length of $\frac{1}{2} \mathrm{in}$. angle-iron screwed to two parallel runners $\left(\frac{1}{2}\right.$ in. $\times \frac{1}{4} \mathrm{in}$. mild steel) which run in grooves cut in the cutting-board. Centrally between these grooves and at lin. intervals a number of $\frac{3}{8} \mathrm{in}$. holes are bored through the block but not through the baseboard. The thumbscrew which exerts the pressure on the vice
then pinned in position with two lengths of $\frac{1}{8} \mathrm{in}$. silver steel. Note that this hole and slot are cut in the block at a height that will give freedom of movement to the thumbscrew; in this case the centre of the hole was $I_{8}^{1} \mathrm{in}$. from the bottom edge of the block. In the centre of the underside of the block a $\frac{3}{8} \mathrm{in}$. metal pin is inserted under pressure. This pin engages in any one of the holes in the cutting board and, while being held fast itself, allows the vice jaw to move forward when the thumbscrew is turned. Although neither the block nor the vice jaw are actually fastened vertically, it will be found that as soon as the jaw engages with the work to be cut, the whole mechanism tightens up and the work is held firmly.

Pressure Variation

A glance at Fig. 4 will show that the free end of the slide bar is hooked. This is to enable weights to be hung on it and thus give added pressure to the saw according to the material being cut. These weights

Fig. 4.-A front view of the completed machine.

Fig. 6. - Two parts of the movable vice.
 cramp is used to make the movable vice. The shaded portion is cuit away.

Fig. 8 (Left).-Weights from cigar containers.
length and a little in diamcter, and it is therefore possible to collect quite a number of varying capacities. Fig. 8 shows that wire is bent to form a handle and that the ends pass through holes bored near the top edge of the tube. A dusting of soldering fux is given to that part of the wire handle within the tube and the latter is then filled with molten lead. More than one weight can, of course, be used at one time if necessary.

A professional finish can be given to the machine by painting all non-movable parts with matt grey paint. Oil and grease should be applied liberally where applicable, and the sawblade inserted so that it cuts on the forward stroke.

REFRESHER COURSE IN MATHEMATICS 8/6, by post 9,9
 WORKSHOP CALCULATIONS, TABLES AND FORMUL/E

 7/6, by post 8,7WIRE AND WIRE GAUGE VEST POCKET BOOK $3 / 6$, by post $4 / 2$

From George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C. 2.

A Modern Problem is Dišcussed IBy William Ellwood

MODERN aircraft, well piloted, are capable of feats which two decades ago would have been ridiculed as fantastic and impossible of achievement. Yet, to-day, it is anticipated that rocket/jet civil aircraft will vault the Atlantic at an altitude of 60 miles at speeds in excess of 3,000 m.p.h., before the year 1970 dawns. This roughly represents a journey from London to New York in less than one hour 1 (Fig. 1.)

Fallibility of Man and Machine

Aircraft of to-day have proved capable of withstanding great stress at high velocity, and human beings have concurrently proved their ability to contend with the physical difficulties of abnormal acceleration and other related effects of high speed flight. But men flying on busy air routes at transonic (700 to $770 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.) speeds have one serious shortcoming, which has spelt disaster not infrequently in the past and will no doubt

Closing speed 1400 m.p.h.

Fig. 2.-The interzal in which evasive action can be taken is govemed by the closing speed.
lead to trouble in the future, unless new and stringent air-rules are formulated.

The problem is one of human reaction plus mechanical inertia in mastering the splitsecond decisions entailed in high speed flight.

Closing Speed

Here are postulated certain circumstances that are typical of those which have arisen often in post-war years. In this manner it is possible to analyse the danger.

Two aircraft are flying on a collision course, that is, directly towards each other. Their individual speeds are $700 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., thus making the relevant closing speed 1,400 m.p.h., or about 4 miles per second (Fig. 3). In conditions of good visibility the chances of seeing an approaching aircraft at about 4 miles range are the equivalent of instantly spotting a pin-prick somewhere near the middle of a-foolscap sheet. Human

1 ?

2 Head-on

Fig. I (Left).-Artist's impression of hypersonic aircraft.
to the brain takes about . I seconds. Secondly, the brain identifies the impulse as the image of a plane: I.I seconds elapsed. Thirdly, the decision is made to take avoiding action : 2.6 seconds elapsed. Fourthly, message from brain to muscles, and latter activated: 3.0 seconds elapsed. By this time the machines are separated by 1.3 miles.

Mechanical Time Lag

The controls have been set in motion, but cables must tauten, pulleys turn, and in cases of power-controlled aircraft the pilot's control action must be translated from manual effort to hydraulic boost through servodynes or other actuators, before alteration of the flight control surface is attained to induce a change of direction in the aircraft. This mechanical time lag eats away another two seconds: elapsed time 5 seconds-and the aircraft are separated by a half-mile. Out of an initial time margin of 6.2 seconds, there is left only 1.2 seconds (clearance time) for

Fig. 4.-The port wing must roll through a targe angle to azoid zeing scythure.

Fig. 3.-Reaction test sequence.
the machines to alter course. This is inadequate, for at high speed the inertia or sluggishness present in effecting a change of direction is substantial in most aircraft. Clearance time can be anything from 2 to 3 seconds after the flight surfaces (ailerons or elevators) have been-reorientated for evasive action.

In the foregoing case disaster would almost be inevitable.

Which Way?

Even if the speed/distance factor is suitable for a successful evasive movement, there

still remains the dilemma of what to dowhich way to go? One may bank to starboard as is at present laid down, or dive or shoot over the top. For the two pilots concerned to dive or climb simultaneously, the result would obviously be fatal. To bank or roll to starboard in the time allowed, is in the majority of cases asking too much of aircraft at great speed; as will be shown shortly.

The Test

To give an approximate simulation of the crucial approach period, Fig. 2 is included so that you may test your reactions.
Firstly, a sheet of paper should be placed over the drawings. Then, with the aid of a friend using a stop-watch, the four pictures should be uncovered at the starting moment (it makes little difference even if they have been looked at previously as a pilot in action tries to anticipate such an encounter) and the person under test should look deliberately at the first picture, gathering its import and making his decision, before switching his glance to the second sketch and so on through the sequence. He must be outstandinglv alert and decisive to do the test fairly within the specified time. (See end of article after the test.)

An Obsolete Rule

It is an international rule that two air-

Fig. 6.-Turn to port.
craft on a collision course should each turn to starboard. If, as is generally accepted, the minimum clearance time is 2.5 seconds, the principal overall dimensions of an aircraft become of great importance.

Adhering to this rule, the pilot must roll the 'p'ane quickly-enough to clear the wing of the approaching aircraft. As the fuselage centre/wing tip dimension is the largest lateral measurement where angular movement is the criterion; the present rule increases the risk of wing-scything (Fig. 4).

Horizontal Approach

A new proposal is that an aircraft on an approach course with another should: (I) turn to starboard if the other aircraft appears on a bearing within a segment bounded by 90 deg. port and 45 deg. starboard (Fig. 5), or (2) turn to port if the other aircraft appears on a bearing between 45 deg . starboard, through stern, to 90 deg. port (Fig. 6). It will be noticed in the latter case that the left or port turn is only applicable to aircraft A, as aircraft B initially observes A dead ahead and, therefore, turns to starboard. If aircraft B is much faster than A, it is conceivable that it could intersect A at the latter swings to port.

This two-part rule is reasonable only in a theoretical sense, where the speeds of the two aircraft are identical, or where the machines are slow flying. It also fails to take

NEWNES PRACTICAL MECHANICS
into account the various directions the two aircraft may be pursuing relative to each other. In high speed flight one has very little time to consider whether the plane on an opposing course is converging or passing

Fig. 7.-The dangerous sector-both aircraft swing to starboard.
in close parallel. In this two-part rule there is in reality a dangerous sector bounded by the arc o deg. to 45 deg. starboard (Fig. 7). Here it is seen that two high speed aircraft sighting each other respectively within this arc on initially parallel courses, would be simultaneously obliged to turn to starboard. The result could be very unpleasant.
In considering the speeds of present-day aircraft, it is of little
is hurled toward them. Provided that one pilot makes this move before the other attempts it, the chance of avoiding a collision is better than if attempting to roll clear, for the clearance dimension (fuselage centre to rudder tip) in the vertical plane is much less than the clearance dimension (fuselage centre to wing tip) in the lateral plane. The salient point here is that both pilots may climb simultaneously. If some definite and preconceived instruction was available for each pilot to climb or remain level or descend in such emergency, the risk of collision in the air would be greatly reduced.

The Emergency Dial

It is suggested, therefore, that a dial based on compass characterisics and universally installed in aircraft, could provide the essential and definite instruction in cases of emergency (Fig. 8). If, say, the set course was to some point in the arc $24^{\circ} \mathrm{deg}$. to 360 deg. the illuminated instruction DOWN wonld be showing on the dial. For courses set to points within the arcs 120 deg . to 240 deg. or 120 deg. to 360 deg. (anti-
N 360°

Fig. 8.-An emergency dial based on compass Fig. 8.- An entergency dial based on compass nated instruction for the pilot.
use formulating air-rules which basically incorporate lateral evasive actions.

Vertical Evasion

Irrespective of all regulations, either proposed or already existing; when a pilot is confronted with an aircraft at close quarters and closing at enormous speed, his first reaction-virtually a reflex action-is to pull the joystick or control column back and go over the top. It is a natural defensive movement, much like one throwing their hands up to protect their face when an object
courses 120 deg., 240 deg., 360 deg., it is true that the dial could register one of two instructions, but scrutiny of the theoretical diagram (Fig. 9) will show that an aircraft coming from the opposite direction would perforce have to obey the remaining third instruction.
It would be interesting to know the views of P.M, readers on this vital subject.

Your Reaction

The test simulates the meeting of two aircraft at a closing speed of $1,400 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. , mutually observed at a range of three miles.
A period of 7.5 seconds would be the maximum permissible to avoid a collision. Any reader taking more than 10 seconds for the test is advised to fly as a passenger only.

Fig. 9.-Theoretical basis of the proposed emergency dial. clockwise), the dial would be registering respectively LEVEL or UP. The preknowledge and constant reference that this dial would afford the pilot cannot be overestimated. It conditions his mind to the action which must be taken in an emergency.

AN ELECTRCAL WND DIRECTIOWLWHEMTDR

See the Wind Direction from the Comfort of
 Your Armchair
 By S. K. Harble

THE electrical wind direction indicator consists of two main parts: an outdoor wind vane with contacts, and the indoor indicator box, together with 9 connecting wires between the two.

These are the materials you will need for the wind vane and contacts:
One piece of resin-bonded plywood, hardboard, or tinplate, 8 in. \times Sin., cut to shape as shown in Fig. 1 .

One rin. X rin. batten, $27 i n$. long. in this cut a slot, and shape as shown in Fig. 1.

Screw the gin. dia. tin which is to serve as a cover for the contacts and contact block, to the underside of the arrow, and also screw the contact spring into position.

The complete wind vane and the outside of the cover can now be painted.
A $5 / 16 \mathrm{in}$ hole is drilled into the exact centre of the 8 in . dia. contact block. Where indicated a slot, or a $\frac{1}{2} \mathrm{in}$. dia. hole is made for the wires to pass through. Screw the metal contact plates on to the wooden contact block as shown in Fig. 1. One screw in each contact plate has a washer under which the ends of the different wires are fixed.

One $\frac{1}{4}$ in. dia 4 in . long bolt, if possible with a long thread and three nuts.

Four washers with a $5 / 16 \mathrm{in}$. dia, hole.
One short metal tube (sleeve), $\frac{7}{B}$ in. long, inside diameter $5 / 16 \mathrm{in}$. or $\frac{3}{3} \mathrm{in}$.

One contact spring, shaped as shown in Fig. 1, made from timplate.

Eight contact plates, shaped as shown and made from tinplate.

One bottom end of a gin. dia. tin, cut this to leave an upstancing edge (sides) of $2 \frac{1}{2} \mathrm{in}$. to 3 in . high.

One $1 \frac{1}{2}$ in. thick, 8 in. dia. circular block of wood (contact bluck).

Threc metal brackets (or four) to fasten the contact block to the top of a pole.

Construction

Becure the tailfin to the arrow of the vane ty means of two small bolts. The tailfin fis into the slot. Drill a hole 3 in. dia. through the centre of the batten which forms the arrow. Put on to the batten two triangular pieces to form the arrow head.

The contact spring is made from tinplate (cocoa tin). Drill a ${ }^{3} \mathrm{in}$. dia, hole where indicated in Fig. 1 and two smaller holes for the screws.

Make the eight contact plates from tinplate and drill the necessary holes for the screws.

Drill a $\frac{3}{8} \mathrm{in}$. dia. hole into the exact centre of the bottom part of the gin. dia. tin, and smalier clearance holes for the screws which are to secure the contact spring to the unclerside of the arrow.
in order that the wind vane may turn freely on the bolt. A light coating of oil on contact spring and contact plates will help to keep rust away.

Before the wind vane and the cover are placed on to the bolt, all the contact plates and the centre bolt must be wired up, the wires having been passed through the slot, or hole, made for this purpose.
Note here that the connection for the "north" wire is at the opposite end of the direction to which the arrow points, the same applies to all the other directions, remember this when wiring up to the indicator box.
Finally, the cover and wind vane are placed over the bolt. A washer is put on top, a nut screwed down far enough to allow for the movement of the wind vane, a locking nut is put on and the two nuts are turned tight together.
Fastening to the top of a pole can be by means of metal brackets, as shown in Fig. I. An open position should be selected, where the indicator can be reached by winds from every direction.

Materials for the Indicator Box

Two pieces of plywood, roin. \times roin. \times $\frac{1}{1}$ in. or $3 / 16 \mathrm{in}$. thick.
Two side pieces, $\frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} . \times$ roin. long.
Two top and bottom pieces, $\frac{1}{2} \mathrm{in} . \times 2_{2}^{1} \mathrm{in}$., 9in. long.
Two plywood strips, $2 \frac{1}{2}$ in. wide \times gin. long.

Eight small bulb holders.
Eight flashlight bulbs.
Circular and square holes are cut into the front piece in the positions shown in Fig. 2. Glue a piece of white paper to the back of the front piece, mark " N ," " NE ," " E ," "SE," "S," etc., in black Indian ink on to the paper from the back in reversed characters. Thus the letter will only show up when the respective panel is lit up from inside,

Fig. 3.-The elecrical circuit.

Make the sides and the back of the indicator box and assemble ds shown in Fig. 2. Cut a hole into the bottom for the wires to pass through. Fix the small bulb holders to the back of the box. Slots are made into
the plywood strips to fit them into each other and the plywood partitions are fitted into the box. It may be found more convenient if the bulbs are wired up before these partitions are fitted in.
The front of the indicator box is fixed by means of four screws, one at each corner.

Wiring

Fig. 3 shows the wiring diagram for the connections between the contacts and the indicator box, incorporating the battery and a switch. If possible use a different coloured wire (bell wire) for each contact. Failing this, secure the wind vane on each contact while the respective wire is connected to the corresponding bulb in the indicator box. The wiring is not complicated at all, merely being straight connections from the " N," "NE," "E," etc., contacts to the bulbs which indicate these directions.
By making the indicator box larger it would be possible to accommodate a battery and the switch in the centre portion.

${ }^{7}$ HIS simply made remote-controi release (Figs. I and 3) is suitable for most canueras with pushbutton release on the top. It can also, with the addition of a, simple clip accommodate a cable release for other types of camera (Fig. 4).
The basis is a 12 -volt solenoid purchased from Messrs. Proops of Tottenham Court Road, London, for 2s. 6 d . The long arm is taken off and reversed, with the short length cut away. A fresh hole is drilled for the bush and

To fit under tripod bush screw. 2 日A.chearence
rig. 2.-Details of the mouning bracket.
pin for attaching to the solenoid plunger. The arm is cut to length to suit the camera. The solenoid before and after modification can be seen in Fig. 5.
A bracket is made with one end which will slide under the tripod bush screw and in the other end a 2 B.A. clearance hole is drilled to attach to the solenoid (see Fig. 2). Twin wires are soldered on to extend the solenoid wires which protrude at the top of solenoid and are connected to a push-button $0 \% 8 \% 8 \% \% 8 \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \%$

A Remote Control Camera Release

Wh By W. Gardner

Fig. 3.-A further viezv of the release ready for use.

Fig. 4.-Using the solenoid in conjunction with a cable release.

Fig. 5.-The solenoid before and after modification.
switch and a battery.
Excellent results have been obtained using 2oft. of twin bell wire. Care should be taken that the solenoid arm travels down to its full extent without the release button reaching the end of its travel, so as to avoid camera shake. Packing under the solenoid will adjust this. The tension spring at the pivot point of the arm can be retained in position to give extra thrust to releases which need more pressure

A llual-Purpose Tuning Meter
 \section*{For Both Radio-controlled Trans mitter and Receiver}

$\mathrm{A}^{\mathrm{s}}$$S$ the purchase of two meters, a 5 mA one for tuning the receiver, and a somA one for setting up the transmitter, is rather expensive, the meter described below serves both purposes, being at the same time light and compact,

Construction

It was desired that the meter should fit into the transmitter during actual control operations, so any additions to the existing casing had to conform with its cylindrical shape. A 5 mA f.s.d., square meter with screwed rod terminals was therefore bought, and a framework was fitted over, and secured to these terminals, this mode of building being considered safer than attempting to drill the plastic casing, with possible damage to the internal mechanism. Thus the framework is entirely external, and does not require the dismantling of any part of the original meter. The terminals must, of course, be electrically separate from one another, so a construction of tinplate and Paxolin was adopted, the latter for insulation.
First of all two strips of timplate are cut to the measurements given in Fig. 1. In each strip two holes are drilled to clear the meter terminals, and three are drilled 8 B.A. slearance (or preferably tapped 8 B.A.). The V cuts at the top and side of each frame are

To clear meter
8B. A. clearance

the last two bends is to cut a piece of stripwood to the internal dimensions of the finished frame, then clamp this firmly in a vice, and use a mallet to bend the tinplate round it (Fig. 3). Be sure to position the V cuts so that when the frames are finally assembled the cuts face each other (Fig, 2). When both frames have been completed, they should be fitted over the terminals and secured with nuts.

Two pranels are now cut fron $1 /$ ribin. Paxolin sheet as in Fig. 4. (The measurements here may differ with various types of meter, but those used on the original are given.) Panel "A" has four 8 B.A. clearance holes 10 match with

To clear meter terminals. (approx 5/32"dia).
$-1 / 2^{2}-d / 10$ \qquad $3 / 8 "$

Fig. 1.-Dimensions of the frames.
to clear the two-pin battery plug (which is added later), and the range switch. The strips are bent up into an open box shape, as in Fig. 2. The best method of making

those in the frames; and also a $\frac{1}{2} \mathrm{in}$. diameter hole to take a single-pole, on-off, wafer-type switch. Panel "B" also has four 8 B.A. clearance holes, two for fixing to the frames, and two to attach the previously mentioned two-pin battery plug. Holes for the plug's pins are drilled as shown, then the piug is placed in position and holes are drilled in

Fig. 3.-Bending the frames using a wooden former and vice.
if using the fixing holes in panel "B" as a template. Panel "B" is made $13 / 86 \mathrm{in}$. wide so as 10 butt joint the two panels, as shown in Fig. 5.

Assembly

Panel "A" is now bolted to the. frames ($\frac{1}{3} \mathrm{in} .8$ B.A. bolts are used throughout) and the switch, with its terminals upwards, is adjusted by using two nuts, so that the toggle does not project beyond the edge of the meter (Fig. 5). The wiring should now be carried out, having first ensured that panel "B" will fit, but without bolting it in position, as if this is done access is rather

Fig. 4.-Derails of the Paxolin panels; all holes are 8 R. A. clearance except where marked.

Fig. 5 (Above). - Side view shoving adjustmem of szoitch. Wiring is omitted for clarity.

Fig. 6 (Right). - (Top) wiring details. (Bottom) circuit diagram.

Method of Installation

Because the meter has to be removed from the transmitter case each time the receiver is tuned, the normal nut and bolt method is obviously too slow. Four "bolt action" collar studs (see inset Fig. 7) were bought cheaply from a well-known multi-department store and the bases were fitted into the case as in Fig. 7. Holes are drilled to clear the necks, the marking being

The socket for the two-pin plug is secured to a small Paxolin shelf inside the transmitter case. The position may best be found by trial and error.

Instead of using a shorting plug or switch when the meter is out of the transmitter, the writer uses a modified two-pole, on-off toggle, which can also be used for testing when the control-box is unplugged from the closed-circuit jack. The connections are shown in Fig. 8, the two positions being marked "H.T. On " and "H.T. On (Meter),"
difficult. Circuit and wiring diagrams are shown in Fig. 6. The value of the shunt (approx. $\frac{1}{2}$ an ohm) which converts the f.s.d. from 5 mA to 50 mA is roughly found by calculation from the resistance of the meter; and finally adjusted by using a standard somA meter in series. The thick pin on the plug should be connected to the positive terminal of the meter.
Having finished the wiring, panel " B " is bolted to the frame, and the construction is completc. Some indication of the range selected should be marked on the switch panel to avoid confusion. In the writer's case, the back and sides were left open, but they could easily be covered with Paxolin panels by adding small brackets for the sides.
done with the meter in position, a n d pieces of tinplate are bent and fixed as shown, while small "collars" of copper tubing are slid
from which it may be seen that when the meter is out the toggle serves as an onoff or keying switch.
Thus the complete tunover the necks so that the ends are flush ing procedure is as follows: Switch on with the cop of the meter when it is in transmitter; H.T. switch to "On (Meter)"; position. The meter fixing holes will prob- set up transmitter. H.T. switch to "On "; ably have to be drilled out to a larger size for this. The meter can now be removed and replaced at will simply by unfastening the studs.

HT.On.
Fig. 8.-Wiring of H.T. switch.
 remove meter; range switch to 5 mA ; plug into receiver; key transmitter with H.T. switch while tuning receiver; range switch to 50 mA and replace meter in transmitter.

A HANDY GAS LIGHTER

Useful For the Kitchen and Workshop

By R. R. Hutchison

AUSEFUL and easily constructed gas lighter is shown here built on an empty plastic shaving stick case.

Construction

First, cut a stiff disc of brass slightly less in diameter than the end of the plastic case, which should be big enough to house a U2 battery with $\frac{1}{2}$ in. to spare. Drill a $\frac{1}{1}$ in. hole in the centre of this disc and solder a short length of $\frac{3}{8}$ in. o.d. brass tubing so that the tubing is flush with the disc. It is advisable, if ordinary soft solder is used, to build up a heavy shoulder of solder to give strength in case of an accidental fall.

The Bulb Holcer

At the other end of this tube solder a screw type bulb holder of the solid brass type if available. Remove the centre contact from the insulated washer and rep.ace with either a length of 6 B.A. screwed brass rod,
 and material: used.
or a piece of plain brass rod which has been screwed 6 B.A. at both ends.
The plastic case (or its screw-on lid) is now drilled to take two 6 B.A. bolts for fixing on the brass disc which has been similarly drilled and a central hole is drilled clearance 6 B.A. to take the ocher end of the screwed brass rod which passes down the centre and clear of the brass tube.

A nut should be screwed to each end of the rod so that the rod ends are just flush with both nuts. Under the head of one of the fixing bolts is clamped a short length of springy brass about $\frac{3}{8} \mathrm{in}$. wide which is bent down the side of the casing and a small bolt or rivet soldered near its free end, which, in turn, is able to pass through a hole drilled in the side of the case to contact the bare metal side of the U2 battery.

Fitting the Battery

A $1 \frac{1}{2}$ volt gas lighter element is screwed into the holder and a U_{2} cell is kept in contact with the central nut by a spiral spring. The circuit is completed by depressing the rivet contact on the springy brass arm.

The battery lasts about a year with normal use.

LANDSCAPE PHOTOGBAPRY

Walter Hunnisett Discusses the Part Played by Different Types of Light and Shadows

THE sun is blazing from a clear blue out from its backsky and surely a sunny day is the ground very well, but best time to take-a photograph. We take great pains to select a beautiful view and release the shutter, feeling certain that we have captured a masterpiece. Then we produce a print and return to earth. Somehow it makes us doubt if the sun really was so strong. The sky is a blank expanse and the whole scene looks lifeless. What can have gone wrong?

The answer is that we have not understood one of the main purposes of a photographic light source, namely to cast shadows which help to explain the shape of the subject.

Use Shadows

When we look at a subject it may stand

Fig. 2.-The early morning sun lifting the clouds from the hills at Langdale. Taken with an Agifold camera on an $H P_{3}$ film. $1 / 25 \mathrm{sec}$. at $f / 8$.

Fig. 1.-Lerwick, Shetland, 1/50 sec. at f5/6 with a Rolleiflex camera and an Agfacolour negative.
of light and subject. get an effect similar to almost the middle Unless time is no third of the panorama. Unlike the camera, object, this is not pos- which records all details at once, our eyes sible with natural take in each item of a view separately, and lighting and immov. will ignore such faults unless they are trained able subjects. The otherwise. Viewfinders are often too smatl altematives which to show up this effect, so should not be remain are either relied on too much in that respect.

Slightly in front of or behind the rightangle is often to be preferred. If shadows are being cast slightly away from the camera, the conditions are ideal for showent time or around and tackling the problem from another angle.

Lighting

"Keep the sun off the lens" is sound advice but unfortunately, to $\begin{array}{ll}\text { make com- } \\ \text { pletely } & \text { sure, }\end{array}$

Fig. 3.-Long, soft shadows, cast by the low evening sum. This photograph was taken in the Austrian Tyrol with an Agifold camera. I/100 sec. at f/I 6 or HP3 back to the sun." "Keep your scorching the back of the sun shadows will be hidden, with the exception of your own which will spoil the foreground. Frontal lighting is not very useful except for cloud formations, which can be photographed with just a narrow strip of earth to complete the bottom of the picture. If a distant view is hazy, thus giving depth to the scene, and cloud shadows are chasing each other across undulating ground, then this lighting still deserves consideration. Unless the subject has good tonal contrasts, think twice before exposing with frontal lighting.
Side lighting is generally more reliable. The main danger here is encountered with a broken foreground, particularly when using a wide-angle lens. A recollection of some panurama photographs taken on a sunny day will be useful. They provide extreme examples but the point is easier to see. Suppose we are looking at a picture covering 180 deg . One side has the light in front of the camera, with the resultant deep shadows, whereas the other extremity shows no shadows at all. If the light is at right-angles to the camera we

Fig. 4.-This photograph gives no indication of the heat or brilliance of the sun. It was taken at noon, in midsummer in the Austrian Tyrol with an Agifold camera on $H P_{3}$ film.
ing up the texture of solid objects such as mountain faces or buildings. Side lighting with a slight tendency rowards the front is very effective for giving sparkle to foliage and the shadow patterns are interesting.

Against the Light

Photographing right towards the sun is a tricky business, particularly if the sun is low. The sky will need little exposure
and the shadows will need considerably more if the result is not to be a silhouette. A high viewpoint, leaving out the sky altogether, reduces the contrast range, and at the same time makes better use of the long shadows. Used carefully, this lighting can provide excellent results, especially if you can capture the sparkle on water. The haloes which are a feature of against-thelight photographs make objects stand out well, but adequate exposure is essential to get detail in the shadows.

Clouds

It is possible to have 100 much sun, as with brilliant lighting it is far too easy to get " soot and whitewash" effects. The sky

NEWNES PRACTICAL MECHANICS

For most of the year the sun never gets really high in this country. This means that if it puts in an appearance any time between autumn and spring it is possible that a potentially good subject is waiting for you. ("Autumn and spring" is a rather vague term, but there is no sharp dividing line between correct and incorrect lighting.) During the remainder of the year only about $2-4$ hours at midday need be written off as providing lighting which is too high to give the best results.

Fig. 5.-Scafell from Lingmell. This photograph was taken 15 minutes after Fig. 8, with an Agifold camera, 1/50 sec. at $f / 16$ with a $2 x$ yellow filter on HP3 film.

Fig. 6-Towards Keswick from Grain Gill. Cloud shadows provide the separation of planes. This quas taken with an Agifold camera on H_{3} film.

Fig. 7.-The Jaws of Borrowdale taken with a Rolleiflex camera. 1/100 sec. at f/8, on an $H P_{3}$ film.

Scenes taken early or late in the day have a quality of their own. It is a quality which cannot be faked as can "moonlight" photographs. The only way to record that quality is to be there at the right time. The soft shadows cast by a low sun often make it easier to capture a mood" picture. The effort required to get up early is well worth whileoccasionally!

Dull Days

So far we've been blessed with sunshine almost unlimited. What about those days when the sun has a hard job in penctrating the clouds?

Three of the mos precious requisites of a successful landscape photographer are patience, anticipation and, most of all, luck. These
beam and position yourself accordingly; but the deciding factor will always be whether you are lucky enough to see the light falling on the right spot.

Fig. 8.-Flat lighting does not show rock to best advantage. The photograph shows Scafell taken with an Agifold camera. I/50 sec. at $f / 16$ with a $2 x$ yellow filter on $H P_{3}$ film.
is likely to be devoid of cloud interest, the negatives are difficult to use and the resulting prints are rarely satisfactory. Clouds in the right place can be of immense value in composing a picture, but their usefulness goes further than that.

Outdoor pictures have the sun as the sole light source (discounting flash, which can only have a local effect). If there is no cloud, the light is similar in effect to a spotlight and the shadows are hard and lacking in detail. Clouds act as reflectors and help to keep the contrast of the subject within printable range.

FOR THE MODEL MAKER

THE MODEL AEROPLANE HANDBOOK

By F. J. CAMM

303 illuscrations
12/6 (13/7 by post)
Construction and Principles of all Types
and
MODEL BOAT BUILDING
Constructional details of Model Sailing and Power Boats. 5 /- (5,9 by posc)
FIOM GEORGE NEWNES, LTD., TOWER MOUSE, SOUTHAMPTON STREET, STRAND, W.C. 2

THE P.M. 6in.
ASTRONOMICAL
REFLECTING TELESCOPE

AREFLECTING telescope does not perform well if it is taken from a warm room into a cool garden. It is much to be preferred that the telescope should be kept out of doors ready for use. If you have made the portable Seller's mounting, keep the instrument in such a place that it is close to the temperature of the ambient conditions at the position where it is to be used. If you have made the equatorial cradle type mounting then this, by its very nature it not portable and you will need to protect the mounting and the telescbpe from the weather. The writer favours a run-off shed for this gives the tyro a full view of the night sky. A dome looks very impressive but it can be a great nuisance to one not familiar with the heavens. A simple run-off shed (Fig. I) moving on a concrete apron wita a slight water shed is very satisfactory. The writer has used such an arrangement to cover a larger instrument than the one proposed here for the past nine years and it has given excellent protection.
It must be made abundantly clear that the mirror surfaces are either top silvered or top aluminised and these surfaces-especially the silver-will deteriorate rapidly if they are not provided with close fitting covers to be kept on at all times when the telescope is not in use.
It is more usual nowadays to utilise the aluminium surface. Most optical workers making flats and the main parabloidal mirrors for Newtonian telescopes send their finished work to be aluminised in special vacuum plant. The mirror is placed in a container facing a coil charged with aluminium. A high vacuum is then generated within the container and the coil heated electrically to a temperature sufficient to fuse the aluminium charge and evaporate it. The aluminium molecules are propagated in substantially straight lines across the evacuated space to strike the mirror surface condensing upon it to form a metallic reflecting film.
The reflectivity of the aluminium surface is not so high as that for silver (Al. 90 per
cent., Ag .97 per cent.), but the aluminium is much to be preferred in that it forms a full oxide coat quickly (aluminium oxide or hydroxide) and this is transparent: In contradistinction to this the silver coat forms a sulphide which is opaque and black by reflection.

The aluminium surface is usually free from minute scratches for it requires no burnishing. Its behaviour in the ultra-violet region of the electro-magnetic spectrum is good and this is useful for photographic and photoelectric observations.
It is said that the aluminium surfaces can

Uncovering the Mirrors

The following procedure will save much damage to the instrument. Never take the cover off the main mirror until you have uncovered the optical flat. Always replace the cover on the main mirror before replacing the cover on the optical flat. Then if you drop the flat's cover you will not damage the main mirror's surface.

Orientation of the Cradle Moumting

The cradle mounting is an equatorial mounting. Once the telescope is trained on to a star, movement of the cradle will allow

CARE AND ADJUSTMENT

Some Valuable Advice for the Amateur By F. W. Cousins, A.M.I.E.E., A.C.I.P.A., F.R.A.S.

be cleaned by careful washing. One uses a pad of cotton wool, a little good quality soap and running water, but as little cleaning as possible is best. Do not be too fussy about the spotlessness of the main -mirror surface, it will function quite well even with several minor blemishes. When it is unsatisfactory have it re-aluminised. With close fitting covers the mirrors if aluminised should last for something near to

the telescope to follow the rising and setcing motion of that particular star.

It has already been pointed out that the angle of the cradle to the horizontal is equal to the latitude of the position at which it is set up. Now we must consider the positioning of the mounting on to the meridian so that the long axis of the cradle extended passes through the North and South celestial poles. (See Fig. 2.)
The meridian is most readily found with a Gnomon. Set up a pole of six or more feet in height; set it up vertically at the site for the mounting. To do this use two plumb bobs at right angles to each other. See Fig. 3. On the top of the pole- fix d needle and a bead (Fig. 3). On a clear, sunny day observe the position of the shadow of the bead at, say. nine hours. Mark the position X_{1}. With an old knife blade and a radial string describe a circle through X_{1}, the circle having the pole as its centre. Some hours later, after noon, observe when the shadow of the bead once again is on the circle you nave described. Let us suppose this is posi. tion X_{2} Draw the line $X_{1} \mathbf{X}$ and bisect it at Z. the line $\mathbf{Z O}$ extended is the meridian. The observations should be made on the same day. A mounting for any telescope should be very rigid.

Some constructors may care to make a concrete mounting. One design for the pillars is shown in Fig. 4.

Adjustment of the Finished Equatorial Mounting

This should only be attempted when the optical parts of the telescope have been set.

For those who wish to use their telescope
for photography and

Fig. 2.-How the telescope is placed on the meridian.
times the aperture in inches (on a 6 in mirror 18 magnifications). A useful upper limit may be taken as 50 times the aperture in inches. With a 6 in telescope a power of 300 is near the maxi mum.

The linear field in the focal plane corresponding to an angle θ on the celestial sphere given by a telescope is $\theta=30^{\circ}$ approx, where " m " is the magnifying power. In practice this can be found from the time which an object in or near the celestial equator takes in passing centrally through the field; any star having but little declination will answer; favourites are γ Virginis and δ Orionis ; the Moon or a planet in a correspondingly favourable position will do. Several trials are made and the mean result in minutes and seconds of time multiplied by 15 will give the diameter of the field in minutes and seconds of arc on the celestial equator

It will be seen that the angular field of view becomes smaller with increase in power. With a 6 in . telescope f 8 using a tin . focal length eyepiece the magnification is 48 . The approximate field of view is $\frac{30^{\circ}}{48}$, a little over 37 minutes of arc.

Fig. 3.-Finding the meridian.

Fig. 4.-Suggested design for a rigid concrete mounting for the cradle.
As a guide one should recall that the full Moon subtends about half a degree-that is 30 minutes of arc.

Recommended Eyepieces for Beginners

These are shown in Fig. 5.
It is a great fallacy to over-stress magnifying power. Schröter and Webb long ago warned observers against this natural desire which is apt to lead beginners into mistakes. A certain proportion of light-to-size in the image is essential to distinctness. Although a higher power can be employed to enlarge the size the light cannot be increased so long as the diameter of the mirror (the aperture) is unchanged. Hence the picture becomes dim and indistinct beyond a certain power and the imperfections of the atmosphere and the telescope more visible. A very high power has further disadvantages in the general difficulty of finding the object and keeping it in view-the contraction of the field, the rapid motion of the image (the motion of the earth) all conspire to make observing very difficult. Reserve high powers for very special objects under the best seeing conditions. Too low a power is apt to show bright objects surrounded with glare. Experience alone is the only sure guide.
At the start use a low power. The following eyepieces are suggested:

A Kellner, an orthoscopic or an Erfle eyepiece of I in, focal length for general use. Any of these will give a good field of view, even without a finder one should have little trouble in sighting along the tube and finding the object in the field of view,

For planetary and lunar studies a useful eyepiece to have is a $\frac{1}{2} \mathrm{in}$. orthoscopic or a $\frac{1}{2}$ in. Tolles.
For even higher powers a $\frac{1}{3} \mathrm{in}$. Tolles or 3in. monocentric is a most satisfactory ocular, especially for planetary work.

With a Barlow lens this equipment should be sufficient for most needs.

The Barlow Lens

A Barlow lens is a negative lens used to increase the fozal length of the telescope and consequently its power without recourse to very short focal length eyepieces. If, as shown in Fig. 6, a negative lens is placed at distance \mathbf{P} inside the Newtonian focus of the mirror the negative lens diverges the beam to a distance Q. This new focus is observed with your standard eyepieces in the usual manner. The Barlow negative lens is thus mounted in the eyepiece tube and it is easy to get quite high powers with only one eyepiece. Mr. Hargreaves, one of the leading

NEWNES PRACTICAL MECHANICS
centre of the reflecting surface of the flat mirror.
2. These two axes must make equal aagles with the normal to the reflecting surface of the flat mirror at the said point of intersection.

This can be readily seen from Fig. 5 .
Remove the eyepiece from the eye tube and place over it a cardboard cap with a small spy-hole-sometimes one of the eyepiece caps will do this iob excellently. Remove the cap from off the flat and then remove the main mirror cover. Point the telescope at the day-time sky. A brightly illuminated dise will be seen with a dark spot upon it. The view may well be something like that of Fig, 7A. Everything is wrong; compare with Fig. 7 B , which shows how things should be for good order.

Proceed in this way:
i. Make the outline of the flat (\mathbf{F}) concentric with the eye tube rim (E), Fig. 7 C . Do this by moving the flat in its holder (Fig. 7, May issue). Check that the flat and the spider are in the centre of the tube (Fig. 7D).
ii. Now consider circles F and M. The circle \mathbf{M} is the reflection in the flat of the main mirror. If the black dot, the reflection of the flat (FR) is objectionable eliminate it by placing a white paper circle exactly covering the main mirror. Circles F and M can be made concentric by mowing the flat within its holder, using the screws provided. It can also be rotated on its axis.

Fig. 6.-The Barlow lens.

ONE way of accomplishing this feat is to ase a magnetic hammer. Any hammer can be nagnetised. using an ordinary permanent magnet and dragging it along the hammer-head as shown in the sketch above.

A simple tool for this job is shown above right. It can be easily made by anyone from an old pisce of rubber tube and a
 H2Th

Fig. 7.-The optical adjustment of the Nerwtomian reflector.
iii. Remove the paper circle off the main mirror. You should see something similar to Fig. 7 E . Only the black dot FR is assymetrically placed. This adjustment is most important; it is perfected by using the screws which tilt the main mirror cell. It is often found difficult to judge when the black spot FR is centrally placed of the mirror. Two crossed strings in the tube will give the intersection point. This is shown in Fig. 7 F .
When all the adjustments have been made with care test the telescope on a brightish star. The out of focus image of the star should be a system of rings concentric one with the other, having a dark spot. in the centre (Fig. 7C).
may still be pos hand photographic dealers a Goerz, Zeiss or Dallmeyer telenegative lens. The Goerz lens, according to Hargreaves, is superb. For some years he has used one of focal length 2 g in. with his reflector of focal ratio 5.5 .

It is, however, possible today to purchase first-grade Barlow lenses from amateur optical workers at a very reasonable price. (Addresses available from Practical Mechanics.)

Final Adjustments of the Telescope's

 Optical PartsWhen the preferred design was considered, reference was made to the provision of "squaring on" screws, which could ' be manipulated by the observer when his eye was applied to the eye tube. Now the full force of these words will be apparent-for a Newtonian reflector cannot perform well if its optical parts are not "squared on" or collimated.
Two criteria must be fulfilled.
I. The optical axis of the eyepiece and the axis of the parabloidal surface of the main mitror must intersect in the
short length of mild steel rod. In use the tool is held in one hand and struck with the hammer held in the other.

A Tip for the Fretsaw Owner

TO prevent splitting when sawing through small strips of wood on the fretmachine, simply wrap a piece of transparent adhesive tape round the strip at the point of the cut.

litule personal aeroplane. However, since it would be impossible to reproduce the drawings to any useful scale, it has been agreed that we shall provide in this series of articles an illustrated and detailed step-by-step account of the construction. Readers who wish to build the Minor are advised to obtain the full set of plans from Phoenix Aircraft Ltd., whose registered address is Cranleigh Common, Surrey. They will then receive the full set of large scale, black-on-white drawings, which are fully detailed with most of the metal fittings drawn full size. The set of plans costs £11 Ios., which is inclusive of a licence to build one Minor and one year's

BUILDING THE LUTON MINO

The First Article of a Series Describing an Aeroplane that is Simple and Cheap to

Build, is Easy to Fly, and Can be Towed Behind a Car and Kept in the Garage

THE prototype of this aeroplane first flew in 1937. It has been modernised and is the first post-war all-British aircraft which can be built and flown by amateurs. The Ministry of Transport and Civil Aviation has approved the Minor for operation under a "Permit to Fly," thus dispensing with the need for a Certificate of Airworthiness.

Aircraft construction is by no means difficult to master and it is quite within the capabilities of the average amateur who is reasonably good at metalwork and carpentry.
The Luton Minor was specifically designed for the amateur builder and pilot, thus simplicity and straightforwardness of construction coupled with maximum flight safety have been the overriding design consideration throughout.

Originally designed by Luton Aircraft Limited in 1936 as a safe, practical, personal aeroplane which was cheap to operate, many examples were built and flown in all parts of the world before the war by enthusiasts and today a number of these pre-war Minors are still flying!
Before the war Practical Mechanics published a series of articles dealing with the construction of the Minor. The popularity of these articles was proved by the world-wide reception they were given which resulted in Minors being built in many countries.
Phoenix Aircraft Lid., which has taken

A partly constructed wing, photographed in the garden of an amateur builder of the Luton: Minor.
over the designs of Luton Aircraft Ltd., has modernised the Minor to bring it into line with present-day standards. Heading the design team is Mr. C. H. LatimerNeedham, the designer of the original Minor and many other successful light aircraft. The new Minor-the L.A.4a-is already being built in numbers by enthusiasts in Great Britain and such far away places as Australia.
The L.A.4a Minor is designed to be powered by the 37 h.p. Aeronca J.A.P. J. 99 horizontally-opposed, twin-cylinder, air-cooled engine, although any engine up to 42 h.p. may be fitted with only small modification. With the J.A.P. engine, which uses only two and a half gallons of petrol an hour, fuel costs are only 2d. per air mile, with a cruising speed of 70-75 m.p.h.

By removing the wings and tail and fixing them to the sides of the fuselage, the entire aircraft can be towed on its own wheels along the road behind a 7 h.p. car. This enables the Minor to be housed in a shed or garage, thereby avoiding the cost of hangarage at an aerodrome.
The Minor will take-off in 80 yards, may be operated safely from a 200 -yard long field and can climb at 450 feet per minute. The stalling speed is about equal to bicycling speed.
Phoenix Aircraft Ltd., in conjunction with the Popular Flying Association, operates an inspection and advisory service and will, upon request, send a qualified representative to give advice and even practical help to the constructor. Th e amateur, by availing himself of this service, can be certain of completing a perfectly airworthy aeroplane of his own for which he will be granted a Ministry of Transport and Civil Aviation "Permit to Fly."

Practical Mechanics h a s obtained exclusive rights to publish the construction details of this delightful
subscription to the Popular Flying Association the founding and representative body in the United Kingdom of amateur constructors and operators of ultra-light aircraft.
This arrangement allows Phoenix Aircraft Ltd., to maintain a watching brief over constructors, so as to avoid unnecessary deviations and mistakes. and to give the benefit of their experience. It is advisable that every constructor should be given the

SPECIFICATION

$$
25 \mathrm{ft} .
$$

20 ft .9 in .
125 sq. ft. $85 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. 75 m.p.h. 28 mp.h.
SPAN LENGTH WING AREA MAX SPEED CRUISING SPEED STALLING SPEED $28 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. INITIAL RATE OF CLIMB $450 \mathrm{ft} / \mathrm{min}$.
TAKE-OFF RUN
80 yds. LANDING RUN - - 40 yds .

OPERATING COSTS
facilities of this advisory service so that he may receive copies of memoranda, issued from time to time. together with copies of any modifications and recommendations as issued by them.

Description

The Luton Minor is a single-seat, allwood parasol monoplane designed specifically for the amateur constructor who has little or no previous aircraft experience. It is an extremely simple aircraft to build and requires no special tools or workshop equipment.

The parasol wing layout has been chosen for its inherent pendulum-type stability, coupled with excellent view in flight, safe ground handling and also the simplest wing suructure. There is no complicated cantilever main spar-the wing is in two separate 12 ft . 6 in . pieces, which bolt to tubular steel pylon struts above the cockpit.
The designers have steadfastly avoided all fabrications and assemblies which require

WEIGHT (EMPTY)
PILOT
PETROL
OIL
LUGGAGE
GROSS WEIGHT
FUEL CAPACITY
FUEL CONSUMPTION - 2.5 gall./hr.
RANGE (S'TILL AIR)
2d. per mile

390 lb .
170 lb .
47 lb .
10 lb .
10 lb .
627 lb .
$6 \frac{1}{2}$ gall.
180 miles
the use of expensive tools or large workshop spaces. The structure of the Minor can be built in a large room or garage. Welding and brazing have been kept to a minimuin and, if the amateur has no facilities for this, Phoenix Aircraft Ltd., undertake either to supply such metal parts ready made, or to weld up parts sent to them by amateurs.

Construction

The fuselage is of box construction with spruce longerons and bracing, with a covering of plywood. Aft of the roomy cockpit, the top decking is fabric covered, the fabric being supported on light spruce stringers and piywood formers. The fuel tank, holding $6 \frac{1}{2}$ gallons of petrol is mounted on the top longerons in front of the cockpit. The pilot's seat is hinged so that it tips forward to give access to the luggage compartment which has ample space for week-end baggage.
The undercarriage is of steel tube con-
struction with rubber-in-compression shock absorbers housed in neat fairings. Wheel brakes may be incorporated if desired and a fully-castoring tailwheel is fitted. Metal fittings are all simple bent-up fabrications of mild steel sheet.
The wings have two spars each, comprising top and bottom spruce booms and a plywood shear web. The large-chord ailerons hinge directly on to the rear spar. Each wing is built in one piece, complete with the aileron, which is cut off after completion. This ensures perfect alignment without the need for a special aileron jig. The wing ribs are nearly all the same and are of open girder layout. Plywood sheet covers the leading edge and tips for durability and also to improve the airflow over the wing. The remainder is fabric-covered and cellulose doped. Attachment to the fuselage is by two centre-section pylons and two sets of parallel lift struts made of streamlined steel tubing.

Tailplane a n d elevators are also built in one piece and cut apart after completion. Con-

A partly constructed tailplane ontside the garage where it was buitt.

struction is very simple and follows that of the wings. The fin and rudder are likewise simple wooden assemblies covered in fabric

The pilot's controls are light and effective. The majority of the control cable runs are internal, examination being facilitated by inspection hatches. The cockpit is of ample size-the tallest and most well-built pilot will find all the controls within comfortabie and easy reach.
Normally, the minimum of aircraft instru. ments are fitted, but for the sporting pilot, an artificial horizon and directional gyro can be incorporated.

The engine is attached to a simple cradle of steel tubing which is bolted to the front of the fuselage. Cowlings are of aluminium sheet and are all of single curvature thus dispensing with difficult shaping which can only be executed effectively with a wheeling machine.
Among those engines suitable, apart from the Aeronca J.A.P., is the Agusta G.A. $/ 40$ the 40 h.p. Continental, the 32 h.p. Bristol Cherub and the converted 32 h.p. Volkswagen.

Costs

The airframe of the Minor, excluding the engine. can be made for approximately $£ \mathbf{5} 25$. Aeronca J.A.P. engines are available for about $£ 100$ complete, plus $£ 20$ for the propeller. The total cost of the aircraft should not exceed $£ 250$ with the J.A.P. engine.

This is much less than the cost of buying a stnall car having the same fuel consumpton. Phoenix Aircraft Lid, will supply the Minor, ready to fly, for $£ 698$ and can supply a.l parts, fittings and materials to order.

Materials

All spruce and plywood used in the Minor should be of aircraft quality. Mild steel should be to specification $\mathbf{S . 5 1 0}$ or nearest equivalent (this is normal 28 tons/sq. in. steel). Steel tube must be of the aircraft specification stated on the plans. Brass aircraft gimp pins or brads are to be used for nailing. All woodscrews used are to be brass or cadmium-plated brass. On no account should steel brads, nails or screws be used-the moisture content of the wood will cause them to rust.
The glues used are of the synthetic resin type and the two recommended in the construction of ultra-light aircraft are Aerolite 300 (or 306) and Aerodux 185. Both are two-parts adhesives and the choice of which one to use is left to the constructor.
Fabrics and dopes will be dealt with later.

Sequence of Construction

It is recommended that the amateur should begin by building the tail unit. This will provide him with good practice and, should he make a mistake, it will not be too costly to rectify. As he gains proficiency so may he gain confidence and proceed to the mainplanes and fuselage.

It cannot be too highly stressed that the constructor should always use aircraft quality materials where specified (though not necessarily A.I.D. released) and must not resort to commercial materials for the sake of saving a few shillings, unless it is definitely stated on the drawings that such materials may be used for certain parts.
The essence of good work is quality rather than speed. The builder must take time over each part and aim to produce good work. By keeping in touch with a Phoenix

This Luton Minor was built by an R.A.F. officer for his own personal use and is shown here compared with a much larger aircraft.
room or garage in which to work. A firm bench with a woodworking vice and a metalwork vice is essential. An electric drill with a small circular saw attachment will save a lot of time and hard work. A steel-backed sanding disc, used in place of the circular saw, is useful for shaping blocks and general sanding off.

Ordinary carpenter's hand tools are sufficient for the woodwork involved. Make sure that the smoothing plane has a good sharp blade-if it is curved or chipped; buy a replacement. The plane is a most important tool in aircraft work-you will be doing some fine work with it-so protect the cutting edge when it is not in use. Cultivate the
habit of -laying the plane on its side on the bench.
Metalworking tools comprise à scriber, pair of dividers, centre punch, $\frac{1}{2}$ in. cold chisel, pair of tin snips (two are preferableone large and one small), a 12 in . metal rule graduated in fractions and decimal inches, one or two steel squares (4 in . or '6in.), a hacksaw, a good set of sharp twist drills up to $\frac{1}{4} \mathrm{in}$. diameter and an assortment of hand files.
A small hand-operated guillotine, capable of handling up to 14 s.w.g. steel sheet, is a worthwhile, although not vital extra. You will also require an office hand stapling machine and a. good-supply of staples.

Other essential items include a 3 ft . straightedge (wood or metal) and a level. A builder's level would do if it is accurate, but a rigid straight plank of wood and a spirit level are much more useful. Two or three rigid trestles or saw horses will be needed-large wooden boxes may be used here.
Three lead plumb-bobs and a large angle square (a wooden " T " square will suffice) are required for truing up fuselage and wings.
Some planks of good straight commercial deal and a sheet of $\frac{1}{4} \mathrm{in}$. or $\frac{3}{8}$ in. commercial plywood will come in useful for the few jigs and fixtures which are required.

The Plans

A good deal of time-and ofien moneycan be saved by carefully working through the plans before actually starting work. If you have a sound understanding as to how the aeroplane goes together beforehand it all becomes a logical sequence of events, and this period of familiarisation is certainly not time wasted.

Lay the plans out on the floor or a large table. Follow each part through to final assembly. See where the various details go. This way you are also learning about the aeroplane you are about to start building and will eventually fly.

Workshop Hints and Tips

Sent in by L. T. Sydney

Two Ways of Mioving Stubborn Screws OUITE frequently the handyman comes across a screw that just refuses to be mocved by normal methods. One way of tackling such problems is to use a screwdriver with a tommy-bar. Simply drill a hole in your screwdriver, as shown in sketch, and use a piece of steel rod about gin. long as a tommy-bar. The extra leverage should move the screw.
Failing this a special tool can be made fairly easily for the job. A hole approximatelv 3 in. dia. is drilled in a piece of mild steei bar near one end and the two slots nade as shown with two hacksaw blades together in the same frame. The blade (see sketch) was conveniently made from a piece oi an old machine hacksaw blade ground to
shape on a grindstone. 'To make the tool really versatile it can be made with a double-sided blade at each end of four sizes of screw.

To Prevent Solder

 RunningTHOSE of us who have attempted repair jobs with solder know how often it runs beyond the area of the joint. This can be prevented by drawing a line round the joint with a wax crayon.

A useful method for long seams is to tie two crayons together with elastic bands as shown in the sketch.

We Will Pay $10 / 6$ for Useful Tips

WIRE AND WIRE GAUGES

 $3 / 6$, or $4 / 2$ by postFrom George Newne: Led., Tower House.
Southampton Street, Strand, London, W.C. 2

These are Sometimes Known as Kettle Drums

should employ this process in its entirety as it is a lengthy and laborious process.

Excellent results may be obtained quite quickly by purchasing aluminium preserving pans of suitable dimensions and adapting these for the purpose. The handles of the pans may be cut off close to the base as will be observed in the illustrations. On the other hand the rivets holding on the handles may be filed down and punched out to

The completed tympani on simple bamboo stands.

NTO percussion section is complete without the bass part comprising the tympani (Fig. 1). No doubt with younger players this will be a most attractive section. The tympani are the real kettle drums. The latter name is often incorrectly given to the side drum. The shell of the drum is made from preserving pans.

In general the orchestra has a pair of these instruments and they are mostly tuned to the tonic and dominant notes of the key in which the music is being played. Thus for many pieces played by the pipes already described these notes would be D and A, or for pieces in the key of C they would be tuned to C and G. Thus this type of drum will plainly indicate the importance of drum runing, a feature which is overlooked by the novice. The art of tuning is not easy at first and has to be learned by practice. The straining nuts are tightened a little at a time and the skin flicked with the finger in proximity to the tuning nut. The nuts are tightened one at a time and the aim is to arrive at the same pitch for the six areas. Having arrived at the conclusion of what note is being played further adjustments can then be made in a systematic way to arrive at the precise note required.

Materials Required (for a pair of drums) ,

One each of aluminium preserving pans of 18 in . and 15 in . diameter approx.

Two strips of resin bonded plywood $\frac{1}{4}$. thickness $\times 60 \mathrm{in} . \times 1 \frac{1}{2}$ in.

Two pieces of parchment for the heads. 3 ft . of mild steel, $\frac{1}{1} \mathrm{in} . \times \frac{1}{2} \mathrm{in}$.
2 ft . $\frac{1}{2} \mathrm{in} . \times 20$ gauge (approx.) brass strip. One dozen 3 in. \times in. coach bolts with wing nuts and washers.

Four dozen $\overline{3}$ in. $\times 4$ B.A. countersunk head screws with nuts and washers.

Construction

The familiar hemispherical shape of the kettle drum is normally made of copper. The shell is usually "raised" from a flat sheet of metal. It is not suggested that the reader

set free the handles and then used to fill up the holes by riveting over neatly. No harm would, of course, be done by leaving the handles on.

When purchased the pans will have flat bottoms although the sides curve smoothly into the base. The first stage in shaping is to hammer out the bottom from the inside whilst resting the bowl, at the point of contact of the mallet, upon a small sack filled with fine sand.
The handle of the mallet should be on the short side, and one of hard rubber, such as used by panel beaters is useful, but a round-ended boxwood mallet is also satisfactory. The process is shown in Fig. 2. This process of hollowing is commenced from the centre of the bottom and proceeded with in everwidening concentric circles.

After a short time the aluminium will become hardened by the hammering and, if the process were to be continued indefinitely, a crack wou'd soon appear in the metal. To obviate this the metal is annealed from time to time.

Annealing

To anneal aluminium gradually heat the surface of the dan

Fig. 1.-The completed tympani or kettle drum and a pair of sticks.
with the flame of a blow lamp or a pressure stove of some kind. Move the flame about over the whole surface and on no account let it remain stationary for a long period in one place. Test the suriace of the bowl with a matchstick. When you can "write" on the heated surface the correct temperature has been reached. The bowl may then be quenched in water or allowed to cool slowly.

Fig. 3:-Plamishing the shell.

Fig. 4.-Cramping the hoop strip armend the former.

Another method sometimes used to indicate the correct temperature is to rub aver the surface of the bowl with common soap. As the heat is applied and the correct temperature reached the soap will go a brown colour whereupon the metal may be quenched.

It is suggested that before starting work upon a new preserving pan the beginner to this work should experiment upon a piece of aluminium sheet or an old aluminium saucepan (not a cast saucepan).

The hollowing and annealing process will have to be repeated a number of times until the hemispherical shape is produced. By using a cardboard template of the correct contour the frnished shape can be tested quite easily.

Planishing

When the correct shape has been achieved, the final process of planishing may be commenced. This is a somewhat slow and. tedious process designed to get a smooth finish to the bowl. If the reader does not mind the dented effect of the hollowed bowl then this stage may be left out.

If planishing is to be proceeded with, the surface must be well cleaned first of all by washing in a solution of soda. Wash well in water only to remove the soda solution. Dry the bowl. It is then inverted on a domed-head stake, Fig. 3. Starting at the centre and working outwards in ever-increasing circles light blows are struck with a planishing hammer, striving to get each succeeding blow just overlapping the previous one. The greatest care should be taken that the sharp edge of the hammer does not strike the bowl, or else a mark will be made which is extremely difficult to erase.

When the planishing process is completed the outside of the bowl must be finished off finally by cleaning and polishing. A du! matt surface may be produced by washing

Next the hoops may be made. For this purpose a former is required of diameter a trifle over that of the outer diameter of the top rim of the bowl. This former may be made up quite simply by joining together some 1 in. X 6 in deal with corrugated

over wi:h a solution of caustic soda and then rinsing in a dilute solution of acid with a view to neutralising the caustic solution.

Making the Hoops

Fig. 7.-Attachment of straining bracket 10 sid? of shell.
fasteners. 'There is no need to glue the joints. Mark out a circle $\frac{1}{8}$ in. larger than that of the outer diameter of the rim of the bowl. Cut to the line with a bow saw and smooth up with a spokeshave.

Around the circumference of the former
PRACTICAL MOTORIST

Princlpal Contents

Tuning for Economy: Installing Flashing Direction Indicator Secs:- Sparking Plugs: Tuning Twin SU Carburetters ; The Austin Cambridge A40-50 and 55 : A Surting Handle for the Vauxhall: Renewing the Economy Valve on Zenith Carburetters: Servicing Vauxhall Cars: Overhauling the Triumph 1800 Roadster ; The Beginner's Guide to the Motor Car: Choosing the Right Second-hand Car ; P.M. and M.C. Data Sheets : Motor Cycle Bearing Renewal ; Improving Headlamps on Oider Cars.
bore some $\frac{7 i n}{}$. dia. holes- with a centre bit in the same way as described for the former of the side drum, see Fig. 4 .

The strip of resin bonded plywood for the hoops is soaked in water and bent around the former and held in place until the moisture has dried out of the wood. Remember to plane the slope on one end for the overlap. Apply Aerolite glue to the overlap and cramp together again until dry.
When the glue is dry saw of the overlap of the ply not required and finish of with a plane or spokeshave. Then saw off the

Fig. 8.-Details of sticks.

Nut and bolt holding 3 legs together

Fig. 9.-Drum stand.
Details of one leg are shown, but three are required, held together by a $3 / 16 \mathrm{in}$. wingmut and bolt.
straining hoop and the flesh hoop, smooth off all edges with glasspaper.

The straining hoop clips are identical to those used for the side drum. Six are needed. The straining rods, however, are different and are made from six 3 in. X $\frac{1}{4} \mathrm{in}$. coach bolis.

Six strainer brackets are needed, made as indicated in Fig. 6. The part with two holes is to secure the bracket to the side of the bowl (Fig. 7). The holes on the other sides are drilled $\frac{1}{2}$. in dia. and then filed out so that the shank of the coach bolts will fit into them snugly. This will prevent the bolt turning when the wing nuts are tightened up.

The bolts and brackets are painted as well as the hoops. The flesh hoop has the parchment tucked on now or it may be sent to a firm for covering.

The drum may now be assembled and tested.

The Sticks

The sticks are made of $\frac{1}{4} \mathrm{in}$. dia: birch dowel rod, Fig. 8. Alternatively, some thin pieces of cane may be used. The knobs on the ends are made of some circles of feit lightly glued together.

A stand of suitable height for the player is required for each drum. When on the stand, the head of the drum should be the same height above ground level as the elbow of the player holding his arm to the side. A very simple stand can be made (see heading photograph), comprising three lengths of bamboo secured with a length of cord at the centre, another loop being used to prevent the legs from splaying out. A more ambitious stand can be made of metal; as shown in Fig. 9. In this case some felt pads are attached to the top ends of the metal legs to prevent the iron from scratching the shell of the drum: Finally, the ironwork can be painted an appropriate oolour.

A $3 / 16 \mathrm{in}$. diameter hole is drilled in the centre of the bottom of the bowl to relieve the pressure inside the drum.

R. N. Hadden Describes the Consol and Decca Navigation Systems

WTHIN the last few years the science of radio navigation has taken remendous steps forward, and it is now possible to fly an aeroplane from one country to another, and to bring it down within yards of the place intended on the runway, without the pilot ever having seen the ground.

The Consol System

One of the recent radio aids to naviga-
position is where these two beams cross
It is possible for anyone with an ordinary radio set to tune into a Consol station Bushmills Consol transmitter in Northern Ireland works on a frequency of $266 \mathrm{kc} / \mathrm{s}$ ($1,128 \mathrm{~m}$). The signal is sent out on an unmodulated carrier wave, so that an ordinary wireless will receive the signals as a hissing sound. However, it is quite easy to count the number of dots and dashes in each signal. With a ship's radio it is possible to switch over to the morse reception, so that the signal is very clearly heard.

Now count the number of dots and the number of dashes. In any signal the total of the two should add up to 60 . You will probably miss a few at the point where they change from dots to dashes. Suppose the total of the count is 56 , this means that 4 dots or dashes have been missed at the change over point, or 2 dots and 2 dashes. So if these are added to the ones actually counted the correct figures will be obtained. The next thing is to look up a Consol chart and identify the band with the same number of dots and dashes as have been counted. This will locate one band or position line.

Now get a cross bearing from Stavanger in Norway which works on $310 \mathrm{kc} / \mathrm{s}(940 \mathrm{~m})$. This will give your exact position. If a Consol chart is not available tables may be purchased from H.M. Stationery Office, or may be sent to you by one of the better known makers of marine radio.

Fig. 3.-How a "fix" can be obtained from

Actual Path

Fig. 2.-Map showing position of Decca Navigator transmitters (rripod symbols) and Consol stations (shown as blobs).

Fig. 4.- How an aeroplane may land at an angle to the runway if the pilot "homes" on a radio beacon when a cross wind is.blowing.

Fig. 2 shows where the European Consol stations are located, and also shows where the Decca Navigator stations are situated. The Decca Navigator will be described later. Consol is very useful for navigation where an error of a mile or two does not matter, and as its range is about 1,500 miles it is greatly used as a long range navigator.

Direction Firading

Where the Consol error could lead to danger it is better to change over to short range navigation, and for this purpose direction finding is used. Radio direction finding depends on the fact that a wireless fitted with a loop aerial does not receive signals equally strongly from all directions. Thus when a loop signal is pointed directly towards a station the signal is strongest, and when it is broadside to a station no signal is received. The "minimum" signal position is much more strongly defined than the "maximum" signal. For this reason the minimum signal position is always used for bearing purposes. To get a radio bearing on a station the receiving set is tuned in, and the aerial is rotated until the signal is reduced to zero. In this position the loop is exactly at right angles to the direction of the station.

Fig: 3 shows a ship taking bearings from two shöre stations, one station is 30 deg. East of North and the other is 95 deg. East of North. These two bearings can be plotted on a chart, and the position of the ship is where the lines cross. Aeroplanes can also use direction finding in the same manner as ships, or they can "home" to an airfield by flying in the direction of the airfield marker beacon. However, the pilot must use this homing signal with caution if there is a strong side wind blowing, as is shown in Fig. 4. If he had relied on the homing signal to bring him in line with the runway he would be bound to crash.

Safe Lane System

Because homing on, a radio beacon can sometimes be dangerous another system has been developed to overcome this difficulty. Suppose there is a harbour as shown in Fig. 5, which has a narrow channel approaching the breakwaters, with rocks on either side. To enter this harbour in fog could be very dangerous if it were not for radio navigation aids.
The navigation problem is solved by placing a transmitter at (T). This transmitter sends out two signals, one a series of dots, and the other a series of dashes. The two signals overlap slightly to give a verv narrow band where both dots and dashes can be received. To get into the harbour safely all the captain has to do is to sail along the band where he can receive both dots and dashes.

System for Aircraft Landing

A similar sysem is also used by aeroplanes, and all major airports are equipped by such aids. In the case of the airports the narrow central band is exactly in line with the

Fig, 5-Entering a dangerous harbour by following the narrow path where both dots and dashes are audible.

runway. However, as aeroplanes move very much more quickly than ships, and as the pilot has a lot of other things to do as well, the signals are usually shown on an instrument, which indicates when the plane is on course. In addition, there is also an audible warning which sounds when the plane gets off course. Fig. 6 shows an airport in which the guiding signal is being used to bring in planes on funway (C).
However, unlike a ship, an acroplane has

Fig. 8.-W aves from station B arrive sooner than from station A, as B is nearer. This 'means that the waves are out of phase.
in addition to keeping on course, got to keep to its correct altitude, at all stages of the descent. This is done by having another transmitter to one side of the runway which also sends out a narrow band of signals. This narrow band is the same as the lateral guidance transmitter, but is in a horizontal plane. A plane following this band will be brought down from its approach altitude on to the level of the runway, The band is known as the "glide path."
Imagine then an aeroplane coming in to land in bad weather, as shown in Fig. 7. It has been navigated to within the airport control area by one of the long range navigation systems and is now ready to -land. First of all the pilot will circle the airport until he picks up the runway direction signal. He will then turn and fly along the narrow band towards the airfield. He flies at a constant height of, say, $1500 f t$., until he meets the glide path signal, at which point he begins to loose height. The pilot now has two instruments to watch. He must keep his approach instrument indicating "on course" and his glide path instrument zeroed.
The pilot flies on, keeping both his instruments exactly zeroed. This will bring him down low over the runway when he will be able to land. At two points on his glide path there are marker beacons, which serve as a check on his distance from the runway, and also his height, as he knows what his altitude should be at these points. These beacons are known as fan markers as they resemble a fan, they arc very wide but not very thick.

Fig. 6 (Left).How aircraft can be guided down exactly in line with the runway.
Fig. 10 (Right).How a Decca fix is obtained.
Fig. 7 (Left).How a landing aircraft flies on to intercept the Glide Parh beam and follorus it down to the rumzay.

The Decca Navigator

There is another system of radio navigation which has been developed recently, and is far more accurate than any previous system. This system is known as the Decea Navigator and is accurate to a few yards.

Imagine two transmitters, as shown in Fig. 8, both working on the same frequency If these signals are received by a ship, it will be found that the signal from station (B) arrives slightly sooner than from station (A). This means that they are slightly out of phase. This can be seen from the drawing. The Decca receiver on the ship is able to measure how much the signals are out of phase, and to indicate it on a dial. As the ship moves the amount that the signals are out of phase changes. Thus the degree that the signals are out of phase is a measure of the ship's position.

Thus on a map lines can be drawn to show where the two signals are out of phase by the same amount. These curves are actually mathematical hÿperbolae drawn with the two transmitting stations as loci: This is shown in Fig. 9.

In the Decca system the transmitters consist of one master station and three slave stations. To obtain a fix it is necessary to obtain two intersecting position lines and actually only the master and two of the slave stations need be used. For example, suppose a ship wanted to find its position it might find that the difference in the phase between the master and No. I slave station was, say, half cycle, and between the master and No. 2 slave station was, say, quarier cycle. Then the ship's position would be as shown Fig. 10.

Fig. 9.-Two stations transmitting on the same frequency form lines where the degrees of out-ofphase is the same.

additions to the P.M. Iunior Lathe

These Will Greatly Add to Its Scope

THE simple lathe described in the May, 1957, issue of Practical Mechanics has been made with a few modifications and works very well. Two cycle rear

By
J. Rodger

Fig. 1.-General arrangement of the jig-saw and details of the modified lathe.
hubs were used for the headstock and tailstock and the lathe is powered by an exGovernment converted Gen-motor, Ref. AM rok/22, type 29. The motor is better than I/6 h.p. and gives 2,800 r.p.m.

The Jig-saw

To work with the lathe a jig-saw was constructed, the design of which was based on another article in P.M. The general arrangement is shown in Fig. I, in which details of the modified lathe can also be seen. The jig-saw table is made to fit snugly in the bed of the lathe. On top are mounted two guides of rin. square wood, between which is clamped the jig-saw frame which is made separately.
The eccentric device is shown in Fig: 2.

It is made from a disc of steel thick $\times 2 \mathrm{in}$. dia. $\times \frac{1}{8}$ in, bore and a piece of iron plate, drilled as shown. The disc and plate are spaced by means of nuts, bolts, spacers, etc., and a rear cycle spindle cone is soldered on for fitting to the headstock spindle. The eccentric pin is positioned the distance required for

Fig. 2.-Details of the eccentric dervice.

Fig. 3.-Full details of the head and toe of the jig-sazo.

Cradle with blocks plaseot to give correct tension
Fig. 5.-Details of the setving machine electrification.
sticks, etc. The device, which is shown set up in Fig. 4, takes most of the tedium out of polishing the household cutlery

Sewing Machine Electrification

For this the actual lathe is not used, except to turn up a small bobbin to the dimensions shown in Fig. 5. It can be made from a discarded thread bobbin. The pulley is fitted to the motor and coupling to the sewing machine pulley is by means of a Singer synthetic belt, which costs 5 s. $\varsigma \mathrm{d}$. This had to be cut to shorten it and was rejoined with the metal clip. A cradle was made as shown so that the tension on the pulley is corrcctly maintained.

A Screw Centre

This is made by using one of the long cones for use in spacing on a rear cycle spindle when a derailleur gear is fitted. A I $\frac{1}{2}$. woodscrew is soldered into the end of the cone with the right-angled face, while the other end of the cone is screwed on to the headstock spindle. The lathe is then stood on end and supported with the screw centre standing vertically as shown in Fig. 6. A piece of plywood is either held or clamped tightly to the tool rest and jammed down on to the woodscrew point. Heat is then applied till the solder melts, thus allowing the woodscrew to be pushed down until it contacts the tip of the headstock spindle. The pulley wheel is then rurned by hand, until the screw is centred. Let the solder set hard, and then resolder the screw shank to the right-angle
face of the double cone. A heavy soldering iron will be required as the smaller types designed for radio work cannot convey either degree or duration of heat necessary. Use plumbers' solder

A Faceplate

A 4 in. dia. sheet steel disc must be obtained first of all; the prototype was obtained from a marine engineer. Find the centre of the disc and scribe a line through it right across the disc and then another through the same centre point at right angles to the first. Holes are drilled along this line in all four directions from the centre, so that woodscrews can be passed through into varying sizes of wood block. The centre is drilled ${ }^{3} \mathrm{in}$. and the metal round the hole scraped clean. Finally, a cycle cone is soldered on, using the method shown in Fig. 7

Calico Buff and Grindstone

These are mounted on the lathe as shown in Fig. 8. The calico buff is fitted on the tailstock spindle and a cycle backstep fitted on the headstock spindle. These cycle backsteps, though not now made, can sometimes be obtained from an old-established cycle dealer or from an old bicycle. The backstep is used to crive the calico buff by means of a rubber grommet which provides a friction drive. The tailstock and headstock spindles should not meet inside the backstep. The grindstone is mounted on the back of the tailstock as shown.

Fig. 7.-The method for soldering the cycle cone to the faceplate.

Fig. 8.-Calico buff and grindstone mounted ont the lathe.
6.-Simple Calculus

Most people who have done sufficient calculus will agree that $\log \mathrm{e}^{\mathrm{x}} \int \frac{\mathrm{dx}}{\mathrm{x}}(\mathrm{I})$
Now if we take the right-hand side and integrate by parts using the formula $f v d u=u v-f u d v$ we get
R.H.S. $=\int \frac{d x}{x}=\frac{1}{x} \times x+\int x \frac{d x}{x^{2}}=1+\int \frac{d x}{x}$
but from (1) $\log e^{x}=\int \frac{d x}{x}=1+\log e^{x}$
but LH $S=\log e^{x}$
but L.H S = RHS $\cdot I=0$??

Answers

-ुuensuove esto วләчм $\frac{x}{x p} \int=x^{2}$ 80! +0 วu! $15 . x y$ पị sauroo][ne] ग्यIL-9 -sean inoj jo smos xis stu sey әч puy itha nố sit in nô II IeIS prpis-x!s
 'sjozns jo saouno 61 sing pue 61

 'วио ләморs

(11q furuว

When you want to make really firm firtures

(1) 8 (i) 3 θ

 arive all your Serews into RAWLPLUGS

 arive all your Serews into RAWLPLUGS}

3 sizes of rawlplugs in one carton $2 / 3$

This very useful assortment of Rawlplugs in three gauges and three lengths provides 50 No. 8, 10 and 12 fixings for $2 / 3$. The window carton is divided into three compartments and thelldincorporates a Rawlplug and Screw gauge making it easy to select the right screw to use. Get one now for your tool box.

A sturdy yot inexpensive tool for making holes for No. 8 Rawlpluss. It is a oneplece tool made from best tool steel and is backed by the Rawlplug guarantee of high quallty.

Rawlplug Tools

For the craftsman and advanced handyman RawIplug tool sets are a boon. The FOUR-IN-ONE enablos four drills (8a, 10a, $12 a, 14)$ to be used in the No. 14 holder. In a handy box it costs 7/9 and in a strong roll-up wallet 9/6.
The UNIVERSAL ELGHT-DN-ONE has an improved Knurled holder and takes eight drills Nos. 6/14 to 23/14. In a handy box it costs $15 / 6$ and in a strong roll-up wallet $17 / 9$.

for masonry drilling the easy way

nWTPLU

Here is a cheap reliable masonry drill for the household handyman. Four sizes are made for use in a hand brace or suitable electric drill. Just what you need for that occasional domestic fixing job.

Each Metalide drill is packed with an instruction leaflet in transparent window.et with

No. $8\left(3 / 16^{\prime \prime}\right)$ Green	No. $10\left(7 / 32^{\prime \prime}\right)$	No. $12\left(1 / 4^{\prime \prime}\right)$	No. $14\left(9 / 32^{\prime \prime}\right)$
Ballet	Wallet	Brown	Grey
$5 / 6$	$6 /=$	Wallet	Wallet
$5 / 6$	$6 / 6$	$7 /=$	

The most effcient, precision made, long lasting masonry drill is the Rawlplug Durkum (with the free re-sharpening service). We strongly advise this drill for continuous drilling (Such as industrial operation), 13 Sizes are from No. 6 to No. 30: \ddagger Rawlbolt sizes and 11 sizes for drilling right through walls. Prices are from $9 / 6$ each. For drilling glass use the special durium glass drill. Made in nlne sizos from 1° to $f^{\prime \prime}$ at $6 / 6$ to $10 / 6$ each.

Free Re-sharpening Voucher with each drill.

THE RAWLPLUG COMPANY LTD., CROMWELL ROAD, LONDON. S.W. 7 8.3

Rawlplug Products

OUROFIX $1 /$ - and $1 / 6$. The Indispensable adhesive for Instant use on crockery, glass, wood metal, cellulold and the thousand and one things handled by the household handyman. Instant drying, insulating, waterproor, and heat to alectrical sports and leather to electrical, sports and leather $\frac{1}{4} 1 \mathrm{~b}$. tins $2 / 9 \mathrm{~d}$. 1 lb . tins $10 / 6 \mathrm{~d}$.
PLASTIC wooo 1%, For fllling holes, flaws and cracks in wood. Can be cut, planed, polished and painted like wood. Whil take nalls and screws like wood. It does not Oak, Mahogany or Walnut. Tins: A 1b. 2/3d., $\frac{1}{2}$ lb. 3/9d., $1 \mathrm{lb} .6 / 6 \mathrm{~d}$.
OURDELUE $1 /$. Undiluted Animal Glue of incomparable strength. Ready for instant use for the many purposes for which an extra strong glue is needed. Wood, cloth. fabric, felt, leather and any with Duroglue. Tins be stuck 1 lb 4/9d. $1 \mathrm{lb} .4 / 9 \mathrm{~d}$.
TILE CEMENT 1/3. A strongly adhesive ziquid cemenr for replacing tiles to walls, floors, fireplaces, hearths, curbs, otc. $\frac{1}{} 1 \mathrm{~b}$. $\operatorname{tin} 2 / 9 \mathrm{~d}$.
IRDN CEMENT $1 / 9$. Only needs mixing with water and hardens very quickly.
It will repair metal articles. When set and hard it will withstand fire, water, stean, aminonia. oil, petrol, and high pressures.

PLASTIC METAL $10 \frac{1}{2} d$. Can be applied in a few seconds and dries in a few minutes for repairs to metal household articies. it is not suitable for electrical or wireless connections.
DUROLASTIC $1 / 9$. Forms permanently elastic waterprool jofnts to any dry surface. Resists vibration or shock and will not break away with expansion or contraction. Non-crumbling. non-staining, does not exude oll. Can be palnted. Ideal for boat builders.
$\begin{array}{ll}\text { SOLOERING IRONS } 32 / 6 . & \text { A } \\ \text { guaranteed electric tool which }\end{array}$ guaranteed electric tool which by repairing and giving longer life to metal household goods. In the worlsshop it is indispensable. Supplied with Standard Bit 32/6d. Hatchet or Pencll Bit 33/6d. Voltages 100/110, 200/220, 230/250. Unlversal AC/DC. 6 months guarantee.
CORED SOLOER 9d. A COMBTNED SOLDER AND FLUX which is non-acid but easy flowing. It is the best highly recommended.
FUSE WIRE 3 d. 5 amp.. 10 amp . and 15 amp. wire for lighting, heating and power respectively all wound on one card for conventence. Instructions are printed on the card which is punched for conventently hanging near the
fuse box.

Letters to the Editor

The Editor Does Not Necessarily Agree with the Views of his Correspondents

CYCLING IN SCHOOLS

SIR,-I would like to offer my congratulations regarding the May edition of The Cyclist. I have never before seen an article expressing so many facts and yet so interesting. I was especially interested in the item regarding cycling in schools. I heartily agree that cycling should join other sports and be taught in school. I am secretary of St . Augustine's Secondary School Cycling Club. This I have discovered to my horror is the only cycling club organised by a school in Glasgow and possibly Scotland.

There are, however, many well-known cyclists who have offered to help me in my aim of promoting school cycling. This year I am promoting my first school championship. It will be over a distance of 40 miles
and will have two primes. I had hoped to have an inter-school race in Glasgow. Although this may not occur this year I am sure that 1960 will see the first Glasgow Schools Championship.
I was disappointed to read that it was a cycling club, Kentish Wheelers, that first organised schoolboy cycling. I would have hoped that schools would have promoted such races in conjunction with the school sports.

I am sure in the next five years cycling will become part of the school curriculum. I hope the two pages in Practicar Mechanics devoted to cycling will maintain their high standard.-Owen J. J. Brady (Glasgow, E.3).

Make Your Dwin IkuleleA Criticiom

CIR,-In the article, "Make Your Own D Ukulele," in the May issue, the fret spacings cannot possibly be right, because from Fig. 4 it can be seen that they do not decrease in size regularly from the nut towards the bridge.

Below is a table of figures accurate to three places of decimals, and the same figures corrected to the nearest 1/32 of an inch.

The biggest error in this table is .orgin., whereas the figures given in the article have errors as large as .ogin., more than four times as great.

Nut	Spacing inch		To nearest 1/32 inch
Ist fret	0.715	...	23/32
2nd ,	0.685	\ldots	11/16
3rd,	0.643	\ldots	5/8
$4^{\text {th }}$	0.603	\ldots	19/32
5th "	0.570	\ldots	9/16
6th "	0.536	\ldots	17/32
7th 9	0.507	\ldots	1/2
8th ,	. 0.478	...	15/32
9th "	. 0.450	...	7/16
10th,	. 0.426	\ldots	13/32
I Ith,	0.400	...	13/32
12th,	... 0.379	...	3/8

-G. E. Manville (Northumberland).

Author's Comments

$S^{I R},-I$ have the following comments to make on Mr. Manville's criticism:

Before submitting the ukulele article to you I took the finished instrument to a piano tuner to check the tuning and tone. He passed it as being A. I, on both counts.

If, however, the tuming does not satisfy readers they have only to remove the finger-board, which is secured by two screws, and replace it with one made to their mem measurements.-
A. B. Orr.

ANONYMOIS LETTERES

We regret that we cannot publish readers' letters from which the full name and address have been omitted.

Automatically Operated

 Garame DoorsSIR, -With reference to Mr. R. Watson's query in the April issue, the idea set out below might be of interest.

As can be seen from the sketch, the door is wedge-shaped in section and is pivoted

solenoids are connected to contact plates on the front of the door.

The source of power is the car battery and leads from this are connected to two feelers which project beyond the front bumper of the car. The car is driven up to the doors so that the feelers touch the contact plates. The circuit is completed, the solenoids operate and withdraw the bolt. The door swings open, operated by its own weight, brushing past the contact feelers on the car. These are flexible for this reason. The door must be closed by hand.-J. P. Scerri (Malta).

Aefinition

SIR,-Mr. W. A. Patience in February's issue, poses the question, "Is the human mind capable of defining 'nothing '? "Mr K. E. Langner, in ApriP's issuc, says yes. I agree with Mr. Langner, but not with the premises he uses.

The fundarnental factor in any argument is the necessity of understanding the precise meaning or connotation of every term used in the premises from which is derived the conclusion. Without a clear understanding of this preciseness the conclusions are more often than not erroneous. Furthermore, its neglect leads to misunderstanding, for one person may use one term, which normally conveys one sense to one person, and which may convey or may be interpreted in a totally different sense by another.

I contend that every word was invented, i.e., in the mind to explain or convey some idea, e.g., the word "chair." In the English language everyone understands and knows what it means, and the majority of people could give a reasonably good definition of it: because they have contact with the concrete object chair. It is something tangible. But the word "nothing." Whe or what comes into contact with "nothing"? No one. Does that mean it doesn't exist as something concrete? Yes. But, it exists in the abstract sense. This brings us into a different realm or state-viz., the state of mental conception. Bu: it is very difficult to conceive, i.e., to think of some thing or word that does not exist in the concrete. Hence to define " nothing" we must attack its meaning from a totally different viewpoint. If I say "Do not touch any:hing," it is equivalent surely to "touch nothing," which means. i.e., the complete sentence to refrain from doing som: act or acts: that implies restraint or negation or a want or an absence of somz act or deed. Five minutes after the order has been given, if all the things (concrete) in the room have not

 together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southimpton Street, London, W.C.2, for insertion in the next available issue.

PERSONAL
(TARTING A BUSINESS? An can office, stationery. and all services 30. Devonshire Drive, Stapleford, Notlingham

HOLIDAYS

CANOE HOLIDAYS-Hire a Canoe and Double summer holidays. Single from: E. Barker, Dept. M.. Calder Grange, Mytholmoyd. Yorks.

FOR SALE

WLASTIC, catapult, models, etc., C. Blundell, ${ }^{372, \text { Alcester Road South. }}$ Birmingham.

HOUSE SERVICE METERS, credtt from stock. Onivers Elal Electrical, 221, City Road, London. E.C.1.
POLYTHENE COATING POWDER. skin. Just heat article and dip into poxders. 8 colours. Sample and instructions $1 / 9$. Trade supplied. Router Cutters, 3 in. $7 / 32 \mathrm{in}$. $3 / 1610$. . $1 / 30 i n$ only- $4 / 6$ eacli; limited sup- $^{\text {ond }}$. Enfeld, Middx

GOVERNMENT SURPLUS AND MANUFACTURERS CLEARANCE YACUUM PUMPS. NENWARDS

 GAUGFS MIM Now. 35, ea.
hive Moturs. Actar

 Way, 2ib ea tharelione systru.

 YWich in sock doz. \& PLUG. 5 amp.

 24 y $30 /$ estraned TELEPHONE UNIT. Neon Indicator, uzzzer, built-1n

 Motors. For ciocks, models. etc.,
RUGBEER TORCHES. Ex Cinemas.
RUBE 1 less batieries $3 / 6$ ea.

HUGGETT'S LIMITED
 24, PAWSON ROAD. WEST

FOR SALE (Continued)
A PPARATUS AND CHEMICALS.pounds! Grantic price reductions. Save free Scientific and Technical Supplies iNottm.). Ltd. 286. Alfred St., Central Nottinglians.

Iflexible Shafts, Grinding 1 Wheels. Ceramic Insulators Govt surplus s.a.e. for Haworth, Kpighley.

WATCHMAKERS

- vRade watch repairs, Pearl - Rethreading, Dial Restoration Best prices for old gold and silver Lawson for workmanship and value Send for list. J J. Lawson, Dept. Yorks.

WATCH REPAIR SERVICE, unWpeed rivalled for relliablity and charges. Part jobs welcomed. Material supplied. Gereford Watch

MR. de, WET, Figtree, Rhodesia can fully endorse the above

WATCH PARTS

For all makes of watches, tools, instruc tional books etc. Special Kits for be-
 Watehmakiers Mxir Order Mervice,

I EARN to be a Watch and Clocks 1 Repairer in your spare time and earn extra money at home. We can supply everything you need at unbeatable prices, including instructional books, Swiss watchmakers'
tools. watches, Watch and clock tools, watches, watch and clock novements, all spare parts for watches and nes, all spare parts for watches and selection of nusical box movements and kits. Send 9d. P.O. for bumper bargain catalogue. The Watehmakers Supply Company (Dept. P.M.), Carterton, Oxiold.

RADIO

BUILD YOUR OWN HI-FI at homel At last, for reasonable cost-the Hi-Fi audio equipment and to gain the knowledge to service and maintain it. Free brochure from Dept. Place. Reading. Berks.

SAVE MONEY AND ENJOY constructing your oxn Freathkiradio or Hi-Fi equipment. Free combrehensive catalogue avalable from cester.

WOODWORKING

WOODWORKING MACHINES. All Saw Benches, 7 fn ., $£ 4 / 15 /-88 \mathrm{in}$. £5/10/-i 10in., coniplete motorised.
$£ 30$. Planers. $51 n$., $12:$ Bowl Turning Heads. £4: with 8in. Saw Tables. c7/10/- Lathes, $27 / 10 \%$; Combination Lathes, $£ 10 / 10 /$ i2 Motors. Pulleys, Belts, etc.
writtenn and money refunded guarans tee. 4d. stamp Inns (Engineers) Marshall St., Nottingham.
GAWBENCHES, 8 in . to 30 in .. from Sortable, Motorised, \&13; Petrol Portable, $\begin{aligned} & \text { £44. Planers, Bandsaws, } \\ & \text { Lathes, } \\ & \text { Saw }\end{aligned}$ Lathes. Saw Spindle and Planer
Assemblies. Logging and Firewood Assemblies. Logging and Firewood
Machines, Chain Saws. Engines. Motors : deferred terms. Send $1 / 9$ for handbook, catalogue and hargain offers. List free. Beverley Products. Sturton-le-Steeple. 47, Notts.

TOOLS

DORTABLE POWER TOOLS, new 1 used, bought. sold, exchanged terms. Arthur Drysdale \& Co. Ltd.. London, N.22. (Bowes Park 7221.)
driving shaft clear, $\frac{1 \frac{1}{2}}{} \times 5$ in. 5 ing. Lewis's, 14, Mill street. Wantage. Berks.

ccos.	
E	RNard PL
FINTAH. PF	BYMT CONDITION So. 10615°
bNIPE NOS	3E, 8,8 pr. ; No. 10i/u siow
No.	
HSs. GT. TA	APS. BSF $3 / 10^{\circ}, 13: 1^{\circ}, 1 / 6$;
H8s. S/ECO	13/8; 3 + 5 5/10.
Alf diamete	and mont taces avuilable at
poLs	Mrthyate, HERTS.

$A^{\text {STRO TELESCOPE MAKING. }}$ Eyepieces. Standard Ramsden Push-in S.a.e. list- Object Classes fiom lonian Mirrors, Diagonal Mounts Focusing Mounts, Tripods, Terres-

GINE ART COLOUR PRINTS for sample selection and list. $5 / \mathrm{F}$ S. A.E for list only. Rushy Meade Studios. COMPRESSORS FOR SALE.-Twin 4. Single Cyl, \&2. All types Wheelliouse, 13.-Bell Road, Hounslow

CIRCULAR GLASS DISCS for C grinding Astronomical Mirrors Smoothed and edged, per pair with
abraslve $80,180.280,320,400,600$, superfine finisher. Swedish pitch Wax, fine Rouge, 6 in. x lin., $£ 2 / 15 /-$ if dissatisfled paid. Money refunded manmoor Road. Cardiff. S. Wales.
HYPODERMIC SYRINGE, 2ce. "glass, with 2 needles, oniy $3 /-$ dozen. Many uses, olling, laboratory Work. etc.
Street, Liverpool, 22.
$\mathbf{6}^{\text {IN PLANING and Rebating }}$ able cut, heavy ballraces. $£ 6 / 7 / 6$ also 4lin. 5 in. and 8 in. Planers at low prices. Combination Woodworking Lathes, heavy-duty ballraced saw cheaply. New type Circular Saw Saws up to 30 in . diameter: also com. bination Spindles for sawing and planing. Ahl machines fully guar-
anteed: terms. Send 6d. for lists. anteed: terms. Send 6 d . for lists. Generous terms to trade. Ortan Lathes. Falcon Works, Costessey
Norwich. Dept. P.M.

HOBBIES

SEREN
 ASThONOMICAL SUPPLIES

Warehouse Road
Stebbing, Dunmow, Essex
EQUIPMENT for ASTRONOMERS
Mirrors, eyepieces, focusing mounts, spiders, etc. Do.It-Yourself kits.

Paint lining tool. rolls $1 / 32 \mathrm{in}$., free. Roaring 5 in. flane Spirit Blowtorelh, 8/6. post 9d. List stamn. Wren Mrr. Co., Wollaston. Welling borough.

GILMOUR VALE ENGINEER'S GAS

TORCHES, self-
blowing. Fully equal to a blow-lamp. For town gas: $19 / 16$ and 256.
Calor gas: $\quad 31 / 6$.
Particulars and ten-page book of instructions on Soldering \& Brazing
frce, also price list of the materials.

Wellingborough, Northants
A STRONOMICAL TELESCOPES, Blanks Arinding Polishing Kits, Mirror Optical Flats, etc. : s.a.e. for lists L. J. Mays \& Co. 20, Clover Road, Timperley, Altrincham. Cheshire
6IN. ASTRO MIRRORS, $\frac{1}{\text { E }}$ ave stock, $57 / 5 / \mathrm{F}$. Rock, 85. Watercal Arenue, Coventry

HANDICRAFTS

NEW MUSICAL BOX KITS

FROM 21/- COMPLETE.

Movements only from 12/9.

Please send 3d, stamp, or call for new FREE illustrated brochure. Trade supplied. THE SWISSCROSS Co. (Depe. V),

PHOTOGRAPHY

GLASGOW, If buying, selling or̀ nat Eauipmeder Cameras orders etc., for the best deal. cal or write to Victor Morris. 406. Argyle
St., Glasgow, C.2. (Central 8958.) $B^{\text {ELLOWS, Camera, Enlarger, Pro- }}$ cess. Industrial Collapsible Machine Guards. Beers. 4, St Cuthber't's Road, Derby: 'Tel. 1263.)

CXPOSURE METERS.-Bulld your own Double-range incident Light Exposure Meter with $50 \times 37 \mathrm{~mm}$. photocellil $1 / 1.4$ to $1 / 32,1 / 1,000 \mathrm{th}$ to
60 sec. film speed, 19 to 37 deg. B.S. complete component kit $50 /-$ s.a.e mead Ave., Bristol. 4.

HOME BOAT BUILDING

CASY TO FOLLOW KITS to build I a boat nt home-for Cabin Cruisers, Runabouts. Canoes. Prams. Dinghies and Enterprise Sailing Binghies. Brochure from: Wyern Sherborne

[^0]ELECTRICAL
A LH TYPES OF ELECTRICAZ tive prices, at extremely competi$35 /-100$ yards Lamphoiders, $7 /$ doz. 5ft. Battens, 49/-; quality and imme diate despatch guaranteed. Request Road London. N.16. (Telephone: 1/3 H.P. HOOVER MOTORS, 425 rev. new: sale due to discontinued inne, restlient mounting £4/18/6; solid mounting, $84 / 14 /$ Dental Manufacturing Company
Preston Nex Road, Blackpool.

BRAND NEW

BROOK ELECTRIC MOTORS Single Phase, $\frac{1}{2}$ h.p. 1,500 r.p.m. E7. 10.0 h.p. 1.500 r.p.m. $E 9.12 .6$ h.p. 3.000 r.p.m. 59.12 .6 h.p. $\mathbf{3 , 0 0 0}$ r.p.p.m. $£ \notin 11,0.0$ Fully guaranteed by makers, approval against cash. Carriage paid mainland. State
P. BLOOD CO

ARCH STREET, RUGELEY, STAFFS.
EDUCATIONAL
INTERNATIONAL CORRESPOND-- HNCE SCHOOLS. Experienced coaching for all leading professional trade, technical and general exams General Certiffeate of Education; (B.I.M.); I.Meeh.E.; Brit.I.R.E.; for free book stating subject to Iree boor chational Correspondence Schools, 71. Kingsway (Dept. 521A), London. W.C. 2
HOW AND WHY " of Radio and new, non-maths., practical way Postal instruction based on hosts al experiments and equtpment-building carried out at home. New courses ledge of this fascinating subject Free brochure from: Dept. PM.12, Radiostructor,
Reading, Berks
MATHEMATICS - Physics - ElecGraminar trenics: courses for G.C.E.. etc. Graminar School education hriot
required: from $5 /$, weekly, write: Sentor Tutor, Tutorials
DRAUGBTSMANSHIP \& ENGIN to-learn home study training by qualified hoachers. Write for fre booklet to International Correspondence Schools,
डn

SITUATIONS VACANT

A. M I.Mech.E., A.M.Brit.I.R.E., City high pay and security. "etc. No passhigh pay and security "No passno fee terms. Over 95% successes. For details of exams and courses in Electronics. ete. write for 148 -page Lisndbon- Wree. B.IE.T. (Dept. 9678 ,

MISCELLANEOUS

A QUALUNG and Compressor EquipA ment. Ballraces and Miscellaneous Items. Lists 3d
157. Malden Road. Cheam.
WIN A MYFORD SOPER 7.-FOr 3,000 details see may list No. 34. Over instruments. materials, stock, nuts, bolts, screws, washers. tools, etc. I'll bet. it's the most 1 interesting 11st
you have ever seen. K. R. Whiston you have ever seen. K. R. Whiston
(Dept. M,P.C.I, New Mills. Stockport. (Dept. M.P.C.I. New Mills. Stockport. 1 page American book of forinulse. American technical hobby and other books covering every interest. Stamp for lists.
CARAVAN AND TRAILER CHASSIS fication. Free quatstions on request. Velmore Products, Lisle Avenue, Kidderminster.

FIBREGLASS

PLASTIC UNITS

Experimental Glass Fibre Unit, 14/9 Plastic Metal for Gear Casting. Plastic Dies. ete, 14/3. Poreelain-hard Cold Setting Finish for food preparation surfaces, baths, washing- machines, etc., $16 / 9 \mathrm{pt}$, in white cream, black, sky blue, red, elear and price list, etc. SILVER DEE PLASTICS, (Dopt.3), Hartington, Staveley,Chester.

HIGHSTONE UTIEITIES
EX-R.A.F. 2 -valve (2 volt) Mierophone Amplitiers, as used in plane intercome in self-contained metal case: can be used to make up a deaf ald outfit, intercom
munication system, or with crystal set complete with valves and Fitting instruc tions, $20 /-$ post $81-10$ Useful wooden box
with partitions to hold amplifier. $2 /$ extra With partitions to hold amplifier, 2/- extra densers transformers, switches, etc. but
less vaives. $10-$ post $3 /=$ Hand Milero phones, with switch in handle and lead
5,6 . Tannoy, $\%$ Simar instruments
 Moving coll, $3 / 6$, post 4d
Molderine Irons-Our new streamlined iron is fited with a pencil bit, 2001250 V 50 watts, $11 / 6$. Standard Iron with adjust-
able bit. $200 / 250 \mathrm{v}$. 60 wats, 13,6 . Heavy Duty Iton, 150 wats, 18 'd, and post 1 ll. These irons ar
are replaceable

 Bell Transformers.- These suarantsee
transformers work from any Act main Eiving 3 . 5 or 8 volts output at 1 amp.
operate bub. buzzer or bell. Wiul supply ight ta bedrommor larder, etc., 9^{\prime} - post $1 /$ similar Transiormer but output of 4,8 or 12
volt, 136 , post 1,6 . BUZZERS for use with elther the gbove or batteries, 43 post 501 . post 1,6. Telephone 1Mand Generator 5. Bos. Neon Indleator I.nemps, for use on mains to show "Ive "side of switchesse etc.
\%/6. post $4 d$. Neon Indicator, complete with condenser. pancil type, with vest Crystal sets. Our late
radio recelver, fitted with a permanen crystal detector. Have a set in your oon
room. 12/8. post room, 12/8, post $1 / \%$ 8pare Permanen
Detectrors, $2 /-\operatorname{coch}$. Whon ordered separ
 2\%. post 9i. Geadywones, brand new
 Armature Type (very sensitive) 136 Bal armature type, 46 (two of these wil
make an intercom. set). Ex-R. A.F. earpiece 2'6, post 81. Money refunded if not com

HIGHSTONE UTILITIES

58. NLW WANGTEA1, LONDON, E. 11 New ilustrated List sent on reque
3Li stamp aud S.A.E. Letcerz only.

ARCMOBILE

f17 100

neluding delivery
complete self-contained Arc Welder using standard flux-coated electrodes of 14 y . and $16 \mathrm{~g} .210 / 250 \mathrm{~V}, \mathrm{~A}, \mathrm{C} . \mathrm{Mains}$ consumpIon 13 Amos. Welds sheet metal down to thick in a singie run. Heavier sections can ise welded by multiple runs (building up). ininitely variable welding current by handWheel. Maximum welding current, 65 Amps. Minimum 15 Amps. Weight 85 lbs . Minimum 15 Amps. Weight 85 lbs,
Dimensions: 11 fn . high, 12 in . Wide 13 n . long.

HARMSWORTH TOWMEY \& CO
 IORDAN STREET, KNOTT MILL,

rou Can Bocomea HANDICRAFTS TEACHER

Experience not essentia

Men who enjoy making things in wood

 permanent and inferesting phormanent hours, long holidays and security in a iob you would really enioy can be yours if you become a Handicrafes Teacher. Ler us send you details of the easiest and quickestthe necessary qualification.
W. definitely guarantee "NO PASS-NO FEE If you would like to know aboue our
unique method of preparing you for unique method of preparing you for to-day, and we will send informative 144-page Handbook-FRE and without obligation. M

BIETBRITISH INSTITUTE OF ENGINEERING
TECHNOLOGY
91, Callege Houre,
29-31 Wright's Lane, London, W. 8

GOVERNMENT SURPLUS BARGAINS at 24 v. Operate 3 sets of cams and also Takes under 1 smp. Wonderrally versathe motor. Each $25{ }^{2}$-. post ${ }^{2 /-}$ Each 7/B, post 1/6. post 19 RIFIERS to sult above. Each $9 /-$ feri.eplone itanibskits itwo in sith bettery make intercom, Each 17, Po, post 16. make laker Tach 25°, post 2 not telescopic). Fasily adiad to camera. etc. Fach 128\% past 216. .ID.C. F.A.P approz 80 wath. High Speed. In shaft. Converted ex-R.A.F. motor generator - power about equal in sewing nachine - power about equal io sewing nachine Each $30 /-$ post 21β.
 Send 3d. stamp for Hist of other motare: transformers, pumps, famps. smilecks, sic:
 MILIIGANS
 Marford sireed, Liveriman

THE JEFFERY TRANSFORMER CO.

199, EDWARD ST., NEW CROSS LONDON, S.E. 14 TIDeway 4458 Leaflets sent gladly on request

AUTOMATIC (TIME) SWITCHES and reconditioned 15 day ol
work and electric switches from 35/-
DONOHOE (TIMERS) 2 UPPER NORFOLK ST., NORTH
SHIELDS, NORTHUMBERLAND SHIELDS, NORTHUMBERRLAND

BUILD YOUR OWN CANOE

Printed illustrated instructions $1 / 6$
TYNE FOLDING BOATS LTD.
206 Amyand Park Road, 8t. Margaref's, Twickenham, Middx.

NEW CABIES \& FITTINGS
TOUGH RUBBER CABLES

LONDON

WHOLESALE WAREHOUSE
165 (P.M.), QUEENS ROAD, PECKHAM, S.E. 15
Tel, : NEW Cross 7143 or 0

CHEMISTRY APPARATUS

COMPLETE PRICE LIST

BECK $60^{\text {(8cientific }}$ DIGH STREET Stoke Newington, London, N. 16
ntroducing a n:w
PORTASS S.C. LATHE

 teel or remittarice ref
Deta ite, Dept. P.M.
CHARLES PORTASS \& SON Buttermere Works, SHEFFIELD, 8
been touched, it implice and means a sort of want or absence of some thing (act or deed performed) whether the concrete things desire or feel or do no: desire or feel this absence is a different question. Accordingly I conclude that nothing is the absence of something, i.e., anything, just as light is the absence of darkness. Here I. am willing to concede that light is not properly defined, because it may be defined as a physical element. But how may one define darkness then? It seems to me that to do so one must of necessity define it thus-darkness is the absence of light: Other examples are "Fear is the absence of courage." Here I do not use the word "afraid" because one may be intensely afraid and yet perform some courageous act. Hunger is the absence of food. Pride is the absence of humility, etc. etc.

And apart from what I have inferred above Mr. Langner's definition that "By nothing is meant nothing to the power absolute," is false because in defining any term one cannot use in the definition the term or word they are defining, e.g.g one cannot say, "A triangle is a triangular figure," nor "An aeroplane is an aeroplane with wings and it flies," nor "A circle is a circular line running round an equidistant central point," etc.

Re his explanation of creation. What does he mean by "creation"? Does he mean something, i.e. anything made out of nothing; or something, i.s., anything made out of something else? It is the differentiation between these two definitions that explains creation. By that I' mean the ability to conceive of the difference between something (anything), i.e;, concrete and nothing. i.e., abstract.
If Mr. Patience and Mr. Langner arrive at the mental point or attitude where they can conceive this differentiation, it ought to be quite easy for them to arrive at a definition of creation. I should like to make it clear that this will not explain creation, anymore than defining that light is the absence of darkness will explain light, for defining and explainin? are too distinct words or terms, with vastly different connotations, defining that X^{D} is some number won't explain X^{n}.

In the February issue Mr. Waterhouse sta'es that you cannot create anything from no hing and infers conclusions from this statement. Perhaps Mr. Waterhouse would explain the difference between:

There is nothing to make anything from; and, there is nothing to create anything from; or, there is nothing to make anything with; and, there is nothing to create anything with.

Finally "You (assuming this "You" to mean a human being) cannot create anything from nothing," does not mean it can't be done. For this is particularising, and for any such statement to be true the term "You" must include all possible "You's." "You can't walk" may be true with respect to thousands but it is not true with respect to all, i.e., all who are potentially capable

S(1) Bookss Recewen)

[^1]of walking. No statement or definition is true unless it includes in its terms all possible kinds or types of the particular term to which it refers.-Michael M. A. Coppins (Co. Cork).

'Theongy of Mratuitation

SIR,-This letter describes my new theory of gravitation in more detail than the one printed in the August, 1958, issue. In my opinion, space is filled with very minute particles of atomic dust, which are constantly being created by atomic exp.osions on all the suns that exist in space. This dust is the medium that transmits the enormous power from these explosions in the form of very high-frequency shock waves. To try to measure the strength of this enormous power, which is flashing through space in all directions, would be impossible because we have nothing to stop it in its entirety; even our earth itself can't stop it all, simply because it is not solidily locked.

If we could produce a block of lead one cubic mile in size, I don't think it would stop and absorb one-thousandth part of the energy passing through it. For this reason I cannot accept the theory that one body has a gravitational pull on another. My explanation for this is that each offers some resistance to the waves and therefore the area between them is of a slightly lower pressure.

An electro-magnet appears to us to pull a piece of iron towards its poles, but it does nothing of the kind; what actually happens is that we have artificially produced shock waves which neutralise the waves from space of a similar frequency between the poles of the magnet, thereby creating an area of lower pressure and the iron is just pushed into it.

All bodies in space are more or less composed of the same substance, the main differences are size, density and temperature. Why some are suns can easily be explained by the simple fact that they offer a more solid front to these powerful shock waves. The size and density govern the temperature of any body in space. Planets like our earth with a cold crust are not big enough and dense enough to offer sufficient resistance to these waves of pressure to create a very high temperature needed to make them suns.-J. Clayton (Wednesfield).

Metallisinng Children's Shases

SIR,-In reply to W. J. Mullins' query re the above. The shoes should be thoroughly cleansed from all dirt and grease. Smooth all rough spots with fine glasspaper. Apply two thin coats of "dove grey "paint (flat) as a base for "silver " lacquer (applied with a camel-hair brush). A similar process using " yellow chrome" or "yellow ochre" as a base for "gold" lacquer. But allow sufficient drying and hardening time in each case between applications. R, B. Garnish (Ilfracombe).

Team. The approach throughout the manuals is strictly non-mathematical. Only the essential facts about each new concept or piece of equipment are used and each is illustrated by a cartoon-type drawing.

Basic Elecrricity deals with D.C. circuits; A.C. circuits and D.C. machines. Some of the principal subject matter appearing in Basic Electronics is: power supplies and rectifiers; amplifiers and oscillators; transmitters and receivers; frequency modulation and transistors.
Films For Industry, issued by the Central Office of Information, Hercules Road, Westminster Bridge Road, London, S.E.I. 151 pages. Price 2s. 6d.
THIS is the 1959-60. edition of this catalogue and it is divided into two

Driverless Trucks
A BOUT a year ago, E.M.I. Electronics -Ltd., of Hayes, Middlesex, produced the driverless trolley system known as the Robotug, which the Western Region of British Railways are at present experimenting with in association with their batteryelectric platform trucks. The basic electronic driving system operates by a trolley following a single wire laid beneath the flooring, having an alternating current about $\frac{1}{2}$ amp. of specified frequency passed through it.

New Heat Resistant Polystyrenes

RRITISH RESIN PRODUCTS LIMI-
TED, of London, W.I, have recently introduced on to the market two new heat resistant polystyrenes, Styron 700 and Styron 440. Styron 700 , a general purpose grade, has the exceptional heat distortion temperature of $106^{\circ} \mathrm{C}$. and is available in crystal and a wide range of colours. Styron 440 , like Styron 700, has also been developed to provide superior heat resistance $\left(98^{\circ} \mathrm{C}\right.$.). It is a high impact grade but the inherent properties of general purpose polystyrene, such as chemical resistance, dimensional stability, specific gravity and electrical properties, have been largely retained.

Reduction of Nois?

TOISE in industry is a serious matter and to combat this The Marley Group. of Sevenoaks, Kent, manufacture an acoustic pyramid. It is a functional absorber, formed from rigid P.V.C., perforated and filled with mineral wool. The base of each pyramid is 22 in . square, including a $\frac{1}{2} \mathrm{in}$. flange; the depth is $8 \frac{1}{2}$ in. When sound reaches the pyramid, a large proportion of it is absorbed, and unwanted reflection is eliminated.

Safety Code Eor Radioactive Device

HE Ministry of Labour and National Service have recently published a booklet entitled "Radioactive Markers in Godevils; Safety Precautions." "Go-devils" consist of tightly fitted rubber washer, scraper vanes or wire brushes mounted on a central core which are pushed through pipelines by means of water or compressed air, to detect obstructions. They occasionally get jammed against these obstructions and location of the stoppage can be an expensive procedure. The inclusion of a radioactive marker in the central core, which is exposed on contact with an obstruction, overcomes this, because the gamma rays given off by the radioactive material can be traced above ground. A Code of Practice for persons engaged in such operations is set out in this publication.
parts. The first part contains classified lists of films, the second of filmstrips. Each title is accompanied by a short des. cription. There are also several photographs.

Decorative Flower and Leaf Making. by Frederick T. Day. 102 pages. Price 8s. 6d. net. Published by C. Arthur Pearson Lid., Tower House, Southampton Street, London, W.C.2.

THIS book describes how authentic flowers and leaves in three dimensions may be made from coloured paper for decorating the home or schoolroom. The craft may also be carried to the professional stage for display work in shops and theatres. There are 61 drawings and photographs and some attractive colour plates.

TRADE' NOTES

A REVIEW OF NEW TOOLS, EQUIPMENT. ETC.

Petrol Outhoard Motors

T
HERE are three Perkins petrol marine outboard motors, each has 2 -cylinder, 2-stroke power heads and develops maximum power at 4,500 r.p.m. They use petrol-oil 2-stroke mixture fuel.

The engines have forward neutral and reverse gears and are fitted with built-in recoil hand starters although the 16 h.p. and the $35 \mathrm{~h} . \mathrm{p}$. engines are available also with 12 -volt electric starting.

The 6 h.p. engine, with a cubic capacity of $154 \mathrm{cc} .(9.42 \mathrm{cu}$. in.), weighs solb and has an 8 in. $\times 6 \frac{1}{2}$ in. twin-blade propeller. The 16 h.p. outboard has a $2 \frac{1}{2}$ in. bore. $21 / 32$ in. stroke and 325 c c. (19.94 cu. in.) capacity. A gin, X roin. two-blade propeller is firted and total weight is 751 b . The 35 h.p. engine has a capacity of $690 \mathrm{c.c} .(42.35 \mathrm{cu} . \mathrm{in}$) and weighs 127 lb . It has a $31 / 16 \mathrm{in}$. bore and 2 gin . stroke, and is fitted with a roin. X 13 in. three-blade propeller. Further details and prices from Perkins, Ltd., Peterborough.

Hench Spot Welder

THIS bench spot welder is a high-class unit that will automatically produce precision spot welds on foils as thin as .oozin. The 7.5 KVA berch spot welder on steel sheet up to 16 s.w.g. $\times 2$ and wire

The 7.5 KVA bench spot welder.
up to 6 s.w.g. $\times \quad 2$, when used by untrained labour and on a production basis. It is a completely self-contained unit and includes electronic timing, six heat stages and a built-in water circulatory pump to save the necessity of water mains connection. The price is £ro8, carriage free. Models available are $200 / 250 \mathrm{v}$. and $380 / 440 \mathrm{v}$. types. Literature is available from the makers, Triangle Products, Limited, Hyde, Cheshire.

AMATHER PAINT

THE Tuffy paint spraying outfit that has just been introduced by the AerographDeVilbiss Co. Ltd., 47, Holborn Viaduct, London, E.C.r, is designed for the amateur or small-scale painter. The outfit consists of an air compressor that plugs into an ordinary lamp fitting and weighs only 34 lb . so that it can be easily carried around, 12 ft . of air hose and a CGA low air consumption spray gun which will apply all commonly used painting materials. Tuffy is safe to use in any surroundings-the compressor has no exposed belts, pulleys or flywheels and there is an air pressure control and safety valve built in. The retail price is £44 10s. comp!ete and the outfit may be obtained from paint merchants.
(Right)-The Tuffy paill spraving ouffit.
SPRAIE DUTNTT

THE NMIEA N'INIDL SHAPER

THE Stanley shaper-iunior is designed for work in awkward comers, or on more delicate work, where a larger tool is inconvenient. It can be used with one hand, leaving the other free to hold the work. The $5 \frac{5}{4} i n$. long blade of the shaper-junior has exactly the same tooth form as the big Stanley shapers, and is attached to a strong, comfortably gripped, red plastic handle. It costs $7 \mathrm{~s}, 6 \mathrm{~d}$, and replacement blades are available at 2 s . 6 d . The manufacturers are Stanley Works (G.B.) Limited, Rutland Road, Sheffield, 3.

SHLLECTA NCEAPRER-NANIDEV

ELECTA POWER TOOLS have recently introduced a power operated scrapersander which can be fitted to any popular $\frac{1}{j}$ in. drill. It scrapes and sands wallpaper, woodwork, paint and polish, performing in a tenth of the time what was formerly a tedious hand operation. The scraper-sander with its adjustable blade works perfectly on old wallpaper, old paintwork, French polish and many difficult surfaces that require renewing. Fit the blade and you have a scraper, change the blade and you have an effective sander. The price is $£_{4} 16 \mathrm{~s}$. 6 d . and the makers are Selecta Power Tools Ltd., Hampton Road West, Hanworth. Feltham, Middlesex.

A Me:口 zurit for the homs decorntor.

NEUH IBRIIMTLE

D^{E}ESIGNED by S. N. Bridges \& Co. Ltd., London, for use with the Bridges Neonic Drill, their new spray attachment consists of two units, a powerful lightweight

The nerv spray gin attachnemt.
air compressor developing a pressure of roolb. per sq. in. and a trigger controlled

AT"MCHMEHNM

spray gun. The unit will handle paints, distempers, stains and wood preservatives, insecticides and fungicides. The complete spray gun attachment costs $£ 665$

The home decorator a n d enthusiastic gardener will find this attachment of immense use

Also produced by S. N. Bridges is a mixing attachment which is basically a long centre spindle with a flat "thread" wound spirally along it. It will mix small quantities of cement, mortar, paint, distemper, cement paint, concrete, etc. in an ordinary pail - no special container is necessary. The price of this attachment is 19s. 9d.

This model farm cost less than 2'6

The great and growing demand of today is for TRAINED men. Thousands more are needed, but there is no worthwhile place for the untrained.

Through I.C.S. Home Study you gain the specialised knowledge that marks you out for promotion, for SUCCESS! I.C.S. teaches you in your own timeexpertly, quickly and easily. It is the world's largest and most successful correspondence school, offering courses for almost every branch of trade, industry and the professions. No books to buy.

ADVERTISING \&
SALESMANSHIP
Account Executives
Mail Order
Copy Writers'
Advertisemenz Managers Commercial Traveliers'
Sales Management
EXAMS: Joint Inter
A.A. \& I.P.A. Finals.

Inc. Sales Mingrs. Ass.
United Com. Travel.
Association.
ARCHITECTURE \&
BUILDING
Drawing and Designing
Quantity Surveying Builders' and Surveyors Clerks
Bricklayin
Carpentry \& boinery Construction and Steelwork Heating and Ventilating
EXAMS : Roy. Inst. of Br. Archs. Inst. of Quant Surveyors. Roy. Inst. of Chartered Burveyors. of Mun. Engrs. (Bidg. Inspectors'). Inst. of Clerk of Works.

COMMERCIAL ART
Elementary Art Training Poster Work
Sketching
COMMERCIAL
TRAINING
Book-keeping and Accountancy
Costing and Auditing
Company and Private Secretarial
EXAMS: Chartd. Inst. Secs. Corp. of Secs. Ass. of Cert. \& Corp. Accts. Inst. of Cost 2 Works Accts. inst. of Book-keepers.
Obtainable from your local Ironmonger or Hardwareman ahd many Art Material dealers. Ideal for making-

Model Railway Buildings and Accessories. Harbours. Ship Models. Airport Buildings and Features. Houses. Bookends. Ashtrays. Animals and Figures. Plaques, etc.

Post this Coupon today for your Instruction Book.

To Mr GANESE E EON.EM Dept. P.M., IIford, Essex Established over a century

Please send ILLUSTRATED INSTRUCTION BOOK with full colour pages, on Pyruma. Modelling.

Enclosed Postal Order value 6d. (not stamps).
NAME (Block letters).
ADDRESS.

ELECTRONIC
ENGINEERING
Industrial Electronics
Electronic Computers

Please send me free booklet on

Name BLOCK LETTERS

Address

DRAUGHTSMANSHIP (State which Branch)
Architectural
Drawing Office Practice \& Machine Design
Structural Drawing
Maths \& Machine Drawing
Woodworking Drawing
ELECTRICAL
ENGINEERING
lilumination and Heating Electricians
EXAMS: Society of Engineers. C, \& G. Cert. in Elec. Eng. Practice. C. \&. G. Cert. in Elec. Installations. C. G. Cert. in Illum. Engg.

FARMING \&

HORTICULTURE
Arable Farming
Pis \& Poultry Kecping
Livestock Farming
Farm Machinery (Maincen.
Flower,
Flower, Vegetable \& Fruit
Rock \& Shrub Gardening
EXAM : R.H.S. General.
FIRE ENGINEERING
EXAMS: Inst. of Fire
Engineers. Fire Service Promotion.
GENERAL CERTIFICATE
OF EDUCATION
Principal Subjects at Ordin. ary or Adyanced Level
Engineering Joint Board Preliminary

MANAGEMENT Office Managemen Foremanship
Pusiness Managemen Business Management
Methods Engineering
EXAMS : British Inse. of Mngemt. Intermediate. Final and Certificate of Foremanship.
MECHANICAL
ENGINEERING
Subjects include
Welding, Fitting Turbing, Erecting, lig \& Tool De sign, Production. Draughts manship, Mathematics, Inspection, Diesel Engines, morives Refriseration
EXAMS : Inst. of Mech Engineers, Inst. of Pro duction Engineers Society of Engineers. MOTOR ENGINEERING Diesel Transport Engines Motor Body Rebuilding Owner Drivers'
Running and Maintenance
PHOTOGRAPHY
basic Course including Colour Work
RADIO AND TELE. VISION ENGINEERING Service Engineers'
Television Servicing and En gineering
Practical Radio with Equip Radio Service \& Sales
EXAMS: Br. Inst. of Radio Engrs. C. \& G. Radio Servicing Cere. (R.T.E.B.). C. \& G. Telecom. Engineering. C. \& G. Radio Amateurs

WRITING FOR PROFIT Free Lance lournalism Short Story Writing.

LEARN AS - YOU BUILD PRACTICAL Build your own 4 -valve COURSE Buid your own 4 -valve T.R.F. and 5 -valve superhet radio receiver: Signal Generator and High-quality Multi-tester.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 169D, International Buildings. Kingsway, London, W.C.2.

Addresses for Overseas Readers
Australia : 140 Elizabeth Sereet, Sydney. Eire ; Dawson House, 15 Dawson Street, Dublin. India : Lakshmi, Bldg. Sir Pherozsha Mehta Rd Foft, Bombay. New Zealand : 182 Wakefield Street, Wellington. N. Ireland: 26 Howard Street, Belfast South Africa: P.O. Box 19, Cape Town
IDTERNATIONAL CORRESPONDFIC: SCHOOLS

 moior desisned for anti-radar a equipment. newt unused 10r- post 16 e E5 parr than. carriage paid. Ditto fitted rediction gear. Fiving a final drive (11n. shart) of either 320 or 60 r.p.m... state which
required, 186 . post 1,9 : 86 per doz.. carriage paid.
 CIIARGINGG SETS, only 46 the. weight. casilly carried. 4-stroke sif-cooled. runs for

 (inland only) $100 \mathrm{~m} .126,200 \mathrm{~m} .166,300 \mathrm{~m} .27$.
SIGITTING TELESCOPES by Ross and other makes Coneains 4 easily removable
 Foxed, 25-, post $3 / 3$.
FCSE BOXES, consists or strong Dlack lavanned steel wall case with front hinged lid. Contains 12 Slydiok Fuses. each 15 amp . 20 v ., new in sealed cartons, 12/6, poet

R 1 VGEFINDERSS by Barr and Stroud, 1 -metre base coincidence type, a hand held instrument giving the distance of any object. from 500 to $20,000 \mathrm{yds}$. 12 miles). The from the right oblective eye opece provides two images of the object viewed. one brought into cofncidence by a thumbwheel control. the distance in yards can immediately be read in the left eyepiece. Fitted two filters and other refmernents, A very
superlor hish quality instrument. orikinal coot Elon, our price in new or near new
 N.I. $20,-$

LIFATHER CASES, very superior kin. stick hide, chamois lined, Box sewn with

ELLECTRIC TLME SWITVH CLOCKS operates from ordinary 3 v dry batlery. taking an impulse every 4 minutes to enersise the fully jewelled lever escapement. Has two setting hands, one up to 44 dass. the other up to 24 hours. also second hand. In cases. part bravs and part bskelite. stze 341
supertor movement, new, unused, 20% post $3 /-$ -
CANERA CONTROLS TYPE 35 . Fitted with the popular smal motor actuating the repeating exposure thmer mechantsm, with varlable setting conkrof knob,

TELEPBONE SisTS consigts of two comblied microphones and reecivers, which when wired up by ordinary twin fex, provides perfect 2 -way communication, excel lent resalts at 1 mile range have been reported. self-eneryised. nu battery required. at 1d. per ft. supplited, postage each 20it. flex 3d. extia.

 post 1%.

MIDLANB INSTRUMENT CO., Moorpool Circle, Birmingham, 17 Tel.: MAR I308

NO MORE BURN-OUTS

OF TRANSFORMERS AND RECTIFIERS

No fuses to bother with when you fit a magnetic switch to your 12 -vole Train or Model suppty and also Batcery Charger. Cuts out at 2 amps. on overload OUR WELL-KNOWN TRANSFORMERS. Inpus 200240 V . Output capped 3 to 30 volts 2 amps., or tapped 5.11 .17 voles 5 amps . $24 / 6$ each. P.P. F.W. METAL RECTIFIERS. $12 \mathrm{v} .12 \mathrm{z} / 7 / 6.3 \mathrm{a} .13 / 6.4 \mathrm{a} .17 / 6.6 \mathrm{a} .27 \mathrm{c}$. $16 \mathrm{amp} .53 / 6$. P.P.
MOTOR CYCLE OR SCOOTER BATTERIES, 6v. 10AH. Hard Rubber Case with cover. Size $5 \times 5 \times 1 /$ in. Weight 3 1bs. $15 /=$. P.P. Also ideal for model use.
RELAYS. We have large stocks of assorted types from 3/
UNISELECTOR SWITCHES. 50P. 3B, or 25P. 3 B . 50 V. D.C. 25/. P.P. LIGHTWEIGHT PENCIL BIT SOLDERING IRONS by famous maker. 200/240v. 25 w . Indicator light in handle. (List price 24/6) $16 / 6$. P.P. VALVES. $65 H 7$ s ex equipment all tested. 6 For iol, P.P.
KEY SWITCHES from $3 /-$. TOGGLE SWITCHES, DPDT, 36 MICRO
SWITCHES, M and B, $5 / 4$.
THE RADIO \& ELECTRICAL MART
27, Princes Court, Wembley, Middx.

FREE POCKET MANUAL

66

How to fit STEAM TRAPS"

Unique guide to the correct selection and installation of steam traps for main installation of steam traps for main units of all kinds systud process steam sate-lifting installations. Concise directions clear illustrations. Copies free on request 10 :

SPIRAX-SARCO LTD.
(TECHINICAL DEFT.), Cherterham. Glos.

GAMAGES 6in. HANDYMAN BENCH VICE

A stundy vice made of Cast Iron-NOI Light Alloy
with two steel slide supports and strong serew and handle. Easily fitted the vice is tocated underneath The bench leaving the bench top frec from obstrtiction.
Screws only are needed to secure into position.
5. - ㄴ.. Maik 13/11

UNIVERSAL TOOL BOXES

A strong and useful tool box for Handyman or Tradesman alike. Size $14 \times 8 \times 61 \mathrm{in}$. it is iuse the right size to keep those coots necessary at home in case of emergency Carro \& Phg. 3/9. BARGAIN \&RICE
GAMAGES FAMOUS

' 16 ’ ELECTRIC ARC WELDER

FOR PROFESSIONAR
WORKSHOP USE

ONLY 12 MONTHLY PAYMENTS OF
 Britain's Best Value

Suitable for garage and maintenance work, agriculeural machinery, heating engineers, ornamental iron or blacksmith's work, handicrafts or the home workshop.
Welds material from $\mathrm{I} / 16 \mathrm{im}$. thick and if necensary up to $i \mathrm{in}$. by repeat rums. Robustly consiructed throughoat. Air conled. Dimensions approx. $10 \times 13 \times 8$ in. Weight welder's equipment. electrodes and instructions.
For $190 / 250$ v. single-phore A.C. 5 to 10 amps. domestic suppty. Runs 16 s.w.
rends. contiunuo stip
$\underset{\substack{\text { bargain } \\ \text { price }} 12.10 .0}{2}$
Carr. \& Phg. 76 in Gr. Brituin if omside owr extensive ran delivery area F.M.65-A COMBINED ARC WELDING AND BRAZING MACHINE New and improved model brazes tight sheet down to 26 S.W.G.-invialuable for work on car bodic.. Canl be omeraied by a nowice.
$£ 25$ or 12 Monthly Payments of $43 / 9$ Curr. \& Pkg. 106.
GAMAGES, HOLBORN, LONDON, E.C.I.
HOL 8484

PARKERS
 SHEET METAL FOLDING MACHINE HEAUY VICE MODELS With bevelled former BARS

No. 1. Capaciey 18 gauge mild steel $\times 36$ in. wide No. 1. Capaciry 18 gauge mild steel $\times 36$ in. wide
No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$, wide
No. 3 . Capaciry 18 gauge mild steel $\times 1$ Bin. wide

Carr. free

27. 5. 0
1. 5. 0

End folding attachments for Radio Chastis, Tray and Bax Making for 36in model
3/6 per foot. Orther models, 2/-
Universities. Hospitals.

* One year's guarantee. Money refunded if not satisfied. Send for details
A. B. PARKER, Wheatcroft Works, Wellington St., BATLEY, Yorks. Tel. : 426

NICKEL GOLD RHODIUM Complete pocket-size tool, with
internal battery, for depositing plazing metals on all surfaces. Very simple to use. Does not require vats, ert. Beautiful and
PERMANENT Silver Nickel, PERMANENT Silver, Niekel,
Gold, etc., finishes. For the handyGold, etc., finishes For the handy-
man, dealers, jeweilers, craftsman man, dealers, jeweiler's, cratesman
and model makers. Supplied with and model makers
Silver and Nickplied Heads and Salts. 35/-Complete, Carriage paid. SHOREDITCB WAREHOUSE CO. LT 299, Eincsland Road, Loudou, E.2. sIto: 55s\%

THE GARAGE OF THE FUTURE

[^2] Settoring, Nortbants. Tel. Burton Latimer $5 \$ 3$ \& 594

FIRE EFFECT

WE are presenting a comedy sketch concerning a TV Studio. At a certain time in the sketch one of the "cameras" is supposed to catch fire. How can we fire the "camera" at a set time? The camera is made from sheet metal; the flame must not be too fierce as the "operator's" face will be quite close.-D. D. Taylor (Suffolk). T would probably be a simple matter to arrange for one of the performers, or an assistant, to ignite a strip of magnesium electrically at the appropriate time by remote control. The simplest and most reliable méthod would be to use a narrow strip of magnesium as a fuse below the main charge, current from a car battery being switched through this strip at the correct instant. Some experiment would be needed to determine the narrowest strip which will fuse to ignite the charge.

CANDLES FOR FOG DISPERSAL

F. HAVE heard that lighted candles in a room help to disperse fog; can you explain this? What effect would an oldfashioned oil stove have ?-W. E. Goodchild (S.E.I).

BOTH fog droplets and tobacco smoke are acrosols-and these aerosol particles are electrically charged. The ions liberated by the free flame of a candle precipitate these charged particles of aerosols.

In South Germany and Austria they burn candles of the slow-burning type, that is to say, of large diameter similar to a night-light but of normal candle height.

An open fire dispels by draughting fog or tobacco smoke up the chimney. An oil stove would emit some ions, but these.might become discharged by the metal of the stove and relatively would not be as effective as a multitude of naked flames.

THE DISTILLATION OF SAWDUST

IHAVE a considerable quantity of sawdust at my disposal and am rather anxious to put it to commercial use. Please inform me if it is possible to obtain a useful product by distillation.-James. J. Cullen (Limerick):
WHEN wood is heated in retorts, the moisture is driven out but no decomposition occurs until temperature approaches 160 deg. C. Between 160 and 275 deg. C. a thin watery distillate, known as "pyroligneous acid" is chiefly formed; above 275 deg. C. the yield of gaseous products become marked and up to 450 deg. C. liquid and solid hydrocarbons are extensively formed. Above this temperature little change takes place and charcoal, containing mineral ash, remains in the retort. The acid liquor contains methyl alcohol and acetic acid, together with acetone, methyl acetate, allyl alcohols, phenols and many other substances. The most valuable product, however, is the creosote oil which it contains.

RULES

Our Panel of Experts will answer your Query only if the Rules given below are complied with.
A stamped, addressed envelope, a sixpenny, erossed postal order, and the query coupon from the current issue which appears on the inside of back cover, must be enclosed with every letter containing a query. Every query and drawing Which is sent must bear the name and address of the reader. Send your queries to the Editor
PRACTICAL MECHANICS, Geo. Newnes, Lid. Tower House, Sourhampion Street, Strand, London, W.C. 2.

To do this work properly you would have to set up a small-scale distiliation plant but your local gasworks manager would advise you of the lay-out

IMITATION OPAL GLASS

I WANT to attempt making imitation opal glass, I know that barium sulphate

The P.M. Blueprint Service

12FT. ALL-WOOD CANOE. New Series, No. 1

COMPRESSED-AIR.MODEL AERO ENGINE.

 New Series. No. 3, 5s. 6d.*AIR RESERVOIR FOR COMPRESSED.AIR AERO ENGINE. New Series. No. 3a, Is, 6d. " SPORTS " PEDAL CAR. New Series No. 4, F. J. CAMM'S FLASH STEAM PLANT. New SYNCHRONOUS ELECTRIC CLOCK. New Series. No. 6, 5s. 6d.*
ELECTRIC DOOR-CHIME. No. 7, 4s.*
ASTronomical Telescope vem seres. Refractor. Object glass 3 in . diam. No. 8 (2 sheets), 7s. 6d.*
CANVAS CANOE. New Series. No. 9, 4s.* DIASCOPE. New Series. No. 10, 45.* EPISCOPE. New Series. No. $11,4 \mathrm{~s} . *$ PANTOGRAPH. New Series. No 12, 2s. ${ }^{*}$ COMPRESSED-AIR PAINT SPRAYING PLANT. New Series. No. 13, 8s.* MASTER 'BATTERY CLOCK.* Blueprints (2 sheets), $4 s$.
Art board dial for above clock, Is. 6d.
OUTBOARD SPEEDBOAT
Ils. per set of shree sheets.
P.M. TRAILER CARAVAN.

Complete set, Ils
P.M. BATTERY SLAVE CLOCK, 2s. 6d. P.M. CABIN HIGHWING MONOPLANE ls. 6d.
P.M. TAPE RECORDER.*
(2 sheets), 5s. 6d.
The above blueprints are obtainable, post free, from Messrs. George Newnes, Ltd. Tower House, Southampton Street, Strand, W.C.2. An * denotes constructional details are available free with the blueprints.

GREEN SOFT SOAP

N the manufacture of green soft soap I am having some difficulty as regards to keeping qualities. The soan keeps for two or three weeks bit after that it seems to lose colour and go rancid.
Could you please let me know where I am going wrong and if possible let me have a formula so that I can compare it with my own ? -W. A. Ross-Lonergan (Kent).
WE think you must have been using the "cold process" of soap making which consists essentially. of combining carefully calculated quantities of caustic potash and fat. Coconut oil, linseed, castor, cotton or other seed and fish oils are melted and run into a mixing tank heated by steam. Then a definite quantity of potash lye (strong) 32$36^{\circ} \mathrm{Be}$, is added and the mixture well stirred for a few minutes. The heat of reaction is enough to carry it on when once started. After saponification is under way the stirring is stopped and the mixture run into frames where it is allowed to stand for some days to complete reaction and cool. This leaves the glycerine and excess lye in the soap, but it is apt to discolour and go rancid after two or three weeks.

The better plan is to use a "boiling " process. Details, which are too intricate to give here, can be obtained from "Thorpe's Industrial Chemistry," which can be seen in most Reference Libraries.

ASTRO TELESCOPE

AM thinking of building an Astro telescope with a magnification of $200 x$ and an achromatic O.G. but am wondering whether it would be cheaper to make the reftector type. On what does the degree of magnification depend ?-R. R. Pierce (Kidderminster).
F an achromatic telescope of 3 in . aperature has an object glass of standard focal length, 40 in ., it would require, in order to give a power of 200 x , an eyepiece having an equivalent focus of $1 / 5 \mathrm{in}$. A 3 in . O.T. costs with cell, 88 ros. A 4 in . O.G. has a focus of 60 in , and a in. f eyepiece on this would give 240x. The cost of such an O.G. with cell is Σ_{40} approximately. It would be cheaper to build a reflector and make the aperture somewhat larger than the refractor, say, 6in., with a focus on the parabolic mirror of 60 in . A mirror is quite achromatic and automatically brings all the chromatic light rays to a common focus.

Higher magnification is partly dependent on the focal length of the O.G. and partly on the eyepiece f. The longer the O.G. f and the shorter the eyepiece f the greater the power. Write to Messrs. Broadhurst, Clarkson \& Co., Ltd., 63, Farringdon Road, London, E.C.I, for prices of both O.G.s and mirrors.

TEMPERING TOOLS

TS there a tool made, or a paint, that will register the temperature for tempering tools such as chisels, screwdrivers, etc., after sharpening?-J. G. Huggins (Eire). WE do not know of any such paint. Any engineering handbook will give you the colours of the oxide which indicate the correct temperature for tempering.
You first heat to cherry red and plunge into an oil bath to cool. Then clean off scale to a fine polish with emery cloth; re-heat until desired colour of the oxide is attained and plunge into water.

Yellow straw, $450^{\circ} \mathrm{F}$, surgical tools.
Light straw. $510^{\circ} \mathrm{F}$, chisels.
Dark straw, $560^{\circ} \mathrm{F}$, hammers
Thermindex Temperature
Indicating Paints are supplied by: Messrs. Synthetic and Industrial Finishes Ltd., Imperial Works, Balmoral Road, Watford, Herts.

BURNISHING PICTURE FRAMES

T WISH to manufacture picture frames which are finished in a rough surface (similar to very fine "stucco")" and the edges outside and inside are finished with a gilding process and then burnished. The burnishing presents the difficulty A product called "Bolo-D'Armenia" can be used prior to applying the gold, and this is evidently the secret of successful burnishing with an agate burnisher. Can you tell me how to make this product?-T. W. Harker (South Africa).
WE have never heard of "Boloany D'Armenia" nor do we know of which we have sound. whe.only way in Which we have seen burnishing done, and
it can be done on any surface if it is-hard enough and the gold adhesive is likewise hard, is this : The plaster or plastic moulded base must be given several coats of a water size made by boiling parchment in water until you get a strong solution like thin glue. The final coat of this is allowed to dry thoroughly, when gilding can be commenced. The gold leaf should be cut up into strips of the required width. Now, commencing at one comer, breathe upon the size to slightly moisten it and at once lay the piece of gold leaf. By the time that you reach the end of the frame the first leaf will be dry and this can be burnished. Burnishers of various shapes are obtainable but two only will be needed: one straight and one hook-shaped. Both are of agate.

A MAGNETISER

IWISH to make a number of permanent magnets from $\frac{1}{4} \mathrm{in}$. dia. hardened silver steel. I have been told that magnetisation can be carried out by the use of some sort of coil and battery. Could you please give me details of such a method?W. Parker (Devon).

POWERFUL magnetiser could be constructed as shown in the sketch, the parts being made of soft iron or mild steel

screwed together. The pole pieces could be secured by means of screws through slots, if required, so that the distance between the pole pieces can be made slightly less than the length of the rods to be magnetised. Each pole could be wound with about $3 \frac{1}{2} 1 \mathrm{~b}$. of $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. D.C.C. copper wire, the two coils being connected in parallel with each other for use from a 6 -volt car accumulator. Care must
be taken to connect the coils so that the two poles have opposite polarity. The rods are then placed across the pole pieces and the current switched on and off a few times. For storage the rods should be laid side by side with opposite polarity poles in contact. For maximum retention of magnetism the magnétic circuit of the magnetised rods should be kept closed if possible

ESTIMATING ALCO. HOL CONTENT

PLEASE tell me how alcohol content in homemade wines, and how to make any apparatus required. - L. Flinn (Watford).
YOU would have to sacrifice one pint or more by distilling off the alcohol from your mixture, and condensing the alcohol distillate in a receiving vessel. Since a certain amount of water vapour would also be carried over, you would probably have to re-distil the condensate three or four times to estimate the percentage of alcohol ãccurately.
You had in mind, we expect, the use of a hydrometer, a floating instrument with a narrow stem and graduations on it. See illustration. It consists of a hollow metal cylinder with conical ends, terminated at its upper end by a thin rod carrying a scale pan and carrying at its other end another pan loaded with lead. It thus floats
 vertically. We suggest that you load such an instrument so that it float's at a certain mark when your brew is fresh and that as fermentation proceeds and your alcohol content gets richer you make further marks on the stem, for it will float at a different level. This would give you an arbitrary endication of alcohol increase.

LENS CALCULATIONS

 WHAT is the formula for finding the curvature of a lens from focal length and refractive index, for both diverging and converging lenses?-E. Beresford (R.A.F. Singapore).HOR a simple lens, i.e., a lens composed of one piece of glass, the focus is in direct relation 10 , and equal to the radius of curvature but if the lens is radiused on one side only, i.e., a plano-convex, the focus will equal twice that of a double convex (curved on both faces). The curvature of any lens is a portion of a sphere and, in the case of a double convex, the focus point is at the centre of the sphere. A planoconvex will have its focal point on the opposite side of the sphere so, although the radius of both lenses is the same the focus of a plano-convex is, for the same kind of glass, just twice the length of that of a double convex.

The foregoing may be taken as a broad rule, app:ying to crown glass and would vary slightly with the many different proportions in the chemical compositions of the glass. For diverging lenses: plano-concave and double concave, exactly the same rule applies. the sphere in this case being an inside radius instead of an outside.

MEASURE UP TO ANY JOB

The next time you buy tools, remember that it pays to buy good tools, tools upon whose accuracy you can rely. M\&W tools are made from the finest materials and are guaranteed to conform to British Standard Institution Specifications where they exist. The next time you buy tools ask your dealer for (M\&W) Engineers Precision and Hand Tools.

Send logd. in stamps for a copy of our catalogue, mentioning this journal. MOORE \& WRIGHT (SHEFFIELD) LTD., 14/28, NORTON LANE, SHEFFELD, 8

Guaranteed protection in foulest westher. Cenuine proofed white duck, absolutely brand new. Ready for speedy orection. complete all poles, inc. ridge pole, pegs, etc., \& carrying valise. Cash price 28.19 .6 is FRACIION OF TRUE VALUE, carr, 7/6, Or sent for $15 /-$ bal. 24 ftny. payts. of $8 /-$ Galeproof white fly-shoet \&2.10.0 extra.
Rotproof "Willesden Green Tent 42% extra. Rubberised groundsheet 47/6. LISTS THNTS, MARQUEES. CAMPING EQUIPMENT, ETC. TERMS.
 Lightwelght sectional tubular frame, sprung legs. Rustproof. Canvas is genuine 18 oz, rome strain! Absolutely complete-32/6, carre 3/6. Easily worth 69/6. Packs into compact valise for offortless under-arm carrying. The full length 6 ft . carmp bed with headrest, can also be converted into shorter Child's
model. Foan rubber plllow, washable cover m/6 ex. Camp Bed only, $27 / 6$. carr. $3 / 6$.
LISTS. LISTS.TENTS.
(H)eadquarter and General supplies ltd.
(DEPT. PMC/45), 196-200, COLDHARBOUR LANE, LOUGHBOROUGH JUNCTION, LONDON, S.E.5. Open all Saturdays. I p.m. Wednesday

The Pistol you'll be proud

 to own!
Webleu

AIR PISTOL

\star High Accuracy and Hitting Power

\star Perfect Balance

* Robust Construction

Ideal for teaching elements of shooting, these pistols will give endless pleasure to both young and old. Their accuracy and efficiency, typical of all Webley Products, makes them the finest Air Pistols in the world.

Send for detailed. Cotologue.

WEBLEY \& SCOTT LTD.

28 Park Lane, Handsworth, Birmingham 21. Tel: West Bromwich 2821 One of the Windsor Group of Companies

COMPLETE YOUR TOOL KIT WITH A THOR THOR HAMMER COMPANY
highlands rd., SHIRLEY, BIRMINGHAM Tel.: SOLihull 4695 (4 Ines)

Wilkinsons ${ }^{[572]}$

Home Intercom

* Easily Instailed
\star Room to Room
\star House to Workshop SEI No. 7 . Consisting of two P.O. type hand sets as illustrated with press-button in the
handle for ringing bell at other end. The instruments are entirely sound-powered and aresupplled with two bells and batteries with full instructions for installing. Simply
connect with four wires. $75 /-$ post $3 / 6$. TWin P.V.C. Wire 3 d . per yd 4 -core with P.V.C. outer sheath. fd. per yd. or single SETC NO B MODERS DESIGNS DESK TELEPBONE with press-button on ront
for ringing other instruments. Two complete untts ready for use-ldeal for the SAfice. 98.1%.6. post
 50
100
100
250
1
5
30
100
200
500
50
5
5
15
25
30
50
20
4
30 CROSS̈POINTER 2 METMM MLPR 100 microamp movements. 222^{6}. Post 2 . Flush Round. Sangamo Model S. Sat. 3 Scaled for valve voltmeter, circuit avallabie free. SiHROAMMETERS 50 F.S.D. $21 / \mathrm{in}$ Proj. Round Scaled 10 Milit-Rontgens XPELLAR EXTUACTION FANS. 7Hn. bladee with bafle outlet. 10' carriage 7 . 6.
ROTARY CoNVERTERS. Input 12 D. ROTARY CONVERTERS. Input 12 D.C.
Output 230 A.C. 50 cy. 135 w . In atted case The ideal job for television where A.C. mains are not available flo, carr. 156 -. Special connectors one fitted with 6 ft heavy duty flex and clips for D.C. side. 10% set. post $1 /$ /-
GENER ATORS ONL 12 volt or 24 volt.
 140 ohms 2.4 amps. In venti-
 New. 7 cu . ft. per min. Brand 10 . 10 s . per sq. In.at 1.200 1.p.m.Rotary Volienolios. ${ }^{35 / 2}$ volts $\mathrm{D} . \mathrm{C}$. With a 3H1n. lever, very, SMNCHRONOUS MOTOR. ${ }^{200 / 250}$ volts A.C. 60 r.p.m. Stc $25 /$ POSt $2 / 6$. MOTOR.
 200/250 volts dials $1 / 10 \mathrm{th} \mathrm{hr} .-10,000$ hrs., 35 F , drising ${ }^{5}$ AINS MOTORS. Capacitor 2000 volts A.C. $1 / 40$ th h.p. 1,400 r.p.m, $55 /$, post $3 /-4$ speed rovernor in cap Gin x 1 inn, 12 6, post $2-$ small but powerful, $12 / 24$ volte A maker. 4/8 r.p.m. ${ }^{351 /- \text { post } 2 / 6 . ~}$
GEARED MOTORS. 2201240 volts A.C. carria.m. Torque, 15ib in Klaxon, \&10 MOTOLESED FUEL PUMP 24 volts D.C. approx. 400 g.p.h. made by Puisometer VARIAC TRANSFORMER Carriage 15/-. volss. Output infinitely variable 0 Input 230 volts and $0-270$ volts. 9 amp Bench or panel mountTERMiNAL BLOCKS $4 /$ doz., or box of 50 for $15 /-3$-way, $81-$ doz. 50 for $22 / 6$, post $1 / 6$.
Nife
Nickel cadmium. 6 volts 75 amps. crated and connected. Alkaline filled. Brand new, $£ 7.10 .0$. cge. 15/BULGEINTEST PRODS. Rëraoting points. fused, flex and spade terminals, 5/6, post 6 d. one hole fixing 6 pairs. $18 /-$ - post $1 / /$. .
SWITCHES. 1 hole fixing, 3 amp. 250 volts,
 6 ft. high with U-channel sides drilled for
19in. panels, heavy angle base, 4 ft . 10in. in ATIR BLOWER powered by a 230 volt A.C. motor, 151 in . fan. Volume of free alr at max. effictency 900 cu . ft. per min. Brand Now. £25. carriage 20
. WILKINEON (CROYDON) LTD. 1 I. LANSDOWNE RD. CROYDON SURREY

Why were these men great?

How does anyone-man or woman-achieve greatness? Is it not by mastery of the powers within ourselves?

Know the mysterious world within you! Attune yourself to the wisdom of the ages! Grasp the inner power of your mind! Learn the secrets of a full and peaceful life!

Benjamin Franklin, statesman and inventor . . . Isaac Newton, discoverer of the Law of Gravitation . . . Francis Bacon, philosopher and scientist . . like many other learned and great men and women . . . were Rosicrucians. The Rosicrucians (NOT a religious organization) have been in existence for centuries. Today, headquarters of the Rosicrucians send over seven million pieces of mail annually to all parts of the world. Address: Scribe J.K.W.

The ROSICRUCIANS

29 Garrick St. (AMORC) London, W.C.2, England Scribe J.K.W.
The ROSICRUCIANS (AMORC)
25 Garrick St., London, W.C.2, England
Please send me the free book, The Mastery of Life, which explains how I may learn to use my faculties and powers of mind.
Name
Address
City
Statc

TOP GRADE LEATHERCLOTH

VYNIDE•WADALIDE•REXINE

IN TRADITIONAL AND CONTEMPORARY DESIGNS FOR THE HANDYMAN

Send 4d. stamps for Patterns and List of Upholstery Sundries.

SAWYERS LTD.

St. Sepulchre Gate, Doncaster.

स्CHROMT

 This New Inrention Replates Metals. and cives
hard chrome finsh. Motor and cycle parts, household atensilis, etc. Do Your Ow ELECTRO-PLATING and Save $£$ \&. Complete Outfit $15 /-$., post free. (Full money bac Details and Phated
L. A. PRODUCTS,

Dept. M
156, High St., Berkhamsted, Herts.

BATTERY CHARGER PANEIS.

Metal panel 121" 天 2° " contalning 20-40a, rotary switches. Current carrying cap. 6 a. 1 mains, rotary on/off switch, and 2 heary duty var. resistances. 6 a., 2 ohms. Switches and resistances mounted on rear of panel 17 lb .-too heavy for post. Offered at very low price of $12 / 6$ ea., carr. \& pkg. forward. COMPASSES.
 Prism sight mounted over dial. The compass has antil-shock spring suspenslon. trated, $9^{\circ} \times 9^{-} \times 10^{\circ}$, the total-weight of this is 11 f ib . Price $1 \dot{\theta} / 6$. plus postage $3 /$

TWO-PIN PLUG AND SOCKET. This plug has a locking devioe and once the impossil ble for them to come a part unless the knurled ring is rotated on the socket. Fitted with 16° length of cable and new and boxed. Price 2/6, plus $1 /$ - post. Suitable for

ARTHUR SALLIS crastron. LTD.
93, North Rd., Brighton. Tel. 2i400
The book to help you produce better photographs

PHOTOGRAPHIC PROCESSING

BASIC TECHNIQUES
FOR THE AMATEUR
by fohn Bloxiond, F.R S.A.B. A.I.B.P.,

obtained. 65 illustrations.
CONTENTS Technique and Technicians - Materials and the Manufacturer - Cameras and Accessories - Dark-rooms Processing Negative Materials Processing Positive Materials - Retouching, Mounting and Finishing Photographic Solutlons.

18s. FROM ALL BOOKSELLERS

or in case of difficulty 19s. by post from GEORGE NEWNES LTD., Tower House Southampton Street, London, W.C.2.
NEWNES

Abstract

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Ltd.; Tower House, Southampton Street, Strand, London, W.C. 2

Phone:
Temple Bar 4363
Telesrams:
Newnes, Rand, London

Vol. XXVII
No. 444

COMMENTS OF THE MONTH

THE CLUB MAGAZINE

THE Club "Mag." can be one of the greatest influences în club life giving news to members, past members and non-active supporters of the club and providing a vehicle for views and criticisms and a means of disseminating information. Nearly every well-established club has a magazine at some time in its existence, but the length of its life depends usually upon how long the editor is prepared to devote his time and energy to running it and-in the majority of cases-writing it and printing it too.
Running the club magazine is a worth while job and usually gives a lot of satisfaction to the enterprising member who makes himself responsible for its production. This satisfaction may last for a few months or perhaps as long as a year; it just depends upon how long his support from the rest of the club lasts. Usually there are one or two people in the club, people already holding jobs. i.e., the racing secretary or social secretary who become regular and reliable contributors, but no magazine will remain interesting if the whole of it is regularly written by only one or two people. requires a contribution from every nember of the club to attain the essential variety of matter to make it worth reading. Results of club events and time-tables announcing future social events are necessary parts of the magazine, but without the club wit or cartoonist's contribution, without the club vegetarian's controversial views on diet or the champion tall story-teller's contribution, the magazine might just as well be tabulated and pinned on the club notice board.

Members who are known to be able to produce interesting features may when approached by the editor have no contribution to- offer, but it is much easier for them individually to think up some small items than it is for the editor to fill the whole magazine on his own. It is usually the editor's chief grouse that members are much more eager to buy each issue as soon as it appears than they are to do his share towards writing it.

However, in spite of the trials and tribulations of being an editor, the effort of producing a magazine is well worth while. What form the magazine takes is not important. It may only be a loose leaf binder containing typewritten pages, illustrated with drawings and photographs which is passed from hand to hand. These single copy "mags" have this definite advantage that they can easily contain photographs and drawings.

A slightly more ambitious format is one
where the articles and features are typed on to stencils and duplicated; here the only form of illustration can be rough sketches cut into a stencil. The covers of this type of magazine, however, can be enhanced by having them printed, the costs being defrayed by advertisements on the inside and back covers paid for by local cycle dealers, etc.
Finally, those clubs with large membership and greater resources will have their magazines professionally printed, but the average club will find that this costs far more than they are prepared to spend.

The club mag. in addition to giving pleasure to its members by seeing their names and activities in print enables those interested in but not closely associated with the club to keep in touch with events. The perusal of a lively, factual, chatty and humorous club journal has persuaded many a cyclist to become an enthusiastic clubman.

CYCLING JARGON

If you were discussing a time-trial with a fellow cyclist and he said to you, "I did a flier to the turn but then had trouble with my double clanger, took a packet and barely manared evens, finally doing a 2 ," you would
understand him perfectly, but have you ever considered the dilemma of a non-cyclist overhearing this conversation? What do words like bonk bag, sprints and tubs, honking, breakaway, minute-man, sag-wagon, hunger knock, bit-and-bit and prime mean to the non-cyclist? Nothing at all. During the war, when talking to an R.A.F. man, the ordinary man in the street needed an interpreter and this tendency is creeping into cycling, particularly since the increase in mass-start events and the consequent influx of Continental words like peloton, grimpeur, musette, coureur and repêchage. Very soon at the rate we are progressing, translation will indeed become a necessity!

METAL STUDS DISCOURAGED

We were pleased to note recently that local authorities are being officially discouraged from using metal studs and plates for road marking, especially near the kerb or on a steep camber. This type of marking has been a source of great danger to cyclists for many years, adding quite unnecessarily to the existing hazards in wet weather.
This is an improvement which will be welcomed by cyclists everywhere.

A selection of old time bicycles on show in the pantry of Palace House, Beaulieu, Hants, the home of Lord Montagu. This is part of the Motor Museum which houses a large collection of vintage cars, motor cycles, bicycles and tricycles. Visitors can also visit Palace House and Beauliell Abbey.
 \title{

Can Do Your Own
 \title{ \section*{Can Do Your Own

 W/HEEL

 W/HEEL BUILDING

 BUILDING}
hub in a clockwise direction, and four holes farther round the rim. This procedure is repeated until all the spokes in the same tangential direction on that side of the hub are in.

Take spoke 2 and insert another spoke in the next but one hole in an anti-clockwise direction round the hub. This is spoke II and it is positioned in the fourth hole round the rim in an anti-clockwise direction from 2. Spoke 12 is positioned in the next but one hole round the hub in an anti-clockwise direction and threaded through to the hole in the rim four round from spoke 11. This procedure is followed until all the spokes in this flange of the hub are in position.

Where spokes cross some 2 in , or 3 in from the hub flange, they must be laced. i.e., bent under or over so that they cross tightly (see Fig. 2).

The Opposite Flange

Remove one of the spokes and sight through the hole in the hub along the barrel

Fig. 2.-How spokes are laced
of the spindle to the opposite flange, where it will be seen that it lines up with a space between two holes on the other side. Thread a spoke through a hole, say, on the right of the one you are sighting through on the opposite flange and then replace the one removed. Carry the threaded end of the spoke to the rim, lining it up with one of the other side just replaced, but taking it to the hole in the rim immediately on its right. Now, calling this spoke 1, insert spokes 2 ? 3 and 4, and repeat the procedure exactly as for the other side of the wheel.

The Rear Wheel

The method of spoking the rear wheel is
exactly the same as for the front wheel except that eight empty holes are left between the first pair instead of six as in the 32 -spoke wheel. One side of the completely spoked wheel is shown in Fig. 3, and the spokes numbered in the order in which they are inserted. A further check can be imposed. Note that spokes adjacent at the hub end cross on opposite sides of the hub flange. Two spokes that cross in this way are, in a 40 -spoke wheel, spaced at the rim by 13 holes. This spacing on a 32 -spoke wheel is nine holes.

Fig. 1...(Left) Front wheel spoking one side only.
Fig. 3.-(Right) Rear wheel spoking one side only. 6 goes in the next but one hole in the

Check finally that spoke heads in the hub face opposite directions.

All the spokes must now be tautened and this process must be approximately equal on every side. One method of doing this is to tighten every nipple until its end is level with the end of the thread and then ensure all future tightening is equal by counting the turns of the spoke key.

Truing the Wheel

When the slackness has been taken out of the spokes equally all round the wheel, truing can commence, and to do this the wheel is mounted in the forks of the cycle. Spin the wheel and look first for bumps, i.e., deviations from the round, and eliminate them by tightening the appropriate spokes. Then go round the rim tightening or loosening spokes a half a turn at a time to eliminate sideways deviations from truth. Do not over-tighten the wheel by using a tightening action to eliminate every eccentricity.

When the wheel is true, inspect the nipple heads in the well of rim to see if any spoke ends are protruding. If they are, file them flush with a narrow file.

WATSON'S SPECIAL OFFERS

J.A.IP. $14 / 32 \mathrm{y} .288$ watts. $£ 1 \% .10 .0$. Carr. $15 / \mathrm{F}$ These are extremely nice charging sets each "slightly used, tested and with Three Months CEOCKWORK MOTORC well made double spring motors taptionally Gun Predictors. $37 / 6$. Post $3 /-$ taken from VACUUM FOOD CONTAINERS. ciallons with stainless steel interlor. Size 27 in . 73 in. diam, Ideal for any food or
Uquid storage in caravans, boats, etc
 GOGGLES. SPECLAL SAFETY TYPE with Unsplinterable Glass Ined chenile, $5 / 9$. DE LUXE TIPE, Lined Chamois \&
Foam Rubber, 7/9. Post $1 /$. Foam Rubber, 7/9. Post 1/4,
INSPECTION L.ANPS, E.D. safety model With waterproof glass cover and protectlve
guard completo with 10 yards T.A.S. cable. Nuard completo with 10 yards T.R.S. cable. TRIPODS. Extromely ine units approx. With leather protective cas and carrying sling. PRICE 12/6. Post $2 / 6$. PRISMATIC TBLESCOPES. 7×50 MAGNIFICATION. $57 / 8$.
Post $2 / 6$. These instruments Post $2 / 6$. These instruments
cost originally nearly $\$ 40$ and were produced to finest optical standards.
SMALL D.C.

Malier. $9 / 0$ (omplete with e-1 reduction gear. 11/6 Hundreds of other Bargains available.
Send 6d. stamp for Illustrated List.
EASTERN MOTORS
ALDEBURGK, RUFFOLE. 'Phune 51.

KIT consists of optically polished Non-Achromatic lenses with suitable tubes and simple instructions for building telescope powerful enough to explore the heavens and see the craters of the moon. With each kit is supplied FRANK'S BOOK OF THE TELESCOPE.
THE BOOK answers the questions of the amateur astronomer and includes chapters on Astronomical Photography, War Surplus Instruments, Eyepieses, Assembling and Mounting a 6 in . Reflector, etc. The book alone can be purchased from booksellers at $5 / 6 \mathrm{~d}$. or obtained direct. THE OTTWAY ORION KIT FOR CONSTRUCTION OF FOUR INCH NEWTONIAN TELESCOPE. Complete kit with everything you need to make a first-class instrument, including detailed step-by-step instructions. Patrick Moore, the well-known astronomer reports favourably on this instrument. Price E5.19.6. Post Free.

CHARLES FRANK 67-75 SALTMARKET, GLASGOW, C.I

 Telephone : Bell 2106/7 Grams: Binocam, GlasgowBritain's greatest stockist of Telescopes and Binoculars. Actual makers of Paraboloid Telescope mirrors. Established 1907.

SPECIAL OFFER

"AUTOMATIC"

WALL CLOCK KIT

Teas Points.
Direct from the designers this wonderfui decorative jewelled clock, shop value $\& 8$ or more. incorporates a topquality automatic movement which works for a year on a torch battery No unsightly wires-no winding, but perfect timekeopiag. Everything supplied including painted wooden frame, 8in. dlal, polished brass fitments rold silk cord, etc.. and detalled assembly instructions. (Movement already assembled.) Avallable in cream, black, red and pastel blue this outstanding clock is a "must" in your home. Limited quantity available. Money back guarantee. Send for free detalls.

Price 65.10 .0
packing and postage $5 /$ -
FORMAPRODUCT LTD.
3 DEANERY STREET, W.I

POWER your model boat with a BASSETT-LOWKE motor

The Marine motor is a powerfu permanent magnet unit suitable for model boats up to 39 ins. long and will give many years' service It will operate from two 3 -cell dry batteries coupled in series or from a 6 -volt accumulator. Length $3 \frac{1}{2}$ ins. Width 2 ins. Height 1 ins. Weight 11 ozs. Price 63/-
Write todav 10 Basserl-Lowke for Model Shipping and Engineering Catalogue. Full of helpfid information about your hobby. Lists and illustrates boiler fittings and engine parts,
castings and pressings, materials, bolls, rivets, tools, drawings castings and pressings,
and plans. Price $2 / 6$.

BASSETT-LOWKE LTD.

Kingswell Street, NORTHAMPTON London Showrooms : 112, High Holborn, W.C. 2 Manchester Showrooms : 28, Corporation Street, 4

NEST OF DRAWERS

Overall size $7^{\prime \prime}$ wide
 $\times 5^{\prime \prime}$ deep $\times 11^{\prime \prime}$ high. 12 drawers, each measuring 3° wide , $43^{\prime \prime}$ deep $\times 11^{\prime \prime}$ high. Userul storage for the engineer, motor ist and householder for nuts, bolts and small components.
Green enamelled. £1. P. \& P. 3/-
RIVERTING SYSTEMS LTD.
JORDAN STREET, KNOTT MILL, MANCHESTER, 15

ROGERS ${ }^{31 / 33 \text { setisovsti }}$ soutifori
Thread Gauges, 28 arms
Whitworth Serewa, 144 Ass'td
H.S. Drills. 12 Assorted to 48

Fibre Washers. 144 Assorted
Meter Rectifers. A.O. to D.O
Self Tap Serews. 100 Assortad
Copper Rivets. 12 doz. Assorted $1 / 4$ Saw Bench Tops, with ball race spindile, pulloy, etc.. 18 min . x ioin $61 /$ Aif Jacks. 512 n . stroke ${ }^{2}$.
Winker Units. 6 or 12 volt. Mains Transformers. 18v. 6 a.... $6 / 6$ Garnet Cloth, 4tn. wide. Per amp. 35/ Motorised Water Pumps. Per yd. ${ }^{9} 5$ Instrument Cases. $121 \mathrm{n} . \mathbf{z} 8 \mathrm{in}$. .
6in. New
Plugs do Sockëts. ? point
Telephones, New. Modern.". Pair ${ }^{18 /-1}$ Races, Belts, Valves, Pulleys, Pairps. Brass, Stoel, Aluminium, eto. Pit or May wo send our free list of hundreds or
interesting ttems? Stamp. please.

AHFochment's SAWING• PLANING• SANDING GRINDING• BORING-POLISHING

r mortise)

inyford
 ENGINEERING CO. LTD BEESTON. NOTTINGHAM
 TELEPHONE

$10 f \rho$
ON REPAIRS TO CAR BODIE S PANELS,WINGS with 1 MM

Glass Fibre Pher pits post free. Ther kits FORD 8/10 H.P $12 / 6,25 /=$, CAR BODY SHELL ANO Plus Post Ready to sssemble, $£ 100.0 .0$. $2 /-, 2 / 3,2 / 6$. Send for detrils. Westpole Motors LId. Plastics 8, Trent Honse, B8, Bramileyrid, London, N, 14

SERIES III NUCLEAVE PRESS

Ask your Tool Dealer or send for dotails to :-

Sole Manufacturers.

FITZNER LTD.
197-199, KINGS ROAD,
KINGSTON-ON-THAMES

EX-GOV. BARGAINS

SCT. MK. II THiREE DRA W TELLESCOPRS. 25×50. Lightweight, only 2 l lbs. Spare high-power oyepteces to ft 50 X or 75 X . $50 /$ - each. Triple power conversion KIT, $25,40,50$ and 80 X tert. and 60 and 120 X astro, $£ 5$ per klt . We can supply eyepieces to increase the power of most types of telescope. State type or send existing ece for quotation.
TELESCOIE OBJECT LENSES. NEW and PERFECT, UNMOUNTED. 211 in . $\times 20 \mathrm{in}$.,

 £12.
EXEPIECES, 11 in . In focusing mount. 8/6. tin, orthoscopic push in mount, $17 / 6$. . DIAL SIGHT NO. Welght 6 lbs . Will set out any angle with accuracy of thelever to beared head. Limited elev. and dep. adjustment could be adapted for levelling.. With 4X optical sight. Sound condition, but not guaranteed. 35/- each. In near new condition, $55 /$ each
SURFACE ALUMINISED FLATS. 410 . x ginin. $x 5 / 32 i n . .10^{\prime} \% .21$ sq. corners removed CLEAR FLATS. 41 n . sq. \mathbb{x} tiñ., 12/6, or edge chipped, $8^{\prime} 6$. SEMI-SIKVERED MIRRORS, ANODISED. $4 / \mathrm{in} . \mathrm{x} 3 / \mathrm{in} . \mathrm{x}$ fin. Corners ground
off. $12 / 6$ each. Smaller gizes ti6 per sq. inch. ERECTING EYEPIECES. 1 in . focus, 45 - f in focus, 55%
FINDER TELIESCOPES, Elbow type 7×50. New 47/6. Ditto lfghtwelght bloomed levor locus. Lakest bype. Now. Mikt. 25 cach.
VARIABLE POWER TELESCOPES. 5-15X angle type prismatic. 75'-used. £5 REOTA VOUL
RECTANGULAR LENSES. For viewers. 21 ng . x 21 in ., 7/6. $3!\mathrm{in} . \times 21 \mathrm{in} ., 11 /-$ ASTRO TELESCOPIC KITS. Achro O.G., $20 i n . ~ x ~ 45 m m$. Paxolin tube and focusing eyoplece, 22
TERRRESTRIAL 40X KIT. As above, but with erecting eyeplece ready to mount in tube, 84.
HELIOGRAPIS. Brand new in leather case. Cost 230 each. A gift at $15 /$ plus Our lists contain detalls of more than 800 USEEFUL ITEAS, many unobtainable Ex-G any other source. We claim the widest varlety and most complete range of FOR STA MPED ENYELOPE. "HOW TO USE LENSES \& PIRISMS," NOS, 1 and 2. $\%$ - each, post free

H. W. ENGLISH

Rayleigh Rd., Hutton, Brentwood Essex

$\frac{1^{\prime \prime}}{2}$ CAPACITY 15" BENCH DRILL A PRECISION BUILT MACHINE TOOL WEIGHT 154 lb . 5 SPINDLE SPEEDS 237.50 (complete-3 phase) (Chuck guard not included.) Pillar model also available. Available from all machine tool merchants-
 write now for full details, to the manufacturers

 W. J. MEDDINGS LTD., Ipswich Rd., Trading Estate, Slough, Buck One of the Largest Manufacturers of Drilling Machines in the U.K

BODYBUILDING

For fast and permanent results in building a well-muscled physique, backed up by strength, stamina and speed, there is nothing to equal

MAXALDING

The individually planned courses are conducted by post to any part of the world and can be carried out successfully under all conditions of life.

FREE LITERATURE

Profusely illustrated with 200 photographic reproductions of pupils from 15 to 65 years of age, the explanatory literature will be sent without cost or obligation of any kind on request.
All Maxalding correspondence is mailed in sealed envelopes without any external advertising. MAXALDING SPEPHERDSWELL, DOVER, KENT

A teenage pupil showing control and development of the upper-back muscles.

Huge Purchase Hich Speed Steel Tool Blts, hardened ready for use,
essential to any lathe user, secure your stock now as these are really a good investment. $1 / 4^{\circ}$ square, $21 / 2^{2}$ long, $8 / 6$ per doz. $5 / 16 \mathrm{sq}, 3^{*}$ long, $8 / 6$
doz. $3 / 8^{\circ}$ ga.. 3° long, 12/- doz, 716° doz. $3 / 8^{\circ}{ }^{\circ} \mathrm{sq.}. 3^{*}$ long, $12 /-\mathrm{doz}$. ${ }^{7} 716^{\circ}$
sq... $31 / 2^{\circ}$ long, $15 /=$ doz. Six doz. lots 5.000 Tans, $1 / 8^{*}$ to $3 / 8^{\circ}$ dia.
Assorted Threadis, suit M.E. or experiAssorted Threads, suit M. E. or experimenter, mostly fine threads, twenty one Ton
lengths, $1 / 16^{\circ}$ to $15 / 32^{\prime \prime}$ dia., doz. assorted lengths, 56.
L, 000 H.S. Morse Taper Shank
 $11 / 16^{\circ}, 3 / 4^{*} .7 / 8^{*}$ dia., 30 - the set. Secure these now as at this riditcula
quick
5,000 Hall Races, standard o.d.

 $31 / 64^{\circ}-3 / 8$ each, $22 / 8^{\circ}$ the lot. Also
$17 / 32^{\circ}, 21 / 32^{\circ} 5 / 8^{\prime \prime}, 11 / 16^{\circ}, 4 / 9$ each, 16/the lot. Both lots, $351^{\prime \prime}$.
Extra Special Carb. Grinding
 three, postage $2 /-$ Value over $301-1$
6 for s1. post pald. Ass. grits for tool and cutter grinding, also 5
wheels, $1 / 2^{*}$ hole, $4 / 9$ each
2.000 Small H.S. Twist Drills. approx. $1 / 32^{*}-3 / 32^{2}$, $4 /-$ doz Approx.
$1 / 16^{*}-1 / 4^{*}$, $7 / 6$ per doz. Approx. $9 / 32^{*}$. $1 / 16^{-1 / 4}$, $7 / 6$ per
$16 / 32^{\mp}$. six for 10%
3,000 Cireular Split Dies, ${ }^{1 *}$ dia.
cutting $1 / 4^{\prime \prime} .5 / 16^{\circ}$. $/ 8^{\circ} .7 / 16^{\circ}$, $1 / 8^{\circ}$ Whit cutting $1 / 4^{\prime \prime} .5 / 16^{\circ}$. $3 / 8^{\circ} .7 / 16^{\circ}, 1 / 8^{\circ}$ Whit. sizes and American N.F. 12/- per set of 5 sizes, 2 sets $22 / 6$. 4 sets $42 / 6$. Taps to suit 126 per set, elther taper or second or plug. 1^{10} dia. stocks $6 /$ each.
2,000 Straight Shank End Mills, 2,000 Stralkht Shank End Mills,
size $1 / 8^{*}, ~$
$5 / 32^{"}, 3 / 16^{+}$
$7 / 32^{*}$
$5 / 14^{*}$
$5 / 16^{\circ}$

All Items brand new. $£ 1$ orders post

J. BURKE

192 Baslow Rd., Totley, Sheffield Insuection at Rear 36 Fltawilliam St.,

The books for the man who likes to make things for himself-
 THE Ist "PRACTICAL MECHANICS"

Shows yous how to make over 30 magnificent articles. 224 pages and 320 diagrams and illustrations.

ноW-ToM A K E-IT

Book Edited by F. J. CAMM
'HIS is a mook for the man who hkes to make thinge for himself. It has been compiled from the columns of "Practical Mechanics," the monthly journal for the handyman and model maker. Everything herein described has been designed, luilt and tested in the "Practical Mechanics" workshop, and may thtus be built with confidence.
CONTENTS: TAPI RECORDER. MASTER BATTERY CLOCK. ELECTRONIC ORGAN FLBCTRIC WASHING MACHINE HANB VACUUM CLEANER ELACTRIGALLYOPERATED GARAGE DOORS. BAGATELLE TABLE REFISCTING TELESCOPF: HARMONOGRAPH "DESIGNOGRAPH" 15IN. FOUR-HEDDLE HAND-LOOM POTTER'S IHEFL , POTTERY KILN . ELEGTRIC OVEN. WESTMINSTER TUBULAR DOOR CHIMES CYCIF TRAILER PEDALGYCLE SIDECAR PORTABLE AIR COMPRESSOR. WATERSOFTENER.SPANISH HAWAIIAN GUITAR. STEEL-STRINGED UKELELE DOUBLE-SEATER CANOE. RADIO DEAFLID UNIT. GARDEN PYOL VERTICAL ENLARGER PHOTO-ELLETTRIC FXPOLURE METER SYNCHRONISED FLASHGUN DOMBINED PRINTING BOX AND SAFELIGHT DIASCDPES AND EPISCOPES : STKAM-DRIVEN MOTOR BOAT : ELECTRIC WALL BRACKET INBXPENSAE HOUSE THEPHONGS ELAETRIC GAS-LIGHTER ADIUSTABLE DRAWING-TABLE . TOBOGGANi lis. Gur net (13s. 6d. by post).

THE 2nd "PRACTICAL MECHANICS*

 Edited by F. J. CAMM
THE great success of the first "Practical Mechanics 'How-Tw-Make-It" Book," which has run through several editions, has encouraged the publishers to produce this second volume, describing the conntruction of a wide variety of articles which will appeal to the home meechanic and model maker. Like the first volume, this has been compiled from the nrost popular features appearing in "Pructiont Mechanics," the estahlished monthly journal for practical amateurs.
CONTENTS : A REFLECTING ENLATGER DNE STRING FIDDLES . FOLDING STEPS GND AN EXTENDING LADDER AN ELECTRIC GUITARTITE A MINIATURE BILLIARD-TABLE ASYNCHRNNOUS ELACTRTG CLGCK, AGLOVE PUPPET THEATRE AN AUTOMATIC GAROAN SPHINFLER A MTDGET CAMEFA A POTTEFS WHARL A CATAMARAN A NOWING MACHINE AN AQUALUNG. HOMESADE FISHINE

 SCALES . MOLDINE OUTBOARD WOTOR-DUAT. FLASH PHDTSGRAPHY. GAS FIRED POTTTRY KYLNS . 4 BNCK-PROIGCTION

Thase are theost pradical condructors' books yet. . . the articled are no tays but things of real use and value!

Detaits for making 35 valuable erticles throughout 192 pages. JO6 illustretions.

Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly ot home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship
Jig \& Tool Design
Press Tool \& Dle Design Sheet Metalwork
Automobile Repairs Garage Management Works M'gmat. \& Admin. Practical Foremanship Practical Foremanship
Ratefixing \& Estimating Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance Enginecring Steam Engine Technology Steam Engine Technology I.C. Engine Technology
Diesel Engine Technology

Elec. Draughtsmanship Machine
Automobile
Structural
R/F Concrete
Sitructural Engineering
Mathematics (all stages)
Radio Technology
Telecommunications
Wiring \& Installation Television
Radio Servicing
Gen. Elec. Engineering
Generators \& Motors Generation \& Supply Aircraft Mainten. Licence: Arcraft Maint
Electrical Design urvey Dr'ship.

BUILDING AND STRUCTURAL

L.I.O.B. \quad A.I.A.S. Building Construction Costs \& Accounts
Surveying \& Leveliing
Clerk of Works
Quantity Surveying
A.R.S.H. M.R.S.H. A.F.S. A.R.I.C.S. Builders' Quantities Carpentry \& Joinery Building Inspector Building Draughtsmanship Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptors
Woodwork Teacher
Metalwork Teacher Housing Manager (A.I.Hsg.)

Common. Prelim. Exam. A.C.I.S., A.C.C.S. A.C.W.A. (Costing) School Attendance Officer Health Inspector Clvil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME AND EARN BIG MONEY

Men and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

OVER SEVENTY YEARS OF CONTINUOUS SUCCESS

National INSTITUTE OF ENGINEERING

(In association with CHAMBERS COLLEGE-Founded 1835) (Dept. 29)
148, HOLBORN, LONDON, E.C.I
SOUTH AFRICA : E.C.S.A., P.O, BOX NO. 8417, JOHANNESBURG AUSTRALIA : P.O. BOX NO. 4570, MELBOURNE

132-PACE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:
t Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
t How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY IUTERESTING COURSES TO SELECT FROM!
A.M.I.Mech.E., A.M.I.M.I.,

A.M.Brit.I.R.E., A.M.I.P.E.,
A.M.I.C.E., A.M.I.Struct.E.,
A.M.I.Mun.E., M.R.S.H.,
A.M.I.E.D.,
London B.SC.,
Legrees.

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

\sim Free Coupon

To: NATIONAL INSTITUTE OF ENGINEERING (Dept. 29), 148-150, Holborm, London, E.C.r.
Please Forward your Free Guide to
NAME
ADDRESS

My general interest is in : (1) ENGINEERING
(2) AERO (3) RADIO (4) BULLDIING
(Place a cross against (5) MUNICIPAL WORK
the branches in which

The subject of examination in which I am especially interested is

[^0]:
 Enkineers-Carpenters-etc. Examples: Callipers, Gin., Ex-Govt, $1 / 6$ per pr. Level and Plumb, builders, 30 in , $10 / 6$. Feeler Gauges, 10 blades, $0015-.025 \mathrm{in}$., $3 / 1$. Screw
 heavy gauge. Ex-Govi., ${ }^{8 / 9}$ Sordened and tempered, $7 / 6$ per set. Rustless Steel Tapes, leather case, finest qlity. 50 in ., 21/-. Files I doz. asstd., 6 in.-12in., Sheffield (boxed) Job Line, $12 / 11$.
 50 in ., 21/-. Files 1 doz. asstd., EXTRA., Send 3d. stamp for LIST.
 SHALLESS ENGINEERING CO. LTD, WHYTELEAFE STATION, SURREY SHALLESS ENGINEERING CO. LTD., WHYTELEA

[^1]: Basic Electricity (In Five Parts) and Basic Electronics (In Six Parts). Basic Electricity cost 12 s .6 d . net per part, and 55 s . net per complete set of five parts. Basic Electronics costs 12 s . 6d. net per part, and 66 s . net per complete set of six parts. Both published by The. Technical Press Ltd., of I, Justice Walk, London, S.W.3.

 INTN this new series of training manuals lies the core of a Standard Course of Technician Training developed for the United States Navy. The British edition was prepared, with War Office approval, by a special Electronics Training Investigation

[^2]: CRADWILR TILSS LTD. (Ded. Me. E. 10)

