

For MAXIMUM working Scope Sell|eicita Mavimat

The finest Engines for your models

EDE.I C.C. "BEE"

"THE ENGINE WITH A STING!". BRITAINS MOST POPULAR DIESEL Over 300,000 sold. Gives an astonishingly high efficiency and power for weight ratio.

Price
includ
£2.14.9
Water-cooled model, $£ 3.12 .11$

help the sailor in a pright
like this!
Nowadays don't be " all at sea " when you are doing a job where a third hand is wanted-use a Mole
Wrench the versatile tool that holds on with hands off-ideal for the countless jobs in home, garage or workhop. Used by Handymen and Engineers the
world over, its toggle action gripoing power of world over, its toggle action gripping power of
2,000 lbs. locks the wrench to the work, released only when the centre lever is touched. Use it as superpliers, wrench, hand vice, clamp-whatever the job demands. You'll always find a use for THE
SELF-GRIPARK
NBIITCI

FROM IRONMONGERS, MOTOR \& MOTOR CYCLE ACCESSORY DEALERS. \star ASK FOR A GENUINE MOLE WRENCH-LOOK FOR THE NAME ON IT.
If in any difficuity write to:
M. MOLE \& SON, LTD., BIRMINGHAM, 3. THIRD
HAND THIRD would have done

Training with I.C.S. THE WAY TO SUCCESS

The great and growing demand of today is for TRAINED men. Thousands more are needed; but there is no worthwhile place for the untrained.

Through I.C.S. Home Study you gain the specialised knowledge that marks you out for promotion, for SUCCESS! I.C.S. teaches you in your own timeexpertly, quickly and easily. It is the world's largest and most successful correspondence school, offering courses for almost every branch of trade, industry and the professions. No books to buy.

ADVERTISING ${ }^{2}$
SALESMANSHIF
Mail Order
Copy Writers
Advertisement Managers
Commercial Travellers.
Sales Management
EXAMS: foint Inter A.A. \& I.P.A. Finals. Inc, Sales Mners. Ass. Association

ARCHITECTURE \&

BUILDING
Drawing and Designing
Quantity Surveying Clerks
Bricklaying
Carpentry \& joinery
Construction and Steelwork Heating and Ventilating
EXAMS : Roy. Inst, of Br. Archts. Inst. of Quant. Surveyors. Roy. Inst. of Chartered Surveyors. Inst. of Builders. Inst. of Mun. Engrs. (Bldg. Inspectors'). inst of Clerk of Works

COMMERCIAL ART

lementary Art Trainin
Poster Work
Sketching

COMMERCIAL
 TRAINING

Book-keeping and Accoun-
Costing and Auditing
Company and Private Secre.
EXAMS: Chartd. Inst. Secs. Corp. of Secs. Ass. of Cert. \& Corp. Acets. Inst. of Cost \& Works Accts. Inst. of Book-keepers

ELECTRONIC

ENGINEERING
Adustrial Electronies

CIVIL ENGINEERING
 Highway Engineering Surveying and Mapping Engineering
 EXAMS: inst. of Civil Engineers. Inst. of Mun. tural Engrs.
 DRAUGHTSMANSHIP (State whlch Branch)
 Architectural
 Drawing Office Practice \& Machine Design
 Maths \& Machine Drawing Woodworking Drawing
 ELECTRICAL
 ENGINEERING
 Illumination and Heating
 Electricians.
 EXAMS: Society of En- gineers. C. gineers. C. \& G. Cert. in Elec. Eng. Practice. Installations. C. \& G

FARMING
HORTICULTURE
Arable Farming
Pig \& Poulery Keepin
Livestock Farming
Farm Machinery (Maintenance)
Flower
Flower, Vegetable \& Fruit Gardening
Rock \& Shrub Gardening EXAMS: R.H.S. General
FIRE ENGINEERING
EXAMS: Inst. of Fire Engineers. Fire Service Promotion.
GENERAL CERTIFICATE OF EDUCATION
Principal Subjects at Ordin ary or Advanced Leva! Engineering loint Board Pre liminary LEARN - AS - YOU
RADIO Build your own 4-valve COURSE radio receiver, 5 -valve T.R.F. and 5 -valve superhe radio receiver: Signal Generator and High-quality Multi-tester.

MANAGEMENT
Office Management
Foremanship
Personnel Management
Business Management
Methods Engineering
EXAMS: British Inst. of Mngemt. Intermediate. foremanship Foremanship.
MECHANICAL
ENGINEERING
Subjects include
Welding, Fitting, Turning. Erecting, lig \& Tool Design, Production. Draughtsmanship. Mathematics, Inspection, Diesel Engines,
Diesel
LocoDiesel Electric Loco-
motives. Refrigeration
EXAMS: Inst. of Mech. Engineers. Inst. of Production Engineers. MOTOR ENGINEERING Diesel Traneport Engines Mesel Tran=port Engines
Motor Body Rebuilding Owner Drivers ${ }^{\text {M }}$, Running and Maintenance PHOTOGRAPH
A. basic Course including

RADIO AND TELE. VISION ENGINEERING Service Engineers
Telavision Servicing and En-
Practical Radio with EquipRadio
Radio Service \& Sales EXAMS: Br. Inst of Radio Engrs C. \& G. Radio Servicing Cert. (Marine) in Wireless Telegraphy. C. \& G.Telecoms. Engineering. C. \& G. Radio Amateurs'

WRITING FOR PROFIT Free Lance Journalism Short Story Writing

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 169D, International Buildings, Kingsway, London, W.C. 2
Please send me free booklet on

Nome
Oscupation.
USE BLOCK LETTERS
HLGBLS MOTORS, shunt wound, 12 v. 11 amp., speed 5,000 r.p.m.. reversing, size 3 in . Iong, motor de, fin. shaft, welght 20 oz., a very superior motor designed for anti-radar equipment, new ditto fitted reduction gear giving a final drive required. $12 / 6$ post $1 / 9$; $£ 6$ per doz.. carriage paid. K TYPE CYLINDER LOCKS, deadlocking and
thiefproof, has 7 coucentric tumblers instead of thiefproof, has 7 concentric tumblers instead of
the usual 5 in Hne, interchangeable fitting with ordinary cylinder locks, latchbolt reversible, for right or left hand doors (no need to specify), complete with 2 keys, all R.ANGEFENDERS by Barr and Stroud. 1-metre base oofnctdence type, a hand held ix variable focusing right eyeplece provides two images of the oblect viewod, on fom the right objective; the other from the left. When these two images are brought into coincidence by a thumbwheel control, the distance in yards can lmme diately be read in the left eyeplece. Fitted two fliters and other refinements. A very
superior high quality instrument, original cost $\kappa 180$. our price in new or near new condition, supplied in stout fbre cases $£ 5$. carriage $100 \mathrm{~m} .7 / 6,200 \mathrm{~m} .20 /-300 \mathrm{~m}$. $12 / 6$. N.I. 20!-

GUNSIGHT TEIAESCOPBS, has 4 lens high grade optical system with cross graticule, approx. $2 x$, ail brass, 13 in. long. 1 in. dia., makes an ideal rifle sight, or astro telescoge star marker, perfect condition, in metal cases. $80 / \%$, post $1 / 9$. TELEPIIONE SETS, consists of two combined microphones and recelvers, which when wired up by ordinary twin flex, provides perfect 2 -way communication, excel set results avin at ld. per ft. supplied, postage each 20 ft . fles 3 d . extra
CHARGING SETS, only 46 lbs. weight. easily carried, 4 -stroke alr-cooled. runs for hours from 1 gall, petrol, D.C. output $12-18$ V. at 80 watts, complete with exhausi and sllencer. starter cord. stc., size $14 \frac{1}{2} \mathrm{l}$. X 14 i in . $x 71 \mathrm{in}$. completely works recon ditioned and now as new. supplied in stout wood cases, our price £8/10/-, carriage
GRAMOPHONE MOTORS by famous maker, $200 / 250$ v. or $100 / 130$ v. A.C. mains, in. long. 5132 in . dia. shaft, speed $1,350 \mathrm{r}$.p.m., siza 21 in. X 2 in. $x 1$ in., weight 18 oz,
fitted ruber bushed mounting bracket, recent manufacture and brand new, 15% post $1 / 6$.
OIL TEMP. GAUGES, 2 in. square fush mounting, graduated o/izo dog, " C. basically a very tine quality moving coll milliammeter, new in sealed carcons, 3.6, G. F.C. RECTIFIERS. Brand new, latest supply from G.E.C. these are not ex-Govt or assembled from bits and pleces, selenium full-wave bridge 12 v . 2 amp. inter-
mittent, 11 amp . continuous, $10 / \circ$, post $1 /$, ditto. 12 v. 4 amp. intermittent, 3 amp . mititent, 11 amp . Continuous, $10 /$, post $1 /$: ditio. 12 V , 4 amp . Intermittent, 3 amp .
continuous, 15%, post $1 / 6$, mains iransformers specially wound for these rectifers, with $200 / 230 / 250 \mathrm{v}$. Inputs, $5-11-17 \mathrm{v}$, outputs, correct mamufacturers rating to charge a 2-, 6- or $12-\mathrm{v}$, battery respectively, transformers are brand new, boxed, $2-\mathrm{amp}$.
type, $15 /-$, post $1 / 9$; ditto, $4-\mathrm{mmp}$. type, $20 /$, post $2 / 3$; both ltems, total postage $2 / \cdot$ and s. respectively.
ROSS OPTICALUNITS, consists of a brass mount holing two $48 \mathrm{~mm} . \mathrm{m}$. dia, a whro mats, each f/2, 3 in , focal length with airspace between, forming a Petzval system post $1 / 6$, ditto identical except achromats are each $10 \mathrm{~m} . \mathrm{m}$. dia. fi2. $3,31 \mathrm{in}$. focal length, $12^{\prime 6}$. post $1 / 6$.

Many other Rapgains : send stmmped, addressed envelope for fiste.
MIDLAND INSTRUMENT CO., Moorpool Circle, Birmingham, 17 Tel: HAR 1308

STILL THE BEST BY ANY TEST!

The
 "BRITINOL"
 Spirit Blowlamp

Gives a hot clean flame 3-4 inches long, burns methylated spirit, and has neat folding soldering iron supports. Completely automatic action. Ideal for all soft soldering jobs, jewellery and lampshade making, cane singeing on basket work and many other uses.

Price $7 / 6$ from Halfords branches and Model and Tool Shoos
Send for FREE illustrated leaflet showing other Easy Soldering Products from the sole manufacturers :

BI-METALS (BRITINOL) LTD.

St. Mary's Works, Bridge Road. London, N.9. Tel. : TOTtenham 9413.

METALS

AND ACCESSORIES

ALUMINIUM, BRASS, COPPER, STEEL, ETC.

Angle, Sheet, Tube, Foil, Strip, Channel, Rod, Bar. Wire, Moulding, Etc Tin Plates, Silver Steel, Expanded Motal, Blanks, Rivers, Springs, Etc. Tools Drills, Taps, Dies, Screws, Etc.
Formica, Perspex, Pegboard, Paxolin, Ebonite, Curtain Rail and Rod, Adhesives, Etc., and many other items for use in Home, Workshop, Etc.
LARGE or SMALL Quanticies COMPARE our PRCES MAIL ORDER SERVICE (2d. stamp for list) IMMEDIATE DESPATCH

CLAY BROS. \& CO. (P.M. 13)
62 SPRINGBRIDGE ROAD, EALING, W. 5
Phone: EALing 2215
2 MINS. EALING BROADWAY STATION, OPPOSITE BENTALLS

ARCOY dovetaller operated by any standard "" Electric Drill. Supplied complete with ball bearing Cutter Head and three different sizes of cutter.
 With the ARCOY DOVETAILER anyone can cut lap dovetails in any combination of thicknesses of wood between $\frac{3 "}{8}$ and I" up to $9^{\prime \prime}$ in width, in a fraction of the time taken by hand.
 £5.17.6
 MAIN LONDON STOCKISTS PARRY \& SON (Tools) LTD. $329 / 333$ OLD ST., LONDON, E.C.I. • SHOreditch 9422-3-4

IMMERSION HEATERS. 2 kW . or 3 kW ., 1 lin. and 16 in ., $\mathbf{~ 1 3 . 8 . 4 .}$ Thermostat lor either of above heaters, $\mathbf{E l} 10.0$.
THERMOSTATS. BW/1. 5 amps, 15/6. Post 6d. ©SN/40, \& amp., 5/6. Post 4d. C. S. Convector Thermostat, i5 amps, 25/. Post 10d. Model MB for Immersion Heaters, 15 amrs, 12 , Post $2 /$-. PF Room Thermostat, 15 amps, £2. Post 10d. M.L. Greenhouse Thermosta', 10 amps, 35\%: Post 10d. P.J. Minsature Therntostat for Hotplates. 's ampe, 93. Post 6 d .
FLEXIBLE ASBESTOS ELEMIENT WiRE, 15 or 25 ohms/yd., $1 / \%$ per yard.
REPLACEMENT ELEMENTs:- Send 4d, stamp for lists.
TELEVISION SUPPRESSOR KIT. for appliances up to 1 -amp., $3 / 6$. Post Free. Hi-Flex 45 3/16in. $\times .010$. 6d, per It. Standard $6 \mathrm{in} . \times$ fin. BI-META
$\times .036,6 d$.
NEON ILLUMINATED INDICATOR SWITCH. 2 amps, 240 v. A.C. 10/6.
10/6.
MAGNETS. Sintered Bar Magnets of great power and stabilty ${ }_{8}^{3} \mathrm{in}: \mathrm{x}$ $3 / 16 \mathrm{in}$. x $1 / 16 \mathrm{in}$., 9 d . each. $81^{1}-\mathrm{doz}$. Post 5 d .
We also supply, Silver Contact Screws and Rivets. Porcelain Interlocking Insulating Eeads. Send 4d. stamp for list.
THE TECHNICAL SERVICES CO., Banstead, Surrey

W11 build up tremendous pressure for operating hydraulic rams lifts and
similur equipment. Geared to D.C. motor. but this can be operated off A.c. matns through step down transformer fily. 10.0 each.
not motoriked. $\mathbf{1 7 . 6}$ eticlt.
Fishing Rod From Dinghy Mast

Tubular aluminium not separate sections. extends 11ke telescope
from 151n. to $97 t .5^{\prime} 6$ each. Post $1 / 6$.

Complete Walkie-Talkie 25/-
 This is the
Walkie-Takie. It has a range. of approx.
miles.- lust
right partles search
Ire
brigades, brigadee, etc.
Operates from
dry-batteries. dry betteries.
domplete wrutid
Com valves and
six miter Stze approx. $12 \mathrm{in} \times$ bin. $\times 31 \mathrm{im}$. Complete but less orystal. not tested nor guaranteed. 25^{\prime} ', plus 26 carriage

Miniature

Microphone

American made.
Dynamic type, reai
barkain at $1: 6$ pilus 60 . poet.
\leftrightarrow

This Month's Snip

Break-up Bargain

The unit 3515 less valves and I.E. strip. This contains components 20 Paper Tubular Condensers up t to mid. 60 Carbon Resistores many. hligh stability, $40-$ Stlver
Mica Condensers. $30-$ R. F. Chokes. Mica Condensers. 30 -R. F. Chokes.
13 Octal Valve Holders. $-\Psi \neq x l e y$ 13-Octal 1 ale Hithers. Minnature Variable Condensers: ${ }^{1}$ - Transformer. ${ }^{2}$ Mansbriddge Condensers, i-USeful Chassis size
181 n . z 11 in . x 7in. with outer case. bundreds of miscellaneous items, nuts, bolts, washers, tus strips, 1.F. sockets, etc. All for
B:6.plus 5^{\prime}-carriage up to 250 miler.

Tabby Complete Equipment Complete equipment for seeing in tho
dark, as ficted to Army vehicles ior night dark, as flited to Army vehicles ior nalsht
driving. etc. comprises rack for 6 or 12 volt binoculars, power pack for 6 or 12 volts, control units and
inter-connection cables, Original cost prorably around $\varepsilon 100$. Unused and in perfect order, $£ 8.19 .6$ or $10 /$ down and
5 fortnightly payments or 10% ntus 10- carriage pand insurance. Mains power pack extra.

Cine Cameras

 frames per secrind
contact, fine
F/B. 5 triple anastigmati carry and spolit to probable cost around 1150 , brand new and in sealed carton, $26.10 .0^{\text {or or }}$ or $20 /$ depdsil atid 13 fortaightly
and insurance $3 / 6$.

"Dim and Full" Switch

 Paruloularly useful for controlling photo at full brilliance. Thts togkle switch has three positions, the frst position puts two lamps in sertes at half orillitance for setting up, the second position is off andthe third position full brilliance for the perational shots. Also useful for con trolling night lights, heaters, etc. etc.
Price $2 / 6$ each. S. post 9d. Circuit diaPrice $2 / 6$ each.

Famous Transmitter Virtually Given Away

The famous R1154-unused but slightiv solled and not tested. Covers $200-500$
 and permits selected frequency to be held, returned to etc. Harcley oscillator, power amplifler keying and speech.
Wonderful breakdown value metcr. Wonderful breakdown value meters,
relays, switches. Complete with vatvesreal bargain at \&日 8 , plus 10 ,-carriage.

Charging Switchboard

Offered at about one-twentieth of original cost. This is an ex-Government swltelbolays, one voltmoter, one main ama meter, owo secondary ammeters and three variable reslators for controlling circuits. These are original cases Price \&2.15.0, carr. 10/-. 1,260 watt model avallable, price es.15.0.

If ordering by post, please address your orders to Company nearest to you.
Electronice (Eastbourne) Electronies (Ruislip) Ltud. Eleetronics(Croydon) Ld. Electronics (Piasbury

FREE-CATALOGUE OF SURPLUS AIRCRAFT MATERIAL

Offered by K. R. Whiston, New Mills, Stockport It tells about thousands of articles for Model Engineers and about the MANY HUNDREDS OF BARGAINS FOR HOUSEHOLDERS \& MOTORISTS Read about the Gigantic Value Parcels I am offering EVERYONE can benctit by Surplus Aircraft Material, etc. It gives particulars of a tremendous assortment of articles, such as Screws, Nuts, Bolts, etc. etc. All so very useful and necessary for Handymen, Motorists, Electricians, Model Makers, and all interested in mechanical, woodworking and other pursuits
OVER 70 USEFUL MIXTURES

Great Bargain

K.R.WHISTON	$\begin{array}{c}\text { Bargain } \\ \text { LIST } \\ \text { FREE }\end{array}$

Post
Coupon

For "Do-it-Yourself" enthusiasts this is a great opportunity to obtain your requirements at outstanding Bargain prices.
2,000 INDIVIDUAL ITEMS
The Catalogue is offered Free and it will surely pay you to write for it today and read about my Special Mixed Bargain Parcels and about the thousands of individual articles all at real money-saving prices. It tells of a marvellous selection of hargains in materials and supplies for Model Engineers. So why not fill and post the Coupon Nou for this wonderfully helpful, instructive and most useful Catalogue. K. R. WMISTON R. WMISTON (Dept. M
New Mills, Stockport.

Please send me a free copy of your Catalogue. Name

Address.

K. R. WHISTON (1ropsi) New Mills, STOCKPORT

only $7 / 6$ down \&

12 Months to pay forer NEW Power DRIL

 BLACK \& DECKER D500

- Évílgas dr2t

WOLF SAFETYMASTER

Sands il unter \& co. LTD. (P.M.4) 37 BEDFORD STREET, STRAND, LONDON, W.C.2.
....AN IDEAL COM. PANION for the DO-IT. YOURSELF MAN invaluable aid for all interior and exterior decorating.

SEND FOR

ILLUSTRATED BROCHURE

THE V̄̈ctrix nickel electroplating plant．A miniaure pint ior we
 or copper．The brilliant finish will not rub off．The plant comprises a 10 in ．$\times 8 \mathrm{in}$ ． chemical，nickel chemical，copper supporting wire and U2 dry cell．Instruction chemical，mickel chemical，copper
booklet． 90% ，plus $5 /$ post．
MOTORS．A．C． $110 / 230$ volts I／10th H．P． 50 cycles S．P．capacitor start 2,850 r．p．mi．vent．三 enclosed with shaft extension， $39 / 6$ ，pose $3 / 6$ ．
三 $\frac{1}{}$ th H．P． 230 volts semi－enclosed series wound plain bearings，foot mounsing，
LESDIX ELECTROTORS． $41 / 6$ volt D．C．Miniature－Motors for Model Makers and
\equiv toys．The lightest and most efficient Motor made．Used in Model cars，aeroplanes，三 coys．The lightest and most efficient Motor made．Used in Model cars，acroplanes，三 helicopters and up to 18 in ．motor boats． $6 / 6$ ，post $6 d$.
VARIABLE SLIDER RESISTANCES． 500 ohms 0.36 to 2 amps．B．O．B．Open type with \equiv geared movement and hand wheel，25／－post $3 / 6$ ，Generator control Resistances \equiv for B．O．P． 35 ohms 3 amps．on ceramic， $35 /$ ，post $2 /$ ．
THE LESDIX DE－LUXE MODEL CRYSTAL SET in beautiful pastel shades，not a磁 toy but a real wire
MORSE PRACTICE SETS．Air Ministry type with Twin Coil Buzzer and service sype引 key wired on base with space for battery．New surplus， 10% ，post $2 / 6$ ．
LDSLIE IDINDN \＆CD．Dept．H
彦 214 Queenstown Road，Battersea，London，S．W． 8釬 Mitcoltor 2159

TEST IT FREE FOR 7 DAYS

NEWNES COMPLETE

Gas and Arc Welder

INGORPORATES TECHNIQUES AND IDEAS FROM THE U．S．A．

This work has been produced for aspiring welding operators in
MOTOR AND AIRGRAFT INDUSTRIES GENERAL ENGINEERING
SHIP BUILDING AND REPAIR RAILWAY WORKSHOPS ELECTRIGAL MANUFACTURE，ETC．
The demand for skilled welders is increasing because this modern key technique is being used in more and more－factories and repair shops．This means higher pay for the man who understands his job fully．Newnes COMPLETE GAS AND ARC WELDER supplies the specialised knowledge which would take years to acquire in the normal way．

CONTAINS THE KNOWLEDGE NEEDED FOR THESE EXAMINATIONS－

Lloyd＇s：Aeronautical Inspection Directorate； Association of Heating，Ventilating and Domestic Enginecring Employers：Air Registration Board，and the City and Guilds of London Institute．

Expert Contributors include
G．F．Chargr，A．M．Inst．W．，Chief Examiner， City and Guilds of London Institute Syllabus 86a．Lecturer on welding theory and practice． F．D．Hucklesay．A．M．Inst．W．，British Oxygen Co．，L．Id．
S．A．Sales，Manager，Weldcraft，Lid．
Emanuele Stuert．B．Sc．，Specialist in weld－ ing and allied subjects．

ПT TII woting to mir for DAYs Examivation

544

pages
614
photos do drawings
139
Diagrams \＆tables
2 VOLUMES
Also Case of 14 Dara Char 5 s．Each chart $91^{\circ}, x$ 13 $1 \mathrm{j}^{\circ}$ and Plastic－ laminated for hard

FREE

Helding Engineer＇s Pock 7 Book （value $7 / 6$ ）pre－ purchaser
2 Years＇ Technical Service Included

To：George Newnes Ltd．I5－17 Long Acre，London，W．C．99．
Please send me Newnes COMPLETE GAS AND ARC WELDER without obligation to purchase． 1 will either return the work within 8 days or 1 will send only 5－deposit 8 datys after delivery，then eleven monthly subseriptions of $10 /$－ until the sum of $£ 5.15 \mathrm{~s}$ ．has been pitid．Cash price in 8 days is $£ 5.10 \mathrm{~s}$ ．

Name
Address

Occupaion
Your Signathere
（Or Parent signs if you are under 21．）
GA． 1

Thet $(\sqrt{ })_{\text {where applicable }}$ HouseOWNER Houscimolder Living with Parent

VALUABIE NEW HANDBOOK FRE:

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engincering industry, irrespective of age, experience or training.

We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appoint-

ments Department.

WHICH OF THESE IS YOUR

MECHANICAL
ENGINEERING Gen. Mech. Eng-Maintenance - Droughtsman-ship-Heavy Diesel-Die \& Press Tool Work-Weld-ing-Production Eng.Mig \& fool Design-Sheet agement - Mining - Re-frigeration-Metallurgy. AUTOMOBILE

ENGINEERING Gen. Automobile Eng.Maintenance \& RepairsHigh Speed DieselGarage Managenient.

WHAT THIS BOOK TELLS YOU
\star HOW to get a better paid, more interesting job.

* HOW to qualify for ropid promotion.
* HOW ro put some valuable letters after your name and become a "key-man" quiekly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* WHERE today's real opportunities are . . . and HOW you can take advantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering that appeols to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

You are bound to benefit from reading "ENGINEERING OPPORTUNTIES," and if you are earning less than $£ 20$ a week you should send for your copy of this enlightening book now-FREE and without obligation.
POST NOW8 TO: B.I.E.T. A10A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W.8.

Please send me FREE and without
obligation, a copy of "ENGINEERING
OPPORTUNITIES." I am interested in
(stare subject, exam., or career)..
NAME
ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Practical Mechanics

 Edited by F. J. CAMM

Vol. XXVI No. 301

Editorial and Advertisement Offices "PRACTICAL MECHANICS" George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C. 2 (C) George Newnes, Lut., 1959

Phone: Temple Bar ${ }^{4363}$
Telegrams: Newnes, Rand, Lon
Telegrams: Newnes, Rand, London

> SUBSCRIRTION RATES
including postage for one year
inland - - - 20s. per annum Abroad - . . 18s. 6d. per annum
Canada - . . - 18s. 6d. per annum
Copyright -in all drawings, photographs and articles published in "Practical Mechanics" is specially reserved throughout the countries signatory to the Berne Convention and the signatory to the Berne Convention and the
U.S.A. Reproducrion or imitations of any of these are therefore expressly forbidden.

CONTENTS :

Fair Comment
Making a Spot Welder 256
A Circular Saw Bench 258
A Simple Clarinet 259
Puzzle Corner 260
Portraits in a Flash 261
Transistor-Operated Countersand Alarms263
New Method of Book Production 264
Make Yourself a Diving Suit 265
Steel Mill Installation 268
An Improved Jig Saw 269
A Small Power Monoplane 272
Thermo-plastic Manipulation 275
Electrical Installation Layout 277
Getting It Sharp 280
Direct Reading Scale For Ex- posure Meters 281
Letters to the Editor 282
Trade Notes 286
Your Queries Answered 289
THE CYCLIST SECTION
What I Think21
Fitting Toeclips and The Cyclo- meter 22
CONTRIBUTIONS

The Editor will be pleased to consider arricles of a practical nature suitable for publication in "Practical Mechanics." Such articles should be wuritten on one side of the paper only, and should include the name and 'address of the sender. Whilst the Editor does not hold himself responsible for manuscripts, every effort will be made to retum them if a sramped and addressed envelope is cnclosed. All correspondence intended for the Editor should be addressed : The Editor, "Practical Mechamics," George Newnes, Lid., Tower House, Sourhampron Strect, Strand, London, W.C.2.

FAIR COMMENT

HOME-BULLT CARS

O^{\prime}LDER readers of this journal will remember the $£ 20$ car which I designed, built and demonstrated before the war and the construction of which formed the subject of a series of articles herein. It was a three-wheeler with rear drive, the power unit being a single cylinder air-cooled motor cycle engine. I followed this up with a design for a four-wheeler, eliminating the costly differential gear by using a divided back axle with drive to one wheel only. Many hundreds of these cars were built and some are still running.

I have received numerous requests for a repetition of those designs modified to 1959 requirements in view of the high price of even the smallest cars and the incidental purchase tax. It is generally realised, of course, that such a car could-not be built for $£ 20$ today, the figure for a comparable specification being over $£ 100$. Notwithstanding this, a large number of readers still want to essay the task and I have devoted much thought to the matter. I already have the design in outline form, but one of the problems is to find a power unit of reasonable price which is readily available to everybody. Many readers do not fancy the two-stroke engine because of its erratic running at low speeds, and its general fussiness. The $£ 20$ car made use of a $3 \frac{1}{2} \mathrm{~h} . \mathrm{p}$. Burney and Blackburn four-stroke engine which developed lusty power and was quite adequate for the job.

Another difficulty concerns the law. Obviously; a home-built car must comply with all of the legal requirements on construction, and these have varied considerably since those pre-war years. It is for this reason that I have had to advise readers against building some of the car designs which have been published and which have obviously been prepared by those who know nothing about the law. Eyery builder of such cars would be inviting a prosecution.

Regarding purchase tax and registration of home-built cars, there is no statutory provision under which a test of the condition of a vehicle can be imposed before it is registered and licensed. In other words, you will have no difficulty in registering the car, although unless properly designed, you may experience some difficulty in obtaining a certificate of insurance. Without this, the car cannot be registered. Nevertheless, the law requires that every vehicle shall comply with the Construction and Use and Lighting Regulations and it is the liability of the owner or user of the vehicle to ensure that these requirements are met. Enforcement of the regulations rests with the police.

It must also be remembered that licensing and registration authorities will not without question grant a new registration to all vehicles which are home-built. For example, if a vehicle makes use of a chassis or a substantially unaltered chassis of a second-hand car, which has previously been registered, the rebuilt vehicle will be required to retain the original registration mark and will become liable to periodical testing under the provision of the new laws about to come into operation, if the original registration took place 10 or more years previously. It will be seen, therefore, that the construction of a car with old parts is not to be lightly undertaken unless the design has been produced by a qualified engineer. Designs which have been lashed up by some slap-happy amateur in a back garden should therefore be avoided.

In general, home-built cars do not attract purchase tax. As soon as our design has been further developed, the vehicle built and tested, we shall publish it in this journal. This is something to look forward to and I should be glad to hear from interested readers.

THE ADVANCE OF FIBREGLASS

THE applications of fibreglass are being extended to a wide range of products, and in particular the constriction of car bodies. It is light, easily moulded, takes a good finish, and is easily repaired by the amateur. Equally, of course, it is waterproof and rust-proof, and it does not "drum."-F. J. C.

```
The April, 1959, issue will be published on March 31st. Order it now!
```


This Equipment Will Have Many Uses in the Amateur's Workshop

S
POT welding is a fairly simple and an efficient means of joining together thin strips, sheets or wires, and thus has many uses in the home workshop. It is a forge welding process in which the metals are pressed together and are welded during and after the brief interval during which the points are electrically heated. The heat created at the points of welding depends on the resistance R of the two metals placed between the welding electrodes, including

Fig. I (Above).-Dimensions of . transformer stamping.

Fig. 2 (Right).-Details of hardzoood former.
the contact resistance between the metals, the current (I amps.) passed through the metal between the electrodes, the time t during which the current flows. and a factor k which depends on the heat loss from the electrodes and the metals being welded. The heat applied to the metals $=I^{2} R \mathrm{kt}$.
The resistance R is normally quite low, so that a high current I is required to create sufficient heat. Due to the comparatively low resistance only a low voltage is applied between the electrodes. In the case of metals of very low resistance, such as copper and aluminium a still greater current is required, which is usually obtained by elec-tro-magnetic discharge through the primary windings of à welding transformer. A commercial spot welder may be rather complex, incorporating water-cooled electrodes and special devices for controlling the duration of current flow.

A Small Spot Welding Transformer

However, such a welder is not necessary for the amateur, who is not normally concerned with production work. The spot welder to be described is suitable for operation from a 15 -amp., $230 / 240$-volt, 50 -cycle, single-phase a.c. supply and may be used for spot welding iron or mild steel up to about 20 s.w.g.
The heart of the welder is the step-down transformer, which must be carefully constructed. The secondary coil must have a large cross-sectional area in order to carry the high welding current withour overheating, and without undue volt drop which would reduce the welding current. The
large cross-sectional area limits the number of secondary turns which can be adopted in practice to- a single turn. This limitation fixes the approximate cross-sectional area of the transformer core, and a deep core has been adopted in this case. Fig. I shows the core stampings employed, these being of stalloy 0.014 in . thick, which are varnished on both sides. The core is to be built up to $8 \frac{1}{4} \mathrm{in}$. thick, approximately 570 of the stampings A teing required, and the same number of the stampings \mathbf{B}.

A hardwood former is used for winding,

the dimensions of a suitable former being given in Fig. 2. The two end piecees A and B are screwed to the $8 \frac{1}{2} \mathrm{in}$. $\times 3 \mathrm{I} / \mathrm{min}$. X 2 in , centre piece, so that the former can be dismantled for the removal of the windings. It will be noted that six ${ }_{3} \frac{3}{i n}$. wide slots in each end piece are cut to line up with grooves in. deep which cross the centre piece. There are also two tin. wide slots in each end piece, each slot lining up with two grooves 4 in. wide \times din. deep which cross the centre piece.

The Primary
 Winding

The former should be made absolutely smooth with fine sandpaper, and should then be rubbed over with french chalk. The insulation between the primary windings and the core is

the former. The fourtia layer is then commenced after wrapping a layer of paper over the third layer, an 18 in. lead being left for the start of the fourth layer. Thus two leads will then emerge from the back end of the former to form the first tapping indicated in Fig. 3, thes? two leads being the end of the third layer and the start of the fourth layer. At the end of the fourth layer the wire is cut off about 18 in , outside the coil and a systoflex sleeve slipped over the lead as before. After wrapping a layer of paper over the fourth layer the fifth layer is commenced, an 18 in . lead to the fifth layer being left outside the former. The second tapping thus comprises the end of the fourth layer and the start of the fifth layer, and is brought out at the starting end of the coil. Thirty turns are to be wound on each layer. A similar tapping is brought Qut at the end of the fifth layer and the start of the sixth layer. The sixth layer ends at the starting side oî the former, the end of the conductor being cut off about r8in. long and a systoflex sleeve slipped over the conductor.

The Secondary Winding

Over the primary winding is tightly wrapped three layers of 0.0 ioin, leatheroid, followed by three layers of o.oroin. empire cloth, before fitting the secondary winding. The secondary winding consists of 24 strips of 32 s.w.g. (0.0108in.) copper 3 in . wide and 40 in . long, which is to be bent into a U shape as in Fig. 3. For a start the strips may be tied with fine cord at one end, as at \mathbf{P} in Fig. 3. Next the laminated strip is positioned so that the distance from \mathbf{X} to the end of the strip is \sin., i.e., this end of the laminated strip should project 3 in . beyond the side piece of the former. Strong thin cord is then passed through one of the $\frac{1}{8} \mathrm{in}$. wide $\times \frac{1}{4} \mathrm{in}$. deep grooves in the centre piece of the former, up round the $\frac{3}{8} \mathrm{in}$. Wide slots in the end pieces of the former and tied tightly round the secondary strips and primary coil to form the binders Q in Fig. 3.

The secondary strip is pressed tightly round the primary and the next binders R fitted, as in Fig. 3. The procedure is repeated with the binders S , $\mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}$ and Z as shown. The former can then be dismantled and the winding removed, which should appear somewhat as in Fig. 3. One lead should be about 7 in . longer than the other.

Drying Out

It is important that the coil should be dried out. This may be done by suspending the winding in an oven which is kept at about 180 deg. F. for about two hours. The temperature in the oven should be checked periodically during this period, and must not be allowed to exceed 200 deg . F.

Varnishing

Immediately the hot coil has been removed from the drying oven it should be immersed in insulating varnish, such as Ohmaline or Armacell, making sure that the primary coil is covered
by the varnish, but that the secondary leads are completely above the surface of the varnish. No naked light should be allowed in the vicinity of the varnish.

Drying the Varnish

After remaining in the varnish for about five hours the winding should be hung up to drain off surplus varnish, during which period it should be turned round occasionally to avoid varnish accumulating in any one part. The varnish should be drained away from the leads to the secondary winding. If airdrying varnish has been used the coil should then be thoroughly dried out in air. If stoving varnish has been used, the coil should be suspended in the oven for about six hours. The coil, excluding the leads from the secondary winding, should then be bound with $\frac{1}{2}$ in. empire tape passed through the centre and round the coil to cover it. Over the empire tape may be wrapped cotton tape, and the winding given two coats of Pakvderm airdrying varnish. Whilst the primary winding must be well insulated from the core and from the secondary winding, a high degree of insulation on the secondary winding is not essential, since the maximum voltage of this winding is less than 3 volts.

Core Assembly

The core may then be assembled. The centre limb of one of the stampings shown at A in Fig. I is passed through the coil from one side. Next one of the stampings A is passed through the coil from the other side, and a
stamping B laid opposite this on the first layer of the stampings. In this way the core is built up with the two types of stampings projecting alternately at opposite ends, so that the joints in one layer are covered by the next layer. It is very important that th: stampings should be pushed together tightly so that no air gaps are left in the core, and the stampings should be tightly packed.

Transformer Assembly

The assembly of the transformer can now be undertaken, the general arrangement being given in Fig. 4. It will be seen that two pairs of angle irons A and A_{1} and B and B_{1} are required, the dimensions of which are given in Figs, 5, 6, 7 and 8. Additional holes will be required in the pieces A and A. (Figs. 5 and 6), through which the primary coil leads are oassed as in Fig. 4. These holes should be crilled in convenient positions, avoiding any serious weakening of the angle irons, and the edges of the holes should be rounder off to avoid risk of damage to the insulation of the leads. The leads can be bent as may be required.
Four fin. dia, mild steel tie rods, $9 \frac{1}{2}$ in. long, are required. thes being screwed for $\frac{1}{2}$ in. at one end and $r i n$, at the other end. The short threaded ends are to be screwed into the two tapoed holes X in each of the parts B and B_{1} (Figs. 7 and 8). The rods pass through fibre bushes in the two in. dia. holes in each of the parts A and A_{1} (Figs. 5 and 6). The transformer is then clamped up as in Fig. 4, using fibre washers to insulate the tie rods oompletely from the angle iron pieces A and \hat{A}_{-1}. This insulation is necessary to avoid eddy currents passing through the laminated core, which might cause unwanted heating and loss of efficiency. For the same reason the tie rods should not be allowed to touch the edges of the transformer stampings. The pieces B and B_{1} should be spaced $3 \frac{1}{1 i n}$. apart, as noted in Fig. 4, with the same spacing between the pieces A and A_{5}
(To be concluded)

A Cincular Saw Bench

A Simple Addition to Your Workshop Equipment. Make It to Use With Your Power Drill By M. Whitaker

MANY owners of electric power drills may desire occasionally to use it as a circular saw. In order to do this the drill must be fixed in a firm position and some means of offering the wood to the saw must be constructed.

Whist it is possible to purchase the necessary table for this, a simple one can be made on the lines described in this article with various modifications to suit any portable drill and other conditions as regards size etc.
The drill used in the protorype was a Bridges "Neonic" with a 6 in. saw blade.

The Top

The size of the in. plywood table top

Fig. 2.-A sectional view showing method of operation.
is approximately 1 ft . 3 in . $\times \mathrm{Ift}$. wide with a slot cut to take the saw blade at the appropriate distance in from the edge to suit the drill head. Two other slots are next cut at right-angles to the saw slot to enable the fence to he adjusted.

The Box

The bottom part of the table consists of a wooden box structure, open at the rop. The two side pieces have the top corners at each end chamfered as seen in Fig. 1. About 3 in . or 4 in . from the front of the box is fixed a dividing piece extending the full depth and width of the box. On the centre line of this is fixed firmly a nut corresponding to the screw of the winding handle to be mentioned later. The wood is bored out cleanly through the centre of the nut to allow the handle to pass through.

PRACTICAL MOTORIST \& Motor cyclist

Edited by F. J. CAMM

the bottom piece the chamfered ends will be covered (see Fig. 2)

Having now constructed the two halves of the box, place them together to form the complete box with a loose flap at one end. On the opposite end make a slot wide enough for the winding handle to pass through and of length "Y" greater than the cutting depth "X" required for the saw (Fig. 2).

Adjustment Mechanism

The winding handle can be made of any suitable threaded rod provided you have enough nuts to go with it and the idea can be easily followed from Fig. 2. This is now threaded through the fixed nut in the dividing piece in the box and the top half of the box must be fitted over it with the rod passing through the slot.
The loose flap at the opposite end is hinged to the bottom box and on turning the handle the table top will rise and fall along the chamfered slope accordingly.

A Refinement

The friction in the turning handle may be sufficient to fix the level of the table top, hut a refinement and permanent fixing can be made by cutting half slots along each sloping edge of the top and bottom box sections and inserting a bolt, two washers and a wing nut, thus enabling both parts to be trapped at any position.
The sizes and thickness of all members can be determined to suit the constructor's own requirements.

The Rise and Fall Mechanism

On the underside of the table top construct a triangular open box section to correspond with the slope of the chamfered end of the side piece and at the opposite end fix by hinges a board of equal length to the slope so that when the top is placed over

 a Simple
 \longrightarrow Uavinat

F. Hool Continues His Series with Instructions for Making This Deeper-toned Instrument

THOSE who try to group the various instruments already described into a small orchestra may like to include one or two clarinets. These will add another tone colour as well as giving a deeper tone for bass parts which is missing when only bamboo pipes are used.

The instrument to be described is limited to the eight notes of the scale and the intermediate accidentals because no keys are

Fig. 1.-Dimensioiis for the mouthpiece.
Fig. 2.-Making a
clariner mouthpiece clarinet mouthpiece.

$$
\begin{aligned}
& \text { Fig. 3.-Fitting a } \\
& \text { ferrule. }
\end{aligned}
$$

fitted-such work being considered-rather outside the scope of these articles.

Like the treble pipe the instrument is pitched in the key of D. On the other hand it, would be quite easy to substitute another shank tuned to play in the key of C to be used with the recorders.

In regard to the accidentals of the scale, the G sharp and the C natural are the most needed. The six finger holes are first drilled and tuned as will be described later. Then $\frac{3}{B} \mathrm{in}$. below and a little to the side of the fourth and sixth holes, two auxiliary holes are drilled. These holes are drilled out $3 /-16 \mathrm{in}$, diameter and are then tuned to G sharp when the lower three holes and this first auxiliary hole are uncovered, and the C natural when the first five. holes and the second auxiliary hole are uncovered.
When the accidentals are not required the

first and third fingers of the left ${ }^{\circ}$ hand cover

 the usual holes and also the additional auxiliary holes.
Materials Needed

One piece of beech or birch (well sea* soned) 4 in . long $X I \frac{1}{2} \mathrm{in}$. square.

One piece of thin gauge brass tube for a ferrule about $I \frac{1}{4}$ in. dia.

One piece of ebonite tubing, $24 \mathrm{in} . \times \frac{7}{8} \mathrm{in}$. outside dia. with $\frac{1}{8}$ in. wall.

One reed clip or piece of brass $4 \frac{1}{2} \mathrm{in}$. long, $\frac{1}{2} \mathrm{in}$. wide and 16 g . thickness to make a clip.

One clarinet reed or a piece of bamboo to make one the same as was used for making the tenor bamboo pipe.

Making the Mouthp:ece

The block for the mouthpiece can either be turned up in a lathe or it may be worked up by hand methods depending upon the facilities that are available. If turned in the lathe the dimensions given in Fig. should be followed.

If the work is to be done by hand, proceed as follows. First, plane up the piece of wood accurately to I $3 / 16 \mathrm{in}$. square. On the ends mark the diagonals, and, from, their intersection draw a circle of Itin. dia. on each end (Fig. '2).

From one end drill a hole ${ }^{3}$ in dia. to a depth of $1{ }_{4}^{3} \mathrm{in}$. Take every care to keep the drill parallel to the sides of the block.

Now plane down the square block to be cylindrical - in shape. Finish, off smoothly with a file and glasspaper. Work a shoulder on the end with the $\frac{7 i}{8}$. hole to take the ferrule which should be a drive fit (Fig. 3). Alternatively, a ferrule can be fitted over the $1 \frac{1}{\frac{1}{4} i n . ~ d i a . ~ w i t h ~ n o ~ s h o u l d e r ~ t o ~ b e ~ c u t . ~}$
Plane the slope for the reed bed as in Fig. 4 which should be to a depth of $\frac{1}{4}$., sloping away to nothing at the ferrule. Finish this surface dead smooth.

With a $\frac{3}{8} \mathrm{in}$, twist bit inserted into the $\frac{7}{8}$ in

Fig. 5.-Drilling through to the reed bed.
hole already drilled, and pointed towards the reed bed, drill a hole until the drill just breaks the surface of the reed bed (Fig. 5). Now carve out. an opening in the reed bed as shown in Fig. 6, using a small carving gouge for the purpose. Finish off the opening as smoothly as possible.

The end of the mouthpiece is now tapered off towards the reed bed as shown in Fig. 6 leaving a margin of a little less than $\frac{1}{8} \mathrm{in}$. between the wind opening and the outside edge of the mouthpiece. The completed mouthpiece should then be finaliy finished off as smoothly as possible and given one or two coats of clear cellulose or other finish to exclude moisture from penetrating the wood fibres of the mouthpiece.

The Reed Clip

The clip to hold the reed in position is made from a piece of stout brass $4 \frac{1}{2}$ in. X tin. $\times 16 \mathrm{~g}$. Drill a $\frac{1}{8} \mathrm{in}$ dia. ho.e at a distance of $\frac{1}{4} \mathrm{in}$. from each end. At $\frac{1}{2} \mathrm{in}$. from each end bend the strip up at right ang'es. Finally, gradually bend the clip to shape round a piece of broomstick in the first place and then adjust to the circumference of the mouthpiece. A brass 4 B.A. chese headed screw and a terminal nut are used to hold the clip in position (Fig. 7).

The Reed

Musicians usually purchase their reeds, but even so some ladjustment is often made.

Fig. 6.-Making the windway.

Fig. 7.-Making a reed clip.

(D)

Fig. 10 (Right belore).-An adaptor for a commercial mouthpiece.

The practical mechanic will find much interest in making his own reeds for practically no cost at all.

If the reader has made some of the bamboo pipes already described, the reeds can be made from some of the wider bore bamboo tubing such as is used for the tenor bamboo pipes. Pieces of tubing $2 \frac{1}{2} \frac{\mathrm{in}}{}$. long are required and these are split down in in. widths as shown in Fig. 8. The concave side of each piece is smoothed flat with a finely set smoothing plare until a $\frac{1}{2}$ in. width is produced. From a point mid-wav in the length the reed is now pared away with a sharp $\frac{3}{3}$ in. firmer chisel to a thickness of about orin. To finish off, the end is rounded to match the end of the mouihpiece.

Fit the, reed in place on the instrument and try to produce a note. This is achieved by drawing the lower lip over the bottom teeth and resting the reed upon the lip. Place the tongue tip in contact with the end of the reed, quickly withdraw it as when saying the sound "Teu." This will permit air to pass by the reed and into the mouthpiece and start the reed vibrating. This is the method used to articulate notes and the process is called "Tonguing" by musicians.

Possibly a note will not be produced at the first effort. Treat the reed with care as it will split easily after which it is useless. The end of the reed should not protrude beyond the end of the mouthpiece. The reed bed should he so adjusted that the end of the reed is raised a little less than a I/16in. above the bed, enabling air to pass through into the mouthpiece.
High pitched squeaks will reward earliest efforts. These are not required; concentrate on producing a low mellow tone. The thickness of the pared end of the reed is vitally important in regard to the production of a good tone. Scrape away the reed to make it "soft" and easier to blow. A thicker reed is harder to blow and is, of course, called a "hard" reed. Aim for an easily produced tone with quality.

Experiment until a good note is produced before proceeding to tune the instrument. When ready. saw off small pieces from the lower end of the ebonite tube until the fundamental note \mathbb{D} is produced.

Drilling the Finger Holes

The first finger hole is centred 3 in. from the base of the instrument. the distance being about one-sixth of the distance from the tip of the mouthpiece to the lower end of the clarinet.

The second hole is $r \frac{3 i n}{3}$, above the centre of the first. These two holes are opened out

in the same way as described for the other instruments.

The third hole is I in . above the centre of the second hole. Such spacing makes it very difficult to cover with the three fingers of the hand unless one possesses very long fingers. Therefore, the third hole is made at the back of the instrument and covered with the thumb of the right hand.
These first three holes will enable the player to prodiuce the notes, E, F sharp and G of the scale of D major.

The next hole to make is that which prołuces G sharp. This is $2 \frac{1}{2} \mathrm{in}$, above the centre of the G ho'e. This ho!e is drilled in, to the left of the centre line of the lower holes as shown in diagra:n. The hole to produce A is in. higher but in line with the lower holes. The third finger of the left hand covers these two holes in the
ordinary way, both being uncovered to produce A. The finger closes the top one only if G sharp is required. It sounds complicated but is easy in practice. A shallow oblique groove can be filed in the ebonite tube to include these two small holes so that their position may be easily located when playing the instrument.

The next hole is $1 \frac{1}{8}$ in. higher and is tuned to B.

The hole giving C natural is drilled $\frac{1}{8}$ in. out of centre in the same way as the G sharp hole. It is $\frac{3}{4} \mathrm{in}$. higher than the B hole. The hole for the leading note of C sharp is $3 / 16 \mathrm{in}$. higher and is drilled centrally.

Finally, the thumb hole on the bask of the instrument is $\frac{3}{4} \mathrm{in}$. higher and is tuned to upper D.

It should be said that if the constructor wishes to omit the two holes for the two accidentals at first to simplify the construction they may be added at a subsequent date quite satisfactorily.

If the reader wishes a commercial B flat clarinet mouthpiece may be purchased insread of making the mouthpiece as described above. In such a case it will be necessary to make an adaptor for it to fit to the finger tube (Fig. 10). This consists of a piece of wooden or ebonite tubing 2 in . in length and of $\frac{7}{8} \mathrm{in}$. bore. The commerciso mouthpiece has a cork inset on the lower end and it may be necessary to glasspaper this down a little in order to get it to fit smoothly into the adaptor.

On the left of Fig. II the stages in making the mouthpiece from a block of wood are illustrated. On the right of the illustration is shown a commercial mouthpiece fitted to the adaptor ready to place on the finger hole tube.

The completed clarinet is shown in the heading.
(This series is to be cominued)
rig. 11.-On the left ave shorm two stages in making the mouthprece, right is a commercial mouthpiece. A reed clip is shown in the foreground.

1.-Banking Problem

TF Adam had invested a penny at per cent. compound interest, what would the principal amount to after 6,000 years (Adam being born at approximately 4000 B.C.) ?
2. Can You Send Us a Solution?

EVERY add number over seven can be expressed as the sum of three odd prime numbers. (A prime number is one which has no factors, but itself and one, e.g., 13 is 13×1 and is prime, whilst

16 has several factors, e.g., $16 \times 1,8 \times 2$, 4×4, and is therefore not prime.) Consequently, in the theorem in question, 35 can be written $29+3+3$. Thirtyseven can be written $29+5+3$, and so on We can easily test this by actual working out in the case of low-power numbers such as just given, but can you prove that it is true for every possible odd number-one going to billions of trillions?

Answers

1.- $\$ 43,650,000,000$. Such a calculation is best worked out by logarithms. Where the principal is P, the rate r, and the number of years n , the total amount Pn will be: $\log : P n=\log P+n \log (I+r)$.
2.-We do not know if this problem can be solved, but invite readers to tender solutions for our Letters to the Editor pages.

Fig. 1.-One PFI (diffused) at camera and one PFI4 (not diffused) as back light. The exposurewas $1 / 25 \mathrm{sec}$. at $\mathrm{f} / 16$ on Panaromic X dereloped in IDri.

THE facility with which, using flash, one can produce at a moment's notice a source of powerful illumination far
Fig. 2. (belozu), -One PF25/ suougcr 97 (diffused) at camera and one PF25/97 as modelling light. The exposture was I/25 at

Fig. 3.-One PFI4 (diffused) at camera and one PF25 (diffused) as modelling light. The expostre
was $1 / 25$ sec. at f/22 on FP3 developed in IDi1. A blue filter was used.
greater than any reasonable number of photoflood bulbs, also eliminating the necessity of carrying all the impedimenta of floods, is well worth the extra expense involved. With the use of extension units and other techniques, such as bounced flash, it is possible to obtain pictures of comparable quality to floodlight

One may therefore enter the homes of friends, club houses and pubs and, with a minimum of preparation, produce very worthwhile results. All this without the anxiety of possibly blowing the fuses. For the illustrations with this article the minimum requirements of two flashbulbs were used; it is quite possible even with one bulb-to make attractive pictures, but the versatility provided by the extra source will be quickly appreciated after a few exposures have been made. The use of reflectors has been eliminated as being often uncertain; the best ones must necessarily be bulky and not easily portable.

First Attempts

The basic requirement of correct exposure can only be obtained with the experience gained by following the recommended flash factors of the bulb manufacturers and adjusting this to suit one's own technique of development and apparatus variations. In the beginning it is as well to keep to one constant - shutter speed (the simpler synchronised shutters leave no alternative, thus

Fig. 4.-One PFI (diffused) at camera and one PF14 as modelling light. Exposure was $1 / 25$ sec: at f/16 on Panatomic X developed in IDII.
and if necessary use diffusing material over the bulb to reduce the power. The first attempts should be made with a single bulb near the camera to establish the minimum correct exposure required, and it is necessary to emphasise again that over-exposure must be avoided.

The diffusing material, which can be muslin, curtain net or anything similar; will improve the modelling quality of the light. and make it more manageable. To éstablish the light cutting power of the material it is only necessary to take a meier reading of any scene with and without the material. over the meter and note the effect in value of "stops " of its' , use. It is useful to have a number of materials, or thick nesses of the same material, available in àcending value of stopping power, say, 2, 1, 2 and 4 stops.

The Second Lamp

Having with one lamp established basic exposure which will give adequate shadow. detail and good modelling one may proceed to employ the second lamp in any one of a variety of positions depending upon the effect required. This lamp then may be used in the classical 45° position (45° to camera and 45° of elevation) to give a livelier picture with greater contrast, as a backlight giving a "halo" effect or from the side for even greater brilliance and character studies; in short, to achieve any mood the photographer desires.
The effect of the distance of the second light from the subject is of paramount importance in achieving the desired contrast

Fig. 5.-The lighting used zvas the same as for Fig. 4 as also was the exposure and processing.
in the subject; it is not, however, easy immediately to fix this distance, but as a start one might place this at three-quarters of the camera subject distance, assuming that the same amount of diffusion is used on both lights and that the first lamp is at the camera. This should give a pleasing balance without undue contrast. The problem, as in all pertrait work, is primarily the one of balance between fill in and modelling or accent light and the beginner is recommended to keep contrasts low until greater experience is obtained.

Exposure

The flash factors provided by the -bulb manufacturers are the basis of all flash work and one may use these both when employing one or two bulbs. In fixing the basic exposure it has been suggested that a constant shutter speed be used; $1 / 25 \mathrm{sec}$. is suitable for portraiture and it also obtains the most light from any given bulb, it is also useful in quickly determining the second lamp position by means of the flash factor, for it is only necessary to remember one factor, or two at the most, if bulbs of two different powers are used.

With the aperture fixed by means of the basic exposure previously obtained it is only necessary to divide this aperture into the flash factor for the second bulb to obtain the distance for this bulb. However, it is not quite as casy as that in prac tice, for as it st?nds, the resulting set-up would give equal effect by both bulbs and the power of the basic bulb must therefore be reduced to increase the modelling effect of the extension. It is here that the facility of using diffusing material is appreciated for, by the choice of material of suitable stopping power, one has control over the contrast obtained. As the basic light is reduced so must the overall contrast be increased. Alternatively, the extension light may be moved closer.
One of the difficulties in using the second light is that of establishing its actual position relative to the subject, for one cannot, of course, see the effect of this, either in terms of contrast or modelling, and one has to learn by experience in sighting over the reflector the angle at which the light will strike the subject. With a little experience, however, it is possible to visualise quite accurately the result of using the bulb in any given position.

Particular Requirements

Generally speaking men can stand a stronger trearment than women and children both in contrast of lighting, vigour of pose,

Fig. 6.-Lighting, and processing for rhis portrait suere similar to that used for Fig. 4.

etc., and are therefore a more fruitful field for ${ }^{4}$
experineital work when it experintental work, when it the sit'er. Apart from ONE PFI greater scope in lighting one ONE GAYEP MUSLN can with advantage use the orthocluromatic rendering either by means of the ortho film or, if it is required to photograph both men and women on the same roll of film, by the use of blue flashbulbs and a blue filter over the lens, Exposures with blue bulbs when used with monochrome film are not usually given, but a safe guide would be an increase of one stop over the normal for a similar type clear bulb (i.e., PF25 compared with PF25/97).

With male subjects one may with safety dispense with the flash at the camera and, especially when using the higher speed films to provide some shadow detail, place the one light in any one of a wide variety of positions. The male sitter will not be nearly so concerned with dark shadows and the showing up of one or two wrinkles as will a female one.

Female models, unless they are very beautiful and can stand "glamour treatment," seem to prefer a softer type of lighting; the light at the camera should therefore be invariably used and the range of contrasts kept to the limits of a softly lighted studio portrait, say, 4 or 5 to 1. Diffusion of bulbs is most useful with the ladies and both the basic and modelling lamps should

Fig. 7.- Two PF_{2} 's, one of which was diffused, reere used as shown above. Exfosure was I/25th sec. at fiz2 on FP_{3}, developed in Microphen.

be covered with at least one layer of material. Fair hair requires back lighting to give it its full feeling of colour, but does not need to have the lamp quite as close as would the darker tints.
Children are perhaps the easiest of all subjects for flash, for the photographer feels the advantage of the possibility of using a high shutter speed when necessary. An adequate frontal lighting well diffused is all that is really necessary and providing overexposure is avoided the fine complexions of most children will provide prints of good modelling.
Thus it is possible to use both lamps, one on each side of the camera, to obtaln a good general flood of light, or one lamp may be used in practically any side or back position for an accent light.

The technique of bounced flash is worth an experiment or two, especially when photographing children, as the more diffused effect of the flash will be more acceptable to them.

Including a Window

There are two methods of approaching the problems of including window space in any picture and it has to be decided what type of picture is aimed for. Whether in fact the exposure should be based upon that of the flashbulb or that of the daylight.

If exposure has been adjusted to record adequately the outside light, the fill in flash must be damped down so as to illuminate the shadow side only. This is done by finding the exposure required for the window area and by reference to the flash factor of the bulb and the distance of the camera from subject, selecting diffusing material which would give approximately quarter of the light which would normally be required for the flash if used alone.

If the exposure is based on normal flash requirenients without reference to the daylight the latter, being so much weaker than the flash, will fail to register adequately; the outside scene therefore will appear os if the shot were taken at night.
The materials for portraiture by flash should be chosen not for their speed, as adequate light is available, but for rendition of flesh tones and fine grain characteristic. A film of the Panatomic \mathbf{X} type is excellent and may be developed in any general developer of the IDII class for normal time. A light blue filter is also recommended.

Transision: Operated Counlerss Alarms

Details of a Mains Power Pack for Operating

the Various Units

ASUITÅBLE mains power unit will be described, but it is doubtful if it is worth while making such a unit unless great numbers of counts (in the case of the photo-counter described last month) are required as the new range of transistor batteries give very good results very cheaply. The consumption in the static position is only about 2 mA , giving a life (usable in this circuit) of about 120 hours minimum, which works out at 0.2 pence per hour. Heat dissipation in a power pack would amount to more than this figure. Using a PP8 battery (with RII onitted) the life would be a good 9,000 hours or just about a year's operation, this must be somewhere about shelf life. When counting, the second relay takes about 30 mA and the counter about 450 mA ; this is rather heavy, but is momentary and as such does not harm the batteries. The PPi appears capable of counting at least 5,000 counts over a week and the PP8 probably about five times as many

However, it is possible to work all the equipment described in this series from the mains and for long continuous operations, as in the automatic door bell/counter, mains operation may prove economical. A suitable power pack circuit is shown in Fig. 45.

The Base and Case

The unit may be made up in any form together with the unit that it is to operate. Details, however, will be given for a self-contained unit supplying appioximately 7 v. smoothed D.C. at 2 amps., and another supply of controlled 5 to 6 v smoothed D.C. and il v. A.C. These supplies will enable stable voltages to be used for: (I) transistor supply and primary relay; (2) secondary relay and counter, etc.; (3) the light source using a car headlamp bulb.

The case is made up by screwing the end pieces to the base in the same way as in the other units (Figs. I4 and 15). The warning lamp glass is screwed into a suitable hole drilled in the rear and three double terminal blocks, tag boards, etc., are fixed as in Fig, 45. A small mains switch, S7, of any type is fixed to the front and a hole drilled to take the mains lead. A cover is made of tinplate painted black

Mounting the Components

Full details of the components are given in col. 3 and only readers with experience should deviate from this list. The positions do not matter very much, a suitable arrangement being shown in Fig. 44. Brackets may have to be made for the mains transformer and air space

Fig. 43-Power, whit circuit for photo-operated devices. should be allowed round the rectifiers which are mounted $\frac{1}{2} \mathrm{in}$. above the base on metal brackets as shown in Fig. 47. Do not touch the nuts marked, N which control the pressure of the selenium or oxide plates.
Condensers may be mounted upright as shown using conventional clips (ordered with the condensers at about 3 d . each), or sideways, using small tinplate clips held down with a small wood screw.

Mount the dial lamp to coincide with the
glass already fitted and fix VRI on brackeis in any suitable position. Verify that when the metal cover is attached it will not short on any live part of the circuit.

Wiring the Power Unit

The wiring is as shown in Fig. 43. No special precautions are required. Use the correct tapping of the transformer according to the mains. The rectifiers are marked with a red and black blob of paint so that
you may pick out the D.C. tags, the unmarked tags are those for A.C. connection. Sometimes the latter are coloured green. C7 and C8 नust be connected the right way round and should not get hot, if they do they are faulty.

Before joining the 6 v . and -5 v . transformer windings together it is necessary to get the phasing correct or the total output will be one volt instead of II.

Any shorts across the D.C. side will cause the rectifiers to become faulty and readers may wish to put fuses in the output leads. In this case values should be 2 amps. for output No. 1, 200 mA for output No. 2 and 3 amps. for output No. 3.

Shorts across the A.C. side, or faulty recrifiers will cause the transformer to overheat and a fuse in the mains would probably avoid. complete failure A value of 250 mA , if it will hold when the unit is. switched on, is quite suitable, but it could be increased to 500 mA . Whether this is necessary will depend on many variable

PARTS REQUIRED

Base of in. wood tolin. x sin.
 Tinplate cover 11 in $\times 1$ in.
Three 2 -way terminal blocks, tag bourd or 6 -way block.
67 Electrolytic $200 \mu \mathrm{~F}$ or $500 \mu \mathrm{~F} \quad 6(12 \mathrm{v}$. working. (Henry's Radio).
Radio).
(Henry's Radio) MR2 Metal Brid
amp. (R.S.C. Leeds)
A few inches of metal strip for mounting rectifiers.
Pieces of tinplate, etc.
S7 Toggle type switch
Warning lamp $6.3 \mathrm{~V}, 6.3 \mathrm{or} .16 \mathrm{amp}$.
Red or Green warning
Red or Green warning lamp, glass and holder to suit bulb. (Henry's Radio).

Transformer
Primary to suit mains input
Output required:- One of 6 v .2 amps and another of 5 v . or 6 v . at $\frac{1}{2} \mathrm{mp}$.

Almost any ordinary radio transformer will suit. the H.T. windings being left open circuit. Shi 400 or 500 ? porentiometer, any kind would suit. The prototype used a T.V. slider bracket, sliding type two require al mockets.

(b) Front Ponel

factors, chief of these being the condition of the electrolytics.

Testing the Power Unit

It is advisable to test the unit prior to connection, but if no meter is available a thorough visual check will suffice. Output No. I shöld show about. 7 volts D.C. with the needle showing no vibration at all, a volt either side of 7 will not matter. Output No. 2 should be continuously variable between zero and approximately 6 volts (not critical). If output cannot be brought to zero, VRI is faulty and must be replaced. Set it to give exactly 5.5 volts D.C. If no meter is available-set it at the

$$
+
$$

and not when demands are heavy (say, Sunday mornings or a very cold evening). Readers may not be aware that, by Statute, the mains supply is allowed to vary plus or minus 6 per cent. from the mean voltage. Where unstabilised supplies are being used,
lead marked 0 No. 2 is unsoldered and connected to output No. 2 positive. Lead marked O No. I is removed and output No. 1 positive is soldered to armature of relay No. I (marked-C) and is left connected to Cr .

When wiring to the "Photo-
counter," refer to Fig. 37. Use output No. i in lieu of B_{5} and output No. 2 in lieu of B4.

Wiring of the burglar alarm is similar to that for the throw-over switch. The difference being that the bell circuit is completed by wiring leads to B3 to the output No. I terminals. There are thus two complete circuits connected to No. 1 output.
If the system of Fig. 33 is used it would be necessary to modify the power unit slightly. A 12 v . winding would be necessary and it would be wired to give another output of about 14 v . D.C. (output No. 4) in exactly the same
way as for output No. 2. Two
Fig. 46.-Two views of the completed mains poser pack.
on transistors especially, readers should make sure the maximum voltage to be attained is a safe one, i.e., set up when mains load is light.

How to Wire the Units Together
Wiring to the "throwover switch" is best done as follows: Refer to Fig. 23. Si may be removed with the battery as a switch is fitted on
minimum voltage which will operate the photo-transistor in the unit being operated. When serting voltages do it when the mains supply is on a light load (i.e., late at night)
the power unit. The negative poles of outputs No. 1 and No. 2 are connected to m or g or the switch if it is left in situ. One lead may be used for this purpose. The emitter correct, would do. This third output would then be wired in lieu of the two PPI's of Fig. 33. Since the power is only required when a burglar sets the system off, the battery set up is considered best. The

Fig. 47 (Left).-Mounting for MR2 and (right) mounting for MRI.
burglar could not "mute" the system by pulling mains fuses or shutting off at the mains.
(To be concluded)

NEW METHOD OF BOOK PRODUC'IION

Makes Reprinting Economical Even for One Copy

F the book you want is out of print, a one-copy edition can now be printed specially to order by a revolutionary new method of book nroduction.

The Publishers' Association has now approved forms of agreement to be concluded with publishers to cover books that are still in copyright, but, of course, there are many ihousands of books which are out of copyright. Old and rare books which are out of copyright can also be reproduced by this method. Microfilm now becomes not just a convenient way of storing information but an intermediate between the printed original and the printed copy. This is made possible by the new technique of xerography (electrostatic printing) which can enlarge from microfilm on to ordinary plain paper.

Pioneering this new method are University Microfilms, Ltd., of 67, New Bond Street. Where a book is still in copyright, they will first get the publishers' consent, then will microfilm each page which is to be reprinted. The film is processed and then put on to a Copyflo automatic xerographic machine. As the Copyflo produces 20 feet of prints a minute, the actual printing operation for a 200-page book takes only five minutes. This xe:ographic printing is done by the

Rank-XeroX Copy Service at 33-41, Mortimer Street, London, W.I.

When "perfect" bound and covered, a. 250-page book costs about $£ 515 \mathrm{~s}$. (including microfilming) and further copies cost about $£ 415 \mathrm{~s}$. each.
About 14,000 new titles a year are published in. Britain alone and it is therefore inevitable that many valuable books on all kinds of topics go out of print. Where the further demand is only for a small number of copies it is completely uneconomic to produce them by conventional methods. This new method, therefore, is complementary to conventional printing, and enables publisher and author to satisfy the customer who wants an out-ofprint book.

Libraries, universities, industry and the individual reader will now be able to fill gaps on their shelves and also to replace deteriorating books with xerocopies. In addition, xerocopies can now be made of valuable books, so that the original need never be handled and copies are available for lending, sending overscas, etc.

This system is not suitable for reproducing half-tones, but texts, diagrams, graphs, charts and line drawings reproduce well.

The National Do-It-Yourself Magazine PRACTICAL HOUSEHOLDER

> PRINCIPAL CONTENTS:
> Skylight in a Sloping Roof Corner China Cabinet
> Contemporary Light Fittings Don't Neglect Your Lawn Mower Oil Conversion for a Fuel Store
> Installing a Bathroom Slating a Roof A Portable Swing
> Making a Dining-room Suite Aluminium-framed Greenhouse Work Benches
> Recesed Cocktail Cabinet Eatex Foam Divan Thermo-plastic Tiled Flooring External Rendering Solid Concrete Walls

LEAVE for a few hours; finally, remove the binding and bottles and the joint is complete. The seals at the wrists, ankles, waist and neck can be dealt with in sequence and the whole job completed in two stages, that is (a) secure all the. seals, bind and leave to dry, (b) secure rubber tape to cover the outside edges of the joints.
The ankle seals are secured in a similar manner to those at the wrist. However, the trouser legs are too large to stretch over bottles. If suitable cylindrical formers are not available then wooden ones, as shown in Fig. 9, can be used. The edges of these are radiused to fit into the trouser legs and the ends tapered to suit the small opening of the cuffs. The binding is not so effective in pressing the surfaces together with

Fig. 9-Former for securing ankle seals.

Fig. 10.-Former for securing waistbands.
these flat formers. If flat formers are used, therefore, hammer the two surfaces together, particularly around the edge of the cuff and the rin. rubber tape, before applying the binding.

The Waistbands

These are secured in a similar manner to the cuffs, but in this case the former shown in Figs. Io and II is used. One waistband is secured to the tunic and the other to the trousers. The waistbands are attached to the tunic and trousers in an identical manner and the former shown is suitable for both garments. Roughen the surfaces that are to be stuck together and then position the tunic and the waistband on the former so that the waistband
overlaps the tunic by about zin., that is, to the previously marked line. Now fold back the overlap of the waistband and apply the rubber solution. The solution has to be applied over quite a large area and it will be found most practicable to apply it and to press the two surfaces together first on one face of the former and then the other. The surfaces cannot be bound together effectively on this wide flat former; they should, therefore, be pressed and then hammered firmly together, particularly around the edge of the waistband. When the waistband is secure, remove the former and check that the inside edge of the tunic, is firmly secured to the rubber waistband. Hammer this edge down,- if necessary. Replace the former, then roughen the surfaces and stick a band of rin. rubber tape around the edge of the waistband. Press the tape on firmly and again hammer it down, particularly around the edges. Leave the former in position for an hour or so then remove and use it to attach a waistband to the trousers.
Securing the Neck Seal
The shape of the neck seal makes it In This Second and Conclud-
ing Instalment R. J. Garvey
Gives Final Details of the
Dry Suit, Some Accessories
and a Wet Suit.
impractical to use a former; a little care is required in attaching it without a former, but the operation is not difficult. Roughen the two surfaces that are to be stuck together, apply the rubber solution, wait until the surfaces are tacky and then press the seal firmly into position on the tunic. Make use of the outline previously marked on the tunic and try to place the seal in the correct position first time; it is difficult to re-position it once the tacky surfaces have come into contazt. As with the waistbands, it is best to apply the solution and to press the surfaces together first on one side of the tunic and then the other. Hammer the two surfaces firmly together. Pay particular attention in hammering down the edge of the seal; this must be quite secure since it is not to be covered with the I in. rubber tape as were the other joints. Turn the tunic inside out and make sure that the inside edge, at the neck of the tunic, is firmly attached to the rubber seal. Hammer this edge down if necessary.
The suit is now complete. Make a final examination of the rubber seals. Turn the tunic and trousers inside out and examine the inside edges of the joints. Apply a little more solution and hammer the edges of the joints and the rubber tape down where necessary. Finally, dust the suit and the rubber seals with french chalk.

Dressing and Undressing

You will need some practice in getting the suit on and off, particularly over bulky underclothes, and may require some assistance to begin with. Try putting the suit on withour underclothing at first. The dressing procedure is'shown in

Fig. 13. Step into the trousess, stetend the waistband between your shins and roll it down in a tight roll around the top of the trousers. Stretch the ankle seals over your heels and ease thern into position iust above your ankles. Now grasp the rolled waistband and pull the trousers up to the waist. Unroll the waistband up the chest and then fold it well down over the hips as shown in Fig. 13(a).

Next roll the waistband of the tunic into a tight roll. This can be done by stretching the waistband between your_legs and rolling it down on to the tunic. Get the head and arms into the tunic and ease the cuffs into position over the wrists. Pull the neck seal over the head and ease the tunic down to the waist. Make sure the tunic and trousers meet well at the waist, smooth out any folds in the trouser waistband and then unroll the waistband of the tunic over the top of it to form a double thickness over the hips-see Fig. 13(b). Smooth out any folds and then roil the two waistbands into a tight roll around the waist as in Fig. I3(c).

All that remains is to roll on the cummerbund which holds the rolled waistbands in position and so complete the seal at the waist. Stretch the cummberbund between the shins and then roll it up from the bottom edge, over the hips and over the waistbands to the position shown in Fig. 13(c). Now unroll it down over the waistbands. Mask, fins and aqualung complete the ensemble as shown by Fig. I3(d).
To remove suit pull the neck seal over the head and the wrist seals over the hands.

[^0]Fig. II.-Attaching the waistbands.

Fig. 12.-The boot former.
Now bend over and pull the tunic down over the shoulders. Once off the shoulders there is no difficulty.

A final check before entering the water: make sure the neck seal fits well around the meck and shoulders. Smooth out any folds in the wrist and ankle seals and pull them up on the forearms and legs, if necessary, to give a tighter fit.

Testing in the Water

Enter the water up to your neck with the arms at the side of the body so that all the air trapped in the suit rises to the reck. The suit can now be vented by easing the neck seal open until all the air has escaped but take care not to let in any water. Make sure that the neek seal is still fitting properly around the neck after this venting operation. Assuming you are suitäbly trained, weighted and equipped you are now free to dive.

A word of warning: do not dive without venting the suit properly. If your suit is not free of air then:
(a) Your buoyancy will decrease with depth since air in the suit will be compressed as you descend.
(b) The air can rise in the legs of the suit and so affect your "trim" under the waier.
If there are any leaks, these may be due to lack of care when dressing; possibly the wrist and ankle seals were not pulled up high enough on the arms or legs. If this is not the cause then examine the attachment of the rubber seals-examine them in any caseand make sure that the rin. rubber tape covering the edges of the cuflis and waistbands, is secure, particularly at the edges. Turn the suit inside out and make sure that the edges of the garments are firmly secured to the rubber seals. Apply some rubber solution and stick the edges of the garments, or tape, down where necessary.

The hole in the rubber neck seal can be enlarged now if necessary by cutting off one or more of the moulded rings; do not remove more than one ring at a time and try on the neck seal after each cutting until the fitting is satisfactory.
Sponge the outside of the suit down with cold water after use, particularly after immersion in chlorinated or salt water. Turn the suit inside out and hang up to air in a well-ventilated place but keep it away from direct heat and sunlight. Dust all the rubber surfaces with french chalk before putting the suit away and store it so that damp cannot penetrate inside the suit.

Rubber Hood

For a prolonged stay in the water, the

Fig. 14.-Leg piece for short trousers frame. head, hands and feet need some protection. In this case it is worth considering the alternatives of a rubber hood and boots in place of the neck and ankle seals and the addition of a pair of rubber gloves.

The hood covers the head and neck; the seal being provided by a tight fit around the face. It is fitted with ear pads designed to equalise the pressure on either side of the ear drums; these should not be removed. It is not practicable to make your own hood; it must be bought; the price is given on the next page. The hood is attached to the neck of the tunic in the same way as the neck seal. If a neck seal is already fitted then stick the hood in position over the neck seal. This gives a double seal against the entry of water and is a feature of some of the more expensive commercial suits.

Boots

Rubber boots can be bought or made. The commercial items are expensive, the suppliers and cost being listed on the next page.

Fig. 13 (a) (Left). -Unroll the waistband up the chest then fold it down over the hips. Fig. 13(b) (Above, left).-Make sure the tunic and trousers
 meet well at the waist. Smooth out any folds in the trouser waistband,
then umoll tunic waistband down over it. Fig. 13 (c) (Above, right).-Roll the cummerbund up to the position shown then uroll it down over the waistbands. Fig. 13 (d) (Right). -The complete outfit.

March, 195s
However, a serviceable pair of boots for attaching to the suit can be made by proofing a pair of socks. These should be of generous size and preferably in a thin wool or cotton material. Thick woollen socks are unsuitable since it would be difficult to attach these to the suit. Stretch the socks over a frame, such as the one shown in Fig. 12 and apply four or more coats of Revultex. Now turn the socks inside out

Fig. 15--Frame for short tronsers.
oas the frame and apply three or more coats to the top $2 \frac{1}{2} \mathrm{in}$, of the inside. This provides a rubber surface for adhesion to the trouser legs of the suit. Stick lightweight rubber soles and heels on the underside of the socks. Cut these soles and heels from \dot{a} thin sheet of rubber if this is available. Thick soles and heels will be difficult to attach, will make the boots heavy and "clumsy, and it will be difficult to fit on your "fins."
Put the trousers and boots on and trim the trousers if necessary so that the top of the boots overlap the bottom of the trouser legs by about 2 in . Now stretch the trousers and boots over a suitable former and secure the boots with rubber solution; the boots to overlap at the joint by about 2in. Hammer the surfaces together to make a tight joint, then stick and again hammer bands of rin., or wider, rubber tape around the outside edge of the joint.

Rubber Gloves

These, only necessary in extreme conditions, are best worn separately and not attached to the suit. They are fitted with cuffs to provide a seal at the wrists. Any thin rubber gloves are suitable and a pair of cuffs as used on the suit. Cut the gloves off short at the wrist, that is, about I $\frac{1}{2}$ in. above the thumb hole. Stretch the gloves and cuffs over bottles and secure the cuffs with rubber solution. Pull the cuffs well

NEWNES .PRACTICAL MECHANICS

down to give an overlap of in, or more before securing them to the gloves.

Venting Valve

Another useful accessory is a venting valve. This, a simple "Spear" valve, is fitted at the back of the neck seal or hood and allows.air to escape from the suit as the diver enters and descends into the water. The valve can be fitted by cutting a small hole in the neck seal or hood. A short piece of tubing, about ${ }^{3} \mathrm{in}$. o.d. then serves as a former. This is inserted in the hole and the valve pulled down over it so that it overlaps around the hole in the neck seal or hood. The overlap is pulled back, rubber solution applied and the two surfaces stuck tozether.
The rubber hood, boots and Spear valve can be purchased from Andrews and Dalton, Ltd., 126, Hanworth Road, Hounslow, Middlesex, the costs being:

	£	5
Hood	2	2
Boots	2	5
Spear valve		2

Wet Suit

A wet suit can be made quite simply and cheaply. Such a suit does not keep the diver dry, but holds a layer of water near to the body, thus preventing the body heat being carried away by the cold water circulating freely oyer the skin. The suit is made in a similar way to the dry one, but short pants are sufficient and there is no need to go to so much trouble in providing seals against the entry of water. The suit should, however, provide a snug fit at the neck and wrists and around the thighs so water cannot flow freely throughout the suit.

Choose a fairly thick and absorbent material for the basic garments, but remember, if the weave is too open it will soak up an excessive quantity of the Revultex. If short pants of the required tight fit are unavailable then cut the legs off some long ones. If the legs are too wide cut a piece out of each leg and sew them up to the right size. The wet suit should fit closer to the body than the dry one otherwise it will tend to trap a large volume of water which will use up body heat; choose the garments accordingly.
A rubber neck seal, as used on the dry suit, is essential but it need not fit so tightly around the neck. Cuffs can be fitted at the wrists, but they are not essential provided the sleeves fit fairly tightly. Rubber waistbands on the tunic and trousers are unnecessary. A belt, or preferably a single cummerbund (smallest size), around the waist will be sufficient.

Items which must be bought for the wet suit are:

ANDY MANN

These are made by the Dunlop Comnsकาand obtainable from the sports outfitters mentioned earlier. The remaining items, if not already available, can be purchased for:

The wooden frame for the tunic shoult be similar to the one used for the dry suit (Figs. 2, and 3), but the width of the body should preferably be about rin. less than that shown and the arm pieces about $\frac{1}{2} \mathrm{in}$. less in depth. A frame suitable for the

Fig. I6.-Pants stretched over frame ready for proofing.
short trousers of the wet suit is shown in Figs. 14 and 15 . This is suitable for til average figure. The only important dimen* sion here is that which determines the size of the leg opening since the pants are to lit fairly tightly anound the thighs.

Sew some loops inside the waist of the short pants before proofing them. A cord threaded through these will serve as a simpl: belt to secure the trousers and tunic at the waist. The short trousers should be stretched on the frame, as shown in Fig. I6. Appl. at least four coats of the latex to the garments, then attach the rubber 'seals at the neck and wrists as described for the dry suit.

The Practical Mechanic

Dll slabbing milliremotedamá mew Universal Type installed in 14 days:
were the screw-down assembly weighing 80 tons and the 125 -ton mill housings.
The new mill was designed to use the existing foundations, but about 5 ft . of concrete over an area of 220 sq . ft. had to be removed to receive the very large soleplate needed to support the vertical edger mill. It took 36 hours to expose a new level of mature concrete which was then

TO increase slab rolling capacity from 48,000 to 60,000 tons per week, the installation of a Universal mill was necessary at the Steel Company of Wales" Abbey Works.

As all the steel ingots produced in the works have to pass through one slabbing mill the installation of a new one would have caused interference with production, and therefore a changeover which could be completed in the shortest possible time had to be planned.

Because of the lack of head room in the existing mill building the company's engineers collaborated with Messrs. Davy \& United Engineering Company Limited, ofSheffield, to obtain a design for a mill 'speci-

(Above)

(Above) The old mill.
(Left) The scene during the changeover.
(Below) The new. mill.
finished one-and-a-half days inside schedule.

Prior to delivery the mill was erected, thus enabling adjustments to be made as required and ensuring that on arrival all parts were ready for immediate installation.

While the mill was being manufactured a carefully planned programme was prepared covering delivery and storage of the mill components, removal of the old mill and installation of the new one. Fourteen days were allocated to complete the changeover. Two scale models were made, one of the old mill by Bassett Lowke Led.. and one of the Universal by Mills Bros. (Sheffield) Ltd., and these played a big part in the briefing of personnel. These models could be dismantled and assembled to demonstrate all the different stages of the task. They were used both during the twelve months prior to the changeover and the actual changeover.

Dismantling of the old mill commenced on November 17th and was completed in two days. During this time 1,374 tons of equipment were removed, including individual items and assemblies ranging in weight from 5 cwt. to 125 tons. The heaviest items

THE machine about to be described possesses many features not found, collectively, in any known make on the market. It has, for example, a positive double-drive, i.e., the motor not only pulls the saw on the forward stroke but also on the backward stroke, thus replacing the more normal "spring return." This considerably lessens vibration.
The blade-chucks are three-way, thus permitting the saw to be used in the normal front position or from either left or right side. This makes possible the cutting of work wider or longer than the throat is deep.
The table tilts 45 deg. and, in addition, rises and falls. This latter movement allows for the use of the full blade length instead of the usual inch or so which, when

Fig. 1.-A general vievv of the machine with table removed.

AN OMPROVED JUGSAW

With Positive Double-drive, 3 -way Blade-chucks, Tilt and Rise and Fall Table By Jameson Erroll

blunt, calls for a new blade although more than half of it is quite sharp and unused. Fig. I is a general view of the machine except that the table has been removed for the sake of clarity. This, together with Fig. 2, which is a close-up of the mechanism, should enable the constructor c'parlv to should enable the constructor
identify the details furnished in the scale drawings.

This jig saw has been constructed so that it may be used with an independent motor and stored when not in use. Its size, therefore, may be varied according to. individual requirements provided that the stroke of $I \frac{1}{2} \mathrm{in}$. is adhered to. Also, the ball-bearing rollers or bobbins around which the strap passes will necessarily be of a type which are available or which are most easily made. Those used on the machine being described were rather like cotton reels, but any type of plain roller will serve. Similarly, the lid-stays were used because of their eminent suitability, but the fortunate possessor of a milling machine may prefer to vary the construction slightly and make his own grooved guides.

The General Mechanism
Each end of the sawblade is attached to an otherwise endless belt (or strap) which, at one point, is engaged by an oscillating mechanism. Figs. 3 and 4 show that this engagement takes place via a slotted rocker arm through the bottom end of which a driving pin, riding between two lugs, transfers lateral movement to a metal plate to the ends of which the belt is attached. At its upper end this slotted arm connects with an eccentric pin placed at ${ }_{4}^{3}$ in. from the centre of the main shaft. This gives the arm a rocking motion since it is fixed at its centre to a riding pivot.

To this same eccentric pin is attached a connecting rod which actuates a piston carrying a leather washer in an enclosed tube. In the far end of this tube is fixed an ordinary football pump-adaptor connected by a length of rubber tubing to a metal nozzle situated near the hold-down. This assembly supplies the necessary "blower" which keeps the sawdust clear of the cutting line. The main shaft is driven
from a 5 in . "V" pulley powered by a motor fitted with multiple pulleys. The speed of the machine can, therefore, be varied as desired, and any speed between 500 and 1,000 r.p.m. is suitable. The faster the speed the quicker the cut, but at high speeds the cutting line is much harder to follow accurately and

Fig. 2.-A close-up of the mechanism.
there is, naturally, more vibration. The author prefers a slow speed, particularly when dealing with intricate or sharply curved work. A $\frac{1}{4}$ h.p. motor will furnish ample power if work is confined to a reasonable thickness-say, up to $\frac{3}{4}$ in.

The Main Frame

Construction may well begin with the baseboard, the upright, and the cross-bearer -see Fig. 5. The base is of $\frac{1}{2} \mathrm{in}$. plyword and needs only to be cut to the required size; in the present case it is 30 in. long x 18in. wide. The upright and the crossbearer are both built up from $\frac{1}{2}$ in. plywood separated and strengthened by blocks of 3 in . $\times 2 \mathrm{in}$, and 2in. $\times 2$ in. deal. The upright is 20 in . high and $5 \frac{1}{2} \mathrm{in}$. wide at the base, tapering to $3 \frac{1}{2} \mathrm{in}$. at the top. The plywood is separated by a $5 \frac{1}{2}$. length of $3 \mathrm{in} . \times 2 \mathrm{in}$. at the base and a símilar block, 3 in. long, about halfway up. Note that a step has been cut in the base block in order to clear the bottom bobbin, and that the centre block is reduced in depth so that it does not offer obstruction to the belt. The

Fig. 3.-Scaled detail of driving unit and blower.
bottom block is fastened firmly to the base with two $\frac{1}{4} \mathrm{in}$. Whitworth bolts and nuts, and the upright by two strong, steel brackets.

The cross-bearer is also 20 in . long and is 3 in . wide throughout its length. These two pieces of plywood are separated by a 5 in . length of $3 \mathrm{in} . \times 2 \mathrm{in}$. at the point of juncture with the upright, and by a similar length of $2 \mathrm{in} . \times 2 \mathrm{in}$, about midway. It will be seen that the larger block has also been stepped and bevelled to give clearance to the tensioning bobbin, while the centre block leaves a clear space for the passage of the belt. The 3 in. $X 2$ in. $X 2$ in. block shown at the-head of the cross-bearer forms part of the construction of the head and need not at the moment be considered.

Before fitting the cross-bearer to the upright it will be necessary to make the belt tensioning device. As will be seen from Fig 6 this consists of a bobbin mounted between two curved metal plates , which are hinged on a $\frac{1}{4} \mathrm{in}$. bolt and, at their upper ends, mounted ort an oak block 4 in . X ${ }_{T}{ }^{3}$ in. $X{ }_{3}{ }^{3}$ in. This block is moved forward by the action of a $3 \frac{1}{2} \mathrm{in}$. shutter bolt fastened to a bracket and carries the bobbin farther from both the bobbin at the head and that at the base of the upright. This movement stretches the belt and automatically tightens the saw between the two chucks. When bought, the shutter bolt is supplied with a threaded nut from which two lugs protrude; it is, therefore, a simple matter to mount it 0 on the steel bracket which, incidentally. should not be of less thickness than $\frac{1}{8}$ in. The width of the oak block should be planed so that, together with the thickness of the two curved plates, the whole is a tight fit between the two pieces of plywood. It is important that there should be no movement whatever, in any direction, except that brought about by adjustment of the shutter bolt. Note that a striking plate is screwed to the front of the oak block to preven, the bolt from cutting into it. Fig. 2 plainly shows this tensioning device. also the lower bobbin.

The cross-bearer may now be fastened to the upright and, since it is separated by 2 in . space blocks, whereas the upright is separated by 3in. blocks, it should be a comfortably tight fit into the top of the upright.

The Driving Mechanism

Fig. 3 gives scaled details of rhis, and the various photographs show that the
mechanism is built up on a wooden framework which is entirely isolated from the rest of the machine and is finally bolted to the baseboard. For convenience this will be referred to as the "general structure."
 rocker arm, driving pin and lugs.
The main shaft runs on two ball-bearings set approximately 2 in . apart; one end carries the 5 in . "V"pulley, the other the 2 in. wheel on which the eccentric pin is fixed. The rocker arm-in this case two 7 in . lid-stays riveted together-is pivoted centrally at a point vertically 2in. down from the main shaft. Two thick st e e. 1 washers with fin. holes are bolted to the stays a n d secured in position by a $\frac{1}{4}$ in. steel bolt threaded deeply into a wooden block built into the general structure. Under $t h e$ base of this structure a stationary

brass plate 8 in . \times rin. \times tin. is screwedsee Fig. +. In this plate, at 3 in. from one end and for a length of 2 in., a centrally placed slot in. wide is cut The plate is screwed to the underside of the general structure in such a position that, when the rocker arm is perfectly vertical, it will opcupy the centre of the slot. This gives ample clearance for the arm to move along the slot when actiyated by the eccentric pin. Note that Fig. 4 also shows a lower, or moving plate, which is of the same size as the fixed plate. The slot is placed centrally in the length, and to the underside are fitted two lugs (one each side of the slot), which will carry a fin. driving pin passing through the slot in the rocker arm.
The connecting rod which works the blower is also engaged with the eccentric pin and rides on it with the lid-stays, as shown in the inset Fig. 3. A 4 in . $X \frac{1}{5}$ in. bolt was used for the piston rod, the head being filed flat and drilled to take a 4 B.A. bolt. The cylinder is a 4 in . length of rin . o.d. brass tubing with walls $1 / 16$ in. thick. The tube is blocked at both ends with silver steel rod, that at the rear being about $\frac{5}{3}$ in. long (to offer good guidance to the piston rod) and thai at the front being about $\frac{3}{8} \mathrm{in}$. long. Into the former a $\frac{1}{4}$ in. hole is drilled to take the piston rod, while the latter is drilled an! tapped to take a football pump-adaptor. Both these holesand, particularly, the rear one-must be absolutely central. The inside washer unit is built up from ordinary bicycle pump accessories. Note that the leather washer should be steeped in olive oil (not lubricating oil which is injurious to leather) before being fitted. This will keep it pliable and air-tight, and will also preserve it.
It will be observed that the general structure is mounted on two blocks which raise it from the basehoard. This is to give clearance to the strap and to bring the driving mechanism, i.e., the moving plate, to the same height as the bottom of the lower bobbins. One of these latter-that at the base of the up-right-may now be fitted. This is quite a simple job (see detail "A" in Fig. 8) and consists of mounting it by means of its spindle to a strip of $\frac{3}{3} \mathrm{in}$. $X \frac{1}{8} \mathrm{in}$. mild steel about $4 \frac{1}{4} \mathrm{in}$. long and bent up at right-angles at each end about $I \frac{1}{4}$ in. so that the bobbin
runs freely. This double bracket is then mounted on the stepped bottom spacing block by means of a $\frac{1}{4} \mathrm{in}$. bolt passing through a central hole.

The general structure may now be mounted on the baseboard with two $5 / 16 \mathrm{in}$. Whitworth bolts. Reference to Fig. 5 shows that the blower end should rest about $\mathrm{r} \frac{1}{2} \mathrm{in}$. from the inside of the base of the upright in order to give sufficient room for the toe unit, when fixed to th: baseboard, to align vertically with the head unit. Be sure that the centre of the stationary brass plate is in a line with the centr: of the lower bobbin and that it lies in the same horizontal plane.

The Head Unit

This unit, together with the toe unit, will carry the saw blade, and Fig. 7 is a perspective drawing which, with a glance or two at the photographs Figs. I and 2, should enable the reader to construct it without difficulty.
The head is constructed in the main between two brass or steel plates each $4 \frac{1}{2}$ in. $\times 3 \mathrm{in}$. $\times \frac{1}{6}$ in., and separated at their end by a wooden block $1 \frac{3}{4}$ in. thick, 3 in. deep, and 2 in. long. Through this block a slot is cut as shown in order that the belt may pass through it and thus over the bobbin. Four countersunk holes are drilled to take $\frac{3}{4}$ in. No. 8 wood screws for fastening the plates to the block, and both plates should be drilled together to ensure perfect alignment. At the same time the holes to carry the bobbin and the four rollers should be
drilled, also holes to carry the small guide pins "A", and the larger guide pins " \mathbf{B}."

The diameter of the rollers and their positions are not critical except that they should be so spaced that the top two are $\frac{t}{8}$ in apart and the bottom two in apart. The mild steel strip to which the leather strap and the saw-chucks are attached rides between thess rollers and should be allowed only sufficient play as will permit them to slide without undue friction. But since the strap will be attached to the steel strip at the point where it passes between the lower pair of rollers, these must be set farther apart than the top pair. The rollers can either be made from silver steel rod or from tubing running on centre spindles. They should be just under $1 \frac{3}{3}$ in. long (plus their riding pins) and from 3 in, to $\frac{1}{2} \mathrm{in}$. is a convenient diameter. When these are prepared the unit may be assembled by inserting them, and the bobbin, between the two plates and screwing the latter to the wood spacing block.
It will now be appreciated that the steel strip must be guided in some way to prevent

Fig. 6 (Left). -Rear and the belt tensioning device.
Fig. 7 (Right). -Details of the machine head.

any side-to-side motion: this is accomplished by means of the cover " D " and the angle strip " E." These are shown in detail in Fig. 8. The former is a piece of aluminium or brass screwed down on the top of the wood

Fig. 8.-Some enlarged details. block; in the front of this has been cut a central notch in which the steel strip can ride. The latter is a piece of brass bent and notched as shown; this slides between the brass plates but the two lugs pass outside the plates to which they are secured with two 4 B.A. $\frac{1}{4}$ in. bolts. These two notched pieces, jointly, prevent any side movement of the steel strip.

Adjustable Hold-down, Blade
 Guide-roller and Blade Guard

This part of the unit also carries the blower nozzle. Two carries the blower nozzle. Two with thick metal supports at the top and a wooden spacing block at the bottom. These are spaced at the top by means of a metal cross strip (" G " in Fig. 7) to the centre of which is soldered a threaded nut to carry the adjusting screw. The two lid-stays are fastened to the side of the blocks and the whole
slid over the top of i-e head, the guide pins " A " and "B" preventing any movement other than strictly vertical. The wooden spacing block " F " shown in detail in Fig. 8 is rabbeted at each end so that it slides in the grooves in the stays, and to the outside are screwed two brass plates to prevent the stays from springing away from the block. When finished, this block should be just movable by hand along the slots. Through the centre of this block a in. vertical hole is bored to admit entry of the length of steel bar which will carry the plate on which the hold-down, blade guide-roller and blade guard are fixed. This steel rod is locked in position by means of a thumbscrew passing through the rear centre of the wooden block. It will thus be seen that the block can be moved vertically along the slots; that the rod can be moved in a similar direction; and that the whole can be finely adjusted by the knurled screw which passes through the threaded nut soldered to the cross strip. So. as the table is raised. lowered, or tilted, the hold-down, etc., can be moved within fine limits to vary their height from the table.
These three fitments are all mounted on a piece of steel $2 \frac{1}{2} \mathrm{in} . \times$ in. $\times \frac{1}{8} \mathrm{in}$. slotted down the centre for about rin. This provides for horizontal adjustment of the guideroller against the back of the saw blade. The roller is mounted between two arms exactly similar to those found on an ordinary castor-in fact, a small castor was used for this purpose, the china wheel being replaced by a steel one grooved in the centre to a depth of about $3 / 32 \mathrm{in}$:
(To be concluded) in the opposite wing, and rubber bands to wire hooks located

Fig. 1.-1 view of the completed small power. monoplane, with nosepiece - and engine cowling detached.
 at nose, central spars, top and bottom, and at trailing edge. Short stub dowels do not snap off as long ones do.

Building the Fuselage

First make a full-scale drawing by enlarging the drawing, Fig. 5, on to a large sheet of kitchen paper. Obtain some grease-proof paper, as used in the kitchen, to put over the plan to prevent the balsa cement sticking to the plan. span, has been designed primarily as a free-flight powered aircraft to suit the smaller diesels and glow plug motors of I c.c. to 2 c.c. It will fly on a good I c.c. engine, and is excellent on a $1-3$ c.c. Mills, or any of the I-5 c.c. motors, whilst the cvergreen 2 c.c. E. D. Competition Special diesel is not too powerful for the model. (Figs. I and 6.)

A model of a similar type is still flying after 10 years. The balsa sheet fuselage construction and wing box spars have much to do with this.

The model can be covered with paper if cost is all important, but better, it can be covered with light silk, or with the cheaper light butter-muslin, shown in the photographs. If radio is to be fitted, muslin or sitte are the best coverings.

Although the model is primarily for freefight sport flying, it may be desired to fit the latest lightweight radio equipment. cufficieft wing area has been provided to curty radio such as the single-channel E. D.
detachable and shock Thus by rubber bands. Thus the whole model can be packed up into a small area for transport. The wings are made in two cetachable halves so that they will give under the weight of the model should it turn over on its back during a bad landing. The two halves are held together by two short locat-

A SIMPLE MODEL : EASY TO ADJUST; PORTĀBLE Al

Fig. 4.-Perspective vieru of the wire undercarriage.

Fig. 2.- A view of the cut-out sides and pieces for forming the laminated fin.

Fig. 3.-The two fuselage balsa sheet sides complete with longevons and uprights cemented in, together zwith celluloid windows.
"Airtrol "s receiver, which has one subminiature hard valve with two transistors. The E. D. rubber-powered, self-centring miniature actuator is suitable to operate the rudder, or alternatively, if self-centring, the little Rising clockwork àctuator can be used: This is obtainable from F. Rising, of Whissendine, Oakham, Rutland.

As the model is designed to take a number of different motors of varying weight, to obtain the correct iweight distribution, or C. G. position, it has been provided with a

Fir balsa fairing between the
undercarriage legs. undercarriage legs.
Rear undercarriage leg.
detachable nosepiece, which is held on to the fuselage by rubber bands. This not only saves damage in bad landings, but enables varying distance packings to be added, between engine nosepiece and fuselage, to compensate for varying engine weights. The method is explained on the plan (Fig. 5) and in the photographs.

Furthermore, this detachable nose permits engine thrustline trim to be altered by balsa packings, to obtain different offset or downthrust trim as required for power-flight.

All units, such as wings, tail and undercarriage, a re

$$
\begin{aligned}
& -4^{\circ} \text { side thrust } \\
& \text { to right. }
\end{aligned}
$$

Leave open.

An alternative is to rub the plan lightly with oil. Obtain a box of ordinary dressmaker's pins (tinplated variety), a number of tubes of balsa cement and two tubes of plastic wood. To build well, do not economise on cement or plastic wood. A number of lightweight soft I/ I 6 in . balsa sheets, preferably 4 in . wide, are required, and three sheets of soft $\frac{1}{8} \mathrm{in}$. sheets for ribs. You will also need a dozen sticks of lightweight soft balsa $3 / 16 \mathrm{in}$. $\times 3 / 16 \mathrm{in}$. for longerons, etc., two sticks. of $\frac{1}{4}$. X in balsa, one sheet (for fairings. erc.) of soft 4 in, stock, a few safetyrazor blades with one side protected,
some sandpaper, a small pair of pliers and a few lengths of spring steel model wire as specified on the plan for the undercarriage and rubber band retaining hooks on fuselage and wings.

Lay the plan on the kitchen table or on a flat building board with some grease-proof paper over it and pin down, after having first traced the fuselage sides on to $1 / 16$ in. sheet balsa. These sides are wider than the 4 in. wide sheet, and, therefore, you must butt join and cement two sheets together for a fuselage side, allowing to dry under weights to prevent cockling at the joints.

The photographs, Figs. 2 to II, show stages of construction pictorially. Cut out
on the outside when you come to assemble the fuselage! See Fig. 3.
It will now be noted, as already mentioned, that the correct angles of wing and tailplane have been constructed into the fuselage sides automatically. When these two sides are complete, pin them together side by side, carefully trim the edges so that each side is exactly similar, then separate.

Place the two sides vertically upright and cement in the crosspieces to the width of the fuselage, as shown in Fig. 7, keeping these in position by pins 10 assist rigidity until the fuselage top and bottom is covered with $I / 16 \mathrm{in}$, sheet balsa, which is the final stage. Great care must be taken at this
cement and plastic wood to spread the load, The darker plastic wood patches can be seen in Fig. 9, which also shows the curved forward decking in position. Fig. 8- shows the forward curved decking being planked with $\frac{1}{8} \mathrm{in}$. $X \frac{1}{2} \mathrm{in}$, balsa planks laid side by side and cemented on to the two half-round formers, cemented on to the fuselage in front of the wing position. It will also be noted that a soft $\frac{1}{2}$ in. width front with a threeply square cemented to it is lying on the ground ready to cement up to the planked up turtle decking when complete. This opera-

mo

MOROPLANE

SD ALMOST INDESTRUCTIBLE

the fuselage outline with razor blade, Fig. 2.
Now cement $3 / 16$ in. $\times 3 / 16$ in longerons all round the fuselage sides, retaining these in position with household pins. When set, EN withdraw the pins. Where the longerons are on a curve, gently crack the wood before cementing. Cement in uprights where shown in Fig. 5. Cement in medium-weight celluloid sheet windows on the insides of the fuselage sides, retaining with pins until the cement is set. Make sure that the fuselage sides are pinned or weighted down whilst the cement sets, to prevent warping. Be certain to cement longerons, uprights and windows into the inside of each fuselage side, and not on the same side, or you may find you have made one side with its longerons, etc.,

for glide
All hook from 18 swg model wire
stage, or the fuselage may become twisted and untrue. It can be propped upright with boxes on either side during assembly.

Wire Hooks

All wing and tail retaining hooks of wire are fitted at this stage. The wire is 18 s.w.g. spring steel model wire. Wings, tail and undercarriage and nosepiece, are all held to the fuselage by rubber bands to these hooks, which pierce through the fuselage sides, and at -these points are smeared liberally with

Fig. 6.-A further view of the completed plane.
tion can be seen completed in Fig. 9. The $\frac{1}{2}$. front is made by laminating from the tin. sheet originally obtained.

Outline of fin from $1 / 8^{\circ}$ soft Dalsa sheet Cover both sides with $1 / 10^{\circ}$ soff shoot balsa

Cut sides from $/ 16^{\prime}$ soft sheet balsa,
lay on board, cement on all fongerons etc and pin temporarily

SCALE OF INCHES

The $\frac{1}{8}$ in three-ply cut-out forms the locating position for the detachable engine nose, which has a three-ply square fixed to its rear, to fit on to the cutaway on the fuselage, the two being held to each other by elastic bands from the wire hooks on the fuselage and the detachable nose, When frimming the model for flight, it is a simple matter to add or take away packings of $\frac{1}{4} \mathrm{in}$. soft balsa sheet to lengthen the nose or shorten it to suit different weights when
is a separate unit and, when complete, is held up to the fuselage bottom by elastic bands to hooks protruding from the bottom fuselage sides. Where the undercarriage bears up to the fuselage bottom, a small piece of three-ply wood should be added, or the nose and fuselage bottom here can have fibreglass added to prevent damage in hard landings.
In Figs. 8 and 9 it will be noted that a wing stop of balsa has been cemented on, and a forward celluloid window stuck
strengthened by plastic wood, because they take the wing loads in flight, and they also strengthen the only open part of the fuselage, namely below the wings. These two parts can be seen in Fig. 9. Fig. Io shows the undercarriage in position, after the fuselage has been sanded down and covered with paper, thin silk or buttermuslin, over smeared on photopaste, and then given two coats of full-strength clear glider dope. The model can next be given

Fig. 7.-The two sides connected by balsa crosspieces top and bottom and covered with sheet balsa.
Fig. 8 (Right).-Front rurtle decking partially planked in Note the forward nose packing with its three-ply cut-out zvaiting to be attached to the fuselage.

Fig. 9 (Left).Tutle deck complete and three-
ply cut-out in position. Wire retaining hooks have also been cemented in place.
Fig. II (Right).The undercarriage umit detached from the fuselage.
obtaining correct "point of balance" position of the model in relation to the wing.

The Undercarriage

This is made from spring steel model wire, soldered at the overlapping joints, as shown in Fig. 4. The soldered joints are first bound with thin florist's wire, and have solder flux painted on. The undercarriage
in position. Two $\frac{1}{8}$ in. platform sides are cemented on for the wing to rest upon and to allow the dihedral centre of the wing to sit slightly below the inside top of the fuselage which is left open at this point. On a radio controlled version access to the receiver would be through this open hatch below the wing. These two lengths of $\frac{1}{8} \mathrm{in}$. sheet are pinned down and
the undercarriage unit detached from the fuselage. The' wire undercarriage has balsa sheet inserts cemented into the legs, covered with silk or butter-muslin and doped. The solid rubber streamline 2 in : dia. (control line model) wheels are secured by wire bindings of florist wire stops, and soldered.
(To be concluded)

Mars

TN November last year Mars was better placed for observation than at any other time until 1971. Mars made a favourable approach to the earth in 1956, but observations were hampered by a great yellow cloud, which obscurred the planet's surface. The U.S. Navy is to make a study of Martian surface features by using a large telescope mounted on a balloon floating 80,000 feet above the earth's surface.
Astronomers around the world are adopting a new naming system for Martian
features. Small details are to be known by their approximate longitudes and latitudes.

Sun Spot Activity

D^{4}URING the International Geophysical Year, from July 1st, 1957, to December $3 \mathrm{ISt}_{5}$ 1958, the sun engaged in the greatest sun-spot activity ever recorded. On June 28 th, 1957, the sun burst forth in a great solar flare. The IGY was able to witness brilliant displays of northern and southern lights made by particles flung into space from this eruption and which started arriving at the earth two days afterwards.

Robot Composed Music.

IJ an experiment to prove that electronic brains can contribute to creative arts, a high speed digital computer at the University of Illinois composed an original fourmovement piece of music.

Random integers (whole numbers, not
fractions) are made the equivalent of notes, rhythmic beats, etc., for computer composition. These are fed into the machine after they have been worked over mathematically to express rules of composition. It was stated at a meeting that musical composition by robot is not an expression of the machine's soul but the extraction of order out of a chaotic environment!

NEWNES ENGINEER'S MANUAL

(Fifth Edition)
By F.J. CAMM
334 pages 293 illustrations
Vital facts and figures for all mechanical engineers, designers, draughtsmen, etc.

35/-
36/3d. by post.
from Geo. Newnes, Led.

Bending, Forming, Shaping and Bonding to Other Materials By W. Groome

, ease with which Perspex sheet can be fashioned in the cold state is already well known. This article is concerned with the wider range of work, both functional and decorative, that becomes possible when this modern material is manipulated in the plastic condition. At a temperature a little over that of boiling water it becomes soft and limp, and can be formed into shapes that become permanent as it cools. This enables continuous forms to supersede many of the joints that would otherwise be necessary, bringing a pleasing range of modern design to replace the angularity of cold-worked products. The formers

Fig. 1.-Forming curves with a saucepan.
that determine the shapes, and the methods of manipulation, are simpler than might be expected. It will also be shown that the difficulties of uniting Perspex with other substances can be overcome by exploiting its thermo-plastic properties.

Dry Heat

Despite suggestions that certain additives can raise the boiling temperature of water

Fig. 2.-A hollow quadrant wall lamp.
enough to soften the plastic, the writer strongly urges the use of dry heat. Hot water is unlikely to provide sufficient reserve of heat to prevent premature cooling during manipulation, yet adds unnecessary discomfort and danger to the work. In the event of a mishap a scald is generally more extensive than a dry burn. The domestic oven, with the thermostat turned to its lowest setting, softens the material quickly without impairing its glossy surface, and the process is no more hazardous than cooking.

Forming Curves

Curves are the basis of many interesting designs, and the more usual ones are merely portions of the circle such as arcs and quadrants. No special formers need to be made for these because there are so many circular metal articles already available in every houschold. Fig. I shows the simple procedure using, in this example, a saucepan. A strip of Perspex is rested across the inside of the saucepan (A) and they are put in the oven together. As the plastic softens it sags by its own weight and finally rests snugly against the wall of the former (B). The former is taken from the oven and, while still hot, the position of the plastic adjusted if necessary, using any conventional tool applied to excess-ends so that marks will not be present after final trimming.

As the heat is quite moderate, natural cooling is quick enough for most workers and brings no risk of disturbing the plastic before it hardens to permanent shape. Indirect cooling by water on the former will hasten the job, but if water is allowed to flow directly over the hot Perspex the surface may become rippled.
Shaping on the Inside of

a Circular Former

This is a very convenient method, for the Perspex practically shapes itself; even the slight tendency to restraighten as it cools is in a direction that settles it more firmly in place. The longest straight strip that can be set across the inside is a little less than the diameter, limiting the curve to about onethird full circle. Longer strips can be heated and roughly preformed by hand to enable them
to be accommodated in the former for curves approaching semi-circular. Beyond this the collapse of the plastic would be away from the wall of the former.

The range of curved work within the scope of this simple method is surprisingly large, for its working limits cover most of the curves likely to be needed in decorative articles. For example, the hollow quadrant wall lamp shown in Fig. 2 is of simple design, greatly enhanced by the beauty of amber Perspex, while the apparent absence of wiring in the transparent quadrant is an added novelty. The front and back curves were formed on two sizes of saucepan by the method just described.
Shaping on the Outside of a Circular Former
Curves greater than semi-circular must be

Fig. 5.-A plastic and plywood "sandrvich." shaped on the outside of the former and cannot be left to form in the oven. Therefore, heating and forming must become separate operations, as they must also for the other methods that are to be described. A smooth metal or enamel surface must be provided in the oven to avoid damage to the plastic. It is capable of remarkable recovery from pressure marks, for such depressions tend to fill out provided the cause is removed before cooling begins. Nevertheless, it is better to avoid damage of any kind. The former should be warmed to prevent chilling the Perspex to solidity before the work is completed. Manipulation is a simple matter of allowing the hot plastic to collapse on the outside of the former and then keeping its ends in place until it has cooled and hardened.

The need for smooth, unblemished surfaces on metal formers will be obvious; flaws will be transferred faithfully to the plastic, and the shiny finish shows them up very distinctly. Perspex is supplied with protective paper on both sides of the sheet and not only should this be stripped off bus
the gelatine with which it is attached must also be removed with warm water. The material must be thoroughly dry before it is heated.

There is probably no other material that allows so much liberty in the rectification of errors, for it can be reheated and re-formed many times before it becomes a total loss. If a curved piece is put back in the oven it will quickly revert to its normal flat condition and small dents and pits will fill out. It can then be re-formed. Apart from the correction of errors this characteristic enables the worker to practise and experiment without an expensive loss of material.

Formers

When elaborate shapes are contemplated, the time and labour spent in making formers must be kept in proportion; hours of work spent on accurate solid wood formers are ridiculously wasted when only a few plastic pieces are wanted. The answer to "the craftsman's prayer, therefore, would be a quick and simple method adaptable to all requirements. Something approaching this ideal is used in making hollow plastic letters for illuminated advertisement signs. As the thirty-odd letters and numerals can be multiplied by the considerable number of styles from quaint to contemporary the method is clearly able to provide a great variety of shapes.

The idea, demonstrated in its simplest form in Fig. 3, is based on the fact that three-ply wood can be easily flexed into curves without buckling or collapse. If hot Perspex is laid between two strips of threeply the complete sandwich can be bent as shown in the photograph; the limp plastic, controlled and supported, will conform with the shape set by the outer layers. As plywood does not readily conduct heat the plastic is not chilled and there is ample time for manipulation, while the operator works without discomfort.

Smooth contact surfaces are essential; if the plywood still tends to transfer grain marks even after careful cleaning up, glossy paper, sold by the art suppliers, can be interposed in the sandwich. During bending the grip must allow the necessary slight amount of independent "slide" between layers so that each can adopt its correct position without parting from the snug contact required for control. For easy bending the plywood should be cut with the grain of the outer ply crossing the strip, not running lengthways.

With a little practice quite intricate shapes can be produced by manipulation entirely by hand, working to guide-lines on paper placed on the bench, or merely by judgment for some purposes. Fig. 4 shows the curve produced at the time the photograph of Fig. 3 was taken. Pegs or screws set in the bench-top or to a board can help by acting

as stops to set the limits and changes of direction in the curve.

Simple Jigs

For accuracy, for repetition work, or for jobs too difficult to manipulate entirely by hand the sandwich can be bent to a simple jig comprising wood blocks, pegs, screws or clamps (or combinations of these) on a baseboard. Fig. 5 is an example in which fixed blocks set the outer shape of the sandwich while loose blocks are pressed to the inner sides by means of C-clamps. The clamps have been omitted from the diagram, but their use will be obvious. The sandwich, comprising the plastic and two strips of threeply, is indicated by a heavy black outline. The use of three pieces of wood instead of one for the larger bend is merely to eliminate the labour and wastage of cutting from a single block.

The sandwich containing the hot plastic should, wherever possible, be secured first somewhere about the mid-point of the shape, in the example of Fig. 5 to the semi-circular portion. The loose block, it will be noticed, is not complete for that portion of the bend, but the springiness of the plywood takes care of the portions not clamped. After the other clamps have been adjusted the job is left to cool. Clamping should be light-just sufficient-to retain the work in position; heavy pressure will cause marks on the plastic.

Skeleton Formers

The sandwich-and-jig method is suitable for strips up to about 3 in , wide, perhaps more, but for very wide jobs a special former may be essential. The laborious shaping of solid wood can be dismissed as impracticable and expensive, for greater accuracy is obtainable at a fraction of the cost by making a "skeleton" former as shown in Fig. 6. The shape is determined by the vertical ribs, of which four are shown in the drawing. It is obviously easier to make a few of these to identical shape than to carve a solid block with sufficient accuracy. The shaped ribs, made of $\frac{1}{4} \mathrm{in}$. plywood for strength and easy working, are assembled with end and top strips to form a rigid. skeleton to which the working surface of flexible three-ply is pinned and glued:
Work with the former shown in Fig. 6 would be aided by the collapse of the plastic, as in the case of the ready-made circular one. Although some shapes may need some hand manipulation with this simple type it is worth while to avoid complicating ithe former.

The methods described cover most practical requirements and it is not intended to deal with the complexities of. top and bottom matching formers that are rarely needed.
onding to Other Materials
Although Perspex-to-Perspex joints can be made to reach the perfection of welds the plastic does not bond with other materials with which it could be usefully combined for technical or economic reasons. When the impracticable suggestions have been ruled out only metal-thread screws and selfthreading screws can be considered as efficient cold fastenings, but thermo-plastic properties can be exploited for the purpose. As an experiment, grip a panel-pin with the pliers, heat it in a gas flame and press it into a cold piece of Perspex. On cooling the pin will be found to be immovable. This is more than a simple tight fit. The Perspex, softened locally by the hot pin, squeezes closely into every imperfection and irregularity of the metal, giving a mechanical lock that cannot be broken without destructive violence or, of course, reheating. The pin has become an "insert". comparable with the embedded metal parts in Bakelite mouldings. Developments of this idea can solve most of the problems of using Perspex in partnership with other materials.

Using Screws

Metal-thread screws make useful inserts because they can be arranged with sufficient thread exposed for the attachment of other parts with the usual nuts, with the advantage that they cannot loosen as in tapped holes. The portion just under the head that will be embedded can be slightly mutilated to improve keying, although generally the plastic holds firmly enough on existing imperfections in the thread. Simply press the hot screw into an undersize hole made with a tapping size drill, so that the thread emerges on the side on which the nut attachment is to be made. The writer uses B.A. screws, numbers 4,6 and 8 , which are standard for electrical and radio work and convenient for models, toys and gadgets. Where the screw must be removable a threaded hole can be formed without tapping by a slight variation in method. Drill to tapping size and plunge the hot screw into the hole as before, but keep it rotating about a quarter turn each way until cold to prevent the plastic from binding.
The use of screws as just described still leaves the attachment of the other parts by nuts as separate operations. A more direct
(Concluded on page 285)

WHEN planning a domestic wiring system, or an extension to an existing system, it should be designed so that it is adequate for the required purpose, and so that there is no risk of fire or electrical shock in the event of a fault. The wiring and fittings must be installed in accordance with the requirements of the local Electricity Supply Authority, which are normally based on The Electricity Supply Regulations; and on the Regulations for the Electrical Equipment of Buildings, issued by the Institution of Electrical Engineers. The Supply Authority should be notified when the installation is completed and ready for inspection.

The Electricity Supply Regulations briefly require that the Supply Authority shall not provide -or maintain, a supply of electricity to domestic premises unless: (1) The insulation resistance of the insulation is sufficiently high that the leakage current is no more than $\frac{1}{10, c 00}$ part of the maximum current to be supplied. Insulation resistance is measured by means of an insulation test set, such as a "Megger" In order to comply with this requirement the insulation resistance between earth and the conductors connected to the "live" pole, and also between conductors connected to the two poles, shall not be less than $\frac{10,000 \mathrm{~V}}{\mathrm{C}}$ ohms, or $\frac{\mathrm{V}}{100 \mathrm{C}}$ megohms, where V is the nominal supply voltage, and C is the maximum current in amps. This means that no supply can be given to a 240 volt installation if the insulation resistance is less than 0.16 megohm for a 15 amp . installation, 0.08 megohm for a 30 amp . installation, or 0.04 megohm for a 60 amp . installation. In practice much higher insulation resistances are desirable, and are usually obtained.
(2) All conductors and apparatus are of sufficient size and are constructed, installed and protected so as to prevent danger.
(3) All single-pole switches are connected in "live" conductors only.
(4) Fuses or circuit bieakers of adequate design are used to protect all the circuits.
(5) Efficient switches in readily accessible positions are fitted to control all motors.

In the case of a supply of higher voltage than 250 volts there are additional requirements, but these do not apply to the lowvoltage supply provided for the normal household.
The Regulations for The Electrical Equipment of Buildings (the I.E.E. Wiring Rules), issued by the Institution of Electrical Engineers, of Savov Place, Victoria Embankment, London, W.C. 2 (price $6 /-$, post free), cover the whole field of electrical wiring and

NEWNES PRACTICAL MECHANICS
277
Installation Layout premises subject to the Factories Act have special requirements for motors and transformers, etc. Also, only authorised or competent persons may carry out electrical work on installations which come under the Factories Act ; whilst, if the work requires technical knowledge in order to prevent danger, no person under 21 must carry out the work and no one must do the work unaccompanied.

Connections of Fuses and Single-pole Switches

The supply to a domestic installation is usually a two-wire supply. It may be either direct current (D.C.) or single-phase alternating current (A.C.). If the supply is D.C. is it most likely that it will eventually be changed over to A.C. and, before investing in a considerable amount of D.C. apparatus, the consumer should ascertain, from the Supply Authority, who is to bear the cost of replacing or converting the apparatus when the supply is changed to A.C. Fortunately, most domestic electrical apparatus, such as filament lamps, fires, water lieaters, electric irons and vacuum cleaners will operate on either D.C. or A.C. of the same voltage. Eventually single-phase A.C. voltages in this country will be Atandardised at a nominal value of 240 volts at a frequency of 50 cycles per second. However, the voltage at the consumer's terminals may vary plus or minus 6 per
give detailed information regarding planning and execution of first-class installations. Persons engaging in such work are advised to obtain a copy. In the case of premises in which articles are made, finished, altered, etc., or are adapted for sale by way of trade, etc., the provisions of the Electricity Regulations of the Factory and Workshops Act may also apply. In addition to the general regulations for electrical installations,

Fig. 2.-Sinall layout with splitter sevitch fuse.
cent. of the declared value, depending on the load conditions.
One pole of the supply to domestic premises is usually connected to a neutral cable of the distribution system, as shown in Figs. I, 2 and 3, this cable being connected to earth at the generating station or transformer. The voltage between this neutral conductor and earth, or points connected to earth such as a water pipe, normally does nor exceed a few volts. It is, however, important that this cable should not be connected to earth at any point by the consumer, otherwise a considerable current may flow in this cable.

3-phase
4 wire
cable

If the neutral cable should become interrupted in any way it may reach a considerable voltage from the "live" cable. For this reason the I.E.E. Regulations require that ro fuse shall be connected in the neutral cable. Furthermore, no switch should be connected in this cable except when the switch as a double-pole switch so arranged that the "live" pole is interrupted at the same time as the neutral pole. Although no fuse may be connected in the neutral cable a connecting link can be connected in this cable in the incoming service boxes from the mains and in the consumer's main double-pole switch and fuse box. If the neutral is not permanently earthed fuses may. throughout. amps. See Fig. 2.
be connected in this cable but, in any case, all single-pole switches used in an installation should be connected in the same pole

Main Switch and Distribution Gear

The service boxes, which are provided and sealed by the Supply Authority, contain a fuse in the "live" pole, the purpose of which is to cut off the supply to the premises in the event of excessive current flowing in the supply cable, due to failure of insulation on the consumer's wiring or otherwise. In the event of this fuse melting the Supply Authority should be notified so that the fuse can be replaced. The service boxes are connected to the meter, or meters, from which cables are fed to the consumer's main switch or main switches.

The purpose of the consumer's main switch is to enable the installation to be isolated from the supply when required for testing or otherwise. This main switch may be connected to the consumer's main fuse, which nay be combined in the switch as shown in Fig. I; the function of this fuse is to cut off the supply in the event of a fault, particularly due to excess current resulting from failure of insulation of the cables batween this fuse and the distribution fuse board. if such a board is fitted. In some cases the consumer's main fuse may be omitted. For instance the Supply Authority may consent to allow their service fuse to act also as the consumer's fuse. In other cases, where the total load is not more than 60 amps., the consumer's main switch may be a splitter switch fuse, i.e., a main switch which is combined with a distribution fuse board with fuses for up to eight circuits, each rated at not more than 30

Domestic consumers' control units are also being fitted for domestic premises connected to A.C. supplies. These units provide accommodation for the Supply Authority's service boxes and meter, and consist of a case which also contains a 60 amp . doublepole switch with neutral busbar and several circuit fuses; an earthing bar being provided. A 30 amp. fuse may be provided for a

Fig. 3.-Large power and lighting distribustion system:
be inserted in the connecting circuits between the busbars. In many installations the wiring is divided into two sections, one for lighting and the other for heating circuits, each with separate main switch and meter as shown in Fig. 3. Figs. I to 3 inclusive show the correct colours of the cables, red (R) conductors being connected to the "live" pole, whilst black (B) conductors are to be connected to the neutral pole. All singlepole switches or fuses should be connected in the \mathbf{R} conductors, none should be connected in the B conductors.

Final Sub-circuits

A final sub-circuit is a circuit which is connected to points at which the current is

Fig. 4.-Permissible arrangenients for sub-circuiss rated at more than 15 amps.
used, i.e., the lampholders and switches or the socket outlets. Each final sub-circuit, rated up to 15 amps., must be fed from a fuse of a distribution fuse board, except in the case of a small consumer. where there is only one such sub-circuit, it may be connected to the main fuse. A final sub-circuit, rated at not more than 15 amps. may supply any number of points, provided that the total current rating of the points does not exceed the current rating of the cable, that there is at least one final sub-circuit for fixed lighting alone per 1,000 sq. ft . of floor area, and that flexible cords are fully protected. It is, however, an advantage to have not more than about io lighting points on each final sub-circuit, in order to facilitate testing and to limit the number of points which are rendered inoperative when a fuse melts. Lighting circuits are commonly fed from 5 amp . fuses with cables rated at 5 amps. Three 5 amp. socket outlets may be wired on a 15 amp . circuit.

Each final sub-circuit having a rating over 15 amps. may supply one point only; or, if the conductors are rated for 20 amps. (7/.029) and the circuit is protected by a fuse rated for not more than 20 amps., it may feed two 13 amp . socket outlets. See Fig. 4, a and b. If a final sub-circuit is wired with $7 / .036$ cable and is protected by a fuse rated at not more than 30 amps ., it may supply not more than six 13 amp . socket outlets as shown in Fig. 4c. However, six socket outlets should not be used at the same time if the total load exceeds 30 amps.
cooker, with one or more 30 amp . fuses for wash boiler, water heater and socket outlet circuits fed from a ring circuit. Two or more 5 amp . fuses are fitted for lighting circuits. These units are obtainable, if required, for flush mounting into a $4 \frac{1}{2} \mathrm{in}$. brick wall.

In an extensive installation there may be additional distribution fuse boards fitted in convenient positions in the premises, each fuse board being fed either from the main switch or a separate way on the main distribution fuse board of higher rating (see Fig. 3). Alternatively. the busbars of two or more distribution fuse boards may be looped together to form a ring circuit, in which case fuses or disconnecting links may

Ring Circuits

If a final sub-circuit is wired with $7 / .029$ cable in the form of a ring, both ends of which are connected to the fuse rated at not more than 30 amps . as shown in Fig. 5 , it may serve up to ten 13 amp . socket outlets, or an unlimited number of such socket outlets in the case of domestic premises or flats having a floor area of not more than 1,000 sq. ft . One or more such socket outlets may be connected to this ring main at various points by means of branch cables not less than $7 / .029$ as shown in Fig. 6, provided that the permissible number of socket outlets is not thereby increased, and not more than 50 per cent. of the socket outlets are fed from such branch cables. Of course, the total load must not exceed 30 amps , and not more than two 13-amp. socket outlets mav be fed from any one branch cable. A fixed appliance of rating not exceeding 13 amps . may be fed from a fused plug or a local fuse. Where there is a limiting number of socket outlets permitted, the number of socket outlets should be reduced by one for each fixed appliance so connected to the circuit. When planning an installation it is wise to allow for one or two spare final sub-circuits in the distribution fuse boards, as extra appliances may be required to be connected up at some later date.

Size of Cables

It is important that the conductors used at each point of an installation should be large enough for the required purpose. If

TABLE I. CURRENT RATING AND VOLT DROP FOR SINGLE-CORE V.R.I., P.V.C., T.R.S., OR LEAD. SHEATHED CABLES ON SINGLE-PHASE A.C.

Size of Conductor		Cables in conduit or bunched Maximum length of cable run for I volt drop			
Number and		2 cables		- 4 cables	
of wires	inches)	amps.	feet	amps.	feet
1/.044	0.0015	5	16	5	16
3/.029	0.002	10	10	10	10
3/.036	0.003	15	11	13	12
71.029	0.0045	20	12	15	16
71.036	0.007	28	13	22	17
71.044	0.01	36	16	29	20
7/.052	0.0145	43	18	34	23
71.064	0.0225	53	23	42	29
19/.044	0.03	62	25	50	31
19/.052	0.04	74	29	59	36

the conductors are too small they may overheat, in which case the insulation may become perished and brittle so that its life is reduced and an early failure may occur; if a cable is seriously overloaded there may be a risk of fire. In addition, if the cables are small there will be loss of voltage and power, which will tend to reduce the light of lamps, etc. The size of cable should be such that the voltage drop from the consumer's terminals to any lighting point on the installation does not exceed one volt plus two per cent. of the declared voltage, i.e., so that the volt drop on the lighting circuit plied.

does not exceed 5.8 volts on a domestic lighting supply connected to a 240 volt supply. The volt drop on cables supplying a motor circuit should not exceed 7.5 per cent. of the declared voltage on full load.
On many installations it happens that the length of cables required is such that, even if the cable is large enough to carry the current without overheating, the volt drop on the cable may nevertheless be excessive. On long cable runs volt drap considerations may, therefore, require the use of larger cables than do considerations of cable heating alone.

When current is passed through a cable its temperature rises gradually, heat being dissipated from the cable at an increasing rate as the temperature of the cable rises, until a certain temperature is reached at which heat is being dissipated from the cable at the same rate as it is generated. It will be noted from Table I that the current rating of a given size of cable is reduced somewhat when an increased number of cables are bunched together or are contained in the same conduit. This allows for the fact. that there is a reduced rate of heat dissipation from heat dissipat
b मे n ched
c bubles. Table
cable I shows that, for a maximum volt dróp of 5.8 volts, two $1 / .044$ V.R.I. or P.V.C. sheathed cables will carry 5 amps, up to a total length of cable run of 93 ft .; 3/.029 cable will carry io amps. up to 58 ft . Similarly two bunched $3 / .036$ cables will carry is amps. up to 64 ft ., whilst iwo bunched $7 / .029$ cables will carry 20 amps . up to 70 ft . On longer cable runs larger cables should be used for the same current rating if lights or heaters, etc., are to be sup-

TABLE 2.-SIZES OF FUSES FOR VARIOUS CAELES.

Rating of fuse (amps.)	Size of tin-lead fuse wire (s.w.g.)	Size of tinned- copper fuse wire (s.w.g.)	Minimum size of (sable (s. in.)	Minimum size of flexible cord
3	23	38	0.0015	$23 / .0076$
5	21	35	0.0015	$23 / .0076$
10	-	29	0.002	$40 / .0076$
15	-	25	0.003	$70 / .0076$
30	-	21	0.01	-
60	-	17	0.03	-

GETTUNE IT SHARRP

THE question of correct focusing is important since errors leading to unsharpness in the negative cannot be offset in the print. Within reasonable limits quite passable pictures can be made from negatives which suffer from under or over exposure but an out-of-focus negative is useless.

The question of whether a picture should be sharp all over or not is dependent upon the subject matter or indeed upon personal taste, the photographer's aim being usually to ensure that the principal subject matter is really crisp with the less important and perhaps ugly background actually out of focus. An example of this is a portrait or figure study where a sharply detailed background would obtrude, detracting interest from the figure. Using a long focus lens this same effect is even more finely controlled to produce an effective "head" in which

Fig. 1.-"Portrait of Margaret,"
the sharpest focus is on the eyes, the focus then falling away until the ear, though defined, is soft. In Fig. 1, despite the use of a wide aperture ($f / 3.5$) the depth is more than was considered desirable, in that the curtains are still too well defined and the near shoulder too sharp. The extra prominence of this shoulder is due to the use of a short focus lens at close range. Alternatively, of course, all over sharp definition may be required.

Control

The desired effect is obtained by use of what is called depth of field and this is simply the depth of subject matter which a lens can render acceptably sharp at a given aperture and distance focused upon.
For example, you are shooting a standing figure at roft. from the camera, which is a miniature with a 5 cm . lens (2 in . or 5 centimetres focal length). The distance is measured, the focusing scale is set at 10 ft . and the exposure required is found to be $1 / 100 \mathrm{sec}$. at $\mathrm{f} / 8$. If the shot is now made, an examination of the print will reveal that

focusing in the case of the very much longer lens.

Use of Depth of Field in Practice

The foregoing indicates the way in which the depth of field varies for different lenses and varying conditions of camera/subject distances and if number.
In practice the photographer is assisted by the modern camera manufacturer to

Some Notes on Focusing For the Photographer By J. B. Knight

in addition to the figure, the acceptably sharpdetail in the picture extends from a point in front of the figure to a farther point some greater distance behind it, This is the depth of field and based on the above conditions would be in the order of 3 ft . $3 \mathrm{in}_{\text {s }}$ in front of the figure and $9 \mathrm{ft} . .3 \mathrm{in}$. behind it; a depth of 12 ft .6 in .
If a second shot is taken, this time using $\mathrm{f} / 5.6$, it will be found that the depth is less, actually only 7 ft 8 in . At $\mathrm{f} / 3.5$ it goes down to 4 ft . 5 in . and at the other end of the scale a depth of 245 ft . would result from employing $\mathrm{f} / 16$.
It will be seen that a large lens aperture produces a small depth of field and a small stop (high f number) increases this depth.
For the same lens and given stop (f number) the depth alters with the distance focused upon, as shown below:

For 2 in. lens

f No.	Distance	Depth
$\mathrm{f} / 8$	10 ft.	$\mathbf{I 2 f t .} 6 \mathrm{in}$.
$\mathrm{f} / 8$	5 ft	$6 \mathrm{ft} 6 in.$.
$\mathrm{f} / 8$	3 ft.	$10 \frac{1}{2} \mathrm{in}$.

The depth increases then as the distance focused upon becomes greater. The box camera with its fixed aperture of about $£ / 14$ renders everything acceptably sharp provided nothing in the subject matter is nearer to it than about $6-8 \mathrm{ft}$.

Change of Focal Length

The focal length of a 35 mm . camera is about 2 in . and this compares with the $4 \frac{1}{2}$. lens of the $120 /$ 620 rollfilm camera and the $3 \frac{1}{2} \mathrm{in}$. lens or thereabouts used in the usual twin-lens, reflex and " 12 . on" instruments.
To show how depth of focus becomes progressively less as focal lengths increase the following lenses are considered to be focused on roft. and stopped down to $\mathrm{f} / 8$. Focal
length
Depth ,
focus 12 ft . 6 in . 6 in . $\quad 3 \mathrm{ft} .3 \frac{1}{2} \mathrm{in}$. roin. Ift. IIIn.
Greater care has to be given to accurate
utilise the depth characteristics appropriate to his particular instrument by the scales engraved on and adjacent to the lens mount.

Deptri of Field scale. (Engraved on fixed part of Lens mount)
Fig. 2.-An example of "depth of field scale.
The depth of field indicator is engraved on the fixed part of the lens mount or, in a reflex camera, on the body around the focusing knob (see Fig. 2). In operation the depth of field which will be obtained at a given aperture is shown by the indicator after the camera/subject distance has been set on the focusing scale.
The extent of the field is indicated by the distances subtended by the aperture numbers

Fig. 3.-"Pony Tail."
engraved on either side of the setting mark on the depth of field scale (see heading phote).

Fig. 2 shows how this appears when a 2 in . lens is set at 8 ft . and at an aperture of $\mathrm{f} / 8$. and Fig. 4 shows an actual photograph under these conditions. A larger stop would haye further softened the background as wotid the $4 \frac{1}{2}$ in. lens of a 120 camera at the same aperture.

Snapshooting

One or two special marks, say, a triangle and a circle are often engraved on the focusing scale to be used in accordance with the instruction manual for the camera.

In the case of a moderately priced miniature insirument (2 in . lens) setting the first of the special marks on the scale would result in an acceptably sharp depth ranging from 8 ft . to 18 ft ., the second mark giving depth from $15 f t$. to infinity. In both instances the aperture would have to be f/5.6.

Speed of Operation

Even a coupled rangefinder can be ignored for snapshooting with terrific advantage in speed of operation simply by committing to memory the appropriate zone focusing information. Many a promising shot is lost while fiddling with a rangefinder. A camera
should always be carried at the ready with the lens set at one of the snapshooting settings and an aperture of $\mathrm{f} / 5.6$ or smaller.

Acceptably Sharp

It is necessary here perhaps to point out the reason for the use of the expression " acceptably sharp" in reference to the various depths of focus discussed. It is simply this. That part of a picture which one can expect to be "pin sharp" is the plane on which the lens is focused. Throughout the depth of focus region behind and in front of the plane in sharp focus, the definition will be falling off gradually, but in comparison with planes outside these limits it will be "acceptably sharp."

Fig. 3 is an interesting example. The figure is only about 3 ft . from the camera

Fig. 4.-" Girl by the Water."
with the mirror 5 ft . distant. Camera subject distance was about 7 ft . so far as the mirror was concerned. The depth of subject was therefore about 4 ft . Distance focused upon was about 4 ft . Gin., the exposure was $\frac{1}{2} \mathrm{sec}$. at $\mathrm{f} / 16$ with a 2 in. lens.

DIRECT READING SCALE FOR EXPOSURE METERS

TTHE " light value" scale fitted to some new cameras and meters allows shutter speed and aperture to be set immediately, and to remain interlocked at the correct exposure. For quick and simple operation, an extra scale can be added to the older type of exposure meter, and it will provide direct aperture settings for the usual camera without light value scale. The benefit of interlocked aperture and speeds is not, of course, present. But against this is the advantage that the meter can always be used in the normal way, for

An unmodified meter (abocie) and meter svith new scale added. new scale. aperture scale.

exceptional conditions not covered by the
The unmodified meter is shown in the plotograph and operates in the same manner as many popular meters. That is, the light value is read and set against the film speed when apertures and shutter speeds can be read off on the reverse side. Setting the light value against the film speed requires the use of both hands, and is the intermediate step which is eliminated by the new

With a particular film and shutter speed
d reading on the meter scale of 4 would require an aperture of $\mathrm{f} / 2.8$; 5 would require $\mathrm{f} / 4 ; 6$ would indicate $\mathrm{f} / 5.6$, and so on. It is thus possible to mark out a new scale, as shown in the photograph. It is then only necessary to direct the meter at the subject in the usual way, and set the camera aperture to the f-number indicated by the meter pointer. There is no intermediate stage requiring the use of two hands.

Choosing the Scale

The correct positions for the markings on the new scale are found by manipulation of the meter itself in the usual way, and they are chosen to suit the film generally employed. A good general purpose shutter speed is also selected, and apertures larger than those actually present on the camera are omitted. In the modified meter shown, calibration is for 34 deg. Sch. film, with $1 /$ rooth sec., i.e. from $\mathrm{f} / 2.8$ to $\mathrm{f} / 32$. The markings also apply for a 31 deg. Sch. film, with $1 / 50$ oth second, or 28 deg. Sch. film, with $1 / 25$ th second.
In use the shutter speed is se: to suit the film and not modified unless circumstances require. To take a shot it is only necessary to transfer the
pointer reading to the camera aperture scale. If the new scale is suitably chosen, as explained, almost all readings will fall within the $\mathrm{f} / 5.6$ to $\mathrm{f} / 22$ range, when the meter is in use outdoors.
For interiors or poor light requiring longer exposures, the meter is used as before, the new scale being ignored. This also applies when small apertures a e wanted to secure great depth of field, or when very brief exposures, to arrest rapid movenent, are desired.

Calibrating in Shutter Speeds

It will be observed that the new scale could be calibrated directly in shutter speeds, for a set aperture. This is a good method for a camera with eight-speed shutter, but not for simpler models with only three or four speeds. If a spee.: scale is used, it is marked for a useful average aperture such as $f / 8$. The meter itself, manipulated in the usual way, will indicate where the various speed markings should lie.

To avoid opening the meter the new scale may be marked upon a narrow strip of thin paper lightly glued to the glass above the pointer. Its shape, size and best position will depend on the type of instrument.

Laboratory Distillation Practice. By E. A. Coulson, M.A., D.Sc. and E. F. G. Herington, D.Sc., A.R.C.S. 165 pages. Price 25s. net. Published by Geo. Newnes Lid., Tower House, Southampton Street, London, W.C.2.
DISTILLATION is one of the basic laboratory processes, but is a technique which has, during the pasi 25 years, undergone extensive development. The aims of this book are, therefore, to provide the laboratory technician with some help in selecting the most suitable apparatus, to present the irreducible minimum of theoretical knowledge necessary, to describe the construction of a selected nge of equipment and to offer guidance on the application of distillation theory to batch operations. Special aspects of distillation are covered by separate chapters and the book is by separate chapters and the the drawings. An index is included.

Letters to the Editor

The Editor Does Not Necessarily Agree with the Views of his Correspondents MAN-POWERED FIIGHT

SIR,-In your January issue I think your paragraph on "Man-powered Flight" in Fair Comment deserves looking into. You say "cross-country flight is out of the question." I strongly believe it is possible if you go about it in the right manner. If, for instance, the man who flew 200 yards in 20 seconds were to be a trained glider pilot with hill-soaring experience he would not have to travel more than a tenth of that distance to find strong upcurrents on the hill. From there he could attain more heighit for a normal cross-country flight which as you know can run to hundreds of miles. A check on gliding records would astound a large number of your readers.
Heights of over $40,000 \mathrm{ft}$. have been attained and are not the maximum as they (or some of them) were limited because the pilots were not pressurised. I believe a pressurised glider is being built for heights of up to $60,000 \mathrm{ft}$., which is said to be possible in a glider.
Ex-world champion Mr. Phillip Wills, O.B.E., actually climbed from something around 500 ft . to close on $30,000 \mathrm{ft}$., and if a cross-country cannot be done in a straight
glide from that height, then I and thousands of gliding types are wasting our time.

You suggest a team of 15 people, but I say eight would get one airborne. There have been stories in the gliding world where two men lifted a glider on their shoulders into the hill lift. Also a German, a Dr. Horten I believe, designed a tailless glider where the pilot's legs were used for the take-off and landing.
Furthermore, what little assistance manpower can be, may be just the edge needed to stay in a thermal long enough to have better effect; many a glider pilot could have gone miles farther if he could have "flapped" or gained just a few valuable feet at a vital moment, especially if his strength could be wound up like a clock spring when he has easy minutes at good height and then be released at a determined time. Your basic, and I maintain only point, stands when "still or stable air conditions are present," everyone knows what our weather is like, however.-D. Speed (Chester).
[We were not referring to gliding but to. man-powered fight not dependent on zvind direction.-ED.]

VELOCITY OF LIGH'I

SIR,-Thos, H, Webster's comments in the January issue on the nature of light seem to me very fitting.

We are indeed, asked to believe in waves without any medium in which they may exist.
One fact that is never mentioned in science is that all matter is characterised by the existence of boundaries without which nothing can be called physical. How then can we accept light as a wave in nothing, composed of nothing?

For any wave motion a particle medium is required or a wave system of particles arranged as a compression wave, so without particles to carry or act as waves it is difficult to see how light can be a wave motion.
Light has substance, it is energy, it can act as a wave and still exhibit the properties of a particle. All of these add up to bounded units or particles, which is confirmed by radiation effects, reflection, etc., and by the photo-electric exchanges of waves and particles.

Objections to the particle being ultimate have been based on interference and other optical phenomena which confirm
the wave arrangement but which, it is said, cannot be explained by particles. This is not so.

By arrangement of the particles into waves none of these objections is valid, for all these phenomena can be accounted for quite naturally. The theory underlying this is complex but the fact that it explains this query of the nature of light in a way which fits in with other electro-magnetic effects should lend it authenticity.
If a wave is ultimate, it cannot be physical, since if it had boundaries it would be a particle.
We may, therefore, best understand light as consisting of countless numbers of particles arranged at intervals, the spacing being determined by the frequency of the source. -If we think of a single stream of such particles then the aforementioned objections are valid but if we think of the waves leaving a radiant source as a sequence of expanding shells or spheres no difficulties are to be found.

Perhaps other readers may have similar views on this confusing issue? $-R$. B. Taylor (Kent).

I should like to know how Mr. Mills explains the curved shadow-of the earth on the surface of the moon during a lunar eclipse!-G. G. Allwood (S.E.13).

Control IBaard for a Small Theatre-Correction

In the article "Control Board For a Small Theatre" in the January issue, we regret that the switches and fuses in the circuit given (Fig. 7) should not be in the neutral lead as shown.

In order to remedy this it is necessary to reverse the leads to the main switch fuse. This change will mean that the leads on all the power-points have to be reversed also, so that the live connection on each point is on the right-hand side. This is, of course, assuming that the power-points are viewed from the front.

Wrousht Iron or Milal Nterl:

$S^{I R}$, -In the August, 195^{8}, issue, among other queries Mr. H. Lohmann wanted to know a simple method of telling wrought iron from steel. A method I have read about is to file the surface bright and apply a drop of pure nitric acid. After a minute or two, wash off with water. On wrought iron the spot will be a pale ash gray; on steel a brownish black, and on cast iron a deep black.-G. W. JudSON (Birmingham, 27).

Rejurematiun Sillica (ial

SIR,-In "Your Queries Answered" in the December, 1958, issue, H. Dickason asks how to rejuvenate silica gel. When this material is in need of rejuvenation it is pale pink. After drying, the crystals become a vivid blue. Ten hours in an oven at around $250^{\circ} \mathrm{F}$. will be sufficient for about 2 to 31 b . spread out on a tray.-N. DON (Lancs).

New Theory of Giravitation

$S^{I R}$,-In reply to J. F.'s letter in the December. 1958, issue I feel he would benefit by a little serious thought on what he means by " mass." In particular, I do, not think he appreciates the difference in definition of inertial mass and gravitational mass.

We arbitrarily define the unit of mass (I kilogramme) as the mass of a certain piece of platinum which is kept at the International Bureau of Weights and Measures at Sèvres, near Paris (other standards, such as the Imperial Standard Pound, also exist).

Suppose we want to make a replica of this mass out of some other material, which must also have a mass of one kilogramme.
In terms of inertial mass we choose this replica so that the acceleration under a given force is equal to the acceleration of the standard under the same force. This avoids the difficulty of definition of force, as we only have to make the forces equal, which is easy enough, by duplicating the conditions, i.e., to take a crude example, by ensuring that two readings on a spring balance are the same.
In terms of gravitational mass we choose our replica so that it exactly balances the standard when the replica is placed on one pan of a beam balance and the standard on the other. This avoids the difficulty if deciding what the value of the Earth's gravitational field is, as the experiment is a comparative one.
The question now arises as to whether these replicas are different according to whether the definition is in terms of inertial

BRILLIANT

 POSTCARD ENLARGEMENTS Bring new dimensions into your home photography easily and inexpensively. So finely is the focus fixed on these two Jumbo enlargers that perfect enlargements up to postcard size can be made. And the quick, simple operation required calls for no more skill than is needed in using a printing frame.
Each model has a strong steel body finished in blue and grey Polychrome enamel and costs £2.6.0.

Model No. 1 for 21×3 ilin. $(6 \times 9 \mathrm{~cm}$.) negatives. Model No. 2 for 35 mm . negatives.

qumbo enlargers

FOR CONFIDENCE
IN PHOTOGRAPHY

JOHNSONS
 of hendon lto

LUNAR ROCKET LANDINGS

MOONSCOPES 99/6!!
COMPLETE SET 88.7.0. Postage 15
OR 20/- DEP. 10/- WEEKLY.
See the Moon at close quarters. Examine the huge craters and possible evidence of coming rocket landings.
Observe Saturn's rings, Nebulae. outer galaxies, Sputniks, etc.
Specification. 2 in . dia. Astro Refracting Telescope, length 39 in ., mag 53 X linear (equivalent to 2809 X area) weight 1 tb. 12 ozs. Superior hammer beaten finish. Price 99/6. Regd. pose and packing, including strong stowing cylinder, 12/-.
Accessories. Alrazimuth Portable Clamp Stand. 37/6, p/p. 2/6. Fixes anywhere. High Power Eyepiece 80 X linear, 30/-. p./p. 2/\% (brings Moon within approx. 2,875 miles range). Inclusive Postages for Complete Set, 15/-.
Spectrum Grating Film. 13.400 lines to the inch. For making Spectroscopes, etc., $5 / 6 \mathrm{sq}$. in., post 3 d . Self Adaptable Astro. Kits. 67/6 p./p. 3/6. Parts sold separately.

Astronomical Books, Charts, Maps, Revolving Planispheres, etc. Schools restimonials. Stamp for full particulars and lists. Photographs $/ /-$ set.
J. K. M. HOLMES \& CO. LTD.

Scientific Instrument Makers. (Dept. PM44), Martins Bank North Shields, Northumberland
North

SCREEN FABRIC

MAKE YOUR OWN PROJECTION SCREEN
High Grade Fabric as used by Commer-
clal Cine Screen Manuracturers. 48 in . Wide, any length cut.
Send id. stamp for samples, and instrac tions for making your own "Roll Up Screen.
SPRING 1:OT,IGFRS (Self Acting) Ilin, dja. Swedish Manufacture. com pien winh brackets. $9 / 6: 42 \mathrm{~m} .10 / 3$: $481 \mathrm{n} .11 /-: 54 \mathrm{~m}$

SAWYERS LTD. St. SEPULCHRE GATE DONCASTER

[^1]
This model farm cost less than ${ }^{216}$

It was made from a half-crown tin of Sankey's PYRUMA farmhouse, barn, implement shed, walls and gate-and there was still plenty of this grand modelling material left to build many more farm features, by simple methods described in the Instruction Book (see Coupon below).
PYRUMA, plastic and ready-for-use, becomes stone hard after drying or baking, and can be painted in natural colours. For permanent modelling-

MAKE IT AND BAKE IT IN

Obtainable from your local Ironmonger or Hardwareman and many Art Materia! dealers. Ideal for making-

Model Railway Buildings and Accessories. Harbours Ship Models. Airport Ruildings and Features. Houses. Bookends. Ashtrays. Animals and Figures. Plaques, etc.

Post this Coupon today for your Instruction Book.

To drh. Santicye cojnkil Dept. P.M., Ilford, Essex tstablished over a century

Please send IllUSTRATED INSTRUCTION BOOK with full coiour fages, on Pyruma Modelling.

Enclosed Postal Order value 6d. (not stamps).
NAME (Block letters).
ADDRESS..

ASTRO-TERRESTRIAL TELESCOPES

Get you the best from BOTH Worlds

SIX POWER. THREE DRAW. 2in. O.G. With interchangeable lenses and eyepieces giving 25. 40, 50 and 80 X terrestrial and 60 and 120 X astro. Weight $2!$ Ib. Length open 30 in. closed 10 !in. Complete with case and sling. Mint condition, $\mathbb{1} 13.10 .0$. Used, perfect condition, E12.15.0. Second-hand, guaranteed sound, no case, fil. 10.0 .

VARIABLE POWER TELESCOPES, 7-21X. 2 in . O.G. Length 30 in . wood case, $\mathbf{£ 6 . 1 0 . 0}$
ROSS PRISMATIC TELESCOPE. 20×70. Built-in filters. Eyepiece at 60 degree to line of sight. New. C12.10.0. Dirto, $9 \times 50, \mathrm{E5}$.
A.A. DUAL TELESCOPES. 35×60 and 15×50 on common base. In transit case. New condition. 415 ea. Carr. fl extra.
PRISMATIC SCOPE. Two turrer eyepieces 30 and 15 X . 2 in. O.G. All Brass. Weight 10 lb . Brand New. 110 ea . ELBOW TELESCOPE, No. 8 Mk. 17×50. New and boxed, £3.15.0. . Other types available.
PRISMATIC TELESCOPE. Triple turret eyepieces. 15, 23, $30 x$. $3 i n$. $0 . G$. With elaborate geared Brand and and complete in two cases. $£ 30$ ea. Cost over $\$ 150$. AMERICAN N3 VP SCOPE. $10-20 X$. 2 in. O.G. Elaborate geared base with
In two transit cases, $\mathbf{1 2 0}$.
STEREOSCOPIC BINOCULAR TELESCOPES. No. I Mk I. No. 3 Mk. II and German types from $<12.10 .0$ 0.25

FINDER TELESCOPE. Inverted image. O.G. and eye focus. Cross line. 5×30. t3 ea
RIFLE SIGHTS. No. 32 Mk. I with E. and W. adi Used, E3.15.0. Reconditioned, $\mathbf{E 5 . 1 0 . 0}$
RIFLE SIGHTS No. 42. 35/- used. $£ 2,10.0$ as new. ASTRO TELESCOPE KIT. 20 in . focus O.G. achromatic. 45 mm , dia., tube to suit and focusing eyepiece. 82 the lot. Ditto, with 27 in . O.G., $50 /$ -
HELIOGRAPHS. 3 mirrors. Geared head adaptable for tele. or camera, brass mounts, exc., plus lovely leather case for sports or pastimes. Mint condition. The best buy of the century, $15 /$ - ea., plus $3 / 3$ earr. Cost 130 ea. TRIPODS. 36 in . lightweight, with P. and T. New, $17 / 6$. Medium, extending to 5 ft ., 50%. Heavy extending, With P. and T., E3.5.0.
DIAL SIGHTS, No. 7 with $4 X$ oṕtical sight. Will lay out any angle and can be adapted for levelling. 45/- ea. Ditto No. 9, a similar bue heavier job, 55/. or brand new in leather case, 85/-. Both units have geared heads cal 360
with verniers and throw out lever. Cost over $£ 80$ ea.
PHOTO CELLS. Two cells in sealed unit fitced terminals bridge circuit gives abour volt neg. or pos., and up to 500 bridge circuit gives about $\frac{1}{2}$ volt neg.
miero amps. New and boxed, $15 /$.
RECORDING CAMERAS, 24 volt Elect. Driven. 14 in . F4 lens. Runs 2 frames per sec. or single sh
O.K. with magazine in wood case, $\mathbf{6 3 . 1 5 . 0}$ ea.
MOTOR BLOWERS. 24 vole A.C./D.C., will run on 12 volt O.K. Brand New and boxed as specified for
SCHMIDT TYPE PROJECTION UNITS, as used in Ferranti 24 K 4 T.V. (the best T.V. ever made). Comprising Spherical Mirror, Plane Mirror (both aluminised) and Corrector Plate or Lens, mounted as one unit and sealed in. Brand New, $£ 5$ ea. A few slightly used but as
new, with tube and deflector coils, $£ 12.10 .0$. new, with tube and denctor coils, LI2.10.0.
TAYLOR HOBSON PROJECTION LENS. Sin. F1.5. Bloomed. Brand New, 14
NUMEROUS LENSES SUITABLE FOR PRO. JECTION, from 8 mm . upwards, from $5 /$ - ea., see oúr lens lists.
INFRA RED MONOCULLARS. A lightweight unit with built-in Zamboni Pilc H.T. Unit. Self generating. Focusing eyepiece. Image inverted, complete in leather case. Tested O.K., 50/- ea. 5pare \bar{Z} piles, approx. 1,500 volts. $12 / 6 \mathrm{ea}$.
MINIATURE GEARED MOTORS. A.C.JD.C. Dual voleage. 6 to 24. Elec Clurch, speed governor, size $1 \pm x$ 1. $\times 3 \mathrm{in}$. Gunmetal to steel worm-type gears running in 9 ball races. transmit tremendous power to final drive by 1 in . spindle. Final speed I r.p.m. What a lovely job, a pleasure merely to own one, cost over 120 ea., our give away price, $35 /$. Ditto as above but in case with miniature relay and micro switches, brand new, sealed cartons, E2 ea
LARGE GERMAN PERISCOPES. A few available, callers only.
RANGEFINDERS. Various types in good condition, but not guarranteed. Average 36 in . long,. $£ 3 \mathrm{ea}$.
TELESCOPE O.G.'s. 21 in. diam. $\times 20$ focus. New
achromass, $55 /$ ea. 25 in . focus, 65% ea. Orchoscopic achromass, $55 /$ - ea. 25 in . focus, $65 /$ e ea. Orthoscopic
eyepieces
tocus, plain mounes, $17 / 6$ ea. eyepieces ${ }_{k}^{6}$ focus. plain mounts, $17 / 6$ ea.
TIME SWITCH MOVEMENTS, 230 v. A.C. I rev.
per 24 hotas, $22 / 6$ ea. Ditto fited auromatic selfcompensating dial to switch on and off as norinal ligheing up times, 35/- ea,
GRIMES HAND SIGNALLING LAMPS. Trigger grip, 26 v. 5.3 amp . New, $37 / 6$ ea
RECTANGULAR LENSES for transparency viewers Ditto with slight edge chips, 17/6. Brand New, 25/. pr

MOTOR BLOWERS. 80 v. D.C. or 230 v. A.C. 1 i in . outlet. New, 376 ea.
ROSS 7×50 BINOCULARS. Bloomed. Mint condition. With leather case, E22.10.0.
HENSOLT 10×50 PRISMATICS, Perfect condition. $£ 22.15 .0$ with case.
dition. AN 6×30. Various makes. Excellent conwith 7×50. E 12 per pr. with case.
FLASH SPOTTERS. Super precision unit, consisting of a pr. of 8×40 binocular telescope mounted on stand movements toually enclosed self-illuminated diais, and condition, $\mathbf{2} 20$ ea. Could be easily converted to a highpower telescope by changing the O.G.'s. Supplied for this purpose with only binoculars guaranteed sound at $£ 10$ ea. VENNER CLOCKWORK DELAY SWITCHES. Variable 0.10 mins. 250 v. 5 a. SPDT. Panel mounting. New and boxed. 10/- ea.
SIESMIC PICK-UPS. M.C. Vertical type. New and boxed. $17 / 6$ ea
FLEXIBLE DRIVES. 231 t. long. Complete inner and outer with unions. New and boxed. $12 / 6$ ea.
SELF PRIMING PUMPS. Ideal for garden fountains and waterfalls. 24 v. D.C. $\frac{1}{2} \mathrm{in}$. outlet, $45 / \mathrm{ea}$ e 1 lin . outlet, 55/:. Mains transformer and heavy duty 5 a bridge rectifier to suit. £3.5.0
TELEPHONE HAND SETS
TELEPHONE HAND SETS. G.P.O. Desk pattern, carbon. New and boxed. $17 / 6$ ea.
V.L.2. Mod. units. Size 3 in. cube with 9 sub-miniature
valves. Now and boxed. $37 / \$$ ea. valves. Now and boxed. $37 / 6 \mathrm{ea}$
PILOTS' PULL OUT COCKPIT LAMPS. 8fr. flex on spring-loaded reel in ease with brass lampholder for spot or broad beam. Ideal for emergency inspection for cars, etc. Brand New and boxed. 10 ea.
 5 a., 18/6. 10 a., 35/-. 24 v. 5° a., $35 / \% .110$ v. 5 a., 65/-
230 v. 5 a., $£ 3.10 .0$. TRANSFORMERS. 230 v, A.C. $3 \times 6 \mathrm{v} .10 \mathrm{a}, 30 / \mathrm{m} .50 \mathrm{v}$. 20 a., $\mathbf{6 5 . 1 0 . 0}$. 8 v. 10 a., $21 /$.
MASTER CONTACTORS. Clockwork. 2 impulses
per sec. New. 15/- ea.
GYRO MOTORS. 6 v to 12 v. A.C./D.C. Plas. contacts on speed governor. $10 / \mathrm{ea}$
 SMALL 3 PHASE CONVERTERS. - 24 v . to 15 v . for ball gyros and similar selsyn motors. 25/- ea
ARTY DRAWING BOARDS. Braced, cornered, fitted canvas cover and case. Complete with brass rulers, centring pins and 12 hinged flap pins. Size 21 ing. sq.
New, $40 /$ ea. Ditto 30 in . sq. New, 50% ea. Used, 30%. A.C. AMMETERS. 6in. 5 witchboard eype. 0-i5.50/ea. $0-30,45 /-, 0-50, \varepsilon 2$. The above work equally well on D.C. Brand New. Cost 18.

MIDGET MOTORS. 12 v. A.C.ID.C. with pulley and Wire beit. $8 / 6$ ea. $1 \times 6 \mathrm{v}$. in sealed tin. Ready charged, only need filling NIFE BATTERIES, Single cell 10 a. New. 12/6. Double cell, 10 a.. 25/
MICROPHONES. Pilots' magnetic, 2/6. Gold plated carbon button. 2/6. Contact type magnetic, $2 / 6$. MICROPHONE TRÁNSFORMERS. 100.1 high impedance, midget \$/
ELECTRIC LIGHT METERS. Quarterly. 230 v. 5 a
17/6.
SWITCH BOX UNITS. 16 switches, etc., suitable for model control. $10 / 6 \mathrm{ea}$
MICRO SWITCHES. 230 v .5 a. SPDT. 4/6.
SENSITIVE HIGH-SPEED RELAYS. SPDT. All contacts (platignum) adjustable also spring tension. Will work on I.M.A. 8/6 ea.
LEACH PATTERN RELAY. SPDT. $1,000 \mathrm{ohm}$. $8 / 6$ G.P.O. TYPE RELAY. 5,000 ohms, multi-contacts $12 / 6$ ea. 200 ohm heavy duty, $8 / 6$.
LONDEX RELAYS. 24 v . Various types. MultiCONINOMET
CLINOMETERS. $0-90$ degs. Gunmetal in case. 25/- ea. GRIMES SEALED BEAM SIGNALLING LAMPS. 24 v .120 w . In case with red, blue and green filters. $35 / \mathrm{ea}$. S27 A.M./F.M. COMMUNICATION RECEIVERS. As NEW. $£ 30$ ea
GEARED MOTORS. $12-24 \times$ A.C./D.C. 31 and 12 r.p.m. Size $7 \mathrm{in} . \times 3 \mathrm{in}$. $\times 3 \mathrm{in}$. Motor in stainless steel, YL 2 MODULATOR UNIT
with 9 sub-minizere valves. New. Size only 3 in . cube HIGH-POWER OSCILLATORS. U.H.F. New and boxed. Late type using 2 sub-miniature valves and one special.- 50\% ea. Cost over 150

PHOTO CELL. Large, mounted behind 4 lenses and slit complete with 2 -valve amplifier. Ex equipment. No ORTHOSCOPIC EYEPIECES. S/8th focus. Bloomed New and boxed. Plain mount. 35/-ea
CHARGING BOARDS. In Steel cabinets. BD.LTigl 50 v: D.C. 3×15 a., with voltmeter, 3 ammeters, rotiry vitreous rheostats, cut-outs, etc.; and 3 auto-release 5 witches eurting out at 10 a . Size $22 \mathrm{in} . \times 22 \mathrm{in}$. $\times 1$.jin
As NEW. 88.10 .0 ea. CUT-OUTS
IGNITION. 624 v. $30^{\circ} \mathrm{a}$. Bakelite case. $12 / 6 \mathrm{ea}$
LAMPS. S.B.C. D.C. 12 ₹ $6 \mathrm{w} .12 /$. doz. 12 v .80 w frosted, $18 /$-doz. M.B.C. 6 v., $9 /$ doz. 28 v., 6/. doz Holders M.B.C. 3/- doz. S.B.C. Batten type, $12 /$.
SLYDLOCK FUSE HOLDERS. 5 a., $1 / 6 \mathrm{ea} ., 15 / \mathrm{doz}$ TOGGLE SWITCHES. On/off. Meral, 146. Bakelite, lod. 4 way changeover, 250 v .5 a ., luminous tip, centre lod. 4 way changeover, 250 v. 5 a., lum
off, $4 / 6$ ea., $36 /$ - doz. Gross less 25%.

WAFER SWITCHES,

SURGEONS' SKIN GRAFTING KNIVES. NEW in Mahogany case, 25/
CARL ZIESS VERTICAL COMPARITOR. With back projection unit. Perfect, $£ 75$.
GERMAN ULTRA CENTRIFUGE. With long focis
camera and associated equipment. $£ 200$, Callers only.
AMMETERS. $2 \frac{1}{4}$ sq. flush. $20-0-20,50-0.50$, D.C. M.C. $8 / 6$ ea. Voles $0-40,8 / 6$. 3in. circular flush. $0-300$ v. A.C. $25 / \mathrm{A}$. D.C. MA. $0-100$, up to $500,12 / 6$ ea.
DAMAGED METER MOVEMENTS
GEARED HEADS. All types in stock suitable for cele GEARED HEADS. All types in stock suitable
scope mounts up to 12 in . dia., from $8 / 6$ to $\mathbf{2 5}$.
HAND BEARING LIQUID PRISMATIC COM HAND BEARING LI
PASS. Mk. III. C 3.5 .0 ea.
35 mm . DUFAY COLOUR NEGATIVE FILM. 100 f 35 mm . DUFAY C
tins, $\mathrm{E2}$. $400 \mathrm{ft} ., \mathrm{E} 6$.
35 mm . ILFORD RECORDING FILM. 200 ft ., 10 35 mm . KODAK MICROFILE. $100 \mathrm{ft} .10 /$.m .
16 mm . KODAK MAGAZINES. 50ft. empty. NEW. $7 / 6 \mathrm{ca}$.
MICROSCOPE UNITS. I0X. Orthoscopic. Allows 2 in, working distance. Large field. $\mathbf{3 . 5 . 0} \mathrm{ea}$. in . Ideal DELCO MOTORS. 24 v. A.C./D.C. $3 \mathrm{in} . \times 2 \mathrm{in}$. Ideal
sewing machines or food mixers. $12 / 6$ ea. TELESCOPIC SIGHT. M45. 9in. x lin. Ideal lightweight rifle sight. 45/\%.
PMOTO FLOOD LAMPS. $110 \mathrm{v} .250 \mathrm{w} ., 12 /$-doz. ES. Holders, batten type, $18 /$ - doz.
PROJECTOR LAMPS, $110 \mathrm{v}, 300 \mathrm{w} . \mathrm{i} 3$ for $30 / \%$. 12 350 w . large prefocus, 5/. ca. 20 v .100 w . tubular S.B.C D.C., 5/- ea., 48 - doz.

ASH DENTAL B URRS. No. 6 and $9,2 /-$ doz. Post $6 d$ OSCILLOSCOPE. No. 11 . Brand New. 612.10 .0

TRANSMITTER RECEIVERS. RT34/APS-13. 28 D.C. with 17 min
boxed. $£ 7.10 .0$.

INDICATOR C.R.T.
and boxed. 12.10 .0 . $10 \mathrm{Q} / 16163$. 1954. New VALVES. EABC80. ECC85, EZ80. ECH81. $6 \mathrm{L6}$ at $9 / \mathrm{e}$ ea EF89, EL84, UY85, i0\%. Pen46, $5 / \%$. VUI20 and I20A, 5\%. All New. Post 6d.
ANTENNAE REELS. With several looft, fine flex copper wire with winding handle and locking device. Make good fishing reels, $8 / 6$ ea.
BOMB DELAY SWITCHES. 8-day jewelled move ment. Contacts ($2 \mathrm{a}, 230$ v.) close at any given time by cal. dial 0-36 hrs. 15/- ea.
ZAMBONI PILES. $1,500 \mathrm{v}$. $12 / 6 \mathrm{ea}$
SPARE MAGAZINES for G.G.S.
RECORDING CAMERAS. 6/6 ea.
MAKE YOUR OWN VERTICAL ENLARGER. 35 mm . to 21 sq . Plans, 3/6. Double cońdenser and achromatic lens, 32
BACK PROJECTION VIEWER. For $35 \mathrm{~mm} .(2 \times 2 \mathrm{in}$) Plans, 3/6. Triple condenser and double achromatic lens, $50 /$
FOR ACHROMATIC TELESCOPE OBJECT- LENSES, ORTHOSCOPIC EYEPIECES, ERECTORS, PRISMS, ALUMINISED \& SEMI-SILVERED MIRRORS \& FLATS,
CONDENSERS. PROIECTOR LENSES PHOTO. CONDENSERS, PROJECTOR LENSES, PHOTO-
GRAPHIC LENSES, TELEPHOTO LENSES, HEAT FILTERS, COVER GLASSES, BARLOW LENSES, COLOUR FILTERS, IRIS DIAPHRAGMS, ETC. ETC., SEE OUR LISTS. FREE FOR S.A.E.
We offer the pick of the finest quality Ex-Gov. BARGAINS for only a fraction of their real worth. Try US
mass or gravitational mass or whether one replica would satisfy both requirements.

There is, in fact, no simple argument based on classical mechanics and logic which can answer this question. To the reader who asserts that common sense tells him that the two definitions are obviously equal I will merely quote the late Dr. Albert Einstein. "Common sense is nothing more than a deposit of prejudices laid down prior to the age of 18 ." The rejection of common sense does not preclude the use of logic however.

All this does not alter the fact that purely experimental evidence based on the hypothetical experiments that I suggested shows that the two definitions are precisely equivalent.

Einstein, with the aid of tensor calculus and his own genius was able to put this hitherto experimental fact on a sound theoretical footing. I would not advise J. F. to try to do likewise in naïve qualitative terms.
J. F. misunderstands the point of my criticisn of Mr. Clayton's theory. I laid stress on the independence of gravitational attraction on shape and size, and the way in which Mr. Clayton's theory conflicted with this experimental fact rather than the way in which it conflicted with the massdependence. More important still is the disagreement with the inverse square law. Mr. Clayton seemed to be unaware that all material bodies, not only the Earth, exert gravitational influence on all others
I would like to refer W. Mills, the flatEarthist, to the several photographs which have been published, wof the Earth, taken from high-altitude rockets sent up from different parts of the Earth, and which clearly illustrate the spherical nature of our planet.-J. R. Peverley (York).
Manmaner Moatim anily Gitwinse Ateds
CIR,-Whilst preparing to bind Vol. 25 of Practical Mechanics I re-read your January, 1958, Fair Comment about hammers. This is a matter which has troubled me for many years. As a joiner and then as a general foreman, I always thought I should like to do something about it but never did. Many times I have seen accidents or near ones through sledge and club hammer heads flying off. Sledge hammer heads should be fixed in the same way as pick heads. Club hammers are the hardest worked tools in the building trade and it is not long before the heads are loose, because the wedging is insufficient; also it needs a tubular metal strap to slip over the handle and fix over the head. Brick hammers need similar treatment

Another improvement in the building trade would be a light tubular alloy version of the wooden sawing stool, with attachments for anchoring it to the floor and affixing a wooden top, it should also have side rails and a nail tray. These wooden stools are usually thrown about, ised as steps, heavy
timber is cut on them and they are generally misused which results in their becoming rickety and thus dangerous. Apart from the threat of personal injury, these various tools must cost the building trade many hundreds of pounds to repair and replace. It is time something was done to improve this situa-tion.-D. Risk (Essex).

Extracting llydrogen Gias Irrom Wiater

CIR,-Re Mr. Seager's letter in the February issue.
He states that i amp. will liberate I gram of hydrogen from water in 96.470 seconds. This is not so, as 96,470 coulombs are required to liberate the gram-equivalent of any element. Thus I gram of hydrogen or 8 grams of oxygen would be set free by 1 amp. for 96,470 seconds, or 10 amps . for 9,647 seconds, etc. The true answer is worked as foilows

One gallon of water weighs rolb. and Ilb. equals 453 grams. For each gram of hydrogen liberated 8 grams of oxygen are formed and thus 9 grams of water are decomposed. Thus the weight of freeable hydrogen in I gallon of water is $\frac{10 \times 453}{9}$ grams.
The time taken to set free that amount is thus $\frac{10 \times 453 \times 96,470}{9 \times 60 \times 60}$ hours, or $13,491.78$ hours, if the current is I amp. Thus I feel that I amp. would take $13,491.78$ hours to deconipose I gallon of water.

I have tried electrolysing dilute sulphuric acid with a pressure of 24 volts through a 6 amp. transformer and rectifier, and hydrogen and oxygen are evolved in great quantiry. but this is, of course, not practicable with an accumulator.

As to what Mr. Seager says about the danger of electrolysing sodium chloride (salt) solution, I suggest he tries it for trimself as I have done. There is, of course, no danger, as hydrogen and chlorine will not explode together at room temperature unless submitted to sunlight or energy of some kind. No oxygen is evolved until the solution is very weak.-PETER F. TAYIOR (Bristol).

The P.M. Dinghy Trailer

O
NE of our readers has written to us to say that the $14 \mathrm{in} . \times 3$ in. R.B. pneumatic T. wheels specified for the dinghy trailer described in the February issue, are only suitable for speeds up to $8 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

The author regrets that this is the case, but the specified wheels, on a hardened shaft are quite suitable for trailing at moderate speeds for distances up to 100 miles. Wheels fitted with ball bearings are advised for trailing speeds up to 30 m.p.h, which is the legal limit in any case.

It is also regretted that the 14 in . width dimension of the swinging arm frame in Fig. 6 should read r6in., as should also the reference in the text.

SPACE TRAVEL PHYSICALLY POSSIBLE

M^{1}ITTARY scientists in America late last vear shot a monkey into space and throughout the whole length of his flight data regarding his heart rate, blood pressure, respiration, temperature, breath sound and body motion sound were measured. The length of his flight was 13 minutes, for nine of which he was in a weightless state. Irregular respiratory and heart rates were recorded, but only during the acceleration period, all returning to normal during the period of weightlessness.

Although it is too early to draw scientific conclusions, scientists regard the results of this test as an indication that space flight is physically possible for man also.

A South American Squirrel monkey was used and during the six weeks prior to the launching he was trained to make him familiar with the capsule in which he was to fly.

Among the problems which had to be solved so that the monkey could exist, were the supply of oxygen, removal of carbon dioxide and the maintenance of a constan temperature. This final difficulty was solved by means of a 7 -watt electric light bulb.

Although the monkey was not recovered the data transmitted by radio throughout the entire flight has led scientists to regard the experiment as 98 per cent. successful.

Thermo-plastic Manipulation
 (Contimued from page 276)

method is to pass the insert through the attachment and into the plastic in one operation. Several examples of the method are included in Fig. 7, where a number oi articles, selected more or less at random, have been fitted by thermo-plastic methods to a small piece of the plastic. For instance, when fitting the small bracket, it was drilled to clearance size and the plastic drilled with undersize holes. With the bracket in place hot insert was passed through one of its holes and embedded in the plastic. A second round-headed insert was fitted into the other hole in just the same way and the bracket was fixed securely and permanently. Screws were used for inserts because they were handy, but the thread is not needed; rivets, cut-down woodscrews; even nails, make excellent fastenings.
Other articles fitted in this way in Fig. 7 are: lampholder batten in white plastic; small disc in thermo-plastic material, firmly secured with a nail; a ceramic insulator and a hinge. Hinges are troublesome with cold fixing methods, for the frequent movement seems to loosen screws and nuts with annoying regularity.

The hinge shown was fitted with brass countersunk woodscrews cut down in length, but rivets could have been used. They were pressed into undersized holes with the tip of a hot soldering iron, then held down tight with a screwdriver until cold. The soldering iron is an excellent tool for heating small inserts. The use of undersized holes in the Perspex and clearance holes in the attachment through which the insert must first pass (Fig. 8) is, of course, the same, as conventional screwing and riveting procedure.
It is-often possible to dispense with the separate insert and use part of the fitting itself. In Fig. 7 the little ring is a screw-eye, heated and thrust directly into an undersized hole. A variation of this idea is to provide the fitting with tags like those used in toy-making: these are the insert portions

Fig. 9 (Below). Tags used in friving metal brackets.

Fiz. 8 (Above). -Shozving ant in the Perspex and clearance hole in the atrachment.
and make perfectly satisfactory connections. A ready-made broosh-pin has been fitted in this way among the examples in Fig. 7. Behind the pin is a metal bracket fitted with the aid of tags; the method of making the tags is shown in Fig. 9.

Also in Fig. 7 are two radio components, a resistor and a crystal diode, fitted at the corner near the lampholder batten. Perspex has good electrical properties which find many uses in radio, television, lighting and domestic apparatus: The anchoring of components and connections by embedding rags and wires is an aid to rapid assembly. The components in the photograph were fitted by heating the wire ends with the soldering iron and pushing them straight into the plastic, no holes being needed for wire When soldering subsequent connections to inserts use a really hot iron so that the joint can be made quickly without the heat being conducted to the embedded portion and loosening it. It is not serious if it does, for it will become tight again on cooling

ANEW attachment for the handyman has been produced by Wolf Electric Tools Ltd. This is the No. 20 Comb Jointer set, designed to be used in conjunction with the No. I6 jig saw, a power unit and either the universal saw table, or the new SP 105 Supa power saw table. The jig saw accommodates a special slotting blade which passes through an aperture in the table top; a cutting guide and guide index are fixed to the saw table straight edge. The slot width and spacing are variable by multiples of $3 / 16 \mathrm{in}$. and

The Wolf Comb Jointer in use.

The 'Tepco Dinghy

THE Tepco Reinforced Plastics Company, of 30-42, Woodfield Road, Leigh-onSea. Essex, have recently placed on the market an 8 ft . dinghy constructed from bakelite polyester resin reinforced with giass fibre. The Tepco dinghy is made in seven different colours and has been designed ior stability. It weighs only 85 lb . and the manufacturers claim that it can be comfortably carried on top of a car.

For the do-it-yourself enthusiast, the hulls can be bought separately for £25. The complete dinghy (exclusive of oars and row--ocks) costs $£_{45}$.

The Tepco dinghy.
mitred joints can also be made. The retail price is 34 s . 6 d .

Mini-Compressor Accessories

S OME new accessories have been produced by Gennar Ltd., 99. Old Street, London, E.C.I, for use with their MiniCompressor. The Gennar Plug Cleaning Unit, costing 19s., it is claimed, will clean any plug in one minute. The Air/Gas Torch Unit is suitable for silver soldering, soft soldering, brazing, pipe fitting, denture manufacture, wire insulation removal, etc., and costs $£ 29 \mathrm{~s}$. A new Air Blast Gun is useful for instrument cleaning, electric motor cleaning, typewriter maintenance and other jobs; it costs £2 3s. The Foggit Atomiser Unit has been designed for the intermittent and portable application of activated vapours in open or confined spaces, including deodorant liquids, insecticides, germicides, etc. Costing $£ 318 \mathrm{~s}$., it is also suitable as a humidifier. The fifth accessory is an artists' Air Brush Pressure Container which includes a 2-gallon air container fitted with pressure regulating valve, two pressure gauges and union for artists' air brush work. The price of this is $£ 10$ 10s. 6 d .
Further information on these accessories is available from the makers at the above address.

Working Platforms

T ENSON ENGINEERING COMPANY: of Churchill Road Extn., Thurmaston, Leicester, have introduced a new type af., hydraulic adjustable mobile working platform. -called the "H" type platform.

The photograph shows a platform designed to work between racking with a platform size of 6 ft . X 2 ft . and a variable lift of from ? 5 -Ioft. The load capacity is 6 cwt ., and the upward travel takes 22 seconds. Access to the platform can be gained from either end by the support ladders.

This type of working platform can blek

Mobile working platform.
made up to 12 ft . long and the width, hand-w railing, etc., made to suit individual require ments.

Dormer Drills

THE makers of Dormer drills, The Sheffield Twist Drill and Steel Co., Lid., Summerfield Street, Sheffield, II, have published a revised price list (Ref. 212) for their catalogue No. II. Amendments are included to prices of drill sleeves, sockets and special length drills.

New Fraser Tools

THE FRASER TOOL CO., of 54, Park Lane, Croydon, Surrey, have recently placed on the market a new tool, the Fraser chisel and plane sharpener. It has been designed to obtain the correct angle for sharpening instantly and correct pressure is applied automatically. The sharpener is simple to use and costs $£ 1.8 \mathrm{~s} .6 \mathrm{~d}$.

Another new product of this company is a non-rusting paint mixer, with lid remover handle, which is suitable for distempers and colour mixing. The price is Is. 9d. each.

ELECTRONIC KITS

HE well-known American Heath-
kits are being produced in kits are being produced in England by Daystrom Limited, Glevum Hall, Gloucester. Included in the range of apparatus available is a transistor portable radio kit ($£ 17$ 17s.), a hi-fi stereo amplifier kit (£25 5s. 6d.), and a printed circuit valve voltmeter ($£ 15-14 \mathrm{~s}$.). The kits include all the components and materials required together with an instruction manual containing detailed information on construction with point-to-point wiring diagrams. The completed apparatus has a modern appearance as the photograph (right) of the transistor portable radio will show. This transistor set has a printed circuit for ease of assembly and consistency of results. The makers claim that it can be assembled in four to six hours. All enquiries should be sent to the above address.

Heathkit portable radio.

The pre-paid charge for small advertisements is 6 d . per word, with box number $1 / 6$ extra (minimum order $6 /-$). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southampton Street, London, W.C.2, for insertion in the next available issue.

PERSONAL
TURNING AND MACHINING to Your drawings. Tr
Fingwood. Hants

MAKE EXTRA MONEY AT HOME

SITUATIONS VACANT

A. MI.Mecin.E., A.M.Brit.IR.E.. City higl pay and security. ... No pass no fee uerms. Over 96% successes atl branches of Engineering, Building. Electrontcs, etc. Brite for 148 -12age handbook-free
Eindon. W.

A Company manufacturing liquid measuring and pouring devices under own patents requires services of man who can take drawing or mock-up and improve the design by practical experiment with successive models to tinal prototype. He would work in collaboration with Directors; he can work in own or in Company's work shop at Ewell. Surrey, evenings o ull-time. Essential that person has sound machine tool experience. W.D. Lidd. 35 West Hill, S.W. 18 VANJyke $3337 / 9$.

EDUCATIONAL

A PPOINTMENTS ARE WALTING h Irained men. and Commerce for trained men. Sperial tuition
G.C.E. Also
quaranteed coaching G.C.E. Also quaranteed coaching
for I.Mech.E., fed E. Soc. of E. Brit.I.R.E. City and Guilds. Manage ment book on your career to:--Intel Hational Correspondence Schools, 71,
Kingsway (Dept. 521 , London, W.c.

11+EXAM G.C.E.

WRITE NOW for fREE GUIDE, stating date and type of examination to the Registrar, (Dept. M.34), MERCER'S
CORRESPONDENCE COLLEGE, as Wimpole Sereet, London, W.I.

MATHEMATICS - Physics - Elec etc.: Grammar School education not required; from ${ }^{\text {S. }}$ - weekly. Write
Senior Senior Tutor, Tutoria
Bucliknan
Street. Glasgow.

CHEMISTRY

PREPARE NOW FORYOUR FUTURE

spectalise in suplung Laborator

 Send toctay for free price list to: Romet,HOME BOAT BUILDING
WASY TO FOLLOW KITS to build Cruisers, Runabouts, Camos, Cabin Dinghies Runabouts, Canoes, Prams,
Ding
Enterprise. Salling Dinghies And Brochure from: Wyvern Boats twe
Sherborne.

PHOTOGRAPHY
(1-ASGOW
Aw oow. If buying, selling or Enlargers. Eauipment. Tade Recorders. ets. for the best deal. call or write to Victor Morris, ${ }^{406 \text {. Argyle }}$ St., Glasgow. C.2. Ceniral 8958.
$B^{\text {ElLows, Cess. Inmera, Enlarger, Pro- }}$
 Cuthbert's Road. 1263
I) EVELOPING AND PRINTING at nd negatives for expert attention to: Stuats, Trade. Photofinimhers. 6 .
Stanley. Street, Bedford. Price. list Stanley. Street, Bedford. Price-list

WXPOSURE METERS. Build your Exposure Meter with 50 x 37 mm . plotocell, $1 / 1.4$ to $1 / 32,1 / 1,000 \mathrm{~h}$ to 60 sec. film speed, 19 to 37 deg. B.S. complete component kit $50 /$-i sid.e
details.
G.R. Products. 22 , funny details. G.R. Produc

HANDICRAFTS

\AKE JEWELLEERY, make mbney Arts and Crafts, Dept. P.M., Hebden Bridge. Yorks.
MUSICAL MOVEMENT spare Parts; all makes. Send broken

MUSICAL BOX MOVEMENTS

ONLY 13/- POST FREE.
Kits from 21/- complete with movement.
Please send 3d. stamp, or call for now FREE illuserated brochure. Trade supplied.
HE SWISSCROSS Co. (Dept.

HOBBIES

Illustrated catalogue no. 13. Containing over 450 Items of Government Surplus and $2 / 2$, re-
 overseas sea-mail. Arthur Salis
Radio Control P.M., 93, North road, Brighton

SEREN
 ASTRONOMICAL SUPPLIES

Stebhing, Dunmow, Essex

EQUIPMENT for ASTRONOMERS Mirrors, esepieces, focusing mounts spiders. ete, Do-It-Yourself kits.

A STRONOMICAL TELESCOPES. Gle Grinding. Polishing Kit, suit idde: Grade $80,11 \mathrm{~b}$. ${ }^{11}$ 180, 280 . 31 b . 320, 400,600, ab ; ; Optical Rouge 2oz: Swedish pitch 11h. 25 Rollach, plus 2/6 postage. S.A.E. for price list separate items. L. J. Mays \& Co.
20. Clover Road. Timperley, Aitrin ${ }^{20 .}$ Cham. Cheshire.

PATENTS

PATENTS. Qualified service
Advice

! A GOOD IDEA ! CAN MAKE MONEY FOR YOU PROFESSIOT US AS ASIIST YOU NALLY TO SELL YOU Y FOR FULI WRITE FOR FULL DETAILS. PARKETING CONSULTANTS

WOODWORKING

WOODWORKING MACHINES. All cast-iron constructed. Complete
 £230. Planers. 5 in $£ 12$: Bowl Turn ing Heads £4: with 8in Saw Tables tion Lathes. £10/10/-: Combina Motors Pulleys, Belis. etc. 12 months Writen and money refunded guaran-
tee. 4 d stamp for thiustrated bookMarshall St Inns (Engineers) Marshall St. Notlingham.
SPINDLER \& CAZALET by S.G.S D Planers and Woodworking Lathes. Circular Saw Blades. rip
tooth ol crosscut, 5inl. 13 Gin. $15 / \mathrm{l}$
 27/6. 12in. $33 / 6 ;$ state centre hoie
size. please. Bund Saw Blade for

 Pleador Vee Ve retts and post free Send for lists to Spindler \&i Caze ete
B3,
Pammerston Road, Boscombe. Bournemouth
SAWBENCHES, 8 in . to 30 in .. from Portable, Motorised, \&13; Petro. Portable, £44. Planers, Bandsaws, Assembiles, Iogging and Firewood Machines, Chain Saws, Engines Motors; deferred terms. Send $1 / 9$ Por handbook, catalogue and bargath
ffers. Iist free. Beverlev Products. offers. List free. Beverlev Products.
Sturton-le-Stecple. 47 , Notts.

TOOLS

POWER TOOLS.: We stock the lot 5B, Conmmerce Rd. Wood Green -
NAMESTAMPS.-Your name in win letters, $1 /-$ per letter. Price lis Brar Sets of Letters and Figures or Name Irons, Stenclis: quotation or Nameplates, Dies. Moulds. Meta ngs. John C. SWallow (Enoravers (P.M. Dept. 1 , Garden Street. Shet feld.

FIBREGLASS

PLASTIC UNITS

Experimental Glass fibre Unit, $14 / 9$ Plastic Metal for Gear Casting, Plastic Dies, Finish for food pecean-hard Cold Setring iash for food preparation surfaces, baths, washing machines, ete., cream, black, sky blue, red, clear and
aluminium. price list, etc. SILVER DEE PLASTICS (Dept. 3), Hartington, Staveler. Chesterfield, Derbyshire.

WATCHMAKERS

WATCH PAMTS

For all makes of watches, tools, instruc lonal books, etc. Special Kits for beCimpors. Send Ga. Ior Super Bargan

Watch repair service, unspeed. rivalled for relliability and Material suppled Hereford Weed Material supplied. Hereford Watch
Co., 13, St. Owen Street, Hereford. 1. ADIES' Rolled Gold Cocktail - Watch Cases, 5/- each. Send \& Co. Albemarle Way, E.C.1.

1. EARN to be a Watch and Clock Cain extra money at nome. We can supply everything you need at unbeatable prices, including instructional books. Swiss watchmakers. tools, watches, watclı and clock
morements, lathes, cleaning machines morements, lathes, cleaning machines. all spare parts for watches and clocks, etc. We also have a Gine
selection of musical box movements and kits. Send 9d. P.O. for bumper bargain catalogue, The Watchmakers Supply Company (Dept
P.M.), Carterton, oxford. PEARL THREADING per return
satisfaction guaranteed.
Send for lists. J. J. Lawson, 10 , Victor
Rd. Bradford. 9. Yorkshire.

HOUSE SERVICE METERS. Uredit 11 and prepapment: available 221. City Road. London, E.C.1. A STRO TELEBCOPE MAKING evepieces. in. tin. Ramsden Push-in
 10\%: Evemieces iron 15 . New
tonian Mirrors, Diagonal Mounts Focusing Mounts. Tripods, Terres Bumet. Grand Slutce. Boston. Lincs

relay

670 uhms. D. Pole, D, Throw. 19. Relay 670 ohms 4 pole \mathbf{D}. Throw $2 / 9$. Post $1 /$ each. Heavy duty relay 12 V . and Aerial change over, 4.9. Post 21 -
${ }_{219}{ }^{\text {P1 }}$ P. COM MPONENTS LTD.
219. Hford II. F . 0295 . Ilford, Essex.

WLABTIC, catapult, modets, etc. C. Blundell, 47\%, Alcester Road South Hirmingham. 14.
(1RCULAR GLASS DISCS for Smoothed and edged, per pair with abrasive $80,180,280$,
sluperfine
finistier. superfine finisher. Swedish Pitch
 if dissatsofted paid. Money refunded manmoor Road, Cardiff. S. Wales.
UNOWOT Whiston's sell. S.A.E. Dept. M.P.S.). New Mills. Stockport.

FOR SALE (Continued) PNEUMATIC wheELS for dinghy roller bearings on axles; new, exGovt, in crates; \&8/10/- pair, carr,
forward. Cummins, Tillingham (Tel. 224). Southminster. Essex.

MNVELOPES BARGAIN!!! Huge
 flaps; 500 post free $14 /$ (i.000 $25 /-$) Returnable unless denighte
574 Albert
St., Lytham.

AUTO PLASTICS (Oldham) LTD. Green Street, Oldham, Lancs. COFROSION REP FibreglassandPolyesterResinStockists Used exclusively in Our Oun Budy Shop. Repair Kits 11,6 and 19 - Post Free. All Materials Eold Sivmitely.

COMPRESSORS FOR SALE FISTOM With Tank
 Motors. S.A.E. Ior list. Dept. P.M.9,
Wheelhouse. 13 , Bell Road, Hounslow. HOU 3501. .)
BALI REARING. Saw Spindle Units
with 3 in. Vee pulley, hold down
 Blades, 12in. 912, 6in.. dia. Wobble Vee Belts ; quick change Motor
Mounts, one motor will serve many. Melow.
$\mathrm{R}^{\text {ROOK ELFECTRIC MOTORS }}$, on mondeferred terms; low deposit : 6 months to pay
Rugeley. Stafis.

FOR SALE (Continued)
$6^{\text {IN PLANING }}$ and Rebating able cut hes, ballraces overall, $£ 6 / 7 / 6$ also 4in., 5 in . and 8 in . Planers at low prices. Combination WoodworkIng Lathes, heavy-duty ballraced, saw creaply. New type Circular Saw
 bination spindies for sawing and planing. All machines fully guar-
anteed: terms. Send 6d. for lists. anteed terms. Send 6 d . for lists.
Generous terms to trade. Ortan Lathes. Falcon Works, Costessey.
Norwich.

PHOTOGRAPHIC SLIDE CASE, 17/B. Rexine covered. 8 x 121 \& 2 ith. Pakes 150 trans- narenckes in numbered paritions. The answer to that aggravatiog pearch for a particular photo and will keep therru kufe from damage. STURDY CASE, $12 / 8.8 \frac{1}{6} \overline{7} \times 3 / \mathrm{hm}$. Covereal
 DUKE \& CO. (Dept. H.3)
 1LF GMO1/3

MUPFLE FURNACES.
240v. $/ 1 \mathrm{~kW}$.,
 "Paytox," 5 , Nex Road. Rubery, Birmingham.
GCREWS, Springs, Rivets, just the Brass Screws, 10 B.A. 8 B A mixed
 ideal shutters. etc. ; 150 mixed small Brass Rivets. T/6. Bass \& Bligh,
Camera and Blnocular Revairers, 18c. Camera and Blnocular Revaire
Market Street Arcade. Leeds.

RES/CAP. BRIGE

35/p. \& p. $2 /-$
condensers Direct readin READ CY CALIBRATED
RADIO MAIL (Dept. MD)
Raleigh Mews, Raleigh Street, Nottingham

WANTED

Wanted, Power Press. Offers to

MISCELLANEOUS

A Qualung and Compressor Equipcellaneous Items. Lists and Mis. Pryce, cellaneous Items. Lists 3d
FORTUNES in FORMUL̇AS," $900-$ American technical bobby and other American technical hobby and other books covering every interest. Stamp
for lists. Herga Ltd. (Dept. P?). Hastings.
BUILD YOUR OWN Refrigerator. Cabinet Retrigerator. S.A.E. for Sealed Unit List and Schematic Diagram. or $1 /$ - (refundable) for 32 page catalogue, including details of yire purchase available. Dept. P.M.5. Wheelhouse, 13. Bell Road,
Hounslow. (Phone: HOU.3501.) Hounslow. (Phone: HOU.3501.)

ELECTRICAL

CONVERT your ordinary Washboller to electric. G.E.C. Circular Washboiler Elements, $200-250$ volt,
2 K :., $9 \pm \mathrm{in}$. diameter one hole fix2 K W., 9 in . diameter one hole fix-
ing. $22 / 66$ each plus $1 / 9$ D . and p . ing. $22 / 6$ each, plus $1 / 9$ D. and p.
London Warehouse 165 . Queens
Road. Feckham, SE 15 . Road. Peckhem NEW
BRAND
BROOK ELECTRIC MOTORS
Single Phase, $\frac{1}{4}$ h.p. I,500 r.p.m. E7.10.0

 Fully guaranteed by makers. approval
against cash. Carriage paid mainland. State
P. BLOOD \& CO.

ARCH STREET, RUGELEXY, STAFFS.
A GL TYPES OF ELECTRICAL tive prices, e.g. 5 amp. Twin Cable, tive prices, e.g. 5 ampo Twin Cable, dlate despatch guaranteed. Request list. Jaylow Supplies. 93, Fairholt Road London, N.16. (Telephone:
Stamford Hill 4384.).

ELECTRICAL (Continued) MODEL ELECTRIC MOTORS, Mo." 9/6; Maxi Mo." 13/6, post
 propellers, 1 in . and ifin.; aeroplane. $5 i n$ and Bin, Model Electric Motors
(Dept. P.M. 3), "Highland," Alkrington Green, Middleton, Manchester. SPARE PARTS for all makes lists. Allen. 25, Stanhope Grov
FXTRACTOR FANS. 230∇. AC. ; no Ing brackets: 6 in dia. 7 watts, $21 / 6$, post 2/6. Also all types motors. S.A.E. for 11st. Dept. PMX. Whel-
house. 13 Bell Road. Hounslow. house. 13. Bell Road, Hounslow.
(HOU 3501: THE ELECTRIC GUIDE (12th Gadgets ith edn.) $1 / 3$, from B.P.M.

RADIO

Would you like to build a small Bedside Radio working a LoudSpeaker from a flashlamp battery, required. Simple to build. Send 8d stamps for notes on transistors and
Price List Components. 8 \& 10, Granville Stos Sheffield, 2.

FLUORESCENT LIGHTING FIT I TINGS for workshod and home Complete range from 5 ft. to 18 in .
(also circulars) at lowest prices any (atso circulars) at lowest prices any
where. S.A.E. for illustrated leafets and Iist of Control Gear Kis,
allers welcome. We are fuores. cent Ligliting Specialists: E. Brill

MODELS

PLANS OF OLD TIME SHIPS, - Liners, Power Boats, Yachts Naval Vessels. ete. Send 3d. Stamp Ltd. 77, Grosvenor Road. London.

BOOKS

THE HANDYMAN'S ELECTRIC INSTRUCTOR. $1 / 9$. The House Radio Guide, $2 / 3$. Real book values from ${ }^{\text {fants. }}$

'POP' RIVETERS

 (Lazy Tongs)
 Widely used for
 Motor Body Re

Sheet Metal Work. Plastics. Hardboard, etc. Undversal Collet takes ' POP' Rivets. $1 / 8^{\circ}, 5, e^{\circ}, 3 / 16^{\circ}$ and $.2^{\circ}$ dia.. \&4.18.0

POP' RIVETS

In constant use b
ments avallable
REL : ${ }^{1.000}$ Rtvets-Al diametars- $38 \cdot-$ MOTORISTS RANGE : 200 Rivets- Lis \&
RIVETING SYSTEMS LTD.
Jordan Strept. Knott Mill, Manchestor 15
AUTOMATIC (TIME) SWITCHES
New and reconditioned 15 day clock-
work and electric switches from 35/-

DONOHOE (TIMERS) 182 UPPER NORFOLK ST. NOETH
SHIELOS, NORTHUMBERLAND

GOVERNMENT

SURPLUS BARGAINS MULTI-PITRPOSE MOTORS. LOW roitage. with gearboz 24 V. D.C. but

 the monar Eamp, wonderiuly versa-

 FORMERS 11 V. and 17 V . A.c. (for 6,
and 12 V . Charging at 1 amp.). Each $17 / 6$,

 TELEPHONE HANDSETS (two in

 aporox. 80 watus. Hugh Sped. fin. shaft. aconverted ex-R.A.F. motor generator -power about equa to se wing machine
motor. Usefut dadition to workshoo.
F. Fach 30 - post 29.
Send at stamp for list of other motors,
transformers, pumps, jamps, suytches. etci,

MILLIGANS

24. Marford Street. Liverpmol.
 Thread Gauges, 28 arm
Whitworth Screws. 144 Ass td
Fibre Wasliers. 144 Assorted
Mettey Rectifers, A.C. to D.C.
Self Tap Serews. 100 Assorted
Self Tap Serews. 100 Assorted
Copmer Rivets.
Siven Siw Benth Tops, with ball race $1 / 4$
spindle, pulley. otc. 18 in . $\times 101 \mathrm{n} .57 / 6$
Reetifiers. $6 / 12 \mathrm{v}$ at Reetillers. $6 / 12 \mathrm{v}$. at 6 amps.
ir Jaeks. 51 n stroke
ir Jaek.. 51 n , stroke
Winker Units. 6 or 12 volt
 Gains Tranaformerso 17 v , 6 amp, 321°
Garnet Clofh. $4 / n$, wide. Per yd, 90 . Motorised Witer Pump. Clrcular Saws, 1 n . $11 / 6$; 7 in . 13%. Plugs. New Sockets. 7 polnt Telephones. New, Moder lievel Grars, Sin. \& 2 in. Pair' $16 / 6$
Races. Belts, Valves, Pulleys, Pumps Brass. Steel, Aluminhum, etc.
May we send our free list of hundreds
interesting items? Stamp. please.

A "FERROUS" ARC WELDING AND BRAZING SET will complete your workinforcing thickness M1ld steel. Wrought or Malle able Iron. Type F.M.65 Heavy Duty com
plete with all equipment 190 i 240 v . single h. 1015 amp. (or domestic
$£ 25$
Ferrous Transiormers (MEC), Ltd. Ferrcus Transiormers (MEC), Ltd.
Church Rd., Croydon, Surrey. CRO $8351 / 3$

CHEMISTRY APPARATUS
COMPLETE PRICE LIST

BUILD YOUR OWN CANOE
Printed illustrated instructions 1/6
TYNE FOLDING BOATS LTD.
206 Amyand Park Road, St. Margaret's, Twickenham, Middx.

Moulding With Rubber

I WISH to carry out some moulding experiments with rubber, both hollow and solid objects, ranging from small toys dolls, etc., to other objects similar to hot water bottles in size and flexibility. I am also interested in hard rubber moulding for statuettes and models. Can moulding be carried out with plaster of Paris moulds? D. H. Temple Rowell (Essex).

HE raw material for rubber moulding is raw crepe sheet, which is macerated in a machine rather like an oversize lawn-mower
cutter revolving in a drum until it reaches cutter revolving in a drum until it reaches
a workable consistency. Hardeners, curing agents, inert fillers and other additives are mixed in, and the product is rolled into sheets. Pieces of appropriate form are sheared from the sheet and squeezed between two mould halves, mounted in an hydraulic press, while superheated steam is passed through the mould plates.
Rubber, as a material, offers you no prospects at all. Nor, unless you are prepared for a substantial outlay on presses and moulds, do any of the flexible plastic materials. The statuettes and models, on

the other hand. do perhaps give you more scope; although vulcanised hard rubber is out of the question you could nevertheless produce such objects from one of the coldsetting casting resins. Even here, metal moulds ought to be used, but waxed plaster ones would suffice for experimental purposes. You may obtain details of suitable resins from Catalin. Limited, Waltham Abbey, Essex.

Three-position Steering
INTEND to control my radio-coutrolled boat employing a six-position selector mechanism (allocating three positions for steering). The problem concerns limit switches on the steering motor to allow independent sleection of any position. This circuit gives port and starboard (and reverse motor from either position) but bow can a centre limit switch be incorporated? At the moment I am using the mark space system described in past issues of "Practical Mechanics" but do not like the idea of an oscillating relay and motor on $50 / 50$ pulse for centre. Hence my choice of a new system.-C. Turner (Cheshire).

on the rudder post. As the rudder turns the gap will pass under the three fixed brass wiper arms. Operation of the selector switch will then automatically cause the rudder to turn to the required position and then to switch itself off. If incorrect operation results, reverse the connections to the steering motor. (This must be a permanent magnet motor.)
More than three steering positions can be employed if desired by using additional fixed contacts and extra positions on the selector switch. Seven positions are usually adequate for accurate control giving rudder midships, 5 , Io and 30 degrees of helm on each side.
Transparency Viewer and Projector

ISHOULD be glad if you could let me know where I can obtain the steel mirrors as mentioned in the article "A Transparency Viewer and Projector" in the October, 1958, issue. Also what approximately is the diameter of the lens used and about what price would one expect to pay for such a lens secondhand? What is the approximate diameter of the condenser used and its secondhand price? Do the lens and condenser have to be matched?-R. Robinson (Chester).
THE mirrors mentioned in the steel, thin polished plate glass, say, 240 z , to

$$
\ldots 3 \text { Spare contacts }
$$

Arvangement for three-position steering.
W^{E} presume that you wish to use the three positions, which you have allocated for steering, to give rudder midships, port and starboard.

The simplest method of doing this is to use a mechanism based upon the details given in the illustration. The system is based upon a special contact assembly built up from paxolin sheet and employing two contacts of brass foil, as shown, with a gap between them. The gap must be just a little wider than the three springy wiper arms which press upon the contact assembly. If the gap is too narrow the steering batteries will be shorted and if too wide undue backlash will appear in the system.

The contact assembly bearing the contacts of foil must be pivoted and connected to the steering unit either by a link as shown or by the direct method of mounting
 3202. silvered on the front surface are quite suitable. These can be obtained from Automobile Glass Co. Ltd., of 40, Merrion Street, Leeds, 2. It is possible that most mirror makers or glass merchants could also supply these.
The diameter of the projection lens is not critical and can be anything between, say, $\frac{1}{2}$. and $1 \frac{1}{3}$ in., but the focal length must be in the region of 2 in , to 2 in . For the cheaper lenses the full diameter of the lens probably cannot be used and will need stopping down to give the best results. The cost would be between 5 s. and $£_{1}$ depending on the source and the quality of the lens.

The condenser lens diameter must be 2 in. at least, although a wider diameter will be quite suitable. Most photographic dealers can supply cheap cast glass condenser lenses which are quite suitable and cost only a few shillings each. A single short focus planoconvex lens can be used as a condenser provided the best distances between the lamp, condenser and projection lens are found by
trial and error. The only matching that need be considered is the point mentioned above about correct distances.

Infra-red Monocular.

I HAVE purchased a Government surplus infra-red monocular, using push-button zambonic pile power unit. Does this unit contain a battery and is it complete, or is some further apparatus needed to furnish infra-red light ?-T. E. Cole (Workington). A LL infra-red equipment that has been released so far from M.O.S. requires that the scene or object to be viewed be illuminated by infra-red light. This, of course, is invisible to the unaided eve.
Zambonic piles are high voltage but very low current batteries. They operate the infra-red converter cell but have no connection with the illumination of the scene to be viewed. This must be lit by infra-red light from a separate source.

D.C. Photometer Circuit

$\mathrm{A}^{\text {s }}$I have D.C. mains in the house, could you please let me have an alternative circuit for the Enlarging Photometer described in December, 1958, "Practical Mechanics" ?-E. Davis (Brighton).

SSUMING you are using a 230 v .100 watt enlarger lamp, you would require a fixed resistance of $1!2$ and a variable resistance of $2 \frac{1}{2}$? (a 150 -watt lamp would call for 0.7 !? fixed and $1.8!2$ variable).

You should obtain a 2 oz . reel of silk covered or enamelled Eureka 22 s.w.g. resistance wire. (The enamelled is best for this
(1) Packet corch bulb

D.C. photometer circuit.

purpose.) This wire gives a resistance of I ! ! per 33 in .
The fixed resistance is made by winding 33 in . of Eureka around a piece of wood about 2 in. $\times \frac{1}{2} \mathrm{in} . \times \frac{1}{4} \mathrm{in}$., scraping the ends of the wire clean.
The variable resistance can be made from a radio rheostat by removing the original wire from the former and winding on 7 ft . of Eureka, spacing the turns evenly, and scraping the wire along the path of the moving contact.
The pocket lamp bulb used in the photometer must be rated at 1.5 v . 0.1 amp .
The photometer is wired up in circuit with the enlarger lamp, which also acts as a resistance.
From a suitable mains plug, run a piece of twin flex. One wire of the flex is soldered to one end of the fixed resistance. The other end of the fixed resistance is soldered to an outside terminal of the variable resistance. From the centre terminal (i.e., moving contact terminal) of the variable resistance, run a short piece of wire to one terminal of the pocket torch lamp. From the other side of the lamp, a wire is run to one side of the enlarger lamp, and to complete the circuit the other side of the enlarger lamp is connected to the mains by means of the second wire of the flex.

Silver Finish

COULD you please tell me the names of two colourless fluif- which, when mixed together in a glass recept:"le, will
leave a silver deposit on the inside of the glass?-L. Branson (Cheshire).
THE two solutions are prepared as follows:
(1) Ten grams of silver nitrate are dissolved in a small quantity of water, and ammonia added until the precipitate first formed is dissolved. The liquid is then filtered and diluted up to one litre.
(2) Two grams of silver nitrate are dissolved in a litre of boiling water, and 1.66 grams of Rochelle salī (sodium potassium tartrate) are added and the liquid filtered and allowed to cool. Equal volumes of these two prepared solutions are poured into the glass vessel and allowed to stand. It is important that the glass surface is perfectly clean. In about 20 minutes the silver will have formed a brilliant mirror upon the glass.

Lost Wax Process

$\mathrm{I}^{\mathrm{s} \text { it }}$it possible to produce satisfactory small engine castings in aluminium alloy by the lost wax process, without an injection machine ?-W. H. Parker (Blackpool).
A^{N} injection machine is not absolutely essential for making the wax patterns used in the lost wax process; for small scale working you can melt the wax in a (metal) bicycle pump and squirt it into the metal pattern mould. Ordinary paraffin wax, or candle wax, is quite satisfactory for small work.

Plaster moulds should be used for all lost wax work except large statuary.
You may be interested in the article in oúr December, 1958, issue, describing a lost wax method of casting.

Removing Hardened Lime

I SHould be grateful if you would give me some advice as to a suitable method of removing several layers of hardened lime from a ceiling.
Is there any particular solution which will dissolve it? Hot water has no effect.F. D. Daniels (Rotherham).
$T \mathrm{~T}$ is a chemical fact that hot water has less effect on lime than cold water, but we do not recommend this mode of attack. The only effective method is a cold chisel and much hard labour.

Water Emulsion Wax Polish

I HAVE recently moved into a house fitted with Accolite floors and the makers state that they may only be cleaned with a water emulsion wax polish or an expensive proprietory polish. Could you please tell me how I could make a similar product?-M. Cox (Norfolk).
WE suggest that the following formula could be tried

Carnauba Wax Emulsion

Parts by weight

87	Materials
9	Carnauba wax
5	Stearic acid
400	Triethanolamine
Weigh	Water

Weigh out the stearic acid, water and triethanolamine and heat-mix in a metal vessel to $100^{\circ} \mathrm{C}$. After the acid has melted completely and the solution is boiling gently, stir until a smooth soap solution is obtained. In a separate steam-heated container melt the carnauba wax until a temperature of $85-90^{\circ} \mathrm{C}$. is reached. (If temperature rises above $95^{\circ} \mathrm{C}$. it will darken.)

Now add the molten wax to the boiling soap solution and stir vigorously until an even dispersion of the wax results. Stir gently but continuously, until the emulsion has cooled to room temperature. This can be further diluted with water if reauired.

3 -phase Motor on 1-phase Supply
I HAVE a $\frac{1}{2}$ h.p. induction' motor made by Morriffex, the ratings are, $200-220 \mathrm{vos}$ 3 -phase, 50 cycles. Is it possible to run this motor on 1-phase, 50 cycles and if so could you supply the circuit and data?F. W. Lyons (Derby).

WE suggest that you use the circuit shown above. The two capacitors could have a capacitance of about $12 \mu \mathrm{~F}$ and $8 \mu \mathrm{~F}$ respectively and should be connected as shown during starting only. When the motor is up to speed one of the capacitors should be switched out: you should leave in circuit whichever capacitor gives the best results. The horsepower and pull-out torque of the motor will be reduced somewhat below the values obtained on the normal 3 -phase supply.

Bowl of Fire Trick

A^{s} a magician 1 should like to produce a bowl of fire or flames. Also is it possible to produce puffs of harmiess smoke by some easy means?-H. Woodford (S.E.7). IF you add water to a bowl containing pure ether and pure metallic potassium, the water sets the potassium alight and this in turn sets fire to the intensely inflammable ether. We recommend $\sigma_{2}^{1} \mathrm{in}$. diameter glass bowls to be used (Pyrex glass). Not more than two teaspoonsful of ether are placed in the bowl and a piece of metallic potassium is placed on the ether. As soon as water is poured into the bowl the ether and potassium float to the top, the potassium catches fire and instantly ignites the ether, producing a fierce flame, which soon dies out.

For harmless puffs of smoke approach Messrs. Hamley's, of Regent Street, London, W.I, for flash paper. We do not recommend making this.

Be sure to have your main stock of ether (not more than a few ounces) in a wellstoppered bottle and in a separate room from the experiment.

Information Sought

Readers are invited to supply the required information to answer the following queries.

A Silencer

I WISH to fit a silencer to a .22 riffc. Could you please tell me how one can be constructed ?-A. Lethbridge (Liverpool 4).

A Glitter Finish

HOW is the glitter finish obtained on dance band drums ? -J. C. McFeetirs (Wilts).

Wire Straightener and Bender

WISH to construct a wire straightener for 14 s.w.g. to $3 / 16 \mathrm{in}$. M.S. wire f:om coils and also a wire bender for various radii from about 2 in . to 24 in . in same gauges as above. Can anyone tell me how to construct these? -F. G. Lyons (Manchester).

RAWIPIUG PRODUCTIS

When you have a fixing job to do try the Rawlplug method. You make a hole in the masonry with a Rawltool, insert the appropriate size Rawlplug, offer up the fixture and drive the screw into the Rawlplug. The result is an absolutely firm safe fixing without mess or bother. You can buy a complete Outfit for as little as $3 /$ - or larger Outfits with a better assortment as follows:-

Household 5/6 Handyman 11/9
 Craftsman 12/9

A frec 16 page booklet of instructions is included with every Ranlpiug Owfft.

DUROFIX

In the new enlarged handy 1 tube 1/-

> Larger tubes, $1 / 6 \mathrm{~d}$. The ideal allpurpose adhesive for instant repairs to crockery, glass, china, wood, metal, plastic and the thousand and one things handled by the hobbies enthusiast. Instant drying, waterproat. thusiast. Instant drying, waterproor. grand for electrical, sports and leather goods because it dries hard and nontacky. $\frac{1}{4} \mathrm{tb}$. tins $2 / 91 \mathrm{tb}$. tins 10/6

Real Wood in Putty farm. In dexterous fingers Purprising things can be done with Rawlplug coloured, intricate mouldings rebuilh splits in wood made good and, wbat is more it will stick firmly to any non greasy surface-metal, glass, vulcanite, plastic, earthenware, etc. Can be cut planed and sanded to glass smooth finish. $\frac{1}{1} \mathrm{~b}$. tins $2 / 3 \quad \frac{1}{2}-1 \mathrm{~b}$. tins $3 / 9 \quad 1-\mathrm{th}$. vins $6 / 6$
Animal sleve of tremendous strenteth. This popular ready to use DUROGLLE is the handyman's friend. It can be used for that immediate need and replaced in the toolbox for another day. It is strong. reliable and for woothwork an ever ready aid to fixing and repairs. It is also suitable for many other materials but not for those washed For quich easy repairs to Metalware. scientific preparation in paste form can be applied na few seconds and dries in a few minutes. Metal utensils in the house, garage or garden can be pu into good condition again by the intelligent use of Rawiplug PLASTIC METAL without heat or soldering iron. Nos suitable for wireless or electrical connections.

BWIPLUE

 for masonry drilling the easy way
RAWLPLUGS

 IN HANDY 1/- BOXESThe established Rawlplug enthusiast usually has a set of various sizes of Rawtools and prefers to buy his Rawiplugs as be needs them. The handy $1 /$ - boxes are a boon to him beeause they have various lengths to suit different jobs. Each size in a different bux. No's 6, 8, 10, 12 and 14. Ask your dealer about them today

Rawlplug Tool Sets

The Universal Eight-in-One has an improved Knurled holder and takes eight drills Nos. $6 / 14$ to 20/14. In a handy box it sells at 15/6 and in a strong roll-up vallet at $17 / 9$.

Each Metalide drill is packed with an instrastion leaflet in astrong plastic waltet with tramsparent window.

Here is a cheap reliable masonry drill for the house-
hold handyman. Four sizes are made for use in a hold handyman. Four sizes are made for use in a hand brace or suitable electric drill. Just what you need for that occasional domestic lixing job.

No. $8\left(3 / 16^{\circ}\right)$	No. $10\left(7 / 32^{\prime \prime}\right)$	No. $12\left(1 / 4^{\prime \prime}\right)$	No. $14\left(9 / 32^{\prime \prime}\right)$
Green	Blue	Brown	Grey
Wallet	Wallet	Wallet	Wallet
$5 / 6$	$6 / 6$	$6 / 6$	$7 /=$

Wallet	Wallet	Wallet	Wallet
$5 / 6$	$6 /=$	$6 / 6$	$7 /=$

The most efficient, precision made, long lasting masonry drill is the Rawlplug DURIUM (with the free re-sharpening service). We strongly advise this drill for continuous drilling (such as industrial operation) 13 Sizes for drilling right through walls. Prices are from $9 / 6$ each. For drilling glass use the special DURIUM GLASS DRILL. Made in nine sizes from $t^{\prime \prime}$ to $\frac{l^{\prime \prime}}{\frac{1}{2}}$ at $6 / 6$ to $10 / 6$ each. Free Re-sharpening Voucher with each drill.

THE RAWLPLUG COMPANY LIMITED, CROMWELL ROAD, LONDON, S.W.7.

Wilkinsons ${ }^{[5792]}$

Home intercom

से
ع

Use il Anywhere

 \star Installed in Seconds \star Room to Room * House to Workshop MET NR. 5. TELEEPHONE HAND SETT as and battery operated mouthplece Simplyconneot two instruments with twin fied
and talk ., button prevents waste of current
whilst not in use. Two instruments with cords and plugs. 25/, post $2 / 6$, . SETT No. 7 . Consisting of two P.O. type hand handle for ringing bell at other end The
instrumerts are entirely sound-powered and are supplied with two bellis and batteries
with full instructions for instaling. Simply
 TELEPilidNE with press-button on front plete units ready for use-1deal for the offce,
f8.1\%.6. post $7 /$.

${ }_{50}$ F.S.D.DETER

liza

CROSSPOINTELR METEA with 2 separate
100 microamp movements. Brand New. $22 / 6$ TER MVAL Blocks 2-way fully pro
 HEADPHONES, High resistance 4,000 ohms. Type. CBR. 12,6 pr. Post $1 / 6$. 1716 pr. Post 1/6. XPFEAAR EXTRACTION F INs 71 n
blades with bafle outlet. 190% - carriage $7 / 6$ MREATING, ElLEMENTS. Flat enclosed type z20 volts 500 watts. "Bray Chromalox.
10 in . x 14in. $7 / 6$, post $1 / 6$. ROTARY-CONYEIRTERE, Input 12 volts waits. In fitted case with variable resistIdcal jow for television where A.C. mains are not available. Perfect condition. K10. ICCUMELLATORS 6 v . 125 AH in metal cases. Suitable for use in pairs with th
above converters. 86.10 .0 each. Carriage 15 LOLDSPEAKEIES. ELAC Sin. ROL ND P aint Ideal for an extension speaker to
kitchen or other ronms. Our price while kitehen or other rooms.
stocks last 18 6. post 1/6.
ANIOM 150 OUAL, CONE, 122 n . 15 watto

10 AMP IHTFTERY CHARGER, Here nit worth $£ 40$! For our special price Input. 200 carriage 250 volts A. 50 cycles. Outpu 10 amps, 22 Yolts D.C. Controlled by two 4 charged. Brand new with 0112 ammeter Fused A.C. and D.C.
INSPPBCITON DAMP. FIts on forehead, leaving hands tree. Battery case clips on
beit. $7 / 6$. post $1 / 6$. Battery. $2 / 8$. post 9 d .
 type, 35)-, carrlage $2 / 6$

[^2]
Picture this MYPORID ML7) $3 \frac{112}{2}$ LATHE
 IN YOUR WORKSHOP Eester still seńd to DEPT. 4/43 for fully jillustrazed denails and the most popular 3 ilin. Centre Lathe ever manufactured. Large range of

MYFORD ENGINEERING Co.LTo.BEESTON-NOTTINGHAM

THE ULTRA LENS AIDS PRODUCTION

THE ULTRA LENS COMPANY

17c, Oxendon Street, London, s.w. 1 Tel.: TRAfaizar 2055

NO MORE BURN-OUTS

OF TRANSFORMERS AND RECTIFIERS

No fuses to bother with when you fit a magnetic switch to your 12 volt train or model supply also battery charger. Cuts out at 2 amps or overload or dead short. Easily fitted. 13/6, post paid.
TRANSFORMERS. Input 200/240 v. Output tapped 3 to 30 volts 2 amps., also tapped 9 and 17 volts 5 amps.

24/6, post paid
F.W. METAL RECTIFIERS

19/-. 6 a., 30/. Post paid.
NEW SCOOTER BATTERIES. 6 v .10 AH. Hard Rubber Case. Size $5 \times 5 \times 1$ inches. Weight 3 lbs. $15 /-$, P.P. Also ideal for model use

All items new and guaranteed. Post Orders only to :
THE RADIO \& ELECTRICAL MART. 27, Princes Court, Wembley, Middx.

BODYBUILDING

For fast and permanent resuits in building a well-muscled physique, backed up by strength, stamina 'and speed, there is nothing to equal

MAXALDING

The individually planned courses are conducted by post to any part of the world and can be carried out successfully under all conditions of life.

FREE LITERATURE

Profusely illustrated with 200 photographic reproductions of pupils from 15 to 65 years of age, the explanatory literature will be sent without cost or obligation 'of any kind on request.
All Maxalding correspondence is mailed in sealed envelopes without any external advertising. MAXALDING SHEFMERDSWELL, DOVER, KENT

A teenage pupit showing control and development of

HIGHSTONE UTILITIES
$-\quad$ Sorngir
a Pencil Bit. $200 / 250$ v. 50 watts. $11 / 6$. post 1.550 vindard. Iren with adjustable Duts Iron, 150 watts, $18 / 6$, post i/f. AI parts replaceable and fuliy guaranteed. post 8 d . Resin-cored solder fore on gas, $1 / 4$. EX-R.A.F. 2value' (2 volf si, sickR
PHONE, AMPLIFIERS as used Ls plano intercom.. ju self-contained metal case;
can be used to make up a deaf-aid outfit intercommunlcationsystem, or with orystal set complete Withr valves and fliting
instructions, 20%, post 3% Useful wooden box to hold amplifer, $2 /-$ extra.
AMPLIFII:AS, less, valves, but
resistances. condensers. but containing
 Transformer in case. 14/6. Parmeko $8 / \mathrm{h}$ Both post 26
SPARKING PLUG NEON TFSTIEIS为, with vestoocket olip, 3/3, and with gatge,
3 6, post 4d. S. 1 .C. Neon Indicator for use on mains showing "live " side of
switches, etc. 2 26 , post 4d. Neon Inilieater, complete with condenser (penci type,
wlth vestpocket clip, indispensable lor

MRLETRAN TFOR guaranteed transfor-
mers work from mers work from any
A.C. Mains. siving 3 .
5 , or 8 tolts at or 8 +olts oltrate
at 1 amp... operite Will supply light in bedroom or larder. etec,
PRICE 99 . post $1 / \%$. Similar Transformer but with output of 4,8 or 12 volts. $18 / 6$,
post $1 / 8$.
BELL.S for use with elther 1 the CRYSTAL StEIS. Our latest Model a permanent crystal detector, 12:6, post 11When ordered separately, 2/6. With clipw and screws. $\mathbf{2}^{\prime} 10$. post 30 . Special Crystal
Diodes. 2/6. post 30 . Headphones, biand new. S, G. Brown, G.E.C.: ate.i 23 , r.nd
super-sensitive. 30 - a pair, post 1/6. BEADPHONE IN GOOD ORDERA, B armature type (very sensitive), 1316. All post 146. New Single Farniwers. 2/4s. WIII make an intercom. set or Baby Alarm). phones. Fith moving col mike. $15 /$.
 641. Wire Rands, 6el.

HAND MICROPHONES with fwiteh in handle and lead, 5/6. TanBos. . . Similar instrument, moving coil. 8/6. Alf post-1/6. Mask type with switch. 36, post GA. Miko
Butions (carbon), 2/ Movinc (oil. $3 / 6$ Transformers, 5, All post 411 , enchr
Throat Mikes, $5 /$ post 7 d . MORSHE KEYs. - Standard size kevs
 glightly smaller key
ZERS, $4 / 3$, post 5 d.
Terminsils, brass 28A, mounted on strip,
6d. pair. 000 A irspaced Viriable fen6al. pa M. Fis. Bulli for mode! railways, etc. 1 -each. 10^{\prime} - doz., post 40. Wander PfuEG, Brass. $1 / 6$ doz., post 44 . Fuase, -7 amp. and 250 mA .. same price. Ex-G:P.O. Tele-
 TELEPIKNE IIAND GENFITATORS, G.P.O. type. giving 70 voltig for ringing
beils. etc.- 8.6 . post 2%-. Telephone hand sets. 10/6. post 1/6
Bargain parcels of realls uperul equipment, containing Switches, Meters. Con or double assortment. 37 RF troble, $25 / \mathrm{c}$

 microamp. movements, $\mathbf{g}^{\prime}-$ post $1 / 8$. CATYLATORS for Starter Batterles, Are not very much larger than the Filler
Plugs they replace, but thes automatically condense the hydrogen and other corrosivo gases back into liquad, obviating the that your battery will give a Antare efficient service for a much longer pariod. There
is nothing to -wear pit, thes will last indefinitely so the irst cost is the last. House Lighting Plants, and in Boats, where the risk of hydrogen explosion and fire is so CATII.ATOHIS are 5/- each. 15 - set-of 3 . and make of Batters,

HIGHSTONE UTILTTIES

58 New Wanstead, London, E. 11

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Led., Tower House, Southampton Street, Strand, London, W.C. 2

Phone: Temple Bar 4363

Telegrams : Newnes, Rand, London

Another Change Wanted

NOW that the amalgamation of the two bodies concerned with cycling sport into the British Cycling Federation is complete (1 am pleased to learn that I was helpful in bringing this about), and there seems reasonable chance of peace, it is time to direct our careful attention and thought to the other and the more important aspect of cycling, namely touring. Let us make no mistake about it-iñ the sphere of cycling the tail has been wagging the dog and altogether too much attention has been devoted to cycle sport which at the most interests 100,000 people out of a total cycling population of, say, 10 million. The touring side has been almost completely neglected. It cannot bc said that the Cyclists' Touring Club is particularly active in promoting cycling touring, and its somewhat microscopic membership as compared with the total number of possible members would seem to suggest that cyclists of the non-militant type do not want it. To join is merely to lend support to its militant policy in the shaping of which members have very little to say, nor can they be expected to under the present constitution, where resolutions can be passed at an Annual General Meeting, but no notice need be taken of them. What is wanted is an entirely new cycle touring organisation with a more realistic constitution in keeping with 1959, and free from the preponderating and somewhat pugnacious attitude of those whose minds are still in the past. It is well known that the cycle industry has been passing through difficult times and more vigorous development of the touring side with a more amenable attitude and receptivity to change when such becomes necessary is what is urgently needed today. Much perfervid oratory supported by unconvincing arguments has been poured out by the selfappointed proprietors of the movement in their opposition to rear lights and other matters, which cyclists have accepted when legislation has been passed in spite of opposition.

This is a matter which I commend to the Secretary of the District Associations with intense sincerity. A change is necessary either in the general set-up of the C.T.C. or in the formation of a new body, and the District Associations should make it their business at the next A.G.M. to formulate a policy and to force it through. Obviously the power of the C.T.C. to veto any resolutions passed at an A.G.M. must be changed. There need to be changes in the organisation itself. It is altogether too complacent and its raison d'être seems to be overlooked. The policy in future should be one vigorously devoted to touring with only a modicum of politics interlarded-just enough to ensure that there is no infraction of tourists' rights. The sport has been reasonably cleaned up-now let us apply a similar process to cycle touring.

The Lone Hand

THINK that the Road Time Trials
Council which recently ratified its
agreement with the N.C.U. and the B.L.R.C. on racing procedure makes a mistake in refusing to submerge its identity by amalgamation. Time trials are indeed more important than any other form of racing on the road, but it was only just over 20 years ago that cyclists, dissatisfied with the Road Racing Council which could only make recommendations and not enforce them, forced the issue from which emerged the Road Time Trials Council. That council, having spent a great deal of its time arguing about rules and making new ones has settled down now to a more or less routine conduct of time trials. It loses, however, in strength by remaining aloof from amalgamation. Its interests in many ways run varallei with those of other forms of racing and its policy of isolation cannot in the lorg run be good for it.

Decline in Cafés

THE number of cafés which specially cater for cyclists is rapidly declining, because it does not pay. No doubt the high and rising costs of food and the growth of picnicking has something to do with it. Another cause is the somewhat uncouth attitude of some cyclists who turn these cafés into bear gardens. The plain fact is, however, that it is impossible for café proprietors to put on a meal very much below the charges of a properly constituted and well-managed restaurant. Some of the recommended teahouses are insanitary hovels, the food is often badly cooked and unpalatably served, yet they are enabled to show the N.C.U. and C.T.C. sign. Little jurisdiction is exercised over them and it is doubtrul once the appointment has been made whether the two organisations take any further interest in them beyond investigating an occasional complaint. Cyclists prefer to take their meals in happier surroundings where there is less likelihood of hooliganism.

The Cyclists' Road Club

 JUST before the war, you will remember, we founded the Cyclists' Road Club, which had a larger membership than any-of the existing organisations. It is true that the Cyclists' Touring Club did not like it, as is evinced by the report of an interview with the then secretary of the Club which was published in a contemporary iournal. The C.T.C. opposition, however, did not affect the success of the Club which had far more to offer than the C.T.C. We gave a useful handbook of touring information. a badge, accident insurance, free legaladvice bureau, and many other benefits for only just half the price of the C.T.C. annual subscription at that time. It was indeed a very lively club and local sections were started up all over the country. The suspension of The Cyclist in the early days of the war due to the paper situation caused a similar cessation of activities on the part of the club. We had learned, however, as a result of our experience, that such a club, divorced from cycling politics and nonmilitant, was wanted and the membership would have grown to very large proportions. The Cyclist had the largest circulation of any cycling periodical because it devoted its contents mainly to the pastime and releoated sport to four pages an issue
Naturally, the great success of these two ventures aroused jealousy among other organisations. The Cyclist had broken the monopoly accorded to a competitor under which advertisers were not permitted to advertise in any other journal. That naturally caused annoyance. The Cyclists' Road Club upset the C.T.C. and it was then that I began to learn of the furtive and underground methods adopted in the cycling movement which I spent years in combating, finally, forcing the opponents into law courts, with results which are now well known.

The Bull's Head, Strand-on-the-Green, a picturesque London riverside inn.
 toeclip in use.

ToOECLIPS come in various shapes and sizes and it is a matter of individual preference which type is employed. The author's preference is for a steel clip (which will spring back 10 its proper shape if accidentally flattened by the foot) shaped to fit the shoe and cut away in the centre to, enable the toe to protrude slightly (see Fig. 1).

The position of the foot on the pedal should be as shown, with the ball of the foot in the centre of the pedal; a toeclip must be chosen so that this position can be maintained. Most of the better toeclips are made in two or three sizes. Some others are adjustable. They are made in two parts, each of which is slotted and then the two are fitted together by means of a nut and bolt, thus enabling the length of the toeclip to be varied.

Shoeplates and Toestraps

When toeclips have been used for only a

Fig. 3.-The position of the foot at four points of the pedalling circle when ankling.
short while, it will be noticed that the pedal plates are wearing grooves in the sole of the shoe. To protect the leather and to help maintain the foot in its correct position, many riders fit shoeplates, as shown in Fig. 2. These are made of metal and when used in conjunction with toeclips and toestraps, provide a positive location for the foot. The disadvantage, according to some riders, is that in the event of a skid or some other accident the rider has to fall with his machine instead of being able to jump clear.

The same criticism, can be applied to toestraps.

Types; Shoeplates and Toestraps:

 Pedalling ActionToeclips should be used in conjunction with cycling shoes, which are specially shaped and reinforced for comfort.

Pedalling Action

Cyclists will always argue about the efficacy of toe-clips and their effect on pedalling action. Some say pedalling is made more effective because, not only can the rider push down, but he can also pull up when the pedal is travelling round that part of the pedalling circle. Others say that the method known as "ankling" is the only way and that properly done this makes toeclips unnecessary. The clawing motion of the ankling movement can be seen in Fig. 3. Other riders say that toeclips make ankling easier, which may be true, but it is also true to say that many young riders who have always ridden with toeclips have a "toe-down" pedalling style and no trace of an ankling movement. Many of these
points will depend upon the individual and the rider will have to make up his own mind $a b o u t$ them, but there is one occasion where the use of toeclips is v i t a 1 y necessary. This is where a low g e a r fixed wheel is in use. Going down hill, unless the brakes are used,
 the feet must turn at a great rate and toeclips must be used to stop the feet from flying off the pedals.

awould travel farther in one revolution than would a 26 in . dia. wheel. A 28 in . wheel would travel 88 in . in one revolution while a 26 in . wheel would travel only 82 in . approximately, a difference of 6 in . Over a distance of a mile an error of 120-130 yards would be caused by using the wrong cyclometer for a given size of wheel. The cyclometer is designed to be used with a specific size of wheel and this size is only maintained when the lyre is pumped hard. Riding on a half-inflated tyre alters the effective diameter of the wheel and will cause the cyclometer to be slightly wrong in its reading.

Fitting

The mounting bracket fits over the front wheel spindle and is clamped in place by the spindle locking nut. The top of the bracket is formed into a shoe, into which the shaped base of the cyclometer itself is locked. The striker is fitted separately on one of the spokes by means of a grub screw provided. Both the striker and cyclometer are adjusted so that the striker hits the underside of the five-pointed wheel lightly on each revolution.

ATYPICAL cyclometer is shown in Fig. 1. Basically it is a revolution counter fitted to the hub of the front wheel and counting the revolutions of the wheel. The action of counting is achieved by a striker fitted to the spokes of the wheel hitting a five-pointed star wheel and rotating it one fifth of a turn, each time the road wheel revolves. Inside the cyclometer, this rotation of the five-pointed star wheel is converted by means of gear wheels to miles and tenths of a mile, shown as figures in a small glass window on top of the cyclometer. Some idea of the complexity of the internal mechanism can be seen in Fig. 2.

The Right

 ModelEach of the several types of cyclometer is designed for use with a front cycle wheel of a specific size. This, as will be realised, is due to the fact that a 28 in. dia. whe ${ }^{\text {a }}$

SpeciabOter
 shelving

72in. HIGH 30in. WIDE 12in. DEEP

as illustrated, strongly made with six shelves and corner gusset plates for extra strength.
$£ 3 \cdot 12 \cdot 6$ offrevervember Cash with order

Finished mottled grey stove enamel.
Other sizes available.
Shelves adjustable at 2 in . centres.
Extra shelves 7/9 each.
Extension bay, E3.3.0.

of STEEL

For further details of these and other storage items, write for illustrated list.

GAMAGES '16' Electric ARC WELDER

 BARGAIN 24 Delivered on First Part Carriage \& Packing $7 / 6$ PRICE
LIN 2.10.0 of 9 Monthly $\begin{aligned} & \text { payments of }\end{aligned}$ in Gt. Britoin if outside our FERROUS F.M. 65 - A COMBINED ARC WELDING AND BRAZING MACHINE Welds light sheet down to 26 S.W.G.-invaluable for work on car bodies MACHINE Even a novice can operate this carbon brazing contact operation.
$\underset{\substack{\text { GAMAGES } \\ \text { PRICE }}}{\mathbf{2} 5} \begin{gathered}\text { or } 12 \text { Monthly } \\ \text { poyments of }\end{gathered} \mathbf{4 3} / 9$ Port Corr, \& Pkg, 10/6. Ge. Britain.
Prla, The Famous MYFORD ML7 HEAVY-DUTY CENTRE LATHE For Turning ond Screw-cutting
? 1 an A really first-class precision machin $3 \mathrm{y} \times 20 \mathrm{in}$, between centres. With stan dard equipment and countershaft. £57. 10.0 .. wi. Metal Cabinet Stand with reversing 5 witch 623.15 extra or 12 Monthly payments of $41 / 9$. Leaflet on request.
Owing to exceptional demand, delivery is sometimes slightly delayed. If outside our van delivery area, Part
Carr. \& Pkg. 20/- extra in Great Britain, plus crate $20 /$-, returnable.

Write NOW for Gamoges Tool and Car Accessory List and detoils of their
GAMAGES, HOLBORN, LONDON, E.C.I.
HOL 8484

BATTERY CHARGER PANELS.

 2^{2} scale moving iron meters. 2.16 position 1. mains, rotary onlof switch, and 2 heavy duty var. resistances. 6 a... 2 ohms, Switches and resistinces mounted on rear of panel
with cortrol knobs on front of panel. Welght 17 lb . -too heavy for post. Offered at very
10 w price of $12 / 6$ ea., carr, \& pkg. forward.

RESISTANCES BOXES.

Admiralty patt. as used on compass control equip. Contains 1 fixed ressistance tapped at
200 . 400 . 600 ohms and 1 silder resistance a 450 ohms, about 1 a . Complete with large tong Pr. $5 / 6$, carr. $6 / 6$. Ideal for bat, charger reculators, Ditto. but double unit as shown 9/6, carr. forward

ARTHUR SALLIS coniprou LTD.
83. Notth sad. urtehoo. Tre. 25308

WATSON'S SPECIAL OFFERS

These are extremely nice charging sets each These are extremely nice charging sets each "Same-as-Makers" Guarantee. CLOCKWORK MOTORS. Exceptionally Gun Predictors, $37 \cdot 6$. Post 3 -
GACUUM POOD CONTAINEIRN: Gallons with stainless steel interior, Stze liquid x fitn. dam. Ideal for any food or NEW Price, 35 -each. Carr. 36 . ALSO i. Gallon size. PRICE 25:- Carr. 3 , ALSO
GoGGLLES. SPECIAL SAFETY TYPE With Unsplinterable Glass lined chenile 5'8: DE LUXE TVPE, Lined Chamols \& INHPECTEON I AEPS H With wedterproof glass cover. and pafy model guard complete with 10 yards T.R.S.cetive
NEW \& BOXle. NEW \& BOXED, 25'6. Post 26.
TRIPODS. Extremely fine units approx. $381 n$. long with adjustable brass oap complete

 Mundreds of other Bargains available
EASTERN MOTORS ZLDEBEPRGIH, SE゙PFOLK. Phone 51.

3/8in.

HIGH-SPEED SENSITIVE

 POWER BENCH DRILLING MACHINE

Price $\mathbf{£ 6 . 1 0 . 0}$ net, or $10 /$ Deposit and six monthly payments of £1, carriage and packing extra.
(S.A.E.) for specification and descriptive pamphlet.
WANSTEAD SUPPLY CO.
82, Snakes Lane (East),
Woodford Green, ESSEX

with $B \sqrt[B L M]{3}[D$ REPQIO AB DEMONSTRATED ON

${ }_{7}{ }^{2965}$

erparately lllustrated
Other kits FORD 8,10 H.P. $12 / 6$ 30 $25 /-\mathrm{CAR}$ BODY SMELL KIT
 [/, 2/3, 2/6. Send for details.
Westpole Motors Lid. Plastics $\begin{gathered}\text { Dirision }\end{gathered}$
8, Trent House, sp, Bramery-rd., Lonctor, N. 24
SERIES III
NUCLEAVE PRESS

CROPS RIVETS PUNCHES
Ask your Toal Dealer or send for details to :- Sale Monufocturers

FITZNER LTD. 197-199, KINGS ROAD KINGSTON-ON-THAMES

FREE POCKET MANUAL
 " How to fit STEAM TRAPS"

Unique guide to the correct selection and instailation of steam traps for mains drainage thens steludin hest conden sate-lifting installations. Concise directions: clear ittustrations. Copies free on request to: SPIRAX-SARCO LTD.
(TECHNICAL DEPT.), Cheltenham, Glos.

NEST OF DRAWERS

 Overall size 7^{*} wide $\times 5^{*}$ deep
$\times 11^{\circ}$ higlz. 12 drawers, each measuring 3° wide $\times 11^{*}$ deep $x 1]^{*}$ high. Useful storage for householder for nuts, bolts and smalf components. Green namelled. \&1. P \& P. 3/-

TRANSFORMERS

ALL :2C/250 V. A.C. input EACH 86.10 .0 . OUTPUTS:
12 V. 40 Ampe.
5-12-18-24-30 V. 12 Amps. 5 V. 80 Amps. 18 V. 30 Amps. $110-120$ V. 4 Amps.
 8.3 v 18 Amps or 12.6 V. 9 Amp 4 V. 100 Amps.

HARMSWORTH, TOWNLEY \& CO.

JORDAN STREET, KNOT

HANDICRAFTS TEACHER

Experience not essential
Men who enjoy making chings in wood or mecal can turn their habby into a permanent and interesting career. Short hours, long holidays and security in a job you would really enjoy can be yours if you become a Handicrafts Teacher. Let us send you details of the easiest and quickest way to get
the necessary qualification.

We definitely guarantee

 NO PASS-NO FEE If you would like to know about our unique method of preparing you for one of these appointments wrize co-day, and we will send you a0 and without obligation. Mark your ecter " Handicrafts Teacher
BIET
 RITISH INSTITUTE OF ENGINEERING TECHNOLOGY
 , College House

29-31 Wright's Lane, London, W.8.

Toul Towl isit hardened ready for use.
essential to any lathe user. secure your stock now as these are really a

 ess 10 per cent.
5.000 Taps, $18^{*} 10.3 / 8^{\circ}$ dla.
Assorted Thrends, suit M.E. or experimenter. mostly fine threads, tweaty assorted. 3.9.
One Ton Ground Sllver Slect, 13° lengths. 1
lengths,
56 $6^{\text {to }} 1532^{\prime}$ dia.. doz. assorted 1.000 H.N.

End Millin, Murme Taper Shank
 $11 / 16^{\prime \prime}, 3^{14^{*}}, 7 / 8^{\prime \prime}$ dia., $30^{\prime}-$ the set. Secure
these now as at this ridiculous price quick clearance is certain.

 2,000 Hiand Reamers, sizes $17 / 64^{\circ}$ $31 / 64^{\circ}-3{ }^{\circ}$ each, 22,6 the 10 . Also
$17 / 32^{2} 2132^{\circ} 5 / 8^{\circ} 11,16^{\circ}, 4^{\prime} 8$ each. 18 -
the lot. Both lots. $35 /$. the lot. Both lots, 35 Curb. Grinding Wheels Offer. $6^{\circ}-7^{\prime \prime}$ dia.. $1 / 4^{\mu}$. $1 / 2$.
$3 / 4^{*}$ thick. $1 / 2^{*}$ or $3 / 4^{*}$ hole. 10° the three postage $2 /-$ Value over 30 .
6 for sl post paid. Ass. grits for tool
and cutter grinding, also 5 dia. dish and cutter grinding, also 5
wheels, $1 / 2, ~ h o l e, ~ 4 / 9 ~ e a c h . ~$
2.000 Small H,S. Twist Drills.

3,000 Circular Split Dies 1^{*} dia
cutting $1 / 4^{*}, 5 / 16^{*}, 318^{*}, 7 / 16^{*}, 1 / 8^{\circ}$, whit B.S.F. also brass thread, 26 thread all of 5 sizes, 2 sets $22 / 6$. 4 sets $42 / 6$. Taps to cuit $12 / 6^{6}$ per set. etther taper or
second or plug. $1^{\text {s }}$ dia. stocks $6 /-$ each. 2.000 Siraleht Shank-End, Mills.
size $1 / 8^{* *}, 5,32,316^{*}, 7 / 32^{*}, 1 / 4^{*}, 5 / 16^{*}$.

All Itens brand new. £1 orders-post
pard, except overseas.
J. BURKE

192 Baslow Rd., Totley, Sheffield
Inspurtion at Rear 36 Fitzwiltiam St. Sherield

BUSBY \& COMP'ANY LIMITED BUSCO WORKS, PAGCE STREET, BIRMINGHAM

ITBS GALLAHERTOBACCO

ON TERMS FROM MONDEX

HOMBUES TREADLE
FRET MACHINES
(REMI $£ 5.12 .6$ or 10/-42p. A
 Completr JevFori dexver AT TMuItiseve fior mosorisins luluhies Treputle machiners. c8. 17.3 or $15 /$ dep. \& $8 \mathrm{~m} . \mathrm{ps}$. o H17

20- den) \& B M. pas. of .32/6
 Delatls of Mobbles dathes. tool outiys plathy sent on renvent. Defalled specificationis
 ULITR A ANN.
Illuminater Masnifier with bulltIn battary and bulb, always try focus. Complese with apawe Dulb
and battary in care, dep. \& $5 \mathrm{~m} . \mathrm{ps}$, of gil/e.

As adventised.
Gunranteed. Diveatihnom B.S.R.: factory 49.15 .0 cush or 25 ,
ALsO AVAILABLE-Amplifiers. R.C. Chassts, F.M. Tuners, Loud spectets and Cabinels.

BURGESS VIBRO TOOL

IHE NEN 'B \& D' D. 500 DRILL

Srill with hilicul Enum man a tearectashath cinar amo.
 diaris. y.et costs only 87.19 .8 or
 of $21 / \mathrm{c}$.
WOLF NEW SAFETYMASTER Cas' Power 'Unte. I5i- dop, \& 8 m . mF , of 20 Cast 4 49.3.3.6.
BRIDGES 'NEONIC' J" POWERJRILI 1 mproved version of the varsabile and very powar

DONT LET SOLDERING TIE YOU UP IM KNOTS...

use

FLUXITE

Soldering ceases to be a knotty problem the moment you use FLUXITE. Solder flows on easily and smoothly-and stays on. for nower half a semtury FLUXIITE has been the choice of crafftsman and engineer alifue and, in this age, its meliability and speed has made FLUXITE even mome in demand chan ever.

IT
SIMPLIFIES ALL SOLDERING

FLUXITE Ltd., Bermondsey Street, London, S.E.I G.m 7

Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship
Jlg \& Tool Design
Press Tool \& Die Design Sheet Metalwork Automobile Repairs Garage Management Works M'gmnt. \& Admin. Practical Foremanship Practical Foremanship
Ratefixing \& Estimating Ratefixing \& Estimating
Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance Engineering Steam Engine Technology Steam Engine Technolog I.C. Engine Technology
Diesel Engine Technology

Elec. Draughtsmanship Machine Automobile Structural R/F Concrete Structural Engineering Mathematics (all stages) Radio Technology Radio Technology Wiring \& Installation Television
Radio Servicing Gen. Elec. Engineering Generators \& Motors Generation \& Supply Aircraft Mainten. Licences Aircraft Mainte Aerodynarnics Electrical D
vey Dr'ship.

BUILDING AND STRUCTURAL

L.I.O.B. A.I.A.S. A.R.S.H. M.R.S.H.
A.M.I.P.H.E. A.A.L.P.A. A.F.S. A.R.I.C.S.

Building Construction Builders' Quantities
Costs \& Accounts
Surve ying \& Levelliag
Clerk of Works
Quantity Surveying
Carpentry \& Joinery
Building lnspector
Building Draughtsmanship
Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptors Wondwork Teacher Metalwork Teacher Housing Manager (A.I.Hsg.)

Common. Prelim. Exam. A.C.I.S., A.C.C.S.
A.C.W.A. (Costing)

School Attendance Officer Health Inspector Civil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME

 AND EARN BIG MONEYMen and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

OVER SEVENTY YEARS OF * CONTINUOUS SUCCESS

Mational INStitute of enginering

(In association with CHAMBERS COLLEGE-Founded 1885)

(Dept. 29)

148, HOLBORN, LONDON, E.C.I
SOUTH AFRICA : E.C.S.A., P.O. BOX NO. B4I7. JOHANNESBURG AUSTRALIA : P.O. BOX NO. 4S70, MELBOURNE

132-PACE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains :

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
* How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY INTERESTING COURSES TV SELECT FROM!
 A.M.I.Mech.E., A.M.I.M.I., A.M.Brit.I.R.E., A.M.I.P.E., A.M.I.C.E., A.M.I.Struct.E., A.M.I.Mun.E., M.R.S.H., A.M.I.E.D., Lonion B.Sc., Degrees.

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS--OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tetorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885; our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMIPLOYED

My general interest is in : (1) ENGINEERING (2) AERO (3) RADIO (4) BUILDING

Place a cross against the branches in which (5) MUNICIPAL WORK you are interested.)

The subject of examination in which I 9m especially interested is

[^0]: Revertex Limited cannot supply Revultex in small quantities. This can be obtained from P. K. Dutt, Ltd., I, Alfred Place,

 London, W.C.I.

[^1]: introducing a new
 PORTASS S.C. LATHE $3 \mathrm{in} . \mathrm{X}$ I7. Backgeared Bench Vathe,
 complete with Faceplate, catchplute, baekcomplete with Fuceplate, catchplate, basek-
 plate, change wheels, ete, Mat or vee drive,
 teed or kemiltance refmaded is iull, Ex Works. Detalls, Dept. P.M.,
 CHARLES PORTASS \& SON
 Buttermere Works, SHEFFIELD, 8

[^2]: L. WILKINSON (CROYDON) LTD. 19 LANSDOWNE RD. CROYDON SURREY

