

Switch from this -

and step up production...

For working within close limits, an Anglepoise is simply indispensable. However good a worker and his eyes may be, he must see the job. This applies in all fine work, drilling, assembling, etc., where instantly adjustable close-to-the-job lighting is a sheer necessity.

Anglepoise throws a clear, concentrated light right on and into the work, not in the operator's eyes, follows the job from any position or angle, degree by degree, at a finger-touch and 'stays put' in any required position-and out of the way when not needed It needs only a low-powered bulb for high-class results -a big saving on the lighting bill (it can be supplied with a small shade for low voltage systems). Why not learn more about this fine lamp by sending for Booklet PM?

TERRY

 Anglepoise* A SUGGESTION FOR MACHINE MANUFACTURERS:
Why not fit your products with Anglepoise? We will submit samples on approval

[^0]
Specially for model engincers!

TALBOT blue LAYOUT FLUID
 SIMPLIFIES MARKING OUT

* Durable, yet easily removed * As used by many big engineering firms
Available through most engineers' merchants and model making shops

TALBOT TOOL CO LTD Telephone : B'ton 55832
'Grip' Works, ROEDALE ROAD, BRIGHTON, SUSSEX
ROBERT Now Build YOUR Body
SMITH

his publication will.have the creative outlook and an interest in
creal things. They will also realize that the most rewarding form of building is that connected with Health, Strength and Physical Development.

The Maxalding PersonallyPlanned Home Training Courses enable anyone to establish a high standard of fitness and achieve overall muscular gains in a short space of time.

Footballer at 50 years of age!

Leading papers recently carried the story of a fast-moving, hard kicking footballer at 50 years of age. He is Robert G. Smith, who gives full credit to Maxalding for enabling him to retain the fitness, speed, stamina and physical development of a man half his age.

MALCOLM BAKER (right) encouraged to take up body building by his family, has already attained this high degree of development at just 14 years of age.

Free Illustrated Book

PROFUSELY ILLUSTRATED EXPLANATORY LITERATURE showing results gained in scores of cases from 14-65 years of age will be sent FREE on request. (Postage for 4 ounces-6d.-is appreciated but is not obligatory.)
MAXALDING (PM9) Shepherdswell, Dover, Kent.
SEND FREE MAXALDING BOOK TO :- (PM9)
Name.. Age
Address

Schoolboy Strongman

* Permanent Magnets in action*

Picking up tacks

... or any small particles is easy for the handyman who uses an "Eclipse" Button Magnet. Simply assembled in any thin non-ferrous cover which allows withdrawal of the magnet from the holding face. Ask your tool dealer for literature showing many other uses.

PERMANENT MAGNETS

Made by lames Neill \& Company (Sheffield) Limited and obtainable from all tool distributors

1

Training with I.C.S. THE WAY TO SUCCESS

The great and growing demand of today is for TRAINED men. Thousands more are needed, but there is no worthwhile place for the untrained.

Through I.C.S. Home Study you gain the specialised knowledge that marks you out for promotion, for SUCCESS! I.C.S. teaches you in your own timeexpertly, quickly and easily. It is the world's largest and most successful correspondence school, offering courses for almost every branch of trade, industry and the professions. No books to buy.

ADVERTISING
SALESMANSHIP
Account Ex
Mail Order
Copy Writers
Advertisement Managers
Commercial Travellers'
Sales Management
EXAMS: loint Inter A.A. Sales Mnsur. Ass. Inc. Sales Mngrs. Ass. United Com

ARCMITECTURE *

BUILDING
Drawing and Designing
Quantity Survering
Quilders, and Surveyors Clerks
Bricklaying
Carpentry \& Joinery
Conseruction and Steelwork
Heating and Vencilating
EXAMS : Roy. Inst. of Br
Archts. Inst. of Quant
Surveyors. Roy. Inst. of
Chartered of Builders. Inst. of Mun. Eners. (8idg Inspectors"). Inst of inspectors'). Inst of

COMMERCIAL ART

Elementary Art Training
Poster Work
Sketching

COMMERCIAL

TRAINING
Sookkeeping and Accoun tancy
Costing and Auditing
Company and Private Secretarial
EXAMS: Chartd Inet
Secs. Corp. of Secs Ass. of Cert. 8 Corp. Accts. Inst, of Cost Works Aecte. Inst. of Bookkeepers.

ELECTRONIC

ENGINEEAING
Electronic Computers

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 169D, International Buildings, Kingsway, London, W.C.
Please send me free booklet on

Name BLOCK LETTERS)
Occupation

Address

[^1]

E TYPE CYLINDER LOCKS, deadlocking and thferproof, has 7 concentric tumblers insteud of the uscal 5 in line, interchangeable fitting with ordinary cylinder locks, latchbolt reversible, for right or left hand doors (no need to specify, complete with 2 keys, uld
fittings and instruction booklet, new, boxed, $5 /-$, post $16: 4$ for 20%, post paid RANGEFINDERES by Barrand Stroud, 1-metre base colncidence type, a hand held instrument giving the distance of any object, from 500 to 20,000 yds. (12 miles). The inx variable focusing fight eyeplece provides two images of the object viewed, one from the risht objective; the other from the left. When these two images are brought into coincidence by a thumb wheel control, the distance in yards can immediately be resd in the left eyepiece. Fitted two fiters and other refnements, A very superior high quality instrument, original cost E180, our price in new or near ne
condition, supplied in stout fibre cases $£ 5$, carriage $100 \mathrm{~m} .76,200 \mathrm{~m}, 10 /-300 \mathrm{~m}$. $12 / 6$ N.I. 201 -

SIGIITING TFLLECCOPLS
instruments Ross, Taylor Hobson, eto., these high quality instruments contain four 40 mm , dia, achromats, 2 of 3 in. focal length, 2 of 3 in. focal length, also a 18 mm , dia. image erector achromat. 4 screw fne add
cross graticule. Jength 16 in ., weight 7 lbs, new and boxed, 35%, post 3,3 .
GUNSIGHT TELLECOPFS, has \& lens high grade optical system with cross graticule, approx. $2 x$, all brass, 13 in . long, 1 in. dia. makes an ideal rifte si
astro telescope star marker, perfect condition, in metal cases, $80-$, post $1 / 9$.
TELEPMONE SETS. consists of two combined microphones and recelvers, which When wired up by ordinary twin Aex, provides perfect 2 -way communication, excel lent resuits at 1 mile range have been reported, self-energised, no battery required set complete, new unused 7/6. post $1 / 3$. sultable twin 1
CHARGING SHETS, only 46 lbs. weight, easily carried, 4stroke air-cooled, runs fo is hours from 1 gali. petrol. D.C, output 12-18 v, at 18 whtts, complete with exhaust and silencer, starter cord, etc., size 141 in . I 141 in . 7 inin., completely works recon
 (Inland only) 100 m . 12/6; $200 \mathrm{~m} .16 / 6,300 \mathrm{~m} .20 /-$
GRAMOPRIONE MOTORS by famous maker, $200 / 250 \mathrm{v}$. or $100 / 130 \mathrm{v}$. A.C. mains in. long. $5 / 32 \mathrm{in}$, dia. shaft, speed 1,350r.p.m., size 21 in . 22 in. x 1 in., wrelght 18 oz post 1/6.
OIL TEMP, GAUGRA, 24 in . square fush mounting, graduated $0-120$ deg. "C" pasically a very fine quality moving coll miliammeter. new in sesled cartons, $3 / 6$

Many other Rarguins : send slamped, aldiresmed envelope fur Hists.
MIDLAND INSTRUMENT CO., Moorpool Circle, Birmingham, 17

$$
\text { TEL. : HAR } 1308
$$

M\&W ENGINEERS' PRECISION \& HAND TOOLS

MEASURE UP TO ANY JOB

The next time you buy tools; remember that it pays to buy good tools, tools upon whose accuracy you can rely (MeW tools are made from the finest material. and are guaranteed to conform to British Standard Institution Specifications where they exist. The next time you buy tools ask your dealer for M\&W) Engineers Precision and Hand Tools.

Send 1019. in stamps for a copy of our catalogue, mentioning this journal. MOORE \& WRIGHT (SHEFFIELD) LTD., 14/28, NORTON LANE, SHEFFIELD, 8

HOME RADIO. 79/6. 5 valve (octal) superhet. 3 wave-
band receiver. Can be adapted for
your gram. P.U at a littre extra
cost. A.C. size cost. A.C. size
? $0^{\prime \prime} \times 201^{n} \times 111^{\prime \prime}$
$\times 181^{\circ} \times 11 i^{2}$
 4/6. Please state mains and size required hen ordering.

EXTENSION

SPEAKERS. $29 / 9$. peaker, "W.B." "GOODMANS" highest qualicy. 2-5 ohms). Switeceiver 2-5 ohms). Switch and flex included. Uncompletely satisfied. Ins., Carr back if not

MAINS POWER TRANS. $9 / 9$ 350-0-250 mA. 6 v . heater at $5 A .4$ V. at $5 A$. 4 V . at centre tapped. Drop through type.
Primary $200-250 \times .(4)^{\prime \prime} \times 5^{\circ} \times$ 5"). Post $3 / 9$.

ANS. 3/D. 350-0 350 v., 80 mA .4 v.. 4 v. heaters
$200-250$ v. Primary. Post $2 /$. MAINS TRANS. SM. 280-0.280 mA., 6 v . 4 v . heaters. 200 -250 v HEATER TRANS 3/\%, 1.2 Ratio auto trans. 2 v . at 1.4 amp. primary. \& v. secondary O.P. TRANS. 1/3. Std. size. $2-5$ ohms. Post $1 / \%, 20$ for El . SOUND ERAWION STRIP. 1016 . Not tested S'het, 8 valve bases ($6-$ EF91's, 1 -6D2 and 1-6F14, not included) I.F's, $7.25 \mathrm{Mc} / \mathrm{s}$ sound. $10.75 \mathrm{Mc} / \mathrm{s}$ vision, input 300 ohms. Vision complete from input up to video output. Sound complete from input to A.F amplifier. P. \& P. $2 / 6$
POWER PACK \& AMPLIFIER, 19/6. Outpur stage PEN45 O.P. trans. choke. Smoothed H.T. 325 volt at $250 \mathrm{~mA} ., 4 \mathrm{v}$. at 5 amp .6 .3 v . at $5 \mathrm{amp} ., 4 \mathrm{v}$. at 5 amp ., centre tapped valve base for rectifier. Octal or 4 -pin. Output is taken from standard plugs. Less valves. Not Tested. Ins., Carr. $5 / 6$.
SOUND \& VISION STRIP. $25 / 6$. Sound I.F, $10.5 \mathrm{Mc} / \mathrm{s}$. Vision I.F. $15 \mathrm{Mc} / \mathrm{s}$. Valve line-up: 6-6FI's, 2-6D2's (not included). Any single channel $1-5$ supplied, a turret tuner is easily fitted. Supply from Power Pack, 200 v. H.T. 6.3 v. heaters, P. \& P. $2 / 6$. TIMEBASE. 4/7. Containing scanming coil, focus unit, line transformer, etc. Less Valves. Drawings free. P. \& P. 2/6.

Closed Thursday I p.m \qquad
DMOE \because (O) (Dept. 4) 621/3, ROMFORD ROAD, MANOR PARK, E.I2.
GIVERPOOL STREET TO MANOR PARK STATION, 10 MINUTES,

Send for Catalogue. 8
IDEAL CHASSIS. 39/9. Radio or Radiogram chassis. S-valve S/het. A.C. valve
line-up. $6 \mathrm{~KB}, 6 K 7$. 6 QT , $6 \mathrm{~V} 6,524$. 3 waveband and gram, switeched. Less valves, $\times 8^{\prime \prime}$. P.M. Speaker $7^{\prime} 9$ extra. Complete set of valves $45 / \%$ extra. Ins., Carr. $5 / 6$.

RECTIFIERS. 2/9. 250 v .100 mA . Full. or half wave. Salvage guaranteed. Why hunt for thost obsolete rectifier valves when you call cheaply replace with
modern selenium rectifier? P \& $P .1 / 3$. SOLO SOLDERING TOOL $19 / 6$.
110 v . or 6 v . (special adaptor for $200 / 240 \mathrm{v}, 10 /$ - extra). Auromatic solder feed. Includes a 20° reel of ERSIN $60 / 40$ solder and spare parts. It is a 2 ool-for electronics soldering or car wiring. Revolutionary in design. Instantly ready for use and cannot burn. In light meta case with full instructions for use. Post $2 / 9$.
T.V. AERIALS. 25/6. For all I.T.A. channals. For outdoor or loft. 3 elements. Famous manufacture. Sold at half the normal cost. P. \&.P. 2/6.
CAR AERIALS. 6/9. Whip antenna 50^{*} long, collapsing to 11°. One hole fixing. P. \& P. $1 /$ -
T.V. CHASSIS. 25/6. Ideal only for spares. Alchough this chassis has a wealth of components, it is considered uneconomical to attempt rebuilding. This Chassis is in 3 separate, units. Power Pack, T/Base and S/Vision Srip.
10/6.
10/6.
ION TRAPS. 5/.. For all and any type of tube requiring ION TRAPS. 51.
a trap. Post Free

8" P.M. SPEAKERS. 8/9. At chis price you can have one in every room. Let
the lady of the house listen to that radio programme. With O.P Transformer fitted $10 / \%$. Postage $2 / 6$.
(1) a genuine Tungoten Carbide Typned
 Masonry Drill for the houscholder

The only safe way to make a fixing in Masonry is to first drill a clean round hole. BLUE FLASH will do this with ease, its Diamond Hard sip will cut cleanly into brick, cement, scone or breeze giving a perlect sized hole in which to fit a Plastic Maso Plug or ordinary wall plug. COPPER BRAZED FOR USE IN ALL
 From your locol
Ironmongers ond
Tool Mo. 6 5/6 $/ \mathrm{No} 0.856$ No. 10 6/-No.126/-No.147;Tool Merchonts.
j. M. PERKINS SMITH LTD., Braunston, Rugby

METALS

AND ACCESSORIES

ALUMINIUM, BRASS, COPPER, STEEL, ETC.

Angle, Sheer Tube, Foil, Strip, Channel, Rod, Bar, Wire, Moulding, Ete. Tin Plates, Silver Steel, Expanded Metal, Blanks, Rivets, Springs, Erc. Tools, Drills, Taps, Dies, Serews, Etc.
Formica, Perspex, Pegboard, Paxolin, Ebonite, Curtain Rail and Rod, Adhesives, Etc., and many other items for use in Home, Workshop, Etc.
LARGE or SMALL Quantities
COMPARE our PRICES
MAIL ORDER SERVICE (2d. stamp for lise) IMMEDIATEDESPATCH
CLAY BROS. \& CO. (P.M. II) 6a SPRINGBRIDGE ROAD, EALING, W. 5 Phone: EALing 2215
2 MINS. EALING BROADWAY STATION, OPPOSITE. BENTALLS

PARKERS
 SHEET METAL
 FOLDING MACHINE heavy vice models

No. I. Capacity 18 gauge mild steel $\times 36$ in. wide No. 2. Capacity 18 gauge mild steel $\times 24 \mathrm{in}$. wide

The two smaller models will form flanges. As supplied to Government Departments, Universities, Hospitals.

* One year's guarantec. Money refunded if not satisfied. Send for decalls.

A. B. PARKER, Wheatcroft Works

Wellington St., BATLEY, Yorks. Tel.: 426

Advertising
Aeronautical Eng.
A.R.B. Licences

Art (Fashion Illustrating, Humorous)
Automobile Eng.
Banking
Book-keeping
Building
Business Management
Carpentry
Chemistry
City \& Guilds Exams.
Civil Service
Commercial Subjects
Commercial Art
Computers
Customs Officer
Draughtsmanship
Economics
Electrical Eng.
Electrical Installations
Electronics
NEW
PRAGTICAL DO-IT-YOURSELF COURSES
you gan make and save money in:-
RADIO \& T/V BUILDING \& SERVICING ELECTRICAL APPLIANGE REPAIR CHEMISTRY • PHOTOGRAPHY

HI-FI EQUIPMENT, ETC.
All the obove special courses include proctical equipment as part of the training.

- Personal and Individual Tuition given by named tutors
- All equipment yours to keep
- Courses for Beginner or Advanced student

E.M.I. Institutes

 is associated with"HIS MASTER'S VOICE", COLUMBIA, ETC.

Management Certificates, etc.

Maintenance Eng.
Mathematics
M.C.A. Licences

Mechanical Eng.
Metallurgy
Motor Eng.
Painting \& Decorating
Photography
P.M.G. Certs.

Police
Production Eng.
Production Planning
Radar
Radio
Radio Amateurs
(C. \& G. Licence)

Radio \& Television Servicing
Refrigeration
Sales Management
Sanitary Eng.
Salesmanship
Secretaryship
Servo Mechanisms
Shorthand \& Typing
Short Story Writing
Short Wave Radio
Sound Recording
Telecommunlcations
Television
Time \& Motion Study
Transistors
Tracing
Welding
Workshop Practice
Works Management
and many others

CERTIFICATE OF EDUCATION, A.M.I.H. \& V.E., A.M.S.E., A.M.Brit.I.R.E., A.M.I.Mech.E., A.M.I.E.D., A.M.I.M.I., A.F.R.Ae.S., A.M.I.P.E., A.M.I.I.A., A.C.C.A., A.C.I.S., A.C.C.S., A.C.W.A., City $\&$ Guilds Examinations, R.T.E.B. Servicing Certificates, R.S.A.

To :- E.M.I. INSTITUTES, Dept. 144K, LONDON, W.4.	
Please send, without any obligation, your free Book to:-	
NaME	AGE (if under 21)
ADDRESS	
Subject(s) of inte	$\left.\begin{array}{l} \text { With* } \\ \text { Without } \end{array}\right\} \text { equipmens }$
(We do not employ travellers or representatives) c..11s	*Delete as required SEPT/58

EXCITING POWER SPECIALITIES -for all model ship enthusiasts

THE MARINE MOTOR

Efficient, compact and powerful. Will drive model boats up to $42^{\prime \prime}$ long. Especially suited for radio-controlled models. Operates on 2-3 cell dry batteries in series or 6 volt accumulator. Size $2^{\prime \prime}$ wide $\times 3 z^{\prime \prime}$ long. Height over terminals $1^{\prime \prime}$. Weight only 11 ozs. Price $\geq 3-0-0$

THE "ECLIPSE" HIGH SPEED MARINE ENGINE A powerful and efficient engine suitable for model boats up to $42^{\prime \prime}$ long. Cylinder 7/16" stroke by $7 / 16^{\prime \prime}$ bore. Large capacity displacement lubricator. Height to top of cylinder $3 \frac{1}{2}^{\prime \prime}$. Base $2^{\prime \prime} \times$ 17". Weight $^{\prime \prime}$ 13 oz . Price E8-8-0.

MODEL SHIPPING AND ENGINEERING CATALOGUE
Full of helpful information about your hobby. Lists and illustrated boiler fittings and engine parts, castings and pressings, materials, bolts, rivets, screws, tools, also drawings and plans. 96 page's packed with interest. Price $2 / 6$

BASSETT-LOWKE LTD.

Kingswell Street, NORTHAMPTON
LONDON: 112 High Holborn, W.C.I.
MANCHESTER: 28 Corporation Street, 4.

HIGHSTONE UTILITIES

 Ex-R.A.F. 2-valve (2 volt) Mlerophoneinnilier, as used in 'plane intercom..
in self-contalned metal case: can be used in self-contalned metal case $:$ can bo used
to make up a deaf ald outfit, intercommunication system, or with crystal set. complete with valves and Fitting Instruc-
tions, 20% post 84 . Useful wooden box with partitions to hold amplifier, $2 /$-extra. Ampither, containing resistances, condensers, transformers, switches, etc. but
less valves, $10^{\prime}-$ post $3 /-$. Hrand Mieruphomes, with switch in handle and lead. 5/6, Tannoy, $/ 1-$ Similar instruments, moving coll. 8/6. All post 1/6. Mask type with switch $3 / 6$, post $6 d$. Throat Mikem,
$5 /-, ~ p o s t ~ F i l, ~ M i k e ~ R u t t o n s ~(c a r b o n), ~$
il Moving coll, 3/6, post $4 d$.
Soldering Irons, post $4 d$ new streamlined iron is fitted with a pencil bit, 2001250∇. able bit, $200 / 250 \mathrm{v}$. 60 watts, 13/6. Heavy able bit, $200 / 250$ v. 60 watts, $13 / 6$. Ieavy These irons are guaranteed, and all parts are replaceable $\mathrm{m} / \mathrm{c}, 8 \mathrm{f} /=-20 \mathrm{amp} 2 \mathrm{in}$., m/c, $8 / 6: 20 \mathrm{v} .2 \mathrm{in}$.
 with qwitoh, $9 / 6$, 100 mA , 2 m ., m/o, $7 / 6$, all post extra. Meter Movements,
Units with $2500 \mathrm{microamps}, 9-$ post $1 / 8$ Hell Transformers. -These guaranteed transformers work from any A.C. mains giving 3,5 or 8 volts output at 1 amp. pperate builb, buzzer or bell. Will supply similar Transformer but output of 4,8 or 12 volts, 13/6, post 1/6. BUZZERS for use with oither the above or batteries, $4 / 3$, post $5 d$. Dost $1 / 6$. Telephone Fiand Generntor 8/B. post $2 /$ Ne Indicator Lamps, for use on mains to show "Nive" gide of switches, etc. with condeaser, pencil type, with vest pocket clip, 7/6, post 5d.
Cristal sets. Our latest model is a real radio recelver, fitted with a permanen room. 12/6, post 1 -. Spare Permanent Detectors, $2 /-$ each. When ordered separately, 2/6; with clips and screws, $2 / 10$, post 2/6. post gil. Headphomes. brand new S. G. Brown, G.E.C., etc., super-sensitive 30/- a pair. Headphones in Good Order 6 . Better quality, $7 / 6$ and $10 /-$. Ralanced All post 1/6. New Single Earpieces. $3 / 6$ Aal armature type, $4 / 8$ (two of these will make an intercom. set). Ex-R.A.F. earplece 26. post 6d. Money refunded if not com

highstone UTILITIES

58, NEW WANSTEAD, LONDQN, E. 11 . New Tllustrated List sent on reques
2d. stamp and S.A.E. Letters only.

The New "ZYTO" 10 " Motorised MULTI PURPOSE SAWBENCH RISE AND FALL BALL BEARING SPINDLE

llunstrated LEAFLET AND FULL

 POST FREE ONREQUEST Takes saws up to $10^{\prime \prime}$ diam. Depth of cut $3^{\prime \prime}$ Table canting to 45° $21^{\prime \prime} \times 18^{\prime \prime}$* All steel pedestal stand * Built-in dust-shoot * Unlimited width of cut * Complete motorised * Push button starter
£49.10.0 3 -phase
or first payment of £5.0.0

8 payments of $£ 6.2 .5$

NEW GENERAL CATA. NEW GENERAL CATA. LOGUE OF WOOD \& METAL TOOLS $\frac{8}{2}$ MACHINERY PRICEI $2 / 6$.

ORDER OF 40/-

Same machine for
Bench.' Unmotorised
£24.10.0 or 50% first payment
8 equal payments $£ 3.0 .6$

S. TYZACK \& SON Ltd.

341-345 OLD STREET, LONDON, E.G.1
(ONLT LONDON ADDRESS)
Telephone: SHOreditch b301 (10 lines)

WATSON'S SPECHAL OFFERS

ASTRO COMPASS

 22/6 Post 3/-These are very fine precision instruments useful for many purposes complete in transit cise.

COIL SPRING BELTS
fin. x 12 in . long. Extends to 15 im . Any post 9 d . AIR DRIERS
15 in . overall, $2 \frac{1}{2} \mathrm{in}$ diam. 2 ft rubber tubing. Useful where a supply of dry air is required. $8 / 6$, post $2 / 6$

SURVEYORS LEVELS

Mahogany with brass fittings. 4 ft . Iong. Built in spirit level and plumb bob. Two extra 3 ft . folding arms. Designed for gun surveying but useful for many purposes.

DYNAMOS

$14 / 32$ v. 288 w.
Shunt wound ball bearing, foot mounted. Price ${ }^{2} 3.17 .6$
B.T.H. VERTICAL MA GNETOS TYPE Complete with screened leads. Suitable for FORD 8 \& 10 h .p. and similar engines. LUCAS 4-cylinder Sandard lype with impulse and Vernier Coupling. Anti-clock. NEW, $£ 3.10 .0$. carr. $3 / 6$ ENGINEERS BALLPEIN HAMMERS 3 lb. NEW and BOXED, 5/- each. Hundreds of other Bargains available Send 6d. stamp for Hlustrated List. EASTERN MOTORS ALDEBURGH, SUFFOLK. Phore 5R.

What length of screw to use, Only the threaded part of a screw should enter the Rawlplug. If the plain shank enters, the holding strength of the Rawlplug is reduced. It is because the screw makes its own thread in the Rawlplug that renders it easy for the screw to be removed and replaced with- out impairing the efficiency of the fixing. What size of hole to make

The corresponding size tool, Rawlplug and screw should always be used together, i.e., No. 8 tool to make hole for a No. 8 Rawlplug and screw. This ensures a snug fit for the Rawlplug and the right compression of the fibres against the sides of the hole as the screw enters.

Why the Rawlplug should be countersunk

We recommend that a Rawlplug be countersunk slightly below the face of the masonry. This ensures that the screw travels dead centre down the Rawlplug and the fixture is pulled up flat against the wall.

How strong is a Rawlplug fixing

As materials vary in hardness it is obvious that a Rawlplug can only be as strong as the screw used or the material into which it is fixed, whichever is the weaker. It is also governed by the efficiency of the person making the fixing. It is, therefore, not possible to give a hard and fast formula.

What about-tile or plaster:

It is advisable to take a Rawlplug into the brickwork behind the tile or plaster facing. Otherwise there is danger of a tile cracking with the expansion of the Rawlplug or the plaster crumbling away. This also points to the moral never make a Rawlplug fixing in the plaster coursings in brickwork or lath and plaster walls.

How long will a Rawlplug last

Rawlplugs are rendered waterproof and vermin proof during manufacture. They will not deteriorate if kept for long periods. When correctly fixed into masonry they will not rot or disintegrate if left undisturbed. Heat or cold does not affect them and they can be used indoors and outdoors with complete safety.

the smallest - the largest

Rawlplugs have provided a simple scientific answer to making permanent screw fixings in all kinds of masonry. When you buy Rawlplugs you know that you are getting a reliable product, and that if the simple directions are followed you will be highly delighted with the result.

Simple rules to follow

A. Keep turning the tool as it is
pped with a light hammer. This prevents the tool jamming in the hole. A succession of light rapid blows will more quickly penetrate the masonry than heavy blows with a large hammer.
B. Insert the Rawlplug which should be sunk below the surface of the masonry. A long thin Rawlplug with the corresponding screw is advised for fixing in soft materials.
c. Give the screw a few turns into the Rawlplug with the fingers to open up the centre. Then withdraw the screw, offer up the fixture and drive the screw into the Rawlplug with a screwdriver.
 A slight squeaking noise indicates that the screw is obtaining a strong hold in the Rawlplug.

[^2]
Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appoint-

Department.

WHICH OF THESE IS YOUR PET SUBJECT?
 MECHANECAL
 ELECTRICAL

Gen. Mech. Eng.-Main Gen. Mech. Eng.-Main-tenance-Draughtsman\& Press Tool Work-Weld-ing-Production Eng. -
Jig \& Tool Design-Sheet
Metal Work - Works Management - Mining - Re frigeration-Metallurgy.
AUTOMOBILE
ENGINEERING Gen. Automobile Eng.Motor Maintenance \& Repairs -Gaigh Speed

G ENGINEERING Gen. Elec. Eng.-ElemenGen. Elec. Eng.-Elementory \& Adranced Elec. Technology - Installations
Draughtsmanshib-Supply Draughtsmanship - Supply --Maintenance - Design Mining Electrical Eng.Pawer Station Equipment.
etc.
CIVIL
ENGINEERING Gen. Civil Eng.-Samitary Eng.-Structural Eng.Rood Eng. Reinforced
Concrete-Geology. WE HAVE A WIDE RANGE OF AERONAUTICAL. COURSES AND COURSES IN FORESTRY, TIMBER TECFINOLOGY, PLASTICS, G.P.O. ENG., TEXTILE TECHNOLOGY, ETC., ETC.

One of these qualifications would increase your earning power WHICH ONE !
A.M.I.Mech.E., A.M.J.C.E., A.M.I.P.E., B.Sc., A.M.Brit.J.R.E., A.F.R.Ae.S., A.M.I.M.I., L.I.O.B., A.R.I.B.A., A,M.I.H. \& V.E., MA.SAN.i. F.R.I.C.S., A.M.I.E.D. OF CITY EUCATION, ETC.

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W. 8.
Phone : WEStern 9861

RADIO ENGINEERINE Gen. Radio Eng.-Radio Gen, Radro Eng.-Radio Servicing, Maintenance
Rebairs-Sound Film Pro-Reboirs-Sound Film jectian - Telegrophy Telephony - Television C. \& G. Telecommunications.

WHAT THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job.
\star HOW to qualify for rapid promotion.
\star HOW to pur some valuable letters after your name and become a "key-man quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* WHERE today's real opportunities are. . . and HOW you can take advantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering that appeals to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," and if you are earning less than $£ 15$ a week you should send for your copy of this enlightening book now-FREE and without obligation.
Gen. Building-Hearing a Ventilation-Architcecuural Droughismanship - Sur. veying - Clerk of Works - Corpentry ond Joinery

POST NOW8

 то : B.I.E.T. 410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W.8.

Please send me FREE and without
obligation, a copy of "ENGINEERING
OPPORTUNITIES." I am interested in
(state subject, exam., or career)...................
NAME
ADDRESS.
S.....
\qquad
1 A

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

FAIR COMMENT
 ENERGY FROM THE SUN

 ROM the earliest times of which we have record, the sun has always been regarded as the source of all life, indeed the sun worshippers, members of one of the oldest of the religious sects, consider it as the life giver.The development of nuclear power, however, which does not depend on the sun for its generation must give cause for modification of the earlier concept. The sun and religion have always been interwoven and one old established body, the Rosicrucian Order, has devoted considerable attention to the subject, and indeed to artificial satellites and other scientific subjects. The dictionary defines a Rosicrucian as a member of an alleged secret society whose members made great pretensions to knowledge of the secrets of nature, transmutation of metals, elemental spirits, magical signatures, etc., affirmed to have been founded in 1459 by Christian Rosenkreuz. The modern followers of this Order have certainly devoted a great deal of time to scientific subjects. In our February issue, in which I dealt with the Satellite Era, I quoted extracts from an article which appeared in the Rosicrucian Digest giving the views of Ralph M. Lewis, Imperator of this Order, and with the views expressed I wholeheartedly concur. As with those interested in solar energy, as many religious bodies undoubtedly are, the Rosicrucians wisely separated religion from the subject of satellites. The plain fact is, as Mr. Harold Heyward pointed out in a recent lecture, solar energy is not a scientific pipe-dream, but it is here and under actual development, and those developments have proved that the sun is not the entire source of energy. It is well known that sources of energy such as coal are the result of natural concentration, as Mr. Heyward points out and the metamorphosis of living matter represents a concentration in time, just as power derived from mountain lakes, formed by the decomposition of water evaporated from the seas, represents a concentration in space. We are told that in fourteen days, the earth receives radiation, equivalent in heating value to the whole of the estimated world coal reserves. If we could discover some means of storing this solar energy so that it can be tapped off as required we should have solved the solid fuel and oil problem. Unfortunately, practical applications of solar energy must at present be confined to those areas in which there is a high proportion of sunshine the whole year round. Numerous experiments in solar energy have been going on for over a hundred years and a solar boiler steam engine was constructed in France towards the latter end of the last century. Several of the experiments made use of mirror systems and one successful solar prime mover drove a printing process at an exhibition in Paris. Bessemer in England built the Solar Furnace. The fact is that, notwithstanding a hundred years of experiment, we are a long way off making use of solar energy for power and heating, but experiments are being intensified in view of the difficulties with our coal and oil supply.

WANTED-SUGGESTIONS FOR ARTICLES

PLANS are now being made for feature articles to be published in our next volume which commences with our October issue. I should therefore welcome suggestions from our readers (a postcard will do) as to the type of article in which they would be interested. Whilst priority will be given to those for which there is the greatest demand, I shall endeavour to satisfy all readers' suggestions. Articles submitted for publication are also welcome.

OUR 25th BIRTHDAY

A REMINDER that the October issue (that is next month's issue) will celebrate our 25 th Birthday, and there will be many special features to signalise the event. Make sure of it by ordering now.-F. J. C.

By F. Hook

The Third Article of the Series Describes the Construction of Table, Chairs and Cooking Cabinet

stile is rounded and the foot is sawn off obliquely at an angle of 30 deg . as shown. Finally, the two pivoting holes are drilled at the centres shown, the top hole being $9 / 32 \mathrm{in}$. dia, and the lower one 11/32in. dia.

When the frame has been fitted together satisfactorily it may be glued together after cleaning off all marks with the smoothing plane. Use one of the waterproof glues such as Aerolite so that the joints will not be disintegrated by damp. When the frame has been glued and tested for squareness the joints may be further secured with two brass nails driven from the edges of the stiles through the tenons. When the glue is dry any slight protrusions of the tenons may be cleaned off with the smoothing plane.

The Rear Support

 FrameFirst of all make the mortise in each leg and tenon the ends of the rail to fit. Now mark and cut out the slot in each leg. In Fig. 7 the slot is shown passing right through the thickness of the leg, whereas in the photograph in Fig. 4 this slot is not visible on the outside of the leg. The reason for this is that when the chair shown
meals if the youngsters are seated at a table.
This section will, therefore, deal with the making of a simple set of folding chairs and a table which all fold flat and can be stowed on the car roof-rack or luggage grid or in the bottom of the trailer.

Plywood is used extensively, and it is recommended that resin-bonded plywood, or the variety that the builders' merchant refers to as exterior grade plywood, be used so that over the years the damp will not be
able to penetrate the laminations and cause them to disintegrate.

Cooking meals at camp can be made

Fig. 3.-Details of the seat.
easier and more enjoyable if adequate shelter can be provided for the pressure stove. Some stoves will keep alight in very high winds with little shelter, but, even so, much heat is lost down wind. The cooking unit described in this article is suitable for all types of stove and it has been used successfully in winds even of gale force. The author uses this unit under the flysheet extension described last month and it is shown in use in Fig. I

Making the Folding Chairs

This chair is made up of three separate frames shown in Figs. 2, 3 and 7 respectively, which give the necessary constructional dimensions. A

 timber such as buite a good chair can be made from parana pine.

Commence by making the main frame shown in Fig. 2. Mark out the position of the two mortises for the rails. They are ${ }^{3} \mathrm{in}$. in from the front edges of the stiles and are $f i n$. wide. When cutting out the mortises work from both sides so that the chisel will not break through and split the wood on the opposite side. The top of each

Fig. 4.-A completed folding chair.
in the photograph was made the slot was made only $\frac{3}{3}$ in. deep. Some readers may find it rather difficult to cut this slot neatly when it does not pass right through the leg. When the slot is open both sides it may be cleaned up very easily with a flat file. Cut the bottom end of these legs to an angle of 10 deg.

Glue the frarse together and test it to see that the legs are at right angles to the rail. Finally secure with some brass nails and set aside to dry. It is worth while dropping this frame now inside the front frams already made to see that they match up as regards "squareness." There is sufficient clearance between the two for a couple of steel washers.
The seat is made next as shown in Fig. 3. First of all make the frame. As shown, it is glued and nailed together. For those good at woodwerk the front corners could be dovetailed together and the back rail housed in to make a first-class job
legs on to the front frame, placing a washer between the leg and the frame and one under each nut. Screw the nut up temporarily, but at a later date the surplus screwed thread is sawn off and the end burred over so that the nut will not come off.

Now place the assembly down flat on the bench as it will be when collapsed for transport. Pass the length of 5/16in. dia. mild steel rod through the holes in the frame and the seat. The chair can now be tested for working freely in opening up and folding down. Make any slight adjustments that may be necessary. Finally, a washer is placed over each end of the rod and the rod is sawn off to length so that it protudes about
$\frac{1}{8}$ in. above each washer. Each end of the rod is then burred over sufficiently to prevent the washers coming off. The finished chair may be varnished or painted.

The Folding Table

This table consists of two folding frames secured to the table top by four small steel brackets. The inner pair of legs are permanently bolted to

these strips to the correct angle after they have been glued and screwed to the legs.
The legs of the narrow frame are 18 in . apart. Draw a pair of lines on the table top this distance apart and place the legs along the lines and on the outside of them, resting on their edges. Note that the elevations shown in Fig. 5 show the legs as they would be resting on the table top, therefore, the narrower pair will have to be reversed so that the cross bracers can be glued and screwed into place.

Having made the narrow frame, bolt on the pair of outside legs by

The outer pair of legs are secured to their angle brackets when the table is erected with a pair of bolts and wing nuts.

First of all prepare $25^{\text {a }}$ the timber for the legs from some parana pine or other wood such as beech, etc. The length of the legs is zigin., the width rim. and the thickness $\frac{5}{3} \mathrm{in}$. One end of each leg is spokeshaved to a halfround, and the lower end is sawn at an angle of 30 deg . The holes for the $\frac{1}{4}$ in. bolts are drilled $9 / 32 \mathrm{in}$. at the centres shown in Fig. 5.

Four bracing strips seat is tilted sideways so that the Whitworth are needed each $\frac{1}{2} \mathrm{in}$. $X \frac{1}{4} \mathrm{in}$. and length screws engage in the slots. Bolt the back approximately 24 in . It is better to saw off
the middle holes and then proceed to attach the cross bracers for the outer frame. Remember to place the $\frac{1}{4} \mathrm{in}$. steel washer on the screw in berween the two legs when bolting them together.

When the glue is dry, the end of the bracers may be sawn off flush with the legs.

Next make up the two pairs of mild steel angle brackets shown in Fig. 9. The holes are all $9 / 32 \mathrm{in}$. dia. to give a small clearance for the $\frac{1}{4} \mathrm{in}$. screws. Bolt the legs to the angle brackets. Open out the frames as when the table is erected and place the brackets in position as shown in the plan in
a pair of angle brackets by having the ends of the bolts burred over.

Fig. 8.-The table and chairs erected for use.
Fig. 6. Mark and drill the holes in the table top. Countersink the holes on the top so that the countersunk heads lie flush with the wood surface. Secure the brackets to the table top.

Now test the table for folding down correctly by removing the two bolts holding the top ends of the wider pair of legs to the angle brackets. When all is well the protruding ends of the screws may be sawn off and slightly burred over to prevent the nuts coming off. The table erected for use is shown in Figs. I and 8.

Fig. 10.-The base for the cooking cabinet.

Finally, the table is given a priming of aluminium paint and a finishing coat of paint of any suitable colour. Instead of painting the table top, some self-adhesive plastic sheeting might be put on which would save the use of a table cloth.

The Camp Cooking Cabinet

This cabinet was made specifically to the the two-burner stove shown in Fig. II, but it is not necessary for the reader to adhere strictly to the dimensions given, and they may be varied to suit any other stove that the reader may have.

First of all make the base of the cabinet with the pair of folding legs. These legs can be optional, but they are a boon in raising the cooking stove up from ground level and have proved a convenience when sitting at the unit on one of the folding chairs.

The Main Frame

This is made from some timber finished to $\frac{7}{3} \mathrm{in}$. I i in . The corners can be dovetailed together or merely glued. and nailed. The top is of $\frac{1}{8} \mathrm{in}$. plywood and is glued and nailed on to the frame. The legs are made to the dimensions shown in Fig. Io In the open position they bear against the end rails of the frame. Bolt the legs in position and fold them down when the plywood cross-pieces can be glued and screwed to them.

Next the ends of the cabinet are made. Their dimensions can be seen in Fig. 12. Here again the joints at the corners can be glued and nailed, and then the $\frac{1}{3}$. plywood covering applied with glue and nails. The two ends are then placed on the base to which they are screwed.

The top back rail is made from a piece of timber $1 \frac{1}{2} \mathrm{in}$. wide and $1 \frac{1}{d i n}$. thick. A halving joint is made at each end so that the rail can be screwed to the top of the ends

A piece of plywood is screwed on the underside of the back rail and side rail as shown. This serves the dual purpose of
holding the side at right angles to the back rail and forms the ledge on which rest the $\frac{3}{3} \mathrm{in}$. dowel rods which are used as a. rack for warming plates, etc. Then the back of the whole cabinet is covered with a piece of $\frac{1}{s}$ in. plywood, glued and screwed in place. Take care when fixing as described in the previous paragraph that everything is square

Fig. II.-The cooking cabinet
with only one or two nails partly driven home at first.

The Doors

It now remains to make a pair of doors for the front of the cabinet and a lid. In the illustration it will be noted that frames have been made and covered with plywood This of course necessitates making a number of halving joints at the corners of the frames. If it is preferred to avoid this sort of woodwork then buy some $\frac{1}{2} \mathrm{in}$. plywood and cut to size for the doors without the need for frames. If $\frac{1}{2} \mathrm{in}$. ply is used for this purpose

note that the $\frac{\mathrm{in}}{\mathrm{in}}$. projection above the side of the top back rail would have to read $\frac{1}{2} \mathrm{in}$. The in. measurement shown allows for a $\frac{1}{2}$ in. thick frame with a $\frac{1}{8}$ in. ply covering for the lid.

The doors and lid are hinged in position with some rin. back flap hinges. The two front doors are held in place at the bottom by two door catches such as are used on kitchen cabinet doors. At the top the doors are held secure for transport by two $\frac{1}{4} \mathrm{in}$. dowel pegs which are glued into the lid and register in two $\frac{1}{4} \mathrm{in}$. holes drilled in the top edges of the door.

A pair of simply made lifting handles are useful when screwed on to the sides of the cabinet near the top. Another useful accessory is the prop to hold up the lid of the cabinet as shown in Figs, 10 and 12°.

It now remains to give the whole cabinet a coat of aluminium primer and then the finishing coats of paint to match the rest of the furniture. It is a good plan to use only aluminium paint on the inside of the cabinet as this is heat proof to a certain extent and will not blister.

'Phone Calls via the Moun

SOMEWHEN in the near future it is possible that the Moon will be used to "bounce" telephone calls, it is reported in America. Research has found that very shortwave radar or radio signals can be used to reflect voice transmissions from the Moon to a destination halfway round the world, without a noticeable deterioration of quality. At present the curvature of the Earth acts as a limiting factor for communication distances, but this will be overcome where both transmitter and receiver can see the Moon at the moment of communication.
The principle of using the Moon to reflect voice communications has been known for some time, but it has now been found that very short wavelengths of about lin. give such improved results that a world-wide network of communications, using the moon as a reflector, is possible.

This Material Forms a Strong and Wellshaped Hull
Says Frederick T. Day

BEFORE describing the simple yet practical method of making up a tug-boat from moistened gum strip, a few words relative to the medium-the tape itself, its treatment in application-will prove of assistance. Gummed strip is available from any store in brown, white or a number of colours in small diameter rolls or large ones, approximately 1 in. in width. The adhesive used to coat the tape is animal glue, a very strong adhesive, and it is best, there-

used to serve as a basis for making toys and other models.

When moulded tape is left to dry out thoroughly, it becomes rock hard and may be handled, or in the case of the boat,

able and water proof by a coating of varmish or shellac.

Gummed strip is very pliable so that it may be pleated round various edges of curved work. The finished work may also be painted with fore, to moisten the tape with a damper or sponge and not with the tongue. The adhesive is also tenacious and needs only just sufficient moisture to moisten it to make it stick fast. When applied two or three layers thick, it is almost untearable, and is completely so if sufficient layers of tape are used in the make up of any model.

Using a Former

All moulded work prepared for various kinds of models is based on the principle of layers of wet gummed strip applied to a base paper or tissue, which is first laid on to a moulded shape specially cut out or fashioned for the work. In the case of the very popular moulded ship or boat, as illustrated, a wood hull is first prepared then overlaid with tissue so that the moistened tape, when applied, does not adhere to the wood mould. On to this tissue. the wet
one or two coats of any kind of paint, thus making it waterproof and attractive in appearance.
tape is built up in suitable layers, and when the tape is dried out, it will take the firm shape of the wood hull.

Some types of former or mould may be specially cut out from wood, or they may be modelled from clay. On the other hand, there are often articles to hand in the home which may be used to produce other kinds of models. Some suggestions àre corks, pots, pencils, tins and boxes which may be

The strength of the finished model lies in the superimposition of layers of tape, and there is nothing quite so strong of the same thickness.

Model Tug-boat

This is one of the most interesting models to make up, and it is not at all difficult. The model may be fitted with batteries and a small electric motor, thus converting it into a real speedboat. While the tug-boat may be produced as an early attempt in this work for the newcomer to this handicraft, there are many other boat models, aircraft, locomotives and other working items which may be similarly carried out with the aid of a mould or former. In the
Fig. 2.-The completed hull with fitting for battery.
how the former or original mould is made up from a wood block, large enough in length, width and depth to cover the overall dimensions of the finished model. Wood formers should be treated with sandpaper to render them smooth and they may, with advantage, be painted to give them a nonporous surface. This is most important where moistened tape is being used to make up a paper hull.
Fig. 4 illustrates the moistened tape applied in suitable layers over the former. Working from amidships, the hull former is covered with wet tissue paper and in this

Fig. 4.-How the moistened tape is applied in layers over the former.
way it will hold to the shape of the former temporarily and thus prevent the first layer of tape applied from adhering to the wood mould or former. At this stage, the wet tape is applied in overlapping layers, as shown, and this gives added strength; $\frac{1}{2}$ in. strips of well moistened tape should overlap by about half the width of the tape.

When this section is completed, proceed in the same manner with the next, starting with a layer of wet tissue followed by overlapping strips of wet tape. At the bow and stern it will be found that the strips of tape will not lie parallel to one another, but this is not important; continue to cover the whole of the former, finishing the hull as shown. The bow, stern or bottom may be suitabiy treated with tape in an artistic fashion, giving a good finish to the work, and any additional strips will stiffen the work considerably. Any pattern may be produced to taste, giving a ribbed or square effect, the tape being suitably applied with this end in view.

The finished hull (Fig. 2) should now be
ready to be fitted with a battery if it is planned to produce a mechanical model for use on the water. This is shown with a fitted battery for the purpose.

Before this stage is reached, however, any necessary trimming should be carried out. For example, after the initial layer of gummed tape is practically dry, trim off the edges of the tape at the deck line and it will be found that not only does this add to the finished appearance of the model, but it will assist in easing the hull off the wood former. If a small part of the shape has stuck to the former, use a piece of fairly stiff paper, such as cartridge, between the hull former and the hull shape to separate the two. The hull should be dusted with french chalk thus preventing any subsequent tendency for the hull to stick to the former. The hull is then replaced on the former in order to build up the tape. to the desired thickness, and this will have some relation to the size of the model being produced. A good standard to work is four separate layers of tape for a hull some 18 in. long.

The accessories are added according to taste and perhaps some knowledge of the craft being produced. It is best to copy a suitable diagram or illustration from a reference book. The main feature of gummed strip modelling is that boats and other models may be produced that are strong, practical and usable in water.

Gummed Strip Modelling Aids

In the case of sailing boats, strong sails may be made up from lampshade parchment or plastic. Strong, thick cartridge paper has many applications in this craft. A sharp knife is useful for the tape. Where several models are being made up or large ones, the big commercial coils are best and more economical. These are obtained from the stationers in several widths, i.e., $1 \mathrm{in} ., 2 \mathrm{in}$. and 3 in .

Fig.5.-Moulded shapes prepared from formers.
The hull of the boat is perhaps the most important feature of the model and should have the necessary strength to sustain the battery, the deck and any superstructure work carried out. Where several models are being made up, the same mould, of coursè, can be used.

When the hull is finished in its final thickness, trim again at the deck line.

Fig. 5 shows the moulded shape finished of and taken off the former. The final layer of wet tape should be laid according to the type of hull shell required. These may be briefly outlined as follows:-
No. 1.-Plates overlapping for steamer hull.

No. 2.-Planks edge to edge for carvel hull.
No. 3.-Planks overlapping for clinkerbuilt hull.

Some study of various models from illustrations may be helpful in the case of early work on these kinds of models.

When the taped hull is completed, as shown in the illustrations, a wooden deck must be made and the former or mould used for the hull may be used as a template to mark out the plan for the deck on a suitable piece of ply or hardboard. This is then cut out along the drawn line. A hole is cut in the deck thus produced to enable the power plant, stern tube and rudder post and-other parts to be subsequently fitted. The deck is pinned and glued into position and when firmly fitted, the portion of the deck is shaped off above the curve of the deck line.

Suitably shaped cylindrical items may be used to produce the funnel and a tube of the diameter required may be used to wind round wet strips of tape, using the same method as described for the hull. The same strength may be obtained by layers of tape left to dry out. Plastic wood or some suitable adhesive will be useful to fix into position such items as the stern tube.

Figs. 3 and 6 show the fully fitted out tugboat, the latter illustration showing the completed job ready for witer speed tests.
easy handling and convenience in use Any model made up with gummed strip may be completely dropped in water and left to dry out when it will become firm

Fig. 6, - The fully-
fitted out tugboat with superstructure removed to show interior.
wide. Gummed strip is also made in a transparent variety should this be required in certain models needing such items as windows and others panels. Rolls of tape usually have a centre hole so that they may be mounted on a spindle for
and absolutely hard. This procedure stiffens the tape and when a coating of varnish is added, it will be completely waterproof.

In addition to ships and boats, lighthouses, masks and faces, aeroplanes and kites, toy and model furniture, bridges, model forts, steam rollers are among some of the fascinaing and useful models possible for the beginner in this handicraft.

Individual Rocket Motors

ARMY engineers in America revealed recently that it may soon be possible to "shoot" troops across rivers by means of individual rockets attached to their backs. The rockets will turn "troops into "human grasshoppers" and the element of surprise which they will introduce to infantry warfare could be of tremendous value. Troops could approach the battle area using caution and then travel the last 80 to 100 yards at great speed using the rockets, launching a surprise attack immediately on landing.

The personal rockets have been named after an American strip cartoon character, "Buck Rogers," who uses a device similar to the rockets. They are designed to lift men for a distance of up to 100 yards at a height of not more than 20 ft ., although most "flights" will be about 50 to 80 yards at heights of less than 16 ft ., i.e., high enough to clear the majority of obstacles, but not high enough to cause injury on landing.

BOOKS FOR ENGINEERS

By F. J. CAMM
Gears and Gear Cutting, $6 / /$, by post $6 / 9$. Workshop Calculations, Tables and Formulae, $7 / 6$, by post 8/7.
Wire and Wire Gauges (Vest Pocket Book), 3/6, by post 4/2.
Practical Mechanics' Handbook, $16 /$, by post 17/1.
Screw Thread Tables, $6 /-$, by post $6 / 8$.
Refresher Course in Mathematics, $8 / 6$, by post 9/9.
Capstan and Turret Lathe Handbook, 25/-, by post 26/3.
Newnes Engineer's Manual, 35/-, by post $36 / 3$.

Training similar to that at present given to paratroops is envisaged for the new rocket troops, as considerable shocks will be encountered on landing.

A solid propellant rocket thrust will be used to power the personal rocket and it is also anticipated that a modification of the rocket may be used to carry motor vehicles, tanks and other field equipment across rivers. Vehicles such as jeeps or tanks may have steel surfboards bolted underneath. They would enter the water at top speed and as soon as the vehicle began to slow the rockets would be fired and the rest of the joumey accomplished skimming along the surface like an aquaplane.

The U.S. army is already developing personal helicopters which troops will wear with a harness, but it is possible that the new rocket motors will be more efficient and cheaper than the helicopters.

THE construction of an attractive weather-vane for garden, bungalow or house, is well within the capacity of the average amateur mechanic with ordinary workshop tools, and preferably a lathe, and the job gives scope for artistic expression and original design. There are, however, a few basic principles of construction and proportion which it is useful to know, and which will help in making a success of the first attempt. For example, a vane which appears successful on the working sketch, and on the bench, when finished and viewed from below at a distance may have the direction letters too small, or the arrow not sufficiently elevated above the arms to appear clear of the letters when seen from a low angle.

The photographs (Figs. I, 3 and 5) show three vanes which have proved successful. The first is a very simple, small vane without ornament, made for the top of a garden summerhouse with a conical roof. Details of construction are indicated in Fig. 2. This vane was made of copper, with the exception of the central pivot rod and the other parts indicated on the drawing, which were turned out of a short length of brass bar. The letters and the vane of the arrow were cut roughly with a hacksaw from $1 / 16 i n$. thick sheet copper and then file finished. The arrow head was cut from $\frac{1}{4}$ in. sheet to balance the weight of the greater area of the vane. It is desirable that the complete arrow should balance at the centre of rotation. If it is appreciably out of balance, the slightest deviation from-the vertical will cause a bias and the sideways pressure on the bearings will result in increased friction and wear, so care should be taken to arrange the proportions of the arrow to obtain a reasonably good balance. The arms and arrow rod were slotted with a hacksaw to receive the vane and letters which were soldered and riveted and all screwed joints were also soldered to exclude rain and damp. It is advisable to make a small, simple weather-vane of this nature as a first job. This particular one was gilded and looked very attractive when first erected. Another

Several Attractive Designs are Described By Ronald Lister

advantage is that this type runs "dry" (i.e., without oil), and this simplifies the construction. It is about 15 in . over the letters and would also be suitable for a bungalow.

copper and brass or tubing of various diameters and various turned pieces, at scrap price. The "cyclist" vane was made entirely from scrap metal, including the vane of the arrow which was made from a r 5 in . length of 2 in . tube, cut longitudinally at the seam and flattened. It does not matter if the copper is soft as it will harden by hammering or working.

This vane works in oil and the bearing arrangement is varied accordingly. Instead of the arrow being mounted on a tube which fits over the centre pivot rod, it is carried on a rod which goes into a bearing tube which is sealed at the bottom and filled with oil. At the point where the rod enters the tube a weather seal is fitted to the rod, covering the open top of the tube like a narrow umbrella to keep out the wet. The principle is shown in Fig. 4.
The letters on the "cyclist" vane are a little more stylised and the arrow head has to be extra heavy to balance both vane and cyclist. It was turned in the form of a cone out of a short end of copper bar, but a cast lead arrow head would be quite as good. Because of the weight the shaft was doubled in preference to using a thickar rod and this preserved the general light, slender appearance. The vane was pierced with initials, using drill and files. The bicycle is a correct model with forks, hubs, handlebar, cranks and pedals. The wheels can be made from $\frac{1}{4} \mathrm{in}$. rod and the rider built up in layers, which is a rather difficult job.

The weather seal is the small ball just below the vane

Fig. 1.-An unornamented weather vane.
(see Fig. 4). It is hollory and receives the open end of the oil-filled tube and is soldered to the rod and as in the previously mentioned vane all screwed and riveted joints. are also soldered to keep out rain and damp.

A vane of this type was erected some years ago and when recently taken down for inspection, the oil was clean and in good condition and the copper had taken on a fine dark patina.

A More Imposing Design

Fig. 5 shows a more elaborate and ambitious job, which would suit a large threestorey house. It is about 4 ft . 6in. high and 2 ft . 6 in. over the letters and was made of steel, as the cost of material to work in copper in this size would have been prohibitive. It works in oil on the same principle as the "cyclist" vane and the general proportions can be estimated from

Fig. 3.-The "cyclist" weather vane.
the photograph. Rods and tubes are mild steel and the vane arrow head and the letters are cut from sheet about $3 / 32$ in. thick; the scrolls and ring are made of $\frac{7}{8} \mathrm{in}$. $\times 3 / 16 \mathrm{in}$. strip, bent red hot in the vice, with big pliers, matched against a light hand-bent pattern. The crown in the design was built up from sheet and strip and the vane also carries a cut-out Lancaster rose.

The shaft of the arrow is made of tube, and a balance obtained by running in molten lead until the front is a trifle overweight, and then drilling some of the lead out until an exact balance is obtained when the arrow head is riveted in position. The whole job could be assembled by screwing and riveting but should you have access to welding tackle the joints could be bronze-welded. The completed job is then shot-blasted and zinc sprayed and given three coats of black paint which should make it practically impervious to rust. Finally the crown, weather seal, letters, and base can be gilded and the rose picked out in red.

In designing a weather vane do not overlook the method of mounting. If it is to be on a pole or tubular pillar the base should terminate in a suitable socket. If it is to stand on a flat surface it will require a flange drilled for coach screws or bolis. If it is to go on a gable apex, some form of bracket will be required, but whatever

Fig. 4.-Constructional details of an oil-filled vane.
method of mounting is used the bolts or position of bracket should not be finally fixed until the compass points have been orientated. This can be done either by compass, allowing for the magnetic variation, or by reference to large scale ordnance survey charts showing your house, which can be seen at your library or the office of the local surveyor.

Detail dimensions have not been given, as within reasonable limits these can be varied to suit the available material, but in designing a weather-vane the following proportions will serve as a sound guide.

The original blast furnace.

The pivot rod should bisect the arrow, that is, the dimensions from the tip of the head, and from the back edge of the vane, to the centre of rotation, should be equal.

The overall length of the arrow should be approximately equal to the overall length of a pair of arms including the letters.

The distance from the bottom of the base flange or socket to the arm boss, and the distance from the arm boss to the arrow should be approximately equal, and each of these distances should be at least half the length of the arrow-preferably rather more.

The centres of the letters should be equidistant from the centre of rotation, and as the letters are of different widths, this means that the arms must vary slightly in length.

Only the W will read correctly from both sides. N, S and E will read reversed from one side or the other so that it is immaterial which way they are mounted on the arms.

Fig. 5.-A more elaborate weather vane.

Anglo-Swedish Centenary

THE birth of a new age started in Sweden in July, 1858. Steel was produced for the first time on an industrial scale by a Swede-Göran Fredrik Göransson-according to the Bessemer method, which was invented and patented two years earlier by an Englishman, Henry Bessemer. This Anglo-Swedish co-operation led the world in the technique of mass-produced ingot steel.

In theory the Bessemer method was highly promising, and had actually given good results in a number of single practical experiments. But so far as its exploitation on an industrial scale was concerned, it proved impracticable.
G. F. Göransson was first to overcome the difficulties of its practical application and to start a regular steel ingot production.

The Bessemer method consists of converting molten pig iron into steel by forcing a blast of air through it. Compared with other methods used up to 1858 , it gave much larger quantities of steel in a single blast, using considerably less fuel.

The experiments led by G. F. Göransson were carried out at Edsken and the photograph shows the original blast furnace used. A ceremony was held recently to celebrate the centenary.

Fig. 1.-Selection of possible models for future whittle carvings.

THE tools required are few and simple, namely : a sharp penknife or better still a craft knife, obtainable from any model shop, a coping saw with a fairly coarse blade, a tube of balsa cement and a few sheets of fine sandpaper.

Any close-grained wood may be used, for example: lime balsa, etc. which may also be obtained from the model shop.

Some examples of the type of work possible are given in Fig. I.

In order to whittle carve the mallard duck and drake, as shown, a block of wood sin. $\times \operatorname{in}$. $X 4 \frac{1}{2}$ in. will be required for each. Making the Templates

This is not essential in whittle carving but will prove a great help to accuracy in form and balance, especially in the Leginning.

First a tracing must be made from Fig. 2, and back-traced or carbon copied on to a piece of stiff card. Next press the markedout card on to a smooth, flat board (not the dining-room table) and cut carefully round the outlines of the mallard with the craft knife. If this is done carefully, the template can then be used to mark out the block.

Marking Out the Block

Having cut out the templates, the next

The Method of Producing These Artistic Ornaments By Peter Watters and William Corke

round the outline of the mallard, which will now b: correctly positioned on the block (Fig. , 4). Repeat the process with the "plan" template, bearing in mind that you must position it against the same corner.

Cutting Out

Using a coping saw (Fig. 6), start the first cut at "A" (Fig. 5) and continue along the duck's back to point "B", taking care not to carry the cut beyond the point shown. Withdraw the saw and take your second cut from " C " under the belly of the duck to "D", again taking care not to exceed the indicated limit of cut. The next cut is taken from point " E " to " F ", and the fourth cut from " G " to "H " again taking care not to sever the block. The fifth cut is taken completely through the block at the dotted line, and finally severs the block, which will now fall apart leaving the rough cut-out of the duck (see Fig. 7).

Whittling

Having removed the roughly shaped mallard from the block, whittling is commenced. The model should be held firmly in the left hand, with the knife held as shown in Fig. 8. Cut off small
Fig. 4.-Drawing round the template
 acy so long as it is not obviously out of square. Place the top corner of your "elevation" template up to the squared corner of your block as shown in Fig. 3 and fix the inside part of the template by means of small tacks or drawing pins. Remove the outside part of the template, and draw

Fig. 2.-Scale drawings of the mallard duck and drake.

Fig. 5.-Cutzing out;

means of handling. Position the legs in the base while the glue in the body is still tacky, adjust the posture of the mallard, and lay to one side to set firm.

Painting

This is perhaps the most fascinating part of the whole operation, as it gives life to the model, which ceases to be just a block of wood. To obtain this effect at its best make sure of getting the colouring and markings correct.
The following list of "artist's" oil colours will be all that is necessary to emulate the birds' natural colourings and give the models a surprisingly lifelike finish.
The first thing to do is to give hoth mallards an overall coat of flat white oil paint and allow to dry. Then proceed to colour the birds as follows, using " artist's" oil colours thinned down well with turps or turps substitute. The turps makes for quicker drying.

Fig. 6.-Method of sawing block with coping sazv,
white, except for the area on the underside of the tail, which must remain white. Then darken the sienna colour with a little burnt umber and blend this into the top of the head, along the underside of the wings and under the neck. Now, starting with the head, paint small " U " shapes over the whole of the back and on the underside of the beak down to the root of the tail, using burnt umber. Finish the underside and edges of the tail feathers in white and line in the top of the tail and the wing pin-feathers with burnt umber, as shown in Fig. 9.

Drake (topside)
Beak: primrose, with touch of dark green.

Head: dark blue, with emerald spot on top of head and each cheek, blend where blue and green meet.

Neck: raw umber lightened with white, from white neck ring down to back.

Back: mix raw umber, black.
and white, to make pale brown-grey.
Wings : same as for back, wing tips black, wing patch blue, black and white, as in Fig. ${ }^{2}$.

Tail : curling tail feather black, rest white. Drake (underside)

Beak: primrose with touch of black. Head: dark blue, almost black.
Neck: raw umber lightened with white, from white ring down to breast.
Belly: pale mixture of burnt umber and white.

Tail: pure white. dry paint the eyes in with gloss black, enamel will do, or a tiny spot of clear varnish over "artist's black.

Duck

First paint all over Fig. 5.-The finished model after gluing and painting.
with a pale mixture of burnt sienna and

When, the head is

Finishing

Having painted the bodies of both mallards, there remains the assembling of the model and the painting of the legs and feet. First glue the legs into the base, adjusi both birds to a natural posture and allow to set.

The legs are then painted with oiange toned down with a little black and the feet can either be moulded in plastic wood or painted on to the base in the same colour.

For the Householder

THE HOME ELECTRICIAN

Price $12 / 6$ or 13,6 by post.
from Geo. Newnes Ltd., Tower House, Southampton St., London, W.C.2.

A Series of Three Articles Describing Equipment Necessary for the Complete Control of Model Boats

No. 1.-Simple Steering Control By D. W. Aldridge

F. J. Camm's ": Radio Steering Mechanisms Controlled Models " (price 12s. 6 d. , by post 13s. 6d.).
Experience has shown that the primary control function of a radio controlled model is steering. This must be positive, accurate and practically instantaneous in action if accurate control is to be achieved.

Fig. I illustrates what is probably the simplest type of steering gear which can be built up by an amateur having only " kitchen table" facilities. A small electric motor is used to provide the motive power and this drives a 4 B.A. screwed rod by means of a crank attached to one end. A brass pin soldered into a small hole drilled in the motor gear wheel engages with this crank.

MOST boat and ship modellers, with aspirations to radio control start off with high ideals and hope to be able to steer, start, stop and reverse their models, to say nothing of controlling incidentals like anchors, lifeboats and guns, etc. It is usually found, however, that to carry out all of these functions multi-channel radio equipment is indicated and that this is considerably more expensive than the more usual single channel type. It is, however, possible to use simple radio equipment and it is the purpose of this series of three articles to show how apparatus can be built up which will progressively increase the scope of the control available. The basic control circuits given in this issue will be elaborated successively in the two articles to follow and it will be shown that it is possible to control from one receiver relay (operated by the single-channel radio) circuits which will produce as many control channels as the liser is likely to require.
It is 1.0 intended, in this series, to describe the radin transmitter and receiver as these are standard single channel control items and numerous designs have been published for them in the past. In this journal designs were given in the issues of September and October, 1955, and these are now available in book form in

Fig. 2.-Alternative type of screwed rod steering gear.

Fig. 1.-Simple screwed rod steering gear for boats.

A " Mighty Midget" motor is specified, and it is important to note that if any other type of motor is used a gear reduction is almost certain to be necessary. The " Mighty Midget" has this built in, and external gearing is avoided. A traveller unit is built up from junk box pieces and the general form should follow the illustrations. A 4 B.A. nut is soldered to the back plate and it is the action of the screwed rod rotating in this fixed nut which causes the traveller to move along the rod and hence to impart motion to the rudder or rudders through the link gear shown.

Limit Switches

To prevent the traveller from going too far along the screwed rod its travel is limited at both ends by means of "limit switches." These can be contrived from contacts taken from old relays or other pieces of equipment or they can be made from pieces of brass. The two contacts forming each switch are normally in touch with each other as illustrated and the action of the traveller is to force them apart thereby breaking the circuit and stopping the motion. The main requirement is that the two contacts should be held firmly together by their own springyness but that they should not be so stiff as to cause the
traveller to jam when it reaches the limit positions.

Fig. 2 shows a variation of this system in which an electric motor drives a screwed rod by means of a rubber band reduction drive. Gears and pulleys from a well-known construction kit can often be used for building this type of equipment. A much more efficient type of steering unit is shown in Fig. 3. This uses a fully-geared drive and the gear ratios employed are as follows: 3:1 3:1 30:I (worm gear). This gives a final reduction of 270 : I from the "Mighty Midget" drive. If a non-geared type of servo motor is used then an additional 3 or 4 to E will probably be required. The gears used to construct this piece of equipment were obtained from Messrs, Bassett-Lowke Ltd., Northampton. In this unit small micro-switches are used as limit switches. They are operated by a cam attached to the final drive shaft (seen just below the crank arm in the photograph).

Readers will see from these examples that steering gears can be constructed in a number of different manners and that there is plenty of scope for originality. It is, however, very important to ensure that the final speed of the rudder is correct.

Timing the Rudder

The time taken for the rudder to travel from full port to full starboard should be checked with a watch or stop watch, if available, and for satisfactory action it should be between three and four seconds.
Fig. 3.-Geared type

all these simple radio control systems, and quite a number of commercial relays are now on the market; these can be used quite satisfactorily. The writer uses the Siemen's highspeed relay, shown in the illustrations, which can be adjusted to the correct operating speed by means of the reed tensioning screw. For usé as a receiver or anode relay a high resistance is required and a relay having $2 \times 1,700$ ohms coils should be obtained if of the Siemen's type. Alternatively, if a commercial relay is bought then a resistance of 5,000 ohms will be correct.

The Mark/Space System

The simplest circuit for radio controlling the steering of a model is that given in Fig. 4, and it will be seen that only two batteries are employed in addition to the steering gear and the receiver relay. The batteries are wired with

model is shown in Fig. S, and the connections to the tuning meter and batteries, etc., are also given. The actual positioning of these pieces of equipment in the model is left to the individual constructor and is, in any case, probably dictated by the shape of the model. It has been found, however, that it is usually satisfactory to mount the receiver in the bow compartment together with the receiver batteries whilst the receiver relay, intergear batteries and steering unit are kept in the stern. Main propulsion. motor and batteries will then be accommodated in the centre portion.

Steering Straight Ahead

As described so far the model can only circle to port or starboard, and the reader may be wondering how it is kept on a straight course. The answer is by the simple expedient of switching the transmitter slowly on and off. This means that the steering motor will also operate in sympathy and will oscillate to and fro about a mean position. It can, therefore, be made to hold any intermediate position between the two extremities

This time has been found by experience to give a reasonably fast reaction from the model and yet it is slow enough to permit accurate control. Extreme rudder angles are usually 30 deg. in full-sized craft, but for model purposes it has been found that up to 45 deg. can be used to advantage. These details are given relative to the use of elec-trically-powered boats and in the case of fast diesel-powered models much less rudder angle will normally be required.

The times specified above should be obtained with the motor using its normal battery supply voltage. In the case of a "Mighty Midget" a voltage of $4-4 \frac{1}{2}$ is preferred as this is normally adequate and causes less wear to the brush gear than the maximum permitted voltage of 6 .
Having constructed a satisfactory steering mechanism the next problem is to find a suitable circuit to operate it, bearing in mind that the simple radio control equipment available can only be made to work as a remotely controlled switch (i.e., the receiver can only differentiate between whether the transmitter is switched on or off). The switch which the receiver works is, of ceurse, the sensitive type of relay, common to nearly
reversed polarities, as shown, and the steering will, therefore, move from full port to full starboard when the receiver relay operates. The limit switches should prevent the traveller from reaching the ends of the screwed rod but it may be necessary to reverse the connections to the "Mighty Midget " to achieve this.
The full wiring for the equipment in the

Fig. 6.-Details and wiring of the control box.
of travel. It has already been advised that the steering should take about three or four seconds to travel between limits and it will be found that by switching the signal on and off at a rate of about five times per second the movement imparted to the rudder by the oscillating motor is so small that the boat will hold a steady course and that the oscillating motion will be taken up by back-lash in the drive. This system is called Mark/Space because when the transmitter is on a "Mark" is said to have been, transmitted and when it is off a "Space."

The ratio of the time the transmitter is on to the time it is off is important as the motor will not maintain a mean position and will creep to port or starboard if it is not correct. As this switching must be carried out with reasonable accuracy it is usual for the function to be performed by an automatic pulsing device. This device, together with the appropriate switch or sivitches to give port and starboard steering is usually assembled into a small hand-held

Fig. 7 (Right).Circuit to illustrate the effect of delaying a relay by the use of a condenser.

Fig. 8.-Theoretical circuit of simple Mark/Space steering' system.

wooden or metal box called the control box. This is linked to the transmitter by about 6ft. of twin flex terminating in a plug jack for easy connection.

The Control Box

Full constructional details for making up a simple control box are given in Fig. 6. The basis of the system is the pulse drum made from a wooden dowel rod wrapped round with a shaped piece of copper or brass foil, as illustrated. The foil should be very thin and in a soft condition otherwise trouble may be experienced in wrapping round the dowel. "Evo-Stick " contact glue is useful for attaching the metal to the wood. Once again it must be stressed that unless a "Mighty Midget" motor is used it will probably be necessary to use reduction gearing to the drum. A speed of about five to eight revolutions per second should be aimed at and as a guide the ticking of a watch is at the rate of five per second. Several cases of difficulty known to the writer have been due to the use of pulse drums running much too fast for the system employed. A post-office key switch is shown as a steering control but this is optional and many suitable types of switches may be employed. Micro-switches are often used but the key-switch has the advantage of having a centre off position and the two side positions give steering control to port $==\mathrm{d}$ starboard. The angled contact "wipers" should be bent almost straight so that the dolly or toggle of the key switch springs back to the centre position as soon as pressure is released. This means that as soon as a steering correction has been given, Mark/Space pulsing will at once be resumed and the rudder position maintained.

The adjustable contact finger bearing on the pulse drum should be readily accessible in the control box as it must be adjusted fairly critically to prevent the steering motor from "creeping." A small amount of adjustment can also be obtained by varying the relay adjustment in the case of a Siemen's relay.

Stage 2-Avoiding the Oscillating Motor

The system as described above is given as it is the simplest possible method of steering a model by radio and it is also a foundation upon which a more involved
arrangement will be built. The next stage in the evolution of a complete radio control system is to cut out the oscillating motor. Whilst the former system does work well, it is wearing on the motor and in particular on the brush gear. A circuit is, therefore, preferred in which the steering motor is allowed to rest until it is necessary to move the rudder to a new position.

The basis of the new system is a method of delaying the opening of a relay after the operating current has ceased. Fig. 7 shows how a large condenser is shunted across a relay coil. When the switch is closed the current from the battery flows both into the relay, closing it, and into the condenser causing it to charge. If the switch is opened the condenser will then discharge into the relay for a given period, depending upon the capacity of the condenser and the resistance of the relay coil. Delays of several seconds can be obtained by this means.
Fig. 8 shows in theoretical form the steering circuit used in the simple Mark/ Space system and Fig. 9 shows how the circuit is altered to incorporate two additional relays each with a delaying condenser. Pulsing of the receiver relay by the control box pulse drum (via radio link) will now cause current from the central battery to flow alternately into the two secondary relays.

Due to the delaying action, just described, the two secondary relays will hold on all the time providing that the correct delay times are obtaized and that the pulse rate or frequency is correct. For this method of

Fig. 9.-Theoretical circuit of second stage to avoid oscillating steering motor.
working a much faster pulse rate is desirable. In the final design a rate of 30 pulses per second is used but slower rates of about 10 to 15 are permissible for this stage. It should be noted that the ratio is not now of importance and that it is no longer necessary to adjust this critically as is the case with simple Mark/Space control. A simpler control box is, therefore, possible as it is not necessary to provide for ratio adjustment. The circuit is used as before but the pulse drum need only be long enough to permit both contact fingers to rest upon it. The shaped metal can be dispensed with and all that is required is a rectangular piece of foil to cover half the surface of the drum thereby making the circuit for 180 degrees of rotation and breaking it for the other 180 degrees. It is possible further to modify the pulse drum by fitting two contact foils, thereby giving two complete Marks and Spaces revolution. If this is done the pulse drum need only revolve at half the speed. For initial tests, however, the original control box can be used with the pulse drum running at full speed and using six volts instead of three to drive the pulse drum motor.

The Secondary Relay

No mention has been made so far of the type of relay used as a secondary relay in this circuit. The author has -used Siemen's
relays again for this purpose and the reed tensioning device has been found very useful in getting correct action. For secondary relays, however, it is necessary to use a much lower resistance as they must operate from a lower voltage. Relays having one coil (only) of 145 ohms are used and the originals were obtained from the Midland Instrument Co. Moorpool Circle, Birmingham. These may not now be available, but suitable relays are advertised from time to time in the pages of this journal and of Practical Wireless and Practical Television. If the correct coil resistance cannot be obtained, it will be found possible to get the circuit working with near values, i.e., a Siemen's relay having two coils each of 250 ohms can be wired with the coils in parallel, thereby giving 125 ohms. Take care to wire the coils with unlike colours together, otherwise it will not work. Relays should be tested before wiring into the circuit. They should close with a definite click on the voltage to be used (8 volts in this case).
The correct value of delaying condenser is related to coil resistance, operating voltage and relay tension. The value used by the writer is $100 \mu \mathrm{~F}$ i2 volts working (bias-type electrolytic) and this has been found to give the correct delay with 145 ohm coils. Experiments may be required if different relays are used. Larger values of capacitance give longer delay times whilst higher resistance relay coils need smaller value condensers and probably higher operating voltages. If a higher operating voltage is used be careful to watch the working voltages of your delaying condensers.

Wiring the Modified Circuit

Fig. 10 shows how the complete circuit is wired to the two stcering batteries and to

Rowing Stroke Meter

THIS meter, the circuit of which employs transistors, is connected to a small switch attached to the rowlock or oar of one of the crew so that the contacts close once every stroke. The cox is thus provided, after a few strokes, with a continuous picture of the number of strokes per minute. The meter is produced by Venner Limited.

Tin as a Crop Fungicide

ABORATORY research has resulted in L. the discovery that certain organic tin compounds are effective fungicides and suitable for agriculture. The most efficient are the tributyl- or tripropyltin compounds

New Type of Wire

DEVELOPED in America, this is aluminium clad copper wire which has been developed to permit electrical equipment to operate at higher temperatures and for longer periods than ever before. The high electrical conductivity of copper, the superior oxidisation resistance of aluminium and the added protection of modern insulating enamel are thus combined.

Light Saving Device

THERE is on the market a photo-electric device which gives audible warning when there is enough daylight to enable artificial lighting to be switched off. It has been suggested recently that this device
the steering gear. In the positions shown both secondary relays are held on by the rapid pulsing of the receiver relay and, therefore, the stecring motor is not energised. If, however, a "Mark" is sent then the receiver relay will rest on one side holding on the associated secondary relay, whilst the opposite secondary relay will drop off after its delaying condenser has discharged. In practice the delay is only a fraction of a second and the action appears to be instantaneous. The steering motor will then run

Fig. 10.-Full wiring plan of second stage
in the direction dictated by the polarity of the battery. Resumption of pulsing will immediately stop its motion. The transmission of a "Space" will cause the opposite action to take place and full steering control is therefore possible without an oscillating steering motor. This method of steering control is extremely good and is recommended for all model boat work.

It should be noted the 8 -volt battery, shown in Fig. 10, need not be a separate supply and that the power can be drawn from the two $4 / 4 \frac{1}{2}$-volt steering batteries. This will not apply, of course, if the secondary relays will not work on an 8 -volt supply

Interference Suppression

This is usually necessary and it is, in any case, good practice to avoid causing interference even if no trouble is experienced in the model. Television receivers can be affected by sparking contacts and brushes, particularly when testing the model at home. In addition to this, the use of suppressors preveats contact points from sticking and from wearing away. Suitable suppressors are simply $0.1 \mu \mathrm{~F}$ condensers (150-volt working) in series with 22 ohm resistors and these should be fitted where shown in Fig. 10. Servo motors (Mighty Midgets, etc.) are often more difficult to suppress and the writer usually earths each brush with a o. I $\mu \mathrm{F}$ condenser to a suitable piece of metal the model. Leads should be very short. This method is usually satisfactory if the simpler method of connecting a or or I mfd directly across the brush terminals fails.

In next month's article the system will be developed to include engine speed control with particular reference to electrically-propelled boats.
could be developed not only to give audible warning when daylight fades but also to switch the lights on and off automatically.

New Coal Getting Machine

A
GOODMAN continuous miner which has been developed from a British machine in the U.S. has been purchased by the National Coal Board. Two large fourarmed rotors and an outer cutting chain comprise the cutting mechanism, both rotors and chain being equipped with a number of cutting picks. The machine bores into the coal face at the rate of roin. to 15 in . per minute over an area of $7 \mathrm{ft} .6 \mathrm{in} . X 13 \mathrm{ft} .6 \mathrm{in}$.
wide. Simultaneously, the cut coal is automatically fed back through the centre of the machine to a discharge conveyor.

Higher than the Sun's Temperature

METEORS entering the earth's atmosphere at fantastic speeds are hotter than the sun's surface. This was reported in America recently together with other facts about extreme speeds. Typical of all cases, it was stated, is the conversion of the high energy of motion into extreme states, with temperatures of several thousand degrees frequently associated with ionisation of the gas involved

ROLLS-ROYCE NOISE SUPPRESSING NOZZLES FOR JETS

 THE DOUGLAS AIRCRAFT COMPANY have fitted noise supressing nozzles of Rolls-Royce design to the Pratt and Whitney engines in the first D.C. 8 airliner.Production noise suppressors designed and made by RollsRoyce are already fitted to the Avon engines of the De Havilland Comet and those airlines which have specified Conway engines for their Boeing 707420's will have Rolls-Royce suppressors incorporated in the complete engine pod which is being built by Rolls-Royce. In addition, the Boeing Company's own noise suppression equipment which will be fitted to the other 707's is based on Rolls-Royce research, for the Boeing and Rolls-Royce Companies exchange all information on jet noise and its suppression.

Fig. 1.-The completed parrot cage.

TTHE construction of a parrot cage differs widely from that of the more ornate but less robust cages for budgerigars and other small birds. Apart from being much larger-which means it must be made of fairly strong but necessarily light materials -it must be constructed that it will withstand the demands of an agile parrot.
Fig. I is a photograph of the completed cage. It is $21 \frac{1}{4} \mathrm{in}$. wide, $19 \frac{1}{4} \mathrm{in}$. deep and

Fig. 2.-(Top) An exploded view of one of the corners of the frames and (below) an assembled view.

3 rin. high; the bars are of IIG. galvanised iron wire, the punchbars of either $\frac{1}{4} \mathrm{in}$. square or $\frac{3}{8} \mathrm{in}$. channel aluminium, the lower framework and crown-plates of 17 G . sheet aluminium, and the tray of 24 G . sheet and $\frac{3}{4}$ in. angle aluminium. The bars are spaced at Iin. centres and the base is a piece of $\frac{3}{8} \mathrm{in}$. zinc-covered plywood. Size is, of course, a matter for individual taste, but the spacing of the bars should not be altered.

A list of materials for a cage of the above size is given in the next column.
The above are critical only as to the material employed, but when buying it is better to err on the liberal side as to lengths

AServiceable Parrot Cage

13y Jameson Erroll

The Method of Construction Described Here Could be Applied to Almost Any Type of Cage

and areas and thus allow for trimming damaged edges and odd cutting mistakes which might occur.

The Frames

The four frames of $\frac{1}{4}$ in. square aluminium should be made up first. Fig. 2, which illustrates the construction of the corners of these frames, together with the photograph of the finished cage (Fig. I) show that these frames are later slipped over the bars, being separated by lengths of the tubing used as distance pieces. The ends are halved as shown and strengthened with corner pieces and L-brackets of 24 G . metal. Note that the screws fastening these strengtheners are so arranged that they do not foul the ho'es through which the tars will pass. A considerable amount of time will ba saved and accuracy assured if a drilling template be made. This can be about $6 \frac{1}{2} \mathrm{in}$. long and made from $\frac{1}{4}$ in. square iron or mild steel. Mark and drill this template very carefully with seven holes exactly at I in. centres, using a No. 32 drill.

Before drilling the frames, one should be earmarked as the bottom one under which, in the centre front, the door will be placed. The six holes at this part (on this one frame only) should be drilled $3 / 32 \mathrm{in}$. since they have to be threaded $6 \mathrm{~B} . \mathrm{A}$. to stabilise the

$$
\begin{aligned}
& 8 \text { pieces inn. square aluminium each } 2 x f i \mathrm{in} \text {. long. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { " } \\
& \text { " sin. channel " }{ }^{\text {sint. }} \text { " (may be } 2 \text { at } \\
& \text { " aluminium tubing } 2 \mathrm{ft} \text {. } 6 \mathrm{in} \text {. } \times 3 / 16 \mathrm{in} \text {. out- } \\
& \text { side, hin. inside. } \\
& \text { " 17G. sheet aluminium } 2 \mathrm{ft} \text {. square. } \\
& \text { " }{ }_{24} \mathrm{G} \text {. } \% \text { 2 } 2 \mathrm{in} \text {. } \times 2 \mathrm{in} \text {. } \\
& \text { " } 24 \mathrm{G} \text {. ", zinr (or aluminium), } 24 \mathrm{in} \text {. } \times 22 \mathrm{in} \text {. } \\
& \text { ". in. nlywood. } 22 \text { in. } \times 20 \text { in. } \\
& 7 \text { doz. } 4 \mathrm{ft} \text {. lengths of IIG. altvanised iron wire. }
\end{aligned}
$$

bars which end at this' point. When all the holes are drilled, the frames may be assembled, the corner strengthening pieces assisting in squaring-up. These, and the Lbrackets, are secured with $\frac{1}{4}$ in. 6 B.A. screws threaded into the frames. These completed frames may now be laid aside and work commenced on the lower framework (see Fig. 3) which is composed of $\frac{3}{8} \mathrm{in}$. channel and 17 G . sheet aluminium. Four lengths of channel are required-two $19 \frac{1}{4}$ in. (for the sides) one $20 \frac{1}{2} \mathrm{in}$. (for the back) and one about $23 \frac{1}{3}$ in. for the front punchbar, which is set I $\frac{1}{4}$ in above the base, and will carry the front bars (leaving a space for the door), and is cut and turned over at each end as shown and screwed into the sides, This makes a firm job of this "floating" front which is otherwise unsupported except by the actual bars themselves.
Drill all these channel pieces with holes at in. centres as for the four frames already made, but before commencing on the front punchbar take particular care to measure the exact distance from the turned-over ends to the first holes as these must align exactly with the frames. Note again that the holes in this front channel punchbar must all be drilled $3 / 32$ in. (not with a No. 32 drill) since the bars terminate (or rather start) here to allow the tray to slide in and out. Also, the centre six spaces will not be drilled at all as the door takes the place of the bars
which commence at this point on the first frame just above the door. Tap all holes 6 B.A.

From the 17 G. sheet aluminium cut six pieces 3 in . wide. Two are then cut to a length of ig! in. (for the outside of the sides) and one $21 \frac{1}{8} \mathrm{in}$. (for the outside of the back).

Along the bottom edge of these three wieces, about $3 / 16 \mathrm{in}$. in, drill four equidistant holes to take No. $6 \mathrm{R} / \mathrm{H}$ wood screws. These drilled edges may now be bent up at rightangles to a depth of $\frac{1}{2} \mathrm{in}$. Now cut the remaining three pieces of such lengths as will permit them to form the inside walls of the lower framework. It will be found that

Fig. 4.-The author's cage during construction.

if the outside walls are inserted in the channel and three or four random lengths of IIG. bar threaded through, the insertion of the inside walls will just about fill the channel. The side inside walls will therefore be approximately $19 \frac{1}{8} \mathrm{in}$. long, while the back inside wall will be about $20 \frac{5}{3} \mathrm{in}$. long. These three pieces may now be drilled and bent over as already described, but in this case the holes should be deeply sountersunk.

Preparing the Base

Cover one side of the plywood with sheet zinc, turning over the edges and allowing a little to turn under the base. It will not be necessary to fasten the zinc to the top of the ply, but a few pins along the edges are desirable.

At this stage it may be as well to explain the manner in which the bars join up with the base. The; are turned over for about $\frac{1}{2} \mathrm{in}$. and pushed through from the bottom, a shallow groove being cut in the underside of the base to engage this turnover and to lave a perfectly flat under-surface. For neatness, this groove is later covered with a slat of in. $X \quad \frac{1}{i} \mathrm{in}$. hardwood. It will be understool, therefore, that having positioned the lower framework on the base, holes must be bored to receive the bars. Once the location of the two front holes is determined, the template can be used with advantage. Having drilled these holes-from the zinccovered surface of the ply-turn the base over and cut the grooves, each about $3 / 16$ in. wide and $3 / 16 \mathrm{in}$. deep.
From the lengths of tubing cut eight pieces 7 in. long, four pieces 6 in. long and four pieces 5 in . long. The ends should be cleaned off and squared, and care taken that each set of four is of exactly equal length.

Assembly

Before further construction can be carried out assembly must be started, and Fig. 4 shows how the cage will appear when this has been done.
Having placed the lower framework on the base, carefully aligning the holes in both, screw down the outer walls. The inner walls are in place, of course, but should not be screwed down until the bars have been inserted; this will allow a certain amount of movement which will
greatly assist the threading of the bars. Prepare all the bars (there will be 80 of them) by turning over one end at rightangles for $\frac{1}{2}$ in. and slightly rounding the other ends with a file. Now thread the four corner bars and check that from all angles they are perfectly upzight, i.e., at right-angles to the base. Threading may now be continued until the eighty bars are in place. The slats which cover the grooves may now be fixed with No. $4 \mathrm{C} / \mathrm{S}$ wood screws alternating on both edges.

The Door

This should be made next as it will be necessary to thread it over the appropriate bar on which it will hinge before adding the first frame. Fig. 5 gives detai's of the door and shows that the top punchbar is of $\frac{1}{4} \mathrm{in}$. square aluminium into which are threaded (6 B.A.) the six short bars. The bottom punchbar is of $\frac{3}{8}$ in. channel and this is drilled with $7 / 64 \mathrm{in}$. holes through which are passed the threaded ends of the bars. The cutting of a thread of 6 BA . on these $11 G$. bars results in a small shoulder being left at the end of the threading; this shoulder will not pass through a $7 / 64 \mathrm{in}$. hole and so, in this way, the ends of the

finger,hole bars may be passed through without
112 did. damage to the threads, but the shoulder will form a stop and nuts inside the channel will tighten up this bottom assembly. The door should now be passed over the appropriate bar and allowed to fall to the level of the front channel punchbar.

Now pass four of the 7 in . tubular distance pieces over the four corner bars and thread on the first of the four frames, i.e., the one earmariked and specially drilled to carry the bars which will commence above the door. The threading of this, and subsequent frames, calls for infinite patience and care. The springy tops of the
bars are most elusive and the threading of one frequently upsets its adjacent member. When one corner has been siarted, say, with three bars threaded, fix it with a light cramp; move next to an adjacent corner, not an opposite one. If a bar has been missed or is already not more than a $\frac{1}{4} \mathrm{in}$. higher than the frame, it may be sprung in, i.e., the bar grasped near the top and bent naturally until it springs into the hole-but do not attempt to "spring" more than $\frac{\mathrm{tin}}{\mathrm{in}}$ or so.

Once all the bars are threaded, the working-down of the frame will present no difficulties. It may be gently tapped in places with a small hammer, but approximate aligament all round must be maintained. When the frame is settled firmly on the top of the tubes, the inside walls of the lower framework may be screwed to the base and the four remaining 7 in . lengths of tube slipped over the corner bars.

The Feeders

Before threading on the next frame, the
box side and bottom.
feeder holders must be made and placed in position. Figs. 6 and 7 show the construction of these boxes, but before proceeding, the porcelain containers should first be bought. These may vary in size and shape according to availability or individual taste and the boxes to hold them must be varied accordingly. Those used in this cage were approximately $3 \frac{3}{3} \mathrm{in}$. long, $2 \frac{3}{8} \mathrm{in}$. wide and $1 \frac{1}{2}$ in. deep and of the shape shown on the right of Fig. 7. After the 24 G . sheet metal has been cut as detailed in Fig. 6, the straight-edged portion ($1 \frac{3}{\mathrm{~h}} \mathrm{in}$. wide) is bent back over a $1 \frac{7}{8}$ in. length of tubing (which slips over the main bar and forms the hinge on which the boxes will swing outwards) and fastened with two small rivets. Do not forget that one holder will be right-handed while the other will be left-handed. The straight edge of the base shown on the right of Fig. 6 is bent at right-angles and riveted to the outside of the unserrated portion of the side of the holder. The notches are now bent at right-angles and the metal bent around the semi-circular base, with the notches underneath, and the $\frac{1}{4}$ in. overlap bent sharply and screwed to the flat back. The notches may be soldered to the base if you fancy zinc or aluminium soldering, but this refinement is not necessary.

Fitting the Feeders

Cut off the three centre bars from each of the sides and file them level with the frame; slip the boxes over the appropriate bars and, if necessary, tap the tubes slightly to avoid the base of the boxes fouling the frame. Over each opposite bar drop another r zin. length of tubing so that the short punchbar to be shortly inserted will lie parallel to the frame. Cut two $4 \frac{1}{2}$ in. lengths of $\frac{\mathrm{in}}{}$. square aluminium and drill with the template, noting that the two outside holes should be made with the No. 32 drill while the three inside holes require to be drilled and tapped 6 B.A. Pass these over the appropriate bars, thread the ends of the six bars which were cut off, and screw them into the tapped holes.

Door Fastening

No details are given of the fastening of

Fig. 7.-Plan of one of the feeder boxes to hold the porcelain cup (shown in perspective.)
the door or of the feeder boxes since the constructor will doubtless have his own ideas. The writer used, for the door, a stop to prevent it swinging inwards and two bent catches firmly wedged over in. lengths of tubing which, of their own weight, fall into position when the door is

Fig. 8.-Method of fixing perch.

September; 1958

closed and have to be lifted and turned when the door is opened. The idea of two catches, one top and one bottom, is to prevent the parrot from working out its own method of egress

The second frame may now be threaded on and when it is finally tapped down and rests snugly on the distance tubes, the four 6in. lengths of tubing may be dropped over the corner bars.

The Perches

Before proceeding further it will be necessary to put into position the two lower perches-one frou side to side immediately under the feeder boxes, and a diagonal one resting on the second frame which has just been threaded. This perch in particular must be fixed at this stage as it will be exremely difficult to accomplish later.

Fig. 8 shows that parrot perches should not be round; tiey should be square with well-rounded corners, and may be cut either from a dowel flattened on four sides or from a square section rounded at the corners-and they must not be smooth! This is most important. The feeder perch should be made from rin. material and has a slot cut in each end which, while being wide enough to admit the IIG. bar, is shallow enough to leave a small part of the bar projecting, i.e., the groove can be $\frac{1}{d}$ in wide, but only $3 / 32$ in. deep. Over each end, outside the cage, an aluminium cap is screwed which, when tightened up, firmly fixes the perch to the bar.

The diagonal perch, of similar or only slightly smaller section, should have grooves cut as already described but they must be wider and deeper since they engage with the corner distance pieces; they can be $3 / 16 \mathrm{in}$. wide and about $5 / 16 \mathrm{in}$. deep, the perch being a wedge fit and overhanging about a $\frac{1}{4}$ in. at each end. This, and any other perch which rests on one of the frames, will not need outside metal caps.

The third frame may now be threaded over the bars and, when the 5 in . tubular distance pieces have been passed over the corner bars, the fourth and last frame may be added. Tap the top frame rather firmly at the corners to ensure that all frames are well seated and run a straightedge along the punchbars in turn as some of them may have bowed slightly in the assembling process.

Wooden Template

Before attempting to bend-over the remaining lengths of the bars (about 20 in will be left above the top frame) another template must be made, this time of wood. Obtain a 2 ft . length of ex-3in. X rin and well round one long edge-the "round" should be a quarter-circle of rin. diameter.

Fig. 9.-Using a woooden former to bend wires to centre of cage. commenced. this.

Crown-plates

NEWNES PRACTICAL MECHAT:ICS
Since the finished thickness of rin. nominal timber is just under $\frac{7}{3}$ in., it will be found that this template will just slide between the bars as shown in Fig. 9. Place it on any side to begin with and clamp it to the end bars; run two diagonals of string from the four corners of the cage so that the centre-where they cross-can be kept in view; and the bending may be

Each bar is, in turm, bent to a right-angle over the rounded edge of the former and directed towards the centre of the cage. There is nothing difficult about this, but cramp each bar (with a light G-cramp) before bending and exert pressure only over the template; if pressure is applied towards the ends of the bars they will not bend over the template as desired but will find their own irregular bending point-and this must be avoided. As each wire is bent, cut off the surplus so that each bar finishes about in from the cage centre. Do no worry at this stage if some of the bars tend to spring back a trifle while others have been bent slightly past the horizontal-the crown-plates will adjust this. Near the centre of the sides it will be found that the bars crowd together as they are bent forward and it may be necessary to cut back one or two more than the specified inch in order to avoid overlapping, but the crown-plates are of ample size to allow for

Fig. 10.-Swing details with close up section of screweye and swivel.

The crown-plates should now be prepared and the swing constructed. The former are used to bind the bars together over the centre of the cage and are cut from 17G. aluminium. There are two of themone inside the cage and one outside-and each is 6 in. $X 5$ in. They have a $\frac{1}{3} \mathrm{in}$. centre hole bored in them and, for the purpose of accurate drilling, are fastened together at this stage with a short $\frac{1}{4} \mathrm{in}$. bolt and nut. All round, at $\frac{1}{4} \mathrm{in}$. from the edges, are bored a number of $7 / 64$ in. holes which will admit of the 6 B.A. bolts which will bind them together. Bore one of the corner holes first, give it a distinguishing mark on both plates, and fix a 6 B.A. bolt and nut through them. Do the same at the opposite corner. The remaining holes may now be drilled without fear of the under plates moving out of alignment The 6in. sides should have, including the corners, seven equidistant $7 / 64 \mathrm{in}$. holes, and the 5in. sides, excluding the corners three equi-distant holes. The

Fig. II.-Details of tray and supports.
Fig. 12.-One of the rollers underneath the tray.

plates may now be separated and the burrs cleared from the holes and the drill run through them again to clear any surplus matter.

The Swing

This is an optional refinement. Fig, io shows how it is constructed. The sides are of 24 G . aluminium $\frac{7}{8} \mathrm{in}$. wide and the perch of ex-lin. hardwood. The swivel centres on a tin. threaded screweye through which passes- a sliding-fit collar of a thickness (or length) only slightly in excess of the thickness of the eye. Two $\frac{1}{4}$ in. steel washers give stability and prevent the aluminium sides from coming in contact with the screweye; and the fitment is completed by the addition of a $\frac{1}{s}$ in. Whit. bolt and nut. The swing will move freely in the "eye" without undue lateral movement. Since it will be suspended by means of the threaded portion passing through the centre holes in the crown-plates, it will help at this stage to tie a piece of thin string loosely to the eye, place the swing in the bottom of the cage, and pass the other end of the string through two of the bars at the top of the cage. The who'e contraption can then be pulled up when required.

Final Assembly

Pass the lower crown-plate through the bars to the inside of the cage and with a small cramp or two hold it roughly in position. Pull up the swing and pass the screweye through the hole in the plate, remove the string, lay on the top crownplate and secure loosely with a nut taking care that the two marked corner holes are in alignment. Some of the bars at this stage are bunched together while others are at varying distances apart.

The first step is to take the two marked corner holes and, ensuring that the corner bar is on the left of the holes, pass a 1 in. 6 B.A. bolt through both holes and fix a nut to prevent it falling out. This bolt can easily be passed through the underside crown-plate by means of a pair of longnosed pliers. Now go to the opposite corner and pass through those two holes another
(Concluded on page 581)

T
HE instrument to be described can be strung with either steel or gut strings depending on the choice of the reader If the instructions are followed and the work is not rushed, no difficulty should be encountered in turning out an instrument that compares favourably with a professional job.

Construction

Ideally the instrument should be made from solid wood, mahogany or white chestnut being the most popular. However, some difficulty may be found in getting solid wood in $\frac{1}{8} \mathrm{in}$. thickness so $\frac{1}{8}$ in. mahoganyfaced ply-wood was used with very encouraging results.

Make a start by squaring up the drawing shown in Fig. I. This should be done on a large sheet of paper that will allow the futl size shape to be drawn. The back of a length of wallpaper is ideal. Make the squares 2 in. $X 2$ in. Absolute accuracy is not essential at this stage as long as the general shape is adhered to. The important thing is to avoid jerky curves. Having enlarged one side, carefully fold the paper down the centre and make a rubbing of the remaining half.

MATERIALS AND PARTS REQUIRED

Body

2 pieces mahogany-faced plywood, 2 rin. x x $6 \mathrm{in} . \times$ s in .
2 pieces 34 in. x in. $x / 1 / 2$ in. plywood.
B3in. x jin. x jin. deal.
2 blocks 3^{3} in. x 3 in. x xin.
Neek
One biock 2 tin . x 4 in . $\mathbf{x} 3 \mathrm{in}$, mahogany.
Finger board
I piece, 19in, x 3 in. x $3 / 16$ in. mahogany.
Bridge
Bridge
I piece 7 in. x xin. x tin. mahogans.
Accessories
1 yard of fret wire.
Machine head (for use with steel strings)
Stretcher (for use with steel strings)
I set of guitar strings.
All the above accessories can be obrained at any musical instrument shop.

Using carbon paper transfer this shape to the $\frac{1}{8} \mathrm{in}$. plywood, then with a fret saw cut around the outline and then tidy up any divergencies from the line with sandpaper. It is important to ensure that the edge is at right angles to the face of the wood to ensure a good gluing surface later.

Once satisfied with one panel, use it as a template for the second and proceed as

Fig. 1. - Shape of xie belly and back of guitar.

FullSil

The Guitar Needs No Skiffle and Folk Song. Solo Playing or Accon its Own

coincides with the bottom panel at a n umber of points. See Fig. 2.

Sides

Take one of the $1 /$ i6in. plywood sides and trim one end so that it is at exact right angles to the length. Sharp scissors will cut this thickness of ply easily. Pin the edge along the centre line of the lower end block, using panel pins. Bend
before. At this stage select the panel with the most pleasing grain and mark this for use as the top panel

The Sound Hole

This is cut in the top panel. The centre should be marked off from the full-size drawing and the hole cut out accurately with a fret saw. The edges of the hole

should be rounded to give the completed instrument a more professional appearance.

The strengthening battens should be cut to size and glued in position on the top and bottom panels.
Aerolite 306 was used as the adhesive in the original and proved to be excellent. Any glue can be used as long as it is space filling. Avoid quick-drying glues as there is a temptation to rush positioning before it sets.

The spacers can be added to the lower panel. Make sure that these are held vertically during drying and this can be done by "chocking" with some square blocks, such as children's building blocks.
Before positioning the end blocks mark a centre line on each of them. Apply glue liberally and carefully locate the blocks on the centre line of the body. The two panels should now be placed to one side to dry.

Once the glue is dry, the top panel can be glued on to the bottom panel. Do this very carefully, ensuring that the top panel is directly over the bottom. A simple way of doing this is to lay a try-square on the top face and see that the edge of the blade
the side around the shape of the body and make sure that there is an overlap above and below the body. Satisfied, remove the side and apply glue liberally to the end blocks and along the edges of the body panels. Locate the panel pins in the original holes and bend the side to the shape of the body. The ply can th be held in the centre by binding with string, while the end is secured with panel pins

until the glue dries. Allow to dry thoroughly before removing the string and starting on the second side.

When the glue is dry trim the ply along the centre line of the top block. The second side is glued in place in the same way as the first, making the join at the top block along the centre line. This join will be covered by the neck and need not be absolutely accurate, but the lower one should be done neatly.
When dry, trim the overlap down to the surface of the body faces. The body should

$2 e$ Guitar

Introduction in This Age of As an Instrument for Either paniment it is in a Class of By A. B. Orr

now be sanded and any surplus glue removed.
Neck
This is cut from a block of mahogany measuring 2 rin . $\times 4 \mathrm{in}$. $\times 3 \mathrm{in}$. This is the most difficult part of the whole project as it is slow work cutting through this weight of mahogany. The block should be carefully marked out as shown in Fig. 3 and then, if possible, taken to a box-maker or a cabinet-maker who will run it through
 a band saw for a few shillings. Not only does this eliminate a lot of tedious work, but the neck will be much more accurate. If this is not possible then the job should be done with a stout coping saw.
We now have the neck "in the square" and it only remains to round it off and drill the holes in the shoulder. A coarse rasp is a great help in the rounding process.

This should be followed with sandpaper until the neck is smooth and devoid of humps and hollows.

Before drilling the holes for the pegs, it should be decided whether the finished instrument is to have steel or gut strings. If gut is to be used then wooden pegs will suffice to tune the instrument. If, however, steel strings are to be employed, a machine head will have to be used, as wooden pegs often shear under the strain of steel strings. If it is decided to use steel strings then the head will have to be drilled to suit whatever machine head is used. Fig. 4 is an exploded view of the guitar.

Fig. 5.-The finished guitar.
Join the neck to the body. Glue should be liberally applied to the end block of the body (actually to the ply covering it) and the end of the neck. The screws should

Fig. 6.-Measurements for the finger board. then be inserted and carefully screwed into the end block. When the neck is tight against the end block, check that the top face of the neck is absolutely level with the sound board (top panel) on the body. Lay a steel ruler along the length of the body and neck and make sure that there is no dip or rise at the join. If there is then it will be necessary to insert a sliver of wood at the appropriate place between the neck and the block before screwing tight. Fig. 5 shows the finished instrument.

The Finger Board

This is made from $\frac{1}{8} \mathrm{in}$. mahogany measuring 19 in. $X 3$ in. When the neck and body join is dry, lay the piece of mahogany along the top of the neck and mark the shape of the neck on it. Considerable care should be taken at this stage as a fault will make the finished instrument difficult, if not impossible, to tune. The finger board should now be marked off as shown in Fig. 6, taking great care in this part of the work. When all the fret positions have been marked in, the board can be cut to the shape of the neck. Cut it out a little oversize so that it can be trimmed flush with the neck when finally in position.

With a fine tenon saw carefully

obtained.
The instrument could be painted but unless this is very well done the entire job could be ruined.

Our Spanish Hawaiian Guitar

Readers interested in the construction of musical instruments may also like to know that a fully detailed article describing the construction of a Spanish Hawaiian guitar appears in our first Practical Mechanics How-to-Make-It Book, which costs 12/6d. or can be obtained from this address for 13/9d. including postage. Also in this book are descriptions of a steel stringed ukelele and an electric organ.
up all it can soaked when the polisin begins to dry on the surface and form a skin should it be applied with a pad. Between applications rub the surface down with a fine sandpaper. In this way a really hard and lasting surface will be

Fig. 7.-Details of the pegs. durable and easy to apply. Apply the polish with a soft brush until the wood has soaked obtained

Fig. 8.-Mcasurements for the bridge.
$\Gamma^{\text {OR charging an accumulator a direct }}$ current (D.C.) supply is required, which should be about 2.7 volts for each lead-acid cell to be charged in series. Thus a supply of about 16.2 volts D.C. is advisable for fully charging a 12 -volt (six cell) battery, and about 8.I volts for charging a 6 -volt' (three cell) battery. Such D.C. voltages are readily obtainable from an A.C. supply of any voltage through the medium of a static transformer and a rectifier. However, a static transformer cannot be used to step down the voltage of a D.C. supply so that other means must be adopted to reduce the voltage if this is greater thas the required value.

Resistor Calculations

The simplest method is by connecting a resistor in series with the battery to reduce the voltage, the resistor being designed to restrict the charging current to the required value. The ohmic value of the series resistor should be equal to the difference between the supply voltage and the battery voltage, divided by the required charging current in amps. As an example if it is required to charge a 12 -volt accumulator at 2 amps from a 230 -volt D.C. supply the series resistor may have a resistance of $\frac{230-12}{2}$ ohms, or 109 ohms. The resistor must be large enough to carry the 2 amps current without overheating. The same series resistor could be used to charge a 6 -volt battery from the 230 -volt supply, the charging current then being equal to $\frac{250-6}{107}=2.05$ amps. If the same resistor is used to charge a 2 -volt battery the charging current would be equal to $\frac{250-2}{103}=2.1 \mathrm{amps}$. It will thus be seen that where the supply voltage is several times greater than that of the battery it makes little difference whether a 12 or a 2 -volt battery is being charged. If it is required to be able to vary the charging current a variable series resistor is needed.
A battery charger can be constructed
ing details refer to a charger The followbeen designed so that when the switch j is closed, approximately I amp charging current passes from a 230 -volt D.C. supply to a 12 -volt battery, with 2 amps when switch k is closed and 4 amps when switch 1 is closed. Thus 3 amps charging current also may be obtained by closing i and $k, 5$ amps by closing j and 1 , and 6 amps by closing switches k and 1 , with 7 amps charging current when all three switches are closed.

The resistors have been designed so that only two sizes of wire are required, i.e., 23 and 26 s.w.g. Eureka wire. The resistor shown at d in Fig. I consists of 83 yards of 26 s.w.g.; resistors e ; f and g each consisting of 73 yards of 23 s.w.g. The wires may be wound round a rod of about $\frac{1}{2} \mathrm{in}$. dia. to form them into spirals. When the rod is removed the spirals are carefullý looped around a piece of asbestos board about 15 in . deep $\times 18 \mathrm{in}$. wide, passing through shallow grooves at the top and bottom of the asbestos. The spirals can also be secured at intermediate points by means of asbestos cord threaded through holes. The ends of the spirals can be secured by looping through small holes in the asbestos board. The resistors should be fitted in a well-ventilated metal cas e which could be constructed of expanded metal.
On the front of the case can be mounted a double-pole combined switch and fusebox having a rating of at least 10 amps . together with three $5-\mathrm{amp}$. single-pole tumbler switches, j, k and 1. The resistance elements can be connected to porcelain shrouded brass connectors having pinch screws, from which connectors 3/0.036 V.R.I. insulated wires pass to the switches, etc., as shown. In the switch-fuse may be fitted fuse wires rated at no more than 10 amps., the metal casing being connected to a reliable earthing point.

Fig. 1.-Arrangement of a D.C. charger using wire resistors.
terminal being marked - . The + terminal must be connected to the + terminal of the battery to be charged, the negative terminal of the battery being connected to the output terminal.

The charger can be used to charge either 12-, 6-, 4- or 2 -volt batteries at approximately I, $2,3,4,5,6$ or 7 amps . Ii can also be used to charge several such batteries connected in series, i.e., with the + terminal of one battery connected to the - terminal of the next, and so on. When extra batteries are thus connected the same charging current will pass through all the cells, although the charging current passed on each switch is slighty reduced.

Use of Charger on Lower Voltage

This charger is suitable for lower supply voltages than 230 volts if required, although on lower voltages the charging current passed on each switch is reduced practically in proportion to the supply voltage. Thus on a IIO-volt supply the total charging current which could be passed to a 12 -volt battery would be approximately 3.2 amps . However, if the supply-voltage is appreciably lower than 230 volts it is better to reduce the length of wire used for each resistance element aproximately in proportion to the supply voltage. This will enable a smaller charger to be used for the lower voltage, with a total charging current of approximately 7 amps.

Power Loss in a D.C. Charger

One rather serious drawback to the use of a series resistor for charging a battery from D.C. mains is that there is a considerable waste of power in heat in the series resistor. The power loss in watts is equal to the product of the volt drop across the resistor and the charging current in amps. Thus, if a 12 -volt battery is charged at 7 amps from
approximately one-third of an amp. Thus, three batten-type lampholders may be connected in parallel, as in Fig. 2, to the first 5 -amp tumbler switch J, and this switch will pass about I amp. charging current from a 230 -valt supply when a 75 -watt lamp is placed in each lampholder. A 230 -volt $500-$ watt heating element G may be connected to the second tumbler switch K, and will pass about 2 amps, to a 12 -volt battery from a 230 -volt supply. Similarly, a 230 volt, r,000-watt electric fire element H, may be connected to the third 5 -amp. tumbler switch L to pass about 4 amps. charging current. The same precautions regarding connecting up the " live" pole of the supply and marking the polarity of the output terminals must

To Battery
Fig. 3.-A simple and economical charging circuit.
be observed as in the case of the charger indicated in Fig. I. The lamps and heating elements will become practically as hot as when used for their normal purpose, consequently it is advisable to space these irems about 6 in. apart and they must be adequately ventilated.

Fig. 2.-Another arrangement of a D.C. charger.
a 230 -volt D.C. supply the power loss in the resistor is equal to 218×7 watts $=$ 1,526 watts. The heat generated in the series resistors will thus be almost as great as that given by a two-bar electric fire. With 7 amps charging current about 10 hours would be required to fully charge a discharged 70 amp-hour battery, during which period the total power loss in the resistors would be 15,260 watt-hours, or 15.26 k . W.H. During this period the total power taken from the supply would be equal to $230 \times$ $10 \times 7=16,100$ watt-hours, or 16.1 k.W.H.. or I6.I units. Thus, if the electrical power costs one penny per unit the cost of charging the battery would be just over Is. 4 d .

A Charger Using Lamps and Electric

Fire Elements

It is possible to use smaller resistors than those detailed above to build a charger having approximately the same output. A 230 -volt 75 -watt lamp takes a current of

Single-rate Chargers

A much simpler arrangement is possible if it is merely required to charge a battery at one rate of current. For instance, a battery could be charged at approximately amp. from a 230 volt. D.C. supply by simply connecting three 230 -volt 75 -watt lamps in parallel between the "live" pole of the supply and the battery, with the neutral pole of the supply connected to the other terminal of the battery, with battery connections of correct polarity. Similarly, a 500-watt 230 -volt fire element will pass 2 amps., a 750 -watt 230 -volt element will pass 3 amps., and a 1,000-watt 230volt element will pass 4 amps. charging current from a 230 -volt D.C. supply.

On a IIo-volt D.C. supply, three 75 -watt rro-volt lamps in parallel will pass about 1.8 amps, and a 500 -watt 110 -volt fire element will pass about 4.1 amps, charging current. On a 110 -volt supply a 500 -watt 230 -volt fire element will pass about 0.9 amp . charging current, a 750 -watt 230 -volt element passing about 1.4 amps., and a 1,000-watt 230 -volt element will pass about 1.8 amps . The advantage of using elements of higher voltage than that of the D.C. supply is that the elements will operate at much less than their normal working temperature, although the power loss per amp. charging current is unchanged

Load Circuit Chargers

It is, in fact, possible to charge a battery without any waste of power if the power taken by the series resistors can be usefully employed. This can be done by simply connecting the battery in series with a circuit
which is in normal use. In this case, of course, the charging current will depend entirely on the current taken by the circuit, and charging will only occur when the circuit is in use. Fig. 3 shows how a doublepole two-way switch can be connected in place of a single-pole switch fitted on an existing circuit, the two-way switch having an "off" position also. When the two-way switch is moved to the left the circuit is switched on normally and no charging current flows through the battery. When switched to the right current to the load circuit passes through the battery. In the "off" position no current flows through either the load circuit or the battery.

The " live" pole of the supply is X and the neutral is \mathbf{Y}-; and the polarity of the output terminals of the socket output must be correctly determined as described previously. A three-pin socket-outlet is provided for connecting up the-battery so that the plug can only be inserted into the socketoutlet one way, the battery leads connected to the plug being marked so that the positive pole of the battery is always connected to the positive pole of the socket-outlet. When the battery is on charge, the voltage applied to the load circuit is slightly reduced by the amount of the battery voltage, but in most cases this will be of little or no significance.

Motor-generator Chargers

Where it is required to charge a battery, or batteries. at will from a D.C. supply of much higher voltage than that of the battery the most economical way is usually to employ a mains-voltage D.C. shunt motor, or compound motor, to drive a suitable low-voltage dynamo. It is often very convenient to use a motor car or motor cycle dynamo for this purpose. A I2-volt car dynamo can thus be used to charge a 12 -volt battery, two 6 -volt batteries in series, three 4 -volt batteries in series, or six 2 -volt batteries in series.

The dynamo should be driven at a speed equal to the maximum speed shown on the dynamo, or at a dynamo speed corresponding to a road speed of about 40 m.p.h. Either a two-brush or a three-brush dynamo may be used. The dynamo may be direct coupled to the motor if the speed of the latter is correct for the dynamo. or may be driven through a vee belt. In the latter case if N_{m} is the motor speed and it is required to drive the dynamo at a speed of $\mathbf{N}_{\mathrm{d}} \mathrm{r} . \mathrm{p} . \mathrm{m}$. the effective diameter of the vee pulley used on the motor should be equal to $\frac{N_{d}}{N_{31}} \times D_{d}$, where D_{d} is the effective diameter of the vee pulley fitted on the dynamo.

Fig. 4.-Connections of a-dynamo charging circuit.
In the case of a two-brush dynamo a variable resistor should be connected between the F and D terminals of the dynamo, as
(Concluded on page 570)

A Device for Demonstrating the Rotation of the Earth Round the Sun
 My P. PD. Hassam

Fig. 1.-The completed Tellurion.

THE device shown in Fig. I was originally made to demonstrate to a class of schoolchildren how the earth's rotation brings the four seasons in turn. It was made with no thought towards appearance only the utilitarian aspect being considered.

MATERIALS KEQUIRED

An old bicycle wheel (the free wheel sprocket need not be serviceable).
An old tea chest and a strip of wood $2 i n . x 2 i n$. approximately.
An electric light bulb with socket and flex.
An old cycle chain.
A hub from an unserviceable wheel, with fixed or free wheel sprocket.
A piece of metal tubing into which the hub wil!
A iust frong.
A strong spring-clip bolted to rim of wheel to
A small globe, costing 2s. 6d. from one of the
large stores.
Twelve screws $1 \frac{1}{2} \mathrm{in}$. Long and 3 rubber door stops.

Construction

Clean the bicycle wheel with paraffin and remove the free wheel sprocket. Heat it in the fire to remove case-hardening and when cool saw a shallow notch in the top rim. A fixed sprocket could also be used.
From plywood mark out and cut a circle as near as possible to the circumference of the wheel. Drill through the centre of the plywoed circle, or use a hot poker, until the spindle of the wheel passes through. Replace the wheel nut and washer. Four small feet must be fitted to prevent the wheel nut from touching the table and to steady the base (Fig. 2).

Mark out and cut two discs of plywood, slightly larger than the diameter of the free wheel sprocket.
Bolt one of these to the top side of the wheel after making a centre hole as for the base. Pierce a hole in it the same distance from the centre of the spindle as the notch made in the free wheel sprocket, so that any ordinary wood screw can pass through and bed its point in the notch (see Fig. 2). The top plywood dise will have a centre hole through which will pass the electric light flex.
Fix the light socket in position and also three screws and door-stops as spacers (see Fig. 2).
Bolt the spring-clip to the rim of the wheel with two B.A. bolts and clip the metal tubing in position.
Saw the spare hub from an unserviceable wheel complete with free wheel sprocket and remove spindle, cones, etc. This being hollow will allow a tapered piece of wood to be driven down into it.
Mark and cut a plywood disc of diameter equal to that of the globe base (approx.
$4 \frac{1}{2} \mathrm{in}$.) and secure this to the tapered length of hardwood with a centre screw, after the correct height (judged by an

of the centre sprocket, adjust the length and join with a spring link.
After testing that the globe's axis is, in all positions, pointing north, all that remains to be done is to dismantle the apparatus for final painting and marking off the solstices, equinoxes, etc., on the plywocd base.

Fig. 2.-Constructional details of the Tcllurion.
electric light bulb) has been ascertained. Fit the end of the sawn cycle hub into the metal tube on the cycle rim.

Fit the length of bicycle chain to the teeth

Battery Chargers for D.C. Supplies

(Concluded from page 569)

indicated in Fig. 4. In the case of a threebrush dynamo the third brush should be removed from its holder, and the variable resistor connected between the third (field) brush holder and the output terminal of the dynamo. It is suggested that the variable resistor be capable of carrying about 2 amps. without overheating and that it have a resistance of about 6 ohms if the charger is to be used only for a 12 -volt battery or batteries. If the charger is required also to be capable of charging a single 2 -volt battery it is suggested that a variable resistor of about 36 ohms be used. A car cut-out should be connected in circuit to avoid any risk of the battery discharging by motoring the dynamo in the event of the supply to the motor being cut off. In Fig. 4 the voltage coil of the cut-out is shown at V

Capabilities

In addition to the seasons, day and night can also be demonstrated at any time of the year.
The fixed distance between globe and lamp helps to prove that "cold" and "heat" are governed by the rays of the sun being more, or less, oblique as the case may be. We do not, in any real sense, draw nearer to the sun in summer.
and the current coil at C.
A motor of about I h.p. may be required to drive a dynamo giving a 10 -amp. charge to a 12 -volt battery. However, such a motor only takes about 4.3 amps . from 230 -volt D.C. supply mains, compared with 10 amps. taken by a series resistor with the same charging current. Thus the cost of charging a battery from 230 -volt mains may be halved by using such a motor-generator combination in place of a resistor, although there would be little saving in using a motor-generator set to charge a 12 -volt battery from IIo-volt D.C. mains.

THE "PRACTICAL MECHANICS" HOW-TO-MAKE-IT BOOK

12/6 (13/9 by post)
From George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C. 2.

A Sensidive Baromeeter

Make This Instrument ior Your Home by Following the Instructions Below

THIS barometer is of the "pediment" type. It consists of a straight tube filled with mercury, the mercury tube being suitably mounted and permanently secured on a wooden board. The height of the mercury column is read off by means of a simple form of indicator against a scale, an accurate reading of the barometric pressure of the atmosphere thereby being attained.

Sensitivity

There can be no more sensitive form of barometer than one consisting of a column of mercury the height of which is governed directly by the prevailing pressure of the atmosphere. Such a type of barometer possesses no pivots, wheels, cranks or levers to become dirty and to stick. Once calibrated, it will go on working almost indefinitely without attention.

The Board
The dimensions for the board are given in Fig. I and are to be regarded as being approximate only. They may, within reason, be varied by the indiviual constructor to suit his own purpose and ideas.
The choice of the wood used for the making of the barometer board is, again, a matter for the individual, but well seasoned oak, manogany or walnut will look best.

The Protecting Box

It will be noted from Figs. I and 3 that the lower end of the baro-

Fig. 1.-Details and dimensions of the barometer board and the two types of tube.

Having constructed the barometer board, the next thing to do is to stain and polish it in accordance with individual taste. An cak board would be best stained, lightly shellacked and then wax polished, whilst a manogany board would usually be finished by means of some french polishing and sta.ning process.

The Barometer Tube

If the amateur has facilities for glass bending he can make a "plain" barometer tube for himself merely by sealing the end of a length of thick-walled glass tubing and then by bending the other end into a " U " shape, the short limb of the " U " being about $r \frac{1}{2}$ in. in length. It is better, however, to purchase a ready-made barometer tube having a mercury "cup" at its lower end. These may be procured from most laboratory furnishers and scientific supply stores. The barometer tube should be approximately 34 in . in length. It must not be less than 3 I in. The tube should have a $3 / \mathrm{r} 6 \mathrm{in}$, bore. A wider bore tube will tend to make the barometer slightly more accurate, but, on the other hand, it will necessitate the use of a greater amount of mercury.

Fig. 2.-Arrangement for filling the tube. Cozton wool can be seen in the funnel.

"Re-distilled" Mercury

A 34 in . baroneter tube having a $3 / 16 \mathrm{in}$. bore will ho'd about 20z. of mercury, but for ease in filling the tube with mercury, about 4 or 602 . of this metal should be obtained. The purest mercury available should be used and it will be found advantageous to purchase "re-distilled" mercury, which, at the present time, may be obtained from chemical supply firms at the price of 7 s . 6 d . or 6 s , per 100 gm .
Having obtained the barometer tube and the necessary amount of mercury, we may now proceed to the filling of the tube. For this we require a small enamelled or, better still, a glass funnel and a short length of rubber tubing. A metal funnel must not be employed, since it might contaminate the mercury.
The interior of the barometer tube must be scrupulously clean and dry as also must be the mercury iteslf. It is advisable to place both the tube and the mercury in a warm cupboard for a few days in order to make sure that all traces of dampness are driven off them.
If the mercury is "dirty" and leaves "tails" when drawn along paper it may be cleaned by forcing it through a chamois leather bag pierced with a needle hole. Even so, however, such mercury may be contaminated with other metals, in which case it will be absolutely useless for barometer work. It is always best, therefore, to use for barometer filling freshly purchased "redistilled" mercury.
The method of filling the mercury tube will be made clear by Fig. 2. The tube is

Fig. 3 (Right).-The barometer showing the box.

Fig. 4 (Right).-Top end of the barometer showing scale and simple pointer.
inverted so that the short arm or cup of the tube points downwards. A short length of rubber tubing is attached to the open end of the cup and at the opposite end of the rubber tubing a glass or enamelled funnel (not a metal one) is secured. Make sure that the funnel and the tubing are perfectly clean and dry and that there is no loose rubber powder within the rubber tube. To make certain of this latter it is best to pour a quantity of scrap mercury several times through the rubber tube in order to carry away all loose particles. This mercury, of course, must not be used for the actual barometer filling.

Filling the Tube

The barometer tube is filled by holding it in the left hand whilst the funnel is held in the right hand, the funnel and barometer tube being connected by the rubber tubing, as shown in Fig. 2. All the available clean mercury is now poured into the funnel and a tuft of clean cotton wool is then loosely packed into the funnel in order to prevent the escape of any mercury. Holding the funnel always at a higher level than the inverted barometer tube, the latter is given a series of quick vertical movements or jerks. By this procedure, mercury will be shaken round the bend of the tube, and, falling to the bottom of the latter, it w:11 displace the contained air. When the lers tube is completely full of mercury, the rubber tube may be removed and the long tube restored to its normal upright position. The mercury within the tube will not run out. It will sink about 3 or 4 in . from the top of the tube and then remain stationary. A little more mercury is then poured into the cup at the lower end of the tube and the latter is then closed by means of a cork through which a small hole has been driven or else with a tuft of cotton wool.
It is a good plan to conduct the filling of the barometer tube over a newspaperlined household bath so that if any mercury is lost during the process it may easily be collected again.

The "Vacuum'Hammer" Test

Before securing the filled barometer tube to the wooden board, it is advisable to apply to it the well-known "vacuum hammer" test. This is done by slightly inclining the
upper end of the mercury tube so that the column of mercury rises and hits the end of the tube. At each impact of the mercury with the upper end of the tube, a peculiar metallic thud will be heard. This is t he so-called "vacuum hammer," and i:s presence is a sign that an effective degree of vacuum has been secured above the mercury column.

The mercury tube is now fixed to its board. This i s effected by means of two or three small metal bridge-pieces.

The barometer must now be left for a few hours in order that the mercury in the tube may attain an even temperature In order to calibrate the instrument and to render it suitable for use, draw a scale
similar to the one shown in Fig. 4. This scale is best executed in Indian ink on smooth white paper. The scale must be very accurately drawn in inches, each inch being divided accurately into tenths.

The weather indications (Fair, Change, etc.) may then be written on the scale in the approximate positions seen in the fllustration.

The scale should now be pasted down on the left-hand side of the upper end of the barometer board, care being taken to see that the right-hand blank margin of the scale is slipped under the upper end of the barometer tube in order that the mercury level in the latter may be rendered clearly visible. The scale, after its adhesive has dried, is then varnished. over, or covered with a strip of celluloid or glass, in order to protect it from atmospheric contamination. If such a scale is carefully drawn and covered with glass, it will be almost indistinguishable from an instrument scale which has been silvered in the orthodox manner.
Finally, the barometer must be "set" or calibrated. Suppose, therefore, that we know the height of the barometer in , our district to be, say, 29.6in. Loosening the bridge-piece which holds the barometer tube fast to its board, we move the tube up or down until the top of the mercury column is exactly level with the reading 29.6 on the barometer scale. We then tighten up the bridge-piece which secures the tube.

Reaching Towards Accuracy

A^{B}BSOLUTE accuracy in our measurements is obtainable only by happy chance. For the most part wa must content ourselves with approximation, and for the practical affairs of life approximation suffices. You have never drawn a real line, however fine a point on your pencil; for a line is length without breadth, and under the microscope your line is a broad, black groove. You have never made a point on your paper, either, for a point has position but no magnitude. Yet your lines and your points serve well enough in practice.

It is the inadequacy of our powers and of our most exquisite drawing instruments that constrains us to be content with approximation. The inadequacy is well brought out in this, at first sight, puzzling conclusion. You describe a circle on the diameter X Y (Fig. I): the circumference is π times $\mathbf{X} \mathbf{Y}$. You describe two circles on the two halves of X Y . Then the total curve of the two equals the circumference of the first, equals,

Fig. 1.-Diagrams illustrating the problem of circles and circumferences.
that is, π times $\mathbf{X} \mathbf{Y}$. You proceed further to smaller subdivisions, four, cight, and so on. The length of the curve remains constant.

But you come to such a division as makes the curve merge into the straight line. It would almost seem that the length of the curve has shrunk to less than a third of its first length, that π equals i. But, of course, that is only because the limitation of
our powers prevents us from discerning the circles that are yet there; our so-called "line" has the breadth of a diameter of a circle.

Even when you get what you call an exact method of division, absolute accuracy is not there. Here is $A B$, a zin. line (Fig. 2)

You trisect it by marking off three equal divisions on a line at an angle and by drawing parallels. And Sir Oliver Lodge declared that your measurement of the length of each third cannot be expressed with infinite accuracy in figures; for figures go by jerks, by stops, whereas a line is continuous. "No measurement of length," he said, "could ever be expressed as a whole number of inches, nor yet as a whole number plus a definite fraction of an inch." You may get accuracy to two places of decimals; you are skilled far above the ordinary if you get accuracy to three places, which, of course, is 10 times the accuracy. You

may be able to read .66in. for your third part; you are very unlikely to read .666 in .

We must reconcile ourselves to the existence of incommensurables in our mathematics. There are measurements that we cannot, whatever our skill and our patience, express in terms of another measurement Here, for example, is a rin. square (Fig. 3)

What length is the diagonal ? It is $\sqrt{ }$ zin.; but how many inches is that ?

You patiently work it out to 1.414 perhaps, even to 1.414214 ; you then re-echo Macbeth's exclamation, "What! will the line stretch out to the crack of doom?" It will indeed.

The Junior Mechanic's Tool Box

A Clest to Keep Your Tools Handy and Safe

HEN designing the tool box one must bear in mind the approximate size of the largest tool the box will be required to house. This may possibly be the hacksaw if the chest is to hold only metal-working tools. However, the box can be used for various woodworking tools

By "'The Skipper"

Making the Carcase

First of all the carcase or outside of the tool box must be made. This is made

Fig. 1.-The completed tool box.
as well until the need is felt for a special chest for them.
Having measured up a hacksaw it was decided that a drawer about $18 \mathrm{in} . \times 9 \mathrm{in}$. would be required. It was decided too to have a deeper drawer at the bottom, 3 in. in depth, and four shallower drawers each 2in. deep at the top (see Fig. I).

2 ends 13 in. X 1 IIin. $\times \frac{1}{2}$ in.
1 back 19 in. \times 13 in n 3/16in. plywood.
The traditional way of joining up the carcase is to
from timber finished to $\frac{1}{2}$ in. thickness. Materials Required I top rgin. X rin. $\times \frac{1}{2}$ in.
1 bottom 19 in . X

use dovetails. If you are not yet able to make such a wide set of dovetails it is suggested that a simple butt joint,

Fig. 4 (Right).
Dra
slip.

Fig. 3 (Left). $\begin{array}{cc}C & 0 \\ s i r l l \\ \text { O }\end{array}$ struction of a dovetailed diawer.
glued and nailed together, would be an easier alternative. Use $1 \frac{1}{d} \mathrm{in}$. oval nails and punch the heads below the surface and fill with plastic wood or other filler. If the butt joint method is used, then the top and bottom will need to be only 18 in . 'ong.

When the carcase is fixed together, test it for squareness. If it is measured from corner to corner, the two diagonals should be equal. Screw on the plywood back with some $\frac{1}{2}$ in. \times No. 4 countersunk head screws. Set aside to dry overnight and then skim up the outside of the box with a fincly set smoothing plane. Finally scrape and glasspaper the box to a good finish.

The Door

The door can be made from a piece of $\frac{1}{2}$ in. thick plywood. This must be carefully sawn to size and planed up to be a good fit into the front of the cabinet. A slight chamfer (about $1 / 16 \mathrm{in}$.) can be planed on the front edges.
Into the bottom edge of the door two short pieces of $\frac{1}{4} \mathrm{in}$. dowel rod are glued
into place 3 in. from each end. Two corresponding $\frac{1}{4} \mathrm{in}$. holes are drilled into the bottom of the carcase to take these pegs when the door is dropped into place. These holes can be drilled through from the outside of the case.
The top edge of the door can be held

Fig. 5 -
Drawer with
rebated front joint, glued and nailed.
length of $9 \frac{3}{4} \mathrm{in}$. would be required (Fig. 3). The width of the sides is 2 i . because the top edge is set down a $\frac{3}{4} \mathrm{in}$. to slide under the bearer which supports the drawer above. (See the ends of the drawers sevealed in the perspective view, Fig. 2).

Alternatively a rebated joint or simple butt joint can be used and the length of the sides must then be altered accordingly (see Fig. 5).

The back of the drawer is $2 \neq \mathrm{in}$. high as its bottom edge is set up $\frac{1}{2}$ in. from the bottom edges of the sides, so that the ply bottom can be pushed into place ifter the drawer is assembled.

Glue up the drawer and test it for squareness. When the glue is dry, the bottom can be fitted and is held in place with three strips of grooved wood called drawer slips which may often be purchased from the local handicraft shop. If you have access to a plough plarie then you could make some drawer s 1 i p yourself (Fig. 4). First fit a length of the slip
in place by a drawer lock so that the cabinet can be locked to keep out younger brothers or sisters. A simpler method would be to use a small hasp and staple with a small padlock but this is a little unsightly.

Four small feet $1 \frac{1}{2} \mathrm{in}$. $X \mathrm{I} \frac{1}{2} \mathrm{in}$. $X \frac{2}{3}$ in. or $\frac{1}{2}$ in. can be screwed on to the bottom of the cabinet.

The Drawers

Start with the bottom drawer and prepare the drawer front first of all; it should be $18 \mathrm{in} . \times 3 \mathrm{in}$. $\times \frac{5}{8} \mathrm{in}$.
The length of the sides will depend upon the method of construction. If a lapped dovetail is used at the front and a through dovetail at the back, then an exact overall

Drower back

with a finely set plane so that it will move in and out smoothly.

With the drawer in place the next two bearers can be fitted into place along the top edges of the sides. So that there wil! be a slight clearance between the drawer and the bearers above, place a strip of paper between the bearer and the edge of the drawer whilst fixing the bearers in place.

When the bottom drawer has been fitted, the four shallow drawers above may be made and fitted in a similar way.

One important point to bear in mind when making drawers to fit in any cabinet is that they are not "winding." This effect can best be described by looking at Fig. 6 which shows that the sides of the drawers must have their top and bottom edges at right angles to the front face of the drawer front.

When all the woodworking is finisned,
Test front and back
for squareness of to the front of the drawer and then fit the two side pieces. Glue and nail into position.
The plywood bottom can then be sawn to width and slipped into place leaving a $\frac{1}{4} \mathrm{in}$. overhang at the back to butt against the back of the cabinet when the drawer is closed.

Fitting the Drawers

The drawers slide on $\frac{1}{4} \mathrm{in} . \times \frac{1}{4} \mathrm{in}$. bearers. Fit the first two bearers ${ }_{3} \mathrm{in}$. from the bottom of the cabinet. The length of the bearers is $9 \frac{1}{3} \mathrm{in}$.
Now slide the bottom drawer into place in the cabinet. Make any slight adjustments

Call Up Your Card

THIS is probably the most popular of all card tricks. Three cards having been chosen and returned to the pack, the pack is then placed in a glass. The chosen cards are called for one by one and they mysteriously rise from the centre of the pack.

How is it done? There are several hundred different ways of doing this

particular trick. Some of them-need very expensive apparatus, and a good many call for a moderate amount of skill. Here is a simple method.

Prepare one card, any card you like, by tying one end of a piece of fine black cotton to it as shown in Fig. I. Place this card face downwards on your table and lay
a handkerchief loosely over it. Measure off a piece of thread, the exact length you must wo-k out yourself when you prepare the trick. Tie a pin or a needle to the free end of it and stick the needle in the tablecloth near the back edge.
That is all the preparation needed. The rest is all in the way it is done.
Start by handing out a pack of cards to be shuffled and have three cards chosen. Do not have the cards replaced but lay the pack face down on the table immediately on top of the prepared card. To do this you must, of course, pick up the handkerchief, and this action hides the fact that you are putting the -pack on an extra card. Now use the handkerchief to polish the glass. This gives an excuse for its presence. Pick up the pack and drop it into the glass. The extra card will be facing the audience and you secretly arrange the cotton across the top of the pack from front to back.
The next thing to do is to take the chosen cards and push them down into the pack. Each card goes behind the one just inserted, and each card carries down with it some of the cotton. You must keep your fingers on top of the cards to prevent those first pushed down from coming up when the others are inserted.
You are now ready for the magical appearance of the cards. Have them named, remembering that the last card you pushed into the pack will be the first to appear.
Hold the glass in your hand and graduallv move it forward until the cotton is

Mystify Your Friends
 With This Conjuring Trick

the cabinet can have its final glasspapering and may then be stained and varnished Finally, so that the tool box may be carrisd about easily, a suitable carrying handle may be screwed on the top in a central position.

Fig: 2.-The rising card trick ready to be performed. The cotton goes down behind the card and up in front of it and is invisible at a moderate distance.
pulled tight. As you continue this gradual and imperceptible forward movement of the glass, the last card inserted will gradually rise out of the pack. When it has risen about half-way take it out and have the next card called, making this rise in the same way. Fig. 2 shows how the cotton is arranged. Use black cotton.

E(1) HISMASTERS VOCLE:

Announce
 NEW PRACTICAL WAY OF LEARNING AT HOME

NEW - completely up-to-date methods of giving instruction in a wide range of technical subjects specially designed and arranged for self-study at home under the skilled guidance of our teaching staff.
NEW - experimental outfits and lesson manuals are despatched on enrolment and remain the student's property. A tutor is allotted to each student for personal and individual tuition throughout the course.

Radio and television courses, with which specially prepared components are supplied, teach the basic electronic circuits (amplifiers, oscillators, detectors, etc.) and lead, by easy stages, to the complete design and servicing of modern Radio and T/V equipments.
If you are studying for an examination, wanting a new hobby or interest, commencing a career in industry or running your own full-time or part-time business, these practical courses are ideal and may be yours for moderate cost. Send off the coupon to-day for a free Brochure giving full details. There is no obligation whatsoever.

Courses with Equipment
RADIO•SHORT WAVE RADIO TELEVISION•MECHANICS CHEMISTRY•PHOTOGRAPHY ELECTRICITY•CARPENTRY ELECTRICAL WIRING
DRAUGHTSMANSHIP•ART, etc.

ZYTO

"DO IT YOURSELF" TOOL KIT
A SET OF HIGH-GRADE TOOLS, FULL SIZE AND FULLY GUARANTEED, COMPLETE IN STEEL TOOLBOX WITH LOCKING $A \rightarrow \infty$

PRICE £ $16^{\prime} 10^{\prime} 0$
or first payment of $\mathrm{fl} / 13 / 0$ and eight monthly payments of f2/1/6.
120° HANDSAW 1 10" BRASS - BACK TENON SAW
1 STANLEY ADJUSTABLE IRON PLANE, $9^{\circ} \times 2^{*}$
1 SET OF 3 HANDLED CHISELS, t", !", ! 1 CLAW HAMMER 16° C A B INET HANDLED SCREW DRIVER
1 ELERATCHET SCREWDRIVER
CROSSPENE HAMMER

2 HANDLED BRADAWLS
1 PAIR PINCERS, $6^{\prime \prime}$ 17° FOOTPRINT PIPE WRENCH 13° PAINT-STRIPPING KNIFE
1 PUTTY KNIFE BRACE SET FIVE FASTCUTTING CENTREBITS, PADSAW WIT H BLADE 1 PAIR COMBINATION PLIERS

1 SET CRAMPHEADS 1 WIRE BRUSH

STANLEY HAND DRILL
DRILL TWIST DRILLS 1 SOLDERING IRON 1 STICK SOLDER 1 TIN FLUX 1 TIN FLUX
1 PAIR RADIO PLIERS 1 PAIR RADIO PLIERS
1 JUNIOR HACKSAW 1 JUNIOR HACKSAW 6 BLADES
1 NAIL PUNCH
1 2' BOXWOOD FOLD.
ING RULE
1 INSTRUCTION BOOK

ILLUSTRATED LEAFLET FREE ON REQUEST

S. TYZACK \& SON L ${ }^{\text {TD }}$ 34I-345 OLD ST., E.C.I SHOREDITCH 8301

The 'MINORETTE'

 Motorised 230/250V.
UNIVERSAL WOODWORKER

The 'Minorette' has an 18° lathe bed : 7" Tilting Circular Saw table complete with $7 \boldsymbol{7}$ Circular Saw blade: a combination table for use with slot mottiser: Sanding Dise, or as a pans1 support for repetition cutting: Slot Mortising chuck complete with a ple $^{\circ}$ bit $6 \mathbf{1 0}^{*}$ sanding plate. 6^{*} Grindstone and Arbor Belt and Pulleys. The $\frac{1}{8}$ h.p. electric motor is double ended and is TV and Radio suppressed. Attachments can also be supplied for planing. grindinz. grooving. comb jointing. flexible drives, elc. Illustrated teaflet frec on request to Dept. PM9
PARRY AND SON (Tools) LTD.
329-333 OLD STREET, LONDON, E.C.1.
 of 8 monthly payments of £4.18.8. Cash price $\mathbf{\text { E }}$. 17.6 . (x) T2 SDID EATHE? B BLACK ARMY AESAATCHRIDERS BOOTS $2 L^{1}$
past ETC. $3^{\text {to }}$
NEW:
ROYAL CANADIAN AOMIRALTY

(Headquartier and General supplies itd.

(DEPT. PMC 35), 196-200, COLDHARBOUR LANE, LOUGHBOROUGH
JUNCTION, LONDON, S.E.5. OPEN all Saturday. I P.m. Wednesday.

IMMERSION HEATERS. 2 kW . or 3 kW ., Ilin. and $16 \mathrm{in} . \mathrm{r} \mathbf{~} 3.8 .4$. Thermostat for cither of above heaters, $£ 1.10 .0$.
THERMOSTATS. BW/I, $5 \mathrm{amps}, 15 / 6$. Post 6 d . SN/40 $\frac{1}{2}$ amp., 5/6. Post, 4d. C. S. Convector Thermostat 15 amps , 25/-. Post, 10 d . Model MB for Immersion Heaters, 15 amp., £2. Post, 2/-. PF Room Thermostat 15 amps , £2. Post, 10d. M.L. Greenhouse Thermostat 10 amps , 35/-. Post, 10d. P.J Miniature Thermostat for Hotplates, 5 amps. $9 / 3$ Posi 6 d
FLEXIBLE ASBESTOS ELEMENT WIRE. 15 or 25 ohms/yd. 1/ per yard
REPLACEMENT. ELEMENTS Send 4d. slamp for lists.
TELEVISION SUPPRESSOR KIT, for appliances up to 1 amp., 3/6 Post Free.
BI-METAL. Hi-Flex 45 3/16in. x .010 , 6 d. per li. Standard $6 \mathrm{in} . \times 1 \mathrm{in}$ $\times .036,6 \mathrm{~d}$.
NEON ILLUMINATED INDICATOR SWITCH. 2 amps, 240 v. A.C 10,6.
MAGNETS. Sintered Bar Magnets of great power and stability ${ }^{3} \mathrm{in}$. $3 / 16 \mathrm{in}$. x $1 / 16$ in... 9 d . each. $8 /-$ doz. Post 5 d .
We also supply Silver Contact Screws and Rivets. Porcelain Interlockin We also supply Silver Contact Screws and Rivet
Insulating Beads. Send 4d. stamp for list-
THE TECHNICAL SERVICES CO., Banstead, Surrey

BETTER CABINET MAKING

 task so much easier, and bring greaser pleasure to your furniture
making. making.

SEND FOR FULL DETAILS (TO DEPT. BP/43)

BEESTON NOTTINGHAM

IF YOU ARE PRACTICAL and can "DO-IT YOURSELF"
 SEND NOW FOR
 handicraft annual

containing details of many things

 YOU CAN MAKE AT HOME HANDICRAFTS SUPPLY MATERIALS for the home handyman to IMPROVE THE HOMETHINGS TO MAKE - THINGS TO DO and MATERIALS TO USE.
Goods sent anywhere by Mail or Rail. To HANDICRAFTS LTD., PM Dept., PETERBOROUGH

RANDICRAET ANNYK

 Send $1 / 6$ plus 5d. past for this wonderful home handyman book

MAKE MONEY - making casts with VINAMOLD

A grand spare-time occupation
WITHOUT any previous experience you can massproduce any object from a chessman to a candlestick, statuette or model ship. in plaster. resin, concrere. ete. the BEST results. Easy to work. can be used over and over again. Needs NO special equipnent, provides a profitable and enjoyable spare-time occupation with minimum outlay.
Write for full details and instructions. Also available: Illustrated booklet describing "VINAMOLD," methods of heating and melting, preparation of models and moulds, etc. Price 1/6 post free, from :-

VINATEX LTD. (Dept. P.M.3), CARSHALTON, SURREY

This Ingenious and Simple Arrangement Will Add Realism to Your Model Railway Layout

TTHE line is divided into as many sections as required, each the length of three standard rail lengths, at the end of which is a signal post with the three coloured lights, red, yellow and green.

Normally the green light is in operation; as the train goes on to the section, by means of contacts below the rails the green light is replaced by the red; the train proceeds and the yellow caution-light takes its place; finally, the yellow is extinguished, and again the green all-clear shines.

The Baseboard

The materials required are a board about 3 in . long, 6in. wide, and $\frac{1}{4} \mathrm{in}$. thick; three

pocket-lamp bulbs of the required colours together with screw-down holders; a dry battery or accumulator; four springy brass strips and some thin wire.
Two switch units are constructed as Fig. I, the brass strips being about $I \frac{1}{2} \mathrm{in}$.

long and carefully bent to shape. The two screws in the ends are for the purpose of fastening. down, and one of them may be used to secure the connecting wire. On the
part of the strip which is bent up a third screw will be seen, and this makes it possible to adjust the contacts within very fine limits. By means of these adjusting screws one side of the unit (marked "closed" in Fig. 2), is so arranged that the strips are in light contact, while on the other side ("open ") the two strips should be $1 / 16$ in. apart.

Finally, a thin wood strip is laid over the two switches and attached to the baseboard with two loose-fitting screws. It is essential that this is able to move freely up and down, so that the weight of the train presses equally on both switches, opening the closed one and closing the open. After it has passed, of course, the spring in the brass strip brings both back to normal.

The Signal Post

After these units have been fixed to the baseboard, one at each end, the signal post may be erected with the bulb-holders attached. Fig. 2 will make the wiring plan clear, and it should be carried out carefully with the wires neatly stapled down to the baseboard. Insert the bulbs in their correct places, connect up the battery and test the contacts by pressing down on the wood strips. If a light fails to come on, or stays on when not required, a touch on the adjusting screws will put matters right. Now the track may be laid in place and fastened to the baseboard loosely by means of screws through the sleepers. Sometimes it will be found necessary to put a small block under the track between the switches to keep it level. Appearance is improved by fitting shades over the lights, made by cutting sections off a cardboard tube of the proper size to slip over the bulbs.

The Layout

As many sections as are thought necessary may be constructed, and a very realistic effect on an oval layout is obtained with four, especially if more than one train is moving and the room is darkened. In this case one battery may be used to work them all.

A natural extension to this system is the fitting of a chart indicator to show the positions of the trains on the system. It may be very easily carried out as Fig. 3, for an oval track of four sections. Make a shallow box out of thin wood or cardboard and divide into four sections with a bulb mounted in each.
The top should be of glass with a piece of black paper pasted on the underside,

cut away to expose a narrow oval of plain glass $\frac{1}{8} \mathrm{in}$. wide to illustrate the plan of the track. Now, we want the chart to show the position of the train on the section, that is, when the red light of the section is glowing. All there is to do is to run an extra wire from each terminal of the red bulb on the post to terminals of the bulb in the chart indicator. Connect up each of the four red bulbs to its appropriate companion in the indicator, and then as the train travels

Fig. 3.-The chart indicator.
round so will the sections of the indicator light in turn, going dark as the train passes over.

An Electrical Came of Skill

A SIMPLE and amusing game of skill can be made with a few easily obtaired components. It could be called a "steadiometer" and is used to test the steadiness of the competitor's hand.

Construction

A wooden baseboard is required, about 6in. wide, $\frac{1}{2} \mathrm{in}$. thick and a little over 3 ft . long. A bin. high post is fixed at either end so that the distance between them is $3 \mathrm{ft}_{\mathrm{o}}$, and between these two posts a long
brass rod is fixed. At each end a short piece of rubber sleeving is passed over the rod.
A wooden tool handle is obtained next; and into the position where tools usually fit a screweye is fixed. The rod is passed through this screweye and the handle taken along to one end and hung on the portion of the rod covered with rubber sleeving.

A light metal clip is used to secure a fourvolt "dry battery to the baseboard, and beside this is fixed a cheap electric bell. The bell
and battery are connected together and the spare terminal on the bell is connected to the shank of the screweye in the handle. Finally, the other battery terminal is connected directly to one end of the brass rod, at the point where it is fixed to one of the wooden posts.
It will be found now that if the handle is moved along, the rod and the screweye comes into rontact with it, the bell will ring. The idea of the game is to pass the ring from one end of the rod to the other without touching the rod and without ringing the bell. If required, a small flashlamp bulb can be used in place of the bell.

The Editor, Does Not Necessarily Agree with the Views of his Correspondents

Improving the Electronic Flash Outfit

Compressed Air Aero Engine

SIR,-Enclosed is a photograph of my compressed air aero engine which I am sure you will recognise.

It was built from the plans and instructions from your "Model Aeroplane Handbook" and took about a month of my spare time. All the turning was done by me on my Super Adept $1 \frac{3}{8}$ in. lathe. The crankcase is a $1 \frac{1}{2} \mathrm{in}$. dia. brass tube from the scrapbox and the three cylinders, the only purchased ready-made parts, are brass lipstick containers.

Mr. Alook Akong's engine.
It will work by blowing through the inlet with the mouth and is one of my most up-to-date engines. - Alook Akong (Trinidad).

Cash Cärrying Safeguard

$S^{I R}$,-The recent attacks on cashiers and other people carrying large amounts of money seem to present a problem which nobody can do much about, or is it that no one has really tried? I am sure if readers of Practical Mechanics put their minds to it an answer could be found and I put forward the following device as a starting point. It is to be used as a deterrent rather than a prevention.

Inside a case is contained a cylinder of liquid dye under pressure; from the cylinder would be a pipe with outlets along its length; this pipe would pass down the centre of the case containing the money, the notes being packed each side. Interposed between the cylinder and the pipe would be a relay operated valve; this valve would be held shut by energy passing through the relay coils from a battery on the case-carrier's person, and connected through a plug and socket; thus if the case was snatched the circuit would be broken, the dye released, resultirg in a lot of useless and easy to trace notes. A safety catch would hold the valve shut when the case was not in use.-L. G. Elvin (Beccles).
$S I$ IR,-May I suggest a few improvements in the July, 1958, issue?

In Mr. Hucklebridge's circuit it is possible to remove the flash head whilst the condensers are still charged, in fact while the power pack is still switched on. In the event of a shock, a voltage of 270 backed up by condensers could (and probably would) prove fatal.

It is quite a simple matter to arrange the circuit so that on switching off the condensers are automatically discharged. In the extension lamp part of the unit a resistor of value of 5-10 M $8 \frac{1}{2}$ watt should be wired across the connections A B of the socket. On the main lamp, resisiors 5 and 6 shou!d be increased to 5 Mss each (or the "preferred" value of 4.7 M(z) and a resistor of Io M $\frac{1}{2}$ watt wired across connections $\mathrm{C} D$. These resistors automatically discharge their respective condensers in a period of a few minutes after switching cff; they have negligible disturbing effect whilst the circuit is in operation.

To conserve power when running from accumulators and using the main lamp only, it would be an advantage to fit a single-pole single-throw on-off switch in the lead between R3 and the rectifier.

The power of the main lamp is either 50 or 100 joules; the set would be much more useful if the power of both lamps could be varied over a greater range. This is easily accomplished by using condensers manufactured by Plessey having values of $1,500 \mu \mathrm{~F}$ and $500+1,000 \mu \mathrm{~F}$, no great

Fig. 1.-Circuit using Plessey condensers.
extra cost being incurred. The circuit shown in Fig. I uses these condensers and is my own personal preference.

When the switch is in the "off." position the condensers discharge through the $100 \mathrm{~K} \Omega$ resistor. The $1 \mathrm{~K} \Omega$ resistors should be rated at about 2 watts and should preferably be wire wound. The output from the condensers is taken via a three-pole six-way rotary switch, the connections of which are shown in Fig. 2.

The wiring of the extension lamp unit is identical to that of the main unit.

The above system is very flexible indeed, the output being altered at the flick of a switch. This circuit is believed to be subject to patent application by one of the manufacturers of electronic flash outfits.

The use of accumulators, even of the
unspillable type, in a position other than vertical is not to be recommended and it would be advisable to arrange the case so that they are vertical.
The efficiency of a vibrator power unit is a very theoretical 60 per cent., whereas that of a dry battery pack is nearly 85 per cent.; the constructor may therefore consider the idea of using a battery power pack, this being made up of three series-connected $90 v$. batteries, type B126, or similar. If this latter course is followed it would be advisable

Fig. 2.-Rotary switch connections.

Switch position	Capacity in circuit MF	Output to lamp loules
1	500	17
2	1,000	17
3	1,500	53
4	2,000	67
5	2,500	83
6	3,000	100

to insert a $1.5 \mathrm{~K} \Omega 2$ watt resistor between the batteries and point P on the wiring diagram.-J. R. Tilsley (Rugby).

Velocity of Lighi

SIR,-Mr. Thos. H. Webster, in your June issue, states the velocity of light as being assumed, and explains at length why he holds this view.
I should like to point out that several well-known scientists, Michelson, Pease and Pearson, in 1929-30, by using an evacuated tube of length about one mile and a series of nearly three thousand experiments found the velocity of light in vacuo to be 186,000 m.p.sec. and so the neglect of the change of velocity in air and vacuo was proved virtually insignificant as far as astronomical observations were concerned.-B. A. King (Broadway).

Lawn Spraying

SIR,-Re the problem of your correspondent K. J. Style, who wishes to spray his lawn with amm. sulphate solution ("Your Queries Answered," May, 1958).

His requirement would best be met by one of the small suction gadgets sold for emptying washing machines, etc. If it proved difficult to obtain one of these devices it should be possible to make one. The idea is cheap and being used in place of a T /piece would avoid the necessity for a tank on wheels.-M. J. Galster (Surrey).
(Continued on page 581)
 2/6.
Sound and Vision Strip. Plessey. 25/6. S/het. Takes $66 \mathrm{Fl},{ }^{2} 6 \mathrm{D} 2$ (valves extra). Not tested. I.F.s $10.5 \mathrm{Mc} / \mathrm{s}$ sound, $15 \mathrm{Mc} / \mathrm{s}$ vision. Bargain. Post 2/6.
Timebase $4 / 9$. With scanning coil, focus unit. Line trans. less valves. FREE drawing. Post $3 / 6$.
Focus Magnet $3 / 9$. 35 mm . Permanent magnet type. Salvage. Plessey. Post $1 / 9$. Elac Focus Magnet $5 / 9$. $35-38 \mathrm{~mm}$. manent magnet. Slavage. Post $1 / 9$. Frame Output Transformer $3 / 9$. match low impedance coils. Post $1 / 3$ Elac Focus Magnet 12/9. Brand new $35-38 \mathrm{~mm}$. Post $1 / 9$.
Visconal Condensers 5/9. $0.001 \mu \mathrm{~F} 12.5$ kV working. Post 6d.
Visconal Condensers $5 / 9$. $0.1-7 \mathrm{kV}$ working. Post 6d.
Rectifiers $2 / 9$. 250 V 100 mA . Full or half wave. Salvage. Post $1 / 3$.
Insulating Tape $1 / 6$. $75 \mathrm{ft} . \times \frac{1}{2}$ wide. Post 9d. sin.
Solder Reels $1 / 6$. 60-40 Ersin 3 core. 20ft. on plastic spool. Post 6 d .
Headphones 3/9. Marconi. New. 60 ohms. Very sensitive. Post I/- less leads Volume Conerols $1 / 9$. $\frac{1}{\frac{1}{2}}$ megohm. New, boxed. Long spindle. Post $1 / \%$
Volume Controls $1 / 3.20 \mathrm{k} \Omega$.
Short spindle. Carbon. Post-1/
Volume Controls $2 / 6$ doz. Assorted parcel of volume and tone controls taken from working chassis. Poss $1 / 9$.
Ganged Condensers $1 / 9.2$ and 3 -gang 0.0005 . Std. size. Salvage. Post $1 / 3$. 500 ft IF. Transformers 1/- pair $465 \mathrm{ke} / \mathrm{s}$ Tested. Post $9 d$.
Trimmers 6d. 3-30 pF. 5/-doz. Post on 1 4d. ; on doz. $1 / \%$.
Car 0^{*} Conil. Plated. Whip antennae. fixing. Post 1/-
EYSI Valves $8 / 9$. Ex-equipment. Tessed Post 9d.
EY51 Transformer (Heater) 1-1 ratio. Suitable 6.3 V tubes as isolation trans., $5 / 9$ Post 1/9.
Co-ax Cable 6d. yard. Good quality. Cut to any length. Post on 20yds. $1 / 6$. 45/- per $100 y d s$. Post 3/6.
Coil Packs $3 / 9,3$-gang. Also included are pair I.F. trans. $465 \mathrm{kc} / \mathrm{s}$ and 2 -gang con denser. Post $2 / 3$.

TRANSFORMERS
Mains Power Transformer 15/9. 250-0 Mains Power Transformer $15 / 9$. $250-0-$
$350 \mathrm{~V} 250 \mathrm{~mA} .6 \mathrm{~V} 5 \mathrm{~A}, 4 \mathrm{~V} 5 \mathrm{~A}, 4 \mathrm{~V} 2 \mathrm{~A}$ isolated. 350 V 250 m
Post $3 / 9$.
Mains Power Transformer 9/9. 350-0 $350 \mathrm{~V} 250 \mathrm{~mA}, 6.3 \mathrm{~V} 5 \mathrm{~A}, 6.3 \mathrm{~V} 4 \mathrm{~A}, 22 \mathrm{~V} 0.3 \mathrm{~A}$ and VV cencre tapped. Pose $3 / 9$.
Mains Auto Transformer $12 / 6$. 0-205V $225 \mathrm{~V}-245 \mathrm{~V}$ at 300 mA . Heaters 6.3 V at 2.6 A 6.3 V at $3.6 \mathrm{~A}, 2 \mathrm{~V}$ at 1.4 A . Post $3 / 9$.

Mains Trans. $350-0-350 \mathrm{~V} 80 \mathrm{~mA}^{3} 3 / 9$. 4 V 5A, 4V 2.5A. Post 2/9.
Mains Trans. 280-0-280V $80 \mathrm{~mA}, 5 / 9$. 6V 2A, 4 V 2A. Post $2 / 9$.
O.P. Trasformers $1 / 3$. Salvage guaran teed. Sid, size. 2-5 ohms. Matching pentode or tetrode. Post $1 /-20$ for $\$ 1$. Post 5/6.

Boxed	VALVES			Guoronteed	
4DI	6/9	CY1083	3/9	PEN4	6/9
6AM5	3/9	DI	1/9	PEN22	20A
6AM6	7/9	DF66	5/9		3/9
6B7	$1 / 9$	DH76	$8 / 9$	PL82	8/9
6B8G	319	DK96	8/9	PM202	1/9
6 F 12	7/9	EA50	1/9	PP225	3/9
6 Fl 1	$8 / 9$	EABC80	$9 / 6$	PY8I	8/9
6H6M	1/9	EAF42	819	P61	6/9
6/5M	2/9	EB34	$1 / 9$	RL37	1/9
6517 M	$8 / 9$	EBC33	$6 / 9$	SP61	6/9
6V6M	8/9	ECC8I	8/9	U22	10/9
6P28	12/6	ECH42	8/9	UF41	8/9
65A7M	3/9	EF36	5/9	UU6	7/9
65G7	3/9	EF37	419	U52	8/9
65G7M	2/9	EF39	3/9	VR65	6/9
8D2	3/9	EF50	2/9.	VT52	6/9
8D3	7/9	FE50RED	5/9	VT501	$6 / 9$
9 D 2	$6 / 9$	EF80	$8 / 9$	VW36	1/9
IIE3	5/9	EF85	$8 / 9^{\circ}$	TT11	6/9
1246	8/9	EF91	7/9	W76	8/9
12AT7	$8 / 9$	EF92	3/9	W81	3/9
12BE6	6/9	E184	$10 / 9$	777	$7 / 9$
$12 \mathrm{K7}$	8/9	EZ40	$8 / 9$	UX	YPES
12Y4	$8 / 9$	E 280	$8 / 9$	18	3/9
$35 Z 4$	$8 / 9$	FW4/500		42	3/9
351.6	$8 / 9$		10/9	75	3/9
635 PT	2/9	KTW61	5/9	78	3/9
210 VPT	5/9	KTW63	8/9	$1{ }^{106}$	3/9
7193	3/9	L410	1/9	25RE	$3 / 9$
AR6(2V)	1/9	NR41	3/9	6A7	3/9
ARP35	3/8	PEN45	$6 / 9$	77	$3 / 9$

P. P. COMPONENTS LTD (DEPT. P.M.), 219 ILFORD LANE, ILFORD, ESSEX. ILF. 0295.

[^3]
This model form cost less than 216

It was made from a half-crown tin of Sankey's PYRUMAfarmhouse, barn, implement shed, walls and gate-and there was still plenty of this grand modelling material left to build many more farm features, by simple methods described in the Instruction Book (see Coupon below)
PYRUMA, plastic and ready-for-use, becomes stone lard after drying or baking, and can be painted in natural colours: For permanent modelling-

MAKE IT AND BAKE IT IN

Obtainable from your local Ironmonger or Hardwarerran and many Art Materia! dealers. Ideal for making-

> Model Railway Buildings and Accessories. Harbours.
> Ship Models. Airport Buildings and Features.
> Houses. Bookends. Ashtrays. Animals and Figures.
> Plaques, etc.

Post this Coupon today for your Instruction Book.

To IH. Antrexachontil Dept. P.M., Iltord, Essex

 Established over a centuryPlease send ILLUSTRATED INSTRUCTION BOOK with full colour pages, on Pyruma Modelling.

Enclosed Postal Order value 6d. (not stamps).
NAME
ADDRESS

WIN SUCCESS IN LIFE

Pelmanism Develops Your Latent Talents

T N this crowded world there are more good jobs looking for good people than good people looking for good jobs. For so few of us are ready for opportunity when it occurs.

Are you ready to grasp it whether it is the chance of a more interesting and more remunerative post, or a fuller and freer life in some other direction? Will you have the courage and clear-headedness to seize and use your chance ?

Take up Pelmanism and prepare now for to-morrow's opportunities. You are then training not only your mind but your whole personality. Pelmanism rids you of handicaps which hold you back -be it self-consciousness, lack of initiative, fear or self-doubt or simply a tendency to worry about trifles.

Pelmanism also automatically develops your real self. Talents which you never knew you possessed come to the surface. For Pelmanism trains your mind and character just as physical exercise trains your body.

Remember-Everything you do is
preceded by your attitude of mind
The Pelman training for successful living has been proved by over a million men and women of every type and calling. It is so clearly explained and carefully graded that anyone can follow it. It is modern psychology made practical.

The general effect of the training is to induce an attitude of mind and a personal efficiency favourable to the happy management of life.

Send for Free Book

The Pelman Course is simple and interesting and takes up very little time. You can enrol on the most convenient terms. The Course is fully explained in The Science of Success, which will be sent to you, gratis and post free, on application to-day to :

PELMAN INSTITUTE,
130, Norfolk Mansions, Wigmore Streer. London, W.I.

WELbeck 541 I

PELMAN (OVERSEAS) INSTITUTES Dellh. Wetbourne, Durban. Paris, Amsterdam.

OMARO SLIDE RUIIS

Model P.I
Principal dimensions and weights per foot or square foot of steel and iron sections, sheets etc.

Model L. 2
Ratios of Cutting Speeds, Diameters, Number of Revolutions, Feeds, Time for Machining, etc.

Model M.I

Trigonometrical Functions

Model M. 2
Ares, Chords, Heights, Segments and Sectors

Model L.II

Capacity Calculator

PRICE 7/- each post free
Write for list of other models.
FICIE CITT With every order for six or more Omaro Technical Charts or Kosine Slide Rules, we supply, free of charge, a complimentary copy of our Cocktail Slide Rule (usual price 10/6d.) with 300 selected recipes. Please apply for your free copy when sending your order for technical charts and slide rules.

NEW ADDRESS

TELEPHONE
NEW CROSS 2589

KOSINE LTB., 1 Blenheim Grove
Peckham, London, S.E.I5.

Imagine the pleasure of having this magnificent Eid-Fi equipraent in its beautlful contemporary style furniture for your home ... and experiencing an entirely new realism in sound reproduction, Yet the Emistructor HI-FI will save you money and give you all the extra fun and satisfaction of building it yourself-and being able to service and maintain it afterwards. Special oquipment th simple terms as you build. No skill or experiepce is needed-onls a few simple tools
or equipment is made to the highest quality standards and is a product of E.M. Instltutes Ltd - part of a Company world famous for sound recording and reproducing equipment.

There is a wide variety of equipment and cabinets at different price levels to suit individual tastes and requirements. The range varies from a complete HI-FI installation with separate speaker enclosures to a simple all-in-one compact system for those with more modest requirements. All equipment is suitable for stereo or non-stereo reproduction of records. Full details and complete specifications will be sent with our free Brochure

emistructor

Dept. H.F.144, 43, Grove Park Road, London, W. 4
Associated with one of the World's largest recording organisations comprising"HIS MASTER'S VOIGE" - CAPITOL • COLUMBIA - MGM etc. semplso

Letters to the Editor
 (Concluded from page 578)

A Reader Comments on our RecenI Article
 About Binoculars"

SIR,-Re "About Binoculars" (page 479, July, 1958), I read and enjoyed this article but I would like to point out two slight mistakes, both of which appeared in the diagrams.
The first mistake was an error in the placing of the prisms in the diagram of the prismatic binoculars, as the prisms serve the dual purpose of shortening the instrument and erecting the image, which is inverted in the astronomical telescope arrangement of the lenses (see sketch).

A Serviceable Parrót

 Cage (Concruded from pase 565)Iin. bolt at the same time ensuring that that corner bar is on the left of the holes. Repeat this procedure at the other two corners. Now take the four centre holes on each side of the plates and do the same thing again, being careful to see that the centre bars are on the left of the bolts. Similarly, divide up the remainder of the bars between the various holes in the plates, ensuring that each division encloses its proper number of bars. Now tighten up the nuts, each one in turn a little at a time to keep the plates in approximately the same plane and, when the two plates begin to bite on the bars, hold the latter in position and tighten sufficiently to hold them fast. When you are satisfied that all the bars are neatly and equally spaced, tighten up finally, cut off the surplus bolt lengths and file smooth.

The screweye bolt may now be tightened up, the swing being held in the correct position while doing so. Finish off here with a ball-nut for the sake of appearance. It is not advisable to contemplate any form of hanging hook-parrot cages are not intended to be hung.

The Tray

This consists of a framework of ${ }_{4}^{3} \mathrm{in}$. angle aluminium, the tray proper of 24 G . aluminium sheet and a surengthening front of 17 G . aluminium (shown in Fig. II).

- The frame is mitred at the corners as

The other mistake was in Fig. 2 where I think it is true to say that the arrangement of the lenses is not as shown but in the form of a Galilean telescope, that is, using a concave or diverging lens as the eyepiece. The arrangement of lenses shown would make it necessary to use either an erecting prism or an erecting lens, the latter increasing the length of the instrument still further.B. A. K. (Worcs).
shown at "A" (Fig. II) and then bent at right-angles. It should be an easy slidingfit in the lower framework but should not have too much side play. The tray floor is then cut to size allowing for the front edge to be bent up $\frac{5}{8} \mathrm{in}$. This is secured to the framework by a number of $\frac{1}{4} \mathrm{in} .6$ B.A. bolts and nuts, the tray resting on the flats of the angle with the bolt-heads uppermost. The front is similarly secured and is of such a depth (about $1 \frac{3}{4}$ in.) that the top edge reaches almost to the top of the front channel punchbar and the bottom edge overhangs the plywood base about $\frac{1}{4}$ in. The handle is of the same substance as the bars, i.e., IIG., and is threaded 6 B.A. at both ends. $7 / 64 \mathrm{in}$. holes are drilled in the front and the handle pushed through them up to the shoulder formed by the threading and nuts screwed on the inside.

Rollers

An extra refinement to the tray, which you may not consider worth while, was the addition of six small rollers (see Fig. 12), on which the tray can slide in and out. They have the advantage of raising the framework clear of the base and also furnish support to the tray in general, being set about 3 in, to 4 in . from the sides.

Perches

One final word on the subject of perches, they must not be smooth. Roughen them up as much as you like and dig a number of longitudinal, haphazard grooves in them. Within reason, they cannot be too rough for the bird. The point is stressed because a parrot absolutely refuses to use a smooth perch.

The Links

THERE is a chain that is in six pieces, each piece consisting of four links. Somebody, for reasons unknown. wants to join the six pieces and make one long chain of them. The obvious thing to do is to go to a blacksmith and ask him what he would charge to do the job. "Well," says the blacksmith, "my charge for cutting and joining each link is 4 d." What is the least the blacksmith will charge for joining up the chain?

Answer

Here, in fact, is what the blacksmith did. He cut each link of one of the pieces of chain, leaving five pieces of chain to join together. The four links served to do this. Thus the sum resolved itself into four links at 4 d . which equals is. 4 d .

Door to Door

THERE is a row of houses in a street numbered consecutively from 1 to 60 . How many fours are needed to number the row? Do it in your head and see if you can get the right answer first time.

Answer

Most people give the answer as fifteen and some even give it as six. The correct answer is sixteen. Do not forget that No. 44 requires two fours.

The Painted Cube

A CUBE with edges 5 in . long is given a A coat of paint. It is then cut up into 125 small rin. cubes. How many of the small cubes have one face painted?

Answer

Fifty-feur cubes would have one painted face.

Fasteners Handbook, by Julims Soled. 430 pages. C5 net. Published by Chapman \& Hall.

S^{P}PECIFIC information about many types of currently available fasteners forms the contents of this book, and data, illustrations and full page descriptions are included on standard and proprietary fasteners from all manufacturers. The most up-to-date types are dealt with and the whole range of sizes and type of materials available described. Sections are included on rivets, inserts, screws, bolts, studs, nuts, washers, retaining rings, pins, nails, metal stitching, quick release fasteners, masonry anchoring devices, and hose clamps. A Manufacturers' Directory and an Index are also included.
"Automobile Brakes and Brake Testing," by Maurice Platt. 97 pages. 15 s . net. Published by Sir Isaac Pitman \& Sons Ltd.
IORE and more emphasis is being placed in these times on reliable brakes for motor vehicles, particularly with regard to the various road safety campaigns and the new reliability tests for older cars. It follows that the average motorist will wish to extend his knowledge of the braking system and this is the purpose for which this book was written.

A Revies

of New Tools, Equipment, etc.

Home Scaffold Kit

To meet the demand from handymen, estate owners, market gardeners and other domestic users for a safe, easy to erect, working platform, Mills Scaffold Co. Ltd., Trussley Works, Hammersmith Grove, London, W.6, has entered the do-it-yourself market with three lightweight scaffold kits. The new equipment, known as Bantam Self-Lock, is based on rin. dia. tubular steel "H", frames, which, when assembled, form rigid towers suitable for all decorating and repair work inside and outside the house. The frames incorporate a patented sleeve and socket fixing, no bolts or tools being required for erection. The scaffolding can be stepped to fit a staircase.
Three kits are supplied. They are:
The "Popular" (Retail price Eis 15s.),

Scaffold kit in use.
which can be erected to form a tower 8 ft . in height by 4 ft . 3 in , long by 2 ft . wide.

The "Household" ((27 10s.), from which a tower 14 ft . in height by 4 ft . 3 in . square can be erected.

The "Handyman" (632 10s.), which is the largest and most versatile of the three kits. When erected this makes a tower the same size as the "Household" kit, i.e., I4ft. by 4 ft . 3 in . square, but contains a number of extra items including 2 ft . square frames, thus making it possible to erect short towers with small base areas.

Improved Fire Cement
 PURIMACHOS PLASTIC

FIRE CEMENT has been available for many years for the repair of fireplaces and stoves and now the makers, Purimachos, Ltd., Bristol, have improved it. It will be known in future as Kos, but prices and containers are unchanged.

NEW SOLDERING IRON

O^{F} particular interest to the radio and electronic constructor, the Browleco pencil iron weighs only $1 \frac{1}{2}$ oz. Its smooth barrel is $-5 / 16 \mathrm{in}$. in dia. and 8 in long.

The Browleco pencil soldering iron.

The low voltage element is wound on to an insulated copper alloy bit holder into which yarious size copper bits can be fitted. Heating up time is approximately two minutes and the standard working voltage is six or twelve, although the iron can be specially wound for up to so volts.' Loading is 18 watts and the iron is suitable for working from a battery or a double wound transformer. The price, including ${ }_{8}^{1}$ in. bit and two yards of flex is 19s. 6d.

Abrasive Materials for Crinding

 Telescope MirrorsTHOSE who have read our recent articles on grinding telescope mirrors and have had difficulty in obtaining the necessary abrasive materials will be pleased to know that they are now available from The General Optical Company, 224, Goswell Road,-London, E.C.I.

COLLARO

MESSRS. COLLARO LTD. Aave sent us details of their new stereophonic gramophone equipment, and the Mark IV tape transcriptor.

For the stereo version of the well-known "Conquest" record changer a variety of pick-up arms is available. (all equipped for stereo and monaural playing), both onepiece and plug-in types, including the stereo counter-balanced arm.
Other special features of the stereo "Conquest" include dynamically balanced motor rotors and super-honed finishing of the rotor spindle for power with low noise level. A new, ultra light, automatic stop mechanism a n d modified pick-up enables stereo records to be played with very low side thrust. This, together with lower stylus pressure, means prolonged life both for stylus and for records. T he stereo "Conquest" gives complete a utomatic playing of all records from 6 in.

Electrical Catalogue
BRITISH CENTRAL ELECTRICAL B CO. LTD. have announced that they have available a limited number of their cloth-bound, 256 -page, electrical catalogue. This is thumb-indexed and divided into twelve sections for easy reference.

Copies will be sent free, postage paid, on application to: British Central Electrical Co. Lid., 6-8, Rosebery Avenue, London, E.C.I.

PRODUCTS

to $12 i n$. dia. without the hazard of size selecting fingers which might damage records. Provision is also made for single record playing with automatic stop.

The well-known 4T200 transciption unit (complete with transcription pick-up arm) is now equipped for stereo, and also the new 4TRzoo transcription unit fitted on a smaller, square unitplate, without pick-up, to allow for the independent mounting of any other type of pick-up.

The pre-paid charge for small advertisements is 6 d . per word, with box number $1 / 6$ extra (minimum order $6 /-$). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southampton

FOR SALE

Ar COMPRESSORS, single cylirup to 4001 b. pressure. condition as new, but slightly soiled, cost over £10, hargain at 35 /_ exch. N. Cooper,
10 , Birmingham,
HOUSE SERVICE METERS, credit from stock Universal Ele
221. City Road. London, E.C.1.

You can repair that broken drill housing or jathe bed. You can joln metai without
 AUTO PLASTICS (OLOHAM) LIMITED AUTO PLASTICS (OLOHAM) LI
Car. Body Repairers and General Fibreglass
The Best "Fibreglass" Kits at the lowes prices. With full inst

CHEMICALS AND APPARATUS.Free booklet of 100 Experiments
with orders over $15 / \%$ Send 3d. with orders over $15 /$. Send 3 d .
stamp for catalogue and detalls of special offers. Scientific \& Technical Wellington Circus, Nottingham.

COMPRESSORS FOR SALE -Twin C) piston with lank, 21 c.f.p.m.0 Motor A E for 11 st wheelhouse 13. Bell Road. Hounslow (HOU 350i.)

1OZ., $2 / 30 z$ and foz hand-operated, 2 Bench-Type Thermoplastic Injecton Moulding Machines for Hobbies Victoria Street, London, S.W.i

GOVERNMENT SURPLUS AND

 manufacturers clearanceHALL RACES, $-3 / 8^{*} \times 1 / 8^{\circ}$ bore, Br $^{*} \times 3 / 16^{\circ}$ PNEUMATIC TIRED WHEFLS AXILES, $16^{\circ} \times 4^{*}$. GIRLLNG bralses, $£ 7.0 .0$
 PRISMS.-Magnifying, $13 / 16^{\circ}$ sq. mounted on adjustable frame. 2 inters. $51-\mathrm{ea}$. NEWWANE INDICATOR CLOCK GEAR BOXTX -Ratio 10-1. ball race TOMPTON PARTNCOY-24 CROMPTON PARKINSON.- 24 Y. ? h.p.
D.C. Motors, suitable factory trucks, invahd carrlage, etc. \& 6 ea.
IIYDROMETERS,--ACID. 3/- ea
VARIARLE SPEED MOTOR.- $1 / 6 \mathrm{~h}$.p. $115 \mathrm{v}$. .vel60 c.p.s. 2.8 a.. With Graham var. 12 v. D.C. MOTORS $-3,800$ r.p.m., $1 / 10$ CoMpASS-P8 A.M. 4* jewelled bearings. ea.. used 15/- ea.
HAINS POVVER PACKE.- 950 v .90 mill amp. or stabilised. 150 v., 80 milliamp TANNOY MICROPRONES. -W!m switch TT ilement. ARRIALS, -New and boxed. cable bd. yd. ; alr spaced, 9d. per yd. MORSE KETS.-Small $2 /$-, medium $3 /$ larger 3/6. Buzzers, $1 /$ ea. TECALEMIT GEEASE NIPPLES.-4d. hot 1085.28 . 28 ver peared $21^{\circ} \times 13^{\circ}$ dla.. 12.6 METMERS. Moviving coil, 24, dia., 50 micro-

 podance, $6 /-$ inigh $9 /-$ balanced armature
low, 10. ;high, 15i- ; moving coll, low only
10\%- per pair.
HUGGETT'S LIMITED 2/4 PAWSONS ROAD, WEST CROIDON,

FOR SALE (Continued)

MAINS FROM 12v. CAR BatTERY An Dyamutor Unit run $200 / 250$ AC/DC radios, televisions, battery continuous. duty, perfect cost \&25 $80 /-;$ s.a.e. full details,
Scientific Products, Cleveleys, Lancs $R^{\text {EFRIGERATION SIMPLIFIED }}$ send postcard for particulars. Robert C . N .21
CIRCULAR GLASS DISCS for grinding Astronomical Mirrors abrasive $80,180,280,320,400,600$ zuperfine finisher. Swedish Pitch
 £5/15/-, post paid. H Gibbs, 75
Portmanmoor Road, Cardiff, S . Wales UNOWOT WHISTON'S SELL S.A.E. catalouue R. R. Whiston HOW TO USE EX-GOV. LENSES Ea: Vertical Enlarger Plans for 35 mm , to 2 lin . sq.i. $3 / 6$ ea.: Optica Suit, ${ }^{33} /$ Lisls
English,
Rayleigh
Road,
Ro. Hutton Essex.
PHOTO-CARDS (including colour yachts. Send $1 / 9$, list. specimens yachis. Send 38 . Westview Road Barrow-in-Furness
A STRO TELESCOPE MAKING Eyepieces, fln. fin., 3 in. focus, $35 /-$ s.a.e. lises. Object Glasses from 10/6; Eyepieces from $15 / 6 ;$ Newtonian
Miprors. Focusing Mounts, Tripods, Mirors, Focusing Moums, Tripods, also complete Terrestrial Telescopes Sluice, Boston, Lincs.

WOODWORKING

W OODWORKING MACHINES. All Saw Benches, 7 in... £4/15/-i $81 n$ £5/0/- 10 in ., complete motorised,
 lng Heads, $£ 4 ;$ with 8 in . Saw Tables,
$£ 7 / 10 /-$ Lathes. $£ 7 / 10 /-;$ Combination Lathes, $10 / 10 /-$ Motors
 written and money refunded guaran tee. 4 d . stamp for Mustrated book let. James Inns
Marshall St., Nottingham.
SAWBENCHES, 8 in . to 30 in ., from
 Lathes, Saw spindle and Plane Assembles, Logging and Firewood Machines. Chain Saws, Engines Motors ; deferred terms . Send $1 / 9$ or handbook-catalogue and bargain fifers. List free. Beverley Products Sturion-le-Steeple, 20, Notts
 Attachments, ${ }^{\text {S } 12 / 18 /-; ~ h . p . ~ t e r m s ~}$
Wragg Bros., Chapel Street, LeaWragg Bros., Chap
brooks, Derbyshire.
S.G.S. Wood working, Machinery. for saw Bench Units: . Empire
 25/15;-; "Monarch "M (30in.) $811 / 18 / 6$ bin. Drill Chucks, $14 /$
extra. Planer Units fitted with high extra. Planer Units fitted with high
speed ball bearings: 41 in . $£ 4 / 15 /-1$
 Turning Combination Lathes: 181in. 241 n . or 30 in . centres 1 rom cem/19/6 Obtainable from ironmongers. shops, etc., or write direct to. S. Ding Engineers, Dept.
Norwich, Norfolk.

FIBREGLASS

PLASTIC UNITS

Experimental Glass Fibre Unit, $14 / 9$ Plastic Metal for Gear Casting, Plastic Dies, Finish for food prepan-han surla Settin washing machines efc. $16 / 9$ pt in white cream, black, sky blue, red, clear and aluminium. 'S.A.E for information list, price lise, etc. SILVER DEE PLASTICS field, Derbyshire.

PHOTOGRAPHY

DHOTO-ENLARGER Castings and din. Bellows for $35 \mathrm{~mm} ., 2 \mathrm{ilin}$. $x 2 \mathrm{~lm}$. details. V.. J. Coltte, sta, Chapiln Road, Easton, Bristol,
$\mathbf{B}^{\text {ELLOSS. }}$ Camera, Enlarger, ProMachine Guards. Beers, 4, St Cuthbert's Cuard. Dead. Berby 41263 .)
$\mathbf{A}^{\text {DOX }}$ FILMS (Fresh)-R21 $\quad 620$ 35 mm .. 20 exp. $5 / 11$. Neofin $\begin{array}{ll}2 / 6 \text { Klue }\end{array}$ Developer.
fil per posit
free.
bottle. Any two
Jenkins, Walks, Trowbre! fige, Wilts.
$G^{\text {LASGOW. If buying, selling, or }}$ En exchanging modern Cameras, Enlargers. Equipment, Tape Recorders, etc.. for the best deal, call or write to victor Morris, 406, Argyle
St., Glasgow, C.2.
(Central 8958.)

ELECTRONIC FLASH
Condensers, Pulse Colls, Resistors, etc.,
surplus to requirements but guaranteed new and unused. Send S.A.E. for fall list and circuit diagrain for
Langham Photographic Insts., Ltd., 132, Stanley Park Rd

SCREEN FABRIC MAKE YOUR OWN PROJECTION SCREEN

High Grade Fabric as used by Commercla 48in. wide, any length cut at $18 /$ - per yard CUT PIECES
48in. x 3 3 in. - 18/- 48in. x 48
 Send 3d. stamp for samples and instruotions
Lor making your own Roll Up Screen. SPRING ROLLERS (Sell Acting). 1 1in diar Swedish Manufacture, complete with Brackets.
$36 \ln .10 / 3 ; 421 \mathrm{n} .10 / 9 ; 48 \mathrm{in} .11 / 9 ; 54 \ln .13 / 3$

SAWYERS LTD.

ST. SEPULCHREGATE DONCASTER

EDUCATIONAL

LEARN IT AS YOU DO IT-we Leprovide practical equipment combined with instruction in Radio. Television, Electricity, Meclanics, Chemistry, Photography, etc. Write Dept. PM47, London, W.4.

$$
X=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

DON'T FUMBLE with Formula. Master Tathematics in 6 weeks the Understand able Way. 1st lesson and detalis free from
11, Dryden Chambers, Oxford Street, London
F^{-1} REE : Brochure giving details Radio, Television, and all branches Radio, Television, and all branche hobby enthuslast or Courses for the the at the A.M.Brit.I.R.E., City and Guilds, R.T.E.B., and other profesGuilds, R.T.E.B., examinations. Train with the college operated by Britain's larzest
Electronics organisation. Moderate Electronics organisation. Moderate
fees. Write to E.M.I. Inst1tutes, fees. Write to E.M.I. Institutes,
Depi. PM2B, London, W.4.

CHEMISTRY

PREPARE NOW FOR YOUR FUTURE

We speclallse in supplying Laboratory Apparatus for the Student of Chemistry
Send todia for free price list to:

A STRONOMTCAL TELESCOPES. able up to 8 in . Pirror. Silicon Carbidé: Grade 80 . 11 b . ; 180,280 . 11 b . 320, 400, 600, 116, Optical Rouge 20z. ; Swedish Pitch. 116 . $25 /$ - each. pius $2 / 6$ postage. L. J, Mays \& Co. 20. Clover Road, Timperley.

SEREN
 ASTRONOMICAL SUPPLIES

Warehouse Road
Stebbing, Dunmow, Eisex EQUIPMENT for ASTRONOMERS Mirrors, eyepieces, focusing mounts, spiders, etc. Do-It-Yourself kits.

ILLUSTRATED CATALOGUE No. 13. Containing over 450 Items of Government Surplus and Model funded on purchase of gods ; $2 / 6$
overseas sea-mail. Arthur overseas sea-mail. Arthur Sallis
Radio
Control
Ltd.,
Department Radio Control Ltd., Depa
P.M., 93, North Road, Brighton

HANDICRAFTS
 MUSICAL BOX MOVEMENTS

ONLY 13/- POSt fres.
Kits from 21/-complete with movement. lease send 2d. stamp, or call for new FREE illustrated brochure. Trade supplied.
THE SWISSCROSS Co. (Dept. V) 202, Tulse Hill, London, S.W.2.

HOME BOAT BUILDING

B ${ }^{\text {UITD }}$ Cabin Cruiser. OWN $\begin{gathered}\text { two-berth } \\ \text { supplied }\end{gathered}$ also Car Runabouts, Dinghies Canoes, Water Skis. Illustrated brochure on request. Wyvern Boats (Wessex) Ltd iof North Street, Miborne Port, Sherborne, Dorset.

miscellaneous

A Qualung and Compressor Equipcellaneous Items. Lists 2 d . Pryce. 157. Malden Road. Cheam.

FORTUNES in FORMULAS,", $900-$ Anierican technical hooby and other Anerican technical hooby and other for lists. Herga Ltd. (Dept. P2). Hastings

PERSONS WANTED TO MAKE UP HANDY BAGS AT HOME IN SPARE TIME. SEND S.A.E. FOR DETAILS TO :-DEPT. N/M, BENTOM SUPPLY, 9a, LIVERPOOL GARDENS, WORTHING

GUPERTONIC SUNLAMPS, listed S $87 / 10 /-$, 80/-: s.a.e. brochure leys, Lancs.
$B^{\text {UILD }}$ Everything OWN Refrigerator Cabinet Refrigerator. S.A.E. for Cabinet Reirigerator. Und Schematic Diagram, or $1 /$-(refundable) for 32 page catalogue, including details o free 4 cu ft. Cabinet Diagram offer ${ }_{3}$ Hire purchase available. Wheelhouse HOU 3501.) YOUR OWN Refrigerator $B_{\text {UILD }}$ Now sealed inN Refrigerator and access. tc. S.A.E. list. Deeprieeze, 24a

DO YOU WANT to make money in P./Order for full details and free sample. Box
(Continued on next page)

Continued frompreviouspagè

ELECTRICAL

ExTraction fans, ,in., shlent A.C. only price $20 /-$, post $2 /-;$ Geared Mo h.p. Universal 230 y Qble for food mixers, price $22 / 6$, post
 Hounslow
" $\mathrm{S}^{\text {TANFORD" ELECTRIC WELDER, }}$ 200/250 a.c., complete with heavy welding transformer. welding torch, earthing cable, goggles, car-
bons. case, instructions.
Absolutely as new and perfect. \&4 ; carriage paid. Wiil send c.o.d. McGrath, Blackpol.
F LUORESCENT LIGHTING FIT Complete range wrom 5 It. to 18 in (a:so circular) at lowest prices any where. S.A.E. for illustrated leaffets and list of Control Gear Kits
 London, S.W.11. (Battersea 8960.)

BROOK BRAND NEW
Single Phase, hip. 1,500 MOTORS h.p. l,500 r.p.m. $\mathrm{E}_{\mathrm{E} .12 .6}$ h.p. 3,000 r.p.m. E9.12.6
 Fully guaranteed by makers. approval against cash. Carriage paid mainland. State voltage.
ARCH STREET, RUGELEY, STAFFS.
Model electric motors Mo,", $9 / 6 ;{ }^{\text {amazingly }}$ Maxi Mowerful. $13 / 6$." Min Mree. 41 to $9 \mathrm{M} .1 \mathrm{Min}$. . 1 in in. welpht ${ }^{1}$ loz Dept. (O) "Highland.' A.krington
chester.
3d.
Green,
stamp
Midl dileton
fulais.

CONVERT your ordnary washlar Wailer to electric. G.E.C. Circu2 Kw .. 91 in , diameter one hote fix ing. $22 / 6$ in each. plus $1 / 9 \mathrm{p}$. and p Ing. $22 / 6$ each, plus
London
Warehouse,
165 . . ${ }^{\text {and }}$ Quens Road. Peckham, S.E.is.
MAINS RADIO IN YOUR CAR. AC/DC radio, televisions 209/250 corders. etc., from 12 v , tape, re-
 detaiis. Scientific Products, Cleveleys, Lanc
$1 / 3$ H.P. B.T.H. MOTORS and for $400 / 440$ vitches for solts 3 sale. $1,42 \mathrm{frpm}$. m . F. Edwards Limled, 359 . Euston $\mathbf{A}^{\text {LL }}$ TYPOSES ${ }^{\text {OF }}$ ELECTRICAL tive prices, e.g. 5 amp. Twin Cable. 35/ 100 yards: Lamphoiders, 7/ doze: 5ft. Battens, $49 /-\dot{\text { quality and }}$ qual
diate despatch guaranteed. diate despatch guaranteed, Request
list. Jaylow Supplies.
93 Road. London. N.16. (Telephone Lectrica 4384
E Lectrical query service, tions; moderate charges; save time Services, Stanley. Derbyshire

WATCHMAKERS

EARN to be a Watch and Clock Repairer in your spare time and earn extra money at home. We can
supply everything you need at supply everything you need at
unbeatable prices, including instruc. tional books. Swiss watchmakers movements lathes warch and clock all spare parts for watches and clocks, etc. We also have a fine selection of musical box movements and kits. Send 9d. P.O. for bumper bargain catalogue. The watch P.M.). Carterton, Oxford.

WATCH PARTS

For, all makes of watches, tools, instrucginners. Send fi, for Special Kits for beCatalogue. T. G. LO ADER (Dept. B), Wa1chmakers Mail Order Service,
Milestone Road, Carterton, Oxford.

WTATCH REPAIR SERVICE, unspeed. coupled with reliability and charges. part jobs welcomed. Material supplied. Hereford Watch YOUNG \& SON, Watch, Clock and Material Dealers. 133, London Road.

TOOLS
POWER TOOLS.-We stock the lot. 58, Commerce Rd., Wood Green. Lond on, N.22.

CLOCKWORK MECHANISM-1/9 A perfectly ent ineered clockwork unit, with
a fully enclosed colockype spring, goar
 ROF(B) 40 SL). Can be modifled for use as a requiring activation. For the amateur mechanic with ideas, it offers considerable sope. Dr

DUKE \& CO.

621/3, Romford Road, Manor Park, E. 12
$W^{\text {RagG }}$ 7in. Motorised Bench Shapers, adjustable stroke Wragg Bros., Chapel Street, Lea brooks, Derbyshire.
BRAND NEW TOOLS, assorted B.A. s.a.e. lists Drills, Taps, Dies, at bar gain prices. A. King, 152, Halfway
Sireet, Sidcup, Kent.

PATENTS
DATENTS. Qualifed service. Creenhayes Ave., Banstead, Surrey.

! A GOOD IDEA!

 CAN MAKE MONEY FOR YOU FROFESSIONALLY TO SELL YOUR WRITE FOR FULL DETAILS. PATENT, DEVELOPMENT \& MARKETING CONSULTANTS 16 Gore Court Rd., Sittingbourne, Kent.
SITUATIONS VACANT

A. M.TMECH:

 A.M.Brit.I.R.E. Pass-No Fee and Cuilds. tete, on ", No cesses. For details of Exams and courses in all branches of Engineering, Building, etc., write for 144-page 967B), 29, Wright's Lane, London, W.8.AUTOMATIC (TIME) SWITCHES
iJew and reconditloned 15 day clock-
worls and electric switches. frnm 35/-
Send S.A.E. for illustrated details
DONOHOE (TIMERS) DONOHOE (TIMERS) SHIELDS, NORTHUMBERLAND

THE JEFFERY TRANSFORMER CO.

(Winders to the late Galpins) 199. EDWARD ST. NEW CROSS, LONDON S.E.14 TIDeway 4458 Leaflets sent gladly; on request

CORRESPONDENCE COURSES IN STEAM
two courses : (1) A simplified Course for the practical man in need of basic information about steam and steam applications (2) An Advanced Course for those with : background of technical training. There is no charge or obligation. Details on request

SPIRAX-SARCO LTD.
(TECHNICAL DEPT.) Cheirenham, Glos.

GOVERNMENT

SURPLUS BARGAINS
TRIPODS, Unused. $38^{\prime \prime}$ long, only 5 lb . Wt. Immensely strong. Carrying sling. Lew ${ }^{\text {etc. }}$ Each 12/6. post ${ }^{216.6}$.

MOTOR ONLY as above (dimensions BATTERY CHARGING TRANS FORMERS, 11 y. 8 17 v. A.C. (ror 68
12 F . charging at 1 amp.), ea. $17 / 6$, post RECTIFIERS to suit above, ca. $9 /-$,
post 8 C
normers \& rectifers will TEST METERS. MOVTing Coil. ol. 5 ¥.
 beautiful case $4^{*} \times 4^{*} \times 23^{\circ}$. with selector
terminals and switch. Wonderful
 Coll 015 .. $0 / 250$ v.
MOTORS. $20 / 250$ v. A.C.iD.C. FHP. (Converted ex R.A.F. motor gezeratorpower about equal to sewing machine motor. Uselul addition to workshop.
eat 30 . post 219 . Transformers, Pumps, Lamps, Switches.

MILIIGANS
24. Harford Street, Liverpoo

CHEMISTRY APPARATUS Send 3d. stamp for
COMPLETE PRICE LIST

Stoke Newington, London, N:16
Save on Repairs

Reduced Prices	Plus
More Materials	Foss
KIT I $12 / 6$	$2 /-$
KIT II 25/-	$2 / 3$
KIT III 30/-	$2 / 6$
KITS FOR CARS,	
ETC. £5.10 59.10	
carriage paid	

with GLASS Fibre Thesekits
carry a comprehensive
range of
materis withe full instrueall forms of car body repairs and model making. "Glass Reinforced Plastics"
New lilustrated Booklet, $2 / 6$ Post Free.
WESTPOLE MOTORS LTD. 89. BRAMLEY RD., LONDON, N.14. PAL 8381

AĆCURMTE
 Webley
 IIR PISTOLS

ATIR RHELSS - ACCESSORIES

- Write for cotologue WEBLEY \& SCOTT

TRANSFORMERS
ALL 220/250 V. A.C. ALL INPUT EACH 55.12.0. ${ }_{3-69 P 12}{ }^{3} \mathrm{~V}$. 40 Amps 5 V - 125 Amps . 12 Amps. 62 V
$110-120 \mathrm{Amps} \mathrm{M} .4 \mathrm{mps}$. ${ }_{3}^{55}$ V. V . 12 Amps. Am . ${ }^{2}$. 20
 6.3/12.6 V. 9/8 Amps

'POP' RIVETERS (Lazy Tongs) Easy to operate
Widely used for
Motor Body Re pairs. Body ReSheet Metal Work, Plastlcs, Hard
board. ©te. Untversai Collet Eakes Pop board, etc. Unversai Collet takes Pop
Rivets, $118^{*}, 5 / 32^{\prime}, 3 / 16^{\circ}$ and 2^{2} dia., s4.11.0.
'POP' RIVETS
In constant use by Repairers. Three Assort ments avalable $\mathrm{MTL}, 1.00 \mathrm{R}$ Rets-All diameters- $33 / 4$

12 V. HAND DRILLS
With 1° chuck and length of flex. ACIDC. Takes 15 Amps, Forks from car battery or
Transformer. Weight 7ibs. 24 Yolt Hand. Drftigavaliable. Takes 9 Amps
ACIDC. Weight $7 \| 1$ bs. $£ 5.4 .0$ each. P. \& P
HARMSWORTH, TOWNLEY \& CO.
Jordan Street, Knott Mïll, Manchester, 15

STEEL FRAMED-EXTENDIBLE
LOWEST MONTHLY TERMS
 of any manufacturer including Instalments Insurauce FREE COLOUR GATALOGUE BOWSER MONKS \& WHITEHOUSE LTD. (Dept. PM14), Spring Gardens, DONCASTER

Red Marble Powder

THE professional monumeritalists when cutting and blacking in the lettering on gravestones rub the surface of the stone over with some red paste.

This is left on while cutting and acts as a protection to the surface of the stone when filling in the cut lettering with black paint. After the paint is dry the red paste protective is washed off with water leaving the stone surface perfectly clean.

Can you please tell me what this protective paste is ?-I. J. Harris (Derby).
THE red paste to which you refer is Red Marble Powder. It is not used for the purpose for which you were proposing to use it. In point of fact it would be of hindrance to you.

It is used by monumentalists to obtain sharp lineal definition when cutting semitranslucent stone such as marble. It is supplied by : Harborow Supplies Ltd., 145, Albert Road, Middlesbrough.

For your job we advise you to rub the surface of the stone clean with pumice and water, the letters will then show up in relief and the painting must be done by hand

Rewinding Motor

COULD you please supply me with the information on how to rewind a singlephase motor from IIOV. 60 cycle to 230 v . 50 cycle?-G. Brint (Liverpool).
AACH coil of the stator winding should be rewound with 175 per cent. of the present number of turns, using wire having a cross sectional area approximately 57 per cent. of that of the present wire; i.e., approximately 76 per cent. of the present diameter. The coil span and connections of the existing windings should be carefully copied; the speed of the motor will then be reduced to about 83 per cent. of the original value.

Pointing Brickwork

I
WISH to re-point the brickwork of my
house. Please tell me what cement mix
to use and how to go about the job.-J. Rondeau (Walthamstow).
TOU must first rake out the old perished mortar with a metal spike; an old file handle would do. Thoroughly wet the cavities before filling. Use a mortar consisting of three parts sand to one part cement. After mixing dry pass through a fine sieve before wetting. To do this add a little water at a time and stir thoroughly while adding until it is of a smooth consistency.
Fill in the joints, after wetting thoroughly. Do the short vertical ones first, finishing each smooth and flush. Now fill in the horizontal joints, about 3 ft at a time. Trim the edges by using an old knife and holding a

 QUERY SERVICE RULES
 A scamped, addressed envelope, a sixpenny, crossed postal order, and the query coupon from the current issue which appears on the inside of back cover, must be enclosed with every letter containing a query. Every query and drawing which is sent must bear the name and address of Pre reader. Send your queries to the Editor, PRACTICAL MECHANICS, Geo. Newnes, Lid. Tower House. Souchampton Sereet, Serand, London, W.C. 2.

straight thin lath firmly to the wall and drawing knife along it. Trim the horizontal joints so that the upper edge of the mortar is flush with the brick while the lower edge sticks out a little so as to throw off the water.

As a painting cement use one of the Cementone products, obtainable from any hardware merchant.

"Fixing" Chalk

AN you provide me with a formula for making up a solution suitable for "fixing" chalk, this being the medium I am using in the decoration of stage flats? I should also be interested to know whether the solution could be made up to include fire-proofing properties. It should be of a consistency to permit it to be sprayed. F. W. Bennett (Hayes).

12FT. ALL-WOOD CANOE. New Series. No. I, COMPRESSED.AIR PAINT SPRAYING
10-WATT MOTOR. New Series, No. 2, 4s.* COMPRESSED-AIR MODEL AERO ENGINE. New Series. No. 3,5s. 6d.*
AIR RESERVOIR FOR COMPRESSED-AIR AERO ENGINE. New Series. No. 3a, Is. 6d. "SPORTS" PEDAL CAR. New Series, No, 4 5s. 6d.*
F. J. CAMM'S FLASH STEAM PLANT. New Series. No. 5, 5s. 6 d :*
SYNCHRONOUS ELECTRIC CLOEK. New Series, No. 6, 5s. 6d.*
ELECTRIC DOOR-CHIME. No. 7. 4s.*
ASTRONOMICAL TELESCOPE. New Series, Refractor. Object glass $3 i n$. diam Magnification $\times 80$.
No. 8 (2 sheets 7 . 6 d .
CANVAS CANOE. New Series. No. 9, 4s. DIASCOPE. New Series. No. 10, 4s.* EPISCOPE New Series. No. $11,4 \mathrm{~s}$,*
PANTOGRAPH. New Series. No. 12. 2s.
PLANT. New Series. No. 13, Bs.
Blue-princs (2 sheets), 4s.
Are board dial for above clock, Is, 6 d
OUTBOARD SPEEDBOAT
Ils. per set of chree sheets.
LIGHTWEIGHT MODEL MONOPLANE. Full-size blue-princ, 45 P.M. TRAILER CARAVAN Complete set, Ils.
P.M. BATTEAY SLAVE CLOCK. 2s. 6d. PRACTICAL TELEVISION " RECEIVER. (3 sheets). IIs.
P.M. CABIN HIGHWING MONOPLANE Is. 6d.*
P.M. TAPE RECORDER,
(2 sheets), 5 s .6 d .
The above blue-prints are obtainable. post frec, rom Messrs, George-Newnes, Led., Tower House, Southampton Street Strand, W.C. 2
An * denotes constructional details are ovailable free

A LMOST any ordinary adhesive such as thin size, or gum arabic, or even flour paste, can be sprayed on for fixing chalk the latter being either painted on or drawn in its dry state. But the fire-proofing material should be applied first before the chalk, either by spraying or applying with a brush or by soaking the material in the solution, which will probably be strong alum.
After the fire-proofing is dry, do the chalk drawing and fix this with a thin solution of the chosen adhesive. Size or very thin glue, slightly warm, will be the cheapest. This or any other of the solutions can very well be sprayed without disturbing the chalk

Graining

WHAT is the method of applying graining crayons as a fluid, ie., what must I dissolve them in so that I can apply the dissolved crayons with a small brush ? I have tried a mixture of turpentine and meths (50/50). This gave a poor, patchy solvent, with grains suspended in the solution.
I have gained a measure of success by sap marking as follows: (1) Flat undercoating of desired tone. (z) Scrumble brushed on thinly and evenly and graining crayon applied as one would use chalk on a blackboard. (3) Graining brush used overall to give effect of "shadow" graining. (4) Varnish.

I should like to effect a "beech" or " maple" design if it is within the-amateur's scope.-S. Addy (Sheffield).
YOU will not be able to get a satisfactory graining fluid from crayons, as they are not ground sufficiently fine 50 make a stable solution.

Your procedure for sap graining is quite suitable, and should result in an excellent finish. With beech, you will need a fine comb, and ir takes a deal of practice to get the breaks in the grain to look natural but it can be done. So far as maple is concerned, it calls for a lot of hand work. A time-saver is the " O " from a rubber printing outfit in which a slight nick has been cut, which makes the bird's-eye marks quite well.

Dimming Lamps

TWISH to construct a colour-change and mixing arrangement for four or more banks of lights. The banks will consist of 16 40-watt lamps each, i.e., 640 watts in each bank, and I wish to provide slow automatic dimming and raising, to give the changes I require.

The drive presents no problems, but 1 should like advice on the construction, arrangement and operation of the resistances involved ; also I should like the formula for calculating the gauge and length of wire.B. L. Norman (Leics).

THE current taken by 640 watts of lamps on a 240 volts supply is equal to

$$
\frac{640 \text { watts }}{240 \text { voits }}=2.67 \mathrm{amps}
$$

The resistance of such a bank of lamps, when hot, is equal to

$$
\frac{240 \text { volts }}{2.67 \mathrm{amps}}=86.5 \mathrm{ohms}
$$

In order completely to dim an average bank of lamps we suggest that the voltage appiied to the lamps be reduced to about 30 per cent. of normal value. In order to do this we advise using a dimming resistance having an ohmic value about three times that of the lamps. In this case, therefore, a series resistor having a maximum value of about 260 ohms is required. At this point we refer to tables of resistance wire as supplied by a wire manufacturer such as Messrs. Henry Wiggin \& Co. Ltd., of Grosvenor House, Park Lane, London, W.I.

From such a table we see that 25 s.w.g. Brightray ($80 / 20$ per cent. nickel-chrome) resistance wire may reach a temperature of 300 deg. C. when carrying 2.48 amp . when the wire is straight, horizontal and free to radiate heat. When coiled as a resistor the wire may reach a temperature of about 100 deg . C. higher with about the same value of current. The table shows that this wire has a resistance of 1.69 ohms per foot at 400 deg . C. or 1.68 ohms per foot at 300 deg . C.; so that about 155 ft . of this wire would be required. The wire could be wound in a spiral of small diameter nitted on a ventilated, heat-resisting support and looped to contact studs over which a moving contact slides. If required it would, of course, be possible to reduce the length and size of resistance wire to some extent by using a graded resistor, i.e., by using thinner wire for the end of the resistor at which the lamps have minimum brilliance and the resistor passes minimum current.
It should be possible to mount the dimmers side by side, with their moving contacts linked together by means of an insulated bridge. By using different bridges it may be possible to adopt various combinations of lights. A switch could be connected in series with each bank of lamps, with another switch across each dimmer.

Suggested circuit.
If graded resistors are not used another scheme would be to use a dimmer and a singlepole three-way switch with off position for each bank of lamps, the moving contacts of the dimmers being coupled together. In position 1 of the switch the bank of lamps would dim when the dimmer was moved in one direction; in position 2 of the switch the bank of lamps would brighten when the dimmer was moved in the former direction; in position 3 of the switch the lamps would be fully lit whatever the position of the dimmer. In position 4 of the switch the bank of lamps would be off irrespective of the position of the dimmer.

Finish for Sheet Iron

I WISH to make up a cement wash to be used on a sheet iron fence in place of paint. Could you please advise me on the proper quantities and contents of the mixture, and also the dyes for colouring same ?-J. Rae (Scotland).
W^{E} regret that it is not possible to use a cement wash on sheet iron, as there is no absorption on the part of the metal and, once it is dry, the cement flakes off. You will no doubt have seen a workman cleaning a bucket which has held cement mortar-one or two blows on the outside
are sufficient to clear it of dried mortar There is a certain amount of adherence with old and part-rusty iron, but not enough to make a cement wash worth trying
If you are looking for a less expensive finish than paint, we recommend onte of the bituminous paints, which are obtainable in colours from builders' mechants.

Thermostatically Controlled Greenhouse Window

CAN you please give me approximate C details to make a solenoid to operate off $4 \frac{1}{2}$ to 6 -volt dry batteries with sufficient pull to open a centrebalanced window. 7. A. Yones' approximately 12 in . square? A light wood frame and plastic sheet form the window aperture. This is for my unattended greenhouse on the allotment.
I have a device at present to release the window, which, being counterbalanced, opens. It is operated by a thermostat at 75 deg. F., but I wish to open it by a solenoid and install a rèlease catch, operated by a back contact on the thermostat so that it will close by being slightly bottom-half heavy. The sketch above shows the idea of opening by the solenoid.-J. A. Jones (N.W.2).
$\underset{\text { solenoids }}{\dot{\text { ONG }}} \underset{\text { are }}{ }$
very inefficient, and we do not consider that you would obtain sufficient power to operate the window by means of a solenoidoperated device fed from dry batteries. We think that you would obtain much better

results by using the batteries to operate a small. series motor which opens and closes the window by means of a suitable winding gear. A back contact on the thermostat could be used to energise the field windings for one direction of rotation, with a contact on the window to switch off the motor at the end of its rotation. A front contact on the thermostat could be used to energise the field winding for the opposite rotation required to close the window.
The diagram shows how a centre-tapped field winding could be employed for both directions of motor rotation. Alternatively a reversing contactor could also be energised from the thermostat to reverse the connections to the field windings of a series motor.

Colour Frequencies

COULD you please tell me the frequency spectrum ?-S. Window (Manchester, 10).

HE simple answer is:

Violet	3,500	\rightarrow	4,5:0
Blue	4,550	\rightarrow	4,9:0
Green	4,920	\rightarrow	5,770
Yellow	5,770	\rightarrow	5,
Orange	5,970		6,220
Red	6,220		7,70

All these values are in angströms; an angstrom is $10^{-9} \mathrm{cms}$. If we take the velocity of electromagnetic waves at $300 \times$ $10^{8} \mathrm{~cm} . / \mathrm{sec}$. then the application of the velocity will provide the formula f wave length will provide the frequency. For example take violet at, say, 3,900 angiström.
$\mathbf{f}=\frac{300 \times 10^{8} \times 10^{8}}{3,900}=77 \times 10^{13}$ cycles $/ \mathrm{scc}$.

$$
3,900
$$

cycles/second.

Information Sought

Readers are irvited to supply the required information to answer the folloving queries.

Glossy Black Finish

COULD you please give me a formula for black gloss lacquer suitable for renovation of binoculars ?-J. D. Maclean (Inverness).

Light Meter Scale

IWANT to use my AVO exposure meter to compare the strength of artificial lighting by different means in my house. A 60-watt pearl lamp, for instance, gives a reading at about the half-way mark on the meter, at a distance of i 8 in . Can you please suggest a method of making a scale which would give approximate readings in lumen or candle-power units? - $\mathrm{K} . \mathrm{N}$. Howard (Hants).

Piano Rattle

I HAVE an upright piano which is in good condition and, although the keys are neither abnormally loose nor tight, when I play the piano there is a distressing ratule as the keys move. Can you suggest what can be done to eliminate this rattle?-H. Bannister (Staffs).

Phosphorus Coating

IWISH to treat some $\frac{3}{4} \mathrm{in}$. dia. plaited sash cord with phosphorus so that it will glow in the darkness. Please explain the method of doing this, and also give the approximate cost of treating, say, 1,000 yards.-L. G. Thompson (Birmingham, 6).

Binocular Telescope

AN you tell me how to adapt the idea of binocular vision on a microscope to a telescope? Some types of microscopes have one object glass and two eyepieces. How can I make one such double eyepiece to couple on to an ordinary terrestrial 'scope giving me binocular vision?-C. MCEWEN (Gibraltar)

Fish Stunning Device

I

WISH to remove fish from one pond to another. I believe there is some sort of portable electric stunning device utilising two metal rods which are immersed in the water and a current made to flow between them. Can you give me any details of electrical circuit, brief method of construction and what distance apart can the rods be placed?-L. Ridgway (Redcar)

NEW
 CABLES \& FITTINGS
 TOUGH RUBBER CABLES

 8\%- Batten, doz., $12 /$, Roses, Brown, $8 /$:

 28/- i 2-way, doz., $30 /-$ Flush Swdtches, $24=$ Ceiling Cord, do, 1-way, $5 /-, 2$-way, $81-; 2$ amp. 2 -pin
Sw plugs and Tops, ea., $3 /-5$ amp. 3-pin Sw. plugs and Tops, ea., $3 /-5 \mathrm{amp} .3$-pin
Sw. plugs and Tops, ea.. $5 / 6.15 \mathrm{amp} .3$ pin Sw plugs and Tops, ea. 8 . 13 amp 3 mpin

 Consumer Unit, 42/6. Sw. gear, Fuebods
 150 watt, 24 : 200 watt, doz, $201-$ carbon Heaters, 3 Kw . 50 . Yas., $3 /$; 100 yds, 25 /- Conduit and FitTutular Heaters. Findustrial Refectors Full itstis plled. Satisfaction guaranteed Terms: Cash with order : carriage paid if over. 55 :
orders of $£ 20$ or over less 5 per cent. disoount. open daily, inc. Sat., 8 to 6 : Thurs 9 tol. Callers welcome

LONDON

WhOLESALE WAREHOUSE 165 (P.M.), QUEEN'S ROAD PEGKHA明, S.E. 15
Tet. :- NEW Cross 7143 or 0890.

GAMAGES ' 16 ' Electric ARC WELDER

For Professional and Workshop Use
Suitable for garage and maintenance work, agricuitural machinery, heating engineers, ornamental iron or blacksmith's work, handicrafts or the home workshop.
Welds material from $1 / / 6 \mathrm{in}$, thick and if necessary up to $\ddagger \mathrm{in}$, by repeat runs. Robuscly constructed chroughout. Air cooled. Dimensions a pprox. $10 \times 13 \times 8$ ins. Weight approx. 50 lbs. Incorporates a heavy-ducy trans-

Remarkable
former and is complete with cables, welder's equipment, electrodes and instructions.

$$
\underset{\text { PRICE }}{\text { BARGAIN }}
$$

The Famous MYFORD ML7

Lathe complete with
Standard Equipment and Countershaft

253 ar 18.6 Deposit and
For $190 / 250$ Volts single phase A.C. 5 to 10 omps domestic supply. Runs 16 S:W.G. rods continuously. Delivered on First of
9 Monehly payments of firis heavy duty centre lathes
for Turning \& Screwcutting A. really first class precision machinesoundily constructed to give a lifetime's serv́ice. $\quad 31 \mathrm{in} . \times 20 \mathrm{in}$. between centres. No workshop is complete without one !

ASTRONOMICAL TELESCOPES 10716!! COMPLETE SET, 88.15 .0 . Poszage $15 /$ OR 25/- DEP. 10\%- WEEKLY.

OUR NEW SUPER MODEL See the Moon at Close Quarters. Examine the Immense Craters. MounRings. Nebulae, Sputniks, etc.

Specification. 2 in. dia. Lengur 39 in. Mag $53 \times$ Linear (equivalent $2809 \times$ Area). Weight approx. 1 Ib. 12 ozs. Registered pastage and packing in-cluding-strong stowing cylinder, $12 /=$.
Altazimuth Portable Clamp Stands. Excra 37/6, P./P. 2/6. Eixes anywhere. P./P. 2/-. (Equivalent $6400 \times$ Area.)

Stamp for Full Particulars. Photographs I/. set (returnable). Lists and Terms. Made to onder. payments of $54 / 3$ \qquad
GAMAGES, HOLBORN, LONDON, E.C.I.
HOL 8484

[^4]

HOL 8484

HOLMES, WILSON \& CO. SCIENTIFIC INSTRUMENT MAKERS (Dept. PM 38), Martins Bank Chambers. 33, Bedford Street,
North Shields. Northumberland.

man Bennett College can train your mind to SUCCESS

THROUGH PERSONAL POSTAL TUITION

 A FREE book vital to your career !Read how the famous Bennett College can help you to success ! Send now for this recently published FREE book, "Train your mind to SUCCESS," which tells you about The Bennett College proven success in postal tuition . . . and how it can help you to success in your carcer.

BATTERY CHARGERS Input 2001250 volts. A.C.: 50 cyoles output 10 amps.
22 volts D.C. Con 22 volts D.C. two 4 -
trolled by postition switches
for fine and coarse por fne and coarse
fontrol which encontrol which en-
ables 8 to 24 volts ables 8 to 24 voits
batteries Mo be
charged Made by charged. Made by
G.E.C. Brand new G.E.C. Brand new
withor12ammeter.
Fised A.C. and Fused A.C. and
Dic. 17.10 s ., car-
riage, $15 /=$. Practically Indes NIFE BATTFRRIES. Practically Alkaline filled. Any voltage can be
New. $25 /$ ench, carriage 5 bulit up. Brand

 230 volts A.C. 6 in . blades. Idesi for ven runing $130 /-$ post ${ }^{3 /-}$ ARGEAF TYPES FOR HOTELS "XPELLAR.". 7 . $7 / 1 \mathrm{in}$. blades with baffe
outlet. 190', cge.
MEGGGER 2 scales $0 / 10000$ and 1000200 K a inf, with tes

 type 230 volts 500 watts,
Oin. 1 IIn. 76 . Posit

Post INSPECTIOS LAMP. Fits on forehead leaving hands free. battery case cilps on

$200-250 \quad \mathrm{v}$. self

 ohms: just the job for radio controiled
models. $25 /-\quad$ each Post 1/3: FIEAD tripod type, suitable fro lamps up to 100 watts, complete with
pushbar switch lamp pushear switch lamp-
holder Ideal for farm
 ${ }_{2 / 6 \text { Br }}$ Bew. 17/6. Pos TRLEPHONES NOUNI POWERED batterles required. Just connect with twin larrom telephone, extear reception. Trans mitter Recelver Units, $4 / 8$ each. Twin Flex GEA yard. Post ToR for the
model maker,
small and very powerfu1.
r. p.m. at 12
l
y
 Works from 230 v. A.C. mains with transTOLEPRHONE SETS. MODEIR DESK TYPE, E8.17.8 per pair complete.

\qquad
 Price
 Balanced
Post $1 / 6$. L. WILKINSON (CROYDON) LTD. 19, Lansdowne Road, Croydon.

THE SKYSEARCHER

This Is a 2 -valve plus metal-recelver set useful as an educational set for be-
Inners, also makes a fine second sel linners. also makes, a fine second set
for the bedroom, workshop. etc. All parts. less cabinet. chassis and speaker.
19/6. Post and lns. 2/6. Data free with parts or available separately $1 / 6{ }^{3-}{ }^{3-}$
valle battery version ilmo available at the same price.

18/6, plus $1 / 9$ post and insurance.

CAR STARTER CHARGER KIT All parts to bulld 6-and 12 -volt charger Which can be connected to a "flat",
battery and will enable the car to be tarted instantly. Kit comprising the following
-amp. re
Regulator stud switch
Resistance Wire ...
Resistance Former
Resistance Former
Mains on'off Switch
${ }_{0}^{-5}$ amp. Moving Coll Meter
Constructional Data
lus $3 / 6$ post and tns.

LATEST AVO TESTMETER

lus $3 / 6$ post and ins. ures : $-\mathrm{D} . \mathrm{C}$. volts $0-1,000$ (7 ranges), A.C. volts $0-1,000$ (5 ranges) current $0-1$ amp.
(5 ranges), resistance $0-2$ meg. (2 ranges). (5 ranges), resistance $0-2$ meg. (2 ranges).
Complete with test leads. Cash price
e9.10.0. week will receive range extender scale and data
Welding Transformer. 12V.-50 amp. continuous rating-intermittent rating
for spot welding-exceeds 2,000 amps. $45 /$ carriage and packing $5 / \%$ amps. rebuilt into six 3 amp . 12 v . full wave charger
packing.

FLUORESCENT LIGHTS

These are complete fuorescent lighting
fittings. Built-in ballast and starters tove enamelled white and ready to work deal for the kitchen, over the work bench and in similar locations. Slinkle 40 , 4 ft . 3in. long, uses a 40 -wa tt
tube. Twin 20 . Uses 220 -watt standard ubes. Price for either of these is $29 / 6$ compiete with tubes. Carriage and insur ance up to 150 miles 616 , up to 250 miles 8/6.

Powerful three-valve Mains amplifier deal for dances, parties, etc. Complet. able if required)-data $1 / 6$ (free with parts) Price 19/6. Dlus $3 / 6$ post and insurance.

Medresco Hearing Aid As supplied by
National Health National Health hauled and in overhauled and in good eix months' guaran tee. Only £2.15.0. plus $2 / 6$ post and las. Complete with ear-
phone and new ear plug but not bat supplied as an extra fories, these 5% - per set to poeket radio available to convert quested.

The famous R1154N-unused but slightly soiled and not tested. Covers $200-500 \mathrm{Kc} / \mathrm{s}$,
$3-5.5 \mathrm{Mc} / \mathrm{s}$ and $5.5-10 \mathrm{Mc} / \mathrm{s}$. Has unique "click stop" mechanism (7 stops) and permits selected frequency to be held, returned to, etc. Hartley Osctllator, Power Amplifer, keying and speech. Wonderful Complete with valves-real bargain at 29/6. Plus 10/-carriage.

ELECTRONIC PRECISION EQUIPMENT, LTD.

Post orders should be addressed to Dept. 1, at Eastbourne Address.

42-48 Windmill Hill, 968 . Grove Road. 29 Stroud Green Road, 288, London Road,

Whirl Special Carb, Grinding thick, $1 / 2^{\circ}$ or $3 / 4^{\circ}$ hole, 10 . the three
postage $2 /$. Value over $30^{\prime}-6$ for $\& 1$ post paid. Ass. grits for tool and cutter hole, 4/9 each,
H.S. Reamers
shank, slearance,
No, $1 / 32^{\circ}, 3 / 8^{\circ}, 7 / 6$ M.T shank, slzes, $7 / 32^{\circ}, 3 / 8^{\circ}$, $7 / 6$ pair,
Fine Ground Thread Taps for
instrument work, $1 / 4^{\circ}-78^{\circ}$ dia., 8 ass. instrument work, $1 / 4^{*}-78^{\circ} \mathrm{d}$
6^{\prime}. Actual value around 84 .
I . A. Taper Pln Feamers, slzes 4.
and $7,12 /$-for 3 . 1.000 H.S. In

Ing Reamers, ingerted Blade 'Expanal
 $20 /-$ each i $1116^{\circ}-13 / 16^{*}, 276$ each.
200 Cast Steal Circular Sawwood, " dia, "/6 each 8^{*} dta.. 12
 required and if rip or cross cut teeth.
300 Lengths Precision Gruand silver Steel. 36° preng, $5 / 16^{\circ}$ dia. $4 /-12 / 6^{\circ}$ dia., $10-5 / 6^{\circ}$ dia $9 / 16^{\circ}$
leng
3.000 High Speed Routing Cutters. straight shank, two lip, as used for cut-
ting slots in wood, sizes $3 / 8^{\circ}$, clear $4 /-$ each.
14. square Super Quality Tool Bils
 lone. 30^{\prime} doz. Ground finish slot1ing Cutters, 2
slitinge saws and
0.045°
dia. $5 / 8^{\circ}$ bote
 $3 / 9$ each. 3° dla $1{ }^{\circ}$ bore, $3 / 64^{\circ}$, $5 / 64^{\circ}$
thick. $1 /-$ each, $31 / 2^{\circ}$ dia., 1° bore, $3 / 64^{*}$
 each. 3/16" thick. $12 / 6.6$ Sets with bright polished steel die-
stock, dies $21 / 4^{\circ}$ dia., cutting $9 / 16^{\circ}, 5 / 8^{\circ}$, stock, dies $21 / 4^{\circ}$ dia., cutting $9 / 16^{\circ}, 5 / 8^{\circ}$,
$3 / 4^{\circ}$. $7^{\circ} / 8^{\circ} 1^{\circ}$ Whit., $50^{\prime}-$ per set. Also B.S.F. ditto, $50 /$-per set. Only a third

 1° hole, $7 / 8^{\circ}, 1^{\circ}$ thick $£ 2$ each 5° dia.
$1 / 4^{-}$hole, $1 / 2^{\prime \prime} 34^{\circ}$ thick, 50 - each.
All items brand new. \&i orders post
paid. except overseas
1,000 It, Lontr Itratuht Shunk
Twist Drills approx. $1 / 16^{\circ}$ and $3 / 32^{2}$ Twist Drilis approx. $1 / 16^{\circ}$ and $3 / 32^{\circ}$
dil. both $43 / 4^{-}$long. $2 / 6$ pair. Approx.
$3 / 16^{\circ}$ and $3 / 8^{\circ}$ dia. 6° and 7°. 5 . 5 . the two. $9 / 64^{\prime \prime}$ dia. 11^{*} long, $3 / 8$ each. Approx. $13 / 64^{2}$ dia. 10° long, $4 / 6$ each.
 facing bolt holes on castings Worth
45/-. Gift $12 / 6$ each. 45/-. Cift $12 / 6$ each.
500 Sets Hex. Die A merican Car thread or 12° Whit, B.S.F. These sets are in a neat case thread. day value over 30 - per set. to clear 15 . per set any thread. Two sets $28 / 6$ four
sets. $55 j^{*}$ Also 58° and $3 / 4^{-1} \ln$ Whit. and B.S. F . only, $5 / 8^{\circ}$. $5 /$ - each ; $3 / 4^{*}$. 8/- each. 10 - per pair. 1,000 11.s. NIorse Taper Shank End

 an 32° six Cor $10{ }^{\circ}$ Croular Split Dles 1° dia.
cutting $1 / 4^{\circ}, 5 / 16^{\circ}, 3 / 8^{\circ}, 7 / 16^{\circ}, 1 / 8^{\circ}$ whit. B.S.F. also brass thread, 26 thread all
sizes and American N.F. $12 /$ per set of
5 sizes 5 sizes, 2 sets $22 / 6,4$ sets $42 / 6$. Taps
to suit. $12 / 6$ per, set, either taper or second or plug 1 dia. stocks 6/-each.
1,000 Hand iteamers, $5 / 16^{*}$, $3 / 8$ each, 58.000 Hand

7,000 Pratt \& Whitney circular
split dies, superlor quality preclaion groundcutting edges, quality precision 5,6, B.A., $8 / 6^{2}$ per set. $13 / 16^{\circ}$ die stock. $3^{\prime} 6$ each.
5.000 Ball Ruces, $1 / 8^{\circ}$ bore, $3 / 8^{\circ}$ o.d.
 mm . o.d. 6 mm . thick, $4 /$ - pair : 9 mm .
bore $26 \mathrm{~mm} . \mathrm{m}^{\circ} . \mathrm{d}, 8 \mathrm{~mm}$. thick, 4. pair
$3 / 8^{\circ}$ bore, $7 / 8^{\circ}$ o.d., $7 / 32^{\circ}$ thick, $5 /$ - pair 316° bore. $1 / 2^{\circ} 0$. . . . $^{\circ} 5 / 32^{*}$ thick, 4 - pair.
2.000 good assortment. 10. doz also toolmakers' needie fles
ass. $12 / 6$ doz. 3^{*} sq. saw fles, $10 / 6$ doz.
ietal Marking ,unches sizes $3 / 32^{\circ}$
188°. $1 / 8^{\circ}$ and $1 / 4^{\prime \prime}$, figures, $8 / 6$ per set, letters
$25^{\prime}-$ per set, any size. $1 / 2^{\circ}$ figures، $15 /$ -
set.,000. St ralght Shank End, Stills
stze $1 / 8^{\circ}, 5 / 32^{*}, 3 / 16^{\prime \prime}, 7 / 32^{n}, 1 / 4^{\circ}, 5 / 16^{\circ}$
 $7 / 16^{\circ}$. $1 / 2^{\prime \prime}$ ditto, 126 set.
500 H.s. 00°
dia. Gount

J. BURKE

192, Baslow Road, Totley, Sheffield.
Inspection Rear 36, Fitzwilthim St. sbeflield

VOL. XXVI
SEPTEMBER, 1958
No. 434

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Ltd., Tower House, Southampton Street, Strand, London, W.C. 2

Phone: Temple Bar 4363
Telegrams: Newnes, Rand, Londoa

The Auto-cycle and Mopeds

THE Auto-Cycle Union functions in relation to motor cycles as the R.A.C and the A.A. do for motorists. There is no official body at present representing the owners of mopeds, scooters and similar small vehicles which cannot be described as motor cycles, as generally understood. This movement, however, has assumed national proportions on an ever-increasing basis in spite of those who endeavoured to stifle the movement at its birth by pouring scorn upon these vehicles "and labelling them as "buzz-bikes," "pedal-assisted motors," and similar terms of contumely. The C.T.C. found in them a means of reviving and intensifying their hate against anything to do with petrol, and suggested that they were neither fish, flesh nor fowl. They refused to take in as members owners of such vehicles, and endeavoured to give an impression of forensic erudition by stating that it was against the law of the land for the C.T.C to take an interest in drivers of such vehicles. You will no doubt remember that I challenged them on this point and asked them to quote the law which would prevent them by a simple amendment to their Articles of Association from doing so. They did not take up the challenge, for the simple reason that it is not against the law of the land.

- They must be particularly chagrined, having burnt their boats in this way, to find, at a time when the membership of the C.T.C and the N.C.U. is declining, that the Auto-Cycle Union has issued draft proposals for a new national organisation to operate under the aegis of the Union, to cater for mopeds and scooter clubs. They were invited to prepare this draft by a joint sub-committee of those clubs at a meeting in October, 1957. The A-C.U.'s proposition is that the initial organisation should be "area" in nature. There would be Area Boards, making their own byelaws in each area, somewhat similar to the A-C.U. centres commencing with half a dozen or so. A National Scooter Council is also suggested with delegates representing each area, and which would exercise executive powers. At the time of going to press, the scheme has not reached fruition, but we are hopeful that the scheme will be adopted. It cannot be denied that large numbers of utility cyclists have deserted bicycles for petrol-propulsion, and that irrevocable fact must be looked squarely in the face by the industry, who have listened far too long to the old brigade, the selfstyled " legislators," now I see elevated to the position of "statesmen" by a contem-porary-terms which are altogether too extravagant and which do not apply. This latest development is a further example of wrong judgment that has permeated the cycling movement for over half a century, which has been consistently misled by leaders of the cycling movement who seem incapable of logical judgment, and have opposed every move for change. In ordinary business, those responsible for
persistent lack of judgment would be removed from office. It must equally be remembered that they are not entirely altruistic and are in the same position as any other paid advocate.

The Cycle Show

THE Cycle Show takes place from November 15th to the 22nd. The last show was in 1956 and the gap of one year has had the expected effect of making cyclists keener to visit it than was the case with an annual show. I forecast that attendances will be greater for the biennial show than for the annual one. As we go to press, the manufacturers, with perhaps greater zest than with an annual show, are preparing their exhibits and new designs. The exhibition will, of course, include bicycles and motor cycles, mopeds, scooters, sidecars and three-wheeled cars.

This year's cxhibition assumes greater significance because of the cancellation of
design, and it seems a pity that our designers should have neglected this parent vehicle which, in many respects, needs to be re-designed and brought up to date to accord with latest principles, new materials and better systems of construction.

A bicycle, to-day, could be made lighter, more lively, and at the same time more rigid, without using old-fashioned tubes, and a more orthodox system of gearing and dynamo lights, should be produced. Here is a chance for our readers to submit practical designs for a modernised bicycle. I should be pleased to publish acceptable designs and pay readers for those which appear.

The possibilities of developing the folding bicycle for purposes of compact tramsport should not be overlooked, and the pressed steel frame is in my view a necessity. They have been tried before but like the original introduction of the moped they were before their time. The moment is right for an entirely new design of bicycle-if only to

- Old zile-hung cottages by the church at Witley, Surrey.
revive bicycle sales.

New Cycle
 Lighting Set

NEWS of great interest to all cyclists is the announcement of a new cycle dynamo lighting set, into the headlamp of which ans electric horn has been neatly built. The set consists of the headlamp, the dynamo and tail light unit and the hornburton, together with the necessary wiring. The headlamp of modern design, with a vizor, is of ample dimen-sions- 3 1in. in diameter $\times 5 \frac{1}{2} \mathrm{in}$. longto house the horn in the lower rearward part of the body, together with two six volt 0.5 amp bulbs and a battery. The second bulb can provide either a dipped
the Italian show at Milan and the Frankfurt show in Germany, and there should therefore be a greater number of overseas visitors and buyers. As the next show will not be held until 1960, this is an added reason why this year's show should break attendance records. There will be several entirely new scooters, including one of original design from a leading maker. A new moped is to be shown by one of the largest cycle manufacturers in the world and a new moped engine gear unit from another large manufacturer
As far as I have been able to ascertain, there will be no radical departures in bicycle
beam or can be used as a spare. The horn button can be clipped on to the handlebar in any suitable position. The price of the complete set, less battery, is 5os.
The headlamp (with hom) and horn button can be supplied without the dynamo and tail light unit for fitting to existing dynamo sets. The price of these two items alone, less battery, is 27 s . The makers are H. Miller \& Co. Lid.

EVERY CYCLISTS POCKET BOOK

by F. J. CAMM
T/6. $8 / 3$ by post.

A Few Hints and Tips on Avoiding Excessive Wear and on Executing Repairs

MOST cyclists find it necessary on almost every ride to carry a few things with them-a cape, rools, spare jersey, etc., and the means most often used is a saddlebag. Usually a large one is purchased, fitted by means of the straps provided, and then left in position till it wears out. However, a saddlebag, if used properly, will last much longer than if neglected.

Fig. 1.-A typical saddlebag support.
Firstly a support of some sort should be fitted and there are many on the market, a typical lightweight model being shown in Fig. 1. Most bags, whether of canvas or leather material, are reinforced underneath to counteract wear from the carrier, and if not, a reinforcing patch should be fitted as shown in. Fig. 2. Leather can be stitched with strong waxed thread using an awl to make the holes, before stitching with a stout needle.

Carrying Tools

The heaviest item carried regularly is the tool roll and this should not, as is so often

Fig. 2.-Fitting a reinforcing patch.
done, be carried permanently in one of the side pockets, as this will pull the saddlebag out of shape and cause excessive wear. Nor should tools be carried loose in the main part of the saddlebag as they will soon rub holes in the bottom and also distribute dirt and grease. The best place for the tool roll is in the centre of the saddlebag and one way to keep it there is to fix a D-shaped metal ring to the front of the bag, either by means of a bifurcated rivet or by stitching, and pass the strap round the tool roll and through the D-ring (see Fig. 3).

Strengthening Bar

Along the top of most bags, where the carrying straps are fitted, there is usually a steel bar or wooden dowel to distribute the weight of the bag and to provide a firm anchorage for the straps, which are passed under the bar. Sometimes, when the bag has been in use for some time, the ends of this bar become forced through the leather strip along the top, and the bar is lost: Replacement is simple, all that is necessary being to ensure that the new bar is the correct length and that the ends are rounded so that the same trouble cannot recur. The leather

covering-strip must, of course, be replaced, and the new one can be copied from the original when it is removed, to obtain positions of strap slots, rivet holes, etc. large-headed rivets are usually used to secure this top piece of leather where it turns over the end of the support rod, and where these have pulled through and frayed the material of the bag, the replacement rivets can have washers fitted under the tags, see Fig. 4. The leather is stitched along its length to the bag.

In canvas or leather material bags, holes can be patched with appropriate material. In the canvas type, ragged edges of the hole should be trimmed and the patch sewn on the inside, the edges of the hole afterwards being sewn down. Leather bags are easier to patch on the outside and it is not usually necessary to sew down the edges of the holes.

Using a strong needle and waxed thread, it is also possible to sew on new straps, etc., to replace broken ones.

Saddlebags, sometimes. in spite of being well treated, still go out of shape, and one of the best ways of preventing this is to

give some support by putting a floor in the saddlebag. This can be a piece of thin plywood cut to fit the flat bottom of the bag. All the corners of the board should be rounded and the edges treated in the same way. The board should be drilled in the four corners and also half way down its length and then be fixed to the leather or canvas bottom of the bag with bifurcated rivets.

Gear Calculations

M
OST people know that cycle gears are expressed in inches and many know, too, how to calculate them, i.e., number of teeth on the chainwheel multiplied by the diameter in inches of the road wheel, divided by the number of teeth on the driving sprocket. The figure which results is used by the majority of cyclists as a form of comparison; a gear of 56 in . being low, 68 in . an average touring ratio, and 81 or larger a high gear. Few people, however, know what these figures really mean. The gear in inches dates back to the Ordinary bicycle and refers to the diameter of the larger wheel in inches. A rider with a 54 in . gear to-day would travel the same distance for one complete revolution of the pedals as would an Ordinary rider with a 54 in . dia. front wheel. It can be seen that if a 27 in . wheel were fitted
instead of 54 in . and a gear ratio of 2 to r introduced between the chainwheel and driving sprocket the gear would be the same. To find the gear ratio as used by the Ordinary rider the wheel diameter must be multiplied by the number of teeth on the chainwheel divided by the number of teeth on the driving sprocket. By means of simple mathematics, it is possible from this formula to calculate the number of teeth required for rear sprocket or chainwheel to obtain any given gear ratio. The simplest method is to use a set of gear tables in which all the required figures have already been calculated.

Continental System

A different system is used on the Continent, where the gear is the distance the machine will travel for one complete revolution of the pedals, expressed in metres.

ASTRO-TERRESTRIAL TELESCOPES

Get you the best from BOTH Worlds

SIX POWER. THREE DRAW. 2in. OG. With interchangeablelenses and eyepieces giving 25, 40, 50 and 80 X terrestrial and 60 and 120 X astro. Weight 21 Ib. Length open 30 in cosed 101 in . Complete with case and sling. Mint condition, $£ 13.10 .0$. Used, perfect condition, E 12.15 .0 . Second-hand, TERRESTRIAL TELESCOPE. 30X. All brass, Length $4 \mathrm{in} . x 2 \mathrm{in}$. Weighe 7 Ib . OG. I in . As New in wood

VARIABLE VARIABLE POWER TELESCOPES. 7.21X. 2 in . O.G. Length 30 in . x 3in. Weight 10 lb . As New in ROSS PRISMATIC TELESCOPE. 20X 70. Built in fitters. Eyepiece at 60 degree to line of sight. New. $\mathrm{C12.10.0} \mathrm{}. \mathrm{Ditto} ,\mathrm{9} \mathrm{\times 50}, \mathrm{\not 55} \mathrm{} .\mathrm{25} \mathrm{\times 60} \mathrm{and} \mathrm{15} \mathrm{\times 50} \mathrm{on}$ A.A, DUAL TELESCOPES. 35×60 and 15×50 on
 2 in . O.G. All Brass. Weight lolb. Brand new. E 10 ea.
ELBOW TELESCOPE. No. 8. Mk. 17×50. New and boxed, $\mathbf{6 3 . 1 5 . 0 \text { . Other types available. }}$
PRISMATIC TELESCOPE. Triple turret eyepieces. 15, 23, 30X. 3in. O.G. With elaborate geared P. and T. with micrometer adj. Complete with tripod. Brand New and complete in two cases. $\$ 30 \mathrm{ez}$. Cost over $£ 150$.
AMERICAN N3 VP SCOPE. 10-20X, 2 lin . O.G Elaborate geared base with finder scope. Weight 40 Jbs . In two transit cases, 220 .
STEREOSCOPIC BINOCULAR TELESCOPES. No. 1. Mk. I, No. 3 Mk II and German types from $£ 12.10 .0$ to $E 25$
FINDER TELESCOPE. Inverted image. O.G. and eye focus. Cross tine, 5×30. $\$ 3$ ea
RIFLE SIGHTS. No. 32 Mk. I with E. and W. adj. sed, $£ 3.15 .0$. Reconditioned, 5.10 .0.
RIFLE SIGHTS No. 42 . $35 /$-used. E2. 10.0 as new AStic 45 mm dia rube to suir and focusing eyepiece E2 the lot. Ditto, with 27 in . O.G., 50%-. HELIOGRAPHS. 3 mirrors. Geared head adaptable for tele. or camera. brass mounts, etc., plus. lovely leather case for sports or pastimes. Mint condition. The best
 Medium, extending to 5 fe ., $50 /$-. Heavy extending. With P, and T., $£ 3.5 .0$.
DIAL SIGHT'S. No. 7 with $4 X$ optical sighe. Will lay out any angle and can be adapted for levelling, 45/- ca. Ditto, No.9, a similar but heavier job, 55/-or brand new in leather case, 85/-. Both units have geared heads cal 360 with verniers and throw out lever. Cost over $\angle B O$ ea.

UNISELECTOR SWITCHES. EXP.O., 25 w., 8 bank 25/- ea.
TELEPHONE DIALS. New. Chrome plate, with switchgear, 21/-ea
PHOTOCELLS. Two cells in sealed unit fitted eerminals bridge circuit gives about $\frac{1}{2}$ volt neg. or pos., and up to 500 micro amps. New and boxed, 15/-
AMERICAN MIDGET ACCUMULATORS. Lead acid. One six vole and 3×36 vole units in sealed can Ready charged, only need filling with acid. \&l the lot in can.
SURGEONS SKIN GRAFTING KNIVES. Bin. detachable blade with roll in guard. In mahogany case Brand New, 35/.
CONTROL UNITS, c56/ApX2. 2 off SOK pots with pointer knobs, 4 screw in fuse holders and fuses. 2 jewelled indicator lighes with lamps, wafer switch and coggle switches, etc., in black crackle case, $3 \mathrm{in} . \times 5 \mathrm{in} . \times 7 \mathrm{in}$ Brand New, $7 / 6$, post $1 / \%$.
RECORDING CAMERAS, 24 volt Elect. Driven. 11 in . F4 lens. Runs 2 frames per sec. or single shots. Tested O.K. with magazine in wood case, $\mathbf{6 3 . 1 5 . 0} \mathrm{ea}$:

MOTOR BLOWERS. 24 volt A.C/D.C. will run on 12 vole O.K. Brand new and boxed as specified for P.Ms Hedge Trimmer, 27/6.

CLINICAL TORCHES. Precision, chrome on brass, New, with lamp, 5/-ea. Post 6d.
New, with lamp, 5/-ea. Post 60.0 to 100 scaled 0.10 . shockproof mounc. New, in sealed carton, 35/e ea shockproof mount. New, in sealed carton, 35I-ea
SCHMIDT TYPE PROJECTION UNITS,
in Ferransi 24 K 4 T.V. (the best T.V. ever made). Com prising Spherical Mirror, Plane Mirror (both aluminised) and Corrector Plate or Lens, mounted as one unit and sealed in. Brand New, 65 ea . A few slightly used but as new, with rube and deflector coils, $£ 12.10 .0$.
TAYLOR HOBSON PROJECTION LENS. Sin F.S. Bloomed. Brand New, $t 14$.

NUMEROUS LENSES SUITABLE FOR PRO JECTION, from 8 mm . upwards, from 5/- ea., see .our lens lists.
NFRA RED BINOCULARS. With focusing eye pieces and objectives, interocular adjustment, image erect ower unit operates from 6 or 12 volt D.C. Brand New Tested O.K., C10, complete in crate

INFRA RED MONOCUI ARS.
with buile-in MONOCULARS. A lightweight unit with built-in Zamboni Pile H.T. unit. Self generating. Focusing eyepeiece. Image inverted, complete in leather
case. Tested O.K., $50 /$ - ea. Spare Z piles, approx. 1,500 volts, $12 / 6 \mathrm{ea}$. HAMBLIN OPTHALMASCOPE.
illuminated and magnified scale brings 19 As new. Self plus 6 aux. In case with spare lamps, E 12.
MISCROSCOPE. Watson SERVICE. Chrome model
MISCROS with $20 c s ., 2$ obis, and usual reffnements, with moch stage with vernier. Excellent condition, $\mathbf{6 3 0}$.
A.C./D.C. AMMETERS. 6 in . dial. Brand new, tropic-
ally sealed and crated. $0-15,65 /-; 0-30,55 /=: 0-50,45 /=$ Cost over 68 ea
D.C. VOLTMETERS. $0-150$ Mc. 4in, dial. Brand New. 45/:.
D.C AMMETERS. 250 amp . 8 in . Mirror scale. Substandard, in hardwood cases, $\mathbf{6 6 . 1 0 . 0 ~ e a . ~}$
GRINDING WHEELS.
GRINDING WHEELS. Carborundum. Fast cutting. Medium grit, 12 in . dia. x sin., lin. arbour, 2,000 r.p.m. WIRE WHEELS. Steel.
WIRE WHEELS. Steel. Morrisflex Bin. dia. $x 2 i n . x$ in. bore, $15 /-\mathrm{ea}$: $6 \mathrm{in} . \times \frac{1}{2} \mathrm{in}, \times 5 / 8 \mathrm{in}$. bore, $5 /$.
ANASTIGMAT LENS. II in. focus F2. No iris. cover up to lin. sq., 27/6. New. Iin. F3.5, 17/6; Ilin. F4, 27/6 PRISMATIC
8100 GIN OCULARS. GERMAN 6×30 from and 10×50 from 10×50 from
and 10×50 from El5 to $£ 20$
for Ross 7×50 and similar types, 25/-ea. Ex-gov. BINOCULAR MOUNTNGS for 7×50 and similar sentre bar eypes. A pan and tike arrangement with locking djustments, suitable for use with stick or tripod, 5/Cost over $\mathbb{C} 2$.
SPECIAL OFFER. High definition achromatic O.G. slightly marked or scratched and need cleaning, and perfect $5 / 8$ orthoscopic eyepiece to make astro telescope. Perfect results guaranteed. ≤ 2 the pair.
ORTHOSCOPIC TELESCOPE EYEPIECES. Wide angle in mount non-focusing. Brand New, 35/- ea Ditto, bloomed, 45/-. We have a very wide range of orthoscopic and other eyepieces in stock. See our lists. For Lenses and Prisms and general optizal equipment of all types see our lists. Ffe
ADDRESSED ENVELOPE.

LEARN A LANGUAGE THIS WINTER

By the Pelman Method THE problem of learning a Foreign time has been in half the Pusual method enables you to learn French, German, Italian and Spanish without translation.
By the Pelman system you learn French in French, German in German, Spanish in Spanish, and Italian in Italian. English is not used at all. Yet the method is so simple that even a child can follow it.

Grammatical complexities are eliminated. You pick up the grammar almost unconsciously as you go along. There are no classes to attend. The whole of the instruction is given through the post.

Send for the Free Book

The Pelman method of learning lanThe Pelman method of learning lan-
guages is explained in four little books, one for each language

FRENCH
GERMAN
SPANISH
GERMAN ITALIAN
(Also Courses in Afrikauns and Urdu)
You can have a copy of any one of these books, together with a specimen lesson, gratis and post free, by writing for it io-day. WELbeck 1411

POST THIS FREE COUPON TO-DAY
130, Porfolk Mansions. Wigmore St Please send details of Peiman method of learning
French, German. Spanish, Italian (Cross out three of these)
Name
Address

BUILD YOUR OWN CANOE
 Printed illustrated instructions $1 / 6$ TYNE FOLDING BOATS LTD.

 206 Amyand Park Road, St. Margaret's, Twickenham, Middx.\section*{This ELORA SOCKET SET} | arcer | |
| :---: | :---: |
| GHin | ON EASY |
| TERMS | | Drive Socket Wrenches is of Chrome Vana-

dium Steel with bright Nickel finish. In handy blue crackle enamel metal case. It comprises a Reversible Ratchet, speed Brace, T-Handle. 5 in . and 10in. Extenslons,
Universal Joints, 10 Whitworth Sockets 1/8in. to 1 in . and 12 A American Sockets 3/8in. to 1in. Cash 29.19 .6 or 25 - deposit and ? monthly payments of 28%. Also the above set but with a reduced range of Sockets-7 American sockets a/8in. to $7 / 8 \mathrm{in}$. and ash 88.9.9 or $21 /$ deposit arrid 7 monthly payments of 23/6. List Free.

BARGAIN DISTRIBUTORS (Dept. 16), 5, SILVER STREET, LUTON

In heavy gauge
steel, this Tool Cabinet has four graduated drawers, Spring lock and key, carrying handle. Finished high gloss. Overall size $16 \frac{1}{2} \times 8^{\prime \prime} \times 10 \frac{1^{\prime \prime}}{}$ Good value at $60 /=$ or $9 /-$ down and 4 monthly payments of $14 /$-.

For rapid and efficient welding of metals up to

 ANY THICKNESS. High quality and robust construction. One man portable, operates from nearest mains power point. Indispensable for Work-shop, Factory, Garage, etc. 3 current settings, snap shop, faetory, Garage, etc. 3 current settings, snap
12 months Guarantee
action switeh.

MINOR 60 AMPS E34. I3.0
MAJOR 100 AMPS E42. 10.6
Immuediate delivery.
Corriage 7/-. Prices inclusive of all necessary fitcings. face mask and supply of assorted gauge electrodes.
HARRIS ENGINEERING CO. (Dept. P.M.26), 269 Kingsland Road,
London, E.2.
Phone : Shoreditch 5583.

HANDICRAFTS TEACHER

Experience not essential

Men who enjoy making chings in wood or metal can turn their hobby into a permanent and interesting career, short hours, long holidays and security in a yob you would really enjoy can Teacher. Lee us send you details of the easiest and quickest way to get the necessary qualification.

We definitely guarantee
"NO PASS-NO FEE"
If you would like to know about our unique method of preparing you for
one of these appointments write one of these appointments write
eo-day, and we will send you an informative 144-page Handbook-FREE and without obligation. Mark your letter "Handicrafts Teacher."

BIET
 BRITISH INSTITUTE OF ENGINEERING
 591, College House,

29-3i Wright's Lane, London, W.8.

SERIES III
NUCLEAVE PRESS

> CROPS RIVETS PUNCHES

Ask your Tool Dealer or send for Sole Manufacturers.
FITZNER LTD. 197-199, KINGS ROAD, KINGSTON-ON-THAMES

STILL THE BEST BY ANY TEST!

The
 "BRITINOL"
 Spirit Blowlamp

Gives a hot clean flame 3-4 inches long, burns methylated spirit, and has neat folding soldering iron supports. Completely automatic action. Ideal for all soft soldering jobs, jewellery and lampshade making. cane singeing on basket work and many other uses.

Price $7 / 6$ from Halfords branches and Model and Tool Shops.
Send for FREE illustrated leaflet showing other Easy Soldering Products from the sole manufacturers

BI-METALS (BRITINOL) LTD.
St. Mary's Works, Bridge Road, London, N.9. Tel. : TOTtenham 9413.

A NEW COMPLETE CATALOGUE

Containing a full range of TOOLS AND MACHINERY for WOODWORK and METALWORK
Hundreds of illustrations

2s. 6d.

Refunded on first order of 40 s.
5. TYZACK \& SON LTD

341-345 OLD ST. LONDON
S. TYZACK \& SON LTD. 341-345 OLD STREET, LONDON, E.C.I

A "FERROUS" ARC WELDING AND BRAZING SET will completé your workShop equipment. For joining and re-
 able Iron. Type F.M. 65 Heavy Duty complete with all equipment $190 / 240 \nabla$. single ph. 10115 amp . (or domestic power supply)
 Ferrous Transformers (MEC) Ltd Church Rd., Croydon, 8urrey. CRÓ $8351 / 3$

TEF JTMRE IFNS ETDS PRODTGITON

THE ULTRA LENS COMPANY

17e, Oxendon Street, London, S.W. 1
Tel.: TRAfolgar 2055

KLAVARSKRIBO (B.Z.6) 10a HIGHBURY PLACE LONDON N. 5

steel SHELVING

72 in. HIGH 34 in . WIDE 12 in . DEEP

- Brand new-Manufactured in our own works.
- Shelves adjustable every inch.
- Heavy gauge shelves will carry 400 lbs. each.
- Stove enamelled dark green.
- 6 shelves per bayExtra shelves $8 /$ - each.
- Also ovailable in white at $£ 5$ per bay.
- Quantity discounts. Delivered free $£ 315 \mathrm{~s}$.

Ready for erection.

N. C. BROWN LTD.

Green Lane Wing

 HEYWOOD • LANCS-the manufacturers!
ALLOTHER SIZES available at equally keen prices.
Deliveries Free to England, Scotiand and Wales.
Telephone :
Heywood 69018 (3 lines)

Follow the FLUXITE way to Easy Soldering

No. 5. CLEANING SURFACE FOR
Solder will not adhere to a dirty surface ; so first of all clean it bright with coarse emery and then smear on FLUXITE with a piece of cloth or stick.

FLUXITE is the household word for a flux that is famous throughout the world for its absolute reliability. In factory, workshop and in the home FLUXITE has become indispensable. It has no equal. It has been the choice of Government works, leading manufacturers, engineers and mechanics for over 40 years.

FIUXITE
 SIMPLIFIES ALL SOLDERING

Fluxite Limited, Bermondsey Street, London, S.E. 1

The Bestfrend "ZEPHYR" (M) Motor and Accessories

A silent, shaded pole motor, A.C. only, $-200 / 250$ volts, 2,600 R.P.M., 25 watts. $3 \frac{1}{2}{ }^{\prime \prime} \times$ $2 \frac{1^{\prime \prime}}{2}$. Precision built and specially suitable where absolute silence is essential. Continuously rated and designed for use in construction of table and extractor fans, projector cooling units, fan heaters, cupboard airing devices, etc. An extremely high-class product, designed by engineers with a quarter of a century

3716
Post Free
An anti-vibration stand for above motor. Horizontal or vertical mounting. Supplied in breakdown form for home constructors. $8 \frac{1^{\prime \prime}}{} \times 2 \frac{1}{2}^{\prime \prime} \times 2^{\prime \prime}$. Three point suspension.
Steel, Cadmium plated. $7 / 6$
Post Free
FANS
4 Bladed Metal $4^{\prime \prime}$ diam. 5/. BAKELITE 3 Blades 8^{*} diam 7/6 Post Free

The Bestfrend Electrical Co. Ltd. BANSTEAD

Tel.: BURGH HEATH 1432

"all hands" ... but a THIRD HAND would have done

The heovens help the sailor in a plight like this I

Nowadays don'is be "all as sea" when you are doing a job where a chird hand is wanted-use a Mole Wrench, the versatile tool that holds on with hands off-ideal for the countess jobs in home, garage or workshop. Used by Handymen and Engineers the world over, its toggle action gripping power of $2,000 \mathrm{lbs}$, locks the wrench to the work, released only when the centre lever is touched. whe witench, hand vice, clamp-wher the job pliers, wrench, hand vice, clamp-wha
demands. You'll always find a use for

 $7 \mathrm{in} ., 12 / 6$; $10 \mathrm{in} ., 15 / \mathrm{F}$FROM IRONMONGERS, MOTOR \& MOTOR
CYCLE ACCESSORY DEALERS.

* ASK FOR A GENUINE MOLE WRENCH-LOOK

FOR THE NAME ON If
If in any difficulty write to: \& BIRMINGHAM, 3

Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship
Jig \& Tool Design
Press Tool \& Die Design Sheet Metalwork
Automobile Repairs
Garage Management
Works M'gmnt. \& Admin. Practical Foremanship Ratefixing \& Estimating Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance Engineering Steam Engine Technology I.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship Machine Automobile Structural R/F Concrete Structural Engineering Mathematics (all stages) Radio Technology Telecommunications Wiring \& Installation Television
Radio Servicing Gen. Elec. Engineering Generators \& Motors Generation \& Supply Aircraft Mainten. Licences Aerodynamics Electrical Design Ordnance Survey Dr'ship.

BUILDING AND STRUCTURAL

L.I.O.B.
A.I.A.S.
A.M...P.H.E. A.A.L.P.
Costs \& Accounts
Surveying \& Levelling
Clerk of Works
Quantity Surveying

A.R.S.H. M.R.S.H. A.F.S. A.R.I.C.S. Builders' Quantities Carpentry \& Joinery Building Inspector Building Draughtsmanship Building Draughtsmanship
Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptor Woodwork Teacher Metalwork Teacher Housing Manager (A.I.Hsg.)

Common. Prelim. Exam A.C.I.S., A.C.C.S. A.C.W.A. (Costing)

School Attendance Officer Health Inspector Civil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME AND EARN BIG MONEY

Men and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

OVER SEVENTY YEARS OF

 CONTINUOUS SUCCESSNational Insititit of enginering
(In association with CHAMBERS COLLEGE-Founded 1885) (Dept. 29)
I48, HOLBORN, LONDON, E.C.I
SOUTH AFRICA: E.C.S.A., P.O, BOX NO. 8417. JOHANNESBURG AUSTRALIA: P.O. BOX NO. 4570. MELBOURNE

132-PACE BOOK FREE!
 SEND FOR YOUR COPY

This remarkable FREE GUTDE explains:

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
* How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY INTERESTING COURSES

TO SELECT FROM!

A.M.I.Mech.E., A.M.I.M.I., A.M.Brit.I.R.E., A.M.I.P.E., A.M.I.C.E., A.M.I.Struct.E., A.M.I.Mun.E., M.R.S.H., A.M.I.E.D., A.F.R.Ae.S., London B.Sc., Degrees.

Fully guaranteed postal courses for all the above and many other examinations and careers: Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCGESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.
If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

My general interest is in : (I) ENGINEERING
(Place a cross againsz (2) AERO (3) RADIO (4) BULLDING (Place a cross agains (5) MUNICIPAL WORK you are interested.)

The subject of examination in which I am especially interested is

A Squeegee Roller

By J. DRUMMOND

A SQUEEGEE roller is used in conjuncA tion with a glazing plate whenever glossy prints are required. The author has found that a reasonably heavy roller helps towards perfect glazing, and to make the one illustrated in Fig. I part of an old washing wringer roller was trimmed to a

length suitable for half and wholeplate prints. The rubber is turnable in a lathe, but if the wringer roller is in reasonable condition, turning can be dispensed with.

The bracket is a piece of black lacquered mild steel of cross-section $\frac{1}{2}$ in. $\times \frac{1}{8}$ in The ends have a $\frac{1}{4}$ in. clearance hole drilled through them to take'a $\frac{1}{4}$ in. screw which is screwed into a tapped hole in the roller ends.
The handle, one from an old file, was held in place by a screw-nail through a clearance hole in the centre of the bracket.

A Sink Drainage Tube

By J. D.

Fig. 2.-Sink drainage tube.

A sink $\mathrm{A}_{\text {drainage }}$ tube is a necessity if prints have to be well washed. The tube shown in Fig. 2, consists of two concentric brass tubes soldered to a brass base plate. The outer tube is of in. dia. and the inner of $\frac{1}{2} \mathrm{in}$. dia. The height of the inner tube above the base deter-

mines the depth of water in the sink. The outer tube has a number of $3 / 16 \mathrm{in}$, dia. holes drilled round the circumference at the base end to enable drainage to take place. The number and size of the holes determines the rate of water flow. The holes can be in a vertical position if so desired.

A large rubber disc jammed on the inner tube, which projects about $\frac{1}{8}$ in. from the base, enables any size of sink drainage hole to be covered.

A Film Wiper

By J. C. LOWDEN

THIS useful item can be made very easily from a strip of Perspex about r 5 in. long and r in. wide of any thickness up to $\frac{1}{2}$ in. The centre is soaked with boiling water until it becomes pliable, and the strip is bent around a tube of about rin. dia. until the ends are parallel (see Fig. 3). Then the inside surfaces are faced with thin viscose sponge fixed with a good universal adhesive. The film wiper should be used wet and must be kept scrupulously clean. Any particle of grit on the sponge would severely scratch the film.

Fig. 3.-Film wiper details.

Tips for the Tourist

A TOURING holiday gives far greater opportunities for the photographer than any other type of holiday and when visiting an old and historic or picturesque village, too often only the features mentioned in the guide book are photographed. These castles and cathedrals, of course, deserve a place in the album, but the photo-

(Above) A famous city gate photographed from the side. (Left) A quiet and picturesque street.
grapher is only duplicating what has been done many times before by the professional. Why not try a less usual view, as shown in the picture 'above of a famous city gate? Often, too, the quieter streets will provide interesting photographs, as can be seen on the left. The obvious does not always make the best picture!

A BASTC 35 mm

Part 2 Describes the Shutter and Viewfinder

ATIACHED to the back of this box by two screws is a back plate or pressure plate which keeps the film flat. The film actually travels through a slot and in doing so turns the pin drum to count one exposure. All of this part must be smooth and polished to prevent it scratching the film as it moves along. There is no flat at either side, only the edge of the metal, and the cassette opening lies close up to that. Some length was saved in the camera by this arrangement and it works very well.

The whole of this box is riveted to the

By A. L. Jackson

(Concluded from the August issue) under tension by a short length of spring. The box was also modified to accommodate this arrangement, as was seen in the August issue.

Either method of cassette location can be employed, but the one shown in Fig. 6 (August issue) is perhaps the simpler.

At the top of the interior mechanism the L.H. knob winds on the film. It needs a slotted stud to fit the cassette, turned down and extending through both plates with a screw to secure the knob. A cupped metal washer or a piece of felt under the knob may be an advantage. At the R.H. side is another knob which is a simple registering device. This is turned each time an exposure is made. A screwed stud is extended to take the full cassette. At its top is a distance piece, and on top of that is a Iin. washer. Between this washer and the top plate is a recessed knob, which is made a tight enough fit to stop it turning on its own. Here again a felt washer would help. Figures stamped round the washer

Fig. 9.-The base plate and levers for the shutter.
inner top plate squarely in the centre. The top plate with the interior mechanism attached is held into the body by one screw through the camera bottom, and a screwed bush to receive this is soldered in the centre of the box; a nut could be used.

Across the bottom of the box is riveted a piece of springy phosphor bronze strip. Hard brass would probably suit. At each end it carries a $\frac{7}{3}$ in. dia. stud which fits the cassette bottom hole. This bronze strip also serves to hold together the joint in the box. A piece of brass was also soldered inside the box over the whole of this join and up where the film slides.

In the photographs and the exploded view of the camera an alternative method of locating the bottoms of the cassettes is shown. As can be , seen this consists of two small "hooks" pivoted on short rods and held

and a white dot on the edge of the knob enable one to indicate each exposure as made. The prototyps was stamped one to ten, and it was found quite easy to remember if ten or twenty had been passed so long as intermediate numbers are recorded. Twelve would perhaps be better with thirty-sis exposures.

Wind-on Indicator

Indication that another exposure has been wound on ready is done by a pin drum (Fig. 5). The dimensions of this are shown and it consists of a thick disc, marked off in eight divisions. Eight holes are drilled and either screws or pins fitted. They are then filed to suit the film, being tapered slightly at the ends. They resemble eight widely spaced gear teeth. Into the centre
of this pin drum is fitted a $\frac{1}{8} \mathrm{in}$. steel spindle, the top end of which carries a plain disc, turning in the large hole in the top plate. It turns in a bearing made from a piece of $\frac{1}{4} \mathrm{in}$. rod which is screwed into the top plate. The drum should be fitted so that the film just rides on the drum itself, leaving the pins to project well up through

Fig. ro.-The assembled shutter.
the holes. A slot will be necessary in the back plate to clear these pins. One revolution of the disc is one exposure leaving about $\frac{1}{8} \mathrm{in}$. between exposures. Over the hole in which the disc works a piece of thick celluloid is cemented to keep out dirt. A mark on the disc and one on the body were necessary to indicate one revolution of the disc and the passage of one frame.

The only other part in this assembly is the "shoe" to take various view-finders. It is bent up from sheet iron and tinned. Two $8 \mathrm{~B} . \mathrm{A}$. screws secure it.

The Shutter

The shutter levers and blade are mounted on a steel plate $\frac{13}{\frac{3}{4}} \mathrm{in}$. dia. and with a $\frac{1}{4} \mathrm{in}$. hole at its centre. Steel is used because it can be easily blackened by heating and dipping in oil several times. This avoids the use of paint, which wears off and causes trouble. For the same reason all the levers should be of sheet steel. The sizes of all

Fig. I1.- 1 view of the completed shutter.
levers are shown in Fig. 9. It will be seen that about I/I6in. of the ends of levers "B" and "C" are turned down. The purpose of these ends is to slide over levers in one direction, but to push them on returning. Therefore onc side of these turned down ends needs to be rounded.

Fig. 12.-The author's simple lens combination. The lever ends over which they slide must also be tapered a little so that they ride up easily.

Operating
 Sequence

This can be seen in Fig. 10. Trigger C is pressed down and its far end catches on lever B and lifts it. The reverse end of lever B goes across until it rises up aver the end of shutter blade A. These movements are shown by dotted lines. Just after this the end of the trigger lever C slips past the end of B. Spring F brings B

Fig. 13.-Two photographs taken with the simple lens shown above.
sharply back. Its far end carries shutter blade A with it and the hole is uncovered. When the hole is fully open, B slips past the end of shutter blade A. Its own spring E brings it back over the hale again and the exposure is complete.

Assembly

Having made all the levers, the first adjustment is to set spring E so that it closes the shutter blade with the minimum pressure; it must, however, act firmly. E passes through a small hole in the turned up lip of the shutter blade and through a small hole in the stud. In the prototype it was soldered into the stud as well.

Lever B is next assembled and its spring F adjusted until it brings the lever back without using more tension than is necessary. Finally lever C, the trigger lever, is assembled and made to operate properly. Spring G may be firm. If it is too light the trigger could be operated by accident, though, as the amount of movement is large before the other levers operate, this is not a serious danger

It will be noticed that a part of a gear wheel is fitted to lever B. This meshes with a small pinion on a separate stud. Attached to this pinion is a flywheel. This serves to slow up the movement of lever B, and thus
slows the shutter operation. This is a help in dull weather, but is probably not strictly necessary using a fast film. Experiment will show whether a slower shutter speed is feasible without introducing camera shake. On the L.H. side of the shutter blade will be seen a turned up projection and on the base, a small block. This block is screwed to take a cable release, the end of which projects through enough to push the blade open. This is the provision for making time exposures. The completed shutter can be seen in Fig. Ir.

The Lens

While the simple combination already mentioned, and shown in Fig. 12, will give fairly average results for contact prints, enlarging brings out the faults of the lens. Only up to $3 \frac{1}{\mathrm{in}}$. $\times 2 \frac{1}{4} \mathrm{in}$. are passable. Enlargements of pictures taken with this lens are shown in Fig. 13.

A better lens must be fitted if larger pictures are wanted. H English, of Brentwood, Essex, has a large selection of all types of lenses. I would suggest at least an achromat which is a colour corrected lens of two or three glasses. Many good lenses have as many as six glasses to correct for the various faults or abberations and a price to correspond. Should you wish to have the thimble engraved, Messrs. Evans Bros., of Clerkenwell Green, London, E.C., are suggested for the work.

Focus

First remove the camera interior mechanism and the camera front assembly. A piece of hardboard or something similar must be placed in front of the interior mechanism to space it out to the level of the front when in place. The front is then strapped tightly to the interior mechanism and spacer with strong rubber bands. Open the shutter with the cable and adjust the lens mount in or out until a clear view is obtained of an object about 15 ft . away. A glass is useful for this purpose. That object must be seen clearly on a piece of ground glass lying on the film guide and taking the place of the film. In the absence of ground glass a .cigarette paper will serve or even tissue paper. It will be easier with ground glass which has a finer grain.
This will give the hyperfocal distance for a lens of 2in. focus, working at F.8. It will not apply with different conditions. Everything then beyond about 7 ft . should be in good focus, depending upon the quality of the lens, of course.
Shutter speed may be checked quite simply
by fixing a 12 in . paper disc to the spindle of a small synchronous motor as used for making electric clocks. These motors turn at one revolution a second. If this is taken outside in a good light a single black mark near the edge of the disc photographed by the camera will make a blur. Fourtcen degrees indicates about $1 / 25 \mathrm{sec}$. A complete revolution of the disc is, of course, one second, half is $\frac{1}{2} \mathrm{sec}$. One-tenth would be 36 deg. Using the same method, any suit-

able motor could be employed provided its speed is accurately known. Gramophone motors have been used.

View Finders

In the prototype a simple wire frame finder screwed in place of the shoe was used. It consisted of a bent up frame as shown in Fig. 14, having small holes at each end. Into these holes the ends of wire frames were fitted so that they could be folded when not in use. The size of wire frame which will accurately show the view at eye level is very easily found by observing the view seen when focusing the lens. In practice it was found that such a size was unwieldy and had to be reduced. A frame of the same size as the negative can be accommodated, i.e., $1 \frac{3}{4} \mathrm{in}$. X in. But the negative will take in more than that. At the back it will be necessary to fit a piece of metal terminating in a rounded point, which conies_just half way up the main frame. Its purpose is to enable one to level the camera properly. Preferably, cross wires shou'..: b: used on the main frame so the rounded point can be brought level with the cross. The type of mount, its main frame and pointer are all shown.

The purpose in fitting a shoe was to carry out some experiments on view finders and so far one eye-level finder using home-made Perspex lenses has been produced.

Cassettes were bought at a local shop for 2s. 3d. each and it is suggested that these should be purchased before construction is started as they may be of different design to the ones used in the prototype.

Books for Photographers MANUAL OF THE MINIATURE CAMERA $21 /$ - or 22/6 by post.

COLOUR PHOTOGRAPHY FOR THE AMATEUR 21/- or 22/6 by post.

INDOOR PHOTOGRAPHY

 15/- or 16/1 by post.
ENLARGING FOR THE AMATEUR

 $6 /$ or $6 / 9$ by post.from Geo. Newnes,.Ltd., Southampton Street, London, W.C. 2

FOR those who wish to avoid the delay occasioned by overnight film drying and also the danger of dust becoming embedded in the soft film emulsion, the answer is a film drying cabinet. The details and dimensions pertaining to the one shown in Fig. 3 can be adjusted to suit the requirements of the indiviual worker.

The Cabinet Carcase

This is made throughout of the lightest hardboard braced with light lath and $\frac{1}{2}$ in. quadrant. The hardboard back measures 48 in . $\times 8 \mathrm{in}$. and the two sides, 48 in . X 6 in. (see Fig. 2).

Along the full length of each edge of the back is glued and pinned a length of $\frac{1}{2}$ in. quadrant. Any good adhesive, but preferably a waterproof glue, can be used. A space, the thickness of the hardboard, must be left between the right angle of the bead and the edge of the back panel.

The side panels are next affixed to the quadrant by the same method. Assembly is greatly facilitated if the plywood base and top ($8 \mathrm{in} . \times 5 \frac{\frac{3}{8}}{} \mathrm{in} . \times \frac{1}{2} \mathrm{in}$.), the lower front panel ($8 \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in}$.) and the upper front panel ($8 \mathrm{in} . \times 5 \frac{1}{2}$ in.) are prepared ready. These parts are fixed in place with round headed woodscrews, and the carcase squared up and left to dry.

At some convenient stage in the proceedings, an aperture, of any reasonable shape and size, must be cut in he top panel. The aperture is then covered with a light gauze or perforated zinc, as used for foodsafes. The purpose of the zinc it to serve as cover for the blower fan blades, and as a filter to keep stray dust particles out of the cabinet.

The lower front panel must also have a few holes drilled in it to permit air to enter. These holes are screened at the front with a piece of gauze or zinc, behind which is a washable filter of fine silk or other material. This traps the dust.

When the carcase is complete, all joints must be taped to ensure a good airtight seal. A narrow strip of brown paper will suffice, or a commercial adhesive tape may be used.

The appearance of the lower panel will be enhanced if the raw edges of the gauze screen are neatly framed with very thin wood, or food safe ventilators may be fitted.

When the carcase is completed, the edges of the side panels nearest the door are internally braced with light laths of about rin. $\times \frac{1}{4}$ in., and 39 in. long. These braces run from lower to upper panel, and serve as door checks, act as air and dust seals, and stiffen the carcase. The edges of the lath must be set back from the edge by the thickness of the braced door, so as to permit a flush fit. Any other internal bracing as may be thought necessary may be included.

The door is a length of hardboard 39 in . long $\times 7_{\frac{3}{8}} \mathrm{in}$. wide, internally braced all around its perimeter with light laths. It may be found advisable to make the door slightly oversize, and plane it down to an exact fit.

The door should be firmly hinged to the frame, and a simple catch fitted to hold it in a closed position.

Blower Bearers

These are of any suitable wood, $5 \frac{1}{2} \mathrm{in}$. long, and of L-section. The "webs" of the L-section should not exceed $\frac{1}{4}$ in. thickness. The lower or bearing surfaces will need to be drilled to take the fine (about 6 .A.) bolts fitted on the flange of the blower casing, using the casing itself as a pattern.
The blower bearers are affixed to each side of the cabinet $5 \frac{1}{2}$ in. from the top, by woodscrews through the sides. Care should be taken to keep the gearing surfaces level. After the position of the bearers has been fixed, they should be removed, bolted to the blower motor casing, and then the whole can be replaced as one unit.

The Blower Motor

This motor, which is a piece of "surplus" equipment, is fully enclosed in a light metal case, ready flanged, with a gauze base. The connections are simple. At the top of the box is a screwed sleeve olug. Inside this is a
split tube connector, which will accept a standard wander plug. This plug, attached to one lead of plastic - covered twin flex, is inserted in the split tube. The second lead may be connected to any part of the casing.

No modification of the motor is needed, unless it is desired to make a much smaller cabinet. In this case the maximum size need be governed only by the fan blades, since the motor itself and its supports are both very s mall indeed, and the casing is e asily removed.

This blower motor is low voltage equipment and functions perfectly on 30 volts supplied from a

Fig. 1.-The blower motor.

Drying and Avoid Dust mination!

is $26 \mathrm{~s}, 6 \mathrm{~d}$. plus postage. It can be seen in Fig. ${ }^{1}$.

The suppliers advise that in the case of certain motors it may be found desirable to repack the front and rear bearings with any high melting point grease in order to

of the drying cabinet and the details.
reduce the sound of the motor to the absolute minimum. This is a very simple job. In fairness to the equipment, it must be added that the writer's own motor has not been so t:eated, and the purr of the mo:o: is so low as to be barely audible, even when listening intently.

The Transformer

Many readers will have their own transformer, but the transformer used in the prototype was fitted with a range of tapping points up to a maximum of 30 volts at 2 amps. Full wiring instructions were printed on the label and the transformer was supplied by Messrs. Milligan's at 215. plus postage.
In order to utilise the relatively heavy weight of the transformer to lower the centre of gravity of the tall cabinet, it is fitted inside the base compartment. For protection the transformer is housed in a light wooden casing, inside measurements $3 \frac{1}{2}$ in. $\times 3$ łin. $X 3$ in. This box is a very light affair, made from "offcuts." The transformer is screwed to the base of the box by means of the lugs on the frame, the entire box being secured to the floor of the cabinet. The flex to the motor is secured to the rear quadrant brace of the cabinet. The "input" flex emerges from the box and leads to a small junction box fixed to the lid of the transformer box. The A.M. junction box, price 9d., was obtained from Milligan's.
This junction box is wired to the mains in the usual way, the mains lead being passed through the side of the cabinet.

One lead from the junction box is taken to the transformer as already described. A further lead is fed to the batten holder which is used to hold the mains voltage heater lamp. This batten holder must be firmly secured to the base of the cabinet.

The Heater Lamp

The heater lamp used in the model described is a 40 -watt miniature fitting lamp from a well-known store. This particular lamp was selected because its relatively large glass bulb offers a bigger heating surface. Within reason, any type of lamp may be used, and a low power carbon coil heater lamp has proved to be a very efficient heat source. Overheating is avoided since the fan draught is so strong.

Heater Lamp Cage

This is a very simple cage to diffuse the heat, and to protect the lamp from any possible stray drop of water. A piece of perforated zinc is rolled around any cylinder of about $2 \frac{1}{\frac{1}{2}} \mathrm{in}$. diameter and lightly soldered into tube form. A square of the same metal, soldered on to one end, can then be trimmed to fit as a top cover. A small fixing lug of tinplate, soldered to the lower end, is-drilled to allow the cage to be fixed to the base of the cabinet.

Film Carrier Rods

These are two $\frac{1}{2}$ in. dowels 8 in . long, fitted across the cabinet immediately below the blower bearers and screwed through the hardboard sides. On each rod are four "clothes

Fig. 3.-The completed drying cabınet.
line" grips, hoops of stainless steel with plastic gripping surfaces. These grips may be bought at most household stores for a few pence a dozen. Many workers will no doubt prefer to use the proprietary film clips on sale for the purpose.

The cabinet is long enough to take the full length of a 120 size, or a 20 exposure length of 35 mm . film. When drying a full length (36 exp.) 35 mm . film it will be neccssary either to cut the film or to loop with a stainless steel clip.

The Drying Cabinet in Use

After the film has had its usual thorough wash in running water, it should be rinsed for ten minutes in still water to which has been added the correct amount of wetting agent. The wetting fluid should not be used in excess of the stated amounts, or it may become sticky, and have precisely the opposite effect to that intended. After this rinse the film should be run through well-wetted fingers, or lightly wiped with a film wiper to remove large droplets of water.

Plate negatives can equally well be dried in the cabinet, provided that hangers are used.

Before using the cabinet for the first time it is a wise precaution to clean out the interior thoroughly with a vacuum cleaner to remove working dust, and this action might well be repeated periodically.

Finish

The exterior may be finished with any suitable paint or stain, or the pleasing brown of the hardboard may be left untouched. If it is decided to treat the interior, care should be taken not to use paints compounded with genuine turps or substitute, both of which attack film emulsion.

How to Obtain the Best Results

THE exhibits at Farnborough and other air shows present opportunities for record photography of the parked aircraft, and action shots of the flying which generally takes place at a low level above the runway. True, the photographic aspect is not made too easy by the numbers of people inspecting the aircraft, but no real diffizulties are encountered. Photography at civil airports is quite feasible although, owing to the distance usually separating the public enclosure and the tarmac and runway, it is not always possible to get the image of the aircraft very large on the negative.

Parked Aircraft

It is obvious that there is no need to have a camera with a fast shutter speed. The lens must be capable of being accurately focused, and the aperture should be capable of adjustment so that the whole length of the fuselage of an aircraft photographed from a three-quarter front position will be recorded sharply. Dull light and poor weather may render this rather difficult to accomplish, but every effort should be made to obtain sharp focus from the nose to the tail of the aircraft (Fig- 1). The front view of a particular aeroplane is not necessarily the best for the purpose of illustrating the various interesting technical aspects of its design. The best policy is to walk around an aircraft and carefully note the position of the
principal points you wish to illustrate. Then
the best viewpoint can be found and the picture taken. In Fig. 2, the all-round visibility from the control position, the propulsion unit and the tail were the most important technical features for the purpose of an illustration. The picture is, however, almost a "tail-on" view.

Shots for Effect

On occasions it may be de-
Fig. I.-(Above) Adequate depth of focus is essential even in bad lighting conditions.
Fig. 2. - (Left) A helicopter photographed to include all the principal technical points.
Fig. 3.-(Below) The long nose of this aircraft has been deliberately exaggerated in this view.

sirable to avoid showing all of the aircraft and, by choosing the camera viewpoint very carefully, to exaggerate some special and characteristic part of the exhibit. This has been done in Fig. 3, where the long slender nose of the aircraft is more prominent in its rendering and positioning in the picture area, than the remainder of the aeroplane. A low angle was chosen, well in to the nose of the aircraft, and the lens iris closed down to give adequate depth of focus. A very light yellow filter, to bring out the cloud formation, was clipped over the camera lens and the exposure made almost directly into the light.

Since the choice of the camera angle may not always enable you to have the illumination coming from the best possible quarter particularly on a sunny day which gives high

Fig. 4. - A flying picture enlarged from a small section of a negative made on a fine grain film.

Aircraft in Flight

The owner of a camera with only slow shutter speeds will need to content himself with pictures of parked aircraft and others standing on the runway immediately prior to takéoff. Cameras fitted with shutters having a top speed

a lens-hood for every shot. "In this way, the greater part of the extrancous light is kept away from the lens and the picture brilliance is not affected. Working right against the light is not particularly troublesome, once you have mastered the art of giving sufficient exposure to enable the shadows to be recorded without undue loss of detail and, indeed, it is often productive of some very dramatic effects.
of $1 / 250$ th of a second or faster, can be used for actual flying shots. Naturally, the nearer you are to the flying area the better will be the results.

In general, only the higher-priced miniature cameras have the facility of interchangeable lenses, so enabling a long focu* objective to be used and a correspondingly large image to be obtained on the negative. Users of cameras having only the standard lenses will have to obtain the required degree of enlargement when making the print. For this reason it is important to use a relatively slow fine-grain panchromatic film. As the majority of flying pictures are taken at the "infinity" focus setting, there is little point in stopping the lens aperture down very far, except to gain good overall definition; this latter point applying mainly to the very fast lenses. Provided that a high shutter speed can be used with a slow film, the aperture is esed only to control total light intake.

As the aircraft to be photographed approaches, hold it in the centre of the vicwfinder and, still swingng round to follow the subject, gently release the shutter as a suitable angle is reached. By doing this, it should be possible to obtain a sharp image which will stand considerable enlargement (Fig. 4).

with revolutionary

 cooling system

- Sturdy construction

 - High quality finish
- Exclusive design

Tubular metal side supports enable erecrion to be carried out in a few seconds. Screen stands on its own feet on table or other flat surface, or may be suspended from picture rail or hook. These screens ensure excellent colour reproduction and their whiteness is lasting.

Approx. Overall Size	Actual Picture Size	Matt White
$30^{\prime \prime} \times 30^{\prime \prime}$	$28 \frac{1}{2}^{\prime \prime} \times 28^{\frac{1}{2}}$	2.17 .6
$40^{\prime \prime} \times 30^{\prime \prime}$	$38^{\prime \prime} \times 28 \frac{1}{2 \prime}^{\prime \prime}$	3.8 .6
$40^{\prime \prime} \times 40^{\prime \prime}$	$38^{\prime \prime} \times 38^{\prime \prime}$	4.2 .6
$50^{\prime \prime} \times 40^{\prime \prime}$	$48^{\prime \prime} \times 38^{\prime \prime}$	4.12 .6
$50^{\prime \prime} \times 50^{\prime \prime}$	$43^{\prime \prime} \times 48^{\prime \prime}$	5.2 .6
$60^{\prime \prime} \times 45^{\prime \prime}$	$57^{\prime \prime} \times 43^{\prime \prime}$	6.7 .6
$60^{\prime \prime} \times 60^{\prime \prime}$	$57^{\prime \prime} \times 57^{\prime \prime}$	6.12 .6

EXTRACTION COOLING

A revolutionary method of cooling is employed, whereby the temperature is kept at the lowest possible level, and the body of the projector always remains cool. A powerful fan sucks cool air in at the top, down past the lamp, and out at the base. Never before has there been such a powerful projector which remained so cool, even after hours of use.

EXTRA ILLUMINATION

The Aldaspheric optical system has been designed round a new type of 500 w . lamp specially developed for Aldis. The resulting screen illumination is simply brilliant and equals that given by some $\mathbf{I}, 000 \mathrm{w}$. projectors.

EXTRA ADAPTABILITY

Super Aldisette will take three different lenses (focal lengths: 8.5 cm ., 10 cm ., and 13 cm .). It will take three different lamps ($500 \mathrm{w} ., 300 \mathrm{w}$. or 150 w .) making it possible to vary size of picture, distance and illumination. It takes the Airequipt Automatic Slide Changer, and can also be used to project film strips.

The latest Aldis projector incorporates many advanced features, all designed to make colour slide projection better than ever before-it is years ahead in design and per-- formance. Your dealer will be pleased to show some of your slides on the Super Aldisette and explain its many technical advantages. It represents really outstanding value at only

> £25.17.6

500 watt lamp (all voltages) 42/-
Sole Wholesole Distributors :
NEVILLE BROWN \& COMPANY LTD - LONDON. W.I.

Photographers!

Here's everything you need to 'PRINT-IT-YOURSELF'

This inexpensive outfit wlll set you up to print your own pictures-an absorbing hobby! The equipment includes: Printing frame ($3 \frac{1}{2} \times 2 \frac{1}{2}$), packet of Sce-Thru masks, 2 plastic forceps, 2 clips, thermometer, measure, 21 plate dishes, dark-room lamp (battery operated), 1 packet of M-Q developer, 1 packet of developer 468 , 1 tin of acid hypo fixing powder, 1100 c.c. Azol developer. FOR CONFIDENCE IN PHOTOGRAPHY-

JOHNSONS of henoon ito

do it yourself unit lighting system

The Photopia Unit Lighting System due to its unique design is fully interchangeable and for this reason it is possible to purchase one complete Single Floodlight and by obtaining additional parts, convert it into a triple unit, etc- etc. Basically five different units are available, but having acquired one it is only necessary to buy the few extras to convert it at will to another unit-lots of possibilities are available.

BUY IT AND BUILD IT PIECE BY PIECE, WEEK BY WEEK
The Table Floodlight comprises a triangular base to which on a moving joint is fitted a $9 \frac{1}{2} \mathrm{in}$, reflector accommodating either No. 1 or No. 2 photofloods. By adding only a stand the table flood can be made into a single flood.

TABLE FLOODLIGHT E1.9.3.
The Single Floodlight 64 in . in helght incorporates a unique heavy folding base and the top sections can be moved through 360°. For even further versatility the reflector also rotates. Conversion to a triple unit is simple by the addition of two reflectors and bars.

The Triple Unit comprises chree individually adjustable reflectors mounted on moving cross tubes on the 64 in . folding stand. The Triple Unit is supplied wired with plugs and adaptors and by the addition of a Pistol Grip one also has a Wander-
light Unit.

The Photopia Titler incorporates a standard title frame illuminated with two reflectors which can be moved on rails. A sliding carriage rigidly holds the camera in position. The Titler by the addition of a base can be converted into a single Floodlight.
The Wanderlight illustrated above, as the name implies, enables a camera to be secured to a pistol grip which itself, for illumination purposes, supports two reflector secured to a pistol grip which itself, for iflumination purposes, supports two reflector
units. The operator is free to move about with a complete unit.
WANDGT, 63.13 .10

Send 9d. for 100-page Catalogue.

NORTH STAFFS PHOTOGRAPHIC SERVICES, Ball's Yard, Newcastie, Staffs.
London Showroom: 36 WARDOUR STREET. PICCADILLY. LONDON, W. 1.

BY SYTEC

SOLVES THE MOUNTING OF CARD READYMOUNTS
KODAK $38 \times 40 \mathrm{~mm}$. COLORSNAP TRANSPARENCIES
AND FOR STANDARD CARDMOUNTED 35 mm . TRANSPARENCIES WILL TAKE UP TO $40 \times 40 \mathrm{~mm}$. TRANSPARENCIES.

20 for 8/6d.

syTEC SUPREMO

THE FINEST ALUMINIUM PRECISION SLIDE IN THE WORLD

NOW-10/6 for 20

ACCEPTED BY THE COUNCIL OF INDUSTRIAL DESIGN FOR DESIGN INDEX-ON SHOW AT THE DESIGN CENTRE, HAYMARKET, LONDON. AND AT ' DESIGN 58' 48 WEST GEORGE ST., GLASGOW.
23 Sq. UNOSCOP 352 PROJECTORS, COMPLETE, LAMP CASE 19196 SEND FOR DETAILS OF UNOSCOP FOCAL PROJECTORS AND SEVEN 2^{3} SQ. SLIDES AT $10 / 6$ FOR 12.
THE SCIENTIFIC \& TECHNICAL CAMERA CO. LTD., SLIDES DIVISION
103 DAVIGDOR ROAD, HOVE 2 , SUSSEX

COMPONENTS

for "THE PRACTICAL MECHANICS"

ELECTRONIC FLASH OUTFIT

HIGH EFFICIENCY "ALUX" REFLECTORS
MAZDA FLASHTUBES TRIGGER COILS PLESSEY CAPACITORS

Send S.A.E. for list to :

GENERAL ELECTRONICS

I29, Portobello Road, London, W.II.

[^0]: Sole Makers: HERBERT TERRY \& SONS LTD \& REDDITCH • WORCS

[^1]: Addresses for Overseas Readers
 Australia: 140. Elizabeth Street, Sydney, Eire: 3, North Earl Street, Dublin India : Lakshmi Bidg., Sir Pherozsha Mehta Rd. Fort Bombay. New Zealand
 182. Wakeficld Street. Wellington. N. Ireland: 26, Howard Street, Belfast 182. Wakefield Sereet, Wellington. N. Ireland: 26, Howard Streec, Belfast. South Africa : P.O. Box 19. Cape Town

[^2]:
 I am interested in making successful fixings with Rawlplugs and would like a copy of the 16 page booklet "A.B.C. of Fixing" for which I enclose 3d. stamp for postage.

 ## NAME.

 ADDRESS

 The Rawiplus co. Ltd. Dept. JEs, Gromwell Rd., London, s.w. 7

[^3]: Send 3d. stomp for FREE Cotologue.

[^4]:

