


## and step up production...

For working within close limits, an Anglepoise is simply indispensable. However good a worker and his eyes may be, he must see the job. This applies in all fine work, drilling, assembling, etc., where instantly adjustable close-to-the-job lighting is a sheer necessity.

Anglepoise throws a clear, concentrated light right on and into the work, not in the operator's eyes, follows the job from any position or angle, degree by degree, at a finger-touch and 'stays put' in any required position-and out of the way when not needed. It needs only a low-powered bulb for high-class results -a big saving on the lighting bill (it can be supplied with a small shade for low voltage systems). Why not learn more about this fine lamp by sending for Booklet XX?

TERRY Anglepoise LAMP

- a suggestion for machine manufacturers:

Why not fit your products with Anglepoise? We will submit samples on approval.


Sole Makers: HERBERT TERRY \& SONS LTD • REDDITCH • WORCS HT2OA


Made by James Neill \& Company (Sheffield) Limited and obtainable from your usual tool distributor

## steel SHELVING

72 in. HIGH
34 in. WIDE
12 in. DEEP
(3) Grand new-Manufoctured in our own works.

- Shelves adjustable every inch.
- Heavy gauge shelves will carry 400 lbs. each.
- Stove enomelled bronze green.
- 6 shelves per bayExtra shelves 8/- each.
(1) Quantity discounts

Delivered free £3 15s. Ready for erection.


## N. C. BROWN ${ }^{\text {LTo }}$.

ALLOTHER SIZES available at equally keen prices.
Green Lane Wing HEYWOOD • LANCS
-the manufacturers!

Telephone :
Heywood 69018
(3 lines)

## Build your <br> own <br> perfect <br> scale model <br> boat

with the help of

## 6 QDED PLANS

By following 'Shipright' Plans you can quite easily build Model Boats such as Cabin Cruisers, Motor Yachts, Cargo Carriers, Cross-Channel Passenger Ships, Whale-catchers and Deep Sea Trawlers, etc., all to completely accurate scale. Each design has been proved by the construction of a model. 'Shipright' Plans are obtainable only from Bassett-Lowke.

Send for fully illustrated catalogue of 'Shipright ' Plans.

## "GWEN EAGLE"

 CABIN CRUISERBuilt by Wm. Osborne \& Sons.

Scale $1^{\prime \prime}=1$ foot. Length $40^{\circ}$. Beam $11^{\circ}$. MC.23/I. General arrangement Profile and Deck Plan.
MC.23/2. Hull lines.

Price: The Set $10 /$.
Separate drawings 5/- each.

"RING OF LIGHT"
BROADS CABIN CRUISER
Scale $3^{\prime \prime}=1$ foot. Length 271". Beam $7^{\prime \prime}$
MC. $21 / 1$ General Arrge. Profile and Deck Plan.
MC.21/2. Hull Construetional Details, Sheet I. MC.21/3. Hull Constructional Details, Sheet 1. Set of three Plans, Price 5/- each.

## "DEIANERIA"

217 TON MOTOR YACHT Scale $3 / 1 C^{n}=1$ foor. Length $377^{* *}$. Beam $63^{*}$. Set of two Plans, Price 5/- each.

# BASSETT-LOWKE LTD. 

18 Kingswell Street, NORTHAMPTON
"SETTER" WHALE CATCHER
Scale $\mathfrak{Z}^{\prime \prime}=1$ foot. Length 44$\}^{\prime \prime}$. Beam_78". Set of three Plans, Price 5/- eaçh.

## "ROTARY" STEAM TUG

 Scale $\mathbf{1 0}^{\prime \prime}=1$ foot. Length $18^{\circ}$. Beam $57^{\prime \prime}$. Set of iwo Plans, Price 5/- each.London Branch : II2 HIGH HOLBORN, W.C.l. Manchester Branch : 28 CORPORATION STREET, 4.

## RADIO CONTROLS

Equipment that will enable the user to operate, independeritly, more than one control is now demanded by most enthusiasts. 4 models are now available, any one of which will meet the requirements of the most discriminating user.

## E. D. "BOOMERANG"

A Radio Control Unit completely wired and ready for use in your model boat or plane. Simplicity itself to install and most economical in use. Transmitter, Receiver and Escapement. Price $£ 11.18 .6$ (Sold Separately).

Other Mode's Inelude :
MK. IV "MINIATURE"
Tuned Reed, 3 Channels, (Transmitter, Control Box and Receiver less Escapement). Price E 20.9 .7 (Sold Separately).
"EVEREST"
Tuned Reed, 6 Channels, Transmitter, Control Box and Receiver. Price $\mathbf{E 2 9}$.3.11 (Sold Separately).
"TRANSITROL"
Receiver, Transmitter and Escapement. Price £12.15.6. Receiver. Only £6.1.8.

All priees include P. Tax.
Order from your Model shop.
llustrated list, giving full information and technical details of all and the full range of E.D. Diasels, available on request. and the full range of E.D. Diesels, available on request.

MAKE SOUND JOINTS SIMPLY by using Multicome

## ERSIN MULTICORE

Contains 5 cores of extra-active, noncorrosiye Ersin Flux. Prevents oxidation and cleans surface oxides
SIZE' 1 CARTON 4 specifications for
vadio enthusiasts. $5^{\prime}=$
handyman's CARTON
Suitable for 200
average joints.
$6 d$.

HOME CONSTRUCTOR'S 2/6 PACK
In addition to the well - known Home Constructors Pack (containing 19n. of 18 s.w.g. 60/40 alloy). similar pack is now available containing 40 f . of 22 s.w.g. 60/40 alloy especially suitable for printed circuits.

Wherever precision soldering is essential, manufacturers, engincers and handymen rely on multicore. There's a multictiab solper just made for the job you have in hand. Here are some of them.

## ARAX MULTCORE



Handymans Carton 6d.


MULTICORE SOLDERS LTD, MULTICORE WORKS, HEMEL HEMPSTEAD, HERTS. (BOKMOOR 3636)

## Training with I.C.S. THE WAY TO SUCCESS

The great and growing demand of today is for TRAINED men. Thousands more are needed, but there is no worthwhile place for the untrained.

Through I.C.S. Home Study you gain the specialised knowledge that marks you out for promotion, for SUCCESS! I.C.S. teaches you in your own timeexpertly, quickly and easily. It is the world's largest and most successful correspondence school; offering courses for almost every branch of trade, industry and the professions.


## ELECTŔRONIC

 ENGJNEERINGIndustrial Eleceronics
FARMING $\&$ HORTICULTURE Arable Farming
Pig Keeping
Poultry Keeping
Farm Machinery (Mainten Flower
Flower, Vegetable \& Fruit
Gardening

## Gardening

EXAMS: R.H.S. General
FIRE ENGINEERING
EXAMS: Inst. of Fire Engrs. F
Promotion
GENERAL GERTIFICATE OF EDUCATION
Principal Subjects at Ord. or Advanced Level Engg. Joint Board Prelim. MECHANIGAL ENGINEERING Subjects include Welding, Fitring. Turning, Erecting, lis \& Tool Design Production, Draughtsmanship Maintenance. Diesel Engrs, Diesel Efectric Locomotives, Reirigeration, Sheet Metal Work, \&c.
EXAMS: Inst. of Mech. Engrs.o Inst. of Prod. Engrs Soc. of Engrs. Inst. of Engg. Designers Cert. in Foremanship

## ELECTRICAL

 ENGINEERINGIllumination \& Heating Power House Attendants .Electricians
EXAMS: Soc. of Engrs. C. \& G, Elec. Engg.

MOTOR ENGINEERING Diesel Transport Engs. Owner Drivers'

## PHOTOGRAPHY

A basic Course incl. Colour Work

RADIO \& TELEVISION ENGINEERING
Service Engineers
Television Servicing \& Engg. Practical Radio with Equipment
EXAMS: Br. Inst. of Radio Engrs. C. \& G Radio Cert. P.M.G.'s Cert. In Wireless Teleg C. \& G. Telecoms. Engg.

SALES PROMOTION
Sales Management
Window Dressing
EXAMS :
Mangrs. Ass. Inc. Sales
United Comm,'Travellers
Ass. Dip.
WRITING FOR PROFIT
Free Lance Journalism
Short Story Writing

NEW-PRACTICAL PHOTOGRAPHY COURSE
NEW-PRACTICALPHOTOGRAPHYCOURSE
Learn camera technique and how to produce first-class negatives and prints in monochrome or colour.

Moderate fees include all books

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 1690, International Buildings, Kingsway, London, W.C.2.
Please send me free booklet on,
.Age.
Name.
Occupotion.
(USE BLOCK LETTERS)
Rodress

Australia: 140, Elizabeth Street, Sydney, Eire: 3. North Earl Street, Dublin India: Lakshmi Bldg., Sir Pherozsha Mehta Rd., Fort Bombay, Now Zealand, 182, Wakeffeld Sereet, Wellington. N. Ireland: 26, Howard Street, Belfast. South Africa: Depr. L.; 45, Shortmarkec Street, Cape Town.

DDTERNATIONAL GORRTSPOWDENCE SCHOOLS

MAINS BLOWVER, 200,250 V. A.C.D.C. 1 -amp., 5,030 r.p.ri.. oonsists of the motor
with attached enclosed fan, and funnel intake lin. dia., side outiee lin. x'in. with attached enclosed fan, and runnel intake lin. dia.. side ouzlet lin. x ain. 9 in . long, 4in. wide, 5 in . high, wolght 7 ilb ., a very superior blower, ofiered at a iraction of original cost, new, unusea, 25/-. Post 3/6.
BALANCED ARMATCRERECCIVERE INSFTS No. 5. in black plastic cases the most popular and versatile of all ex-Govt. stock. Ideal as sinsle or dual headvide an effelent 2 -way telephone system brand nevp perfect stock in sealed cartons $3 / 8$ each, post $1 /, 3$ for 1016, post $1 / 6,40$, doz., post 30 . sealed woon cases containing

ELECTRRIC PUMPS, suitable for most Hquids the popular oylinurio immersible
 carrlage 51 -
IIUGHESMOTORS, shunt wound, 12 v .11 -amp., speed 5,070 r.p.m., reversing, size 3 itin, long,
1lln. dia., In. shaft, welght 20 oz., a very superior lin. dia. fin. shaft, wedght 20 az. a very superlor unused 10 , post 1if. $£ 5$ per doz. carriage paid. ditto fitted reduction gear, giving a final dripe (tin. shaft) of either 320 or 160 r.p.m, state which
required, 12.6 . post $1 / 9 ; \& B$ per doz., carrtage paid. required, 12'6. post 1/9: \&B per doz., carriage paid. thteiproof, has 7 concentric tumblers, instead of
 the usual, 5 in ine, interchangeable fiting with of dinary cylinder locks, latchbolt reversible, for rightror left hand donrs (no necd to specif), complete with 2 keys, all fittings and instruction hooklet, new bojed. 5i-, post $1 / 6$, 4 for 20 - post paid. Gng. RECTIFIERS, selenitum, full-whve bridge, 12 V . 2 -amp., 10 H , post $1 /$, ditto $203,20,250 \mathrm{v}$. input, $\mathrm{with} 511 / 17 \mathrm{v}$, outputs, tors speoialiy wound for a bove rectifers $151-p o s t 19$, ditto 4 -amp3. $20 /-$ post 23 , all items are brend new, complete with charging circuit diagram, total postage for both items $2 /$-and $3 /$-respectively. RPRLECTOR GENSIGiHTS by Ross, etc, consists of an pptical mount which contains 4 high-grad alenses, 3 are 31 mm . dia., bi-convex. pleno-convex, concave house, fitted, reflector, theostat and lampholder, new unused, cost 220 , our price 101-, post 1.9.
MODEL A FFCRAFT. R.A.F. Identification: not toys but beautifully carved from vood with silver grey finish, all are $1 / 72$ nd scale, brand new in protective cartons. tall $16 i n$, $10 /-$, post $2 \prime-$; Gannet A.s. MK. $1,7 / 8$, post $1 / 4$; Hunter $\mathrm{F}^{\circ} \mathrm{Mk}$. $1,5 /=$, post $1 /-$; tain SAAB, $5 /$, post $1 /-$ : Chipmunk T. Mk. $10,3 / 6$, post 7 d .
ELECTRIC TIME CLACKS by Smiths, etc. Takes an impuise every four minutes rom ordinary 41 v. dry bsttery to energise the fully jewelled lever escapement, the clock dial has setting pointers, one up to 44 days, the other up to 24 hours for setting switch, aiso minute hand : the case size 3in. dia. 3in. deep, is part blass and pas TEEATHER CASES, superior hide tin. thick, bok sewn, size 7ing. x 4in. by 101 in deep, roun ied bottom, hinged top overlap cover fitted buckie fastener, adjustable shoulder strap, contains a heliograph set in optically bleck fnished brass. The quality has to be seen to be believed, with two 5 in. dia. swivel mount ed mirrors, one tools, etc. new unused, well worth \&10. Our price, new unused, $10 ;$, post $3 /-$. Tripo to fit these helios can be supplied.
MONOCUI. ARS. Tabhy infra-red, consists of the optical system, variable focus eyepiecs, oblestive with wratten filter backing, Interposed bstween is the image press switch. All complete and self-contained in metal case, size bin. $x$ sin. $x 21 \mathrm{in}$. With leather udjustable shoulder strap. New. unused, 76, post $2 \mathrm{~B}: 2$ for 151.

Many other Ravgalna ; send stamped, addressed envelope for limts.
MIDLAND INSTRUMENT CO., Moorpool Circle, Birmingham, 17 TEL. : HAR 1308
 \%

MAXALDING, THE WORLD'S FOREMOST METHOD OF MUSCLE BUILDING, CAN SHOW A RECORD NUMBER OF SUCCESSES IN MEN OF ALL AGES.

FIGHTING FIT AT FIFTY-FIVE
Postal Pupil TOM BADGER (left) is shown at 55 years of age. Engaged in an unheathy occupation which necessitates the wearing of a protective respirator for 8 hours daily, Pupil
showing good result of good muscular condition as a


## PERSONAL POSTAL TRAINING

The unequalled success of the Maxalding courses in attaining RAPID and PERMANENT RESULTS is due to the fact that the training is arranged in accordance with individual requirements and conditions. No stereotyped or ready-prepared method can compare with genuine personal supervision for results.

## FREE EXPLANATORY LITERATURE

PROFUSELY ILLUSTRATED with nearly 200 photographic reproductions of pupils from 15-65 years of age, the Brochure and Folders will be sent Without Cost or obligation in a sealed cover free from external advertising. No further communications are sent without the request of the applicant. ( 6 d . stamp for return postage is appreciated.)
MAXALDING (PM4), , SHEVHERDDSWEL:

PM4
AGE.
ADDRESS



## Do it yourself with a

 ? HANDISPRAY . 11 outfitHOME HANDYMAN MODEL MAKER CAR OWNER AMATEUR DECORATOR
Various applications include SPRAY PAINTING CREOSOTING TYRE INFLATION DISTEMPERING INSECTICIDE SPRAYING
Easily carried-weighs 451b

> Also suitable for vacuum work-|deal for for use in laboratory and instrument sesting -Ask for details of Handivac.

Write for Leoflet CB. 112
B.E.N. PATENTSLTD, (Division of Broom \& Wadelut.), P.O. Box No. 10, Dept. X, HIGH WYCOMBE, BUCKS. Tel. : High Wysombe 1630 Cr.234


Write for leaflets: BU RGESS PRODUCTS CO. Ltd. (Small Tools Division), HINCK LEY, LEICS.

## THE 'MAGSTAT'

This is a precision bi-metal thermostat for the control of alternating currents of up to $\frac{1}{1}$ amp. at 240 volts. The cemperature range deg. F. An ingenious magnetic snap action is incorporated whish gives freedom from radio interference. The operating temperature is altered by rotation of the adjustment screw, clockwise for increase and anti-clockwise for decrease. Dimensions $2 \mathrm{in} . \times \frac{1}{2}$. $\times$ in.


$$
\text { PRICE: } \mathbf{5 / 6} \text { each. Port 3d. }
$$

## SUPPRESSIT

(TELEVISION SUPPRESSOR KIT) For the suppression of Domestic Motor Driven Appliances. Comprises two chokes and two condensers mounced on a card with wiring instructions. Ideal for Vacuum Cleaners, Hairdriers, Sewing Motors,

## REPLACEMENT ELEMENTS

FOR DOMESTIC ELECTRICAL APPLIANCES We stock over 200 types of element replacements for Fires, Irons, Kettles, Hairdriers, Toasters and Boiling Rings. Send for Catalogue.

WE HAVE A REPUTATION FOR HIGH QUALITY THER MOSTATS AND LIST SOME OF OUR STOCK ITEMS HERE :

THERMOSTAT. CS. Convector Thermostat for Space Heaters and Low temperature Ovens. 15 amps., 250 voles A.C. $40 / 80 \mathrm{deg} . \mathrm{F} .25 / \mathrm{e}$, post 5 d.
THERMOSTAT. MB. For control of
Electric Immersion Heaters up to 3 kW . $90 / 190$ deg. $F$. IS amps., 250 volts A.C. E2/0/0, post 9d.
THERMOSTATS. PF. Room Thermostat, 15 amps., 250 volts A.C. $5 \mathrm{in} . x 13 \mathrm{in}$. $\times 2 \mathrm{in}$. A beautiful instrument. Temp. ranges $30 / 90,40 / 100,40 / 80,60 / 100$ deg. $F$. as required. $\mathbf{2 2 . 0 . 0}$, post 6 d .

THERMOSTAT. BW/l. 3 amps., 250 voles A.C. For conerol of hot-plates. vul canisers, etc. $50 / 550$ deg. F. 15/6, post 4 d We are only too glad to send illustrated leaflets on any of these Thermostats if you will send a S.A.E. stating which model interests you.

## IMMERSION HEATERS

We can offer a wide range Irom 2 to 4 kW and in stem lengehs 11 in . to 42 in . Please send for our catalogue.

## GREENHOUSE THERMOSTAT

Type ML. Constructed especially for the amateur gardener. The scale plate is calibrated "High-Medium-Low " and has a temperature range of $40-90$ deg, $F$. Current capacity is 10 amp., 250 volts A.C. Differential $4-6$ deg. F. Size $41 \mathrm{in} . \times 2 \mathrm{in} . \times 1 \frac{\mathrm{in}}{} \mathbf{i n}$. PRICE : 35/-. Post 6d.


FIT THIS TO YOUR ELECTRIC BLANKET AND BRING IT UP TO DATE.
Double Pole Break, A.C.-D.C. SUITABLE ALSO FOR ANY Silver Contacts, Improved Cord Grip, Simple Wiring. Modern Streamline Styling in Cream Bakelite. OTHER APPLIANCE WHICH REQUIRES A VISUAL INDICATION THAT IT IS ON (SOLDERING IRONS, ETC.)

THE TECHNICAL SERVICES CO.
SHRUBLAND WORKS BANSTEAD SURREY

... IN ANY OF THESE SUBJECTS:-

Accountancy
Advertising
Aeronautical Eng.
A.R.B. Licences

Art (Fashion Illustrating, Humorous)
Automobile Eng.
Banking
Book-keeping
Building
Business Management
Carpentry
Chemistry
City \& Guilds Exams.
Civil Service
Commercial Subjects
Commercial Art
Computers
Customs Officer
Draughtsmanship
Economics
Electrical Eng.
Electrical Installations
Electronics
Electronic Draughtsmanship
Eng. Drawing
Export
General Certificate of Education
Heating \& Ventilating Eng.
'Hi-Fi' Equipment
High Speed Oil Engines
Industrial Admin.
Jig \& Tool Design
Journalism
Languages
Management

Maintenance Eng.
Mathematics
M.C.A. Licences Mechanical Eng. Metallurgy Motor Eng. Painting \& Decorating
Photography
P.M.G. Certs.

## Police

Production Eng.
Production Planning
Radar
Radio
Radio Amateurs
(C. \& G. Licence)

Radio \& Television
Servicing
Refrigeration
Sales Management
Sanitary Eng.
Salesmanship
Secretaryship
Servo Mechanisms
Shorthand \& Typing
Short Story Writing
Short Wave Radio
Sound Recording Telecommunications Television
Time \& Motion Study Transistors
Tracing
Welding
Workshop Practice
Works Management
and many others

Also courses for GENERAL CERTIFICATE OF EDUCATION, A.M.I.H. \& V.E., A.M.S.E., A.M.Brit.I.R.E., A.M.I.Mech.E., A.M.I.E.D., A.M.I.M.I., A.F.R.Ae.S., A.M.I.P.E., 'A.M.I.I.A., A.C.C.A., A.C.I.S., A.C.C.S., A.C.W.A., City \& Guilds Examinations, R:T.E.B. Servicing Certificates, R.S.A. Certificates, etc.

| $\cdots \square \square \square \square$ |  |
| :---: | :---: |
| To:- E.M.I. INSTITUTES, Dept. $144 \mathrm{M}, \mathrm{LONDON,W.4*}$ |  |
| Please send, without any obligation, your free Book to :- |  |
| NAME $\qquad$ AGE <br> (if under 21) |  |
| ADDRESS |  |
| Subject(s) of interest | $\left.\begin{array}{l}\text { With* } \\ \text { Without }\end{array}\right\}$ equipment |
| (We do not employ travellers or representatives) IC.11日 | *Delete as required <br> APRIL/58 |

## TERMS AVAILABLE

RECTANGULAR T.V. TUBES


| $14^{\prime \prime}$ | $17^{\prime \prime}$ |
| :---: | :---: |
| 65.10 .0 | $E 7.10 .0$ |

## I2 MONTHS GUARANTEE

6 months full replacement, 6 months progressive. Made possible by the high quality of our tubes.
Ins. carr., $15 / 6^{\text {. }}$ SPECIAL OFFER of $14^{\circ}$, $15^{\prime \prime}, 16$. Ins., carr., 15/6. SPECIAL OFFER of $14^{\prime \prime}, 15^{\prime \prime}$, $16^{\circ}$
Convert your $9^{\prime \prime} 10^{\prime \prime} 12^{\prime \prime}$ to round T.V. TUBES at 65 . Convert Your $9^{\prime \prime} 10^{\prime \prime}, 12^{\prime \prime}$ to these sizes. Information on
how to "Do-it-Yourself" in our FREE catalogue. 12 T.V. TUBES, $t 6$. 3 months" guarantee on all round tubes. $15 / 6$ ins., carg., on all tubes. Also TUBES WITH BURNS, EI , including carriage. State type and size required,
 POPULAR RADIO OR R/GRAM CHASSIS, 39/9 3 waveband and gram. S/het., 5 value (intnl. octal). Ideal for tablegram, but. still giving high quality output. ${ }^{4}$ knob
control. $8^{\prime \prime}$ P.M.' speakers, $7 / 9$ extra. Set of knobs, $2 /$. . Size $12^{\prime \prime} \times 6^{\prime \prime} \times 7^{\prime \prime}$. Less valves. Ins., carr., $5 / 6$.
ELECTRIC CONVECTOR HEATER, 99/6
 $\mathrm{k} /$ watts. 200.250 volts. Himminated grille. Size $26^{\prime \prime} \times 18^{\prime \prime} \times 71^{\prime \prime}$ deep. ins., carr., $10 / 6$.
R.F. E.H.T. COIL, $30 /$. $6-10 \mathrm{kV}$. Drawing and data FREE with each order. Post free.
CAR AERIALS, 6/9. Whip antenna, $50^{\circ}$ long, collapsing to $11^{\prime \prime}$. One-hole fixing. Post,
BEAUTIFUL EXTENSION SPEAKERS, 29/9

## 17" T.V. CHASSIS, £19.19.6

Latest improved circuits. Higher E.H.T. (brilliant picture). Improved sensitivity (for greater range). Chassis easily adapted to any cabinet. $17^{\prime \prime}$ rectangular tube on adapted,
reconditioned chassis. Channels $1-5$ Less valves. 12 months guarantee on cube, 3 months' guarantee on valves and chassis. Valve line-up ( 5 valves): $65 \mathrm{~N} 7,6 \mathrm{~V} 6$, EY51, 2-6D2s. Others : EL4I, EL38, 7 -6FIs. With 5 valves, 621.19 .6 . With all valves, £25.19.6. TURRET TUNER, 50/- extra. Ins.. carr. (incl. tube), 25/-. State B.B.C. channels (and IT.A. if turret tuner required).

## 14" T.V. CHASSIS, TUBE \& SPEAKER, \$13.19.6

As above with 14 " round type tube. Less valves, 3 months' guarantee. With 5 valves, $£ 15.19 .5$ With all valves, $\mathbf{6} 19.19 .6$. Turret euner, $50 /$ - exera. Ins., carr., 25/- (incl. zubo).

## DENCO RADIOGRAM CHASSIS, $97 / 6$


 Ins., carr., 7/6.

## SUPER CHASSIS, 99/6


Complete fitted with 8" P.M. speakers. " W.B." or "Goodmans " of the highest quality. Standard matching to any receiver. (2-5 ohms.) Flex and switch included. Unrepeazable at this price. Money back if not completely
satisfied. Ins., carr., $3 / 6$.
SPEAKERS, $8 / 9$. High quality $8^{\prime \prime}$ P.M. With O.P. trans., $10 /$. P. \& P., $2 / 9$.
SPEAKERS, 12/9. Goodmans or Elac. High quality $8^{\prime \prime}$ P.M. Money back atisfaction guaranteed., P. \& P., 2/9. With O.P., trans., 14/-.
HEADPHONES, $1 / 9$. Single earphone and band. C-LR type. Ideal for crystal sets, extension on radio, etc. P. \& P., $1 / 3$.
SIMULATOR UNITS, 19/6. Complete with valves. Telescopie aerial. Instruction booklet FREE with each order. Ideal for Walkie-Talkie conversion. Test set I72A. Ex-W.D. P. \& P., 4/6.
TEL. : ILF 6001-3
DUKE \& CO. (Dept. 5), 621/3, ROMFORD ROAD, MANOR PARK, E. 12.

CONSTRUCTION CHASSIS UNITS
POWER PACK \& AMPLIFIER, 19/6. O.P. stage 6 V 6 with O.F. trans. Smoothed H.T. 350 v. $250 \mathrm{~mA} .6 .3 \mathrm{v}, 5$ a., $22 \mathrm{v}, 3$ a., 6.3 v .4 a , 4 v ., centre tapped. Less valves. FREE drawings. Carr., $5 / 6$.
TIMEBASE, 4/9. Including scanning coil focus unit, etc. Less valves. FREE drawing. P.. \& P., $2 / 6$.
SOUND \& VISION STRIP, 9/6. S/hel. Complete s/vision strip. Less, valves. FREE drawings. P. \& P., $2 / 6$.


## DESIGNED FOR HAND AND BENCH USE

## OUARTERMASTER home power |equipment

- MOST POWERFUL There's nothing to compete with the 'Quartermaster' for power and non-stop, trouble'free performance. It costs only $£ 9.9 .0$ (or on easy terms).
- SAFEST Switch cover and switch trigger built from toughened insulating material, completely isolating the double-pole switch.
- MOST EFFICIENT The only power unit with a special high-speed, cool running, continuously-rated motoressential for really efficient sawing, sanding, buffing, woodturning, etc. Gives an improved finish and appearance to all your jobs.

WIDEST RANGE OF OPERATIONS

To: WOLF ELECTRIC TOOLS LTD., Dept. v4/HQ, Hanger Lane, London W. 5 Please send illustrated brochure and EASY TERMS PLAN details
NAME
ADDRESS

| .


## EX-governuent bargains

SIGNALLING TELESCOPES. In leather cases. Three Draw. 2 in . O.G. Power 25X. SOUND CONDITION, OPTICALLY PERFECT, 66.10.0. Ditto Brand New, E8.10.0. Ditro, but with interchangeable ryepieces $25 X$ terrestrial types 25,40 and $60 \times$ from $£ 8.10 .0$ to 10. gns. PRISMATIC TELESCOPE by KRAUSS, 3 in . O.G. Triple turret eyepiece, $15 \times, 23 X, 30 X$. Equatorial type mounting on geared and divided head and 6it. telescopic tripod. In canvas cases with seraps and slings. Unused. New condizion. Very superior, $£ 30$ each. Cost over 6100. AMERICAN M. 35 VARIABLE POWER 'SCOPE. Elbow type 'scope plus finder on very elaborate equatorial type mounting. Weight 40 lbs. 620 each. Cost over $£ 200$. BINOCULAR COLIMATOR by Taylor Hobson. Rhomboid type. As new, $£ 40$.
INFRA-RED BINOCULARS. A true binocular giving 3D vision. Complete with power unit, 12 v . battery operated. Brand New in Sealed Cases, but not Guaranceed. 63.10 .0 each, carr. $7 / 6$. Tested and guaranteed, $\mathbf{6 5}$ Carr. 7/6.
HELIOGRAPHS. Lovely leather case for sports use plus 4 mirrors and various brass fittings, including geared head suitable for mounting telescopes. A REAL BARGAIN at $15 /-$, plus 21 - carr. BRAND SPANKING NEW.
TANK PERISCOPES. Containing two prism units. Size 9in. $\times$ 6in. $\times 1 / \mathrm{in}$. $8 / 6$ each, carr, 1/6. Brand New.

TELESCOPE EYEPIECES. Infocusing brass mounts, 8/6 each. For Orthoscopics see our lises
SOIL.HEATING TRANSFORMERS. All A.C. inputs. $50-55$ V. 15.20 amp. outpur. In metal case with cover
plate. Weighe 651 bs . BRAND NEW. ©3.5.0 each, carr. $7 / 6$. ZEISS $10 \times 50$ PRISMATIC BIN ZEISS $10 \times 59$ PRISMATIC BINOCULARS in perfec condition, £25. OTHER GERMAN MAKES, $10 \times 50$, L22 $6 \times 30$ from E8.10.0 to E12.10.0.
FIELD STRENGTH METERS. U.S.A.. $103-400 \mathrm{mc} / \mathrm{s}$, with 50 microamp. meter, 7 -section chrome aerial. Deluxe instrument. Brand New, C 6 .
MICRO-AMMETERS, 0.100 micro-amp. Brand New. 3 in dia. 35/\%
A.C.-D.C. AMMETERS. 6in. dial. Flush. $0.15,0-30$ or 0-50 amps. (state which). Brand New in sealed cartons. 45/-. Cost about E6
GRINDING WHEELS. CARBORUNDUM, ALOXITE. 12 in . dia $x$ in., lin. arbor. Brand New. $\times$ K $15 /$ each, earr. 2/6. Doz. lots carr. paid.
T.V. PROJECTION SYSTEM. Complete Schmitt oprical system as fitted Ferranti 24 K 4 and Decea models. Spherical mirror, plain mirror and corrector plate in sealed unir with focusing adj. for rube. Brand New. 85 each. Cost about 640 .
PREDICTOR TELESCOPES. Elbow type $7 \times 50$. Brand New. E3.5.0 each.

GEARED MOTORS (SMALL PRECISION UNIT). Size 7 in. $\times \operatorname{3in}, \times 3 \mathrm{in}$, with 2 take-offs, 3 and 12 r.p.m., plus other movements. Stainless steel motor and bright aluminium gearbox. Runs perfectly from 12 v . A.C. or D.C. $37 / 6$ each, carr. paid

AMERICAN MIDGET ACCUMULATORS. Lead acid type. Non-spill. Size 4 in . $x$ lik. $x$ gin. Packed sealed tins containing one 6 v . and 3 of 32 v . batceries. Ready charged. Need filling with acid. Brand New. CI, post free. See our lists for singie units.
INFRA-RED MONOCULARS. A compact unit with buit-in Zambon \& pile for detecting infra-red light sources. Tested O.K. Pose and insurance free 45/- or at your riska $37 / 6$.
RIFLE:SIGHTS NO. $423 \times$. Brand New, $50 /$ each. Cost E 20 .
STEREOSCOPIC BINOCULAR TELESCOPES. All types as New or New from 610 to $\mathbf{2 0}$. Used from E8.10.0. See our lists.
MIDGET.MOTORS. 12 v . with governor, pulley and wire bele, '10f. A.C.JD.C.
SMALL MOTORS. $3 \mathrm{in} . \times 2 \mathrm{in} . \times 2 \mathrm{in}$; $12-24 \cdot \mathrm{v}$. D.C. New and boxed, 10\%.
TELESCOPE OBJECT LENS. 20 focus $\times 45 \mathrm{~mm}$. dia, Brand New, 25/0 ; ditto but 27in. focus, 35/-. Achromats, of course. For ochers see our lists.
"HOW TO USE EX-GOVERNMENT LENSES \& PRISMS." Nos. 1' and 2. 2/6 each, post 6od. PLANS for 35 mm . to $2 \frac{1}{1 "}$ sq. ENLARGER, $3 / 6$.

See our NEW LISTS-FREE for s.a.e-for fuller details of above items.

## H. W. ENGLISH, RAYLEIGH RD., HUTTON, BRENTWOOD, ESSEX

Phone Brent 1685.

## Follow the FLUXITE way to Easy Soldering



## No. 12 . <br> THE IMPORTANCE OF CLEANLINESS

Remember the key word to successful soldering-cleanliness. Filing or emery-clothing the portions to be joined makes them mechanically clean, but the essential is chemical cleanliness and that, in one world-famous word, means FLUXITE.

FLUXITE is the household word for a flux that is famous throughout the world for its absolute rellability. In factory, workshop and in the home FLUXITE has become indispensable. It has no equal. It has been the choice of Government works, leading manufacturers, engineers and mechanics for over 40 years.

## FIUXITE

Fluxite Limited, Bermondsey Street, London, S.E.1.

## The Bestfrend "ZEPHYR"(M) Motor and Accessories



A silent, shaded pole motor, A.C. only, 200/250 volts, 2,600 R.P.M., 25 watts. $3 \frac{1}{2}^{\prime \prime} \times$ $22^{\prime \prime}$. with double-ended spindle. Precision built and specially suitable where absolute silence is essential. Continuously rated and designed for use in construction of table and extractor fans, projector cooling units, fan heaters, cupboard airing devices, etc. An extremely high-class product, designed by engineers with a quarter of a century of experience in motor construction.
$37 / 6$
Post Free
An anti-vibration stand for above motor. Horizontal or vertical mounting. Supplied in breakdown form for home constructors. $8 \frac{1}{2}$ " $\times 2 \frac{1}{2}^{\prime \prime} \times 2^{\prime \prime}$. Three point suspension.
Steel, Cadmium plated. 716 Post Free

## FANS

4 Bladed Metal $4^{\prime \prime}$ 5/-
BAKELITE 3 Blades $8^{\prime \prime} 7 / 6$
Post Free


The Bestfrend Electrical BANSTEAD

## -

Co. Ltd. SURREY

Tel.: BURGH HEATH 1432


Nowadays, Handymen, Housewives, Engineers,
Motorists and the like have an opportunity to use Motorists and the like have an opportunity to use
the Mole Wrench as their 'third hand.' This tool,

If not quite as portrayed, the Romans must have had many problems where a 'third hand 'would have been very welcome indeed.


If in any difficulty write to: M•MOLE \& SON LTD., BIRMINGHAM. 3.

## 7 STOCKS and DIES



$\star$ SO COSTLY woonen All the Ol PACKING

THE FINEST QUALITY
AMERICAN PATRRN
TATEDRENCH IS RRONot the Cheap Bar type.
 WARRAATEDD

* RRITISH CR AFTSMAN-

Avatu aple iv : wiv B.SAR ABLE IN: B.S.W. B.S.F., Brass or Metric.
ihrords.

## ON TERMS FROM MONDEX



## PICADOR PUP

For use with ${ }^{t^{\circ}}$ power drill units grinding. etc., with cradle. 15 /dep. \& 8 m . ps. of $21 /-$ or $£ 8.0 .0$.
Accessories available.

THE NEW ' B \& D' D. 500 DRILL Blaek and Becker's rery
latest. Eulirely redesigned latest. Eulirely re-designed
power drill with helical gears and bo wramed chuck.
Smart two-1one finish. Rilns at $2500 \mathrm{x} . \mathrm{pm} . \mathrm{m}$. Buitt to precision siandards, set costs only $£ 6.19 .6$ or
from Mondex. $10 \%$ dep. \& 8 m . ps. of $18 / 9$. Sullabie for B. \& D. Tools and Aceessorles.
WOLF QUARTERMASTER
A brand new type of power adaptabllity. Precision engineered. Takes most Unconditionally Guaries teed. \&9.9.0 or $15 /-$ dep. 8 m . ps. of $25 / \mathrm{c}$.
BRIDGES 'NEONIC' $\frac{1}{4}$ " POWER DRILL
Improved version of the versatile and very powerful DR2T unit, with motor. $15 / \mathrm{dep}$. \& 8 m . ps. of $21 / \mathrm{F}$ or 27.19 .6 cash TO BUIL A MODE
HOME WORKSHOP HOME WORKSHOP
SELECIA HOME-MASTE SELECRA HOME-MASTER Takes any standard $t^{*}$ power unit or drtll to enable a wider range ol out. $30 /$ dep. and 8 m. ps. of $37 / 6$ ( $£ 14.10 .0$ cash). SELECTA POWER PAK Very powerrul untt for use and 8 m . ps. of $27 \%$ ( $£ 10.9 .6$
cash)
 The Selecta Home-Master can also be supplied
with Bridges Neonic, Power Drill or Wolf Quartermaster if desired SELECT 30 in . LATHE
$7 / 6$ dep. and 8 m . ps. of $11 / 9$ ( 44.9 .0 cash).
ACCESSORIES FOR ALL ABOVE MAKES
MONDEX LISTS FREE ON REQUEST
MONDEX PRODUCTS
(Dem. PM/6), 5 Goswell Rd., London, E.C. 1

## G00D NEWS! IOO "PRACTICAL MECHANISS"

the centre you have waited for-
We extend a welcome to all enthusiasts to come along and see LONDON'S largest selection
of equipment at bargain prices-Half-day closing Thursday ip.m. Open Fri. 9a.m. -7 p.m. Sat. 9-6

| Miniature <br> 12v. Motors $2^{\prime \prime}$ long. l央" dia. $7 / 6$ P. A. P. $1 / 6$ | Ball Joints <br> Large Selection <br> All one price <br> 3/6 $\qquad$ |  | Engineers' High-Speed Small Tools. $\qquad$ <br> Drills All Types All at 50\% off list prices | Largest Selection of lenses \& prisms in Britain Send for Lens Lis 1/6 Refundable on receipt of first order |
| :---: | :---: | :---: | :---: | :---: |

These are iuss a few of the iems from our wide range of opicial, stientific and aeronautical aquipment.

## SAVE $£ \in E^{\prime}$ 's

Build your own 20 power prismatic telescope; complete set of guaranteed optically ground lenses and prisms supplied at fraction of original cost. Only $79 / 6$ which includes drawings, postage and packing.

DEPT. P.M.
3 HARROW ROAD, LONDON, W. 2
TELEPHONE: CUN. 8080


Your sign of satisfaction

SITUATED AT JUNCTION OF
EDGWARE ROAD \& HARROW ROAD
(OPPOSITE EDGWARE RD., TUBE STN.)

The
GMINORETTE?
UNIVERSAL WOODWORKER

 of £4.18.8. Cash price $£ 39.17 .6$.

The "Minorette ' has an $18^{\prime \prime}$ lathe bed ; 7" Tilting Circular Saw table complete with $7^{\prime \prime}$ Circular Saw blade; a combination table for use with slot mortiser; .Sanding Disc, or as a panel support for repetition cutting; Slot Mortising chuck complete with a $\frac{3}{3}^{\prime \prime}$ bit, $6 \frac{1}{2}^{\prime \prime}$ sanding plate, $6^{\prime \prime}$ Grindstone and Arbor Bell and Pulleys. The $\frac{1}{2}$ h.p. electric motor is double ended and is TV and Radio suppressed. Attachments can also be supplied for planing, grinding, grooving, comb jointing, flexible drives, etc. Illustrated leaflet free on request to Dept. PM5

Telephone SHOreditch 9422/3/4

## and NOW! тнE BE\|llailia UN MAT

## a self-powered multi-purpose machine shop

Because of its unique construction it can be simply converted from a Lathe into a Drill Press, Milling Machine, Tool Grinding Machine, Grinding and Polishing Machine, Jig-Saw, Circular Saw, Threading Machine, Dividing Machine and Portable Press.



THREADING ATTACHMENT


POLISHING and GRINDING


DRILLING

## YOURS FOR ONLY $50^{\%}$ and 8 момthly

 cash prige $£ 24 \cdot 17 \cdot 6$ Past Coupon NOW! for illustanted ввоснURE

No bigger than a typewriter, yet outperforms machines many times its size. This precision portable machine shop is universally acclaimed as the finest tool ever developed for machining small parts made of steel, brass, aluminium, plastic or wood.


## Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES is now available-without charge-to all who are anxious for a worthwhile post in Engincering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

> We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appointments Department.

## WHICH OF THESE IS YOUR PET SUBJECT? <br> MECHANICAL <br> ENGINEERING <br> ELECTRICAL <br> RADIO <br> ENGINEERING

Gen. Mech. Eng.-Main-ship-Heavy Diesel-Die \& Press Tool Work-Weida ing-Production Engfig \& Tooi Design-Sheet Metal Work-Works Management - Mining - Re-frigeration-Mtetallurgy.

## AUTOMOBILE

ENGINEERING Gen. Automobile Eng.Motor Mointenance \& Motor Maintenance \& Eng.-Structural Eng.-
Repoirs - High Speed Road Eng. - Reinforced COURSES IN FORESTRY OF AERONAUTICAI. COURSES AND G.P.O. ENG., TEXTILE TECRNOLOGY, ETC., ETC.

One of these qualifications would increase your earning power

> WHICH ONE?
A.M.I.Mech.E., A.M.I.C.E., A.M.I.P.E., B.Sc., A.M.Brit.I.R.E. A.F.R.Ae.S., A.M.I.M.I., L.I.O.B., A.R.I.B.A., A.M.I.H. \&.E. COMMON PRELIM., GEN. CERT. OF EDUCATION, ETC.

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY


410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W.8.
Phone: WEStern 9861

Road Eng. - Reinforced ENGINEERING Gen. Elec. Eng. - ElemenCary \& Advanced Elec Technology - Instollations Draughtsmonship - Supply - Electrical Mining Electrical Eng Power Station Equipment Power
ete.

CIVIL
ENGINEERING
en. Civil Eng.-Sanitary
Ang.-Structurdl Eng.- Gen. Radio Eng:-Radio Servicing, Mointenance Repairs-Sound film Pro
jection - Telegrophy Jection - Telegrophy c. \& G. Telecommunications.

## BUILDING

Gen. Building-Heating \& Ventifotion-Architectural Draughtsmanship - Surveving - Clerk of Works
$=$ Carpentry and Joinery - Carpentry and joinery -Quontities - Valuations ,

TO: B.I.E.T. 410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W.8.
You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," and if you are earning less than $£ 15$ a week you should send for your copy of this enlightening book now-FREE and without obligation.


WHAT THIS BOOK TELLS YOU
\& HOW to get a better paid, more interesting job.

* HOW to qualify for rapid promotion.
$\star$ HOW to put some valuable letters after your name and become a "key-man" quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
- WHERE today's real opportunities are . . . and HOW you can take advantage of the chances you are now missing.
$\star$ HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering that appeals to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

Please send me FREE and without
obligation, a copy of " ENGINEERING
OPPORTUNITIES." I am interested in
(state subject, exam., or career).
NAME .............................................................................................
ADDRESS.....................................................................

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

## IHE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Editorial and Advertisement Offices "PRACTICAL MECHANICS" George Newnes, Lid., Tower House, Southampton Street, Strand, W.C. 2 (C) George Newnes Ltd., 1958 Phone: Temple Bar 4363
Telcgrams : Newnes, Rand, London SUBSCRIPTION RATES Including postage for one year Inland $=-=-20 \mathrm{~s}$. per annum.
Abroad $=-=-18 s .6 \mathrm{~d}$. per annum.
Canada $=-=18 \mathrm{~s} .6 \mathrm{~d}$. per annum.
Copyright in all drawings, phorographs and articles published in "Pracrical Mechanics" is specially reserved throughout the countries signarory to the Berne Convention and the U.S.A. Reproduction or imitations of any of these are therefore expressly forbidden.

## CONTENTS

Fair Comment
319
320
Fair Comment About ZETA
The London Planetarium
Science Notes
A Contemporary Electric Wail Clack
Slide Projection in Restricted Space An Electrical Time Switch Exploring the Deep Ocean Floor Soft Solder and Similar Alloys Making and Using Archery Equipment
Automatic Train Control
Make Your Own Thermometers A Camping Trailer.
An Introduction to Nuclear Power. An Elliptical Compass... A Rocking Horse.
A Simple Gas Blowplpe JUNIOR SECTION
Woodworking Joints
Simple Conjuring
A Simple Model Speedboat
Letters to the Editor
Trade Notes
Your Queries Answered THE CYCLIST SECTION
What IThink
The Hand-built Frame
©THE PRACTICAL PHOTOM .... 26
SUPPLEMENT
Choosing the Right Camera
A Negative Drier
A Combined Printing Box and Safe.
Anght Adjustable Focusing Stand
An A To Take Portraits:..
How To Take Portr
Developing a Film
The Use of Fliters
A Print Drier and Glazer
Copying Photographs
An Adjustable Lighting Stand Amproving the Negative A Solution to the Darkroom Problem CONTRIBUTIONS
The Editor will be pleased to consider articles of a practical nature suitable for publication in "Practical Mechantics." Such articles should be written on one side of the paper only, and should include the name and address of the sender. Whilst the Editor does not hold himself responsible for manuscripts, every effort quill be made to return them if a stamped and addressed envelope is enclosed. All correspondence intended for the Editor should be addressed: The Editor, "Practical Mechanics," George Nevones, Lid., Tower House, Southampron Street, Strand, London, W.C.2.

## FAIR COMMENT

## "THE PRACTICAL PHOTOGRAPHER" SUPPLEMENT

THIS issue contains the first of "The Practical Photographer " Monthly Supplements. The ever-increasing interest in photography has made this supplement necessary-and in it each month we shall include articles to appeal to all keen camera users interested in obtaining the best possible results from their cameras and from their negatives. Since the war there have been many major developments in camera techniques. Photography has become more scientific, and large numbers of people now do their own developing, printing and enlarging instead of relying upon the local chemist. Photography has, indeed, become not only a fascinating hobby but almost a necessity to other hobbies and professions. If you are a keen model maker, you like to keep a pictorial record of your models. If your hobby is gardening, you can keep a permanent record of your summer garden display of flowers, some outsize marrow or runner bean. You can keep a record of your family as it grows up, of relatives and friends, parties, holidays, and special occasions. A holiday is incomplete without a camera, for it enables you to live again those pleasant times.

The amount of space, however, which we could devote to this subject was limited if we were not to interfere with the normal policy of the paper. In this supplement, however, the amateur photographer will have, so to speak, a paper all to himself, with the contents entirely devoted to all aspects of his particular subject. This supplement may be detached from the issue and preserved separately. We shall, of course, welcome contributions from photographers. There will be a special advice bureau to deal with photographic questions.

All correspondence and contributions should be addressed to : "The Practical Photographer " Supplement, Practical Mechanics, George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C.2.

## OUR SUPPLY OF TECHNICIANS

$I^{\mathrm{N}}$N these exciting scientific days, when almost with every day announcements of new inventions, new discoveries and new achievements are made, opportunities abound for those prepared to equip themselves with the necessary knowledge for the high-paid jobs of the future. Our mode of living, our scientific thought and beliefs, are undergoing a rapid metamorphosis and our way of life to-day will certainly not be the way of life of the citizen of 50 years hence. The appalling fact has to be faced, however, that youth to-day is not preparing itself to become the technicians of the future. It is true that the Government has embarked on a $f_{100,000,000}$ programme to expand our technical colleges, but little has been done for the ordinary unscientific school, such as the secondary moderns and the grammar schools. None of these is at present geared up to the needs of industry and their curricula do not take account of scientific tendencies. Only two years ago Britain had a full-time student population of 29,000 learning science and technology. It had increased to 31,000 one year later. Not a very marked advance in view of the opportunities. Yet in the sixth forms of our grammar schools about 50 per cent. of the boys are taking science. To keep up with the demand it needs to be about eight out of every 10. These schools are desperately short of physics and chemistry laboratories and the opportunities for teaching are remote. Indeed, the equipment is inadequate to teach existing scholars without taking into consideration the expanding demand. It is true that some of the new schools being built have good laboratories, but some of the ol der schools have none at all. Some of the more brilliant pupils leave and go to other schools.-F.J.C.

[^0]

Hg 1. ZETA. The initials stand for Zero Energy Thermonuclear Assembly.

RESEARCH at Harwell with the latest apparatus has led British scientists to the conclusion that control of thermoniuclear reactions for electricity generation may well be a possibility for the future, though its practical application is still a long way off.

The operation of present atomic power reactors is based on the fission (or splitting) of atoms. The possibility now being explored is the harnessing of power from the fusion (or joining) of atoms which provides the heat for the stars.
Results obtained from the Harwell apparatus ZETA suggest that "thermonuclear neutrons" have been obtained, but further experiments will be necessary before this can be proved conclusively. Temperatures reached in this apparatus have been as high as five million deg. C., higher than the measured surface temperatures of any star.

Many major problems have still to be solved before its practical application can be scriously considered and the work must be expected to remain in the research stage for many years yet. If it proves ultimately possible to construct a power station operating on the fusion of deuterium, the oceans of the world will provide a virtually inexhaustible source of fuel.

## Results Obtained

On August 12th, 1957, a large experimental apparatus for studying the controlled release of energy from thermonuclear reactions was started up at the Atomic Energy Research Establishment, Harwell. On August 30th, this apparatus was first operated under conditions that produced nuclear reactions; neutrons emitted in these reactions were observed when deuterium gas was heated electrically to temperatures in the region from two to five million deg. C. The hot gas was isolated from the walls for periods of two to five thousandths of a second. The heating process was repeated every 10 seconds. The high temperatures achieved, together with the relatively long duration for which the hot gas has been isolated from the tube walls are the most important experimental results obtained so far. Whilst much longer times (perhaps several seconds) are required for a useful power output there appears to be no funda-
mental reason why these longer times, together with much higher temperatures, cannot be achieved.

The source of the observed neutrons has not yet been definitely established. There are good reasons to think that they come from thermonuclear reactions, but they could also come from other reactions, such as collision of deuterons with the walls of the vessel, or from bombardment of stationary ions by deuterons accelerated by internal


Fig 2.-A model of ZET. 4 .
electric fields produced in some forms of unstable discharge.

In the ZETA apparatus the number of neutrons produced by each pulse of energy as the current was doubled was roughly that which might be expected from a thermonuclear reaction at the measured temperatures. These temperatures have been definitely established.

Th: reaction being studied in ZETA is the ion energy.

## FACTS ABOUT



## The Results Obtained at Harwell

that in which deuterons (nuclei of the heavy hydrogen isotope deuterium) collide with one another and fuse to form heavier nuclei, releasing energy and some neutrons in the process. For fusion to be possible the deuterons must have enough energy to overcome the initial electrical forces of repulsion between them; this necessitates heating the deuterium gas to temperatures of millions of degrees Centigrade. The hot gas must be kept away from the walls of the container otherwise it falls in temperature.

## How ZETA Operates

The principle adopted in ZETA is to pass a large electric current through the deuterium gas. This current sets up an electric discharge in the gas (analogous to the discharge in a neon advertising sign) which heats it and also produces an intense magnetic field around the column of hot gas. This magnetic field causes the discharge to become constricted and hence heated still more. Since it also causes the discharge to wriggle about, this field by itself is not enough to keep the discharge away from the walls. The wriggling has been suppressed by applying an additional steady magnetic field parallel to the axis of the tube.

In ZETA the discharge chamber is a ringshaped tube or torus of one metre bore and three metres mean diameter, containing deuterium gas at low pressure. The tube is linked (i.e., encircled over part of its length) by the iron core of a large pulse transformer. See the model in Fig. 2. A current pulse of electricity is passed into the primary winding of the transformer from a bank of capacitors capable of storing 500,000 joules of energy. This pulse in turn induces a very large unidirectional pulse of current in the gas, which forms a shortcircuited secondary for the transformer. Peak currents up to 200,000 amperes have been passed through the ionised gas for periods up to five milliseconds. The current pulse is repeated every 10 seconds.

The temperature of gas discharges may be determined from measurements on the light emitted by the gas atoms, but measurements of this kind in these experiments present problems because, at the temperature of the discharge, the hot deuterium atoms are completely stripped of their electrons and, therefore, do not emit a line spectrum. One method of solving this problem is to mix with deuterium a small quantity of some heavier gas and to study the spectral lines emitted; the random motion of the high-energy impurity atoms which make many collisions with the deuterium atoms, and so reach the same energy, causes the spectral lines to broaden, owing to the Doppler effect, and the amount of broadening is a measure of

## OUR COVER SUBJECT




Fig 1.-The architect's model of the plaretarium building.
 THE WONDERS OF THE UNIVERSE ON VIEW IN LONDON
By FRANK W. COUSINS, A.M.I.E.E., A.C.I.P.A., F.R.A.S

## 999999999999999999900909099999999090909

THE LONDON PLANETARIUM was opened to the public on the 20th March. It is the first Zeiss planetarium to be set up in the Commonwealth.

## The Building

Fig. I shows the architect's model of the building which is sited between Baker Street Station and Madame Tussaud's Wax Works. A first floor auditorium with comfortable seating for 547 persons is provided. The roof of the auditorium is a perfect hemisphere of 67 ft . diam., true to an accuracy of $f \mathrm{in}$. This is made from aluminium sheeting, perforated with millions of minute holes to pbviate undesirable acoustic effects. The inner surface of the hemisphere is painted white and this forms the projection screen on to which the artificial night sky is projected. The entire hemisphere is covered $b$ a concrete bee-hive shaped dome clad with copper sheeting. The building stands almost 90 ft . above the ground and the uppermost point of the dome carries an illuminated model of the planet Saturn.

## The Projector

At the centre of the auditorium on a platform stands the wonderful $£ 70,000$ Zeiss projector (Fig. 2).
The prototype, produced by Zeiss, on which the London Planetarium is modelled, is often termed a "dumb-bell" model, from the characteristic shape of the twin star globes on a central cylindrical framework (Fig. 3). This model projects stars for the Northern and Southern hemispheres. Rotation of the dumb-bell on axis $\mathrm{H}_{1} \mathrm{H}_{4}$ enables the projector to show the night sky for any latitude. The orientation of the dumb-bell is shown in Fig. 4.
The general layout of the projector (Fig. 3) will be more fully appreciated from
a careful study of the parts denoted by capital letters which are taken in alphabetical order.
A. Star globes each containing 16 star field projectors fed with a I,000-watt lamp, to provide, in all, 9,000 stars of the Northern 0 and Southern hemispheres.
B. Projectors for the Dog Star-Sirius. Algol in Perseus
Algol in Perseus
Delta Cephei in Cephus.
Megallanic clouds.
Globular clusters.
Nebula
C. Projector for the Milky Way.
D. Projectors for the Sun with its Aureole. Zodiacal light and Gegenschein.
$E$. Projectors for the naked eye planets. Mercury Ei.
Venus $\mathrm{E}_{2}$.
Mars E3.
Jupiter E4.
Saturn E5.
F. Projector for the Moon.
N.B. Readers with bound volumes may like to refer to "The Planetarium: its History, Design and Use", P.M., September and October, 1955.


Fig. 2.-The $£ 70,000$ Zeiss projector. Dr. H. C. King can be seen on the right.


Fig. 3.-Simplified diagram of planetariun projector.

Moror $M$, provides power for the annual motion about axis $Y_{1}$, no.mal to the ecliptic.

Motor M: provides power for the daily (diurnal) motion about axis $\mathrm{XX}_{1}$, the polar axis

Mover $M_{3}$ provides power for change of latitude about axis $\mathrm{H}_{4} \mathrm{H}_{11}$.

Motor M\& provides power for precession.

When the projector is not in use the platform can be lowered and the projector then moves into a plate glass cage in the foyer of the planetarium building. The projector per se is a marvel of engincering and optical skill, comprising over 29,000 individual parts, 170 gear and worm wheels and 230 ball races.

## Capabilities

The London instrument can project all stars, of the 1 st and 2nd magnitude plus 8,900 stars from the 3 rd to the 6 th magni-tude-a brightness range of 100 . All these stars are accurately spaced and positioned on the artificial sky. Further, it can project the sun. the moon, the naked eye planets, meteors, nebulie, star clusters and auroræ.

Sitting in the comfort of the auditorium one can see the night sky from any latitude at any time of the past or future. An idea of how the heavens will appear on the dome and the scene inside the planetarium can be obtained from our cover. All the more prominent features of the night sky can be clearly defined. In the new planetarium, the

horizon is that of London's skyline complete with silhouettes of St. Paul's, Westminster, Greenwich Observatory, The Tower and the cranes of the Pool of London.

## The Programme

The admission charges are from 2 shillings in the moming to 4 shillings in the late evening. Presentations will be given in the mornings; afternoons and evenings of each weekday. On Sundays the presentations will be in the afternoon and evening only.

Mornings will be devoted to the presentation of astronomical events of special appeal to young people. Evening presentations will be directed to adult audiences.

The lecturer in charge is Dr. H. C. King, well-known author of books on astronomy and optics.


## British Mono-rail

THE construction of a mono-rail is one of the suggested solutions to the problem of reducing the journey time between the centre of London and London Airport, and the practicability of using this form of transport for the link and the technical problems involved in the construction and running of such a system are under consideration.

Before a system of this kind could be brought into public use in this country, long and rigorous tests would have to be conducted over a trial length to satisfy the exacting safety requirements of the Ministry of Transport and Civil Aviation.

## Man Had Plant Ancestors

$A^{N}$
N American professor of biology and his associates have, after extensive study, concluded that man and all other animals share a common ancestry with the brown seaweeds dating back some billion years.

## Sun-powered Satellite Possible

ACHEMICAL battery, using acridine dyes and powered by the sun, is possible. If used in a satellite it would last as long as the satellite itself. By putting these dyes first in the light and then in shadow it is possible to release electrical energy. A satellite circling the earth, first in the sun and then in the carth's shadow, could make use of this principle.

Ionised Air as a Pain Killer
FLECTRICALLY-CHARGED air blown into the room of a patient suffering from
burns has the effect of a narcotic in killing pain. Even the dressings on the burns can be changed without conventional drugs. How the new treatment works is not known, but ik has a similar effect to a tranquillising drug.


## Rocket to the Moon

T T is thought possible that a rocket could be fired to the moon this year. It would not bé a manned rocket, but one carrying a marking dyc. Alternatively, it might circle the moon. Such a project would not be very much more difficult than launching an earth satellite.

## Uranium Refining Efficiency

7HE process for extracting uranium from its ores has reached the stage where it can obtain 99.99 per cent. of the metal. In the liquid-liquid extraction process the clay, rocks, etc., which contain the ore are dissolved first in acids and then tributyl phosphatekerosene is added to extract the uranium.

## Windows in Fish

IN order to watch its internal organs at work, windows have been screwed to the underside of a fish. By this method it is possible to watch the gut of a fish while it is still living and feeding. The fish is put under anaesthetic, the body cavity opened and the window, which is made of mica, bolted in place.

## Southern Auroræ Spotted by Radar

 NEW ZEALAND scientists report that for the first time radar has been used to spot auroræ in the southern hemisphere. The radar echoes show that the average height of the aurora is 66 miles.
## Radiation Amount Reduced

THE Atomic Energy Commission has reduced by two-thirds the level of radiation permitted for atomic workers. A new limit on the total radiation dose for a worker over 18 has been introduced. This is five rems, per year instcad of the previous 15 rems.


Electric clock units cost about 25s. and there are two types. One kind is self starting and is convenient and easy to fit, as no starting knob is necessary. If the electricity supply is unreliable in your area, a non-selfstarter is better. With a self-starter, a few minutes break in the supply would not be detected and the clock would run slow. Electric clock units are available from $\mathbf{H}$. Franks, 58-60, New Oxford Street, London, W.C.I.

## Coloured Plastic Pegs

Apart from the coloured pegs, obtainable from a handicrafts suppliers who supply schools (as these pegs are generally used in Primary schools) the rest of the clock is usually already in the handyman's scrap box.

## The Clock Body

The type of body made for the prototype needed a large lathe to turn the round frame, but if one is not available, the body can be square or even hexagonal.
As the clock units are usually about 3 in. dia. and 3 in. deep it is easier to build up the


Fig. 1.-The clock body.


Fig. 2.-Positioning the clock unit.
the centre to accommodate the unit.

## Clock Face

The clock face is made of any board up to $\frac{1}{2}$ in. thick with a fairly close grain. The face should be bevelled sightly after gluing to the body.


Fig. 3--Some alternative shapes.
As can be seen in Fig. 2, the clock unit is eccentric to the spindle for the hands, and also as the gears on the face of the unit protrude it is necessary to counterbore the inside of the face to accommodate them. This can be done easily with an auger bit.

One or two short wood screws will hold it in when the rest of the clock is finished.

## Coloured Pegs

These plastic pegs are used in Primary schools for children to fit in perforated hardboard and not only add a contemporary look to the clock, but can easily be changed for different. colour schemes. Before drilling the holes for the pegs try the drill out on another piece of wood, to get an easy-fitting size.

## Hands

As with most modern fittings these are best made to suit individual taste. They could be made as in Fig. 5, but the proto-
type had plain straight hands; whatever style you use, you will need the parts shown in Fig. 6.

These parts can be made on a small lathe, if available, but if not, plastic polythene tube can be used. The parts, if brass, can be sweated on to the hands, but if polythene the procedure in Fig. 7 is best, when a quick drying plastic adhesive can be used. The hands can be made of sheet plastic, thin wood, or thin metal as preferred, for it will be found that the clock mechanism is sturdy enough to operate without counterbalanced hands, even if they are of metal.

## Finish

This will again be decided by personal taste, but the following are suggestions for various colour schemes and shapes.

The chip board used gave a rough finish on the clock sides. With judicious use of a plastic filler or even putty and a finish of cream emulsion paint it can be made to blend in with the wallpaper and thus not appear deep and cumbersome. It could even


Fig. 4.-Side view of clock.
be surrounded by a collar of wallpaper in the same way as ${ }^{\prime}$ a birthday cake.

The flex used was a light coloured plastic covered wire which matched the wallpaper and thus was not very noticeable.

## Wall Fixing

The problem of how to hang the clock was simply solved by drilling a hole of about $\frac{1}{4}$ in. dia. and rin. deep in the back so that it could easily be fitted over an ordinary nail in the wall. This can be seen in Fig. 4.

## Clock Back

The back of the clock has no external


Fig. 5.-Alternative shape for the hands.
fitting except in the case of the non-selfstarting type, when about three short studs or even the plastic pegs can be used to keep the clock away from the wall so that the starter knob does not foul. The back piece, shaped to cover all the clock, is of hardboard and can be painted with emulsion paint to suit the sides.


Fig. 6.-Parts required for fitting the hands.
arrangement of the pegs it was found best to place four of the same colour, either white or orange at three, six, nine and twelve o'clock, and fill in the other hours with symmetrical and contrasting colours. As the pegs are easily removable different colour schemes can easily be tried out.

## Fused Plugs

It is worth while remembering that fused 5 -amp. plugs can be purchased to safeguard the

Fig. 7.-Gluing polythene hands.

## Clock Face

The most vital painting of all is the face. In the prototype it was made glossy black to show up the plastic peg colours. In the


Fig. 8.-The parts for the clock.
clock if connected to a power circuit.

## Square and Octagonal Clocks

A few alternative shapes are shown in Fig., 3, which might appeal to those who have not the facilities to turn a large round one.

The square and octagonal shapes can be made to look even better with bevelled faces forming four triangular bevels in the square face and eight in the case of the octagonal one. Fig. 8 shows all the parts ready for assembly.

## Slide Projection in Restricted Space

TTHE plans given in the Nov. 1957 issue, for a "Daylight Cinema" will produce an image which is upside down. It may be found inconvenient to insert filmslides, etc., inverted.
The problem resolves itself into several requirements.

1. The projector must be conveniently placed.
2. The image must be big enough and clearly seen in daylight at a fairly wide angle.
3. The apparatus must be easily stored or set up.

The idea of a cabinet is a good one. In the cabinet, room must be provided for reflectors to take up the distance from projector to screen, also the image must be
 scope arranigement.

## Comments on the Design in

 Our November, 1957 IssueBy R. J. AMOR


Fig. 2.-Position of an extra mirror.


Fig. 3.-Arrangement for classroom use.
reversed to allow for back projection.
The distance measured for an image of 2 in . from a standard film is 6 ft . to 8 ft . according to the projector lens. This means that the cabinet must accommodate that length of throw. It could be done by using a sort of Souble periscope as shown in Fig. I.

The double periscope results in an image reversed from right to left. By turning the projector at right angles and placing a
mirror at X (Fig. 2) at 45 deg. to the line of throw, the image will be right.

Therefore a cabinet will be required about 4 ft . high and as wide as the screen, with


Fig. 4.-Classroom with apparatus in position.
the projector on a shelf at the rear. The five mirrors would have to be surfaced silvered and so arranged in size as to fit into the cabinet. There would have to be some arrangement that would allow of varying the distance from screen to projector if different projectors were to be used. Of course, it would be better to tailor-make the cabinet for one projector.
A device used in the corner of a large well-lit classroom is shown in Fig. 3 (the cabinet idea was too space taking).

The screen is 21 in . X 16 in . sandblasted plastic screwed to a frame on two legs. From the centre of the frame at the bottom an adjustable arm extends to the rear. At the end of the arm is a mirror about $12 i n$. $X$ roin., adjustable for height, turn and. angle. The arm rests on the table at one point to make the screen stand securely.

The apparatus is placed on a table in the corner of the room with the projector alongside. The image is projected to the mirror, thence to the back of the screen (Fig. 4).

This enables a teacher to work the projector, use the blackboard, maps, etc., while the class view the screen.

The mirror should be located about 3 ft . from the back of the screen.


## Automatic Timed Switching for Your Radio, Bedroom Heater, etc.

ATIME-SWITCH was required to perform two operations in every $24^{-}$ hour period. As a commercial model was comparatively expensive the writer decided to build one from readily available components, but designed to be more flexible in application than the usual commercial unit. The time-switch (Fig. 2) is used to control a- Dimplex electric radiator in a bedroom, the radiator being switched on for two hours in the morning before getting up, and for two hours in the evening before bed-time. The flexibility of this design allows the time-switch to be arranged to turn the radiator on at $5.30 \mathrm{a} . \mathrm{m}$. and off at 7.30 a.m., on at 9 p.m. and off at II p.m., but on Sundays on at $6.30 \mathrm{a} . \mathrm{m}$. and off at 8.30 a.m., to allow for an extra hour in bed! The " on "r period of two hours is, of course, purely arbitrary and may be made as long or short as may be required.

Many other uses will doubtless suggest themselves to readers; shop window lighting could be controlled daily, but left off at week-ends; a radio set could be switched on each morning for the news or some daily programme, any difference in time from day to day being easily allowed for ; in fact, almost any electrical apparatus could be controlled for predetermined periods.

The total cost of the time-switch amounts to less than 70 s. and the current consumed


Note the connection from the "contact" wire to the gear wheel. This should be soldered

Fig. I.-The protractor disc.
in operation is negligible; in fact, it is too small to be measured by the meter.

## General Details

The "heart" of the time-switch is a Sangamo A.C. synchronous motor, ty.pe $\mathrm{S}_{7}$, geared to $1 / 168$ revoutions per hour, i.e., one revolution per week. This electric motor is bought for 30s.. the gearing being built-in to the motor casing. The motor is silent in
attention.
operation and users of these motors have claimed up to 8 -10 years running with no

The motor is arranged to drive a disc, around the circumference of which are arranged contacts as required. In the writer's case the "on" periods required were all of


A neon signal lamp may be incorporated but this is not absolutely necessary and merely serves to show that everything is working.

## Construction

Figs. 4 and 6 show the circuit arrange-
mended that an ordinary circular celluloid protractor be used. Such a protractor is obtainable in various sizes from any stationer. the five inch size is most suitable and costs about 9d. A protractor is useful as it is insulating, and is already marked in degrees, which greatly simplifies marking out. One hour is represented by 2.143 degrees and the positions of the contacts can easily be worked out from this. In the writer's case the " on "


Fig. 3.-Arrangemell of the brass strip and details of the motor mounting.
period was from 5.30 to 7.30 a.m., and from $\dot{9}$ to II p.m., with the exception of Sunday when the " on "period was 6.30 to $8.30 \cdot \mathrm{a} . \mathrm{m}$., the contacts were, therefore, arranged according to the table shown.
The period for which the apparatus is switched on is controlled by the width of the copper brush, the width is derived from the equation:
$\mathrm{W}=\frac{\pi \mathrm{d}}{168}$ inches (per hour)


Fig. 4.-Theoretical ciruit. $S_{\mathrm{I}}=$ Bulgin $O n-0 f f$ switch, $S_{2}=13$ amp. On-off szuitch. $S_{2}, L, N$ and $E$ enclosed in dotted line comprise a combined 13 amp. socket. and switch.

6 B.A. nuts and bolts. Care must be taken to see that the protractor is mounted centrally on the motor shaft.

## Motor Mounting

Next the motor should be mounted on the chassis. As the body of the motor is "live" when the apparatus is "on," it must be -insulated from the chassis if a metal chassis is used. A simple method of mounting is shown in Fig. 3, using a small piece of hardboard or other insulating material. Three lengths of 4 B.A. threaded rod (obtainable from radio stores) are used, and the three large holes - in the chassis must be big enough to give clearance to the 4 B.A. nuts. If the top cover of the motor is removed, it will be useful as a template to mark three holes in the chassis, which should be drilled sin., and three holes in the hardboard, which should be drilled to the diameter of the three lengths of threaded rod which support the motor

The hardboard should now be bolted to the chassis, taking care to see that the nuts on the ends of the threaded rods are central in their gin. holes and do not touch the surrounding metal of the

Now the other-components should be fitted to the chassis, the relay being screwed in place (two threaded holes are already provided in the base). The indicator lamp and the "Bulgin" type on-off switch are selfsupporting, holes of a suitable diameter being drilled for them in the side of the chassis. It will simplify wiring up if two more tagboards are fitted, one to take the "input" flex and one for the "output." Two small soldering tags should also be fitted, one to the nut and bolt holding the brass brush inplace, and one to one of the motor supporting rods. The time-switch is now ready to be wired up and this should be done in accordance with the circuit diagrams (Figs. 4 and 6). The wires shown as heavy lines in Fig. 6 should be of an adequate gauge to take the current to be consumed by the apparatus to be operated. Similarly the "input" flex from the main should be of a heavy gauge.

## The Cabinet

Finally, a cabinet to house the time-switch must be made from plywood or other suitable material. The constructional dimensions will depend on the type and size of the chassis used and must be determined to suit individual requirements. It will be convenient to take the output leads to a suitable socket. If a switched socket is used and a fourth lead is taken from the switch-contact to the main-input tag-board on the chassis, the socket will be "live" at the predetermined times or will be "live" whenever

Thus the width of the brush for a 5 in . protractor and a two hour "on" period is:

$$
\left(\frac{.2 \times 5}{168}\right) \times 2=.187 \text { inches }
$$

The protractor should be attached to the motor shaft, an old gearwheel with a diameter of Iin . or thereabouts and a bush
chassis. The two leads from the motor are very delicate and it is safest to take them to a small tag-board which is screwed to the chassis near the motor. These wires may now be soldered in place to prevent accidents.


Fig. 5.-The completed time-squitch in use. fitted with a grub-screw is a simple method. The bush should be drilled out to the diameter of the shaft on the motor, and the protractor fitted to the gearuheel with two

| TABLE OF | TIMES AND | DEGREES |
| :---: | :---: | :---: |
| Sunday | 12 midnight | $0^{\circ}$ |
| Monday | $5.30 \mathrm{a.m}$. | $11.79^{\circ}$ |
|  | $9.00 \mathrm{p.m}$. | $45.00^{\circ}$ |
| Tuesday | $5.30 \mathrm{a.m}$. | $63.21^{\circ}$ |
|  | $9.00 \mathrm{p.m}$. | $96.42^{\circ}$ |
| Wednesday | $5.30 \mathrm{a} . \mathrm{m}$. | $114.64^{\circ}$ |
|  | $9.00 \mathrm{p.m}$. | $147.86^{\circ}$ |
| Thursday | $5.30 \mathrm{a.m}$. | $166.07^{\circ}$ |
|  | $9.00 \mathrm{p.m}$. | $199.29^{\circ}$ |
| Friday | $5.30 \mathrm{a.m}$. | $217.50^{\circ}$ |
|  | $9.00 \mathrm{p.m}$. | $250.71^{\circ}$ |
| Saturday | $5.30 \mathrm{a.m}$. | $268.93^{\circ}$ |
|  | $9.00 \mathrm{p.m}$. | $302.14^{\circ}$ |
| Sunday | $6.30 \mathrm{a} . \mathrm{m}$. | $326.79^{\circ}$ |
|  | $9.00 \mathrm{p.m}$. | $353.57^{\circ}$ |

## The Contact Brush

With the motor correctly positioned, the contact brush should be made up and fitted. The "brush" should be made from a small piece of springy brassthe contact arm from a bicycle battery is a convenient source. The end of the arm should be carefully filed to the required width (for a 5 in. protractor one hour $=.0935$ in.) Fig. 3. brush on the rim of the contact disc. The motor should have been mounted in such a position that the rim of the contact disc is directly above the side of the chassis, in which case the paxolin strip carrying the brush may now be fitted to the side of the chassis and adjusted so that the brush bears lightly on the edge of the contact disc.


Mathematics for the Practical Man. By George Howe. 150 pages. 24s. 6d. net. Published by D. Van Nostrand Company. WRITTEN primarily for the man who matics needs refreshing, this book will probably also be uscful for the student. The autho: assumes a knowledge of elementary arithmetic and the book then deals with and the lower end drillied for bolting to a small paxolin strip as shown in

A set-screw is fitted to the paxolin strip to adjust the pressure of the finds that his knowledge of mathe-


Fig. 6.-Wiring diagram.
required if the switch is thrown. This enables the apparatus to be switched on at tinues other than those predetermined, this will be found useful, especially when a heater is controlled by the time-switch. Of course, the motor must never be switched off once it is running correctly as this would upset the timing and involve resetting.

The time of switching the motor on must, of course, be chosen, and the protractor finally tightened, by means of its grub-screw, to the motor shaft in the appropriate position. The timer is shown in use in Fig. 5, where it is operating the author's electric bedroom radiator
advanced arithmetic, algebra, geometry, trigonometry, logarithms co-ordinate geometry and calculus.
"Electro-matic Vehicle-actuated Road SigTelephone \& Electric Co., Ltd.
ALL the aspects of road control by means of traffic lights are dealt with in this illustrated booklet, published by themakers of clectro-matic systems. The book is intended as a guide to both the traffic expert and the layman intcresied in road problems.

(Cowcluded from page 306, March issue)

COMING up to the foothills of a seamount, we reach areas where there may be sands or gravels interspersed with areas of ooze, sometimes undulating, suggesting a sediment cover following the contours of buried features, some-imes with a few isolated rocks possibly thrown out by a near-by volcano. Here we have found some

A Paper by A. S. Laughton, M.A., Ph.D., of the Natlonal Institute of Oceanography, read to the Roya! Society of Arts on Wednesday, 20th November, 1957, with Sir Ernest Goodale, C.B.E., M.C., a Vice-president of the Society, in the Chair

on the bottom in ihe deep basins. 13 u t deep-sea Fhotographs were the first evidence we had that there were currents near the bottom in the deep sea strong enough to make ripple maris.

When we get on to the steep sides of the seamount, which may be as steep as one in two, we find a great variety of scenery. These
are large areas of boulders, sometimes several feet across, lying half embedded in sand and ooze, often with the long, wire-like sea pens attached to them, sometimes there are pockets of barren sediment, shingle and sand. Then, on the peaks, we find bedrock-the material of which the whole seamount may be made -exposed and swept clear of all accumulating sediment by currents that have scoured and rounded the rock faces (see Fig. 6). It is very difficult from the photographs to obtain a positive identification of the rocks we see, and so we try to get samples by dredging or coring in the same place. On one occasion we were saved from an erroneous interpretation of the rocks in a picture by subsequent dredging. The appearance of the loose rocks, which had parallel striations on them, suggested the type of layer foundation associated with sedimentary rocks, which would be extremely difficult to explain in this locality. Our dredge samples, however, showed that the striations were not bedding planes, but were caused by layers of bubbles in a rapidly cooling underwater lava flow which had become accentuated by later sediment deposition.

The shallower we got, the more abundant became the life that we saw. Most common were the hydroid or coral type of animals. These are really colonies of thousands of
indications of fairly strong currents that have not previously been expected. Fig: 5 shows ripple marks caused by curren'is on a sandy bottom at a depth of 720 fathoms. Now the fact that we see ripple marks here and not in the deep plain areas does not necessarily imply that the currents are absent in the plains, since they will only leave their mark in places where the bottom material is sandy, and in general we do not find sand

Fig. 5. (Abave).Ripple marks on a sandy bottom at a depth of 720 fathans. The distance betzueen crests is about ift. They are caused by currents moving from left to right.

enough to be in the cen 're' of the picture and often we see just the tail or head, as in Fig. 9, or perhaps only its shadow. We are then prepared to revert to the angler's practice and speculate on the size of the one that got away. The identification of fish is extremely difficult, especially the larger ones which are rarely caught by nets, since they swim too fast. It is quite likely, therefore, that some of the fish we photograph have never been seen before, and it is necessary to extend the classification to include them.

Underwater photography is an extremely useful and simple method of exploring the sea bottom, and an extensive collection of photographs from representative areas will outline the field for more detailed studies.
remember that the dredge may te two miles down and as many, or more, miles astern, you can appreciate that a great deal of wire is necessary, and that the tension at the inboard end is very great. It is often difficult to know whether in fact the dredge is on the bottom or streaming astern. In soft
structure. I have not made any mention so far of a method of exploration that is still in its infancy. This is by personal descent in a bathyscaphe, a pressurised submarine capable of descending two or more miles into the ocean abyss. There are two bathyscaphes in operation in Europe, the

Fig. 9 (Right).-A large fish at 250 fathoms on a seamount on the midAtlantic ridge. fish, which is probably roft. long, has not been identified.


Fig. 8 (Left).-Giant sponge, 3 ft. in diameter, one of the many in the area, at 238 fathoms on Ampere Bank.

In itself, it cannot go very far, but in collaboration with sampling, both with dredge and trawl, we may find out a lot more about the deep-sea environment.

## Other Techniques

I have discussed two of the techniques that we use for exploring the deep ocean floor, echo sounding and photography, but there are many others equally important that I have not been able to describe in detail. A great deal of work has gone into the design and use of apparatus for obtaining samples of the ocean floor. The simplest method, and one which can be used with any type of bottom, muddy or rocky, is dredging behind a very slowly moving ship. When you
sediments we gain more information by sampling the different layers in a vertical column, which is done by driving in a tube and retaining the sample trapped inside. Cores of up to a hundred feet have been obtained in this way, representing sedimentation during the past few million years. Study of these cores can tell us about climatological changes during this period which affect the species of foraminifera composing the sediments and about the geological history of the area.
I have already mentioned the seismic methods that form a large part of our exploration. Measurements of magnetic field, gravitational field and heat flow all costribute to our knowledge of the sea floor

Trieste, which is operated in Italy, and the other, F.N.R.S.3, is run by the Frencl Navy, There is no doubt that in the future the bathyscaphe will become a powerful tool of deep-sea exploration, but it is still an expensive and somewhat limited machine and its potential has not yet been fully developed.

You will have gathered, I hope, that the field for exploration of the deep-sea floor is extremely large, and what I have described is a minute portion of it. More and more countries are turning their eyes seawards in search of new sources of food and minerals, and the interest in oceanography is growing. But the inherent difficulties of seagoing exploration do not permit the work to be done quickly, and it will be many years before we can travel in imagination across the floor of the great oceans and make use of Nature's reserves protected by three miles of water.

This article is reproduced by kind permission of the National Institute of Oceanography and Figs. 5, 6, 7, 8 and 9 by permission of the Lanont Geological Obscratory, New York.

# Soft Solder and Similar Alloys 

## Their Composition and Characteristics

COLDERING is the union of two metals with the aid of a metal of lower melting temperature. The metal used to make the joint must also have adequate strength and the power to "wet" the metals to be joined.

Tin will satisfy the above requirements as far as copper, iron and lead are concerned; these metals are the basis of many alloys in general use. An example of the above is found in the manufacture of the mild steel containers known as "tin-cans."

The addition of lead to tin not only produces a much cheaper alloy but also lowers the melting temperature while retaining the requirements of a solder.

## The Melting Temperature

When lad is added to lin a new nonstituent is formed which has a much lower

By V. F. ROBERTS

meling temperature than cither lead or tin. The new constituent, known as a cutectic, contains 62 per cent. of in and 38 per cent. of lead and melts at 326 deg. F. Lead melts at 621 deg. $F$. and tin melts at 450 deg. $F$.

Fine tinman's solder is of the above composition ( 62 per cent. tin and 38 per cent. lead) and, therefore, has a rapid solidification temperature at 326 deg. $F$. This alloy is very similar to the solder used for radio work which must solidify rapidly to prevent the formation of dry joints.

Coarse tinman's solder contains 50 per cent. lead and 50 per cent. tin. It is cheaper than the finc solder, but solidifies over a range of temperature from 420 to 326 deg. F.

Plumber's solder, the composition of which comprises 40 per cent. or less of $i$ in and the remainder lead, has an even wider range of solidification temperature over which the metal is in the pasty stage and is capable of being wiped.

Other metals are often added to solder to increase the strength of the joint (antimony), or to lower the amount of contraction as the joint solidifies and cools (bismuth).

## Low Melting Point Alloys

The alloys of lead, tin, bismuth and cadmium, known by various names such as Rose's alloy, Wood's metal and the cerroalloys owe their low melting temperatures to the formation of eutectics as in solders.

An alloy of 27 per cent. lead (melting point 621 deg. F.), 50 per cent. bismuth (melting point 520 deg. $F_{\text {. }}$, 13 per cent. tin (melting point 450 deg. F.) and cadmium (melting point 610 deg. F.) forms a low melting point eutectic alloy of 150 deg. $\mathbf{F}$. Such an alloy can be used for filling pipes. before bending; the filler can be run out by immersing the pipe in hot water.


No. 2.-Making a Long Bow, Arrows

Concluded from page 275, March issue.

THE reader, having made the flat bow, will no doubt wish to try his hand at making one of the traditional long bows upon which the fame of the English archer has been founded.
A stave 6 ft . in length and of $\frac{1}{8} \mathrm{in}$. $X$ $1 \frac{1}{8}$ in. sawn section must be purchased. Examine the length of the stave when it arrives. There may be a slight curvature in the length on one side. The concave side of the curve should be used for the back of the bow.
Smooth all sides of the stave with a finely set smoothing plane so that the finished size is but a trifle over xin. square. Then mark out the position of the handle as in the case of the flat bow, working from the centre point in the length of the stave.
On the back of the stave draw a line down the entire length, then $\frac{1}{4} \mathrm{in}$. on either side of this centre line at each end mark the width of the stave at the nocks. Plane down to these lines (Fig. 15).

Now turn the stave over on to its side and from the handle to each end mark lines to a point $\frac{1}{2}$ in. from the back of the bow. Plane down to these lines, as shown in Figs. 16 and 17.

The stave will now have a section at the



Fig. 15-The shape of the bow from the front.
handle of in. $\times$ Iin. and at each extremity of $\frac{1}{2} \mathrm{in}$. $\times \frac{1}{2}$ in.

This square taper must now be worked down carefully to the section shown in Fig 18.

Work carefully from the square portion of the handle from which no material must be removed, to the given shape at each nock. Do not remove any wood from the back of the bow except at the finishing stages when the edges of the back must be very slightly rounded.

After filing in the two nocks the tillering should be performed as described for the flat bow. Bear in mind the weight of the pull required and watch the curve of each limb of the bow carefully to make sure that they are perfectly even. Work out any irregularities with the scraper and glasspaper.

Finally, when the tillering is completed a handle riser 4 in. $X \operatorname{rin} . \times \frac{1}{2}$ in. is glued to the belly side of the handle. When it is dry it may be smoothed up to be comfortable to the grip and finally bound with leather.
When the whole bow has been smoothed up with fine glasspaper and the tillering is quite satisfactory it may be oiled or varnished as required.

## Making Arrows

The reader is warned that making arrows is more difficult than making the bow. Perhaps this statement might be modified by saying that an arrow is not very difficult to make, but to make 12 exactly the same is.

It can readily be appreciated that to obtain uniformity in shooting every arrow should be the same weight and be perfectly straight. To this end one may now purchase arrows made of light alloy-tubing which is one step in assuring accuracy.

The most common source of material for arrows is $5 / 16 \mathrm{in}$. dia. birch dowel rods from the handicraft shop. If you are on good terms with the shopkeeper he will not


Fig. 17.-Sections at handle and ends of stave.


Saction ot nock
Fig. 18.-Sections after tillering.
mind you sorting through the stock to find a dozen of the straightest rods. See also that the grain runs straight through the whole length of the rod. The most common lengths of arrow are the 26 in . and 28 in , so that 3oin. dowels will be needed.

If some of the rods are curved they may be straightened by heating and bending.
off from the quill as shown in Fig. 20. Commence at point A with a single edged razor blade and try to take about $1 / 16 \mathrm{in}$. of quill with the web of the feather. The diagram shows how two or three flight feathers might be cut from the one turkey feather. The piese of quill must be sanded down to an even thickness after having cut out the approximate shape of the flight feather with a template.
The cock feather is the one which is at right angles to the line of the nock and so will be at right angles to the length of the bow. The two hen feathers are spaced at 120 deg . round the arrow. The cock feather is glued on first as shown in Fig. 21. A quick drying glue such as balsa cement is most useful. It is also waterproof.

When the three flight feathers are glued firmly in position the final shaping must be undertaken to make each feather identical in area. The most usual way of doing this

After cutting the rod to length it must be smoothed down with glasspaper. Remember equal weight is aimed for, so do not be too strong with the glasspaper on some and not on others. If you have a letter balance you can weigh each arrow as work proceeds to obtain uniformity.
In passing it is interesting to know that arrows are weighed by the weight of English silver coins. Thus an arrow for a bow with a pull of 30 lb . would be about 3s. 6 d . or 4s. This means it would weigh as much as three shillings and a sixpence or four shillings.

The nock is cut in one end of the birch dowel at right angles to the direction of the grain, as shown in Fig. 19. The depth of the nock is $\frac{1}{4} \mathrm{in}$. and the width is cut by using three hacksaw blades held in the frame side by side. Due to the slope on the pegs on the hacksaw frame this methed is not always easy as there will be an uneven tension on the blades. An alternative method is to bolt the blades together and bind with cord to form a handle leaving about 3 or 4 in . of saw available for use.

At the opposite end of the arrow a "pile" must be fitted to take the impact of the arrow as it strikes the target. This is a piece of $5 / 16 \mathrm{in}$. brass tubing. A small plug of brass rod ( $9 / 32 \mathrm{in}$. dia.) is soldered into the end. The arrow is shouldered down so that the pile is a good push fit. The pile is eventually secured by putting into the pile a few granules of resin, warming the pile until the resin melts and then quickly pushing the pile on to the arrow. Clean off and polish with fine glasspaper.

## Fletching

The three feathers glued to the end of the arrow are to give it a straight flight. A badly fletched arrow will wobble in flight. Here again uniformity is the order of the day so that good results may be achieved.

Feathers from the wings of turkeys are best, but those from geese may also be used. Remember there is a left and right to feathers and the feathers for an arrow should if possible come from the same wing or be all right or all left wing feathers.

The wide part of the feather is stripped
is to burn the outline by one of various gadgets. A wire can be bent to the right shape, heated in a gas ring and quickly


Fig. 21.-Gluing the cock feather in position. applied to each feather in turn, or a sheet metal cutter also heated to redness may be used as shown in Fig. 22. Other ideas will suggest themselves to the mechanic such as the electrically heated wire method whereby a piece of fic element wire is bent to shape and wired in series with an electric fire. The question of insulation must be carcfully attended to in this contrivance and only those with a sound knowledge of electrical matters should try this method.


Fig. 22.-Using a heated metal cutter.


Fig. 24.-Bracers in use.
thick leather using a razor blade or scissors.
The-approximate dimensions are shown in Fig. 23 and the two holes for the first and third fingers must be cut to suit the fingers of the archer. The second figger does not go through a hole but passes behind the tab as shown in the illustration.

An alternative method of construction is to use an old glove cut away to. leave the three fingers needed and to sew on some pieces of thick leather to the front of the fingers.
The arm guard or bracer (Fig. 25) straps to the left arm just above the wrist. Its purpose is to protect the arm from the recoil of the string and to provide a smooth surface


Fig. 25.-The bracer.
against which the string can strike, thus sending the arrow smoothly on its way without deflection. When using the bracer, watch carefully to see that there are no projections into which the string can catch. If there is any obstruction the bracer must be slightly modified to obviate this difficulty. Bracers are being used in Fig. 24.

## The Quiver

A quiver is a useful piece of equipment and can be made from a strip of leather about, $18 \mathrm{in} . \times 8 \mathrm{in}$. It is wound round in a tube and if holes are punched along each edge with a leather punch it can be sewn together with thongs. A piece of circular leather can be thonged to the bottom end of the tube. A suitable leather belt can be made and secured to the top of the quiver.
Some archers like to use a ground quiver which is stuck in; the ground near the

These straw bosses are expensive to buy and there is a lot of work in making them up. An easier way is to buy two bales of straw and stand them on top of one another on a small platform of stakes about 18 in . off the ground (Fig. 29). In Fig. 27 and in the background of Fig. 29 can be seen the stand for a circular target. At this peint it may be interesting to exclain why the archers in Fig. 29 are crawling on their hands and knees behind the target! When arrows miss the target and hit the ground they have a knack of slithering along just under the grass. It is sometimes very difficult indeed to locate these sper:t arrows a $n$ d cooperation from all in $m a k i n g a$ methodical search is called for. This task can be avoided by hanging scan old tarpaulín or similar cloth behind


Fig. 28.-View of a standard target in use.
the target so that the arrows which miss will be stopped in Indoor Archery flight clos: to the target.

The following books dealing with shooting technique may be of interest to the beginner:

1. "Modeŕn Archery," by Frank L. Bilson.
2. "Some Bowyers' Notes," by Kenneth O. Arton.
3. "Archery Handbook," by Edmund H. Buric.

During the winter shooting may be carried on indoors where a distance of over 20 yards is available. For such ranges a 2 ft . target is used. For indoor shooting it is a necessity to have a blanket, tarpaulin or similar screen

Fig. 26 (Left). Colours and dimensions of the standard target.

Fig. 29 (Right). $-A$ methodical search is called for to locate spent arrows zwhich have missed the target.
shooting point. This quiver is made from a rod of $\frac{1}{4}$ in. diameter steel about 30 in . in length, the top of which is formed into a circle of about 4 in . diameter.

## Targets

The standard target is 4 ft . in dia. and is usually painted on to white duck material, but any other material may be just as effective if not so durable.

Material for the target is best sized first of all, and some whitening mixed in with the size will give a good foundation for marking out.

The "bulls-eye" or "gold" as it is called by the archer is a circle $93 / 5 \mathrm{in}$. in dia. Each succeeding ring, the red, the blue the black and the white are each $44 / 5$ in. wide. Around the white is a $\frac{1}{2} \mathrm{in}$. black border, see Fig. 26.

Poster colours give a good matt finish. Matt oil paints will, of course, give a more weatherproof finish.

The circular target is mounted on a foundation of plaited straw about 3in. thick and the whole target is then stood on a wooden stand so that the centre of the gold is 4 ft . from the ground.



Fig. 27.-Details of the wooden target stand.
behind the target to take the impact of arrows which may miss the target.

## Safety Precautions

The bows described in these notes are not toys, but are very dangerous weapons to be used with the utmost care; with the same care as one would exercise with a .22 rifle. Never, on any account, point a drawn bow at any person, even in fun. When shooting at targets watch out that no person is walking anywhere near or behind the target. Spectators should always be stationed behind the firing point.

Bows and arrows should never be left around on the ground or grass. Should they become damp or wet the moisture must be wiped off as soon as possible. It is strongly advised that the bow and arrows should b: stored in a specially made case when not in use so that they will not warp.
Readers wishing to take up the sport are advised to join an established archery club, where they will be able to learn how to handle their equipment properly and will have access to competition work, besides enjoying the society of others.


## A Brief Description of the System and its Job

simultancously sets a visual irdicator in front of the driver, normally displaying an "all black" aspect, to show a "black and yellow" spoked aspect, which serves to remind the driver that he has acknowledged the warning indization received and should take control of the locomotive brakes and be prepared to halt at the stop signal.
each time a driver meets a green signal and the "warning" is given whenever he encounters a signal showing any aspect other than green.
Automatic Train Control does not, nor is it intended to, relieve a dri,er of his normal and inescapable responsibility for obsarving the signals on his $I r \cdot \mathrm{e}$ and acting promptly on their indications. A.T.C. is an aid to the driver, particularly in inclement weather, and is one of a

THERE are two main types of signals o. 1 any double-track stretch of British Railways-stop signals and distant signals, which warn the ari er of the position of the stop signals.

The B.R. system of A.T.C. shown diagrammatically in Fig. I operates on a non-contact magnetic principle. Two powerful magnets adjacent to each other are fixed in the centre of the track at rail level 200 yards on the approach side of the distant (warning) signal (Fig. 2). The first magnei is of the permanent type and the second an electro type controlled by the signalman. The equipment on the loco-


Fig 2.-A train approochirg an A.T.C. installation.
motive consists of a device cabled to a recciver fitted below the locomotive, which responds to the magnetic field of the track magnets. This receiver is connected electrically to apparatus in the locomotive cab and on approaching a warning signal in the "clear" position the receiver is influenced by both magnets, which causes a bell to ring in the cab, indicating to the driver that the line ahead is clear.

If the signal is set at "caution," the receiver is influenced by the permanent magnet only, the result of which is to cause a horn to sound continuouslv until the driver acknowledges the varning by depressing a resetting lever. This action


Fig 1.-A.T.C. show.l diagramm ..tically.

## Automatic Braking

Failure to carry out the acknowledging action results, after a three-seconds delay, in the operation of an automatic brake valve, which gives progressively a full brake application on locomotive and train and brings it to a halt, without any action whatsoever on the part of the driver or fireman.

When the system is applied to colourlight signals the "clear" indication is given
number of safety measures which are being extended under the British Railways modernisation programme. These include the widespread replacement of semaphore signals by colour-light signals, the installation of moze track-circuits (which automatically indicate the presence of a train to the signalman and apply appropriate safeguards), and the provision of more poweroperated signal boxes in replacement of those which are manually operated.


$\mathrm{A}^{7}$$T$ the moment the glass will have the appearance of Fig. Ioa, Now heat the open end of the glass in a yellow flame (turning all the time) and after a few seconds turn the flame on to full air and roaring hard. Now. get the tip of the blue cone to heat the glass about Iin. in from the end, keep turning and direct the end so that any alcohol spurting out will do no harm. When the glass is red hot and soft quickly remove it from the flame and pull each end of the glass very forcibly and quickly. Do not procrastinate or do this gently. If all is well the glass will stretch out into a filament a yard or so long. Break this with pliers about Iin. from the tube proper. Dispose of the dangerous filament


By E. V. KING

in the dustbin. If the glass is too hot to hold pliers may be used.

Verify that there is still a small capillary hole in the tube (a magnifying glass will help). If you pull the glass out while still in the flame you may break the filament and

the end will seal over. If no hole is left, in the next process the bulb of the thermometer will burst.

Adjusting the Amount of Liquid in the Stem
If the amount of fluid is incorrect, on a cold day the liquid will disappear into the bulb or, conversely, on a hot one it might reach the top of the sealed tube and burst the belb.
-Since the thermometer is to be used in a room we may take the normal temperature as $60^{\circ} \mathrm{F}$. and the maximum as about $100^{\circ} \mathrm{F}$. in the middle of a very hot heat wave.

Place the thermometer in a jar of water at $100^{\circ} \mathrm{F}$. Fluid will exude from the top and should be soaked up with blotting paper. When the expansion is complete let the tube cool down to room temperature. If the fluid goes down completely into the bulb your bulb is too big. If it only goes down an inch or so your bulb is too small. It should go down to about the half-way mar-i.

## Sealing the Thermometer

Place the thermometer back in the water at $100^{\circ} \mathrm{C}$. When the fluid has completely expanded again quickly heat the tip of the


Fig. 12.-The tinplate protection shield.
dramn-out tube and a small blob will form (Fig. Iod). Remove the tube and let it cool. Wi:h experience the operator can fashion a small loop or hook during this process.

Take care not to boil the alcohol near the end of the tube or it will blow a small bubble which will then burst. The tube will not then be sealed and will lose a!cchol by cvaporation over the next year or so. If a bubble does form, reheat until another blob forms.

When completed, the thermometer mast be sealed and have no air bubbles in the balb or air in the stem. When the alcohol contrac:s it leaves a vacuum (or, strictly, alcohol vapour) in the tube.

As stated, any small air bubbles may be removed by the shaking method.

## Mounting the Thermometer

The prototypes were mounted on small wooden blocks cut out from orange boxes. Other mounting methods will suggest themselves to readers. Those who make plaster casts might fashion a holder of plaster. Perspex, plywood and cardboard have been used by the author.

A small piece of wood about $\frac{1}{4}$ in. thick,

## The Bulb Shield

Refer to Fig. 12 and make a small tinplate shield from a cocoa tin. The size will depend on the size of the bulb, but if it is $\frac{1}{2}$ in. dia. the measurements given will suit. Mark out and drill the holes while the metal is part of a larger sheet and cut it out afterwards. Finally, bend it round a picce of pipe or a dowel.


Fig. 13.-A comnercial standard thermometer.

The shield thus made is placed over the bulb, being held by small panel pins or shoe brads. Free ventilation must be left round the bulb or it will not respond to quick changes of temperature, such as when all the windows are opened on a frosty day.

## Calibration

Meshod A. If you have a standard thermometer (Fig. 13 shows a suitable one) with which to do the marking, proceed as follows. Take a large saucepan of cold water with the standard thermometer and

2in. longer than the thermometer and about $1 \frac{1}{8}$ in. wide is suitable. It is sandpapered smooth and a hole drilled as shown in Fig. II. This hole should be just a little bigger than the bulb of the thermometer; it need not go right through the wood.

Two small tinplate clips are then made


Fig. 14(a).-Calibration with a standard thermometer; (b) calibration without a standard thermometer.
from a cocoa tin or other thin metal. These fix the bulb and stem to the wooden stand, small panel pins and a small hammer being used with great care.

Remember that glass will not tend, the clips can hold only.

A small hole may be made at the top of the wood for hanging purposes.
the one you are making in it. Heat it gently, stirring the water all the time (Fig. 1.4a). Both the thermometers will slowly rise. Make tiny file marks at any suitable two temperatures. For instance, when the standard one says 60 deg. F make a tiny mark on the one being calibrated and when the standard one says 100 deg. $F$ make another mark. Between these two points there are 40 degrees or four lots of 10 divisions. The scale will be made later.

Method B. If you do not have a standard thermometer you may still achieve accurate calibration by using the principle of additive mixing of water at different temperatures. The resultant temperature is easily calculated and, by tising boiling and freezing water temperatures, we have our "set points of reference." Remember that boiling water cannot be used as a set point with alcohol thermometers.
CHART FOR ADDITIVE MIXING OF WATER

| Boiling water (at sea level), $212^{\circ} \mathbf{F}$. or $100^{\circ} \mathbf{C}$. Ice cold water, $32^{\circ} \mathrm{F}$. or $0^{\circ} \mathrm{C}$. |  |  |  |
| :---: | :---: | :---: | :---: |
| Parts of boiling water | Parts of ice cold water | Resultant temperature | Resultant temperature |
| 4 | $\pm$ | $176^{\circ} \mathrm{F}$. or |  |
| 2 | 1 | $149{ }^{\circ} \mathrm{F}$. or | $66^{\circ} \mathrm{C} \text {. }$ |
| 1 | 1 | $122^{\circ}$ F. or | $50^{\circ} \mathrm{C}$. |
| 1 | 2 | ${ }^{* 92} 2^{\circ} \mathrm{F}$. or | ${ }_{23} 3^{\circ} \mathrm{C}$. |
| 1 | 4 | $68^{\circ} \mathrm{F}$. or | $20^{\circ} \mathrm{C}$. |

*Used in example in text.
A chart is shown above which may help readers who wish to check their thermometers or mark special set points. For the theory of additive mixing refer to any text book or encyclopedia on Heat, the chapter concerned is usually titled "Specific Heats."

Place some ice in a large vessel, preferably surrounded by a blanket to save wastage of ice. Keep stirring it and place the thermometer in it. When the fluid ceases to fall it is at freezing point. Mark it with a small file scratch at this point; 32 deg. $F$. is now fixed.

Take one quart of boiling water and two quarts of the "freezing" water just made and mix them quickly and throughly. Mark quickly the place to which the thermometer rises. This will be the 92 deg. $F$. mark. (Fig. 14b).

The reader will observe that between these two points there lies 60 deg . or six divisions of 10 deg. each. The scale is made from this information (Fig. I5).

## Making the Scale

This is prepared in the first instance on plain white paper, then stuck on to the wood, making the marks coincide with the scratches already made. The scale can be transferred to the wood by means of carbon paper, the marks then being inked in properly with Indian ink. A good effect may be obtained by painting the wood with black Indian ink and letting it dry, then making the figures and marks with white Indian ink. Go over this when dry with clear spirit varnish (obtainable at artists ${ }^{3}$ stores). If paper is stuck on, and this is the quickest method, it should be heavily spirit varnished (cellulose lacquer used for chromium protection, or clear nail varnish may be used) to prevent steam or rain bringing the paper away from the wood.

It is assumed that you do not have a standard thermometer and are using Method B. It is also assumed that the completed thermometer has a scratch at 32 deg, and another at 92 deg. Refer to Fig. 15 and proceed as follows:-
I. Place the thermometer on a piece of plain white paper and make two dots corresponding to the scratch marks.
2. Measure the distance between them in millimeters.
3. Calculate one-sixth of this. In one


Fig. 15.-The marked thermometer and scale.


Fig. 16.-The scale attached to the thermometer stand.

NEWNES PRACTICAL MECHANICS


Fig. 19.- A baby's bath thermometer.
are only accurate to within about two per cent, and you should be able to make yours

The additive mixing of waters will introduce a small error which can largely be eliminated by preheating the containing vessel to about the temperature to which the mixed waters will rise.


Fig. 18.-Graph for the conversion of Fahrenheit to Centigrade.
at least as good as that.

|  | Centigrade | Ferhrenteit | Réaumur | A osolut |
| :---: | :---: | :---: | :---: | :---: |
| Boiling pure water at sea level | 100 | 212 | 80 | 373 |
| Equal parts wacen al. $0^{\circ}$ ana $100^{\circ} \mathrm{C}$ | 50 | $12 ?$ | 40 | 323 |
| Temperature of | 0 | 32 | 0 | 273 |

prototype shown, distance was 30 mm . and this divided by six meant that between every 10 degrees there were 5 mm . You could work in 64ths of an inch if you wish.
4. The scale can now be made as in Figs. I5 and 16. The long lines are made 5 mm . apart in the example above. These marks are then divided in half by somewhat smaller lines. If you wish to make a very accurate instrument these lines must then have four equally spaced dots placed between them. The scale may now be marked from, say, 10 deg. to $130 \mathrm{deg} . F$. as shown.
5. Now work out the amount of "deviation" between 30 and 32 deg. $F$. in mm. For example, in the example above, 10 deg . on the scale was 5 mms. Thus for 2 deg. the number of mm . was I . The deviation was I mm.
6. Now cut out the scale and stick it to the thermometer base so that the 30 deg. mark is exactly the deviation distance below the 32 deg. scratch mark on the thermometer (see Fig. I6).
7. Check that the deviation distance is also present at the 92 deg. mark. If it is not you have not made the scale correctly. Varnish the scale when it is dry.

## Limits of Accuracy

The accuracy is limited by the constancy of the capillary bore, the ability of alcohol to expand the same amount for the same temperature rise anywhere in the range, the accuracy with which you were able to mark the two trial readings and the accuracy with which you have made the scales. Some instruments made to retail at about $3 s .6$.


Fig 17.-Some common thermoneter scales.

## Using Centigrade Scales

This scale is easier to use but it is not used in this country save in laboratories. To convert to Fahrenheit from Centigrade multiply by $9 / 5$ and add 32 to the answer, i.e., $45^{\circ} \mathrm{C}$ equals $\left(45 \times \frac{9}{5}\right)+32=\frac{405}{5}+32$

$$
=8 \mathrm{I}+32=\mathrm{II} 3^{\circ} \mathrm{F}
$$

To convert to Centigrade from Fahrenheit take off 32 and multiply the answer by $5 / 9$, i.e., $113^{\circ} \mathrm{F}$ equals

$$
\begin{gathered}
(113-32) \times \frac{5}{9}=81 \times \frac{5}{9}=9 \times 5 \\
=45^{\circ} \mathrm{C} .
\end{gathered}
$$

A graph is sometimes useful for conversion from one scale to another and one is shown in Fig. 18. Some common thermometer scales are shown in Fig. 17. The Réaumur scale is used in Russia and the Absolute by scientists.

## Making Your Own "Stan-

 dard" ThermometerAfter you have made a few thermoneters it is advisable to make a standard of your own very carefully and accurately. Mount it on an aluminium sheet on which you can scratch the scale with a scriber or needle point.

In making most of the following suggested thermometers you will find this standard useful as it saves additive mixing to obtain any required temperature

## A Baby's Bath Thermometer

Make an alcohol thermometer, taking it up to $160^{\circ} \mathrm{F}$. before sealing the tip. Now place it in water at $100^{\circ} \mathrm{F}$. and make a clear file mark right round the rube. Fill the mark with green (or other colour) paint or cellulose. This is the correct temperature for the bath. Now take a cork from a wine bottle and cut a small slice from one end, about $5 / 16$ in. thick. Burn a hole through the two parts and slide them out on to the thermometer as shown in Figs. 19 and 20. You may stain the corks some bright colour if you wish. Arrange the corks so that the thernometer wif float horizontally on the surface of the water. When not in use it is kept in a small "ink" type bottle which can be fixed to the wall by a metal band.

Alternatively you could make a similar thermometer and mount it on aluminium as previously stated.

The thermometer will break if placed in boiling water.

## Greenhouse Thermometer

This must be made of metal or of wellvainished wood. It must go up to $160^{\circ}$ and down to $20^{\circ} \mathrm{F}$. A couple of marks should be made to show the danger positions for the type of house being used. A "cool" house should show a mean temperature of


Fig. 20.-The baby's bath thevmozeter in wse.


Fig. 21.-A photographic thermoneter (dish developinent).
$55^{\circ}$ to $65^{\circ}$ by day, should never fall below $45^{\circ}$. A "warm" house should never fall below $55^{\circ}$ and a "hot" house never below $60^{\circ} \mathrm{F}$. One thermometer could be made having three marks, the minimum for each type of house. The maximum permissible temperatures vary according to what is being grown.

## Photographic Thermometer

For the time/temperature method of development. a convenient point or points may be marked with a file on a suitable alcohol thermometer. A dish development thermometer is shown in Fig. 21.
(To be continued)


SEEKING economical holiday accommodation, the designer turned his mind to caravans and trailers and dismissed the large-sized caravan, which would limit the car to main and secondary roads, in favour of a light trailer which could be taken into the lanes; where the car would go, so would the trailer. It was required to be simply constructed in timber, and with no double curvature on the panelling to ensure that ply could be used for the sheathing. Hardboard, whilst being ideal for large, flat surfaces, did not appear to be the answer to the rather sharp curves required in the eventual design.
It was decided to build on to a standard boat trailer.

The shape of the car was used to give the basic profile to the trailer, thus giving a continuity of line on car and trailer which is very pleasing. It ensures a good flow of

air past the trailer at speed, and here it is interesting to note that the trailer has been towed at 65 with no sway or yawing, this probably being due to the individual sus-

Fig. 4.-A section through the junction of the ribs with the base.
pension of the chassis, a feature rarely found even in large caravans. As to mancuvrability, the trailer was towed through the maze of streets in Mevagissey, in Cornwall, and the "Escort" which is used to tow succecded in making the greater than 1 in 4 incline out of

that township along the coast.

## Construction

The floor consists of $\frac{3}{4}$ in. R. B. Douglas fir ply on a framing of 2 in . $\times r^{\frac{3}{4} \text { in. }}$ softwood, screwed and glued throughout, as shown in Fig. r, using $3 \frac{1}{2} \mathrm{in}$, No. 8 screws. The plywood was chosen as, in spite of costing more than boarding, it went on in two panels and thus cut the possibility of splashed


Fig. 3 (Left).-Method of cutting several ribs from one piece for reasons of economy.

In the group of photographs shown on the right, details can be seen of the ribs and longeron construction and also the sleeping accommodation. Notice the neat appearance of the windows and the smart exterior the shapirg gizes to the trailer.

# ?CampingTrailer 

## It Can be Built for a Total Cost of $£ 45$

By J. C. RICHARDSON

water entering when the road wheels threw up the inevitable clouds of spray from a wet road surface.

## Following the Car's Profile

Hardboard templates were prepared from the car and used to set out the ribs on $\frac{3}{4} \mathrm{in}$. plywood offcuts purchased from a local joinery works. The templates were prepared as shown in Fig. 2 by making 6in. stations on the hardboard, which was temporarily strutted up adjacent to the car, and a short length of batten was used to mark the station lines with a series of points which, when linked, repeated the profile on the hardboard ready to be cut to shape. The ribs of ply were arranged on the plywood offcuts to minimise the waste, as shown in Fig. 3.

## Jointing the Ribs

The joints were straightforward halved joints, arranged to carry the profile around the ribs; the joints around the ribs; the joints
are best positioned at points where there is a definite shaping, thus facilitating lining the sections of the rib. The joints were made with aero glue and screwed with $\frac{s}{8}$ in. No. 8 C.S. screws, joints being at least 6 in. long to ensure that the ribs were

not rendered weak. In fact, the joint portions of the car for which the trailer is built. proved to be stronger than plain plywood, though all plywood is immensely strong, in bending along the axis of the veneers. Fig. 7 shows the build-up of typical ribs, though this will vary according to the profile

Fig. 6.-Details of the ends.


The ribs should be spaced at $2 f t$. maximum centres and housed into the base olywood (see Fig. 4), the checkouts for the longerons being made by two saw cuts and a sharp chisel blow (see Fig. 8). The checkouts for the longerons should be slightly shallower than the depth of the longerons to facilitate fairing them off ready for the subsequent plywood sheeting. This is illustrated in Fig. 9. The longerons are fixed in place by one screw each as well as glueing. The structure, although seeming very light at this stage, becomes remarkably rigid when the ply s'zin is fixed back on to it. The whole assembly giving a stressed skin finish. The structure will now appear as structure
in Fig. 5.
s.- traller with ribs and

$\square$



Fig. 7 (Top Right).-The build-up of a typical rib.

Fig. 8 (Centre Right). Method cutring checkouts

Fig. 9 (Boitom Right). How ithe longerons are faired off.



Fig. 10.-How the rounded cornzrs of the windows are formed.

## Making the Ends

The ends are next prepared, and here again $\frac{1}{2} \mathrm{in}$. and $\frac{3}{4} \mathrm{in}$. plywood is used to give rigidity. The cut outs for door and windows were made with a jig saw attachment on an electric drill, the shape of the sides is carried round by blocking out with hardwood then shaping after gluing and removal of screws (see Fig. 6.) The profile of the panel at each end and the checkouts for the longerons, are marked by offering up the panel to the superstructure and pencilling the outlines of the longerons on to the back of the panel. When the cut outs are made the panels may be pushed into place between the longerons and the joints made by gluing and screwing as at the ribs. The bottom of each panel is securely screwed to the base assembly.

To obviate difficulty in glazing and to preserve the appearance of the windows the rounded corners are formed as shown in Fig. Io. Square openings for the glass are cut, and shaped fillets are applied on the outside with square beads to trim inside, the glass being bedded in putty.
Sneeting of 4 mm . marine ply can now be fixed over all sides by glueing and screwing thus providing the stressed skin. If the trailer is kept down below 8 ft . long the ply can be continuous in length, avoiding jointing. Provided the glue is used freely throughout, the trailer will now be entirely weatherproof.


Fig. 12. -Underside view of the base framing.

Figs. 13 and 14 (Above and Right).-Sleeping
arrangements for two adults and a child.
Figs. 13 and 14 (Above and Right).-Sleeping
arrangements for two adults and a child.


Window openings may be added as desired and details of the sashes and the method of construction are shown in Fig. II.

Wheslboxes must be made, and shape and dimensions will depend on the trailer and the type of wheels used. Fig. IS shows one of the author's wheelboxes and the methods of construction. Notice how the side is cut to the profile of the mudguard.

Suitable trailers such as the Pratt boat trailer can be used both for boats and the camping trailer described here. The trailer is easily removable, being fixed with wing nuts and being jacked up by means of the jacks shown in Fig. 16, to run the trailer out from underneath.
Hardwood runners are fixed underneath
Hardwood runners are fixed underneath
the base of the camping trailer body as


Cut to protile of mudguard
Fig. 15.-Details of the zwheel-boxes.

shown in Fig. 12. These provide bolting positions for fixing to the chassis.
The sleeping arrangements for two adults and a child are shown in Figs. 13 and 14 , but these, of course, can be varied to conform to individual requirements as can the whole layout of the trailer interior. The photographs give a good idea of the layout in the author's trailer and also further information as to construction.

This article is not intended to provide step-by-step instructions, but merely to give ideas on which




APART from its size and the design and arrangement of the fuel elements, a boiling reactor employing light water will not differ markedly from one using heavy water. Neither meed there be any essential difference between the design and arrangement of the fuel elements in a light water reactor of the boiling as opposed to the pressurised type. Attention will therefore be confined to the pressurised light water system.

The Shippingport reactor vessel has a height of 33 ft . and a nominal wall thickness of $8 \frac{1}{2}$ in. The internal diameter of the cylindrical portion is about gft. The co:e assemblies a:e supported in a stainless steel cage consisting of a barrel, a bottom plate and top suppozt grid. This cage is nearly 8 ft . in diameter and slightly over 13 ft . in height. The active section of the core is some 6 ft . in mean diameter and 6ft. high.
The seed and blanket elements are of nearly square cross-section throughout most of their length, but are fitted with transition pieces at each end to terminate in the form of a round tube. The lower tubular ends fit into holes drilled in the bottom plate, whilst the upper ones are locked into the top support grid.

The cooling water is maintained at a pressure of $2,000 \mathrm{lb}$. per sq. in. abs, corresponding to a saturation temperature of 636 deg . F. It enters the bottom of the reactor vessel at a temperature of 508 deg . F. and 90 per cent, of it flows upward between the fuel plates and rods. The remainder by-passes the core to cool the walls of the reactor vessel and thermal shield. The water leaves the vessel at a temperature of 542 deg F . to pass through the heat exchange: and is then recirculated to the vessel by means of a canned-motor pump.

The seed elements contain a total of ri4ib. of highly enriched u-anium whilst the blanket contains 12 tols of uraniun oxide.

## Gas Cooled Graphits Reactor

Like the heavy water reactor, the gas cooled graphite moderated reactor can operate with solely natural uranium as its fuel. Furthermore, it requires no unusual materials in its construction. In order to compete effectively as a power producer, however, the gas coolant must be pressurised, whilst the employment of graphite as a moderator implies a large critical size, so that a pressure vessel of considerable dimensions must be envisaged. As a
coolant, gas has an advantage over water in that its top temperature is not limited by its pressure but can be readily increased to the maximum permitted by the material of the fuel element can.

Reactors of this kind will form the spearhead of Britain's nuclear power programme and will stem from the prototype recently commissioned at Calder Hall, which has already been described.
'Apart from the use of higher gas pressure,


7 ROD ELEMENT

Scale, inches 0 $\qquad$ ${ }^{6}$
Fig. 17.-Fuel element for S.R.E.

## (Corcluded from poge 281, March issue)

the gas cooled reactor offers further scops for deve.opment in the choice of coolant. Carbon dioxide is cheap, whilst its nuclear properties are sufficiently good to permit i:s use with natural uranium fuel. For the same reactor heat output and range of tempe:ature, the blower power varies very nearly inversely as the square of the molecular weight of the gas and inversely as the cube of its specific heat at constant peessure. The suitability of different coolants can thus be judged by comparing their blower powe: in relation to that of carbon dioxide. On this basis helium would require only slight:y less blower power and nitrogen over twice as much, but hydrogen would need only 1/6th of the blower power of carbon dioxide. Before using hydrogen as a coolant, however, its compatability with the reactor materials would require investigation and other engineering problems must be solved.

## Sodium Graphite Reactor

The replacement of water or gas by sodium as coolant enables high power outputs to be achieved without pressurisation. Furthermore, since the boiling point of sodium is 882 deg. C., no limitation is imposed on the coolant temperature by the coolant itself, so that heat can be transfe-red from the reactor at a temperature limited only by metallurgical considerations. Conversely; apart from its marked chemical reaction with water, sodium oxidises ve:y rapidly in air. Also, on irradiation in a reactor, it becomes highly radioactive, emitting 2.76 MeV gamma radiation with a half-life of about is hours. The primary coolant system must therefore be shielded.

The American programme for sodium graphite reactors calls for the construction of a Sodium Reactor Experiment (SRE) to develop 20 MW heat, followed by a Sodium Graphite Reactor (SGR) developing 250 MW heat.

Fig. if shows the fuel element of the SRE. It takes the form of a bundle of seven rods, each of which consists of a 6 ft . high column of 6 in . long uranium slugs, ${ }_{3}{ }^{3} \mathrm{in}$. in diameter, in a stainless steel can. The wall thickness of the can is 0.orin. The uranium is enriched to contain 2.80 pe: cent. of uranium 235. The clearance space between the slugs and the can is filled with sodium-potassium alloy in order to provide a the:mal bond. This alloy extends a few inches above the slug column to a free surface, above which is a helium-filled space to accommodate volume changes due to thermal expansion and any gaseous fission p-oducts released during operation. The iods a:e prevented from touching one another by spirally wrapping the outer six rods with 13 s.w.g. stainless steel wire at a pitch of about 10 in .

Graphite readily absorbs sodium, thereby destroying its value as a moderator, so that contact between the two must be prevented. In the present instance, the necessary protection is arorded by enclosing the indirijual
graphite blocks in a zirconium can. The graphite assembly for the SGR is shown in Fig. 18. Each such assembly is attached by means of zirconium studs to a spacer plate at the top and a supporting pedestal at the base, both of stainless steel. The pedestal is loosely spigoted into the grid plate at the lower end of the reactor vessel. The spacer flates at the top of adjacent graphite assemblies nest together and are maintained in place by a clamping band round the outside of the whole core. The fuel element is lowered through the central hole in the graphite assembly to rest on the internal ledge at the lower end of the pedestal.

The sodium coolant enters the lower end of the reactor vessel into a header chamber

is contained in a stainless steel tank $19 f t$. deep, IIft. in diameter and I $\frac{1}{2}$ in. thick. A stainless steel inner liner $\frac{1}{4} \mathrm{in}$. thick assurcs a $2 \frac{1}{2} \mathrm{in}$. thick stagnant layer of sodium at the inner surface of the core tank to minimise thermal stresses due to variations in sodium temperature. The core tank is surrounded by a $5 \frac{1}{2} \mathrm{in}$. thick steel thermal shield. Immediately outside this shield is the outer tank, which acts as a further safeguard against loss of coolant in the event of failure of the inner tank. The outer tank is surrounded by thermal insulation approxmately Ift . thick, which in turn is enclosed by the concrete biological shield. At the interface between the insulation and concrete is a steel liner to which steel pipe is tack welded for the circulation of a concrete coolant in the form of toluene, which does not react chemically with sodium. The space above the sodium level and between the core tank and outer tank is filled with helium at 3lb. per sq. in. gauge to provide an inert atmosphere for the sodium

The sodium temperature at inlet to the reactor is $500 \mathrm{deg} . F$ and at outlet 960 deg. F.
programme are seen to be about as much as the coal industry will be able to mect. Whether or not electric power from nuclent stations is cheaper than that from conventional ones, it follows that, without nuclear power, this country would soon be suffering from an acute power famine.

This conclusion leads to the prospect that in ensuring a supply of electric power at any price, the price may be high. Fortunatelỳ, however, the price of electrical power from the first nuclear stations will not be greatly more than that from present-day conventional stations. Furthermore, the situation should be reversed in a few years. The reason for this prediction is to be found in the comparative make-up of electricity costs from conventional and nuclear stations. Typical comparative figures are given in Table II, at the top of the next page.

The nuclear station is seen to exhibit something like three times the capital charge associated with the conventional station. This disadvantage of the nuclear station, however, is largely offset by i's smaller fuel charges, which are about half these of the conventional station.

As time goes on, the capital costs of boih


## Applications of Nuclear Power

## Central Power Stations

 urgent application of nuclear power in this country lies in replacing coal or oil firing in central power stations. Support for this view is very clearly given by Table I which shows the anticipated rise in this country's electrical requirements and the corresponding requirements for coal with or without the assistance of nuclear power.The figures quoted for nuclear installed capacity up to 1957 are based on the progranme outlined in the White Paper, Command No. 9389, dated February, 1955. The corresponding figure for the year 2000 is hardly more than an inspired guess. The coal requirements under this nuclear power
conventional and nuclear stations should come down. Due to the greater proportion of the total electricity cost attributable to capital charges in the nuclear station, however, the same percentage reduction in capital costs will show to better advantage in the nuclear station than in the conventional one. Furthermore, whilst the cost of hydrocarbon fuel will certainly continue to rise, a similar situation with regard to nuclear fuel is unlikely to occur before the

TABLE I-ELECTRICITY AND COAL REQUIREMENTS

| Year | Total installed capacity, MW | Units per year | Nuclear installed capacity, MW | Coal required per year (tons) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Without nuclear power | With nuclear power |
| 1955 | 20,000 | $7 \times 1010$ | - | $40 \times 10^{6}$ | $40 \times 10^{6}$ |
| 1965 | 35,000 | $12 \times 10^{10}$ | 2,000 | $60 \times 10^{6}$ | $60 \times 10^{6}$ |
| 1975 | 60,000 | $20 \times 1010$ | 15,000 | $100 \times 10^{6}$ | $65 \times 10^{6}$ |
| 2000 | 150,000 | $50 \times 10^{10}$ | 100,000 | $250 \times 10^{6}$ | $55 \times 10^{6}$ |


| Item |  |  | Cost of electricity in pence/unit sent out |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Present conventional stations | First nuclear stations |
| Capital charges ... <br> Fuel and operating charges | ... | $\cdots$ | $\begin{aligned} & 0.14 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & 0.43 \\ & 0.23 \end{aligned}$ |
| Total |  |  | 0.55. | 0.66 |

end of the present century. There are thus strong reasons for anticipating a rise in the cost of power from conventional stations and a fall is the cost of power from nuclear stations.

## Marine Application

Nuclear power plants, due to their high capital costs, can generally only find commercial application where the load factor is high and the power output large. The earliest commercial application of nuclear power in the marine field is thus likely to b 3 in large oil tankers where the load factor may be as high as 90 per cent., and the power requirements exceed Io,0co s.h.p.

The enhanced importance of capital cost in marine applications leads to consideration of reactor types which are favourable f:om this point of view. Entering into this conside-ation is that of size, since reductions in size lead to increase in cargo space. On the score of both capital cost and size the pressurised water reactor shows to great advantage, and is, in fact, the type of reactor
used in the American nuciear-powered submarine Náutilus.

A further improvement in the direction of-reduced capital cost and size is obtained by substituting sodium for water as the coolant, as proposed for the second American nuclear-powered submarine Sea Wolf. However, the gain in this case is only-some Io per cent. reduction in space or weight, due to the increased amount of shielding requi:ed against radiation emitted by the sodium activated on passing through the core. In the case of the Sea Wolf, the shielding accounts for more than 35 per cent. of the weight of the whole power plant, whereas the corresponding figure for the Nautilus is less than 30 per cent.

Despite its greater size, the gas-cooled reactor can nevertheless show two advantages over the liquid-cooled reactor for marine use. If helium is employed as the coolant, then, since helium is not activated on passing through the core of the reacto:, shieldiag of the coo.ant circuit outside the reactor shield can be dispensed with.

Secondly $y_{s}$, temperatures sufficiently high for a gas turbinc cycle can almost certainly be achieved without undue development, so that the reactor coolant can also serve as the working fluid in the turbine and the customary heat exchanger between the two be omitted. In this way the space and weight of the plant should be reduced by a factor of about two-thirds of that occupicd by the liquid-cooled reactor p'ant.

One of the greatest differences between a marine and central power station plant would be in the type of reactor shield. For central power station applications, concrete, despite its enormous bulk, is still the most economical shielding material. For marine applications, a less bulky shield must be provided and would probably take the form of a very dense material, such as lead, close to the core, to absorb gamma radiation from it. A thin lining of a boron-containing mate:ial on the inside of this gamma abso:ber would effectively mop up all thermal neutrons escaping from the corc. Only fast neutrons would then remain to be dealt with, and these would probably best be attenuated by an iron-water shield with an admixture of some form of boron.
Studies made to date indicate that unde: the most favourable conditions a nuclear marine power plant is not as cconomical as a conventional one. The discrepancy, however, is sufficiently small to justify the effort now being devosed to the development of this typz of pant.

## Using the Instrament

If it is reguired to draw a projection of a hole through a plate at, say, 60 deg., the frocedure is as follows:

After drawing the view of the plate and hole at the required angle, as shown in Fig. 2, the necessary centre lines are drawn and the edges of the hole are projected, giving the minor axis of the required ellipse to be drawn.
The leg carrying the compass is then set at 60 deg. with the points of both legs resting on the paper.
The point of the straight leg is placed on the centre of the ellipse to be drawn and the forked end centrally placed over the centre line. The compass pencil point is then set to the minor radius " $M$ " (Fig. 2), and holding the instrument perfectly vertical, the compass is revolved around the straight leg. The resulting figure will be a true projection of the hole.

- HIS compass was originally made to draw projections of circular holes at an angle, and is equally suitable for drawing ellipses.

Construction is shown in Fig. I. The legs of a pair of dividers are cut off near the hinge, and a $\frac{1}{8} \mathrm{in}$. hole drilled in cach. A length of silver steel is soldered in each hole, forming two extended legs. Cne leg is splayed out into a fork to keep the instrument vertical when in use.

The compass proper is made from a pencil compass, the leg carrying the needle point being sawn off and soldered to a brass sleeve, which is made a sliding fit on the straight leg. It will be seen that when this leg is set at an angle to the paper and the pencil compass revolved around it, the sleeve will slide along the leg and the pencil point will draw a true scction of a slice through a cylinder at the angle at which is set.

Fig. I (Right).-The completed instrunient for drazving ellipses.


Fig. 2 (Right).Drawing an ellipse presented by a hole in a plate at a 60 deg. angle.


When it is required to draw an ellipse to a given size, draw in the centre lines, mark in the major and minor axes, set the compass to the minor radius, place the point of the straight leg on the intersection of the centre lines, and adjust the angle of the iegs until the pencil point coincides with the major radius.

## RADIO-CONTROLLED MODELS

By F. J. CAMM
$12 / 6$. By Post $13 / 6$.

# Announce wew practical way OF LEARNING AT HOME 

$$
\begin{aligned}
& \text { NEW - completely up-to-date methods of giving instruction in a wide } \\
& \text { range of technical subjects specially designed and arranged for self-study } \\
& \text { at home under the skilled guidance of our teaching staff. } \\
& \text { NEW - experimental outfits and lesson manuals are despatched on } \\
& \text { enrolment and remain the student's property. A tutor is allotted to } \\
& \text { each student for personal and individual tuition throughout the course. } \\
& \text { Radio and television courses, with which specially prepared components } \\
& \text { are supplied, teach the basic electronic circuits (amplifiers, oscillators, } \\
& \text { detectors, etc.) and lead, by easy stages, to the complete design and } \\
& \text { servicing of modern Radio and T/V equipments. }
\end{aligned}
$$

If you are studying for an examination, wanting a new hobby or interest, commencing a career in industry or running your own full-time or part-time business, these practical courses are ideal and may be yours for moderate cost. Send off the coupon to-day for a free Brochure giving full details. There is no obligation whatsoever.

## Courses with Equipment

RADIO-SHORT WAVE RADIO TELEVISION• MECHANICS CHEMISTRY• PHOTOGRAPHY ELECTRICITY•CARPENTRY ELECTRICAL WIRING DRAUGHTS ANSHIP•ART, etc.


F
IRST cut out and shape the seat as in Fig. 1. Any available wood may be used, b u t hardwood will reduce the risk of splinters. Cut the slot as shown in Fig. 1. The wood should be iin. thick. It is important that the edges of the seat should be rounded to a fairly large radius and the whole well sanded.

## The Rockers

To make these, use $\frac{3}{3}$ in. conduit with walls about $3 / 32$ in. thick. The exterior cuality is the harder, and it is inadvisabic to use

putting in numerous srall bends close enough together to give the cffect of one smooth bend. This conduit will take a fairly sharp bend in this fashion before there is any sign of the tube collapsing; even if there is a slight collapse this exterior conduit is strong enough to be unaffected in strength

the interior quality as it may buckle with use.

Take two pieces 6.f. 2in. long and bend them to the shape in Fig. 2. The bending operation is quite easy, using the following nethod:

Obtain a piece of rough timber about $3 \mathrm{ft} . \times 3 \mathrm{in} . \times 3 \mathrm{in}$. and bore a hole, as shown in Fig. 3. Ream out the lip of the hole at both ends as shown.

To bend the conduit, stand the piece of timber upright with the hole uppermost. Support the timber in the left hand and insert the conduit through the hole. By tilting the timber to the left and bearing down on the conduit with the right hand it can be bent very readily, the fact that great force is not required helps to prevent overbending.
It is a great help if the bending plan shown in Fig. 2 is drawn cut full-scale with 2 piece of chalk on the workshop floor.

The bending must be dore gradually by inching the conduit through the hole and

for this purpose. Packing the tubes is quite unnecessary. It is not important that the bends should follow Fig. 2

accurately, but it is important that the two pieces are identical, that the bottom bend is a smooth curve and that in each piece the two ends of the conduit are in line. When matching the two pieces place them together, and if it is found that there is a discrepancy try reversing one of the pieces, as it may be a closer match the other way round.

## Fixing to the Seat

Obtain eight conduit-fixing saddles of the type which are in two pieces, as shown in Fig. 4. The conduit is fixed to the seat, using the saddles as in Fig. 5. Screw up the saddles fairly tightly with the bottom
also as a means of preventing the pieces of conduit from moving apart at the bottom.

There are two ways in which this may be done. Take a thin piece of steel about $18 \mathrm{in} . \times 4 \mathrm{in} . \times 1 / 16 \mathrm{in}$. and screw it to the conduit with four small self-tapping screws in the position shown in Fig. 7. To this piece of steel screw a piece of wood 18 in . $X$ $4 \mathrm{in} . \times \frac{3}{3} \mathrm{in}$. with woodscrews.
The second method is the one used in the horse in the photographs and is quite effective. Drill two holes in each piece of conduit parallel to the floor. The holes should be drilled right through the conduit and should be large enough to take any available 2 in . C/S woodscrews. Countersirk the outside hole in each case.
Take a piece of hardwood $12 \frac{1}{2} \mathrm{in} . X$ 4 in . $\times \frac{s}{3} \mathrm{in}$. and screw it into position between the pieces of conduit, using the 2 in . C/S woodscrews. The wood should be flush with the top edge of the conduit as in Fig. 8, this gives a ${ }_{8}^{3}$ in. clearance when the horse is on the floor. It it should just touch the floor then the edges of the wood may be taken off with a rasp.
A piece of wood 18 in . $\times 4 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. should now be screwed to the top of this.

Fig. 2 (Left).-The shape of the rockers.

Fig. 6 (Right).-How the ends of the conduit are fixed.



Figs. 7 and 8 (Left).-Fixing the foot rests.
Fig. 9 (Right).-Cutting the head.
Smooth down the edges of the head with sandpaper and fit it into the slot in the seat. Glue with a good, hard-setting glue. Screw the conduit fixing saddles up tightly.
The head should be painted white or brown with black markings and the seat and footrests any bright colour. The exterior quality conduit is galvanised, and therefore is a reasonable silver colour and should be left unpainted.
Readers may prefer to use their own conception of a horse's head, but it is most important that the horse's ears should point well forward as an upright ear would be most dangerous.


If the first piece of wood was fitted flush to the conduit then the second piece will rest on the conduit which will then take all the downward strain.

As a further safeguard screw a piece of wood $4 \mathrm{in} . X 2 \mathrm{in} . \times \frac{5}{6}$ in. hard up against the conduit on each side.
The head should now be cut from $\frac{1}{2}$ in. plywood as in Fig. 9. Cut the rin. dia. hole in the position indicated.

Cut two discs of $\frac{1}{2} \mathrm{in}$. plywood as shown and cut a rin. dia. hole in each. Glue these discs on each side of the hole in the horse's head and insert and glue a 7 in . length of rin, dowel.


CHE simplest form of blowpipe is that used by jewellers. It is simply a tube with a mouthpiece at one end and a jet at the other, the jet is held near the flame of a spirit lamp and on blowing into the mouthpiece a needle-like flame is produced which is well suited to small work (see Fig. 1).

For model making, however, something a litile more powerful is required, without going to the other extreme and using equipment such as treadle-bellows-operated blowpipes suitable for heavy brazing, etc.
The blowpipe described below and shown in Fig. 2 is quite simple to make and will prove a useful addition to the amateur mechanic's workshop. The materials required are:
6 in . thin brass tube, $\frac{3}{8} \mathrm{in}$. diameter.
4 in . thin brass tube, $\frac{1}{8}$ in. diameter.
A $\frac{1}{8}$ in. gas tap with rubber pipe connection.

Rubber tubing to suit requirements.


Fig. 1.-Geweller's blow-pipe.

## Simple Apparatus for Small Work

## Bending the Tube

First take the $\frac{3}{8}$ in. tube and file a deep nick into it, nearly through the tube, at an angle of about 45 deg. as shown in Fig. 3. Bend the tube as shown by the dotted lines until the nick is closed up again, and solder up the gap with a soldering iron and soft solder. Silver solder would be better, of

## A Simple Gas Blowpipe

the tap and the air jet is controlled by blowing hard or gently.

## A Handy Tool

A soldering iron in the accepted sense of the term is not required with a blowpipe, of course, but a little "poker" like Fig. 4, is a very handv thing to use. It is made of a piece of $\frac{1}{8} \mathrm{in}$. copper wire pushed into a bradawl handle, the tip of the wire being pointed, bent as illustrated and tinned in the same way as an ordinary soldering iron.

Hold the blowpipe in the left hand, the poker in the right and grip the wooden mouthpiece between the teeth. The poker should be fairly long, say, about 6in. so that you do not inadvertently blow the flame on to the fingers as you might do with a short poker. With a little practice you will


Fig. 3.-Making the 45 deg. bend.
find you can pick up little blobs of molten solder on the poker and apply them where required. Flux can be applied in the same manner; it does not matter about cooling the poker by dipping, it into the flux, as being so small it heats up again immediately it enters the flame. The solder will run like water if the work is clean, provided with flux, and hot enough.

Fig 4.-Details of a simple poker.

The tap should be connected by a piece of rubber or flexible metallic tubing to a gas jet. The size of the flame is regulated by course, but the blowpipe itself does not get hot enough to melt the soft-soldered joint. Now file down the threaded end of the tap until it will just push into the longer end of the bent $\frac{3}{3} \mathrm{in}$. pipe (see Fig. 3 again), and solder the tap into the tube, taking care to make the joint gas tight.


Fig. 2.-The completed gas blowpipe.
Next drill a $\frac{1}{8}$ in. hole behind the bend and in line with the centre of the short end of the $\frac{3}{8} \mathrm{in}$. tube, push the $\frac{1}{8}$ in. tube into this hole until the end is just inside the end of the $\frac{3}{8} \mathrm{in}$. tube and central with it, and solder in position. Reference to Fig. 2 will make this clear. The blowpipe is then finished.

The angle between the small pipe and the large one forms a hook to hang the implement up by. To use it, connect a rubber tube about ift long on the $\frac{1}{8}$ in tube and fit a small tubular piece of bamboo cane about 3 in. long in the other end.


## a model STTE A M marine engine

OF MIGHEST QUALHTY, AND. PERFORMANCE

This latest addition to the famous range of "Mamod" model steam engines is the ideal power unit for model boats, with a length of 20 "and over. An extremely lively unit with many refinements including chromium plated windshield, heat insulation and a complete lubrication system.

Price 45/- including P.T.


MALINS (ENGINEERS) LTD. 25-31, CAMDEN STREET, BIRMINGHAM, 1.
 "NUCLEAVE" TWO TON PRESS

Versatility is the keynote of the Nucleave Press. It has innumerable uses in the Engineering, Leather and Plastic Industries. In addition it is an invaluable MULTI-PURPOSE Tool for the Handyman.
The press is made of linest high iensilc steels and will exert a pressure of 2 tons with ease. PUNCHES AND NIBBLES holes up to $\frac{1}{4} \mathrm{in}$. CROPS wire and bar up to $\ddagger \mathrm{in}$. dia. RIVETS most types of rivets including bifurcated tubular and two piece iypes. Bends strip up to $16 \mathrm{~s} . \mathrm{w} . \mathrm{g} . \quad 3 \mathrm{in}$. throat ( $2 \frac{1}{2} \mathrm{in}$. working centre).

PRICE COMPLETE
with Set of Stamdard
Tools.
Carr.
Strong and well designed Sifel Tool cainels
An exceptionally well-designed and well made chest of immense
strength. Four drawers. Front of streng th. Four draivers. Front of
cabinet forms working tray when opened. Suitable for Tradesmen and Handymen alike. Lock and key provided.
Size 16 x 8 . 10 in . Depth of drawers 1. 13, 13. and 2in. Approx. weight

GAMAGES, HOLBORN, LONDON, E.G.1. Holborn 8484.


## PERSONAL POSTAL TUITION

Every Bennett College student enjoys this friendly, intimate coaching right through his Course. A few of the Courses are listed opposite. Tell us your subject. We will send you The Bennett College Prospectus and the famous FREE book "Train your mind to SUCCESS." This will show you how yoú can advance to a better, finer future by Personal Postal Tuition. Fill in and post the coupon today.

WHAT CAREER DO YOU WANT?

| Architecfure | Wiachine Drawing |  |  | Languages |
| :---: | :---: | :---: | :---: | :---: |
| Buisding Carpentry | Mechanical Eng. Motor Enginecring | Wireless | Telegraphy | Mathematics |
|  |  | \& | Telephony | Modern Business |
| Commercial Art | Plumbing | Textiles |  | Meth |
| Diescl Engines Draughtsmanship | Power Station Eng. |  |  | Folice Subjects |
|  | Quantity Surveying |  |  | Salesmanship |
| Electrical Eng. Electric Wiring | Radio Engineering | Book-keep | ping | Sherthand |
|  | Surveying | English |  | Short Story Writ |
| Electric Wiring Forestry Locomotive Eng. |  | Gocgrapty |  | and many others |
|  | Locomotive Eng. Telecommu | rnais |  |  |
| , | 81 | N A | UAL | CATION? |
| A.M.I.C. A.M.I.M A.R.I.B. | A.m.l.Strue <br> E. A.M.I.Mun A.M.S.E. |  | $\begin{aligned} & \text { A.A.C.G.A. } \\ & \text { A.C.W.A. } \\ & \text { A.C.I.S. } \end{aligned}$ | $\begin{aligned} & \text { A.C.C.S. } \\ & \text { A.R.I.C.S. } \\ & \text { A.A.t. } \end{aligned}$ |

GENERAL CERTIFICATE OF EDUCATION \& R.S.A. Exams.
TTME THOLS BNNTMM COLSTCII
(Dept. D. 76 PY) SHEFFIELD
$\qquad$
copy of "Train your mind to SUCCESS."
NAME1ADDRESS1

From a Salety Pin to a Road Roller

WHICH WILL HELP US SELL BRITAIN OVERSEAS

It must, therefore,be
EXPORTABLE
a's well as
EXPLOITABLE

Conditions of entry and the form of Contract between Fresman Taylor Machines LId. and the competition winner, covering Royalty payment, etc., are available. on request from Freeman Taylor Machines Lid.

## FREEMAN TAYLOR

 MACHINES LTD.Necton Street Works SYSTON Nr. Leicester

TEXTILE AND GÉNERAL ENGINEERS Designers and Builders of Stainless Steel Plant for the Chemical, Pharmaceutical, Dyeing, Food and"Brewery Industries

## NORLD WIDE RADYO RECEPTION <br> FOR THE AMATEUR RADIO ENTHUSIAST TUNE IN WITH THE <br> MALVYN SINGLE VALVE SHORT WAVE COMMUNICATION RECEIVER

All-Dry Battery operated: Extremely low running costs: Band Spread Tuning : Attractive Front Panel : Full operating instructions included.
PRICE OF COMPLETE RECEIVER, $74 / 6$ (Batteries and Phones Extra). Post Free U.K. Money Back Guarantee. Send S.A.E. to actual Manufacturers for Free Descriptive Literature,
MALVYN ENGINEERING WORKS Radio and Electronic Engineers
Tel. : Hertford 2264
7 Currie Street, HERTFORD

## BRASS, COPPER, BRONZE, ALUMINIUM, LIGHT ALLOYS

Rod, Bar, Sheet, Tube, Strip, Wire
3.000 Standard Stock Sizes.

NO QUANTITY TOO SMALI.
List on application.
H. ROLLET \& CO. LTD.
6. CHESHAM PLACE. LONDON, S.W. 1 SLOane 3463
Also al LIVERPOOL LEEDS MANCHESTER BIRMINGHAM


BETTER CABINET MAKING


# No. 3 of a Short Series-The Dovetail 

THE dovetail joint, of which there are several variations, calls for careful cutting and precise marking out if the joint is to fit together as it should. However, if these two points are kept in mind, and the job is not rushed, perfect workmanship can resula

Fig. I shows an end view of a housed or housing dovetail such as could be used when fitting a shelf in a bookcase. Both dovetail and housing run unbroken for the complete


Fig. 1.-End vicw of housing doustail.
length of the timber and cutting is quite simple if the following method is followed.

## Cutting the Housing

Fig. 2 shows how the housing is cut with the aid of a fence. This is simply a length of fairly thick timber, one side of which is planed away to the required slope. The fence is now clamped in place across the width of the timber directly over one side of the housing, but making provision for the width of the saw cut. The tenon saw is used to make the cut, and it is held against the slope of the fence, thus guiding it at the required angle. The cut is continued to the base of the housing and the fence is then


Fig. 2.-Set up for sawing the housing.
reversed, again clamped in place, and the other side of the housing cut.

## Cutting the Dovetail

The dovetail which fits into the housing is set out as shown in Fig. 3. The marking gauge or mortise gauge is used to mark ofi the width of the dovetail across the end of the timber which, of course, must be perfectly square. The shoulder line is now marked off, this being equal to the depth of the housing, and finally the slope of the dovetail is set out on each side. The shaded portions in the sketch denote the timber that will be removed. The three stages of the removal of this waste are seen in Fig. 4. First a notch is cut with a chisel along each

## By W. J. Stannage

shoulder line, as described in a previous article. Its putpose is to act as a guide to the saw. "The saw cuts are then made down to the lines as shown in the second stage. The third operation is to use a sharp chisel to cut auray the unwanted timber. When the chisel is to hand, it is again employed to remove the waste material from the housing. If the reader possesses a router this can be used for levelling off the base of the housing, but this is not strictly necessary as careful use of the chisel will produce the desired result.

## The Slope of the Dovetail

In some woodworking instructions the slope is given as a definite figure such as one-in-cight, or perhaps one-in-seven. Fig. 5 shows such figures in more practical form, but in this case the slope is one-in-six. It will be seen at " $A$ " that a 6 in. $X$ in. piece of thin metal has been marked of with a line running from corner to corner. The shaded material is cut away so giving a


Fig. 3.-Dovetail marked off for cutting.

side of the dovetail is marked off as seen, and the unwanted material cut away.

- This template, or gauge, is used as seen in Fig. 6 which shows it placed over the end of the wood to enable the position and size of the dovetail to be marked off. The illustration shows the gauge in use and a dovetail marked off with its aid. A tenon Chisel_ saw is used to cut down each side of the dovetail, taking
care to keep the saw cuts to the outside, or waste side of the lines. The saw is also used to cut in from the
triangle. The sloping side of this triangle is the slope of the dovetail. If we refer again to the fence shown in Fig. 2 it will be obvious that this template can be set against the end of the timber and the slope marked off thus giving guide lines to which the wood is planed.


## A Through Dovetail

However, for the making of the more common type of dovetails a second template is an advantage; and this also is seen in Fig. 5. It consists of another piece of thin metal of the required length and width, bent to the shape of the letter "L." With the aid of the first template the slope of each


Fig. 5.-Making a dovetail gauge.

ends of the timber, so removing as much of the material as possible. The job will now appear as shown in Fig. 7, with only the waste material between the dovetails remaining.

This remaining material is removed with the chisel as shown. The chisel is first used to cut down a fairly deep notch back at the shoulder line and is then brought into use from the end to remove a chip of the wood. Cutting is then resumed at the shoulder line to cut a fresh notch and the chisel is again used at the end. From this it will be seen thát no attempt is made to cut a very deep notch at one operation as this could not

be accurately controlled. When the half-way stage is reached the timber can be reversed and chopping commenced anew from the new face thus presented.

## Marking the Sockets

When the dovetails have been cut in this manner the sockets which receive them must be marked off. This is done by clamping the timber to be marked in the vice and holding


Fig. 8.-Sockets being marked off.
the dovetails in position where they serve as templates and can be marked around to gi.e the exact locations of the sockets. Fig. 8 depicts this operation. However, this marking only gives the positions of the cuts
on the end of the timber. The depth of the sockets is marked off with the gauge, and this measurement is equal to the thickness of the dovetails. The lines marked off from the actual dovetails and gauge line must be joined up to provide guide lines to be followed when sawing, and this operation is done with the aid of the try square. These lines are also shown in Fig. 8, and to clarify matters the waste material is again shaded.
The waste material is removed by chopping, after the tenon saw has been used to cut down the lines marked with the try-square, and the operation is similar to that shown in Fig. 7.

## The Lapped Dovetail

The dovetail just described is known as a "through dovetail," the name denoting that the dovetails pass through the entire thickness of the timber. Another type of dovetail, shown in Fig. 9, is the "lapped dovetail" and it will be obvious that in this case the dovetail does not pass through the timber, but is hidden from view.

Construction of the lapped dovetail does not vary greatly from the making of the through variety except in the setting out. The first consideration must be the thickness of the actual lap as the marking gauge will be set to the thickness of the timber less the thickness of the lap. This figure represents the length of the dovetail also.

The cutting of the socket for this type of
dovetail is carried out by holding the tenon saw at the required angle and cutting as deep as possible. It will be found that it is not possible to cut with the saw to the


Fig. 9.-Example of lapped dovetail.
complete depth of the socket and the cutting will have to be completed with. the chisel. This part of the job may appear to be tedious but is not so provided that a good edge is kept on the chisel.

When making dovetails it is not a good idea to try them together too often as such treatment is inclined to loosen them. Mark out carefully, cut carefully. and then knock together just to make sure that the fit is accurate. If made as they should be, a gentle tapping with the mallet is all that is required to drive them into place. If all is well take apart, apply the glue, and knock together again.

## Simple Conjuring

These Tricks Will Baffle Your Friends

THE first thing you must learn in conjuring is palming. By that expression is meant that a small article such as a coin is gripped in the palm of the hand in such a way that the hand appears to be empty.

Take a coin in the right hand between the thumb and forefinger, and with the left hand make a motion of grasping the coin, the thumb being underneath and the fingers above (see Fig. 1). As you close your left hand, relax the pressure on the coin, letting it fall into the palm of the right hand, at the same time keeping your eyes fixed on your left hand to give the impression that the coin is in that hand. You then open the left hand and show your friend that the coin has disappeared. The best way to practise this trick is to do it in front of a mirror, at the same time remembering the following points:-
(1) When you appear to grasp the coin in your left hand it should be closed immediately.
(2) You must keep your eye on the left hand to give the impression that the coin has been transferred to it.
(3) The right hand after retaining the coin, should drop to your side without attention being drawn to it.

## Simple Card Tricks

The following simple tricks are performed with an ordinary pack of playing cards.

To prepare the pack in readiness for the first trick, place all the red and all the black cards together. You then ask your friend to select a card, at the same time holding the pack so that he takes it from amongst the red ones. Then tell him to replace the selected card, but this time hold the pack so that it is replaced amongst the black cards. Upon glancing through the pack you will easily discern the selected red card from amongst all the black ories.

## The Turned Card

Ask your friend to select a card and, while he is looking at it, face the bottom card of the pack and turn the pack over. You will now find that owing to the bottom card being faced, the pack, while appearing the same, has been reversed. Then ask your friend to slip the chosen card into the pack, taking care that the pack is carefully squared so that the cards do not overlap. A handkerchief should then be placed over the cards, and under cover of the latter, reface the bottom card and turn the pack over so that


Fig. 2.-How the card protrudes.
it is once more in its original position. Upon glancing through the pack the chosen card has apparently turned itself over.

## Producing a Chosen Card

We now come to something slightly harder. For this trick prepare a discarded pack of cards in the following manner. Clamp the

pack between two pieces of wood or a vice if available, leaving exposed a small margin on one side of the pack. Then sandpaper the exposed edge until one end is slightly narrower than the other. Now ask your friend to select a card, and while he is glancing at it turn the pack round. When the card is replaced you will find that it will protrude slightly (see Fig. 2). Shuffle the cards well, place them behind your back and run your fingers along the edge of the pack. You will then find the selected card.

## The Mysterious Handkerchief

A candle is placed in a candlestick on the table, and a box of matches half open is placed beside them. In the empty space at the back of the match-box a silk handkerchief is placed (see Fig. 3). You now show both hands empty to your friends, then pick up the match-box and light the candle. As you close the match-bor the handkerchief is pushed into your hand. Hold your hand in front of the candle and let the handkerchief expand, giving the impression that it has been produced from the rays of the candle.

One of the keys to success with all types of conjuring is practice. Professional conjurors spend hours every day practising new tricks to acquire dexterity.

# R E A DERS' <br>  

The pre-paid charge for small advertisements is 6 d . per word, with box number $1 / 6$ extra (minimum order $6 /$ ). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southampton Street, London, W.C.2, for insertion in the noxt available issue.

## ELECTRICAL

$A_{\text {LL TYOES }}$ OF ELECTRICAL tive prices. e.g. 5 amp . Twin Cable
 doz. ${ }^{\text {dit. }}$ Battens, 51/6; quality and
immediate
despatch
guaranteed. ${ }^{\text {immediate }}$ Request Ist. despatch suaranteed. Fairnolt Road, London. N.16. (Tele CONVERT your ordinary wash lar washboiler Elecments, 200 -250 yolrcu-
 London Warehouse, 165 , Queens Road, Peckham, S.E. 15 .
THE ELDCTRAC GUIDE (12th edn. zets (tht edn.). ${ }^{1 / 3 . \text {. From. B.R.M }}$ Publications, Ringwood, Hants.
A SBESTOS RESISTANCE WIRE, 10 ,
 a,
FLUORESCENT LIGHTING FITComplete range from 5 ft to hains also circular) at lowest prices any-
where. $S$ SAE. for
illustrated leafets where. S.A.E. for illustrated leaflets Callers welcome, We are Fluores
cent Lighting Speclalists: E. Brill
Dept. C. 125 , Norticote Rd. London, S.W,11. (Battersea 8960.)
 ARCH STREET, RUGELEY, STAFFS. SPARES, REPARR, REWINDS Flelds for most vacs. and Drills. Emergency Rewinding Service to $30 \mathrm{~h} . \mathrm{p}$. available. Hodson (Croydon). Ltd., 75 A , George Street, Croydon surtes,
DLECTRIC WELDER, 200/250 A.C., id complete- with heavy welding transformer (weighs over 12 b , in carbons, instructions; 7 tappings irom 6 volts to 100; absolutelv as
new, and perfect; $60 /-$ the lot. Will new, and periect, $60 /-$ sarilage, nill send c.o.d
payorath 584 , North Drive, clereleys, Lancs.

## WATCHMAKERS

WATCH REPAIR SERVICE, unspeed. coupled with reasonable charges. Part jobs Welcomed Material supplied. Hererord $\mathbf{C o}$.

## WATCH PARTS

For all makes of watches. tools, instruc
 Witchnukers Mail Driler Servie

TEARN to be a Watch and Clock Repairer In your spare time and earn extra money at home. We can supply everything you need a unbeatable prices, including instruc tools, wotches, watch and clock movements, lathes, cleaning machines all spare parts for watches and clocks, etc. We also have a fine selection of musical box movements and kits. Send 9d. P.O. for bumper bargain catalogue. The Watch makers Supply Company (Dept P.M.). Carterton, Oxior

FOR GUARANTEED W ATCH ment pros try Young $\&$ son. 133 London Road, Chippenham, Wilts.

## BOOKS

TWE HANDYMAN'S Electric Instructenancer Guide. $2 / 3$. For the best value in books for the handyman:
B.P.M. Publications, Ringwood, Hants.

## FOR SALE

HOUSE SERVICE METERS, credit from stock. prepayment Eniversal Electrical, Ry Road, London.
NUTS, BOLTS, SCREWS AND 4 WASHERS for Mechanics, ${ }^{3}$ B.A. parts. post $1 / 4$ Available Hex. Hd. Which ${ }^{3}$ or more packets post free (Dept. P.M.S.), New Milis, Stock port
TELescopes.-Make your own-non-achro object Glasses
2 in. dia 40 in . focus. $1 \$ / 6 ; 60$ Eye-
pieces
$15 / 6$. Mirrors Eypieces. W. Burnet. Grand Sluice, Boston,

COMPRESSORS FOR SALE.-Twin ©4. Piston, Singli tank, 2t c.f.p.m. Motors. S.A.E. for Hist. Wheelhouse,
13, Bell Road, Hounslow.
(HOU

BARGAINS ! Tools, Vices, Drills, Drawers. Many others. Catalogue Drawers. Greany others. Catalogue
free. Albert St. Lytham.

CIPCULAR PRATE GLASS DINCS SUTTABLE FOR GRINDING ASTRO-
Gin. $x$ hn ., $25 / 6$ : $x \operatorname{lin} ., 30^{\prime}-; \times \ln ., 35!$

10in. $x$ in., $551-:-x$ in., $60^{\circ}$
Per patr with abrasives optical pitch wax
rouge. Glass of any dameter up to 2112
rouge. Glass of any diameter

## H. GIBBS, ${ }^{75}$ CARDTMANMOORRD

$\mathbf{A}^{\text {IR COMPRESSORS, single cylin }}$ up to 4001 b .e action. condition a nex but slightly solled, cost over £10 bargain at 35/- each. N. Cooper, 10, Fowler Street, Nechel's. Birmingliam,
" Derspex " for all purposes, engraving clear or coloured dials. discs, engraving. Denny dz Conipany Ltd.
15. Netherwood Road, W.i4. ${ }_{14}^{15}$ 15, Nether.)
MEAI ORDER, new bargain, post in. $3 /-$, lin. $3 / 6$. Micrometers 0 in in. $10 \%$ lin.-2in $14 / 6$. oll stone, 3/- Electric Motors, $12 . \mathrm{D}$., 3-plase 415 volt, $70 /$ set 60 H.S. Twist

 Manchester. 18.

YOU can Repair that Broken Drill Housing or Lathe Bed. You can Join Metal. withdut
costly welding equipment costly welding equipment. Theres a
millon and one jons you can do. Thy a kit
AUTO-PLASTICS (OLDHAM) LTD.

## Green Street, Oldham, Lancs.

Ca: Body Repairers and General Flbreslass
The Best at the Lowest Price, with Full
Instructions, 10 - and 176 , plus ${ }^{2} p$ 2/6.

REAL WROUGHT IRONWORK make plant stands materials to make plant stands, coiree table. available. Anything in metal made to specification or raw materials supplled. S.A.E., please. Mannings
Forge, G0, Shakespeare St., SouthForge, G0, Shakespeare St., South-

A STRO TELESCOPE MAKING Eyepieces. 1 in . 1 in ., $\nexists \mathrm{in}$. Iocus. $35 /$. S.A.E. List Achro and non-Achro Object Glasses. Newtonian Mirrors.
Eyepleces. etc. W. Burnet, arand Sluice, Boston. Lincs.
Hardening furnaces. Cham250 ber. $5 \ln$. $x$ in. $x ~ 11$ in. . $200 /$ $67 / 6 ;$ p.p., 4/-i "Paytox," 57, New
Rd., Rubery. Birmingham.

SPECTROSCOPE $£ 11 / 10 /$
Astro Eyepieces, all size mirrors and mechanical parts, 3in. refractor on He stand, £45. Ain. Clock Drive Refractor. heavy 5in. E. Mackett \& Co., Manufacturing Opticians and Engineers, 51, Millers Road, Brighton?

## HOBBIES

GrINDING, POLISHING KITS.nomical Mirror Sllicon Carbide:
 400600 . 20z. Optical Rouge. 110
Swedish pitch, $25 /-$ each, plus $2 / 6$ postage. L. J. Mays \& Co., 87 Mosley Street. Manchester, 2.


Tllustrated catalogue no. 13 Containing over 450 Items of Government Surplus and indio Control Equipment, $2 / 2$, reRadio Control Equipnen, foods; $2 / 6$ overseas sea-mall Arthur Sallis Radio Control Litd, Departm
P.M., 93. North Road, Brishton.

## TOOLS

SENSATIONAL REDUCTIONS! ELECTRIC DRILL ACCESSORIES Sanding \& Polishing kut: Usual Our Sand Sandink Pad and 12 Disce.
Lambswool Bonnet, Arbor
L... 20/- $10 / 6$ Grinding \& Polishing KIt :



Tungsten Carbide Masonry Drills
In Wallets $\frac{1}{6}$ R/Shanks
5 Wood Boring Bits $i-1$
5 Twist Drils s-t......

Post Free. Quality Guaranteed.
Free List of Many Other Bargains from
THE TOOL SERVICE (O (Dept. M),

THE NEW 1958 fully illustrated Wble Electric Tools and Machinery able Electric Toos and Machinery, now avalable, price ba, postage sd.
Parry \& Son ITools) Ltd., Dept
P.M.6, 329 , Old Street, London, E.C.1.

## OWN A REALLY GOOD TOOL KIT

## We have many to choose from, some

which are listed herewith:
Kic of 50 tools for Mechanics ... 1510 O Kit of 75 tools for Mechanics ... $\mathrm{E22} 10$ 0
Farmer's Automatic Tool Kit, 74
cools ... ... ... ... E21 0 0 Carpenter's Tool Kit, 50 tools... $£ 2900$ Handyman's Home Kit No. 1 ... t3 100 Handyman's Home Kit No. 4 ... 67100 All tool kits supplied in strong steel tool boxes. Send your name and address for details of these and many other kits, and also Electrical Cables and Accessories. Terms arranged where required, otherwise
J. \& S. SUPPLIES

II St. Anns Road, Harrow, Middlesex

PATENTS
DATENTS. Qualifed service,
Greenhayes Ave., Banstead, Surrey.

## ! A GOOD IDEA!

CAN MAKE MONEY FOR YOU PROFESSIONALLY TO SELL YOUR WRITE FOR FULL DETAILS.
PATENT, DEVELOPMENT \& MARKETING CONSULTANTS
16 Gore Court Rd, sittingbourne, Kent.

## EDUCATIONAL

LEARN IT AS YoU DO IT-we provide practical equipment combined With instruction in Radio, Television, Electicity, Mechanics. for full detalls to E.M.I. Institutes, Dept. PM47, London, W. 4.

$$
X=\frac{-b \pm \sqrt{b 2-4 a c}}{2 a}
$$

DON'T FUMBLE with Formula. Master Mathematles in 6 werke the Understand able Way. 1st lesson and detulls free from The Harrison school of Mathematics, 11, Dryden Chambers, Oxford Streel, London

FREg Brochure giving detalls Radio, Home study Trainlag in Radio, Television, and all brauches
of Electronics. hobby enthusiast or for those almine Guilds R.T.E.B. and other and sional examinations. Train with the college operated by Britain's largest Electronics organisation. Moderate lees. Write to E.M.I. Institutes, Dept. PM28, London. W. 4

## SITUATIONS VACANT

A M.I.MECH.E., A.M.Brit.I.R.E. Aass-No Fee" terms. Over 95\% suc-Pass-No Free details of Exams and courses in all branches of Engineer ing, Buidding, etc., Write for 144 -pace Handbook-Frree. B.i.E.T. (Dept
967 B ), 29, Wright's Lane, London $967 \mathrm{~B})$
W .8.

## PHOTOGRAPHY

PHOTO-ENLARGER Castings and 3in Belows, for 35 mm . 2 mm . $x 2$,
 Road, Easton, Bristol, 5 .
$\mathbf{B}^{\text {ELLOWS, Oamera, Enlarger, Pro- }}$ 1 cess. Industrial Collapsible Machine
Cuthbert's Ruards. Beers,
Road,
Derby.
(Tel.: 41263.)

HOW TO USE ex-Gov. Lenses and Prisms. Nos. 1 and $2,2 / 6$ ea to $2 \ddagger$ in, sq., $3 / 6$ ea. : Optical Con densers and Achromatic Lens to sult, 33/-. Lists : s.a.e. H. W. English, Rayleigh Road. Hutton, Essex.
EXPOSURE METERS.-Build your Exposure Meuble-range inctdent light photocell, $1 / 1.4$ to $\mathrm{f} / 32$. $1 / 1000 \mathrm{th}$ to complete Component Kit. $50 \%$ s.a.e. details. G.R. Products, 22, Runnymead Avenue, Bristol. 4 .

## FIBREGLASS

## PLASTIC UNITS

Experimental Glass Fibre Unic, $14 / 9$. Plastic Metal for Gear Casting, Plastic Dies, Finish for food preparation surfaces baths washing machines, etc., $16 / 9$ pt, in white washing machines, etc., $6 / 9$ pt. in white, aluminium. SAE for informar and price list, ere. SILVER DEE PLASTICS (Dept. 3), Hartington, Staveley, Chester
(Continued on next page)
(Continued from previous page)

## WOODWORKING

WOODWORKING MACHINES, all Saw Benches constructed. Oomplete

 E7/10 Lathes. \&7/10/-; Combination Lathes, Motors Fritten and money refunded muarantee. 4 d . stamp for illustrated book. let. James Inns (Engineers), Marshal1 St., Nottingham. SAWBENCHES, 81 n . to 30 im ., from Po:table, £44. Planers, Bandsaws, Lathes. Saw Spindle and Planer Assemblies, Logring and Firewood Machines, Chain Saws, Engines, Motors, delerred terms. Send $1 / 8$ for handbook-catalogue and bargain ffers. List ree. Beverkey Proaucts Sturton-le-steeple. 20, Notts.

## SAW SALES AND SERVICE

SAW SERVICE BY POST.-Circular n. Saws set and sharpened, sd. per harpened, 8 d . per in.; recut. $1 / 3$ jer in. minimum charge per saw. 8.hour 8 -h

SAW SALES.-Special offer. Circuments, e.g., 5 m .. $12 / 6$ : 6 in ., $15 /-$ state bore and if rip or crosscut pald. Dept. "C CHJ. A. Fowle 18-22. lished 1840. )

## HANDICRAFTS

## MUSICAL <br> BOX MOVEMENTS

## 14/9 post f́ree.

More new kits available from $21 / 9$ complete with movement. Please send 2 d . stamp or new FREE illustrated brochure. THE SWISSCROSS Co. (Dept. VII6). Winifred Road, COULSDON, Surrey.

## Miscellaneous

A QUALUNG and Compressor Equip cellaneous Items. Lists 2d. Pryce. 157. Malden Road. Cheam.

FORTUNES IN FORMULAS," $900-$ American technical hobby and othe books covering every Interest. Stamp
for lists. Herga Ltd. (Dept. P2). Hastings.
SUPERTONIC SUNLAMPS, listed Scientific Products, Dept. 1. Cleve leys, Lancs

PERSONS WANTED TO MAKE UP HANDY BAGS AT HOME IN SPARE TIME. SEND S.A.E. FOR DETAILS TO :-DEPT. N/M, BENTOM SUPPLY, 9a, LIVERPOOL GARDENS, WORTHING

1 UBBER MOULDS for Plaster Sample and list. 4/11: trade en quiries invited. Castmoulds (Dept Murjes $43 / 45$, Waller Strect, Hull.
BUIDD YOUR OWN Refrigerator Cabinet Refriverator. S.A.E. for Cabinet Rerrigerator. S.A.E. for Diagram, or $1 /-$ (refundable) for 32 pree catalogue, including details of free ${ }^{4}$ cu, ft. Cabinet Diagram offer
Hire purchase available. Wheelhouse 13. Bell Road, Hounslow. (Phone HOU 3501.)
$B^{\text {UILD }}$ YOUR OWN Refrigerator 13 New sealed units and access. Ctc. S.A.E. list. Deepfreeze, 24a ookson St., Blackpool.
HAVE YOU AN IDEA?" Enginfinancial and manufacturing facilities are ready to consider it. Apply in conhaence, mechanics.

Build a CHEAP EASY-TO-MAKE RADIO!
 47/6 suritice excentionaly
 Pradio can be con
built by anyone without any
radio know. Medge whatev.
It about 45 mins. Handsome black crackle steel case with black and gold dial x 6in. x 3 m . Covers all Medium and Long wares-uses only one all-dry battery. Uses personal phone. Ideal for Bedroom, Carden Holldays, etc. Mans unsolicted testiPesterday evening on the Medum wave band, I counted 32 separate stations: 1 am
very pleased with the set, which is well very meased with the set, which is well
Wrththe money.
HUILD THE "SkYROMA" Now : Total building cont-evervihing down to the last nut und bolt-47/6 (Postage, etc. pollow plading fult set of clear. casy-tarollow plans (Parts sold sepurately, CONCORD ELECTRONICS (De:M I.N


STEEL FRAMED-EXTENDIBLE All garages Btted with anchors. Shelf, door cetainers Yale lock. REE site plans manufacturer meluding FREE " Peate of IINGED \& OVERHEAD TYPE DUOHS SOWSER, MONKS \& WHITEHOUSE LTD (Dept. ME8), Spring Gardens, DONCASTER

ROGERS ${ }^{\text {3y3antisonst }}$
5 in. Itubber Suaders, ilin. drive.

Trunsformers. 6 i2v. 20 amps .
Motorised Pumps
Thread fiatuges. 28 arms
H.S. Drills. 12 Assorted. to 48

Fibre Wash 12 Assorte. 144 Assorted
Meter Reecifiens. A.C. to D.C. Self Tanserwo. 100 Assorted Copper Rivete. 12 doz. Assorted Spindle. puley, etc., 18 inc x x $10 \mathrm{in} .57 / 6$
Rectifiem; 612 v at 6 amps. Rectifiem, 612 . at a amps.
ir Jacts, 5 in. stroke Hir Juchs, $5 i n$ stroke
Boost Guukes for Car Use Boost Guuges ior Car Use Circhlar Sawn. 61n. 11/6:7/n. 13/8, otc Car Blowers 6 or 12 volt Haces, Belts, Valves, Pulieys, Pumps. May we send our etce ilst of hundreds of interesting items? Stamp please.

THE WORLD'S GREATEST BOOKSHOP


FAMED CENTRE FOR
Techericul Boales STOCK OF OVER THREE MHLLION VOLUMES
119-125 CHARING CROSS RD. LONDON WC2
Gerrard 5660 (20 liner) Open 9-6 (inc. Sats.) Nearest Station: Tottenham Court Rd.


BUILD THE * SK YPOCKEE Noaytirnl precislon PUCKKET VADio. pletorial, step-by-step plans our simple. pictorial. Step-by-step plans. Every part
Rested.
Remarkably
sensitive-Medium-Waves. Size only $5 l^{\circ} \times 3^{\prime \prime} \times 2^{*} i$ really personal-phone. pucket radio WiTH sell-contained battery. Buildin. time 1
Hour. TOTAL IBUIVing COST thing to last nut and bolt-0NLY 3736 With wans. Post 2/: C.O.D. 2/- (PARTS
SEND TODA?
PBN. STREET. BRIGITTON

all forms of car body repatrs to suit making. "Glass Reinforced Plastics " Booklet, 1/9, including Postage.
WESTEOLE MOTORS LLTD.
89. BRAMLEY RD., LONDON, N.14, PẠL 8331

CHEMISTRY APPARATUS COMPLETE PRICE LIST


## BUILD YOUR OWN CANOE <br> Printed illustrated instructions I/6 <br> TYNE FOLDING BOATS LTD.

206 Amyand Park Road, S!. Margaret's, Twickenham, Middx.

For all "EW" Lathe Requivements Consult : WANSTEAD SUPPLYCO.


THE IE.W. $25^{\circ} \times 10^{\circ}$ Convertible Is so simple. You can buy the basic
model and by the addition of inexpensive conversion units possess a machine
tool unrivalled in its class. tool unrivalled in its class. Special
features :- Plain or gap bed Miorometer feedsorew collars Ground bed and slides. Instrument finish * Powerful headstock drive accuracy. And the price
baslc model ti Send S.A.E. for comprehensive brochure. No fuss, no interest. credit terms. Quickest dellvery. Best service.
Full range of accessorios from stock WANSTEAD SUPPLY CO. 30. The Eroadway, Woodford Gireen,
ESSEX.

## HANDICRAFTS TEACHER

Experience not essential Men who enjoy making things in wood or metal can turn their hobby into a permanent and inceresting career. in a iob you would really enioy can be yours if you become a Handicrafts Teacher. Let us send you details of the easiest and quickest way to get necessary qualiffcation.

## We definitely guarantee

NO PASS-NO FEE If you would like so know about our unique method of preparing you for one of these appointments write informative 144 page Handbook-FREE and withour obligation Mark your letter " Handicrafts Teacher."

591. College House,

29-31 Wright's Lane, London, W.8.


HARMSWORTH, TOWNLEY \& CO.
rdan Street, Knott Mil
MANCHESTER, 15.


## Soeed B

TTHE neat little craft shown in the heading sketch is very simple to make and is driven by twisted elastic. About 100 turns will enable the boat to run for several minutes.
To get the best results the hull must, of course, be light and hollow and the simplest way of achicving this is to build up the sides on to a base piece and a deck as shown in Fig. I. The shape of these pieces is shown in the plan, Fig. 2, and it should be an easy task to enlarge to full

Sandpaper off all the edges when the glue has set. To make the hull perfectly watertight and waterproof, it must have first a coating of red lead paint; followed by two coats of ordinary paint, a sufficient interval being allowed between each successive coat for thorough drying. A finishing coat of enamel should be given to the entire hull, including the top of the deck.
Fig. 4 (Right).-The shape of the sides.

To make a really strong job of the joint between the shaft and the propeller, a short brass sleeve, similar to that found on clock pinions, should be soldered to the latter. It $i$ is then passed over the shaft and soldered to it. Before putting on the propeller a glass bead should be threaded over the shaft; this helps to lessen the friction between the bracket and the propeller s:em. Five strands,


Fig. 1 (Left).-A side view shoveing construction.
size from the measurements given, The base piece might be either $\frac{3}{8} \mathrm{in}$. or $\frac{1}{4} \mathrm{in}$. thick. Cut round with the fretsaw, and then use it as a template for marking out the deck. This


Fig. 2.-A plan ziew and dimeisions.
Fig. 2 cut in it to form the cockpit. When the two pieces are cut they are held together at the bow and stem by two shaped blocks of wood, the bow block being $1 \frac{1}{4}$. deep and $\frac{3}{4} \mathrm{in}$, wide and the stern block $\frac{3}{4} \mathrm{in}$. deep and $2 \frac{1}{2}$ in, wide. Glue and nail these blocks in place, the work at this stage being as shown in Fig. 3. The two sides of the hull are cut from $1 / 16 \mathrm{in}$. plywood, or preferably from thin plain wood as plywood laminations may come apart should the moisture penetrate the paint on the outside.


Fig. 3-The boat before adding the sides.

## The Sides

The correct shape for the sides is given In Fig. 4 and it must be noted from this diagram that the front top edge towards the bow is raised slightly so as to accommodate the spray hood, which is made from a piece of tinplate bent to shape and sprung between the sides. Both sides may be cut in one operation, thus assuring accuracy. For fixing, use glue and fine brass brads, the holes for the latter being carefully bored at close intervals and the glue brushed in between the veneer and the deck and base, - little at a time as the nailing proceeds.

## The Brackets

To form the brackets to take the elastic drive, a hook and a $4 \frac{1}{2} \mathrm{in}$. piece of stout strip brass will be required. The bow hook is screwed into the bow block as shown in Fig. I. The rear bracket is made up as shown in Fig. 5. Holes must be drilled for the small round-headed screws which fix the bracket to the hull, and one through the double thickness of the metal where the wire passes to hold the elastic. Set the bracket in place and bore the holes for the screws before driving them in. Now cut off a piece of brass wire and at one end form a fairly large loop to take the elastic.
To form the propeller cut out from stout brass or tinplate the shape shown in Fig. 5.

## Try These on

## Word Posers

r. What is the longest word in the English language? We do not mean a word like "smiles" (because it has a mile between the beginning and end).
2. What is the longest word you know containing only one syllable?
3. Give a word of one syllable which, when you shorten it by removing some of the letters, becomes a word of two syllables.
4. Write a sentence including all the letters of the alphabet, repeating as few letters as possible.
5. Give a word containing the five vowels in their correct order.
6. There is no such word as ENY. What letter can you put in front of it to make a word?

## Answers

I. Floccinaucinihilipilification. This word figures in The Shorter Oxford English Dictionary.
2. Strengths (nine letters).
3. Plague becomes Ague.
4. The quick brown fox jumps over the lazy dog (nine repetitions).
or more of elastic, should be looped between the brackets, the actual number of strands being determined by the thickness. The elastic should be of the same quality as that used for model aeroplanes and for preference in. wide and $1 / 32$ in. thick. Rub a little glycerine on the elastic before beginning to wind up as this helps to preserve it.


Fig. 5.-The bow hook ard rear bracket.
The wood lining to the cockpit consists of thin mahogany bent round and racked in place.

The seats are cut from pieces of scrap wood to fit in the cockpit as shown and the Perspex or celluloid windscreen can be glued in place. The rudder is made from wire, with a plate soldered ${ }^{A}$ on and is hung in screw eyes.

## Your Friends!

5. Abstemious or Facetious
6. D, making Deny.

## Alphabetic Division

Can you supply the figures that are replaced by letters in the following division sum?

| The Problem <br> B7)DDBEF(GBD7 | The Answer |
| :--- | :---: |
| 7J | $37) 88319(2387$ |
| EJB | $\frac{74}{\text { EEE }}$ |
| BGE | 143 |
| GFK | $\underline{111}$ |
| GHF | 291 |
| GHF | $\underline{296}$ |

In all sums of this type the greatest difficulty is getting a start. There is a valuable clue in the present example; it is that $\mathrm{B}_{7} \times \mathrm{B}=\mathrm{EEE}$. The full working is shown above.


Mr. P. Brown's improvements to the sledge design in our December issue.

## SLEDGE DESIGN

signed. Sledges as used in rough conditions, i.e., uneven slopes, may strike projections in the ground, or tree roots, etc., in which case the legs of the sledge illustrated by you $\rightarrow \quad$ would break off at the roots if would break off at the roots if
a child of any weight were on the top.

Leg construction along the lines of force reaction as shown would give an immense strength against end loading, and support the same top weight.- $\mathbf{R}$, Budd (Warwicks).

Forces of an equally trivial order would suffice to arrest its motion.

Out in space this swing is replaced, of couse, by a continuous forward motion. It is true that if the pushing agent is of inconsiderable mass it must recoil very rapidly. To stop its travel, this agent would have to be equipped with a jet reactiondevice. Incidentally, we should not overlook the fact that these auxiliaries could be

## A PISTON PROBLEM

SIR,-Re "A Piston Problem" in your January issue of Practical Mechanics, may I offer another interpretation of the problem?

Accepting the provision that the crankshaft rotation is maintained at a constant angular velocity, and by eliminating the usual linkage of crank pin to piston and replacing it with what is called the infinite connecting rod as shown in the sketch, we are able to clear the problem of an extraneous side issue, viz., the influence due to connecting-rod oscillation.

By the sketch it is obvious that, at the halfstroke positions on line $A-A^{\prime}$, the velocity of crank pin must be equal to that of the piston, and on approaching top and bottom of stroke on line $\mathrm{B}-\mathrm{B}^{\prime}$ there must be a great difference between the crank pin and piston vertical velocities.

Reference to trigonometrical tables of sines will provide the clue to what is happening as the crank pin rotates through each quadrant of its revolution.

Let us assume a clockwise direction of rotation starting from $A$ in the left-hand upper quadrant and tabulate the ratios as under:-

\begin{tabular}{|c|c|c|c|}
\hline Angular posn. \& Vertical
distance \& Differences \& <br>
\hline A $0^{\circ}$ \& A 0 \& - \& <br>
\hline $1{ }^{\circ}$ \& . $01745 \times \mathrm{R}$ \& . 017.45 \& . 17365 Piston travel <br>
\hline $10^{\circ}$ \& $173365 \times \mathrm{R}$ \& . 15620 \& <br>
\hline $20^{\circ}$ \& . $34202 \times \mathrm{R}$ \& . 16837 \& <br>
\hline $30^{\circ}$
$40^{\circ}$ \& . $50000 \times \mathrm{R}$ \& . 15798 \& <br>
\hline $40^{\circ}$

0 \& . $64279 \times \mathrm{R}$ \& . 14279 \& <br>
\hline 50
60 \& \& . 12325 \& <br>
\hline $60^{\circ}$ \& . $86603 \times \mathrm{R}$ \& . 09999 \& <br>
\hline $70^{\circ}$
80 \& \& . 07366 \& <br>
\hline $80^{\circ}$
89 \& . $98481 \times \mathrm{R} \times \mathrm{R}$ \& .04512 \& 1519 Piston <br>
\hline B $90^{\circ}$ \& I. $09000 \times \mathrm{R}$ \& . 00015 \& in last $10^{\circ}$. <br>
\hline
\end{tabular}

From the above figures it will be obvious that the piston velocity is gradually, but
constantly, declining in value-a consideration which governs the entire problem, as this value gradually falls to zero.

The ratio of these values at $0-10 \mathrm{deg}$. and

at 80-90 deg. is 11.433 to 1 , and again at $0-1$ deg. to $89-90$ deg. has risen to 117.67 to 1 , which shows the great falling off in piston travel at extreme ends of two alternate quadrants, with an equivalent gain in the remaining alternate pair.

To obtain the actual distances travelled by the piston it is, of course, necessary to give a definite value to " $\mathbf{R}$," the crank radius.J. I. George (Brighton).
fitted to the mass itself (limpet-fashion, perhaps) to give it an impulse.

Finally, for the assembling, winches and blocks instead of being an aid could prove an intolerable nuisance. At least, this would be true in the early stages. At a later occasion, when the vehicle was being rotated and artificial gravity generated, these adjuncts might render good service.- $\mathbf{P}$. Bown (Northampton).

## Institute for Inventors

SIR,-We believe that many of your readers would be interested in this Institute's efforts to introduce the inventors of new products and new techniques to manufacturers. The need for such a service has never been greater in this country which faces unprecedented competition overseas as a nation and whose individual manufacturers are in ever keener mutual competition.

Industries having their own research establishments are perhaps adequately supplied with new ideas, but there are smaller industries and manufacturers who to our knowledge are faced with difficulties beyond their resources to solve and who would be receptive to suggestions for new products. It is extraordinary that this situation should obtain in a country famed for originality of invention and which has an enormous, untapped reservoir of inventive talent at its disposal. At the moment the talent of British inventors is either being misused or totally ignored. That is what we are seeking to remedy.

It is in the national interest that inventors should devote their time and abilities to the development of products with a high commercial potential and to the solution of production problems which now act as a brake upon the efficiency of our industries. A number of manufacturers have already brought us their problems and we have enabled them to benefit from the inventive resources of independent inventors. At the same time we have been able to introduce to other manufacturers the inventors of marketable ideas, again to their mutual advantage.

In all this the Institute of Patentees and Inventors, the only organisation representing the inventors of Britain, acts confidentially as
(Continued on page 355)


TABEY COMPLETE EQUIPMENT Complete equipment for seeling in the
dark, at atted to Army vehicle for night
dryving. ete. comprises: ? infra red drying. etc. comprises: 2 Infra red
radiators, adjstable binoculars. power pack for 6 or 12 volts, control units and
 perfect order. E10. plus 10 - carriage un
insurance. Mains powei pack extra.


USEFUL HANDLES
For doors. cupboards, drawers, etc., also
useful for tool racks. Two of each of 6
 opening.
packing.


British firm, has duct of the famous
 ranyes), current $0-1 \mathrm{amp}$. ( 5 ranges),
reslistance $0-2$ meg. ( 2 ranges). Complete rith test leads. Cash price $£ 9.10 .0$ or 10/- deposit and 19 weekly payments of 10- WREE G1ETR. All ordiring this
week will recelve ranke extender for
measurige capectey and inductance.


NOW 2 MODELS Brand new stock, not
surplus, with colls for Band I and ITI
complete with
valves. Model



The-famous R1154N-unused but slightly solled and uot tested. Covers $200-500 \mathrm{Kc} / \mathrm{s}$,
$3-5.5 \mathrm{Mc} / \mathrm{s}$ and $5.5-10 \mathrm{Mc} / \mathrm{s}$ Has unique click stop" meobanism (7 stops) Rand permits selected frequency to be held, permits selected Harttey Oselllator, Power
returnifer, Keying und speech. Wonderful Amplifier, Keying und speech. Wonderiul oreakdown value meters. real bargain at
Complete with valves real 296. Plus 10/-carriage


THE SKYSEARCHER This is a 2 -valve plus metal-recelver set useful as an educational set for befor the bedroom, workshop, etc. At parts, less cabinet, chassis and speaker,
19/6. Post and ins. 2/6. Data free with 19,6. Post andins. 2/6. Data free with parts or avallable separately 16 . 3 , at the same price.


Powerful three-valve Mains amplifier Ideal for dances, pareles, eto. Complete able if roquis, cabinet and speaker (availPrioe 19/6, plus $3 / 6$ post and insurance.

SERIES III
NUCLEAVE PRESS
 RIVETS PUNCHES

Ask your Tool Dealer or send for Sole Manufacturers
FITZNER LTD. I97-199, KINGS ROAD,
KINGSTON-ON-THAMES

Series heaters.
Model 2 $1 . \mathrm{F}^{2}$
Mutput $18-19$ output $16-19$
Mc//s. Parallel
heaters. With
. heaters. With
instruct $10 n$ s
and circuit diagram, 79,6. With knobs $3 / 6$ extra.
post and insurance 26 .

## BEGINNER'S SUPERHET



## MAKING A SOLDER GUN



ELECTRONIC PRECISION EQUIPMENT, LTD.
Post orders should be addressed to Dept. 1, at Eastbourne Address.

[^1]ELECTRIC MOTORS.-A.C. single-phase New by Eng lish Electric Co. Hh.p., 1,440 dard foot mounting. Qulte OK. for 230 v used with discretion. $\varepsilon 7.10 .0$ each, carriage BATTER (manland Onlig make, input 2001250 volts, output 6 or 12 mounted wood base. Yery simple but equal to expensive types. 29/6: post $2 /$ -
AvMETHERS.-New $0-3$ amps. suitable for use with above. $9 / 0$ each. post 1 G.E.C. HECTIFIERS.A.A amp full-wave. 11 to 2 amps., $10 /$-each. post 10 d .
WEE MEGGERS.-Now. Perfect condition. spectally made for telephone work, MULTIRANGE TRANSFORMERS. Very useful. Input 200 to 250 volts. Tapped 25j- each, post $2 / 3$. -about the best of Govt. surplus motors $15-$ each, post $1 / 9$. These motors will run'
direct on A.C. using the above multi-range transformers (Atted with shaft).
INTERCOM SETS. - Sound powered, no
batteries. If nitted with buzzer cireuit can batteries. If nitted with buzzer circuit can suitable remote radio ilstentug, baby suitable remote radio ilstenlng, baby connected with 21ft. twin fiex. Price $12 / 6$ AER, post $1 / 6$ COLPLING CNITS.-For type Clirst. Contalns R.F. meter Large dial tuner. press-switch, two-pin 7/8. post $2 / 3$.
M1GM - YOLTAGE CONDENSERS.
4,000 volts, 25 mfd. plus 25 mid. 4,000 volts, 25 mfd. plus .25 mid Suitable power factor condensers on smai
installations. Welght 7 lbs, oil-flled. Price $3 / 6$ each, post $2 / 6$. $36^{\prime}-\mathrm{per}$ dozen MILLIAMMETERS.-Moving coil. 2 in scale. 0.5 miliamps. Perrec BALANCED ARMATURE-Telephone for crystal sets. 106 each, post $1 / 6: 96 /$ dozi, post ind CARBON HANDMIK ES.-Ne
and switch. Price
HABGAIN BOX of i lb. of assorted small nuts, bolts, self-tapping screws (brass) self-tappers, (brass and chrome-plated) wood screws (chromed on bras.). Not useles. rubblsh but good assortment of high quality materials at raction of cost. $3 / 8$ per 1 lb .
post $1 / 6$ : or $38 /-$ per 12 lb , carton, post $3 / 6$.

Send 6d. for current catalogue.
THE SCIENTIFIC INSTRUMENT CO. 353. BEARWOOD RD., SVETHWICK

Phone: BEA 1450

## SPECIAL OFFER

G.E.C., B.T.H. \&

WESTINGHOUSE GERMANIUM CRYSTAL DIODES
//e each. Postage 3 d .
Diagrams and three Crystal Set Circurts Free with each Diode.
A iarge purchase of thest fully
GUARANTEED diodes from she manufacturers enables us to make this attractive offer
COPPER INSTRUMENT WIRE
ENAMELLED, TINNED, LITZ,
ITON ANO SILK COVERED All gauges available
B.A. SCREWS, NUTS, WASHERS BOONITE AND BAKELTE PANELS EBONITE AND BAKELITE PANELS FORMER'S AND TUBES ALL DIAMETERS
Lakest Radio Publications
CRYSTAL SET
INCORPORATING THE SILICON
CRYSTAL VALVE
adjustable Iron Cored Coil
RECEPTION GUARANTEED
Polished wood cabinet, $15 /-$ post $1 / 3$.
A REAL CRYSTAL SET NOT A TOY
POST RADIO SUPPLIES 33 Bourne Gardens, London, E. 4

## Webley

AIR PISTOES
aim rifles - nccessories

Write for cotalogue MEBLEY a SCOIT Lt

NiPE BATTERIFS, Practically indeslled. Any voltage can be bullt up. Brand New, $25 /-$ each, cge. 5/-. NTAKE.-Brand New. Silent running 200250 volt A.C. $130 \%$. 12 volt D.C. 90 N post $3 / \%$.
MEGGER CIrcuit Testing Ohmeter prods. Brand New, £4.17.6. Post $3 /$-.
"WEE MEGGER $\quad 500$ Volts in leather case. Brand New, £1210.0. Post $3 /$ -
LEATHER CAIRRIING CASEs, 121 m . X 7in. x 9in, with lock, key and strap, For
photographic gear. Bridge Megers, etc. photographic
WAVEVIETER, With all leads and spares tin. Milliammethis fine unit contains amp. switch and other useful parts Pilot case 9in. x 91n. x 12引in. with hinged lid is adaptable for many pu
PRICE $50 / \mathrm{F}$. Cge. $7 / 6$.
SIGNAL GENERATOR
Bands from 6 to 52 Megacycles inclusive 230 volt complete with alt leads. etc. Brand new in transit case. £10. Cze, 7/6
HEATING ELEMENTS. Flat enclosed type 230 volts 500 watts. "Bray Chromalox. WAVE CHARGING Full Wave Bridge 12 Rel RECIFIERS 4 amps , $22 / 8 . \quad 2 \mathrm{amp}$. Transformers, $24 /$ amp.. 286. post 21
AVO TEST RRIDGES, 220/240
Measures capacities from 5 v. A.C nd resistances from 5 ohms to 50 megohms Valve voltmeter range 0.1 to 15 volts and
condenser leakage test. Brand New. Ful condenser lisakage tions supplied with instru
ment. $£ 9.19 .6$. Post 3 -.
TEST SETS incorporating Wheatstone Bridge. Galvonometer. Brand new in case CELL TESTING VOLTMETERS, $3-0-3$ in leather case with prods. A first quality moving-coll meter, $25 /$-. Post $2 /-$
ELLICTRIC MOTORS, $200 / 250$ v. selftarting, 1 r.p.m. $35 /$-. Post $1 / 6$.
PORTABLE BLOWER $200-250$ V. A.C.
D.C. 303 watts with switch and leads. ikin. outlet, 85 . Post $3 / 6$. RELAYS-HIGHISPEED. $1,700+1.700$ ohms just the job ror radio controlled models. $25 /$ pose each post $B$ UKEREAD FITtripod type, sultable for lamps up to 100
watt, complete with pushbar swltch lampholder. Ideal for farm greenhouses, etc. Brand new, 17/6. Post

 TELEPHONES SOUND POWERED. NO dex for clear speech. Transmitter Recelve Units. $4 / 6$ ea. Twin Flex, $4 / \mathrm{d}$. yd. Post $1 /-$ GEARED MOrod for the model maker, | powerful. | $12 / 24$ |
| :--- | ---: |
| volt | D.C. |
| $1 / 8$ |  | 2/b. morks from 230 v. A.C. mains

and rectifer. 1\%/-extra TYPE, \&8.17,6 per pair MODERN DESK WALE TYPE also 8 units \&5. Batterles $5 / 6$. Twin Wire 2d. per yd MOTOR. 12 volt D.C. 111 n . $x 2 i n$. approx 3.000 r.p.m. with speed regulator in end cap
A precision job, 18/6, post $1 / 6$. METERS GUARANTEE
$\square$
Millamps
$\frac{1}{5}$ minam Amperes $0-0-50$ Ämp. 20 Volts 300

?
 Balanced Armature. Type DHR, $17 / 6$ pr Post 1/6
ROOM TIERMOSTAT. Adjustable 45 to 75 deg. Fahr, 250 volts 10 amp . A.C. Ideal
for greenhouses, etc., $35 \mathrm{l}^{-}$, post 2 -. INSPECTION LAMP. Fits on forehead leaving hands free. battery case clips on belt. $7 / 6$, post $1 / 6$. Takes E.R. Batters No. 1215. 2/6. post 9d.
L. WILKINSON (CROYDON) LTD 19, Lansdowne Road, Croydon

## For garage or workshop

## FRACTIONAL HORSEPOWER MOTORS

A.C. or D.C.

BTH motors and associated control gear are second to none in quality and proved performance. Types and sizes are available to suit any application.


THE
BRITISH THOMSON-HOUSTON
CO. LTD., NEWCASTLE (STAFFS). ENGLAND
an A.E.I. Compary.


E DUCK ORTENTS With FLY-SHEE

TENT PRICE E9-19.6
$8^{\prime} 9^{\prime \prime}$ LONG, 6'WIDE $8^{\prime} 9^{\prime \prime} L O N G, G^{\prime}$ WOE
$6^{\prime}$ HIGH $3^{\prime}$ WALS APPROX Genuine proofed white duck, absolutely rand Made $100 \%$ waverproof by the Duck Fly-sheet at $£$ extra. Ready for speedy erection and comes complete with all poles, including rides pole, pegs, etc. and carrying valise. The cash price of OF ORIGINAL COST. Carriage $5 /$. Send omly $15 /-$. Balance 12 monthly payments o
(H)EAdquarter and General supplies LTD.
(DEPT. PMC/30), $196-200$ COLDHARBOUR LANE, LOUGHBOROUGH JUNCTION, LONDON, S.E.5. Open all. Saturday. I p.m. Wednesday

## METALS <br> AND ACCESSORIES

## ALUMINIUM, BRASS, COPPER, STEEL, ETC.

Angle, Sheer, Tube, Foil, Strip, Channel, Rod, Bar, Wire, Moulding, Ete Tin Plates, Silver Steel. Expanded Metal, Blanks, Rivets, Springs, Exc. Tools,
Formica, Perspex, Pegboard, Paxolin. Ebonite, Curzain Rail and Rod, Adhesives, Ete., and many other items for use in Home, Workshop. Ecc.
LARGE or SMALL Quantities MAIL ORDER SERVICE (2d. stamp for list) IMMEDIATE DESPATCH

CLAY BROS. \& CO. (P.M. 9)
6a SPRINGBRIDGE ROAD, EALING, W. 5
Phone: EALing 2215
2 MINS. EALING BROADWAY STATION, OPPOSITE BENTALLS


#### Abstract

5.000 Illigh Speed Sliting Saws and Slotilng Cutters, $214^{\circ}$ dia. $5 / 8^{\circ}$ bore, $0.045^{\circ}, 0.051^{\circ} 0.050^{\circ}$. 0.064 $5 / 8$ bore, $0.045^{\circ}, 0.051^{\circ}, 0.057^{\circ}{ }^{\circ} 0.064^{\prime}$ thick, $3 / 9$ each. $3 / 4^{\circ}$ dia $0.027^{\circ}$ $0.027^{\circ}, 0.036^{\circ}{ }^{\circ} 0.048^{\circ}, 0.051^{\prime \prime}, 0.00^{\circ} 0^{\circ}, 0.064^{\prime \prime}$   3.000 IIish speed Toolbits, ground finish, slightly below $3 / 8$ square, 3 long actual present day value 47 . per doz. 13/6 hall doz. $2 / 6$ each. 500 Whitwortll Serewing Tachle Sets with bright polished steel die$3 / 4^{\prime \prime}, 78^{\circ}, 1^{-} 21^{\circ}$ Whit. . cutting $9016^{\circ} .5 / 8^{\circ}$. B.S.F. ditto, $50 /$ - Der set. Only a third 1,000 lligh speed Side nnd Face Cutters, $21 / 2^{\prime \prime}$ dia., $1^{\circ}$ hole, $1 / 4^{\circ}$. $3 / 8^{\circ}{ }^{\circ}$   1,000 His. Lonk Siraight Shank dia, hoth $43 / 4^{2}$ long, $2^{1 / 6}$ pair. Approx.  Approx. $13 / 64^{\prime \prime}$ dia. " $10^{*}$ long. $4 / 6$ each. $3 / 8{ }^{\text {d dia. } 11^{\prime \prime}}$ long, $10 /$-each 46 each. dia. H.S. Spot Facing Cutters $1 / 1 / 4^{*}$ M.T. shank An detachable pilot. No. 2 bolt holes on castings. Worth $45 /-$ 1.000 H.S. Inserted Blades Ex-   500 Sets Hex. Die Nuts, Sizes $1 / 4^{\circ}$ Amerlcan Car thread or 26 brass threa. day value are in a neat case. Present per set any thread. Two sets $28 / 6$.


 four sets 55/-A1so $5 / 8^{\prime \prime}$ and $3 / 4^{\prime \prime}$ in Whit.and B.S.F. only. $5 / 8^{\prime \prime}$. $5 /-$ each. $3 / 4^{* \prime}$ $6 /$ each, $10 /$ - per pair
M.000 H.S. Morse Taper Shank End

 Special Clearance.
I.S. taper pin
reamers, sizes $4,5,6,9,17 / 8$ the lot, All ftems brand new. $£ 1$ orders post paid except overseas. el orders past 2,000 Smati H.S. Tuist Drills, approx. $1 / 32^{\circ}$. $1 / 16^{\circ}-1 / 4^{\prime \prime} 7$ dor doz. approx. 3,000 Clreular Split Dies. $1^{*}$ dia. cuttings $1 / 4^{\circ}, 5 / 16^{*}, 3 / 8^{*}, 7 / 16^{*}, 1 / 8^{\circ}$ Whit. B.S.F.O also brass thread. 26 thread set of 5 sizes, 2 sets $22^{\prime} 6$. \& sets $42 / 6$ Taps to suit $12 / 6$ ner set, elther taper
or second or plug. $1^{\prime \prime}$ dia, stocks $6 /$ or second or plug. $1^{\prime \prime}$ dia, stocks $6 /$ 1.000 Hand Reamers, $5 / 16^{\circ}, 3 / 6$ each, 1,000 Hishi Speed Parting OfT Tool Blatles, Eclipse brand ${ }^{11 / 16^{*}} \mathrm{x}$ 3/32
$\mathrm{x} \mathrm{F}^{\prime \prime}$ long, $5 /=$ each: $13 / 16^{\circ} \times 1 / 16^{*} \times 6^{\prime \prime}$ long. $5 / /^{\circ}$ each : $15 / 16^{\circ} \times 3 / 32^{\circ} \times 6^{\circ}$ long
split dies Pratt \& Whltney clrcular ground cutting edige quality precision able for machine or hand use. Sizes stock, $8 / 6$ each
5.000 Ball Haces, $1 / 8^{\circ}$ bore, $3 / 8^{\circ}$ o.d. 7, $32^{\prime \prime}$ thick. ${ }^{4}$ - pair: $1 / 4^{\prime \prime}$ bore, $34^{\prime \prime}$ o.d. 19 mm . o.d.. 6 mm . thick, $4 /-$ pair 9 mm . borer $26 \mathrm{~mm} .0 . \mathrm{d}^{2}, 8 \mathrm{~mm}$. thick. $4 \mathrm{~m}^{\circ}$ $5 /$ pair, $3 / 16^{\circ}$ bore, $1 / 2^{\circ}$ o.d., $5 / 32^{-}$thick, 4-pair
2,000 Flles. $4^{*}-6^{*}$, good assortment. Ass. 12 doz also toolmakers' needle fles Ass., $12^{\prime} 6 \mathrm{doz}$.
Metal Marking: Punches sizes $3 / 32$
$1 / 8^{\circ}$ and $1 / q^{*}$ figures, $8 / 6$ per set, letters, $1 / 8{ }^{\text {and }} 1 /$ / ". figures, $^{2} / 6$ per set, letters size
2,000 Stralght Shank, End Mirls list price $30 /-$ set. $15 /$ set, also $3 / 8^{\circ}$ $7 / 16^{-}, 1 / 2^{-}$ditto, $12 / 6$ set.
500 H.S. 90 Countersinks, body
$1 / 2^{\circ}$ dia. Gift $5 /-$ each. 1.000 Bevelled Wood Chiself, handled. $1 / 4^{\prime \prime}, 5 / 6^{\prime \prime}, 3 / 8^{\circ}, 1 / 2^{\circ}, 5 / 8^{\circ}, 3 / 4^{\circ}$
$7 / 8^{\circ}, 1^{\prime \prime}$. Actual value $37 / 6$. G1ft $25{ }^{\circ}$ 200 Cast: Steel Circular Saws for Wood $4^{\prime}$ d1a, $6 /$ each :
$136 ; 10,18 /-12,24$ :
1.000 Scmi High Speed Centre ${ }^{1} 32^{*}$ point, $1 / 6$ each, $16 / 6$ per doz 20,000 Small High Speed Nillin Cutters, varlous shapes and styles, We want to
assorted. 15

## BURKE

192, Baslow Road, Totley, Sheffield.
Inspection Only at Kear
36 Fitzwillani
an intermediary, providing a common meeting place for these two vital arms of industry. It is a task which urgently needs to be expanded and one which can be undertaken satisfactorily only by an imparial and non profit-making organisation, which is indeed what we are.-Gen. Sec., Institute of Patentees and Inventors.

## Telescope Mirror Making

SIR,-Re the article on "Tdescope Mirror Making" by J. Parker in the January issue, may I pass on a few hints?

It is quite unnecessary to put a handle on the back of the mirror. I notice Mr. Parker takes it off for polishing. It is far better to work without it right from the start. Also the thickness of both tool and mirror should be not less than $1 / 6$ of the diameter, due to the fact that thinner glass is inclined to bend while being worked.

Grinding is done more quickly if you use only the following grades of carborundum: grade 80 or roo for roughing out and obtaining the approximate shape, grade FFF for removing pits left from grade 80 and trueing up. Carborundum Aloxite, Superfine Optical Smoothing Powder as a

## H. M. Sell Hetires

$\mathrm{M}^{\mathrm{R}}$R. H. M. SELL, manager of the London branch of the famous firm of Bassett Lowke Ltd., makers of scale models, has retired after 45 years' service. After having joined the company in 1913 he served his apprenticeship as an engineer and, apart from the period of Army service in 1914-18 war, has been continually at the London branch.
The late Mr. W. J. Bassett Lowke and Mr. H. M. Sell were old friends


Mr. H. M. Sell.
of the writer. They were both known throughout the model-making world, and certainly every model-maker in this country must at one time or another have met Mr. Sell either in the shop or at exhibitions.

During his 45 years he has met and negotiated business with people from all walks of life, including many colourful personalities from abroad. His cheerful and alert personality is well known, and his wide knowledge of the model industry is unique.
Bassett Lowke have had their London office for 49 years, and Mr . Sell was the last of three managers during that period. He is succeeded by Mr. R. D. Dimock, another man long experienced in the model trade.
F. J. C.
pre-polishing grade, which quickly removes the pits left by FFF, and is then used to get perfect contact by means of the pencilline test.

Roughing out the curve to the required depth for a 6 in. F/8 mirror takes $15-20$ minutes. Widening the curve to the edge of the mirror and making the mirror roughly spherical takes another 20 minutes. Change to grade FFF, etc. The whole process of grinding takes about 3 hours in the case of an F/8 mirror, when it will be ready for polishing.

To save a lot of scrubbing when changing grades use instead a sheet of polythene, which will keep the workbench clean. Each sheet is taken off carefully and thrown away.

These grinding powders need not be labelled since the difference in grain size is obvious to anybody.

The grinding action is carried out by using the circular stroke. Full length stroke at first and stroke from then on. With this stroke it is not necessary to walk around the work-table, and so a sturdy workbench may be used. Even in polishing I have never yet found it necessary to walk around the table. To speed grinding, tool and mirror are inverted after every wet while using ${ }^{\frac{1}{3}}$ strokes.

The depth in the centre of the mirror is found by the simple formula $S=\frac{r^{2}}{R_{2}}$ where $S$ is the depth, $r$ is the radius of the mirror, $R$ is the radius of curvature. For a 6 in . F/8 this works out to $\pm .047 \mathrm{in}$. and may be measured exactly by standing a straightedge across the mirror and inserting engineer's feeler gauges between mirror and straightedge. This method is very quick and exact but must not be used in later stages, since it is liable to scratch a " fined" surface. However, the curve should not alter during fine-grinding. To inspect the mirror for pits, hold it face up to a bright light and look through the back. Pits will stand out as bright specks.

The mirror is ready for polishing when an ordinary window frame is clearly seen through the mirro: at a distance of 6 ft . or more. The reflection test, as described, is unnecessary.-Hein Ottens (Durban).

## Dirt and Damp-proofing

SIR,-May I offer some suggestions for
the benefit of Mr. A. Armstrong (Fife), "Dirt and Damp-proofing Charts," February, 1958, page $\cdot 257$
I had the same problem in my workshops and solved it by using the products of a firm specialising in transparent covering materials, Lans, Lid., Quay Buildings, Newcastle-on-Tyne.

For large wall charts I obtained some of their acetate sheet and made a number of "envelopes" consisting of a thick cardboard back, acetate sheet front and bound round three sides with adhesive cloth tape. The charts are slipped in as required. Hanging them by Bulldog clips and drawing pins is less destructive than putting pins direct into the charts.

I also use this material for completely covering notice boards in the workshop.
Also sold by the above firm is some smaller blue-tint transparent sheet which is suitable for making into holders for drawings and process sheets. If Mr. Armstrong can obtain some sheet of X-ray negatives he will find that the chemical deposit can be dissolved off in warm water and the clear sheets can then be used for making drawing envelopes.

If a more permanent covering for drawings is required, use a transparent selfadhesive material that is pressed on with an iron. I paste the drawings on to cardboard, cover with this material and then as the most vulnerable part is likely to be the edges, bind with cloth tape. The result is a drawing impervious to oil and dirt; one that will stand up to regular workshop use.-W Duybury (Birmingham).
speeds of the two engines, and that no allowance has been made for a slight differerce in speeds. In a good many cases, the coupling between the two engines is made specially extensible, so that when, say, the leading engine increases its speed, it elongates the coupling which assumes normal when the second engine reaches the speed of the first. If the two engines are exactly identical and travelling at the same spee.l, each does half the work, but the moment the leading one goes a little faster, the whole train accelerates. The slower engine is thus relieved of some of its effort in drawing the train and uses the released power in increasing its speed. Of course, the difference in speeds must be very slight, and of short duration. When the mean speeds are the same, the mechanical forces just described adjust slight differences in speed.

## PRACTICAL HOME MONEY MAKER <br> Edited By F. J. CAMM APRIL ISSUE NOW ON SALE Principal Contents <br> The Breeding of Pedigree Cats <br> Patchwork Craft <br> Jobbing Gardening <br> Mail Order Selling <br> Rush Seating Chairs <br> Home Shee Repairing <br> Table Ware in Cane Selling by Auction <br> A Pets' Boarding House <br> Barbol:a <br> Spare-time Mink Breeding <br> Making Simple Lamp Shades <br> Money from the Garden <br> Making and Fixing Pelmets <br> Machine Knitting for Profit <br> Your Advertising Campaign <br> Book Kceping <br> Clock Repalring

## TBMDR NOPR

## PROJECTOR OPTICAL SYSTEM

FROM the Hummel Optical Co., Ltd., London, E.C.I, come details of a complete New House, 67-68, Hatton Garden, optical system for incorporation in a 2 in.
 $\times .2 \mathrm{in}$. projector. It is supplied complete with an assembly drawing and includes either a f/3.5 lens or a $\mathrm{f} / 2.2$ lens (both of 4 in. focus), a mounted condenser, a heat filter and a metal mirror It is marketed under the trade name Leech, and should be of great interest to the colour transparency enthusiast. The price with the $f / 3.5$ lens is $£ 613 \mathrm{~s}$. 9 d . and with the $\mathrm{f} / 2.2$ lens $\mathbf{£ 8} \mathbf{6 s}$. 9 d .

## Adjustable Step Blocks

THE adjustable step blocks shown in the photograph are designed to avoid the use of shims, clamps and solid blocks when clamping parts for machining. The blocks are available in different heights, all with

the same sized meshing serrations, so that they are fully interchangeable. The interlocking as can be seen from the photograph gives added security compared with flat steps. The blocks are made of casehardened, tempered steel to a tolerance of .004 in . and can be used with all types of machine tools. Prices per block range from 3 s . to 19 s . and they are also available in sets. Full details are available from Insley Industrial Supply Co., Ltd., 2 I-22, Poland Street, London, W.I

## Stanley Hammers

T
HESE well-known hammers are to become available in this country soon. Initial production will be of a range of claw hammers from $160 z$, to $240 z$.

Handles are made from specially selected straight-grained white hickory, shaped to fit the hand. Special steel is used for the heads, and the face and neck are hardened and tempered to prevent chipping. The heads
are secured to the handles by a special process which entails the pre-shrinking of the ends of the handles and the use of special wedges, and double tapered eye sockects. The triple wedged head is required to withstand a 2 ton straight pull test.

## PLIABLE METAL

## Perfor Strip

A NEW material of great use to the handy-
man is now being manufactured by Silencers (Bolton) Lid., Waterloo Street, Bolton. It is known as Perfor strip and is a pliable metal slotted strip made in either 12 in . or 24 in . lengths. Conveniently slotted along the whole of its length, it can be readily joined together or fixed in any position. The main quality of Perfor strip is, however, the fact that it can be easily bent to form awkward shaped brackets or stays.
Applications for this material are almost endless; the motorist, for example, can use it for such jobs as making exhaust pipe brackets, number plate brackets and fixing car wings to the body. The householder who does his own repair jobs can use it to make shelf brackets, to repair broken step ladders, etc., etc. It can be used in the workshop to make tool racks, and to repair work benches. Out of doors it can be used to repair fencing or


wholesale chemist or from James Hetley \& Co., 35, Soho Square, London. We know of no other oil which would be suitable but some colours, especially opaque pigments, can be applied mixed with ordinary gum arabic. Just sufficient of the gum should be used to bind the colour together. However, the gum is chiefly employed for glass painting stained glass windows.

## Cement for Floor Tiles

I HAVE a number of rubber or rubber type floor tiles which I wish to stick down to concrete floor.
Could you give me a suitable formula

## QUERY SERVICE RULES

A stamped, addressed envelope, a sixpenny, crossed poscal-order, and the query coupon from the current issue, which appears on the inside of back cover, must be enclosed with every letter concaining a query. Every query and drawing
which is sent must bear she name and address of which is sent must bear the name and address of the reader. Send your queries to the Editor,
PRACTICAL MECHANICS, Geo. Newnes Led. PRACTICAL MECHANICS, Geo. Newnes. Ltd., Tower House.
London, W.C. 2.

for a mastic or cemént ?-R. Osborne (Co. Durham).

CASEIN mixed with sodium silicate and lime makes an efficient adhesive mixture for rubber to sloneware. Dried casein is soaked in an equal weight of water for two hours. The casein swells, then the sod. silicate and lime is stirred into the requisite consistency.

THE medium with which to mix the colour powder is fat oil of turpentine and it will probably need to be thinned with ordinary turpentine. Fat oil may be so thick that it cannot be worked without thinning. You could make it yourself by pouring some best quality turps (from a chemist) into a saucer and exposing it to sunlight for a couple of weeks in the open air. You can get it in a bottle from a ting new bushes; the latter is probably the real cause of the misalignment. The only practical solution is once again to bore the holes, if there is no form of adjustment to overcome this problem. We must point out that this work is a matter for a machinist with some degree of skill and the necessary machine for the task. If you do not possess cither of these, then you may unfortunately, again clamp the headstock in position and find that the error has increased.

Boring with headstock casting already on the bed is no doubt the best way to correct such a misalignment, and if you can arrange a boring head taking the drive from a countershaft, and if care is taken to see the bar is really rigid, then you can bore the holes in this manner. New bushes complete the work.

## Pottery Painting

IWISH to paint pottery as a handicraft, prior to final firing, and I shall be greatly obliged if you can tell me how to make up a suitable oil for mixing the colour powder and the name of any proprietory oil which can be bought in suitably small quantities.-C. F. Taylor (Gateshead).

12FT. ALL-WOOD CANOE. New Series No.
ID-WATT MOTOR. New Scries. No. 2, 4s.*"
COMPRESSED-AIA MODEL AERO ENGINE. New Serles. No. 3, 5s. 6d.*

## AIR RESERVOIR FOR COMPRESSED AIA

 AERO ENGINE. New Series. No. 3a, Isl 6d." SPORTS " PEDAL CAR. New Series, No. 4, 55. 6d.*
F. J. CAMM'S FLASH STEAM PLANT. New Series. No. 5, 5s. 6d.*
SYNCHRONOUS ELECTRIC CLOCK. New
ELECTRIC DOOR-CHIME. No. 7, 4s.*
ASTRONOMICAL TELESCOPE. New Series Refractor. Object glass 3 in . diam. No. 8 (2 sheets), 7s. 6d.*
CANVAS CANOE. New Series. No. 9, 45.* DIASCOPE. New Series. No. 10, 4s.* EPISCOPE. New Series. No. 11. 4s.*
EPISCOPE. New Series. No. 11, 4s.
ANTOGRAPH. New Series. No. 12, 2 s .

COMPRESSED-AIR PAINT SPRAYING
PLANT. New Series. No. I3, 85.*
MASTER BATTERY CLOCK.*
Blue-prints ( 2 sheers), 4 s.
Art board dial for above clock, Is. 6d.
OUTBOARD SPEEDBOAT.
Ils. per set of three shects.
LIGHTWEIGHT MODEL MONOPLANE. Full-size blue-print, 4s.
P.M. TRAILER CARAVAN. Complete set, lls.
P.M. BATTERY SLAVE CLOCK, 2s, 6d. "PRACTICAL TELEVISION" RECEIVER. (3 sheers), 11 s .
P.M. CABIN HIGHWING MONOPLANE. 1s. 6d.*
P.M. TAPE RECORDER* (2 sheers), 5s. 6d.
The above blue-princs are obeainable, post free. from Messrs. George Newnes, Lid., Tower House, - Southampton Sereet, Strand, W.C.2. An * denotes constructional details are available free with the blue-prints.

## Treating Thatch

CAN you give me a formula for a solution with fireproofing and insect killing properties as used on thatched roofs. -H. Morris (Surrey).

ASOLUTION which Rural Industries, Bureau, advise as suitable for fireproofing straw is as follows:28 lb . ammonium sulphate. 14 lb . ammonium carbonate lump.
7 lb . borax lump.
7 lb . boracic acid.
i4lb. alum lump.
To render this insect killing we suggest the addition of 5 lb . of copper sulphate (or alternatively, 5 per cent. cuprinol)
Dissolve the above in 50 gallons of water. Soak the straw in this solution and allow to drain over a tank on slats for three hours. This quantity will proof 500 sq . ft . of thatch.

## Proportional Compasses

I WAS recently shown an old pair of proportional dividers. They bore, besides the usual "Line" scale, three scales marked "Circles," "Planes" and "Solids," respectively. Could you tell me how these last three scales are used?-D. Walsh (Barking).
THE four scales on the Proportional Compasses are as follows:-Lines: The index gives the proportion between length of the long and short legs of the compass and the proportionate distances between the points.
Planes or Plans; Index gives proportion between the long and short legs, arranged to equal the square root of the index number so that should you set the plan index to three and-open the long legs to the length of side of a square the other legs will give the length of a square of one third the area. Solids: The index divides the length of the legs in proportion to the cube root of the index numbers. Should you set solid index to three the long legs being set to the length of the sides of, say, a tank, the other legs will give the length of sides of a tank of one third the capacity.

Circles: For polygons. The index is set to give the correct length of side when the long legs are opened to the length of radius of the circle circumscribing the polygon. The index setting being equal to the number of sides required of the polygon.

## Copper Mirrors

AM interested in making a copper deposit on glass chemically, and have been experimenting with this for some time, using a formula of copper sulphate, Rochelle salts and sodium monoxide, and using formaldehyde as a reducing agent. Of course, the glass has to be weakly silvered (completely transparent) with silver nitrate for the copper to take to, but after a time I find the formaldehyde develops hydrogen. This penetrates the copper deposit and results in blistering and pin holes; also the mirror reflection is uneven. Could you suggest a different formula (preferably without having to weakly silver the glass first)?S. Watkins (Bournemouth).

T is probable that the pinholes are due to one or two causes. Either the glass plate has not been perfectly cleaned, or the chemicals used (in particular the copper sulphate) are not absolutely pure. It is
essential that the copper sulphate be of "Analytical Reagent" purity. Normal copper sulphate contains iron sulphate as an impurity and this would ce:tainly interfere with the deposition of copper.
To prepare the glass plate for silvering, first immerse in strong nitric acid for a few minutes, and then transfer to a solution of chromic acid in dilute sulphuric acid $(50 \mathrm{gms}$. of chromic acid in $300 \mathrm{cc} . \mathrm{s}$. of dilute sulphuric acid). The plate is next washed in ailcohol and rinsed in distilled water. The plate may be dried, but it is preferable to keep it in distilled water until required.

The method used by you is probably the most satisfactory for the deposition of copper. As an alternative to the use of formaldehyde as a reducing agent, metallic zinc in contact with the silvered face of the mirror could be tried. It is known that this method works quite well for the production of copper films on iron and steel.

The following methods will, under certain conditions, produce a deposit of metallic copper and are suggested as bases for experiment, but it is not known whether they will produce results acceptable for the purpose required. In both cases a preliminary thin film of silver would almost certainly be necessary.
(t) A concentrated solution of copper sulphate is heated with a very strong solution of sugar.
(2) $\mathrm{A}^{\circ}$ concentrated solution of copper sulphate is treated with a 1 per cent. solution of hydroxylamine hydrochloride.
Simple chemical methods for the production of metallic films have never proved entirely satisfactory and have been superseded to a large extent by the method of evaporation of the metal in a vacuum. This latter process gives excellent results with a great many metals. Its main drawback is the high initial cost of the apparatus required. If only a small number of "copper mirrors" are to be prepared, this high cost would make the process uneconomical. On the other hand, if large scale production is envisaged, it might be worth investigating.

## "Flamboyant" Finish

WISH to renovate my cycle and to finish it in "flamboyant" finish. Could you inform me where I can obtain the necessary enamel and the method of application. I have a small spray plant if necessary or can it be applied with a brush ?-P. C. H. Coupland (Glam.).
THE "flamboyant " cycle finishes to which you refer are usually composed of a dyed aluminium powder dispersed in a clear transparent lacquer. They are readily applied to clean metal surfaces by means of a brush, and they can be applied in one or more coats according to the effect desired. You can obtain these paints from almost any cycle dealer.

## Fireproofing Fabric

P EASE inform me of the best method of rendering cotton fabrics fireproof.H. Wilkinson (Halifax).

THERE are a number of different fireproofing substances, all of which are easy to apply to cotton fabric. Among the best is ammonium chloride, ammonium phosphate, alum, borax, boric acid, calcium chloride, magnesium chloride, stannous chloride, sodium silicate and sodium tungstate. Any of these materials may be used either singly or in admixture, five parts of the chemical being dissolved in 95 parts of water and the fabric being immersed for about 15 hours in the resulting solution, afterwards being hung out to dry without rinsing. Alum is very often used for the
purpose, but sodium tungstate has gained the best reputation as a fireproofer

A good mixture is the following
Ammonium chloride (sal ammoniac), is pauts; boric acid, 6 parts; borax, 3 parts; water, 100 parts.

The water is heated to near boiling point and the ingredients are dissolved in it. This is a particularly cheap fireproofer, but it has a tendency (like many others) to make the fabric or fibre coarse and harsh to the touch.

## Barometer Overhaul

## AN you please tell me how to remove

 an air bubble from a simple type mercury barometer? Information on the overhaul and adjustment of such an instrument would be appreciated.-P. Bayne (Norwich).THE mercury should be removed, washed in detergent and water in a china bowl. It should then be washed in benzene, allowed to dry thoroughly and if not perfectly clear washed with nitric acid. Wash with distilled water finally in any event. Solid particles may be removed on a filter paper or by repeated pouring from one vessel to another, when they will adhere to the sides.
The barometer tube is very difficult to clean. The above materials used one at a time will dissolve practically all known impurities and will not attack the glass. The "U" tube type of barometer is especially hard to deal with in this respect. Finally rinse with alcohol and place the rube in boiling water, but do not allow any water to enter the tube, The alcohol will boil away. The alcohol vapour left will diffuse out of the tube if it is cooled and heated alternately about twenty times.

Filling a Barometer is easy on the type where the tube is a separate part but where the containing vessel and the tube are in one (" U " tube type) it is difficult.

Filiing the Sepurate Tube Type.-Invert tube and place in the top a thistle funnel previously drawn out to a capillary tube. Pour in the clean dry mercury until the tube is full. Now you may place your finger over the end and invert the tube ensuring that no air bubbles rise from your finger's position. When the end is in the container of mercury remove the finger gently. The column will drop to about 760 nim. If air entered as you removed your finger you must start again.

If there is no room to get your finger into the containing vessel, fit a long but small rubber bung into the tube. This may be removed by using small forceps under mercury level. Alternatively a small steel wire bent at right angles near the end fitted with a metal plate covered with a rubber pad my be held tightly over the end of the tube until it is under mecury level.
Filling the " $U$ " Tube Type.-Place the tube in this position on a mercury tray :


Using the draw out thistle funnel, fill the small branch of the " $U$ " tube comipletely. Put the finger on the end and slowly invert the tube until the mercury has gone round the bend. Gently put the tube back to the original position and fill the short length again. Repeat until the whole of the tube is full of mercury. Then slowly put
the assembly upright. Some mercury will come out as the column drops to balance air pressure. If a scale is fitted you must now draw out a little mercury at a time until the distance between top of fluid in long tube and short tube reads same as a standard barometer at the place in question. If the scale is an adjustable one, the above procedure is not necessary, but some fluid should be removed to allow for a fall in pressure or it will run out over the room.

If you are careful to fill as directed so that no air is in the apparatus, you can check the scale by actual measurement against mercury height and no standard barometer is required. For very accurate work, allowance has to be made mathematically for expansion of the glass, the mercury and the base on which the scale is fixed.

## Rubber Roller Repair

THE sketch below gives particulars of a rubber roller from the wringer of an electric washing machine. This has become unserviceable due to the breakdown of the


Mr. H. Yendall's rcller details.
compound in the ${ }_{8}^{7}$ in. dia. annular space between the inside of the roller and the steel spindle. Can you advise me how to refill this gap ?-H. Yendall (Bristol).
PUSH the roller off the central mandrel and clean surface thoroughly. Now wrap the mandrel with stout brown paper which has been thoroughly dressed with Croid Acro glue until the wrapped mandrel is a tight fit when the roller is passed over it. It should be so packed that it is a tight fit to poke into the sleeve again. Allow 48 hours for this wrapped paper packing to dry and set, then smear with rubber solution and while slippery ram it into the annular space between it and the roller and paint the ends with a good oil paint.

## Tobacco Tar Solvent

COULD you give me a solvent for tobacco tar, etc., that accumulates in pipes and cigarette holders ?-H. Metcalf (Hereford).
TTHER is the best solvent for tobacco tar and nicotine. We would caution you not to use this solvent in a room where there is a naked flame or a fire. This cannot be too greatly emphasised.

## Information Sought

Readers are invited to supply the required information to answer the following queries.

## Mortising Saddle

I HAVE a (twin rectangular bar bed) woodturning lathe which I want to use for slot mortising. Can you suggest some kind of saddle I might make, with forward and vertical movement?-W. J. Osborne (Stratford-on-Avon),

## Plastic Fishing Lures

READ recently in an American magazine of a method of making fishing lures from a plastic. The plastic, as a liquid, is poured into moulds. Different colours can be mixed and the cast is flexible. Can you give me further information?-W. Teeboon (New Zealand).


Larger Tools are made and if you are interested ask your dealer to show you the Rawlplug 4 in 1 and 8 in 1 Tool sets.


FREE RE-SHARPENING

FOR SILENT DRILLING OF MASONRY AND TILES
With Rawlplug DURIUM Drills you get faster silent drilling of masonry and tiles-with fine accuracy. Sizes are from No. 6 to No. 30 at prices from $9 / 6$ each. With each drill You get a
free re-sharpening voucher.


FOR DRILLING GLASS, CHINA, VITROLITE, etc. use the special Durium Glass Drill in nine sizes from $6 / 6$ to $10 / 3$ each.



4

## Don't Scrap it-Solder it

No handyman should be without this sturdy electric soldering iron which can be supplied with standard bit at $32 / 6$ or Pencil or Hatchet With standard bit at $32 / 6$ or Pencil or Hatchet Universal A.C.ID.C. Consumption 110 Watts.

SIX MONTHS GUARANTEE

## LONG SERIES DURIUM DRILLS

For penetrating walls these drills can be fitted with extension shanks to increase the drilling length to $12^{* \prime}$ or $16^{\prime \prime}$, to $1^{\prime \prime}$ diam.


Further details of Raviplug Fixing Devices and tools can be obtained from your local Ironmonaers, HardStores. If in dificulty write to


THE RAWLPLUG GOMPANY, LIMITEO; GROMWELL RQAD, LONDON, SW. 7

WATSON'S SPECIAL OFFEIS


HIGITWEIGHT CHARGING SETG. pact, powered ly a 4-stroke engine and 46 lb. PRICE, 112.10 .0 Carr. $12 / 6 . \quad$ H.D
HAND INSPECTION LAMPS. Safety Model with waterproof glass cove and protective guard complete with 10 yds
T.R.S. cable NEW. $27 / 6$ each. Post $2 / 6$. IOLT OR WHRE CROPPERS will out up
to approx. 5:161B. MHD STEEL BOLTS. to approx. 5:161n. MHLD STEEL BOLTS. PIPGE POSt 2/6. BY "RECORD. Threewhee type to cut any size pipe from in. to
2 , Gas, $35 /-$ each. Post $3 /-\mathrm{lb}$. Nosed with ASh handee $9 / 6$ CArr ${ }^{2}$ 26. Approx. 81 n . x 3 in . diam. With inlet, outle MRASS DRAIN AAPS. ${ }^{\frac{t}{2}}$ in. GAS THREAD NEW \& BOXED, 2/6. Post 4d. lastening tapes, $1 / 4$ each. Post 4d. 14/-doz DINGHY MASTS. Telescoplo aluminium extending from approx. 2 ft . to nearly 9 ft Very light and strong, o/6. Post $3 /-$ $5 / 16 \mathrm{in}$, bore. $7 / 8 \mathrm{ln}$. diam., tin. wide. Five for
 SMALL TRANSFORMERS. Input 230 ${ }_{35}$ or watts. A.C. Two separate outputs of 6 v.electric bells, models, low vol tare inspection lamps, etc. trom mains supply. BRAND NEW PRICE 17/ POSt 2/6. NSFORMEIES with $200 / 250 \mathrm{~A}$. C. input 12 volt 100 watts out put. PRICE 30i-. Post $3 /-$. EASTERN MOTORS, ALDEBURGH, SUFFOLK Phone 51

## HIGHSTONE UTILITIES

Ex-R.A.F. 2-valve (2 volt) Merophone Amplifiers, as used in iplane intercom., in melrontained metal case: can be used munication system, or with crystal set, complete with valves and Fitting Instructions, $20 /-$ post $3 /-1$ Useful wooden box
with partitions to hold amplifier, $2 /-$ extra Ditto, less valves, $10 /-\cdot$ Hiand Mierophones, with switch in handle and lead, 5/6. Tannoy $7 /$. Similar instruments.
 (carbon) $2 /$. Moving coil $3^{\prime 6}$. Post 411 solderlng irons.-Our new streamlined Iron is fitted with a pencll bit, $200 / 250 \mathrm{v}$. 50 watts, $11 / 6$. Standard lron with adjust-
able bit. $200+250$ v. 60 watts. $13 / 6$. Duty Iron, 150 watts, $18 / 6$, all post $1 /$ These irons are guaranteed, and all parts are replaceable.

 With switch, $9 / 6,100 \mathrm{~mA}, 2 i n$, m/c,
$7 / 6$, all post extra. Meter Movements. 7/6, all post extra. Meter Movements,
Units with 2500 microamps, $9 /$, post $1 / 6$. transformers work from any A.C. mains giving 3 , 5 or 8 volts output at 1 amp.
operate bulb, buzzer or bell. Will supply operate bulb, buzzer or bell. W11 supply
Mght in bedroom or larder, etc., $\%$, post $1 /$
Slmilar Transformer but output of 4,8 or 12 volts, 12\%. post 1/6. BELLS for use with either the above or batteries, $8^{\prime}$-, post $6 t$. BUZZERS, 4/3, post 54t. Sparking Plug Neon Teaters, with vestpocket clip. 3/3, or with gauge, 3/6, post 541 . mains to show "llve" side of switches, etc., 2'6, post 4d. Neon Indicator, complete with condenser. pencil type, with vestpocket clip, 7/6, post 5 t. radio receiver, fitted with a permanent crystal detector. Have a set in your own room, 12/6, post $1 /-$ Spare Permanent Detectors; $2 /$ each. When ordered separ-
ately. 2/6: with clips and screws, 2/10, post ately, $/ 6$; with clips and screws, 210 , post
3ti, Hieudiphones, brand new, S. G. Brown. G.E.C. etc., super-sensitive, 30f- a pair: IIesdphones in Giond Order, 6/-. Better Tuality, $7 / 6$ and 10/-. Balanced Armature Type (very sensitive), 1316. All post $1 / 6$. type, $4 / 6$ (two of these wlll make an intercom. Set). Ex-R.A.F earplece. 2/6, post 4n. ( III Keadphones listed as suitable for use with our Crystal scts.) Mon

## highstone UTILITIES

58, NEW WANSTEAD, LONDON, E. 11. New illustrated List sent on reque
2d. stamp and S.A.E. Letters only.

RIGHT!RI马Mx for good braking

## USE <br> Fibyordx

FOR SURE STOPPING

## AND A LONG LIFE

FIBRAX BRAKE blocks stand up to the toughest testthe split-second emergency. Yet they brake smoothly and firmly. Two types: SOFT RED for alloy rims, BLACK for steel rims.
Ask your dealer for "FIBRAX"
FIBRAX LTD., 110, ORMSIDE ST., OLD KENT RD., LONDON, S.E. 15
New Cross 6785/6
F356A

## THE ULTRA LENS AIDS PRODUCTION

This unequalled
Whether youaremanufacturing, buying or selling, electric magnifier is of the most
modern design and has proved its extreme and sustained countless industrial firms engaged on minute xamination of sur ceivable object.
 here are occasions when you have to submit some objects to a very close scrutiny. At
these times the ULTRA LENS becomes indispensable. magnification and eliminate the necessity for adjustment of

Please ask your local Tool Shop, Jeweller, Optician, Scientific Instruments, Stamp-Dealer, or
 a achieves six-fold magni-
fication brili. Write for full particulars to iancly-
lit field which is

## THE ULTRA LENS COMPANY

17c, Oxendon Street, London, S.W. 1
Tel.: TRAfalgar 2055

MAKE MONEY - making casts with VINAMOLD

A grand spare-time occupation
WITHOUT any previous experience you can massproduce any object from a chessman to a candlestick, statuette or model ship. in plaster. resim. concrete, ete. the BEST results. Easy" the flexible mould that gives the BESF results. Easy to work, can be used over and profiable and enjoyblecial equipment, provides a pronimbie and enjoyable sparetime occupation with minimum outlay

Write for full details and instructions. Also arall able: Jllustrated booklet describing and moulds, etc. Price 1/6 post free, from :-

VINatex LTD. (Dept. P.m.3), CARSHal.ton, SURREY


## TAKE UP PELMANISM

And Overcome Worry
W ORRY. uses an immense who worry not only use up their energy during the day by worrying but they rob themselves of that reatest of all restoratives, sleep. People who worry can't sleep. They lose their appetite. They often end up by getting really ill. How often have you heard" it said, "I am worried to death
What do you suppose would happen if a person who was putting himself into mental, moral and physical bankruptey by worrying, were to convert all this worry energy into constructive action ? In no time at all he would have accomplished so much that he would have nothing to worry about

Nothing is more discouraging to a worrying person than to have someone say, "Oh, don't worry, it will all come out right"!

This is not reassuring at all. The worrying one can't see how it is going to come out all right. But if could be shown how to overcome the troubles and difficulties that cause worry, they soon would cease wasting their very life-blood in worrying. Instead, they would begin devoting their energies to a constructive effort that would gain them freedom from worry for the rest of their lives:

You say that sounds plausible, but can it be done?

It can be done, and is being done, by Pelmanism every day in the year. This is all the more remarkable because ro-day the whole world is in an upset condition and people are worrying to an unusual extent. Yet, every mail brings letters to the every mail Instirute from grateful Pelman Institute from grateful Pelman
worry.

People to-day are all too prone to complain that they just have to worry. But once they become Pelmanists they cease this negative form of thought.

The general effect of the training is to induce an attitude of mind and a personal efficiency favourable to the happy management of life.

Send for the Free Book
The Pelman Course is simple and interesting and takes up very little time; you can enrol on the most convenient terms. The Course is fully described in a book entitled "The Science of Success," which will be sent you, gratis and post free, on application to :-

## Pelman Institute

## 130, Norfolk Mansions,

Wigmore Street, London, W.1. WELbeck 1411

## POST THIS FREE COUPON TO-DAY

Pelman Institute, 130, Norfolk Manslons, Wigmore St., London, W.I

The Science of Success" please
Name
Address

Established over 60 years
PELMAN (OVERSEAS) INSTITUTES DELHI. 10 Alimur Road. MELBOURNE 396 Flinders Lane DURBAAN: Natal Buns
Chambers (P.O. Box 1489). PARIS: 176
 Boulevard Hausma
Prinsengrach 1021.

All lezters should be addressed to the Editor, "THE CYCLIST,"
George Newnes, Ltd., Tower House, SouthamptonStreet, Strand, London, W.C. 2

Phone: Temple Bar 4363
Telegrams : Newnes, Rand, Londom

## 

This Year's Show

THE experiment of the biennial cycle show will be put to the test this year when the Cycle Show at Earls Court opens on November 15 th to 22 nd, inclusive. The industry has had two years to prepare plans and new designs, and it will be interesting to see whether the bicycle itself has claimed their dattention or whether the gradual move toward mopeds predominates. For mopeds must now be seriously considered not only as a new marker but as a serious competitor for the utility bicycle market which largely constirutes the bicycle trade. The sporting element, unfortunately, is too small to be of great interest to the bicycle trade. Its demand could not sustain an industry and the clubman is too selective in his choice to be interested greatly in mass-produced bicycles. The smaller manufacturer obtains a fair share of his business, although most firms to-day manufacture Clubman models. That is why I am glad to note that the industry, in its national campaigns in the press and on ITV, is tending to concentrate more on the pastime and less on the sport.

It is unfortunately true that cycle racing has long ceased to be a spectacle which will interest large sections of the public. Massedstart racing has done more to revive interest in this aspect than track events and time trials. These individual branches of the sport are excellent and necessary in their way, but the industry requires the larger market and it is to this market that this year's exhibition should be designed to appeal. We hope, therefore, we may see some interesting and necessary if not revolutionary changes in design at this year's show. A complete breakaway. from tubular construction, for example, is overdue. The present method of juggling about with standard lugs for tubular construction very much cramps design. As with motor bicycles, tubes can be quite satisfactorily dispensed with and, in fact, strength increased without increasing the weight. Indeed, in some cases the weight can be considerably reduced.
The 40 m.p.h. Speed Limit
THE new 40 m.p.h. speed limit was introduced on a large number of roads in the London traffic area on March 15th, when over 50 lengths of main roads totalling 83 miles came under the new limit which is being tried out on the recommendation of the London and Home Counties Traffic Advisory Committee. On about 21 miles of the roads selected, the normal
speed limit of 30 m.p.h. was previously enforced and on the remaining 62 there was no limit. The interest in this experiment is in the effect it will have primarily upon the speed of traffic in known congested areas and also its effect upon road safety. There is a strong school of thought which plumps for the abolition of the speed limit altogether. It bases its argument on the fact that all limits are honoured more in the breach than in the observance, that it is impossible to enforce the limits anyway, that they have contributed nothing to road safety, since as limits have been introduced, accidents have increased, and that existing laws, apart from speed limit laws, are quite adequate to deal with the situation. Most motorists drive at speeds up to $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. anyway, in $30 \mathrm{~m} . \mathrm{ph}$. areas and with perfect safety. The only risk they take is that of a prosecution for exceeding the limit. In view of the congested state of our roads the $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. limit which was introduced by Mr. Hore Belisha when he was Minister of Transport is unrealistic. "Speed with safety, safety fast," should be the slozan to-day.
Another regulation now in force is that drivers are forbidden to- park their vehicles within 75 feet of a pedestrian crossing on roads where the $40 \mathrm{~m} . \mathrm{p}$.h. limit applies, or on roads where there is no limit.
Other roads are being considered for the new speed limit, and if the experiment is successful, it may be extended to places out-

side London where the $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. limit is unrealistic.

## Dynamo Lighting Law

I AM glad that the Minister of Transport has decided not to proceed with his previous proposal to end the existing permission for bicycles to be temporarily unlighted if they are stopped for traffic reasons. The threatened new regulations are thus abandoned and dynamo users may breathe more freely. A joint memorandum prepared by the cycling bodies pointed out that the cyclist who uses dynamo lighting was able to show a good light whenever circumstances required him to do so. The new regulations would have seriously discouraged the use of the very efficient dynamo lighting in use to-day and may have caused it to be abolished altogether.

## Cycle Publicity

DURING March the Joint Publicity Advertising of the Cycle Industry was carried by six national daily papers and six Sunday papers as well as in a large number of provincial and local newspapers. The manufacturers through their advertising agents arranged with the weekly journal, Tir-Bits (circulation over one million weekly) a Why-To-Buy-A-Bike contest in which members of the public were invited to arrange in order ten reasons out of a choice of 15 why they should buy a bicycle. The prizes were 20 bicycles. The selection of Tit-Bits for this contest was a wise one. In its early years Tit-Bits did a great deal to popularise cycling and regularly carried a cycling feature. It was also well supported by the cycle trade. The late F. T. Bidlake and other famous writers such as Frank Urry, regularly contributed to its pages.

## Russia Again

$\mathrm{M}^{\prime}$
ANY years ago the French L'Auto ran a competition for flying bicycles and a competition was actually won by a cyclist who managed to pedal his bicycle into a lucky breeze for about 100 feet., with the wheels off the ground. Of course, the human being is not capable of developing sufficient power to propel a flying bicycle, but I see that Russia now claims to be experimenting with pedal-operated plus light motor-powered aircraft of the ornithopter or flapping wing type. Of course, there is no reason why with motor assistance, such machines should not work.

## The Story of the Wheel

I WOULD invite all my readers interested in bicycles and wheel transport to apply for a free copy of "The Story of the Wheel," which has just been published by the Public Relations Department, Educational Section, Dunlop Rubber Co., Lıd., St. James's House, St. James's Street, London, S.W.I. According to this booklet the wheel was first introduced about 5,000 years ago by the Egyptian Pharaohs. We are also told that the Egyptians drove on the right of the road and the Greeks to the left. This is a most interesting 16 -page booklet on the history of wheels through the ages.

# The ttand Built Trame 

Some Tips to Help You Order

CCLE frames can be purchased readybuilt in many shapes and sizes with accessories already fitted, but it is seldom that the individual can find a frame which has every feature he wants. If the size and angles are right, probably it has unsuitable fork rake or the colour is wrong. The answer of course is to have a frame specially built and specify every dimension and fitting. When you visit the lightweight builder he will want to know your requirements and it is a great help to him if you know these approximately before entering the shop.

## Size and Shape

Frame size is measured from the top edge of the saddle lug to the centre of the bottom bracket spindle (see Fig. I) ; to find out your own frame size, measure the inside leg measurement from fork to instep, deduct the length of crank ( $6 \frac{1}{2} \mathrm{in}$. or 7 in .) and depth of saddle, say 3 in . This will leave the frame size. If the inside leg measurement is 33 in . frame size would be \$ 23 in , using 7 in . cranks.

The angles decided upon will largely depend on the purpose for which the frame is required. The tourist, to whom comfort and stability are important, will want angles somewhere in the region of 70 deg. to 72 deg., while the track rider will require an upright and lively frame with angles of perhaps 74 deg. to 75 deg. head and 73 deg. seat tube. The modern road racing frame has its seat and head tubes parallel at 72 deg.; the clubman requiring a good all round machine will have angles of 73 deg. head tube and 71 deg. seat tube. These angles are, of course, of ten varied to suit individual preference.
It must be decided before the machine is made what type of headset is to be fitted, as the lugs used in brazing up the head are different according to the type of ball race.

Where the head clip type of fitting is used the fork stem is lengthened and is also split so that, when the clip is tightened on to it, it will clamp on to the handlebar stem.

## Fork Rake

Fork rake is measured as shown in Fig. I and an average is $2 \frac{1}{2}$. This dimension too will have an effect on the length of the wheelbase. It will depend to a certain extent on the head angle, but make sure in any case that, when the wheel and mudguard are fitted, there will be enough clearance for the foot in the forward position.

## Bottom Bracket Height

The usual height for a bottom bracket is rot in with $6 \frac{1}{2} \mathrm{in}$. cranks and 11 in . with 7in. cranks. Measurements, of course, must be associated with the size of wheels it is intended to use. An 11 in. high bottom bracke! is only $1 \frac{1}{2}$ in. high when 26 in . wheels are fitted instead of 27 in .

## Width of Fork Ends

If the purchaser has in mind the use of one particular set of wheels with the frame being ordered, the builder will space the fork ends to suit, but in any case it must be decided whether a Derailleur three-speed gear is intended or merely a single gear (i.e. for track work). If the machine is not intended for the track, remember that it is easier to pack out the width of a doublesided. fixed gear hub to suit wide fork ends than it is to force apart fork ends which are too narrow.

## Construction Material

The usual material offered for frame construction is Reynolds 531 tubing, although there are alternatives. Some frame makers


Fug. I-L.ow to drawe ut vour own frame design

offer an alternative to the lugged frame, i.e. the welded construction. Here lugs are dispensed with and the tubes welded together. The lugged-frame makers usually cut away the shape of the lugs and file them down at the edges, both to lighten them and to give an attractive appearance.

## Fittings

All the lugs, brackets, etc., to be added must be specified before the frame is made. Pump pegs may be fitted either 15 in . or 18in. apart, wherever required, on the down tube, the top tube or the seat tube, or they may be omitted altogether and clips used. On some patterns of front and rear drop-outs the mudguard eyes are part of the fitting, but sometimes they are added to the front forks and rear chainstays at a point a few inches above the drop-outs. Grease nipples are usually fitted as a matter of course, but extra ones may be fitted at the purchaser's request. Fittings to accommodate brake cables and Derailleur gears of various types can be added also and any special fittings required, e.g., rear lamp bracket, pannier bag fittings, etc. Usually, unless reques sed not to, the maker will drill the front fork crown and the bridge across the seat stays for brake fitting.

## Drawing the Frame

You will ensure by this method that all the dimensions for which you ask are possible. Fig. r shows a good example. Draw the ground line first, followed by the bottom bracket centre line the required height above it (rim.). Next put in the hub centre line $13 \frac{1}{2} \mathrm{in}$. above the ground line (for 27 in , wheels). Use a protractor to set off the centre line of the seat tube to the angle required ( 71 deg.). Measure off the frame height along it and draw in the top tube centre line parallel to the ground line. Mark in the required length of the top tube (a length approximately the same as the frame height is normal) and then, using the protractor, mark in the centre line of the head. Where the line of the head crosses the hub centre line add on the fork rake as shown in Fig. I.

If the wheelbase is required to be as short as possible, mark off 17 in. from the centre of the bottom bracket to the hub centre line to find the position of the rear drop-out. 17 in . is usually the smallest size rear triangle possible ( $17 \frac{1}{2}$ in is used in the example). If a longer wheelbase is required (say 44 in .) measure this off from the front hub centre along the centre line to find the rear hub position and then join this point to the bottom bracket. To draw in the down rube, draw in the front wheel with compasses, roughly estimate the clearance depth of fork crown, etc., and then join to the bottom bracket.

## NEW CABBES \& HITINGS

TOUGH RUBBER CABLES


## LONDON

WHOLESALE WAREHOUSE 165 (P.M.), QUEENS ROAD, PECKHAM, S.E. 15

Tel. : NEW Cross 7143 or 0890.



ASTRONOMICAL
TELESCOPES 107/6 !! INTRODUCING OUR NEW SUPER MODEL
See the Moon at Close Quarters, Examine the Immense Craters, Mountain Ranges. ete.
Rings, Nebulae, Sputniks, ete.
Specification. 2 in. dia. Lengeh 39 in. Mag $53 \times$ Linear (equivalent $2809 x$ Area). Weight Approx. $2 \mathrm{lb}, 2 \mathrm{oz}$. Registered postage and packing in-
cluding strong stowing cylinder, $12 /$-. Altaximuth Portable Clamp Stands. Extra 37/6, P.JP. 2/6. Fixes anywhere. High -Power Eyepieces $80 \times$, 30/P.JP. 2/-. (Equivalent $6400 \times$ Area.)

Stamp for Full Particulars. Photographs 1/- set (returnable). Lists and Terms.
J. K. M. HOLMES \& CO. LTD. SCIENTIFIC INSTRUMENT MAKERS (Dept. PM33), Martins Bank North Shields, Northumberland.

a genuine Tungsten Carbide Tryped Masonry Drill for the houscholder
 The only safe way to make a drill a clean round hole. BLUE FLASH will do this with ease, its Diamond Hard tip will cut cleanly into brick, cement, stone or brecze giving a perlect sized hole in which to fit a Plastic Maso Plug or ordinary
 COPPER BRAZED FOR USE IN ALL Send for Leaflet P.M. From your local
tronmongers and
 T. PERKI
. M. PERKINS a SMITH LTD., Braunstan, Rugby.


TENSILE PRODUCTS LTD.
Willoughby Road, HARPENDEN, Herts.
Harpenden 311

## SAW BENCH UNIT FOR 66/=-POST FREE!

Fit the S.G.S. High-speed Ball Bearing Circular Saw Unit EMPIRE UNIT (illustrated) for saws to 12 in . dia., £3.6. ROYAL UNIT for
saws to 16 in. dia., 5.3. EMPRESS UNIT for £5.15. Also S.G.S. Ball Bearing Planer Units. 4tin. size, $£ 4.15$ 6in. £6.15. 8 in $£ 8.10$.

"GENETIG " Wood-turning Lathes, $18 \frac{1}{2} \mathrm{in}$., 24 in . or 30 in . centres from E9.19.6. "GENETIG" MK. IV Wood-turning Lathes, etc. Tel. : Costessey 327
Write for full details and
name of nearest stockist. S.G.S.ENG\|NEERS 14 OLD COSTESSEY, NORWICH, NORFOLK.

## " FUN WITH OPTICS",

COMPLETE YOUR OWN OPTICAL INSTRUMENTS
We can supply a comprehensive range of Lenses and Prisms, suitable for most optical instruments.

Catalogues, $1 / 6 d$ each, refundable on reccipe of initial order.

SCOTTISH DISTRIBUTORS, LTD., 62, SHIRLAND ROAD, LONDON, W.9. CUNningham: 8080.


NEST OF DRAWERS Overall pfre $7^{\circ}$ wide $\times 5^{\circ}$ deep
 Khe high. Lserul storure for householder for nuts, bolts and smatl components. Green
enamelled. \&1. P. \& $P, 3\}$. TRANSFORMERS

 Input $220,250 \mathrm{v}$ Outpute 110 Transformer)

 amps., 10.10 .0 . CARRIAGE 8,- EXTRA. 24v. HAND DRILIS


SPEED MDICATORS To measure engine and diameter I i minous 15'. cach. $20^{1001,250}$ (r.D.m.
 POP" RIVET GEXS (Lazy Tongn) Easily operated tools for hardboard. etc. Uerul in
houso. gardenorgaract. With house.garden or garamc. With unversal collet to
"POP" RIVETS

 rivets $13 /-$ per 50
stamp for leanet. HARMSWORTH, TOWNLEY \& CO., Jordun sereet. Knott Mili, Manchester, $1 \stackrel{\text { ® }}{ }$

HESDIX CRISTIL SET
 De-Luxe Table Model, as illusful pastel shades of pink sreen blue, orange and yellow. $L$ i $z$ wound tapped aerial coil. vari-
able Gcrmandenser, diode
derector plugs and sockets for aerial,
earih and headphone connections. Aerial tested and complete with double headphones, 35/-, A.C. MOTORS. h.p. 230-voit Capacitor start, 1,400 r.p.m. 50 cyetes S.P, new and tested, 90 - carr, 5-- 1 10th h.p. 110/250 volts A.C. Capacitor start 50 cycles S.P. 2,800 r.p.m., 49/., post $3 / 6$. D.C. DYNAMOS. 12 volts 5 amp . high-speed but fitted with $70 / 1$ gearing to reduce the speed to 60 r.p.m. supplied with cut-out and smoothing unit, price 35/-, carr. 5/
G.P.O. MAGNETO BELLS. Twin gorg Telephone Jacks, I, 6, post 60
G.P.O. HAND MAGNETO GENERA. TORS. P.M. Steel Magnet, wound armature, driven by gearing in handle approx. output 75 volts, 25 m.a. A.C. 12,6, post $2 /$
TRANSFORMERS for all purposes, made to order, stock sizes always available, $110 / 230$ volts 85 wates, $251-; 150$ watts, $230 / 115$ volts 500 watts enclosed, 25 . Send us your enquiries.
20-WATT 4-CHANNEL AMPLIFIERS 5 watts each channel, frequency response flat 40 cycles to 12 Kc ,'s. input and outpu case, gain control and monitoring input and output chokes, less valves, 39,6 carriage and packing, 17/6. Caller's bargain.
ELECTRADIX RADIOS
 HETWOOD age frec. P.O. please.

65, Church StreESORIES (PM16)


A "FERROUS" ELECTRIC ARC WELD-
ING SET will complete your workshap ING SET will complete your workshap from approx. 16 up to any thickness. Mild Steel. Wrourhs or Malleable Iron. Type F.M. 60 Heavy Laty complete with all
equipment 190240 V . Single pli. 1015 amp. (or domestic power supply) doivered frec ex stock. Cash (or C.O.D.) \$23.10.0 FERROUS PRODUCTS (P.M.) I.TD Chureh Rd., Groydon, Surrey. CRO $2351 / 3$

## GALPINS

have now been taken over by THE JEFFERY TRANSFORMER CO. 199, EDWARD ST., NEW CROSS, LONDON, S.E.14. TIDeway 4453 Leafets sent giadly, on request.

INCREASE YOUR WORKSHOP CAPACITY BY ADDING any of the following:

Power Hacksaw, Drilling Machine, Hand Shaper, Compound Milling Table or Machine Vice.
Sets of machine castings for the above are obtainable with all heavy machining carried out by us and each machine can be finished with the aid of a $3 \frac{1}{2} \mathrm{in}$. lathe.

Prices and specifications of all the above $1 /$-post free.

## E. W. COWELL LTD SYDNEY ROAD • WATFORD • HERTS

$\qquad$

PLAY THE PlaNO
REED ORGAN or ACCORDION in 3 months Now Home methorl Definitely the ensiest und quichest. Even If you have never
played a note, you will be able to read
Writs today without
oblgation for
EreE LESSON FREE LESSON state instrumen


KLAVARSKRIBO (B.Z.6) 10a HIGMBURY PLAOE, LONDON, N. 5

## EXAMINE THIS NEW DO-IT-YOURSELF SET FREE FOR 7 DAYS



Here is Newnes Do-it-yourself set for your bookshelf and constant guidance -every facet of repair, redecoration, renovation and how-to-make in two handy volumes. The whole work is written in simple language and you'lt save money on every job you carry out ! Examine it and profit by it for 7 days -you will learn much in this way. Apply on coupon below, you are under no obligation whatsoever, and it will be sent carriage paid. ACT TO-DAY !

[^2]
## FREE CORRESPONDENCE COURSES IN STEAM

rwo courses: (I) A simplitied Course for the practical man in need of basic informacion about steam and steam applications: (2) An Advanced Course for those with a background of technical training. There is no charge or obligation. Details on request 10:

SPIRAX-SARCO LTD.
(TECHNICAL DEPT.) Cheleenham, Glos.

Build your own Tool shed. Paperhanging. Plastic \& Glazed tiles Wall plugs. Painting-including paint rollers \& spray painting, etc. Plastering. Distempering. Decorating Ceilings. Water Systems-repairing burst pipes, tap washers, flushing cisterns, lagging, air locks, etc. Drainage faults \& remedies. Doors, locks, windows, skylights. Roofing \& slating sheds. Gutters. Trellis, Fences \& gates. Paths. Bricklaying. Concrete work


Make this attractive wall desk-such space-saver, 100 f mixes, pebble-dash, ornamental. Dry rot, wet rot \& woodworm


Lots of ideas in ornamenta! Concrele. ookcase, bed firescreen, etc. Electric defects. Power tools. Metal work-riveting, soldering, cuitting, beaten copper work, etc.
${ }_{-1}$ |||||||||||||||||||||||||||||||||||||||||||||||||||||||
864 PAGES - 127 SECTIONS 1,500 PRACTICAL ILLUSTRATIONS CASE OF
18 HOW-TO-MAKE CHARTS
Full data and drawings for Gate Leg Table Bureau Bookshelf Garden Seat - Garden Chairs - Garden Table - Bathroom Stool Bedside Pedostal - Firescreen - Table Model Coaster Model Yacht - Corner Cabinet Writing Desk - Hall Telephone Desk - Model
Electric Launch - Yacht Table Lamp - Doll's House - Aquarium.

## CU-CHROME

Thls New Inventlon Replates Metals, and gives and cycle parts, household utensils, etc.
Le Do Your Own
LEBTRO-PLATINE and Save \&\&.
Complete Outfit 15/-. post
free. (Full money back guarantee.)
Or for Details and Plated
L. A. PRODUCTS, Dept. M.,
156, High St., Berkhamsted, Herts.

## MODEL BOATS

Plans : Kits : Engines : Etc. 4d. in stamps for Lists

LAWRENCE MODEL SHOP 106, LAWRENCE ROAD. LIVERPOOL, IS

## PORTASS LATHES

DIRECT PERSONAL SERVICE E DISCOUNT FOR O INTEREST CHARGED

CAN ANYONE DO BETTER ?
I/- for Lists, please. Dept. P.M.
BUTTERMERE WKS., Sheffield, 8

## AUTOMATIC (TIME) SWITCHES

and reconditioned 15 day clocl: Is and electric switches from 35/=
Send S.A.E. for illustrated delalls to :-
DONOHOE (TIMERS)
GEORGE STREET, NORTH SHIELDS. NORTHUMBERLAND

## HIGH GRADE TOOLS FOR MECHANICS



New pattern combination set comprising 12 in. Rule, Square Had, 301 . Pos 16.
$1-20$

Cramp heads, will make any length cramp with the aid of I In. thick board. 13/6 per set. Pose Paid.

## Post Paid.



New pattern corner cramps for frame work mitres, etc. Takes up to 2 in. material. 14/9. Post paid,


Vice grip pliers will grip and hold nuts, bolts, pipe, etc., with no possible chance of slip ping. 7 in., $12 / 6$. 10 in ., $15 / \%$. Pose $1 / 6$.

Combination squares with square and mitre and level. 12 in. steel rule, 8/6. Part Post I/-.

* ILLUSTRATED CATALOGUE OF
TOOLS FOR MITRING AND TOOLS FOR MITRING AND
FRAMING, Gd. POST FREE


Best quality chimney weeping sets. Red Malacca canes; brass ferrules. 18 in. ball brush. 30 ft ., sol=. $40 \mathrm{ft} ., 63 / 6$. Drain clearer 4/- extra. Carr. 2/-


N


# S. TYZACK \& SON LTD 341-345 OLD ST., LONDON, E.C. 1 



## Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial ivell-paid promotion in your present calling, or entry into a more congenial career with better prospects.

## ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship
Jig \& Tool Design
Press Tool \& Die Design Sheet Metalwork
Automobile Repairs
Garage Management
Works M'gmnt. \& Admin. Practical Foremanship Ratefixing \& Estimating Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance Engineering Steam Engine Technology I.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship Machine
Automobile Structural K/F Concrete Structural Engineer Mathematics (all stages) Radio Technology Telecommunications Telecommunications Television
Radio Servicing
Gen. Elec. Engineering
Generators \& Motors
Generation \& Supply Aircraft Mainten. Licences
Aerodynamics
Electrical Design
vey Dr'ship.

## BUILDING AND STRUCTURAL

L.I.O.B.
A.M.I.P.H.E.
A.I.A.S.
A.A.L.P.A

Building Construction
Costs $\mathbb{\&}$ Accounts
Surveying \& Levelling
Clerk of Works
Quantity Surveying
A.R.S.H. M.R.S.H. A.F.S. A.R.I.C.S. Builders' Quantities Carpentry \& Joinery
Building Inspector
Building Draughtsmanship Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptors Woodwork Teacher Metalwork Teacher Housing Manager (A.I.Hsg.)

Common. Prelim. Exam. A.C.I.S., A.C.C.S.
A.C.W.A. (Costing)

School Attendance Ófficer
Health Inspector
Civil Service Exams.

## BECOME A DRAUGHTSMAN-LEARN AT HOME

 AND EARN BIG MONEYMen and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

## OVER SEVENTY YEARS OF CONTINUOUS SUCCESS

## National INSTITUTE OF ENGINEERING

(In association with CHAMBERS COLLEGE-Founded 1885)
(Dept. 29)
I48, HOLBORN, LONDON, E.C.I
SOUTH AFRICA: E.C.S.A., P.O. BOX NO. B4I7, JOHANNESBURG AUSTRALIA : P.O. BOX NO. 4570, MELBOURNE

## 132-PACE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
* How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.


## MANY INTERESTING COURSES TO SELECT FROM!

A.M.I.Mech.E., $\quad$ A.M.I.M.I.,

| A.M.Brit.I.R.E., |
| :--- |
| A.M.I.P.E., |
| A.M.I.C.E., A.M.I.Struct.E., |
| A.M.I.Mun.E., |
| A.M.I.E.D., |
| A.F.S.H., |
| London B.Sc., |
| Degrees. |

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide.


## THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If you have arnoition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

## $\square$ Free Coupon

To: NATIONAL INSTITUTE OF FNGINEERING (Dept. 29), 148-150. Holborn, London, E.C.I.
Please Forward your Free Guide to
NAME
ADDRESS


My general interest is in : (1) ENGINEERING
(2) AERO (3) RADIO (4) BULLDING
(Place a cross against the branches in which (5) MUNICIPAL WORK you are interested.)

The subject of examination in which 1 am especially interested is


Monthly Supplement to "Practical Mechanics"

## Choosing the Right Camera

## Characteristics of the Main Types Summarised

THE easiest way to classify the many types of camera available is by means of film size and we will deal with the most popular type first-the ubiquitous 120 camera.

## The Box Camera

If you merely want a camera to use once a year on holiday and will be content with the sort of picture normally pasted into the family album, the box camera could satisfy you. It is relatively cheap (under £5), it is simple and robust and, to the uncritical eye, produces good results. It is, of course, very limited in its application-sunshine is almost a necessity, it cannot photograph moving objects and the snapshots produced with it may not enlarge well.

## The Folding 120

This type of camera usually incorporates some kind of lens diaphragm, more than one shutter speed and some form of range adjustment, but the more elaborate models in this group may have a f 3.5 lens, a 9 -speed shutter and, perhaps, even an uncoupled rangefinder. They will fold into quite a small space and usually have a case which makes them easy to carry. They can, of course, depending upon the quality of lens and shutter fitted, undertake a much wider field of work than the simple box camera. A 66.3 lens means that the camera can produce an adequate snapshot in dull weather, in shady locations and in a well-lighted room. A speed of $1 / 100 \mathrm{sec}$, will permit the photography of moving objects (provided that they are not moving too fast), and some method of range adjustment is usually fitted. This type of camera may have- a direct vision viewfinder in addition to the type with a small mirror and glass screen.
The prices of this range of cameras are, of course, higher: a simple model with, say, shutter speeds of $1 / 25,1 / 50$ and $1 / 100$ sec. and a f6.3 lens would cost between $£ 5$ and £Io. A more elaborate version with $\mathrm{f}_{4} .5$ lens, a 9 -speed shutter and including, perhaps, an uncoupled rangefinder would cost about £20, and the top-priced camera in this class would include a high-grade f 3.5 lens, 9 -speed shutter, synchronised for flash, a rangefinder. etc., and might cost anything up to about $£ 50^{\circ}$.

## 12 on 120 Cameras

Still using 120 size film, these cameras take 12 pictures $2 \frac{1}{4} \mathrm{in}$. $\times 2 \frac{1}{4} \mathrm{in}$. instead of eight $2 \frac{1}{4}$ in. $\times 3 \frac{1}{4} \mathrm{in}$. Their characteristics are similar to those of the 120 type, except that the camera is generally smaller and as lenses of a shorter focal length are employed, wider apertures are more common. The only objection to this size of film will come from the photographer who objects to the square picture on artistic grounds, but there can be no doubt that 12 is a very convenient number of pictures on one film. This type of camera can be used for all normal work; holiday

pictures, indoor portraits, photographing children and pets, and where a shutter with speeds up to $I / 500 \mathrm{sec}$. is available, most types of sporting activity can be included, too. A further variety of this camera is available with a rigid lens mount, obviating the use of bellows. Prices range from about $£$ ro to $£ 50$ or more.

## The Twin-lens Reflex

This is one of the most important types of camera and one favoured both by the amateur and the expert. The chief feature which distinguishes this type is the two lenses coupled together; one for taking, the picture and the other for viewing it while
focusing. The two lenses are matched so that the same field of view is included in each and while the picture is focused to the photographer's satisfaction on the groundglass screen, the same adjustments have been made to the taking lens. Shutters are of the " between lens" type. Prices are very wide in range, depending upon the type of optical equipment of the camera. A twinlens reflex can be purchased for about $£ 20$ and for practically any price between that and well over £roo. These cameras can be used for almost any type of photography, except sporting subjects (due mainly to their bulk), and are the aristocrats of the 120 world.

## 16 on 120 Cameras

This type takes a smaller picture than the 12 on 120 and the rectangular shape of the picture is restored, but, of course, measures only $2 \frac{1}{4} \mathrm{in}$. $\times 1 \frac{3}{4} \mathrm{in}$. Prices of this group range from about $£ 10$ to $£ 50$ and fast lenses with apertures of f 2.9 and f 3.5 are common. The higher price range includes cameras with double exposure prevention devices, coupled rangefinders and shutters speeded from 1 sec . to $1 / 50 \mathrm{sec}$. and synchronised for flash

Some 120 models are available, which, by means of masks, will take eight $3 \frac{1}{4} \mathrm{in}$. $\times 2 \frac{1}{4} \mathrm{in}$, shots, i2 $2 \frac{1}{4} \mathrm{in}$. square shots, or $162 \frac{1}{4} \mathrm{in}$. $X$ I $\frac{3}{4} \mathrm{in}$. shots. Almost all models are of the bellows type.


A high-class British-made miniature camera.

## 127 Cameras

These may take eight pictures, $4 \mathrm{~cm} . \times$ 6.5 cm ., $164 \mathrm{~cm} . \times 3 \mathrm{~cm}$., or 124 cm . square. There are not many cameras using this size of film, but those there are are of many types -bellows cameras, rigid lens mount types and single and twin lens reflex cameras. There is also a pseudo reflex which is the box camera of the reflex world. Prices vary a great deal -the compact little bellows version is available secondhand for as little as £io. The rigid lens type can be bought secondhand for between $£_{20}$ and $£_{30}$. This camera has generally, however, been superseded by the 35 mm . camera.

## The 35 mm . Camera

More types of camera are available using this size of film than any other, and it is impossible to mention them all. Prices vary a great deal according to the quality of the lens equipment and the refinements included in its construction. Owing to the short focal length of the optizal equipment wide apertures are common and usually not less than $\mathrm{f}_{3} .5$.

## Cheap Models Available

Although some 35 mm . cameras are extremely expensive, there are many less elaborate types which may be purchased secondhand for as litle as $£ 8$ or $£$ ro. These usually have no rangefinder, but include à multiple speed shutter, double-exposure prevention device and optical viewfinder. The inclusion of a coupled rangefinder among its equipment, usually puts the camera in the over £ 30 range and of ten this tvpe of camera has a better class lens. Older models of expensive cameras come into the $£ 20$ to $£ 40$ class when purchased secondhand, but the post-war models of these came are well up into the $£ 100$ class. One of the chief advantages of these came-as is the wide range of alternative focus lenses which can be fitted for special work-wide angle for architectural work, long focus for close work, etc. etc.

## Single-lens Reflex

Another version of the high grade miniature is the single lens reflex and there are several models available, all highly priced. Here the subject is viewed through the taking lens by means of a mirror, which is swung out of the way when the release is pressed to take the picture. One of these cameras indeed includes a coupled rangefinder in addition to reflex focusing. With some single lens reflexes interchangeable lenses are available.
Yet another camera takes pictures 24 mm . $\times 24 \mathrm{~mm}$. on 35 mm . film and the film is wound on by means of a spring motor. 24 pictures can be taken in quick succession at a speed of three or four per second.
It will be seen then that the 35 mm . camera with its interchangeable lenses and high-grade optical equipment, its handy size, coupled rangefinder focusing and cheap film, can be used for almost every subject. The only snag is that 35 mm . negatives must be enlarged with the attendant risks of blurred outlines and unsightly grain, although fine grain films and developers and high-grade lenses minimise the risk. To keep photography on an economic level the 35 mm . user must process his own film and enlarge his own prints.

There are other types of camera not mentioned here, including the larger stand cameras and some unique models, but the main types are reviewed and perhaps the prospective camera buyer will be helped a little in his decision. Prices include both new and secondhand models, but are only intended to be taken as examples. Exact prices will be available from your local camera dealer.



DUST, in extreme cases, can make a strip of negatives dry with a texture like glasspaper; at the other end of the scale, even one speck of dust on a negative can ruin it. Many an amateur photographer has limited space in which to carry out processing and diJiculty in finding a place free of dust in which to dry a length of film is often a problem. However, negatives can be kept free of dust while drying by using the following described protective film drier. which is both cheap and easy to make and can be packed flat when
The completed film drier. not in use.

The following materials are required:

Piece of ordinary hardboard, 3 ft . 6 in. by 2 ft .
Eight lengths of single channel $\frac{1}{2}$ in. batten, each 3 ft . 6 in . long.

Small tin of impact adhesive.
Three large. elastic bands.

## Method of Construction

Saw the hardboard into four panels, each 3 ft .6 in . long by 6 in , wide. Sort the battens into four pairs and stick the two members of each pair together with the adhesive so that their ends will show as at A, B, C and D, in Fig. I. When satisfied that the battens are firmly stuck, slide the hardboard panels into the batten channels to make sure there have been no errors in measurement. The smooth surface of the hardboard should face inwards. The reason for this is that accidents can sometimes happen, and any inadvertent contact between the length of wet film and the inside of the drier will result in far less damage than if the rough surface of the hardboard had been facing inwards.
The assembly from the top will now appear as in Fíg. I. To obtain rigidity in the assembly, first remove the opposing panels, $a$ and $b$; the two remaining panels will then be enclosed by the battens to form AB and CD . Stick these panels to their respective battens as shown. This will reduce the assembly to four parts, consisting of the two single panels, $a$ and $b$, and the two units $A B$ and $C D$.

Next, bore two small holes about $2 \frac{1}{2}$ in. apart and $\frac{1}{2}$ in. from the top of the panel in unit $A B$; repeat this on the panel $C D$ opposite. The positions of the holes are shown at $1,2,3$ and 4 , in the diagram. Reassemble the whole and space the three elastic bands equidistantly round the body of

By A. BRODIE

the drier ; they will hold the assembly together without difficulty. Take a piece of thin string or a leather bootlace, pass it in turn through the holes at $1,2,3$ and 4, return to $I$ and tie off. Thus formed are the two lines from which the strips of film will hang. Place the drier on a level surface, cover the top with a fluffless cloth, fasten the ends of the cloth with the topmost elastic band and the drier is complete (see heading photograph).

## Method of Use

After washing the film, soak it for a minute or two in water containing a few drops of wetting agent. Drain the film, fix a hooked clip at one end of it and carefully lower the length of film (free end first) into the drier, slipping the hook of the clip over one of the strings at the top. Take the cloth and cover the top of the drier, easing the topmost elastic band over the ends of the cloth. A deep-sided lid of three-ply wood to take the place of the cloth could be made.
If excess moisture is removed from the length of film with a photographic sponge or squecgee before insertion in the drier, drying will be greatly speeded up.

This drier will take two 120 -size films at once comfortably. The reader can vary the size of the drier to suit requirements merely


Fig. 1.-Constructional details of the film drier. by substituting panels of a different width in place of panels a and b .

A word or two of caution. Erect the drier in the position in which it is intended to receive the washed film. Do not move it with the wet film inside.
There are no nails in the construction and, therefore, nothing to snag or damage the film. No heat or draught is required to assist the drying.

## AMATEUR PHOTOGRAPHY 15/-, 16/1 by post <br> COLOUR PHOTOGRAPHY FOR THE AMATEUR

21/-, 22/6 by post
GEORGE NEWNES, LTD, TOWER HOUSE,
SOUTHAMPTON STREET, LONDON, W.C.

A Combineal Printing liox


Fig. 1.-The completed printing box and safelight.

AS can be seen from Fig. it the printer consists of a light plywood box carrying a conventional printing frame at the top and having an electric lamp mounted

## A Device to Simplify Your Contact Printing

By L. C. M.

these corner posts, which should be of such a length as to bring the top of the lid flush with the top of the sides. The lid (Fig. 2) is a piece of the same threeply from which the sides were made, and has a rectangular hole cut in it slightly larger than the aperture in the printing frame. The edges of this hole are bevelled off with a file and sandpaper and then blacked to prevent risk of reflections causing a dark band near the edge of the print. The lid is fixed to the face of the printing frame by small screws.

Make the lid a snug fit in the top of the box, so that although it is easily removed and replaced it does not slide about while the clamping springs are


Fig. 2.-Details of the lid.
in the bottom. The box was made from such odd pieces of wood as were to hand. The sides are of $3 / 16 \mathrm{in}$. three-ply (Fig. 3), but hardboard or some similar material could be used. The sides are merely screwed or pinned to small square posis in the corners. It will be seen from Fig. I that a small door is provided in one side through which a safelight or screen can be inserted. The corner posts end just below this slot, and wooden runners fitted to carry the safelight. The corner pieces extend up to the under side of the runners. Similar runners .are fitted above the safelight as well to cut out any light leaks past the edges of the safelight. Above the upper set of runners a further set of short corner posts are fitted, which in turn off just below the edge of the box.

## The Lid

This carries the printing frame and rests on the top of

Fig. 3.-A perspective view with one side and the top removed. being manipulated.

The door covering the safelight slot is of double thickness. The inner piece of wood just fits into the slot so as to eliminate light leaks from this point when the door is closed. One hinge in the middle of the door is quite sufficient, as it is very light.

Ordinary Printing Frome Downwards.


The moulding round the base is for decoration only.

## Lampholders and Connections

The lamp is mounted in a batten holder which is screwed to the three-ply bottom. A piece of white card covers the bottom and is held in place by the shade ring of the lampholder. This serves to cover up the wiring and the back of the switch and also acts as a reflector.

## Wiring

Check that the switch is suitable for mains voltages. The lead is merely a few feet of ordinary liohting flex led through a hole at any conve int point near the bottom of the box. A hole in the side opposite to that carrying the door and switch would probably be most suitable. Tie a knot in the flex just inside the box so that an accidental pull


Fig. 4.-The wiring.
will be taken by the side of the box and not by the connections. The connections to the switch will probably have to be soldered to small lugs on the back of the switch. Watch that these are not bridged by a strand of flex or blob of solder.

No dimensions have been given so far as these depend on the size of printing frame normally used. However, in the proptotype the frame is the $3 \frac{1}{4} \mathrm{in}$ by $2 \frac{1}{4} \mathrm{in}$. size and the box is 6in. by 5 in. by $9 \frac{1}{2}$ in. high. The safelight consists of a sheet of amber gelatine bound with passe-partout between two pieces of glass. The box could be made larger to take the standard 7 in . by 5 in . safelight.

## Using the Printing Box

When used as a simple printer the safelight is completely removed. If desired, it can be replaced by a piece of ground glass of the same size to diffuse the light or to cut down its intensity when printing from a thin negative.

It will be found that with such factors as light strength and lamp-to-negative distance constant, very little experience will enable exposure times to be estimated near enough four times out of five. Doubtfu! cases can easily be test-stripped with an opaque card in place of the screen. A 25-watt pearl bulb is suitable for most negatives, and is also about right for a safelight. For an unusually dense negative a 4o-watt bulb can be substituted, which will cut the exposure time by nearly half.

Finish is a matter of choice; a coat of varnish might be useful, as in the event of the box geiting splashed, the varnished surface is easily wiped clean and dry.

When used as a safelight, the lid is completely removed. As the safelight glass is below the top eage of the box the light is somewhat directional and can thus easily be kept away from any such undesirable spot as the enlarger baseboard.


Fig. 1.-The completed focusing stand.

THIS stand was evolved for use when copying or photographing small objects requiring the use of double extension bellows or extension tubes.
It was found that when trying to focus with the bellows almost fully extended, the point of sharpest focus was difficult to determine, as a considerable movement of the lens appeared to make little difference to the sharpness of the image on the focusing screen. If the focusing movement was applied to the object to be photographed, however, very small movements were sufficient to alter the focus enough to provide a large margin either side of "critical," due to the very small depth of field.
The stand in Fig. I was built to take advantage of this, the subject to be photographed being laid on a light platform or table, mounted on a heavier base by means of a "lazy tongs" assemily. iti; c.a sed the table to be raised and lowered to adjust focus, while remaining exactly horizontal and parallel to both base and the film.

## Constructional Details

The movable table is a piece of $3 / 16 \mathrm{in}$. th:ee-ply for lightness, while the base is a piece of $\frac{3}{4}$ in. wood the same size. The metal cross pieces of the lazy-tongs movement a:e $\frac{3}{8} \mathrm{in}$. wide strips of $1 / 16 \mathrm{in}$. duralumin, as are the guide bars along the edge of the base (Fig. 2). The ends of the cross strips are joined to their opposite numbers on the other side by four $3 / 16 \mathrm{in}$. steel rods screwed 2 B.A. at the ends, and screwed into the strips with lock nuts outside. The pivot at the cross-over can be eithe: a small nut and bolt or a rivet with a washe: between the arms.
The uppe: and lower rods at one end are free to turn in bearings, each consisting of a short length of tube soldered to a small plate (Fig. 2). The two pairs of plates are screwed to one end of the table and to the base, while the rods at the other cad are free to slide between guide bars.
The guide bars are $\frac{1}{4}$ in. wide strips of the same material as the crossed arms, riveted by $1 / 16 \mathrm{in}$. rivets to small angle brackets and spaced apart just sufficiently to allow the rods to slide freely between them with the minimum of play. A washer on the rod between the side arms and the outside of the guide bars makes for smoother working. If necessary, the bearing plates or the guide bar brackets should be packed up with pieces of thin
cardboard until the table is perfectly parallel. with its base.
To the lower sliding rod is attached the end of a sliding strip by which the table is raised and lowered (Fig. 3). To allow the rod to turn while being drawn along, the fixture to the sliding strip is merely a short strip like the side arms bent round the rod and screwed or riveted to the end of the sliding strip. If the loop is made from a fairly wide piece it will prevent sideways movement of the sliding strip.

## Locking Device

The table is locked in any position by


Fig. 2.-.The guide bars and bearings for cross rods.
a clamping arrangement on the sliding strip. This strip has a slot cut in it through which protrudes the end of a $\frac{1}{4} \mathrm{in}$. Whit.

Ideal for Copying and<br>Macrophotography

By L. C. MASON
coach-head bolt inserted from underneath. A wing nut on the bolt, when screwed down firmly, grips the strip tightly to the base, retaining it in any position.

## Operation

Slack off the wing nut sufficiently to allow the strip to slide freely, and then pull it out to raise the table. Lowering is effected by allowing the strip to slide gently back, which it will do automatically by the weight of the table. A small knob attached to the outer end of the sliding strip will make operations easier.

Dimensions are a matter of personal choice and material available, but in the one illustrated the table and base are both $6 \mathrm{in} . \times 4 \mathrm{in}$. If a thin print larger than this is being copied, for instance, it is a simple


Fig. 3.-The sliding strip.
matter to lay a piece of stiff card on the table first to hold the print flat. The side members are 5 in. long, and this length affords an up-and-down movement of some 4 in.
The device was designed for use with the tripod standing over it and the camera aimed straight down. The procedure in this case is to place everything in position, raise the table about 2 in . and then focus as near as possible to the size of image required by rough adjustments of the tripod. The final focusing is then achieved by raising or lowering the table slightly as required. If a small object such as a coin is being photographed by extreme angle lighting to show up the relief of the design, take care that any adjustment of the focus by movement of the table does not distur' the lighting.

For photographing objects in the vertical plane a small hook can be screwed in one end of the base so that the table can be hung on the wall and the camera and lights placed on a small table in front of it. In this case the object to be photographed will have to be pinned to the table.

# HOW TO TAKE PORTRAITS 

Sonic Simple Rules to Aid Suiceess,

By A. E. Bensusan

ACERTAIN amount of equipment is necessary to tackle portrait work, and this subject will be considered first. The selection of a suitable camera is largely a matter of personal preference, but the writer has found those with large viewfinders to be most convenient. Squinting through a minute optical direct vision viewfinder is disconcerting from the points of view both of the photographer and the


Fig. 2.-A portrait slightly softened with cellophane during frinting.
sitter, whilst it is impossible to see small details at all clearly when they are reduced to such a diminutive scale.

Cameras fitted with large non-optical direct vision finders are quite satisfactory, but the best situation is not reached until cameras with negative-sized focusing screens are considered Equipment of this type includes single and twin-lens reflexes, hand and stand cameras and studio outfits. With any of these the subject is seen fullsized, while focusing and framing are carried out at the same time. Many photographers prefer to use plates ōr flat films so that negaitives can be developed individually, but careful working with roll films will produce results of perfect quality.

A solid tripod with a wide range of vertical movement is essential and it should be fitted with an equally stout ball and socket or pan and tilt head. This simplifies angular adjust-
currently available are little er than an ordinary floodlight, since it is impossible to obtain a finely directed beam from them. Couple the lights with heavy duty cable for the leads are likely to come in for considerable kicking and other misuse while working. If possible, all the
ments, during a portraiture. session with the minimum of bother. Nothing is more disconcerting than to have to indulge in a major engineering feat every time the camera height or angle requires alteration. A long cable release is a worthy complement to the tripod for camera movement to be entirely eliminated. A long release enables the photographer to operate the shutter from a distant point; a useful facility where nervous sitters are -being photographed. A lens hood, to prevent stray light from striking the lens, completes the camera equipment.

## Lighting

The choice of lighting apparatus depends upon the amount to be spent. It is unwise to buy a great deal of equipment at the start, and far better to build up as skill is gained in handling the lights. Portable floodlights, which fold away when not in Lse, can be bought quite cheaply and are ideal for the early stages. Two, or if possible three, will do very well for menst portraits other than full length, when at least one more would be needed.

Later an inexpensive 250 or 500 watt spotlight can be obtained, but take care that this is capable of being focused to produce a small beam. Some of the spotlights


lamp leads should run to a portable switch panel with a built-in fuse unit and, from there, a. single cable only is required for the mains input.

The taking of portraits is a very pleasant occurrence for most people, and the successful picture can only result from complete collaboration between the sitter and the photographer. The room to be used as a studio should be prepared beforehand, and all necessary equipment and props should be placed near by where they can be reached instantly. For a formal portrait a backless stool can be placed in a convenient position and the subject invited to occupy


Fig. 3.-The key light, fill-in light and a light on the background.
it when he or she arrives. A short chat often puts a nervous person at ease and, in any case, no sense of urgency should be allowed to intrude and upset the routine.

## Building Up the Lighting

At the appropriate moment the first lamp can be. switched on and this should be the main or key light around which the supporting illumination is built up. Then, and only then, is it possible, to gain some idea of the effect of the sitter's position and, if this is not, entirely satisfactory, suggestions for a movement one way or the other may be made until the desired position has been
attained. The key light may now be adjusted for-height and angle so that, by itself, it places accent on the features to be emphasised. A sound general rule is that the key light should be placed fairly high to add some weight to the brows, nose and chin. In particular cases, especially when a fairly dramatic effect is required, the key light can be the only source of illumination; the shadows being lightened as appropriate with the aid of white card reflectors (Fig. I).

A second light can now be switched on and used to add relief to the dark side of the face, adding modelling and a sense of roundness to the picture. The sitter having been placed some distance from a plain wall
or other suitable background, the latter will still be quite dark and the facial features may tend to merge into the darkness. Here, the third light becomes useful, for its beam can be directed straight on to the wall, thus having the effect of lifting the head away from the background and adding to the three-dimensional result (Fig. 3).

## Using a Spotlight

If a spotlight is available, it can be used to throw a concentrated beam on to the hair, so adding highlights and a feeling of life which would otherwise be difficult to obtain. This light may also be used to
throw pattern effects on to the background to add variety to the photographs.

When printing portraits, particularly of the ladies, an unusual soft effect can be obtained by diffusing the image with slightly crumpled cellophane (Fig. 2). The result is quite attractive and is a certain cure for graininess in the negative, as well as smoothing out any minor imperfections in the sitter's complexion

In portraiture there is considerable scope for experimental work, as Fig. \& shows. The intention here was to depict a streetcorner boy, and this was largely achieved by prominently featuring his shadow, as it might have been thrown by a street lamp.

# DEVEMOPNTR AFILD <br> <br> Using the Time and Temperature <br> <br> Using the Time and Temperature Method in a Tank 

 Method in a Tank}

$\mathrm{I}^{+}$T is possible to develop a frim using dishes, but by far the best method is to use a tank. There are several disadvantages using dishes; light is necessary which means that only ortho films can be developed by this method, 35 mm . films are very awkward and also the method is tiring. All these snags are eliminated when a tank is used.

A typical developing tank is shown in Fig. I and this particular one is a universal tank, with an adjustable film spiral which will take 120,127 or 35 mm . size roll-films.


Fig. 1.-A typical uriversal detelopirg tank.

Tanks are available for 120 films only or for 35 mm . films only for the photographer who knows he will only use one size. If there are several cameras in the family, taking different-sized films, the universal tank will be best.

The tank must be loaded in the dark, the film being fed into the spiral groove between the two flanges of the film holder. This is a job which may be found awkward at first, but which becomes easier with practice. It might help to practise once or twice in the light with an old film; with 120 films the paper must, of course, be detached from the film itself before loading. Once the film is in position in the tank and the lid in place, it can be developed at leisure.

## Materials and Equipment

Fig. 2 shows the equipment required, and it includes the tank, a measure, a couple of bottles or old jugs, an ebonite stirring rod, a thermometer and a couple of clothes pegs.

Mix up both the fixer and the developer according to the maker's instructions. The
fixer should be acid hypo fixing and this is available from several different firms of chemical -manufacturers in small quantities at a reasonable price. If a balance is not available, remember three heaped teaspoonsful weigh $10 z$.

There is a large range of developers


Fig. 2.-Equipinent required to develop a film. available, but it is suggested that the beginner will find one of the type available in liquid form easiest to start with. All that is necessary is to dilute it with water. Transfer the two solutions to the bottles or jugs and label them plainly.

## Developing

When the developer is nixed, use the thermometer to find out its temperature. Consult the instruction leaflet supplied with the developer to find the developing time with the solution at the temperature just noted. An ideal temperature of about $68 \mathrm{deg} . \mathrm{F}$. is often mentioned and the developer may be got to this temperature, either by running the bottle under the cold tap or standing it in hot water (not boiling). When the temperature is correct pour it into the tank through the hole in the lid and note the time. Agitate occasionally by rotating the rod with the knurled top; about io seconds in every minute should be adequate. When developing time has elapsed, pour the developer back into its bottle.

The film must now be washed and this can be done either by standing the tank under the cold water tap and filling and emptying a couple of times or using a jug for the same purpose.

Pour in the fixer and leave it for 10 to 15 minutes, agitating every now and then.

## Cine and Colour Fortnight

FROM April 14th to April 26th inclusive Messrs. City Sale and Exchange Ltd. are holding a special Cine and Colour Fortnight. All the latest Cine Equipment is to be demonstrated and new apparatus exhibited by many manufacturers. There will be film shows daily, including exclusive films taken

When the time has elapsed, open the top, inspect the film without removing it from the spool to see that the emulsion has completely dissolved. Replace the spool and lid and then empty the fixer back into its bottle.

## Washing

Remove the lid again and stand the tank under the cold water tap, so that a stream of water runs into the hole in the centre of the film holder and flows out of the pouring lip. Washing should be continued for half an hour and the tank may be emptied completely once or twice to make sure that a complete change of water is effected.

## Drying

Finally, remove the film from the tank and hang it up by means of one of the pegs to a cord stretched across a room. The other peg should be clipped to the bottom to prevent the film from curling. Special clips are available for this purpose. It should be hung in a position which is dust free and where no one is likely to walk into it. When the film is dry, cut the negatives apart with a pair of scissors, if the film is 120 size, or into strips of six frames, if it is 35 mm .

It is wise, when starting to develop your own films, to choose a particular developer and then stick to it. Also follow the same routine each time. By this means a thorough knowledge of the developer's characteristics is obtained.
by all makes of 8 mm . cameras. One of the main features will be 8 mm . sound for the amateur. The 8 mm . wide screen will also be demonstrated.

In addition, there will be a colour print exhibition.

Programmes and details are available from City Sale and Exchange Ltd., 93-94, Fleet Street, London, E.C. 4 .

filter will provide the same degree of correction in artificial light.

## Filters with Pan Red Film

As can be seen in Fig. 1, this film gives rather inaccurate tone values. It is oversensitive to red and blue and under-sensitive to green. In landscape work, where there is seldom any red to consider, a light yellow filter may be used to reduce the sensitivity to blue.

If it is required to reduce the strength of the red, a blue filter should be used in theory, but as the blue is already overprominent, this must be combined with yellow to produce a yellow-green filter. A bluish green filter will be required with artificial light.
Filters with Correct Pan Film
Over-sensitivity to blue is the only fault with correct pan film. Red, yellow and green are all more or less correctly recorded. Therefore, the filter chosen to correct this fault will be a yellow one. For most work, a light yellow filter will be adequate, and in many cases no

The importance of filters when photographing seascapes. A medium yellow filter was used for thetop picture.

basic colours is shown diagrammatically. Only the four most common colours are shown, and as can be seen at A, yellow is the brightest, green comes next, this is followed by red, and blue is last.

## Film Colour Rendering

It will be noticed that orthochromatic film is totally insensitive to red, and also renders blue far too brightly (B).
Panchromatic red, a type of film which includes most of the high-speed emulsions, gives a truer rendering of colours than ortho; it records red, which ortho does not, but its chief defects are over-sensitivity to this colour, and blue.

So far as accurate colour representation is concerned, correct pan film is the most satisfactory type of all. Red, yellow and green are all recorded with the same degree of brightness as they are seen with the human eye, but it fails with blue, to which it is over-sensitive (see D in Fig. I).

No type of film will record colours with complete accuracy, and one of the chief uses of filters is to improve the performance of the various types of film. There is a very wide range of filters available, and the colour used will depend upon the type of film in use, the particular type of correction required and the prevailing light conditions.

## How a Filter Works

Light is composed of all the colours of the rainbow, as anyone who has seen it split into its component parts by means of a prism will know. Coloured or tinted glass
filter at all will be necessary. When working with artificial light (particularly portrait work) a bluegreen filter could be used to prevent the lips appearing too dark and otherwise tone down the reproduction of red. but this is not norrally necessary.

## The Filter Factor

The use of a filter will invari-

Before considering the best filters to use with the various types of film it is as well to remember that a filter cannot increase sensitivity to any particular colour, it can only reduce the sensitivity of the others to improve their proportional relationship. Therefore, there is no filter that can make ortho film sensitive to red.

## Filters with Ortho Film

The chief failing of ortho film is its over-sensitivity to blue, (ignoring its total insensitivity to red, about which we can do nothing), and to correct this a medium yellow filter will be required. A light yellow
 ably necessitate an increase in exposure, and this increase will vary according to the type of film with which it is used, and also the lighting (i.e., daylight or artificial). If the filter factor is 2 , the exposure must be doubled, which would mean a spied of $1 / 50$ th sec . being changed to $1 / 25$ th $\sec$., or
The eve


the aperture being changed from, say, $f$ ir

to f 8 . A filter factor of 3 would entail trebling the exposure, 4 quadrupling it, and so on.

## Some Uses for Filters

The photographer who requires correct (Concluded on pagc 14)


## H. A. Robinson Describes the Apparatus to Help You Obtain That Professional Finish

secured by bending along the dotted lines, as indicated in the sketch.
The most awkward part of this cutting and shaping is the forming of the two side lips under which the plate on its base slides, and which, when in position, is kept arched and tight by the end pieces. It is best to cut the tinplate at the sides wider than shown to start with and then make the bend to the correct angle and finally trim the lip to the desired

Should any real trouble be experienced here; the lips can be made as separate strips (Fig. 3), and riveted in position. To hold the electric bulb socket for the bulb supplying the heat, a circular hole is cut in one oi

THE drier and glazer shown here is essentially a metal box containing a heater with a stainless steel or chromium plate for the top, upon which the prints are squeegeed. Unlike glass, prints will never stick to plates of this type and when dry they peel off cleanly with a high gloss.

Stainless steel plates are better than chromium, as in time the chromium surface


Fig. 2.-Method of fitting the top.
tends to wear away, leaving the base exposed, upon which the prints certainly will stick. Stainless steel is the same material throughout and consequently never loses its surface.

These highly polished plates which are sold for print glazing can be obtained from photographic dealers in various sizes from about Ioin. by I 4 in.

When the wet prints have been placed on the plate and squeegeed, a canvas apron is fixed tightly over the top and left in position till drying is completed: it is important that this apron should be in tight contact with the prints all the time, hence careful fitting is essential. This all-over contact is assisted at the edges by the fact that the glazing plate is fastened to an under plate, thus making the glazing surface flush with the side lips of the box (see Fig. 2).

## Constructional Details

The size of the box is dependent upon the size of plate that has been obtained and so dimensions have been omitted here, but these can easily be gauged with the plate to hand to work from.

The box is first cut, as shown in Fig. 3, in thin tinplate, which is obtainable from any tinsmith. The flaps on the ends are for turning over and riveting or bolting to the sides when the box shape has. been
the ends to take a standard collared socket, the main point here being that the bulb must stand out free without actually touching the top plates or bottom of the casing. Two holes are also drilled to take the bolt assembly which holds the apron and three holes are drilled to hold the end of the canvas apron, as shown in Fig. 3

The bolt assembly is shown at the top of Fig. 4.

## Glazing. Plate

The stainless steel or chromium plate is fastened by six flat-headed rivets at the extreme edge to the under plate of aluminium which, in its turn, is just big enough to arch over the ends of the box


Fig. 3.-Cutting the sinplate box.
and slip under the lips (Fig. 2). The main point in the fastening of the two plates together is that the rivets must be put in at the extreme edge after holes have been drilled to prevent denting. Soft rivets must be used and should be tapped gently as they are flattened out and finally the top of the rivet appearing on the top surface must be made as flush as possible with the surface compatible with strength. These

precautions are necessary so as to lose as little glazing surface as possible. The rivets down one side can be put in on the flat, but the plate should be given the approximate final curve before drilling the further side.

## Fitting the Apron

This can be made from a strip of fairly stout canvas. At the permanently fastened end it is wrapped once round a strip of metal bored with three holes to agree with those in the casing, to which it is fastened by three small bolts. The further end is folded over and sewn back to form a small channel through which goes a stiff rod (see Fig. 4).

Two short coil springs attach this to the second rod. Everything is arranged so that when pulled over the rod will slip over the small blocks and be under tension. It is best to adjust the length, if not right at first, by undoing the fixed end of the cloth and refitting after wrapping more (or less) canvas round the metal box.


THE technique of copying original photographic prints is not a difficult or lengthy affair, and it can be carried out with little more than the average equipment possessed by most photographers. The ability to make, at will, new negativeswhere the original ones have been lost or destroyed-is of obvious value.

## Close-up Focusing

Assuming, as is generally the case, that the only camera available is a roll-film model, some form of supplementary lens is required to enable the camera to focus accurately at a very much shorter range than that marked on its focusing scale. Supplementary lenses fitted into standard sized spring clip mounts -or specially designed fittings for certain of the more expensive cameras-can be obtained at reasonable cost. Spectacle lenses can also be used and, for extremely short range work, magnifying glasses.

Where no indication of the working distance comes with the lens, it is necessary to ascertain this fact by practical means. In addition, it is essential that the area covered at the particular range is determined. To do this the supplementary lens is attached to the camera lens mount; the shutter is opened to time, with the iris open at the largest aperture and the back of the camera is removed or swung open. A temporary focusing screen is formed by stretching a strip of tracing paper tightly across the film rollers and securing this at both ends with strips of adhesive tape (Fig. I).

The camera, so cquipped, is propped up on a small table, which can be moved nearer or away from a sheet of newspaper sus-

and ine camera, cackwards and forwards soon enables the for this occurs when the image is at its sharpest on the screen. The distance from the front of the lens mount, or any other convenient point, to the newspaper should be measured very accurately and noted down for future reference.

While the equipment is set up, the area covered at this distance can also be determined: By observing the extent of the image

possible. In this way only the centre of the magnifying glass is used and distortions are reduced to negligible proportions

The simplest copying set-up possible is shown in Fig. 2. Here, the subject has been attached to a piece of cardboard supported against a box, while the camera stands on another card bearing two lines; one for the camera and one for the subject. The illumination is provided by a 100 watt pear bulb in a table lamp with the shade removed Since the area of the subject is so small; the position of the lamp is not important for there is virtually no change in illumination from one edge of the subject to the other. An enlarged copy of a small photograph is shown in Fig. 3. Here, alhough the image is quite sharp, the grain struc:urs of the original print is clearly visible in the copy. This gives some idea of the ascuracy of the process.

## Copying Glossy Prints

For larger subjects, and in particular for copying glossy prints, a slightly more elaborate lighting sysiem is necessary. The aim should be to have the light strike the subject at an angle of approximately 45 deg . to the axis of the camera lens, and so avoid reflections coming ofi the original right into the lens. The rate of illumination over the required area must also be as consistent as possible, and the lamp may either be switched over to a similar position on the other side half way through the exposure, or two lamps may be used and the length of the exposure cut accordingly.

When two lamps are used they may be balanced by switching both on and holding a pencil perpendicularly from the face of (Concluded on fage 13)

Fig. 2.-The simplest copying arrangement.
the view can be measured on the newspaper, in both the horizontal and vertical planes if the format is rectangular. This, again, should be carefully noted for future use. The camera shutter may now be closed, the tracing paper screen renooved and the back panel replaced.

As mentioned earlier, an ordinary hand magnifying glass may be used for extreme closeup work where, for example, the original to be copied is very small. In many cases, a cheap lens, removed from its handgrip holder, will enable the camera to be brought within 3 in . or 4 in . of the subject, thus giving an image slightly less than full-size on the negative. While properly corrected supplementary lenses may require the camera iris to be closed down say, half way, the use of a magnifying glass requires the aperture to be as small as


Fig. 4.-(Right) Copying in the enlarger.


## An Aid to the Portrait Photographer

THE stand is made of wood with metal for the adjustable clamp and reflector. The three pieces forming the stand are cut from a length of 2 in . by in timber, planed to shape and sandpapered to a smooth finish. Both joints in the base are straightforward mortise joints, the one forming the " $T$ " shaped base being glued. It is worth while taking some pains over the fit of the upright in its slot in the base, as it is very convenient to be able to pull this out to pack the stand flat for storage or transport. It should fit tightly enough to make sure that there is no risk of the lamp falling out in any position. The stem of the "T" forming the base has a 1 in . hole drilled at the end for use with a stiff wire hook, by which it can be hung from the picture rail or the top of a door. A loop of string could be used.
Protection to polished table-tops or wall paper is afforded by fitting three small rubber feet to the base. Finish on the woodwork is a matter of taste. but if a surface other than plain wood is required it should be remembered that the finish will have to withstand a fair amount of handling.

The wooden upright carries at its top end a metal strip through which passes the clamping screw. This screw is a short length cut off a $\frac{3}{8}$ in. bolt. Choose a bolt with $\frac{1}{2}$ in. or more of plain shank below the head and drill a hole through the plain part of the shank so that one side of the hole almost cuts into the start of the thread. The size of the hole will depead

 on a rounded surface first file a small flat on the shank, then centrepunch the spot.
"Sight" the drill through the middle of the shank, keeping the hole as square as possible with the bolt. Cut off the bolt head with any unnecessary part of the shark, and also any excess threaded portion. Procure a wing nut and two washers to fit (Fig. 2). The order of assembly is as shown in Fig. 2.
The rod, $\frac{1}{4}$ in., carries the lampholder on a pear-shaped plate, to which it is soldered. Both this plate and the one on which the clamping bolt is mounted can be either of stout sheet brass or steel, a strip $\frac{1}{2} \frac{1}{2}$ in. wide and about 8 in . long being sufficient to make both parts. A generous flat, $\frac{1}{2} \mathrm{in}$. long, is filed on the rod where it is to be soldered to the plate to provide a strong joint. The hole in the plate is a bare $1 \frac{1}{8} \mathrm{in}$. dia. to fit the standard lampholder. This plate and the base of the reflector are both clamped under the shade-ring on the lampholder. A thick cardboard washer between the two ensures a snug fit. The base of the reflector, which is held by the lampholder; is merely the bottom of a cocoa tin. This has a spunover edge, giving it a useful stiffness.

## Metal Reflector

This is of sheet zinc. Tinplate could be used, or aluminium -with its advantage of Fig. I.-The completed lighting stand. lightness and good suris suitable. To start the drill was not available, so zinc

Fig. 3.-Ditails of
the reflector.
was chosen for ease of soldering. Fig. 3 shows the reflector laid out in the flat before bending, the dimensions given being suitable for most purposes. It can be bent to form a plain cone if that is preferred to a series of flats. To form the bends cleanly, lay a steel ruler along the lines and press the ruler down heavily with one hand while lifting the metal against the edge with the other. Start the bending by dealing with the left hand one first, working from left to right. This ensures having a flat piece to grasp to be bent up each time, which will be found much easier than trying to bend an already shaped area. The two surfaces at the join-one inside, one outside-are tinned and sweated together. Bend in the bottom tabs, tin their outer surfaces and sweat to the base.

A coat of paint inside is desirable to make the most of the light if sheet zinc is used, as this goes very dull after a time, particularly on exposure to the heat of a highpower bulb. Either plain white or aluminium paint is suitable. A coat of black enamel outside adds greatly to the appsarance, hiding surface marks or irregularities in soldering.
The only dimension at all fixed is the diameter of the hole in these parts which fit on the lampholder.

# THE NEW <br> Aldislite 

 The new ALDISLITE may be just use. It runs off the mains: you simply plug it in, place your first slide in position, rotate the lens mount to adjust the focusing, and you will see, in full colour, a large, brilliant picture on the screen. The second slide automatically ejects the first. The ALDISLITE projects a

GUARANTEED<br>ONLY £9.18.6 (lamp 16/6)<br>LONDON. W.I

picture 5 ft . wide at 12 ft . distance. It is fitted with an aspheric condenser, in addition to the standard planc-convex condenser.
The ALDISLITE is of all-metal construction for great strength and leng life, finished in cream and red.
The ALDISLITE will take card, metal or plastic sl:des, will project either the standard 35 mm . or Bantam size transparencies, and is designed to take the famous Airequipt Automatic Slide Changer.

# 2" $\times 2^{\prime \prime}$ SLIDE PROJECTOR for 35 mm . colour transparencies 



## £15-19-9

IS THE MODEST PRICE OF THE FANTASTIC EDIXA I.P.


## NO OTHER 35 mm CAMERA FEATURES SUCH UNIQUE, EXCITING SPECIFICATIONS AT SO COMPETITIVE A PRICE

Whilst being firm believers in the "Do tt Yourself" aspect of photography, we do, however, feel sure that readers of "Practical Mechanics," will realise the importance of starting this wonderful hobby with a really sound precision instrument.
The Edixa I.P. is a precision-made camera featuring a fast tried and proved F/2.8 coated Ennagon lens, suitable for black and white or colour photographs.
Again, the shutter fitted to the Edixa is a well known one, the 4-speed Pronto made by world famous Messrs. Gauthier, of Germany. The Pronto shutter speeded from $1 / 25$ th to $1 / 200$ th and 8 is synchronised for flash photographs and incorporates a built-in delayed action for self portraits.

Edixa was, of course, the first camera in its price group to feature a leverwind mechanism, and due to this initial lead the new I.P. incorporates a fully automatic leverwind system of advanced design.

The Edixa attractively finished in black leather and chrome has hosts of other features including true body release, optical viewfinder, automatic rewind button, depth of field scale, tripod bush ${ }_{2}$ film type indicator, Exposure counter, etc., etc.
Write for the name of your nearest stockist or compare the precision finish and features of the Edixa with other comeras at your usual dealer.
NORTH STAFFS PHOTOGHRAPIC SERVICES NEWCASTLE

London showroom
WARDOUR ST., W.
STAFFS

# ferrania color FILM 

It's so simple-anyone can process this natural colour film, available in all sizes : one of them will fit your camera. Produce your own beautiful colour transparencies-it's quicker, less expensive and much more interesting ! Even if you have never developed a film, you will be able to process Ferraniacolor -the pictures below show you how simple it is.


Expose to light for at least 3 mins. Bleach/harden for 10 Fix for 8 to 10 mins,
mins. Wash for 5 Wash for 15 mins. Wash for 5 Wash for 15 mins.
mins.


Colour development for 10 mins. Wash for 15 mins.

FROM ALL GOOD PHOTO SHOPS


## The "Do-it-yourself" Film

FERRANIACOLOR ROLL FILMS

| No. | Exposures | Size inches | Daylight Type | Artificial Light |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { F20 } \\ & \text { F620 } \\ & \text { F27 } \end{aligned}$ | 8 8 8 | $\begin{aligned} & 21 \times 34 \\ & 21 \times 34 \\ & 15 \times 24 \end{aligned}$ | $\begin{array}{rr}12 & 10 \\ 12 & 10 \\ 12 & 6\end{array}$ | $\begin{array}{rr} 12 & 10 \\ 12 & 10 \\ 12 & 6 \end{array}$ |
| FERRANIACOLOR 35 mm . FILMS |  |  | Daylight Type | Artificial Light |
| Cassette Refill |  | exposures <br> exposures | $\begin{array}{ll} 16 & 0 \\ 12 & 6 \end{array}$ | $\begin{array}{ll} 16 & 0 \\ 12 & 6 \end{array}$ |

JOHNSON'S Processing Kits : Part 1 (Developers) 5/6, Part 2 (Bleach, Fixer, etc.) 5/6
Ask your dealer for "How to Use and Process Férraniacolor"NEVILLE BROWN \& CO. LTD., 77 NEWMAN STREET, W.I.

## Impoingthe Negualive

## -

## By Albert Benson

NO unsatisfactory negative should be thrown away as unusable until some effort at correcting the fault has been made. It should be noted that only faults of a chemical nature can be corrected.

Thin negatives can be caused either by under-exposure or under-development and where a change of paper grade produces no noticeable effect, chemical treatment of the negative must be afplied. First, it is important to determine whether the trouble has been caused by short exposure or development time. If the negative has good shadow detail, but lacks contrast, the error is in the development, but where there is little shadow detail and the highlights are rather weak, under-exposure can be held responsible.

The first step in the treatment of the negative is to wash it thoroughly. Where a roll film is concerned, and the negatives have not yet been separated, it should be reloaded into the spiral of the tank to avoid scratch-


Fig. 1.-High-fressure washing.
ing. A well-hardened film can be re-inserted into the tank spiral by holding both in a bowl of water, and sliding the film in as usual. Since the temperature of the washing water is not critical to a hardened emulsion, the tank may be held so that an extension from the cold water tap is wedged into the centre core (Fig. 1). This gives the effect of high-pressure washing.

## Intensification

An under-exposed negative is difficult to improve, as the shadow detail simply has not been recorded. However, a slight improvement may be gained by carefully controlled intensification. Cut the negative away from the others on the roll, and handle it only with plastic tongs used to grip the clear rebate of the film (Fig, 2). Avoid.


Fig. 3.-Spotting a negative.
putting the fingers into chemical solutions, particularly if they are cut or scratched.

## Chromium Solution

For very slight intensification of underexposed negatives, use a chromium solution. Make, or have a chemist make up, a stock solution of potassium bichromate 1oz. 240 grains, concentrated hydrochloric acid $1 \frac{1}{4} 0 \mathrm{z}$., and add water to make $20^{\circ} \mathrm{oz}$. The liquids are given in fluid measure. For use, add one part of the stock solution to 10 parts of water and immerse the negative until it has bleached right out. Wash well until the stain has disappeared, and redevelop in any non-staining developer.

## Uranium Solution

For a rather higher degree of intensification, a uranium solution should be used, but with very great care, for prolonged immersion will cause. the contrast to increase rapidly and accentuate the fault. Dissolve 50 grains of uranium nitrate in water to make 5 oz . For the second stock solution, dissolve 50 grains of potassium ferricyanide in water to make 5 oz . Mix four parts of each of the above solutions, and add one part glacial acetic acid, immersing the negative and agitating the dish to ensure even action. Remove the negative when the shadow areas have been tinted a delicate pink shade, and remember that the colour, although not seeming to do so, adds to the printing resistance. Wash briefly and hang up to dry.

The uranium intensifier given above is also suitable for under-developed negatives and, since an increase in contrast is desirable, the treatment may be prolonged until the required density is built up. The washing process, after intensification, should be lengthened so as to remove some of the coloration from the shadow areas. This treatment gives maximum intensification but, regrettably. a slight increase in grain size.

## Mercury Intensifier

A useful mercury intensifier for underdeveloped negatives can be made by dissolving $200^{\circ}$ grains each of potassium bromide and mercuric chloride in water to make 20 oz . The negative is bleached in this solution until it is perfectly white, giving constant agitation to the dish. Wash thoroughly and regain the normal colour by soaking in a 10 per cent. solution of sodium sulphite. Should the density of the negative still be too weak, the entire process may be repeated.

## Reducing

Over-exposure and over-development are more easily dealt with, as the shadow detail is not lacking. In the former case, identification is by the flat, lifeless nature of the negative, possibly with some loss of contrast. Over-development causes a contrasty negative with dense highlights which will not print through on to the paper.

To correct over-exposed negatives, the veil over the shadows must be removed, thus improving the contrast. The best-known formula is Farmer's Reducer, made up in two stock solutions. The first consists of $\frac{3}{4} \mathrm{oz}$. of potassium ferricyanide dissolved in water to make 10.0 oz , and the second is 2 oz." 160 grains sodium thiosulphate (hypo) in water to make 10 oz . Use one part of the first solution with four parts of the second and 27 parts water. Keep a close watch on the reduction process and, when the effect has been achieved, wash well.

Over-development is corrected by a variation of the above process, using 33 grains of potassium ferricyanide in water to make Io Oz., and 2 Oz . hypo in water to make 10 oz . Immerse the negatives in the first solution for from one to five minutes, depending upon the result required, then transfer direct to the other solution where the reduction will take place, washing well before drying. This process may be repeated if the initial effect is insufficient.

## Spotting a Negative

An air tubsle during development some-

Fig. 2.-Handling the regative.
times causes a small, clear spot to appear on the negative. The only ways to deal with this trouble are to remove it from the negative or its corresponding black image from the print. Where a large number of prints must be made from the same negative, the former course is the bettcr. Hold the negative, image side up, on a window pane or a special retouching desk and coat it with the special matt varnish available. Then work out the defect with a finely pointed pencil of the appropriate grade (Fig. 3).

## Copying Photographs

(Concluded from page 9)
the subject. Depending upon the type of light source, there should either be no shadows, or they should be of equal length on both sides.

An alternative arrangement, employing the enlarger, is shown in Fig. 4. The original iș held in the masking frame, the lamphouse and condensers removed, and a tracing paper screen placed in the negative carrier. The image can then be sharply focused, the lights switched off and the lamphouse replaced. The screen is replaced with a plate or flat film and the aperture around the carrier light-proofed with a black cloth. Any ventilation holes in the lamphouse should also be sealed. The exposure is made by switching on the lights for the required period

# ASolation Problem 

## J. B. Knight Describes His Permanent Darkroom Cupboard

MOST amateurs have to make some sort of compromise when arranging somewhere to work, and the amateur photographer is no exception. Assuming the work he does requires no studio, and that once a film is in the tank development can be carried out almost anywheee, he still needs a room for enlarging. This is a headache for most, since although the kitchen or bathroom can usually be made available the tiresome business of setting up presents a second problem, and this is generally because the equipment is sto-ed when not in use anywhere but in the place where it will be used.

My answer is a compromise, everything being in its place, out of sight and in the room ready for use.
The room I use is the kitchen and the oaly equipment not stored there is the enlarger, printing frame and box of paper, it being the work of a moment to transfer these to the site when ready. The feature


Fig. 1.-Dimensions of the cabinet.
The Switchboard
The first item is a switchboard to which the mains supply is introduced by means of the standard plug and socket as used on movic projectors, power being taken from a convenient wall socket. Provision is made on the board for supplying power to the enlarger, safelamp, print dryer and a further itemif necessary. This board and the Paterson safelamp are built in.

The external dimensions of the cabinet are approximately $36 \mathrm{in} . \times 27 \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in}$,

The depth of $3 \frac{1}{2}$ in. means the cabinet can be permanently mounted on the wall without inconvenience to those using the kitchen
The height of 27 in . in my case is maintained to allow the detachable lid to be used as a working surface when placed across the kitchen table which it protects.

The length of 36 in , the most easily variable dimension was chosen as the minimum length in which my gear could be contained after taking the other controlled dimensions into consideration.

Although my Paterson 35 mm . tank can be stored within the $3 \frac{1}{2} \mathrm{in}$. depth, the construction of a kitchen stool is contemplated in which can be housed larger tanks or extra bottles needed for colour work. For black and white work up to $12 \mathrm{in} . \times 1$ in. the
made to fit the equipment it houses. It is an advantage to have had some darkroom experience and to have reached a stage where the necessary items can be recognised and superfluous gear discarded, this saves storage space and obviously the less bits and pieces there are to set up, the less time it takes. The cabinet is built around the essentials, as shown in the heading photograph.
cabinet under discussion is adequate. Shape and dimensions may need to be varied to accommodate the individual worker's equipment.

## Cabinet Contents

Apart from the switchboard and safelamp, which together occupy one compartment, the following items are included.

Two $12 \mathrm{in} . \times$ roin. dishes, two $8 \mathrm{in} . \times$
roin., two each of whole plate, half plate and quarter plate occupying two further compartments and the print dryer cum dishwarmer taking up a fourth.
The remaining accommodation is occupied by the thermometer, glass funnel, three 8oz. measuring jugs, box of "Multigrade" filters, 20z. measure, print forceps, stirring rod and the bottles of chemicals.
Webbing straps at strategic points prevent the articles from falling from the very narrow shelves when the cover is removed. They are fastened by means of press studs.

## Setting Up

Removing the cover and placing it in position on the table, selecting the appropriate dishes and pouring solutions is the work of five minutes. While the developer is warming up the enlarger is fetched and placed on the kitchen half-cabinet. Heavy curtains drawn, safelamp on and the door closed - a further six minutes and painting can begin.

## The Use of Filters

(Concluded from page 7)
tone renderings and who uses mainly correct pan film, will find the most useful filters are a light yellow and a medium yellow or yellow-green.
A light yellow filter will be found useful for general work at the seaside or with snow scenes, for open air and artificial light portrait work, and perhaps for improving the sky rendering with ortho film.
A medium yellow or yellow-green filter can be used to obtain correct sky tones, particularly in landscapes and over water, for taking portraits against the sky, for sunsets, and for seaside and snow scenes. This filter can also be used with ortho film for portrait work with artificial light.

In general, a light yellow filter is best used with correct pan film in daylight, while medium yellow filters are best with ortho film. Medium yellow filters are used also with pan red film in daylight, but when photographing red, use a yellow-green filter.

## INTERESTING ITEMS

 at BRUNNINGS SPHERICAL REFLECTORS

Designed for use with projection lamps in normal lamphouses.

| Diam. <br> 4 in. <br> 2 in . <br> 1 in. <br> 11 in. <br> tin. <br> 18 in . | Radius 4 in . 2 in. Itin. lin. 1 in. ${ }_{3} \mathrm{in}$. Postage | Focus 2 in. lin. ${ }_{8}$ in. in in. in. in. c., 6d. | $\begin{aligned} & \text { Price } \\ & 15 / 6 \\ & 6 / 6 \\ & 4 / 6 \\ & 4 / 6 \\ & 3 / 6 \\ & 3 / 6 \end{aligned}$ |
| :---: | :---: | :---: | :---: |

## QUICKSET " MINOR

Neatly made for smaller lamphouses. Takes
Class A Projection lamps with Prefocus cap up to 300-W. 2 in. diam. reflector as above. The Bakelite base
(3tin. $\times 2 \frac{1}{2} \mathrm{in}$.) has (34in. x $2 \frac{1}{2}$ in.) has

unit to slide to and fro on side bearers in lamphouse. Price $1 / / 7 / 6$. Postage and packing I!-
Brochure on both units sent free on request.

## ENLARGER FOCUSSING MOUNTS

SPIRAL MOUNTS


Brass mounts with 2 in. continuous spiral fine focussing. fine focussing.
taking FLAT or SUNK (reversible) lens panels for negatives up to $3 \frac{1}{2} \times 2 \frac{1}{2}$. Diam. of base 51 in . outside.
Diam.of front Diam. of front
3 in . inside. The lens panels are easily attached by 4 nuts to knurfed focussing ring. The SUNK panel (lin. deep) has is in lens hole and the FLAT panel a i 3/10in. hole.
If desired either panel is supplied without hole and customers can cut same to suis their own lenses.
Long Model with SUNK panel for lenses 4 in . to 5 in . focus, $E 2 / 7 / 7$. Post and packing $1 / 6$.
Short Model with FLAT panal for lenses 3 in . to 4 in . focus, $E 2 / 3 / 9$, Pose and packing $1 / 6$.
SPARE PANELS SUNK MODEL 5/7. FLAT MODEL $1 / 9$.


The negative carrier is constructed to take $3 \frac{\mathrm{in}}{} \mathrm{in} 2 \frac{1}{\mathrm{in}}$. plates or roll film up to 21 in . wide and incorporates 5 chin metal masks (having guides where necessary) for all smaller sizes of film. Two thin bevelled glass plates are used
with the carriers to ensure the film with the carriers to ensure the film
being flat and are included in the price.

BRUNNNING (holborn) ITD
135 High Holborn, London, W.C. 1 Phone: HOL 4894


## A COMPLETE DARKROOM

If you want to start doing your own developing and printing you will find that the JOHNSON No. 44 HOME PHOTOGRAPHY OUTFIT contains everything you need.
With this first-rate kit you. can start work the day you buy it. By following the simple but comprehensive instructions included with every-set you will soon: be producing perfect prints from perfect negatives.
All the equipment is made by Johnsons and includes a developing tank for 120 size films, a plastic contact printer with built-in safe-light, dishes, measures, forceps, clips, masks, etc., plus the necessary developing and fixing chemicals and a 104-page book on photography. EVERYTHING YOU NEED for $£ 5.12 .6$.

AN INEXPENSIVE SET
The Johnson JUNIOR PRINTING PACK is a first-rate beginner's kit containing everything you need for making princs from your own dimly lit room, and you get results within minutes !
A 16-page bookler on printing phorographs simple instructions pack, and by following prints right from the start.
Equipmens, provided includes a Johnson plastic printing frame, two $5 \times 4 \mathrm{in}$. dishes, two print forceps, a set of masks, 25 sheets of contact prinsing paper and two packets each of Developing and Fixing chemicals.
Go and ask your local photodealer to show you one of these super kits.


JOHNSON JUNIOR PRINTING PACK. PRICE $13 / 3$.


## ENLARGING

The Johnson Enlarging Outfit No. 6 contains the Exactum Posteard Enlarger for making
prints
from
postcard
$2!\times 3$ size
$\times 3$ prints from
negatives. As easy to
$\times$ ise negatives. As as a printing frame. Ail
as a the necessary accessories are included: orange darkroom lamp, plastic measures,
dishes, elips, etc, plus a good dishes, elips, erc., plus a good
supply of developing and supply of developing and will look BETTER; BIGGER! Price E4, $^{2}$.6.

READ ALL ABOUT IT
lohnsons publish a most interesting book called Home Photógraphy writen in nontechnical language which is packed with really useful information for both beginner and advanced photographer. Fully illustrated, 104 pages. Price $3 /-$ from your dealer or post free from
JOHNSONS OF HENDON
LTD
DEPT. 20
335 HENDON WAY
N.W. 4

MOUNTING
Send for details to theSWIFT DRY MOUNTING CO 324/5 High Holborn, W.C. 1 CHA $60{ }^{2}$

## COLOR PRINTS

KODAK COLOR PRINTS KODAK COLOR PRINTS $12 / 6$ EEch IIFORD COLOUR PRINTS $31 \times 511 \mathrm{n}$.. $2 / 8$ each : $5 \dagger \mathrm{x} 8 \mathrm{in} . .716$ each. KODACOLOR films 1201623 , 1218 each.

 AYSOCHROME processing, of- each. $7 / 6$ each.
AGFACOLOR, GEVACOLOIR a ICICOLOH processink and printing at standard rates. All colour films and equipment supplied. 1958 Catalozue
now ready, free on request. C.W.O.

## COLORCHROME

7 Cranleigh Rd., Southbourte, Bournemouth
ELECTRONIC FLASH COMPONENTS Condensers, Puise Colls, Resistore, etc surplus to requirements but guaran teed new and unused. Send S.A.E for full ist and circ

Langham Photographi
Instruments Ltd.,
132. Stantey Park Red., Carshalfon,

Surrey.

## FLASHBULBS:

Philips PF $24 \% /$ per doz. Philips PF 25 12/- per doz.
R.S.T. Lid. 21 I Streatham Rd. MITCHAM, SURREY

## You can't afford tomiss...

## OUR LARGE SELECTION OF PHOTOGRAPHIC EQUIPMENT

is cameras
is enlargers
Iz projectors
is accessories
is materials
LOMAX
LIMITED
8, ST. ANN'S SQ. MANCHESTER, 2 use this book to discover the pleasures of table-top photography, copying, portraiture, stage work, T.V. pictures, etc.

## INDOOR PHOTOGRAPHY



67 illustrations
17 tables
16 plates

by R. W. Unwin, A.R.P.S.

## This new book covers

ntroductory
Cameras:
Auxiliary Apparatus; Lighting Equipment: Close-up Lens; Parallax. Understanding Lighting Terms and Film Speeds. Lighting Terms: Reflection Factor Brightness Range ; Lighting Range: Colour Temperature; Reciprocity Failure Negative Materials ; Filters: Film Speeds. Artificial Lighting. Lighting Fundamentals : Household Lamps : Photopearl Lamps; Photoflood Lamps. Determining Exposures. Meters; Artificial Highlight Method; Incident Lighe Method; Guide Number System. Planning Your Lighting. The Main Light ; The Camera Light Monochrome Viewing Filters; Effect of Secondary Lights on Exposure: The Third Light : The Background Light ; The Accent Light; Position of the Camera. Flash. Flashbulbs: Capless Flashbulbs; Flashguns; Open-flash Synchronization; X and F Type Synchronization ; M-Type Synchronization, etc. Electronic Flash. Equipment Light Output: Synchronization: Exposure. Indoor Photography in Colour Colour Temperature of Light : Types of Colour Material ; Exposure Calculation Electrical Circuits. Wiring Lamps; Series and Parallel Circuits; Switch Panel Three-way Parallel Panel : Two- or Four-way Series/Parallel Panels; Panel : Flashbulb Test Panel, etc. Table-top Photography, Copying, and Television Pictures. Table-top Photography ; Simple Scenes ; Lighting Effects; Shadowless Photographs Copying : Films to Use; Television Pictures. Amateur Stage Photography. Lighting : Arranging the Lighting; Photo-call. Appendix; Chemical Formulae

FROM ALL BOOKSELLERS

Or in case of difficulty 16s. 3d by post from GEORGE NE WNES LTO., Tower House, Southampton street, London, W.C. 2 . (Our complete list of photo-


## SCREEN FABRIC

MAKE YOUR OWN PROJECTION SCREEN
High Grade Fabric as used by Commerclat 48in. W-ide, any leasth cut at 18/- per yard Or-

## CUT PIECES

48in. $\times 36 \mathrm{in} \ldots \ldots . .18 /-481 \mathrm{in}$. $\times 48 \mathrm{in}$. - 72nn. x 481 n ....... 361 Sond 3d. stamp for samples and instructions for making your own " Roll Up" Screen SPRING ROLLERRS (Self Acting). 11 in dia. Swedish Manulacture. complete with $361 \mathrm{n} .10 / 3$; $421 \mathrm{n} .10 / 9$; 481n. 11/9;54in. $13 / 3$

ST. SEPULCHREGATE DONCASTER


Here's a litile camera which gives you all the advantages of 35 mm . (colour, black Here's a 36 carares for i losding etc) at remuages or 35 mm . (colour, black and 13 Steiner anssizmas lens, colour corrected and coased, for brilliant and sharp inegatives. 4 -speed precision shutter, $1 / 25,1 / 50,1 / 100,1 / 200$ and bulb-ail the speeds required for aecurate work
Film transport coupled with counter and shuter secting prevents double or, blank exposures. Depth of focus seale, exposure guide, etc., ere. lovely little camera

SEE IT DEMONSTRATED
AT YOUR PHOTOGRAPHIC DEALERS
or write for leaflet to the Sole importers:
R. F. HUNTER Ltd., Celfix House, 51-3, Gray's Inn Rd., London, W.C. 1

## THE NEW

 TBRDPHOTOGRAPHIC EQUIPMENT CATALOGUE is now ready

96 pages - 200 illustrations Hundreds of items

Send 6d. stamp for your copy to
NEVILLE BROWN \& Co. Ltd. 77 Newman St., London., W.I


[^0]:    The May issue uill be published on Wednesday, April 30th. Order it NOW'!

[^1]:    42-48, Windmill !Hill, 88, Grove Road, 29, Stroud Green Rond, '268, London Rowd
    
    

[^2]:    George Newnes. Ltd., 66-69, Great Quesn Strees, London, W.C. 99.
    Send me Newnes fractical handyman without obligation to purchase. I will efther return it within 8 days or send 10 s . deposit 8 days after delivery, then 10 monthly subscriptions of 10 s., paying $£ 510 \mathrm{~s}$. in all. Cash price in 8 days $£ 55$ s.

    ## Name

    Address
    Place $\mathbf{X}$ where it applie

    Ocrupation
    Your Sighature
    (Parent's Signature if under 21 )
    HA7C

