## Make your awn Thermameters!

# DRACTICAL <br>  

 MECHANNICSEDITOR 8 FOJ.CAMM MARCH:1958

Contents
EXPLORING THE DEEP OCEAN FLOOR
MAKING AND USING ARCHERY EQUIPMENT
A PORTABLE RECORD CASE
AN INTRODUCTION TO NUCLEAR POWER
AN ELECTRIC SLIDE VALVE ENGINE POTTERY REPAIRING SPECIAL SECTION FOR JUNIORS

## Stuck for a Spring?

If so, Terry's BOXES OF ASSORTED SPRINGS are the answer. Here you have a marvellous assortment of Compression and Expansion springs . . . in all varieties, weights, lengths, gauges and diameters. The 6 boxes we show here are only a few from our very wide and varied range. Let us send you a fully illustrated list—post free.


No. 757. Exira Light Compression, 1 gross Assorted, $\frac{1}{8^{\prime \prime}}$ to $\frac{z^{\prime \prime}}{}{ }^{\prime \prime} \frac{1^{\prime \prime}}{}$ to $2^{\prime \prime}$ long, 27 to 20 S.W.G. 15/- each


No. 388. $\frac{1}{2}$ gross Assorted Small Expansion Springs, 亲 to $1 \frac{1}{2}$ ", 18G 1021 G . 9/6 each.


No. 758. Fine Expansion Springs. I gross Assorted f" to $8^{\prime \prime}, \frac{1}{2}^{\prime \prime}$ to $2^{\prime \prime}$ long, 27 to 20 S.W.G. 15/- each.


No. 466. $\frac{1}{2}$ gross Assorted Small Expansion Springs, $\mathbf{z}^{\prime \prime}$ to $1 \frac{1^{\prime \prime}}{}{ }^{\text {r }}$ long, $3^{3}{ }^{\text {n }}$ to 1010 diam., 21 G to
24 G.
$6 / 6$ each.


No. 1013, 1 gross Small Coil Compres sion Springs, to to $1 \frac{1}{2}$ " long, $3_{32}^{3}$ " to $\frac{7}{18}{ }^{7}$ diam., 24G to 19 G . 6/- each


No. 753. 3 doz. Assorted Light Expansion, " $^{\prime \prime}$ to $\frac{1}{3}{ }^{*}$ diam., $2^{\prime \prime}$ to $6^{\prime \prime}$ long, 22 to 18 S.W.G. 10/6 each.

Cut production costs with TERRY Wire Circlips (Square Section) We can supWe can sup-
ply from ply from stock in sizes
from $\frac{1}{8}$ to $\frac{\delta^{\prime \prime}}{8}$


* Really interested in springs? The 1957 edition of "Spring Design and Calculating"-full of spring data-post free 12/6,


## TERRY'S

 ASSORTED SPRINGSHERBERT TERRY \& SONS LIMITED • REDDITCH • WORCS (Makers of quality Springs, Wireforms and Presswork for over a century)


Photography involves a lot more than just aiming a camera and pressing a button.
Any successful photographer, professional or amateur, will tell you that to do the job properly you must know how to develop and print photographs yourself.
If YOU want to be a photographer you can start training NOW!
Do it the easy and inexpensive way by buying one of the range of Johnson Home Photography Outfits. There's one to suit every pocket.


Piint your own snops with the JUNIOR PRINTING PACK. It costs only 13 s .3 d. , and includes everything you need for making perfect prints.

## JOF NSONS

MUSCLE MAKING
The Muscle-Building Method known as Maxalding enables anyone 10 attain increased strength and development by following a simple but effective routine of Muscle Control Exercises.
FRIENDS AMAZED G. RENOWDEN (right), age 22 , wrote while under instruction: " I met some lads who had not seen me for three months. They were amazed at the improvement I have made."

## ANOTHER JUNIOR CHAMPION



PETER WILLIAMS Chest $45^{\prime \prime}$ at 16.

PETER WILLIAMS (left), encouraged to take up Maxalding by his father, attained this splendid condition of development at only 16 years of age. He has already reached 5 ft . 10 in . in height and 45 in . in chest measurement

## PERSONAL POSTAL COURSES

Every Maxalding postal course is planned and supervised from start to finish in accordance with all the factors bearing on the individual case. No stereotyped or ready-prepared instruction is used, and that is why our successes outnumber those shown by all other methods.

## FREE EXPLANATORY BOOKS

Showing nearly 200 photographic reproductions of pupils and champions from 14-65 years of age, the explanatory literature will be sent without cost or obligation in a sealed envelope, bearing no external advertising matter. (Postage for 4 ounces, 6 d ., is appreciated, but is not ob- ligatory).
MAXALDING (PM3) SHEPHERDSWELL, DOVER, KENT.



* Permanent Magnets in action* Picking up tackos
or any small particles is easy for the handyman who uses an "Eclipse" Button Magnet. Simply assembled in any thin non-ferrous cover which allows


Made by James Neill \& Company (Sheffield) Limited and obtainablefrom all tool distributors

## 四

 RADIO CONTROLSEquipment that will enable the user to operate. independently, more than one control is now demanded by most enthusiasts. 4 models are now available, any one of which will meet the requirements of the most discriminating user.

## E. D. "BOOMERANG"

A Radia Control Unit completely wired and ready for use in your model boat or plane. Simplicity itself to install and most economical in use. Transmitter, Receiver and Escapements. Price $£ 11.18 .6$ (Sold Separately).

Other Mode's include :

## MK. IV "MINIATURE"

Tuned Reed, 3 Channels, (Transmitter, Control Box and Receiver less Escapement). Price E20.9.7 (Sold Separately).

## "EVEREST"

Tuned Reed, 6 Channels, Transmitter. Control Box and Receiver. Price ©29.3.11 (Sold Separately).

## TRANSITROL"

Receiver, Transmitter and Escapement. Price E12.15.6. Receiver Only E6.1.8.

All prices include P. Tax.
Order from your Model shop.
Hlustrated list, giving full information and technical details of all Radio Controls, Mechanisms, Spare Parts, Accessories, etc., and the full range of E.D. Diesels, available on request.

## Teinis with I.C.S. THE WAY TO SUCCESS

The great and growing demand of today is for TRAINED men. Tens of thousands more are needed, but there is no worth-while place for the untrained.

Let I.C.S. Postal Tuition give you the specialised knowledge that marks you out for promotion to the best jobsfor SUCCESS ! I.C.S. teaches you at home in your own time-expertly, quickly and easily. It is the world's largest and most successful correspondence school, offering courses for almost every branch of trade, industry and the professions.

ADVERTISING
Practical and Mail Order Practical and Mail Order
Retail and Dept. Store EXAMS: Advertising Ass. Joint Inter I.P.A. COMMERCIAL ART BOOK-KEEPING \& BUSINESS TRAINING
Accountancy
Costing
EXAMS: Chared. Inst. Secs., Ass. of Cert. \&
Corp. Acets. Cost \& Wks. Accts. Inst, of Bookkeepers

## ARCHITECTURE \&

## BUILDING

Drawing \& Designing Quantity Surveying
Builders \& Surveyors' Clerks Construction
Air Conditioning
Heating \& Ventilating
Woodworking
EXAMS: Roy. Inst. of
Sr. Archts. Inst. of Quant.
Survyrs. Roy. Inst. of
Chtd. Survys. Inst. of
Bidrs.

## GIVIL ENGINEERING

 Surveying \& MappingSeructural \& Concrete Engg.
EXAMS: Inst. of Civil Engrs. Inst. of Mun. Engrs. Inst. of Struc. Engrs.

## MANAGEMENT

## Foremanship

Indust. Management
EXAMS: Br. Inst. of
Management. Inter Final

ELECTRONIC
ENGINEERING
Industrial Electronics Electronic Computers

FARMING
HORTICULTURE
Arable Farming
Pig Keeping
Poultery Keeping
Farm Machinery (Mainten-
Flower, Vegetable \& Fruit
Gardening $\quad$ R.H.S. General
FIRE ENGINEERING
EXAMS: Inst. of Fire
Engrs. Fire Serviee Promotion

GENERAL CERTIFICATE OF EDUCATION
Principal Subjects at Ord. Engg. Joint Board Prelim. MECHANICAL
ENGINEERING
Subjects include :-
Welding, Fitting, Turning Erecting, Jig \& Tool Design Mroduction, Draughtsmanship Maintenance, Diesel Engrs. Diesel Electric Locomotives, Refrigeration.
Sheer Metal Work, \&e EXAMS : Inst. of Mech. Engre, Inst, of Prod. Engrs. Soc. of Engrs. Inst. of Engg. Designers.
Cert. in Foremanship

ELECTRICAL
ENGINEERING
Mlumination \& Heating Power House Attendants Electricians
EXAMS: Soz. of Engrs. Cert. in Elec. Engg.

MOTOR ENGINEERING
Diesel Transport Engs. Owner Drivers?
PHOTOGRAPHY
A basic Course incl. Colour Work
RADIO \& TELEVISION ENGINEERING
Service Engineers'
Television Servicing \& Engg Practical Radio with Equip ment
EXAMS: Br. Inst. of Radio Engrs. C. E G. Radio Cert. P.M.G. C. $g$ G. Telecoms. Engg.

SALES PROMOTION
Sales Management
Window Dressing
EXAMS: In
Mangrs. Ass.
United Comm.
Travellers Ass. Dip.
WRITING FOR PROFIT
Free Lance Journalism
Short Story Writing

NEW-PRACTICAL PHOTOGRAPHY COURSE Learn camera teclenique and how to produce first-class negatives and prints in monochrome or colour.

Moderate fees include all books

## INTERNATIONAL CORRESPONDENCE SCHOOLS

 Dept. 169D, International Buildings, Kingsway, London, W.C.2.Please send me free booklet on.: $\qquad$
(USE BLOCK LETTERS)
Address

Addresses for Overseas Readers
Australia: 140, Elizabeth Sereet, Sydney. Eire: 3, North Earl Street, Dublin. India : Lakshmi Bldg., Sir Pherozsha Mehta Rd, Fort Bombay. New Zealand : 182, Wakefield Street, Wellington. N. Ireland: 26, How

MAINS HLOWVER. 203.259 V. A.C./D.C. A-amp., 5.000 r.p.m. consists of the motor Tith attached enclosed fan, and funnel intake lin. dia., side outlet lin. x fin.i plinth base $5 i n, x 41 \ln$. finish black crackle and die cast aluminium, size overail 91n. long, 4hin, wide. 5 in. high, weight 712 b . a very s
fraction of original cost, new, unused, 251 , Post $3 / 6$. RALANCED ARMATCRE RECEIVER NSETS No. 5, in black plastio cases, the most popular and versatile of all ex-Govt, stock. Ideal as single or dual headphone recelvers, self-energised microphones, 2 coupled by ordinary twin flex, pro$3 ; 9$ each, post $1 /$ - 3 for 10,6 , post 16,40 - daz., post $3 /-$ sealed wood cases containing $201-$
ELLECTRIC PUMPS, suttable for most llquids the popular cylindric immersible type 24 v . at whioh they deliver $10-\mathrm{g} . \mathrm{p}, \mathrm{m}$. at $20-\mathrm{ft}$, head also give excelient per-
formance at 12 F, new in sealed cartons, 1 ft . long $30 ;$, post $2 / 3$; ditto 4 ft . long $35 /=$. carriage 5
speed 5,000 r.p.m., reversing, size 3in. lo. speed dito in. shaft, welght 20 ozs, a very superlog motor designed for anti-radar equipment, new unused 100 post, $1 / 6$. 85 per doz, carriage paid, ditto fitted reduction gear, giving a flnal drive required, 12/6, post $1 / 9$; $£ 6$ per doz., carriase pald. K TYPE CYLINDER LOCKS, deadlocking and thiefproof, has 7 concentric tumblers, instead oi
the usual in ine, interchangeable fitting with ordinary cylinder looks, latehbolt the usual 5 in line, Interchangeable fitting with ordinary cylinder locks, latchbolt
reversible, for right or left hand doors (no need to specify), complete with 2 keys, all reversible, for right or left hand doors (no need to speciy), complete with $1 / 6$ G.EA. RECTIFIERA, selenfum, full-wave bridge, $12 \nabla$. 2 -amp. 10t-post $1 \%$ - ditto 4 -amps. $15 /$, post 16, malns transformers specially wound for above rectifiors, 15:- post 1:9, dit to 4 -amps., 20/- post $2 / 3$, all items are brand new, complete with CREFLECTOR GUNSIGITRS postage for both items $2 /$-and $3 /$ rew, complectively. REFLECTOR GUNSIGITSS by Ross, etc. consists of an optical mount which
contains 4 high-grade lenses, 3 are 34 mm . dia., bi-convex, plano-convex, concave negative. with smaller bl-convex objective, mount is in line with enclosed lamp house, fitted refector, rheostat and lampholder, new unused, cost $£ 20$, our price 10i-, post $1 / 9$.
wood with silver grey finish. all are $1 / 72$ nd scale brand now in protective cartoms wood with silver grey finish, all are $1 / 72$ nd scale, brand new in protective cartons.
Vulcan Avro 698 , a truly magnificent model of this latest jet bomber, length nose to tail 16 In . $101-$ post $2 /-$ Gannet A.S. Mk. $1.7 / 6$. post $1 / 4$; Hunter F.Mk. $1,5 /-$, post $1 /-$ : J. 29 SAAB, $51-$, post $1 i-$; Chipmunk T.

ELECTRIC TIME CLOCRS by Smiths, otc, Takes an impulse every four minutes clock dal has sotting polnters, one up to 44 days, the other led lever escapement, the switch, also minute hand; the case size 31 in . bakelite. with top cover : new unused. fraction of original cost. $25 /$, Post $1 / 9$ part LEATHER CASES, superior hyde tin. thick, box sewn size 7 in . Post $1 / 9$. shop, founstrap contains aged top overlap cover fitted buckle fastener adjustable guality has to be contains a hellograph set in optically black finished brass. The With vertical and to be belleved. with two 51 n . dia. swivel mounted mirrors, one tools, etc., new unused, well worth $£ 10$. Our price, new unused, 10/, post $3 /-$. Tripo IONOCULARS can be supplied.
eyeploce, objectivo with infra-red, consists of the optical system, variable focus enjece, press switch. All complete and self-contained in metal case, size sin. 5 in. $\times 2 i n$.
 ost $3 / 6$.
MIDLAND INSTRUMENT CO., Moorpool Circle, Birmingham, 17 TEL.: HAR 1308


No. BRSZ 250 No. $8852 / 250(225-250 \mathrm{v}$, motor $)$
No. BBS2;200 (200-220v. motor) No. $B B S 2 / 110$ ( -10 volts motor) Unmotorized version (No. BBS2/UM) with drive spindle to take owner's
own pulley(s): \{13.17.6


The unnotorized model is also available with complete set of fitcings-as illustratedfor fast $t^{\prime \prime}$ electric drills: (or Black \& Decker ${ }^{10}$ generalpurpose drill)..... $\mathbb{1 6 . 1 0 . 0}$
No. BBS2/W8 (for Wolf or Bridges $t^{*}$ generalpurpose drills)......f16.7.6

## STEEL SHELVING

72 in. HIGH
34 in. WIDE
12 in . DEEP

- Brand new-Manufactured in our own works.
- Sheives adjustable every inch.
- Heavy gauge shelves will carry 400 lbs each.

Stove enamelled bronze green.

- 6 shelves per bayExtra shelves 8/- each.
- Quantity discounts.

Delivered free $£ 315$ s. Ready for erection

## N. C. BROWN ${ }^{\text {LTD. }}$

Green Lane Wing
HEYWOOD • LANCS

- the manufacturers!

Telephone :
Heywood 69018
(3 lines)

ALL OTHER SIZES available at equally keen prices.

## The Bestfrend "ZEPHYR"(M) Motor and Accessories



A silent, shaded pole motor, A.C. only, 200/250 volts, 2,600 R.P.M., 25 watts. 3 2" $^{\prime \prime} \mathrm{x}$ $2 \frac{1}{2}$ ", with double-ended spindle. Precision built and specially suitable where absolute silence is essential. Continuously rated and designed for use in construction of table and extractor fans, projector cooling units, fan heaters, cupboard airing devices, etc. An extremely high-class product, designed by engineers with a quarter of a century $37 / 6$ of expericace in motor construction.

An anti-vibration stand for above motor. Horizontal or vertical mounting. Supplied in breakdown form for homeconstructors. $8 \frac{1}{2}$ " $\times 2 \frac{11}{\prime \prime} \times 2^{\prime \prime}$. Three point suspension. Steel, Cadmium plated. $7 / 6$



LIQUID LEVEL INDICATOR Fitsinto storage tank, float turns. pointer Whioh Indtcates." empty. $8^{.}{ }^{3}$. ${ }^{\circ}$ or "fumeter. Unused but approximately cleaning. 4.6. plus $1 / 6$ post and packing.


12in. Hi-fidelity loudspeakay.
High Flux. Perroanent marnet typer with
standard ${ }^{3} \mathrm{OHm}$
sineeah Spech coll.

Brand new by famous maker. watts.
Price
, pius 3,0 post and $\qquad$ Equipment for seeing in the dark as fited to Army vehicles for night
driving, etc. Complete working
daving equipment comprises two Infra Red
radiator
refectors radiator
binoculars, power pack for 6 or 12 volt. control boxts and inter-con-
necting cables. original cose probably around g100 unkssd and in perfect condition. £10, plus 10-carrlage and
ins rrance. Mains power pock. \&4 insira
extra.


ENTIRELY MULTIMETER KIT Measures A.C.D.C. the ES zentlal parts ncludirg metal
case, 2 in movtrg colt meter. sejected re-
slstors wire
for shute for shunts, tor, switches. culibrated
scale and
full instructions. price 19:6 plus $1 / 9$ post and insumance. BAND III CONVERTER Suitable Wales
London. Mid London. M1d-
lands. North.
Scotland, etc. scotland, etc.
All the parts
including 2 EF80 valves, colls, fine tuner contrast
control. con-
densers and resistors. (Metal cose avat1 ahle as arr extra.) Price only 19 6. plus $2 / 6$ post and insurance. Data free
parts or avallable separately $1 / 6$.

## INDICATOR

No. 96


Contains many hundreds of very valuable spares including no less than 12 potentiometers. Thls indicator unit will take
the VCRin or the VCR517 and with the VCR97 or the VCR517 and with
relatively simple modifations can be relatively simple moancations can be quantity offered at the extremely low price of $10 \%$ - each, carriage and packing $4 / 6$ up to
at cost. BUILD THIS 14 in . Undoubtedly the most
up-to-date televisor for
the home constructor. the home constructor evening and the set when fintshed will be equal to a factory made equivalent. What other
constructor T.V. has all constructor fes.

- No technical knowledge require All miniature valves - Metal rectifer.
channel. - Ferrox cube E.H.T - Suitable for
modern 12, 15 or lifo tube. The building cost (less plus 10/- carriage and insurance. All parts guaranteed twelve months. Full informa with parts or avallalile with parts or araitatie


ELECTRONIC PRECISION EQUIPMENT, LTD.
Post orders thould be addressed to Dapt. 1, at Eastbourne Addrass.

[^0] For doors, cupboards, drawers, etc., also useful for tool racks. Two of each of 6 sopening. $3 / 6$ the lot. plus $1 / 6$ post and packing.


10/- deposit plus $10 / 6$ deposit plus
Insurance will bring and you
the AVO Meter No. 1.
This Instrument, the This Instrument, the Byitish firm, has a sensitlvity of 10.000 op.v. and measures :-D.C. volts $0-1,000$ ranges), current $a_{-1}$ amp. (5 ranges), resistance $0-2$ meg. (2 ranges). Complete
with zest leads. Cash price 89.10 .0 or $10 /-$ deposit and 19 weekly payments of $10-$ FREE GIFT. All ordering this week will receive range extender for TAPK DECK.-Made by the famous
Truvox Company. This convains exactly the same essentials as the current model. Only the styling is different. Ytualso takes the stereo-
phonic head. Speoffication: Bhonic head. Spertication: 3 silent friction drive moliminating wow and futter. Push-button con trols, electrically and mechanically
interlocked. patented electrtc interlocked. Patented electric type
push-button controlled brake. Tape loading on the drop-in principle accommodation for reels of $7^{\circ}$ diameter. Tracking sense to British and
American standards. Playing times: untercan standards. Playing times: with Standard Tapes. Two tracks side by side with safety gap. Positite Azimuth adjustment of Record Player head. High Impedance Heads.
Overall size $141^{\circ} \times 12 \frac{1}{}^{\circ} \times 5^{\prime \prime}$ approx. 120 only of these fine decks offered at non-repeatable price of $£ 1 \% .10 .0$. Non-callers add lof-carriage and

miles. Just right for approx. are bilgades complete with five valves and ${ }^{\prime \prime} \mathrm{ln}$ metal case. Size approx.
$9^{\circ} \times 6^{\circ} \times 3 \%^{\circ}$ Unused but not tested or guaranteed. El only, plus $2 / 8$ post and insurance.


# and NOW! me Belleaita UNIMAT 

 a self-powered multi-purpose machine shop


THREADING ATTACHMENT


POLISHING and GRINDING

YOURS FOR ONLY $50 \%$ and 8 mowthly DePosit
PAYMENTS OF
$5 \cdot 4 \cdot 6$ cash price £ $24 \cdot 17 \cdot 6$ Past Coupon NOW! FOR ILLUSTRATED BROCHURE

No bigger than a typewriter, yet outperforms machines many times its size. This precision portable machine shop is universally acclaimed as the finest tool ever developed for machining small parts made of steel, brass, aluminium, plastic or wood.

Because of its unique construction it can be simply converted from a Lathe into a Drill Press, Milling Machine, Tool Grinding Machine Grinding and Polishing Machine, Jig-Saw, Circular Saw, Threading Machine, Dividing Machine and Portable Press.



SH:I.ECTA HOME-M ISTER Takes any standard t" power wider range of jobs to be carried out. $30-$ dep. and
8 m .0 s. of $37 / 6(914.100 \mathrm{cash})$ 8 m. ps. of $37 / 6(214.10 .0 \mathrm{cash})$.
SFILEC POWHR PAK Very powerful unit for use with Home-Master, 20 - lep. and 8 m . ps. of 27 . 1210.9 .6
The Selecta Home-Master can also be supplled
With Bridses. Neonic $\ddagger$ Power Drill or Wolf Quartermaster if desired. 76 dep. and 8 m. DS A A 30 in . IATHE
7 '6 dep), and 8 m . ps. of $11 / 0$ ( 4.9 .0 casib )
WOLF QUARTER-
MASTER
A brand new type of power unlt of great power and adaptablility. Procislon engineered. Takes most
Wolf Caib accessorles. Cinconditionally tivaren. tred. $£ 9.9 .0$ or 15 - dep. $1 \&$
BRIDGES 'NEONIC' ! "
POWER DRILL
Improved version of the versatile amproved version of the versawle neon indicator in drcuit with
THE NEW 'B \& D' D. 500 DRILL.
Black and Deciker's very
latest. Eintiorely yre-deshanted Gitest. Entiprly yredegigntal
wower dritl with hellcal wowre and $t^{\circ}$ weared hehurk. smart i wo lone lint -1 . Rums at 2.500 r.p.m. Buift le precivion stnndirns, yet eosts only e8.19.8 or
front Mondex. 10 - dep. 8.8 m . s of 18 g. Shitahie for R. \& m . Toms. and Accessurio--.
ALL, ACCESSORIES FOR ABOVE MAKES AVAILABLE ON TERMS

58.8 cash
 ps. of $10 \%$ Adjustan Eult-in switch. 200250 v. A.C. With 4 blades.


PICADOR PUP For use with $⺊^{\prime \prime}$ power drtll units. lor turning. sawing, driling, grinding, etc.. with cradte. 15dep. \& $8 \mathrm{~m} . \mathrm{ps}$ of $21 / \mathrm{o}$
Accessorles avallalle.

## BER MONARCH

 4-Speed Iutoehance for bulloinginto a HiP1 Radiorram. Brand new.
As advertised
Guaranteed. Dircet from 8 \& factory 29.15.0 cash or 25i- dep.
 R.G. Chassits, F.M. Tuners. Loud-
speahers. Asik for lises.

Follow the FLUXITE way to Easy Soldering


No. II.
KEEPING THE BIT HOT
When on a long job place bit just outside heating flame and occasionally apply FLUXITE. This will help prevent it from detinning. Don't dip the bit into the tin of FLUXITE-put a little aside in a spare tin lid for the purpose.

FLUXITE is the household word for a flux that is famous throughout the world for its absolute reliability. In factory, workshop and in the home FLUXITE has become Indispensable. It has no equal. It has been the choice of Government works, leading manufacturers, engineers and mechanics for over 40 years.


Fluxite Limited, Bermondsey Street, London, S.E.1.


Accountancy Advertising Aeronautical Eng. A.R.B. Licences Art (Fashion Illustrating, Humorous)
Automobile Eng.
Banking
Book-keeping
Building
Business Management
Carpentry
Chemistry
City \& Guilds Exams.
Civil Service
Commercial Subjects
Commercial Art
Computers
Customs Officer
Draughtsmanship Economics
Electrical Eng.
Electrical Installations
Electronics
Electronic Draughtsmanship Eng. Drawing
Export
General Certificate of Education
Heating \& Ventilating Eng.
'Hi-Fi' Equipment
High Speed Oil Engines
Industrial Admin.
Jig \& Tool Design
Journalism
Languages
Management

Maintenance Eng.
Mathematics
M.C.A. Licences

Mechanical Eng.
Metallurgy
Motor Eng.
Painting \& Decorating
Photography
P.M.G. Certs.

Police
Production Eng.
Production Planning
Radar
Radio
Radio Amateurs
(C. \& G. Licence)

Radio \& Television
Servicing
Refrigeration
Sales Management
Sanitary Eng.
Salesmanship
Secretaryship
Servo Mechanisms
Shorthand \& Typing
Short Story Writing
Short Wave Radio
Sound Recording
Telecommunications Television
Time \& Motion Study
Transistors
Tracing
Welding
Workshop Practice
Works Management and many others
Also courses for GENERAL CERTIFICATE OF EDUCATION, A.M.I.H. \& V.E., A.M.S.E., A.M.Brit.I.R.E., A.M.I.Mech.E., A.M.I.E.D., A.M.I.M.I., A.F.R.Ae.S., A.M.I.P.E., A.M.I.I.A., A.C.C.A., A.C.I.S., A.C.C.S., A.C.W.A., City \& Guilds Examinations, R.T.E.B. Servicing Certificates, R.S.A. Certificates, etc.

- All equipment yours to keep
- Courses for Beginner or Advanced student


|  |  |
| :---: | :---: |
| To :- E.M.I. INSTITUTES, Dept. I44K, LONDON, W.4. |  |
| Please send, without any obligation, your free Book to:- |  |
| NAME | AGE <br> (if under 21) |
| ADDRESS |  |
| Subiect(s) of interest | $\left.\begin{array}{l} \text { With* } \\ \text { Without } \end{array}\right\} \text { equipment }$ |
| (We do not employ travellers or representatives) | *Delete as required |



## Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES " should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appointinents Department.

## WHICH OF THESE IS YOUR PET SUBJECT?

mectanical ENGINEERING Gen. Mech. Eng.-Main. cenance - Drauzhtsmma siib-Henvy Diesel-Di \& Press Tool Work - Weld ing LProduction Eng. lis \& Tool Design-Sheer Meral Work - Works Man arment - Minmg - Re foiseration-Metallurgy AUTOMOBILE ENGINEERING -Gen. Antanobile Eng.Alotor Maintenance \& Diesel_Garage Mngment. Diesed-Garage Mngmett Road Eng. - Reinforced WE HAVE A WIDE RANGE OF AERONAUTICAL COURSES AND (OUUSES IN FORESTRY, TMMHER TECHNOLOGY, PLASTICS, G.P.O. FNG., TEXTILE TECFINOLOGY, ETC., ETC.

One of these qualifications would increase your earning power WHICH ONE?
A.M.I.Mech.E., A.M.I.C.E., A.M.I.P.E., B.Sc., A.M.Brit.I.R.E., A.F.R.Ae.S., A.M.L.M.I., L.I.O.B., A.R.I.B.A. A.M.I.H. EITY V.E. COMMON PRELIM., GEN. CERT. 'OF EDUCATION, ETC.

## THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY



410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W. 8. Phone : WEStern 9861

WHAT THIS BOOK TELLS YOU

* HOW to get o better paid. more interesting job.
* HOW to qualify for rapid promotion.
- HOW to put some valuable letters ofter your name and become a "key-man "' quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
t WHERE today's real opportunities are... and HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering that appeals to you.
144 PAGES OF EXPERT
CAREER-GUIDANCE

You are bound to benefit from reading "ENGINEERING OPPORTUNITES," and if you are earning less than $£ 15$ a week you should send for your copy of this enlightening book now-FREE and without obligation.
ro: B.I.E.T. 410A, COLLEGE
house, 29-31, WRIGHT'S LaNE, KENSIMGTON, W.b.


Please send me FREE and without
obligation, a copy of "ENGINEERING
OPPORTUNITIES." I am interested in
(state subject, exam., or career)...........................................................
NAME ........................................................................................
ADDRESS.................................................................

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

IHE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD


Editorial and Advertisement Offices "PRACTICAL MECHANICS" George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C. 2 (c) George Newnes Led., 1958 Phone : Temple Bar 4363 Telegrams: Newnes; Rand, London

SUBSCRIPTION RATES Including postage for one year
Inland - . - 20s. per annum.
Abroad . : . - 18s. 6d. per annum.
Canada - - . 18s. 6d, per annum.

Copyrighe in all drawings, photographs and articles published in "Practical Mechanics" is specially reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproduction or imitations of any of these are therefore expressly forbidden.

## CONTENTS

Fair Comment
Exploring the Deep Ocean Filoor 270
Making and Using Archery Equipment
Repairing Pottery ... ... 276
An Electric Slide Valve Engine. 277
An Introduction to Nuclear Power

279
Why Be an Apprentice?... ... 282
A Portable Record Case... ... 283
Adding a Drawer... ... ... 285
Make Your Own Thermometers... 286
Building an Outboard Motorboat

## JUNIOR SECTION:

Woodworking Joints ... ... 293
A Child's Wheelbarrow and Running Your Own Magazine 297
Letters to the Editor ... ... 298
Trade Notes ... ... .... 304
Your Queries Answered ... ... 305
THE CYCLIST SECTION:
What I Think
Fitting a Hub Gear ... ... 22

## CONTRIBUTIONS

The Editor will be pleased to consider arricles of a practical nature suirable for publication in "Practical Mechanics." Such arricles should be written on one side of the paper only, and should include the name and address of the sender. Whilst the Editor does not hold himself responsible for mantuscripts, every effort will be made to return them if a stamped and addressed envelope is enclosed. All correspandence intended for the Editor should be addressed: The Editor, "Prucrical Mechanics," George Netomes, Ltd.r. Towver House, Sunshumpton Sireet, Strand, Landun, W.C.z.

## FAIR COMMENT

## EXTRA NEXT MONTH!-"THE PRACTICAL PHOTOGRAPHER " 16-PAGE PULL-OUT SUPPLEMENT

STARTING next month, each issue of this journal will contain as an extra, THE PRACTICAL. PHOTOGRAPHER pull-out supplement. It will, indeed, be a free photographic journal, containing each month articles on camera selection and adjustment, colour photography, developing, printing, the dark room and its equipment, camera accessories, enlarging, touching up, taking photographs, mounting, selling photographs and, in fact, every aspect of photography both practical and theoretical.

The decision to issue this supplement has been brought about by the greatly increased interest by our readers in photography, an interest which has been increasing year by year since the last war. It was obvious that the occasional articles which were published herein were insufficient to satisfy the demand for more photographic material, and it was felt that the subject is now of such wide national interest that it deserves a supplement all to itself. It will have its own free enquiry bureau and the articles will be contributed by experts in the various spheres of photography. This supplement will, of course, be in addition to the regular contents. Make sure of your copy now, by ordering the April issue of Practical Mechanics with the extra I6-page Pull-out PRACTICAL. PHOTOGRAPHER supplement.

## THE AMERICAN SATELLITE

THE successful launching in America of another artificial satellite provided further indication of the great advances which are being made towards the ultimate-namely, space travel. The American satellite is orbited at a higher altitude than Russian Sputnik 2, but this is undoubtedly due to its somewhat lighter weight. The Explorer, as the American satellite is named, weighs 30.8 lbs ., including 12.67 lbs . of final stage rocket. The maximum height of its orbit is 1,736 miles at a speed of 18,000 miles an hour, and its time of making one orbit round the world, is from 106 to 114 minutes. It is 80 in . long, 6 in . in diameter, and was launched on January 31st. Sputnik 1, however, weighed 184 lbs , took 96.2 minutes for an orbit at an altitude of 560 miles, speed 18,000 m.p.h. and was 23 in . in diameter. It was launched on October 4th, 1957. The more ambitious Sputnik 2 weighs $1,126 \mathrm{lbs}$., has a maximum altitude of 1,056 miles at a speed of $18,000 \mathrm{~m}$. p.h., takes 103.7 minutes for an orbit and is 15 ft . in diameter. This was launched on November 3rd, 1957. It is perhaps unfortunate that these great. achievements have been somewhat clouded by the importance attached to their political significance in relation to war. The real scientific deyelopments have received very little publicity indeed, for although neither Russia nor America has released very much technical information a great deal can be learned from deduction. From the British point of view, it is unfortunate that finance prevented us from being first. We are ahead of other nations in many aspects of this new science and our scientists are now ready to launch an artificial satellite as soon as the money is made available.

We should not forget the great pioneer work done by the British Interplanetary Society who, over 20 years ago, forecast with almost uncanny accuracy the design for stage rockets. The delicate machinery and instruments installed in these satellites is a miracle of design and the world awaits, after due lapse of time, release of details.-F. J. C.


IT was Aristotle who supposed the world to be made of four basic elements: earth, water, air and fire. Although this idea has long since been superseded, we can, nevertheless, usefully divide the surface of our world into these four constituents, rejecting, however, the last, since it forms so minute a part of the whole. If we consider the remaining three, earth, water and air, we can see that they are present, not intimately mixed, but on the whole
scparated by well-defined boundaries, each of which is a domain requiring special study and presenting its own problems.
The boundary between earth and air is the best known of all. Man has lived for many tens of thousands of years on the surface of the land and has studied and explored a great many aspects of it, and to-day we are justified in saying that we know a great deal about it. We cannot claim complete knowledge, for there are great areas such as the polar regions as yet unexplored and many problems yet unanswered, but in comparison with the other two domains our knowledge of the land surface is very extensive.

The surface between air and water presents a different kind of problem. Here we are faced with a mobile surface acted upon by the forces of tide and wind and one which man has been forced to study in order to be able to travel safely over it. But in spite of the thousands of years of practical experience in dealing with its moods it still represents a potential enemy to all who venture on to it, or who live on its borders.
It is the third domain, however, with which I wish to deal here, the ocean floor, where the earth and water meet to exclude 311 air and where man has seldom been. The. deep oceans cover over two-thirds of the surface of the world, and yet more is known about the shape of the surface of the Moon than is known about that of the bottom of the ocean. The dark abysses of the deep sea have always stirred man's imagination, bur it was not until the end of the eighteenth century that the first

> A Paper by A. S. Laughton, M.A., Ph.D., of the National Institute of Oceanography, read to the Royal Society of Arts on Wednesday, $20 t h$ November, 1957. with Sir Ernest Goodale, C.B.E., M.C., a Vice president of the Society, in the Chair

Fig. 1.-The Royal Research Ship "Discovery II."

successful steps of deep-sea exploration were made by sounding, using a weighted line. During the next hundred years an increasing number of expeditions took soundings and sampled the bottom in increasing depths of water. In 1840 Sir James Clark Ross made a sounding of 2,425 fathoms in the South Atlantic, this being the first truly deep sounding. It was made by allowing a weighted line to run freely from a large reel
in H.M.S. Challenger, to extend the scientific investigations of the deep sea to the more remote parts of the world. This expedition, which lasted from 1872 to 1876, resulted in a vast amount of information, which now forms the foundation of nearly all aspects of modern oceanography. The cruise reports, contained in thirty volumes and occupying an entire shelf in the library, took twenty years to work up and publish.

Although the Challenger was equipped with a steam winch, a deep sounding still took several hours and consequently only the bare outlines of the shape of the bottom were obtained. To-day, such a sounding is taken automatically every few seconds, using acoustic signals, as the ship steams along. On the other hand, the techniques for dredging samples from the bottom have changed very little from the early Challenger ones. We still have to haul a heavy steel and wire basket over the bottom and we still run the risk of losing everything if the dredge gets caught up. And to-day the operation still takes just as long. The remarkable thing is that in the eighty years since the Challenger expedition the number of species discovered on the deepsea bed has not greatly increased in spite of the numerous expeditions which have been made.

## Aims of Exploration

Before I go on to talk about our modern techniques of deep-sea exploration, I should like to consider what it is that we are trying to find out. In its aim, sea floor exploration is like continental exploration. The first thing we want to know is the lie of the land. Are there mountains and valleys, plains and canyons? And, if so, what is their shape, how big are they and where are they? Topographic surveying is ex rmely important and forms the framework on which the rest of the studies will be built. In this way we can divide up the sea floor into various regions, each with its own characteristic features and its own


Fig. 2.-Profile of the sea floor at 1,800 fathoms as recorded by an echo sounder. (vertical exaggeration $7: 1$ ).
on one of the ship's boats and timing each IOO fathoms, a change of speed indicating the bottom. The small boat was necessary to minimise drift and thus to keep the line as nearly vertical as possible. The line had to be reeled in by hand, making such soundings extrenely arduous. In 1871 the Royal Society and the Admiralty collaborated in organising a circumnavigatory expedition
problems. All our results will then be correlated with these regions.
The topographic surveys result finally in contoured charts and sections, but these cannot be detailed enough to give us an idea of what the bottom actually looks like The second phase of exploration then is concerned with the scenery of the botom as it would appear if the water were all
removed and we could wander around at will. This is equivalent to eye-witness descriptions of what the continental explorer has seen and to the photographic records he has made.

It is virtually impossible to reduce to a tabular or numerieal form the infinite detail that makes up the scenery and so the only records that can be made are inevitably photographic. With sea floor exploration, photography provides both the means of finding out and the record.

## Geologist's Work

Important members of any exploration team are the geologist and the biologist. They can collect specimens that can be examined and analysed in the comfort of the laboratory and provide the scientific data necessary for a full appreciation of the environment. So, with the sea floor, the collection of specimens is a major part of the exploration and takes us from the stage of observation into the stage of detailed analysis. We want to know what the sea floor is made of and how it came to be as we find it now. Not only do we want to know the composition of the surface layers, but we also want to know what lies beneath them and how far they extend.

Here we come into the much more difficult region of exploration, where we have to rely on complicated and indirect means to give us the answers we want. Since it is impossible to have access to great masses of buried rock strata that form the Earth's crust bencath the ocean, we have to use sound waves as our messengers and depend on such information as the velocity of sound in the strata to give us a clue to their composition.
To describe these techniques in detail here would take too long, but in principle they depend on the use of explosions in the sea to generate the sound waves which are picked up by sensitive hydrophones and recorded after being reflected and refracted by the rock strata. These seismic methods, as they are known, are used extensively in oil exploration.

All these studies are interesting enough in themselves and in the data they provide that have immediate and direct application (such as, for instance, the possibilities of oil accumulations under the oceans), but they are also clues in the much more far-reaching problems of why the ocean basins are as they are to-day, when they were formed, how they differ from the continents they surround and whether they are changing. There have been in the past great arguments about the geological history of the oceans, and even to-day there are several opposing theories based on evidence from widely differing sources. Many people have noticed the fact that if the continents could be moved around like pieces of a jigsaw puzzle, they could be combined into a comparatively solid block by bringing America eastwards to the coast of Europe and Africa, the Antarctic and Australia up into the Indian Ocean. The theory was developed by Wegener that the continents did, in fact, start as a block together on one side of the Earth's surface and that subsequent forces (whose origin is obscure) moved them to their present positions. Wegener postulated that all this-took
place in the comparatively recent era of the Cretaceous-that is, only a hundred million years ago, as compared with the age of the Earth of three thousand million years. We do not believe to-day that such major movements of the Earth's crust could have taken place so late in its life. The geophysical evidence obtained from our exploration of the ocean floor suggests that the oceans of the world are much older than this and have not altered radically since the crust of the Earth cooled and solidified. Furthermore, there appears to be no major difierence between the structure of the crust under the Atlantic and that under the Pacific, as one would expect on the continental drift theory. I cannot here, however, go into all the interes:ing theories about the history of the


Fig. 3.-A deep-sea underwater camera.
ocean basins, and more conflicting evidence is even now being obtained from measurements of rock magnetism. I have mentioned just one theory to illustrate how the results of geological investigations of the ocean floor are so vital in helping to solve the problems of crustal history.

## Biologist's Work

The last field of study that I have already mentioned is the biological one. I will not say much about this, since I do not claim to be a biologist and cannot assess the problems accurately. But in my own particular field of deep-sea photography I have been faced with examining and identifying the various animals and fishes that have appeared in the pictures. Our knowledge of the bottom-living fauna of the deep sea has hitherto been limited to the results of dredge hauls in which all sorts of specimens, animals, rocks and mud, are brought up mixed together and frequently damaged. Photographic studies and direct observation (when this is at all possible) enable us to see the fauna in its own environment. We can study the way it lives, its movemen's
and postures and the tracks and burrows that it makes, all in an undisturbed state. We may even discover new species that have escaped the dredges or which are perhaps too big and too fast to be caught by conventional trawls. There is always the fascinating possibility of observing the monsters of the deep that have captured the imagination of so many authors-the giant squid or the sea serpent.

## Exploration Technique

I have said enough about what we are trying to do when we explore the deep-sea floor: I now want to examine how we go about it and what we have found. A basic requirement for any sea exploration is a suitable ship and this fact dictates the manner in which all the work is done. The economics of oceanographic work have to be related very closely with those of running and maintaining a ship and this, as you may guess, is an extremely expensive business. The ship has to be big enough to be able to cross the largest oceans and to be able to remain at sea for three weeks or so, and to provide laboratory and living facilities for both scientists and crew. Much of the preliminary examination of the results must be carried out on board. The ship must be equipped with at least one deep-sea winch that contains enough wire to lower instruments to the bottom: in fact, most research ships have two or even more.

The Royal Research Ship Discozery II, which is now run by the National Institute of Oceanography is, perhaps, bigger than most oceanographic research ships. She was built in 1929 for the Discovery Investigations Committee, whose aims were to study the marine biology of the waters of the South Atlantic with reference to the whaling industry. As she was going to spend so much time near the ice edge of Antarctica, her specifications were rather more stringent than those of other research ships that do not have to travel so far or in ice conditions. She has a displacement of some 2,000 tons and carries a crew of about 50 , together with nine scientists. She has six laboratories on board for various aspects of the workchemical, biological, geophysical, and so forth-and deck equipment that can handle anything that she is required to put over the side. I will. not say that we never grumble at the ship, for she can roll as badly as any in rough weather and her speed is quickly reduced with a head wind. But in comparison with other ships her facilities are excellent.

In planning a cruise of geophysical exploration of the sea floor there are two approaches that can be used, and this choice is forced on us by the fact that we can never rely on the weather to be good. Most of our work has to be carried out in winds less than strong to gale, and for many purposes calm weather is necessary.

We can either decide in advance to study a particular area or feature, steam there and stay around until the weather enables us to carry out our programme, or else we can say that we will steam towards a given area and whenever a nice day occurs stop the ship and explore wherever we happen to be. So long as there are large areas about which we know nothing, then we can most usefully employ the second method, but when we know the general picture, we want to make more detailed studies and to fill in gaps in the survey, and then we have to hope for the best weather or devise experiments that can be made in bad weather.

## A Typical Cruise

The cruise that I am going to describe employed both these approaches as you will see. The Department of Geodesy and

Geophysics at Cambridge and the National Institute of Oceanography planned a joint geophysical cruise for July and August in 1956 under the leadership of Dr. Maurice Hill and Sir Edward Bullard. The cruise, which lasted six weeks, was divided by a stop of three days at San Miguel in the Azores for fuel and provisions and for the recuperation of the scientists and crew

Our target for the first half of the cruise was a valley in the mid-Atlantic ridge where we were anxious to make some measurements of the heat flowing through the ocean floor. This valley has been the subject of investigations on previous cruises and it has been suggested that it runs along the whole length of the mid-Atlantic ridge from near Greenland to the south of Africa. The heat that flows out through the Earth's crust is related to the amount of radioactivity in the rocks forming it, and it is known that cerrain rocks, in particular the granites which form a large part of the continental crust, have much higher radioactivity than the basic rocks such as basalt. The heat flow, then, can help us to identify the suboceanic rocks. But, although this was one of the principal objects, we also stopped whenever possible to carry out seismic work, to dredge for rocks to core into the bot'om sediments and to carry out the first extensive trials of a new deep-sea underwater camera that we had designed and built at the Institute. Similarly, in the second half of the cruise, in which we went farther south, we seized the opportunity provided by the good weather to do as much work as we could where we happened to be, and we, in fact, concentrated our studies for several days on a small seamount that we discovered.

Throughout the whole cruise while we were steaming we made continuous measurements of both the depth, to give a profile of the ocean bottom, and of the intensity of the Earth's magnetic field. We wanted the magnetic field measurements because they Are influenced by the presence of rock masses buried beneath the sediment, which otherwise cannot be seen. As these instruments require constant attention, all the scientists on board combined to keep a 24 -hour watch on them. This is one of the more tedious duties that befall seagoing oceanographers, but it is nevertheless one of the most important, since continuous records, wherever the ship goes, steadily build up an overall picture of the vast areas of the sea bottom.

## A Profile of the Ocean Bed

The depth profile is obtained with an echo-sounder. This is a machine which sends out a short, ultrasonic signal, or "ping," and listens for the echo. The time delay between the outgoing "ping" and the echo is a direct measure of the depth and this is automatically recorded on paper by a rotating pen. A "ping" is sent out every five seconds and so, as the ship moves on, the shape of the bottom is gradually built up on the record. For the sake of convenience and for accuracy of depth measurement the record is made so that the vertical scale is exaggerated to seven times that of the horizontal scale and all features appear much steeper than they really are. Fig. 2 shows a section of the sea bed at a depth of $\mathbf{1 , 8 0 0}$ fathoms (or nearly two miles) just south of Madeira Island, where the bottom is fairly rough and probably consists of banks of unconsolidated and semi-consolidated sediments. The appearance of the record is often most useful in interpreting the nature of the bottom. For instance, an area where there are a lot of large rocks strewn around gives a much longer echo than an area of uniform sediment, just as in a cave you get reverberations from your voice echoing all around, whereas from a cliff face the echo is sharp and distinct. A
hard bottom gives a much stronger echo than a soft bottom, as you would expect.

What have our echo-sounding surveys given us? We have prepared a contoured chart of the ocean bottom of part of the north-eastern A+lantic based on some 12,000 miles of steaming by Discovery II and by ships of the Admiralty Hydrographic Department. We can see that the continents are bordered by a shelf of shallow water, usually less than 100 fathoms in depth, that ex'ends out about 50 miles or so from the coast. Then, going farther seaward, the bottom plunges quite steeply to the great oceanic depths of several thousand fathoms. Compared with typical slopes on the land, the con inental slope is fairly gentle (for instance you could quite easily ride a bicycle up the continental slope), but extending for a great many miles. The ocean basin of the castern Atlantic is bounded on the west side by the mid-Atlantic ridge, which rises to the surface in some places, such as Azores


Fig. 4.-Typical view of the deep ocean floor at 2,550 fathoms. The ooze has been disturbed by the burrows and tracks of bottom-living fauna. The track on the left, which is 4 in . quide, has probably been made by a holothurian or "sea cucumber."

Islands. On the whole the bottom is fairly flat, comparable, perhaps, with the Home Counties, but in some places it is exceptionally flat. These exceptionally flat areas are the abyssal plains and extend for many hundreds of miles with gradients of less than one in a thousand. They are to be found on the continental side of the ocean basins, and the way in which they acquire such extreme flatness is still an unsolved problem.
Superimposed on the basic pattern of a broad basin confined on one side by the continents and on the other by the midAtlantic ridge, we find a number of smaller features such as seamounts, which are usually volcanic in origin, and submarine canyons, cut in the continental shelf or even, in one or two rare cases, cut across the flat floor of the basin. In the region of the castern Atlantic off the mouth of the Mediterranean there is a great concentration of seamounts, some of which rise out of depths of several miles to within a few fathoms of the surface, where it is possible to anchor the ship.

## Underwater Photography

It is in the vicinity of these seamounts that we have taken most of the underwater photographs shown here.

First I want to describe the camera and what is involved in using it. Photographically, the problem is not difficult, since the water near the bottom is extremely clear and all that is necessary is to place a window between the camera and the water. It is true that the water imposes some limitations on the distance we can see and also affects the focal distances but the chief problems
of design are concerned with keeping everything waterproof against the high pressures of the deep ócean (up to three tons per square inch) and making the whole unit selfcontained and automatic, so that the only control necessary from the ship is that of the wire on which it is lowered.

The camera (Fig. 3) consists of three units, each of which is contained in its own pressure-proof case, together with its own batteries. The lowest unit is the light source, which is an electronic flash similar to those used for indoor photography. No daylight penetrates below a few hundred feet from the surface and so the photographs need artificial illumination. For the same reason the camera needs no shutter since it is always dark. The camera is above the light, so that we can see the shadows behind the objects to judge their height. The spools of the camera hold 15 ft . of 35 millimetre film, and this enables us to take up to a hundred pictures in a sequence without raising the camera to the surface. There is a small motor inside to wind the film on to the next frame whenever a picture has been taken. The third unit is the acoustic signalling device or "pinger" which signals to us at the surface, maybe three miles away, that the camera has reached the bottom

When we want to do a camera station; then, we first examine the bottomby echo - sounding to find out the depth and to place the ship over the feature we want to look at. Then, with the ship stopped and heading into the wind, we lower the camera over the side on our 4 millimetre hydrographic wire. As it goes down we can hear the regular "ping" every five seconds on the hydrophones that we have in the water. These regular "pings" enable us to keep in contact with the camera as the signals get weaker. In deep water it may take half an hour to reach the bottom, and everything must be kept quiet to hear the signals at all. When the camera touches the bottom a fast group of "pings" is transmitted, and the winch operator stops and reverses the winch as soon as possible. The camera is lifted a few fathoms off the bottom and a minute later is lowered to take another picture. By that time the flashlight has recharged and a new film is in position. This process is repeated for as long as we can afford, giving us a series of pictures while the ship drifts, and then we bring the camera up. The whole station in deep water may take three hours. We like to develop and print all the pictures on board and use these as the basis for further experiments such as dredging or coring.

## Composition of the Ocean Floor

In the deep ocean basins the bottom is composed of sediments, a mixture of clay particles and the remains of millions of small creatures-the foraminifera-that live in the surface water and sink when they die. It is
(Continued on page 306)

No. 1 of a Serics Describing How the Equipment for This Ancient Sport May
be Made at Home By F. HOOK

WHEN the bow and arrow bicame obsolete in warfare, archery continued to be practised as a sport, and, at the present time, it is a sport which is growing in popularity. In most districts there is an archery club where the beginner is always assured of a welcome and where


Long bow


Flot baw
Fig. 1.-Sections of the two types of bow. he or she may learn the ancient art and join in the various competitions.

Little equipment is needed in order to follow the sport. In fact, most of it may be made by the prospective archer for an outlay of about $£ 2$. The following notes will deal with such topics as making the bow, making strings and arrows together with the making of such accessories as shooting tabs, arm guards, targets, etc. Any person with average carpentry experience and a few of the more common woodworking tools may easily make all the equipment needed for this sport.

## The Bow

The traditional timber for bow making is yew, but, unfortunately, this wood is difficult for the amateur to work, and suitable wood is not always easy to obtain. But there is an excellent substitute available known as Degame or Lemonwood. The


Fig. 3.-Archery is a sport for the ladies too.

bows, the traditional long bow and the more modern flat bow. The long bow is very smooth in action, but it will not cast an arrow as far as the flat bow. Nevertheless, it is very good for a range up to sixty yards. The main difference between these two bows is in the cross-sections (Fig. 1).
Before proceeding with the constructional netes it will be as well to describe the various parts of the bow. These are shown in Fig. 2. Normally the bow is held in the left hand and the stave is perpendicular to the ground. The part of the bow above the


Toper to
$3 / 8^{\prime \prime}$ et ends


Fig. 4.-Details of the centre part of a flat bow:
grain of this timber hand is the upper limb, and it is a little is so fine that it may longer than the lower limb below the hand. almost be ignored when working it. Well-seasoned staves of this timber may be obtained from Irvin and Sellers Ltd., Forge Street, Derby Road, Liverpool, 20. The average cost per stave, already fine sawn to the size required, is $£ 1$.

There are two kinds of

At the extreme ends of the limbs are two small grooves filed around the stave known as the upper and lower nocks. It is into these nocks that the bow string is placed. The side of the bow facing away from the archer is the "back" of the bow and the side towards the archer is the "belly."

The first step in the construction of the bow is to determine its length, and this is related to the length of arrow to be used, as shown in the table on the next page.

| $\begin{aligned} & \text { ARROW LENGTH TO BOW } \\ & \text { LENGTH } \\ & \text { Flat Bow } \end{aligned}$ |  |
| :---: | :---: |
| Arrow <br> 25 in. <br> 26 in. <br> 27 in. <br> 28 in. | Bow <br> 5 ft . oin. <br> 5 ft . 4 in . <br> 5 ft .7 in . <br> 5 ft . 9 in . |

The length of the arrow is a personal factor and measured off from the anatomy of the bowman. To do this, stand with your arm and fingers extended. Place the end of a yardstick against your armpit, extend your fingers along the stick and get someone to read off the length to the second joint of the index finger. This length is the
tillering stage later on the thicknesses will probably have to be further adjusted.

The spare piece of wood, 12 in . in length, may now be planed up and glued in place, 6 in. either side of the handle centre. The handle riser should be glued on with one of the resin glues such as Aerolite which is immensely strong and also waterproof. When the glue is properly dry, the shape between lines $D$ and $E$ may now be worked. A bow saw and spokeshave will be useful tools for this task

Finally, from points B and C, the handle riser is smoothed off in a regular slope towards its extremities.

## Tillering the Bow

At this stage the bow has been shaped and the handle riser fixed. The edges of the upper and lower limbs have been left square, and so they must be left until the bow is tillered.

Before tillering can be commenced, a nock must be filed at the end of each limb. This is shown in Fig. 5. The bow may then be strung. At this stage the bow is very stiff and it may help to hold the bow in a vice by the handle. The handle must be wrapped in some soft leather to prevent damage to the wood by the vice jaws.

A tillering board is needed and consists of a piece of wood 30 in . $X 1$ in. $X 3$ in. shaped according to Fig. 6. The bow rests in V-shaped end of the
Fig. 5.-Nocks as viewed on back, side and belly of the bow. correct arrow length. It is important as it renders the overdrawing of the bow impossible if the bow is held and drawn properly. More will be said of this later.

## Making a Flat Bow

Having determined the correct length for the bow, it is advisable to order a stave from the timber merchant a foot longer than this dimension. This extra foot will serve to make the handle riser.

When the stave is delivered, saw off to the correct length and then lightly smooth down with a finely-set smoothing plane. Be careful to remove only enough material to take away any sign of saw marks or other surface defects.

Make a mark A (Fig. 4) midway in the length of the stave. Make a mark $B$ rin. above $A$ and a mark $C$ in. below A. The space between $B$ and $C$ is the handle. The limb on the side of $\mathbf{B}$ will be the upper limb and that on the side of $C$ the lower limb of the bow. From this it will be seen that the upper limb will be zin. longer than the lower limb. This enables the arrow to be shot from approximately the centre of the bow.

Now 7in. from the centre of the handle mark off a line at $D$ and $E$. These are the points of greatest width in the bow. i.e., $17 / 32$ in. From these points the bow tapers off to a width of $\frac{3}{8}$ in. at either end.

Tho width of the handle is $\frac{3}{4}$ in between points B and C. From these points to D and $E$ a smooth curve is drawn.

At this juncture the tapers from $D$ and $E$ to the ends of the stave may be planed. The shaping of the handle must be left until later.

Next the thickness of the limbs is planed down. At Gin. from the handle centre the full $\frac{3}{4}$ in. thickness is kept. At 8 in . from the centre of the handle the thickness is $\frac{5}{8}$ in., half-way to the end of each limb the thickness is $\frac{1}{2}$ in., finally ending up at $\frac{3}{8}$ in. thickness at the extreme ends of the limbs. These dimensions are approximate, and at the
board and the string is drawn back into one
of the nearer notches at first when the bow of the nearer notches at first when the bow
is still stiff. With the string thus drawn back observe the curves of each limb. They should correspond. If there is a noticeable difference, make a mark on the stave where there appears to be stiffness. Gradually release the string and work in


Fig. 7.-Tillering by means of pegs and a wall.
the stiff area with a finely set plane or a scraper. Remove a little at a time and repeatedly test the bow on the board.
When symmetry of the two curves has been obtained, the bow may by now be less stiff than at first, and the string can be drawn back to the full length of 26 in . At this juncture the weight of the pull must be tested with a spring balance. That is to say the hook of the spring balance is hooked over the centre of the bow string and it is noted how many pounds is required to pull back the string to the 26in. mark.

Beginners should use a lighter pull rather than a heavier one. Heavier pulls will of course make for a longer cast of the arrow. But the newcomer to the sport is not immediately con-


Poss over
cerned with a long cast but rather with learning a good shooting position and shooting for accuracy. It is suggested that a 35 lb . pull is suitable for the novice.

If, therefore, the pull on the spring balance exceeds 35 lb ., more material will have to be removed from the thickness of the bow on the belly side (not the back). No fixed rule can be given as to how much wood will have to be removed: experiment alone will decide. Proceed with care, using the plane or scraper and still keeping an eye on the contour of the drawn bow, as with the first stage of tillering. Do not remove any material from the handle during this tillering process. The handle does not bend and to remove material from this point is to weaken the bow.

Another method of tillering is to fix a number of pegs into a smooth wall as shown in Fig. 7. A number of horizontal parallel lines are drawn so that one may more easily judge the comparison of the two limbs.

When the tillering is completed the bow is finished off by rounding the edges of the stave with a file and glasspaper. The nocks are finished and the tips of the limbs are also rounded.

The handle may be finished by binding with leather or cord, whichever is preferred.

After the final sanding is completed, apply a coat of yacht varnish, diluted equally with turps. Allow this to dry out for 48 hours. Lightly rub down with fine steel wool. Apply a second coat of undiluted varnish. Allow to dry, rub down and then apply a last coat of varnish.

Some archers like to finish the bow by using boiled linseed oil repeatedly rubbed in with a soft cloth. The aim of either finish is to exclude moisture from the wood of the bow. In this connection it may be advisable, therefore, to complete the varnishing of the bow before applying the leather grip to the handle.

## Making Bow Strings

Bow strings can be purchased quite cheaply but the reader having made the bow himself, may also like to make the strings.

Usually the bow string is made of linen
hread but these days there are other possi-
bilities in the use of synthetic threads. Barbour's No. 40 linen thread is the one most used but bootmaker's thread No. 12 is also suitable. Before commencing to make strings, the breaking strain of the thread must be known in order to arrive at the number of threads per string to use. The linen thread mentioned above has a breaking strain of about 7 lb . per thread.

There are two types of bow string. The most usual, and the one recommended to the beginner, has a permanent loop at one end, and at the other end the loop is formed
now carefully pared down with the knife to a taper. Then the ends are bent round to form a loop, Fig. 9, and a tapered group is laid against each long group of the string.

Now hold the loop in the left hand with the thumb at the ends of the twisted parts already made. The previous process of twisting a group of strings to the right and laying over to the left is again carried out, the two new groups of threads being made up of some long threads and some short tapered ones. Gradually the short ends will disappear in the main threads of disappear in the main
the bow string. When the loop


Fig. 9 (Left). Forming the loop.

Fig. 10 (Centre).The finished loop.

Fig. 11 (Above).Timber hitch. has been formed (Fig. 10), draw out the threads so that an even tension is in each thread. Wax the string again. Now twist the whole group of threads about 35 times and then rub well with the leather cloth to soften the wax and bind the whole string together.
The looped end of the string goes round the nock at the upper end of the bow.
with a timber hitch. Thus one may adjust the total length of the string by altering the hitch. The other type of string has a pernanent loop at both ends. The little adjustment possible with this string, about $\frac{1}{2}$ in, is made by twisting or untwisting the string as required.

## Materials Required

In addition to the linen thread already mentioned, a piece of board about 2 ft . longer than the length of the bow, two $\frac{3}{8} \mathrm{in}$. dowel pegs to fix into the board, or two stout nails, a lump of beeswax and a sharp knife will be required.

The pegs or nails are fixed into the board at a distance equal to the length of the bow plus 18 in.

Tie one end of the thread to one of the pegs. Now wind the thread round and round the pegs to make a skein. The number of threads to be put on is determined by the breaking strain of the thread. For example, if each thread had a breaking strain of Iolb, 20 threads would be needed to give a total breaking strain of 200 lb . which is about the strength needed. That is to say the thread must be wound round the two pegs ten times. The beginning and end of the thread must now be tied. In this winding process keep the tension on each thread the same as far as possible.

## Forming the Loóp

When the ends are tied off, the two groups of threads, one on each side of the pegs, are thoroughly waxed by rubbing up and down their length with the beeswax. Rub well in with a piece of soft leather.
Cut the skein of threads at each peg and keep the threads in two groups. Hold the two groups of threads in the left hand as shown in Fig. 8, at a distance of about roin. from their ends. With the right hand twist one group of threads tightly to the right and lay it over the other group towards the left. Continue this action with the other group of threads and repeat, using each group of threads alternately. Repeat these processes until about 3 in . of rope-like string has been formed.

The remaining ends of the threads are
in the same way that the upper loop was finished. The end of the completed string must be whipped to prevent unravelling.

The string is formed in a timber hitch (see Fig. II), to secure it to the lower nock of the bow.

## Bracing the Bow

The distance between the loop and the timber hitch is a matter of experiment. At first adjust the length to be a little less than the length between nocks on the bow. Slip the loop over the upper end of the bow


Fig. 1.4.-Adjusting bracing height of fistmele.

The free end of the string may be strengthened for the last $12 i n$. of length by twisting in some tapered threads about half in number of the threads in the bow string

, Fig. 12.-Serving the string.

and let it slide down towards the handle. Secure the timber hitch to the lower limb around the nock.

Now place the lower end of the bow against the inside of the left foot, back of the bow towards you, Fig. 13. Hold the handle of the bow with the left hand. With the right hand pressing on the back of the top limb of the bow and pulling with the left hand, slide the loop of the string with the fingers of the right hand towards the end of the bow until it slips into place in the upper nock.
The distance between the handle riser and the string is called the bracing height or fistmele (see Fig. 14). This distance is tested traditionally with the clenched fist and extended thumb.

## Serving the String

Before the bow can be used the string must be served. The disposition of the serving and method of doing it is shown in Fig. 12. The diagram shows only the method of serving, needless to say the turns are all pulled in close together as tightly as possible.

The serving is done with some fine thread and sufficient layers are wound on so that the served string will push into the nock at the end of the arrow with sufficient friction to prevent the arrow falling off the string under its own weight.

Constant shooting will wear down the serving to a loose fit into the nock after which a new serving must be made.

The reader will understand that the number of threads in a bow string will affect its weight and so will have an influence upon the distance the arrow can be cast, A different weight string will upset the sighting of a bow. Therefore it is advisable to keep a note of the exact number of threads which are put into the string for reference when making a new string. Always have one or two spare strings to hand in case of breakage when at a shoot.

A warning must be given at this juncture! Resist the temptation to draw the bow and let it go with no arrow. The action might well fracture the bow.
(To be continued)

# RIEPA/ARINTM 

No. 2.-Hints on the Materials and Methods Used

SOMETHING can be done to clean up crazed crockery by placing it in water which is very slowly brought up to the boil (there is a risk here of the pot disintegrating), or by soaking it in a hypochlorite solution or in a solution of chloride of lime, followed by immersion in a dilute solution of hydrochloric or sulphuric acid. This, of course, is properly a bleaching process, and generally, except in the case of valuable articles, it is perhaps hardly worth the trouble-and risk-of applying.

Often enough a dish or a jug gets a piece knocked out of its side, the piece being so hopelessly fragmented that cementing it back is quite out of the question. In this event the piece of crockery is either imnediately discarded, or, at least, used-in the secret hope that it will quickly become smashed up aliogether.

There is, however, quite a good repairing technique for this sort of trouble. Here, indeed, is pottery surgery proper, the idea being, to fill up the offending gap in the vessel's side in something like the manner in which a patient dentist slowly fills up a defective molar or a careful surgeon delicately implants a new fragment of bonc substance.

The actual technique of this pottery surgery must naturally vary a good deal, each case having to be considered and treated according to its individual circumstances, but the following description of an actual piece of work will enable the reader to put the method into practice.
A valuable antique Italian spouted jug happened, by accident, to get a piece knocked out of its upper rim. The piece was shat'ered and was quite incapable of being


Fig. 7.-An early china handleless cup broken in two pieces.
(Concluded from page 221, February issue) becomes plastic when rolled between the hands. This was rolled into a flat sheet and pressed on to the inner and undamaged side of the upper edge of the jug so that a correct replica of the inner surface and curvature was obtained. The same was carried out with another piece of the moulding wax on the outer jug side. The two


Fig. 8.-The cup repaired.
moulded pieces of wax-outer and inner sides-were then slid round on the upper edge of the jug until they covered the gap, thereby providing "walls" for the latter Between these moulded wax walls the moulding material was carefuly poured, being gently prodded and compacted down with a blunt stick, particular care also being taken to see that the material was compressed evenly around the two reinforcing pins which had been previously fitted into the broken edge of the jug. The level of the moulding material was raised slightly above the level of the jug edge.

After the moulding material had set and hardened the wax "walls" were pulled away and the upper edge levelled down to the height of the remainder of the jug rim, this being
replaced. Patiently cutting and grinding another piece of pottery to fit the gap and cementing and/or riveting it was impossible owing to the difficulty in matching the shade of the material and, also, in getting the peculiar rim-curvature of the jug. The only feasible repair method was an actual moulding operation.
First of all, a couple of very fine holes were drilled about $\frac{1}{2}$ in. down into the broken edge of the jug. In these were inserted steel pins-fine gramophone needles, as a matter of fact-the purpose of these being to reinforce the moulding material which was to be laid over them, and thus to provide an additional "key" for the inserted material.

It was now necessary to obtain the correct curvature of the outer and inner sides of the jug. This was effeoted by taking a quantity of children's play-wax, a material which
done by gentle sandpaper treatment. The hardened "inset" was then very carefully smoothed off with fine glasspaper and given a couple of coats of cream cellulose paint to match the rest of the jug at that area.
Now this technique can be adapted to a host of different pottery repairs. Holes in the side of valuable jugs, dishes and other ceramic articles can be filled in and built up neatly, making the repair only visible on the very closest examination. The repaired parts, particularly if reinforced, have considerable strength and will usually withstand normal. wear.

## Moulding Materials

The moulding materials which can be used for this purpose may comprise any type of fine-grained waterproof luting or cement. Plaster of paris may be used, but it is very
brittle, even when a little powdered asbestos is incorporated with it to give it additional strength.

A good.cement is magnesium oxychloride, which is similar to dental cement. Such stuff is readily made by slaking finely powdered calcined magnesia with a 40 per cent solution of magnesium chloride (made by dissolving 40 parts of magnesium chloride in 60 parts of water). This cement hardens in two days. It expands very slightly on setting and therefore exerts a good grip.

## Silicate Moulding

The latest cements of this nature are those which are based on an alcoholic solution of ethyl silicate containing a trace of acid. Ethyl silicate is now obtainable from most chemical suppliers. It is a clear liquid water-white. When treated with acid it gradually sets to a jelly and then to a hard mass of pure white silica, which is waterproof and inert.

The mode of preparation of the ethyl silicate is to take 19 parts of it and add 8 parts of aloohol (surgical spirit will do) and 3 parts of very dilute hydrochloric acid ( 0.06 per cent HCI). This mixture is shaken or stirred until the liquid does not separate into two layers. One hour after this stage a further 15 parts of ethyl s.licate are added to the mixture. In this "hydrolysed solution" form it will keep for several weeks but will, in time, set to a jelly. Now, if sand, three parts; fine silica powder, one part; and (optionally) asbestos powder, one part, are slaked with the hydrolysed ethyl silicate solution as above prepared, the , resulting white mass will set hard within about 24 hours. The incorporation within the mass of 1 per cent of calcined magnesia will considerably decrease the setting time of the mixture.

For pottery-repairing purposes, particularly in the case of high-grade work, this modern ethyl silicate method has many possibilities

Incidentally, of course, any of these moulding mixtures can be used for filling-in small intervening gaps which may exist when pottery pieces are riveted and/or cemented together. Figs. 7 and 8 show an early china handleless cup before and after repair by this method.

## FOR THE MODEL MAKER

## THE MODEL AEROPLANE HANDBOOK

Construction and Principles of all Types 12/6 (13/7 by post)

MODEL BOAT BUILDING
Constructional details of Model Sailing and Power Boats
5/- (S/9 by post)

## THE HOW-TO-MAKE-IT

 BOOK12/6 (13/9 by post)
From George Newnes, Ltd., Tower
House, Southampton Street, Strand. W.C. 2

# An Flectric Slide Value Engine 

## By S. J. GARRATT

## Constructional Details of an Interesting Model



T
HIS engine is in reality a form of electric motor in which an iron plunger takes the place of a piston, the iron plunger being pulled to and fro by means of solenoids which act like magnets while the current is "on," but cease to attract the iron when the current is "off." There are two solenoids placed end to end so that the engine is double acting, and the electrical contacts are operated by means of an eccentric and sliding contact arrangement. The complete model, therefore, looks very much like a real steam engine. Although not so powerful, it will
the 'shaped pieces are required and one circular one; they should all be a tight fit on the tube and must, of course, all be threaded on to the tube before soldering on the wire rings.
The winding of the solenoids may now be tackled, and for this purpose it is well worth while making a simple winder, as shown in Fig. 4.

ends of the bobbin and prevent the wire touching the brass tube. Bind the paper on with a couple of turns of thin sewing cotton.
The end of the wire will probably be

bent or kinked for a few inches, so cut this part off and thread (from the inside) the new end through the small hole near the centre of the bobbin, allowing about 4 in . to protrude, as' shown in Fig. 4, then wind on a layer of wire. Keep the turns quite close together and fill up the space right up to the central cheek, the wire should be wound fairly tightly but not nearly tight enough to risk breaking it.

When the first layer is completed, wrap on another layer of writing paper exactly as before, then continue with the second

## Winding the Bobbin

Buy a 4oz. reel of No. 24 gauge enamelled copper wire from an electrical dealer's. Fix the bobbin on the winder and wrap a piece of writing paper round the central tube between the cheeks. The paper should be cut about I/I6in. wider than the distance between the cheeks and nicked with scissors about every $\frac{1}{4}$ in., as shown in Fig. 6. This will allow the paper to splay out slightly (see Fig. 4) at the

## The Base

First make the base, which is in the form of an inverted wooden tray of the dimensions given in Fig. 2. The top may conveniently be made from a piece of $\frac{1}{4} \mathrm{in}$. ply wood and the sides of rin. $\times \frac{1}{2}$ in. material. This may be either tacked or screwed together.


Fig. 4 (Above).Details of the winder.

Fig. 2 (Left). - A plan view.

Fig. 3 show's the construction of the double bobbin which takes the place of the cylinder and crosshead guide. The central portion is a piece of thin brass tube $\frac{1}{2}$ in internal dia. and $4 \frac{1}{2} \mathrm{in}$. long. The slots in the side can be cut out with a file, and two rings of brass wire about I/I6in. dia. are soldered on in the position indicated. These are to keep the wooden end cheeks in position. These end cheeks are made to the dimensions given in Fig. 3. Two of


Length as required

Fig. 6.-How the
Fig. 5.-Securing the end.
paper is cut.
layer. An assistant will probably be required when fixing the paper. Put on eight layers of wire altogether, with a paper between each layer, and be careful to see that the wire does not sink below its proper layer, particularly at the ends of the bobbin, otherwise there might be a short circuit and the model will not work. Careful fitting of the paper layers together with careful and close winding of the wire will avoid this. At the end of the eighth layer cut off the wire, allowing about 6 in . to spare, then thread this end to and fro through the four small holes, as shown in Fig. 5'; this will effectually hold the end of the coil and remove all danger of the wire becoming unwound.

The other half of the bobbin should then be wound in exactly the same manner. The
 the crosshead.
the webs are of brass $\frac{1}{4}$ in. square in section. Both webs should be drilled together, so as to keep the holes in line. Later on, when being assembled, the two webs are soldered together and cut out in the centre of the shaft after soldering is completed, as shown in Fig. 8.
The bearings are made of brass $1 / 16 \mathrm{in}$.


Fig. 8.-The crankshaft.
direction of winding does not matter, though, of course, once winding has commenced it must continue in the same direction until that particular bobbin is filled.

Screw the solenoids down to the base by putting in small screws from underneath; the position is indicated in Figs. I and 2.

## The Iron Plunger

Fig. 7 shows the iron plunger and the crosshead. The plunger is just a piece of iron tube $1 \frac{1}{2}$ in. long and about $1 / 16$ in. thick. The outside diameter should be $\frac{1}{2}$ in. or rather less, so that it will slide freely inside the central tube of the solenoids; if neces-


Fig. 9.-The bearings for the crankshaft.

Fig. 10 (Right).-The eccentric.
sary, the plunger should be eased a bit with a file or emery cloth. It should move quite freely in the tube, and a little shake will not matter, but it should not be smaller than is necessary to allow free movement. Plug up the ends of the plunger with hard wood and drill a central hole for the brass "piston rod." Solder two brass washers on to the $\frac{1}{8}$ in. brass rod to prevent the rod from pulling out of the plunger (Fig. 7). The crosshead is a short length of $\frac{1}{2}$ in. brass rod, slotted with a file, as shown in Fig. 7. This is drilled with a $\frac{1}{4}$ in. hole for the piston rod, which should be soldered in place. The $1 / 16 \mathrm{in}$. hole is for a hinge pin.

The connecting rod is illustrated in Fig. 7. The big-end bearing is made from $\frac{1 i n}{}$. thick brass filed to shape; it should be split and the small bolts fitted before the central $5 / 32 \mathrm{in}$. hole is drilled. The rod itself is a separate piece of brass soldered into a slot in the big-end bearing. The crankshaft is made from a piece of $5 / 32 \mathrm{in}$. steel, but
 cutting one out of $1 / 16 \mathrm{in}$. sheet brass with a fretsaw. from a brass collar soldered on to the centre. These collars can be obtained from toy shops complete with grubscrew.
Extra weight should be added to the rim by cutting out two rings of $I / I 6 \mathrm{in}$, sheet brass (3in. outside diameter and 2 in . inside) and soldering a ring on each side of the wheel already cut out. The flywheel in the heading sketch was made in this way. Next make the eccentric shown in Fig. 10. The central disc should be $\frac{3}{8}$ in. diameter by I/ 16 in . thick, but the two discs forming the flanges may be much thinner and $\frac{7 n}{}$ in diameter. A farthing will do admirably for the centre disc, while the boss is another collar as recommended for the flywheel boss. Fix the collar, one flange and the collar, one flange
entre disc all together by soldering, but leave the other flange to be fixed by the two small bolts. The centre of the collar should be $5 / 32 \mathrm{in}$. from the centre, drill after the eccentric is completed.

## The Eccentric Strap

This is quite a simple affair : see Fig. II. It should be a free fit on the eccentric when assembled, but should not have any considerable amount of slack. The eccentric rod should not be soldered on to the strap until the model is assembled.

The last piece to be made is the sliding contact arrangement illustrated in Fig. 12. There is nothing very difficult about this, but it requires to be carefully made, as the parts are rather small. The whole thing should be fitted up on its little baseboard and screwed on to the side of the solenoids, by means of a screw into each
wooden end check, when complete. The contacts, both fixed and sliding, are of brass 1/i6in. thick. Screw the fixed contacts into place and drill the two holes in the centre contact for the long screws to hold the spring; then file all three contacts at once to bring them exactly to the same level. The sliding contact may be bent very slightly between the fingers so as to make sure that the ends make contact; the small bolt at the extreme end is for the eccentric rod. The little spring should be of very thin brass, bent to a curve as shown at the top of Fig. 12; its pressure can be adjusted by means of the two screws.

## Assembling the Model

The model may now be completely assembled. The solenoid is fixed as already described and in the position indicated in Fig. 1. Next screw down the crankshaft bearings in such a position that the plunger moves freely to and fro, and is central in the solenoid when the crank is upright as shown in Fig. I. To prevent sideways movement of the crankshaft, thread a small piece of brass tubing on the shaft between the crank web and the bearing on the fiy-


Fig. 11.-The eccentric strap.
wheel side, and another piece of tube between the bearing and the flywheel itself.

To adjust the eccentric, turn the flywheel until the plunger is at the inward end of its stroke, then fix the eccentric so that it 3 as high above the shaft as possible; move the sliding contact exactly to its middle position (as shown at the top of Fig. 12), fit the eccentric rod and solder it to the eccentric strap.
(Conchuded on page 284)


Slot I"long, width to suit screws


Fig. 12. - The sliding contact arrangement.


THE bigger the core the smaller is the chance of a neutron escaping from it. As the size of the core is increased, a point is reached at which the rate of escape of neutron; added to their rate of capture, is just equal to the rate at which they are generated by fission. At this point the core is said to have achieved "criticality," or the capacity for a chain reaction, and has reached what is known as its "critical" size.

The important point thus emerges that the size of a natural uranium reactor is determined mainly by nuclear considerations of criticality and not by the power output. The power output is limited only by the permissible rate of heat release, and this in turn is governed only by matters of engincering design, such às the cooling system and materials of construction.

It has been shown that the use of a moderator in a suitable size of core enables criticality to be achieved with a natural uranium fuel. It has not been emphasised, however, that the achievement of criticality demands that every source of non-fission

(a) Pressurised water reactor

(b) Boiling water reactor

## Moderators and Coolants

Possible moderators of practical interest are:

Heavy water Light water Graphite Beryllium

(Continued frcm page 229, February issue)

## Types of Nuclear

 Reactorcapture of neutrons must be ruthlessly eliminated from the system. The materials used in the construction of the core must be chosen not only to withstand the high heat release rates that a compact power producer demands but to cut down to the minimum the waste of neutrons. But when the best has been done, the critical size of a graphite - moderated thermal reactor, fuelled with natural uranium, remains relatively large.

## Enrichment

Fortunately, there are ways of cutting down the critical size. It was mentioned earlier that the two isotopes of uranium, 235 and 238, cannot be separated by chemical processes but that they can be separated by


Fig. 10 (Left).Pressurised and boiling water reactors.

physical means. Physical separation of the two isotopes is actually being carried out in this country today, so that it is possible to increase the uranium 235 content of fuel, which then becomes "enriched" uranium.
With enriched uranium as the fuel, the battle for criticality no longer limits design possibilities. Not only can the core size now be reduced but coolants and materials of construction can be used which will permit higher rates of heat release, thus higher specific power outputs. The range of possible types of reactor is thus broadened.

In conjunction with these materials it is possible to use any of the following coolants:

Heavy water
Light water
Gas
Liquid metal
For the industrial type of reactor, a beryllium moderator can probably be ruled out on account of cost as compared with the alternative solid in the form of graphite, despite the smaller size of core to which the use of beryllium leads. Heavy water, on the other hand, though expensive, appears able to com-
pete with its rivals as a moderator, but due to its great cost, a high specific heat rating of the reactor is imperative. Heavy water as a coolant in conjunction with any other material as moderator cannot be justified on any grounds.

Of the liquid metal coolants, sodium appears best able to meet the requirements of low neutron absorption, low vapour pressure, good thermal conductivity, and chemical computibility with constructional materials. It reacts violently with water and for this reason will not be considered for use with a heavy or light water moderator. The only moderator available for use with this coolant is therefore graphite.

## Light Water

A characteristic feature of light water as a moderator is the low ratio of volume of moderator to that of uranium. The value of

This process of elimination leaves the six types of reactor lis.ed below for more detailed study.

## Moderator

Heavy water
Heavy water Heavy water Light water Graphite Graphite

## Coolant

## Heavy water <br> Light water Gas <br> Light water Gas Sodium

## Pressurised and Boiling Water Reactors

In the case of any reactor employing water as a coolant, there is a choice between two systems:
(a) Pressurised.
(b) Boiling

In the pressurised system, shown diagrammatically in Fig. Io, the coolant is maintained at high pressure below the corresponding saturation temperature so that boiling at any point in the system is suppressed. American sources quote pressures as high as 2000 lb . per sq. in. abs., the corresponding saturation temperature being 636 deg. F. After leaving the reactor vessel, the coolant is passed through a heat exchanger, where it transfers heat to the water and steam used in a steam power cycl:. It is then returned to the reactor vessel to pick up further heat from the core. The pressure in the secondary (power cycle) side of the heat exchangers would be about 600 lb . per sq. in. abs. corresponding to a saturation temperature of 486 deg . F.

In the boiling system, shown diagrammatically in Fig. IO, the coolant enters the lower end of a vertically disposed core at a temperature just below its boiling point, boils on its way through, and leaves the core containing a large proportion of steam. Above the core the coolant forms a free surface. The space between this surface and the top of the reactor vessel is filled with steam which is fed to the steam power plant direct.
The lower pressure in the reactor vessel in the case of the boiling system implies a

Fig. 13 (Right). -Gas cooled $\mathrm{D}_{2} \mathrm{O}$ reactor.

Fig. 12.-Vertical section through 1,000 M.W. $\mathrm{D}_{2} \mathrm{O}$ boiling reactor.

detailed consideration of the heavy water reactor, an outstanding advantage is its ability to use solely natural uranium as its fuel.

Against this advantage must be set the disadvantage of the high cost of heavy water. Although it is claimed in the U.S.A. that the current quotation of $\$ 28$ per lb . can lead to an economic design, the use of heavy water in this country would either have to be preceded by the construction of an extremely expensive heavy water plant or imply reliance on foreign sources of supply.
The ratio by volume of moderator to fuel is around 20 to 1 , thus easing the problem of disposing the fuel within the core. On the other hand, this high volume ratio leads to a fairly large diameter for the reactor vessel, of the order of 13 ft . or so if natural uranium is to be used.

Such a size of reactor vessel encourages the adoption of the lower pressure provided by the boiling system. Taking this pressure as 600 lb . per sq. in. abs., the thickness of the vessel wall would be about 4 in . An additional advantage of the boiling system in this case is to be found in the very small amount of heavy water outside the reactor vessel in the form of steam and condensate as compared with the larger quantity in lizuid form in the external piping and heat exchanger of the pressurised system.

An example of a heavy water boiling reactor developing 1,000 MW heat was described by members of the Argonne National Laboratory at Geneva. The design of fuel clement employed is shown in Fig. II. The fuel is subdivided into a large number of closely spaced plates to provide a large amount of wetted surface for heat transfer purposes.
Each plate is of natural uranium clad with a .o4in. thickness of zirconium alloy called Zircaloy, the overall thickness being $.15 i n$. The water passage between adjacent plates is .3 in., and the plate assembly is housed in a 6 in . diameter Zircaloy tube, the active length of which is 12 ft . The tubes number 295 in all and are pitched at 8 in . on a triangular lattice to form a core about $\mathbf{I} 2 \mathrm{ft}$. in diameter. The core is surrounded by a heavy water reflector having a thickness of Ift. 3 in , at the sides and base and 3 ft . at the top.
Fig. 12 shows the general arrangement within the reactor vessel. Cooling water
this ratio lies in the region 2 to 3 . Use of a gaseous coolant with such a moderator would require the fuel rods to lie coaxially with pressure-resisting tubular gas passages, the space between the tubes being available for the moderator. It readily follows that the low ratio of moderator to uranium volume will only permit extremely small areas for gas flow and therewith too low a heat rating for a power producing reactor. A disadvantage of water as a coolant is its inability to achieve the high temperatures required on thermodynamic grounds without subjection to very high pressures.
A graphite moderator bears a ratio by volume to that of uranium of about $45:$ I. Consequently, as has already been seen, the core size will generally be large. With water cooling this disadvantage is allied to that of low thermodynamic efficiency.
reduction in capital cost or the possibility of an increase in size. Pumping power is also reduced and the necessity of a heat exchanger between the reactor coolant and the working fluid is dispensed with. On the other hand, special precautions must be taken in the power plant to ensure against leakage of the somewhat radioactive steam. Also, the consequences of a burst fuel element are more serious since contamination of the entire steam plant is involved.

## Heavy Water Reactor-Water Cooled <br> Turning now to a more

March, 1958
the vessel through the three $18 i n$. inlets at its lower end. It passes up within the fuel tubes at the top of which it contains 80 per cent. steam by volume. Feedwater from the power plant condenser enters the vessel through a separate pipe and is distributed by a heater system in the spaces between the fuel tubes just above the grid on which they stand. In rising up between the fuel tubes, this water keeps the average temperature of moderator and reflector down to about 200 deg. $\mathbf{F}$. The upflowing streams of water within and between the fuel tubes mix above the core. This slightly subcooled water is then returned through, the annular downcomer and the three 24 in . outlets to the circulating pumps.

The pressure within the reactor vessel is $6001 b$. per sq. in. abs. resulting in the generation of dry saturated steam at 486 deg. $\mathbf{F}$.

The total weight of moderator in such a reactor is given as 89 tons, the corresponding figure for the uranium being 38.75 tons.

A light water coolant has been used in conjunction with a heavy water moderator in the Canadian NRX reactor. This, however, is not a power producing reactor and no published work on a power producing


The fuel elements consist of rods or plates of natural uranium clad in a light metal which withstands a maximum temperature of $550 \mathrm{deg} . \mathrm{C}$. , and are enclosed in a light alloy baffle tube. Between the baffle tube and the calandria tube there is a narrow gap for the passage of gas cooling the baffle tube. This arrangement ensures a low temperature for the calandria tube.

The coolant is carbon dioxide gas under a pressure of 590 lb . to 880 lb . per sq. in. The power required to circulate the gas is about 15 per cent. of the electrical output. The gas enters the reactor at 90 deg. C. and leaves at 420 deg. C. The steam conditions are 750 deg. $\mathbf{F}$. and 425 lb . per sq. in. abs. in conjunction with a dual pressure system. Saturated steam at 30lb, per sq. in. is used in the low pressure stage, providing about 20 per cent. of the total power. The net electrical output from a nuclear power station of this type is anticipated to be upwards of $100 \mathrm{M} . \mathrm{W}$.

Fig. 14 (Left).-Fuel channel of gas cooled $D_{2} \mathrm{O}$ reactor.


## Gas Cooled Heavy Water Reactor

The introduction of gas cooling enables higher steam temperatures to be attained in the power plant without resort to very high pressures. It also permits an appreciable reduction in the quantity of heavy water.
A design for a reactor of this type has recently been proposed in the U.S.S.R. The general arrangement of the reactor is shown in Fig. I3, whilst Fig. 14 illustrates the form of fuel channel. The reactor is enclosed in a steel pressure shell. Within the shell is a light alloy tank pierced though with calandria tubes. Between the tubes the tank is filled with heavy water. The fuel elements are suspended in the calandria tubes from removable plugs in the upper seal. The space above the heavy water level communicates with the body of the steel shell so that equal pressures are maintained in both regions.

$$
1
$$

## Light Water Reactor

In the case of the light water reactor, as has already been mentioned, the volume of moderator to fuel is two or three to one, so that the core lattice pitch is highly contracted. In consequence, the diameter of the reactor vessel can be reduced to about twothirds of that required by the heavy water boiling reactor fuelled with natural uranium. Against this reduction in size must be set the necessity to use fuel
of some 30 per cent. to 50 per cent. enrichment in a light water reactor. The reduction in size leads to a wall_thickness of 8 in. or so at a pressure of $2,000 \mathrm{lb}$. per sq. in. abs. so that a pressurised reactor becomes a more practicable possibility when using light instead of heavy water. Furthermore, the hold-up of light water in liquid form in the external piping and heat exchanger does not represent the high capital investment as is the case with heavy water. Nevertheless, the light water boiling reactor can still offer the attraction of dispensing with this piping and heat exchanger, added to which is a reduction in cost of the reactor vessel itself, consequent on the lower coolant pressure. The boiling and pressurised light water systems are thus more highly competitive.

The fuel element in the light water reactor is conveniently of the plate type or bundle-of-rods type. An example of a plate type fuel element as used in the American Experimental Boiling Water Reactor (EBWR) is shown in Fig. 15. In the American pressurised water reactor (PWR) now under construction at Shippingport, this type of construction is used for a number of highly enriched fuel, or "seed" elements. The remaining "blanket" elements are of the bundle-of-rods type.

Fig. 16 shows a sectional view of the Shippingport reactor. The reactor is designed for a heat rate of 340 MW.
(To be continued)
Control drive mechanism housing



$$
1
$$ Ters.



" ${ }^{\text {E }}$$E$ is as good with his hands as any other man in this shop and he has not 'served his time'." This sentence is often found on the lips of certain men on the shop floor and causes us to stop and ask ourselves the question: "Why be an apprentice?"

Many a parent and son have given this question hours of thought and it is a question of real seriousness. In these days when semi-skilled labour and female labour is being used abundantly in engineering, the anxious parent wonders if serving an apprenticeship at comparatively low wages is worth the sacrifice. Why should an apprentice have lower wages than a labourer of the same age? This is a question which immediately comes into the mind of the parent.

Here are the answers to some of the queries which may arise in the mind of a parent with no knowledge of, or connection with, the engineering industry.

Over the last number of years a vast number of firms have introduced apprenticeship schemes, and the value of apprenticeship training is now coming into its own. The skilled tradesman must be able to excel in all phases of his craft while the semi-skilled person need only be able to satisfactorily carry out a series of usually repetitive operations. The tradesman requires, therefore, a longer period in which he must receive instruction and training in his craft. This training and the provision of training facilities are costly and during a part of the training period the apprentice is non-productive. He is non-productive for a longer period than the semi-skilled person who is given training limited to the necessary operations to perform the job.

The shortage of skilled craftsmen, technicians and professional engineers in Great Britain is causing numerous firms great concern and the school leaver is now in a position where he can make a choice of craft, firm, conditions, etc. The wise preapprentice will be guided by his teachers, schoolmasters and careers masters, while the Youth Employment Service and other advisory bodies will endeavour to advise the placing best suited to his technical ability and practical aptitude. There are opportunities in the engineering industry for boys of various standards, and in most apprenticeship schemes the parent is assured that the apprentice will be given every opportunity to reach the level of his inherent ability or aptitude.

Table A gives an indication of the types of apprenticeship, namely, Craft, Student and Graduate, and some idea of the age at which a person would take up such training.

TABLE A

| Age | Type of <br> Apprenticeship | Usual <br> Duration |
| :---: | :---: | :---: |
| 16 | Craft | 5 years |
| $17-18$ |  |  |
| $20-\mathcal{U p w a r d s}^{2-4}$ years | Student <br> Graduate | $2-3$ years |

In the case of a boy leaving school at is it will be understood that in most industries he is unable to commence his appren-

## This Serious Modern Problem is Discussed by A. W. FERRIER

ticeship until he is 16 , but most education authorities make provision for this by providing a pre-apprenticeship course of one year's duration with expenses paid.

The entry qualifications vary with the type of apprenticeship, but Table $B$ shows some of the qualifications which may be necessary. These can vary also with the supply and demand, type of firm, number of applicants, etc.

The practical training varies, of course, with the type of apprenticeship. It takes the form of training for the job and is graded according to the amount of theoretical training undertaken by the apprentice. The main
difference is that the craft appreatice concentrates on being able to do the job while the other types of apprentices are concerned with obtaining knowledge of how the job is done.

Having outlined the types of appzenticeship we shall now see that an apprenticeship is a training for the future. It is an investment. This training will obtain for him a post commensurate with his ability and enable him to hold down the post with confidence. Why serve an apprenticeship? The answer of every good trades-

Publishers' Publicity Circle Silver Trophy

A SPECIAL silver book designed and
actually made by Mr. F. J. Camm, Editor of this journal, for annual award by
the Publishers Publicity Circle here rests on the top table at their annual Christmas Lunch in London.


Mr. Alan Delafons, Editor of the Penrose Annual, announces the award on behalf of the panel judges. Left to right: Mr. F. F. Camm, Mr. Clark Ramsay (Sales and Publicity Manager, George Newnes, Ltd., and Vice-Chairman Publishers' Publicity Circle), Mr. David Patrick (Pitmans, Chairman of the Publishers' Publicity Circle).


## A Smart Cabinet to Carry Your Gramophone

RAMOPHONE records are expensive (I and few people are willing to take risks when carrying them about. The ideal solution is a carrying case and the one shown in Fig. 3 can be made for less than Ifs.

## Construction

The front and back of the case are made

front elevation


Dan
Fig. 1.-Front, end and plan elevations of the case and lid.
from $3 / 16 \mathrm{in}$. plywood and two pieces are required 14 in . square. Cut from one of the pieces a strip $2 \frac{1}{2} \mathrm{in}$. wide and put it aside to form the front of the lid later on. The sides and bottom of the box are formed from 3 in . $\times \frac{1}{2} \mathrm{in}$. (finished $\frac{3}{8} \mathrm{in}$.) ramin and all the dimensions can be seen in Fig. I. The box is assembled as shown in Fig. 2, using

## Records <br> By C. J. J.

$\frac{1}{2} \mathrm{in}$. csk screws, making sure that the screw heads are flush with the surface of the wood. Check that all the parts are a perfect fit, take the case to pieces again, and then finally glue and screw into place. A reinforcing strip of $3 / 16 \mathrm{in}$. plywood must be glued and screwed into position on the inside of the back of the case at the top as shown in Fig. I to provide a firm fixing for the hinges

## The Lid

A piece of approximately $2 \frac{1}{2}$ in. wide $\times \frac{1}{2}$ in. ramin is cut to form an easy fit inside the top of the case and the $2 \frac{1}{2} \mathrm{in}$. wide strip


The hinges should be fitted next and these are recessed into the wood of the case. In the original all the recessing was carried out in the lid and the other hinge plate screwed straight on to the back, but it is equally feasible to recess both plates. Adjust the position of the hinges until you are satisfied that the lid opens and closes easily and fi:s accurately into position, then remove the hinges prior to covering the case.


The reinforcing strip is not shown.


Fig. 3.-The completed record case

## Covering the Case

Leatherette paper was used for this and from the wide range of colours and finishes available a grey imitation snake skin paper was chosen. Ordinary office glue of the type available from any stationers was used as the adhesive.

The method of covering will possibly vary according to the size of the sheets of leatherette paper available, but the method shown in Fig. 4 is the one used by the author. The reader will have to use his own ingenuity to make sure that the case is completely covered in the corners, but the inset sketch shows how the author tackled the problem. The job may be made easier by gluing small pieces of the leatherette paper over the corners, and then covering over the top with the large sheet. It is better to cut away the spare folds of paper at the corners rather than fold them underneath as several folds of paper will make the covering too thick. It was found advisable to cover over the hinge recesses too and then

| 2 pieces $3 / 16 \mathrm{in}$. plywood $14 \mathrm{in.sq}$. 4 ft . 6 in. ramin $3 \mathrm{in} . \mathrm{x}$ in. | .. 5/6 |
| :---: | :---: |
|  |  |
| fasteners |  |
| 2 sheets leatherette paper |  |
| 2 rin. hinges |  |
| 4 gliding castors |  |
| In addition, two pieces of plywood 14 in . x 2 in . |  |
| and 14 in . $\times 3$ in., 4 dozen $\frac{1}{2}$ in. screws, roundheaded screws for the fasteners and some |  |
|  |  |
| paper for covering the inside will be require |  |
|  |  |
| Suitcase fittings are available from Frank |  |
|  |  |

screw through the paper when fitting them, this eliminated the white edge of wood which would have been visible along the butt of the hinge. The basic shape only is shown in Fig. 4 for covering the lid. Allowance will have to be made for the edge of the wood.

## The Fittings

The best method of fitting the catches is


Van Nostrand's Practical Formulary, Edited by W. R. Minrath. 336 pages. Price 45 s . net. Published by D. Van Nostrand Co., Ltd.

$\mathrm{O}^{\prime}$VER 800 formulae that can be made up at home are contained in this book, together with information to enable them to be applied. Selection has been made with an eye to ease of preparation and only the minimum of equipment and technical skill is required. Chapters include : How to Use this Book; Surface Treatment-Wood; Lacquers, Paints, Enamels, etc.; Formulae for Metal Surfaces ; Cements, Plaster, Glass and Related Substances; Household Cleaning, Polishing and Related Products ; Photographic Formulae; Cosmetics, Hand Cleaners and Related Products; Food Products and Farm and Garden Products. Several useful appendices and a comprehensive index are included.
Space Flight and Satellite Vehicles, by R. B. Beard and A. C. Rotherham. 150 pages. 15s. net. Published by George Newnes Limited.

THIS is a review of the history of space flight development, an assessment of present knowledge and a survey of future prospects. The interested reader with some basic scientific knowledge will gain from this book a wide appreciation of the principles and problems involved. Interest has

to screw one half in position on the body of the case, close the lid, fit the top half of the catch and put in the locked position, then mark through the rivet holes on to the wood. Small chromium plated round head screws are used to secure both parts of the catches.

## Positioning the Handle

Care must be taken to position the handle in the centre of the lid. This can be done by placing the handle and fitting approximately in position and then checking with a rule and finally marking through the screw-
holes in the fitting when in the correct position. An alternative method is to cut a piece of paper the exact size of the top of the lid, mark out the position of the screws on it and then place it on the lid and mark through it with an awl. Four gliding castors are fitted on the bottom of the case to protect the covering material when the case is stood down.

Finally, the inside of the lid and as far down the inside of the case as can be conveniently reached may be neatly covered with white paper or marbled paper of the type used in bookbinding.
been stimulated all over the world by the launching of the Russian satellites and here will be found the answers to many of the questions which will occur to the thinking man.

The subject is fully dealt with, starting from basic priciples. The methods of achieving space flight, the uses of satellite vehicles, the "why " and "when" of spaceflight are all comprehensively discussed. Illustration is both by sketches and photographs and a bibliography and index are included.
Radioisotope Laboratory Techniques. By
R. A. Faires and B. H. Parks. 243 pages.

25s. net. Published by Gedrge Newnes,

## Ltd.

THE aim of this book is to tell the scientist and technologist how radioisotopes may be used safely and effectively. The need for this information has been growing ever since the use of radioisotopes began to increase several years ago and now this comprehensive volume gives detailed information to aid the scientist and technologist as well as the newcomer. The authors' own experience in the Isotope School at Harwell and elsewhere has enabled them to deal with the subject in a practical way. Chapters on the elements of nuclear physics, radiation and radioisotope production are followed by Laboratory design, hazard control and waste disposal. These are further chapters on laboratory equipment, detection and measurement, one on assessing the feasibility of isotope usage, and others on applications and techniques.

Several valuable appendices conclude the book. There are over 90 diagrams and four half-tone plates.

## An Electric Slide Valve Engine

(Concluded from page 278)
The only thing now is to wire up the connections. To make the engine look as much like a steam engine as possible the terminals-of which two are requiredshould be fixed out of sight underneath the base. Run a wire from one terminal through the baseboard and solder it to the edge of the central fixed contact, taking care that the solder does not run up on to the level surface. If it does you must file the surface flat again. Now take one end (it does not matter which) of each solenoid coil and fasten or solder them both to the other terminal. Then solder the free end of the coil nearest the crank to the edge of the fixed contact nearest the crank, and lastly solder the end of the other coil to the remaining fixed contact. It is very important that the enamel should be scraped off the wire before making a connection.

An accumulator is the best source of energy for this model. If it does not work satisfactorily at first, try al ering the position of the eccentric by slackening the grub screw and twisting the eccentric forward or backward a few degrees at a time until the best result is obtained. Oil all the moving parts except the contact surfaces, and adjust the pressure on the contact spring without introducing unnecessary friction.


A Modification of Wide Application

By H. A. ROBINSON

secured to them. Fitted thus the underside of the hardboard and under edges of the ends were flush and a continuous surface was formed right across.

## Suspension

The drawer was hung from the hardboard by the side runners, shown in Fig. 2, and shaped in each case from a single piece. They could have been built up from lengths of $\frac{1}{2} \mathrm{in}$. square and $\frac{1}{4} \mathrm{in}$. square wood, gluing and inserting small screws at close intervals. In length the runners were cut to fit between the inner faces of the trolley legs.

The rebates of the runners were positioned a little closer together than the inner faces of the legs so as to give the biggest drawer capacity possible and yet

Fig. 1.-
The trolley
with its ad Jed
drawer. ensure that the sides did not scrape against the legs or be in danger of doing so after a shade of wear sets in. In the writer's trolley a clearance was allowed of a trifle under $\frac{1}{4} \mathrm{in}$. each side, but exact measurements will have to be obtained from the trolley being dealt with.

## Making the Drawer

Full dimensions are given, for the drawer meal would be even more convenient if it had a drawer to hold serviettes and other light table "furnishings."

Fitting such a drawer is well within the scope of the average home craftsman. As will be seen in Fig. I, the extra feature in no way spoils the lines of a trolley; indeed, the one shown has been definitely improved by it, having gained a more solid look.

## Construction

To give a cover to the "tray" and so keep out dust the inside of the trolley was first prepared, as shown in Fig. 2, with a rectangle of hardboard, $\frac{1}{8}$ in. thick, cut to fit between the ends and sides, small squares being taken out at the corners to accommodate the inner edges of the legs, which impinged a little on the under-top space. To hold this in position $\frac{1}{2}$ in. thick strips, $\frac{1}{8}$ in. less in depth than the ends, were screwed to the inner face of each end-piece and the hardboard


Fig. 3.-Cross section and part plan of drawer.
hardboard base was held in a channel $\frac{1}{8}$ in. deep and $\frac{1}{8}$ in. high taken out of the inner faces of the sides and ends and positioned $3 / 16 \mathrm{in}$. up from the lower edges. The board needed careful cutting so that it fitted in the channel quite tightly.

Before the final assembly the runners were put in position on the sides of the drawer. These were $5 / 16 \mathrm{in}$. square strips held by small screws and glue, the ends being neatly bevelled to give a finished appearance.
All being completed, ends, sides and base were put together, glue being used at the principal joints and a panel pin at each of the four corners. There was no need to fit knobs or handles to the drawer ends as


Fig. 4.-Method of jointing.
it can be pulled out readily by fingers placed beneath. Assembly is shown in Fig. 5.

## Fitting and Finishing

Drawer and runners should be finally tested for easy sliding in the rebates and when any adjustments that are necessary have been made the whole hardboard cover attached under the trolley with screws, as previously described.

The tray and runners can be finished to match up with the rest of the trolley, the end-pieces being polished. It is interesting to note that a drawer thus fitted pushes out equally well at either end of the trolley.


Fig. 5.-Drawer assembly.
Fig. 2.-Suspending the drawer.
as made would do quite well for trolleys near the size, or some widening could be readily effected for larger sizes, to give maximum capacity. Depth would remain the same for a whole range of widths.
The external dimensions are $20 i n$. ${ }_{98}^{5}$ in. $\times{ }_{2}^{2 \mathrm{Z}} \mathrm{in}$ in. (see Fig. 3). Component parts are two end-pieces $9 \frac{5}{8}$ in. $\times_{2} \frac{1}{8}$ in. $\times{ }_{8}^{5}$ in., two sides $19 \frac{1}{4} \mathrm{in}$. $\times 2 \frac{3}{8} \mathrm{in} . \times 5 / 16 \mathrm{in}$. and a hardboard rectangle 19 in . $\times 9_{4}^{1 / 2} \mathrm{in}$. for the base.

To strengthen, the sides were let into the ends by the joint in Fig. 4, the thickness of the end-pieces allowing for this. The

## PRACTICAL HOME MONEYMAKER edited by f. J. CAMm <br> MARCH ISSUE NOW ON SALE

PRINCIPAL CONTENTS: Contemporary IronWork; Designing Showcards: House Numbers in Wrought Iron: Passe Partout Binding; Home Shoe Repairing; Budgerigars for Profit; Bees for Pleasure and Profit ; Tartan Scarves and Hand-woven Ties; Gesso Decoration: Finding Your Market and many other profitable articles.

$\mathrm{O}^{\prime}$RDNARY cheap thermometers are not very accurate and they can easily be made at home. Chemical thermometers of good grade cost over fir each -largely due to labour and laboratory upkeep, etc. You can thus make yours much cheaper. They may be designed for use in a living room, the loft, the greenhouse, the sick-room, baby's bath water, motor radiators, soil, photography, chemical processes, sweet making, etc. It is not possible, nor would it be advisable, for the amateur to attempt to make a clinical thermometer for taking body temperature. For this purpose always buy a thermometer with a National Physical Laboratory Certificate.

## Apparatus Required

For the most part this is quite elementary, and most of it will be found in the kitchen. The actual filling of the thermometer, however, should be done in the workshop or on a good thick covering of newspaper, as the dyes used will stain a kitchen table badly.

The capillary tubing required can be ordered at your local chemist's, from any laboratory suppliers or from Messrs. Laboratory Glass Industry (Clapton) Ltd. The


Fig. I.-Soda capillary tubing of a suitable size.


Fig. 2.-Marking the tube into lengths.
dyes used are not critical; as long as they will dissolve in alcohol they will suit.

## A Simple Room Thermometer

This thermometer can be mounted on a wooden stand or made to be part of a mantelpiece ornament, etc. With practice you can turn these out by the dozen for your friends or for sale.

When delivered the tubing is usually in 3 ft . lengths and this will have to be cut into suitable pieces. Start by cutting them into 12 in . pieces to allow for errors in blowing the bulb; later, gin. pieces are sufficient. The tubing suggested has an internal hole of about $\frac{1}{2} \mathrm{~mm}$. (do not use a hole smaller than 4 nor greater than 1 mm .), this size is easily worked in all respects (see Fig. 1). Finer tubes may be used later for special jobs, but not by the

beginner. Soda glass tubing should be used for cheapness and ease of working.
To cut, take a triangular or rectangular file and, using a corner of it, make a scratch across the tubing (see Fig. 2). Hold the tube in two hands close to the scratch, with scratch uppermost, and bend it gently downwards. It will then snap cleanly. If you are working in the kitchen make sure no chips could fly into open food. File off any razor-sharp edges which may remain. When using a rectangular type file do not use a corner adjacent to the flat side.

## Sealing One End

It is possible to make the thermometer without a special burner. The large roaring burner fitted to most gas stoves will do the job, but the manipulation, especially for a beginner, is somewhat tricky. A large bunsen burner or a builder's blow-lamp is ideal. The job is somewhat easier using a standard bunsen burner, as the flame is smaller and can be made yellow at ease for annealing If you are using a blow-lamp or gas stove you will have to anneal by holding the glass about a foot away from and above the flame.
Close the air holes of the bunsen burner and put the gas on full (Fig. 3A). Hold a piece of tubing at its centre in the left hand and keep it rotating with the fingers of the right hand. When you can do this continuously without thinking about it intro-

## MATERIALS REQUIRED

Capillary tubing, between $\frac{1}{}$ and Imm . bore, nearest to $\frac{\mathrm{mm}}{\mathrm{m}}$, is best. Soda glass. . Order through any chemist, laboratory supplier or Laboratory Glass Industry, Lid., 85, Clifden Rd, Clapton, London, E.5. Cost 6s. 6d, per pound, which will make dozens of thermometers.

## DYE

I.C.I. Methasol Fast Colours. Obtainable in quantity from Messrs. Skilbeck Bros., Ltd., 203, Upper Thames St., London, E.C.4.
Methyl Violet and other colours obtainable in small quantities from British Drug Houses or via them through any retail chemist.
Hectograph Carbon Paper, Spirit Duplicator Carbons or Banda Carbons. Obtainable from
any office duplicating equipment company or Messrs. Block and Anderson
Wood, tin plate, panel pins, ete.
Methylated spirits from any ironmonger or chemist.

Minimum equipment required.

## HEATING

Gas stove, bunsen burner or builders? blow-lamp
A spirit lamp alone will not do for this work. Certain spirit type blow lamps are probably suitable.
Glass or metal funnel, 2 in . or more in diameter.
Small rubber tubing to attach funnel to capillary tube.
Cans or saucepans, jam jars, bottles, rags, etc.
duce the left-hand end of the tube to the yellow flame. Keep turning all the time and after about 30 seconds, still keeping the glass in the flame, open the air ho.e of the burner fully, the flame will then be roaring. This is the hottest flame available with the burner. Keep the glass rotating all the time and carefully locate it just above the tip of the blue cone of the flame. Only the end of the glass tube should be near the blue cone (Fig. 3B).
Soon the flame will become yellow (sodium light) as the glass begins to soften. Keep the tube turning steadily or it will take on snake-like contortions. Now the glass tip will be seen to become red-hot and the end will round over and after about a


Fig. 3.-Stages in blozving a glass bulb
minute it will seal off. As soon as this stage is reached you must work quickly.

## Making the Bulb

When just about in. of capillary hole has melted into the sealed
(Right)-Stages in the construction of a thermorneter (left to right) capillary tube; end sealed; bulb blown; tube filled; top end drawn out; top cut off; end sealed.



## ch Vill tion of

The photogiaphs left and right of the heading show some thermometers which will be described later
tube withdraw quickly from the flame, keep the tube turning all the time and hold it vertically, sealed end down towards the floor. Now bend the head forward and blow strongly into the open end of the tube (you have filed away sharp edges already).

$$
\begin{aligned}
& \text { G/ass blob which will } \\
& \text { oroopolv frocture later }
\end{aligned}
$$

Fig. 4.-A badly-blown bulb.


Have the glass really hot before you attempt to blow. Blow very hard initially, being ready to ease off at once the moment the glass starts to stretch. Once the bulb commences form very little air pressure is needed or the bulb will become much too large and burst. If the bulb were large the stem would have to be unduly long and the bulb

The size of bulb you require depends on the sensitivity required. For a start aim at a bulb $\frac{1}{2}$ in. in diameter with the $\frac{1}{2} \mathrm{~mm}$. approx. tubing. The larger the bulb and the. finer the tube the more travel the liquid will make for a given temperature rise. In thermometers used for purposes where one particular temperature is of great importance (i.e., photography), great sensitivity often useful and easy to attain. Normally, where one requires a reasonable range with a thermometer of normal size. some sensitivity has to be sacrificed.

If the blowing operation is not successful the first time do not worry. Reheat the same piece of glass and try again. If you make the glass bulb too large or small, reheat (keep the glass rotating) and the bulb will melt into a glass blob again ready for blowing. Beware, however, of getting a bulb like the one in Fig. 4 for the blob is likely to crack off, especially if the annealing is not perfectly done. It looks untidy, too. If this does happen to you just touch the tip of the tube in a saucer of cold water and the end will crack off and you can start again. Alternatively, let the glass cool and use the file. Never use the file on hot glass as it will ruin the file even if you do not burn your fingers.
If you blow too hard after the initial "puff" the bulb will blow to a diameter of some 4 in. The glass will be less than I/IOOOin. thick and the slightest breath of air current will break the bulb, when the glass will float about in the air. It is dangerous to inhale this floating glass.

## Annealing

If glass is allowed to cool quickly its molecular structure is such that internal stresses are formed. Then, at some future time, when some slight mechanical vibration or thermal change is applied, the glass fractures. This is overcome by the annealing process in which the glass is allowed to cool slowly over a period of about 90 seconds.
The moment the bulb has been blown, introduce it back to the flame, which has been turned yellow, and keep the glass turning (Fig. 3C). Now slowly withdraw it from the flame over the next 30 seconds. Then place it to rest on a couple of spare glass tubes, the bulb being "in air." Do not let any air draughts play on the bulb during the latter stage as it is still annealing (Fig. 3D).

## Warning

Hot glass does not show up like iron or steel. A bad burn can result from careless techniques. Especially watch that a hot tube is not placed in the mouth.

## The Thermometer Fluid

Although mercury is often used in commercial high grade


Fig. 6.-Tro methods of making the dye solution.
funnel attached all the time (Fig. 7). If the annealing has been done properly this will not cause a fracture. The air in the bulb now contracts back to its original size minus that which has been expelled. The "vacuum" left is then filled with fluid from the funnel, it being pushed in by atmospheric pressure,

Now replace the bulb, containing some dye solution, in the can of boiling water. The alcohol in the bulb will now boil (Fig. 8), driving off air with the vapour. This air will be observed bubbling through the reserve liquid in the funnel. On placing in cold water again the bulb will completely fill with alcohol. If it does not then repeat the process once more. There must be no bubble left in the bulb when this process is finished. A small bubble or two in the stem will not matter as you may remove them later by swinging the tube in a semi-circle so that centrifugal force takes the heavier liquid down to the bulb with each "swing."

Before removing the funnel of reserve liquid let the bulb cool down to room tentperature. If you do not do this, the liquid
paper will do). The author found that this was not necessary unless he used a very small bore tube.

It is suggested that you make up, say, half pint of this solution (within limits the stronger it is the better) and keep it in a labelled, closely corked bottle. It is inflammable and a very strong dye indeed, so keep it well out of the way of children.

## Filling the Thermometer

Three methods are available. It is sugges:ed that the first method is followed by the beginner, as it is somewhat safer though it takes longer than the other methods.

## Method No. I

Attach a small metal or glass funnel to the capillary tube, Fig. 8. Pour in a little dye solution and lower the bulb of the thermometer into a can of boiling water. As air in the bulb becomes heated it will expand and


Fig. 7.-Filling by method No. I is shoron at (a) and at (b) is shown an alternative method of suspension.
force out air bubbles through the liquid in the funnel. Then place the bulb in a can of cold water ( 60 deg. F.), keeping the
will contract into the bulb leaving none in the thermometer stem.

## Method No. 2

Fit a funnel of reserve fluid as for No. 1. Heat the bulb directly in a small blue flame (or use a spirit lamp). Remove the bulb after five seconds and let it cool on its own. Do not use cold water or you will crack the bulb. A few drops of alcohol will enter the bulb as it cools. Now carefully boil this in the small flame, keeping the bulb shaking all the time. When it has nearly all boiled away let the bulb cool on its own once more. If the bulb does not completely fill with fluid then repeat the process as necessary. Be careful that you do not spill the liquid from the funnel on to your hands as the spirit will most likely catch fire. Should this happen wrap the hands calmly in a towel and no harm will result.

Fig. 8.-Air being forced out by method No, I.
the beginner to use mercury and unless is prohibitive is very fine the cost is prohibitive.

## Method No. 3

Do not fit a funnel. Heat the empty bulb as for No. 2. Invert the tube so that the open end rests in a beaker (jam jar will do) with some fluid in the bottom. Let the bulb cool and some fluid will be drawn up into the bulb. Now boil the alcohol in the bulb as in method No. 2. Invert the tube again in the beaker. Repeat if necessary until the bulb completely fills. This last method is the quickest for "mass production" at home, but alcohol is often squirted out and will stain the wall or any other object it contacts. It will also catch fire if you are not careful. You should use method No. I until quite confident.

## Method No. 4

This method is not used this month, but it is mentioned here as it may be of interest. This is for use with mercury. On the whole it is harder for


## PRACTICAL MOTORIST

## AND

 notor cyclistEdited by F. J. CAMM March Issue Now On Sale

Principal Contents: Cylinder Reboring in Situ; Carburetter Maintenance ; Prepáring the Car for Spring ; Loss of Compression ; The Beginner's Guide to the Motor Car ; Bullding a Two Berth Caravan ; The Electrical System; Overhauling the Post-war Standard Eight; Braking Principles and Practice; Tuning Motor Cycle Engines; Overhauling the D and DX Type Vauxhall; Accessory Review; Garage Mechanic's Diary; Many Other Interesting Articles.

# Buibling Outbowid Motortourt <br> A Sturdy All-wood Craft, Ideal for the 

 Week-end- Concluded from fage 232, February issue)
and are known as "quarter knees." Fig. 28 shows the shape of them and their position. These knees are


## Protecting the Keel

IF the boat is to have a lot of rough work on the beach, or is lifely to be repeatedly dragged along the ground, this keel should be sheathed with $1 / 16$ in. $\times \frac{7}{8}$ in. brass strip, which can be carried right up to and round the bend of the stem, up which it may extend for 3 in. This may be drilled for and secured by No. $6 \frac{1}{2} \mathrm{in}$. brass screws at 3 in. intervals,

A further means of protecting the bottom is to put on some bilge keels. These are


Fig. 27.-Details of the knees.
simply pieces of $r$ in. $\times$ in. oak, each 3 ft . long, screwed on each side of the main keel to the boat's bottom, about midway between the keel and the sides, and in the centre of the boat, measured fore and aft.

These, too, may be metal shod, but it is not important, as they are easily renewable.

## Finishing the Keel

Having completed this part of the work, turn the boat right side up, and complete the fitting of the keel by passing screws through holes in the frames, which were made earlier in the job for securing them to the setting up batten. These screws should be 3 in. long No. 8 brass; you will, of course, need to counterbore for these with a long gimlet before you can drive them into the oak. The heads of these screws can be stopped over with mahogany colour plastic wood, and the ones in the false stem with natural colour plastic wood.

## The Knees

There are three strengthening knees on the gunwale line and two at the bottom of the craft. The first to be considered will be the two that brace the sides to the transom
sawn out of rin. oak, and should have sides 7 in . long, so that the plank will need to be 7 in . wide. There are two knees of this size, so a piece of r4in. $X$ in. is required; allow waste and sag, 18 in . $\times 7 \mathrm{in}$. To make these first measure the angle which the sides of the boat make with the transom, this can be done with a bevel gauge, or a piece of stiff cardboard can be placed over the corner made by the sides and transom and the shipe marked with a pencil. A third method is to use a folding rule, if the joints are not too loose, in the same way as a bevel gauge is used.

Transfer and mark this angle on to the timber and make each limb of the knee 7in. long. At the end of each line draw a line 2 in. long at right angles and join them by a gentle curve. Fig. 27 shows this more clearly. Cut along these lines, the curved one with a bow saw or pad saw.

## Fitting the Knees

The fitting of these knees requires patic ce and care. First cut out a notch to allow the knee to pass over the transom framing and set fair against the transom itself. Notice that the sides slope inwards and the transom backwards, 'therefore the knee will have to be bevelled to fit. This is best done by trial and error, taking a little off at a time, and trying the knee up in position.

Since this will have to be done a good many times before a perfect fit is obtained, try to get the boat near the vice. When the knees are properly shaped you can round off the corners of the curve to neaten the job up and proceed to fit them.

In professional work they are usually riveted right through with long copper rivets, but the job may be done by fitting them by means of screws passed through the boat's side and gunwale on the one side and and the transom on the other, taking care to get the knee flush with the top of the gunwale. Use No, 8 screws, $2 \frac{1}{2}$ in. long. These knees must be well fitted and secured, as apart


Fig. 28.-Fitting the quarter knees.
from their purpose of bracing the sides to the transom they take a considerable amount of the thrust of the motor in driving the boat forward.

The next knee to fit is up in the bow and this braces the sides at the gunwales to the stem. Fig. 29 shows how it is fitted. The method of marking out, etc., is the same as for the quarter knees but not quite so difficult; it is secured in the same way. Great care should be taken to get graceful curves in the cut-away portion, as a wellproportioned breast hook, as this part is called, can improve the appearance of a boat. When it is fitted, either plane or rasp it up fair and smooth with the top of the main stem pos:, finishing off with sandpaper

The length of the breast hook should be about 7 in. but it is not critical.

The next knee will be in the forefoot of the boat and braces the bottom of the stem post and the boat's bottom, it resis on the seam batten and is secured by long screws


Fig. 29.-Fitting a kiee in the bow.
deeply countersunk as shown in Fig. 30. The knee should be 7 in . $\times 7$ in.

A similar knee, fitted in the same way, is used to brace the transom to the bottom at the stern of the boat.

## The Seats and Fittings

The seats are fitted on to a rail which is termed a "riser" and runs fore and aft on each side of the boat inside the frames to which it is secured by screws, two screws at each position where it touches a frame.

The riser is made from $I \frac{1}{2}$ in. $X \frac{5}{8}$ in. mahogany and extends from the transom framing to about 6 in . forward of frame No. 1

It is fit ed Ift. 3 in. above the floor of the boat, this measurement being taken from the boat's bottom planking to the top edge of the riser, measured at the middle of the boat, and runs straight fore and aft, and does not conform to the curve or sheer of the boat.

Once these risers are fixed the fitting of the seats is simple.
The stern seat is made from mahogany 14 in . wide $\times \frac{3}{3}$ in thick, and is cut to the width of the risers at the transom and screwed to them.

The centre seat ( 8 in , wide $\times$ rin, thick), is fitted in the middle of the boat and screwed to the risers. The forward seat is 8in. $X$ rin. secured in a like manner, and its position is such that there is a space of 3 ft . 6 in . between its rear edge and the front edge of the centre seat.

## The Rowing Chocks

The rowing chocks to hold the rowlocks can next be made and fitted; these are produced from oak $1 \frac{1}{2} \mathrm{in}, \times 1 \frac{1}{2} \mathrm{in}$. and each 6 in . long. They must be shaped slightly on one side to conform with the curve of the boat's side; the other side has its corners rounded off.

A hole is bored through the centre to take the plate bearing of the rowlocks, and the size of this hole must be governed by the size of the rowlocks purchased. Fig. 31 shows how they are made up and also shows the fitting arrangement. A second piece of oak should be fitted a few inches lower to steady the rowlock. They are fixed by means of $2 \frac{1}{2} \mathrm{in}$. screws passed through the planking and gunwales from the exterior of the boat.


Fig. 30.-Method of fitting the fore knee.

## The Rowlocks

The exact positions for these rowlocks is best determined by temporarily clamping them in position and then sitting in the boat
with a pair of oars resting in them. Experiment until a comfortable position is obtained.

Remember, however, not to get ones in the front seat too far aft or it will be found that the person on the centre seat is in the way when rowing from the forward position.

Good all-round positions, however, are as follows: Fit the front seat so that the hole in the chock is 12 in . aft of the centre line of the seat and the centre set 14 in . aft.

## The Rubbing Band

This must be fitted round the boat from stem to transom on the outside level with the gunwale. It can be made from $\frac{1}{2}$ in. $X$ $\frac{1}{2}$ in. oak, bent round and secured every bin. with a Iin. No. 6 wood screw. The front end should be tapered off for 3 in . down to nothing, where it meets the false stem post and rounded off at the transom end.

With a finely-set sharp plane trim the edges off all along, giving the band a halfround appearance.

## Floorboards

Floorboards must now be made up as it is unwise to tread or put any local weight on the bottom planking itself.

These boards need not be shaped; all that is required is some planks of good, clean deal 4 in . wide, $\frac{1}{2}$ in. thick, and long enough to reach from just under the stern seat to just forward of the front seat.

Lay one along the centre of the boat then one on each side of it resting on the frames. Now continue to add planks until the width between the frames is made up with the exception of a few inches. As the boat narrows down towards the bow so shorter planks are fitted. Alternatively, of course, the planks can be shaped if a smarterlooking job is desired.

Having got the planks set out it is usual to fit them together in groups of two or three by fitting battens underneath.

This makes a quicker job of removing them for cleaning out, and as the groups of planks have a greater weight and area they will stay in position without any fixing.

March, 1958
The final item of construction will be to screw a ring bolt in the inside of the stem about half-way up, to which a rope for tying up your boat can be attached.

## Finishing

Rub all the woodwork down with sandpaper preparatory to finishing.

The bottom inside should receive three good coats of paint up to the top of the chines. Black is too drab-looking; grey looks well, and is perhaps the most suitable colour.

The bottom outside may be to choice.


Fig. 31.-The rowing chock and fitting the rowlocks.
Standard boat colours are green, red, white and blue; any of these will look well against the varnish which is used for the rest of the job. Give three good coats, allowing each to dry well.

This also applies to the varnish, which should be good quality yacht varnish.


## Flexible Pottery

METALLURGISTS in America have developed a method of treating brittle ceramic materials so that they can be bent. A combination of the desirable properties of both metals and ceramics is the aim.

Ceramics are not noticeably affected by temperatures of 3,000 deg. F., but are brittle; metals are flexible, but melt at well under the temperature mentioned. This seems to indicate that a combination of the two could result in a suitable structural material for rockets, guided missiles, etc.

## Measuring the Standard Metre

THE standard metre is deposited in a cellar deep below ground at Servres, near Paris, and a new proposal has been put forward to define it as "equal to $1,650,763.73$ times the wave length in a vacuum of the radiation of Krypton 86."
The present standard metre provides accurate measurement within one to two millionth parts. The new standard recommended would, it is claimed, prove accurate to within "some millionths of a millionth."

The metre was first set up as a standard during the French Revolution and was designed to be the ten millionth part of a quarter of the earth's meridian.

## Rubber Crash Doors

T
HE rubber crash door is becoming more and more popular in industry and consists of a heavy rubber sheet hung on an angle-iron frame in such a way that the rubber at the edge farthest from the hinge is free. The doors are opened by the impact of a truck against the rubber sheet and close again automatically.

## Automatic Lighting Up

IIANY of the bright lights and flashing neon signs in London's West End are switched on automatically by means of a photo-electric cell which reacts to daylight intensity. When the skies darken to a preset level, they set in motion the control unit which automatically switches on the lights.

## Flexible Light Bulbs

FLEXIBLE lamps which can be shaped as required and made from nylon, plastics or steel mesh have been developed. Electroluminescent panels and murals, made by coating sheets of glass with phosphors have already been produced. They are treated to conduct electricity and when supplied with power, light up.

This process may, in several years time,
lead to the production of window shades, drapes and other bendable materials that actually produce light.

## World's Largest Blast Furnace

THE largest blast furnace of its kind in the world is being designed by the Stalproekt Institute in the U.S.S.R. It will have a volume of 2,286 cubic metres and a daily capacity of 4,500 tons of metal.

## Rockets Gain Information

TAUNCHING earth satellites is not the only function of a rocket; it can be used to obtain information about temperatures in the upper atmosphere. The method may be by spreading chemicals in the atmosphere and it is thought that valuable information on the structure and composition of the atmosphere could be obtained.

## Wrong Author

TN the article entitled "A 6 in . Telescope Mirror," we regret that the author's name was wrongly given as J. Parker. The author was in fact T. J. Mulligan.
Building an Outboard Motorboat-Error WE regret that the dimensions printed for the sloping side members of frames Nos. 2, 5 and 6 (Nov. and Jan. issues), were incorrect. They should have read as follows :
Frame No. 2 ... Ift. $\left.3 \frac{1}{4} \mathrm{in}.\right)$ Sl ping


 a hole in cavity brick without breaking the inside wall. Tiles and glazed bricks can be drilled with complete safety.


## NOW:-FREE Resharpening

doubles the life of DURUM DRILLS With every Durium Drill you will be given a Voucher which will entitle you to have your drill re-sharpened entirely free of charge when it becomes blunt.

## For DRILLING GLASS

There is a special Durum Glass Drill made in various sizes from k $^{\prime \prime}$ to ${ }^{\frac{1}{2}}$ at prices from $6 / 6 \mathrm{~d}$. to $10 / 3 \mathrm{~d}$. each.


## $-$

 Drilling holes for Rawlplugs becomes an easy, fast and super efficient operation. Clean round holes without noise in any masonry is a matter of seconds with a handbrace or suitable* electric drill. You will get a great thrill when you use these amazing drills. Be sure you ask for DURIUM in the bright blue and orange metal container. The name DURIUM is also stamped on the drill shank. In all sizes from No. 6 to 30 and in a long series for drilling right through walls.No. 6-9/6. Nos. 8, 10 and 12-10/- each. *We recommend the Rawlplug R.P.I. Electric Drill with a load speed of 450 r.p.m. which is the ideal for quick penetration with safety for the Durium rip.

## man

DURUM

THE RAWLPLUG COMPANY LIMITED, GROMWELL ROAD, LONDON; SOW. 7

PRODUCTS FOR THE HOME \& WORKSHOP
 planed, polished and painted like wood. Will take nails and screws like wood. It docs not blister, crack or decay. Rawlplug Plastic wood is actually the best quality Natural Oak Mahogany or Walnut Large Tubes /o. Tins: $\frac{1}{4} \mathrm{lb} .2 / 3 \mathrm{~d} ., \frac{1}{2} \mathrm{lb} .3 / 9 \mathrm{~d} ., 1 \mathrm{lb} .6 / 6 \mathrm{~d}$.


## DUROFIX

The indispensable adhesive for instant use on crockery, glass, wood, metal celluloid and the thousand and one things handled by the hobbies enthusiast. Instant drying, insulating, waterproof and heatproof. Durofix is grand for repairs to electrical, sports and leather goods. Handy Tubes Sd., Large Tubes 1/3d., Commercial Size 5/- $\frac{1}{4} \mathrm{lb}$. tins $2 / 9 ., 1 \mathrm{lb}$. tins $10 / \mathrm{Gd}$.

## SOLDERING IRONS

MAKES SOLDERING CERTAIN
AND SIMPLE AND SIMPLE This is a guaranteed electric tool which will pay for itself many times over by repairing and giving longer life to metal household goods. In the workshop it is indispensable.
Supplied with Standard Bit $32 / 6 \mathrm{~d}$, Hatchet or Pencil Bit 33/6d. Voltages $100 / 110,200 / 220,230 /$
250 . Universal A.C./D.G. 6 months guarantee.

# This model farm cost less than 216 



It was made from a half-crown tin of Sankey's PYRUMA farmhouse, barn, implement shed, walls and gate-and there was still plenty of this grand modelling material left to build many more farm features, by simple methods described in the Instruction Book (see Coupon below).
PYRUMA, plastic and ready-for-use, becomes stone hard after drying or baking, and can be painted in natural colours. For permanent modelling-


Obtainable from your local Jronmonger or Hardwareman and many Art Materia! dealers. Ideal for making-

Model Railway Buildings and Accessories. Harbours Ship Models. Airport Euildings and Features. Houses. Bookends. Ashtrays. Animials and Figures. Plaques, etc.

Post this Coupon today for your Instruction Book.
 Established over a century
Please send ILLUSTRATED INSTRUCTION BOOK with full colour pages, on Pyruma Modelling.

Enclosed Postal Order value 6d. (not stamps).
NAME (BLOCK LETTERS)..................................................
ADDRESS. $\qquad$

BRASS, COPPER, BRONZE, ALUMINIUM, LIGHT ALLOYS Rod, Bar, Sheet, Tube, Strip, Wire 3,000 Standard Stock Sizes.
NO QUANTITY TOO SMALL List on application.
H. ROLLET \& CO. LTD.
6. CHESHAM PLACE, LONDON, S.W. 1 SLOane 3463
Also at LIVERPOOL LEEDS MANCHESTER BIRMINGHAM


## WORLD WIDE RADIO RECEPTION <br> FOR THE AMATEUR RADIO ENTHUSIAST TUNE IN WITH THE MALVYN SINGLE VALVE SHORT WAVE COMMUNICATION RECEIVER

All-Dry Battery operated: Extremely low running costs: 8and Spread Tuning : Attractive Front Panel : Full operating instructions included.
PRICE OF COMPLETE RECEIVER, 74/6 (Batteries and Phones Extra). Post Free U.K. Money Back Guarantee. Send S.A.E. to actual Manufacturers for Free Descriptive Literature.
MALVYN ENGINEERING WORKS Radio and Electronic Engineers
Tel. : Hertford 22647 Currie Street, HERTFORD

## SAW BENCH UNIT FOR 66/- - POST FREE!

Fit the S.G.S. High Speed Ball Bearing Circular Saw Unit EMPIRE UNIT (iflustrated) for saws to 12 in . dia., $\{3.6$. ROYAL UNIT for $£ 5.3$. saws to 16 in . dia.,
EMPRESS UNIT for 515 EMPRESS UNIT for
saws to 20 in . dia.,
$\mathbf{5} \mathbf{1 5}$.
Also S.G.S. Ball Bearing Planer


 Write for full details of these and other lines.
S. G. S. ENGINEERS,

OLD COSTESSEY NORWICH • NORFOLK. Tel, COstessey 327

## 

No. 2 of a Short Series for the Junior Woodworker

FOR the more precise jointing of timber the mortise and tenon joint is widely used. This consists of two parts, the tenon which can be described as a "tongue" cut on one piece of timber which fits into a recess cut in the other piece, which is the mortise.
There are several variations of this type of joint, but it would be impractical to


Fig. I. - $A$ throughwedged tenon.

## By W. J. Stannage

chisel being used is held against the points and the moving point set so that the gap between the two is equal to the width of the chisel. This operation is followed by adjusting the fence so that the points will mark at the required distance from the edge of the timber-usually in the centre. The mortise gauge being set is shown in
 Fig. 3, and Fig. 4 shows it in use. The lines set out with the aid of the trysquare can also be seen.

The try-square and mortise gauge are used to mark out the position of the mortise, and again the operation is similar to that of setting out the tenon, except that in this case the mortise is not at the end of the timber. The mortise and tenon, both marked out ready for cutting are shown in Fig. 5, and the shaded portions denote the timber that


Fig. 4.-Marking off the width of the tenon.
cover all, so one will be dealt with in detail and the others surveyed. The method of construction is similar in all cases, and only the marking out varies.

## Through Wedged Tenon

Fig. I shows a through mortise and tenon joint which is wedged in place, and this is commonly known as a "through wedged tenon." It will be noted that the tenon passes through the mortise completely and that there is some waste material. This waste is removed with the plane, after the glue has set.

The first step in the marking out is seen in Fig. 2, where the try-square is being used to set out the length of the tenon. In the case of a through tenon it must be marked off longer than necessary to provide the waste material seen in Fig. I.

A tool not previously encountered in this

## Cutting the Mortise

The actual removing of this
Fig. 2. (Left)Length of tenon being marked off.
waste timber is illustrated in Fig. 6, and Fig. 7. The mortise is first cut with the aid of a brace and bit, the latter being
eries is now required; namely a mortise gauge. The main difference between this and the ordinary gauge is that it has two points, one fixed and the other moving. The moving point is controlled by the screw at the end of the gauge. When setting the gauge, the

in this manner. When sawing it is advisable to run the saw tee:h on the waste side of the line so that when cutting is complete the lines are visible, but only just. This makes for a good, tight-fitting joint.

The shoulder lines can now be cut, but before using the saw, grooves must be cut with the chisel and, these keep the saw running true. These grooves are depicted in Fig. 8.

To receive the wedges two saw cuts are made in the tenon before the joint is assembled.


Fig. 8.-Tenon shoulders prepared for sawing.

## Variations of the Joint

A tenon with a square haunch is shown in the sketch, Fig. 9, and attention is drawn trs the fact that the tenon end is cut to a 45 degrees angle. This is to allow the ends of two tenons to meet as, for example, when two rails are fixed to a chair leg. A plan view of such a joint also shown. The making of this type of tenon is quite simple as it is first set out and cut as previously described, then the haunch is marked off and cut.

Below this is shown another haunched tenon, but in this instance the haunch is sloped. Such a tenon is sometimes used in table construction. In both cases the mortise must, of course, be cut to mate with the tenon in question.
Haunched tenons are used where one piece of timber must be joined to the end of another. Obviously a full-width tenon cannot be used as the mortise for this would
break through or open out the end of the wood. The haunch reduces the width of the tenon but still gives additional strength to prevent the joint from twisting as would possibly happen if the tenon were reduced for its complete length.
It will be obvious that these haunched tenons are in most instances "blind "; that is, the tenon does not pass completely through the mortise. This means that the mortise must be bored and chopped from one side only, whereas with the through variety the boring and cutting can be done from each side of the timber and, indeed, this makes for more accurate work.
are flush, yet the inner face of the rail is lower than the inner face of the upright.

## Mortise and Tenon Dimensions

In woodworking designs the exact dimensions of mortise and tenon joints are often given so no difficulty in this direction will be experienced. However, it sometimes happens that the home woodworker designs his own project and consequently must also design the joints. When this is the case it is as well to remember that the tenon must not be less than one-third the thickness of the timber, provided its mortise is not more than one-third the thickness of the timber in which it is cut. When a thin piece of wood, on which a tenon will be cut, is to be fitted to a thicker piece the tenon in this case can be greater than the stated onethird, remembering, of course, that the mortise must not exceed one-third the thickness of the wood in which it is cut.

In the case of a haunch this can be onequarter the width of the complete tenor.


## The Barefaced

 TenonThis is clearly seen in Fig. 9 and, as shown, this joint $h$ as one shoulder only. Although a square haunch is shown this is by no means a strict rule, as a sloping haunch could be used if desired. The joint is used where it is necessary to fit one piece of timber lower than the face of the other and yet have two faces flush. This rather complicated statement is fully explained by glancing at Fig. 9, which also shows a comple'ed joint where a'rail is joined to an upright. It will be seen that the outer faces


Fig. 9.-Same variations of the mortise and tenon joint.


Wircless Set Nu, 17. Mark 11. A complete transmitter recelver. Only 2 volt L.T.
and 120 Volt H.T. needed. New, complete vith H.R. Phones, Handmike, 2 Valves and Instruction book. $44 / 61 \mathrm{mos}$. Idea
Scouts. Price $39 / 6$, carriage $5 / 6$.
As spare parts for No. 17 Sets we are offering the complete radio unit less phones, mike and transit case at $20-$. post $3 / 6$.
Wee Megzers. New Standard job, perfect
condition 100 volt. Very few only, offered condition 100 volt. Very few only, offered

Test Meters, No. 1. By Victorla Instrument Co. New and boxed. Hanges $0-3$ volt,
$0-60 \mathrm{~mA}, 0-5,000$ ohms. Complete instruc-$0-60 \mathrm{~mA}, 0-5,000$ ohms. Complete instruc-
tions printed on back. Has a basic $0-5 \mathrm{~mA}$. Moving Coil movement. Size $4 \mathrm{\jmath in}$. x 2 fin . Price $10 /=$, post $2 /$ -
Miliammeters. $0-5 \mathrm{~mA}$. Moving Coil. 2in. scale, perfect
Electrie Motors. A.C. Single Phase. New by English Electric Co.. 1440 r.p.m., Capaci-
tor start. Ih.p. 2201200 volts, 50 c. foot mounting. Quite OK. for 226 v v. used with discretion. ©7.10.0, carriage 5/6, mainland ouly.
Electrie Motors. D.C. 24 volts, has doubled ended shaft, 2 in. square about 231 n . long,
new, $7 / 6$ each post $1 / 6$.
Battery Chargers. New, our own make, input $200-230-250$ volt, output 6 or 12 volts at 11 amps. Trans. and Rectifier mounted highly oxpanslve types. $29 / 6$ each, post $2 /-$.
Test Prods. New. Conslsts of two black brass-mounted Prods 2 ft. Flex with two
Intercom. Sets. Consists of two sound powered B.A. ear pleces with 20ft. of twin ready for use, $12 / 6$ each, post $1 / 6$.
Throat Milies. New, boxed. Complete with straps and jack. suitade electric guitars
and many other uses. $3 / 6$ each, post $1 /=$ Electro-Magnetic Counters. P.O. Type 0-999 operate on 3 volt D.C G. F.C. Rectifiers. New. Full-wave 4 amps. $17 / 6$ each, post $1 / 6$.
Trickle charger type $1 f$ to 2 amps., full
wave $10 /=$ each, post 10 , vave 10/= each, post 10 d .

Send 6d. for current catalogue.

## THE SCIENTIFIC INSTRUMENT COMPANY

353, Bearwood Road, Smethwick


## The NEW ROLLS HACKSAW

A Saw all Amoteurs and Craftsmen alike will be proud to own.

(1) Accurate control. (2) Light and rigid throat. (5) Pistol grip. (6) A pleasure to use (7) Takes 9in. to 12 im , blades. (8) Always stay assembled, even when fitting a new blade. (9) Easy adjustment. (10) No tiresome dis

Complete with wiol
Complete with blade
Post, \& plag. $1 / 6$ ontside our
extensive van delivery area.


WATSONS SPECIAL OFPERS


LIGHTWEIGHT CHARGING SETS. 8 v. 80 watt. Extremely neat and compact, powered by a 4-stroke engine and 46 b PRICE, fi2.10.0. Carr. 126. IAND INSPECTION LAMPS. H.D. and protective guard complete with 10 yds. T.R.S. cable NEW, g7/6 each. Post $2 / 6$. ROLT OR W IRE CROPPERS will cut up 0 approx. 51612 . MILD STEEL BOLTS PIPR CUTIFiRS. by "RECORD." Threewheel type to cut any size pipe from 11 n . to SLicDGE HAMMERS. 7 lb . Nosed with ash handle, 9/6. Carr 2i6. Approx. 61 n . $\mathrm{X} i \mathrm{in}$. diam. With inlet, outlet and malsture drain, 16/8. post 2/6. THREAD. NEW \& BOXED, $2^{\frac{1}{6}}$. Post 4 d . CANVAS TOOL ROLL. 17 in . x 101 in ., provision for elght tools, also pocket and fastening tapes, $1 / 4$ erch. Post 4 d . $14 /-\mathrm{doz}$ extending from approx. 2ft. to nearly gft. Very light and strong. 9/6. Post $3 /-$ -
BALL HACES taken from predictor $5 / 161 \mathrm{in}$ bore, $7 / 8 \mathrm{in}$. diam. in. wide. Five for SMALL TRMNSFORMERS. Input 230 or 110 V . A.C. Two separate outputs of 8 V .35 watts. Extremely useful for powering electric bells, models, low voltage inspection lamps, etc. from mains supply. BRAN ALSO AVAILAMLE TRANSFORMERS with $200 / 250$ A.C. Input 12 volt 100 watts out-
put. PRICE $30 /=$ Post $3 /-$. put. PRICE $30 /$ - Post Pi/- Pains avallable. EASTERN MOTORS, ALDEBURGH, SUFFOLK Phone 51


## PERSONAL POSTAL TUITION

Every Bennett College student enjoys this friendly, intimate coaching right through his Course. A few of the Courses are listed opposite. Tell us your subject. We will send you The Bennett College Prospectus and the famous FREE book "Train your mind to SUCCESS." This will show you how you can advance to a better, finer future by Personal Postal Tuition. Fill in and post the coupon today.

WHAT CAREER DO YOU WANT?

| Architecture | Machine Drawing | Television | Languages |
| :---: | :---: | :---: | :---: |
| BuildingCarpentry | Mechanical Eng. | Wireless Telography | Mathematics |
|  |  | * Telephony | Modern Busíness |
| Commercial Art | Plumbing | tiles | Methods |
| Diesel Engines | Power Stallon Eng. |  | Police Subjects |
| Draughtsmanship | Quantity Surveying |  | Salesmanship |
| Electrical Eng.Electric Wiring | Radio EngineeringSanitary Sclence | Book-keeping | Shorthand |
|  |  | English | Short Story Writing |
| Forestry | 8urveying | Geegraphy | and many others |
| Locomotive Eng. Telocommunications Journalism |  |  |  |
| P W | NOT ORT | A OUAL | CATION |
| A.M.I.C.E A.M.I.Me A.R.I.B.A | A.m.I.struct. A.m.I.Mun.E. a.M.s.e. | E. A.A.C.C.A. A.C.W.A. A.C.I.S. | A.c.c.s. A.R.I.C.S. A.A.f. |

GENERAL GERTIFICATE of EDUCATION \& R.S.A. Exams.

$\qquad$

## EXCITING ACCESSORIES FOR YOUR NEW MODEL RAILWAY



Hydraulic Buffer Stop Spring Action 18/9

## GAUGE 0

M N M N
Open Wagon $8 / 11$


Covered Wagon


Brake Van

GAUGE 0


Metal Signals $\begin{array}{lr}\text { Single Arm } & 9 /- \\ \text { Bracket } & 18 / 9\end{array}$

$$
\text { GAUGES } 00 \& 0
$$



Parts to make Lever Frames
6 Levers 10/-
$12 / 2$
16/6

GAUGES 00 \& 0


Scenic Background
4 Beautifully Printed sheets in colour to make 12 feet. $13 / 6$

## BASSETT-LOWKE LTD.

18 KINGSWELL STREET, NORTHAMPTON

## London Showrooms: 112 High Holborn, W.c.1.

Manchester Showrooms: 28 Corporation Street, Manchester, 4.



$$
\begin{aligned}
& \text { Van 23/-Lineside } \\
& \text { Gear 16/- }
\end{aligned}
$$

Send for our new 56-page (plus supplement) model railway cotalogue, price 2/-.


## THE BUSBY BURNER

ON THE "BUNSEN" PRINCIPLE (Complete with a pair of TONGS) The Ided GIFT for the practical HOUSEHOLDER.


BUSBY \& COMPANY LIMITED BUSCO WORKS. PRICE STREET. BIRMINGHAM Phore : ASTON CROSS 5606,

## METALS

## AND ACCESSORIES

ALUMINIUM, BRASS, COPPER, STEEL, ETC.
Angle Sheet, Tube, Foil, Strip, Channel, Rod, Bar, Wire. Moulding, Etc. Tin Plates, Silver Steel, Expanded Metal, Blanks, Rivets, Springs, Etc. Tools. Drills, Taps, Dies, Screws, Etc.
Formica, Perspex, Pegboard, Paxolin, Ebonite, Curcain Rail and Rod, Adhesives, Etc., and many other items for use in Home. Workshop, Ete. LARGE or SMALL Quantities - COMPARE our PRICES MAIL ORDER SERVICE (2d. stamp for lict) IMMEDIATE DESPATCH

CLAY BROS. \& CO. (P.M. 9)
6a SPRINGBRIDGE ROAD, EALING, W. 5 Phone: EALing 2215
2 MINS. EALING BROADWAY STATION, OPPOSITE BENTALLS


SEE EARTH SATELLITE


ASTRONOMICAL TELESCOPES 99/6!!

See the Moon at Close Quarters, Examine the Immense Craters, Moun, Rings, Nebulae, etc., etc.
Specification. 2 in. dia. Length 39 in, Mag $53 \times$ Linear (equivalent $2809 \times$ Area). Weight Approx. 2 lb .2 oz.
Registered postage and packing in. cluding strong stowing eylinder with caps, 12/6.
Altazïmuth Portable Clamp Stands. Extra 37/6, P./P. 2/6. Flxes anywhere. Hish Power Eyepieces $80 \times$, 30/P./P. 2/- (Equivalent $6400 \times$ Area.)

Stamp for Full Particulars. Photographs 1/-set (returnable). Lists and Terms Made to order.
HOLMES, WILSON \& CO. SCIENTIFIC INSTRUMENT MAKERS (Dept PM32), Martins Bank Chambers, 33, Bedford Street, North Shields, Northumberland.


ALL that is required is a stout box from your vanman or local store (the one used was a Guernsey tomato box, $14 \frac{5}{3}$ in. long $\times 9$ in. high $\times 8 \frac{7}{8}$ in. wide at the top and 8 in . at the bottom), roft. 6in. of Iin. square wood, two 4 in . dia. $\frac{3}{4} \mathrm{in}$. thick hardwood wheels two No. $12 \times 2$ in. long brass round-headed screws, six $\frac{1}{4} \mathrm{in}$. brass washers and a quantity of screws or nails.

## Construction

Cut the in. square wood as follows:-
Piece A-I off, approximately 8 in . long to suit the inside of the box at the bottom.

Piece B-I off, roin. long with a $3 / 32 \mathrm{in}$.

Piece E-2 off 3 ft . long with one end of each piece rounded for a length of 6 in . Piece F-I off gin. long.
Fit piece $A$ to the inside of box at one end, position piece $\mathbf{B}$ exactly underneath and central; fix to each other through the bottom of the box and then fix piece $A$ to the end of box. Fix piece $C$ to the outside of the same end of the box, central and 2 in . below the top of the box. Fix piece $D$ to the opposite end of the box, central and flush with top of the box. Fix handles, pieces $\mathbf{E}$. on top of piece C and underneath piece D , as shown in the sketch. Spread handles on piece $D$ to suit the child. after fixing them to piece C . Fix piece F to the handle end of the box, central and butting up to piece D. Drill a in . dia. hole in the centre of the 4 in . dia. hardwood whesis and fix to the ends of piece B with the No. 12 screws and two washers to the inside and one to the outside of the wheels. Ensure that none of the screw or nail points is protruding. Finally, sand and paint.
dia. hole, $1 \frac{1}{2} \mathrm{in}$. deep, drilled centrally in each end.

Piece $\mathrm{C}-1$ off $10 \frac{3}{3} \mathrm{in}$. long.
Piece D-1 off 12 in . long.


A side view of the wheelbarroz with part of one side cut azvay and a front view. The dimensions shown were those used by the author and can be zaried to suit the size of box employed.

## Running Your Own Magazine

## How to Edit Your Own Class or Club Journal

THE simplest form of magazine, and one suitable for a small school or club, is the folio type. First form a committee, and proceed to appoint editor and treasurer. The editor draws up a double list. The first column is headed "Contributors," the second "Readers." Anyone who has a desire to write enters his name in the first column, the rest, who, whilst interested, cannot be active in the business, put their names in the second column. This will ascertain the amount of support likely to be forthcoming.


Fig. 1.-Details of the binder.
Supposing the promoter thinks he has enough support to start the magazine, he next sees abour the election of a committee drawn from the list of members shown in the columns. If both columns are fairly
full, then it is a good plan to have two committeemen from each, making, with a chairman, five in all.
From these names are selected an editor and a treasurer.

Next fix the subscription, and with this form of magazine a merely nominal subscripfion is necessary. All work will be done voluntarily, and there is just the binder and paper to be bought.

## Binding the Magazine

To make the binder take two pieces of limp cardboard, 15 in. $X$ gin. (Fig. I), and paste on the outside of them some imitation leather or, better still, some bookbinder's canvas. Two holes are bored in each and brass eyelets inserted 3 in . from the top and bottom respectively and xin. in from the margin. Then obtain a couple of dozen tags. They consist of two brass sections rin. long, joined by a silken cord, which varies in length according to the purpose which the purchaser has in mind. The double tags are now threaded through the eyeleted holes of the two covers of the binder, making it one (see Fig. 2). When sheets are added, the under part of the binder is slipped out of the tags, and the sheets of paper are threaded on, holes being punched or bored to correspond with those of the binder. On the front may be pasted the title of the magazine, etc., whilst on the inside of the binder, to face the first page, may be written or typed the rules and circulation list.

The editor writes his opening remarks or "editorial" on the next page, stating what he wants his contributors to do-how much he wants them to write, etc. This is followed by a sufficient number of pages for the first circulation of the magazine (about two pages per contributor). An additional page at the


Fig. 2.-Double tags are used to secure the magazine.
end is headed "Criticisms," and comments are encouraged from both contributors and readers. Photographs and sketches can be used to illustrate the various contributions.

## Circulation

As soon as the editorial is complete, the magazine is started on its round of contributors and then the readers, the first contributors having it again to read the contributions and criticisms which followed theirs. The same circulation rota should always be maintained and a time limit (say three days) imposed for retention of the folio.


The Editor Does not Necessarily Agree with the Views of his Correspondents

ception that light is projected, like a bullet, whereas it is nearer truth to think of it as being released from its source and then swimming away at its own speed. If its velocity were not completely independent of the speed of its source, the Doppler Effect would either not exist at all or be quite invalid as a measure of source movements.

We suffer from another cause of misconception when speaking of "light travelling in straight lines." It certainly travels on direct radii, but every light-wave not interrupted or reflected by matter is a perfect sphere, becoming ever larger until it penetrates through ageless Time, all the infinity of space.
No one knows what these waves are, nor what they move in. They are called "electro-magnetic" or "photo-synthetic," or just yellow, red or violet-all from their effects, merely. They obey all known laws of wave motion and at the same time possess certain attributes which we only find in solid matter otherwise. They may even operate in a fourth dimension that we cannot perceive. -F. O. Brownson (Bedford).

## Ocean Currents <br> culate

SIR,-It is with interest that I read your paragraph "New Ocean Flow Below the Gulf Stream " in the January issue.

About 12 years ago I wrote to the Admiralty suggesting that philosophical logic assumes that there is a build-up of waters at the equator. On collapsing, the warm equatorial waters drift in north-easterly and south-easterly directions towards the poles.
They return as "cold water" on the floor of the ocean after washing the polar icecaps.
I had a very illuminating reply: "You show a remarkable ignorance on the subject of hydrostatics."
The common eel can (and does) find its way to the Saragosa Sea by swimming against the warm surface current and returns (at a lower depth) in a cooler current.

It has an unerring instinct that notifies it of the "direction" of its journey aided by the temperature of the water it swims in. There are "highways" in the ocean. Perhaps, soon, it will be announced that there are highways in the air obeying the same principle.-V. C. Armstrong (Middx.).

## RECOVERING METHYLATED SPIRIT


"Economist's" distilling apparatus.
SIR,-In reply to Mr. H. G. Radford, "Information Sought," January issue, the best way to purify contaminated methylated spirit is to distil it.

The apparatus described in the "Junior Chemist" series, Practical Mechanics, April, 1955, can be used, but on a larger scale something bigger and more robust is needed.

The apparatus shown in the sketch will serve admirably and consists of the boiler, made from a $\frac{1}{2}$ or 1 gallon paint thinners can. A hole is drilled in the cap and a $\frac{1}{2}$ in. copper pipe soldered in. 'The pipe is bent as shown and passes through another large can. The ioints are soldered and the (Swinton)
pipe passes out near the bottom of this can. The pipe inside the can is filled with copper gauze (pan scrubber), this greatly assists the heat transfer and breaks up the stream of vapour and prevents any uncondensed vapour escaping.

The large water capacity dispenses with the need for running water and enables the outfit to perform out of doors at a safe distance from anything inflammable.

Methylated spirit, turpentine and paraffin can all be purified in this way. It seems an alarming thought to boil such liquids, but the apparatus is perfectly safe provided that the joints are airtight, that the cooling water is not allowed to overheat and that the "boiler"
is not boiled dry. To prevent this last is not boiled dry. To prevent this last mishap the impure spirit should be carefully measured and the process stcpped when three-quarters of it has been distilled.
In use the "boiler" will become coated inside with paint, etc., and may then be replaced with another can.
This same process is used for the recovery of industrial solvents, in this case waste steam is often used for heating.

The Excise Authorities may insist on a licence being taken out for this apparatus, but not necessarily so.-ECONOMIST

# R E A DER S. <br> SARTS ANDWANTS 

The pre-paid charge for small advertisements is $6 d$. per word, with box number $1 / 6$ extra (minimum order $6 /-$ ). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southampton Street, London, W.C.2, for insertion in the next available issue.

## FOR SALE

$\mathrm{H}^{\mathbf{o u}}$ OUSE SERVICE METERS, credit from stock. Drepaymeat, aviversal Electrical, NUTS, BOLTS, SCREWS AND 4 WASHERS Ior Mechanics 2 B.A. parts, post $1 / 4$ Available Hex. Hd., Which, 3 or more packets post risee. (Dept. P.M.S.). New Milis, Stockport SEND s.a.e. for free list New Tools, Milling Cutters. Thread Chasers. at
bargain prices. A. King, 152,. Hallbargain prices. A. King,
way
Street. Sidcup, Kent.

## SENSATIONAL REDUCTIONS!

 ELECTRIC DRILL ACCESSORIES T/Carbide Masonry Didles:
IN WALLETS, tin. R/Shanks

 POST FREE, QU MLITY GUARANIEED Free List of Many Other Bargalns from THE TONL SEREVICE CO. (Dept, M), PERSPEX EMPIRE GLASSES, Sizes
100 up to $360.4 / 6$ dozen: Fancy Shapes, $4 / 6$ dozen. Perspex Water-
proof diasses, sizes 175 up to 350 . $7 / 6$ proof Classes, sizes 175 up to 350 . $7 / 6$
dozen. Calibrated Balance Staffis, $9 /-$ dozen; Winding Stems $3 / 6$ dozen ;
Mainsprings. $10 / 6,14 /-$ and $16 /-$ per Mainsprings, $10 / 6,14$ - and $16 /$ per
dozen plus postage. Criterion Stores. TELESCOOPES.-Make your own-non-A chro Oblect, Glasses
2lin. dia 40in. focus, $14 / 6$, 60 Eye-
pieces, $15 / 6$ S.A.E. list Achro Object Glasses. Mirrors. Eyepieces.
W Burnet. Grand Sluice. Boston. Lincs.
COMPRESSORS FOR SALEE.-Twin \&4. Piston, with tank, $2 \frac{1}{c}$ c.f.p.m.,
types Motors. S.A.E. for list. Wheelhouse.
13
Bell Road. Hounslow. HOU He $_{\text {LECTRIC }}^{\text {Lemplete with heavy welding }}$ transformer (welghs over 121 b . in casel; cable, welding torch, spare
carbons, instructions;
tappings from 6 volts to 100 ; absolutely as new, and perfect ; $60 /$ the lot. Will May carriage, will send c.o.d. BARGATNS I Tools, Vices, Drills, Drawers. Many others. Catalogue
free. Greens, Cytham COMETE HOME WORKSHOP, free. Blorkers (PM), 70, West Dtreet, CLEARANCE. Cadmium plated
 1,000; over 5,000 , post free. Peter Palgnton, Devon.
3 DOZ Hoffman Ball Races, 21 m . unused cquipnent. \&B lot. BAL.
6436,43 , Glenburnie Road 6436, 43, Glenburnie Road, S.W.17. Material for your own din metal Kate. or anything supplied. Man-
nings. Est. 1895. 80 . Shakespeare St.
 2in and 8in. Astro Refractor, pleces and a:l Accessories Spectro-
scopes. Also some Research Microscopes. Also some Research Micro-
scopes
Mand Apparatus
and Brighton 5 COMPRESSORS, single cylinA der double action. $2 \frac{1}{\text { cou. ctinn }}$ at new but slightly solled, cost over 110 , bargain at $35 /-$ each. N. Cooper 10,
Fowler Street, Nechells. Birmingliam,

CHEMICALS AND APPAR.ATUS.C. Free booklet of 100 Experiments with orders over 15/- Send $3 d$.
stamp for catalogue and details of special offers. Scientific $\& z$ Technical Supplies (Notm.) Ltd. Dept. M.
Welington CIrcus, Notitiaghain.

## PRACTICAL MECHANICS TELESCOPE

We can offer small quantitles of the
materials-xcept slats and silvering chemicals-required to makes the parabolic milror. Also. we offer our own complete mirror kits S.A.E. for detalls.

SEREN ASTRONOMICAL MIRRORS,
12 Jeymer Drive, Greenford, Middx, G.B.
PERSPEX" sor all purposes, engraving, Denny \& Company Ltd.
15, Netherwood Road. W.14.
1426. 5152.) M1 1/- under \&1, Wood Chisels. in. $3 /-1 \mathrm{in} .3 / 6$.
lin. Micrometers, oin.
in
 415 volt, $70 /$ Motors, Set 110 His T-plase. Drills. No. M-60, stand neluded. 50/-
Valtock " Maior Blow Lamp. 30/Ten on Saws, Bin. 6/4, $10 \mathrm{in} .7 /$. 12 in.
HANDICRAFTS
MUSICAL BOX MOVEMENTS

$14 / 9$ post free.

with movement. Please send $21 / 9$ complete for new FREE illustrated brochure. THE SWISSCROSS Co. (Dept. VII6) Winifned Road, COULSDON, Surrey.
SAW SALES AND SERVICE
SAW SERVICE BY POST.-Circular in. Saws set and sharpened
in. dameter; tensioned, set and ser in. minimum charge per saw. 48-hour postal service ; casli with ©rder. SALES.- Special offer. CircuD lar Saws made to yourr require
ments, e.e., $5 i n ., 12 / 6: 6 \mathrm{In}$., $15 /-$; ments, e.g., $5 i n ., 12 / 6$; 6 in.
state
$150 /-$
bore and tooth : cash wsth order : postage Bell Street, London, N.W.1. (Estab-

## WOODWORKING

WOODWORKING MACEINES, all Saw Benches, 7 in., $£ 4 / 15 /-$ inpin. Saw
$£ 30$.
planers. 10 in, complete motorised,
$£ 12$; Bowl Turning Heads £4; with Bin, Sowl Tables, ع7/10/- Lathes, \& $7 / 10 \%$-: Combinatlon Lathes Pulleys, Belts. etc. in months Written and money refunded guarantee. 4d. stamp for illustrated book.
let. James Inns (Englneers) Marshall St. Nottingham.
SAWBENCHES, 8 in. to $30 \mathrm{in} .$, from SAWBENCHES, 8in. to 30 in , from Portable. £44. Planers, Bandsaws, Assemblies, Logging and Firewood Machines, Chain Saws, Engines, Motors; deferred terms. Send $1 / 9$ offers. List free. Beverley Produets, Sturton-le-steeple. 20, Notts

## ELECTRICAL

$A^{\text {LL TYPES OF }}$ GOODS at Pxtremely competitive prices. e. . . 5 amp. Twin Cable. 48/- 100 yards; Lampliolders, 7/immediate despatch guaranteed Request list. Jaylow Supplies, 93,
Fairholt Road. London. N. 16 . (Telephone: Staminrd Hill 4384.1
CONVERT your ordinary Wash-
boiler to electric. GE.C. Circu lar Washboiler Elements, 200-250 volt. $2 \mathrm{~K} w ., 9 / \ln$. diameter, one hole fix-
$\operatorname{ing}$. $22 / 6$ each. plus $1 / 9$ p. and $p$. London Warehouse. 165, ${ }^{\mathrm{p}}$. and p . Road. Peckham, S.E.15.
THEE BLECTRRC GUIDE (12th edn.). gets (1/3: Electric Hints and Gad

A SBESTOS RESISTANCE WIRE, 10 $1 / 3$, p.p. Semple. The Mount. Hes

## ANTI-RADAR STRIP DISPENSER UNITS

rhese comprise $21 / 20$ th h.p., $24-\mathrm{v}$. shunt
wound motors, with erain of gears, both wound motors, with train of gears, both
25 and 50 to , reduction. The unit is 25 and 50 to an reduction. and chassis and consists of over 100 gears, pinion shafts. etc., of the Meccano pastern, with variabte speed switch and indicator light, bag
of spares, and electrical diagram. These are all new and in original waterprool packages. They are something entircly and have never been offered befor
PRICE. 30/- each. CARR. PAID. H. MIDDLETON

## 639 Abbeydale Road, Sheffield, 7

WLUORESCENT LIGHTING FIT complete range from 5 ft, to 18 ins . (also circular) at lowest prices anyand list of Control Gear Fits. Caliers welcoine. We are Fluores-
cent Lighting Specialists: E. Brill. cent Lighting Specialists: E. Brill,
Dept. Cinticoter Rd., Londion. S.W.11. (Battersea 8960.)

## BRAND NEW

BROOK ELECTRIC MOTORS

Single Phase, के h.p. 1,500 r.p.m. C7. 10.0 | h.p. 1,500 r.p.m. |
| :--- |
| h.p. |


Fully guaranteed by makers, approval against cash. Carriage paid mainland. State P, BLOOD \& CO.
ARCH STREET, RUGELEY,
SPARES, REPAIRS, REWINDS. Replacement Armatures Drind Emergency Rewinding Service to
 Surrey.

## ENTER TRANSISTORS

You can build a simple Transistor Radio
Recelver to work a loudspeaker. The only
Recelver to work a loudspeaker. The only
power required is a 43 volt flash-lamp batpower required is a 4y volt fash-1amp bator One valve Set, $27 / 6$ and $54 \%$ Completely
MORCO EXPERIMENTAL SUPPLIES
8-10, Granville Street, Sheffeld, 2.

## PHOTOGRAPHY

DHOTO-ENLARGER Castings and 2 fin Bellows, for $35 \mathrm{~mm} ., 2 \mathrm{tin}$. x $24 \mathrm{inn.}$,
 Road, Easton, Bristol, S. $3^{\text {ELLOWS, Camers, Enlarger, Pro- }}$ cess. Industrial Collapsible Machine. Guards. Beers, ${ }^{\text {St. }}$ St.
Cuthbert's Road, Derby. 1263.) HOW TO USE ex-Gov. Lenses and Vertical Erisms. Nos. 1 Vertical Enlarger Plans optical Condensers and Achromatic Lens to suit, 33/- Lists ; s.a.e. H. W. English, Rayleigh Road. Hutton, Essex. EXPOSURE METERS.-Build your
own double-range incident Hight Exposure Meter with $50 \times 37 \mathrm{~mm}$. photocell $1 / 1.4$ to $\mathrm{f} / 32.1 / 1000 \mathrm{th}$ to
60 sec. film speed. 19 to $37^{\circ}$ B.S., 60 sec. film speed, 19 to ${ }^{\text {to }} 37^{\circ}$ B.S.,
complete Component Kit, $50 /-$ s.a.e. details. G.R. Products,
mead Avenue. Bristol, 4

## PATENTS

Datenting Services. Advice. 114. Greenhayes Ave., Banstead.

## ! A GOOD IDEA!

CAN MAKE MONEY FOR YOU LET US ASSIST YOU YOUR

WRITE FOR FULL DETAILS.
PATENT, DEVELOPMENT MARKETING CONS ULTANTS

## WATCHMAKERS

Watch Repalr service, un speed, rivalled for relled with rasonable
charges. Materlal supplied. Hereford Waten LEARN to be a Watch and Clock earn epalrer in your spare time and supply everything you need at unbeatable prices, including instructional books, Swiss watchmakers movements, lathes, cleaning machines all spare parts for watches and clocks, etc. We also have a fine selection of musical box movements and kits. Send 9d. P.O. for bumper bargain catalogue. The Watch-
makers
Supply Company
(Dept. makers Supply Compan

WATCH PARTS
For all makes of watches, tools, instruc-
 Whtelimaker Miall Order Serice:

Watches, any make, repaired dently to: roung \& Son. 133 . London
Road. Chippenhan, Wits.

## FIBREGLASS

## PLASTIC UNITS

Experimental Glass Fibre Unix, $14 / 9$. Plastic Metal for Gear Casting, Plastic Dies, Finish for food preparation surfaces, baths, Finish for food preparation surfaces, baths, washing machines, etc., cream , black, sky blue, red, clear and aluminium. S.A.E. for information list, price lisc, etc. SILVER DEE PLASTICS (Dept. 3), Hartington, Staveley, Chester

## EDUCATIONAL

LEARN IT AS YOU DO IT-We combined with instruction in Radio. Television, Electrielty. Mechanics. Chemistry, Photography, etc. Write
for full detalis to E.M. Insitutes. Dept. PM47. London.

$$
\mathbf{X}=\frac{-b \pm \sqrt{b^{2}-4 a c^{-}}}{2 a}
$$

DON'T FUMBLE with Firmula, Master Mathematies in of weeks the Finderstandable War. Ist lewson and detaits fric from The Harrison School of Mathematics, 11, Dryden Chambers, Oxford Street, London

WREE! Brochure giving details Radio. Television. and all branches of Electronics. Courses for the hobby enthusiast or for those giminz
at the A.M.Brit.I.R.E. City and Gullds, R.T.E.B. and other professional examinations. Train. With the college operated by Britain's largest
Electionics organisation. Moderale fees. Write to E.M.I. Institutes,

## II+EXAM G.C.E. <br> WRITE NOW for FREE GUIDE,

 stating date and type of examination, MERCER'SCORRESPONDENCE COLLEGE,
69 Wimpole Street, London, W.i


SITUATIONS VACANT
A. M.I.MECH.E., City and Guilds, etc., Brit.I.R.E.E, No A. Oity and Guilds, etc., on "No cesses. For details of Exams and courses in all branches of Engineering, Buiding, etc., write for ${ }^{144 \text {-page }}$ Handbook-Fre. B.I.E.T. (Dept. 967B). 29, Wright's Lane, London,

## BOOKS

THHE HANDYMAN'S Electric Instruc tenance Guide. 2/3. For the best value in books for the handyman:
B.P.M. Publications. Ringwood, Hants.
(Continued on next page)

300
(Continued from previous page)
HOBBIES
$\mathrm{G}^{\text {RINDING, POLISHING KITS- }}$ nomical Mirror Shicon carblde:

 postage
Mosley
Lile Mays
St

## SEREN

ASTRONOMICAL MIRRORS 12 Jeymer Drive (PM) Greenford, Middx
EQUIPMENT FOR ASTRONOMERS Mirrors, eyepleces. focusing mounts,
spiders, etc. Do-lt-yourself kits. S.A.E. for free detalls.

LLUSTRATED CATALOGUE No. 13 . Containing over 450 Items of Government Surplus and Model Randed on purchase of goods ; $2 / 6$ Rverseas sea-mall Ar Department R.M., 93 , Nortli Road, Brighton.

## MISCELLANEOUS

A QUALUNG and Compressor Equipcellaneous Items. Lists 2d. Pryce. 157, Malden Road, Cheam.
HORTUNES IN FORMULAS," 900 American technical hobby and other books covering every interest. Stamp
for lists. Herga Ltd. (Dept. P2). for lists
SUPERTONIC SUNLAMPS, listed
 leys, Lancs
$\mathbb{R}^{\text {UBBER MOULDS for Plaster }}$ Sample and list. Wallplaques, etc. Sample and list, $4 / 11$ oulrade ent M). $43 / 45$. Walier Street, Hull

BUILD YOUR OWN Refrigerator Cabinet Refricerator. S.A.E. for Cabinet Refrigerator
Sealed Unit List and Schematic Diagram, or $1 /$ - (refundable) foir or page cata. ft. Cabinet Diagram offer Hire purchase available. Wheelhouse,
13. Bell Road, Hounslow. (Phoac: 13. Bell Ro
HOU 3501 .)
$B^{\text {UILD }}$ YOUR OWN Refrigerator etc. S.A.E. list. Deepfreeze, 24a Cookson St.. Blackpool.
Have you an IDEA?" Enginnancial and manufacturi design, ties are ready to consider it. Apply in confidence. to Box

## PORTASS LATHES

DIRECT PERSONAL SERVICE NO INTEREST CHARGED for easy terms.
CAN ANYONE DO BETTER I/- for Lists, please. Dept. P.M. BUTTERMERE WKS., Sheffield, 8

## MODEL BOATS

Plans : Kits : Engines : Etc.
4d. in stamps for Lists
LAWRENCE MODEL SHOP 106, LAWRENCE ROAD 6, LAWRENCE ROAD

D3,000 PIANISTS
have learned to play the ptano beautifully with the ald of my POSTAL cessons. explained that even fi you do not know i note, you will, with only hall an hour's practice ficient planist in $9-12$ months. methods. II have taught over 93075 bupils and ICAN TEACH
You. Free Book and advice. Say You. Free Book and advice. Say
if Beginner, Mod. or Adv. piantist.
Please add stamp for pos-


958, The Hall,
Centurion Road
Centurion
Brighton, Sussez

SERIES III

NUCLEAVE PRESS


Ask your Tool Dealer or send for details to:-

## FITZNER LTD. <br> 197-199 KINGS ROAD KINGSTON-ON-THAMES



THE E.W. $21^{\circ} \times 10^{\circ}$ Convertibie Is so simple. You can buy the basic model and by the addition of inexpentool undvalled in its class. Spectal features. Plain or gap. bed - Milcro-
meter feedscrew collars. Ground bed meter feedscrew collars. Ground bed
and sildes. Instrument finlsh Powerand slldes ' Instrument finish ${ }^{\circ}$ Powerrul headstock drive accuracy. And the price £1\% 0.0 for the
 Send S.A.E for comprehensive
brochure. No fuss, no titerest. credit
terms terms. Quickest delivery. Best service.
Full ranke of accessories from stock

WANSTEAD SUPPIY CO.
$\qquad$


## DERMIC OILER <br> 5/10 <br> Use a "DERMIC" Oller for clean and watches, sewing machines, typewriters, movle cameras and projectors and any dellcate instruments or mechanism Get one from your local Model or Too manufacturers. <br> S. 8. B. PRODUCTIONS Orton Buildings, Portland Road South Norwood, London, S.E. 25 . <br> CHEMISTRY APPARATUS



BECK 60 HIGH STREET
Stoke Newington, London, N. 16
GOVERNMENT
SURPLUS BARGAINS TRIPODS. Unused, $38^{*}$ long, only 5 lb , Wrass cap easily adapted to camera etc. atc Each ig/6, carrlage 3/6. REDUCTION GEAR, approx. with mp., ea. $15 /$ MOTOiR ONLY as above (dimenslons RATIERY. CIARGLNG TRANS12 v. cherging at i amp.). ea. i7/6. post RECTIFIERS to suit above, ea. 7/6. (These transformers \& rectifiers will run the above low vol tage motors. Fide sufficlent draught for Car Heater on 6 v.iable resistance), ea. $25 /$, post 166 . ES to sutt MOTORS, $200 / 250$ V. A.C./D.C. FHP (Converted ex R.A.F. motorgenerator power about equal to sewing machine
motor.) Useful addition to workshop. Send 3d. stamps for list of other Motors. Transformers, Pumps Lamps, Switches

MILLIGANS
21. Havforl Street, Liverp

THE WORLD'S GREATEST BOOKSHOP

FAMED CENTRE FOR
Techenical Booles
STOCK OF OVER THREE MIILION VOLUMES
119-125 CHARING CROSS RD. LONDON WC2
Gerrard 5660 (20 lines)
Open 9.6 (inc. Sats.)
Nearest Station : Tottenham Court Rd.

## SPECIAL OFFĒR

G.E.C., B.T.H. \& WESTINGHOUSE GERMANIUM GRYSTAL DIODES
//- each. Postage 3d
Diagrams and three Crystal Sot Circults
Free with each Diode. AUArge purchase of these vully manufacturers diode- from the this attractive offer
COPPER INSTRUMENT WIRE ENAMELLED, TINNED, LITZ,
COTTON AND SILK COVERED All gauges ivailablo
B.A. SCREWS, NUTS; WASHERS. oljering tags, eyelets and rivets. EBONITE AND BAKELITE PANELS FORMER'S AND TUBES ALL DIAMETERS

Latest Radio Publications.
SEND STAMP FOR
CRYSTAL SET CRYSTAL VALVE
Adjustable Iron Cored Coit
RECEPTION GUARANTEED Polished wood cabinet, $15 /-$ post $1 / 3$.
A REAL CRYSTAL SET NOT A TOY
POST RADIO SUPPLIES 33 Bourne Gardells, London, E. 4

## NEW CABIES \& FITITNGS

## TOUGH RUBBER CABLES



TeI. : NEW Cross 7143 or 0890.

## CAPACITOR FLASH CUN IMPROVEMENTS

CIR,-Last year I made the flash gun as described in your May, 1956, issue but have now made another one which I think is more efficient.

As will be seen in this arrangement, whenever the inside has to be inspected (i.e., for renewal of battery), all that is necessary is to unscrew the knurled screw " $C$ " and slide off the outer bakelite cover, "B." This then exposes the whole of the inside of the gun.

The terminals, as suggested, will be found the best method of connec ing the wires, as this type of battery is different from most others. The wires are soldered to the ter-


Details of the flash gun. A is a bakelite tube $1 \frac{1}{8} \mathrm{in}$. I.D., I in. O.D. with centre cut out as shown and with wooden plugs in each end. It is about 6in. long. $B$ is a bakelite tube Itin. I.D., $1 \frac{1}{2 i n}$. O.D. and is a slide fit over A. C is a ${ }^{2}$ B.A. knurled screw. $D$ is one of the brass or phosphor bronze clips which catch under the battery terminals. Two are required.
minals and then the terminal clipped under the battery terminal.
The battery can be fixed inside the gun with sticky tape. No details have been given for the bulb socket or the method of fixing to the camera as readers will probably have their own ideas on the subject.-A. J. Thorrey (Manchester).

## Does "G" Force Propel FLYING SAUCERS?

may easily be reversed. I, for one, would be interested to learn of such a method, and I am quite sure I do not stand alone in that respect. We are all aware of the fact that reversal of " $G$ " force would be of advantage, cranes would be obsolete, ships could be built far inland and later deposited in the sea. I would suggest that my learned friend should not confuse gravity which can only have one direction and magnetism which has polarity. Gravity is a fundamental attraction between particles, it exists between all bodies and will never be "neutralised." Gravitation holds the Solar system together and even holds all atomic particles, such as electrons to the nucleus.-R. Dixon (Co. Durham).

CIR,-I heartily endorse the first paragraph
of Mr Milburn's letter in the January issue.

From then on Mr. Milburn is a little "twisted" on one point and demonstrably uninformed on another. The second point first. Mr Milburn claims that flying saucers (I prefer UFOs) are earth made, but factual evidence is against this being correct. UFOs have been seen over practically every country you can mention, commencing in 1945, not to mention pre-heavier than air flying machine sighting reports.

The UFOs do not all betray the same characteristics of flight and mancuurability, nor are they all of the same appearance. The majority of those sighted are obviously powered by a means far in advance of pre-

## Silvering SolutionsBe Careful!

SIR,-I refer to your issue for January, 1958, page 188, where you give an excellent article on the process of silvering. Correct and concise as the article is, however, it contains no warning about the highly explosive nature of ammoniated silver solutions and their residues.

Whilst in general the process described is not the one which a vast previous experience has shown to be the most unstable, it is a fact that ammoniated silver solutions can give rise to the production of fulminating silver, which explodes at the slightest jar.

Whilst the quantities of silver and ammonia used in the article under discussion are relatively small and as described need not be a cause for great concern, it would be as well to inform your readers that whilst solutions A and B are perfectly safe for storing, the process of ammoniating should not be allowed to take up too much time. It should not be done at a temperature higher than 65 deg. $F$. and ammoniated solution $B$ should under no circumstances be kept. Further, all unused and spent ammoniated B and $A+B$ solutions should be swilled away with copious amounts of water, and all utensils thoroughly rinsed to avoid the retention of dried material which will almost certainly contain silver amide.

If these simple precautions are observed there will be no danger whatsoever.S. N. Gлythorpe (N.W.3).

## CHANCE BROS.-NEW ADDRESS

READERS who are contemplating making N the astronomical telescope mirror, details of which appeared in our January and February issues, will be interested to know that the makers of the glass blanks have a new address. This is the ChancePilkington Optical Works, St. Asaph, Flintshire.
sent-day knowledge on earth. The method defies the triangle of velocities and laws of inertia.

Why are fantastically expensive liquid propel lent rocket motors still being used to establish earth satellite vehicles? How would Mr. Milburn account for the formations of UFOs sighted in 1947, and at the same time account for the world-wide secrecy which exists? What about the millions of pounds and billions of dollars being poured into the guided and ballistic missiles industry, and what about passenger and freight air traffic? Does Mr. Milburn not think that if a revolutionary method of propulsion which had all the UFOs attributes was possessed by some world power in 1947, it would have been adapted for wider use by now?
"G" force is a force resulting from sharp acceleration or deceleration or a rapid change of direction and is not a force in itself such as gravity (whatever this may be) and electromagnetism. Many are now aware of the experiments being carried out in the field of "electro-gravitics," by which means dises of aluminium up to 3 ft . in dia, have been flown in closed circuits. The results are encouraging but fall a long way short of being used as a method of propelling 30 ft . to 75 ft . disc-shaped machines through the atmosphere and beyond. We are also neglecting the larger UFO, the "cigar shaped" variety.

One or two ingenious theories of propulsion have been put forward and there is no doubt that in a few years time one or possibly more of these methods will be employed to achieve "G free" and inertialess flight, but certainly this had not been achieved in 1945.-D. Wightman (Chairman, Wigan and District F. S. Group).

## TIME SWITCH USING ALARM CLOCK

SIR,-In reply to A. Barnard (Norfolk), "Information Şught," December issue, I have used the device shown for many years.

The clock is firmly screwed down on to a box, inside which is housed the battery. A brass contact strip is bent and fixed underneath the alarm key, as shown in the sketch As will be realised, this limits the movement of the alarm key to about a quarter to half a revolution. The alarm need only be wound a few turns as it will never be fully unwound. When the alarm key is wound, the brass contact strip is screwed into position, underneath it. It is so arranged that when the key is wound back a little, it just misses the top of the contact strip. When, however, the alarm rings, the key turns into the position shown dotted, thereby closing the circuit and setting off the alarm.

The great advantage of this system is that once the key turns it cannot go any further, thus the alarm rings until the key is turned back into its original position. The frame of the clock will be found good enough to complete the circuit, but a wire could be attached directly to the key if wished. Also, a switch could be placed somewhere in the

## Specific Gravity Calculations

SIR,-I refer to your issue for January, 1958, page 206, where you reply to W. T. F.. (Leeds) on the matter of Specific Gravity Calculations. Watson's Physics will I think show that it is possible to calculate theoretically, and indeed practically, the specific gravity of a mixture of given proportions, and conversely from a known specific gravity of an aqueous mixture to calculate the proportion of water in the mixture.
Let $\quad \mathbf{S}=$ Specific gravity of mixture
$\mathrm{V}_{2}=$ Volume of diluent to be found $\mathrm{V}_{2}^{2}=$ Volume of commercially pure liquid
$\mathrm{S}_{1}=$ Specific gravity of diluent (water)
$\mathrm{S}_{2}=$ Specific gravity of commercially pure liquid.
From any textbook on Hydrostatics

$$
\begin{align*}
& \frac{S=V_{1} S_{1}+V_{2} S_{2}}{V_{1}+V_{2}} \text {, whence } \\
& S V_{1}+S V_{2}=V_{1} S_{1}+V_{2} S_{2} \tag{I}
\end{align*}
$$

T F's (Leeds) query canno answered without knowing the volume of the commercially pure liquid $\left(\mathrm{V}_{2}\right)$ but if we work on a proportional basis we can take any volume and, for the purpose of this calculation, call t 100 units, be they cc.s or pints!
We thus have the following quantities. $S=1.20$ (given by W. T. F.)
$\mathrm{V}_{2}=100$ units (assumed arbitrarily)
$\mathrm{S}_{\mathrm{L}}=\mathbf{I}$ (water)
$\mathrm{S}_{2}=\mathbf{1 . 2 6}$ (given by W. T. F.)
Substituting in (ii) we have
$S \times V_{1}+S \times V_{2}=V_{1} \times S_{1}+V_{2} \times S_{2}$
$=1.2 \times V_{1}+1.2 \times 100=V_{1} \times 1+100 \times 1.26$

$$
1.2 \mathrm{~V}_{1}+120=\mathrm{V}_{1}+126
$$

$\mathrm{I} .2 \mathrm{~V}_{1}-\mathrm{V}_{1}=\mathrm{I} 26-\mathbf{1 2 0}$
$0.2 \mathrm{~V}_{1}=6$
$\mathrm{V}_{1}=\frac{6}{0.2}=30$ units
Check: Specific gravity S , of mixture $=$
$\mathrm{V}_{1} \mathrm{~S}_{1}+\mathrm{V}_{2} \mathrm{~S}_{2}$
$V_{1}+V_{2}$
$=\frac{30 \times 1+100 \times 1.26}{30+100}=\frac{156}{130}=1.20$ Q.E.D.
Now the volume of the diluted fluid is equivalent to $V_{1}+V_{3}=30+100$ units of which 30 units are the diluent.
Therefore $\frac{30}{130} \times 100=\%$ dilution $=23 \%$ in
W. T. F.'s case.-S. N. Gaythorpe (N.W.3).


Mr. A. f. Thorley's time switch.
circuit, to switch off the alarm without having to touch the key-A. J. Thorley (Manchester).

## Finding Ellipse Foci <br> SIR,-Every draughtsman knows how to draw an ellipse using two pins, a piece of cotton and a pencil, but I have often been struck by the fact that very few know the quick way of finding the foci. Accordingly I give it herewith.



## Finding ellipse foci

Let $\mathrm{AA}^{\prime}$ be the major axis and $\mathrm{BB}^{1}$ the minor axis, and $O$ the point of intersection. With centre $B$ and radius equal to $O A$ describe a circle cutting $A A^{1}$ at $F$ and $F^{2}$. Then $F$ and $F^{1}$ are the foci.-R. M. Myers (Birmingham).

## Electric Fence Control Circuit

SIR,-We have had a number of enquiries about the article on electric fence design in the October, 1957, issue and would like to point out that this article is really not one which is suitable for anyone wanting to make one of these equipments for themselves and, in fact, when we published this in our dealer magazine "Outlook" the following cautionary statement was added:
"The present article is published as a matter of interest, and as an illustration of trigger tube circuit design. It is not intended to encourage the building or repair of fence controllers. Existing controllers must always be serviced by their makers."
The paragraph and the heading "transformer " should be emphasised. This read as follows:
"An existing transformer was used. If suitably redesigned, it could be taken via $\mathrm{R}_{4}$ to the 240 v . line rather than to a 120 v . tap.
Redesign of the transformer is essential in any practical controller based on this experimental circuit. The present arrangement allows the possibility of moving the I20v, tap to a much higher position on the
battery, with, as a consequence, a prohibitively high output delivered to the fence." -Mullard Ltd.
[The article concerned was printed by courtesy of Mullard Lid.-ED.]

## Scooter Braking

SIR,-I feel that the letter published in the January issue of Practical Mechanics, sent by Mr. J. I. George, Brighton, deserves some comment.

Although the hard application of the front brake on a pedal éycle can be dangerous due to its light weight, this is not so in the case of a motor cycle or scooter. Here the front brake is by far the most important and its hard application is quite safe due to the low centre of gravity and heavy weight of a motor cycle or scooter.

Mr. George states that in his opinion the rear brake is the most efficient as the rear of the machine carries the greater weight. Apparently Mr. George is not aware that on application of the brakes of any machine weight is transferred to the front wheel by inertia and therefore the front wheel is far less likely to skid under heavy braking than is the rear wheel.

To support the above I quote braking figures of a Model LE Mk. III Velocette Water-cooled Twin as given in a road test.
Braking figures on WET TARMACADAM SURFACE from 30 m.p.h.

Both Brakes $29 \frac{1}{2} \mathrm{ft}$. Front Brake 33 ft . Rear Brake 49ft.-W. R. Shakespeare (Rhyl).

## Silvering Solutions

SIR,-I have read with interest "Glass Silvering for the Amateur" in the January issue of your paper and find that, in the preparation of solution " A ," there is a mistake in the amount of distilled water for the dissolving ingredients. As the two solutions are used in equal parts, solution "A" should contain 250 cc . (as mentioned), but for $50 z$. of water it should read $90 z$. This is important for the amateur who may not be conversant with working out cubic centimetres into fluid ounces. From my experience it is not easy to obtain a glass measure with both calibrations. In silvering, the correct measure is very important.

The glass sheet ready for silvering should be placed on four wedges (wood would do) absolutely level so that the glass is not resting on the bottom of the dish, so that silvering takes place only on the upper side of the glass. Rocking the dish is not recommended as the reflection might become cloudy.

I have found that 100 c.c. (equal $3 \frac{1}{2}$ fluid. ounces) of the final mixture will cover I sq. ft . of glass.-M. Nartowski (Cornwall).

[^1]

A "FERROUS" ELECTRIC ARC WELDING SET will complete your workshop ercuipment. For joining and re-inforcing. rrom approx. $1 / 16^{6}$ up to any thickness,
Mild Steel, Wrought or Malleable Iron: Type F. M. 60 Heavy Duty complete with all equinment $150 / 240 \mathrm{v}$. Sincle ph. $10 / 15 \mathrm{amp}$.
(or domestic power supply) delivered free ex stoclk. Cash (or C.O.D.). $\quad$ E23.10.0
H.P. Terms avallable.

IIlus. leatet from manufacturers. FERROUS PRODUGTS (M.E.C.) LTD. Church Rd., Groydon, Surrey. GRO 8351/3


STEELFRAMED-EXTENDIBLE
 rotainers. Yale lock. Treke site plans,
1.0WEST MoNTMI TERMS of any Manuacturer loluding FKEE P Pence or HINGED \& ON ERHEAD TYME BOONS
FREE filustrated Catalogue \& Pices from BOWSER, MONKS \& WHITEHOUSE LTD. (Dept. MET), Spring Gardans, DONEASTER

## SWISS Mexsical Movements

## \section*{from} <br> Metwood

Mavements by THOR-
ENS AND REUGE of
Switzerland ranging from I tune 18 teeth3 tunes/ 72 teeth aro "uarameed for 12 mw wh kits from 10.-each. Post Toda ior suyer 16 page illustrazo Catalopue and Tune List (please inclose 2d. кtanmp forreturn post${ }^{2}$ Ec) atso plans to make your own Nusical Rox available. $1 / 3$ posiMETWOOD ACCESSORIES (PM15 65, Church Street, Wolverton. Bucis. Importers and Manufacturers.


## ADEPT SHAPERS

for Hand or Power operation
Particulars on receipe of stamp.
F. W. PORTASS MACHINE TOOLS, LTD.
Adept Works, 147a, Micholson Rd.,
Heeley, She:Field, 8.

## BETTER CABINET MAKING



Build a CHEAP EASY-TO-MAKE RADIO!
 47/6 natas exceplionalla centid iriode ratlio, Can be bult by anyone Without any
matlo mow-
teatre reatge whitever
to about 45 mins. mabout 45 mins.
Handsome black arackle steel case with black snd gold dial $x 5 i n, x 3 i n$. Covers all Medium and Long waves-uses onty one all-dry fattery. Uses personal phone. Ideal for Bedroom, Garden. monials. Alr. Norton of Oxted writes: Yesterday ovening on the Medlum wave hand, 1 eaunted 32 separate stations: I am
very pleased with the set. Which is well very pleased with the set. Which is well
worth the money.
itult Totail building cost-ryprything derwal to the tast unt and boit-a7/6 (Postage, etc. /- buctuding full set of clear, vasy-tofnilow plans (Parts sold
CANCYMRT ELEKTRONECS (IDrgit P.M. 1


DOUBLE VALUE

 pletorish. Step-by-step plans, Every part teated. Remarkably sensitive-covers Medium-Wavos, Size only $54^{\circ}$ 天 $3^{\circ} \times 2^{\circ}$ A
really personal-phone, pocket zadio ${ }^{\circ}$ iTh really personal-phone, pocket zadio Wive self-contained battery, Bullding time 1 Hour, TWTAL BLIIDING CONT- everything to last nut and bolt- $0 \mathrm{NL} A{ }^{37}, 6$ GIth plams. Past 2/il C.O.D. SEND TODAY:
 for hard wear in all con-
ditions to full Govt. specification, therefore there can he no harder wearing barcel emahles us to offer at this silly price of 18 . post, etc. $2 \cdot 26$. Money hack cuarantee if not worth treble IASTS,

## (G)EADQUARTER and General surplies lid.

## G REAL DENIM BOILER SUITS

 ONLY. MET ROT PROOF$17 / 11 \begin{aligned} & \text { IIC SHINK PROOF } \\ & \text { 2/7 OOIL PROOF }\end{aligned}$ $14112 / 2 /$ EOIL Proar Please read carefully, Nur
a Twill or a Drill but genuine brand new British Army DENTM MATEERIAL. A ga, could possibly turn out for less than $47 / 6$ if he could get the materlal! ymagine a
Boller Sult that you can boll Boller Sult that you can boll
week in and week out and that week in and week out and that
stili keeps its shape and comes out fresth and new every time. 50.000 only 2,7 . 3 pairs post free. Usual pockets. Dr send quickly. freis. Usual pocket, FONTWEAR, GEITARS, VATCHES,
(DEPT. PMCI23), 196/200, COLDHAREOUR LANE, LOUGHBOROUGH JUNCTION, LONDON, S.E. 5 Open all Saturday I p.m. Wednesday.

## DO YOUR OWN  <br> AND SAVE $£ £$ £'s

This NEW INVENTION Replates Mecals and gives hard Chrome finish Motors and Cycle Parts, Househol Utensils, etc. Complete Outfir only 15\%. post free (full money back guaran tee). Send P-O. now, or for darails and plated sample send $4 d$, (stamps) to
L. A. PRODUCTS,

156, High St., Berkhamsted, Herts.


TWIST DRILLS

* CARBON STEEL * $\star$ STRAIGHT SHANKS $\star$ $\star$ FAST CUTTING $\star$ $\star$ BRITISH MADE * (Arrow Eagle Brand)


## METAL

STAND
Transparen Cover
$6 / 9$
PER SET
Plus 9d. posi \& packing.

Sizes
1/16"
5/64
$3 / 32^{\prime \prime}$
$1 / 8^{\prime \prime}$
$5 / 32^{\prime \prime}$
3/16
$1 / 16$
5/64
$3 / 32$
$7 / 64$
9164
$5 / 32$
3/16
$1 / 4$
Send Joday, Don I Delay
THE 'LEEDA ' CO. (Redhill), LTD
Maple Road, Redhill Surrey

## HANDICRAFTS TEACHER

Experience not essential
Men who enjoy making things in wood or metal can turn their hobby into a permanent and interesting career. Short hours, long holidays and security in a job you would really enjoy can be yours if you become Handicrafts of the easiest and quickest way to per of the easiest and quickest way to ge

We definitely guarancee "NO PASS-NO FEE "
If you would like to know about our unique method of preparing you for one of these appointment write informazive 144 -page Handbook-FREE and without obligation. Mark your letter " Handicrafts Teacher."

BRITISH INSTITUTE
OF ENGINEERING
OF ENGENEERING
S91, College House,
29-31 Wright's Lane, London, W.8.


## "ZYTO" TOOL KIT

SPECIALLY selected for the home handyman and do-it-yourself enthusiast, the "Zyto" general-purpose tool kit comprises a complete outfit of high quality tools. They


The complete tool kit.
are housed in a steel carrying case, with removable tray and padlock and key. The contents include:-
20in. handsaw, loin. brass-back tenon saw. Stanley adjustable iron plane. gin. $X$ 2 in ., set of three handled chisels, $\frac{1}{4} \mathrm{in} ., \frac{1}{2} \mathrm{in}$., $\frac{3}{3}$ in., claw hammer, 6 in . cabinet handled screwdriver, 4 in: ratchet electrician's screwdriver, crosspene pin hammer, two handled bradawls, pr. pincers, 6in., 7in. Footprint pipe wrench, 3 in . paint stripping knife, putty knife, Stanley ratchet brace, set five fast-cutting centre bits, $\frac{1}{4} \mathrm{in} ., \frac{1}{3} \mathrm{in}$., $\frac{1}{2} \mathrm{in}$., ${ }_{4}^{3}$ in., lin., pointing trowel, padsaw with blade, set of crampheads, pair combination pliers, wire brush, Stanley hand drill, set twist drills, soldering iron, stick solder, tin flux, mitre block, pair radio pliers, junior hack saw, six spare hacksaw blades, nail punch, 2 ft . boxwood folding rule, instruction book The tool kit is marketed by S. Tyzack and Son, Limited, 341, Old Strect, Shoreditch, London, E.C.I, at £16 $10 s$.

## - Salter Balances

TWO additions to the well-known range of Salter balances are now available, they are the Air Traveller's Balance and the "Weighiet" Letter Balance. The former will enable the frequent air traveller to avoid excess luggage charges. The balance is

strongly made and has a brass dial which registers up to 501 b . and 23 kg . Packed in the polythene pouch supplied, the balance may be carried in the pocket and costs 12 s . 6 d .

The "Weighlet" balance has a white plastic dial, graduated in ${ }_{4}$ oz. up to 4 oz .. and in 10 g . up to 150 g . The letter is held by the wire spring clip. which is simple and effective. The balance fits into a waistcoatpocket size leather case. The price is 8 s . 9 d .

## Lens Catalogue

$\mathrm{O}^{\mathrm{F}}$ special interest to users of optical equipment will be the catalogue issued by Scottish Distributors, Ltd., 62, Shirland Road. Maida Vale, London, W.9, in which some 250,000 items are listed. Included are achromatic doublets, cemented triplets, cemented four-lens elements, double convex, plano convex, and double concave lenses, filters. optical flats and windows. mirrors. graticules, prisms and other types of optical equipment. Enquiries are also welcomed regarding equipment not listed.
Slightly damaged lenses are sold at reduced prices.

A Review of New

## Tools, Equipment,ete.

Thread Measuring Comparator
THE new "Marlco" thread measuring comparator is based on the same prin-
 ciple as the well-
known thread measuring parallels but employs a dial indicator instead of a micrometer. Male threads of up to $2 \frac{1}{2}$ in. dia., including Whitworth, Unified. American, Metric and B.A. may be measured. One flat and one hemispherical anvil are supplied so that the comparator may be

(Left)The new "Marlco" thread measuring comparator with dial indicator.
used on plain diameter work, also a polished wood case. A stand is available. Although primarily intended for thread measurement, a wide range of anvils is available for other external forms. The price of the comparator is $£ 12$ IOS., and the makers are W. H. Marley \& Co. Lid., 105, High Street, New Southgate, London, N.II

## BULK LIQUID SPRAYING UNIT

ANEW accessory is available for use with the Gennar Mini-compressor. It is a 2-gallon lightweight cannister which can be pressurised to 80 p.s.i. in less than half a minute by the Mini-compressor. The contents are discharged as a jet or spray by means of an 18 in . lance and nozzle. The cannister can be carried casily by means of the shoulder strap attached. Construction is of lacquered brass and a 42 in . p.v.c. hose, an 18in. bent lance and adjustable jet are fitted. It is possible to spray insecticide, weedkiller, liquid fertiliser, tar oil. winter washes, creosote, whitewash, etc., and the price of the cannister is £9 9s. 6d. The makers are Gennar Engineering, Ltd., 99, Old S-treet, London, E.C.I.
(Right)-The compressor and cannister.


## Spirit Duplicating

I
HAVE recently obtained a quantity of spirit duplicating carbon papers and wish to use these for some small-scale duplicating. Please let me have details of the process of spirit duplicating or tell me if there is any publication which would describe it fully. How many copies is it reasonable to expect from the one master copy ?-A. S. Aldis (Cardiff).
THE original master copy is done on a sheet of hard bond paper by means of the carbon paper. This sheet is then placed in contact with a moist surface of gelatine or other appropriate material and the written or typed master copy is absorbed from the paper and appears in reversed form on the gelatine surface, after being firmly impressed. Then by placing a sheet of blank dry paper on this moist surface the impression is transferred to the paper. You can improvise a gelatine pad by running the mixture given below into a biscuit tin lid. A roller, such as is used for glazing photographs, is the best way of obtaining the transfer by even pressure.

Gelatine pad formula.-Glue 100 gms., water $375 \mathrm{gms}_{\mathrm{m}}$, glycerine 500 gms . Barium sulphate (finely ground) 25 gms .
Melt glue in water and add the glycerine and barium sulphate. 50 to 100 copies can be obtained, depending upon the intensity of the dye used in the carbon sheets.

## Imitation Leaded Lights

I WISH to make some imitation coloured leaded lights. Could you please tell me the name of the transparent paint used to give the glass the coloured effect. Also the name and address of suppliers?-R. R. Heathcote (Matlock).
THE glass to be painted upon must be ground glass, because this has a grain to hold the colour. Where smooth glass is used, the paint will flake off after a year or so. The colours are to be laid on the ground or matt side of the glass. The lead lines had better be painted in first with dark lead colour, perfectly opaque, oil colour. This can be made from a rube of artist's white lead paint, called "Flake White"" and with it is mixed "Lamp Black" o: "Ivory Black." The drying can be forced by the addition of Japan gold size. The width of the lines representing the leads should be tin.


For painting between the leads to represent the coloured glasses there is no better medium than artist's tube colours but a careful selection must be made to get only those which are transparent and which are permanent. The following are taken from Winsor and Newton's list. These will not fade.

Yellows: Aurcolin, Indian yellow.
Reds: Alizarin crimson, burnt sienna:
Blues : Prussian blue, ultramarine.
Greens: All varieties of greens can be got by mixing in various quantities of the blues with the yellows.

## QUERY SERVICE RULES

A. stamped, addressed envelope, sixpenayA stamped, addressed envelope, a sixpenay. crossed postal order, and the query coupon from
the current issue. which appears on the inside of the currens issue, which appears on the inside ol containing a query. Every query and drawing which is sent must bear the name and address of the reader. Send your queries to the Editor. PRACTICAL MECHANICS, Geo. Newnes. Led.. Tower House, Southampion Street. Strand London, W.C. 2.

Purples and violets: All-shades can be got by mixing the crimson with ultramarine. Ruby: Mix Alizarin crimson with burnt sienna.

Pink : The crimson alone will give this.
Squeeze the colour out on to a palette (a piece of glass will do for a paiette) and add Japan gold size and a few drops of turpentine. Thoroughly mix with a palette knife and apply to the glass with a soft brush. Float the colour on rather than paint, and if not dark enough give another coat when

I2FT. ALL. WOOD CANOE. New Se-ies No. I.
10-WATT MOTOR. New Series. No. 2, 4s.*
COMPRESSED-AIR MODEL AERO ENGINE. New Series. No. 3, 5so 6d.*
AIR RESERVOIR FOR COMPRESSED AIR AERO ENGINE. New Series. No. 3a. Is. 6 d .
"SPORTS" PEDAL CAR New Serier, No. 4 5s. 6d.*
F. J. CAMM'S FLASH STEAM PLANT. NOw Series. No. 5, 5s. 6d.
SYNCHRONOUS ELECTRIC CLOCK. New Series No. 6, 5s.6d.*
ELECTRIC DOOR-CHIME. No. 7. 4s.*
ASTRONOMICAL TELESCOPE. New Series Refractor Object glass 3 in . diam. Magnification $\times 80$.
No. 8 (2 sheets), 7.
CANVAS CANOE. New Series. No. \%, 4s." DIASCOPE New Series. No. 10, 4s.* EPISCOPE, New Series. No. 11, 4s.*
PANTOGRAPH. New Series. No. 12, 2s.*
COMPRESSED-AIR PAINT SPRAYING
MASTER BATTERY CLOCK.*
Blue-prints (2 sheecs), 4 s.
Art board dial for above clock. Is. $6 d$
OUTBOARD SPEEDBOAT
Ils. per ser of shree shects
LIGHTWEIGHT MODEL MONOPLANE Full-size blue-print is.
r.M. TRAILER CARAVAN Complete ser, Ils.
P.M. BATTERY SLAVE CLOCK, 2. 60. P.M. CABIN HIGHWING MONOPLANE Is. 6d."

- M. TAPE RECORDER*

2 shesers, 5 s .6 d .
The above blue-prines are obrainable, post ree from Messrs. George Newner, Led. Tower Honse

Southampton Street. Strand. W.C.2. $A_{n}$ " denotes constructionat. details are available free
colour on will avoid-leaving brush marks and streaks.

If you sant to imitate the drawing and shading in draperies and faces, hands and foliage, etc., as in a stained glass window, it must be done with opaque colour: a mixture of burnt umber, or raw umber, with black. This painting is done with sable brushes for the lines and with a hog hair for the shading where the brown is stippled on.
Any glass which is required to be left uncoloured in the window must not be left as ground glass. It must be given one or two coats of Japan gold size alone.

## Moulding Cement Troughs

WISH to make two or three small cement troughs for miniature gardens, size approximately $12 \mathrm{in} \times 6 \mathrm{in} . \times 3 \mathrm{in}$. deep but am having some difficulty The outer case of the mould I made with wood and found I could take away satisfactorily, but the inner mould, made of wood also, cannot be taiken out without damage to the casting. Can you advise me how to make an inner part for these troughs? The walls of the casting would be $\frac{1}{4}$ in. to $\frac{3}{8}$ in. -R. Ackerman (Bristol). IN order to make the former for the inside of the cement troughs easily removable it will have to be made collapsible ; that is to say, it must be made of five pieces of wood and the vertical pieces forming the sides must have mitred corners which must not make too close a joint. The bottom board of the inner mould must be beveiled underneath so as to present no vertical surface for withdrawing from the casting. No atrempt should be made to collapse the mould until the casting is quite set and nearly dry. The mould should be made of. $\frac{1}{8} \mathrm{in}$. thick board and it would be as well to paint (with white lead paint) all five pieces, all over. We recommend you to make the casts fully $\frac{1}{5}$ in, thick.

As an alternative to the col.apsibie mo 'd, the cast could have tapered or s!oping insides; by this means a solid, one p.ece mould would withdraw from the cast. The angle of slope could be about the same as a flower pot. The resulting casts would be much stronger if the thickness at the bottom were, say, $\frac{5}{s}$ in. and at the top in.

## Arc Welding Outfit

I WANT to build up an arc-welding outfit cheaply.
What are the sizes and capacity of components needed for general purpase welding of mild steel up to $\frac{1}{4}$ in. thickness?

Cay an arc-weld be made as strong as an oxy-acetylene weld?

If not, is it advisable to spend more on an oxy-acetylene outfit?-B. G. Silcock (Hertford).
HOR arc welding $\frac{1}{4}$ in. mild steel you could use in. e.ectrodes in conjunction with a transformer having an open-circuit voltage of $80 / 100$ volts, the transformer being capable of supplying a curzent of $90 / 125$ amps. These should be used with a choke coil to refuce the voltage across the arc to about 25 volis after the arc has been struck. The choke coil may be adjusted for various welding currents by means of tappings on the windings, or by means of a sliding coze. Alternatively an adjustable leakage $b$-idge may be used in the transformer itsef to provide an automatic volt drop on load.

The actual strength of a welded joint depends on its type, size and shape, and
upon the quality and condition of the weld and parent metal, and upon the human element. These factors are really more important than the type of welding employed in most cas?s.

## A Model Boiler

IHAVE constructed a boiler for a model steam engine. It is made of $3 / 16 \mathrm{in}$. thick seamless copper tube and is 3 in . diam. and roin. long. The ends are $3 / 16$ in thick brass discs with a $\frac{3}{8} \mathrm{in}$. stay through the centre. The brass ends are, however, soft soldered to the tube using $50 / 50 \mathrm{tin}$ / lead solder.


## Mr. G: S. Erown's Model Boiler

Would you please tell me what steam pressure such a boiler would stand?
For a pressure gauge I am using an oil pressure gauge from a car dashboard. A catalogue of pressure gauges, however, says they are for "cold" pressures and for steam a syphon must be fitted.
What is the purpose of the syphon? G. S. Brown (North Shields):

THE boiler will, in respect to its circumferential strength, have a bursting pressure of $2,700 \mathrm{lb}$.; allowing for a factor of safety of 10 the working pressure could be 2701 b . But note that this is for the cylindrical part only. The ends are another matter and as you have drawn the end discs dependent upon the shear of the solder it is impossible to calculate at what pressure the ends would blow out Obviously you cannot depend upon the solder so the central stay must be considered as taking all the stress. This it cannot do because it is $1 \frac{1}{2} \mathrm{in}$, away from where the shearing of the solder will take place. Our advice is that you reduce the thickness of the $3 / 16 \mathrm{in}$. ends of the tube to say a ba:e ${ }_{8}^{\prime \prime}$ in. ( $A$ in the sketch) then beat over the projecting ends, first of all removing the fillet of solder. Do this at both ends, as shown, and then run in a new fillet of solder, as at B. The bursting pressure at the ends will then go up to probably 1 ,ooolb. so with a safety factor of ro you will be able to adopt a working pressure of roolb. per sq. in. No one knows the highest pressure that solder will stand; it depends upon what the solder is made of, the shearing stress and the quantity that is put on and the exact nature of the joint.

The reason for using syphons on steam gauges-is that they must be kept cool and use air, or water, in the gauge itself. If you were to connect your gauge directly to the boiler it would be filled with high temperature steam, which would render it incapable of reading correctly; the injury would be permanent. The longer the syphon tube the better.

## Cleaning Horns

WITH reference to your article in the September, 1957, issue on "Modeling in Horn," I obtained horns as recommended from the local abattoir, but find they are not hollow but filled with a bony substance. Can you please give me any information with regard to removing this bone and generat preparation?-C. Turmaine (Oldham).

T
HE horns obtained from the local abattoir were not shelled, a trouble not anticipated, as most abattoirs shell the horns, the horns then being sold for hoof and horn fertilisers, etc.
All you have to do to remove the core is to leave the horn and core for two or three weeks to decompose; the bony core can then be withdrawn. It is then wise to dip the horn in a solution of lime to burn off any surplus membrane. They can then be washed and the usual preparation, as in the article "Modeling in Horn," carried out.

## Overhauling Binoculars

PLEASE tell me how to clean and overhaul a pair of binoculars including cleaning the prisms and lenses, and also repainting the inside with matt black and the outside with black paint. Is there any special paint sold for this purpose? Also, a double image appears when observing a fast moving object such as a plane, how can this be remedied?-R. F. Thorpe (Shoreham).
YOUR binoculars should first be taken to pieces. The lenses can be cleaned if they are very dirty by washing in tepid water with a little good soap, thoroughly rinsed and dried, preferably on a new chamois leather or, failing that, on a clean handkerchief.

The inside of the case should be repainted with a matt black lacquer which you can probably obtain from an optical instrument maker or you can make it yourself with vegetable black in a weak solution of shellac (brown shellac flakes dissolved in methylated spirit). For the outside of the case you will need a glossy black celluloid lacquer. This dries very quickly and must be applied with a soft brush rapidly and deftly.

If the "double image" is only seen when observing fast moving objects we would say that it is an optical illusion or that you twist, in your excitement, the frame of the binoculars; but if the double image is always present then the two oculars are not parallel, that is to say their optical axes are not parallel. This is best remedied by an optical firm.

## Electric Blanket

I
HAVE the lining of an R.A.F. flying jacket, which is fitted with heating elements and wish to convert it to an electric blanket, using a transformer. Could you assist me with the choice of this. The elements, in the form of gauze ribbon, are four in number and cover practically the whole of the jacket. They appear to be connected, a pair in parallel, in series with the other pair, which are in parallel also. I would like to rearrange the elements on a rectangular heating pad if possible.-F. E. Millington (Gillingham).
$W^{E}$ understand these jackets have four elements, each rated at 12 volts, one element in each sleeve and one in each half of the body; one sleeve element and one body element being connected in series with each other and in parallel with the elements in the other half of the jacket for use from a 24 -volt supply.
You could cut the jacket into strips, each with one element, stitching the strips on to a piece of suitable material. If you retain the series-parallel connection we suggest you feed the blanket from a transformer having an output of 3 to 4 amps at 24 to 30 volts.

## Projector Calculations

WISH to build a home 2 in. $\times$ 2in. still projector and would like details to calculate the required distances as illustrated in sketch.
$x$ minimum distance of lens from transparency.
y minimum distance of condensers from lamp-D. Berry (Stockton-on-Tees).
THE distance $x$ depends upon the conjugate focus of the 4 in. F projecting lens and this will be regulated by the size


## Component spacing required

of the enlargement. You will have to provide a focusing arrangement for varying the distance of the lens from the film. If the enlargement were placed at infinity the value of x would be the normal focus of the lens, viz. 4 in ., but it will be much nearer than this, dependent on size, and $x$ will become longer than this 4 in., so it will be a matter for experiment by means of focusing for every different size of enlargement. It may become up to 5 in . or $5 \frac{1}{2} \mathrm{in}$.

With regard to the condensers: this again involves a test. All you have to do is to mount the condensing lenses vertically, hold a piece of tracing paper, or waxed paper, in the position the film will occupy and move the lamp backwards or forwards as required until you obtain, on the paper, an equally distributed field of light. Then measure carefully the distance between the paper and the lamp and make the enlarger accordingly.

## Information Sought

Readers are invited to supply the required information to answer the follozing queries.

## Spin Dryer Motor

WISH to construct a spin dryer of average size; could you please tell me the type and size of motor I need? Is the motor shaft a direct drive to the drum or is it a belt drive? What speed does the drum need to rotate?-F. Holmes (Hayes)

## Table-tennis Table

IWISH to build a table-tennis table; can you supply me with a plan or tell me where I may pbtain one?-J. Payne (Dublin).

## EXPLORING THE DEEP OCEAN FLOOR <br> (Contiriued from page 272)

chalky to look at and feel, and is known as globigerina ooze. It is not, however, flat and featureless, as we have supposed in the past, but is in fact covered with the burrows and workings of the animals that live on the bottom. Often we find tracks, sometimes with an animal on the end, but more often without (see Fig. 4). Because of the very small currents and the incredibly slow accumulation of sediment (about a centimetre in a thousand years), these features are preserved for a very long time. In the basins we have never yet seen exposed rocks and we do not really expect them. All we find. is mile upon mile of this ooze.
(To be concluded)
(This article is reproduced by permission of the National Institute of Oceanography.)

# Announce 

NEW - completely up-to-date methods of giving-instruction in a wide range of technical subjects specially designed and arranged for self-study at home under the skilled guidance of our teaching staff.

NEW - experimental outfits and lesson manuals are despatched on enrolment and remain the student's property. A tutor is allotted to each student for personal and individual tuition throughout the course.

Radio and television courses, with which specially prepared components are supplied, teach the basic electronic circuits (amplifiers, oscillators, detectors, etc.) and lead, by easy stages, to the complete design and servicing of modern Radio and T/V equipments.

If you are studying for an examination, wanting a new hobby or interest, commencing a career in industry or running your own full-time or part-time business, these practical courses are ideal and may be yours for moderate cost. Send off the coupon to-day for a free Brochure giving full details. There is no obligation whatsoever.

Courses with Equipment
RADIO•SHORT WAVE RADIO
TELEVISION• MECHANICS CHEMISTRY•PHOTOGRAPHY ELECTRICITY•CARPENTRY ELECTRICAL WIRING DRAUGHTSMANSHIP•ART, etc.


MEGGEIt Circult Testing Ohmeter. 2 scales 1.000 ohms and 100 ohms complete
with test prods. Brand New. $\left.\begin{array}{c}\text { 4.17.6. }\end{array}\right)$ post 3/-.
" WEE MEGGERE, 500 Volts In leather
case. Brand New, £12.10.0. Post 3 case. Brand New, Eliz.10.0. Post 3
WAVEMETERE, With all leads and spares $\frac{1801220 \text { Mos. This fine unit contains a }}{2!2}$ lamp, switch, and other useful parts. The
case $\operatorname{gin} x$ 9in. $x$ 12hin. with hinged 11 is case 9 in. $x$ in. $x 124$ in. with hinged 1 id is
adaptabe for many purposes. BARGi adaptable for many pur
SIGNDL GENERATOR. Type 52a. ${ }^{\text {Sands }}$ from 6 to 52 Megacycles inclusive. 230 volt complete with all leads, etc. Brand now in transit case, $£ 10$. Cge. $7 / 6$
HE ITING ELLEMENTS. Flat enclosed yype 230 vorn 78 post 1.6 . Bray Chomalox. CIIPC. Full awve Bridge fiers Full awye Bridge 12 volts
2 amps., $13 / 6.4 \mathrm{amps}$. , $22 / 6$. 2 amps., Transformers, 24 amp. 4 amp.. 29/6. post 2
VACUUM PUMP: Brand New. 7 cu . ft. permin. 10 lbs .
 each. post 3 -
AVO TEST BRIDGES, 2200 thes from 5 pr to 50 mand and resistances rom ohms to Valve voltmeter range 0.1 to 15 volts and condenser leakage test. Brand New. Full workins instructions supplied with instru-
ment. EQ.19.6. Post 3 .-

Thir SET: incorporating Wheatstone Briage . Gatyano
50
GELL TESTING HOLTMETEISE. $3.0-3$. In leather case with prods. A first quality EL,ECTRII MOTORS. $200 / 250$ starting ir.p.m. $35^{\prime}=$ Post 1/6. AIR BIDWEHES 230 Y. A.C. 57 H.P. 15in. fan. 6 in. $x 41 \mathrm{in}$. outlet. Biand New
PORTABLE B1OUVER, $200-250$ v. A.C.
D.C. 330 watts with switch and leads. Ditin. outlet. wats. Post. $3 / 6$ switch and leads. RELANS HIGII SPIEND. $1,700+1,700$ ohms just the job for radio controlled
models.
most $1 / 3$ each. post 1/3. PHLGHEAD FITTING. 9in. diam. flat
tripod type suitable for lamps up to 100 watt complete with
pushbar switch lampholder. Ideal for farm
buildings. garages greenhouses. etc.
Brand new, 17/6. Post 2'6.
ROTARY CONVERTER. Input 24 y D.C. Oatput 230 v. A.C. 50 cy. 100 watt. $92 / 6$ TiLiPPHONES SDCND POWEREDD No batterles requre. Just connect with twin
fiex for clear speech. Transmitter Recelver
Units, TOR for momodel maker. small and very powerful. $12 / 24$ r.p.m. $35 /-$, post


233 v. A.C. mains and rectifier. 17 -extra TELEPHONE SETS, MODRIRN DESK W) WAJJ. TYPF, also available. 2 complete
units $£ 5$. Batteries 5 '6. Twin Wire 20 , per yd. MOTOR. 12 volt D.c. 1 1in. . x 2 in. approx-
3.000 r.p. w. with sped. regulator in end cap. A precision job. 12/6. post 1/6.
F.S.D. 100 Mcro
250
500
500
1
35
100
20
30
 $\begin{array}{ll}\text { Size } & \text { Type } \\ 2 \ln . & \text { MC/FR } \\ 3 \operatorname{lin} . & \text { MC/FR } \\ \text { 2in. } & \text { MC/FS } \\ 2 \text { in. } & \text { MC/FR }\end{array}$
${ }_{1}^{1}$ Mill
$\square$ -50 Amp . 20
40
300
300
 CROSS JOINTEIB 100 microamp movements. Brand New. 22'6, post 2 HEADPHONES. HLgh TYpe CHR. 12/6 pr. Post HEADPHONLS. High resistance, wery, ensitive
Ty. Type DHR. 176 pr Balanced Armature. Type Dhr.
Post $1 / 6$. ROOM THER MOs 1 for 8 reeghouses, etc., $35 /-$, post 2
INSPECTION LAMP. Fits on forehead. leaving hands free. battery case clipe on
belt. belt. $12 / 6$. post $1 / 6$.
No. 1215.2 . post 9 d.
L. WILKINSON (CROYDON) LTO.
19. Lansdowne Road, Croydon

## RIGHT!


for good braking

## ux <br> Fibrax <br> BRAKE BLOCKS

FOR SURE STOPPING

AND A LONG LIFE

fibrax brake blocks stand up to the toughest testthe split-second emergency. Yet they brakesmoothly and firmly. Two types: SOFT RED for alloy rims, BLACK for steel rims.
Ask your dealer for "FIBRAX"
FIBRAX LTD., 110, ORMSIDE ST., OLD KENT RD., LONDON, S.E. 15
New Cross 6785/6

## " FUN WITH OPTICS ",

COMPLETE YOUR OWN OPTICAL INSTRUMENTS
We can supply a comprehensive range of Lenses and Prisms, suitable for most optical instruments.

Catalogues, $1 / 6 d$ each, refundable on receipt of inilial order.

SCOTTISH DISTRIBUTORS, LTD., 62, SHIRLAND ROAD, LONDON, W.9. CU, Yringhum : 8080.

## MAKE MONEY - making casts with VINAMOLD

A grand spare-time occupation
WITHOUT any previous experience you can massproduce any object from a chessman to a candlestick statuetre or model ship, i!? plaster. resin. concrete. eta - WIth "VINAMOLD" the flexible mould that gives the BEST results. Easy to work, can be used over and over again. Needs nO special equipmem, provides a profitable enjoyable spare-time occupation with minimum outlay.

Write for full details and instructions. Also arail uble: Illustrated booklet describing VINAMOLD. and moulds. etc. Price 1/6 post free, from :-

VINATEX LTD. (Dept. P.M.3). CARSHALTON, SURREY

Telephone MUSEUM 9.84
H. FRANKS

58-60 NEW OXFORD ST. LONDON, W.C. 1
U.S.A. SPERRV BOMBSIGHE COMPUTLRE. TY1'E BB, ref. 109/92, M,' for the mechanic-constructor, weight
 Pattern W.1060, complete with 15 ft . 240 watts projector type lamp, heavy duty water tight switch and plug.
ginnetal switeh box, transit case, gumnetal sw.
Gtc. £A each. two $48 \mathrm{~d} . \mathrm{p}$. Sun and Planet gear movements and other assorted gears, etc., U.S.A each ir FORCE $12 / 24$ vOIT U.SAAW AIR FORCE, $12 / 24$ VOIT 3in. long. 1 in. diam. slze of fan housing, which is made of bakelite, 3 in .
diam.. $1 t \mathrm{in}$. deep. outlet in. diam.
 futed Mercury in Steel Capillary Tube. Transmitting type. Reading greenhouses, etc. $18 / 6$ TEMPERATURE AALGN.
 or 30ft. capillary tube 3O/6 eath,
C PPILLARY RADIATOR THEIt
MOMETERS MoMETERS. With 20ft. of capllary FRACTIONAL H.P. ${ }^{27 / 6.6}$. $10 T O R$. $1 / 100$ th h.p.. $200 / 250$ volts A.C.ID.C.
length 3 tin.
diam. $2 \% 1 \mathrm{n}$.
doubleended spindle fin. thick, unused. g\%/6. NEW SOUND-POWERET TELS PIIONEHANDSEIS, G.P.O. pattern. no bitteries required. 50/- per pair. man. Mk. XIVB. Reads to $45,000 \mathrm{ft}$. by means of 3 pointers, indicating nearast 20ft. millibar-scale and ad-
justing knob. Unused. $41 /-\mathrm{Aach}$.
ROTII ERHAM DRIVFN 7DAY MOVFMENT, as fitted to Barograph units with 3in. CLIam drum. Winding key. S5/varlable. 5 to 30 mins. Fitted 15 amp .
A.C. contacts. Totally, enclosed, crackle finish. 176 each.
VisNER SYN HRONOUS Motos. 2001250 v . A.C. 3 watts. Final Speed
$30 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Ideal for Timers, etc. $16 / 6$.
 MANFNT MAGNFT MOTORwelght $7 \frac{1}{2}$ ozs. diam. of bakelite housing in., intake of $1 \frac{1}{2}$. diam. outlet iin. $x$ inn., diameter of motor $1 H n_{0} 2 i n$. long 21 - each.
MOTOR-DRIVE,
 will give less at 12 volts, overali
length gin. x $2 i n$. wide approx., ideal for pumping water or oil, etc. 35/F DRIVEN BOOSTIER PUMPS, ref. sq. in. overall diam. Sin., length Dintion 24-volt, ref. $5 \mathrm{CHE} / 6166$, gives 900 F.p.h. at 1 Glbs . per sq. in., overall DITTO, 24 -volt, 5 ref. $\operatorname{diam}$, 5544.3 .0 . g.p.h. at 101bs, per gq. in. overall BUBBL/E $9 \frac{1}{2}$ SEXTANTS, typo MKixA. complete with 2-minute clockwork 60 shots. In Atted case, 65/-
NEW 36 -HOUR CLOCK WR DRIVEN TIME SWITCIINS InCorporating 7 -day high-grade lever
watch movement, length 3 in., diam. $2 \frac{1}{\mathrm{in}} ., 14 /$-, lpss winding kpy: PRFSSERE PUMP UNITS, operated by 24 -volt A.C./D.C. Motor, develops
101bs pressure. 2H1bs. vacuum. Comple te with 10ft. length of pressure hose. cables and connectors. ete. Gin. X 4 in. x 41 n . Made in U.S.A. Ideai for laboratory use, ote. New. £4 rach. WESTEREN ELECTRIC HILOWER MOTORS, available 12 volts D.C. or
110 volts A.C. D.C. Suitable for car heaters. projectors or miniature vacuum cleaners, etc. Size 41 n.x $3: 1 n$. approx. Price, 28/- each.
TUFNOL PULILES, fitted ball-races, $3 / \ln$. external, internal in, bore.
U-shaped groove, $3^{\prime} 8 \mathrm{Bin}$. wide, $3 / 6$ each. $37 / 6$ per doz. ${ }^{3}$. ROLLSHROYCE COOL ANT PUMPN diam $5 i n$, fitted 4 in. diam. gear-
wheel drive, gunmetal impeller. suitable for water or oll. lin. diam.
intake and outlet. 65 -EX-AIR MIN. GEAR POTPS.
 SBLF PUMP PRIMING IMMLREAREN PUAP (Electric) Ax- ir Ministry. Fitted 24 v . D.C. motor will work on livers approx. 150 g.p.h. Ideal for use In caravans, boats, etc. 376 .
SMALL D, C", MOTORRS. made by with small fan blade fitied 21 volts, motor 211 n . long x 1 inn. wide x 1 ilin . $14^{\prime} 6$ pac HLIUSTIX ATED LIST $1 / 8$.

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Ltd., Tower House, Southampton Street, Strand, London, W.C. 2

Phone: Temple Bar 4363

Telegrams. Newnes, Rand, Londoa

#  

N.C.U. Out of the Red

AT a recent general council meeting of the N.C.U. the members were informed that for the previous nine months the Union had emerged from the red and at the end of the full financial year there would be a working profit of over £1,000, the overdraft and all outstanding debts having been paid. A year previously the balance-sheet was $£ 12,800$ on the wrong side. The sale of the offices in Doughty Streer has, of course, been mainly responsible for the present credit balance, together with some official economies. If the N.C.U. can, during the next few years, increase its credit balance, and $£ 1,000$ cannot permit the Union to embark upon any expensive campaigns, it may yet reinstate irself as a power in the land of cycling. Much however has yet to be done before it can gain the full support of all the cycling clubs which alone can bring this about. It must live down the antipathy and the animosity which its disastrous policies have brought about over a long period of years. Whatever the N.C.U. recommended was considered the thing not to do. It now must face the ineluctable fact that it must work with the B.L.R.C. and not against it, and it must drop its autocratic policy if it wishes to survive. It now seeks to amalgamate with the B.L.R.C., but I suspect on the terms of controlling it. In other words, it wants to take it over, under the thin veneer of an imaginary condominium. The B.L.R.C., however, will vigorously watch points, for confidence between these two bodies has not yet been established

## Some Advice to Amateur Editors

FDITORS of club journals are amateur scribes without knowledge of journalistic procedure and the law, as it elates to privilege. They all write in a slap-happy libellous style and have the opinion that they can say what they like in a club journal. Members of these clubs do not realise that they may be sued for libel, either pointly or individually, and the plea that it is a privileged publication can be set aside. The fact that what you write is true does not make it anything less of a libel. In fact, the greater the truth the greater the libel. Very few club journals are serious and need not be taken seriously, for the writers, more often than not, are not worth powder and shot.

This paragraph has been encouraged by a perusal of the latest issue of a club rag called the "Hobbyhorse" the journal of the Redhill Cycling Club. It has a printed cover to make it look like a magazine but the inside is duplicated typewritten matter. This month there is an article entitled "The Cycling Press," which reviews most of the various iournals which deal with cycling. After drawing attention to the increased costs which publishers have to face, it goes on to say that "it is revenue earned by advertising that pays for any periodical. It is this fear of loss of revenue that affects the policy of many periodicals. Cycling magazines are not exempt. Costs must be met somehow." This is so divorced from
fact that experienced journalists will smile, for it ought to be well known that the basis of all periodical revenue is circulation. Without it you cannot get advertisements for an advertiser will not continue to support a periodical, the circulation of which is so poor that the advertiser does not get results. In other words, it is the aim of every publisher and editor to seek the widest possible sales in the expectation that, having provided a large market place, the advertiser will buy space in it to sell his goods. The article attacks a well-known cycling weekly because "falling circulation and advertising revenue resulted in the editorial being extended to cover the range of mopeds
although with brilliant journalistic tact, it undoubtedly offended the paper's most loyal readers . . . the obvious bias against the BI.R.C. in the past is now thought wrong by a fickle leadership who have almost forgotten their differences 'with the rebel minority. Would it not have been safer to regard road racing as legitimate news even if not a legitimate sport?" This displays the ignorance of the writer of fundamental facts, except insofar as his reference to the B.L.R.C. is concerned. The writer of the article wants news, and the journal in question gives it, crowding its pages with six point type in order to give up-to-the-minute racing results without having to hold overmatter. The plain fact is, that in its efforts to serve cycling and keen cyclists, club cyclists -did not respond by buying the journal in sufficiently large quantities and it naturally had to serve another and more modern market to maintain its circulation and, therefore, its advertisement revenue. If cyclists want cycling periodicals they should buy them. In many clubs only one copy is taken and passed round. At one time there were over 50 monthly, weekly and quarterly cycling periodicals in this country, but one by one they died for lack of support, and only the journal in question weathered the storm, having had an advertising monopoly for a long period of years until The Cyclist came along and broke it, achieving a much larger circulation within a few weeks than had ever been obtained by a cycling periodical before. Unfortunately it became an early war casualty owing to paper shortage and its title was maintained in this journal by means of this supplement. No cycling periodical could ever succeed, however, if its main editorial policy is merely directed to reporting racing news from the clubs. This only represents about 50,000 cyclists out of a total of over 10,000,000. Most cycling clubs have a membership of 25 or so. Very few of them, however, buy cycling periodicals. The club cyclist, because of his apathy, does not deserve a cycling periodical. That is why The Cyclist devoted a minimum amount of space to sport but gave the majority of its space to touring, mechanical matters, bicycle history and even bicycle fiction. H. G. Wells's "Wheels of Chance" and H. H. Griffin's famous history of the bicycle were serialised in it. It is obvious, therefore, where the market lay.

The article we have quoted goes on to
comment on other cycling periodicals such as the official journal of the B.L.R.C., the N.C.U. pamphlet, which the writer describes as "trashy" and, of course, this supplement. Although small in size, during its period as a supplement this journal has had a greater effect upon the sport of cycling than all other cycling periodicals put together and but for us the B.L.R.C. would not have survived. It was the present writer who described the underhand tactios as cycling organisations including the N.C.U., the R.T.T.C. and to some extent the C.T.C., in their efforts to pet massed $s$ art racing stopped. The only objections to massed starts which the Minister of Transport had re-eived when we interviewed him on the matter were from these three bodies-mainly the N.C.U. The papers themselves were knitted together in an anti-B.L.R.C. policy. We prepared the famous memorandum putting the case for massed starts and which was presented to the Minister and caused him to abstain from threatened legislation. We have, on a number of occasions, acted as delegate for the B.L.R.C. in meetings with the M.o.T. and it is this journal alone which is responsible for all of the other cycling organisations having deferentially to genuflect to the B.L.R.C. Thes have wnt their battle, they are recognised, and had the luscious satisfaction one year of being recognised by the U.C.I. while the N.C.U was not recognised. Like the N.C.U. the cycling press of this country, in the main, have been the apostles of lost causes. Cycle sport has become a closed shop with its members acting as proprietors of the sport. They elevated themselves by adopting high faluting titles such as "cycling legislators," when the plain fact is that like lawyers they were merely paid advocates and not in the sport as genuine amateurs. I do not agree with any of the views expressed by this obviously inexperienced writer. The cycling movement, to-day, has got the cycling press it deserves and the space in this specious publication would have been better occupied in impressing even its few readers with the importance of regularly buying a cycling periodical. I do not absolve cycle manufacturers from some responsibiliy. They have never really adequately supported the cycling periodicals, and in some ways indeed have endeavoured to control editorial policies and to, restrict advertising to certain favoured iournals. Where you find an industry lacking adequate periodical representation, you will find an impoverished, industry, and it may be that the present decline in sales is somewhat due to this lack of support. If there is a demand for periodicals, publishers are in existence to supply them. They are not, however, in business to act as propagandists to any industry which does not back them up.

## EVERY CYCLIST'S POCKET BOOK <br> By F.J. CAMM <br> 3rd Edition

$7 / 6$, or $7 / 10$ by post from the offices of this journal.


FOR the purpose of this article it is assumed that the hub three-speed is already built into the rear wheel and that the gear has been purchased complete. The fitting routine described applies specifically to the Sturmey Archer range but will be useful for other types.

It is possible that the range of gears obtainable on the purchased hub is not suitable for the rider's particular requirements and it is possible to vary this by changing the sprocket. A larger sprocket will lower the range of gears and a smaller one will raise it.
The sprocket on a Sturmey Archer hub has three semi-circular shaped splines which fit into three grooves on the hub. It is locked in place by means of a ring which is sprung into a groove in the driver boss (Fig 1). Correct fitting is ensured by two $1 / 16 \mathrm{in}$. washers and by varying the position of these the chain line may be altered. The spring ring is removed by prising it off with a screwdriver.

## The Chain Line

This is the distance from the centre line of the bicycle to the centre of the sprocket teeth, and before


Hecessary to ensure that sufficient spacing washers and locknuts (the same number both sides) are fitted to make up the width between the fork ends. The chain line measurement should of course be the same as that on the chainring, and, as already mentioned, it may be varied to obtain any position in $1 / 16 \mathrm{in}$. steps, between $1 \frac{1}{2} \mathrm{in}$. and $1 \frac{3}{4} \mathrm{in}$., by varying the position of the two spacing washers fitted with the sprocket and by reversing the sprocket, one face of which is dished.

## Fitting the Gear Change Mechanism

The usual control for the hub gear today is the trigger type which is fitted on the handlebar, but the older type consisting of a small lever in a quadrant is available for fitting to the top tube.

For the trigger control, the usual cable length is $54 \frac{1}{2} \mathrm{in}$. inner wire and $\mathbf{~} 7 \frac{1}{2} \mathrm{in}$. outer

Fitting a thub Gear

And Some Notes on Adjustment

wire, but other lengths hub and the outer cable released from the are available: For the quadrant type fitting, cables are available in sizes 32 in . 34 in , and 36 in . There can be no difficulty in fitting the fulcrum, pulley and control levers as this is merely a matter of positioning the clip fitting and tightening the screw into the clip nut.

The positioning of the various fittings on the two most common types of frame is shown in Fig. 2. The fittings themselves are also shown inset. When a chainguard is fitted on an open frame, an extra pulley will probably be required.


Fig. 2.-The fittings and their positions.


## The Trigger Control

There have been one or two variations in the design of the trigger control in the past, but the basic design is in all cases similar to that shown in Fig. 3. The only time the cyclist will need to do any work on it will probably be when renewing cable.
First the old cable must be removed and to do this the inner wire must be detached from the indicator chain at the
fulcrum clip. Pull the cable ferrule upwards until the threaded end (at this time inside the trigger control) engages in the hole B, and then unscrew. Pull the lever right past the bottom gear position to the stop $C$ and push the inner wire through to detach the ripple from the ratchet plate. The wire is pulled out of the threaded hole B after passing between the pawl and the ratchet plate at $D$.

## Fitting a New Cable

Keep the lever in place beyond the bottom gear position and push the wire through the threaded hole, down between the pawl and ratchet plate at $D$ until the nipple on the end of the wire fits into the notch E. Screw the cable ferrule A back into the threaded hole on top of the casing, then push the lever forward into top gear, keeping the wire taut at the same time. Finally, refit the outer cable into the fulcrum clip and reconnect to the indicator chain at the hub.

## Indicator Adiust-

 mentThe hub may have either of the two types

of adjustment indication, shown at A and B in Fig. 4. In either case, the locknut above the chain is slackened off and then the knurled wire connection rotated $t o$ bring the indicator rod into the correct position. With SW, $\begin{array}{ll}S B & S \\ \text { AM, } & \text { ASC }\end{array}$ Fig. 3--The trigger mechanism. and AC three-speed hubs, this position is as shown at $A$, i.e., the end of the indicator rod is level with the end of the hub spindle on the left-hand side of the hub. This indication also applied with FW, FM, FC and FG four-speed hubs. The indication shown at $B$, where the shoulder of the indicator rod is brought level with the end of the spindle on the sprocket side applies to the AW, AB, AG and TCW.

5000 High Sueed Sitting, Saws
and Sloting Cutters, 2 1/4.



 $\overline{3}, 000$ Pligh Speed Toolbits, ground ong, actual present day value $47 /$ por doz. A most useful bargain,
per doz. 13.6 half doz., $2 / 6$ each. 500 Whitworth Screwing Tackl sets, with bright polished steel die stoek, dies ${ }^{2}$ Whit., sol- per set. Also
B.S.F. ditto, 50, per set. Onis a third 1,000 High Speed Slde and Face Cutters, $212^{\circ}$ dia.. $1^{\circ \prime}$ hole, $1 / 4^{\circ}{ }^{\prime \prime} 3 / 8^{\prime \prime}$
 1,000 H.S. Lone straieht Shan Twist Drills approx. $1 / 16^{\circ}$ and $3 / 32$
dia., both $43 / 4^{\prime \prime}$ long, $2 / 6$ pair. Approx
 Approx. $1364^{\circ}$ dia., $11^{\circ}$ long, 46 each
Approx. $1564^{\circ}$ dia., $1 / 2^{*}$ lons. 46 each $18^{3} \mathrm{da}, 11^{\circ} \mathrm{long}, 10 /-$ each.
$200 \mathrm{H} . \mathrm{s}$.
200 H.S. Spot Facing Cutters 1 1/4 M.T. shank. An essential tool for facing hoit holes on castings. Worth $45 /$ Gift 12/6 each.
1.000 H.s. Inserted Hates Ex

 $13 / 16^{*}-111 / 32^{\circ}$, $32 / 6$ each. $3 / 16^{\circ} 3 / 8^{\circ} 7 / 1^{\circ}$ and $12^{2}$ Whit., B.S.E. American Car thread or 28 brass thread These sets are in a neat case. prasent
day value over 30 -per set, to clear $15 / 6$,
 and B.S.F. only. 5,8 1,000 ELS. Morse Taper Shank End
 Snecial clen $7 / 8^{1} 10 / \mathrm{s}$, $12 / 6$ each reamers, sizes $4,5,6,7,9,17 / 6$ the lot. worth it,
All items brand new
paid, except overseas. 2,000 Small M.S. Twist Drills,
 3,000 Circular, Spllt Dies, $1^{\circ}$ dia.
cutting $1 / 4^{\circ}, 5 / 16^{\circ}, 3 / 8^{\circ}, 7 / 16^{\circ} 1^{\circ}$ whit B.S.F, also brass thread, 26 thread
all sizes and American N.S. $12 /=$ por
set of 5 sizes 2 sets on 8 , set of 5 sizes, 2 sets $28 / 6$, 4 sets $42 / 6$.
Taps to suit $12 / 6$ per set, either taper or second or plug. $1^{\text {set dia, stocks } 6 /-~}$ 1,000 Hrand Reamers, $5 / 16^{\circ}$. 3/6 each, 5. $8,4 / 9$ each.
1,000 Rilkh Sued Parting off Tool
Blades, Ecilpse brand $116^{\prime \prime} \times 3 / 32$ Biades, $5 /$ each $13 / 16^{*} \times 1 / 16^{*} \times 6^{*}$
$\times 5^{\circ}$ long. $5 /-$ eng, $5 /-$ each : $15 / 16^{\circ} \times 3 / 32^{*} \times 6^{*}$ long. y,oon Pratt \& Whitney circular spround cutting edges, $13 / 16^{\prime \prime}$ dia. sultable for machine or hand use. Sizes:
$2.4,5,6 \mathrm{~B}$. $8 / 6$ per set, $13 / 16^{\circ}$ die stock, $3 / 6$ each.
5,000 Ball Races, $18^{*}$ bore, $3 / 8^{\circ}$ o.d.,
$1,8^{\circ}$ thick, 4 - palr : $14^{\circ}$ bore, $3 / 4^{\circ}$ o.d.,

 2" pair. Files. $4^{\prime \prime}-6^{\prime \prime}$, good assortment,
2,000 0 doz., also toolmakers' meedle files
 $18^{\circ}$ and $1 / 4^{\circ}$, figures, $8 / 6^{6}$ per set,
letters, $25 /-$ per set, any size. 2,000 Straight Shank End, MM11s,
 1500 H.s. 900 Counterslaks, body 1.000 Bevelled Wh.


 1.000 sem
prills, siocombe brand $516^{\circ}$ body dia.,
$3 / 32^{\circ}$ polnt. $1 / 8$ each, $16 / 6$ per doz
20,000 Small hith Speed Miling 20,000 Small iligh speed Miling
cutters, various shapes and styles.
We want to clear these quicirly. 12 We want to

## J. BURKE

192, Baslow Road, Totley, Sheffield
Inspection Only at Rear
38 Fitzwilliam St, Sheftield

THE ULTRA LENS AIDS PRODUCTION
This unequalled Whetheryouaremanufacturing, buyingorselling,
electric magnifier


## THE ULTRA LENS COMIPANY

17c, Oxendon Street, London, S.W. 1

## FREE POCKET MANUAL <br> "How to fit STEAM

## TRAPS"

Unique guide to the correct selection and nstallation of steam traps for mains drainage, heating systems, process steam sate-lifting instionchuding best coctions clear illustrations. Copies free on request to SPIRAX-SARCO LTD.
(TECHNICAL DEPT.), Cheltenham, Glos,


## GALPINS

 199, EDWARD ST., NEW CROSS, LONDON, S.E.14. TIDeway 4458 Leafets sent gladly, on request.

## AUTOMATIC (TIME) SWITCHES

New and reconditioned 15 day clock orl and electric switches from 35/-
Send S.A.E. for illustrated details
DONOHOE (TIMERS) GEORGE STREET, NORTH SHIELDS,

\section*{FRENCH - SPANISH GERMAN-ITALIAN <br> Learned in Six Months Dy Pelman Method} I have derived great benefit from Part I, in fact, I believe that with no other system as the time at my disposal has been boch limited and irregular. Thanking you for the care with which your instituce has corrected my work shects, and for a very enjoyable | course. (G.P. 643) |
| :--- |

THIS letter is typical of thousands received from readers 'who are learning languages by the Pelman method, which has revolutionised language teaching.
This wonderful method enables you to learn French in French and so on, without using a word of English. The system is so simple that even a child can understand it. Grammatical complexities are eliminated and the whole of the instruction is given through the post.
The Pelman mechod is explained in four little books, one for each language French, Spanish, German, Italian
(Also Courses in Afrikaans and-Urdu)
Stace which book you want and it will be sent to you by return, together with a
specimen lesson, gratis and post free. WELbeck 1411
POST THIS FREE COUPONTO-DAY Pelman Languages Institute,
130, Norfolk Mansions, Wigmore St.,
Loudon, W.I.
Please send details of Pelman method of Jearning

French, Spanish, German, Italian (Cross out three of these)

## Name

Address

HIGHSTONE UTILITIES
 a Foncll Bit. 301250 V. 50 watts. 11/6,
post 1/e. Standard Iroin with adjustable
 Duty Iron, 150 watts, 18i6, post i/6. All arty roplaceable and funy guaranteed. post 8d, Resin-cored solder for easy solder-
Ex-R.A.F. q-valve (2 volt fil.) MICROntercom in self-contained metal case can be used to make up a deaf-ald outfit; intercommunication system, or with crystal set: complete with valves and fiting box with partitions to hold amplifer, $2 /$ AMPLIFIERS, less valves, but containing resistances condensers, transformers, witches, etc., $10 \%$, post 3 )
SPAILKING PLUG NEON TESTERS, with vestpocket olip, 3/3, and with gauge, 3/6, post 41. S. B. C. Neon Indicator Lampai for use on mains showing "s live " stde oi complete with condenser (pencll type) with vestpocket cllp, Indispensable for electricians, etc., 7/6, post 5 d .


BELL TRANSFORsuarantced transformers work from any A.C. Mains, giving 3, at 11 amp., operate Will supply light in bedroom or larder, etc. but with output of 4,6 or 12 volts, $13: 6$. post 1/6. BELLLS for use with either tho above or batteries, $6 / 6$, post 6o! "His Hen"
Chimes. Housed in Crenm Plastic Case Chimes. Houssed in Crenm Plastic Case. Easily connected to give TWO-Note Chime Operated from 6-9 wolt Batteries or Trans. former (shown above), 23/6, rost 1/6.
CRYSTAL SEIS. Our latest Model is' a
real radio revelver. which is fitted with a permanent crystal detector. Wby not hato a sot in your own room? 12/6, post 1/. Spare Permanent Detectors, $2 /$ e earh.
Whea ordered separatcly, 2/6, With clips When ordered separately, 2/6, With clips and screws, 2/10, post 3n. Special Crysta now, S. G. Brown, G.E.C., etc., 23/- and super-sensitive, 30i- a pair, post $1 / 6$.
HEADPHONES IN GOOD ORDEIR, G/a. Better quality, 76 and 10/-0 Balanced post 1/6. New simite Farbicees, 316 . Baianced armature type, $4 / 6$ (iwo of these will make an intercom, set or Baby Alarmג phenes, with moving coll mike 1 多ipost 1/6, Jleadphoue Cores, 1.3 a pair post 3d. Replacenvent Rands, $1 / 8$, post ilsted are suitable for use with our Cryetal Sets.)
HAND MICROPHONES with switch in nstrament moving coll 8/6. All post 1/6. Mask type with switch, 3/6, post 64. Mihe Buttons (carbon, $2 /=$ Moving an, $3 / 8$ Transformers, 5/-, All post 4d. each

MORSE KEYS. - Standard stze keys wired to work Buzzer or Lamp, 3/- post 84.
Slighty smaller keys, 2/6, post bi. BUZ; ZERS, 4/3, post Ef.

Termimals, brass 2BA, mounted on strip den pars, 8 , 0 airspaced variable coln rimmers oic post 8 d 24 wolt 15 mm M.E.S. Bulbs for model ratlways. etc. 1 -each, $10 /-\mathrm{doz}$, cost $4 d$. Wander Pluze
Brass, $1 / 6$ doz., rost 4d. Fuses. -1 amp 1 Hn . packet of $10,2 / 6$, post 4 d . Also 150 mA
and 250 mA ., same price. Ex-G.P.O. Telc ohone Twin liells, with box, $5 /=$, post $1 / 8$ Magnets, extranc strong, $2 i n$., $1 / 3$, post 46 TELEPIIONE HAND GENFRATOR. bells, etc., 816, post 2/-. Telephone hand comb sets, 12/8. post 1/6.
Bargain Pareels of really useful equipdenser or double assortment, $17 / 6$; treble, 25iAll carriage 3/-, This country only
METERS. $20 \mathrm{amp} 2 \mathrm{~mm} . \mathrm{m} / \mathrm{c}, 8 / 6: 20 \mathrm{v}, 2 \mathrm{in}$ T.C. $61-{ }^{4}{ }^{4} \mathrm{amp} 2 \not 1 \mathrm{n}$. T.C, in case wit
 microamp. movements. $9 /$, cost $1 / 6$. Money reiunded if not completely satisfled. STOP PRESS. We can supply the parts fo the one-valve

## HIGHSTONE UTILITIES <br> 58 New Wanstead, London, E. 11

Letters only.
New Illustrated List sent on request with
2d. stampand S.A.E.

## EX-GOVERNMENT BARGAINS

SIGNALLING TELESCOPES. In lather cases. Three Draw. 2 in. O.G. Power 25X. SOUND CONDITION, OPTICALLY PERFECT, E6.10.0. Ditto Brand New, 68,10.0. Ditto, but with interchangeable eyepieces 25 X and 50X. Now only, $£ 10$. Also triple power astroterrestrial types 25,40 and 60 X from $\mathbf{8 8 . 1 0 . 0}$ to 10 gns . PRISMATIC TELESCOPE by KRAUSS. 3in. O.G. Triple turret eyepicce, $15 \mathrm{X}, 23 \mathrm{X}, 30 \mathrm{X}$. Equatorial type Triple turret eyepiece, $15 X, 23 X$. $30 X$. Equatorial cype mounting on geared and divided head and git. telescopic New condition. Very superior, $£ 30$ each. Cost over $£ 100$. AMERICAN M. 35 VARIABLE POWER 'SCOPE. Efbow type "scope plus finder on very elaborate equatorial type mounting. Weight 401 bs . $£ 20$ each. Cost over $£ 200$. BINOCULAR COLIMATOR by Taylor Hobson. Rhomboid rype. As new, $£ 40$.
INFRA-RED BINOCULARS. A true binocular giving 3D vision. Complete with power unit, 12 v. battery
operated. Brand New in Sealed Cases, but not Guaranteed. 63.10 .0 each, carr. $7 / 6$. Tested and guaranteed, $\mathbf{E 5}$. Carr. $7 / 6$.
HELIOGRAPHS. Lovely leather case for sports use Plug 4 mirrors and various brass fittings, including geared
hedu suitable for mounting telescopes. A REAL BARGAIN at $15 \%$, plus $2 \%$ carr. BRAND SPANKING NEW.
TANK PERISCOPES. Containing two prism units. TANK PERISCOPES. Containing two prism units
size $9 \mathrm{in} . \times 6 \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in}$. $8 / 6$ each, carr. $1 / 6$. Brand New.

TELESCOPE EYEPIECES. Infocusing brass mounts, 8/8 each. For Orthoscopics see our lists
SOIL-HEATING TRANSFORMERS. All A.C. inputs. $50-55 \mathrm{~V}_{\mathrm{i}}$ 15-20 amp. outpur. In metal case with cover plate. Weight 651bs. BRAND NEW. 43.5 .0 each, carr. 7/6 ZEISS $10 \times 50$ PRISMATIC BINOCULARS in perfect condition, $£ 25$. OTHER GERMAN MAKES, $10 \times 50, £ 22$; $6 \times 30$ from $£ 8,10.0$ to $£ 12.10 .0$.
FIELD STRENGTH METERS. U.S.A., $100-400 \mathrm{mc} / \mathrm{s}$, with 50 microamp. meter, 7 -section chrome aerial. Deluxe instrument. Brand New, $£ 5$.
MICRO-AMMETERS, 0.100 micro-amp. Brand New. 3in. dia. 35/-.
A.C.-D.C. AMMETERS. Gin. dial. Flush. $0-15,0-30$ or 0.50 amps. (state which). Brand New in sealed cartons. 45/-. Cost about $£ 6$.
GRINDING WHEELS. CARBORUNDUM. ALOXITE. $12 i n$. dia. $\times 3$ in., lin. arbor. Brand Naw. $\times$ K 15/-cach, carr. 2/6. Doz. lots carr. paid.
T.V. PROJECTION SYSTEM. Complate Schmitt T.V. PROJECTION SYSTEM. Complete Schmitt Spherical mirror, plain mirror and corrector plate in sealed unit with focusing adi. for tube. Brand New. $£ 5$ each. Cost about 140 .
PREDICTOR TELESCOPES. Elbow type $7 \times 50$. PREDICTOR TELESCO
Brand New. £3.5.0 each.

GEARED MOTORS (SMALL PRECISION UNIT). Size $7 \frac{1}{1} \mathrm{in} . \times 3 \mathrm{in} . \times 3 \mathrm{in}$. with 2 take-offs, 3 and 12 r.p.m.. plus other movements. Staintess steel motor and bright aluminium gearbox. Runs perfectly from 12 V . A.C. or D.C. $37 / 6$ each, carr. paid.

AMERICAN MIDGET ACCUMULATORS. Lead acid typs. Non-spill. Size 4in. $x$ lin. $\times$ kin. Packed sealed tins containing one 6 v . and 3 of 32 v . batteries. Ready charged. Nead filling with acid. Brand New. El, post INFe. See our lists for single units
INFRA-RED MONOCULARS. A compact unit with buile-in Zambon I pile for detecting infra-red light sources. Tested O.K. Post and insurance free 45/- or at your risk. 37/6.
RIFLE SIGHT5 NO. $423 \times$. Brand New, $50 /$ each. Cost 620 .
STEREOSCOPIC BINOCULAR TELESCOPES. AII types as New or New from $£ 10$ to $£ 20$. Used from E8.10.0. types as Naw
MIDGET MOTORS, 12 v . with governor, pulley and wire belt, 10\%. A.C.ID.C.
SMALL MOTORS. $3 \mathrm{in} . \times 2 \mathrm{in} . \times 2 \mathrm{in}$, 12-24 v. D.C. New and boxed. 10/
TELESCOPE OBJECT LENS. 20 focus $\times 45 \mathrm{~mm}$. dia. Brand New, 25/-; ditto but 27 in, focus, 35/-. Achromats. Brand New, $25 /-$; ditto but 27 in , fo
of course. for others see our lists.
"HOW TO USE EX-GOVERNMENT LENSES \& PRISUS." Nos. 1 and 2. 2/6 each, post od. PLANS for 35 mm . to $2 \mathbb{1}^{\prime \prime}$ sq. ENLARGER, $3 / 6$.

See our NEW LISTS-FREE for s.a.e-for fuller details of above items.
H. W. ENGLISH, RAYLEIGH RD., HUTTON, BRENTWOOD, ESSEX

Phone Brent 1685.


## HIGH GRADE TOOLS FOR MECHANICS



New pattern combination set comprising 12 in . Rule, Square Head, Centre Head and
Protractor with level and scriber 30\% Post $1 / 6$


New pattern corner cramps for frame work mitres, etc. Takes up to 2 in. material $14 / 9$ Post paid


Vice grip pliers will grip and hold nuts, bolts pipe, ete., with no possible chance of slip-
ping. 7 in ., $12 / 6$. 10 in ., $15 /$. Post $1 / 6$.


Cramp heads, will make any lencth eramp with the aid of $I$ in. thick board $13 / 6$ per set Post Paid.

Woodwork vices
in. law. steel Table fictink,
Poss $2 /$.

Rest quality chimney sweeping sets. Red Malacca canes; brass ferrules. 18 in . ball brush. 30 ft ., $50 /$. $40 \mathrm{ft} . .63 / 6$ Drain clearer 4/- extra. Carr. 2/.

Combination squares with square and mitre and level 12 in . steel rule. $8 / 6$ Part Post $1 /$.
thlustrated catalogue of
tools for mitring and framing, $6 d$. POST free

$-5 \frac{6}{4}=$


Utility saw spindle oil impregnated bearings, Overall length, 24 in 56/-. Carr. $2 / 6$


## S. TYZACK \& SON LTD

 341-345 OLD ST., LONDON, E.C. 1Wolf combination elec tric drill and mortice steel up to a in Will bore in wood up io 3 in Wore in wood up to il wood up to $t \mathrm{in}$. PRICE $\mathrm{E} 3 \mathrm{~B} / \mathrm{IT} / 6$
full details on reques New Credit Terms available.

Plumb bobs useful for all home decoration plumbing. wall building ete. Copper plated, 2 oz $\begin{array}{llll}4 / 6 & 3 \text { oz., } 4 / 6 . & 5 \frac{1}{2} & \text { oz., } \\ 5 / . & 7 \text { oz.. } & 5 / 6 . & \text { Post } 1 / .\end{array}$

Tel. SHOREDITCH 8301 TEN LINES

## 



Write for fers
ated leafles
and address A.G.THORNTONLTD.



Huveris

Published about the 30th of each month by GEORGE NEWNES LIMITED, Tower House. Southampton Street, Strand. London, W.C.2, a nd Prinied in England by W. Speaight \& Sons, Exmoor Street, London, W. 10. Sole Agents for Australia and New Zealand-Gordon \& Gotch (A/sia), Lid. Sole Agents for South Africa-Central News Agency Led. Subscription Rate (including postage): For one year, Inland 20 s . Overseas 18s. 6d., Canada 18s. 6d.


It's a Gallaher Tobacco
"Practical Mechanies" Idrice Bureau. ${ }^{\text {COU }}$ COPON This coupon is available until March 3 st. 1958 , and must be
attached to all letters containing queries, together with $6 d$. Postal Order. A stumped addressed emvelope must also be enclosed Practical Mechanics.

## Free Guide

 SUCCESS IN ENGINEERINGOne of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

## ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship Jig \& Tool Desiga
Press Tool \& Die Design Sheet Metalwork
Automobile Repairs
Garage Management
Works M'gmnt. \& Admin.
Practical Foremanship Ratefixing \& Estimating Time * Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance Engineering Steam Engine Technology I.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship Machine
Automobile
Structural
$\mathbf{R}^{\prime}$ F Concrete
Sitructural Enginee"ring Mathernatics (all stages) Radio Technology Telecommunications Wiring \& Installation Television Radio Servicing Radio Servicing
Gen. Elec. Engineering Generators \& Motors Generation \& Supply Aircraft Mainten. Lleences Aerodynamics Electrical Design vey Dr'ship.

## BUILDING AND STRUCTURAL

| L.I.O.B. A.I.A.S. | A.R.S.H. M |
| :---: | :---: |
| A.M.I.P.H.E. A.A.L.P.A. | A.F.S. A.R.I.C.S. |
| Building Construction | Builders* Quantities |
| Costs \& Accounts | Carpentry \& Joinery |
| Surveying \& Levelling | Building Inspector |
| Clerk of Works | Building Draughtsmanship |
| Quantity Surveying | Heating and Ventilating |

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert of Education Book-keeping (all stages) College of Preceptors Woodwork Teacher
Metalwork Teacher
Housing Manager(A.I.Hsg.)

Common. Prelim. Exam. A.C.I.S., A.C.C.S. A.C.W.A. (Costing)

School Attendance Officer Health Inspector Civil Service Exams.

## BECOME A DRAUGHTSFAN-LEARN AT HOME AND EARN BIG MONEY

Men and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed " Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earaing capacity.

## OVER SEVENTY YEARS OF <br> * CONTINUOUS SUCCESS

## National INSIITUTE OF ENGINEERIIM

(In association with CHAMBERS COLLEGE - Founded 1885)
(Dept. 29)
148, HOLBORN, LONDON, E.C.I
SOUTH AFRICA: E.C.S.A., P.O. BOX NO, 8417. JOHANNESBURG AUSTRALIA : P.O. 'BOX NO. 4570, MELBOURNE SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
* How to obtrin money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.


## MANY IMTERESTING COURSES TO SELECT FROM!

A.M.I.Mech.E., A.M.I.M.I., A.M.Brit.I.R.E., A.M.I.P.E., A.M.I.C.E., A.M.I.Struct.E., A.mi.I.Mun.E., M.R.S.H., A.M.I.E.D., A.F.R.Ae.Sa, London B.Sc., Degrees.

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide.


## THE ACDD TEST OF TUTORIAL EFFICIENCY SUCCESS -OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.
If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

[^2]
[^0]:    ersoual shoppers however,
    42-48. Windmill Fill, 68, Grove Road, 22 , SR roud Green Road, 188 , Londoa Road
    
    

[^1]:    Thy National Do-tt-Yourself Magazine
    PRACTICAL HOUSEHOLDER

    Edited by F. J. CAMM March Issue now on Sale PRINCIPAL CONTENTS: Erecting a Fence
    A Corner Alcove Fitment A Modern Chair Taps
    The Use of Plaster Board
    A Console Record Cabinet
    A Contemporary Room Divider
    Painting the Exterior of Your House The Care and Maintenance of Handsaws The P.H. Exhibition-Preview of Exhibits How Do Your House Drains Work? A Wardrobe Dressing Fixture Makirg a Sundial

[^2]:    1

    ## 4 Free Coupon

    To : NATIONAL INSTITUTE OF ENGINEERING (Dept. 29), 148-150, Holborn, London, E.C.r.

    Please Forward your Free Guide to
    NAME
    ADDRESS

    SEND OFF THIS COUPON NOW AND BE ALLSETFOR SUCCESS

    My general interest is in : (1) ENGINEERING

    ## (2) AERO (3) RADIO <br> (4) <br> ) BUILDING

    (5) MUNICIPAL WORK(Place a cross against the branches in which you are interested.)
    The subject of examination in which I am especially interested is

