Making a Puppet Theatre

Menes
 NEWNEsS MECHANICS

Compression? Expansion? Long? Short? Light? Heavy? Let Terry's BOXES OF ASSORTED SPRINGS settle the question. Just the job for you experimental people-a simply unlimited assortment from our tremendous range of springs of every variety. The 9 boxes shown here are only a few-but why not let us send you a full listpost free.

* Really interested in springs P The 1957 Edition of "Spring Design and Galculating "一full of spring data—post free 12/6

Tilirive

 ASSORTED SPRINGSHERBERT TERRY \& SONS LIMTTED • REDDITCH - WORCS (Makers of quality Springs, Wireforms and Presswork for over a century)
"ZYTO" DO IT YOURSELF TOOLKIT
A SET OF HIGH-GRADE TOOLS, FULL SIZE AND FULLY GUARANTEED, COMPLETE IN STEEL TOOLBOX WITH LOCKING
 handles and SLIDING tray

Delivered on first payment o
$£ 5^{\prime} 0^{\prime} 0$
Balance in Elgh Monthly
Payments of $32 / \mathrm{C}$
Cash Price
£ $16 / 10 / 0$

20" HANDSAW
10" BRASS-BACK TENON SAW
STANLEY ADJUSTABLE IRON PLANE $9^{-} \times 2^{*}$
SET OF 3 HAND LED CHISELS, $\frac{1^{\prime \prime}, 1^{*}, i^{*}}{}$ 1 CLAW HAMMER G" C A B INE T HANDLED SCREW. DRIVER
ELECTRICIAN'8 ELECTRICIAN's
CROSSPENE PIN
HAMMER

CONTENTS
2 HANOLED BRAD AWLS
1 PAIR PINCERS, 6°
1 7* FOOTPRINT PIPE WRENCH
$13^{\prime \prime}$ PAINT-8TRIPPING KNIFE
1 PUTTY KNIFE
1 STANLEY RATCHET BRACE SET FIVE FAST. CUTTING CENTRE
 ; POINTING TROWEL PADSAW WITH palr co
PAIR COMBINATION
PLIERS

SET CRAMPHEADS WIRE BRUSH BLOWLAMP 1 STANLEY HAND ORILL
1 SET TWIST ORILLS 1 SOLOERING IRON STICK SOLDER 1 TIN FLUX
1 MITRE BLOCK
1 PAIR RADIO PLIERS
1 JUNIOR HACKSAW 4) 8PARE HACK8AW 1 NAIL PUNCH
1 NAIL PUNCH FOLO.
1 ING RULE
1 INSTRUCTION BOOK

ILLUSTRATED LEAFLET FREE ON REQUEST
S. TYZACK \& SON LTD

Telephone : SHOREDITCH 341-345 OLD ST., E.C.I. 8301

Follow the FLUXITE way to Easy Soldering

No. 6. REHEATING AND CHARGING THE BIT

Re-heat bit until a green flame shows around it. Dip solder stick in FLUXITE and hold it to the tinned face of the bit until a fair sized globule is formed.

FLUXITE is the household word for a flux that is famous throughout the world for its absolute reliability. In factory, workshop and in the home FLUXITE has become indispensable. It has no equal. It has been the choice of Government works, leading manufacturers, engineers and mechanies for over 40 years.

FIUXITE

Fluxite Limited, Bermondsey Street, London, S.E.1.

MORE COMPETITION SUCCESSES!

 achieved with RADIO CONTROL COMPETITIONG. H. Redlich using
E. D. Mk. V. "EVEREST."

6 CHANNEL RECEIVER.
and E. D. 5 c.c. " MILES SPECIAL " ENGINE
Rna
R. HIGHAM using :
E. D. Mk. V. "EVEREST"

6 CHANNEL RECEIVER

SOCIETY OF MODEL AIRCRAFT ENGINEERS RALLY WOBURN PARK

St G. H. Redlich using
E. D. Mk. V. "EVEREST " 6 CHANNEL RECEIVER and E. D. 5 c.c. " MILES SPECIAL " ENGINE

The E.D. Mk. V. "EVEREST" TUNED REED, 6 Channel, RADIO CONTROL UNIT
is the crowning achievement for the remote control of all models.
Four other models are available which will adequately meet the demands of the Radio Control enthusiast.
Write for our new illustrated list giving full particulars of all E.D. Engines, Radio Control Units, Accessories, Spare Parts, etc.

6 Order from your Model Shop.

METALS

AND ACCESSORIES

ALUMINIUM, BRASS, COPPER, STEEL, ETC.
Angle, Sheet, Tube, Foil, Strip, Channel, Rod, Bar, Wire, Moulding, Etc. Tin Plates, Silver Steel, Expanded Metal. Blanks, Rivets, Springs. Etc. Tools Drills, Taps, Dies. Screws, Etc.
Formica, Perspex, Pegboard, Paxolin, Ebonite, Curtain Rail and Rod, Adhesives, Etc, and many other items for use in Home. Workshop, Etc.
LARGE or SMALL Quantities COMPARE our PRICES MAIL ORDER SERVICE (id, stamp for list) IMMEDIATE DESPATCH

CLAY BROS. \& CO. (P.M. 8) ba SPRINGBRIDGE ROAD, EALING, W. 5

Phone: EALing 2215
2 MING. EALING BROADWAY STATION, OPPOSITE RENTALS

TUNGSTEN CARBIDE TIPPED TOOLS

PLUGGING DRILLS
For clean round holes in brick, concrete, tiles, marble, etc., for all fixing jobs with Maso Plugs.
Glazemaster
For drilling windows, mirrors, glasses, bottles, plate glass shelves, etc.
Write for Booklet P.M. Obtainable from your Tool Stockist and Ironmonger.

MASON
 MASON

I/kRudsanemi Char

Manufactured by
JOHN M. PERKINS \& SMITH, LTD.; BRAUNSTON. NR, RUGBY

The EMCO-UNIMAT

Aportable, precision, machine tool

Only 1 bin. long, the Emco-Unimat is capable of several standard workshop practices
to highly critical limits. The basic tool will buff, turn, polish, drill, grind and mill, and a full range of extra equipment vastly increases the scope of the tool.

SPECIFICATION
Centre Height, 1 finn Takes between centres 68 in . Hollow spindle admits \ddagger in. Drill chuck cap, lin. Chuck to drill table. max.), $4 \frac{8}{8}$ in

ADDITIONAL EQUIPMENT Jig Saw. SC Lathe Chuck. Circular Saw. Drilling Vice. Milling Table and Clamps. Flexible Shaft. Thread Chasing and Dividing.

> CASH f PRICE EXTENDED CREDIT AVAILABLE GENEROUS TERMS AVAILABLE TO MERCHANT STOCKISTS J. \& H. SMITH LTD. i HARRISON ST. LEEDS I. TEI. 21561

BiBLE SEXTANTS MK. IX, BM
averaging
and $A M$ with A very recent and improved pattern weighing onechanism and fitted with double eyepiece. Original cost over $\$ 100$. in good working order

57/16
A few in imperfect condition available at $31 / 6$.
40x Pancratic Featherweight Telescope This precision British made instrument is the most powerfol lightweight Telescope yet produced. Power can be
Fitted with precision achromatic Object Glass of $13 / 8 i n$ varied from $25 x$ to $40 x$. Fitted with precision achromatic Object Glass of $1.3 / 8 \mathrm{in}$. dia. Length closed 12 in . With three draws extended 28 in . Weight only 12 oas
Post Ex-Government Table Mri- $15 /=$ extra. Ex-Government Table Mri- 15/- extra.
Every purchase covered by our guarantee of "Satisfaction or full
refund." or we will gladly submit on approval. Catalogue on request.
CHARLES FRANK
67-73 SALTMARKET, GLASGOW, C. 1
Telephone: Bell 2106/7 (Established 1907). Telegrams " Binocam," Glasgow

THE ULTRA LENS AIDS PRODUCTION
 This unequalled Whetheryouaremanufacturing, buyingorselling, electric magnifier is of the most modern design modern has proved its extreme its extrema usefulness to countless industrial firms onraged on minute examination of sur faces of every conceivable object.
 Please ask your local Tool Shop, Jeweller, Optician, Scientific Instruments, Stamp-Dealer, or
 Write for full particulars to there are occasions when you have to submit some objects to a very close scrutiny. At thess times the ULTRA LENS becomes indispensable.
 Triple lenses ensure distortion-free magnification and eliminate the s. focus: for adjustment of

[^0]rel. TRAfalgar $205^{\prime \prime}$ s

Training with I.C.S. THE WAY TO SUCCESS

The great and growing demand of today is for TRAINED men. Tens of thousands more are needed, but there is no worth-while place for the untrained.

Let I.C.S. Postal Tuition give you the specialised knowledge that marks you out for promotion to the best jobsfor SUCCESS ! I.C.S. teaches you at home in your own time-expertly, quickly and easily. It is the world's largest and most successful correspondence school, offering courses for almost every branch of trade, industry and the professions.

Moderate fees include all books
Accoumtancy
Air Conditioning
Architecture
Architectural Drawing
Auditing
Book-keeping
Building Construction
Buiding Specifications
Business Training
Business Management
Carpentry \& Joinery
Chemical Enginering
Civil Engineering
Clerk of Works
Cost Accounting
Concrete Engineering
Diesel Engines
Draightsnianship
Drawing Office Practice

Accoumeancy Air Conditionine Architecture Auditing
Book-keeping Building Construction Burlding Specifications Business Managemen Carpentry \& Koinery Chemical Engineerine Civil Engineering Clerk of Works Cost Accountin: Diesel Engines Drawghtsnuanship Drawing Office Practice

Transmission Electrical Engineering Elereronics Eng. Shop Practice Fir Engineering Gardening Heating Ventilation Illumination Eng. Industrial Management fou-nalism Machine Design Machine-Tool Work Maintenance Eng. Mechanical Drawing Mechanical Engineering Mocor Engineering Mocor Mechanics Motor Vehicle Elec.

Municipal Engineerint Police Entrance Plumbing
Production Engineering Quanticy Surveying Radio Engineering Radio Service Eng. Refrigeration
Salesmanship
Sanitary and Engineering Sheet-Meral Work Short-Story Writing. Structural Seeelwork Surveying
Television Technology \& Servicing
Welding, Gas and Elec.
Woodwork Drawing

And many other subjects

Courses are available for the GENERAL CERTIFICATE OF EDUCATION and

 most of the Technical, Praíessional, Commercial and Civil Service Examinations.Examination Students are coached unzil successful.

- Take the first step NOW-write today for free booklet on your special subject.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. I69C, International Buildings, Kingsway, London, W.C.2.
\qquad
Name.
(USE BLOCK LETTERS)
Address

Addresses for Overseas Reader:

Australia: 140, Elizabeth Sereet, Sydney. Eire: 3, North Earl Street, Dublin India: Lakshmi Bldg., Sir Pherozsha Mehea R-d., Fort Bombay. New Zealand : 182, Wakefield Street, Wellington. N. Ireland: 26, Howard Sireet. Belfast South Africa: Dept. B., 45, Shortmarket Street. Cape Town.

INT\&RHATIONAL CORRESPONDEIC: SCHOOLS

In days of old when knights were bowledover, how useful the Mole Wrench would have been. Known to-day to thousands over the world as their 'third hand,' the Mole Wrench locks on to the job-in-hand and remains locked, tightly with both hands free -a "third hand "that also serves as superpliers, clamp, hand vice and so on. Fitted with the quick release lever it is available in two sizes, 7 in . for $12 / 6$ and 10 in . for $15 / \mathrm{F}$. from Ironmongers, Motor and Motor Cycle Accessory Dealers. You'll be glod you bought

THE TRADE SELE-GRIP SRK SISCI

If in ony difficulty write to
M. MOLE \& SON LTD., BIRMINGHAM, 3

Do it yourself with a ? If HANDISPRAY .11 OUTFIT

HOME MANDYMAN MODEL MAKER CAR OWNER AMATEUR DECORATOR
Various applications include SPRAY PAINTING CREOSOTINE TYRE INFLATION DISTEMPERING INSECTICIDE spRAYING
Easily carried-weighs 451 b

Write for Leoflet CB. 112
B.E.N.PATENTSLTO. (Divisionof noom EWadeLtd.), P.O. Box Ne. 10, Dept. X. HIGH WYCOMEE, BUCKS. Tel. : High Wycombe 1630

C0.234

THE STANDARD BY WHICH SMALL LATHES ARE JUDGED

You can be proud to own a Lathe that is acclaimed throughout the World. Myford Lathes are produced to stand up to continued use in the Engineering Industry, and the Design incorporates the features required by the most exacting Model Engineer. The many thousands in use by Industrial Engineers, coupled with the most comprehensive range of Equipment available for any Lathe, form the finest guarantee of satisfaction you can have.

YOU MUST NOT FAIL TO SEE

> THE ML7 AND SUPER 7 - $3 \frac{1}{2}^{\prime \prime}$ LATHES (METAL WORKING) ML8 MULTI-PURPOSE WOODWORKER AND P.R.II PLANER (WOOD)

IN ACTION

AT THE " MODEL ENGINEER " EXHIBITION, NEW HORTICULTURAL HALL, WESTMINSTER, LONDON, S.W.I-2Ist-3Ist AUGUST, 1957

> ON STAND (No. 4)
\square

Standard Super 7 accommodates $10^{\prime \prime}$ in Gap-7" over Bed and $4 \frac{1}{8}^{\prime \prime}$ over Boring Table. Full length $19^{\prime \prime}$ between Centres. Advanced Spindle Design - Cone Bearing at Front and Twin Angular Contact Bearings at Rear14 Spindle Speeds from 25-2150 r.p.m. Clutch Control. Long Boring Table to carry Rear Tool Post, Friction Setting Index Dials. Ejector Type Tailstock, etc.

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES ${ }^{\text {² }}$, should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

> We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

MECHANICAL

ENGINEERING Gen. Mech. Eng.-Main. tenance - Draughtsman\& \& Press Tool Work-Weld-ing-Production Eng.lif \& Tool Design-Sheet Metel Work-Works Monagement - Mining - Re-frigeration-Metallurgy.

AUTOMOBILE
ENGINEERING Gen. Automobile Eng.Motor Mointenarre Repoirs - High Speed Diesel-Garage Mngment

RADIO

ENGINEERING Gen. Radio Eng.-Radio Servicing, Maintenance \& Servicing, Maintenance \& jection - Telegraphy Telephony - Television C. G. Telecommunicasions.
tions

BUILDING

Gen. Bullding-Heating a Ventilation-Architectural Draughtsmanship - Sur-
veying - Clerk of Works - Corpentry and joinery -Quantities - Voluations WE HAVE A WIDE RANGE OF AERONAUTICAL COURSES AND GES IN FORESTRY, TIMBER TECHNOLOGY, PLAS
G.P., TEXTILE TECHNOLOGY, ETC., ETC.
One of these qualifications would increase your earning power WHICH ONE !
A.M.I.Mech.E., A.M.I.C.E.: A.M.I.P.E., B.Sc., A.M.Brit.l.R.E., M.F.R.Ae.S., A.M.I.M.I., L.I.O.B., A.R.I.B.A., A.M.I.H. EU. V.E., COMMON PRELIM.,GEN. CERT. OF EDUCATION, ETC.

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W.8.
Phone: WEStern 9861

WHAT THIS BOOK TELLS YOU

* HOW to get a better poid, more interesting job.
* HOW to qualify for rapid promotion.
\star HOW to pur some valuable letters ofter your nome and become a "key-man" quickly and easily.
\star HOW to benefit from our free Advisory and Appointments Depts.
\star WHERE today's reol opportunities are . . . and HOW you can toke advantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, yoú con succeed in any branch of Engineering that appeals to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

You are bound to bencefir from reading "ENGINEERING OPPORTUNITIES," and if you are earning tess than $£ 15$ a week you should send for your copy of this enlightening book now-FREE and without obligation.

Post Nows то: B.I.E.T. 410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W.8.

Please send me FREE and without
obligation, a copy of "ENGINEERING
OPPORTUNITIES." I am interested in
(state subject, exam., or career).
NAME ..
ADDRESS...

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Editorial and Advertlsement Offices " PRACTICAL MECHANICS " George Newnes, Ltd., Tower House, Southampton Strect, Strand, W.C.z. Phone : Temple Bar 4363.
Telegrams: Newnes, Rand, London.
SUBSCRIPTION RATES
Including postage for one year
Inland - . . 185.6 d . per annum.
Abroad - . . 17s. per annum.
Canada 17s. per annum.
Copyrtght in all drawings, photographs and articles published in "Practical Mechanics" is specially reserved throughout the coumtries signatory to the Berne Convention and the U.S.A. Repraduction or imitations of any of these ars therefore expressly forbidden.

CONTENTS:

Fair Comment
Page
Fair Comment 517
How to Lay a Tennis Court ... $5 \mathbf{5 8}$
Converting the P.M. Projector ... 520
A Home-made Electric Fence ... 523
Solar Heated Offices 524
Various Types of Nuclear Reactors 525
A Glossary of Terms Used in Nuclear Physics

526
$\begin{array}{ccccc}\text { Making Full Use of Your Circular } \\ \text { Saw } & \text {.. } & & \\ \text { Nas }\end{array}$
Ultrasonic Testing of Metals.\therefore 53I
A'Telescope Tranquiliser ... 532
The Sun and the Solar System ... 533
Science Notes 535
Making a Puppet Theatre... ... 536
A Camera Cradle for Copying 541
New Solar Clock 54I
Junior Section :
A Home-made Bunsen Burner ... 542
Making Etched Name-plates ... 545
Black Nickel Plating 546
Letters to the Editor 549
Trade Notes 552
Your Queries Answered 553
Information Sought 554
THE CYCLIST
What I Think
... 41
Pedal Maintenance -42

CONTRIBUTIONS

The Editor will be pleased to consider articles of a practical nature suitable for publication in "Practical Mechanics." Such articles should be written on one side of the paper only, and should include the name and address of the sender. Whilst the Editor does not hold himself responsible for manuscripts, every effort will be mads to return them if a sramped and addressed envelope is enclosed. All correspondence intended for the Editor should be addressed: The Editor, "Practical Mectranics," George Netenes, Led., Tower House, Southampion.Street, Strand, Landon. W.C. 2

FAIR COMMENT

SCIENTIFIC DEVELOPMENTS THROUGH A RUSSIAN CRYSTAL BALL

I'F the scientific developments of the next 40 years as forecast by 15 leading Russian scientists seem far fetched, we must also remember that television, radio, the aeroplane, radar and nuclear energy seemed equally fantastic to us 50 years ago. These is Russian scientists in "Youth Pravda" have given their views as to what is going to happen by A.D. 2000 . The motor car of that period will be entirely automatic and controlled by the voice of the driver. He will speak into a microphone on the dashboard and merely state his destination. The car will immediately start itself and pick its own route. The Russians are, of course, cautious, because they add "This is how our world will look if we do not have an atomic war to blow us to bits." One scientist says, in connection with ships, that he has found that a 45 per cent. increase in power is possible by splitting a ship of conventional design into equal halves and mounting the power unit between them, thus lifting the hull and cutting down water resistance. However, he inclined to the view that at the beginning of the 2Ist century most ocean trips will take place under water with atomic powered engines.

Everyone at the beginning of the next century will have a small cigar-sized individual TV set. You call up a friend by the press of a button and providing no oscillating waves appear indicating that the number is engaged "the screen lights up and on it appears the face of the person called, drawn with an electronic ray pencil to such a degree of clarity that you could count every eyelash or dimple." By means of this device you will not need to crowd into a stadium or large arena to watch a football match, or a boxing match, nor any other public spectacle : you will just tune into it on this midget TV. The car of the future will not have piston engines and steering wheel, but will have an aircraft-type tail and cables beneath the roadway will set up an electro-magnetic field, while aerials below the car will pick up direction and power impulses. The driver will give instructions to the mechanism through a microphone. The scientist takes it for granted that the moon will be colonised, but first it will have to be cultivated so that it could feed the colonists. He visualises plantations begun from earth plants with radishes growing to the height of palm-trees. He foresees aluminium, water and oxygen supplied by moon minerals and industries for making rockets for journeys to the earth and cosmic travel ships.
Food production can be doubled, we are told, by means of new root stimulants that will end the myth of only one crop a year. We are told that a few such stimulants already exist, but in a few years' time there will be hundreds of them.
Nobody will work underground by the year 2000: a control engineer will set a task on his electronic panel and a caterpillar of machines below ground will select, split and bring up coal without further direction.
An intriguing forecast! Whilst we must preserve open minds on such possibilities in view of the rapid strides in technical developments now being made, we must not forget that there were scientists 50 years ago who entered this world of fantasy and vaticination and very few of their forecasts have come true. However, we know that scientists in this country are paving the way for future scientific developments. The world's largest radio telescope, for example, has been handed over to British radio astronomers, who will use it for probing the mysteries of outer space a thousand million light years away.

The steerable paraboloid altazimuth radio reflector consists of a 250 ft . diameter reflecting surface cradled in a bowl of structural steelwork, this structure being pivoted between two 180 ft . high steel lattice towers.-F. J. C:

S
IELECT an area that appears to be reasonably level and slightly larger than the actual size of the tennis court.
Place pegs A, B, C and D at each corner of the area, tie a line between A and B and by means of spades cut a grip in the ground or, if it is grass, remove a line of sods about 12 in .

By "JONISON"

bounded by the pegs will probably be higher, To obtain intermediate level pegs between each of the main ones place a boning rod on A and another one on B, insert a peg in the ground between these two and hold the third

Fig. 5. To insert level pegs inside the area of the proposed tennis court hold a boning rod on A, another one on C, and knock a peg E into the ground half-way between these two and sight over the boning rods as before, Fig. 6. Any number of pegs may now be obtained to denote the finished level of the tennis court and once set in position they need not be removed until the
 whole of the work is nearly completed.
Having obtained all the level pegs, the soil must be dug out for a depth of 7 in . over the whole area. In most cases, sail of good quality can be sold to gardeners or nurserymen, and this may be another way of earning money to pay for materials: on the other hand if it cannot be sold many

Fig. 1.-Pegging out the perimeter of the court
wide. Repeat this, between all the pegs, until the perimeter is well defined, Fig. 1.
All grass sods should be stockpiled away from the area and, if not required, may be sold to help pay for the materials. Decide on the surface level of the court and knock the peg A into the ground until the top is equal to the level.

By means of a straight piece of timber and a spirit level transfer the level of peg A to peg $\mathbf{A 1}$, working in the direction of peg \mathbf{B}, Fig. 2. The level Al is now equal to A and may be transferred to peg B by means of a set of boning rods made from 2 in . x lin. timber, Fig. 3. Place one boning rod on \mathbf{A}, another on Al and the third one on peg B, sight along the top of the boning rods, knocking down peg B until the tops of the three boning rods are level. Fig. 4. Repeat this levelling in the same way between pegs BC, CD and DA, this will make all four pegs equal in level. The ground outside the area

Fig. 3.-Constructional derails of the bonir? rode

Fig. 2.-LLevelling off the pegs with a piece of timber and spirit level.
boning rod on it. Sight over the top of the boning rods until each one appears to be level; repeat this between each of the main pegs. We now have eight pegs all of equal level,

Fig. 6.-Inseriing level pegs inside the area.
will be slightly less than the total area previously. prepared; a margin of 2 or 3 ft . all round the court for drainage purposes will be adequate.

Having set the pegs to their correct levels, well burnt clinker should now be laid to a loose depth of 6 in . over this area and consolidated by means of a rolier 25 to 30 cwt . in weight. This type of roller can be hired at a reasonable cost on a daily or weekly rate from a local contractor or the local authority.

If a hand roller has to be used, two layers of clinker each 3 in . deep should be laid and consolidated in turn to make up the required consolidated depth of 4 in . The remainder of the area may be treated in the same way until the whole area is completed. It is important that a uniform depth be maintained throughout.

Producing a Crossfall

To prevent ponding of water on the surface of the court it is necessary to produce a crossfall to enable the surface water to be conducted clear of the area.

Excessive crossfall must be avoided, otherwise players will be impeded when using the surface. The amount of crossfall given will depend upon the size of court, but in general a fall of 3 in . for each 30ft. of court will be sufficient. The centre line of the court could be the highest point with a crossfall to the sides AB and CD : this will balance the players in so far as the court is concerned.
If a crossfall of 4 in. is required, place pegs $X Y$ equal to the required level and by means of boning rods used between \mathbf{A} and \mathbf{Y} produce intermediate pegs, obtain further pegs between B and X and between X and Y, Fig. 7.
Repeat this in the area bounded by pegs $X Y C$ and D. We now have a series of pegs that will give the required crossfall. Clinker should be added to the base previously consolidated, and the pegs removed, the clinkershould now be consolidated with a roller working from the centre line $\mathbf{X} \mathbf{Y}$ towards the outer side A B and then the other half treated in the same way.

Laying the Surface

Before the surface is laid the base should be reasonably well knit, if it is found to be loose an application of water from a spray and a further rolling will produce good results.
The materials to use for the surface will require careful consideration, particularly regarding the money available. Pit gravel which is obtainable from sand and gravel merchants. or a cold bituminous emulsion

Fig.:9.-Draining the court.
covered with pea gravel or small chippings may be used.

Using Gravel

If it is decided to use gravel it should consist of particles of fine gravel and a more coarse gravel mixed together. The fine particles will bind the coarse particles together and produce a reasonably good surface.

The gravel should be at least 2 in . deep over the whole area and well consolidated, to obtain this a uniform depth of 3 in . of toose gravel should be laid over half the area of the court and rolled by means of a powered roller 25-30 cwt. in weight. After the first rolling the area should be sprayed with water and further rolled.

The second half should be similarly treated and then the whole area rolled lengthways,

Outside the edge of the tennis court between pegs A and B cut a trench 18 in . deep and 18 in . wide and remove the soil. In the bottom of the trench and for a depth of 12 in . place broken bricks and cover over with coarse clinker up to the level of the tennis court. Make a similar trench between pegs C and D, Fig. 9. Between pegs B C and A D and for the full width of the margin lay clinker to the level of the tennis court ; it is not necessary to roll the margin.

The drainage provided will keep ground water down to a level that will not affect the courts.

Provision for Nets

A simple housing may be provided for the posts on which the nets are erected after the court is complete. Decide the position of the posts and cut out holes 12 in . square and 12 in .

Fig. 7.-Obtaining a crossfall of 4 in.
and for its full width. Should any loose gravel remain, fine particles should be sprinkled over the area, watered and then rolled again.

Using Emulsion

The whole of the clinker surface should be lightly covered with pea gravel or very small chippings and rolled.

Cold bituminous emulsion is obtainable in steel drums of 40 gallons capacity and handspraying machines may be hired at a small cost.

The whole of the prepared surface should be sprayed at a rate of 4 square yards per gallon and lightly covered with pea gravel or smali chippings and left for about 24 hours.

The surface should be sprayed with emulsion a second time at 6 square yards per gallon and

Fig. 8.-Adding -surface-dressing.
completely covered with pea gravel or small chippings and rolled with a roller $25-30 \mathrm{cwt}$. in weight. After a period of four days all loose chippings should be brushed off and stockpiled ready for another surface dressing at 8 square yards per gallon two or three months later, Fig. 8.

Maintenance

Both types of tennis court will require periodical maintenance if they are to remain in yood condition. A bass broom passed to and fro over the surface once a month and a rolling with a hand roller will be sufficient, weeds that start to grow should be dug out by the roots. A light application of cold bituminous enulsion at 10 square yards per gallon once a year for the first three years will produce good results in each case.

Drainage

It may be necessary to provide a small drainage system to keep the tennis court reasonably free from water and also the surrounding ground.
When setting out the area a margin 2 or 3 ft . wide was allowed and it is this that will assist with the draining of surface and ground water.
deep, form a housing with four pieces of hardwood in each case, the inside measurement being suitable for the posts, Fig. 10. Mix some concrete consisting of 1 . spade of cement, 2 spades of sand and 4 spades of chippings and add a small amount of water.

Place 2in. of concrete in the bottom of the holes and set the housing in position. Surround the housing_ with concrete up to the level of the court and leave for at least four days, after which the posts may be set in position.

Materials Required

The amount of material required must be known before any costs can be estimated, and the following table may be used as a guide :-
$\begin{array}{lcccccc}\text { 3in. clinker } & \ldots & \text { Approx. } 20 \text { sq yd. per ton. } \\ \text { 3in. gravel } & \ldots & " & 14, & , & , & " \\ \text { 1in. chippings } & " & 160, & , & ,\end{array}$

Bituminous

emulsion

4 to 10 sq. yds. per gallon.
Clinker may be obtained from factories, power stations or through a builders' merchant -at a small cost.

Gravel is obtainable from a quarry or through a builders' merchant.

Chippings and cold bituminous emulsion are obtainable through a builders' merchant. To hire a roller contact a local public works contractor or a highways department of the local authority.

Fig. 10.-Housing for making provision for the posts on which the net is erected.

One of the most suitable types of gravel is one termed "Breedon" gravel, obtainable through a leading builders' merchant. This gravel is self hardening when rolled and sprayed with water: On setting, the gravel:has an amber عolour.

Another surfacing material is "Red Shate."

All the Modifications Required to Convert to 8 mm . the 9.5 mm . Projector Described in the December, 1956 to March, 1957 Issues

This article is published in response to many readers' requesis.

THE 9.5 mm . silent film projector described in the December, 1956March, 1957, issues of Practical. Mechanics may be converted for 8 mm . use by modifying the guide, the frameshift mechanism, sprockets and spool spindles. The general arrangement and continuous mechanism remain unchanged and, as the 8 mm . projector aperture occupies the same optical centre as the 9.5 mm . aperture, no repositioning of the lamp, condenser and objective is necessary. The modified pulldown movement components occupy the same picture head positions as their 9.5 mm . counterparts.

$$
\dot{z}=0=1 / 2 \text { longituoinal pitch. }
$$

Fig. 1.-Principal dimensions of 8 mm . film.

	Inches	Millimetres
	A	.315
B	.150	8.
C	.138	3.810
D	.189	3.51
E	.072	4.80
F	.072	1.83
H	.205	1.83
I	.129	52
I	.372	3.28
	.010	4.37

The picture area of 8 mm . film is approximately a quarter that of 9.5 mm . film, therefore, a shorter focal length lens is necessary to project to the dimensions of the 9.5 mm . picture, at an equivalent throw. The shutter diameter determines the shortest focal length lens that may be used. The modified cam wheel and shutter permits the use of an F_{8}^{5} lens, which for 8 mm . projection purposes is a popular focal length, and with the existing lamp should give a well illuminated picture 2 ft . wide at approximately 7 ft . 6 in . from the screen.

The Guide and Gate The guide and gate is of a similar pattern to that used for the 9.5 mm , projector, and if desired by the constructor the assembly may be made to allow for frame centring of the film. A frame centring device is not essential, but it is a useful feature when the printed film frames are off register to the perforations. With printed film stock, the horizontal frame centre line is situated midway between the perforations, see a and b, Fig. 1 . Normally when set correctly in the guide no " off-racking" should occur whilst the film is running. Occasionally, however, the frame line may be observed appearing from the top or bottom of the screen. By shifting the aperture slightly in the required direction the frame lines can be eliminated.

Except for the dimensions shown at A in Fig. 2 (the changes are indicated in dark lines), the gate bracket may be made from 19 s.w.g. brass plate to the dimensions at Fig. 3 (pages 142-143, December issue). Unlike the 9.5 mm . guide the 8 mm . guide is offset to the aperture and claw slot, and care should be taken in positioning the aperture and slot in relation to the film path.

As a safeguard against dimensional errors occurring when bending the bracket, it would be advisable to bend the long tab at rightangles to the bracket face, prior to marking out the film path position.

The aperture dimensions are given in the table at Fig. I, but if the constructor wishes to include the frame centring arrangement the aperture should be increased in height

I mm. each way of the centre line as indicated by the dotted lines at A in Fig. 2.
The guide strips should be made from 19 s.w.g. brass plate to the dimensions at Fig. 2 (pages $142-143$, December issue), and set to an 8 mm . clearance channel in the back face of the bracket, by the method described for the 9.5 mm . guide (page 143, December issue).

Make the backplate from 19 s.w.g. brass plate to the dimensions at B in Fig. 2, and the pads from 20 s.w.g. brass to the dimensions at D. The lower pad only is slotted. It is important that the backplate aperture

pins to the backplate as described (page 144, December issue).

The minimum necessary area of the emulsion coated film surface should contact the guide face, the gate bracket guide face should therefore be relieved as indicated at Fig. 7 (page 144, December issue). The completed film guide should be polished and entirely free from pits and scratches.

For frame centring the buffer bracket should be modified as shown in Fig. 2. All dimensions not given in Fig. 2 may be to Fig. 6 (page 144, December issue). For nonframe centring no modification to the 9.5 mm ; buffer bracket is necessary. The complete assembly is shown in Fig. 3.

The Modified 9.5 mm . Intermittent Movement
By making a cam and claw to suit the 8 mm . frame advance, the existing 9.5 mm . movement may be utilised. The cam should be made to the dimensions given in the " 432 " column at A, in Fig. 4 .

The cam is constructed from the equilateral triangle shown in the dotted lines. The radius \mathbf{B} (the minor offset) is first struck from each of the three corners of the triangle, the radius C (the major offset) is then struck from the triangle corners to blend into the B radii. The sides of the triangle are equal in length to 8 mm . film perforation pitch (the frame height).

The cam is to be spigoted at one corner of the triangle to the concentric cam wheel centre. When used with the associated follower and claw, the cam eccentric will transmit to the claw a linear motion equal in length to a side of the triangle, thereby advancing the film by one frame. The pull down movement is described in detail in pages $183-185$ of the January issue.

A cam and its associated follower may be made to any size, and to suit any gauge of film, 8 mm ., 9.5 mm ., 16 mm , and 35 mm ., providing that the difference in the cam offset lengths (the radii B and C at A, in Fig. 4) is equal to the frame height of the film to be used.

The 9.5 mm . claw should also be modificd The overall claw width should be increased to enable the claw tip to align with the 8 mm . perforation track, and the claw length increased, as, due to the smaller cam eccentric, the existing claw would not engage in
therefore be repositioned on the follower arm. The new 8 B.A. claw bracket fixing hole should be drilled above the existing hole in the follower arm.
Although the above cam and claw modification may be a convenient method of effecting the 8 mm . conversion, it should be noted that due to the shutter interposed between the lens and the gate aperture the minimum focal length lens that may be used is F.r.

A Smaller Intermittent Movement

By making the cam to the dimensions in the " 275 " column at A in Fig. 4 and the follower to the dimensions at \bar{B} in Fig. 4, the movement will enable a. $F_{\frac{5}{8}}$ lens to be used.

The brass cam wheel should be turned to $\frac{1}{2} \mathrm{in}$. diameter and, except for the flange diameter and the position of the $8 \mathrm{~B} . \mathrm{A}$. tapped hole in the flange face, the wheel may be made to the dimensions at Fig. 12 (page 184 , January issue).

The shutter should be made from 25 s.w.g. brass as shown at Fig. 15 (page 185, January issue), except that the disc diameter should be modified to $\frac{1}{2} \mathrm{in}$. and the blade length to .520 in . before forming to the contour of the disc. The 8 B.A. clearance hole should be repositioned to correspond with the tapped hole in the wheel face.
Except for the dimensions shown in the ". 275 " column at C in Fig. 4, the claw should be made to Fig. 16 (page 185; January issue).

Whichever method is used for the conversion the intermittent components should be accurately made, as the pull-down must com-mence- precisely at the same point at each frame advance. With the aid of a height: gauge, angle plate and micrometer, the items

Fig. 4.-A-The cam, made from 17 b.w.g. (.o58in.) M.S. B-The follower, made from 17 s.w.g. (.056in.) M.S. C-Plan view of the claw (18 s.w.g. (.048in.) M.S.).
modified claw and follower are shown in Fig. 5.

The Film Sprockets

Occasionally new 8 mm . film sprockets may be obtained from ex-Government supply, or scientific apparatus stores, in which case a modification to the sprocket bore may be all that is necessary to fit the sprockets to the constructional outfit axles used with the machine.

If ready made sprockets cannot be obtained, built-up sprockets similar to those used with the 9.5 mm . projector could be produced by the constructor. As the 8 mm . perforation pitch is half (within .003in.) of that of the 9.5 mm . film, it would be possible to use the 9.5 mm , toothed disc in conjunction with the 8 mm . bobbins, shown at A and B in Fig. 6. The teeth would thus engage in every second perforation of the 8 mm . film, but due to the slight pitch error and the possibility of impaired film transmission, it would be preferable to use a 12-toath sprocket of the correct pitch.

The component parts of the built-up sprocket are shown at Fig. 6. Unlike the 9.5 mm . sprocket the teeth are offset to the sprocket centre, the bobbins A and B will therefore be of different widths. The toothed disc, shown enlarged at G, may be produced by part machining or marking out the tooth form as described on page 239 (February issue).
As it is important that the assembled sprockets run true on their spindles, the bore of each component part must be concentric to the diameter, and the component faces
square to its bore. The modified sprocket and cam are shown in Figs. 7 and 8 respectively.

Assembly and

Adjustment

Mount the intermittent movement components to the picture head in the positions indicated at Fig. 10 (page 183, January issue) and pivot the follower arm with the components listed in the table at Fig. 18 (page 238, February issue). The guide assembly should be mounted to the picture head at the s'ots and brought to its correct position relative to the claw tip by the method described for the 9.5 mm . machine (pages 238 239, February issue).
If the frame centring arrangement is to be used, lock nuts should be fitted to the buffer shanks, and adjusted so that the backplate may be raised or lowered, freely, by means of the pin fitted to the side tab of the backplate. Both front and back horizontal aperture centre lines should be brought into alignment before setting the claw tip.
Mount the pads and sprockets in the positions shown at Fig. Io (page 183. January issue) and as described (page 239, February issue) ensuring that they align on the film parh. To suit the 12 -tooth sprockets the existing 9.5 mm . sprocket spindle speed must Note:-

Fig. 6.-Film sprocket (2 off). A and B-Bobbin (turn from sin. diameter M.S.), I off. each per sprocket. C-Disc (turn from $41 / 64 i n$. diameter M.S.), I per sproeket. D-Spindle (turn from standard ax/e), 1 per sprocket. E-Pad (turn from $5 / 16 \mathrm{in}$. diameter M.S.), 2 per sprovke. F-Siprocket assembled on spindle. G-Enlarged view of roothed disc.
be reduced $2: 1$. The in. dia. (I4 teeth) chain wheel firted to the end of the takeoff sprocket spindle should be replaced by ${ }^{1} \frac{1}{2}$ in. (28 teeth) chain wheel, the 1 in . dia. (18 teeth) chain wheel fitted to the 57 tooth gear spindle substituted with a ${ }^{3} \mathrm{in}$. dia. (I4 teeth) wheel and the 2 in . dia. (36 teeth) chain wheel of the take-up sprocket
1t is important that all.

spindle replaced "with a 3 in . dia. (56 teeth) wheel.

To adapt the 9.5 mm . spool carriers for 8 mm . use the $15 / 64 \mathrm{in}$. outside dia. sleeves should be replaced with 312 in . dia. sleeves, and the carrier wheel dog pins reset to suit 8 mm . spools.

To check that the sprockets and intermittent movement are functioning correctly, a preliminary run should be made using a short length of new opaque leader film. The film should be laced with the emulsion surface facing the objective and a loop formed between sprockets and guide, see Fig. Io (page 183, January issue). Any necessary adjustments can be made during or after the run. As the film is rewound it should be inspected closely to ascertain that it has not become scratched or fractured. A tiny burr on the sprocket pads or guide face will mar the emulsion surface the entire length of the film. A claw that is incorrectly indexing will fracture the perforations throughout the film.
If the intermittent movement components have been correctly made and adjusted the movement should function smoothly. The claw will "flick" the film down quietly and a steady picture will be obtained. The probable causes and remedies for an unsteady picture (should the constructor experience this nuisance) are given in page 297 of the March issue.

Appendix

Focal length $=$

lens to screen distance
 (Magnification +I)

88 in.

2
(Concluded on-page 550.)

Details of a Simple and Cheap Pulsating Unit

THE pulsating unit described in this article can be made in the home workshop in a ccuple of hours and costs very little. A second-hand car ignition coil, a condenser and a pair of contact points are the only items the constructor will have to purchase. No springs are used either on the armature or on the balance-wheel as the unit operates in a vertical position and depends on gravity for its action. The completed pulsator is shown in Fiz. 1.
The component parts, viz., the coil, armature, condenser and balance-wheel assembly are mounted on an oak or other hardboard panel measuring gin. x gin. x 3 in.

The Balance-wheel

The balance-wheel (Fig. 2) is a 3 in. dia. circle cut from 5 or 6 s.w.g. (approximately $3 / 16 \mathrm{in}$.) mild steel. A $5 / 16 \mathrm{in}$. hole is drilled in the centre and tapped $\frac{3}{8}$ in. Whitworth. The spindle is made by taper-turning both ends of a steel rod 2 in . long and $\frac{3}{3}$ in. dia. to an included angle of about 70 deg . and then threading the rod for a distance of $3 / 16 \mathrm{in}$. beyond the middle of its length. The spindle should be hardened before screwing it into the tapped hole in the balance-wheel.

Bracket

The balance-wheel bearing bracket is

Fig. 1.-The completed pulsator.

Fig. 2.-Details of the balance-wheel spindle and bracket.
made from 9 in . of ${ }^{\frac{3}{4} \mathrm{in}}$. $x \frac{1}{8} \mathrm{in}$. mild steel. Drill and countersink $3 / \mathbf{r} 6$ in. holes as indicated in Fig. 2 (b) and make countersink impressions at A and B with the point of a drill ground to a 90 deg. angle. These impressions are to locate the hardened tip of the spindle when the bracket is bent to shape as shown. The point contact gives a frictionless bearing with no appreciable sideshake. Bend the bracket at right-angles at C and D so that the countersunk impressions will neither be too loose nor seize on the tapered spindle.

Contact Poirts

The next job is to fit a contact point to the wheel. Drill a $3 / 16$ in. hole about $\frac{1}{2}$ in. from the edge of the wheel and attach the
contact point here using a short $3 / 16$ in. bolt and nut. Do not tighten the nut fully until the other point is in position. Now drill a $\frac{3}{8}$ in. hole near the edge of the wheel 90 deg. behind the contact point as shown in Fig. 3. The wheel should now balance with the contact point 45 deg. from the vertical as shown. If it drops too low the hole should be enlarged to $7 / 16 \mathrm{in}$, or $\frac{1}{2} \mathrm{in}$. If it does not drop low enough a small hole should be drilled diametrically opposite the original one. When proper balance has been obtained fix the bracket to the panel, in the position indicated in Fig. 5, by means of two woodscrews.

Armature

Fig. 4 shows the construction of the armature and its bracket. The armature is made from $3 \frac{1}{2}$ in. of $\frac{3}{4}$ in. by $\frac{1}{8}$ in. M.S. brazed to a $5 / \mathrm{x}$ in. round spindle $2 \frac{1}{2} \mathrm{in}$. long with tapered ends similar to the balance-shaft spindle. About $1 \frac{1}{2} \mathrm{in}$. of $\frac{3}{3} \mathrm{in}$. by $\frac{t}{4}$ in. Perspex is attached to the free end by means of a $\frac{1}{8}$ in. bolt and nut and an adhesive such as "Evostick." The bracket is marked out as shown in Fig. 4(b). The drilling and bending procedure is similar to that for the balance-wheel bracket.
Fix the armature bracket to the panel in the correct position (Fig. 5) by means of a

Fig. 3.-Positioning the contact point.
single woodscrew. This makes it easier to bring the contact points into alignment later on. Drive a 2 in , nail into the baseboard to act as a stop for the armature. Bring the contact point on the balance-wheel hard against the Perspex so as to mark the position of the other contact point. Remove the armature, drill a $\frac{1}{8} \mathrm{in}$. hole in the Perspex and fit a screw-type contact point. Attach a length of flex under the retaining-nut. Now replace the armature and bring the poines into proper alignment. The point on the balance wheel may be bent slightly

Fig. 4.-The armature and its bracket.
to one side if necessary. Tighten up the $3 / 16$ in. bolt and nut clamping the contactpoint in position and also the screw attaching the armature bracket to the baseboard.

 6-volt car ignition coil (secondhand). I condenser (car ignition type).I pr. contact points.
I pr. brass terminal screws. 1 piece 4 in. $x 4 i n . x 6 i n$, s.W.g, mild stecl. 3 in . of gin. diameter cast steel. fi of in x in mild steel strip. 2ft. H.T. cable.
2yds, single-core plastic-covered flex. 1 picce Perspex I in. x in. x din.

The Coil

This should be of the 6 -volt type and in fairly good condition. Cut off about $\frac{1}{2}$ in. of the bottom of the steel case-being careful not to damage the winding-and remove the porcelain irsulator to expose the end of the iron core. Straighten out the lugs and rebend so that the coil will rest flat against the panel. Now place the coil in position (Fig.
5) sc that the iron core will be about $3 / 16 \mathrm{in}$. from the armature when the latter is against the stop. Fix the coil to the panel using two woodscrews and washers. Fix the condenser in position using a single woodscrew. If the latter item is second-hand it should be tested before fitting. A new condenser is a much safer proposition.

Wiring Up the

Apparatus

This is a comparatively simple job. Lighting flex is suitable for all the L.T. wiring and only three soldered joints are necessary. Figs. I and 5 show the wiring diagram. The flex from the contact point to the armature should , be of such length as not to interfere with the movement. The purpose of the Perspex is to prevent a short circuit of the H.T. spark due to the secondary winding of the coil being in contact with the iron core. The L.T. circuit is as follows: From the positive battery terminal through the primary winding to the balance wheel, through the contact points and back to the negative battery terminal. The condenser is connected across the contact points.

Operation

When the current flows around the primary winding, the iron core becomes a magnet and attracts the armature. This kicks the balance-wheel upwards and opens the contact points, causing a very high voltage to be induced in the secondary winding. The
frequency of the pulsations can be varied by inclining the panel backwards slightly on top.
The completed unit should be housed in a vertical position in a strong weather-proof box. The battery (a 6 -volt motor-cycle type is suitable) should be installed in the same box. A $\frac{3}{3}$ in. hole is drilled in the box and

Fig. 5.-Position of components and wiring.
the H.T. lead pushed through it. The earth wire is attached to a metal spike which is itself attached securely to the box and driven into the ground.

Metal posts, insulators and fencing wire can be purchased at a moderate price from almost any hardware dealer.

Solar Heated Offices

Technical Discussion in the U.S.

THE world's first solar-heated office building, located at Albuquerque, New Mexico, survived its initial winter trials "satisfactorily," it was revealed recently at a meeting of engineers in San Francisco. In a technical session dealing with methods of using the sun's heat for practical purposes, three New Mexico engineers said that a system installed in their own offices last year " performed satisfactorily through the worst part of the winter including a much cloudier than normal January."
Economic evaluation of the unit, howeyer, is not yet possible. Some of the rechnical problems encountered included corrosion of metal parts, freezing of water in the exposed area of the unit during the night and difficulties caused by air bubbles in the circulating system. The unit consists of an inclined "flat plate collector" which uses heat from the sun to raise the temperature of water. Heat from the water, stored in a 6,000 -gallon tank, is used, as needed, to warm the building.
Another technical paper, presented at the same session as part of The American Society of Mechanical Engineers' sem:annual meeting, reviewed present use of the sun's heat to supply hot water for various uses. The author, Erich A. Farber, pointed out that many areas of the world,
although lacking conventional fuels, have abundant sunshine which can be pur to use economically. In the United States almost all areas have enough sunshine to permit solar water heating for domestic use during the summer, but only limited regions have enough "winter sun to permit economical year-round use of solar energy to-day.
Particular emphasis was placed on silicon

Boiling Water Reactor

IN this first type, shown in Fig. \mathbf{r}, slightly enriched uranium fuel is suspended in a special tank through which heavy water is circulated under pressure. The heavy water serves both as a moderator and as the heat transfer medium. The heat produced by the reactor is sufficient to convert the heavy water into steam in sufficient quantities to operate the turbine of the electricity generation plant.

Homogeneous Power Reactor

This type is shown in Fig. 2. Enriched uranium fuel is fed into the reactor furnace in the form of uranium sulphate salt dissolved in water. The water acts both as a moderator to slow down the neutron particles which maintain the fission reaction and as the means for transferring the heat from the nuclear furnace to the heat exchanger.

Sodium Craphite Reactor

In this reactor liquid sodium metal is used to draw off the heat from the nuclear "furnace." The liquid sodium is circulated through channels

Fig. 1.-Boiling water reactor.

Fig. 2.-Homogeneous power reactor.
in the main graphite moderator structure into which the rods of slightly enriched uranium fuel are inserted. This is shown diagrammatically in Fig. 3.

Graphite Moderated Reactor

In this type of nuclear reactor power plant, shown in Fig. 4, which is typified by the

Fig. 4.-Graphite moderated reactor.

Calder Hall atomic power station, uranium metal is inserted into a mass of exceptionally pure graphite. Gas or water is circulated round, or through, this central core of graphite and uranium in order to draw off the heat for steam production and the generation of electricity.

Swimming Pool Reactor

This is a research reactor in which the atomic fuel elements, which consist of natural uranium metal enriched with additional quantities of uranium 235, are suspended in a deep uncovered tank of ordinary (or heavy) water. Such reactors, which have power ratings of from roo kilowatts to 10,000 kilowatts, are one of the simplest and most effective forms of research reactors. Fig. 5 shows this type.

Heavy Water Reactor

The principle of this type is that the natural uranium atomic fuel in the form of metal slugs is suspended in a mass of heavy water which acts as a moderator. Heavy water is water in which the majority of the hydrogen atoms are twice as heavy as ordin-

Fig. 5.-Swimming pool reactor.

Fig. 6.-Heavy water reactor.
ary common hydrogen atoms. The hot heavy water (which is 'heated by the fission, or burning, of the uranium) is used to convert ordinary water into steam in the heat exchanger. See Fig. 6.

Liquid Metal Breeder Reactor

Liquid uranium 233 -bismuth compound is circulated through channels in the graphite inner core of the reactor, shown in Fig. 7, while a liquid thorium-bismuth metal compound is circulated through the graphite moderator of the adjoining, but separate, outer core. Thorium atoms in the outer thorium-bismuth core are converted into new fissile U.233, which the heat generated in both the inner and outer cores is withdrawn to nearby heat exchangers.

Heliuri gas carries hot grains pneumatically to heat exchanger

Fig. 8.-Fast breeder reactor.
Fig. 9 (Left).-Suspop reactor.
"furnace" in the form of granules by pneumatic pressure. The fuel may be in the form of either a uranium-beryllium compound or in the form of uran:um granules. In the latter case it is forced through a series of graphite tubes in the reactor core:

The information contained in this article and in the one following will, if kept as reference, be useful to the layman in helping him to understand more fully press reports on the subject of atomic energy.

Both this article and "A Glossary of Terms Used in Nuclear Physics" which follows were reprinted from "The Financial Times" Atomic Energy Survey by permission of the Editor.

A Glossary of Terms Used in Nuclear Physics

ACCELERATOR:-An" atom smasher "; a machine which, by using either electric or magnetic forces, accelerates heavy particles of atoms to very high speeds. Used for research and for a number of industrial purposes such as, for example, "irradiating" plastics in order to alter their physical properties. Examples of these machines are the linear accelerator, the.cyclotron, the Van de Graaff accelerator (Fig. 2), the betatron, the synchrotron and the Bevatron.

Alpha particle :-Nucleus (central core) of an atom of the gas helium. Streams of particles of this type (also known as alpha rays) are emitted by some radioactive substances.

Atomic number:-The number of electrons rotating round the nucleus (central core) of the atom of any substance. This is also the number of protons in the nucleus of the atom of any substance. (See-electron and proton.)

Atomic pile :-A nuclear reactor having a graphite moderator.

Atomic weight:-Weight of an atom of an element expressed on a scale in which the weight of the oxygen atom is exactly 16.

Beta particle :-A fast-moving electrically charged particle (with either negative or positive charge) emitted by some radioactive substances. Streams of beta particles (beta rays) possess greater penetrating power than alpha particles.

Boron :-A metal obtained from borax or boric acid which absorbs the neutron particles which keep the uranium fission process (or burning) in a reactor going. Rods containing this material can thus be used to control the burning of nuclear reactor furnaces.

Breeding (of atomic fuel) :-See "Various Types of Nuclear Reactors."

Cæsium 137:-Cæsium with an atomic weight of 137. A fission product or "ash" from the burning of uranium in a nuclear reactor. A radioactive form of the silvery white metal Cæsium 133.

Chain reaction:-The "burning" reaction in a nuclear reactor furnace. This fission, or splitting (or burning), of one atom
leads to the release of atomic particles, called neutrons, together with energy in the form of heat and iragments, called fission products. These neutrons hit other fissile. (or burnable) atoms-for example, atoms of uranium 235 or plutonium-causing them in turn to split up, thereby releasing other neutrons which in their turn hit yet other fissile atoms, causing them to split, releasing still further neutrons and so on.

Cold cathode trigger tube:-An electronic valve which emits a single short burst of electrical energy each time the number of electrical pulses or energy fed into it reaches an exactly determined amount. They differ from the conventional thermionic valves (like those used in radio sets) in that the cathode electrode from which electrons (electric current) are emitted is not heated, whereas in the thermionic valve the cathode is heated.

Core (of a nuclear reactor): - The central portion of a nuclear reactor furnace containing the atomic fuel (uranium or plutonium) and the moderator material (e.g. graphite, or heavy water). The core may contain either solid uranium or plutonium, and perhaps thorium in the form of metal alloy slugs or rods, or it may contain a liquid uranium or thorium salt solution. (See Fig. I and also the previous article "Various Types of Nuclear Reactors.")

Cosmic rays :Very penetrating radio-active radia-

Fig. 1.-A technician adjusts a control rod in the core of a nuclear. pozer plant.
netic field (see accelerator). Invented by the U.S. physicist E. O. Lawrence in 1932.

Diffusion plant (in atomic energy):-A plant or factory where the rare uranium 235 is concentrated from the natural uranium, The uranium is converted into the form of a gas (uranium tetrafluoride) and then passed through a series of many thousands of porous membranes. The uranium tetrafluoride molecules containing the lighter uranium 235 pass more readily through the membranes than those containing the heavier and more abundant uranium 238 molecules.

Electrometer:-Instrument for measuring differences in voltages which does not draw off any current from the source, the differences in voltage of which are being measured.

Electron:-The smallest atomic particle and the lightest component of matter. It is the fundamental negatively charged element of electricitv and one or more electrons are present in every atom of all substances, (See also atomic number.)

Electron volt (eV) :-Unit of energy used in nuclear physics. The amount of energy acquired by an electron when it is accelerated by being passed through an electric field having a drop in electric potential of one volt.
Enriched fuel:-Natural uranium to which additional quantities of the fissile uranium isotope (see isolope) uranium 235 have been added. Uranium 235 is present in nature in a concentration of one part of U. 235 in every 140 parts of non-fissile uranium 238.

Erg:-A measure of force.
Fall out :-The dust and other matter which falls back on to the earth's surface after the explosion of either an atomic bomb or hydrogen bomb. The majority of the fragments in the "fall out" are radioactive.

Fuel elements:-The rods or slugs of atomic fuel in a nuclear reactor furnace.

Fissile material (atomic fuels):-Materials which disintegrate to give a "chain reaction" when hit by a neutron particle, e.g., uranium 235, uranium 233 (produced by exposing thorium in a nuclear reactor) and plutonium.

Fissile uranium :-Uranium in the form of the isotope of uranium having an atomic weight of 235. (See fissile material, enriched fuel and atomic weight).

Fusion:-In nuclear physics; the joining together of two atoms of low atomic weight such as, for example, heavy hydrogen or triple heavy hydrogen (tritium).
Gamma rays:-Radiation emitted by some radioactive materials as they decay.

Geiger counter :-Instrument for detecting alpha, beta and gamma radiation and measuring the amounts in which they occur, by means of the degree to which they cause the air (or a gas) to become ionized (electrically charged).

- G-value :-The number of molecules produced in a chemical reaction stimulated by irradiation per 100 electric volts of energy absorbed by the chemicals irradiated.

Half life :-The time taken for the activity of a radioactive substance to decay to half its original value-that is, for half the atoms present to disintegrate. Halflives may vary from less than a millionth of a second to millions of years, according to the isotope.

Heavy elements :-Elements having a large atomic weight, for example, actinium (atomic weight 227), thorium (atomic weight 232), protactium (atomic weight 231), and uranium (atomic weight 238).

Heavy hydrogen :-Hydrogen in which the atoms have an atomic weight twice that of ordinary hydrogen.

Heavy water:-Water in which the hydrogen atoms which are present have an
atomic weight of 2 , or twice that of ordinary hydrogen atoms.
Ionisation :-The formation of ionised, or electrically charged, atoms.

Fig. 2.-A 3,000,000-volt Van de Graaff particle accelerator, shown diagrammatically, to illustrate its openation. An electric charge, sprayed on a fast-moving belt (r), is carried to a terminal (2), resulting in a great voltage difference between the upper and lower ends of the machine. Charged particles leave the terminal through a heated cathode (3) and pass downward along the high vacuutm tube (4), where they are accelerated to almost the speed of light. A funnel-like attachment (5) directs the particles precisely on to material being irradiated, which is passed through the beam on a conveyor belt (6).
Ionising radiations:-Radiations which ionise atoms or make them electrically charged. Examples are alpha and beta rays.

Irradiated fuel:-Atomic fuel that has been used in a nuclear reactor.
Isotopes:-Atoms of the same element which are identical in their chemical behaviour but which have different atomic weights and also different nuclear properties.

K-value :-The symbol for degrees of absolute zero, o degrees K means o degrees absolute zero (equivalent to minus 273.16 degrees Certigrade).

Megacurie :-One million curies.
Megawatt :-One million watts.
Mesons :-Unstable atomic particles which are found in cosmic radiation. They have a mass (or weight) intermediate between electrons and protons.

Moderator :-The material in a reactor used to reduce the speed of the fast neutrons produced by the fission of a uranium atom as far as possible without capturing them.

Molecule :-Smallest portion of a substance capable of existing independently while retaining the properties of the original substance.
Natural uranium :-Uranium metal as obtained from the natural ore. It contains both the heavier uranium 238 (which is non-fissile and is the parent material from which plutonium is created) and the lighter uranium 235 (a fissile atomic fuel) in the proportions of 139 parts of uranium 238 to every one part of uranium 235.
Neutron:-An atomic particle having no electrical charge. It is found in the nucleus of the atom and plays a vital role in nuclear fission (the burning of atomic fuel).

Neutron flux density:-The density of neutron emission from fissioned (or burnt) atoms in a nuclear reactor.

Parent material :-Material such as uranium 238 and thorium from which fissionable nuclear fuel such as plutonium or uranium 237 is produced.

Proton:-An atomic particle which has a positive electric charge. It is found in the nucleus of the atom.

Rad (the):-A measure of the amount of radioactivity deposited in a material subjected to irradiation. One rad is equivalent to the deposition of 100 ergs or radiation per one gramme of material.

Radioactive isotopes or radioisotopes :Radioactive isotopes. (See isotopes).

Roentgens :-Unit of radiation dosage.
Scintillation counter:-An instrument for measuring the amount of radioactivity present in which phosphor compounds are used.

Stable isotopes:-Isotopes which do not readily undergo change with other lighter isotopes.

Thermal breeder:- A breeder reactor in which a moderator is used to slow down the neutron particles produced during fusion.

Thermal reactor:-A nuclear reactor in which the neutrons are slowed down to low speeds by a moderator before causing fission.

Thorium :-A metal which when irradiated is converted into the fissile atomic fuel uranium 233.

By JAMES VOSE

In Addition to Straight Ripping and Crosscutting, a Variety of Operations can be Performed on the Saw Bench Described in the June Issue
(This article is continued from page 476 of the ${ }^{\text {Guly }}$ issue)

ASECOND person should always be at hand when bevel ripping is being done, and also, if the piece being sawn is of any length, a bevel-edged board should be cramped or nailed to the table to support the lower edge of the work, and prevent it from sliding away from the fence.

Sawing Sheet Materials

Materials like plywood and hardboard can be cut quickly, and without tearing or ragging of the underside, with any of the blades "B," "C", or "D" in Fig. I. The ripping blade " A " will cut sheet materials, but will probably splinter the edges. For the cleanest cutting the blade should not project more than about $\frac{1}{2}$ in. above the table. Small panels of sheet material are cut by sliding along the fence in the usual manner, but if the panels are too large for this, they must be marked out clearly, and cut by sighting the saw-blade along the marked out line.
The chief difficulty when cutting large panels of thin plywood or hardboard is flexing or buckling, the unsupported edge falling down over the side of the table and causing the middle of the sheet to lift up over the top of the saw. This can be very dangerous, as any attempt to correct

Fig. 12.-Sawing out a rebute in two successive cuts.
the buckling by lifting up the edges causes the middle of the sheet to drop down on to the saw again, and the whole sheet may then be thrown violently backwards, ruining the material with certainty, and perhaps damaging the operator. An effective way of overcoming this difficulty is to stiffen the edges of the sheet with strips of grooved wood. There are usually some rippings

Fig. I1.-Large panels of plywood or hardboard can be cut if the edges are stiffened zith grooved strips pinned on to prevent buckling.

from the grooved edge of fiooring or matchboards lying about the workshop, and these are suitable for the purpose. In Fig. II an 8 ft . by 4 ft . sheet of hardboard is being sawn down the centre, single handed, with the assistance of grooved strips pinned to the edges, as shown in the inset sketch. A large sheet like this is best cut 'half-way along the length, then lifted clear of the saw,
\qquad

Fig. 13.-Cutting grooves with a "wobble" saw. The tapered collars are used in pairs, one on either side of the saw.
reversed end-for-end, and the cut completed from the opposite end.

Rebating

Rebating with a small circular saw saves a great deal of time against hand work, and, if a thin blade is used, a useful strip can be cut out of the rebate. For glazing work the rebates need not be cleaned up, as the slight "tooth" left by the saw forms a good key for putty. It is usually better to cut the deep cut first as at "A" in Fig. 12, and then to turn the work down so that the face edge-the edge away from the rebateis against the fence whilst cutting the shallow cut. Working this way saves turning the

Fig. 14.-A commercial cutter block. The thin' cutters are secured by rvedging and may be ground to a different profile each end as shown.

Fig. 15.- A home-made cutter block and cutters. A is a moulding cutter, B is for small rebates, C is for grooving, and D is a fluting cutter. Only one of each is showm, but the cutters must be wsed in pairs.
pieces end-for-end, and it also obviates the danger of the loose rebate strip being trapped between the saw and the fence and being shot back by the saw. The long auxiliary fence must be used, and it is a good idea to clamp it firmly to the bench at the far end to prevent it springing away and so varying the width of the rebate. Bevelled rebates, as required for window sills, may be cut by canting the fence or by fitting a riding strip to the fence in the same manner as that described for bevel ripping.

Grooving

Grooves of any required width can be cut by taking a succession of cuts side by side with the saw projecting an amount equal to the depth of the groove. This usually leaves a series of thin ribs between the cuts, but these can be easily taken out with a narrow chisel. This procedure is all right for an odd piece or two, but for a longer run of grooving it is "better to sct up a "drunken" or "wobble" saw so that the grooves can be taken out cleanly and at one pass. Special wobble saws are obtainable for this purpose, mounted in adjustable collars for any required width of groove, but it is unlikely that the amateur woodworker will have enough grooving to do to warrant the purchase of one of these.
An improvised wobble saw will do grooving quite well. The only snag is that it takes a bit longer to set up, as the width of the groove can only be. determined by trial preferable to the wobble saw,
and error. An ordinary blade can be made to wobble sufficiently to cut a narrow groove by packing it with strips of cardboard on opposite sides of the spindie between the saw and the collars. A better way is to prepare some plywood packings as shown in Fig. 13. These are made in pairs and are planed slightly wedge-shaped, the amount of this wedging or taper determining the width of groove which will be cut. Sets of these packings can quickly be made to suit different widths of groove, marked plainly with their respective sizes and kept in the toolbox for use when occasion requires. The same blade should be used with these wobble collars every time, otherwise the groove width may not be to the dimension wanted.

The gap in the table has' to be enlarged to clear a wobble saw. This can be done by fitting the wobble saw to the spindle in its lowest position, and then raising it very slowly and carefully while the saw is running. The saw will cut its own path through the table. If the gap is too wide afterwards for delicate sawing, an auxiliary table of thick plywood could be screwed down over the existing one. It is hardly necessary to stress that the saw nut must be tightened carefully when using a wobble saw, as a certain amount of vibration is set up which might possibly cause the nut to slacken. When grooving with a wobble saw the work must not be forced. The saw must be allowed time to cut its path through the wood, or it will be

Fig. 16.-The sliding jig used for accurate crosscutting.
found that the groove will not be of a uniform width. Grooving can also be done with narrow cutters mounted in a special cutter block. and in this case the groove width will be the exact width of the cutters. For precision work this method of grooving is

The Cutter Block

A most useful accessory for the small circular sawbench is a cutter block for cutting mouldings, fluting and grooving. These blocks may be purchased in several designs. One of the best, shown in Fig. 14, uses thin high-speed steel cutters, fixed securely in place by means of a wedging action. This enables the cutters to be adjusted to any desired position. It also makes possible a saving in cutter steel, as the cutters may have each end ground to a different profile. The steel is supplied in lengths, ready hardened, and only requires cutting to length. and grinding to the shape required.
For occasional use a home-made block (Fig, 15) will give good service. This may

Fig. 17.-The same sliding jig being used for cutting the shoulders on tenoned work.
be of steel, brass or light alloy. In an emergency a hardwood block will serve, but in this case it is essential that the bolts are inserted across the grain of the wood, so that there is no danger of the wood splitting when in use. A convenient size is 3 in. square and Iin. thick, and this will allow mouldings to be worked $\frac{1}{2} \mathrm{in}$. deep. The cutters are of 1 in . x $3 / 16 \mathrm{in}$. steel, bolted through slotted holes with $\frac{1}{4} \mathrm{in}$, dia. bolts. It is necessary, when setting out the bolt positions, to ensure that the bolt heads and nuts come inside the cutting circle. File steel can be used for cutters, but the file teeth must be ground off, or the cutters will break. The steel must be hardened throughout, and then tempered from the tail end of the cutter until the extreme cutting edge becomes a light straw colour. This leaves the body of the cutter fairly soft to resist breaking. The aim shguld be to get the area round the front bolt hole to a blue spring temper before quenching.
Moulding is carried out by placing the cutter block on the spindle, adjusting the height until the cutters project the required depth of the moulding, and feeding the work slowly and steadily past the cutters. The work is guided by the fence which must extend right across the table and be clamped at the far end to prevent any springing. Moulding should be done at a speed of about 4,000 r.p.m. for the best results, but satisfactory work can be done at slower

Fig. 18.-Similar sliding jigs, but with the fence at-45-deg - are used for- sawing mitres.
speeds providing the wood is straight grained, and free from knots. It is always advisable to do the work in two or more cuts, the last cut being \mathfrak{a} fine one to produce a good finish. Wherever possible the work should be relieved by sawing a chamfer from the edge before moulding. In addition to moulding, the cutter block may, with suitable cutters, some of which are shown in Fig. 15, be used for cutting small rebates at one pass, and for fluting and grooving.

Cross-cutting

For ordinary cut-off work, the wood is fed free-hand, but where it is necessary that the cut end should be square, or at a certain angle, a sliding fence is required. On commercial sawbenches, the fence has a tongue underneath, which slides in a groove planed in the table top. This tongue and groove is apt to get choked with dirt and with resinous sawdust, making it difficult to slide the fence smoothly. A fence sliding along the cdge of the table does not have this drawback; but it must be held tight up to the table edge by hand pressure. This is not difficult, and it becomes automatic after a time.
The fence shown in Fig. 16 and in use in Fig. I 7 can be made up easily from scrap timber. The sliding piece, which must be straight, is nailed or screwed to the underside of a piece of plywood. The fence is similarly nailed or screwed on top of the plywood, at right-angles, or at an angle if required. The work is held up to the fence with one hand, and the jig slid along with the other, the cut-off line being aligned with either the saw-cut in the plywood base, or with a mark on the fence. If a fine crosscut saw is used, the cut end will be in perfect condition for glue jointing, without any cleaning up. Similar sliding jigs are lised for mitring and for cutting the shoulders of tenons, as described later.

Mitring

Perfectly fitting mitres can be cut at one pass, using the sliding jig described for cross-cutting, but having the fence at an angle of 45 deg . With square, unmoulded material, one cut is made with the face side down, and the other cut with the face side up, thus making the two cuts " in pairs." But this is not practical with moulded material, such as picture frame stock, because the moulded face does not seat properly on the jig, and also the moulded face is apt to chip if cut face down. For this work two jigs should be made, one to cut each side
of the mitre, as in Fig. 18. It is, of course, possible to make an adjustable jig in which the fence can be swivelled to any angle, and secured by a bolt and wing nut. This is handy for irregular mitres, but for 45 deg. mitres it is better to use two jigs permanently set to the correct angle.

Great difficulty is often experienced in setting out the angles for irregular mitres, such as are needed for multisided figures, A useful method of cutting these mitres so that they will fit precisely without trimming is shown in Fig. 19, where a hexagonal frame is being dealt with. The alternate members are temporarily secured to a baseboard of scrap plywood by lightly glueing or pinning. The remaining members are then placed on top of the pieces first fixed, with the joints overlapping, and these are again glued or pinned down. The mitre lines are set

Fig. 20.-Mitred joints. may be strengthened by grooving and fitting glued "keys" of venteer. or plywood.

Fig. 19.-A useful method of cutting mitres.
out from the overlapping joints to the centre of the figure and the mitres cut with a fine saw right through both pieces at once and through the baseboard. When the pieces are removed from the temporary baseboard the mitres will fit perfectly. If the figure is required to finish to precise limits it is necessary to allow for the thickness of the saw blade.

Mitred joints can be made exceptionally, strong by "keying" with slips of crossgrained hardwood or thin plywood. This may be done in two ways, shown in Fig. 20. At "A" the mitred pieces are grooved before assembly and a loose
a slip of veneer or plywood inserted in the groove across the angle. The groove may be made at an angle, if desired, as shown at "C." This gives a kind of doverailed grip to the glued-in slip. Good glued joints are necessary when mitred joints are being grooved in this way, otherwise the joint might break-apart during the sawing.

Trenching

The cutting of trenches, across the grain, is often necessary when doing cabinet work or shelving. This operation may be done bv adjusting the saw to project an amount equal to the depth of the required trench and passing the work over the saw, guided by a sliding jig as described for cross-cutting. A number of cuts may be made, side by side, and any remaining ribs removed with a narrow chisel. When a number of pieces are required to be trenched it is worth while setting up a "drunken" or "wobble" saw to cut the trenches cleanly in one pass. The cutter block used for grooving with the grain is not suitable for trenching across the grain, because, unless it has special side cutters fitted, it will tear the sides of the trench badly.
(To be concluded)

UUITRASONILTIESTINE OF METALS
 Principles and Practical Applications

By ERIC N. SIMONS

employed for the testing of railway axles, and is advantageous for massive blooms, billets and blocks, because any faults in these may be discerned before time and money are spent in carrying their processing a stage or stages further. An ultrasonic testing unit is shown in Fig. I.

Frequency of the Waves

The ultrasonic waves may have a frequency as high as five million cycles per second, with a length of wave as LTRASONIC testing is one of the most recent of all the various methods of testing materials, and as yet it is still too recent for a great deal of research to have been embarked upon in connection with it. However, we shall endeavour to summarise as briefly as possible the principles and specific features of this promising method.

Principle of Supersonic Testing.

Most readers will not need to be told that sound waves travel at the rate of $13,000 \mathrm{in}$. per second through the air. But when they are transmitted through metals they travel much faster. For example, if one rings a brass bell the sound can be shown to travel through the brass at the rate of 174,000in. per second. If a piece of steel is rung, the rate increases to $229,000 \mathrm{in}$. per second, or more, according to the type of steel, and a piece of aluminium in which sound waves are propagated allows the sound to travel at 245,0001 . per second. Thus, sound has varying rates of travel through different materials.

Fig. 1.-The ultrasonic reflectoscope (after F. A. Firestone). A-Electrical inipulses from oscillator ; B-Detachable connector ; C-Film of oil ; D-Part' of waves reflected by discontinuity ; E-Small defect ; F-Weves propagated ; G-Testpiece ; H-Piezo-electric crystal ; J-Flexible cable; K-Impulses returned io oscilloscope.

The Air-gap

Let us now assume that in the material through which the sound waves pass there is a crack or other discontinuity. The waves as they travel meet the air gap between the two walls of the crack. The result is that they are mostly thrown back from the airmetal interface and little sound crosses the gap. That is why a cracked coin or bell sounds "dead" when rung.

The Stethoscope Test

In fact, one of the oldest methods of testing metal for cracks is precisely the striking of the specimen with a hammer and listening to the tone given off. In the testing of welds, for example, a common test is to strike the weld with a hammer and apply a stethoscope to the neighbouring metal and the weld. By listening to the increasing tone produced, an expert operator is able to decide whether or not there is a flaw, and the test can be made to give valuable indications.

Ultrasonic Waves

It is, however, a test which is capable of revealing only the larger discontinuities, and for the detection of small internal and fine cracks some much more sensitive method is necessary. In supersonic testing, sound waves of high frequency are propagated in metallic test pieces and when reflected back are picked up on their return. This is explained in detail later. The test is being increasingly
radar. There is some reason to believe that the test can offer a useful indication of the grain size of the test piece, and it is stated that average grain size may be measured by measuring the scattering or attenuation of the waves.

The Properties of the Ultrasonic Wave

An ultrasonic wave, despite being essentially a sound wave, is inaudible to the human ear, but it is not this property that affects the test, but the shortness of the wave length There are three main types of these waves, but the one with which we are concerned here is the longitudinal wave. (There are ultrasonic waves of other types, but we are dealing here solely with those capable of being transmitted through solid bodies and of use in ultrasonic testing.) A rate of 256,000in. per second has been obtained when such waves are transmitted through certain types of steel.

Detection of the Waves

The piezo-electric crystal is employed in both the propagation and reception back of the waves, and this crystal is almost always a carefully selected and prepared piece of quartz. The method of its application may be directly contactual or it may be placed in a water-filled or oil-filled container and the sound waves passed through the test piece in the same vessel. (A general outline of technique is given later.)

Types of Equipment

There are both complicated and simple types of ultrasonic testing apparatus. The least complex is that which passes an uninterrupted succession of waves through the test piece, the discontinuities being detected by their casting a perceptible acoustical shadow on the opposite face of the test picce. Alternatively, it is possible to propagate a succession of sound waves, few in number, but taking only a few millionths of a second to pass through the test piece. If any discontinuity exists, it reflects the waves. (It will be appreciated that the waves will be reflected, assuming there is no defect, back from the other face of the test piece.) The reflected waves are picked up by a cathoderay tube. This type of equipment is known as the ultrasonic reflectoscope (see Fig. I).

Other Causes of Reflection

Discontinuities are not the only causes of reflection of the waves. They may, for instance, be reffected by sharp changes in density or elasticity, and such reflection is employed in establishing the state of the internal structure of a metallic component.

Applications of the Test

As stated earlier, much development work has still to be done before the ultrasonic test's full possibilities are explored, but in the meantime there are numerous existing applications. One of these is, of course the revelation of minute discontinuities. If the reflectoscope is employed for this purpose, the method adopted is to attach the quartz crystal to one extremity of a flexible cable and bring it into contact with the work. The tube screen immediately shows the distance of a flaw from the surface

Range of Penetration

The ultrasonic waves have a range of penetration of approximately 20 ft . into solid metal, and a blowhole or other spherical space can be disclosed at a few inches from the point of contact even when it is as small as 0.02 in. in diameter. At Ioft. a similar defect 0.2 in. in diameter is readily discernible, assuming normal circumstances. It should be noted that the clarity of the indications provided by the test is affected considerably by the condition of the metal undergoing test; if the metal contains a good deal of foreign matter or non-metallic inclusions, it lowers the sensitivity of the test considerably. Another factor in reducing sensitivity is the state of the surface, which for the best results should be smooth. Given clean metal of close grain structure and under good conditions it is possible to pick up holes 0.001 in. in diameter.

Form of the Crystal

Because it is essential to make effective contact with the surface of the metal to be tested, it may be necessary to give the piezoelectric crystal a special form to suit the work. Thus, if the part has a curved surface, it may be necessary to shape a corresponding curve on the face of the crystal This only applies, however, when the curve of the part is less than 3 in. radius. For all curved surfaces of greater radiusithan this a flat crystal may continue to be employed.

Detecting Large Discontinuities

It is not essential to use the reflectoscope for the detection of large discontinuities, such as laminations in rolled plates. The simpler type of apparatus employing continuous waves will serve. There are two alternative methods, one consisting of a complete scanning of the entire area of the work with the ultrasonic waves. The other is to use the reflectoscope and propagate, towards the plate edge, a beam of polarised sound which passes across the plate and is thrown back by the opposite edge or by intermediate discontinuities. The second method is the quicker because it involves only the testing of oae edge.

Testing Welds

The method adopted in testing welds depends largely on whether one surface or both can be reached. Assuming it is possible to reach both surfaces, the reflectoscope can again be employed, and will clearly indicate whether the union between the two components is sound.

Testirg Tubes

It is possible to employ certain types of ultrasonic waves in the testing of tubes. The method adopted is to propagate the waves about the entire circumference of the tube and so enable its entire internal and external area to be tested by means of an ultrasonic contact instrument employing polarised sound.

Technique of the Ultrasonic Test

The ultrasonic test is more accurate than other acoustical methods of testing, but it is more complicated and calls for highly specialised apparatus. It is essential that the work should be firmly mounted on a work-holding support. The piezo-electric crystal is connected, as we have séen, by a flexible cable to a high frequency oscillator which is pulsemodulated by an oscillator of low frequency. Another crystal, usually of rochelle salt, is also secured to the test piece, and is connected by way of an amplifier and rectifier to a cathode-ray tube oscilloscope. In this way it becomes possible actually to see the reflected waves as they pass through the test piece.

Carrying Out the Test

It is usually the practice to carry out the test at the outset on a series of standard test pieces, the reflected waves being studied on the screen of the oscilloscopes. Discontinuities are revealed by an additional pulse not found when the test piece is without flaw. If the test piece is in the form of a bar without change of cross-section, it is possible to measure the distance between the pulses in the succession of reflected waves, and such waves may be compared with those of the standard test pieces.

The Tank Method

In the tank method, the piezo-electric crystal immersed in a fluid-containing tank propagates waves upwards in a vertical direction in the form of a pencil or beam. Where this beam strikes the surface of the fluid (oil in most instances, but sometimes water) a ray of light is focused and reffected on to a screen. The test piece is also inside the tank and is placed in the beam of sound. The variations in the intensity of the reflected light serve to show the quality of the test piece. It is sometimes found desirable to revolve the test piece or part at a slow rate in the tank.

Measuring Thickness

The ultrasonic test may be employed as a means of measuring the thickness of a wall where the opposite side cannot be reached. For this purpose, assuming the thickness to
be measured is more than $7 / 64 \mathrm{in}$., the reflectoscope is employed. It gives a direct indication of thickness by showing the length of time it takes for the waves to complete a full circuit. The degree of precision of the measurement depends on the thickness of the material and the extent to which the walls of the tube or sheet are parallel, being less as parallelism declines but greater as wall thickness increases.

For measuring sheet thickness, an instrument developed by Wesley S. Erwin, the "sonigauge," which determines the resonance through the thickness of the sheet is
used; but this does not mean that the reflectoscope cannot be used for the same purpose.

Specialised Uses of Ultrasonic Waves

Space does not permit of a detailed description of the specialised use to which the shear, Rayleigh and other types of ultrasonic waves are put, but it may be briefly stated that among their actual or potential uses are the measurement of average grain size, the inspection of regions of a test piece close to the surface only, and the measurement of the amount of preferred alignment of the grains of a steel sheet or forging.

Preparing the Testpiece

To give the surface of a test piece or part to be tested by ultrasonic waves the necessary finish, it is desirable that it should be ground at the point where contact with the piezo-electric crystal iss to be made. This is particularly necessary when a casting with a rough surface has to be tested. The surface is given a light coating of oil where it is not fully submerged in a tank of oil.

Basic Physical Facts

In conclusion, one or two basic physical facts will help the reader to grasp the principle of the test. The time taken by the waves to travel is in ratio to the distance through which they travel and the speed with which they are propagated is governed by the mean density and elasticity of the material.

A Telescope Tranquilliser

Apparatus for Improving Astro-photography

THIS device is designed to steady the dancing image of, for instance, a planet so that detailed photography may be undertaken through an astronomical telescope. The unit is in successful operation at Vanderbilt University's Dyer Observatory, Nashville, Tennessee, U.S. It steps up the sensitivity of the telescope 100 times and employs a television camera pick-up tube and many other clectronic circuits.
The filst report on its operation was made to the American Astronomical Society, after it had been used to obtain clear shortexposure photographs of the planet Jupiter and its moons. The new device is known as a " seeing compensator," and the increased contrast obtained by the use of the television apparatus makes faint planetary markings more easily visible than with the unaided eye at the telescope.
During the observation of the planets, it is well known that fine detail often becomes clearly visible for short periods, but becomes blurred when attempts are made to photograph it. "This blurring is caused by the "dancing" or turbulence of the earth's atmosphere which is greatly magnified by the telescope. The larger the telescope's field, the more the effect is magnified.
The new apparatus overcomes these atmospheric disturbances by compensating electronically for the movements and by permitting exposures only one-hundredth as long as without it.
The method used for image compensation is to divide the planet's light in half as it leaves the telescope. The orthicon's cathode
receives one image and the other falls on two photocells after being passed through two slits placed at right angles to each other. The current caused in the photocells by the light hitting them is amplified and used to control the telescope's motion.

BOOKS FOR ENGINEERS

By F. J. CAMM
Refresher Course in Mathematics, 8/6, by post $9 /$-.
Newnes Metric and Decimal Tables, 5/-. by post $5 / 6$.
Screw Thread Tables, $6 /$-, by post $6 / 4$.
Slide-rule Manual, $6 /$-, by post $6 / 6$.
Mathematical Tables and Formulx, 5/-, by post 5/3.
Dictionary of Metals and Alloys, 10/6, by post $11 /$ -
Wire and Wire Gauges (Vest Pocket Book), $3 / 6$, by post $3 / 9$.
Workshop Calculations, Tables and Formulx, $7 / 6$, by post $7 / 10$.

Published by
GEORGE NE WNES LTD., TOWER HOUSE, SOUTHAMPTON STREET, STRAND, W.C. 2

Part 2.-The Sun's Surface : Photpsphere: Sunspots: Prominences

THE sun has been radiating light and heat for many millions of years ; just how many is not known. It is continuing to do so without any signs of diminution, and the probability is that it will go on doing so for further millions of years. Enormous though the sun may appear to be to us it seems a wonderful thing that it can be capable of sustaining itself so that it never seems to change. It can radiate light, heat and power and seems to generate these, within itself, by its own volition. How this happens was for a long time a problem, the solution to which no one was able even to guess. The discovery of radio-active substances and radio-activity may have offered the first glimmerings of the truth, for it was suggested that radio-activity in the sun may account for its radiation over a reasonable period. But no radioactive elements were to be found in the sun, though lead, the product of exhausted radio-activity is present, which appears to show that if the sun once possessed such active elements, they must have long since become exhausted. It was not until the formulation of relativity was. it put forward that the old ideas of the conservatism of matter must be discarded, and that the way lay open for the explanation of the continued radiation from the sun.

To Lord Rutherford must be awarded the honour of making the great research in liberating sub-atomic energy by breaking up the nuclei of atoms. The result of this has made the physical mechanism of the sun's interior more understandable. Lord Rutherford's work was continued by scientists both in this country and in America. It is now admitted that the conversion of hydrogen into helium would liberate the energy required to meet the observed radiation and continue to maintain the sun in its present state.

Lord Rutherford started by bombarding atoms of nitrogen and other gases with Arays from radium. He found that these were fast-moving, positively charged nuclei of helium. By these means, when the nitrogen nuclei were struck, he succeeded in breaking up nitrogen atoms into atoms of oxygen and hydrogen. Later, fast-moving protonshydrogen nuclei-were found to give better results than A-particles as bombarding missiles. A beam of these protons was produced by accelerating hydrogen nuclei along a tube in an intense electric field. In this way, lithium, bombarded by hydrogen, produced helium only. Further apparatus was designed culminating in the cyclotron, wherein the proton stream takes a spiral path in an enormously powerful magnetic
field which is excited by a potential of over a million volts. Neutrons, components of atomic nuclei, which have no electric charge, were discovered and used as bombarding missiles. These proved more effective as thev were not deflected from a target, as the A-particles and protons were, by their positive charges.

Under the conditions maintained in the sun, where the temperature is in millions of degrees, atomic nuclei will be stripped of their electrons and crushed together to such

Fig. 5.-Light waves in Angstrom units.
an extent that their kinetic energy is far greater than that produced in the laboratory under intense electrical excitation. Further collisions amongst the crowded nuclei and, therefore; the effect of bombarding hydrogen
protons, is much more likely than is attained artificially.
In 1939 Dr. Bethe, an American physicist, and Weizsaker, a German physicist, put forward the theory that a certain cycle of nuclear reactions, converting hydrogen into helium, could be happening in and around the central parts of the sun and could account for its observed radiation. Four hydrogen nuclei are converted into one helium nucleus and three quanta of radiation. Carbon and nitrogen are the only other elements required for the completion of this cycle, and they remain unaltered. The net result is the conversion of hydrogen into helium and the resulting radiating energy is liberated; whether the hydrogenhelium conversion theory is true or not, and it is generally accepted as true, it does seem probable that the abundant amount of hydrogen in the sun serves as fuel, in that, or a very similar process. If the supposition is true that large quantities of hydrogen are in a constant state of change into helium, another interesting question is raised, namely: is the temperature of the sun rising or falling? It has generally been described as a G-type dwarf star which is cooling, but providing that sufficient hydrogen is present, the time taken will depend upon the proportion of carbon and nitrogen available; if we assume that this is one per cent., which astro-physical evidence seems to show, then the energy liberated at $20,000,000$ deg. would agree with the observed energy radiated. The amount of helium would gradually increase and replace the hydrogen. Helium at high temperatures is more opaque to radiation than hydrogen, therefore, there would be

Fig: 6.-The great sur-spot of Tune 22nd; 1885. a tendency to retain the liberated energy which could very well increase the general temperature of the sun during the next Io to 20 millions of years. The conclusion that this brings us to is that the . sun is still a G-type main sequence star, which has not yet started to decline.

Radiation is constantly passing outward from the sun's surface, and it has been estimated that about four million tons of solar matter are being converted into energy every second in order to maintain this radiation. Yet almost the whole of this enormous output is diss:pated in space; only about one hundred millionth part being interccpted by the planets. The intensity of
solar radiation is measured in the form of heat intercepted by the earth, and this is the only means we have of estimating the observed radiation in its totality. The proportion absorbed by our atmosphere necessitates very

Fig. 7.-Types of prominences.
careful research to reach a valuation of that received outside of, or above, our atmosphere. The instruments used: voltmeters, pyrheliometers, etc., are very sensitive, and depend upon the varying resistances to electric currents of certain metals when heated. The metals, in the form of wires or strips, are blackened for absorption and to eliminate reflection, and their changes in resistance are determined by sensitive galvanometers from currents passing through them when heated. The radiation can be spread into a gradation of wave lengths so that they can be analytically measured by the spectroscope.

The greater portion of the short waves, the ultra-violet, are intercepted by our higher atmosphere, and it has been found that nearly all the radiation that reaches the earth falls within the limits due to light and to heat, that is to say, the visible and the infra-red rays. Fig. 5 illustrates by a curve the intensity of the rays with their lengths in Angstrom units.

The Sun's Surface

If we project the image of the sun on to a white screen by means of a telescope or look at it directly through an eyepiece with a sun-diagonal fitted with a dark glass or a polarising prism we see what is known as the photosphere.

Photosphere

We shall see that this is mottled or granulated, especially if we increase the magnification, and we can do this if the atmospheric conditions are good. The surface is mottled in two ways. For instance, there are patches of white separated by darker spaces or divisions and the whole surface consists of tiny (more or less) circular grains of light. These grains or granules have a diameter of about 500 miles, though, to us they only subtend an angle of about one second of arc. It is not known to what this granulation is due, but it has been assumed that we are looking down upon the upper parts of circular columns of hot gases kept in a constant state of rotation. The granules appear to be more marked near the centre of the disc and are less distinct towards the limb, which is as we should expect to find them if they are the crests of domeshaped columns of gas. The high temperature of the gases which form the granules, together with the low pressure at the surface, results in their being highly ionised and it is probably this ionisation, combined with free electrons, which cause the extreme brightness and the continuous spectrum which is emitted. Besides being less visible the granules in the photosphere are less distinct and less brilliant towards the limbs. This is as we should expect, because (I) the sun's radiation, including light, proceeding from a depth to a surface, is more direct in the centre of the disc and (2) the darkening as we look outward from the centre towards the limb is due to the general absorption by the sun's atmosphere. The light has to pass through a greater thickness of these gases in just the same way as the sun's image, and light is cut off by our own atmosphere when the time of sunset approaches.

Sunspots

When seen through a telescope with moderate magnification, sunspots appear as disfiguring marks upon an otherwise bright uniform surface, but with a much increased power it will be noticed that each spot has one or -more dark and uniformly toned nuclei. Each is called an umbra and each is surrounded by an even-toned or light background which is referred to as a penumbra. This penumbra increases the area of the spot very considerably.
The umbrae of sunspots appear very dark by contrast with the brilliant photosphere but actually if the umbra could be looked at alone, without the glare of the solar surface, it would be far too bright for the unprotected cye to look at. The cause of sunspots is at present unknown and we do not know how deeply they penetrate the surface, but to the writer they appear to be the opposite in action to prominences. Sometimes the granulated surface is in a form of eruption and at others the surface sinks and breaks away, leaving apertures showing a darkened interior. Some may extend to depths of thousands of miles, whilst others may be mere shallow depressions. Of this we may be sure, that just as prominences are due to forces from within, sunspots are due to partial vacua. They are due to variations in the magnetism of the whole and are not themselves the cause of such magnetic variations.

The appearance of the penumbra appears to be due to disturbances of the photo-
spheric granules. At the periphery of the penumbra these granules are often crowded together, giving extra brilliance to the surrounding photosphere. This often occurs next to the umbra itself, even when there is no penumbra, as is often the case with small spots. It has been discovered that there is often a distortion of the spectrum lines over sunspots, which appears to indicate a radial motion of certain gases outwards across the penumbra and also an inward flow of hydrogen and calcium gases at a higher level.
When a spot is forming, the granules part, exposing a larger patch of cooler gas beneath. Sometimes this patch closes up after a short time, but if it does not do so it gradually increases in area and umbra appears, apparently due to cooling consequent upon its expansion, the granules at the periphery becoming a penumbra. In complicated or clustered groups of spots, such as that shown in Fig. 6, some of the largest spots will have umbrae, whilst others, especially small ones, will consist of penumbra only.
Sunspots vary greatly in size from the most minute pores, scarcely visible with high magnification in the telescope, to enormous outbreaks of thousands of square miles in area. The largest ever recorded since reliable records have been made occurred in 1947, when an area of over 6,0co million square miles became a gigantic group of sunspots.
Sunspots are confined to latitudes below 40 deg. north or south of the solar equator and are most prevalent between 6 deg. and 28 deg. They never appear at the poles: All spots appear to move in the direction of the sun's rotation and the speed is dependent upon the varying zonal rotation.

It appears to be a fact that the umbra of most spots is only slightly, if it is at all, below the penumbra. In some cases there appears to be no differences between the

Fig. 8.-The great arched prominence seen in 1919.
levels, whilst in others there is a slight depression of the umbra; when the spot is near the eastern limb the eastern side of the penumbra merely shows a little broader than the west.

Prominences

Up to the present, all that has been referred to has been possible to see with the telescope, under ordinary conditions, but we come now to phenomena which
either require special apparatus or, waiting for those fe's moments when, in an eclipse of the sun by the moon, the disc is totally obscured. These phenomena relate to the chromosphere and prominences. The chromosphere is an extremely rareficd gas and this presents an apparently opaque surface of extreme brilliancy. This surface radiates light of every visible and invisible wave length, so that in the spectroscope a full and continuous spectrum is produced. Work in the laboratory leads to the expectation that only incandescent liquids, solids and gases under high pressures show the continuous spectrum. No doubt the depth of the gases of the photosphere and the ionisation of the atoms and free electrons, due to temperatures beyond those which are obtainable in laboratories, are responsible for this. The chromosphere is a layer of incandescent gas immediately above the photosphere and resting upon it, rapidly thinning with height until it merges into the corona.

The extreme lower layers of the chromosphere, having a depth of perhaps 400 miles above the photosphere, have the atoms of all the elements found in the sun, except those lighter and more easily ionised gases such as hydrogen, helium and calcium, etc., and these are in the upper layers at 10,000 or 12,000 miles or more. The Fraunhofer lines are due primarily to the atoms in the lower chromosphere; these are extremely agitated by thermal collisions, ionisation and radiation, their electrons flying from orbit to orbit and absorbing light of the fre-
quencies corresponding to the flights. So long as the brilliant continuous emission spectrum of the photosphere acts as a background, only their absorption leaps outward are visible, as dark Fraunhofer lines, corresponding to these frequencies. When, during the total ectipse of the suri, the moon has just covered and cut off the light of the photosphere, the lower layers of the chromosphere is seen for an instant without the bright photospheric background; then the inward or emission leaps of the electrons only are seen. The result is a bright line emission spectrum, and so a reversal of the ordinary dark lines; the lines are seen, suddenly bright, against a dark background and this is known as a flash spectrum.

We can only consider the chromosphere, therefore, as a kind of ocean of incandescent gas overlaying the brilliant photosphere. In this vast expanse there are enormous flames which we call prominences. Some of these are quiescently glowing and taking a variety of shapes, whilst others, especially in the vicinity of sunspots, shoot up with explosive speed in the form of jets, then curve over to form arches; sowe rush away from the solar surface, whilst others come pouring down at great speed and appear to be drawn into the sun again.

All of the variojs kinds of prominences are shown in Fig. 7, which illustrates six different types. Startirg at the top of the drawing there is the rocket type which shoots up at terrific velocity often almost, or quite, radially from the sun's centre: such heights as between 500,000 and 600,000
miles have been recorded. These rocket flames are often wholly detached from the sun. The second sketch, coming down, shows the interactive type, the flames of which seem to have a mutual attraction for they rise from two widely separated points, arch over and meet. No. 3 are brilliant, smaller and numerous flames. No. 4 are flames which are quiescent and are not so brilliant an 1 take a pyramidal form; sometimes they are open, i.c, made up of two similar flames which meet at the tips and -.sometimes - are broad sheets of flame. No. 5 shows flames which are known. as "forests" because they resemble trees in their forms, and the last sketch, No. 6, scems to be similar to No. 5 but larger, and are made up of two flames only, though in this case it is only one flame which, rising up on one side turns, or bends, over and rejoins the chromosphere, often at times many thousands of miles away. It must not be thought thai these prominences rise and flicker for a few minutes and then die away, for the arched prominence shown in Fig. 8 was seen $0: 1$ the eastern limb of the sun on March 22nd, 1919: it gradually increased in height and intensity as the sun rotated and on May 28th it had reached a height of 76,000 mile; and extended over a distance of 400,000 miles. On the following day, the day of the annular eclipse, it had attained a height of 500,000 miles and had almost disappeared. At the period when it reached its most marked form the span of the arch was is shown in Fig. 8 and equalled one-third of the sun's diameter or 288,000 miles.

Power from the Tide
THE electro-hydraulic power station at the mouth of the river Rance, in-Britany, will be the first electro-hydraulic power plant of its kind in the world.

"Firestreak;" an air-zo-air weapon zwhich homes on the heat-rays from enemy aircraft, photographed just after launching, will be fitted 10 the English Electric P.I and the Gloster Javelin aircraft, and was developed by de Havilland Propellèrs, Ltd.

The tide at the spot chosen rises very high, some 45 ft . The water will flow into 38 groups of a new type of turbine that will be worked by both the incoming and outgoing tides. The annual production will be about 800 million kWh . It will go gradually into service between 1962 and 1964.

A new Autoclave

UNIQUE windowed autoclave has been designed by engineers at Battelle Institute for use in the study of corrosion by $600^{\circ} \mathrm{F}$ water. Because of the high vapour pressure and the corrosiveness of water at this temperature, two high-strength glass
stop them from sinking into soft surfaces. The landing gear is made of aluminium and rescmbles snow shoes in appearance.

New French Train Control

SIXTY miles of mountain railway track between Dijon and Vallorbe is to bc under exterior control, independent of the engine driver. While waiting for complete automatic control, the driver will be guided by signals of the "cab signal " type common in the U.S. Track signals will be suppressed and all indications will appear on a screen in the cab.

The new M.L. Light Aircraft. The novel wing construction is entirely without rigid bracing and is an inflated fabric envelope, in which pressure is maintained to provide a stiff aerodynamic surface. The 'plane, with wing collapsed, is towable behind a private car.
windows are mounted at the ends of watercooled legs. One window is used for illumination of the specimen and the other for taking time-lapse photographs.

Special Landing Gear

NEW device has been developed by an American firm for use on helicopters to

Turkish Radiotelephone

KUROPE'S longest radiotelephone system is to be installed in Turkey. There will be 120 telephone tracks divided into four sections: The system will complete that already being built connecting Izmir to Greece and Italy, Istambul, Ankara and Sivas.

FOR the size of puppets described (15 in.) the proscenium opening needs to be approximately 3 ft . 6 in . wide and 2 ft .6 in . high. Timber, $2 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$., should be used for the framework, and as a first step six uprights, each 7 ft .6 in . long, are cut and planed. These are marked I-6 in Fig. 6. Four cross-pieces are then cut to fit between the uprights 1 and 2 to form the front of the theatre, as shown in Fig. I Details of the joints, the length of the crosspieces and other dimensions are all given in this figure. Two screws in each joint should secure firmly. This frame may be covered

Fig. 1.-Framework for thieatie front. (foints inset.)

position after the corners have been cut out to
with a piece of hardboard, fft. 6 in. $x .5 \mathrm{ft}$, and the proscenium opening is cut out of this sheet, the bottom of the opening being 2 ft . 6 in . from the floor. If the opening is made 3 ft . 6 in . wide, as suggested, this will leave gin. either side of the opening for the tabs, or front curtains, to be hung behind.
Cross-pieces, marked A, B, C and D, in Fig. 6 are $33 \frac{1}{2} \mathrm{in}$., 18 in ., $17 \frac{1}{2} \mathrm{in}$., and $17 \frac{1}{2} \mathrm{in}$. respectively, and these are joined, in the way described previously, to uprights 5 and 6. Cross-pieces for the other side are cut and joined in a similar manner to the uprights marked 3 and 4, and the theatrefront framework, which is quite separate at this stage, can now be nailed on to the ends of A, C and D , and their opposite numbers on the other side, driving the nails through from the front.

A 5 ft . piece of the $2 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. should be cut and nailed on to the tops of the uprights 4 and 5 . (This is marked x in Fig. 6.)

Two pieces of plywood or hardboard are now required for the floor and back wall of the stage itself. The floor is $5 \mathrm{ft} . \mathrm{x} 18 \mathrm{in}$. and is nailed into

> Fig ig. 3.
> Lig ing "flood" in position. fit. The back wall needs to rise above the level of the proscenium opening so that the operator's body is not visible even if the stage is viewed from a low angle. In this case it should be 5 ft . wide and about 3 ft , or 3 ft . 6 in . high, depending on how tall the operator is. The puppets will be held, of course, while standing on the low platform at the rear, and if this is erected first, one can try the back wall for size. It is important to get this height correct, so that an extra strut may be nailed between uprights 3 and 6 , running along the top of the back wall; this can be used for resting one's elbows on during a performance.

The Rear Platform

The wood for the rear platform is 5 ft . x 18 in ., with corners cut to fit, and this needs to be stout wood of 1 in . thickness. If thinner material is used, then a middle support should be added.
The sides and back of the theatre should be draped with dark coloured cloth and lighting effects will be more satisfactory if some material is put over the top to prevent shadows being cast when a performance is being given in a low room.

Curtains

Any bright material may be used for the tabs, or front curtains, and these should have small curtain rings sewn along the tops and threaded on to a metal rod. To enable

Tin cut to take filler

A few small holes to allow heat to escape
then to be opened and closed easily, fix in the way shown in Fig. 2. Two eyescrews are put in the upright on the left side and one on the right, just above the cup-hooks holding the curtain rod. Picture cord is threaded through the upper of the two on the left, along to the right-hand curtain, and tied to the second ring from the middle. From there, it continues to the right-hand eyescrew and then back to the second ring from the middle on the left-hand curtain, where it is once more tied. It is taken from there to the lower cyescrew on that side and the two ends are left hanging at a convenient height, with perhaps two or three large knots in them to make them easier to hold while pulling. A good idea is to put knots in one of these strings and, say, a large curtain ring on the other, so that they can be identified by touch.

Lights

For a theatre of this size a car battery or large dry battery would provide enough current, but it is much more convenient to use the mains supply. Having decided how many switches are needed plug into a three-pin socket and use a circuit similar to the one shown in Fig. 7.

Fig. 6.-Ge

PUPP汇

 THIEATRE ethod of Making the PuppetsBy I. W. BRASSINGTON

Every care must be taken to ensure that the "live" side of the circuit goes to the switch or switches. Home-made lampshades can be cut from dried milk tins, as shown in Fig. 4, so that gelatine colour-filters can be inserted in the grooves. A hole must be cut in the centre of the lid to fit a standard bakelite lampholder and this is best cut with a plumber's tank-cutter. The lampholder is
 Lighting circuit. (' A ' comvols $72 v 0^{\text {then }}$ put in and held in place with the bakeights and ' B ' conn trols one).

The lid is now attached to the upright of the proscenium arch, as shown in Fig. 3, being fixed in position by two small brackets. The tin is inverted on to the lid and can be used as it is or a colour-filter can be slid down the grooves, even whilst in use. A few small holes should be made in what was the bottom of the tin, to let the hot air escape. The switches should be fitted in a convenient place and marked or numbered to avoid confusion.

Coloured gelatine can be bought in sheets and several colours should be cut to size and glued into a cardboard frame, as shown in Fig. 5 . Every effort should be made to get the correct size, and the edges smooth, so that they will slip into place with the minimum of trouble during a performance.
On the inner side of the top cross-pieces (on the framework) a row of cup-hocks should be placed so that the puppets can be hung out of the way quickly without the strings becoming entangled.

Making the

Figures

Though there are many ways of making puppets and a wide variety of materials at
one's disposal. the following method is one of the most simple, yet gives a lifelike performance in use.

The body is made from a piece of wood 6 in. $x 3^{\frac{1}{2}} \mathrm{in}$ and about in. thick. This should be shaped as shown in Fig. 8, so as to form a waistline. The limbs are cut from a length of $\frac{3}{3}$ in. dowel and fitted together with ordinary screweyes. Make the upper and lower arms $2 \frac{1}{2} \mathrm{in}$. long and the upper and lower legs about 2 in . in length. Generally speaking, the proportions of puppets should vary from those of the human body in that the puppet's body is shorter, the head and hands larger and the

arms longer, though, of course, these rules may be modified in the interests of caricature, which should be very freely used in puppet making.
Use a gimlet to start the screweyes, especially in the dowel, as this is quite hard wood. Join two screweyes together at each joint by prying one of them open with a pair of pliers, threading through and then closing again. Fig. 9 shows how the limbs are joined. Be sure to screw the screweyes right home so that the space between each limb is only about $\frac{1}{2} \mathrm{in}$.

For the feet, obtain a piece of wood approximately $\frac{1}{2} \mathrm{in}, \times \frac{3}{4} \mathrm{in}, x \frac{3}{4} \mathrm{in}$, and with sa:7 and file shape roughly into the required proportions. The drawings in Fig. In show the various stages and the foot attachment is the same as the other joints, except that a staple may be used in place of a screweye on the foot side of the joint.

The hands are a little more difficult, but great detail is not essential or even desirable, and I have found that plastic wood is extremely easy to use for this purpose. Hands can be modelled in this material without the prerequisite of a high degree of artistic skill, and if a screweye is used in the bottom of the lower arm the plastic wood may be keyed on to this, building up a thin layer at a time, until a kind of mitten is made. It is not necessary to model or carve individual fingers. This method does not allow the hand to move independently of the lower arm. If a wrist joint is required so that the hand may move on its own, then the screweye is still used in the lower arm, but the hand must be modelled on to something else, say a piece of wire appropriately
shaped, which can then be threaded thruugh the screweye. In the beginning, however, I advise doing without the wrist joint until the operator has had some experience in manipulation, as the jointed hand is likely to be difficult to control.

Making the head is a very individual affair and there are a good many materials and methods at the puppetecr's disposal. The following method is recommended because of its simplicity.

A $2 \frac{1}{2} \mathrm{in}$. cube of wood is cut as shown in Fig. 12 and all the coiners are rounded off with a file. This gives the basic shape and the features are then built up in plastic wood, using a thin layer at a time. When the shape is satisfactory the head can be smoothed with sandpaper and hair can be painted on or theatrical hair can be glued into place, though plastic wood will give a very lifelike effect.

It is easier to get the required shades when painting if the face is first painted white.

The head is attached to the body with another piece of dowel, which forms the neck. A $\frac{1}{2}$ in. diameter hole is bored into the top of the body for a depth of about $\frac{1}{2} \mathrm{in}$. to receive

Fig. 12.-Basic shape of the head.
top of the neck. It may be found better to countersink this screw slightly into the base of the skull in order to hide the joint. The bottom of the neck also has a pair of screweyes and when these are attached and in position they are let into the hole prepared in the body and screwed in place. Fig. 10 shows how this is done.

The controls for a normal puppet are included in two pieces of wood in the shape of a cross, the longer, vertical piece being about 1 ft . in length and the cross-piece about 6 to 8 in . and joined at right-angles to the long piece, about three-quarters of the way up.

The rood used must be strong enough to allow a cup-hook to be screwed into it and the two pieces are joined with a crosshalving joint as shown in Fig. 13. This may be either glued or nailed. A cup-hook is then screwed into the vertical piece at somewhere near the position of this joint and another screwed into the top end of the vertical, the latter being used to hang up the puppet when not in use.

A small cobbler's tack may be driven into the puppet at the control points so that the strings may be tied to them. These points are: one on cach side of the head; one in the middle of the back, between the shoulder blades; one for each hand and leg. Black thread is used for stringing and the head strings are attached to the ends of the cross-piece and the back string to the base of the vertical. It will be seen from this
that if the vertical is tipped forward the puppet will bow.
The hand strings are now attached (but with plenty of-slack) to the ends of the cross-piece also and these are manipulated with the fingers. It is a good idea to attach the leg strings to the knee rather than to the foot and these strings are led to either end of a new piece of wood, 7 in . or 8 in . long, which has a cup-hook in its centre. This leg control is hooked on to the cuphook near the cross-piece when not in use. But in use it is taken from its "mooring" and used in the left hand.

Fig 14 shows the stringing.
The method described for making and stringing puppets is intended to provide a basic method of working and the enterprising puppeteer will no doubt wish to construct more elaborate figures. There is an endless list of characters to choose from and, for a variation in methods of construction, the reader is referred to the article, "Making a Skeleton Marionette" which appeared in our September, I956, issue. Animals too provide a profitable field for puppets but, of course, different methods of stringing will have to be devised to operate them.

It is well to remember too that a great deal of the effect of a puppet show depends on its presentation and that extensive rehearsal and practice is necessary before a show is presented.

Parking Meters for Great Britain

An American Idea Which is to be Introduced to Solve the Parking Problem

LONDON and the other great cities of Britain with the gravest problem yet in the world of transport-that of dealing with daily hordes of cars which bear their owners to business in the morning and must then be left somewhere to await their removal at night.
One of the first partial solutions which will be applied in many areas will be the installation of parking meters, well known as an essential feature of American and Canadian streets for a quarter of a century but new to British motorists. These, generally speaking, will permit up to a two-hour

The Red Batl Parking Meter.
spell of parking in certain specified strects or other sites at a charge of probably 6 d . per hour.

First to be accepted and approved by the Council of Industrial Design in the field of British-built machines is the Red Ball Parking Meter, product of the company of the same name. The Red Ball meter has been designed in collaboration with Mr. J. Beresford Evans, a consultant recommended by the Council.

Streamlined and elegant in appearance, the Red Ball meter is operated by the motorist lifting the handle, in which operation he automatically winds up the meter clock before inserting coins at the 6d.-per-hour rate. When his time is up, the red ball, from which the machine takes its name, ascends into a glass dome on the meter's head and the parking attendant is thus able to see at a glance which cars have overstayed their limit, even from some hundreds of feet away.

The Red Ball meter's compact appearance and efficient protection against dust, rain and the vagaries of weather make it possible that it will soon become as familiar a part of the British city street scene as the pillar-box or the lamp-post.

Parking meters have already been accepted in principle by the City of Westminster, but rejected by the City of London.
Permanent Magnets in action

Made by James Neill \& Company (Sheffield) Limited and obialnablefromall tooldistrlbutors

The Bestfrend "ZEPHYR"

 Motor and Accessories

A silent, sladed pole motor, 200/250 volts, 2,600 R.P.M. 25 watts: $3 \frac{1}{2}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$. with double-ended spindle. Precision built and specially suitable where absolute silence is essential. Continuously rated and designed for use in construction of table and extractor fans, projector cooling units, fan heaters, cupboard airing devices, etc. An extremely high class product, designed by engineers with a quarter of a century 3776
of experience in motor construction.

Metal fans. 3-bladed, for extractors and cooling Bakelite $8^{\prime \prime}$ aerodynamically de signed fan. Displaces 280 cub. ft. per min. with the Zephyr motor. For fans, room heaters, ctc. All prices include postage.

The Bestfrend BANSTEAD
 Electrical
 Co. Ltd. SURREY

Wirelese Sit, No. 17 A complete transmitter recelver. Only 120 .v. H.T. and 2 V . hook with cach unit. Ideal farms, scouts. 4t/61 mats. Price 39,6 . Carriage $5 / 6$. Con-One-valve Amplifirr, No. A.1271. Contains V.R.0. Two trans.. Pot... Con- Can modify for player unit. 3/6. post 2/3. wife Cells. New. Superior to load add type. Almost indestructible, Foltage 1.2 to 1.5 (rully charged). Size $3^{\prime \prime}$ \& $21^{\circ \prime}$. x 1°
approx. $7 / 6$ each, post $1 /-$. $72 /-$ dozen, carr. Electrle Motors. 1 h,p. $220 / 250$ volts A.C. 1.000 r.p.m., new condition. bracket fange mounting. Double-ended shaft. 55/Accumulators. 2 volt 14 ampere hour, new, by Oldhams. $8^{\prime} 6$ each, post 1,6 .
Throat Mikes. New, boxed, British. comThroat Mikes. New, boxed. British, com-
plete with straps, cord and jack. $3 / 6$, post plete with straps, cord and jack. 3/6, post Te 36/-dozen. Nrods. Nev, 2ft. P.V.O. black prods, wander plugs, beautifully mado. $3 \cdot 6$, post 6d. 36/-dozen.
Gueelometers with Reset. By Japger,
a $90 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. New, Hall-moon shape, fitting a. $90 \mathrm{~m} . \mathrm{p.h}$. New, Hali-moon shape, fitting price $25 /$. List price about \&ifliol-. Bargain.
post 2.6. Time Relays, All 3,000 type. Colls from 5 ohms to 3,000 ohms, 11 p to 18 Blade assemblies. 56 to 106 each, post 9 d . A.P.S. l.ess Valves. New condition, contains 16 7.B.G. valve bases. H.F. Chokes. Con-
densers, about 500 useful pleces of equipdensers about 500 useful.
ment. 10 - each, post $2 / 6$.
Interconl, sits. Sound powered. Consists of two balanced armature earpiece microphones, 20° twin flex, all new equlpment, suitable baby alarms, renote radio listening, car to caravan, communtcation, etc. Miniature Electrle Motors. R.A.F. Tape recording type. $12 / 21$ folts D.O. Fitted reduction gear. final speed
 Army Webl Therearch, price 15/ Now. Everyone can flad these useful, for campers, tools, lunchbags, standard service size, 7i6 each, Rost 1 R. Car I.anu I Isemmily. By Lucas,
 types, trallers, specials. Contains red glass for real light. double filament lamps for braking, lower section plain reversing,
including leads housed in alum die cast including leads housed in alum die cast of real cost. Price $30 /$ - per pair, post 26 . send 6d, for new list. All communications THIE SCIENTIFIC INSTIRUMENT CO. 16, Ilolly Road, quinion, Bheningham, 32. Caltere weleonice at showronns.

BOX KITEA, the one and only well-known R.A.F. dinghy antenna type, brand new in metal containers, complete with fiying cord, $20 / \%$, post $1 / 6$.
MOTVR GENER. A TORS, U.S. mfr., totally enclosed. 41 n , long, 2 i ln , dia, Input 27 v .1 .5 amps., output $285 \mathrm{~V}_{\text {. }}$ at 60 mA . output from 12 v . supply is approx: 150 v . nex, unused. 126 . post 2 .
TR.ANNTTHPR RECEIVERS NO. 1F, MK. IT, these are complete with valves, high res, headphones, hand miorophone, instruction booklet. rrequency range 44 batteries, theseare brand new in scaled cartons, our price 50°-carriage (inlandonly)
IIUGHES 12-VOLT SIILNT MOTORS, 2aking 1.25 amps. light. and up to 2 amps. on load, 5,000 r.p.m. external terminations for reversing, oll impregnated hearings, $i \mathrm{in}$. shaft, size $3 i \mathrm{in}$. long, 1_{5}^{5} In. dia., welght 20 oz . a superior and powerful motor, original cost over \&7, our price new unused, 10 -, post $13 ; 2$ for $20 /$-, post paid; ditto. fitted reduction gears, giving a final drive of either 160 or 320 r.p.m., state which required. $12 / 6$ post

 ing llyht exactly where required, base can be screwed to bench. table or wal, nitted
s.b.c. lampholder and shade, fnish black and silver, total lensth 20 in. brand new in
sealled cartolis, 15%, post 1,6 . MERCLRI SWTTCHES, 250 v. 10 amp. glass tilt type ntted braokets, specially made to give 3 -second delay make after tilt, new boxed 5 Ne , post 7 d .

IBAMBE" G IRDEN SPRAIEIRS, also suitable for
 disinfectants, penetratins oil, lime wash, etc., made by Fisons Pest Control Litd., consists of the special glass container holding 4 pints, marked in $\frac{1}{2}$ pints, fller cap or back, so that both hands are free. 40in. flexible tubing to the polished brass syringe, with nozzle that gives a finely atomieed spray, Scrap those messy old-fashtoned sprayers that require buckets, hoses, etc., Invest in a "Bambi," value to day $45 /$ - our price new boxed $20 /-$ post $31-2$ for 40%, post paid.
MANS BLOW EIRS, $200 / 250$ v. A.C.ID.C. \ddagger amp., 5,000 r.p.m., consists of the motor with attached enclosed fan. end funnel intake 1 if n . dla., side outlet 1in. x In., plinth base 4 ifn. X 8 in., fintsh black crackle and aluminium dieT1lb., a very superior blower, fraction of original cost, $25 / \mathrm{c}$, post $3 /$. wide. weight SHI TDED PULE JIOTORS, $12-\mathrm{v}$. 50 -cycles A.C. size 3in. x 24 n . x $1!\mathrm{l}$. . complete with 3 ln . fan, made for lamphouse cooling. sllent running, unused and perfect, TFLWEPHONE SETS, consists of 2 combined microphones and receivers which, when wired up with ordinary twin fex, provide perfect 2 -was comminication, excellent results up to 1 mile have been reported, self-energised. no hattery required price the 2 instruments new unused, F,6. post $1 / 3$, twin P.V.C. 14,36 flex up to 300 ft . lengths at 1d. per ft.
M AGNT:TTC RELAAYS 5C/648, $9-14 \mathrm{v}$., takes \& amp. at 12 v., closes 40 amp. D.C. contacts, bakelite case enclosed with oover, new, unused, worth $30 /-$, our pilice 26, post 10d. : 24- doz., post $2^{\prime} 6$.
Send s.a.e. for current bargains lists, Tel. : HAR 1308
MDDLAND INSTRUMENT CO., Moorpool Circle, B'ham, 17

WATSON'S SPECIAL OFFERS

LYON ALCo $12 / 18 \mathrm{v}$. 360 w . £22.10.0
CARR. 15/These are very fine Generating Sets selfcontained in steel frame and complete with switch panel. UNUSED ready for service.
CANVAS TOOL ROLLS. 17 in . $\times 10 \mathrm{in}$. with provision for eight separate tools, also pocket and fastening tapes. 1/4 each, 14/- doz.
SLEDGE HAMMERS. 7 lb . Nosed with ash handle, 9;6. Carr. 2/6.
TWIN FLEX in 100 yd. coils, best quality, $17 / 6$ per coil. Posi 2/-.
MAHOGANY FINISH BOXES. Beautifully made wilh brass bound lid and brass
fastener. $14 \mathrm{in} . \times 9 \mathrm{in}$. $9 \mathrm{in} .8: 6$, post 31 . fastener. 14 in . x 9 in . x 9 in . 8:6, post $3 / \mathrm{m}$. COIL SPRING BELTS. $\frac{1}{2}, x$ inin, be joined together. 20 for 4,6 . Post $1 /$. A.C. AIR CLEANERS, 6 in . diam. 12 in . fitting, $12 / 6$. Post $2 /$
POWER IOR ELECTRIC RAZORS

from 12 or 24 v . batteries, Converter suitable for $110 / 230 \mathrm{v}$. A.C./D.C. Electric Razors.
EX-R.A.F. TOOL BOXES, Size 14 in . x gin. x 8 in . Dovetailed and nietal bound $9 / 6$ each. Carr. 2/6. LARGER SIZE 24 in . x 12 in . x 10 in . PRICE 13/6. Carr. $3 / 6$. Hundreds of other Bargains available. Send 6d. Stamp for MONSTER ILLUS. TRATED L.IST.

EASTERN MOTORS
ALDEBURGH, SUFFOLK. Phone 51

More Attractions!

(MORE THAN EVER BEFORE)

AUG. 21-31
11a.m. 109 p.m. Closed Sunday.

Admission 3/-
Under 15's 1/6

More attractions than ever this year. Every kind of land, sea and air model, all wonderfully detailed and accurate. Demonstrations of soldering, brazing, metal working, sailmaking, boat building, ship and aircraft modelling. Model racing car track with continuous programme of events. Live steam track. Water tank with demonstrations of radio-controlled ships. R.A.F. model jets that fly at high speed. A wind tunnel for shaping model aircraft. Electronic marvels at puzzle corner. Three signal layouts including full size assembly. Three railway layouts including working model of Paris Metro presented to Prince Charles. Displays by the model clubs. Latest products for the home workshop on the trade stands. GET THERE

HOW TO Buses: 10, 11, 24, 29, 39, 16, 76, 134 to Army \& Navy Stores.
Buses: 10, 11, 24. 29, 39, 16, 76, 134 to Army \& Navy Stores.
2, $2 a, 36,36 a, 57,69,169,181,185$ to Rochester Row. 10,46 to Horseferry' Rucnd. Underground to St. James's Park.

steel SHELVING

72 in. HIGH
34 in . WIDE
12 in . DEEP

- Brand new-Manufactured in our own works.
- Sheives adjustable every inch.
- Heavy gauge shelves will carry 400 lbs. each.
- Stove
enamelled bronze green.
- 6 shelves per bayExtra shelves $8 /$ - each.
- Quantity discounts.

Delivered free £315s. Ready for erection.

N. C. BROWN ${ }^{\text {LTD. }}$

Green Lane Wing HEYWOOD • LANCS

- the manufacturers!

This shelving is available in WHITE enamel at extra cost.
ALL OTHER SIZES available at equally keen prices.
Telephone :
Heywood 69018 (3 lines)

THE se-- cret am-

 ition of men and women is to live a life that countsfor something. They may not give any vocal expression to this ambition but it is there all the time beneath their daily hours.

They are not content to live always in a rut, to be one unit in a multitude, to exist for ever undistinguished and unknown, to be always ignored not merely by strangers but by neighbours, relatives and business colleagues. They want to develop Personality and to do work that is worth while.

This is where Pelmanism helps. Pelmanism develops Personality. It develops Individuality.

> Remember- Veverything you do is preceded by your artitude of nind

HOW TO LEARN LANGUAGES

The Pelman Languages Institute teaches French, German, Spanish and italian, without translation. interests you, which will be sent gratis and post free.

Pelman Languages Institute. 130, Noriolk Mansions. Wigmore St., London, W.I.

It strengthens the weak Will. It banishes Diffidence and Shyness and gives Self-confidence, The feeling of inferiority which haunts so many people disappears after a course of Pelmanism. By increasing the efficiency of your mind Pelmanism gives you a wellfounded belief in yourself and your powers; it develops Courage, Resolution, Initiative, Self-respect: it inspires you to new effort and thus enables you to get out of the rut into the high road to success. Further, by increasing your Efficiency it increases also your Income-carning Power.

Send for Free Book

The Pelman Course is simple and interesting and takes up very little time. The books are printed in a handy pocket-size enabling you to study them when travelling or in spare moments during the day. You can enrol on the most convenient terms. The Course is fully described in a book entitled The Science of Success, which will be sent to you, gratis and post free, on application to :

PELIVIAN INSTITUTE
 130, Norfo:k Mansions,

 Wigmore Strest, London, W. 1
WELbeck 14II

Established over 60 -years.
PELMAN (OVERSEAS) INSTITUTES. Delhl: Mellsourne: Durban: Parls: Amsterdam.

THE FAMOUS
THE FA
HARRIS ELECTRIC
WELDER
and Complete Kit
For Welding, Soldering,
Brazing and metal constris,
Brazing and metal construc-
thun is repairs in the horne,
thun \& repairs in the home, on
the car or cycle. Instant beat
Q.000
6,000 . War bitery or from fiturner from.
A.C. mating Complefe kit of from

Ang Tool, y it. cable, clip, carbons.
cleansing finid, fluxes, filter rods, guy-
in Haily use. As supplied to Depts.
of E.M. Qivernment. I.C.L. Standard Telephoner, etc. Welda all Metals. $57 / 4$
Up to one-ighth inch.
COOD. IF MEQUTRED.
Terms Arailable. (Post Free U.K. onig) HARRIS ENGINEERING CO. (Dept. P.M 15)

269 Kingsland Road, London, E.2.
(2) Colymy

THE WORLD'S GREATEST BOOKSHOP

FAMED CENTRE FOR

Technical Hooles

STOCK OF OVER THREE MILLION VOLUMES

119-125 CHARING CROSS RD. LONDON WC2
Gerrard 5660 (20.lines) Open 9-6 (inc. Sats.) Nearest Station: Tottenham Court Rd

SPARKS' DATA SHEETS Constructional Plans of Guaranteed and Tested Radio Designs.
A.C. SHORT WAVE

4-VALV:E T.R.F. RX.
Cathode-Coupled Regen. Super-Sensitive Send S.A.E. for Release Date \& Full Spec. L. ORMOND SPARKS (M) Valley Road, Corfe Castle, Dorset

Fig. 1.-The completed camera cradle.

THIS cradle, constructed to enable the camera to be used for copying photographs, documents, etc., is used in conjunction with two items which were described in previous articles. One is the plate back adapter (January issue), which enables the user to focus the object that is to be copied on the focusing screen.
The other item used is the baseboard and columns of the enlarger described last month. The enlarger head is lifted off and the "cradle" substituted.

As can be seen in Fig. 5, the "cradle" consists of a crossbar of wood, held in position by specially-shaped brackets which fit over the columns. One end of each bracket is screwed to the crossbar, while the other end, which is bent to lie about $\frac{1}{2} \mathrm{in}$.

Use This Device for Photographing Documents, etc.
 By P. WILDON

Fig. 3.-The camera in position.

The camera is held in position on the "cradle" by means of a piece of wood which is screwed to the crossbar. A hole is drilled in it through which a bolt is passed to screw into the tripod bush of the plate back adapter. If the plate back adapter is not used the bolt will be screwed directly into the camera tripod bush. Fig. 3 shows the camera fitted into position.

The distance the wood is fixed along the crossbar depends upon the width of the camera used. It should be positioned so

Fig. 5.-The cradle.
that the camera is susper.ded centrally between the two columns.

A small bar of wood is screwed into position under the securnig bolt to give further support to the camera. The underside of the camera itself rests on the top of

Fig. 4.-Details of the cradle.
away from the surface of the wood, is secured by a wingnut and bolt (see Fig. 2). Tightening the wingnuts clamps the brackets to the columns.
the crossbar, where a small strip of baize or felt is glued to prevent any chafing. Fig. 4 shows full dimensions of the " cradle," and Fig. I shows the cradle in use.

New Solar Clock

A Light-operated Timepiece

GENERAL TIME CORPORATION, an American firm, has developed a new "solar clock" which is operated by light. A short exposure to ordinary incandescent light or to sunlight will run it for days; the equivalent of a day of such light will operate the clock for a month.

The new solar clock requires no electric cord or "transmitter"; it is completely portable, and requires no winding or battery replacements. The clock contains a series of voltage generators (silicon solar cells) which, when exposed to incandescent light or sunlight, generate voltage to charge an accumulator cell ; this, in turn, operates the electric clock mechanism. The accumulator is a special rechargeable one and will last as long as the clock.
If exposed to light from time to time the clock will run indefinitely without further attention; cven if the owner is away from home for a month or so there is sufficient
capacity in the energy storage unit to keep the clock functioning for over a year without any light. If the clock stops after long storage in a dark closet, all it needs is exposure to light, and it starts up again. Production has not yet started.

Right. -The General Time Corporation Solar Clock.

ABUNSEN burner is a valuable piece of apparatus to the home chemist or to anyone wishing to temper small tools or to bend glass. It can be made with but a few oddments and a few tools.

As will be seen from Figs. 1, 2 and 3, the base and main support are made from two pieces of wood, each measuring 4 in . x $2 \frac{1}{2}$ in. $x \frac{1}{2}$ in., the centre support being grooved into the base for strength and the top corners cut off as shown.
Procure a cork, as shown in Fig. 4, with a diameter of 1 in . or $1 \frac{1}{4} \mathrm{in}$., and in the

Fig. 2.-Base board with upright attached.

THE JUNIOR CHEMIST

 A Home Made Bunsen BurnerA Useful Piece of Equipment for the Home Laboratory

upright piece of wood, 14 in . from the bottom, bore a hole to fit the cork, as shown in Fig. 2.

The Plate and Tube
For the tube, obtain a piece of brass-drawn tubing, about 3 in. long and $\frac{3}{8}$ in. dia., and fasten this to the upright by means of a plate,

measuring $1 \frac{1}{2} \mathrm{in} . x$ $\frac{1}{2}$ in., as in Fig. 4 The plate can be made from brass or tinplate and is shaped to fit round the tubing. Two methods of doing this are shown in Fig. 5, one using a shaped wood block and the other the vice jaws. Drill or punch two holes in the plate to take two roundheaded screws and then use it to fix the tube centrally to the upright.

Fig. 4-The cork and the plate.

The Glass Jet

The shape of this is shown in Fig. 6, and standard methods of producing it are employed. A fishtail gas burner is the best to use and the centre of a piece of glass tubing is held over the flame until it is melted sufficiently to enable it to be pulled into the shape shown at the top of Fig. 6. The thin part is then nicked with a small file and broken off to form a jet. The portion of the tube where the bend is to be is then heated and, when it becomes sufficiently plastic, is slowly bent to the required shape.

Assembly

Push the long end of the glass tube back through the hole in the cork; if a cork borer is not available, burn a hole through

of slightly less diameter than the tube which is to be inserted. Place the cork tightly in the hole in the upright piece of wood, and if you have securely fixed the wood joint

Fig. 6.-Making the glass jet.

everything is ready for use. Fix a tubing connection from the gas on to the big end of the glass tubing, turn on the gas and light same at the top of the brass tube. To adjust the air supply slide the tube up or down.

FOR THE MODEL MAKER-
BY F. J. CAMM

THE MODEL AEROPLANE HANDBOOK
12/6 (13/- by post)
MODEL BOAT BUILDING
Constructional details of Model Sailing and Power Boats
5/. (5/8 by nost)
THE HOW-TO-MAKE-IT BOOK
12/6 (13/- by post)

MODEL ENGINEERING

PRACTICE

$$
17 / 5 \text { (} 18 / 7 \text { by pose) }
$$

From George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C.2.

24 v . Blower Motors as used for Hedge
Trimmer, $18 / 9$ 10K6/115 $12-24$ volts Trimmer, for car heater, 30/-
Transformers, input $200 / 240 \mathrm{~V} . \mathrm{Sec}$. tapped 3-4-5-6-8-9-10-12-15-18-20-24-30 volts at 2 amps., $22 / 9,17-11-5$ volts at 5 amps., 22/9, $17-11-5$ voles at 13 amps. ${ }^{1}$. $16 / 9,7.3$ voits, 2 amps.. $8 / 6$. 12 months guarantee. Input 240.0 Output 16 V . 1 amp.
$13 / 6$. Also Output $200 \mathrm{v}, 30 \mathrm{~mA}$. and 6.3 v . 1 A amp., $13 / 6.25 \%$ Booster Trans6.3 v. 1t amp. $13 / 6.25 \%$ 8ooster
formers for T.V. Tubes, $13 / 6$. formers for T.V. Tubes, $13 / 6$.
Selenium Rectifiers F.W. $12-6$ volt, 100 Selenium Rectifiers F.W. 12 -6 volt, 100
$\mathrm{~mA} .4 /-.1 \mathrm{~A} .8 / 6.3 \mathrm{~A} ., 12 / 6,4 \mathrm{~A}, 17 / 6$.
 $6 \mathrm{~A} ., 30 /-16 \mathrm{~A} ., 53 /-250$
$\mathrm{~W} ., 10 / 6.30 \mathrm{~mA} ., 18 /-\mathrm{l}$
Miniature 12 or 6 v. Relays. 10 amp. Silver Contacts. SM, DM or SM and B, SCO, $9 / 3$.
\$1/c Mierophones with matched transformer. $15 / 9$.
Chrome Vanadium H.S. Steel Twist Drills. Sets of $9,1 / 16 \mathrm{in}$, to $\ddagger \mathrm{in} ., 3 / 9$. Sers of 7 , fulli size. $6 /=$. Sets of $13,10 \%$. All in wallets.
12 v . Utera violet bulbs. A.C. or D.C. 5/Rheostats, $12 \mathrm{v} .1 \mathrm{~A}, \mathrm{y}$ 2/6. $12 \overline{\mathrm{v}} .5$ A., 10/6. New 6 v , or 12 v . Vibrators. 4 Pin, $8 / 9$. Fishing Rod Aerials. Sets of 3, 9/:Plus $1 / 9$ Rail Charge. Bases $6 /$ -
Uniselector Switches 50 point 3 bank 50 v. D.C., $26 /=.12$ v. 25 P. $38.26 / \%$: Miniature Model Motors. $12 \stackrel{\rightharpoonup}{v} .180 \mathrm{~mA}^{\text {. }}$, D.C. 2 in. $\times \frac{1}{2}$ in., $11 /$.

New 24in. ${ }^{\circ} T^{*}$ Square。 Ex M.O.S., $8 / 6$. Chrome Car Extension Aerials, Ift. to 4 fe. $13 / 6$.
Nife Nickel Batteries. Practically everlasting. 1.2 v .2 .5 A., $22 \mathrm{in} . \times 1 \mathrm{in} . x$
3 in., $6 /-$ ideal for models 3 in., $6 /-$. Ideal for models.
$12 / 24$ v. A.C./D.C. Reversible Motorss, lin. x in.. Spindle $2 \frac{1}{2} \mathrm{in} . \times 11 \mathrm{in} ., 15 / 6$ Relays. We can supply any D.C. voltage and Contact Combination
All Carriage Paid in U.K.
Lists Sent on Requese.

THE

RADIO \& ELECTRICAL MART 309, Harrow Rd., Wembley, Middx. Nr. The Triangle:
Telephone: WEMbley 6655 .

FIT THIS TO YOUR ELECTRIC BLANKET AND BRING IT UP TO DATE.
Double Pole Break, A.C.-D.C. Silver Contacts, Improved Cord Grip. Simple Wiring. Modern Streamline Styling in Cream Bake lite.

SEND 4d. IN STAMPS NOW FOR OUR ELECTRICAL CATALOGUE*

DESCRIBES FULLY OUR RANGE OF ELECTRICAL SUNDRIES-WITH IDEAS FOR THE HOME HANDYMAN - OVER 300 ITEMS -

THE 'MAGSTAT'

This is a precision bi-metal thermostat for the control of alternating currents of up to $\frac{1}{2} \mathrm{amp}$. at 240 volts. The temperature range lies between minus 50 deg. F : and plus 250 deg. F. An ingenious magnetic snap action is incorporated which gives freedom from radio interference. The operating temperature is altered by rotation of the adjustment screw, clockwise for increase and anti-clockwise for decrease. Dimensions $2 \mathrm{in} . \times \frac{1}{2} \mathrm{in}, \times \frac{3}{3} \mathrm{in}$.

PRICE : $5 / 6$ each. Post 3d.

SUPPRESSIT*

(TELEVISION SUPPRESSOR KIT) For the suppression of Domestic Motor Driven Appliances. Comprises two chokes and two condensers mounted on a card with wiring instructions. Ideal for Vacuum Cleaners, Hairdriers, Sewing Motors, etc. up to : amp. Price 3/6. Post Free.

REPLACEMENT ELEMENTS

FOR DOMESTIC ELECTRICAL APPLIANCES

 We stock over 200 eypes of element realacements for fires, Irons, Kettles, Hairdriers, Toasters and Boiling Rings: Send for Catalogue.WE HAVE A REPUTATION FOR HIGH QUALITY THERMOSTATS AND THERMOSTAT. CS. Convector Thermo. stat for Space Heaters and Low temperature Ovens. 15 amps., 250 volts A.C. 40/80 deg. F. 25/-, post Sd.
THERMOSTAT. MB. For control of Electric Immersion Heaters up to 3 kW . $90 / 190$ deg. F., 15 amps., 250 voles A.C. 62/0/0, post 9d.
THERMOSTATS. PF. Room Thermostat, 15 amps, 250 volts A.C. 5 in . $\times 13 \mathrm{in}$. $\times 2 \mathrm{in}$. A beautiful instrument. Temp. ranges $30 / 90,40 / 100,40 / 80,60 / 100$ deg. \mathbf{F}. as required. $62 / 0 / 0$, post 6 d .

TOCK ITEMS HERE:
THERMOSTAT. BW/I. 3 amps., 250 volts A.C. For concrol of hot-plates, vulcanisers, etc. $50-550 \mathrm{deg}$. F. 15/6, post 4d. We are only too glad to send illustrated leaflets on any of these Thermostats if you will send 2 S.A.E. stating which model interests you.

IMMERSION HEATERS

We can offer a wide range from 2 to 4 kW . and in stem lengths Ilin, to $\mathbf{4 2} \mathbf{i n}$. Please send for our catalogue.

GREENHOUSE THERMOSTAT

Type ML Constructed especially for the amateu gardener. The scale plate is calibrated "High-Medium-Low" and has a temperature range of $40-90$ deg. F. Current capacity is $10 \mathrm{amp} ., 250$ volts A.C. Differential $4-6$ ideg. F. Size $4 \frac{1}{2} \mathrm{in} \times 2 \mathrm{in} . \times 1 \mathrm{in}$.

PRICE : 35/-. Post 6d.
Model P). Miniature Thermostas for control of damestic Electric trons and special-purpose machines where space is limited. Capacity: 5 amps., 250 volts A.C. fin. \times in. $\times 11 / 16$ in. Single screw fixing. Price $9 / 3$. Post 3 d .

THE TECHNICAL SERVICES CO.

SHRUBLAND WORKS - BANSTEAD • SURREY

5,000 Migh Speed Slitting Sams
 thick. 219 each. ${ }^{2} 3 / 4^{\circ}$ dia. i° bcre,
$0.027^{\circ}, 0.036^{\circ}, 0.048^{\circ}, 0.051^{*}, 0.056^{*}, 0.064^{*}$ $0.072^{\circ} 0.090^{\circ}$ thick, $3 / 8$ each 3° dia., 1^{\prime} bore, $3 / 64^{\circ}, ~ 2 / 64^{\circ}, 5 / 32^{*}$ thick, 61 , each.
21° dia,. 1° tore, $1 / 32^{\circ}$, E/64* $9 / 64^{\circ}, 5 / 32^{\circ}$.
 0° dia., $1^{\text {' }}$ bore, $5 / 64^{\prime}$ thick, $12 / 3$ each. 3,000 likh Speed Tuolbits, ground
finish, slightly below $3 / 8^{7}$ qquare, 3° hoish, slightly below $3 / 8$ equare. ${ }^{3}$ per doz. A most ureful bargain. 25/-
per doz. 18/6 balf doz $/ 6$ cait per doz. $13 / 6$ balf doz., $2 / 6$ each.
E00 Whitworth Screving Eots whitworth Screwing Tackic Sets with bright polished steel die
stock, dies
2_{2},
dia. cuting $3 / 4^{*}, 7 / 8^{*}, 1^{\circ}$ Whit., 50 /- per set. Also B.S.F. ditto, $50 /$ - per aot. Only a third
of real value. of real value.
Cutters, 1.000 igh Sped Side and Face

 1 hole. $1 / 2^{*}, 3 / 4^{4}$ thick, each. -5° dia., Twlst Drilis approx, $1 / 16^{\circ}$ and $3 / 32^{\circ}$ dia, both $43 / 4^{*}$ long. $2 / 6^{1 / 16^{*}}$ pair. Approx $3 / 32^{\circ}$ 3/16" and $3 / /^{*}$ dia., 6^{*} and 7° long. $5 /-$ the two, $9 / 64^{*}$ dia, 11^{*} long, $3 / 6$ each.
Approx. $13 / 64^{\circ}$ d1a, 10^{*} long $4 / 6$ each. Approx. 15/64 dia." $91 / 2^{\circ}$ long. $4 / 6 \mathrm{cach}$. $3 / 8^{\circ}$ dia., 11^{*} long, $10 /$ each.
 dia. $1 / 4^{*}$ dia. detachable pllot. No. 2 bolt holes on castings. Worth 451 -. Gift 12/6 each.
1,000 II.S. Inserted Bhades Ex-
 $11 / 16^{\circ}-3 / 4^{*}, 17 / 6^{*}+27 / 30^{*} n 15 / 16^{*}, 18 / 6$ $31 / 32^{*}-11 / 8^{*}, 22 / 6^{\circ}: 1 / 1 / 16^{*}-13 / 16^{*}$. $1 / 7 / 6$: E00 Sets IIex. Die Nuts. sícs $1 / 4^{*}$. American Car thread or ${ }^{\circ} 6^{\circ}$ Whit., B.S.F. ${ }^{\circ}$. $1 / 16^{\circ}$. American Car thread or 26 brass thread.
These sets aro in a neat case. Present day value over $30 /$ - per set, to clear $15 /$ per set any throad. Two sets $28 / 6$. four sets $55 /-$. Also $5 / 8^{*}$ and $3 / 4^{*}$ jn Whit
and B.S.F. only. $5 / 8^{\circ}$. $5 /$. $6 /$ each. ion per pafi.
Mifls. Ni.S. Morse Taper Shank Erd Milis. No. 1 shank $1 / 4^{*} 5 / .3 / 8^{\circ}$ erd.
$1 / 2^{*}$ 6/6, also No. 2 shank. $9 / 16^{\circ}$ 10/-

 reamers, sizes $4,5,6,7,9,1 \% / 6$ the lot
worth 98. All items
All items brand new. $£ 1$ orders post 2,000 Small II.s. Twist Drills, approx. 1/32* $3 / 32^{\circ}$ 4/- doz approx. $1 / 16^{*}-1 / 4^{*}$, $7 / 6$ per doz approx. : $9 / 32^{\circ}$
$15 / 32^{*}$, six for $10 /$. 30^{2} six for 10/-
cutting Ciscniar Solit Dies $1 / 4^{*}, 5 / 16^{*}, 3 / 8^{*}, 7 / 16^{*}, 1 / 8^{*^{*}}$ Whit. B.S.F. also brass thread, 268° Whit. thread all sizes and American N.S. $12 /-$ per
set of $\overline{5}$ sizes, 2 sets $22 / 6,4$ sets $42 / 6$. set of 5 sizes, 2 sets 22/6, 4 sets $42 / 6$. or second or plug. 1^{1} dia. stocks $6 /$ cach. 1000 Hand Reamers, 5/16 , $5 / 6$ cach 5/8". 4,9 each.
1,000 High Speed Parting OIT Tool 5° long, $5 /-$ each $13 / 16^{\circ} \times 1 / 16^{\circ} \times 16^{\circ} \times 3 / 32^{\circ}$ long, $5 /-$ each : $15 / 16^{*} \times 3 / 32^{*} \times 6^{*}$ long. 7.000 Prati \& Whitney, circula split dies, superior quallty, prectsion wround cutting edges, $13 / 16^{*}$ da. suit able for machine or hand use. Sizes 2, 4, 5, $6 \mathrm{~B} . \mathrm{A} .8^{\prime} 6$ per set, $18 / 16^{\circ}$ dio tock, 346 each.

 pair: 3/8" bore, 7/8 $8^{\circ} 8 \mathrm{dmm}$. thick thick, 4/- pair, $3 / 16^{\circ}$ bore, $1 / 2^{4}$ o.d. $5 / 32^{\circ}$ thick, 2,000 Files $4^{\prime \prime}-6^{\prime \prime}$ good assortment $10 / 6$ doz., also toolmakers' needle files
ass., $12 / 6$ doz. as. $12 / 6$ doz.
Metal MarkIng Punches sizes $3 / 32^{\circ}$
$1 / 8^{\circ}$ and $1 / 4^{\circ}$, figures, $8 / 6$ por set letters, 25/- per set, any size.
2,000
size
$1 / 8^{\circ}$,
Straipht Shank
$5 / 32^{*}, 3 / 16^{*}$
$7 / 32^{\circ}$, End Mills,
$5 / 16^{*}$ ist price $301-$ sct. $151-$ set, also $3 / \mathrm{c}^{*}$ 716 500 H.S. 90° Countersinlis, body 1,000 Bevelled Wood Chisels handled. $1 / 4^{*}, 5 / 16^{\circ}, 3 / 8^{\circ}, 1 / 2^{\circ}, 5 / 8^{\circ}, 3 / 4^{\circ}, 1^{\circ}$. Actual value $37 / 6^{\circ}$ Giri 200 Cast Steel Ctreular Sows Vood 4° dia, $6 /-$ cach: $6^{\circ}, 10 /=$ 1,000 Semi High Speed Centre Drills, Slocombe brand $5 / 16^{\circ}$ body dia. 20,000 Small Hiph Speed Milling Cutters, various shapes and styles.
We want to clear theso quickly, 12 nesorted, to $15 /$

J. BURKE

192 Baslow Road, Totley, Sheffield

1nsuection Only at Rear 36 Fitzwillam St., Shemed.

LOOK\& SUMMER SALE BARGAINS

TVs I7in. $£ 19.19 .6$
I7in. Rectangular tube on adapted chassis, all channels. The TURRET TUNER can be added later as an EXTRA at our special price, to chassis purchasers, $50 /-$
 These may be on YOUR shelf. Chassis size : $1 \frac{i n}{} \times 14 \frac{i n}{}$. x the $h 2$ months guarins., carr., 25/. All complete and working on any channel, 1-5, but less valves. With 5 of the valves, $£ 21.19 .6$. All valves, E25.19.6. (State B.B.C. Charinel and I.T.A. Channel if TURRET required).

A TURRET TUNER

of famous manuf. is fitced free of charge to either of the above chassis, giving a
choice of channels at an extra cost of 50%-towards the cost of the TUNER. Only available to chassis clients.

12 MONTHS' GUARANTEE LATEST RECTANGULAR TUBES

17in. $£ 7.10 .0$
 14in. 55.10 .0

We are now able to offer this wonderful guarantee. 6 months' full guarantee. 6 months' progressive. Made possible only by the improved high quatity of our tubes. As a SPECIAL OFFER, we can now supply $14 i \mathrm{in}$., 15 in , and 16 in , round type tubes at EF^{2}. These carry 3 months' guarantee.
CONVERT your old 9 in ., 10 in . and 12 in . T.V. set to 14 in ., 15 in . and 17 in . See our Catalogue for full details.
12in. T.V. TUBES-66. All types. Telephone first. Shortage, may cause delay. Insurance and Carriage on all tubes, 15/6.

ARGOSY PUSH PULL

 R/GRAM CHASSIS 139/68 valve. Latest models. 3 w/band and gram switched. Over 10 wates outpur. Full tone range, 4 knob controls. Ins. and carr. 5/6. LESS valves.

14in. TV CHASSIS, TUBE \& SPEAKER, $\mathbb{1} 13.19 .6$
With a 14 in . round tube, which you can convert later to a 17 in. Rectangular if you wish. I.F.s $10.5-14 \mathrm{mc} / \mathrm{s}$ less valves. Chassis, valves and tube guaranteed for 3 menths. With 5 of the values, $£ 15.19 .6$. Complete with all valves, f 19.19 .6 . Ins., Carr. (incl. tube). 25/-.

TV CHASSIS UNITS

T.Y. AERIALS, 25/6. For all I.T.A. and F.M. Channels, 3 element type for outdoor or loft, at hatf their original price. P. \& P., 2/6.
SOUND AND VISION STRIPS, 35/6. Tested working. Complete vision strip LESS valves. LF. $515-19.5 \mathrm{mc} / \mathrm{s}$. Drawings FREE with order. P. \& P., $2 / 6$. Size $8 \mathrm{lin} . \times 4 \mathrm{lin}, \times 4 \mathrm{lin}$
TIMEBASE, 25/6. Complete with focus unit, etc. Tested warking. LESS valves. Size $: 9$ in. $\times 6$ in. $\times 7$ in. Drawings FREE with order. P. \& P. $3 / 6$.
POWER PACK, 39/6. R.F. E.H.T. $7-9 \mathrm{KV}$. Amplifier stage-6V6 with O.P. transformer 3 ohms matching. Smoother H.T. 350 v . at 250 m .2 .6 .3 v at 5 amp., 22 v at 3 amp .6 .3 v . at 4 amo. and 4 v . centre tapped. Size, $141 \mathrm{in} . \times 8 \mathrm{in} . \times 7 \mathrm{in}$. Carr.. 5/6.
8 in . P.M. SPEAKERS, 8/9. Ideal for fitting into small cabinet or cupboard door for the lady of the house, let her follow that radio programme. Buy now while stocks last. P. \& P. $1 / 9$. With O.P. Trans fitred, 10/-. Postage $2 / 3$.
V.M.F. $1 / 25$ RECEIVER, $7 / 7$. Including valves. Chassis approx. 12 in . $\times \operatorname{Bin} . x$ \&in. Needs some modification to put into service. P. \& P., 2/3.

POPULAR RADIO OR RADIOGRAM CHASSIS $39 / 6$

3 w/band and gram. Superhet. 5 valves, International Octal. Ideal for table gram, but still giving high quality output. 4-knob control. 8in. P.M. speaker, $7 / 9$ extra Set of knobs, $\mathbf{2 / - .}$ Chassis size, 12 in . \times 6in. \times 9in., less valves. . Ins., Carr., $4 / 6$..

RADIOGRAM CHASSIS, 29/9

 5-valve superhet. Including 8in. speaker. 3 w/bands A.C. mains. Complete, lessvalves. front drive. Chassis size, 12 in . $\times 10 \mathrm{in} . \times 8 \mathrm{in}$. FREE printed dial. Carr., valves, Frone drive. Chassis size, 12 in . x l Oin. $\times 8$ in. FREE printed dial. Carr.,

MODERNISE YOUR HOME with
ARNOBOARD
Beauty may be only sikin deep but if that skin is Arnolite plastic faced hardboard the difference that it can make to your house is amazing. Arnoboard is water-repellant and won't hold dust. Resists mild acids and alkalis 100. Use Arnoboard exact-
ly as you would Jy as you would its beautiful surface won't crack or flake even when sawed, drilled or nailed.

ARNOLITE LTD.

103, WEST PARADE,
SPRING BANK, HULL
Tel. : 35687

BERNARDS OFFER:-4 VALVE SUPERHET BATTERY PORTABLE RECEIVER

CAN be obtained
COMPLETE WITH BATTERIES £8.19.6

IN KIT FORM LESS BATTERIES 87.7.0 $\begin{aligned} & \text { Including } \\ & \text { Postage }\end{aligned}$

BATTERIES CAN BE SUPPLIED SEPARATELY AT II/6

- LONG AND MEDIUM WAVE
- Large elliptical speaker
- LATEST TYPE LOW-CONSUMPTION MINIATURE VALVES

SEND TO:-

BERNARDS ELLCTRICAL INDUSTRIES LTD.
99, KINGSLEY RD., HOUNSLOW, MIDDLESEX

SAVE ON REPAIRS WITH

DEMONSTRATIONS ON STAND 226

ALL MATERIALS SUPPLIED. KITS, WITH FULL INSTRUCTIONS, FROM 15/-: plus Postage.

WESTPOLE MOTORS LTD.
Westpole Avenue, Cockfosters, Barnet, Herts. Barnet 3615 \& 9474.

Pressure gauges

 for your models

A reliable miniature fitting for practical work in a useful selection of sizes and pressure ranges.
$\frac{P_{3}}{3}$ in. or I in. diameter. Graduated from o to $80,100,120$ or 150
$1 \frac{1}{2}$ in. or 2 in. diameter. Graduated from o to 100,120 or 150 lbs . Made in brass with Bourdon tube action.
Each fitting tested and set individually by skilled gauge-makers.
Well finished with polished and lacquered outer case
Dials are white with clear graduation and figures.
Suitable for all pressure reading purposes
N.B. When these gauges are for use on steam boilers they must be mounted with a syphon fitting
for in in. gauge, $3 / 7$. In. gauge, $5 / 4$. Ikin. gauge, $5 / \mathbf{1 x}$.
Write to-day to Bassett-Lowke for " Model Shipping and
in. dia., 30/-
rin. dia. 30/-
2lin. dia. 33/7

Engineering Cataloguc." Price 2/6.
BASSETT-LOWKE LTD.
18-25 Kingswell Street, NORTHAMPTON
London: 112 High Holborn, W.C.I. Manchester : 28 Corporation Streat, 4

How to Make

 Details of a

 Details of a Useful Process
 THE making of etched metal plates forms an interesting hobby and the model maker can by the means described below make number plates for locomotives, etc., or clock faces and dials for home-made

instruments. Decorative metal panels and photo frames can be produced by using a suitable design instcad of lettering.

The first step is to get the required design on to the metal plate and brass is most frequently used for the purpose, the usual thickness being about 18 gauge. It should be quite fiat; if cockled, it is difficult to manage and loes not look so well when finished.

A Simple Design

If the design is simple and not too small, it may be painted direct on to the metal with celluloid enamel and etched without

further preparation as soon as it is dry; but as a rule it is better to draw the design, say, about twice the required size in Indian ink on white Bristol-board and then photograph it on to the metal. To do this a negative must first be made by photographing the drawn design, a camera with double extension to the bellows being required for this purpose. If the design is drawn double size, the lens will need to be about three times its focal length away from the drawing, while the camera extension will then be about one and a half times the focal length. The negative must show almost or quite clear glass in the lines, with a very dense background. Special process plates are most suitable for this work and will give much better results than any fast plates. The set-up is shown in Fig. r.

Having obtained a suitable negative, it must next be printed on to the brass plate, which must be sensitised with a solution made up as follows: To 40z. of water add the white of one egg and beat up thoroughly with an egg whisk. In another vessel dissolve 15 grains of ammonium bichromate in 10z. of water, and when dissolved add it to the white-of-egg solution; then filter this solution through a piece of cotton-wool placed over the drain hole in a glass funnel.

Sensitising the Plate

The plate is scoured with fine pumice powder applied with a wet rag, then all traces of pumice powder rinsed off by washing under a tap. The plate is finally wiped over with a tuft of wet cotton-wool. Shake as much water as possible off the brass plate,
ink. This is best thin film of printing hand-roller, but a passable result can be

Fig. 2.-The inking pad.
obtained by dabbing the ink on by means of a piece of soft rag folded up into a "dabbler" as shown in Fig. 2. Work the ink well into the dabbler by dabbing it on a piece of flat metal or glass first, and then work it over the plate till the latter is covered with a thin even film of ink. Next place the inked plate in a dish of water and leave it for about five minutes, after whish a light wipe over with wet cotton-wool should remove all the ink from the background, leaving ink only on the lines which have become in-

soluble owing to the light action when printing. Give a final rinse under the tap, shake off surplus water, and dry by heating the plate gently.

Dust the plate with finely-powdered bitumen; resin may be used, but bitumen is better. Remove every trace of the powder from the plain metal by rinsing under the tap and wiping over with wet cotton-wool, leaving only the powder which adheres to the tacky ink on the lines. Dry the plate as before and then heat it until the bitumen or resin melts and becomes incorporated with the ink, forming a hard image of acidresisting properties when cool. This part of the process is similar to that used for making line blocks.

Etching

The etching solution consists of iron perchloride. This may be obtained from chemists in lumps usually as big as a walnut. Get about a pound of it and dissolve it in sufficient warm water to cover the lumps. This forms a heavy, dark brown solution, nearly black, and when cold it is ready for use; do not use it in a metal container, which would rapidly become eaten into holes. Put the brass plate in a porcelain photographic dish, pour on the iron solution and rock it exactly like developing a plate for, say, five or ten minutes depending upon the depth required.

The Etching Solution

The solution will etch a great many plates, and will keep well in a glass bottle; it will not harm the fingers beyond staining them slightly, but do not allow it to splash on to clothes or it will make an. indelible stain unless immediately and thoroughly washed off.
On removing the brass plate from the etching bath it should be rinsed under a tap and mopped over with a mixture of vinegar and salt; this removes all trace of sediment and leaves the brass in a clean, glistening condition. Rinse again under the
for blackening. This is done by black nickel plating.

The plate should be placed straight into the black nickelling bath immediately after rinsing; it should not be dried at all between the etching and the blackening.

After blackening the plate is dried and cleaned with turps; this removes the ink
film from the top of the lines, leaving bright brass lines standing in relief on to a black background. The plate is finally finished off with any available clear lacquer. Thin shellac varnish may be used, though it is not the best thing for a lacquer. It is usually necessary to warm the plate slightly before lacquering.

"Reverse" Name Plate

If incised black lines on a bright brass background are required, a photographic positive should be made from the negative and the metal plate printed from the positive. All subsequent operations are then exactly as described above:

BLACK NICKEL PLATING

A Fine Merallic-looking Black Finish

MOST readers will be familiar with the black metallic finish that is given to some instruments and to the metal parts of some cameras. It is done by a nickel plating process in which a black compound of nickel is deposited electrically instead of the nore common shiny nickel. It forms a very fine finish for modelsparticularly for brass parts-because it may be applied to part of the work only by protecting with shellac varnish the parts that are to remain bright. For instance a brass casting may be black nickelled on the unmachined surfaces, leaving all the machined parts bright; this gives a highly finished appearance. Alternatively, the casting may be black nickelled all over before machining and when machined a similar result will be obtained, though, of course there is a greater chance of the finish becoming accidentally damaged.

Messrs. Canning and Co., Ltd., Great Hampton Street, Birmingham. If it is intended to plate only a few articles, however, a carbon rod (obtainable from an old dry battery of the electric-bell type) may be used. With a proper anode the nickel dissolves away, thus maintaining the strength of the solution, but with a carbon anode the solution becomes impoverished and must be strengthened by the addition of chemicals from time to cime. The work should be kept well clear of the anode, say from 4 in . to 6 in . away and should be turned during the process of deposition, otherwise the side away from the anode will have less deposit than the near side. If two anodes are used, one on each side of the work, turning is not necessary.

The Resistance

This may consist of two strips of copper or brass or, better still, two carbon rods hanging in a jar of slightly acidulated water (a few drops from the accumulator may be used). The resistance may be varied by altering the amount of water in the jar or by bringing the strips closer together. Of course, if you have a suitable variable resistance among your wireless apparatus, that would be the ideal thing. In any case, the resistance must be adjusted until the voltage across the depositing vat, while it is working, reads

The Solution
Small parts may be done at home using a jar of suitable size for a vat and a 2 -volt accumulator for the electrical supply. This voltage is too high for the purpose, so a resistance will also be necessary. This will be referred to again later.

The solution for the depositing vat is made up as follows :-nickel ammonium sulphate, 2 ounces; zinc sulphate, $\frac{1}{4}$ ourice ; ammonium sulphocyanide, $\frac{1}{2}$ ounce; warm water, I quart.

The water should be warmed to assist the chemicals to dissolve: it should be about as hot as you can bear to dip your finger into, but should not be boiling. The solution must be allowed to become cold before it is used. Remember that a solution containing any form of cyanide is very poisonous, so avoid the use of cooking utensils, etc., when making up this solution.

An anode of some kind must be provided, the anode being connected to the positive terminal of the accumulator and the work which is to be plated connected to the negative terminal ; both the anode and the work are, of course, immersed in the depositing solution. The proper material for the anode is cast nickel, which may be obtained specially for the purpose from
volt on the voltmeter. You can
do without a voltmeter by making a few trials on a piece of scrap metal of similar size before putting in the article to be nickelled, but this is working more or less in the dark. If the deposit is grey and powdery, instead of smooth and black, increase the resistance by taking away some of the water in the resistance jar and try again. The article should remain in the

vat from 15 to 30 minutes, and if it is not a good black by then the resistance should be decreased by adding water or by bringing the strips closer together. Take out the work as soon as it is a good colour, swill it in hot water, and wipe dry on a clean rag. It should be given a coat of lacquer as soon as it is dry, to prescerve the colour; a substitute for the lacquer is to rub the article over with a little furniture cream or wax polish.

The Preliminary Cleaning

A most important stage of the proceedings not yet mentioned is the preliminary cleaning of the work; great care must be taken to remove every trace of dirt and grease. If the article has any oil or grease on it it should be first washed in clean petrol and dried. Then dip it in a hot, strong solution of soda and scour it well with an old toothbrush and pumice powder. Rinse well under the tap, and without drying it and without touching the surface again with the fingers, hang it up in the depositing vat.

If the article has been previously nickel plated, it will be necessary to clean off the old nickel by means of a pickling bath consisting of one part water, one part strong nitric acid and two parts strong sulphuric acid ; add the sulphuric acid last, a little at a time and stir well. This will dissolve some of the work away, so do not leave it in longer than is necessary to remove the old plating. Do not put your fingers into the acid or get it on your clothes: Do not let any of this acid get into the depositing vat or the solution will be spailed. If you rinse the article after "pickling," then dip it in the soda, scour, and rinse again-all trace of acid will be removed, so avoiding any chance of acid clinging to the wark being transferred to the vat and spoiling the solution.

A Conjuring Trick With Ice

A Simple but Effective Experiment

HERE is a conjuring trick to amuse your friends and a unique way of making ice. From a photographic dealer purchase 50 grams of ordinary hypo. Place this in a small flask such as any chemistry outfit will supply and melt the crystals over a small flame. When you have obtained a clear liquid. put a plug of cotton wool in the mouth of the flask and set it on a table to cool.

Do not touch the glass again until about an hour and a half after the preparation of
the solution. When the time is up, take a tiny crystal of hypo and announce to your friends that you will produce ice in the twinkling of an eye. Remove the cotton wool, pick up the flask and quickly drop into it the crystal of hypo, at the same time giving the flask a good shake. Immediately a solid mass of crystals will appear and the flask, which was originally cold, will become decidedly warm, showing that when water freezes, heat is actually given oft. Your audience will be completely mystified.

The pre-paid charge for small advertisements is 6 d . per word, with box number $1 / 6$-extra (minimum order $6 /$). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Sotithampton Street. London, W.C.2, for insertion in the next available issue.

HOBBIES

TOY \& GAME, MANUFACTURE. specifically devoted to the fanufacture of toys, games, sports equip-
ment ${ }_{\text {and }}$ amusement novelties. ment
Annual
and
ambscription $£ 1 / 10 /$ novelites.
Spect men copy $2 / 6$. Techniview Pub-
 London, w.1.
MAKING YOUR OWN? TeleMr, in seopes, Enlargers, Projectors
 Then get our booklets "H How to Use
Ex-Gov. Lenses \& Prism," price $2 / 6$
2/ cadto and scientific equipment fre

Lllustrated catalogue no. 13. Containing over 450 Items or Government Surplus and Model Radio
Control Equipment, $2 / 2$, refunded on Control Equipment, $2 / 2$, refunded on
purchase of goods $; 2 / 6$ overseas seapurchase of goods $2 / 6$ overseas sea North Road, Brlghton.

WOODWORKING

WOODWORKING MACHINES, all cast-iron constructed. Comp'ete Saw Benches, 7 in $84 / 15 /-$ Bin, Bin, £50. Planers, sin., £12; Bowl Turning Heads, \&4; with 8in. Saw Tables, ion Lathes, $£ 10 / 10 /-$ Motors, Pulleys. Belts. etc. 12 months
written and money refund guarantee. Written and money refund guarantee
4 d . stamp for illustrated booklet James Inns (Engineers), Marshall st., Nottingham.

A RE YELIABLE FIRM for TImber. Plywood, Wallboard, veneered Ply wood? Call at our warehouse or send s.a.e. for price lists. N. Gerver 2/10, Mare Street, London; E. 8 ineal
Cambridge Heath (E.R.j station) Cambridge Hea
(AMHerst 5887.)

STOR:

Before buying that woodworking machine t will pay you to see the Myblo range awbenches, Planers, Bandsaws, stocked Write for lists or better still call in for a demonstration. We know we can interest

P. BLOOD \& CO.

ARCH STREET, RUGELEY, STAFFS.
WOOD LATHES, Motors, Jig Saws,
Saw Spindles and Benches Turning
Tools, etc. New illustrated literature,
grice list, extended credit terms now
$\begin{aligned} & \text { available, price 6d. (stamps, please). } \\ & \text { D. Arundel \& Co. Mills Drive, Farn- }\end{aligned}$
don Road, Newark, Notts.
SAWBENCHES, 6in. to 30in. from
Portable Benches, £39: Multi-
$\begin{aligned} & \text { Purpose Sawbenches. Planing } \\ & \text { Machines. Saw Spind!e Assemblies }\end{aligned}$
Machines. Saw Spind!e Assemblies
Engines, Blades, Bearings, Pulleys,
Belts; deferred terms. Send $1 / 6$ for
Beverley Products, Sturton-le-Steeple,
51, Notts.

SAW REPAIRS

 inch diameter ; tensioned, set and sharpened, 8 d. per inch : recut. $1 / 3$ per inch. Minlmum charge per saw,
$2 / 6$. (Prices include return postage.) 48-hour postal service. Cash with order. J. A. Fowle (Dept. C), 18-22, IIshed 1840.)

PATENTS

Patenting Services. Advice. Qualitied agent. C. L. Browne,
Surrey.
Greenhayes. Ave., Banstead.

FOR SALE

HOUSE SERVICE METERS, credit from and stock. prepayment Universal Electrical from stock. Universal Electrical
231 . city Road, London, E.c.1.
$G^{\text {LASS FIBRE }}$ ear bodies;', sidecars. Glass boats. models. trial unit, $13 / 9$, Glass Cloth for wooden boat repairs,
trial lot $26 / 3$. or quotation for any trial 1 ot $26 / 3$. or - quotation for any
Surface area. Polyester Resin
Sut Embedments. biological botanical
and metallurgical niounts beautiful and metalurgical nionts beautiful
water white
castings.
impregnate
 11/3. Epoxy Resin, the best resin for metal car body, mudguards
whel-arch and frame repairs, trial
unit $12 / 6$. Burst ines and unit $12 / 6$. Burst pipes and tanks
with glass cloth and tape $12 /$ Trial Units for all purposes. each contain ing free mixing and dispensing equipment and information sheets. Epoxy Paint, waterproof, heat resis-
tant porcelain finish for baths tant porcelain finish for baths,
kitchen walls. hardboard. etc. 14/kitchen walls, hardboard, etc. $14 /-$ clear. Information, White, on glass flbre technique, list with price list stamp, please. "Business Man's
Guide to the Glass Fibre Technique," $15 /=$. post free, 81 pages. Glass Fibre Experts with units for all purposes are Silver Dee Plastics. Desk A4/3 Hartington, Staveley, Chesterfield, please.

R OBBER MOULDS for Plastic Orllustrated catalogue 9d Moulding compound for mould making $8 / 6$ per lb. Metal toy casting moulds from Nuthall. 69 . St. Mar list. F . W. Wh
Noad. Han

PERSPEX " for all purposes, engraving. Denny \& Company Ltd. engraving. Denny \& Company Ltd.
15 . Netherwood Road, W.14. (SkE 1426. 5152 .)

COMPRESSORS for sale single Cood cylinder, approx. $1 \frac{1}{2 i n}$. b., $1 \frac{1}{2 n}$ s. good condition, $7 / 6$ each, post $3 / 2$ 57. Trafalgar st., Sheffield. (Phone: 25666.)

NUTS BOLTS, SCREWS AND WASHERS for Mechanics. 2 B.A.
B.A., and 6 B.A.. $7 /-$ packet, 432 4 B.A., and 6 B.A.. 7/- packet. 432 parts, post $1 / 4$ Available Hex. Hd.
Rd Hd.: Ch. Hd. and Csk. State which. 3 or more packets post rree. 1,000 item list free. K. \boldsymbol{R}. Whiston
(Dept. P.M.S.), New Milis, Stockport.

CHEMICALS AND APPARATUS. and details of special offer Scientific \& Technical Supplles Ltd. Dept. P.M., 9, Wellington Circus,
Nottingham.

TENSES, Prisms, Cine Projector for experimenters and of Do It Youror experimenters and "Do It Yourself Brigade. Gd.. please! Burgess ton Ave., Chiswlek. W.4. ICHIswick 5752.)

FIBREGLASS

BONDAGLASS FOR FIBREGLASS

REPAIRS TO RUSTED CAR BODYWORK WINGS, WHEEL ARCHES, BOOTS, ETC. MADE EASILY \& CHEAPLY AT HOME WITHOUT SPECIAL EQUIPMENT FOR EXAMPLE: AMPLE MATERIAL TO REPAIR TWO BADLY RUSTED DOORS:I Bondaglass Car Repair Kit
Bondafiller Handypack (for
finishing)
Post and Packing $\frac{6 \cdot 6}{1 \cdot 6}$
OR SEND S.A.E, FOR FREE HOW-TO-DO
BONDAGLASS Ltd. (Dept. S) 40A PARSONS MEAD, W. CROYDON

ELECTRICAL

A LL TYPES OF ELECTRICAL A GOODS at extremely competi-

 doz...j 5 St.
immedaten
Battens, $51 / 6 ;$ quality and
despatch
guaranteed. ${ }_{\text {immediate }}^{\text {Request }}$ list. despatch suaranteed.
 phone: Stamford Hill 4384.)

BRAND NEW

BROOKS ELEETRIC MOTORS
Single Phase. है h.p. 1,425 r.p.m. 47.5 .0
2 h.p. 3,000 r.p.m. 69.5 .0
1 h.p. 3,000 r.p.m.
$10,10,0$
Fully guaranteed by makers, approval against cash. Carriage paid mainland. State B each motor.
ARCH STREET, RUGELEY, STAFFS
$B^{\text {RAND NEW }}$ guaranteed Electric to 1 M.p. Ball Bearings. single-phase and three-phase, also Bench trade discounts. Gill. 48, High Street, Brighton, Sussex.
SPARES, REPAIRS, REWINDS Fields Replacement most Arinatures and drils. Emergency Rewinding Service to $30 \mathrm{~h} . \mathrm{p}$ available. Hodson (Croydon) Ltd. 75.4, George Street, Croydon Surrey.

WATCHMAKERS

WATCH REPAIR SERVICE, unpeed. coupled with reasonable charges. Part jobs welcomed. Materlal supplied Hereford Watch Co., 13. Castle Street, Hereford.
EARN to be a Watch and Clock Repairer in your spare time and earn extra money at home. We can supply everything you need at
unbeatable prices, including instrucunbeatable prices, including instruc-
tlonal books Swiss watchmakers thonal books, Swiss watchmakers
tools, watches, watch and clock movements, lathes. cleaning machines. all spare parts for watches and clocks, etc. We also have a fine selectlon of musical box movements and kits. Send 9d: P.O. for bumper bargain catalogue. The Watchmakers Supply Company (Dept.
P.M.). Carterton, oxford.
Watchmakers ! Use genuine Wreplacement parts. Catalogues of Tools, Parts, etc. free. T. G. Carterton, Oxford
SEVEN-DAY SERVICE. Watches repaired and cleaned and overhauled. Moderate charges. Estimates free. I. Podgorney, 11, Hatton Garden, E.C. 1 .

TOOLS

THE NEW 1957 fully illustrated Catalogue of Hand Tools, Portable Electric Tools and Machinery. Now avallable, price (Tools), Ltd. Dept.

SITUATIONS VACANT

A. M.I.Mech.E., A.M.Brit.I.R.E., City - No Fee" terms. Over 95% successes. For details of Exams and courses in all branches of Engineerng, Building, ptc., write for 144 -page ${ }_{9678}$ Hand, 29. Wright's Lane, London, W.8.

PHOTOGRAPHY

FNLARGER and Camera Bellows Lu supplied ; a also fitted. Beers, St. Cuthbert's Road, Derby.
P.HOTO-ENLARGER Castings and PMellows, for $35 \mathrm{~mm} ., 24 \mathrm{in}$. x 2 jin ., 2 in x ilin.. $35 /-$ per set: s.a.e. for
details. $V . J . ~ C o t l e . ~ 84 A . ~ C h a p l i n ~$

EDUCATIONAL

MERCHANT NAVY Radio omfer Cadet rraining school. World travel and adventure
Brook's Bar, Manchester.
LEARN IT AS YOU DO IT-we pro14 vide practical equipment combined with instruction in Radio. Telcvision, Electricity, Mechanics, Chemistry, Photography. etc. Write Dept. PM47, London, W.4.
TREE I Brochure giving details of Televisione Study Training in Radio, Television, and all branches of Elec-
tronics. Courses for the Hobby Enthusiast or for those alming at the A.M.Brit.I.R.E. City and Gullds. examinations. Train with the college operated by Britain's largest Electronics organisation. Moderate fees. Write to E.M.I. Institutes, Dept. -

HANDICRAFTS

MUSICAI MOVEMENTS
from 12/9. post free.
Grand piano kits, 29/- post free.
THE SWISSCROSS CO.
(Dept. V), 116 Winifred Road, Coulsdon, Surrey

Miscellaneóus

THE BENDELLE CHART solves slide rule type calculations 7/6. post Slide rule type calculations,
iree. Whittaker Enterprises,
233 Pear Tree Avenue, Bitterne, Southampton.
B UILD YOUR OWN REFRIGERAat reasomall components available flowing cold units, 55 ; small units, Kelwinator. etc., ${ }^{4} 4$ h.p. heavy duty Motors, su; Chrome Cabinet fitings, new. \&1; money back guarantee;
diagram. W.e. for list and schematic Hounslow. (Phone: Hounslow 3501.) $\mathbf{R}^{\text {UBBER MOULDS for Plaster }}$ Ornaments, Wallplaques, etc. Sample and list, 4/11; trade enquiries invited. Castmoulds (Dept. M). $43 ; 45$, Waller St., Hull.

A QUALUNG and Compressor Equip-
 157. Malden Road, Cheam.
" FORTUNES IN FORMULAS," $900-$ page American book of formule.
American technical hobby and-other books covering every interest. Stamp for lists
Hastings.
SUPERTONIC SUNLAMPS, listed Scientific Products. Dept. I, Cleveleys, Scientl
ESCAPOLOGY FEATS AND Professional STUNTS "Menty explained, $6 /$ M Professional
Performance. $20 /$ "Mental-Telepathy
Ex-professional." 12. Chestion Avenue. Romiley.

CENTRE LATHE Turning and Trill, Machining. Wessex Rdimates free. Hants.
SALE. - All, issues "Practical Glenflechanics Copmanthorpe, York 1940 Hudson, GNDEXES of " Practical Mechanic INDEXES of "Practical Mechanies" condition. Write Box R/10. Strand House, London, W.C. 2

ADEPT SHAPERS

for Hand or Power operation
F. W. PORTASS MACHINE Adejt Works, 14ia, Nicholson Rd, Heeley, Shefrield, 8.

METWOOD for -a complete range of Swiss Musical Miniatures.
Movements by THORENS AND REUGE of Switzerland ranging from 1 tune/ 18 teeth -3 tunes $/ 72$ tecth Tiade Enquiries Invited.
POST TODAY
for FREE super 16 -page illustrated Catalogue and Tune List (please enclose 2d. stamp for return postage) also mlans to make your own
Musical Box available. 1/- postage free. P.O. please.
METWOOD ACCESSORIES (PMB) 65 Church Street. Wolverton, Bucks.
(Importers and Manufacturers)

AUTOMATIC (TIME) SWITCHES
New and reconditioned 15 day
work and electric switches from 35/-
Send S.A.E. for illustrated detalls to :DONOHOE (TIMERS)
GEORGE STREET, NORTH SHIELOS, NORTHUMBERLAND

D1, (1)O PIANISTS
have learned to play the plano beautifully

with the aid of my POSTAL lessons. Everything is so clearly explained that,
even If you do not know a note. you will. with only each day become a profcient planist in $9-12$ months.
Ordinary muste: no freakish Ordinary musce: no ireakish than 2,000 pupils. I have taught over y. Free Book and advice. Say Mr, Hod. or Aderer 158, The Rall, Centurion Roser
Brighton. Sussex.

BATTERIES

PAY AS YOU USE GOLDEN R.G.W. VERY HEAVY OUTY. 2 years' unconditional guarantee with the new hard rubber concainer! 20/-6v., 30/12 volts deposit and only four monthly payments $6 v .13 / 9,12 v .23 / 9$. lllus.
R,G.W. BATTERY COMPANY 164 High St., Brentford, London.

THE CEMENTTHAT LIVES \& The greatest advance in modern times An
entinely new CRYSTAL CLEAR adhesive that entirely new CRYSTAL CLEAR adhesive that 2
STICKS ALMOST ANKTHING TO ANYTHME, and nover becomes brittle.

Tubes 1/6-2/9. Lirmer ins avaltable, 5 TURKBRIDOELTD., LONDON, S.W, 17 (EW, 1922)CO

PORTASS LATHES

DIRECT PERSONAL SERVICE LARGE DISCOUNT FOR CASH NO INTEREST CHARG
CAN ANYONE DO BETTER ? I/- fo Lists, please. Dept. P.M buttermere wks., Shoffield,

A"FERROUS" ELECTRICARC WELDING SET will complete your workshop equipment. For joining and reinforcing, from approx. $1 / 16^{\circ}$ up to any thlckness Midd Steel. Wrought oriMalleable Iron. equipment $190 / 240 \mathrm{v}$. Single ph, $10 / 15$ amp.
(or domestic power supply) dolivered free. (or domestic power supply) dolivered free.
ex stock. Cash (or C.O.D.) $\$ 23.10 .0$
H.P. Terms available. Illus, leaflet from manufacturers FERROUS PRODUCTS (M.E.C.) LTD. Church Rd., Croydon, Surrey. CRO 8351/3

ROCERS SL NFISON ST

Sin. Rubber Sanders. iln, drive. 5 Abrisive Discs. 5 in. Ass'td. doz Transtormers. $6 / 12 \mathrm{y}$, 20 amps Motorised Pumps
Whit worth Screws. 144 Ass $^{3} t d$
His. Drills, 12 Assorted, to 48
Fibre Washers. 144 Assorted
Altier Reetifiers. A. C. to D.C.
Coppar Rivets. i2 doz. Assorted
suw Bench Tovs, with ball race $1 / 4$ spindle, pulley, otc., 181 n . x $10 \ln$. 528 Itectilhers. $6 / 12 \mathrm{v}$. at 6 amps .
Meters. $0-15 \mathrm{v}$. or $0-25$ volts Air Jincks. 5in. stroke
Woost Guiges for Car Use
Winker Units. 6 or 12 volt Clireular Maws, 6in. $11 / 8 ; 7 \mathrm{in}$. $13 / 8$. etc.
Races, Belts, Valves, Pulleys, Pumps
May, we send our free list of hundreds of
Interesting ttems? Stamp please.

CHEMISTRY APPARATUS
 Send 3d. stamp for
 COMPLETE PRICE LIST

BECK so Hilith sit ity Stoke Newington, London, N. 16

TENSILE PRODUCTS LTD.
Willoughby Road, HARPENDEN, Herts.
Tel. : Harbenden 311

SPECIAL OFFER
G.E.C., B.T.H. 8 WESTINGHOUSE GERMANIUM CRYSTAL DIODES
1/- each. Postage 2 1 d.
Diagrams and three Crystal Set Circuits
Free with each Diode. A large purchase of these fully GUARANTEED diodes from the manufacturers enables us to make this attractive offer
COPPER INSTRUMENT WIRE
ENAMELLEO, TINNED, LITZ,
COTTON AND SILK COVERED
All gauges availabl
B.A. SCREWS, NUTS, WASHERS
soldering tags, eyelets and rivets.
EBONITE AND BAKELITE PANELS UFNOL ROD PAXOLIN.TYPE COIL FORMERS ANO TUBES
-
Latest Radio Publications.
CRYSTAL SET
INCORPORATING THE SILICON CRYSTAL VALVE
Adjustable Iron Cored Co
RECEPTION GUARANTEED Polished wood cabinet, $15 /$ - post $1 / 3$.

POST RADIO SUPPLIES 33 Bourne Gardens, London, E. 4

Brand New
SERVICE
RGWIMDRR
For Welding, Brazing \& Soldering

Complete outit: Welding Tool with $47 / 6$ duty earth cable. carbons, filer rods. p,p.2/6 aux Instruction boakiet. Designed epairs to car, household equipment. etc. Weldsaus metals up to $i=$: 5 auxe. Simplo to use-bays for liself on the prot jobo. SERVIGE WELDING COMPANY (m.B.) 11, Old Bond Street, London, w. 1

RADIUM SCINTILLOSCOPE
 actual splitting of Atoms.
Countlessinvisible Alpha paptlCountless invisible Alpha partidisrupting Radium atoms, raise an Incessant shower of flashing points of Hght on colliding with a luminescent film. Guaranteed harmiess, the sparking scintilwlll remain active a hundred years, Complete instrument as illustration but 2 in . long x in. diameter. inclusive "History of Radium."

Priee 146. registered post free
ATOMLIOHTS
36. Montpeller Cres., Brighton, Sussex

Webley

- AIR pistols

in rurtes Accessories
Write for eatologne WEALEY A SCOTT LUd.

SILK SCREEN PRINTING MATERIALS

$S_{\text {IR,-We }}$ with he read with interest the article on "Making a Silk-screen Printing Outfit" in the June edition of Practical Mechanics.
We would be pleased to supply any of your readers with lengths of Swiss screening silk of not less than one yard. The screening silk is woven in various widths to save wastage. Also, a red guide line is woven in the weft and the warp at intervals of one foot to facilitate easy stretching on the screen.

The most popular meshes are Nos. 8 and 10 for general work, and for very fine printing we would suggest the meshes Nos. 12, 14 or 16. The higher the mesh number, the finer the silk.

With regard- to the stretching of screening silk on wooden frames, we supply eyelet tape, and, although this is one of the oldest methods of stretching silk, it may prove to be useful to the "do-it-yourself" enthusiast where modern equipment is limited. Eyelet tape, rin. wide, is supplied in 50 -yard lengths at Is. 8d. per yard.

The eyelet tape is nailed to the frame on the four edges and the same tape is stitched to the silk to be stretched, then the two eyelet edges are laced together and pulled tightly.
We have had much experience in all scifeen printing trades, and hope to be of help to your readers should they require our service.-Pronk, Davis \& Rusby Limited, 44, Penton Streeit, London, N.I.

P.V.C. INSERTS FOR TERRAZZO FLOORS

CIR,-Cn page 461 of your June issue is an article on how to embody colours in terrazzo floors and walls, and we thought it might interest your readers to know we have produced for several years special P.V.C. sections in a variety of colours for use in terrazzo foors and walls (see sketch).
To produce fancy designs, the strips are warmed and can then be formed into any desired shape. When the fabric of the floor or wall has set, the whole surface, including the P.V.C. inserts, can be levelled as usual. We wish to point out, however, as manufacturers we cannot accept orders for less than 1,000ft. per section and colour. mendation will be a permanent convert and a good ambassador to other potential cyclists. - A. V. Tyler (The Wright Saddle Co. Ltd.), Dale Road, Selly Oak, Birmingham, 29.

The Junior .Chemist-Reader's
 Criticism

$S^{\text {IR,-On page } 457 \text { of the June, } 1957 \text {, issue }}$ of Practical Mechanics you describe how to prepare nitric acid. May I point out two facts. You should never use a cork bung in preparing nitric acid. Nitric acid is one of the strongest acids, and it will eat the cork away very quickly. A glass bung would be safer because nitric acid cannot eat glass. Water should be poured on the receiving flask to keep it cool, because, if not, the flask might burst.

Why not use a retort, which would be ideal for the experiment? Sodium nitrate is equally as good as potassium mitrate (saltpetre) in the preparation.-R. GrAy (York).

P.V.C. sections for decoration.

Lid., Willoughby Road, Harpenden, Herts.

Reversing Negative Film

SIR,-Re the answer to the query on this subject, in the June issue, there is an easy and certain process for producing positives by direct reversal.
Kodak Ltd. have published data for the reversal of Pan X film, but with some considerable loss in emulsion speed. With any Ilford $35-\mathrm{mm}$. or roll film, however, no increased exposure is required, and processing, although critical for best results, is quite a simple procedure. Ilford Technical Information Sheet No. T203 gives the necessary directions.
For general information on the subject, including reasons why reversal processing gives a sharper and more fine-grain transparency than the usual neg-pos. process, I would refer you to articles by Stanley W. Bowler in the British Youmal Phoographic

Almanacs for 1950 and 1956.-D. J. Hutchinson (Co. Durham).

"Domestic Generating Plants"

SIR,-Re your article "Domestic Generating Plants" in the June issue, I should like to comment on the drawing showing a suggested layout for an engine house.
Both oil drum and fuel tank will require venting to atmosphere, thus preventing fuel starvation, due to an air-lock.-G. E. Winfield (Lincs).

Vapour Phase Inhibitor

SIR,-Mr. G. D. Smith, of Middiesex $^{\text {IR }}$ (whose query appeared on page 462 of the June issue), might like to try a vapour phase inhibitor, such as Shell's "V.P.I." J. C. Wililams (Edgware).

ENDLESS CHAIN IN WOOD

S^{i}
CiiR,-I was interested in "A Chain Made from Wood," which appeared in your April number.
I had just completed a three-link chain of round section in pearwood as at I^{-}in the sketch, a fortnight before I recsived the publication. I saw one in a museum, and wondered how it was made. so I thought it out on drawing paper and did it exactly as you describe.
I then thought it would appear more puzzling if it was made endless, and proceeded to draw out an octagon design as at 3 in the sketch.

It was first turned to the section, as shown at 2 in the sketch, the centre block, 2 in diameter, being left for a centre point to mark out the 16 links.
The two chain-dotted lines shown' in the
elevation (3) correspond to the two diameters $3 \frac{3}{3} \mathrm{in}$. and $4 \frac{7}{7} \mathrm{in}$. (2), and out of this wood were chiselled the eight pieces shown 7/32in. XI $9 / 16 \mathrm{in}$. The spaces left between the pieces provide the centres to strike the eight links A, and the $3 / 16 \mathrm{in}$. spaces with the 45 deg. saw cuts provide the centres to strike the eight links B.
After completing the marking out, the work was returned to the lathe and the centre block cut out, leaving a hole 3 in. diameter. The internal diameters, shown rin., were drilled with fin. centre bit, roughed out with a coping saw, and finally finished with a gouge. The wood used was beech, and the links were left in square section-J. E. Foster (Colchester).

fore, contributes more in taxation per mile which is now of equal, if not more, importance than the cost of fuel itself.

Mr. Brooks also has little knowledge of nickel-iron batteries in that he implies that they are not sufficiently robust for traction purposes. Three and more times the life of lead acid batteries on similar duties must be obtained from alkaline batteries to make them of economic advantage, yet alkaline battery manufacture is an expanding industry throughout Europe and America. As for mechanical strength, there are alkaline batteries that have travelled many millions of miles on the footplates of A.T.C. fitted locomotives, batteries that have resisted the shocks on shunting locom.otives for 18 years and batteries carrying out most arduous duties on electrically propelled trucks in factories. Alkaline batteries are also used in connection with projectiles, and are subject to enormous shocks under these conditions. Many years ago an alkaline battery was dropped from an aircraft (without parachute) in connection with the rescue of Amundsen in the Arctic. Electrically, the alkaline battery will accept heavy currents and would be ideal for Mr. Brooks's purpose, were it a practical and economical possibility. The only limiting factor from the point of view of the battery would be temperature rise due to I'R losses in the battery itself.

Something approaching Mr. Brooks's idea was utilised by a Mr. C. Nicholson, of the then Central Electricity Board, during the late war. He built a vehicle having a Morris Cowley engine driving a generator/motor through a Borg and Beck clutch which could be locked in the "out" position. An alkaline battery was used and, with the engine running, the battery was charged. Throwing out the clutch allowed the generator to "motor" from the battery and drive the car, or he could use both motor and engine to ascend steep gradients. The normal gear-box was retained and, by leaving the gear in neutral and running the engine, the vehicle became a self-contained generating. plant.
His favourite trick was to go into a garage with the engine running, switch off, ask for a gallon of petrol, give up his money and coupan and then depart silently as an electrically-propelled vehicle, leaving the attendant aghast!-G. H. Dowsert (Beckenham):

Converting the P.M. Projector
 (Concluded from page 522)

$$
=\frac{.432 \mathrm{zin}-1 \text { 5oin. }}{2}=.14 \mathrm{rin}
$$

Claw Index Point
Position of 8 B.A. hole on follower arm from intersection point of arm.
$.187 \mathrm{in} .+\left(\frac{.437 \mathrm{in} .}{\operatorname{Tan} \theta}\right)-(\operatorname{Cos} \theta 2.119 \mathrm{in} .+\operatorname{Tan} \theta$ where 0 is 9°, and .437 in . the distance from claw tip to follower arm centre line. and
$.187 \mathrm{in} .+\left(\frac{.337 \mathrm{in} .}{\operatorname{Tan} \theta}\right)-\binom{\operatorname{Cos} \theta}{.287 \mathrm{in}}=..846 \mathrm{in} .+\operatorname{Tan} \theta$
where θ is 4° and .337 in . the distance from claw tip to follower arm centre line.
Sprocket Bobbin Diameter $=$

Electric Vehicle Transmission

SIR,—With reference to Mr. Brooks's suggestion for an electric transmission for a vehicle in your June issue, I am sorry to disillusion him, but it just would not work. He has entirely overlooked the fact that a battery requires a higher voltage to charge it than that at which it discharges. Secondly, if the central clutch were engaged then exceedingly heavy currents would flow
between generator and motor and one or other would burn out.

Many years ago patents were taken out for utilising the heavy currents produced by this means for traction purposes in conjunction with a storage battery but, like all systems of this type, including the Tilling Stevens petrol electric system, the weight of the equipment mitigates against its use from an economic standpoint. Every little extra weight consumes more fuel and, there-

Details for making an endless chain in wood. 1.-Threelink round section chain. 2.Turning the shape. 3.-Details for cutting.

(3)

Perforation Pitch $\times 12$

$$
=\frac{.150 \mathrm{in} . \times 12}{3.14!\mathrm{in}_{9}}=.573 \mathrm{in}
$$

New Swiss Drill

ANEW drill has been added to the Lesto Pistolgrip Drill range with the high spsed of 2,500 r．p．m．It has a Jacobs type chuck and the maximum capacity of the new model is $\frac{1}{4} \mathrm{in}$ ．in mild steel．With this

The ncw Lesto Pistolgrip drill
size drill bit，the machine cannot be stalled． A quick－release vertical drill stand is also available．The price of the drill is $£_{12}$ Ios． carriage paid in the U．K．，and the ．stand costs $£ 5$ I 5 s．

MINIATURE CRUCIBLE FURNACES

T
HE Morgan Crucible Com－ pany produce three models， being fired by paraffin（kerosene）， gas and coke respectively．The paraffin model is fired by a self－ contained paraffin burner．The welded steel pressure tank is fitted with a long stroke，quick acting air p：omp and contains enough fuel for 3 or 4 melts．The price is $£ 56$ ．

The gas fired model is suitable for operation on a town＇s gas supply of 3 in ．to 5 in ．$(7,160 \mathrm{~cm}$ ． to 13 cm ．）water gauge pressure． The gas consumption at 4 in． （ 10 cm ．）W／g pressure is 500 cu ． ft ．（ $14 \mathrm{~m}^{3}$ ）per hour：Air is supplied by a compact electric blower unit．The built－in uni－ versal motor can be supplied for IIO V．， $200 / 220 \mathrm{~V}$ ．or $230 / 250 \mathrm{~V}$ ．
A．C．single phase and D．C．

Miniature crucible furnace，fired by gas Price is $£ 56$.

The coke fired model is supplied with air from a compact electric blower unit．The built－in universal motor can be supplied for 110 v．， $200 / 220 \mathrm{~V}$ ．or $230 / 250 \mathrm{~V}$ ．A．C．single phase and D．C．according to the local voltage．Co：e should be of good metal－
lurgical quality of I in．to $1 \frac{1}{2}$ in．size．The coke fired unit is also supplied with a coking cover．This model costs £ 50 ．

All enquiries should be addressed to the Morgan Crucible Co．Ltd．，Battersea Church Road，London，S．W．II．

New G．E．C．Range of F．H．P．Motors

NEW fractional horsepower induction motors，of $\frac{3}{4}$ h．p．and I h．p．capacity， in single phase capacitor and three phase versions，have been developed by The General Electric Co．Ltd．The motors are smaller，lighter and of more modern appear－ ance than their predecessors，though of equivalent rating and performance．Continu－ ously rated and fully complying with

RUST INHIBITOR

A^{0}QUA－CLEAR is a chemical which， when introduced to water，puts a microscopically thin film on all metal surfaces with which the water comes into contact so that rust cannot get into the water and the water cannot make new

Dcmestic water tank cut away to show chenrical in its container
rust．It can be obtained in two forms， liquid and crystal．The liquid is used in static water systems，such as hot water central heating，where there is no con－ nection with the water main and is added to the water in the ratio of $120 z$ ．to every 100 gallons．One 120z．bottle costs 18s． The crystals are introduced to the domes－ tic water system in two ways；first by means of a＂feeder＂attached to the mains water supply and secondly by means of a polythene container which is lowered into the feed tank，as shown in the sketch．The amount of crystals used is based on the total capacity of the feed tank，hot water tanks and pipes in the ratio of 2 lb ．to every 200 gallons of water． The price of a＂feeder＂for a $\frac{1}{2} \mathrm{in}$ ．pipe is $£_{18}$ ，price of crystals per 16 ．£I 3 s．， and 5 s ．for the container，designed to take 2lb．of crystals．Aqua－Clear will also soften the hardest water and yet it will be safe for drinking purposes．

In addition to its use in domestic hot water systems，the chemical will have many applications for the mechanic．

B．S．170／1939，they are drip－proof，foot－ mounted and available with sleeve or ball bearings，or flange－mounted with ball bear－ ings．The motors are constructed to the dimensions of frame 66 of B．S．2048／1953， ＂Dimensions of Fractional Horsepower Motors，＂and are therefore mechanically interchangeable with other A．C．and D．C． motors complying with this specification．

Solder for Stainless Steel

ANEW patented solder paint for speedy hot tinning of stainless steel has been developed by the Research Laboratories of Perdeck Solder Products Ltd．，Waltham Abbey，Essex．．It is known as＂Epatam 33II＂Code PLF．73／II．
Possessing high degreasing and penetra－ tion properties，PLF．73／II also effectively tins through iron welding scales，rust and grease，depositing a bright tinning，thereby overcoming many other soldering problems in addition to its major feature for use on stainless steel．
The increasing usage of stainless steel in industry prompted this development of a material to simplify and improve on existing methods．

This product will be of particular interest to the dairy，food handling equipment，brew－ ing，chocolate，oil，motor and electrical industries to name but a few．

The solder paint is merely painted on straight from the tin，undiluted，followed by heating by any convenient method to normal soldering temperature．If used on brass or copper it may be slightly diluted with water for greater economy．

Trial rlb．packs are available to the following specifications： $40-60$ tin／lead， 9 s .3 d ．post free； $60-40 \mathrm{tin} /$ lead， 9 s ．9d．post free；pure tin content， 12 s .6 d ．post free； from the manufacturers，Perdeck Solder Products Limited，Abbey Mills，Waltham Abbey，Essex．

TYour Querees Anmered

 $\square$$\square$
\square

Treating Porous Rubber Dinghy

IS there any preparation which will render an ex R.A.F. rubber dinghy airtight? I have had the dinghy three years, and although it is not damaged in any way, it is porous and remains rigidly inflated for only about 15 minutes.-E. J. Ingrey (Ely).

T
HE following preparation will be suitable for waterproofing a rubber surface which has become porous.

Obtain a tube of "rubber solution." Thin it out to paint consistency with a mixture of approximately equal quantities of white spirit and boiled linseed oil. Paint it thinly on the rubber surface, giving three or four separate coatings, and allowing each coat to dry before applying the next one.

A good bituminous paint would have a similar effect. These paints are usually obtainable locally, but a recommended one is the "Bituminastic" paint manufactured in several colours by Wailes Dove Birumastic, Ltd., Collingwood Buildings, New-castle-on-Tyne.

Electric Propagator

R
E the article on An Electric Propagator in the May, 1957, issue, I would appreciate some further information on the type of transformer to use.
I have a robust all-mains transformer, taken from an old wireless set, input tappings $210 \mathrm{~V} ., 230 \mathrm{~V}$. and 250 V . and output tappings $5 \mathrm{~V} ., 6.3 \mathrm{~V}$. and 400 V . ; is this suitable? If so how should it be connected? Would the popular transformer with steppings from 2 V . up to 30 V . at 3 amps. be suitable, or will it have to be the heavy type at \&3 to £4?-A. G. Reynolds (Birmingham).

TN choosing the voltage for the transformer it is well to understand the effects of larger and smaller voltages. Mains voltage is altogether too high for safety in the damp conditions of a propagator without very special precautions. With a transformer, we recommended 24 volts as a maximum, for with this voltage the length or browncovered iron wire required for the element, or each separate wire of it, will be uncomfortably long to be conveniently handled; moreover, there may be slight difficulty in controlling the heat as there will probably be only one wire for maximum heat.

On the other hand, a low voltage such as 4 volts will need special precautions to ensure that a badly made joint or dirty terminal do no damage, should either overheat. A 4 -volt element takes 60 times the current (amperes) for the same heat as mains-voltage, and a bad connection that would cause no trouble with mains might get red-hot with 4 volts. The proper precaution is to make sure that a hot terminal or joint cannot come into contact with anything inflammable.

There is no reason why an amateur should not make this propagator, and in stressing the precautions that should be taken we do not intend to dissuade you from making it.

The table below gives the lengths of the brown-covered iron wire that have proved suitable:
$\begin{array}{lcccccc}\text { Volts } & 4 & 5 & 6 & 8 & 12 & 24 \\ \text { Feet } & \text { II } & 13 & 16 & 21 & 32 & 64\end{array}$ and it so happens that a single length across the transformer terminals will give

wire the watts would be 21 ; if this gave too great a heat it might be switched on for the night only.

The wireless transformer which you propose to use is of a conventional type with heater voltages of 5 and 6.3 volts, and from your description it will probably be satisfactory, but should be adapted with caution. In the first place try a single wire, say 16 ft ., joined to the 6.3 -volt terminals; if the transformer remains cool to the touch after an hour's running, add a second wire (to either 5 or 6.3 volt terminals) and so on until the full number is in use. The transformer should not be allowed to become hot to the touch; this would indicate that the transformer was overloaded. As an additional precaution it would be well to place'the transformer in such a position that accidental overheating due to an overload or short circuit cannot do damage-though the fuse should guard against this. The high-tension terminals are not required and should be insulated.

For a long trouble-free life a proper soil warming transformer is to be recommended; but for those who are of an experimental turn of mind, the ordinary sort, well boxed in and well coated with insulating varnish, should do well. One of those transformers giving siepped voltages from 2 to 30 volts would be suitable, giving 24 watts at 12 volts; moreover, changing the voltagewould give an easy heat control. Wireless filament heating transformers should also be suitable.

Flattening Perspex and Removing Scratches

DLEASE inform me if it possible to remove scratches from Perspex car windows and also to straighten them out. -J. T. Schofield (Southampton).
YoU cannot possibly remove scratches from Perspex except by repolishing the surface of the material with a polishing wheel charged with a fine-grade abrasive of the aluminium oxide type. Even with a rapidly-revolving wheel the task is a slow one. If the scratches are deep ones, you coild "hide" them by filling them up with a thick solution of Perspex in trichorethylene or chloroform applied with a fine camel-hair brush. When the applied solution has dried and hardened the original scratches will be practically invisible.

You cannot flatten out warped Perspex by any means other than by heavy pressure in a warm press capable of exerting a minimum of I ton per sq. in. pressure. Even this treatment is not reliable and the sheets may afterwards rewarp. In our opinion, any attempt to flatten the sheets would not be worth the trouble and cost entailed. It is, however, uncommon for sheets of genuine Perspez of adequate thickness to twist and to warp unless they have been maltreated, particularly in the way of exposing them to undue heat.

Foam Bath Salts

DLEASE let me know the type of liquid soap used in foam baths. Also the name of a firm who can supply.-I. A. McKechnie (Kent).

WE suggest that you make enquiries at any of the following firms: Boots Pure Drug Co., Itd., Station Road, Nottingham, Messrs. Osborn, Garre:t \& Co., Lid., 5\$/54. Frith Street, London. W.I. The

Count , Perfumery Co., Ltd., Honeypot Lane, Stanmore, Middlesex, Messrs. Jas. B Fleming \& Co., Ltd., 23, Hanover Street, Liverpool, 1

If you are unable to obtain the foam salts from any of these sources, you will probably have to make your own, to which end we append the following formula for a foam bath salt:

Sodium bicarbonate

(by weight)
Starch
Starch
Saponin
Tartaric acid
Powdered soap
Borax
40 parts
gredients must be finely powdered and all made quite dry by placing in a warm oven for a few days. The ingredients are then ground together and the mixture is placed in a perfectly dry, tightlycorked bottle.
For use: Mix 6 ozs . of the powder into four pints of water, and then drop the product quickly into two gallons of hot water contained in the bath,
The foaming salts may be perfumed, if desired, by adding a few drops of perfume to the mixture during grinding.

Bubbles in Flexible Mould Making

WHEN pouring bot-melt compound around a plaster model annoying air bubbles result on the mould surface. Could you suggest any way to obviate this by impregnation or sealing off, or stoving in gas oven?
I use a resin and accelerator as a sealing coat, with a film of oil, but the bubble trouble persists.-P. Johnson (S.E.22).

T
HE bubbles about which you complain are due to moisture existing within the porous plaster and being expelled by the pouring over it of the hot-melt compound. We think you will get rid of the trouble quite simply. Merely put the plaster cast away into a warm oven for three or four days previous to the pouring and have the plaster cast warm when the pouring is done.
On the other hand, your use of an oil film and resin as a sealing agent may be causing the trouble. In such an instance discontinue their use and employ as a sealing medium for the plaster a solution of 10 parts of gelatine in 90 parts of hot water. This solution should be brushed on to the plaster hot (it will congeal to a jelly when-cold) and, of course, after this treatment, the cast should be oven-warmed for a day or two to drive off every trace of moisture

Plastic Coating

WISH to cover blocks of moulded "Dunlopillo" air-cell rubber with a coating of plastic by spraying, dipping or other suitable method.
The plastic after application would need to be flexible, durable and thick enough to smooth ont surface irregularities in the mouldings. Can you help?-H. S. Copping (Middlesex).

TAIN from one of our advertisers a quantity (about $\frac{1}{2} \mathrm{lb}$.) of polyvinyl acetate resin. Dissolve about 20 parts of this in 80 parts of warm methylated spirit. This will produce a thickish, transparent varnish which can be applied by brush in one or more coatings to the rubber article. If the individual air cells -are too deep and extensive to be filled in with a varaish, they should be packed with " Vinamould " beforehand. This is a solid material, obtainable from Vinyl Products, Lid., Butter Hill, Carshalton, Surrey. The material can be coloured by working various mineral pigments into it.

Transparency Viewer

I AM interested in making a viewer as described by Mr. Dewynter on page 401 of the May 1957 issue but it appears to me that no provision has been made for a 2 in . square transparency to be placed exactly in the centre of the 4 in . square housing. Can you explain this ?-A. J. Stael (Middlesex).

THE viewer was originally made for 16 on 120 slides mounted in $2 \frac{3}{4} \mathrm{in}$. $\times 2 \frac{3}{4} \mathrm{in}$. cover glasses which drop into the front part of the $\frac{5}{5}$ in. $x \frac{3}{4}$ in. shaped wood.

Later the viewer was used for viewing 35 mm . transparencies in the standard 2 in. $\mathbf{x} 2$ in. frames.

Details of transparency holder
These were viewed by cementing three pieces of $\frac{1}{2} \mathrm{in}$. x in. balsa wood to a $2^{\frac{3}{4}} \mathrm{in}$. $\times 2 \frac{3}{3} \mathrm{in}$. cover glass, placing same in viewer and then dropping the $2 \mathrm{in} . \times 2 \mathrm{in}$. slide in position between the balsa strips. as shown in the sketch.

Information Sought

Readers are invited to supply the required information to answer the following queries.

Special Projector Screen

I. WISH to construct a projector screen of the type where the projector is used from the side and the image reflected through a translucent screen from the rear. I desire the final picture to be about 2 ft . 6 in .
ft. gin. Can you help?-H. L. Goddard (Portsmouth):

Removing Damp Marks from Paintings

PLEASE tell me if there is any method of dealing with old prints and water colours which, due to having been stored in a damp place, have become marked and some of them slightly discoloured. I think in the trade they are called "Foxed" or "Fox" marks. There are also some with dirty finger-marks.-E. B. Taylor (Kendal).

Fumeless-Paraffin Heaters

PLEASE give me details of the construction of fumeless heaters working from a paraffin lamp; also, how the condensers are constructed without the use of water.-T.C. Dalby (Herne Bay).

Curing Condensation

CAN you suggest a cure for fogged shop windows please?
During cold weather 1 must have some warmth in the shop for the comfort of the staff, but then the glass becomes almost opaque and the goods displayed simply cannot be seen.-J. V. Williams (Liverpool; 15).

IN two quarts of hot water dissolve one ounce of finely shredded hard soap. Add to the water, also 100z. of glycerine and, if possible, $\frac{3}{2}$ oz. of Turkey Red Oil. The addition of this latter ingredient is not essential but it helps very considerably in aiding the uniform spread of the solution: The window is properly cleaned and dried in the normal method on its inside, after which a clean soft cloth is saturated with the above solution, wrung out and then wiped over the cleaned inside window surface. This simple treatment, renewed at fortnightly intervals, will go a long way towards preventing the fogging or dimming of the window.

Rewinding Hair Dryer

T HAVE an old 1 ro volt A.C./D.C. Hair Drier minus the heater element. Could you give me the data for the heater element and also the information to enable me to use this apparatus on a 230 -volt A.C. mains ?-G. F. Wilson (E.17).

TN order to use the hair drier on 230 volts, you should rewind each armature and field coil with twice the present number of turns, using wire having half the cross sectional area of the present wire (approx. 71 per cent. of the present diameter). The present coil span, connections and lead between armature slots and commutator segments should be carefully copied.
For the 230 -volt heater you could use 20 feet of 32 s.w.g. Brightray (nickelchrome) resistance wire.

Chemical Distiller

IWISH to make a small tap-water distiller unit. This consists of a small plastic bottle which is filled with some sort of chemical crystals which. after a shart amount of use, turn colour, from a light grey to dark brown, the unit then has become useless. Please inform me what the chemical crystals are and where they could be obtained?-R. E. Rayner (Cambridge).

Lamp Device:

PLEASE give me details of the lamp device shown in the sketch so that I may make one for myself. The heat of the lamp causes small globules of wax to break away from the lump at the bottom of the container and to rise to the top. Here they appear to partly solidify. fall again to t.he bottom and merge again with the
lump.-J. G. Barratt (Canada).

Main details of the lamp device

GAMAGIE

TOOLS FOR THE HOUSEHOLDER \& MECHANIC
' GRIPITAL' CHAIN WRENCH

Exceptionally Strong

 The more you pull, the tighter it grips. Turns any shape of pipe. Ratchet action. Works on Plastic, Glass, Wood and other materials as well as metal.

 Post \& Pko. 10 d

'FERROUS' ELECTRIC ARC

 WELDING PLANTIf you are interested in foining or reinforcing Muld Steei, Wrought or Malleable iron THIS 18 AN OUTFIT YOU CANNOT BE WITHOUT. 230 A.C. mains for 10 amp. plug, For welding
material of any thickness by repeat runs after preparation if necessary. Uses $14 \mathrm{~s} . \boldsymbol{w} . \mathrm{g}$. electrodes. Air-cooled. Robustly constructed and fitted with neat handles for port-
ability. Size $15 i n . ~ \& ~ 12 \mathrm{in}$. x 10in. high. Weight 801 b .
$€ 23 / 10$ ran ina or $55 / 9$
CaFr. \& Fikg. outside 50 miles of Holharn. in Eng. \& Wale:- 15 j -
GAMAGES, HOLBORN, E.C.1. HOLborn 8484. Opon Thursdays 7 p.m. - Send
造 20

FREE CORRESPONDENCE COURSES IN STEAM

Two courses :. (1) A simplified Course ior ihe practical man in need of basic information about steam and steam applications; (2) An Advanced Course for those with a background of technical training. There is no charge or obligation. Details on reques! tos.
SPIRAX-SARCO LTTD.
(TECHNICAL DEPT.) Chekenham Glos.

GOVERNMENT

SURPLUS BARGAINS Tripoins. Unused. 38 long, only 5 ib . wit. Immensely strong. Carrying sling. Brass cad easily adapled to camera.
etc. ect. Low VOLTAGE HoTORS with (24-45-90) 6-12 v. D.C. iamp. ea. $15 /-$ $(29-45-90)$ 6-12 v. D.C.. 1 amp., ea. 15 postioir oncy as above (dimensions $3^{*} \times 2^{*} \times 2^{2}$) ea. 101 Dost $1 /-$ TRANGBOATERY, CHAIGGNG TRAN
 1/-iectifiers to sult above, ea. \%/6. post, 3d. (These transformers \& rectifiers will Tun the above low voltage motors. Provide sufficlent draught for Car Beater on $6{ }^{\circ}$ - (12 v. preferably controlled by varjable resistance), ea. 25/- post $1 / 6$
VARIABLE RESISTANCES to sult
 gaprox. 80 watts. Hygh speed. i' shaft. Converted ex R.A.F. motor generator-
power about equal to sewing machine power about.). Useful addtion to workshob. ea. 30/, post $2 / 3$. Send 3d. stamps for List of other Motors, Transformers, Pumps, Lamps, Switches, etc. etc.

MILLIGANS
24. Ilarforel Streat. ILverimat. 3. Money Back Guarantee.
Money Back Guarantee

Glos.

\qquad

GALPIN'S

ELECTRICAL STORES

408.HIGH STREET, LEWISHAM, S.E 13.

Tel. : Lee Green 0309. Nr. Lewisham Hospital.

TERMS CASH WITH ORDER (No C,O.D.)

All Goods sent on 7 days" approval against cash.
P.M. EXTENSION SPEAKERS, 8in., 3 ohm coil, in. first-class condition. $10 /$. post $1 / 6$.
EX-GOVT. ROTARY CONVERTORS 24 volts D.C. Input 50 volts 50 eycles, I phase at 450 watts. OUTPUT (complete 230 volts, $\$ 13 / 101$ - each or CONVERTOR only $\varepsilon 9 / 10 /$ - each.

EX-NAVAL ROTARY CONVERTORS 110 volcs D.C. Input. Output 230 volts 50 cycles I phase 250 watts capable of So per cent. overload, in good condition. guaranceed weight approx. $110 \mathrm{lb} ., \leqslant 13 / 10 /$ each. \pm H.P. D.C. MOTORS, 110 voles, 3,000 r.p.m.: new, large size, 35/0: starters to suit N.V.R., 25/-.

ASSORTED RESISTANCES. Wire ends, all new, plain, wire, silver and gold tipped 12/6 per 100.

THREE PHASE TRA NSFORMER. 2,000 watts, double wound. $110-220$ and 440 volts Any combination of connections. New, $\mathbf{6} 5$.
LARGE METER movements, fairly low F.S.D. average 6 in deflection, very high quality, $7 / 6$. P / P. $1 / 6$

MOVING COIL meters, all 2 so 3 in dia., damaged cases or glasses, 3 for $10 /$, guaranteed one sound meter: 6 for $18 /=$. two sound meters, no junk, all are, or
MAINS TRANSFORMERS all 200/250 vols primaries (New) Reavy duty Output combination of $0 / 5 / 12 / 18 / 24 / 30 / 36$ voles $4 / 5$ amps., 38/6 each. Ditto $6 / 8$ amps., $51 / 6$ each. Ditto 15 amps. Outpuc, 75/-each. Another with combination of $0 / 6 / 12 / 18 / 24$ volts $6 / 8$ amps., $51 / 6$ each. Ditto $10 / 12$ amps.. 58/6 each Ditto 25/30 amps. Output, 85/- each

MEDIUM SPOT WELDER TRANSFORMERS, Input 200/250 voics. OUTPUT sombination of 0/2/4/6/8/10/12 volis at amps. Output, E3/10/-each.

ELECTRIC LIGHT OT POWER CREDIT METERS, 10 antp. load, 25/*: 20 amp, load, $47 / 6$: 30 amp . load, 57/6. All carriage paid.
PREPAYMENT $1 /-$ SLOT METERS, Set at 2d. per unic. 10 amp . load, $£ 4 / 2 / 6: 20$ amp. load. ©5/2/s each. Carriage paid. Fully guaranteed.

PREPAYMENT METERS, 6d. slor only, Set at 4d. per unit. 5 amp. load only, $50 /$ each. Carriage paid

AUTO WOUND Voltage changer TRANSFORMERS. Tapped 0/1/C/200/ $230 / 250$ voles 200 watts, 48/6 each : 350 watts, 578 each; 500 watts, $76 / 6$ each : 1.000 watts, $\mathrm{E} 6 / 5 /{ }^{\circ}$ each ; 2.000 watts, El 1 ; 3,000 watts. E15 c/p.
GOOD FILM for cutting, Panchromatic, very fast. Clearance Prices, all $5 \frac{1}{2}$ in. wide $24 \mathrm{ft} ., 5 /-; 47 \mathrm{fc} .7 / 6$. Large reducsion for quantities.
P.O. COUNTERS, 9999, 400 ohms, $7 / 6$. Post free.

ROTARY CONVERTORS. Input 24 voles D.C. Output 50 or 100 volts A.C. 500 cycles I phase at 300 wacts, $\mathrm{fB} / 10 / \mathrm{e}$ each. SELENIUM RECTIFIERS. Full wave bridge connected, 6 or 12 V . dutput. $2 \frac{1}{2}$ amps., $15 / 6 ; 4 \mathrm{amps} ., 25 / \cdot$; Transformers to suit either 25/-.
Any TRANSFORMERS made to order within 7 days from date of order. Numerous other items in stock. Please ask for quotation.

Clienes in Eire \& Northern Ireland, please ask for quotation as to carriage charges. Open all day Sacurday. Splendid odd bargains for visitors

it's a KO. for value!

Attractive chromium plated finish Two screw fixing simple and ingenious action A Quality Bell at a competitive price Price 2/6
 of your

JOSEPH LUCAS (CYCLE ACCESSORIES) LTO - CHESTER ST P BIRMINGHAM

LUCAS

BATTERY CHARGERS

Output up co 22 v 10 amps contrrolled by two 4 -position

rotary switches for fine and coarst control. Input | $200^{\prime 2} 250$ |
| :--- |
| cy ., fused for A.C. 50 | cy.. fused for A.C scaled ammeter. $817,10.0$, carriage

15%

VACUUM PUMP
New. 7 cu. ft. per min. Brarid per sa. in. at 1,200 r.p.m. each. post $2 / 9$. MOLTNE 50 TERS
Mains 50 cy. reading A.C. 0 to 21 in . Flush, $25 /$ lear 5 in. dial only. $80 / 15$ volts A.C./D.C 21in. Flush, 25/6. post 1/6:
AMMETF:RS,-2in. Flush Movlng Coll ron D.C. $0 / 25,7 / 8$ each, post $1 / 6$.
CIRCUTT TLSTRER in wood case 9 in. 6in. x 41 n . $2 \mid \mathrm{ln}$. Flush round meter 50
miliamps, basic movement $10 \mathrm{~m} / \mathrm{A}$. with miliamps, basic movement $10 \mathrm{~m} / \mathrm{A}$., with Ideal for conversion. 17/6, post $2 / 6$.
PORTABLN: BLOWER.- 2001250 V. A.C. D.C. 300 watts with switch and leads. lifin. outlet. \&5. Carrlage 7/6. BULKHEAD FIT TING. 91 diam flat tripod type.' suitable lor lamps up to 100 watt, complete with
pushbar switch lamp puslder. Ideal for farm buildings, garages. greenhouses; etc.
Brand new, Brand new, -17/6, post
 216.

CHARTBO IRDS.-With pantograph arm perspex scale, protractor head as used in the R.A.F. for navigation purposes, 17 in quare. Brand new, will make a usefu WwT AI
VENT-AXIA YANS, EXTRACTTION OR NTAKE.-Brand New. Sllent running post ${ }^{1}$-.
ROTARY CONVERTER.-Input 24 y D.C. Output 230 v. A.C. 50 cycles 100 Watt. 928 ; also available in
switch, $105 /$, carriage $7 / 8$.
TELRPHONES SOUND POWERED. No batteries required. Just connect with twin Units, 4,8 ea. Twin Flex, 41d. yd. Post $1 /$ If 2 units are connected in series and one sed for speaking and one for instening made GEARED MOTOR for the model maker. $\begin{array}{lll}\text { powerful, } & 12124 \\ \text { volt } & \text { D.C., } & 4 / 8\end{array}$ r.p.m., 35i= post TELEPHIONE SF'T昰 17.6 per pair complete.
WALL TYPK Blso avalable 2 comple units 85 . Batteries $5 / 6$. Twin Wire 5 complete viotor, -12 volt D.C., 11 in . $\times 2 \mathrm{in}$. approx 3.000 r.p.m. with speed regulator in end cau. precision job, 12/6, post $1 / 6$.
TERMINAY, BHOCKS.-2-way fully protected No. $5 \mathrm{C} / 430$, 4/- doz, 50 for $15 /-$ or
$10025 /-3$-way, 8/- doz., 30% for 50 , post $1 / 6$. NARIABLE RESIST NXCF.- 160 ohms amps. on $10 j \mathrm{ln}$. Twin Ceramic formers with control handle. Sultable for dimming. etc.. 351. , post $2 / 9$. Also 500 ohms 1.5 amp Lus.

CROSS POINTERE METER with 2 separato ments. Brand New, 22/6 post 2 -
OLTMETERS, D.C. $0-20,0-40$, or $0-3100$. 2 in .
Flush, 10,8 each, post 1/6.
CHARGING RECTIFIELES.-Full, Wave Bridge 12 volts $2 \mathrm{amps}, 13 / 6,4$ amps, $88 / 6,2$
amp. Trans formers $24,-4$ amp. $27 / 3$, post $2 /-$ amp. Transformers,24;-, 4 amp. 27/3. post $2-$ BALL R ACLES.-NO. EE2, 3 in. x in. in . $2 / 6$, Less 6d. ea. In doz. lots, post free
THRUST RACES.-13/16in. x 3/8ip., 1/6. 15/- doz., post iree.
A.C. MOTOH, -230 volts, 50 cy. , 1/50th h.D 3,000 r.p.m. Series with governor, $60 /:$
A.C. MOTOR: 1 third h.p. $1,4 \%$ r.p.m. Ishart, Ball Bearings, $220 / 230$ volts. Contin-
uous rating. Brand New. 86.10 .0 , carr. $10 /$ -
WILCO ELECTRONICS
Dewt. P.M. 204 LOWEIR ADDISCONHELC

VOL. XXV

WHAT I THINK แинииниииии

WHEN Mopeds were first introduced to this country just after the war, they were sneered at and spurned by thesse who presumed to lead cycling opinion. The fact that they do not necessarily reflect real cycling opinion troubled them not at all. R. C. Shaw, for example, secretary of C.T.C., was permitted to contribute an article to a cycling journal under the tide of ${ }^{2}$ Neither Fish nor Flesh," in which he poured contumely upon this development of the dicycle, and later in reply to criticisms and suggestions that the C.T.C. should take the new vehicles under their aegis, stated that it was the "law of the land," that the C.T.C. could not do so. Readers will remember that we challenged him on this point, for the terms in which he phrased it were obviously intended to give the impression that there was some law which said that the C.T.C. could not do so. No doubt what he meant, but failed to make clear, was that under the present articles of association, the C.T.C. could not do so. It is, however, quite possible and legal to have articies of association amended and indeed many years ago an attempt was made by members of the C.T.C. to allow motorists to become members. The attempt, however, failed.

The journal we have mentioned has not adopted a friendly attitude towards these new and popular vehicles, though I expressed the view at the time that the C.T.C. might one day eat its own words-as the periodical concerned has, indeed, now done, for it has changed its title to include Mopeds.

Since they were introduced, these lively little vehicles which owe their origin to Continental manufacturers have continued to gain in popularity and to-day there are many thousands running on the soads and English manufacturers have not been slow to enter the market. It is generally known that the sales of bicycles on the home market have declined during the past few years and one would have thought that cycling bodies and periodicals would have welcomed their introduction as a means of sustaining the industry in full employment. Anyone with sound judgment on the trends could not have reached any other conclusion than that Mopeds this time were here to stay. Their opposition to them is further evidence of their lack of judgment and inability to analyse tendencies. Their judgment was wrong over mass-start racing and on many other important matters they have been compelled to bend the knee. On marters of cycling policy they have been similarly wrong and it is little wonder, therefore, that their words carry little weight in official circles. No doubt they had in mind the carlier abortive efforts to market motor-assisted bicycles. They failed because of their crudity and the fact that they had not been designed by those who understood the principle of stresses in bicycle frames. The Wall auto wheel, for example, which was an additional motorised wheel attached to the rear and which really converted the bicycle into a three-wheeler, abrogated all of the rules regarding stability and steering. The wheel was off-set and
rendered the bicycle dangerous especially on greasy roads. The Johnson motor-wheel was a better approach to the problem; in consisted of a horizontally opposed twocylinder two-stroke motor cycle engine with flywheel magneto, which was attached above the rear wheel and drove it by a vertical chain drive. It was, however, about two horsepower- 100 powerful for an unsprung machine like a bicycle.

However, the Moped is now recognised and it will, therefore, be interesting to see what further feats of gymnastics will be performed by the boneless wonders of the cycling world who have opposed it. By this time they are, of course, skilled in verbal gymnastics and dialectics. Will they still continue to use such terms as "buzz bikes" and refer to them as "neither fish nor flesh? " Will thev still refer to them as "bicycle-assisted motors?" The situation is most interesting as well as being most amusing.

ANOTHER B.L.R.C. VICTORY

IN ano:her matter the past-minded Pundits have lost the battle they have waged for over 15 years, for the R.T.T.C. has naw agreed to permit amateurs to race against independents in events under the jurisdiction of the B.L.R.C. N.C.U.. or overseas organisations affliated to the U.C.I. It is a distinct victory for the B.L.R.C. and it must cause those unworthy opponents, who have done their best to kill it, to bow their heads in shame.

The new ruling means that amateur cycle racing in Great Britain takes on a new form and a new lease of life. The new form is more in keeping with modern times and with what is going on on the Continent. The N.C.U. had previously agreed to allow amateurs and indepems to race together-a further B.L.R.C. victoryand so the R.T.T.C. and the N.C.U., who have consistently opposed the B.L.R.C. with sneers and denegration, have at last been made to look ridiculous and to capitulate to the B.L.R.C.

Ever since the League was formed we have consistently supported it. We have defended it in print and out of print, in speeches and in interviews with the Minister of Transport. We prepared the now famous memorandum

All letters should be addressed to the Editor, "THE CYCLIST," Gearge Newnes, Ltd., Tower House, Southamptan Street, Strand, London, W.C. 2

Phone: Temple Bar 4363
Telegrams: Newnes, Rand, London

A Complete Cuide Including Replacing Pedal Rubbers and Spindle Straightening

THE pedal is one of the most vital parts of a cycle and, unfortunately, one most liable to accidental damage. If the machine falls heavily on its side or the rider goes too near a curb, so that the pedal bumps, it is easy for the pedal spindle to be bent out of truth. Another common cause of pedal trouble is the loss of the pedal cap. When this is missing dirt and water penetrate into the bearings and in a very short while completely ruin the ball races. Nothing is more annoying than a pedal which "twists" under the foot at every revolution of the cranks, or which grates or "knocks."

There are two types of pedal, the rubber pedal, usually seen on roadster machines, and the rat-trap type favoured by the sporting cyclist. So far as the spindle assembly is concerned both these types are identical. The sectional view in Fig. I

Fig. 1.-Sectional view of a rubber cycle pedal.
shows the standard arrangement. The spindle screws into the end of the crank, the left pedal by means of a left-hand thread and the right pedal by means of a right-hand thread. Two flats are positioned on the shoulder next to the threaded portion to allow the pedal to be tightened into the crank. On the other side of this shoulder is a ball track and from this point the spindle tapers down to a threaded portion at the cth- end. The other ball track is

provided by means of a threaded cone, which is locked in position with a keyed washer and a nut. The spindle shell, ball cups and pedal frames are all formed in one spiece and should not be dismantled. A hub cap protects the bearings against the incursion of dust and rain, etc.

Fig. 3.-Removing pedal rubbers.

Rernoving the Pedals.

Pedals often become jammed into the cranks very tightly and will probably resist all efforts to unscrew them with a spanner or adjustable wrench. Whenever possible it is best to get them off with a special longhandled cone spanner. Hold the machine upright by one hand on the saddle, place a foot on the pedal to hold it firm; then use the other hand to screw the pedal out (see Fig. 2).

Dismantling

Hold the pedal in the vice by means of its flatted shoulder. Unscrew the dust cap and the locking nut underneath and then slide off the washer, which will either have a small projection engaging in a slot in the spindle or have flats to stop it turning. The cone can be removed next and the balls will fall out immediately it has gone. This completes the dismantling.

Clean the spindle and ball cups in paraffin and inspect the balls and cones for wear. There will be no difficulty about replacing the balls, provided care is taken to replace the same number of new ones the correct size. It is often possible to obtain cone replacements if this is necessary.

In the case of rat-trap pedals this may be an opportunity to tighten any loose rivets. Support the inside of the plate, and hammer the burred-over ends of the rivets until the plate is held tightly again.

Reassembly of the pedal and adjustment for free running without "play" follows the usual procedure.

Replacing Pedal Rubbers

Worn pedal rubbers should be replaced before they are worn right down to the centre rods. Pedal rubbers are available in many standard sizes, and provided the correct size replacements are purchased no trouble should be experienced. Undo the nuts (A) in Fig. 3 and prise the end frame away from the cup. It will now be found a simple matter to remove pedal rubber and centre rod in one piece.

The centre rods are pulled out and replaced in new rubbers and the pedal reassembled, tapping the end plate into place
with a light engineers' ball-pened hammer

Straightening the Spindle

If the pedal spindle is bent it will probably be noticed while it is being unscrewed from the crank, and it is a good idea to screw it into the crank so that it may be checked in this way. As can be seen in Fig. 4, the tip of a bent spindle will describe a circular path

The best method of straightening is to clamp an old crank into the vice, as shown in Fig. 5, screw the pedal spindle into it until, due to its eccentricity, it leans away from you. Screw the cone on to the other end and then by means of a length of tubing straighten it by pulling forward. Pull it a little at a time and check repeatedly, by rotating it in the crank end, until the tip no longer describes a circular path.

Fig: 4.-A bent spindle tip describes à circular path.

Oiling
The pedals should be included in the weekly cleaning and oiling. The machine should be laid first on one side and then on the other and oil squirted through the oiling holes in the end caps. The pedals should be
rotated while the machine is 1 ying down, so that the oil will run into the bearings at the crank end of the pedal.

Fig. 5. Method of straightening a bent pedal

 appointments that will bring personal satisfaction, good money, status and security. As part of a modern industrial organisation, we have skilled knowledge of what is required and the best means of training personnel for present day and future requirements. We specialise also in teaching for hobbies, new interests or part-time occupations in any of the subjects listed below. Write to us-to-day for further information. There is no obligation of any kind.

PERSONAL \& INDIVIDUAL TRAINING IN-

The E.M.I. Factories at Mayes, Engtand.

The only Home Study Gollege operated by a world-wide manufacturing organisation

EMO INSTITUTES

Accountancy Advertising Aeronautical EnE. A.R.B. Licences Art (Fashion, Illustratins, Humorous) Automobile Eng. Banking Book-keeping Building
 Business
 Management
 Cappentry
 Chemistry
 City ${ }^{\text {Guilds }}$
 Civil Service Exame

Civil Service
Commercial
Subjects
Commercial.
Art \& Drawing Customs Officer Customs Officer Maintenance Eng. Aso courses for GENERAL CERTIFICATE OF EDU Srit.I.R.E., A.M.I.Mech.E., A.M.I.E.D., A.M.I.M.I., A.F.RAE.S., A.M.S.P.E., A.M.I.A.A., A.C.C.A. A.C.I.S., A.C.C.S., A.C.W.A., City \& Guilds Examinations, R.T.E.B.Serv.Cert., R:S.A. Certs., ecc.

1 GMy Gourses with PRAGTIGAL EQUIPMENT in radio - television - mechanics ChEmISTRY - ELECTRICITY - DRAUGHTSMANSHIP PHOTOGRAPHY, etc., etc.
COURSES FROM 15/- PER MONTH

Mathematics M.C.A. Licences Mechanical Ens. Mecallursy Motor Eng.
 Painting 8
 Decoratins P.M.G Certs. Police
 Production Eng. Production
 Radar
 Radio
 Radio Amateurs
 (C\&G) Licence
 Radio $\&$ Television
 Servicing
 Refrigeration
 Sales Managemént Sanitary

Engineering Salesmanship Secretaryship Shorthand 8
Typine Short Story Writins Short Wave Radio Sound Recording \& Reproduction Telecommunica-
Television
Time 2 Motion
Tracing
Welding
Workshop Practice Workshop

Management and many ochers and many ochers

NEWN4

POST THIS TODAY

Please send, without obligation, your FREE brochure. E.M.I. INSTITUTES, Dept. 144K, London, W. 4.

NAME \qquad AGE
(if under 21)
ADDRESS \qquad

1 am interested in the following subject(j) with/without equipment.

We shall net worry you with personal visits.
(AUGUST/57)

BLOCK CAPS PLEASE

- part of "His Masteris Voice", Marconiphone. etc. etc

highstone utilities
Ex-R.A.F. 2-valve (2 voll) Mierophone Amplifiers, as used in plane Inter com. in self-contained metal case; can be used
to make up a deaf ald outfit, Intercomto make up a deaf ald outfit, intercomcomplete with valves and Fitting Instructions, 201 - post $2 / 6$. Useful wooden box with partitions to hold amplider, $2 /$ - extra. Ditto, less valves. 10 - hand Nitero$5 / 6$ Tannoy $71-$ Similar Instrunients, moving coil, 8, All post $1 / 4$. Mask type with swith 3i. post gi. Mike buttons (carbon) $2 /-$. Moving coil 3/6. Both post 4d. new streamlined Soliering lrons.-Our new streamlined 50 watte, 116 . Standsrl Iron with adjustable blt, 200 年 $250 \mathrm{v}, 60$ watts. $13 / 6$. Heavy These Irons are guaranteed, and all parts are replaceable.

 with switch, $9 / 6: 100 \mathrm{~m} / \mathrm{A}$. 2 2in. m / c.
$7 / 8$ all post extra. Meter Movements Units with $2-500$ microamps, $9 /$, post lic. Prell Transformurs. - These guaranteed giving 3, 5 or 8 yolts output at 1 amp., operate bulb, buzzer or bell. Will supply light in bedroom or larder, etc., $9 /-$ Similar 12;6. Both post $1 /$-. BELLS for use with BUZZERS. 4'-, post 5A. Testers, with vest Sparking pluy Ne with gauge, 3 6, post 34. S.ffit. Num Indicator lampm, for use on 26 , post 41 . Veon Indicator, complete Wlith condenser, pencil type, with vest pocket clip, ${ }^{76}$, post bid. model is a reat radio recelver, fitted with a permanent roomal 126 , pust 81 . Spare Permanent Detectors, $2^{\text {2 }}$ each. When ordered separately, 2/6; with clips and screws, 210, post
3d. Headphunm, brand now, S. G. Brown, G.E.C., otc., 23/- and super-sensitive, 30% a pair. Hesulphones in (ioud Order, 6/Armat quility, 76 and 101 . Balanced Armature. Type (very sensitive), $13 / 6$.
All post $1 / 8$. New Slumbe F:ar-wleces, $3 / 8$ All armature type, $4 / 8$ (two of these will make an intercom. Set). Ex-R.A.F. earplece. 2/6, post 4f. (All Ifeadphones Ilvted are sullablu for use with our Crystal
Sets). Money refunded if not cornpletely sets). Money relunded is not complete
HIGHSTONE UTILITIES
58. NEW HANSTEAD, LONDON, F.. 11 New tllustrated List sent on request with
2d. stamp and S.A.E. Letters oniy.

moovaco andims Acsut Cabe WIRE Genuine Combat phone communicaphone communicaRustless as it
PVC covered. Numerous uses include fencing gan

baling goods and heavy parcels, toug suspension lines for all purposes. Use instead of roping-neater, stronger and aimost everlasting. Fixes almost any
thing. An essential article to have about the place. 1,000 yard drum, torrific breaking point, only 9 bil, carriage, etc. 3/6. Case of 6 carriage free. A Government
surplus article that must have cost pound surplus article that must have cost pound to make, and our price is cheaper than
(Headouarter and

ENERAL SUPPLIES ITD.

(DEPT, PMC/22) 196-203, COLDHARBOUR LANE, LOUGHBOROUGH
JUNCTION, LONDON, S.E.5. OPEn all Saturday. I p.m. Wednesday.

MAKE MONEY - making casts with $V / N A M O L D$

A grand spare-time occupation

WITHOUT any previous experience you can mass produce any obiect, from a chessman 10 a candlestick, statuette or model ship. in plaster. resin, concrete, etc. the BEST results. Easy to work, can be used over and over again. Needs NO special equipment, provides a protitable and enjoyable spare-time occupation with mum outlay.

Write ior full details and instructions. Aiso avail: methods of heating and melting preparation ol models and moulds, etc. Price $1 / 6$ post free, from :-
vinatex lid. (Dep: P.m.3). Carshalton. surrey

NEW CABIES \& FITINGS tOUGH RUBBER CABLES per 9 d .25 yds .50 yds .100 yds.

LONDON
 WHOLESALE WAREHOUSE
 165 (PM), QUEENS ROAD PECKHAM, 8.E.15

rel. ? NEW Cross 7143 or 0800,

WORLD WIDE RADIO RECEPTION

FOR THE AMATEUR RADIO ENTHUSIAST TUNE IN WITH THE
MALVYN SINGLE VALVE SHORT WAVE COMMUNICATION RECEIVER
All-Dry Battery operated : Extremely low running costs: Band Spread Tuning : Actractive Front Panel : Full operating instructions included.
PRICE OF COMPLETE RECEIVER, 74/6 (Batteries and Phones Extra). Post Free U.K. Money Back Guarantee. Send S.A.E. to actual Manufacturers for Free Descriptive Literature.
MALVYN ENGINEERING WORKS Radio and Electronic Engineers
Tel. : Hertford $2264 \quad 7$ Currie Street, HERTFORD

> BRASS, COPPER, DURAL, ALUMINIUM, BRONZE
> ROD, BAR, SHEET, TUBE, STRIP, WIRE
> 3,000 Standard Stock Sizes.
> NO QUANTITY TOO SMALL. List on application.
> H. ROLLET \& CO. LTD.

> 6, CHESHAM PLACE, LONDON, S.W.1. SLOane 3463.
> Also at LIVERPOOL, LEEDS, MANCHESTER, BIRMINGHAM.

BARGAIN OFFERS!

G.POO TELEPPHONE CON cation between House and Carage Office and Works, etc., genuine G.P.O 8 "all type telephone in polished wood box, 8 in . $\times 6 \mathrm{in}$. $\times 3 \mathrm{in}$., fitted carbon Mike. transformer, condenser. magneto bell. switchhook and contacts, receiver mond cord connection strip and hand magneto generators, 50/- per pair (carr. 7/6) with G.P.O. MIKE
G.P.O. MIKE BUTTON, lin. dia. carbon granule inset with mica dia. with mike transformer and wiring diagram for use as Baby alarm, $5 / 6$ post free.
D.C. DYNAMOS, $14 / 32$ volt 9 amp shumt wound Dynamo 2,500 r.p.m. with comiroter panel hitled var. resistunct volt $10 / 14$ amp. shunt wound Dynamo 1.400 r.p.m., $85 /-$ carr. $7 / 6$. Cut-out, $5_{\text {-, posi }} 1$:- 50,68 volt 10 amp . shunt wound Dynamo, 1,000 r.p.m., $£ 12.10$. carr. 20 .
12 volis D.C. input 230 volts D.C./A.C 12 volis D.C. inpui 230 volts A.C. 50 cycles S.P. 100 watts output, $\{9.10$, carr. 10,24 volts D. 2 . input 230 vols
A.C. 50 cycles S.P. 100 wats A5.5. carr. 1/, 230 volts D.C. Input 230 volis A.C. 50 cycles S.P. 200 watts output. £ 15 carr. 20 4 in . solid brass with heavy bakelite knob new surplus, 10, post $1 /-$
D.C. twin coil type, weight 6 volt 4 ibs . $5 /-$ pose $1 /$ pe, weight 10 ozs.; MAGGLIS. Suif Levick lype S.L.S. 36 in. polar gap, drilled poles, $2 / 6$ each, post 6 d., 27,6 dozen, post $1 / 6$. thick. $3 / 16$ in. centre hole, $3 / 6$ each post $6 d, 40$ - doz., post $2 /-$. 1957 Mode in neat bakelite case, Litz wound coil var. condenser, diode detector, plugs and sockers for aerial earth and phone connections. Complete with double headphones, 30/-, posi 2/6. All aerial tested.
ELECTRADIX RADIOS Dept. $H, 214, ~ Q u e n s t o w n$ Road,
London, S.W.8
MACoulay 2159

SEE EARTH SATELLITE

AMAZING NEW OFFER
ASTRONOMICAL
TELESCOPES 99/6!!
See the Moon at Close Quarters, Examine the immense Craters, Moun Rings, Nebulae, etc., etc.
Specification, 2 in. dia. Length 39 in, Mag $53 \times$ Linear (equivalent 2809
Area). Weight Approx. 2 lb .2 oz. Area). Weight Approx. 2 lb. 2 oz. Standard Model 99/6. De-Luxe Model 147/6.
Both Packed in strong Stowing Cylinder with Paps. Registered Postage and
wing With Caps. Registered Postage and
Packing 10/6. Altazimuth Portable Clamp Stands Extra 37/6, P./P. 2/6.
Astro Kits, Self Adaptable Parts. Astro Kits, Self Adaptable Parts
"Do It Yourself," $63 /=$ P./P. $3 / 6$ High Power Eyepieces, $80 \times 128 /$. P./P. 2/-. $106 \times . \quad 37 / 6 . \quad$ P./P. 2/-. Stamp for Full Particulars. ${ }^{3}$ Photographs 1/- set (returnable). Lists
Made to order.
HOLMES, WILSON \& EO. SCIENTIFIC INSTRUMENT MAKERS (Dept, PM25). Martins Bank Chambers, 13 Bedford Streat

PRINT YOUR OWN HOLIDAY SNAPS !

The JOHNSON JUNIOR PRINTING PACK is a photographic processing outfit containing all you want for making contact prints at home. No darkroom is required, and the instructions, plus a 16 -page booklet on printing included with every pack, tell you clearly everything you need to know about making first-class prints from your own negatives. Equipment provided includes a lohnson plastic printing frame, two $5 \times 4 \mathrm{in}$. dishes, two print forceps, a set of masks, 25 sheets of contact paper and two packets each of Developing and Fixing chemicals. Ask your nearest photo-dealer for the Johnson Junior Printing Pack. It costs only $13 / 3$.

AND POSTCARDS TOO-

If contace prines are too small for your taste, you can, just as easily, make postcard size enlargements of your snaps with the IOHNSON EXACTUM POSTCARD ENLARGER. No special skill is necessary. There are two sizes : No. I for $24 \times 34 \mathrm{in}$. negatives and No. 2 for 35 mm . negatives, each costing 53/6.
JOHNSONS OF HENDON LTD.

RIGHT!

for good braking

USE
 Fibrax BRAKE BLOCKS

FOR SURE STOPPING

AND A LONG LIFE

fibrax brake blocks stand up to the toughest testthe split-second emergency. Yet they brake smoothly and firmly. Two types: SOFT RED for alloy rims, BLACK for steel rims.
Ask your dealer for "FIBRAX"
FIBRAX LTD., 110, ORMSIDE ST., OLD KENT RD., LONDON, S.E. 15 New Cross 6785/6

THE "MINOR" IO in I

UNIVERSAL WOODWORKER

The "MINOR" lathe carrying a battery of three useful machines, any one of which may be operated without removing the others. ALL powered by ONE sturdy electric motor.

Showing the tilting saw-table with mortiser and planer ready for use. 7 in. saw with $2 \frac{1}{8}$ in. cut. FINE, MEDIUM \& COARSE SAW؟ AVAILABLE.

A view of the 4 in. planer with saw and mortiser ready for use.

Combination table being used for Spindle mculding. Cutter block panel cutting. Easily adjustable for takes the place of the circular saw. varying lengths.

Combination table in use with Combination tatle in use with slot sanding disc. This table has many mortiser. Mortises from \ddagger in. to uses. $\frac{5}{8} \mathrm{in}$.

Send Stamp NOW for illustrated brochures to:
CORONET TOOL CO., Dept. PM, Mansfield Rd., DERBY

[^1][^2]
Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship

Jig \& Tool Design
Press Tool \& Die Design Sheet Metalwork Automobile Repairs Garage Management Works M'gmnt. \& Admin. Practical Foremanship Ratefixing \& Estimating Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance Engineering Steam Engine Technology 1.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship
Machine
Automobile
Structural
R/F Concrete
Mactural Engineering
stages)
Radio Technology
Telecommunications
Wiring \& Installation
Television
Radio Servicing
Gen. Elec. Engineering
Generators \& Motors
Generation \& Supply Aircraft Malnten. Licences

Aerodyamics
Electrical Design Ordnance Survey Dr'ship.

BUILDING AND STRUCTURAL

L.I.O.B. A.I.A.	A.R.S.H. M
A.M.I.P.H.E. A.A.L.P.A	A.F.S. A.R.I.C.S.
Building Construction	Builders' Quantities
Costs \& Accounts	Carpentry \& Joinery
Surveying \& Levelling	Building Inspector
Clerk of Works	Building Draughtsmanship
Quantity Surveying	Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptors Woodwork Teacher Metalwork Teacher Housing Manager (A.I.Hsg.)

Common. Prellm. Exam.
A.C.I.S., A.C.C.S.
A.C.W.A. (Costing)

School Attendance Officer Health Inspector
Civil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME

 AND EARN BIG MONEYMen and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

OVER SEVENTY YEARS OF * CONTINUOUS SUCCESS

NatIonal INSTITUTE OF ENGINEERING
(In association with CHAMBERS COLLEGE-Founded IB8S)

(Dept. 29)

148, HOLBORN, LONDON, E.C.I
SOUTH AFRICA : E.C.S.A., P.O, BOX NO. 84I7. JOhANNESBURG AUSTRALIA.: P.O. BOX NO. 4570. MELBOURNE

132-PACE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:
t Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.

- How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY INTERESTIMG COURSES

TO SELECT FROM!

A.M.I.Mech.E.,
A.M.I.M.I.,
A.M.Brit.I.R.E., A.M.I.P.E.,
A.M.I.C.E., A.M.I.Struct.E.,
A.M.I.Mun.E., M.R.S.H.,
A.M.I.E.D., A.F.R.Ae.S., London B.Sc., Degrees.

Fully guaranteed postal courses for all the above and many ott:er examinations and careers. Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.
If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

$\underset{\sim}{F}$ Free Coupon

To: NATIONAL INSTITUTE OF ENGINEERING (Dept. 29), 148-150, Holborn, London, E.C.s.
Please Forward -your Free Guide to
NAME
ADDRESS

My general interest is in : (1) ENGINEERING (2) AERO (3) RADIO (4) BUILDING
(Place a cross against (5) MUNICIPAL WORK ${ }^{\text {(4) }}$ the branches in which

The subject of examination in which I am especially interested is

[^0]: THE ULTRA LENS COMPANY
 11c, Oxendon Street, London, S.W. 1

[^1]: Published about the 301 h of each month by GEORGE NEWNES LIMITED. Tower House, Southampton Street, Strand. London. W.C.2. and Printed in England by W. Speaight \& Sons, Exmoor Sireet, Iondon, W. 10. Sole Agents for Australia and New Zealand-Gordon \& Goich (A/sia), Lid. Sole Agents for South AfricaGentral News Agency Lid. Suoscription Rate (including postage): For one year, Inland 18s. 6d. Overseas 17s., Canada 17 s

[^2]: Practical Mechatics Advice Burea'1. 1257 COUPON This coupon is avallable until August 3ist, os7, and must be Order. A stamped addressed envelope must also be enclosed. Practical Mechanics.

 August, 1957.

