The Leading Magagine for thome Craftismen

NEWNES

Switch from this -

and step up production...

For working within close limits, an Anglepoise is simply indispensable. However good a worker and his eyes may be, he must see the job. This applies in all fine work, drilling, assembling, etc., where instantly adjustable close-to-the-job lighting is a sheer necessity.

Anglepoise throws a clear, concentrated light right on and into the work, not in the operator's eyes. follows the job from any position or angle, degree by degree, at a finger-touch and 'stays put' in any required position-and out of the way when not needed. It needs only a low-powered bulb for high-class results -a big saving on the lighting bill (it can be supplied with a small shade for low voltage systems). Why not learn more about this fine lamp by sending for Booklet XX?

TERRY

 Anglepoise LAMP* A SUGGESTION FOR MACHINE MAKUFACTURERS:

Why not fit your products with Anglepoise? We wil submit samples on approval.

Sole Makers: HERBERT [ERRY \& SONS LTD • REDDITCH • WORCS

GIVE YOURS A NEW LEASE OF LIFE

These silent running "Sealed System's " will completely modernise that Pre-war Refrigerator. They are ready to install, no technical knowledge required. Fit it yourself, SILENT. EFFICIENT. CHEAP.
5 YEARS' FREE REPLACEMENT
WRITTEN GUARANTEE WITH EACH UNIT.
NO MORE SERVICING EXPENSES.
8 MODELS AVAILABLE, RANGING IN SIZE FROM $3 \mathrm{cu} . \mathrm{ft}$. to $15 \mathrm{cu} . \mathrm{ft}$. Prices from £26/15/0 to $£ 36 / 15 / 0$.

Send stamped, addressed envelope for
"SEALED SYSTEMS." Free Reduced Price Leaflet. Latest complete general catalogue with many 'Hints \& Tips." price $1 /$ - post free (Refunded on first order)

BRAID BROS.

for Home Refrigerator Construction.
50, Birchwood Ave., Hackbridge, Surrey. Tel.: Wallington 9309 We do not wish to be assaciated with Scropped Second-hand Ice-cream Components.

Follow the FLUXITE way to Easy Soldering

No. 5 Cleaning surface for REPAIR

Solder will not adhere to a dirty surface ; so first of all clean it bright with coarse emery and then smear on FLUXITE with a piece of cloth or stick.

FLUXITE is the household word for a flux that is famous throughout the world for its absolute reliability. In factory, workshop and in the home FLUXITE has become indispensable. It has no equal. It has been the choice of Government works, leading manufacturers, engineers and mechanics for over 40 years.

Fluxite Limited, Bermondsey Street, London, S.E. 1 G.M. 55
 beautify your home and delight your friends. There are 83 practical and easy-tofollow illustrations and ideas to show you how to do it.

Published by C. Arthur Pearson Ltd., Tower House Southampton Street, Strand, London, or obtainable from:

SAMUEL JONES \& CO., LTD.

SAMUEL JONES \& CO..LTD. Ottaimable from all biocheseles orly requidtion

TRADE MARK
The E.D. Mk. V:
"EVEREST"
Tuned Reed 6 Channe: Radio Control Unit is the crowning achievement for the remote control of all models. Four othar models are available which will adequately meet the demands of the Radio Control enthusiast.
E.D. DIESELS

Seven models ranging from . 45 c.c. ta 5 c.c. Precision built and world famous for their speed and reliability under all conditions

THE FINEST EQUIPMENT FOR THE MODEL MAKER!

Latest

Competition Successes A.R.C.C. RALLY, April 28th, 1957 RADIO CONTROL COMPETITION
G. H. Redlich using st. E.D.Mk. V. "EVEREST" and E.D. 5 c.c. "MILES SPECIAL" ENGIN
2 R. Higham using E.D. Mk. V. "EVEREST"

S:M.A.E. RALLY, WOBURN PARK
G. H. Redlich using
E.D. Mk. V. "EVEREST"

6 CHANNEL RECEIVER

Write for our new illustrated list giving full details of all E.D. ENGINES, RADIO CONTROLS, SPARE PARTS, Etc.

Order from your Model Shop.

[^0] 1/6 : 2 for 25/-, post paid.
VIBRATYOR TNITS, 6 v. input, provides all L.T. and H.T. supplies for the 18 and 38 sets, fitted Mallory Type 650, non-sync. vibrator, rectifers and claborate smoothing. in metal cases 9in. $\times 6 \mathrm{fin} . \times 31 \mathrm{in} .$, complete with leads, new, unused. $17 / 6$. pose
MERCURY SWITCHES, 250 v . 10 amp., glass tht type fitted brackets. specially
made to give 3-second delay make after tilt , new boxed $5 /-$, post 7 d . made to give 3 -second delay make after tilt, new boxed $5 /$-, post 7 d .

"BAMEI" GARDEN SPRAYERS, also suitable for disinfectants, penetrating oll, lime wash, etc., made by
Fisons Pest Control Ltd. consists of the special glass Fisons Pest Control Litd., consists of the special glass is a i-or 1 -oz. measure, adjustable webbing for shoulder or back, so that both hands are free. 40in. fiexible ubing to the polished brass syringe, with nozzle that gives a finely atomized spray, Scrap those messy old-fashioned sprayers that require buckets, hoses, etc.. Invest in a "Bambi," value to-day $45 /-$, our price new boxed $20 /-$ post $3 /-, 2$ var 2 , post paid.
IAINS BLLOWERS, $200 / 250$ v. A.C./D.C., f amp., 5,000 r.p.m., consists of the motor with attached enclosed fan, end funnel intake 14 in . dia, side outlet 1 in . x fin., plinth
base 41 in . x 5in., finish black crackle and aluminjum dtebase 41 in . x $5 i n$, finish black crackie and aluminium de73lb., a very superior blower, fraction of original cost, 25%, post $3 /-$
SIIADED POLE MOTORS, $12-\mathrm{v}$. 50 -cycles A.C., size 3 in . $\times 2 \mathrm{in} . \times 1$ in., complete with 3in, fan. made for lamphouse cooling, silent running, unused and perfect, $10 /$-. post $1 / 4$.
TFLNEPIBONE SETS, consists of 2 combined miorophones and recelvers which. when wired up with ordinary twin flex, provide perfect 2 -way communication excellent results up to 1 mille have been reported - self-onerglsed, no battery required price the 2 instruments new unueed, \%/6, post $1 / 3$, twin P.V.C. $14 / 36$ Hex up to 300 ft lengths at 1d. per ft.
HEATER MATS, $230 / 250 \mathrm{v}, 1,000$ watts. open mesh with eslestos insulation, size 12in. x 10 in , , 1in. wide border each end for fixing, 2 in . series (500 watts) are ideal for clothes drying cuphoards, also suitable for convectors, photo drying. etc., brand
new $5 / 6$. post 9 ., 2 for $10 /-$, post $1 / 4$. Send s.a.e, for current bargains lists.

TTE. : BAR 13 H8

NEW BOXCOMBING OR JOINTING ATTACHMENT

FOR USE WITH YOUR
 FOR USE WITH YOUR

 BRIDGES, BRIDGES,Intricote work such
as trinket, cigor-
ente and musical
boxes can be ex-
perty made in
few moments. BRIDGES,
Intricote work such
as trinket, cigar-
ente and musical
boxes san be ex-
perty made in
few moments. BRIDGES,
InLtricote work such
as trinket, cigar-
eite ond musical
boxes can be ex-
pertly made in
few moments., WOLF DRILLS BRIDGES,
InLtricote work such
as trinket, cigar-
eite ond musical
boxes can be ex-
pertly made in
few moments., WOLF DRILLS BRIDGES,
InLtricote work such
as trinket, cigar-
eite ond musical
boxes can be ex-
pertly made in
few moments., WOLF DRILLS BRIDGES,
InLtricote work such
as trinket, cigar-
eite ond musical
boxes can be ex-
pertly made in
few moments., WOLF DRILLS BRIDGES,
InLtricote work such
as trinket, cigar-
eite ond musical
boxes can be ex-
pertly made in
few moments., WOLF DRILLS BRIDGES,
InLtricote work such
as trinket, cigar-
eite ond musical
boxes can be ex-
pertly made in
few moments.,

A new attachment of tremendous value to all woodworkers and users of Bridges, Black \& Decker and Wolf Electric Drills.
\star Perfect joints made with precision and speed.
\star Simple to fix and operate.

* Any width of timber can be used.
\star Glue unnecessary.

ONLY LONDON
PRICE 69/6 Post I/ADDRESS
S. TTZACK \& SON LTV. smonemimu men

341-345, OLD STREET, LONDON, E.C. 1

Practical motor repair manuals for the owner-driver

. . . if you own one of these cars you will find these books invaluable - an investment ta cut your running and maintenance costs!

For only 10s. 6d. net each these fomous PEARSON books cover every aspect of on-thespot maintenance and repair-fully supported by casy-to-follow diagrams . . . decarbonisation; electrical and ignition systems (including diagrams) : fuel systems; gearboxes ; brakes; clutches; steering and suspansion; lubrication, etc.

Our complete list of motoring and motor-cycling books is now available on request.

FROM ALL BOOKSELLERS

. 1. . or in case of difficulty use this handy C.O.D. order form-

> AUSTIN CARS

By T. B. D. Service A daily guide to the repair and maintenance work on the wide range of these cars manufactured since 1932 and covering everything from lubrication to engine overhaul,
including decarbonisation and valve grinding practica illustrations elarify all the more technical points. 232 pages.

10s. 6 d .(11 s .3 d . by post)
This practical book covers all 8 and 10 h.p. models ; Consul ; Zephyr Six and Zephyr Zodiac; $30 \mathrm{~h} . \mathrm{p}$. V8 models; 22 hip . V8 models. Complete maintenance and repair informationroutine lubrication; decarbonisation; engine overhaul; FORD cooling system; clutch and gear box: rear axle: firel CARS systen: brakes; steering and the electrical system are fully explained. 13 illustrations, 240 pages.

10s. 6d. (11s. 3d. by post)

By T. B. D. Service
This hook will enable the owner or repairer of Morris models produced since 1934 to carry out all the routine maintenance necessary for efficient running-the technical information is presented in an essentially practical form, fully supported by detailed drawings and diagrams.
93 illustrations, 196 pages. 93 illustrations, 196 pages.

10s. 6d. (11s. 3d.by post)
By F. A. Stepney Acres, M.I. Mech.E. Covering all models since 1933. Easy-tofollow illustrations simplify maintenance and upkeep problems. Covers top overhaul;

VAUXHALL CARS

systems; gearboxes; clutches; brakes; rear axte and rear suspension frontal suspension and front axle; electrical equipment, etc. 118 illustrations, | 242 pages. |
| :--- |
| 20 s .6 d . ($11 \mathrm{~s} .3 \mathrm{~d} . \mathrm{b}$ by post) |

ORDER HERE

The EMCO-UNIMAT

Apontable,precision, machine tool

Only 16 in . long, the Emco-Unimat is capable of several standard workshop practices
to highly critical limits. The basic tool will buff, turn, polish, drill, grind and mill, and a full range of extra equipment vastly increases the scope of the tool.

SPECIFICATION
Centre Height, $\mathrm{I}_{8}^{5} \mathrm{in}$. Takes between centres 6 gin. Hollow spindle admits \ddagger in. Drill chuck cap, \ddagger in. Chuck to drill table (max.), 4 in

See the versatile Emco-Unimat at your local tool dealer, or write for fully descriptive literature to :

ADDITIONAL EQUIPMENT Jig Saw. SC Lathe Chuck. Circular Saw. Drilling Vice. Milling Table and Clamps. Flexible Shaft. Thread Chasing and Dividing.

$\begin{aligned} & \text { CASH CR } \\ & \text { PRICE } \\ & \text { C }\end{aligned} 17-6$ extendod credit available

 generous terms available to merchant stockists J. \& H. SMITH LTD. 16 harrison st. Leeds : tel. 21561
7 STOCKS and DIES

Accountancy Air Conditioning Architecture Architectural Drawin Auditing
Book-keepinz Building Construction Building Specifications Business Training Business Manaģement Carpentry \& Joinery Chemical Engineering Civil Engineering Clerk of Work: Cost Accounting Concrete Engineerin: Diesel Engines
Draughtsmanship Drawing Office Practice

$$
-\quad-\quad \mathrm{ct}
$$

Training with I.C.S.

 THE WAY TO SUCCESSThe great and growing demand of today is for TRAINED men. Tens of thousands more are needed, but there is no worth-while place for the untrained.

Let I.C.S. Postal Tuition give you the specialised knowledge that marks you out for promotion to the best jobsfor SUCCESS ! I.C.S. teaches you at home in your own time-expertly, quickly and easily. It is the world's largest and most successful correspondence school, offering, courses for almost every branch of trade, industry and the professions.

Moderate fees include all books

Municipal Engineering Police Entrance
Plumbing
Production Enginearing Quantity Surveying Radio Engineering Radio Service Eng. Refriceration
Salesmanship
Sanitary and Domestic Engineering .
Sheec-Meral Work Short-Story Writing Structural Steelwark Survering
Television Technolozy \& Servicing
Welding. Gas and Elec.
Woadwork Drawing

And many other subjects

Courses are available for the
GENERAL CERTIFICATE

OF EDUCATION and

most of the Technical,
Professional, Commercial and
Civil Service Examinations.
Examination Students are
coached until successful.

LEARN-AS-YOU-BUILD PRACTICAL RADIO
 COURSE

A foundation course in basic radio. electrical and electronic theory. It provides a thorough oractical training and ar the same sime enables the student to equip himself with a radio peceiver and ewo high-quality testing instruments of lasting usefulness.

Take the first step NOW-write today for free booklet on your special subject.

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. I69C. International Buildings, Kingsway, London. W.C.2.

Name (USE BLOCK LETTERS)
Address

* BRITISP CREPTSMAN. SHPP SUPREME
- AVAILABLE IN : H.S.W. B.s.F., Drass or Metric.
N.F., N. Mud Unified THE FINPST QUAEITI AVAILABBIE AT LOWNESTPICES
THE BRITISHTAP \& DIE CO. 'LTD. TRIANGLE WORKS, EDMONTON, N.9.

ELECTRONICS CABPNTRY ETC. ETC TELEVISION arpentry etc

 photosentiry of learning RADIO AMATEUR S.W. RADIO

N(W) completely up-to-date methods of giving instruction in a wide range of technical subjects specially designed and arranged for self-study at home under the skilled guidance of our teaching staff.
MCW experimental outfits and lesson manuals are despatched on enrolment and remain the student's property. A tutor is allotted to each student for personal and individual tuition throughout the course.
In the case of radio and television, specially prepared components are supplied which teach the basic electronic circuits (amplifiers, oscillators, detectors, etc.) and lead, by easy stages, to the complete design and servicing of modern commercial radio and television receivers.
If you are studying for an examination, wanting a new hobby or interest, commencing a career in industry or running your own full-time or parttime business, these practical courses are ideal and may be yours for moderate cost. Send off the coupon to-day for a free Brochure giving full details. There is no obligation whatsoever.
The only Home
Study College
run by a
World-wide industrial organisation.

$\square \sqrt{1}$
 EMI INSTITUTES

 mechanics chemistry photography ELECTRICITY WOODWORK ELECTRICAL WIRING DRAUGHTSMANSHIP • ART etc.

You will be very impressed with the clarity and detail, also the remarkable ability of a modern prismatic glass to "see" in poor light. Coated lenses and prisms and scientific construction are responsible for this, giving excellenicontrast in the subject being viewed. DOLLOND prismatic BINOCULARS are available in eight different powers, covering 18 models.
WHATEVER OUTDOOR INTERESTS YOU MAY HAVE, A PAIR OF BINOCULARS WILL MAKE THEM MORE ENJOYABLE. We cordially invite you to see the range of DOLLOND BINOCULARS which provides a glass for every sporting activity.

PRICES FROM £IO-10-7 TO $£ 57-19-6$

May we send you our FREE 32-page BINOCULAR CATALOGUE? This includes Binoculars by Dollond, Kershaw, Ross and Barr \& Stroud, and Dollond Telescopes.

PLEASE ASK FOR CATALOGUE ST. 5

DOLLONDS

it's the wise man with a THIRD HAND today

Nowadays, it's no laughing matter for a man who hasn't his " third hand " handy in the home. garage or workshop when tackling the inevitable repair and maintenance jobs. With a positive grip, exceeding 2,000 lbs. if required, the Mole Wrench locks on che job-in-hand, leaving both hands free-your "third hand "' in fact, used as super-pliers, wrench, hand vice, clamp-whatever the job demands. Join the thousands of satisfied users-visit your Ironmanger. Motor and Motor Cycle Accessory Dealer for

In two sizes: 7in., $12 / 6$ and $10 \mathrm{in} ., 1$ 5/0

[^1]M. MOLE \& SON LTD., BIRMINGHAM, 3

Make model buildings

Anew method-described in a new book on Pyruma Modelling. This shows how to turn empty match boxes into model buildings, by Pyruma 'Plasticraft.' It is one of the many methods of modelling in plastic Pyruma, shown in black and white and full colour pages, which enable you to build and finish in natural colours :-

MODEL FARMS, RAILWAY STATIONS,
SIGNAL CABINS, AIRPORT BUILDINGS,
DOCKS, SHIPS, FIGURES, ANIMALS,
ASHTRAYS, BOOKENDS, DOLL'S
FURNITURE, PLAQUES, RELIEF MAPS, ETC.

is a ready-to-use material, cheap to buy locally, and easy to work by following the Instruction Book offered below. Pyruma dries or can be baked to stone-hard permanence, then painted in natural colours. Sold by local Ironmongers and Hardwaremen, Hobbies shops and Art material Dealers, in airtight tins from $1 / 6$ upwards.

Send Coupon and 6d. P.O. (not stamps) for this NEW Book of instructions to :-

J.H.SANETERE EONTE

1857-1957

DEPT. P.M., ESSEX WORKS, RIPPLE ROAD, BARKING, ESSEX. Enclosed 6d. P.O. (not stamps) for PYRUMA MODELLING INSTRUCTION BOOK addressed to:-

NAME (block letters)

IDDRESS

14in. TV CHASSIS, TUBE \& SPEAKER, $\mathbb{1}$ 3.19.6
With a 14 in , round tube, which you can convert later toa 17 in. Rectangular if you wish, I.fs $10.5-14 \mathrm{mc} / \mathrm{s}$ less valves. Chassis, valyes and tube guaranteed for 3 months. With 5 of the valves, ©15.19.6. Complete with all valves, $\{19.19 .6$. Ins., Carr. (incl. tube), 25/-

LOOK! SUMMER SALE BARGAINS. TVs 17in. $£ 19.19 .6$

17in. Rectangular tube on adapted chassis. Any or all channels. The TURRET TUNER

 These may be on YOUR shell. Chassis sizie 11 lin. $\times 1414 \mathrm{in} . \times 11 \mathrm{in}$. 12 monshs' guarantee on the Rectangular tube, 3 months' guarantee on the chassis and valves. Ins., carr..
$\mathbf{2 5 l} /$. All complete and working on any channel, $1-5$, but less valves. With 5 of the valves, $\mathbf{6 2 1} 19.6$. All valves, $£ 25$. 19.6.

A TURRET TUNER

of famous manuf. is fitted free of charge to either of the above chassis, giving a choice of channels at an extra cost of $50 /$ - towards the. cost of the TUNER. Only available to chassis clients.
TV AERIALS, 25/6. For all I.T.A. and F.M. Channels, 3 element type for outdoor or loft, at half their original price. P. \& P., $2 / 6$.
SOUND AND V.SSION STRIPS, 35/6. Tested working. Complete vision strip. LESS valves. $1 . F s 16-19.5 \mathrm{mc} / \mathrm{s}$. Drawings FREE with order. P. \& P., $2 / 6$. Size : $8 \frac{1}{2} \mathrm{in}$. x 4 in. $\times 4 \frac{1}{2}$ in
TIMEBASE, 25/6. Complete with focus unit, etc. Tested working. LESS valves. Size: 9 ! in. $\times 6 \mathrm{in}$. $\times 7 \mathrm{in}$. Drawings FREE with order. P. \& P., $3 / 6$.
POWER PACK, 39/6. R.F. E.M.T. 7-9 KV. Amplifier stage-6V6 with O.P. transformer 3 ohms matching. Smoother H.T. 350 v . at $250 \mathrm{~m} . \mathrm{a} .6 .3 \mathrm{v}$. at 5 amp ., 22 v . at 3 a np .
 Drawings FREE wish order. Ins., Carr., 5/6.
Bin. P.M. SPEAKERS, 8/9. Ideal for fitting into small cabinet or cupboard door for the lady of the house, let her follow that radio programme. Buy now while stocks last. P. \& P. 1/9. With O.P. Trans, fitted, $10 / \%$, Póstage $2 / 3$
Y.H.F. 1125 RECEIVER, $7 / 9$. Including valves. Chassis aporox. $12 \mathrm{in} . \times 8 \mathrm{in} . \times 4 \mathrm{in}$. Needs some modification to put into service. P. \& P., $2 / 3$.

ARGOSY PUSH PULL R/GRAM CHASSIS I39/6 8 valve. Latest models. $3 \mathrm{w} / \mathrm{b}$ and and gram switched. Over 10 watts output. Full cone range, 4 knob controls. Ins. and carr. $5 / 6$. LESS values.

MAINS TRANSFORMERS, $3 / 9,350-0-350$ v. 85 m.a. 12 v. 4 v. heaters. Prim. 100-250 v. Post and Packing, 2/9. Ideal auto trans.
MAINS TRANSFORMER, $2 / 9.350-0-350 \mathrm{v} .80 \mathrm{~m} .2 .12 \mathrm{v} .4 \mathrm{v}$. heaters. 200-250 v primary. Post and Packing. $2 / 9$.
O.P. TRANSFORMERS, 1/3. Salvage guaranteed. Standard 2-5 ohms. Postage 9d. 20 for Cl . Post and Packing, 5/6.
V.H.F. 1456 RECEIVER, 27/6. Ex-W.D. New condition. 6 valves. Receives TV sound and amateurs. $30.5-40 \mathrm{mc} / \mathrm{s}$. I.Fs $7 \mathrm{mc} / \mathrm{s}$. Dial drive tuning. FREE drawing. Carr.. Ins., 4/6.

POPULAR RADIO OR RADIOGRAM CHASSIS $39 / 6$

$3 \mathrm{w} / \mathrm{b}$ and and gram. Superhet. 5 valves, International Octal: Ideal for table gram, but still giving high quality output. 4 -knob control. Bin. P.M. speaker, $7 / 9$ extra. Set of knobs, $2 /$. Chassis size, 12 in . $\times 6 \mathrm{in}$. x 7 in ., less valves. Ins., Carr., $4 / 6$. RADIOGRAM CHASSIS, 2919
5 -valve superhee. Including Bin. speaker. 3 w/bands A.C. mains. Complete, less valves Front drive. Chassis size, 12in. x 10 in . x 8 in . FREE printed dial. Carr,. Ins., $5 / 6$.

12 MONTHS' GUARANTEE LATEST RECTANGULAR TUBES

 I7in. £7.10.014in. E5.10.0
We are now able to offer this wonderlul guarancee. 6 months full guarantee, 6 months progrcssive. Made possible only by the improved high quality of our tubes, 65. These carry 3 months guarantee.

12 in . TV TUBES-66. All types. Telephone first. Shortage may cause delay. Insurance and Carriage on all tubes. $15 / 6$

DUKE \& CO.
(P.M.), 621/623, ROMFORD ROAD, MANOR PARK, E.I2

GRA, 6677.8, 2791
Liverpoof Street-Manor Park Station 10 mins. free catalogue.

METALS

AND ACCESSORIES

ALUMINIUM, BRASS, COPPER, STEEL, ETC.

Angle, Sheel, Tube, Foil, Strip, Channel, Rod, Bar, Wire, Moulding, Etc. Tin Plates, Silver Steel, Expanded Metal, Blanks, Rivets. Springs, Etc. Tools Drills, Taps, Dies, Screws, Etc.
Formica, Perspex, Pegboard, Paxolin, Ebonite, Curtain Rail and Rod. Adhesives. Erc. and many other items for use in Home, Workshop. Erc.
LARGE or SMALE Quantities COMPARE our PRICES
MAIL ORDER SERVICE (2d./stamp for list) IMMEDIATE DESPATCH
CLAY BROS. \& CO. (P.M. 8)
6a SPRINGBRIDGE ROAD, EALING. W. 5
Phone : EALing 2215
2 Mins. ealing broadway station, opposite bentalls

The "Stremullinia" Motor Hoat Hull is carved from seasoned timber and is designed for speed and is suitable ior steam, electric or i.c. arive. Excellent. for radio control. Length 3 rt. 3in. beam 8 in .. price $£ 9.14 .0$.
The Marine hoat Motor is an Ideal power unit for this model. Operates on The cell dry batteries in series or on 6 volt accumulators. Wedi suited for radio
$2-3$ control work, as it can be polarity reversed. Price $£ 2.17 .6$.

18-25 Kingswell Street, NORTHAMPTON
London: 112 High Holborn. W.C.I. Minchester: 28 Corporation Serest, 4
 LE SEXTANTS MK.IX, 8 mand AM wism A very recent and improved pattern weighing only $4!$ lbs. and fitted with double eyepiece. Original cost over $f 100$ 67/6
A few in imperfect condition available at $37 / 6$
40x Pancratic Featherweight Telescope
This precision British made instrument is the most powerful lightweight Telescope yet produced. Power can be varied from $25 x$ to $40 x$. Fice whree draws extended 28 in. Weight only 12 ois dia. Length closed 12 in . With three draws extended 28 in . Weight only 12 ozs £7.7.0

Post
Free.
Ex-Government Table Tri-
15/extra.

Every purchase covered by our guarontee of " Satisfaction or full
CHARLES FRANK
67-73 SALTMARKET, GLASGOW, C. 1
Telephone. Bell 2106/7 (Established 1907). Telegrams: "Binocam," Glasgow

THE ULTRA LENS AIDS PRODUCTION

Write for full particulars to
THE ULTRA LENS COMPANY
17c, Oxendon Street, London, S.W. 1
Tel.: TRAfalgor 2055

Make it or Mend it - you can't go wrong!

 MAKE MODELS

Rawlplug Flastic Wood is of enormous help in modelling. Intricate shapes and curves become easy. You apply it like putty; when dry it's wood-can be sawn, planed, or polished.

MEND MODELS

Durofix is a strong, colourless adhesive that sticks almost anything to anything with a practicallyinvisiblejoin. Being heat-proof and waterproof, Durofix is ideal for repairing crockery, china and glass.

hawlplug DUROFIX Tubes from 9d. Tins from $2 / 9$

DRILL BRICK

You'll drill brick, tile, cement, etc., with astonishing ease and speed by using a Rawlplug Durium-tipped Drill. Can be used in hand or suitable electric drills.

rawlplug DURIUMtipped DRILLS

HARDWARESTORE

EX-GOVERNMENT BARGAINS

MAKE YOUR OWN ASTRO TELESCOPE dia. $251-20 \mathrm{in}$. paxolin tube to fit with jens retaini, 45 mm . 8/8. Focusing eyeplece, 8/8. \&2 the set. PITTO, but with 27 n . OG. and 27 in . tube 50 - the set. RALTY TYPE. 20X. 24in. long, 6 ibs., focusing eyeploce. YARIARM, E POWER TEELESCOPE. $7-21 \mathrm{X}, 52 \mathrm{~mm}$. OG. As new in caso with lock and key, 86.10 .0 ea.
DITTO, 15 -40X. Slightly smailer OG . Good condition.
 All Brass. E5.0.Oea, $5-15 X$. Good condition. Used equipment. £3,50 ea,
 filters, Eyepiece at approx. 60 degrees to line of slght. As ROW. E12.10.0 ea eyepieces. 20 X ., 40 X , 80X. All brass. As new. Length 30 in. Weight 26 ibs. 250 . Comprising 3 X optical system, infra-red converter cell.
focusing eye plece and built-in zamboni pile H.T. supply . Complete in leather case. In near new condition and tested working order. 37/8.
AlL SPARES for above avaitable. See lists.
NEW LEATHEH CASES for ROSS Service type 7 and NEW DEATHEAR CASES for ROSS service type 7 and
IO 50 bInocs $25 /-$ ea
TWIN ARM. condition. $35 /-$ each. CIRCULAR GLASSS. 9in, x lin., 30/-: 15in. x
 powerful blast. As. new. c3.10.0 each. 1230 v. A.C. 700 v . 120 output. smoothed Complete in case with valves. New. £3 each. G60 WAVEMETERS. $180-230 \mathrm{mc} / \mathrm{s}$ with $10 \mathrm{mc} / \mathrm{s}$ Crystal. less valves. Unused, 55 - each.
MOVING COIL. METERS. 2iin. sq.. flush fitting, $0-40 \mathrm{v}$.

TAYLOR HIOBSON PROIECTION LENS 5in. FI. 5 Coated. New, $£ 14$ ea. Cost $\Sigma 80.3$ in dia $\times 12$ in focue by Ross. New. \&4 ea. 341n. dia. x 32in. focus. New. R14. 3 3in. dia. E12. See lists for other types. EYEPIECES. 5/8in. W. A. Orthoscoptc focusing mount 50, ea. Ex New equip. $11 \ln$. ortho. extra wide angle (2in.
field), 6 coated lenses.
Ex new 55 ea. Ex used optioally sound. Eus. Focusing mortht. Coated. 11 in . field. New, non focusing. $30 /$ ea. See our Itsts for other types.

 Sound condition b5. but without adjustments. No. 42 Mk . I. New TELESCOPIC SIGHTS. M45. $2 \times 19^{*} \times 1^{\circ}$. M38 and M40.
 Prismatic 5 in. 10 ng and 4 in. All at $50 /-$ Unu.
new. DX optical sights. 1lin. long x lin., 17/6.
BRASE SLIDE MOVEAENTS. Adaptable to enlargers and other focusing devices. Slide runs in 5 ball races in brass channel. $12 i n . x 2 i n . ~ A ~ s n i p ~ a t ~$
$8 / 6$ ea, D. ${ }^{1 / 6 .}$.
BRASS RACK. 10in. long with steel plnion to suit. $6 / 6$. CHART BOARDS (DRA WING), 31in. X 31 in . x I11. In canvas case with cover. Battened back in hardwood pouches and fitting on back holding brass ruiles, curves and straight edges and 36 hinged flap drawing pins and other oddments. Brand new and unused, $50 /-$ ea. Ditto sllghtly used and minus drawing pins. 30/-ea. MIDGET MOTORS. 1Fin. X 2 in. wish V pulley and wire 16 mm . RECORDING CANIERAS. 141n. F4. Anastigmat 18mm. RECORDING CAMERAS. 14In. F4. Anastigmat shot recording. Not for normal cine use, Tested OK and complete in case with magazine. £3.15.0 ea. Spare mags, $8 / 6$ and 106 ea. ${ }^{2}$. $12-24$ V. A.C.-D.C. NEW \& BOXED As specifed P.M. hedige trimmer. $27 / 6$ ea. Used, yood eondition. 21/-ea. Ditto. Miniature U.S.A. type. 27i6. FFELD TELEPHONES TYue D. With duai post office

CARbon mikes, midget type, 2/8. Plots self enercised mikes. $2 / 6$, post $6 d$. guitars, ett Mike Traniformers to sult above, $5 /-\mathrm{ea}$, LONG RANGE HIGH POWER DUAL, TELESCOPES, AA identification. 12 X and $35 \mathrm{X}, \mathrm{GG} .60 \mathrm{~mm}$. ${ }^{\text {Cost }}$ Cost £15 ea. Used condition, need cleaning, £12.10.0. Carr ASTRO, TYPE TELLESCOPES (Finders). 5 X .14 in . OG AsTR0 TYPE TELLESCOPES (Finders). ${ }^{5 \mathrm{X}}$. 11 in . OG
 Dirizctors, No. 8 . By Ross, C.T.S., etc. A valuable
instrument to builders, survevors, etc. All the move instrument to builders, surveyors, etc. All the move
ments of a small theodolite. 3 X prismatic scope. In ex GEilent condition. £6 ea. Cost over sico. See our lists. and cam operated switches, ex American equip. New Min ea. 28 v . and 300 v . Makes nice 24 v . D.C. geared motor at one or twor evs. per second. New American equip., 20- ea. 200 v .60 Mallory 12 y. Virratior PACKS, about 200 v .60 FUEL, PUMTPS. 24 v. A.C.-D. C. Ideal for garden fountains and waterfalls. $600 \mathrm{G}, \mathrm{P} . \mathrm{H}$.
to suit, 17/6. Carr. and packing $4 / 1 / \mathrm{ea}$. Carr. 3/6. Transformer Projection LiAMPs. 110 v .300 w . standard pre focus. 9/8 ea. 3 for $25 /-$.
TRLPODS. 351 in . legs. Brass pan and tllt head, leather end caps and sling. Brand new. $17 / 6$ ea, carr. $2 / 6$. new, $35 /=$ ea. Will fit the AA scopes. Chart boards and No 5 dir rectors. Carr. 5
THIPODS. Heavy duty, 5 ft . ex type. Fitted heavy P. \& T. head plus ball and socket. Also fitted short metal legs for use at ground devel. Now. 23.6.0. Carr. No. binocular mo bing elevar moUnTINGS. Sult most 7×50 or similar with elevation and panning adjustments. New. 6i8 each. chipped. 5 - each. Neg lenses slizhtly chlpped, 3 inn. dia., $5 /-$ The above es only a small selection from our stocks. Lalsts
free S . E .

> BOOKLETS. "HOW TO USE EX-GOVERNMENT LENSES AND PRISMS." Nos. I and 2 . $2 / 6$ ea. PLANS FOR "VERTICAL ENLARGER," 35 mm . to $2 \frac{1}{\mathrm{in}} \mathrm{in} .3 / 6$. PLANS FOR " 35 mm . BACK PROJECTION TABLE VIEWER," $3 / 6$.
H. W. ENGLISH, RAYLEIGH ROAD, HUTTON, BRENTWOOD, ESSEX. Phone Brent 11685 or 810

Vallabile new handook

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES " should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every brartch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and déscribes the advantages of our Special Appointments Department.

WHICH OF THESE IS YOUR
 PET SUBJECT?

MECHANICAL
ENGINEERING Gen. Mech. Eng.-Maintenance - Droughtsman-ship-Heavy Diesel-Die \& Press Tool Work-Weld-ing-Production Eng.lig \& Tool Design-sheet agement - Mining - Re. agement - Mining - R
frigeration-Metallurgy.

AUTOMOBILE
ENGINEERING Gen. Automobile Eng.Motor Maintenonce \& Repairs - High Speed Diesel-Garage Mngrnent.
 Gery Elec. Eng.-ElemenTechnology - Installation. Technology - Installations Draughtsmanship - Supply - Maintenance - Destrical Traction Mining Electrical Eng Power Station Equipnent Power Station Equipnient. ete.
Civil
Gen CivGINEERING Gen. Civil Eng.-Sanitary Rood Eng. - Reinforced Concrete-Geology.

RADIO ENGINEERING ENGINEERING
Gen. Radia Eng.-Rodio Gen. Radio Eng.-Rodio
Servicing, Maintenance Servicing, Maincenance \&
Repairs-Sound film Pro-Repairs-Sound firm Pro Telephony - Television C. \& G. Telecommunications.

BUILDING

Gen. Building-Heating \& Ventilotion-Architectural Droughtsmoriship - Surveying - Clerk of Works - Carpentry and Joinery -Quontities - Voluations WE HAVE A WIDE RANGE OF AERONAUTICAL COURSES AND COURSES IN FORESTRY, TMMBER TECHNOLOGY, PLASTICS, G.P.O. ENG. TEXTHE TECHNOLOGY, ETC., ETC.

> WHICH ONE:
A.M.I.Mech.E., A.M.I.C.E. A.M.I.P.E.. B.Sc, A.M.Brit.I.R.En A.F.R.A.S., A.M.I.M.I., Li.O.B., A.R.I.B.A A.M.I.M. V.E., M.R.Sand. F.R.I.C.S. A.M.I.E.D. CITY \& GUILDS, COMMON PRELIM., GEN. CERT. OF EDUCATION, ETC.

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W. 8.
Phone: WEStern 9861

WHAT THIS BOOK TELLS YOU
\star HOW to get a better paid, more interesting job.

* HOW to qualify for rapid promotion.
\star HOW to put some valuable letters ofter your name and become a "key-man". quickly and easily.
\star HOW to benefit from our free Advisory and Appointments Depts.
* WHERE today's real opportunities are . . and HOW you con take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering that appeals to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," and if you are earning less than $£ 15$ a week you should send for your copy of this enlightening book now-FREE and without obligation.

POST MOW 8 ro: B.I.E.T. 410A, COLLEGE hOUSE, 29-31, WRIGHT'S LANE, kEnsington, W.8.

Please send me FREE and without obligation, a copy of " ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or carcer).

NAME
\qquad

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

FAIR COMMENT

READING HABITS OF YOUTH

W.H. SMITH AND SON, the bookseliers, and a well-known publisher have co-operated to produce the first major survey in this country of the reading habits of boys and girls, and the survey is based on the replies from 8,000 of them attending schools in England and Wales. Those questioned came from public and grammar schools and secondary modern schools. It was found in the hobbies class that the six favourites were stamp collecting, model making, reading, woodwork, fishing, and music and records. Dozens of hobbies were mentioned by the boys, including aircraft spotting, bird watching, drawing, chess, and collecting such things as match-box labels, coins, cheese labels, football programmes, and keeping pets. There was little evidence to show that space fiction was popular. Favourite journals were concerned with hobbies, careers and sport. An interesting comment is that the spelling in a large number of the letters was atrocious.

Career ambitions included radio, TV, archæology, discography. The survey seems to have gone to a great deal of trouble to establish what could have been more easily found from an analysis of circulations and readership, recently published by an independent investigating authority.

THE RADIO PILL

ATINY radio station which will broadcast pressure measures in the digestive system after the patient has swallowed it was recently shown at the Rockefeller Institute for Medical Research. Future radio pills of this type will take temperatures, detect electrical discharges and assess the acidity of the system. The pill was designed by Dr. Zworykin, who invented the electron microscope and the iconoscope. Electronics is indeed plumbing the depths !

THE LIFE OF AN ARTIFICIAL SATELLITE

IFthe artificial satellite shortly to be launched in America operates according to plan, it may stay aloft for about nine years, according to an American astrophysicist. Hitherto, it had been calculated that the life of an artificial satellite would be a few weeks, certainly no more than one year. The launching is, of course, awaited with tremendous interest throughout the world, for the information obtained will form the basis of design for space-ships. Radio amateurs are invited by the American Department responsible for the space project to construct apparatus so that the path of the satellite can be observed throughout its orbit and reports sent to them. A special article contributed by them to our companion journal, Practical Wireless, explains how to make the apparatus. It is suggested that groups of radio amateurs should co-operate in constructing it.

CONTRIBUTIONS

N^{0}doubt every reader of this journal has devised some new method of doing a job or constructing some model or piece of apparatus, and I invite these readers to send me photographs and constructional details, together with a description which should include a list of parts and sources of supply. All these articles will be paid for if accepted. The manuscripts should be written or typed on one side of the paper only and be accompanied by clear rough sketches on separate sheets of paper, each figure numbered and captioned. Every one of such illustrations should be referred to in the text. I want to encourage readers to become contributors and every manuscript submitted will have my personal attention. Address manuscripts to me at the address printed on this page.-F. J. C.

By JAMES VOSE

In Addition to Straight Ripping and Crosscutting, a Variety of Operations Can be Performed on the Saw Bench Described in our June Issue

to shear the fibres of the wood. It cuts very deanly and smoothly and is popular with furniture makers as it produces a practically finished surface on end-grain work. This blade requires frequent sharpening. It is no use for ripping. "The " combination " or "Novelty" blade "C" hos both crosscu ting and ripping teeth. The deep gullet in front of the ripping or "raker" teeth, clears the sawdust which would otherwise accumulate and is true this is a mistaken policy. Whilst at is true that practically any blade can be made to cut, after a fashion, whether the work is across or with the grain, and in both hard and soft woods, the use of the right type of blade for a particular purpose always results in faster and cleaner cutting.

Four of the most useful blades are shown in Fig. I. " A " is a ripping blade for fast cutting in soft wood. The hook angle of 30 deg. may be regarded as a maximum. A keener angle would cut well, but would wear dull too quickly for practical use. For hardwood cutting, or for mixed hard and soft wood, the hook angle should be reduced to 20 deg.

The "Peg-tooth" cross-cut saw "B" has lancet-like teeth designed

Fig. 2.-Jointing or ruwning aown the saw.

Fig. 1.-Four types of sue biade.
choke the saw. This blade is also obtainable hollow ground, that is, the centre of the blade is ground slightly thinner than the edge, enabling the saw to be worked without any set. This blade cuts smoothly with or against the grain, and its principal use is for cutting stock to precisely finished dimensions.

The "chisel tooth" blade " D " is a good general-purpose blade for rough cutting either with or across the grain, in either hard of soft woods. It is not as smooth cutting as the cross-cut blade " B " or the hollow ground blade, but for ordinary cutoff work this is of no importance. The teeth are strong, and will stand up to long periods of cutting without resharpening. Incidentally, this is a good blade for portable saws of the "Ripsnorter" type, because the small hook angle reduces the tendency of the saw to feed itself into the work and "run away" with the operator.

Care of Blades

To obtain the best results, the blades must be kept in tip-top condition at all, times. One often sees dull blades being forced to cut, with the result that the cut is

Fig. 3.-Section of the setting jig.
rough, sometimes burned, and often inaccurate. The time wasted in cleaning up this rough work would be far better spent in putting the blade in order. Each tooth should be made to do its share of the work, and to ensure this the saw should be "jointed" or "run down" occasionally. This process is shown in Fig. 2. A carborundum oil-stone, or a piece of a broken emery wheel, or even a piece of hard white sandstone, is held in light contact with the teeth while the saw is revolving. The saw must be stopped frequently to see how the jointing is progressing. When all, or nearly all, the teeth have been run down to the same height the - saw is ready for setting and sharpening. I say nearly all the teeth because it would obviously not be worth while running down the teeth excessively just for the sake of one or two low ones. A small but important point in connection with this jointing or running-down process is that the

Fig. 4.-The setting jig in use.
a good fit for the centre hole in the blade. A slot in the block enables the position of the anvil-a ${ }_{4}^{3}$ in. diameter hexagonheaded bolt-to be adjusted for various diameter saws. A thick steel plate washer is placed under the bolt head, and a packing washer, which may be of wood, is slipped over the spigot to level up the blade. The saw blade is placed over the spigot and the bolt adjusted until a tooth point is just overhanging the chamier on the bolt head. This tooth should be marked with chalk. A sharp blow with a light hammer will set this tooth, and the blade is then revolved to bring the next-but-one tooth blade must always be replaced on the spindle in the same relative position. Any distortion in the spindle, and any play between the hole in the saw and the spindle diameter, might result in the blade running eccentrically when it is replaced, thus nullifying the effect of the jointing. To ensure that the blade is always replaced in the same relative position, the spindle should be turned so that the driving pin is at the top before inserting the saw blade. As this pin is out of sight behind the collar whilst the nut is being tightened, it is a good plan to mark the edge of the collar with a file-cut opposite to the pin, so that this mark can be
over the anvil. This tooth is set in the same manner, and so on until the marked tooth comes round again. The blade is then turned over and the alternate teeth set.

Only the extreme points of the teeth should be set, and no more set should be given than is required. Too much set wastes wood, and requires more power to drive the saw.

Fig. 5.-The saw in its vice for filing. The vice is shown above.
kept to the top while the nut is being tightened.

Setting

To enable the blade to clear itself in the cut, the blade, unless it is of the hollow ground type, must have its teeth set. The simple jig shown in Figs. 3 and 4 enables the setting to be done accurately in a minute or two. A stout hardwood block is bored to take the spigot-a tube or solid bar-

Wet wood and certain kinds of fibrous-grained woods require more set than dry; straight grained wood and soft wood usually requires more than hardwood. After setting, some users run-down the saw again, but this time holding the stone to the sides of the teeth in order to reduce any teeth which have too much set. This certainly

Fig. 6.-Touching up the blade in the bench.
results in clean sawing, the sawn edge being almost planed up, but, if it is done, great care must be taken that the set is not rubbed off altogether.

Sharpening

A saw sharpening vice is required to hold the saw rigid whilst filing. This can be easily made from scrap wood as shown in Fig. 5. A $\frac{3}{8}$ in, diameter bolt passes through the slot, and is secured at the required height by the round nut. The saw blade is placed over this nut, the hinged jaw closed and tightened with a wing nut and washer sufficiently to prevent the blade vibrating under the file strokes, but not tightly enough to prevent the saw being pulled round to a new position when a few teeth have been filed. The correct files to use for sharpening are-for rip saws, an 8in. mill-saw file with rounded edges, and for cross-cut saws, an 8 in. cant saw file. The teeth are filed in the same direction as they are set, every other tooth being filed from one side, and then the saw is turned round whilst the alternate teeth are filed.

Details of the vice in Fig. 5 .

Fig. 7.-Gulletting with a shaped grinding wheel.

The important point in filing is to preserve the original form and profile of the teeth, at the same time keeping the teeth the same size and equidistant from each other. After running down, the points of the tecth are slightly flattened, and show a bright point on each tooth. Most of the filing is done on the front of the tooth until the bright point almost disappears. One file stroke on the top should remove the

Fig. 8.-Straightforvoard ripping. Note: guard ienved to show operation more clearly.
bright point completcly, showing that the tooth is sharp.

The amount of cross bevel on the front and top of the teeth should not be too acute, because the keen thin points would quickly wear dull and require frequent retouching. Many saw doctors file rip-saw teeth square across, but this is apt to cause uncomfortable vibration when filing. A -good compromise between the two extremes is to file to a bevel of about 10 degrees. The clearance angle on the top of the tooth, immediately behind the point, should not exceed 20 degrees. as this allows ample clearance whilst still retaining enough metal behind the point to leave a strong tooth

It frequently happens, when sawing gritty or abrasive wood, that the tecth quickly lose their keen points. The blade may then be touched up in the bench, as shown in Fig. 6. A thick wood block is tacked or cramped down to the table, hard in contact with the blade. When every other tooth has been touched up the wood block is removed and replaced in contact with the front of the blade, whilst the alternate teeth are filed. This means filing from the back of the bench, which is not very convenient, so an alternative method can be used, holding the file hy its point instead of by the handle, and drawing the file forwards over the looth. This method of sharpening in the bench is
not recommended, but it is useful on occasions, when pressed for time

Gulletting

After a lot of sharpening the gullets become too shallow to clear the sawdust properly, and the saw must then be gulletted. This can be done with the file, but it is a slow and tedious job. If a power driven grinding wheel is available, this work can be done with a shaped grinding wheel as shown in Fig. 7. The blade is supported on a table level with the centre of the grinding spindle. It is best to take light sweeping cuts round the gullets and backs of the teeth, going round the blade several times if necessary. This avoids the risk of local burning through attempting to take off too much at once.

As a guide for gullet depth, a line can bc scribed on the blade, by holding a hard pencil to the side of the blade, whilst pulling the belt round by hand. The grinding may all be done from one side, as this makes it easier to keep the profile of the gullets uniform. The inset sketch in Fig. 7 shows how the teeth may be undercut a little, thus leaving less metal to be removed by the file in the subsequent sharpening.

Sawing Operations

Probably most of the work done on the saw bench will be straightforward ripping to width, and for this the fence must be set at the required distance from the saw blade, and parallel to it. Some sawyers like to set the fence with a slight lead-in to the saw, to correct any tendency for the work to pull away from the fence. This should not be more than $1 / 64 \mathrm{in}$., or the work will bind between the fence and the saw. The opposite misalignment, that is having the tip of the fence away from the blade line, is fatal to good sawing. For straightforward ripping the tip of the fence should not extend beyond the roots of the teeth. Sec Fig. 8.

For the cleanest cutting the spindle height should be

Fig. 10.-Tilting the timber by means of a riding strip.

adjusted so that the blade projects only about $\frac{1}{2}$ in. above the work. Another good reason for working this way is that it offsets the tendency for the work to lift at the back of the saw, should the saw kerf close in suddenly, due to a release of stresses in the material being sawn. The riving knife is there to stop this closing in, but it sometimes happens that the kerf closes in before the wood reaches the riving knife. When sawing long stuff, it is always as well to have a second person to support
only one or two picces are to be sawn to a bevel it is sufficient to use a square-edged strip of the required width. Extra care must be taken when nearing the end of a bevelled cut, because the timber is liable to twist over, and this can easily cause an accident. As a partial precaution against this happening the fence should be extended right across the table. This may bc donc cither by screwing an auxiliary fence-a long board -to the ordinary ripping fence, or by making a special long fence, to be fitted whenever work is to be done which requires support all the way through.
(To be Continued)
 used because of its conductivity and capacity for holding heat, and the bit is placed in a fire or over a gas-ring until it is hot enough to melt solder. A certain weight of copper is necessary, but for all average work the reader should usc a 12 -oz. .bit. For very light work a $6-0 z$. copper head will do very well, but, at the same time, it is very annoying to find that the solder cannot be melted because the bit has cooled in thie middle of an intricate piece of work.

Fluxes

The use of a flux is to stop the formation of an oxide on the surface of the metal which would prevent the amalgamation of the solder and the metal. The solder adheres because the metals being soldered together form a local alloy. This is why metals which have a natural affinity for the solder are jointed together more strongly than otherwise.
Metals like aluminium are difficult to solder because their readiness to oxidise prevents the soldering alloy being formed Special solders and fluxes are therefore sold to oversome these difficulties, and it is also necessary in some cases to scrape the surface of the metal while it is being soldered. Welding aluminium is, however, a much more satisfactory process.

Fluid Fluxes

Paste fluxes have their uses and can be recommended for some forms of electrical work so long as the job is cleaned of all flux after it is completed. For steel, tin-plate,

Fig. 14.-(Above)
How to make a simple angle joint.

Fig: 15.-(Left) Attaching wire at right angles.
brass and copper strips and sheets the fluid fluxes are to be preferred. By fluid fluxes are meant those which have as their base "killed spirits," viz., chloride of zinc, obtained by putting scraps of zinc into strons hydrechloric acid (spirit of salts). In making this flux always put in an excess of zinc to the mixture to make sure that no acid remains. While any hydrochloric acid is there it will continue to attack the zinc and become converted to the new compound chloride of zinc. If there is insufficient
zinc, then free acid is present in the mixture.
The reaction should be performed in an open earthenware jar, and also in the open air, as the fumes of hydrogen and acid which are given off are, to say the least, not very pleasant gases to breathe.

When the bubbling has ceased, pour on about three times as much water as there is fluid in the jar, picking out the larger lumps of remaining zinc. Then strain off through a piece of rag into another receptacle, and add a few crystals of sal-ammonia. The mixture may be bottled (and properly labelled) for future use when diluted with a further equal quantity of water.

Fig. 16.-How the stand for the iron is made.
A heavy, bulky pot-something like a small edition of the old-fashioned earthenware pickle jars, or an old marmalade jar made of the same material-should always be used to hold a liquid flux. Something that will stand knocking about, and which cannot easily be overturned is essential.

Using a Soldering Bit

When the iron-as it is often called-is taken out of the fire or off the gas-ring, as the case may be, and presuming its working point is already properly tinned, it should be dipped into a por of flux-quite a quick dip-and then poked into another jar of sal-ammoniac. Experienced workmen usually have a lump of sal-ammoniac on the bench, which is used for "cleaning the iron."

The fumes accompanying soft soldering and the danger of splashing flux, are both so deleterious to adjacent tools that it is always advisable to reserve a special bench in the workshop for soldering. If this is impossible, do the work as far away as possible from workshop appliances.

Paste Fluxes

All fluxes should be applied to the work by means of a piece of stick-a wooden meat
skewer is quite suitable; paste fluxes should be placed in heavy pots. Much petty annoyance in working is caused by not-transferring a paste flux from the light tin in which it is purchased to a more massive container. If it is attempted to use the paste from the original tin, the stuff is so sticky that just at the critical moment, when it may be necessary to improve the flow of the solder by a touch of flux, you will find that the dibber stick picks up flux, tin and all. Keep the original tin as a store, and transfer enough for use to either a heavy pot or one that is fixed down to the bench.

Where it is advisable for the particular job in hand to employ a paste flux, do not use it for dipping the end of the soldering bit into. Always provide the jar of fluid flux, and the sal-ammoniac already referred to for cleaning the "iron" as it is removed from the fire.

Soldering Small Work

For jointing or "sweating up" small objects which can be brought to the heat, soft soldering can be successfully done by a small Bunsen gas burner, methylated spirit flame, or a blowlamp.
A mechanical attachment of the two or

more parts to be soldered is recommended in such cases, in addition to the soldering. A wire to be attached at right angles to another may be either looped round, as shown in Fig. 14, or if it is an angle-joint that is required, like that at the corner of a lamp-shade, the wires may be flattened and wrapped round each other as in Fig. 15.

After hammering or working in any way which may possibly introduce foreign matter into the surface of the metal, the wires, or metal being worked on, must be cleaned and tinned. Even tinned iron wire gets "dirty" if hammered, and refuses to solder afterwards. To tin a wire or other small object, first clean it with emery paper, a scraper or a file and coat it with flux, preferably a fluid flux. Heat it up in the flame and reflux when it is hot with the stick of solder being used, dipped into the flux. If there is any solder on the job, reflux with the wooden "dibber" guiding the solder where it is wanted. Rubbing the solder up and down the job will soon coat it, provided the right heat is preserved. Do not overheat the joint : this burns the solder and the tinning and prevents the job being completed. The work must never be brought to anything approaching red heat Even the dullest red heat represents a temperature of over 800 deg. F., whereas the finest grade of soft solder melts at about 440 deg .

A Stand for the Soldering Bit

Where small work is being operated upon the end of the "iron" may be used instead of the naked flame. To facilitate work of this
nature a clip may be fitted on to the iron stalk of the soldering bit. To this clip a triangular foot, made of strip metal, is arranged as shown in Fig. 16 . It is useful to fit one to the iron. If it is thought that this foot is better if made to fold down, the clip should be provided with two holes, one to grip it to the stalk of the bit, and the other, as shown in Figs. 16 and 17, to carry the bolt holding the foot.

There is no real need either to remove or to fold the foot. It may be a permanent fixing, as shown in Fig. 17, and will then be found most useful in ordinary soldering. It is often necessary to lay the "iron" down for a moment. The foot saves the bench from being burned by the hot copper bit.

Where one or more pieces of metal in close proximity have to be joined on to a rather heavier part, the ordinary process must be modified. Take, for example, the arrangement of ornamental strips on the surface of a plate shown in Fig. 18 . The soldering iron is out of the question for such a job. The parts must be sweated in position at one heat.

The surface of the plate should be cleaned and tinned, any superflous solder being wiped off with a damp rag while the plate is hot. The strips may be similarly tinned at the back, although if they are quite clean, edges as well as back, they will sweat up quite satisfactorily if well fluxed.

The positions of the strips are then marked out, and the picces held in position by spring clamps (see Fig. 19). These may be of strip brass of horseshoe form, or like miniature cycle trouser clips.

The whole plate is then brought up to required heat with a blow-pipe or over a gas flame, with little nodules of solder laying up against the strips. A further supply of flux soon makes the solder sweat into all the crevices, and a neat job will result. It is easy to shake off superfluous solder and

Fig. 19.-Strips held in position by spring clamps.
reheat and reflux as occasion may require. The clamps save all the trouble of drilling and riveting on the strips.

Another form of clamp may be made up out of strip metal, and can be employed to hold two separate parts firmly in a given position while they are being soldered (see Fig. 20).

The Potato Dodge

Where two objects are very close together and cannot, for some reason, be sweated up at one operation, the first joint may be stuck into a raw potato. This not only keeps the original joint cool and prevents it from coming unsoldered, but forms a convenient handle for holding the work in the flame while part number two is sweated up. Fig. 21 shows a typical case where a potato comes in useful.

Don'ts in General

It is of no use attempting to solder work which is not clean. There is just "ordinary dirt," and the oxidisation due to burning on of previous solder, or of the tin coating of tin-plate, and merely heating metal forms a certain amount of oxide on the surface, which prevents a successful jointing.

Do not overheat the bit, as this burns off

Fig. 20.- Another form of clamp for holding the strip.

Fig. 21.- A rypical case where a potato comes in useful.
the tinning at the end. To re-tin the bit the copper end must be filed quite clean; finally, while it is hot, immediately rub it on a piece of tinplate (the inside of a fixed-down tin lid) with solder and flux until the point is quite bright all over with solder.

Always wipe a soldering iron as it is withdrawn from the fire on a piece of old mat, or anything else of a rough textile character, to remove the soot. Then dip it in the flux and sal-ammoniac as already recommended.

Do not use " killed spirits" for soldering zinc. A dilute solution of the natural hydrochloric acid (spirit of salts) is required.

Have a coil of soft solder with an extended arm over the tinning lid (Fig. 22). The dribbles of solder then fall into the lid, and are useful for future tinning.

Cowl for Gas Ring

Where an ordinary gas-ring is used. and the jets are apt to spread out to too great an angle away from the copper bit, a cowl

Fig. 23.-An casily-made cowl that can be fitted. over the gas ring.
can be made up out of sheet iron or tinplate to conserve the heat and at the same time provide a rest for the "iron" in the heating process (see Fig. 23). By adjusting the amount of flame the iron can, by using such a cowl, be retained at just the right heat, neither too cool nor, however long it remains over the stove, so hot that the tinning is burnt off the end.

Soldering Zinc

Zinc, being a metal with a low melting point, has an annoying habit of melting and running away altogether when a hot soldering iron is applied to it. If you are soldering the connections of a series of small Leclanche cel's, this is especially aggravating, since the

Fig. 22.-Coil of solder with a tint lid underneath to collect the drips.

zinc tags for the connections are not very large to begin with, and they are soon melted away to nothing.
Here is a safe and sure way of soldering a copper wire to sheet zinc. Well tin the end of the wire, polish up the zinc with a piece of fine emery cloth, and thoroughly clean the face of the soldering iron. Heat the iron and apply solder to the bit until there is a good blob adhering to it. Hold the wire against the zinc tag, turn the soldering iron over gently so that the blob of solder hangs down underneath, and bring this blob into contact with the wire and the zinc. Be careful not to press the iron itself down on to the work. The solder should run on to the wire and the zinc at once, making a perfect joint. The secret of success is to touch the work with the blob of solder only, and not to keep the iron close to the work for longer than is necessary.

Soldering Aluminium

Success in soldering aluminium depends on the effective removal from the metal of the microscopically thin film of oxide always present on the surface. When measures are taken to deal with this film, the main difficulty of soldering is removed. Three different types of soldering are employed, which may be distinguished by the terms hard soldering, soft soldering, and reaction soldering.

Hard Soldering Aluminium

In this process the solder consists of an alloy of aluminjum having a melting-point between 500 deg. and 600 dcg. C. Many such alloys exist, but the silicon alloy, containing 10-13 per cent. of silicon, is undoubtedly the best. .The oxide is removed by means of an alkaline halide flux, such as is used for aluminium welding. At the temperature at which the soldering is carried out, the flux is melted and rapidly attacks the oxide, permitting the melted solder to come into contact with clean aluminium, and to alloy with the surface. In carrying out the process, a gas blow-pipe is used as heating medium, but apart from this and the higher temperature required, the process does not differ from the ordinary soldering of brass. The flux is melted up and flows

Fig. 24.-Method of soldcring to winc.
readily, sweating the parts together. Certain manufacturers supply silicon alloy solder in the form of a tube with the flux contained inside.
(Concluded on page 508)

Dpprating Mains $_{\substack{\text { Prom } \\ \text { Batteries }}}$

A. Handy Device When Mains are Not Available

By G. H. BURNS

THE unit to be described will enable the owner of an electric razor, rated for mains voltage only, to use it in conjunction with a car or motor cycle battery.
The prototype was built for operation from a 6 -volt motor cycle battery and has now been in use for some time on camping trips, etc., when no mains supply was available for the 240 -volt razor
Reference to the theoretical circuit (Fig. 1) and the practical wiring diagram (Fig. 2) will show that there are only five operative components in the unit, and it may be constructed to quite small dimensions.

Components

Condenser C.I (o.I ${ }_{\mu} \mathrm{F}$.), the "arcquench" component included in the primary circuit, may be of the common paper type with a working voltage rating of 150 to 500 v .
The purpose of C. 2 is to absorb voltage peaks developed across the secondary of the transformer. High peaks are encountered here because of the characteristic waveform of vibrator circuits, therefore this condenser should be either a mica or oil type, with a minimum voltage rating of $1,000 \mathrm{v}$., and it has a capacity of $0.01 \mu \mathrm{~F}$.

Resistor R.I is included in series with C. 2 in case of a leak developing in the latter-it avoids the possibility of a short circuit across the transformer secondary, which could result in irreparable damage.

The vibrator is of the non-synchronous type, and must have a voltage-rating corresponding with that of the voltage of the
battery with which it is to be used. In many cases this will be 6 volts, but 12 -volt vibrators are obtainable for those whose cars have 12volt electrical systems.

Similarly with the transformer. The primary must be suitable for the battery voltage and be wound for full - wave operation. In addition, the secondary winding should have an output voltage suitable for the razor

at a power rating of 10 to 12 watrs (this is the power normally required by an electric razor).
The transformer shown was specially wound for this unit and has a half-wave secondary, whereas the normal type of vibrator transformer used in car radio power supplies has a full-wave output. However, a suitable transformer, with 6-volt or 12-volt full-wave input and 230 -volt half-wave output may be had from Electronic Precision Equipment Ltd., who will also supply the vibrator.

The output socket (to accept standard two-pin plug, or whatever type is fitted to razor) should preferably be of the shrouded type, i.e., no contact with the actual meial sockets should be possible accidentally. Messrs. Bulgin

Fig. 2.-Wiring diagram. Component values: C.1-1 μF paper, 150 volts working. C.2-.01 μF mica 1,000 volts working (min.). R.1-10,000 Ω 5w. wirewiound.
produce suitable types which may be purchased or ordered at local dealers.
Miscellaneous items required are a toggle switch and two crocodile clips for connecting to the battery. Where a power point is fitted to a dash-panel, the clips will, of course, be replaced by a suitable plug.

Fig. 3.-Interior view.

Assembly

The writer's model was housed in a metal box $7 \frac{1}{2}$ in. $x 3$ in. $x 3$ in., which was conveniently to hand and proved ideal for the purpose, all components being mounted on the underside of the lid (see Figs. 3 and 4). However, the consiructor will require to find, or make, a container of adequate size after first acquiring the necessary components, as these may vary somewhat in dimensions.

Arrangement of the components may be adjusted to suit individual cases, but the layoui, as shown in Fig. 3, makes for ease in wiring.

Fig. 4. The completed adaptcr.

BARRIER CREAMS

Basic Features; Uses; Simple Formulæ

By K. E. MIKER

BASICALLY, barrier creams are not a recent discovery. Grease, petroleum jelly and lanoline have been used for many years to protect the skin from water, and mutton fat, whiting and china-clay are said to have been used in a similar way by certain workmen to keep dirt out of the pores of their skin so that subsequent cleaning was made very much easier. These substances are not creams but they are barriers, physical barriers that are themselves completely harmless and that act like an invisible glove to protect the skin from harmful substances.
This basic barrier concept has given rise to the present variety of cream preparations. These are not necessarily more effective than the earlier substances but they are much more pleasant to use.

Poison Protection

A barrier cream may also be considered to be a sort of antidote because it gives protection against what is essentially a poison; but unlike conventional antidotes to the more spectacular poisons, it has to be taken before the poison is administered. A satisfactory barrier can usually be developed for protection against any specific harmful substance.

Two Types

In general, harmful contaminants of the skin can be divided into two groups, namely: those that are soluble in water, and those that are not soluble in water. Barrier creams may therefore be similarly divided into the two corresponding types. Thus, the first type protects against acid and neutral irritants, soaps and alkali, photographic chemicals, etc. The second type is for prorection against noxious oil and grease, hydrocarbon solvents, paints, tars and dusts

Certain essential features are common to both types. They must be completely nonirritant to the skin even when used continuously. They must therefore be slightly acid in reaction. (between $\mathrm{pH}_{5} .5$ and 6.5) as the skin is slightly acid in reaction. Any preparation that is much above or below these limits has a detrimental action on the skin when used constantly. The barrier substance must
obviously be insoluble in the substance against which it is to give protection. It should not be necessary to make overfrequent application, and it should not leave the hands sticky or slippery because this would make it dangerous to use. It should not act as a thermal insulator and it must be easily removable by ordinary cleansing methods, i.e., soap and warm water; special removers should not be necessary. It should not be hygroscopic and it should not remove natural grease. It should in no way weaken the living layer of the skin nor should it have drying, oxidising or reducing action. This is quite a formidable array of cssential features but all are listed as necessary by medical authority. If the list seems long, bear in mind that although most people recognise that they would be in a very poor way if their heart stopped beating, they do not realise that they would hardly be better off if their skin stopped working. The skin is indeed a vital organ that separates the body from the outside world about it. It gives mechanical protection to the underlying tissues. It is waterproof. It keeps germs out. It gets rid of certain waste products. It regulates the body's temperature and it cuts off harmful radiation.
Within wide limits the skin can look after and repair itself, but continuous or severe maltreatment causes trouble. Skin disease is common, and it is impossible to exercise too much care about what is rubbed into the skin, especially if applied frequently.

Home-made Barrier Cream

Consider the mixture of soap, water and scouring powder often recommended. This has obviously unknown qualities. It contains soap and, though soaps vary considerably in quality; excessive use of any soap can lead to a dermatitis.
There is no standard scouring powder, but many brands, each with its own formula which the manufacturer can and docs change whenever it suits him. In general, scouring powder consists of an abrasive powder such as powdered pumice, quartz or kieselguhr, together with water-softening and dispersing or deflocculating agents; perhaps carbonates, silicates and phosphates.

For efficiency in operation all the electrical connections should be securely soldered
The low-voltage part of the circuit (on the left-hand side of the transformer in the diagrams) carries fairly high currents and should be carried out in wire of not less than 16 S.W.G. Similarly, the battery leads should be of substantial flex, with the clips (or plug) soldered on. This flex emerges from the case through a rubber grommet, or insulating bush.
Make sure that all wires, and points which are "live," are well insulated and separated from each other and from the metal case, etc. This is particularly important in the high voltage side of the circuit (to the right of the transformer in the diagrams) since as already mentioned, a "short" could casily ruin the apparatus.

Operation

1. See that switch on unit is " off."
2. Connect flex leads to battery.
3. Plug in razor to unit, and if there is switch on razor, switch on,
4. Switch " on" at unit.

There is also a certain amount of detergent, more being present in the foaming varieties. Such a mixture is not suitable for bodying up a barrier cream because it must be alkaline and it may be very alkaline, depending on the particular ingredients used in its manufacture
Assuming that the scouring powder confers nothing worse than alkalinity, a cream made up from soap and scouring powder could be useful occasionally, but frequent or lengthy use of it may lead to serious skin trouble.

A Simple Formula

The simplest barrier cream against water and solutions in water is a mixture of lanoline and petroleum jelly. Nature has used, lanoline as waterproofing for the sheep's back for a good many ycars. In use some of this mixture is absorbed by the skin and the pores of the skin are filled so that water is repelled. But it makes the skin rather unpleasantly greasy and interferes with heat radiation. If a small amount of a suitable surface active agent is added it may be thinned down with water to give a cream that is readily applied and that on gentle rubbing almost completely vanishes into the skin, leaving the hands free from stickiness. Effectiveness can further be improved by incorporating a proportion of metallic stearatc. Such a preparation does not soil materials being handled nor does it interfere with delicate work. It is also a good barrier for dirt because it is easy to wash off and the dirt comes along with it.
An oilproof barrier may be prepared containing glycerine, water and alkali with sufficient stearic acid to form a simple vanishing cream. The soap which is formed during the preparation emulsifies the excess of free acid that maintains the required acidity A different type of oil barrier can be made using suitable gums and resins so that a flexible film remains on the surface of the skin when the preparation is allowed to dry. This film must be soluble in water so that it is possible to remove it subsequently, a requirement that brings about the disadvantage that the period of effectiveness is much reduced by sweating. Incorporation of some oil or fat into the film can to some extent counteract this without reducing the effectiveness of the film as an oil barrier.

If it is desired to make a barrier cream at home, start with one of the reputable published formulx and use good quality ingredients.
 \title{
Helo your child study at home with this
 \title{
Helo your child study at home with this

}

}

Cheap : Useful : Easy to Make

By G. KENT

The desk is made solidly from wooden corned beef cases. If a few good grocery boxes are obtained and carefully taken apart wood can be found to make the sides and top of the desk. All the wood should be carefully prepared with the plane and filled or glued where necessary, after which it will be found quite suitable for this work. In the original the bottom of the desk was planked with 3 in. wide strip wood from cheese crates which made a neat and convenient coristruction. If new wood is used in. thick stuff would be sufficient for the sides with a hardboard or plywood base and plywood desk flap.

Full dimensions and the method of construction are given in the exploded perspective, Fig. 1. All joints were glued and where necessary Iin. panel pins were used: The detailed measurements may have to be adjusted slightly to allow for variations in the thickness of wood used. New 7 in, square timber was used for the legs. There is no need to make accurate joints where the stretchers join the legs as-a strong fixing can be made with a 2 in. No. 8 , screw if the wood is cut accurately. These screws should be well countersunk and the heads covered with putty or other filler, which is then sanded flat. The foot bar is formed from à scrap piece of oak ITin. $x 1_{4}^{3} \mathrm{in}$. x ${ }_{3}^{3}$ in.; this is best wax polished with sa good white wax furniture polish after careful preparation. It is fixed to the desk with two chromium round-head screws.

The desk flap is hinged with two rin.

THE desk and chair described here cost less than £I to make and have been used constantly. The desk provides a most useful place for all pencils, crayons, papers and books which children usually collect. An older child may find it useful foè homework.

Fig. 1.--Explodel perspective of the desk and swivel chair.
brass back flap hinges, reinforcement of the flap and desk panel being made at the edges where the hinges are fixed (not shown in Fig. I), and two battens are glued and pinned on the inside of the flap to keep it rigid and flat.
The top panel of the desk is grooved with a sharp gouge to make a pencil ledge and a suitable hole was cut with a fretsaw to
accommodate the china inkwell obtained from an educational supplies shop．A ply－ wood inset is pinned underneath this hole having a smaller hole in it to retain the inkwell．

After the desk has been put together it should be carefully sanded and all the holes stopped with a wood filler，which should also be used on the exposed end grain of the wood．A coat of good undercoat paint should now be applied inside and out ；it is better to remove the hinges and flap during painting．Home－made wooden toys can be finished so much better than bought ones if a little trouble is taken，so effort spent in sanding and painting is well worth while． When dry，the undercoat should be care－ fully sanded and the finishing coats applied to the outside．Good quick drying（two to fo ir hour）lacquer is best；the original desk was painted daffodil yellow on top，powder blue on the sides and had light grey legs． Two finishing coats are preferable with a light sanding after the first coat．

The Swivel Chair
It was made from $\frac{5}{8}$ in．electrical tubing． A 6 ft ．length was purchased with one end threaded and fitted with a female brass bush． Four legs were cut 13 in．long and were formed to the shape shown by bending them in a solid piece of wood．A $3^{3} \mathrm{in}$ ．length was cut for the centre piece using the threaded end．The four legs and central pipe were fitted together and fixed with iron wire to a scrapwood base board．This was then taken to a welding firm who welded all four legs and central pipe together into a solid structure for a few shillings．
A 2 in ．square section of wood with a central hole for the centre pipe is fixed by panel pins to wooden plugs driven．into the top of each leg，this gives a neat finish to the legs．The brass bush can then bc screwed into position on top of the wood．

A rin．thick piece of case wood was used for the chair seat and the strengthening member beneath it from a piece of scrap
oak about $\frac{2}{⿳ 亠 丷 厂 彡}$ first drilled to receive a sin．coach bolt， which should be a close force fit in the hole． Then，with the bolt firmly fixed into the oak，this should be strongly screwed in position bencath the seat as shown．The seat back should be firmly screwed to the seat and strengthening piece by three 1 in． screws．
Two washers to suit the coach bolt were filed on their outside circumference to a force fit in the central pipe in order to ccate the bolt centrally．Other loose washers are fitted at each end of the central pipe to provide bearing surfaces．Before assembly all parts were painted to match the desk，then the bolt was slipped into the central pipe and the nut fixed with a little glue in a position to allow the seat to rotate easily but without too much play．
Rubber feet were fitted to the legs；$\frac{5}{3} \mathrm{in}$ ． walking－stick ends are suitable for this，if the type fitted to netal furniture are not available．

Using 828 Colour Film in＂ 12 on 120 ＂Cameras

ALTHOUGH there are now many brands of colour film available for 120 size cameras the resulting transparencies， even if $2 \frac{1}{4} \mathrm{in}$ ．square，are inconveniently large for projection，need considerable storage space，and tend to be expensive．Miniature， 2in．by 2in．，slides have many advantages over the larger sizes，not the least being their lower cost and the cheap yet efficient range of projectors．
Such slides normally hold 35 mm ．frames， but can also accommodate the slightly larger 828 frame．This film is still 35 mm ．wide，

but has no sprocket holes，permitting a frame． size of 28 mm ．by 40 mm ，to be obtained． ＂Kodachrome＂colour film is available in eight exposure lengths for Bantam cameras， and to people without a．＂second camera＂ this length is more convenient than the normal 20 exposure 35 mm ．length．The adaptor to be described can be fitted to a ＂ 12 on 20 ＂camera in a few seconds with－ out any permanent alterations，enabling an 828 film to be used．

Exposure Numbers

Frame numbers on the 828 backing paper are along the centre，and can hence be seen through the window as for a size 120 film． Although the adaptor to be described could just as well be fitted in an＂ 8 or 16 on 120 ＂ camera，some other indication of frame number would then need to be devised．

Frame Mask

First，a mask is made from $1 / 32$ in．brass sheet．Dimensions are given in Fig．I，but the outer lengths should be made to suit individual cameras so that the mask fits snugly into the existing rebate with its upper surface exactly in the film plane．The side

By R．V．COATES

facing the lens is painted matt black to avoid reflecting the image on it back into the camera body．The side in contact with the film is given a high polish 10 avoid any， scratching．A short length of＂scotch tape＂ can be applied along the top and bottom edges of the mask to ensure a positive loca－ tion in the rather shallow rebate．

Spool Holders

Fig． 2 shows the two spool holders．Four stubs are turned from aluminium or brass to the dimensions shown． Three－sixteenth inch dia．holes are drilled centrally through cach， and for 120 cameras one end of each hole is enlarged to $7 / 32 \mathrm{in}$ ． to admit the spool－ retaining pins．The other end of each hole is enlarged to $\frac{1}{4} \mathrm{in}$ ． diameter to admit the ends of the 828 spool． Into tho stubs 6 cm ． lengus of $3 / 16 \mathrm{in}$ ． diameter brass rod are pinned to act as spool axles．The take－ off spool is now com－ plete：a full 828 spool is fitted on the axle and a loose stub slipped over the spool end and axle projection．
The take－up spool is necessarily more complex．A diametrical slot is cut across the outer face of the remaining loose stub to engage＂with the camera winding－key．Two small＂nicks＂are cut diametrically from the hole at the inner face of the stub，into which a small piece of shim brass or spring stecl is pressed so as to lie about I mm ．below the surface．This engages with the serra－ tions on the end of the 828 empty spool， and with a short slot in the axle．Hence， the whole assembly can be rotated as a rigid unit by the winding－key．Fig． 3 shows the complete system as set up in the camera．

Film Tension

Unlike size 20 spools， 828 spool cheeks have a flanged edge．The existing tension spring on the take－up side may be put out of action by the stubs；if so，the film will build up outside the flange and consequently be fogged on unloading unless done in the
dark．To ensure the film winds up inside the spool cheeks a short length of spring steel bent into a shallow＂V＂（sce Fig．3）is dropped inside the camerd body so that it is kept in place by the rotation of the take－ up spool．The point of the＂V＂presses against the centre of the backing paper，and is adjusted so as to give sufficient tension to keep the film winding inside the flanges．

Viewfinder Mask

Lastly，the viewfinder must be masked down to the new size；this is an individual firting depending on the type of viewfinder， but，in general，a small cardboard mask will suffice．The 75 mm ．lens usually fitted on ${ }_{2}^{1} \mathrm{i}$ in．square cameras becomes slightly long－ focus for the reduced frame，helping to ensure the frame is filled completely．

Use of 35 mm ．Colour Film
 ＂Kodachrome＂is the only colour film

Fig．3．－The complete system．
available in size 828．However，if the user docs his own processing， 20 exposure length of 35 mm ．user－processed film can be obtained，cut into two eight exposure lengths plus a short length of four to six exposures， and these wound on to 828 backing paper， and spooled．The height of the mask aperture may now be reduced to 24 mm ．，but the length will still be 40 mm ．，not 36 mm ．，since this is controlled by the spacing of the numbering on the backing paper．

TODNT MED FRENE ON A Danll-powerd linil

Extending the Range of the Tool to Include Plastics

By ARNOLD E. BENSUSAN

THE admirable little lathe kits powered by portable electric drills have a multitude of uses where wood turning is concerned. Now that plastics are used so widely by home craftsmen, the following hints for extending the scope of a lathe to cover the machining of this material should prove of interest to many readers.

Fig. 1.-Arrangement for facing plastic.

Facing

One of the most commonly required operations is to face both ends of a short plastic tube or rod; perhaps square to the

Fig. 2.-A short'tube being faced to length.
axis of the part, or with a chamfer or radius. This would, for example, be necessary during the construction of serviette rings or similar articles made from Perspex or a similar material. Since no large three-jaw chucks are available to hold work of this nature on the spindle of the power unit and, in any case, such an arrangement would be too heavy for the small motor to swing, an alternative method is necessary.
 faceplate is mounted on the drill spindle, and the block is drilled and bored out until it is a fairly tight fit on the plastic component. The hole should extend to about in. from the back of the block, so that the overhang of the finished component from the face of the block will be limited to about $\frac{1}{8}$ in. Initially, of course, the overhang will be slightly more, since there is a small amount of plastic to be removed from either end.

job is shown in Fig. I. The slight protrusion of the work from the fixture should enable it to be easily removed.
It must be borne in mind that the fixture should not be removed from the faceplate until all the work has been completed, or it will be found almost impossible to re-align it satisfactorily.
Machining can be carried out with the conventional wood turning tools, kept extremely keen and not overheated by lengthy application to the work. Alternatively, the end of an old file may be ground into the usual profile for turning work. Fig. 2 shows a short tube being faced to length.

Boring Bar

A further useful accessory is an adjustable boring bar, which will often need to be used in conjunction with the fixture described above. This tool enables cylindrical parts to be bored out accurately to size and without any internal taper, as might be the case if a hand tool

Fig. 3 (Above). - The hardwood fixture mounted on the faceplate and the boring bar in a partially machined component. (Right) the boring bar machining a component.

In order to retain the component in this wooden fixture, a suitable woodscrew should be inserted from one side. Only very light pressure should be exerted by this screw, and if the point is filed off no indentation will be produced on the surface of the component. The arrangement for a typical

were used. Additionally, an entire series of components can be bored to the same size without any need for resetting the tool.

The component is mounted on the faceplate of the lathe, possibly with the aid of the hardwood fixture. The boring bar is retained in the drill chuck, which is, for this operation, held in the tailstock. The component is bored by simply moving the tailstock lever. The arrangement is shown in Fig. 3. Where the bar has to pass right through the work, a suitable clearance recess must be bored in the fixture.

Fig. 4.-How the parts are assembled and how the boring diameter is set.

Fig. 5.-How the silver steel drill stub is ground.

The shank of the tool is a $\frac{1}{4}$ in. B.S.F. or Whitworth bolt, preferably, although
not essentially, with a hexagon head to facilitate tightening. The bolt should be long enough to be securely gripped in the drill chuck, leaving sufficient of the shank clear to completely pass through the work. A hole should be drilled transversely through the bolt, close up to the head, to suit any odd pieces of silver steel or broken twist drill shanks of about $3 / 32 \mathrm{in}$. diameter which may be at hand. A standard $\frac{1}{2} \mathrm{in}$. hexagon nut with a matching thread is also required. Fig. 4 shows how the parts are assembled and the boring diameter is set.
The silver steel or drill stub is ground as shown in Fig. 5 and a few tools of various lengths will cover an extremely wide range of work.

holes is drilled in both front and back panels, and a larger hole centrally placed to accept a standard lampholder with built-in switch is cut in the back panel alone.

The desk should be made up as shown in Fig. 2, screwing and gluing all parts together. Strips of $\frac{1}{2}$ in. $\times \frac{1}{2}$ in. wood, planed to suit, are glued and pinned to the inside faces of the sides, front and back to support the glass.
Where a great deal of squaring-up has to be done on negatives, it is an advantage to fit a $\frac{1}{2}$ in. $x \frac{3}{3}$ in. strip, planed to the appropriate angle, to the back of the desk as shown in the diagram. This

Fig. I (Above left). The completed retouching desk.

THE retouching desk described here costs only a few shillings to make, consumes is watts of electricity, and can be stored in a small area when not in use. Apart from retouching and similar afterwork on film or plate negatives, the desk facilitates the blockingout of technical and similar photographs where a perfectly white background is required on the print. The completed desk is shown in Fig. 1.
Two sheets of ordinary glass, 11 in. x 7in., with a piece of tracing paper between them, are bound all round the edges with cellulose tape to form the working surface. Negatives for treatment are simply taped to the face of this part. It is advisable to obtain the glass and make up this section before constructing the remainder, since slight adjustments of size are more readily made to the wooden parts.

The sides of the desk are cut from $\frac{1}{2}$ in. thick chipboard, as. this is inexpensive and casy to work. The back, front and base are $\frac{1}{4} \mathrm{in}$. thick plywood, or $\frac{2}{n}$ in. thick hardboard. A row of $\frac{3}{k}$ in. diameter ventilation
 strip should be precisely square with the left-hand side of the desk. A specially constructed tee square can then be used in both horizontal and vertical positions for drawing straight lines with a ruling pen and liquid opaque.

The square shown covers all negatives up to halfplate in size, the remaining area of the glass being used to support the hand while working. The arms must be exactly at right angles; pins and 'screw's being used for accurate location and firm fixing. The thinned-down working edge facilitates the ruling of lines.

Both inside and outside surfaces of the desk are given two coats of white gloss enamel, and the square may be similarly painted to simplify cleaning.

BOOKS FOR ENGINEERS

Gears and Gear Cutting, 6/-, by post 6/6.
Workshop Calculations, Tables and Formulae, 7/6, by post 7,10 .
Dictionary of Metals and Alloys, 10/6, by post 10/10.
Wire and Wire Gauges (Vest Pocket Book), $3 / 6$, by post $3 / 9$.
Newnes Screw Thread Tables, 6/, by post 6/6.
Refresher Course in Mathematics, $8 / 6$, by post 9/-.
Newnes' Metric and Decimal Tables, 5/-, by post $5 / 6$
Mathematical Tables and Formulae, 5/-, by post $5 / 3$.

Publishied by

GEORGE NEWNES LTD. TOWER HOUSE, SOUTHAMPTON STREET, STRAND, W.C.2.

Fusible

JUST as the addition of tin to lead will produce an alloy which melts at a lower temperature than either metal, so the addition of a suitable third metal will cause the melting point to fall again, while a fourth metal may bring about a further lowering, and so on. By using this principle, a large range of materials known as "fusible alloys" has been produced. If the choice is restricted to the more common metals-lead, tin, bismuth and cadmium-an alloy with a melting point of $70^{\circ} \mathrm{C}$. may be made, but if other, more expensive, metals are introduced, such as indium and gallium, still lower melting points can be realised.

Mercury is in a special class. It is the only metal liquid at room temperatures (it freezes at minus $39^{\circ} \mathrm{C}$.) and its addition to an alloy will, of course, lower the latter's melting point. Alloys containing appreciable amounts of mercury are called amalgams and, although they have low melting points, are not usually classified as fusible alloys.

Fusible alloys, in general, are not very strong. about 2 or 3 tons tension per sq. in. being sufficient to cause rupture. This fact is sometimes turned to advantage where a joint of weak strength is required (e.g., the sardine tin in Fig. 1, where the solder joint is torn in opening the tin). The other outstanding property, apart from their abnormally low melting points, is that many of them either expand on freezing or suffer little or no volume change.

Uses

These lead alloys have many uses. Those which depend on their low melting points,

Fig. 1.-A loz-strength solder used on a sardine tin. Photo.-Messrs. Grey and Marten Led.

Alloys

gives way just below its melting point) and the water is released. Similarly, fire-proof doors, which shut by gravity, are held open by a simple pulley system, an essential component of which is welded by a fusible alloy.

Oil pipe lines occasionally incorporate a cut-off device, using a fusible alloy, and the latter may also be found in some domestic water heaters. Industrial boilers are often fitted with a plug of fusible alloy, designed to blow out at a certain temperature and pressure. The same device is also used on some domestic pressure cookers to act as a second line of protection should the operating pressure valve fail.

The property of expanding when freezing, possessed by some of these alloys, makes them very useful when called on to reproduce an intricate pattern by casting; it is also valuable for the bending of thin tubes.

> Such a tube, on

Fig. 3.-Tinning stainless steel with a grinding woheel loaded woith W'ood's metal. Photo--Las Alamos Scientific Laboratory of the University of Califormia.
being bent, will sometimes collapse, or at other times develop unsightly wrinkles. If, however, the tube is first filled with metal ir can be bent as if it were a solid bar, with consequently less distortion. For this purpose it is necessary that the metal used should fill the tube completely when solid, and not shrink away from the walls às it sets. The fusible alloy chosen for the work is usually melted under hot water to keep it free from dross. The resulting bent tube is emptied by dropping it back into the water, when the alloy melts and runs out.
A considerable tonnage of lead is made (Concluded at foot of fage 489).
include soldering applications or taking impressions of articles sensitive to heat ; for example, a fusible alloy mould may be made by direct contact with a wooden shape and this mould used for reproducing the article in plastic wood or thermo-plastics.

Perhaps the most widespread use is in safety devices in circumstances where a rise in remperature would be dangerous, such as fire extinguisher sprinkler systems. The alloy is used to make a component of a mechanism which holds back the flow of water. Should a fire start and the room temperature rise, the soft lead alloy melts (or usually
Fig. 2 (Lefl) Metal soldered to slass in a hypcdermic syringe barrel.

Fig. 4 (Right). Artificial jewellery produced from leadbased solder alloys. Photos. - Messrs. Grey and Marten Lidd.

Part 1．－Bode＇s Law；the Asteroids；the Radiation，Temperature，Magnetic Field and Corona of the Sun

BY＂STAR GAZER＂

SUPPOSE that we wished to make a model of the Sun and all of the planets which revolve around it with diameters and the distances all to a uniform scale． We decide that ift．will be a convenient size to make the Sun＇s diameter and we shall then find that the sizes and distances of the planets will be as follows：Mercury，which is the planet revolving nearest to the Sun，would be represented by a tiny ball a little larger than a pin＇s head，and this would be placed
scale of our model，to a little more than one mile．
Now I think this is a very interesting illustration of the tremendous distances which separate the orbital paths of the nine planets from the Sun and from each other． With the Sun having a diameter of only Ift．the planet Pluto can be so much as a mile from it and the nearest fixed star is over 5,000 miles away by the same scale．

Fig．1．－The four largest Planetoids to the same scale as the British Isles．

Bode＇s Law

The separation of the orbits of the planets appears to be almost exactly fixed by a law which was first formu－ lated by two astronomers：Titus and Bode，both of Wittenburg．Write down a series of numbers thus： o ， $3,6,12,24,48$ ，and so on，each number，after the second，being double that which precedes it．Now add 4 to each number and you have $4,7,10,16,28,52$ onwards．These resulting figures give the mean distances of the planets from the Sun out to Uranus．Neptune and Pluto depart from the law，especially Pluto，whose orbit is very irregular， so much so that at times it must encroach upon that of Neptune．The following table gives actual results：

For the first seven planets，or eight if we include the Asteroids positions，the figures are useful to remember when calculating planetary

		$\begin{aligned} & \stackrel{y}{8} \\ & \stackrel{5}{5} \end{aligned}$	$\begin{aligned} & \text { 甭 } \\ & \text {. } \end{aligned}$	$\begin{aligned} & \frac{\pi}{3} \\ & \sum_{4} \end{aligned}$		$\begin{aligned} & \mathscr{H} \\ & \stackrel{\rightharpoonup}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { 惰 } \end{aligned}$	$\begin{aligned} & \text { 第 } \\ & \text { 5 } \end{aligned}$		$\frac{2}{3}$
By Bode＇s Law Actual distances ．．	${ }_{3.9}^{4}$	7.7	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 16 \\ & 15: 2 \end{aligned}$	${ }^{28}$	52	100 ${ }^{100}$	$\begin{aligned} & 1966 \\ & 192 \end{aligned}$	388 300.7	$\begin{aligned} & 772 \\ & 394 . \end{aligned}$

Saturn by a smaller orange at about $1,055 \mathrm{ft}$ ．Uranus by a large cherry at about $2,110 \mathrm{ft}$ ．Neptune by a normal－sized cherry at about $3,300 \mathrm{ft}$ ．，and Pluto by a green pea which is placed at a mean distance of $4,225 \mathrm{ft}$ ．，although the orbit of Pluto is so eccentric that it at times increases its distance，by the
paths swept by the planets are elliptical，the Sun being at one of the focii of each ellipse． In most cases，however，the deviation from a true circular orbit is very slight．It may be noticed that in the Bode Law table no actual distances are given for the Asteroids，but their paths fit in very well with the figure
distances．The figure 10 ，for the Earth， represents 93 million miles，mean dis－ tances being referred to in all cases．The
given by Bode．The table at the bottom of the page relating to the planets will be useful for reference．

The Asteroids

The Asteroids have their orbits between those of Mars and Jupiter，and in the year

Fig．2．－The largest planetoids compared with the moon．

$$
\begin{array}{|l|l|l|l}
\hline \% & \tilde{0} & 0
\end{array}
$$

1950 there were over 1,500 discovered by photography．Of course，the difficulty now is to recognise the old ones because there are so many thousands and some of the orbits are so eccentric owing to disturbances by Mars，Jupiter and Saturn．But a few，some four or five，are fairly large：Ceres，for
\square

| |
| :--- | :--- |

Saturn	Ura
$\mathbf{8 8 6}$	1,783
29.46	84
20.5	0
$26^{\circ} .75$	98
6.0	4
75,100	32
67,200	6
734.0	64
94.9	14
1.17	0
10 h .14 m	10 h.
9	5

Uranus	N
1,783	
84.01	1
0.8	
98°	
4.2	
32,000	
64.0	
14.7	
0.92	
$10 \mathrm{h.45m}$	13
5	

us	Neptunc	Pluto
3	2，793	3，666
． 1	164.8	248.4
8	$1{ }^{\circ} .8$	17° ． 1
	29°	？
2	3.4	3.0
，000	27，600	3，700？
． 0	42.0	． 1
． 7	17.2	O．
． 92	1.4 ？	
45 m	13 h .48 m ．	？
	2	－

Pluto
3,666
248.4
17.1
$? .0$
$3.0,0$
3.700
$0.1 ?$
$0.1 ?$
$?$

instance，has a diameter of 485 miles，Pallas 304 miles，Vesta 243 miles，and Juno 118 miles．So the correct title to give to these bodies would be Planetoids．The Asteroids vary in size between，say， 100 miles or less in diameter and particles no larger than bits of gravel or some as fine as sand．The theory
appears to be held by some observers that all these particles are parts of a planet of normal size, which exploded or became in some way disintegrated and really there is some reason for accepting this theory. By Bode's Law we have seen that the Planetoids and Asteroids occupy a position which would be given to a single planet, and, if the explosion occurred before the planet had become solid, that would account for the largest fragments becoming globular as they undoubtedly are. The smaller bodies appear to be irregular in form. Eros is irregular in the light which it reflects and Mr. F. G. Watson considers it to be about 14 miles in length by 4 miles wide, and rotating about its minor axis. Thus it would reflect more light in one attitude than in another. Very many of the Asteroids yield variable light reflections, showing that they are not spherical. So enormous are the eccentricities of some of these bodies that they approach the orbit of Jupiter on the

Sun's equator. These planets turn also on their own axes in the same direction of rotation with the exception of Uranus whose motions with his satellites were referred to in our December, 1954, issue. The satellites also revolve in conformity with the whole system. All this tends to show, with its extreme isolation, that the whole is a self-contained unit, it must have had a common origin in all its parts and is no fortuitous assembly of matter. What that origin was we do not know definitely, but it might have been condensation from a nebula.

The Sun

The pivot about which the whole system operates is, of course, the Sun and now let us devote a little attention to this; the source of light, of warmth and of all forms of life itself. For if the Sun were suddenly blotted out and the light and heat rays extinguished, that light would only continue to shine for eight and one-third minutes, then would come death to every living thing.

The mass of the Sun is about 745 times that of the cumulative weight of all of the planets, including planetoids and asteroids, so it is evident that it is well capable of controlling them. Its diameter is 864,000 miles ; just 109 times that of the Earth, but its mean density is a little less than $1 \frac{1}{2}$ times that of water. It is, however, entirely gaseous but varies greatly between extreme compactness at the centre to rarefaction in the envelope.

Ther Radiation
Day light is radiation from the Sun and its range of fre
outside and of the Earth on the inside, in fact, they may encroach upon the orbit of the Earth. They move at far greater speeds than does the Earth.

It seems likely that the explosion of the planet must have occurred long ago when our Moon was in a plastic state and that the Moon and the Earth, Mars and Jupiter must have collected much fragmentary material, the rest being blown at angles which have resulted in periodic revolution around the Sun. The size of the hypothetical planet must have been equal to that of Venus, or, say, a trifle smaller than the Earth. It may be pointed out that if the explosion of the planet took place at the time when the Moon's surface was plastic the ring mountainous condition of its surface is explained by the impact of the particles, a few of which must have been as large as Vesta, or at least as Juno.

Fig. I shows the largest minor planets, or planetoids, with their diameters compared with Great Britain and Ireland and Fig. 2 shows them placed over the Moon. In both cases they are drawn to scales but the scales are different.

The whole of the nine planets, the planetoids and asteroids and some of the comets, revolve in paths varying from nearly circular to very elongated ellipses around a massive, hot and self-luminous central Sun. They revolve in the same direction as the Sun rotates on its axis and approximately in the plane of the

Fig. 3.-The sun's corona when sunspot activity is near maximum.
a wave of light is very small, approximately 50,000in.
second, so the frequency of pulsation is, for green light, about 600 million million per second. For greater convenience radiation is now defined by its wavelength in Angstromunits, one such unit, or "A," being one ten-millionth part of a millimetre. The visible part of the solar spectrum extends from 4,000 A to $7,800 \mathrm{~A}$ whilst it commences at about $3,000 \mathrm{~A}$ and is carried on to about 28,000 A.

The solar spectrum is crossed by dark lines, the Fraunhofer lines, which greatly vary in thickness. These lines-there are thousands of them-are where the light has been cut off, or partially cut, by the atoms of gases at the surface of the Sun. The atom has been likened to an extremely small solar system in which the Sun is represented by a nucleus consisting of a proton and neutrons. Around this neutron and proton a number of electrons revolve, one in the hydrogen atom, two in the helium atom, three in the lithium atom and so on. The proton carries one charge of positive electricity, but the neutron, which has the same mass as the proton, is uncharged. As the atom is normally electrically neutral the number of electrons, each carrying a negative charge, which revolve around the nucleus, is the same as the number of protons. Thus the lithium atom has three protons and four neutrons and to neutralize the three positive charges on the protons there must be three electrons revolving around the nucleus.

The electron may move in many differently fixed orbits; in a normal state it will choose of frequencies of pulsation fall within that to which our eyes are sensitive. As a matter of fact we are actually only ablc to see a range falling between the violet end of the spectrum and the bright red end. There are only about 1,000 wave lengths beyond the violet whicl cannot be seen but at the other end the red becomes invisible at a point just beyond the peak of the curve of visibility and continues for five times the
 length of the visible range.

This represents heat waves. The portion representing the most intense radiation is in the orange, between the yellow and the red. The spectrum may be seen and analysed with a spectroscope which consists of a series of prisms and lenses. No colours have sharply defined boundaries but all merge into those adjoining it. Photography plays an important part in the analysis of the spectrum: what we cannot see we can photograph, i.e., the ultra violet and the infra-red portions which are invisible to the eyes.

Radiation is a phenomenon relating to waves and the frequency of pulsation results from the number of waves passing a given point in a given time. The length of
the smallest and easiest orbit nearest to the nucleus. If the atom is heated or excited by collisions with other atoms in a gas, or by electric discharges, it will fly away into the next orbit farther away from the nucleus and in doing so will absorb a certain amount of energy. Left to itself the electron will fall back into its original orbit and will emit, in doing so, the same amount of energy. This energy will be registered, in the spectrum of hydrogen, by a line in the position of the wave length corresponding to the leap which the electron has made.

When hydrogen, or any other gas, is present in the Sun there are millions of atoms colliding with each other, at millions of times per second and, therefore, millions of electrons
are jumping facm ons crbit to another and back again. The orbits are all occupied by some electrons in some atoms and jumps are occurring, at millions of times per second, between all parts of orbits, so that lines in the spectrum are registered in all possible wave lengths which are peculiar to hydrogen. The same applies to all other gases in the sun, so making up the complete solar spectrum.

If, having been driven outward from orbit to orbit, the electron now reaches the outermost it will, by the absorption of more energy, be entirely driven out of the atom, which will then be ionised and be unstable. In hydrogen the nucleus is left without an electron and is them known as a hydrogen ion, or proton, which is at present indivisible. It is positively charged owing to the missing negative electron and will capture another electron at an early opportunity. Atoms with a number of electrons may be simply, doubly or trebly ionised and the nuclei of the more complicated atoms are composed of more than one proton.

We can, therefore, imagine the Sun to be an incandescent mass of atoms, free electrons and nuclei almost stripped of their electrons, especially as we approach its centre, the resulting radiation from all this energy always passing outwards to the surface.

A Gaseous Mass

Hydrogen is by far the most abundant gas in the Sun. The spectroscope indicates that over 90 per cent. of the visible gases are hydrogen and it is estimated that possibly more is maintained throughout the solar sphere.
If a solid mass of some imaginary material were of a substance which could not be fused, melted or gasified, could be dropped on to the Sun, it would enter its substance and fall for many thousands of miles before it met with any resistance whatever. The extremely rarefied state of its surface is difficult to realise when we consider its size and mass and especially its hard or comparatively smooth outline. Its mass is such that the force of gravity at its surface is so great that an object which on Earth weighs one pound would, on the Sun, weigh a quarter of a hundredweight, 28 times as much. Therefore, an ordinary human being would weigh nearly two tons.

The explanation for the extremely tenuous state is that in the Sun, as in other stars, a new force comes into operation, acting out wards from its centre. This force becomes important where there is intense radiation from massive gaseous bodies at high temperatures. It is known as Radiation Pressure, and is due to perpetual shedding and recapturing of electrons by the atoms of gases at high temperatures in the presence of radiation. At the surface of the Sun, radiation pressure, helped by ordinary pressure exerted by any gas, is nearly equal to the effect of gravity so that as it is not quite equal the Sun docs exhibit a definite circular outline which has the appearance of a hard, or nearly hard, edge to the solar globe.

Temperature

The approximate temperature of the Sun at the surface is 6,000 deg. K and this increases rapidly towards its centre where it is estimated to be round about 20 millions C . and the pressure such that one ton of matter is contained in two or three cubic inches of space. Nevertheless, the Sun is entirely gaseous and at one time it was difficult to conceive of a gas having a greater density than any solid which we know
The Sun's polar axis is inclined to the vertical of the Earth's ecliptic at 7 deg. .25. The siderial period of rotation, which occurs at about latitude 15 deg. is 25 to 30 days. But the Sun's rotational speed is not uniform. At the equator the period of rotation is 25 days, but at about latitude 40 deg., either north or south, it is 27.5 days. At about 80 deg. the period is as much as 30 days. As seen
from the earth the rotation period appears longer and this is called the Synodie Period of Rotation ; it is 27.27 days and is due to the Sun's rotation in the same direction as the Earth's orbital motion.

The Corona

Outside of the solar surface, as scen by us, there is a vastly rarefied atmosphere, or excrecsence, surrounding the Sun, which is known as the corona, the density of which is almost as rarefied as the vacuity of interplanetary space. This corona is best seen and photographed during the few moments of totaleclipse when the body of the Moon is exactly in line with that of the Sun. During very recent times an instrument has been designed which enables this to be done at any time, when our atmosphere is clear, without waiting for an eclipse. Owing to its extreme tenuity the atoms in the corona are so widely scparated that they can travel great distances before they collide with, or are disturbed by, other atoms and under thesc conditions the orbital leaps of the electrons are unusual.- There is evidence which tends to show that the temperatures in the corona are extremely high, probably having a mean in the neighbourhood of one million degrees. C. The energy required to maintain these high temperatures would be small, as radiation in such a rarefied gas would be insignificant; but it is somewhat difficult to explain this high temperature in the gases of the corona when that of the solar surface is only 6,000 deg. K. However, it has been suggested that the gathering of interstellar material at very high velocity may remove the difficulty.

The size and extent of the corona changes with the state of the Sun's magnetic and other activities, for the Sun, like the Earth and other
planets, is an enormous magnet, the poles being approximately 6 deg . from those of the axis of rotation. The magnetic field is probably variable but, in general, it is weak and almost imperceptible to measurement.

The Magnetic Field

In general the Sun's magnetic field is much like that of an ordinary short bar-magnet of steel. If we lay such a magnet upon white paper and sprinkle iron filings upon it, they, the filings, will follow the magnetic lines of force in a very beautiful pattern and, especially near the poles, will adopt radially curved lines. Such lines appear in the Sun's corona and are most noticeable when solar, or sunspot, activity is at its minimum. Fig. 3 shows the corona when the activity is at its maximum and Fig. 4 when it is about at its minimum. Sunspots give rise to much more powerful magnetic fields and when these are present the corona is more evenly distributed, though by no means circular, around the Sun, beside which it is much deeper and lines of force are not so marked, as may be seen by comparing the two figures.

To those readers who are interested in the whole of the subject I would advise them to read, "Astronomy for Everyman." This is a work edited by Martin Davidson, B.A., F.R.A.S., to which there are 13 contributors. It was first published in 1953 and in 1954 a revised edition was issued. The publishers are J. M. Dent and Sons, Led. It is from this work and particularly from a section by F. J. Sellers, M.I.M.E., F.R.A.S., who was Director of the Solar Section of the British Astronomical Association, that much of the foregcing has been taken.
(To be continued)

Wateracooled Safes

How to Make Two Types of Cooler
By D. SCHRODER

THE cooler is constructed from heavy galvanised iron in the form of a convenient box about one and a half times as high as it is wide. All four sides are the same size for conveniencc. The box is drilled every $\frac{3 i n}{}$. with $\frac{1}{8}$ in or $1 / 16 \mathrm{in}$. holes running diagonally up the sides to allow free circulation of air ; the top is not drilled but the bottom is, and any shelves inside are also drilled.

Two tanks must be made to complete the construction. The upper tank is the same size as the top of the cooler and 6 in . deep;

Feot on bortom of cooler
Construstional details of the evaporation type cooler.
the lower tank is 6in. bigger all around than the cooler. An old. sack of the heavy hessian type is cut open to make a long strip; this is then hung around the cooler, the top being kept in place by strips of metal bolted on to it, using galvanised iron roofing washers and bolts. These strips are hung around three sides of the cooler with the metal strips inside on the floor of the top tank. The "curtain" should be long enough to reach the floor of the bottom tank and be held by the same method as in the top tank. To cover the door a curtain of hessian should be used. If the tanks are now both filled with water the water will flow down from top to bottom by a siphoning action and from bottom to top by capillary attraction. After being left to soak in this fashion for 48 hours the water level in the top tank should be lowered to about half-way. If put in an airy place the water going both ways evaporates and cools the interior of the cooler. It only remains now to replenish the water at suitable intervals, and to facilitate emptying the tanks two small stopcocks can be fitted.

Chareoal Type

In this type, the actual cooler is only a wooden box framework with a thin mesh netting nailed to the inside and another to the outside. The space between is filled with charcoal, and the thicker the framework is the thicker the walls of charcoal will be. If placed in a tank as in the previous method water will always be available, and by wetting down the sides the charcoal will absorb water which will cool the interior by evaporation.

By S. F. Hook

A
FTER uneven developing had been experienced with hand agitation of an Agfa Rondinax 35 mm . tank. it was decided to motorise the drive.
A suitable motor was obtained from The
Fig. 1.-The

Fig. 3.-The unit with tank removed.

A Device for the Photog rapher to Eliminate Uneven Development and Reduce Developing Time
an oblong piece of the same material about 12in. by roin. A driving dog was coolved so that the tank could be withdrawn for emptying, etc., without stopping the motor. Details of this are shown in Fig. 2.

The voltage was obtained from a transformer which reduced the mains input to 8-ro volts at the output terminals. The motor is a shunt type and the only way to make it run satisfactorily was to disconnect the field altogether and to connect

Fusible Alloys

(Concluded from page 485)
into fusible alloys which are used for lowtemperature soldering. Special applications in this field are the jointing of pewter, and in cases where a second joint is required near to a previously soldered one which must not be melted, and other instances where damage may result from overheating.
So large is the overall field now becoming that manufacturers no longer produce a fixed range of fusible alloys for the customer to choose from. but produce alloys to customers' specifications, or design a new alloy to meet customers' needs.

New Applications

Some fusible alloys have the property of wetting glass. Thus, as shown in Fig. 2, it is possible to solder glass components to each other, or metal to glass. Wood can be impregnated with fusible alloys and so this
material, too, can be soldered. A recent improvement on this technique involves the "tinning" of smooth surfaces with either a lead-based solder ar fusible alloy by applying the metal from the surface of a small grinding wheel which presses the alloy into the ground surface (see Fig. 3). The success of this method with such materials as glass and plastics suggests that in future many unusual materials will be joined by soldering.
(Reprinted from "Applications of Lead" by courtesy of the Lead Development Association.)

Fig. 5.-A further example of lead-based solder alloy jervellery. Photo.-Messrs. Grey and Marten, Ltd.

THE conventional electric fire or radiator operates at a higin temperature and emits the bulk of its heat energy in the form of infra-red rays. These are generally concentrated in one direction by a polished reflector, and warmth is only apparent in objects in front of the fire. A convector heater, however, has a much lower working temperature, and warms the air in any enclosed space directly. There are certain advantages in this arrangement. The convector heater will take the cold air off a room much more quickly than an electric fire, and so is ideai for warming the bedroom or that cold hallway. It is safer, too, in view of the lower working temperature and lack of exposed wires. Umfortunately, the commercial product, whilst undoubtedly very efficient and decorative, is rather expensive.

Fig. 1.-General view of the heating element.

Fig. 2.-The completed heater.

The Element

The element is shown in Fig. I and also in the photograph, Fig. 3. The basic requirement is an aluminium frame measuring $16 \mathrm{in} . x 6 \mathrm{in}, x 2 \frac{1}{2} \mathrm{in}$. deep. The method of construction is not important. The ends must be dished as shown, and a small vice may be conveniently used for this. It was found that the aluminium frame was a little flimsy and stiffeners were added. These were also of aluminium; the construction can be. clearly seen in Fig. I. Small cuts are made with tinsnips, positioned as shown, to form flaps which can be bent down to carry the four insulating strips, The latter are heat-resisting laminated plastic"Formica" offcuts are idealand measure $15 \frac{7}{8} \mathrm{in}$. $x \frac{1}{2}$ in. A small panel 2 in . $\times 1 \frac{1}{4} \mathrm{in}$. must be removed from each end of the frame to carry two more insulaing pieces. These measure 3 in. $x I_{4}^{\frac{1}{4}} \mathrm{in}$. and are attached to the frame by aluminium rivets.

Before fastening the insulating strips to the frame it is necessary to drill holes for the hooks which will subsequently carry the element wires. The distances between holes are shown in Fig. 5, and it is as well to keep to the dimensions given, The hooks are made of 20 g . soft

Cheap to Make :

iron wire (gal-
By P. D. SV
vanised iron wire is quite satisfactory) and are shaped as shown in Fig. 1. The hooks are inserted in the holes drilled to receive them and are tightened in position with a pair of pliers.
The insulating strips mav now be fastened to the frame using aluminium rivets. If the holes and flaps have been correctly posiioned the hooks should be well clear of the rivets. This is very important as any accidental connection will result in a short circuit. The frame is now ready to receive the actual heating wires.

The heating element is composed of four 1,000-watt spiral heating elements of the lype which may be purchased at a well-known multiple store for 1s. each. (The type which are wound on porcelain are not suitable.) The voltage of the individual elements should be the same as the voltage or which it is finally desired to use

Fig. 3.-The heati

Fig. 4.-The

wection Heafer:

 panels. The top and bottom elements are connected to terminal "A" and are then stretched and run across from hook to hook. Where it is necessary to join the second 1,000-watt element on to the first, it is convenient to replace the hook at that point by another in. nut and bolt. At the other end of the frame, both the upper and lower elements are joined to the terminal "D."
A connection between terminals "B" and
those given in Fig. 6. The inside must be large enough to take the heating element. The laiter is fastened as shown in Fig. 6, 2 in . above the open bottom of the case and held by four Parker-Kalon self-tapping screws. A grill of wire mesh or, preferably, expanded metal must be fastened to the botom of the case to admit the air and yet keep out prying fingers. Again to admit air to the element the case must stand on legs about 4 in. high. The mains flex, incidentally, is brought out through the expanded metal underneath the heater. The vent for the hot air is an expanded metal loudspeaker grid, which may be purchased in a standard 16 in . x 7 in . sheet for 2 s . at any radio component shop. Another requirement for the case is a (Concluded on page 501.)

Fig. 5.-Plan view of the element.

Reliable

-

MWM
1000w
the heater. If two 1,000-watt elements are joined in series, then the result is a 500 -watt element, which will run at a much lower temperature than the originals. This reduced temperature is necessary if the heater is to function as a convector and not as a radiator. 500 watts is not, however, sufficient power to heat even a moderatelysized room very satisfactorily, and the power is doubled by taking another two 1,000-watt elements in series and putting them in parallel with the first two. Fig. 4 shows the arrangement of the wiring. It is possible to use the elements as they are but it is better to rewind them with a slightly larger diameter - rewinding around a pencil is satisfactory. In this way the coils of the element are cooled more rapidly by the rising air.

Connecting terminals are formed by $\frac{1}{8}$ in. nuts and bolts
" D " is necessary and is effected by a length of stiff galvanised iron wire. The ends are bent into small rings so that they can be attached to the terminals. (It is as well to put a nut between each separate connection on the same terminal.) The wire is so bent that it passes about ${ }_{4}^{3}$ in. below the coils of the lower element. Finally the three-core mains flex is taken through a $\frac{1}{4}$. hole in the insulating panel. The live wires (red and black) are connected to terminals "A" and " B ," and the green earth wire is connected to terminal "C." Terminal "C" is fasted to the aluminium above the insulating panel. It is important to see that the frame is correctly earthed.

The Case

Of the case, little will be said. The one in Fig. 2 is made of aluminium, which was acquired cheaply secondhand. The first heater that was constructed was of a simple design, using wood for the sides and top, and aluminium panels for the front and back. Because of the low working temperature the wood has suffered no damage, though it is to be admitted that a metal case is to be preferred. Aluminium is fairly expensive and it is possible that a cheaper material which could be used effectively is galvanised" iron sheet. Yet another material which suggests itself is "Formica" used on wood or aluminium formers.
Whatever the material and design adopted, there are certain requirements for the case which must be met. The dimensions of the case should be roughly

Fig. 6.-Case.

Apparatus for Enlarging 35 mm . to $\frac{1}{4}$ plate Negatives

THE basis of this enlarger is an old $\frac{1}{4}$ plate camera. As can be seen from Fig. I the lamphouse is suspended by specially shaped brackets between two upright columns. This method of construction was chosen because it gives a firm support and lessens the chance of overbalancing for an enlarger of this size.
 in it, the holes being spaced Iin. apart and numbered consecutively. These are provided to enable the user to record the degree of enlargement. For example, when the enlarger head is lifted to its required height for any particular photograph, a small peg

or sawn-off nail is inserted in the hole directly below the brackets. After the exposure the number of the hole is written on the corner of the negative, or on the envelope the negative is to be filed in. If. the enlargement has to be duplicated at any time, all that is required is to peg the enlarger head at the same number hole to get exactly the same magnification.

Baseboard

The size of the baseboard is yin. long by 12in. wide by ${ }_{3}^{3}$ in. thick. The two columns are 40 in . long by 2 in . wide by s in . thick. Each one is secured firmly in position 12 in . from the other by being attached to a wooden bar I_{2}^{1} in. square which is screwed to the baseboard. Two brackets are also screwed to each column to further strengthen the support (sce Fig. 2).

Lamphouse

The dimensions of the lamphouse are governed by the size of the plate camera

By P. WILDON
used. In this case the lamphouse is 12 in . high by $5 \frac{1}{2} \mathrm{in}$. wide by $8 \frac{1}{2} \mathrm{in}$. deep. The sides are made of $\frac{1}{4} \mathrm{in}$. thick plywood with an internal framework of $\frac{1}{2}$ in. square beading.
The top of the lamphouse is hinged to give easy access to the bulb (see Fig. 3) and has a piece of half-round beading nailed to both sides to prevent any light from escaping.
The light source of the enlarger is an opal bulb, the rays from which are

Fig. 2.-Method of attaching the columns.

Fig. 3.-A close-up of the lamphouse with the top open.
diffused by a piece of opal glass. The glass rests in position on two ledges which are fixed to the sides $7 \frac{1}{2} \mathrm{in}$. from the top. It can be slid out for cleaning when required through the slot in the front of the lamphouse. A

Fig. 4.-An exploded view of the- lamphouse components.

Fig. 6.-Camera with lens flange and casting fitted.
No switch was fitted to the lamphouse because of the possibility of movement

lig. 7.-A close-up of a lamphouse supporting bracket. during exposure. Instead an "on-off" switch is fitted in the light flex.
If bigger enlargements are required than is possible on the baseboard, the enlarger head can be reversed on the columns, laid on its side, and the picture projected on to the wall.

This enlarger has been deliberately left unpainted to give a better idea of its construction, but a coat of black paint should be applied.
The enlarging lens should be the same focal length as the camera lens used to take the largest negative to be enlarged.

Self-binders for

PRACTICAL MECHANICS

A S a service to our readers we have arranged for self-binders to be supplied in which they may preserve the copies of this journal. Copies can be inserted as received, and you do not therefore have to wait for the completion of the volume. You secure the same all-time protection as with ordinary binding. The self-binders are in black waterproof and greaseproof cloth, attractively lettered in gold. This system avoids copies becoming damaged or mislaid. The Easibinder opens flat at any page of any separate edition and gives quick reference facilities. When the volume is complete our annual index, published at is. 3d., should be inserted.

They cost 11s. od., post free. Orders should be sent to the Publisher (Binding Dept.), Geo. Newnes Ltd., Tower House, Southampton St., Strand, W.C.2.

State the volume number you require blocked咅

essential to success in making a delicate balance on the lines illustrated in Fig. I. The first is to see that all the three points on the steelyard (A, B and C, Fig. 3) and also the intermediate notches between A and B are in one horizontal line. The other requirement rests in the making of the two sets of knife edges and "Vees" (see B and C) on which the steelyard is supported and the scale pan hangs in suspension. For the main support (B, Fig. 3) a safety razor blade can be utilised, the cutting edge of which should be blunted a little on an oil stone and made to engage the Vee piece, made of steel and soldered into the crutch of the balance arm, as indicated in Figs. 2 and 3.

The Base

The original balance was built up on an ebonite base $\frac{1}{1} \mathrm{in}$. in thickness, and sawn to the shape and dimensions indicated in Fig. 2. Two holes are tapped into it-one

to receive the central support and the other for the end balance pillar. The first mentioned support can be made from a piece of hexagonal brass rod tapped 2 B.A. at the top end, and shouldered down and screwed $\frac{\lambda}{\mathrm{i}} \mathrm{in}$. Whitworth at the other (lower) end. If this material is not available, a pioce of stout brass tube, squared off at the ends, and threaded through with another piece of 2 B.A. screwed rod, can be used. Both methods are shown in Fig. 4.

The Main Support Pillar

On the top of the central pillar, under the

Fig. 3.-Details of the steel yard.

Fig. 2 (Left)-General arrangement.

Fig. 4 (Right).-Making the central support.
head of the bolt or nut (see Fig. 4), a bracket made from rectangular section brass bar $\frac{t}{4} \mathrm{in}$. by $\frac{f}{f}$ in. is fitted. This 2in. bar is bent at right angles at or near the centre of its length, and at the top, in a fine saw cut, a piece of safety-razor blade is soldered, edge up, to support, in the inverted Vee strip, the weighing beam or steelyard of the scales. In
making this, the full-size razor blade is broken approximately to the size required and then ground down evenly on a handoperated emery wheel to the correct dimensions.

Fig. 3 illustrates the shape and construction of the steelyard. It is very important in finishing off the beam to get its top surface just above the horizontal line running through the apex of the main supporting Vee and the bottom of the notch from which hangs the scale pan. Further, it is necessary to file away the arm to balance it accurately with the scale pan suspended in position (without the rider, of course), the extremity of the steelyard swinging exactly opposite the point formed in the head of the end pillar.

The Scale Pan

This is a light dish of tinplate or other sheet metal of about 2 in . diameter, and it can be made from any tin lid, if nothing more suitable is to be found. A wire hanger is formed as shown at A in Fig. 5 and soldered to the sides of the pan. The looped top of this wire is pierced to engage the end notch in the steelyard. Where it is looped, the wire should be soldered, just at the crossing, to prevent the thin metal hanger jamming in the joint when the pan is removed from the scales. To facilitate carrying the balance about, a wire hook or guard is soldered on to the end of the steelyard, as shown in Fig. 2 and bent over the scale pan hanger. This wire may be pushed into a hole drilled in the steelyard and soldered, or reliance may be placed on soldering alone.

The Vee Piece

The steel "Vee" is soldered into the crook of the steelyard. If duralumin or some other aluminium alloy is used for the balance arm, then a dovetail fitting must be used. The Vee strip must be filed to a wedge section to fit this dovetail and driven into place, thus being secured by friction.

The Balance Pillar

The outer pillar is made from a length of No. 2 B.A. screwed rod, and the head, a piece of $5 / 16 \mathrm{in}$. square brass rod, is drilled and tapped to receive the pillar (see B in Fig. 5). If no 2 B.A. taps are available, the head may be secured by extending the pillar through a

plain hole and fitting a nut on each side. The head has an open jaw (B, Fig. 5) which limits the movement of the steelyard arm and also marks the central position. A wire guard is made and fitted to this head. This prevents the side displacement of the steelyard when the balance is being carried about.
(Concluded on page 497)

For Every Cutting Tool

. . there's a

FOR CHISELS AND PLANE IRONS Flat stones suitable for sharpening any flatbladed tool, and for outside-bevelled gouges. In coarse or fine grits of silicon carbide or of ALOXITE abrasive. Combination coarse and fine stones are also available.
FOR GIMLETS
Bore two holes in hard wood before the gimlet is blunt enough to make hard going of it. When the gimlet eventually needs sharpening work it in one of the prepared holes with silicon carbide grit (120 to 180) and oil. Repeat in the second hole, using silicon carbide grit without oil.

Sharpening stone by carborundum

FOR GOUGES WITH INSIDE BEVELS Slipstones of various sizes, in silicon carbide or ALOXITE abrasive, for tools that need sharpening on an inside curve,

FOR AUGER BITS
Auger bits should be sharpened so that the bevel is on the upper side of the cutting blade.

FOR SMALL TOOLS
CARBORUNDUM make a complete range of sticks of different sections, and different grit sizes, for sharpening every small tool.

THE CARBORUNDUM COMPANY LIMITED

 appointments that will bring personal satisfaction, good money, status and security. As part of a modern industrial organisation, we have skilled knowledge of what is required and the best means of training personnel for present day and future requirements. We specialise also in teaching for hobbies, new interests or part-time occupations in any of the subjects listed below. Write to us to-day for further information. There is no obligation of any kind.

OUR BACKGROUND!

The E.M.I. Factories at Hayes, England.

The only Home Study College operated by a world-wide manufacturing organisation

PERSONAL \& INDIVIDUAL TRAINING IN-

Accountancy

Advertising Aeronautical Eng. A.R.B. Licences Art (Fashion, Illus. trating, Humorous) Automobile Eng. Banking
Book-keeping
Building
Business
Management
Carpentry
Chemistry
City \& Guilds
Civit Service Exams
Commercial
Subjects
Commercial
Art \& Drawing Customs Officer

Draughtsmanship Economics Electrical Eng. Electrical Installations
Electronics
Electronic
Draughtsmanship Eng. Drawing
Export
General Certificate of Education Heating 8

Ventilation Eng.
High Speed
Oil Engines Industrial Admin. Jig \& Tool Design Journalism Languages Management Maintenance Eng.

Mathematics M.C.A. Licences Mechanical Eng. Metallurgy Motor Eng.
Painting \&
Decorating
Photography
P.M.G. Certs

Police
Production Eng.
Production
Planning
Radar
Radio
Radio Amateurs (C\&G) Licence Radio \& Television Servicing
Refrigeration
Sales Management
Sanitary

Engineering Salesmanship Secretaryship Shorthand \&

Short Story
Short Wave Sound Recording 8. Reproduction Telecommunica-

Television
Television
Time \& Motion
Tracing Welding Workshop Practice Workshop

Management and many others Also courses for GENERAL CERTIFICATE OF EDUCATION, A.M.I.IH.\& Y.E., A.M.S.E., A.M. Brit.l.R.E., A.M.I.Mech.E., A.M.I.E.D, A.M.I.M.I., A.F.R.AE.S., A.M.I.P.E., A.M.I.I.A., A.C.C.A., A.C.I.S., A.C.C.S., A.C.W.A., City \& Guilds Examinations, R.T.E.B.Serv.Certo, R.S.A. Certs., etc.
(1)EM/ Gourses with PRACTIGAL EQUIPMENT
in radio - television - mechanics
CHEMISTRY • ELECTRICITY - DRAUGHTSMANSHIP
PHOTOGRAPHY, etc., etc.

COURSES FROM 15/- PER MONTH

POST THIS TODAY

IPlease send, without obligation, your FREE brochure.
E.M.I. INSTITUTES, Dept. 144K, London, W. 4.

NAME
AGE

ADDRESS
(if under 21)
\qquad

BLOCK CAPS PLEASE

It is a thin wire of an inverted \mathbf{U} shape, and on the horizontal portion a scroll of tinplate or other sheet metal is hinged. This can be swung back (as shown at C in Fig. 5) to clear the arm or thrown over into the locked position on the steelyard when it is desired to hold the steelyard, to add anything to the scale pan, remove the latter, or when it is necessary to remove or slide the rider up and down the steelyard arm.

The Riders

These are blocks of brass with a steel hook soldered to the top. They must be of a known weight, which is adjusted generally by altering the overall size, and finally by carefully scraping away or adding to a blob of solder which is made to adhere to the under surface (D in Fig. 5). The system of weights adopted must, of course, determine the actual dimensions of the riders. If the
avoirdupois ounce system with its subdivision of 16 drams to the ounce is adopted, the first rider may be made of $\frac{1}{8} \mathrm{zz}$. (2 drams) weight. An additional block of metal $\frac{1}{4} \mathrm{dram}$ in weight may form the rider used for smaller quantities. For the metric system of weights the dimensions of the balance should be such as will divide the arm in tenth units, rather than divisions of eight, and riders may be proportioned accordingly.

Calibration

The scale pan notch having been made on the steelyard and the arm balanced accurately by scraping off from a blob of solder previously formed on the underside of the scale pan, the $\frac{1}{5} o z$. rider, also previously weighed and adjusted to correctness on another balance, should first be placed in such a position on the steelyard that it balances another 2 dram ($\frac{1}{8}$ oz.) weight on the scale pan. This will determine position No. I (Fig. 2). Position No. 6 will need 12 drams (yoz.) in the scale pan to effect a balance, and when these two positions are found the others can be determined by measurement; there will be five equal spaces between the first notch (No. I) and the sixth (No. 6). For smaller riders the same notches will give proportionate weights.
If carefully made, the scale will be found to be quite accurate.

Solar Energy

B^{Y}
harnessing the energy of the sun, the Russians plan to produce 1,000 to 1,200 kilowatts of electrical power next year. Some of the uses to which this energy will cventually be put are for elevating water for irrigation, distillation of salt water, drying vegetables and fruit, refrigeration, heating and cooling buildings and producing steam.

Satellite-tracking Cameras

T
HE Schmidr cameras that will track the earth satellites to be launched during the International Geophysical Year will be able to do this with an crror of less than I per cent. The optical system uses a 3element apochromatic corrector plate, has a 20in. aperture, a focal ratio of 1.0 and a 30 deg . field.

Natural Insecticide

THE Amazon fly, imported from Brazil, is the insect killer that is being used to control the destructive sugar cane borer. The Amazon fly's larvx, which are parasites, feed solely on the larvæ of the sugar cane borer. It has been shown by five years of tests that this fly can controf the pest, where man-made insecticides fail.

The Night Sky Glow

FIRST-OF-ITS-KIND experiment in America has shown that the faint glow in the night sky, not caused by moonlight and starlight, is due to sodium reactions. The basis of the experiment was a high flying rocket throwing out sodium vapour, used in conjunction with sensitive instruments which can detect the night time glow characteristic of sodium.

Saving Desert Water

A NEW method of cutting down water Commonwealth Scientific and Industrial

Research Organisation and will be applied in Australia. A chemical extracted from whale oil, Cetyl alcohol, is used to lay a film over the surface of the water, which restricts the evaporation of water into the air, but does not stop oxygen entering the water and keeping it fresh. It is invisible and tasteless and harmless to animal life. Trials have shown a saving of between 20 per cent. and 70 per cent.

World's Largest Atom Smasher

RUSSIA already has the world's largest atom smasher and work is beginning on another five times larger.

Clouds on Venus

THERE are two conflicting opinions about the composition of clouds surrounding Venus. Dr. E. J. Opik, of Armagh Observatory, Northern Ireland, believes that they contain "great amounts of dust, ground off
the rocky surface of the planet." Two American scientists disagree and believe that they are water vapour. The clouds would be white if they were water vapour Dr. Opik says and photographic measurements show the clouds to be yellow.
I.G.Y. Exhibition at the Science Museum

A^{N}N exhibition to illustrate the scope and aims of the International Geophysical year will be on view at the Science Museum from May roth to October 3ist. The exhibition includes a representative collection of scientific instruments of the type to be used during the. I.G.Y., earth satellites, high altitude rockets, the weather, earthquakes and the earth's-magnetic field are among the topics included.

Nuclear Detection of Fire

THIS system causés the alarm to be sounded at the first stage of smoke from smouldering material. The sensitive element is a small ionisation chamber, the electrical characteristics of which are changed when the first trace of products of combustion reaches it, causing the alarm to sound. These detectors are manufactured by The Minerva Detector Co. Ltd., Lower Mortlake Road, Richmond, Surrey.

Designs, Hints and Tips for Making Small Waterline Models

FIG. 5 is a drawing of the largest vessel afloat to-day, the mighty Cunard White Star liner, R.M.S. Queen Elizabeth. She has a length of $1,03 \mathrm{Ift}$. overall and a beam of 118 ft . Built by John Brown and Co. Ltd., at Clydebank, she was completed in 1940 and has a service speed of $28 \frac{1}{2}$ knots. The drawing is to the scale of 100 ft . to 88 in . and if made rooft. to lin., the model will be over 1 oin. long. This therefore is a strong argument in favour of adopting this scale instead of the larger one of 50 ft . to I in . On the larger scale the model would come out at over $20 \frac{1}{2}$ in. in length, so that if all the models were made and mounted on the same "water" the whole display would be too large for a private house, or at any rate the showcase would be too large for convenience.

Painting

In connection with painting the Parthia as well as the Queen Elizabeth, the method of getting a clear sweeping line for the sheer between the black of the hull and the white of the superstructure can be mentioned: Paint the black and the white before the superstructure is stuck down on the hull; a definite line results without any wobbling, between the black and the white. Nothing looks worse than an untrue line marking the sheer. In the Queen Elizaberh it will depend upon the method of painting the line of the sheer, what thickness of wood is used for the hull. Either make the hull just the depth of the black portion, carve the sheer and then paint it black or, in making the hull, let it come up to include a part of the white bulwarks, both forward and aft. Each reader must decide this for himself, but remember that it will tax the skill of the painter if the method of lining in a long sweeping curve with both the black and the white is adopted.

Throughout the long amidships portion; the sides, from just below the boats, will be flush right down to the waterline. The boats, of which there are thirteen on each side, can

(Concluded from last month's issue)

be made from a long strip of wood; planed to the correct section, and cut up with a razor blade, each boat being pointed at either end. They will be supported by being glued on the edges of the boat launching gear, of which there will be one pair to each boat. They will be cut out in Bristol board.

The funnels will be, as before, cither of metal tubing $7 / 16 \mathrm{in}$. diameter, or of paper, which can be rolled around a rod and glued. Whichever is used, the tubes must be made slightly elliptical. Masts will be of wire filed to a taper, or long pins can be used. The stays and wireless aerials can be of very fine copper wire, the aerials being finer than the stays. In fact, the smallest gauge you can get will not be too fine and, if you cannot get wire fine enough, use human hair, cementing it in place with glue. The colours of the Queent Elizabeth will be the same as the Parthia.

The Harbour Tug

Tugs are all made alike or nearly alike, for all builders have adopted a modern design which varies but little. Fig. 6 shows the general arrangement. This drawing is made to 5 oth scale because in the rooth it would have been difficult not only to draw but to work from in making the model. This means that all measurements will have to be halved. The length of the hull is II6ft. so the model will be a little more than $1 \frac{1}{8} \mathrm{in}$. long and the beam a little less than in. The thickness of the wood will be $\frac{1}{3}$ in: There is a considerable amount of sheer which rises sharply to the bows. Note the parallel tumble home on the bulwarks, which will be taken of after the sheer is formed.

All the top hamper will be built up as shown. To form. the bridge a piece of thin Bristol board must be cut and glued under the wheelhouse, which is the highest
rectangular block. The tow-rope guards can be formed from three thin and narrow strips of Bristol board. The funnel is circular in plan.

Painting

Some of the originals are painted brown on all woodwork with iron work in black and a vermilion funnel with a black top. Others are much smarter, having black hulls with white tumble home on bulwarks, white deckhouses and a black-topped vermilion funnel. There is some brown on the after works, the engine-room light and inside of bulwarks, etc., but the general effect is as light and smart as first-class ships.

Sailing Ships

There are many sailing ships still in existence, but the days of sail are really over, for although the space taken up by boilers, engines and fuel can be used for the stowing of cargo, the sailing vessel is too much dependent upon the vagaries of wind and weather; though under favourable conditions and under a good master, officers and crew they put up some wonderful records for .speeds as good as steamships of their times. They are not yet extinct, however, and an example of one of them is given: the Loch Torridon in Fig. 7. This vessel was built by Barclay Curle and Company, of Glasgow; in the year 1881 and her loading was 2,081 tons gross. She was rigged as a four-masted barque. Her length of hull was about 287 ft . and her beam 42 ft . 6 in . She was built for the Australian wool trade, in which she made many successful voyages. Her end came during the first world war, for in 1915 she sprang a leak off the west coast of Ireland and as this could not be coped with by pumping she was -set on fire in order to prevent her from becoming, a menace to other shipping. and she was abandoned.

As a model she will make a charming addition to a collection of steamships in the

Fig. 5.-R.M.S. Queen Elizabeth, drawn to a scale of rooft. to sुin.

* Permanent Magnets in action *

Trake your dashboard a notice board
Simply place your "reminders" between a magnet and the dashboard. Illustration above shows the famous "Eclipse" Pocket Magnet. Ask for new publication P. M. 162/56 which gives many other uses of magnets.

PERMANENT MAGNETS

Made by James Neill \& Company (Sheffield) Limited and obtainable from all tooldistributors

TUNGSTEN CARBIDE TIPPED TOOLS

PLUGGING DRILLS
For clean round holes in brick, concrete, tiles, marble, etc., for all fixing jobs with Maso Plugs.
GLAZEMASTER
For drilling windows, mirrors, glasses, bottles, plate slass sheives, etc.
Write for Booklet P.M. Obtainable from your Tool Stockist and Ironmonger.

MASON MASTER

Ihis Rudlssanns Choice

Manufactured by
JOHN M. PERKINS \& SMITH, LTD., BRAUNSTON NR, RUGBY

BETTER CABINET MAKING

Servicing Data for

YOURS
NEWNES

Automobile Repair

 HOW TO GIVE QUICK EFFICIENT SERVICING FORCars, Commercial Vehicles, Tractors
Here is the crystallised experience of more than 30 experts including the service managers of famous makes. A mine of information for the garage mechanic who means to get ahcad.

2,084 PAGES 2,071 ILLUSTRATIONS 88 Wiring Diagrams

4 Volumes and

 Case of 24 Charts- Also 2 years' Technical Advisory Service entitling you to information, entirely free of charge, on any of the many subjects embraced in the work. A FREE SERVICE WORTH POUNDS TO YOU!

AND

WATSON'S SPECIAL OFFERS

LYON ALCO $12 / 18 \mathrm{v}$. 360 w . £22.10.0 carr. is-
These are very fine Generating Sets selfcontained in steel frame and complete with switch panel. UNUSED ready for with swice.
CANVAS TOOL ROLIS. 17in. $\times 10 \mathrm{in}$. with provision for eight separate tools, also pocket and fastening tapes. $1 / 4$ each, 14/- doz.
SLEDGE HAMMERS. 7 Jb . Nosed with ash handle, 9/6. Carr. $2 / 6$.
TWIN FLEX in 100 yd . coils, best quality, $17 / 6$ per coil. Post $2 /$.
MAHOGANY FINISH BOXES. Beautifully made with brass bound lid and brass fastener. 14 in . x 9 in . x $9 \mathrm{in} .8 / 6$, post $3 /$ COIL SPRING BELTS. tin. $x 12 \mathrm{in}$. long, extends to 15 in . Any number can be joined together. 20 for $4 / 6$. Post $1 /$ A.C. AIR CLEANERS. Gin. diam. $1 \frac{1}{3} \mathrm{in}$ fitting, 12/6. Post 2/-.
POWER FOR ELECTRIC RAZORS

Post 3/-
from 12 or $24 v$, batteries. Converter suitable for $110 / 230$ v. A.C.D.C. Electric Razors.
EX-R.A.F. TOOL BOXES. Size $14 \mathrm{in}, x$ 9 in . x 8 in . Dovetailed and metal bound, 9/6 each. Carr. 2/6. LARGER SIZE $24 i n, ~ x$ I2in. x 10 in . PRICE 13/6. Carr. $3 / 6$.
Hundreds of other Bargains available. Send 6d. Stamp for MONSTER ILLUSTRATED LIST.

EASTERN MOTORS
ALDEBURGH, SUFFOLK. Phone 51 .
The Importance of Knowing
How to Learn

LANGUAGES

THE only satisfactory method of the direct method. In other words, you must learn French in French, German in German, Spanish in Spanish, and Italian in Italian. That is the Pelman system, and it is That is the Pelman system, and it is from this that the old-fashioned burden of memorising long lists of foreign words is entirely abolished when you learn a language by the direct wav.
Another consequence is that it practically eliminates the difficulties and drudgeries of learning complicated grammatical rules and exceptions. It teaches you not only to read a foreign language, but to write, speak and understand it thoroughly and efficiently.
There are no classes to attend. You pick up the foreign language by correspondence in your spare time, in halt the usual period.

Write or rree Book To-day

The Pelman method of learning languages is explained in four little books, one for each language :

FRENCH SPANISH
 GERMAN ITALIAN

(Also Courses in Afrikaans and Urdu)
State which book you want and it will be sent to you with a specimen lesson, gratis and post free.
PELMAAN LANGUAGES INSTITUTE, 130, Norfolk Mansions,
Wigmore Street, London, W.I WELbeck 1411
ELMAN (OYERSEAS) INSTITUTES:

)eadquarter and General supplies ltd.

(DEPT, PMC/21), 196-200, COLDHARBOUR LANE, LOUGMBOROUGH Open all Saturday. I p.m. Wednesday.

MAKE MONEY - making casts with VINAMOLD

A grand spare-time occupation

WITHOUT any previous experience you can massproduce any obiect, from a chessman to a candlestick, statuette or model ship. in plasier. resin, concrete, etc. the BEST results. Easy to work can be used over and over again. Needs NO special, equipment provides proftable and enjoyable spare-time occupation with minimum outlay.

Write for full details and instructions. Also arailable: 1llustrated booklet describing "VINAMOLD," and moulds, etc. Price $1 / 6$ post frec, from :-

VINATEX LTD. (Dept. P.M.3), CARSHALTON, SURREY

R. G. W. EIECTRICS STocitaning barbans

This unrepeatable offer consists of Grade 1 goods only.

Meters by Ferranti and Weston etc.
O-5 milliamperes D.C. 10 -.
$0-150$ volts D.C. waterproof, 12/8.
$0-.5$ amperes R.F., 7/6.
$0-4$ amps D.C., $9 / 6$.
0-25 amps D.C., 12/6.
All new and boxed. Moving Coll.
Car Cable 40,0076. Permanoid Insulated.
.04), 25 yards, 5/-: 100 yards, $17 / 6$.
Selenium Rectifiers. Full Wave.
24 V. 1 am.., $6 / 0$.
36 v. 1 amp.. 10%
$24 \mathrm{~V} .8 \mathrm{amp} ., 35 /-$
12 v. 2 amp., $8 / 6$
12 V. 4 amp., $12 / 6$
12 v. $8 \mathrm{amp} ., 22: 6$.
160 v. 1] amp., 25^{\prime}
He!f Wave
400 v. 1 amp. 20%
Aerial Tuning Units with
$0-350 \mathrm{~mA}$. Ammeter. 16 l -
Rolary Transtormer.
24 v. D.C. In 180 w. out. $17 / 6$.

Ali post free from :-
R.G.W. ELECTRICS.

164, High Street, Brentford, Midd.

HEW CABIES \& FITTMGS TOUGH RUBBER CABLES

Tel. : NEW Cross 7143 or 0990.
same scale. Fig. 7 was drawn for ease of draughtsmanship, half as large again as the size of the intended model, but if she is modelled alone or with small ships, all, including the Loch Torridon, can very well

unravelled. On a soft. scale model human hair could be used. Whatever is utilised for rigging, knots cannot be tied and the way to put the ropes on will be to cement them : each rope as a separate unit and stuck at both ends.

The rigging shown is, of course, not by any means the whole, but it will be found enough to make the model look complete. There should be the halliards, the clew lines and the sheets, to mention only a few, but some of the ropes would be attached to the sails and all of the omitted ropes are running rigging. Much of it is too small to be put on or shown, so the matter of the sails is the last job, except the painting. It would be better to paint at this stage and add the sails last. They are cut out now from very thin white tissue paper of the kind which is opaque. A fine thin paper may be found in cigarette packets. If the tinfoil is removed, enough paper will be found in two packets to do the whole set of sails. They should be drawn first and then cut out carefully with a small pair of scissors.

To .out them on to the yards apply a fine line of adhesive along the forward side of each yard and just a touch of glue at the ends of the yard below. 'Then, lifting the
will be a little more delicate operation; here the adhesive must be applied to the stay with a brush, care being taken not to break the stay away.

Painting

The masts and yards and all spars will be a light yellow-brown, the deck a pale cream colour and deckhouses white. The outside of the hull will be black from the bulwarks down to the white embattled strake: the black squares imitate the painting of the gun ports of the old-time warships. Then below the white there was a black line and below that the colour was a warm middle grey or lead colour.

The "Sea"

For the rooft. scale a sheet of glass is used which is known in the trade as pattern "G." This, if it is used with the embossed pattern downwards and smooth side up, gives an excellent representation of the ripples on the sea. If you want a heavier "sea" or if the scale is 50 ft . to 1 in ., get the glass which is known as "Arctic" white or colourless; this also will be mounted with the pattern side downwards. Whichever glass is used, the models will be stuck down upon it. Then with white paint in the wake of the ships, the wash from the propellers at the
be made to 50 oft. to 1 in. This scale will certainly be easier to work to than the smaller size.

Commence by making the hull, which will need for the larger model a piece of wood $7 / 16 \mathrm{in}$. thick and for the smaller scale onehalf of that thickness, i.e., 7/32in. This is carved down for the sheer. Then add the poop, the forecastle and the deckhouses, etc., shown in the drawing The four boats should not be mounted on the deck, for they would be too low, but upon small additional deck houses, one under each boat.

The masts and the yards will all be of metal. Masts are stepped each at one point only and that will be above the upper topsail yards. All the yards on each mast must be set at the same angle with the centreline of the hull. The exact angle is not important, but it should be approximately as shown in the plan view. In the sheer plan they are shown laid fore and aft so that their lengths and the sizes and shapes of the sails can be taken off. They could never actually be laid thus. The foremast had an actual height of the truck above the deck of 148 ft . and the next two of 152 ft . All yards, the topmasts and lower masts will be tapered and the steps and tops, etc., soldered, and yards soldered together. Then drill the hull and insert each mast with glue. See that each mast stands square with the hull and that each is parallel with all the others. The bowsprit will be treated in the same way as a mast.

The Standing Rigging

This is made up of ropes which are never moved through blocks or in any way. In later sailing ships it was mostly of stranded stcel wire cable. Its object is to take all the strains above the deck from wind pressure on sails and masts and transfer them to the hull. The standing rigging will consist of all back stays which will include the shrouds and all fore and aft stays which will be on the centrelinc. The other ropes shown in Fig. 7 make up the principal running rigging which will consist of the braces attached to the yard-arms and a few other odd ropes on the mizzen sails and the fore and aft sails or jib sails.

Any kind of twisted material, such as cotton or silk, would be too fluffy for this rigging and would be too thick, but a lady's torn hairnet or a stocking which is too badly laddered to be worn can be utilised. Fhe stocking would be preferable because it involves less trouble in getting the threads

Fig. 7.-The four-masted bargue, Loch Torridon.
sail with a pair of tweezers, place it accurately on the yard, making sure that the bottom corners are stuck. Do one mast at a time, commencing with the Royal at the tof and working downwards. The jib sails

Electric Convector Heater (Concluded from page 491)

sheet of metal extending from just above the expanded metal grid inside the heater curving from immediately above the top grill to half-way down the back of the heaterthe shaded area in Fig. 6 indicates the positioning. This serves to prevent any dead space of hot air at the top of the casc. Finally, a handle at the back is useful for lifting.

Possible Refinements

The heater has been described as it was
stern, and a little of thz bow-wave at the cutwater and the model is finished. Obviously if there is no painting on the water it will be indicated that the ship or ships are at anchor.
made, and is fairly simple and free from complication. It is impossible to give the exact cost as so much will depend on the materials of construction. The element can certainly be made for as little as 8 s . Certain refinements will suggest themselves to the ambitious. Another element unit could be added, with a switch on the side of the case to bring it into operation when required, or a thermostat could be included in the circuit. Some commercial heaters have red pilot lights which create an illusion of warmth and show when the heater is working. This could also be incorporated without too much trouble.

Fig. I.-The completed one string fiddle being played.

FOR the body of the fiddle you will need a cedar cigar-box, measuring approximately $8 \frac{1}{2} \mathrm{in} . \times 4 \frac{7}{8} \mathrm{in}$. $x \quad 2 \frac{1}{\mathrm{f}} \mathrm{in}$. Tear off as much as possible of the paper decoration and binding and take the box to pieces carefully. Clean off the remainder of the paper, inside and outside, with glass-paper. On no account should the wood be damped to help this or the pieces are sure to warp.

Making a One String Fiddle

An Amusing Novelty Musical Instrument Made from a Cigar Box

"faceside" (the upper surface) and one wide side as the "face edge." Across the face side, 6_{+}^{3} in. from the end, make a clean saw cut $3 / 16 \mathrm{in}$. deep. Now gauge a line $3 / 16 \mathrm{in}$. from the face side but $8 \frac{3}{4}$ in. long and another below it and $\frac{3}{3}$ in. from the face side. With a fine hand-saw cut along these lines and then remove the wood between them. Turn the fingerboard face side downwards, and gauging two lines $\frac{3}{n} \mathrm{in}$. from each edge and $8 \frac{1}{2} \mathrm{in}$. long, saw along them and cut away the outside pieces. The remaining portion is the rod which passes through the cigar-box, and where it passes through the far end of the box it needs stepping back to make a shoulder on two sides. The hole to receive it has been cut to $\frac{1}{2} \mathrm{in}$. $x^{\frac{3}{3}} \mathrm{in}$. The upper portion of the fingerboard (Fig. 2) needs to be tapered.

From a point $9 \frac{3}{4} \mathrm{in}$. from the lower end of the fingerboard plane the sides of the wood
way and then fasten on the sides, top and bottom (cigar box lid with hinges removed) in that order.

Tuning the Fiddle

The string (a violin " E ") is looped over a small roundhead screw which is inserted in the projecting end of the post and, passing over the bridge placed midway between the holes in the belly, is then taken through the hole in the peg. The bridge is easily cut from a piece of $3 / 16$ in. fretwood. It should be about xin. wide at the base and in. at the top. The height should be such that the string stands $\frac{1}{3}$. above the surface of the fingerboard. Tune the string to middle

Making the Body

Before you begin work on the body, you will find that the bottom of the box will eventually be the "belly" or upper surface of the fiddle, and the lid will be the back or the bottom. With a sharp centre-bit or fret-saw cut two holes, 1 in. dia. and $1 \frac{1}{2}$ in. apart, in the belly. Then in one of the end pieces cut a square hole measuring $\frac{1}{2}$ in. x $\frac{1}{2} \mathrm{in}$., and $9 / 16 \mathrm{in}$. from the lid side of the box. In the cther piece cut a hole $\frac{1}{2}$ in. x $\frac{3}{\mathrm{~F}} \mathrm{in}$. and $9 / \mathrm{r} 6 \mathrm{in}$. from the edge, as shown in Fig. 3. The fingerboard is made next from a straight-grained piece of wood planed to 2 ft . \sin. $\times \mathrm{I}_{\mathrm{k}}^{\mathrm{Z}} \mathrm{in}$. $\times 1 \frac{1}{4} \mathrm{in}$. Any wood will serve, but a hardwood such as mahogany, walnut or oak would be best.

The Fingerboard

The fingerboard is shown in Figs. I and 2. Mark one of the narrow sides as the
equally, so that it tapers to $\frac{3}{4} \mathrm{in}$. at the top.

The Underside

The underside should be cut away as shown in Fig. 2 so that the fingerboard is $\frac{3}{}$ in. square at the end. Now mark out and cut the tenon, the centre-piece at the top, which measures $\frac{3}{3} \mathrm{in}$. wide and $x \frac{1}{2} \mathrm{in}$. long. For the cheeks of the scroll, the part which takes the peg, take two pieces of $3 / 16 \mathrm{in}$. fretwood $4 \frac{1}{2} \mathrm{in}$. $x \frac{1}{2} \frac{1}{2} \mathrm{in}$, and cut to shape.

These two pieces are now glued and screwed to the sides of the tenon, and a small piece of wood in. thick is sandwiched between them to fill up the space. This should be glued in and pressure applied so that it sets quite solid. Nor bore a hole $\frac{1}{4} \mathrm{in}$. in diameter through the cheeks for the string peg. It is probably best to buy a violin peg from a music dealer. When all is ready for assembling, fit the box end with the larger hole on to the centre, gluing it in position. A couple of fine screws should be put through it into the shoulders of the fingerboard. Fit the other end in the same

Fig. 3.-The two ends.
C on the piano. The situation of the other notes can be found by placing the finger in position, plucking the string to ascertain and correct note and marking the point in pencil. These places can be marked permanently by making shallow saw cuts across the fingerboard and filling in with strips of inlay or plastic wood. A good plan is to stain the fingerboard black before making the saw cuts, and then the inlaid bands will show up clearly. When the fiddle has been cleaned up and smoothed with glass-paper, give it a coat of glue size and, when this has dried, give two coats of best copal varnish. To prevent the string cutting into the wood, a small piece of tin or brass should be bent and inserted under the string on the edge of the box.

MASTERING MORSE
 by F. J CAMM

1/-, by post $1 / 2$
From GEORGE NEWNES, LTD.
Tower House. Southampton Strect. Strand, W.C. 2.

READERS,
 SAURS ANDWA踪TS

The pre-paid charge for small advertisements is 6 d . per word, with box number $1 / 6$ extra (minimum order $6 /-$). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southampton Street, London, W.C.2, for insertion in the next available issue.

FOR SALE

HOUSE SERVICE METERS, credit and prepayment, avaiable 221. City Road, London, E.C.1.

GLASS FIBRE car bodies, sidecars, Glass Cloth models. trial unit. $13 / 9$. trial lot $26 / 3$. or quotation for any surface area. Polyester. Resin and metallurgical nounts, beautiful water white castings, impregnate porous metal castings, trial, unit for metal car body, mudguards. whecl-aran and frame repairs, trial unit $12 / 6$ Burst pipes and tanks Units for all purposes, each contala ing free mixing and dispensing equipment and information slieets.
Epoxy Paint, waterproof, heat reslsEpoxy Paint, Waterproof, heat resls-
tant porcelan finish for baths, kitehelarwalls, hardboard, cte., $1 \neq /$ pint, with Catalyst, white, black or flear. Ibre technigne, list willi price list stamp, picase, "Business Man's Guide to the Glass Fibre Technique, 15/, Dost free, 81 pages. Glass Fibre
Experts with units for all purposes Experts with units for a Desurposes
are Silver Dee Plastics. Dest A4/3, Hartington. Staveley, Chesterfeld Derbyshire. Part post $1 /-$ on units please
$\boldsymbol{R}^{\text {UBBER MOULDS }}$ for Plastle OrR naments from $1 /$ each. New compound for mould making $8 / 6$ per lb: Metal toy casting moulds from Nuthan, 69 St. Marts Road, Han CRAINING BY TRANSFER, oak. Complete range. $3 /-:$ Samples $1 /-$; P.M., Bishop. 20. Clarendon Road
'Derspex "
for all purnoses,
coloured dials, dises eagraving. Denny. 15. Netherwood Road. W.14. (SHE 1426, 5152.)

1. ENSES, Prisms, Lsic and other Projector Spares, Electrical and Instrument Spares. Latest lists now over: Exhausted office buy dicator feebly demands time-and-a-half and suggests 6d: per list. Stamps or P.O. tane \& Company. Thornton Works Thominton
COMPRESSORS for sale, single
 good condition. $7 / 6$ each. post $3 /-$ extra, James Refrigeration (Phited.
2566
MIRRORS and Accessontes for IV amateur's' telescopes. S.A.E.
for lists and free plans and instrucfions for 4in. reflecting telescope Jeymer Drive, Greenford. Midds.
NUTS. BOLTS, SCREWS AND 4. WASFIERS for Mechanics 2 A.A. parts. post 1, ${ }^{1 / 4 \text {. Available Hex. Hd. }}$. Which. 3 or more packets post free. ${ }^{1} 000$ item Mst. P.M.S.). New Milis, Stoct port. CHEMICALS AND APPARATUS. and Send 2 did. stamp for catatogue Scienlific
Dept
Pechnical Supplies Ltd.,
Wellington Circus, Nottingliam.
$B^{\text {RAND NEW Lathe Thread Chasers, }}$ Twist Drlls, approx
for
$22 / 6$. Strect, sidchp. Kent.

PHOTOGRAPHY

HNLARGER and Camera Beilows Lu supplied; also fitted. Beers, St. PHOTO-ENLARGER Castings and 1 Bellows, for 35 mm . 24 in . X $2!\operatorname{ing}$., $2 i \ln$. x $3 i \ln ., 35 /-$ per set: s.e.e. for details V. J. Cottle,
Road, Easton, Bristol,

HANDICRAFTS

SWISS MUSICAL BOX MOVESMENTS, only $14 / 9$ post rree.
Wonderful selection of tunes. S.A.E. for tunes
V.1ist.
list
WWisscross.
Rd.
Coulsdon Surrey.
MARQUETRY-If interested write D. for particulars to Secretary Marquetry Society of Great Britain
7. Malfort Rd., Caniberwell, London 7. Malt
S.E.5.

WOODWORKING

WOODWORKING MACHINES, all Saw Benches. 7in., $4 / 15 /-$ Bin $£ 5 / 10 /-$ 10in., complete motorised,
$£ 30$. Planers, sin., 212 ; Bowl Turn' ing Heacls, \&\& witio 8in. Saw Tables
 Pulleys, Belts, ete. 12 months Fritten and money refund guarantee
4 d . stamp for illustrated booklet James Inns (Engineers), Marshall St. Nottingham.
A RE YOU LOOKING FOR A Plywood, Wallboards, veneered Ply Plywood, Wallboards, Veneered Ply
wood? Call at our warehouse or send s.a.e. for price lists. N, Gerver, Cambridge Beath (E.R.) station) (AMHerst 5887 .)

S10E!

Before buying that woodworking machine it will pay you to see the Myblo range. Sawbenches, planers, Bandsaws, stocke
by many leading tool merchants. Write for lists or better still call in for demonstration We know we can interes

P. BLOOD \& CO.

ARCH STREET, RUGELEY, STAFFS

WOOD LATHES, Motors, Jig Saws, Wlaners. CIrcular Saw Blades, Saw Spindles and Benches Turning Tools, etc. New illustrated fiterature. price list, extended credit terms non available price 6 d . (stamps, please)
D. Arundel \& Co. Mills Drive, Farddon Road, Newark, Notts.

SAWBENCHES, 6 in . to $30 \mathrm{~m} .$, from Sis6, motorised, £19:- Petrol Portable Benches,
Purpose
Sawbenches, Multi-
Planing Purpose
Machines. Sawbenches, Plan Spindle Assemblies Machines size saw from $37 / 6$. Motors Engines, Blades, Bearings, Pulleys, Belts : deferred terms. Send $1 / 6$ or handbook - catalogue. List ree. Beverley
51. Notts.

EDUCATIONAL

MERCEANT NAVY Radio omper travel and Traindigy School. Worlas. travel and adventure
Brook's Bar, Manchester.
LeARN IT AS YOU DO IT-we pro1. vide practical equipment com bined with instruction in Radio.
Television Electricity, Mechanics. Television, Electricity, Mechanics, Chemistry, Photography, etc. Write
for full details to E.M.I. Institutes, for full details to E.M.I.
Dept. PM47, London, W. 4.
FREE: Brochure giving details or Fome Study Training in Radio, Television, and all branches of Eiec-
tronics. Courses for the Hobby tronies. Courses for the Hobby
Enthusiast or for those aiming at Enthusiast or for those ailning at R.T.E.B. and other Professiona operated by Britain's largest Flec-
tronics organisation. Moderate fees. Tronics organisation. Moderate fees. Write to E.M.I.
PM28, London, W.4.

HOME BOAT BUILDING
BUILD YOUR OWN BOAT or Canoc. Plans or Kits for easy assembly Stamp for detalls from:
Wyvern Boats MM), Milborne Port.
Sherborne, Dorset.

ELECTRICAL

A GL TYPES OF ELECTRICAL lve prices, at extremely competi$48 /-100$ yards: Lampholders. $7 /$. doz. ; 5 ft . Battens, $51 / 6$; quality and immediate despatch guaranteed Request list. Jaylow supplles. 93 phone: Stamford Hill 4384.)
$B^{\text {RaND NEW guaranteed Electric }}$ Motors at lowest prices. $h . p$. to ${ }^{1}$ li.p. Ball Bearings. silugle-phase Grinders and Polishers. Ask for rade discounts. Gill. 48, High street, Brighton, Sussex.

BROOKS ELECTRICMOTORS

Single Phase, \& h.p. 1,425 r.p.m. 67. 5.0. h.p. 3,000 r.p.p.m. 69.5 .0.
i h.p. 3,000 r.p.m. 610.10 .0.

Fully guaranteed by makers, approval against cash. Carriage paid mainland. State voltage. FREE. A Three-step " V " Pulley
with each motor.
ARCH STREET, RUGELEY,.STAFFS.
SPARES, REPAIRS, REWINDS. Fields for most vacs. and Drills. Fmergency Rewinding Service to $30 \mathrm{h.p}$. avajlable. Hodson (Croydon) Ltd., 75.4 . Gcorge Strect. Croydon, Surrey.

WATCHMAKERS

Watce repair servicie, unspeed, rivalled for reliability and speed,
charges. charges. Part $\begin{aligned} & \text { jobs welcomed. } \\ & \text { Material }\end{aligned}$ Material supplied. Hereford Watc
EARN to be a Watch and Clock Repairer in your spare the and carn extra money at home. We can supply everything you need at unbeatable prices, including instructional books. Swiss watchmakers
tools. watehes. Watch and elock movements, lathes, cleaning machines. all spare parts for watches and clocks. etc. We also have a fine selection of musical box movements and kits. Send 9d.. P.O. for bumper bargain catalogue. The
makers
Supply F.M.). Carterton, Oxford.

Watchmakers : Use genuine of Toplacement parts. Catalogues Loader. Dept. B., Milstone Rd. Carterton. Oxford.

FIBREGLASS

BONDAGLASS FOR FIBREGLASS

REPAIRS TO RUSTED CAR BODYWORK WINGS, WHEEL ARCHES, BOOTS, ETC. MADE EASILY \& CHEAPLY AT HOME WITHOUT SPEGIAL EQUIPMENT FOR EXAMPLE: AMPLE MATERIAL TO REPAIR TWO BADLY RUSTED DOORS :1 Bondaglass Car Repair Kit ... 13.9 1 Bondafiller Handypack (for finishing)

Post and Packing
$\begin{array}{r}6.6 \\ 1.6 \\ \hline 21 \cdot 9\end{array}$

OR SEND S.A.E; FOR FREE HOW-TO-DO-IT
INFORMATION, PRICE LIST, ETC.
BONDAGLASS Ltd. (Dept.S) 40A PARSONS MEAD, W. CROYDON

TOOLS

THE NEW 1957 fully illustrated able Electric Tools and Machinery. able Electric Tools and Machinery.
Now avallable. price 6d., postage 3d. Now avallable. price 6d.. postage 3d.
Parry \& Son (Tols) Ltd. Dept.
P.M.6. 329 , old sitreet. London, E.C.1.

HOLIDAY

ACCOMMODATION

TOURING HOLIDAYS. "Bed and West Breakfast in South \& Southnew enlarged edition describing recommended Inns, Hotels, Farms, Guest Houses, etc. Features includ Suggested Routes, Maps and Illus ${ }_{\text {trations. }}$ S/6 (postage 3 d .). Herald Handbooks, 3, Teevan Road, Croydon

HOBBIES

TOY \& GAME MANUFACTURE specificall worlas first journa specifically devoted to the manufac ment and amusement novelties Annual subscription $£ 1 / 10 /=$. Specl men copy -2/6. Techniview Pub Lications Litd., 125. Oxiord Street

MAKING YOUR OWN? Teleor, in fact, anything using leuse Tlien get our booklets "How to Use Ex-Gov. Lenses \& Prisms." price $2 / 6$ ea. Comprehensive lists of optical radio and sclentific equipment free for S.a.e. H. W. English, Rayleigh
Rd., Hutton, Brentwod,

TLuStrated catalogue no. 13. Government over 450 items o Radio Control Equinment Mode free. Refunded on purchase of poods $2 / 6$ overseas seamail. Arthur Sallis Radio Control Ltd., 93, North Road, Brighton. (Phone:' 25806.)

MISCELLANEOUS

TVHE EENDELLE CRART solves slide bend allowance problems and slide rule type calculations, 7/6, post
free. Whittaker Enterprises, 233, free. Whittaker
Pear Tree Avenue, Bitterne, SouthPear \mathbf{T}
ampton.

BUILD YOUR OWN REFRIGERAat reasonable prices. Frigidaire flowing cold units, E5; small units, Kelvinator, etc., \&4, in.p. heavy duty Motors, s3; Chrome Cabinet fittings, new, £1: money back guardiagram. Wheel souse and schematic Hounslow. (Phone: Hounslow 3501.)
RUBBER MOULDS for Plaster Sample and list, Wallplaques, ete. quiries invited, Castinoulds (Dept. M), 43/45. Waller St., Hull.

A QUALUNG and Compressor Equipment, Ballraces and Mls-
cellarieous Items. Lists 2d. Pryce.
157, Malden Road, Cheam.
" FORTUNES IN FORMULAS," 900page American book of formule.
American technical hobby and other books covering every interest. Stamp for lists. Herga Ltd. (Dept. P2), Hastings.
SUPERTONIC SUNLAMPS, listed Scientific Products, Dept. I, bleveleys. Scienti
Lancs.

INVENTORS.-Send s.a.e. for parably developing and marketing your Invention. Kelsey \& Partners, Woodlands, Stroud, Glos.
SCALE DRAWINGS made from your P.M., sketches. Detalls from : Dellwood Rd., Birming 1am, 31 .

ESCAPOLOGY FEATS AND Professional "Mental-Telenathy; Professional 20/- "Exent-Teleprofesstonal." 12. Carlton Avenue, Romiley
(Continued on next page)
(Continued from previouspage!

PATENTS

Patenting Services, Advice 114. Qualifined agent. C. C. L. Browne. ${ }_{\text {Surrey }}^{114}$

SITUATIONS VACANT

A. M.I.Mech.E., A.M.Brit.IR.E. City
 - No Fee torms. Over 95% succourses in all branches of Engineering, Building, etc.,., write for ${ }^{\text {Hand. }}{ }^{144 \text {-page }}$
 w. ${ }^{937 \mathrm{~B}}$.

INSTRUMENT MECHANICS, Radio required for weekly-pald posts in required for
Department
weekly-paid
Aircraft
Electstrical Enghneering Applicants should have
previcus experience with machine previous experience with machine
tools. In addition, mechanics should tools. In addition. mectanics should of the following: radar, radio, industrial electionics. instirms The appointments onfer excellent prospects
and opportunity
to work on wide
 within scale $£ 8 / 19 / 4$ to $£ 12 / 6 / 4$.
Generous holiday allowance
Fiveday week. Staft superannuation and
sick piy scheme. Apply. giving full sick pyy scheme Apply. giving full College of Aeronautics, Cranfield, Bletchley. Buck3.

SAW REPAIRS

SAW SERVICE BY POST: Circular D saws set and sharpened 5d. per inch diameter ; tensioned, set, and sharpened, 8 , per per nch ingum charge per saw, per inch. Minimum charge per saw. 48-hour postal service. Cash with order. J.A. Fowle (Dept. C) ${ }^{18-22,}$ lished 1840.)

LATHE 3216
 PLUS CARR.

 Offred at Manufacturers Wholesale PriceTHIS T00L is sturdily buill from hich THIS TVOL is sturdily built rom nish designed to accommodate any I capacity electric drill. includes 6 months
Guarantee, instructions. bench fixing screws and universal key. Usesinclude:
TURNING, GRINING, POLISHTVG, Ete.

BRAZING AND

10/-
PLUS
CARR. A REMARKABLE OFFER to Engineers, Hobbylsts, Handymen, ett. '
110° Gun. 2 interchangeable Jets. Gas Tubtry and Adaptor. Rods. Fluxes. Instruction Book. otc
from Manufacturers.
PAISLEY PRODUCTS, DEPT. P.M. 3 Greenhill Ayenue, Caterham, Surrey

$=$
"STAR" FIRST QUALITY
EXTENSION
ADDERS DOWN
Clear Columblan Pine (no knots) widh Hardwood Rungs
at 9 to at 9itably spenaced. Wrought siron rust-proof fittings. 8/- deposit and 6 monthly payments. Closed Extended PFICE pymts.

 CARRIAGE PAID. BEND NOW: Other sizes and typer arsiiable.
PARK INFS LTI.
(X28), 717718, Seven Sisters Road Lontion, N.15. STA 8211-

PORTASS LATHES
DIRECT PERSONAL SERVICE
LARGE DISCOUNT FOR CASH
NO INTEREST CHARGED for easy terms.
CAN ANYONE DO BETTER : I/- for Lists, please. Dept. P.M. BUTTERMERE WKS., Sheffield, 8
 $50 \%=$ below LIST

ACCRESSORS AND
ACCESSORIES Compressed air equipment to pro£5.17.6 upwards. Complete Stationary and Portable Plant from E29.17.6 to 4134. Full range of Air Receivers Spray Guns and all Accessories. Teddington Engineering Co., Ltd. Middx. KINgston 1193

GOVERNMENT

 SURPLUS BARGAINS Tritrons. Unused. 38° long, only 51 lb wt. Immensely strong. Carrying siling.Brass cap easily adapted to camera. Etc. etc. Each $12 / 6$. carriage $3 / 6$. REDUCTION GEAR, approx. ${ }^{42-45-90)}$ 6-12 v. D.C., 1 amp., ea. $15 /$, post 19 OR ONLY as above (dimensions
 FORMERS. 10 v. \& 16 v. A.C. (for 6 \&
12 v. charging at amp). ea. 17/6, post RECTIFIERE to suit above, ea. 7/6. (These transformers \& rectifiers will run the above low voltage motors.)
BLOWER MOTUIS. 24 v. D.C. Pro ilde sumplont draught for Car Heater on 6 v. (12 v. prefrably controlled by variable resistance) ea. 25l-. post $1 / 16$.
VARBABLE RESISTANCES to suit
 (Converted ex R.A.F. motor generatorpower about equal to sewing machine
motor.) Useful addition to workshop. ea. 30/: post $2 / 3$.
Send 3d. stamps for 1 ist of other Motors Transformers. Pumps, Lamps. Switches
etc.. etc. MILLIGANS
24. Harford Street, Liverpor 1, 3o

HANDICRAFTS TEACHER

Experience not essential
Men who enjoy making things in wood or metal can turn their hobby into a permanent and interesting career. Short hours, long holidays and security in a job you would really enjoy can be yours if you become a Handicrafes of the easiest and quickest way to ge the necessary qualification.

We definitely guarantee " NO PASS-NO FEE If you would like to know about our unique method of preparing you for one of these appointments, write to-day, and we will send you an
informative $144-p a g e ~ H a n d b o o k-F R E E ~$ and without obligation. Mark your and without obligation. Ma

> BRITISH INSTITUTE
> OF ENGINEERING TECHNOLOGY

591, College House,
29-31 Wright's Lane, London, W.8.

D1, (DAO PIANHSTS
 with the ald of my POSTAL lessons. Everything is so evearly explained that note, you whll, with only each day. beco practice ficient planist in $9-12$ months. Ordinary music: no freakish methods. My class 18 seldom les over 91,825 and I CAN TEACH YOU. Free Book and advice. Say

 Centurion Road

ROGERS ${ }^{31}$ selisovitr

 5in. Rubber Sanders. tin. drive.Abrasive Dlses. 5 In. Ass'td. doz...
$3 / 6$ Abrasive Dlses. Sin. Ass'td. do Tramsformers. $6 / 12 \mathrm{v}$. 20 amps Motorised Pumps
Thread Gauges, 28 arms
Whit worth Screws. 144 Ass'td Fibre Wushers. 144 Assorted Meter Rectifiers. A.C. to D.C. Self Tap Serews. A.C. to D.C. Copper Rivets. 12 doz. Assorted ${ }^{\text {. }}$ spindle, pulley, etc. 18in. x 101a. $52 / 6$
Rectifers Rectifiers, $6 / 12 \mathrm{v}$. at 6 amps. $181 \mathrm{~m} .52 / 6$
Meters. 0.18 Meters. $0-15 \mathrm{v}$. or $0-25$ volts M Air Jacks. 51n. stroko
Boost Gauges for Car Wlaker Units. 6 or 12 vol Circular faws, 6in. 11/8: 7in. 13/8, etc Races, Belts. Valvest Pulleys. Pumps
May we send our free list of hundreds of
interesting Items? Staman please.

206 Amyand Park Road, St. Margaret's, Twickenham, Middx

32-page Booklet on

STEAM
 FOR PROCESS

The Bulletin " Steam for Process " explain in clear words and pictures, most of the things an engineer ought to know about use of steam for heating and proc
purposes. Copies frec on request. SPIRAX-SARCO LTD. (TECHNICAL DEPT.) Cheltenham. Glos.

SPECIAL OFFER

G.E.C., B.T.H. \&

WESTINGHOUSE GERMANIUM CRYSTAL DIODES
I/- each. Postage 21
Diagrams and three Crystal Set Circuits Free with each Diode A large purchase of these fully
GUARANTEED diodes GUARANTEED diodes from the
manulacturers enables us to make this attractive offer
COPPER INSTRUMENT WIRE ENAMELLED, TINNED, LITZ,
COTTON AND SILK COVERED All gauges available
B.A. SCREWS, NUTS, WASHERS soldering tags, eyelets and rivets. EBONITE AND BAKELITE PANELS
TUFNOL ROD PAXOLIN TYPE CLII NOL ROD, PAXOLIN TYPE
FORMERS AND TUBES. ALL DIAMETERS.
Latest Radio Publications.
SEND STAMP FOR LISTS
CRYSTAL SET
INCORPORATING THE SILICO CRYSTAL VALVE
Adjustable Iron Cored Coil
RECEPTION GUARANTEED Polished wood cabinet, $15 /$ - post $1 / 3$.
A REAL CRYSTAL SET NOT A TOY
POST RADIO SUPPLIES 33 Bourne Gardens, London, E. 4

CHEMISTRY APPARATUS

Send 3d. stamp for
COMPLETE PRICE LIST

BECK ${ }_{60}$ (Scientific Dapt. A)
Stoke Newington, London, N. 16
THE CEMENT THAT LIVES 2 The greatest advance in modern times. An
entirely new CRYSTAL CLEAR adhesive that entirely new CRYSTAL CLEAR adhesive that
STIGKS ALMOST ANYTHING TO ANYTHINE, and never becomes brittle.

Tubes 1/6-9/9. Largerting availubt -9 TURNBRIDGE LTD., LONDON. S.W. 17 (Fr. 1922) é ACCURATE
MARDHITING

Webley
 AIR PISTOLS

TIm RIFLES - RCCESSORIES

With This You Can Produce Your Own Concert Programmes, Club Notices, etc.

The Tinfoil and Pricker

A piece of tinfoil is cut gin. wide and Irin. long; this is laid down to prevent the ink soaking into the wood top. Over it is laid a thickness of flanniel, cut the same size, and the two are kept in position by a drawing pin at each corner.
A pricker (Fig. 3) will be required; this is simply a stout darning needle forced into a penholder, and secured with a binding of thread. The roller (Fig. 3) is a roin. length of wood rod, about $1 \frac{1}{2} \mathrm{in}$. in diameter. A piece of curtain pole would be suitable.
It must be accurately centred at each end and a screw driven in for a spindle. The frame is a convenient piece of metal strip drilled at each end and in the centre, then bent as shown. A piece of broomstick, or a tool handle, is screwed to

BY means of a duplicator you can reproduce your own club notices, concert programmes, and so forth, with little trouble or expense. The one illustrated requires no special appliances to work it, and is superior to the hectograph, inasmuch as the number of copies possible is practically unlimited.

Figure I gives a good idea of the machine, resting on its box, all ready for work. A useful size is that known as quarto, which is 1oin. x 8in., and the dimensions given in Fig. 2 plan and side elevation are suitable for that size paper.

The two pieces of wood, A and B , are cut from $\frac{1}{2}$ in. wood, glued together and left under a weight until the glue is hard. Note that the grain of the wood runs crosswise on A and lengthwise on B , also that the top surface must be planed quite flat. The groves, C , should be cut out to accommodate the two strips of metal which keep the stencil taut. The size of these strips, within reasonable limits, is not important; ${ }_{4} \mathrm{in}$. square brass rod would suit. Smooth off the sharp edges of the metal so that when pressed in the grooves it does not tear the paper. The four small catches are to keep the metal strips in place.
it through the centre hole, while the spindle screws of the roller are pushed through the

Fig. 2.-A plan and side view of the duplicator.
end holes. The roller should work easily. It is covered with a layer of flannel, sewn on.

The Box

This needs little comment, it is the same size as the base of the dupficator, and

For the stencils you can use tracing paper. Write out the matter to be duplicated in pencil, lay the paper on a blotting pad, and with the pricker outline the letters with a series of pricked holes, fairly close together, but not close enough to run into one another and cause smudges.

How to Use the Duplicator

Ink the flannel pad with a brush and lay the stencil over, press the metal strips in

place and thus secure the stencil against shifting. Lay a sheet of paper on the stencil and run over it with the roller. This will need to be repeated a few times until the ink works through. Any obstinate bare patches will be due to uneven inking, so release one end of the stencil, lift, and apply a little more ink to each bare place. The impression being even all over, it is only necessary to lay a sheet of, paper down on to the stencil and run over it with the roller for each copy required.
Special duplicator ink can be bought, but for the purpose of this machine a suitable ink can be made up with glycerine, 10 which a small quantity of aniline violet, or black (soluble in water) has been added. To prevent smudging, it is always best to use duplicating paper, as it absorbs the ink quicker.

FOR THE MODEL MAKER-
THE MODEL AEROPLANE HANDBOOK
12/6 (13/-by post)
MODEL BOAT BUILDING
Constructional details of Model Sailing and Power Boats
5/- (5/8 by post)
THE HOW-TO-MAKE-IT BOOK
12/6 (13/-by post)
MODEL ENGINEERING PRACTICE

17/6 (18/- by post)

From George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C. 2

THE JUNOR CHEMIST

No. 8. -The Simple Process of Distillation

ACHEMICAL process of great utility and interest is that of distillation. By its means, highly purified products are obtained from crude substances. For instance, modern lubricating oils are distilled from crude petroléum, while "Scotch Shale" subject to the same process, provides us with paraffin (medicinal), paraffin wax and soft paraffin (white and yellow, known usually as petroleum jelly). And thus we might continue with illustrations, whisky and spirits, raw alcohol, benzine and a multitude of other commodities-all these are manufactured by a distillation process.

The cperation is simp!e. It consists merely of converting a liquid into its vapour and then recovering it by condensing the vapour against a cool surface.

A few moments consideration will make it evident that the distillation process may be employed to separate a liquid from solids dissolved in it, to separate two liquids of different boiling points-the alcohol may be distilled over from a mixture of water in the still. or again we may utilise the distillation process to obtain a liquid the vapour of which is produced by heating some other substance.

There are numerous modifications of the distillation process in common use. Perhaps the junior chemist has already encountered such expressions as " distillation in vacuo," "fractional distillation " and "distillation in steam."

The Distillation Under Reduced Pressure

 (or In Vacuo)The temperature at which a liquid boils and passes into the gaseous state is dependent on the pressure to which it is subject. Water, for instance, under normal atmospheric pressure (nearly fifteen pounds per square inch) boils at a temperature of 100° Centigrade approximately. Now, if we reduce the pressure below that of the atmosphere, the water boils and passes into

Fig. 1.-Apparatus for distillation
vapour before a temperature of 100° attained.

Eggs Cannot be Boiled on Mountains

Although the subject of egg boiling seems a far cry from the more technical subject of distillation, it is an admirable illustration of a lowered boiling point caused by a reduction in pressure and is proved without the
use of a thermometer. Egg albumen (the "white") is coagulated at the temperature of boiling water under normal pressure. Below 100° it is coagulated only with difficulty: The higher we ascend from the earth the lower becomes the atmospheric pressure. Coupling these two facts you will realise that on a high mountain boiling water is too low in temperature to successfully boil an egg.

Fractional Distillation

This is a method used in separating two or more mixed liquids whose boiling points lie close together, and consists of distilling carefully at the boiling point of the more volatile liquid. This portion of the distillate (known as the first fraction) is set aside and a second fraction is collected at a slightly higher temperature. A third and more fractions are collected until the volatile vapours cease to be evolved. The first fractions contain practically all the more volatile liquid and little of the other, whereas the final fractions contain the reverse. Each fraction

Fig. 2.-The condenser, showing dimensions
is very carefully distilled perhaps several times until complete separation is effected. This is a method used in separating the water from alcohol in the manufacture of the latter.

Distillation in Steam

Many liquids boil at a lower temperature in contact with water with which they are immiscible. The reason for this is too involved for explanation here. The operation either consists of heating the liquid and simultaneously passing steam through it, or heating the liquid and water together. In each case, the distillate contains both water and the liquid under treatment and as they are immiscible they are readily separated. Many essential oils used in medicine are obtained in this way, the leaves of the plant, which contain the oil are treated by either of the above methods. The oil passes over with the steam and finally is separated in the distillate from the water upon which it floats.

Having grasped the theory of distillation, the junior chemist will no doubt wish to satisfy himself of the truth. The apparatus required for distillation consists of the still boiler, the condenser and the receiver.

The Still Boiler

This consists of a glass flask. The capacity is immaterial; if much distillation is to be done, then a larger flask is necessary to avoid constant filling. A bored cork closes the mouth of the vessel.

The Condenser
For this you require about a fost of glass tubing about 1 in. in diameter. Any good chemist will obtain this for you, if he does not actually stock it. You will also need a yard of ordinary thin glass tubing and two bungs which will fit the ends of the wide tubing. It is unnecessary to describe in any detail the construction of the condenser, as it will be quite evident fram Fig. 2. The glass tubing is cut with a three-cornered file as previously described in this series. Two holes are bored in each bung. These must accurately fit the narrow tubing which they house, otherwise the device will not be watertight. In use, the condenser is connected to the tap, the overflow pipe returning the water to the sink after it has traversed the water jacket. The inner tube of the jacket enters the bung or stopper to the boiling flask

Three-quarters fill the boiling flask with tap water and arrange the apparatus as shown in Fig. I. The boiling flask or still rests over the Bunsen on to a wire gauze and tripod is connected to the condenser. The outlet end of the latter passes into the receiving flask. Turn on the heat until the water in the still is boiling vigorously, then turn down the flame, keeping the water steadily boiling. The liberated steam will be seen condensing in the condenser inner tube.

The first portion of the distillate is used to rinse the receiver and is then thrown away. It is not pure distilled water as it contains the more volatile impurities and dissolved gases always present in tap water. This precaution having been observed, proceed to collect the distillate now coming over until about two ounces of water only remain in the stili boiler. At this point cease to collect the water now coming over as it will contain the less volatile impurities.

The simple type of still employing a Liebig type condenser such as described, is not capable of delivering large volumes of distillate in a few minutes, but, nevertheless, is quite adequate in output for most small laboratory purposes. On the larger scale, continuous forms of still are employed in which the cooling water in the jacket, becoming warmed by contact with the condenser pipe or "worm" is passed on to the boiler which is automatically kept at a constant level. Some saving in heat is thereby effected, and there is no risk of the still running dry.

A Fascinating New Book 1

THE ELEMENTS OF MECHANICS AND MECHANISMS

By.F.J. CAMM

(Editor, "Practical Motorist and Moior Cyelist") 432 pages, 48 I illustrations, $30 /-$, or $31 /$ by post from George Newnes, Led.
Towar House, Southampton Street Strand, London, W.C. 2

The Editor Does not Necessarily Agree with the Views of his Correspondents
claimed for flying saucers, as it could not carry sufficient reaction-mass. If on the other hand it was propelled by an inertialess drive, then it would have no exhaust stream, and Captain Mantell's aircraft would not have been destroyed, as is claimed, by the exhaust stream. Thus the fact of the destruction of the aircraft is in itself almost conclusive proof that we are not dealing with a "space-ship."
"A foo ball" which appears luminous in certain directions, unless it actually is selfluminous, is obviously absorbing light in some directions and emitting it in others If viewed along one of the directions of absorption it will clearly appear darker than its surroundings, and silhouetted against the sky. This, I believe, is what was observed by Captain Howard, and I still maintain that all objects which keep formation with aircraft are foo balls.
All these cases are reported by eyewitnesses, and eye-witnesses are notoriously unreliable, as has been proved by experiment time and again. The only evidence a scientist will accept, at any rate of something so important as the possibility of intelligently-controlled space visitors, is good photographs. By this is not meant, misty pictures which might or might not portray lighting fittings, nor photographs showing "lights in the sky." So many of the latter class may be put down to lens flare and similar photographic imperfections that it does not seem unreasonable to discount the entire class of such pictures, while "night photographs" with passably well-exposed foregrounds and quite sharp images of what purport to be flying saucers in the sky contain their own internal evidence of faking.

I, for one, shall not be satisfied until a picture is produced of one of these objects sharp enough to show some detail and with something else in the picture to give it scale.-Brian C. Kershaw (Leeds, 16).
SIR,-I have read "Theorist's" letter in
the May issue. May I, respectfully, refer him, and others interested in surface
conditions on the planer Mars, to a report of the December meeting in New York of the American Astronomical Society and the American Association for the Advancement of Science, under the title "Mars Symposium.: Interesting details are given of the results of observations during the 1956 opposition, particularly as to the methods used for detecting the presence of oxygen and water vapour. It seems unlikely that these substances are present except in very small quantities indeed.-Walter H. Graham (Cornwall).

Battery Alarm

CIR,-With reference to the letters in the February issue of Practical MechanIcs from Mr. A. Strang and in the May issue from Mr. D. G. Salmon in reply to Information Sought, December issue, may I be allowed to say that I disagree with Mr. Salmon's criticism of Mr. Strang's circuit. His argument that the battery would become exhausted in a short time cannot be supported as this circuit is used in professional alarms.

I would, however, point out that the main switch in Mr. Strang's circuit should be a double-pole switch and break both the magnet and bell circuits. I would also point out that circuits of this nature must not be worked from the mains but should be fed from a dry battery or other source of supply which cannot be cut off and must not be switched (other than by the main switch already referred to) or fused.-J. E. Dixon (Bristol).

Relining a Potato Washer

TN reply to Mr. D. Lowe in your Information Sought, May issue, who asks how to reline a potato washer, below is the address of a firm supplying carborundum and fluid for same: Surfix Lid., 9, Spring Street, London, W.z.

I reline my machine once a year at a cost of 30 s . I mix it in a saucer and apply with a table knife. First dry the lining and roughen with light taps of a centre punch and apply compound. Leave, if possible, for 24 hours.-David Muir (Ayrshire).

THE STEAM CAR

CIR,-I read with interest the article and correspondence in the April issue of your magazine regarding the possibilities of the Steam Car.

I am an engineer myself and have recently given a lot of thought to the various problems involved. Consequently, I have one or two ideas, which, if pursued, may overcome the difficulties. Therefore, I should be pleased to hear from fellow readers who are also interested in obtaining a solution to these problems with a view to the production of such a vehicle, if successful.D. Glenister (Rotherham).

SIR,-Regarding the recent correspondence on steam cars, I note that all complaints are of burners.

Your contributor, Mr. C. E. Hooker, while admitting the superiority of the steamer, remarks that although it beat the I.C. car, the I.Cs were only in their infancy, etc. But then so was the steamer! Burners in the year 1957 could be made as reliable as cooking s:oves, surely!

Is it comp'etely impossible to give some thought to producing steam (and superheated subsequently) by producers similar to the Bellis and Morcom idea? My own knowledge of steamers, while not as extensive as that of Mr. Hooker, does not give any indication of continued burner rouble-and judging by the numerous Stanleys in America (and kere at one time) most owners apparently had satisfaction.-R. F. MacDonald (Johannesburg).

THE JUNIOR CHEMIST

S^{11}R,-In the Junior Chemist section of the May issue it was stated that hydrogen chloride gas could be dissolved in water by the method sketched at A. As the gas is rather soluble in water (at $0^{\circ} \mathrm{C}$. I c.c. if water dissolves 500 c.c. of hydrogen chloride) may I tender the following method of dissolving the gas? A filter funnel is fitted to the end of the delivery tube and this is just allowed to dip below the surface of the water, as shown at B in the sketch.

This method prevents sucking back of water. The danger of this sucking back is that if the water is sucked back into the flask and comes into contact with the hot flask and the hot sulphuric acid, the water will be vaporised, an explosion will occur, and hot concentrated sulphuric acid will be scattered all around, probably resulting in serious injury to the experi-menter.-M. Keen (Bodmin).

SIR,-Re your method of making hydrogen from hydrochloric acid in the Junior Chemist section of the May issue, I think the author would need more than a little manipulation to keep the hydrogen burning at the mouth of the test tube. It would have been better to fit the test tube with a cork and a length of glass tubing drawn out into a jet. The hydrogen evolved would then be under enough pressure to remain burning. As an alternative, ordinary coal gas could have been burned up against a cool surface to

Bathroom Stool

S
IR,-I was interested in the article on making a bathroom stool in the May issue, but think that the tube bending jig could be improved.
In your diagram you show the two pulleys, one fixed and one free, and with this arrangement the user would have to hold one end of the tube while bending the other. I have bent a number of tubes of all sizes and would suggest that a stop be included on your bending jig in the position shown in the sketch below.

The block should be bevelled to take any size of tubing and have a $\frac{1}{2}$ in. peg through its centre. The base board should be drilled so that the peg may be positioned either side as shown.-M. A. Lancaster (S. Wales).

Ellipse Construction

CIR,-With reference to the simple ellipse construction given in the May, 1957, issue, I should like to point out two things:
(I) There is no need for the angles taken
(A) The method shown in our May issue, (B) Mr. M. Keen's modified method.
form water droplets, because for purposes such as these coal gas can be considered to be made up of practically 50 per cent. hydrogen (the 30 per cent. methane and $2^{\frac{1}{3}}$ per cent. ethylene also burn to form water).-P. M. Warton (Rhondda).

to be 30° and 60°. Any angles would do, and any number of them.
(2) The construction is exact.-F. S. Dewhirst, B.Sc. (Yorks).

The Comet and Space Travel

CIR,-I have never read any convincing explanation of comets, though I have browsed through much popular astronomy. Perhaps you or your readers will be so good as to give the latest theory?

I have read that their tenuity is such that all the matter present would pack into an attache case, also that the light-pressure from the Sun causes the rarefied gas or atoms to be forced away from the comet nucleus and the Sun's direction.

This latter appears a fallacy, for if the Sun's radiation could accelerate atoms from conglomeration about the nucleus into a tail a million miles long, such radiation must be more powerful than the comet's self-gravitation, even close to the nucleus (or there would be no dispersal). At a distance of even a thousand miles, cometal gravity would b: greatly reduced, thus any force which could displace atoms in close proximity would sweep them entirely away, and there r.ould be no "tail" whatever.

I suggest that, though the nucleus is matter, with weight and inertia, the surrounding "aura," including the tail, cannot be matter in any form, and that it is radiation, possibly "cathode rays," which cause fluorescence of cosmic dust but which are deflected, by radiation from the Sun, and caused to follow the more powerful radiation stream, therefrom.
This leads to the interesting speculation that, whereas "radiating" comets are rare phenomena, non-radiating comets, or cold, invisible meteoric bodies may persist in great numbers, travellin? elliptical or hyperbolic paths that link the galaxies.

I have always felt that the greatest of all hazards in space navigation would be the constant shower of high-velocity projectiles of all calibres! "No man's land," in truth! -F. O. Brownson (Bedford).

G 1 BOOK3 Received

"The Microscope Made Easy," by A. Laurence Wells. 254 pages. Illustrated. 125. 6d. net. Published by Frederick Warne \& Co. Ltd.

A^{s}an introduction to the subject of microscopy this book is ideal. It deals primarily with simple mounting techniques applied to such objects as single-celled algae and animal forms, hairs and fibres, diatoms, minute crustacea and many others. Every chapter is illustrated with both drawings and photographs and there are seven coloured plates.
"Know Your Lathe." 114 pages. Numerous illustrations. 6s. 6d. postage paid. Published by Denfords Engineering Co. Ltd., Halifax, Yorks.
THIS is more than a handbook for the Box-Ford and Harrison lathes made by Denford Engineering Co. Ltd. and their subsidiary, T. S. Harrison \& Sons Lid., and chapters are included on lathe tools and their application; accurate measurements, plain turning ; taper turning and boring; chuck work; drilling, reaming and tapping, screwcutting ; special types of work; and lathe parts. The illustrations included with the chapters describing modern change gear lathes, installing the lathe, how the lathe operates, show Box Ford tools, but the information can be applied to any modern lathe. Both half-tone and line illustrations are used liberally throughout the book.

Soft and Hard Soldering (Concluded from page.478)

Hard soldering with a silicon alloy solder is to be thoroughly recommended as-regards ease of application, strength and permanence. Unlike soft soldering, the joint is capable of withstanding the action of boiling water or steam without protection.

Soft Soldering Aluminium

In this process the solder melts at a comparatively low temperature, and it is this type of work which has given rise to the widespread view that aluminium is difficult to solder. The reason is that no satisfactory flux is available which will attack the oxide at the low temperature of working, so that the oxide must be removed by mechanical means. After a preliminary cleaning, the metal is heated until the solder melts upon it. The molten solder will not adhere, but it can be made to do so by scraping through it with an old hacksaw blade or other form of scraper to break up the oxide film. Once the film is broken, the oxide cannot reform under the solder, and alloying takes place. When the surface is fairly well covered with molten solder the adhesion is improved by rubbing with a wire scratch brush while the solder is still molten, thus breaking up any remaining traces of oxide. After such "tinning," the parts can be sweated together in the ordinary way. Fluxes are sometimes supplied with these solders, but these consist largely of stearin or resin, and are of little assistance.

Reaction Soldering of Aluminium

The solder is a chemical mixture, which is spread on the parts to be jointed and heated by a blow-lamp to about 200 deg. C. A chemical reaction takes place which results in the deposition of pure zinc in a molten condition on the aluminium surfaces to be joined. The zinc flows easily between the edges, and alloys readily with the aluminium, forming an excellent joint.

Greenhouse Heating

PLEASE furnish me with the necessary information regarding the heating of a greenhouse (12 ft by 8 ft .) by the low-voitage soil-heating method. Could the equipment required be obtained through army surplus stores in order to reduce expense, or must it be bought new?-F. Somerville (Belfast). YOU could adopt a loading of about 5 watts per square foot, in which case the heater could be switched on for about eight hours per day. Alternatively you could use a loading of about. I.7 watts per square foot continuously. The disadvantage of the former method is that you may require a time switch to control the heaters, and a comparatively large transformer will be required. The disadvantage of the lower loading is that if the soil should freeze up before planting, such a low loading might be unable to thaw out the soil.
However, we will assume a loading of about 1.8 watts per square foot, in which case a total loading of 160 watts or so will be required. It might be an advantage to use two separate heating units, each covering half the soil area so that you can heat either half as required. This method would be very convenient if you find it easier to obtain two transformers, each with an output of 80 to 100 watts, rather than a single transformer having an output of 160 to 200 watts.
Each unit could consist of 70 ft . of 17 s.w.g. bare galvanised iron wire for use on 12 volts; alternatively you could use rioft. of 15 s.w.g. bare galvanised iron wire for each unit. The wire should be laid in a zig-zag formation about 6 to 7 inches below the 'eventual' soil surface. You should be -able to obtain a suitable transformer or transformers from an ex-Government stores. A transformer having an output of 160 to 200 watts at 12 voits (approx. 14 to 18 amps .) may be used; or two transformers, each having an output of 80 to 100 watts (approx. 7 to 9 amps.) at 12 volts would be suitable.
It is, however, most important that the transformer(s) should be continuously rated and should be double-wound. An autotransformer is unsuitable. The British Electrical and Allied Industries Research Association of 13, Savoy Street, London, W.C.2, have produced a most useful technical report (Ref. W/J7) which deals in a practical way with simplified electrically heated hotbeds, which we think would be most useful to you.

Zinc Oxide Paint

Your advice is sought regarding paint making.
Can you let me know how to make up flat and gloss paint using zinc oxide as the base ?-G. F. Bramham (Rhyl).
TO make zinc oxide paint (flat), mix your zinc oxide with turpentine to the right consistency in a 2 -gallon pail, stir well swith wooden slat. Add a teacupful of shellac varnish and also a bit of paste drier the size of a walnut. Terebene can be substituted for the paste drier if desired.

To make zinc oxide paint (gloss), mix your zinc oxide with boiled linseed oil and thin with turpentine to required consistency.

Tinning Effect on Brass

COULD you give me the composition of a solution which, when heated, will coat brass and copper with a film resembling in?

It is possible to obtain from any good ironmonger a preparation of powdered solder in flux, and this, when smeared over obiect and heated, gives an excellent tinning effect.

Non-setting Adhesive

PLEASE tell. me the formula for making an adhesive for sticking paper or card on to a painted surface so that it can be removed and used again without damaging the surface.-S. C. Deadman (S.W.16). WE suggest you try the following formula
Take 20z. boiled linseed oil, heat over a low flame on a gas ring in a small can for several hours until the contents become very sticky. When this mass is cold, add a saltspoonful of metol H.Q. developer or a few drops of nitrobenzene. This mix should remain sticky indefinitely and may serve your purpose. When paper is removed from painted surface any adhesive may be removed with a quick wipe of turpentine.

Camera Rangefinder

I AM trying to make a rangefinder to fit my camera, and would like to know what type of lenses I shall require.-T. A. Rollings (Kidderminster).
THE normal type of rangefinder requires no lenses. Half of some selected vertical on the object to be photographed is viewed direct, and the other half is viewed by means of the mirrors. The split image is made to coincide by movement of the outer mirror.
If you are endeavouring to make the field of view of the rangefinder agree with that taken in by the camera this could most simply be done by adopting the directvision type of finder. In this, the relative sizes of the apertures and the distance between them, control the field of view. The sizes and spacing may be worked out by drawing a scale diagram, or found by trial. However, it is usual to use the rangefinder to determine distance only, and then apply the eye to the viewfinder for the shot.

Two-note Door Chime

T HAVE constructed the two-note door
chime described in your April, 1952, issue. I find, however, that although the first note strikes properly, there is not sufficient rebound to make a really loud second mote. I have tried various alterations without success and am wondering if it would be possible to utilise a solenoid with a bell transformer. Can you tell me what type to use and where it is obtainable?-M. Shortman (Mon.).
YOU will be very unlikely to obtain a chimes.

There is no reason, however, why the unit you have constructed should not work efficiently. It would seem that the speed of rebound, or the striker weight, is insufficient. First, try the effect of adding to the striker weight. If not satisfactory increase the spring tension. If, as a result, the armature fails to draw in when the switch is operated and the voltage cannot be raised, try the following: Unsolder the coil connections and join in parallel instead of series. Note that the magnetic strength increases. One coil should be experimentally reversed to check this. The distance between armature and pole faces can now
be increased, which, together with improved spring tension, should give the desired result. Adjust the chimes as described in the article.

Winding a Shocking Coil

I WISH to make a hand-operated shocking coil. Could you please supply information regarding the winding of the primary and secondary coils?-Eric Milne (Scotland).
THE coil core could be made of a bundle of straight, soft iron wires of 18 s.w.g. by \sin. long, these being packed tightly in a brass tube 5 in. long and $\frac{1}{2} \mathrm{in}$. in diameter, with a.thin wall. Draw the wires out of the tube an inch or so at a time so that they can be bound together evenly with fine wire, the ends being filed straight and square; the core afterwards being dipped in "killed" spirits of salts, followed by dipping in molten solder. The core should then be washed and dried and then soaked in hot paraffin wax to produce a core over which the brass tube will slide- easily.
Roll a piece of white demy paper round the brass tube, then cut a piece of tough brown paper 12 in . by 4 in . and roll this tightly round the paper tube after coating the brown paper with hot glue. When dry and hard, withdraw the brass tube and after trimming up the paper tube, soak it in hot paraffin wax. Form a paper collar on the core $\frac{1}{2} \mathrm{in}$. from one end and about $\frac{1}{2} \mathrm{in}$. wide by wrapping on a strip of brown paper. The overall diameter of the paper collar should be just sufficient to enter the paper tube. One end of the paper tube should be squarely glued into a 3 in. square piece of mahogany or teak about $\frac{1}{2} \mathrm{in}$. thick, with the core projecting slightly.
The secondary bobbin may have two mahogany or teak ends $\frac{1}{4} \mathrm{in}$. thick by about 3 in . square, with a $4 \frac{1}{2} \mathrm{in}$. long paper tube between the ends, which is just sufficient to slide smoothly over the primary coil. The latter coil should be wound on the brown paper tube over the core and should have 4 layers of $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. S.S.C. wire ; each layer should be basted with hot paraffin wax, and the ends connected to -terminals. The secondary coil is wour.d with about 1 lb . of 36 s.w.g. S.S.C. wire which should be soaked in hot paraffin wax before winding. Each layer of the secondary should be basted with hot paraffin wax, with a thin layer of paper wound over each layer of wire. The secondary coil may be covered with velvet or a similar material. The ends of the secondary coil should be connected to terminals and the complete secondary coil arranged in suitable guides so that it can be slid over the primary and core. The contact breaker operating on the end of the core should be connected in series with the primary coil.

Display Turntable

I WISH to make a revolving turntable similar to those used in shop windows for display.
The motor is a clockwork gramophone motor and the difficulty is to reduce the speed of the table sufficiently, as when I do this by the governor the table stops revolving before the speed is sufficiently slow.
Can you suggest some other method of control ?-J. C. Whiteley (Grimsby).
THE only suggestion we can offer to enable you to reduce the speed of the turntable of your gramophone motor is that you ignore the governor and apply a brake on the edge of the turntable itself. This brake may be a very light adjustable leaf spring, having a piece of oiled leather on the end of it to rub on the polished edge of the table. Let the governor absorb none
of the power but allow the brake on the edge to absorb it all:
By far the best scheme is to abandon the gramophone motor and adopt an electric motor. The Klaxon Co. make a small machine with combined gearbox, terminating in a vertical shaft, and this is so designed that it revolves at the usual window display speed. Current is taken from the ordinary house wiring.

Rotary Reversing-Switch Wiring

I
HAVE a rotary reversing switch (drum type) which I wish to use on my lathe. Can you inform me how to wire it? The motor is a $\frac{1}{3}$ h.p. D.C. compound, and a plate inside states that to reverse the rotation, the brush leads should be changed over.

The terminals on the reversing switch are: $\frac{\mathbf{L} \frac{L}{M}}{}=\mathbf{D}$. Wharton (Birkenhead).
WE presume the M terminals of the reversing switch are intended to be connected to the motor and the terminals L to the supply. In this case you should use the following connections:
example, the "Lustrex", process of Monsanto Chemical Co. Lid., Victoria Station House, Victoria Station, London, S.W.I.

Oil Immersion Objective

IOSSESS a I/Iz fluorite (oill immersion) microscope objective. Is it correct to use cedar wood oil with this?-S. Parnell (W.C.1).

TF your $1 / 12$ fluorite objective is really designed for oil immersion then it will be safe to use any of the essential oils usually employed and cedar wood oil is one of the best. Oil of aniseed, turpentine and glycerine may also be tried.

Annealing Process

MI hobby is iron founding and 1 have become very interested in malleable cast iron. I have an ordinary cupola furnace, green foundry sand, boxes, etc.
I understand there is an annealing process involved, if so will you give me full particulars on this process and how I may use my present gear to the best advantage? I should also be grateful if you would recommend some inexpensive literature on the subject.-D. O'Connor (Waterford).

THE castings are packed into suitable canisters with a neutral packing material and gradually heated in an annealing furnace to a temperature approximating to 820 deg. C. $-1,000$ deg. C. and are maintained in this condition for 3 or 6^{\prime} days, when they are permitted to cool slowly.

That very briefly is the process for Blackheart annealing, and you can well imagine it will require some considera-

No Dye for Perspex

AN you give me any information on the type of dye used on engraved Perspex (i.e., decorative brooches)? Also, where same can be obtained?-T. Jones (Manchester).
THERE is no dye for treating finished
Perspex. This resin is usually coloured before casting or forming into the articles required. A transparent dyeing process has been evolved by various firms, as, for sible expense before you will tion and possible ex
achieve good résults.
achieve good results. ing with the subject on the shelves of your local public library under the title of Foundry Practice; but one interesting book you should study is "Modern Foundry Practice," edited by E. D. Howerd.

This book deals, of course, with foundry work generally, but there are several pages devoted to malleable cast iron founding and annealing.

Information Sought

Readers are invited to supply the required information to answjer the following queries.

Bowl Making

WISH to make some bowls in a material

 similar to that used for making hard fancy hats; this appears to be $1 / 16$ in to $\frac{1}{8}$ in. thick, with a closely-woven cloth base. It is tough and slightly flexible. An ordinary pudding basin will be used as a mould.W. F. Tunnah (Edinburgh).
Byre Roof Lights

I
AM constructing a cow-byre which requires roof-lights. The byre is to be covered with corrugated asbestos and I intend cutting panels from the sheets and inserting glass, or glass substitute. How is this done, and what fixative will be needed in making the roof-lights weather-proof?-J. Hughes (Eire).

Non-drying Adhesive

DLEASE tell me of a formula for making a non-drying strong adhesive. I require this to stick pieces of cut photographic film on to plates of metal or glass to use in a plate camera.-J. WIld (Halifax).

Spinner Type Wire Straightener

HAVE a wire-cutting and straightening machine, it has, adjustable rollers horizontal and vertical for the straightener. I wish to make up a spinner type straightener, but I have no idea how it functions. Could you give me any information about it?-D. MCGuINNESS (Co. Dublin).

Moulding and Vulcanising Rubber

DLEASE tell me how to mould and vulcanise rubber and also from whom the masticated unvulcanised rubber can be obtained in small quantities.

I would also welcome any other relevant information on the subject, for instance, can rubber be moulded in plaster casts? J. McCaffrey (Croydon).

G. 45 Gun Cameras

PLEASE give me a source from which full details and information may be obtained on the ex-Government $G .4516 \mathrm{~mm}$. gun camera.-R. Spiller (Erith).

GALPIN'S

ELECTRICAL'STORES
408 HIGH STREET, LEWISHAM, S.E.13.

Tel, : Lee Green 0309.
TERMS : CASH WITH ORDER (No C.O.D.)
All Goods sent on 7 days approval against eash.
P.M. EXTENSION SPEAKERS, 8 in.: 3 ohm coil, in first-class condition, $10 /$. .
EX-GOVT. ROTARY CONVERTORS 24 volts D.C. Input 50 volts 50 cycles, ! with Step Up Transformer) from 50 voles to 230 voles, $£ 13 / 10 /$ - each or CONVERTOR only E9/10/- each.
EX-NAVAL ROTARY CONVERTORS 110 volts. D.C. Input. Output 230 volts 50 cycles I phase 250 wates capable of 50 per cent. overload, in good condition, guaran-
teed weight approx. 110 lb , $13 / 10 \%$ each.
\& H.P. D.C. MOTORS, 110 volts, 3,000 r.p.m. new, large size, $35 /-$; starters to

ASSORTED RESISTANCES. Wire ends, all new, plain, wire, silver and gold tipped. 12/6 per roo
THREE-PHASE TRANSFORMER. 2,000 wates, double wound, $110-220$ and 440 voles.

LARGE METER movements, fairly low F.S.D. average 6 in . deflection, very high quality, 7/6. P./P. 1/6.
MOVING COIL meters, all 2 to 3 in . dia., damaged cases or glasses, 3 for $10 /$ guaranteed one sound meter: 6 for $18 / \%$
two sound meters, no junk, all are, or two sound meters, no
suitable for, M/A meters.
MAINS TRANSFORMERS all 200/250 volts" primaries (New) Heavy duty Output combination of $0 / 6 / 12 / 18 / 24 / 30 / 36$ volts, $4 / 5$ 'Ditte 15 amps. Output, $75 /$ - each. Another with combination of $0 / 6 / 12 / 18 / 24$ volts, $6 / 8$ amps., $51 / 6$ each. Ditto $10 / 12$ amps., $58 / 6$ each. Ditro $25 / 30$ amps. Output, $85 /-$ each. MEDIUM SPOT WELDER TRANS. FORMERS, Input $200 / 250$ volts. OUTPUT combination of $0 / 2 / 4 / 6 / 8 / 10 / 12$ volts at $50 / 70$ amps., E6/7/6 each. Ditto 120/150 amps. Ourput, $88 / 10 /$ - each.
 METERS, $10 \mathrm{amp}^{2}$. load, 25/- ; 20 amp .
load, $47 / 6 ; 30 \mathrm{amp}$. load, $57 / 6$. All carriage paid.
PREPAYMENT $1 /$ - SLOT METERS. SER at 2 d . per unit. 10 amp . load, $44 / 2 / 6 ; 20$ amp. load, $45 / 2 / 6$ each. Fully guaranteed.
PREPAYMENT METERS, 6d. slot only Set at $4 d$. per unit. 5 amp. load only. $50 /$. each. Carriage paid.
AUTO WOUND Voltage changer TRANSFORMERS. Tapped 0/110/200/ 2304250 volts, 200 watts, $48 / 6$ each; 350 watts, $57 / 6$ each; 500 watts, $76 / 6$ each ;
1,000 watts, $£ 6 / 5 /-$ each ; 2,000 watts, Ell ; 3,000 watts, $£ 15$ carriage paid.
GOOD FILM FOR CUTTING. Pan. chromatic, very fast, All $5 \frac{1}{2}$ ins. wide. 24 ft , Reduction for
$7 / 6$, and 47 fe . I $2 / 6$. Post free. Redu $7 / 6$, and 47ft. 12/6. Post free. Reduction for quantities.
P.O. COUNTERS, 9999,400 ohms, $7 / 6$. Post free

ROTARY CONVERTORS. Input 24 volts D.C. Output 50 or 100 volts A.C. 500 cycles I phase at 300 watts, $68 / 10 /$ - each, SELENIUM RECTIFIERS. Full wave, bridge connected, 6 or 12 V . output, 21/ amps. 15/6:4 amps., 25/= ; Transformers to suit either, $25 /$.
Any TRANSFORMERS made to order within 7 days from date of order. Numerous other items in stock. Please
ask for quotation.
Clients in Eire \& Northern Ireland, please ask for quotation as to carriage charges. The above charges only apply to England. Open all day Saturday. Splendid odd

GAMAGES

Offer this Most Efficient All Purpose Machine! SAW BENCH-LATHE-DRILL PRESS

Acclaimed by many to be the finest multi-purpose machine of its type, based on a popular American design, with all the features of expensive machines. A WORKSHOP IN ITSELF! Driven by- -in . capacity electric drill. such as "Wolf Cub," "Bridges" or "Black \& Decker." Strong alloy castings with attractive black crackled finish.

Electric Drills . . . Wolf $£ 6 / 12 / 6$,
Black \& Decker $56 / 19 / 6$,
£9'12'6
Bridges $£ 7 / 19 / 6$, EXTRA,
or Nine Monthly Payments of $23 /$

SAW BENCH

 Sin. Rip Saw with arbor forfitting into drill chuck Oill
impregnated bearing table 8in impregnated bearing tabie. Bin. by 7 . with rise and fall tilting
action. sawguard. sliding fence etc. Depth of cut $1 \frac{1}{1} \mathrm{n}$. Overall length $29 \operatorname{in}$. Overall-height 9 in.

DRILL PRESS

 The end bed bar is hinged to allow the machine to stand into a useful Drill Press.Spare blades etther Rip or Fine tooth for cross-cutting, 12/6 extia.
Carr. \& Phg. 76 outside 50 mites tadius of Holborn in Eng. \& Wales, Scot. 10/6.
fin. faceplate. fixing and re-
dolving wood centres with screw volving wood centres with screw
type tailstock (drill chuck is removed to fix faceplate on to
drive). Will turn 1lin. x in drive). Will turn 111 in oe 6 in .
timber. Poltshed steel bed bar timber.

SVALTOCK, $\left\{\begin{array}{lll}\text { ACCESSORIES FOR YOUR ELECTRIC DRILL }\end{array}\right.$

GAMAGES, MOLBORN, E.C.1. HOLborn 8484. Open Thursdays $7 \mathrm{p} . \mathrm{m}$.

> BRASS, COPPER, DURAL, ALUMINIUM, BRONZE

ROD, BAR, SHEET, TUBE, STRIP, WIRE
3,000 Standard Stock Sizes. NO QUANTITY TOO SMALL. List on application.
H. ROLLET \& CO. LTD.

6, CHESHAM PLACE, LONDON, S.W.1.
SLOane 3463.
Also at LVERPOOL, LEEDS, MANCHESTER, BIRMINCHAM.

5,000 Wizh Speod slittiny Saws
 long slightly below $3 / 8^{\circ}$ square, 3^{*}
jong, actual present day per doz. A most useful bargain. $25 /-$
per doz. $13 / 6$ hal dalue 500 Whitworth doz., $2 / 6$ each. Sets with bright polished steel diestock, dtes 22° dia., cutting steel dieB.s.F. ditto, 50% per set. per set. Also 1.000 High Cutters, $21 / 2^{\circ}$ dia., 1° side and Face $1 / 2^{\circ}$ thick, $15 /{ }^{\circ}$ each. 3° tia., 1° hole, $1 / 2^{\circ}$,
 Twist Drilis Long Siraight Shank
dia. both $43 / 4^{-}$long, $2 / 6^{\prime \prime}$ palr and $3 / 32^{\circ}$ $3 / 16^{\circ}$ and $31^{\prime / 4^{\circ}}$ dlang, $2 / 8$ palr. Approx.
the two. $9 / 64^{\circ}$ dia., 11° long, long, 5 /Approx. $13 / 64^{\circ}$ dia., 11° long, $1 / 6$ each. Approx. $15 / 64^{\circ}$ dia., $91 / 2^{\circ}$ long, $4 / 6$ each.
$3 / 6^{\circ}$ dia., 11^{4} long 10° each, 200 His . long, 10 - each. dia. $1 / 4^{\circ}$. dia. detachable Cuitera 1 1/4 M. T. shank. An essential tool for facing bolt holes on castings. Worth 45%.
Gift
$12 / 6$ each.
 mandlng Reamers, $21 / 32^{\circ}, 23 / 32^{\circ}, 16 /$
$11 / 16^{\circ}-3 / 4^{*}, 18 / 6 ; 27 / 32^{\circ}, 15 / 16^{\circ}, 18 / f$
$78^{\circ}-31 / 32^{\circ}, 186: 15 / 16^{\circ}-1 / 16^{\circ}, 20^{\prime}$
 500 Sels Hex. Dle Nuts. Sizes $1 / 4^{\circ}$.
$5 / 16^{\circ}, 3 / 8^{\circ} .7 / 16^{\circ}$ and $1 / 2^{\circ}$ Wht B S American Car thread or 26 brass thread. These sets are in a neat case. Present
day value over $30 /-$ per set, to clear 15 day value over $30 /$ - per set to clear $15 /-$
per set any thread. Two sets $28 / 6$.
four sets $55 /-$. Also $5 / 8^{\circ}$ and $3 / 4^{\circ}$ in 1 hit
 6/- each. $10 /$ per pajir Milico H.S. Morse Taiver Slank End

$5 / 8^{\circ}$
stra
$1 / 2^{\circ}$ Special Clearance, H.s. taper pin reamers, ,
All tems brand new. £1 orders post 2,000 Small 2,000 Small H.S.
approx.
1/32". $3 / 32^{\prime \prime} .4 / 0$ dozt Drills, $116^{\circ}-1 / 4^{*} 7 / 6^{\prime}$ per doz. approx. : $9 / 32^{-1}-$
$15 / 32^{\prime \prime}$, six for 10^{\prime}. 3,000 Crrourra Split Dies 1° dia.
cutting $1 / 4^{\circ}, 5 / 16^{\circ}, 3 / 8^{\circ}, 7 / 16^{\circ}, 18^{\circ}$ whi
 all slzes and American N.S. 12$)^{-}$per
set of 5 sizes, 2 sets $22 / 6$, 4 sets $42 / 6$.
Taps to set of 5 sizes, 2 sets $22 / 6$, 4 sets $42 / 6$.
Trps to suit $12 / 8$ per set, elther taper or second or plug. $1^{\text {d dia. stocks } 6 .}$
1,000 Hand
1.000 Illgh Speed Parting Off Tonl Bladle, Echipse brand $11 / 10^{\circ} \times \times 3 / 32^{\circ}$ $\times 5^{\prime \prime}$ long. $5 /-$ each $\mathrm{i} 13 / 16^{\circ} \times 1 / 1^{\circ} \times 6^{\circ}$
long. $5 /-$ each $: 15 / 16^{\circ} \times 3 / 32^{\circ} \times 6^{\circ}$ long 7,000 fratt of Whiney, circular split dies, superior quality, precision abound cutting odges, $13 / 16^{\circ}$ dia. suittock, $3 / 6$ each
5,000 Bull Races, $1 / 8^{\circ}$ bore, $3 / 8^{\circ}$ o.d.,
$1 / 8^{+}$thick, $4 /$ - pair : $1 / 4^{\circ}$ bore, 34° o.d. $7 / 32^{\circ}$ thick, $4 /$-pair: $1 / 4^{\circ}$ bore, $3 / 44^{\circ}$ o.d. 0. ...
$4 / 0$ pair ; 6 mm . bore. 9 mm . bore, 26 mmm . thick, $4 /-$ pair : pair: $3 / 8^{\circ}$ bore, $7 / 8^{\circ}$ o.d. $7 / 32^{\circ}$ thick, 4/- pa 2,000 Files $4^{* 6} 6^{\circ}$ good assortment,
0.6 doz., also toolmakers' needle fles ass., $12 / 8$ doz.
Melal Marking Pinches sizes $3 / 32^{\circ}$ $1 / 8^{\circ}$ and $1 / 4$, figures, $8 / 6$
etters, $25 /$ per set, any size. 11 st, price $30 /-$ set, $15 /-$ set, also $3 / 8^{\circ}$,
$7 / 16^{\circ}$. $1 / 2^{\circ}$ ditto, $12 / 6$ set, 500 If.S. 90° Countersinks, body
12° dia. Gift $5 /=$ each. 1,000 Bevelied handled, $1 / 4^{\circ}, 5 / 16^{\circ}, 3 / 8^{\circ}, 1 / 2^{\circ}, 5 / 8^{\circ}-3 / 4^{\circ}$ 1. 1. Actual value 37/6. Gift $25 / \mathrm{F}$ 200 Cast Steel Cireular Saws for
Wood $4^{\prime \prime}$ dia,. 6 - each: 6°. 10% : $13 / 6: 10^{\circ}$, 18/-: 12°. $24 / 4$. Drills, slocombe brand $5 / 16^{\circ}$ body dia. 20,000 Small Hifh Sueed dililne Cutters, various shapes and sililng ve want to clear these and styles.

J. BURKE

192 Baslow Road, Totley, Sheffield
Inspection Only ut Hear
36 Fitzwilian oft., Whelifed,

BATTERY CHARGERS

VACUUM PUMP. Brand
New. $7 \mathrm{cu} . \mathrm{ft}$, per min. 10 lbs per sq in: at min. 10 lbs , per sq. in, at 1,200 each, post $2 / 9$. VOLTAFITEIRS Output up to 22 v .
10 amps controlled
by two 4-position by two 4 -position
rotary switchesfor
fine rotaryswitchesfor
fine and coarse fine and coarse
control.
$200 / 250$ Input A.C. 50 cy., fused for A.C. scaled ammeter. scaled ammeter.
Bran n ,
\&17.10.0, carriage Mains 50 cy, reading 300 volts with clear 5 in to 21 ln . Flush, $25 /-, \quad 0 / 15$
2 in . Flush, 156 , post $1 / 6$
AMMETRERS.-2in. Flush Moving Coll D.C. $50-0-50,12 / 6$ ea. 2 2 in. Flush Moving
Iron' D.C. $0 / 25,7 / 6$ each. post $1 / 6$. CIRCUIT TEsSTER in wood case $9 i n . ~$
6 in. x in. $2!\ln$. Flush round meter 50 $61 \mathrm{n} . x$ in. $2!\mathrm{in}$. Flush round meter 50
millamps, basic movement $10 \mathrm{~m} / \mathrm{A}$., with leads, 10 ohm potr., provision for 1.5 v . bat
Ideal for conversion. 17,8 , post $2 \% 6$. PORTAIBLE ELOUVER - 2001250.
PORTABLE BLOBVERR. $200 / 250$ V. A.C.
D.C. 000 watts with switch and leads.
lifn, outlet,

 Tripod. type, suitable
for lamps up to 100 for lamps up to 100
watt, complete with pushbar switch lamp-
holder. Ideal for farm bulldings, garages. buildings, gara etc
greenhouses
Brand new. 17/6, post Brand
$2 / 6$.
(HARTBO ARDS.-With pantograph arm perspex scale, procractor head as used in
the R.A.F. for navigation purposes. 171 m . quare. Brand new, will raake a useful drawing board, 25%, post 3
VENT-AXIA FANS, EXTRACTION OR INTAKE,-Brand New. Silent running
$230 / 250$ voit A.C. $130^{\prime} \%$ volt D.C. $90 /$. post 31 .
ROTARY CDNVERTER - Input ${ }^{24}$ V.
D.C. Ontput 230 v. A.C. 50 cycles 100 Watt. 926 : also avallable in metal case with switch, 105/-. carriage 7/6
TRELEPHONRA SOUND POWVRRLED. No batterles required. Just connect with twin Units, 4/6 ea. Twin Flex. Afi. yd. Post 1/-. If 2 units are connected in serles and one used for speaking and one for listening perfect 2 -way conversation can be made.
GEARPD MoGEARPID Mo-
Ton for the
model maker,
small and very
powerful. 1224
volt D.C. $4 / 8$
r.p.m.. $35 /-$ post
2/6.

MODER
complete.
TYPE.-E8.17.6 per pair complete.
W MI, TYPE also avallable. 2 complete units 45 . Batteries 5/6. Twin Wire 5d. peryd. MOTOR. -12 volt D.C. 13 in. x 2 in. approx A precision job, 12/6, post $1 / 6$.
TEIRMINAI, BLOCKN,-2-way fully protected No. 5C/430, 4/- doz., 50 for $15 /-$, o
$10025 /-3$-way. 8/- doz., $30 /-$ for 50, posti $1 / 6$ VARIA BLE, HPSIST INCE, -160 ohms, ${ }^{2}$ control handle. Suitable for dimming, otc. $351-$ post $2 r 9$. Also 500 ohms 1.5 amp Log.
50%

CROSS POINTER MifTER with 2 separate 100 microamp move-
ments. Brand New, 22/6.
VOLTMETERS, D.CFlush, 106 each, post Flush, 106 each. post

ChARGilNG RECTIFIFRS,-Full, Wave Bridge 12 volts $2 \mathrm{amps}, 136,4$ amps, 226.2
amp. Transformers. $24 /-.4 \mathrm{amp}$. 27/3.post $2 /-$ -
 Ifess $6 d$ ea. In doz. lots, post free.
THRUST RACFS.-13/16in. x 3/8in., $1 / 6$.
15/- doz., post free.
A.C. MOTOIt - 230 volts, 50 cy ., 1/50th h.p. post, 3/-.
A.C. MOTOR. 1 third h.p. 1.425 r.p.m. uous rating. Brand New. 86.10 .0, carr. 10f-

WILCO ELECTRONICS

Dept P.M. 204 JOD CHERMBON

It was easy-with ARNOBOARD...
prefinished plastic-faced hardboard which works just like ordinary hardboard. Arnoboard is water repel!ent and won't hold dust. Arnoboard comes . in marbled, wood grained, tiled and other finishes. SEND $1 / 6$ for the ARNOBOARD BOOK, leaflet and (ree sample NOW-IT WILL SHOW YOU HOW TO MODERNISE YOUR HOME THE NEW, EASY, WAY-IT WILL SAVE YOUR POUNDS,

DEPT. 3

ARNOLITE LIMITED $\begin{aligned} & \text { 103, WEST PARADE, } \\ & \text { SPRING BANK, HULL }\end{aligned}$

WORLD WIDE RADIO RECEPTION

FOR THE AMATEUR RADIO ENTHUSIAST TUNE IN WITH THE MALVYN SINGLE VALVE SHORT WAVE COMMUNICATION RECEIVER

All-Dry Battery operated: Extremely low running costs: Band Spread Tuning: Attractive Front Panel : Full operating instructions included.
PRICE OF COMPLETE RECEIVER, $74 / 6$ (Batteries and Phones Extra). Post Free U.K. Money Back Guarantee. Send S.A.E. to actual Manufacturers for Free Descriptive Literature.
MALVYN ENGINEERING WORKS Radio and Electronic Engineers
Tel. : Hertford 22647 Currie Street, HERTFORD

STYIED TO SUIT THE MODERN AGE ... LUEAS
*King of the Road CYCLE EQUIPMENT

Wireless Set, No. 17. A complete transmitter receiver, oniy 120 v . H. . and 2∇
L.T. needed. New. Complete instruction book with each unit. Ideal rarms, scouts. One-valve Amplifer, No A 1971. Cor talns V.R.56. Two trans., Pot., 5 Condensers, 7 Resistors. In metal box. Can modify for player. unit. 316. post $2 / 3$. type. Almost midestructiole, to lead acid
to 1.5 (fully
nitage 1.2 to 1.5 (fumy charged) Size ${ }^{3}$ voltage $x^{1.2} \mathrm{i}^{2}$ approx- 7/6 each, post $1 /=$. $72 /$ - dozen, car. Rheostats on Vitreous Tubese New, Size $14^{*} \times 2^{*}$ Resistance is sraded into six
sizes. 21 to 30 s.w. F . Total value 605 ohms. sizes. 21 to 30 s.w.g. Total value 605 ohms,
many industrial uses. Price $15 /$, post $2 / 6$. many industrial uses. Price $15 /$, past 2,6 .
Type No. 2; as above, wound with 28 s.w.g. Type No. 2, above, wound with 28 s.W.g.
Total ohms 520 New. Neautiful scientific equipment. price 12 . post $2 / 6$ interwoven with resistance wire, new. Dimensions $16{ }^{16}$ K 26": tapped in three Sections, total each. post $2 / 6$.
Nperiometers with Reset. By Jaeger. $0-90 \mathrm{~m} . \mathrm{ph}$. New. Half-moon shape, fitting size $7 . x^{3}$ chromed bezutiful condition.
price $25 /-$. List price about $\quad 7 / 10-$. Bargalin post $2 / 6$. Type Relays. All 3,000 type. Coils from 5 ohms to 3,000 ohms, up to 18 Blade Ussemblies. $5 / 8$ to $10 / 6$ each, post 9 d. Less Valves. New condition contains 16
$7 . B . G$, valve bases, H.F. Chokes, Condensers, about 500 userui pieces of equipment. 10 - each. post $2 / 6$. of two balanced armature earp phones 20° twin flex. all new equipment suitable baby alarms, remote radio listenins. car to caravan, communication, etc Minhiare Electric Motors. New Ex. R.A.F. Tape recording type. $12 / 24$ volts D.C. Fitted reduction gear, final speed suitable locos, research, price 15/, post $1 /$ Army Web Haversachs. New. Everyone can find these userul, for campers, tools. lunchbags Rear Cur Lamp Assembly. By Lucas New. Suit Humber 1956 or modern simllar types, tralers, speclals. Contains red glass braking, lower section platn lamps for tncluding leads housed in alum die cast case, dimensions $11^{\prime \prime}$ long $\times 3^{\circ}$. Fraction
of real cost. Price $30 /-\mathrm{per}$ pair, post $2 / 6$. Send Grl. for new list. Au communications THE SCIENTIFIC INSTRUMENT CO 16. Holly Rond, Quinton, Birmingham, 32. Phone: Woo 3166.
Callers welcomed at Showroons,

24 v. Blower Motors as used for Hedge Trimmer. 18/9. $10 \mathrm{~K} 6 / 11512-24$ volts as used for car heater, 30/-
Transformers. Input 200/240 v . sec . tapped $3-4-5-6-8-9-10-12-15-18-20-24-30$ volts at 2 amps., 22/9, $17-11-5$ volts at 5 amps., $22 / 9,17.11-5$ voles at $1 \frac{1}{3}$ amps. 16/9. 7.3 volts, 2 amps., $8 / 6$. 12 months ${ }^{\text {B }}$ guarantee. Input 240 , Oueput 16 v . 1 amp . 13/6. Also Output 200 v .30 mA . and 6.3 v . $1 \frac{1}{2}$ amp. $13 / 6.25 \%$ Boost
formers for $\mathrm{T} . \mathrm{V}$. Tubes, $13 / 6$.

Selenium Rectifiers F.W. 12-6 volt, 100 $\mathrm{mA}, 4 /-1 \mathrm{~A}, 8 / 6.3 \mathrm{~A}, 12 / 6$ 4 A, $17 / 6$. | 6 A., $30 /-16$ A., $53 /-.250 \mathrm{v} .100 \mathrm{~mA}-\mathrm{H} .$, |
| :--- |
| $\mathrm{W} .$. |
| $10 / 6,300 \mathrm{~mA} . \mathrm{I}$ | W.. 10/6. 300 mA ., $18 /$.

Miniature 12 or 6 r. Relay Silver Contacts. SM. DM or SM and B, SCO. 9/3.
M/c Microphones with matched transformer, 15/9.
Chrome Vanadium H.S. Steel Twist Sets of 7 , full size, $6 / \mathrm{F}$. Sers of $13,10 \%$ All in wallers.
12 v . Ulera viofet bulbs, A.C. or D.C. 5/Rheostats, $12 \mathrm{v}, 1 \mathrm{~A},, 2 / 6.12 \mathrm{v}, 5 \mathrm{~A}, 10 / 6$, New 6 v . or 12 v . Vibrators. $4 \mathrm{Pin}, 8 / 9$. Fishing Rod Aerials. Sets of
Plus $1 / 9$ Rail Charge. Bases $6 /-$.
Uniselector Switches 50 point 3 bank 50 ะ. D.C., 26/-. 12 v. 25P, 3B, 26/Miniature Model Motors. 12 v .180 mA ., New 24in. 'T ' Square. Ex M.O.S., 6/6. Chrome Car Extension Aerials, Ift. to 4lt.. $13 / 6$.
Nife Nickel Bateeries. Practically everlasting. 1.2 v. 2.5 A., $2 \frac{1}{3} \mathrm{in}, x$ in. x 3 in., 6/-. Ideal for models.
$12 / 24 \mathrm{v} . A . C . / D . C$. Reversible Motors, lin. x in., Spindle 2 tin, $x{ }_{3}^{3} \mathrm{in}$., $15 / 6$. Relays. We can supply any D.C. voltage and Contact Combination Lists Sent on Request.

THE

RADIO \& ELECTRICAL MART 309. Harrow Rd., Wembley. Middx. Nr. The Triangle
Telephone: WEMbley 6655.

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Led., Tower Hause, Southampzon Street, Strand, London, W.C. 2

Phone: Temple Bar 4363
Telesrams : Newnes, Rand, London

Another Lighting Regulation

APROPOSED new regulation which will affect cyclists using dynamo lighting not fitted with a stand-by battery will make it compulsory to show their lights fore and aft when stopped at traffic lights. The law at present permits a cyclist to halt when his lights are out provided that he keeps to the left of the carriageway. Just to make the matter a little more complicated, a cyclist will still be enabled legally to wheel his bicycle without lights, if the lights for some reason have failed. such as can happen in the case of a broken bulb or an exhausted battery. Most of the dynamo lighting sets on the market have no provision for standby batteries and this new regulation may affect the sales of such equipment in favour of battery lighting.

The present Minister of Transport continues to fiddle with regulations and does not concern humself in the least with how those regulations work out in practice. The M.O.T. is a purely legislative body and it has not its own investigating squad. If the Minister wishes to interest himself in lighting, he might usefully investigate the congestion and confusion caused by traffic lights, the timing of which is left in the hands of local authorities and often has no relation to relative traffic volumes, and in numerous cases having a time bias in favour of side roads carrying litule traffic.

Cyclists for years opposed rear lights, and largely owing to the advocacy of the late F. T. Bidlake, reflectors were accepted as a compromise. We have had compulsory rear lights, reflectors and white patches singly and collectively. The compulsion has been relaxed and reimposed. For 11 years, cyclists have enjoyed the liberty to remain at stopping places close to the left-hand side of the carriageway with the lights off. There is no evidence that any other road user has suffered as a result of it. We fail to see the purpose to be served by withdrawing the concession.

Honour for Gordon Randall

O^{U}UR artist, Gordon Randall, whose sketches of buildings and places of interest have decorated our pages for many years, has been elected a member of the Royal Institute of Painters in Watercolours. He performed a hat trick in 1956 by having a watercolour hung for the third year in succession in the Royal Academy Summer Exhibition. This year he has gone one better, by having two paintings accepted for the Summer Exhibition.
He is considered by cyclists to be the successor to the late Frank Patterson, and in many respects his work is better than Patterson's, who relied rather too much on white space and the omission of detail.

Drop in CTC Membership

SINCE 1950, the CTC has lost 17,378 members, or approximately
one-third. Whether this considerable loss of membership is due to apathy on the part of cyclists, or to an effete policy. it is impossible to say. It is impossible nowadays to rattle the sabres and frighten cyclists into membership on the pretext that their rights are being challenged. New members will not be attracted by propaganda which would make them appear to be a militant body-like the NCU. The CTC should confine its attention to selling cycling. In fact, the CTC has achieved very little for cyclists. Its main Aunt Sally-opposition to rear lights-vanished with the new lighting laws, and cyclists accepted rear lights without a murmur. The membership of the CTC is far too small to impress any Government department such as the M.O.T., and it cannot claim to speak for cyclists generally. The latter can point with relish to the fact that most of the things which the CTC has opposed have been put on the Statute Book without demur. The officemade policy of the CTC is unpalatable to-day, as is obvious from the fact that out of 10 million or so cyclists, its membership is so small.

Its own analysis of the position is that the average subscription paid now is I3s. 9d., against 8 s . Id. pre-war but it is my opinion that the cause goes much deeper than that. The function of the CTC is to promote,
assist and protect cyclists according to its Articles. It has concentrated on what it considered to be protection. Nobody stops to enquire whether it really has protected them. Like the NCU, the CTC is passing through a difficult time. Last year there was a deficit of $£ 1,295$. Unjess the present downward slide is arrested, the present membership of 36,196 members will show a further decline next year and, of course, a corresponding increase in loss. Members of the CTC apparently are against an increase of subscription. It could usefully investigate whether it is really necessary on such a low subscription to publish their House journal more than four times a year. The postage on 36,000 odd copies must be considerable and the advertising revenue is by no means what it was. It should drop its policy of dabbling in pedal politics and concentrate on the great advantages of cycling as a pastime.

The Beaulieu Museum

IF you want an interesting weekend run you should steer towards the village of Beaulieu, on the borders of the New Forest. Lord Montagu's museum of old bicycles is bound to interest you. There is a small admission fee, but you can also have a look at some of the early motor cars which were collected by Lord Montagu's father.

The famous old Inn at Hampstead--The Wells, which still radiates old-world charm.

THERE is no need to stress the importance of efficient brakes on a cycle; the poominence given to this point in road safety campaigns underlines its prime significance. One of the contributory

Fig. 1.-Properly fitted brake blocks.
factors to efficient brake working is properly fitted brake blocks. It is quite often forgotten by the man-in-a-hurry that there is only one way that they may be fitted. Fig. I shows the correct way of inserting brake blocks in their shoes; note that the camber on the face of the blocks follows the shape of the rim and that the closed end of the shoe points in the direction of wheel rotation. This ensures that the whole of the block face bears on the rim and that the pressure of the rim will tend to push the block more tightly into its shoe. If the shoe were inserted the other way round, application of the brake would tend to slide the block from the shoe.

The Right Type of Block

As can be seen from Fig. 2, there are many types of brake block and care must be taken to ensure that the right type is selected for the particular brake in use. If there is any doubi, take the shoe along to the shop so that an exact match may be purchased.

When replacing the shoe make sure that the face of the block does not lie at an angle to the rim, and adjust the brake so that the shoes just clear the rim when the wheel is rotated. Fig. I will make these points clear.

The Hub Brake

This is not such a simple proposition to deal with, but is certainly not beyond the scope of the amateur mechanic. The hub brake is thought by many to be more efficient than the rim variety and it has the principal advantage that the braking surfaces are independent of both the weather

BRAKE BLOCKS AND LININCS

The Correct Way to Fit New Blocks in Rim Brakes

 and New Linings in Hub Brakes4
and state of the rim. A typical hub brake is shown in Fig. 3.

How it Works

The hub brake works on a similar principal to the motor or motor cycle brake. Inside there are two semi-circular shoes hinged at one end and parted at the other by a cam. When the cam is turned by the application of the brake lever, the shoes are forced apart and against the inside of the brake shell. When the brake is released, a spring pulls the shoes together and returns the cam to its normal position.

Dismantling

It is not often necessary to dismantle the brake mechanism; only when the linings must be replaced or when they have been flooded with oil. The first step is to dismantle the lever mechanism and remove the wheel and to lift out the whole of the brake mechanism. Unscrew the nut or screw on the fulcrum and the nut on the lever; then drive the cam out of the lever, when the shoes will drop clear.

Fig. 2.-Some of the many types of brake block available.

Fig. 3.-A typical hub brake.

Oil can be scrubbed from the brake linings by means of a brush and some form of cleaning compound, i.e., petrol; paraffin should not be used as it leaves an oily deposit which will reduce the efficiency of the brake.

Replacing Linings

Remove the old linings first by prising them off with an old screwdriver ; the rivet heads can be cut off with pincers or filed off. Make sure that the replacement linings are the correct pattern for the brake in question. It will be found that the holes for the rivets have already been drilled. If the correct spares are not available, bind linings of the correct shape into position with twine and drill through the back of the rivet holes in the back of the shoe. Drill again from the bearing surface of the lining with a larger drill to about half the thickness of the lining. so that the rivet head may be recessed into the lining.

Fig. 4.-Riveting linings.

Riveting

The method of riveting is quite standard. The set-up is shown in Fig, 4, a piece of rod the same diameter as the larger drill being used as an anvil and the erids of the rivets being burred over with a punch. When it has been ascertained that none of the rivets projects above the bearing surface of the linings, as a final touch, to avoid the brake squealing when it is applied, bevel the ends of the lining with a file.

All the parts of the brake are now replaced in the opposite order to that in which they were dismantled.

Cycling Publications

WE have received copies of two annual handbooks. The first of these is "Kuklos," the Cyclist's Annual, published by Ed. J. Burrow \& Co., and priced 2s. 6d. net. It comprises three sections: Part I gives the essentials of good cycling and good cycles and contains information on many aspects, including cycle camping, cycle clubs, road records, photography, etc. Part 2 contains tours in Britain, Ireland and the Continent and Part 3 is a list of 1,500 addresses for Bed and Breakfast.

The second publication is the 1957 Racing Handbook, published by the N.C.U. and priced 2 s . 6d. net. Its contents include calendars of N.C.U. sports meetings and road and circuit races, Scottish C.U. events, rules of racing, National and World records, National and World champions, National records, centre officials, timekeepers, watch testers, etc.

SEE EARTH SATELLITE

AMAZING NEW OFFER

ASTRONOMICAL TELESCOPES $99 / 6$! !

```
See the Moon at Close Quarters, Examine the Immense Craters, Moun tain Ranges, etc. Observe Saturn Rings, Nebulae, etc., etc.
Specification. 2 in . dia. Length 39 in . Mag \(53 \times\) Linear (equivaient \(2809 \times\) Area). Weight Approx. 2 ib .2 oz.
Standard Model 99/6. De-Luxe Standard Model 99 Model 147/6.
with packed in strong Stowing Cylinde with Caps. Registered Postage and
Altazimath Portable Clamp Stands. Extra 37/6, P./P. 2/6.
Astro Kits. Self Adaptable Parts "Do it Yourself." 63/-. P./P. 3/6 High Power Eyepieces, \(80 \times 128\) P./P. 2/-. \(106 \times x, 37 / 6 . \quad\) P./P. 2/-.
Stamp for Full Particulars. Photographs 1/- set (returnable). Lists and Terms. Made to order.
HOLMES, WILSON \& \(C O\). SCIERTIFIC INETRUMENT MAKERS (Dept. PM24), Martins Bank North North Shields, Northumberland
```


ALUMINIUM

BRASS - COPPER

- SHEETS
- ROBS
- TUBES
- MOULDINGS \& SECTIONS

DETALLED PRICE LIST UPON APPLICATION NO S.A.E. REOUIRED

ALCOB METALS LTD.

367 edcmare road, Paddington, London, W.2.
Tel. PADdington 2232 (3 lines)

FIT THIS TO YOUR ELECTRIC BLANKET AND BRING IT UP TO DATE.
Double Pole Break, A.C.-D.C.
SUITABLE ALSO FOR ANY Silver Contacts, Improved Cord Grip, Simple Wiring. Modern Streamline Styling in Cream Bakelite. OTHER APPLIANCE WHICH REQUIRES A VISUAL INDICATION THAT IT IS ON (SOLDERING IRONS, ETC.)

SEND 4d. IN STAMPS NOW FOR OUR ELECTRICAL CATALOGUE*
 DESCRIBES FULLY OUR RANGE OF ELECTRICAL

SUNDRIES-WITH IDEAS FOR THE HOME HANDYMAN

 - OVER 300 ITEMS -
THE 'MAGSTAT'

This is a precision bi-metal thermostat for the control of alternating currents of up to $\frac{1}{2}$ amp. at 240 voits. The temperature range lies between minus 50 deg . F. and plus 250 deg. F. An ingenious magnetic snap action is incorporated which gives freedom from radio interference. The operating temperature is altered by rotation of the adjustment screw, clockwise for increase and anti-clockwise for decrease. Dimensions $2 \mathrm{in} . \times \frac{1}{2} \mathrm{in} . \times \frac{3}{2} \mathrm{in}$.

PRICE : $\mathbf{5 1 6}$ each. Post 3d.

*SUPPRESSIT *

(TELEVISION SUPPRESSOR KIT) For the suppression of Domestic Mozor Driven Appliances. Comprises two chokes and two condensers mounced on a card with wiring instructions. Ideal for Vacuum Cleaners, Hairdriers, Sewing Motors, erc., up to I amp. Price $3 / 6$. Post Free.

REPLACEMENT ELEMENTS

FOR DOMESTIC ELECTRICAL APPLIANCES We stock over 200 types of element replacements for Fires, Irons, Kettles, Hairdriers, Toasters and Boiling Rings. Send for Catalogue.

WE HAVE A REPUTATION FOR HIGH QUALITY THERMOSTATS AND LIST SOME OF OUR STOCK ITEMS HERE
THERMOSTAT. CS, Convector Thermostat for Space Heaters and Low temperature Ovens. 15 amps, 250 volts A.C. $40 / 80$ deg. F. $25 / \mathrm{F}$, pose 5 d.
THERMOSTAT. MB. For control of Electric Immersion Heaters up to 3 kW . $90 / 190$ deg. F., 15 amps., 250 volts A.C. C2/0/0, post 9 d .
THERMOSTATS. PF. Room Thermostar, 15 amps., 250 volts A.C. $\operatorname{Sin} . \times 1$ sin. $\times 2 \mathrm{in}$. A beautiful instrument. Temp. ranges $30 / 90,40 / 100,40 / 80,60 / 100$ deg. F. as required. $62 / 0 / 0$, post 6 d . THERMOSTAT. BW/l. \% amps., 250 volts A.C. For control of hot-plates, vulcanisers, etc. 50-550 deg. F. 15/6, post 4d. We are only too glad to send illusthited leaflets on any of these Thermos\{ats i you will send a S.A.E. stating which model interests you.

IMMERSION HEATERS

We can offer a wide range from 2 to 4 kW and in stem lengths 1 lin . to 42 in . Please send for our catalogue.

GREENHOUSE THERMOSTAT

Type ML. Constructed especially for the amateur gardener. The scale plate is calibrated "High" Medium-Low " and has a temperature range of $40-90$ deg. F. Current capacity is 10 amp., 250 volts A, C, Differential $4-6$ deg. F. Size $4 \frac{1}{2} \mathrm{in} . \times 2 \mathrm{in} . \times 1 \mathrm{i} \mathrm{in}$ PRICE: 35/- Post 6d.

Model PJ. Miniature Thermosta hor control of domestic Electric frons and special-purpose machines where space is limited Capacity: 5 a mps., 250 volts A.C. in. x sin. x 1t/16in. Single screw fixing. Price 9/3. Post 3d.

THE TECHNICAL SERVICES CO.
SHRUBLAND WORKS • BANSTEAD • SURREY

WIN SLCCCESS IN LIFE

Pelmanism Develops Your Latent Talents

IN this crowded world there are more good jobs looking for good people than good people looking for good jobs. For so few of us are ready for opportunity when it occurs.
Are you ready to grasp it whether it is the chance of a more interesting and more remunerative post, or a fuller and freer life in some other direction ? Will you have the courage and clear-headedness to seize and use your chance ?

Take up Pelmanism and prepare now for to-morrow's opportunities. You are then training not only your mind but your whole personality. Pelmanism rids you of handicaps which hold you back -be it self-consciousness, lack of initiative, fear or self-doubt or simply a tendency to worry about trifles.

Pelmanism also automatically develops your real self. Talents which you never knew you possessed come to the surface. For Pelmanism trains your mind and character just as physical exercise trains your body.

> Remember-Everything you do is
preceded by your atsitude of mind
The Pelman training for successful living has been proved by over a million men and women of every type and calling. It is so clearly explained and carefully graded that anyone can follow it It is modern psychology made practical.

The general effect of the training is to induce an attitude of mind and a personal efficiency favourable to the happy management of life.

Send for Free Book
The Pelman Course is simple and interesting and takes up very little time. You can enrol on the most convenient terms. The Course is fully explained in The Science of Success, which will be sent to you, gratis and post free, on application to-day to :-

PELMAN INSTITUTE
130, Norfolk Mansions,
Wigmore Street, London, W.r.
WELLeck 141 I

PELMAN (OVERSEAS) INSTITUTES:
Delhi. Melbourne, Durban, Paris, Ansterdam.

HIGHSTONE UTILITIES

Ex-R.A.F. 2-valve (2 volt) Milcrophone in self-contained metal case, can be used to make up a deaf aid outfit, intercom-
munication system, or with crystal set munication system, or with crystal set thons. 20\% post 2/6. Useful wooden box with partitions to hold amplifier, $2 i$-extra Ditto, less valves, $10 /-$. Hand Nicre pliones, with switch in handle and lead
$5 / 6$. Tannoy $7 /-$ Similar instruments moving coil, 8/6. All post $1 /$-. Mask tyde with switch $3 / 6$, post 6d. Mike button (carbon) $2 /-$ Movlng coil $3 / 6$. Both post 4d
solderins iron- is fitted with a pencll bit. $200 / 250$ 50 watts. $11 / 6$. Standard Iron with adjust able bit, $200 / 250$ v. 60 watts, $13 / 6$. Heav Duty Iron, 150 watts, $18 / 6$, all post $1 /-$ re replaceable. laters - 20 mm $\mathrm{m} / \mathrm{c} .81-=150 \mathrm{vp} .21 \mathrm{n} ., \mathrm{m} / \mathrm{c}, 10^{\prime}-1{ }^{2} .5 .5 \mathrm{amp}$ 2n. T.C. $6 /-: 4 \mathrm{amp}, 2 \ln$., T.C.. in cas \%/6, all post extra, Meter Movements, Units with $2-500$ microamps, $9 /$, post $1 / 6$. transformers work from any A.C. mains giving 3,5 or 8 volts output at 1 amp .
operate bulb, buzzer or bell, Will sumply llght in bedroom or larder, etc., $9 /$-. Simila Transformer but output of 4.8 or 12 volts 12/8. Both post $1 /$. BELLS for use with BUZZERS BUZZERS, 4f, post 51.
parking Plug Nron Testers, with vest S.B.C. Neon Indieator 1 lamess, for use on malns to show "live" side of switches, otc. 2/6, post 4d, Neon Indicator, complet with condenser, pencil type, with vest
pocket clip. $7 / 6$, post $5 d$, Crystal Sets. Our latest model is a rea radio recelver, fitted with a permanent crystal detector. Have a set in your own
room, 12/8, post 8d, Spare Permanent etectors. $2 /$ each. When ordered separ 3d. Headphones, brand new, S. G. Brown, a. etc., 23/- and super-sensitive, $30 /-8$ pair. ileadphones in Good Order, 6/Armature Type (very sensitive). $13 / 6$ All post $1 / 6$. New Sinkle Fur-plecres, 316 Bal. armature type, $4 / 6$ (two of these wil piece. 2/6, post 4d. All leadphones isted plece. 2/6. post 4d. (All Meadphones Cisted sets,) Money refunded if not completels

HIGHSTONE UTILITIES

58. NEW NANSASA, Request witb

 New illustrated List sent on request with$\underset{\substack{\text { Brond New } \\ \text { SERVICE }}}{ }$ ARC-WLLDER For Welding, Brazing \& Soldering

Complete outfit: Welding Tool with $47 / 6$ power cable and connector, heavy $4 / 6$ fux instruction booklet. Designed p.p. $2 / 6$ or light fabricatiousehold equipment. etc repairs to car, household equipment. etc. use-pays for itself on the first job. SERVICE WELDING COMPANY (M.A.) 11, old Bond Street, London, W. 1

MODEL BOATS

Plans : Kits: Engines : Etc. 4d. in stamps for Lists.
LAWRENCE MODEL SHOP 106, LAWRENCE ROAD, liverpool. is.

RATCHET \& REVOLUTION counters Ple FOR CATALOGUE Instrument Division B. \& F.CARTER
\& Co., Lid., Bolton 5

AUTOMATIC (TIME) SWITCHES

New and reconditioned 15 day from 35/-
Send S.A.E. for illustrated detalls to DONOHOE (TIMERS) GEORGE STREET, NORTH SHIELDS, NORTHUMBERLAND

MAKE YOUR OWN ORNAMENTAL BRICKS with the

DRY

 HVRE'S SIMPIE INEXPGAS
WEMETHOD OF MAKInK BRICKS
 CORNER BOXES, cement, approx. fid. per borick.)
Unilmited numbers of bricks at the rate of 30
per hour can be made.
Full instactonel with each machine. \qquad

A VERY STRONG AN USEFUL ALL PURYOE WHEL

SUITABLE FOR TRUCKS, TROLLEYS GARDEN BARROWS, E -The 'Spare' you've always 12 in. dia. heavy gauge disc. solid ruble 44 in. long. in. dia.
 84 in. dia. solid rubber tyre. hub bore in. dia. Spindle or axle
supplied at small extra cost. according to size required. We can quote for axle
to your suecification.
 P. M. HIGGS FOULKES \& CO. ${ }^{557-555, \text {, Batining Rand }} \mathrm{E}$ Rat

FREE SAMPLE

Approx, ilb. coconut tablet and walnut tablet, which contain good quality coconut and walnuts, free and post free with every order for genuine Scotch Tablet. Delicious, genuine Scotch Tablet, which is now available in England, is made only from purest sugars, 100% butter, best quality milk, and flavouring. For free sample mention P.H. and send only 4/- per I Ib. of genuine Scotch Tablet, 4 lbs., /4/6. Part postage all orders 1/

SCOTCH TABLET CO.

76 Robertson Street, Glasgow, C.I.
English Address
BCM/SCOTCH TABLET London, W.C.I.

I
SAVE ON REPAIRS WITH GUASS FITIR

Kit I-18/6 Kit II-28/6 Kit III-33/6 Postage $2 /-$
Kits for Cars, etc., $£ 9-10-0$, £15-10-0, £20-10-0
These kits carry a comprehensive range of materials, with full instructions to suit all forms of car body repairs and model making.
Glass. Reinforced Plastics" Boaklet, 1/9 inc. postags
WESTPOLE MOTORS LTD. Westpole Avenue, Cockfosters, Barnet, Herts. Barnet 3615 \& 9474.

METWOOD

FOR
Complete range of Swiss Musical Movements and Box Kits. Movements by THORENS AND REUGE of Switzerland ranging from Trade Enquiries Invited.
POST TODAY
S.A.E. for list of Movements and Boxes.
(9d. returned on 1st order)
P.O. 1/6 for Catalogue, lists and Mlan of how to make your own METWOOD ACCESSORIES (PM.6. 65 Church Street, Wolverton, Bueks (Importers and Manufucturers).

A "FERROUS" ELECTRIC ARC WELDING SET will complete your workshop equipment, For joining and relnforcing. From approx. $1,16^{\circ}$ up to any thlckness
Mild Steel. Wrought or Malleable Iron Type F. M. 60 Heavy Duty complete with ai equipment $190 / 240 \mathrm{v}$ single ph. $10 / 15 \mathrm{amp}$
(or domestic power supply) delivered free ex stock. Cash (or C.O.D.)
H.P. Terms avallable. FERROUS PRODUCTS (MEC) Church Rd., Croydon, Surrey. CRO $8351 / 3$

ADEPT SHAPERS
for Hand or Power operation

> Particulars on receipt of stamp.
F. W, PORTASS MACHINE TOOLS, LTD.
Adept Works, 141a, Nicholson Rd., Heeloy, Shefield, 8.

SPARKS' DATA SHEETS
Constructional Plans of Guaranteed and Tested Radio Designs.

A.C. SHORT WAYE
 4-VALViE T.R.F. RX.

Cathade-Coupled Regen. Super-Sensitive Send S.A.E. for Release Date \& Full Spiec L. ORMOND SPARKS (M)

RIGHT!

for good braking

USE
 Fibrax BRAKE BLOCKS

FOR SURE STOPPING

AND A LONG LIFE

Fibrax brake blocks stand up to the toughest testthe split-second emergency. Yet they brake smoothly and firmly. Two types: SOFT RED for alloy rims, BLACK for steel rims.
Ask your dealer for "FIBRAX"
FIBRAX LTD., 110, ORMSIDE ST., OLD KENT RD., LONDON, S.E. 15
New Cross 6785/6
F356A

REPLACE STRIPPED THREADS IN MINUTES WITH THIS . .

HELI-COIL 'Haredymere'
 SCREW THREAD REPAIR KIT

Simply drill out the old thread, tap with the Heli-Coil Tap supplied and insert the precision-made stainless steel. HELI-COIL...it's as easy as that. literally done in minutes and with no skill required. You then have a new armourclad thread which is far stronger than the old, and will not strip, wear or corrode and will outlast the rest of the components.
The Kit contains all the special cools needed and a generous supply of new threads.
Available in the following sizes
tin., $5 / 16 \mathrm{in}$, fin., $7 / 16 \mathrm{in}$. and $\frac{1}{\frac{1}{2}} \mathrm{in}$, in B.S.F. and B.S.W. threads (other threads available in other Kits).
"YOU NEVER KNOW WHEN A THREAD WILL GO" BE PREPARED WITH A HELI-COIL" Handyman" Ask at your Tool Dealers or, if in difficulty, write to
armstrong patents co. limited, eastaate, beverley, e. yorks

THE "MINOR" IO in I

UNIVERSAL WOODWORKER

The "MINOR" lathe carrying a battery of three usefu' machines, any one of which may be operated without removing the others. ALL powered by ONE sturdy electric motor

Showing the tilting saw-table with A view of the 4 in. planer with saw mortiser and planer ready for use. 7 in . saw with $2 \frac{1}{8} \mathrm{in}$. cut. $\mathrm{FINE}_{\text {, }}$ MEDIUM \& COARSE SAWS AVAILABLE.

and mortiser ready for use.

Combination table being used for Spindle moulding. Cutter block panel cutting. Easily adjustable for takes the place of the circular saw. varying lengths.

Combination table in use with Combination table in use with slot sanding disc. This table has many mortiser. Mortises from $\frac{1}{4}$ in. to uses. 5 in .

Send Stamp NOW for illustrated brochures to:
CORONET TOOL CO., Dept. PM, Mansfield Rd., DERBY

[^2] Overseas 17s., Canada 17s.

Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship Jig \& Tool Design Press Tool \& Die Design Sheet Metalwork
Automobile Repairs Garage Management Works M'gmnt. \& Admin. Practical Foremanship Practical Foremanship
Ratefixing \& Estimating Ratefixing \& Estimating
Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance Engineering Steam Engine Technology I.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship Machine
Automobile
Structural
R/F Concrete Structural Engineering Mathematics (all stages) Radio Technology Radio Technology
Telecommunications Telecommunications Television Radio Servicing Gen. Elec. Engineerling Generators \& Motors Generation \& Supply Aircraft Mainten. Licences Aerodynamics Electrical Design rvey Dr'ship.

BUILDING AND STRUCTURAL

L.I.O.B. A.I.A.S.

Building Construction
Costs \& Accounts
Costs \& Accounts
Surveying \& Levelling
Clerk of Works
Quantity Surveying
A.R.S.H. M.R.S.H. A.F.S. A.R.S.S. Builders' Quantities Carpentry \& Joinery Carpentry \& Joinery Building Inspector
Building Draughtsmanship Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptors Woodwork Teacher
Metalwork Teacher
Housing Manager (A.I.Hsg.)

Common. Prelim. Exam. A.C.I.S. A.C.C.S.
A.C.W.A. (Costing)

School Attendance Officer Health Inspector Civil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME AND EARN BIG MONEY
Men and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

OYER SEVENTY YEARS OF * CONTINUOUS SUCCESS

NATIONAL INSTITUTE OF ENGINEERING
(In association with CHAMBERS COLLEGE-Founded 1885) (Dept. 29)
148, HOLBORN, LONDON, E.C.I
SOUTH AFRICA : E.C.S.A., P.O. BOX NO. 84I7, JOHANNESBURG AUSTRALIA : P.O. BOX NO. 4570, MELBOURNE

132-PACE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building
* How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY INTERESTING COURSES TO SELECT FROM!
 A.M.I.Mech.E., A.M.I.M.I., A.M.Brit.I.R.E., A.M.I.P.E., A.M.I.C.E., A.M.I.Struct.E., A.M.I.Mun.E., M.R.S.H., A.M.I.E.D. A.F.R.Ae.S., London B.Sc., Degrees.

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885 , our success record is unapproachable.
ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

Free Coupon

To: NATIONAL INSTITUTE OF ENGINEERING (Dept. 29), 148-150, Holborn, London, E.C.r. Please Forward your Free Guide to
NAME
 THIS COUPON COWNDD BE ALLSETFOR SUCCESS ADDRESS

My general interest is in : (I) ENGINEERING
(2) AERO (3) RADIO (4) BULLDING

Place a chas a (5) MUNICIPAL WORK the branches in which

The subject of examination in which I am especially interested is

[^0]: If you want to start developing and printing your own photographs and are not quite sure what you need, Johnson Home Photography Qutfits provide the answer. Each outfit is a complete self-contained unit including the most up-to-dare
 lohnson equipment and chemicals. A 100 -page book of instructions is included Johnson equipment and chemicals. A 100 -page book of instructions is included with the larger sets.
 Junior Printing Pack includes a Johnson Plastic Printing Frame for $2 \mathbf{2 k}$ 3 in. paper, two $5 \times 4 \mathrm{in}$. Dishes, two Plastic Point Forceps, Masks, and 25 sheets of Contact Printing Paper. Contains all Chemicals required and a Price 13s. 3d.
 No. I Outtit contains everything necessary for making prints from $2 f \times$ 2 in. and 2$\}$ is 3 in. negatives. Includes Plastic Printing Frame, Portable Darkroom Lamp, Dishes, Measure, Thermometer, Chemicals, etc.
 Price E1.17.6.
 No. 3 Outfit (as illustrated) for developing 120 and 620 films. Includes a Johnson Developing Tank, Measure, Thermometer, Clips, Chemicals, etc. Price E2.10.0.
 No. 21 Outfit incorporates a Johnson Battery Printer for making first-class $2 t \times 2\} \mathrm{in}$. and $2 t \times 3$ in. prints. No mains electricity required. All necessary Chemicals and Equipment are supplied with the outfic. Price 62.11.6. Battery extra 2/9.

 No. 22 Outfit has the Johnson Mains Printer, a Water Circulator for washing prints and everything else required to produce sparkling contace
 prints. Price $\mathbb{1 3 . 4 . 6}$.
 JOHNSONS OF HENDON LTD. LONDON. N.W. 4

[^1]: If in any difficulty write to:

[^2]: "Practical Mechanics " Advice Bureau.
 COUPON

