Making Water Skis, Surt' Boands and a Oiving Raft

NEWNES

EDITOR: F.J.CAMM MAY : 1957

Compression? Expansion? Long? Short? Light? Heavy? Let Terry's BOXES OF ASSORTED SPRINGS settle the question. Just the job for you experimental people-a simply unlimited assortment from our tremendous range of springs of every variety. The 9 boxes shown here are only a few-but why not let us send you a full listpost free.

* Really interested in springs? The 1957 Edition of "Spring Design and Calculating "-full of spring data-post free 12/0

tirirys

ASSORTED SPRINGS

HERBERT TERRY \& SONS LIMTTED : REDDITCH . WORCS
(Makers of quality Springs, Wireforms and Presswork for over a century)

OMARO SLIDE RULES

MODEL LI/P3. Calculation of weights of steel sections
Multiple simultaneously
(a) Area of cross section
(b) Weight per foot.
(c) Weight per lenyth
(d) Leensths per ceet).
(d) Lengths pe
according to width and thickness.
These scales can also be used for any other section If weight foot or area are
known. See our model P1. 7/- post free.

MODEL M.2. Arcs, Chords, Heights, Segments and Sectors

MODEL S.6. Tensile Strength of Bolts
 sions of bolts and nuts, as well as of socket screws. 5/3 post free

Model K.2/K.4. Price Calculators.

Model K.I/K. 3.
Welght Calculators for \&teel. Aluminium, \& Copper Tubes.
$15 / 6$ each, post

List of other Models on application.
Kosine Ltd., 104, High Holborn, London, W.C.I
Telephone: HOLborn 1301

GIVE YOURS A NEW LEASE OF LIFE

These silent running "Sealed Systems " will completely modernise that Pre-war Refrigerator. They are ready to install, no technical knowledge required. Fit it yourself, SILENT. EFFICIENT. CHEAP.
5 YEARS' FREE REPLACEMENT
WRITTEN GUARANTEE WITH
EACH UNIT.
NO MORE SERVICING EXPENSES.
8 MODELS AVAILABLE, RANGING IN SIZE FROM $3 \mathrm{cu} . \mathrm{ft}$. to $15 \mathrm{cu} . \mathrm{ft}$.
Prices from £26/15/0 to £36/15/0.
Free Delivery in British Istes.
Send stamped, addressed envelope for
"SEALED SYSTEMS." Free Reduced Price Leaflet.
Latest complete general catalogue with many 'Hints \& Tips.' price 1/- post free (Refunded on first order).

BRAID BROS.

for Home Refrigeretor Construction.
50, Birchwood Ave., Hackbridge, Surrey. Tel.: Wallington 9309. We do not wish to be associated with Scrapped Second-hand Ice-cream Components.

Shoit

cuts for

 Handymen

FROM YOUR IRONMONGER OR HARDWARE STORE

Mend anything from crockery to cricket bats with Rawlplug durofix, the colourless cellulose adhesive that's heatproof and waterproof. Strong, almost invisible join-for good!
rawlplug $O U R O F \| X$
Tubes from 9d Tins from 2/9

Mend or model with Rawlplug Plastic Wood-pliable as putty, yet when dryit's wood! You can saw, plane, sandpaper, paint or polish. Moulds to any shape; strong weatherproof.

rawlplug PLASTIC WOOD
 Tubes 1/- Tins from 2/3

Drill brick, tile, cement, etc., with astonishing ease and speed with Rawlplug DURIUM-tipped Masonry Drills. Can be used in hand or suitable electric drills. Ideal for drilling holes for Rawlplugs.

RAWLPLUG

DURIUM-tipped DRILLE

(1) mk.v"EVEREST" MULTIPLE RADIO CONTROL UNIT Tuned Reed. 6 Channels

TRADE MARK
RECEIVER
Fitted with Standard Hard Valves with an average life of 3,000 hours, and 6 Standard Relays. The Receiver output will operate either Electric Motors or Escapoments.

The crowning achievement for the remote control of all Models. The PROTOTYPE of this set "swept the board " at the Radio Control Competitions during the Season 1955.

Contral Box size, bin. $\times 5$ lin. $\times 2$ inin.. giving up to 6 Controls with ample lead to Transmiteer easily held by hand.

TRANSMITTER

Self-contained for housing all batteries, and with Sif. sectional Aerial. Fitted with 2 Standard Hard Valves (1 Mullard DL92, (29.3.11. 29.3.1.

RECEIVER ONLY
(including Purchase Tax), E17.15.3 CONTROL BOX ONLY (including Purchase Tax), 64. 12.5 TRANSMITTER ONLY (including Purchase Tax), 66. 16.4 Write for our NEW Illustrated Folder giving full details of all E.D. ENGINES, RADIO CONTROLS, SPARE PARTS, ACCESSORIES, etc.

Training with 1.C.S. the way to success

The great and growing demand of today is for TRAINED men. Tens of thousands more are needed, but there is no worth-while place for the untrained.

Let I.C.S. Postal Tuition give you the specialised knowledge that marks you out for promotion to the best jobsfor SUCCESS! I.C.S. teaches you at home in your own time-expertly, quickly and easily. It is the world's largest and most successful correspondence school, offering courses for almost every branch of trade, industry and the professions.

Moderate fees include all books

Accountancy
Air Conditioning Architecture Architectural Drawing Auditing
Book-keeping Building Construction Building Specifications Business Training Business Management Carpenrry \& Joinery Chemical Enginecring Civil Engineering Clerk of Works Cost Ascounting Concrete Engineerins Diesel Engines
Draughtsmanship Drawing Office Practice

Electric Power, Lighting. Municipal Engineerina Transmission Police Entrance Electrical Engineering Electronics Eng. Shop Practice Fire Engineering Gardening Heating \& Ventilation Illumination Eng. Induserial Management fournalism Machine Design Machine-Tool Woik Maintenance Eng. Mechanical Drawing Mechanical Engineering Motor Engineering Motor Mechanics Motor Vehicle Elec. Plumbing Production Engineering Quancity Surveying Radio Engineering Radio Engineering
Radio Service Eng. Refrigeration Salesmanship
Sanicary and Domestic Engineering
Sheet-Metal Work
Short-Story Writing Structural Sceelwork Surveying
Television Technology \& Servicing Welding, Gas and Elec. Woodwork Drawing

And many other subjects

Courses are availoble for the
General Certificate of Education and most of the Technical, Professional, Commercial and Civil Service Examinations.
Examination Students are coached until successful.

LEARN-AS-YOU-BUILD

 practical radio COURSEA foundation course in basic radio, electrical and electronic theory. It provides a thorough practical training and at the same sime enables the student to equip himself with a radio receiver and two high-quality testing instruments of lasting usefulness.

Take the first step NOW-write today for free bocklet on your special subject.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 167C, international Buildings. Kingsway, London, W.C.2.
Please send me free booklet on.
Name.
(USE BLOCK LETTERS)
Address

Addresses for Overseas Readers

Australla : 140 , Elizabeth Street, Sydney. Eire: 3. North Earl Street, Dublin India: Lakshmi Bidg., Sir Pherozsha Mehta Rd., Fort Bombay. New Zealand: 182. Wakefield Street, Wellington. N. Ireland: 26. Howard Street, Bellase. South Africa: Dept. -... 45, Shortmarket Street. Cape Town

FOR THE
BEGINNER

JOHINCDN PHOTOGBAPHY

OUTFITS

If you want to start developing ond printing your own photographs and are not quire sure what you need, Johnson Home Photography Outfis provide the onswer Each outfit is a complete self-contained unit including the most up-to-date johnson equipment and chemicals. A 105-page boak of instructions is included with the larger sets.
Junior Printing Pack includes a Joinson Plastic Printing Frame for $2 \frac{1}{2} x$ 3 in in. paper, two 5×4 in. Dishes, two Plastic Point Forceps. Masks, and 25 sheets of Contact Printing Paper. Contaims all Chemicals required and a booklet on making prints. Price 13 s . 3d/

No. Outfit contains everything necessary for making prints from $21 x$ 2 in. and 2 : x !in. negatives. Includes Plastic Princing Frame, Porcable Darkroom Lamp, Dishes, Measure, Thermomezer, Chemicals, etc. Price 11.17 .6.
No. 3 Outfic (as illustrated) for developing 120 and 620 films. Includes a ohnson Developing Tank, Measure, Thermometer, Clips, Chemicals, etc Price $\{210.0$

No. 21 Qutfic incorporaces a lohnson Battery Printer for making first-class 2 : $\times 2$ in. and 2$\} \times 3$ in. prints. No mains electricity required. All necessary Chemicals and Equipnoent are supplied with the outfit. Price t2.11.6. Bactery excra $2 / 9$.
Na. 22 Outfit has the johnson Mains Printer, a Water Circulator for washing prints and eventhing else required to produce sparkling contact prints. Price $£ 3.4 .6$.
JOHNSONS OF HENDON LTD. LONDON, N.W. 4

REPLACE STRIPPED THREADS IN MINUTES WITH THIS

Simply drill out the old thread, tap with the Heli-Coil Tap supplied ant insert the precision-made, stainless sceel, HELI-COIL. . it's as easy as that, literally done in minutes and with no skill required. You then have a new armourclad thread which is far stronger than the old, and will not strip. wear or corrode and will outlast the rest of the component.

The Kit contains all the special tools needed and a generous supply of new threads.
Available in the following sizes:
$\frac{7}{3}$ in., $5 / 16 \mathrm{in}$, sin., $7 / 16 \mathrm{in}$. and $\frac{1}{2}$ in. in B.S.F. and B.S.W. threads fother threads available in other Kits).
"YOU NEVER KNOW WHEN A THREAD WILL GQ", BE PREPARED WITH A HELI-COIL "Mandyman"
Ask at your Tool Dealers or, if in difficulty, write to
ARMSTRONG PGTENTS CO. LIMITED, EASTGGTE, BEVERLEY, E. YORUS

The EMCO-UNIMAT

 Aportable,precision, machine tool,

Only 16in. long, the Emco-Unimat is capable of several standard workshop practices to highly critical limits. The basic tool will buff, turn, polish, drill, grind and mill, and a full range of extra equipment vastly increases the scope of the tool.

SPECIFICATION
Centre Height, I i in. Takes berween centres 6 \%in. Hollow spindle admits fin. Drill chuck cap, łin. Chuck to drill table (max.), 4 in

> See the versatile Emco-Unimat at your local tool dealer, or write for fully descriptive literature to :

ADDITIONAL EQUIPMENT Jig Saw. SC Lathe Chuck. Circular Saw. Drilling Vice. Milling Table and Clamps. Flexible Shaft. Thread Chasing and Dividing.

EXTENDED CREDIT AVAILABLE

 GENEROUS TERMS AVAILABLE TO MERCHANT STOCKISTS J. \& H. SMITH LTD. 16 HARRISON ST. LEEDS 1. Tel. 21561> SLYOLOK FUNES, 250-v. 15 -amp., slde and back entry, brand new, traction of today's cost, $1 /$-, post id., $10 / \mathrm{d}$ doz., post $1 / 9$.
> HOMEL: VACUUM PUMPS, rotary vane, size less shaft 5inn. long. 4in. dia., fitted $\begin{aligned} & \text { 2in. long in. dia. splined shart. Inlet and outlet ports, also suitable as air conl- } \\ & \text { pressor, brand new boxes } 226 \text {, post } 2,6 \text {. }\end{aligned}$ pressor, brand new boxes 226 , pust 2,6 .
> PROURCTION UNITS, consists of an enclosed lamphouse holding a $24-v .12$-watt lamp with poHshed rettector, in line with the bptical mount which holds a concaver convex ground glass forming a graticule, also 40 mm . dia. $1 / 2.2,34 \mathrm{in}$. focal length achromat profection lens, in perfect condition, 12 6. rost $1 / 4$
> HUGHES 12-VOLT SHENT MOTOHA, taking $\begin{aligned} & 1.25 \mathrm{amps} .11 \mathrm{ght} \text {, and up to } 2 \mathrm{amps} \text {. on load, } 5,000 \\ & \text { r.p.m.. externai cerminations for reversing, oll }\end{aligned}$ $\begin{aligned} & \text { r.p.m.. externai terminations for reversing, ofl } \\ & \text { inapregnated bearings. in. shaft, slze } 3 \mathrm{in} \text {, long, }\end{aligned}$ inin. dia., weight 20 oz., a superior and powerful motor, original cost over $£ 7$, our price new unused. 10%, post $1 / 3$; 2 for 20%, post patd : ditto, fitted reduction gears, giving a final drive of either $\begin{aligned} & 160 \text { or } 320 \text { r.p.m... state which pecquired. 12/6 post } \\ & 1 / 6 ; 2 \text { for } 25-\text { post paid. }\end{aligned}$ $1 / 6 ; 2$ for $251-$ post paid.
K TIPE CV1.INDER JOCKS. deadiocking and thielproof, has ? concentric tumblers instead of the usual 5 in line, interchangeable with ordinary cylinder locks. for rirht- or left-hand doors, no need to specify, complete with 2 keys and all fittings, instruction booklet, list price 18/9, our price new boxed, 5 - post $1 / 6$; 2 for $10 /$. post paid.
 disinfectants, GARDRN APRAYERS, also suttable for disinfectants, penetrating oil, lime wash, etc., made by
Fisions Pest Control Ltd., consists of the speclal glass Fisions Pest Control Ltd., consists of the special glass
container holding 4 dints, marked in $:$ plats, filler cap is a 1 -or 1 -oz. measure, adjustable webbing for shoulder or back, so that both hands are free. 40 in . flexible tubing to the polished brass syringe, with nozzle that gives a finely atomized spray. Serap those messy old-fashioned sprayers that require buckets, hoses, etc., invest in a "Bambi," value to-day 45 F - our price new boxed 20 l -, MAINB BLOWERS, 200 250
MAINS BLOWERS, 200250 v. A.C. 'D.C. 1 amp., 5,000 r.p.m., consists of the motor with attached enclosed fan.
end funnelintake 1 i n. dia., side outlet 1 n . x ¥in. plinth base $4!\operatorname{In}$. x inn., finish black crackle and aluminitum diecast, size overall 9in. long, 5 tn . high, 41 n . wide, weight 140. a very super.or blower, fraculon of original cost. $25 / \mathrm{h}$, post 3%.
$-11 A B 1 / \mathrm{DFOLE}$ MOTOISS, 12 v . 50 -cycles A.C., size 3in. x 24 n . x 141 n ., complete with 3in. fan, made for lamphouse cooling, silent running, unused and perfect,
IHEATER MATS, $230 / 250-v, 1,000$-watts, open mesh with asbestos insulation, size 12in. x 10 in ., 1 in . wide border each end for fixing, 2 in series (300 -watts) are ideal for clothes drying cupboards, also suitable for convectors, photo drylng, etc., brand new $5 / 6$, post $9 \mathrm{~d} ., 2$ for $10 /$-. post $1 / 4$.
KERBHAW LENS UNITS, consists of two $20-\mathrm{mm}$. dia. achromats, each $1 / 4$, 41 n . focal length, In a screw focusing brass mount, unused and perfect, $15 /$-, posc 9 d. OIL. TIEMP. GAUGES, 21 in , square fush panel mounting. graduated 0 to 120 -deg. C.,
basloally a-very fine quality moving coll millampere movernent. new in sealed tasloally a -very fine quality moving coll milllampere movernent. new in sealed cartons, $3 / 6$, post: $1 / 4$.
Send s.a.e. for current bargains lists.
MIDLAND INSTRUMENT CO., Moorpool Circle, B'ham, 17

FIT THIS TO YOUR ELECTRIC BLANKET AND BRING IT UP TO DATE.
Double Pole Break, A.C.-D.C. SUITABLE ALSO FOR ANY Silver Contacts, Improved Cord OTHER APPLIANCE WHICH Grip. Simple Wiring. Modern REQUIRES A VISUAL INDIStreamline Styling in Cream Bakelite.

* SEND 4d. IN STAMPS HOW FOR OUR ELECTRICAL CATALOGUE*

DESCRIBES FULLY OUR RANGE OF ELECTR CAL SUNDRIES-WITH IDEAS FOR THE HOME HANDYMAN - OVER 330 ITEMS -

THE 'MAGSTAT*

This is a precision bi-metal thermostat for the concrol of alternating currents of up to $\frac{1}{2} \mathrm{amp}$. at 240 volts. The temperature range lies between minus 50 deg. F. and plus 250 deg. F. An ingenious magnetic snap action is incorporated which gives freedom from radio interference. The operating temperacure is altered by rotation of the adjustment screw, clockwise for increase and anti-clockwise for decrease. Dimensions $2 \mathrm{in} . \times \frac{1}{2} \mathrm{in} . \times \frac{3}{3} \mathrm{in}$. PRICE: $5 / 6$ each. Post 3d.

SUPPRESSIT

(TELEVISION SUPPRESSOR KIT)

 For the suppression of Domestic Motor Driven Appliances. Comprises two chokes and two condensers mounted on a card with wiring instructions. Ideal for Vacuum Cleaners. Hairdriers, Sewing Motors, etc., up to 1 amp. Price 3/6. Post Free.
REPLACEMENT ELEMENTS

FOR DOMESTIC ELECTRICAL APPLIANCES We stock over 200 types of element replacements for Fires, Irons, Kettles, Hairdriers. Toasters and Boiling Rings. Send for Catalogue

WE HAVE A REPUTATION FOR HIGH QUALITY THERMOSTATS AND

LIST SOME OF OUR STOCK ITEMS HERE
THERMOSTAT. CS. Convector Thermostat for Space Heaters and Low rempera-
ture Ovens. 15 amps., 250 voles A.C. $40 / 80$ deg. F. $\mathbf{2 5} /-$, post 5d.
THERMOSTAT. MB. For control of Electric Immersion Heaters up to 3 kW . $90 / 190$ deg. F., 15 amps., 250 volts A.C. 62/0/0, post 9d.
THERMOSTATS. PF. Room Tharmostat, 15 amps., 250 voles A.C. 5 in . $\times 1 \mathrm{in}$. \times in. A beautiful instrument. Tomp. ranges $30 / 90,40 / 100,40 / 80,60 / 100$ deg. F. as required. E2/0/0, post 6d,

GREENHOUSE THERMOSTAT

Type ML Constructed especially for the amateu gardener. The scale plate is calibrated "Higho Medium-Low " and has a temperature range of $40-90$ deg. F. Current capacity is 10 amp .0250 volts A.C. Differential $4-6$ deg. F. Size $4 \frac{1}{2} \mathrm{in} . \times 2 \mathrm{in} . \times$ 年in.

PRICE : 35/-. Post 6 d .

THERMOSTAT. BW/I. 3 amps., 250 volts A.C. For control of hot-plates, vulcanisers, etc. $50-550$ deg. F. $15 / 6$, post $4 d$. We are only too glad to send illustrated leaflets on any of these Thermostars if you will send a S.A.E. stating which model interests you

IMMERSION HEATERS

We can offer a wide range from 2 to 4 kW . and in stem lengehs 1 lin. co 42 in Please send for our catalogue.

Model PJ. Miniature Thermostat for control of domestic Electric 'rons and special-purposa machines where space is limited Capacity: 5 amps., 250 volts A.C. fin. x in. $x \| / 1 /$ in. Singlo screw fixing. Price $9 / \mathbf{3}$. Post 3d.

Hetrivelt GARPENTRY.ETC.ETC TELEVISION ARPENTRY ETC

 IN SCIENCE ANDNEW -completely up-to-date methods of giving instruction in a wide range of technical subjects specially designed and arranged for self-study at home under the skilled guidance of our teaching staff.
NEW experimental outfits and lesson manuals are des patched on enrolment and remain the student's property. A tutor is allotted to each student for personal and individual tuition throughout the course.
In the case of radio and television, specially prepared components are supplied which teach the basic electronic circuits (amplifiers, oscillators. detectors, etc.) and lead, by easy stages, to the complete design and servicing of modern commercial radio and television receivers.
If you are studying for an examination, wanting a new hobby or interest, commencing a career in industry or running your own full-time or parttime business, these practical courses are ideal and may be yours for moderate cosst. Send off the coupon to-day for a free Brochure giving full details. There is no obligation whatsoever.
The only Home Study College run by a
World-wide industrial organisotion.

SUBJEGTS INGLUDE BAD? SHORT WAVE RADIO - TELEVISION MECHANICS CHEMISTRY PHOTOGRAPHY ELECTRICITY WOODWORK ELECTRICAL WIRING DRAUGHTSMANSHIP - ART etc.

[^0]

3-8peed motor with metal turntable and rubber mat Small mod. makes speed dance work. HFFi Plek-up. Using famous Cosmocord Hi-G turn-over crystal. Separate sapphilre for each speed. Neat bakelite case with pressure adjustment.
Spuecial Snip Offer this Month-The two units for $£ 4.10 .0$ plus $5 /-$ post and ins. or made up on boards as thustrated e5. 10.0 plus $5 /-$ post.

THE OCTAVIAN
High Fidelity Amplifier

3-valve, 4-watt. with frequency response better thrim $40-15.000$ c.p.s. Control panel
size $8^{\prime \prime} \times 21^{\prime \prime}$ comes fixed to chassis and is intended for independent mounting. fullest variation of cut and bit. Separate switeh absolutely no mains hum. Remarkable value at 7 Ens. or 21 deposit plus $3 / 6$ post and packing.
Midget ceramalc condenser tubular
wire ended. $2,000 \mathrm{pF}$, $5 / \mathrm{per} \mathrm{doz}, 500 \mathrm{~F}$ W/6 per doz. $1,000 \mathrm{pF}$, lead through ceramics, 8i- per doz. All post free. Special quote for 1,000 lots.

BABY ALARM

Unlike most baby alarms. this not only enables you to hear baby but also to mis to him. and looft. twin flex. $£ 6.19 .6$, carrlage 3/6, additional microphone, 19/6. THERMOSTATS

Useful for the control of such as convectors, gluesers, hot Adjustable to operate over the temperature range $50-550$
deg. F. It amp., $3 / 6 ; 5$ amp.. $8 / 6 ; 2$ amp. deg. F. If amp. 3/8; 5 amp . $8 / 6$
QMB $5 / 6 ; 15 \mathrm{amp}$. QMB, $15 /$.

CLOCK CASE Also sultable for barometer or other
instrument. Nicely instrument. Nicely
polished. Price $4 / 8$. post and packing

AKVEANCHER
nor mains set 1or

This is a 2 -valve plus metal rectifier set useful as an educational set for beginners, also makes a fine second
set for the bedroom, workshop All parts less cabinet. chassis and speaker. 19/6. Post do ins. 218 . Data free with parts or avallable separately 16.

ECONOMY THREE
A 3-valve battery version of above. All components less cabinet. chassis and Data free with parts or available separately $1 / 6$.

ELECTRONIC PRECISION EQUIPMENT LTD.

 Post orters shouid be addressed to Dopt N, Suften Road, EastbournePersonat shoppers, howerer, please eatil at ; Phone: RUIsLIP 5780-Half das, Wedmesulay. 29, Btrond Green Rd., Fimbury Part, N.4. Phone: ARChand 104

NEW BOXCOMBING OR JOINTING ATTACHMENT

FOR USE WITH YOUR BRIDGES,

 BLACK \& DECKER WOLF DRILLSIntricate work such as trinket, cigarette and musical boxes can be expertly made in a few moments.

A new attachment of tremendous value to all woodworkers and users of Bridges, Black \& Decker and Wolf Electric Drills.
\star Perfect joints made with precision and speed.

* Simple to fix and operate.
* Any width of timber can be used.
\star Glue unnecessary.
PRICE $69 / 6$ Post $1 /-$
ONLY LONDON PLEASE STATE MAKE OF DRILL ADDRESS

S. TYZACK \& SON Tre rant 341-345, OLD STREET, LONDON, E.C. 1

Made by james Nelll \& Company (Shelfield) Limited

Follow the FIUXITE way to Easy Soldering

No. 3. heating the bit
A clean flame is best, such as that of a gas ring, and care must be taken not to let the bit get red hot. When the flame turns green the bit is at the right temperature.

FLUXITE is the household word for a flux that is famous throughout the world for its absolute reliability. In factory, workshop and in the home FLUXITE has become indispensable. it has no equal. It has been the choice of Government works, leading-manufacturers, engineers and mechanics for over 40 years.

Fluxite Limited, Bermondsey Street, London, S.E. 1 G.4.53

Make model buildings -

Anew method-described in a new book on Pyruma Modelling. This shows how to turn empty match boxes into model buildings, by Pyruma ' Plasticraft.' It is one of the many methods of modelling in plastic Pyruma, shown in black and white and full colour pages, which enable you to build and finish in natural colours :-

MODEL FARMS, RAILWAY STATIONS, SIGNAL CABINS, AIRPORT BUILDINGS, DOCKS, SHIPS, FIGURES, ANIMALS, ASHTRAYS, BOOKENDS, DOLL'S FURNITURE, PLAQUES, RELIEF MAPS, ETC.

is a ready-to-use material, cheap to buy locally, and easy to work by following the Instruction Book offered below. Pyruma dries or can be baked to stone-hard permanence, then painted in natural colours. Sold by local Ironmongers and Hardwaremen, Hobbies shops and Art material Dealers, in airtight tins from $1 / 6$ upwards.

Send Coupon and 6d. P.O. (not stamps) for this NEW Book of instructions to :-

T.F.SANKEYZ SON,ETP

1857-1957
DEPT. P.M., ILFORD, ESSEX.
Enclosed 6d. P.O. (not stamps) for PYRUMA MOOELLING INSTRUCTION BOOK addressed to :-

NAME (block letters)

IDDRESS

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

> We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

MECHANICAL
Gen ENGINEERING
Gen. Mech. Eng.-Main
renance - Droughtsman-
ship-Heovy Diesel-Die ing-Production Eng.lig \& Tool Design-Sheet Metal Work-Works Management - Mining - Re-frigeration-Metallurgy.
A UTOMOBILE ENGINEERING Gen. Automobile Eng.Motor Maintenance \& Repoirs Moish speed WE HAVE A WIDE RANGE OF AERONA COURSES IN FORESTRY, TIMBER G.P.O. ENG ${ }^{\circ}$, TEXTITE TEER TECHNOLOGY, PLASTICS, One of these qualifications would

WHICH ONE !

A.M.I.Mech.E., A.M.I.C.E., A.M.I.P.E., B.Se., A.M.Brit.I.R.E. A.F.R.Ae.S., A.M.I.M.I., L.I.O.B., A.R.I.B.A., A.M.I.H. GU, V. M.R.SAN.I. F.R.I.C.S., A.M.I.E.D. CITY \& \& GUILDS

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W. 8.
Phone: WEStern 9861

Diesel-Garase Masment Conereten.-Reinforced

\qquad Gen. Elec Eng - Elemen lory \& Advanced Elec Technology - Instollations Droughtsmanship-Supply - Maintenance - Design - Electrical Traction Mining Electrical Eng.Power Stotion Equibment. elc.

CIVIL.

ENGINEERING
ENGINEERING
Gen. Civil Eng.-Sanitary ang.-Structural Eng.-

RADIO
Gen ENGINEERING Gen. Rodio Eng.-Rodio Servicing, Mointenance \& jection - Telegraphy Telephony - Television C. \& G. Telecommunications.

BUILDING Gen. Building-Heating \& Ventilation - Architecturol Droughtsmanship - Sur-
veying -- Clerk of Works - Carpentry and joinery Quontities - Valuotions

 Tо : B.I.E.T. 410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W.8.
You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," and if you are earning less than $£ 15$ a week you should send for your copy of this enlightening book now-FREE and without obligation.

WHAT THIS BOOK TELLS YOU

大 HOW to get a better poid, more interesting job.

* HOW to quolify for ropid promotion.
t HOW to put some voluoble letters ofter your nome and become a "key-man" quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* WHERE today's real opportunities are . . . and HOW you con take advantage of the chances you are now missing.
* HOW, irrespective of your age, educotion or experience, YOU con succeed in any branch of Engineering that oppeals to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

Please send me FREE and without
obligation, a copy of "ENGINEERING
OPPORTUNITIES." I am interested in
(state subject, exam., or career)..
NAME ...
ADDRESS..

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

Editorial and Advertisement Offices * PRACTICAL MECHANICS " George Newnes, Lid., Tower House Southampton Street, Strand, W.C. 2 Phone: Temple Bar ${ }^{4363}$.
Telegrams: Newnes, Rand, London. Registered at the G.P.O. For transmission by Canadian Magazine Post.

SUBSCRIPTION RATES
Including postage for ane year
Inland . . . 18 s . 6d. per annum.
Abroad - . . 17s. per annum.
Canada - . . . 17 s . per annúm.
Copyright in all drawings, photographs and articles published in "Practical Mechanics" is specially reserved ithroughout the countries signatory to the Beme Comvention and the U.S.A. Reproduction or imitations of any of these are therefore expressly forbidden.

CONTENTS

ONTENTS :	
	Page
Falr Comment	377
A Combined Safelight and 1	r 378
A Chemical Hygrometer	380
Water Skis and Surf Boards	381
Books Received	32
A Diving Raft Design	383
The Space Satellite Project	385
Science Notes	386
Throwing a Line of Life	387
Can Openers	389
Sharpening Plane Irons	390
A Bathroom Stool.	391
An Electric Propagator	393
The New Electric Watch	394
Recasting Printing Rollers	396
Using D.C. Motors on Dif Voltages	at ${ }_{\text {al }}$. 397
A Transparency Viewer	401
Making a Simple Lathe	402
The Junior Chemist	406
Letters to the Editor	409
Trade Notes..	412
Your Queries Answered	413
Information Sought	414
What 1 Think	29
The Frecwheel	30
CONTRIBUTIONS	

The Editor will be pleased to consider articles of a practical nature surable for publication in "Practical Mechanics." Such articles should be weritten on one side of the paper only, and should include the name and address of the sender. Whilst the Editor does not hold himself responsible for mankscripes. every effort zoill be made 10 return them if a stomped und addressed envelope is enclosed. All correspondence inrended for the Eiditor should be adiressed: The Editor, "Practical Mechanics," George Newnes, Led., Tinver Hinse, Southampion Street, Strand, Londer, W.C.2.

FAIR COMMENT

THE ELECTRIC WATCH

SOME years ago I dealt with the experiments which were then being conducted in Switzerland and America with battery-operated watches. One would have thought, in view of the necessarily minute size of the power unit, namely the battery, that such experiments would have been conducted with pocket watches. Such, however, has not proved to be the case, and the very first batteryoperated wrist watches, gent's size, are now on the American market, where demand greatly exceeds the present manufacturing capacity. The watch is no larger than an ordinary wrist watch, it is powered by a tiny circular layer laid battery which, it is claimed, will actuate the movement for one year, whether the watch is worn or not. Platinum alloy permanent magnets are used in the construction. Pulling the hand-setting mechanism out to the setting position stops the watch, and when in this position, the balance wheel is not in contact with the electrical system and thus no current is used. When the watch is put away or not in use, current should be conserved in this way.
The watch may be set to the exact second according to the time signal. The button is pulled in to the setting position, stopping the watch with the second hand at 60 well in advance of the time signal, after having set the hour hand and the minute hand to say 90^{\prime} 'clock. As soon as the last pip of the time signal is sounded, the button should be pressed down to start the watch. The tiny battery or energy cell may be easily replaced when it runs out.
Elsewhere in this issue I deal in greater detail with this important horological development which in time must replace self-winding watches and most watches operated by mainspring. The science of electronics marches on !

NATURAL GAS

GAS engineers are investigating the possibility of shipping refrigerated natural gas to Britain from the Middle East oilfields where, at present, it is wasted.
It was stated in Parliament that the prospects were most interesting, and that the Gas Council was arranging for a trial shipping. The natural gas is, of course, methane, that has a heat value double that of ordinary town gas which is made from coal. To be transported economically it would need to be liquefied. The difficulty which presents itself is that the liquid boils at 260 degrees below zero and a power refrigeration plant would be needed in tankers to maintain it at this temperature. The methane can be stored at ports where it would be returned to gaseous form and then piped all over the country.

THE SECOND "HOW-TO-MAKE-IT" BOOK

OUR second "How-To-Make-It" Book is now available at 15s. or 15s. 9d. by post! It contains articles in common demand which have been included in past issues long since out of print.
The contents include: A reflecting enlarger; one-stringed fiddles ; folding steps and an extending ladder; an electric guitarette; a miniature billiards table; a synchronous electric clock; a glove puppet theatre; an automatic garden sprinkler ; a midget camera; a potter's wheel ; a catamaran ; a rowing machine; an aqualung; home-made fishing tackle ; installing a tropical aquarium ; a snow scooter ; underwater photography ; a pair of skis; projecting time on the ceiling ; a harpoon gun; small wind-power plants ; an electric hedge trimmer ; bathroom scales; a folding. outboard motor-boat ; flash photography; gas-fired pottery kilns; a back projection episcope; motorising your lawn mower; a skeleton synchro-electric clock; a viewer and printer for 35 mm . film ; a cycle trailer ; an electric imitation coal fire ; a mechanical potato peeler ; a home-made duplicator ; making rubber stamps.-F. J. C.

A Useful Piece of Darkroom Equipment

By J. C. LOWDEN

The Wooden Casing

This is built throughout in plywood, as being the easiest to handle and the most readily to hand. Half-inch laminated wood is used for the carcase, the back being a single sheet of 4 mm . three-ply. The joints are simple rebates, secured by the," glue and screw" method. Dove-tail joints could be used if preferred. The central division " C " is glued into the groove on each side of the box.

Whatever method of jointcesses. It is difficult to read a watch in the weak illumination of the safelight, whilst at the same time giving full attention to the print. Most amateurs are compelled to use make-shift darkrooms where there are very few power sources, and the model described works from the same source that would, in any case, be taken up by the safelight. It has the advantages of an audible interval signal and interchangeability of safelight screens.
While the dimensions of the device are not critical, it should be remembered that commercial safelight screens are sold in standard sizes, alteration of which might not be an easy matter. The model described will accept a 7 in. x sin. screen.
ing is used, it will be found advantageous first to assemble the box "dry " for trial, then to dismantle it. As much of the wiring and fixing as is possible should be done before final assembly, thus avoiding much tedious work inside the limited space of the box. Fig. I shows the general structure of the box, and Fig. 3 the layout of the two sides A and B.

The Motor

It is advisable to ensure that this surplus item is available before commencing construction. The suppliers are Messrs. Rogers, 3I, Nelson Street, Southport, who advertise in this journal.

Fig. 1.-General arrangement of Sajelignt and Timer:

Fig. 2. - The Fig. 2. The The
motor unt as received from the suppliers.

It is listed at 21 s ., post free. It is also available from other surplus equipment stores.

The motive power of the timer is supplied by this small, mains voltage motor, giving exactly one revolution per minute. The motor mechanism is completely enclosed in a smart black metal casing, mounted on a rectangular central flange. Fixing holes are already drilled in each comer of the flange and the protruding motor spindle is already "flatted" to provide a bearing - surface for a grubscrew. Two plasticcovered flex leads are fitted, and no adjustments or modifications are needed. The motor unit is self-starting, completely silent and its overall dimensions are $3 \mathrm{in} . \times 4 \mathrm{in}$. x 2 in . It is synchronous with the mains, thus giving great accuracy in timing. The motor is shown in Fig. 2.

Electrical Components

Two switches, AM/5c/543, price 9d. each, are required; a junction box, $\mathrm{AM} / 5 \mathrm{~b} / 565$, price 9 d . and a Mini-buzzer, price 4 s .
All these components were supplied by Messrs. Milligan, of Hartford Street, Liverpool, who advertise in this journal. The same firm can also supply the motor unit, but with a certain amount of additional equipment fitted. This equipment is not necessary for use in the timer described, but it can be removed very easily, and may well be put to some other use. The motor unit listed by Messrs. Milligan is priced at 22s. 6 d .

All these prices are exclusive of postage.
Also required are one standard B.C. Batten lampholder, one Phillips 15 -watt sign lamp, and plastic-covered flex for wiring up.

The Bearer Blocks

Since the motor flange is in the centre of the casing it is necessary to raise the unit on four
position when the dial square is replaced. The dial square is now gently freed from the spindle without disturbing the motor unit and the motor firmly screwed to the bearer blocks, using No. 8 round-headed woodscrews.

The Pointer

The pointer is made from copper steam tubing, $\frac{1}{8}$ in. diameter, $3 \frac{1}{\mathrm{in}}$. long. This tubing can be bought at most model engineering shops.
The method of securing the pointer to the motor spindle was a simple one. An old broken three-point plug yielded three square terminal blocks, ready drilled, tapped, and fitted with a grubscrew each. A small threaded stem protruding from the block, on the opposite face to the grubscrew offered a ready means of securing the block to the end of the pointer. Once having found such a useful piece of scrap it may be soldered to the pointer tube and fitted over the spindle, secured by the grubscrew.
The other end of the tube is then flattened and the flat part sawn down to take the contact spur which is a scrap of brass inserted into the sawn slit, and firmly soldered into position. This spur, when first fitted, should be about $\frac{1 i n}{}$. long, in order that it may be adjusted later.

The Dial Square

Perspex $1 / \mathrm{r} 6 \mathrm{in}$. thick is used for the dial. To cut it use a sharply-pointed knife and a steel straight edge, cut heavily along the line once or twice, after which the Perspex may be snapped cleanly. Perspex of 1 in . or greater thickness can be sawn with a coping .saw, hacksaw or similar frame saw and the edges filed smooth.

When buying the Perspex choose a translucent type. The deep red shade makes an excellent dial needing no screening. For the model described a white translucent sheet was used. The rather brightly lit dial has no effect on contact paper and-is safe for bromide, provided the light does not fall directly upon the sensitive surface. For the faster chloro-bromide papers and ortho films and

Fig. 5.-The completed unit, showing dial layout.

The Internal Contact

This is to complete the circuit by which the interval buzzer is actuated. To make the contact a further piece of the invaluable "scrap" plug is utilised. The earth pin was separated from its square terminal block. In this case the earth pin itself terminated in about in. of thread which screws in to the block. The earth pin was sawn off, leaving a "cheese head," across which a saw cut is made, as a screwdriver slot.
The internal half of the contact is made up by soldering the square terminal block to a strip of scrap brass, ready drilled to take two fine screws. (See Fig. 6.) The threaded hole faces the Perspex dial, the grubscrew being at the rear. The contact is then screwed to the underside of the division "C," exactly in the centre, above the motor spindle.
The 「erspex dial square is now drilled to accept the contact screw. The location of this hole needs a little care, but if the dial is screwed into position, with the motor spindle through the central hole it should not be unduly difficult to hit it first time without elaborate plotting. When the hole is drilled the contact screw is screwed into the contact block. The pointer is then fitted and the length
sandpaper a perfect marking surface remains. After planing flush with the outer edges of the motor comparment, the dial is lightly sanded, and then drilled for the spindle at the intersection of the diagonals. The dial circle is pencilled in, using compasses, and the markings set out with a protractor. In the model described the "cardinal points" are marked by half-inch circles, the five-second

Fig. 3.-Details of the sides.
plates, however, the dial light is made sate by placing a slip of red translucent Perspex over the light aperture in the central division "C" in Fig. 4. The Perspex is held in position by a piece of aluminium, bent at right angles and screwed to the back of the box.

Perspex is readily available from several advertisers in this magazine.

Marking Out the Dial Square

When purchased, the Perspex has a super high gloss finish which makes marking out very difficult. If this gloss is removed by lightly rubbing with the very finest grade of
intervals by triangles, and the individual seconds by single strokes, as shown in Fig. 5.
The pencilled markings are then blacked in, using "Joy" Camera Black, liberally thinned with turps. A fine sable brush is best for this job, and with care it can be fitted in the compasses and the outer circle drawn accurately by this means.
When the dial is fully marked, the "waste" may be fully blacked in order to localise the light. It is also of great value if the pointer and the five-second markings on the dial are treated with luminous paint. There are several excellent proprietary brands available.
of the contact spur adjusted to provide a firm but not too heavy contact.

Interval Signal Wiring

The interval signal wiring is in the motor compartment and may well be treated first.

Fig. 4--Shape and dimensions of top, bottom and division "C."

The Mini-buzzer is powered by one EverReady Baby Torch Battery No. 1839. short wire lead is screwed firmly under the head of one of the woodscrews securing the flange to the bearer block, and the other end taken to a small brass washer, screwed to the floor of the box at the comer near side " B " (Fig. I).
A small rightangle contact of scrap brass is screwed to side "B," directly above the washer, and at such a height that the lower surface presses firmly on to the top terminal of the battery. A fine wire lead is taken from this contact through a hole in the side of the box and connected to one terminal of the Mini-buzzer. From the remaining buzzer terminal another lead re-enters the box and is connected to one pole of the buzzer switch. From the remaining pole of the buzzer switch a lead is taken to the internal pointer contact. The ,Mini-buzzer is then screwed to the side "B," using the woodscrew provided.
The circuit is tested before use by placing the pointer upon the motor spindle, switching "on," and making contact with the contact spur and the intemal contact.

The Light Compartment

A lead from the mains enters the light compartment through a hole drilled in side "B." The Ex. A/M junction box is screwed to side " B " directly above this entry. The current is distributed through this box, one pair of leads being taken down for the motor supply. Another pair of leads is taken across the box to side "A," where they are connected to a standard B.C. Battern lampholder. To give control over the lighting the lamp switch is interposed in the circuit.

As mentioned before, as much as possible of this wiring should be done before assembling the box. After wiring is complete the lampholder, junction hox and switches are screwed securely into their proper positions.

The Reflector

This is simply a piece of sheet aluminium bent as shown in Fig. 8, and screwed to the back and top of the box as can be seen in Fig. 7. It serves the dual purpose of protecting the leads to the lamp as well' as utilising the light to its best advantage.

Ventilation

There has been no indication of excessive warmth in the box, even after lengthy periods of use, and it has not been found necessary to embody any elaborate system of ventilation.

Fig. 6.-The pointer and pointer contacts.

The Safelight Screen Holder

This is a simple frame made of two 5 in . length of $\frac{1}{2}$ in. rightangle aluminium of the lightest gauge, as sold in most hardware stores. The parts are connected at their lower ends by a strip of the same metal, ${ }^{3} \mathrm{in}$. wide and 7 in . long. This frame takes little or no strain, and "Solderinc" made an adequate joint.

Fig. 7.-A view of the inside of the unit.
The outer webs of the side frames are screwed to the outside of the lamp compartment, leaving space for the safelight screen

Fig. 8.-The aluninium reflector.
to be slid down; as different makes of safelight screen's vary in thickness, it is not possible to give an exact measurement for this clearance. The completed timer is shown in Fig. 5.

The Safelight Timer

 in UseThe model may be used for a varicty of darkroom uses, provided the appropriate screens are fitted. Few amateurs nowadays develop rollfilm by any means other than a tank, but plates and cut film are still very popular, and the usual practice is to develop these in open dishes.

The timer really comes into its own during printing processes. As the pointer moves in an anti-clockwise direction a little mental readjustment is called for but it scon becomes quite logical.

Assuming the correct printing time to be 15 seconds, the paper is then set on the enlarger easel, the Buzzer switched "on" and the enlarger switched on when the pointer reaches "three o'clock," indicating that fifteen scconds are left "to go." Full attention may then be given to the print and any " shading," etc., that may be necessary. The brisk buzz of the Minibuzzer gives an unmistakable signal to switch off the enlarger at the right moment. This facility is especially valuable to one who requires to make a number of copies, each required to be the same.

Most print developing is done by visual inspection, but where a worker wishes to time his development, the timer is equally useful. It is also likely to be of value in the case of a photographer using certain of the new neg. pos. colour printing processes, wherc the paper needs to be treated in two or more baths for fairly precise times at fixed temperatures.

A Chemical Hygrometer

AHYGROMETER is an instrument which indicates the relative humidity of the atmosphere and thus serves as an approximate guide to the kind of weather to be expected.
There are many types of moisture recording instruments. Perhaps the simplest is made by balancing a little dried salt on one pan of a pair of scales. The magnesium chloride which occurs as an impurity in common salt readily absorbs atmospheric moisture, and consequently in wet or damp weather the salt, due to this acquired moisture, increases in weight. The increase is recorded by the scales and forms a direct reading of the relative humidity of the atmosphere. In another type, a strip of absorbent material is held under tension. The length of this strip (often made of tracing linen) varies slightly according to the amount of moisture in its neighbourhood. This variation is magnified by a system of pulleys or levers operating an indicator over a dial.

The hygrometer described here changes
colour according to surrounding humidity. Its action is purely chemical and relies upon the colour changes induced in salts of cobalt by the presence of more or less water in the air. Make up the following solution :-
Cobalt chloride, I ounce; common salt, $\frac{1}{2}$ ounce; calcium chloride, 75 grains; gum acacia, $\frac{1}{4}$ ounce; water, 3 ounces.

The complete hygrimeter.

In it soak thoroughly a strip of white blotting paper about 6 in. long and $\frac{1}{2}$ in. wide and hang it up to dry. Cut a piece of stout white cardboard 8 in . by 2 in . and fasten the dry blotting paper centrally to it with a touch of glue. Punch a hole in one end of the card and hang it. An approximate weather forecast will be arrived at as follows:-

Rose red, rain; dark red, very moist; bluish red, moist; lavender blue, nearly dry; blue, very dry.

To make a more elaborate job, draw a small margin alongside the blotting paper and of the same length. Tint this margin with water colour paint, starting at one end with blue and working through the above colours to rose red at the other end. To obtain a good match between your colouring and that of the hygrometer, apply gentle heat to the latter, when it will run through its whole range of colours from red to blue. It can be stopped at any stage by removal from the source of heat, and the colour' will remain constant for the brief period occupied in matching it. Against this coloured margin should be written in neatly the significance of the various tints.

WATER SKIS may, vary in size according to the weight of the skier or the purpose for which they are intended, but generally the sizes given will suffice for an average person. The larger sizes should be adopted by beginners or heavier persons who may graduate to the smaller skis as they gain experience in the art of keeping balance. But first a word of warning. Do not attempt water skiing or aquaplaning unless both you and your motor boat pilot can swim and have taken lessons in life saving. This warning may appear out of place here, but the writer would like to make it quite clear that when indulging in this fascinating sport one may quite unexpectedly receive a ducking and this can be at least somewhat disturbing for a beginner skimming over the waves at high speeds.
All the equipment detailed below may be made of hickory', birch or ash which must be of good quality, well seasoned and free from knots, shakes, splits and blemishes. A pair of skis, of the type in Fig. I, suitable for a beginner are made from two planks, each 6 ft . long, 6 in . wide and fin. thick. For the more experienced skier 5 ft . 6 in . long and 5 in . wide would be faster on the bends and turns. After planing all over until smooth, the toe end must be bent up as shown. The bend starts about ift. from the end of the plank and the offset should be about 6 in . Before bending, the plank must be board about $\frac{3}{} \mathrm{in}$. apart as shown in Fig. 2. Put the soft end of the plank between them and fix the free end to a hook in another wall with a rope. Or the free end may be held in place by a pile of bricks.
The ski must be left overnight to ensure that the set is permanent. Fig. 2 shows this

Fig. 3.-The aquaplane.

Sterring rope

soaked in boiling water until soft enough to bend readily. Or the end 15 in. or so may be wrapped over with a few rags and boiling water poured continuously over them until the plank is soft.

Bending Skis

To bend, the end may be fixed in a vice

Fig. 2.-Bending the ski.
double thickness of a car inner tube and fixed to the ski with the foot in place using roundheaded brass screws and large washers. The big toe of the foot should be on the line of balance of the ski.
To obtain a grip, or to produce somé resistance to the water for turning, a kecl is required on each ski. This should be a piece of hickory about ioin. long and in. thick tapering from in. deep at the end to about $1 / 16 \mathrm{in}$. deep at the front. This must be firmly screwed, as shown in Fig. I, to the heel of the ski on the centre of its width. Again use brass screws, but this time use them with countersunk heads.
The skis may now be completed by thoroughly glasspapering all over to remove all roughness and finishing with two or three good coats of outdoor varnish or clear cellulose lacquer.

When a full experience has been gained with these skis, a shorter and wider pair may be made and used for faster turning and stunting. These are to the general design shown in Fig. I, but are only 4 ft . 6 in . long and 7in. wide. The keel is the same as before and again the toe must be on the balance point.

The Single Ski

Much better sport may be had from skiing on a single ski, Slalom style, as this requires more skill in balancing. The two feet are placed one behind the other. The ski itself is generally the same as for double skis, but must be about 5 ft . 6 in . long and 8 in . wide and ${ }_{3}^{3}$ in. thick. The plank must really be a piece of first-class timber, or it may split in use with the possibility of disastrous results. The keel must be somewhat larger than for ordinary skis so that a larger area is available for water resistance on turning. An ample keel could be made from a piece of wood 12 in . long and $\frac{5}{8} \mathrm{in}$. thick tapering from 2 in . deep at the heel to about $\frac{1}{1} \mathrm{in}$. at the toe end.
The toe of the leading foot must be on the balance line of the ski just as before. A further grip for the trailing foot is required and this should be a single loop of double inner tube fixed as indicated with dotted

lines in Fig. 1. It should be positioned about 16 in . from the rear end of the ski. A heavy person should make his ski about 6 ft . long.

Aquaplaning

To make a suitable planing board, first obtain 5 picces of sound tongued-and-grooved timber, each 5 ft . 6 in . to 6 ft . long and 6 in . wide by ${ }_{5}^{5} \mathrm{in}$. thick, and 3 pieces 2 ft .6 in . long by 6 in . wide and ${ }_{8} \mathrm{in}$. thick, plain without tongues and grooves. Make up just like. a barn door as shown in Fig. 3, using I_{4} in. brass countersunk screws. A piece of rope or coconut matting is used to sit upon, it should be not less than 24 in . 30 in . and must be screwed into place. The tow rope is fixed underneath the board with its ends threaded through holes in the board and the cross member with the knots on top. The tow rope must be taken from the bottom as shown in Fig. 3, or the aquaplane will tend to ride under the surface of the water if the rope is taken from the upper side.

The tow line must be fixed centrally on the length of the tow rope so care must be taken to ensure that the connecting loop or ring is central. The stecring rope is, of course, taken from the top of the board down through holes in the board and fixed with the knots underneath.

- 1 BOOKS Received

" Model Yacht Construction and Sailing," by C. E. Bowden. 5s. net. 137 pages. Illustrated. Published by Percival Marshall \& Co. Ltd.
THIS book deals with the whole craft of making and sailing boats and includes notes on fibreglass hull construction and the wing sail. All the chapters are plentifully illustrated and there are many photographs. The section on radio control deals only with commercial transmitters and receivers, but there is something here to interest all model yacht enthusiasts.

Centenary edition of "Scouting for Boys," by Lord Baden-Powell. i2s. 6d. net. 397 pages. Illustrated. Published by C. Arthur Pearson Ltd., Tower House, Southamptoa Street, London, W.C.2.
CCOUTING FOR BOYS " was originally published in fortnightly parts in 1908, and this facsimile edition, produced to mark the centenary of Baden-Powell, includes all these parts specially bound into one volume. During the last 50 years this book has been constantly revised, but the fact that it has changed very little from the original is an indication of the agelessness of Scouting. This is a book to be read and treasured by Scouts the world over.

Shoe Skis and Free

 BoardsFun and aquatics at aqua shows, swimming galas and water sports mectings may be had with shoe skis and free boards as shown in Figs. 4 and 5. When using shoe skis one appears to be almost skimming over the surface of the water without any support at all. More spills and duckings are provided for the spectator's amuscment and the competitor's sporting enjoyment.

To make a pair of shoe skis obtain 2 pieces of hickory about 15 in . $8 \mathrm{in} . \mathrm{K}_{8} \mathrm{in}$. thick. Sandpaper all over and screw a pair of shoes of the sandshoe type to them in the centre using countersunk brass screws and large washers driven into the ski from the inside of the shoc. A disc of rubber must be cemented inside the shoe to cover the screws and prevent the feet being hurt by them. A keel, made from $\frac{l}{2}$ in. square wood 6 in. long, must be screwed to place as shown. The toe end of this keel must be rounded off quite smooth. In use a high speed of travel and a fairly steep angle will require to be kept between the surface of the water and the ski if the skier is not to sink. Quite a heavy spray is sent up when using these shoe skis and it is quite spectacular to watch a skicr being towed over the water with the spray mounting 2 or 3 ft . on either side of him.
Free boards take even more skill to ride properly and to avoid landing in the water since there is nothing to keep the feet fixed to the free board. Fig. 5 shows a free board of snow shoe pattern, but they may be made in almost any shape to suit the whim or fancy of the user. The best material to use is outside plywood about 3 in. thick. Outside plywood is waterproof and is resin bonded, not glued. Water would soon dissolve glue and allow the plywood to peel.

A piece of rope or coconut matting or even a piece of carpet or cork about 15 in. square,
suitably fixed, will assist in obtaining a foothold but it is not absolutely necessary. A circular free board or flying saucer provides ample amusement and is most easy to make. In fact just purchase a circle of resin bonded plywood 3 ft . 6 in . diameter and in. thick, sandpaper and varnish and all is ready for the water.

Tow Ropes and Lines

The only other picces of equipment required are the tow ropes and lines, see Fig. 6. The tow line is best about 75 ft . long although the actual length is not very important. It should be, like all other ropes, of good quality line about in. to Iin. circumference and should for convenience be fitted with a snap hook at cach end. The boat rope should be short to prevent fouling the propeller and it should have a thimble bound into its centre to receive the snap hook on the tow line.
Tow ropes or reins for skiing are made with a hand grip 1 in. diameter $\times 12 \mathrm{in}$. long. The rope being passed through suitable holes in the ends and properly knotted. A thimble should be bound with fine whip-cord into the centre of the rope which will require to be about 5 ft . long before knotting.

For single or Slalom skiing, separate hand grips must be provided each 1 in. diameter and 7 in . long, as shown in Fig. 6, and seven pieces of rope are required for the complete set of reins- 4 off at Ift. 6 in . long, 2 off at 7 ft . long, and one at about ift. gin. long. Either rings or thimbles may be used, properly bound into place.

If the skier cannot make a successful job of the binding and placing of the rings and thimbles, they may be replaced by a double sheet bend, shown in Fig. 7.

Fig. 7.-Double sheet bend.
"Atoms at Work," by John Mander, M.A., 1os. 6d. net. 118 pages. Illustrated. Published by Gcorge Newnes Ltd., Tower House, Southampton Street, W.C.2.

ATOMS, atomic energy and fission are now terms firmly established in our vocabulary. Atomic energy is a complicated and highly scientific subject, but here is a book which makes it plain for the man in the street. It is entirely non-mathematical
and explains in elementary language the facts about energy and life, energy from atoms, the finding, mining, and refining of uranium, reactors, nuclear power, radioisotopes, radiation and materials, and radioactive tracers. It is most entertainingly written and can be understood by everyone, even juniors. It is the first book 10 deal with this topic authoritatively yet at the same time simply.

At Scout Headquarters, on 14t/2 Febnuary, C. Arthur Pearson Lid., original publishers to the Boy Scouts Association, were the hosts to distinguished members of the Movement and Press, when in B.-P.'s roonn, The Hon. Robert Baden-Powell was handed a copy of his grandfather's famous book, ", Scouting for Boys," by the grandson of the original publisher, Mr. Nigel Pearson (left in photograph). The occasion marked the centenary of Lord Baden-Powell, and publication of the
centenary edition.

DIVING rafts have, no doubt, been seen and used by many readers. The design is merely a flat-boarded surface raised slightly above the water. The construction is not difficult and the emphasis is on rigidity and massiveness rather than on a carefully made article.

I had some old and heavy pieces of 6in. x 3 in . wood about 12 ft . long, and these appeared ideal for the main frame and cross members.

As the raft is afloat for several months and is not likely to receive any attention during that period, and as the timber is very little use for other articles after such a spell in the sea, there is no need to plane the surfaces. Provided any old nails are pulled out and any broken strips of wood likely to cause injury are removed there is no need to prepare the timber, and one can go ahead with the jointing prior to bolting the framework together.

The Design

Fig. I illustrates the simple frame, the
joints of which are half lapped. No great accuracy is required; the grooves and cuts were made with a saw and the wood only roughly trimmed with a chisel, to remove ragged edges rather than to make the parts fit correctly. When all the pieces have been so treated holes are drilled and the entire frame bolted securely with in. Whitworth bolts and nuts. When fitting these the wood should be counterbored sufficiently to ensure the heads are beneath the surface of the timber. This makes the later assembly of planks easier and is also a form of safety measure. Some large thick washers are needed, and one under the bolt head and another beneath the nut are useful in preventing the heads from biting deep into the timber; the inclusion of these washers distributes the pressure, and though they also sink a little you can still turn the nut and so make a tight joint (see Fig. 2).

A rigid frame is essential-the sea, of course, administers a severe buffeting on occasions, - but those using the raft usually do more damage than the elements, so include three cross-members as shown in Fig. I and bolt these in the same way. There is no need to groove halfway down the timber,
fitting as in Fig. I overcomes this problem and also preserves the strength of the frame.

There is little point in using brass nuts and bolts even if you can obtain them, because corrosion sets in anyway, and any subsequent dismantling means you must literally chop the wood to free the bolt. Steel bolts and nuts serve just as well and rusting does not matter.
 weaken the frame by cuttinga

Half las both

$1 / 2$ whit nucs a botes $51 / 2$ iong

Fig. 2.-Method of jointing and bolting the frame.

Details for Construction and Installation in Sea or Lake

By K. VERDEN

Space the cross-members to give a gap of 22in. ; this will allow the oil drums to "fit" without difficulty. These are 21 in. long and 14 in . diameter. I used the ro-gallon type for a raft of 12 ft . long $x 5 \mathrm{ft}$. wide, and this is quite adequate.

The Planking

Here again old boards only are required about in. thick. After sawing to length, the rough edge created by the saw is smoothed down to prevent splinters, and then each is nailed in position.

Close-fitting joints are unnecessary-obviously you cannot keep water off the raft and the air-filled oil drums will lift it sufficiently off the water's surface to ensure it remains reasonably "dry" in calm seas. Nails about 3 in. long ensure that the planks cannot be pulled apart.

Oil Drum Assembly

Six of these are required and they are arranged in sets of three each end, as shown in Fig. I. The inch gap between drums and supports does not give them sufficient room to move about and yet enables them to fit easily. Brass bands are bent to fit round each drum in the other direction and these in turn are
nailed to the framework. The material from which these bands are made is not important. I used brass simply because it was available, but steel about in. thick is not difficult to bend and is probably easier to obtain. Drill the bands after bending, a pencil mark where the hole is eventually to appear is sufficient to indicate the position, and once the band is completely drilled it takes but a few minutes to attach it to the frame.

The reason for working in this way is that an assembled raft with drums attached underneath is not the easiest of articles to convey to the seashore. If the drum assembly is left until the beach is reached the complete raft is fairly easily handled and the drums can pack in odd corners of a lorry or trailer.

The Anchor

First of all determine the depth at high water, and the only way to do this is to row out in a boat at that time with a long line and weight-we used a ${ }^{3} \mathrm{in}$. nut tied to a length of string-and lower this over the side until it touches bottom. Allow a few feet because the tides vary, and try to manœuvre the rowing boat to the approximate position you propose to moor the raft because the sea-bed is far from level.
It you fail to carry out this simple instruction the raft will drag its anchors and will either drift away or come inshore so close that you cannot dive from it. If a lake mooring is anticipated you need not worry about it floating away. An extra roft. of chain means it can move very little; do not, however, cut this chain too short.

The anchor is another oil drum. I used only one, but you may find that two are preferable if the sea is rough in your area. A band was wrapped round the centre and distorted badly by some severe blows with a hammer, the idea being to prevent the band from slipping off due to tidal action. Though readers can perhaps think of other methods this proved effective and did not come adrift.
The bung was not, of course, fitted to the drum pouring hole, and to prevent air from being trapped and so reducing the weight in the "anchor" a series of holes was drilled in the ends and sides-a dozen is sufficient about 16 in . diameter.
each rung is half lapped into them. The latter are smoothed, or round timber is used and inserted into holes drilled in the sides. You can, if you wish, further strengthen this ladder by the addition of two bent steel struts as shown in the detailed drawing, but if your site is tidal and the raft is likely to touch bottom, then the latter struts are not practicable and you must make a folding type of ladder. This is accomplished by hinging the top members, and when the ladder does come into contact with the sea bottom it will fold flat and so do no harm. Simple hinges are made from stecl strip about $\frac{1}{8}$ in. thick with a Sin. bolt as a pivot pin, as shown in Fig. 4 . Some care is necessary in negotiating a ladder of this description.

Matting

A layer of thick, coarse matting is nailed to the top surface and this gives an excellent foothold. Old domestic mats may last a season, but they damage easily and there is, of courses litule respect paid to them under such conditions. The type of matting laid on cricket pitches is ideal and there is no need to use new material. Nail this matting to the sides of the raft as shown in Fig. 5, not on the top as there is less risk of protruding nail heads scratching a swimmer as he climbs aboard. Use plenty of nails. You can also attach lengths of rope by

Top board

Assembly

On arriving at the beach the air tanks are fitted sccurely by means of the bands. The bungs, of course, must be in position. You might with advantage braze a metal bung in place instead of relying on the cheap sheet metal type supplied with the drums as this does ensure that water cannot eqter and cause the raft to list.

Once these details are in place and the anchor attached the raft is again set the correct way up and floated to the site. Do not forget that until the spot is reached you should stow the anchor on the deck, otherwise it will sink and make further movement awkward. When in position drop the drum overboard and it will fill and sink in a matter of scconds.
Bolt the ladder in place-not an easy task, but one which you cannot easily accomplish ashore without damaging the rungs and side members. However, if you have assistance with one person on the raft and another in a small boat it does not take many minutes.

When the season ends and the raft is removed to shore once again the procedure

Fig. 5.-Fituing the drums, the rope handholds and the matting.
is reversed. I found the process of lifting the anchor a little difficult, but it was finally accomplished in this manner.
A length of stout rope is towed behind a dinghy-one end is held ashore while the rope is paid out over the stern. The boat encircles the raft and comes back to the person holding the end. The rope is now round the anchor chain and two or three people can haul the anchor along the sea-bed to shore bringing the raft with it. Once the latter grounds it becomes much casier to pull the chain underneath, or if you can tip it slightly, then you might unscrew the nut and bolt if two spanners are applied and not too much corrosion has taken place.
If you cannot free the anchor in this way saw through the wood into the hole in the cross brace and let the chain go. It means a new brace next year, but major overhauls are necded with this type of equipnent anyway.

PRACTICAL MOTORIST AND MOTOR CYCLIST

Edited by F. J. CAMM May Issue Now On Sale
PRINCIPAL CONTENTS: Piston Ring Wear ; Curing Leaky Bodywork; Oil Pressure Indications; Correct Clearances; Overhauling the Hillman " 14 "; The Manumatic Two Pedal Transmission ; Make Your Own Car Hood; A Simple Electric Tachometer ; Standard " 12 " and " 12 " de Luxe ; The Everyman's Car; Overhauling the B.S.A. Three Wheeler; Garage Mechanic's Diary; Our Experts Advise and other interesting articles.

Russian satellite, like its American counterstage vehicle with no fins. Guidance and stability are to be attained by
 Orbit Details

part, is being designed for the measurement of pressure and temperature as well as for the observations of cosmic rays, micrometeorites, the electromagnetic field and solar radiation.

Both countries have agreed that the same or similar telemetering systems will be used in the satellites to transmit the information back to th: earth. Common equipment is to be installed round the earth for keeping watch on all satellites as they move in their Keplerian elliptical orbits in outer space.

The Americans confirmed at the Barcelona conference that "up to 12 satellites" may be launched during the year. Dr. F. Whipple, a leading figure in the American satellite team and director of the Astrophysical Observatory of the Smithsonian Institution, is committed to make one successful satellite flight at least. The first launch will almost certainly take place before January, 1957.
The first satellite will be
launched into an orbit lying between 40 deg . on either side of the Equator (see Practical Mechanics, November, 1955 and April, 1957). The tracking is to be both optical and by radio. The optical camera is of the Schmidt pattern, described Practical Mechanics, April, 1953. According to Dr. Whipple "it will be able to track a tennis ball in a egiven orbit." The camera has an aperture of 20 in . A p proximately a dozen cameras are to be
using a gimballed rocket motor ing he 5 in 45 in . and a take-off gross weight of $22,600 \mathrm{lb}$. The first stage is being built by the famous Glenn L. Martin Company and it will be powered by a rocket motor using liquid oxygen and petrol as propellants

The second stage uses white fuming nitric acid and unsymmetrical dimethyl-hydrazine. The motor in the second stage is gimballed as for stage No. 1 .

The third stage is a solid-propellant rocket and this will contain the $20 i n$. spherical satellite, which is shielded by a cone to reduce and, if possible, prevent aerodynanic heating.

The Earth Satellite as designed by Dr. Herbert R. Pfister is shown in Fig. I. This model, now on display in the Hayden Planetarium, New York, is 18 in . in diameter and weighs 25 lb . "Exact" figures quoted are not in full agreement but to aid the imagination it is not far from fact to say that any one of the satellites will have a speed in orbit of $18,000 \mathrm{~m} . \mathrm{p} . \mathrm{h} ., 300$ miles above the earth and will circle the earth for 15 days to a year before losing speed and disintegrating in the more dense atmosphere as it spirals inward

The satellite will orbit the earth once every 90 minutes. The earth rotates "under" the satellite orbit and the orbit is displaced westward some 20 deg. during each $90-$ minute revolution. The satellite will travel over a band from 35 to 45 deg. south latitude to the same nortb latitude.

The intended orbital distance of 300 miles above the earth may not be attained. Slight accumulated errors of height, angle and velocity will transpire to give an elliptical orbit having a nearest approach of not less than 200 miles and a made and each one is reputed to cost $\$ 70,000$ Very generously the Americans have offered half of the cameras to countries along the first orbit but outside the Western Hemisphere.

A "Bulletin for Visual Observers" is obtainable from Dr. Fred Whipple, Director, Smithsonian Astrophysical Observatory. 60, Garden Street, Cambridge, 38, Mass., U.S.A. This might be of interest to any of the readers of P.M. living in areas where the satellites will be visible.
furthest ex tension of not more than 1,500 miles.
For a $300-$ mile distant orbit of circular form the life of the satellite is calculated to be approximately one year. For a 200-mile distant orbit, 15 days, for roo miles, less than one hour.

Satellite Construction

The satellite is to be a highly polished Fig. 1.-The 18 in. diameter earth satellite designed by Herbert R. Pfister and which is on display at the Haydn Planetarium, New York.
sphere of 20 in . diameter, Weighing $21 \frac{1}{2} \mathrm{lb}$. Mr. Robert L. Stedfeld gives the following information.

The shell of the satellite will account for half the all-up weight. The remaining rolb. will include a radio tracking oscillator and transmitter, telemetering equipment, antennas and instrumentation.

The shell, per se, will be of magnesium metal formed into two hemispheres. The first shell has been spun from AZi3B magnesium alloy of 0.064 in . thickness. The outer surface is to be contour machined and highly polished to a 4 micro-inch finish, to aid optical tracking when it is in its orbit.

The Instruments

A minitrack radio tracking system will be incorporated.

Miniaturised instruments have been developed.
(a) A pressure gauge comprising a bel-lows-actuated potentiometer to determine whether a meteorite punctures the satellite's skin. With a range of 15 p.s.i. the cylindrical gauge is only rin. long, im . in diameter and weighs $I_{2}^{\prime} \mathrm{OZ}$.
(b) An erosion gauge which is a semitransparent Nichrome ribbon evaporated on glass is placed on to the satellite s skin. It measures erosion caused by, inter alia, dust. As the ribbon wears away its resistance. increases.
(c) A temperature gauge containing semiconductor thermisters, able to measure changes in remperature from -140 deg. C to +150 deg . C.
(d) A Submetcoric Collision Microphone, which is a very small microphone behind a sounding diaphragm on the satellite's surface. A memory device stores the information until it can be transmitted.
(c) Lyman-Alpha equipment, which is used to detect and transmit ionization produced by far ultra-violet solar flare radiation.

Meteor Penctration

The question of meteor penetration of the satellite skin has been discussed by Dr. Ovenden. He makes the following observations. "Some 75,000,000 meteors enter the earth's atmosphere every day. With radar we can observe small meteors, down to a few tenths of a millimetre in diameter. All
these observations (plus our knowledge of shooting stars) lead us to a law of meteor distribution. It is a simple law. It says that small meteors contribute just as much matter to the total meteor population as do large meteors, their smaller mass being just compensated by their larger numbers. Using this law we can estimate the number of meteors smaller than those that we can detect directly. According to these figures a small satellite with a skin about orin. thick and a diameter of about 3 ft . should be punctured by a small meteor once every few months."
If the satellite gets into the 300 -miles distant orbit the pressure gauge and Submeteoric Collision Microphone should not be unduly busy.

Analysis of Future Trends

Prior to the establishment of a manned satellite, the work to be achieved in the coming experiments is of inestimable value. The environmental hazards of cosmic radiation, meteors, solar heat (and the absence of it) and weightlessness will be able to be calculated from precise information.
The second problem for a manned satellite is the one of safe return to the earth's surface. The relative speed of five miles per second between the orbiting vehicle and the earth's surface must be brought to zero. Obviously this will be done by allowing the satellite to transfer its energy to the atmosphere. But the process nust be controlled with precision lest the satellite absorbs too much energy in the form of heat.

Mr. T. R. F. Nonweiler has addressed himself to the study of skin heating, and in a paper presented to the International Astronautical Congress entitled "Skin Heating During Re-entry of Satellite Vehicles to the Atmosphere" he makes the following observations. Particular attention to the flight plan and overall design can greatly simplify the problem of kinetic heating. Nose temperatures need not be greater than 1,000 deg. C. The greater the skin thickness the lower would be the maximum temperature, but in practice there would always be a limit to the allowab.ce thickness. The emissivity of the outer
surfaces will need to be made as high as possible.

Moon Satellites

The next logical step after the small satellites have given up their data will be the setting up of Moon satellites. Mr. R. W. Buchheim has calculated their orbits. For a stable retrograde orbit (opposite in direction to the Earth/Moon system) an initial accuracy of altitude and ve!ocity 20 times greater than that required by the Vanguard project is recessary. For a direct orbit, that is one in the same direction of rotation as the Earth/Moon system, this accuracy would again need to be doubled. Mr. Buchheim has shown that satellites of visual magnitude io to 6 would have to be 132 ft . to 832 ft . dia., and assuming the skin to be made of aluminium foil 0.0001 in. thick the weight would be 791b, to 3,140lb. A rocket vehicle with an overall weight of about $1,000,000 \mathrm{lb}$. would be needed to project a soolb. pay-load from the earth on to a trajectory of the type required.

It is a sobering thought in the dawn of the Geophysical Year to record that the prophetic dreamers-Ziolkovsky, 1903, in. his "The Exploration of Cosmic Space by Reaction Machines," Goddard, 1919, in his "A Method of Reaching Extreme Altitudes" and Oberth, 1923, in his "The Rocket into Interplanctary Space " had the main concepts fully clear in their minds. The main concepts of fundamental character propounded were (and still are):
(a) Escape from the earth is possible by the application of a moderate acceleration over a substantial period of time.
(b) Such acceleration can be produced in vacuums by a rocket.
(c) The rocket must have high thermal efficiency, i.e., high velocity of ejected matter, and consist mainly of propellant material.
(d) High thermal efficiency is to be obtained most readily from the chemical combustion of liquid fuel.

It is clear that man is still a long way technically from desporting himself in space. But even the most ardent critics of space travel have to admit that the sounding board is now ready. It is with great excitement that we await the correlated data from the midget spheres.

Painting from a Balloon
FROM France comes news of a novel way of painting ceilings of large halls and cupolas or naves of churches; it was instituted by a Paris firm of decorators for painting the cupola of the new church of Yvetot. The idea is of a small platform fixed on the top of a balloon inflated with hydrogen. The painter is hoisted to the roof by pulley and cable and lowered into the 4 ft . square platform. He can be moved from place to place by a man on the ground holding a guide rope.

New Magnetic Observatory

HARTLAND has been chosen for the site of a new Magnetic Observatory (erected as part of the Royal Greenwich Observatory), because artificial magnetic disturbances in the vicinity are few. Electrification of the railways and the spread of industry has caused the Observatory to be moved twice, first from Greenwich to Abinger in Surrey, and now to Hartland in Devon.

Instruments are being installed that will
record continuously fluctuations in the direction and intensity of the Earth's magnetic field. These variations are closely associated with "magnetic storms," auroral displays and phenomena occurring on the Sun.

Water-repelling Treatment for Masonry

ANEW treatment which makes brickwork and masonry completely water-repellent has been perfected in the Evode, Ltd., Laboratories, Common Road, Stafford. It is a colourless solution based on a silicone resin and is called Evosil. Onc treatment, it is claimed, will last many years, but the material is not intended to remedy existing defects, such as bad jointing, cracks, etc.

Weather Charts by Radio

AMUFAX Chart Rccorder, for displaying facsimile picture transmissions of weather charts, is now on exhibition in the Science Museum.

The recorder, which has been Icnt by the makers, Muirhead and Co. Ltd., reproduces a whole chart in 35 minutes or less, depending on the speed setting, and throughout the recording the progressively growing chart is visible on a flat platen.
The exhibit can be shown in operation and will normally be used to record the transmissions broadcast from Dunstable Mctcorological Station at 12 .10 hours and 16.50 hours.

Bridge Has Ray Warning

CO many accidents have occurred to high vehicles trying to pass under a gft.-high bridge in Burton-on-Trent that a special ray warning device has been installed.

Nothing happens so long as the ray is unbroken, but should a vehicle over gft. high cross it, a large illuminated sign will appear, saying, "Stop, you cannot pass under bridge," a klaxon horn will sound, and a red light will be directed towards the vehicle.

Germs Survive so Years

WHEN bacteriologists made tests of the soil in the Antarctic last year, they found tetanus germs left by the horses in Captain Scott's expedition 50 years ago. They had lain dormant for half a century.

New American Aircraft

THE Bell X-2 supersonic aircraft is powered by the first throttleable rocket engine to be developed in the U.S. and has flown at over 1,900 m.p.h. (faster than the muzzle velocity of many projectiles !).

To avoid serious loss of strength in the airframe due to heat build-up caused by air friction, the plane was fabricated with a skin of heat-resistant stainless steel on its wings and tail.

Fig. 2.-A rocket live being fired from the Wolf Rock Lighthouse to a Trinity House relief launch during a gale.
should have become virtually the world's. standard line-throwing equipment. Nothing has been more successful in cheating the sea of its prey. Nothing has a finer record of saved lives to its credit. Stories of the use of rocket apparatus have a thrill and dramatic quality that is hard to beat. One of these comes from the National Safety Association of Iceland.

The Apparatus in Use

A fierce gale howled along that treacherous iron-bound coast. Great seas roared out of the murk in never-ceasing thunder to break in a smother of white foam all along the wind-swept shore. The watchers of the Safety Association were on the alert. One of them reported on a trawler which was in distress and finally ran aground 140 yards from the shore, in a most difficult position and some seven miles from the nearest habitation.

Obviously no rescue boat could live, even if a boat could be obtained, in that heaving maelstrom of waters. The only hope was to get a line aboard and word was sent out for the rocket apparatus of the Association.

The hardy men who formed that rocket squad had the greatest difficulty in reaching the scene of the disaster, even with their light equipment. They found the wreck in

Fig. 3.- A lifecoat ihrows a line of life to a zeessel in distress.

its rudder in the North Atlantic. A Force 8 gale with a heavy sea was driving over the scene as ancther vessel with its stern against the wind manceuvred towards the helpless ship. Slowly, surely, the rescuer bore down upon the hulk until the distance between the two on that heaving waste of water was some 200 metres. Then the captain snapped "Fire!" and the rocket from the Schermuly equipment carried by the helpless vessel landed on the forecastle of the rescuer with the line lying over the ship from stern to bow. It would be hard to say more for the accuracy and reliability

Fig. 5 (Right).The Thames police help a crew in distress. A drawing of an actual incident at Erith.

Schermuly apparatus. The Schermuly Pistol Rocket Apparatus is used by our Royal Navy and the navies of several other countries, as well as being carried in all British ships and a large proportion of the ships of some 23 other nations. It is used by the Coast-

Fig. 4 (Left).-A coastguard using the Schermuly pistol.

Incidentally, the manufacturers of the equipment produced the grapnel rocket line throwers which were used by the allied troops in scaling the cliffs of Normandy during the D-Day landings. They have just produced another equipment which is lighter, stronger and more compact than anything yet evolved. They call "it the "International" Set. It employs "Viking", nylon sheathed line, specially developed for this work.

The line-throwing idea of British seaman William Schermuly has become accepted the world over. He fought for it for over 30 years and died 19 days after the Bill, which made it compulsory on British ships, came into force. Thousands living to-day owe their lives to the dogged perseverance and ingenuity of its originator whose son, Captain Schermuly, directs its development to-day. This article was reprinted from "Rope Talks" by permission of the Editor.
The photographs are by courtesy of Schermuly Pistol Rocket Apparatus Ltd.

Fig. 7.-The Schermuly in use by the N.F.S.

THE traditional type of can opener, of the type shown at C in Fig. I., has probably been responsible for more lacerated fingers than any other item in household use.

The makers of some rectangular cans, such as those used for sardines and corned beef,

CAM OPPEMERS

A Discussion on the Types Available and Using the Empty Cans By F. Daniels

comes with the tin. This type of key, T-shaped with a slot in the stem, as illustrated at A in Fig. I, is familiar enough, but for a few pence one can buy a much better version, as illustrated at \mathbf{B} in Fig. I. It gives much more leverage, is therefore easier on the fingers, and it is not liable to break. The slot does not run centrally down the stem but runs diagonally out, so that it is open at one end; this enables the

Fig. 1.- A selection of can openers. $A-a$ sardine tin key. $B-A$ larger and improved version. C-The tradutional can opener. D-Serrated wheel type. E-An improred design.
provide a small projecting, tag at one end of the lid, or on a "belt" round the tin; and sometimes a key to operate on the tag

key to be drawn out of the coiled-up lid or belt after it has done its job.

Even with this type of key, however, success is by no means certain, and in any case it is really tetter to have the entire lid removed from a sardine tin, and if the small end is cut out of a corned-beef tin, in addition to taking off the other end or the "belt," it enables the contents of the tin to be pushed out whole and without any bother.

A Different Principle

What is really required, then, is some tool which will cut the end out of any and every shape of can, cleanly an 1 quickly, and without danger to the operator's fingers or temper. D in Fig. I is rather interesting as an early example of an entirely new line of approach to the problem. It works on the principle, which still holds the field, of using a serrated wheel, working on the lip of the can, to rotate the can against the pressure of a cutting wheel, as shown in Fig. 2 and 3; but it has three weaknesses:
(i) It needs three hands-one to hold the handle (ve:tically), a second to turn the wing nut, and a third to hold the tin!
(2) The wing nut gives insufficient leverage, and considerable strength of thumb and fingers is therefore needed to operate the tool.
(3) The cutting edge of the cutting wheel is too far from the edge of the tin to have an efficient "scissors" action on the lid of the tin.

The Modern Answer

There are on the market to-day several makes of can opener, broadly similar in general layout to E in Fig. I, which have met the first of these weaknesses by being

Fig. 3.-Enlargement of detail inside circle in Fig. 2. The gap between cutting wheel and serated wheel is so wide that the can lid bents instead of shearing.
designed for fixing to a wall, door, or other vertical surface, and which can then be provided with a good, long operating handle, which gets over the second weakness. The third weakness rendered the opener useless as can be seen in Fig. 3, and some slightly differing remedies are worth studying.
The basic difficuity about getting a good "scissors" action between the cutting wheel and the serrated wheel is the fact that the cutting wheel has to work inside the curve of the edge of the can, and reach down about $5 / 32 \mathrm{in}$. to penetrate and cut the lid, as shown in Fig. 4. This shows the gap that must exist between a vertical cutting edge of $15 / 16 \mathrm{in}$. diameter, as used on opener D, if it is to work insider a corner of $\frac{1}{2}$ in. radius. The dotted lines show how the gap can be reduced simply by tilting the cutting edge, and reduced again by decreasing the diameter of the cutting edge itself.

Fig. 5 show's the working parts of can

Fig. 4. shozving howe the distance of the cutting edge from the serrated wheel, when zoorking roullda corner of $\frac{1}{2} \mathrm{in}$. radius can be reduced by inclining the cutter as at A and by reducing the dia-
meter of the cutter as at B. The geometry has been omitted.
opener E (Fig. I). A lever rotates the bush, through which the spindle of the serrated wheel passes eccentrically, and this lowers the serrated wheel, so that the lip of the tin can be put between the two wheels. Returning the lever raises the can into the cutting position, as seen in Fig. 6, forcing the cutting wheel through the lid of the

can (ready for cutting to start) at the end of its stroke. The fact that in this and other openers the axis of the cutting wheel is set out of parallel with that of the serrated wheel in the horizontal plane, as well as in the vertical plane, is being ignored for present purposes.
The particular opener illustrated at E in Fig. I and in Fig. 5, is believed to have been off the market for a good number of years, but one which is superficially identical is available. An important difference between the two is that instead of the cutting wheel being mounted on a plain spindle it is mounted on a threaded one, which can be turned by screwdriver after loosening a locknut, the object being to adjust the gap between curting wheel and serrated wheel if this becomes necessary. Experience shows that adjustment does become necessary, possibly as a result of warping of the diecast body of the opener, and the facility is therefore really essential. This type of opener is simple and relatively inexpensive and does its job.

Other models are constructed of sheet steel and are more expensive but embody additional features. In the first place the bracket is more elaborate, so that after use the opener can be folded back against the wall, although it can still be taken off its bracket entirely for cleaning or for separate storage if desired. Then again, a feature of pioneer model D (Fig. Y) is retained, in that the cutting wheel is linked by gearing to the serrated wheel and is, therefore, positively driven, instead of being allowed to "float." This probably makes for better results when the edge of the cutting wheel gets chipped, so that replacement of the wheel can be delayed.
The arrangements for getting a good "scissors" action show two interesting alternatives to the scheme dealt with in Figs. 5 and 6. The one shown in Fig. 7 uses a wheel with its longer and flatter bevel outwards. This seems designed to have the cffect of pressing the cutting wheel rather more inwards (i.e., towards the serrated wheel) as it cuts.

An arrangement which takes that idea a step farther is shown in Fig. 8. In this case it is the cutting wheel, instead of the serrated wheel, which is mounted on a movable spindle, and the movement is at right angles to the spindle of the cutting wheel, instead of in a vertical direction. This means that the cutting wheel is continuously self-adjusting. When pulled down to start a cut it ends up as close to the edge of the tin as is possible, and is maintained
in that position by the reaction of the tin lid to the cut.
One model has a magnet on it, for the purpose of lifting off the lid of the can when it has been cut round. This brings out the point that whereas an ordinary (hand) opener raises the lid as it cuts (or gashes!), the wall-mounted types depress it, and a magnet is certainly the easiest way to lift it out; any odd magnet tied by a short piece of string to the bracket of the opener would serve.

Using the Empty Tins

So far this subject has been viewed purely from the housewife's point of view, with the idea of doing an awkward job quickly and neatly. There is, however, another aspect of the matter, in that the cut edge of the tin itself is so neatly smoothed down that it becomes practicable to wash the tins

Fig. 6.-Enlarged detail from Fig. 5, showing how cut edge of lid is flattened against side of can.
when empty, and put them to other uses, without the risk of torn fingers. They could be used for holding small" working stocks" of paint. While not much use for long-term storage, as they rust fairly readily, they are very handy for temporary storage, e.g., for holding screws and small parts when dismantling something which is to be reassembled fairly soon. Flat oval tins come in handy for holding small quantities of liquid for which a broad brush is to be used, while if one is applying a thing like

Fig. 7.-This arrangement probably gives a slight undercutting effect to neaten the cut edge of the lid.

Fig. 8.-In this case one voould expect the neatening effect on the cut edge of the lid to be cven more pronounced.
tar it is better to be able to use a tin and then throw it away, instead of having to use a paint kettle and then clean it out!
Then there is the matter of disposal of slack coal. One cannot afford to waste it. Real use can be made of it by filling it into a tin, which is placed on the fire-stool when lighting the fire, as shown in Fig. 9. As the fire burns up, the slack will give off gas which burns, and will ultimately leave a lump of coke, which can be tipped out (using tongs) on to the fire to burn normally.

Fig. 9-Tin of slack coal placed in five to be coked and burnt.

Sharpening Plane Irons

BY L. R. MORTIMER

$\mathrm{I}^{\mathrm{T}}$$T$ is difficult to get a keen edge on a plane iron, as it takes a good deal of practice to maintain the correct angle throughout the stroke when sharpening. To overcome this, Stanley Planes Ltd. produce a useful gadget which automatically ensures the correct angle when grinding or honing. The only disadvantage of this otherwise very useful tool is that only half the stone can be used since the gadget consists of a wheel that runs on its surface. To avoid this, a box can be made to hold the stone and also a wood block which need be only half the length of the stone. Hardwood should be used, otherwise the wheel soon wears a groove, or, alternatively, a piece of brass can be inserted (e.g., a pifce of "runner railway " curtain rod can be used, the edges of which fit into grooves cut in the top of the wood block). To ensure smooth running, the block should abut tightly against the stone ; this can be done by making the block slightly longer at the top than at the bottom
and also by the insertion of a screw at the end of the box for tightening up. If a brass run is used, it should overlap by about $1 / 32 \mathrm{in}$. The hole for the screw should be slightly smaller than the shank for the screw, which will then tap its own thread. The total length of stone and block should be $\frac{1}{4} \mathrm{in}$. less than the interior of the box so that the stone can be easily extracted. A hinged cover completes the job.

Extending the carborundum stone to increase its efficiency and leng then its life.

The Bending of the Tubing is Carried Out on a Simple Bending Wheel Which is Also Described in This Instructive Article

THERE is nothing original about this design, and at the same time nothing complicated, but to the amateur acquainted with metal bending there is one apparently difficult operation which needs a little thought in order to effect a satisfactory conclusion.
Fig. 1 illustrates the assembly of this stool.
Two curved tubes form the legs and these are joined at the top by another pair of straight tubes. On these is secured the seat-a simple wood affair with only a small amount of packing underneath a Tygan covering.
Incidentally, these legs are not perfectly vertical-they slope outwards towards the feet about 2 in . in both directions. By this is meant that the spacing increases both between each pair of feet at either end and between each pair of legs. This tapering gives the stool a nicer appearance than if vertical legs were used and the additional spacing of the feet ensures a greater stability to what, after all, seems rather a flimsy picce of furniture.
Having reviewed the design, the next step is to decide on what material to use for the legs,

By K. VERDEN
and this will depend on the finish you wish to finally attain.
For instance, if a plated finish is desired, then copper tubing is the obvious choice because plating is much more effective on this metal than any other. Though the initial cost is greater, the plating does not peel in the manner which I feel all readers of these notes are well aware.
If you are satisfied with a painted finish, then bright steel tubes are used because the paint adheres to these just as well as the copper variety.
to take half the tube diameter-in other words the peripiery is completely supported and cannot distort. So I advise those with a lathe to carefully make a tool for these grooves, and just in case some feel a little dubious over their ability to grind such a member, let me explain that if you possess a tool holder similar to that shown at Fig. 3 there is no need to grind the radius. The tool is mercly a slice turned on from a bar of high speed or cast steel to 㩆. diameter. Silver stect of this diameter, if you have any, will also make a good tool, so turn the clearance angle as I have shown. Heat to a bright red colour and plunge into water.

Fig. 1. (Left)-An assembly drazving of the stool.

Fig. 2. (Above)The rollers for hending the tubes.

You may find that with such a broad cut, chatter is set up, especially if your machine is a small one, so rough turn the form before applying the tool and run the lathe slowly during the process.

Experimental Bending

Some readers have never bent a piece of tube before, so now is the time to carry out one or two brief experiments and also gain a little experience prior to bending the tubes for this stool.

When you are satisfied that the result of

Fig. 4.-Brief sketches showing the tube in position ready for bending.
your efforts will produce a perfect bend, cut two pieces to length according to the desired height of your stool. This length is calculated assuming a 3 in . radius through the centre of a tube; thus each bend requires $\frac{\pi \times \mathbf{D}}{4}$, where τ is $3.14, \mathrm{D}$ is the diameter, or 6in. in this case, and 4 is equal to a quarter of the circumference. Thus, $\frac{3.14 \times 6}{4}=4.71$, say 43 in .

The two vertical legs equal 15 in . and the top piece 5 in., so the total length of each tube is $4 \frac{3}{4}+4 \frac{3}{4}+15+15+5=4412 \mathrm{in}$. If you lengthen or' shorten the legs and keep the same radii, then a small adjustment to the 15 in . figures will produce the dimension for you.

Measure off the height of 15 in . on one tube and make a chalk mark to indicate where this occurs. Make another $14 \frac{1}{2} \mathrm{in}$. away and both these marks show where you must commence the bends.

Fig. 4 shows the tube in position ready for the initial operation and the final bend, and I believe the notes on the drawing are sufficient to explain the set-up.

Pull the handle round carefully and fairly slowly-at least do not make a quick grab shall we say, but a steady pull results in a perfect bend in three or four seconds.

Next move the tube to second position and again repeat the process, setting the chalk mark on the wheel centre line. Treat the orther tube in the same way and check to sec they have both the same leg length. You may find the tubes stretch a little or perhaps the setting is not quite so accurate as you may have imagined, but an eighth or so is of no consequence and you can file this off when the tubes are welded or brazed.

The Second Method

For those readers who do not possess a lathe, an easy way out of this difficulty is to take the tubes already cut to the length of 45 in. along to a plumber and ask him to bend them for you for a fee. This takes only a few minutes as he possesses suitable handrollers for this type of material, and half-acrown or so should cover the labour involved. Incidentally, if you care to examine these rollers while watching the tubes being bent, you can observe that they are similar in principle to the gadget I have drawn in these notes.

Welding the Tubes

If steel tubes are employed for this stool, welding is necessary, so cut the cross-members to a curved shape to fit the adjacent tube, as I show in the enlarged sketch. A half-round file soon performs this work for you, and when both ends are correct they are ready for
welding. One item you should pay attention to concerns the position of these formed endsmake sure they are both "the same way round," in a manner of speaking, and that one is not filed at right-angles to the other.

Again, see that both tubes are the same length, otherwise when welding is completed the frame will look a little odd, so check them

Fig. 3.-A 1001 holder which a lathe user can make for turnins poofiles similar to that needed for the machining of these grooves in the rolls.
carefully with a steel rule and endeavour to maintain an accuracy of $\pm 1 / 32$ in.

If you use copper tubes then brazing instead of welding is specified; both methods, of course, give a strong joint which will stand up to all normal requirements.
The local garage will readily weld or braze these pieces together," but to ensure they do

Fig. 5.- A cross-section through the seat illustrating the method used for attaching it to the frame.
not have the legs at different angles, make them a stiff cardboard template and they can set the second leg properly after welding the first nember to the cross-bar.

The Seat

The seat is made from a wood and plywood frame and is secured to the frame with the aid of four woodscrews passing through the tubes, as indicated in the cross-sectional sketch at Fig. 5. Half lap the frame and screw the plywood to the lower face.
One of the best materials for this type of scat is two thicknesses of coloured sponge rubber sheeting which can be purchased quite cheaply-one sheet making the two layers easily. Cut them the same size as the plywood and cover over with Tygan or other suitable material, preferably one with a plastic base, in view of the damp conditions this stool encounters.

For the same reason use only brass screws and make sure when painting that the surface of steel tubes is completely covered.

Painting

If any rust is present on the tubes, obviously you must remove this before commencing to paint, so apply some smooth emery cloth until a bright surface results. I would still perform. this simple task even if the metal is bright because I believe the application of emery cloth lightly scratches the surface and so provides a "kcy" for the undercoating.
Apply two coats of aluminium paint or other suitable primer and then add the top coat of the desired colour.
If plating is preferred this again is a process which the reader must send to a firm who specialise in this type of work, and as this means further expense this, I am afraid, is one of the reasons why I suggest you paint the legs rather than have them plated.

Conclusion

The rubber ferrules on the bottom of these feet are for protection against scratching either the bathroom linoleum or rubber flooring, and you can purchase them usually from a shop that deals in walking sticks. Alternatively, it does not take very long to make four from a thick piece of hard rubber-cutting it down to fit into the hole of each tube tightly. About $\frac{3}{8} \mathrm{in}$. protruding is sufficient, and if they are smeared with Bostik before insertion, then they should never pull out.

One point I forgot to mention regarding the frame is the removal of excess welding prior to the painting operation. Somelimes this is very hard and will soon ruin a new file, so use your old and partly worn members instead. If, however, you possess a portable hand grinding wheel, apply this carefully round the edges, blending them until both tubes appear to run into each other.

If this welding material stands out prominently through the paint, it gives an unsightly appearance.
Half-a-dozen drawing pins with small heads are useful for ho!ding the sponge rubber in place while the covering is tacked to the wooden frame. Leave them there, as they do not create any hollows in the padding.

TTHIS propagator has been in use for a full season and is now in its second. It can be raised to about 20 deg. above the greenhouse temperature and is easily controlled; it keeps a very level temperature, more level than the greenhouse itself.
The apparatus consists of a frame, open top and bottom, which is placed on the staging (with a loose bottom of any sort under it) and is closed by three sheets of standard cloche glass lying loose on top (see Fig. I). The two short sides are cut so as to give the glass a slope of about one in ro, which allows the water to run to the bottom

This Article was Received from S. Moxiey in Reply to a Request in Our "Information Sought" Column
nails along two sides to make winding the wire easy (see Fig. 2) Three 2 Ift . lengths of wire were used so as to give three different heats. One wire was wound over the frame to give a fairly equal distribution of heat and then a pair of wires together wound to give double heat. The terminals were arranged so that all three wires could be connected to obtain the highest heat.

With all three wires the load is about 20 watts, but full load is seldom needed; the cost is very small, it takes several days to use i kilowatt.

The body frame dimensions were regulated by the width of the bench and the sizes of

side, or outs:de if the glass is tipped for ventilation.

The electric heating element is fed from an 8 -volt transformer and the wire used is a brown plastic covered iron wire sold at a well-known departmental store in the garden section for IS. 6d. a coil. It was found by experiment that about $2 I \mathrm{ft}$. of this wire connected across the terminals of the transformer gave a sufficient heat, and would blow a 2 -amp. fuse wire in the circuit but would not blow a 5 -amp. fuse wire.

Heater Element

A loose frame to lie inside the propagator was made from roofing lath, studded with Rooting lath

Fig. 2.-The heater element.
Fig. 1.-Detaits of the frame.

Fig. 4.-The terminal panel. Distance pieces are not shown.
cloche glass available. One-inch wood was used, treated with green Cuprinol.

In use, the heater element is placed loosely in the bottom of the propagator with about rin. depth of sand below it. Over this is enough peat moss (about in.) to bury the wire and on top of this the seedboxes are placed. Peat moss can be dribbled down between the boxes, but this is not essential. Ventilation is arranged by sliding the glasses apart so as to leave narrow gaps, or by tilting the lower ends with pieces of wood, which has the advantage that water runs down and drips outside.

The Terminal Panel

The best position for the terminals is at one side so that they escape the drip of condensed moisture from the glass. One warning: do not place terminals in the wooden sides of the box, with the wires to the frame connected inside and the wires from the transformer outside. The current is heavy though the voltage is small, and a bad connection at the terminal can heat the whole terminal so hot as to char the woodwork from inside to outside. Bring the frame wires out through ample holes in the sides and mount the terminals on a strip of insulating material fixed an inch or so
with such a propagator, but not mains voltage. The advantage of the lower voltage is safety where water is lound to be slopping about. For 24 volts the wires (unless of another kind) would have to be 63 ft . long. For a smaller size propagator (half-size) a 5-volt, 3 -amp. transformer should be sufficient. A damp-proof transformer made for the job is ideal, but not necessary for experimental purposes, but if an ordinary transformer is used it should be boxed and damp-proofed. For 5 volts the wires would be 13 ft . long. Details of the circuit are given in Fig. 3.

FOR THE MODEL MAKER

THE MODEL AEROPLANE HANDBOOK

Construction and Principles of all Types 12/6 (13/- by post)

MODEL BOAT BUILDING

Constructional details of Model Sailing and Power Boats 5/- (5/6 by post)
From George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C. 2

TIMEKEEPING has come a long way since man kept track of the hours by observing natural actions of known duration: the movement of the sun, moon and stars in their orbits; the consumption of certain substances by fire; the measured flow of water and sand

Undoubtedly the first, and basic, device for telling time was a primitive form of sundial which ultilised the movement of shadows caused by the sun. Refinements of this device prevailed for centuries and are still in limited use to-day.

But the sundial depended on clear sunny weather. It did not tell time at night or on cloady days. So early man, using the sundial as a measure, established the burning rate of ropes and rude candles and then knotted or marked them. Then, as they burned, they showed the passage of hours in the night.

Water Clocks

As civilisation advanced, so did the methods of telling time. The first recorded instance of time-telling by measured flow occurred in China over 4,000 years ago. The Yellow Emperor, Hwangti, invented a water clock that was a rare combination of ingenuity, simplicity and efficiency. It consisted merely of a pierced brass bowl floating in a basin of water. Hours were calculated by the amount of time it took the bowl to submerge

The $=$ Mew $=$ Elerch

A Brief History of Timekeeping and a Description

Use of a Spring

During the Crusades, clumsy mechanical time contrivances, operated by weights, were brought to Europe from the East. These, however, were totally unreliable and were merely curiosities and playthings for the nobility.

Then, starting in 1480 , all previous timekeeping devices were challenged and superseded by the invention of a Nuremburg locksmith, Peter Henlein, who constructed a portable, mechanical, spring-driven timetimepiece.

This mechanism and its later counterparts were known, because of their shape, as "Nuremberg Eggs," (see Fig. I). They were made of iron, enormously heavy, with a single hand to tell the hours-and they were not very accurate. Because of their great weight, the wealthy used "bearers" who consulted the dial and spoke the time when asked to do so. Nevertheless, they were the first all-weather, independent, portable time-measuring instruments to appear, and were the ancestors of all horological devices developed from the fifteenth century to this one. It should be noted, too, that although the "Nuremberg Eggs" paved the way for vast improvements in clocks, they were, themselves, the first watches.
The first important change in these primordial watches came in 1530, when brass was substituted for iron in their construction. It proved both

Later, the Greeks developed and refined the Clepsydra, or water clock, which kept track of time with only periodic attention. In other parts of the world, forerunners of the hourglass, using sand instead of water, were being devised.
Numerous ingenious modifications of the basic water-metering system were invented, many of them converting the flow of water into mechanical energy which was used to operate simple machinery. In some cases small water wheels, run by escaping water, turned axles which wound or unwound cord at a more or less even rate, indicating time elapsed. In others, a float was attached to a pully which turned a hand on a dial as the water level lowered. However, all such devices were, by the nature of their motive power, self-limiting, since water is an unstable medium. While they might be refined infinitely, they could not be basically improved.

One such advanced form of the Clepsydra was responsible for the first known historical mention of the word "clock," when it was presented to the King .of France by Pope Paul I in a.D. 760 .
lighter and more efficient.
The first wrist watch appeared in 1571 . "A wristlet in which was a cloche" (The Elizabethan spelling of clock) was constructed by Bertholomew Newsam, official clockmaker to the English court, and presented to Queen Elizabeth. The relatively rare watches of this period were not dis-
 spread demand.
tinguished by great accuracy. They varied as much as one hour in twenty-four. What they lacked mechanically, however, was offset by their elaborate cases which were executed by the foremost jewellers and metalsmiths of the time.
Mechanical improvements continued to be made and pocket-size watches, in oval shapes, were regularly produced, although in small numbers and only for the wealthy In 1635, Paul Veit, a young French watchmaker, made the first watch with an enamelled dial, and in 1670 two of London's leading watchmakers, Knibb and Quare, added the first minute h a n d s to watches.

The Balance

 SpringUp till now the most important deficiency in both watches and clocks was that their coiled mainsprings exerted diminishing power as they ran down. But in 1685 Dr Robert Hooke, a n Englishman, invented the balance spring

which remedied this and represented a gigantic stride forward in making watches more dependable and accurate.

Early in the eighteenth century repeating watches-now circular in shape instead of oval-were developed. These struck the hours and were therefore known as "blindman's watches."

The combined impact of the minute hand and the increased accuracy supplied by the balance spring gave watches a new and practical importance. Doctors were among the first to see their value, and in a comparatively short time watches were in wide-

John Harrison, of London, constructed the first marine chronometer, to be used for navigation. At the end of a five-month voyage in 1762, this new timepiece, which was not a clock but a large watch, was in error just over a minute, a record that would be good even to-day.

America's watchmaking industry started in 1809.
During the next century and a half, the best scientific and artistic brains contributed to the development of the industry. Progress was measured by the fact that watches became smaller in size and greater in accuracy. At the same time they were more efficiently produced. These efforts have been crowned by the ladies' watches of today, the ultimate in small

Fig. 3.-Movement of the zvorld's first electric wrist zoatch (right) is shown with a movement of a manually wourd watch.

investors to meet the demand for really high-accuracy watches. The first watch was by present standards bulky and unimpressive, but its accuracy was at the time unheard of, and it rapidly became the stand a r d railway watch throughout the country.
Commander Richard E. Byrd depended on a Hamilton when he flew over the South Pole. Captain Bob Bartlett carried one on h is hazardous voyages through the Arctic ice fields in the schooner "Morrisey," and the famous Swiss physicist, Auguste Piccard, used Hamiltons in cosmic ray measuring devices an his balloon ascent, by Hamilton.
watches for torpedo boats, submarines and destroyers, and the U.S. Army was supplied with great numbers of wrist watches.

In the second World War, the world's supply of marine chronometers, handmade in Switzerland, was cut off when the Nazis took over Europe. Hamilton filled this gap with the first mass-produced chronometer. These, and Hamilton navigational master watches, were responsible for the precision with which the complicated timetables for " D " day, and other amphibious operations, were carried out.
world's first electric wrist watch a marvel of miniaturisation. The electric watch is powered by a tiny motor of incredible efficiency. Its movement, shown in Fig 3, will run for at least I2 months powered only by the tiny energiser shown in Fig. 5, which was deliberately developed to release its power in the most miserly fashion possible, to accommodate the minute needs of the delicate movement.

The resulting gold-plated energiser is

The Hamilton Electric Watch

No larger than a conventional wrist watch (sce Fig. 3) the electric watch incorporates the first basic change in watch construction in almost five centurics.

It became available to the U.S. public in January. The first model, cased in 14 carat gold, retailed for $\$ 175$ (about $£ 62$ Ios.) and a gold-filled model at $\$ 89.50$ (about $\$ 30$). Four new styles soon to be produced are shown in Fig. 4.
The radical structure of the electric watch completely eliminates the mainspring, an integral part of portable timekeeping devices since it was invented in 1480 by Peter Henlein of Nuremberg, Germany. The new watch is claimed to be the only one in existence which runs without winding or without periodic agitation.

Wire five times finer than human hair, an energ:ser the size of a shirt button, permanent magnets smaller in diameter than the metal in an ordinary paper clip, screws barely visible to the human eye- 80,000 would weigh one ounce-all combine to make the

Fig. 6.-The miniature power plant built into the balance wheel of the electric watch.

Fig. 5.-The energiser compared with a shirt button.
designed for long life and minimal power. It is 400 times more efficient, in terms of space, than the mechanical energy stored in a mainspring. In the course of one year it must open and close the circuit 75 million times. The second hand must be pushed forward 75 million times and the balance wheel must oscillate iso million times.

The electric watch would run for more than 20 years on energy that would operate a roo-watt bulb for no lenger than one minute. A handful of energisers would power a watch for 400 years. (Fig 2.)

The chemical energy stored in the cnergiser is converted into electrical power as it releases a stream of electrons through a coil of fine wire fixed on a balance wheel. The electrical energy through interaction with permanent magnetic fields causes the balance wheel to oscillate. This cscillation is the mechanical energy which runs the watch.

The result is a precise miniature power plant built into the bslance wheel (Fig. 6), which in turn powers the gears and turns the hands of the watch. In the past the balance wheel only controlled the power furnished by a mainspring. In the electric watch it furnishes its own power as well as controlling it.

The essential difference between the Hamilton motor and the conventional electric motor is that the power plant, com-
bined with a balance wheel, permits the flow of energy to be strictly controlled and the speed of the hands to be held to an accuracy of more than 99.995 per cent Combined with simplified construction and built-in shock resistance, the motor provides incredibly long life for the watch.

The coil is made of wire five times finer than human hair and enough of it for 1,000 watches would weigh only two ounces but would stretch from Dover across the English Channel and well into France. Six tenthousandths of an inch in diameter, the wire is worth many times its weight in gold.

The tiny magnets developed expressly for
the electric watch are of platinum alloy and are, ounce for ounce, the most potent and most expensive magnets in the world.

An even smaller motor was perfected for an earier version of the watch. It had an armature the size of the head of a match, but its use turned out to be impracticable.

The e'ectric watch is almost completely free from disturbance by stray magnetic fields. The television service engineer, a doctor with an electrocardiograph or any of the increasing number of people who work with or around magnets will be able to wear this watch with no interference.

Tests show that the day-to-day accuracy
of these new electric watches is far greater than that of automatic or manually-wound watches.

Before the electric watch, so-called automatic timepieces were dependent upon the wearer as part of the power system. Power was furnished by agitating the whole watch instead of turning the stem. Hamilton's electric watch is truly automatic-does not have to be worn regularly or agitated at any time to function properly.

The electric watch is less complex than the old automatic because there is no winding mechanism or mainspring. The result is simpler and more efficient operation.

Recasting Printing Rollers

R
OLLERS for small printing machines can be casily re-cast at home with the minimum of equipment.

The Mould

This should be prepared from drawn duralumin tubing of internal diameter equal to the required external diameter of the finished roller. Sufficient tubing should be cut to cnable the composition on the roller

wood or cork etc.

Fig. 1.-End pieces.
to be a little longer than is required. This is to allow for shrinkage when the roller is setting, and also for trimming to exact size after the roller is withdrawn from the mould.
The cut ends of the tubing should be carcfully rounded, making sure that there are no burrs as these will damage the surface of the roller as it is withdrawn from the mould. The inside of the tubing should be thoroughly cleaned and polished.

End pieces (Fig. 1) which will support the core of the roller and which will prevent leakage of the molten composition, should be made from carefully drilled cork or wood. They should be made to fit snugly into the mould, and should enter a sufficient distance to prevent them from being easily dislodged.

Preparation of the Roller Core

The old composition should be stripped off and the metal roller core thoroughly cleaned. If it is intended to re-cast, using the old composition, the composition on the roller should be cleaned with the usual cleaner before it is stripped off the core.

Narrow insulating tape should be wound spirally round the core, starting and finishing within 1 in . of the intended finished length of the roller (Fig. 2). Strong, thin string may be used instead but this must be firmly secured at each end.

The core should then be set ready in the mould after thoroughly oiling the interior of the mould and the end pieces (Fig. 3). No oil should be allowed to get on the core. This oiling ensures easy withdrawal of the roller from the mould and no harm is done to the composition as the oil can easily be wiped off before the roller is used.

Composition

Most printer's rollers are made from a mixture of glue and treacle, or glue and glycerine. A small amount of Lysol or carbolic acid is often added for protection

A Simple Method for Home Use

By T. HURLEY

against attack of mould, which would damage the roller.

All composition should be cooked in a water jacket glue pot or similar arrangement. This prevents burning.

Suitable formulae are
(a) I part by weight best Scotch glue. 2 parts by weight treacle.
Old roller composition.
Cover the broken glue with water and allow to stand overnight. Pour off the surplus water and melt in the glue-pot. When the glue has melted, stir in the broken pieces of old composition. When these have melted, continue cooking until all scum and bubbles have risen to the surface. Skim off and then add the previously warmed treacle. Continue to heat until the mixture is free from bubbles. It is then ready for pouring.
(b) I part by weight glue.

I parts by weight glycerine.
I part by weight water.
$\frac{1}{2}$ part by weight sugar.

Fig. 2.-Preparing the metal core.
Mix cold and allow to stand overnight. Heat in the glue pot until scum and bubbles rise to the surface. Thoroughly skim and then the mixture is ready for pouring.

Pouring

Set the mould upright as in Fig. 3. Pour the hot composition slowly and carefully into
the open end of the mould. Fill almost to the top, and then gently insert the top end piece, making sure that in so doing the bottom end piece is not pushed out of position. Leave for at least I2 hours to set Doen end Metalcore. thoroughly.

Finishing

Withdraw the roller from the mould by removing the end pieces and pulling steadily and firmly on the metal core. The roller should slide quite easily from the mould. If the oiling has been thorough and there are no burrs on the end of the mould, the roller surface should be perfect.

Trim the composition to the correct length, fit the bearing wheels and the roller is then ready for use.

Fig. 3.- (Right)
Ready for pouring.

Care of Rollers

If Lysol or carbolic acid has been added to the composition there should be little fear of decomposition due to fungus attack. A further protection is a coat of printer's ink, which should not be of the quick drying type. This protective coat of ink should be removed from the roller just prior to printing and the rollers should always be left with their coating of ink after use. Quick drying ink should always be removed as this hardens and causes damage to the rollers.

How to Adapt a Spare Electric Motor to Suit the Supply Available

ITT often happens that a reader is in possession of an electric motor of different voltage to that available. Best results, of course, are obtained when a direct current motor is used on the supply for which it was designed, and usually a good deal of design and experiment has been carried out to make the motor most efficient on its rated voltage. However, it is often possible to obtain quite satisfactory results on a supply of different voltage by simple modification.

Desirable Features

If the windings are not to overheat and deteriorate rapidly they should not be allowed to carry more than the designed value of current. In order to limit the possibility of insulation failure the normal voltage across the insulation of the machine should not be appreciably exceeded. The centrifugal forces acting on the rotating parts are proportional to speed ${ }^{2}$, thus it is inadvisable to run a motor at a greatly increased speed. For most efficient results the magnetic flux density in the machine should be as near as possible to the designed value. These factors have been taken into consideration.

Types of D.C. Motors

Direct current (D.C.) motors are of three types, all of which have a commutator and
voltmeter in series with a battery is connected across the motor terminals. A click should then be heard in the telephone receiver, or an indication should be given on the voltmeter; showing that the circuit is complete. The test should then be repeated with the brushes raised from the commutator. If the motor is a series machine no click will then be heard in the receiver, or no indication will be obtained on the voltmeter. If a click is still heard in the recciver, or the voltmeter still gives a reading, the motor is a shunt or a compound motor.

A shunt motor has field coils which are wound with a large number of turns of fairly thin wire, which coils are connected across the brushes or terminals when the motor is running. A small motor may have only two terminals, in which case the terminals F_{1} and A_{1} in Fig. 2 will be a single terminal, whilst F_{2} and A_{2} will be another single terminal. There will then be two leads to each terminal. In some cases the shunt motor will have three terminals, in which case F_{1} and A_{1} will be a single terminal. A more

Fig. 1.-Connections of a series motor and method of test.
brushes. Fractional horsepower motors are often of the series type, as is also the so-called "universal " motor which is designed for use on either D.C. or single-phase A.C. The field coils of the series motor are wound with a comparatively small number of turns of thick conductors and are connected in series with the armature. The motor 'usually has only two terminals, with one lead from each termina! to the interior of the motor, as in Fig. 1. The lead from one terminal may pass to one field coil, with a lead between the two field coils and a lead from the second field coil to one brush holder, the other brush holder being connected to the other terminal, as in Fig. 4. A more common arrangement is shown in Fig. I in which the armature is connected between the two field coils.

If the interior wiring cannot readily be traced the circuit can easily be tested as indicated in Fig. 1. A telephone receiver or a

Diameter of wire (inch)	S.w.g.	Current (amps.)	Resistance (ohms per foot)
0.080	14	8.7	0.103
0.072	15	7.5	0.128
0.064	16	6.4	0.162
0.056	17	5.3	0.211
0.048	18	4.3	0.287
0.040	19	3.4	0.414
0.036	20	2.9	0.510
0.032	21	2.4	0.645
0.028	22	1.9	0.843
0.024	23	1.5	1.14
0.022	24	1.3	1.37
0.020	25	1.13	1.65
0.018	26	0.99	2.04
0.0164	27	0.9	2.46
0.0148	28	0.8	3.02
0.0136	29	0.75	3.58
0.0124	30	0.68	4.30
0.0116	31	0.64	4.91
0.0108	32	0.6	5.67
0.0100	33	0.56	6.61
0.0092	34	0.52	7.81

Table 1.-Characteristics of 80 per cent nickel20 per cent. chromium resistance wire.

Fig. 2 (Left).-Connections of a shint motor.
common arrangement is for a shunt motor to have four terminals, two for the armature and two for the field windings, as in Fig. 2. A compound motor has a series coil and a shunt coil on each ficld pole, as in Fig. 3; the two coils on each pole may appear to be a single coil, in which case it will have four leads, two thick leads for the series coil and two thinner leads to the shunt coil. Compound motors are, however, rare in small sizes.

Running a Series Motor on Reduced Voltage
The motor will usually work quite satisfactorily without any modification. provided

Fig. 3 (Left).-Connections
of a compound motor. Fig. 4 (Above). -Use of a field winding diverter with a series motor.
the motor will overheat if used on its rated load torque, and the horsepower will still be reduced practically in proportion to the voltage. In any case it should be remembered that the speed of a series motor varies considerably on a varying load.

Reconnection of Field Coils for Normal

Speed on Lower Voltage
If the motor is to be used on a voltage of less than its normal value, a reasonably high speed can often be obtained by reconnecting the series field coils in parallel with each other, and in series with the armature, as shown in Fig. 5. In this case also care must be taken not to alter the relative direction of the currents through the field coils. When used on half voltage with the normal value of motor current the motor may then run at about its normal speed, but the full-load torque and horsepower will be about half the rated value

Rewinding a Series Motor for a Lower Voltage
If it is required to use the motor on reduced voltage at normal speed and without reduction of torque and horse-
of the commutator it is, however, advisable that the voltage between the brush holders should not be much above normal. The usual method suggested is to use a resistor in series with the motor, as shown in Fig. 6. In this case if a motor, designed to take a full-load current of 1 amp. at a voltage V, is used on a higher voltage V_{1}, the series resistor should be designed so that the volt drop across the series resistor is equal to $V_{1}-V$. The ohmic value of a resistor is equal to volt drop divided by the current (amps.). Thus the series resistor should have a value of $\frac{\mathrm{V}_{1}-\mathrm{V}}{\mathrm{I}}$ ohms.

Resistance Elements

Nickel-chrome wire is suitable for the series resistor and could be wrapped round a piece of mica or other heat resisting support. Table I gives suitable currents for various sizes of this wire, together with the approximate resistance per foot. Knowing the current I (amps.) to be carried by a resistor the size of wire can be ascertained. It is then a simple matter to calculate the length of wire required to give the desired resistance. The wires will carry more than the current values given in Table I, but if used for higher currents than th:os: specified the wires will tend to heat up appreciably. A radiator element or a lamp

series field coils in paralle?.
power, the only safe method is to rewind the armature.

Each armature coil should have a smaller number of turns, the number of turns being reduced in proportion to the voltage. Thicker wire should be used, the cross sectional area of the wire being increased in inverse ratio of the voltage, which means that the diameter of the wire must be increased in inverse ratio to the square root of the voltage. Thus, if a 220 -volt motor is to be converted for use on 110 volts, each armature coil should have half the original number of turns, using wire having twice the original cross sectional area, or approximately 141 per cent. of the original diameter.

When an armature is rewound it is most important that the original coil span and connections, and the lead between the armature coils and commutator segments, should be copicd exactly. The field coils could be similarly rewound with fewer turns of thicker wire for use on a lower voltage. However, if the motor is to be used on half the original voltage the same effect can be obtained by rewinding the armature as described, and at the same time reconnecting the field coils in parallel with each other and in series with the armature, as in Fig. 5. When a motor has thus been rewound it will naturally take an increased current to develop its rated horsepower on the reduced voltage. Thus, if the voltage change is very great it may be necessary to fit larger brush holders and brushes to carry this current.

Operation of a Series Motor on a Higher

 VoltageIt is often possible to run a series motor on a higher voltage than that for which it was designed. In order to avoid risk of breakdown - of the insulation between the copper segments
so-on. When carrying $2.5 . \mathrm{amps}$. the volt drop across the parallel elements, equal to current \times resistance, would then be equal to $2.5 \times 48=$ 120 volts. With a given current the volt drop across an element wire is proportional to the length of wire. Thus, if a 57.5 -ohm resistor is required to carry 2.08 amps , half of a 500 -watt, 240 -volt element could be used. When carrying 2.08 amps ., however, the coiled wire would heat to normal radiator temperature. For a lower operating temperature the whole length of a 1,000 -watt, 240 -volt element could be used.

When used with a series resistor the motor can be run at its normal speed and develop its normal torque and horsepower. However, the series resistor method is not advised for operating a series motor on an appreciably higher voltage, unless the load is practically constant, because the voltage applied to the motor will increase on reduced load, with increase of speed and considerable increase of centrifugal stresses on the rotating parts.

Rewinding a Series Motor for Higher

 VoltageIf a series motor is required to drive a varying load on a voltage which is appreciably higher than the rated value it is advisable to rewind each armature and field coil with a larger number of turns in proportion to the voltage, using smaller wirc having a crosssectional area inversely proportional to the voltage, i.c., wire diameter inversely proportional to the square root of the voltage. However, a limiting factor is the number of commutator segments. Trouble may be experienced with a motor which has been

rewound for a higher voltage if the number of commutator segments is too small.' Much depends on the quality of the insulation between the commutator segments; in general it is advisable that the voltage divided by the number of commutator segments should not be more than about 10. This is sometimes a serious factor when considering the use of a 12 -volt motor on 230 volts, for instance. For such a large voltage difference it is often best to supply the motor from a low-voltage battery which is charged from the D.C. mains through a resistor. When a motor has been rewound for a higher voltage it is often a good plan to cut away the brush faces so that each brush covers a reduced periphery of the commutator.

A Shunt Motor on Reduced Voltage

A shunt motor can be run from a supply of lower voltage without alteration. In this case the speed will be reduced, but to a lower degree than the voltage, as will also the safe load torque. The horsepower will be reduced in proportion to the voltage. If the motor is to be run on half voltage the two field coils could be reconnected in parallel with each other, as in Fig. 7, making sure that the relative direction of current in the two field
(Concluded on page 401)

Transatlantic or Table-top

Hobbyists will be pleased to learn that their favourite sharpening stones helped to make Mayflower II. As you
tools keen-cutting, at the Devon shipyard of J. W. and A. Upham Lid., where the Mayfower replica was built.
know, the whole ship was designed as an exact replica of the brave little craft that crossed to America with the Pilgrim Fathers in the Avcums of 1620 . All the construction means and methods had to comply . . oak dowelling, copper nails, and so on, and the timbers were hewn by craftsmen wielding good oldfashioned adzes. One of the few concessions to modernity was that stones made by CARBORUNDUM kept the catpenters'

Whether your models will sail a windless and timeless sea, or if your interest lies in making furniture in the most contemporary styles, your handiwork is bound to suffer through reliance on dulled tools.

In the range of products by CARBORUNDUM there is every shape, size, and section of small sharpening stone you can possibly need, to keep plane irons, chisels, gouges, and the rest, at their fastecuting best.

Products by CARBORUNDUM

$14^{\prime \prime}$ T.V. CHASSIS £I3.19.6
 Complete with tube and speaker. Modifies ready working. Fully guaraneeed for 3 months. These are demonstraxed to personal cellers. LEss valves. As above with 5 of the valves. E15.19.6. Or with all the valves. E19.19.6. Some delay on the latter, Ins. carr. incl. zube 25/-. Channels I and 2 only, but enquire far all ocher channzls.
 17" TUBE RECTANGULAR on adaptet chassis. LESS valves, $\mathbf{1 9} 9.19 .6$. Wieh valves, E25.19.6. Plus $25 / \rightarrow$ ins. carr. FREE drawing with order or $3 / 6$.

T.V. CHASSIS UNITS

SOUND AND VISION STRIPS, 35/6. Tested working. Complete vision strip LESS valves. FREE drawing. P. \& P. 3/6. 1.F.'s 16.5 - $19.5 \mathrm{M} / \mathrm{cs}$.
POWER PACK, 39/6. R.F. E.H.T. unit Tested working. LESS valves. FREE drawing. ins. and carr. 5/-.
TIME BASE, 25/6. Tested working, Complete with focu: cail. LESS valves. FREE drawing, P. \& P. 3/6.

T.V. CHASSIS 7916

Complete chassis by famous manfr. Easily converted to I.T.A. R.F. E.H.T. unit included. A.C. s'het. 3 separate unirs (power, s/vision. t/base interconnected), $8^{\prime \prime}$ P.M. speaker and drawings FREE with each order I.F.s 16.5-19.5 M/Cs.; Carr, and ins., $10 / 6$, Drawing, 2/6.
T.V. AERIALS, 25/6. For all I.T.A. and F.M. Channels. 3 element type for outdoor or loft. At half their original price. P. \&. P. 2/6.
CO-AX CABLE, 6d. yard. Cut to any length. Good quality. P. \& P. on 20 yds. 1/6, 45/-per 100 yds. P, \& P. 3/6. 12" T.V. MASKS, 1/9. New, rubber, must clear. Space required. P. \& P. I/9.

12 MONTHS GUARANTEE

$17^{\prime \prime}$ E7.10.0 $14^{\prime \prime}$ E5.10.0 T.V. TUBES
We are now able to offer this wonderful guarantee. 6 months full replacement and 6 months progressive. Made possible only by improved high quality of our tubes Carr. and ins. $15 / 6$. Remember all our valves are guaranteed 90 days.
CONVERT YOUR $9^{\prime \prime}-10^{\prime \prime}$ and $12^{\prime \prime}$ to $14^{\prime \prime}-15^{\prime \prime}$ or $17^{\prime \prime}$. Our pamphlet i FREE, and on many sets it costs only the cube to give you these giant piccures. SPECIAL OFFER $14^{*}, 15^{\prime}$ and $16^{\prime \prime}$ T.V. tubes CS. Perlect-see them working in our shop. $^{\circ}$ 12* T.V. TUBES, E6. Shortage may cause delay. Enquire first. We may have alternative and can rell you delay if any. 15/6 carr. and ins. on alt tubes.

STOCK CLEARANCE HEATERS ELECTRIC CONVECTOR 9916

A.C./D.C. Switshed for 1 or $2 \mathrm{k} /$ watt. Id, an hour, hotter and

 cheaper than paraffin. Illuminated grille. Third of normal price. ins. 10/6
IDEAL RADIO OR R/GRAM CHASSIS 39/9

3 w/band and gram. S/hec. 5 valve (octal). Ideal for table gram, but still giving high quality output. 4 knob control. $8^{\prime \prime}$ P.M. speaker, 7/9, with order. Ser of knobs, 2/Chassis is $\times 6^{\prime \prime} \times 7 \mathrm{~T}^{\circ}$. ins. and carr. $4 / 6$.

RADIOGRAM CHASSIS $29 / 9$

5 valve s/het, Including $8^{\prime \prime}$ speaker. 3 w/band. A.C. mains. Complere, less valves ront drive. Chassis size, $12^{\times 10} \times 8^{\prime \prime}$. Free rineed dial. Carr. and ins. $4 / 6$.

ARGOSY PUSH PULL
 R/GRAM CHASSIS 139/6

8 valve. Latest models. 3 w/band and gram swizched. Over 10 wates ourput. Full tone range, 4 knob controls. Ins. and carr. 5/6.

ARGOSY RADIOGRAM CHASSIS 99/6

6 valve. Latest madels. $3 \mathrm{w} / \mathrm{b}$ and and gram switched. Well over 4 watts output at less than 5% distortion. 4 controls including full tone range. A beautiful chassis less than 5% distortion. 4 controls including full tone range.
LESS valves. Drawing FREE with ordar or $3 / 6$, |ns, and carr, $5 / 6$.
8" P.M. SPEAKERS, 8/9. Stocks cannot last. Have you had a!l that you may require ? Complete with o.p. trans. $10 / \mathrm{F}$, p. \& p. $1 / 9$.
V.H.F. II25 SET, T/9. This little set is a V.H.F. receiver. Requires some modification es put it ints servics. Complete with valves. P. \& P. 2/3.
V.H.F. 1466 RECEIVER, 27/6. Ex-W.D. New condition. 6 valves. Receives V. sound and amateurs $30.5-40 \mathrm{Mc} / \mathrm{s}$. I.F. $7 \mathrm{Mc} / \mathrm{s}$. FREE drawing. Carr \& ins, $4 / 6$ Dial drive tuning.
COIL PACKS, 3/\%, 3 band including pair 465 I.F.s. $2 \cdot \mathrm{gang}$ condenser and printed. dial (similar drawing free). P. \& P. 2/3.
TRANSFORMERS, 3/9, $350-0.35080 \mathrm{~m} . \mathrm{a} .4 \mathrm{v} .4 \mathrm{v}$. heaters. Prim. 200-250 v. \& $\mathrm{F}_{\mathrm{M}} \mathrm{N}_{2} / 9$.
MAINS TRANS, 5/9. 350-0-350 v. 80 mA, 6 v .5 v . heaters. Prim. 200-250 v Post 2/9.
MAINS TRANS, 3/9. $350-0-350$ v. $80 \mathrm{~mA}, 12 \mathrm{vs} 4 \mathrm{v}$. heaters. Prim. $100-250 \mathrm{v}$ deal auto-trans. Post $2 / 9$
O.P. TRANS, 1/3. Salvage guaranteed. Std. 2.5 ohms. Post 9 d .20 for Kl. P. P. $5 / 6$.

DUKE \& CO. .

WATSON'S SPECIAL OFFERS

 £12-10-0 45 amp . hour. UNUSED 12 volt CHARCED in hardw. Each with NINE CELLS, CANVAS TOOL ROLLL 24 in , 9 in . x Sin. with provision for eight separale fools, also pooket and lastening tapes. $1 / 4$ each, 14/- doz.
SLEDGE HAMMERS. 7 fb . Nosed with ash handle, 9'6. Carr. 2/6.
TWIN FLEX in 100 yd . coils, best quality, MAHOGANY FINISH BOXES. Beautifully made with brass bound lid and brass fully made with brass bound lid and brass
 COIL SPRING BELTS. long, extends to 15 in . Any number can be joined together. 20 for $4 / 6$. Post $1 /$. A.C. AIR CLEEANER. 6 in . diam. $1 / \mathrm{in}$. A.C. AIR ClEANER. 6in. diam. ${ }^{\frac{1}{i} i n}$. POWER FOR ELECTRIC RAZORS

15/6

from 12 or 24 v . batterics. Converter suitable for $110 / 230 v$. A.C./D.C. Electric Razors.
EX-R.A.F. TOOL BOXES, Size 14 in . x $9 i n . x$ sin. Dovetailed and metal bound. $9 / 6$ each. Carr. 2,6. LARGER SIZE Hundreds of other Bargains available. Send 4d. Stamp ior MONSTER ILLUSTRATED LIST.

EASTERN MOTORS

A ALDEBURGH, SUFFOLK Phone 51 .

TRIANGLE LEADS AGAIN

with the finest set of STOCKS \& DIES produced

MOM - IN COMPACT POCKET SIZE PLASTIC CASE REINFORCED WITH WINDOW FRONT

The Dies are Circular Split $13 / 16 \mathrm{in}$. O.D, and all Toois are of the highest quality. fully warranted. Supplied in B:S.W., B S.F., B.A., M.E., N.F. N.C. Obtainable from all reputabie dealers, or in cases of difficulty write to

[^1]24 v. Blower Morors as used for Hedze Trimmer, 18/9. 10K6/115 $\mathbf{1 2 - 2 4}$ volts s used for ear heater, $30 /$ -
ransformers, Input 200/240 rapped 3-4-5-6-9-9-10-12-15-18-20-24-30 voles at 2 amps.. 22/9, 17-11-5 voles at amps., $22 / 9,17-11-5$ voles at 11 amps. $16 / 9,7.3$ voles. 2 amps., $8 / 6.12$ monehs uarantee. Inpur 240, Output 16 v . 1 amp . 13/6. Also Output 200 v. 30 mA . and 6.3 v. I! amp., 13/6. 25% Booster Trans formers for T.V. Tubes, $13 / 6$. Selenium Rectifiers F.W. $12-6$ volc, 100 m A, $4 /-, 1$ A., 8/6. 3 A., 12/6. 4 A., IT/6 A., 30\%- 250 v. $100 \mathrm{~mA} . \mathrm{H}$. W., $10 / 6$ 300 mA ., $18 /-$
Miniature 12 or 6 v . Relays. 10 amp . Silver Contacts. SM, DM or SM and B. SCO. 9/3.

M/c Microphones with matched gransformer, $15 / 9$.
Chrome Vanadium H.S. Seeel Twist Drills. Sets of $9,1 / / 6$ in. to $\frac{1}{1}$., $3 / 9$. Sets of 7 , full size, $6 /=$. Sets of $13,10 /=$ Alf in wallets.
12 v . Ultra violet bulbs, A.C. or D.C. 5/Rheoseats, 12 v . 1 A. $; 2 / 6.12 \mathrm{v} .5$ A., $10 / 6$ New 6 v . or 12 v . Vibrators. $4 \operatorname{Pin}, 8 / 9$ Fishing Rod Aerials. Sets of $3,9 / 2$ Plus 1/9 Rail Charge. Bases 6/-
Uniselector Switches 50 point 3 bank 50 v. D.C., 26/-.
Miniazure Model Motors. 12 v. 180 mA . D.C. 2in. x lin., $11 /=$. New 24in. 'T'Square ExMOS., 6/6 Chrome Car Extension Aerials', Ift. to ft., 13/6.
Nife Niekel Batreries. Practically verlasting. 1.2 v. 25 A., $23 \mathrm{in} . x \mathrm{in} . x$ Sin., 6/w. Ideal for models.
2/24 v. A.C./D.C. Reversible Morors lin. x in.. Spindle $2 \frac{1}{8} \mathrm{in}, \times 1 \frac{1}{4}$ in., $15 / 6$.
Relays. We can supply any D.C. voltage nd Contact Combination All Carriage Paid in U.K Lists Sent on Request.

THE

RADIO \& ELECTRICAL MART
307, Harrew Rd., Wembley, Middx. Nr. The Triangle.
Telephone: WEMbley 6655
coils is unchanged. In this case the full-load torque will be unchanged, the speed will be half the rated value, as will also the horsepower.

The parallel connection of the shunt field coils can also be used to run the motor on more than half voltage, but in this case a resistor should be connected in the field circuit, as between the terminals F_{2} and A_{2} in Fig. 7. If a motor which was designed for a voltage V is to be run on a lower voltage V_{13} the field circuit resistor must bc capable of carrying twice the rated value of field current, since the resistor will then have to carry current to the two field coils in parallel. Since the volt drop across each field coil is normally equal to $\frac{\mathrm{V}}{2}$, when in series, the shunt field circuit resistor must have a volt drop of $V_{1}-0.5 \mathrm{~V}$ and must have a value of $V_{1}-0.5 \mathrm{~V}$
$2 \times I_{1}$
ohms, where I_{4} is the rated field current in each coil. If the field current is unknown the correct resistor may have to be found by trial and error, but care must be taken not to use too low a value of field curcuit resistance, otherwise the field current will be excessive and the field coils will overheat. When used with the correct resistor giving the normal rated current per field coil, the speed of the motor and the horsepower will be reduced in proportion to the supply voltage, but the motor will develop its rated full-load torque without overheating of the armature. If it is required to obtain the rated horsepower and torque and speed on reduced voltage, each armature coil should be rewound with fewer turns in proportion and larger cross sectional
area inversely proportional to the voltage, as advised for a series motor. The shunt field coils should be similarly rewound, or they could be reconnected in parallel for use on half voltage, or could be reconnected in parallel with a shunt field circuit resistor, as described above, if used on more than half voltage. It may be necessary to fit larger brush holders and brushes after rewinding if the voltage change is large.

Field Circuit Resistor for a Shunt Motor on Higher Voltage

When operating a shunt motor on more than its rated voltage a resistor R_{F} must be connected in the field circuit as in Fig. 8. The field coils should still be connected in series with each other, thus the resistor R_{p} should be designed to carry the normal field current I_{f}. If the motor is rated for V volts and is to be used on a higher voltage V_{1} the volt drop across R_{r} must be equal to $\mathrm{V}_{1}-\mathrm{V}$ volts, thus its ohmic value must be equal to $\mathrm{V}_{1}-\mathrm{V}$
ohms.
With the correct field circuit
resistor, to limit the field current to the normal value so as to avoid overheating of the field coils, the motor will develop its normal fullload torque, but the speed and horsepower will be increased in proportion to the voltage.

Armature Circuit Resistor for a Shunt Motor on Higher Voltage

It is, however, inadvisable to use the motor on a much higher voltage without modification of the armature circuit as well as the field circuit. If the load has a constant value requiring an armature current of I_{A} amps, a
resistor R_{A} nay be connected in the armature circuit, also as in Fig. 8. The volt drop across \mathbf{R}_{A} should be equal to $\mathrm{V}_{1}-\mathrm{V}$ volts, thus the ohmic value of R_{A} should be equal to $V_{1}-V$
ohms. A series resistor in the armature circuit will result in the motor speed varying considerably on a varying load and is not advised if the motor load is not steady, since the motor speed and the voltage applied to the commutator will increase considerably if the motor is run unloaded. When used with resistors in the field and armature circuits as described the motor will develop its full-load torque, whilst the speed and horsepower will also have their rated values.

Rewinding a Shunt Motor for Higher Voltage
 For best results in the case of a motor

 which operates on a varying load or is to be used on a much higher voltage than normal, it is best to supply the machine, without modification, from a battery of suitable voltage, if practicable, or to rewind it. The armature could be rewound with more turns of wire in proportion to the voltage, using wire of smaller cross sectional area in inverse ratio to the voltage as advised for a series motor armature. The field coils could be similarly rewound, or could be connected through a field circuit resistor as described above. In this case the motor speed, horsepower and full-load torque should be unchanged and have their normal values, but it may be advisable to cut the brush faces so that each brush covers a reduced periphery of the commutator.ACOLOUR transparency can be seen at its best only by projection, but this necessarily means an outlay of about $£ \mathrm{IO}$, even for the cheapest and lowest-power projector. The best substitute is a viewer for use off the mains, the illuminant being a 40 -watt small round bulb. This should be of the pearl type so as to obtain as even and diffused a light as possible. This lamp, combined with a ground glass screen between the bulb and transparency, gives good, even illumination.

The body of the viewer is constructed of $\frac{1}{4} \mathrm{in}$. plywood and for use with 35 mm . or 16 on 120 colour slides should be made to the dimensions shown in Fig. I. Magnification is obtained with a 3 lin. single condenser lens mounted as in drawing. In my own case this lens just drops into place as it is normally used in my enlarger and a permanent fixing was not required. However, if the lens is

By I. G. DEWYNTER

for use only with the viewer, it can be held in position by fitting another piece of thin plywood over the outside of the lens. The ground glass is a focusing screen cut down so as to fit into the grooved wooden guides which are fitted to the sides of the viewer body. The rear part of the viewer is covered in

The distance between lens and slide is important so as to obtain magnification without distortion. In my own case this distance is $I \frac{1}{2} \mathrm{in}$., but check with the particular lens you intend using before fixing into body.

To ensure no possibility of the viewer tilting forward due to the weight of the lens a small piece of metal bar was screwed into the back end of body.

The whole job was painted with Berlin black, a matt-finish paint. The interior of the body, as far as and including the grooved wooden guides, was similarly treated.

Total cost of viewer is approximately $£ \mathrm{I}$. Th: lens cost 14 s . 6 d . (3 lin.), ground glass Is. 6d., lamp Is. IId., lampholder and flex 2s. The body was constructed of odd pieces of $\frac{1}{2}$. plywood.

Sides of body rebated Lens
co
coke lens mounk minimum.

MakingaS||MM|PLE E

 right-hand face of the headstock and carefully screwed into place.

Remove the rod and fit the upper half of the headstock. This is simply a piece of 4 in . x Iin. wood with a groove cut right across the underside deep enough to clear the brass tubes. It will be necessary to shape the groove a little at each end

End of mandrel threaded

o the ends of the tube and secure the assembly temporarily to a block of waste wood, as shown in Fig. 2. Run solder all round the inside face, heaping it well up so as to afford a good rigid hold. When set, with a hacksaw cut across the centre of the tube and unscrew each half from the wood.

Fig. 4.-A sectional viezu

The Headstock

This is in two halves (see Figs. 2, . 3 and 4). The bottom half is a piece of 4 in . 8
${ }_{1} \frac{1}{2} \mathrm{in}$. $\times 4 \mathrm{in}$. wood and is screwed to the guides square with one end.

Obtain a piece of steel rod 5/32in. or $3 / 16 \mathrm{in}$. thick and 5 in , to 6 in . long, and a piece of tube that is a tight push fit over it. A piece of tube only in. in length is required, but it must not be a free fit En the rod as this will be too slack for a satisfactory bearing.

Obtain two good stout mirror plates and open oui the centre hole to a drive-on fit over the tube. Ins the plates gently on

Fig. 2. - A
perspectire
view of the he:dstock
assembly climped to

IN addition to the fun entailed in making this lathe it will provide useful groundwork for making and using a real lathe later years
The principal material used is wood, and for the bed, base strios of Iin. x in. are suggested with I_{8}^{3} in, $\bar{x}{ }_{3}^{3}$ in. pieces screwed to them to form guides. The length is a matter of personal preference, but 20 in . is a convenient size. Needless to say, a little time spent in checking and planing the parts will be well repaid. Before fitting together go over the work with beeswax and turps and then rub up to a polish; this will have the double advantage of reducing liability better sliding action.
Sow have a piece of wood. of swelling through damp and of giving a

Screw two pieces of $\frac{1}{2}$ in. thick wood across the bottom at each end, taking every care to keep the sides of the bed parallel. These pieces can measure 4 in . x $\mathrm{I} \frac{1}{2} \mathrm{in}$. and will, with $I_{k}^{\frac{1}{k}}$. material used as guides, give a $I_{4}^{\frac{1}{4}} \mathrm{in}$. runway (see Fig. 1).

Now give the rod a good rub with emery cloth, which should allow it to enter the tube more easily. If it is still too tight, ease the inside of the tube by using a small round file that is too small to jam inside and wrap emery cloth round it. It is an advantage to put the file in a hand-drill and rotate it that way. Test the fit at

Fig. 3. - Upper half of headstock slotted.
frequent intervals. Directly it is a smooth running fit, stop before the stage is reached where "shake" is present.

Lining Up the Mandrel

If you have a long piece of the same steel rod as is to be used for the mandrel, this is ideal, but lining up can be achieved quite well with a piece of wood doweling. Put whichever you are using through the two bearings, plates outward, and fit the latter against the two faces of the bottom half of the headstock. Centre the left-hand one on the wood and screw it very carefully in place. Now support the rod or dowel at the opposite end of the bed, in any rough form of temporary jig, seeing that it comes central in the runway and parallel with the face of the guides. While this is held firmly in place, the second bearing
with a sharp knife to clear the solder. Screw the upper half of the headstock to the lower half and chamfer off the edges as shown in Fig. I to improve its appearance. The mandrel should now be accurately centred.

The Chuck

A stoult brass disc is required next, or better still a heavy washer with a hole the same size as the rod. If a suitable washer cannot be obtained, a plain disc will have to be drilled accurately in its centre so that it can be tapped into position on the rod. When in place it must be tapped lightly sideways if necessary until it runs true (Concluded on page 405.)

DO-IT-YOURSELF WITH EASE!

Two wonderful ways to turn work into fun

NEW CABLES \& FITTINGS tough rubber cables
 1014 Twin
1044 3-core 3029 Twin
3.029 T. \& E. ${ }_{7} 7029$ T. \& E. Twin Lead. 50 YIR, 50 yds.
WVIre, 1001 t.
PVC PVC Transp. Flex. 50 yds. 10%.
Twisted, 25 yds, 12,8 Twin VIR, Lead Cables of all sizes. Holders. C.G. $8 /$ Batten, doz., 12j-. Roses. Brown. B
White, doz., $10^{\prime}-$, Jnc. Boxes. Sml., Lre, doz., 13/-. Switches, 1-way. 18/-. 2-way, doz., 24/-. White Swltches, 1-way, 24i- ; 2-way, doz., 30/-. Flush Switches,
 ${ }_{3}$-pin Sw. plugs and Tops, ea., 5/6. 15 amp . 3 -pin SW, plugs and Tops, ea., $\% / 15$ amp.
 $4 \times 1,91-$ Cable Clins, Sml.. 29 : Med.. grs.
$3 / 3$ amp. D.P. Insulated Sw. fuse, $8 / 8$.
21 amp. Ironclad 2 way $15 A$. 23 amp. Ironclad 2way 15 A . Splir. $13 i 6$. Metal 5-way Consumer Unit, 42,6, Sw, gear, Fusebds., Spltrs., all types Lamp Bulbs $15,25,40,60$ watt, 12,75 watt, $151-100$
watt. $17^{\prime}-: 150$ watt. $24 /-: 200$ wart. doz. watt. $17{ }^{2}-150$ watt, $24 /-16$ C.P. doz. 20%,
 Car Cable, 10 yds. $3 /-\mathrm{F} 100$ yds., $25 /-$
Conduitand Fittings, Ain and fin. Industria Heflectors. Tubular cheater, and all electrical equipment. Full lists on request. Single items supplied. Satisfaction guaranteed. Terms : Cash with order : carriage paid if
over 54 : orders of $\$ 20$ or over less 5 per over e4; orders of ${ }^{2} 20$ or over less 5 per
cent. discount. open dally. inc. Sat. 9 to $6:$ Thurs. 9 to 1. Callers welcome.

LONDON

Wholesale warehouse
165 (PM), QUEENS ROAD PECKHAA, S.E. 15
Tel. NEW Cross 7143 or 0890.

gavagies

TOOLS FOR THE HOUSEHOLDER \& MECHANIC

RIGHt ANGIE DRIVE

'GRIPITAL' CHAIN SPANNERS

TOOL BAG

 with Zip Fastener Two stronghandles
con. handies base for
strength.
Approth oxtra
Approx. size :
18 in long, 61 in
Can be used for wide and $6 \frac{1}{2} \mathrm{in}$. deep. many other pur-
poses ${ }^{\text {tageously. }}$ GAMAGES Post \& Pkg. 1/3
FREE Tool and Motor Car Accessory List.
GAMAQES, HOLBORN, E.C.I. HOLborn 8484. Open Thursday 7 p.m.

BERNARDS OFFER:-4 VALVE SUPERHET

 battery portable receiverCAN BE OBTAINED
COMPLETE WITH BATTERIES
\&8.19.6
IN KIT FORM LESS BATTERIES
£7.7.0 $\begin{aligned} & \text { Including } \\ & \text { Postage }\end{aligned}$
BATTERIES CAN BE SUPPLIED SEPARATELY AT $11 / 6$ - LONG AND MEDIUM WAVE

O LARGE ELLIPTICAL SPEAKER

- LaTEST TYPE LOW-CONSUMPTION MINIATURE VALVES

SEND TO:-
BERNARDS ELECTRICAL INDUSTRIES LTD. 99, KINGSLEY RD., HOUNSLOW, MIDDLESEX

BRASS, COPPER, DURAL, ALUMINIUM, BRONZE

ROD, BAR, SHEET, TUBE, STRIP, WIRE
3,000 Standard Stock Sizes.
NO QUANTITY TOO SMALL. List on application.
H. ROLLET \& CO. LTD.

6, CHESHAM PLACE, LONDON, S.W.1. SLOane 3463.
Also at LIVERPOOL, LEEDS, MANCHESTER, BIRMINGHAM.

ALUMINIUM
BRASS - COPPER

- Sheets
- RODS
- TUBES
- MOULDINGS \& SECTIONS
detalled price list UPON APPLICATION no Sa, Require

ALCOB METALS LTD. 367 EDGWARE ROAD,
Paddington, London, W.2. Tel. PA.Ddington 2232 (3 lines)

SEE EARTH SATELLITE

AMAZING NEW OFFER
ASTRONOMICAL
TELESCOPES 99/6!!
See Moon at close quarters, new
approaching Comet, Saturn's Rings, etc., etc.
2 in. dia, Length 39 in . Mag. $53 \times$ (equivalent $2809 \times$ Area). Weighe approx. 2 lbs. 2 ozs
De-Luxe Model, 127/6.
Both packed in strong Stowing Cylinder with Caps. Registered Postage and
Packing, $10 / 6$.

Altazimuth Portable Clamp Stands. Extra 32/6. P./P. 2/6.

Astro Kits. Self. Adaptable Parts.

High Power Eyepieces, $80 \times 28 /$ P./P. 2/-. 106 X, 37/5. P./P. $2 /$-.

Stamp for Full Particulars.
Lists and Terms. Made to order
HOLMES, WHLSON \& CO.
SGIENTIFIC INETRUMENT MAKERS (Dept. PM22), Martins Bank
Chambers, 33 Bedford Street, North Shields, Northumberland,

HAVE YOU EVER
LOOKED
THROUGHA
MODERN
BINOCULAR?

You will be very impressed with the clarity and detail, also the remarkable ability of modern prismatic glass to "see" in poor light. Coated lenses and prisms and Coated lenses and prisms and

The Binocular illustroted is the
10OLAOND $\$ 50$ WWLETT WOLLOND 7×50 OWL Parlicularly well suifeal for us under diftimult conditions sueli as at dust ump. Easy Terme. sponsible for this, giving excellent cont DOL powers, covering 18 models.
WHATEVER OUTDOOR INTERESTS YOU MAY HAVE, A PAIR OF BINOCULARS WILL MAKE THEM MORE ENJOYABLE We cordially invite you to see the range of DOLLOND BINOCULARS which provides a glass for every sporting activity.

PRICES FROM E10-IO-7 TO E57-19-6

May we send you our FREE 32-page BINOCULAR CATALOGUE? This includes Binoculars by Dollond, Kershaw, Ross and Barr \& Stroud, and Dollond Telescopes.

PLEASE ASK FOR CATALOGUE ST. 5

DOLLONDS

TEMple	
Bar	
6009	428,
STRAND, LONDON, W.C.2.	

SOLDERING and TINNING without an Ironon unprepared surfaces FOR101JOBS

Here's the most versatile soldering kit ever devised-so simple a child can use it! The kit contains patented "EPATAM 33II" solder "paint," "paste," and "putty " for tinning, sweating and all soldering jobs, and tinning salt which will remove rust and tin a surface in one operation. A neat, efficient Valtock " 2000 " blowlamp, made of solid nickel-plated brass, provides a small and intense pencil-flame which takes the place of a soldering iron. This kit is absolutely invaluable to anyone interested in fixing things about the home, repairing cars, bicycles and toys. No need to tell model-makers how useful it will be. See the "DO-IT-YOURSELF" SOLDERING KIT at your nearest hardware store today!
EACH KIT CONTAINS:
One tin of solder paint
One tin of solder paste One tube of solder putty One tin of tinning salt A Valtock " 2000 " blowlamp One brush, one cloth and one glass dish
Your stockists will be able to supply you with replacements of the soldering items when those in the Kit have been used up. For name of your nearest stockist write to :-
PERDECK SOLDER PRODUCTS LTD. (OOPL. SK/PM) ABBEY MILLS. WALTHAM ABBEY ESSEX

Better lit: Better made Bettervalue WORKSHOPS

The ' MALTON' Clad with planed, moulded and rebated Rot-Resisting CEDAR on strong framing. Continuous glazing along one side with one window hinged to open. Door 2 ft . 6in. wide hung on japanned hinges. Roof of corrugated asbestos with galvanised metal ridge capping. Complete with all necessary glass, putty \&c. Rust proofed nails used throughout.

HEIGHT TO EAVES SFT.

					and Monthly Payments			Bench
Length	Width	Ht. Ridge	CASH	Deposit		Elther		
1t. 6 in.	ft. in.	ft. in_{8}.	PRILCE	£4. 8.0		18	24	Extra
${ }_{7} 1$	11	${ }^{6} 88$	223. 5.0	24.13.0	£3. 1.9	£1.13.3	$18 / 9$	35/-
81	411	68	£24.10.0	84.18.0	£3.10.6	£1. 18.0	21.6	50/-
91	411	${ }^{6} 8$	f28.10.0	25. 6.0	£3.16.0	£2. 1.0	$23 / 3$	55.
7	65	70	E25.15.0	25. 3.0	£3.14.0	£1.19.9	22/6 ${ }^{\text {j }}$	50/-
81		7	22\%. 5.0	85. 9.0	£3.18.3	ع2. 2.0	23/9	55/4
91		70	£29. 0.0	\&5.18.0	¢4. 3.3	£2. 4.6	25/3	651-
10		-	£30.10.0	86. 2.0	£4. 7.6	£2. 7.0	$26^{\prime} 6$	01

The "CARLTON', is similar in design and sizes to the Malton but clad $\begin{gathered}\text { with flat asbestos shects. Prices range from \&ib. } 15.0 .\end{gathered}$

GARAGES from
639.5.0 or $157 /$ / dow Free Delivery England and Wales
(mainland) by Lorry or Rail at our Rotion or Rall at our
For GUARANTEE of SATISFACTION Numerous sizes and designs Garages, ie. Greenhouses, write for FREE CAAAÓCuE

GREENHOUSES
from $\$ 16.5 .0$ or 65% from $\$ 16.5 .0$ or $65 /$.
down $214 / 3$ monthly.

DEVELOP YOUR GREATEST ASSET

Pelmanism Will Lift You Out of the Rut

Dyou find life humdrum and boring? Do you think of your job as "" the same old monotonous routine"? Why remain in a groove, only half alive, when you have the latent ability which could enable you to enjoy life to the full and to "hold down" an interesting, progressive job?

Are you making the most of your greatest asset-your mind? The Pelman Institute with its unrivalled half a century of experience will show you how to develop this invaluable asset to the fullest capacity. Pelmanism will lift you out of the rut and eliminate your feelings of Frustration and Inferiority. It will teach you how to dispel your Fears and to overcome such failings as Aimlessness and Depression.

Remember-Everything you do is preceded by your attitude of mind.

HOW TO LEARN LANGUAGES

The Pelman Languages Institute teaches French, German, Spanish and Italian, without translation. Write for particulars and specimen lesson of the language that interests you, which will be sent gratis and post free.

Pelman Languages Iostitute.
130, Norfolk Mansions. Wiemere St.,

The Course will give increased power and energy to your mind will strengthen your Will-Power, and develop your Initiative. You will find that your outlook on life will change to one of cheerfulness and optimism, and with your increased Efficiency will come Happiness, Success and Financial Betterment.
Pelmanists are not left to make the applications themselves. An experienced and sympathetic instructional staff shows them, in exact detail, how to apply the principles of Pelmanism to their own circumstances and aspirations.

Send for Free Book
The Pelman Course is fully described in "The Science of Success" which will be sent you, gratis and post free, on application to :-

PELMAN INSTITUTE
130, Norfolk Mansions,
Wigmore Street, London, W. 1.
WELbeck 1411
POST THIS COUPON TO-DAY Pelman Institute,
130, Norfolk Munsions, Wigmore Street, London, W. 1
"The Science of Success," please.
\qquad Address

Pelman (Overseas) Instintes: Bethi Melbowne, Durban, Paris, Amsterdom.
vertically. Solder in place immediately. Drill and solder in place two gramophone needles to form the chuck (see Fig. 4) and grind the end of the spindle to a chisel edge.

Thread the other end of the mandrel to a distance of 4 in . from the chuck. Put the mandrel through the bearings with a spacing washer between chuck and front bearing. Make a driving pulley with two canister lids put face to face; if you make the hole a slack fit for the rod, you can get the pulley to run perfectly true by tightening the outer nut nearly home and tapping lightly on the rims till true, then finally tightening the nut (see Fig. 4).

The Tailstock

This has a 6 in. $x 4 i n . x$ rin. body with

SHOWN in Fig. I is an ingenious toy that never fails to amuse both youngsters and grown-ups. A side view of the man, who is actually "two," one on each side, is shown in Fig. 2. All the dimensions given must be strictly followed and it is suggested that a hard wood such as beech or some similar type should be used. It is not

Fig. 2.-Details of the figure.
essential that the sides be curved, but this improves the appearance of the figure. Strict adherence to the dimensions given will ensure that the figure goes through his performance without a hitch. Make all the surfaces smooth with glasspaper.

Suggestions for painting the figure are also given in Fig. 2. Bright colours should be
a piece of $I \frac{1}{2}$ in. $x \times \frac{1}{2}$ in, wood across the left-hand end (Fig. I). Underneath is fixed a guide block, a sliding fit in the guides and a little less in depth to allow the clamp block to grip the guides securely. Run the stock along the guides until it touches the chuck and allows the point of the latter to mark. Using this point as a centre, drill a hole the same size or a little smaller than a $\frac{1}{4}$ in. coach bolt. Before fitting this bolt a nut should be run up to the head of the bolt and a short point ground on its tip. When the nut is removed on the completion of grinding, it will clear the thread and eliminate the effect of any damage caused. The bolt should then be screwed through the hole in the tailstock body and finally locked into position with a nut and washer, as shown in Fig. I. A clamping block is
fitted, as shown at Fig. 5, so that the tailstock may be held at any point. When the carriage bolt centre is fitted, slide the stock up to the chuck and see if it centres truly. If not, unscrew the cross-piece of wood from the stock base and either pack it with paper or thin card or take a shaving off the underside, as requisite, or move to one side or the other.

The tool rest is put together as shown at Fig. 6. The drive for the lathe can be from a small electric motor such as a sewing machine or vacuum cleaner motor, if available, or in some cases the domestic sewing machine treadle stand can be pressed into service. An old motor wheel with belt rim can sometimes be utilised either treadle driven or turned by handle by a second person.

The Tumbling Ladder Man

He Descends in a Series of Somersaults

used and both sides of the block painted. As the man has to perform a series of somersaults the two figures must be drawn reversed, i.e., the head of one must be at the end of the block where the feet of the other are.

The Ladder
Fig. 3 shows a portion of the ladder. The
 rungs are strips of wood $\frac{1}{4} \cdot \mathrm{in}$. wide and $3 / 32$ in. thick. Glue and pin them to the cheeks. Make the ladder as high as you like. Space all the rungs accurately to the dimensions given in Fig. 3. Mount the ladder on a block as shown in Fig. 1, giving it no more inclination than that shown, and less if mecessary. Test with the man, before fixing the ladder.

How to Operate the Device
The man may be Fig. 3.-Ladder details.

Fig. 4.-The toy in action.
reaches the bottom, showing each side alternately. Fig. 4 shows the toy in action. If you are unequal to copying the grotesque figure shown in Fig. 2, you might cut out suitable figures from an illustrated magazine or from the advertisement pages of a newspaper, colour them and stick them on to the wood block. started on the topmost rung and will descend head-over heels, one rung at a time, until he

Flying Saucer Photographs Can be Faked
Details of an Interesting Example

THE camera cannot lie, or can it ? The photograph on the left shows two flying saucers, one hovering and one coming in to land on a mountain top, but the whole thing was faked by one of our younger readers. The flying saucer's were superimposed on a landscape print by means of a specially cut stencil and an air brush, final details being inserted with a fine paint brush. The result was photographically copied.
commerciál hydrochloric acid neutralised with zinc scrap. A soldering aid is but a minor application of the acid, however; industrially

Fig. 1.-Apparatus for making hydrochloric acid.
it is used as a cleaning agent for metals and in the manufacture of chlorides and heavy chemicals. As one would imagine, hydrochloric acid does not occur naturally in the free state like oil or coal, but is manufactured from its naturally occurring compounds (chlorides), the commonest being ordinary salt (sodium chloride). Corrosive and poisonous as the acid is, it is somewhat surprising to learn that the gastric juices of the stomach contain about 0.2 per cent. which acts as what is called an enzyme activator aiding digestion.

You can make your own hydrochloric acid for future experiments by following these instructions.

The apparatus required is similar to that used in the preparation of oxygen (January, 1957, issue) but is even more simple. A flask is fitted with a good cork bored for a bent delivery tube. About an ounce of common salt is placed in the flask and two ounces of concentrated sulphuric acid poured on to it. The cork with the delivery tube is now inserted tightly into the flask neck and gentle heat is applied, the apparatus being rigged up on a wire gauze over a tripod. This is clearly shown in Fig. 1. Bubbles of gas will be seen to come off the salt, and in a little while white fumes will issue from the delivery tube. The fumes are due to hydrogen chloride-a colourless gas in dry air, but one which forms a fog of tiny hydrochloric acid drops in slightly moist air.

Obtain a large glass bottle (a Winchester is ideal) with two well-fitting corks. Dry the inside of the bottle and fill it with the gas by passing the neck of the delivery tube into the neci of the bottle. The gas is heavier than air and soon fills the bottle, displacing the air by virtue of its weight.
merged beneath the surface of the water (see Fig. 1). No bubbles will be seen rising to the surface-the gas is dissolving in the water as quickly as it comes over. When the chemicals in the flask are exhausted (denoted by sucking back of the water through the delivery tube), remove the jar of gas solution and then turn off the Bunsen. The gas solution in the jar is hydrochloric acid. The residue in the flask is white and consists of a mixture of sodium sulphate and sodium acid sulphate; this is useless and may be washed away.
In making our specimen of acid, the hydrogen of the sulphuric acid and the chlorine of the salt combine to give hydrogen chloride sodium sulphate. You can liberate from the solution of hydrogen chloride either the chlorine or the hydrogen.

Fig. 3.-How writing can be removed.

Hydrogen from Hydrochloric Acid

Quarter fill a test tube with acid and add one or two fragments of zinc scrap (see Fig. 2). A violent effervescence takes place, gas being given off very vigorously, and the tube becomes hot. Hold a match to the mouth of the test tube, the mixture of hydrogen and air explodes with a characteristic shriek and a blue flame runs down the tube. With a little manipulation the quantity of hydrogen coming over may be controlled so that it is kept burning at the mouth of the tube. It is only when mixed with air or oxygen that hydrogen is explosive, and whether it burns quietly or explosively, the product is water. You can prove this by holding a cold plate against the mouth of the test tube when the hydrogen is burning. As the flame plays on the cool surface droplets of water will run off.

This experiment demonstrates the dangers of fire on a hydrogen-inflated airship.

After all action in the test tube has subsided a clear liquid remains. This is zinc chloride solution and may be used for soldering purposes. Thus starting with common salt and sulphuric acid we have obtained hydrogen gas and zinc chloride.

Fading Ink

Write a few lines in ink on a scrap of paper. When the ink is dry, dip the paper in water and push it into the test tube (Fig. 3). The writing will disappear.

A Coloured Fountain

It was for this experiment that a large bottle was filled with hydrochloric acid gas (more correctly-hydrogen chloride). Take a roin. length of glass tubing and draw it out to a fine jet. Bore the spare cork so that this tube is a good fit and, having removed the first cork from the Winchester, insert the second with the jet pointing inwards. Fill a small bowl with water and colour it with blue litmus solution, then quickly invert the bottle of gas over it with the projecting glass tube well submerged. In about half a minute the blue solution will be drawn up the tube and out of the jet inside the bottle where it will play like a fountain (Fig. 4). Simultaneously the colour will change from the blue to red.

The keen experimenter will be interested to hear the explanation. Hydrogen chloride is remarkably soluble in water and the resulting solution is an acid. When you invert the bottle of gas, the little water in the bottom of the glass tube takes up a large quantity of gas. A corresponding reduction of pressure inside the bottle causes water to be drawn in, when more gas is dissolved and more and more water drawn in as the experiment continues. The fountain plays until the jet is submerged. The colour changes because litmus is red in presence of acid.

Fig. 4.-The coloured fountain.

R E A DERSO,
 SAMES ANDWNTS

The pre-paid charge for small advertisements is 6 d . per word, with box number $1 / 6$ extra (minimum order $6 /-$). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southampton Street, London, W.C.2, for insertion in the next available issue.

HOBBIES

TOY \& GAME MANUFACTURE. The world's first journal ture of toys, games, sports cquipment and amusement noveltips. men copy $2 / 6$.
lications
Itda..
Techniview Pub
Oxford
Street London, W.1.
MAKING YOUR OWN ? Teieor, in fact, anything using lenses. Ex-Goy. Lenses \& Prisms," price Use ea Comprchensive lists, of ontical, radio and scientific equipment free
for s.a.e. H. W. English. Raylelgh Rd., Eution, Brentwood, Essex.
MAGIC--Handcuffs, $\begin{gathered}\text { Mairit } \\ \text { Bocks, } \\ \text { Manuscrints }\end{gathered}$ explaining ${ }^{\text {Second-Sight " Telepathy } " \text { Performances. a } n \text { dists }}$ 3d.) "Ex-professional," 12, Carlton venue, Romiley, Cheshire
A LUMINIUM LAUNCH HULLS, 4. Clockwork Motors iGerman!, 4/6 and 3/3, postage 9d. Ship Plans
and Fittings. List M, Md.
ford s. 89, Canntidge strect, Glasford s. ${ }^{89}$,
gow, C .3 .
LLUSTRATED CATALOGUE NO, 13. Government Surplus and Model Radio Control Equipment, $2 /-$ jost
free Refunded on purchase of goods: free. Refunded on purchase of goods: Radio Control Ltd.. 83 . North Road, Brighton. (Phone: 25806.)

ELECTRICAL

A LL TYPES OF RLECTRICAL tve prices, e.g.. 5 amp. Twin Cable tive prlces, e.g. 5 amp. Twin Cable, 48/- 100 yards; Lampholders. $7 /-1$ fit. Battens, $51 / 6 ;$ qualisy and doz., Sit. Battens,
imenediate
despatch
Ravest guarantced
list. Request list. Jaylow Supples, ${ }^{\text {Fa3 }}$ phone: Staniford Hill 4384.)

BROOKS ERAND NEW Single Phase, $\frac{1}{3}$ h.p. 1,425 r.p.m. 67. 5.0

Fully guaranteed by makers, approval against cash. Carriage paid mainland. State
voltage. FREE. A Three-step " \vee ". Pulley

P BLOOD

ARCH STREET, RUGELEY, STAFFS

MODEL ELECTRIC MOTORS. mical. Amazingly powerful and econo $13 / 6$. nost paid, 3 to 6 v and 3 to 9 v ,
speed $4 / 5,000$ r.p.n2., size 1 jin.
 plane, 5in. and gin. Model Elec-
 Manchester:
$B^{\text {RAND NEW guaranteed Electric }}$ o 1 Motors at lowest prices. Ball Bearings. single-phase and three-phase: Balso Bench Grinders and Polishers. Ask fol
trade discounts. Gili, 48, High Street, Brighton, Sussex.

WATCHMAKERS

WATCHMAKERS: Use genuine
 Larterton, Dept. ${ }^{\text {Lerd }}$
Watch repair service, un speed, coupled with reasonable Material supplled jobs welcomed. Material supplled. Hereford W. Castle Street, Hereford. INSTRUMENT Lathe. 2in., Ameri new can Watch Co., quaranteed as new and perfect. scarcely used, with
collets. $\delta 20$ (cost $£ 60$). This is a superb tool. Appointment. please. Hood, 80, Ridgeview Road, London,

HOUSE SERVICE METERS, credit from stock. Universal Electrical.

$100,000,000$
 Nuts, Bolts,

Wrashers Rivets, etc., in stoek.

ungineers Haberdashery Whiston tDept for latest list. Whiston
(${ }^{\text {LASS }}$ FIBRE car bodies, sidecars, lass Cloth for wooden boat repairs. trial lot 26,3. or quotation for any surface area. Polyester Resin
Embedments, biological, botanical Embedments, biological, botanical and metallurgical mounts beaunate porous metal castings, trial unit 1/3: Epoxy Resill, the best resin wheel-arch and frame repairs, trial unit $12 / 6$ Burst pipes and tanks
 Ung for all purposes, each dispensing equipment and information sheets. Epoxy Paint. Waterproof, heat reststant porcelain finisil for baths, pint. with Catalyst, white, black or clear. Information Sheets ou glass hbre-teclinique, list with price list. stamp piease
Guide to the Guss Fibre Technique, $15 /-$, jost free. 81 lages. Class Fibre
Experts with units for all purposes Experts with units for all purposes Hartington. Staveles. Chesterfield. please. MOURDS for platic or
IR UBBER MOULDS for Plastic Orillustrated catalogue gd, Mculding compound for mould making 86 per 3i- each s. s.e. for list. F. W.
Nuthall, 69 , St. Mark's Road. HanNuthall, 69, St.
well. London,
W. 7.
CRAINING BY TRANSFER, oak, Complete ralnut, etc. $\underset{\text { Samples }}{\text { Sam }} \quad 1 /-4$

PERSPEX for all purposes, engraving Denny. 15. Netherwood GLITTING SAWS. H.S.S. 2!in. ct $12.39 /-\mathrm{p}$. and p. $2 /-$ Motorised Saw Beach, Gin. rise and fall. saw complete, s12/io/-; Carborundum Tool Stones to Ain'. square. $665 /$ p. and p. 9d. All tools on easy payment terms. List 6d. Mibro Equip-
mants Ltd.
$79-81$. Derby Road, mants Ltd., 79-81, Derby Road
Nottingham.
(${ }^{\text {P.O. TYPE TRYEPHONES, com }}$ E10: plew with bells jist brice dioal asextension telephones, or inter: conis. K.F.P.. 17-19. Ashmead Road London. S.E. 8 .
A QUALUNG BOTTLES, 19in. x 7 in condition ; £. 9 Box No. 135, c/o Phactical Mechanics.
CEN." 2 in . Centre Lathe. Castfrigs again available ; s. a.e. for
details or blueprint. $2 / 6$. 278 , iord details. or blueprint. 2/6. 278, Lord ENSES. Prisms, L516 and other IA Projector Spares. Electrical and Instrument Sparcs. Latest lists now
ready. Exhausted office boy draped ready. Echausted office boy draped der fed-hot duplicator and sugde mands 6 d , per list. Stannps or Puggests 6d, per list. Stanps or Pang. count anyway!. Burgess Lane \& Company. Thornton Works, Tinornton Avenue, Chiswick, CHI 5752.)
COMPRESSORS for sale single Coylinder approx. 11 ini b., 14 in. s. good condition. $\quad 7 / 6$ each post $3 /$ extra. James Refrigeration Limited
57. Trafalgat St. Sheffild.
(Phone Mirmors and Accessories. for for lists and free plans and instruc tons for 4in. eflecting telescope Seren Astronomical Mirrors. 12
Jeymer Drive. Greenford, Middx.

HOME BOAT BUILDING

BUILD YOUR OWN BOAT or Canoe plans or Kits for easy Wyvern Boats (N), Milborne Port,

WOODWORKING
WOODWORKING MACHTNES, cast-iron constructed. Complet
 £30. Planers, 5 in.: $£ 12$; Bowl Turning Heads, \&i, with 8in. Saw Tables, tion Lathes Elo/10/-: Motors Pulleys, Belts, etc. 12 months Written and money reruad guarantee 4d. stamp for illustrated booklet James Inns
ARE YOU LOOKING FOR A Plywood, Wallboards. veneered Ply. plywood, Wallboards. Veneered Ply-
wood? Call at our wareliouse or send s.a.e. for price lists. N. Gerver 2/10, Mare street. London. E. 8 (near Cambridge Heati (E.R.) station)
AMHerst 5887.)

STOP!

Before buying that woodworking machin it will pay you to see the Myblo range by many leading cool merchants. Write for lists or better still call in for λ
demonstration. We know we can interest

P. BLOOD \& CO.,

ARCH STREET, RUGELEY, STAFFS
WOOD LATHES, Motors, Jig Saws Planers, Circular, Saw Blades, Saw spindles and Benches Turning Tools, etc. New llustrated itterature, price list, extended credit terms no available, price 6d. istamps, pleasel
D. Arundel \& Co. Mills Drive, Farndon Road, Newark, Notts.
GAWBENCHES, $6 i n$, to 30 in ., from Portable: Motorised, \&19: Petrol Purtable Benches, Sawbenches, $\mathbf{P} 1$ a \mathbf{n} in F Machines. Saw Spindle Assemblies for any size saw from 37/6. Motors, Engines, Blades, Bearings, Pulleys, Belis; deferred terms. Send 1,6 for Bandbook-catalogue. List free. 51 . Notts.

HANDICRAFTS

GWISS MUSICAL BOX MOVE. MENTS, only $14 / 9$, post free for tunes list. Swisseross. Dept. V.116. Winifred Rd., Coulsdon,

DLASTIC INJECTION MOULDING PLACHINES. Hand - operated bench injection machines for laboratory and experimental purposes, or
for handicrafts and hobbles. Moulds made to order. Write or phone: Dohm Lidd. order, Wict, Victoria phone: London, Stw. S.1. (VICtoria 141 $(8$ lines).
MAKE YOUR OWN MUSICAL BOX. Box Parts suovements and kits of Box Parts suopled s.a.e.
and ture prise
Repar Repair Service, or send $1 /$ P.O. for design and instructions. Mulco Ltd...
87. Cambridge Road, London. N.W.6.

SAW REPAIRS

SAW SERVICE BY POST : Circular ncl saws set and sharpened sd. per sharpened, 8d. per inch : recut, $1 / 3$ per incl, Minimum charge per saw, 2/6. (Prices include return postage.) 48-hour postal service Cash with order. J. A. Fowle !Dept. C1, 18-22,
Bell Street. London, N.W.1. Bell Street,
lished 1840.)

CHEMISTRY

CHEMICALS AND APPARATUS Send $2 \frac{1}{2 d}$. stamp for catalogue and details of special offer. Scientific \& Technical Supplies Ltd.
Dept. PM., 9 , Wellington Clrcus, Dept. PM...

SITUATIONS VACANT

A. M.IMech.E. A.M.Brit.I.R.E., City No Fee terms. Over 95% successes. For details of Exams and courses in all branches of EngineerHandbook - Free. B.i.E.T. MDept
967 B) 29, Wright's Lane, London 9678 .
W.

FIBREGLASS
$R^{\text {Uste }}$
arches, doors, boots, eic., we marently and problem. Quick1y; permacently and cheaply repaired fast being recognlsed by more and more people for its outstanding repair qualities. $13 / 9 \mathrm{kit}$ (postage $1 / 4$). enough for 2 doors or more. Also Bondafiler, the new supertior filling
teshnique, Handypack, 6, 6 , plus $1 / 4$ technique, Handypack, 6, 6 , plus $1 / 4$ post. Send s.a.e.
guide,
gen sheet and price list. find us helpiut and knowledgeable We use Bondaglass all day and every day. Demonstrated at Gamages. Is televised. Bondaglass Lid., 40 a,
Parsons Mead, W. Croydon. (CRO 1888.)

HOLIDAY
 ACCOMMODATION

PATENTS

DATENTING Services. Advice, 114. Greenhayes Are., Eanstead,

TURN YOUR IDEAS INTO MONEY.- Reputable and Fell-
known manufacturer with frsf-class
selling organisation invites invenselling organisation inviles inventors to submit $\begin{aligned} & \text { ldeas for new pro- } \\ & \text { ducts with } \\ & \text { selling } \\ & \text { appeal }\end{aligned}$ to ducts with selling appeal to
housewives and motorists. Marketing of suitable patented inventions also considered. Send fullest details to Box No. 155, e/o PFActical.

PHOTOGRAPHY

WNLARGER and Camera Be:lows Cuthbert's Road, Derioy. Beers, St.
DHOTO-ENLARGER Castings and 21. Bellows, for 35 mm .. 2 lina, $\times 2$ 2.ing., 2 din. x inn., $35 /-$ per set: s.a.e. for Road, Easton, Bristol, 5

EDUCATIONAL

MERCBANT Navy Radio officer travel and Training Schoo!. Wo:ld travel and adventure
I EARN IT AS YOU DO IT-we pro\rightarrow vide practical equipmeat combuned with instruction in Radto. Chemistry, photography etc Write for full details to E.M.I. Institutes. Dept. PM47, London, W. 4.
TREE! Brochure giving details of
Hone Study Training in Radio. Television, and all branches of Etectronics. Courses for the Hobby the A.M.Brit.I.R.E., City and Guilds. R.i.E.B. and other Professional
examinations. Train mith tine college operated by Britain's largest Electronics organisation. Moderate fees.
Write to E.M.I. Institutes, Dept. Write to E.M.I. Institutes, Dept.
PM28, London. W. 4 .

MISCELLANEOUS

THE BENDELLE CHART solves lide ruie type calculations. 7/6, post free. Whittaker Enterprises. ${ }^{233}$ Pear Tree Aveauc, Bitterce. Southmpton.
RUBBER MOULDS for Plaster ample arnaments. Wallplaques ete. quiries invited. Castmoulds (Dept. M), 43,45 , Waller St., Hull.

QUALUNG
ment.
Balliraces cellareous Items. Lists 2d. Pryce, 157. Malden Road, Cheam

FORTUNES IN FORMULAS," $900-$ American technical hobby and other books covering every interest. Stamp
for lists. Herga Ltd. (Dept. P2) Hastings.
(Continued on next page)

408
(Continued from previouspage) BUID YOUR OWN REFRIGERAt reasonable pomponents avaidable flowing cold uaits, st ; small units duty Motors. ${ }^{2} 3{ }^{2}$ Chrome Cabinet fittings, new. \&ll ; money back guarantee; s.a.e for list and schematic diagram. Wheelhouse, 13 , Bell Road. Hounslow. (Phone: Hounslow 8749. GTEAM CARS, Boats and Small Stationary Power Units are described in "OLight Steant Power. Your copy and comprehensive illus trated lists of drawings. castings and Light Steam Power," Kirk Michael Isle of Man. U.K.
SUPERTONIC SUNLAMPS, listed Sclentific Products, Dept. I, Cieveleys

- Techical

DESCRIBES ALL THE MONTH'S NEW TECHNICAL BOOKS
(May.) Out May t. Lists 250 titles. $6 d$, at
newsagents. By post 8 d , (6 months $4 /-\mathrm{F})$ 21 Lower Belgrave St, London, S.W.I for Simpliñed Construction of Tested an SPABRS' DATA SHEETS Because they are the Finest. Simplest SEND 31. STAMP FOR FULL LIST Many Designs to choose from. All compo L. ORMOND SPARKS (M), VALLEY ROAD, CORFE CASTLE, DORSET

- COMPARE OUR PRICES! DRILL SETS

Carbon Twist Drill Sets. 29 pieces 10 to or five payments of 10 /.
High Speed Twist Drills as above with H5 15 s ar six payments of High Speed Twist Drills numbered $1-60$ 60 pieces, $£ 315 \mathrm{~s}$. or four payments of El . High Speed Twist Drills, letters A-Z. 26 pieces, $\mathbf{6} 55 \mathrm{~s}$. or five payments of $\mathrm{E}, \mathbf{1} \mathbf{2}$ s. s. Migh Speed Twist Drills. 13 in meta box from $\mathrm{t}^{\prime \prime}$ to $\mathrm{I}^{\prime \prime}, 16 / 6$
Chrome Vanadium Twist Drills, 13 in wallet from $\mathrm{I}^{1 /}$ to 1 ", $7 / 6$.
5 Auger Bits in wallet reduced shank to
 Orders over £1. Post Free. Send S.A.E.

WANSTEAD SUPPLY CO, 30 The Broadway, Woodford Green

RING SPANNERS

(minil $27 / 6$ SET 5 WHIT. 1/8"-7/16 5 A/F. $3,8^{\prime \prime}-13 / 16$ 6 MHTLEM: $9-21 \mathrm{~m}$ AELE PRST PAID GUAUANTEEI BRIGHT CHROME FORGED STEEL These short series ring spanners have been specially designed for use on long ring spanners meet with obstruction. These ring spanners are approximately of the same length as open-ended advantages of being offsec, extra strang, and having thin walls.
ORDER OR CALL
POND IOOL CO. 69 CHANCERY LANE, HOLBORN, LONDON, W.C.2. Phone: HOLborn 0255

MODEL BOATS

Plans : Kits: Engines : Etc.
4d. in stamps for Lists.
LAWRENCE MODEL SHOP 106, LAWRENCE ROAD LIVERPOOL, 15 .

METWOOD for MUSIC IN MINIATURE

-a complete range of Swiss Musical Miniature's. AND REUGE companies of Switzerland, and they range from 1 tune $/ 8$ tecth to 3 tunes $/ 72$ teeth. Command Performance movements by bases. Our kits are of the very lest quatity obtainable, originated by us-imitated by others. TRADE ENQUIRIES INVITED. POST TODAY for full details as follows S.A.E. for full Lists of Movements and Boxes

Send 9d. P.O. for full illustrated Catalogue and Lists (9d. returnable on first order). how 10 make your oun Musical Box how 10 make your own Musical Box Movements - Individual kits. Novelties

METWOOD ACCESSORIES 65 Chureh Stret Bucks (Importers and Mamufachirers.)

(A), DUTCH \& CO

Monkhams Lane, Woodiord Green. Essex

32-page Booklet on

STEAM FOR PROCESS

The Bulletin "Steam for Process" explains in clear words and pictures, most of the hings an engincer ought 10 know about use of steam for healing and pro

SPIRAX-SARCO LTD. (TECHNICAL DEPT.)

Cheltenham, Glos.
AUTOMATIC (TIME) SWITCHES
and reconditioned 15 day clockfrom 35/=

DONOHOE (TIMERS)
GEORGE STREET, NORTH SHIELDS, NORTHUMBERLAND

TOOLS

ADJEISTABEE
 planes, Sheffeld double irons 14^{*} overall, 2^{*} cutters. THE SEND FOR DETAILS OF 太 $\begin{aligned} & \text { ZYTO" DO-IT-YOURSELF }\end{aligned}$ TOOLKIT

ONLY LONDON ADDIRESS

S. TYZACK \& SON LTD.

DEPT. N.W. 5
341-345, OLD ST. LONDON, E.C. 1

GOVERNMENT
 SURPLUS BARGAINS TRIPODS. Unused. 38 long. only 5 ib. Brass cap easily adapted to camera. Ltc. etc Each $12 / 6$ carriage $3 / 6$. RED UCTION GICAR, approx. $(24-45-90$) $6-12$ v. D.C., 1 amp., ea. $15 /-$. post 1/9. ONTGL ONL as above (dimensions HATHERY CIIAREGING TIAANAFOR.MFRS. 10 v. \& 16 v. A.C. (for $6 \&$ 12 v. charging at i amp.), ea. 17/6. pust riecrinlieies to suit above. ea. 7/6, (These transformers \& rectifiers will run the above low voltage motors.) BL, vide sufficient draught for Car Heater on variable vesistance). ea. $25 /$ post $1 / 6$. approx. 80 watts. HFigh A.C.ID.C. FHP. power abdex R.A.F motorgeneratormotor.) Useful addition to workshop ea. 30/- post $2 / 3$. Send 3d. stamps for list of other Motors Transformers, Pumps, Lamps, Switches
 MILIIGANS
 24. Harfori Streft. Liverpool, 3.
 Webley
 HIR PI量TOLS
 ITR RIFLES - mCCESSORIES
 Wer for Werler a cott

The Editor Does not Necessarily Agree with the Views of his Correspondents
of machine which I am convinced has tremendous power of ascent.

The proposed machine is equipped with a powerful electric motor driving a system of rotors. The power supply is derived indirectly from the energy of a small plutonium reactor. This reactor, in the case of the machine being manned, would te situated at a distance from the crew cabin. As the single-rotor system provides little or no horizontal stability (altitude being the chief aim) the launching would have to te carried out in calm conditions. An unmanned machine of this nature could possibly be used in the launching of an artificial Earth satellite, where, when the maximum altitude was reached, a timed mechanism would allow the satellite to be projected into its orbit.P. WALSH (Ireland).

Author's Comment

Mr. Walsh's idea of an atomic/electric/ mechanical power unit for an aircraft presents many difficulties. The generation and harnessing of power to drive the rotor system would alone be a complex three-stage sequence. Further, the use of highly radioactive materials in a power unit would demand heavy shiclding, thus increasing the overall weight enormously-a major bogy at all times when operating directly against gravity. The use of atomic energy for air or space flight requires that the energy be translated into terms of thrust as simply and directly as is possible. The suggested use of rotors on any machine intended for extremely high altitude work is, of course, quite unacceptable.

The machines described in "Space Visitors" which prompted Mr. Walsh's speculations almost certainly utilise some form of electro/gravitic power supply.

Steam Cars

CIR,-In the January Practical Mechanics you asked for readers' views on steam cars. Here are mine.

The steam car is simplicity personifiedcompletely silent and the nearest approach to automatic traction that could be devised.

Remember the steamers Doble, Serpolette, White and the wonderful Stanley?
The Stanley, even in its most original form, i.e., before a condensing radiator was fitted, was very efficient. It had 32 moving parts-including the four roadwheelsand generated 6oolb. superheat steam pres-sure-considerably more than railway engines. Gear ratio was I to I and with large road wheels, it did 800 revs, per mile irrespective of speed. The engine could be lifted by one man and i: used little oil. In 1906 a Stanley did $127 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. To drive it was a sheer delight with the advantages of immense power and complete silence, no gears, no clutch, immense braking power and long life. I think a good steamer would wipe the I.C. engine off the road!
There was a rumour that the Singer people were experimenting with a steanier and I wrote to them with the intention of getting in early but did not get the courtesy of a reply.-R. F. MacDonald (Johannesburg, S.A.).

Space Visitors

SIR,-In the February issue (Practical
Mechanics) Mr. B. L. Kershaw endeavours to explain the unusual phenomena described in my article "Space Visitors" (December issuc, Practical Mechanics, 1956). He says that "all but one were meteors or foo balls." This does not agree with established opinion relating to these natural phenomena. Take the meteorite theory which he applies to the Mantell Tragedy.

Mr . Kershaw invokes the presence of a Mach cone trailed by a fast low-flying meteorite. It would be unlikely to expect any visible evidence of such a cone, but I assume he requires the presence of a vaporisation trail-for there had to be something for the flyers to see and pursue. Unfortunately for such an explanation, such a trail would traverse the sky horizontally or trace out a declining arc. This phemomenon did not exist.

The thing which Captain Mantell described as a large disc of metallic nature came to a halt above the airfield then ascended, slowly at first, then with increased acceleration. Meteorites do not ascend. Nor in this tragic incident was there the slightest evidence of meteorite impact or disintegration.

The "foo ball" phenomicnon is not denied and no doubt certain aerial manifestations can be attributed to it. But to present it as the explanation of such objects as the vast and illuminated disc which at close quarters swept round the plane piloted by Captain Adams, or the cavalcade of entities sighted by Captain Howard, is simply overworking the phenomenon. The suggestion that "the small lights seen by Captain Howard accompanying his airliner were probably his own lighted cabin windows" is completely out of keeping with the stated facts. They were not small lights. They were dark objects silhouetted against the
setting sun-the smaller ones moving freely about the larger parent body.

As a further point of interest relevant to the main topic I should like to mention that Rear-Admiral Delmer Fahriney, former head of the United States Navy's guided missiles programme, held a Press conference in Washington on January 17 th this year. He stated that objects are entering Earth's atmosphere "at very high speed." There were signs that " an intelligence" was directing these objects. He was quite sure that " no agency in th: country (U.S.A.) or Russia is able to duplicate at this time the speeds and accelerations which radar and observers indicate these flying objects are able to achieve."

In the March issue (Practical Mechanics) Mr. F. W. Cousins raises certain objection regarding my January, 1957, "article on "Space Visitors."

I make no reference to the planet Venus possessing the lowest temperature in the solar system. His objection must be intended for my description of Mercury. If so, I find it futile to wrangle over the firm scientific opinion which holds that Mercury is at one and the same time the hottest and the coldest of the solar planets.

The described radio emissions from Jupiter cannot, as he states, be attributed to violent atmospherics. The periodicity and short duration of the emissions can in no way be reconciled to the axial rotation of atmospheric circulation of Jupiter.

I state that the presence of ice-caps on Venus must largely disprove the "dust bowl" theory relating to that planet. If Mr. Cousins insists on torrid desert zones he must still remember that somewhere between torrid and frigid zones there will exist temperate zones amicable to the life force. The manifestation of this force is the main theme of the discussion.

Re his adamant denial that oxygen exists in the Martian atmosphere: while research by eminent investigators indicates that the oxygen content of the Martian atmosphere must be small compared with that of Earth, it does not deny its presence. It sets a maximum limit. That is all. Even this upper limit is flexible for the method of investigation, that of spectral analysis, is least effective when dealing with gases which are abundant in Earth's atmosphere, because the effects of the two atmospheres are superimposed. The co-existence of oxygen atoms and molecules in the Martian atmosphere could lead to the formation of ozone.

The ruddy colour of certain Martian regions is suggestive of completely oxidised rock. The presence of free oxygen and carbon dioxide (of which Mars has an abundance) virtually demands the existence of vegetation. Conversely, the prevalence of vegetation will supplement the oxygen content of the atmosphere.

The lichens postulated by Mr. Cousins would almost certainly be obliterated by drifting dust. Larger and more virile plants must be postulated to fit the observed conditions.

As Mr. Cousins apparently doubts the high probability of plant and animal life fiourishing side by side, I invite him to find the line of demarkation between the two forms. He will have quite a search.

The assumption that the Martian polar caps are $\mathrm{H}_{2} \mathrm{O}$ frost instead of ice and snow is untenable when we consider the vast changes which occur in regions adjacent the respective poles when summer melting takes place. The canals become more pronounced
and the areas of pale green take on a richer tone. As the change must be attributed to the growth of foliage, it implies the presence of water in good quantity from the polar regions.

Magnificent work has been done by Dr. E. C. Slipher and his colleagues whilst studying Mars at the Lamont Observatory, Bloemfontein, during a recent six-months spell. Using the most modern "television" type apparatus he produced 1,400 photographs of Mars. Dr. Slipher ultimately expressed the view that the Martian canals are the work of intelligent beings.
"Theorist."

Constructing an Ellipse

CIR,-With reference to the simple ellipse
construction in the February, 1957, issue, I would like to suggest another method, not so exact, but just the thing for a fast, simple construction.

Make A B diameter of large axis; C D diameter of small axis.

Construct a $30^{\circ} \mathrm{L}$ and $60^{\circ} \mathrm{L}$ as shown to perimeter of concentric circles. Drop four perpendiculars from outer perimeter

Mr. A. Strang's alarm circuit would not be very satisfactory when worked off dry batteries as the magnet relay will be taking current all the time the alarm is in operation, causing the battery to become flat in a very short time. I suggest he uses the simple alarm circuit I have fitted to my aviary, this can be worked from dry batteries or suitable mains transformer. If worked off the dry batteries, the pilot light should be excluded. The cable from the aviary to the house must be of a good plastic type which can be buried under the ground or in a pipe, so that it cannot be cut by any would-be intruders. Also I would suggest that if he uses a transformer he keeps it in the house and not in the aviary, as damp may affect the windings, and mains voltage must never be allowed to flow through the underground cable. It is also most important that when using a transformer the secondary winding must be earthed.-D. G. Salmon (Reading).

Dangerous Chemicals

SIR,-With reference to the article "The Junior Chemist" (No. 3), (February issue). Although a warning about chlorine gas was given, no such warning about oxalic acid was given. Oxalic acid is very poisonous and must not be placed in the mouth. About one gram is fatal.-E. J. NORRIS (Ebbw Vale).
CIR,-In a recent article in your magazine it was stated that oxygen could be prepared from a mixture of potassium chlorate and manganese dioxide.

Two letters in The School Science Review recently pointed out the very real danger in this method. Briefly, unless the manganese dioxide is pure, serious injury can result. Commercial grades of manganese dioxide are often made from pyrolusite which is liable to contain impurities. A purer alternative is a precipitated grade which can be obtained from Messrs. Griffin and George Ltd.
Also, it is recommended by Messrs. Griffin and George that the proportion of one part of pure precipitated manganese dioxide to 15 parts of potassium chlorate by weight be used. This avoids any rapid evolution of oxygen and removes the necessity of excessive heating.-J. Edwards (Bolton).
then, where parallels $\mathrm{A}-\mathrm{A}_{1}, \mathrm{~B}-\mathrm{B}_{\mathrm{r}}$, intersect perpendiculars, mark points.
Join A B A C A B_{1} B to obtain ellipse.A. M. Westoby, T. D. Joyce (Hull).

Electric Alarm

CIR,-Re "Information Sought" Electric
Alarm, December, 1956, issue. Being a budgerigar fancier myself, I sympathise with Mr. Major-Dunkley's problem, and I agree with Mr. A. Stran? (February issue) to use his 500 -volt transformer would be most

Free Energy from Water

 $S^{I R}$,-I read your comments on the above in the February Editorial with interest and remember that many years ago a mari"claimed that he could drive a car on water. I believe that he followed this with a successful demonstration. An account was published in several daily papers, but when he subsequently refused to divulge the process it was thought to be a fake.I designed apparatus myself for the same purpose, but could find no one who would take any interest in it-petrol was rod. a gallon at the time!-C. V. Thompson (London, W.i4).

Water Tank Repairs

SIR,-We read wih interest your reply to an equiry "Water Tank Repairs," page 318 of the March issue and would like to bring to your notice one of our products, namely, Adup Bilge Seal. This is a heavy bituminous compound designed to act as a seal of the bilges of sail yachts and small craft, but is also an excellent material for waterproofing tanks, etc.-Plow Products Limited.

Mr. D. G. Salmon's alarm .circuit.
 appointments that will bring personal satisfaction, good money, status and security. As part of a modern industrial organisation, we have skilled knowledge of what is required and the best means of training personnel for present day and future requirements. We specialise also in teaching for hobbies, new interests or part-time occupations in any of the subjects listed below. Write to us to-day for further information. There is no obligation of any kind.

PERSONAL \& INDIVIDUAL TRAINING IN-

OUR BACKGROUND!

Factories at Hayes.
England, occupying over 150 acres.

The only Home Study College operated by world-wide manufacturing organisation
 PHOTOGRAPHY, etc., etc. COURSES FROM 15/- PER MONTH

Mathematics
M.C.A. Bicences
Mechanical Eng.
Metallurgy.
Motor Eng.
Painting Becorating
Photography P.M.G. Certs. Police
Production Eng. Production

Planning

Radar
Radio
Radio Amateurs
(C\&G) Licence
Radio \& Television
Servicing
Refrigeration
Sales Management Sanitary

Engineering
Salesmanship Secretaryship Shorthand 8 Typing
Short Story Writing Short Wave Radio Sound Recording \& Reproduction Telecommunica-

Television
Time Motio
Tracine Study
Tracing
Welding
Workshop Practice Workshop

Management
and many ochers Also courses for GENERAL CERTIFICATE OF EDUCATION, A.M.I.H.AV.E., A.M.S.E., A.M. Also courses for GENERAL CERTIFICATE OF EDUCATION, A.M.I.H.EV.E., A.M.S.E., A.M. B.pit.I.R.E., A.M.I.Mech.E., A.M.I.E.D., A.M.I.M.I., A.F.R.Ae.S., A.M.I.P.E., A.M.I.I.A., A.C.C.A.,

NEWN
Courses with PRACTIGAL EQUIPMENT
in radio - television - mechanics
CHEMISTRY • ELECTRICITY • DRAUGHTSMANSHIP

POST THIS TODAY

Please send, without obligation, your FREE brochure,
E.M.I. INSTITUTES, Dept. 144K, Londón, W.4.

NAME. AGE

ADDRESS
(if under 21)

I am Interested in the following subject(s) with/without equipment.

BLOCK CAPS PLEASE

New Photographic Apparatus
TWO new items have been received from Johnsons of Hendon, Ltd. For the beginner there is the Exactum Dish Pack which contains, as can be seen from the photograph, three different coloured dishes, each $3 \frac{1}{2} \mathrm{in}$. by $4 \frac{1}{2} \mathrm{in},{ }^{2}$ forceps and a transparent roz plastic measure. The dishes have a shaped lip .t one corner for pouring and have ridges moulded underneath so that gentle pressure at one end will enable them to be rocked. Included with the pack is a small booklet, entitled "How to Start Printing Your Ow.a Photographs." This is written primarily for the absolute beginner and explains thoroughly all the processes in contact printing. The dish pack retails at 7s. 6d.

The second item is the Grippa-lite, also shown in the photograph below. This consists of a strip metal stand, the two halves of which are held together by spring tension. The spun alloy reflector is extendible for a few inches and adjustable to any angle. This is achieved by the heavy gauge wire stem being clamped between two small circular plates. The stand is designed to grip on the back of a chair or table edge, etc. The price is 22 s . 6 d .

The Stead Fusedriver
THIS is a combination of an insulated screwdriver blade and a hollow handle which contains 5 amp ., 10 amp., and 15 amp . fusewire. As can be seen from the photograph the end of the handle, with a bobbin attached, unscrews and allows access to the fusewire. This is an ideal tool to keep permanently in the location of the fuseboxes. The retail price of the fusedriver is 2 s . 9 d . and it is made by J. Stead \& Co. Ltd., Manor Works, Cricket Inn Road, Sheffield, 2.

The clippings bag in use with the Wolf hedge trimmer.

New Wolf Accessory

FOR use with the Wolf Cub hedge trimmer, this latest accessory is a rotproof canvas clippings bag. It is supported behind the trimmer blades by means of a metal frame which holds the mouth open so that clippings fall into the bag as they are cut. This bag will eliminate the collecting and sweeping up of trimmings after cutting-a tiresome chore on lawns and tiresome chor
flower beds.

The retail price of this price of this attachment is 19s. 6d. It is shown in use in the photograph. A complete hedge-trimming kit is also being marketed which includes a Wolf Cub power unit (the $\frac{1}{4}$ in. electric drill), Hedge Trimmer Set No. I4, $30 f \mathrm{ft}$. T.R.S. extension cable complete with 3 -pin weatherproof plug and socket and the new clippings bag. This kit will retail at 14 guineas.

Philplug Screwfix

PHILPLUG PRODUCTS, LTD., of Lancelot Road, Wembley, Middlesex, are marketing a new material to fix nails and screws into any type of masonry. W it h Screwfix, they state, the size of the hole is not important and the use of tools and plugs of various sizes is unnecessary. After making the hole

Two views of the Stead Fusedriver, me with fuse spool extracted.

The Exactum Dish Pack and the "Grippalite."
moisten Screwfix, roll in the hand to make a plug, and ram it to the back of the hole; continue until the hole is filled. It becomes an integral part of the brickwork or masonry and hardens as the screw is tightened, forming a moulded thread. It will carry full weight immediately. Screwfix is made from asbestos fibres and cementatious powders and is obtainable in three sizes, prices ranging from 1s. 3d. to 8 s . 6 d ., or in household sets, including materials, to fix approximately so screws, piercer and rammer and " U " clips, price 3s. 6d. Larger sets and kits are available.

The Drydex Large "Penlight"

A NEW fountain-pen-size chrome-finished torch has been introduced by Chloride Batteries Ltd., Clifton Junction, Manchester. It sells at 6s. (battery 7d. extra).

> New offset screwdrivers

Off-set Screwdrivers

FROM the Elms Garage, Rednal Road, West Heath, Birmingham, 31, comes details of a single off-set and a double off-set screwdriver. These two useful tools, illustrated above, are designed to reach any awkwardly-placed screw. They are claimed to be indestructible and retail at 1 s . each. A bottle cap remover is also incorporated.

Mr. F. 7. Camm's latest book, "The Elements of Mechanics and Mechanisms," which costs 30s. or 31s. by post. It will interest all those whose job. it is to design mechanisms and appeals to professionals and amateurs. A large number of perspective drazvings illustrate the various mechanisms and methods of obraining particular mechanical movements.

Stiffening Compound

HAVE made a thin, shell-like mould of an object approximately 2 ft . 6 in . $\mathrm{x} \mathbf{I f t}$. 3 in . x Ift. oin., with gummed paper tape, and I wish to make it rigid and strong enough to withstand a certain amount of rough handling. Can you suggest anything ?-C. F. Potter (Bournemouth).
THERE are many - stiffening compounds you could use. If you do not want to mix your own, I would suggest brushing on to the paper tube one of the popular resin-containing glues: Shellac dissolved in methylated spirits would also provide a dipping solution, giving a fairly rigid tube when dry. Yet another method would be to paint on an enamel containing a synthetic resin such as "Bakelite" Used on one-occasion, for making cloth rigid, was a solution of an urea formaldehyde resin, which is afterwards cured slowly at around 80 deg. to 90 deg. C. You can also buy in model shops a dope for the paper wings of model aircraft, which produces useful results.

Air-conditioning System

WISH to install an air-conditioning system

 for a bedroom, the air in my locality not being all that qould be desired, mostly on account of gasholders situated some quarter-mile from my house and at a lower level. I intend to use a Vent-Axia (9 in .) exhaust fan at a high level in the room, and an intake through an air-filter at a low level. Would you be kind enough to give me details of a suitable filter, also your views on the scheme.-H. Taylor (Birmingham 8). YOU have obviously given your airpollution problem some thought, and are prepared to go to some expense. I am afraid the fans would not deal with gas works smells, which are mainly due to sulphuretted hydrogen from the coal carbonisation plant. The odorous gas, however, is amenable to extraction by activated charcoal. I would suggest you fit a large container of this absorbent at the inlet of the low level fan. A five-gallon drum filled with activated charcoal should do, the air inlet to the drum being covered by a metal gauze, and also the cutlet into the fan. Vokes Ltd., of Surrey, make felt type industrial filters, and they would possibly give you advice about dust extraction. Carbon would serve as a dust and gas extractor, but for dust alone you need only felt.

Cutting Glass Tubes

I
HAVE some test tubes approximately $\frac{7}{6} \mathrm{in}$. diameter by $6 \frac{1}{2} \mathrm{in}$. I wish to make them into tubes with both ends open. Could you kindly give me a method of severing the glass, leaving a "clean" cut to take a cork ? -L. D. W. (Manchester).

THE usual method of cutting tubes is to make a nick on the glass with a small file or a carborundum stone. A piece of red hot metal wire or glass rod is then held against the glass. A crack will then develop which tends to run around the tube. Sometimes this crack will cease before it has moved right around, in which case touch the glass with the hot wire or rod just beyond where the crack ceases to "encourage" it further.

Another, but less reliable, way is to immerse the tube in cold weter up to the level at which you want tolcut the glass.

QUERY SERVICE RULES

A stamped, addressed envelope, a sixpenny; crossed postal order, and the query coupon from the current issue, which appears on the inside of containing a query. Every query and drawing which is sent must bear the name and address of the reader. Send your queries to the Editor, PRACTICAL MECHANICS, Geo. Newnes, Led, Tower House. Soushampton Street, Strand, London, W.C. 2.

Soak a string in meth. and tie it around the tube. A crack may develop right round the tube. Whichever way you employ rub down the sharp edge of the glass with a fine file, a "Carborundum" stone or emery paper.

THE P.M. BLUE-PRINT SERVICE

12FT. ALL-WOOD CANOE. New Series. No. I, 10-WATt MOTOR. New Series. No. 2, 4s.* COMPRESSED-AIR MODEL AERO ENGINE. New Series. No. 3, 5s. 6d.*
AIR RESERVOIR FOR COMPRESSED AIR AERO ENGINE. New Series. No. 3a, Is. $6 d$. " SPORTS" PEDAL CAR. New Series. No. 4, F. J. CAMM'S FLASH STEAM PLANT. NEW Series. No. 5, 5s. 6d."
SYNCHRONOUS ELECTRIC CLOCK. New Series. No. 6, 55, 6d,*
ELECTRIC DOOR-CHIME. No. 7, 4s.*
ASTRONOMICAL TELESCOPE. New Series.
Refractor. Object głass 3 in . diam. Magnification $\times 80$.
No. 8 (2 sheets) $75.6 d$.
CANVAS CANOE. New Series. No. 9, 4s.* DIASCOPE. New Series. No, 10, 4s.* EPISCOPE. New Series. No. 11, 4s.* PANTOGRAPH. New Series. No. 12, 2s.*

COMPRESSED-AIR PAINT SPRAYING COMPRESSED-AIRT. New Series. No. 13, 8s." MASTER BATTERY CLOCK Blue-prints (2 sheets), 4 s .

Blard diat for 6 d OUTBOARD SPEEDBOAT.
Ils. per set of three sheets.
LIGHTWEIGHT MODEL MONOPLANE. Full-size blue-print, 4s. P.M. TRAILER CARAVAN.
P.M. BATTERY SLAVE CLOCK, 2s. 6 d . "PRACTICAL TELEVISION" RECEIVER (3 sheets). I!s.
P.M. CABIN HIGHWING MONOPLANE. Is. 6d.*
P.M. TAPE RECORDER* (2 sheets), 5s. 6d.
The above blue-prints are obtainable, post free, from Messrs. George Newnes, Ltd., Tower House, Souzhampton Strees, Strand, W.C.2.
An * denotes constructional detoils are available free with the blue-prints.

Curing Porous Cottoge Walls

M^{Y}cottage is built with local red sandstone and from lime from the fells. I am troubled with dampness, which does not rise from the ground but seems to be due to the porosity of the stone and to impurities in the building lime making the interior walls hygroscopic. Is there any remedy?-V. Screeton (Cumberland).
YOU are quite correct in your diagnosis
of the cause of the dampness of your hcuse walls. Being of sandstone they have absorbed their full measure of water from their surroundings. In the days when your cottage was built this was a common trouble and builders endeavoured to overcome it by making the walls thicker and thicker. This policy, however, merely aggravated the trouble, for the thicker the walls became the more damp they absorbed; so much so, that throughout the year the walls were permanently damp-ridden. Ordinarily speaking, the cure of damp, porous walls of this description is impossible. Nevertheless, given the willingness to make a fairly heavy expenditure, the trouble can be eradicated. There are certain solutions of silicon esters with which the stonework can be treated inside and outside. These solutions congeal within the pores of the stonework and fill them up with silica, which is decay-resisting, heat-resisting, water- and damp-resisting. Unfortunately, these silicon ester treatments are expensive, although, no doubt, with the aid of the requisite solution you could apply the treatment yourself.

Before considering the matter any further we would advise you to write to Silicaseal Ltd., Westgate Hill Grange, Newcastle-onTyne, 4, for particulars of their stone waterproofing solutions, the price of which, we understand, are around 30 . per gallon. The stonework of your cottage will need literal treatment with a solution of this nature, but the firm above quoted will send you full particulars of the requisite solution to use and its best type of application. It would, we may add, be quite impossible for you to make up any solution on these lines for yourself.

Picture Frame Moulding Materials

I REQUIRE information on the composition of the material used for making up the ornamentation on the corners of picture frames and the procedure for gilding on same. I think it is made of whiting, linseed oil, glue and resin, but in what proportion and what is the method of cooking"?-James Manning (Plymouth).
YOU are correct about the main ingredients
for such a moulding, referred to in the trade as "Composition." Take one pound of glue, half a pint of linseed oil, one pound of resin, and add to this as much gilder's whiting as will make the whole in a stiff dough. Add the resin to the oil first, and then put in the melted glue, kneading in the whiting until you get a smooth dough.
If you do not want to use all of the composition at once you can let it set into bricks, which can be softened by heat later when you want to undertake more moulding. When the moulding is hard on the picture you can paint it without any special preparation. "Gold"paint can be bought at any paint shop.

Steaming Cabinet Modification

THE sketch overleaf shows a system of

Cabinet. Low pressure steam, at 15 p.s.i, is supplied to each of the six compartments. The present system of cooking with low pressure steam is successful, but bacteria are suspected in the cooked potatoes.. To overcome this it is proposed to cook the potatoes with high pressure steam (about $\mathbf{3 0 - 4 0}$ p.s.i.). It is required to use the H.P. steam only for ro minutes at the commencement; then change to L.P. steam for several minutes, turn off the latter, turn on the H.P., and so on, until the potatoes are cooked.
two steam valves, one controlling H.P. steam and one controlling L.P. steam. The operator will be able to allow H.P. and L.P. steam to enter any given section of the plant either separately or together, and, of course, quite independently of the other sections. The steam supplies to the L.P. and H.P. mains will, also, be controllable from the main valves supplying the steam from its respective sources.
You will not require any special. type of steam control valve. You will merely need an ordinary steam cock of simple design. It is essential, however, that all exposed runs of steam pipe stould be well lagged with asbestos wrappings, otherwise much heat may be radiated by the pipes and thus wasted. Asbestos lagging material may be obtained from Asbestos \& Engineering Products, Ltd., Winchester House, Old Broad Street, London, E.C.2, or from D. Ck^{\prime} 's Asbestos, Ltd., Cory Buildings, Fenchurch

How can I arrange the steam piping to the "steaming cabinet"? I do not want to get the L.P. and H.P. steam systems mixed, as the former is exhaust steam from the steam engine (back pressure steam) and the latter is direct steam from the boiler.
Can you give me the correct layout, and a special type of rin. steam control valve, if any, for our proposed new arrangement ?
It will be required to turn on the L.P. in compartment 1, when at the same time H.P. steam may be wanted in compartments 3 and 6 , owing to the staggering of the various cookings required at different times for use in potato mixers and driers.-T. Ketteringham (Wisbech).
THE circuit layout necessary for your projected purpose will be fairly straightforward and should not give rise to much difficulty of construction. We cannot draw the actual layout for you since this will be governed by the structural and dimensional details of the plant.
You will require two steam mains supplying each section of the entire plant. The steam mains, one for H.P. and the other for L.P. steam, may run parallel and, in fact, may be in actual contact. To conserve heat. they should be well lagged with asbestos. One of the mains (zin.-diam.) will carry H.P. steam. The other will take the L.P. steam, and, naturally, will be controlled by separate main valves from the steam source. The steam jet assemblies in each section of the steaming plant or cabinet need not be interfered with. But connections from each of these assemblies will have to be taken to the L.P. steam main and to the H.P. steam main. This means that there will be two steam pipes connected to each steam jet assembly, instead of the single pipe used at present. Each connection will have its own simple "on and off " steam cock or valve.
In our opinion, a 2 in. steam main will be adequate up to, say, 60 p.s.i. pressute and will not give rise to unequal steam pressures in the var:ous sections of the installation.

The pipes should be of mild steel. Particulars of such pipes can be obtained from Messrs. Stewarts \& Llovds, Ltd., Brook House, Upper Brook Street, London, W. 1.

Working to the above arrangement, each section of the pla..t will be equipped with

Street, London, E.C. 3 .
Distilling Alcohol (1) $\mathrm{C}_{\text {explain }}^{\text {AN }}$ briefly the principles of distillation? I believe the boiling point of alcohol is about 175 deg. F., so assume that the liquid to be distilled is maintained at this temperature to drive off the alcohol. If this is correct how can one tell when the process is complete?
(2) Can you suggest a book on the subject ?
(3) Is there a simple method of determining alcohol content ?-R. T. Cotton (Palmers Green).
(1) WHEN one heats a mixture of liquids with differing boiling points the temperature of the mixture will r.se steadily to the boiling point of the liquid with the minimum boiling point, and remain there until all of that liquid has boiled off. The temperature then climbs to the boiling point of the liquid with the next higher value, and once again the temperature remains more or less constant until that, too, has been boiled off, when there is a further rise of temperature. With a water-alcohol mixture the temperature rises to the boiling point of the alcohol which is distilled off, and when that is complete the temperature rises to the boiling point of water. The halt of temperature at the B.P. of alcohol is automatic, and when the thermometer once again begins to climb that means that the alcohol has been removed and water only is left.
(2) Any intermediate chemistry book will cover this subject.
(3) The usual way of determining alcohol content is by observing the density of the mixture with a hydrometer.

Fluorescent Light Phenomenon

WHEN water falls from a tap and when machinery turns in a fluorescent light, bands of coloured light appear, usually orange, but sometimes, in the case of machinery, red and blue. Can you explain this phenomenon ?-J. K. Shephard (Hendon).
YOU will find also that if you wave, your hand in the light from fluorescent tubes you get coloured bands. It would take some time to explain the phenomenon in detail, but. briefly, it is due to interference and diffraction. The fluorescent light is pulsing at the mains frequency of 50 cycles and this, coupled with the movement of the droplets of water, or the rotation of the machinery parts, sets up an interference effect. When the wave pulses of light are passed on to- a surface in rapid movement the light is split into its component colours. You can read more of this interesting effect in text-books on light or physics.

Camping Trailer—Fixing Side Panels

 PLEASE tell me how, on the Canuping Trailer, in Jan. and Feb., 1957 issues, the side panels are fastened to the bed extension sides. I can see how the sides are attached to the roof.-N. Hanraham (Stockton-on-Tees).FASTENING the side panels of the camping trailer is effected by means of

elastic straps made up of rin. wide elastic doubled for extra strength. Make them to suit as per sketch, giving them a medium tension.

Information Sought

Readers are invited to supply the required information to answer the following queries.

Relining a Potato Washing Machine

IHAVE a potato washing machine, the inside of which is lined with a $\frac{1}{4} \mathrm{in}$. thickness of carborundum or emery. The revolving plate is also lined in the same way. This carborundum has become badly worn; can you tell me how to reline it ?-D. Lowe (Blackheath).

Celestial Bed

THIS device was invented by a Dr. Graham in the eighteenth century. The bed was suspended to enable it to oscillate and was electrostatically charged, insulation being effected by means of six glass pillars. It was claimed to cure sterility. Can you supply mechanical details ?-R. J. B. (London).

$$
\text { Kit } 1-18 / 6 \quad \begin{gathered}
\text { Kit II-28/6 } \\
\text { Postage } 2 /-
\end{gathered} \quad \text { Kit III- } 33 / 6
$$

Kits for Cars, etc., £9-10-0, £15-10-0, £20-10-0
These kits carry a comprehensive range of materials, with full instructions too suit all forms of car body repairs and model making. "Glass Reinforced Plasties" Booklet, $1 / 9$ inc. postage
WESTPOLEMOTORS LTD Westpole Avenue, Cockfosters, Barnet. Herts. Barnet 3615 \& 9474

The " Sirramlionia "o Molor Roat Huls is carved from seasoned timber and finished painted ready for final finlshing coat. It will carry plant up to by lbs. is designed for speed and is suitable for steam. electric or 1.c. drive. Excellent The Marlne Hoal. Motor is an-tdesil power unit for this model Ghe Marime hoal, Motor is an todeal power unit for this model. Operates on
$2-3$ cell dry batteries in series or on ovolt accumulators. Well suited for radio control work, as it can be polarity reversed. Price £2.17.6.
Write to-day to Bassett-Lowke for" Model Shipping and Engineering Catalogue." Price 2/6
BASSETT-LOWKE LTD.
18-25 Kingswell Street, NORTHAMPTON
London: 112 High Holborn. W.C.I. Manchester: 28 Corporation Street, 4

MAKE MONEY - making casts

with VINAMOLD

A grand spare-time occupation
WITHOUT any previoiv experience you can mass produce any obiect, from a chessman to a candlestick, staluette or model ship. in plaster, resin, concrete, etc. the $B E$ with "VINAMOLD" the flexible moutd that gives the BEST results. Easy 10 work. can be used over and over again. Needs NO special equipment, provides a profitable and enjoyable spare-time occupation with minimum outlay.
Write for full details and instructions. A/so avail. able: Illustrated booklet describing "VINA MOLD", methoos of heating and melting, preparation of models INATEX LTD. (1)ept. P.M.3) CARSHALTON, SURREY

THE ULTRA LENS AIDS PRODUCTION

 This unequalled Whether you a remanufacturing, buyingor selling, electric magnifier is of the mose modern design and has provedits extreme and sustained usefulness to countiess indus-
trial firms enrazed on minuse razed on minuse faces of every conceivable object.
The ULTRA LENS is used extensively in collieries, foundries, electricity works, tool shops, forges, motor works, and practically every branch of the engineering trade. Librarians use it for reading Micro-Films. -iere are occasions when you have to submit rize soday for full particulars ond price list to THE ULTRA LENS COMPANY Tol. : TRAfalgar 2055 17c, Oxendon Street, London, S.W.I.

$8^{\prime} 6^{\prime \prime}$ long 6^{\prime} wide 6^{\prime} hith A genuine unused British Army Tent. Made
103% waterproof by the inclusion of the Weatherproofed FLYSHEET at \&\& extra.Ready or sperdy erection and comes complete with Poles. Pegs, Ropes and Carrying Valise. Pleasink light Fawn colour. The Cash Price of 11.19.6 complete is only a FRACTION OF ORIGINAL COST. Carriake 5/-. Send only 15/-, balance 12 monthly payments of 20/6. ISTS TENTS. CLOMHING EOOTWEAR, WATCHES, CANEPAS, JTC. TFFMS.

ARNOBOARD
Beauty may be only sikin deep but if that s'in is Arnolite plastic laced hardboard diference that it can make to your harnois amazing. Aater-repelboard and won't hold dust. Resists mild acids and alkalis too. Use Arnoboard exacty as you would ordinary hardboardits beautiful surface won't crack or flake even when sawed. drilled or nailed.
ARNOLITE LTD.
WEST PARADE • HULL • Tel. 35687

(H)eadquarter and General supplies lid.
 Encral surlits

(DEPT, PMC 19), 196-200, COLDHARBOUR LANE, LOUGHBOROUGH IUNCTION, LONDON, S.E.S. Open all Saturday. I p.m. Wednesday.
MODERNISE YOUR HOME with
 dens fencing gar. ens and fields, baling goods and heavy parcels toug instead of roping-neater, purposes, Unse almost everiasting. Fixes almoser and ching. An essential article to hose anythe place. 1,000 yard drum terrific /6. Case of 6 carria $9 / 11 \mathrm{~d} .$, carriage, ete., urplus article carriage free. A Government to make and that must have cost pounds to make. and our price is cheaper than string! Send quickly LisTS CLOTHING,
 closing $1 / 6$ IT WILL SAVE YOU
POUNDS.

TELEPHONE UNITS

SOUND POWERED
NO BATTERIES REQUIRED Just conneel with twin flex lor 2-way con versation. Y/. per palr. Twin Flex 4id. yd
Yost $1 / 6$. Une pair each end will avold changing over from mouth to ear. 18 '-. Two pairs each complete with cord, plug \& MANELETS,-G.P.O lype but sound powered, complete with cord. plug \& socket,
$50 / \mathrm{p}$ per pair. Post $2 ; 6$. The Ideal job for home or oftice, just connect with flex. IEELL SYTS. G. PEO. EyPe 25 . $17 / 6$ each. 10.6, post 2 - AENER METERS with 2 separ CROSS POANTER METERS with 2 separ.
ate 100 microamp movenents. Brand New. 22/6, Post ${ }^{2 /}$ HisCUIT TESTE in wood case 9in. x Sin. X 4in. 21 ln . Flush round meter 50
mlillamps . basic movement $10 \mathrm{~m} / \mathrm{A}$., with leads. 10 ohm potr., provision for 1.5 . watt. Ideal for conversion. 1716, post 2/6.
D.C. 300 watts with switch and leads D.c. outlet, watts with switch

BAT TERE CiAARGERS, -Output up to $22 v .10$ amps controlled by two 4-position
rotary switches for fine and coarse control rotary switches for fine and coarse control D.C., clear, scaled ammeter. Brand new made by S.T.C. f17.10.0, carriage 15/CHARETBO ikDS.-With pantorgraph arm nerspex scale, protractor head as used In square. Brand new, will make a usenul

1EADPHONES-H1gh resistance 4,000
 sensitive Belanced Armature. Type DHR
 small but very powerful, $12 / 24$ volt D.C. INSPGCTION I.AMP.-Fits on forehead, leaving hands free, bettery case clips on belt, ${ }^{7 / 16}$, post $1 / 6$. Takes E.R. Battery
No. GTA KE, Brand New, Sllent running 230/250 voit A.C., 130/-. 12 voli D.C.. $90 /=$ post 3 /iny Converterrs.-input 24 v. a2. 8 . Bwich. 105-carriage 7/6. In. diam. flat tripod type suitable for lamps up to 100
watt, complete with pushbar switch lampholder. Ideal for farm buildings, garages. greenhouses. etc. Brand new. $17 / 6$, post $2 / 6$. ThinMosT AT sivitch.- Bimetal type in sealed glass tube, 24 in . X 11 in . 30 deg. Baths. Gluepots, etc. WIII control 1 amp. at $240^{\circ} \mathrm{V}$. $5 /$ - each. post $11-$. THERMOST IT. - Satchwell 121 n . stem.,
$0 / 250$ v. A.C.ID.C. 15 amps. A.C., 10 to 90 des. Cent. 251 .-. post $2 / 6$ amps. A.C., 10 to 90 des. 3.000 r.p.m. with speed regulator in end cap. A precision Job. 18/6. post $1 / 6$. TERNINAL BLOCKS.- ${ }^{2}$-way fully protected No. 5C/430, 4/- doz.. 50 for $15 /$ or or
100 25/- 3 -way $8 /-$ doz.. $30 /$ for 50 post 1,6 . M1RIB1, RESISTANCE, -160 ohms. amps. on 10 in. Twin Ceramic formers with control handle. Suitable for dimmings, etc.,
355 . post 2,9 . Also 500 ohms 1.5 amp Log. CHARGING RECTIFIERS.-Full, Wave Briage 12 volts 2 amps . $1316,4 \mathrm{amps}$, 22/6. 2 amp. Transformers, 24-. 4amp. 27/3, post $2 /$
 Less 6d. ea. in doz. lots, post free., A.C. Mot post free 230 volts. 50 cy . 1/50th h.p. series governor, 60/A.c. Motors. 1 third h.p. 1.425 r.p.m., Shaft. Ball Beartngs, 2200230 volts, ContinHous rating. Brand Now, f6i10l-, cge. 10/ing bakelite moulding 511 . ${ }^{2} \times 1 / 1 \mathrm{n}$. $\times 2 \mathrm{in}$. Ideal for modol rallways. $5 / 6$, post $1 / 6$. EXACUAM PUMPS or Rotary Blowers.-

 made clock movement, coniact making and breaking twice per second, with regulator. uses. blinking lights, etc. $15 /-$ ea., post 26 . VOLTMETE1KS, DC. Cos. $0.20,0-40$, or $0-300$ 2n. Flush. 106 each, post $1 / 6$.
VOLTMETERS for A.C. Mains 50 cy reading of to 300 volts with clear 5 in. dial A.C.D.C. 2lin. Flush, 1516 . post 116. Coll D.C. $50-0-50,12 / 6$ ea. 2 inh . Flush Moving Iron D.C. $0 / 25$, M/6 each, post $1 / 6$.
ELECTRO-MAGNETIC COUNTERS

Post Office type 11A, counting to $9,999$. voltages up to $230 \mathrm{~V} ., 15 / \mathrm{F}$. WILCO ELECTRONICS

RIGHT!

for good braking

USE
 Fibrax
 BRAKE BLOCKS

FOR SURE STOPPING

AND A LONG LIFE

fibrax brake blocks sfand up to the toughest testthe split-second emergency. Yet they brakesmoothly and firmly. Two types: SOFT RED for alloy rims, BLACK for steel rims.
Ask your dealer for "FIBRAX"
FIBRAX LTD., 2 TUDOR STREET, LONDON, E.C. 4

STYLED TO SUIT THE MODERN AGE... LUEAS
"King of the Road" CYCLE EQUIPMENT

HIGHSTONE UTILITIES

 Ex-R.A.F; 2 -valve (2 velt) MicrophoneAmplificrs, as used in 'plane inter com. An self-contained metal case. can be used to make up a deaf ald outit, intercommunication system, or with crystal set. complete with valves and Fitting Instruc.
tions, $20^{\prime}=$ post $2 / 6$. Useful wooden hox with partitions to hold amplifer, $2 /$ extra. Ditto, less valves, $101-$ Hind Microphones, with switch in handle and lead.
$5 / 8$. Tannoy
$\% /-$.
Similar instruments. moving coil, 8/6. All post $1 /$ Mask type with switch $3 / 6$. post 6 d . Mike buttons (carbon) 2\%-. Moving coll 3/6. Both post 4d. Soldering Irons.-Our new streamuned $50 \mathrm{watts}, 11 / 6$. Standard fron with adjust able bit, $200 / 250 \mathrm{v} .60$ warts, $13 / 6$. Ileavy Duty lron. 150 watts, 18/6, all post $1 /$ These Irons are guaranteed, and all parts Meters - 20 mm
 2in. T.C. 6/- 4 amp., 21 n ., T.C., In case With switch, $9 / 6: 100 \mathrm{mli}, 2 \mathrm{~min}$., m/ce.
 transformers work from any A.C. malns giving 3,5 or 8 volts output at 1 amp. operate bulb, buzzer or bell. Will supply
light in bedroom or larder, etc., 9/-. Similar Transformer but output of 4,8 or 12 volts. 12/6. Both post 1/-. BELLS for use with either the above or batteries, 6/-. vost 6u
BUZZERS, $4 /-$ post $5 t$. Sparking Plug Neon Testers, with vestpocket clip, 3/3. or with gauge, 3/6, post 3ut. mains to show "live" side of switches, etc. 2/6, post 4d. Neon Indicator, complete with condenser, pencll type, with vestr
pocket clip. $7 / 8$, post 50 . crystal detector. Have a set in your own room, 12/6, post 8d, Spare Permanent Detectors, $2 /$-each. When ordered separ3d. Headrohones, brand new. S. G. Brown. G.E.C. etc.. $23 /$ - and super-sensitive, $301-$ pair. Headphones in (nenod Order, 6/-. Better Quality, $7 / 6$ and 10 - Watniced Armature Type (very sensitive). 18/6. Bal. armature type. 46 (two of these will make an Intercom. Set). Ex-R.A.F. ear. plece, 2/6. post 4d. (All Ir ridphones listed are suliable for une with our Crystel satisfled.

HIGHSTONE UTILITIES

58, NEW WANSTEAD. LONLON, L. 11 New. Illustrated List sent on request with
$2 d$. Stamp and S.A.E. Letters only

LANG UAGE PROBLEM SOLVED

By the Pelman Method
THE problem of learning a Foreign Language in half the usual time has been solved. The Pelman method enables you to learn French, German, Italian and Spanish without translation.

By the Pelman system you learn French in French. German in German, Spanish in Spanish, and Italian in Italian. English is not used at all. Yet the method is so simple that even a child can follow it

Grammatical complexities are eliminated. You pick up the grammar almosi unconsciously as you go along. There are no classes to attend. The whole of the instruction is given through the post.

Send for the Free Book

The Pelman method of learning languages is explained in four little books, one for each language :

$$
\begin{array}{ll}
\text { FRENCH } & \text { SPANISH } \\
\text { GERMAN } & \text { ITALIAN }
\end{array}
$$

(Also Courses in Afrikeans umf Urdus
You can have a copy of any one of these books, together with a specimen lesson, gratis and post free, by writing for it to-day. Welbeck 1411
-POST THIS FREE COUPON TO-DAY -
Pelman Languages Institute,
130, Norfolk Mansions. Wigmore St. London, W.1.
Please send details of Pelman method of learning
French, German, Spanish. Italian (Cross out itree of these)

Name
Address

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Ltd., Tower House, Southampion Street, Sirand, London, W.C. 2

Phone: Temple Bar 4363
Telegrams : Newnes, Rand, London

The Jealousies Continue

THE N.C.U. is making intense efforts to regain its lost power and to retain its authority and, with that end in view, it has recently remodelled its policy towards racing, and has decided to allow the first category amateurs to race in events with independents. The R.T.T.C. saw in this an attempt to undermine its own authority, and in a statement said: "In view of the further complications which will arise in cycling sport owing to this decision a special meeting has been called for May in order to obtain the views of clubs on this new development. In the meantime it will enforce its own rules. The N.C.U. is, of course, the older body. It is 79 years old, and although there is considerable change in the personnel, and there appears to be a desire to profit from the lessons of the past and to forget it, there is still a tinge of the old policy in its methods. It is endeavouring to temper the wind to the shorn lamb. It has at least accepted some of our advice and infused some new blood into its management.

Some Basic Facts

THE British Cycles Industries Association has recently published some basic facts. In support of its statement that the bicycle is the safest vehicle on the road to-day, it says: There is an estimated total of 12 million bicycles in use in Great Britain at the present time. In 1956 only 49,169 cyclists were involved in accidents. The proportion of accidents to total cyclists is therefore less than 1 in every 240.

Comparatively, out of $6,716,000$ motor vehicles in use, 274,251 were in the same year involved in accidents (1 in 24).

So few are the accidents for which cyclists are responsible that for more than 30 years cycling clubs have insured their members, young and old, against third-party risks entirely free of charge. The Cyclists Touring Club provides this cover to $£ 10,000$ anywhere in the world.

Casualties to cyclists in 1956 were substantially lower than in 1955 (49,169 as against 60,178). In the same period casualties to motorists and their passengers rose from 151,472 in 1955 to 157,013 in 1956.

Fewer cyclists are now involved in accidents than before the war in spite of the fact that motor traffic has more than doubled.

	1938	1956
Motor vehicles in use :		
Total cyclist casualties		
To84,895	$6,716,000$	

Fatal accidents to cyclists are much less than half what they were in 1938:
$\begin{array}{lll}\text { Fatalities to cyclists: } \quad 1938 & 1,401 & 656 \\ \text { Child cyclist casualties are much reduced. }\end{array}$
Child cyclist casualties are much reduced.

| Fatalities to child | 1938 | 1956 |
| :--- | :--- | :---: | :---: |
| cyclists: | | |

Child cyclists are now so numerous that
eligible to ride, i.e., between the ages of 7 and 15 , do so. The estimate of the number of child cyclists given by the Royal Society for the Prevention of Accidents is $3,115,000$. The total number of children between 7 and 15 in the country is 7,250,000.

Casualties to child cyclists in 1956 numbered $\mathbf{1 1 , 9 4 5}$. This is less than I in 259.

Selling Cycling

THE series of television programmes being put out on the ITV channel jointly by the manufacturers and the retailers are a move in the right direction of popularising cycling. They should do much to offset the adverse publicity of the accident statistics published by the Ministry of Transport monthly. The programmes are drawing attention to the health-giving aspect of regular cycling, and stating that it is the easiest form of travel; not quite, however, as the beginner soon discovers, until his muscles have been played in to the unaccustomed movement and the saddle has been "broken in." Most saddles to-day are designed for those who wish to ride fast, and they are more of a perch than a seat as beginners soon learn. Most of those whom the industry wishes to attract will be potterers and utility cyclists. They want a seat not a saddle and I suggest that the makers get down to the problem of producing a real seat instead of a perch.

One more point: although the retailers are interested in this publicity project, it is as well to point out that many of them are in need of a course on how to sell cycling. To many cycling is hard work, because they have been sold the wrong type of bicycle. A sale at any price scems to be the motto. The dealer could do much by supplying a cycle suited to the individual. It should not be too much trouble for him to change a-sprocket if the gear happens to be too high or too low. He should study his clients, and adjust the handlebars, even changing them if they are the wrong type, and also the saddle. Board-hiard saddles are uncomfortable, especially to a newcomer. Many a cyclist has been lost to the fold because of this.

The B.A.R. Concert

THE B.A.R. and Champions Concert will
be held at the Royal Albert Hall this year on November 30th, and we hope that, remembering past experiences, the R.T.T.C. will take great steps to eject any hooligans who attend with the object of spoiling the evening's entertainment. These few uncouth hooligans, mostly from the North, should be immediately expelled if they do not behave themselves.

Cycling Museum

THE Pedal Section of the Montagu Motor Museum at Beaulieu, Hampshire, was opened on April 14th, when many prominent cyclists were present, including Reg. Harris and Eileen Sheridan. This pedal section will enable cyclists to study historic cycling exhibits and it will provide a ride with an
object. It costs 2 s . per head to view the exhibits, this being a special price to members of cycling clubs. We hope that greater accuracy in labelling the exhibits will be enforced than was the case with those of the self-styled cycling historian, the late H. W. Bartleet. Many of his claims relating to those machines were not only spurious, but he knew them to be spurious.

The Cycle Industry

RECENT press release from the bicycle industry draws attention to the present state of it. The statement says:
"A prominent feature of the modern industrial scene is the variety of burdens under which an industry labours. These burdens are not of that industry's seeking and are beyond its control to remove. The position of Britain's cycle industry is a case in point. It is the world's greatest producer and exporter of bicycles. Since the war it has made outstandingly successful efforts to answer the calls of successive governments to export, and has been earning consistently each year in the neighbourhood of $£ 28$ millions in foreign currency. At home it has provided an article, both in the lean vears and in those of plenty, which has played a major part in the transport and mobility of the working man (and of his wife) and which has given the means of recreation to millions.

But at home production is running at only about 60 per cent. of 1938 . The reasons for this are that in Britain, Government legislation, in the form of purchase tax and high hire-purchase deposit and repayment requirements, prevents the development of a flourishing home n:arket, while overseas an ever-increasing number of countries are closing their doors to British imports in order to restore their economy or 10 foster national manufacture. However, the cycle industry recognises clearly the vital point in this situation.

In order to continue to compete successfully abroad, the quality of the product must be maintained and improved while prices must be kept down. This can only be done if the industry can depend on a healthy home market which allows production to be maintained at a high level.
"The situation within the cycle industry has reached a critical stage. Representations to secure some relief from taxation and other restrictions are now being made by the industry to the Chancellor of the Exchequer and to the President of the Board of Trade."

PRACTICAL MECHANICS HANDBOOK

By F. J. CAMM

8th Edition

16/-, or by post $16 / 6$.
Obtainable from booksellers, or by post from George Newnes, Ltd. (Book Dept.). Tower House, Southampton Sireet, Strand, W.C. 2

UNLIKE the fixed wheel, the freewheel sprocket drives only one way and is, therefore, much more difficult to remove. On the front of the freewheel body a narrow rim projects with two notches in it, and it is these that must be used to unscrew the frecwheel from the hub. Using a hammer and punch inserted in these notches is not a good method as, in the majority of cases, all that is achieved is to cut away the rim between the two notches.

A Special Tool

A tool for freewheel removal is available and is shown in Fig. 1. It is passed over the wheel spindle and the two projecting tongues engaged in the slots in the freewheel body. The tool is then locked in place with a wheel spindle locking nit. The sprocket is removed by placing the tool between the jaws of a vice and turning the wheel until the freewheel loosens. Finally, the tool can be used as a key to turn the freewheel off the hub. The thread is right-handed.
The use of this tool, although an improvement over the hammer and punch method, is not always successful with a really obstinate freewheel, and often one merely breaks off the projecting tongues of the tool. There is no invariably successful method of freewheel removal and in some cases even the well-equipped cycle engineer is forced to dismantle the freewheel, hold the body in the vice and remove it forcibly, with inevitable damage.

How It Works

A standard type of freewheel is shown diagrammatically in Fig. 2 and a sectional view also shown. (A) is the body of the freewheel and (B) indicates the notches used for removing it from the hub. The outer half of the ball race (the front ring) is lettered (C) and the inner half of the race, which simply drops into position, is shown at (D). The slots in which the pawl springs lay are lettered (\mathbf{E}) and the pin for anchoring them (F). (G) indicates the actual pawl and (H) is a cutaway portion of the freewheel body in which the pawl rests. (I) indicates the ratchet teeth and (J) the pawl spring. (K) shows the position of one or more thin packing washers which are inserted between the two halves of the race.
As can be seen from Fig. 2, the springs keep the pointed or driving ends of the pawls pressed into the vertical sides of the ratchet teeth and when the sprocket is turned in a clockwise direction by the action of pedalIng, the drive is transmitted to the hub. When pedalling stops, however, the outside part of the hub is held stationary by the chain and the body part of the freewheel

THE FREEWHEEL

Removal : How It Works Dismantling and Reassembly

continues to rotate clockwise. The pawl now slides up the long shallow slopes on the ratcher teeth and clicks over the vertical end of each tooth, thus making the ticking sound with which every cyclist is familiar. Some

Fig. 1.--Freewheel removal tool (inset) and how it is used.

of the ring. When this has been taken off, the one or two paper-thin packing washers are lifted out carefully and these followed by the balls and bottom half of the race. The toothed ring is lifted off next, but before doing this it is essential to make some arrangement for catching the pawls and springs, which will otherwise spring to some obscure corner of the workshop floor. It is a good idea to ho!d the freewheel inside a large paper bag while the outside ring is lifted off.

Worn Parts

The ball race is next reassembled, not forvery much wear, but the pawls and ratchet teeth may. Worn pawls and damaged springs may be replaced immediately without much trouble, but if the ratchet teeth are worn a new freewheel is indicated. A freewheel that has been kept well oiled should not be badly worn.

Finally, the chain teeth should be inspected for wear.

Reassembly

All the parts should be clean and free from oil. The rear part of the ball race may be put in place on the body and the pawl springs and their pins put in place. Replacing the pawls and the outer ratchet ring is a little tricky and some ingenuity must be exercised. One method is to hold the pawls in place with thin-bladed screwdrivers while the ratchet ring is lowered carefully into place over the body. An alternative way is to fit the pawls and springs and hold them in place by means of a sliding noose of thin cotton while the ring is being positioned. The ball race is next reassembled, not forgetting the thin packing washers between the two halves of the race. The last part to be replaced is the front ring, which is tapped firmly into position and adjusted so that the chain tooth ring is free to rotate without binding and without there being too much play.

Fig. 2.-A freewheel cut away to show assembly and a sectional vnew.
freewheels have an extra ball race on their other side.

Dismantling

There are several makes of freewheel available, but basically they all follow the same principle of design, The first step in dissmantling is to tap off the front ring, using a small hammer and a sharp punch for the purpose. Two small holes are usually provided to take the tip of the punch and the direction to unscrew engraved on the face

> Every Cyclist's Pocket Book

 sorted. 15:-

J. BURKE

192 Baslow Road, Totley, Sheffield
${ }_{36}$ Irpretion orily at Rear

METALS

AND ACCESSORIES

ALUMINIUM, BRASS, COPPER, STEEL, ETC
Angle, Sheet, Tube, Foil, Strip, Channel, Rod, Bar, Wire, Moulding, Etc, in Plates, Silver Steel, Expanded Metal, Blanks, Rivets, Springs, Etc. Tools Drills, Taps, Dies, Screws, Etc.
Formica, Perspex, Pegboard, Paxolin, Ebonice, Curtain Rail and Rod, Adhesives, Etc. and many other items for use in Home, Workshop, Etc.
LARGE or SMALL Quantities
COMPARE our PRICES COMPARE or SMALL Quantities
$\begin{array}{ll}\text { LAREICES } \\ \text { MAIL ORDER SERVICE } & \text { (2d. stamp for list) IMMEDIATE DESPATCH }\end{array}$ CLAY BROS. \& CO.
6a SPRINGBRIDGE ROAD, EALING, W. 5
Phone: EALing 2215
2 MINS. EALING BROADWAY STATION, OPPOSITE BENTALLS

67-73 SALTMARKET, GLASGOW, C. 1
Telephone: Bell 2106/7 (Estoblished 1907) Telegrams: "Binocom," Glasgow

BETTER CABINET MAKING

 BEESTON NOTTINGHAM

GALPIN'S

ELECTRICAL STORES

408 HIGH STREET, LEWISHAM
rel. : Lee Green 0309, Nr. Lewisham Hospital.

TERMS : CASH WITH ORDER (No C.O.D.)

All Goods sent on 7 days' approval against cash
P.M. EXTENSION SPEAKERS, 8in, 3 ohm coil, in first-class condjtion, $10 /=$ post $1 / 6$.
EX-GOVT. ROTARY CONVERTORS 24 volts D.C. input 50 voles 50 cycles, 1 phase at 450 watts. OUTPUT (complete with Srep Up Transformer) from so volts to 230 volts, $\{13 / 10 /$ - each or CONVERTOR only $\mathbf{\varepsilon 9 / 1 0 / \text { - each. }}$
EX-NAVALROTARY CONVERTORS 110 velts D.C. Inpue. Output 230 volts 50 cycies 1 phase 250 watts capable of 50 per ent. overioad, in good condition, guaranTOTE SWITCHES multi contact, with operating gear, large $25 /$, small $15 /$-.
\& H.P. D.C. MOTORS, 110 volts, 3,000 p.m.. new, large size, 35/-: starters to Uit N.V.R, $25!^{-}$
MAGSLIP motors, 50 volts A.C. large size, 2s new. B/6. P./P. Y/6. TRANS-
MITTER TYPE, 3in., $15 /-$ P./F.
THREE PHASE TRANSFORMER. NO auto, 110 v., 400 v., 2 kW . New, 225 . LARGE METER movements, fairly bow F.S.D. average 6 in. deflection, very high
quality, $7 / 6$. P./P. $1 / 6$.

MOVING COIL meters, all 2 to 3 in dia.. damaged cases or glasses, 3 for lof guiranteed one sound meter: 6 for 18/two sound metērs, no junk, all are, ol suitable for, M/A meters.
MAINS TRANSFORMERS all 200/25C voles primaries (New) Heavy duty Output combinat:on of $0 / 6 / 12 / 18 / 24 / 30 / 36$ volts $4 / 5$ Ditto 15 amps. Outpur, $75 /$ each A Anorhe with combination of $0 / 6 / 12 / 18 / 24$ volts $6 / 8$ amps., $51 / \mathrm{seach}$. Ditto $10 / 12$ amps. $58 / 8$ each. Ditto $25 / 30$ amps. Output, 85/- cach MEDIUM SPOT WELDER TRANS FORMERS, Inpur $200 / 250$ volts. OUTPU combination of $0 / 2 / 4 / 5 / 8 / 10 / 12$ voles a Op amps., 1201150 amps. Output, E8/10/- each.
ELECTRIC LIGHT OT POWER CREDIT METERS, 10 amp. load, 25/- 20 amp. load, $47 / 6 ; 30 \mathrm{amp}$. load, 57/6. All carriage paid.
PREPAYMENT !/-SLOT METERS. Set at 2 d . per unit 10 amp . load, $£ 4 / 2 / \mathrm{s} ; 20$ at 2d. per unit
amp. load, f5/2/6 eachp. Carriage paid, Fully guaranteed
PREPAYMENT METERS, 6d. slot only. Ser at 4 d . per unit 5 amp . load only, 50 / each. Carriage paid
AUTO WOUND Völtage changer TKANSFORMERS. Tapped $0 / 110200$ 230/250 voits 200 watts, 48/6 each ; 350 watts, $57 / 6$ each; 500 watts, 7615 each
1.000 watts, $66 / 5 /$ e each : 1.500 watts 6875/- each ; 3,000 watts, $\varepsilon 17 / 10 /-$
FILM PROIECTORS, 35 mm . silent and sound, with lens, E35. Buyer collects. Please cail. Good film for curting, size 52 in $\times 24 \mathrm{ft}, 7 / 65 \frac{1}{2} \mathrm{in} . \times 4 \mathrm{ft}, 12 / 6$. Both post ree
ROTARY CONVERTORS. Input 24 voles D.C. Outpue 50 or 100 voles A.C. 500 cycles I phase at 300 watts, $£ 8 / 10 /$ - each SELENIUM RECTIFIERS. Full wave, bridge conriected, 6 or 12 V . output, 21/ amps.. 15/h ; 4 amps., 25/- ; Transformers to suir either, 25/-
EX NAVAL TWIN FLARE MOVING COIL SPEAKERS. 10 watt, 45/- : single flare, 10 watt, 25/-.

Any TRANSFORMERS made to order within 7 days from date of order. Numerous orther items in stock. Please ask for quotation

Clients in Eire \& Northern Ireland, please ask for quotation as to carriage charges. The atove charges only apply to England. Open all day Saturday. Splendid odd bargains for visitors.

RADOUM SCINTILIOSCOPE

A fascinatins pocket Scientific Instrument which reveals the actual splitting of Atoms.
Countless invisible ALPHA
 carticless invisible ALPBHA farticles. Violently expelled
by disrupting Radium Atoms, ralse an incessant shower of brightly fashing points of light as they collide with a luminescent film which bars thelr escape. Guaranteed quite harmless, the sparkling Scintiliations seen through
Whe lens will remain actise he hundrod years. Complete instrument as illustrated, nickel tube $z^{\prime \prime}$ long x i" dlam. planatory leaflet. Price $14 / 6$ registered post free by return, no walting.

ATOMLIGHTS
36, Montpelier Cres., Briwhton, Sussex

23

qucition in oin hirser CNNSTRUCTOR "ME including: * Detais for bullding a CHEAR * T.R.F. SETTS, Amplifers. Feeder Units Test Equipment, Feeder

* UlP tional detalls, supa-simplified diasrams cor building ant wirins of superbets.
t CoIL PRCK *BFGGUNIT *AR BABIO. * RADIOGENai Details. ConstrucFon. Resistance Colour Code
Formulae, and "know-how.
*TMA
trated price trated prlce list of components.
All at $2 / 6$ (plus 3 d , post)
SUPACOM to-duy!
101, Markhouse Road, London E.3.)
Telephone : i:EY 6836.
PORTASS LATHES
DIRECT PERSONAL SERVİE. NO INTEREST CHARGED for easy terms. CAN ANYONE DO BETTER ? 1/- for Lists, please. Dep: P.M. BUTTERMERE WKS.. Sheffield,

INTERESTING BARGAINS $\begin{gathered}\text { SATIIFACTION } \\ \text { OR RELUND }\end{gathered}$

AItcRAFT TOWING TARGETS Size 30It. X 6ft. made of a woven mesh of POLYTHENE Alament. Extremely strong and attractive material with many poten- tial uses. I will gladly send you a free sample on recelpt of S.A.E. Price $60 /$ each, plus carrluge. SLEEPING BAGS	
	HOOKED ELASTIC
	webing straps
groundishets Familiar ex-Army Cape Type in good con-21-. Dosit rrce	
	ROPE LADDERS 3ort. long, wooden rungs, new, 35/-, carr, 5/=
	fuel fiters Heavy duty cast alloy, pasty detachable dome, two brasss titer unts onconcentricaly

dept. pm. Ib7/I3 the arches, grove green road. e.ll

Sin. Tubber Sanders, Ha. drive.
Abrasive Disce, Sin. Ass'td. doz....
$8 / 6$ Abrasive Disces. Sin. Ass'td. doz.... $3 / 6$
Terminal Blocks. 12 -way Generators, D.C.,
Molorised Pumps
Thread Gatuees.
Whitworth Serews. 144 Ass"td.
H,S. Drilis, 12 Assorted, to 48
Flbre Washers, 144 Assorted
Meter Rectifiers. A.C. to D.C
Selp Tap Screws. 100 Assorted
$\begin{array}{lll}\text { Copper itivets. } 12 \text { doz Assorted... } & 3 / 4 \\ \text { Saw } 13 \text { ench Tops, with ball race }\end{array}$ Sat Bench Tops, with ball race
spindle, pulley, etc., $18 \mathrm{in} . \times 10 \mathrm{in} .52 / 6$ Reindle, pulfey, etc. $18 \mathrm{in} . x 10$ Reetrers. $0-15$ V. or $0.25 \mathrm{M} / \mathrm{c}$.
Mir Jacks. 5 in. stroke Air Jiecks, 5 in. stroke
Boost Gauges for Car Use
Winker Units. 6 or 12 vol Circular Saws, $6 i n . .11 / 6 ; 71 \mathrm{n} ., 1 \ldots / 8$ etc.
Nay we send our free list of hundreds of
ELECTRIC WELDING PLANT NEW ARC WELDING SETS by leading makers. Examples: 85 Amps. Output, E23.10; 100 Amps. Ourput. E27.10; 160
Amps. Outpue, $£ 34 ; 200$ Amps. Output, 440 NEW SPO, $£ 25$; Pedal-operated from $£ 55$. ELECTRIC CARBON WELDING SETS for Sheet Metal and Motor Bor'y Work, E8.18.6.
All available for $220 / 250 \mathrm{v}$. S.P., $400 / 440 \mathrm{v}$
or any other A.C. supply voltage. EXPORT PACKING AND SHIPPING. Freight. Insurance, Customs and Banking CATAL Formalities attended to.
Hand HARMSW保 Welding Plant for stamp.

Pordan Street Knote Mill MANCHESTER 15 .

CHEMISTRY APPARATUS
COMPLETE PRICE LIST

BECK ${ }_{60}$ (Scientific DIGH STRELET Stoke Newington, London, N. 16

A"FERROUS" ELECTRIC ARCWELDING SET will complete your workshop equipment. For joining and re-inforcing. equipment. For joining and re-inforcing,
from approx. $1 / 16^{\circ}$ up to any thickness, Mild Stael. Wrought or Malleable Iron. Type F.M. 60 Heavy Duty complete with ali
equipment $190 / 240 \mathrm{v}$. Single ph 1015 amp equipment $190 / 240 \mathrm{v}$. Single ph. 1015 amp .
(or domestcc power supply) delived free ex stock Cash (or col.D.)
H.P. Terms available.
O23.10.0 lius. leaf ayailable. FERROUS PRODUCTS (M.E.C.) LTD Church Ra., Croydon, surrey. CROO $8351 / 3$
THE CEMENT THAT LIVES \&o The greatest advance in modern times. An z entirely new cays Tal CLEAR adhesive that
STICKS ALMOST ANYTHING TO ANYTHING, IT and never becomes brittle.

PLASTIC ClAMENT

HANDICRAFTS TEACHER

Men who enjoy making thin 35 in wood or metal can turn their hobby into a permanent and interesting career. Short hours, long holidays and security in a job you would really enioy can be yours if you become a Handicrates Teacher. Let us send you derails of the easiest and quickest
the necessary qualification.

We definitely guarantee
NO PASS-NO FEE
If you would like to know about our unique method of preparing you for one of these appointments write to-day, and we will send you an
informative 144 -page Handbook-FREE and without obligation. Mark your letter "Handicrafts Teacher."

91, College House,
29-31 Wright's Lane, London, W. 8.

UNRIVALLED IN ITS CLASS The E.W. $2!$ In. $\times 10$ in. lathe. Model ble to back gear and screwcutting. Let us quote you. We specialise in this terms. All accessories from
Descriptive pamphlet \& lists, etc.,
OUTBOARD CLUTCH-BRAKE Fits on any Motor Shaft tin. or in. n place of normal Pulley on Motor Shaft saves continual starting and
stopping of Motor. Sutitable for Lathes. Shapers, and other Machine Tools, Price £5 $18 /-$, or 191 Drpusit and IVC instalments of $£ 1$. Carriage
cxtra.
Details S.A.E.
3/8in. HIGH-SPEED SENSITIVE
POWER BENCH DRILLING MACHINE
Price $56 / 10 /-$ net, or $10 /-$ Dejosil and slx monthly payments of El. carrlag and packing extra.
(S.A.E.) for specification and descrintixe
DRILLS : DRILLS
Sets of Drilts and Auror Bits DNIL and Caser. Competitive prices. Send for details. S.A.E.
WANSTEAD SUPPLY CO.
39, THE BROADWAY, WOODFORD GREEN, ESSEX

SPECIAL OFFER

G.E.C., B.T.H. 8

WESTINGHOUSE GERMANIUM CRYSTAL DIODES
1/- each. Postage 2ldd.
Diagrams and three Crystal Set Circuits
Free with each Diode.
A large purchase of these fully
GUARANTEED diodes from the manufacturers enables us to make

COPPER INSTRUMENT WIRE
ENAMELLED, TINNED, LITZ,
COTTON AND SILK COVERED
All gauges available
B.A. SCREWS, NUTS, WASHERS, soldering tags, eyelers and rivers. EBONITE AND BAKELITE PANELS

FORMERS AND TUBES
ALL DIAMETERS.
Latest Radio Publications
SEND STAMP FOR LISTS
CRYSTAL SET
INCORPORATING THE SILICON
CRYSTAL VALVE
Adjustable Iron Cored Coil
RECEPTION GUARANTEED. Polished wood cabinet, $15 /$ post $1 / 3$.
A REAL CRYSTAL SET NOT A TOY
POST RADIO SUPPLIES 33 Bourne Gardens, London, E. 4

CONDOR

SLICED

FOR QUALITY FOR FLAVOUR FOR AROMA FOR CUT FOR FRESHNESS

THE "MINOR" 10 in I

UNIVERSAL WOODWORKER

The "MINOR" lathe carrying a battery of three useful machines, any one of which may be operated without removing the others. ALL powered by ONE sturdy electric motor.

Showing the tilting saw-table with A view of the 4 in. planer with saw mortiser and planer ready for use. and mortiser ready for use.
7 in. saw with $2 \frac{1}{8}$ in. cut. FINE, MEDIUM \& COARSE SAWS AVAILABLE.

Combination table being used for Spindle moulding. Cutter block panel cutting. Easily adjustable for takes the place of the circular saw. varying. lengths.

Combination table in use with Combination table in use with slot sanding disc. This table has many mortiser. Mortises from $\frac{1}{4}$ in. to uses. $\frac{5}{8} \mathrm{in}$.
Send Stamp NOW for illustrated brochures to:
CORONET TOOL CO., Dept. PM, Mansfield Rd., DERBY

[^2]
Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenia! career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship
ig \& Tool Design
Press Tool \& Die Design Sheet Metalwork Automoblle Repairs Garage Management Works M'gmat. \& Admin. Practical Foremanship Ratefixing \& Estimating Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance Engineering Maintenance Engineering
Steam Engine Technology Steam Engine Technolog
I.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship
Machine
Automobile
Structural R/F Concrete
Structural Engineerring Mathematics (all stages) Radio Technology
Telecommunications
Wiring \& Installation
Television
Radio Servicing
Gen. Elec. Engineering Generators \& Motors Generation \& Supply Aircraft Mainten. Licences Aircraft Maint Electrical Design urvey Dr'ship.

BUILDING AND STRUCTURAL

L.I.O.B. A.I.A.S. A.R.S.H. M.R.S.H. A.M.I.P.H.E. A.A.L.P.A. A.F.S. A.R.I.C.S. Building Construction Builders' Quantities Costs \& Accounts Carpentry \& Joinery Surveying \& Levelling Clerk of Works Quantity Surveying

Building Inspector
Building Draughtsmanship
Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptors Woodwork Teacher Metalwork Teacher Housing Manager (A.I.Hsg.)

Common. Prelim. Exam. A.C.I.S. A.C.C.S.
A.C.W.A. (Costing)

School Attendance Officer
Health Inspector
Civil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME AND EARN BIG MONEY
Men and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

OVER SEVENTY YEARS OF \star CONTINUOUS SUCCESS

NATIONAL INSTITUTE OF ENGINEERING

(In association with CHAMBERS COLLEGE—Founded 1885)
(Dept. 29)
148, HOLBORN, LONDON, E.C. 1
SOUTH AFRICA: E.C.S.A., P.O. BOX NO. 84IT, JOHANNESBURG australia : P.O. box No. 4570. melbourne

132-PACE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
* How to obtain money-making technical qualifications through special RAPIB FULLY=GUARANTEED COURSES

MANY INTERESTING COURSES

TO SELECT FROM!

A.M.I.Mech.E.	A.
A.M.Brit.İR.E.	A.M.I.P.E.,
A.M.I.C.E.,	A.M.I.Struct.E.,
A.M.I.Mun.E.,	M.R.S.H.,
A.M.I.E.D.,	A.F.R.Ae.S.,
London B.Sc.,	Degrees.

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New 'Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885 , our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

Free Coupon

To: NATIONAL INSTITUTE OF ENGINEERING (Dept. 29), 148-150, Holborn, London, E.C.I.

Please Forward your Free Guide to NAME
ADDRESS \qquad

My general interest is in:-(\mathbf{x}) ENGINEERING
(2) AERO (3) RADIO (4) BUILDING
(5) MUNICIPAL WORK
yow are interested.)
The subject of examination in which I am especially interested is

[^0]: - Part of "His Masters Voice". Marconiphone, etc. etc.

[^1]: THE BRITISH TAP \& DIE CO. LTD Triangle Works, Jown Road, Edmonton, London, N.9. Telephone EOMonzon $1546-7$

[^2]: Practical Mechanics "Advice Bureat \quad COUPON This coupon is available until May all letters containing queries, together with 6 d . Postal Order. A stamped addressed envelopz must also be enclosed. Order. A slamped add
 Practical Mechanics.

 May, 1957.

