Watch Repairing for the Amateur

No. 466.

No. 1024.

No. 760. 3 doz. Assorted Light Compression Springs $1^{\prime \prime}$ to $4^{\prime \prime}$ long, 22 to 18 doz. Assorted 1° to $4^{\prime \prime}$ long, $4^{\prime \prime}$ to $3^{\prime \prime}$ diam.
19G to 15 G 5/6. No. $757{ }^{2}$ Exira diam.
Compression, 1 gross Assorted, $\frac{1}{\prime \prime \prime}^{\prime \prime}$ to $\frac{R}{1}, \frac{1^{\prime \prime}}{2}$ to $2^{\prime \prime}$ long, 27 to 20 S.W.G. 15/No. 388. $\frac{1}{2}$ gross Assorted Small Expansion Springs, $1^{\prime \prime}$ to $1 \frac{1}{2}$ ", 18G to 21 G ,
 27 to 20 S . W. G. $15 /-$ No. 466 . $\frac{1}{2}$ gross Assorted Small Expansion Springs $\mathrm{g}^{\prime \prime}$, to $1 \frac{1}{2 \prime}^{\prime \prime}$ long. $3 / 32^{\circ}$ to $3 / 16^{\prime \prime}$ diam., 21 G to $24 \mathrm{G}, 6 / 6$. No. 1013 . i gross Smail $6 /$. No. 753 . 3 doz. Assorted Light Expansions $\frac{1}{\prime \prime}^{\prime \prime}$ to $\frac{1}{2^{\prime \prime}}$ diam., $2^{\prime \prime}$ to $6^{\prime \prime}$ long. 22 to 18 S. W.G., $10 / 6$. No. 1024. 20 Compression Springs $12^{\prime \prime}$ long, t" to ºn $^{\prime \prime}$ diam., 24 G to 18 G , suitable for cutting into shorter lengths; and 30 Expansions $1 \frac{1^{\prime \prime}}{}$ to $12^{\prime \prime}$ long. $5 / 32^{\prime \prime}$ to $\mathbf{F}^{\prime \prime}$ diam., 22 G to $16 \mathrm{G}, 24 /$.

How are you off for Springs?

Terry's Boxes of Assorted Springs are just the job for your experimental department a wonderful assortment of Compression and Expansion Springs .. . all sorts of lengths, gauges, diameters. The nine boxes we show are just a few from our range. Why not let us send you a full list - free?

TERRY'S

ASSORTED SPRINGS

The prices quoted are subject to the usual trade discount.
HERBERT TERRY \& SONS LTD. REDDITCH, WORCS.

SPRING MAKERS FOR 100 YEARS

These Borese of Sortings can also be obtained at : 27 LONDON

27 Holborn Viaduct MaNCHESTER
279 Deansgate 279 Deansgate
BIRMINGHAM 210 Corporation Stre

How to stick anything to anything ...

Use quick-setting, easy-to-apply Pliobond, the new thermoplastic adhesive that sticks anything to anything permanently.

Whatever material you're using - wood, metal, plastic, fabric, rubber, leather, glass, paper, plaster or ceramics - Pliobond will join them to one another and to therinselves.

And the resulting permanent yet flexible bonds are highly resistant to water, oils, greases and chemicals. Bond strength improves with age.

Supplied ready to use in tubes, bottles (with a handy brush in the lid) and tins, Pliobond is obtainable from ironmongers and garages. Use Pliobond for every sticking job.

THE AMAZING EMCO-UNIMAT Cometerbibe

The Emco-Unimat, a miniature ball-bearing machine tool is the perfest equipment for model makers and amateur craftsmen. The standard motorised lathe, as illustrated, can be used as a pillar drill, milling machine, grinding machine or hand-drill-and no extras are neededthough much, additional equipment is available for its more extended use. We emphasise the fact that the Emco-Unimat is a pre-

SPECIFIGATION
Centre height $1 \frac{3}{8}$ in. Takes between centres $6 \frac{5}{8} \mathrm{in}$. Hollow Spindle admitstin. Drill Chuck Cap. $\ddagger \mathrm{in}$. Chuck to drill table, max. $4 \frac{3}{8} \mathrm{in}$.

ADDITIONAL EQUIPMENT Jig saw, SC Lathe Chuck, circular saw, drilling vice, milling table, and clamps. Flexible shaft.

J. \& H. SMITH LTD., Dept. P.M. 15 , 16 Harrison Street, Leeds, 1

OMARO SLIDE RULES

MODEL LII. Capacity Calculator

MODEL M.2. Arcs, Chords, Heights, Segments and Sectors

of circles with radius $(r-1)$
and the angles at the centre and the angles at the centre of the circle from 0° to 3.640°.
2.642
values. Standard Qual. (glazed).
$6 / 3$ each, post free.

MODEL W.I. Welding Data (Side 2)

List of other Models on application.
Kosine Ltd., 104, High Holborn, London, W.C.I Telephone: HOLbarn 1301

EIECTRONIC DEVELOPNTENTS (SURREY) LTD

 post and packing.

THE "CRISPIAN" BATTERY PORTABLE

A \&-valve truly portable battery set with very many Ferrtte rod aerisis. how consumption valves. Superhet clrcuit with A.V.C. Heady buft and alfned chassis-if required Baaitiful two-tone cabliet covered with I.C.I. Rexine and rygan. Guaranteed results on long and modium waves answhere.
All parts, including speaker and cabinet, are availE7.15.0 complete, ready built chassis the price is Instruction bootiet free with charts or avallable separately price $1 / 6$. Non callers add $3 / 6$ post \& ins.

OFFICE TELEPHONES New G.P.O. telephone sets with internal bell and push button switch eastly conaected toform office intercom. Pr 1 ce e
£2. 10.0 each. Post

DASHPOT DELAYED
 CONTACTER

American make type No. R.01D. This has adjustment to delay opening and closing. and has secondary contacts sultable 50 cycles, Price 37,6 each.

GRAMOPHONE AUTO-CHANGERS The latest models by very
famous manufamous manufacturers.
epeed
crystal
thernEpeed with
crystal turn-
over plek-up, over pick-up
brand new and periect,
original cartons original cartons,
carrlage, etc., $12 / 6$.

MAINS TRANSFORMER SNIP

SPECIAL OFFER-OFFICE INTERCOM This is a 2-station " master " unit comprising an A.C. mains operated push-pull amplifer with built-in P.M. speaker which scts as microphone or loudspeaker depending on whether switch is, set-to "talk" or "listen." Complete in
polished cabinet ready to work. Pice only $£ 4 / 18 / 6$. "plus $3 / 6$ charriage and insurance.

ELECTRONIC PRECISION EQUIPMENT LTD

Post orders should be addressed to Dept. 1, 123, Terminus Road, Eastbourne. 42-46. Windmill Eill, I52-3. Fleot Street, 24 , Stroud Green Rd, 249, Ligh Rd. Kilburn

Clamp Hydraulically and Slash Fabrication Costs/

Telephone: Shepherds Bush $3443 / 6$
Telegrams: Newsorber, Ealux, London

MIDLAND INSTRUMENT CO. OFFER

NAVIGATORS (HART BOARDS, an tdeal draughtsman's board, selected 7-piece polished wood, 17in. x 171 n. x sin., fitted brass parallel motion drawing arm hinged to board edge slide, with lock screw, free arm end fitted protractor marked devioe, board back has rubber or felt lined feet. with pencil bolder, value today our price new and boxed, 25 - post $2 / 6$. HIVGIEES 12-VOLT SIINNT MOTORS, taking 1.25 -amps. IIght, and up to 2 -amps. on load, 5 , (000 r.p.m., external terminations
for reversink, oll impregnated bearings, in. shaft. size 3 in. long, iln. dia., weight for reversink, oll impregnated bearings, $\frac{31}{} \mathrm{n}$. Shaft. size 3 in . long, 1 in . dia., weight $10 '=$ post $1 / 3 ; 2$ for $20-$, post paid : ditto, fitted reduction mears, aiving a final drive of either 160 or 320 r.p.m. state whlch required, 12 6, post 16 , 2 for $25 /$, post paid. K TYPF CYLINDER LOCKS, deadlocking and thiefproof, has 7 concentric locks, for right-or left-hand doors, no need to specify, complete with 2 keys and all fittings, instruction booklet. 1ist price 18,9 , our price new boxed, $5,-$ post $1 / 6: 2$ for $10:-$ post paid. FLHOW THiLESLDPES, by Cooke Sims \& Troughton, 8×30, in gunimetal housing, size 91a, long, 4tim. high, base 5 in. dia., unused and perfect system. variable eyepiece, prism and objective, all mounted, $20 /-$, post $1 /$. Row ACHKOMATs, $25-\mathrm{m} . \mathrm{m}$. dia., f. 4 , 41 n . focal leng th enlarges a $35 \mathrm{~m} . \mathrm{m} . \mathrm{m}$. AIm to 2 k in . x 3ıin. also suitable for projection lo brass mounts with screw focusing, new and perfect. ${ }^{\circ}$-. post 6d. VFNNER TIME DELAY SWTTCRES, 24-v. clockwork pattern, new and perfect, 5 6, post \& packing 1,6. GFNFRAL ELBCTRIC Leach
 4ift. long, with control lever, new, unused, 1 6. post 7 d . RELA IIPANELS, bakelite panels on which are mounted five 12 - and $24-v$. relays, each with 20 -amp. makf contacts, taken from new equipment, 36. post 1,8 . GERMANIUM DIODES, moTors, compound wound, $24-\mathrm{v}$, 30 -amp. or 15 -amps at $12-\mathrm{y}$, fitted 1 in, shaft

 post 1 - WATHRPROOF OILFD FAlBIC (yellow ollskin), 1 -yd, square, new.
unused, worth $8-$ our price $1 /-$ post $7 \mathrm{~d} .: 1$ doz. have been made into an excellent
 coll res. Its ohms, single pole fchargeover contacts (platinum). new. unused, 38 ,
 11n. dia. aperture, brand now, 5 6. post 7d. GFAR LNTM, contain 15 various light
 A hand-held instrument for direct viewing of otherivise invisible sources of infra red, consists of the focusing optical system, infra-red flter, image invertor cell eyeplece magnifier, with length of screened H.T. cable, requires 2 kV . to 4 kV taking infinitesimal current ta operate, size 6 in , long, 2 in. dia. weight ppprox.
11b., new, unused. fraction of original cost, $15-$ post- 16 . in fitted enclosed gearbox, also auxiliary open gearbox, detachable folding handle,
 r.p.m. new, unused, an exceptional bargain, 17.6. post and packing 2 b. G. Es r.p.m.inew, unused, an exceptional bargaln, 17.6, post and packing 2 . $10 /-$ post 9 d. . ditto $12 \mathrm{v} .4 \mathrm{amp} .15 \%$, post 1 . mains transformers to suit both these
 LADW IMMERSION HEATERS, 230250 v. 2,000 watts, removable link for 3-heat control, plated copper stem 18in. long from fixing screw, removable brass top
termination cover with insulated cable bush, now, unused and guaranteed, $45 /-0$ post paid.

MIDLAND INSTRUMENT CO.
MOORPOOL CIRCLE, BIRMINGHAM, 17.
Tel. HAR. 1308
 200 Slottinc Cutlers $21^{\prime \prime}$ dia. f° thick, 1^{*} hole, $5 /-$ each.
500 Sets Hex. Die Nuts. Sizes $1^{\circ} .5 / 16^{\circ}$ in 1°. $7 / 16^{\circ}$ and 1° Whit., B.S. F., Amerlcan Car
thread or 26 brass thread. These sets are in a neat case. Present-day value over $30 /-$ per set, to clear $15 /-$ per set any thread. Two sets $28 / 6$, four sets $55 /{ }^{\circ}$. Also ${ }^{\circ}$ and i^{\prime} In Whit. and B.S.F. only, 1". 5/- each ; 1° 6/- each, $10 /$ - per pair.

 and y° and z^{\prime} gas thread, complete with die stock, $42 /$ per set. Any size dies, $7 / 6$
 13229 : also $23 / 64,27164,29 / 64,31 / 64,12 /$ - for lour, $3 / 6$ each
Special Clearance, H. 8 . taper pin reamers, sizes 4, 5, 6, 7, 8, 9, it the lot, worth $£ 8$

 thick, 25$)^{-}$each. All 1 hole.
 side and face cutters, plan and angle cutters. A most useful iot for any tool roorm
6 ass. for $50 /-$ The present maker's price of the cheapest cutter in this selection is $40 /=$. You must get this lot. remember you get same on approval against cash. All items brand new. \&1 orders post paid. except overseas.
2,000 Smanli H.S. Twist Drilis, approx. $1 / 32^{*}-3 / 32^{\circ}$, 4/- doz. approx. : $1 / 16^{\circ}-\frac{1}{6}^{*} 7 / 6$ per doz. approx. : $9 / 32^{\circ}-15^{\prime} 32^{\circ}$, s1x for 10 -
3.000 Circular Spilt Dies 1^{-}dia. cutting $1^{\circ}, 5 / 16^{\circ}$. $1^{\prime \prime}, 7 / 16^{*}$, ${ }^{*}$ Whit., B.S.F., also brass thread, 26 thread all sizes and American in.F. $12 /$-per set or 5 slzes, 2 sets 228 , 4 sets $42 / 6$. Taps to suit $11 / \sim$ per set, elther taper or seçond or plus. 1 die-stocks
$8 /=$ each.
 .000 Mand tramers.
1,000 High Speed Parting ofr Tool Mades. Eclipse brand: $11 / 16^{\circ} \times 3 / 32^{\prime \prime} \times 5^{\circ} \mathrm{long}$,

7,000 Pratt Whitney, circular split dies, superlor quality precislon ground cutting edges, $13 / 16^{\circ}$ dia., suitable for machine or hand use. Sizes : $2,4,5,68$. A. $8 / 6$ per set. $13 / 16^{\circ}$ die-stock, 3,8 each.
5,000 Ball Races, $1:$ bore, 1^{*} o.d. 1° thick, $4 /$-pait ; t^{*} bore, 1° o.d., $7 / 32^{\circ}$ thick, $4 /=$ pair 6 mm , bore, 19 mma o.d.. 6 mm . thick, $4 /-$ pair ${ }^{2} 9 \mathrm{~mm}$, bore, 28 mm . o.d. 2,000 Files, 4^{*} to 6^{*} flats, half-round, rounds, squares, warding, assorted cuts, good 2,000 Files, 4^{*} to 6^{*} fats, half-round, rou
general lot. 10,6 doz. : three doz. 28,6 .
 500 H.s. 90° Countersinks, body. i" dia., teéth cut to point. An essental tool for

J. BURKE

192 Baslow Road, Totley, Sheffield Inspection Oaly at Rear 36 Fitzwillam St., Shefleld.

A Free-Hand/.
Both your hands are free to work when a Mole Wrench is used. Designed for the many domestic and workshop tasks where a really firm grip is necessary, it locks on to the job until released by a touch of the centre lever. Simple to use, it can serve as clamp, vice wrench, pliers and so on-a very useful tool for everyone.

Stocked by Ironmongers, Cycle and Motor Cycle Accessory Dealers.

7in. 12/6, 10in. 15/

SELF-GRIP WRENCH
M. MOLE \& SON LṪD., CHARLOTTE STREET, BIRMINGHAM, 3.

UP-TO-DATE - AUTHORITATIVE - THOROUGHLY RELIABLE

NEWNES
 CARPENTRY

NEWNES

AND
JOINERY
SHOWS THE MOST UP-TO-DATE METHODS

SEND FOR 7 DAYS' FREE EXAMINATION

Newneg CARPENTRY IND JOLNERY is produced for you, the man who means to become a rully-skilled craftsman, and hold a well-piald position. Every aspect of the work is dealt with comprehenslvely and concisely-from handwork, machine woodworking and the construction of fioors. roofs, partitions, staircasing and handratling. to complete structures. It contains the exparlence of qualified practical men-who help you to solve day-to-day problems, and implement your knowledge.
HAND TOOLS: Timbers, Machines and Provesses. Dnorm. Dados, Skirtingas.
Worknon Genmeiry Windows, Blinds, Shulters. Punpling, Vencering, Stadiging Shiters. Stairs. Mandrails. Chureh Flitiass inoors, iBeams, Roors. Gates,
Fences, sheds, etc.

This Inmortant new work has bern froduced for the man who mans to prodayo Free Examinalton. planning, Instuilation and Maintenance of Watos Supply, Dralnare. Sanitation. Heatinc and Ventlation in domestle bulldingsall these activitles reguirling sklled cractamanship are dealt with by experts. This comprehenslve new work will help you gain a thorough knowledge of your immediate craft and allied activities.
Deals with Tools, Leudwork IRoof Work Pipe Jointink and Renaling Sewage. Fitments, Coid-watersiryle fs Wells Burst Pinus. Gias, Electric and POST COUPON TO-DAY!

Don't Miss This Opportunity! No Cost-No Obligation

Waim Hixy Mramination TOM"

 Make your choice here| MARK X IN PANEL ON RIGHT George Newnes, Led., 66-69 Great Queen St., London, W.C.2. | Newnes Carpentry and Joinery Subscription Price E6 6 Cash Price in 8 days 65.15 |
| :---: | :---: |
| Send me the books I have selected, without obllgation to purchase. I will either return the books in 8 days or send l0s deposic 8 days after delivery, then 15 s monthly until the total subscription price shown against books I have selected has been paid. | Newnes Plumbing, Sanitation \& Domestic Engineering Subscription Price $E 9$ Cash Price in 8 days 88.10 |
| Name ... | |
| Address | Place X where it applic |
| | HouseOWNER |
| Occupation | Householder |
| | Living with Parents I |
| Signature | Lodying Address |

THE SHEFFIELD TWIST DRILL AND STEEL COMPANY LIMITED
 SHEFFIELD
 DORMER DRILL SETS ARE OBTAINABLE FROM YOUR USUAL ENGINEERS' MERCHANTS

Keep lathes, drills, vices and hand tools thoroughly lubricated, clean and smooth working with ESSO HANDY OIL. Blended with a special additive which positively prevents rust. Always ready for use. Long spout makes it easy to oil into awkward corners.

Oil often for smooth runningbicycles PERAMBULATORS LAWN MOWERS SEWING MACHINES CAR FITTINGS LOCKS, HINGES GUNS

Every handy man needs

 Esso Handy Oil REFILL BOTTLE
EX-GOV. SURPLUS BARGAINS

INFRA RED MONOCULARS. (Tabby Equip Mk. 1.) A self-contained receiver in case size $8 \mathrm{in} . \times 5 \mathrm{in}, \times 2 \mathrm{i} \mathrm{in}$. Weight 3 lbs . Incorporating image converter cell and self generating Zamboni pile E.H.T. unit, focusing eyepiece and object glass with infra red filter. Push-button switch. Complete with solid leather case with shoulder straps. Condition near new and working order, 37/6. Plus carriage and insurance $7 / 6$.
SPARE PARTS FOR ABOVE UNITS. All checked O.K. and working.
IMAGE CONVERTER CELLS in mount complete with eyepiece, 25/-.
ZAMBON1 PILES. (3 bank.) Checked O.K., $12 / 6$ ca. Post $2 /$.
FOCUSING EYEPIECES. $8 / 6$.
OBJECT GLASS with I.F. filter. In brass sleeve. 6/6.
LEATHER CASES. With straps. As new, $6 / 6$ ea.
BENDIX HAND GENERATORS. Small type. $28 \mathrm{v} . .175$ a. and 300 V. 40 ma . Complete with enclosed duralium gear case and ratchet handle. Can be used as low geared motors on 24 v. A.C.-D.C. or 240 v . A.C.-D.C. Can also be converted to food mixers, etc. Brand New. 21/- ea.
RELAYS. Advance miniature type. 1,000 ohms. SPDT. weight $\frac{1}{2}$ ozs. Size rin. x rin. $x \frac{1}{2}$ in. Brand new. $7 / 6$ ea.
GEAR TRAINS. 10 different gears with 3 take offs with speed governor and cam-operated switches. New. 7/6 ea.
A.A. IDENTIFICATION TELESCOPES. COST £I85 ea. A few more available in good condition at $£ 9-10-0$, plus $£ 1$ carr.

BOOKLETS. "HOW TO USE EX-GOVERNMENT LENSES \& PRISMS. Nos. I and 2. Price $2 / 6 \mathrm{ea}$.

Most types of surplus optical equipment in stock. Lists free for S.A.E.

H. W. ENGLISH

RAYLEIGH ROAD, HUTTON, BRENTWOOD, ESSEX

TVES. ES. 6 months guarantee, 12 in . Mullard. As Cash with order. I4in. MULLARD RECTANGLE, E5/10\%. ITin. RECTANGLE, $£ 7 / 1010$.

T.V.12in. CHASSIS. 97/6. Complete chassis by framous manufacturer. R.F. E.H.T. Unit included. Drawing FREE Easily fitted to Table or Console model owing to this chassis being in three separate unizs
(Power, Sound and Vision, (Power, Sound and Vision THIS CHASSIS is LESS VALVES THIS CHASSIS IS LESS VALVES
AND TUBE but see our cacalogue for cheap valves Our $\& 5$ Tube fits this Chassis. Our $£ 5$ Tube fits this Chassis.
List of valves by request Carr. 5/. London. $10 /$ SPEAKER SALE. $8 / 9$ each to clear. 8 in, P.M. std. 3-5 ohms.
or with matching O.P. trans. 12/9. Post $1 / 9$
V.H.F. II24 RECEIVER. $7 / 6$ less valves, ex-W.D., good condition; 6 -channel switching. Receives $T . V$. sound, police, fire and amateurs; $30 / 5 \mathrm{mc} / \mathrm{s}$ to $40 \mathrm{mc} / \mathrm{s}$ I.F. $7 \mathrm{mc} / \mathrm{s}$. Post $2 / 6$. Drawings and conversion data free with each se
V.H.F. II25 SET. 7/9. This little set is a V.H.F. receiver, requires modification to put it into service. Complete with valves. Post $2 / 3$.
R.F. 24 UNIT. $10 / 6$. New and packed. Tuning $20-30 \mathrm{mc} / \mathrm{s}$, Including 3 valves. Post $2 /$. RADIOGRAM CHASSIS. 29/9. Including 8 in . speaker.
5 VALVE $5 / \mathrm{HET} .3 \mathrm{w} / \mathrm{b}$ and. A.C. mains, complete but less valves. All used, 5 VALVE S/HET. 3 w/band. A.C. mains, complete but less valves T.V. CHASSIS TO CLEAR. (Famous manufacturer.) POWER PACK. 29/9. 5 K.V. E.H.T. 325 v., $250 \mathrm{m.a}$. Smoothed H.T. heaters 6 v. 5 amp., 4 v. $5 \mathrm{amp.}$,4 v. 5 amp . Carr. $4 / 6$.
TIME BASES. 10/6. Containing scanning coil, focus unit, line trans., 10 controls, etc. Drawing free with unit. Carr. 2/6.
MAINS TRANSFORMER. 5/9. $350-0-350 \mathrm{v}$. Heaters, 6 v . and 5 v . Post $2 /-$ MAINS TRANSFORMER. 3/9. $350-0-350$ v. 12 v. 4 v . heaters. Primary 100 250 v. Make ideal auto trans. Post $2 /-$
MAINS TRANSFORMERS. 5/9, 350-0-350 v. 4 v., 4 v., heaters. Primary 200 250 v. Post $2 /$-. All mains trans. 80 man .
O.P. TRANS. 1/9. Standard $3-5$ ohms. Guaranteed. Post 9d.

A Customer is not a cold statistic-he is a warm flesh-and-blood human, with feelings and emotions like our own, with biases and prejudices as to his requirements, whatever they are.
A Customer is the most important person ever in our búsiness-in, person, by mail, or by telephone.
A Customer is not dependent on us-we are dependent on him.
A Customer is not an interruption of our work-he is the purpose of it. We are not doing him a favour by serving him, he is doing us a lavour by giving us the opportunity to do so.

A Customer is not someone to argue and match wits with. Nobody ever won an argument with a customer.
A Customer is not an outsider to our business-he is a part of it.
A Customer is a person who brings us his wants, It is our job to handle them profitably to him and to ourselves. If you wish to Construct a Domestic Refrigerator, whether "buile in " or cabinet, send for our hints book and general catalogue. We shall be pleased to serve.

Send one shilling for general catalogue post free (refunded on first purchase).

BHAID BHOS.

For Home Refrigerator Construction
50, BIRCHWOOD AVENUE, HACKBRIDGE, SURREY. Tel. : WALLINGTON 9309.
We do not wish to be associated with Scrapped Second-hand ice-creom Components.

THE NEW 667MO
 8) TEN INCH PRECISION SAWBENCH

WITH MANY VALUABLE REFINEMENTS NEW DESIGN TABLE GIVES GREATER PRODUCTIVITY - - MORE CAPACITY

Special Features include NEW SIZE TABLE

21" x $18^{\prime \prime}$.
Takes Saws up to $10^{\prime \prime}$ diameter, giving $3^{\prime \prime}$ depth of cut. Improved Saw Guard and Riving Knife allows for any width of material. NEW Quick Acting Quadrant securely locks the Canting Table at any angle.
NEW MICRO ADJUSTMENT to Rip and Crosscut Fence.
NEW Rack and Pinion Feed to Rise and Fall Table.
Adjustable vee-belt drive, built-in dust chute.
BENCH MODEL WITHOUT MOTOR 125 Os. Od. Or $£ 50$ s. Od. Deposit. Balance over Eight Monthly Payments of ± 2 l6s. 3d.
Price complete with I-h.p. motor on Pedestal Stand.
PRICE, 3 PHASE ... 449 I5s.0d Or $\{10$ Os, Od. Deposit. Balance over Eight Monthly Payments of E5 lls. Ild.
ONLY LONDON ADDRESS
S. Tyzack \& Son Ltd.

Telephones-
SHOreditch 8301
341-345 OLD STREET, LONDON, E.C. 1

THE TECHNICAL SERVICES CO. SHRUBLANDS WORKS - BANSTEAD • SURREY

THE 'MAGSTAT'

This is a precision bi-metal thermostat for the control of alternating currents of up to $\frac{1}{2} \mathrm{amp}$ at 240 volts. The temperature range lies between minus $50^{\circ} \mathrm{F}$. and plus $250^{\circ} \mathrm{F}$. An ingenious magnetic snap action is incorporated which gives freedom from radio interference. The operating temperature is altered by rotation of the adjustment screw, clockwise for increase, and anti-clockwise for decrease. Dimensions : 2in. x din. x in.

PRICE: $5 / 6$ eachr Post 3d.

* NEW CATALOGUE *

SEND 4d. IN STAMPS NOW FOR YOUR COPY

SUPPRESSIT *

(TELEVI8ION SUPPRESSOR KIT)
For the suppression of Domestic Motor Driven Appliances Comprises Motor Driven Appliances. Comprises
two chokes and two condensers two chokes and two condensers mounted on a card with wiring
instructions. Ideal for Vacuum instructions. etc., up to 1 Amp. Price 3/6. Post Free.

REPLACEMENT ELEMENTS

FOR DOMESTIC ELECTRICAL APPLIANGES We stock over 200 types of element replacements for Fires. Irons, Kettles, Hairdriers, Toasters and Boiling Rings.

WE IIAVEA REPUTATION FOR MIGR QUALITY THERMOSTATS AND LIST

THEREMOSTAT. CS Convector Thermostat for Space Heaters and Low temperatura Ovens. 15 amps. 250 volts A.C.
tolfo deg. F. 251 F , post 5 d .
THEIEMOSTAT. MB. For control of Electric Immersion Heaters up to 3 KW . 82/010, post 9 d .
THEIB MOSTATG, PF, Room Thermostat. 15 amps., 250 volts A.C. Sin. X 1 in.
I 2 in. A beautifu instrument. Temp. ranges $30 / 90,40 / 100,40 / 80,60 / 100$ deg. F. as required. $\varepsilon 2 / 0 / 0$, post 6 d .

THERRMOSTAT, BW/1. 3 amps. 250 volts A.C. For control of hot-plates. vulcanlsers, etc. $50-550$ deg. F. $15 / 6$, post 40 .
We are only too slad to send illustrated We are only too glad to send mustrated
leafiets on any of these Thermostats if you will send a S.A.E. statins which model interests you.

IMMERSION HEATERS
We can offer a wide range from 2 to 4 kW . and in stem lengths 11 in . to 42 in . Pleaso send for our catalogue.

GREENHOUSE

THERMOSTAT
Type ML, Conseructed specially for the amateur gardener. The scale plate is calibrated "High-Medium-Low" and has a temperature range of $\$ 0.90$ deg. F. Current-carrying capacity is 10 amps 250 v. A.C. Differential, 4 to 6 deg. F. Dimensions: 4 in. $\times 2 \mathrm{in} . \times$ Ifin. Price $35 /$. Post 6d.

Model PI. Miniatura Thermostat for control of domestic Electric Irons and special purpose machines where space is limited. Capacity : 5 amps . 250 v. A.C. iin. x íin. x $11 / 16 \mathrm{in}$. Single screw fixing. Price $9 / 3$. Post 3d.

FIRE BARS

No. 41. Bowed, 3 in . $\times 9$ in. $7 / 6 \mathrm{ea}$. No. 42. Bowed. 3in $x 7$ inin. $7 / 4 \mathrm{ea}$ No 43. Bowed 3 lin $\times 8$ lin. $7 / 6 \mathrm{ea}$. No. 44. Bowed. 3 fin $x 8$!in. $7 / 6$ ea. No. 45. Flat. 3 in $\times 91 \mathrm{in} .7 / 6$ ea. No. 46. Flat. 2lin. $x 7 \mathrm{in} .7 / 4$ ear No. 47. Bowed. 3in, $x 91$ in, $9 /-$ ea No. 41. Suitable for Sunbeam, Revo, Belling, Dudley, Swan.
No. 42 Suitable for Small Revo and various types.
No. 46. Suits Belling, Brightglow No. 47. Suitable for Creda.

SPIRALS

No. 70. Spiral, $1,500 \mathrm{w}$. 2/9 ea No, 70a. Spiral, 1,000 w. 2/2 ea No. 70b. Spiral. 750 w. 1/10 ea, No. 70c. Spiral. $600 \mathrm{w} .1 / 5 \mathrm{ea}$. No. 70d, Spiral, 500 w , 1/4 ea No 70e Spiral 200 w . $1 / 2$ No. 70f. Spiral, 100 w . $1 / 1 \mathrm{ea}$

BOILER IRINGG No. 71. $5 t \times 1 \mathrm{in}$. $1.000 \mathrm{~W} . . .819 \mathrm{es}$

No. $74 . \mathrm{w} .51 .6 / \mathrm{lan}$
FLASHING
FAPSHING 40,100 $40 / 100$ watts. Fits holder. $7 / 6$ euch

SILVER TIPPED SONREWN
B.A. x z/n., 4/-

4 Ber doz. x |ln., 6/-
6 Ber doz. in., 4/6

- per doz. 518
(6.A. x lin., 5/6

AsbegTOS

 on5 in diameter, in. Soldering Iron rests. 6d 8/- doz.

[^0]
THE "FLUXITE QUINS" AT WORK

"This ceiling white-washer is great! It's the slickest invention to date FLUID FLUIXITE throughout A sound job without doubt We'll be done in two ticks at this rate!"
 * SOLDERIIGG PASTE Simplify all Soldering!

The standard sizes of FLUXITE FLUID are:4 fluid ozs. 8 fluid ozs. 20 fluid ozs. $\frac{1}{2}$ \& 1 gallon cans.

FLUXITE LTD BERMONDSEY ST•LONDON S.EFI

TELEPHONE : HOP 2632

EXPORTENQUIRIES INVITED

MODELS of every kind from one plastic ready-to-use material-PYRUMA! This book with new methodsnew ideas-shows you how to acquire simple skill in making many types of permanent models listed below. And pages in full colour show how your models of animals, buildings, figures, etc., can be painted in natural tints.

Pyruma is supplied, plastic and ready for immediate use, in air-tight tins, obtainable from your local ironmonger, Hobbies shop or Art material dealer, from Is. 6d. upwards. Finished Pyruma Models can be baked or air dried to stone hardness ready for colouring after simple treatment. Send 6d. P.O. (not stamps) with the coupon below for the book which shows how to make

MODEL RAILWAY STATIONS, SIGNAL CABINS, FARM COTTAGES, SHIPS, FIGURES, ANIMALS, ASH-TRAYS, BOOK-ENDS, MODEL FURNITURE, PLAQUES, RELIEF MAPS, ETC.

COUPON

TO

DEPT. P.M., ILFORD, ESSEX
Est. 1857.
Enclosed 6d. P.O. (not stamps) for PYRUMA MODELLING INSTRUCTION BOOK addressed to :
NAME (Block Letters).
ADDRESS.
\qquad

MAJOR
MAGNET Restarch. Educational and industrial uses. in three sizes. Use whert extramax magnets In ehree sizes. Use whert extra periormance
Is required. - BAR MAGNETS . In pairs. For general - POCKET MAGNETS . . Useful to every - POCKET MAGNETS...Useful to every engineer

- MINOR MAGNETS ideal for the model enginecr. Compact yet powerifl.
- POT MAGNETS In three sizes. Power ful Alcomax assemblies for holding and lifung. mild steel pot can be machined
- BUTTON MAGNETS. For magneticlo. dicators, doorcatches and as magnetic collectors.

BUTTON MAGNET

Made by James Neill \& Company (Sheffield) Limited and obtainable from your usual tool distributor

EXTRACTS FROM OUR NEW CATALOGUE

ASTRONOMICAL TELESCOPE KIT. Consists of Object Glass 40 in . focal length, 47 mm . dia. (not achromatic but optically polished). Fully corrected length, 47 mm , dia, (not achromatic but optically polished). Fully corrected
achromatic Keliner Type Doublet Eyepiece giving magnification of approx. 30 X . achromatic Kellner Type Doublet Eyepiece giving magnification of approx, 30 X .
Black lined, toughened cardboard tube with P.V.C. covering material. Full size self-centring metal tripod. $47 / 6$. Carriage free.
self-centring metal tripod. 47/6. Carriage free. $\quad 60 \times$ magnification. 25/High power EYEPIECE for above Kit giving approx. $60 \times$ magnification. $25 /-$ -
EX. GOVT. ROSS PRISMATIC TELESCOPE. Power 20×70 (external dia. of Object Glass 3 in .). Angled focusing eyepiece. Nett weight 5 lbs . Length 13 in . In new and perfect condition. $\mathbf{\& 1 2} 10.0$. Post Free.
$8 \frac{1}{2} \times 50$ U.S.A. ELBOW TELESCOPE. Perfect condition. 57/6. Post $2 / 6$. IDENTIFICATION TELESCOPE. Tremendous clarity and power of 12 X and 30X. With Objece Glass dia. of 60 mm . Traversing and elevating gear. Can be used by two observers simultaneously. Perfect condition, 615.0.0. Carriage Free. ACHROMATIC OBJECT GLASS. First quality. Focal length I6 2 in . Dia. 50 mm . Ideal for increasing the power of Binoculars. $27 / 6$ each.
Ex. Admiralty OFFICER OF THE WATCH TELESCOPE. Single draw. Power $16 X$. Length closed $18 i n$. Wt. 20 ozs. $59 / 6$. Post Free.
Power $16 X$. Length closed $18 i n$. Wt. 20 ozs. $59 / 6$. Post Free.
We carry Europe's greatest stock of Ex. Govt. Scientific Equipment. New cata-
logue (March issue) now available. Satisfaction or full refund.

CHARLES FRANK

67-73, SALTMARKET, GLASGOW, C.I.
Phone: BELL $2106 / 7$.
Established 1907.

THE ULTRA LENS AIDS PRODUCTION
 INTERLACING of picture.

Tel. : TRAfalgar 2055
17c, Oxendon Street, London, S.W.1.

PRICE: $\quad \mathbf{4 0}-\mathbf{5} \mathbf{- 0}$ including gun \& hose Hire Purchase Terms : £20-7-6 deposit plus 12 monthly payments of $\mathbb{6}$ |-18-6

Write for Leaflet CB. $1 / 2$
P. E. N. PATENTS LTD (Division of Broom \& Wade Ltd.) cp.234

TUNGSTEN CARBIDE TIPPED TOOLS

PLUGGING DRILLS

For dean round holes in brick, concrete, tiles, marble, etc., for all fixing jobs with Maso Plugs.

glazemaster

For drilling windows, mirrors, glasses, bottles, plate glass. shelves, etc.
Write for Booklet P.M. Obtainable from your Tool Stockist and Ironmonger.

MASON

Manufactured by
JOHN M. PERKINS \& SMITH, LTD., BRAUNSTON. NR, RUGBY Tel: BRAUNSTON 351-2

BETTER CABINET MAKING

"Finger-tip

flame control

said a silversmith, "Pleasant to handle, very sensitive controls."
He was one of the many users of our Flamemaster Mark II and the three comments he made probably sum up the main reasons for the Flamemaster's immense popularity.
Also :
It burns coal-gas or bottled-gases of the butane type with equal efficiency . . .
The air or oxygen pressure needed is comparatively low . . .
All the different flame-units are easily interchangeable . . .
It won't splutter or give you an unstable flame . . .
It won't leak, even on high pressures . . .
It won't raise your running-costs (our economiser-trigger sees to that) . .
But it will bring speedy and reliably controlled heating rig . 6 to the spot where you need it . . .
remember the name
FLAMEMASTER MARK II

Write for full details to :-
STONE-CHANCE LIMITED, 28, sT. JAMEs'S SQUARE, london, s.W.f. telephone: trafalgar 1954.

Have you had your copy of "Engineering Opportunities"?
The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES " should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

We definitely Guarantec "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

MECHANICAL
ENGINEERING Gen. Mech. Eng.-Maintenance - Draughtsman-ship-Heavy Diesel-Die \& Press Tool Work-Weld-ing-Production Eng-Metal Wool Design-Sheet Metal Work-Works Management - Mining - Re-
frigeration-Metallurgy.
AUTOMOBILE
ENGINEERING Gen. Automobile Eng.Repairs - High Speed Diesel-Garage Mngment

ELECTRICAL

ENGINEERING Gen. Elec. Eng-Elementory \& Advanced Elec. Technology - Installations Droughtsmanship - Supply - Maintenance - Design Mining Electrical Eng Mining Electrical Eng.Power Stotion Equipment, etc.
CIVIL
ENGINEERING Gen. Civil Eng.-Sonitary Eng.-Seructural EngRoad Eng. - Reinforced Concrete-Geology.

RADIO

RADIO ENGINEERING Gen. Radio Eng.-Radio Servicing, Maintenance \& Repoirs-Sound Film Pr jection - Telegrophy Telephony - Television C. \& G. Telecommunications.

BUILDING Gen. Building-Heating \& Ventilation-Architectural Draughtsmonship - Sur-
veying - Clerk of Works - Carpentry and loinery -Quantities - Valuotions WE HAVE A WIDE RANGE OF AERONAUTICAL COURSES AND COURSES IN FORESTRY, TIMBER TECHNOLOGY, PLASTICS, G.P.O. ENG., TEXTILE TECHNOLOGY, ETC., ETC.

One of these qualifications would increase your earning power

WHICH ONE ?

A.M.I.Mech.E., A.M.I.C.E., A.M.I.P.E., B.Sc., A.M.Brit.I.R.E., A.F.R.Ae.S., A.M.I.M.I., LI.O.B., A.R.I.B.A., A.M.I.H. \& V.E.0 M.A.SAnI., F.R.I.C.S., A.M.EE.D." CITY B GUILDS,

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, NENSINGTON, W. 8.
Phone: WEStern 9861

WHAT THIS BOOK TELLS YOU

\& HOW to get a better poid, more interesting job.
t HOW to qualify for ropid promotion.

* HOW to put some valuable letters ofter your name and become a "key-man" quickly and easily.
* HOW to benefit from our free Advisory and Appointments Depts.
* WHERE today's real opportunities are . . . and HOW you can take advontoge of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering that appeals to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," and if you are earning less than $£ 15$ a week you should send for your copy of this enlightening book now-FREE and without obligation.
 TO: B.I.E.T. 410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W. 8.

Please send me FREE and without obligation, a copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).
\qquad
\qquad

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Flying Saucers and Fairies

READERS know my views on flying saucers. I have stated that there is no evidence that a flying saucer has landed at any time in any part of the world-that is to say, evidence acceptable to those scientifically trained to accept evidence. There are many unscientifically-minded people who will cry, Ben trovato ! at the mere sight of some object in the sky which they have not seen before. I have been singularly unconvinced by all of the literature I have read concerning flying saucers, and quite unimpressed with the qualifications of some who claim that flying saucers (by this I mean interplanetary flying saucers) are an established fact. I am, therefore, pleased to note that the Daily Mail, in a recent article, dismissed all the talk and all the evidence concerning flying saucers as utter nonsense. In saying this, it must not be presumed that I think that interplanetary travel is impossible, nor that those on other planets will not try to visit the earth.

Whenever I have challenged the flying saucer theorists to open debate they have fought shy of it. Adamski was unable to visit England for his lecture at the Albert Hall, at which I was to be present, because of illness, and spiritualist Lord Dowding did not accept a challenge I issued in these columns to him to a public debate. He now leaps from flying saucers and spiritualism to fairies with facile agility. In a recent lecture to spiritualists he informs us that he believes in fairies and that the fairies are very upset because we do not believe in them. He went on with bland self assurance to tell us that fairies started off as a tiny spot of light and gradually grew, until they became about 12 in. high. He admitted that he had never seen a fairy himself, but he knew a friend who had fairies at the bottom of his garden, and Lord Dowding takes toys for them to play with. He also said that he believed in gnomes-the little bearded fellows of our story books. Of course, as children we are taught to believe in fairies, but disillusionment soon comes. Children soon learn not to believe in fairies, Father Christmas or circus posters. Fairies are childish beliefs and ephemeral ones at that!
It is ridiculous and dangerous for men

By
 The Editor

such as Lord Dowding and others without scientific qualifications but a mere belief, to promote such silly doctrines, which are quite unacceptable to scientists who, whilst preserving open minds, in view of the miracles of today, yet know how to differentiate between the possible and the impossible.
As far as flying saucers are concerned, it is possible for anyone to promote a theory concerning them. They could be caused by experiment with a new form of searchlight-invisible from the ground, but the beams from which become visible on the target by means of radar harnessed to the beam.

I have received a letter from the Australian Flying Saucer Research Society, and the Secretary tells me they have obtained "conclusive proof in Australia that these objects do exist and that they are not secret weapons or aircraft of this or any other country on this planet." They do not say what conclusive proof they have, but naively go on to say "we cannot yet prove whence they do come, how they are propelled, the nature of their occupants, if any, and the purpose of their visit." They merely say that everything points to an interplanetary origin and a peaceful mission.
He then goes on to split hairs by stating that I should distinguish between evidence and proof. But proof is evidence, and evidence is proof, and I do not agree with him that there is plenty

SUBSCRIPTION RATES
including postage for one year
Inland - - - 18s. 6d. per annum.
Overseas - - 17s. per annum.

Canada - - 17s. per annum.
Editorial and Advertisement Office: " Practical
Mechanics,' George Newnes, Led., Tower House, Southampton Sereet, Strand, W.C. 2 'Phone : Temple Bar 4363
Telegrams: Newnes, Rand. London. Copyright in all drawings, photographs and articles problished in "Practicat" Mechanics" is specially reserved throughout the couneries signatory to the Berne Conveñtion and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.
of evidence which would be acceptable in a court of law, including the sworn affidavits published in Adamski's book. Affidavits, however, are not incontrovertible evidence. A man may swear an affidavit that the moon is made of green cheese, and he may genuinely believe it, but that is neither proof nor evidence. Unless rebutting evidence can be produced, an affidavit is accepted for what it is worth-you either believe it or you do not. Some sworn statements need not be accepted even if they cannot be denied. A man may swear that he has seen a ghost. It would be impossible to sue him for perjury, even though you know he is lying, because it is impossible to prove that he is lying.

There is a little bit of fact mixed with a large amount of hallucination, autosuggestion, science-fiction and plain hoax, about a great deal of the flying saucer reports. The protagonists point to the miracle of television, forgetful that it is only a reflection of what you see that is taking place in a studio. Solid bodies cannot exist in thin air. It is noteworthy that experienced scientists such as our own Astronomer Royal discredit flying saucers.

Newnes Engineer's Reference Book -Seventh Edition

VER 56 additional pages of new subject matter have been added to the seventh edition of the 2,028 -page "Newnes Engincer's Reference Book," which contains 84 sections, over 2,500 illustrations, over 800 tables and over 7,000 cross-referenced index entries. It is an essential work for the draughtsman, designer, mechanic, works manager, production engineer, costing and estimating clerk, inspector and viewer, and contains sections on Engineering Units, Thermo Dynamics, Hydraulics, Mechanics, Workshop Mathematics, Stress Formulæ, Strength of Materials, Drawing Office Practice, Patents, Designs and Trade Marks, Belt and Rope Transmission, Bearings and Couplings, Shafts and Shaftings, Keys and Key Ways, Screw Threads, Screw Thread Measurements, Gears and Gear Cutting, Rivets and Riveting, Grinding, Cams, Lathe Work, Press Work, Capstan Turret and Automatic Lathes, and indeed with almost every branch of mechanical engineering. It costs 70 s ; or 7 Is . IId. by post.-F. J. C.

Making an Efficient MirINvTV ||TASHEYR

A Piece of Apparatus which Ensures that Each Print is Thoroughly Cleaned By H. A. ROBINSON

THE purpose of washing photographic prints is to remove all traces of hypo so that the pictures will be permanent, and this can only be done if the water can swill around the prints individually and the hypo-impregnated fluid be taken rapidly away.

Fig. 1.-The, general principle and direction of water flow.

Fig. 2.-Details and dimensions of the frame and tray angles.
from the tap, if the container is deep, can flow in and out without reaching the lower depths.
The washer shown here eliminates all danger of prints not being properly washed, for the water flows sideways over them. Thus clean water is always coming in, while that which is hypo-laden is swiftly drawn away. How the water flows is shown in Fig. 1.
First the trays (1), (2) and (3) are made as Fig. 2. Trays (I) and (2) are the same size, but the lower tray (3) has the base 2in. longer. The sides (d) are all the same lengths, being r2in. long and rin. deep, fin. wood being used. These are fastened to the base (e) by a seriés of short pins (the base overlapping the sides) and spaced by the three pieces (a) (b) and (c) going across.

Complete dimensions of the pieces are as follows :-
(a) $5 \frac{1}{2}$ in. x rin. x in.
(b) 5 in. x Iin. x in.
(c) 5 in. x rin. x in.
(d) Izin. x in. x tin.
(e) $10 i n . x 5 \frac{1}{2}$ in. $\times 3 / 16$ in. for trays (1) and (2).
(f) $12 \mathrm{in} .{ }_{5} 5_{2}^{1} \mathrm{in} . \mathrm{x}^{2} 3 / 16 \mathrm{in}$. for tray (3).
The cross-pieces (b) and (c) have four semi-circular openings taken out of the lower edge, as Fig. 3, so that the water may flow away readily without reaching the tops of the divisions (as shown in Fig. 4), and the size of the openings should be adjusted if necessary to assure this. If the water flows over the tops of the divisions it may carry the prints with it, but by always draining away from below the prints are kept safely in their particular compartment.

The trays made, they are fitted between the four uprights (A) (see Fig. 2 to the left). For the lower end, these are 7 in . $\times 1 \frac{1}{1} \mathrm{in}$, -and for the higher end of the washer $7 \frac{1}{2} \mathrm{in}$. $81 \frac{1}{2} \mathrm{in}$. Any 1 in . or $\frac{3}{8} \mathrm{in}$. material will do for them. Some liftle care must be taken in setting the trays between the uprights, for each tray must have a $\frac{1}{2} \mathrm{in}$. drop towards the one end and be staggered as indicated in Fig. 1 so that the end of one comes over and with-

the required conditions.
The parts are held together by $7 / 16 \mathrm{in}$. brass or copper screws; other metals might rust and cause trouble. There are two screws at each point of contact and it is as well to drill a little first to eliminate any danger of splitting. As the trays slope in the reverse direction they lock, and the washer becomes a very rigid article.
The washer can be left in plain wood, but it is much better to give it one or two coats of a commercial water-proofing preparation.

In use the prints are evenly divided between the basins, and the washer is placed in a sink under the tap so that the water falls on to the upper end of the top tray or on the draining board, the water being fed by a short length of rubber hose. The flow is adjusted so that each basin fills without water tending to run

in the end of the one below. Trays (I) and (3) slope in the same direction, tray (2) in the opposite way. The middle tray is also fitted in the opposite way round to the other two so that it receives water

Fig. 4.-The water should flow away without rising above the dividing pieces.
spilling from the end of the tray above and empties into the one below. Fig. 2 gives the measurements to work to to obtain
bottom tray. Should it be desired to make a washer for, say, whole-plate enlargements, the overall instructions still applv.

F. J. CAMM

READERS may remember that I recently made a one-eighth scale model of the first pedal-driven bicycle-the Mac-millan-and also a one-eighth scale model of the first practicable motor bike-the 1895 Werner-the latter gaining first prize in the A.C.U. International Model Competition organised in 1954. The models were exhibited at the Cycle and Motor Cycle Show of that year at Earl's Court. To complete the trio of firsts, more recently I have made a oneeighth scale model of the first practicable motor car-the 1888 Benz , and I show some illustrations of it on this and the following page. The model is accurate in every particular and it is, of course, a working model.

Although Karl Benz made a motor car in 1885 it was a failure. It was in 1888 that, after considerable experiment and failure, he demonstrated his three-wheeler. I am not forgetting the Daimler motor car which was made in 1886, and is now on show at the Munich Muscum, and although the car here shown dates back to 1888 , it really sprang from the 1885 model, thus beating Daimler by one year. The Benz is of great historical importance. The original is in the Science Museum at South Kensington, and it was from this machine that the drawings
 vertically.
were made (by permission of the museum authorities) from which I built my model.
Karl Benz was a pioneer of the motor car, and to him must go the credit of building the first successful petrol-driven car and of
as a young man secured employment in one or two engineering factories in Germany. He set up a small workshop in a back street in Mannheim in 1874 . In this shop he produced a few stationary gas engines and in 1880 went into partnership with another man and founded the Mannheim Gas Engine Company. In spite of opposition from his
 engine develops 2 h.p. The wheels are iron-tyred, and the drive was by belt from a pulley driven by the crankshaft, the belt driving on to a combined two-speed differential gear. The model was made by Mr. F. Э. Camm.
partner, Benz experimented with a motor car engine designed somewhat on the lines of his gas engine. When the partnership was dissolved in 1883 two others put fresh capital into the company. Benz had produced a design for a mechanically propelled car and the experimental model was completed at the beginning of 1885 . This machine may still be seen in the Deutsches Museum in Munich.

As in his earlier model, it will be seen that the engine has an open crankcase with screw-down lubricators attached to the bearings and that it is turned over so that the flywheel is horizontal. It was, of course, a crude affair. The flywheel was very large and the r.p.m. very low- 250 to be exact-at which speed it developed about 2-3 h.p. Although it was the first car it had a differential gear, electric ignition, water cooling and a mechanically operated inlet valve. All engines prior to this had made use of automatic valves which were opened by the suction of the piston. The engine is of the four-stroke water cooled type, placed horizontally over the rear axle; the drive to the rear wheels was by means of block centre chain from the countershaft, which incorporates the differential gear and the two-speed gear inside a series of three pulleys, the outer two containing the gears and the centre one the differential. The single cylinder has a bore of 116 mm . (4.57 in .) and a stroke of 150 mm . (6.3 in.), and when running at about 250 r.p.m. develops 2 h.p. The upper end of the vertical crankshaft
carries a bevel gear which drives another bevel having the same number of teeth on a horizontal shaft carrying the belt pulley. A parallel half-speed shaft carries the cams for operating the valve gear and the make and break mechanism for the ignition. The petrol-air gas mixture was supplied by a surface carburetter and the ignition by dry battery and spark plug. The engine pulley
 will be seen that two types of valve are employed-slide and poppet. The crankshaft drives the driving pulley through bevel gearing, which also drives a half-time shaft and operates the make-and-break mechanism and the two valves by means of a cam.

A close-up of the valve gear:

on a countershaft which is divided as explained above. The ends of this countershaft carry sprockets, which drive the rear wheels. The two-speed gear to the countershaft is chain driven. Wooden brake blocks, as fitted to horse-drawn carriages, were used, and they were applied by means of a brake lever through a linkage, to the bottom end of which a pinion and circular rack were fitted. The pinion was fitted to the bottom end of a shaft, running inside the brake lever and which was turned by a handle at the top. When the handle was turned a shifting gear would shift the belt from one gear through the loose or neutral pulley to the other gear. The central position was, of course, used when the brake was applied to disconnect the drive from the wheel. The rear driving wheels are 49.5 in . diameter and the front steering wheel is 30 in . diameter. The wheelbase is 5.17 ft . and the wheel track 3.87 ft . The car ran at about 10 and 5 m.p.h. in the two gears respectively. Benz made a four-wheeled model in 1897 and this may be seen at Byfleer, Surrey. I have

A rear view of the body. The two swing doors enclose the power unit.

locomotive, the first aeroplane and the first ocean-going steamship. The latter cannot, of course, for obvious reasons be made to one-eighth scale, but all of the others

Other early motor cars are the two-cylinder air-cooled four-wheeled Lanchester, the twocylinder four-wheeled Panhard of 1894 and the 3 h.p. Benz, 1900.

It seems a pity, as I have remarked on more than one occasion, that the Science Museum has not organised an annual competition for scale models, with the right to acquire such models as would enhance the coverage of their own exhibition. It is possible to gain a fair idea of scientific and mechanic development from a visit to the Science Museum, but most of the exhibits are the full-size originals and considerable space would be necessary to exhibit full-size versions, whereas with models a complete coverage of scientific development could be housed in a building much smaller than the present museum.

There are sufficient modelmakers in this country to ensure an adequate entry of models in the various classes.
faithfully copied every detail of the car to one-eighth scale and the illustrations taken with the body removed will give some indication of the degree of realism which has been achieved. Many of the parts had to be built up to avoid the necessity for making patterns and castings. Some of the pieces are, of course, a watchmaker's job. The wheels are felloe-built with shrunk-on tyres.

These three models will be exhibited from time to time at exhibitions where this journal is represented and I hope, as I find the time to spare (!), eventually to make a model of the first

A front view of the body.

CONSTTUCTINE ATHERMОБRPPM

WHETHER you intend to use this instrument scientifically or just for the constructional pleasure you will find it interesting to watch when in action. Basically it is a recording thermometer and its movement depends on the bending with temperature of a bi-metal strip, consisting of steel and brass welded together. The instrument is used extensively in meteorology, but it has a wide scope where it is necessary to have a temperature record.

The main parts of the thermograph are a steel case, with an openable cover, housing the chart drum and motor, and outside the case an arm on which the sensitive element and

Fig. 2,-Model S_{7} motor showing mounting.

Fig. 3. Drum coupling.
mechanism is mounted. The link between these two is the pen arm. The general layout can be seen from the photograph, Fig. 1.

The Drum Motor

Two methods of driving the drum are available to the constructor, electric or clockwork. Although the clockwork is more portable, it is also more expensive, as the drum and clock unit will probably have to be bought complete. This can be obtained from Messrs. Short and Mason of Walthamstow.

The electric method is much cheaper and furthermore gives some interesting work on drum construction. Unfortunately the charts as printed have a rotation period of about seven and a third days whilst the motors are only made for seven-day rotation. This snag can be overcome by reducing the diameter of the drum to the seven-day portion of the chart, and more detail is given about this later.
These seven-day synchronous motors can be obtained from Messrs. Sangamo Weston, Enfield, Middlesex. They cost about 30s., are practically damp-proof, an essential point
for outdoor use, and are robus: for continuous running without attention. Their construction is simple, being a cylindrical body with a mounting flange at the spindle end. Their consumption is about three watts and they can be obtained for low voltages if required.

To mount the motor three 4 B.A. screwed rods are required, $2 \frac{1}{2}$ in. long. They should be fitted into the holes in the motor flange in such a way that they act as legs supporting the motor; spindle uppermost (Fig. 2). The spindle of the motor is $\frac{1}{g}$ in. in diameter and tin. long; and it is slightly offset from the centre. A coupling is therefore required to mount the drum to it. This should be made of about $\frac{5}{8} \mathrm{in}$. diameter brass rod, drilled and shouldered, etc., as shown in Fig. 3. The exact diameter of this coupling does not matter except that anything less than sin. tends to make the shoulder small. The threads at the top need

Fig. 4-Details of the drum,

An instrument for Recording
 Temperature Variation

By M. H. O. HODDINOTT

not be 32 to the inch, but a fine one does ensure accurate securing of the drum. Finally a knurled nut to fit the coupling should be made.

The Drum

The size of the drum depends, of course, on the chart to be used and the constructor is at liberty to take his choice of the many types and ranges available. The dimensions given here will, however, be for charts numbers 4329 and 4330 (summer and winter range of air temperatures) printed by the Meteorological Office, and also obtainable from Short and Mason.

As already mentioned the motor rotation period is less than the chart marking. To

overcome this the charts can be overlapped to take up the extra hours so that only seven days are exposed.

To make the drum obtain a piece of 18 g . brass, copper or, as a last resort only, steel and cut it to IIin. by 4 in . Roll it carefully until the two ends are just past meeting. By careful adjustment it will be possible to arrange that these two ends will just close under their own springiness. Make sure that the edges butt exactly as they are to be soldered. From another piece of the sheet metal cut a circular dise to such a diameter that it will just fit inside the drum when the two ends are held together by a binding. If a lathe is available the disc should be cut on it and then a ${ }_{8} \mathrm{in}$. hole drilled in the centre. From a further piece of metal cut another disc $33^{3} \mathrm{in}$. in diameter and mount it by soldering screws to it on the lathe faceplate. Set the tool in in. from the outer edge of the disc and cut into it until a ring of metal comes away, $\frac{1}{1} \mathrm{in}$. wide and $3{ }_{1}^{3} \mathrm{in}$. outside diameter. This is to be used as a shoulder against which the bottom edge of the chart will rest.

Assembly

Ensure that the binding around the drum is
secure and insert the inner disc to a depth of in. from the top edge. Rest the whole drum on the flange ring making sure it is central with just under in. visible on the inside and outside of the drum. With great care solder up the joints, beginning with the drum itself, then the flange and finally the inner disc. Use

Fig. 6,-Bimetal mechanism and zeroing lever.
a high tin solder which will have a narrow setting range and help in preventing a general collapse of all the joints.

A suitable flux for this job can best be made up on the spot. Add about two tablespoonsful of zinc chloride to half a cup of warm water. Allow this to dissolve and add about half a teaspoonful of ammonium chloride and hydrochloric acid to the cup. Stir up with a non-metallic spoon. If it is necessary to store this flux put it in a bottle with a plastic or cork top. It will corrode metal and destroy the flux. As a source of heat use a bunsen burner. The ordinary soldering iron will not provide enough heat to solder such an area of brass. If the joints are a little rough then a file and emery paper must be used to clean them up. If properly done they should be almost invisible.
When all the soldering has been completed, cut a small slot in the flange $\frac{1 \mathrm{in} \text {. long and }}{}$ I/I 6 in . wide to receive the chart clamping bar (Fig. 8). This should be made of slightly springy brass with the hook at the top end capable of being fitted over the top of the drum when the bottom is in the slot in the flange. By having a slight curve in it, it will clamp the two ends of the chart to the drum

The Case

The general outline and dimensions can be scen from Fig. 5. It should be made of 1 in . M.S. plate roin. long and $4 \frac{1}{2}$. wide and bent to the shape shown. The base and right-hand fixed side are all made from one piece.

The, cover is made of light gauge steel (biscuit tin thickness) with a window added. The edges of the cover can either be rolled over or have $\frac{1}{8}$ in. brass wire soldered on to strengthen them. The hinge is soldered to the cover and screwed to the base. The legs can be made from one piece of angle iron $\frac{1}{2} \mathrm{in}$. wide and 18 in . long. Cut 90 deg. segments out of one leg every $4 \frac{1}{2} \mathrm{in}$. along it. When it is bent it will form a square, the upper faces being held to the underside of the base by four 4 B.A. screws. The additional cutaway as shown in Fig. 5 is only to improve the appearance.

A slot should be cut to allow the pen arm to move up and down as shown in Fig. 5. The easiest way to do this is to drill a line of tin. holes, starting from a point lin . from the base and $3 / 16 \mathrm{in}$. in from the front edge. The line of holes should be continued for $2 \frac{3}{3} \mathrm{in}$. When complete they can be amalgamated into a slot by cutting with a saw blade.

The mechanism support is made from a strip of $1 / 16 \mathrm{in}$. by Iin. M.S. gin. long and bent as shown in Fig. 5. The screws for securing it to the case are two 4 B.A. drilled in . apart and screwed into tapped holes in the case. The end face of the support is also drilled 4 B.A. clearance to receive the bimetal unir.

The Bimetal Cradle

This unit is made up of a cradle holding the pen arm shaft and bimetal element (Fig. 6). The cradle should be made of $6_{4}^{3} \mathrm{in}$. of I in. by ${ }^{1} \mathrm{in}$. brass strip and bent into the shape shown. The two 4 B.A. clearance holes drilled on the long side should correspond with those drilled in the end face of the support. Finally drill two in. clearance holes in the short sides exactly opposite one another in the position shown in Fig. 6. These are to carry the pen arm shaft. Clean and polish both these holes.

The pen arm shaft can now be made from hin. brass rod. About 4 in . will be required and it should also be polished.

The Bimetal Element

In view of the relative case with which the range of movement of the bimetal can be controlled, no rigid specification is necessary. The bimetal coil used by the writer was made

Setting the Range

It will be appreciated that if one end of the coil is held firm then the other free end will rotate in a circle with variation in temperature. If this" free end is fixed to the shaft then the shaft will rotate, but the amount of movement can be governed by the distance the-link with the bimetal is from the centre of the shaft. This point will be more clearly seen by reference to Fig. 7. By taking the link further away from the centre the shaft rotates less for a given amount of movement of the bimetal, but if it is brought nearer to the centre then the same amount of movement will produce a larger rotation of the shaft. By this simple piece of leverage a very large variation in range can be obtained, though it must be borne in mind that in practice the amount of force available also varies with the distance.

Using the bimetal coil as described it should be linked about $1 / 16 \mathrm{in}$. from the surface of the shaft. The exact position will have to be found by trial and error. If this piece of instrument work is a little too tedious, increase the length of the spiral to obtain a larger movement and accordingly make the linkage on a larger scale by being farther away from the shaft.

Pen Arm and "Lift-off" Lever

Most of the dimensions can be seen from the diagrams. Both items are made entirely of brass. The pen arm (Fig. 10) swings freely on two 8 B.A. screws, each having a pivot point tip, to lower' the pen-to-chart friction. The pen itself can be made by cutting brass foil to the shape shown in Fig. 9 and soldering the joints. The lift-off lever is made of a 4 in . piece of $\frac{1}{8} \mathrm{in}$. brass rod soldered into an ${ }^{6} \mathrm{~L}$ "-shaped piece of in . brass (Fig. II). The part is fitted to the case with a 6 B.A. screw having a spring washer underneath. When changing the chart the pen should be lified off by the rod when the shorter leg of the lever is pushed to the left.

The finish of the instrument should be in black and clear cellulose, preferably sprayed on. Polish and lacquer the brass-parts and give the steel parts several coats of black cellulose paint.

Wiring

If the electric system is used then care must be taken with the wiring, especially if the instrument is to be used out-of-doors or in a damp place. Seal the entry holes in the motor case for the wires with electrical sealing compound, and fit a tag for the earth wire on to the motor case. Do not rely on a rough connection to the thermograph frameconnect right on to the motor. As the
of $12 i n$. of brass/invar strip, $\frac{8 i n}{8}$. wide and I/32in. thick coiled on a lin. former with the brass on the outside. When coiled the overall length was $2 \frac{1}{2}$ in. This bimetal strip is advertised by a firm in Practical Mechanics.

It will be appreciated that the thickness of the strip does not affect its range of movement so that any thickness can theoretically be used. In practice, however, if it is much thinner than $1 / 32 \mathrm{in}$. the weight of the pen arm tends to uncoil it. The mounting of the coil may provide some difficulty, particularly at the moving end. It should be slid over the shaft in between the cradle arms (see Fig. 6) and the back end secured to the shaft with a 10 B.A. screw. The front end should be secured to the zero setting lever by means of a 6 B.A. screw (see Fig. 6, B).

instrument will almost certainly require a detachable coupling fairly near to it to disconnect it from the mains, make sure regulation watertight plugs and sockets are used. If a low-voltage motor is used then the danger of shocks will be reduced, but it will be necessary also to earth one side of the low-voltage supply.

Make this Fascinating Projecting Device for Under £2

The one used by the writer is $3 \frac{3}{2} \mathrm{in}$. dia., including mounting rim, supplied as part of the lens.

I surface-silvered mirror, $4_{4}^{\frac{1}{i} \mathrm{in} .} \mathrm{x} 3_{3}^{3} \mathrm{in}$., with backing mount. This and the lens was obtained from English, of Brentwood (see the columns of this journal).
A piece of black cartridge paper, sundry

AN episcope is an apparatus for projecting a picture on to a screen, but whereas the usual projector requires light to be passed through a transparency (slide, film, etc) the episcope throws light reflected from opaque objects, such as photographs, stamps, coins, etc. The completed episcope is shown in Fig. I.

Materials

The materials used are fairly inexpensive, the total cost being somewhere in the region of £2. Many of the items come from the kitchen salvage and the list appears below:

I biscuit tin, with lid, approximately gin. x gin. $x \operatorname{lin}$.

I dried-milk tin or similar, $4 \frac{1}{2}$ in. dia.; the part required is the bottom Iin.

1 "Ovaltine" tin or similar, $3^{\frac{3}{4} \mathrm{in}}$. dia., with an opening to take a push-in lid, $2 \frac{1}{8} \mathrm{in}$. dia.; the top 3 in . is required.
I square of carpet underfelt or similar material, 6 in. square.
$\because 2$ pocket mirrors, approximately 4 in . x $2 \frac{1}{2} \mathrm{in}$.

I wood strip, 12 in. x 3 in. $\mathrm{x} \frac{1}{2} \mathrm{in}$. thickness.
2 pieces of thin "picture" glass, $3 \frac{1}{2} \mathrm{in}$. x. $2 \frac{1}{2}$ in.

2 strips of "Rexine" or similar "American" cloth, 3in, x in.
pieces of aluminium, screws and nuts,
 together with several feet of twin circular rubber-covered cable, complete the requirements.

A source of low-voltage A.C. is required for lighting ; the article on "Low-voltage A.C. Supplies" which appeared, in the December, 1955, issue of Practical Mechanics describes a method of using a discarded transformer for this purpose.
Keep the mirror covered in the wrapping in which it was received after examining it for damage ; do not finger the surface. The same care must be taken of the lens.

Preparing the Tins

Clean up the biscuit. tin, removing all paper from outside

Fig. 1.-The completed episcope.

2 miniature bayonet-cap lamp holders, batten fixing.

2 12-volt, 36-watt car headlamp bulbs
1 gin. focal length plano-convex lens. and inside. Treat the "Ovaltine" and dried-milk tins similarly. At 3 in. from the lip of the "Ovaltine" tin make a pencil mark around the circumference and cut off this part; lay the rest aside meantime. True up the cut edge of the "Ovaltine" tin, or lens-holder as we will now call it, and reshape the holder truly

Figs. 2 and 3.-A side elevation and rear viers, showing interior construction. Key: A—Lens holder; B-Lens guide; C—Lens supporting felt ; D-12 volt 36 watt car headlamp bulb and holder; E-Pocket mirror; F-Case supports; G-Slide support; H-Picturecarrying slide; I-Reflecting mirror ; f-Case lid ; K-Cable grommet ; L-Position of lens holder ; M-Supply cable.
circular. Take the dried-milk tin and mark around the body Iin. from the bottom, then cut away the surplus, retaining the bottom part. This is the lens-guide and should be reshaped to circular form if necessary.

An aperture has now to be cut in the bottom of the guide into which the lensholder will fit. Perhaps the easiest way to do this is to place the guide on a flat surface, bottom upwards, then place the lens-holder's cut edge on the upturned guide bottom, measuring carefully at four diametrically opposed points to ensure that the holder is placed truly central, then marking the guide with a soft pencil around the body of the holder.

Now cut away the inner material up to tin. from the inscribed pencil line. Do this carefully, it makes the lens so much easier to adjust in use. When the circle has been cut away take a pair of squarenosed pliers. and gently turn the cut edge outwards, working around the circle and easing up the lip a little at a time. Try the lens-holder into the aperture; it will probably not fit at the first attempt, but successive operations will result in a lip which allows the lens-holder to slide nicely. over a flat surface (see Figs. I and 2).

From the scrap left over from the lensholder cut three strips approximately $\mathrm{I} \frac{1}{2} \mathrm{in}$. $x \frac{1}{2} \mathrm{in}$. Drill these at $\frac{3}{8}$ in. from one end to take a 6 B.A. bolt; now bend at right angles $\frac{1}{2}$ in of the undrilled end of the strip. These strips are soldered to the inside of the body of the lens guide at points 120 deg. apart ; their purpose is to secure the guide to the face of the biscuit tin, or "case," on which work can now begin by cutting out an aperture which is $\frac{1}{4} \mathrm{in}$. larger than that of the lens holder (not the guide, please note). Details are shown in Fig 3.

Cutting the Carpet Underfelt

Cut out a felt disc which is Iin. greater in diameter than that of the lens guide, then, with sharp-pointed scissors, pierce the centre of the disc and make a clean cut, equal in length to the radius of the lensholder, towards the circumference of the disc. Now make a similar cut diametrically opposite to the first and then a third and fourth each at right angles to the first and all radiating from the centre. The lens arrangement can now be assembled and the holes drilled to secure the lens guide.
Fit the lens into the lens-holder by pushing it down into the body of the holder until it seats firmly against the lip which formerly held the lid of the "Ovaltine" tin. Do not touch the glass of the lens during this operation if it can be avoided. Finally, line the inside of the holder with cartridge paper in order to stop reflection from the bright metal. Now lay the case on an even surface, with the aperture which has already been cut facing upwards. Place the piece of carpet felt over the hole. Fit the lensholder into the lens guide and ease the lensholder through the carpet felt; this requires a little patience and it may be necessary slightly to elongate the slits in the felt. When the holder has been passed through, ease the guide down on to the case, then position it so that the lens-holder is quite perpendicular to the case. It will be found that the felt and the guide, if correctly cut and shaped as described, form a nice sliding fit which keeps the lens-holder quite firm.

Carefully mark through the holes in the. strips which will hold the guide; if assistance is available, the. drilling and securing by small bolts and nuts can be done without removing the assembly; this is preferable as it is more difficult to insert the lens once the guide has been fastened down.

Illumination

The floodlighting of the object to be projected is obtained from two 12 -volt 36 watt car headiamp bulbs of the double-contact type and this is the next step to be undertaken. Position one of the lampholders with its terminals vertical behind the face of the case so that the centre of the lampholder disc is at a point $2 \frac{1}{4} \mathrm{in}$. from the left side and from the top of the case. Pencil around the area occupied by the holder and also through the fixing holes, then repeat the performance on the right side of the second holder. Low down on the left side cut a hole to accept a rubber grommet suitable for the size of connecting cable to be used between the episcope and its lighting transformer. The position of the hole should be about Iin. from the front face and from

Fig. 4.-Details of picture carrier. Key: A-Wood slide, $\frac{3}{3}$ in. thick; $B-T h u m b n a i l$ lift; C-Recess for picture; D-Glass cover; E-American cloth hinge; F-Registering mark.
the base of the episcope. Feed 2 ft . of the cable through the grommet into the case, lead it up to the nearest lamp position then horizontally to iin, beyond the area of the second lampholder. Mark the cable with a pencil just short of the first lamp then split the outer insulation up to this mark thus exposing the two leads. Cut the red lead, leaving sufficient to connect into the upper terminal of the first holder. Now cut the black lead leaving enough to connect into the upper terminal of the second holder; the spare piece of red lead should be long enough to connect the 'two lower terminals and you then have both holders wired in series with the connecting cable.

The holders can now be fitted to the case with a distance piece inserted to avoid pinching the wires.

Picture Holder

The slide which holds the picture to be shown is made from a strip of wood 12 in . by 3 in. by $\frac{1}{2}$ in. thick, cut to the details shown in Fig. 4 and fitted with glass panels to keep the picture flat (the heat tends to curl the picture if exposed for a considerable time). The-registering marks should be of a vivid white so that they can readily be seen in the dark; they enable the operator to centre the picture in the picture aperture before uncovering the lens. In the base of the case cut an aperture 3 in. by $4 i n .$, the 4 in. measurement being across the width of the case; the front edge of the aperture is sin. from the front of the case and the side $2 \frac{1}{2}$ in. from one side. Shape the two holding brackets to suit the thickness of the slide so that it moves easily to and fro when placed in position, then fit the brackets one on either side of the picture aperture, see Figs. 2 and 3. At this stage the two feet should be shaped and fitted; their position is clearly shown also in Figs. 2 and 3.

Some form of top ventilation is required and this is achieved by making a 7 in. cut along the width of the case just above the bulbs of the lamps, then bending the cut edge upwards at an angle of approximately 30 degrees.

Lighting Mirrors

To concentrate the light on to the picture two mirrors are fitted, one above each lamp; these are placed at an angle such that the maximum light is cast on to the slide. The position is best obtained with the lamps lit, but care is necessary as the lamps get quite hot. Having noted the optimum position, the mirrors are fitted with small clips bolted through the case, as shown in Fig. 3.

Reflecting Mirror

The final step in construction is to fit the reflecting mirror. The means of support will depend on the type of mirror obtained; in the writer's version two brass strips of $\frac{1}{2}$ in. width were bolted to roof and floor of the case and the mirror bolted to these through the metal backing provided with the mirror. The position, however, can definitely be stated and is shown in Figs. 2 and 3. When fitted, the complete optical system can be checked by placing a photograph in the slide, slipping it into position and by looking through the lens front you should see the picture almost filling the mirror. If the picture is low or high in the mirror some adjustment to the mirror support will be necessary, but be careful to get your line of sight quite centrally into the lens before making changes.

If all is well, fit a covering of black cartridge paper into the inside of the case lid; a spot of adhesive will hold it in place. A cartridge paper surround for the picture aperture should also be fitted (very neatly, since it will be seen on your screen).

Finally, fit the lamps and the case lid, and the episcope is ready for use. It should be set up at about roft. from the screen (a white tablecloth does very well) and must be quite firm. Connect the cable to the lighting transformer and connect the transformer to the supply mains when the lamps should light and the reflection of the empty picture aperture be seen on the screen Move the lens-holder gently in or out as required to bring the aperture sharply into focus, then place a cover over the lens to cut off the light during the loading of the slide; a handkerchief hung over the " nose" of the lens is perhaps best since it obviates the risk of moving the lens out of focus.
Lift the edge of the glass plate on- the slide, slip the picture into the slide recess and lower the glass. Push the slide into place and watch for the registering mark appearing on the other side of the case. When it is parallel and just clear of the case, uncover the lens; the picture, almost in focus, should be on the screen. A slight touch should bring it into sharp relief.

A final word; the lighting on this model is very low compared with a professional episcope (72 watts as against 500 watts); for this reason, use pictures which have plenty of light and shade, whether coloured or not and for difficult objects such as old coins, it is better to get closer to the screen and make do with the rather smaller picture with its greater brightness.

> PRACTICAL MECHANICS HANDBOOK

> By F. J. CAMM
> 12/6, by pose 13/-from
> GEORGE NEWNES, LTD., Tower House, Southampton Street, Strand, W.c.2.

Aquariun Thernostals

THERE are three types of thermostats in general use for the control of temperature in an aquarium; these are external and internal fitting, the latter being in two forms, submersible and outside control. All three types are dependent on the property of a bi-metal strip bending with variation in temperature and operating a simple switching device which interrupts the flow of current to the heater on increase of temperature. In order to ensure a clean, quick make and break at the contacts it is necessary to have either a magnetic or mechanical snap-action switch to prevent trembling of the contacts when about to open or close, causing arcing, which results in sticking of the contacts and radio and T/V interference.

The magnetic type of snap-action switch is déscribed as it is the easiest to obtain, and the simplest to construct. These thermostats may be made in a very short time with the simplest of tools and for a cost of no more than 2 s .6 d . for all the materials. A number of these models have been in constant and reliable service in my fishhouse for over 12 months.

Submersible Type

A small piece of insulating material such as

nections.

and holes drilled as in Fig. I. The split contact plate is then fastened with a small nut and bolt in position, as shown in the completed diagram (Fig. 3). The small magnet is stuck down with Bostik or similar adhesive, touching the contact plate and $\ddagger \mathrm{in}$. from the end of the insulating strip. The bi-metal strip, 6 in . long, is drilled $\ddagger \mathrm{in}$. from one end for the fixing bolt, and 3 in . from the other end for the silver contact rivet. The strip is now gently bent to the shape shown in Fig. 2, having first ascertained the direction in which the strip bends when gently warmed. The silver contact rivet is pushed through the hole and gently domed over to fix it securely in position with the flat head on the underside; care must be taken not to distort the flat surface of the rivet. The bi-metal strip can now be mounted on the insulating strip by means of a small bolt passed through the holes already drilled and tightened securely. The head of the contact rivet in the strip should be directly over the point of the silver-tipped contact screw in the contact plate. If, through some slight error, this is not so, gentle bending of the strip will be required.
In order to adjust the thermostat for temperature variations, it is necessary to have a small setscrew to increase or decrease the amount of bend in the bi-metal strip. This is most conveniently situated at the end of the insulating support below the bend, the position not being critical; the nearer to the bi-metal fixing screw, the more delicate the adjustment. As this screw is only needed for the initial setting and is not to be repeatedly turned, it is sufficient if a short bolt is threaded through the base, as shown, to bear on the bi-metal strip. This completes the operating portion of the thermostat.

bolt holding the contact plate. A small picce of cork or similar material is stuck to the end of the insulating strip, of such a size that the strip is suitably positioned in the tube when it is enclosed. All that remains now is for the glass tube to be pushed home on to the bung, ensuring that the wires do not foul the bimetal strip.

Outside Adjustment Type

Although the foregoing thermostat will function in a satisfactory manner, it is often desirable to alter the temperature range for breeding, or sickness, etc., and it is hardly practicable to have to strip down the thermostat in order to readjust it. The answer is to have an external means of adjustment ; this is quite a simple matter.

The actual construction of the working parts of the thermostat are identical to the previous model with the exception of the base, which is made $\frac{1}{2} \mathrm{in}$. longer to allow for the fixing of the adjusting screw in the alternative position. For ease of construction it is preferable to use a Pyrex tube $6 \mathrm{in} . \times \mathrm{in}$., or $6 \mathrm{in} . \times$ in., to allow more room for fixing the assembly to the bung.
A piece of Paxolin rod, which is a tight fit
act Bi-metat

Obtain a Pyrex test tube 6in. x in. and a rubber bung to fit ; if possible, one of the capped type which seals the outside of the tube. The two leads to the thermostat are taken through the bung, making a tight fit; this is perhaps the most difficult part of the construction. If access to Drikold or dry ice is possible it simplifies matters, the bung being frozen in a mixture of Drikold and methylated spirit and, when hard, drilled with conventional drills of an appropriate size. If this method cannot be used the bung may be "drilled" with a hot wire, and whilst the holes are still warm and soft the wires are pushed through. When the rubber cools and solidifies, the wires will be found to be securely held in place and quite watertight.
One of the wires is cut off close to the bung and soldered to the bi-metal fixing bolt on the underside, the other wire continues along the underside of the base and is soldered to the

Fig. 5 (Above).-External adjustment thermostat. Fig. 4 (Left). -Holder and stopper. ubber must not exceed the rubber seal; also, condensation from the cover glass must be prevented from dripping on to the top of the bung. A simple holder
as shown in Fig. 4 will conveniently hold it in position.

External Thermostat

This type (Fig. 6.) is the most dependable of all three, having the advantage that it is never in contact with water and is easily accessible at all times. The base is of $\frac{1}{4}$. wood and is cut to approximately 7 in . $\times 2 \mathrm{in}$.; and drilled for the setting screw and also with a small hole to enable the contact screw to be adjusted with a small screwdriver. The insulating strip carrying the thermostat elements is raised on two blocks about $\frac{1}{2}$ in. thick and the bi-metal, this time straight; is supported at one end on a further distance piece of ${ }_{3}^{1}$ in.
A brass strip with a soldered nut is attached a short distance from the fixed end of the bi-metal for the adjusting screw which protrudes through the wooden back sufficiently far to enable a small insulated knob of the wireless variety to be fixed to it. The thermostat is wired up as before, the wires passing through the base at a convenient point.

A wooden frame, $\$ in. thick, is made approximately 1 in. deep so that the base of the thermostat will fit nicely inside leaving between an $\frac{1}{8}$ in. and in . clearance between the thermostat bi-metal and the glass side of the aquarium when it is fixed in position. This frame is drilled so that wood screws may be inserted into the edge of the base to hold it in place. The frame is then fastened with Bostik to the glass side or back of the tank. The thermostat may be readily removed, if necessary, by loosening the screws and withdrawing the base complete. If so desired the wood may be advantageously replaced with plastic for the case, so making a much neater job.

Fig. 6.-The external thermostat.
thermostat is not great enough for this range. The sensitivity may be increased by screwing the contact screw further in, so decreasing the pull of the magnet, a very slight turn may be all that is required. The thermostat should now be checked again in the water bath. It may be found necessary at first to slightly bend the bi-metal to bring it within the range of the adjusting screw. A small torch bulb and battery in series with the contacts provides a ready means of ascertaining when the contacts are open or closed.

The outside-fitting thermostat is most conveniently adjusted on the aquarium itself, or on the outside of a similar container, care being taken that the temperature is changed very slowly to allow the thermostat to equilibrate itself.

There are two types of bi-metal sold by Technical Services Co., Hi-flex and Standard. Whilst the former is much more sensitive it is much thinner and may be prone to distortion in time due to the repeated flexing, the greater flexibility may also be a disadvantage in that any tendency to sticking of the contacts may be more noticeable. The latter bi-metal makes a more robust job and the slightly less sensitivity is of no consequence as a slight temperature range is beneficial to the fish, and sensitivity of the order of 2 deg . C. is easily obtained.

These thermostats are suitable for a maximum loading of 150 watts with the contacts described, larger contacts would increase the capacity. Radio and TV. interference, if experienced, can be easily suppressed by the normal small condenser across the contacts, and as close to them as possible. Wiring is best carried out by use of P.V.C. wire. It must be remembered that the bi-metal is live and with the exception of the third model, and the second if the adjusting screw is insulated, no adjustment should be made whilst the thermostat is connected to the mains.

- PARTS LIST AND SUPPLIERS
 The Technical Services Co

Bi-metal, Hi-flex, 6d. per ft: Standard, 6in. length, 1 -
Sintered bar magnets, 9d. each.
Fine silver rivets, Ref. 124, 2/9 doz.
Split contact plate, 3d. each.
Silver-tipped contact screws, 7 B.A., 4/- doz.
Govt. Surplus Radio Shops
Paxolin or similar for bases.
Radio knob for external thermostat.
Griffin and George ; Vicsons, Ltd.
Test tubes, Gin. \times 䓔in., for submersible type, about 3d. each.
Test tubes, $6 \mathrm{in} . \times \frac{3 \mathrm{in} \text {. or } 6 \mathrm{in} . \times 1 \text { in., }}{}$ for outside adjustable type, 4 d .
Rubber bungs to fit, 3d. each.
P.V.C. connecting wire (mains insulated)

Assorted small nuts and bolts.

Hints on the Feeding of Fish

Providing a Varied Diet

By I. W. BRASSINGTON

WHETHER tropical or cold-water fish are the main interest the type of food given should be varied as much as possible. Tropical fish in particular need a proportion of "live" food.

Live Foods

Tubifex worms are small red worms about I $\frac{1}{2}$ in. long, and are found almost anywhere in the bed of a stream or pool. They bury their heads in the mud and wave their tails in the water and a large colony will give the shallow water at the edge a reddish tinge. When collected and washed, they roll themselves round each other into a ball and stay like that in the jar of water in which they are kept, until they are fed to the fish.

Daphnia (water-fleas) are one of the .most nutritious fish foods and, in my experience, certainly the most popular. Be on the lookout for a shallow pool, partly covered with green algae, and where cow droppings are likely to have formed a rich breeding ground for microscopic pond life on the bed of the pool. If daphnia are present, you will see them as a green or brownish cloud in the water. Fig. I will help you to identify them and you may expect them to be a little larger in size than the knob of a pin.

Micro-worms are very good for young fish.

These are tiny white worms, a constant supply of which can be kept in the form of a culture, using oatmeal as the growing medium. The first culture is usually obtained from an aquarist (by post, if necessary), who nearly always supplies full printed instructions for continuing the culture.
Daphnia and Tubifex are also obtainable from your local supplier.

Chopped eartbworm is another excellent form of "live"" food. Choose the thin red ones and chop these finely with a razor blade, then put them into your net or into a piece of muslin and swill under the tap before giving to the fish.

Dry Foods

Bemax is full of nourishment but should not be used too frequently. There are also a
large number of prepared foods in cartons and jars, and I have always made a point of keeping at least three different makes of dry food in stock.

High on my list, too, are tinned herring roes, fresh roes, raw or fried fish and foods of that sort, all of which can be used to make a change from the more commonly used ones.

Frequency of Feeding

The question of how much and how often to feed is a matter of observation. I generally feed morning and evening and to begin with it is suggested that the fish are watched very closely as the food is given to them, a little at a time, until they tend to become disinterested in additional offerings. This avoids having a lot of uneaten food floating around after the fish have had their fill.

Fish must not be overfed and this cannot be over-emphasised because of the danger of uneaten particles of food, remaining unseen behind rocks and collecting in hollows in the gravel, where they will quickly form deadly sources of pollution. However, by following the suggestions in the last paragraph you will very quickly learn to tell what is the correct amount to feed, and should there be any doubt remember that fish may be left unfed for as long as two or three weeks at a time !

WIRE AND WIRE GAUGES $3 / 6$, or $3 / 9$ by post
From George Newnes Led, Tower House,
Southampton Streec, Strand, London, W.C. 2

view of the completed cannor: A Handsome Mantelpiece or Bureau Ornament

THE old time cannor shown in Figs. I and 2 by no means represents a type from history, nor has there been any attempt to add the elaborate chase work which those implements of war carried on both the barrels and carriage, but it is still a rather unusual decorative gadget. The work

Fig. 2.-Side and rear elevations of the cannon.
needed is neither great nor complicated, and readers with a small centre lathe can construct a batch of these with a view to presenting them to friends as birthday presents.
The dimensions included on these drawings make up a size which is convenient for the average mantelpiece or sideboard, and the materials needed are generally obtainable from the scrap box.
Brass is the best metal for the barrel, and a bar in. diameter by 6 in . long is suitable. The outline is nothing more than a series of simple turning operations, as can be seen from Fig. 3, and the easiest way to machine this detail is to centre and drill the $\ddagger \mathrm{in}$. diameter hole at the muzzle end, leave an extra $\frac{1}{i n}$. at this point and centre the bar deeply, then use this as a steady while carrying out the remaining operations. Turn as far as possible, but before releasing the chuck jaws, face off that surplus material from the front end. Reverse the barrel in the soft jaws and finish the radial end and ball. Finally, drill the trunnion hole and the tiny fire hole at the rear end-countersinking the latter slightly as Figs. 2 and 3 show.

If a good true hole can be made with an tin. drill for the above trunnion hole this is satisfactory, but as noted on the sketch, reaming is advisable. Do, however, make sure it enters exactly on the centre line, because failure to do this will undoubtedly give the assembled barrel a poor appearance. Avoid sharp corners where the three small "flanges" occur-gun barrels seldom if ever have sharp corners.

There is no real need to drill the $\frac{1 i n}{}$ diameter hole much deeper than $1 \frac{1}{d i n}$., as shown in Fig. 3-it takes longer, the hole invariably runs out of true when so deed,

BY JOHN DENVER

and it also reduces the bearing surface for the trunnions. Provided a hole is drilled deep enough to ensure that the end is not visible the illusion that it continues for the full depth is retained.
Highly polished barrels are seldom seen, even in museums, but this type of finish is usually preferred to a dull-plated one, so remove every tiny tool mark with the aid of a piece of fine but well worn emery cloth. A drop of machine oil on the latter gives the best finish, and when this has been carried out to your satisfaction, give the outside a thin coat of clear varnish.

The Carriage

Though metal would make an excellent carriage, wood is chosen because it is easies to work and is in keeping with the prototypes. Two pieces are required, and the best method to make the outline (shown in Fig, 4) is to
light drive fit is preferable, but take cate nots to mar the varnished surface during this operation. Trunnion dimensions are given in Fig. 3.

The barrel must not sec-saw up and down in the carriage or cradle-this would look ridiculous, and it cannot occur if the width of the $\frac{3}{8} \mathrm{in}$. gap between the two pieces of wood is-made to size. Thus, when the screws are tightened up the $3 / 16 \mathrm{in}$. diameter flanges on the trunnions bite into the wood a little, and this is sufficient to prevent the barrel swinging up and down. The above remarks concerning the tightiness of the trunnion holes also should help overcome this problem, but the indentation of the wood by the flanges is an additional precaution. It would not prove very awkward to hold the barrel permanently level by incorporating a block at the rear end immediately underneath the firc hole, and inserting a small screw about 6 B.A. through this into the barrel, again from underneath. When the screws in the carriage are finally driven home, the screw holes should be filled and the whole surface given a further coat of paint.

The Wheels and Axles
These are very simple parts to make, but care should be taken on assembling the axles to the cradle to ensure that they fit tightly in their respective holes. They should not bea drive fit, however, as this will assuredly crack the wood which is, as Fig. 5 shows, a trifle thin at that point. The wheels can spin freely on the axles, and when drilling the cross holes for the tiny pins, restrict the lateral movement to about $1 / 64 \mathrm{in}$. on each wheelthe clearance depicted on these drawings is

secure them together, back to back, while that work is in progress. Next, saw and chisel the angular cut which eventually provides the clearance for the barrel, carefully sandpaper all the edges and faces and give two coats of flat paint.

Set the two blocks back to back again and drill the trunnion holes-use a slightly smaller drill than an $\frac{1}{1}$. diameter, because there is always that tendency for a drill to cut a little larger when used in wood. A No. 32 drill .II6in. diameter is suitable, and should make a nice tight fit when the actual barrel trunnions are assembled.
Slip the barrel with the trunnions in place between the two pieces of wood and tighten up the screws; making sure that they are driven well down into the countersinks. The work of turning the trunnions is not described, as this is a simple job, but see that the shanks which enter the bárrel are a tight fit. A

Fig. 4.-Details and dimensions of the carriage.
exaggerated in an endeavour to show it clearly.

General Notes

If cannon balls are required, old balls taken from a discarded ballrace are suggested as this overcomes the problem of actually turning them on the lathe. Paint them black, and make a tray just large enough to take three balls stacked close together. A spot of adhesive prevents them rolling about, and you can then stand another ball on top of these in the traditional manner. . As the barrel bore is lin., this is also the diameter of those balls.

If it is decided to mass produce these cannon, make up a series of tinplate templatès for the barrel profile as these are an excellent guide during the turning operations. They also ensure that in a "pair" as ornaments, the barrels are uniform. An error of only I/32in. on a length will appear much worse when there is another for comparison. In making these templates, work from the flat front face as this is the best location.

Similarly the cutting of the steps on the cradle is simplified if a marking out template is made. Alternatively one could make the template from say 1 in . plate and use this as a filing jig, both pieces of wood being held in a vice for this work. I mention filing because

Fig. 5.-The wheels and
the axle made from mild steel.

I must admit I find it easier to use this tool for the final cut than a chisel.

If it is desired to black the barrel in preference to applying the clear varnish the following gives good results.

Make up a solution of a ll . of copper
sulphate in one gallon of water, and strong ammonia solution is added until the green solid matter is nearly dissolved leaving a deep blue solution with a slight sludge at the bottom.

This solution is heated in a clean ename saucepan with a lid to retain the ammonia fumes, to just below boiling point, and then the barrels are immersed. Keep moving them about low down in the solution unti the desired colour is attained; remove them and give each a thorough wash in clean water. Dip them in a solution of caustic potash and water- $2 \frac{1}{2} \mathrm{oz}$. to 1 gallon-and follow this process with another wash in running water. The barrels have now assumed a deep black colour, if the time factor has been closely observed and the washing properly carried out.
If something a little more ambitious is required, double these dimensions-the cannon produced is a rather massive and imposing affair, well worth a place in the hall or lounge to catch the eye of anyone who enters.

Anglo-U.S. Atom Power Plants

MITCHELL Engineering, Ltd., of London and Peterborough, England, and A.M.F. Atomics Inc., of New York (a subsidiary of the American Machine and Foundry Co. .), have completed plans jointly to design and construct nuclear power plants in the Commonwealth and other countries.
This is the first agreement of its type in the atomic energy field and the first practical expression of the United Kingdom and United

States policy of encouraging the peaceful applications of atomic energy at home and abroad.

The progress in nuclear power applications made by the two countries has made it feasible for practical and economic power plants to be supplied to those parts of the world where the cost of power generated by nuclear fission will be less than the cost of power now obtained by using fossil fuel. The result will be, it is
hoped, the development of industry and agriculture.

It is thought that the type of reactor that has been developed, and which is shown in the photograph, will be of particular use to the South African market as it will overcome the problems of hauling coal and oil over long distances. Two of the biggest mining corporations are investigating the project, probably for use in remoteareas. A point of particularinterest to South Africa is that the reactors can be operated on natural uranium which South Africa supplies to the
 United States in large quantities.

Special consideration has been given in the design to the problem of operation by engineers rather than by scientists, and after 12 weeks' train ing in the United States, a trained engineer would be fully competent to operate the plant at all times with a specially trained team from the two companies paying periodic visits to replace the fuel.

Mitchell Engineer ing, Ltd., will supply the atomic power plants wherever they are needed and will have the advice of A.M.F. Atomics Inc. who will design and supply the reactors and their components.

KEY

1. Concrete containment. Stainless steel linings.
2. Reactor vessel.
3. Uranium fuel rods.
4. Fucl rod storage tanik.
5. Reactor controlling mechanism.
6. Containment quench tank.
7. Sump tank.
8. Pumping units
9. Blow down vessel.
ro. Demineralised feed water tank:
10. Demineralisers.
11. Heat exchanger.
12. Secondary steam pipe leading to turboalternator.
13. Control room
14. Fuel handling room. 16. Primary stcam loop.

Improvina a POWER SAW

Widening the Scope of a Well-known Saw Kit

By ARNOLD E. BENSUSAN

Assupplied by the manufacturers, the Wolf Cub No. 5 Saw Kits are ideal for ripping battens and boards of small width.

However, a few alterations to the basic design will greatly increase the range of the

Fig. 1.-Details of the housing.

Díill 3 holas clearance for 2 B.A. screws equispaced on 1/8"p.c.dia.

Fig. 2.-The cover plate.
purely as a location for the plain shank of the housing. A nut and washer added at the rear of the pedestal locks the housing firmly in position. Precise concentricity is not important as a fair degree of adjustment is provided at the drill end of the apparatus.

The ballrace is a sliding fit in the housing and is retained by a cover plate secured by three 2 B.A. $\frac{5}{8} \mathrm{in}$. long screws. The slight gap between the mating faces of the housing and the cover plate (Fig. 2) ensures that the outer race is held rigidly in position.
equipment and enable the user to carry out work of larger and heavier characteristics than hitherto. Two such modifications are described below.

Arbor Bearing

In its original form the saw has a circułar blade fitted to a $\downarrow \mathrm{in}$. diameter arbor gripped in the power drill chuck and supported, at its free end, on a hardened steel centre mounted in a pedestal bracket. The
 g. 3.-The arbor bearing

> Fig. 5.-The new table in use.

The Assembly Procedure

With the saw blade already in place, slif the cover plate on the arbor and follow if with a fin. B.S.F. nut. Follow this with the ballrace and a second nut. Lock the two nuts up to the ballrace so that the assembly is as close as possible to the end of the arbor. Slide the ballrace in the housing and screw down the cover plate. Lock the entire unit to the pedestal as previously described and continue the assembly of the kit as before. The complete arrangement is shown in Fig. 3 -

The parts may be painted, or any of the usual plating finishes may be applied. Alternatively, the steel is easily blued by the burnt oil method and will then have adequate corrosion resistance.

Extension Table

This extension table enables panels of large dimensions to be cut with the saw and, working to the figures given in Fig. 4, an offcut of about $9 \frac{1}{2} \mathrm{in}$. maximum width may be produced. All the parts can be made from I in. x Iin. $x \frac{1}{8} i n$. aluminium alloy Tee extruded section, although by varying the design rin. x rin. x $\frac{1}{8}$ in. angle could be used. Approximately 2 ft . 6 in . of the material is required and the cost is only a few shillings.

Two gin. lengths are cut andjoined together at one end by a $3_{k}^{i} \mathrm{in}$. length. Two 2 B.A. tapped holes are made in each end of the crossmember to line up with the countersunk holes in the side rails. To ensure accuracy it is advisable to transfer the holes through from one part to the other, using a smaller pilot drill. Two staggered 2 B.A. tapped holes at least in. apart are placed in each rail at the free end and these are transferred through to the existing saw table.

The holes in the table should be counter-
slenderness of the arbor and the necessity for greasing the centres before starting work, coupled with the need for frequent inspection and regreasing, prompted the writer to devise the unit described here..

The replacement unit is built around a small ballrace, and any one of the following types will be found satisfactory in use and of suitable size for the housing shown in Fig. IHoffman C.S.I or S.r. or Skefko E.E.2. All these ballraces have the following dimensions : tin. diameter bore, 3 in. outside diameter and $7 / 32 \mathrm{in}$. wide outer race. The width of the inner race is immaterial. The Hoffman C.S. 1 has the advantage of cover plates preventing dust penetrating the bearing.
There are two special components to be turned from mild steel bar. The housing replaces the male centre in the pedestal, but as the thread in the latter is of unusual diameter and pitch it is as well to use this

Fig. 4.-Plan and side elevations of the extension table.
sunk in the top face so that the screws used to secure the extension will lie slightly underflush. The small edge web at the underside of the table and a slight amount of other local thickening up on the same side will need to be removed with a file. This will not affect the strength or working properties of the table. If it is required to leave the extension permanently in place, yet still use the original fence for small work, a slight depression should be filed in the inner edge of the appropriate rail so that the fence securing screw can seat in its proper position.

The New Fence

The original fence being removed when wide work is being undertaken, a new fence and work support is made from a 6 in . length of extrusion. Two clamps are cut from Iin.
lengths of material by cutting down the centre arm to fin., removing one of the side arms completely, and reducing the other to $\frac{3}{8}$ in. The in. projections prevent the clamps rotating when they are loosened or tightened. One 2 B.A. tapped hole in the fence is made to correspond with a clearance hole in the clamp, in the case of that shown at the top of Fig. 4 . In the other instance the hole in the fence is clearance for the screw while the thread is in the guide piece
By making the two clamps together from a 2in. long portion of material, and separating them after cutting off the surplus, the waste may be used to make the two $\frac{1}{2} \mathrm{in}$. x 2 in . x $3 / 32 i n$. guide pieces which keep the fence parallel to the saw blade. Countersunk screws in clearance holes in the fence and tapped holes in the guides accommodate the securing
screws. The guides should be set so that the fence can move along the rails without any side play. For a really neat job, socket head screws should be used throughout.

As the overhang of the extension may foul the power unit when the saw is used for cutting thick material, the table should be reversed so that the fence is situated away from the portable drill. No structural changes are required to accomplish this and the general arrangement may be seen from Fig. 5. Some very thin packing pieces may be required between the rails and the original table to bring the fence to the correct height.
In use the wingnuts are slackened off, the fence adjusted forward or backward and the nuts retightened. The edge of the panel being cut rests on the base of the Tee and against the fence formed by the upright central arm.

Ever-primed Pump

A
METHOD of keeping a horizontal centrifugal pump constantly primed has been devised by Mr. H. Fenwick, who is an engineer. His idea is to deliver the water through a tube which forms an inverted siphon. The effect of this is to keep the pump constantly primed enabling it to be used intermittently without the need for continual attendance by an operator.

In the sketch is shown the inverted siphon on which Mr. Fenwick's idea is based. A

Mr. Fenwick's idea in diagram form.
Hexible tube (abc) is filled with water, the end (a) being submerged while the end (e) is kept sealed until it is formed into the inverted siphon shown in the drawing. When the siphon is formed, the water level in leg (c) will fall to the level of the water in the tank.
If a centrifugal pump is inserted at any point in legs (a) and (b) say at (d), it can be used to expel the water from the tank. When the pump is stopped the water in leg (c) will fall to the level of the water in the tank; so long as the level does not fall below the point (f) the siphon and pump will remain primed. An essential feature of this method is the continuous water sealing of the pump glands.
Mr. Fenwick claims that by this method a pump can be operated automatically, by float control, by remote manual control, or by time clock.

New Telephone System

WWO people thousands of miles apart can out even picking up a receiver. This has been
made possible by Britain's latest loud-to-loud
"no hands" telephone system.
The new instrument, which is designed principally for export, makes use of radar techniques to operate an electronic switching system. This, it is claimed, eliminates all the disadvantages suffered by similar installations in the past-from the clipping of speech to the monopoly of the channel by the instrument picking up the most background noise.

All that the person on the receiving end needs to do to switch the speech channel in his direction is momentarily to raise his voice. Any number of speakers can be connected up to participate in the conversation. The microphone will pick up speech when the speaker is up to $20 f$. from it.

Tests so far carried out between places as far apart as Rome and Paris and London and Madrid have been completely successful.

The manufacturers are Winston Electronics Ltd., Shepperton, Middlesex.

Development of New British High

Altitude Breathing Equipment

FLIGHT trials began last January of a prototype liquid oxygen system for aircraft made by Normalair Limited, of Yeovil. These trials sponsored by the Ministry of Supply are designed to speed up the development of high altitude breathing equipment, and of cabin pressurisation and air conditioning units.

A given volume of liquid oxygen will provide over 800 times its own volume of gaseous oxygen, and by storing the aircraft supply as a liquid in a liquid oxygen converter instead of as a gas in conventional storage cylinders, significant reductions can be made in installa-
tion weight and space occupied. The system being flight-tested by Normalair employs a liquid oxygen converter of 5 litres liquid capacity, giving a gaseous supply equivalent to that provided by six standard 750 litre storage cylinders. Converters of other sizes are being developed.

The components of the system, which fall into two distinct groups, are neatly tucked away below a radio equipment shelf in the Meteor aircraft being used for the trials and just behind the fuselage skin in a position allowing the hose of a ground charging truck to be easily coupled up. A standard Normalair demand oxygen regulator can be used with the system.
Mishandling of the equipment during recharging of the converter is prevented by use of simple safety precautions.
The current flight trials form part of a development programme for liquid oxygen equipment, which is being pressed forward alongside actual production on units for American aircraft in service with N.A.T.O air forces. Performance data is being collected over a wide range of operating conditions. In addition; a detailed investigation is being made into related problems.

Mechanical Power Transmission Exhibi-

 tionPART of the collection illustrating mechanical power transmission is now on view in Gallery 3 of the Science Museum The exhibits include original examples, models and illustrations, of gears, bearings, chain-drives and couplings which are arranged to show historical development from classical times to the present day.

Under contract to the Atomic Energy Authority, Pye, Ltd., have designed and completed a special camera, shown above, which is capable of being used inside an atomic reactor. The camera, though based on Pye's normal industrial equipment, has had to conform 10 certain rigid specifications, and as a result of experiments carried out at the Authority premises it was found that special materials had to be used. In addition many complex problems of design had to be solved. For ease of manipulation, the camera carries its own source of illumination consisting of a series of four small bulbs grouped around the camera's lens. In addition a system of mirrors enables sideways viewing to be obtained. As the equipment is to be used while the atomic pile is dangerous, the camera can be remotely controlled and is housed in a thin stainless steel casing $3 \frac{1}{2} \mathrm{in}$. in diameter and 30 in . long. The whole apparatus, involving the camera and its 75 ft . of cable, the control unit and the monitor, is mounted on a trolley so that it is ready for instant use.

T
HE transmitter to be described in this month's article is of very simple design and is the second to be described in this series. It is given because of its suitability for operation with the superhet receiver described last month which, due to its high selectivity could not be worked with the two valve transmitter described in the October, 1955, issue of Practical Mechanics. Before proceeding further, however, it must be pointed out that this transmitter is not capable of such a high output as the twovalve unit, moreover, it is, in spite of its simple circuit, quite critical in its initial adjustments, although once set up it will work without attention almost indefinitely. It is particularly suitable for controlling model boats and land vehicles but for model aircraft (which will, on account of weight limitations, almost certainly use super-regenerative receivers), we recommend the use of the twovalve type of transmitter already described. A transmitter of this type may be seen in use in Fig. I:

Legal Requirements

A G.P.O. licence is necessary before transmissions for model control can be made. The licence costs $£ \mathrm{I}$ for five years and is obtainable

Fig. 2.-Single-valve trainsmitter circuit.

Fig. 1.-Mr. E. C. Kennedy preparing his model of an Admiral's barge to compete in last year's I.R.C.M.S. annual contest (Saltwell Park). This model also employs a superhet circuit to enable simultaneous operation to be carried out with other models using this circuit. The group is seen on the specially prepared operating platform used by competitors.
tone crystal manufactured by the Quartz Crystal Co., Ltd., Kingston Road, New Malden, Surrey. This type of crystal is not suitable for use at parallel resonance and a series resonance type circuit must, therefore, be used.

Fig. 2 shows the actual circuit used which is a modified Hartley type and is usually termed the Squier's Circuit. It requires the use of a triode valve with a high gm : and the $6 \mathrm{C}_{4}$ type works very. satisfactorily. This is an indirectly heated valve but the current requirement is only .15 amps . (at 6.3 volts), so this can easily be met. An early version of this transmitter used two twin cell cycle lamp batteries to provide heater current. These batteries were used for the transmitter onlynot the control box, and lasted for many months with normal use.

It - is the anode coil and the position of its tapping which makes the circuit rather difficult to set up initially. Although this is wound as a single coil with a tapping point it ' is best thought of as two separate coils. The top half $(A-B)$ is tuned by the $3-30 \mathrm{pF}$. trimmer and the circuit is completed through the 500 pF : T.C.C. "Micadisc.". This part of the coil should resonate in the $27^{\mathrm{Mc} / \mathrm{s}}$.
band and with the coil described this will take place with nearly minimum capacity in circuit. The lower half of the coil (B-C) is the feed-back portion necessary to maintain oscillation. If too many turns are used (i.e., too much feed-back) the circuit will selfoscillate and the crystal loses control, whilst if too few turns are used no oscillation takes place. If the tapping point is adjusted to alter feedback then the tuning of the top half is altered at the same time. For these reasons we recommend that the coil winding instructions we give are followed very carefully so as to ensure correct operation.

The remainder of the circuit is conventional, the Io $\mathrm{K} \Omega$ resistor being simply a current regulator and R.F. stopper. The makers of the crystal state that if the H.T. supply is 150 volts from a regulated source the value of this resistor can be reduced to 1,000 ?. If the transmitter is fed from a dry battery H.T. source of 150 volts this condition would apply.

Construction

The transmitter unit is constructed on a base of I/I6in. thick Paxolin sheet and this is drilled as shown in Fig. 3. A word here about the method of mounting the crystal. These two-pin crystals have a pin spacing of and can be plugged into an International octal valveholder. Commercially-made helders for the crystals are available but rather difficult to obtain so the writer made use of two of the socket clips from an old 1.0 valveholder of the paxolin type. The baseboard for the transmitter was drilled and cut to accept them as shown in Fig. 3. If a commercial crystal holder is available so much the better.

As previously stated the coil in this transmitter is quite critical and this should be wound as follows

Use $18 \mathrm{~s} . w . g$. enamelled copper wire and

Fig. 3.-Drilling plan for one-valve trankimíter.

Fig. 4.-Wiring diagram and component layout for one-valve transmitter.
wind on an II/I6in. diameter former. A tubular condenser was used as a former for winding the original, but if you do not have one the right diameter, roll a strip of paper round a smaller diameter dowel or condenser until the correct size is obtained. A total of 24 turns is required with the tapping at the 15 th turn. $\ddagger \mathrm{in}$. stubs of wire are left for connecting up and the tapping is formed by baring approximately tin. of wire and doubling back so as to form a $\frac{1}{2}$. stub for soldering to the mounting tag. The winding should be close wound but being of a fairly heavy gauge it will inevitably spring apart slightly when taken off the former.
All components should now be mounted and solder tags bolted to points X, Y and Z (battery connections), E (below chassis) and D (above chassis) and on both sides of the chassis at points \mathbf{A}, \mathbf{B} and \mathbf{C}. The tags above chassis at A, B and C are intended for mounting the coil which should be soldered in position. This three-point mounting will be found to make it reasonably firm and no difficulty has been found in this manner of construction. The remainder of the wiring is straightforward and is shown in Fig. 4.
Note that the tag of the crystal socket nearest to tag C (below chassis) should be soldered to tag C.

The only other point which needs to be mentioned is the aerial coupling loop. This is a two-turn winding one end of which is soldered to tag. D. This tag also forms the point for attaching the aerial lead. The other end of the acrial loop is earthed to tag E through a hole in the paxolin. The aerial coupling will have to be adjusted and this is done by bending the loop away from the anode coil. Initially, the loop should be separated from the anode coil by about fin . as too much coupling will prevent oscillation.

Teṡting

For testing the unit, power supplies of 6 volts L.T. and $200-250$ H.T. are necessary. As previously mentioned dry battery sources can be used but the writer uses 2 -volt L.T.
accumulators and a small rotary transformer for H.T. These will be discussed later. The valve and crystal should be plugged in and a o -30 mA meter connected in the H.T. lead. A wavemeter, such as that described in the November issue of Practical Mechanics is almost essential for tuning up as it enables the operator to confirm that the transmitter is operating in the band and radiating correctly. With power supplies turned on, a steady current of 10 mA will be drawn and the Earth end of trimmer should now slowly Aerial coupling be rotated preferably with an insulated trimming tool.

At one point a definite dip in anode current will occur and a reading obtained on the wavemeter. If the crystal is in control the reading will be on the crystal frequency in the $27 \mathrm{Mc} / \mathrm{s}$ band. If excessive feedback is being applied, however, self oscillation will occur at other points in the rotation of the

by a sliding panel. This avoids the use of screws or bolts and is recommended as being highly convenient for making adjustments and for removing the batteries for recharging.

The case size of this original is Ioin. $\times 8$ in. \times $4 \frac{1}{2}$ in. H.T. is obtained from a Hoover rotary transformer, supplies of which are very plentiful at present on the surplus market. They usually cost about iss. and are the smallest and lightest of the type that the writer has seen. They weigh 200 z . and measure 2 in . diameter $\times 4 \frac{1}{2} \mathrm{in}$. long. It would be

Fig. 5.-The single-valve transmitter described in this article shown in its case with rotary transformer H.T. power supply. The socket, visible at the back, is for plugging in the control box.
trimmer and this will result in off frequency working. The effect should be counteracted by gently bending away turns from the feedback section of the coil (i.e., those connected to tag C). These should be bent away. from the main portion until oscillation takes place only on the crystal frequency. The aerial coupling loop can only be set up with the full aerial extended and this is, therefore, best left until later.

The Complete Transmitter

The transmitter carrying case and the method of mounting the transmitter are matters of personal taste and are dictated to some extent by the power supplies to be used. Fig. 5 shows the way the writer mounted his equipment. The case is made from tinplate which.solders very easily and access is gained
possible to operate this rotary transformer. from 6 volts but this would tend to under-run the transmitter and 8 volts are, therefore, used in the circuit given in Fig. 6. With fully charged batteries an H.T. voltage of 240 volts is'available which is adequate for the transmitter and provides enough spare current to power the control box in addition. Full details of the multivibrator control box used with this transmitter (Fig. 7) were given in the January issue of Practical Mechanics, but it can, of course, be used with any type of control system. Four 2 -volt ro-amp. hour accumulators are used and these are of the type at present available on the surplus market from Lasky's Radio, 370, Harrow Road, London, W.9. Two accumulators are mounted at each end of the case and this balances the weight which makes for ease of carrying.

Smoothing of the H.T. is obtained by means of the $8 \mu \mathrm{~F}$ electrolytic condenser shown and is adequate for pulse or mark/space operation. An additional choke capacity filter may be necessary if modulation of the transmitter for audio control is attempted. The or $\mu \mathrm{F}$ condenser across the L.T. end of the generator is to suppress interference and this should be a mica type mounted as near to the motor brushes as possible. A similar suppressor condenser may also be necessary across the H.T. brushes if trouble is experienced in this respect. A suppressor circuit consisting of a .or $\mu \mathrm{F}$ mica condenser and a 22% resistor is connected across the leads to the control box. If the multivibrator circuit is used this will prevent the relay contacts from sticking and will reduce sparking. Separate switches are used for H.T. and L.T. supplies. This is very convenient when testing as the L.T. can be left on whilst making adjustments to the model and the transmitter instantly brought into action by operating the H.T. switch. This saves current as the rotary transformer is rather extravagant.

Fig. 7.-The writer's multivibrator (MarkiSpace) control box. The key switch at the front is used to increase speed when pushed forward and to reduce speed (and reverse) when pushed back. It is normally in the position shown when the box generates Mark!Space pulses in the ratio determined by the centre (steering) knob. The switch knob (right) is an experimental control and gives $80 / 20,50 / 50$ and 20/80 in its three positions.

The transmitter should be checked for oscillation as before and tested to ensure that the frequency is in the band (i.c., that the crystal is in control). With the aerial fully extended, coupling should be increased by bending the aerial loop nearer to the anode coil. An alteration to the trimming capacity will probably be necessary and it may be necessary to increase the feed-back by bending in the turns at the grid end of the coil (i.e., at C in Fig. 4). Too much aerial coupling will prevent oscillation. Fig. 8 shows the correct position of the trimmer for

Fig. 8.-The correct position for tuning the transmitter which is just before the peak.
tuning a crystal oscillator (i.e., just before the peak).

Once adjusted the transmitter will give excellent service and a frequency stability which will be very beneficial to the owner even if this transmitter is used to operate super-regenerative receivers.
Readers should note that any crystal frequency in the model control band (26.96 to $27.28 \mathrm{Mc} / \mathrm{s}$) can be specified and used in this transmitter and, arranging arbitrary frequency separation between transmitters, it is possible for several models to work simultaneously.

Although not fitted to the original, the writer recommends that a milliameter to read H.T. current be fitted to the transmitter case in such a position that it can be seen whilst operating. It is a very useful check that everything is working correctly in the transmitter and it will also give the correct tuning point whilst trimming.

The Aerial

Most radio controllers make use of a quarter wave vertical whip acrial which should be of a total length of 8 ft . 6 in . for the $27 \mathrm{Mc} / \mathrm{s}$ band. This length includes the lead inside the case to the aerial coupling loop. Suitable telescopic masts are still available on the surplus market and should be mounted by means of metal clips to a pair of porcelain stand-off insulators as shown. The lead from the coupling loop should be taken to the bottom clip and when assembled in its case final tests should be carried out.

THE good timekeeping of a watch, the consistency of its rate, and the length of its useful life, are dependent upon regular cleaning and inspection. A modern watch regularly serviced and given its annual toilet of cleaning and oiling should last at least 50 years or even longer. Indeed, there is no reason why it should ever wear out. Such parts as wear or break can be replaced if the watch is one of the modern interchangeable machine-made variety. But if the watch is regularly cleaned and oiled, the wear rate is extremely slow and it is doubtful whether any of the parts will need replacement, apart from glasses, mainsprings and hands.

When a watch is dropped, it is usually the balance staff which suffers, and interchangeable balance staffs are available for those who possess a watch lathe or a set of turns, and are able to undertake the skilled jobs connected with watchmaking. There are those who boast that they have had nothing done to their watches for 10 years or more. That is nothing to boast about, for it means that the oil has vanished from the pivots and other wearing surfaces, and that the jewels have scored the pivots.

Regular cleaning and oiling is therefore essential, and with care this is well within the ability of an amateur. Kits of tools with oil
scope of the amateur.

Escapements

Most watches to-day are of one of two types -the lever escapement and the cylinder, although the latter is rapidly becoming obsolete. In a few years' time only the lever escapement will remain, since it has been found superior to all other forms of escapement such as the Chronometer, the Virgule, the Duplex, the Verge, rack and pinion, and the Remontoire. I include in the lever class the very cheap unjewelled watches with pin pallets instead of jewelled pallets. The pallet is, of course, the lever. Pin pallets are known as the Roskopf system, after the man who introduced it. When these watches wear there is really very little that can be done, because the holes, being unjewelled, after a couple of years wear oval and destroy the correct pitching or meshing of the teeth. Such watches are very roughly finished and require a very strong mainspring to overcome the excessive friction, and wear is therefore rapid: The pinion leaves and pivots are unpolished; yet it is surprising how accurate such watches can be for the comparative short period of their useful life. It is possible, of course, to rebush the holes, and tiny brass bushes or bouchons are available for the purpose. The holes in the

A New Series on the Repair and Adju
By F. J.
plate are broached out so that the bouchon is a press fit and then the central hole is broached out to suit the pivot. This is, however, a slow and laborious job. Such watches when they cease to be reliable are intended to be scrapped and a new one bought.

My advice to anyone about to buy a watch is to wait until you can buy one of the first-class makes, as it is cheaper in the long run. You will have a watch for life, and in the course of the years it will prove to be cheaper than buying a large number of cheap watches.

The troubles chiefly encountered with watches include broken mainspring, broken hands, broken balance staff, damaged hairspring, loose pallet stones, broken jewels, hairspring magnetised (causing watch to gain), stopping in various positions, bent or broken teeth. I shall deal with these defects in this series.

Tools and Materials

The first things to get together are the necessary tools and materials. You will require a pair of brass tweezers for handling steel parts, a pair of fine steel tweezers for hairspring work, an oil well, a bottle of good watch oil, a set of screwdrivers, an eyeglass (a $2 \frac{1}{2} \mathrm{X}$ is suitable for most people), a set of Swiss files, some pegwood, some small celluloid trays in which to keep the parts and also for holding the cleaning fluid, some benzine, a few sticks of $20-$ gauge hard-drawn brass wire, a watchmaker's vice, some acid-proof tissue paper for holding the parts whilst brushing and assembling, a

Fig. 2.-The movement is si whilst the escapement is checked. with a piece of pegwood, or a

Fig. 3.-The bottom plate completely stripped. All of the pivot and jewel holes are cleaned out with a Diece of pointed perwood.

Fig. 4.-The pinions are held in a pair of poising calipers, and the leaves of the pinions cleaned with pegwood.

Fig. 5.-The mainspring, after cleaning in b Only a few drops are necessary, applied by an brass zuire.

ING
 stment of Wrist and Pocket Watches

 for the Amatewrsoft watchmaker's brush, cleaning chalk, and some luminous compound for luminous hands. With this equipment you will be able to carry out cleaning and oiling, and such other tools as are necessary will be dealt with as they are required.

If you propose to do watch-cleaning on a fairly large scale you should purchase one of the watchcleaning machines and the cans of necessary cleaning and rinsing fluids. These are really efficient and enable the parts to be cleaned without being touched by hand. I have taken a particular example of a firstclass modern watch, the Longines, the layout of which is typical of many modern watches.

Parts of a Watch

All watches of whatever make contain a mainspring barrel, a train of gears, the lever or pallets, and a balance wheel. It is upon the correct adjustment of the escapement, which includes the escape-wheel, the pallets and the balancewheel, that the correct timekeeping of a watch depends. The watch must keep time whether it is fully wound, halfwound, or nearly unwound. That is to say, the time of the arc of vibration must be isochronous. In other words, the time of the arc must be the same, irrespective of the angle of the arc. When the oil of the balance staff becomes dry or congealed, greater resistance is offered and the arc of swing falls off, causing the watch to gain. In chronic cases the watch may even lose, and when a timepiece exhibits
ported on a wooden block he balance is gently led round piece of pointed brass wire.
these symptoms damage can be caused by continuing to wind it.

Removing the Movement from the Case

Cleaning becomes desirable, and for this purpose it is necessary completely to dismantle the movement. In order to do this, it must be removed from the case. Needless to say, the work should be carried out in a good light, natural light in the day-time, and under a lamp of the anglepoise type at night. Have a piece of white paper on the table or bench to reflect light so that all parts can be clearly seen. Arrange the small triangular celluloid trays at the back of the sheet of paper, and as the parts are removed place each group of parts in a separate tray.
Before the movement can be removed, with most watches, especially those having three-piece cases (bezel holding the glass, the band and the back) the winding shaft must be removed. If you open the back of the watch you will sec a small screw (not to be confused with the screws which hold the back plate to the pillars), and by turning this in an anti-clockwise direction for a couple of turns the stem and button may be removed. Next, remove the two case screws which clanip the movement to the band of the case. You have, of course, previously removed the bezel and carefully prised off the hands. The movement may now be gently pressed out from the back towards the front of the case.

In some watches fitted into two-piece cases, the movement may be removed, after removal of the bezel, without removing the winding shaft, the case being slotted to permit this.

Removing the Balance

The next step is to remove the balance cock with balance attached, to avoid all risk of breaking the pivots whilst the dismantling process is going on. Remove the screw which holds the cock, and by means of a screwdriver placed in the kittle nick at the back of the cock, gently prise it upwards,
taking care not to let it slip, otherwise you will distort the
hairspring. Hairsprings are of two types. In the cheaper watches they are flat and fairly easily trued up with two pairs of tweezers if they become distorted, and in the better class watches they are of Breguet formation, which means that the outer coil is lifted up and reformed to a smaller radius. The object of this is to give a more concentric action to the
hairspring and therefore a more consistent rate in the various positions. In those watches where the hairspring stud is secured by means of a clamping screw or screws, remove the screw or screws and let the hairspring hang free of the balance cock. Place the cock, the balance and the screw in one of the trays.
It is important to ensure when removing screws that each screw goes back into its appropriate hole, because sometimes they are of varying lengths so as to clear other parts.

The Mainspring

It is now necessary to let the mainspring down, presuming that the watch is still wound up, and this should be done by placing

Fig. 8.-Apply of to the hand-setting mechanism on the dial side of the back-plate.

Fig. 6.-Sinilarly apply wil to the pivots of the arbor.

Fig. 7.-Before refiting the balance and balance cock, apply oil to the faces of the pallet stones.

Fig. 9.-The pallet should be held in a pair of tweezers and the pallet stones examined to see if they are loose.
the stem back into the movement, and applying winding pressure to lift the little click which engages with the teeth of the steel wheel on the back plate which is attached to the mainspring arbor. Then, with a piece of brass wire, lift the click and gently allow the spring to unwind by permitting the button slowly to slip through the fingers. Do not allow the spring to unwind suddenly, as

Fig. II.-Refilting the barrel arbor. The barrel plate is shown below.
there is a risk of shearing one of the teeth off the mainspring barrel. Do not adopt the method of some amateurs of removing the balance and pallets and allowing the watch to run down, as the jewels will score the pivots, and may even cause some of them to break off, especially the smallest pivots of the whole train-the escape-wheel pivots.

Having let down the mainspring, undo the screw in the centre of the steel wheel which is directly over the mainspring barrel. It is important to note here that some of these screws are of left-hand thread, and some of right-hand thread. Only gentle pressure should be used, therefore, on the screwdriver till you have discovered which way the screw undoes. When this screw is removed the steel wheel can be gently prised off the squared end of the barrel arbor.

Removing the Dial

The next thing is to remove the dial. This is usually secured by two dog screws which have crescent-shaped slots cut in a knife-

Fig. 12.-Filing the rivet of the hook flush with the surface of the mainspring. This is necessary when the driving end is broken off the outside coil.
edged flange. This knife edge cuts into the two copper feet of the dial. When the screw is given half a turn the crescent-shaped slot will clear the dial feet and allow the dial to be gently prised off. If it is a china dial, be very careful not to use undue pressure or it will crack. Be careful also to hold the movement well over the bench whilst doing this, otherwise you may drop the hour wheel and the minute wheel beneath it on the floor. These wheels are not fixed in any way. Some dials of the three-feet type are locked to the plate by screws in the edge of the pillar plate.

Removing the Canon Pinion

Now remove the canon pinion. This is the centre pinion over which fits the hour wheel (the wheel to which the hour hand is attached) and to which the minute hand is attached. A steady direct pull with a pair of brass-nosed pliers will remove it, taking care not to bend it. If the minute hand is attached to the arbor and not to the canon pinion, a gentle tap with a hammer on the end of the arbor will release the canon pinion. The canon pinion is friction tight on the abor to allow for hand setting.

Completing

Dismantling

Now reverse the watch and remove all screws holding the plates or bars, noting the order of the screws as recommended above.

This will leave you with the pillar plate to which is still attached the pallets. Now unlock the screw securing

the pallet bar and carefully place the pallet, the bar and its screw in a separate tray. You may if you wish remove the hand setting mechanism but usually this is not necessary.

Cleaning

The watch is now dismantled and ready for immersing in the benzine. It must be pointed out, however, that the pallets and the balance wheel must not be placed in benzine. The pallet stones are
before the spring and the barrel arbor are removed. Having replaced the spring and reinserted the arbor, making sure that the driving dog engages with the hole in the inner coil of the spring, place three or four drops of good oil on the spring at various points and a couple of drops on the bottom of the barrel and snap on the barrel cover, closing it down with a pair of tweezers till a distinct snap is heard. The barrel can now be inserted in the pillar plate.

The Train

Now turn attention to the centre wheel (the one which carries the canon pinion) brushing and cleaning this and inspecting all teeth to see that none is bent. Place this in the pillar plate. Next examine the pallets to make certain that the stones are not loose. Just quickly dip these in the benzine, and dry off quickly, brushing off and placing it in its appropriate pivot hole.
(To be contimued)

A Versatile and Inexpensive Device for the Photographer
 By J. C. LOWDEN

THIS instrumentt can easily be made using only the most elementary tools and workshop facilities. The measurements given are not critical, no special timber is called for and the total cost very low. The completed device may be seen in the heading photograph.

The Viewer

This is a stamp, filmstrip and slide viewer sold by a well-known multiple store and stationers generally, price is. 6d. A model similar in construction but costing $£ 1$ Is. is

Fig. 1.-The monoscope viewer bought from a multiple store.
also on sale in most photographic shops. This dearer model is usually in white plastic instead of black and the difference in price is probably accounted for by a much higher quality of viewing lens. The cheaper model (Fig. 1), however, gives satisfactory results.
It might be preferred to extend the longer side of the aperture on the viewer as it does not cover the full width of the standard 35 mm . negative, the actual cut-off being 3 mm . or so, and those who require all the negative the extension is a simple matter, is the plastic is easily cut with the point of a sharp knife.

If this extension of the aperture is to be undertaken, the light-diffusing screen, a sheet of translucent plastic, should be removed. After the cutting it should be carefully replaced.
A hole just large enough to take the finest woodscrew available should now be drilled in each corner of the rear leaf of the viewer.

The Ground Glass

The plastic diffusing screen supplied gives adequate diffusion when viewing in daylight, but for box use it is reinforced with ground glass. This is necessary as, first, the plastic would probably yield under pressure, and, secondly, the diffusion might not be sufficient when the light source is so small and in such close proximity.
The aperture should therefore be filled with a piece of the thinnest ground glass available. The type used in focusing screens is perfect for the job, and it can be bought in quite small sizes at a very moderate price from any photo dealer.

If there is any difficulty in obtaining a piece of ground glass, or if it is preferred to make one's own, proceed as follows. Wash away the emulsion from an old photographic plate and cut to size. Wet the glass, sprinkle it liberally with a household cleaner of the abrasive type and with the remaining glass make a sandwich of glass, abrasive paste and glass. Rub the two surfaces together and a perfect ground surface will be the result.

Whatever glass is used the cutting should be very accurate, and if necessary the edges should-be "tailored" to fit the aperture by rubbing down on a hard oilstone. Once a firm press fit has been obtained, insert the glass into the aperture/and the viewer may be carefully cleaned up and set aside.

The Box

The base of the box is a single piece of wood ${ }_{4}^{3} \mathrm{in}$. $\times 2{ }_{4}^{3} \mathrm{in}$. x Iin. thick. A rebate $\frac{1}{2}$ in. deep is worked all around the edges. On the

long sides the rebate is $\frac{1}{2}$ in. wide and $\frac{3}{4} \mathrm{in}$. wide at the ends. It might be preferred to "build-up" the base with two pieces of heavy plywood. Details are given in Fig. 2. The ends and sides of the box should be

Fig. 2. A-Sectional view. B - Section through width showing back of viewer dotted. C-Elevation of lid, showing platen, but with viewer and ground glass omilted.
cut to the sizes given in the Parts List, and built up around the base so as to provide a firm, light-proof fit. The sides should be screwed to the end pieces. The base may then be secured by a stout woodscrew at each end, which should be countersunk.
The lid is exactly the same as the base in dimensions, save that it might be found more convenient to use a $\frac{1}{2} \mathrm{in}$. multi-ply laminated wood. The rebates can then be made very easily by scoring out with a sharp knife, the waste wood being pared away with a chisel until the first two or three laminations are removed.
The aperture, measuring Iin. by Inin. should be cut through the lid of the box, and

the sides must be clean and sharp. Care should be taken when plotting out the aperture, the centre of which should be over the centre of the lamp. As batten holders vary in the size of their bases, each constructor should work out the exact location of the aperture to suit the batten holder which he proposes to use The longer side of the aperture should be across the width (2 in .) of the lid, and the aperture should be cut as close as possible to one end of the box. The lid is secured to the ends and sides of the box by light woodscrews.

Lighting

The batten holder should now be screwed into position and wired up for mains supply. A switch is essential, and this should be situated away from the box to avoid vibration. The lamp used is a standard 25 -watt triplesprayed Philips as used in commercial printers, price 2 s .6 d .
If mains electricity is not available, a lowvoltage battery-operated lamp can be used.
Once the light is fitted and the box assembled, the viewer should be fixed over the aperture as shown in Fig. 2. Check that the film frame in the viewer is evenly and cleanly illuminated, then screw the viewer into position on the lid. The box is now ready for use as a viewer, both for filmstrips and the standard 2 in . slides.
At this stage another use suggests itself The evenly illuminated film track, scanned by the magnifying lens, forms a perfect retouching desk for those who are skilful enough to attempt this difficult task.

The Platen Assembly

Some means is necessary by which negative and sensitive material can be held in contact during printing. The best solution is an articulated platen. This is permanently secured to the lid; it automatically locates itself on to the film track when in use, and swings clear when not in use.

The platen is a piece of multi-plywood about $\frac{1}{2} \mathrm{in}$. thick, measuring $\mathrm{I} \frac{3}{4} \mathrm{in}$. in length and 13/16in. wide, as seen in Figs. 2 and 3. This width should be accurately checked to fit the film guide.

The plywood platen is then fixed to a wooden handle block measuring in. by $\frac{3}{4} \mathrm{in}$. by in. The screws should pass through the plywood, and the screwheads must be countersunk (see Fig. 3).

```
PARTS LIST
Base 6%in. }\times2\mathrm{ zin. }x\mathrm{ rin. timber (z off)
Ends 6 lin x in x %in Timber(2 off)
```



```
Lid
```



```
{laten and Y'in. X (3/16in. X in. plywood (I Of)
    Covered with manufactured sponge.
Platen Arms 2! in. }X\mathrm{ \ in. }x\mathrm{ tin. metal (2 off)
I Batten-Holder B.C. . - watt voltage, sprayed, as used in
    printer boxes
Thin Ground Glass. Approx. x?in. X I%in.
Monoscope Viewer. As purchased.
Woodscrews.
```

The working face of the plywood must now be covered. Various materials such as felt, etc., can be used. I found that manufactured sponge, as sold for toilet use, is ideal for the job. This material cuts cleanly with a razorblade. A generous strip din. thick and slightly larger all round than the platen surface is needed. Glue this to the platen face and allow to dry overnight. "Casco" casein glue does the job perfectly. After the adhesive has dried, the sponge must be trimmed to fit the platen surface.

Two platen arms, of light metal, about $2 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2}$. by $\frac{1}{8} \mathrm{in}$., are needed. At each end of these arms drill a fine hole, just large enough to clear the shank of a fine, roundheaded woodscrew. Details may be seen in Fig. 2. Screw the platen arms to the handle block of the platen, allowing reasonable freedom of movement.

The pivot block is made from a piece of

hardwood I $\frac{3}{4} \mathrm{in}$. by I in. by $\frac{3}{4} \mathrm{in}$., and is shaped as in Fig. 4. The upright measures 1 lin. by Iin. by 1 in . The free ends of the platen arms are screwed to the sides of this upright.

Locate the pivot block by placing the platen surface in position on the film guide. The pivot block will rest on the lid in its proper position. Square it up, mark off the correct location, and screw the block to the lid either from the underside of the lid or through the projecting bases of the block itself.

The Box in Use

For paper test prints I used a piece of normal grade glossy contact paper, cut to the exact width of the negative and about 2 in . long. The negative strip was inserted into the film guide, emulsion side up. The printing light was switched on, the required frame was brought into position and the printing light switched off. The strip of contact paper was then inserted into the film guide, emulsion side down. The platen, surface was swung over and held firmly on the back of the contact paper. The light was then switched on for the required printing time and then switched off, the platen swung clear, and the paper removed for development and fixing.

Printing time is of course a "variable quantity," but I found that from five to eight seeconds was a range of times giving good results. Fig. 5 shows this in progress.

After preliminary tests it might well be borne in mind that contact paper, cut to match 35 mm . in width, and perforated, can be bought, but the roll as sold-20oft.-is rather an expensive item.

Whatever type of paper is used, these contact prints provide a quick, accurate copy of the negative and are ideal for record filing.

Positive Transparencies

The most attractive feature of the machine is the ease with which transparencies can be

Fig. 5.-The box in use as a printer.
produced. For these 35 mm . positive film on safety base is used. The film should be loaded into a spare cassette, and the cassette clearly labelled at once. Otherwise it will find its way into your camera !

Test a scrap of this film in your safelight first! I found that it could be worked with in a bright ruby safelight, Loading the film is exactly the same as for contact paper, but the printing time will be very much shorter. After rinsing, the transparencies were fixed in an acid fixing-hardening bath and thoroughly washed.

Drying must be carried out in a reasonably dust-free atmosphere, of course, and any attempts to accelerate the process should be undertaken with great care.

There are many different types of mount on sale and choice will depend on the particular projector used.

John Bull Golden Jubilee

THE John Bull Rubber Company was founded in 1906, and thus has justcelebrated its Golden Jubilee. In a dinner to celebrate the event, tribute was paid to the progress the company has made in those fifty years. The full story of the company is printed in the 98 th issue of "John Bulletin,?" which is the house journal of the company.

Mr. S. M. Portass

WVE greatly regret to record the passing of Mr. S. M. Portass, principal of the firm of Charles Portass and Son, Sheffield, and manufacturer of the well-known Portass lathes, on March irth, after a very long and painful illness. He was one of the oldest established makers of small lathes in this country, and he was a persistent advertiser in our pages.

The amateur and model engineering world has lost one of its pioneers.

For Every Cutting Tool

Sharpening Stone by CARBORUNDUM

FOR GOUGES WFTH INSIDE BEVELS Slipstones of various sizes, in silicon carbide or ALOXITE abrasive, for tools that need tharpening on an inside curve.
ALOXITE is a Regd. trade mark.

FOR AUGER BITS
Auger bits should be sharpened so that the bevel is on the upper side of the cutting blade,

FOR SMALL TOOLS
CARBORUNDUM make a complete range of sticks of different sections, and different grit sizes, for shar'pening every small tool:

THE CARBORUNDUM COMPANY LIMITED

Maximum production depends on high

 technical skill such as that acquired by I.C.S. Students
TENS OF THOUSANDS MORE TRAINED MEN ARE URGENTLY NEEDED NOW - BUT THERE IS NO WORTH-WHILE PLACE FOR

 THE UNTRAINED

 THE UNTRAINED}

Ambitious men everywhere have succeeded through I.C.S. Home-Study

Courses. So also can you.

The man with an I.C.S. Training in any one of the subjects listed in the coupon knows it thoroughly, completely, practically. And he knows how to apply it in his everyday work.

Students intending to sit for examinations in Mech. Eng., Architecture, Quantities, Civil Eng., and others, should enrol NOW for preparatory Courses.

Using a specially prepared Study Programme, the student studies in his spare time at his own pace and, with time for revision, sits with full confidence of success.
'Courses are also available for General Certificates of Education and most other Technical, Professional, Commercial and Civil Service Exams.
(I.C.S. Examination Students are coached until successful.)
Moderate fees include ALL Books required. REDUCED TERMS TO H.M. FORCES.
If you need technical training, our advice concerning your work and your career is yours for the asking-without obligation. Let us send our special free booklet on the subject in which you are specially interested.

The successful man DOES to-day what the failure INTENDS doing to-morrow. Write to us TO-DAY.

Dept. 169B,
I.C.S., 7 II KINGSWAY, W.C.2.

Accountaricy Air Conditioning Architecture Architectural Drawing Boiler Engineering Book-Keeping Bulding Construction Building Specifications Business Training Business Management Carpentry \& Joinery Chemistry, I. \& 0 . Civil Engineering Clerk of Works Coal Mining
Concrete Engineering
Diesel Engines Draughtsmanship Drawing Office Practice Electrical Engineering Electric Power, Lighting, Transmission Traction

Electronics

Eng. Shop Practice
Fire Engineering Fuel Technology Heating and Ventilation Hydraulic Engineering Illumination Eng. Industrial Management Machine Designing Machine-Tool Work Maintenance Eng. Marine Engineering Mechanical Drawing Mechanical Engineering Mining Engineering Motor Engineering Motor Mechanics Motor Vehicle Elec.

Municipal Engineering Plumbing
Production Engineering
Quantity Surveying
Radio Engineering Radio Service Eng. Refrigeration Salesmanship Sanitary and Domestic Engineering
Sheet-Mefal Work Short-Story Writing Steam Engineering Structural Steelwork Surveying Television Technology Welding, Gas and Elec. Woodwork Drawing Works Engineering

INTERNATIONAL GORRESPONDENGE SGHOOLS

Dept. 169B, International Buildings, Kingsway, London, W.C.2.
\qquad

A Simple Piece of Equipment for the Workshop
By W. E. RICKARDS

The Support

This should be cut from stout timber, about 3ft. 3in. long by 3 in . wide and 2 in . thick, to the shape shown in Fig. I. The angle at the base should be adjusted to the bench and user, a few trial positions will soon give the correct height; about 65 deg. at the base will be about correct. The top is cut at the same angle, which will bring, it parallel with the floor when it is fixed into position.

A semi-circular groove is cut across the top at right angles to form a seat for the hub as shown in Fig. 2. The size of the hub available will, of course, determine the diameter of the groove. The spoke flanges of the hub should make a good fit across the top of the support (A, Fig. 3). This can be achieved by cutting or packing, according to the width of the hub. A piece of thin sheet iron should be cut and shaped as shown in Fig. 2 to form a clamp which, when screwed down, will firmly fix the hub on its seat. Wood screws should be driven into the support through enlarged spoke holes to prevent the hub itself from rotating
(Fig. 3).

The Hub Assembly

The hub should, of course, be in good condition. Normally, the fitted spindle will be too short, so a new one long enough to accommodate the wheel, K, and the pulley, L, should
be obtained. The new spindle should be fitted with cones and lock nuts. Two additional nuts and two clamping discs (M, Fig. 3), should also be provided to lock the grinding wheel firmly to the spindle. The pulley, L, can be fixed by gtub screw or any other convenient method. Assemble the hub, adjust

Fig. 2. - The grooved seating and clamp for secuing $h u b$
wheel and pulley, tighten up, and fix into place on the support.

The Treadle Wheel

Practically any type of treadle wheel will do, providing it will accommodate the belt. The treadle wheel from a sewing machine can readily be adapted. If the wheel carries the cranked bearing, this should be removed and a spindle of ample length substituted. A hole, to take a split pin, should be drilled described below has been in use constantly for a number of years. This, together with the fact that several abrasive wheels have been worn out on it, gives a good indication of its efficiency. It will be found extremely useful for quite a number of small grinding jobs of all descriptions which do not require great accuracy or do not justify the use of a power grinder. It has the added advantage of leaving both hands quite free. It is comparatively simple to construct and easy to operate.

Materials Required

The main feature of this grinder is the use of a cycle hub as a bearing for the stone and its driving pulley. This gives a free-running assembly which, with reasonable care, will last a lifetime.
The following parts (shown in Fig. I) will be required :-

Complete front cycle wheel hub (either new or used), H .
Driving pulley, L.
Treadle wheel, D.
Belt to fit pulley and wheel.
Abrasive wheel, K.
Wood for support, treadle, connecting rod (pitman), etc.
Nuts, bolts, woodscrews, strip iron, tubing, etc.
As will be seen from Fig. I, the wooden support, A, is fixed at an angle to the end of the workbench, B, or in any other convenient position. It carries the hub assembly, C, at the top, the driving or treadle wheel, D, lower down, with the treadle, E, hinged to a block which is screwed down to the floor or baseboard.

Fig. I.-Side and end elevations of the assembled grinding wheel.
close to one end of the spindle ($\mathrm{N}, \mathrm{Fig} . \mathrm{I}$), and a flat filed for the retaining screw. It is fitted tightly into a hole in the support. Care should be taken to ensure that it is at right angles, otherwise the belt, when fitted, will be out of alignment. The spindle is retained by a wood screw, P, with the end cut off, driven through the support on to its flat. A distance piece should be provided to keep the wheel away from the support (Fig. I).

The Pitman

Marked \mathbf{R} in Fig. \mathbf{r}, this is the next con-

Fig. 3.-The hub assembly.
sideration. It is made from solid wood about izin. by 1 in.

by rin. Its

Fig. 4), are formed by two short pieces of iron,tube about 1 ifin. long and $5 / 16 \mathrm{in}$. internal diameter, pressed into holes bored through the wood. The tubes can be pressed into place by the aid of the vice and they should be a very tight fit. This is clearly shown in Fig. 4. The upper bearing is completed by the addition of a $5 / 16 \mathrm{in}$. bolt W, which is fixed to the treadle wheel. This is accom-- plished by means of two pieces of strip iron as in Fig. 4. By clamping the strips across the spokes (Fig. I), the throw can be adjusted to individual requirements. The lower bearing is also finished by adding a $5 / 16 \mathrm{in}$. bolt, which passes through the holes in the bracket as in Fig. 5. The bracket is screwed or bolted down to the treadle (Fig. I).

The wooden treadle ${ }^{\text {E }}$ is about 18 in . long, 6 in . wide and $\frac{1}{2} \mathrm{in}$. or $\frac{3}{2} \mathrm{in}$. thick. It is hinged
as in Fig. I or, if preferred, as in Fig. 5. A counterbalance weight will be needed to bring the treadle a little over half way up when the grinder is at rest. This can be of any convenient shape or material and is fixed on the same diameter as the upper pitman bearing, but on the opposite side of the wheel (S , Fig. I). If, when in use, the driving wheel is found to be too light, a disc of lead fastened securely to the wheel will effect an improvement.

A tool rest can be fitted if required.
Before permanently fixing the grinder into place the following points should be noted:
I. The driving and pulley wheels must be in line.
2. The pitman must clear the driving wheel spindle.
3. The best position for the treadle, \mathbf{E}, on the floor, should be found by trial.
The sketches are not to scale and the measurements are given as a guide and can, of course, be modified to suit individual requirements or materials.

Fig. 5.-The lower bearing bracket and an alternative method of hinging the treadle board.

An Electric Imitation Coal Fire

This Article by J. W. Wood was Received in Answer to a Request Published in "Information Sought"

IMITATION coal is suggested rather than imitation logs, as this is simpler to make. The coals may be made from Perspex sheet bent to any irregular shape and size. The central lump of coal must be large enough to cover the flicker unit and lamp; it must be open at the back and the rear edge within r-r in. from the back panel. Cover the larger pieces of coal with white nylon, leaving it at least $1 \$ \mathrm{in}$. longer on each side than the coal. Fix the nylon with any suitable fixative such as Bostik and cover the top to a depth of $\frac{1}{3}$. with Alabastine. If it is desired to have cracks appearing in the coal, have uneven wooden strips in the desired position before covering with Alabastine. If these strips are covered with grease first they will be easy to remove when the Alabastine is set. Finally, paint the top and part of the sides with an enamel. Small pieces of coal may be imitated by dissolving Perspex in
a jam jar and cutting it out with a knife, but it must be remembered these pieces will shrink during hardening, and it may be a week before the final size is reached. These small pieces may be laid about between the larger pieces and will cover the joints in the overhanging nylon.

The Flicker Unit

Either a 40 - or 60 -watt lamp is used; it is flame-coloured and is mounted vertically as shown in Fig. r. A clip is made to fit the lamp by bending two pieces of scrap 20 or 22 s.w.g. sheet metal about $\frac{1}{i n}$. wide. The two pieces should be drilled where they cross and secured with a cheese-headed screw with the head resting on top of the lamp, as shown in Fig. 1. Drill down the screw towards the head and plug the hole with wood. Break a fine needle and push the broken end into the

Fig. I (left).-Section through fire. Fig. 2 (right).-Method of forming the fan.
will carry the fan which is to provide the flicker.

The Fan

Take a flat piece of thin aluminium sheet, describe two circles of $\frac{1}{2}$. and $\mathrm{r} \frac{3}{} \mathrm{in}$. radii and drill seven or eight holes on the inner
circle, then cut from the outer circle to the holes, but do not make the cuts of regular pattern : the more irregular, the better. The parts to be cut out are shown shaded in Fig. 2. The remaining sections should be twisted at the outer ends, each in the same direction, to form the fan blades. Drill a hole in the centre to take a cheese-headed screw, which should be fastened to the fan with a nut. After fixing, file off the screwdriver slot and drill from the head with a $\frac{1}{8} \mathrm{in}$. drill for a depth of $3 / 16 \mathrm{in}$., then follow with a $1 / 16 \mathrm{in}$. drill for a further $1 / \mathrm{I} 6 \mathrm{in}$. Place this on the needle point and balance it by cutting or filing small pieces off where necessary. The important points are balance and a sharp needle point standing vertically. Switch on the lamp, and after a few seconds the fan should begin to turn.
The lamp should be fixed about I-I $\frac{1}{2} \mathrm{in}$. from the back panel, with a piece of ripple glass (used for bathroom window) about 5 in . by I in. mounted on the back panel above the fan and below the upper edge of the central lump of coal, as shown in Fig. I. It is important that space is left above the glass for the hot air to escape. The fan will again turn shortly after switching on the lamp, but at a lower speed than it did before the coal was put over it. The speed may be altered by increasing or decreasing the twist on the fan blades.
Variation in the effects may be obtained by different lamp positions, different type of glass, different angle of glass, and variations in the relative positions of lamp, fan, glass and back panel.

NEWNES ENGWEER'S POCKET BOOK

By F. J. CAMM
10/6, by post $11 /$ -
GEORGE NEWNES, LTD., Tower House, Southampton Street, Strand, W.C.2.

GAMAGES

The Wonderful Store for the Practical Mechanic
Nowhere else can you see such an amazing variety of tools and materials for

* the Practical Mechanic as at Gamages. Moreover you can always find various OPEN 9 A.M. to 5 P.M. THURSDAYS 7 P.M. SATS. 1 P.M.

BY MAGIC YOUR GARAGE DOORS OPEN AUTOMATICALLY

MOTOR CAR MOTOR CAR FREE
ACCESSORIES F
\& TOOL LIST \star SPECIAL BARCAIN 1/4H.P. G.E.C. INDUCTION MOTORS

'STRAITIN"

for slmple, fool-proor, mechanical device Specincally designed for garage doors and completely elliminates the necessity for
getting out of the car to open the doors, allowing yqu to drive
sTRArTIN: Complete, 10 Gns.
including
Fitting including Fitting
Instructions.
Or 9 paymenth of $25 /=$ GARAGE DOOR HOLDERS

Extra Strong STEELTOOL BOX An exceptionally strong box of
kenerous proportions, 24 S.W.G.

19/6

GAMAGES, HOLSORN, LONDON, E.C.1. HOL. 8484. Thursdays, 7 pm .

LESDIX latest CRYSTAL SET
 wireless re-
ceiver-needs - ceiver-needs aerial and carth. In black Or brown
Bakelite case with litz aerial coil, germanium detector which needs no adjust ment, solid dielectric var. condenser, transformer, double headphones and plugs and sockets for aerial, earth and headphone connettions. Aerial tested and ready for SEWING MACHINE MOTORRS. Brand new, with fixing bracket, foot switch and needle-lite ; radio and tele, suppressed. E7.5.0, post $3 / 6$ extra. MOTORS. A.C, Brooks Cub, I/6th h.P. capacitor start, 230 V. semi-enclosed, $1 / 10 \mathrm{~h} . \mathrm{p}$. enclosed, brand new, $1,400 \mathrm{r}$.p.m. $230 / 50$ volts, $75 / \mathrm{l}, \mathrm{carr} .5 / \mathrm{c}$.
SLOTTED ANGLE. I4-gauge mild steel, 41 in . Wide formed to 90 -degree angle, giv. x inin. double slotting on $3 i n$. side, per ft., with nuts and boles. Carr. \& pkg at cost.
CUTOUT. 12 or 24 yoit 60 amp . cutours enclosed in bakelite case, $15 /-$, pose $1 / 6$. Nevile Mercury Cutouss in iron box with glass frons, 20 amps. for 72 cells, $35 / \mathrm{F}$, post $3 / 6$.
ROTARY CONVERTERS. A.C.JD.C 24 volts D.C., input 230 volts A.C. wates output, $95 /$-, carr. $5 / \mathrm{h} .110$ volts D.C inpue, 230 volts A.C., 200 watts output, C12.10.0, carr. 10%. Starter, 45/-. Write G.P.O. MAG NETIC COUNTERS. D.C. coil, read to 9999, all tested. 5/-, post 1-/ D.C. ELECTROMAGNETS. 6 volt twin-coil type, weight 10 ozs.; lift 4 lbs

ELECTRADIX RADIOS Dept. H.
214, Queenstown Road, London, S.W. 8 Telephone: MACaulay $21159 \Longrightarrow$

Triangle leads again !
 with the finest set of STOCKS \& DIES produced

> MORE POWER OPERATIONS at a lower cost than any other 'Do-it-yourself' equipment

Volf Cub POWER EQUIPMENT
 'The Family Favourite'

Obtainable from all tool merchants Fully guaranteed and T.V. suppressed

To all "PRACTICAL MECHANICS" Readers Dept. 104, Wolf Electric Tools Limited, Hanger Lane, London, W. 5

Pleose send

the descriptive
Brochure of Woll
Name...
Cub Equipment
and detais of
Pion
Address

This IS the
BARGAIN OF THE YEAR
SILK SCREEN PRINTER with ALL SUPPLIES \& FREE COURSE!
PRINTS IN SIX COLOURS $\begin{gathered}\text { This } \\ \text { great is the } \\ \text { new }\end{gathered}$ printing and colouring process for aniataurs or professionals alike and all hobbyists. Its versatility Is enormous. It will print a few coples, or hundreds.
to a professional standard, in solid colours, or int ricate to a professlonal standard, in solld colours, or int ricate designs, on cloth, paper, wood glass, metal, etc. Print
greeting cards, toys, models. drawings. paintings in full
Fuorescent colours greeting cards, toys, models, drawings, painings in ruis
colour, photodraphs, type-script. Fiuorescent colours, suede flock and noveliy finishes. Iransfer papers for print
ing your oten transfersalso available. Can also be used as ing your oitn transers also arailable. Can also Nowhere plse is such a large and comprehensive outat onered
for so littile money. As suppled to $\mathrm{K} . \mathrm{M}$. Government, Educational Authorities. Printers and private users throughout the world. Thousands testify to the tunity PAPER, WOOD, CLOTII, PLASTICS. ete. AMERICAN PUBLISHERS SERVICE DOCKING ROAD SEDGEFORD.

Make tracks for your Garden

And make chem now with dry sunshiny days ahead and che long lighe evenings of summer. What are your materials? Track parts, 2 few lengths of wood, 3 pound or so of mixed sand and cement and whacever else your is it so begin this boundless is it to begin this boundless, fascinating hobby. And what your friends will admire it ! your friends will admire it! garden that is served by a real live working railway.

BASSETT-LOWKE LTD.

21, Kingswell Street, Northampton
London: 112 High Holborn,W.C.I. Manchester: 28, Corporation Street.

TAKE UP PELMANISM

For Courage and Clear-Thinking

Abstract

The Grasshopper Mind YOU know the people with " Grass-- hopper Minds" as well as you know yourself. Their minds nibble at everyching and master nothing. At home in the evening they tune in the radio or television-tire of itthen glance through a magazinecant get interested. Finally, unable to concentrate on anything, they either go to the pictures or fall asleep in the chair. At their work they always take up the easiest job first, put it down when it gets hard and start something else. Jump from one thing to another all the time.

Reduced fees for members of
 Her Majesty's. Forces
 (Apply for Services Form.)

There are thousands of these peoole with 'Grasshopper Minds' in the world. In fact, they are the very people who do the world's most tiresome tasks-and get but a pittance for their work. They do the world's clerical work, and the routine drudgeery. Day after day, year after year-endlessly-they hang on to the jobs that are smallest salaried, longest houred, least interesting, and poorest futured !

What is Holding You Back

If you have a 'Grasshopper Mind you know that this is true. And you know why it is true. Even the blazing sun can't burn a hole in a piece of tissue paper unless its rays are focused and concentrated on one spot. A mind that balks at sticking to one thing for more than a few minutes surely cannot be depended upon to get you anywhere in your ycars of life!

What Can You Do About It? Take up Pelmanism now! A course of Pelmanism brings out the mind's latent powers and develops them to the highest point of efficiency. It banishes such weaknesses and defects as Mind Wandering, Inferiority and Indecision, which interfere with the effective working powers of the mind, and in their place develops strong, positive, vital qualities, such as Optimism, Concentration and Reliability, all' qualities of the utmost value in any walk of life.

Remember-Everything you do is preceded by your attitude of mind.
The Pelman Course is simple and interesting, and takes up very little time; you can enrol on the most convenient terms. The Course is fully described in "The Science of Success," which will be sent you gratis and post free, on application to :

PELMAN INSTITUTE,
130, Norfolk Mansions, 1
Wigmore Street, London, W.I. WELbeck 1411/2
post this free coupon to-day Pelman Institute,
130, Norfolk Mansions, Wigmore Street, London, W.r.
"The Science of Success," pleasc.

Name

Address

PELMAN (OVERSEAS) INSTITUTES, DEL HI: 10. Alipore Road. MELBOURNE: 396. Flinders Bor 1489). PARIS: 176 Boulevard Haussmann. AOI L4TER FAM: Prinsengracht 1021.

The one I have in mind is a Swan, provided with a metal stopper. The method of conversion is as follows :-

Bore a hole in the stopper sufficiently large to admit an ordinary bayonet lampholder. Screw the lampholder into the stopper with the bulb facing inwards. Attach to the other end of the lampholder about 6in. of stout double flex. To this should be attached a pronged connector. The cap complete should then be screwed into the footwarmer. Sufficient flex with proper connectors should be provided to enable the footwarmer to be connected up with the plug in the bedroom. As a result of this arrangement the footwarmer can be connected or disconnected while resting in bed. Any hole which may be in the warmer can be used to detect if the bulb is functioning and to allow the passage of air.
[It might be wise to increase the size of this hole to ensure sufficient ventilation. A totally enclosed bulb has a very short life.-ED.]

The bulb, which should be sufficiently narrow to allow its being passed into the footwarmer, should not exceed 15 watts. This when under the bedclothes develops a sufficiently high temperature. A higher wattage might result in the

The two models made by fohn Pope.

Using the Simplified Orrery

S^{I}R, With reference to Practical MechANICS, February, 1956, on page 249, "Using the Simplified Orrery," there appears in Fig. I4 the heliocentric positions of the planets for 1955. I see that the positions of Mercury are not complete.

Mercury is shown as: Inner circle, positions, 1, 2, 3; second circle, positions 4, 5, 6 ; third circle, blank; fourth circle, positions, II, I2, 13.

What has happened to positions $7,8,9$ and Io ? Were these unknown, or is it a misprint ? -M. S. Leach (Swanage).
size. The best way to fix Mercury is as stated at line 6, paragraph 2, column I, page 249 , i.c., from the right ascension shown in Whitaker.
Positional astronomy is a most exact mathematical science, and any good set of planetary tables for 1955 will provide reassurance that Mercury has not gone without attention.-F. W: Cousins.

Cinéprojector Mechanisms

CIR,-I read with interest F Mr. F. G.
Rayer's notes appearing in the January, i956, issue of Practical Mechanics, on cinematograph projection mechanisms, and I agree that the potential constructor can obtain many of his mechanical requirements ready-made in the form of gears, pulleys and plates.

I would, however, like to express the vicw that Mr. Rayer's comment, "that a machine can be constructed without very great difficulty;" is apt to be a little misleading to the would-be constructor, in that whilst such vital parts as the Geneva stop, sprockets, guide and gate can be readily produced by readers who possess, or who have access to, machine tools, it is a matter of quite some difficulty in getting these key components made by hand or engineered at some workshop.

Admittedly, the beater-roller, or Demeney dog-presumably one of the movements "6 which leinds itself to home construction " -could be home-made, but what of the associated take-up sprocket; supply and take-up relationship between dog and sprocket is very critical. The apparently simple beater-roller mechanism is very much underestimated as an easy movement to make, in that any eccentricity or inaccuracy of pitch in the associated sprocket will result in " hunting."

The Geneva Cross, or Maltese Cross would, of course, be a very difficult movement to produce accurately by hand methods. The claw movement, however, could be made by hand, providing that considerable care is taken. Mr. Rayer makes no mention of the barrel shutter, which is perhaps the simplest and most efficient of cinematograph shutters. This device can be arranged as an integral part of the claw and cam movement and could conveniently be interposed between gate and objective lenses. Gearing of any. description is eliminated with this type of shutter and the light is chopped horizontally'to the path of film travel and not obliquely; as with a 'fan shutter.

The take-up spool can be quite a problem. In operation it can be appreciated that the take-up spool should gradually and evenly rotate to a progressively lower speed to accommodate the ever-increasing amount of film on the spool. Sensitive tension springs (and slip drives) sometimes are unreliable. With a load of 400 ft . of film on the take-up spool I have known them lose their operating
efficiency, resulting in a pile-up of unwound film. A gentle continuous tension should be maintained between lower sprocket and takeup spool and this can be achieved by a positive drive to take up, incorporating a compensation device, or clutch arrangement, on the spool carrier.

Although it was not Mr. Rayer's purpose in his discussion to appraise the various optical and illuminating systems of the cinematograph projector, I feel that mention c: these functions as prime considerations in achieving satisfactory end results would not be out of place. From the outset, the optical alignment and focal relationship of la $\because \mathrm{p}$, reflector, condenser and objective

Mr. IG. 7. Owen's lathe modification.
lenses (not discounting prisms if these are used) must be correlated with the mechanical configuration.
Heat dissipation of the lamp has also to be considered. This can, of course, be effected by either convection or fan.
"A cinematograph ", cannot be built by " horse and buggy " methods" but, in conclusion, I would like to say to those who appreciate the difficulties that may arise and acquaint themselves with the optical fundamentals, merits and demerits of the various movements, much satisfaction and pleasure can be derived from building one's own projector.-L. D. Cogswell (Gloucester).

Checking Rifle Sights

CIR,-In the February issue of Practical Mechanics, under "Letters to the Editor," you published a letter from W. J. Stannage $r e$ checking rifle sights. This is incorrect.
It should read: "After firing five shots at the centre of target, observe where the group is and correct the sights as follows : Group to left of bull, move foresight to left; group to right of bull, move foresight to right ; group above bull, move foresight up; group below bull, move foresight down; i.e., the foresight is always moved into the same direction as the error of the group on the target.
A useful formula for finding the distance to move foresight, providing the backsight is set at the same range as the rifle is being checked, is as follows :

Error of foresight in inches = distance of foresight from backsight on rifle in inches x error of group on target in inches \div range in inches.
If the rifle is firing high, i.e., requiring a higher foresight, this may not always be convenient, but by lowering the backsight by the same amount the same effect can be obtained.-P. Smith (Kingston).

Clutch-operated Drive for Myford M.L. 7
 Lathe

CIR,-The photograph below is of a countershaft belt drive for my Myford lathe. This alteration was carried out at a very little cost and was all done on the existing lathe.
I have used this clutch very successfully for a long time, and it-has resulted in marked improvement in the performance of the lathe in general, thus avoiding undue wear on belts, pulleys and switchgear in motor.G. J. Owen (Dagenham).

The Rocket and the Jet Engine
SIR,-In the December issue of Practical Mechanics it is stated in "Fair Comment " that both the rocket and the jet engine are identical in the mechanisms of their thrust development.
Whilst this may be near enough correct, speaking generally, it overlooks the sharp basic difference between the two types of power unit. The atmospheric medium is only a hindrance to the rocket, since it obeys laws which, from the aeronautical point of view, are space laws.
The jet engine, on the other hand, must have air, which it uses in huge quantities. Because of this, it sets up, in the atmospheric medium, a local pressurevelocity field of force, and this, in turn, sets up a translation dynamic or "tractive" on the jet. Because a jet engine burns fuel, however, a large proportion of its thrust is derived from positive or rocket drive.
Rocket drive is the most expensive of all and for this, and other reasons, the jet engine, in its commercial applications at any rate, will be modified to make more use of "harmonic drive," as does the by-pass engine. - Martin Maher (Ireland).

Gears for Remote-controlled Model Car

-Correction

S

IR,-In Letters to the Editor on page 269
(February issue), J. Woodhouse (E.5) gives an electrical circuit for model car gears.

From this I observe :
(I) With arm A on the contact B , current passes from the battery, through the motor, and back to the battery.
(2) When A is in contact with either points C, D or E, current returns to the battery

Mr. M. S. Leach's corrected circuit.
without passing through the motor. The motor is therefore off, and the resistances are of no use.
Surely, the common lead from the resistances should be taken "up" (as per sketch) to side B of the motor and not "down," as in Mr. Woodhouse"s circuit!-M. S. Leach (Swanage).
[We regret that the circuit should have been as Mr. M. S. Leach suggests.-ED.]

Author's Comment

SIR,-The circuit diagram does not specify the values of the three resistances, but I found that the motor needed all the power it could get. I actually tried a variable resistance in the drive motor circuit, to act as accelerator, but the loss along the fine flex was such as to make this impracticable:-A. B. OrR (Belfast).

Conduit Wiring for the Home Workshop

 SIR,-I have been reading the article in D the February issue of Practical Mechanics by W. J. Stannage entitled "Conduit Wiring for the Home Workshop," and although I consider this a most excellent article I must point out an omission.In the paragraph on socket outlets reference is made to the Ring Main system. I must point out that in order to comply with the Electricity Board's requirements, plugs and sockets for this system must be of the 13 amp. 3 pin type and (I quote from the 13 th edition of the I.E.E. regulations) : "Where the use of fused plugs is essential for compliance with Regulation 114(b) the plugs and associated socket-outlets shall be of a pattern, in which non-fused plugs are unobtainable."

I would further point out that on D.C. supplies the socket outlets must be of the 3-pin type.-J. E. Dixon (Portishead).

Author's Comments

S 1 , -The opening sentence concerning the plugs should have read: "In most cases four plugs or socket outlets will be enough, and the cheapest way to install these is to use the 13 amp . variety on the ring main system."

The further comments concerning the earthing are in order; but are not necessary as any socket outlet of a reputable make, suitable for fitting to conduit fittings, will be automatically earthed to the conduit. The conduit is in turn earthed, and this was covered in the article. All sockets and plug tops of the 13 amp , variety are fitted with three pins, and are also fused. I think I am safe in saying that it is impossible to obtain either a two-pin socket or an unfused top.
Mr. Dixon states that on D.C. supplies socket outlets must be of the three-pin type. I will go further and say that all sockets, whether on A.C. or D.C., should be fitted with three pins.-W. J. Stannage.

Radio Controlled Models-Correction

W ${ }^{E}$ regret that a printer's error appeared in line seventeen, column two, page 526 of our September, 1955, instalment of Radio Controlled Models. The figure mentioned of 32 mA should have been $3 \frac{1}{2} \mathrm{~mA}$.

The Advance of Plastics

A N item appeared in "Science Notes" in the February, 1956 issue, entitled The Advance of Plastics" in which mention was made of a synthetic resin which could stand'a temperature of 1,000 deg. C. We have since learnt that the author of this statement claims to have been misreported by the French press. What he intended to convey was that the synthetic resin, when introduced into the flame of a bunsen burner resisted for a few seconds, then took flame, but that the flame ceased to burn as soon as the resin was withdrawn.

The pre-paid charge for small advertisements is 6 d . per word, with box number $1 / 6$ extra (\mathbf{m} inimum order $6 /$). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southampton Street, London, W.C.2, for insertion in the next avallable issue.

FOR SALE
$\mathrm{C}^{\mathrm{OMPRESSORS} \text { for sale, }}{ }^{24} \mathrm{CFM}$, with driving whel and receiver, price $\Sigma_{\text {a }}$ it h.p. Heavy Duty Motors, price house, 2 13, carriage Bell Road, Hounslow, Middiesex. SERVICE METERS, credit
 City Road, London, E.C. 1 . CHEAP, GOVERNMENT WIRE peas, beans, roses, arches green peas, beans, roses, raspoerres.
hreusen- tring
etc.; strong, flexibe, steel-stranded
 thicknesses. Postcard to-day for free samples. Greens Government Stores

complete range.
P.M.
Decano
Co. Road Jersey, c.I. Send stamp very pawerful, only ex each Dept. A, Scientific Products, Cleveleys,
$\mathbf{R}^{\text {UBBER MOULDS for Plaster }}$ or compound for mould making $8 / 6$ per compound for mould making 8/6 per toy casting moulds from $3 /-$ each
s.a, e. or list. F. W. Nuthail. 69 s.
Mark's Rod, Hanwell, London. W.?
$\mathbf{B}^{\text {RAND NEW Brooks }}$ (hall-bearing) h.p. Motors
 working machines, grinders, evt.
Latest type fully guaranteed split
Let Latest type fully guaranteed split
phase, $£ 8717 / 6 ;$ Capacitor, $£ 10 / 5 /-$
 against cash
Street, Rugeley, Stoon
Staf
' $\mathrm{S}^{\text {TERNETTEP }}$, Domestic Refrigerarecondition units, complete with motors

 photograph and detalls. Instructions, drawings and illustrations for con-
structing cooling coil, together with structing cooling coil, together with
service instructions. $3 / 6$, Liverpol Lane, Liverpool. 9 ? $\mathrm{U}^{\text {PHOLSTERERS }}$ from the fapplies direct Moguettes. $12 /$ yard Leathercloth, $5 / 9$ yard. Tapestries, from $7 / 6$ yard,
72 in . Hessian, $1 / 11$ yard Chair Web
 Spring
Springs,
Cushion
s.a. e, Units,
Tonsion
Templete free list. Benfleld's, 3 , Villiers Rd.
N.W.2.
COER all your Floors with New COER Ply your Floors with New$3 / 16 \mathrm{in}$. thick). Choice of 7 hardwoods and 8 parquet patterns from
$15 / 11$ to $^{2} 19 / 7$ sq. yd. Send 10d. for particulars. simple instructions. ect.
New-Een (PM). 101, King's. Cross
 A $^{\text {LÚMINIUM }}$ qually, save $\operatorname{\text {LADERS,}}$ s. super $\mathbf{1 0 0 , 0 0 0 , 0 0 0}$ Nutser mols.
 Ror latest list. Whiston (Dept.
PMS). New Mills, stock ort. $\mathrm{G}^{\text {LASS FIBRE car }}$ bodies, sidecars
 trial lot $26 / 3$. or quotaton for any
surrace area. Polyester
Resin
 and metaiurgical mounts imeaukinul
 for metal car body, mude uards,
wheel-arch and frame repairs, trisi wheel-arch and frame repairs, trisi
unit $12 / 6$. Burst pipes and tanks unit
with glass cloth and tape
12/_. Tanks
Trial Units for all purposes, each containing free mixing and dispensing Epoxy Paint, waterproof, heat resis tant porcelain finish for baths plnt. with Catalyst. white. black or clear. Information Sheets. on
fibre technique, list
fith
wrice
list, stamp. please, ". Buslness. Man's.
Guide to the Glass Fitre Technique." 151.- to to the Glass Fibe Technique, 81 , pages. Gilass Fibre Eperts with units for. all purposes Hartington, Staveley, Chesterfild Derbyshire. Part posi 1% - on unils

50
X ASTRO. TELESCOPE KITS, 2 in . dia. instrument at 40 in. focus easily prepared in $1 e w$ minutes (i) seadily adaptable parts comprising mounted in special long durat cell, exterior stoved instrument blact crystaline finish. (2) turned black piece focusing mount. (3) adjust able brass knurled eyepiece, nag nification
(equivalent
20
20
diameters
X (equivalent $2,500 \quad \mathrm{X}$ area), shows intricate lunar detail, Saturn's $\underset{\text { Rings, etc.; (4) test certifcate with }}{\text { latife }}$ - explanatory drawings details of simple altazimuth mountings. observational hints and tips All parts machine turned ; precislon lenses; numerous unsolicited testimonials: price $59 / 6$, regd, post and packing 3/6; extra Eyepieces 6,400 X areat
X 80 X for Astro daylight and Lunar
observation, $35 /-$, post' $1 / 9$. Complete observation, $35 /$, post $1 / 9$. Complete superior stoved aluminfum principa ube, price $177 / 6$, carriage, packing including strong stowing eylinder graplas.,availáble, $1 / \sim$ set, returnable

PORTABLE CLAMP STAND nOW avallable for mounting above nstrument; complete with altazimuth black crystalline finish; fixes to any post or fence, etc in horizontal o vertical position ; price 32/6, post $2 /$. veltic
Below
7 AMBONI ELECTRO-STATIC PILES tial for static electric experimenting charging Electroscopes determinin radio activity, ptc. size $1-x$ eling in dintres electrodes. no hemical action with instructions price 126 , post. $1 / 6$. 21/- pair, pos

A BOVE INSTRUMENTS unobtain Alleges supplied : delivery approx T/14 days. Terms c.w.o., c.o.d. $1 /$ extra. stamp for full particulars seas by alrmail with photos $5 / /$ Please note change of address due to expansion of business. J. K. M Holmes \& Co., "Scientinc Instrumen Makers," ${ }^{\text {DDept. P.M.14), Martins }}$ North Shields. Northumberland.
DETROPOLITAN BOROUGH OF hand Electric Motors. Varlous types, and 3 phase, $200-240 \mathrm{v}$ and $400-440 \mathrm{v}$ or disposal. Further details may be obtained from the Borough Engineer R. H. Jerman, Town Clerk. Municipa Bulaings. Wanos orthe s.
HOSEPIPE bargains ! 1 ! Highest 11 quality rubber, long lengths, al
 black $22 / 6$, green $23 / 6$: 120 ft , $45 /-$
carriage
paid, Samples

Hobsysteel
immediat H delivery. Flat steel strip home construction and decorative ing or riveting for ornamental scrol work, light fttings. brackets, gates etc. Send 5/- now for packets thick, or 12 ft . of $5 / 16 \mathrm{in}$. $x ~$
$6 / 32 \mathrm{in}$., or
6it. of 1 in . x tin.. or 6 ft . of 1 in . in. : all in 3 ft. lengths, postage paid plied on demand frer. "i Hop steel," Bobbington, Staffs
A LL from gold and silver cases: 10 15/- the 10 . Tat Movements, Eake lewel the 3. Bensons 15 Jewel Lever
Movenient, $7 / 6$. Alsu from $£ 20$. Gold Cases, Plate Keyless Centre Second, $10 /-$ beautiful full Plate,
\&5, Movements accept $12 / 6$ expenive Keyless Waltham Movement Engish Lever Movement $15 /$ Second tiful 200 -year-old Verge, $12 / 6$: Key less New Limit, 15 Jewel Movement

Perspex" for all purposes Pclear or coloured dials, discs

$B^{\text {ARGAINS }}$
Tools, Vices, Drills Ma, others Catalogue free. Greens. 412 Albert St. Lytham
GIVERING OLD MIRRORS BOOK materials Electroplating, 108 pages; chromium, Silver, nickel. $5 / 6$. Stamp for plating
materials. Argenta Products, Stones down, Brightling, Robertsbridge,

HOBBIES

T \& GAMEBIES specifically devoted to the manufacture of toys, games, sports equipment and amusement novelties Annual subscription
men copy
$3 / 6$. $10 /-$
Techniview Speci-
Pubmen copy ${ }_{\text {lications }}{ }^{3 / 6}$. 125 Techniview Pub- ${ }^{\text {Oxford }}$ Street,【AKING YOUR OWN ? Telescopes. Enlargers. Projectors then get our booklets .o How to Use Ex-Gov, Lenses \& \& Primins," price $2 / 6$ radio and scientific equipment fres for s.a.e. H. W. English, Rayleigh
Rd., Hutton, Brentwood. Essex. TNJECTION MOULDING MACHINES. For industrial purposes, handicrafts or hobbies we suppith hand
operated Plastic Injection Mouldms operated Plastic Injection Mouldny
Machines, Moulds made. to your Marn design. Write/phone to Dohm S.W.1. (VICtoria 1414.) DINGHY BUILD YANOE, Plans, Kits, or com pleted Boats. S.A.E. Canoe Services SUPER SENSITIVE, medlum and long rave one-valve Radio; new method of construction drawings
 Leamington Spa, $\mathrm{S}^{\text {HIPS IN }}$ IN BOTTLES.-Construc faring Men. From Model Shops and
Hobbles Ltd. Bing
ling
Speclallst. Nor

BOOKS

10,000
FORMULAS, Processes This is the 1,000 -pase Roney making and money saving book of the cen able. Full approval against payment 27/6, p.pd. Below:
BUID YOUR OWN PHOTO Equip Enlargers, printers. dryers, timers etc., G/-p.pd. Below:- BUILDERS
A MERICAN BOAT BUL And Annual: $\begin{gathered}28 \text { boat plans, } 8-22 \mathrm{tit} \text {. } \\ \text { other } \\ \text { helpful } \\ \text { articles, } \\ 7 / 6 \text {. }\end{gathered}$ TELESCOPES DESIGN AND CON Really outstanding American designs at lowest cost to make. Below:HOW TO REWIND and Service Complete 'Practical Book only $3 /-$, p.pd. Below:IATHE HANDBOOK, 3 hooks in one, turning, netal spinning, Jigs attachments, special operations ; 200 1llus "how-to-do-it " material throughout Below:
A RC AND SPOT WELDERS For The A Small Shop. Easily, cheaply
Selow:- SOLDERING AND BRAZING
Simplifed. Outstanding Ameri-
Car bódy repairina. Complete T/6 A p.pd ${ }_{4}$ C lists free. Alustrated Publishers Service (P.), Sedgeford, Norfolk

HANDICR̄AFTS

MUSICAL MECHANISMS, Swiss
made for fttlng in cigarette Made for fitting in cigarette for complete list of handicraft
materials. Metwood Accessories, 65 materials. Metwood Accessories, MAKE Yoxes." SWR own Musical and Novelty Mechanism. and Kits of Box Parts; s.a.e. for price and tune
ist. Mulco Ltd., 87, Cimbridge Road list. Mulco Ltd., 87. Cambridge Road
London, N.W.6.

ELECTRICAL

SELENIUM RECTIFIERS, Iarg and 12 volt, 3 amp., 10 : 4 amp. 12/-:
sors.
L. Unwin, Valleyfelds, Bousley Rise, -Ottershaw
MODEL
powerful and amazingly
economical
 post paid; 3 to 6 volts and 3 to
volts; speed $4 / 5,000$ r.p.m. ${ }^{2}$ size lin. x 11 in ; weight $1 \frac{1}{2} \mathrm{oz}$; drives ers. lin. and 1 tin. acro Motors, Dept. PM, ${ }^{\text {M Highland! }}$ Alkrington Green, Middleton. Maiz
SUPER-TONIC SUN-RAY LAMPS Ultra-yiolet/Infra-red combined Superb therapeutic quality, controlled output, automatic exposure
all mains. Listed $£ 7 / 10 /$, our price 80/- S.A.E. villustrated brochure Dept. 13. Sclentifio Products, Cleve

WOODWORKING

WOODWORKING NACEINES,.-ail
Cast-iron constructed. Complete E5/10 101 a. , complete. motorised E30. Planers, 5in, s12; Bowl Turn \& $7 / 10 /-$ Lathes $\pm 7 / 101$, ; Combina-
 written and money refund guarantice. 4d. stamp for illustrated, booklet.
James .Inns (Engineers), Marslahli St., Noitingham. (Engineers), Marsha A WBENCHES, all- sizes from El0 motorised
Spindle Assemblres, from $22 / 6$ for saws up to 36in: Motors, Engines. erms. Send $1+$ for bàndbook-catulogue. Price 11st Iree, Beverley Pyo ducts sturton-le-steeple, 17 . Nots.
A RE YOU
LOORING A RELIABLE FIRM for Timber, Plywrod, Wallbourds, -Veneered Ply-
wood?. Call at our wharelouse or send wood?. Call at our whice lists. N. Gerver. $2 / 10$. Cambridge Feath (E.R.) station) (AMHerst 5887.1
DLYWOOD, $24 \mathrm{in}, \mathrm{x}$ 12in. x 3.16 in.
 3/16in.. 6/4 doz. 18 in . x 12 in , Fold. Rawtenstall. Lancs. Lis, Capta WOOD LATHES, Attachments, culal Saw Biades. Spindles or sted Then send 6 d for illustrated literature, price list and H.P. terms. don Road, Newark,

EDUCATIONAL

TREE Brochure giving detalls of Television, and all branches of Electronics. Coursés for the Hobby Enthusiast, or for those aiming at the A.M.Brit.I.R.E. City and Guilds, R.T.E.B. and other Professtona examinations. Braitn Win's largest Electronics organisation. Moderate fees Write to E.M.I. Institutes, Dept
IEARN IT AS YOU DO IT-wre combined with instruction in Radio. Television, Electricity, Mechanics, Chemistry, Photography, ete. Write DERCHANT NAVY Radio Officer travel and adventure overseas travel and, gaventure T P.R:E. TECHNICAL PUBLICAfor superheterodynes, $5 / 9$. Data for Meter $7 / 6$; sample copy 4 Strength Meter. 7/6; sample copy "The Pracpublication of the Institute quarterly membership and examination dati, post free Sec P.RE 20. Frirfleld Road, London, N. 8 .
TECHNICAL SERVICES offered by type (electrical or mechanical) mathematical, analyses, strength and Box 130, f/o practicar MECHANICS (Continued on next page)

FREE DRAWINGS

showing

STEAM and HOT-WATER INSTALLATIONS

Readers of "Practical Mechanics" are offered, without charge or obligation, tions of thermostatic control, steam trapping and automatic air venting equipment on a wide variety of steam and hotwater heating and process applications.
Ask for current list from which to select.

SPIRAX-SARCO LTD. (TECHNICAL DEPT.)

Cheltenham, Glos.

MAKE A RADIO

NO SOLDERING-only a screwdriver

 and pliers needed. FULL-SIZE plans and easy-to-follow builsets, $2 / 6$ post free
CRYSTAL RADIO KITS at $10 / 6,17 / 6$ and two at $21 /$ - post free,
EXPERIMENTAL KIT No. 1, builds
BASIC" a very simple I-valve set, 35/ "BASIC" a very simple l-valve se
"NEW ECONOMY 1 ", $52 / 6$ post free. NEW ECONOMY 2," $82 / 6$, post free. PREFECT ONE," $\ell 3$ pose free.

5end S.A.E, for list-or send $2 / 6$ P.O. for

LANCHARD'S, DEPT. RM, 13, Gainford Gardens, Manchester, 10

new invention | replates metals and |
| :---: |
| gives a hard olromie | finsh

Compere
Com
and DuKROME $13 / 6$ Cuatefit Also thisity ily out fits at 15s, Od, deposit
genuine silver plating. Send P.O. now or fo
details and plated sam ple send 4d. (stamps) to:
A. DUTCH \& CO.

Monkhams Lane, Woodiori Green, Essex

CHEMISTRY APPARATUS

COMPLETE PRICE LIST

 Stoke Newington, London, N. 16

(Continued from previous page)

 WANTEDWANTED, January 1953 Practicaz Mechanics. ref.:-: Oit Burner Conversion for Stoves." Horsell, 132, Clensham Lane, Sutton, Surrey

WATCHMAKERS

WATCH REPAIRERS, Hobbylsts, Watches, Movements. Lathes, Watch Watches, Movement, Lock Spares, etc. Loader Bros.,
and Cloct
36 Milestone 36 Mi
oxford.

MODEL DEALERS

HOBBIES LTD. have over 50 years' needs of morience of catering for the needs of modellers, handymen and Bew Oxingham, Glasgow, Manchester, Leeds. Sheffield. Hull, Southampton, and Bristol. Head Ófice, Dereham, Norfolk.

PHOTOGRAPHY

INLARGER and Camera Bellows 11 supplied; also fitted. Beers, st. Cuthbert's Road, Derby
PHOTO ENLARGER CASTINGS. $35 /-$ for 35 mm . 2 l in. x 2 q in. bellin, x 31 in . Extremely good value. S.A.E. for details, V. J. Cottle 84 Ba , Chap-
lin Road, Easton. Bristol, 5 .

\section*{SITUATIONS VACANT} A. M.I.Mech.E., A.M.Brit.I.R.E., City -No Fee "' terms. Over 95% successes. For detalis of Exams and courses in all branches of Engineering, Building, etc., write for 144-page $967 \mathrm{~B}), 29$, Wright's Lane, London. | 967 B |
| :--- |
| W .8. |

ELECTRIC WELDING PLAN'T Arc Welding Sets by leading Makers. Unused. Surplus and second Hand. Examples:
Cen. Elec.and Others 200 amps. max output.
\& 42.160 amps. max. output. $£ 36$. 100 umps. \&24. 160 amps. Max. .utput. z36. 100 amps.
max. output. $\& 2810$. 85 amp . max. output. max. output. 22810 . 85 amp. max. output,
£24. All with infaitely variable current ontro
Catalogue of Arc. Spot and Butt Welders HARMSWORTH, TOWNLEY \& CO. Brook Road, Manchester, 14

GOVERNMENT

 SURPLUS BARGAINS ASTRO COMPASSEAS,-Mk. TI. As 54 and Camera Pan \& Tilt head Mar. 55 . Each 17/6, post $2 /$ (A few less sight(not required for pan \& tilt head) at
$12 / 6$ post $2 /-$) MP MOTORS. $-22 / 24 \mathrm{v}$. D.C. 2030 V A.C. 2 amps tin. shart.
Each 126, post $1 / 6$. Similar tye motor
with zear and with gear and quadrant as described
for SELF-OPENING GARAGE DOORS MPrac. Mororist
article Aug. 's4 (copy of
ath motor if desired). $25 /$ article with motor if desired). 20/-,
post $1 / 6$.
TRAFORMERS, -Input $200 / 250 \mathrm{~V}$,
 12, $15,18,20,24,30 v$. A.C. Max 2 amps. Excellent for above motors, $1 /$ - post $1 /-$
HECTIFIERS. - Full wave. Max. D.C.
 moprox 80 watts. High speed. tin.
shart (converted $\mathrm{H} . \mathrm{A}$ F. motor/generator, power about equai to sewing
machine motor) Useful addition to workshop. Each 301, , post 1/6. approx. 180/1. Drive recessed to take in. shaft, low speed shaft 316in. dia.
Dimensions 41 n . x 31 in . x 21 n . Each 10/-, post, Sd. phones. Transformers, Pumps, Lamps etc., etc. Hundreds of Barsains. MILLIGANS
24, Harford Stret. Liverpoos
Money Back Guarantee.

TOURING HOLIDAYS
$\boldsymbol{B}^{\text {ED AND BREAKFAST in South }}$ 1956. and Superb Illustrated Gngland Guide 1956. Superb recommended inns, farms, describing recommented haces, of his-
hotels. guest houses, places
torical interest, routes. etc., $2 / 9$, post torical interest, routes. etc., $2 / 9$, post
free. Addresses other areas, P.O. free. Addresses other
6d.) Herald Handbooks.
Road, Croydon

CAMPING

CAMPING SITE available on farm for cyclists; water. fush tollets "Carroyd," Hambleton, Blackpool. (Tel.: Hambleton 222.)
MISCELLANEOUS
RUBBER MOULDS for Plaster Sample and list, Wallplaques. etc. quiries invited. Castmoulds (Dept. MUILD YOUR OWN REFRIGERAB TOR, all components available at reasonable prices; Frigidaire
 duty Motors, £3 Chrome Cabinet fittings, new, sl ; money back guarantee; s.a.e for list and schematic diagram. Wheelhouse 1, The Grove,
Isleworth, Middx. (Phone: Hounslow Isleworth, Middx. (Phone: Hounslow
7558.$)$
" ${ }^{\text {TORTUNES IN FORMULAS." }} 900-$ American technical hobby and other for lists. Berga Ltd. (Dept. P2), Hastings. trated Catalogue No. 12, containing over 400 items of. Electrioal, Mechanical and Radio Equipment for
experiments. etc., price $1 / 6$, post free. experiments, etc., price $1 / 6$ post free. Brighton, Sussex.

Atr rifles - accessories

SPARKS DATA SHEETS
Constructional Sheets of Guara
Tested Radio Designs
Patiery Onerated
JUXIOR "1-V. M/L waves. Fine little set. BOSUN , 3 -V. M M. More Powerful.

SKIPPER" 4-V. M/L. TRF.
CORVETTE "4, Ali-Wave Superhet.
POCKET PAK $"$ i-V. PORTABLE, Med. waves only, Good phone sigs. Good Range. "ECLIPSE"4-V. ditto M/L. S'het. V/Good.
"DX. $1 " \mathrm{~V}$ S. W. RX. Plug-in Coils. MAINS OPERATED
CUB ${ }^{\text {CV }} 2$ V. M.L. A.C. Simple but good. "CUB" $2-V$, M.L. A.C.D.C. Power Range \& Rower. All Plus Rectifying Valve. Data Sheets of Instructions, etc., 3/- Post
Free, excepting "Eclipse," $3 / 3$. Free, excepting Echpse, 1 ITIER The Sparks version of this noted circuit has a Separate Control Unit and is highly praised for Simplifity of Layout and Results.
Full-Slze•Data. Sheet. $3^{\prime} 9$.

MANY OTHHBR RECEIVER AND AMPLI-
FIER DESIGNS AVAMABLE. LIST 210. Components \& Chassis Avaliable.
L. ORMOND SPARKS (M),

Valley Road, Corfe Castle,
'Phone Corie Castle 377,

ALREADY WELLOVER

 100,000 IN USE!
"DERMIC OILER

5/9

As supplied to Official-Department As Undertakings, Engineering, AviaUse a "DERMIC", Oiler forc. clean and accurate lubrication of models, clocks, watches, sewing machines, typewriters, movie cameras and projectors and any delicate instruments or mechanism. Can also be used for the clean and efficient application of soldering fluid. Packed in box with full instructions. Get one from your local Model or Tool
Dealer or send direct to the actual manufacturers.
S. \& B. PRODUCTIONS, Orton Buildings, Portland Road,
South Norwood, London, S.E.25, Phone: Liv 4943

NEW!

1956 EDITION of
The Home Constructo JUST OUT: incorporating *23 CIRCUITS.-Superhets
 tional detalls. supa - simplified lay-out and point-to-point wring diagrams for building superhets. building. constructional detalls fo \star COII. P
\star CAR HADIO.
*BATTPRI CHARGER.

* M.FGIC EVF Tuning Indicator \star ADDITIOK.
*ADDITIONAL I.F. STAGE. tion. Resistance Colour Code,
Formulae. and *CATALLOGUE, "- know-how", "llusof compatalogue and price list
Woir. Conts, recelvers, books, Xacto T, Black and Decker:

YOUR COPY TODAY! FOR
SUPACOILS (Dept. M.6)
21, Markhouse Road, London. E. 17

TIME SWITCHES

Hand Wound, 35-day, by Venner. Beautiful movements. 24-hour dial. Ideal fór Shop Windows, Poultry, Process Timing, etc. Complete in metal case, 45/-, p. \& p. 2/6.

ELECTROSURP,
120 Fork Street. Exeter.
Phone : 56687.

GENERAL CERT
THE KEY TO SUCCESS \& SECURITY

Mecca Spray Guns Products
THE new "Mecco" spray gun shown in the photograph will spray both cellulose and synthetic paints. It is supplied with fine,

The "Mecco" spray gun.
medium and standard jets, an extra heavy paint and distemper container and strainer and a ceiling nozzle. The price is 75 s . net.

Also announced is a portable universal saw which can be attached to any electric drill from jin. upwards. It can be used for rip, crosscut, coping, jig and hacksawing operations and will saw $1 \frac{1}{2}$ in. timber or $3 / 16$ in. steel. Retail price is 49 s . 6 d . net with three blades.

A new electric sander-polisher and a hedge cutter are also available and leaflets of all these products are available from Mecca Spray Guns, 13, Lower Richmond Road, Putney, London, S.W.I5.

The new Black and Decker hedge trimmer and pruner attachment.

X-Acto Hobby Knives and Tools

THE makers of these well-known tools, 1 Trix Ltd., London, W.I, claim, "There's an X-Acto blade for every cutting fob," and produce an impressive variety of cutting tools to support this statement. Three handles are produced and the whole range of blades, gouges, punches, routers, etc., are interchangeable fits in these. Tools are supplied in various packets and in complete sets. Prices are from about 6 d . to 1 s . each for the tools and from 6 s . to 87 s . 6 d . for the sets.

Guide to Screw Thread Forms

M ESSRS. W. H. A. Robertson and Co., Ltd., of Lynton Works, Bedford, have just produced a valuable guide to the screw threads of the world, showing at a glance the forms of over 60 standard screw threads in use throughout the world, and no less than 146 series from 21 countries are indexed, together

with the reference numbers of relative national standards.

The guide is suitable for wall mounting, as well as for desk or library, and colour has been used to aid the eye.

Suppliers of Conduit and Fittings

0special interest to readers who have read our recent article, "Conduit Wiring for the Home Workshop " will be the products of Messrs. London Wholesale Warehouse, 165, Queens Road, Peckham, London, S.E.I5. They supply all the fittings mentioned in the article and a large range of other electrical fittings of every kind. A comprehensive list appears in the London Wholesale Warehouse advertisement in Practical Mechanics each month.
twô-pole trigger switch and a rib fence.
Various blades are available for cutting many materials. Prices of the 6in. and 7 in . models are $£ 21$ and $£ 25$ respectively.

Also shown photographically on this page is a new pruning and hedge trimming attachment which will fit the 4 in. "Utility" drill, the sander-polisher drill and most other drills by means of adapters. The hedge trimmer blade can be swivelled to any position and is locked by a single screw.

A specially wide-spaced hooked tooth is provided at the end of the 13 lin. blade for pruning. A sheet steel guard slips over the blade to provide complete protection and a firm hand grip, leaving only the pruning hook exposed.

The price is $£ 519 \mathrm{~s} .6 \mathrm{~d}$. and drums of cable are supplied as accessories at 24 s . for 25 ft . and 46 s . 3d. for 50 ft.

New Soldering Tools and Solder for Aluminium Alloys

M^{1}ESSRS. Tiltman Langley have developed a soldering tool which is easily manipulated, light and cheap and capable of being used for the fluxless soldering of aluminium with any normal solder used for this purpose.
The equipment used is a hand tool and an electric hot plate for raising the work to the

New Black and Decker Tools NEW 6in. and duty 7 in. heavysaws have been announced which have been designed for a variety of purposes in addition to carpentry; one of these is shown in the photograph.

The telescopic lower blade guard closes automatically as the saw is lifted off the work, safeguarding the operator, and other features include built-in bevelling and depth cutting adjustments, a

The Black and Decker 6in. heavy duty saw.
soldering temperature. The technique is to apply the solder and lightly brush the surface being tinned with a guarded refractory brush on the tool, any of the usual cleaning techniques having been previously applied to the aluminium ; no flux is used. The surfaces to be joined after tinning are placed together and a neat fillet of solder produced by sweeping through the molten solder with the refractory brush.
Enquiries should be addresed to: Frank O'Shanohun, Sidney-Barton, Ltd., Field House, 15-25, Breams Buildings, London, E.C. 4

RULES

A stamped, addressed envelope, a sixpenny, crossed postal order, and the query coupon from the current issue, which appears on the inside of back cover, must be enclosed with every letter containing a query. Every query and drawing which is sent must bear the name and address of the reader. Send your queries to the Editor, PRACTICAL MECHANICS, Geo. Newnes, Ltd., Fower House, Southampton Street, Strand,
London, W.C.2.

Preserving Seaweed

I WISH to preserve some of the more fern-like types of seaweed, but it must, if possible, appear opened out like a living plant, not flat like pressed ferns.
Could you, therefore, tell me of a good preserving solution that the seaweed could float in or some way of setting the weed in a clear jelly?
Better still, could I treat it and stiffen it like the "natural sea fern" that is sold in ornamental pots ?-M. M. Dawes (Margate).

Ycan try floating the seaweed in a jar of glycerine, to which a few drops of phenol have been added. Alternatively, you could try setting them in agar-agar. We do not think you would be able to stiffen the specimens in the way you suggest.

Cleaning Smoker's Pipes

HOW can I clean and sweeten a meerchaum and a briar pipe that have become strong through smoking, but otherwise in good condition?-V. N. Howells (Birmingham, 20).

R^{T}
UN pure alcohol or acetone through the stems of your pipes from the bowls and follow by a stream of air from a tyre pump for several minutes.

Hand Warmer Element

T HAVE recently bought second-hand a Japanese hand warmer, which in appearance looks like a thin cigarette case.

Unfortunately, the element part is missing. I believe this consists of a short spring packed with asbestos fibre; I have fixed a spring to mine and packed it with asbestos fibre, but it does not work. Do you know of what substance the spring and fibre are made, and if they are obtainable ?-A. C. Sanderson (Liverpool).

THE principle on which your hand warmer works is based on the physico-chemical principle that certain substances give an exothermic reaction by oxidation induced by a catalytic reaction set up by a mixture of the substance and air coming into contact with platinised asbestos. In this instance the
catalyst is the platinum chloride which has to be deposited on the asbestos pad. Methyl alcohol is such a substance which gives out heat on oxidation.
We would suggest that you purchase another asbestos pad from chemical suppliers such as Griffin \& Tatlock, Ltd., Kemble St., London, W.C.2, and instruct them to have it activated with platinic chloride.

Electric Fire Coal Effect

I AM building an electric fire, but have been unable to obtain anything suitable for the "coal" effect. Could you please inform me where I could obtain sodium silicate or any other suitable material to cover the area of the "coal" fire, which is $13 \frac{1}{2} . \times 7 \mathrm{in}$. and approximately $3 \frac{1}{2}$ in. deep ?-E. Tarr (Weston-super-Mare).
ODIUM silicate can be obtained from
Messrs. Townson \& Mercer Ltd., 10 , Beddington Lane, Croydon, Surrey.

Why not build up your " coal " by cementing together irregular geometrical rhomboids of perspex ? I.C.I. (Plastics Divn.) Welwyn Garden City, will recommend and supply the requisite solvent or adhesive.

12 Exposures in a 616 Camera

HOW can I obtain 12 exposures on a 616 film? My camera is a Kodak 616 folding, taking 8 exposures of $2 \frac{1}{2}$ in. by 41 in . I would rather drill another hole in the back than rewind the film.-G. Moye (Yorks).

THE P.M. BLUE-PRINT SERUICE

12FT. A LL.WOOD CANOE. New Series. No. 1, 31. 6d.*

10-WATT MOTOR. New Series, No. 2, 3s. 6d.*
COMPRESSED-AIR MODEL AERO ENGINE.
New Series. No. 3, 5s.*
AIR RESERVOIR FOR COMPRESSED-AIR AERO ENGINE. New Series. No. 3a, Is.
" SPORTS" PEDALCAR. New Series. No, 4, 5s."
F. J. CAMM'S FLASH STEAM PLANT. New Series. No. 5, 5s."
SYNCHRONOUS ELECTRIC CLOCK. New Series. No. 6, 5s.*
ELECTRIC DOOR-CHIME. No. 7, 3s. 6d.* ASTRONOMICAL TELESCOPE. Naw Sories. Refractor. Object glass 3 in . diam. Magnification $\times 80$.
No. 8 (2 sheets), 7s.*
CANVAS CANOE. New Series. No. 9, 3s. 6d.*
DIASCOPE. New Series. No. 10, 3s. 6d.*
EPISCOPE. New Series. No. 11, 3s. 6d.*
PANTOGRAPH. New Series. No. 12, 1s. 6d".
COMPRESSED-AIR PAINT SPRAYING
PLANT. New Series. No. 13, 7s. 6d.*
MASTER BATTERY CLOCK.*
Blue-prines (2 sheets). 3s. 6d.
Art board dial for above clock, Is
OUTBOARD SPEEDBOAT.
10s. 6 d . per set of three sheets.
LIGHTWEIGHT MODEL MONOPLANE. Full-size blue-print, 3s.6d.
P.M. TRAILER CARAVAN.

Complete set, 10s. 6d."
P.M. BATTERY SLAVE CLOCK, 2 .
" PRACTICAL TELEVISION" RECEIVER (3 sheets), 10s. 6d.
P.M. CABIN HIGHWING MONOPLANE.

P.M. TAPE RECORDER*
 (2 sheets), $5 s$.

The above blue-princs are obcainable, post free, from Messrs. George Newnes, Led., Tower House Southampion Street, Strand, W.C. 2.
An denates constructional details are available free
with the blue-prints.

Busing an internal mask of thin metal, suitably shaped and placed between the camera frame and film, the size of the exposure may be reduced to any desired dimension. Masks of this type, giving 12 or 16 exposures on 120 or 620 film, for use in the usual 8 exposure type camera, may be obtained. Fitmenrs enabling such film to be used in 616 cameras are occasionally. seen advertised in photographic journals. A mask could be cut from thin metal, subsequently darkened by soaking in mild acid, or in some similar way. The surface upon which the film travels should be carefully smoothed.

If the type of 616 film you use has alternative row's of numbers (e.g., up to 12), these may be used by drilling a window at the appropriate point, covered with red for ortho, or green for panchromatic film. If no further numbers are present, 16 exposures about $2 \frac{1}{8} \mathrm{in}$. by $2 \frac{1}{\mathrm{i}} \mathrm{in}$. could be obtained by drilling a further window at a suitable distance from the present window. Winding would be as follows: 1 , (I) in first window; 2 , (I) in second window; 3, (2) in first window, etc. In all cases the mask should be of a dimension to suit the extent to which the film is wound on, with the aperture centrally placed where definition is best.

De-scaling a Boiler

CAN you give me any information regarding the de-scaling of a domestic back boiler by means of chemical action?-H. Smaller (Grimsby).
TO clear the scale deposit empty the system of water and run into it a solution of hydrochloric acid in water. We advisé buying the strong commercial muriatic acid and diluting it one-third acid to two-thirds water by volume.
The danger lies in keeping this solution too long in the boiler so that chemical action also takes place on the metal surfaces; but there is a fair margin of safety here, for the acid solution will have greater affinity for the lime deposits and will dissolve these by forming calcium chloride in preference to ferric chlorides. We think you could keep the acid solution in the boiler for not longer than half an hour. You must then flush out the system very thoroughly with running water until there is discoloration of blue litmus paper to red.

To prevent this scale forming to such an extent you must install a domestic water supply water softener. Any water engineer's merchants or your local electricity undertaking will advise the type for your district.

Copperplating on Tin

IAM about to copper electroplate a number of 2 in. $x 3$ in. x Iin. articles I have cast in tin, and would be obliged if you could enlighten me on a number of points.
(i) Is caustic soda unsuitable for degreasing tin? If so could you give alternatives ?
(2) As I am only plating one side, do I need only one anode?
(3) What is the easiest method to prevent the concave side from being plated ?
(4) Is there a critical distance between the anode (or anodes) and the article being plated ?-E. C. Symons (Leicester). (I) CAUSTIC soda solution in the strength recommended will prove to be quite suitable for degreasing tin provided that the solution is used cold.
(Contimued on page 383)

practical

of learning

INYOUR

An entirely new series of courses designed to teach Radio, Television and Electronics more quickly and thoroughly than any other method. Specially prepared sets of radio parts are supplied and with these we teach you, in your own home, the working of fundamental electronic circuits and bring you easily to the point when you can construct and service radio receivers, etc.

Whether you are a student for an examination; starting a new hobby; intent upon a career in industry; or running your own business - these Practical Courses are ideal and may be yours at very moderate cost.

With these outfits, which you receive upon enrolment and which remain your property, you are instructed how to build basic Electronic Circuits (Amplifiers, Oscillators, Power Units, etc.) leading to designing, testing and servicing of complete Radio and Television Receivers.

An Educational Orgenisation associated with the E.M.I. group of Componies including 'HIS MASTER'S VOICE', COLUMBIA, etc.

DO IT YOURSELF! OWN HOME—IN YOUR OWN TIME

OTHER COURSES WITH PRACTICAL EQUIPMENT INCLUDE: RADIO (Elementary and Advanced) - TELEVISION mechanics • ELECTRICITY - CHEMISTRY - PHOTOGRAPHY CARPENTRY.
Also Draughtsmanship - Commercial Art - Amateur S.W. Radio - Languages - Simple Electrical Repairs in the Home - Painting and Decorating - Etc. - Etc.
With these outfits, you are given instructions that teach you the basic principles in the subject concerned.
NEW TELEVISION COURSE including a complete set of equipment dealing with the design, construction and servicing of a high quality television receiver. COURSES (with equipment) also available in many other Engineering subjects.
COURSES FROM 15/- PER MONTH
To E.M.I. INSTITUTES,
Dept. 144, 43 Grove Park Road, London, W. 4.

NAME

ADDRESS

SUBJECT(S) OF INTEREST.
June

ITS EAR QuICKER WITH RAMLPLISS:

FASTEST EVER MASONRY DRILLING

Even when you've tried a Durium-tipped Masonry Drill you'll find it hard to believe that brick, stone and tile can be drilled with such speed and ease! You can use Durium-tipped Drills in a hand brace or electric drill. Sizes from $5 / 32^{\prime \prime}$ to $1^{\prime \prime}$ diameter. There is nothing just as good; look for the name DURIUM on the shank.

RAWLPLUG
DURIUM-tipped DRILLS

INSTRUMENT TRANSFORMERS

A selectlon of General Purpose and Radio Transformers, of high-class manufacture, vacuum impregnated and conservatively rated. 'Available from radio and electrical
component stockists, or in cases of difficulty direct.
Please quote reference Numbers.
M.1. $-250,0,25080 \mathrm{ma}$ a 6.3 v. 3 a. 5 v. 2 a
each
$23 / 6$
M. 2. $3500,35080 \mathrm{~m} / \mathrm{a} 6.3$ v. 3 a. 5 v. 2 a

SAVE ON HOME REPAIRS WITH CTASS FIBTRE
M.3.-Model Makers $0-30 \mathrm{v} .2$ a. Practically any jntermediate voltages obtainable $22 / 8$
M.3.A-As M. 3 but 4 amp. output
M.4.-Auto-wound voltage changing type $110-200-230-250 \mathrm{v} .150$ watts...
M.5.-Battery Charger type 4 amps output
M.5.A.一As M. 5 but 1.75 amps output
M.5.B.-As M. 5 but 2.5 amps output
M.6.-As M. 1 but 100 m a
M.6.-As M. 1 but 100 m a
M. 8 . As M. 2 but $100 \mathrm{~m} / \mathrm{a}$

45/-
M.8.-As M. 7 but $120 \mathrm{~m} / \mathrm{s}$

229/6
mut 120 m
All above types open mountint. but avallable half-shrouded and totally enclosed. Mullard-Osram Amplifier mains transformer, totally enclosed
DOUGLAS ELECTRONIC IND., LTD., BRINKLOW, RUGBY.

WHEN YOU'RE FIXING SCREWS in brick, tiles, stone, etc., the world famous Rawlplug is still far and away the quickest way. Quickest and the easiest, and the safest way too! Get a Rawlplug Outfit for your toolkit. It contains all you need-Rawlplugs, Rawltool, screws and 16 -page 'Hints on Fixing '.
Popular Outfit 2/6d: larger sizes 6/- and 9/6d.

=
(2) Only one anode will be required if one side only of the article is to be plated. A point to remember here is that only the area of the surface actually being plated is taken into account in calculating the required current.
(3) A simple-method of preventing deposition of copper on part of the article is to warm the article and rub it with a candle so that a protective coating of paraffin wax is formed. Another method is to use a lacquer consisting of scrap celluloid dissolved in a mixture of equal parts of acetone and ámy acetate. (This lacquer dries very rapidly.)
(4) The distance between the anode and the article being plated is not critical. To obtain uniform plating, however, the nearest distance divided by the greatest distance should be as near unity as you can arrange. In practical terms this means that the anodes should not be too near the article.

Depending on your requirements, you might find an alkaline plating bath of the type given below will give more satisfactory results :

Copper sulphate $20 z$.
Sodium potassium tartrate
Sodium hydroxid
Distilled water 2 pints

Special Ozone

Generators

WE have recently W developed some machines in connection with the blanket trade, and we are now asked to provide a small supply of ozone to each of these

Can you possibly help us, as our knowledge of the manufacture of this gas is elementary?

Each machine would have its own generator and the amount required would be about i to 2 cfm . per machine; there is a slight suction in the machines, which would draw the gas in, but the supply of gas would have to be stopped when the machine is switched off for refilling.

Can you please outline the method of geterating the gas, which we seem to remember as the passing of oxygen (or air ?) through a brush discharge, and please state the approx. H.T. voltage and power needed to give this discharge, and also give some details of a suitable vessel or tube through which the discharge takes place?-H. H. Parsons (Witney).
WUE suspect that the ordinary commercial ozone generator would not be entirely suitable for your purpose, and would suggest a single unit generator so designed that the ozone-air mixture could be induced into your machines by the suction which you state is available.

In principle a satisfactory ozone unit could be made by using a silica or micanite cylinder of about 2 to $2 \frac{1}{2} \mathrm{in}$. diameter as your dielectric, and the inside of the cylinder is fitted with aluminium gauze, and a similar aluminium gauze cylinder is bound round the outside of the silica tube. The inner and the outer gauzes are then connected by wires to a transformer yielding 7,000 volts. D.C. and the transformer is put in circuit with your A.C. supply of, say, 240 volts.

We suggest, however, that you should get in touch with a consulting engineer, as we feel this apparatus should be designed by a chemical engineer to give satisfactory service.

Charging Batteries

THAVE a ino-volt motor-driven generator, A.C. and D.C., which I wish to convert to charge batteries at 24 volts.

Could this be achieved by using resistances or is a transformer necessary ?

Could you please also advise me as to the circuit? I have access to an ammeter and a sliding resistance and possibly a cut out.-R. Gilson (Somerset).

$I^{\text {F }}$required you could charge three 24 -volt batteries in series; alternatively you could charge the batteries in parallel. We advise using about 30 volts for charging each 24 -volt battery. The output voltage of the dynamo could be reduced by driving the dynamo at reduced speed or by connecting a variable resistance in the shunt field circuit. If one battery or more than one battery in series are to be charged the shunt regulating resistance can be used to control the charging

Circuit for charging batteries in parallel

Information Sought

Readers are invited to supply the required information to answer the following queries.

A Parafin Dispenser

WISH to make a paraffin dispenser. Can you tell me the working principle and how to make one ? I wish to measure out one gallon at a time fairly rapidly. The main tank would feed the dispenser by gravity. Are there any books or publications dealing with this subject?-R. J. Perry (Ramsgate).

"Live" Water Action Washing Machine

T.WISH to construct a washing machine, using the " live " water action.
What type and size of water pump would be required, and where could it be purchased; also what size of electric motor is required to drive it ?

How could the water be heated by gas without it clashing with the pipe leading to the water pump, and with the motor, electrical circuits, etc.?-A. Davison (Wallsend).

Mirror Ball Making

IWOULD like to make a mirror ball for a dance hall, as the price of a commercial one is prohibitive. Could you advise on how to form one about 16 in . in diameter ?Brian Mcauley (Co. Detry).

Making Morble Beads

CAN you let me have a process for making and drilling marble beads, and a convenient wav to sand and polish? The beads
current. However, if you wish to charge the batteries in parallel it would be an advantage to reduce the dynamo voltage to 30 to 40 volts and use separate charging circuits each with a switch, fuse, variable resistance, and preferably an ammeter in each circuit as indicated in the diagram.

Making a Cold Box

T WISH to construct a large size milk and butter cooler. I intend making a wooden box about $1 \frac{1}{2} i n$. larger than a biscuit tin, filling the space between them with some cement compound, finally removing the box, but using the tin as the interior. The door would be cast of similar material.

Could you please suggest a suitable porous material and a method of preventing cement from sticking to a wooden or cement mould?-S. Corbett (Croydon).

YU will not get sufficient porosity from a cement-sand mixture for an efficient cooling surface by evaporation, and we suggest that you build your cooling jacket of a cellular type brick, such as can be obtained from British Uralite and Cellalite Ltd., Gravesend, Kent.

These bricks are made of small crosssection and can be cemented together in the usual way. Your biscuit tin can be poised in the middle of this chamber and you will have an excellent cooler.

Possibly Sankey's, the builders' merchants, would let you have a small quantity from stock; though the makers might oblige you if you explain the purpose for which they are required.
must be uniform from, say, 5 to 8 mm . and hole not greater than . o8oin.

Is there any book you could recommend on the working of marble ?-WM. A. Palmer (Dublin).

Ex-Govt. Camera Operation

T RECENTLY bought a G.C.S. 16 mm Recorder Mk. 2 (ex-Govt.) camera. I understand that this type of camera can be operated at single shot and also 15 frames per second. Unfortunately I am unable to find the method of control, so I would be pleased if you could tell me how this camera operates, and also if it is possible to make it into a handoperated camera.-C. J. Thomas (Rugby).

Electric Garden Cultivator

AN you please give me details for building a petrol- or electric-driven garden cultivator of the rotating blade type ?-H. B. Thompson (N. Ireland).

China Glacé

IAM trying to find a process to china glace a leather box without affecting the shape and colour. Would you tell me how it is done ?-W. I. Jones (Port Talbot).

Dressing for Canvas

COULD you tell me the method and formula for a flexible dressing for canvas as used by British Railways on their canvas tarpaulins, also a flexible dressing for the canvas skin of a folding canoe ?-DONALD Welch (S. Lowestoft).

Electrical Vibraphone

IWISH to build an electrical vibraphone and wonder if you can give constructional details of such an instrument. I understand that one type of vibraphone incorporates a clockwork motor, but the type I intend building uses an electric motor,-R. W. Fear (Cheltenham).

THIS model steam turbine is capable of driving small models or miniature dynamos designed to light one or two flash-lamp bulbs. For the turbine casing, obtain a circular shallow tin box; a furniture polish tin measuring 4 in . or 5 in . in diameter will answer admirably. Find the exact centre with the aid of a pair of compasses and then with the lid on carefully drill a lin. hole right through and exactly perpendicular to the tin (see Fig. 1). Also make two holes

A Simple Steam Turbine

A Powerful Miniature Unir for Driving Small Models

in the middle of one side to the dimensions shown in the same sketch.
The rotor or fan should be made out of thick tinplate and of such a diameter to fit comfortably into the tin box, which is now the turbine case. The vanes are marked out on the disc and cut, as shown in Fig. 2. A $\frac{1}{8}$ in. hole is drilled in the centre and the vanes afterwards bent at right angles to the axis, as at A, Fig. 2. A smooth piece of wire, such as a motor-cycle spoke, is next required for the spindle; it should work without shake in the in. bearing holes in the turbine case. About 21 in . of wire is needed and the fan is securely soldered to the middle. A foot of what is known as kin. "comp. pipe" should now be obtained from the plumber's. This is for the steam pipe, and each end is respectively soldered to a screw-on fitting, obtained
with the lid securely soldered down. Two holes have to be made in the lid, one to receive the screw-in fitting out of the remaining cycle pump connecter, and the other a screw-top from a tooth paste tube, forming the water filler (Fig. 5).

Assembling the Turbine

The spindle with the fan soldered to it should be put through one hole in the case and the lid fixed on and-lightly soldered round.

Fig. 2.-Cutting and bending the rotor blades.
Two tinplate collars will have to be soldered on to each side of the spindle, to prevent the fan (which should spin easily) from touching the sides. The turbine must now be mounted on a wooden baseboard, and to do this two strong tin brackets must be soldered to each side (Fig. 3). Everything is now ready for working, so oil the bearings and fill the boiler three parts full of water. Having done this, connect it with the turbine by means of the steam pipe and place on a gas ring or other source of heat. As soon as it boils the turbine will begin to revolve, the waste steam escaping by the $\frac{1}{i}$. hole in the side (Fig. r).

Driving Pulley

A driving pulley can be attached direct to one end of the spindle, but a far better method, and one giving a great increase in power, is to drive through gearing. This is easily accomplished by soldering a cog to one end of the spindle and making it drive a large cogwheel carrying the pulley. The cog and cogwheel can be obtained from a disused clock.

MODEL BOAT BUILDING

By P. J. CAMM

$5 /$-, by post $5 / 6$
From GEORGE NEWNES, LTD.
Tower House. Southampton Street. Strand, W.C. 2

capable of giving a duction coil spark is recommended the "Tesla " coil shown in Figs. I and 2.

Fig. 2.-A plan view of the coil.

Fig. 3.-Method of fixing coil to the base.

Fig. 4.-The former for the primary.

The Secondary

Select a postal or cardboard tube $1 \frac{1}{2} \mathrm{in}$. diameter and 6 in. long, varnish it with shellac and wind it from one end to the other with No. 32 s.w.g. double cotton-covered wire, pressing each turn close to the preceding one. When this has been done varnish the wire with shellac and cut a disc of wood $\frac{1}{2}$ in. thick to fit tightly into the end of the tube. This should be held in position with glue, not nails. Cut a

strip of ebonite 2 in . wide and 3 in . long, and fix the coil to it by means of a screw driven into the centre of the disc. Cut a base for the coil 6 in . by 6 in . by $\frac{1}{2} \mathrm{in}$., and chamfer the edges and stain a dark brown. When dry, the coil should be fixed in the centre as shown in Figs. I and 3.

The Primary

Cut two rims from 3/16in. plywood to the size shown in Fig. 4 and also six spacers $1 \frac{1}{2}$ in. by $\frac{1}{2}$ in. The notched spacers are fixed symmetrically into the rims

Fig. 1.- The completed coil. with glue, and when firm five niches are made in each to accommodate the wire for the primary (see Fig. 5). The primary is five turns of No. 20 s.w.g. bell wire, the ends of which are connected to terminals on the rims. This coil is unlike the ordinary spark coil, as the primary is outside the secondary. Make two supports for the primary as shown in Fig. 6, and fix one at cither side of the secondary. Slip the primary over the secondary, and when symmetrically placed glue it to the supports.

Fig. 5.-Fixing the rims and spacers and Fig. 7.-Details of the support for the bottle. position of the niches.

The Discharge Rods

Two discharge rods must now be made. Obtain two small bottles as much alike as possible, dry them and cut wooden stoppers to fit tightly into their necks. The discharge rods consist of stout wires with metal balls at the ends, and are fixed in the stoppers by means of sealing-wax. Fix a bottle at each of the two front corners of the base by means of the support in Fig. 7, and connect the wires from the secondary to the discharge rods. The coil is now

Fig. 6.-The support for the primary.

$27 / 4$

 complete and should be connected to an induction coil. In Fig. 8 it will be seen that the Leyden jars are connected directly across the secondary of the induction coil. The spark gap consists of two terminals

coil and adjust the gap until a continuous discharge takes place from the rods. This discharge, which is of a peculiar greenishyellow nature, does not give a shock; but merely causes a slight pricking sensation on the skin. Bring the hand towards one rod, when the discharge will immediately jump out
towards it. If a rod is earthed and a piece of metal brought up towards the other one, the discharge may be led about without the operator feeling any uncomfortable sensation.
Take a piece of barecepper wire and bend it to form some words such as "good night."
Connect it to one rod and it will at once glow,
revealing the nature of the message. There is no limit to the shapes that may be made and illuminated in this way, but as a fitting end to ademonstration grasp one rod and bring the face up to the other. The effect is most startling. as the head and face are surreunded with a halo of small sparks.

Two Easily Made Types

end ; here again, the glazed surface should be preserved as much as possible to stiffen the back of the arch. The length required will be found by trial later on when it is bent round.
For the tail, cut the piece of stiff paper to a heart shape as indicated at E in Fig. I.

Assembly

Lay the square of tissue paper flat on a table or on the floor, smear the glazed side of the backbone with paste and lay it on the paper diagonally from corner to corner. Ensure that it sticks well all along the backbone's length. On the two free corners stick flaps made of Sellotape, about 2 in . long, as shown in Fig. I, and then two further flaps about 4 in . nearer the apex along the top two edges, as shown.
Place one end of the thin bamboo arch under one of the corner flaps and secure. Bend the bamboo approximately to the curvature shown and fix the other end. Stick down the two additional flaps and snip off the surplus end of the bamboo crosspiece. Turn the kite over and stick on the stabiliser or tail, then turn it back again and stick a small piece of Sellotape at the top and bottom of the backbone, i.e., at A and B , to prevent the paper from tearing away.

The Bridle

Take a yard of thread and pass it through a hole pierced in the kite with a thick pin. The position of this hole is behind the point where the bamboo supports cross. Pass the thread through, round the supports at the point of cross and back again through another hole, and tie a tight knot. Make two similar holes, one either side of the backbone, about 2in. from the bottom, and knot the other end of the thread in the same way.
Suspend the kite by this loop of thread and note if it balances exactly. If it does not, this may be remedied by sticking pieces of paper to the lighter wing. Slide your finger along the bridle until the tail-end is slightly depressed. This will be the point at which the flying line will be attached. On this point of attachment will depend the angle at which the kite flies and it should be tied so that it cannot slip. If the kite is sluggish in mounting or tries to get too much overhead, it may have to be hauled down to have the point of attachment readjusted.

Flying the Kite

To fly the kite, let out a dozen yards of the reel of cotton (or more if there is room) and get a friend to hold the kite upright lightly by the wings, at arm's length above his head, of course, facing the wind. Stand with your back to the wind, holding the line taut. At the next gust the kite should be released and will, if it is properly balanced, launch itself into the air and rise rapidly. Pay out the cotton steadily, checking it at intervals to make the kite lift.

A Box Kite

To make a box kite, you will require first of all four straight strips of light wood, each

2 ft . 4 in . long and $\frac{1}{\mathrm{in}}$. square, and two pieces of thin coloured paper measuring 4ft. 2in. long and roin. wide. Take the strips of coloured paper, turn over the edges rin., and glue down the folds after inserting a length of fine, strong string in cach fold. When completed, glue the ends of each paper strip with a 2 in. overlap so as to form continuous bands 8 in . wide. Now fold each band to divide it into four equal parts, and at each crease glue one of the long sticks. The outer edge of each band should be $I \mathrm{in}$. from the ends of the sticks, and there should be a space of roin. between the bands as indicated in Fig. 2. Before glueing the sticks in place, slightly notch each one at a distance of sin. from each end to receive the notched ends of the crosspieces A. For the crosspieces, take two pieces of $5 / \mathrm{I} 6 \mathrm{in}$. x $3 / 16 i n$. stripwood, each $16 \frac{1}{2} \mathrm{in}$. long, place them together and drive a fine wire nail through the centre, rurning the end of the nail up underneath. Treat two more pieces of the same length in the same way. Notch the ends as at B, open out the crosspieces and fit them inside the kite. They must not fit too tightly or they will split the paper. If they are too long, shorten them slightly and deepen the notches.

The flying line is tied as shown in Fig. 2. To fly the kite, let out about 20 yards of line, and get someone to throw up the kite a short distance. The technique of flying is similar to that used for the Indian kite.

Fig. 2.-Constructional dstails of a box kite.

highstone utilities

 Ex-R.i.F. 2 -valve (2 velt) MierophonoAmpliners, as used in 'plane inter-com in self-contained metal case. can be used munication system, or with crystal set, complete with valves and Fitting InstrucWith partitions to hold amplifier, 2 /- extra.
Ditto, less valves, $10 /$ Hand phones, with switch in handle and lead, moving coil. 8 6. All post 9d. Soldering Irons.- Our new streamlined Iron is fited with a pencil bit, 200,250 vatts, 11,6 Standard Iron with adjust
able blt, 2001250 v .60 watss 136 . Heavy able bit, $200,250 \mathrm{v} .60$ watts, 136 . Mleavy
Duty Iron, 150 watts, 16.6 , all post $1 /-$ These Irons are guaranteed, and all parts

 7/8, all post extra. Meter Moverments,
Units with $2-500$ microamps, $9-$, post $1 / 3$. Bell Transformers. - These guaranteed
transformers work from any A.C. mains giving 38 or 8 volts output at 1 amp.
operate bulb, buzzer or bell. Will supply operate bulb, buzzer or bell. Will supply Tright in bedroom or larder, etc. 8 or 12 volts, either the above or batterles $6 /$, post 61 .
BUZZERS, $3 / 9$, or Heavy Duty, $4 /$, post $5<$. Mike Buttons (carbon). 2 -i Movink Coil 4/6. Transformuers, $5 /-$. Ali post $4 / 1$. each
Spirking Plug Neon Testers, with vest Spirking Plug Neon Testers, with vest-
pocket clip. 3i, or with gauge, $3 / 6$, post 3 ,

- $\$$. B.C. Neon Indicator mains to show " live " side of switches, etc.. 26 . post 4d. Neon Indicator, complete
with oondenser, penct type, with vestpocket clip, 7i6. post 5d.
Crystal sets. Our latest model is a real crystal detector. Have a set in your own
room. 12/B. post 8 l . Spare Permanent room, 12/6, post 8d. Spare Permanent ately, 2/8; with clips and screws. $2 / 10$, post G, E.C. etc., $23 /-$ and super-sensitive, $30 /-2$ pair. Headphones in Good Order, 6 Armature Type (very sensitive), 136 . Bai. armature type, $4 / 6$ (two of these will
make an intercom. Set). Ex- A . $\mathrm{F} . \mathrm{F}^{2}$ earmake an intercom. Set). Ex-R.A.F. ear-
piece, $2 / 6$, post 41 . (All hieadphones listed are suitable for use with our Crystat

highstone UTilities

58, NEW WANSTEAD, LONDON, E. 11.
Now 11 ustrated List sent on request with $\frac{20 . \text { stamp and } \mathrm{BAAB} \text {. Leterers only. }}{\text { BARGAIN FOR STAMP COLLECTORS }}$

GIANT MMPORTED COLLECTION in cludes : REDCHINA-Canton Liberation set complete to $\$ 100$. VIET NAM-first 2 stamps of Emperor Bao-Dai. CANADA - 1953 Queen Elizabeth set cpl, (5) AZERBAIJAN-34-year-old Famine im-
perforates cpl. U.S.A. $\$ 1,851931$ issues, perforates cpl. U.S.A. 51,851931 issues,
scarce top values. NAZI GERMANYscarce top values. Plus many other unusual Mitems. A wonderful start-or a terrific opportunity to fill your album at a bargain price. Grand Total 219 all different stamps price. Gram over the world. Usual $5 /$-value for just $1 /-$ to introduce our Bargain Approvals.

FREE: 2 SOUTH POLE
SEND 1/- TODAY ASK FOR LOT PM2
BROADWAY APPROVALS 486, Old Kent Rdo, LONDON, S.E. 1

ROGERS ${ }^{31}$ soutiliont

Compressors. Ex W.D.. ${ }^{3}$ cu. ft. $55 / 6$
Terminal Bloeks. 12 way
Aloxite Abrasive. $13 i \mathrm{in}$. $x 9$ in., doz.
Whitworth crews:
Fib. Drills. 12 Assorted, to 48
Meter Rectiners. A.C. to D.C
Coper Revets. 12 doz. Assorted
spindile, pulley, etc., 18in. x 101 n . 52
Reetifiers. 612 v . at 12 amp .
Air Jacks. 6in. Stroke
Winker Units. 6 or 12 volt.. .8 8,9 Clreular Saws, 6in., 11 6: 7in., $13 / 8$ etc

May we send our free 11st of hundreds or interesting items? stamp please.

INTERESTING BARGAINS SATISEACTION

ASTRO COMPASS MK If

supplied in good condition
in surdy box with mstruc. thons for uss in Astro NNav1-
gation and star identifcation verso instructions for con-

RUDE STAR FINDER a IDENTIFIER Ex, R.A.F. Navigators
equipment. Consists oil star
equ base and 7 templates covering lats. $0-70$
N . and S . Makes star flinding and Noentication relatively
maker's instructions in
ensy maker's instructions
wallet. $5 /-$ p. \&e p. 9 d .

> TRIPODS

Brand new, legs 34^{*}, extend to 54^{*}, weight conditions. Would normally cost about
\&6. Offered at $45 /-$ p. \& p. $3 / 6$.

ALTIMETERS
The Mark XVILA complete
with detailed instructions with detailed instructions
reprinted from P.M. for the reprversion of this prefirst class BAROMETER
Brand New
fis Brand New, 7/8, post free
 Precision made
mechanism, designed mechanism, designed
 new, $3 / 8$ post free PRESSURE GAUGES $\underset{\text { Alr }}{\text { Boost }}$
 $6 /-$ each post free.

TERRY CLIPS
Sizes in., in. itn., 1才in. Handy assortment of six dozen retail value 20/-, \%/6 p. \& p. 1/3.

polythene +

Toush transparent by the yard in these

 to total of order.
Tubular film opens up
to double stat thu ${ }^{\circ} 8^{\circ}$ tubular makes
86° sheet.

Effectively
sealed into bags
by the heat of a match.
innumerarie applications in
industry
liome industry for pro
home
tention an dust and damp with POL TYTHENE br which Mothproof Hass arr something we gal
need. SAMPLE FREE, S.A.E. please.

TOOL ROLLS Approx. $15 \mathrm{in} . x 8 \mathrm{in}$.
with
divs. and pocket. soiled clearance price 3 for $2 / 6$ or
$8 / 0$ doz., post f fee.

WEBBING

Brand new, double
thickness parachute

webbling $1 g^{7}$ wide
13, ft. long, hook
7/6. p. \& D. $1 / 3$.

NYLON BRAID

$3 / 4^{*}$ wide, soft, easy to handle, and Ideal
where lightness plus strength is required. 32 yds. breaking strain 1,900 1bs., 32/nost free
64 yds.
64 yds. breaking strain $1,360 \mathrm{lbs}, 50 /-5 . ~$
post free.

OMETERS 1001300 degrees Fah-
renheit. Brand new, renheit. Brand new:
elearly
dial. sensitived dial. sensitive motal
clad element proclad olement pro-
jects
suitable for dipack,
fung suitable for dipping
into liquids, or a 1 xLanks. Exceptional value $35 /-$, p. \& p. 2/6.

REV, COUNTERS

 Brand new, callbrated 1000 ? 5000 r.p.m. 3 dial operatos$4: 1$ ratio, $20 /$ post free. Makers' price about $£ 7.10 .0$ Flexible drives to fit, pat_
terns A, B, C, D, E as

 Patt. His heay duty drive with base
plate and bearings. plate and bearings.
Pre $\&$ P. $1 / 6$ per drves extra: 3 or more po
free. Post free with rev. counter.

TRANSPARENT PLASTIC SHEET Clear as glass, flexible, does not crack. non-flam., suitable for side screens, horticultural cloches, display work. where perfect clarity is required. Easily stitched, unafected by sunlight, permits passage of Ultra Volet ray
Sheet size
sing.
K
Thekness $0101 \mathrm{in} . \times 201 \mathrm{n}$. per sheet $8 / 6$ Thickness

Pi \& P. $1 / 2$ per order.
This is amp entirely new British Product thonal materials.

MOTOR CYCLE COVERS

 GIANT HOMBER WILEFL, COVERS, will give compnete protection, tea-cosyfashion, to 250.150 machines and seooters. etc. Mide to the usual hish standard of all R. A.F. equlpment. Will remain corn-

pletely waterproof for years. $17 / 6$, p. \& p. | plotel |
| :--- |
| $2 / 6$. |

GENERATOR/MOTOR

 generator or mor mis
app. 1 h.p. without
2nt
2616 : body. 9° d 5
dia. splined y° drive
shait. Many uses,
shart Many uses, types of portable ehargers and all new $1 n$
carr, $7 / 6$
NEW AIRCRAFT FUEL TANKS Length 66°; depth 14^{*}; wldth 24^{*}. Weight Bolb Capacity 80 gallons. 2 apertures
11° dian. Brand new builet-proof self-sealing rub ber tanks. made of \boldsymbol{y}^{*} sponge rubber
probably cost over \&100 each ; a real opportunity for the bargaln hunter with

WOVEN GLASS FABRIC
We have large stocks of TYGLAS Y/1; usual prioes and welcome enquiries trom
those interested.

MMERS \because FOUERKES PHONE
DEPT. P.M. 187/18B THE ARCHES, GROVE GREEN ROAD, E. 11

NEW CABIES \& HITINGS

TOUGH RUBBER CABLES

Abstract

\section*{LONDON}

WHOLESALE WAREHOUSE 165 (PM), QUEENS ROAD PECKHAM, S.E. 15

Tel. : Now Cross 7143 or 0890.

SPECIAL OFFER G.E.C. \& B.T.H. germanium crystal DIODES

I/ = each. Postage $2 \mathbf{i k} \mathrm{~d}$.
Diagrams and three Crystal Set Círcuits A laree with each Diode., fully GUARANTEED diodes from the manufacturers enables us to make thi

COPPER INSTRUMENT WIRE
ENAMELLED, TINNED, LITZ. All gauges available.
B.A. SCREWS, NUTS, WASHERS BONITE AND BAKELITE PANELS TUFNOL ROD. PAXOLIN TYPE COHL FORMERS AND TUBES ALL DIAMETERS.
Latest Radio Publications
SEND STAMP FOR LISTS
CRYSTAL SET
CORPORATING THE SILICON CRYSTAL VALVE
Adjustable Iron Cored Coil.
RECEPTION GUARANTEED Polished wood cabinet, $15 / \mathrm{c}$, post $1 / 3$.
POST RADIO SUPPLIES
33 Bourne Gardens, London, E. 4
PORTASS LATHES
DIRECT PERSONAL SERVICE.
LARGE DISCOUNT FOR CASH
INTEREST CHARGED
for easy serm̄s.
CAN ANYONE DO BETTER -
1/- for Lists, please. Dept. P.M. BUTTERMERE WKS., Sheffield, 8
electro magnetic counters

Post Office type 11A, counting to 9,999,
2 to 6 volts D.C., $12 / 6$ each, post 1/6. CHARTBOARDS.-Complete with panto graph arm, perspex scale, protractor head. Ideal as a drawing board. 17in. square Brand new, $25^{\prime}-$. Post 2/6.
HEADPHONES, Balanced Armature, post 1/6. 2 pair can provide 2 -way communication without batterles.
ROTAREY CONVEIETEIES.- Input 24
D.C. Output 100 watts at 230 v. A.C. 150 D.C. Output 100 watts at 230 V. A.C. 150
watts at 200 v , 82,6 also available in metal case with switch, $105 /-$ Cge. 7/6. HOTARY CONVERTERS.-Input 24 V. watts at 220 v., in wood case with o/ 300 voltmeter, 4 position switch and voltage regulating resistance 150 i-. 12 v . input 160 i BULKIIEAD FITYING, - 9 in, diam, flat
tripod type, suitabie for tamps up to 100 Watt, complete with pushbar switch lampholder. Ideal for farm buildings, garages. greenhouses, etc. Brand new, 17/6, post 2/6. ROOM THEREMOSTAT.-Adjustable beA.C. Ideal for greenhouses, etc., $35 /$.. post

MOTTOR,-12 volt D.C. 1 in . $\times 2 \mathrm{in}$, approx $3,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. with speed regulator in end cap. A precision job. 126, post $1 / 6$.
GPAFED MOTORS. -4 r.p.m. at 12 volts, 8 r.p.m. at 24 volts. very powerful, supplied moved. $35 /-$, post $2 /$.
TERMINAT, BLOC'KS.-2-way fully pro tected No. 5 C 430.4 - doz., 50 for $15 /$-, or
$10025 /$, post $1 / 6$. VAREABLE RESISTANCE, -160 ohms, 2 amps. on 1011 n . Twin Ceramic formers with 351-, post 2,9 . TEPNPMONE SETS, MODERN D. VALI, TYPE also available, 2 complete units 25 . Batterles 56 . Twin Wire 5 d , per yd.
 +1.700 ohms, just the job for radlo-conrolled models, $17: 6$ each. Post 13.
INSPECTION LANIPS with wire guard,
strong clip, S.B.C. Holder, 22rt. C.T.S. strong clip, S.B.C. Holder, 22 ft . C.T.S
flex. Ideal for all car owners. $22 / 6$, post $2 / 6$. CifARGING: RECTEPIERS,-Full Wave Bridge 12 volts 2 amps., 13 6. 4 amps. 22/f.
2 amp. Transformers $24 /=, 4$ amp. 27'3. post
VFNTAXIA FANS, brand new, complete with cowl, 12 volt D.C. 6 in . diam. blades,
silent running. 840°, each. Post $2 / 9$. Will operate from 230 volt A.C. if used with the above 2 amp rectlfler and transformer. We also have some to operate direct on $160 /-$ each, post $2 / 8$. 2 .ns. without cowl at GENALEX EXTR ACTION FANS,-230/ 250 volts 50 cy. Induction motor, 1.350 r. . $2 . \mathrm{m}$. ge. 7,6.
A.C. MOTORS, ird.h.p. 1.425 r.p.m.. I shaft, rating Brand New. $£ 61010$. Continuous A.c. Motors, Capacitor 230 volt 110 h 1, 425 r.p.m., 7 in . x 6 in. $x 5$ in, overall, ez in.p. 12124 VOLT D.C, HOTORS with double ended shart 2 in. x 3in. 8 , 6 , postage 1,6 . -4.000 ohms. New, $12^{\prime} 6$ pr., post 16 .
SWITCHES.-A row of 5 in a fush mounting bakelite moulding $5 \sin$. $x 1 / 1 \mathrm{in}$. $x 2$ in. Ideal for model railways. 5.6 post 16 . Ex R.A.F. Brand New, 7 cu . ft. per min. 4In. x 4 in. 2 x x Hn , shaft, 20.8 each. Size 6 in. x
 handle, 8ft. of metallic fiexible hose and hozale, 7 yds. C.T.S. flex. 130^{\prime}-complete.
 Fits on forehead. Leaves hands free, 76 ,
post 1 . 6 . Ever Ready Battery, No. 1215 VOLTMETERS, D.C. $-0-20,0-40$, or $0-300$. In. Flush. 106 each, post $1 / 6$.
INSTRUMEN RECTIFIERS, Full wave Bridge $1 \mathrm{~mA} ., 8,6 ; 5 \mathrm{~mA}, 7,6 ; 50 \mathrm{~mA}$., 5 '= ea., POSE 9d. TFSSTING I OLTMETERS. $-3-0-3$. In leather case with prods, 25, post $2 /$ Specially scaled for test meters.D., 31 lm . Flush. 0500,18 , 21 in. $0,100,12 / 4$. Post $1,6.1 \mathrm{c}$.
VOLTMFTERS for A.C. Mains 50 cy . reading o to 300 volts with clear 5 ins. dial only $60 /-$: 2 in. Flush, $25^{\prime}-: 0,15$ volts A.C. ID.C. AMMETERS. 2 in. Finsh Moving Coll A.C. $0 / 30$. 10 6: 0 , 50 or $50-0-50,12 / 6$ ea. Post 1/6. 30 hms, special price 32,6 , post $2 /$. Also 10 in .
in Portable Wood Case 17 in . $17 \mathrm{in} . \mathrm{x} 61 \mathrm{in}$. complete with fiex and plug in special cormpartment. oply $50^{\prime}-$, carrlase

WILCO ELECTRONICS

804, LOWER Dept. P.M.
CROYDON.

STOP!!

Pull up in time

 by fitting
Fibrax

BRAKE BLOCKS

You brake gently, but firmly with FIBRAX brakes. The great thing is they are SURE in emergency. And they spell S-A-F-E-T-Y on the steepest gradients. For Steel rims, Fibrax Black Blocks; for alloy rims, Soft Red Blocks.

FOR SAFETYS SAKE - FIT A SET NOW

FIBRAXLIMITED

2, Tudor Street, London, E.C. 4

the nume that alicoys rings the bell

This ingenious design incorporates the famous Lucas-Challis type of mechanism which is robust and positive in action, giving a clear and resounding warning chime. It is a bell of distinction with its chromium plated dome, red plastic centre and trigger lever.

GALPIN'S

ELECTRICAL STORES

408, HIGH STREET, LEWISHAM; S.E.13,'

Tel.: Lee Green 0309. Nr. Lewisham
TERMS : CASH WITH ORDER (No C.O.D.).
All Goods sent on 7 days approval against eash

Notice: Owing to increases in Freight and Copper Wire prices we have no alternative but co increase our prices accordingly ; all prices quoted are carriage paid unless otherwise stated.
MAINS TRANSFORMERS, Input 200 / 230 Volts OUTPUT 0/9/18 Volts at $3 / 4$ volss 2 amps., $25 /$ - each; another suitable for soil heating, garage lighting, etc., $0 / 1$ d/ $17 \frac{1}{3}$ voles, $20 / 25$ 2mps., $52 / 6$ each; another 4 volts 20 amps. twice, $35 /$ - each. 1 only 500 WATT TRANSMITTER complete with Valves, Crystals, etc., 13 meters $3 / 2 \mathrm{~kW}$ Variacs Range 6.25 to 12.5 $\mathrm{M} / \mathrm{cys}$. 12.5 to $25 \mathrm{M} / \mathrm{cys}$. In very good condition, all ficted into rack approx. Weight $5 / 6$ cwt. EI00 to clear, buyer collects. 24 volis DC C 24 volts D.C. Input 50 voles 50 cycles, I phase at 450 Watts. OUTPUT (complete with Step Up Transformer) from 50 volts to
230 volts, $13 / 10 /=$ each or CONVERTOR only $E 9 / 10 /$-each. EX-NAVAL ROTARY CONVERTORS 110 volts D.C. Input. Output 230 voles 50 cycles 1, phase 250 watts capable of 50 per cent. overload, in good condition, guaranteed weight approx. 110 lb . $£ 13 / 10 /$-each. volts primaries (New) Heavy duty Output combination of $0 / 6 / 12 / 18 / 24 / 30 / 36$ voles $4 / 5$ amps., 38/6 each. Ditto $6 / 8 \mathrm{amps}$., $51 / 6$ each. Ditto 15 amps . Output $75 /$ - each. Another with combination of $0 / 6 / 12 / 18 / 24$ voles $6 / 8$ amps., 51/6 each. Ditto $10 / 12$ amps., 58/6 each. Ditto $25 / 30$ amps. Output 85% each. MEDIUM SPOT WELDER TRANSFORMERS. Input 200/250 volts, OUTPUT combination of $0 / 2 / 4 / 6 / 8 / 10 / 12$ voles at
$50 / 70$ amps. $£ 7 / 7 / 6$ each. Ditto $120 / 150$ amps. Output, 67/10/- eac
PRE-PAYMENC SLOT METERS $200 / 250$ voles A.C. 10 amp . size only, 100 per cent. overload set at 2 d . per unit (guaranteed 12 months), $£ 3 / 17 / 6$ each, Ditto credit type 10 amps. only, $25 /$ - each.
RECTIFIERS FOR CHARGERS 6 or 12 voles Output 2 amps, $9 / 6$ each, 4 amps volts Oucput 22 amps, $9 / 6$ each, 6 amps., $36 /$ - each. MAlNs
 $46 / 6$ each respectively.
EX-CANADIAN EX-GOVT, ROTARY TRANSFORMERS for No is receiver input 12 volts D.C. OUTPUTS 275 volts 110 M/amps. ; also another output of 500 volts $50 \mathrm{M} / \mathrm{amps}$. completely smoothed, $30 /$, each.
AUTO WOUND Voltage changer TRANSFORMERS. Tapped 0/110/200/ $230 / 250$ volts 200 Watts, $48 / 6$ each ; 350 watts, $57 / 6$ each; 500 watts, $76 / 6$ each ; 1,000 watts, $66 / 5 /=$ each ; 1,500 watts, E8/5/- each i 3,000 watts, $17 / 10 /-$ MERS EX-R.A.F.ROTARYTRANSFORMENS Input $24 / 28$ volts D.C. M amps. $\frac{1}{2}$ hour rating, $10 /$ each.
voles 70 M Ditto $18 / 24$ volts D.C. Input 450 volts 50 M/amps., Output con latter ones can be used as motors off A.C teration
LARGE RECTIFIERS output 50 volts I amp. with an input of $70 / 75$ volts A.C. KEYS, 5/- each. SINGLE EARPHONE with carbon microphone 40 Ohms, $8 / 6$ each ROTARY CONVERTORS. Input 24 volts D.C. Output 50 or 100 volts A.C. 500 cycles I phase at 300 Watts, $88 / 10 /$ each DESK-TYPE TELEPHONES for office inter-com. with numbered dials, 55/- each Moving coil VOLTMETERS Switchboard type, 6 inch scale 0 to 200 volts, 25/. each. Ditto 0 to 100 volts. 25/-each.
EX-R.A.F. 1154 TRANSMITTERS, complece with valves. Complete in TRANSIT CASE. AS NEW. 45/-
EX-GOVT. E.H.T. TRANSFORMERS. Large type. Two transformers in one case in Oil input 230 voles OUTPUTS 4 or 5.5 K.V. at $30 \mathrm{M} / \mathrm{amps}$., 6.3 volts 2 amps., 4 volts 3 amps., 2 volts 2 amps. These transformers can be used separately out of the case, size dismantled approx. 3 iin, $x 3$ in. x $3 i n$. and 5 in. x Sin. x Ps Any 7 ANSFRM made to order within 7 days ask for Please ask for quotation,
Clients in Eire \& Northern Ireland, please ask for quotation as to carriage charges. The ahove charges only apply to England.

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Ltd., Tower House, Southampton Street, Strand, London, W.C. 2

Phone: 'Temple Bar. 4363
Telegrams : Newnes, Rand, London

Cycling for Health

MUCH publicity has been given to the statement by Paul White, President Eisenhower's medical adviser, drawing attention to the benefits of cycling upon health. He advised Americans to cycle more. Of course it is sound advice, but we must not attribute too much to cycling. If a man is still able to cycle at the age of 70 , and has passed a half century of active wheeling, that does not mean to say that his longevity is due to it, any more than a man can attribute longevity to walking. If cycling happens to fit in with your mental outlook and your physical development, taken in moderation it can do nothing but good. So can rump steak. That does not mean to say that without it you are likely to fall into a state of miserable decrepitude. Some old cyclists I wot of do not look particularly good advertisements for the pastime. Most of them look weary and worn out and should have given up cycling a long time ago, but prefer for reasons of personal vanity to go on twiddling the pedals at an ever decreasing rate.

Personally, I am always suspicious of general medical advice like this, bearing in mind some of the stupid statements which have been made by the medical profession in the past. Only just over half a century ago, a wellknown doctor gave it as a considered opinion that no man could ever travel in a motor car at 60 miles an hour, as his heart would not stand the stress and he would drop dead. Yet many cyclists have exceeded this speed and, indeed, Albert Marouet has covered a mile at a speed of $86.95 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Letournor pedalled a mile at the rate of $108.92 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and Leon Vanderstuyft actually covered 76 miles 504 yards in one hour, on a bicycle behind motor pace in 1928. It is fallacious to argue that because a cyclist achieves reasonable longevity it is de facto due to cycling. It could reasonably be argued that it was due to any other habit or pastime in which he indulges regularly. It is impossible to say how long these life-long mile-eaters would live if they had not cycled.

New Title for the Cycle Union

THE British Cycle and Moror Cycle Manufacturers' and Traders' Union Ltd., (what a mouthful !) has decided to amend its name. Bearing in mind its lengthy appellation, which must cause everyone who has to address an envelope to curse, and which has been abbreviated anyway by business people to "The Union", I am surprised that the opportunity was not taken to devise a much shorter title than the new one, which is "The British Cycle and Motor Cycle Industries' Association." A press notice says that the new title is shorter than the old-an amusing statement when you realise that there are 59 letters in the old title and 52 in the new, a saving of only seven letters!
The new title expresses the true nature and function of this association of manufacturers which was incorporated in 1910. What's wrong with The British Cycle and Motor Cycle Association? Or The Federation of Cycle and Motor Cycle Manufacturers ? The former could, through its initials, be abbréviated to Candma.

Production

OTWITHSTANDING its cumbersome title, however, the industry managed to produce during 1955 3,564,000 machines, as compared with $3,198,000$ in 1954, an increase of 366,000 . The 1955 figures are the highest since 1951 , and the second highest ever achieved. No less than 65.8 per cent., or in figures $2,352,000$, of this production went overseas.

Russians Out of the "Oats"

$\mathrm{B}^{\text {ECAUSE }}$ clashes, Russian cyclists are unable to compete in this year's Oats, the 1,000 -mile amateur cycle race which is to be held from August IIth to the 18th and which is provisionally routed from Skegness to Manchester, Morecambe, Rhyl, Aberystwyth, Barry, Weston-super-Mare, Southsea and Brighton. There will be 16 national regional teams in this year's race.

Stupid Nomenclature

ISN'T it high time that we adopted an international language for cycle sport and touring ? Why introduce the silly word tourisme for touring? Why such ridiculous terms as primes, omniums, criteriums, kermesses, and the other jargon which the B.L.R.C. has imported from the Continent ? The British have always slavishly copied Continental terms, not only in cycling, but in connection with motor cars. Chauffeur, garage, chassis are typical examples. Are we too lazy to think up some words of our own? I notice that the editor of the B.L.R.C. official journal comments on this.

The Menace of Dogs on the Road

AM glad that the Minister of Transport had decided to introduce a clause in the Road Transport Bill, making it illegal for those perambulating pests, dogs, to be allowed to roam on the highway without being on a lead. They cause innumerable accidents in the course of a year. Unfortunately, it is not possible to make a similar regulation regarding cats which are mowed down in their thousands by motor cars every year. As far as the driver of a car is concerned, it is not a bit of good pleading in the case of an accident that he swerved to avoid a dog. In fact, it has been held in the High Court that a motorist must not swerve to avoid a dog. Of course, the motorist comes out unscathed from such collisions, but yapping dogs are a real menace to cyclists, especially when they do not react to the impact of the useful end of a bicycle pч \quad ! !

New History of the Bicycle

PRE-WAR readers of "The Cyclist" will remember that we purchased from the publishers the copyright in the late H. H. Griffin's book on the history of bicycles and serialised it in this journal. . Griffin, however, has been dead many years, and his book, of course, only deals with the bicycle up to the time of his death. Now Mr. C. F. Caunter, of the Science Museum, has written "The History and Development of Cycles.", It is not so exhaustive, of course, as Griffin's very
detailed work, which is still much sought after by collectors of cycling literature, especially those "historians" of the Bartleet type who depend for their "facts" upon press cuttings and book indexes, as well as the files of old periodicals. Griffin, I think, can be quite relied upon in the last edition of his book, although there were some minor errors in earlier editions. He had no reason to dispute the claim of Gavin Dalzell to have invented the first rear-driven bicycle in 1846, and it is inane to criticise him on that score by referring to the fact that Macmillan was prosecuted in 1842 for riding his machine dangerously, a report of which appeared in a local Scottish newspaper. One could hardly expect Griffin to consult the unindexed files of all local newspapers. Bartleet claimed to be the cycling historian, yet his own book, which speciously claimed to be a history of the bicycle, was full of inaccuracies and it was only correct in those places where he had filched material from Griffin's book which was undoubtedly Bartleet's source book, as indeed it is the source book of other writers. Bartleet's book is packed with historical inaccuracy and in one or two instances with deliberate falsehoods, particularly his reference to the machine on which Hume won the first races on the first pneumatic tyres.

Mr: Caunter's work, however, is reasonably accurate and at the price of 4 S . (H.M. Stationery Office) it will be of great interest to all those interested in the history of bicycles, even though it does not contribute much to what we already know. Its narrative, however, is written in a more entertaining style than the prosaic fact-stringing style of Griffin. Incidentally, I was browsing over some secondhand books in a shop some years ago and came across Griffin's family album, which contained a large number of photographs, annotations and comments in Griffin's hand. It was beautifully bound and I still possess it. How? I wonder, did such an obvious family treasure come to find its way into a secondhand bookshop, and be offered for sale for the few pence which I paid for it ?

A much larger work dealing with the history of the bicycle and the motor car is H. O. Duncan's monumental heterogeny of unrelated matter which he produced in the early 'twenties in collaboration with Jean Vavin. Duncan had a very high opinion of Duncan, and interlarded between scrappy information about bicycles and motor cars you will find a photograph of Duncan and a lengthy description of how he once won a cycle race at some obscure local village, riding against unknown riders. Duncan was anxious to impress the world with his great importance. His book, however, is practically useless because its hundreds of pages are not indexed and any attempt at chronological arrangement of the matter does not exist. It would seem that he had collected a number of odd press cuttings and some photographs and slung them together in no particular order. At the front of the book there is an article by Jean Vavin who was the redactor of the book lauding Duncan to the skies and, of course, an article by Duncan on Jean Vavin. There is no evidence throughout that Vavin edited this work as it needed to be edited. -F. J. C.

Shortening the Ghain
If a new chain is purchased it will need shortening before it can be fitted. The correct length can be found by positioning the rear wheel half-way along the rear fork drop-out, and placing the chain round the sprocket and chain ring,

Fig. I.-Using the chain rivet extractor.

T$\boldsymbol{T H E}$ cycle chain is often one of the most neglected components of the bicycle, and by being wrongly tensioned and aligned, seldom cleaned and seldom oiled, its life can be drastically shortened and its efficiency decreased, adding to the effort required for propulsion. Correct fitting and frequent cleaning and oiling will help to combat the effects of rain and dirt, which are the chief enemies of the exposed chain.

Chainwheel and Sprocket Alignment

Before fitting a new chain it is important to check that neither chainwheel nor sprocket teeth are worn or damaged and that they are both in line and running true.

An inspection of the teeth will soon reveal whether or not they are worn. Worn teeth take on a hooked shape as shown at B in Fig. 2. The correct shape of the teeth is shown at A. Bent or damaged teeth will also cause noisy running and a tendency for the chain to jump off, so these points should also be checked.

To test whether or not the chainwheel is running true, place the end of a straight edge on the chain stay just clear of the chainwheel teeth, and spin the cranks. If a tendency to ovality in a chainset of the three-pin type is revealed it can often be corrected by undoing the three pins, removing the ring, turning it round and replacing so that it is in a different position on the "spider," as the three-armed chainwheel centre is sometimes called.
If the chainwheel is buckled, i.e., it wavers from side to side when rotated, it must be levered back into alignment by means of a short crowbar or a long cold chisel, as shown in Fig. 3. Cranks which have become bent may be straightened by removing the pedals, sliding on a piece of steel tubing and using this as a lever to force them back into the correct alignment.

A long straight edge is useful to check that the rear sprocket and chainwheel teeth are in line with each other, but this may also be checked by laying the chain along the top teeth, holding it taut and sighting with the eye along the chain from the rear of the cycle.

Fig. 2.-Worn sprocket teeth.
Provided that the cycle frame is not out of track, alignment should not be far out and the small adjustment necessary can usually be accomplished by means of shims or spacers slipped on the hub behind the sprocket on the rear wheel.

Fig. 3.-Aligning the chainwheel.

There is always sufficient space for adjustment in the rear drop-out slot to allow for the removal of two links.

The easiest method of removing links is by means of a rivet extractor of the type shown in Fig. 5. The chain is located on two lugs so that the screwed rod by means of the spigot on its end will push the rivet out when the tommy bar is turned. The rivet extractor in use is shown in Fig. I.

An alternative method is to use a pair of pliers as a makeshift anvil and punch out the rivet with a thin punch or a nail and a hammer.

Joining the Chain

The usual method of accomplishing this is by means of a spring link as shown in Fig. 4, and the only thing to remember about this simple job is to make sure that the closed end of the spring fastemer is facing forward when fitted in the chain on top of the chainwheel, i.e., the closed end must face the direction of travel of the chain.

Tension

It is important that chain tension should be right, as if it is too tight the chain will become stretched and worn out before its time; if it is too loose it is likely to jump off. If it jumps into the wheel an accident could result, the chain breaking spokes, buckling the wheel and throwing off the rider. Correct chain tension is obtained when the chain can be moved approximately ${ }_{4}^{3} \mathrm{in}$. up and down in its tightest position.

Chain Wear

The easiest method of detecting wear is to pull the two strands of the chain towards each other and then lift it away from the front of the chainwheel. If it can be moved an appreciable amount then a new chain is indicated. Another form of wear which may be noticed is best described as

grease are removed. Thèn, after drying it, soak it in a tin of melted grease, allow to set, and finally wipe off the surplus. In the interval between major cleaning operations the chain may be kept lubricated by applying light oil to the inside face of the chain, which is in contact with the chainring and sprocket.

25-17-6 or $8 /$-deposit and 6 monthy payments of $20 / 6$.

This wonderful	Electric Drill is also the
power unit for ALl Cub equipment. Drilling	Key and stat. of cable. T.V. Suppressed.
Stat	

 12ln. with 210 watts input on full load. Com- $\begin{aligned} & \text { Polishing Kits). sivi } 19 / 0 \text { or } 40 \text { - Deposit }\end{aligned}$ plete with $1 / 21 \mathrm{n}$. three-jaw chuck and Allen and 8 monthly payments of $44 /$.

Send for nlustrated Brochure of Wolf equipment.

$56 /$ - or $12 /-$ deposit and 4 CASH monthly payments of $12 / 6$ In strong 18 gauge steel, the Enox 16 BL Tool Cabinet has four graduated drawers, spring lock and two keys, carrying handle Finished olive green. Overall size: $16 \frac{1}{2^{\prime \prime}} \times$ $8^{\prime \prime} \times 10 \frac{1}{2}^{\prime \prime}$. Front forms convenient tray when open. Sirong, safe, good value at $56 /$-or $12 /$-down and 4 monthly payments of 12 od .
\qquad $1 / 2^{\prime \prime}$ 'bits 4 shanks. 15/ $=$ SET OF 4 CARBIDE TIPPED MASON Up to 3,000 . For brick, tile, etc. 32/6 Complete. Or separately: No. 8, 8/6; No. 10, 8/9; No. 12, 8/9; No. 14, $9 / 9$
 a smooth surtace. Four-sided blade manages diffcult angles and corners; A.C. ID.C. down and 3 monthly payments of 101 l P \& P. 16. Leaffet fite. Extra flex 1, a yard Spare element 5,6.

SOCKET \& ATTACHMENT

SET No. 488
In finest grade Chrome-Vanadium steel.
heat-treated and heavily plated. Complete heat-treated and heavily plated. Complete in sprayed metal pox with
Sockets $\left(311^{*}\right.$, to $1 / 2$, whitworth 10 and 10 American
 Dragitnk Adjuster. Reversible Ratchet, $1 / 2^{2}$
 Brace. Depositj25/- and 6 monthly pay-
ments of $23 / 6$, or Cash $£ 7.12 .3$. Sent on ments of 23:6, or Cask f7.12.3. Sent on
payment of deposit. List free.

ELECTRIC PAINT SPRAYER (payments of $13^{\prime 6} 6$ monthly Paint easily, evenly, twice as fast with the Burgess Electric Sprayer. Sprays plass container. flex, nozzle for celling spraying and extra nozzle discs for diferent liquids. A.C. mains only-state your actual voltage. Fully guarantecd.
Supplied with $96-$ page booklet. Leaffet free.

BARGAIN DISTRIBUTORS (DEPT. 16), 5 SILVER STREET, LUTON

100 yds. Fine Braided Copper Wire wound on fishing nod type reel, 3 in, x 14in. $6 / 6$.
Transformers, Input $200 / 240 \mathrm{\gamma} . \mathrm{Sec}$ tapped 3-4-5-6-8-9-10-12-15-18-20-24-30 volts at 2 amps., $22 /-$ - $17-11-5$ volts at
 16/9. 6.3 volts, 2 amps ., 8/6. 12 months guarantee.
Model Makers' Files with handles. Set of 6 assorted in wallet. $10 /$.
Selenium Rectifiers F.W. $12-6$ volt, 100 $\mathrm{mA} 4 /=1 \mathrm{~A}, 8 / 6.3$ A., $14 / 9,4 \mathrm{~A} ., 23 / 6$. 6 A., $30 / \mathrm{H}, 250 \mathrm{v} .100 \mathrm{~mA}$ H.W., 10% 300 mA., $17 / 6$.
Miniature 12 or 6 V . Relays, 10 amp . Silver Contacts. SM, DM or SM and B. SCO, 8/6. Also $1 \frac{1}{2}$ v. DCO, 8/6. M/c. Microphones with matched transformer, 15/9
Small Motors. 12 y. A.C. D.C., $2 \mathrm{in} . x$ I in., 10%
Chrome Vanadium H.S. Stee: Twist Drills. Sets of 9 , Ifin. to $\frac{1}{\text { fin., } 3 / 9 .}$ Sets of 7 . full size, 6/-. Sets of $13,10 \%$. 12 v. D.C. Relays. S.P. D.C. 25 amp., 8/6. Rheostats, 12 v. A.., 2/6. 12 v. 5 A., $10 / 6$. New 6 v. Oak Vibrators. 4 Pin, $8 / 9$. Fishing Rod Aerials. Sets of 3, 7/6, Sets of 2 . $5 /$.. plus $1 / 6$ Rail Charge. Uniselector Switthes 50 point 3 bank 50 v. D.C., 26/: Also 50 point 2 bank 12 v. D.C., 21/6
Veeder Counters. $24 / 50$ v. D.C. $0-9999$, 15/6.
Ex. R.A.F. Sparking Plugs. 14 mm . Lodge, 4 for $5 /-.6$ for 7/6.

Relays. We can supply any voltage at Contact Combination. All Carriage Paid in U.K

THE

RADIO\& ELECTRICAL MART 309, Harrow Rd., Wembley, Middx Nr. The Triangle.
Telephone: WEMbley 6655

STEEL NUT B JOSEPM HAMPTON LTD
WODEN WORKS WEDNESBURY STAFFS.

LANGUAGE PROBLEM

 SOLVEDBy the Pelman Method
THE problem of learning a Foreign - Language in half the usual time has been solved. The Pelman method enables you to learn French, German, Italian and Spanish without translation.

By the Peiman system you learn French in French, German in German, Spanish in Spanish, and Italian in Italian. English is not used at all. Yet the method is so simple that even a child can follow it.
Grammatical complexities are eliminated. You pick up the grammar almost unconsciously as you go along. There are no classes to attend. The whole of the instruction is given through the post.

Send for the Free Book

The Pelman method of learning languages, which has now been used for over four little books, one for each language :

FRENCH SPANISH
GERMAN ITALIAN
(Also Courses in Afrikaans and Urdir) You can have a copy of any one of these books, logether with a specimen lesson, gratis and post free, by writing for it to-day. WELbeck 1411/2

Reduced fees for H.M. Forces.
POST this free coupon to-day
Pelman Languages Institute,
130, Norfoll Mansions. Wigmore St. London, W.I.
Please send details of Pelman method of learning

French, German. Spanislo. Itatian (Cross out three of these)

Name

Address

HOV思 WOIBESTROTP MACHMNES FOIR THIE PRAC'ICAI MRCHANEC

\star FOREIGN Price $12 / 6$
S. TYZACK \& SON LTD. 34I-345 OLD ST., LONDON, E.C.I TEN LINES ONLY LONDON ADDRESS

ROTATING TRIGONOMETRY CHART

ROTA-TRIG

onx 3/POST FREE

At last a SOUND and SCIENTIFIC device has been produced which enables you to obtain the TRIGONOMETRY formulæ at your fingertips. You can't do without it.

NO TIME WASTED NO MISTAKES

An indispensable aid for DRAUGHTSMEN - ENGINEERS - TECHNICIANS -- STUDENTS, etc.

Obtainable from all Stationers. In case of difficulty from :- ROTA-TRIG 31 THE BROADWAY, TOLWORTH, SURBITON, SURREY

PARKER'S SHEET METAL FOLDING MACHINES. HEAVY VICE MODELS

No. I (illustrated) Capacity. 18 gauge mild steel $x 3 \mathrm{ft}$. wide. No. 2. Capacity. 18 gauge mild steel $x 2 \mathrm{ft}$. wide. No. 3. Capacity. 16 gauge mild steel $\times 18 \mathrm{in}$. wide. End folding attachments for Radio Chassis, Tray or Box making. are supplied if required.
\qquad $7^{2 x}$

3ft. model, weighe 56/b., e4/15/-
 carr. 10/-. 2 ft . model, weight 2216., 55/-. 18in, model, weight 181 lb ., $55 /$-, carr. on small models $4 /$. If with attachments, $5 / 6$. Attachment angle for 3 ft., 3/6 perft. Small models $2 /-$ per foot.
A. B. PARIER WHEATCROFT WORKS, WELLINGTON STREET, BATLEY, YORKS. Tel. : Batley 426

Freeing a rusty padlock. Many padlocks work out of doors, and quite a short period of inactivity or neglect will often let rust get a hold on the mechanism. In most cases, however, the lock can easily be restored to good order. Shell Easing Oil should be applied liberally through the key hole and other openings. After a few minutes the oil will have reached all the moving parts which with a little encouragement from the key should easily be freed. Shell Easing Oil is not a lubricant so do not forget to use a light lubricating oil once the mechanism has been freed.

> BRASS, COPPER, DURAL, ALUMINIUM, BRONZE

ROD, BAR, SHEET, TUBE, STRIP, WIRE

3,000 Standard Stock Sizes. NO QUANTITY TOO SMALL. List on application.

H. ROLLET \& CO. LTD.

6, CHESHAM PLACE, LONDON, S.W.1. SLOane 3463.
Also at LIVERPOOL, LEEDS, MANCHESTER, BIRMINGHAM.

MAKE MONEY - making casts with VINAMOLD

A grand spare-time occupation

WITHOUT any previous experience you can massproduce any object, from a chessman to a candlestick, statuette or model ship, in plaster, resin, concrete, etc. the BEST results. Easy to work, can be used over and the BEST results. Easy to work, can be used over and
over again. Needs NO special equipment, provides a profitable and enjoyable spare-time occupation with minimum outtay.

Write for fuil details, and instructions, Also available: Illustrated booklet describing "V1NAMOLD," methods of heating and melting, preparation of models and moulds, etc. Price $1 / 6$ post free, from :-

VINatex ltd. (Dept. P.M.3), Carshalton, SURrey

You can produce perfect prints of your holiday snaps in an evening AT HOME. No need for any delay, it's amazingly easy, and great fun too! If a friend or relative sees a good snap in the family album and wants a copy, you can make one on the spot with the Johnson Print-a-Snap Pack. Send photographs in your letters to friends and be able to say "I made them MYSELF ". They'll be very impressed. For 3s. 6d. you get full instructions and all the equipment necessary to make sixteen $2 \downarrow \mathrm{in}$. x $3 \nmid \mathrm{in}$., or twenty-four 2 lin . $\times 24 \mathrm{in}$. prints from your own negatives, new or old. Ask your local photographic dealer for the Johnson Print-a-Snap Pack.
JOHNSONS OF HENDON LTD. LONDON N.W.4.

Send Now tor New Brochure deasiins all points and

 interesting features; answered questions you would ask, showing machines in use and articles such as toys, patterns and turnery made on these machines. Ask also for details of fitments to the "Coronet range and ott r makes.drilling a problem to you? Send now for details of BORING ATTACHMENT and long drills, to suit any lathes.

FITMENTS AND ACCESSORIES FOR ALL LATHES :
CUP CENTRE No. I Morse Taper Shank.
4 Prong DRIVING CENTRE (Positive Drive for large or small work.)
GRINDING WHEEL ARBOR No. I Morse Taper-suit any machine with No. I Morse Taper.
REVOLVING CENTRE
$5^{\prime \prime}$ WOBBLESAW-Ploughs- $\frac{\mathrm{s}^{\prime \prime}}{}$ "to $\mathrm{g}^{\prime \prime}$. Index for quick setting and fine adjustment. TURNING TOOLS, set of six 18° overall, beautifully handled.
WOODSCREW CHUCK to suit any machine No. 1 or 2 Morse
3 Jaw CHUCK and Self Centering 4 jaw Independent Chuck.
COMPOUND SLIDEREST-for wood and metal turning.
ELECTRIC MOTORS, Brook $\frac{1}{3}$ and $\frac{1}{2}$ h.p.
GRINDING WHEELS, SLIPSTONES, etc.
Write: Dept. P.M., enclosing stomp, for Catologues showing photogrophs and price, etc.
 Also at CITY ROAD MILLS, DERBY.

[^1]
Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship
Jig \& Tool Design
Press Tool \& Die Design Sheet Metalwork
Automobile Repairs Garage Management Works M'gmnt. \& Admin Practical Foremanship Ratefixing \& Estimating Time \& Motion Study Engineerlng Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance 'Engineering Steam Engine Technology 1.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship
Machine
Automobile
Structural
R/F Concrete
Structural Engincering
Mathematics (all stages) Radio Technology Telecommunications Wiring \& Installation Television
Radio Servicing
Gen. Elec. Engineering
Generators \& Motors Generation \& Supply Aircraft Mainten. Licences
Aerodynamics Electrical Design Ordnance Survey Dr'ship.

BUILDING AND STRUCTURAL

L.I.O.B.
A.M.I.P.H.E A.M.E. A.A.I.P.A. Building Construction Costs \& Accounts
Surveying \& Levelling Clerk of Work's
Quantity Surveying
A.R.S.H. M.R.S.H.
L.A.B.S.S. A.R.I.C.S. Builders' Quantities Carpentry \& Joinery Carpentry \& Joine Building Inspector
Building Draughtsmanshis. Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC

Gen. Cert. of Education Book-keeping (all stages College of Preceptors Woodwork Teacher Metalwork Teacher Housing Manager (A.I.Hsg.)

Common. Prelim. Exam A.C.I.S., A.C.C.S. A.C.W.A. (Costing) School Attendance Office. Sanitary Inspector Civil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME AND EARN BIG MONEY

Men and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

- OVER SEVENTY YEARS OF * CONTINUOUS SUCCESS

National INSTITUTE OF ENGINEERING

(Dept. 29)
148, HOLBORN, LONDON, E.C.t
SOUTH AFRICA: E.C.S.A. P.O. BOX NO. 8117. IOHANNESBURG

132-PAGE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:
t Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.

* How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY ITTERESTING COURSES.

 TO SELECT FROM!A.M.I.Mech.E., A.M.I.M.I.,
A.M.Brit.I.R.E., A.M.I.P.E., A.M.I.C.E., A.M.I.Struct.E., A.M.I.Mun.E ${ }_{\text {cg }}$ M.R.S.H., A.M.I.E.D., A.F.R.Ae.S., London B.Sc., Degrees.
Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the Nero Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We defintely guarantee that it you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.
ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

Free Coupon To: NATIONAL INSTITUTE OF ENGINEERING	SEND OFF THIS COUPON
	To: national institute of engineering Dept. 29) 4 8 -150. Holborn London. E.C. x NOW AND BE
Please Forward your Free Guide	
NAME SOCO^{5}	
ADDRESS	
My general interest is in : (1) ENGINEERING	
(2) AERO (3) RADIO (4) BUILDING	the branches in which
CIPAL WORK	
The subject of examination in which I am especially interested is	
To be filled in where you already hare a specia' preference. (itd. stamp only required if unsealed envelope used.)	

[^0]: CAR HEATER ELEMENT
 No. 87. 6 in. \times Ifin. $8 / 3$ ea
 $200 / 250.100 \mathrm{w} . .$.

[^1]: " Practical Mechanics " Advice Bureau.
 COUPON This coupon is available until June 30th, 1956, and must be Ottached to all letters containing queries, together with 6d. Postal Practical Mechanics.

