The Zunior Mechanic-New Monthly Supplement

 NEWNES
DRACTICAL

 MECHANICS

No. 760

No. 98 A

No. 757

How are you off for Springs?

Terry's Boxes of Assorted Springs are just the job for your experimental department a wonderful assortment of Compression and Expansion Springs . . . all sorts of lengths, gauges, diameters. The nine boxes we show are just a few from our range. Why not let us send you a full list - free?

TERRY'S

ASSORTED SPRINGS

The prices quoted are subject to the usual trade discount.
HERBERT TERRY \& SONS LTD. REDDITCH, WORCS.
SPRING MAKERS FOR 100 YEARS

These Boxes of Springs can also be obtained at :
27 Holborn Viad Molborn Viaduc 279 Deansgate BIRMINGHAM 210 Corporation Street

22 to 18 S.W.G., 10/6. No. 1024. 20 Compression Springs $12^{\prime \prime}$ long, t $^{\prime \prime}$ to $\mathrm{i}^{\prime \prime}$ diam., 24 G to 18 G , sultable for cutting into shorter lengths : and 30 Expan sions $11^{\prime \prime}$ to $12^{\prime \prime}$ long, $5 / 32^{\prime \prime}$ to $5^{\prime \prime}$ diam. 22G to 16G. 24/-

MINERVA SERIES $\begin{gathered}\text { Write for } \\ \text { illusisated leaffers } \\ \text { and }\end{gathered}$
A. G. THORNTON LTD. nearest stockist 10° p.O. BOX 3 , WAUFACTURERS OF HRST QuALIT OKAWIMG IN

IT'S A
GALLAHER TOBACCO

PER OZ.

THE AMAZING EMCO-UNIMAT Complete portable power workshop!

The Emco-Unimat, a miniature ball-bearing machine tool is the perfect equipment for model makers and amateur craftsmen. The standard motorised lathe, as illustrated, can be used as a pillar drill, milling machine, grinding machine, or hand-drill-and no extras are neededthough much additional equipment is available for its nore extended use. We emphasise the fact that the Emco-Unimat is a pre-

1. TURNING
2. DRILLING
3. MILLING
4. GRINDING
5. WOOD TURNING
6. POLISHING

CASH PRICE

EXTENDED CREDIT AVAILABLE

WRITE FOR DETAILS TO SOLE CONCESSIONAIRES :

Milling machine
 J. \& H. SMITH LTD., Dept. P.M.15, 16 Harrison Street, Leeds, 1

G. 6.1 rown

HEADPHONES FOR MARINE EQUIPMENT
Every seagoing vessel in this electronic age
S. G. Brown provide Headphones and associated equipment for all known purposes. Brochure " P " sent on request.

 SHAKESPEARE STREET, WATFORD, HERTS possible reception of all signals-Morse or speech.Telephone : Watford 7241.

THE GREATEST SPEED

 YET ACHIEVEDWITH THE
2.46 c.c. "RACER"

186 K.P.H. equivalent to II5.52 M.P.H.
relies on Marine Communication Equipment.

Our contribution is a specialised range of reliable Headphones which provide 'ships' operators with the clearest

E.D. 2.46 c.c. RACER

Price £4.0.11. (Water-cooled E5.7.1)
Write for new lllustrated List of all ED. ENGINES, RADIO CONTROL UNITS, SPARE PARTS, ACCESSORIES, ete.

Order from your model shop.

" THE DANISH

SPEED RECORD "

This outstanding performance, recorded October 2nd, 1955, was accomplished by Mr. Benny Hansen of Copenhagen N , using an E.D. $2 \cdot 46$ c.c."RACER "

Mr. Hansen also won the Danish Speed Record in 1953 with a speed of 175.6 K.P.H. (109.7 miles per hour) using the same E.D. " RACER " Engine.
A tribute indeed, not only to the speed and consistent performance of this wonderful E.D. Engine, but to its
durability. durability.
This success, following other records, achieved in International Championships, open to all-comers, in AUS AFRICA NET ZEALAND, ITALY SPAIN, SOVIET RUSSIA and ENG LAND, is canvincing proof of the sterling qualities of all E.D. Equipment -the first choice of the experienced modeller all over the worid.

I.C.S. TRAINED MEN are in Greater Demand than ever-Maximum production depends on high technical skill, such as that acquired by the I.C.S. Students

TENS OF THOUSANDS MORE TRAINED MEN ARE URGENTLY NEEDED NOW -BUT THERE IS NO WORTH-WHILE PLACE FOR THE UNTRAINED

Ambitious men everywhere have succeeded through I.C.S. Home-Study Courses. So also can you

The man with an I.C.S. Training in any one of the subjects listed below knows it thoroughly, completely, practically. And he knows how to apply it in his everyday work.

Accountancy
Air Conditioning
Architecture
Architectural Drawing Boiler Engineering Book-keeping
Building Construction
Building Specifications
Business Traiuing
Business Management
Carpentry \& Joinery
Chemistry, I. \& 0 .
Civil Engineering
Clerk of Works
Coal Mining
Concrete Engineering Diesel Engines
Draughtsmanship
Draughtsmanship Electrical Engineering

> Electric Power, Lighting, Transmission Traction Electronics
> Eng. Shop Practice
> Fire Engineering Fuel Technology Heating and Ventilation Hydraulic Engineering Hyaraulic Enginee Ilumination Eng.
Industrial Management Machine Designing Machine-Tool Work Maintenance Eng. Marine Engineering Mechanical Drawing Mechanical Engineering Mining Engineering Motor Eugineering Motor Mechanics

Motor Vehicle Elec. Municipal Engineering Plumbing Production Engineering Quantity Surveying Radio Engineering Radio Service Eng. Refrigeration Reirigeration Salesmanship Domestic Engineering Sheet-Metal Work Short-Story Writing Steam Engineering Structural Steelwork Surveying
Television Technology Welding, Gas and Elec. Woodwork Drawing Works Engineering

Students intending to sit for examinations in Mech. Eng., Architecture, Quantities, Civil Eng., and others, should enrol NOW for preparatory Courses.
Using a specially prepared Study Programme, the student studies in his spare time at his own pace and, with time for revision, sits with full confidence of success. Courses are also available for General Certificate of Education and most other Technical, Professional, Commercial and Civil Service Exams.

> (I.C.S. Examination Students are coached until successful) Moderate fees include ALL Books required. REDUCED TERMS TO H.M, FORCES.
If you need technical training, our advice concerning your work and your career is yours for the asking-without obligation. Let us send our special free booklet on the subject in which you are specially interested.

The successful man DOES to-day what the failure INTENDS doing to-morrow. Write to us TO-DAY Dept. 169A, I.C.S., 7I, KINGSWAY, W.C.2.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Cept. 169A, International Buildings, Kingsway, London, W.C. 2.
Please send me free booklet on.
Name.
(USE BLOCK LETTERS)
Address
T.V.TUBES. £5. ${ }^{6}$ months' guarantee, 12 in. Mullard. As
 RECTANGLE,

T.V. I2in. CHASSIS. 97/6. Complete chassis by famous manufacturer R.F. E.H.T Unit included. Drawing FREE. masily fitted to Table or Console being in three separare units (Power, Sound and Vision Timebase) inter -connected. THIS CHASSIS IS LESS VALVES AND TUBE, but see our catalogue for cheap valves.
Our $\mathbb{5}$ Tube fits this Chassis. Our 25 Tube fits this Chassis. List of valves by request.
Carr. $5 /$ London. $10 /$. Carr. 5/- London. $10 / 1$
Provinces. SPEAKER SALE. $10 / 9$ each to clear. Bin, P.M. std. 3-5 ohms.
or with matching O.P. trans. 12/9. Post $1 / 9$.
V.H.F. 1124 RECEIVER. $7 / 6$ less valves, ex-W.D., new condition; 6 -channel switching. Receives T.V. sound, police, fire and amateurs; $30 / 5 \mathrm{mc} / \mathrm{s}$ to $40 \mathrm{mc} / \mathrm{s}$. I.F. $7 \mathrm{mc} / \mathrm{s}$. Post $2 / 6$. Drawings and conversion data free with each set.
V.H.F. 1125 SET. 7/9. New and boxed. This little set is a V.H.F. receiver, requires modification to pur it into service. Complete with valves. Post $2 / 3$.
R.F. 24 UNIT. $10 / 6$. New and packed. Tuning $20-30 \mathrm{mc} / \mathrm{s}$. Including 3 valves. Post $2 /-$ RADIOGRAM CHASSIS. 29/9. Including 8 in . speaker.
5 VALVE S/HET. 3 w/band. A.C. mains, complete but less valves. All used, tested, and guaranteed. Carr. 4/6. Drawings $2 / 6$ or free with order. Knobs $1 / 6$ a set extra. Complete with valves, $97 / 6$.
T.V. CHASSIS TO CLEAR. (Famous manufacturer.)

POWER PACK. 29/9. 5 K.V. E.H.T, 325 v., 250 m.a. Smoothed H.T. heaters. 6 v. 5 amp., 4 v. 5 amp., 4 v. 5 amp. Carr. $4 / 6$.
TIME BASES. 10/6. Containing scanning coil, focus unit, line trans., 10 controls, etc. Drawing free with unit. Cärr, 2/6.
MAINS TRANSFORMER. 5/9. $350-0-350 \mathrm{v} .2$ heaters, 6 v . and 5 v . Post $2 / \mathrm{f}$ MAINS TRANSFORMER. 3/9. $350-0-350 \mathrm{v} .12 \mathrm{v} .4 \mathrm{v}$. heaters. Primary 100 250 v. Make ideal auto trans. Post $2 /$-.
MAINS TRANSFORMERS. 5/9. $350-0-350 \mathrm{v} .4 \mathrm{v}, 4 \mathrm{v}$, heaters, Primary 200 250 v. Post $2 /$ -
O.P. TRANS. 1/9. Standard 3.5 ohms. Guaranteed. Post 9d.

OMARO SLIDE RULES

MODEL P.2. Bending Allowances and Weight of Non-ferrous Metals
 for sheet metal work
according to the values of according to the values of Radus and the Thickness of the Metal Sheets. The
other side gives the Thicknesses and Weights per square foot for Sheets and Plates of Aluminjum, Brass, Copper, Lead, Tin
and Zinc, also the Weights per foot lengths of Aluminium, Brass and Copper Bars. 2.140 Values, Dimenons, etc

Price \%/= post free

MODEL M.I. Trigonometrical Functions

Natural values of sine,
Cosine. Tangent and CoCosine. Tangent and Co-
tangent from 0° to 90° increasing by 10
2.184 values
Standard Qual. (elazed) 6/3 post free

MODEL S.5. Principal Screw Threads

(a) British Standard Whitworth (B.S.W.).
(b) British Standard Plpe (B.S. Pipe).
(c) British Standard Fine (B.S.F.).
(d) British

Association
6/3 post free.
List of other Models on application.
Kosine Ltd., 104, High Holborn, London, W.C.
Telephone: HOLborn 1301

A Customer a cold statistic-he is a warm flesh-and-blood human, with reeling and emotions like our own, with biases and prejudices as to his requirements, whatever they are,
A Customer is the most important person ever in our business-in person, by mail, or by telephone.

A Customer is not dependent on us-we are dependent on him.
A Customer
is not an interruption of our work-he is the purpose of it. We are not doing him a favour by serving him, he is doing us a favour by giving us the opportunity to do so.
A Customer is not someone to argue and match wits with. Nobody ever won an argument with a custome
A Customer is not an outsider to our business-he is a part of it.
A Customer is a person who brings us his wants, It is our job to handfe them profitably to him and to ourselves. If you wish to Construct a Domestic Refrigerator, whether "built in " or cabinet, send for our hints bask and general catalogue. We shall be pleased to serve.

Send one shilling for general catalogue post free (refunded on first purchase).

IBAID IBHOS.

For Home Refrigerator Construction
50, BIRCHWOOD AVENUE, HACKBRIDGE, SURREY.

Tel. : WALLINGTON 9309.

We do not wish to be associated with Scrapped Second-hand Ice-cream Components.

MIDLAND INSTRUMENT CO. OFFER:-

ELBOW TELESCOPES, by Cooke Sims \& Troughton, 8×30, in gunmetal housing, size 9 in . long, 4 i in . high, base $5 \frac{\mathrm{i}}{} \mathrm{i}$. dia., unused and perfect, value $£ 20$, our price $50 /$,- post $2 / 6$; otherwise we can supply the complete optical system, variable eyepiece, prism and objective, all mounted, $20 /-$, post $1 /-$. ROSS ACHROMATS, $25-\mathrm{m} . \mathrm{m}$. dia., f. 4 , 4 in . focal length, enlarges a $35-\mathrm{m} . \mathrm{m}$. film to $2 \downarrow \mathrm{in}$. $x 3 \frac{1}{2}$ in., also suitable for projection, in brass mounts with screw focusing, new and perfect, $10 /-$ post 6 d . VeN $5 / 6$ post clockwork pattern, new and perfect 5/6, post \& packing 1/6. GENERAL ELECR 16 Leach Gd $15 /$ DOS unused, $1 / 6$, post $6 d$; $15 /-$ doz, post $2 /-$. BOWDEN DRIVE CABLE, inner $5-\mathrm{ft}$. long, outer, black braided, 4 fft . long, with control lever, new, unused, $1 / 6$, post 7d. ARROW ROTARY SWITCHES, $250-\mathrm{v}, 25$-amp., 3-heat and off series parallel, with pointer knob, new, boxed, $2 / 6$, nost $1 / 3$. BURGESS MICRO
SWITCHES, normally open, new, unused, $1 / 9$, post 4 d . $18 /-$ doz., post $1 / 3$. SWITCHES, normally open, new, unused, $1 / 9$. post $4 \mathrm{~d} . ; 18 /$. doz., post $1 / 3$. VIBRATOR PACKS, input $6-v$. . provides ait L.T. and H.T., ouputs for 18 and 38 sets, in metal cases, size 9 in . $x 6 \frac{1}{2}$. $x 31 \mathrm{in}$. complete with Mallory type 650
non-sync vibrator, also leads, new, unused, $17 / 6$, post $2 / 6$; vibrators only, $5 /$-, non-sync vibrator, also leads, new, unused, 1/76, post $2 / 6$; vibrators only, post, 7 d . MICROPHONES, carbon differential, bullet-shaped fitted switch, complete with transformer, new, unused, $2 / 6$, post $1 /$. RELAY PANELS, bakelite panels on which are mounted five 12 - and $24-v$. relays, each with $20-3 \mathrm{mp}$. make contacts, taken from new equipment, $3 / 6$, post $1 / 8$. GERMANIUM DIODES, 2 different types; also silicon crystal rectifier, $2 / 6$ the three, post paid. D.C. MOTORS, compound wound, $24-\mathrm{v}$. 30 -amp., or $15-\mathrm{amps}$ at $12-\mathrm{v}$., fitted zin. shaft, $6 \pm$ in. long 4 in . dia., new, unused, $7 / 6$, post $2 / 9$. THERMOSTATS (fire protection), vacuum glass enclosed, open at $90-\mathrm{deg}$. "F." new, unused, $1 /$ post 4d. ; 10/-doz., post 1/-. WATERPROOF OILED FABRIC (yellow oilskin), 1-yd. square, new, unused, worth $8 /-$, our price $1 /$, posi 7 d .; 1 doz. have been made into an excellent car cover, size 4 yds. by 3 yds., $10 /$, post $2 /$. ELECTRO. LYTIC CONDENSERS, 32 mfd., 450 v ., fully guaranteed cartons of 10 con densers, $10 /$, post paid. SIEMENS HIGH-SPEED RELAYS, coil res, 145 ohms, single pole changeover contacts (platinium), new, unused, $3 / 6$, post 7 d . CHARG ING AMMETERS, $0-1 \pm \mathrm{amps}$. D.C. flush panel mounting, requires 1 in. dia. aperture, brand new, 5/6, post 7d. GEAR UNITS, contain 15 various light and heavy gears, some in aluminium diecast case, the others in clock type frame, exceptional value, unused, 5/-, post 1/6. INFRA-RED RECEIVERS TYPE 5C/3157. A hand-held instrument for direct viewing of otherwise invisible sources of infra red, consists of the focusing optical system, infra-red filter, image invertor cell, eyepiece magnifier, with length of screened H.T. cable, requires 2 kV . to 4 kV . taking infinitesimal current to operate, size 6 in long, 2, in. dia., weight approx 1b., new, unused, iraction of original cost, $15 /$, post $1 / 6$. HAND GENERATORS, fitted enclosed gearbox, also auxiliary open gearbox, detachable folding handle, generates 28 v. .175 amp . L.T. and 300 v. 040 amp . H.T., complete with approx. 60,12 and 11 r.p.m., new, unused, an exceptional bargain, $17 / 6$, post and approx. 60,12 and $1 /$ r.p.m., new, unused, an exceptional bargain, $17 / 6$, post and $1 \frac{1}{3}$ amp. brand new stock, $10 /$-, post $9 \mathrm{~d}_{- \text {, dito }} 12 \mathrm{v} .4 \mathrm{amp}, 15 / \mathrm{-}$, post $1 /$-, mains 1t amp. brand new stock, $10 /-$, post $9 \mathrm{~d} .$, ditto 12 v . 4 amp, $15 /-$, post $1 /-$, mains 20/-, post $2 /$-, respectively. HIGH-LOW IMMERSION HEATERS, 230/250 v $20 /-$, post $2 /-$, respectively. High 2,000 watts, removable link for 3 -heat control, plated copper stem 18 in . long from fixing screw, removable brass top termination cover with insulated cable bush, new, unused and guaranteed, $45 /-$, post paid.

MIDLAND INSTRUMENT CO.
MOORPOOL CIRCLE, BIRMINGHAM, IT. TeI. HAR. 1303

$$
\text { rel. HAR. } 1309
$$

WEW!
 VITAL TO THE ENGINEER AND SERYICEMAN

. AUTOMOBIIE EMGIIEER'S REFERENCE BOOK

Consulting Editor: G. H. LANCHESTER M.I.Mech.E., M.I.P.E., M.S:A.E.
(Past President Inst. Autontobile Engineers).
This enfirely new work warrants your immediate inspection. In 30 self-contained sections it covers, fully, modern standard practice and theory in every sphere. It provides clear explanations on problems involved in design and construction, faults, remedies, acceptance and use. Packed with data, graphs, diagrams and technical information, it will prove invaluable to every keen engineer in the motor industrywhether he is on the manufacturing or servicing side. It is a work to have on your bookshelf now, for constant and everyday reference.

57 AUTHORITIES

Contributors include : A. Barrate,

 A.M.l.Mech.E. (Smiths Motor Accessories) 1. L. H. Bishop, A.M..Mech.E. (Austin Motor Co.) : A. N. Bland, A.M.I.Mech.E., A.F.R.Ae.S. (Borg \& Beck) : W. H. Ariggs (Burman) : W. Crossland, A.M.iomobile) : R. I. Davis (Ferodo) Radiomobile) : R. J. Davis (Ferodo) ; (Sheephridge Eng): C. B., Dicksee, M.I.Mech.E., F.Inst.P. (A.E.C.) ; I. K. Gough, B.Sc.(Eng.), A.M.I.Mech.E. Gough, B.Sc.(Eng.), A.M.I.Mech.E.(K.L.G. Plugs): G. R. Green (Bryce Berger) ; S. K. Hambling. D.I.C.(Eng.) and H: H. Jackson, A.R.Ae.S. (Standard Motor Co.) ; L. Johnstone, A.M.I.Mech.E (Morris Motors-Engines Branch) ; Norman Kendall, M.Sc., M.I.Mech.E., A.F.Inst.Pet. (Shell) ; W. A. Kirk Westinghouse Brake \& Signal Co.): M. J. Knaggs, M.I.Mech.E. (Skefco) : P. P. Love, B.Sc., A.R.T.C.Wh.Sc., M.l.Mech.E. (Glacier Metal) ; M. H. Lusty, A.M.I.E.E. (Bakelite) B. L. Poulton (AC-Delco) ; T. R. Radcliffe, A.M.I.Mech.E. (David Brown, Hudders field) i. !. A. Roberts, M.inst. B.E., Christopher Shorrock (Shorrock Superchargers) : C. S. Steadman, B.Sc., A.M.I.Mech.E. (S. Smith \& Sons, England) : R. M. V. Sutton and C. R. Weller, A.M.I.Mech.E. (Alvis) : W. Tatton, A.R.I.C. (Vulcan) : L. I. Lambourn, M.Sc., A.Inst.P., F.I.R.I. and E. S.
Tompkins, B.Sc., A.R.P.S. A.I.R.I. Tompkins, B.Sc., A.R.P.S., A.I.R.E.
(Dunlop): A. Walker, A.M.I.Mech.E. (Dunlop) : A. Walker,
(Heenan and Froude), etc.

Complet In One Master Volume gress.

1010

30 MAIN SECTIONS

Units of Construction . Materials . Engines, Lubricating Systems. Fuel Supply Systems : Fuel Injection Equip ment For Diesel Engines . Ignition Systems . Supercharging . Silencing Radiators and Cooling . Clutches and Fluid Drives. Gearing and Gearboxes Transmission. Brakes. Steering and Front Axles. Wheels and Tyres, Suspension Systems, Bodywork. Heating and Ventilating . Electrical Systems. Batteries . Dynamos . Starting Methods. Instruments and Accessories Car Radio. Production Methods Testing. Costing and Control . Motor Industries Research Association. Pro-
$1664 \begin{aligned} & \text { pages covering the many } \\ & \text { facets of the a } \\ & \text { indomobile }\end{aligned}$ industry.
diagrams prepared by expert draughtsmen.

255 photos, many specially comCOMPREHENSIVE QUICK-REFERENCE INDEX

Geo. Newnes, Ltd., 66-69, Great Queen St., London, W:C.2.
Send me Newnes automobile engineer's reperence book. I will either return it in 8 days or send 7s. 6 d . deposit eight days after delivery, then 10 s . monthly, paying $£ 4$ 7s. 6 d . in all. Cash price in eight days is $£ 4$.

100,000,000

Nuts, Bolts, Screws, Washers, Rivets, etc. IN STOCK

TRY A MIXTURE

Hem No
PECIAL MOTORIST'S MIXTURE. This very special mixturc contains 1 gross of Bolts and Screws $\downarrow^{\prime \prime}-5 / 16^{\prime \prime}$ and書" up to $3^{\prime \prime}$ long with one nut and 2 Washers, 576 parts in all. 22/6d. per parcel.
8001. POT LUCK. Almost anything, but chiefly Screws, Bolts, Washers, Rivets t" to 6 B.A. $4 \mathrm{lb} .5 /-; 8 \mathrm{lb} .9 /-, 20 \mathrm{lb} .20 /-$ 8003. MIXTURE. $5 / 16^{\circ}$ and $\ddagger^{\prime \prime}$ Nuts, Bolts, Screws, Washers, etc. 2/- per 1 l .
8004. MIXTURE. 2-6 B.A. Nuts, Bolts, Screws, Washers, etc. 8004A. BRASS SCREWS 300 to the 1 b . $\frac{1}{2} \mathrm{lb} .2 /$ -
8005. Very handy mixture. $6 /-$ per lb . $3 / 6 \mathrm{~d}$, $\frac{1}{2} \mathrm{lb}$. light alloy). $\frac{1}{2} \mathrm{lb} .2 /-$
8005A. MONEL METAL RIVETS as strong as Steel but rusiproof (Nickel Copper Alloy) R.H. \& Csk. $3 / 32^{\prime \prime}$ dia. to $3 / 16^{\circ}$ dia. $7 / 6 \mathrm{~d}$. per 16 . $4 /-$ per $\frac{1}{2} \mathrm{lb}$.
8005B. STEEL RIVETS up to $\ddagger^{\prime \prime}$ dia., up to $1^{\prime \prime}$ long. $2 /$ - per 16 .
8006. B.S.F. NUTS Steel $t^{\prime \prime}-5 / 16^{\prime \prime}$ and $z^{\prime \prime} 4$ doz. each size $6 /-.2$ doz. each size $3 / 6 \mathrm{~d}$.
8007. MIXTURE. Emery Cloth and/or Sand paper. Various
8012. SELF-TAPPING SCREWS all sizes. Approx. 1 gross 4/-.
t gross $2 / 6 \mathrm{~d}$
8012A. SELF-TAPPING SCREWS larger sizes from $\dot{s}^{\prime \prime}$ long and longer. 4/6d. gross.
8012B. SELF-TAPPING SCREWS smaller sizes $\frac{1}{2}$ " long and shorier. 3/6d. gross.

SEND FOR SPECIAL LIST OF SELF-TAPPING SCREWS
8013. B.A. WASHERS, 2 to 10 B.A. in brass and steel. Approx. s014. TAPER PINS $1 / 16^{\circ}$ to $5 / 32^{*}$ dia. Various lengths, Steel. Approx. 7 gross 2/6d.
8015. MIXED SPRINGS over 20 types all useful Model Engineers
8017. PHILLIPS RECESS SCREWS chiefly 4 B.A. $3 / 16^{\prime \prime}$ and $\mathfrak{t}^{\prime \prime}$ Whit. A wonder assortment, only $2 / 6 \mathrm{~d}$. per ib.
8018. ROUND HEAD Steel Whit. Screws, all threaded to head $\frac{1^{\prime \prime}}{5} \times 1 \frac{1}{6}^{\prime \prime}, 1 \frac{1^{\prime \prime}}{2^{\prime \prime}} \& \frac{1}{n}^{\prime \prime}, 3 / 32 \times 1 \frac{1}{2}, 1, \frac{1}{2} \&^{\frac{1}{2}} \mathrm{in}$. 5 gross assorted
8018A. WHIT. NUTS $1^{\prime \prime}$ and $3 / 32^{\prime \prime}$ to match up with Mixture 8018.
8019. WOOD SCREWS tr $^{\prime \prime}$ to $1 \frac{1}{2}$ 年 long. Chiefly Csk. Steel. 2/6d. per Ib. SCREWS $1_{2}^{\frac{1}{2}}$ and over. Chiefly Csk. Steel. 2 lb . wood
8020. WASHERS $\frac{1}{\prime \prime}^{\prime \prime}$ to $\frac{1_{2}^{\prime \prime}}{}$ Steel. 3 gross for $5 /$ -
8021. SPLIT PINS up to ${ }^{\prime \prime}$ dia. Approx. 5 gross.for $5 /$ -

8021A. SPLIT PINS ${ }^{\frac{1}{x}}$ dia. to ${ }^{\frac{1}{4}}$ dia. Approx: 3 gross for $5 /-$
8022. B.A. STEEL STUDDING (Screwed Rod) 1 f. each. Size O. B.A. to 10 B.A..(I1.ft.) $5 /$

8022A. B.S.F. STEEL STUDDING (Screwed Rod) 1 ft . each size $3 / 16,7 / 32$, $\frac{1}{2} ; 5 / 16, \frac{3}{8}, 7 / 16 \& \frac{1}{2}$ inch. (7 ft.) $5 / 9 \mathrm{~d}$.
8022B. WHIT, STEEL STUDDING (Screwed Rod) 1 ft . each size $3 / 16,7 / 32, \frac{1}{5,} 5 / 16,3,7 / 16 \& \frac{1}{2}$ inch (7 ft .) 5/9d.
8023. B.A. BRASS STUDDING Similar to 8022. $11 \mathrm{ft} .6 / 6 \mathrm{~d}$.

8023A. B.S.F. BRASS STUDDING (Screwed Rod) 1 ft . each size 3/16, $7 / 32, \frac{1}{2}, 5 / 16, \frac{3}{3}, 7 / 16 \& \frac{1}{2}$ inch (7 ft.$\left.\right) 12 / 6 \mathrm{~d}$.
8023B. WHIT. BRASS STUDDING (Screwed Rod) 1 ft . each size $3 / 16,7 / 32, \frac{1}{4}, 5 / 16, \frac{3}{k}, 7 / 16$ \& $\frac{1}{2}$ inch (7 ft.$\left.\right) 12 / 6 \mathrm{~d}$.
8024. B.A. NUTS Full Plain Steel. 2, 4 and 6 B.A. approx. 8 doz.

8024A. B.A. NUTS Full Plain Brass 2, 4 and 6 B.A. approx. 8 doz. each size $6 /$ - for 2 gross.
8024B. B.A. NUTS 2, 4 and 6 B.A. approx. 8 doz. each size Steel SelfLocking (Simmonds Aerolite, etc.) $4 / 6 \mathrm{~d}$. for 2 gross.
8025. BRASS WHITWORTH SCREWS up to $\frac{1}{4}^{2}$ dia. Various lengths and heads. $6 /-$ per $1 \mathrm{lb} .3 / 6 \mathrm{~d}, \frac{1}{2} \mathrm{lb}$.
8025A. STEEL WHITWORTH SCREWS up to dia. Various
8029. BRASS FOIL. One each 7 pieces $12^{\prime \prime} \times 6^{\prime \prime} .001^{\prime \prime}, .002^{\prime \prime}, .003^{\prime \prime}$,
. $004^{\prime \prime}, .005^{\prime \prime}$ and $.010^{\prime \prime}$ thick. 10/- pkt.
8029A. STEEL SHIMSTOCK $4^{\prime \prime}$ wide, 1 ft . long. Sizes . $002^{\prime \prime}$, $003^{\prime \prime}$, $.004^{\prime \prime}, .005^{\prime \prime}, .006^{\prime \prime}, .008^{\prime \prime} .010^{\prime \prime}$ and .015 of an inch. Mixed and made up to $1 \mathrm{lb} .7 / 6 \mathrm{~d}$. per 1 lb . packet.
8031. $3 / 16^{\prime \prime}$ and $\mathbf{1}^{\prime \prime}$ Whit. Nuts, Bolts, Screws, Washers, 3/- ib.
8032. COPPER RIVETS Special Boiler makers' mixture, $1 / 16 \mathrm{in}$.

HIGH SPEED TWIST ${ }^{2}$ DRILLS. Short. 15 sizes. $1 / 10^{\circ \prime}$ to No. 13. Packet of 50 for 10/-. Dirt cheap.
WHAT ABOUT MY NEW 12 PAGE LIST OF 1,000 ITEMS ? IT'S FREE FOR THE ASKING !
Cash with order, all goods on 28 days' approval against cash, post free on orders over 15/-(inland). Please send plenty of postage with small orders: Surplus will be refunded.
K. R. WHISTON (Dept. PM5), NEW MILLS, STOCKPORT

Made by James Neill \& Company (Sheffield) Limited and obtainable from your usual tool distributor

1/4" AUTOLOCK CAPACITY ONLY

THIS MEANS A RANGE OF 36 CUTTERS AND INCLUDES :-- END MILLS AND SLOT DRILLS $1 / 16^{\prime \prime}$ to $1^{\prime \prime}$ in $1 / 32^{\prime \prime}$'s.

- LONG SERIES END MILLS AND SLOT DRILLS $\frac{z^{\prime \prime}}{}$ to $\frac{t^{\prime \prime}}{}$ in $1 / 32^{\circ}$ "s.
- BALL NOSE, COUNTERBORES AND A No. 3 WOODRUFF- $\frac{1^{\prime \prime}}{} \times \frac{1}{3}$ ".

KING EDWARD ROAD, NUNEATON, WARWICKS.

When it's

a sticking

job...

Always stick with Pliobond. That's a good rule to follow when it's a " sticking" job - whatever the materials being used. For PLIOBOND - a new thermoplastic adhesive - bonds anything to anything. Proof of this is the fact that metal, wood, rubber, fabrics, plastics, papers, glass and ceramics have been successfully joined to themselves and to one another with PLIOBOND. It is supplied ready to use intubes, tins and bottles. It gives strong, flexible bonds resistant to oil, chemicals and.water.

Bond strength improves with age - an advantage not found in many other adhesives. Ideal for home and hobby work, it dries rapidly to form a permanent bond.
How can you use the outstanding advantages of this all-purpose adhesive? Every day, new applications are being found for PLIOBOND. Why not try it yourself? Pliobond is obtainable from garages, ironmongers, hardware stores, cycle shops, etc. In case of difficulty wrile to the address below.

1,000 II.S. Inserted Blades Expanding Reamerg, $21 / 32^{*}-23 / 32^{\circ}, 16 /-11 / 16^{* \prime}-1^{\circ}$
$17^{\circ} / 6^{\circ}:$

500 Sets Hex. Dle Nuts, Sizes $\frac{1}{2}^{\circ} .5 / 16^{\circ} i^{*}, 7 / 16^{\circ}$ and $\}^{\circ}$ Whit., B.S.F. Amerlcan Car thread or 26 brass thread. These sets are in a neat case. Present-day value over $30 /$ per set. to clear 15 - per set any thread. Two sets $28 / 6$, four sets $55 /$. Also ξ an

 and each, de stock, $10 /$ - cach. 1,000 II.S. Johber Twist
 Spectal Clearance, ㅍ.S. taper pin reamers, sizes $4,5,6,7,8,9$, , the lot, worth 88 , 1,000 H.S. long stralult shank twist drllis $3 / 64^{\circ}$ to $7 / 64^{*}$ dia. ${ }^{\prime \prime} 4^{*} 6^{\circ}$ long, 3 ass, $5 /-$: approx. $7 / 32^{\circ}$ and a $^{\circ}$ dia., $6^{* \prime}$ and 7^{*} long, $5 /-$ the two $9 / 64^{\circ}$ dia. $11^{* *}$ long, 9° fute length, 3/6 each: $2^{\prime \prime}$ dia. 10° long, 8° f.1. 46 each : $19 / 64^{\circ}$ dia. 9^{*} long. 7° 亿.1. 4,6 each. . 500 IH h Speed Side and Face Cuttera, 21° dia. 1° hole, 1°, 1°. 1° thick, $10 /$ each:
 This is aim.s. Millige Cutter Bargain. All $1^{\prime \prime}$ bore, $3^{\circ} .3 f^{\circ}$ dia. $1^{\prime \prime} f^{\circ}$ thick, including side and face cutters, plan and angle outters. A most useful lot for any tool room,
6 ass. for 50%. The present maker's price of the cheapest cutter in this selection is $40 /$-. You must get this lot, remember you get same on approval against cash. All items brand new, $£ 1$ orders post pald, except overseas.
2,000 Small IH.s, Twist Drills, approx. $1 / 32^{\circ}-3 / 32^{\circ}$. $4 /-$ doz. spprox. ; $1 / 16^{\circ}-1^{\circ} 7 / 6$
per doz. approx. ; $9,32^{*}-15 / 32^{\circ}$, Six for $10 /-$. per doz. approx. : $9,32^{-}-15 / 32^{\circ}$, six for $10 /-$.
 brass thread, 26 thread all sizes and Amertcan 4 sets 42i6. Laps to suit 11/- per set, either taper second or plug. 1 die-stocks
B/- each. 1,000 H.S, Slitling Saws, 22^{*} dia., 1^{*} hole, $.019^{\circ}$. $.027^{*}$. . 022° thiç. Actual value 1,000 .
1.000 Eheh Speed Partink Of Tool Brades, Eclipse brand : $11 / 16^{\circ} \times 3 / 32^{*} \times 5^{\circ}$ long, 5/- each : $13 / 16^{\circ} \times 1 / 16^{*} \times 6^{\circ}$ long, $5 /$ - each: $15 / 16^{\prime \prime} \times 3 / 32^{\prime} \times 6^{*}$ long, $6 /-$ each.
7,000 Pratt \& Whitney, circular split dies, supertor quality precision ground cutting edges, 1316° dia., suttable for machine or hand use. Stzes : 2, 4, 5, 6 B.A.. $8 / 6$ per set. $13 / 16^{\circ}$ de-stock, $3 / 6$ each.

 2,000 Files, 4° to $6^{\prime \prime}$ flats, half-round, rounds, squares, warding, assorted cuts, good 2,000 Straight Shank End Mills, slze l $^{\circ}, 5 / 32^{\prime \prime} .3 / 16^{\circ} .7 / 32^{\circ}$. $\mathbf{1}^{\prime \prime}$, $5 / 16^{\circ}$. Hst price $30 /-$ set, handy bargains. $15 / \mathrm{set}$, also $\mathrm{i}^{\prime}, 7 / 16^{\prime \prime}$, $\mathrm{i}^{\prime \prime}$ ditto $12 / 6^{\circ}$ set, ail in makers' wrappings. 500 1l.s. 90° Countersinks, body $f^{\prime \prime}$ dia., teeth cut to golnt. An essential tool for
any workshop using c/s screws. Gift $5 /-$ each.

J. BURKE

192 Baslow Road, Totley, Sheffield
Inspection Only at Rear 36 Fitzwilliam St., Sheffid.

THE TECHNICAL SERVICES Co. shrublands works • banstead • surrey

THE ، MAGSTAT

This is a precision bi-metal thermostat for the control of alternating currents of up to $\frac{1}{\frac{1}{2}} \mathrm{amp}$ at 240 volts. The temperature range lies between minus $50^{\circ} \mathrm{F}$. and plus $250^{\circ} \mathrm{F}$. An ingenious magnetic snap action is incorporated which gives freedom from radio interference. The operating temperature is altered by rotation of the adjustment screw, clockwise for increase, and anti-clockwise for decrease. Dimensions: $2 \mathrm{in} . \times \frac{1}{2} \mathrm{in} . \times \frac{\mathrm{in} \text {. }}{}$

PRICE : $5 / 6$ each. Post jd.

* NEW CATALOGUE *

SEND 4d. IN STAMPS
 NOW FOR YOUR COPY

*SUPPRESSIT *

(TELEVISION SUPPRESSOR KIT)
For the suppression of Domestic Motor Driven Appliances. Comprises Motor Driven Appliances. Comprises
two chokes and two condensers two chokes and two condensers
mounted on a card with wiring mounted on a card with wiring Cleaners, Hairdriers, Sewing Motors, tc., up to 1 Amp. Price 3/6. Post Free.

WE HAVE A REPUTATION FOR HIGH QUALITY THERMOSTATS AND LIST

Tmenmostat. CS. Convector Thermostat for Space Heaters and Low tempera Lure Ovens. 15 amps. 250 volts A.C. 40180 deg. F. 25 -. post 5 d.
THIERMOSTAT. MB. For control of Electric Immersion Heaters up to 3 KW. $52 / 0 / 0$. post 9 F .15 amps., 250 volts A.C.
THIERVIOSTATS. PF . Room Thermos-
stat, 15 amps., 250 volts A.C. 5 in. x 1 iln.
 ranges $30 / 90,40 / 100,40180$, $60 / 100$ deg. F. as required. £2/0/0, post $6 \dot{d}$.

REPLACEMENT ELEMENTS

FOR DOMESTIC ELECTRICAL APPLIANCES We stock over 200 types of element replacements for Fires, Irons, Kettles, Hairdriers, Toasters and Boiling Rings.

GREENHOUSE

THERMOSTAT
Type ML. Constructed specially for the amateur gardener. The scale plate is calibrated "High-Medium-Low" and has a temperature range of $40-90$ deg. F. Current-carrying capacity is 10 amps. 250 v. A.C. Differential, 4 to 6 deg. F. Dimensions: 4 in. $\times 2$ in. \times $1 \frac{1}{2} \mathrm{in}$. Price $35 / \mathrm{F}$: Post 6d,

Model P]. Miniature Thermostat for control of domestic Electric Irons and special purpose machines where space is limited. Capacity: 5 amps
 Single screw fixing. Price $9 / 3$. Post 3d.

FIRE BARS

No. 41. Bówed. 3 in . $\times 9$ in. $7 / 6 \mathrm{ea}$ No. 42. Bowed. $3 \mathrm{in}, \times 7 \mathrm{lin} .7 / 4$ ea. No. 43. Bowed. $3 \mathrm{l} \mathrm{in} . \times 8 \frac{1}{3} \mathrm{in}, 7 / 6 \mathrm{ea}$ No, 44. Bowed, 3 !in $x 8$ in. $7 / 6$ ea No. 45. Flat, 3 in $\times 9!$ in. $7 / 6$ ea No. 46. Flat. $2 \overline{\mathrm{i}} \mathrm{in} \times 7$ in, $7 / 4$ ea No, 47. Bowed. 3 in. $x 9$ in. $9 /-$ ea. No. 41. Suitable for Sunbeam, Revo, Belling, Dudley, Swan. No. 42. Suitable for Small Revo and various types.
No. 46. Suits Belling, Brightglow No. 47. Suitable for Cred.

SPIRALS

No. 70. Spiral, 1,500 w. 2/9 ea No. 70a, Spiral, 1,000 w. 2/2 ea No. 70b. Spiral, $750 \mathrm{w}, 1 / 10 \mathrm{ez}$ No. 70c. Spiral, 600 w. 1/5 ea No. 70d. Spiral, 500 w. $1 / 4$ ea No. 70e. Spiral, $200 \mathrm{w} .1 / 2 \mathrm{ea}$, No. 70f. Spiral, 100 w. 1/l ea.

[^0]BOILER RINGS
No. 71, 5! x in.
No. 1,000 w. ${ }^{5!}$ x $8 / 9$ ea.
No. 72.5 x in in.
No. 73 w. $5 \mathrm{M} .6 / 4 \mathrm{ea}$
No. $73.5 \% \times$ x in.
600 w. $\quad .6 /-e a$.
$\mathrm{No} .74,5 \mathrm{w} \times \mathrm{x}$ in.
500 w .2519 ea,

FLASHING

 ANPHOLDER into any B.C. lamp holder. 7/6 each.SILVER TIPPED CONTACT
7 BiA. x fin., 4/ per doz. 4 BAA. X inn., 6/6 per doz. 6 B.A. X in.,
6 per doz.
6 B. X in., per doz.

ASBESTOS

 diameter in thick. Ideal as Soldering Ir rests.Post 6 d. doz.

To all "PRACTICAL MECHANICS" Readers -n Dept. 103, Wolf Electric Tools Limited, Hanger Lane, London, W. 5
Please send
the descriptive
Brochure of Wolf
Cub Equipment
Easy Payments
Easy Payments
\qquad

MORE POWER OPERATIONS
 at a lower cost than any other 'Do-it-yourself' equipment POWER EQUIPMENT
 'The Family Favourite'
 Obtainable from all tool merchants Fully guaranteed and T.V. suppressed

Make tracks

for your
 garden

\because and make them now with dry, sunshiny days ahead and the long, light evenings of summer. What are your materials? Track parts, a few lengths of wood, a pound or so of mixed sand and cement and whatever else your ingenuity may suggest. So easy is it to begin this boundless, fascinating feature. And what an attraction it will be, and how your friends will admire it! There's twice the interest in a garden that is served by a real live working railway.

Our staff at London or Manchester branches will be very pleased to answer any questions and give you practical advice concerning your outdoor railway or write to us at Northampton for full details.

BASSETT-LOWKE LTD.

21, Kingswell St., Northampton

Bहड़ान 10 WkE

THE NEW "ZYTO" 10 " PRECISION MOTORISED PORTABLE SAWBENCH

Newly designed table allows unlimited widths to be sawn. Modern design pedestal stand bouses I h.p. motor, push button starter.: Extra large table, accurately machined, easily transportable and suitable for all classes of woodwork.

1 H.P. MOTOR

* Machined table, size $21^{\prime \prime} \times 18^{\prime \prime}$. \star Heavy double row self aligning ball bearing, ground spindle. * Right and left hand mitre slide. * Calibrated adjustable mitre fence.
* Special fine adjusiment to long rip and crosscut fence.
* Parallel rise and fall and cant= ing table.
* Push-bution starter with no volt and overload release.
The whole machine is constructed, finished and tested by first class workmen. Ilfustrated leaflet sent free and post free

PRICE £49-15-0 3-PHASE

Send now for illustrated leaflet Free and Post Free.

Bench Model Only, without electrical equipment, $£ 25-0$-0.
Also supplied single phase and D.C. supply. H.P. terms arranged with pleasure.

ONLY LONDON ADDRESS
S. TYZACK \& SON LTD. TEL, SHOREDITCH 341-345 OLD ST., LONDON, E.C.I IEsT. yever

For Every Cutting Tool

. .there's a

Sharpening Stone by CARBORUNDUM

FOR GOUGES WITH INSIDE BEVELS Slipstones of various sizes, in silicon carbide or ALOXITE abrasive, for tools that need sharpening on an inside curvée.
ALOXITE is a Regd, trade mark.

FOR AUGER BITS
Auger bits should be sharpened so that the bevel is on the uipper side of the cutting blade.

FOR SMALL TOOLS
CARBORUNDUM make a complete range of sticks of different sections, and different grit sizes, for sharpening every small tool.

THE CARBORUNDUM COMPANYLIMITED

Write to Department H for a free pamphlet 'The Art of Sharpening' Responsible organisations may borrow a 16 mm . sound film an the same subject. This instructive

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES ${ }^{\text {" }}$ should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

We definitely Guarantee "NO PASS-NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

MECHANICAL

ENGINEERING Gen. Mech. Eng.-Maintenance - Draughtsman\& Press Tool Work-..Weld\& Press fool Work-Welo ing-Production Eng.Metal Work-Works ManMetal Work-Works Mar-frigeration-Mesallurgy.
AUTOMOBILE

ENGINEERING

Gen. Automobile Eng.-
Motor Maintenance \& Repairs - High Speed Diesel-Garage Mngment. WE HAVE ADE Concrete-Geology. -Quantities - Valuotions COURSES HN GOR RANGE OF AERONAUTICAL COURSES AND GPO. ENGESTRY, TIMBER TECHNOLOGY, PLASTICS G.P.O. ENG., TEXTILE TECHNOLOGY, ETC., ETC.

One of these qualifications would increase your earning power
WHICH ONE ?
A.M.J.Mech.E., A.M.I.C.E., A.M.I.P.E., B.Sc., A.M.Brit.I.R.E., A.F.R.Ae.S., A.M.I.M.I, L.i.O.B., A.Ru.B.A., A.M.I.H. \& V.E. M.R.San.I., F.R.I.C.S A.M.E.E.D. CITY G GUILDS COMMON PRELIM., GEN. CERT. OF EDUCATION, ETC.

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W. 8.
Phone: WEStern 9861

WHAT THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job.
* HOW to quallfy for rapid promotion.
t HOW to put some valuable letters after your name and become a "key-man" quickly and easily.
t HOW to benefit from our free Advisory and Appointments Depts.
* WHERE today's real opportunities are... and HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can sücced in any branch of Engineering that appeal's to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

You are bound to benefit from reading "ENGINEERINGOPPORTUNITIES," and if you are earning less than $£ 15$ a week you should send for your copy of this enlightëning book now-FREE and without obligation.

POST NOW:

To : B.I.E.T. 410A, COLLEGE hOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W.8.

Please send me FREE and without
obligation, a copy of " ENGINEERING
OPPORTUNITIES." I am interested in
(state subject, exam., or career)
NAME
ADDRESS.

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Automation

DURING the Industrial Revolution of 150 years ago workmen were apprehensive of the new mechanical methods then being introduced to replace hand labour. Whereas hand labour could not produce large quantities of a given product all of the parts of which were interchangeable, mechanical methods could turn out much larger quantities of the same product every part of which was interchangeable with the next. Whilst one can admire handcraft as it relates to a particular piece, handwork can never match in accuracy or in general appearance the product of the machine.
The introduction of machines, therefore, was looked upon with apprehension by the workers of the period and as soon as machine looms were installed by Arkwright the hand knitters walked into the factories and smashed them.

Yet a second industrial revolution is taking place and by the inevitability of gradualness is being accepted as the new order of things. - The public is more enlightened to-day and realises that labour-saving machines do not necessarily create unemployment, that their wages and standard of living are still maintained and they have greater leisure in which to enjoy their particular hobbies and pastimes.

Mechanical Brains

A new word has sneaked into our vocabulary to describe the new style of factory which is being-created all over the country-the word automation, a term used to describe the automatic or robot factory which runs itself with a minimum amount of labour. Mechanical brains now perform most abstruse calculations, which formerly took a large staff to solve. A new machine in the short space of 40 minutes can analyse a set of figures, calculate percentages, add and subtract and bring up the answers to 7,000 wage packet problems. This work in the ordinary way would keep 12 people busy for a whole week. This new industrial revolution is here to spread and to stay, and nothing can stop it. It cannot be denied that all routine jobs whether in office or factory can be performed not only cheaper, but quicker and better by means of mechanical and electronic robots. Scientists will produce a machine

FAIR COMMENT

By
The Editor
to perform practically any job without labour, except that which is required to press a switch. To-day there are mechanical and electronic devices which can type letters, answer the telephone and record the message, sort cheques and cash, and count, work out income tax, translate documents from one language to another, assemble complicated mechanisms, automatically gauge parts produced on automatic machines, and even stop the machines when they produce parts which are not according to the drawing. Obviously these methods must in the ultimate replace a large amount of manual labour and reduce individual manual skills to a minimum. Of course; those engaged on making the machines would be more fully employed than before. In mass production everything depends on the tool and gauge maker, but it is obvious that within 50 years a much higher standard of technical and scientific education will be demanded of workmen of that period. In one American factory robots have replaced nearly $2,500 \mathrm{em}$ ployees, and output has gone up 100 per cent. An electronic brain in another office threw 50 clerks out of work and it is considered that 80 per cent. of all typists and clerks in big offices will be redundant within 10 years. Mr. Hugh Gaitskell in a recent speech prophesied that there will be an enormous drop in the amount of labour required in the near future. It is possible that there will be unemployment in some trades, and particularly in the less skilled, repetition

type of work. There will, however, be increased opportunities for those who have learned how to make, operate and maintain these new robots.

Education

Technical and scientific education has now been made available for all, at a very cheap rate indeed. Those who do not therefore avail themselves of these opportunities to bring their knowledge up to date so that they can be employed in this new era of automation must expect either to be unemployed or to be offered only the lowest paid posts. Even the cleaning of factory floors and what may be termed the menial tasks are now performed without manual labour, so they may not be available. It is obvious that to maintain our present standard of living we must be able to compete in world markets against cheap Japanese and other foreign labour. Because of our standard of living our prices are dearer than those of countries where there is an unlimited supply of cheap labour. As it is unthinkable that we should reduce our standard of living to that of these other unenlightened races, other means must be found to reduce the cost of our products : and automation is the only answer.

Price Increase

OWING to the continued increases in the cost of production, we are reluctantly compelled as from this issue, to increase the price of this journal to Is. 3d. We have deferred making this decision until it became absolutely necessary. We were left with the only other alternative of reducing the size of the journal, a course which we felt would be unpopular with all our readers.F. J. C.

The printing dispute, which has prevented publication of this journal since the issue dated February, 1956, has been settled, and we shall now be able to publish normally.

We greatly regret the inconvenience to our readers which this dispute has caused, but readers, we are certain, will appreciate that this break in publication has been due to circumstances beyond our control.

Conversion Details Using an Old Minimotor as

> a Power Unit

By J. K. EASLEA

article are appropriate to my own particular lawn mower and for another type modifications will have to be made. Additional purchases, which may be made at any-good tool shop, should not exceed about los. if the scrap-box supplies the small pieces of duralumin; étc., which are required.
In order to prevent overheating it is desirable to keep the engine revolutions low. Due to the good low-speed torque of the engine ample power is available, with a speed reduction of $3: 1$, to operate the cutters at a satisfactory speed.

Modifications to Mower

Firsst the machine is dismantled and the cutting cylinder removed so that a 2 in . extension piece of mild steel cañ be welded to the plain end of the shaft The cutting cylinder is then mounted in a lathe and the diameter of the exten-

Fig. 1.- The author's motorised lawn mower.

THE modern roller lawn mower is so well made that it can be adapted to take a small petrol motor without extensive alteration. Although any small 2- or 4 -stroke motor would be suitable, the writer used a 49 c.c. Minimotor which was not needed for its original purpose. The resulting appearance of the conversion is shown in Fig. I. Similar second-hand motors may be bought cheaply and are easily overhauled by a competent amateur mechanic. The measurements given in the

Fig. 3.-Elbow lug and hinge.

Fig. 2.-The elbow lug and hinge in position.

the shaft extension and tighten the grubscrew, thus marking the shaft. After removing the pulley a shallow $3 / 16 \mathrm{in}$. hole is bored in the shaft to take the end of the grub-screw.
The elbow lug and hinge- used originally to attach the Mininotor petrol tank to the saddle pillar of the bicycle is used in this

Fig. 4.-The slot in the delivery plate.
conversion to provide a pivoted mounting for the motor, as will be seen in Figs. 2 and 3. The mower tie-bar is reduced in diameter at one end to $5 / 16 \mathrm{in}$. by filing so that the steel bearing tube can-be pressed on to it. The elbow lug is shortened by I $\frac{1}{2} \mathrm{in}$. and cut at an angle of 45 deg ; this provides clearance for the roller.
The final alteration to the machine merely consists of sawing the top edge of the delivery plate and bending it so as to afford clearance to the elbow lug and hinge assembly (see Fig. 4).

Mounting the Petrol Motor

The crank-case was originally secured to one end of the petrol tank frame by two partly threaded rods fitted with hardened steel rollers. These bolts, after removing the rollers, are secured with nuts and fibre washers to the $\frac{1}{4} \mathrm{in}$. duralumin plate, drilled as shown in Fig. 5. Two clearance holes
sion piece reduced to fin . A large clearance hole must now be cut in the side plate to permit the passage of the cutting cylinder shaft, after which the mower can be reassembled temporarily

Fit 5 in. dia. pulley (Picador) carefully in position on

Fig. 6.-Spring and cutting cylinder adjusting screw.
for $3 / 16$ in. Whitworth bolts are drilled to secure this plate to the elbow lug assembly.

A cycle saddle spring is used to control the position of the motor, one end being attached by two 2 B.A. nuts to one of the two bolts mentioned above, the other end going to a 3 in. long brass rod threaded - B.A. which is used to replace the cutting cylinder adjusting screw (see Fig. 6 and alsoFig. 1). The driving roller should now be removed from the motor and replaced by a
 B.S.F. and secured by a Simmonds nut. The pulley may be seen in Fig 10.

Controls

The Bowden cable and control lever for the carburetter may be used without modification. However, the clutch lever has to be altered to give an increased movement of rin, to provide positive operation of the clutch as shown in Figs. 7 and 8. The nipple at the end of the clutch wire is connected to the shaped alloy bracket originally forming part of the elbow lug assembly. This is shown inset in Fig. 3 and in position

Fig. 3.-She modified chutch lever.
in Fig. 2. An easy way of connecting it is to use a mudguard-stay nut and bolt from a bicycle. The alloy bracket is itself bolted to the mower side-plate by the nut holding the wood-roller bracket. The original clutch adjuster is secured to the cylinder barrel using the bolt normally fixing it to the petrol tank.

The Petrol Tank

The petrol tank is most conveniently attached to the motor by a frame of brass angle made as in Fig. 9 and bolted to the top of the silencer. The dimensions given are suitable for the normal $\frac{1}{4}$-gallon container used by the leading oil companies. A hole can now be drilled in the base and the petrol tap soldered in position. A curtain spring or something similar should be used to steady the tank as shown in Fig. 10.

Operating the Completed Motor Mower

In order to start the motor a leather strap pierced at one end with a large hollow brass rivet is wrapped round the fly-wheel, the rivet engaging with the head of a small self-tapping screw. Starting is not difficult if care is taken not to flood the cylinder

Fig. 7.-Clutch lever modified to give Iin. increased movement.

Fig. 9 (right)-PPetrol tank supporting framework.
with too much petroil, thus oiling-up the plug. To provide reliable declutching operation a length of stout wire may be secured to the engine crankcase bolts (see Fig. 9) and adjusted to just clear the 26 in .-long V -belt when the clutch is engaged. Fig. Io shows the motor in the clutched and declutched position.
If the mower is to be used in the smaller garden it will be found to be easier to operate if the chain drive between the roller and cutting cylinders is removed.

Fig. 10.-The motor in clutched and declutched positions.

An Aquarium Thermostat

This Design was Received from B. Eiben in Answer to a Request in "Informarion Sought"

ABIMETAL spiral (thin soldered iron-brass sheet perhaps) has on its end a platinum bolt as a contact. The other contact is a brass screw for adjusting the temperature. Between A-B is a condenser of $0.01 \mu \mathrm{~F}$. or more for suppressing arcing. A copper flexible is also soldered to the spiral and connected with B to prevent trembling of the spiral and unnecessary sparking. A small neon tube with a series resistance for 220 V . this would be $2 \mathrm{M} \Omega$) indicates if the contacts are closed and the heater is in action. These parts are mounted on an insulating sheet and put into a test-tube. The top is sealed with sealing-wax or similar material to prevent water entering. The brass screw is fed through a tube for adjustment purposes. A handle for hanging the glass into the aquarium is also fitted in the wax.

This type will control heaters up to 300 ./220V. When working on D.C. mains you will have to change the terminals B-C every week.

Mr. tibens thermostat.

A BULB EREQUENCY METR for model control

A Handy Test Unit

MANY frequency meters used for checking the operation of a model control transmitter employ a moving-coil meter for measuring or indicating purposes. This is a good method, but such meters are relatively expensive and require to be treated with care. It is, however, possible to replace the moving-coil meter by means of a small Low consumption bulb bulb, thereby reducing

2 Turn loop
Fig. I.-Circuit

Fig. 2.-Wiring plan and coil. : smand producing smaller and more robust instrument. Frequency and output of the transmitter may 30pF be tested with it in the usual way

The tuned circuit

By F. G. RAYER
essential that condenser and dial be firm, and that turns on the coil be immovable. The bulb requires to be a low-consumption type, that used being of 2 volts .04 amp rating, intended as a dial lamp in battery-operated radio sets. If this cannot easily be obtained, the 6 volts .04 or .06 amp type used as a rear light with most cycle-dynamo sets will do.

When making checks, the tuning coil of the frequency meter is brought near the tank

Fig. 3.-The completed device, giving an idea of size.
coil of the transmitter and the meter or transmitter tuned for maximum brilliance, as mentioned. The meter should not be unnecessarily near the tank coil but withdrawn so that the bulb is extinguished when tuning is slightly off resonance. With a small onevalve transmitter this will be at about 2 in . from the tank coil. With larger transmitters, care is necessary to avoid blowing the bulb. Initial calibration of the meter is obtained by

I is
shown in Fig. x is brought to resonance by the 30 pF variable condenser. R.F. energy is then developed across it and transferred to the bulb by means of the coupling loop. To ascertain whether a transmitter is within the permitted band, the frequency meter is tuned for maximum brilliance and the dial reading noted. To set a trans-

Fig. 4.-A top viers of the completed meter.

Fig. 5.-A side view showing the coil,
tuning it to a transmitter known to be on frequency and noting the dial or pointer reading. If the tank coil cannot be reached, the transmitter aerial may be connected by means of a lead with a one- or two-turn loop in it, and the meter brought near this loop. If the meter is to be carried out-of-doors a box round coil and condenser is necessary. This should be fixed in position before calibrating the meter dial. The completed device is shown in Fig. 3, 4 and 5.
mitter within the band the meter dial is set to the correct reading and the transmitter then tuned for maximum brilliance of the meter bulb.

A simple practical layout for the parts is shown in Fig. 2, the "panel "projection to the left serving as an extension by which the meter can be held. The exact maximum capacity of the tuning condenser is not important, except that very small values will limit the waverange covered, whereas large values will make tuning difficult. A maximum capacity of 15 pF to 50 pF is feasible, with around 25 pF maximum being most suitable. A degree dial or pointer is locked securely to the condenser.

As movement of the coil turns would upset calibration, a notched, ribbed former is used. A solid former may be substituted, but a few turns may then require removing from the winding to compensate for stray capacity. The ends of the winding are tightly secured by passing through small holes, and the connections taken directly to the tuning condenser. A trace of varnish would hold secure the turns upon a smooth former.

The lamp loop is of insulated wire, wound on top of the tuned section in the same notches. Its ends are similarly secured and taken to the bulb holder. So that the meter may be retained for continuous use it is

The photograph shows the U.S. Army's new conwertiplane, which is seen in fight over St. Louis, Missouri. Built by the McDonnell Aircraft Corp. of St. Louis, it can take off or hover like a conventional helicopter or can fly straight ahead with the speed and range of a conventional winged aircraft. This is the first of its type to be built.

A CAPACITOR

THE flashgun is capable of folding into a reasonably small space as can bc seen from Fig. 3. The direction of the flash is obtained by swinging the reflector which is clipped to the barrel. The flash unit is attached to the camera by means of a metal bar (Fig. Ia). If, however, you wish to use the camera shoe, then the bar can be removed and a shoe adapter fitted (Fig. Ib).

The Circuit

The electrical circuit for the flashgun is shown in Fig. 4, while Fig. 6 shows how the actual components are linked up in the flashgun 'barrel; an

slot wide enough for cable
The gun is capable of firing flash bulbs of the A.S.C.C. cap type manufactured either by Philips or Mazda, also the new capless type if an adapter is used.

The advantage of the battery capacitor system over the battery one is that ordinary batteries deteriorate during their life. Therefore, to ensure that the bulbs will fire every time when in use, fresh or almost fresh batteries are required. In the capacitor system a positive flash is obtained every time even though the battery is deteriorating. Such a battery will last as long as a year.

Fig. 1. - The metal bar fitting and shoe adapter.

-Fig. 2.-Two viezus of the completed flashgun. assumed. and 6,000 .

the camera being
The electrical components can be obtained from any radio repair shop. The. 25 -volt electrolytic condenser can be of any value between 25 and $100 / 1 \mathrm{~F}$. For space reasons the miniature type should be used. The value of the radio carbon limiting resistance is between 2,000

The components used were a $100^{\circ} \mu \mathrm{F}$ electrosistance. I found that with a $4,000 \Omega$ resistance the charging rate was about 20 seconds. This means that after the flash bulb is inserted in the gun at least 20 seconds is required before the gun will fire. A lower resistance will give a higher charging rate and a high resistance a lower one. When the condenser is fully charged there is a continuous leakage current of a fraction of a milliamp. This means that a bulb cannot be left indefinitely in the gun without battery deterioration.

The flashgun barrel with non-electrical components is as shown in Fig. 5. It is well known that in. copper tubing means the inside diameter while in. brass tubing means that the outside diameter is considered. Therefore the outside tube is made of copper with brass tubes a sliding fit for the top and bottom components. The top component is held in positon by 8 B.A. countersunk screws as this component need not be dismantled unless the condenser breaks down, and this is a very rare occurrence with a good quality part. The bottom component is held in position by cheese or round headed screws mainly to act as stops for the reflector clip
when it is pushed down while not in use These screws would have to be removed whenever battery replacement is desired, which means about once a year under normal working conditions.

The bulb holder is a 6 volt single contact type obtained from a local garage.

Fig. 3.-The folded flashgun.

To camera firing contacts

Fig. .4.-The circuit.

The reflector size recommended by the makers of flash bulbs should be between 4 and 5 in . in diameter. The one shown in Fig. 2 is the minimum size and is an aluminium shallow type pot lid obtained from a chain store. Care must be taken in choosing the lid otherwise your reflector will look so obviously home made; the one used here is of the rounded or beaded-edge type. The barrel

Fig. 5.-Constructional details of the flashgun barre!.

Fig．6．－How the components are linked up in the flashgun barrel．
clip（Terry）of Iin． diameter was obtained from the same chain store．A piece of strip aluminium of cross sec－ tion $\frac{t}{2}$ in．x tin．joins the centre of the reflec－ tor and the clip，both items being riveted into place．The length of thé bar－between cen－ tres－before bending is

3in．The bar should be bent into the lid shape before riveting as this will give sufficient reflector clearance when it is in the down position on the barrel．

Finish can be as desired．In this case the bar and barrel were black lacquered and the reflector unit polished．

The flashgun can be used for bounce flash in a horizontal direction．This gives a softer， diffused lighting and can be obtained by directing the light at the room walls or card reflectors instead of directly at the subject．

Fig．1．－The standard lamp in use．

THE materials required for this lamp， which is shown in Fig．I，are readily available and the construction so simple that，apart from the finishing，it could be described as a one－evening project．

MATERIALS LIST

I length $\frac{3}{8} \mathrm{in}$ ．dia．mild steel rod， 5 ft ． 6 in ． long．
I length $\frac{3}{} \mathrm{in}$ ．dia．mild steel rod， 2 ft ．long． 3 plastic balls about I $\frac{1}{2} \mathrm{in}$ ．diameter．
I piece mild steel about $I_{2} \frac{1}{2}$ ．x rin．$x \frac{1}{8}$ in．
I strip mild steel about 5 in．$x \frac{1}{3}$ in．x I／ 6 in．
I $\frac{1}{4} \mathrm{in}$ ．bolt Iin．long with washer and wingnut．
4 steel or brass ring screws．
I lampholder，together with screwed adapter for same．
I cord switch．
I length of plastic－covered flex．
The two lengths of steel rod should first be bent as shown at A，Fig．2．This operation can be achieved quite easily cold by clamping the rod in the vice and by slipping a 2 ft ．length of iron pipe over the projecting end．This method will avoid distortion and produce a clean bend．

The plastic feet were made from ready－ made balls of this material，which can be obtained drilled and tapped quite reasonably from machinery merchants who stock them in both red and black for machine tool lever knobs．The bottom ends of the rods should be screwed to fit the tapped holes in the knobs．

Now cut a slot about $\frac{1}{2}$ in．into the top end of the rod that is to form the standard， soft solder or preferably silver solder in position the $\frac{1}{8}$ in．thick plate which is cut and drilled fin．clearance as shown at B，Fig． 2. Also sweat the ring screws into holes already drilled for them；these rings are for the flex eventually to pass through．

a modern tandardfamp

Make This．Useful Item of Unusual Design for Your Home

By T．D．HACKNEY

Next attach the rod forming two of the feet by filing flats on it and on the standard and silver soldering together．It will be found a help if these are first screwed together by means of a small steel screw passing

through the foot section and tapped into the standard．

The strip steel is next drilled and bent as shown at C and D ，and the lampholder adapter is sweated into position．The bolt and wingnut is used for assembly as shown at D ．

Finishing

This completes the construction，the finish being left to the taste of the constructor，but whether it is proposed to finish in cellulose or enamel the metal should first of all be thoroughly cleansed with fine emery cloth

Adapter soldered in， Lamp holder is screwed on to adapter
and all grease removed with turpentine substitute．A priming coat is applied and this is a dark brown turpentine－based paint obtainable in small tins and very easily applied with a brush．Do not apply too thickly and allow about twelve hours to harden． The undercoat should next be put on， and again this is a turpentine－based light grey paint，equally easily applied．This， too，takes about twelve hours to harden， after which the finish－coat may be put on．This may be either a brushing cellulose or one of the modern synthetic lacquers．

Wood screw thread cut off and ring soldered on
\therefore Wood screw thread cut off

Fig．2．－A shows the steel rod standard and legs，B is the connecting plate，C shows the adjustable adapter and D is．the assembly．

READERS who have attended radio controlled model meetings or watched demonstrations will realise that in most cases only one model can be operated at a time and that it is always necessary to take great care to avoid the accidental switching on of any transmitter not being used for the control of the model, so as to prevent putting the model out of control. This is due entirely to the fact that super-regenerative receivers (such as that described in our September issue) are highly sensitive but very unselective. This type of receiver will usually respond to a transmitter tuned anywhere in the model control waveband, although a small amount of success can be obtained with two models by tuning transmitters and receivers to opposite ends of the waveband and keeping the models well apart and away from the other transmitter.
The $27 \mathrm{Mc} / \mathrm{s}$ model control waveband is, however, $320 \mathrm{kc} / \mathrm{s}$ in width, and by using selective receivers it can easily be split up into a series of channels which can be allocated to members in the case of a club. With the superhet receiver to be described the selectivity is of the same order as a broadcast receiver, i.e., ro kc / s approximately between channels. Therefore, it is ţheoretically possible.

to use up to 32 models simultaneously. Due to lack of models fitted with this receiver we have so far operated only three together, but the principle has been proved.

The Design

The receiver described in this article wa designed to fulfil the following requirements :
A. To be highly sensitive and selective.
B. To be reasonably light (it is fitted to a 36 in . long boat).
C. To be reasonably economical on batteries.
D. To use the mark /space system of control (carrier wave transmission only).
It should perhaps be
pointed out that, due to the very highly selective nature of this HT+6OV. No.2. Battery

9.- A Six Valve Superheterodyne Receiver for Model Control

receiver, the simple transmitter described in the October issue cannot be used, and it is essential to make use of a crystal-controlled transmitter. This is, however, a simple onevalve affair using an overtone crystal (Q.C.C.).
Due to the confined space in the model, all tuning adjustments must be carried out from the top of the receiver, and consequently all trimmers and the potentiometer were made accessible for screwdriver adjustment looking down on to the top of the chassis. Fig. 2 shows this view.

Fig. 2.-A top view of the completed receiver.
[7\% . I. - Circuit of the six-vaive superhet model control receiver.

As in all superhet receivers, it is the oscillator circuit which exercises control of the received frequency, and it cannot be emphasised too strongly that this stage must be wired up rigidly so as to avoid any possible movement of components or coil turns when in use. To avoid so far as possible the effects of falling voltage from the H.T. source, a separate battery of 60 volts is provided. As the current consumption of this stage was only 0.7 mA in the original, the voltage drop was negligible on an average run.
A considerable number of experiments have been carried out on the stability of this receiver, and without doubt the major change of frequency is caused by temperature variation. The writer has therefore made a point of switching on the receiver and leaving the model in the water for at least Io minutes before tuning up to the transmitter.

The Circuit

Referring now to Fig. I, the circuit follows orthodox practice, except in the last stage, which is a direct-coupled amplifier. A radio frequency amplifier (IT4) is capacity coupled to the mixer grid of an IR5, which in this case is used solely as a mixer. Local os zillations are generated separately in the IS4 oscillator stage, which is triode connected, and these are injected into No. I grid of the IR5. The intermediate frequency thus developed is fed into the I.F. transformer and then into the IT4 I.F. stage. After the second I.F. transformer, detection is carried out normally using the diode of the IS5, and the rectified output is then fed by direct coupling to the grid of the amplifier section of the 185, which is triode

TOP TRANSVERSE SCREENS ZO S.WG. ALUMINIUM

connected. No A.V.C. circuit is used or is necessary.

At this point it is necessary to digress to mention that the receiver was designed for receiving non-modulated transmissions for markispace control, and if at this point conventional capacity couplings had been used the signal would have been lost. If, however, it is required to use the receiver to operate tuned reeds, then normal audio couplings and bias circuits can be introduced

The anode of the IS5 is thus now rising, and falling in voltage at mark'space frequency due to the current flowing through the potentiometer and fixed resistor of $5 \mathrm{M} \Omega$ forming the anode load.

The slider of the potentiometer is arranged to select, within a prescribed range, the exact voltage necessary just to feed by direct coupling (via the I $M \Omega$ safety resistor) the grid of the final triode connected IS 4 , so as to cause current cut off when a space (no signal) is transmitted. To attain this condition, which would normally be impossible as the anode of the IS5 would be positive with respect to the grid of the IS_{4}, it is necessary to raise the D.C. potential of the filament of IS4 (not the applied voltage, of course) by connecting the H.T:- of this valve to the $30-$ volt positive connection of the normal H.T. supply. With battery valves this unfortunately means that the filament supply of the IS4 must now be separated from the supply to the remainder of the receiver, as it is 30 volts positive with respect to chassis. A single Uz cell feeds this valve.

The operation of the last two valves is then as follows :
Normally the IS5 amplifier section draws
Fig. 4 (Top right).-The R.F. and I.F. side of ichassis. (Right below).-The underside of chassis.
a fixed current through its anode load, which causes its voltage drop, and the anode is, therefore, at a potential of, say, 20 volts positive. This voltage appears at the grid of the IS4, but since its filament is at a voltage of 30 volts positive (with respect to earth) the effect is as if the grid were 10 volts negative. Hence no anode current can flow and the relay in its anode circuit is open.

If, however, a signal appears at the last I.F. transformer, it is rectified and a negative voltage is applied to the grid of the amplifier section of the IS5. This causes
the anode current to drop and the potential at the anode then rises in a positive direction. The grid of the IS4, therefore, is driven positive, and at a point of about 5 volts negative the valve starts to pass anode current. Usually the signal is sufficient to drive the grid of the last valve to a point where it is positive with respect to its filament, and the full anode current will pass with the consequent closing of the relay. Grid current is limited by the I $\mathrm{M} \Omega$ grid resistor and anode current by the relay resistance and the limited $H . T$. voltage applied. The potentiometer is used to set the anode current of last valve so that it is just cut off when no signal is being transmitted.
Readers should note that this receiver works on the current rise principle, not the current drop on receipt of a signal, as is the case with the single-valve super-regenerative receiver.

Construction

The construction of this receiver is a little more difficult than anything described so far in this series, but it should not prove beyond the capabilities of anyone with a small amount of experience in radio and mode work. The chassis is built up from a piece of 16 s.w.g. aluminium sheet $5 \frac{1}{2} \mathrm{in}$. by $2 \frac{1}{2} \mathrm{in}$. and in the original $\frac{8}{8} \mathrm{in}$. flanges were added at each side for the mounting of side plates to protect the valves and assist screening. Later models dispensed with this, however. As can be scen from the photographs there is a central aluminium screen ($20 \mathrm{~s} . w . g$.) running the full length of the chassis on top, which separates the R.F. mixer and I.F. stages from the L.F. and oscillator stages. In addition there is a small vertical aluminium screen between the R.F. and mixer valves and between the D.C. amplifier and oscillator valves. These screens assist stability in the receiver and also make the chassis strong and rigid, which is very necessary with the superhet

design. A further aluminium screen is used just past the oscillator trimmer so increasing chassis strength and assisting screening. Relow the chassis there is a similar full-length screen and in addition there is a number of small screens, two of which (R.F. and mixer) lie across the valve bases to screen the input and output pins, also to separate the aerial and H.F. coils. These under-chassis screens are all made from tinplate, which means that soldering is easily accomplished. They are, in fact, soldered in place both to the valve base and to one another. The central screen must be bolted to the aluminium chassis.

Figs. 3, 4 and 5 illustrate the general layout of the receiver and the screens, and they also give the main dimensions for drilling the chassis and screens.
The precise positioning of some of the holes will depend to a certain extent upon the actual components to be used and it is, therefore, as well to collect all of the parts before drilling.
Details of the coils are given in Fig. 8, and as readers will see use is made of paxolin terminal boards to anchor the ends of the wires used in winding the coils.

These are necessarv as none of the commercially available paxolin tag boards is small enough for this receiver. The coils are all simple single windings with the exception of LI, which is tapped at five turns from the start (earth end) to make the aerial connection. Winding direction is not important. Coils should be wound very tightly and doped with Polystyrene cement to fix the windings.
Full wiring details are given in Fig. 4, from which it will be seen that all wiring takes place under the chassis except for the aerial trimmer connection which is made through a hole in the chassis. The aerial lead also passes through a near-

Fig. 5.-Method of cutting and mounting valve base screens in R.F. and mixer stages. (Material : thin timplate.)

A little difficulty may be experienced when attempting to fit the under-chassis valve base screens, and care must be taken first to mount the valve holders the correct way (see
original, six type Bios hearing-aid batteries were used for the H.T. and three U2 cells for the main L.T., while one U2 cell supplied the D.C. amplifier valve.

be rotated, and in the full anti-clockwise
LT-Na2 L.T.B.
$\angle T+\mathrm{NaI} L T . B$. position it should be found that the anode current of the IS4 is cut off. Rotating the other way will causo full current to
wiring plan) and, secondly, to ensure that the centre spigot is firmly soldered to the screen.
Tags I and 5, both of the R.F. stage and the

Fig. 8.-How the coils are wound. All formers $\frac{1}{3}$ in. Aladdin type. LI, 15 turns 32 s.zv.g. cnamelled copper tapped at five turns from bottom (earth end). L2, 15 turns 32 s.w.g. enamelled. L3, 10 turns 24 s.zv.g. enamelled. The direction of winding is unimportant.

Fig. 6.-A view of the underside of the chassis.
mixer stage valve holders, must also be earthed by soldering to the screens, but no other tags must touch them.

Testing and Aligning

When wiring has been completed tests should be carried out. Batteries relay and meter should first of all be connected up as shown in Fig. 7. This may seem complicated, but, as previously mentioned, it is partly caused by the requirements of the D.C. amplifier and partly by the need for frequency stability in the oscillator. In the
flow and the relay will and meter socket. close. A rise of about 7 mA is given in the original, which is more than adequate for good relay action. Now reset the potentiometer so as just to cut off the IS_{4} current.

The IT4 I.F. amplifier valve should now be plugged in and an increase should be noted in the meter to HTBI. The IR5 mixer should then be plugged in and a further increase noted. At this point the I.F. transformer must be aligned to $465 \mathrm{kc} / \mathrm{s}$, and this is a job calling for a signal generator, although it may be found possible to align on the transmitter if by chance the slugs of the I.F. transformer are sufficiently near to tune to enable a response

	PARTS LIST
Six-valve Superhet Model Control Recciver	
3 din. Aladdin coil formers with slugs.	
3-30 pF Philips trimmer.	
${ }_{6}{ }^{3-30} \mathrm{pF}$ midget air spaced trimmer.	
"Denco " miniature I.F. tran IFTII- $465 \mathrm{kc} / \mathrm{s}$).	
${ }_{2} \mathrm{M} \Omega$ miniature potentiometer (linear law possible).	
I $4.7 \mathrm{~K} \Omega$ Resistors (ail $\%$ watt)	
I 2209	
I $47 \mathrm{~K} \Omega$	
268 KS	
I $100 \mathrm{~K} \Omega$	
2 I 1 $\mathrm{M} \Omega$	
Condensers	
122 pF ceramic.	
2100 pF ceramic.	
1200 pF ceramic or silver mica.	
$3.01 \mu \mathrm{~F} 150-\mathrm{volt}$ wkg. (Hunts midget type),	
	2 . 1 F 150-volt wkg. (" ")
$2 \mathrm{IT}_{4}$ (
$1{ }^{2}$ IR 5	
$\begin{array}{ll}\text { I } & \text { IS5 } \\ \text { 2 } & \text { IS4 }\end{array}$	
Miscellaneous	
Timplate and aluminium for chassis.	
$6 \mathrm{~B} . \mathrm{A}$. and $8 \mathrm{~B} . \mathrm{A}$. nuts and bolts.	
	ystoflex (1 mm .) enamelled copper wire for coils, tinned copper wire ($22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.) for connecting up, flexible wire for leads, paxolin, Polystyrenc dope, etc.

to be obtained. This cannot, of course, be done until all the valves are in position and the oscillator set to a frequency of $465 \mathrm{kc} / \mathrm{s}$ under or over the normal frequency of the transmitter.
Using the signal generator to align the I.F.s, a signal should first of all be applied to pin 6 of the I.F. valve (IT4) through a 50 pF condenser and IFT 2 cores adjusted for maximum reading of the D.C. amplifier anode current (taking care to keep the signal strength low). Secondly, IFTI should be adjusted by injecting the signal at the grid of the mixer valve (IR5) pin 6. It is most important that all cores peak to maximum without instability arising, which will show as a reading on the D.C. amplifier meter even with the signal generator off. The good screening and decoupling of this receiver helps a lot in this respect, but in difficult cases a resistor of about $\frac{1}{} \Omega$ can be shunted across pins 4 and 6 of IFTr. This will damp the grid circuit of the I.F. stage, and the slight loss of selectivity does not matter.

Finally, all remaining valves should be inserted, when it will be found that the total
H.T. Br current is about 4 mA . HTB2 varies from zero to 7 mA on signal and HTB 3 should be less than I mA, as previously stated.

By adjusting the oscillator coil tuning slug it should now be possible to receive the transmitter signal, and this should be peaked by adjusting the aerial trimmer condenser in conjunction with the slug of LI and the air spaced trimmer (below chassis) and the slug of L2.

The oscillator adjustment is the master control; it is useless adjusting LI and L2 until you get a signal by setting the core of L3. The setting of the oscillator slug is very critical and it must be turned slowly.

As would be expected, the transmitter will be received at two points when adjusting the oscillator tuning slug, and if there is any difference in strength, then obviously the stronger should be chosen.

Satisfactory results have been obtained at ranges up to 150 yards, at which point the model is practically invisible. This receiver is not so critical to aerial length alteration as are super-regenerative types, and in general the
longer the aerial, the better; make sure, however, that LI can be peaked for maximum signal strength.

Readers will note from Figs. 2 and 6 that in the original a midget $\mathrm{B}_{7} \mathrm{G}$ type plug is used to connect up the receiver to the battery socket in the model. This is very useful, as it means that the receiver can be removed at any time without the trouble of disconnecting leads and heating the soldering iron. A single plug and socket also connects the aerial.

As previously mentioned, all adjustments for tuning the receiver are made from the top (except the two slugs of the I.F. transformers, which are under the chassis and which should not need touching after once aligning). Tuning should be carried out in the model by using a plastic knitting needle or similar nonmetallic rod which has been sharpened to a screwdriver, and this will avoid difficulties due to metallic objects affecting the tuning. Slugs in the Aladdin formers should be made firm by rubbing something like zinc ointment into the threads. "Fluxite" could be used.
(To be continued)

Fig. 1.-A typical two-bar electric fire.

HEATING a darkroom is largely a problem of cost due to the necessity for some form of dark heat. Tubular heaters are the ideal, with convector type heaters a close runner-up, but for a less costly method a two bar open-type electric fire, suitably modified, can be very satisfactory.

Fig. 2.-The normal wiring of the electric fire.
Many readers may already have such a fire and a typical example is shown in Fig. I.
The modification is simple and requires no extra parts ; it is a matter of rearranging the connections to the elements. Removing the back plate of the fire gives access to all the wiring and terminals. In normal operation the two elements are connected in parallel across the mains supply; a singlepole switch cuts off the supply to one element when the heat from one bar only is required. This arrangement is shown in the circuit Fig. 2 and the photograph Fig. 3.

The modified circuit shown in Fig. 4 puts the two elements in series across the supply,

ODBYgoOUM Heatier

 Rewiring an Existing Heater to Give Either Dark Heat or. Bright HeatBy G. W. McDONALD

giving a dark heat. The switch is now wired to short circuit one element; this gives normal bright heat from one bay only if required.

The fire used by the writer was rated at one kilowatt or 500 watts per bar. The rating of the modified fire is 25° watts of dark heat or 500 watts of bright heat. These ratings were found to give satisfactory heating in a small darkroom, provided the heater was run at bright heat for about half an hour before photographic work started. Thereafter the dark heat added to the heat from the enlarger, and the closed room keeps the temperature comfortable for working.

In complete darkness a faint glow can be seen to come from the fire. This will have no effect on photographic paper, but if high speed film is being handled some care may be necessary to avoid fogging:
electric shock when there are water taps within easy reach of the operator. Three-pin connectors, properly wired, are necessary to prevent accidents and to conform to I.E.E. Regulations.

Fig. 3.-The unmodified heater wiring.

Fig. 4.-The modified wiring circuit to give dark heat.

The Earth

Make sure that the earth wire of the three core flex is connected securely to the metal frame of the heater. This is an important safety precaution to prevent
 3mportant safety precaution to prevent

PRACTICAL MECHANCS HANDBOOK

7th EDITION
By F.J. CAMM
$12 / 6$, or by post $13 /$-.
Obtainable from booksellers, or by post from George Newnes, Ltd. (Book Dept.), Tower House, Southampton Street, Strand, W.C.2.

CONSTRUCTING

ATROPHY for recognising some auspicious club occasion is an article not often attempted by the amateur. The first step is to decide on the shape, height and whether sufficient material is available from stock for the various details. Brass sheet is recommended as it is so easy to work. A base or plinth is necessary - no cup is complete without one, and the material to use is ebonite, plastic or a really good piece of oak. Metal is excluded because it is not the "traditional" material, but if oak is not available, ordinary white wood stained a dark colour may be used.

Fig. I gives a drawing for a typical cup with handles and the usual style of base, but if this profile does not find favour the reader is advised to draw his own choice of shape to scale before attempting any work on the arbors necessary for the spinning of these parts.
It will be seen that the assembly is a series of separate pieces spigoted together and eventually soldered. Sheet brass of about 28 -gauge or . 015 in. thick is the suggested material ; you can vary this if a different thickness only is available, but it should not be too thick otherwise the completed cup will be cumbersome. The principle of these cups is a combination of outline and weight, and failure to achieve an excelient balance means that much of the beauty is lost.

Spinning the Details

The spinning operation may be new to many and for this reason a simple outline has been chosen.
The work can be carried out on either a wood-turning or metal-turning lathe-the latter for preference because, generally, the design is more robust. A series of arbors is needed, or perhaps it would be better to say a series of shapes is required, because after making the largest member, a reader can turn the former down to the next size and carry on with that section.
Thus, the largest piece (the actual cup) is tackled first. For the arbor or former a piece of hard wood is preferable. First mark out the necessary templates from stiff cardboard as shown in Fig. 2 and use these to obtain the outline on the former. The most important thing is a pleasing profile; so ensure all the radii "flow" into each other and that no projections occur. A cup which is nothing but a series of flats and bumps has a very poor appearance.

Fig. 2.-How the templates are applied. A similar example is used for the smaller radius underneath the lip.

Take off the chuck holding the arbor and substitute the faceplate. Secure the brass plate to it and bore the central hole where the spigot detail locates; remove the burrs and the sheet is ready for the spinning operation.

Replace the chuck and former and set up the plate in the manner shown in Fig. 3: the flat type rear centre holds the plate securely against the former and provides the drive while the spinning operation is taking place.
To describe spinning in detail here would take up too much space, and the amateur who has never seen this operation should consult a textbook in the library for precise information. Fortunately, the tools used are very simple and can be made in the home workshop. For this particular operation a rather broad-nosed member is needed-similar to that shown in Fig. 3. With the pegs set into the special holder, also depicted, it will soon spin this cup to the outline. The tool is a long bar which tucks under the operator's arm, pressure being exerted by bearing against the pin and workpiece.
You may find that after a few minutes the plate becomes hard to, work. Hardness has taken place; the grains of metal have been compressed and are much more difficult to "flow." When-this occurs, the only solution is to soften the piece of metal, an operation which is very easy even for the tyro mechanic. Place it over the domestic gas flame, either on another sheet of steel or by holding it in a pair of tongs. . Do not concentrate too much heat in one particular spot, but keep turning it the whole time that the flame is in contact. After about five minutes, withdraw it and let it cool naturally in the atmosphere, whereupon it will again "work" easily when the spinning tool is applied. A water-quench is also possible, but beginners are advised not to bother with this until they have a little more experience.

As the shape is simple, the spinning of this profile should be completed without further annealing (this is the name given to the process of softening of any piece of metal).
Some readers may prefer to bore the hole in the sheet and attach the thick washer prior to the spinning process: this is optional, provided the latter item rotates concentrically when set up on the lathe. Solder the washer to the plate, and to assist this process a small countersink on what will eventually be the inside of this cup is made and serves to take a

Fig. 3.-The sheet set up on the former and partly spun over by the tool shown in the foreground.
fillet of solder. The washer is merely a disc of brass $\frac{1}{8}$ in. thick.
When the cup is finally spun to the correct outline, put it aside for a while until the other parts are made ; there is no need to polish it at this stage because all the details can be polished together before final assembly. Just scrape off any burrs to make it easy to handle and so avoid cut fingers when picking it up quickly.

The Stem

The stem on many trophies is also another spun article, but the shape chosen for this member is not easy for a newcomer to spin, and a turned detail is thus specified. The best way to machine this piece is to chuck a bar of brass in the threc-jaw chuck and drill, recess, and turn the spigot and outside diameters. The bar is then reversed and set to run truly with only a light grip on the outside diameter in order to avoid marking the surface, and then the remaining operations of turning the radii are completed. It may be considered that the large radius is awkward to turn; it will mean making a special form tool and working very carefully while producing the radius, but this outline has a better appearance than a straight cone. The latter is very easy to machine and simply requires the top slide being turned round about 12 degrees to give a 24 degree included angle. In both cases blend the corners smoothly, and a tool with a fairly large-nose radius is ideal for this.
Set the lathe to rotate at the fastest speed and polish all the machining parts from the surfaces, using varying grades of emery cloth for the purpose until a really fine finish is secured.

The Handles

Two are required, and they are made up from 20 gauge sheet brass, .036 in . thick, and once again simple templates are extremely useful to ensure that the shape of each piece corresponds. Hand polish these, or use a fast rotating brush set up in the lathe chuck.

An alternative method of making these parts is to secure a strip of brass about rin. wide and bend the shape as shown in Fig. 4D. This width is sufficient to make two handlesa very careful sawing operation through the centre soon severs the pieces and a file is employed to dress off the sharp edges left by that operation.

The handles are eventually silver soldered to the cup before plating is carried out.

The Plinth

The plinth is a simple turning stage and requires no comment. other than to say the $2 \frac{1}{2}$ in. diameter should match the stem detail. Check this with a micrometer or pair of calipers before releasing it from the chuck. The spigot turned on the stem will fit closely
into the recess-and may even be made a light drive fit, as this makes future handling much easier; do not overdo this, as it is possible to split the base member; despite the fact the wall of material is fairly thick.

Black ebonite properly polished is the "traditional" material for the plinth, but this is not easy to obtain. Plastic will serve, but does not look well for this purpose. Oak may be used and suitably stained black.

Fig. I shows a thin plate which can be attached by means of two tiny screws to the plinth. It is best made from a thin tube,
latter stage and to use too much pressure in an endeavour to complete the operation quickly. Lubricate the surface liberally, but not with so much oil that it smothers everything when the lathe is started up. Grease is better, and tallow best of all.

Polish all the surfaces carefully, removing all the burrs and sharp edges beforehand with a very fine file. The time taken on this operation is by no means lost, as when finishing an article for. plating any blemishes that show up are usually reproduced by the plating and then they look much worse. The handles

Fig.4.-Thedimensioned details of the cup. A is the bowl and stem? B is the plinth; C is the plate for engraving and D the handle.
need special attention in this respect, and afterwards may need to be reset ; it is assumed that they have not yet been silver soldered in position.
drilled and a piece sawn out to form the segment shown in Fig. 4 C. A trophy of this description is not large enough for a series of plates on which to record the annual holders, so this plate is merely to state the donor or the event for which the cup is competed each year. Two chromium-plated self-tapping rivets, if obtainable in this size, will hold this plate closely to the base. If these are not available, screws are used instead. You can tap the wood or ebonite base if you take care to clear the tap frequently. The plate will be plated before fixing.

Polishing

If the standard of workmanship has been high, polishing should not take very long. The most obvious point to observe when machining or spinning is to avoid dcep marks in the surfaces. Score marks are easily formed if an attempt is made to rush the

Plating

Plating is not a process which the home mechanic can undertake; certainly the work of making all the accessories is not worth the trouble for a single or even a few articles. The best course to adopt is to send or preferably take the completed cup to a firm who specialise in this type of work, and let them plate and polish it. The curved plate for attaching to the base must also be treated in this manner.
Perhaps the firm who plate the article can also undertake the engraving, but if not, then the local jewellers is your next visit. It is, however, advisable to keep the amount of lettering on the plate to a minimum. Two lines or at the most three is all that is needed, but I believe the actual date of commencing the competition is essential, so make sure this is stated.

ANDY MANN
THE PRACTICAL MECHANIC

 detail for making medals for small boys, but the pattern making, mould making and casting in plastic processes described can easily be adapted for making brooches, small ornaments, etc.
appearance. A heat-resistant ad hesive is used to cement the layers. Obtaining a reasonably symmetrical finish to the main shape of ribbon and medal is the most important. The decorative "bits and pieces" need do no more than to present a noticeable relief.

In the soft metal used the figures of the rider, gun, etc., and the inscription plates are much easier than they might seem. Once the shape has been cut out roughly, filed to the required silhouette, and the first bodylines scored in, it becomes merely a matter of a little further filing and scraping to bring up a passable relief. Perfect detail is not required and most of it would pass unnoticed in the finished article in any case.

Inscription Plates

In preparing the inscription plates do not

Fig. 3.-Space man medal: a-completed medal, $5 / 8$ scale; b-base; c-inscription plates; d-ornaments.

Fig. 4.-Wiild W' est medal : a-completed medal, $5 / 8$ scale; b-base; 'c-inscription plates; d-ornaments.

O
F the four stages involved (i.e., pattern making, mould making, casting and colouring) making the patterns is the most difficult. If these, however, are made in soft aluminium and built up in layers it becomes simple enough and only a junior hacksaw, a steel-point (such as a small bradawl) and one or two small files are needed.

Ribbons, as well as medals, are made in plastic and there are several reasons why ordinary ribbon is not used.

Cheap ribbon needs some sort of metalstretcher arrangement if it is 'not to pucker and drag out of shape, and it also has to be stitched in joining; colour designs are very limited and all colour combinations must be already in use on "official" medals. The moulded plastic ribbon permits a design that can be decorative and original, which will keep its shape and is actually cheaper in cost and labour. The strength of the plastic mixture is more than ample for all ordinary wear and tear.

Making the Pattern

The main shapes of ribbons and medals are given in Figs. I to 4 and the thicknesses of aluminium suggested build up to a good total gauge from the standpoint of strength and

Fig. 1. -Wild West ribbon: a-completed ribbon, $7 / 3$ scale; b-base, c-ornaments; d-relief plate.

cut out the shapes until the lettering has been well advanced or finished. You will need something to provide a "hand-hold" while engraving. Make a template for the shape (of card or stiff paper) and scribe a firm outline to give the necessary boundaries for lettering. Then after marking out the letters in pencil or ball-point close-prick them firmly with the steel-point (Fig. 3).

It will be found that the steel-point will follow the pricked dots in ploughing the first furrow and not tend to skid at wild tangents. File off the burrs, note any necessary correctons and continue ploughing until a fair depth is reached. In this, as in the case of all indents and sunken lines, over-emphasise the engraving a little as the impression will naturally be a little "softer" in the finished cast. In the finished patterns bevel off all corners and edges slightly, as acute angles tend to form air pockets in casting. There need be no fear, however, that there will be cutting edges in plastic as there are in metal. Finish off with a smooth face. If your gauge of metal is too light, double the layer or, if too heavy, reduce with the file.

In cementing the patterns on the tray base for mould running remember to make a pinhole through the tray directly under each eyehole in ribbon and medal so that the air can escape before the flow of the rubber, otherwise your casts will have half-sunken eyeholes.

The patterns can be grouped on the tray fairly closely and about $\frac{3}{3}$ in. clearance will be sufficient in framing. The frame might be in. deep and bevelled on the inner face to facilitate removal of the moulds. Mark a "Plimsoll line" around the inside of the frame calculated to show a rubber level of approximately $\frac{1}{d i n}$. above the highest point in your patterns. The frame, of course, is not fastened down. But it should be weighted if necessary to avoid movement when pouring the mould rubber. (See Fig. 5.)

The Mould-running Procedure

Cut the mould material into pieces of sugar-lump size and put enough for one mould into an old (but clean) aluminium (or enamelled) saucepan and use only a gentle to moderate heat. The rubber listed below has a fairly low melting point and, like other things, it will stick and burn if overheated or not stirred. In a few minutes it will be liquidated and in the meantime the tray of patterns should be near the heat so that it, too, can warm up to avoid premature cooling and congealing of the rubber when pouring. See

Fig. 5.-Patterns cemented to tray and framed.

Fig. 6. - The slab mould and method of supporting pins.
that the rubber is in a free-flowing state and pour steadily in from the side of the frame area so that the tide flows gently around and over the patterns. Tap the tray a little to shake up the air pockets. Finish to the "Plimsoll line" neatly and levelly and do not wait to add final drips and dribbles for the rubber congeals quickly. Leave the tray undisturbed for five minutes or so and it can then be moved to a cooler site to set. After about half an hour in a really cool temperature it can be stripped gently by easing up frame and mould from one side. If the patterns have been faced up smoothly and contain no lips or under-cuts the mould will come away cleanly. Any little tears or faults can usually be repaired with a heated knifeblade ; or the material can always be cut up and remelted !

Making a Test Casting

This is probably the easiest part of the whole job. When you start production in earnest you will, of course, need to place the brooch pins in position over the ribbon moulds to be cast in, but for test samples this is not necessary. Mixing instructions accompany the casting materials.
The plastic flows freely and should be poured gently, prodding a little with a matchstick to encourage the flow into small corners. Level up, but do not overflow. A little cold
water may be added for thinning if necessary.
In normal room temperature the casts should be set enough to allow gentle removal after 30 minutes, but twice this time will be all to the good. It will take casts about two days to reach their full strength and to be quite ready for colouring.

No trimming or touching up of the casts should be necessary, and a fast rate of production can be achieved with a number of moulds. Do not forget to place the brooch pins in position overhanging the ribbon moulds before casting when in serious production.

Fig. 6 shows a simple form of bent-wire hanger to support the dangling pin so that it is slightly immersed in the liquid. Of course, other convenient forms of hanger for this purpose could be devised. Brooch pins in a cheap and simple style can be bought or they may easily and quickly be made from light "piano" wire (obtainable from most ironmongers) and fashioned as shown in Fig. 7, with the aid of a pair of small neatjawed pliers. After a little experimenting it will be found that two or three deft twists of thewrist speedily turn these out and if the points are left fairly blunt they, make "safe" pins and very suitable in every respect.

Colouring

The colour scheme sug gested here can, of course, be varied somewhat. The ribbons and medals have been designed with a view to streamlining the job of colouring. Dealing first with the medals, the Wild West design is all silver except for the centre field around the horseman, which is made blue afterwards. The space medal is all gold except for a centre field of red. With a good No. 2 pencil-brush these centres can be speedily filled in. For the gold and silver coats I stand the medals in a small saucer containing a fair amount of colour, hip-bath fashion, and with a stiff-haired brush prod and slap the colour on. Then, shaking off any excess of colour, I hang them up to dry, looking over each dozen or so and scooping off with the brush any surplus paint collected in the hollows. The Wild West ribbon (with gun) is first coated all in bright yellow. The centre pariel is then done in red and, if time permits, the gun and upper and lower bars may réceive a rub of the silver brush. The space ribbon is coated all yellow, followed by a red coat for the left-hand strip and blue for the right-hand strip. The star face may receive a dab from the gold brush. The various steps and straight edges in the ribbon designs will now be found to help a great deal in applying the colours in quick, casy strokes̀.

A Drying Rack

A simple type is shown in Fig. 9. This is made of wood lath and has rews of panel pins or small-headed shoenails for hooks. Fig. 8 illustrates how joining rings may easily and very cheaply be mass produced by winding lengths of 20 s.w.g. copper wire

Fig. 7.-The brooch pin.

and smipped into rings

Fig. 8.-How the joining rings are made.

Fig. 9.-A simple drying rack.
(some tinned, some plain) in an open spiral on $\frac{1 i n}{}$. diametér rod and then snipping into separate rings, which are ready for threading through and can be closed by finger pressure. Such rings are more than strong enough for their purpose.

LIST OF MATERIALS

Aluminium scraps.
Heat-resistant adhesive.
Mould-rubber from Technical Products,
St. Giles Close, Dagenham.
6s. 6d. will make 4-6 moulds).
Plastic PX-from Quality Plastics, Ltd., Shenfield, Brentwood. (This costs 1s. 6 d . per lb.)
Cellophane packets from Messrs, Allan's, 424, Edgware Road, London, W. 2.
"Starline" (or other brand) gold and silver powder with clear mediumlocally.

To finish off the medals effectively for presentation and sale they should, of ourse, be carded. Any jobbing printer can run off some 4 in . by 2 in . tinted cards at low cost. To complete the effect put each medal in an unsealed cellophane packet. Such packets can be obtained at about 3d. a dozen.

NEWNES ENGINEER'S POCKET BOOK

3rd Edition
By F. J. CAMM
10/6, by post 11/-
From George Newnes, Ltd., Tower House, Southampton St., Strand, London, W.C.2.

A
 Simplified BIS FIOMTBR

A Stove for Low Temperature Heating for Long Periods

By TUBAL CAINE

AMAJOR problem during the winter months is the heating of the workshop, particularly with fuel at such a high premium.

Most workshops require about two hours heating before the temperature reaches a comfortable level. Also to be considered is the fact that rust occurs on tools and implements if a cold atmosphere is allowed to exist for any length of time. The ideal condition is, of course, a gentle heat throughout the day and night to prevent dampness, but to keep a fire burning for such a long period makes the cost prohibitive.

To overcome this difficulty in a room which faced north in an exposed situation, I devised the simple type of heater shown in Fig. I, and although it obviously does not replace the usual heater apparatus, it promotes a certain amount of warmth and never allows the room to become too cold; consequently
 ragged edge.

The Design

A five-gallon oil drum forms the chief component, and this is casy to obtain from any garage where oil is sold in bulk. Select a drum which is not dented and choose one in a reasonably clean condition. Rub a rag soaked in petrol over the outside surface to remove congealed oil, and empty any small amount that remains inside.

Punch a hole close to the top rim-the size and accuracy are not important because this is merely an access hole to allow you to cut off the top portion. A fairly large pair of tinman's snips will soon do this work, and when it is finished thoroughly wash the (inside with petrol until all traces of grease lare removed.

After the cutting process the edges will be very ragged and sharp, so the next stage is to turn this edge inwards.

A series of short cuts at right angles with
the snips are made about 6in. apart, as shown in Fig. 2; then by gentle tapping and the use of a pair of pliers the edge is induced to assume the necessary position, making the drum safe to handle.

This drum reaches a fairly high temperature when in use and, as it may be necessary to move it when in this condition, some form of handle is required.
These have been added, one to each side, as shown in Fig. 3, and thiey are merely lengths of $3 / 16 \mathrm{in}$. diameter rod bent over and held with nuts and bolts.
The punching of the holes for the bolts should not present much difficulty if a long, round bar is clamped in the bench vice and used as an anvil on which to carry out the "knocking." There is no need to pivot the handles as they only project from the drum about rin.

While punching the holes for the handles, mark off and pierce those for the legs and wires; holes, 4 in . diameter for 2B.A. screws, make assembly very easy, and with washers between the heads and drum a secure fittine is obtained. without a long delay and the tools never rust.

- this saves time dismantling the inner member for this process. Aluminium paint is suggested because of the heat-resisting qualities it possesses. It brushes out well and dries in half an hour or so.

The Flue

Any tubular material with a diameter greater than 4 in . is suitable for this item, provided a length within an inch or so of that shown in Fig. 3 is obtainable. This depends on the length you cut the drum. Copper, of course, is too expensive, so use steel or even cast iron if nothing of similar dimensions is available.

Drill a series of tin. dia: holes where shown in the elevation and, if it is decided to extend the flue lower than indicated, cut a slot to clear the gas jet. This method ensures all the heat rises in the flue and the flame is hidden and cannot blow out. Cut some pieces of wire-copper or soft iron will do-and bend them until they hook easily into the fluethe top members being the first to engage. To facilitate this work the drum is turned over and the flue lowered inside-then it becomes an easy matter to locate the wire in the different holes. As each passes through, a pair of large pliers are used to again bend the wire to an angle until it assumes roughly a Z or S shape. This work appears easy, but it is one of those occasions when another pair of hands is useful to hold the tube while you bend the wire ; but do not use thick rod for these pieces otherwise difficulty is experienced in this bending process. The three remaining hooks are installed next, and this will leave the flue member suspended inside the drum.

If an alternative method is desired, the application of two $\frac{1}{1} \mathrm{in}$. diameter rods solves the problem. These are threaded for the complete length and they pass right through the inner tube; they are held in position by nuts being tightened against the tube and the drum side. Fig. 4 illustrates the assembly; they enter the drum sides at right angles to each other, giving the tube a certain stability which is not possible if both the screwed rods are parallel to each other. Screwing these rods for the whole length is essential, otherwise assembly with the nuts inside is not feasible.

The Gas Bracket

Existing arrangements will influences the method of attaching the item, but unless
another gas point is situated at a convenient site, which can be used without disturbing this member, it is suggested that a temporary rig is made, and the heating unit simply placed over it.

Gas is thus immediately available for other operations without having to spend time loosening two or three nuts and bolts, but I must admit that in my own workshop I prefer to keep my heater integral and in one corner where it can come to no harm.

If it is decided to follow the latter course, then a simple fixing on a leg is suitable and, in fact, the pipe can pass through one of these, being secured by a nut each side. This is not difficult as probably a special tubular member will have to be made in order to reach inside the flue, and while making such an item it becomes easy to include the gas tap outside the heater

By now the outside has become greasy, so before attempting any painting clean it with petrol and allow this to evaporate. Whether it is painted to match the workshop fittings is a matter of personal taste-mine is aluminium both inside and out, and when soiled, usually through liquids being spilled on the

surface, another coat takes only a few minutes

 to apply.The handles become appreciably hot and may conveniently be bound with asbestos string.

Make a stand for the jet and secure this detail to a length of rubber tubing-enough

Fig. 4.-An alternative method of fixing the flue.
to give several feet movement when you pick up the heater and carry away the jet.

This is not designed as a form of heating to the exclusion of all others. As a space heater to stop the workshop from becoming stone cold it is extremely useful, and left burning all day it allows you to commence work at any time without delay

The tools and machine slides will not rust as the slight dampness that occurs in the atmosphere during the late autumn and winter months is eliminated from inside the shop. There is no need to "roar" the burner-a flame about I lin. high is sufficient and this does not, of course, use so much gas as the average gas fire.

The-heater will warm a room about roft. square or say $800 \mathrm{cu} . \mathrm{ft}$., and as a matter of interest I use a 1,000 -watt electric fire for the very cold evenings as additional heating.

If the workshop is draughty this appliance will not cure this condition; the figures quoted are for a room with reasonably wellfitting doors and windows, and not a garden shed which may have cracked walls and floors.

Science

 and Observation

 and Observation}

By Prof. A. M. LOW

Silent Railways

NEARLY 30 years ago experiments were made by Sir Arthur Du Cros with the use of rubber-sprung railway carriage wheels It was an important idea and is now being used on some French railways. Shock and vibration lead to serious wear, and running costs might be greatly reduced by this new plan. What is more, the irritating clack-clack of wheels on rail joints could be eliminated.

Those Windscreens

SAFETY glass is fascinating, for the principle was discovered well over a hundred years ago when a certain Prince Rupert used to drip molten glass into water. If you try it you will find that the resulting pear-shaped affair has a little tail which, if you pinch it off, causes the whole piece of glass to break up into dust with quite a bang. Most safety glass is only ordinary glass which has been chilled outside while hot, so that inside the glass is strained. The least little scratch breaks the hard outer skin and pop goes the whole screen into pieces too small to do any real harm. Fancy waiting a century to use and apply this idea!

"Explosive Girls"

TTT is a queer thing but true that girls use many of the materials needed for guns. Think of nail varnish, for example. This can be made of celluloid, which itself is easily made into explosive, dissolved into amylacetate which smells so strongly of peardrops. Acetone can be used also to mix gun cotton and nitro-glycerine into cordite, but just as easily it can be applied to silk stockings. It is a fact that if every factory making nail varnish, silk stockings and cinema films were to go full speed ahead in wartime it would interfere very seriously indeed with the manufacture of explosives, even if it did not wreck the business altogether.

Cold Can Burn

ABURN is usually due to sudden passage through the skin of heat, which travels so quickly that the skin cannot conduct it without itself being injured. Arctic explorers dare not touch any metal with the bare hand. It burns as painfully as a hot poker.
With some modern deep-freezing methods where extreme cold is used the temperature is lower than that of ordinary ice in England. It is Arctic and, apart from any chemical
leakage, the cold alone can be unpleasant. Very cold ice-cream is seldom so good as wher it approaches the melting point.

Hardworking Crystals

CRYSTALS, and some Russian scientists think that they have sex, are very important. They control our B.B.C. wavelength, they can pick up radio, they separate important drugs from coal, and now they are used to detect the baleful results of atomic bombing more delicately than by any: other method.

Fig. 1.-The Atmos clock. It measures $91 \mathrm{in} . \times 8 \mathrm{i} i n . \times 61 \mathrm{in}$.

No-winding Clocks

A CLOCK has been invented that goes for ever. This is not new and it is not perpetual motion, because it uses a definite source of power. Every time the barometer rises or falls the air pressure can be made to move a needle, as we all know. If this needle is connected to a light spring the spring can be kept wound up and made to run a clock through a free-wheel device as used on a bicycle, only much smaller. The Atmos clock in Fig. I is one of these types of clock.

Turbine Locomotives

ALREADY in action is an experimental locomotive driven by a gas turbine. Only a blast of hot gas leaves the chimney and there is no steam, no smoke and no "puffing." This type of loco is likely to be the means of improving all railways, increasing speed, improving comfort and saving money. Control is-electrical-the driver has little more to do than push buttons.

-Rockets and Research

AGREAT deal of humbug is talked about co-operative research. This type of work is often a little more than a set problem such as "how many drops of water commonly fall on a window." Results are mathematically expounded with endless complicated detail, but the true result is a paper in a pigeon hole which is never opened.

Original research is different and far divorced from "papers" of which the real object is to provide examinations for theoretical degrees. Investigation of the genuine kind has now been made into the possibilities of using nuclear fuel for space rockets, and the results are rather disheartening. It is doubtful if atomic energy will be practicable as rocket fuel for very many years. Most hopeful types of fuel are those used by Germany in the war for the V.2, etc. Many were originated in England but neglected by authority as "useless."

Safety First

WVATCHING a clown twirl his fool's cap
through the air has led an inventor to design a new type of plane which can take off or land in 100 ft ., manoeuvre at $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and cruise at $120 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. It maý be the answer to the family plane, and is likely to be important for short business journeys in countries where distances between towns make ground travel wasteful.

Atomic Defence

XPERIMENTS have developed an instrument, as simple as a fountain pen, for testing if the wearer has been dangerously "radiated" in the event of atomic attack. What is more, tests with new pills and new injections suggest that protective measures are far from hopeless, as the sensation-monger likes to hint. Zirconium seems likely to prove an important remedy. We all know Zircon the sapphire-like stone, and now the metal Zirconium has eliminated large quantities of the fatal plutonium from mice long after these had been made radio-active.

A Device to Give Gradual Dimming and Brightening

By H. T. COX

AMATEUR photographers who employ the use of photoflood bulbs will appreciate the fact that it can be quite a costly business replacing burnt out lamps. Take the standard Photoflood No. I as an example; the average life of such a lamp is approximately two hours, after which time the filament usually burns out: This is largely due to the fact that the filament is rapidly heated and cooled by the switching on or off of the supply voltage.

This fault can be readily overcome by the use of a simple system which allows the filament to be gradually heated up to its working temperature.
The unit to be described in this article does this adequately and efficiently with the added

The mains flex is knotted just inside the box to prevent the connections from being tugged loose, and the mains connection can either be by a plug to a power point or by a B.C. adaptor to a lighting circuit.

The switches

are the standard flush-mounting type and they are attached to the cover with the knurled nuts supplied with the switch units.
the lamp units are in series, thus burning dimly. When both switches are moved to the " down" position a parallel circuit is obtained causing the lamps to operate brightly and normally.

By operating either switch independently, i.e., S_{I} up and S_{2} down, or vice versa, only one of the lamp units lights, which one depending, of course, on what selection has been made. See Fig. I for the switching sequences.

Fixing

The completed unit can be fixed, by means of a spring clip, to the lamp standard if required and other arrangements can be made to suit the individual, although I preferred to place it on the floor.

Fig. 4.-The completed control box.

asset that it enables the lamps to be left burning, at a low power, between exposures without shortening their working life.

The Circuit

This is shown in Fig. I and requires little explanation: The "live" side of the main supply is connected to the S.P.S.T. (on/off) switch SI and the "neutral" to one side of the S.P.D.T. (change-over) switch S2. At this point, however, it is important to ensure that the switches are in the correct positions, i.e., SI is "off" when pressed up (the "up" position being toward the B.C. lampholders), and S_{2} should make connection to point " C " when in the "up" position.
N.B.-Wiring must be of at least 5 amp. capacity.

The Box and Cover
The box is made of $\frac{\lambda}{4}$ in. plywood to the dimensions of Fig. 2, the joints being either nailed or screwed. Figs. 2 and 3.-Details and dimensions of the box and cover. Two holes are cut into one end to retain the lampholders and a smaller hole is drilled in the other end for the entry of the mains flex. After assembly the box can be sanded and a few coats of "shellac" or other varnish applied.
The cover is made of bakelite or hardwood and is $I / I 6$ in, thick. The dimensions for this are shown in Fig. 3 and it is screwed to the box when the assembly of the components and the wiring has been completed.

Operation

With both switches in the "up" position

REFRESHER COURSE IN MATHEMATICS

By F. J. CAMM
8/6, by post $9 /$ - from
GEORGE NEWNES, LTD., Tower House, Southampton Street. Strand, W.C.2.

THIS useful easel, besides being suitable for children (for homework, etc.), has been used as an artist's easel for outdoor sketching. Being assembled by four bolts with butterfly nuts, it can be speedily dismantled for storing when not in use, or carrying to a sketching site.

All parts should be good quality hardwood such as beech, ash or oak. Beech has the advantage of being close grained and easy to work. Should the material be obtained from a joinery firm, order it machine dressed; this costs a little more than "off the saw" but is worth the saving in time and labour. Fig. I illustrates the completed easel.

The Legs and Braces

Fig. 5 shows the general arrangement and setting out dimensions, which should first be

Fig. 2.-Section through chalk ledge showing butt joint between horizontal brace and leg; also one of the bolts with washers and butterfly nut.

drawn down to actual size on brown paper. The brown paper should be drawing-pinned, or fixed with "Sellotape" to the floor and the pieces of wood for the legs and braces set on the diagram and marked off to length and shape.

When they have been cut to size and shape, they should once more be set on the diagram and held temporarily but firmly in position by nailing small blocks of wood to the floor. The $\frac{1}{4} \mathrm{in}$. diameter holes for the four bolts should first be bored through the two legs and carried through the braces to a depth of about $\frac{1}{4} \mathrm{in}$. The braces can then be removed from the template and bored through completely, thus ensuring that the easel will assemble correctly.

Consideration should be given to the method of jointing the braces to the legs. Fig. 2 shows a plain joint, and although this is quite suitable, a stronger job will result if the braces be increased in thickness to receive the legs, as shown in Figs. 3 and 4. Such a joint does not rely so much on the bolts for rigidness.

Assemble the two legs and two braces with the bolts and again position them on the template and measure the length required for the chalk ledge and its rounded fore-edge. Cut to length and bevel to correspond with the slope of the easel legs. Glue and $\frac{5}{8} \mathrm{in}$. panel pin the fore-edge to the ledge-board, and glue and screw the ledge to the brace (Figs. 3 and 4). Four screws will be sufficient.

The peg holes in the two legs should now be bored, using a joiner's bit. First, set out the hole positions on one leg and bore the holes. These should not be bored completely through from the face, but just enough to allow the gimlet point of the bit to show on the back, and then bore from the back; this will prevent surface splitting of the wood. Place the bored leg upon the other, insert the bit so that the gimlet point marks the lower leg, then bore out as before. Wrap a piece of No. I glass-paper round a piece of $\frac{3}{8} \mathrm{in}$. dowel rod, and clean up the holes.

The centre leg may now be cut to length and hinged to the top brace (Fig, 8), taking care to set the hinge at right angles to the brace, and in the centre of it.

The Pegs

The two pegs (Fig. 6), should be made of hardwood similar to the easel. Should the constructor have access to a wood-turning lathe, it would speed up production, but they can be made by hand as were the author's. If made by hand, the pieces of wood should be about 6 in . long by $\frac{-1}{8}$ in. by $\frac{7}{8} \mathrm{in}$. the extra length

PURPOSE EA

A Home-made Item of Light, S By E. S.
being necessary so that it may be held in the vice without damage to the actual peg during manufacture. First, square the ends of the wood, and glass-paper them. Draw diagonal lines to find the centre, and describe a circle of $\frac{3}{8} \mathrm{in}$. diameter on one end and $\frac{7}{9} i n$. on the other end. Plane the square of wood to a round rod section, $\frac{5}{8}$ in. diameter, and roughly glass-paper to remove plane marks. Draw pencil lines round the rod to determine the position of the $\frac{1}{4} \mathrm{in}$. wide flange, and the overall length of the peg.

With a dovetail saw make a saw cut about $1 / 16 \mathrm{in}$. deep round the rod on the pencil lines fixing the flange position, and with a sharp bevelled-edge chisel cut a "V" on the "waste" side of the lines. Increase the saw cut and depth of the chisel cut until the thickest part of the tapered peg measures slightly more than $\frac{5}{8} \mathrm{in}$. (a pair of outside calipers will be helpful). Pare away the wood to form the tapered shank, using first the chisel, and then a cabinemmaker's or shoemaker's rasp. Hold the piece of wood in the left hand and rotate same whilst rasping,

Fig. 5.-A front view of the easel standing vertica

SE AND BLACKBOABD

imple and Sturdy Construction

CARDEN

 horizontal brace checked to receive easel leg; also end of chalk ledge.
using the bench as a bearing. This cutting motion is practically as good as that of a wood-turning lathe. Leave the diameter a little larger, glasspapering to a fine finish, and exact size.

The knob part of the peg should be reduced to $\frac{3}{4}$ in. diameter with the rasp (checking with the calipers). Now form the hollow of the knob immediately behind the aforementioned flange, with a round file, holding the square end of the wood in the vice. The file should be about 12 in . long and tapered from $\frac{1}{2} \mathrm{in}$. to $\frac{1}{8} \mathrm{in}$. Whenthe rounded sinking has been roughly formed, revert to rotating the

Round the four corners

with the leg closed and a side view in the open position.
peg in the hand whilst filing, and check the "neck" diameter with the calipers. Make a saw cut at the top of the knob and form a bevel with the chisel to both sides of the cut. Work the knob shape on the peg with the rasp, using the hand rotation method aforementioned. Using No. I grade, glasspaper the peg to final finish and size, before sawing the peg off the waste wood holder. Although this process may appear difficult to the beginner, it is really simple once a start has been made.
The pegs will look well dyed with black shoe dye. This will raise the graint, and when dry the peg should be lightly glass-papered and given a further coat. Two coats of shellac spirit varnish with a fine hair brush will seal the stain.

Finish of Easel

Glass-paper all parts with No. I and No. 00 glass-paper. If the easel is intended for a child, a bright enamel finish is attractive. Valspar two-four hour lacquer is ideal, and two coats (allowing a day between coats) will give a brilliant and lasting finish. No primer or undercoat is necessary when using this lacquer. If the easel is for artistic use, the wood should be left natural, and protected with two coats of Valspar clear varnish.

The Blackboard

Plywood 3 in. thick, selected for closeness of grain, is satisfactory. It should be cut to size, the edges planed, and corners rounded, as shown in Fig. I. The plywood should be given at least three coats of "blackboard"

The Blackboard Duster

The hardwood back is made to the shape

Fig. 6.-Details of one of the hardwood pegs-two are required to support
blackboard.

Fig. 7.-A per-
Saddie relt pod glued to hardwood spective sketch of the blackboard duster
shown in Fig. 7, although the fingergrip shape is optional and a rectangular block would also be suitable. The finger-grip may be formed with a gouge
and round file, finishing off with a piece of glass-paper round a length of dowel rod. Protect the back with three coats of shellac spirit varnish.
The piece of felt may be obtained from

Fig. 8.-The top brace and hinged centre leg.
a saddler's and is glued to the block; Croid universal glue is suitable. This glue is also suitable for the other glued parts of the easel.
The backflap hinge is a common type obtainable from any ironmonger.

Fig. 9.-Screw eye and two links of the twisted wire link chain.
Fig. 9 shows the type of chromium-plated chain, recommended for lightness and strength.

British Standard for Light Gauge Copper Tubes for Water, Gas and Sanitation (B.S. 659: 1955)

THE British Standards Institution has published the above standard, which is a revised edition of that first issued in 1936 and revised in 1944.
B.S. 659 provides for tubes for water, gas and sanitation suitable for connection by compression fittings or capillary fittings, or by bronze or autogenous welding.

The 1936 specification standardised the tubes on the basis of the outside diameter. The 1944 revision effected a reduction in the thicknesses of the tubes, the thicknesses in the earlier specification being regarded as more than adequate. The outside diameters established in the first issue were retained in both tables in order to avoid disturbance of the existing ranges of fittings for connecting the tubes.

In this revision the method of designating tubes has been retained but that of expressing tolerances has been clarified; additional sizes, viz., 5 in . and 6 in . have been included. The value of the tensile strength has been reduced from 17 to $16 \frac{1}{2}$ tons per sq. in. Other amendments are the introduction of a weight clause and a new method of marking the tubes.

Copies of this standard may be obtained from the British Standards Institution, Sales Branch, 2, Park Street, London, W.I. Price 2s. 6d. each.

No. 4.-Aerodynamic Facilities : The Tridac Three-dimensional Analogue Computer : Testing Components : Woomera : Accommodation Needs of Personnel : Radio Telemetering : Pursuit of Reliability

By G. W. H. GARDNER, C.B.E., B.Sc.
(Director-General of Technical Development (Air), Ministry of Supply) (Concluded from page 265, February issue)

many features are recorded by automatic obscrvers, by the pilot and the crew. These are analysed and faults or shortcomings are rectified by adjustment or redesign and modification.

Up to the present, development of guided missiles has been, in some respects, an even greater step into the unknown and demands the same kind of preliminary work as the aeroplane (Fig. 36). An acute difference arises, however, in relation to test flying because, in the absence of a reliable means of recovering a missile undamaged after each flight, some way must be found to avoid the need to manufacture, fly and each time destroy the many hundreds of thousands of missiles which would be required to produce all the necessary flight information. A large contribution can be made by intensifying and extending the preliminary ground work.

Aerodynamic Facilities

The difficulty of creating adequate aerodynamic facilities to meet advanced requirements is emphasised by the fact that a wind
tunnel with a working section 8 ft square and capable of running continuously at two and a half times the speed of sound would cost about $£ 10,000,000$. Furthermore, a vast supply of compressed air is required to test powerful air-swallowing engines. A modern propulsion-test plant capable of handling 300lb. of air per sec. at sea level and of appropriate altitude operation would also cost about $£ 10,000,000$.

Another type of facility, the flight simulator, is playing an increasingly important part in guided-missile development. A new giant calculating machine of this kind called "Tridac" (three-dimensional analogue computer) has now been installed at the Royal Aircraft Establishment (Fig. 37). Tridac is the largest computer in Britain and among the biggest in the world. It requires $6,000 \mathrm{sq}$. ft. of floor space, contains 8,000 thermionic valves, requires 400 h.p. to drive mechanical computing elements and consumes altogether 650 kW . of electricity.

Tridac

Tridac is different from other "electronie and systems are exhaustively tested on the ground. Even so, test flying amounting to many hundreds of hours is required before the aeroplane can be declared fit for Service use. During this period

Fig. 36.-Launching of rocket test vehicle.
brains" in that it provides a model of the system being studied. When making a calculation of a missile intercepting a bomber there are sets of meters, pens moving automatically over charts and moving diagrams on screens-one of them three-dimensional -which give the operators a complete picture of what would happen in such an operation. The positions of the missile and bomber, their manoeuvres, speeds, heights, etc., are all calculated and displayed. All the calculations are made at the same rate as that at which the events would happen in real life, so that parts of an actual missile can be connected into Tridac for test purposes.
The use of Tridac for guided-missile problems will undoubtedly reduce the number of actual missiles which need to be flown for test purposes, thus saving time and expense. Tridac has been designed jointly by the Royal Aircraft Establishment and the research

Fig. 38.-Servo-motors for "Tridac."
Laboratories of a commercial concern by which it has been constructed (Fig. 38 and Figs. 39 and 40).

Testing Components

Great attention must be paid to testing components over the whole range of environmental conditions which they will experience in storage, transit, handling and in flight, and this demands further equipment for simulating shock and vibration, acceleration, hot, cold, tropical, sea-spray, dust and any other likely conditions.
Valuable information can be obtained by flight-testing missile components or by measuring effects in relatively cheap, often
very small, purely experimental missiles or "test vehicles." For this purpose, and for the inevitable full-scale missile tests, free flight facilities are required comprising tracts of country or sea areas, launching installations and a complex of instrumentation and communications. Some small ranges are used in Britain and the magnificent range which has been created at Woomera in Australia.

Woomera

Woomera - a name borrowed from the aboriginal, meaning a "throwing stick" used for increasing the carry of spears - is located about 270 miles to the north of Adelaide and contains several complete ranges with associated central technical and air-traffic facilities, and a township. Its prime feature is the main launching site, and the main range can bc extended over 1,250 miles of almost uninhabited land and is inhabited land and is capable of further extension over the sea if required. The quantities in the missile and their transisolation of Woomera is a major asset from mission to the ground by radio. On the considerations both of safety and security, ground recording equipment with capacious but the price of this isolation is the unavoid- memory can be fed with streams of informaably higher cost of general services. Fortun- tion simultancously through many radio ately, there is the Long Range Weapons Establishment at Salisbury, near Adelaide, the responsibilities of which include the provision of facilities required for the missile-flight tests, the assembly, modification and testing of missiles and the computation of the results of the actual firing trials.

Town Planning

To meet the accommodation needs of personnel employed at the range and of their families, and to

Fig. 40.-Console of "Tridac."

relieve the hardships of living in what is virtually a desert, few of the amenties normally associated with modern town planning have been overlooked. An aerial view of the township is shown in Fig. 4r. Essential services, water, power and sewerage have been provided; the water is supplied from Morgan on the Murray River through 354 miles of pipeline and five pumping stations. A well-equipped hospital and school cater for the medical and educational needs of the community. The amenities include a community store, theatre, cinema, tennis and basket-ball courts, football and cricket oval and a swimming pool. In view of the summer average temperature of 96 deg. and an occasional maximum of over ino deg., it may not be surprising that Woomera also possesses a cordial factory. Main roads skirt the residential sections, and hundreds of thousands of trees have been planted in a green belt area half a mile wide surrounding the township; the whole character of the region will change as these reach maturity.

Radio Telemetering

The efficiency of the flight-testing method depends critically on instrumentation and, in particular, on reliable radio telemetering, by which is meant the measurement of physical

Fig. 39.-Control room for "Tiidac."
channels during the course of the flight, and these records can be examined later (Fig. 42). The importance of achieving reliable telemetry cannot be over-emphasised; it represents the eyes and ears of the designer. The development of efficient recovery of experimental missiles would make an enormous contribution to speed and cost of research and it would probably be justifiable to increase the size of the missile in order that it may accommodate recovery aids, such as parachutes.

Pursuit of Reliability

It is hard to imagine a more difficult engineering problem than that of developing a guided missile of the kind discussed to a satisfactory degree of reliability before it is outmoded by counter-measures or by other advances. It must be designed to withstand a wide range of conditions during storage and transit and in operation. It is entirely automatic and the failure or partial failure of any component is likely to render the missile ineffective. It is not possible on the ground to simulate all conditions, and it is impossible to adjust anything once the missile is fired, after which it is difficult to find out the cause of a failure or even what has failed.

The missile is a complex of advanced aerodynamic, structural, propulsion, hydraulic, electronic and instrument techniques, and room for duplication of vital services can be provided only under great penalty. The required performances can be obtained only by refining and miniaturising until there is

Fig. 41.-Aerial viez of Woomera.
little reserve. example of this was the V. 2 weapon, which, to save structure weight, was unable to carry its fuel except in the vertical position. This problem of achieving adequate reliability, which may be the greatest of those men tioned, requires the attention of our best engineers at all levels in order to ensure that sound engineering principles and practice are followed and that the potential value of these important weapons becomes a reality.

Conclusion

The majority of intricate mobile devices like ships, tanks and aircraft, require the intervention of human beings to enable them to operate. This fact simplifies the designer's task enormously in that he relies on the human beings to act as links between otherwise separable functions and to provide intelligent monitoring and discrimination. Many components can, therefore, be designed separately and their separate functions need not be known to the vehicle designer but only to the operator. They need never work in unison until the operational stage is reached.

In the guided missile, because all components are interlinked and interdependent, and because highly efficient overall functioning is necessary, the system must be conceived as a whole and must be extreniely closely integrated during desigh, developmént and próduction. Then a difficult question raises, namely, whethër to create in one firm the ability to coniceive, develop and manufacture all parts of the

Fig. 42.-Telemetry receiver.
missile or to rely on close partnership between established specialist firms. I am sure that either can succeed given the necessary managerial will and ability and appropriate organisational arrangements.

The problem of air superiority is like a game of chess in which one is unaware of one's adversary's last move. Offensive weapons will retain their deterrent value and defensive weapons will ensure the protection of our territory only so long as they remain superior to any possible answer of an adversary. Guided missiles will play a most important part in this struggle for superiority, and in this struggle a major contribution is required from the mechanical engineer.

Acknowledgments

In conclusion I should like to say that all opinions expressed are my own and do not necessarily reflect those of the Ministry of Supply, to which I am indebted for permission to deliver this lecture.

I should also like to pay a tribute to the magnificent photographs of "Nike " taken by the United States Army and to express my gratitude that these have been released for opeh publication.
(Reproduced by kind permission of the Institution of Mechanical Engineers.)

Paris-London Automatic Telephone?
CINCE April, Paris and Brussels telephone subscribers have been able to dial one another, making communication without any intermediary assistance. It is thought that London may be the next to link up with Paris by automatic telephone servise.

A New Flame Discovered

O^{2}ANGE-RED, shaped like a flat disc and burning without air, this flame was discovered when methyl nitrite vapour was burned in a large glass tube. It was seen as a bright cone which peeled away from the base of the greyish-yellow flame burning at the mouth of the tube. The discovery was made at the department of chemical engineering at Cambridge University and is ascribed
to chemical decomposition of methyl nitrite. Other similar chemical reactions have been known to give chemiluminescent glow, but not flame.

Voice-powered Transmitter

TE U.S. Army has developed a tiny radio transmitter having no batteries or external source of power, this being provided by the voice of the sender alone. The human voice contains so little energy that it would take a crowd of a million persons to create enough energy to light a single 100 -watt bulb. It is hoped that the range of the device will be extended from the present 600 feet to a mile.

The Sun and the Weather

I^{N}N the Middle West of America daily weather forecasts are now being made by observing the sun, even when it is not shining locally. The forecasts use a new solar weather index, which is an indirect measure of the temperature and density of the solar corona, the sun's giant pearly white halo, until recently only visible during an eclipse. The meteorologist who first noticed the correlation between the sun's activity and weather on the
earth believes that it is world wide and that the earth's weather is directly controlled by the sun. Weather Bureau scientists in Washington, however, are cautious in their comments.

U.H.F. Television Development

AKEG-SHAPED ceramic vacuum tube about the size of a bracelet charm that is more effective in ultra-high frequency television sets than any existing tube has been developed in America. Instead of the usual glass bulb, ceramic and titanium rings are used, providing ultra-high heat-resistant qualities. The tube will operate while glowing red hot at 1,000 deg. F.

New Supersonic Heat Problem

ACCORDING to research in a University of California wind tunnel, projectiles travelling at around $760 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. get hotter at altitudes above 20 miles than when flying low. A suggested explanation is that thin air is more viscous than air masses at lower altitudes and that the heat generated by friction in the stratosphere cannot be conducted away so easily.

THE practical way ETG:ETG

 of learning
IN

you

OTHER COURSES WITH PRACTICAL EQUIPMĖNT INGLUDE: RADIO (Elementary and Advanced). TELEVISION mechanics - electricity - chemistivy photocraphy CARPENTRY.
Also Draughtsmanship - Commercial Art - Amateur S.W. Radio - Languages - Simple Electrical Repairs in the Home - Painting and Decorating - Etc. - Etc.
With these outfits, you are given instructions that teach you the basic principles in the subject concerned.
NEW TELEVISION COURSE including a complete set of equipment dealing with the design, construction and servicing of a high quality television receiver.
COURSES (with equipment) also available in many other Engineering subjects.
GOURSES FROM 15/- PER MONTH
To E.M.I. INSTITUTES,
Dept. 144, 43 Grove Park Road,
London, W. 4.

NAME
ADDRESS

SUBJECT(S) OF INTEREST
May
(We shall not worry you with personal visits)

Telephone : MUSEUM 9594

H. FRANKS

58-60, NEW OXFORD ST. LONDON, W.C.1.
TYPE F60, ATACRAFT CAMERA, cockpit dials, uses 35 mm . flm fraped
2 in . F'2.9 lens, hand or electrical 2 in. F'2.9 lens. hand or electrical
wind. no shutter or irs diaphragm
will take sincle shots half-lealea size pictures. ideal for modincation, VARIABLE SPEED (Friction Drive)
GEARBOX UNTTS from 1 to to 10 to 1 ratio, transmitting $1 / 10$ h.p., approximate unit. 64 eneb
TELEPIHONFS TYPESTELTEF, No. 2 moulded case, with bell magneto ring ing generator, operated from internal suitable for 2 -way communication
urp to a mille distance, when used in Pairs. overall dimensions $9 \% \mathrm{in}$. $x 67 \mathrm{~F}$.
x 51 n . £3.19.6 each, cariare pid. ELCO SYNCHRONOUS CLOCK Movilic. 1 .s, 200,250 volts A.C., 50 cycles, with spindles for hours, cover, 31 n . diam., 2 in , deep with flex
lead, 1 hole fixing, up itn. panel.
Tnclusive set or Inclusive set of three hands
STEP-DOWN TRANSFORMERS, in 24 v .1 amp .
ALTIMPTLiRS, sensitive type, Kollsman, Mk. XIVB. Reads to $45,000 \mathrm{ft}$. nearest 20 It milibar-scale and a
ing knob. Unused, $41 /$ each. SELECTOR USIT, 12 v . Ratchet Fitted in die cast case. Ideal for remote control, etc. 106 each. STEP-DOWN TRANSFORMERS, input 180 ings. A.C.. 50 cycles. output
2 windings $4.2,4.2 v .10$ amps., ideal
soll P.V.C. or T.R.S. TWIN $9, .012$ CAIBLE in 100 -yard colls, made by well-
known manufacturers. Price per P. coll. 50 Cior F, 1 O 044 CABLE, white WESTERN ELECTRIC BLDVPR 110 volts A.C.D.C. Suitable for car heaters, progectors or miniature
vacuum cleaners, etc. Slze $4 \% \times 31 \mathrm{n}$.
 2F/6enrh. "Venner" escapement, run 10 hours
one full wind, final speed 1 rev. 75 secs. Prtce 9 -mteh, post pald
TUFNOL PULLE
TUFNOL PULLEis, fitted ball-races,
34n. external, Unin, external, in, internal bore, PREASHIE DEF doz. by 24 voltA.C./D.C. motor, develops 10
lbs. pressure or vacuum. Complete
with loft. length of pressure hose, cables and connectors, etc. Compact unit fitted in metal case, $6 \times 4 \times 4 \ln$.
Made in U.S.A. Ideal for laboratiory
 A.C. Fitted suppressor units. Ideal complete in iransit case. £4.7.6. LENSESE, 11 focus. F 2.9 , fitted In
flange mount. 17^{*} diam. oxidised finlsh. no 1 tris diaphragm, 37.6 .
ALDIS "NASTIGMAT HENSES. F2 aperture. $1.1^{\prime \prime}$ focus, 11° long, $1 k^{*}$
diam. no 1 Is diaphragm. $58 / 6$ esieh.
Ex-NAVAL RIGITT ANGL. - Troughto.R.P. Mk. l. Made by Cooke,
 PUMPR (Electrie) Ex-AMMEIRSION Fitted 24v. D.C, motor, whll work on
24v. A.C. Overall length $20 / 24^{\circ}$ delivers approx. 150 8.p.h. Ideal for use
in caravans, boats, etc. $37 / 6$. NEW "HEYWODD", Ex-R. I. per sq. inch Internal spline 1 diam. ideal for paint spraying iab, use 47' 6 .
CAPLLLARY RADIAROR THIGR MoMETEERS, with 20 ft . length of
capilary tube, rer, $6 \mathrm{~A} / 1313$ scaled MAGNETIC CONTROL UNTTS. $12 / 24$ selecting operating rotating cam, 5 sets of contacts in etc. Fitted in die cast case. $16 /$-i variable, 5 to 30 mins . Fitted 15 amp .
A.c. contacts. Totally enclosed, crackle Anish. $17^{\text {' }} 6$ cach.
PILOT REPATEAR COMPASS. Containing 24 volt repeater motor, New. GREEED, MOTOR-OPERATFD TAPE WINDEIRS. Fitted 230 V.A.C.
motor. coupled to gear-box. with motor. coupled to gear-box. With approx. New. 65'- eath.
FULL MAILINGE PRICE LIST 6d.

EARGAIN DISTRIBUTORS
(DEPT. 16) 5, SILVER STREET, LUTON

W. G. PINNER \& CO. IMPORTERS \& DEALERS IN DRAW. MAT.

I YORK ROAD, BIRMINGHAM, 16

Constructor Flat Lead Pencil, 9
Flat Leads (.0017in. x 0.047in. X I.18in.), $1 / 6 \mathrm{doz}$ Ail grades from 4 B to 8 H . Perfect chisel point throughout Rapidograph. The latest word in Draughtsman's Fountain pens. For Indian or Gutenberg Non-Clog Draw Ink.
No. Superfine, No. I Fine, No. 2 Med., No. 3 Wide. Tube pen (no ball) filled from bottle.
Pelikan Graphos Fountain Pen. 13/
Standard Drawing Set: Per, 12 Ruling nibs from 0.1 to 2.5 mm , in velvet lined case. 36/6. 58 differ. Nibs supplied. Full list available
Pelikan Drawing Ink (Black or Col.)
Cartridges, $17 / 6 \mathrm{doz}$. I oz. bottles, $26 / 6 \mathrm{doz}$
Gutenberg Non-clog Draw Ink,
Waterproof, dir. reproducible, carbon-free, non-clogging in Fountain or Ruling Pens.
3 bottles at $3.1 / 3 \mathrm{oz}$., $14 / 6$; at $1.2 / 3 \mathrm{oz}$., $9 / \mathrm{F}$. Map Measurer Curvimeter B.A. 54 .
Large Dial 0.48in. Smal! Dial $/ 32$ in.
Manormus Transp. Sliding Ruler. 216 prec. drilled holes ärranged for shading and shadow-iining (8 letter sizes
Flexible Curve tinear for pencil or ink Stays put without locking. White cellul.
Dur-Alum. Pantograph Marabu. 26 ratios betw. I and 8.
$16 \mathrm{in} ., 53 /-$; $24 \mathrm{in} ., 70 /-$; $36 \mathrm{in} ., 108 /-$
Draughtsman's Office and Home Set.

(a) Svan Drafting Machine (Swedish)

Cov. 32 in. $\times 26 \mathrm{in}$. Double Parallgm., Springs, Head and Plexigl. scales
(b) Universal Ball-joint D.B. Holder. $58 / 6$

Hor., vert., clockw. movement. Rigid fxg. by hand lever. Clamped to (c) Clamped Draw. Board. 32 in . $x 2$ gin. $41 / 3$.

Complete Set (a, b and c). 242/-
And all your other requirements (Cartridge or Tracing Paper, Slide Rules, Drawing Instruments, Adj. 'Set Squares, Scales, etc.). 81. Resin-cored solder for casy, soldering 6if. packets or large reels $5 /-$, post 9 i . Hix-R.A.F. 2-walve (2-volt) Mieroptone Amplifiers as used in plane intercom. In self-contalned raetal case i can be used
to make upa deat-aid outfit intercommunication system, or with crystal set: complete with valves and fiting instructions, $20 /$ post $2 / 6$. Useful wooden box with partitions
to hold amplider, 2/- extra. DItio, less valves, 10%. Sparkink Plug Neon Testers, with yest s.in.C. Neon indleator farmus mains showing "live "s side or swisehes
etc.,2/6, post 4d. Neon Indicator. complete etc., $2 / 6$, post 4a, Neon Indicater. complet
with
condenser . (pencll type), wth vest ponket clip. indispensable for electrictans,

These Transformers transformers wor from any A.
Malns, Eiving 3 .
or 8 nit or 8 voltt output at
1 amp, operate bulh
buzzer or bell supply 1 Ight in bedroom or larder, etc but with output of 4. 8 or 12 volts, $12 / 6$. put, but with fused secondary and eart terminal. 18 -- post 1/- BELLS for use with ether the above or batteries, 6,6 post 6 it
Mibir Ben $\#$ Cuinaes. Housed in Cream Plastic Case. Easily connected to Eive
Two-Note Chime from Front Door. and Single Note from Rear. Operated from 6-9 above). $22 \cdot 6$. post $1 / 6$. radio recelver. which is fitted with a per manent crystal detector. Why not have a
set in your own room? $12 / 6$, nost 10il Spare Permanent Detectors, $2 /$ each
When ordered separately 2 6. With clins and screws, ${ }^{2} 10$. post 31. Head phones. and super-sensitive, 30 . - a pair, post $1 / 3$. Ifeaduhones in Good Order, $6 / a$ Better
quallty, 76 and 10% Balanced armature type (very sensitive), 136 . All post 18 . ture type, 4.6 (two ol these will make an
intercom. set). Ex-R.A.F. earplece, 2/6.
 throat mhkes, 12 , post 1,3 . phones withone Cords, 13 a pals, post 3 di. Replacement (.at ripaulphones listed are sultable for Tiand Milcropliones with switch in handle ment. moving coll. 8.6 . All post $1 /-$. Mask
type with switch. 3,6 . post $6 i$. Mike type with switch, 3,6 , post 6r1, Mike
Butons (carbon), 2i-. Movink Coil, 4 ; Black \& Hecker Black Nit Decker
fin Drill (asillus-
trated) Unil trated) or Universal
A.c. or D.C. motor
fully suppresed
agalnstinterfer ence, et5.19.6. post 2/6. B. of D
5in, Sander: Pollither; as above but the addition of slae handres
makes it an ideal tool for waxing and pollshing cars, furniture and floors, sand-
ing to remove paint or rust. etc., 88.7 .6 . polishing kit, which includes iin. chuck for driling, lambswool bonnet and pads.
polishing and sanding dises, $£ 9: 17.6$, post 26. B. \& D. Lathe for use with either or sland, for 110 es with either drill or sander.
$£ 3.7 .6$, post 28 .
Morse Key--Standard size keys wired to work Buzzer or Lamp, $3,-$ post But Slightly
smaller keys. 2.6, post 64 . BUZCERS, 319, Terninzals. brass 2BA mounted on strip. ciensers, 2 6 , post 61,00003 twing gang with
trimmers. 2.6 post 6 d. 24 volt. 15 mm ., trimmers. 2.6. post $6 \mathbf{d}$. 1 -each. 10 -doz., post 4d. Wander Pluss, $1 \not 1 \mathrm{~m}$. packet of $10,2,6$. post 3 d . Also 150 mA and 250 mA ., same price. Ex-G.P.O. Tele phone Twin Bells with box, 5 . post $1 / 6$.
Inkte Telephoue Bell, 36 , post 91. Barkalin Pareels, of really useful equipment. containing switches, Meters, Conor double assortment. 176 : trebie $25 /$ All carriage 26 . This country only

 taining
$2-500$
microanp. movements, $8 / \mathrm{m}$ post $1 / 3$
Money refunded if not completely satisfled.
HIGHSTONE UTILITIES
58 New Wanstead, London, E. 11 Letters only
New Illustrated List sent on request with

A CIIING CIOCK

-If Your Bedroom is Directly Below a Loft You Can Make This Useful Novelty

By S. R. LINES

TIE clock is made in two parts, the dial of three ply with below the cciling and the electric drive above in the loft. The dial may be made of sheet metal on a wooden
of three ply with łin. central
hole laid above this. Thread through these holes a piece of iron wire long enough to

washer, remove the wire and replace it with a taper pin.

The Drive

This is electric and is made from an electricity meter movement sold in many ex-Service disposal shops at about $12 /$-. Choose the type with the black vertical marks on the drum as shown in Fig. 2.
Strip the meter movement down as far as the horizontal shaft-which makes one revolution per minute-this leaves only one vertical shaft with a worm drive. The horizontal shaft has a differential gear, which must be removed except for the fixed plate, and to this is soldered a disc of tinplate about rin. diameter; this should be carefully trimmed up to be concentric with the shaft.
base and may be circular or square or to any design. The reduction gear (minute hand to hour hand) can be salved from any old alarm clock, and the construction is as shown in Fig. I.

- The movement which carries the minute hand must be a tight fit in the small gear wheel and an easy fit in the long bush, the length of which depends upon the thickness of the ceiling. The distance between this bush and the dial should just allow a little end play for the central shaft. The dial does not need a glass as dust does not fall in an upwards direction.

The bush can well be a piece of brass tube threaded $\frac{1}{4}$ Whit. or B.S.F. with thin nuts on the bottom holding it to the dial support. For preference the nuts, bush and support are all soldered together. The shaft must have a small hole drilled through it near the top. Only a full fin, hole is needed in the ceiling and a position for this should be chosen mid-way between two rafters.
A 12in. square of three-ply with. a central fin. hole is laid above the hole in the ceiling, and a $\mathrm{I} \frac{1}{2} \mathrm{in}$. circle

सियागया

be accessible in the bedbe accessible in the bed-
room. Make the top end fast in the loft, and go down and pass the end of it through the small hole in the shaft and twist it to make it secure. In

Fig. 1.-(Left) Sectional view of geartrain and method of fuxing clock to ceiling.
Fig. 2.-(Above) The power unit and associated gearing.
A lathe is not necessary for this, but would be handy for scribing the circle. When this is done cut one radial slot and bend out the edges of this slightly to form a crude type of worm wheel. This has to gear into a 60 tpoth wheel mounted in brackets soldered to. the frame as shown in Fig. 3.
An old gas meter has three such wheels which are particularly suitable owing to the deep design of the teeth as seen in the photo, Fig. 3. This wheel is mounted on a vertical shaft as shown with a sort of crank handle soldered to it; this engages with the taper oin in the shaft on the dial and drives the hands.

Fig. 3.-(Left) The home-made worm wheel and the ex-gas meter toothed wheel.
Fig. 4.-(Right) The clock dial mounted on the ceiling and seen from beloz.

Mounting the Drive Assembly
The whole drive assembly is mounted on a piece of three-ply with a $I \frac{1}{2}$ in hole concentric with the vertical shaft and the whole is placed in position with the circular piece of ply in the hole in the base of the drive unit (from which it was cut with a fretsaw).
The base of the drive unit is cut to a circle so far as possible, but an extension to one side will be found necessary; the figures marked on it in Fig. 2 remind one that in setting the time-by revolving the base round the circular disc of ply-the movement is anticlockwise to advance.
The crude worm wheel does not matter as it only means that movement during any minute is not at a regular rate but it is com-

pleted in 60 seconds. Which way the cut in the disc is bent depends upon the direction of movement of the motor, but can be easily altered-see that the entering edge of the disc comes squarely in between two teeth.

The writer has had two of these clocks in operation for over twelve months. The photo of the clock (Fig. 4) was taken lying down in bed.

A Simple Automatic Pressure Control

Automatic Motor Switching for an Ex-W.D. Compressor Unit

THERE are many excellent ex-refrigerator compressor units available as W.D. disposal at very low cost; these are suitable for many useful applications but for the absence of automatic motor switching.

Requiring automatic regulation of one of

dependably and without attention, between 12 p.s.i. and 18 p.s.i.; this has been unfailingly fulfilled since installing.

A in Fig. I is an ordinary motor-car type pressure gauge, " Kismet " or similar, secured by tinplate saddle B to baseboard C of suitable dimensions.

D indicates a piece of clock-spring approximately $2 \frac{1}{3}$ in. long bearing against two posts E, and of just sufficient strength to return the gauge indicator plunger to zero as pressure drops. (This spring naturally introduces a slight error in pressure indicationeasily assessed by a given pressure observed with and without its presence, and allowed
for when positioning switch F for required "knock-off" pressure.)

F is a standard Bulgin microswitch rated 3 amp at 250 volts A.C., screwed to a small slotted wooden base adjustable for position to limits traversed by the indicating plunger. One modification found desirable, though not essential, to this switch is slightly to weaken (by gentle heat) the U-shaped "trigger" spring indicated at G in Fig. 2 ; this enables it to be operated by feather-light pressure, and correspondingly released by a very slight withdrawal of the plunger.

Provided the actual cable joints to switch tags are suitably protected there are no further live parts in evidence, so from this point of view at least a metal or wood cover enclosing the unit is optional.

For other purposes where higher operating pressures than those covered by a tyre gauge are required the latter may be replaced by a metal-bodied cycle inflator cut down to a usable length-approximately 4 in. overall. The use of a stronger return spring and calibration by a suitable pressure gauge will, of course, be necessary if this modification is used.

Fig. 1.-(Above) The assembled apparatus.
Fig. 2.-(Below) The switch modification.
these units to maintain air supply to a public house beer-pressure system, I made use of the very simple and foolproof apparatus shown in Fig. I.

This, or any similar purpose, requires a much smaller margin between " on" and "off" pressures than that allowed for in the costly and complicated spring-compensated switch operated by bellows as used in some retrigerator systems. In this particular case pressure has to be maintained, absolutely

THE RAGE OF AMERICA!!!

NOW AVAILABLE FOR THE FIRST TIME IN GREAT BRITAIN VINYL

"Redi-FLO" vinu

 THE WONDERFUL VINYL 'POUR-ON' FLOORING THAT ANYONE-EVEN A CHILD CAN DOYOU
SIMPLY
POUR
IT
ON

YOU SIMPLY POUR IT ON

AND THEN BRUSH IT OUT!!

No longer is there any need to put up with those cold, dusty, unsightly, unhealthy stone, cement or tiled floors. 'REDIFLO' is a Vinyl Plastic Flooring which comes in many colours SAVE MANY POUNDS ON EXPENSIVE CARPETS Ideal for wooden floors too, surrounds, etc.
Ideal for Factory, Workshops, Garages, Restaurants, Kitchenseverywhere there is a floor in trouble.

YOU DO IT YOURSELF

Write to 'REDIFLO' Divlsion, Laymatt Flooring Company 40, Seabourne Rd., Bournemouth Telephone: Southbourne 44241

GET IN TOUCH WITH THE BENNETT COLLEGE TODAY : Just send in the coupon and you'll receive, without obligation, a prospectus on your trade and a free copy of the famous book, 'Train your mind to Success.'

Carpentry - Building - Draughtsmanship - Jigs, tools \& fixtures Plumbing - Structural Engineering Architecture - Surveying.
These are just a few of the technical and professional courses offered by The Bennett College. If your subject is not listed here, write it on the
coupon. You will receive a prospectus without delay.

The BanNETT COLTECE
 (Dept. E76R), SHEFFIELD

Please send me, without obligation, a free copy of 'Train your mind to SUCCESS' and the College Prospectus on :

Subject
Name..
Address.
Age (if under 21)................. Please qurite in Block Letters

Where will it turn up next?

The Flamemaster torch turns up in the most unlikely places and among a surprising number of trades. Our books show that glass blowers, laboratory technicians, jewellers, dental mechanics and all kinds of metal workers were among the first to welcome this new precision heating tool, and that recently we've had orders from model engineers, electrical engineers, lead-burners and garage mechanics.

Why do they all find the Flamemaster so handy ?
Because: Installation is extremely simple.
Flame control is easy and reliable.
Waste is eliminated by our trigger grip economiser.
Leaks are impossible.

If you'd like to deal with your heating problem in the up-to-date way, write for full details to :-

STONE-CHANCE LIMITED, dept. F20, 28 st. james's square, s.W.i. tel: trafalgar 1954.

100 yds. Fine Braided Copper Wire wound on fishing rod type reel, $31 \mathrm{in} . x$
$1 /$ in. $6 / 6$.
Transformers, Input 200/240 v. Sec. tapped 3-4-5-6-8-9-10-12-15-18-20-24-30 volts at 2 amps., 22/.. $17-11-5$ volts at 5 amps., 22/9. $17-11-5$ volts at $1 \frac{1}{2}$ amps., $16 / 9.6 .3$ volte, 2 amps., 8/6. 12 months guarancee.
Model Makers' Files with handles. Set of 6 assorted in wallet. 10/-.
Selenium Rectifiers F.W. $12-6$ volt. 100 $\mathrm{mA} 4 /=1 \mathrm{~A}, 8 / 6.3$ A., 14/9,4 A., 23/6. 6 A., 30/-. $250 \mathrm{v} .100 \mathrm{~mA} \mathrm{H} . \mathrm{W}_{\text {., }} 9 /-$ 250 mA ., $17 / 6$.
Miniature 12 or 6 v . Relays, 10 amp. Silver Contacts. SM, DM or SM and B, SCO, 8/6. Also II v. DCO, 8/6 M/c Microphones with matched transformer, $15 / 9$
Small Motors. 12 v. A.C. D.C., $2 \mathrm{in} . \mathrm{x}$ livin., 10/\%.
Chrome Vanadium H.S. Steel Twist Chrome Vanadium H.S. Secel $\frac{1}{}$ wist ets of 7 , full size, 6%. Sets of $13,10 \%$ All in :wallets.
12 v. D.C. Relays. S.P. D.C. 25 amp. $8 / 6$ Rheostats, 12 v. IA., 2/6. 12 v. 5 A., 10/6 New 6 v. Oak Vibrators. 4 Pin, B/9. Fishing Rod Aerials. Sets of 3, $7 / 6$ Sets of 2,5/-, plus $1 / 6$ Rail Charge. Uniselector Switches 50 point 3 bank 50 v. D.C., $26 /$-, complece with mounting frames. Also 25 point 4 bank 12 v . D.C., 21/6.
Veeder Counters. 50 v . D.C. $0-9999$ 15/6.

Relays. We ean supply any voltage at Contact Combination. All Carriage Paid in U.K.

THE

RADIO \& ELECTRIGAL MART 309, Harrow Rd., Wembley, Middx Nr. The Triangle.
Telephone : WEMbley 6655

DOLLONDS

of the Stramal
 428, STRAND, LONDON, W.C.2.

TEMple Bar 6009

In addition to our big stocks of Cameras and Photographic Accessories, we also specialise in Binoculars and Telescopes, both New and Secondhand. Here you can examine at leisure all the different models and you will be sure to find something to add to your pleasure. We list a selection from our stock of Binoculars and Telescopes.

minoculars

$8 \times 25 \mathrm{~mm}$. Lumos, Central focusing
... $£ 10-10.7$
$8 \times 30 \mathrm{~mm}$. Imperial, coated, Central focusing
$8 \times 30 \mathrm{~mm}$. Luma, coated, Central focusing
...
.
... $£ 15$.
10 £ 35 mm Owien Central focusing $\quad . . \quad . . \quad$... £18.10.
$9 \times 35 \mathrm{~mm}$. Owlact, coated, Central focusing ع25.11.8
All the above with Case and Lanyard, sent Post Free.
A SELECTION OF SECONDHAND BINOCULARS AND TELESCORES
$8 \times 21 \mathrm{~mm}$. Deraisme, Central focusing, Case $£ 6.6 .0$
$6 \times 30 \mathrm{~mm}$. Bausch \& Lomb, Central focusing, Case £7.10.0
$10 \times 35 \mathrm{~mm}$. Denhill, Central focusing, Case $£ 15.0 .0$ $8 \times 30 \mathrm{~mm}$. Wray Magnivu; Central focusing, Case 212.10 .0 $6 \times 22 \mathrm{~mm}$. Moeller Tourlx, Flat Model Dollond Army Stgnalling Telescope, x $15, \times 30 \ldots . \quad$... \ldots... $\quad .$. Dollond Field Telescone, x 25\quad.....
 Newbold \& Bulford Telescope, x 25 Send for our free Catalogue reaturing Binoculars by Dollonds, Kershaw. Ross

DOLLONDS

 of the Strand428, STRAND, LONDON, W.C. 2.

ALREADYWELLOVER

 100,000 IN USE!

As supplied to Official Departments and Undertakings, Engineering, Aviation and Electrical firms, etc.
Use a "OERMIC" Oiler for clean and accurate lubrication of models, clocks, watches, sewing machines, typewriters, movie cameras and projectors and any delicate instruments or mechanism. Can also be used for the clean and efficient application of soldering fluid. Packed in box with full instructions. Get one from your lacal Madel or Tool Dealer or send direct to the actual manufacturers.
S. \& B. PRODUCTIONS,

Orton Buildings, Portland Road South Norwood, London, S.E. 25. Phone : LiV 4943

ROGERS ${ }^{31}$ sivilitipo sit
Compressors. Ex W.D., ${ }^{3}$ cu. ft.
Abrasive Dises. 51 in . Ass'td. doz.
Al6
Terminai Dincks. 12 way
Generators. D.C. 6 V.. 12 V., 250 … $12 / 6$
Aloxite Abrasive. $13 i \mathrm{in}$. x 9 ita., doz. $4 / 9$
Thread Cauges. 28 arms .äs.tad
H.S. Drills. 12 Assorted, to 48

Fibre Wiashers. 144 Assorted
Meter Rectliners. A.C. to D.C.
copper Rivetw. 12 doz. Assorted 1
saw ilench Tops, with ball race
spindle, sulley, etc. 18 ia . x 101 n . $52 / 6$
kectiliers. $6 / 12 \mathrm{v}$, at 1 amp.
Metras. $1-15 \mathrm{~V}$. or $0-25 \mathrm{M} / \mathrm{c}$
thost Gaumes for Car Use
Winker Units. 6 or 12 vol
Creularshavs. 61 m 11/6.71 Races, Belts, Valves, Pulleys, Pumps,

May we send our free list of hundreds
May we send our free Ist of hundred
Interesting items? Stamp pleaso.

Mechanics concerning "Signals from Jupiter". I feel that the following extract taken from a Current Affairs Bulletin on Radio Astronomy, dated August 1st, 1955, would be of interest.
"Our sister satellites to the Sun, the other planets, are much more distant and so far we have been unable to receive either thermal radiation or echoes from them. Some of them have atmospheres; it was thought, therefore, that it might be possible for the equivalent of our thunderstorms to occur; and if so, that we might be able to receive the equivalent of static from them. Nothing was found, however, until a month or so ago when observers in the U.S.A. reported strong signals from Jupiter, which were intermittent and did have the general characteristics of static. These have since been picked up in Sydney. Jupiter's atmosphere is very different from our own, extremely cold (-140 C.) and rich in marsh gas (methane) and ammonia. It seems that it may be possible for electric charges to build up in clouds formed in such an atmosphere, and then discharge in a flash as in our own thunderstorms. But this discovery is so recent that a detailed explanation for these radio signals from Jupiter must await further observations.
"They sometimes sound very much like atmospherics from a distant thunderstorm and listeners on short-wave probably heard them more than once-without suspecting they had come from so far away."-M. S. Goodyear (Australia).

Automatically-controlled Car Gates
SIR,-With reference to the query in the January issue of Practical Mechanics about automatically-controlled car gates, the operation could be satisfactorily achieved by the use of radio control. A series of articles on the radio control of models is appearing currently in Practical Mechanics; these àre very comprehensive and explain the entire radio link, transmitter and receiver; also where weight is of no consequence a great many difficulties disappear.

The transmitter would be in the car and the receiver is located in the garage and connected through a change-over slave relay to gate actuator.

Thus when the transmitter is switched on, the gates open and when the transmitter is switched off, the gates close.

Limit switches on the gate mechanism would cut the power at the full-open or full-closed positions.

Assuming that the gates are not located near a model flying field or boating pond, I see no difficulty.-G. McIntosh (Edinburgh, 9).

An Aquarium Thermostat

SIR,-In answer to Mr. E. Webb's request for information on an aquarium thermostat 1 offer the following :
This thermostat can be used in water baths and the like. It is extremely sensitive if properly made; when used with the correct

The Editor Does not Necessarily Agree with the Views of his Correspondents
size of heater, the temperature should remain well within I deg. F. Sensitivity is increased by using a larger bulb and smaller diameter tubing.
Seal the end of a length of soft glass tubing (say, 3 mm . I.D.), blow the bulb on the end, then bend the tubing to form the shape shown. When cool, allow a drop of acetone, or other volatile solvent to run into the tube and evaporate in the bulb, thus filling it with vapour. Heat the bulb slightly, add mercury to the tube, then cool the bulb so that the mercury is drawn around the bend in the tubing, as shown. A plug of plastic is made a sliding fit in the tubing, and two fine wires are secured in the plug. Two fine sewing needles work well in place of wires. To adjust, immerse the bulb in water at the desired temperature and slide the plastic plug down until the mercury just closes the contact between the wires.

Mr. E. R. Needham's aquarium thermostat and a simple circuit for its use.

Unfortunately, the action of the thermostat is reversed, the circuit being closed when the vapour in the bulb expands and forces the mercury up the tube to the wires. A relay must be used to open the heater circuit when the thermostat closes. A simpler method is to use the circuit shown above, but this is more wasteful of electricity.-E. R. Needham (Matanzas, Cuba).

Cutting Glass Bottles

SIR,-Perhaps the following extract may S be of interest to readers. It comies from an Eng lish translation, dated 1888, of a French book on popular science, and concerns cutting bottles
We will close this chapter with an illustration of a spiral bottle, which can be done in the manver now to be described, so that the bottle will actually become a glass spring.
Take a mixture of 180 grammes of lampblack, 60 grammes of gum arabic, 23 grammes of adraganth, and 23 grammes of benzoin. Make these ingredients into a paste with water, and fashion a pencil of the charcoal thus obtained. This pencil, when heated, wuill cut the glass wherever it is applied.

The process is commenced by scraping the bottle with a file and following the instrument with the red-hot pencil. Wherever the hot pencil is applied the glass zuill be cut, as shown in the illustration herewith. It will be necessary
to blow on the heated pencil to maintain the incandescence as long as possible. The bottle, as cut, and representations of the
 instruments are given in the cut.
The illustration referred to in the extract shows the bottle, cut continuously round and round, being held up by the neck and stretched slightly by its own weight so that it resembles a spiral spring. On the table lie a file and what appears exactly like a lead pencil, glowing red-hot for about a quarter of its length.-B. L. Kershaw (Leeds, 16).

Blower Heater Calculations

SIR,-In your January issue Mr. D. F. S Burgess writes about "Blower Heater Calculations" and states that 70 deg. F. $\xlongequal{=}$ 27 deg. C. Surely this is wrong? ?-D. Frydman (N.W.io).

Author's Comments

SIR,-My apologies for the error in my S letter regarding the blower heater calculations. The centigrade value of $70 \mathrm{deg} . \mathrm{F}$, is, of course, not 27 deg., but 21 deg., thus making the temperature rise which is desired 12 deg. C., and the average temperature over this period is then 15 deg. \mathbf{C}.
Following the same line of argument as before, we alter the mass of air to $34.7 \mathrm{gms} . /$ cu.ft. at 15 deg. C. (from density tables), and this then gives a value for t of 5.45 min . for a room $22 \mathrm{ft} . \times 12 \mathrm{ft} . \times 9 \mathrm{ft}$. when these corrections are applied to the basic formula.
Perhaps we may account for the discrepancy between this value and the stated time of 7 $\frac{1}{2} \mathrm{~min}$. by remembering that there are certain unavoidable heat losses in practice, more especially due to convection and to other air currents, and these losses are bound to be greater using a blower heater of the type described than the normal radiant electric fire.-D. F. Burgess (Redhill).
SIR,-In his calculations-your January, 1956, issue-Mr. D. F. Burgess has neglected to take into consideration heat losses through the walls, ceiling, window glass, floor and door of the room (I assume the fireplace flue was closed). These losses, particularly through the window glass and ceiling, would be considerable.

Also warm air would escape through gaps in the upper window frame and over the door, the warm air being replaced by cold seeping in through the lower window frame, under the door, and through floor cracks.

In view of these factors the result of the calculation made by Mr. Burgess is likely to be misleading!
I. find it hard to credit the extremely rapid rise in temperature of 22 deg. F . in a room of $2,376 \mathrm{cu}$. ft. in $7 \frac{1}{2}$ minutes. Perhaps this figure can be verified ?

I have carried out the following experiment ; it may be of interest. In a slightly smaller room, $2,232 \mathrm{cu} . \mathrm{ft}$., a convector heater (no fan) of $2 \ddagger \mathrm{~kW}$. only. Fireplace flue closed,
window curtains not drawn, door not opened during test. Heater in the middle of the floor, thermometer halfway up a wall and shielded from the window and the heater. After two hours the temperature rose from 47 to 5 I deg. F.-a rise of 4 deg. only !

It is, of course, appreciated that a fan cannot increase the amount of heat given off by a heater element, additional heat can only be obtained by an increased consumption of current.-O. Davies (London, S.E.iz).

Imitation Coal for Electric Fire

CIR,-I note in the February issue a Mr. Wright, of Hounslow, seeks information regarding imitation coal for an electric fire. I have found that Polythene sponge (preferably white) suitably arranged in chunks stuck on a wire mesh and illuminated from below with a red bulb and judiciously daubed with black paint makes a very realistic coal fire. I also made a small propeller, operated by the hot air,' to give a flicker effect. Trusting this will be of assistance.-J. H. Brooks (S.E.17).

Alternative Dishwarmer Heating

CIR, - With reference to the article on making a photographic dishwarmer in the December, 1955, issue of Practical Mechanics I think that an alternative method

Mr. C. Birch's scheme for using bulbs as alternative dishwarmer heating.
of heating may be of use to readers who, like myself, were unable to obtain the recommended heating mat.

Instead of the heating mat I used two candle type 40 -watt electric light bulbs mounted on a wooden frame, as shown in the diagram. The recommended thermostat (type $\mathrm{SN} / 40$) was used with excellent results. The wooden framework is held in place by the four wood screws which hold the rubber feet in position.

The total cost of the dishwarmer amounted to 12s. 6d.-C. BIrCH (Staffs).

Auto-controlled Signal Lights for Model

 RailwayCIR,-Below is a diagram of a system of \int auto-controlled signal lights which I have designed and which may be of interest. The three-rail (centre live rail) method of current feed to trains is shown, but it can be worked equally as well on the two-rail feed providing the supply current to track is direct and not alternating.

The system can be arranged in two ways:

1. As shown on diagram. All signal lights normally show green, but as a train enters, say, section " C " relay " C " will close, being energised by the current taken by the train motor, and the lights controlled by relay "C" will be changed to red and will remain so until the train enters following section "B," when relay " B " being energised will turn the light to red and relay " C " being not now energised will open and return the light to green, indicating train being "out of section" (to use correct railwav siomn! procedure I).

Mr. F. H. Chapman's system of automatically controlled signal lights for model railway use.
2. By reversing the connections at relay contacts to lamps and re-positioning the relays to other end of sections, all signals will show red, but as the train enters a section in front of a signal that signal light will show green and remain so until the train enters the next section behind the signal, when the
controller for train so that the position of train can be seen by operator in true railway signalbox fashion. The relays are Government surplus and can be obtained at a reasonable price from most radio shops. The ones

I used were 1,000 ohm with single-pole twoway contacts. The thin wire on the relay bobbins was stripped off and the bobbins rewound with 18 -gauge enamelled single cotton-covered wire. The thicker wire is essential to allow sufficient current to pass to operate the motor in the train.
The various sections may be as long and as numerous as the space permits, but they must be insulated fromoneanother.-J. H. Chapman (Flints).

Duplicating Photographs

CIR,-Mr. Larson, of Sheffield (Information \checkmark Sought, Practical Mechanics, January, 1956), who wishes to duplicate photographs, will find the book "Silk Screen Process Production," by H. L. Hiett and H. K. Middleton, published by Blandford Press, Ltd., I6, West Central Strect, London, W.C.I, very helpful.

Very briefly, the making of a stencil from a photograph relies on the fact that a thin film of gelatine on a backing sheet, when sensitised with a solution of potassium bichromate and exposed to strong light through the negative or positive to be copied, is rendered insoluble where the light has affected it, and will thus remain on the backing sheet when the unexposed gelatine is washed off, This remaining gelatine can then be transferred to the duplicator screen and printed in the usual way.-G. B. Johnston (Chester).

How a Car Works. Published in association with " The Light Car" by Temple Press Ltd. 50 pages. Price 25 , net.

THIS book is Number One in the " Modern Car Easy Guide" Series and the general title indicates the mission of the whole series -to pass on knowledge to the beginner in a way that is both practical and easily understood. Unnecessary technical terms are avoided. Briefly, "How a Car Works" describes the various parts of a normal car, their function and reason for existence and aims to instruct the driver as to how and why the wheels go round.

Power System Plant, Edited by E. Openshaw Taylor. 300 pages. Price 30s. net. Published by George Newnes, Ltd.

THIS book is a symposium of the Power System Plant Lectures given at the Heriot-Watt College, Edinburgh. These were designed to enable advanced students and practising engineers to become familiar with modern levelooments.

The authoritative and up-to-date information in each section was contributed in each case by an engineer closely connected with the theory and practice of his subject. The book includes 178 illustrations and separate chapters are devoted to synchronous machines-nonsalient pole-type; synchronous machinessalient pole-type; load, frequency and excitation control of synchronous machines; transformers, reactors and voltage regulators; switchgear principles; switchgear practice and substation plant; underground cables and overhead lines. A comprehensive index is included at the end of the volume.

Perspective Drawing. By H. F. Hollis. Published by The English Universities Press, Ltd. 198 pages. Price 6 s. net.

$\mathrm{A}^{\text {s }}$S the title suggests, this book will be of interest primarily to the artist and draughtsman, but its aim is to give an up-todate survey of drawing in perspective to a wide variety of readers. Contained in its pages are chapters of theory and geometrical constructions for the student, practical advice to the professional designer and draughtsman who must use quick and efficient methods, and some useful information for the artist who probably prefers freehand drawing. Liberal use has been made of explanatory diagrams.

REA YERTS,

The pre-paid charge for small advertisements is $6 d$. per word, with box number $1 / 6$ extra (minimum order $6 /-$). Advertisements,

 together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southàmpton Street, London, W.C.2, for insertion in the next available Issue.FOR SALE

C
COMPRESSORS for sale, $2 \frac{1}{\text { CFM, }}$ with driving whe in., on metal base, price $£ 3$; in.p. Heavy Duty Motors, house, 13 , Bell Road, Hounslow, HOUSE SERVICE METERS, credit Trom stock. Universal Electrical, 221, City Road, London. E.C. 1 WIRE
CHEAP GOVRNMENT peas. beans. roses, arches, greenetc.; strong, flexible, steel-stranded thicknesses. Postcard toddy for free
samples. Greens Government Stores, 393, Albert St.. Lytham. $\begin{array}{ll}\text { complete range } \\ \text { P.M. } \\ \text { Decano } & \text { Coll } \\ \text { 20, } & \text { Clarendon }\end{array}$ Road Jersey, C.I. S ity, very powerfut, only \&\& each. Send stamp for illustrated brochure.
Lancs.
RUBER MOULDS
naments from $2 /-$ each. Mlaster Ornaments srom 2/- each. Moulding toy casting moulds from $3 /-$ each, S.a.e. . for list. F. W. Nuthall, 69 . St. $B^{\text {RAND NEW Brooks }}$ (ball-bearing), 230 y.p. Motors $2,800 \mathrm{r} \cdot \mathrm{p} . \mathrm{m}$. Ideal for driving wood, working machines, grinders, etc.
Latest type fully guaranteed split Latest type fully guaranteed split
phase, $£ 3 / 15 /-$ C Capacitor, $£ 10 / 7 / 6$ carriage pajd mainland. Approval Street, Rugeley. Staffs.
STERNETTE $^{\text {TER }}$, Domestic Refrigerareconditioned, charged with refrigerant and ready for installation; suit-
 cooling coil, £6/10/-; Inda.e. Ior drawings and illustrations for con-
structing cooling coll together with servigeration Service Ltd., 191, Rice Lane, Liverpool, 9; supplies direct from the factors i uncut Moquet-
tes, $12 /$ yard Leathercloth, $5 / 9$
yard Tapestries. from $7 / 6$ yard 72in. Hessian, $1 / 11$ yard, Chair web-
 springs, etc. s.a.e, for complete
free list. Benfield's. 3, Villiers Rd.,
N.W. 2. Cover all your Floors with New$3 / 16 \mathrm{in}$. thick). Choice of (approx. woods and 8 parquet patterns from
$15 / 11$ to $19 / 7$ sq. yd. Send $10 d$. for paticulars, simple instructions, etc. Road, W.C.1.
A LUMNNUMM quality, save \&ERS,
 Washers, Rivets, etc., in stock. Engineers Haberdashery Send s.a.e.
for latest list. Whiston (Dept.
 engraving. Denny. 15. Netherwood
Road. W.it. (SHE 1426, 5152 .) SCIENTIFIC EQUIPMENT for the
Home
Student. Inexpensive apparatus for basic. Physics and Tubing and essential materials in small quantitles. Blown plasswork to sketch. Laberaft. 28. Plantation
Road, Oxford. $A^{\text {IR RECEIVERS, }} 124 \mathrm{in} . \times 7 \mathrm{in} ., 25 /-$;
 "18. Anchorway Road, Coventry
MONTOR
No. 79 Brazing Lamp condition. $£ 5$. 'stanifor $\mathbf{~} \mathrm{h}$, 28, Bery good SET CASTINGS for aluminium fly $12 / 6$ reel, also cage type Brass and Aluminium Castings. Send s.a.e. J. W. loanhead, . Stirlingshire.
M. STANDARD
EQUIPMENT, f h.p. 240 v . resilient mounted motor. 4 in independent chuck set $\frac{3}{3}$ in, H.S. tools Mnused, ¿50. ${ }^{\text {Pitsean "Basildon, }{ }^{2} \text { Essex. }}$

GLaSS FIBRE car bodies, sidec̀ars, Glass boats, models, trial unit $13 / 9$. trial lot $26 / 3$, or quotation for any
Surface area. Polyester Resin Embedments. biological botanical and metallurgical mounts, beautiful
water white castings. impregnate porous metal castings, trial unit 11/3. Epoxy Resin. the best resin wheel-arch and frame repairs, trial unit $12 / 6$ Burst pipes and tanks
with glass cloth and tape $12 /$. Trial Units for all purposes, each containIng free mixing and dispensing Epoxy Paint, waterproof, heat resistant porcelain finish for baths,
kltchen walls, hardboard, etc., $14 /-$ pint, with Catalyst, white, black or clear. Information Sheets on glass fibre
stamp please. Guide to the Glass Fibre Technique, " Experts with units for all purposes are Silver Dee Plastics, Desk A4/3, Derbyshilice. Part post 1/- on units, please. ILVERING OLD MIRRORS BOOK, Electroplating, 108 pages ; chromium. silver, nickel, 5/6. Stamp for plating

HOSEPIPE BARGAINS! ! Highest sizes qualso pubber, long fin bore, black 22/6, green 23/6; 120 ft., $45 /-$; carriage pald.
Greens, 441 , Albert St., Lytham.

PHOTOGRAPHY

HNLARGER and Camera Bellows
supplied ; also fitted. Beers, St Cuthbert's Road, Derby. CASTINGS, PHOTO-ENLARGER Bellows. Assemblies, CASTINGS, $\begin{gathered}\text { s.a.e. for } \\ \text { for }\end{gathered}$ illustrated detalls. v. J; 'Coottle, 84a,
Chaplin Road, Easton, Bristol, BUILD A FOLDING CAMERA, complete Kits supplied; details
S.a.e. D, Sykes, 35, Croliam Road, EXPOSORE METERS. Build your photo-electric meter with 50 x $\times 37$
inm selenium cell. C mplete Kit $47 / 6$; s.a.e. details. All sizes of photo-
cells in stock.
G.R. Products, 22 , cells in stock, G.R. Produc
Runnymead Avenue, Bristol,

BOOKS

10,000 FORMULAS, Processes, This is the 1,000 page money making and money saving book of the century. Limited number again avail27/6, p.pd. Below:-
BUILD YOUR OWN PHOTO Equip$3^{\text {ment, } 12 \text { designs in two books. }}$ Enlargers, printers, dryers, timers,
etc 6/-pd. Below:- BUILDERS
AERICAN BOAT A Annual :
and
other
helpful
boat plans,
articles,
$8-22 \mathrm{ft}$.,
$7 / 6$, P.Pd. Below:Really outstanding American designs at lowest cost to make. Below:-
HOW To REWIND.
Electric Mend Motors, Generators. Complete Practical Book only $3 /$-.
p.pd. Berieni- HANDBOK, 3 books in one, turning. metal spinning, jigs attachments, special operations; 200 illus-"how-to-do-it" material throughout.
Below:- AND SPOT WELDERS For The A Small Shop. Easily, cheaply
made. Full plans, $3 /-$ p.pd.
Belowican book, $3 /-$ Below:-G. Complete
CAR BODY REPAIRING. Comer 7/6. A B B C course : illustrated. $7 / 6$. p.pd. : lists free. American
Pubisheris

[^1]
ELECTRICAL

1
C
E
c
c
c
t
t
g
8
E
C

ELECTRIC MOTORS, 230% 。,
 Electric, $24 / 19 / 6 ;{ }^{3}{ }^{\frac{1}{3}}$ h.p. Brook,
£5/19/6; 1h.p., 220 v . D.C., by Lancashire Dynamo Co., £5/19/6 carriage $5 /-$ Kits of Tools for all
trades on attractive hire-purchase terms. Send 6d. catalogue and bar gain lists. Mibro Equlpments Ltd.
C. J. EMMS LTD. Selenlum $F /$

Comp. Bridged. Rectifers: 6-12v
17/6. Others on application. Trade supplied in quantities. 26 . Coleherne GELENIUM , RECTIFIERSE 8941.$)$ Square plate, F. W. bridge,
and
12
volt. 3 amp . $10 /-4 \mathrm{amp}$. 12f-: 6 amp., 16/-. Also Compres Rise. Ottershaw. MODEL MOTORS, amazingly post paid : $3 /-1$ Maximo 3 to 9 volts ; speed $4 / 5.000$ r.p.m. ; size 1 in . x lin. ; weight 1 k oz.; drives
boat propellers 1 in , and 4 in.. aeroplane 5 in, and 8 in. Model Electri Motors, Dept. P.M. "Highland. chester.
$S^{\text {UPER-TONIC SUN-RAY }}$ LAMPS Superb therapeutic quality, conall malns. Listed $£ 7 / 10 /$-, our pric 80/- S.A.E. illustrated brochure Dept. 12 , Scientific Products, Cleve WOODWORKING
WOODWORKING MACHINES, all Saw Benches, 7 in., $£ 4 / 15 /-$ - 8 8in., $£ 5 / 10 /$-i 10 in , complete, motorised, ing Heads, £4; with 8in. Saw Tables $£ 7 / 10 /$ Lathes, $\left.£ 7 / 10 /-: \begin{array}{c}\text { Combina- } \\ \text { Motors }\end{array}\right]$
tion
Llothes
 written and money refund guarantee. James Inns (Engineers). Marshall St.. Nottingham.
SAWBENCHES, all sizes from $\varepsilon 10$; $£ 32$ motorised, ${ }^{\text {S }} 20$ pindle Assemblies, from $27 / 6$ for saws up to 36 in . Motors, Englnes. terms. Send $1 / 4$ for handbookecatalogue. Price list free. Beverley Pro$A_{\text {RELIABLE }}^{\text {REOKING }}$ FIRM FOR A Plywood. Wallboards, veneered Ply,
rood? Call at our warehouse or send rood? Call at our warehouse or send
s.a.e. for price lists. N. Gerver, $2 / 10$, S.a.e. for price lists. N. Gerver, $2 / 10$,
Mare Street. London, E. (AMHerst 5887) (E. PLYWOOD, 24 in . X 12in. $\times 3 / 16 \mathrm{in}$. .
 for list. Plywood Products, Captain Fold. Rawtenstall, Lancs. Motors and Control Gear. Circular Saw Blades, Spindles or ested? Then send 6 d . for illistrated literature, price dist and H.P. ternis.
D. Arundel \& Co.. Mills Drive, Faindon Road, Newark, Notts

HOBBIES

TOY \& GAME MANUFACTURE specifically devoted to the manufacment and games, sports equipAnnual subscription $\Sigma 1 / 10 /-$ Speci${ }_{\text {men copy }}^{\text {lications }}$ Ltd., ${ }^{2 / 6}$. Techniview Pub- $\begin{gathered}\text { Oxford } \\ \text { Street. }\end{gathered}$
London. W.1. BOTTLES. - The con. structional kit that tells gou how formake them; build for pleasure or Hobbies Lid., and model shops.
Cooper Craft, Lid., The Bridewell. Norwich,
MAKING
scopes, Enlargers. Protectors OI scopes, Enlargers, Projectors or, in fact, anything using lenses. Ex-Gơ. Lenses \& Prisms," price 2/6 ea comprehensive lists of optical.
radio and scientific equipment free for s.a.e. H. W. English. Rayleigh
Rd. Hutton. Brentwood; Essex.

INJECTION MOULDING MACHINES crafts or industrial purposes, handioperated Plastic Injection Moulcing Machines. Moulds made to Sour Ltd., 16 (VICtoria 1414.)

MODEL DEALERS

HOBBIES LTD, have over 50 years needs of modellers, handymers and
 New Oxford Street, London, and in Birmingham, Glasgow, Manchester, and Bristol. Head Office. Dereham.

SITUATIONS VACANT

The engapenent of persons ansuering these
advertisments must be made throung Local advertisemen ministry of Labour or a schecrulued Emiployment Agency is the applicant is a m.n
aged in-64 inclusive or a woman aged $18-59$ ased 18-64 inctusive or a woman aged ib-3. inclusize pintess he or she or the emploimen
is ercepted foom the provisions of the NotificaA. M.I.Mech.E., A.M.Brit.I.R.E., City \rightarrow No Fee" terms Over 95% succourses in all branches of Engineering, Bullding, etc., write for 144 -page
Handbook-Free. B.T.E.T.
(Dept. $967 \mathrm{~B}), 29$, Wright's Lane, London.
A TOMIC ENERGY RESEARCH a vacancy in the Experimental Officer Class in its Nuclear Physics Division. for an officer to help organise a smali of neutron spectra in reactors. Applicants should be at least 26 years of age and possess minimumi
qualifications of Higher-School Certifi cate in Science subjects, or equivaa good general knowledge of physics with some idea of the basic concepts of nuclear physics. Several years experience in a physics renecessarily nuelear physics, is desirable * An aptitude for the design of small mechanical devices and an ablity to improvise will be assessed, accantage. salary will be assessed experience, within one of the following scales: Senior Experimental mentai offcer. £808-£988 p.a. Contributory superannuation
Good working conditions:
s-day
5 -dat week. Present annual leave allowance is, 6 weeks. Married oficers
now living outside the Establishment's transport area will be eligible for housing on one of the Authority's estates, or, alternatively, substantial assistance towards legal expenses incurred in house purchase will be available. Send post-card for application form to the Director, A.E.R.E.
(Recruitment). Harwell, Didcot Berks, quoting reference 484

EDUCATIONAL

TREE I Brochure giving detalis of Television. And all branches of Electronics. Courses for the Hobby Enthusiast. or for those aiming at the A.M.Brit.I.R.E. City and Guilds, examinations. Train with the college examinations. Britain's largest Electronics organisation. Moderate fees.
Write to E.M.I. Institutes. Dept. PM28, London, W. 4 . -1 provide practical equipmen combined with instruction in Radio,
Television, Electricity. Mechanics, Chemistry, Photography, etc. Write
Dept. PM47. London. W.4. Oficer M Cadet Training School. World travel and adventure, overseas.
I. P.R.E. TECHNICAL PUBLICA$\begin{array}{ll}\text { for superheterodynes, 5/9. Data for } \\ \text { constructing } & \text { TV aerial }\end{array}$ constructing TV aerial Strength
Meter, 76 The
Sample copy
The Prac tical publication of the membership and examination data free and post free. Sec. I.P.R E
20. Fairfield Road, London, N. 8

GOVERNMENT SURPLUS BARGAINS ASTRO COMPASSES-Mk. П". As ${ }^{5} 54$ and Camera Pan \& Tlit hoad Mar. '55. Each requ, post 2/- (A rew less sight L/ANDOSGG LAMP MOTORS.- $12 / 24 \mathrm{~V}$. D.C. ${ }^{20,30 \mathrm{v}}$ A. A.C. 2 amps iin. shart. with gear and quadrant as described
for SELF-OPENING GARAGE DOORS "Prac. Motorist" Aug '54 (copy of MRA $1 / 6$ SFOBMERS. -Input $200 / 250 \%$. A.C. Output tapped for 3. 4. S. $6,8,8,10$,
12. is, $18,20,24,30 \mathrm{v}$. A.C. Max, 2 amps. Excellent for above motors, 21 -, post $1 /-$ output 30v. 4 amps.v. 25!-. post $1 /-\mathrm{CHP}$ approx 80 watts, HIgh speed. 1 in.
shart (converted R . A F. motor/generator, pover about equal to sewing
machine motor). Useful addition to workshop. Each $30 /-$, post $1 / 6$.
GEARBOXBS.-Give reductio approx. 180/1. Drive recessed to take in. Shaft, low speed shaft $3 / 16 \mathrm{in}$. dia.
Dimensions 4 in . X 31 n . z 2in. Each 10/-, post 9d. Send 3d. Stamp for 11 st of Motors. Tole-
phones. Transformers phones. Transformers. Pumps, Lamps, MILLIGANS
24. Marford street, Liverme
Money Back Guarantec.

32-page Booklet on STEAM FOR PROCESS

The Bulletin "Steam for Process " explains, in clear words and pictures, most of the the use of steam for heating and process purposes. Copies free on request.

SPIRÁX-SARCO LTD. (TECHNICAL DEPT.) Chelterham, Glos.

CHEMISTRY APPARATUS

COMPLETE PRICE LIST

BECK 60 (Scientific Depl. A) Stoke Newingion, London, N. 16

PORTASS LATHES

DIRECT PERSONAL SERVIEE, NO INTEREST CHARGED ANYONE DO BETTER CAN ANYONE DO BETTER
I/- for Lists, please, Dept. P.M BUTTERMERE WKS., Sheffield, 8

BATTERY CHARCERS

Good quality-direct from Makers.
$2-6$ and 12 v . With meter. 1 amp . £4 10 s .
 Also transformers and chokes (standar nnd special) : Coll testers. etc. Dept. P.M.
Hoddesdon, Herts.
RATCHET \& REVOLUTION COUNTERS

EASE ASK FOR CATALOGUE B. \& F. CARTER \& Co., Ltd., Bolton 5
(Continued from previous page)

HANDICRAFTS

MUSICAL MECHANISMS SWISs boxes, etc. $16 / 6$ each. Send s.a.e for complete 11 st of handicraft Materials. Metwood Accessories. 65 Church street Wolverton, Bucks. M ${ }^{\text {AKE }} \mathrm{SW}$ YSs-made movements ${ }^{23 / 6}$ Albert's Music Shop, 45 . Beath Road. Twickenham. OWN Musical MAKE Your OWN Musica and Novelty Mechanism. and Kits o Box Parts: s.a.e. for price and tune
list. Mulco Ltd., 87 . Cambridge Road. London. N.w.6.

PATENTS

PATENTING advice, service. Qualiflit consultant. C. L. Browne 114, Greenhayes Ave.. Banstead Surrey.

WATCHMAKERS

Watch repalrers, Hobbyists, Watches, Movements, Lathes, Watch and Clock Spares, etc. Loadér Bros. 36. Milestone Road, Carterton, WATCR AND CLOCK PARTS, large stocks of all spares,
Balance Stafts, Winding Stems, Hair Springs, Complete Balances, etc.; return postal service. Send for latest
$27 / 28$,
free lists.
Anerley.
Station 27/29, Anerle
London. S.E. 20

WANTED

BURDICK INFRA-RED LAMPS, and snall quantity required. price Street. Alderley Edge.

90,000 PIANISTS

Wanted, "Prastical Houseand Feb., 1956 . Bo
Practical Mechancs.

MISCELLANEOUS

ANGINEERS starting their own tents of would like to purchase con London area. Box 129, c/o Practica Mechanics.
$R^{\text {UBBER MoOLDS for Plaster }}$ Samp:e and Jist, Wallplaques, etc. Samp.e and jist. $4 / 11$; trade en
quiries invited. Castmoulds (Dept quiries invited Castmonds (Dept. COMPRESSOR EQUIPMEN
COMPRESSOR EQUIPMENT. Mis-
cellaneous Items Pryce. 157. Malden Road, Cheam. BUILD YOUR OWN REFRIGERA T Tor, all components availabl at reasonable prices. Frigidair
flowing cold units. $£ 5$; small units Kelvinator, etc. \& 4 , h.p. heavy duty Motors, et 3 Chrome Cablnet fittings. new, £1; money back guar antee: s.a.e. for list and schematic diagram. Wheelhouse, 1. The Grove Isleworth, Middx. (Phone: Hounsloy 7558.

FORTUNES IN FORMULAS," 900 page American book of formulpe.
Amercan technical hobby and other American lechnical hobby and othe for lists. Herga Lutd. (Dept. P2) Hastings. O trated Catalogue No. 12, con tainlag over 400 items of Electrical Mechanical and Radio Equipment fo experiments. etc., price $1 / 6$. post free
Arthur Sallis. 93 North Road Arighton, Sussex STEAM CARS. Detailed plans of light modern oll-ared power unit for drawings. Magazine, $3 / 6$; s.a.e. for free lists. Book "Steam Road Vehicles and Railcars in Germany." W ANTED, technical information on paid various simple matters, gladly Raid Rar Pingley Farts, Brigg. Lincs.

POTTERY

Potter's wheels from 16 gns, $3 \mathrm{k} . \mathrm{w}$.
electric kiln from $£ 300$ tipwards. Also
a wide range of pottery materials. Wrive for of illustrated catalegue. MILLS \& HUBBALL Ltd. (Dept. P.M.)
244, Borough High St.. London, S.E.1.

EXTRACTS FROM OUR NEW CATALOGUE

ASTRONOMICAL TELESCOPE KIT. Consists of Object Glass 40in, focal length. 47 mm . dia. (not achromatic but optically polished). Fully corrected achromatic Kellner Type Doublet Eyepiece giving magnification of approx. $30 X$.
Black lined, toughened cardboard tube with P.V.C. covering material. Full size Black lined, toughened cardboard tube with P.V.C.
High power EYEPIECE for above Kiagiving approx. $60 \times$ magnification. 25/EX. GOVT. ROSS PRISMATIC TELESCOPE, Power 20×70 (external dia of Object Glass 3 in .). Angled focusing eyepiece. Nett weigat 5 lbs . Length 13 in In new and. perfect condition, $E 12.10 .0$. Post Free.
$8 \frac{1}{2} \times 50$ U.S.A. ELBOW TELESCOPE. Perfect
81×50 U.S.A. ELBOW TELESCOPE. Perfect condition. $57 / 6$. Post $2 / 6$. IDENTIFICATION TELESCOPE. Tremendous clarity and power of $12 X$ and 30X. With Object Glass dia, of 60 mm . Traversing and elevating gear. Can be used by two observers simultaneously. Perfect condition. $\mathbb{C 1 5 , 0 , 0 \text { . Carriage Free. }}$ ACHROMATIC OBIECT GLASS. First quality. Focal length I6!in. Dia. ACHROMATIC OBJECT GLASS. First quality. Focal length $16!$ in. Dia 50 mm . Ideal for increasing the power of Binoculars. $27 / \mathrm{I}^{27}$ each.
Ex. Admiralty OFFICER OF THE WATCH TELESCOPE.
Ex. Admiralty OFFICER OF THE WATCH TELESCOPE. Single draw. Power 16X. Length closed 18in. Wr. 20 ozs. S9/\%. Post Free.
We carry Europe s greatest stock of Ex. Govt. Scientific Equipment. New cata-

CHARLES FRANK

67-73, SALTMARKET, GLASGOW, C.I.
Phone: BELL 2105/7 Established 1907

Sparis daia shers Constructional Sheets of Guaranteed and Battery Oi,erated
 ROSUN " 3 -V. MJ. More Powerful. CRUISER" 3 VKIPIPER M/L. TRF "SKIPIPRIR "-V. M/L. TRF. Superhet. waves only, Good phone sigs. Good Range ECLIPSE " $4-\mathrm{V}$. dittom/L. S'het. V/Goo $"$ DX. $1 " 1-\mathrm{V}$. S.W. Rx. Plug-in Colls MAINS OPPRRATED CUB ${ }^{-1} 2-\mathrm{V}$. M/L. A.C. Simple but rood, Power \& Tone "ENTERPTR TSE " $3-V$. TRF. Fine Range \& All Plus Rectirying Valvo. Data Sheets "\& - Instructions, etc., 3/- Post
Free, excepting "Ecliosen $3 / 3$. MULLARD 5/10 AMPLIFIGR The sparks version of thls noted circult praised for simplicity or Layout and Results. praised Full-Size Data Sheet, $3 / 9$.
MANY OTHER RECEIVER AND AMPLI Components \& Chassis Avarlable.
L. ORMOND SPARKS (M),

Valley Road, Corfe Castle, Dorset
'Phone Corfe Castle 377.

MAKE A RADIO

NO SOLDERING only a screwdriver and pliers needed. FULL-SIZE plans and easy-to-follow building instructions for 8 5, 2/6 post free.
CRYSTAL RADIO KIT S at $10 / \mathrm{S}, 17 / 6$ and two at 21/- post free,
EXPERIMENTAL KIT NO. I, builds 4 different crystal sets, $27 / 6$ post fres.
BASIC." a very simple I-valve sot. 35/ost free with valve and batter
" NEW ECONOMY $1, " 52 / 6$ post free. "NEW ECONOMY 2," $82 / 6$ post free. PREFECT ONE," $\mathbb{6}$ post free.
Sond S.A.E. for list-or send 2/6 P.O. For building instructions for all 8 sets.
BLANCHARD'S, DEPT. RM, 13, Gainford Gardens, Manchester, 10

In crates of 9 or 10 Cells 45 AH , 10 Cells equal 12 volts. Size 12 V . crate $27 \frac{1}{2} \mathrm{in} . \times 9 \mathrm{in} . \times 5 \frac{1}{2} \mathrm{in}$. Offered at the ridiculous price of $10 /-$ per cell plus $1 /$ - carr.

HUNT \& CO.
STEPCOTE HILL, EXETER *Phone 56687.

New Orbital Sander Attachment

THIS addition to the Black and Decker range can be fitted either to the in . Utility Drill or the Sander-Polisher Drill and its relatively low price should enable the average handyman to install it in his workshop.

The chuck is removed and replaced by a screw-head and the attachment is fitted to either of the two power units by means of two clips, which fit into the ventilating slots of the tool. The abrasive paper clips are operated from the side of the bottom plate and remain open when changing abrasive paper, permitting use of both hands to clamp the paper in the

The bottom plate makes thousands of 3/16in. orbits per minute and good results, without surface marking, can be obtained when sanding with, against or across the grain. Some of the recommended uses are cabinet work, furniture finishing, boat maintenance, removing rust and old paint, etc.
The price of the new attachment is $£ 415 \mathrm{~s}$. and a special abrasive and polishing pack is available for 175 . 6 d .

The "Eureka" Floor Surfacing Machine

THIS 12 in . floor planing machine uses high-speed steel bladesp which can be adjusted to give a light or heavy cut and power is by either a $2 \mathrm{~h} . \mathrm{p}$. repulsion induction electric motor or a Villiers petrol engine. Dust is picked up by a fan and collected in a detachable bag and only a short time is needed to change surfacing papers or cloths. The makers are John Gregory (Nelson), Ltd., Norfolk Street, Nelson, Lancs.

New Wolf Sanding Attachment

DESIGNED for use in the finishing of castings, pressings, dies, fabricated metalwork, etc., in ferrous and non-ferrous metals, the new attachment is used in conjunction with the 6in. high-speed Wolf heavy duty grinder which possesses sufficient power and speed to permit the 2in. wide by 2 zf . long endless abrasive belt to operate at a light load of $6,000 \mathrm{ft}$. per minute.

The attachment consists of a patented 4 in . diameter by 2 in . wide rubber typed contact wheel and a cast aluminium bracket

at the end of which is mounted a steel pulley running on a ball bearing. The abrasive belt is mounted on the steel pulley and is correctly tensioned by means of a spring-loaded eccentric, the assembly position being controlled by an adjusting screw.

The attachment bracket is mounted on the

end of the GQ6 grinder gearbox in place of the existing wheel guard, and uses the same fixing screws, the rubber typed contact wheel being fitted on the grinder spindle.
A selection of abrasive belts is available all of which are suitable for use on materials ranging frem cast iron to wood. Details are available from your local Wolf stockist.

Range of Miniature Electric Switches

THESE have been developed to meet the specifications of the Ministry of Supply

One of the Dunlop pressure switches.

"Planclamp" plastic strapping.
by Dunlop's aviation division at Foleshill, Coventry.
The pressure switch shown, with a penny alongside to indicate its size, has been designed to meet the requirements : pressure to break, $60+0 \mathrm{lbs} . / \mathrm{sq}$. in.; pressure to make ${ }^{40}+0$ p.s.j. These figures are adjustable to any desired value. Switches in this range have a maximum non-inductive current capacity of 10 amps and a minimum life of 100,000 operations, and are suitable for use in systems working at peessures up to 4,000 p.s.i.
After several million vibration cycles in tests carried out with the switch mounted on a vibration table the contact resistance showed little change.

The Crown Electric Hand Pump

THIS labour-saving hand tool is designed for the inflation of car and bicycle tyres. It consists of a single cylinder air compressor, coupled to a universal motor and housed under a cover as one complete unit. Output is about $\frac{f}{c u}$. ft. per min . and pressure can be obtained up to 85 lb . per sq. in. From flat a car tyre is inflated in

The Crown electric hand pump.
about 4 minutes and a bicycle tyre in 20 seconds. A dial pressure gauge can also be supplied and fitted as an extra. The size is $6 \frac{1}{2} \mathrm{in}$. diameter at the base and 6 in . high and the pump weighs 81 lb . The manufacturers are Messrs. Motor Electrics Co., Crown Lane, Marlow, Bucks, and the price of the Crown electric hand pump is $£ 135 \mathrm{~s}$.

"Planclamp" Plastic Strapping

A^{s}will be seen from the photograph, this material is made of thin pliable metal strip, covered with plastic, with $\frac{1}{8}$ in. holes strip, covered inthed at intervals along it. It may be punched at intervals along it. It may be form in the fingers and is designed for use by the housewife to secure small items in use frequently during the day; for the engineer who wishes to keep readily accessible numerous small tools and, in fact, for anyone who wishes to keep a number of small objects in position neatly and inconspicuously.
"Planclamp " is manufactured by Creators, Ltd., Plansel Works, Sheerwater, Woking, Surrey.

Removing. Developer Stains from Porcelain Bath

IHave tried potassium permanganate to remove Johnson's Universal Developer stains from my porcelain bath, but with no success. Can you suggest any other solution that will remove these stains ? -D. Ruse (Truro).

T
${ }^{R}$ R " twenty-volume " hydrogen peroxide, or if that fails Fehling's Solution. This can be bought ready made from any good chemist, or you can make it as follows :

Make up solution (A) by dissolving 70 grammes of copper sulphate in I litre of water. Solution (B) is made with 346 grammes of crystallised rochelle salt in $\frac{1}{2}$ litre of hot water, and 142 grammes sodium hydroxide in $\frac{1}{2}$ litre of water. These two solutions are poured into a I-litre bottle to form (B). Mix A and B in equal parts and use as bleach.

Smoothing Rectified Current

IHAVE recently made up a transformer and full-wave metal rectifier unit to operate a "oo", gauge model railway (12 volt D.C.). This works satisfactorily, but the engine displays less power and there is more sparking at the commutator than when operating from a battery. Does this call for condenser smoothing in the rectifier unit with also a choke? Would a condenser/resistance strap across the commutator also assist ? If so, would you indicate approximate values ?-J. C. H. (Dorset).

I^{T}T is quite likely that you may require a slightly higher rectified voltage than 12 in order that the motor may develop the same amount of power as when fed from a 12 volt D.C. battery.

In order to minimise the sparking at the brushes it would be advisable for you to smooth the D.C. output considerably. We suggest that you try connecting a condenser of large capacity, say, about 50 pF , across the output terminals of the rectifier.

Preserving a Lobster for Stagework

FOR our drama production we need on the stage a lobster. As we wish one lobster to last the run (three weeks), can you tell me any way of preserving it? Any method used must be cheap and the lobster able to stand a fair amount of knocking about.-J. Smith (Ashford).
$\mathrm{F}^{\text {IRST, }}$, slit your lobster the full length of all, if you can manage it, of the putrifiable flesh and guts. Then pour a solution of formalin (80z: to a gallon of water) into the carcase after rinsing with plain water from the
tap. Sew or wire up the carcase after you have stuffed it with cotton wool. Then immerse the whole object quickly in a further solution of formalin ; allow to dry and paint lightly over with any clear varnish. If the object is to receive much harsh treatment, wire it with two or three strands of fine wire at suitable intervals along its length.

Oil flash Points

WHAT are the flash points of oils used in motor cars? Is a mineral oil higher than a vegetable oil? Is there a book available on the subject ?-H. L. Hunt (Lincs).

RULES

A stamped, addressed envelope, a sixpenny, crossed postal order, and the query coupon from the current issue, which appears on the inside of back cover, must be enclosed with every letter containing a query. Every query and drawing which is sent must bear the name and address of the reader. Send your queries to the Editor PRACTICAL MECHANICS, Geo. Newnes, Ltd. Tower House, Southampton Street, Strand, London, W.C. 2.

M^{1}INERAL oils have a much lower flash point than vegetable oils.
Mineral oils are tested for flash-point, i.e., the temperature at which the oil gives off sufficient vapour to form a momentary flash when a small flame is brought near its surface. The fire test determines the temperature at which the oil gives off enough vapour to maintain a continuous flame if ignited. These

the p.m. blue-print service

12FT. ALL-WOOD CANOE. New Series. No. I, 3s. 6d.*
10-WATT MOTOR. New Series. No, 2, 3s. 6d.*
COMPRESSED-AIR MODEL AERO ENGINE. New Series. No. 3, 5s.
AIR RESERVOIR FOR COMPRESSED-AIRAERO ENGINE. New Series. No. 3a, ls. " SPORTS " PEDAL CAR. New Series, No. 4, 5s." F. J. CAMM'S FLASH STEAM PLANT. New Series. No. 5, 5s.*
SYNCHRONOUS ELECTRIC CLOCK. New Series. No. 6, 5s.
ELECTRIC DOOR-CHIME. No. 7, 3s. 6d.* ASTRONOMICAL TELESCOPE. New Series. Refractor. Object glass 3 in . diam. Magnification $\times 80$.
No. 8 (2 sheets), 7s.*
CANVAS CANOE. New Series. No, 9, 3s. 6d.* DIASCOPE. New Series. No. 10, 3s. 6d.
EPISCOPE. New Series. No. 11, 3s. 6d.*
PANTOGRAPH. New Series. No. 12, Is. 6d*.
COMPRESSED-AIR PAINT SPRAYING PLANT. New Series. No. 13, 7s. 6d.* MASTER BATTERY CLOCK. Blue-prints (2 shcets), 3 s .6 d . Art board dial for above clock, Is. OUTBOARD SPEEDBOAT. 10s. 6d. per set of three sheets.
LIGHTWEIGHT MODEL MONOPLANE. Full-size blue-print, 35.6d.
P.M. TRAILER CARAVAN.

Complete set, 10s. 6d.
P.M. BATTERY SLAVE CLOCK, 23.
" PRACTICAL TELEVISION " RECEIVER (3 sheets), 10s. 6d.
P:M. CABIN HIGHWING MONOPLANE. |s.*
P.M. TAPE RECORDER
(2 sheets), 5 s.
The above blue-prints are obtainable, post free, from Messrs. George Newnes, Ltd., Tower House Messrs. George Newnes, Ltd, Tower
Southampton Street, Strand, W.C.2.
An denotes constructional details are available free with the blue-prints.
mineral oils are usually tested for the two above-mentioned tests, as well as for viscosity, congealing point and colour.

Vegetable oils are tested for specific gravity, saponification value, iodine test, the Maumene test and the elaidin test.
Any reference library will contain a book which will list the flash points of the various mineral oils. "A Short Handbook of Oit Analysis," by A. H. Gill, Philadelphia, would probably have all the information you seek.

Preventing Tree Trunks Shooting

T HAVE a number of tree trunks protruding about 8 ft . out of the ground and should like to prevent them shooting out or growing again and, if possible, destroy the roots. Have you any suggestions ?-L, Noble (Lincs).
TO destroy the roots you will have to dig down to the main leads, saw them off and paint cut to a few inches of root between cut and trunk with creosote. Paint the top exposed section of trunk in same way.

Bleaching Out Wood

TO eliminate the rather tedious scrapexisting dark staim (after polish or varnish has been removed, of course) could you please suggest a suitable quickacting bleach which will effect a white as possible finish to the wood without basically harming it ?

What neutraliser would be required before restaining to the desired colour ? -Geo. Laing (South Shields).
A FTER removing the polish and varnish A with methylated spirit treat the surface with oxalic acid solution to bring up the grain, and rub down again with sandpaper.

Purchasing New Eyepiece

I HAVE gradually stepped up magnification with an ex-Government equipment telescope till with an object lens of 24 in . $f \times 80 \mathrm{~mm}$. diameter and an eyepiece of r in. f I get a magnification of 19.2. I should now like to increase the power, so if you can help me with any information that is within the range of a workingman's pocket I shall be grate-ful.-J. H. Beckley (S methwick).

YOUR calculation of your present magnification is quite correct. Working on the same lines a $\frac{1}{2}$ in., f eyepiece would yield a magnification of 48 , and that is what we suggest you should purchase. A $\frac{1}{4} \mathrm{in}$. E.P. would give $\times 96$, but unless the O.G. is of superfine quality it would not stand such a power and you would see little, if any, more than with a $\frac{1}{2}$ in.

We suggest that with such a ratio of aperture to focus in the object glass it would be advisable in looking at the moon to put a cardboard stop over the O.G. and cut down the aperture to about $\frac{1}{2}$ in. This would not affect magnification, but would reduce brilliancy, which, with full aperture, would be somewhat painful, especially if the moon were nearing the full.
The type of eyepiece you will require is the "Huyghenian"; this will be better for your object glass than the "Ramsden" or the "Kellner." Other types which are achromatic wöld be too expensive. We suggest you write to Broadhurst Clarkson \& Co., Ltd., 63 , Farringdon Road, London, E.C.I., or J. K. M. Holmes, Dept. P.M.I2, 65, Stephenson Street, North Shields, Northumberland.
(Continued on page 329)

The only Home Study College operated by a world wide manufacturing organisation

EMI institutes

An Educational Establishment associated with the E.M.l. group of Companies including 'HIS MASTER'S VOICE', MARCONIPHONE, etc.

CAREERS - HOBBIES - NEW INTERESTS
PRIVATE AND INDIVIDUAL TUITION IN YOUR OWN HOME

Over 150 Courses including :-

Accountancy	Draughtsmanship	Marine Engineering	Refrigeration
Advertising	Economics	Mathematics	Retail Shop
Automobile Eng.	Electrical	M.C.A. Licences	Management
Banking	Engineering	Mechanical Eng.	Salesmanship
Book-keeping	Electrical	Metallurgy	Secretaryship
Building	Installations	Motor Engineering	Shorthand \& Typing
Business	Electronics	Photography	Short Story Writing
Management	Engineering Drawing	P.M.G. Licences	Short Wave Radio
Carpentry	Heating \&	Pollce	Sound Recording.
Chemistry	Ventilation	Production Eng.	Telecommunications
Civil Service	Engineering	Production Planning	Television
Commercial	High Speed Oil	Radar	Time \& Motion Study
Subjects	Engines	Radio Amateurs	Tracing
Commercial Art \&	Industrial Admin.	Certificate	Welding
Drawing	Jig \& Tool Design	Radio \& Television	Workshop Practice
Customs \&	Journalism	Servicing	Works Management
Excise Officer	Languages	Radio Engineering	and many others.

Also courses for University Degrees, General Certificate of Education, B.Sc, Eng, A.M.I.Mech.E., L.I.O.B,, A.C.C.A., A.C.I.S., A.M.Brit.I.R.E.E, A.M.I,I.A., A.F.R.Ae.S., A.M.I.M.I., A.C.W.A., A.M.I.E.D., City \& Guilds Examinations, R.S.A. Certificates, R.T.E.B.Serv. Cert., etc.

WEW learn the practical way HOME COURSES - WITH EQUIPMENT

Whether you are a student for an examination, starting a new hobby, intent upon a career in industry or running your own business - these Practical Courses are intended for YOU.
With these outfits, which you receive upon enrolment, you are given instructions that teach you the basic principles in the subject concerned.
COURSES WITH PRACTICAL EQUIPMENT INCLUDE: RADIO (Elementary and Advanced) TELEVISION • MECHANICS • ELECTRICITY CHEMISTRY P PHOTOGRAPHY-CARPENTRY. Also Draughtsmanship - Commercial Art Amateur 'S.W. Radio
Languages.

Courses from 15/- per month

POST THIS GOUPON TODAY

Please send without obligation your FREE brochure. E.M.I. INSTITUTES, Dept. 144, 43 Grove Park Road, London, W.4.
$\left[\begin{array}{c}\text { BLOCK CAPS } \\ \text { PLEASE }\end{array}\right]$
NAME
ADDRESS

SUBJECT(S) OF INTEREST
MAY
(We shall not worry you with personal visits)

ALL MAINS 1956 T.R.F: 3 VALVES

Available in basic form. This contains all the essential items, i.e., frepared metal chassis, 3
valves, mains transformer, values, mains cransiormer, gang condenser, coll, volume control, valve holders, smoothing condenser, bias condenser, 6 paper and metal condensers, 7 resistors and data, Special Offer all for $32 / 6$, plus $2 / 6$ post and insurance.
If pleased with the results you can add the extra
parts to make the "do luxe" set as illustrated.

THE TWIN
Complet lluorescent fitting;
bulit
Has last and
starters stove-enamelled white and
ready to work Ideal unit for the kitchen. ovar the work.
bench. uses two 20 -wati lamps. Price complete less tubes $29 / 6$ or wath. Price complete. less tubes. 29/6 or with two
tubes. $39 / 6$. Post and insurance $5 /-$ Extra 20-watt tubes $\% / 6$ each plus $2 / 6 \mathrm{P} / \mathrm{P}^{59 / 8}$

THE "CRISPIAN " BATTERY PORTABLE
A 4-valve truly portable battery set with very many Ferrite rod aerials.
Low consumption valves Superhet clrcuit with A.V.C Ready built and aligned chassis if required Beautiful two-tone cabinet covered with I.C.I.
Rexine and Tygan. Rexine and Tygan. Guaranteed results on long and medium waves
All parts, including speaker and cabinet, are available separately or if all ordered together the price is Er. 15.0 complete. ready bult chassis $301-$ extra,
Instruction booklet free with parts or available eeparately price $1 / 6$

All parts including vaipe, paxolln panel coll formers, etc., etc. to bulld regenerative
recelver, given September ", Eractical Mechanics," price $14 / 6$
plus 2 . post plus 22_{i} - post.

SPECIAL OFFER-OFFICE INTERCOM Thls is a 2-station " master" unit com prising an A.C. mains operated push-pull amplifier with built-In P.M. speaker which acts as microphone or loudspeaker depending on whether switch is set to "talk" or " listen." Complete in polished cabinet ready to work. Price only 24/19/6. plus $3 / 6$ carriage and insurance.

impulse

 RELAY Somewhrt solle due to storacally O.K. Pric 2/6. Dlus 9d post. Bookle givint some cir cuits price $\begin{aligned} & \text { post } \\ & \text { free. }\end{aligned}$ available, not
soiled, $5 /$ each.

DASHPOT DELAYEO
 CONTACTER

Amerlcan make type No. R.01D. This has adjustment to delay opening and closing. for heavy currents operating coll $; 110 \mathrm{v}$. ELECTRONIC PRECISION EQUIPMENT LTD Post orders should be addressed to Dept. 1, 123, Terminus Road, Eastbourne. 42-48, Windmill Hill, 152-3, Fleet Street, 29, Stroud Greeu Rd. ${ }^{2}$ 249, High Rd., Kiburs
 Half day, Wednesiday.|Fall day, Maturday, Mal! day, Thursday. Hal! day, Thursday.

TUNGSTEN CARBIDE TIPPED TOOLS

PLUGGING DRILLS
For clean round holes in brick, conerete, eiles, marble, etc., for all fixing jobs with Maso Plugs.
GLAZEMASTER
For drilling windows, mirrors, glasses, bottles, plate glass, shelves, etc.
Write for Booklet P.M. Obtainable from your Tool Stockist and Ironmonger.

MASON MASTER

I/kinultsanasis Chicic

Monufactured by

JOHN M. PERKINS \& SMITH, LTD., BRAUNSTON, NR. RUGBY

> BRASS, COPPER, DURAL, ALUMINIUM, BRONZE

ROD, BAR, SHEET, TUBE, STRIP, WIRE

3,000 Standard Stock Sizes.
NO QUANTITY TOO SMALL. List on application.
H. ROLLET \& CO. ITD.

6, CHESHAM PLACE, LONDON, S.W.l.
Also at LIVERPOOL, LEEDS, MANCHESTER, BIRMINGHAM.

RECTIFIERS "MOON CELL"

The new metal rectifier (Selenium)
Highest quality. Does not age. All ratings from $\frac{1}{2}$ to 200. Amp. Small or large quantities. Quick delivery.

> A few examples;

Full wave bridge, input 20 V , Output 16 V . A $6 / 6,1$ A $9 /$. 2 A $16 / 6,3$ A $21 / 6,5$ A $27 /$. Input 40 V , Output 32 V . $\frac{1}{2}$ A $11 / 6,1$ A $17 /=, 2$ A $31 / 6,3$ A $41 /=5$ A $51 / \%$, etc. Post free.
special rectifiers at short notice.
Manufacturers and trade inquiries invited.
ELECTROCHEMICAL LABORATORIES (Rect. Div.), 5, HIGHFIELD, WARDLE ROAD, SALE, MANCHESTER.

Telephone: Sale 5051

Electrically Heated Gloves

IHAVE a James Cadet 122 c.c. motor cycle, and am interested in making a pair of electrically heated gloves.

The electrical system consists of a Villiers flywheel magneto generator, which supplies the lighting as well as ignition.

The headlamp uses a 6 -volt $30 / 25$ watt twin filament lamp and it was my intention to fit 'a' 3 -way switch in place of the existing dip switch so that the gloves would only be in circuit at such time as the headlamp was off.

Could you please advise me if this is a practical proposition, also where it is possible to obtain a suitable length of black heat resistance, wire of about 24^{2} resistance?
Would it be in order to sew this clement straight on to the inside of the glove?G. M. McIlwrick (Edinburgh).

VVE-consider that 24 ohms would be too high a resistance for your purpose as this would permit only 0.25 amp . to flow, giving 1.25 watts. We would suggest that the elements in the two gloves be connected in parallel with each other, using flexible leads to independent two-pin plugs and sockets for each glove. Each glove could have about 3.5 ft . of 23 s.w.g. nickel-chrome resistance wire. The wire could be stitched up and down each side of the fingers and round the hand of the glove, inside the glove if required. You could probably obtain the wire from Messrs. Henry Wigging \& Co. Lid., of Grosvenor House, Park Lane, London, W.1.

Smoke Screen for Model Boat

OULD you help me with the following Q problem? I have a large radiocontrolled model of à cruiser which I

Information Sought

Readers are invited to supply the required information to answer the following queries.

"Crackle" Finish

AN you tell me how to achieve the " crackle" or "wrinkle" black finish as on photographic and optical instruments ? -C. Higginson (Grimsby).

Converting Coke Fired Boilei to Oil Firing

IHAVE an ordinary automatic hot water boiler, coke fired, which I wish to convert to heavy oil firing. I wish to convert this to use oil direct from a standard 50 gallon container if possible, situated in the back garden about five yards or more from the boiler.

What I desire is something after the blowlamp style, burning clean diesel fuel and pressure fed, thermostatically controlled, similar to those used in American households, I believe the power for pressure is by a small electric motor, or the fuel tank is on a small tower to get the pressure. I think a burner of this type is made into a metal plate which replaces the bottom door of the boiler. My boiler is a Glow-Worm A-25, now burning coke, which is so poor to-day the boiler needs frequent cleaning. I think sheet steel could be used.-G. Loftley (Woking).

Electronic Power Pack

DLEASE advise me on the construction of an electronic power pack used in photography. Also components which would be necessary, and approximate costs.-E. Payne (N.17).
would like to make give a smoke screen effect. The smoke must be produced by mixing two liquid chemicals.

The diagram shows the method of operation which I intend to use.-C. H. Reynolds (Hove, 4).

Afr. Reynolds' proposed method for mixing chemicals for producing a smoke screen.

THE chemical used by the Royal Navy for their smoke screens is chlorosulphonic acid. This, when a few drops of water are added, produces vast volumes of smoke. We would warn you that this substance is violently reactive to the slightest trace of water and must be kept sealed from the atmosphere until the time of release.

Eyepiece Calculations

SENT to a well-known firm for an astro eyepiece roox for my $2 i n$. astro telescope. They sent me a list of eyepieces rim., $\frac{3}{4}$ in., ${ }_{8} \mathrm{in}_{0}, \frac{1}{2} \mathrm{in} ., \frac{3}{8} \mathrm{in} . \frac{1}{3} \mathrm{in}$., and lin., and said that the one used depended on the focus of the object. glass. Could you please tell me a simple way to work it out ?-N. Holland (Birmingham, 28).

THE firm to whom you sent for an eyepiece is, of course, perfectly correct. The power of a telescope depends upon the ratio between the focus of the eyepiece and that of the object glass and may be stated thus $\frac{\text { O.G. }}{\text { fE.P. }}=\mathrm{P}$, the power (P) being the unknown fE.P.
If your O.G. has a focus of, say, only zoin. then a $1 / 5 \mathrm{in}$. focus E.P. would be required to give 100x.

We mention this size, zoin.; because we happen to know that there are many 2 in. O.G.s being sold of this short focus, but the normal astronomical focus for 2 in . lenses is $30 i n$. If your O.G. is of this length, then you will want an eyepiece $\frac{30}{100}=.3 \mathrm{in}$., which is between the $\frac{1 i n}{}$ and the $\frac{1}{3}$. and, of course, is unobtainable.

From the foregoing it will be seen that everything depends upon the focus of the O.G. and if you do not know what this is you will have to measure it by bringing the image of either the sun or the moon to a sharply defined image on a piece of white card, alongside of a rule. Should you find that it is approximately 3 oin. we would recommend purchasing an eyepiece of !in. focus, which would yield a power of 90x, probably quite high enough A łin. would give $120 x$ with, most likely, less satisfactory vision.

Pump-agitated Washing Machine

WISH to construct a clothes washing machine, using a pump to produce the agitation necessary (such a washer is manufactured by a gas appliances firm).

I intend to utilise a modern gas boiler for the clothes and would be glad if you could tell me what type of pump is required and capacity (g.p.h.) necessary to create sufficient turbulence, size of electric motor required to pump the above and diameter of tubing from pump outlet (two jets into washing machine). A. Aitken (Fife).

Hydraulic Car

WAS surprised recently to see an article on a hydraulically driven car. The name was La France, the year 1907, H.P. was $47 / 70$. It had no gearbox, no clutch and no brakes.

Transmission was $87 \frac{1}{2}$ per cent. efficient, and it was claimed to have drawn 21 tons over a I -in-10 gradient.

Is there any such car in Britain ? Why are they not common ? Can you tell me any more about it ?-G. Patterson (Belfast).

Ex-A.A. Telescope

COME time ago I purchased an ex-A.A. telescope. The suppliers were unable to give any operating instructions, and H.M. Stationery Office could not help either. Could you tell me where I could obtain such information ? Would it be possible to increase the range of the telescope by changing the lenses? -V. Sancts (Gillingham).

A Photo-electric Colour Temperature Meter

IWISH to make a photo-electric colour temperature meter. I believe that red and blue filters are used in conjunction with a photo-cell and galvanometer. Could you tell me what filters are used, where they may be
obtained, and any other information that I may find useful in its construction?-E. M. McGibbon (Surrey).

Making Match Head Material

COULD you tell me how to make the red substance which forms the head of a match ? Could I make it at home without too much difficulty or danger ?-R. J. Murphy (Cork).

Refrigerator Conversion

T HAVE an Electrolux gas refrigerator which I propose to convert to electricity. Please tell me the -best position for, type and size of element ; : also type and fitting of electrical thermostat.-K. WATSON (Perth).

The Heat Pump

WTOULD you kindly inform me if there are any books available on the subject of the heat pump? Heat from the earth is the system I have in mind.- R. Dickens (Northants).

Swimming Pool

THAVE built a small swimining pool which has been most successful except that I have not yet found a successful method of filtering the water, which becomes discoloured after a few days? use.

Can you please suggest a suitable filter which I can include in my circuit, preferab! y one that I can reverse and wash back and remove dirt, etc.? I use a 600 g.p.h. Stuart Turner centrifugal pump.
So far I have been unsuccessful in my efforts with a sand and gravel filter (open, not under pressure). I do not feel that an expenditure of more than f ro would be justified.

The discoloration that I am seeking to remove is not algæ; continual chlorination and aeration keeps this down. Can you also suggest an algæ repellent paint ?-R: Hands (Minchinhampton).

FOR the crankshaft use a piece of steel rod $\frac{7}{8} \mathrm{in}$. diameter and $2_{4}^{3} \mathrm{in}$. long, and a short piece $7 / 16 \mathrm{in}$. long and $3 / 32 \mathrm{in}$. diameter for the crank pin. A piece of a straight French nail will answer very well for the latter. Now take the piece of metal on which the crank webs have already been marked out, and separate these from the bearing plates. File the webs down to the scribed line, leaving the edges as square as possible. One face of each

A Steam Engine and Boiler

Constructional Details of a Simple High-speed Unit

(Concluded from page 279 February issue)
and filed to shape after drilling the two $\frac{1}{8} \mathrm{in}$. dia. holes for the fixing screws. Each plate has now to be filed down a distance of $3 / 16 \mathrm{in}$. from the bottom, an amount equal to the thickness of the bearing bracket, as shown in Fig. 8. After these. parts have been filed away, hold one plate in position on the bearing bracket, as shown in Fig. 2, and carefully mark on the latter the position of the two holes for the fixing screws. These can be $3 / 32 \mathrm{in}$. round-headed screws and the holes in the bracket can be drilled and tapped to receive them, the bearing plate being then screwed in position. Before fixing the other plate the crankshaft must be slipped in position in the bearings, after putting on two small brass washers (see Fig. 2). See that the shaft is maintained in an easy running position before marking out the holes for

can now be tinned by coating with a thin film of solder after which they can be clamped together so that the edges register, and held over a Bunsen burner or gas-ring until they become sweated together. Care should be taken to have the face of the web with the centre-punch marks on the outside. The holes for the shaft and crank-pin can now be drilled through squarely, one $\frac{1}{f}$. diameter and the other $3 / 32 \mathrm{in}$. diameter, after which hold the parts over the gas flame to separate. Having removed the solder and cleaned up both faces, slip the webs on to the shaft in the position indicated in Fig. 8, leaving a space of 3/16in. between them. Next press the crank-pin in place, and sweat the whole together, allowing the solder to run well into the four joints. The projecting ends of the crank-pin can be filed down flush and the part of the shaft between the webs must be removed with a hacksaw, and the ends filed flush with the inside faces of the webs. This completes the crankshaft, which may be cleaned up with fine emerycloth. If the flywheel is provided with a screwed hole in the boss, the end of the crankshaft must be screwed for a distance of $\frac{3}{6}$ in. but if a plain hole is provided it can be fixed with a grub screw.

Fixing and Bearing Plates
The two bearing plates can be cut out
the fixing screws in the second plate. Having screwed both plates in position, the sides of these, together with the edges of the bracket, can be neatly filed flush, as indicated in_Fig. x.

Cylinder and Steam Pipe

The latter consists of a 1 im . length of brass tubing screwed at each end and bent as shown in Fig. 3. One end is arranged to screw into a socket soldered into the boiler barrel in the position indicated in the drawings. This socket can be made from a piece of 3/r6in. dia. brass tubing, 3 in. long, tapped with a thread to suit one end of the steam pipe. On the other end of the pipe the steam block is arranged to be screwed as shown. The working face of this block must be quite vertical, and must be in such a position that when the cylinder is in place the piston rod is in line with the centre of the crank. The

Fig. 9.-Sectional view and plan of spirit lamp. down to the required height. The top consists of a circular piece of tinplate in which the hole for the filler is drilled, the latter being a short piece of brass tubing soldered in. This top part should not be soldered oṇ till the rest of the lamp is completed. To make the cap, a short piece of tubing is required which slips easily into the filler tube, a circular
position of the block can be adjusted in this respect by giving it a turn one way or the other on the end of the steam pipe. When the necessary adjustments have been made the steam pipe can be neatly soldered to the socket. The piston rod head, shown in Fig. 8 can be fashioned out of a small piece of stick brass, the slot to take the crankpin being first drilled and then cut out with a hacksaw and finished with a small file. The hole for the cotterpin, which is simply a ${ }_{3} \mathrm{in}$. length of No. 16 gauge hard brass wire; must be drilled so that when the pin is in position the crankpin is free to turn freely without any shake or rattle. A new piston rod will nio doubt have to be fitted, as the one supplied with the cylinder may be too short. This is easily made from a piece of steel rod of the required diameter and should have a thread cut on each end for screwing into the piston and piston-rod head.

Baseboard

For the baseboard a piece of deal ' $\frac{1}{2} \mathrm{in}$. thick can be used, measuring $9 \frac{8}{8}$ in. by 4 in. chamfered along the top edges as indicated in Figs. 1 and 2. Two strips $\frac{3}{3} \mathrm{in}$. $x \frac{1}{4} \mathrm{in}$. can be nailed on underneath to act as feet running the whole width of the board.
Before screwing down the firebox the boiler must be clamped in position. For this purpose two short pins should be screwed and soldered into the bottom of the boiler in the positions indicated in Fig. 3. These pins engage with the slotted lugs in the top curved parts of the firebox, a nut is then slipped on each pin and tightened up, so holding the boiler firmly in position.

The Spirit Lamp

The construction of the spirit lamp is clearly shown in Fig. 9. The reservoir, it will be noticed, is circular in shape and can be made from a cocoa or other round tin cut

SILK SCREEN PRINTER \& FREE COURSE	
PRINTS IN SIX COLOURS This is io	
	trea
	STEML
Herper woid gilut plastus ict	or 47/6

BETTER CABINET MAKING

SAVE ON HOME REPAIRS WITH

 GUASS FIBRE> Leaks in water pipes, gutters, etc. repairs to furniture, china and toys. Kit I-15/\% Kit II-25/- Kit III-30/Postage $2 /$.

These kits carry a comprehensive range of materials, with full instructions to suit all forms of car body repairs and model making.
"Glass Reinforced Plastics" Booklet, 1/6d.
WESTPOLE MOTORS LTD.
Westpole Avenue, Cockfosters, Barnet, Herts. Barnet 3615

INSTRUMENT TRANSFORMERS

A selection of General Purpose and Radio Transformers, of high-class manufacture. vacuum impregnated and conservatively rated. Avallable from radio and electrical component stockists, or in cases of difficulty direct
Please quote reference Numbers.
M.1. $-250,025080 \mathrm{~m}, \mathrm{a} 6.3$ v. 3 a. 5 v. 2 a.
... $23 / 6$
 M.3.A.-As M. 3 but 4 amp. output
M.4.-Auto-wound voltage changtng type $110-200-230-250 \mathrm{v} .150$ watts.
M.5.--Battery Charger type 4 amps output
M.5.A-As -As M. 5 but 1.75 amps output
M.5.B.-As M. 5 but 2.5 amps output
M.6.-As M. 1 but $100 \mathrm{~m} / \mathrm{a}$
M.7-As M. 2 but $100 \mathrm{~m} / \mathrm{a}$?

All above types open mounting, but avallable half-shrouded and totally enclosed. Mullard-Osram Amplifier malns transformer, totaliy enclosed 45t-
DOUGLAS ELECTRONIC IND., LTD., BRINKLOW, RUGBY.

$B \rightarrow \square$

VALUE YET
THE HOME CONSTROOK (76 pages) CONSTRUCTOR (76 pages) now incorporates *20 cirese star attractions *20 CIRCUITS, - Superhets
T.R. Fets. Amplifers. Feede Units. Test Amplifers. Feeder
\star SUPERYE tional details, supa-simplified diagrams for building superhets - Conf PAC for bulding superbets. tional details for building a superhet coil pack. *ional details.

* ATHER plete details for building a *RADIO GHNARGER. Pages of informa-
tion. Resistance Formulæ, and "know-how Code. *CATALDGUE-Profusely illustrated catalogue and price list
of components, receivers
Wolf of components, receivers, books,
Wolf Cub. Black and Xacto, Tools, etck and Decker, YOUR COPY TODAY) FOR SUPACOILS (Dept. M.5) 21, Markhouse Road, London, E

Phone KEYstone 6896.

An economical proposition for schools or small potters- prices from £25, temperature up to 250 for all pottery supplies ? $\begin{aligned} & \text { BERNARD W. W. WEBBER } \\ & \text { I4 DIMSDALE PARADE } \\ & \text { WOLSTANTON. } \\ & \text { STOKE-ONTTRENT } \\ & \text { Telephone 84909 }\end{aligned}$

SPECIAL OFFER
 G.E.C. \& B.T.H. germanium crystal DIODES

1/- each. Postage 2 Ind.

Diagrams and three Crystal Set Circuits Free with each Diode.
A large purchase of these fully GUARANTEED diodes from the manufacturers enables us to make this attractive offer.
COPPER INSTRUMENT WIRE
ENAMELLED, TINNED, LITZ.
COTTON AND SILK COVERED.
All gauges available.
B.A. SCREWS, NUTS, WASHERS, soldering tags, eyelets and rivets. EBONITE AND BAKELITE PANELS, TUFNOL ROD PAXOLIN TYPE COIL FORMERS AND TUBES. ALL DIAMETERS.
Latest Radio Publications
SEND STAMP FOR LISTS
CRYSTAL SET NCORPORATING THE SILICON
ORYSTAL VALVE
Adjustable ron Cored Coil RECEPTION GUARANTEED Polished wood cabinet, $1 \$ /-$, post $1 / 3$. A REAL CRYSTAL SET NOT A TOY POST RADIO SUPPLIES 33 Bourne Gardens, London, E.4.

ELECTRIC WELDING PLANT Aro Welding Sets by leading Makers. Un-
used, Surplus and Second Hand. Examples Gen. Elec. and Others 200 amps. max. output. £42. 160 amps, max. output, £36. 100 amps.
max, output, £ 2810 s. 85 amp. Max. output. f24. All with indinitcly variable current control. Catae of Aro, Spot and Butt Welders

HARMSWORTH, TOW
Brook Road. Manchester. 14.

TAKE UP PELMANISM
 And Overcome Worry

WORRY uses an immense
amount of vital force. People who worry not only use up their energy during the day by worrying but they rob themselves of that greatest of all restoratives, sleep. People who worry can't sleep. They lose their appetite. They often end up by getting really ill. How often have you heard it said, "I am worried to death ,

What do you suppose would happen if a person who was putting himself into mental, moral and physical bankruptcy by worrying, were to convert all this worry energy into constructive action ? In no time at all he would have accomplished so much that he would have nothing to worry about.

Nothing is more discouraging to a worrying person than to have someone say, " Oh , don't worry, it will all come out right"

This is not reassuring at all. The worrying one can't see how it is going to come out all right. But if the men and women who worry could be shown how to overcome the troubles and difficulties that cause worry, they soon would cease wasting their very life-blood in worrying. Instead, they would begin devoting their energies to a constructive effort that would gain them freedom from worry for the rest of their lives

You say that sounds plausible, but can it be done

Reducced fees for H.M. Force (Apply for Services form.)

It can be done, and is being done, by Pelmanism every day in the year. This is all the more remarkable because to-day the whole world is in an upset condition and people are worrying to an unusual extent. Yet, every mail brings letters to the every mail brings letters to the Pelmanists who have ceased to worry.
People to-day are all too prone to complain that they just have to worry. But once they become Pelmanists they cease this negative form of thought.

The general effect of the training is to induce an attitude of mind and a personal efficiency favourable to the happy management of life.

Send for the Free Boox
The Pelman Course is simple and interesting, and takes up very little time; you can enrol on the most convenient terms. The Course is fully described in a book entitled "The Science of Success." which will be sent you, gratis and post free,

Pelman Institute
130, Norfolk Mansions, Wigmore Street, London, W.1. WELbeck 1411/2

POST THIS FREE COUPON TO-DAY

Pelman Institute, 130, Norfolk
Mansions, Vigmore St . London, W.i
"The Science of Success" please
Name
Address

[^2]INTERESTING BARGAINS | Satisfaction |
| :---: |
| R RELUND |

ASTRO COMPASS MK II

Supplied in good condition
in sturdy box with instructlons for use in Astro Navigation and star identification version to Dumpy Level. 25/- post free.
RUDE STAR FINDER \&
Ex. R.A.F. Naylgators
equipment. Consists of star base and 7 templates covering lats. 0.70 N and S. Makes star finding and
identification relatively easy. With maker's instructions in leatherette wallet. $5 /-\mathrm{p}$. \& D. 9 d .

TRIPODS

Brand new, legs 34^{*} extend to 54°, weight
101b. Exceptionaliy steady under all conditions. Would normally cost about
56. Ofiered at $45 /-$ D. \& D.
ALTIMETER

The Mark XVIIA complete with deta from P.M. for the conversion of this pre-
cision instrument into a first class BAROMETER
Brand New, $7 / 8$. post free.
 Precision made mechanism, designed
for Alrcraft, with many other, mech4 in,
new,
$3 / 9$
$3 / 9$ post

TERRY CLIPS Sizes IIn., tin., iin., 1 Ln . Handy assortment of six dozen retail value $20 /-7 / 6$ p. \& D. 1/3.

ythene

Effectively
sealed into bass by the heat of a mateh. Thererar are
inplications in
aplen applications in
industry and
inome for lome for pro-
tection against dust and damp with POLYTHENE of which Mothprof Bags are something we a
need. SAMPLE FREE, S.A.E. please.
TOOL ROLLS Approx. $15 \operatorname{in} . x$ in
with 6 divs. and with 6 divs. and
pocket.
solled
sollearance price 3 for $2 / 6$ or
$8 /$ doz., post free

WEBBING

Brand new, double
 7/6. p. \& p. $1 / 3$.

STAINLESS STEEL CONTAINERS Ex M.O.S., 20 Gauge Complete with outer lid as illus. plus inner anti-splash 11d, both 1dds locked secure by depressing handle Size 16in. x 11in, 111 n . Cap. 6 gal., $57 / 6$

NYLON BRAID

3/4* wide. soff, easy to handle, and Ideal where jt htness plus strength is required 32 yds. breaking strain 1,900 lbs., $32 /-$
post ree. 64 yds.
post free.

MOMETERS 1001300 degrees Fah-
renheit. Brand new, clearly marked 4: dial, sensitive metal jects $8{ }^{\circ}$ from back. suttable for dipping
Into liquids, or attixInto liquids, or atfix-
ing to ovens and tanks. Exceptional value $35 /-$, p. \& \quad p. 2/6.

REV. COUNTERS Brand new, calibrated 1000 5000 r.p.m. 3^{*} dial operates $4: 1$ ratio, 20/- post free Makers' price about $\mathrm{F}^{2} .10 .0$ fexns B C advertised below.

plate and bearings

P. \&PP. $1 / 1$ per drive extra; 3 or more post
firee. Post free with rev, counter.

SLEEPING BAGS
Ex. Airborne Forces. Approx. 8ft. x 3 ft . Very warm roomy hase designed for use by paratroopers under all sorts of weather conditions.
Filled wilth quilted kapok and/or lambs-
wool. The malouly of these bass are brand new, but during storage the waterproor undersheet has perished and is in
many cases split. If li were not for this many cases split. If to were not for this derect they would be selling at ess each. carr. 3,6 .

MOTOR CYCLE COVERS
GIINT HOMBER WHEEI, COIERS, will give complete protection, tea-cosy
fashion, to 250,150 machlnes and scooters etc. Made to the usual hikh standard of all R.A.F. equipment. Will remian com-
pletely waterproof for years. 1%. \mathbf{p}, \& p .
$2 / 6$. $2 / 6$.

GENERATOR/MOTOR

NEW AIRCRAFT FUEL TANKS Length $66^{*}:$ depth $14^{*} ;$ wldth $24^{* *}$. Weight
601b. Capacity 80 gailons. 2 apertures $\frac{1 z^{*}}{}$ diam, Brand new bullet-proof self-sealing rubher tanks, made of to sponge rubber
probably cost over $£ 100$ each real probably cost over $\& 100$ each a real
opportunity for the bargain hunter with opportunity for the bargain hun
ideas, at 25 :- each, carriage $10 /-$

WOVEN GLASS FABRIC
We have large stocks of TYGLAS. Y/i, usual prices and welcome enquiries from

WATSON'S SPECIAL OFFERS

MYERS \& FOULKES
PHONE
LEY 1013
DEPT. P.M. 187/188. THE ARCHES, GROVE GREEN ROAD, E.II

MAGSLIPS These are extremely of remote control by using two units 3 in. diam. Designed for operating on 50 V. A.C. ALSO AVAILABLE, 2ln. Magsilip Indicator poses, 9:6 each. Post 1/6.
"These" oris beatil AIR CLEANERS.These are beautifully made units 9 in . diam.
with $2 \operatorname{lin}$. or 2 inn. fitting. Also 81 n diam. with 1ifin. fiting, these are easily adaptable for any smaller Aiting 11 required. New and
boxed. Price 14/6. Post 2/6.
RoOST GAUGFS, $-21!$.
$0-6$ Vacuum. Price $6 / 6$. Post $1 /-$ - Pressure. COIL SPRING BELTS. - in. x 12in. long. extends to $15 i n$. Any number can be joined
together. 20 for $4 / 8$. ${ }^{\text {P Post }}$ 9d.
LENS UNITS.-Consisting of two $H 1 \mathrm{l}$ lens in 2 in. brass focustng mount with
adjustment 2 in . overall. $14 / 6$. Post $1 /$-, BATTERYCII 1 RGERS. - Metal Rectufier type. Output 24 V. Charges two 12 V .
batteries. Built to a high service specificaition. £12.10.0. Carr. 15/
CLOCK work Motors. - Excentionally
well made heavy duty double spring motors taken from gun predictors, 37/6. POSt 2/6. IIGHPRESSURE FL,EXIBLE TUBING. To 300 ll . 1 n . bore. 22 in . long, $\vdots \mathrm{in}$. B.S.P.
unions. Price $6 / 9$. Post $1 / 3$. CO-AXIAL CABLE,-Impedance 50 ohms.
1/- yard. Plus carriage. EXRR.A.F. TOOL BOXES, stze 14in. $\times 9 \mathrm{in}$. x 8 n . Dovetailed and metal bound. $9 / 6$
each. Carr. $2 / 6$. LARRERR SIZE 241n. x 121 n . each. Carr. 2/6. LARGER
$\times 10 \mathrm{in}$. Price 13/6. Cart. $3 ; 6$.
 VACUUMPUMPS.-Beautifully made to A.Ml specifcation. Size approx. $6!\ln . x 41 n$. Fundreds of other Bargains available send 4d.
Stamp for MONSTER ILLUSTRATED LIST.
EASTERN MOTORS ALDEBURGH, SUFFOLK Phone 51

NEW CABIES \& FITTINGS

TOUGH RUBBER CABLES

165 (PM), QUEENS ROAD PECKHAM, S.E. 15

Tel. : New Cross 7143 or 0890 .
long, and the ends squared up. A in. dia hole has now to be drilled through each piece of tubing so that the edge of the hole comes within just $1 / 16$ in. of the bottom of the tube. Now take the brass tube for the supply pipe and at the points indicated make nicks on each side of the tube with a small round file. The holes so made should be about $1 / 16 \mathrm{in}$. in diameter and must be arranged sideways in the pipe when the latter is in position in the wick tubes. Having slipped these on the pipe, see that the little nicks come about the middle of them, and then solder in position. Two discs of brass or tinplate will now be required, which have to be soldered into the bottoms of the tubes. At the same time, stop the end of the pipe up with a plug of brass wire and solder in place.
With regard to the drip tray, the bottom and three sides can be formed from one piece
of tinplate, cut out as shown in Fig. 10 and bent to shape. The end is a separate piece, a hole being drilled to take the supply pipe, which can be slipped through and soldered in place, after adjusting the wick tubes to the

Fig. 10.-Tinplate blank for forming drip tray of lamp.
proper position. Now drill a $\frac{3}{3}$ iñ. hole near the bottom of the reservoir, so that when the supply pipe is pushed through the wick tubes are in line with the filler. Solder the joint where the pipe passes through, and also on the inside of the reservoir where it touches the bottom. This being done the top of the reservoir can be soldered in place. The best material to use for the wicks is what is known as asbestos yarn. Purchase a yard of this about the thickness of ordinary string and cut off two lengths sufficient to fill the wick tubes, allowing about $\frac{1}{8} \mathrm{in}$. to project so as to give a good flame.

Keep the flames of the lamp well under control when running the engine, and do not let them get too high. It is also important that the level of the water in the boiler should not be allowed to get below the bottom test cock while the lamp is burning.

N inexpensive primary battery for working small electric motors or shocking coils (and other apparatus to be described later) is that known as a bichromate battery, so called after one of the

chemicals used for the electrolyte. A two-cell battery, giving about 4 volts, is quite simple to make and an example is shown in Fig. I.

Materials Required

Two rlb. glass or earthenware jam jars.
Two strips of wood 9 in. $\times 3$ in. \times in.
Four carbon plates, 5 in. $\times 1$ in. $\times \underset{1}{ } \times$
Two zinc plates, 3 in. \times Iin. \times in.
One strip of brass, $\frac{7}{2}$ in. wide $\times 7 \mathrm{in}$. long.
Eight $\frac{1}{2}$ in. long wood screws.
Three $\frac{k}{8} \mathrm{in}$. long wood screws.
3 ft . covered bell wire.
The carbon plates with holes drilled can be obtained from any electrical stores.

Assembling the Battery Elements

Take the piece of strip brass and, after cutting it in half with a hacksaw, round the ends of each piece with a file and drill a small hole at each end, as indicated in Fig. 2. One brass strip is to be riveted to each zinc plate, but before doing this clean thoroughly with emery paper the parts that come into contact, as these have to be finally sweated together with solder. Bend each brass strip so that the zinc plate hangs centrally below it as shown in Fig. 2.

Making a Battery and a Leyden Jar

Take the wooden strips, clamp them together and drill the three holes for the clamping screws, one in the centre and one near each end, as shown in Figs. I and 4 Clamp the brass strips, with zine nlates in place at a distance of $I \frac{1}{2} i n$. from each end of the wood strips. The carbon rods can be screwed in on each side of the wooden strips opposite the zinc plates, using the $\frac{1}{2} \mathrm{in}$. screws for the purpose. Make sure that the ends of these screws do not touch the brass strips. The stems of two small terminals can now be soldered in the holes in the tops of the brass strips, as indicated in Figs. I and 3.

Making the Connections

The battery elements, as they arc called, can be placed in their respective jars and the connections made. It will be noticed on referring to Fig. I that both the carbon plates of each cell are joined together and that the carbons of one cell are joined to the connecting strip of the zinc plate of the other cell. The cells being thus connected together in series the battery will give the added voltage of the two cells, which will be found to be about

Fig. 2 (Above). -How the brass strip is attached to the zinc plate. Fig. 3 (Left). -The zinc plate clamped between the carbon plates.

4 volts, as previously mentioned. Where the bared ends of the copper wire are held under the screwhead a brass washer
should be provided under which the wire can be effectively clamped.
Mixing the Electrolyte
The working solution or electrolyte may

Fig. 4 (Above).Details of the clamping screws. The elements of Leyden jar.
consist of chromic acid salts dissolved in water. About one pint of solution will be required for the two cells, and the necessary salts can be obtained from any electrical stores. This is the most convenient way of preparing the solution, but it can also be made up quite cheaply from separate chemicals which can be purchased from a chemist's shop. Obtain 6 oz . of bi-
 chromate of potash and 5 oz . of sulphuric acid and dissolve the potash in I pint of tepid water. To this solution add the sulphuric acid very slowly -great care must be taken not to pour the acid in too quickly or it may splutter and splash up in the face of the operator.

When the battery is required for use carefully pour in the solution till it nearly covers the zinc plates. On connecting the two wires from the battery to a shocking coil or a small electric motor it should at once begin to work. After use the battery solution should be poured into a well-corked bottle till it is required again. The solution will last a considerable time, but a little sulphuric acid will have to be added occasionally to bring the electrolyte up to proper working strength. Finally, as the acid eats awav the zinc in time,

Fig. 6.-Igniting gunpowder with à Leyden jar.
oven for several hours. Coat the jar with shellac varnish, both inside and out, and stick tinfoil lover this to a height of 4 in . As this is rather a difficult operation, it should be done on the inside first by cutting a circle and sticking it on the bottom. .A strip 4 in. wide should now be fixed on the sides and pressed down so that no air bubbles remain between it and the glass ; the outside is treated in a similar manner. Cut a circle of dry wood to cover the mouth of the jar and drill it to take an $\frac{1}{8}$ in. diameter metal rod. This rod should be 8 in . long and having a round metal ball at one end, while to the other a length of bare
the carbons and zinc plates should be given a good rinse under the water tap after using to remove all traces of acid.

Some Battery Hints

It sometimes happens that one is not certain with a home-made battery as to which is the positive or negative pole. There are several methods of finding out. Connect the two leads from the battery and push them into a half-potato. A green ring will appear round the positive lead. Another method is to dip the two leads in a strong solution of salt and water, when bubbles will emerge from the positive lead.

A Leyden Jar and Electrophorus

Select a good 2lb. jam jar of clear white glass and dry it thoroughly by leaving it in an
flex is soldered so that when the lid is placed in position the flex makes contact with the inner coating (see Fig. 5).

Charging the Jar

When the jar is quite dry it may be charged from an electrophorus by merely touching the knob of the jar with the charged pole. After doing this about six times bring the finger towards the knob, when a fat spark will pass, causing a sharp shock. Place a little dry gunpowder on a metal plate, connect the plate to the outer coating of a charged Leyden jar, and connect the knob of the jar to a wire wrapped round the end of a glass rod. Take the loose end of the wire close to the plate so that a spark passes and the gunpowder will be ignited (see Fig. 6).

An Electrophorus

Procure a biscuit tin lid and melt a quantity of resin, sufficient just to fill the lid. Great care should be taken here as it very easily catches fire. This is poured into the lid. Make the surface uneven by pressing with a stick.
Make a wooden disc, 8 in . in diameter and rin. thick; round off the edge of this and cover with tinfoil. Glue a strip of foil around the edge first and then glue two discs of foil $7 \frac{1}{\mathrm{in}}$. in diameter on the top and bottom. Make a small hole in the centre of this disc, and fix a glass tube into it (B) with a wood knob (C), as shown in Fig. 7.
The instrument, now complete, is used as follows: the resin is first electrified by rubbing it with a piece of fur, which develops a negative charge on its surface. Place the disc, held by the glass tube, in the centre of the resin. The disc is then touched with the finger, and the negative electricity becomes earthed. The disc, now charged with positive electricity, is removed from the resin, and if we place the knuckle within in. of the dise a bright spark will jump the gap with a sharp crack.
The Lcyden jar is one of the most useful pieces of apparatus in static electrical experiments, as it forms a most useful way of storing energy.

Fig. 7.-The completed electrophorus.

A Rubber Driven Boat Motor

A Simply Made Device, Producing High Speed

THE one drawback to the rubber motor as used in model aeroplanes is that it runs down in a very short time. This, in part, is due to the small amount of resistance offered to the propeller by the air, an objection that does not apply with so much force to a screw running in water. It is possible, therefore, to use a rubber motor for driving a model boat if in other respects it is designed so as to get the maximum power out of the rubber.

The Gearing System

The idea is to use two separate strands of rubber geared together so that they may act as one, and thus operate as a single strand.

Fig. I shows these strands broken in the centre for economy of space in the drawing. It will be noted that they are not quite parallel; this does not affect the working, but reduces the width of the gearing at the forward end of the boat. This gearing consists of two meshed spur wheels of equal size running in bearings in an angle plate of sheet brass and

Fig. 2.-A view of the rear gearing, the winding key and the starting lever.
carrying hooks to which the rubber strands are hitched (see A).

The Rear Gearing

The gearing at the after end consists of the screw shaft running in double bearings,
bearing above this which supports the starting lever rod. Pulling the actuating lever towards the bows pushes the rod rearwards into one of the four holes in the spur wheel on the screw shaft and locks it while the strands are being wound up.

The starboard strand is self locking by means of the ratchet wheel and pawl.

The Hull

This part of the boat may be fashioned from wood and the gears screwed in place, holes

Fig. 1.-General arrangement of elastic driven motor fitted in a model speed boat.
provided with a spur wheel in mesh with one of smaller size to which one rubber strand is hitched (see B). Independently, a ratchet wheel with pawl (see Fig. 2) takes the end of the other strand, and has its pivot extended aft, and provided with a squared end for a cranked winding key, also shown in Fig. I.

The Starting Lever

This is an actuating lever hinged to a short rod, as shown in Fig. 2. The actuating rod without the lever is shown at C in Fig. I. The lever is pivoted a short distance from the bottom and the pin for this purpose must be fixed into the hull of the boat or in a U-shaped frame specially made for the job. The angle plate which carries the propeller shaft bearing nearest the bows carries another
in the gear plates for that purpose being made as indicated in Fig. I.
Toothed wheels suitable for this motor may be purchased from firms specialising in model aeroplane accessories or from a friendly clockmaker.
Carefully made and with all gears running freely, this motor should render good service. The cost for materials should be trifling.

THE "PRACTICAL MECHANICS" HOW-TO-MAKE-IT BOOK $12 / 6$ ($13 /-$ by post)

From George Newnes, Ltd., Tower House, Southampton Street, Strand, w.c.2.

GALPIN'S

ELECTRICAL STORES
408, HIGH STREET, LEWISHAM, Tel. Lee Green 0309 Nr. Lewisham

TERMS : CASH WITH ORDER (No C.O.D.).
All Goods sent on 7 days approval against cash
Notice: Owing to increases in Freight and Copper Wire prices we have no alternative but to increase our prices accordingly: al prices quoted are carriage paid unless

MAINS TRANSFORMERS. Input 200 230 Volts OUTPUT O/9/18 Voles at 3/4 amps., $25 /$ each ; another output $12 \frac{1}{2} / 0 / 12 \frac{1}{2}$ volts 2 amps., 25/- each : another suitable for soil heating, garage lighting, etc.;
$0 / 14 / 17 \frac{1}{\frac{1}{2}}$ voles, $20 / 25$ amps., $52 / 6$ each; another 4 volts 20 amps. twice, $35 /$ - each. I only 500 WATT TRANSMITTER complete with Valves, Crystals, etc., 12
meters $3 / 2 \mathrm{~kW}$ Variacs Range 6.25 to 12.5 M/cys. 12.5 to $25 \mathrm{M} / \mathrm{cys}$. In very good condition, all fitted into rack approx. Weight 5/6 EX-GOVT. ROTARY CONVERTORS 24 volts D.C. Input 50 volts 50 eycles. phase at 450 Watts. WUTPUT (complete whith Step Up Transformer) from 50 volts to 230 volts, $£ 13 / 10 /=$ each or CONVERTOR only $£ 9 / 10 /$ e each.
EX-NAVAL ROTARY CONVERTORS 110 volss D.C. Input. Output 230 voles 50 cycles I phase 250 watts capable of 50 per cent. overload, in good condition, guaranceed weight approx. 110 lb . $\mathrm{f13/10/} \mathrm{-} \mathrm{each}$. MAINS TRANSFORMERS all 200/250 volts primaries (New) Heavy duty Output combination of $0 / 6 / 12 / 18 / 24 / 30 / 36$ voles $4 / 5$ amps., $38 / 6$ each. Ditto $6 / 8$ amps., $51 / 6$ each. Ditto 15 amps. Output $75 /-$ each. Another with combination of $0 / 6 / 12 / 18 / 24$ volts $6 / 8$ amps., $51 / 6$ each. Ditto $10 / 12$ amps., $58 / 6$ MEDIUM SPOT WEIDER TRANS FORMERS. Input 200/250 voles, OUTPUT 50/70 ation of $0 / 2 / 4 / 6 / 8 / 10 / 12$ Vils 12 amps Ourpur e7/10/. each. PRE-PAYMENT $\%$ SLOT METERS $200 / 250$ volts A.C. 10 amp, size only, 100 per cent, overload set at 2 d . per unit guaranteed 12 months). $£ 3 / 17 / 6$ each.
Ditto credit type 10 amps, only, $25 /$ - each RECTIFIERS FOR CHARGERS 6 or 12 volts Output 2 amps, $9 / 6$ each, 4 amps. TRANSFORMERS to suit, $25 / \cdot, 30 /$ and $46 / 6$ each respectively.
EX.CANADIANEX-GOVT, ROTARY TRANSFORMERS for No. 19 receiver Input 12 volts D.C. OUTPUTS 275 voles 110 M/amps, : also another output of 500 volts 50 M/amps. completely smoothed, 30/. AUTO WOUND Voltage changer TRANSFORMERS. Tapped 0/1 $10 / 200$ $230 / 250$ volts 200 Watts, $48 / 6$ each; 350 watts, $57 / 6$ each : 500 watts, $76 / 6$ each 815/ wach: 3000 wates, $11110 /$ watts EX-R,A.F. ROTARYTRANSFORMERS nout $24 / 28$ volts D.C. OUTPUT 1,200 volus $70 \mathrm{M} / \mathrm{amps}$, hour rating, $10 / \mathrm{m}$ each Ditto $18 / 24$ volts D.C. Input 450 volts 50 M/amps., Output constant, 25/- cach. These lazter ones can be used as motors off A.C. mains with a little alteration.
LARGE RECTIFIERS ourput 50 volts I amp. with an input of $70 / 75$ volts A.C. 0/-each, EX-R.A.F. MORSE TAPPING GEYS, 5/- each, SINGLE EARPHONE with carbon microphone 40 Ohms, $8 / 6$ each. ROTARY CONVERTORS. Input 24 volts D.C. Output 50 or 100 voles A.C. 500 cycles I phase at 300 Watts, $88 / 10 \%$ each. DESK-TYPE TELEPHONES for office inter-com. with numbered dials, 55/- each. Moving coil VOLTMETERS Switchboard type, 6 inch scale 0 to 200 volts, $25 /$ each. Ditro 0 to 100 volts. $25 /$ each
EX-R.A.F. 1154 TRANSMITTERS, comlete with valves. Complete in TRANSIT EX-GOVT. E.M.T.
X. TR.T. TRANSFORMERS. Large rype. Two eransformers in one case $\mathrm{K} . \mathrm{V}$ at $30 \mathrm{M} / \mathrm{amps} .6 .3$ voles 2 amps, 4 volts 3 amps, 2 voles 2 amps. These transformars can be used separately our of the case, size dismantled approx. $3 \mathrm{Hin}, x \mathrm{3in}, x$ 3 in. and 51 in. $x 5 i n . x 4 \frac{1}{2}$ in., $f 4 / 5 /=$ each. Any TRANSFORMERS made to order within 7 days from date of order. Please ask ior arcte. Numerous other items in stock. Please ask for quotation.
Clients in Eire \& Northern Ireland, please ask for quotation as to carriage charge

STOP!!

Pull up in time by fitting

Fibrax

BRAKE BLOCKS

You brake gently, but firmly with FIBRAX brakes. The great thing is they are SURE in emergency. And they spell S-A-F-E-T-Y on the steepest gradients. For Steel rims, Fibrax Black Blocks; for alloy rims, Soft Red Blocks.

> FOR SAFETYS SAKE - FIT A SET NOW

FIBRAXLIMITED
2, Tudor Street, London, E.C. 4

F45
 Every mileśs measured mile

Precision bullt with watth-like accuracty, neat, lighte and ströng. recerds up to 10,000 miles and then repeasts. Complete with striker and rust-proof hub splndle bracket. Chromlum pilated finish.

for $24,26,27,828$, wheels

ELECTRO MAGNETIC COGNTERS

Post Office type 11 A , counting to 9,909 , 1/6. Many Dicer types in stoct 1/6. Many other types in stock. 90,999 only 78 each. Post $9 d$.
BULK HEAD FITMING. 91 m . dlam., flat
tripod type suitable for tripod type, suitable for lamps up to 100 holder. Ideal for farm buitdings. garages. Ereenhouses, etc, Brand new. 17/6, post $2 / 6$. KOOM TIIER MOSTAT. Adjustablo between 45 and 75 deg. Fahr. 250 volts 10 amp
A.C. Ideal for greenhouses, etc., 35%, post MOTOR. -12 yolt D.C., $1 / \mathrm{in}$. x 2 in . approx. 3.000 r.p.m. with speed regulator in end cesp. A precision job. 12/6. post $1^{\prime} 6$. GPAIRED MOTORS. 4 r.p.m. at 12 volts,
8 r.p.m. at 24 volts, very powerful. supplet with a suppressor which can easlly be reTHoved 351: most TEIRMINAL RELGCKS.-2-way fully pro-
tected No. $5 \mathrm{C} / 430$, ideal for many tected No. $5 \mathrm{C} / 430$, ideal for many purposes.
6tI. ea., $4 /-\mathrm{doz}$., or box of 50 for $15 /=$. Post VARIABLE RESISTANCE, -160 ohms, 2 amps. on $10 \frac{1}{i n}$. Twin Ceramle formers with
 D.C. to 220 volt A.C. 100 watts, $92 / 6$ ea. Cge. 7/6. Also available in metal caso with Switch. 105 ,- or in wood case with $0 / 300$ Cge T'6. on at 34 deg. F. off at 49 deg. F. 11 amps. Rt 250 volts adjustable, $4 / 8$, post $1 /$ - DESK WPLL 88.17 i6 per palr complete. units f5. Batteries 56 . Twin Wire 50 per per yd. +1.700 ohms, just the job for radio-controlled models. 176 each. Post $1 / 3$.
INSPECTION L.ANPS with wire guard. INSPLECTION L.A.MPS with wire guard.
strong clip. S.B.C. Holder, 22it. C.T.S. strong clip. S.B.C. Holder. 22 2 t. C.T.S.
flox. Ideal for all car owners. 226 . post $2 / 6$.
RECTETII UNIT A.C. 50 cy . Output 22 volt 3 amp. D.C. troplcal rating, In ventilated case, 18 in . x 18 in . x Bin., with ruses. choke, resistance, relsy, conCensers. cio. cye 10 GHARERS.-Full Wave Bridge 12 volts 2 amps., $13 / 6.4$ amps, $22 / 6$.
2 amp Transformers $24 / 4$ amp $27 / 3$. post WENTAXIA F UNS, brand new. complete silent running. E4/10- each. Post $2 / 9$. the above 2 amp rectifer and transformer 250 voles 50 cy . Induction motor, 350 r . 290 86 watts. 9 in . blades, sllent running, $£ 6 / 16 /-$
Cge. M6. MTORS, 1 h.p. 1.425 r.p.m.. I shaft 220 r230 volts Single phase mat mounting ton Parkinson. Continuous rating. Brand New. 86100.
A.C. MOTORS, Capacttor start and run,
230 volts 110 h , p., 1.425 r.p.m. foot mount 230 volts $110 \mathrm{~h} . \mathrm{p} .1 .425$ r.p.m. foot mount
lig. $7 \mathrm{in} . \times 6$ in. $\times 5$ in. overall. $£ 310 /-$ Cge. $5 /-$

 $-4,000$ ohms. New. 126 pr , post $1 / 6$. ing bakelite moulding 51 in . x $1!1 \mathrm{n}$. I 21 n . Ideal for model rall ways. 56 . post $1 / 6$. EACLUM PUMIPS or Fiotary Blowers. Ex R.A.F. Brand New, 7 cu. ft. per min. brazing torch, etc. Size 6in. $x 41 n, x$ In. 2 x in. shaft, $22 / 6$ each, post $2^{\prime} 6$.
PoRTABLE
HLECTR IC
HLOWER. Thls unit is a powerful 220 watts electric motor. Operating on $220-230$ volts. Enclosed hose and nozzle is included. also 7 yds. C.T.S flex 230 -complete. Carriage 7 .
INSPETION LiM. -With Bati Fits on forehead. Leaves handstery case Fits on forehead. Leaves hands free, $7 / 8$
post 16 . Ever Ready Rattery. No. 1215 2/g. post 9d. $-0-20$ M.C. 2in. Flush 10'6 each post $1 / 6$. Bridge 1 mA . 8 6:5.mA., 76:50mA. 5/- ca . CIELL TESTING VOLTUETERS. $-3-0-3$ In leather case with prods, $25 /$ post $2 /-$ Specially scaled for test meters, Guaranteed
$\mathbf{5 5} /-2 \ln$. Flush Square, $0,500,18 / 6$. Pos VOLTUETERS for A.C. Mains 50 cy 601-: 21 in . Flush. $25-015$ volts A.C.IDC 2in. Flush, 156_{4} Post $1 / 6 .{ }^{2}$. 2 n . Flush
VOLTMETERS. 300 D. Square, 10.6 nost 1/6. Easlly converted to read A.C. by using a 5 Millamp mete AMMETERS.- 2 in. Flush Moving Coll
D.C. 05 . $126 ; 0 / 30,10 / 6 ; 0 / 50,12 / 6$ ea. POSt DSPEAKERES.-P.M. 12in. Plessey,
3 ohms, spectal price $32 / 6$, post $2 / \mathrm{F}$. Also 10 in . in Portable Wood Case 77 in . x 17 in . x 6 tin . complete with fex and plug in special compartment, only 50 \%, carrlage 51 -

WILCO ELPCTRONICS

201, IAWER ADPISCO
ADDISCOMBE ROAD.

JOSEPH LUCAS (CYCLE ACCESSORIES) LTD . CHESTER STREET, BIRMINGHAM, G.

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Ltd., Tower House, Southampton Street, Strand, London, W.C. 2

Phone: Temple Bar 4363
Telegrams : Newnes, Rand, London

WHAT I THINK

Cycle Road Racing

THE bicycle manufacturers, through their union, state that in the present circumstances it is no longer prepared to be involved in the controversy between the N.C.U. and the B.L.R.C. and that as there are in fact no sponsored cycle manufacturers' teams in existence in 1956 the Road Racing Committee of the union has no team organisation to call upon for the selection and training of a team of Tour de France standard. "It therefore with much regret finds itself unable to accept the honour which has been done to British cycling by the invitation of the organisers to participate in the 1956 Tour."

We think this decision is a wise one, for we have always held the point of view that it was wrong of the bicycle manufacturers to have interceded in the first place. The manufacturers themselves are divided on the question of mass start racing, and therefore could not act as a strictly impartial body. The N.C.U. and the B.L.R.C. are now in status quo ante bellum. The B.L.R.C., at its annual general meeting, instructed its chairman to write to the President of the N.C.U. that it had passed the following resolution: "That this A.G.M. wishes to confirm the decision taken

causes of these accidents follow a pattern The Ministry says that it is possible to forecast very nearly the number of casualties which will result in any year from particular errors of judgment or from carelessness.

Based on 1954 road casualty figures, the kooklet shows how thousands of accidents are brought about by the same mistakes. For instance, in that year over 8,000 drivers met with an accident in turning right without due care. Over 30,000 pedestrians crossed roads carelessly and were involved in accidents. Nearly 7,000 pedal cyclists cane to grief through not watching what they were doing.

These are some of the facts and figures given in the booklet, which also contains clear illustrations of errors of judgment and carelessness on the road. In addition to at the 1954 A.G.M. and reiterates its desire to formulate an agreement with the R.T.T.C. and N.C.U., using as a basis the Anderson Plan, the defining of categories to be negotiated with these two bodies." As a first step towards unification, they offer in return for the N.C.U. granting joint selection in international events to agree to joint control of the Tour of Britain with the N.C.U.

It is known that there is a growing expression of opinion in all three bodies that an agreement should be reached on the basis of the B.L.R.C. resolution, for the voting at the N.C.U. General Council Mecting was even, but the chairman cast his vote against it. This decision was reached before the A.G.M. of the B.L.R.C. It is obvious that the N.C.U. is the nigger in the woodpile, and having been nurtured in a creed outworn does not wish to subscribe to a new doctrine.

Sense and Safety

R OAD casualties in Britain during I955
showed a total of over 265,000 . Those who wonder how these accidents occur may find their questions answered in a booklet titled "Sense and Safety," published by H.M. Stationery Office at 6d. According to this book the greater part are the result of human error, and while the figure of children injured on the road grows year by year the
annual meetings of these old clubs, and have always come away with a feeling that I have witnessed an aged body slowly dying. These old clubs tend to live too much on and in the past. Age proves nothing but antiquity. To have been first means nothing, unless accompanied by a long history of activity and progress. To have become first does show activity. There are many of these old clubs and most of them have failed to maintain the glory of their former years. In some cases this is due to an inactive committee, in others to sheer laziness, and in some to vanity of the officials and to internecine conflict. Can the North Road and Bath Road Clubs claim to have the prestige to-day which they had only 20 years ago ? The answer is definitely no. Some of them exist merely to promote opens for outside clubs to win, and are unable to put up riders in their own events. The members do not even support club handicaps, and where annual runs are held those who turn up can be counted on the fingers of one hand.

The R.T.T.C. should refuse to recognise clubs which have not an active programme. Take the clubs I have mentioned, or the Anerley, which recently celebrated its 75th birthday. Can it be said that any of these clubs has distinguished itself in recent years ? No doubt many of these oldsters have done pioneer work for the club in years gone by, but they have been adequately thanked for it, and it seems sad and superfluous that year by year they should be paraded at the annual function for the younger members to admire. After all, the work they did in the former years was not so very much after all. A lot of it was done for reasons of personal vanity, and it was not so very exceptional.

I should like to see a lot of these old men retire from the clubs, for their judgment is crabbed and warped, and they do not exercise a good influence on the younger generation. They want road racing, for example, run today as it was run 50 years ago. Some of them, of course, have made a very good thing out of the cycling movement. Some, indeed, have earned a very comfortable living without doing very much, except to preach the wonders of cycling, quite often from the comfort of an armchair. There was one such humbug that I know who would attend meetings hundreds of miles away and always arrived spick and span on a bicycle, informing the guests that "he had ridden all the way." I happencd to attend one of these functions and drove down in a car, time being important. Akead of me was another car, with this said lumbug in the passenger seat with his bicycle lashed on the back. I thought I would trail behind and watch events, and I was not mistaken in my conjecture, for about two miles from the venue the car stopper, the bicycle was unlashed and the humbug mounted the saddle and pedalled away. I arrived at practically the same time, and asked him how he had travelled. With a supercilious sneer and in the presence of a goodly company he said he believed in practising what he preached and had ridden down on a bicycle. I must say it gave me extreme pleasure, also in the presence of the goodly company, to debunk him, much to his discomfiture.

TheVariabletubGear -
 An Explanation of This Ingenious Mechanism
 EVERYONE is probably familiar with the external appearance of the hub threespeed but knowledge of the working procedure is not so common. A typical example is the Sturmey-Archer.
 The essential item is one or two sun and planet groups of toothed wheels or pinions of suitable size, such as is shown in Fig. I. The sun pinion is a twenty-toothed fixture on the
 is worked (or short-circuited) that makes the hub a marvel of packed ingenuity. All this is done without unmeshing the toothed wheels cither by sliding the sun or disturbing the planetary cage.
 The Chain Drive
 There is, of course, first need to convey the chain drive from the chain sprocket which

Fig. 1. - Diagram showing, the principle of the epicyclic gear. A and B revolve round C. Hence A travels faster than B. A step down in gearing is obtained by coupling A to the chainwheel and B to the hub. To raise the gear B is connected to the chainwheel and A to the hub. For normal the chainwheel and hub are locked together.
axle of the wheel, which is itself, of course, fixed in the fork ends. It therefore never turns round. There are four planet pinions,
 is done by a "driver" or collar, provided with slots, which in turn drives a dog-clutch capable of sliding sideways in the driver slots. The driver rotates at chainwheel speed, so does the sliding dog-clutch. When the sliding dog-clutch is at one ;end of its travel it engages with bosses on the outside of the planet cage and drives the cage round at chainwheel speed. The planet cage going round its fixed sun, with planet wheels revolving, drives the outer ring a third faster than itself, and this outer ring (through pawis) drives the hub shell at this greater rate and the hub shell (by the spokes) drives the road wheel at the same higher rate. This proportion is due to the relative- size of the sun pinion and the number of teeth in the gear ring.

If now, by pulling the control wire, the sliding clutch is drawn to the other end of its travel it loses contact with the bosses on the planet cage and engages the outer or gear ring, and drives that at the chainwheel speed. The outer ring driving the planets (which turn in their cage) causes the cage to go slower than the outer ring. The cage (in
each of the same size and each having twenty teeth like the sun pinion. Their teeth engage ; with the sun's teeth and they spin on bearings housed in a circular cage or ring. It is only at first glance that they can be called planets, because they actually mesh with the sun pinion. Their teeth also engage with an outer ring which has sixty teeth on its internal face. This arrangement can be seen in Fig. 2.

Equalising the Strains

* These four planets are used where a single such planet would do the job, theoretically, but it is an advantagc, practically, to have a group sharing the job and equalising the strains round the sun and inside the outer circle. That is the only reason why the planets are multiplied in the cage. Now in any such epicyclic train the sun has N-teeth and the outer ring has N-teeth, the speed ratio of the outer ring to the cage ring running round the fixed sun is $N+N$ to N_{5} which in our case is the sum of $20+60^{\circ}$ to 60 or four to three. Here then is the " variability" in the hub, which we can bring into action in each of two ways or cut out of action and ignore altogether, and it is the ingenious way in which the "solar" system
another pawl drive) now turns the hub shell at this slower cage speed.

The dog-clutch in its middle position shortcircuits the planetary system and drives the outer ring direct at chainwheel speed, the outer ring (by pawls) driving the hub shell also direct, so that there is no change of speed as between the chainwheel and the road wheel.
You can conduct a simple experiment which will demonstrate the principle of the sun and planet or epicyclic gear. Place a penny on the table and, whilst pressing on it, revolve another penny around the circumference,
marking the moving one in some way so that the revolutions can be counted. Although the circumferences of both coins are of cqual measurement, the moving coin actually makes two revolutions on its own axis in travelling once round the stationary penny. This may be seen in Fig. 3.

The high gear in this type of hub is $33^{\frac{1}{3}}$ per cent. higher than the middle direct gear and the low gear is 25 per cent. lower than the middle gear. The free-wheel mechanism inside the hub is automatic.

Removing the Mechanism

Remove the left-hand cone and then unscrew the right-hand ball ring from the shell (it has a right-hand thread). This will detach all the gears except the left-hand ball cup, which screws into the shell with a lefthand thread.
For those who may wish to effect minor replacements, the top gear depends on the engagement of the dog-clutch with the planet cage dogs. The middle gear depends upon the engagement of the sliding dog-clutch with the splines in the gear ring which lock all together, and the low gear depends on the Penny rolled on circumference of stationary

Fig. 3.-The sun and planet -gear simply demonstrated.
gear ring pawls being depressed out of action by the incline on the sliding clutch and upoh the pawls on the left-hand ball cup engaging with the ratchets at the end of the planet cage.

A New Handbook

PRACTICAL TELEVISION CIRCUITS

By F. J. CAMM
CONTENTS
The "Argus." A $£ 9$ Television Receiver. 3 -inch Midget Televisor. A Compact Televisor. An A.C.-D.C. Television Receiver. A Combined Television and Broadcast Receiver. The "Argas " Pre-amplifier. Low Noise Factor Pre-amplifier. Two-valve Pre-amplifier. A "Spot-wobbler." A Black Spotter. A Variable E.H.T. Generator. A Portable E.H.T. Generator. An Alignment Aid. The Grid-dip Meter and Bar Generator. A Pattern Generator. The Telesquare. The Practical Television" "Lynx." The Practical Television "Super-visor." Aerial Data.

Send Now

for New Brochure detailing all points and interesting features: answered questions you would ask, showing machines in also for details of fitments to the "Coroner "rnery made on these machines, Ast drilling a problem to you! Send now for details of BORING ATTACHMENT and long drills, to suit any lathes.

FITMENTS AND ACCESSORIES FOR ALL LATHES CUP CENTRE No. I Morse Taper Shank.
4 Prong DRIVING CENTRE (Positive Drive for large or small work). GRINDING WHEEL ARBOR No. ' Morse Taper-suit any machine with No. I Morse Taper. revolving centre
 TURNING TOOLS, set of six $18^{\prime \prime}$ overall, beautifully handled WOODSCREW CHUCK to suit any machine No. 1 or 2 Morse 3 Jaw CHUCK and Self Centering 4 jaw Independent Chuck. COMPOUND SLIDEREST-for wood and metal curning ELECTRIC MOTORS, Brook $\frac{1}{2}$ and $\frac{1}{2}$ h.p.

GRINDING WHEELS, SLIPSTONES, erc
Write: Dept. P.M.. enclosing stamp, for Catalogues showing photographs and price, etc.
CORONET TOOL CO. ${ }^{\text {\& }}$ MANSFIELD ROAD Also at CITY ROAD MILLS, DERBY

Johmsomentarcer TIME SWITCH

Automatically timed exposures produce prints of uniform quality. The Johnson Enlarger Time Switch automatically turns of the enlarger lamp at the end of any predetermined exposure time from I second to 5 minutes, Setting the hands automatically winds the mechanism. A separate side switch enables the lighe to be turned on or off for focusing. With its neat, streamlined, black plastic case and easily-read dial, set at a convenient angle, the Johnson Time Switch is a most practical addition to any enlarger Suitable for all voltages up to 250 A.C. Max. load

3 amps. 50\%

SEE IT AT YOUR DEALER'S

THE "FLUXITE QUINS" AT WORK

"Our new Washerupper!" cried EH, "Will lighten the chores of the day, Thanks to FLUID FLUXITE Cried OI, "Yes, you're right,
"T'would be grand if it put 'em away!"

FLUXITE
 Re FLUID

 - © SOLDERING PASTE Simplify all Soldering!The standard sizes of FLUXITE FLUID are :-
4 fluid ozs. 8 fluid ozs.
20 fluid ozs. $\frac{1}{2}$ \& 1 gallon cans.

FLUXITE LTD BERMONDSEY ST•LONDON S•E:I

TELEPHONE : HOP 2632
EXPORT ENQUIRIES INVITED

[^3]
Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

enginitering, radio, AERO, etc.

Aero. Draughtsmanship
Jig \& Tool Design
Press Tool \& Die Design
Sheet Metalwork
Automobile Repairs
Garage Management
Works M'gmnt. \& Admin.
Practical Foremanship Ratefixing \& Estimating Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance Engineering Steam Engine Technology I.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship Machine Automobile
Structural
R/F Concrete Structural Engỉneering Mathematics (all stages) Radio Technology
Telecommunications
Wirlng \& Installation Television
Radio Servicing
Gen. Elec. Engineering
Generators \& Motors Generation \& Supply Aircraft Mainten. Licences Aerodynamics Electrical Design Ordnance Survey Dr'ship.

BUILDING AND STRUCTURAL

L.I.O.B.
A.M.I.P.H.E
A.I.A.S.

Building Construction Costs \& Accounts Surveying \& Levelling Clerk of Works
Quantity Surveying
A.R.S.H. M.R.S.H.
L.A.B.S.S. A.R.I.C.S. Builders' Quantities Carpentry \& Joinery Carpentry \& \& Joilding Insector Building Inspector
Building Draughtsmanship Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert of Education Book-keeping (all stages College of Preceptors Woodwork Teacher Metalwork Teacher Housing Manager (A.I.Hsg.)

Common. Prelim. Exam. A.C.I.S., A.C.C.S. A.C.W.A. (Costing) School Attendance Office, Sanitary Inspector Civil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME AND EARN BIG MONEY

Men and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

* OVER SEVENTY YEARS OF * CONTINUOUS SUCCESS

NatIONAL INSTITUTE OF ENGINEERING

(Dept. 29)
I48, HOLBORN, LONDON, E.C.I
SOUTH AFRICA: E.C.S.A., P.O. BOX NO. 84I7, IOHANNESBURG

132-PACE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:

- Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
* How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY INTERESTING COURSES TO SELECT FROM!

A.M.I.Mech.E., A.M.I.M.I., A.M.Brit.I.R.E., A.M.I.P.E., A.M.I.C.E., A.M.I.Struct.E., A.M.I.Mun.E., M.R.S.H., A.M.I.E.D., A.F.R.Ae.S., London B.Sc., Degrees.

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS--OR NO FEE

We defintely guarantee that it you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.
ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

Free Coupon

To: NATIONAL INSTITUTE OF ENGINEERING (Dept. 29), 148-150, Holborn. London. E.C.1.

Please Forward your Free Guide to
NAME
ADDRESS \qquad

My general interest is in : (1) ENGINEERING
(2) AERO (3) RADIO (4) BUILDING
(5) MUNICIPAL WORK

The subject of examination in which I
I am
(Place a cross against the branches in which you are interested.)

[^0]: CAR HEATER ELEMENT No. 87. Gin. $\times 1+\mathrm{in}$. $8 / 3$ ea

[^1]: INVENTIONS
 LETTERS PATENT." My manuhow to obtain full protection for Your invention for only £1. Manu-
 seript $5 /-$ from J. Blalr. 21. Aberdeen
 Road

[^2]: Established over 60 years
 PELMAN Estabilished over 60 years DELHI: 10 Altpore Road MELBOTS Lane. DURBAN : Natal Ban Chambers (P.O. Box 1489). PARIS. Bank 176 Boulevard Hansma.
 Prinsengracht 1021 .

[^3]: "Practical Mechanics " Advice Bureau.

