- Making a Midget Camera.

NEWNES PRACTICAL (1. MECHANICS

EDITOR: F.J.CAMM

PRODUCT OF SIR Wm. BURNETT \& CO. (Chemicals)LTD. GREAT WEST ROAD - ISLEWORTH - MIDDLESEX - ENGLAND

TO READERS OF PRACTICAL MECHANICS! THE VERY LATEST IN

EMUSSON
 PAINT

"PLASTIMUL" is easy to useabsolutely odourless and dries quickly
\qquad 2 FOR
To introduce the world's latest and finest Plastic Paint to you, we will for a short period presentABSOLUTELY FREE-ONE tin with EVERY tin ordered. For instance :-lf you order one pint you get two pints-if you order two pints you get four pints and if you ordered fifty gallons you would receive one hundred gallons. All carriage paid home ! 1 ! YOU WILL RECEIVE DOUBLE THE QUANTITY THAT YOU PAY FOR SUMMER IS HERE NOW!!
and there is going to be a lot of painting done this year. NOW is you chance-Stock up while the going's good-This offer cannot remain open Write off at once
FREE PRIVILEGE ORDER FOR your beautiful brochure and colour chart Write to Desk P.M.P. 6 : Plastics Division
THE LAYMATT FLOORING COMPANY 36.40, Seabourne Road Bournemouth, Hants

FOR ONLY 30/-DOWN ! *

"We bought our own HOME WORKSHOP OUUFIIT"

We're on a strict budget -so we tackle our household makin- and mending ourselves Our B \& D Home Workshop Outfit is a wonderful help. From a selection of 8 outfits we chose one with the powerful Sander-Polisher-Drill as basic power unit.

Removing old paint and smoothing surfaces for re-painting was simple, using sanding discs on the tool.

Another useful attachment turns the tool into a portable Saw-cuts through timber easily, without the drudgery of hand-sawing.

We de-rusted the gate with a wire brush powered by our Sander-Polisher-Drill-then fixed new nameplates to the gatepost.

The Outfit also helps with housework. It puts sparkle into silver and shines polished surfaces. Gives a showroom-sheen to the car too.
> ;. This outfit comprises Sander-Polisher-Drill, Buffing \& Polishing Kit, 5" Saw attachment, horizontal stand, sanding discs, lambswool bonnet, tins of polish and wax. mitial payment 30 J- 12 monthly payments 27/- (Cash price $\mathbf{E} 15.10 .6 \mathrm{~d}$.).

Send postcard for full detoiis and FREE copy of the first in a new series of hints for the handyman "DRILING JOBS AROUND THE HOME"

PUT THE'DO'IN 'DO-IT-YOURSELF' Black\& Decker SLACK \& DECKER LTD - DEPT. 32B • HARMONDSWORTH • MIDDX.
 Actual Holder (in 1955)

SPEED RECORD (FRANCE)

CIRCULAR FLIGHT. All achieved with the
 records and numerous competition successes. Particularly suitable when exceptional speed is vital to success.

OMARO SLIDE RULES

MODEL L.I. Calculation of weights of steel sections

Multiple
stmultaneously
scale
(a) Area of cross section
(b) Weight per foot
(c) Weight per length in
(d) Leetgths per cwt.(s) and ton(s).
according to width and
thickness. thicknes
These scales can also be used for any other section if weight/foot or area are
known. Sce our model P.1. 6/3 post free.
MODEL M.I. Trigonometrical Functions

MODEL P.I. Steel and Iron Sections

Princtpal dimensions and oot of steel and iron sections, 1.e., of Equal and Unequal Angles. T-Bars. Beams. Channels, Rounds, Equares. Convex Feather Edges, Sheets and Flats. ${ }_{2}^{2.989}$ Values, Dimensions,
Standard Quatity (glazed) 6/3 post free Special Quality (unglazed)
$3 / 9$ post free

List of other Models on application.
Kosine Ltd., 104, High Holborn, London, W.C.I
Telephone: HOLborn 1301

JOHN M. PERKINS \& SMITH, LTD., BRAUNSTON, NF. RUGBY
Telephone : Brounston 238.
Telegrams : Drills, Braunston, Rugby.

MAKE MONEY - making casts with VINAMOLD

A grand spare-time occupation

WITHOUT any previous experience you can mass. produce any object, from a chessman to"a candlestick, statuette or model ship, in plaster, resin, concretc, etc. With " VINAMOLD" the flexible mould that gives ver again. Needs NO special equipment, provides a profitable and enjoyable spare-time occupation with minimum outlay.

Write for full details and instructions. Also apailable : Mllustrated bookiet describing "VINAMOLD," methods of heating and melting, preparation of models and moulds, etc. Price $1 / 6$ post free, from :-

VINATEX LTD. (Dept. P.M.3), CARSHaLTON, SURREY

WORTH POUNDS TO MOTOR MECHANICS!

THIS new authoritative work gives you in convenient, compact form all the essential repair information and data for the most popular post-war cars, commercial vehicles and agricultural tractors. It shows you the best way to tackle every repair job, then how to "follow through " so that the work is a credit to all concerned. The publication contains the crystallised experience of more than 30 experts, including the service managers of famous makes.

A special additional feature is the compre. hensive Electrical Section which enables you to handle electrical faults without calling in the automobile electrical specialist.

Take advantage now of this oppor-tunity-simply complete the coupon below and post to-day for Free Examination. There is no obligation whatsoever.
SEND FOR FREE EXAMINATION NOW!

NO COST OR OBLIGATION

[^0]
NEW!
 LEARN THE PRACTICAL WAY

Specially prepared sets of radio parts (which you receive upon enrolment) with which we teach you, in your own home, the working of fundamental electronic circuits and bring you easily to the point when you can construct and service radio sets. Whether you are a student for an examination; starting a new hóbby; intent upon a career in industry; or running your own business - these Practical Courses are intended for YOU - and may be yours at very moderate cost.

EASY TERMS FROM 15/.A MONTH

POST THIS GOUPON. TODAY

Please send me your FREE book on Practical Courses. To : E.M.I. INSTITUTES, Dept. No. 144X, Grove Park Road, London, W.4.
NAME ADDRESS \qquad
subiect(s) juLY

EXPERIMENTAL KITS in Radio, T.V. eto.

BEGINNER'S RADIO OUTFITS - A course in basic principles.
LJVANCEO RADIO OUTFITS - instruction and equipment from which you build a Radio Receiver.
TELEVISION - Instruction and equipment for building a Television Receiver.
Also for Mechanics, Electricity, Chemistry; Photography, Carpentry,
Draughtsmanship, Commercial Art, Amateur S.W. Hadio, Languages.
all lessonk and equipmemt supplied immedf
ately and becomes
your own property
E.M.I. INSTITUTES The only Postal College which is part of a world-wide Industrial Organisation
 REFILL BOTTLE - - $1 /$ -

[^1]

STARTING POINT

There's realism in a solid metal FOR YOUR P.W. track built from BassettLowke sets. All parts being made to withstand years of wear and weather, the tracks are equally suitable for indoor and outdoor use. For clockwork and steam systems out-of-doors, or electric indoors, choose Set "A." For out-of-doors electric operation or extensive indoor use, Set "B."

TRACK PART SETS for making l8ft. of realistic Gauge "O" Permanent Way.
Set "A" (with steel rail) .. 40/Set "B" (with brass rail) .. 50/Set A / E for electric traction .. 51/Set B/E for electric traction .. 61/Each Set Comprises 1236 in . lengths rail. 12 fishplates.
216 chairs.
108 sleepers.
500 spikes.
500 spikes.
12 battens.
Thack Gauge.
Purch.
Illustrated instruction book
\%. Liaying Permanent Way."

Head Office and Works
NORTHAMPTON

LONDON:

112, High Holbarn, W.C.I.
MANCHESTER:
28, Corporation Strect.

VERSATLLE-ACCURATE-DEPENDABLE
 ML7 3 $\frac{1}{2}^{\prime \prime} \times 20^{\prime \prime}$
 METALWORKING LATHE

THE FINEST METALWORKING LATHE IN ITS CLASS POPULAR THROUGHOUT THE WORLD

A sturdy machine, unsurpassed for Accuracy, and designed to give a Lifetime of reliable service, the ML. 7 Metalworking Lathe is especially suitable for the Home Craftsman. The machining operations normally carried out on other Machine Tools are made possible on the ML. 7 by means of efficient Attachments, of which an extensive range is available.

MYEORD BEESTON - NOTTINGHAM - ENGLAND

FROM YOUR TOOL MERCHANT OR WRITE TO MYFORD FOR FREE LITERATURE (PUBLICATION 7IO)

When you wish to fix cabinets, book racks, shelves, etc., securely tó walls use Rawlplugs. The most popular size is No. 8 at $1 /$ - per packet of assorted lengths. A No. 8 Rawltool for making the correct hole costs only $\mathbf{1 / 6}$. The $2 / 6$ Popular Rawlplug Outfit contains Rawlplugs and Screws and the No. 8 Rawltool or you can have a larger outfit at $6 /$ - or $9 / 6$ complete.

RAWLPLUG ELECTRIC SOLDERING IRON

Guaranteed for six months, voltages $100 / 110,-200 / 220,230 / 250$ Universal ac/dg. Consumption 110 w. Supplied with six feet 3 -core cable.
29/- with Standard Bit. 30/- with Pencil or Hatchet Bit.

FOR FASTEST EVER MASONRY

TIPPED DRILLS

The Rawlplug Durium Drill will make holes in tile, brick, stone, slate, elc., with amazing speed. Can be used in a hand or electric drill. Sizes are from 5/32" to $1^{\prime \prime}$ diameter and there's a long series for drilling through walis.
Durium Glass Drills
can also be obtained.

rawlplug DUROFIX

Quick drying transparent cellulose adhesive which is heatproof and waterproof, Durofix will stick almost anything to anything. Handy tubes 9d. large tubes $1 / 3$ and also in tins.

Portable-robust-all-purpose 8" Circular Saw at a sensible price

 * Table tilts to 45° * Totally enclosed drive \star Ball-bearing spindle \star Ball-bearing spring-loaded jockey pulley \star Fine adjustment to fence \star Rigid cast iron table machined on face and sides with machined slots for mitre fence \star Sawdust chute at rear * Easily transportable for site work.

Push-button starter is included and bullt in. Immediate delivery. Write for full details to:

J. \& H. SMITH LTD

Dept. PM4, 16 Harrison Street, Leeds, 1. Phone: 21561

Manev Back 621 ROMFORD RD. LONDON. E.I2.

RADIO GRAM CHASSIS 29/6 Including Speaker

5 VALVE S/HET. 3 w/band. A.C. mains, complete but less valves and dial. All used tested, and guaranteed. Carr. 4/6. Drawings $2 / 6$ or free with order. Knobs $1 / 6$ a set extra. Complete with valves $97 / 6$.
RADIO CHASSIS. 7/9. A.C. or universsal, s/het receivers, less valves \& Dial, and electrolytics, otherwise believed to be in working order. Note:-Our 8 in , M.E. Speaker fits some of these sets. We match on request with order. P. \& P. 3/6. V.H.F. 1124 RECEIVER. $17 / 6$ with 6 valves, ex-W.D., new condition, 6 channel switching. $30.5 \mathrm{~m} / \mathrm{cs}$ to $40 \mathrm{~m} / \mathrm{cs}$. I.F. $7 \mathrm{~m} / \mathrm{cs}$. Post $2 / 6$. Drawings and Conversion data free with each set SPEAKERS. $10 / 9$. $8 \mathrm{in} ., 6 \frac{1}{2} \mathrm{in} ., 5 \mathrm{in}$, and $3 \frac{1}{2} \mathrm{in}$. Std. 3-5 ohms, or with O.P. transiormer, 14/9. Recon-$3-5$ ohms, or with
ditioned. Post $1 / 9$.
SPEAKERS. 2/9. 8in. M. Energised. Field $1 k$, 2 k and 5 k ohms; or with O.P. trans., $4 / 9$. Reconditioned Post $1 / 9$

V.H.F, I125 SET, 7/9. New and boxed. This little
set is a V.H.F. receiver, requires modification to put it into service. Complete with valves. Post $2 / 3$.
R.F. 24 UNIT. $12 / 6$. New and packed, tuning $20-30 \mathrm{~m} / \mathrm{cs}$. Including 3 valves Post 2/-
T.V. TUBES AND T.V. CHASSIS. We hope to accept your further orders this month, after we have completed your overwhelming response to our previous ads. We are sorry for the past delay in despatch.
O.P. TRANSFORMERS. 1/9. Salvage, used, tested, guaranteed. Std. size. Post 9d. Sample will convince you.
2 GANG CONDENSERS. 1/9. Std. size; . 0005 used, rested. Also 3 Gang at 2/9. Post 9d.
I. F . TRANSFORMERS. $2 / 6 \mathrm{pair} .465 \mathrm{k} / \mathrm{cs}$. Post 6 d .

MAINS TRANSFORMER. $5 / 9 . \quad 350-0-350,12 \mathrm{~V}+4 \mathrm{~V}$. Primary 100,120 , 200, 250. Make ideal auto trans. Post $2 /$ -
MAINS TRANSFORMER. 9/9. 350-0-350, 2 V heater windings. 6 V and 5 V . Post 2/-.
MAINS TRANSFORMER. 3/9. 350-0-350, $4 V+4 V$, primary 200-250. Tested, guaranteed. Post 2/-.
TILLEY LANTERNS. 37/6. Famous everywhere for excellent light and low paraffin consumption, no smell. List price $68 /$,, complete with new mantle and globe. Postage and packing $1 / 6$.
MOTORS. 12/9. 240V. Scophony, Ideal for small grinder, polisher, ctc. P. A P. 1/3. 12-24 volt motors, with flexible shaft, 18 ct . gold brushes, $7 / 6$. Post $2 / 6$. 2 d d. stamp only for Complete Catalogue.

The ideal spraying outfit for the home handyman, car owner and amateur decorator. The Model IM Spray Gun supplied with the outfit will spray a wide range of finishing materials, such as oil paints, distempers cellulose and synthetics and the new plastic emulsion paints, as well as creosote, insecticides and D.D.T. solutions. The air compressor is adaptable for tyre inflation of motor-cars and light vans.
Easily carried in one hand-the whole outfit weighs only 45 ibs.

Write for Leaflet CB. 112 or for practical demonstration the small plant with the BIG Performance
B.E.N. PATENTS LTD. (Division of Broom \& Wade Ltd.) P. O. Box No. 10, Depe. X, HIGH WYCOMBE, BUCKS. Telephone : High Wycombe 1630

INTERESTING BARGAINS SATISFACTION

TABTLE MEX IX

 Ix ment. of eno instrustudent of astronavigation and the mateur astronomer. Provided bubble and scaies tions. In handsome carrying case compost free post free.

PRESSURE GAUGES $\begin{array}{lll}\text { Boost } & \cdots & -6 \mathrm{o} \\ \text { Alr } & +24 & \text { p.s.s. } 1\end{array}$ Air
 $0-500 \mathrm{p} . \mathrm{s.i}$ i Hydraulic $\quad 0-1,000$ p.s.1. 6/- each post free.

TERRY CLIPS

Always useful in home or workshop, all hicely boxed in dozens, some complete

 ELECTRIC GYROSCOPIC SPHERE | 3in. diameter, 24 v, A.C. |
| :--- |
| Weight 215, |
| P $8 / 6$ | P. \& P. 1/6

The thatr of this
beautifully bolanced plece or mechanism reTransformer to
ate from mans. $22 /$
 There are many devel-

BE PREPARED FOR I.T.A.

COMMERCIAL T.V. STARTS VERY SOON

to the side or back, of your T.V. and will give you the new commercial station by the firk of a switch. You do
nothing to your set, simply
plug ln mains and aerlal leas. Suitable for ans T.V. Price instructions given. Order tod payments of $£ 1$ in time for the opening or the new station.
I.T.A. AERLAL.-We hav W.D. (new) aerials tieal for the new I.T.A. station, These are single dipole type very well made and suitable for internal or external use. Price complete with adjust able fixing bracket is only 15/ - plus 2.6 post.

SLIDER RESISTORS

 Heavy Duty Type. Size 7in. x 1 inn. 11 ohms, 4.5 amp., $22 /-$; Size 91 n , $x 11 \ln , .1 .2$ ohms, $15 \mathrm{amp} ., 15 /$ Size $13!\mathrm{in} . \times 1$ in. 3 ohms, 10 amp .,$15 /-.1$ ohm 25 amp., $15 /-; .5 \mathrm{ohm}$ 50 amp., 2.5)

RIEF. 5A1. -2000 ohm, slow close coll plat. contacts, one break, two mak Ref. $5 \mathrm{~A} 2 .-2000$ ohm. standard col plat. contacts, change over make before
break, two make. 1 break. Prlce $15 /=$. Ret. 5A3.-200 ohm. standard coll, pla Ref. 5.4 . - 10 ohm. standard coll. one pair plat. contacts, also mounted but not
operated by the relay, are thermal changeoperated by the relay, are thermal change-
over contacts, make before break. Price $8 / 6$ each.

REMOTE CONTROLLER

For remote control of D.C. motor h.p. adjustment Unused and in first-class condttion, complete with metal and wired glass cover Price 810 , car

TRU
R.F. HEATER CONSTRUCTOR KIT All the parts including metal chassis for
building a $250 / 500$ watt R.F. Heater for dielectric or induction heating is avallable as a kit complete with theoretical the complete kit of parts is $£ 40$ plus carrlage at cost

stance) will cost you only 19/6. Data
NOW A.C./D.C.
MULTI-METER KI
Parts suitable for
meter to measure
as D.C. volt
milli-amps and containing all the essentlal itemsin cluding moving rectifier. resistors. brated scale. etc., etc., is 19/6, plus 1/ost and packing. The D.C. only version 15/-, plus 9d. post and packing

AUTO TRANS. FORMER

For working 110
120 v. equipment off your main, etc.. 200-240 Output 115 v.

Price Carr.

		Price C	Carr.
50 watt ...		81/2/6	1/6
100 watt		£1116/*	1/6
150 watt ...		£3\%-	$2 / 0$
250 watt		24i0/	2/6
500 watt		3510/-	2/6
Enscreened			
$1 \mathrm{KVA}(1.000 \mathrm{w}$.	...	88/10-	5/0
1.5 KVA (1,500 2w.)		... E8'17/6	5/0
2 KVA (2,000 w.)		£10/17/6	7/6
$3 \mathrm{KVA}(3,000 \mathrm{w}$.		... £12/7/6	10/0
5 KVA (5.000 w .)		£185/-	$12 / 6$

FISHING ROD DINGHY MAST
Tubular aluminium, not separate sections, exlin. to 9 ft . $3 / 6$ each.

The R1155 is considered
to be one of the finest NS RECEIVER RII55
communication receivers
avatlable today. Its
frequency range is $75 \mathrm{kc/s}$
to $18 \mathrm{Mc} / \mathrm{s}$. It is complete
with 10 valves and is
fitted in a black mettal
case. Made for the R.A.F.
so obviously a robust
recelver which will give
years of service. Com.
pletely overhauled and YOURS FOR $30 /$ guaranteed in perfect e9/19/6. or wili be sent on recelpt of deposit of monthly payments of $16 / 3$. Carriage and Transit Case 15/- extra. Mains power pack ava
able, price $55 / 10 /-$ or th able, price $85 / 10 /$ - or in
cabinet $8815 /-$ can be
added to hire purchase.

ELECTRONIC PRECISION EQUIPMENT, LTD.

Postorderi should be addressed to Dept. 1, Bourne House, Grove Rd., Eastbourne.
Personal shoppers, however, can call at

Valluabie new handoook ENGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES is now available-without charge-to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNIIIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

We definitely Guarantee "NO PASS - NO FEE"

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and the essential requirements to quick promotion and describes the advantages of our Special Appointments Department.

WHICH OF THESE IS YOUR RET SUBJECT?
 MECHANICAL
 ENGINEERING Gen. Mech. Eng,-Maintenance - Draughtsman. ship-Heavy Diesel-Die \& Press Tool Work-Weld-ing-Production Eng. Jig \& Tool Design-Sheet Metal Work- Works Man-

ogement - Mining - Re-frigeration-Metallurgy.
AUTOMOBILE
ENGINEERING Gen. Automobite Eng. Motor Maintenance \& Repairs - High Speed Dicsel-Garage Mngment. of azronauitcal COURSES AND G.P.O. ENG. TEXTILE TECHNOLOGY, ETC, PLASTICS,

One of these qualifications would Increase your earning power WHICH ONE?
A.M.I.Mech.E., A.M.I.C.E., A.M.I.P.E., B.Se., A.M.Brit.I.R.E., A.F.R.Ae.S., A.M.I.M.I., L.I.O.B., A.R.I.B.A.; A.M.I.H. \& V.E., M.R.San.I." F.R.I.C.S., A.M.I.E.D., CITY \& A GUILDS,

THE BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

 410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, KENSINGTON, W.8.

Phone: WEStern 9861

WHAT THIS BOOK TELLS YOU

- HOW io get a better paid, more interesting job.
- HOW to qualify for rapid promotion.
\& HOW to put some valuable letters ofter your name and become a. "keyquickly and easily.
- HOW to benefit from our free Advisory and Appointments Depts.
- WHERE today's real opportunities are . . . and HOW you can take odvantage of the chances you are now missing.
+ HOW, Irrespective of your age, education or experience, YOU can succeed in ony branch of Engineering that appeals to you. 144 PAGES OF EXPERT CAREER-GUIDANCE

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES," and if you are earming less than $£ 15$ a week you should send for your copy of this enlightening book nou-FREE and without obligation.

POST NOW8

то : B.I.E.T. 410A, COLLEGE HOUSE, 29-31, WRIGHT'S LANE, hENSINGTON, W. 8.

Please send me FREE and without obligation, a copy of " ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career)

NAME
ADDRESS

Signals from Jupiter ?

THERE has been a lull during the past month in reports of sightings of flying saucers. It is significant that whilst the Governments of various countries have investigated the flying saucer problem, none of them has stated unequivocally that they exist. However, quickly following this lull came the startling report that signals thought to emanate from Jupiter have been received in this country and in America. These reports come from qualified scientists not likely to be misled. The signals have been received at regular periods, usually when a particular point on the surface of Jupiter is coincident with a particular point on the surface of the earth. The signals follow a regular pattern. It is known, however, that the atmosphere surrounding Jupiter is such that human beings as we know them could not live there, and if it is true that occupants of Jupiter, if any, are endeavouring to communicate with the earth, it is interesting to speculate as to the form and nature of these other beings. We have no right to presume that ours is the only planet which is inhabited, nor musi we conclude that the human form as we know it is the ultimate and only form. Even if it can be established that these are signals from Jupiter, the language difficulty is wellnigh insuperable.
It seems probable, therefore, that these problems will go unanswered until space travel makes it possible for us to visit other planets. Space travel may be an accomplished fact some time during this century. There is no reasonable hope for believing that anything beyond preliminary experiments in that direction will take place during the next twenty years. One significant fact has impressed me. I have often commented on the flying saucer problem, but although most of my readers have scientific knowledge, none of them has written to me stating that he has sighted a flying saucer. This journal circulates in every part of the British Isles, and in almost every country in the world, and it may be thought odd that those readers residing in districts where sighting häs been reported have not written to confirm the reports.
It would seem that controversy is now raging in America as to the accuracy of Adamski's flying saucer claims.

FAIR COMMENT
 By

The Editor

Industrial Arts Competition

 A COMPETITION in which all readers of this journal will be interested is the Industrial Arts Bursaries Competition, organised by the Royal Society of Arts. Prizes totalling $£ 2,600$ are offered, and they take the form of travelling bursaries usually of $£_{\mathrm{I} 50}$ each, and are open to students who intend to take up industrial designing as a career. The closing date for entries is October 10th. Candidates in all the male sections must be British subjects between the ages of 17 and 30 on September 1st, 1955, and they must have studied with minor exceptions as full-time, part-time, or evening class students for not less than one term since September 1st, 1955, at an art, architectural, technical or other school or college approved by the Bursaries Board.In the domestic gas, the domestic solid-fuel-burning appliances, the footwear, the jewellery, and the women's fashion sections, entries will also be accepted from any person within the above age limits and already engaged in these industries, provided that they are recommended as having sufficient ability to compete in a national competition by a responsible officer of the industry concerned. Candidates must also be recommended as having sufficient ability to compete in a national competition by the principal of their school or by a responsible officer of the industry concerned. Entry forms are available from the Royal Society of Arts, John Adam Street, Adelphi, W.C.2, and each must

SUBSCRIPTION RATES

including postage for one year

[^2]be countersigned by the principal or responsible officer. All candidates are required to enter for a set test and to submit examples of work. The set test will be carried out at the candidate's school or by special arrangement. In the domestic electrical appliances section they must submit three designs showing perspective and typical working details, for domestic electrical appliances. In the electric light fittings section they must again submit three designs, showing perspective and typical working details, for electric light fittings suitable for use in the home (using tungsten lamps), in offices, shops or showrooms (using fluorescent lamps). Three designs, showing perspective and typical working details, for domestic gas appliances, are required for the domestic gas appliances sections, while the domestic solid-fuelburning appliances section requires two designs, showing perspective and typical working details, for domestic solid-fuelburning appliances, and one design for a surround for an inset convector fire. Candidates must submit four designs for carpets for the carpet sections, of which at least one should be for a good Axminster and another for a Wilton. For the full list of the sections, readers should communicate with the Secretary.

Articles Required

W^{E} invite readers of this journal to contribute articles on subjects of which they have experience. We are prepared only to consider articles submitted on practical subjects. Each article should be not more than 2,000 words in length and be accompanied by a list of materials, sources of supply, clear rough sketches, and photographs where possible. Articles should be clearly written or typewritten on one side of the paper only, with rin. margins and adequate spacing between the lines for sub-editorial marks and corrections.

Articles must be original and all materials must be readily available. Our "Information Sought". feature eften brings to the light of print information which other readers require. If you have built a piece of apparatus, a model or a piece of household equipment which you feel would be of interest to other readers, write and tell me about it. We shall, of course, pay for these contributions at our standard rates.-F. J. C.

IWAS commissioned recently in my professional capacity to construct an inexpensive hydro-electric plant. Any person, with the facilities available, will find that this is a most absorbing subject, and the undermentioned details should help any person with this object in mind.

The turbine is of the propeller type and is

Fig. 1.-General arrangement of the plant.
able working load. The dynamo was a redundant 480 volt 525 electric D.C. motor. This was run at approx. half speed and gave a steady voltage without too much frictional loss.

I was fortunate as far as the site was concerned. A long disused threshing-mill waterwheel had been dismantled and there was a clear drop of 14 ft . from the flume to the tail race. There was, however, an obstruction in the tail race and this reduced the working head of water to approximately roft. The old water-wheel was built below the floor of a farm building and, as I wanted the dynamo out of the "spray" area, it meant that quite a long body or frame would be required to bring the mechanical power above floor level. As this unit would probably require a lot of adjustments it was decided to make the frame in one unit. This also has the advantage of easy access for cleaning rubbish from the blades. The general arrangement is shown in Fig. I.

The Turbine Frame

This is constructed from angle iron and

MAKING AN EFFICIENT MHORO-ELEETTRIC PLANTT

Notes on the Construction of a Water-power Unit for Supplying Domestic Electricity

$3 / 16 \mathrm{in}$. steel plate. The square plates are cut to 18 in . $\times 18 \mathrm{in}$., the lower plate of the turbine has a $6 \frac{1}{8} \mathrm{in}$. hole cut in the centre and the upper plate a 1 lin. hole. For quickness, the frame was welded together.

Next, I made the runner tube, which is the part in which the propeller or runner actually rotates. This was made to fit into the lower turbine plate and is welded into position. It is constructed from 18-gauge steel and it is Ift. in length (Fig. 2).
The spider for holding the lignum vite bearing is made next. A piece of 2 in . diameter malleable iron tube 2 in . in length is cut, and three pieces of 20 -gauge steel 2 in . by approximately 1 in . These latter are welded to the boss of the pipe spaced out at 120 deg . (Fig. 2a). The lignum vitæ bearing is then fitted into the boss, and is drilled to rin. diameter to take the shaft. It is advisable to have this on the slack side-I found that the
 sash gate in background.
plate. In the writer's case the thrust bearing was once a tractor clutch thrust, and it was necessary to cut a piece of $\frac{3}{4} \mathrm{in} . \times \frac{1}{4} \mathrm{in}$. strip steel to form a ring to fit snugly around the bearing, as in Fig. 3. The seating of the bearing rested on the top plate and the ring was then tacked in position by welding. To the underside of the top plate is fitted a block ballbearing race. This is to take the side thrust to the dynamo.

The Shaft

The shafting is Iin. in diameter and was fitted with the runner or propeller just below the top of the runner tube, see Fig. 4. The shaft was drilled to take an Allen screw, fitted in the thrust bearing collar.

Fig. 3.-The, thrust bearing.

Fig. 4.-Fitting the rinner.

marked with three lines spaced out at 3 in. intervals, then with the aid of a pair of dividers scribed into four equal sections and marked frechand, as in Fig. 6. Saw cuts were made along the pencil marks and the four slots were then ready to receive the blades.

The blades, it will be appreciated, were more than the boss diameter and a pair of callipers gave a near enough measurement for the marking out of the blades, as in Fig. 7. It was found that for the 4 in . boss a $4 \frac{3}{8} \mathrm{in}$. diameter blade was required. Mark out a circle on 20 -gauge iron $4 \frac{3}{3} \mathrm{in}$. diameter, then move the compasses to a radius $\frac{1}{2} \mathrm{in}$. less, make a second scribe, reset the compass to $3 \frac{3}{16} \mathrm{in}$. and scribe once more. To ensure accuracy, both discs (making four half blades) are marked simultaneously. The blades should be cut and trimmed, as in Fig. 8, to provide two small tags on each, and prepared for the boss. After the blades are entered into the saw slots they should be secured with small wood screws.

At this point, to ensure that there was sufficient clearance, the runner was slipped on the shaft and tested in the runner tube. After a small amount of filing it was running true and free. As the thrust bearing was in position it was possible to proceed and fix the boss to the shaft. A tin. hole was drilled through the shaft at an angle, as in Fig. 9, and a $2 \frac{1}{2} \mathrm{in}$. wood screw was inserted and driven home.

Vane Guide

The object of this part is to help the water to swirl in the direction of the blade rotation and, at the same time, to prevent air being sucked down the tube (if this happens there will be a noticeable fall of power).
The vane guide was $I 3 i n$. in diameter and 3in. high, as shown in Fig. IO, and was made from 20 -gauge steel. First, the two discs were cut after being scribed by compasses, then a $6 \frac{1}{4} \mathrm{in}$. diameter circle was scribed and cut in. one, which is the lower plate of the vane guide. The upper plate was scribed with a Itin. diameter hole and cut with the aid of a small chisel. The vanes were cut from the same sheet material, in the form of rectangular pieces 4 in . $\times 5 \frac{1}{2} \mathrm{in}$., and then scribed with two lines $\frac{1}{2}$ in. from the edge.

The edges are turned at right angles in a vice, as shown in Fig. 11. The positions on the lower plates are marked, and with the aid of a drill brace and a piece of heavy iron held in a vice to make an anvil, the vane guides are riveted in position one by one. The top section of the vane assembly is then fitted in position and

Fig. 5.-Details of the runner block.

Fig. 6.-Details for positioning the blades.

Fig. 7.-Marking out the blades.
drilled and riveted in the same manner. Two studs are inserted in the "frame base" to locate the vane guide in position. This is to afford easy access to the turbine blades should the runner become choked with rubbish.

The Tube

Now comes the part which governs the amount of power which is going to be available. At low heads, the tube or pipe may be made of any type of cast iron, asbestos or sheet galvanised iron. I chose asbestos, but the lead into the pipe was made of galvanised iron, as shown in Fig. 12, the reason for this being that the turbine was liable to be moved about in the tube by vibration. This was liable to start chafing and wear away the asbestos material.

The flange was cut $18 \mathrm{in} . \times 18 \mathrm{in}$., and a $6 \frac{1}{2}$ in. diameter hole was cut in this. A length of pipe was made 18 in . $\times 6 \frac{1}{2} \mathrm{in}$. diameter . This is inserted into the flange plate and hammered over at the edge to a width of $\frac{1}{2}$. A few rivets, followed by a soldering, to seal all the joints, completed the flange. Once this section was made it was inserted in the floor of the flume end on a bed of putty and securely nailed down. The lengths of pipe were joined on below the flange, held away

Fig. 8.-One of the completed blades with tags for fixing.

from the wall by pipe clips, constructed as shown in Fig. 14.

The lower part of the tube was also made of galvanised sheet iron, see Fig. 13. The object of this part is to slow up the speed of the water before it leaves the tube. If this part is not fitted, it will be found that back pressure will build up, introducing a loss of power. The joint was riveted and soldered and secured to the asbestos pipe by means of four gutter bolts.

The joints of the pipe must be made with care. First, plumbers' hemp is rammed into the joints, followed by a good coat of paint ; putty is then rammed in until you see the putty begin to bulge at another point. A liberal coat of paint followed by a wrapping of canvas tied in with brass wire completes this section.

The bottom of the tube must be clear of obstruction and the tube end should always be under water.
Now the turbine was complete and ready

Exploitation

ALTHOUGH titanium was first discovered at the end of the Igth century it is only during the past 10 years that its properties and uses have been fully understood and exploited.

The manufacture of titanium sponge on a production basis has been confined to the United States and Japan with some pilot plant production in this country, but with the first full-scale plant for the production of titanium in this country coming into operation this year with an annual output of some 1,500 tons of sponge titanium, the use of the metal in Britain is expected to be greatly increased. Considerable advances have been made here during the past few years in the fabrication of titanium and progressive development has been carried out for some time in the aircraft industry.

The bulk of the titanium handled so far in this country has been imported from America and Japan. America, the world's main source of sponge production, has an estimated production for 1955 of 10,000 short tons of titanium sponge-a sixfold increase on last year's figure. The planned production of producers scheduled to commence operation this year would bring this figure up to 30,000 tons per annum.

Japanese production for 1954 was about
for testing. A deck tennis ring was placed over the end of the runner tube to act as a gasket. The turbine was lifted into the tube and the top portion of the turbine frame secured to the floor. The bearings were alittle tight, but a few flicks of the shaft and the turbine rapidly gained speed, running at around 2,000 r.p.m. At this stage the dynamo was added. A wooden frame was made on which to mount the dynamo in a vertical position and a " V " pulley was turned up to give a suitable ratio speed as it was found that the turbine ran at around 1,000 r.p.m. to 1,200 r.p.m. under load.
There were no governors employed. The dynamo, it was found, overran the 230 volt mark by five or 10 volts when on a light load, but this is a point that can be gone into more at a later date.
There is no particular reason why the

Fig. $10 .-T$ wo vierus of the vane guide.

> Fig. II (Right).-One of the ranes.
frame should not be made of wood or that the lignum vitæ bearing should not be dispensed with and a ball race under slight head of oil pressure used in its place. I suggest that it be situated on the vane guide cover or mounted just above water level. This should not give rise to any undue whip on the shafting. In the case where there is excessive sand in the

Fig. 12. (Above).-
The pipe fixed in the flume.
Fig. 13. (Left).Lower part of the tube.
Fig. 14 (Below).One of the pipe clips.

stream bed, I think that an oil pressure bearing would be advisable.

The length of the frame will vary with each individual requirement. The shorter the better. The vane cover should have 3 in . to 4 in . of water covering it when the turbine is in motion. If only a small drop is employed, then a larger quantity of water will be required to generate the same power and the size of the tube and turbine alter accordingly. The pipe need not be a sheer drop. A stream bed could be employed provided a large enough pipe was employed.

The only word of advice I offer is do not be over optimistic about the water supply available, it is surprising how much water even a 6 in. pipe can take under siphonage.
titanium and its long operational life in corrosive environments are two important factors that should be taken into consideration in any evaluation of its cost, however. The use of titanium can save much idle time and labour by obviating the need for frequent overhauls of equipment and renewals of components.

Titanium, which is only slightly heavier than aluminium and has a strength comparable with that of alloy steel, could effect an ultimate saving of some $1,500 \mathrm{lb}$. in the total structure weight of a modern jet fighter. Its incorporation in the airframe of an airliner would considerably reduce its structural weight, thereby increasing its operational range or passenger load. Titanium has been used in the structure of the Britannia and there are undoubtedly few civil or military aircraft now at the drawing board stage for which the use of titanium is not being considered. In the United States titanium is now replacing many of the alloys formerly used in the compressors of gas turbine engines.

The physical properties of titanium are now known and the supply situation has been stabilised. It now remains for the potential users of titanium products to fully explore the applications of this modern metal and to plan where it could be employed in preference to other existing metals which have not proved adequately suited to their individual require. ments.

An Cultomatic
 Make this Apparatus for Use in the Garden this Summer

 By G. F. PAYNE

 By G. F. PAYNE
 HAVING used a rotary type garden sprinkler for a number of seasons and finding that this type is relatively inefficient as regards to the unevenness of water applied, I decided to construct a simple type of square area sprinkler, a commercial article of this type being too expensive.
 The sprinkler here described is actuated by an impulse turbine wheel driving a rod,

via a gear and crank, back and forth through an angle of up to 45 deg. each way; attached to the rod is a curved jet tube.

The Frame

This is constructed of $1 \frac{1}{2} \mathrm{in} . \times \frac{3}{3} \mathrm{in}$. timber. The centre piece is 3 ft . long sharpened at one end in the form of a stake; the side pieces are 15 in . long with a $\ddagger \mathrm{in}$. hole drilled for the pivot bar $\frac{3}{3} \mathrm{in}$. from one end, the sides of the turbine
 them It in in. down (Figs. I and 2).

The Jet Tube

This (A in Fig. 1) is a piece of $\frac{3}{3} \mathrm{in}$. bore copper tube, 9 in . long, bent in a curve of about gin. radius; a plumber would supply this ready bent as required. The ends are blocked with piecés of sheet copper, cut to size and pushed in and soldered. In the centre is drilled a $5 / 16 \mathrm{in}$. hole right through to take the centre rod and a hole near each end on the inside curve for the two flexible

gas tubes. On the outside curve and evenly spaced are drilled 14 jet holes 1/32in. diam. These are drilled as accurately as possible to ensure a fan of water jets. Before soldering the ends, drill at least one of the holes to allow expanding air to escape.

The Centre Rod

Fig. 2a gives details of this rod, which is made of $5 / 16 \mathrm{in}$. brass rod 11 in . long and has a pivot bar 2 in . long $\times \frac{1}{2} \mathrm{in}$. diam., which is pushed through a hole drilled 3 in. from one end and soldered in place. I $\frac{1}{2} \mathrm{in}$. down from the pivot is a short pin for the connecting rod. This rod is marked "B" in Fig. I.

The Turbine Wheel

This is of 16 gauge copper sheet 6 in . diam., and has 36 blades formed on it by drilling 3/16in. holes at 10 deg. intervals, cutting and bending, see Fig. 3.

(Above) An underside view of the turbine wheel showing crank and linkage. (Below) A view with the turbine wheel lifted off the bracket to show crank and linkage.

Gearing

The worm gears are made of brass and give a ratio of $50: 1$. The bracket is cut from sheet brass as shown in Fig. 4, drilled and bent to shape along the dotted lines and the fixing plate soldered in place, as in Fig. 4a. The crank plate, Fig. 5, is cut from sheet brass and soldered to the end of a short spindie, which passes through the gear wheel; the worm is attached to the spindle for the turbine wheel. Spacers are used to centralise both gear wheel and worm. Fig. 4^{a} is an exploded view of the assembly.

The Connecting Rod

This is cut from sheet brass and has a hole drilled at each end. Over one of these is soldered a nut to receive a bolt for pivoting it to the crank plate, a further nut being used for locking purposes (see Fig. 4a). Only an approximate length can be given for the

Fig. 4a.-An exploded view of the transmission. connecting rod, as there may be slight errors during construction; it should be found by trial and error (a piece of card being used for this purpose) to ensure that the movement of the centre rod is equal either way.

The Turbine Jet

A length of $3 / 16 \mathrm{in}$. bore copper tube is bent to a suitable shape as shown in Fig. I; one end is filled in with solder and a $1 / 32 \mathrm{in}$. hole drilled through for the jet.

The Cross Tube

Marked C in Fig. I, this is 6in. of in. bore
copper tube with the ends blocked off, as for the jet tube, and has four holes of suitable size, as shown. The hose coupling tube is at an angle to the other three.

Pivot Plates, etc.

Cut from sheet brass or copper, the pivot plates are $1 \nmid \mathrm{in}$. square, drilled centrally for the pivot and at each corner for screws. The cross tube clips are cut to length, bent to shape and drilled for screws.

Assembly

The centre rod and two pieces of gas tubing are soldered in place in the jet tube. Screw on the pivot plates and one of the sides to the stake with a 6 in . lap, fit the jet tube assembly, using tubular spacers on the pivot bar and screw on the other side. Next, solder the cross tube to the flexible tubes, adjusting their length so as to stretch them slightly when the cross tube is fixed down; these expand under water pressure. Fit the turbine jet tube and solder. Screw the gear assembly to the front cross bar of the turbine bracket and this in turn to the side pieces. Solder the turbine wheel to the worm spindle.

The lead counter balance weight is approximately 3 in. long $\times \frac{1}{7}$ in. diam., and should just balance the jet assembly when full of water. When the balance weight has been adjusted, solder in place. Finally, fit the connecting rod to the centre rod, retaining it with a small washer soldered onto the pin, and connect it to the crank plate with a bolt and locking nut.

The complete sprinkler should be painted to preserve it, with the exception of the flexible tubes.

The area covered by this device depends, of course, on the water pressure of the district in which it is to be used, the area

General assembly of the completed sprinkler.
covered by the prototype is about $60 \mathrm{ft} . \times 20 \mathrm{ft}$., using the longest crank throw and about 20ft. square for the shortest.
When storing the sprinkler for the winter it is a good plan to push a cork into the hose coupling tube to prevent insects, especially earwigs, from making their nests in the tubes and thus causing trouble with the jet holes when it is used again.

Blueing Steel Pieces

A Rust-proof Coloured Finish

THE appearance and utility of small steel gauges is often improved by a reasonably rust-proof, colpured finish after their completion. This also applies to small components which receive excessive handling. Any gauging faces must, of course, be left bright, and it is usually possible to remove the gauge blocks or pins and treat the holder or base separately. Parts may be finished mottled, grey, brown, blue or black, as required, by various methods of heat treatment, and these colours can be varied according to the temperature used, time taken and strength of solution if used.

Preparation of Work

Before any form of heat treatment is carried out, however, the parts must be highly polished and free from oil or grease. They should be handled only by using felt or cloth prior to the heating process and during

heating they should be supported by a wire threaded through a convenient hole, or by placing on a heated plate.

Processing Hardened Parts

Where a black finish is required on a hardened part it should be tempered in heavy cylinder oil after hardening and placed, still covered in oil, in an oven at a temperature of about 175 deg. C. After eight or 10 minutes it can be removed, when the black finish will be baked into it. The temperature is not high enough to effect the previous tempering process. This method has limited applications as most hardened parts are finish ground.

Methods

A blue or black finish is generally used on gauge work and, where the materials and equipment are available, either of the two following methods may be adopted.

Details of the gas torch support.
I. A bath of saltpetre is heated to about 315 deg. C. At this stage the saltpetre melts and the parts may be immersed in it. After a few seconds, when a uniform colour of the desired shade is obtained, the parts are removed and allowed to cool. After washing in water, oil should be applied to prevent rusting.
2. A mixture of eight parts of saltpetre and one of black oxide of manganese (by weight) is heated in a bath to 400 deg . C. and the work is immersed until it is the desired colour. It is then cleaned and oiled as before.
When these materials are not available, however, a good blue-black finish can be obtained simply by heating the work slowly and uniformly until it acquires the required depth of colour. Further colouring is then checked by immersing in quenching oil.

Equipment

The usual equipment for this form of treatment is a gas torch and a sufficiently large container for the oil. Small workpieces tend to change colour rapidly, so the time taken in transferring them from the flame to the oil should be kept to a minimum. Where any number of pieces have to be treated, some form of support should be made for the torch, and the pieces can then be suspended in front of it and moved slowly about in the flame. A simple type of support is shown in the sketch and the torch clamp can be modified to suit existing equipment.

THE "PRACTICAL MECHANICS " HOW-TO-MAKE-IT BOOK

13/- (13/6 by post)
From George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C.2.

A VERSATIE SAFELIGHIT

Consiructional Details of an Easily Made and Efficient Safelight for the Amateur Photographer

MANY amateur photographers give little consideration to the efficiency of their safelight, and often the amount of light available could be substantially increased, without risk of fogging, if a different pattern were used. The less expensive commercial safelights are generally small, but for even distribution of light the filter screen should be fairly large.

are expensive to buy, often costing several pounds, but the essential filter screen may be purchased very reasonably. The safelight described uses a filter screen measuring roin. $\times 8$ in., costing about IOS., and even if all necessary materials have to
be bought the be bought the
total cost will be

The safelight with screen withdrawn and endplate removed.
amateurs, however, will already have sufficient odd pieces of wood, etc., available,

Since amateur photographers are not necessarily expert cabinetmakers only normal household tools are required, and the constructional information is given in some detail. The design is, however, easily modified to incorporate the dovetails and rebates favoured by the enthusiastic woodworker.

Materials

In the prototype the sides and fixed end were constructed of $\frac{3}{8}$ in. laminated board, the bottom, mask and light baffles of $\frac{1}{8}$ in. hardboard, and the removable end of $\frac{1}{8}$ in. hardboard on $\frac{3}{8} \mathrm{in}$. laminated board. It is not essential to use identical materials, providing the dimensions dictated by screen size and lamp clearance are adhered to. The batten holder, flexible cord and rubber feet were purchased from the usual household store.

Construction of the Box

Lay the safelight screen on a piece of hardboard about ift. square, and using the screen as a template draw a pencil line around it.

Cut the two sides to size as given in Fig. 4 and square off all edges.

Screw strips of wood or hardboard about $\frac{1}{8}$ in. to lin . thick to each side (Fig. 4). Care should be taken to ensure that the strips fitted along the top edge of the side, and forming the slides upon which the screen will rest, are $3 / 16 \mathrm{in}$. from the edge, so that the screen may slide freely into the completed job.

Pin and glue the sides into position on hardboard base, ensuring that the inside

Fig. 4.-Strips supporting light trap and screen, also position of lampholder and ventilation holes.
edges are about $1 / 32 \mathrm{in}$. outside the pencil lines.

Using the assembly as a template, and taking care that the sides are square with the hardboard, mark and cut out the fixed end. Pin and glue into position and check that the screen fits freely on its slides. Again using the assembly as a template cut the removable end from $\frac{3}{d i n}$. material to be a snug fit inside the larger end of the box, and from $\frac{1}{8}$ in. hardboard to fit the outside. Pin and glue the two pieces together as shown in Fig. 2, but do not fix in position.

Cut the light baffles to size and lay in position. Ensure the lower edges make close contact with the hardboard bottom, and draw pencil lines on the bottom along these edges. Remove the baffles.
Bore a series of ${ }_{8}^{3} \mathrm{in}$. holes through the bottom parallel with the pencil lines, about rin. from them and outside of the two lines (Fig. 4).

Using the box as a template mark and cut out the mask. Cut out the centre portion with a keyhole saw, as shown in Fig. I.
Paint the whole area under the light traps, the back of the mask and the inside of the removable end with flat black paint.

Pin and glue the light baffles into position, taking care to make a light-tight joint between the edge of the baffles and the bottom of the box.
Paint the whole of the area above the light trap with high gloss white enamel.
Fit the batten lampholder in position as

Fig. 3.-Arrangeraps and strips supporting screen.
shown in Fig. 3, using a 25 -watt lamp to check exact position and arranging the bulb of the lamp to be about $\frac{1}{2} \mathrm{in}$. from the bottom of the box.
Pin and glue mask to the top edge of the box and check that the screen slides freely into position. Check that the removable end fits snugly when screen is in place.

Trim off edges of bottom and mask and

The completed safelight.
glasspaper all over. Paint outside to taste.
Fit rubber feet to end and bottom with woodscrews. The feet fitted to the bottom should be at least $\frac{1}{2}$. high to permit free circulation of air.

If the safelight screen is unlikely to be changed frequently the open end may be secured with four woodscrews. If, however, the light is to be used with a variety of materials requiring frequent changes of screen it may be secured by means of two small
hooks to facilitate the changes.
For use as a negative viewer or retouching desk for negatives the screen may be replaced by a piece of opal glass. So arranged, the light is also most useful for tracing drawings or diagrams. Various positions for its use are shown in Fig. 5.

The lamp may be hooked on to a wall by means of one of the ventilation holes in the back.

Suitable Bulbs

For table use, a 15 -watt bulb is adequate, but when the safelight is hung on a wall a 25 -watt bulb may be fitted. In either case the small pigmy indicator type of bulb is the most suitable.

Filter Screens

A variety of ioin. $\times 8 \mathrm{in}$. safelight screens may be obtained from any of the larger photographic dealers. The particular screen selected will, of course, depend upon the sensitive material in use, but it should be purchased

Fig. 5.-Positions for using the safelight.
before starting construction, as there may be some variation of size.

Science and Observation

By Prof. A. M. LOW

Voyagers in the Stratosphere

BY now we are quite used to the idea of flight into the stratosphere by man but not, I think, by insects. A few, years ago a small "Scientific Army" explored the upper air in order to find out how certain insects, fatal to the well-being of man, spread out all over the world. The aircraft used were equipped with special insect-catching traps.

Spiders were found three miles above the earth and mosquities as high as five thousand feet. That menace to the world's cotton crops, the pink bell-worm moth, was caught more than a mile above our earth, and numbers of ants, sand-flies, lady-bird beetles and various small insects were found in the traps at a height of $15,000 \mathrm{ft}$.

It was obvious to experts that these "travellers" took advantage of favourable wind currents. They do not like high winds and will not set out on a sky trip when there is a calm. But with the winds as they want them, insects use these aerial routes to distribute themselves around the world.

On investigation it was also discovered that there are actually insect "tramps" which crawl on to the backs of other insects and squat there, travelling in perfect comfort. It is strange that while man is so proud of his flights into the " stratosphere," he forgets that insects have been using this route for centuries !

New Travel

It is strange that we still specify the testing of machinery by distance. "Drive slowly for the first 500 miles," we say. Now time and distance, if not the same thing are closely connected, and in the aircraft world we mix distance and time almost indiscriminately. The fact is the faster the travel the more time matters instead of distance.

I was at an exhibition of flying models recently and saw an improved type of skimmer, part aeroplane and part high-speed seacrafr. Think for a moment of the prob-
lems of science in connection with boats, waves and ocean-going liners.

This is my point. On a small outboard boat when air is passing gaily under the huli, slight ripples in the water do not matter terribly. If the boat were a model Ift. long the least ripple would swing it. Supposing it were a quarter-mile long, would it not by the same argument skim over quite large waves simply because it covered sufficient of them to produce what we call smoothness?
If so, it suggests the possibility of fast skimming ships for carrying freight across the Atlantic, leaving it to aircraft to take expensive passengers or to refuel at a floating island in the middle, before the days when space ships take the air. Or rather, not the air, for these $5,000 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. vessels which we shall undoubtedly have in the far future could not possibly travel where our atmosphere exists. Rockets work far better in a vacuum.

Beware of the Night

One has to be very careful to avoid self deception. The cinema is the most famous of all deceivers, for it gives something stationary the illusion of movement. Even a radiogram gives an illusion of sound, for it is no more than a mechanical instrument in the early stages of operation.

The old rumour that cars run better at night is, of course, due to a reduction of visual distance and seldom on account of moisture in the air. Moisture used even to be dripped into the inlet pipe of motor-cars in early days, but it should really be injected as liquid against the side of the cylinder, if it is to do good by absorbing unwanted heat, instead of heat which even modern engineers can use to drive the car.

But there are other more tempting illusions. When a car is running forwards on the level with throttle closed preparatory to braking, it often seems to leap forward when it is put into neutral. The cause is not that
of driving downhill using the engine as a brake and partly opening the throttle with the clutch in to increase the work done by the engine in stopping the car.

This forward leap on level ground is simply an illusion. The reason is that deceleration is decreased because unless power is given to the car it cannot jump forward or increase its pace violently.

The retarding effect of an engine, however, is very considerable, for mechanical efficiency is never high. After a general overhaul we are often told not to exceed, say, 35 miles per hour, and although it is not a good thing to achieve high cylinder temperature by a wide open throttle the main reason is not cne of explosion pushing the piston too hard but of the terrific forces, amounting to many rons, exercised in the engine by the reversal of reciprocating parts.

Self Promotion

Doubtless, you will have witnessed the trick of lifting the heavy man. He is sat in a chair and four people put their hands under him in various places, then find that they cannot move him an inch. The person who is carrying out the trick instructs two of the audience to put their crossed first fingers under his armpits and two others their crossed fingers under the bend of the knee. He seriously checks that fingers are crossed; he warms his hands, rubs them on his coat and puts them close together not quite touching as if he were trying to feel some tension between them. He explains to his audience how friction generates electricity, talks of clouds rubbing together and producing lightning, or the simple experiment of drawing sparks from dry brown paper and of attracting chips of wood by rubbing a piece of vulcanite on the sleeve.

He tells the audience that he can electrify the man and thus reduce his weight by interfering with gravity. They will believe anything if it is said convincingly enough. Having "electrified " the man by placing the rubbed hands behind his head, he very solemnly and slowly tells his lifters all to lift together on "three." Count one, two, three and up will go the man like a rocket. The reason, needless to say, is that never before do they with confidence lift together. You try it !

Make Your Own Doil with Moving
Head, Eyes and Mouth

By FREDERICK GILLSON

AVENTRILOQUIST is much sought after, and can be the "lion" of any party, providing he knows how to manipulate -and converse with-the doll on his knee! A professional ventriloquist's dummy is expensive to buy, but the one to be described is both inexpensive and easy to make (Fig. I). The most complicated part of the dummy is the head, because in it is the mechanism that works the eyes, mouth and head.

An artist's impression of the dummy in use.
 cult problem. irst, take a lump of plasticine about the size of a baby's head and carefully mould it to form a face. It is advisfor the eyes.

When you are satisfied with the appearance of the dummy's face, cover the head with small pieces of newspaper that have been dipped in flour paste. Plenty of paper will be required, because layer upon layer has to be put on, until a thickness of about $\frac{1}{8} \mathrm{in}$. is obtained. (See Fig. 3).
An easy way to arrive at the thickness required is to use alterstages, it is nately a piece of plain newspaper and a not a diffi- coloured layer. This will enable you to tell able to exaggerate in forming the nose, mouth and eyes, as it is necessary t h a t these important parts of the features should be readily seen by the audience.

Before commencing the actual

Fig. I (Above). The completed dummy. Fig. 2 (Right).An example of cheerful fearures. at a glance when the head is covered. Allow each layer to dry before putting on the next ; about twelve layers should prove sufficient.

When the paper is thoroughly dry the plasticine has to be extracted. To do this, neatly cut the head vertically in half and gently scoop out as much of the plasticine as you can conveniently remove. Now carefully cut out of this papier mâché head two slots

There are three mechanisms to be madeone to cause the mouth to open and close; another to move the eyes from side to side; and a third that will enable the head to be turned in different directions.

The Mouth

Cur away the lower part of the mouth and chin, as shown in Fig. 4, and then re-set it, glued on a hinged wooden strip attached to a spring, as in Fig.5. It is

The hinged mouth will need to be supported from above and here string is used, in the middle of which a spring is to be placed (Fig. 5). Make a small hole in the top part of the head, and from underneath push the string through it. Secure it by tying a knot in the end.
The papier mâché needs to be strengthened at this point with a small piece of tinplate glued to the head. If this is not done the

Fig. 4 (Above).-The head cut vertically and the cut avaly jaw.
Fig. 5 (Lefr).-The
jaw mechanism.
istring will be pulled
ithrough the head. The small cavity, caused by the movement of the lower jaw, can be hidden with a small piece of chamois leather. When the movement is completed test it by gently pulling the string.

The Eyes

The eyes are painted on a strip of white painted tinplate, about 3 in. long, and rin. wide. G!ue a piece of wood at each side of the head and insert two small springs, as shown in Fig. 6. Also glue a thin strip of soft leather above and below the eye-plate, at the ends indicated by the shaded portions. A pull on the string will move the tin horizontally to the right. The length of the string should be about 2 ft . until adjusted later. Then carefully paint blue circles for the eyes, with black centres. Pull the string gently, to make sure the eyes will move far enough to the right. Making this essential mechanism calls for much care, attention and adjustment. When the mechanism is working satisfactorily glue the two parts of the head firmly together.
Fig. 3.-Mak ing the head.

Head Movement

Push part of an ordinary broomstick into
the neck and glue around it a rin. thick wooden disc. It must be wide enough to fit the neck, to which it has to be glued, see Fig. 7. A small lever is then screwed to this stump in order to work the eyes. This is accomplished by tying one end of a piece of string to the lever and the other end to the tin eye-plate.

The body of the dummy is hollow. Make a shoulder-piece, with a hole for the neck (Fig. 8 (A)). Then carve a wooden seatingblock (B). Connect this to the shoulderpiece with a portion of tinplate bent around (C). Take care, however, to leave an opening at the back large enough to allow your hand to be inserted easily. You will need to grasp the stump in order to turn the head.

Then the head, on its broomstick, is let down through the neck-hole. Cut off a piece from the end of the stump otherwise the neck will be too long. Glue to the seating-block a iin. thick circular disc of wood with a hole in it to receive the stump (Fig. 8).

The Arms

The lower part of the arm is to be carved in wood. This is then nailed to the upper part

which consists of a small linen bag stuffed with cotton wool. Leave an inch or so of the linen at the top so that it may be nailed to the top of the shoulder-piece (Fig. 9).

The Legs

Both the legs and the thighs are to be
carved in wood. Prepare the thighs first, and scoop out a U-shaped opening at the knee to receive the leg

At the top of the thigh insert a leather strip, which is to be wrapped

the eyes use Prussian blue mixed with cream paint to make it paler. Do not make the mistake of " over - paint ing" your dummy. The

Fig. 9.-The arm and leg details.
nose and cheeks should not be too red, or they will appear clownish.

When the paint is dry add a wig made of crepe hair. You will dress the dummy, of course, as you desire. Bright colours are more attractive than dull ones.
with a light coating of Alabastine. It should be mixed to a creamy paste and put on with a stiff brush. When dry rub down well with glasspaper to make it smooth. Apply undercoating two or three times before the final painting.
Use pink paint for the face, arms and legs. When dry, rosy cheeks and lips can be obtained with vermilion. For shadows under

Entertaining

Make a collection of good jokes, but ignore the old "chestnuts." Then prepare your patter, with appropriate remarks-and suggestions !-from the cheerful little figure on your knee, who is sure to interest and amuse those you seek to entertain.

Fig. 1.-The two hydrogen-cooled sets at Uskmouth.

THE total capacity of plant commissioned for the British Electricity Authority has exceeded that in any previous year and includes three 60 MW hydrogen-cooled sets, two at Uskmouth (Fig. 1) and one at Ince Power Station. Two 30 MW sets are in service at Doncaster, and the first of two

Company, British Guiana.

A number of industrial sets are on order to provide process steam, and include plant for

Steam Turbo-generators

30 MW sets for Huddersfield.

Three 30 MW sets have been delivered to the Orlando Power Station, Johannesburg, extensions to which will increase its capacity to 337.5 MW . Generating sets have also been delivered to Bloemfontein Municipality and to the Demerara Electric
the Steel Company of Wales and the National Physical Laboratory. Over fifty marine turbo-generator sets are on order (Fig. 2).

The G.E.C. is the main contractor for the complete power station for the $£ 20 \mathrm{~m}$. iron and steel project at Motherwell ordered by Colvilles, Ltd. The contract includes buildings, civil engineering work, boilers, generating plant, turbine-driven blowers, back pressure turbines and cooling towers, together with switch and control gear, transformers, cables and lighting installation.

Fig. I Ia.-The completed orrery. The cigarette lighter gives some idea of the size.

IF you take up a reliable work on astronomy, which contains all the modern data, you will notice that the solar system comprises nine major planets, having between them 31 satellites. How are all these bodies arranged about the Sun ? To understand this question fully and to give a satisfactory answer requires a detailed understanding of astronomy. In these articles the full details will be presented so that the amateur may make an accurate model and use it with advantage and enlightenment.

Fig. 1.-Gear train for Earth/Mars system.

The History of the Orrery

Firstly, models of the solar system are not new. In early days skilled workers in metal had produced magnificent armillary spheres to demonstrate the geocentric system of the Universe of Ptolemy and later the heliocentric system of Copernicus.

There is a legend to the effect that Archimedes possessed an instrument or model to reproduce the motions of the planets. In 1682 the skilled clockmaker Johannes Van Ceulen de la Haye made what was called a planetarium after a design by the astronomer Christian Huygens. This remarkable instrument is still preserved at Leyden. In it the motions of the planets are shown with their proper relative speeds about the Sun. Eight years after this George Graham made a similar model and this was improved by John Rowley in an instrument for Charles Boyle, the fourth Earl of Orrery. This instrument which showed the solar system was called by the famous essayist Sir Richard Steele an "orrery." This is the genesis of the name by which all such models are now known. Some very excellent clockwork orreries are on show at the Science Museum ; some are of Continental manufacture and others by English makers.

David Rittenhouse, of Philadelphia, produced some remarkable orreries, one of which is now at the University of Pennsylvania. It shows on a central panel the relative motions

of the planets from Mercury to Saturn with great accuracy; other panels show the movement of the Moon, an eclipse computer, the year, month and day of eclipses being given for 5,000 years before and after 1769.

A monster orrery was constructed at the Deutsches Museum, Munich, in 1920. A circular room of over 30 ff. diameter had a centrally illuminated Sun about which the planets moved on electric carriages. A similar

ORRERY
 Constructional Details and a History of the Instrument

By FRANK W. COUSINS, A.M.I.E.E. A.C.I.P.A., F.R.A.S.

Earth very nearly equal to the true ratio as above. By the use of suitable tables* or extended fractions we find that :
$\frac{43}{50} \times \frac{54}{20} \times \frac{8 \mathrm{I}}{100}=1.88082$.
We are thus able to use these numbers: $43,50,54,20,8 \mathrm{I}, 100$ in six gear wheels which will produce the motion of Mars relative to that of the Earth with an accuracy of one part in almost 200,000. In other words, a model using such a gear train would permit Mars to make more than 500 trips round the Sun before it was in error by a single degree.

The problems associated with gear trains of this kind were very fully analysed by Camus in his classical work Cours de Mathematique, publishe d 1752.

A gear train for moving the planet Mass is shown in Fig. 1.

A number of ingenious orreries have been

Fig. 4.-Inclination of the orbit of Mercury.

Fig. 2.-The small intermost circle represents the orbits of Mars, Earth, Venus and Mercury.

The sun is at the centre.

Mercury
Fig. 3. - Earth dia.-I; Mercury dia. -0.39 .
orrery has been made in the famous Hayden Planetarium at New York.

Problems of

 ConstructionIn wheel-work orreries complex problems have to be solved in the design of suitable gear trains. An example has been given by R. K. Marshali.

The planet Mars requires 1.88082 years to revolve about the Sun. The problem is to devise gears which, when properly matched in train, will give a ratio between the motion of Mars and that of the
disclosed in the last fifty years, and the following British patents may be of interest to those who wish to study the sub-

Fig. 5.-Earth dia. -0.1; Vemus dia. ject in detail: $342023,384048,414268,425108$, $460463,530730,700680$. The last mentioned patent is for a tellurion, a model of the Earth to show the effect of the diurnal rotation and annual revolution and obliquity of axis in causing the alternations of day and night and the successions of the seasons.

The Simplified Orrery

While such orreries excite the imagination, there is a great need for a simplified orrery which is able to demonstrate all the salient features of the solar system.
A simplified orrery was produced in 1947 by D. and K. Bartlett and described in a booklet, The Planets and Us, published by George Philips. This orrery is of simple construction and is of little value other than to show the order of the planets outward from the Sun. At that time (1947) the designers of the Bartlett Orrery were not aware of the inclination of Pluto's orbit to the Ecliptic. The twelfth Moon of Jupiter, the fifth Moon of Uranus and the second Moon of Neptune had not been discovered.

The writer believes that a simplified orrery, to be of any use, must show four main features
(a) The inclination of the orbit, if in excess of 3°

* Gear Trains, by Dr. Merritt, Pitman, 1947.
(b) The inclination of the planet's axis.
(c) The size of the planet to scale.
(d) The satellite system of the planet.

In order that the reader may better appreciate the construction of the new simplified orrery, the following description of the solar system may be of value.

Fig. 6.-Earth dia. -I. Mars dia. -0.53.

Fig. 2 shows the solar system looking down from the North Celestial Pole. The planets, in order from the Sun, are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto. All these bodies move about the Sun anti-clockwise, and rotate on their axes in a similar manner. The orbits of Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune are substantially coplanar. The orbits of Mercury and Pluto are inclined to the plane of the Earth's orbit (the plane of the Ecliptic) by an angle of 7° and 17° respectively.

Let us consider the planets individually in order from the Sun.

Mercury

Size: 3,100 miles diameter.
Distance from the Sun: 36×10^{6} miles.
Axial rotation: 88 days? 24 hours ? (uncertain)
Tilt of axis to orbit : 20° (uncertain).
Inclination of orbit to the plane of the Ecliptic: $7^{\circ} 0^{\prime} 14.0^{\prime \prime}$.
Period about the Sun: 0.24085 tropical years*.
Satellites: None.
In Fig. 3, Mercury is compared with the Earth. If the Earth's diameter is considered to be unity then Mercury's diameter is 0.39 .
As previously noted the inclination of Mercury's orbit to the plane of the Ecliptic is in excess of 7° and this phenomenon is clearly illustrated in Fig. 4.

Venus

Size: 7,700 miles diameter.
Distance from the sun : $.67 .2 \times 10^{6}$ miles.
Axial rotation : 225 days (uncertain).
Tilt of axis to orbit: $20^{\circ}, 50^{\circ}, 75^{\circ}$ (uncertain).
Inclination of orbit to plane of Ecliptic: $3^{\circ} 23^{\prime}, 39.1^{\prime \prime}$.
Period about the Sun: 0.61521 tropical years.
Satellites: None.
In Fig. 5 Venus is shown compared with the Earth. On a basis of the Earth as unity Venus has a diameter of 0.97 .

* Tropical year is 365.24 days (equinox to equinox).

Earth

Size : Polar 7,900 miles.
Equator 7,927 miles diameter.
Distance from the sun : 92.9×10^{6} miles.
Axial rotation: 23 hours 56 minutes . 04 seconds.
Tilt of axis to orbit : $23^{\circ} 27^{\prime}$.
Plane of orbit is plane of Ecliptic.
Period about the Sun: 1.00004 tropical years.
Satellites: One only (the Moon).

Mars

Size: 4,200 miles diameter.
Distance from the Sun: 141.5×10^{6} miles.
Axial rotation : 24 hours 37 minutes 22.654 seconds.
Tilt of axis to orbit: $24^{\circ}-25^{\circ}$.
Inclination of orbit to plane of Ecliptic : $1^{\circ} 50^{\prime} 59.9^{\prime \prime}$.

Fig. 8.-The size of the planet Saturn compared with the Earth.
Period about the Sun: 1.88089 tropical years.
Satellites: Two.
In Fig. 6 Mars is compared with the Earth as unity. Mars is rated at 0.53 .

Jupiter

Size : Polar 82,800 miles.
Equator 88,700 miles diameter.
Distance from the Sun : 483.3×10^{6} miles.
Axial rotation : 9 hours 50 minutes.
Tilt of axis to orbit: $3^{\circ} 6^{\prime}$.
Inclination of orbit to plane of Ecliptic: $1^{\circ} 18^{\prime} 20.3^{\prime \prime}$.
Period about the Sun: 11.86223 tropical years.
Satellites: Twelve.
In Fig. 7 Jupiter is shown compared with the Earth. Taking the Earth's diameter as unity, Jupiter is rated at II. 2 and 10.4 for the equatorial and polar diameters respectively.

Saturn

Size : Polar 67,200 miles.
Equator 75,100 miles diameter.
Distance from the Sun: 886.1×10^{6} miles.
Axial rotation : 10 hours 14 minutes.
Tilt of axis to orbit : $26^{\circ} 44^{\prime}$
Inclination of orbit to plane of Ecliptic: 2° 29' $25^{\prime \prime}$.
Period about the Sun: 29.45772 tropical years.
Satellites: Nine.
In Fig. 8, Saturn is shown compared with the Earth. Taking the Earth's diameter as unity, Saturn is rated at 9.5 and 8.5 for the equatorial and polar diameters respectively.

Uranus

Size: 30,900 miles diameter.
Distance from the sun : $1,783 \times 10^{6}$ miles.
Axial rotation : About 10.8 hours.
Tilt of axis to orbit : 8°.

Inclination of orbit to plane of Ecliptic: $0^{\circ} 4^{\prime} 22.9^{\prime \prime}$.
Period about the Sun: 84.01331 tropical years.
Satellites: Five.
In Fig. 9 Uranus is shown compared with the Earth as unity; Uranus is 3.9 .

Neptune

Size: 33,000 miles diameter.
Distance from the Sun : $2,793 \times 10^{6}$ miles.
Axial rotation : 15 hours 40 minutes.
Tilt of axis to orbit : 30°.
Inclination of orbit to plane of Ecliptic: $I^{\circ} 4^{\prime} 27.1^{\prime \prime}$.
Period about the Sun: 164.79345 topical years.
Satellites: Two.
In Fig. ro Neptune is shown compared with the Earth as unity. Neptune is 4.2 .

Pluto

Size : 3680 miles in diameter (uncertain).
Distance from the Sun: $3,666 \times 10^{6}$ miles.
Axial rotation and tilt of axis to orbit unknown.

Fig. 9. - Earth dia.
-9. ${ }_{-}^{\text {Uranus dia. }}$

Fig. 10.-Earth dia. -1. Neptune dia.

Inclination of orbit to plane of Ecliptic : $17^{\circ} 08^{\prime} 38.4^{\prime \prime}$.
Period about the Sun : 248.4302 tropical years.
Satellites: None known (1955).

Modifying Scale Distances

If this great wealth of data is analysed it will be readily obvious that some compromise must be made if a successful model of the solar system is to result.
First the distances of the planets from the Sun are immense. The Earth is 92.9×10^{6} miles away from the Sun. If we take the Earth's diameter to be 8,000 miles and use this as a unit, the Earth is found to be $92.9 \times 10^{8}=$
$\frac{8000}{80}=11612$ approximate Earth-units from the Sun. In our model orrery the Earth bead is to be $\frac{1}{8}$. diameter and this will have to be, if we make the model correctly, $\frac{11612}{8 \times 12} \mathrm{ft}=12 \mathrm{Ift}$. from the centre of the model.
Pluto, the planet at the greatest distance from the Sun, 3666×10^{6} miles, will have to be placed about $4,800 \mathrm{ft}$. from the centre, a distance equal to nine-tenths of a mile. In view of this the distance of the planets from the Sun cannot be utilised to scale unless the beads representing the planets are made so small that they would only be readily visible under a powerful lens.
In the model the planets are made to scale, but the distances of the planets from the Sun are ignored.
The Earth's diameter is made to be tin. and on this unit the model is constructed. A detailed drawing of the orrery is shown in Fig. II and a photograph is shown in Fig. IIa.

Constructional Details

Referring now specifically to Fig. 1I, it
will be seen that the orrery comprises a central column ro secured to a base II. The column has a washer for each planet orbit, and in the case of Mercury and Pluto the washer which carries the orbit wire has, two inclined washers co-acting with it, providing a tripartite washer assembly: this permits the planet to move in an inclined orbit about the Sun.
The tripartite washer assembly for Mercury is showing in Fig. II at 12, 12a, 12b. The washer for Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune are re-

17, 18 and 19. The tripartite washer assembly for Pluto is shown at 20, 20a, 20b.
The Sun is represented at the head of the column 10 by a sector 2I. On a scale of 8,000 miles to iis. (the scale chosen for the Earth bead) the Sun, as a globe of 864,000 miles, is $\frac{864000}{8000 \times 8} \mathrm{in}$. diameter. The globe would be
$3 \frac{1}{2}$ in. diameter and this would dwarf the model in toto. The Sun sector, while retaining its accuracy (being made from a circle of $13!$ in. diameter), is not too bulky in that it has a thickness of not more than din. The orbit wires $12_{1}, 13_{1}$ are made from $\frac{1}{16} \mathrm{in}$. or $3 / \mathrm{s}_{\mathrm{i}}$ in. silver steel rods. The orbit wires, 141 , $15_{1}, 16_{1}, 17_{1}, 18_{1}, 19_{1}$ and 20_{1} are made from in. silver steel rod. The ends of the rods are force-fits into holes drilled in the individual washers.
(To be continued)

A Home Built

(1)OME years ago the writer moved into a country cottage in which the facilities were somewhat primitive. Among the improvements contemplated was a hot-water installation, but after paying for other work, finances to install an orthodox system were unavailable.

After some experimenting, the device described in this article was evolved apd has proved efficient, reliable and economical.

Operating and Performance Details

Capacity: 12 gallons, raised from cold to 140 deg. F. within approximately 75 minutes. Temperature control: Thermostat, immersed in tank.

Current : Full load is 3 kW . A.C., reducible to 2 or 1 kW . with consequent lengthening of heating time. (Important note: The power capacity of the existing electricity arrangements should be checked by an electrician to ensure that the heater may safely be added to the power circuit.)
Delivery: Approximately one pint per 10 seconds.

Lagging : With current off, the tank will hold the temperature up to about 120 deg. F. overnight.

Quantity: Approximately 8 gallons before dilution reduces temperature to 100 deg. F. Restoration to 140 deg., approximately 20 minutes.

Heaters: Three standard electric kettle elements of I kW rating.

Indicator: A neon indicator is a useful accessory, enabling a faulty element or thermostat to be detected.

The actual form of the device can, of course, be varied to suit individual requirements ; so long as the main principles are adhered to, no trouble should arise.

Materials Required

One 12-gallon tank, galvanised iron, with zinc cover. The cover should provide an overhang of ${ }_{3} \mathrm{in}$. all round.

One zinc sheet, 3 in. by 6 in. by $\frac{1}{g}$ in. thickness. Sufficient tubing or piping to reach from the existing cold water supply to the base of the positioned tank.

Unions and nipple to suit the required cold water run, also one through-cock (hereafter termed " feed-tap").

Sufficient $\frac{3}{4}$ in. copper pipe to reach the required point of delivery. This run must be as short and direct as possible.

Gutlet gland to suit hot-water feed.
Suitable brackets to support the tank, These should have rin. turned up projections at the extremities to keep the tank in place.

Three 1 kW . kettle elements, complete with washers and shield.

Three kettle connectors, side cable-entry preferred.

Thermostat control to carry 3 kW . This is of the simple rod type, with sheath.

Sufficient cable to connect the three elements, the thermostat, and, if required, the indicator individually to a junction-box placed near the tank. This cable may be rubbercovered twin, as used in kitchen appliances, but must be capable of safely carrying $\mp \mathrm{kW}$. for prolonged periods.

One four-way bakelite junction-box.

Sufficient three-core (or twin with lead sheath) cable to connect the junction-box to the control switch; also from the switch to the point of supply, current capacity, 15 amps . One double-pole switch and fuse, to break 15 amps.

Lagging material, applied as a paste. The mixture of textile mill-dust and cement as used by the heating engineering trade is most suitable, economical and easy to apply.

The Brackets

The work commences with the fitting and cementing in of the brackets at a point which allows the hot-water outlet to be conveniently placed above the sink; the horizontal run of the hot-water feed pipe must be, as short as possible and this partly determines the tank location.

Preparing the Tank

While the cement is drying, the tank can be prepared, the parts fitted and the tank tested for leaks. Start by cutting out the holes for the elements (D) and the thermostat sheath (C) located as shown in Fig. I. Where the tank differs in shape the main points to observe are that the elements are placed in steps above and to the right of each other; except at the mounting stub, the elements must not touch the tank at any point; the upper element must be well under water when the outflow has stopped; the thermostat shield is located approximately 4 in . below water-level at the far end from the hot-water outlet. Should an element be encountered at this depth, go deeper to ensure that the body of the water is adequately heated before "cut-off" occurs.

Having fitted the heaters and thermostat, the tank is now checked for leakage. The seepage around and inside the heater shields can be very slight, and ample time should be allowed for moisture to gather. When proved satisfactory, the tank is emptied and the cold-water and hot-water outlets cut. At this stage, fit near the top left corner of the thermostat end of the tank a small 1 in . screw and nut with washers to form an earthing terminal.

The Cold-water Entry

The cold-water feed (E) enters the base of the tank, about 2 in . from the back wall and remote from the hot-water outlet. Before fitting the cold-water inlet nipple, a baffe plate is prepared. Mark a centre line along the 6 in. length of the 6 in . by sin. zinc plate; cut on the centre line a clearance hole to take the cold-water nipple. Now bend the sheet into U-shape with the drilled leg 2in. long and the base of the $\mathrm{U} I \frac{1}{2} \mathrm{in}$. deep. Fit the nipple into the tank, place the baffle over the nipple and tighten up the securing nut. It will be seen that the incoming flow will now diffuse over the plate. Details of this fixture are given in Fig. 2.

The hot-water outlet pipe (F) is now fitted and the tank is ready for mounting. Its final position should leave a Iin. gap between tank and wall for the application of lagging.

When mounted, the cold-water feed-pipe should be run and connected, with the feed tap in series, to the tank and to the existing cold-water supply. This may or may not be a job which the reader feels he can safely undertake himself; in any case, the local water authorities should be informed that the work is required.

Wiring to the Junction box

Attention is now turned to the electrical system, which is shown in Fig. 3. The three connectors are wired up, each with an individual "tail" which is long enough to reach the wall-mounted junctionbox (B) placed near to the tank at the thermostat end. All three tails are then paralleled. One lead (or group of leads, to be precise) is taken to the nearest terminal in the junction box and the other group

to an adjacent terminal. The thermostat is also connected to a tail and the tail taken into the box. One leg of the tail connects to a terminal carrying a heaters group, the other leg goes to an adjacent free terminal. If visual indication is to be added, connect a tail to a batten-fixing lampholder (A) and mount. the holder close to the junctionbox in a position which will be clear of the main cable run, still to be fitted into the box. Now take the tail into the box and connect one leg to that terminal carrying the thermostat and heaters connections; the other leg goes to the terminal carrying heaters only. Fit the connectors into their respective sockets and, using waxed twine, bind all the tails into one cableform. Support for the cables can be adapted from clips fitted over the lip of the tank.

Wiring to the Control Box and Earthing

The main cable is now run and connected to the control switch. If lead-covered cable is used, connect the sheath to the earth screw on the switch case; if three-cored, connect the green lead to the screw. Whether or not the switch has been previously connected to the main supply, withdraw the fuses and put them in some. safe place, apart from the switch, before starting the connection; this is a practice to be followed at any time when the work takes one away from the switch.
Now connect the green lead at the tank end of the cable to the earth screw on the tank. The remaining leads are cut to suitable lengths and connected:

Red lead to that terminal carrying a thermostat connection only;
Black lead to that terminal carrying heaters and an indicator connection together.

Checking Insulation and Continuity

The control switch is now ready to be connected to the house mains, if not already connected. DO NOT replace the fuses ; the installation must first be checked for insulation and for continuity, preferably by the electrician who connects the switch to the mains. If the reader has sufficient experience, the necessary meters and the desire to do the job himself, he should proceed as follows:
(a) Remove all connectors from the heaters and the indicator from its holder;
(b) Check for resistance between the feed terminals for the circuit; this should be infinity ;
(c) Replace one connector and check the resistance of the circuit ; this should be about 50 to 60 ohms ;
(d) Remove the connector; repeat the test with each connector in turn. In each case the readings should be very nearly the same.
(e) Using a "Megger," measure the leakage between each leg of the feed lines and earth; if the resistance is much below infinity, the circuit must be broken up and checked in parts until the faulty section is found. Remove the connectors before making this check.

Filling the Tank

When the circuit has been proved satisfactory, fill the tank. It is adyisable to stay near the cold-water tap as the level approaches the hot-water outfiow; the cold water enters under pressure, whereas the hot-water flow is by gravity only. It is possible, therefore, for the tank to flood if filled too quickly.

Applying the Lagging

When full, set the thermostat to its lowest figure, fit the indicators in their holders and switch on the electric supply. The indicator will immediately glow and remain so until the temperature of the water has reached approximately that set by the thermostat. During the heating period the lagging mixture may be prepared. Into half a bucketful of the mix add sufficient cold water to form a thick paste, somewhat like prepared cement. Wait for the tank to cut off, then switch off the A.C. supply. Now apply the lagging to the warm tank, using a trowel and finishing off with a soft distemper brush. Allow each layer to dry before applying the next and continue thus until at least in. thickness is built up. The element and thermostat fittings should be kept clear for future maintenance. In the writer's version no lagging was applied to the lid as it proved very useful for drying off kitchen towels and other "smalls." The back of the tank is lagged by temporarily blocking off the lower edge and then, from above, filling up the space with the lagging.

Fig. 3.-The electrical connections.
When the lagging has dried set the thermostat to the desired temperature and close the mains supply. The indicator should go out after about 40 minutes and the tank is then ready for service.

PRACTICAL MEEHANICS HANDB00K

7th EDITION
By F. J. CAMM
$12 / 6$, or by post $13 /$ -

3:-A Bench Tool Grinder

By "TUBAL CAINE"

(Continued from June issue)

NO workshop is complete without a small tool grinder foz sharpening lathe tools and small drills, and though there are several commercial designs on the market the construction of this equipment is well within the range of the average home shop.

Few amateurs find it convenient to have a pedestal machine, principally because the cost is too high, and they prefer to use their money in perhaps the purchase of some necessary hand tools; thus the bench type grinder illustrated at Fig. I is a welcome accessory and will soon repay the time spent on it.

As only one is required a pattern is unnecessary for the base and fabrication is adopted. If no welding torch and cylinders are available, a garage which undertakes welding repairs will for a reasonable sum soon fabricate this base.
Ball races are perhaps the most serious problem, and anyone contemplating the manufacture of this grinder should obtain them first and if necessary modify the design slightly to accommodate any which are not quite the samie as those shown in the drawings.

Next, the size of the grinding wheels should be decided and before finish turning the main spindle obtain a pair and use them to ensure the shaft is a good fit in the wheel bore.

The Design

The cross-sectional drawing of this grinder (Fig. I) does not include any guards over the wheels-an essential provision, as everyone acquainted with full-size engineering shop practice knows-but this is intentional and a separate drawing will remedy this omission.

The base is of mild steel with two pieces standing at right angles and shaped as seen in the end elevation. Bosses are attached each side of these plates, and these are simply discs of black or bright mild steel. A stiffening web is a useful feature because it adds support to the side members and also to some extent prevents the base from warping when this is machined.

All these details which go to make the base will not require much cutting out-the web and the side members only have an "irregular" form, and the squaring up process is easily performed if the parts are clamped to the boring table of the lathe.

The web also is a straightforward milling

carried out. There can then be no reason to
job and needs only another cut as shown in the elevation at Fig. 2. The side webs are milled to the I in. radius, half the boss diameter, by first drilling, say, a rin . hole at a centre corresponding to the boss centre and using this as a pivot when rotating it round the cutter.

As this base is going out of your workshop for welding you must make sure whoever carries out the work knows exactly where the side members are secured. Admittedly marked lines is an easy way out of this problem, but all readers are aware how easily such instructions are misunderstood, and if one side is perhaps $\frac{1}{2}$. too far from the opposite end, or has been welded out of square, the reader is left to make the best of a bad job.
However, you can make such a mistake impossible, and this is accomplished by attaching each side member to the base by screws or even simple pins driven into both details. Then the welder just runs his torch along the base corners, and he cannot misplace the two parts. There is no need for extreme accuracy-the pieces if set down to within, say, 1/32in. will ensure that the faces clean up correctly when the machining operation is
way as the orthodox flat thrust bearing. Four of these bearings are necessary and they are assembled in such a maniner that the load is taken in one direction by one bearing while the other end receives the pressure when in the opposite direction.

I had four of these bearings, hence they were included in the design, but if two plain rollers are available and two double purpose members this arrangement will serve provided the latter are assembled at opposite ends of the shaft and opposed to each other.

Caps hold the bearings in place and these are turned from either brass or bright mild steel according to the available metal, and each is spigoted about $1 / I 6 \mathrm{in}$. into the side pieces of the body. Screws secure them to the faces and the tapped holes pass-completely through the body. This is a necessity as you cannot drill, of course, from the inside as the opposite side piece is obstructing the drilling head.

Tapping the holes right through ensures. that the caps tighten: One can use a socket wrench from the inside, but the pitch circle of the screw holes must match closely. For

Fig. 1.-Cross-sectional, plan and end view

blame the garage hand, because the welded base is exactly to the dimensions you require.

The Ball Races

Two bearings are inserted into each of these side members and they are a type known as double-purpose thrust bearings. They serve a dual function-they act as ordinary roller races, but due to their design they are also able to take end thrust in the same
together by first placing them back to back with a short mandrel through the hole. If one has already been marked out the other must, of course, match perfectly. To drill the tapping holes accurately one of these caps is applied as a simple drill jig-first spotting each hole with the clearing drill and then changing that tool for another equal to the tapping size.

Two larger bearings are used for the fast pulley, and the turning and boring of this detail is a simple job, needing little description. One point which may escape notice is the edge where the two pulleys meet. I advise the reader first to turn the above-mentioned item and then, when turning the rim diameter of the fixed pulley, to make the edges match ; this will then ensure the leather belt is not cut every time the tool is ground. Do not forget, however, that there is a difference of $\frac{1}{8} \mathrm{in}$. in the diameters of these pulleys; this is to ensure that when running on the fast member no stretch is possible and a positive drive
is obtained as the belt is changed to the fixed member.

This fixed pulley is secured to the wheel shaft by a substantial grub screw, and at least s/i6in. Whit. or हin. Whit. is suggested. Drill the crosshole and tap it. It may be contended that the threads will become damaged, but unless you prefer to do this operation on assembly-and it can prove a little awkward-then tap the pulley at this stage.

An important factor with this type of design is the locking arrangement, because if this is not provided continued vibration will cause this grub screw to slacken. The problem is solved quite easily. One grub screw is first inserted and "bites" hard on the dimple countersunk into the shaft, and for this a screw with a matching point is required. Next a. small screw is again screwed down hard on top of this member, and to make certain they both do not become looscned the remaining tin . is filled with solder and smoothed off to correspond to the pulley diameter.

This assembly prevents vibration from causing the initial grub screw to become slack and so allow the pulley to rotate on the shaft. It may appear an elaborate precaution to take, but once set this pulley will possibly go on working for years without further attention.

The Wheels

This design has one extremely useful feature in that wheels of different grades are introduced on the spindle and will permit the reader to use one for the grinding of lathe tools while the other end is used for the sharpening of tiny drills.

Alternatively if you undertake a fair amount of polishing, then one end is modified from the design illustrated in these notes and made to suit a polishing bob. Note particularly that the threads are opposite hands, as shown in Fig. I. In all the drawings, normal English projection is used.

Incidentally, underneath the grinding wheel

Fig. 2.-Details and dimensions of the base, side members and web.
locking nuts there appear some rather large washers and identical parts are also seen on the opposite side of each wheel. The actual diameter of these will depend on the grinding wheel, but they should not be made too small, as they lend considerable support, especially when side grinding.

Wheel Speeds

The maximum r.p.m. at which to run the grinding wheel is stamped on the label attached to the wheel, and this figure must
never be exceeded. If the label becomes torn off a close estimate is achieved by using the following formula. A surface speed of about $5,000 \mathrm{ft}$. per min. is desirable, and assuming the wheel as 6in. dia., then

$$
\text { R.P.M. }=\frac{S \times 12}{\pi \times D}
$$

where $S=$ surface speed in feet per minute and $\mathrm{D}=$ the wheel diameter. Substituting values we have :

$$
\frac{5000 \times 12}{\pi \times 6}=\frac{5000 \times 2}{\pi \times 1}=\frac{10000}{3.14}=3185 \text { or }
$$

3250 approx.
As a matter of interest you can check this against any information printed on the label of a wheel, but you must never exceed the number of r.p.m stated by the manufacturers.

The Assembly

Those experienced in this class of work will take one quick look at the assembly drawing and proceed to put all the parts in place without further explanation from the author, but others may appreciate a few words of advice.

First attach the two inner ball race caps to the vertical " brackets," using for preference socket head members-these are tightened with a wrench and not a screwdriver Put two races on one end of the shaft and then push it through the hole in the plate, threading on the pulleys while doing so. You will of course, have inserted the races in the fast pulley beforchand, and you must take particular note which way round you offer the shaft. Remember the left-hand thread must appear on the left-hand side viewed as you stand in front of the machine-this is important, and failure to observe this rule means the nuts will become slack due to wheel rotation, and there is a risk they will fly off.

Next push the two remaining ball races into the hole and secure the outside retaining plates, making sure, of course, as you should have done with the previous pair, that the races are opposed and are thus able to resist the thrust brought about when you grind on the side of a wheel. You must - check as you go along to see that the races are perfectly free to rotate without any trace of stickiness, as this indicates they are being distorted. When everything appears satisfactory drill the dimple in the shaft, using, as previously stated, the hole in the fixed pulley as a pilot.

Cover over the parts to prevent any swarf entering the ball races, but if care is taken the small amount from this operation should not create difficulties. Merely turn the pulley carefully and tap it gently, and the swarf
will drop out.
Drill a good dimple and see that the grub screw point matches the countersink. To make certain of this first drill a trial point on a scrap piece of material and offer the screw to it.

The Tool Rest

This detail is a simple affair and no attempt has been made to elaborate the design from what, after all, is only a tee piece. The commercial grinder may specify a pivoting arrangement to allow angular tool grinding,
but from the author's experience these gadgets have a limited appeal.

Two rests are needed and these fit into holes bored in the bosses welded to the base. The shanks should slide fairly easily, but without too much shake. Cut out the centre where the tools rest on the plate and allow each side to extend round the grinding wheel slightly. This provides a platform for the tool when side grinding.

The Striking Gear

Moving the belt from the loose to the fast

Fig. 3.-Details of the tool rest.
pulley is accomplished by simply sliding the horseshoe-shaped steel bracket along the two pins situated at the rear of the grinder; an action which is quite easy if the pins are not a tight fit in their respective holes.

The bracket is made in two parts, the horseshoe being bent from $3 / 16 \mathrm{in}$. steel plate, and a rectangular block of steel inserted between the ends. A brazing or welding operation will hold both details together, whereupon the holes are then drilled. There is no need to ream these, and if a drill $\mathrm{I} / 64 \mathrm{in}$. larger than the rod size is used then the bracket will slide without sticking.

The rods are made from lengths of bright mild steel faced off to bring them flush when the retaining collars are placed in position. The latter are pinned as shown by two short pieces of silver steel.

At the top of this horseshoe a hole is drilled and reamed and another pin or handle is inserted and riveted over. Alternatively, instead of reaming, a tapped hole is provided and the last thread is used as a countersink for the riveting process-the end of the handle being tumed over into the tiny depression.

Making the actual gear is not difficult, but one operation needs a little care if an easy belt shifting is desired. Two holes in each end bearing bracket are necessary where the rods pass through and so secure this assembly to the base. Correct linearity is essential. I would not advise drilling these with a long extension drill as there is a possibility that after the first hole has been pierced the second member will wander from a true path. One edge of the base is machined during the initial stages and this is used while boring the main holes and other sundry operations. One hole is drilled while this face is located against a strip clamped to the boring table of the lathe, and on completion of this stage the base is turned round 180 deg. and again pressed to this strip. The resulting two holes are then in line.

Again a tight fit is not really necessary and a drilled hole will suffice, though I prefer to ream such holes as these. It takes longer and is perhaps more difficult to ensure they are perfectly in line, but too much slackness gives the appearance of poor workmanship, so endeavour to ream them if you have the necessary tools.

The Guards

Wheel guards are not a luxury but essential
details which you must provide for your own and other people's safety. Flying dust striking the face is not a pleasant experience, and a piece of grit in the eye is occasionally awkward to remove. Secondly, wheels are known to break, and though a guard will perhaps not stop all the fragments it can prevent a nasty accident.

The drawing at Fig. 4 illustrates a fairly simple affair made up from $\frac{1}{8}$ in. steel plate. The "box" consists of two pieces brazed together round the floor, and three small bosses also brazed to the side walls provide the metal through which the studs_securing the cover are fitted. The latter detail is also made from $\frac{1}{f i n}$. steel plate and cut to the outline as shown on this drawing. A small wheel is drawn in this example to draw attention to the fact the inside of this guard must clear the outside diameter of a new wheel; an obvious fact when pointed out, but one which the tyro reader is liable to overlook unless he has that new wheel already to hand. Therefore obtain the grinding wheel before commencing the construction of these guards and make the inside diameter of each "box" about $\frac{1}{2} \mathrm{in}$. larger than that detail; adequate clearance is then achieved. Do not, however, forget that these members are "handed"-the bottom bracket used for attaching them to the base is reversed for the guard on the opposite side, otherwise you

Fig. 4.-Details of a simple shield
cannot fit it correctly. This bracket is merely a piece of mild steel shaped to suit the curvature of the box, and brazing will again hold it in place.

Do not make these guards until the tool rests are completed and then you can observe whether there is enough clearance for that item. The drawing at Fig. 4 shows the gap in the cover and box as being well clear, but if you decide to fix another type of tool rest, then obviously this question of clearance will arise and need attention.

General Notes

No holes are shown in the base for fixing the grinder to the bench, but these you will space according to your own requirements. Three are sufficient and to avoid bolt heads
protruding use socket-head screws, counterbore the plate and hold the grinder with nuts underneath the bench.

Some readers may criticise the distance between the grinding wheels as being excessive and assert that a reduction here is feasible. This is correct, but only by reducing the pulley widths and outer bearing thickness. In the case of the latter it will mean using only one double-purpose thrust bearing at each end (a feature in the design I would not favour) and a reduction in the belt from I 1 in. to in . This is a matter of personal opinion, but I prefer the wider member and fitted it on my grinder.

Dust exclusion is another point which may raise some doubts, and on this type of grinder is not easy to include. If the end caps are bored just to clear the wheel shaft (about .002 in.), then this eliminates dust in the outer bearings.

For the bearings in the pulley readers can fit if they wish a thin sheet-metal cap about $\frac{1}{8} \mathrm{in}$. thick on the side adjacent to the fixed member. If this is turned to fit the recess only a push fit is required; then it will prevent dust entering down the gap between the two pulleys. The recess for the ball races wil! require deepening another $\frac{1}{8} \mathrm{in}$. for this arrangement.

Finally, when all the parts are made and assembled to your satisfaction, give the base, side brackets, end caps and the sides of both pulleys a coat of paint, matching the general colour scheme of your workshop or lathe. Incidentally many machines are painted battleship grey, but I prefer a dark green, as oil seeping down the castings, as it does occasionally, will not look so unsightly. But this does not mean you must not keep your machines clean; a weekly wipe over of this grinder and lathe will preserve their good looks.
(To be continued.)

Aluminium Exhibition

THE Aluminium Development Association recently staged an exhibition at the Royal Festival Hall in London to show British industry's part in developing the many uses of aluminium.

An aluminium double-decker bus designed by London Transport engineers was shown. A prototype, and still undergoing tests, it is Gin. wider and Ift. longer than the standard London bus.

Also on view were railway coaches, one of which has been in service on the London Underground system.

French Train Travel at 87 m.p.h.

FOLLOWING recent train trials in France, it is said that, by 1960 , people will be travelling at $87 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. with a robot engine driver in control.

Trains would not be without an engine driver, in spite of the recent experiment when there was no driver, but his work would be reduced to a very simple routine. Starting the train, speeding it, slowing it up and stopping it would be done by people outside the train at different points on the line.

During the recent trials, it was a man stationed some 10 miles away who by shortwave control started the train, and it was slowed up and stopped by another man many miles farther on.
"Atomic Boiler" for U.S.

T'I was suggested at the annual meeting of the Institute of Boiler and Radiator Manufacturers in New York recently that it should be possible by 1958 to start producing home heating and cooling systems operated by baby nuclear reactors. These reactors would be about twice the size of car batteries.

Mr. Ferry, general manager of the institute,

said that the only thing that might hold up the manufacture of "atom boilers" was an inadequate supply of fissile material at economic prices.

A single charge of fissile material hermetically sealed in the reactor would last for six years and cost about $£ 100$. When the charge was exhausted the reactor would be replaced with another sealed unit.

The reactor would be connected with a boiler which would be situated in the basement or garage. The entire installation for a new house would cost about $£ 500$ and this would be less than the cost of a conventional heating system, because the chimney and flues would be unnecessary.

Car TV Set

MR. ARTHUR PARKES was issued 1 I recently with the first private "mobile" TV licence in Britain. It cost him $£ 3$.

The TV receiver is installed in his van and employs the ordinary gin. screen.

It is run from the car battery. The aerial is a single pole fixed to the side of the van.

Plastics Exhibition

SURGICAL jackets which. can be made and fitted within two hours were displayed at the third biennial British Plastics Exhibition held at Olympia. Bones made from the same plastic have been used in a number of surgical operations.

Tunnel Record

$T 1$HE world record for tuinnelling has been broken on the huge Snowy Mountains hydro-electric project. Men drove 420 ft . of tunnel, 24 ft . in diameter, into a mountain in six days. Previous record, in California, was 363 ft .

New Patrol Boat

THE first of the Navy's new fast patrol boats to be powered by Deltic diesel engines was recently accepted into service. A number of this craft are being built for the Admiralty by firms throughout the country.

Three types of fast patrol boats are being produced under the present programmethe Bolds, each II7ft. long, and the Gays and Darks, which are smaller. In the Darkclass boats, of 64 tons, aluminium alloy is used for the framing and deck. Their length is 7 Ift. , beam 19 ft . and draught 6 ft .
They can be armed either as motor torpedo boats or motor gunboats. As gunboats they mount either a $4.5-\mathrm{in}$. gun and a single Bofors, or two single Bofors. As torpedo boats they have four single above-water torpedo tubes and one small gun.

New Rifle

ANEW Swiss automatic rifle, the Sig-am-55, has been demonstrated to military experts. It is said to be better and lighter than the FN weapon used by NATO troops.

63,000,000 Egyptian Refinery

T. COL. NASSER, the Egyptian Prime 1 Minister, recently laid the foundation stone of a $\$ 3,075,000$ oil refinery near Cairo. The refinery, which is being built by a Milan firm, will process locally produced crude oil carried by pipe from Suez.

ALTHOUGH I am not a camera "addict," I have always wanted to own a really small camera capable of taking pictures under practically any conditions-the finished pictures also had to be cheap. With these objects in mind, I made the 16 mm . camera described below, with only limited facilities and no lathe or expensive workshop equipment.

Having made the camera, I completed the outfit by making an everready case, a developing tank from a plastic shaving-stick holder (see photographs) and an enlarger.

The results from this equipment exceeded my expectations, and I can get grain-free enlargements up to 6 in . $\times 7$ in., using fine grain film and developer.

Figs. 1, 2 and 3.-Details and dimensions of the body front, body back and faceplate.

The overall inclusive cost of a finished quarter-plate print works out at about a penny allowing for film (seven exposures for a penny), developer, fixer and printing paper.

Details of Construction

The following instructions are given as a guide only. As the original camera was made from available scrap parts, certain substitutions may have to be made by individuals, whilst those who possess a lathe will obviously be able to make modifications.

It will be noted that the external parts of the camera are matt chrome plated. This can

The camera in ever-ready case and the developing tank.
body and solder on the cocking lever (Fig. IOA) in a vertical position with the shutter leaves in their rest position against the stop pin "D" (Figs. 23 and 25).

Check that the main leaf catch plate engages with the shutter catch when it is carried up to the cocked position by the capping leaf, and

Fully. Dimensioned Drawing 16 mm . Size Camera
that when the shutter button is depressed it allows the main leaf to return to stop " D ."

Solder on the spring pegs B and C approximately as shown in Fig. 25. Make up a 30 s.w.g. piano wire return spring for the capping leaf, and wind on over the head of the shutter spindle (Figs. 23 and 25).

Shutter Linkage

Make the links shown in Figs. II and 12 together with the spindle shown in Fig. 7 This spindle can be made from a radio terminal shank, in which case the hole diameters in the main lever and camera body should be made to suit the particular terminal diameters.
Connect the short link to the main link and rivet over the pin, ensuring that the links are free-moving. The long pin on the short link engages with the short length of brass tube soldered to the main leaf gearwheel shown in Fig. 15.

Assemble the main lever and spindle with the shutter spring. This spring is made from two coils of 30 s.w.g. piano wire, one end
 To assemble the shutter, thread the main leaf on to the capping lever spindle, with a thin brass shim washer between them. Insert the spindle through the hole in the
This is attached to the body front by a ${ }_{1}{ }_{\mathrm{G}} \mathrm{in}$. diameter pin soldered in the hole in the body. Solder a capping disc on this pin and fit a $30 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. piano wire spring to hook up with the stop pin " A," as shown in Fig. 25 .

Shutter Assembly

Build up the shutter leaves, as shown in Figs. 15 and 16. It is essential that they are perfectly flat and have no sharp edges.

The position and size of the flywheel bracket is given only approximately, as it depends on the diameters of the gearwheels used.

Before final assembly of the shutter, fit the flywheel (Fig. 13) and main leaf, and ensure that they run smoothly together without lubricant.

Solder siprimgs to pressure

Fig. 6 (Right).Assembly of film carrier and details of the springs.

Fig. 7 (Right)--Side elevation and plan viezo of the shutter lever spindle.

Base removed and loaded ready for replacement in the body.
being anchored in the hole in the spindle, the other bearing on the lever, as shown in Fig. 24.
This spring is of critical stiffness and may have to be modified as regards turns and gauge to obtain a satisfactory shutter speed range, depending on the friction of the completed shutter system.

Fig. 14 (Left).-Details of the shutter catch.

Figs. 15 and 16.-Main shutter leaf and capping leaf details.

$$
\begin{aligned}
& \text { (Left).-View of } \\
& \text { the completed } \\
& \text { camera. }
\end{aligned}
$$

Camera Base

Figs. 4 and 5.-Details and dimensions of top plate and base TOP AND BASE COVER PLATES IBSWG. Bras: Mart chromium plare before assembling plate and lop and base cover plates.

It should be noted here that none of the shutter mechanism should be lubricated, as the changes in viscosity will upset the speeds. All bearings should be dry and free fits.

The time exposure catch is shown in Fig. 19, and is mounted as shown in Fig. 25, being positioned so that when the shutter speed lever is just below horizontal the small lug "L" (Figs. 24 and 25) pushes the catch base upvards, thus causing the beak to move across and stop the main shutter leaf when the shutter aperture is open.

To complete a time exposure re-cock the shutter.

Figs. 8 and 9 (Left).-Details and dimensions of the film back plate and pressure plate.
ISSEMBLY OF FILM CARRIER
ate

ASSEMBLY OF BASE (10)

Sweat the base and base cover plate together (Figs. 4 and 5) as shown in Fig. 10, then solder in the spool pillars. Drill the $\frac{1}{8}$ in. diameter hole through the base for the base securing screw which engages with the nut soldered on the body backplate (Fig. 2).

Make the parts shown in Figs. 8 and 9 and assemble as in Fig. 6. The pressure plate and backplate must be absolutely smooth to prevent scratching the film as it passes through.
Solder the above assembly to the base as shown in Fig. 10, ensuring that it is square with the base and parallel to the camera front.
A large-headed chrome screw is used to attach the base to the camera (one from an old cigarette lighter is ideal).

Film Spools

Alternative methods of making these are shown in Fig. 17, depending whether a lathe is available.

Winder Assembly

The winder knob may be turned up or made from scrap with a 4 BA nut soldered in the base.

$$
\begin{aligned}
& \text { Swezt together } \\
& \text { Solder in } \\
& \frac{1}{6} \text { pillars } \\
& \frac{10}{1-75-1}=1
\end{aligned}
$$

Fig. 10 (Left).Assembly of base. Figs. IOA and II.Details of the cocking lever, shutter speed lever and shutter lever.

Saring peg B

\triangle BA. Clamo screw
Front body

Fig. 23.-Section through shutter assembly.

Fig. 24.-Section through shutter speed spindle.

Figs. 12 and 13 (Left).-Shutter link and flywheel details.

The winder shaft can be made from a 5 amp . electric plug pin which has a 4BA shouldered end. Use pin slot to locate the winder key and solder it in position as shown-in Fig. 20.

When the winder is finally assembled in the camera, a rubber washer, two metal washers and a $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. piano wire spring are required, as shown in Fig. 25.

The winder numbering shown is used, since one-half turn of the winder turns on one exposure. Thus, by using two counting pointers (a dot and an arrow on the camera top cover plate), one has only to remember the tens, i.e., starting with I on the arrow, one counts off $1,2,3$ up to 0 (0 signifying 10). Transfer counting to the dot. Wind 1 to the dot (representing II) and so on until o is on

Fig. 17.-Two methods of making the spools and Fig. 19.-Details of the time exposure catch.
the dot (20), then begin again on the arrow with I (2I), and so on.

Viewfinder Box

Make up as shown in Fig. 2r. After plating, cover the viewfinder apertures on the inside with Perspex sheet attached with Bostik adhesive.

Figs. 20, 21 and 22.-Winder assembly, view: finder box and meter principles.

Exposure Meter

This item is optional, but a description of its construction is given below.
Fig. 22 shows a diagrammatic section through the unit which comprises two short lengths of brass tube sleeving together. The front tube contains a disc of roughened Perspex to act as a diffuser. Stuck to the back of it with Durofix is a disc of polarised gelatin from a pair of the 3-D spectacles issued at cinemas.

The other tube has a similar disc of polarised material stuck to its front end The other end a smed the bat on front end. The other end holds a small lens extracted from a toy microscope.

At the focal length of this lens is a small graticule made of copper sheet with three holes punched in it with a needle and the burrs filed off. These holes are covered with one, two and four thicknesses, respectively, of

the backs of the shutter leaves and links.
Solder on the body back ensuring that the base is a snug fit into the body and that the base screw engages with its nut.
Attach the top cover plate and viewfinder assembly to the top of the camera, using Bostik adhesive. Assemble the winder into the body.
Check that the body is light tight around the seams. Pinholes may be filled with Bostik.

Lens Adjustment

Place a short length of unexposed film into the film carrier to act as a screen, and insert base into camera. Screw lens into adaptor ring and open shutter on "time."
Examine the image of a distant object through the hole in the back of the camera

Fig. 18 (Above)-Details of the cassette clip.
Fig. 25B $\cdot($ Right $)-A$ plan vierv of the camera with top removed.
translucent material. (Cigarette paper can be used for this.) This is a particularly tedious job, but it can be done.

By rotating the eyepiece the amount of light falling on the graticule is varied by the polarising effect. Three positions of the eyepiece are marked such that the minimum, mean and maximum amount of light are transmitted. There are thus nine different intensities of light visible as a dot through the eye-piece and this enables it to be used as a conventional extinction meter by reading the lowest visible dot when pointed at the subject.
The meter must be finally calibrated against another meter, suitable speed-exposure ranges being chosen to suit the shutter and lens.

Lens and Mounting

The camera lens must be of in. focal length with a built-in iris diaphragm. A 16 mm . cine-camera lens can be bought from about $£ 3$-second-hand.

The lens is attached to the camera front cover plate by a suitable adaptor ring. This can be bought from a camera dealer.

Attach the adaptor ring to the front cover plate with four countersunk 6BA screws, and the plate to the camera body with three selftapping screws. These should be filed flush inside the camera body.

Assembly

First give the inside of the camera body a thin coat of matt black cellulose, taking care that none is put on the gear teeth and only on
with a small magnifying glass. Screw the lens in and out of its ring until the sharpest image is found. Mark this position.
The final position is found later by taking a series of pictures with the lens in various positions around the first found one. Pick the sharpest negative and permanently mark this position on the lens and adaptor ring.

Final Finish

Touch up the black cellulose inside the camera where necessary.
Cover the camera body with a piece of black leathercloth (the cover of an old diary is large enough), attaching it with Bostik adhesive.

It should be noted that the end of the flywheel shaft must be protected from rubbing on the leathercloth by blanking it off with a small disc of brass shim before applying the Bostik. Trim off the excess cloth round the camera with a razor-blade.

Shutter Speeds

It now remains to calibrate the shutter speeds and to mark them on the faceplate.

The method of calibration depends on the facilities available, but the principle of photographing an object moving with a known velocity, and measuring the length of blur on the negative, is probably the easiest.
(Continued on page 459)

A SUMPLE LABORATORY REFFRIGERATOR

A Small Unit Operating on Compressed Air for the Home Laboratory By J. E. CRAWFORD STRINGER

IT not infrequently arises in the course of experimental work that a refrigerator can be a useful piece of equipment to have on hand to employ for certain jobs. Unfortunately, a refrigerator of the conventional compressor or absorption type is fairly expensive, and the budget of the small or amateur establishment may not be able to support such an expenditure. It is also true that should the need for a refrigerator only arise very occasionally, it may not be considered worth while to instal a costly piece of equipment, which may well be idle for 95 per cent. of its time, even if the outlay can be afforded.
The following is an example of this kind of occasional work needing a refrigerator: some time ago it was desired to make a few determinations of the average molecular weight of some waxes, using the cryoscopic
nozzle of suitable proportions at approximately the speed of sound, viz., 760 m.p.h., equivalent to $13,350 \mathrm{in}$. per second. If the casing has an internal diameter of 0.25 in ., its periphery will be $22 / 7 \times 0.25=0.785 \mathrm{in}$. and the rate of rotation of the air mass inside the casing will be 13,350/0.785, or 17,000 revs. per sec. At this extremely high speed the centrifugal force operating on the air mass is large and causes the air around the inside surface of the casing to be compressed and the air at the centre of the casing to become rarefied. Associated with the compression there is a heating effect, and with the rarefaction a cooling effect. Thus the spinning mass of air may be considered as divided into two zones, a compressed and heated outer shell and a rarefied and cooled central core. With the sizes and conditions given and using a suitably designed nozzle, the hot air may reach a temperature of 135deg.F., and the cold air may fall to -sdeg.F., the compressed air supplied being at $65 \mathrm{deg} . \mathrm{F}$.
In order to be able to utilise the cold air core as a refrigerating medium, the nozzle is mounted tangentially at one end of an elongated casing (bodytube), provided with a diaphragm placed close

mentioned in the foregoing description), oric, for the hot (waste) air and one, for the cooled air. These silencers take no part in the functioning of the apparatus as regards cooling, but a Ranque tube, when operating at full air flow, creates a nearly unendurable amount of noise which, while it may not be actually harmful, is decidedly unpleasant. Therefore the inclusion of the silencers is strongly recommended.

It need not be regarded as necessary to adhere rigidly to the materials of construction or the exact sizes indicated in the drawing for most of the parts, except in the making of the body-tube, nozzle and diaphragm assembly where departures from the proportions given may cause the unit to fail to give the best results. The conventional Ranque tube has a diaphragm with a plain central hole; however, referring to Fig. 2, it will be seen that a modification of the diaphragm has been introduced as the result of development carried out by the author. This modification consists in providing the central hole of the diaphragm with a sharp-edged rubular entry and exit, after the manner of the Borda orifice, familiar in hydraulic work. The object of the modification is to reduce the air pres-sure-head losses in traversing the diaphragm and thus to raise the overall efficiency; an appreciable lowering of the cold air temperature, amounting to up to Iodeg.F., is obtained by its use.
(or freezing) method, where a small weighed portion of the sample is dissolved in a solvent and the change in freezing point caused by the addition of the sample is employed as the basis for calculating the molecular weight.

The Ranque Tube

It may not generally be known that there exists a pneumatic cooling device designed originally by Ranque, which can be used to provide the cooling unit for a simple refrigerator. This device is operated by compressed air.
The principle of this simple and elegant device may be understood by reference to Fig. I. Compressed air at rest has potential energy (A). If allowed to escape to atmosphere through the medium of a gently tapering nozzle, this potential energy is converted into kinetic energy in the fast-moving jet of air (B). In the Ranque tube this air jet is directed tangentially into a hollow casing (tube) as in C , where it is deflected and guided round the inside of the casing. Thus the kinetic energy of the jet is used to create a spinning mass of air inside the casing, rotating at an extremely high speed.

Speed of Rotation

Some idea of the speed of rotation will be obtained if it is taken that, under average conditions, compressed air at from 60 to solb. per sq. in. will issue from a tapered
beside the nozzle, as in Fig. 2. At the far end of this tube is fitted an adjustable flow-restricting valve, see Fig. 3, constructional, and Fig. 4, layout. In use, this valve is closed sufficiently to create a slight positive pressure, with respect to atmosphere, inside the body-tube, so that the cold core of air is expelled through the central hole in the diaphragm, leaving the hot shell inside the body tube, where it flows in a spiral path down to the restricting valve and escapes to atmosphere. By fitting a suitable duct to the body-tube at the nozzle' end, the cold air may be led into a thermally-insulated box or cabinet and circulated over objects placed inside to refrigerate them.

Practical Layout of a Complete Unit

Fig. 4 shows the layout of a complete unit arranged on a baseboard. It will be noted that the drawing shows two silencers (not

7/8. long Turnal, etc. take-off tube slotted to pass
nozzle. Push tit on body tube
Fig. 2.-Body tube, nozzle and dīaphragm.
of the longitudinal seam should be effected using the minimum of soft solder, none being allowed to get inside the nozzle where it might obstruct the free flow of air.

The tangential slot in the end of the bodytube in which the small end of the nozzle is inserted should be made carefully with a jeweller's fine square file, the slot being made of a size so that the nozzle will push in and remain firmly in position to facilitate the soldering operation. The slot should be taken to such a depth below the end of the body-tube, say $1 / 64 \mathrm{in}$., to allow for the thickness of the diaphragm which will later be soldered into the end of it, alongside the nozzle. It is an advantage at this stage to fill the nozzle with a pledget of soft, unravelled asbestos string to prevent solder from entering.

When the nozzle is soldered into position, the strengthening strut, which also forms the supporting bracket, should be added. Any portion of the nozzle that projects slightly into the bore of the body-tube may now be removed using a jeweller's rat-tail file or some very fine glasspaper rolled up into a pencil shape. The entry of the body-tube should be opened out, say, 0.001 to 0.002 in., so that the diaphragm may be pressed in lightly.

The entry and exit tubes of the diaphragm may be formed in one piece from brass foil, 0.003 in . thick, rolled into a tube round a drill-shank ; matters should be arranged so that this tube is a tight spring fit in the hole of the 6 BA brass washer that forms the diaphragm. The amount this tube projects into the body-tube is important and for the best results it should project onc-half to three-quarters of its diameter, say $3 / 64 \mathrm{in}$. It may then be soldered in place. The completed diaphragm may then be fitted into the body-tube and lightly soldered into place, taking care to use the minimum of solder so that none enters the body-tube to form blobs that might interfere with the smooth rotation of the air inside. The asbestos string should, of course, be removed.

Cold Air Take-off Tube

As any transfer of heat from the body-tube to the end where the diaphragm is represents a loss of cooling effect, the take-off tube should be made of a poor heat conductor such as
tube has one end annealed by heating to a dull red in a gas flame; a 2 BA steel nut is filed into a six-sided equi-angular pyramid and driven into the annealed end of the tube to open it out to a hexagonal shape to hold a 2 BA nut into which the 2 BA screwed stem carrying the fibre plunger fits. A side hole about $\frac{1}{4} \mathrm{in}$. dia. is made in the side of the restrictor tube and the edges dressed smooth. A knob should be fitted to the free end of the 2 BA stem so that the fibre plunger may be set to give any desired degree of opening of the side hole, as required, by rotating the knob.

The annular silencer shown is packed moderately tightly with domestic steel wool; this is restrained from blowing out as shown. The back pressure associated with this type of silencer provides part of the flow-restriction necessary to make the refrigerator work.

The Cold Air Silencer

It is desirable that this silencer should offer the minimum resistance to air flow through it as any pressure drop at this point represents, in effect, a lowering of the available head of the compressed air supply. For this reason a straight-through design has been chosen after several trials; this pattern also has the merit of being the simplest of those tried as well as being the most effective as regards low pressure drop and effective silencing. The same kind of steel wool as was used in the annular silencer, already described, is employed, but whereas in the annular one it was packed only moderately uightly, it must, for this straight through type, be packed quite firmly. The best way to do this is to form the steel wool into a flat ribbon about $\frac{1}{2} \mathrm{in}$. x

Casing $1 / 10$ bore, $31 / 2$ long
Tufnol or brass, etc. piunger, slide fit

Fig. 3.-Flow restrictor, annular silencer and cold air silencer.
ebonite, tufnol, etc. A slot is filed in the ênd that fits over the body-tube, to embrace the nozzle; a clip tightened by a 8 BA nut and bolt encircles this slotted end to fasten the take-off tube to the body-tube, otherwise the severe temperature changes will soon loosen the take-off tube.

Combined Flow-restrictor Valve and
Annular Silencer
A neat form of flow-restrictor is shown in Fig. 3; it is also simple to make. The requisite length of $5 / 16 \mathrm{in}$. copper or brass
will be dictated by the requirements of the individual constructor, but a suitable design for small-scale experimental work is shown in the drawing, Fig. 4. The outer shell of the cabinet is made from hard-board sheet, $3 / 16$ in. thick, neatly sawn to size with a fine-toothed panel saw, then assembled with fine panel pins and balsa cement. The inner cold chamber may be of the same material. This inner chamber and the outer shell are joined together by a square wood ring, using wood screws; before assembling, holes for the cold air inlet pipe should be made and

Hole for thermometer Cold chamber 3 "s $\times \times 7 / 2 \mathrm{dp}$. Cold air exit

Fig. 4.-General layout and cabinet. R--Ranque tube; F-Flow restrictor; A-Annular silencer; C-Cold-air silencer.
lin. and wind it spirally on to the central slotted tube and then to compact the wool by applying the insulating tape sheathing spirally under moderate tension, two layers are used to make sure no air leaks are left. The completed silencer is then sleeved with a few layers of felt or wool cloth to afford heat insulation, the end turn seam is then neatly stitched.
Refrigerator Chamoer Construction
The general design of the cold chamber
the space round the cold chamber filled with cotton wool. A simple lid is made from two squares of Celotex (or similar material), one cut to fit inside the cold chamber and the other cut slightly smaller than the overall dimensions of the outer shell, they should be cemented together, not nailed, to avoid heat conduction. A coat of good quality aluminium paint applied to the exterior surfaces will assist materially in preventing the ingress of unwanted heat.

Assembly

The components should be secured to a neatly planed and painted or varnished baseboard made of about $\frac{3}{4} \mathrm{in}$. thick material, stiffened by two $2 \mathrm{in} . x \frac{3}{3}$ in. battens, fastened with screws from underneath. Four rubber feet of the type used for electrical meter cases will make a useful refinement. Details of the manner of securing the refrigerator cabinet to the base board are shown in the drawing. Whether to mount the cabinet vertically as in the drawing or otherwise is a matter of choice for the individual constructor, who will be guided by the shape and number of the objects he desires to refrigerate. The vertical position, with the lid on top, is to be pre-
fered as it tends to prevent the entry and circulation of room-temperature air when the cabinet is opened, as compared with a cabinet fitted with a door in the side

The metal straps holding the annular silencer in position may be of $5 / 16 \mathrm{in}$. x 1/32in. brass, fastened down with No. 6 woodscrews ; larger screws should be used for the nozzle bracket, say No. 8, in order to withstand any accidental jerks on the air hose This latter must be stout canvas-inserted hose and clips should be used to fasten the ends securely against blowing off.

Testing

To try out the assembled refrigerator, the knob and screwed stem controlling the position of the plunger of the flowrestrictor should be turned anti-clockwise to open the side hole in the restrictor tube fully The stop-valve of the compressed air supply should then be opened sufficiently to give a moderate flow of air from the exit of the annular silencer. The flow-restrictor should then be closed sufficiently to cause some flow of air into the refrigerator cabinet; a thermometer should be placed in the hole provided in the lid and its reading should start to fall. The compressed air flow may then be turned on to its full value and consequent temperature fall indicated by the thermometer noted; adjustment of the flowrestrictor should be made to obtain the lowest temperature. It generally happens that
(Continued on page 45r)

DOLLONDS

of the Strand
 TEMple
 428, STRAND, LONDON, W.C.2.

Come and see the new interior at " 428. " The rebuilding of our premises is complete. The photographic and instrument departments have been re-designed and improved enabling us to display a much greater varlety of stock. Here you can examine at lelsure all the different models and you will be sure to find something new or second-hand to add to your pleasure. We list a selection from our stock of Binoculars and Telescopes.

BINOCULARS

$6 \times 18 \mathrm{~mm}$. Zelss Telita, central focusing, case, $\mathrm{E} 16 \mathrm{l6s}$. Od.
$6 \times 18 \mathrm{~mm}$. Goerz Trieder, cent. foc. without case. 5665 . 0 .
$6 \times 24 \mathrm{~mm}$. Deraisme, eycplece focusing, case, f7 18 s .60 .
$6 \times 24 \mathrm{~mm}$. Zelss, eyeplece focusing, case, $£ 10$ 10s, Od.
$6 \times 30 \mathrm{~mm}$. Dollond eyeptece focusing, case
$7 \times 30 \mathrm{~mm}$. Ross Stepnada. cent. foc., coated lenses, case. $\mathbf{i z} 20$.

$8 \times 25 \mathrm{~mm}$. Skyrop. central focusing, case, es8, 17%. 8 d .
$9 \times 35 \mathrm{~mm}$. Ross Stepruva, cen. foc,., ctd. lenses, case. $£ 2810 \mathrm{~s}$. Od.
$10 \times 40 \mathrm{~mm}$. Lumina, central focusing, case, $£ 1210 \mathrm{~s}$. Od.
$10 \times 42 \mathrm{~mm}$. Barr \& Stroud, eyeplece focusing, coated lenses, case as new, \&30
$8 \times 30 \mathrm{~mm}$. Lumina. cent. foc. case. E9 10s. 01.

TELESCOPES

Dollond Astronomical. 23 m . O.G., one terrestrial eyeplece and two astronomical oyepleces, tall tripod, £32. in. Dollond Target Major, ditto
$4 \frac{\mathrm{in}}{}$. Zeiss Asenglar, revolving prism eyepieces, magnifications x $15, ~ x 30, \times 50, ~ £ 75$. Zeiss $21 / \mathrm{n}$. O.G. Astronomical Telescope, x 47, x 94, prism erector, mounted on hall stand, 25.
Zeiss Starmor Prism Telescope, 60 mm . O.G.. fitted with three revolving eyepieces inn. O.G. Telescope magniffations $x 12, x^{2} 24$ and $x 42$, tall stand, 850.
in. Astro. Object Glass. 401 n . foc, length. in brass oell, 21415 s .04.
Britex Spotter Telescope, 1 th . O.G., pancratic eyeplece, magnifications x $15, \times 20$ and $\times 25$. $£ 66 \mathrm{~s}$. 0 u .
Write for our new and second-hand lists. Easy Payment terms available.
DOLLONDS of the Strand 428, STRAND, LONDON, W.C.2.

C. M A C B
 SPECIAL BARGAIN OFFERS for 'PRACTICAL MECHANICS' Readers

Decarbonising, Buffing and Metal Cleaning Brushes

Comprising six with round shanks to nt everal wire brushes ateur or professional wio Post \& Phg., 1/-

17/6

A Useful Accessory for

 Your Electric Drill. Set of 5 Felt, Shaped CONES with Arbor for the Home Handyman, suitable for the Home Handyman, Model Engineer. Garage Mechanic,

Motor Car Accessories List Free.
car
PARK Special offers of GRINDING WHEELS
OPPOSITE
Amazing offer: Size 8in. $\times{ }^{9}$,
lin. Bore : 24 Grit. Usually Bore : 24 Orit Usually 18/3. PRICE \&/Oeac Fibre Brushes to reduce bore to 1 or gin. 6 d . each
Post Extra.

HOL. 8484

Where will it turn up next?

The Flaemaster torch turns up in the most unlikely places and among a surprising number of trades. Our books show that glass blowers, laboratory technicians, jewellers, dental mechanics and all kinds of metal workers were among the first to welcome this new precision heating tool, and that recently we've had orders from model engineers, electrical engineers, lead-burners and garage mechanics.

Why do they all find the Flamemaster so handy ?
Because : Installation is extremely simple.
Flame control is easy and reliable.
Waste is eliminated by our trigger grip economiser.
Leaks are impossible.

FLAMEMASTER MARK \|

If you'd like to deal with your heating problem in the up-to-date way, write for full details to :-

STONE-CHANCE LIMITED, dept. f20, Lichthouse works, smethwick 40, birmingham. TELEPHONE: BROADWELL 2651. LONDON OFFICE: 28 ST, JAMES'S SQUARE, S.W.I. TEL: WHITEHALL 6002.

WIN SICCESS IN LIFE

Pelmanism Develops Your Latent Talents

T N this crowded world there are

 more good jobs looking for good people than good people looking for good jobs. For so few of us are ready for opportunity when it occurs.Are you ready to grasp it whether it is the chance of a more interesting and more remunerative post, or a fuller and freer life in some other direction? Will you have the courage and clear-headedness to seize and use your chance?

Take up Pelmanism and prepare now for to-morrow's opportunities. You are then training not only your mind but your whole personality. Pelmanism rids you of handicaps which hold you back -be it self-consciousness, lack of initiative, fear or self-doubt or simply a tendency to worry about trifles.

Pelmanism also automatically develops your real self. Talents which you never knew you possessed come to the surface. For Pelmanism trains your mind and character just as physical exercise trains your body.

Remember-Everything you do is

The Pelman training for successful living has been proved by over a million men and women of every type and calling. It is so clearly explained and carefully graded that anyone can follow it. It is modern psychology made practical.

Reduced fees for H.M. Forces.
 (Apply for Services Form)

The general effect of the training is to induce an attitude of mind and a personal efficiency favourable to the happy management of life.

Send for Free Book

The Pelman Course is simple and interesting and takes up very little time. You can enrol on the most convenient terms. The Course is fully explained in The Science of Success which will be sent to you, gratis and post free, on application to-day to :-

PELMAN INSTITUTE,
130, Norfolk Mansions, Wigmore Street, London, W.I WELbeck $1411 / 2$

MECHANICS! "RECORD" VICES

 ON EASYPAYMENTS ATLAST(Minimum order 60/-). To save space we "BRIDGES" COMPLETE OUTFITS show only the Cash Price. To calculate ALLEX $\$$ TOCK, $£ 23 / 12 /$. Cash or $57 / 9$
 deposit required add $1 / 10$ th to the price deposit and 8 monthly pa
shown and divide by 9 .
$\begin{array}{ll}\text { shown and divide by } 9 . & \text { Also the following Kits: } \\ \text { Mechanics Vices: No. 00, 22/-; No. O, KIT A. } \$ 3 / 19 / 9 \text { or } 9 / 9 \text { and } 8 \times 9 / 9\end{array}$
Mechanics Vices: No. 00, 22/-i No. O. KIT A. $43 / 19 / 9$ or $9 / 9$ and $8 \times 9 / 9$.
 $78 /-; 6,100 /-; 7,125 /-; 8,142 /-;$ No. 005,
$31 / 6 ; 05,34 /=; 15,42 / 6 ; 25,58 /=35,76 / \%$
KIT D. $£ 5 / 1 / 6$ or $12 / 5$ and $8 \times 12 / 5$. $86 /-$ or $15 / 6$ and $8 \times 15 / 6$. $31 / 6 ; 05,34 /=; 15,42 / 6 ; 25,58 / ; 35,76 / ;$
$45,86 /=55,105 /=; 65,129 /=75,154 / ;$ KIT D. $£ 6 / 5 /-$ or $15 / 6$ and $8 \times 15 / 6$. $£ 6 / 9 / 6$ or $15 / 10$ and $8 \times 15 / 10$. $45,86 /-; 55,105 /-; 65,129 /-; 75,154 /-; \quad \begin{aligned} & \text { KIT E. } 66 / 9 / 6 \text { or } 15 / 10 \text { and } 8 \times 15 / 1 \\ & \text { KIT F. } £ 3 / 7 / 3 \text { or } 8 / 3 \text { and } 8 \times 8 / 3 .\end{aligned}$. $17 / /$. $85,171 /-$
Fitter V i
Fitter Vices (Quick Grip). No. 21 , $73 / 6 ; 215,93 /-; 22,83 /-; 225,110 /-; 23$.
$106 /-235,130 /-24,122 /-; 245,151 / ;$ $25,142 /-; 255,175 /-122$
Auto Vice No $74,90 \%$
Table Vice. No. 80, 26/6
Woodworker Vices. No. 52, 52/6; 52
Wo. $71 /-53,78 /-; 52 A, 57 /-521 \mathrm{~A}, 76 /-; 53 \mathrm{~A}$,
$84 /-; 52 \mathrm{P}, 50 /-; 52 \frac{1}{2} \mathrm{P}, 65 /-; 53 \mathrm{P}, 72 /-; 50$, 18/-; 5I, $22 /-55,32 / 6$.
"RECORD: Cramps also supplied. DRILL GRINDING JIGS TYPE No. I. To take drills den $^{*}=1^{\prime \prime}$ in dia $26 / 5 \mathrm{cash}$ or deposit of $3 / 4$ and 8 monthly payments of the same amount. Payments of the same amount. 1 . $13 / 9$ cash-or $9 / 1 \mathrm{deposit}$ and $8 \times 9 / 1$. TYPE No. 3. For drills $1^{\prime \prime}-2^{\prime \prime}$ dia. 126/3 cash or $15 / 6$ deposit and $8 \times 15 / 6$. ROLLER BEARING LIVE LATHE NO CENTRES

DESK 19.
-6LAFCO:"
3. Corbetts Passage, Rotherhithe New Road, Bermondsey, S.E.IS. Bermondsey 4341 Ext. I.

Made by James Neill \& Company (Sheffield) Limited

A "REALLY SHARP" TOOL EDGE MEANS A BETTER JOBWITH LESS EFFORT

A FULL SIZE ($8 \mathrm{in} . \times 2 \mathrm{in}, x \frac{7 \mathrm{in} .)}{}$ Combination ultra fine/medium oilstone in Corundum-Silicon for Wood Chisels-Plane Irons, Scrapers, etc. ALSO
In a smaller size (6in. x ilin. x gin.) sharpening fine tools.
As effective when used with water as with oil
$8 \mathrm{in} . x 2 \mathrm{in} . \times \operatorname{lin} ., 6 / 9$, post $1 /-$

2 grinding wheels in 1 SO NOW
GRINDING AND FINISHING CAN BE CARRIED OUT IN ONE

SET OF SIX SMALL GRINDING WHEELS $1 \frac{1}{2 n} ., 2 \mathrm{in} . \mathrm{C} 2 \mathrm{in}-, 3 \mathrm{in} ., 31 \mathrm{in} ., 4 \mathrm{in}$. diameter, $19 /-$, plus post $1 /-$.
THE BRITISH ABRASIVE WHEEL
CO., LTD. CO., LTD. 85, BOURNESIDE RD., ADDLE-
STONE, WEYBRIDGE, SURREY

NEW

OUR 1955 SUPA-HANDBOOK
"THE HOME CONSTRUCTOR"*

FOR 2/6 ONLY
incorporating these star
attractions
 Units Test Amplifiers. Feeder
t SUPER EiEtS
 tlonal details, supa-simplifed diagrams for building superhets.
\star CoIf * tonal pAck.-Full construcsuperhet coll pack. building a * CAR RADIO-Full construc* BATTERY CHARGER, complete dotails for building a
CHILAP CHARGER. * RADIO GEN-Prges of information. Resistance Colour Code. * RADIO CONTROK Mnow-how." formation and list
\times RADIOGRA

* RADIOGRAM- Constructors*
- CATALOGUE-Prof
trated catalogue and price illusof components, recelvers, books, Wolf Cub, Black and Decker, YOU Tools, etc. Th Decker. YOU CAN'T GET BETTER *" The most helpfu! boole in the SEND 26 Trade." YOUUR COP And, of course our variable iron-
dust cored colits offer outstanding value at $3 /-$ ea. 10 offer outstanding
75-30. $16-50,30-75$,

Aertal, H.F. or Osc.
SUPACOILS (Dept. M.7)
1, Markhouse Road, London, E. 17
the very lowest temperature is given when a smallish volume of cold air is being produced by the Ranque tube. However, this may give too slow a rate of cooling of objects placed in the cabinet, so it may be advisable to adjust the unit to give a greater cold air flow at a sacrifice of perhaps 3 or 4 deg. F. Control of the cold chamber temperature is
easily effected by regulating the air flow to the nozzle by means of the main stop valve.
Some Performance Figures
Air supply pressure 90 to roolb. per
Air supply temperature
Cold air temperature
Hot air iemperature
sq. in. 65 deg. F.
-5 to -7 deg. F
130 to 135 deg . F.

Measured volume of cold air produced Mass of cold air at -5 deg. F. produced
Theoretical refrigerating capacity.
Equivalent rate of ice production
$1.43 \mathrm{cu} . \mathrm{ft}$. per min.
7.2lb. per hr.
-60 B.Th.U. per hr.
about $\frac{1}{3}$ lb. per hr .

Electrically-heated Driving Gloves

IMADE a pair of these gloves for use in a car a few years ago. The resistance wire was plastic covered and came from an ex-R.A.F. heated camera muff which yielded about 15 ft . of wire.

I unpicked the wire, which was stitched to a fleecy lining, and cut off a length so that the resistance was about 4 ohms. This was about 4 ft .
I then stitched the wire along the backs

By A. C. SIMMONDS

Fig. 2.-How the leads are arranged and the electrical circuit.
of the fingers of a pair of cheap cotton household gloves which were about one size too large for my hands. This is important because stitching the wire reduces the size of the gloves and they are useless if too tight. On the wrist of each glove I then stitched a miniature 2 -pin plug as shown in Fig. 1.

The heated gloves were worn inside a pair of ordinary lambswool-lined mittens which I used for driving and which served to keep the heat in.

I prepared a short length of cable having

Fig. 1.-The wire stitched to the gloves.
an ordinary G.P.O. telephone jack at one end and which fitted a socket under the instrument panel on the car.

Two leads from a small junction box
were taken down the sleeves of my overcoat to two small sockets which fitted the plugs on the gloves (see Fig. 2).

After preliminary trials I found that the two pairs of gloves were

Fig. 3.-Alternative wiring system.
not convenient, so I stitched the wire between two small pieces of fleecy material cut from

Eig. 4.-Point for connecting to car battery.
an old cotton blanket and stitched this to the inside of the original lined driving gloves.
I found this was much better as it was possible to slip any gloves on and off without disconnecting the plugs, allowing them to hang from the sleeves of my overcoat like children's gloves (see Fig. 3).

Note that the total resistance of the gloves is about 2 ohms, which allows a current of 3 amps. to pass when connected to a 6 -volt battery. When I acquired a fresh car fitted with a 12 -volt battery I merely altered the connections in the junction box so that the gloves were in series. They did not get quite so warm, but were still quite satisfactory.

I do not think it would be possible to have gloves heated by a battery carried in the pocket as the current would be excessive from a dry battery.

Edited by F. J. CAMM
July Issue now On Sale

[^3]
A Vice-operated Punching Press

Constructional Details of a Handy

 Little Blanking Tool for Which a Variety of Uses Can be FoundFEW small workshops are equipped with a fly press; they are expensive machine tools, not capable of being used in a small shop to such an extent as to warrant their initial expense in purchase.

For small pieces a press tool can be made which can be used in the vice and can be fitted with punches and dies to suit any job in the way of small multiple parts. Such a tool is the one illustrated here. It can be made with the ordinary small machine. It is suitable for use with a parallel vice having jaws 3 in . or more wide.

The bigger and more poweriul the vice the better, since the size of the vice screw is the measure of its capacity in pressing or punching diferent thicknesses of blank material and different metals. Generally, the tool will be used for strip brass.

Referring to the diagram (1) is a sectional plan view, (2) a front view, (3) a transverse horizontal section, and (4) a vertical section. The two plates, A and B, are of iron, cast from a simple pattern, and both alike in shape and dimensions. The plates are held
diagonal corners, one above the centre-line and the other below, the punch being on the centre-line. The castings for the plate are filed up on the adjacent faces and clamped together. It is a good plan to sweat them together after tinning their surfaces with solder. The three holes are then marked off. The centre-line, $\mathbf{Y}-\mathrm{Z}$ (2), is drawn and two lines parallel with it at the distance apart shown in the drawing. The two holes for the steel guide bars are marked off equally to left and right of the central line, one in the top right-hand corner and the other in the bottom left-hand corner, and $\frac{1}{2} \mathrm{in}$. from the edge of the plate.
The two plates are then drilled through each of the three centres marked with a $3 / 16 \mathrm{in}$. drill, taking care that the drilling machine table is dead square with the drill. This should be carefully done. The two holes for the steel guide bars and the central hole are then opened out by drilling with successive-sized drills until holes $\frac{1}{2}$ in. in diameter right through both plates are obtained.

Sectional and plan views of the press to which particular reference is made in the text.
in the vice and prevented from falling down by the ledge at (4), one screwed to each plate.

The two plates are arranged to slide towards and away form each other in dead alignment by the two guide bars of cast steel, C and D. It will be noticed these are shown in the same plane as each other at (I) for clarity. But actually they are arranged one near the top of the plates and one near the bottom of the plates. Their positions are shown in true relation in the front view at (2).

The Punch Hole

The central hole is the hole for the punch. The holes for the guide bars are at opposite

The Guide Bars

Cast-steel guide bars are now turned to a driving fit in the corner holes and are driven in plate B, and $\frac{1}{8}$ in. transverse holes are drilled in the ends of the plates and through the bars to hold the bars secure by means of the $\frac{1}{8}$ in. pins. The holes in the other plate are then reamered so that this plate fits down a sliding fit, with no end-shake on the bars. Since the holes will be slightly larger than $\frac{1}{2}$ in., if drilled with a $\frac{1}{2}$ in. drill, a $\frac{1}{2} \mathrm{in}$. reamer will not open the clearance guide holes out, but this can be managed by putting a piece of very thin brass foil down one side of the reamer, which will then reamer the hole to a close sliding fit on the steel bar which has been
turned a drive fit in the unreamered holes in the other plate.

The hole for the punch is $\frac{5}{8} \mathrm{in}$. and does not go right through, leaving a ledge in the $\frac{1}{2}$ in. hole on which the punch beds. This is recessed by chucking the plate on the face plate, centring it truly by the $\frac{1}{2}$ in. hole and boring out the $\frac{5}{8} \mathrm{in}$. diameter recess for the punch diameter. The punch has a flat at one side and a long $3 / 16 \mathrm{in}$. screw (shown dotted in (4)) is screwed through the plate to enter the central hole and grip the flat on the punch. The cheese head of this screw is in a recess deeper than the screw head.

The Stripper Plate

The other plate, A, is similarly chucked dead to the hole already in it and the hole opened to rin. diameter, and then, by an inside boring tool, to $1 \frac{1}{4} \mathrm{in}$. diameter for $\frac{3}{6}$ in. deep. This is to take a circular die of the same size. It is then reversed and opened out to $I \frac{1}{2}$ in., for $\frac{7}{8}$ in. deep and a slot $1 \frac{1}{2}$ in, is cut down the back of the plate which allows the piece cut out to drop down. This is shown dotted at (2) and in section in (4).

To return the punch after each stroke as the vice handle is unscrewed, the compression coil springs shown round the guide bars are fitted. They are of round spring steel $\frac{1}{8} \mathrm{in}$. in diameter and just encircle the guide bars.

To clear the strip from the punch which would draw it back after each stroke and prevent the strip being moved on for the next cut, a stripper plate, E (1) and (4), is made in $\frac{1}{8}$ in. thick cast-steel plate. It has holes registering with the guide bars on which it is threaded. A washer (4) very slightly thicker than the strip being fed is placed between plate A and the stripper plate, the latter has a hole to correspond with the punch through which the punch passes easily. Altering the thickness of the packing washers, adjust the stripper plate for different thicknesses of strip fed through. The stripper plate has guides screwed along its rear face which are set for each job a width apart equal to just cover over the width of the strip being fed in. This ensures the strip passing centrally across the die. The stripper plate is slotted and $\frac{1}{8} \mathrm{in}$. cheese-headed screws hold the guides at the correct distance apart for feeding in the scrip stock. These, as well as the punch and die, are arranged for each job.

Punch and die, shown dimensioned in (5), are made of cast steel, hardened dead hard and then tempered to a golden-yellow colour and quenched.

REFRESHER COURSE IN MATHEMATICS

By F. J. CAMM FOUItTH EDITION.
$8 / 6$; by post 9/-

WE CAN LIST A FEW ITEMS ONLY IN THIS SPACE. SEND 4d. IN STAMPS FOR CATALOGUE

SPIRALS

No. 70 Spiral, 1,500 w. 2/9 ea. No. 70a. Spiral, $1,000 \mathrm{w} . \quad 2 / 2$ ea. No. 70 b. Spiral, 750 w . 1/10 ea. No. 70c. Spiral, 600 w. 1/5 ea. No. 70d. Spiral, 500 w . 1/4 ea. No. 70e. Spiral, $200 \mathrm{w} . \quad 1 / 2$ ea. No. 70f. Spiral, 100 w , i/l ea.

BOWL TYPE ELEMENTS
No. 62. Edison Screw,

No. 64. Adiustable Pin
3/bin., Ad w. ... 5/6 ea.
No. 65. Adjustable Pin
3/16in., 750 w . No. 66 No. 66. Adju
tin., 600 w . tin., 600 w \quad... $5 / 6 \mathrm{ea}$.
 No. 68. Serap type, 600 w. $5 / 6$ ea. No. 69. Strap type, 750 w. 5/9 ea. All fittings of Brass Pin. Adjustable types $\frac{1}{2} \mathrm{in}$. to $1 \% \mathrm{in}$, centres,

FIRE BARS

No. 41. Bowed, $3 \mathrm{in} . x 91 \mathrm{in}, 7 / 6$ ea, No. 42. Bowed. 3 in. $x 7 \mathrm{lin}, 7 / 4 \mathrm{ea}$. No. 43. Bowed. $3 \mathrm{in} . x 8 \mathrm{in}$ in $7 / 6 \mathrm{ea}$.
No. 44. Bowed. $3 \mathrm{f} \mathrm{in} . x 8 \mathrm{in} .7 / 6$ ea. No. 44. Bowed, $34 \mathrm{in} . x 8 \frac{1}{2} \mathrm{in} .7 / 6 \mathrm{ea}$
No. 45. Flat 3in.x9tin. $7 / 6 \mathrm{ea}$. No. 45. Flat 3in.x9tin. 7/ $7 / 4 \mathrm{ea}$ a.
No. 46. Flat. 2 ?in. No. 47. Bowed. $3 \mathrm{in} . x 9 \mathrm{hin}$.$/ /- ea.$
No. 41. Suitable. for Sunbeam No. 4i. Suitable. for Sunbeam. No. 42, Suitable for Small Revo No. 46 Suis B ypes.
No. 47 Suitable for, Brigheglow

BOILER RINGS
No. 71, $5 \frac{1}{2} \times 8$ in., $1,000 \mathrm{w}$. 6/9 ea No. 72, $5 \frac{1}{2} \times \frac{8}{3} \mathrm{in}$., 750 w . $6 / 4$ ea No.73. $5 \frac{1}{2} x^{3} \mathrm{in}, \quad 600 \mathrm{w} . \quad 6 / \mathrm{ea}$, No. 74. $5 \frac{1}{2} \times \frac{4}{3} \mathrm{in}$., 500 w . 5/9 ea.

IRON ELEMENTS

No. 22 Type for Prilect,
No. 24 Type for Goblin, 618 ,
No. 25 Type for Beethoven
700 w. i0/9 ea

ELBE
No. 80. 5 lin diam. $950 \mathrm{w}, 9 / 9 \mathrm{ea}$ No. 81.4 fin. diam. 650 w. $7 / 3$ ea. No. 82. 31 in. diam. $650 \mathrm{w} .6 / 6$ ea. No 84. 3 in. diam. $400 \mathrm{w}, 5 / 9 \mathrm{ea}$ No. 85. $2 \frac{1}{2}$ in. diam. $250 \mathrm{w}, 4 /-\mathrm{e}, \mathrm{c}$

PLEMENTS

* SUPPRESSIT *
(TELEVISION SUPPRESSOR KIT)
For the suppression of Domestic
Motor Driven Appliances. Comprises two chokes, and two condensers mounted on a card with wiring instructions.
Vacuum Cleaners, Hairdryers, Vacuum Cleaners, Hairdryers,
Sewing Motors, etc., up to 1 Amp. Sewing Motors, etc., up
Price, 3/6. Pose Free.
flexible heating cord Stocked in 15, 20, 25, 200 and 400 ohms per yard. Price $1 /-$ per yd.

THERMOSTATS

Model BVV/I for Hotplates, Glue Pots, Vulcanisers, etc., $50-550$ eg. F., ${ }^{3}$ amm
15/6. Post 4 d.

Model SN/40. I amp. 240v. A.C. 50-250 deg. F., 5/6. Post 3d.

Model CS. Convector Thermostat for control of Space Heaters, Temperature range to cover any emperature range co cover any
40 deg. between 40 deg. and 120 deg. F., 15 amps. 250 v . A.C. Price 25/- each. Post 5d.

Model MB. For control of Electric Immer sion Heazers loaded p to 3 kW go-190 deg. F., 15 lengsths llin, or AP. Ster E2. Post 9d.

Model PF, Room Thermostat Adjustable ranges: 30/90, 40/100 or 60/100 deg. F. Capacity : 2 to 15 amps ac 250 v . A.C. Dimensions: $5 \mathrm{in} . \times{ }_{1}^{3} \mathrm{in} . \times 2 \mathrm{in}$. deep.
Price E2. Post 6d.

Model PJ. Miniature Thermostak for control of domestic Electric Irons and special purpose machines where space is limited. Capacity: 5 mpss 250 v . A.C. sin. x in. $x \quad 1 / / 16$ in. Single screw fixing. Price 9/3. Post 3d.

DRAWINGS AND
INSTRUCTIONS
$60 \mathrm{in} . \times 30 \mathrm{in}$. Electric Blanket, $1 / 6$ $60 \mathrm{in} . \times 50 \mathrm{in}$. Electric Blanket, $1 / 6$

SINGLE BED ELECTRIC

 BLANKETDrawing and Instructions and 27 yds. of 25 ohms/yd. Heating Cord, Price 61. Post free.

DOUBLE BED ELECTRIC BLANKET
Drawing and Instructions and 30 yds. of 15 ohms/yd. Heating Cord. Price 30/-. Post free.

The TECHNICAL SERVICES CO., SHRUBLAND WORKS, BANSTEAD, SURREY

MIDLAND INSTRUMENT CO. OFFER:

MOTORS, $200 / 250$ v. A.C.ID.C., takdng , 1 amp., fitted reduction gearbox, providing 3 drives of approx. 60, 12 and 1 i r.p.m., also fitted 2 sets cam-operated contacts and governor, new, unused, $35 /-$, post and packing $2 / 6$. AMMETERS, $0-1 \%$ amps. D.C. flush panel mounting, requires 1 i 1 n . dia. hole, latest design. ideal for battery chargers, etc.. brand new. 7/6, post 4 d . TELEKULAR SPFCTACLE BINOCU LARS, attractive plastic frame, separate eyepiece focusing. wide folding sides Ideal for sports, theatre. TV, etc., now wldely advertlsed at over twice our price, brand new, 7/6, post 6d. ROSS ACHROMAT LENSES, un-mounted, all 40 mm . (11/n. plus) dia., 5 different types. f. 1.7, f. 2. f. 2.3, f. 2.7. f. 3. focal lengths are approx. (13In. plus) dia., 5 different types. f. 1.7, f. 2. f. 2.3, f. 2.7. f. 3. focal leng ths are approx.
2 in., 3in. 3 \&in., 41 n . and 4 lin. respectively, new, unused and perfect. ideal for pro$2 \mathrm{in} ., 3 \mathrm{in} .34 \mathrm{in} .41 \mathrm{in}$. and 41 in , respectively, new, unused and periect. ideal for pro
lectors, enlargers, epidlascopes, telescopes, eta.. $10 /$ each, post $6 d ., 50 /-$ the 5. post pald. jectors, enlargers, epidaics
POWFR SUPPLY UNITS No. 5 , complete except for the 6 v . accumulator, brand POWER SUPPLY UNITS No. 5 , complete excep in sealed cartons. 40%, carriage $6 /$. Scot. $7 / 6$. N.I. $10 /$-. Contalns the following ftems sold separately : HAND GENERATORS (above) generates 6 v. 5 amp . at 100 r.p.m., has enclosed gearbox. fitted detachable folding handle, with cut-out and base mounting generator holder, sound possibllities as wind charger, also operates as motor, with powerful reduction drive, brand new. 25/-, post $2 / 3$. VIBRATOR UNITS (above) 6 v . in put, provides all L.T. and H.T. supplles for the 18 and 33 sets, complete with vjbrator, plugs and leads, size $91 \mathrm{n} . \mathrm{x} 61 \mathrm{in} . x 3 \%$ in., brand 10 w . 20 d SIELSYN TRANSMITTEIRS (Magslips), 3in. type, pure synchro $x-y-1-2-3$, suitable as master or slove, 50 \% 50 -cycle single phase A.C. Operated. When two or more of as master or slave, 50 v. 50 -cycle single phase A.C. Operated. When two or more of these are wired up the rotation by hand (or other means) of one will result in a 100 per cent. follow in the other(s), both clockwise or anti-clockwise, supplied brand post $2 /-: 2$ for 50%-, post paid with wiring dlagram. SIEMENS' IIIGH SPEFD post $2 /-: 2$ for $50 /$-, post paid with wiring dlagram. SIEMENS IHIGH SPEFD
RELAIS, coil res. 145 ohms, single-pole changeover platinum contacts, adjustable RELAIS, coil res. 145 ohms, single-pole changeover platinum contacts, adjustable armature tension and contact gap, well worth $35 /-$, our price, new, unused, $5 /-$ -
post $6 d . ~: 50 /-$ doz., post $2 /$ - VENNER AUTO TIME DEL, Y SW ITCHES, $12 / 24 \mathrm{v}$ post $6 \mathrm{~d} .: 50 /-$ doz., post $2 /$-. VENNER AUTO TIME DNLAY SW TTCPES, $12 / 24 \mathrm{v}$
operation, consists of a high-grade clockwork mechanism, with external wind, 2 electro-magnets with cam-operated contacts, In smart metal cases fitted 4-way
 TTILEPHONE SETS, consists of 2 combined recelvers and microphones, connected by 20ft. twin fexible, provides perfect 2 -way communication (up to 1 mile with extra flex), self-energised, no battery required, complete, ready for use, new, boxed 12/6, post $1 /$-. "K " TYPE CYLTNDER LOCKS, deadlocking and thlefproof, has 7 concentric tumblers instead of the usual 5 in line, interchangeable with ordinary cylinder locks for right or left-hand doors, complete with 2 keys and all fittings, instruction booklet. list price 18/9, our price, new, boxed, $5 / \mathrm{\%}$, post $1 / 1 ; 2$ for $10 / \%$. post paid. LIGHTER PARTS, cartons of 60 brand new parts, includes fine cut wheels springs, stems, frames, bearlngs, etc., enough parts to nearly complete 4 high grade lighters, easlly worth $15 /-$, our price, $2 / 6$. post $4 d$. T.R.S. FLEXIRLE CABLE twin 16/012 circular rubber covered, 250 v . Insulation. at approx. one-third to-day's price : 25 yds., $15 /-$, post $1 / 8 ; 50$ yds., $27 / 6$, post $2 /-: 100$ yds., $50 /$-, carriage $5 /-$. WTRE STRIPPRRS, strips the Insulation from flexes and cables up to H . n dia., micrometer adjustment, brand new, boxed, usual toolshop price $15 /$, our price, $3 / 6$, post $6 d$. : 3 for $10 /$, post pald.
Also hundreds of other interesting items. Send 3d. with s.a.e. for.current lists.
MIDLAND INSTRUMENT CO.,
MOORPOOL CIRCLE, BIRMINGHAM, I7. Tel. HAR. 1308

RADIO SUPPIY CO. (Leeds) LIt. 32, rhe cailis. Leests, 2
Terms: C.W.O. or C.O.D. over 41 . Postage $1 /$ extra under $10 /$ Goods extra under $62: 2 /$ - extra under $£ 3$.

CONVERT YOUR BATTERY RECEIVER TO A.C. MAINS R.S.C. BATTERY CONVERTER KIT. A complete kit of parts for the construction of unit which will replace both H.T. Battery and L.T. Accumulator where 200-250 v. A.C. Mains supply is available. Outputs fully smoothed are $120 . \mathrm{v}, 9 \mathrm{v}, \mathrm{g}, 60 \mathrm{v}$.r 40 mA , and 2 v . at 0.4 a. to 1 amp . for all normal Battery Receivers. Only $48 / 9$. R.S.C. BATTERY SUPERSEDER KIT.-All parcs to assemble a unit (housed in metal case approx. $51 \times 4 \times$ $1!$ in. $)$ co replace H.T. and L.T. Batceries in ALL DRY RECEIVERS when mains supply of $200-250 \mathrm{~V}$. A.C. is available. Oueputs fully smoothed 90 v .10 mA .,
1.4 v .250 mA . For 4 valve sets only 1.4 v .250 mA . For 4 valve
$35 / 9$, or ready for use $42 / 6$.

BATTERY CHARGER OR 12 V . D.C. SUPPLY UNIT. For Electric Wrain. Assembled in strong steel case. Will charge 6 v . or 12 v . battery at 1
amp . For mains $230-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{cs}$. $19 / 6$. R.S.C, BATTERY CHARGER KITS. -For A.C. mains 200-230-250 v. operation. Kit comprises Mains Transformer, F.W. Selenium Rectifier Fuses, Fuseholders, ete., and Louvred Black Cracikle Case.
6 v .2
6 v . or
R.S.C. ${ }^{6}$ V. OR 12 V . BATTERY CHARGER For normal A.C.
mains in put 200 mains in put $200 /$

$230 / 250$ | 230/250 V. | |
| :--- | :--- |
| c/cs. | 50 | c/cs. Selector

panel for $6 v$ or 12 V. charging.
Variable charge Variable charge
rate of up rate of $4 p$ so
4
fused
M
 Fused, and with Well ventilated metal
6 amp, meter. Whe case with attractive crackle finish. Case with attractive crackle finish.
Guaranteed for 12 months, $69 / 6$. Carr. 2/6.
HEAVY DUTY BATTERY HEAVY DUTY BATTERY
CHARGER.-For normal 200/250 v. A.C. mains input. To charge 12 V
battery. Variable charge rate of up to batery. Variable charge rate of up to
10 amps. Fitted Meter and Fuses. Guaranteed 12 monchs. Carr. $7 / 6$. 66/19/6.
PLESSEY 3-SPEED MIXER AUTO
CHANGER. Takes 7 in ., 10 in . and 12 in. records, standard or long playing. Crystal Pick-up with Duo-point sapphire Crystal Pick-up with Duo-point sapphire
stylus changed from standard to long playing position by simple switch movement. Limited number. Brand New, cartoned, at only 10 gns., plus
H.M.V. LONG PLAYING RECORD TURNTABLE WITH CRYSTAL PICK-UP (Sapphire Stylus), Speed $33 \frac{1}{3}$ r.p.m. For A.C. mains $200-250 \mathrm{v}$ Limited supply. Brand New Cartoned.
Perfect. Only $\$ 3 / 19 / 6$. Plus carr. 5/(Normal Price 68 approx.).
AMMETER.-G.E.C. 2 in., M/c 0.5 amp., 11/9.

SELENIUM RECTIFIERS

$2 / 6$ v. a. H.W.
$6 / 12$ v. a. H.W
$6 / 12$ v. Ia. H.W.
6.12 v. I a. F.W. (Bridge)
6/12 v. 2 a. F.W. (Bridge)
EX, GOV ACCUMULATOR EX, GOV. ACCUMULATORS
(NEW) -2^{2} v. 16 A.H. with Non-spill
Venes. $5 / 9$.

6 v . or 12 v. 4 a.... ... , R.S.C. FILAMENT TRANS FORMERS.-Primaries $200-250$ $7 / 11: 6.3 \mathrm{v}, 2 \mathrm{a}, 7 / 6: 12 \mathrm{v}, 3 \mathrm{a}$., $17 / 6$
 R.S.C. CHARGER TRANS-FORMERS.-Primaries 200-230-250 V
 $0-9.15$ v. 4 a., $18 / 9 ; 0-4-9-15-24$ v. 3 з., 22/9.

THIS MONTH'S SUPER BARGAIN

HIGH POWER TELESCOPE--The A.A. Identification Dual Telescopes. Consist of one 15×50 and one 30×60 mounted in line so that two persons can view the same object at the same time. Rotation and elevation is by handwheels through precision Worm gears common to both scopes. Erect image obtained by use of 3 large prisms to each scope. Gunmetal base calibrated $0-360$, and fitted north indicating compass and level. Eyepieces Ortho. and lin. Hughgenian, 4×22^{1} in. dia., yellow and neutral filters to fit over OGs. Length 30 in . Weight 30ibs. Complete in Fitted Transt. Case, £9/15/6 ea. plus $£ 1$ carr. All in good serviceable condition. A few as new at $£ 12 / 10 / 0$ ea., plus $£ 1$ carr. Original cost well over $£ 150$.
VARIABLE POWER TELESCOPES.-5-15x. 2 in . OG. All brass. Weight 12 lb . Length 24 in . Complete in case, $£ 3 / 15 / 0$.
MONOCULARS. -6×30 in leather case, 53/- ea
MICROSCOPES.-Watsons Service, Beck, Zeiss, Swift, etc., from £15 to $£ 30$. - Details on request.
TELESCOPIC RIFLE SIGHTS.-No. $32 \mathrm{Mk1}, 3 \mathrm{X}$, with click micrometer. adj. for elev. and windage. Good condition, $66 / 15 / 0$ ea
TELESCOPIC SIGHT.-M45. 2 X . $9 \mathrm{~mm} . \times 21 \mathrm{~mm}$. tube. $55 /$ -
M 38 prismatic version of M45. Length $5 t$ in. $45 /-$
ASTRO TYPE TELESCOPES,-(Finders) 5X. OG 1 inin, Focusing eyepiece and rack and pinion movement to OG.. from 4 ft . to infinity ideal for adapting to any type of camera as telephoto lens. Brand new £2/19/6 еа.
TELESCOPE OBJECT LENSES. All New and Periect.-Grade Achromats. 3 in . dia. (74 mm .) $\times 12 \mathrm{in}$., by Ross, $£ 4$. $2{ }_{6} \mathrm{in}$. $\times 20 \mathrm{in}$., $£ 3$ 2 in . x 15 in ., $£ 2 / 5 / 0$. 1 gin. $\times 19 \mathrm{in}$., 25/.
TELESCOPE EYEPIECES.-Focusing. in. ortho. Wide angle, $50 /$,
 cover 2in. field, bloomed, $£ 3$.
PRISMATIC BINOCULARS.-Ross service type. 10×50. Sep. eye focus. Good condition, $£ 15$.
ZEISS LENSES.-Double convex, 4 in . dia. $\times 33 \mathrm{in}$. focus, $25 /$ - ea. 48 in . dia. x 7 in . focus, 18/6. Double concave (neg.) 4 in . x 9 in ., 15/
G.G.S. RECORDING CAMERAS. -16 mm . $1 \frac{1}{2} \mathrm{in}$. F4 lens. 24 v . motor driven. Used condition, probably faulty mechanism, $27 / 6$ ea. Magazines to suit, $10 /$ - ea. New cameras checked O.K. in case with magazine, $£ 3 / 15^{\prime} 0$ ea. SIGNAL CORP.-3 draw telescopes. 30 X .52 mm . OG. £8/10/0 ea. AMERICAN GUN SIGHTS.-M. 70 . Contains lin. orthoscopic eyepiece and several achromatic object lenses. Used. Good condition, 37/6 ea. Bloomed, 50/- ea.
PHOTOGRAPHIC LENSES.-With iris. Pentac F2.9 8in. Gocus, as new, £4/5/0. Used, £3/5/0. Dalmeyer Serrac 14 in . F4.5, £14. Ross Sin. w.a. F4, $£ 6 / 10 / 0$. Aldis 20 in., F6:3. New and boxed, very sharp fully achromatic, makes good telescope OG. £8/10/0 ea. Unnamed 14in. F5.6, £8/10;-, $\quad \mathbf{3 6 i n}$. F6.3 tele lens, $\mathbf{8 1 2 / 1 0 / 0}$.
TELEPHOTO LENS. - Suitable for 35 mm . cameras. Plain mounts, no iris. 8 in . F5.5. Bloomed. Back focus 4 in ., 45/-. 5 in ., \&2. 10 in ., $50 /$ Ross 5 in ., F4.5, normal type, $70 /$.
SURFACE ALUMINISED MIRRORS.-Optically flat. 2$\} \mathrm{in}$. dia., $6 / 6$ 3in. x 4 !in, $12 /$-. Both new and perfect
IRIS DIAPHRAGMS.-In sieeve mounts. Dia. overall, 28, 30, 35, 4!, 45 56,60 and 63 mm . All at $10 /$-ea.
MAGNIFYING LENSES OR BURNING GLASS.-31in. dia., $5 /$ - ea. Slighty chipped or marked.
ACHROMATIC LENSES.-Suitable for use in 35 mm . to 21 in . entargers or projectors, slightly chipped or scratched (no detriment in use), $1!\mathrm{in}$. dia. 3 in . to 4 in . focus, $5 /$ - ea.
HELIOGRAPH SIGNALLING MIRRORS.-5in. Mk v. As new in leather case with spare mirrors. etc., etc., $35 /-$ ea. Tripods to suit. 15/- ea. PROJECTION LAMPS.- 110 v .300 w . Standard pre focus, $9 / 6$ ea., 3 for 25/-,
RED POLARISING FILTERS.-lin. dia. in mount and canvas case. New. 5/- ea.
ACHROMATIC CONDENSERS. -6 lenses. $2 \frac{1}{\mathrm{i}} \mathrm{in}$. dia. $\times 1 \frac{1}{2} \mathrm{in}$. focus, in sleeve 3 lin, long, $£ 3 \mathrm{ca}$.
MINIATURE MOTORS. -2 in , x $1 \frac{1}{2} \mathrm{in}$., $12-24$ v., A.C.-D.C. Weight 9 ozs. Fitted governor for regulating speed and V pulley. With 4 in. wire belt. 8/6 ea., post 1/1.
SMALL MOTOR BLOWERS.- $12-24$ v. A.C.-D.C. lin. outlet. Ideal for cooling projectors, etc. U.S.A. make, $17 / 6$ ea
E.M.C. U.S.A. 115 v. A.C.-D.C. \ddagger spindle fitted V pulley. Size $3 \mathrm{in} . \mathrm{x}$ 3 in. $\times 3$ in., $21 /$-ca.
SIEMENS HIGH SPEED RELAYS.-SPDT. In metal case, weatherproof. Work on 2v., $8 / 6$ ea.
VOLTMETERS. -21 in . sq. flush. $0-40$. New and boxed, $8 / 6$ ea. M.C. type.
AMMETERS. -2 in. sq. flush. Used, good condition, 20 v . and 50 v AMME zero M.C. type, $6 / 6$.
BOMB DELAY SWITCHES - Contains 8 day jewelled spring movement, adjusts from $0-36$ hrs. Brand new in sealed tins, 17/6 ea.
.R.A.F. Pilots Mikes, 2/6 ea. Midget Carbon Button Type, 2/6.
ALSO available. Chemical balances and weights, photographic paper, film, plates, recording thermometers, Hilgar strain viewers, projectors, radio valves, test gear, lamps, slip gauges, squares, straight edges, scales, precision hydrometers, cable tension testers, and other oddments too numerous to list. If interested in making your own optical devices of any description, get our hooklets
HOW TO USE EX-GOVERNMENT LENSES AND PRISMS," Nos. 1 and 2. Price $2 / 6$ ea
We lave most types of lenses available and will send our list free on receipt of your stamped and ADDRESSED envelope.

Phone BRENTWOOD 1685 or 810.
 Install" Compressor or Absorption (silent type) Units, you can have that much needed Refrigerator without taking up any more valuable space in that already small Kitchenette. Yes ! and also add $£ 150$ to the value of your property for $£ 40$ outlay.
We are Specialists who cater for all types of constructors, whether Machinists, Woodworkers, Mechanics, or just the Home Handyman. Send one shilling for our 20 -page Fints Booklet and Price List, which explains the various approaches to Home Constructed. Domestic Refrigeration, Castings to or Ready to Instal| " Units and Constructional Prints

KNOW WHAT YOU PAY:

It need not be expensive if you consider our common-sense OUT-OF-INCOME TERMS.

A MYFORD

M.L. 7 Bench Lathe

 with standard equipment. 651.7 .6DEPOSIT and 12 monthly payments of $79 / 7$ £7.17.6 or 18 monthly payments of $55 / 3$

MYFORD SUPER bench lathe with standard $£ 78.10 .0$
equipment. DEPOSIT and 12 monthly payments of $118 / 3$ $\mathbf{E} 13.2 .3$ or 18 monthly payments of 24 monthly payments of $63 / 9$

WE PAY CARRIAGE OUT (mainland only). May we quote or your individual requirements? Detailed quotation

"THE
CHOICE OF
EXPERIENCE'
A. J. REEVES \& CO.

416, MOSELEY ROAD, BIRMINGHAM, 12 Grams: "Reevesco, Birmingham." Phone: CALthorpe 2554 Views of his Correspondents

A Compensated Pendulum SIR, - With reference to the article by Mr. J. A. Roberts on the construction of a compensated pendulum, this is an old method and quite a good one if properly made, but Mr. Roberts has completely disregarded the laws of physics and by so doing has rendered the pendulum less compensated than if the bob were merely supported at its base-by the rating nut.

The thermal coefficient of expansion and contraction of the compensating elements must be carefully calculated and applied in their true proportion. The thermal coefficient of brass consisting of 66 per cent. Cu and 34 per cent Z is $18.9 \times 10-6$ whilst Invar is made in three qualities with a factor of 0.3 to 2.5 (X_{10}-6).

It would therefore be necessary to discard the $\frac{1}{2} \mathrm{O} / \mathrm{D}$ brass tube and replace it with an Invar tube which would rest on an Invar rating nut. The compensating brass pad would not be a thick brass washer but of a carefully calculated and machined thickness.

I might add that I constructed one of these pendulums years ago and to this temperature correction I added a modified " Hipp" device to counteract barometric variations, and very excellent timekeeping was achieved.-T Craig, F.B.H.I. (Cheltenham).

Reflector Telescopes

SIR,-Why has no manufacturer of reflector S telescope mirrors invented an alternative substance for glass flats, the laborious method of grinding out same, and the consequent high prices ?
In these progressive times these mirror flats should be able to be produced by moulding from master mirrors.

I think correct proportions of cement and plaster should be quite satisfactory, and with proper buffing machinery it should be possible to produce a high gloss, sufficient for aluminising in a hot oven.
I hope to see the day when we can purchase large reflecting mirrors, $\mathbf{I}-2 \mathrm{ft}$. in diameter, with the extra useful magnification, made available at a respectable price; especially in these days of advanced astronomy and " flying saucers."-E. S. H. (Romford).

Some Old Bicycles

SIR,-As a retired engineer I subscribe to \int your publication, Practical Mechanics, mainly for the mechanical information it gives. At the same time, as an old cyclist, I always read "Wayside Thoughts," by F. J. Urry, M.B.E., as there is generally something that interests me. In May there were the remarks of F. J. Osmond (whom 1 remember well), stating that he could build a faster bicycle weighing 22-24lbs. than one of 18 - 19 lbs .
My racing experience supports this assertion.

Over 60° years ago I possessed a delightful racing machine weighing 19 lbs ., but was not at all successful in winning on it. I later purchased a New Howe (I think it was) weighing 23 lbs . This proved in practice to be superior in speed.

Previous to this I had owned and ridden an ordinary, a geared kangaroo.

My first pneumatic tyred cycle was a Centaur. The finest finished machine was an R. and P. (Robinson and Price, Liverpool). The weak spot in this machine was the straight spokes. Owing to design it was quite easy to knock the heads off the spokes of the rear wheel
I had two or three cycles specially built by John Nowell, a well-known racing ordinary rider (trading as Nowell \& Gardner, Southport). All these machines were within the 22-24 lbs. limit.
I also rode on many occasions a pneumatic tyred ordinary, lent me by my old friend John Tatham.-F. W. Hudlass, O.B.E., M.I.Mech.E., M.I.A.E. (Richmond).

Making an Aqualung

CIR,-I have built the aqualung described in the January issue of Practical Mechanics. The ex-Admiralty cylinder I used is being hydraulically tested, and certified by the Vulcan Insurance Company.
I have just read the specifications of the "Heinke" lung, and their bottle when new is tested to $2,700 \mathrm{lbs}$. per sq. in., which gives a 50 per cent. safety margin with a 1,800 p.s.i. filling.

Below is a photograph of the aqualung I have just completed. All the parts are identical to those in your article, the modifications being that the o-1omin. gauge was

Mr. F. Turner's aqualung.
dispensed with and the nut at the bottom was drilled out, threaded and a piece of $\frac{5}{5} \mathrm{in}$. hexagon brass screwed and brazed in. The top of this was threaded ${ }_{g} \mathrm{in}$. Whit. A piece of aluminium was welded to the bottom of the gas regulator to correspond; the exhaust valve is also welded to the top cover of the regulator. The mouthpiece was supplied by Siebe Gorman and Co., and the mouthpiece bracket tube was welded in. steel.-F. Turner (Leicester).

Building a
Home Workshop SIR, -In Caine's" article"Building a Home Workshop " in your May is sue, Fig. I represents a cross section of a workshop floor. The floor is apparently supported between concrete blocks by sawdust and the tongues of the floorboards.

The correct method of building a garden shed, insulated or not, is as follows:-

Dig trenches for foundations gin. wide and down to firm earth. The width is just spade working width. Three trenches running the length of the shed will be needed for one 8 ft . or 9 ft . wide. Lay 3 in . of concrete and build up with $4 \frac{i}{i n}$. brickwork to 9 in . above ground, or cast walls in concrete. On top of the walls spread a layer of cement and sand and press on it a strip of heavy roofing felt 6 in . wide. Allow the extra width to hang outside.

Timber plates of $3 \mathrm{in} . \times 2 \mathrm{in}$. , tarred underneath, are laid on this dampproof course and nailed through into the joints of the brickwork; wooden plugs being built in every 27 in. for this purpose.

The joists should be at least 3 in. $\times 2$ in. laid on edge across the sleeper walls at $14 i n$. or I sin. intervals. The length of the shed subdivided governs this spacing. Fix with $3 i n$. nails skewed in from either side of joist.

The framework must be -built directly on the plates and joists. To insulate the foor, split up any old boards or boxes into strips about in. X. $\frac{8}{8}$ in. and nail them along the sides of the joists as low as possible. On these battens, any type of sheet or board can be laid to support the insulating material. Old oil drums split down and beaten out will do.

The insulation material can be sawdust, straw or even garden soil.

Thames mud is in the floors of most large London houses and is known as "pugging." The soil may not be such a good heat insulator, but it will stop the hollow drumming when hammering in the shed. The outer walls should be boarded down to the strip of roofing felt. Flat sheet asbestos is quite suitable, there is not much draught gets through that, and with insulation between it should be warm enough.

Lay the floor and sheet the inside walls afterwards.

The studs and noggins, i.e., uprights and horizontal wall members, can be of 2 in. $\times 2$ in. and should be spaced to fit the lining sheets.R. S. Perry (Kerry).

I doubt whether the method advocated by Mr . Perry is the "correct" one and I wonder if there is a " standard " on which the construction of a garden workshop can be based.

The use of a brick wall is a matter of personal taste or perhaps whether the prospective builder of a workshop has the bricks in stock. Placing concrete piers at strategic intervals is just as effective-at least I have found it so. The inclusion of roofing felt is a point which not one builder in a thousand will use. I did not, and the workshop from which these drawings were made was perfectly dry after some nine years underneath a large tree. Any water was shed by the sides-as I suggested.

Finally, the inclusion of the 3in. x 2 in. plate is only adding to the cost of the structure. With regards to the use of soil as a sounddeadening feature, this is also a matter of opinion -I have never tried it but I would prefer to use either sawdust or sand:
I cannot comment on the splitting of oil drums other than to say that this operation is not exactly easy and one which. I think many. constructors will not attempt because it 1 happens to be a dirty and rather difficult task. Similarly, the nailing of the floor to the brickwork is a matter of opinion, but with my form of building and the fact that I think my machinery weighed some 15 cwt . I simply did not give this a thought -I knew the weight was sufficient to overcome movement.
I cannot say that the methods suggested by Mr. Perry are wrong, rather shall we say they entail more work and will thus cost more. Several of my friends have almost identical layouts including one who is a foreman with probably the largest firmi of portable building makers in this country, and sheds, etc., have been supplied to special order, with only minor variations, etc., such as the spacing of the joists. To my knowledge no complaints have been received, so I think any reader can go ahead with this in mind, and he can, if his pocket is not overtaxed, incorporate any ideas in this letter. -" Tubal Caine."

Boiler Explosion on the Stage

CIR,-Re the query by A. J. Jarvis, of Wellington, in the May issue, regarding stage " noises off" to represent : (a) steam; (b) explosion; (c) hissing (of steam), I offer the following as the most useful tricks of production.
Explosive noises of any kind can be produced by a sprung board slapping down on another board or on the stage floor. It is not good practice to use a starting pistol with

Making a loud stage explosion.

blank cartridge for a pistol-shot. They misfire so often. The safest way for an off-stage shot is to hold a springy board about 3 ft . to 4 ft : long by 3 in. wide and $\frac{1}{2}$ in. thick by the crook of the four fingers of one hand (no thumb) over one end, with the other end resting on the floor in front of you. If you use the right hand you place the right foot on the bottom end of the board so that as much of your weight as possible is tending to pull the board downwards out of the crook of the fingers (see Fig. I). When the cue is seen or heard, vou
let the high end of the board slip from the fingers and hit the floor or the stage with a hard smack. For bigger explosions use bigger boards. Two boards should be close-hinged at one end, lying absolutely close or flat together when closed. The bottom board should be nailed to the floor. The upper board should have a crosspiece 'screw-nailed on top at end remote from hinge (see Fig. 2). Catapult rubber cord should be wound round the ends of both boards at the crosspiece (or handle) end. Prepare for the cue by lifting the top board by means of the wooden handle or crosspiece against the rension of rubber. The amount of noise will be determined by the height of the lift (and the strength of the operator). The degree of resonance will be found by trying different parts of the floor or by using crosspieces under the bottom board. For a really big explosion among buildings or at a distance, some additional resonance may be required and this could be provided by a gentle tap on the big drum the instant after the crack of the board. You must experiment with the above materials until you get the result you want.

The hissing of steam can easily be simulated by using a cylinder of carbon-dioxide gas as used by the aerated waters manufacturers. These cylinders are supplied to the trade by The Distillers Co., Ltd., London, and, I believe, The British Oxygen Co., Ltd. The noise of the hiss can be varied from a gentle hiss to the roar of a steam engine letting off steam under a roof.

Making steam. A lot depends on the humidity of the atmosphere, but blowing CO_{2} gas into the air, as above, can sometimes create a lot of "steam" by condensing the moisture in the air. A method which might be tried is to use a modern 3-element (3 kilowatts) tea urn as used in canteens. These urns can hold approximately four gallons of water when full, and when full, take $30-40$ minutes to boil.

You could use a flexible pipe of appropriate diameter to pipe the steam to the point required. If CO_{2} gas was blown into steam as it emerged from the pipe (or the urn) there would be large clouds of steam formed.

Incidentally, the firing of rockets as distress signals, as in the famous play "Rebecca," can be perfectly simulated by suddenly opening the nozzle of the gas bottle wide and then gradually closing the nozzle. -James Howat (Greenock).

IR,-I have just provided the effects A. J.
Jarvis desires for a play entitled." Keep
The boiler explosion was made using a small size theatre maroon (Pains' firework) obtained from Messrs. Strand Electric and Engineering Co., Floral Street, London. This should be exploded in an old dustbin covered with wire mesh to retain flying particles. Alternatively, a maroon may be made by constructing a tube about 3 in . long by $\frac{1}{2} \mathrm{in}$. diameter from paper coated with gum and rolled up. Two flexible leads joined with a piece of fine copper fuse wire are sealed in, and the whole gently packed with photographic flash powder. The ends are sealed with tissue paper and gum and allowed to dry. Any battery or transformer producing upwards of 4 volts may be used to fire the charge.

The sound of escaping steam was produced by pumping up a small air bottle to about roolb./sq. in. and suddenly releasing the pressure. A car tyre could be used with a foot pump if the valve inside core is first removed. The air will then escape when the pump connector is removed.

Finally, the " clouds of steam "effect was
produced by blowing air across a tray filled with french chalk or flour and aiming in the required direction, Actually, I used the air from the air bottle mentioned in the previous paragraph. I think this is simpler than using a chemical method.-T. Stephen (Wembley).

$S^{I R}$IR,-I would suggest the following methods of obtaining boiler explosion effects.
Clouds of Steam. If it is possible to obtain "Drikold" (solid carbon-dioxide) from local ice-cream shops not possessing refrigerators, tio lumps about $\frac{1}{2}$ in. cube into warm water. The disadvantage is that the vapour is heavier than air, but may be directed by means of jet such as a kettle spout.

Alternative method. Obtain some powdered ammonium-chloride from the local chemists (quite cheap) and place powder on two metal plates with electric iron element sandwiched between (one teaspoonful will last approximately two minutes and produce a large quantity of odourless white smoke within a few seconds of switching on current).

If a heating supply (gas or electricity) is available near stage, a pressure cooker, with slightly more water in than usual, and the largest weight on the safety valve will produce a strong hissing noise.-P. Maginness (Stockport).

Garage Door Modification
CIR,-The drawing of the garage door shown in the letter by. C. Buchanan (May issue) was, of course, quite correct. I regret that the drawing in the original article did not show the top brace end let into the ledge, but this was an oversight, as most readers probably realised, for other brace ends

were shown let in and in the description I recommended that this should be done.W. J. Harris (Salisbury).

Power-operated Grass Shears

CIR,-The following details are of an accessory I have constructed and used with my in. electric drill.

The purpose of the tool is that of a poweroperated grass shears. The sketch above will, I hope, be self-explanatory.

The blades were made from two pieces of a worn-out Iin. wide flat file, and it is essential that they be left free to swing on the securing rivets as this avoids damage in case of striking stones, etc., in the grass, the blades assuming the extended position centrifugally.-G. Madders (Blackpool).

Removing Emulsion from Photographic

 PlatesCIR,-With reference to the article on lantern slides (page 295, April, 1955) it is quite easy to remove emulsion from plates with cotton wool soaked in sodium hypochlorite or 10 per cent. caustic soda.-E. WYLIE (Bucks).

SIR,-I think I can set Mr. Hough's mind at rest. Radioactivity is essentially a property of matter, whereas electricity is a
(Continued on page 459)

REA DERS '

 }

The pre-paid charge for small advertisements is 6 d . per word, with box number $1 / 6$ extra (minimum order $6 /-$). Advertisements, together with remittance, should be sent to the Advertisement Director, PRACTICAL MECHANICS, Tower House, Southampton Street, London, W.C.2, for insertion in the next available issue.

FOR SALE

COMPRESSORS for sale, $2 \frac{1}{2}$ CFM with dris. sq. in.el and recelver price $£ 3$; t h.p. Heavy Duty Motors house, i, The Grove, Isleworth

$\mathbf{M}^{\text {A }}$AKE YOUR OWN MUSICAL BOX Send s.a.e. for price and tun list of Swiss Movements and clgarette Hill. N. W.4. Trade supplied.
NUTS, BOLTS, SCREWS, Rivets
Washers, and hundreds of other tems for model engineers and handy men ; s.a.e. for list. Whiston (Dept HOUSE SERVICE METERS, credit from and prepayment available Clty Road, London, E.C.1.
NUFNOI, Rod and Sheet, "PersClear Rod, Cements and Polishes, P.V.C. and Formica; no order too Lawrence send s.a.e. for price list. Gloucester Road, Brighton, Sussez Eng. ATEX FOAM UPHOLSTERY. $2 f t$ carr, $2 /-14 \frac{1}{2 n}$. x 13in. x itin. Seat 4 in., $32 / 6$, carr. $2 /-$; all shapes and sizes; s.a.e. list. B \& M (Latex Surrey. (Telephone: Weybridge 3311.) UPHOLSTERERS' supplies, direct tes, $12 /$ yard; Leathercloth, $5 / 9$ yard, sian, $1 / 11$ yard; Chalr Webbing, 4d. yard; Tacks, Springs, Spring Cushion Units, Tension Springs, etc.; s.a.e. for
complete iree list. Bendeld's, 3, villiers Rd lis
GLORIOUS, Health-glving Sunshine. ous Bathe in the wonderfully luzuri the Sclentific Supertonic Sunlamp and get a marvellous tan. A $£ 7$ Sun Scientific Products, Shipley, Yorks. IIMBER CUT TO SIZE. General
Woodwork Supplies. D.P. P.M. 78, Stoke Newington High Street
 engravingat or oraioured diat idises Road, Wi4.
$\mathbf{A}^{Q 0 \mathrm{O}} \mathrm{L}$ Conpress.rs, Refitul
$\mathbf{S}^{\text {Awbencibs }}$, plain, petrol, elece

$\mathrm{O}^{\text {NE LE LE.O. Domestic Retrigerator }}$
 with refitierernt astand ready for
 graph Mive iopol heiriveration sect

 Road. Jeersen

 stand. Barrow.in. Fur. Lancs
$\mathbf{E}^{\mathrm{NLL}} \mathrm{taraga}$ tasting
 exeentionaly jaue Road. Easton, Bristol, 5 .
$\underset{\text { Ideal for training fruit trees, }}{\text { CHEAP GOVERNMENT wire }}$
 etc. Strong, flexible. steel-stranded and waterprool covered. Several thicknesses. Postcard to-day for free samples. Greens Government Albert Street, Lytham.

 Hafeste oualityen Retur nabe niness Thithimoulns, hollow cast type

A UTOMATIC ITIME) SWITCHE A New and reconditioned 15-day Olock work and Electric switches trated details to: P. M. Donohoe George St., North Shields, Northumberland.
$S_{\text {double - Guarantee, }}$ Unsorted at and complete satisfaction or full refund. Genulne auction sale purchases parcelled up into 4/- ots. Mrs. J. B. (Coventry) finds a stamp catalogued at f10; and D.R.F.
(Oxford) finds two ai $65 /-$ and $17 / 6$. (Oxiord) finds two at $65 /-$ and $17 / 6$ Charles, P.T.S. (Dept. M), 68 Essex. K naments from $2 /$ each. Moulding compound for mould making $8 / 6$ per lb. Granulated ready for use. Metal toy casting moulds from $3 /-$ each,
s.a.e. for list. F . W. Nuthali, 69 , St. Mark's Road, Hanwell, London, W.7.
A QUALUNG OXYGEN CYINDERS A QUaLUNG OXYGEN CYLINDERS inlet and outlet valves and air line new, by Siebe Gorman, $14 /-$, both items 30/-
COIL PACKS, $3 / 9$ (2 wave), includ$465 \mathrm{k} / \mathrm{cs} \mathrm{I} . \mathrm{F}^{2} \mathrm{~F}$'s: at $7 / 9$; 3 wave with money-back guarantee. I.F's only 2/-pair; p.p. $1 / 3.12$ (GRA 6677.)
Romford Rod. E.
DENCO RADIOGRAM CHASSIS, DENCO RADIOGRAM CHASSIS, modern octal valves included. Front cln., 10/9 extra with order: quantity. Duke \& Co. 621 . Romford $D^{\text {AYMIGHT TINTED ITin. } X ~} 14 \mathrm{in}$, p.p. 1/9; 12 in. 14 玉 10 in . Plate with Duke \& Co irame, Romford R.p. Road, E. 12 GORA G677.
A LADIUM quality, direct froms,
super
factory; A quality, direct from factory,
save $£ £ \AA s$. Baldwins, Risca, Mon.

HOBBIES

MONEY-MAKING HOBBIES, with M our Comprehensive Handicraft Catalogue (price 1/-), for Jewelcraft.
Marquetry, Basketry, Shellcraft, etc, Marquetry, Basketry, Shencrait, etc
world-wide postal service. Rawson's (Dept./m). S.E. 10
PROFITABLE HOBBY-Chromium - Plating. Complete outfits. 10/each. Details and plated sample 4\}d.
stamps. A. Dutch. 51 . Monkhams Lane, Woodford Green, Essex.
TNOY \& GAME MANUFACTURE TOY \& GAME MANUFACTURE specifically devoted to the manufac-
ture of toys, games, sports equipture of toys, games, sports equip Annual subscription ©1/10/-. Speci
men copy $2 / 6$. Techniview Pub ${ }_{\text {men copy }}{ }^{2 / 6}$. Thations Lechniview Pub London, W.1. M Enlargers, Binoculars, Micro scopes projectors, or, in fact, any our booklets "How, to Use ex-Gov.
Lenses and Prisms," Nos. 1 and 2 Lenses and Prisms," Nos. 1 and 2
price $2 / 6$ ea. Also our Stereo Book "3D Without Viewers," price $7 / 6$.
Comprehensive IIsts of
Lenses Optical, Radio and Scientific Gear free for s.a.e. H. W. English, Ray Essex ${ }^{\text {SHIPS }}$ IN BOTTLES. The con D structional kit that tells you how to make them; bulld for pleasure or for profit: kits $6 /-$ each from Hobbies
Ltd.. and model shops. Cooper Craft. Ltd., The Bridewell. Norwich A CLUTCH UNIT for your Lathe and parts: fully detalled working ${ }_{\text {drawings }}$ and machining hints only $68 / 6$.
Engineering, 86 , King William Street, Coventry.

MODEL DEALERS

HOBBIES LTD. have over 50 years needs of modellers. handymen and home craftsmen. Branches at $78 a$ New Oxford Street, London and in Birmingham, Glasgow, Manchester, Leeds. Sheffield. Hull. Southampton and Bristol. Head Office, Dereham.
Norfolk,

10,000

BのOKS

FORMULAS and Manubook ever published for the man money, or saling money, earnins Send s.a.e. for details. Frobisher Co Dept. P., 10, Lune Street, Preston
Lancs.
TO RĖWIND and Service Complete Practical Book only $3 /-$ p.pd. Below:- $A T H E$ HANDEOOK, 3 books in one 5/-, p.pd; wood-turning, metal turning, metai spinning, jigs, attachments, special operations; 200 thlustrations outstanding, practical
"how-to-do-it " material throughout. "how-to-do-it" material throughout.
Below:
RC AND SPOT WELDERS For The $A_{\text {small Sh Shop. WELDERS For The }}^{\text {Rasily, cheaply }}$ made.
elow:- SOLDERING AND BRAZING
Simplfied. Outstanding AmerlCan book ${ }^{3 /-}$ CAR ANLD AND SCOOTER Construction, 3/-p.pd. Below:7/6 A. B B. C course; illustrated: 7/6. p.pd.; llists free, American Publishe
Norfolk.

WOODWORKING

 c.p.; s.a.e. for list. Pormormount WOOD LatHES, Attachments, cular Motors and Control Gear, Circular Saw Blades, Splindles or or ested? Then send 6 d . for illustrated ilterature, price list and H.P. terms. don Road \& Co. Mills Drive, Farn A RE YOU Newark, Notts. FOOKING FOR A
RELIABLE FIRM for TImber Plywood, Wallboards, Veneered Plywood; call at our warehouse or send s.a.e. for price lists. N. Gerver, $2 / 10$,
Mare
Street,
London
E. 8 Cambridge Heath (E.R.) station). IAMHErst 5887.)
YOODWORKING MACHINES
cast-iron constructed. Complete
 £30. Planers. $5 \ln ^{2}$. 12 ; Bowl Turning Heads, £4, with 8in' Saw Tables, tion Lathes, s10/10/-C Motors Pulleys, Belts, etc. 12 months written and money refund guarantee 4d. stamp for illustrated booklet.
James Inns (Engineers). Marshali St. Nottingham
SAWBENCHES,
AWBENCHES, all sizes from $£ 10$
motorised, 220 £32. Spindle Assemblies. from 27/6 Bearings. Pulleys, Belts terms. Send. $1 / 4$ for handbook-cata-
logue. Price list free, Beverley Pro ducts, Sturton-le-Steeple, ${ }^{17}$, Notts Huse on Sawbench, $50 /-\mathrm{com}$ plete. Jameco, 53, Victoria St.
S.W.i.

ELECTRICAL

\mathbf{N}^{E}
EW 100FT. COILS $1 / 22$ P.V.C. coil, WIRE, assorted colours, $8 / 6$ for 6 : ideal for bells. indoor aerials, etc. Holderness, Wantage CABLE CHEAFER in small coils $\mathrm{C}_{(25-49 \mathrm{yds} \text {.). Prices per } 100 \mathrm{yd} \text {. } . ~ . ~}^{\text {ABLE }}$ lots (less supplied add 5%), twin
rubber or plastic, 1/044 $50 /-3 / 029$ 64/6. $3 / 029$, earthed, $78 / 6$, $7 / 029$ earthed, 135/\%. Request 11sts, all
cables, accessories. P.M. 591, Green cables, accessories. P.M. 591, Green
Lanes. London, N. 8 ,
RRAND NEW CABLES: TRS twin, B $^{\text {RAND NEW }} 1 / 04442 /-3 / 02962 ;-$ TRS twing $\begin{array}{lllll}\text { earth, } & 3 / 029 & 73 /-, & 7 / 029 & 125 /- \text {-; }\end{array}$ PVC per 100 yards. Lampholders $6 / 6$. Switches $16 / 3$ doz. All electrical
goods, including Fiuorescent Attings,
at bargain pilces. List. Jaylow at bargain prices. List. Jaylow
at
Supplies, 93, Fairholt Road, London, N.i6ITH NO DELAY POST TO-DAY ! 1,425 For A.C.. $250 / 1 / 50$, cap. Start, tioned and guaranteed Electric
 25% deposit secures. Terms c.w.o.;
carr. at cost. Surman. Chalgrove,
Oxford.

WATCHMAKERS
WATCH REPAIRERS, Hobbyists Watches, Movements. etc., priced P.M., 36. Milestone Rd., Carterton Oxford

HANDICRAFTS

MUSICAL MECHANISMS, Swiss boxes, etc.
for complete materials. Metwood Accessories, 65 hurch Street wolverton Buck
MAKE YOUR OWN MUSICAL BOX S.A.E. list of tunes. Best make only. Aibert's Music Shop, 45 , Heath Road. Twickenham
L EATHER for all Leatherwork. to 30 cuttings. $\begin{aligned} & \text { Stamp for } 1 \text { ist and } 25 \\ & \text { Bowell A }\end{aligned}$ Sandringham Avenue. Leicester.
IEATHERCRAFT is a payable ing tools, fittings, leather. Leathercraft Book and Catalogue ${ }^{3 / 6 .}$ CANOE PLANS, Dinghtes, Kits of s.a.e. Price lists. Completed Craft; Yeovil.
$S^{\text {EA. Shells }}$ shellcraft." Large types of quantities; send now for latest price list, post free to: Sea Shell Supplies,
Braye Road, Alderney, C.I.

SPRAY PLANTS

$S^{A C R I F I C E}$ PRICE, 4 cu it. port"Smiths" $\begin{gathered}\text { Sprayplant, } \\ \text { airline Filters, } \\ £ 1\end{gathered}$ Fraction manufacturing cost. Fans, Dust Extractors, etc., cheap.
Bellangers. ${ }^{306}$, Holloway Road,
London, N. 7 North 4117 .

SITUATIONS VACANT

The engapernent of persons ansuering these advertisements must be made invion

 advertisements must be made Lhrouoh a LocalOffce of the Ministry of Labour or a scheduled Employment Agency if the applicant is a man
aged $18-64$ inclusive or a woman aped $18-59$ inclustue unless he or she or the empioyment.
is excepted from the provisions of the Notitca-
A. M.I.Mech.E., A.M.Brit.I.R.E., City -No Fee " terms. Oter 95% successes. For detalls of Exams. and courses in all branches of Engineering, Building, etc., write for 144-page
Handbook-Free.
B.I.E.T.
(Dept. 967B), 29, Wright's Lane, London,
TIECHNICAL BOORSELLERS require good prospects of promotion carrying commencing salary of ${ }^{\text {Apply Foyles, }}$ 121, Charing. Cross p.a.
Wd.,

EDUCATIONAL

1. P.R.E. TECHNICAL PUBLICA for superheterodynes, $5 / 9$. Data for
 tical Radio Enple copy, The Prac publication of the Institute, membership and examination data 1/-. Syllabus of ${ }^{7}$ postal courses 20, Fairfield Road. London, N.8. MERCHANT NAVY Radio Officer travel and adventure overseas. Brooks Bar. Mancter
LEARN IT AS YOU DO IT, We combined with instruction in Radio Television, Electriclty, Mechanics for full details to E.M.I. Institutes Dept. PM.47, London, W.
$\mathbf{B}_{\text {UILD }}$ YOUR OWN T / V and learn and servicing. Qualified engineer tutor available whilst you are learn ing and building. Free brochure London, W.4. (Associated with H.M.V.)

INVENTIONS

TNVENTORS.-Send s.a.e. for pa: ably develop of our service for profit ably developing and marketing your
Invention. Kelsey \& Partners, wood lands, Stroud, Glos.
(Continued on next page)

MAIL ORDER BARGAINS
HEYWOOD Double Piston COMPRESSOR giving 300 lb , pressure, $30 /-$ each. P.P. $2 / 6$ ALL PURPOSE MAINS TRANSFORMER\&. All-purpose low voltage input $210 / 250$ Output 3, 4, 5, 6, 8, $9,10,12,16,18.20$, fuly guaranteed. $22^{\prime 6} \mathbf{P}$. \& P. $1 / 6$.
fuly guaranteed. 226 . P. \&P. 1
BRITOOL SOCKET SETS Complete with ratchet and extension bar Comprising ${ }^{7}$ Whitworth sockets ${ }^{\overline{3}}$,
$1 / \%$ P. \&P. $2 /-$ Or S.A.E. and M.M. sizes
BRAND NEW SOLENOID VALVE TELEPHONE 10 -WAY SWITCHBOARD 30-each. P. \& P. 2 '6. lormer, A.C. $230 / 50$ volt input, 110 volt outnut; $12 / 6$ each. P \& ${ }^{2}$ 24 v . input, outrut $250 \mathrm{~F} .65 \mathrm{~m} / \mathrm{amp} .6 .5 \mathrm{v}$. 2.5 amps. Ideal for running train sets of

Dlease print Name \& Address when ordering, P. \& P. free on order over £2. Send with confidence for goods. Cash with order please. Phone orders accepted. Money hnck guar UNIVERSAL TRADERS (P.M.1.) 44, LONDON RD., TWICKENHAM,
\qquad
see those hidden details

by using a

 MAGNIFIERLoupes, Stand and Hand, Illuminated Scale Magnifiers. Watchmakers', Eyeglasses, Pencil Microscopes, etc.
For minute detail, measuring, or general viewing
Illustrated catalogue Post Free on request. (Your letterhead, or card, marked Mag/PM, will be sufficient.)
ALTAIR OPTICAL CO., LTD. $1 \& 3$, St. Mary's Gate, Nottingham Telephone 4138I

Sparks data sheis Constructional Sheets of Guaranteed and Maftery Operated
 "SKMPPER" 4-V. T.R.F- Fine range "CRUISER" 3 -V. T.R.F. M/L waves.

Portables PAK" I-V. M/wayes, "Phone "CIIUMMY" 2-V. M/L. waves. Good range.

Short-waveg
Short-swarg
DX. 1 IV. Plug-in Colls. B/S Tuning.
DX. 2 -V. Ditto. Greater range.
Greater range
Maing Opprated 2 -V. M/L waves,

Duta Sheets for the above, $2 / 6$ each. Except-
ing "Eclipse," which is $3 / 3$. All plus 2 id.
MULLARD 10 W, AMPLIFIER
The Sparks version of a Tested practical Control Unit. 3/9. Post Free.
SEND 21d. STAMP FOR LIST OF 34 Chassis and Components supplied 1. ORMOND SPARKS (M), 8. COURT ROAD, SWANAGE, DORSET

OUR NEW

GOVERNMENT SURPLUS
CATALOGUE No. 12
Containing over 400 items, price $1 / 6$
ARTHUR T. SALLIS (P.M.
93 NORTH RD., BRIGHTON, SUSSEX Telephove : BRIGHTON 25806

Continued from previous page

 PHOTOGRAPHYFNLarger and Camera Bellows Cupplied; also fitted. Beers, St Cuthbert's Road, Derby

MISCELLANEOUS

THAKE A TIP! It may be "Diadise" from Millett! 11 in . diamond lap ${ }^{\text {tin. }}$ taper bore, ${ }^{25 / 9}$ Huntingdon.
BUILD YOUR OWN REFRIGERAteasonable prices Frigidair fowing cold units $£ 5$; small units Kelvinator, ete. $£ 4 ; \ddagger$ h.p. heavy duty Motors, $£ 3$; Chrome Cabine fittings, new, el ; money back guar antee, s.a.e. for list and schematic diagram. Wheeihouse. 1. The Grove 7558.)
" FORTUNES IN FORMULAS," 900 American American book of formulæ American technical hobby and othe or lists. Herga Itd. (Dept. P2) for lists.
EVERY
shop equeivable item of work
equipment readily avail able under equipment readily avail chase Plan. Write for details to-day to Garners, 6-8, Primrose Hilt COMPRESSOR EQUIPMENT Mis Pryce, 157, Malden Road, Cheam. $D^{\text {RILL, Blak and Decker, perfect }}$ 126.

ROGERS ${ }^{31}$ NOELTHPN ST

 Compreasors. Ex W.D. 3 cu. ft. $55 / 6$ Compressors. EX W.D ${ }^{3}{ }^{3}$Signal Winkers. 6 or 12
Pumps. For lathe coolant
Pumpz. For lathe coolant
Steel Cabinets, 5 drawers Alorasive Dises. 5 in. Ass'td. doz. $11,6^{31}$
Trerminal Block.
Fenerators. D. 6 v .12 way . $250 \mathrm{v} ., 12$
12 Aloxite Abrasive. 13 in. $\mathbf{y} 9$ in., doz.. $4 / 9$
Thread Gaules. 28 arms
Whitworth Serews. 144 ass td. $5 / 9$
H.S. Drills. 12 Ass'td. to 48

Flexible Dipe. 4in. $x 300$ foot ... 4/6.
Pressure Tanks. 14in. x 1.000 db . 18^{8}
Fibre Washers. 144 ass 'd.
Grinders, A.C. Mains Twin Ended, $47 / 8$ Self Tap Screws. 100 Assorted ... $3 /-$ Races. Belts, Valves. Pulleys, Pumps May ue send our list of hundreds of
interesting items.

FREE POCKET MANUAL

"How to fit STEAM TRAPS"

Unique guide to the correct selection and installation of steam traps for mains drainage, heating systems, process steam units of all kinds, including best con-
densate-lifing installations. Concise directions; clear illustrations. Copies free on request to

SPIRAX-SARCO LTD., (TECHNICAL DEPT.) Cheltenham, Glos.
$D^{\text {LD }}$ YOU KNOW Hire-purchase the pound? To reduce correspondence, "Myfords" or or " Startrite" where on customers remit deposit of not less than one-quarter of cash price and state exact requirements. Save you money by saving our time Example: Myford Super
cash wrice
c95/15/-, Cabinet deposit with cash price $895 / 15 /-$ ce depe $E 70$, plus $1 /-$ in the pound, total payable in 12 monthly instalments ard prices e6/2/6 per month. Myford prices include carriage anywhere carriage Greater London. 5% H.P. Dept. 94 , Camden Road, London, N.W.1. (Teiephone: GUL 6006.
A SET OF OUR DRAWINGS at $8 / 6$ A will convince you that the P.B. Clutch Unit is a practical engineering job, specially designed for making in P.B. Engineering. 86, King willam Street. Coventry
MONEY FOR WASTE MERCURY, containers supplied. Wiltón Trading Co., Melling Rd., Southport

UNUSED NIfe Batteries

In crates of 9 or 10 Cells 45 AH . 10 Cells equal 12 volts. Size 12 V . crate $27 \frac{1}{\mathrm{i}} \mathrm{in} . \times 9 \mathrm{in} . \times 5 \frac{1}{\mathrm{in}}$. Offered at the ridiculous price of $10 /$ per cell plus $1 /$ - carr.

HUNT \& CO.
WEST STREET, EXETER
'Phone 56687.

GOVERNMENT

SURPLUS BARGAINS

ASTRO COMP ISSES. Mk II. As deseribed for Theodollte "P.M" Sept. "54, and Camera pan and tilt head Mar. '55. Each 19/b. post head) at $12^{\prime} 6$ post $2 /-$. . described for Seli-0pening Garage Doors, "Prac. Motorist" Aug. "54 (copy of article 30 v . A.C., drive via gear and quadrant giving
lateral movement of about 2 in. and reverse. lateral movement of about 2 in. and reverse. Each 25 , post $1 / 9$.
${ }_{230 / 250 \mathrm{v} \text {. A.C. } 7 \mathrm{inn} \text {. Blades, Suitable extrac }}$ tion or circulation. Bargain at $50 /-$ post a/EPICYCLIC GEAR MOTORS (Aircraft cowl gill motors) operate through 4-stage 6251
easily loar ($5-25-125-625$ one or more stages
give any of these ratios). eas. D.C. 5 amps. $: 12$ v. D.C. app. 4 amps.
Also operate $16 / 30$ v. A.C. app $5 / 7$ kmps. Each 25-post $2 /$ HANDSETS. New and unused. Two of these handsets easily
installed as two-way intercom. House Garage, etc. (Circuit diagram supplied on request). Fach $17 / 6$, post $1 / 6$.
Send 3d. Stamp for List of Send 3d. Stamp for List of Motors. Tele-
phones. Transformers. Pumps. Lamps. Switches, Boxes. etc., etc
Eundreds of Bargains.
MILIIGANS
24, HARFORD STREET, LIVERPOOL 3
Money Back Guarantee

WESTPOLE MOTORS Ltd.

WESTPOLE AVENUE, COCKFOSTERS, BARNET, HERTS. Barnet 3615

*GLASS HOBBY KITS

KIT No. 1 15/
No. 11 25/-
No. III 30/-
Make your own GLASS FIBRE Models. These KITS carry a comprehensive range of materials,

Postage 1/6 with full instructions to suit all forms of Model making.

C. H. VINCENT

47/49 Essex Road, Islington, London, N.I.

CHEMISTRY APPARATUS

compleTE PRICE LIST

Dumore Automatic Drill Head

THIS is a compact motor-driven head with a self-contained air compressor fer advancing drill. Sensitive and automatic control of speed and feed gives increased production and less drill breakage. The head can be operated manually, or automatically, with any number controlled from one master switch. Drill capacity is No. 80 to $3 / 32$ in. in steel and No. 80 to $\frac{1}{8}$ in. in zinc, aluminium, brass, etc., and No. 80 to $5 / 32 \mathrm{in}$. in plastics and wood.

The heads are suitable for use by small and large works in many industries where small drills are used. One of the secrets of success is claimed to be the built-in air supply that automatically drills each hole at correct pressure and speed. All the operator needs

LETTERS TO THE EDITOR

(Continued from page 456)

force and not material but abstract. To say that electricity can become radioactive is on a par with saying that sunshine gets wet when it shines through a cloud I-E. WYLIE (Bucks).

Drilling Lamp Standards

$S^{I R},-$ Secing the query in the March issue
about drilling wooden lamp standards I think I could give some hints. As a number are required it would be worth while taking a little trouble over the arrangements.

If the hole is to be a foot or so long, it would be a risky business to simply use a drill in the ordinary way as, apart from the necessity of withdrawing the drill frequently to prevent clogging, it is very difficult to ensure true direction.

It is a necessity to revolve the wood post that is to be drilled, whether the drill is revolved or not. The way I drilled a mahogany post was to put the post in the three-jaw chuck of a lathe, the far end of the post being centred on a makeshift backcentre (there was little strain on this, it was for holding the post opposite the chuck only) and then putting the drill through the hollow mandrel of the lathe, which kept it reasonably true to start with, the revolving post looking after the business after.

The drill was made from a long length of seamless electric light conduit, $\frac{1}{2}$ in. size with half a dozen sharp teeth filed on the end, these being fairly widely "set" alter-

to do is to set the recommended air pressure, feed jigs and fixtures and press automatic feed button.

A complete line of accessories, including bench stand, repeat cycle timer and remote control switches are available. The diagram shows some of the chief features of the unit. Details of prices and supply are available from the makers, Gaston E. Marbaix, Ltd., Devonshire House, Vicarage Crescent, London S.W.II.

Printed Circuits Layouts

FROM Printed Circuits, Ltd, Whadcoat Street, London, N.4, we have received a pamphlet giving details of "Plasmet" Continuous Copper Etched Wiring Circuits and hints in their preparation. This firm is now in a position to produce and design all forms of printed layouts, which, in their simplest form provide an accurate wiring harness to which components such as valveholders, resistors, condensers, etc., are connected by mass soldering in one operation. In many cases the conventional chassis can be dispensed with. Using this system costs may be considerably reduced. Details and terms, etc., may be obtained from the above address.

A Compact Saw Kit

T HE latest line of Messrs. J. Bull and Sons, 246, High Street, Harlesden, London, N.W.ro, is a unit of saws, consisting of five interchangeable blades on one handle. The five blades are a wood saw, pruning saw, tenon saw, key-hole saw and metal saw. The blade in use is held rigidly in a slot in the handle by a system of two locating bolts and a
wingnut. The price from the above firm of the complete kit is 9 s ., plus Is. postage

New Fungicide to Combat Paint Discoloration

RECENT surveys have shown that the discoloration of paint and the failure of the film, particularly in buildings of high humidity, is often due to attack by fungus rather than ordinary dirt.
The Nuodex organisation has carried out intensive studies on the subject, successfully isolating as many as 30 different fungi which flourish on paint films. The research has resulted in the introduction of a new fungicide, Nuodex $321 . S S$, which is completely soluble in mineral spirits and compatible with emulsion paint systems, and effectively precludes such premature decorative loss of the paint.
The Nuodex fungicide has already proved successful in industry and in the home, and recently in numerous industrial establishments with high humidity conditionsbreweries for example. Normal emulsion paint lasting for about two weeks in the humid atmosphere had, with the incorporation of Nuodex 32 I.SS fungicide, raised this interval to nearly three months, with a corresponding
nately in and out and then case-hardened.
A tap-wrench was fixed on the outer part of the drill for holding it and applying pressure, while the lathe was set running. The hole cut well, leaving a core (like a dowel stick) inside; to get rid of the trouble of removing the drill to free it from sawdust, a rubber tube was fitted to the outer end of the drill and air pumped in from a Fletcher's Blower and this got rid of the sawdust in a continuous stream. The post was drilled from each end as the friction was less with the shorter lengths and in the end when the holes met they were so closely in line that it was only just possible to see the junctions.-A. C. Hyde Parker (Abingdon).

Painting on Cement

SIR,-As you occasionally have inquiries for a suitable paint for cement surfaces, etc., I would like to inform you that I painted cement-faced walls in my kitchen with "Permoglaze Cement Primer" paint three ycars ago. I put a gloss paint top coat on top of two coats of the primer, which was painted on the cement as soon as the moisture was dispersed, and after continual damp and frequent scrubbing there is not the slightest sign of it flaking. In all respects I have found it perfect for the job.-D. Rose (Birmingham, 27).

Doll's. Head Repairs

CIR,-My young niece's doll's head, which is made of a form of plaster, kept breaking away at the neck due to the pull of the elastic

The compact unit of five saws.
reduction in repainting overheads.
The Nuodex fungicides are manufactured by Nuodex Ltd., Birtley, Co. Durham, and are distributed by Durham Raw Materials, Ltd., in the following areas: 1-4, Great Tower Street, London, E.C. 3 ; I, Booth Street, Albert Square, Manchester, 2 ; 180, Hope Street, Glasgow, C. I.
on the card disc which held the head to the body. I tried many ways to remedy this and at last was very successful by the following method :-
I glued a short strip of bandage round the inside of the neck. Then I found a broken piece of plastic model aircraft propeller and melted this around the broken part of the neck. This was done by using a soldering iron and building it up as would be done with solder on metal. It has proved completely successful.-H. Harradon (Surrey).

MAKING A MIDGET CAMERA
 (Continued from page 446)

For example, a white spot on a gramophone turntable can be photographed at various shutter speeds, measuring the angle of blur. (The angular velocity is about $480 \mathrm{deg} . / \mathrm{sec}$.)

Loading

The camera must be loaded in the dark, and it is advisable to practise this in daylight using an old length of film.
The maximum length of film which can be wound on a spool is about 22 in .; this will give around 40 exposures.
Attach one end of the film to the spool with adhesive tape, and wind on, leaving about 2 in . free. Slip on the cassette clip to prevent unreeling and thread the other end through the film carrier and attach to the winding spool with adhesive tape. When inserting base into camera, turn winding knob until key engages with spool slot.

Your Queries Answered

RULES
A stamped, addressed envelope. a sixpenny, crossed poseal order, and the query coupon from the current issue, which appears on the inside of back cover, must be enclosed with a query. Every query and drawing which is sent must bear the name and addrass of the reader. Send your queries to the Editor, PRe reader. Send your queries to the Edicor, Tower House, Southampton Sereet, Strand, London, W.C. 2

Water-cooled Safe

IINTEND to construct a water-cooled safe of capacity nearly I cu. ft. A wooden framework is covered over with muslin and kept damp by means of water fed to it by wheks from a reservoir. The muslin is pleated to give a greater area.
Please could you tell me if the above will keep food cool enough to preserve it? I wish to enclose it in a cabinet (for protection). What should I make it of to allow air to freely circulate? Would you suggest a forced draught ? If so, how would you arrange it ?-G. Beale (Hastings).

THE system you suggest would not be effective in maintaining the temperature at a level sufficiently low to preserve food. Indeed, we think that there would be very little difference in temperature between the inside and outside of the muslin cage owing to the fact that the flow of air through the mesh would be too free.
It would be better to construct a cage of porous brick or porcelain and to feed the outside of this in the way you suggest. But even so, the difference in temperature would only be sufficient to prevent butter from becoming too fluid in very hot weather. The air confined within the brick or porcelain cage would be relatively static and would be cooled by radiation and conduction from the relatively thick walls of the cage. The "heat capacity" (in a negative or cooling sense) of a thickness of brick would be far greater than would be the case with a thin membrane of muslin, the specific heat of which is not comparable with that of brick or porcelain.

Electric Power from a Water Wheel

COULD you please inform me what electricity I could derive from a stream 14 ft . wide, existing depth gins., but can be dammed up to 18 ins , with a straight course 84yds. long ? The speed estimated and timed by a table tennis ball is 2 minutes for this distance. I would use a 6 ft . width for the water wheel, leaving the remainder for escapement. Would a water wheel with blades made from corrugated iron meet my requirements ?-E. Smith (Chorley).

TनHE estimated speed at the surface of the water is 125 ft . per min., but the speed of the water may be less at a lower depth. When ascertaining water speed it is advisable to use vertical floats which reach almost to the bed of the stream. Floats should be sent down the centre of the channel, and also near both sides, in order to find the mean speed of the water. Under the conditions stated in your letter, the average speed of the stream may be about 6 fft. per min. if the bed of the stream is rough.
At an average water speed of 6 oft. per min. and 6 ft . width with gin. depth the volume of water passing down the stream per min. will be 270 cu . ft., corresponding to $\mathrm{I} 6,800 \mathrm{lb}$. of water per min. In order to estimate the possible power output we should require to know the fall which can be obtained at the water wheel. For a Ift. fall the work done per minute would be $16,800 \mathrm{ft}$./lb., which roughly corresponds to $0.5 \mathrm{~h} . \mathrm{p}$. If the efficiency of the water wheel is 50 per cent. the power which could then be applied to the dynamo would be $0.25 \mathrm{~h} . \mathrm{p}$. , which corresponds to 186 watts. If the dynamo had an efficiency of 55 per cent. the electrical output from the dynamo would then be about 100 watts. We should advise using flat or curved sheet iron vanes of $\frac{1}{16}$ in. to $\frac{1}{8}$ in. thick for the water wheel.

Painting Caravan Roof

HAVE a canvas-topped caravan, and from the canvas the paint has badly peeled.

Would you please advise me how to

THE P.M. BLUE-PRINT SERUICE

12FT. ALL-WOOD CANOE. New Series. No. I. 3s. 6d.
10-WATT MOTOR. New Series. No. 2, 3s. 6d.* COMPRESSED-AIR MODEL AERO ENGINE. New Series. No. 3, 5s.*
AIR RESERVOIR FOR COMPRESSED-AIR AERO ENGINE New Series. No. -3a, le. " SPORTS " PEDAL CAR. New Series. No. 4, 5s.* F. J. CAMM'S FLASH STEAM PLANT. New Series. No. 5, 5s.
SYNCHRONOUS ELECTRIC CLOCK. New Series. No. 6,5s.*
ELECTRIC DOOR-CHIME. No. 7, 3s. 6d.
ASTRONOMICAL TELESCOPE. New, Series Refractor, Object glass 3 in . diam. Magnification $\times 80$. No. 8 (2 sheets). 7 s .
CANVAS CANOE. New Series. No. 9. 3s. 6d, DIASCOPE. New Series. No. 10, 3s. 6d.* EPISCOPE. New Series. No. 11, 3s. 6d.* PANTOGRAPH. New Series. No. 12. Is. 6d*. COMPRESSED-AIR PAINT SPRAYING PLANT. New Series. No. 13, 7s. 6d.*

MASTER BATTERY CLOCK.
Blue-prints (2 sheets), 3 s . 6 d .
Art board dial for above clock, is
OUTBOARD SPEEDBOAT.
10s. 6d per set of three sheets.
LIGHTWEIGHT MODEL MONOPLANE, Full-size blue-print, 3s. 6 d . P.M. TRAILER CARAVAN Complete set, IOs. 6d.*
P.M. BATTERY SLAVE CLOCK, 2 s . PRACTICAL TELEVISION " RECEIVER (3 sheets). 10s. 6d.
P.M. CABIN HIGHWING MONOPLANE. Is.
P.M. TAPE RECORDER
(2 sheets), 5 s.
The above blue-princs are obtainable, post free, from Messrs. George Newnes, Lid. Tower House Southampton Street, Strand, W.C. 2.
An denotes constructional details are available free with the blue-prints.
clean off the rest of the paint, the best paint to use when repainting, and how many coats to apply to make it a really good job? The 'van is parked close to the sea for six months of the year.D. Rutter (Aldershot).

THERE is really no effective way of removing old paint from a canvas roof other than by very carefully hand scraping with a blunt-edged tool. The trouble here is that if you use a paint solvent or softener it might injuriously affect the fabric of the roof, it might detach it from its base, or it might cause it first to swell and then to contract, thereby resulting in its tearing. In fact, any such removal of paint is fraught with these and other adverse possibilities, so much so, we think, that it would be by far

> Readers are asked to note that we have discontinued our electrical query service. Replies that appear bn these pagcs from time to time are old ones and are published as being of reneral interest. Will readers requiring information on other subjects please be as brief as possible with their enquiries.
the safest for you to remove the paint little by. little by some hand method of scraping. If this cannot be done, the paint will have to be softened with a paint-softening preparation in small areas at a time, and then removed by careful scraping. There is, unfortunately, no other way.
Any paint will blister in the hot sun under the severe conditions which it is exposed on a caravan roof. This is best combated by laying down the paint thinly, and not using a high-gloss paint. We would advise you to paint the stripped roof with a thin coat of grey or a red oxide priming paint. When this has hardened, apply two thin coats of the paint of your choice. Some crazing and chalking (surface powdering) of the paint must be expected under the influence of sunshine and sea air. Any good make of paint will do, but it is far preferable to have a flat paint. If you write to Messrs. Pinchin, Johnson, Ltd., General Buildings, Aldwych, London, W.C.2, they will advise you of the best of their many types of paint for your especial purpose. In our opinion, a common grey priming paint would be as good as any, if you would have no objection to its rather dull, flat appearance.

Binocular Vision in the Microscope

COULD you please inform me as to how binocular vision is achieved in a monocular microscope ? -B. Gamble (Leicester).

B^{n}NOCULAR vision in the microscope is obtained by means of a prism which, cutting across the pencil of light rays from the objective, allows one half of the object to be seen by direct vision; the other half is passed through the prism, is refracted, and bent to pass up to the angularly inclined eyepiece. Thus there are two tubes joined directly together and making such an angle, one with the other, that their top ends, both containing an eyepiece of equal focus, have a distance apart of about $2 \frac{1}{2} \mathrm{in}$. equal to the distance apart of the human eyes. This is the modern way of obtaining stereoscopic vision in the microscope. There are other ways, all obtained by means of prisms, but most of them are now out of date.
The principle of stereoscopic vision is (Continued on page 462)

DORMER CUTS COSTS FIVE WAYS!

- LONGER LIFE

- FASTER SPEEDS
- MORE ACCURATE PERFORMANCE
- LESS

TOOL-CHANGING

THE SHEFFIELD. TWIST DRILL AND STEEL COMPANY LIMITED

\author{

- LESS RE-GRINDING
}

SPECIAL OFFER
G.E.C. \& B.T.H. GERMANIUM CRYSTAL DIODES
1/- each. Possage 2 2 d . Diagrams and three Crystal Set Circuits A large purchase of these fully GUARANTEED diodes from the manufacturers enables us to make this COPPER INSTRUMENT WIRE ENAMELLED, TINNED, LITZ, COTTON AND SILK COVERED. All gauges avaitable. soldering tags, eyelets and rivets. EBONITE AND BAKELITE PANELS TUFNOL ROD, PAXOLIN TYPE COIL

FORMERS AND TUBES.
ALL DIAMETERS.
Latesc Radio Publications. SEND STAMP FOR LISTS
CRYSTAL SET INCORPORATING THE SILICON CRYSTAL VALVE Adjustable Iron Cored Coil. reception guaranted Polished wood cabinet, $15 /-$, post $1 /$ POST RADIO SUPPLIES 33 Bourne Gardens, London, E.4.

POTTERY

Potter's wheels from 16 gns. $3 \mathrm{k} . \mathrm{w}$. electric kilns from $£ 12$ to $£ 50$. Also a wide range of pottery materials. Write for ilhustrated catalogue.
MiLLS
(Dept. P.M.),
244, Borough High St., London, S.E.1.

THE ULTRA LENS AIDS PRODUCTION

This unequalled

 electric magnifier is of the most modern design its extreme and sustained usefulness to countiess indusgaged on minuto examination of sur faces of every con. ceivable object.The ULTRA LENS is used extensively in collieries, foundries, forges, motor works, and practically every branch of the engineering trade. TELEINTERLACING of picture.

Write today for full porticulors and price list to
THE ULTRA LENS COMPANY
Tel.: TRAfalgar 2055 17c, Oxendon Sereet

 SILK SCREEN PRINTER with ALL SUPPLIES \& FREE COURSE!

PRINTS IN SIX COLOURS This is the printing and colouring process for amatcars or professionals alike and all hobbyists, Its versatility is enormous. It will print a rew copies, or hundreds,
to a professional standard. in solid colours, or intricate designs, on cloth, paper, wood, glass, metal, etc. Print greeting cards, toys, models, "drawings, paintings in full
colour, photographs, type-script. Fluorescent colours. colour, photographs, type-script. Fluorescent colours,
suede fock and novelty finishes, transfer papers for pintsuede hock and noverty finishes. transfer papers for print-
ing your own transfers also available. Can also be ased as frst-rate duplicator with any typewriter. No where else is such a large and comprehensive outat oftered
for so little money. As suppled to H.M. Government. for solittle money, As suppied Educational Authorities. Printers and private users throughout the world. Thousands testiry to the tunty PAPER, WOOD, CLOTH, PLASTICS, etc. AMERICAN PUBLISHERS SERVICE docking roap, sebgemori, norfolk

This is the
bargaln of the year SEE WHAT YOU THE SET: I, IRge 1Gin. I2in. PRINTING FRAME. Stout LaminPatented ADJUSTABLE HiNGES (for printing on material up to Jin. thicks, SDX CONTATNFRS COLOURS - Red, Blue. Yellow, GTENCN Black, White. STENCHL FILM (design STENCIL CUTITERS and STENCIL CUTVERS and
HOLDER. Register Gudes MOLDER. Register Gudring Tape, etc. And FREE 10 - COURSE for every appilcation of process, including PHOTO STENCILS. DA Y GLO
FLOCK finshes, etc.
for $47 / 6$ most
REFUND GUARANTEED IF NOT APPROYED

only 10/- weekly
Yes, for only $10 /$ - weekly you can own a
 choose your outfit from the list below and send with first payment of $10 / \mathrm{F}$. We'll send
H, P. forms by return H.P. forms by return post
OUTFITS

Outfit A. B \& D ing. dilif. fitted tool box with drills and polishing equipment, wood turning lathe, lathe saw table and 5 in . saw.
Price $819 / 17 / 6$ or 44 payments of $10 /$. Outfit B_{r}, B \& D tin. drill, fitted tool box with drills and polishing equipment,
vertical bench stand. Price $£ 15 / 40$ or 34 payments of $10 /-$.
Outfit C. B \& D Sander-Polisher-DrllL, horizontal bench stand and polishing pack. Out $210 / 146$ or 23 payments of 101 -. Outfit D. B \& D Sander-Pollsher-Drill, saw. Price £17/10/0 or 39 weekly payments

NEW TRADING HOUSE

Dept. N.2i, Primrose Hill Mill, Preston. Lancs.

ELECTRIC WELDING PLANT

Arc Welding Sets by leading Makers, UnAsed. Surplus and Second Hand. Examples £40. 160 amps, max output, £34. 100 amps. max. output, 28810 s. 85 amp . max. output, control. with lamite Catalogue of Arc, Spot and Butt Welders

> HARMS WORTH, TOWNLEY \& CO.,

Brook Road, Manchester, 14.

based on seeing an object from two viewpoints, and therefore the seeing must be binocular, not monocular.

Suppressing the "P.M." Windcharger

 T HAVE made one of the small windpower plants, as per your articles in "Practical Mechanics," May to September.If fitted it with a 24 v . dynámo and have 6.6 v. 130 amp . batteries. I am pleased to say it works very well.

I have now obtained a 24 v. D.C. to 234 A.C. rotary converter. Will you please inform me how to stop radio and television interference ?-G. C. Bunting (Derbys).
A SUPPRESSOR unit consisting of condensers and choke coils could be connected as indicated in the diagram below,

passes in through the gauze. If firedamp is present it enters into the lamp and burns inside it with a bluish flame. But owing to the conduction loss of heat through the gauze to the base of the lamp, the temperature of the firedamp immediately outside the gauze never rises to the ignition point. Thus the flame cannot travel outside the lamp, and explosions are prevented. We do not know the percentage it can detect, but it is of a very small order.
We assume that you want to be able to detect leaks of coal-gas. It is necessary to select one of the common ingredients of coalgas, which is always present, and which will give a reaction even in minute quantities. Carbon-monoxide is the ingredient in the coal-gas selected.
This substance decomposes iodine pentoxide into free iodine when passed through a tube of iodine pentoxide. In series with this tube you need another U-tube containing potassium iodide paper, which should be maintained moist. As soon as carbon-monoxide or coal-gas passes over the first tube it is converted into free iodine. The iodine vapour then passes on to the second tube containing the potassium iodide paper and gives a brown tint to the paper (see Partington's Inorganic Chemistry, page 4II).
the case of the rotary converter being connected to earth. Connect the suppressor as close to the D.C. terminals of the converter as possible. Messrs. Belling \& Lee, Ltd., of Cambridge Arterial Road, Enfield, Middx, could probably supply a suitable suppressor unit if you send them full details of the machine.

Changing Telescope Object Glass

IHAVE a home-made telescope with a double concave eye lens $\frac{1}{2} \mathrm{in}$. diameter, fin. focus; the object lens is a slightly double convex spectacle lens, $1+\frac{1}{2}$. diameter, 15 in . focus. Would it work if the object lens was a 3in.-diameter $20-30 \mathrm{in}$. focus double convex ?R. H. Unwin (Derby).

YOUR telescope would work with another object glass, or lens, of $20-30 \mathrm{in}$. focus double convex, but we suggest that you do not have a 3 in.-diameter lens; it will cost you much more and you will find that to obtain good definition you will have to stop down the aperture, i.e., you will improve the sharpness of the image seen by cutting a black cardboard ring so as to only have an opening in the middle of the lens of about $\mathrm{I} \frac{1}{4} \mathrm{in}$. diameter. This means that the remainder of the lens is wasted. It would be different if the lens were achromatic or if it were of extremely long focus. We advise you to go to an optician and buy an ordinary double-convex circular lens having a focus of $30 i n$. and of the kind which is used in spectacles. You will find it an advantage to have a best quality lens.

For lenses try Broadhurst, Clarkson \& Co., Ltd., 63, Farringdon Road, London, E.C.r.

Detecting Firedamp in a Coal-mine

IBELIEVE there is an instrument which a fireman uses to determine if gas is present in a coal-mine and should be very interested to know how this works. Also, what is the percentage of gas in the atmosphere it will detect? Is there a metal or substance which is reactive to coal-gas?-G. Cole (Bolton). W^{E} are assuming that when you refer to "gas" in a coal-mine you mean firedamp or methane. This is the only gas that is of concern to the miner. A Davy safety lamp is used for detecting the presence of firedamp. This is an oil-lamp the flame of which is surrounded by a cylinder of wire gauze. The air necessary for the combustion of the oil

The Gearless Automatic Camlighter

UNDERSTAND that Mr. F. J. Camm invented the Camlighter, and that, although it is fully automatic it does not contain any ratchets, gears, pawls, or special springs. As it is patented is there any reason why you could not explain how it works ?-E. J. S. (Birmingham).

I^{T}is true that the Camlighter which is fully automatic does not make use of any ratchets, gears, pawls, or special springs. Upon pressing the pressure bar the snuffer is lifted and the wick ignited. When pressure is released the snuffer automatically extinguishes the flame.

When the flint has worn down to the thickness of a piece of paper the last wafer is automatically ejected.

The action of the automatic gearless Camlighter

The action depends upon the principle of the inclined plane. (See diagrams.) An inclined plane is cut in the snuffer box which envelopes the wick nipple. Across this inclined plane is a small roller which drops by gravity into contact with the fintwheel. When pressure is applied to the pressure bar, this roller jams on the teeth of the flintwheel and thus as the snuffer raises it carries the flintwheel with it. When pressure is released the roller ceases to jam and the snuffer can be returned to its original position. The roller and inclined planie is a good' example of a trouble-free free wheel.

In reply to your further question the cheapest model costs 17 s . 6 d .

Information Sought

Readers are invited to supply the required information to answer the following queries.
A letter from R. D. King asks: "Can you supply constructional details of a home freezer using an absorption unit ? I want to build the unit myself."
Mr. M. Day writes : "I am interested in making a set of training rollers for my bicycle ; could you let me have any advice, particulars or preferably, plans of construction ?"
J. Thompson asks: "Can you supply me with some information regarding the construction of a wind-pump suitable for raising a small amount of water about roft. ?"
From Tolworth County Sec. Boys' School comes the following: "We are in need of a machine for folding paper. Would it be possible to make such a machine in our school workshop ? Where could we obtain a suitable design?
The machine would be expected/to handle single sheets up to 15 in. by roin."
E. N. Bartlett (Exeter) writes : "I own a Kodak "A" camera fitted with a F/4.5 Anastor lens, with a focusing range of $3-40 \mathrm{ft}$.
I wish to fit a telescopic lens in order to take photos of car racing and motor-cycle scrambles, etc., where it is not always possible to get within range.

Can you suggest any way of modifying the lens, or where I can purchase a lens ?"
S. W. Coates (Finchley) asks: "Can you suggest material to use to make rocks, etc., for a tropical aquarium?"
The following is from D. L. Laing (Dunedin): "Could you give me some information on the design of a Sawdust Burner? Fabrication presents no problem and I intend, if possible, to use the burner for space-heating (9,600 cu.ft.) in a small workshop."

From J. W. Clewett (Bristol) comes the following: "How can I obtain the surface with which some types of telephone message pads are finished on which marks can be made in pencil or ink and erased when necessary with a damp cloth ? I want to produce such a surface on maps, some of which are ink drawn on stiff card and others being Ordnance Survey maps mounted on hardboard."
Mr. L. Corder (Croydon) writes : "Could you please send me the circuit of the simple advertising mechanisms now used in various shop window displays? The mechanism is usually clamped to a dry-cell and provides a continuous pendulum motion to operate various moving displays, usually built up on cardboard."
R. G. Sanders asks : "Can you please tell me how to make gelatine photographic filters, what dyes are used and a source of supply ? Can you recommend any suitable literature on the subject?"

Flat stones suitable for sharpening any flat-bladed tool, and for outside-bevelled gouges. In coarse or fine grits of silicon carbide or ALOXITE (aluminium oxide). Combination (coarse and fine) stones also available.

2. FOR GOUGES WITH INSIDE BEVEL

Slipstones of various sizes, in'silicon carbide or Aloxite (aluminium oxide), for all tools that need sharpening on an inside curve.

Sharpening Stones by carborundum

3. FOR SHARPENING GIMLETS

Bore a hole with gimlet in hard wood. Fill hole with silicon carbide grain by CARBORUNDUM (izo to 180 grit). Work gimlet in hole with a little oil. Then repeat in a second hole, without oil.

4. FOR SHARPENING AUGER BITS

Small stones like these are ideal for sharpening auger bits and other small tools. Auger bits should be sharpened so that the bevel is on the upper side of the cutting blades.

Write for pamphlet, 'The Art of Sharpening', to Dcpt. H, The Carborundum Company Limited. Responsible organizations may borrow an entertaining 16 mm . sound film, in colour, called'Here's How", on the same subject, from the same address.

5. FOR SMALL OR INACCESSIBLE SHARPENING JOBS

CARBORUNDUM make a complete range of small sticks of different section and different grit sizes, for every kind of small sharpening job.

> SOLD BY TOOLSHOPS AND GOOD HARDWARE STORES EVERYWHERE THERE'S A PRODUCT BY CARBORUNDUM for every sharpening job

This is a H.s. Milling Cutter Bargain. All $1^{\text {² }}$ bore, $3-31^{\circ}$ dia.. ${ }^{-t^{\circ}-t^{\circ} \text { thick, }}$ including side and face cutters, plain and angle cutters. A most useful lot for any tool room. 6 ass. for 501 , The present maker's price of the cheapest get this lot, remember you get same on approval against cash.
2.000 Small H.S. Twist Drills, approx. $1 / 32^{\circ}-3 / 32^{\prime \prime}$, 4/- doz. approx,
$1 / 16^{\circ}-z^{-2}$,
$7 / 6$ per doz. approx. ; $9 / 32^{-}-$ $5 / 32^{\circ}$, slx for $10 /-$ -
All Items brand new. 51 orders post
paid. Prompt delivery. Inspection by appointment only. Ali items sent on approval against cheque or P.O. Refund without question if any item returned. 3,000 Circular Spllt Dies 1^{*} dia cutting 4°. $5 / 16^{\circ}$. $1^{\circ} 7 / 16^{\circ}$, Whit. B.S.F.. also brass thread. 20 thread all
sizes and American N.F. $12 /$ per set of 5 sizes, 2 sets $22^{\prime} 6.4$ sets $42 / 6$. Taps to suit $8 / 3$ per set, elther taper or second or plug. 1 die-stocks, 5/- eac
1.000 Hand Reamprs, $5 / 16^{-}$and

1,000 High Speed Inserted Bladess $14 /-9 / 16^{\circ}$ to I $^{16} 16 / 11 / 16^{\circ}$ to to $19 / 32$
 7,000 Pratt \& Whitney, circular spilit dies, superior quality precision ground cutting edges, $13 / 16^{*}$ dia., suitable $10 r$ machine or hand
$2.4,5,6$ B.A., $8 / 6$ per set.
5,000 Ball Races $\mathfrak{c}^{\prime \prime}$
 thick, $4 /$ "pair 6 mm . bore, 19 mman o.d. 6 mm . thick. 4 - pair 9 mm . bore. 28 mm . o.d.. 8 mm thick, $4 /-$ pair
bore, $\mathrm{i}^{\prime \prime} \mathrm{o} . \mathrm{d}, 7 / 32^{\circ}$ thick, $5 /$-pair.
4/9 Any LoT, Five lots, 22/6. 2 Cutters $1 t^{\prime \prime}$ dia. " hole, t" and $3 / 16^{\circ}$
thick. worth $7 / 6^{\prime \prime}$ each. Set $5 / 32^{\circ}, 3 / 16^{\circ}$ $7 / 32^{\prime}$. In $^{\prime \prime}$ all in 40 thread. $13 / 16^{\circ}$ ' Split Belt Punches, total value 12/6: one E.S. Tap or Reamer Fluting Cutter. 2^{2} dia.. $1^{\prime \prime}$ thick, hole : one I" H.S.
Hand Reamer, worch $10 /-$ Every 1cem Hand Reamer,
500 Sets Metal Figure Punches reverse for nine to 8 , the six is used reverse for mine : Size $5 / 64^{\circ}$
worth $15 / . ;$ ditto 1° size. $8 / 6^{\circ}$
2.000 Flles, 4^{4} to 6° fiats, half-rounds rounds, squares, warding assorted. cuts 286.

600 Clreular Spllt Dies, B.T.D. make 25° dia. $1^{\prime \prime} 1^{\circ}$ Whit. Gas. worth ll- each. $2 t$ dre-stock to suit, worth $30 /-$ each
clear $10 /$ each. 200 Roxes A to Z Steel Lefter $17 / 6$ set : ditto 176 set i ditto ${ }^{1}$
2,000 Stralght Shank End Mills, size ${ }^{\prime \prime}, 5 / 32^{*}, 316^{\circ}, 7 / 32^{\circ}$. ain. $5 / 16^{\prime \prime}$. list
price $30 /-$ set, handy bargain, $15 /{ }^{\circ}$ set. price $30 /-$ set, handy bargains, $15 /$ set.
also $5 / 16^{\circ}$, ditto, $12 / 6$ set, all in makers' wrappings.
500 II.S. 90° Countersinks, body - dia., teeth cut to point. An essential tool for any workshop using c/s screws. Gift 5:-each.
1.000 Bevelled Wood Chisels,

3,000 High Speed Routhe Cutters straight shank. two lip, as used for cutting slots í
1.000 Toolmakers' Needle Files, good assortment of shapes and
worth $1 / 9$ to 2,6 each, $12 / 6$ doz.
200 Ace Dlal Gauges, 2t" face. reads to 0.001^{*}, plus and minus, very useful instrument, worth 60/-, gift $45 / \mathrm{C}$ 10,000 Iligh 'Speed Find Mills Straight Shank, $3 / 32^{\circ}$ to $3 / 16^{\circ}$ dia., some with teeth cutting both end but no 100 doz 6^{*} Three square Saw Files, 1016 per dozen 1,000 "Lestool R" Ratchet SoanMakers ${ }^{\prime} 5 / 16,1^{\circ}, 7 / 16^{\circ}$. Whit Makers price $70 /-$ per
1.000 Semi High Speed Centre Brills, Slocombe brand. $5 / 16$ body 1,500 II.S. Morse Taper Shank Twist Drilis. Brand new. Firth Speedicut. Balfour Capital, etc. All best
quality drills, No. 1 and 2 Morse Taper shanks. sizes from approx. If dia. to approx ${ }^{\psi^{*}}$ dia. Five assorted $£ 1$, actue
value dozen assorted, $42 / 6$. 20,000 Small High Speed Muling Cutters, various shapes and styles. We want to clear these quickly, 12 assorted. 3 ,
800 Small Rotary Ftles, $3 / 32^{*}$ shanks. various type heads, another clearance
250 pairs Toolmakers' V-blocks with clamps. V-blocks 1t" square. 2 long, large V one side. small V other
side, worth $35 /=$ per pair, gift $15 /$ pair.

J. BURKE,

192 Baslow Road, Totley, Sheffield

Inspertion Only at Rear

RUSTED FITTINGS Free them quickly with

 Shell Easing Oil

Shell Easing Oil comes in a handy 8 oz. tin with special pourer spouit to eliminate waste.

Here's the way to free those rusted fittings! Free them quickly, too. Shell Easing Oil is sure and swift, penetrates deeply to loosen and free.
From nuts and bolts to taps and pipe joints, from bicycle frames to window catches, Shell Easing Oil is the answer to your rusted parts problem.

SHELL EASING OIL is very handy in the house. Buy some to-day-good ironmongers stock Shell Easing Oil.

LUCAS-CHALLIS
 BELL No. 50

LUCAS
Famous for its purity of tone, smooth action, loud effective ring. Chromium 6/-

GALPIN'S

ELECTRICAL STORES

408. HIGH STREET, LEWISHAM,

S,E. 13
Tel, : Lee Green 0309, Nr. Lewisham Hospital TERMS : CASH WITH ORDER. NO C.O.D. All goods sent on 7 days' approval against cash.
early closing dar thursoay MEDIUM SPOT WELDING TRANS. FORMERS, input 200/250 volts, OUTPUT a combination of $2,4,6,8,10,12$ voles at 50/70 amps. New, ${ }^{\text {\$5/2/6, carr. paid. }}$ HEAVY DUTYL,
HETPUTTRANS FORMERS, 200/250 volts input. Output a FORMERS, $200 / 250$ volts input. Output a
combination of 6,12 . 18 , and 24 volts at 30 combination of 6,12 . 18 , and 24
amps. 4 a/2/6 each. 24 volts at 12 amps, $55 /$ e each, post $2 /$. Another, Input as above. Output $0,6,12,18$, 24 voles, $6 / 8$ amps., $46 / 6$ each.
HEAVY DUTY T.T. TRANSFORMERS suitable for rectifiers soil heating. etc. Input 200/250 volts. Output a combination of $6,12,18,24,30,36$ volts at 15 amps., $67 / 6$ each, post $2 / 6$. Another, Input and Output as above but at 6 mpss . $47 / 6$. post $2 /$-. Anocher, input and Ourput as above but at 4 amps., $36 / 6$ each.
CONVERTERS, 400 watts output, 24 volts D.C. input, 50 volts, 50 cycles, I phase output. Complete with step-up transformer from 50 volts to 230 volts at 400 watts. E12/10\%-each, C/F.
EX-RADAR MAINS TRANSFORMERS. Inpue 230 volts. Oueput 4 or 5 kilo-volts at 30 min ., also ${ }^{3}$ L.T. Windings
$4 \mathrm{v}, 2 \mathrm{a}, 6.3 \mathrm{v}, 2 \mathrm{a}, \mathrm{a}^{2} \mathrm{v} .2 \mathrm{a}$,, these trans$4 v .2$ a., 6.3 v. 2 a., $2 v .2 a, ~ t h e s e ~ t r a n s-~$ formers are capable of a larger output than
stated and are immersed in oil. $63 / 15 /-$ stated and are immersed in oil. C3/15/-EX-U.S.A. ROTARY CONVERTERS. 12 voles D.C. input, outpurs 500 volts 50 mA. $275 . \mathrm{V} .100 \mathrm{~mA}$. Complete with smoothing.
ELECTRIC LIGHT CHECK METERS. useful for subletting. garages, etc., all for useful for subletring. garages, etc., ald, $19 /-$ each ; 10 amps ., $22 / 6 ; 20 \mathrm{amps}$., $27 /-; 25$ ${ }_{1,000}$ amps., ${ }^{32 / 6}$ WATT AUTO WOUND VOLTAGE CHANGER TRANSFORMER tapped 0/110/200/230/250 voles, 65/15/-

$350-$ watt. $55 /$ - 500 watt, $75 /-200$ wate, $45 /$-. CHARGING KITS CONSISTING OF RECTIFIER AND TRANSFORMER for charging 6 or 12 volt batteries at 2 amps. (input 200/250 volts), 32/6 each ; ditto for 4 amps.i, $46 / 6$ each.
EX-R.A.F. DYNAMOTORS $24 / 48$ volcs D.C. input, 1,200 volts, 70 milliamps, $\frac{1}{2}$ hour rating, $11 /{ }^{2}$ each.
EX-RMERS 2 MMPULSE TRANS FORMERS 2 Mu-Metal transformer in oil.
Output believed to be $15 \mathrm{k}, \mathrm{v}$, at 3 kw . for Output believed to be 15 k
I micro/sec. only $7 / 6$ each. 24 volts D.C.
ROTARY CONVERTERS input 50 or 110 volts, 500 cycles, 1 phase. input 50 or 110 volts, 500 cycles, ${ }^{2}$ phase.
Output at 300 wates, $\in 7 / 10 \%$ each. Output at
METAL RECTIFIERS, large type, 50 volts at I amp. D.C. Output ($70 / 75$ volts A.C. Input), these can also be broken down for low tension rects. $7 / 6$ each.
EX-G.P.O. EAR PH HONE with separate carbon type Microphone, 40 ohms resisAUTO WOUND TRANSFORMERS 4 kilowatts 110 to 230 volts or vice versa.
til each, C/forward : ditto double wound E15 each, C/forward : ditto double wound 3 kw ., Input 230 volts, Output $55 / 0 / 55$ or
can be used the other way round, $\mathrm{E} / 6 / 10 \%$. can be used the o
each, C/forward.
MAINS TRANSFORMER, Input 200/250 volts, OUTPUT 25 volts 2 amps,, centre tapped, 22/6 each.
EX-R.A.F. MORSE TAPPING KEYS, $3 / 6$ each.
EX-GOVERNMENT MAINS TRANS. FORMERS suitable for soil heating, garage lighting, etc. Input 180/250 volts. OUTPU o/14/17 volts 20 a mps.0 45/- each, carriag 20 amps. Ewice, $30 /$ each, C/paid. LARGE WIRE WOUND FIXED RESISTANCES 350 ohms to carry t ampoinslider easily fitted, 5.- each. Input 0/9/18 volts $3 / 4$ amps., OUTPUT suitable for battery chargers, etc. $22 / 8$ each. ELECTROLYTIC CONDENSERS, 1,000 mfd. 75 volt working, $6 / 6$ each ; 2.000 mfd . 12 vole working, $5 /-$ each, post $1 /-\dot{1}$
EX-W.D. CONVERTERS $18 / 24$ voles D.C. Input 450 volts D.C., Ourput com plete with reduction gear ; these can be easily converted to work off A.C. mains, approx, power $\frac{1}{4}$ h.p., suitable for grinders. lathes, etc., 20/- each, post $2 / 6$.

Clients in Eire, please allow at least double the carriage stated to allow for customs clearance charges.

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Ltd., Tower House, Southampton Street, Strand, London, W.C. 2

Phone: Temple Bar 4363
Telegrams: Newnes, Rand, London

WHAT I THINK

By F. J. C.

Should the Speed Limit Be Abolished?

IT will be remembered that the Roadfarers' Club in a memorandum to the Ministry of Transport suggested that the Speed Limit in London should be abolished. In that memorandum it was stated that it shared the opinion of the Lord Chief Justice that the speed limit was not effective in reducing accidents. Indeed, an analysis of the accident statistics shows that speed is not the primary cause of accidents. It is illogical to presume that a motorist is driving safely at $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and dangerously at $31 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. It was pointed out that the law at present is adequate to deal with any motorist who drives at a speed which is unsafe in relation to conditions obtaining at a particular moment, and that speed cannot be arbitrarily assessed. It might be any speed between r.m.p.h. and 80 m.p.h. As the average speed in London is only 8 m.p.h., a motorist should be entitled, says the memorandum, to make up some of the time he has lost by travelling at a speed of over $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. where he can do so with safety. It is true that such occasions are few and far between. As the limit cannot be satisfactorily enforced either that is a further reason for its abolition. The abolition of the speed limit, if agreed upon, should be accompanied by a readjustment of stopping places for public service vehicles, removal of a large number of traffic lights, especially at comparatively unimportant crossings, all lights should be switched off at night, including pedestrian crossing lights; there should be more "No Right Turn" signs. "When a river is in spate, the sluices are lifted in order to prevent it from overflowing its banks. With the traffic stream the contrary policy has been adopted." Traffic lights are insensitive to the needs of the moment, and they cannot be pre-set for traffic control, so that the duration of the red or green lights comply with varying traffic needs throughout the day. If it is impractical to abolish the limit, especially on roads in which schools are located, it should apply to only certain hours of the day, and be abolished altogether at night. These are some of the main recommendations in the memorandum, which has been favourably commented on in the National and technical press.

We were not surprised, however, to learn that these views are not altogether palatable
to some. Mr. F. W. Garforth, of Hull, for example, says, without producing any evidence, that "experience has shown both in this country and in the U.S.A. that a speed limit is effective in reducing the accident rate." This in our view is insupportable, although Mr. Garforth says that speed is a factor in road accidents and that the braking distances illustrated in the Highway Code show this clearly. We agree that some statistics do indicate that there is a close relation between speed and the severity of injury, but they do not prove that speed is responsible for the majority of accidents. Mr. Garforth goes on :
"It is suggested that the speed limit should be imposed only in certain areas, e.g., in roads where there are schools and in school

hours. This seems wholly impracticable; children of primary age (five to II) may have to walk up to two miles to school, crossing several roads en route-how many roads, then, should be restricted, and for what distance? and what is meant by 'school hours ?'-for schools differ in their hours, as also in their holidays. And in some areas it is the holidays, not term-time, that are the more productive of accidents to children.
"Accidents to pedestrians occur most frequently among the younger (five to eight) and the older members of the population, both of whom are incapable of judging speed and distance accurately; the abolition of the speed limit would greatly increase the risk to these already highly vulnerable sections of the population.
" It may be true that the law is adequate to deal with the motorist who drives at an unsafe speed; but the law cannot operate without
evidence, and I suggest that the evidence in such cases would be even more difficult to obtain than that for exceeding the present speed limit. In practice the only acceptable evidence would be an accident or nearaccident, and this could hardly be regarded as a contribution to road safety.

It may also be true that ' speed cannot be arbitrarily assessed,' the inference from which would be that each man must judge for himself what is a safe speed. But there are many drivers who are incapable of such judgment, either congenitally or because they are strangers to the district or because they are 'under the influence' or (and there are far too many of these) because they are plain selfish. Far better, surely, to err on the side of safety and have a universally enforced limit which good and bad drivers alike must obey.
"In recent months there has been a considerable rise in the accident rate, especially, I believe, in non-restricted areas where speeds are normally greater. Moreover, we have been authoritatively informed that road traffic may be doubled in the next 10 years. The present, therefore, would hardly seem to be the time for any experiment likely to add still further to road hazards."

Naturally the cycling and pedestrian associations are opposed to the abolition of the speed limit. We are in favour of it because we do not feel that it is an infraction of the rights of other road users and because we believe that it would make the roads in busy places safer. It is well known that congested roads where speed is slowest are the most fruitful source of accidents. We believe that if traffic is kept fluid and apart instead of being built up into clots of State-created obstruction, cyclists and pedestrians could benefit.
It is true that the accident statistics are appalling, for more than 200,000 people are killed or injured on our roads every year. This amounts to one casualty every $2 \frac{1}{2}$ minutes. But with 186,000 miles of highways, which includes only 8,250 miles of trunk roads, it is obvious that traffic must be speeded up to accommodate the large numbers of new vehicles swelling the ranks of road users each week, and increasing at a greater pace than our road mileage. Otherwise, traffic conditions must eventually become quite chaotic. Traffic moves very slowly in Britain, with 3 I.I motor vehicles to the mile, than any other country, and in our city streets speeds are back to the days of the horse and cart.

Another aspect of the matter' is that more and more people are using the roads and deserting the railways and that movement will continue to expand. If a road policy is designed to consider only one section of the community-pedestrians-then the speed of all traffic must eventually be reduced to that of pedestrians. In busy places that speed is being approached now; it must be remembered, also, that pedestrians can use pavements as well as the roads and that they often elect to use the roads instead of the pavements.

The art of Pedalling

This Writer Advocates the "Ankling" Action as Best for Effective Pedalling

O$\mathrm{N} \cdot$ no aspect of cycling is there absolute unanimity of opinion and practice. Pedalling, to the casual observer, would' seem to be such a simple process that it would not permit any divergence of views or procedure. Yet it is a fact that no two persons do it the same way.
For example, one expert rider may invariably twiddle a low gear. He may sit right on the peak of his saddle which is already right on

The position of the foot at four points of the pedalling circle.
the very end of an L-pin! He may appear to push more on the toe-clip than on the pedal, the soles of his shoes being practically unmarked. Moreover, he may put his feet so far on that the back plate of his pedal almost misses the sole. The methods of other equally fast riders may be almost exactly opposite ; they may sit well back and put their feet only a short way on their pedals. Between these two extremes are spread a multitude of styles, though it will generally be found that the "twiddlers" sit farther behind the bracket than the pushers of big gears who tend to get farther forward as their gears increase. Each person must find out, by trial and experiment, what method is best suited to his own physical peculiarities. Once having found it, however, endeavour to stick to it for each particular style demands its own specific muscular development.

Method for the Average Rider

Over a period of some eight years I have endeavoured, by observation of the pedalling actions of the "cracks," to form a theory of pedalling, which, with slight modifications to accommodate individual idiosyncrasies, would suit the average rider.
The feet should be placed far enough on the pedals for the ball to come between the two pedal plates. This means that the mark left by the back plate should be about rin. to $I_{\frac{1}{2}}^{1}$ in. from the end of the sole. This position ensures that the maximum of downward thrust is obtained, and that the two most tender parts of the foot, the instep and the ball, do not bear any pressure. The toes should either be pointing straight forwards or else turned very slightly inwards. Personally, I prefer the latter as it seems to give more kicking power as well as keeping well clear of the top tube.
Old timers will tell you that the way to learn how to pedal is to chase the pedals round without toe clips, straps, or shoe
plates. I have tried it and do not agree with them. It may make one deft, but it does not alter the fact that by using some method of ensuring that the feet stay in the correct position one can concentrate on acquiring the correct movements.

Use of Clips or Straps

In the days of the ordinary, rapid leg work was no doubt the most. important aspect of pedalling, but in these days of varying gear sizes it is the power and the methods by which it can best be utilised to obtain the greatest effect that is of paramount importance. For this reason, I say, use clips or straps or both and, once you are satisfied that you have obtained the best position for your feet, fit shoe plates over the mark made on the sole by the rear pedal plate during the motions of pedalling. That the weight of the foot should be lifted off the rising pedal is a truth so obvious as to need no explanation. How this can be done properly without the aid of bars or straps I cannot conceive. Some riders go so far as to pull on their clips and straps as the foot comes up. This action requires a lot of practice and development of the front muscles of the thigh and, whilst realising its value up hills and into a head wind when the pedalling action is not too rapid, I have always found the upward pull took my legs so high that I was unable to get in as much forward thrust as the pedal became horizontal as I would have done had it just come up of its own accord.

"Digging" With the Toe

As the crank becomes vertical, kick forward as hard as you can with thigh, calf and ankle. Then, as the pedal goes on its downward arc, push with all the weight of
your leg and, using your ankle as a pivot, "dig ", with your-toe,"giving a final "digging claw" at the very bottom. The shoe plates will assist tremendously in every phase of this action. The last action will leave the ankle in the air,-making the next motion of lifting the weight from the rising pedal an easy and automatic matter.
The mere rapid up-anddown motion of the legs is not the beginning and end of good pedalling. It does not necessarily follow that because a rider is fast on a very small gear, he is a fine pedaller. It merely shows that he has such a magnificent heart and pair of lungs that he can move his legs at a terrific speed
 without becoming in any way distressed. In fact very few men who show up well in restricted gear event do as well in one in which unrestricted gears are allowed. The reason is that, in concentrating on rapid revving, they merely achieve short, jerky thrusts which, though sufficing for a tiny gear, make very little impression on a gear that requires to be pushed as far round as possible.

The Wheels Turn No More

AFTER more than 100 years of continuous service, two famous water wheels have turned their last and will no longer provide power for the D.P. Battery Co., Ltd.'s factory at Bakewell, in Derbyshire. Earlier this year a breakdown caused, extensive damage and the firm has now reluctantly decided that repairs would be impracticable.

Such reluctance is understandable, for the wheels had come to be looked upon as one of the most interesting sights in the district, providing as they did a link with the earliest days of the industrial revolution.

The larger wheel (on the right in the photograph) dates from the year 1827 when it was installed to provide powier for a cotton mill founded by the famous inventor Arkwright,
later Sir Richard Arkwright, in 1777. The smaller wheel (in the foreground) dates from 1852. It was built by Kirkland and Son, of Mansfield, and measurés 21 ft . in diameter by 7 ft . wide. The output of the two wheels together was between 60 and 80 kW .

every cycling purpose.
Hallord Renshaw, 10\%.
Hallord Renshaw,
:1
Speed,
$9 / 9$.
Full range of Dunlop Tyres in stock.

PUMPS

from 4/8. Size $\operatorname{Hin}, \times 9 \mathrm{in}, \times 6 \mathrm{in}$. as illustrated with one end pocket, 13/9: Larger models with two pockets, 18/-. Brooks-Midland-Bayclif-Cykewear bags always in stock.

```
TYRES Halfords stock tyres for
```

```
TYRES Halfords stock tyres for
```


CYCLE STANDS

"Shuresta ". Kickup Floor Stands from

REAR CARRIERS

BRAKES

British made Caliper Frone Brakes aliper Rear Brakes 8/II Monitor, Phillips and Webb available.

BELLS \& HORNS

$2!\mathrm{in}$. Dome N.P. Bell, $1 / 8$. Genuine Lucas "Challis " pattern as illustrated from 4/Bulb Horns from 1/I.

The shop for CYCLISTS

MUDGUARDS

Lightweight plastic mudguards
7/11 pair.
Alloy sports mudguards
8/6 pair.

FEEDING

BOTTLES
"Coloral "
-pint single, $2 / 11$.
Coloral "
 Carriers from 2/-

HANDLEBAR

GRIPS
Popular 4 in .
패표
rubber Tin.
diameter,
Olack from
10d, pair

LUBRICATING OILS

Cycle lubricating oils. Malford Raleigh $1 / 6$

HUBS-

-speed wide ratio ... 40/9 $\begin{array}{lll}\text { A-speed wide ratio } \\ \text { (FW) } & . . & 45 / \mathrm{C}\end{array}$ Full rance of Sur mey-Archer Gears, Brakes and Dynos available, either loose hubs or buite into wheels.

42in. Button opening, 27/9. 36 in . Button opening, $26 / \$$. Leggings, button opening, $28 \mathrm{in} ., 30 \mathrm{in}$., $32 \mathrm{in} ., 18 / 11$ pair.
Sou'westers, small, medium and large, 6/6.

Catologues free from 226 Branches throughout England. Scotlond and Wafes.

HALFORD CYCLE CO LTD

You can save money by laying your own floors with these amazing plastics. They can be laid over almost any surface.

POLYFLEX-POLYVINYL

This revolutionary plastic floor requires no mixing or keying. It comes in handy cans ready to lay with a trowel. It has a beautiful marbled finish that forms as you spread it! It is GUARANTEED not to crack, lift or craze. Many colours available.

POLYFLO

Here is a plastic you can apply with a brush ! It's not a paint, but a REAL PLASTIC floor. Just think, a different colour in every room of your home! Ideal also for surrounds, window sills, table tops, shelves, etc. Easy to keep clean, it will not crack, lift or discolour. Costs far less than lino.

FROM: THE SURFEX FLOORING COMPANY, (Dept. P2), 48, HIGH ST., CAMBERLEY, SURREY

CLAMP YOUR WORK HYORAULICALCY!

1060
 and every Clamping Problem

[^4]WATSON'S SPECIAL OFFER

LYON ALCO

12/18v. 360w. £22/10/0 Carr. 12,6
rating sets, self These are very fine generating sets, self-
contained in steel frame and complete with contained in sueel frame and complete wice. switch panel UNUSED ready for service.
NICKEL ALKALINE BATTERIES by "NIFE" or "BRITANNIA" 12 voll, CHARGED, each with NINE CELLS io CHARGED, each with Nize approximately 24 in. x 9in. x sin. PRICE $£ 13.10 .0$
PLANISPHERES. These determine star position and Azimuth. Each with four latitude sheets from $\mathrm{N} .25^{\circ}$ to 65° complete in rexine case. each. Post $1 / 6$.
R E P E A T E REPE \mathbf{E}
COMPASS motor, designed for use with Master
Units. Price $9 / 6$. Post 2/

MINE DETECTORS. A fine article with hundreds of uses for detecting concealed EX-R A F TOOL BOXES. size 14 EX-R.A.F. TOOL, BOXES. size 14in. x 9 in . x 8in. Dovetailed and metal bound 9/6 each. Carr. 2/6. Larger size 20
$12 \mathrm{in} . \mathrm{x} 1 \mathrm{lin}$. Price $13 / 6$. Carr. $3 / 6$.
 G.EAR PUMPS Beautifully made. Wil deal with a large
volume of liquid. Inlet $\$ \mathrm{in}$. Outiet 8 in . 30/- each. Post $2 / \%$.
COIL SPRING BELTS. tin. $x 12 \mathrm{in}$. long, extends to $15 i n$. Any number can be joined together. 20 for $4 / 6$. Post 9 d . LENS UNITS. Consisting of two 7 in lens in 2 in . brass focusing mount with adjustment 2 in. overall. 14/6. Post $1 /$-. Hundreds of other bargains available.
Send stamp for list. EASTERN MOTORS, ALDEBURGH

Made Specially Yor You! STOCKS \& DIES

The Pack that slips into your pocket

Every handyman will welcome this New Pocket size set of Stocks and Dies in a carton. Threads available are Whitworth, B.S.F., B.A., Model En gineer's, B.S. brass metric and
 Specialists. In case of difficulty please write to :-

THE BRITISH TAP \& DIE CO., LTD. TRIANGLE WORKS, TOWN ROAD, EDMONTON. N. 9

LANGUAGE PROBLEM
 SOLVED

By the Pelman method

T'HE problem of learning a Foreign Language in half the usual time has been solved. The Peiman method enables you to learn French German, Italian and Spanish without translation.

By the Pelman system you learn French in French, German in German, Spanish in Spanish, and Italian in Italian. English is not used at all. Yet the method is so simple that even a child can follow it.

Reduced fees for H.M. Forces.

Grammatical complexities are eliminated. You pick up the grammar almost unconsciously as you go along. There are no classes to attend The whole of the-instruction is given through the post.

Send for the Free Book.
The Pelman method wi learning languages, which has now been used for over 25 years with such success, is explained in four little books, one for each language

FRENCH SPANISH
(Also Courses in Afriknans and Urdu) You can have a copy of any one of hese books, together with a specimen lesson, gratis and post free, by writin OOS it to-day.
POST TREE COUPON TO-DAY

Pelman Languages Institute,
130, Noriolk Mansions, Wigmore St.
Please send details of Pelman method of learning

French, German, Spanish, Italian (Cross out three of these)

Name

Address

ELECTRIC PAINT SPRAYER

Cash $75 /$ - or $4 /$ - deposit and 6 monthly payments of $13 / 6$.
Paint easily, evenly, twice as fast with the Burgess Electric Sprayer. Sprays paint, varnish, etc. Complete with sturdy glass container, ind exta nozzle dises for different liqulds. A.C. mains only-state your

Leafet free.

and 6 monthly payments of $13 / 6$ The I. \& G. Electric Sander Polisher does no effort. Sands wood furnibure, burnishes metal, plaster, etc. : and polishes cars. furniture, sllver, and all metals Wil also remove paintand varnish easlly.
For A.C. mains only- $220-250$ volts.

The Black \& Decker U-1 iln . DEPOSIT hours on home and workshop jobs. Drills wood, steel, brick etc. Also drives sanding discs. . 6 or 12 dep deposit and 6 monthly payments of 812.7 or $28 /-$ deposit and 8 monthiy pas:ments of \&1.11.0 A.C.D.C. motor Vol tages 110 to 250 . State your actual voitage. Also 5in. Saw attachment. only £3.5.0 or
$5 /$ down and 6 monthly payments of $11 /$.

BARGAIN DISTRIBUTORS (DEPT. 16), 5 SILVER STREET, LUTON

HIGHSTONE UTILITIES

Solderiar Irons,-Our new streamlined fon is fitted with a pencll bit. $200 / 250 \mathrm{~V}$. able bit. $200 / 250 \mathrm{v}$. 60 watts, $13 / 6$. ILeavy Duty Iron, 150 watts. 166 . all post 60 . are replaceable guaranteed, and all parts Meters 30
 case with switch, $9 / 8: 100 \mathrm{~m} / \mathrm{A}$. $21 \mathrm{n} . \mathrm{m} / \mathrm{m} / \mathrm{c}$ 78. all post extra. Meter Movements. Bell Transformers, - These purante Bell Transformers. - These guaranteed
transformers work from any A.C. moins glving 3.5 or 8 volts output at 1 amp operate bulb, buzzer or bell. Win supply light in bedroom or larder, etc., $9-$. Similar 12/8. Both post 8al. BELLS for use with either the above or batteries, $B /$-, post $6 a$.
BUZZERS. $3 / 9$, or Heavy Duty, $4 / 6$, post $5 d$. EX-R.A.F, 2-valve (2 volt) Microphone Amplifiers, as used in 'plane inter-com., in seli-contained metal case : can be used to make up a deation aid outhe, intercoma complete with valves and Fitting Instructions, $20 /-$, post $2 /-$. Userul wooden box With partitions to hold amplifier, 2/-extra. Ditto, less valves, $10 /-$ Hand Micre5/6. Tannoy 7/. Similar instrument, moving coil, 8/6. All post 9d.
Mike Buttons (carbon). 2/.: Moving Coll Sparking plormers. 5/- All post 4d. each. sparking 1 iug Newith eaters, with vestpocket Clip, 3/3. or with gauge, 3/6, post 3d. mains to show "live "stae of switches, etc. $3 / 6$. post 41. Neon Indieator, complete pocket clip. 7/6. post 5d. type, with vestpocket clip. 7/6. post 5π.
Crystal Sets. Our latest model is a real crystal detector. Have a set in your own room, 12/6, post 8d, Spare Permanent Detectors, 8/ each. When ordered separately, 2/6; with clips and screws, 210 . post G.E.C., etc., $23 /$ and super-sensitive, $301-$ a pair. Headphones in Grod Order, 8/Armature All post $1 /$ - Veq (very sensitive). $13 / 6$. Bal. armature type, 4/6 (two of these whi make an intercom, Set). Ex-R.A.F. earplece. 2/6. post 4d. (All Headphones ilsted Sets.) Money refunded if not completely

highstone Utilities

58. NEW WANSTEAD, LONDON, F-11. New illustrated IIst sent on request with iłd. stamp and S.A.E. Letters only.

NEW CABIES \& HITINGS

TOUCH RUBBER CABLES
 1044 3-core 10łd. 21/- 40/0 78/9 $3 / 029$ Twin 10d. 18/3 37/. $72 /$ $3 / 029$ T. \& E. 11td. 23/3 45/- 87/3 7029 Thin 1/3rd. $31 / 6$ 8V- 120/ $7 / 044$ Twin 2/5 59/6 117/- 232/TWin Lead 50 yds. $3 / 029$ 66/3. 7/029 106/6. $100 \mathrm{ft} .7 / 02911 / 6,7 / 0207 \mathrm{~F}$. Twin PVC Transp. 50 yds. $22 / 6$. TRS, VIR Lead Cables. $12 / 6$. sizes. Holders. C.G. 8/-. Batten doz. 12/l. Roses, Brown $8 /$. White doz. $10 /=$. $12 / \mathrm{Jc}$.
Boxes Boxes Sm. $11 /-$ Lge, doz. 13/- Switches
1-way 18/. 2 -way doz. $24 /$. Mutac Silent Sway $18 /$ - 2 -way doz. $24 /{ }^{\text {a }}$. Mutac Silent Switches 1 -way $18 /-.2$-way doz. 24//. Celling
 Swplugs \& Tops, ea. 5/6. 15 amp amp. 3-pin
Swplugs \& Tops, ea, $8 /-15 \mathrm{amp} .3-\mathrm{pin}$ ditto A.C. onily. ea. 6/e. Wood Blocks 3 -pin ditto
 Clips Sml. 2/9. Med. grs. $3 / 3$. 10 amp D.P. way 15 A. Spltr. 13/6. 30 amp. Ironclad D.P. Switchfuse 19/1. 60A. Metal 8-way Con-
sumer Unit $45 / \mathrm{S}$. Sw, gear, Fusebds, Spltrs. all types. Cooker Control With 13A. Socket 27/6. Lamp Bulbs 15, 25, 40, 60 watt. $12 /$. watt doz. 30 . Carbon Bulbs 230 y. 16 CP

doz. $20 /-$ Immerslon Heaters, $1 \mathrm{~kW} 37 / 6$. | A.C. Motors, |
| :--- |
| 220 v. h.p. 2201240 v. $60 /-$ \& h.p. 200 | 100 yds. 25/-. Condult \& Fittings, 10 yd . 31 . Industrial Reflectors, Tubular Heaters. Fluorescent Fittings, Time Switches, Meters. Electric Motors and all electrlcal

equipment. Full lists on request. Single items supplied. Satisfaction guaranteed Terms: Cash with order: carriage pald if over \&4; orders of $\{20$ or over less 5 per
cent. discount.

LONDON

Wholesale warehouse
165 (PM), QUEENS ROAD. PECKHAM, S.E. 15

By ICARUS

The Kuklos Annual

THE 1955 Kuklos Annual (2s. rod. by post from E. J. Burrow and Co., Ltd., Cheltenham), founded by the late Fitzwater Wray, has just been published. It has sections on keeping the bicycle in good condition, camping, photography, physical fitness, clothing, gears, Continental touring, and routes to follow at home and abroad. One would have thought that in a book of 160 pages, dealing with such a picturesque subject as cycling, greater use could have been made of illustrations. The insertion of advert isements in the editorial matter (half-page advertisements and half-page editorial) should have been avoided. The two illustrations (one in

The present inn sign at the "Ostrich". Colnbrook
half-tone and one in line) stand out as oases in a sandy desert. The late B. W. Best, who edited this journal until his death, did his best to improve certain sections. There is room for great improvement in the editorial presentation and treatment of this old-established cycling book. All the same, it is good value for half a crown.

Another Golden Jubilee

I^{7}was in 1895 the firm of Mansfield commenced making saddles, and they have been in continuous existence ever since. The original address was at Bristol Street, Birmingham. Two of the founder's sons are still actively engaged in the business, which has had three changes of address in the course of its 50 years. I have a Mansfield saddle which is transferred to every bicycle I use, and when I order a new machine, it is ordered less saddle, so that my favourite perch is still part of the machine. It is now over 20 years old; is by now, of course, thoroughly broken in and seems good for a further 20 years.

Bicycles in the Strike

Omy daily journey to the office, during the recent railway strike, I saw many familiar faces pedalling along the highway, who

Every Cyclist's Pocket Book 3rd Edition
 By F. J. Comm
 400 Pages. $81 / \mathrm{pp}$. Indexed Road Routes 7/6 (by post, 7/10)
 From George Newnes Lid., Tower House, southampton Street, Strand, W.c. 2

formerly went by train. In the carly days of the strike, they were making hard work of it, but towards the end of the week I perceived an easier progression and a more rhythmic action of the pedals, as if the riders had rediscovered the ankling action of their younger days. One told me that he hadn't cycled regularly for many years, but had retained his bicycle in case of emergencies such as strikes. He has been reunited to the cycling fold and intends to make a week-end jaunt a habit.

Roads and the Election

THE British Road Federation which is, of course, mainly concerned with road, and not necessarily with roads for motorists published some interesting data for electors to use as ammunition during the recent election. One pamphlet entitled "Road Facts for Voters" was particularly enlightening. It had been compiled with the help of the Conservative and Labour Party organisations and it shows that in the last 30 years the equivalent of only 18 per cent. of the millions collected ($£ 3,079,000,000$) in motor taxation has been spent on the roads.

Under the heading "The Record," the names of successive Prime Ministers, Chancellors and Ministers of Transport are listed, the disintegration of the Road Fund traced ${ }_{3}$ and details were given of the four road programmes announced during the period but never completed.

The Federation's election message said that the scale of the recent road proposals in Britain, while an improvement on those that have gone before, falls far short of the nation's urgent need brought about by years of neglect.

Candidates also received a questionnaire inviting their views on urgent road and road transport matters.

The Federation, which is not concerned with party political issues, said that "Road transport is essential to the efficiency of all sections of industry, and good roads are vit?l to the national economy. These matters cannot be ignored by the political parties during a General Election."

Wayside Thoughts

By F. J. URRY, M.B.E.

started the conversation on our luck in being native to this heath. I do not think many of us thoroughly realise that good fortune, give ourselves sufficient time to get the taste of it or make ourseives articulate in a world that needs beauty to resave it from the daily imposition of work. Yet here is our reward waiting to refresh mind and spirit as the result of a little ride down a lovely lane, and to make a memory for tomorrow that will keep us going until the next time. It is a wonderful thing that cycling offers a community so many such opportunities to

THE more I see of main road travel the more I marvel that so many cyclists use the highways when the lanes serve so well for the greater part of the distance they desire to travel. The flit of the cars past your elbow on the big roads during weekend riding is now almost continuous, and this over-population of a limited space can be uncomfortable. From a cycling point of view the use of main roads on wet days is justified, for then the sense of comfortable space returns to the rider. How different in my youth when all the lanes were rough surfaced and we seldom risked our expensive tyres along their ways. Then-and I am now thinking of the days of last century-how lonely the great highways were ; the doctor's trap, the farmer's gig, and near the towns the butcher's and the baker's carts were the main vehicles one met or passed, and the peace of the highways then, is, to-day, a memory difficult to recollect. Not that I would wish to go back to that period, but I shall be glad when motor roads are in full swing, though I'm afraid that will not occur in my life-time.

I

Comparison

WAS recently in the company of several men who are great travellers, and we were riding bicycles. Out of an appreciation of a beautiful countryside in the early days of May, I was assured that no other country in the world could compare with Britain in loveliness, temperature or the quick variations and changes that so startle and delight foreign visitors; and, of course, I was delighted at that assurance: Those men talked of the Americas, of the East, of Australia and China, and bandied their wide experiences over a cup of tea, made all the more refreshing to me as a result of such talk. Actually we were in the lanes at a small cottage embowered in the fresh green of spring, and in the wood opposite was a wild cherry in full bloom, and my spouting of Housmann's verse

Loveliest of trees the cherry now
Is hung with bloom along the bough
And stands about the woodland ride
Wearing white for Eastertide"
create those little sparkles in life. That I have thousands of such memories is good, but to get them confirmed occasionally by widely travelled friends gives this ancient advocate a thrill and a feeling of, "What more do I need to fill leisure with a quiet inside comfort,"

The very nature of the road structure of Great Britain makes it a cyclists' paradise. America's wide highways are designed for the motorist as is the Poplar lined French road-straight and monotonous. In England there is something different around every corner.

The Lone Wolf

AM just getting used to the natural slowdown dictated by the years, but it has been a difficult passage to admit the change A couple of years ago speed in me had moderated, but I then said, " if I cannot ride the hills, I can walk them," and it was true. Now it is painful to walk them and I try to get out of it by using a very low gear, but even that has its limits. It, therefore, follows my riding has become a stroll, ro miles or less, and a rest, and then another session until this leg of mine says ". enough." I have, therefore, become a lone rider but not an unhappy one, for I find I can make the miles fit into the hour without hurt if I will remain content to go slowly. It is that slow habit I have found difficulty in accepting, for after so many years of care-free travel it is not easy to accept a naturally imposed handicap. This is not a complaint, but merely an experience that may come to any elderly rider. How unwise he would be to forego the pastime is what I am trying to explain.
I can yet roam in comfort for a dozen miles or more before the warning stiffness becomes acute; those furlongs take me to pleasant places and evoke a million memories of my youth. To feel regretful about it all is absurd, for up to now I've had a very good innings, and am still thoroughly enjoying my limited riding, and hope to go on with it for another year or two. But how grateful one now feels for all those vigorous years when Britain was yet to be explored, and the bicycle was the ideal vehicle, as indeed it still it. What a fine thing it is that we do not know
what will happen to our elder age ; and when it does happen some kindly philosophy tempers ithe trouble, and if we are lucky leaves us a leg and a half by which to proceed.

The Old Makers

AT the end of April I was one of a party of 30 riders forming a portion of the Centenary Club, that trade organisation of executives who ride their own wares in the spring and autumn, and on the Saturdaythe last day of April-we were given a glorious day. We stayed at the Shillingford Bridge Hotel, and on that morning saw the mists roll off the Chilterns in grey smoke when we turned into the lanes beyond Wallingford to meander along the flank of the hills, and finally rise a spur before glissading into Pangbourne. We went gently, which is good for a covey of riders with an average age of nearly 50 , and the speed suited me and gave me the full joy of the journey.

In a meadow bordering the Thames just south of Pangbourne, the hotel folk spread us a picnic lunch as generous in volume and variety as any I have tasted, including, may I add, a small barrel of beer to assuage thirsts which many of those unfamiliar with the exercise had induced. It was certainly a lovely spot, predominantly English in its outlook, gilded with sunshine as warm as a perfect spring day can be, and many of us were reluctant to make the homeward journey along the valley road, by now buzzing with traffic. The Sunday was wet and windy, but again 29 of the group rode over the secondaries to Brimston Manor, near Thane, for "elevenses," and the stiff tail wind was a real help to this scribing cripple. That he returned in the one car in the party was wisdom, for I do not believe in making my limited cycling less than happy travelling. But what a fine thing it is to gather together directors of the cycle trade in friendly activity twice a year, and find once more how keen they are, for this' is the sixteenth year of their support of the fixtures which just marked the centenary of the bicycle, and even through the bitter war years there has always been a full house.

A Woodland Halt

I went out at the week-end and an old countryman told me we were having the Little Blackthorn Winter, which was true enough, for the wind was high and blustering, and when it brought up a bank of cloud across the sun the temperature slumped sufficiently to match the latter days of March. The shower passed while I crouched on the dry side of an elm bole, and then May returned warm and smiling if a triffe unruly. As is my habit, I travelled into the wind in the hope and expectation it would waft me home, and it did on this occasion with a deluge a mile or so away on the left which never reached me. In rather less than a dozen miles I dropped into a Keeper's cottage to share a pot of tea with him and hear how his birds were doing, if any wild pheasants had hatched, and had the partridge started sitting yet. For this country interest is still with me, although I can no longer take an active part in it. My old friend sadly deplored the terrible reduction of the rabbit population due to the ravages of myxomatosis, and considered the introduction of this method of extermination would play havoc, with game and poultry, " for the foxes won't starve if they can help it, and the rat and rabbit were their main meat dishes. Their incursions of the game preserves and the farmyardsalways a nuisance-will become a menace!"

Then I went home on the wind, a mile of woodland paths, a rough ford-rough, and then the lonelier lanes to within a few minutes of home, satisfied with the gentle ride and grateful that the years had left me so much to vary life and make it open to the air.

TELEPHONE OPERATORS CONFERENCE INTERPRETERS broadcasting technicians

Designed with fully adjustable single earpiece and microphone. Leaves both hands free. Enables operators to listen and speak, independently

Earpad and Microphone housings moulded from dermatitis-proof rubber. Designed to withstand very heavy wear. (Available with two earpieces If desired).

S.CKTrown l ut.

SHAKESPEARE STREET, WATFORD, HERTS
Telephone': Watford 7241

Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present colling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship. Jig \& Tool Design
Press Tool \& Die Design Sheet Metalwork Automobile Repairs Garage Management Works M'gmnt. \& Admin Practical Foremanship Ratefixing \& Estimating Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches)
Maintenance Engineering Steam Engine Technology I.C. Engine Technology Diesel Engine,Technology

Elec. Draughtsmanship Machine Automobile " Structural R/F Concrete" Structural Engineering Structural Engineering
Mathematics (all stages) Radio Technology Telecommunications Wiring \& Installation Television
Radio Servicing
Gen. Elec. Engineering Generators \& Motors Generators \& Motors Generation\& Supply Aerodynamics Electrical Design Survey Dr'ship.

BUILDING AND STRUCTURAL

L.1.O.B: A.I.A.S. A.R.San.I. M.R.San.L A.M.I.San.E. A.A.L.P.A. Building Construction Costs \& Accounts Surveying \& Levelling Clerk of Works Quantity Surveying L.A.B.S.S. A.R.I.C.S Builders' Quantities Carpentry \& Joinery Building Inspector
Building Draughtsmanshio Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC
Gen. Cert. of Education Book-keeping (all stages) College of Preceptors
Woodwork Teacher Metalwork Teacher A.C.I.S., A.C.C.S. A.C.W.A. (Costing)

School Attendance Officer Sanitary Inspector Civil Service Exams.

132-PACE BOOK FREE! SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
* How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY INTERESTING COURSES

 TO SELECT FROM!A.M.I.Mech.E.,
A.M.I.M.I.,
A.M.Brit.I.R.E., A.M.I.P.E.,
A.M.I.C.E., A.M.I.Struct.E.,
A.M.I.Mun.E., M.R.San.I., A.M.I.E.D., A.F.R.Ae.S., London B.Sc., Degrees.

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide:

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If. you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885 , our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

National INSTIUTEE OF ENGINEERMG (Dept. 29)

 148, HOLBORN, LONDON, E.C.ISOUTH AFRICA: E.C.S.A., P.O. BOX NO. 8417. IOHANNESBURG

Men and Youths urgently wanted for well pald positions as Draughtsmen, Inspectors, etç, in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those ho are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

OVER SIXTY YEARS OF * CONTINUOUS SUCCESS *

[^0]: GEORGE NEWNES, Ltd., 66-69, Great Queen Street, London, W.C.2.
 Please send me AUTOMOBILE REPAIR. - It is understood that I may return the work within eight days. If I keep it I will send a first payment of only 10 s . 0 d . eight days after delivery, and 15 s .0 d . monthly thereafter, until $£ 9$. Os. Od has been paid. Cash price within I eight days is $£ 8$. 10 s. Od.

 ## Name.

 \qquad
 HouseOWNER
 Householder
 Living with Parents
 Lodging Address

[^1]: STEMCO LTD., LONDON, N.W.I

[^2]: Inland - - - - 14s. per annum. Abroad - - - 145. per annum. Editorial and Advertisement Office: "Practical Mechanics," George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C. 2 Phone: Temple Bar 4363
 Telegrams: Newnes, Rand, London.
 Copyright in all drawings, photographs and articles published in "Practical Mectianics" is specially rescrved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.

[^3]: Principal Contents:
 Overhauling the Gearbox ; Repairing the Spare Wheel Locker; Servicing the Petrol Pump ; Jerky Clutch Operation ; Overhauling the Fiat 500; Overhauling the Austin 8 Tourer: When the Engine "Runs On "; A Headlamp Dipper Indicator; Buying a Secondhand Car; Decarbonising the Side-valve Engine; A Home-built Compressed Air Unit ; Accessory Review ; Motor Cycle Overhaul ; our Experts Advise and many other valuable articles.

[^4]: - Aewton prooucr

