MAKIIG A WIND-CHARGER PROPELLLER

NEWNES
 PRACHICAL MECMANICS
 EDITOR: F.J.CAMM

AUGUST, 1952

PMWACIPAL CONTENTS

MAKING A LUMIMETER AN ELECTRIC WALL BRACKET WALL FIXING METHODS

TESTING EARTHING CIRCUITS A TELESCOPE EYEPIECE SAFETY DEVICE FOR AQUARIUMS

QUERIES AND REPLIES WORLD OF MODELS CYCLIST SECTION

Take up the best hobby in the world PHOTOGRAPHY

Summer or winter, indoors or out, you can make pictures that will interest you as long as you live. It's easy to produce good results, once you know the way of $1 t$, and your snapshots will get better and better as you progress. The incomparable thrill of seeing a piece of white paper gradually build up, in the developer, and become a picture must be experienced to be believed. With most hobbies it takes a long time before things get really interesting, but, with photography, you get satisfying results without any delay at all. The chemicals and
 simple apparatus, which you will need to make a start, are all included in the outfit described here. With these, and your own wit and common sense, you can not only delight yourself, but you will, very soon, be producing pictures of which you can be justly proud.

THE JUNIOR HOME PHOTOGRAPHY PRINTING OUTFIT
comprises an 8-oz. bottle of UNIVERSAL developer, a $250-\mathrm{gram}$ tin of ACID HYPO FIXING, Two xylonite
dishes, a plastic printing frame, a packet of SEE-THRU printing masks, a plastic measure and a 2-oz. glass
measure, together with a booklet giving full instructions.

JOHNSONS OF HENDON LTD., LONDON, N.W. \(4 \underset{\substack{GEOT
GEOUR OUTGT}}{DEAL}\) FROM YOUR DEALER

MYFORD-the name for lathes A. J. REEVES-the name for Myford Sales and Service MYFORD M.L.7. lathes represent the best in British engineering and have no equal in price and performance. These fine lathes and accessories are available on our wellknown OUT OF INCOME terms--a sound common-sense method of planned expenditure. Let us know what you have in mind and we shall be pleased to submit a detailed quotation quite free of obligation. Illustrated MYFORD literature gladly sent.

A 11 -stamp will bring you a copy of our 1952 comprehensive illustrated catalogue with details of blueprints, castings, materials and fittings for many "L.B.S.C." designed small steam locomotives ; workshop equipment, etc.

A. J. REEVES \& CO.

416, MOSELEY ROAD, BIRMINGHAM, 12
Grams: "Reevesco, Birmingham." Phone: CALthorpe 2554

MODEL POWER BOATS

Illustration shows boiler connected to our Uniflow Engine. It is capable of steaming any engine having a lin, bore and Stroke double-acting cylinder. A most efficient boiler for power boats.

THE $146 \mid$ ELECTRIC MOTOR An inexpensive, simplified but powerful electric unit for models up to 24 in . long. For use on dry batteries, 3 in . long, 1 Fin . wide, 1 llin . high, weight 6 oz. For larger models, the "Marine"; is a powerful permanent magnet unit, suitable for models up to 39 in . Runs on dry batteries or accumulators. $3 \frac{1}{2} \mathrm{in}$. long, 38 in . wide, $1 \frac{1}{2} \mathrm{in}$. high, weight 15 oz.

CLOCKWORK BOAT

 MOTORA powerful unit suitable for

overall, 5 lin. Width over spring $2 t i n$. Height fin. Write for full decails and ask for "Model Ships List" (S/17) price 1/- post paid.

BASSETT-LOWKE LTD.

 Head Office and Works: NORTHAMPTONLondan: 112 High Holborn, W.C.I.
Manchester: 28 Corparation Strcet

- a blade for every cutting job

All good craftsmen know the scalpelsharpness. They'refitted to value of edge tools that are sharp and stay sharp. That's why you'll appreciate X-acto. All of the 23 X -acto blades, gouges and routers are designed for specific cutting jobs and made from the finest surgical steel, precision ground to the appropriate knife in a few seconds. A twist of the sleeve and the blade inserted. A twist back again and you have a rigid, perfectly balanced knife, with the sharpest blade you can buy the finest cutting tool any craftsman can desire.

Blades are sold in packets, from 2/f.for 5 , Gouges $5 /$ for 5 and Routers 4/- for 4. Obtainable only from X-acto Stockists. Write for illustrated folder showing the complete range of X-acto Tools and Tool Kils to :-

FOR THE '00' RAILWAY MODELLER

MODELCRAFT LINESIDE KITS are ideal for the-modeller who seeks realism in his " oo "layout with economy as well. These kits contain printed card and wood parts, pricic plans, brick and tile building papers.

LARGE SIGNAL CABIN
SMALL. SIGNAL CABIN,3/8 WATER TOWERS (2 types in I kit) $2 / \mathrm{s}$ COUNTRY STATION.......... $5 / 6$ PLATFORMS
FOOTBRIDGE 2/9
LARGE GOODS STATION.... $6 / 5$
Postage : Single kit, 6d., two or more, tod.

- POSTERS ADD REALISM -

Miniature posters in colour. Reproductions of well-known adverisers, scale size. 12 assorted in a shect 4 d. per sheet. (Postage 2d.).

Modelerafit Ltd

77(L), Grosvenor Rd., London, S.W.I

Pelmanism
develops:-

- Courage - Initiative
- Judgment
- Will-Power
- Concentration
-Self-Confidence

Pelmanism

eliminates :-
Worry
Pessimism
Depression
Frustration
Forgetfulness
Weakness of Will

HOW TO LEARN

 LANGUAGESThe Pelman Languages, Institute teaches French German, Spanish and Italian without translation. The Pelman method is explained in four little books, one for each language. Write for the book that interesis you and it will be sent to you by return, ingether with a specimen lesson, gratis and rost free. Reduced fees for serving and ex-Service members of Her Majesty's Forces. Pelman Languager Institute, 130. Norfolk Mansions, Wigmore Street, Loridon, W.I.

TAKE UP PELMANISM

For Progress and Prosperity

PELMANISM is a working course in Practical Psychology directed to the necds of the average man and woman. The Pelman Course is based on over 50 years' intensive study concurrent with experience in dealing with the dificulties, failings, fears, aspirations and ambitions of more han 750,000 men and women of all ages and occupations n all parts of the world.
You would like your affairs to prosperand your inconie to ncrease. Pelmanism will hels you lo inche chis and wilh an awnened mind. also will quickened ment powers your awakenced ability will enable you to enioy those purchasable pleasures that come with exira money.

Reduced fees for all serving and ex-Service nembers of
Her' Majesty's Forces (Apply for Services Form)
Pelmanism is a truc philosophy of living for ordinary sensible reople who wish to make the best of themselves at all times and junder all circumstances.

Senj for the Free Book

The Peiman Course is simple and interesting and lakes up very little time; you can enrol on the most convenient up verys. The Course is fully described in a book entitled - Tie Sciene of Sucrese " which will be sent oratis and post frec, on application $10:-$

PELMAN INSTITUTE

130, Norfolk Mansions, Wigmore St, London, W.I Established aver 50 years. Callers welcomed.
 To the Pelman Institute,
130. Norfolk Mansions, Wigmore Street, London, W.I.
Plẹase send me, gratis and post free, a copy of The Scionce of Success."

- Name ïObock le.ters, please)

Address

PELMAN (OVERSE.AS) INSTITUTES
P.4RIS, 176 Brulevard Haussmann. AMSTERDAM, Primsengracht 1021. MELBOURNE, 396, Flinders Lane JOHANNESBURG, P.O. Box 4928. DURB. AN, Natal Eank Chambers (P.O. Box 1489). DELHI, 10, Alipore Roud.

for 1,001 sealing, mending \& fastening jobs

Scotch Boy Tape mends books, plastic materials, toys and models, broken tool handles. . seals parcels . . . holds snapshots in albums.

When buying, look for the Scotch Boy Trade Mark and the handy red plastic Dispenser.

* GREATEST VALUE FOR MONEY

 ever offered Home Constructors.Modelmaker's. Handymen!
Complete Wolf Cub hOME CONSTRUCTOR OUTFIT

3 MAJOR KITS-

 EVERY PART IS INTERCHANGEABLE The only equipment of its kind where every part is interchangeable. Each kit is powered by the Wolf Cub Home Constructor $\frac{1}{4} \mathrm{in}$. Electric Drill. Thus you can begin to build up a complete outfit starting with the "Cub" and then add popular priced accessories and kits (as illustrated) or buy a complete outfit all at once.

SOLD BY ALL REPUTABLE TOOL DEALERS Write at once for fascinating, fully picturised folder, "Profitable Pleasure".

HIGHSTONE UTILITIES

Meters. -10 v. 2 ifn. Rectifier (A.C.) in wooden carrying case, $14 / 6$ is $15 . \mathrm{V}^{2} 2$ in.
 with switch, $9 / 6,100 \mathrm{~m} / \mathrm{A} .21 \mathrm{n}$.. m/c., $7 / 6$. Meter Movements, Units containing 25500 microamps, 6/-, post 8d. Meters post extra. Bell Transformers,-These guaranteed
transforniers work from any A.C. Malns. transformers work from any A.C. Malns. operate bulb, buzzer or bell. Will supply jight in bedroom or larder, ctc. PRICE $9 /-$ post $8 d$. BELLS for use with either the
above or batteries, gi- post 6d. BUZZERS above or batteries, $6 /$ post 6 d .
$3 / 9$, or Heavy Duty, $4 / 6$. post 5 d .
IR, or.A.F. 2-vnlve (2 volt) Hicrophone Amplifiers, as used in plane inter-com. in self-contained metal case can be used to make up a deal aid outfit, intercommunication system, or with orystal sec, tions, $20 /-$ post $21-$ Useful wooden box With partitions to hold amplifler, 2/-extra. Ditto, less valves, 10/-. One vaive amphiHer. Complete with yaive, and lead. 4/6. Tannoy, 6/. Similar instrument, moving coll, $7 / 6$. All post 9d. Mike Buttons (carbon), 2/, Moving Coil. S6. Transformers, 5 /- Alt post 4nt. each. pocket clip, 3i3, or with Eauge, 3/6, post 3ct. S.B.C, Neon Indicator Lamps, for use on
mains to show "live" side of switches, etc., mains to show "live" side of switches, etc., wfth condenser, pencif eype with vest-pocket clip. 7/6, post 5 d . Soldering Irons,-Our new streamlined iron is fitted with a curved pencll bit, $200 / 250 \mathrm{~V} .50$ watts, 11,6 . Standard 13/6. Hieavy Duty Iron 150 watts, $18 / 6$. all post 6 fit. radio receiver. ntued with a permanent room, 12/6. post 8d, De Luke Receiver, in polished oak cabinet, 18/6, post $1 /$. Spare Permanent Detectors, 2% each. When ordered separately, $2 / 6$; with cllps and
 super-sensitive, $30 /$ a pair, post 89 . New Headphones, iol-a pair. Balanced armature type (very sensitive), $12 / 6$ a pair. Both post 8d. New Single Earpicees.
$3 / 6$. Bal. armature type, $4 / 6$: ex R.A.F. earplece, 2/6. post 4d. Headphones, in good order, 6/- (better quality, 7/6), all post Gd. (All Headphones listed are suitable for use with our Crystal Sets.) Money refunded if not completely satisfled.

HIGHSTONE UTILITIES

58. NEW WANSTEAD, LONDON, E, 11. New illustrated List sent on request with

MIRE PURCHASE SPECIALISTS

A Selection of

GRAMOPHONE MOTCRS and PLAYERS

offered on our unrivalled H.P. service
Send S.A.E. for lists on your requirements
Ref.

DECCA

Cash Deposit 2 Monthly amplifier B.S.R.
K7 MU1O 2-Speed Motor Unit K8 MU14 3-Speed Motor Unit Unit
GU4 3-Speed Unit with Lightweight Xtal head, auto stop
PDIGU4 3-Speed Player in Rexine Case plessey
K 12 Plessey Multi-specdiAuto. Changer
$\begin{array}{lllllll}23 & 13 & 0 & -6 & 0 & 0 & 2916\end{array}$
Plessey Changer as K12 mounted on
$625 \quad 5 \quad 2 \quad 6810$
3115
Please add carriage and packing for all item:

0103

Army Carbon Microphones with handle and switch, 519. Trans, 51..
Microammeters, Zin., 0-500, 1416. Ilin. Pulleys, take $\frac{\mathrm{in} \text {. spindle Double }}{}$ groove. Cast Ali. 116.
MIC. Microphones with switch in handle. 716. Trans to match, 5/-. High Resistance Phones, 1116. Low Resistance, 816 Pair.
\$ h.p. A.C.ID.C. Motors, $200 / 240$ v. or 110 v. D.C., ${ }^{5} 16$ spindle each end, 4610 . Powerful Small Blower Motors, 24 v A.C.10.C., 1416.

Transformers. Input $2001240 \mathrm{v} . \mathrm{Sec}$ tapped 3-4-5-6-8-9-10-12-15-18-20-24-30 volts at 2 amps., 2116 : 12 months guarantee.
Selenium Rectifiers F.W. 12-6 volt, 3A, 1416. 4A., 261.. 6A., 301. $\frac{1}{2}$., 516 H. W., 250 v. 1120 mA ., 91

Miniature Motors, 24 v. D.C. with gear box and governor controlled speed, 141.
D.P.D.T. Relays. Operate at 2001300 volts D.C., 816. D.P. Make and Break 816. Any combination or voltage can be supplied at varying prices.
24 v . A.C.ID.C. Motors $31 \mathrm{in} . \times 21 \mathrm{in}$, 1316. Very powerful.

110 v. A.C.ID.C. Reversible Motors 3inn. $\times 2$ inn., $151-$
New Deaf Aid Miniature Valves. OLT2 and CK512AX. 91-. Ideal for radio control units.
New Exide 2v, Accumulators II $\mathrm{A}_{0} \mathrm{H}_{\mathrm{i}}$ 71.

All Carriăze Paid
THE RADIO \& ELECTRICAL MART,
253B, Portobello Road, London, W.ll.

Park 6026.

I.C.S TRAINED MEN are in Greater Demand than Ever-Maximum production depends on high technical skili, such as that acquired by I.C.S. Siudents
 TENS OF THOUSANDS MORE TRAINED MEN ARE URGENTLY NEEDED NOW -BUT THERE IS NO WORTH-WHILE PLACE FOR THE UNTRAINED

Ambitious men everywhere have succeeded through I.C.S. Home-Study Courses. So also can you.

The man with an I.C.S. Training in any one of the subjects listed below knows it thoroughly, completely, practically. And he knows how to apply it in his everyday work.

Accountancy
Adverlising
Air Conditioning Architecture
Architectural Drawing Boiler Engineering Book-keeping
Building Construction
Building Specifications Business Training
Business Management Business Management
Carpentry and Joinery Chemical Engineering Chemistry, I. \& 0.
Civil Engineering
Clerk of Works
Coal Mining
Commercial Art
Commercial Art
Diesel Engines
Draughtsmanship
Drawing Office Practice

Electrical Engineering Motor Mechanics Electric Power, Lighting, Motor Vehicle Elec. Transmission, Traction Municipal Eng. Eng. Shop Practice
Farming (Arable and Livestock) Fire Engineering Foremanship Fuel Technology Heating and Ventilation Horticulture
Hydraulic Engineering Mlumination Eng. Industrial Management Machine Designing Machine-Tool Work Maintenance Eng. Marine Engineers Mechanical Drawing Mechanical Engineering Mining Engineering Motor' Engineering

Plumbing
Production Engineering
Quantity Surveying Radio Engineering Radio Service Eng. Refrigeration Sales Management Salesmanship
Sanitary and Domestic Engineering
Sheet-Metal Worls
Short-Story Writing
Steam Engineering Structural Steelworis Surveying
Television Technology Welding, Gas and Elec. Woodworking Drawing Works Engineering

Students intending to sit for examinations in Architecture, Quamtises, Civil Eng, Mech. Eng., and others, should enrol NOW for preparatory Courses.
Using a specially prepared Study Programme, the student studies in his spare success. his own pace and, with time for revislon, sits with full confidence of success.
Courses are also available for most other Technical. Professional, Commercial, and Civil Service Exams., including General Certif. of Education.
(I.C.S. Examination Students are coached unitil successful.) Moderate fees include ALL books required. GENEROUS DISCOUNT TO H.M. FORCES
If you need technical training, our odvice on any matter concerning your work and your career is yours for the asking-free and without obligation. Let us send our special free booklet on the subject in which you are specially interested. DON'T DELAY. Make ACTION your watchward.
The successful man DOES to-day what the failure INTENDS doing to-morrow. Write to us TO-DAY Dept. 169A, I.C.S., 71 KINGSWAY, W.C.2.
international correspondence schools lid.
Dept. 169A, International Buildings, Kingsway, London, W.C.2.
Flease send me the free booklet describing your Courses in

Name
(USE BLOCK LETTERS)
Address

MAKE MONEY-making casts with V\|NAMOLD

A grand spare-time occupation
WITHOUT any previous experience, you can mass produce any object from a chessman 10 a candlessick. statuette or model ship, in plaster, resin, concrete, etc. With "VINAMOLD," the flexible mould that gives over again. Needs NO snecial cquipment, provides a profitable and enjoyable spare-time occupation with minimum outlay.
"VINAMOLD" is the flexible mould employed by leading industrics, including the big film studios. Trade enquiries are invited.

Wrine for full cletnils and instructions.
VINYL PRODUCTS LTD., (Dep:. P.M.2), Buter hill, CARSHALTO:․:

Plastics iro

11 Wrilworth Street, Manchester, 1. Tel:Cen. 7081-2 and Cen. 1000
BRITAIN'S LEADING STOCKISTS AND DISTRIBUTORS:
"PERSPEX" (Acrylic) shect, rod and tube.
B.X. ACRYLICROD
P.V.C. SHEETING (Admiralty Specification).
"CASEIN""Rod, Sheet and Tube.
Official Stockists for:
IMPERIAL CHEMICAL INDUSTRIES LTD., ERINOID LTD.,
B.X. PLASTICS LTD., UTILEX LTD.

Catering especially for Industry, The Hobbyist and the Model Maker.
Contractors to the Admiralty, most Government Departments, Schools,
Institutions, etc.
Trade and Technical cnquiries solicited.
Fabrication, Engraving, Moulding, Cutting to Size, Shape, Contour a speciality.

SILVERSTONES

of Manchester

Overcome Steel shortages and high prices by using Govt. Surplus steel parts in these three ace cabinets. These are compact, easy sliding assemblies, ideal for storing small parts. All in dark green finish.

Nest of 12 drawers, each drawer measuring 43 in. x 3in. $x \quad 1 \frac{1}{2}$. Dimensions of cabinet $7 \frac{1}{i n}$. x Sin. $x 10 \frac{1}{2} \mathrm{in}$. Weight 71 Ib . All
post 1/6 steel throughout

Nest of 8 drawers, each drawer measuring $5 \mathrm{in} . \times 4 \mathrm{in} . \times 1 \frac{5}{8} \mathrm{in}$. Dimensions of cabinet $8 \frac{5}{8}$ in. $\times 5$ zia. $\times 8$ in. Weight $7 \ddagger \mathrm{lb}$. All stecl.

post $1 / 6$.

Nest of 6 larger drawers. This is a unit and is drilled at sides for bolting together, nuts and bolts being supplied with orders for more than one. Fach drawer measures Gin. $x 5 \frac{1}{2} \mathrm{in} . \times 1 \frac{\mathrm{E}}{\mathrm{in}}$. Dimensions of cabinet $6 \frac{1}{2} \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in} . \times 113 \mathrm{in}$. Weight $4 \nmid \mathrm{lb}$. Stcel cabinet with index holder at top. Light alloy drawers, with permanent handles. A really strong job.

All carrying our well-known guarantee of absolute satisfaction or money unconditionally refunded.
post $1 / 6$
H. SILVERSTONE (Manchester) LTD.

20, Oxford Road, Manchester, 1 CEN. 2001

Electrical Engineers Calculators

CHART TYPE
Ready reckoner for K.W.-K.V.A.-K.V.A.r and power factor correction. PRICE 613

DOUBLE SIDED CALCULATOR
For "load currene" H.P.-luse wire-size dia K.W.-K.V.A. and power factor.

Made in White lvorine. PRICE 716
EASTERN ELECTRIC SERVICE (C.DEPT.) NORTON PARK. EDINBURGH 7.

A First-class Lathe and a
 Fine Investment

Intending lathe-buyers ! Invest
 your money in a Myford ML7.
Let the experience of engineers throughout the world make your choice easy. This famous $3 \frac{1}{2} \mathrm{in}$. Heavy Duty Lathe will give you service as reliable and work as accurate as you can wish for in a lifetime of engineering.

MYFORD ENGINEERING Co. Ldd., BEESTON, NOTTINGHAM

Imagine! One sturdy HANDY-UTILITY power tool, a selection of HANDY-UTILITY accessories and attachments, and you're ready for anything -sanding, grinding, wire brushing . . . buffing, waxing, polishing . . . and the same magnificent tool can be used as an electric drill, with 14° capacity in steel! There are two robust Stands to increase the usefuiness of your 5" SanderPolisher still further. Full particulars from your HANDY-UTILITY dealer.

PRODUCTS OF THE H.U. DIVISION OF BLACK \& DECKER ITD.
OBTAINABLE.FROM VOUR LOCAL ELECTRIGAL
OEALER, TOOL SHOP, IRONMONGER. OR STORE

PRICES
Nos. 1-4, 7\%, plus 3i! P.T. Pose 6 d , No. 5, 9/3. plus 4/1 P.T. Post 6d.

No. 1. "Miniature" Jewel-tipped needle for Light-weight pick-ups. Mo. 2. "Straight " jewel-tipped needle for Crystol pick-ups.
No. 3. "Trailer" jewel-tipped needle for Medium-weight pick-ups.
No. 4. "Knee Bend Trailer" jeweltipped needle for older Heavyweight pick-ups.
No, 5. "Miniature Solid Sapphire" needle for Light-weight pick-ups. All S. G. Brown Precision Sapphire Needles are protectively mounted on a useful double-sided strotoscope (78 \& $33-1 / 3 \mathrm{r} . \mathrm{p} . \mathrm{m}$.). An instructive and interesting Brochure with many useful hints en obtaining better reproduction gladly sent on request. Write to Dept. P.M.

ENLARGERS
TELESCOPES STEREOSCOPES

FILM STRIP PROJECTORS
 BINOCULARS MICROSCOPES MAGIC LANTERNS

IF YOU are Interested in making any of the above and WANT FIRST CLASS RESULTS ATSMALL COST then you are bady in need of our booklet. (illustrated)
The ropularity of this booklet over the past two years has quite frankly amazed
us and still SALES CONTINUE TO INCREASE, mainly as a result of rocommendaus and still SALES CONTINUE TO INCREASE, mainly as a result of recommendations rom one amateur to another In addition to a mass of general linformation
it contains details concerning the gencral construction and optical layouts of ali it contains details concerning
HOW TO USE LENSES AND BRISMS-No. z. Price 26 ea. (mlustrated).
This was written as a follow up to the above in responsc to many requests. In the use or lens, etc., readily obtainable on the surplus market of which we also hold large stocks of all the types mentioned, it also deals fuly with the construction of four types of flm strip projectors from 8 mm . to 35 mm ., a 35 mm . or 2 l enlarg projector. 3 lipes or stereoscopes and a $3 . x$ and tox terrestrial teiescopa, The above booklets are written in a style easily understood by tite novic and
oxpert allke. If our instructions are followed carefully best guality results are obtainable and at a very low cost.
From M. T., Leamington Spa
Many thanks for sending me the two booklets. I congratulate you on them. I have ben recently rearing an ispensive American publioulton on the same subject. ind I find that your wording is more clear and easier for an amateur to understand.
K. I.. London. writes

Having read your verty interesting No, 1,I am now denxtous to read No, 2 .
VERTICAI ENL ARGETE FOR $2 f$ of 35 mm . All parts complete with all lens. 94: Plans and construction details, $3 / 6$.
G. W., of Nottingham, writes

Ipurchased from you lenses for a 24×24 enlarser and I can say that the results I have
had are uell worthy of an enlarger at $£ 30$ not 301 as I pald. had are uell wort hy of an enlarger at 230 not $30 /$ as I pald.
M. E., of Cornwall, writes

I have used your lenses for photographic eniarging and have had conderful results. We have what is probably ono of the largest stocks of Ex-Government lens, prisms
and general optical gear in the country. Also Rado AND ELECTRICAL. A STAMPED AND ADDRESSED ENVELOPE BHINGS you oUR FREE Lists.
H. W. ENGLISH, RAYLEIGH ROAD, HUTTON, BRENTWOOD, ESSEX.
(Dept. P.M.), Telephone: 1685 or 810 .

FRENCH-SPANISH GERMAN-ITALIAN Learned in Six Months by Peiman Method
I have nothing but praise for your methods of reaching languages. Everything seemis to fit like a jigsaw puzzie. You actually read, write and speak Freneh all the time, which gives you confidence. You know that it will only be a matter of time until you
(L.1226) THIS letter is typical of thousands learning languages by the Pelman method, learning languages by the Pelman method,
which is revolutionising language teaching This wonderful method, which has now been used for over 25 years with such success, enables you to learn French in French, Spanish in 5panish, German in German, and lealian in ltalian, without using a word of Englisi, The method is so simple that even a child can understand it. Grammarical complexities are eliminated, and the whole of the instruction is given through the pose.

Speciolly reduced fees for serving and ex-

Service members of Her Majesty's Forces.
The Pelman method is explained in four fittle books, one for each language French, Spanish, German, italian (Also Courses in Afrikaans and Urolu) State which book you wont and it vill be sent to you by return, together with

- POST THIS FREE COUPON TO-DAY.

To the Pelman Languages Institute,
130. Norfolk Mansions. Wigmore St. Londous, W.1.
Please send details of Pelman method of learning

French, German, Spanish, Italian (Cross oul thrive of these)

Nane

Address

SPRAYGUNS for attaching to cylinder vacuum cleaners. Supplied with 3 nipples for cellulose, paint and distemper, Ideal for oll spraying under car chassis o DEMAGNETISERES for tools and small parts. A godsend to every watchmaker 230 v . A.C. $8 / 6$ each. Do not confuse these with the large demagnetiser into which you can put the whole works.
TWO-W AY INTERCOMMUNICATION betweenrider and sidecar passenger, cycle
or motor-cycle. Complete and foolproof, no batterles to bother with. 19,6 plus or motor-cy
LECORD-PLAYING AMPLIFIERS for personal use, 230v, A.C., e5/17/6. PYckup heads for use with above amplifier which will fit into the soundibox arm of your old wind-up gramophone, 39'8, inc. P.T.
RADIO REMOTLGCONRROL transmitters and receivers for operating model aircraft, boats and other models, or fof opening GARAGE DOORS at a distance Transmitter, e4. 7 ; recelver, fi 5/5. Made with superight components and employing latest type valves. Both sets rcady for installation, but not including CONTACT MHEEAMPLIFIERS for Trio slze band. 230v. A.C.. P6/IF/6. Coniact mike amplifiers for larger bands of greater sound level, quotations on request. THE ISOTOPF Pocket Signal Generiator. This miracle radio and television fault-finder carries in pocket like pen. $38 / 6$ complete with comprehensive
PHOTOGRAPHIC FIASH GUN. Components and circuit for home construction. Send 9d. for working drawings and price ilst. MAGNIETIC RECORDING COMPONENTS,-Tape, wire, motors, record and playback heads, erase heads, JUDGE conversion kits for radiograms and portable
gramophones. Send 2id. stamp for price list. mentioning RECORDING. PARK RADIO OF MANOR PARK

783, ROMFORD ROAD, LONDON, E. 12

NO MAN CAN KNDW TOD MUCH DF HIS PIRODUCT

For tho close serutiny of
fracturesordefractures or de-
fects on surfects on suredges, faules
in tools, cracks in Castings, the is invaluable
The Ultra Lens is an electric magnifier. It is a revealwhich brings out points of strength or weakness, and enables the most minute measurements to be gauged accurately.
Whether you are engaged in
\qquad Revealing every detail with exactness, highly magnified and brilliantly illuminated in natural colourings, presents in many instances hitherto unsuspected data which can be used to advantage. Price $\mathbf{\$ 5 . 1 5 . 0}$ complete in cardboard case with spare bulb, battery and transparent measuring scale. Packed in luxury velvet
lined case, 101 - extra. Postage and Packing $1 / 6$.

THE UHTRA LONS COMPANY
75, Finsbury Court, Finsbury Pavement, London, E.C.2.

always keep 'Plasticine' handy on the bench

'Plasticine' is the world's most famous modelling materialone of those things for which there is always a new use especially in the field of practical mechanics. 'Plasticine ' makes excellent mock-ups and prototypes ; it is hygienic, long lasting and available in 16 attractive colours

*

HARBUTT'S PLASTICINE LTD.

HRANGE PDCKET VDLTMETER
$0-12$ v., 0-240 v. ACIDC
Robustly constructed in Black Lacquered Brass Case, this accurate and wellfinished instrument has many uses in the workshop and the home. The Dual Range makes possible the accurate testing of Car, and all L.T. and H.T. Batteries, and house and workshop wiring. The moving Iron System permits considerable overload without damage to the instrument. Particular attention has been paid to Scale Clarity.

DIAMETER 2ins. DEPTH lin.
PRICE S/=EACH Here is an opportunity for the amateur engineer to acquire a precision Bi-metal Thermostat controlling A.C. currents of I Amp. within the temperature range 50 degrees to 200 degrees Fahrenheit. The
range of application is wide and includes range of application is wide and includes :
Temp. warning devices, control of small ASBESTOS FLEXIBLE HEATING CORD. II- per yard. In the following resistances: $15,25,200,400$ Ohms per
yard. For Electric Blarkets, Small Ovens, yard. For Electric Blankets, Small Ovens,
experimental heating.
 DRAWING AND INSTRUCTIONS for the construction of $60 \mathrm{in} . \times 30$ Electric Blanket. 216 each.
ASBESTOS SLAG WOOL. II- per lt.
three heat series parallel line-cord switches. I Amp. 250 v. 716 each.
II. FINE SILVER TIPPED CONTACT SCREWS. 6d, each.

BI-METAL. $1!^{*} \times{ }^{3} 96^{\prime \prime} \times .036 \mathrm{in}$. 6d. per Strip.
Send S.A.E. for lists.

THE TECHNICAL SERVICES CO. shrubland works banstead, surrey.

COMPARE THE QUALITY COMPARE THE PRICE

Undoubtedly the finest value on the market. A solid, robustly constructed shed, easy to erect, suitable for garden work, Cycle Shed or small Workshop. Fully sectional hardwood frame with toughened Asbestos walls, roof and door. Price includes windows, all necessary nuts, bolts, glass, etc. Cash or deferred terms. Money refunded if not satisfied.

AVAILABLE IN MANY SIZES

Write for frce catalogue

PREE DELIVERY

IN ENGLAND AITD WALES

CONSTRUCHHONS
(COVENTRY) LIMITED

JOHN FARMER

248. VEEDER COUNTERS, 0-999, fitted quick zero re-set, enclosed detachable gearbox. $/ 16$ in balt bearing
shaft drive f revs. of shaft to each Shait, drive. reving or sin. circumference wheel will measure in feet or yards. Size. oxcluding reset and shart,
$1 \geqslant \mathrm{in} . \mathrm{x}$
11 in . x 1 in . New, boxed, only
 normally closed, open at 90 degs F: Glass enclosed, cilp mounted on ta kelite holder. New unused. $3 / 8$ each, post $4 d$.
67 . MoTORS, M/Generators type 72 . easily convertible to effictent 2001250 v . A.C motor sutable for sewing machizes, small grtinders and polishers etc. Anprox. 3.000 r.p.m. mapprox. is
amp Fited $316 i n$ shait. ball bearings, amp Fitted 3/16in shat, ball bearings, complete with conversion data, 15i.
each post $1,6$.
249. CoUPLEERS. universal joint. all metal. 3 sizes:
(a) $1+1$ n. long by $3 / 81 \mathrm{n}$. dla. for $3 / 16 \mathrm{in}$. sharts. 1 - posi 3d. (b) 11 in . xin .

 at each end. keys to fit. 2d. each.
263 . BUZZER PRACTICE SETs. adj. morse key, twin coil buzzer with
note adjustment. phone
terminals. note adjustrment, phone terminals,
battery bracket, all on pollshed wood battery bracket. all on polshed new,
 KIITS, a strong canvas hold-all contain-

 ${ }_{5116 \text { in.). }}{ }_{1}$ spanner'headed hammer, 1 plug box spanner with bar, set of 8 mag. spanners with weeler and tappet
 twin scale $0-1,000$ and $100-200,000$ ohms and inf: In bakelito case size 54 in. x
4in. $x 2 i \ln$.. completo with test leads 41 n. $\times 2 i \operatorname{in}$. completo with test leads and prods, leather carrying case with shoulder straps, new battery, In
perfoct condition at jess than halt 1st price. 55 each post and reg. $1 / 4$. ERRS, Pri. $2 C 0 / 220 / 240 \mathrm{v}$. Sec. 30 V at
 with stout pressed plate clamps. Brand new. boxed. $22 / 8$ each, post $1 / 3$.
(Dept. A.2)
194, HARBORNE PARK RD. 3 BIRMINGHAM, 17 Tol : HARborne 1309

WITH A

MASON MASTER

Concrete, brick marble and tiles-you can drill all building materials in half the time with a Mason Master. The exceptionally hard and sharp Tungsten Carbide Tip ensures effortless and rapid penetration, eliminates vibration and gives infinitely longer life without wear or abrasion. PLASTIC RYNPLUGS and "Mason Master". Drill Bits for an jdeal combination. Easily cut with penknife. Moisture and chemical proof. Send for free samples.
Write for illustrated booklet 'L.' \quad Rgents in most countries
JOHN M. PERKINS \& SMITH LTD.
LONDON ROAD WORKS, BRAUNSTON NEAR RUGEY EMGIAND Telephone : Braunston 238 Telegrams: Drills, Braunston, Rugby

PLASTIC MARBLE

The entirely new Karlena artificial Stone for casting Bookends, Ashtrays, Wall-Vases Statuettes, etc. Sets rock hard with a scintillating crystalline structure like marble or alabaster for colour, veining, exture, density and hardness. It is enormously strong, highly resistant to heat, impervious to water. Natural " veining " can be simulated in any colour. A range of pigments is available or this purpose Most attractive marble effect in models, plaques and statuary

MAKE YOUR OWN

Flexible Rubber Moulds

for perfect detail and repetition casting.

[LASTOMOLD is high quality synthetic rubber for making flexible moulds that faithfully reproduce the most minuce details of ornamentation and surface texture. ELASTOMOLD is permanent and Ideal for repecition casting of plaques, bookends, asherays, and art models. Moulds can be taken from any eype of material including Karlenite, wood, metal, plaster, cement, stone, glass, ivory. ELASTOMOLD is incredibly simple to use, has great dimensional stability, but flexes easily for the release of cast without damage to fine detail or undercuts.

Send for full details of this new, fascinating and profitable hobby.
KARLENA ART STONE COMPANY LTD.,
PLASTICS 2.F. DIVISION,
55. DEANSGATE ARCADE, DEANSGATE, MANCHESTER, 3
"INEXPENSIVE TELEVISION." Re Vised and enlarged edition giving circuit of
R1355, etc., also $45 \mathrm{Mc} / \mathrm{s}$ Pye Strip $2 / 6$ R1355, etc., also $45 \mathrm{Mc} / \mathrm{s}$ Pye Strip. $2 / 6$ RECEIVEIR R. 1355 as specifled for " Inexpensive Television. Complete with 10 45Mc/s PYE STRiP. A ready-made vision recelver for London frequency. Complete with 6 EF50 yalves and an HA 50 . 57/6. MICROAMMETER. D.C. $100-0-100$. 24 in . flush, $40 /$, post $1 / 6$. movement, 2 in. flush, rectifier type, scaled $0 / 100$ volts A.C. Resistance 100 K . ohms. A very useful basic meter, $30 /-$ post frec Guaranteed unused. Ex new equipment. 776. post Ba.
PORTALE ELECTRIC BLOWERS. 220/230 volts 220 watts. Completely enclosed, grt. flexible hose and nozzle, 7 yds.
C.T.S. Flex. Many uses where clean. dry air is required, E8/15/* UNTT with contacts. Full rotation 60 seconds, operated
by a Sangamo Synchronous Motor 230 volts A.C. 2 watts. In metal case, 3 inn. 230
 model S.R.B. Sound and silent. completo
with vaives, lamps, lens, speaker, transwith valves. lamps, lens, speaker, trans-
former, 995 . As above, but sound only. former, 895 . As above, but sound only.
f90. G. model L516, $16 \mathrm{~m} / \mathrm{m}$.. complete £90. G.B. model L516, $16 \mathrm{~m} / \mathrm{m}$.. complete
with valves, lamps. lens, speaker and
resistance. 575 . Projection Lenses, meyer, $33 \mathrm{~m} / \mathrm{m}$ diameter mount. $50-65-75$
 $5 \ln$. x $5 \operatorname{lin} .,{ }^{2 / 6}$ per gross, post 8 d .
PLASTIKA. Double weight $12 i n . x$ inn 276 for 50 , post $1 /=15 /-$ for 25 , post $1 / 0$
Aiso $15 i n$. $x 12 i n ., 39 / 6$ for 50 ; $21 /-$ for 25 PRHOTO FLOOD LAMPS,- 1,000 watt. 230 volt, 10/ each. post $1 /$-.
TESISTANCE MA TS. - Make heating mats for Aquarjums, Photorraphic solu-
tions. Print dryers. etc. Mains voltage. tions, Print dryers, etc. Mains voltage.
Black heat, size $10 i n$. 6 in. $2 / 6$ post free. re-entrant type, very sensitive and direc-
tional. 8 in diam.. 16 in . overall. Brand new with matching transformers 4.5 to 1 and 6 to 1 Ratios. Volce coll 7 ohms. Only 75/-. Carr. and pkg. 5/-.
Any number of sections can be diameter gether, $2 / 6$ dozen. $6 /-$ for 3 dozen. 11/-halt ELOSSW MOTION DIALS.-6in. Scaled 0-100, reduction 200 to 1 or direct, Ideal for wavemeters, signal generators, otc, our
price. while they last. $5 / 6$ each, post $1 /$-.

WILCO ELECTRONICS
204. LOWER ADDISCOMBE ROAD,

Complete and post this Advice Form today : THE ADVISORY MANAGER
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
4IOA, SHAKESPEARE HOUSE, 17/19, STRATFORD PLACE, LONDON W.1.

IF YOU PREFER NOT TO CUT THIS PAGE, COPY THE FORM OR WRITE A LETTER

Owing to the paper shortage "The Cyclist," "Practical Motorist," and "Home Movies" are temporarily incorporated.

$£ 200$ Competition Result

AVERY large number of entries was received in the four sections of our $£^{2} 200$ National Competition, details of which were announced in our April issue and entries for which had to be submitted by June ist. The task of judging the individual entries, most of which were of a high order of merit, has been difficult.

Some entries which, on first inspection, appeared to be in the running had finally to be rejected because they were too similar to commercial articles already on the market, whilst others finally had to be rejected because examination showed them to be either unworkable, too costly to produce, or, in the case of electrical devices, contrary to. I.E.E. Regulations.

After finalising a short list in each of the four groups it was decided finally to award the prizes to those whose names and addresses appear in the adjacent column.

The entry for Section 2 of the competition was disappointing as to quality, or rather as to disparity of quality.

A large number of the entries submitted are being retained for publication at our usual rates, and the entriants are being advised accordingly.

The competition indicated the great ingenuity of our readers, and although some tended to concentrate on everyday items, such as airers, economy tooth brushes, and similar gadgets which were not in the winning class, they nonetheless displayed skill and thought.

Some entrants had approached the problem from the wrong point of view. They invented a need, and then proceeded to invent something for the invented need. The judges were guided throughout by the practicability of the device and whether it fulfilled a purpose or supplied a need. Every entry was scrupulously and carefully examined.

Some readers submitted working models of their devices and these were, of course, of assistance in the judging. In view of the fact that some of the entries were designed to lighten the work of the housewife it is not surprising that a fair number of entries were submitted by women.

We shall commence publication of the winning entries next month.

'PUBLISHERS BE PRACTICAL'!

THE Eccles Borough Librarian, in a recent article, says that the book trade attempts to exist in self-perpetuating isolation, and that there is little evidence that publishers are aware of the fact that most people to-day are skilled mechanics or craftsmen and that most of them have practical hobbies. This is a surprising statement from a librarian

LIST OF PRIZEWINNERS

Section I.-(Ist Prize, E25), A. R. Eades, Esq., 2, Greenwood Drive, Littledale, Sheffield, 9 ; (2nd Prize, $£ 15$), Arthur Pearson, Esq., 21, Fairfield Avenue, Ormesby, Middlesbrough, Yorks; (3rd Prize, $£(0)$, H. P. May, Esq., 137 , Alex. andra Park Road, Wood Green, N.22.

Section 2.-(Ist Prize, E25), W. E. Davies, Esq., 5, South Terrace, Ditherington, Shrewsbury ; (2nd Prize, $£ 15$), 22598638 Spr. Glazer, 24, Field Squadron R.E., Ure Bank Camp, Ripon, Yorks: (3rd Prize, $£ 10$), J. 'Brooks, Esq., 132, Every Street, Nelson, Lancs.

Section 3.-(Ist Prize, 225), W. Bodak, Esq., 20, Winthorpe. Road, Newark, Notts ; (2nd Prize, E15), W. Brook, Esq., 5, Southgrove, Fulwood, Preston, Lancs:; (3rd Prize, E 10), Mrs. M. Garrick, 6, Victoria Crescent, North Shields.

Section 4.-(Ist Prize, $£ 25$), L. A. Neale, Esq., 20, Newmarch Street, Tinsley, Sheffield, 9 ; (2nd Prize, E|S), D. S. Noble, Esq., "La Rambla," Bagatelle Road, St. Saviours, Jersey, C.I. : (3rd Prize, $€ 10$), J. L. Brown, Esq., 70, Strathmore Road, Horfield, Bristol, 7.

\footnotetext{
SUBSCRIPTION RATES
including postage for one year

who should be aware of the enormous number of technical periodicals and books published in this country every year.

The publishers of this journal have specialised for over 40 years in the publication of practical books and periodicals. He says that publishers adopt a " take-it-or-leave-it attitude with technical books." We can assure him that they do not, and that intensive efforts are made to bring books to the notice of the entire technically-minded public. The sales of some technical books exceed those of a best-selling novel.

INDUCTION HEATING

FACED with the necessity of cleaning
a large volume of regular shaped bar stock, the International Harvester Co., Chicago, Ill., recently investigated successfully the possibility of cleaning by induction heating.

The theory involved is to raise the temperature of the surface scale rapidly enough to cause expansion to a degree where it will separate from the cooler base metal. Tests were run on heattreated bar stock of $2 \frac{3}{4} \mathrm{in}$. and $3 / 18 \mathrm{in}$. diam., 39 in . long. Experiments proved that by passing the bars through an inductor connected to a source of 9,600 cycle current, the scale could be removed satisfactorily. A power input of 15 to 25 kW . per sq. in. gave the best results. Speed of travel was regulated to obtain a surface travel of approximately 350 deg. F. at the inductor.

It was also found that moisture was a factor in removing scale by this method and, in consequénce, a water spray quench was introduced following tempering. This operation precedes the descaling process by about 15 min . It has been noted that the descaling is more complete under these conditions, and the scale tends to "pop" off the surface in a much more lively manner than on bars that are thoroughly dry.

Power cost for cleaning stock is relatively small. The low cost plus reduced handling cost make induction descaling an economical means of cleaning.-F. J. C.

IN presenting this article, three points were borne in mind which should prove beneficial to a potential beginner. First, the model is sturdy, small and compact, and thereby easy to handle. Secondly, it is made of materials that involve little expense and thereby will suit the average pocket. Thirdly, the construction is of such simple character that almost anyone who is handy with tools could build it with little or no difficulty. No elaborate equipment is needed, and the work can be carried out partially on the kitchen table-a fact which will, no doubt, find favour with those who do not possess a workshop.
I A biscuit-tin provided most of the material for the hull and cabin structure, and nearly all the fittings, including the power unit, were improvised and devised from a various assortment of "odds and ends" which were found to be of suitable character, and each item of which will be dealt with separately in due course.

The design is completely free-lance, and is not intended to represent any existing prototype. It began with a scribbled sketch, which was later transferred to the drawingboard for the adding of some proportionate measurements.
The power is supplied by a small, simplydesigned steam unit, the engine of which is single-acting oscillating. Methylated spirit provides the fire, the burner being fed from a container lying externally away from the boiler. The combined weight of the model, plus unit, ready for running, is no more than 6 lb ., the overall length 2 i in., beam 5 in ., and depth of hull amidships, $2 \frac{3}{4} \mathrm{in}$.

Construction of Hull

The hull was constructed in four main sections-port and starboard side-plates, bottom-plate and stern transom. The remainder of the items, such as bulkheads,
cross strakes and ribs were added later as separate embellishments. Using the drawings as a guide, templates of brown paper were made up of each section of the hull and cabin structure, these being used to mark out the metal, which was correspondingly cut with the shears (see Fig. 4). Once this was done, all sections after cleaning up lay ready to solder together. No filing to size was necessary, as careful cutting with the shears ensured perfection along the prescribed lines of the templates.

No formers were used whilst soldering,

Fig. 2.-The boiv joint.
as the shape of each section ensured their iaking up the necessary sheer and flair, assisted only by a little easing with the hands.

Assembly

Laying the bottom-plate flat on the bench, first one side-plate was laid edge on, and beginning with the stern, "tacked" with solder right the way along. When the other side-plate had been attached likewise, the transom was fitted. To effect the bow joint

(Fig. 2), a "V" cut was made in a block of wood, the hull up-ended, and the ends of the plates brought together in the " V," to be "tacked." The final soldering was accomplished by first chopping pieces of solder into the seams, then running the hot iron along to obtain a good fillet (see Fig. 3), the bow needing particular attention, in view of its vulnerability to head-on bumps.
All the soldering was done internally which left little or no cleaning-up to be done on the outside of the hull.
The next phase was the strengthening. There are two bulkheads, situated one fore

and one aft. These were merely cut from pieces of tin and fitted into their assigned locations. (Incidentally, these finally sealed off the two compartments and rendered them watertight). Cross-strakes of $\frac{1}{8} \mathrm{in}$. angle brass were next soldered into position on the bottom, and, finally, to these and to the hull sides, consecutively, were soldered triangular pieces of tin to ensure rigidity. (See Fig. I.)

Turning the hull upside down, the positions for the stern and rudder tube were located and drilled out, the one for the stern protruding through the lower portion of the aft bulkhead in the requisite position to ensure the correct angle, or cant, of the tube when inserted. The rudder tube is vertical. Both these items were soldered in, the stern tube having a fin support where it protrudes through the bottom of the hull. (See Fig. 5.)

Main Deck

Normally this would have been fashioned from one continuous section of tinplate, but as available material did not permit such a lavish procedure, the deck was built up from pieces, forming virtually three sections: the first extending from the bow peak to the forward bulkhead; the second, from here to the after bulkhead; and the third, from the after bulkhead to the transom. (See Fig. 1.) No templates were necessary, as each section was cut and fitted into its location. The middle section was cut out, presenting an aperture through which the
power unit can be inserted, and it is, of course, over this that the main cabin structure is fitted. With the main deck in position the final stage was the fitting of a beading around the edge of the hull. This was $\frac{1}{8} \mathrm{in}$. by $1 / 32 \mathrm{in}$. brass strip, first shaped to the curve, then soldered on. As this was to be left bright, fine emery paper was applied, followed by a good shine with metal polish. When painted up; the hull appearance is much improved by the beading, which shows up to advantage the curve of the deck.

The Cabin

The templates (Fig. 4) ware used again and when the various sections were cut out and cleaned only the soldering into position remained. They were actually laid on the main deck, leaving a slight ledge about I/I 6 in . wide, to provide a good bed for the solder. No routine was laid down for the assembly, as the exact locations were first drawn on the main deck, enabling each section to be put into place directly. To "obtain " the windows, first the positions were marked out, then a succession of small holes were drilled along the inside of the lines. Then, using a fine bevelled chisel, the metal was chopped away, the resultant jagged edges being filed down smooth to register with the outlines. When windows or ports are required in metal sections of cabins or deck houses, etc., drill or cut these out before cutting out the section from the main sheet of metal, and if chiselling is necessary, use a chisel that has a very sharp edge, and a fine bevel. This will ensure a clean cut with little or no "lift" of the edges of the metal: The cabin sections number four: front, two sides, and the transom, or rear piece. The extension at the front on the deck was cut from a separate piece of tinplate. The roof

Fig. 5.-Side elevation and plan.
was built up as shown, and slides into position over two narrow projections on the upper edges of the cabin walls. The upper deck was fashioned from an odd piece of tin, and is held in position by two lips soldered to the underside.

The Funnel

The funnel presented something of a minor problem, and several drawings were necessary before a satisfactory template was cut. This type of funnel is never any easy item to fashion, and necessitates an absolutely correct plan and elevation. The easiest way out for the beginner is to experiment with scissors and some paper first, gradually trimming oft
until the desired shape is obtained. This is the most prudent method as, unless one is something of a mathematician and is familiar with the mechanical drawing of elevations, radii, and curves, etc., the beginner is likely to find himself in deep water.

The metal was cut to the template formed to the right shape with the hands, butt joined and soldered, with the top edges with a beading of $1 / 16 \mathrm{in}$. dia. brass wire. Then the complete funnel was soldered into the aperture cut for it in the upper deck. There is no chance of the solder melting from the heat of the fire, as it is protected by the inner funnel on the boiler casing.

Fig. 4.-Marking out plan for the hull and cabin sections.

Fig. 6 (Above).-Details of fairleads.
Fig. 7 (Right).-Ventilators and bollards.

Windows and Ports

The windows were made of "Perspex," $\frac{1}{8} \mathrm{in}$. thick, each window having a separate piece fitted in. This was accomplished by first filing a step all round the edges, then inserting them as a tight fit into the window apertures, with a little "Bostik" added to ensure that they did not move.
The ports, of which there are six, three on either side of the engine room casing, consist of small brass washers soldered on. Their positions may be seen in Fig. 5.

General Fittings

The situation of the engine room skylight is easily ascertained from the sketch and likewise the construction; the windows are of the same material, and were fitted in a similar manner to those of the cabin.

The general fittings are just of sufficient a number to apply a reasonably nautical aspect, and consist of: bollards, fairleads, navigation lamps, and cowl ventilators, illustrated in Figs. 6 and 7. Virtually all these details were improvised from odds and ends. A few pieces of rectangular brass strip were used for the fairleads, which were filed to shape, whilst the bollards were the result of some turning carried out on a few short lengths of $\frac{1}{4} \mathrm{in}$. dia. brass, the hand-brace, clamped in the vice, serving as a lathe, and a file taking the place of a cutter. (Incidentally, a good substitute for small bollards are the kind of studs found in a new shirt at the shop.)

The navigation lamps found their way into existence via a couple of pieces of brass tube soldered to the roof, with the "glass" consisting of bits of "Perspex" stuck in, port red, starboard green. The ventilators required a little extra attention as they had to be built up. The cowls were beaten out on a block of lead, from bits of sheet brass, using a $\frac{1}{2}$ in. dia. ball-bearing as a "hammer," or former. After the edges were trimmed and filed smooth, they were soldered to short lengths of $\frac{3}{8} \mathrm{in}$. dia. brass tube, the upper ends of which were filed half-round to form a seating. The units were then pressed and soldered into the requisite hole cut for them in the funnel casing, just aft of the funnel.
"Ouitt 40 " ventilators 2 off

$\rightarrow 1 / 4$

45 deg. from the horizontal. They are made of 20 -gauge brass and are soldered into slots cut into the boss, which was improvised from a brass collar. To obtain uniformity the blades were cut to correspond with a template fashioned to the size required. Once the blades were soldered into the boss, all the edges were filed sharp, and then brought to a high polish with emery paper. This latter process is very necessary as the blades are better able to meet the resistance set up by the water and thereby throwing less strain on the engine. The blades are curved, i.e., although the set angle is 45 deg . the tips of the blades are twisted until the cutting edges are nearly at right angles. "Spooning " is the correct term (see Fig. 9).

The shaft is a length of $\frac{1}{8} \mathrm{in}$. dia. silver steel tapped 5 B.A. at one end to enable the propeller to be screwed on and secured with a lock-nut.

The Stern Tube

This is a length of $\frac{1}{4} \mathrm{in}$. dia. brass tube fitted with $\frac{1}{8} \mathrm{in}$, brass bushes soldered into either end (Fig. Io). There is no gland. Grease pumped into the tube ensures that no water penetrates into the hull. This also serves as a lubricant for the shaft. For a small model of this nature a gland would not be necessary, as the action of it bearing on the shaft would seriously retard the speed of the small engine. Even thick oil will stop the water

Fig. 9.-Shape of propeller blades and boss.
coming through, and provided the shaft is well fitted it will not leak. The writer has a model cross-Channel steamer built over five years ago. The oil pumped into the stern tube at that time is still there, despite the fact that the model has had countless "voyages" during that time.
(To be continued)

Stern Tube $1 / 40$ Die. Brass
1/8 Bushes

Fig. 10.-Stern tuke and propeller shaft details.

Propeller

A Lumimeter for Photomicrography

Constructional Details of a Useful Accessory for the Amateur Microscopist

PHOTOMICROGRAPHY is the art of photographing the image seen in the microscope. This can be done with any microscope and with any camera, but a modern microscope and a camera built for the purpose considerably simplify the process. Even so, the photographer using a microscope has to contend with a more than usually

Fig. 1.-Microscope fitted with photomicrographic extension tube and photomultiplier cell.
(a) Housing containing photo-cell; (b) three-core cable carrying high-tension and anode current, (c) microammeter 0-500 microampere; (d) variable resistance R_{1}; (e) switch; (f) photomicrographic extension tube ; (g) shutter release; (h) prism release; (i) mains supply; (k) ground glass focusing screen, (l) Leica body with cable release.
wide range of light intensity. Between the extremes of dark field illumination or the photography of opaque specimens by reflected light on the one hand and thin, badly stained sections viewed under low power on the other; this range is far greater than that encountered by the ordinary photographer. Even so, the total quantity of light which eventually impinges on the emulsion is small, and exposure times are fairly critical, particularly when colour film is used. It is important, therefore, not only to have a reliable exposure meter, but to be able to measure, in each instance, the light intensity used for the making of any particular picture. Once such readings have been taken with some of the frequently recurring specimen, losses through spoiled negatives diminish more and more.

The ordinary photographic exposure meter, as described in the February, 1952, issue of this Journal, is unsuitable for this purpose. The current generated by a barrier layer ce!, activated by light passing through a microscope, is too small to be registered by the meter movements that can be used, and amplification is difficult in this instance since we are dealing with direct, current. The

By BRIAN THRUSH, B.A.(Cantab.), and EDWARD ELKAN, M.D., L.R.C.P. \& S.
simplest way out, suggested by beautiful instruments offered by several firms, lies in the use of large galvanometers which registes such currents without any amplification. But such an instrument will cost about $£ 40$.

Construction

The lumimeter described was built from Government surplus stock at a cost of about $£ 5$, the most important item being the type 931 A photomultiplier cell which is at present offered at $£ 1$ ios. The construction of this cell is that of an ordinary photo-vacuum cell, but instead of one anode and one cathode it has, in addition, nine intermediate electrodes. Light which falls on the cathode releases electrons which are then attracted to the first multiplier electrode. This is maintained at about Ioo volts positive to the cathode. The electrons, on hitting this electrode, knock off a further rumber of electrons which are attracted to the second multiplier electrode, which is maintained 100 volts positive to- the first. This multiplying process is repeated nine times in all and the number of electrons which finally reach the anode (50 volts positive to the ninth multiplier electrode) may bs up to a million times that of the electrons which originally left the cathode; hence the great sensitivity of the device. The current allowed to flow through the anode should not exceed 1 mA . It is proportional to the inten sity of the light striking the cathode and is measured by a $0-500$ moving coil microammeter. Suitable meters with internal resistances of about 500 ohm and scale diameters of $2-3 \mathrm{in}$. can be found in the shops. If a larger instrument can be purchased so much the better, since larger scales are easier to read.

The 950 -volt supply required for the piotocell is obtained from the mains by using a
step-up transformer and a half-wave rectifier. It is smoothed by two 4 mf . condensers and the variable resistance \mathbf{R}_{1} of 500,000 ohm (see Fig. 3). If a suitable transformer cannot be obtained, the output from the H.T. windings of a standard $350-0-350$-volt radio mains transformer may be sufficient, particularly if some turns are added to the secondary winding.

b
Fig. 2.-Microscope filted with photomicrographic extension tube and Leica camera. Photomultiplier cell removed from housing.
(a) Housing for photo-cell; (b) photo-cell and base containing resistances $R_{4}-R_{12}$; (c) microammeter; (d) variable resistance R_{1}; (e) switch; (f) photomicrographic extension tube; (g) shutter release; (h) prism release; (i) mains supply; (k) ground glass focusing screen; (i) Leica camera with cable release.

When the switch is in position " 3 " the meter measures the anode current, which is proportional to the light intensity. Since the sensitivity of the photo-cell increases very rapidly with the applied voltage some means for controlling this voltage is necessary, and for this purpose the meter switch is set to position "2." The meter then measures the current flowing through the voltage dividing

Fig: 3:-Theoretical sircuit, diagram.
resistances, \mathbf{R}_{3} to \mathbf{R}_{12} inclusive, which is proportional to the applied voltage. The current can be adjusted as required by altering the variable resistance \mathbf{R}_{1} until the meter points to the mark corresponding to the sensitivity range required.
The housing for the photo-multiplier cell must be so arranged that the cathode side (recognised by the grid in front of the cathode) can easily be put into the plane of the plate or film used without disturbing the set-up and without letting any extraneous light reach the cell. In the present instance, where a Leica outfit similar to the Leitz "Mikas" (or "Micro-Ibso ") attachment is used, the cell is housed in a metal hood fitting snugly over the extension tube of the photomicrographic attachment when, the camera is not in place (Fig, I).
The resistances $\mathrm{R}_{4}-\mathrm{R}_{12}$ are wired to the base of the photo-cell and the latter is connected to the box containing the meter, the transformer, the condensers and the rectifying valve by a three-core cable which must be capable of withstanding 1,000 volts. The actual conductors need only be very thin (Fig. 2).
If it is intended to take readings in the dark, as when the meter is used for enlarging or other purposes it is an advantage to have a small light bulb fitted close to the meter. This can be run from the 4 -volt filament winding of the mains transformer.

Several Sensitivity Ranges

This instrument is accurately linear, i.e., the deflection of the meter in switch position " 3 " is proportional to the intensity of the light falling on the cathode. Since the degree of sensitivity obtained depends on the supply voltage, given by the meter deflection in position " 2 ," it is quite simple to devise a method of obtaining several sensitivity ranges for the meter. This is possible because a light intensity which gives fullscale deflection on one range setting will give I/ro full scale deflection on a range of $1 / 10$ the sensitivity. Each range will correspond to a certain meter reading when the switch is in position " 2 "; these readings can be marked on the scale and the meter set to this position by altering \mathbf{R}_{1}. For this purpose, the weakest light it is required to measure is allowed to fall on the cell. R_{1} is set to its maximum value and the switch is set to position " 3." R_{1} is now so adjusted that the meter reads full scale deflection and the switch turned to position " 2 ." The meter reading should then be marked as

Fig. 4.-The disc calculator. (Note. The angle marked? has to be found by experimeni.)
"A." Should the meter tend to deflect above the end of the scale in position " 2 ," \mathbf{R}_{3} may be too high or the cell may be defective. To obtain range " \mathbf{B}," turn the switch to position " 3 " and increase R_{1} until the meter reads $1 /$ ro full scale deflec-

Items of Interest

New Cargo Liner

OSWESTRY GRANGE, a new cargo liner, has been built by R, and W. Hawthorn, Leslie and Company, Ltd., for the Houlder Line. Having a length of 450 ft , breadth 6 Ift . 6 in , and a depth of foft. to the upper deck, the service speed is $12 \frac{3}{4}$ knots. There are five cargo holds, two deep tanks for vegetable oil, and the derricks include one of 25 tons. The liner is powered by a four-cylinder Hawthorn-Doxford oil engine, which develops 3,780 b.h.p. at 100 r.p.m., and is fitted for burning heavy fuel.

Model Ship for the Duke

NINE of Britain's famous model engineers are working on a detailed waterline model of H.M.S. Magpie-a gift from the model engineers of Great Britain-to be presented to H.R.H. the Duke of Edinburgh when he opens The Model Engineer Exhibjtion next October.

Each of these model engineers is noted for the craftsmanship of his ship models and is. working against time to complete his part of the work on a scale of $\frac{1}{5} \mathrm{in}$. to Ift .

The work has been divided into the following sections: the hull, superstructure, deck details, guns and other armament, masts and radar array, rigging and W/T aerials, boats, paintwork, scenic setting.

The Admiralty is cooperating with the model engineers to ensure that the model will represent H.M.S. Magpie as she was under the Duke's command.

A Remarkable Model

THE accompanying illustration shows a inodel of the Houses of Parliament, which was built by Terry Summers (aged 16) from a plan and photographs provided by the
means of test exposures. In practice this is means of test exposures. In practice this is
not nearly as complicated as it looks on paper.

Disc Caiculator

Once the meter readings for one type of film are known, a disc calculator may then be constructed (Fig. 4) on which the positions of other films may be marked according to their sensitivity. These positions have to be re-checked if another photo-cell has been installed. In photographing objects with
an unusual proportion of bright or of dark been installed. In photographing objects with
an unusual proportion of bright or of dark areas the exposure indicated may have to be varied by a factor of two either way. This meter is more complicated than those obtainable commercially, but its advantage lies in its cheapness and in the enormous range of its sensitivity which allows it, for example, to sensitivity which allows it, for example, to
measure accurately light transmitted by the most powerful combination of lenses likely most powerful combination of lenses likely
to be used with ordinary microscopes, e.g., a $1 / 12$ in. objective +15 x compensating eyepiece.

Ministry of Works. The model contains 10,000 pieces of balsa wood, and took nine 10,000 pieces of balsa wood, and took nine
months of spare time to build. The only tools used were razor blades and tweezers.

tion. Then increase the light intensity until the meter reads full scale deflection, turn the switch to position " 2 " and mark the meter reading "B." Repeat the process to obtain range " C." This gives three sensitivity ranges of a ratio of 100:10:1, adequate for most purposes.
An unknown light intensity is measured by turning the switch to position " 2 " and adjusting R_{1} until the meter points to position "C." The switch is then turned to position " 3 " and the reading taken. If the reading is too low, positions " \mathbf{B} " and " A" are tried in turn. Since the exposure time is roughly inversely proportional to the light intensity, the meter need only be calibrated for one standard intensity for one type of film by -

Modern Ways of Fixing to Walls, Floors and Ceilings

T
HE Fistory of modern fixings to walls, floors and ceilings does not go back more than about thirty years, and just after the first world war the methods in general use were those which had been established by the traditions of generations of building craftsmen.

The Old Methods

Fixing to walls where the bricks were still exposed was by means of the winding plug which was driven into the joint between

Fig. 1 (left).-A winding plug. Fig. 2 (right).-Old-time plug for plaster-covered vealls.
the bricks and afterwards sawn off flush to the wall. Fig. I shows such a plug. It was made of well-seasoned timber, usually a piece of second-hand stuff to obviate loosening by-shrinkage, and shaped by chisel or axe as shown, so that, as it was driven, it turned slightly and was thus under considerable tension as well as pressure
If the bricks were covered with plaster a plug such as that in Fig, 2 was used and was driven into a hole made by a small cold chisel. The hole was made to slope downwards to withstand the pull of shelving or o:her fittings fixed clear of the floor.

Ceiling fixings were made to the joists

Fig. 3 (left).-Method of fixing to stone or concrete walls. Fig. 4 (right)-Rag bolt, used for fixing to floors.
which carried the ceiling, or where this was not convenient, to struts wedged and nailed between the joists.

Fixing to stone or concrete, whether of walls or floors, was a job for the bricklayer. Fig. 3 shows the usual method for walls. A bolt with a "T" or hook shaped head was set into a hole and grouted in with cement. In floors a rag bolt was employed. Fig. 4 shows a rag bolt in position before the hole is filled. The filling in this case was often molten lead which was caulked firmly with a blunt chisel as it cooled.

Fixing to hollow partitions of such materials as lath and plaster was impossible except at the supporting studs. One method of locating these studs is still very useful at the present day when a fixing has to be made to a partition sheeted with hardboard, asbestos cement boards, etc. \qquad In Fig. 5 such a partition is shown with the usual skirting. The skirting is, of course, fixed to the bases of the studs, and even under

By W. 'P. MATTHEW
The expert on household repairs who regularly appears in the "About the Home" programme on Television
paint it is usually possible to locate the fixing nails. A plumb line from these gives the position of the studs at any height on the partition. In the same way it is possible to trace the position of ceiling joists by locating the fixing nails in the floor of the room above.

Modern Methods

Plastic plugging is perhaps the simplest and most convenient method of securing light fixtures and fittings to solid walls. The asbestos plugging compound is immersed in water and squeezed in the hand to a putty. When rammed firmly into a hole in the wall it gives an immediate solid fixing to a screw. The plugging outfit is sold at 3/and contains compound, wall drill, a combined ramming and piercing tool, and a small selection of-screws. The components of the set are also sold separately.

The plastic method has an advantage over all others in that, within limits, the size and regularity of the hole in the wall is not important as the compound can be rammed tightly to fill it. It follows, therefore, that an inefficiently secured fitting which pulls away from the wall leaving a jagged hole can quite easily be re-fixed. Fig. 6 shows the whole process of plastic plugging.

Fibre and Metal Plug Fixings

The fibre plug for screw fixing is nowadays too well known to need description, and if two or three essential conditions are observed, there is no better fixing medium. A medium-sized fibre plug, fitted with the appropriate screw, will hold a weight of half a ton. The largest-sized plug in conjunction with a coach screw will hold four tons.

What, then, are these essential conditions? First, tlie hole for the plug must be bored accurately and with the proper sized wall drill as supplied by the makers. The most common faults in drilling the holes are:(I) allowing the drill to wobble in the hand as it is driven so that the hole tends to beirregular and enlarged, and (2) the tool is driven in by too heavy blows of the hammer so that it jams and has to be worked from side to side to free it, with the same result. The tool should be tapped with light blows and should be slowly rotated as it penetrates.
It is essential, too, that the right size of plug should be used with each screw, and there is a plug to fit every size. As the whole technique of plug fixing depends on the degree of expansion of the plug as the screw, is driven home, this is obvious, and like so many things is often ignored.

As the screw is driven, it cuts a thread on the inside of the plug so that, if properly fitted, the screw can be withdrawn and rescrewed as often as required.

Hints on Fixing Plugs

Sometimes when holes are bored in soft bricks the surface breaks away, resulting in a bell-mouthed hole. The hole, however, soon becomes parallel, but it is a good idea in these cases to make the hole a little deeper than normal and insert the plug a little below the surface, as shown in Fig. 7.
-Plaster, too, will often crumble on the
surface as it is drilled, but this can generally be avoided if a small square of sticking plaster, or even gummed paper, is stuck over the place before commencing to drill, (Fig. 8.) Afterwards soak it off. Where crumbling does occur, sink the plug to the depth of the plaster as in the case with the. sofi brick. In both these cases. it is better, when inserting the plug, to enter the screw into it first by about half a turn and then to enter plug and screw together, otherwise there may be difficulty in accurately centring the plus.

When fixing to tiles the best tool to use initially is a durium tipped drill These drills will bore holes accurately in all forms of masonry and are sold in all sizes from

Fixing nails in skirting Hole for screw made indicate position of stud's
Fig. 5 (left).-Locating supporting studs in partitions of lath and plaster. Fig. 6 (right).The process of plassic plugging.
$5 / 32 \mathrm{in}$. to $15 / 16 \mathrm{in}$. This is the cutting size of the head, the shank being somewhat smaller in all cases, as shown in Fig. 9. The drill used should be slightly larger than the hole for the plug, and when the tile is fully penetrated the remainder of the hole is drilled in the usual way. When the plug is inserted it should not protrude more than $1 / 16 \mathrm{in}$. from the back of the tile, as shown in Fig. 10, so that there is no danger of the tile splitting as the plug expands.

Finally it is good practice to arrange that as little as possible of the unthreaded part of a wood screw enters the plug, and this often means sinking the plug below the surface as in Fig. 7.

Two other types of plug should be mentioned. These are the white bronze plug (Fig. II) and the screw anchor (Fig. I2).

The bronze plug is used where fixings are subjected to high temperatures, and the sarew anchor where chemical fumes nay be

Fig. 7 (left).-Inserting plug below surface. Fig. 8 (right).-Using sticking plaster or paper to stop plaster crumbling. Fig. 9.- A durium tipped drill for drilling holes in all forms of masonry.
present, and because of the flanged head it can be used in bottomless holes.

Firing to Hollow Partitions

'This problem has already been discussed in its relations to the older fixing practices. In many modern constructions, however, the fixing to intermediate studs is not practicable as these are often far apart. Then, too, there is the problem of the hollow brick and hollow tile construction which has become increasingly popular. Considerable research has been devoted to these and similar problems, and three solutions will be discussed.

The Spring Toggle

Fig. 13 shows this ingenious device. The wings are spring-actuated, and they automatically open when inserted through a $\frac{1}{2} \mathrm{in}$. hole bored in the material. The minimum length of screw required is $1 \frac{1}{8} \mathrm{in}$, plus the thickness of the material and the thickness of the fitting to be attached. They are normally supplied with $3 / 16 \mathrm{in}$. Whitworth screws, 2 in . long, but longer screws can, of

Fig. 15 (above).-Fixing the rawl nut, the effect of tightening the screw.

Fig. 10.-Positioning the plug when drilling in tiles.

Fig. 11 (left),-The white bronze plug. Fig. 12 (right).-The scresv anchor.

Fig. 13.- A shows the spring toggle, B shows how it can be closed to be inserted through a $\frac{1}{2} i n$. hole, and at C the wings have sprung open, secturing the fitting.
course, be supplied. At B (Fig. 13) the wings, collapsed, are being pushed through a $\frac{1}{2}$ in. hole, and in C they have sprung open and the fitting has been secured. Spring toggles are particularly suitable for use on ceilings as the expanded wings distribute the weight of fittings.

The Gravity Toggle

This is intended for thin or hollow partitions. It is inserted into a $\frac{3}{3} \mathrm{in}$. hole, and when clear of the hole the toggle drops to a perpendicular position and the screw can be tightened, giving a perfect fixing. Fig. I4 makes the method clear.

The Rawl Nut

This is a shake-proof fixing, consisting of a tough rubber sleeve in one end of which is bonded a brass nut, the opposite end having a flange. The action of tightening the screw draws the brass nut back towards the inside face, forming a rivet head. The whole process is shown in Fig. 15. The rawl nut may be used with equal success, whether introduced into a hole or a cavity, and this makes it particularly suitable for use on any. type of hollow brick where it is impossible to forecast whether the site of a fixing screw will coincide with solid material or cavity. The rubber sleeve, of course, renders the fixing proof against vibration.

Rawlbolts
These are used for heavy fixing jobs in
place of the methods shown in Figs. 3 and 4. There are two types shown in Fig. I6. At "A" is the loose bolt type, and at "B" is the projecting type. The latter type is normally used on walls where the projecting bolt is convenient to hang, say, a bracket on while the nut us being tightened.

The loose-bolt type is more useful for fixing machinery to concrete floors, as with the bolt removed a machine may be slid :-.to position instead of lifted over a projecting bolt.

The exterior of the Rawlbolt consists of a metal shell divided lengthwise into four segments. Housed in the base of the shell is a nut which, as the bolt is tightened, expands the shell hard against the sides of the hole. The effect of this is illustrated in Fig. 16, which shows both types of Rawlbolt in position.

Fig. 14.- The gravity toggle in its open and closed state and also holding a fixture to the. svall.

Fig. 16..-On the left is the loose-bolt type and the right is the projecting type of Ravolbolt

BOOKS RECEIVED

The Story of Watches. By T. P. Camerer Cuss. Published by MacGibbon and Kee, Ltd. 172 pages. Price 25 s . net.

THIS book has been written with the idea of capturing the interest of three different types of reader: the ordinary man who owns a watch, the man with technical knowledge and the collector of watches. The book is a convenient reference book for the expert, and the clear descriptions of complicated mechanical operations and the friendly way in which it is written will make this volume a welcome addition to the library of the interested layman. The development of the watch is traced in several aspects, including the historical, the technical and the aesthetic, and it includes chapters on earliest methods of recording time and the birth of the watch, one entitled "The Escapement" and another "Friction," and others on decorating the watch and the fashion in cases. The book is profusely illustrated with both photographs and drawings depicting the beauty of design of some of the old-time craftsmen's work, some of the earliest of timing devices and the technicalities of watch mechanisms. This is the first general book
on the watch since G. H: Baillie's classic, and the author acknowledges his indebtedness to him and to many others for their permission to illustrate pieces from their collections.

Photo-electric Cells. By P. T. Smith. Published by Percival Marshall and Co., Ltd. 78 pages. Price 5 s. net.

$\mathrm{A}^{\text {s }}$S its title indicates this little book is A packed with facts about the various types of photo-electric cell and their uses and applications in everyday life and jndustry. The vast range of uses for the cell which the book reveals is unexpectedly wide and one reads how they are associated with many everyday things such as lifts, television and the control of advertising signs. There is, in addition, a chapter on experiments with photocells and many others, all of which are illustrated by drawings and theoretical circuits. There are also some photographic plates.

Kuklos Annual, 1952. Edited by B. W. Best. Published by Ed. J. Burrow and Co., Ltd. 165 pages. Price 2s. 6 d . THE 1952 special "Touring" edition includes all the well known features for which this handy annual has become
recognised in the past. Included in its pages is a section on cycles, cycling and some general information. There is a section of "Potted Tours" giving routes, distances and points of interest for the cyclist, together with a section on touring abroad. The latter end of the book is devoted to the usual "Resthouse Directory."

BOOKS FOR ENGINEERS

Gears and Gear Cutting, 6/-, by post $6 / 6$. Workshop Calculations, Tables and Formulae, $6 /-$, by post $6 / 6$.
Dictionary of Metals and Alloys, 10/6; by post $11 /$ -
Wire and Wire Gauges (Vest Pocke: Book), $3 / 6$, by post $3 / 9$.
Screw Thread Manual, 6/f, by post $6 / 6$.
Refresher Course in Mathematics, 8/6, by post $9 /$ -
Newnes' Metric and Decimal Tables, $3 / 6$, by post $3 / 9$.
Mathematical Tables and Formulac, $5 /$, by post $5 / 3$.

Published by

GEORGE NEWNES LTD., TOWER HOUSE, SOUTHAMPTON STREET, STRAND, W.C.2.

Testing Earthing Circuits

The Methods Used to Ensure that Earth Fault Protective Systems are Efficient

ALL regulations which are concerned with the application of electricity require the metallic framework of the plant, and the metallic sheathing of the conductors, to be connected to earth, at any rate under certain conditions. The connection to earth may be made through a suitable main cold water pipe from an urban water supply which is carried in underground metallic water pipes, having metal-to-metal joints. In this connection it must be noted that certain water supplies are carried in parts through pipes of asbestos cement, such a system is unsuitable for earthing. Wherever possible the connection to a water pipe should be made at the point of entry of the underground pipe into the premises. If made at some other point of the piping the resistance Rp, between the point of connection and the point of entry of the underground pipe to the premises, should not be more than that given by the formula $\mathrm{Rp}=\frac{40}{\mathrm{C}}$ ohms, where C is the operating-current of the fuse or excesscurrent trip protecting the circuit. The object of this is to limit the possible volt drop on the water piping to 40 volts under earth fault conditions.
In other cases it may be possible to connect the metallic sheathing to the earthed neutral point of the supply system, either directly, by means of a substantial conductor, or through the metallic sheathing of the underground medium voltage cable from the supply plant. There may, however, be objections to this course if the transformer supplies more than one consumer, as there is a possibility that a fault on the plant of one consumer may raise the voltage of the neutral point and thus raise the voltage between the whole of the metallic sheathing and earth.
In many cases the metallic sheathing must be connected to an earth electrode which has been specially constructed. The following types of earth electrode have proved satisfactory in places. Copper, cast iron, or galvanised iron plates, preferably having a cross sectional area of 4 to 15 sq. ft. buried vertically about 3 to 4 ft . deep and surrounded by a bed of hard packed broken coke about Ift . thick ; long lengths of copper strip laid in a shallow trench; pipes or rods driven well into the ground. In general several earth plates each about s sq. ft . in area, spaced some distance apart and connected together, give better results than a single, large plate.
Where the top soil is of low resistivity, the copper strip type of electrode is often satisfactory. Where low resistivity soil is obtained at a fair depth, due to greater moisture content or otherwise, pipes or rods driven well into the ground about roft. apart may be

Fig. 2.-Merhod of testing long earth continuity conductor.

By J. L. WATTS

preferable. In any case the resistance of the earth electrode is unlikely to be constant and may vary with weather conditions.

Earth Continuity Conductors

Various conductors are used as earth continuity conductors to connect the metallic sheathing and framework to the earthing point or electrode. These conductors may consist of conduit and armouring of cables, cores of flexible cables, and separate earthing wires or strips. Flexible conduit, which

Fig. 1.-Methods of testing earth continuity conductors.
may be used to carry the cables to a motor which has to be moved slightly from time to time to allow for adjustment of belt tension, should be supplemented by a separate bonding conductor. The resistance of the conductor is proportional to the specific resistance of the conductor material, to the length of the conductor, and inversely proportional to the cross sectional area of the conductor. Hence earth wires are usually of copper of low specific resistance and of adequate area to carry the possible fault current without overheating, and are run in the shortest convenient way from the metallic sheathing to the earthing point or electrode. Regulations dealing with earthing specify satisfactory sizes of earthing conductors, and also satisfactory values of earth continuity sesist. ance in most cases. The Quarry General Regulations (Electricity) 1938 and the Coal Mines Act, for example, specify 'that an earthing conductor consisting of a cable sheathing shall have a conductivity of not less than half that of the same length of the largest conductor in the sheathing; with a minimum size of earthing conductor (other than one contained in a flexible cable) of 0.022 sq. in. cross sectional area. The Regulations of the Institution of Electrical Engineers are generally similar except that the minimum size of earthing conductor is a.0045 \&q. in. and the maximum 0.1 sq. in.

Periodical tests of the resistance of the earth continuity conductors and of the earth electrodes are advisable because these are liable to alter from time to time. The Quarry Regulations and Coal Mines Act require such tests to be made at intervals of not more than six months, whilst the I.E.E.

Regulations advise such tests at intervals of less than five years.

Methods of Testing

Earth continuity conductors may be tested by passing through them an appreciable current, say 5 to 10 amps , from an accumulator or the secondary winding of a double wound transformer supplied from the A.C. mains (see Fig. 1). If an accumulator is used as the source of current, it is advisable that the nickel-alkaline type be used; if a lead-acid accumulator is employed, a resistance should be connected in circuit to avoid short circuiting the accumulator through a low resistance continuity conductor. Alternatively, a continuity resistance test set, employing a hand-driven generator and reading the resistance directly, may be used. The resisiance of a short continuity conductor inay be measured as indicated in Fig. I(a), the resistance being equal to the reading of the voltmeter divided by the reading of the ammeter. The connections shown in Fig. I(b) may be used for longer conductors, using a trailing cable (t). In this case the resistance of the trailing cable must be subtracted from the calculated value

For longer runs of cables or conduit, and where it is necessary to compare the resistance of the cable core with that of the cable sheathing, a different method must be employed, and the test must be made when the circuit is out of action and isolated from the supply. Fig. 2 indicates a suitable method. A robust flexible connection of large cross sectional area is obtained and is connected to four strong bulldog clips. These are used to short circuit together the three ends A, B and C of the cable and to a clean point D on the case of the apparatus to which the cable or conduit is bonded. Test prods are used to pass the test current between pairs of opposite cable ends, AI and Br, AI and Cr , or BI and CI . This result R1 ohms divided by 2 gives the resistance of one of the cable cores. It is useful to repeat the tests between all three pairs of ends. If the results differ appreciably a faulty cable connection should be looked for ; if the tests include several lengths of cable in series there may be a faulty switch contact or fuse wire connection, which is liable to overheat under working conditions, or possibly to cause burn out of the motor due to "single phasing" or unbalanced voltages. The test prods are then applied between one end $\mathrm{Ar}_{\mathrm{s}}, \mathrm{Bi}_{1}$ or CI and a clean point on the casing D_{1}. This result \mathbf{R}_{2} is the sum of the continuity resistance D to DI_{p} plus the resistance of one cable core. Subtracting half of R_{1} from R_{2} gives the resistance \mathbf{R} of the

Fig. 3.-Potential gradient round earth electrode under fault conditions.
earth continuity conductor-from D to Dr r, which should not be more than RI.
When using this method to test the continuity between a motor and its starter the short circuiting clips should be placed on the motor terminals and the test applied at the starter. If the starter end is short circuited and the test set applied at the motor the first reading will be that of two cable cores in series paralleled by the motor windings. When testing a complete cable run with the starter close to the motor, it is usually sufficient to make the second test between one cable at the starter and the motor case. If the continuity resistance from the supply point to the motor case is less than twice that of one cable core from the supply point to the starter, it will obviously be less than twice the cable, resistance from

Fig. 4.-Three-point method of testing earth electrode.
the supply point to the motor. Incidentally, if a test is made from the supply point to the motor it is possible that a satisfactory test may be obtained, and that a high resistance connection at some point of the earth continuity conductor near the supply point may be overlooked, due to this being compensated for by a particularly low continuity resistance near the motor. It is advisable that supplementary lests be made at intermediate switches and distribution boxes as such a high resistance might be a point of heating and high volt drop under earth fault conditions.
High resistance of earth continuity conductors may result from the conductors being too small, but is more often due to a local defect such as̀ a loose or dirty connection, loose joint in conduit, enamel not sleaned from conduit where this is secured to apparatus, or to there being several iron-:o-iron joints in series between the conduit or cable sheathing and the case of the switch or other apparatus to which the sheathing is zonnected. Conduit connections to the metal zases of motors, starters, switches, distribution boxes, etc., should preferably be made by screwing the conduit tightly into a tapped hole in the case. Where the conduit passes through a clearance hole in the casing and is secured by a brass bush and lock nut, the connection should be supplemented by an additional copper earth connection, of adequate cross sectional area firmly clipped to the conduit at one end and fixed to the case at the other. Where cable armouring or sheathing has several iron-to-iron joints in series at apparatus, a similar bonding wire is advisable to by-pass, these iron-to-iron joints which usually have a comparatively high resistance.

Potential Gradient

When current flows from an earthing conductor to earth through an earth electrode consisting of a buried pipe, etc., a voltage will be created between the electrode and the general mass of earth. This is indicated in Fig. 3. The voltage per foot difference of radius on the surface of the earth around the electrode is termed the potential gradient and is likely to be much greater near the electrode than farther away. This is because the cross sectional area of the earth shell through which the fault current flows is smaller near the electrode than at a greater
distance. Fig. 3 shows the potential gradient R at P feet from the electrode is much greater than the gradient S at Q feet. If the soil doss not have the same consistency in all directions, however, the gradient may differ at the same distance from the electrode in different directions. The resistance area of an electrode is assumed to be bounded by a point, such as Q, where the potential gradient is so low that it cannot be measured by ordinary instruments. At the boundary of the resistance area the potential or voltage of the resistance area is the same as that of the surrounding general mass of earth. In order to avoid risk of electric shock to persons whose feet may be at points of different voltage on the earth around the electrode under fault conditions, it is necessary to keep the voltaga gradient within limits as well as to obtain a low total resistance to earth.

The resistance to earth of the electrode depends on two factors, the size of the electrode, and the resistivity of the soil around the electrode. Thus the earth electrode should be of adequate size and placed where the soil has a low resistivity, or specific resis tance. The electrode should be in a sput where it can be kept moist and preliminary tests may be necessary to find the most suit able point.

Earth Electrode Tests

Fig. 4 shows one method of testing the resistance to earth of an earth electrode A. It involves the use of two other electrodes B and C of fairly low resistance. Tests are first made between A and B giving a resistance RI which is equal to Rs $+\mathrm{Rb}_{\mathrm{B}}$. Then a test is made between A and C to give R_{2} equal to $\mathrm{RA}_{\mathrm{A}}+\mathrm{Rc}$. The third test between B and C gives $R_{3}=R_{B}+R c$. Then the resistance R_{A} of A will be equal to

$$
\mathbf{R I}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}-\mathbf{R}_{\mathbf{3}}
$$

A better method of testing an earth electrode is shown in Fig. 5. Alternating current from a test set is passed between the main earth electrode A and an auxiliary curren

Fig. 6.-Effect of inadequate eleotrode spacing on test restils.
electrode B; the-latter must be at sufficient distance from A that the resistance areas of the two electrodes do not overlap. The instrument gives a reading which is equal to the volt drop between A and a third voltage electrode C , divided by the current which is passed between B and A , when the handle of the tester is turned. The voltage electrode C need not have a very low resistance but it should be placed outside the resistance area of A

If the electrodes A and B are too close together the volt drop applied to the instrument will only be part of the volt drop across the resistance area. As shown in Fig. 6(b), the indicated resistance RI of A will then be less than the actual resistance R. Since the current is merely being passed through the earth between the electrodes, instead of from electrode \mathbf{B} to the general

Fig. '5.-Volt drop method of testing earth electrode.
mass of earth and from the general mass of earth to the electrode A, the voltage between A and B will be X as compared with the correct value Y. It is advisable to determine if the electrodes have adequate spacing; two more sets of readings should be made, one with B 20 feet nearer to A and the other with B 20 feet farther from A. If the results are practically the same the mean value may be taken as the resistance of A ; if there is an appreciable difference in the readings the tests should be repeated with much greater electrode spacing.

Maintenance of Safe Conditions

If the earth continuity conductor becomes broken, corroded through, or is disconnected, or if the resistance of the earthing circuit is so great that the fault current is insufficient to operate the protective fuses or excesscurrent trips in the event of an earth fault; the framework or sheathing of the plant may remain alive at a voltage which may be as high as the phase to neutral voltage of the system. The value of the shock current, which determines the degree of shock which is experienced by a person, is equal to the voltage applied to the body divided by the resistance between the points of contact. The shock current may have a high value in places such as a quarry where the person may make good contact with earth or with some conductor in contact with earth.

In order for an earth fault protective system to be efficient, it is necessary for the earthing circuit to have a low resistance in order to pass an appreciable fault current; it is also necessary that the fuses or excesscurrent fuses shall operate when the fault current flows. In order to ensure this the fuses should not be too large nor excesscurrent trips set too high and the excesscurrent trips must be free to trip the circuit breaker. These points should be checked periodically. Protective trips may be rendered inoperative by being set too high, by contacts being rough, welded up, or having excessive pressure, by strained mechanism, weak return springs, worn hold-on catches, dry operating parts, or dirt on no-volt coil armatures.

Making a Telescope Eyepiece

Constructional Details of a Simple Eyepiece for Use With the Telescope Described In. Our June and July Issues

THE eyepiece is of the negative type of what is known as the "Huygenian" form, after its inventor, Prof. Huygens. It is composed of two simple plano-convex lenses, each of different foci and one larger than the other. The larger, known as the "field" lens, is placed in front to come nearer to the O.G.; the other is called the "eye" lens.

For correct proportion the, field lens should have a focus 'equal to three times that of the eye lens, and they should be placers? distance apart equal to "yee-half the sum of that iocil. The lenses, both having one side flat and the other convexed, are mounted with the convexed sides towards the O.G., and the distance separating them is measured from one flat surface to the other.

Making the Eyepiece

To carry the lenses and convert them into an eyeplece a length of brass tube will be

In response to many requests from readers we are reprinting part of an article on telescope eyepieces and lenses by E.W. Twining which appeared in our September, 1951 , issue. This reprint gives constructional details of the eyepiece necessary for the building of the "Simple Telescope," details of which appeared in our June and July issues.
shown in Fig. 2, thus it should pe quite possible to recnonio ine place in which each piece Is to go when all are cut out and ready for assembly. Write the letters on the pieces before cutting

Piece "a" is a lining for the brass and must be, when rolled, an exact fit in the internal circumference of the tube, the ends of the card butting together accurately. To fix it, the inside surface of the tube is smeared with an adhesive, such as varnish or Japan gold size. Whichever is used, let it become tacky and then pass the cardboard

Flg. 1-Longitudinal section through syepiece.
required and some pieces of Bristol board of the thickness known as "four sheet." What is actually wanted is a board of such substance that when four pieces of it are laid together their combined thicknesses will measure $5 / 64 \mathrm{in}$., or nearly $3 / 32 \mathrm{in}$.

The brass tube should be of the thin or mandrel-drawn kind, smooth both inside and out, should have an outside diameter of iin., and be 4 in . in length. The ends of the tube should be turned true, but if no lathe is available the truing may be done with a fine-cut file by the aid of a steel square. Remove the burr from the inside and outside edges with fine emery cloth and polish the tube outside all over, but merely clean the inside with petrol; do not polish.

Drawing the Linings and Stops

Now turn to the drawing-board, tee-square and set-square and pin down on the board the sheet of Bristol board which is to be used to make the mounts for the lenses.

Fig. I is a longitudinal section on the centre line of the eyepiece; from this it will be seen that the lenses are held by bands or rings and perforated discs. Fig. 2 is a lay-out of the bands and discs exactly as they must be drawn on the Bristol board, the measurements shown being faithfully copied exactly full size. The lines drawn must be fine and preferably be inked in after pencil work is completed. Each piece is shown assembled in its proper place in Fig r and lettered, whilst corresponding letters are
cylinder into place, letting the end come flush with the eye-end of the tube.

If the field lens, F, has a diameter of exactly $\frac{7}{8}$ in.. as ordered, it should fit into the cardboard. If it does not fit snugly but is loose, then an additional lining a^{1} will have to be put in and cemented to "a " in order to bring the inside diameter down to that of the lens. In both Figs. I and 2 this contingency has been foreseen by showing a double lining. The lens must be a nice fit without slackness or excessive tightness, and the inside surface of the card must be cylindrical, which means that there must be no fullness due to the circumferential length of the card being insufficient to make the two ends butt together tightly.

Next cut piece " b," roll into a cylinder and stick in the exact position in which it is shown in Fig. I.

Midway between the lenses a stop or diaphragm, C , must be placed. This stop is shown as drawn on the Bristol board, Fig. 2 ; it must be cut truly circular and the $\frac{3}{8}$ in. diameter hole both true and central.

It will be found that the best plan is to cut all the cardboard upon glass, using a pointed knife having a keen edge, and in dealing with the siop and eye-lens apertures to cut them with a slight bevel.

Next cut and insert the cylinder "d," which will hold the stop C in place. These pieces which are now in position shincult - ar this stage. he painied षead black including the stop, and the field lens F can then be dropped into place and secured with the band "e," which should be blacked before being inserted.

For mounting the eye lens \mathbf{E}, four discs are required, two of them, " f " and " f," having openings of the same diameter as the lens and two, "g," "g," with openings slightly smaller.

The two "fi"" "f," are to be cemented together, and the edges of the openings blackened; then black the two "gs" and stick on one of them; put the eye lens in place and secure with the other disc " g "; thus a complete llttle cell is formed which is placed next to cyllnder "d" with the convexed side of E towatds the lens F.

The End Cap

The bare Interior of the brass tube from "e" to the end itust also be black and the eye-end of the tube finlthed with the cap 11 , which will also seeure the lens cell. Now this cap requires, if thade as shown in the section, Fig. 1 , to be furned in the lathe out of either black vulcanlte or a hardwood stuch as box of beech and stained black. If the telescope builder has no lathe, nor access to one, and cannot get anyone to make caps for him, he may be able to adapt an already. manufactured article for the purpose. I have before me as I write three glass bottles of different capacities and quite different contents, all with screwson caps of black plastic; commonly referred to as bakelite. I find that all three have an internal diameter of one inch, so that they would be capable of servicing as eyepiece caps if they were drilled 5/16in. diameter at their centres and fitted over the tube ends instead of inside of them.

Fig: 2-Linings and stops for eyepiece.

Restoring Decaying Buildings

How Modern Science Solves the Problem of Decaying Stonework

IN the case of limestone buildings in towns and cities a different mechanism is set up. The soot deposition only occurs on the sheltered surfaces of the buildings. The natural carbon dioxide content of the rainwater erodes the surface skin of those areas of the limestone which are most directly exposed 10 it , changing the natural calcium carbonate of the limestone to calcium bicarbonate, which is soluble in water. Thus the surface of limestone under ordinary weathering conditions is self-cleaning. Soot cannot get a hold on it, and a rain-washed limestone building always remains white in even the dirtiest of surroundings. Often enough, however, the dissolved material of the limestone is redeposited on the more sheltered surfaces of the buildings, where, mixed with normal town soot, it forms black masses of considerable thickness.

It has been suggested, again and again, that biological agencies may operate in bringing about the decay of stonework. Although

By.J. F. STIRLING
(Concluded from page 350, fuly issue)
spheres. The natural weathering agencies are slow ones. Those due to impure atmospheres are rapid in their action, or comparatively so, at least.

Soluble Salts

In addition to these "general" causes of deterioration there are specialised ones. A frequent example of this kind is the contamination of stonework by soluble salts which-are introduced from external sources, i.e., from the use of unsuitable jointing or backing materials, from the soil, or ffom the employment of chemical cleaning agents. All such salts bring about very pronounced decay of the stonework because they spread through the material to its surface, enlarging its pores and collecting as an efflorescence on its surface. Changes in the state of hydration of these salis in the stonework
and putting back its decay is regular washing with clean, pure water only, Dirty limestone is easily cleaned by water, and even in the case of soot-begrimed sandstones, much improvement in appearance is forthcoming after such reatment. Before commencing the treatment, any surface efflorescences should be scraped away, since these are mainly soluble matter which would be carried back into the stonework if water were simply swilled over them.

Caustic soda, washing soda, phosphates, synthetic detergents and so on should not be applied to stone or even to brickwork. Although the washing with such solutions may be thorough, some of the dissolved material gets into the pores of the stone and is liable to set up reactions the nature and the ultimate extent of which we are not yet aware of.

The same, too, applies to brickwork. If you want to remove the unsightly. white "growth" from "a brick-surface, scrape as much of it away as possible. After this scrub the area thoroughly with water only, and repeat the process two or three times until no trace is left of the efflorescence.

Paint and distemper films on stonework are said to be protective, although, from an

An isolated brick which has been reduced to a powdery condition by salt absorption from a badly drained subsoil.

A sandstone window-sill in a state of active decay due to salt contamination and interior stresses consequent. on water impregnation and freezing.
such a fact cannot be denied, and although certain species of sulphur bacteria may be concerned in the sulphate destructive mechanism as applied to stonework, such a supposition has never been proved.

Normal growths on stone, such as those of mosses and lichens, do not seem to deteriorate the stonework in any way, although it seems to be an accepted fact that ivy growth can bring about the ruination of stonework whenever its aerial roots are able to find access into the joints and interstices of the masonry. Possibly, the ivy rootlets secrete a substance which has a dissolving effect on the stone.

Granite is normally one of the most enduring of stones, but even this can succumb to sulphur attack in impure atmospheres. It is also liable to slow disintegration by the unequal expansion of its constituent particles. By this process the surface of the granite slowly erodes. Water gets into the pits and pores of its surface and, when subsequent freezing occurs, the expansionstrains loosen further the surface particles, causing them in time to drop away.

Generally speaking, therefore, it may be 'said that the causes responsible for a building stone's decay are natural weathering plus the chemical action of contaminated atmo-
under varying conditions of temperature and humidity give rise to volume changes, and these latter set up continual disruptive strains in the stonework which quite clearly bring about its ultimate disintegration.

It is now quite clear that any factor which will result in the absorption of soluble salts into stonework of any kind is mast potent in bringing about its decay. Hence, all methods of chemical cleaning of stonework are to be discouraged unless it can be shown that they, do not result in the stonework being impregnated with soluble compounds. Processes of impregnating the stonework with water-resisting materials are put into practice with varying results. In America valuable stonework has even been impregnated with wax dissolved in a volatile solvent in the hope that, the wax may penetrate into the stonework pores.

In Britain, the use of a silicon ester, such as ethyl silicate, has been largely recommended. This penetrates the stonework and ultimately deposits hard, insoluble and pure silica therein. The success of the treatment must necessarily depend on the depth to which the stonework is penetrated.

Regular Washing

The best method- of preserving. stonework.
artistic point of view, they are usually undesirable; but too little is known of this subject to be certain yet of any of its implications.

As a final word, stress should be laid on an-important fact which has emerged as a result of years of technical and laboratory investigation of building material problems. It is this: when a building, either of stone of brick, requires repointing, a porous, moderately fine mortar is far preferable to a dense and hard cement mortar. For with the latter material, its density is such that evaporation of absorbed water cannot readily take place from its surface. Consequently the water must preferentially evaporate from the brick or stonework. If, however, the water has any salts dissolved in it, the resulting concentration of these, salts in the brick or stonework brings about the decay of these materials.

If the mortar which is used for pointing is reasonably porous, much evaporation will take place therefrom. Soluble salts will tend to accumulate in the mortar, it is irue, and will, therefore, cause it to decay.
But of the two evils, it is better for a mortar to perish than for the brickwork or masonry which it unites to decay. Repointing is cheaper than re-building.

SAFETY DEVICE FOR AQUARIUMS

An Automatic Control Unit for Use with Tropica! Fish Tanks

By H. R. HODGKINSON

THE tank in which tropical fish are kept has to be maintained at 75 deg . F. ± 2 deg., which is usually accomplished by a thermostatically-controlied immersion heater. Should this heater burn out whilst the tank is unattended for a few hours, the water temperature will fall below the safe minimum and the fish will die. As some of the species of tropical fish are expensive, it will readily be seen that the heater reliability is a serious consideration.

The circuit shown in Fig.. I has been devised so that, if the main heater fails, a standby heater is automatically connected, and a warning light is switched on and remains so until the breakdown is attended to. The components used are surplus military stores, and the cost of the control device is but a few shillings. Two relays are required, the one marked A having two sets of contacts which are closed when the relay is not energised,

Fig. 1.-Circuit diagrain showing main and reserve heaters and relays.
and B having one set of contacts which are open when the relay is not energised. If D.C. relays are to be used on A.C., four small half-wave rectifiers are required in addition, the Air Ministry type 5C/1772 Resistance Rectifier Unit being suitable.

Oprepation

Relay A is energised by a fraction of the current flowing through the main heater, the greater part of the current being passed by the shunt. Thus so long as the main heater is intact and the thermostat closed, the contacts a_{1} and a_{2} areo pen and there is no circuit to the standby heater. When the thermostat opens, contacts a_{1} and a_{2} close, but there is still no circuit to the standby heater because it also is controlled by the thermostat. When the main heater burns out, however, the closing of contacts a_{1} and a_{2} will connect the standby heater and the warning lamp to the supply. The standby will now. be controlled by the thermostat exactly as was the main heater. In order that the warning lamp will remain on after the thermostat has opened, relay \mathbf{B} is connected in parallel with the light and B closes the-contact b_{1} which connects the light direct to the mains. For the circuit to function correctly it is necessary for the relay. B

The completed conitrol unit.
to be slower in operation than relay A. So long as the main heater is intact, between the instant of the thermostat closing and relay A operating, the standby and the light w.ll be energised for the duration of the operating time of relay \mathbf{A}, and relay \mathbf{B} must not close during this period. This may be simply accomplished by choosing for B a slugged relay, a small solenoid with oil or air dashpot or a Siemens thermal relay. The push button P is marked "Press to Test," and simulates the breaking of the main heater for the purpose of periodical testing of the control. To reset the device it is necessary to disconnect the mains for an instant.

Calculations

The construction of the control unit is straightforward, the only point requiring care being the choice of the shunt for relay A and the series resistor for relay B. A typical calculation is shown below. Suppose the heater is 200 watts and the mains voltage is 250. Then the current is 0.8 amps . On checking relay \mathbf{A} it is found that to close it smartly 12 volts are necessary. Then the shunt resistance is $\frac{12}{0.8}-15$ ohms, and must be capable of carrying 0.8 amp . A $20-$ watts vitreous enamelled wire-wound resistor is quite adequate. Relay \mathbf{B} also
thermostat is closed, and there is no indication of the main heater failure when the thermostat is open, except by pressing Q. The standby will, of course, continue to operate should the main heater fail, but it will now be necessary to check the condition of the main heater, say each morning, by pressing \mathbf{Q}. If, on doing this, the lamp lights, then the heater will be burnt out.

It should be pointed out that with the main heater intact, each time the thermostat closes there is a momentary flash of the lamp with either of the two circuits.

Rectifiers

Laminated relays of the Londex type may be used on A.C. direct, but if P.O. type 3,000 or similar relays are used, then small rectifiers must be connected to them. It is not necessary to use full-wave bridge rectifiers, two half-wave units being sufficient, as shown in Fig. 3. The direction of the rectifiers is important, the positive of one being connected to the negative of the other as depicted in the diagram.

TROPICAL FISH IN THE HOME A Standard British Work
By Douglas Gohm, F.Z.S.
Price $30 /$ - net from all booksellers, or $30 / 8$ by post direct from
C. ARTHUR PEARSON, LTD., Tower Mouse,
Southampton Street, Southampton Street, Strand, London, W.C.2. requires 12 volts to close, and has a coil resistance, of 500 ohms. Then the operating current is $\frac{12}{500}=0.025 \mathrm{amp}$. The total círcuit resistance, then, is $\frac{250}{0.025}=10,000$ ohms. The series resistor is therefore $10,000-$ $9,500=500$ ohms. A rowatt radio resistor is ample for the load this has to carry.

Simplified Circuit

The control may be simplified by discarding relay B and replacing it by a press bution Q: the circuit is now as shown in Fig. 2. The waming lamp will now only light up automatically on failure of the main heater when the

Fig. 2.-Simplified circuit diagram.

The finished wind-charger unit mounted on a 34 ft . mast. On the left is a two-bladed propeller unit.

A WIND-CHARG

Constructional Details of an All-metal Self-regulating P_{1}

wind-cliarger propeller, a brief description will be given of the wind-charger shown in the photographs, as the wind-shaft or main shaft layout, etc., may give the reader some ideas to work on. The photographs (Figs. 1, 2, 3 and 4) and drawings show clearly the principle adopted. There is a great advantage in having a separate wind-shaft unit, as it allows for experiments to be made by using different types of dynamos. Also, an all-metal propeller does not deteriorate like a wooden one.

The constructor can, of course, make a two-bladed or threebladed propeller on the lines described later. The writer has made a large two hollow-bladed one which, in this case, is bolted directly on to the dynamo shaft, the root axles being clamped on to the driving plate, with two pairs of clamps per blade ; by slackening the clamps, the blades can be turned or twisted round to alter the pitch and when reclamped it becomes an orthodox type of propeller.

Making the Propeller

The four-bladed propeller is made from a soft form (quarterhard) duralumin sheet, about 24 s.w.g., but ordinary aluminium sheet would do just as well.

THE control of propeller speeds makes a very interesting subject for any mech-anically-minded person who wishes to experiment. There have been various methods created by the old-time millwrights to enable the sweeps of windmills to be set to the varying wind conditions. The earliest was by covering the framework of the arms with canvas, which was furled or reefed by being rohed back and lashed to the framework with ropes, very much after the style in which the sails of sailing ships are reefed, by gathering in the sheets and lashing them back on to the yardarms of the mast. These old mills could also be swung round, in or out of the wind, as they were usually pivoted on a central upright post and they were moved by a long beam or lever at the rear of the mill. This long lever also acted as a thrust sprag. Some were fitted with a crude form of brake on the main wind-shaft.
Later there was introduced the method whereby the whole cap together with sweeps was made to move round the top of the main structure or tower, and this was actuated with a large bevel or crown-wheel and a pinion driven by a small fantail at the rear of the cap. Finally, there came the system in which the sweeps were fitted with slats or shutters, after the style of a Venetian blind. These movable shutters were set crossways in the framework of the sweeps, and were operated by cranks, rods and levers, through a hollow wind-shaft with a long chain over a pulley which passed to the bottom of the mill. The end of the chain was loaded with heavy weights, put on, or taken off, to balance the wind pressure against the shutters. This method was often combined with the revolving cap.

General Considerations

Although this article mainly concerns the construction of a self-regulating all-metal

The sheet metal is bent over a hard wooden former the shape of a single propeller blade to make hollow shell blades.

To make the wooden former, use a straightgrained hard board, $3 \mathrm{ft} . \times 4 \frac{1}{2} \mathrm{in}$. x Iin. thick. Mark each edge of the board with a diagonal line, roughly from one end corner, down to the other end corner, but make the lines at one end finish ${ }^{\frac{3}{0}} \mathrm{in}$. in from the edge of the board's face, as indicated in Fig. 5 . Carefully saw across the width at one end of the board, down diagonally, and the result should be two long tapered, boards, but the one to be used will be the thicker one of the two. Take the thickest tapered board and again carefully saw down from the wide part of the taper, across the width diagonally, from what is to be the thin or trailing edge, to roughly half-way across the board and down to the thin tapered end; follow down as near as possible to the end with the saw cut (see Fig. 6). This last cut will remove quite a lot of surplus wood to help in shaping up the trailing edge. All the sawing operations are done on one side of the board only,

Fig. 1.-Side view of a wind-charger fitted with a four-bladed propeller as described in this article.
the reverse side is left flat for the driving face. At this stage, it is important to remember in which direction the finished propeller is required to rotate, left- or right-handed, when facing towards you. If the flat side of the blades is facing you, with the thicker rounded streamlined edge on your right and the thin trailing edge to your left, this will run in a right-handed or clockwise direction, or vice versa if made and shaped in the reverse order to above. The roughly sawn board is now shaped with the aid of a sharp plane and spokeshave, to a nice streamlined profile, and then finished on both sides with glasspaper. The result should be a curved convex face, which
starts at the rounded front or leading edge, at ?in. inwards, gradually increasing in thickness to rin. at about a quarier of the way across the width, then gradually decreasing down to the thin or back trailing edge. The streamlined shape gets thinner and flatter as you proceed

Fig. 2.-Front ricw of propeller boss with nose cap removed. down towards the tip of the former's thin tapered end. The flat driving side is also finished smooth, with the leading edge rounded. This is now reduced across the width, along the length, by cutting off from the thin or trailing edge a thin tapered strip from the thick end, or the root of the wooden former at $3 \frac{3}{3} \mathrm{in}$. roughly, to $2 \frac{3}{i n}$. at the tip or thin tapered end. The trailing edge now tapers in on the width, but the rounded leading edge is left straight along its length. Leave the tip square and cut to a length of 2 ft . 8 in . overall. The trailing edge should be about $\frac{1}{8}$ in. thick along the length, at the edge. After the last operation trim up and finish with the plane, etc.

Using a Template

When the wooden former is made, the next operation is to make a template with thick paper or thin cardboard by folding it right round the wooden former, to get the correct length and width. Allow ${ }_{8}^{2} \mathrm{in}$. extra on each side to form overlapping edges for bending over to make the joint on the trailing edge later. Start the folding at about 2 in . up from the root or thick end of the wooden former, as this 2 in . left projecting will be needed for gripping in the vice.
Having prepared the template, it is now spread out flat on the sheet metal and carefully marked round with a pencil to transfer the outline of the template on to the metal, which is cut round on the marked line with a pair of metal shears. When the shape is cut out, the lines for bending are marked $\frac{5}{8} \mathrm{in}$. from each side, along the length. Bend up along the edge line what will be the flat or driving side, which is now face down, to an angle of 45 deg. inwards, while on the opposite side (which will be the curved or streamlined face) the marked edge line is bent up at right-angles so that we now have

ER PROPELLER

the metal shape with the outer edges bent up facing you. Place the metal on a wide flat board, with the bent edges upwards, then put the wooden former on, hook the 45 deg. bend on to the thin or trailing edge, along the length, at 2 in . up from the root end, then place your feet or knees on the wooden former to keep- it in place. Now bend the metal round the front rounded leading edge up, and then right over the back of the curved or streamlined surface, so that the right-angle bent edge is now facing downwards over the first 45 deg. bend which is hooked on to the wooden former's thin or trailing edge. Press the last edge bend down all along the

Figs. 5 and 6.-Details of the wooden-former for shaping the metal propeller shell. length, past the 45 deg. bend, and bend sharply underneath inwards (Fig. 7). Use a piece of smooth 3 in . by 2 in . by Ift. 8 in . long wood to beat the metal as you bend and shape it and take care not to dent the metal. When the last bend is beaten round under, it will lock the two halves of the shell together. Continue to beat the metal on the curved face, so as to get the shape
of the wooden former, then place the 2 in . projecting end of it in the vice and pull the shell blade off. If it is still tight, keep tapping along the edges and faces with the piece of wood till it slips off.

Trimming the Blades

The hollow shell blades are now trimmed up, square at the root or thick end, while the tip is made in a streamlined backward curve from the front edge (this is when looking at the blade when laid flat). Keep the blades the same length, and when riveting use the same number of rivets per blade to preserve the balance. Before riveting, mark a line along the length of the trailing-edge joint, at about 3 in. inwards, and continue it right along the edge and round the curved tip. After carefully tapping the edges flat, equally space mark the rivet holes at about $\frac{3}{3} \mathrm{in}$. apart; centre-pop these and drill in. diameter holes. Use ting. round-headed aluminium or copper rivets, and draw them up well through their holes; nip off the surplus shanks and neatly rivet over, starting at the tip and working down the edge until within about 6in. from the finish at the root end; this is advisable until you have the root end axle rib frame ready to slip in the end.

The root axle rib frame (Fig. 8) consists of two shaped metal ribs of light gauge metal (brass or steel) about $1 / 32$ in. to 11 in. gauge, bent up to form webs. These are cut out in the flat, drilled for the two tubes, and made to conform with the end shape or profile of the wooden former (Fig. 9). The larger hole is to take $\frac{3 i n}{}$. conduit tubing, and the other at the leading or front edge is for $\frac{1}{2} \mathrm{in}$. outside diameter tubing. The ribs when bent and shaped can be hard soldered or brazed, likewise the tubes when they are placed in their holes. The tubes and ribs must be
kept square when brazed or soldered. The inner rib is made slightly smaller' than the outer one, which will be nearest to the boss. The ribs are set at $3 \frac{3}{3} \mathrm{in}$. centres apart, and the amount of the $\frac{3}{3}$ in. conduit tube left projecting from the bottom edge of the blade is about $2 \frac{1}{2} \mathrm{in}$., to take the hollow root axles. The ribs can be riveted to the tubes, if desired, right through the webs and tube, but each end of the steel or iron rivets must be countersunk flush on the surface, to allow the shell to pass over.

When the root axle rib frame is made, it is pushed and tapped into the hollow shell, flush with the blade's bottom edge, and then bolted right through the shell and in the middle of the webs. The bolts are put through on each side of the ${ }_{4}^{3} \mathrm{in}$. tube forming the root axle, as shown in Fig. 8. When the rib frame is in position, the edge riveting can be finished.

Stub Axles

It must be noted here that the $\frac{3}{4} \mathrm{in}$. conduit tube forming the hollow root axle is set off centre to the blade, towards the leading or front edge, roughly a quarter of the blade's width in from the leading edge, so that the back or trailing edge has a greater overhang; this is to enable the wind pressure to press the overhanging trailing edge round backwards, so that the blade goes into the open or
"feathered" position. It will be obvious that if the root axle was placed central, the wind pressure would be equal and the twisting or turning effect would not take place.: The hollow blades can now be fitted to their stub axles.
The hollow root axles are a tight fit on and over the stub axles which in their turn are a firm but free fit in the block bearings. The block bearings are set opposite each other equally spaced on to a back plate. The back plate is bolted to a driving plate, which is locked on the main or wind-shaft. There are two short ${ }_{g} \mathrm{in}$. diameter bolts, which bolt both plates to each block bearing at the back.

The stub axles revolve a full quarter-turn in their block bearings, the latter having slots cut in them to allow the short fulcrum levers to move from side to side. These levers face forward, one end being screwed into the stub axle, after it is put in its bearing, by screwing in at the slotted hole.

AN ELECTRIC WALL BRACKET

An Inexpensive but Attractive Fitment for the Home

By J. E. HUTCHINSON

T${ }^{\text {HE }}$ HE wall bracket described hete will provide a useful and attractive addition to any hall or bedroom, and can be constructed with the minimum of expense.

As will be seen from the photographs, this particular model is constructed half from wood and half from brass.

Construction

First, the back should be made out of a piece of in . hardwood. If a lathe is available a neat job of turning can be done, remembering to keep about $I \frac{1}{2}$ in. from the centre to allow for the bracket mounting

Fig. 1.-Front view and section of the circular back.
block. At this point a $\frac{3}{4}$ in. recess should be drilled in the reverse side of the back for connecting purposes.

The bracket mounting block (Fig, 2) is a piece of hardwood, 3 in. $\times 1 \frac{3}{8} \mathrm{in} . x \frac{1}{2} \mathrm{in}$., with the sides shaped off to an angle of 45 deg . This is screwed centrally to the back using round-headed screws or, better still, flat heads with chrome or brass domes.

The Brackets

The measurements for the brackets are given in Fig. 3. They are bent up from $\frac{3}{8} \mathrm{in}$. brass valance rail, there being four pieces to each bracket. No difficulty should be encountered in the bending if it is set about in the right manner. First, a piece of bar or pipe approximately $\frac{5}{8} \mathrm{in}$ dia. is needed. This is
placed horizontally in the vice, at the same time catching the end of the strip to be bent between the front jaw and the pipe, as shown in Fig. 4. The strip should now be bent round as far as it will go, Slacken off the vice slightly and, holding the pipe steady, bring the strip back into the vertical position, tighten up the vice and repeat the process until the required curve is formed. The pipe can now be removed and, by careful use of the vice, the curve can b e tightened up ill the required diameter is achieved. When cutting the strips prior to bending, allow $\frac{1}{2}$ in. or so for trimming purposes.

The scrolls should not be too proT nounced as difficulty may be encountered in getting certain screws home. The method of fastening these parts together will
depend on the type of finish decided on If the brass parts are to be polished and varnished, brass rivets can be used. If, on the other hand, the job is to be enamelled, then they can be sweated together and all surplus solder cleaned off.

Drilling of the brackets and back can now be carried out, the brackets being drilled first. Place each bracket in position and mark screw and flex holes through on the wood block. Drill $\frac{1}{4} \mathrm{in}$. holes right through into the recess, to take the flex; and small pilot holes for the fixing screws. Roundheaded screws are used for fixing the brackets.

The Candleholders

These were turned from one piece (Fig. 5), but could, if desired, be made from a disc of wood 2 in . dia. $\times \frac{1}{2}$ in. thick, utilising a cotton reel for the central piece. A $\frac{1}{4}$ in. hole is drilled through the centre of the holder to take the flex. Two bayonet socket adaptors will be required, and these should be fixed to the top of the holders with small counter-sunk screws. The bracket in the photograph is shown with the flex carried. along the underside where it is not noticeable when finished off, but in another model it was run along the top and was, more or less out of sight. If the latter method is used, a

The finished rvall bracket complete veith shades.
recess will have to be cut in the underside of the holders before they are mounted, and a $\frac{1}{4} \mathrm{in}$. hole drilled about $\frac{3}{4} \mathrm{in}$. from the edge at an angle up into the central hole so as to leave room for the fixing screw.

Assembling the Parts

The various parts are now ready for fixing together, care being taken when securing the brackets to the back that the holes are in line. Wiring should be carried out with flat, plastic-covered flex. Take a piece of flex of sufficient length to enable joints to be made comfortably in the recess and

Fig. 2. - Bracket mounting black.

Fig. 4.-Method of bending the brass strip.
thread one end up through the holder, leaving just sufficient sticking through for wiring the lampholders. Smear the underside of the bracket with "Durofix" and press flex firmly into place, securing it into position with twine until cement dries. The other end is pulled through the hole provided in the back.

The whole bracket should now be finished off to suit the individual taste before the lampholders are wired up. All joints should be well insulated, at the rear of the bracket.

Fig. 3.-Showing the shape and dimensions of the brass strips for forming a bracket.

Fig. 5. -The brackets, candleholders and lamp sockets.

Mechanics of the Mineral-water Bottle

A Century's Progress in Containers for Soda-water

IT was a famous clergyman, the Rev. Joseph Priestley, who first invented artificial mineral-waters by hitting upon the principle of soda-water and, in so doing, laid the foundation of the present-day industry of aerated beverage manufacture.

Priestley, who divided his time between the study of Divinity and that of chemistry, obtained great eminence in both subjects, and, indeed, much more than an average celebrity in the two. His chemical studies brought him to the lighest ranks of scientific fame, whilst his unorthodox theological opinions conferred on him a degree of unpopularity which finally resulted in his having to forsake his native land and emigrate to America

Chemistry was Priestley's hobby and it was during the course of some chemical experiments, on his favourite subject of "airs" or gases, which he made in the summer of 1767 , that Priestley first stumbied upon the basic principle of our nowadays ubiquitous soda-water and other aerated beverages.

The gas, carbon dioxide, which is generated by the action of mineral acids on limestone and other carbonates and which is also evolved during the process of brewing, was well known in Priestley's day. It is a

By "engineer"

considerably more of it. Double the pressure of the carbon dioxide and you will find that the water dissolves rathe- more than twice its volume of the gas.

Here is the essence of Priestley's epochmaking discovery. He found that the greater the pressure of his "fixed air" (carbon dioxide) the more soluble in water it became. He saw, also, that when the pressure was suddenly released the dissolved gas flew upwards through the clear fluid in a veritable torrent of bubbles

By dissolving a little carbonate of soda in the water, Priestley found that he could increase the ease with which the gas dissolved in the liquid, and he found, too, that the solution was rendered better tasting. Carbon dioxide (unlike its near relative carbon monoxide gas, which is a deadly poison) is not poisonous, The escaping bubbles of the gas from the pressure-released solution imparted to the liquid a pleasant and a beneficial sharpness, thereby conferring on it the properties of an exceedingly refreshing and, at times, desirable beverage.

Soda-water thus made its debut, but this is as far as the Reverend Priestley cver went with it: The technique of impregnating waters, lemonades and other beverages had eventually to be developed by others on a practical, and ultimately on a manufacturing, scale.

The Bottle

for the Job
Instantly, however, a problem arose, a problem which has only reached a satisfactory solution in our own times. Having manufactured the g a s - impregnated beverage, in what sort of a bottle or container should it be kept and presented to the consu-
colourless, invisible gas with a slightly acid taste and a faint, pleasantly pungent smell. Priestley made many experiments with carbon dioxide gas and; in common with other chemists of his day, he called it fixed air, because it was believed to comprise a gas or "air" which, in some manner, had been bound down or fixed in ordinary limestone and which was capable of being driven therefrom by heating. We now know it as carbonic acid gas, or, more simply, as carbon dioxide.

Discovery of Soda-water

Priestley, in 1767, was living in Leeds and in the immediate neighbourhood of a prosperous brewery. One supposes, therefore, that he had ample opportunities to collect quantities of this gas, or "air," which, as we have seen, is a product of all fermentation processes.

Carbon dioxide gas is quite soluble in water, and one volume of water at ordinary temperatures will dissolve one volume of çarbon dioxide" gas. The resulting solution is mildly acidic, on account of which property it was once given the name of "carbonic acid," a term which is now more or less obsolete. If, however, the gas is under pressure; the water will dissolve

The celebrated "Drunken Bottle" first devised by Nicholas Paul and used originally by facob Schweppe, founder of the famous firm of mineralwater manufacturers. Second from left is a very early stone ginger-beer bottle. (Illustration by courtesy of Schrveppes, Lid.)
mer? Obviously, it must be a perfectly gas-tight one, othèrwise the dissolved gas, being held under considerable pressure, would slowly leak away, leaving merely a fiat, sale, lifeless, discouraging and anything but a pleasant beverage, alcoholic or otherwise.

Here began a long line of containerdevelopment, in which considerable ingenuity was manifested for a century or more by various container designers. At first the aerated beverages were despatched by their manufacturers in stone or earthenware receptacles provided with corks bound down tightly with stout string or wire. These were not satisfactory, the bungs or stoppers leaking badly, consistently, and more or less continuously, and being unable to withstand even the smallest gas pressure. Stout glass bottles-an obvious alternative-were tried, but they were no better than the stonewalled containers. The corks shrank and allowed the gas to escape from the contents, particularly under the increasing pressures which were then being used to heighten the degree of aeration and consequently the "liveliness" of the liquids.

Paul's Boitle

About the year 1790 a Swies named

Nicholas Paul, who was interested in chemistry no less than in mechanics, and who seems afterwards to have made aerated mineral-waters in a small way in London, devised a glass bottle of an oval shape, something, indecd, like a baby's feeding-bottle. The main feature of this bottle, apart from its very stout walls, was that it was impossible for it to stand upright. On account of this characteristic it was dubbed the "drunken bottle." But there was method

Three of the earliest stout grean glass bottles used for holding mildly aerated liquids. They had wired-on corks. Date 1790-1800.
in Paul's madness here, for his bottle had, perforce, to lie on its side and its cork, therefore, was concinuously in contact with the liquid within the battle. Hence, the cork was always kept damp and moist, and, being thus prevented from shrinking, it always remained a tight, fit in the bottle-neck, thereby actively militating against gas escape.
Paul's bottle was the first really successful mineral-water bottle. It was promptly adopted for commercial use by Jacob Schweppe, a fellow-countryman of Paul, who had come over to England and had set up for himself in Bristol as a maker of

Left-the original zuooden stopper bottle, designed by M. Valett, about 1840. Rightthe plain screrc-topped bottle which is not yet quite obsolete for mincral beverages.
aerated beverages. It remained in popular commercial use in the mineral-water industry for well over a century.

About the middle of the last century, anaiher type of bottle for "table-waters," as these aerated beverages then began to be called, came into use. This was a tall, glass bottle which was provided with a long, slightly tapering wooden peg-like stopier fitting tightly into the neck. The stopper protruded from the bottle-neck like a long, wooden dowel or skewer. The pressure of gas in the bottle sufficed to keep the stopper in its place, thus effectively sealing the bottle. It was opened merely by pushing

Left-the celebrated Codd's bottle. Right\boldsymbol{x} bottle with a captive wooden ball stopper within its neck. This one is reputed to have been sold at the great exhibition of 1851.
the stopper down sharply and forcibly by means of a light blow.- Many types of these bottles were devised by Vallet, Barrett, Morton, Adams and other workers in the then growing mineral-water industry, but M. Vallet's bottle, the one having a long, tapering wooden stopper, proved to be the most effective and, despite its competitors, held its superiority as a technical device over many years.

The Plain " Pop" Bottle

During this period the old and, perhaps, well-remembered "stone ginger-beer bottle" came into prominence and general use, and it remained a popular favourite until well
within living memory. Usually it was a plain "stone" or white-earthenware böttle having a wood, ebonite, or earthenware stopper. In such bottles -the ever-popuiar ginger-beer or "pop" was retailed. The" bo:tle was a sturdy one and mechanically strong. It had no movable parts, apart from its screw stopper, but it laboured under the distinct disadvantage of not permitting its contents to be seen. It was, in later years, discovered that the stone or earthenware material of the Bottle was slightly porous to carbon dioxide gas, and that. under piessure, it permitted a slow leakage of the gas through the bottle walls themselves. Gingerpop could never be kept for any prolonged period in prime condition in a "stone" bottle. And so, after the first World War, the old screw-top stone "pop" botile, after very nearly a century of popularity, fell into a practical desuetude from which it never recovered.

Codd's Famous Bottle

The idea of causing a mineral-water bottle to be sealed by its own internal gas-pressure reached perfection in the famous Codd bottle
 held a formmer pusition in the esteem of the British mineral-water industry. Most people will remember the mineral-water bottle with the glass marble in its neck. This was the famous Codd bottle, the invention of an erstwhile minor genius of that name.
William Codd was, indeed, "the man who put the marble in the bottle." The fundamental idea was simplicity itself. The bottle-neck w a s slightly constricted to give inner ledges which prevented a clear glass marble or ball from falling into the liquid. In the bottle-neck proper a narrow rubber ring was fitted. The glass stopper or marble was kept firmly pressed against the rubber ring by virtue of the internal gas pressure within the bottle. Thus a perfect gas and liquid seal was effected. When the bottle had to be opened, the

Filling bottles in a modern mineral-water factory. Note the long line of "crown-capped" bottles which are being automatically filled and sealed. (Courtesy of Schweppes, Ltd.)
pressure it was caught by the constriction formed in the upper part of the bottle. There it was held securely yet freely and was able to roll about within the bottle-neck but without actually making contact with the bottle contents. When the bottle was upturned for pouring purposes, the glass marble rolled neatly to one side and did not interfere with the free escape of the liquid.

Codd's Bottle Departs

Codd's botile lasted in popularity for nearly 70 years. Its great objection, apart from its somewhat higher cost of production, was that, during storage, dust and dirt were liable to collect on the upper surface of the recessed ball stopper and that this dirt was very readily. pushed down into the beverage when it was opened. The bottle, although an efficient, enormously convenient and easilyopened one, was a notoriously unhygienic, dirt-harbouring device. That is why it was eventually discarded by the mineral-water manufacturers of the present day for the modern " crown-capped" bottle, the contents of which are well sealed and protertad by in Qverlannin: Fivial cap, Htted over the bottcfeck and being pressed down thereon and mechanically pinched into position after the filling of the bottle by the manufacturers. The bottle cap does not allow dust, dirt and other impurities to enter the contents for, during its removal, the metal is lifted away from the bottle-neck and is not pressed

The modern "crown-capped" mineral-zvater bottle, secure and hygienic.
glass stopper or ball was forced into the bottle-neck - usually by means of a wooden cap having an inner projecting peg which was slipped over the neck of the bottle. A blow with the hand on the wooden cap was then sufficient to "break" the gas pressure in the bottle ${ }_{2}$ ihe superior force of the hand-blow overconsing the gas pressute on the stopper ball. The advantage of the Codd bottle was that the stopper, having been forced downwards in the neck of the bottle, never fell into the liquid; after being forced downwards against gas-
down into it like the glass stopper in the Codd bottle and the various elongated wooden stoppers in the Vallet and other types of bottles which preceded it.

One great objection to all these mineralwater bottles still remains. After opening any of these bottles they cannot be re-sealed effectively and adequately. That is the reason why some mineral-water manufacturers have clung conservatively to the ase of bottles of the older screw-stopper type, for with these containers it is always possible after opening the bottle to re-seal it and thus to preserve, at least for a short time, its unused contents.

The First Soda Syphon

It was the demand for a bottle which would allow its aerated liquid contents to be drawn off in fresh, sparkling condition at various times which brought into being the present-day soda- or mineral-water syphon, The first of these syphons was invented and patented by an individual named Charles Plinth in 1813. He called it a "portable
(Continued on page 389)

Elliott Model Railway Exhibition: Model Loco. Building in Lucerne

As readers may remember, steam-drivén model engines are also operated on this lay-out.

During the present season further improvements and extensions have been incorporated in the railway, including waterfalls, aerodromes, etc. Another development has been a miniature children's signal box, into which young enthusiasts can climb (and perhaps older ones as well!) to exercise their skill in controlling part of the lay-out

In the winter months the railway, on a slightly reduced scale, goes on tour and the cxhibition receives a considerable amount of publicity wherever it goes. Mr. Elliott's scrap books are full of interesting cuttings

READERS will racollect that on previous occasions 1 have described the remarkable Elliott Model Railway Exhibition, which completed its second season at Olympia, Winter Gardens, Blackpool, last October. The total number of visitors to the exhibition during the three years up to last March reached the amazing total of 793,757 people.
and the "Duchess of Devonshire" are still fully streamlined. A number of the locomotives are fitted with a patent smoke device. This is most effeciive, and it creates much interest among vísitors.

Fig. 2.- 1 rr. Victor Brast, of Lucerne, is seen here in the workshop of the Brast Brothers' garage. On the bench is the ncw $7 \frac{1}{2 n}$. gauge model steam locomotive undar construction.
and photographs from newspapers and periodicals all over Britain. Several of his operators can give leciures on transport subjects and the Education Authorities encourage schools to avail themselves of the opportunity of hearing these lectures when the exhibition is on tour in the winter.

Fig. I.-A comprehensive view of the Elliout Model Railway Exhibition at Blackpool. In the centre of the operating space can be seen the electric turntable and coaling place.

For the 1951 presentation in Blackpool the railway was considerably extended and improved. Much attention was paid to the provision of better scenic features, including the painting of a back-cloth 25 ft . long and 3 ft . deep, showing mountains and lakes. This back-cloth was ingeniously merged into tunnels, cuttings, etc., built over wooden frames by using thick, crumpled brown paper sprinkled with glue and sawdust. When dry the whole was sprayed with a grass green solution and small pieces of rock and patches of brown paint of various shades completed the effect with remarkable realism.

On one of the extensions to the railway, Mr. G. Tyson, Mr. Elliott's scenic expert, built a model village, complete with pond and imaginative touches such as clothes hanging on lines in some of the back gardeñs.

The railway now has a locomotive stud of 3 F , ranging from the humble shunting tank engine, Midland compounds, Precursors, 2-6-4 Derby tank, etc., to the big Jondon Midland Region Duchess class locomoiives two of which, the "Duchess of Gloucester"

Fig. 3.-On view at Vinnau, Lake Lucerne, is this ancient steam engine : the first 10 be used on the railvay up the Rigi, 80 years ago, and still in working order!

$7 \frac{1 \pi}{4} i n$. Gauge Model "Pacific"

 Loco.In my January article I commented on the new site of the model passenger-carrying steam railway run by the Brast Brothers in Lucerne, Switzerland. I wrote then that the work of re-building the railway had meant that there was no time for making new model locomotives. Since then, however, when I visited the brothers in April this year, I found a rew locomotive under construction in their workshop: a $7 \frac{1}{4} \mathrm{in}$. gauge 4-6-2 Pacific steam model, "Sunstar," to be finished in British Railways colours.
Readers will also be interested to see the photograph I took at Vitznau, on Lake Lucerne, of the first steam engine used on the rack and pinion railway up the Rigi. This railway was opened in 1871, so has been running over eighty years. Now, of course, it is fully electrified and one mounts the Rigi in a modern train of bright red

Centrifugal Force
SIR,-The following is an extract from the "Popular Cyclopædia of Natural Science," by William B. Carpenter, M.D., dated 1843:
"The term centrifugal force" is very liable to be misunderstood, since it would seem to imply a force which, acting alone, would cause a body to fly directly away from the centre, which we know to be very far from the truth. We must constantly bear in mind that its only proper use is to express the tendency."

Perpetual Motion?

Mr. E. W. Chambers' interesting letter urges me to say: Cranks are people with original ideas, right or wrong-but the point is that they are "original." The "cranks" of to-day are the wise men of to-morrow.

With regard to his reference to the Orffyreus wheel, I would say that if people would put out of their minds the thousand-and-one fantastic ideas of so-called perpetual motion and concentrate on finding the missing link of this wonderful piece of mechanism which undoubtedly did work, they would find their labour intensely interesting. Any intelligent schoolboy could construct a model of its known working parts from the illustrations given.
The answer is there for those who care to find it. When the secret of the box under the weights is discovered it will reveal what is in the wheel. Alternatively, when the secret of the wheel is discovered, it will reveal what is in the box. Should anyone be unfortunate -I repeat unfortunate-enough to discover its secret, the pleasure of finding it will be at an end, so don't deny others the pleasure of trying to solve this, "The Master Puzzle," by disclosing the answer.-H. A. D. Joseph (Epsom).

Centripetal Force

SIR,-The centripetal monstrosity again . asserts itself. By what name are we to recognise centrifugal force, " which does not exist and the exact opposite of which is centripetal force"? Inertia is not a sufficiently precise definition as external forces constitute the issue.
This is a practical journal and why do. cheese-paring theorists wish to disrupt wellestablished facts ?

Latin derivations of the two words are, respectively:

Centrifugal.-Centrum, centre ; fugus, flying. Centripetal.-Centrum, centre ; petus, seeking, both meanings of which are blatantly opposed, no doubt in relevance to "all forces being equal and opposite." Centrifugal force by virtue of its " circumstantial energy" is deservedly recognised by its ubiquitous name, and for the sake of peace and my greying hairs, again I' refer to the Editor's concise definition in February issue last.R. G. L. (Nottingham).

Charging and Lighting Circuit

SIR,-With reference to the reply to N. Burkle, of Watford, in Practical Mechanics, June issue, I-believe that I can be of some assistance.

The generator originally formed part of an. ex-Govt. charging outfit comprising a single cylinder petrol engine, Jap I believe, which was direct coupled to the generator,

which fed into a charging and general control board. The complete charging unit was fitted in a cradle to make it portable. The output of the generator was controlled from the switchboard, which was designed to give several different. charging circuits at the same time.
The three leads from the generator are as follow: A + goes straight to the ammeter on the charging board, and then, via various resistances and cut-outs, splits up to supply the various charging circuits. L- is the common negative lead. F is the lead which controls the field coils of the generator through the field resistance on the charging board. It should go direct to the charging board.
Each of the output circuits has its own variable resistance and ammeter. The actual charging board designed for the generator in question, I have reason to believe, is still

obtainable at shops specialising in ex-Govt. technical equipment. I also believe that the original complete charging set, comprising engine, generator and charging board, can still be picked up on the market.-G. E. D. Grogan (Edinburgh, 9).

Electrically-operated Film Screen Curtains
S $\mathbb{R},-$ In answer to your request in \int Practical Mechanics for ideas on electrically-operated curtains, I have drawn out the clectrical circuit and a plan of the mechanical gear.
The motor is a fractional h.p. series wound, which means that you have to reverse the fields in relation to the armature. This is done with a double-pole, double-throw relay.
As you will see from the circuit, I am using
three-wire cable down the hall. When the relay is being used, which is when the motor is to be reversed, the resistance of its 'coil is in parallel with the motor, and therefore increases the current. This does not affect the speed of the motor to the extent of being noticeable. You will observe that I have put a hand bell-push, to open and close the relay, in order to ensure that the relay is never left with current going through it, as it might get rather hot, and eventually burn itself out. The control originally belonged to a fan, but it suits this purpose very well.
The screen I had to work with was 8 ft . long $\times 6 \mathrm{ft}$. wide. It consisted of a telescopic pole with a tripod to keep it vertical. The screen itself is suspended on it.
On to a plank of wood gin. $\times 9 \mathrm{ft}$. long I fixed a block of wood $12 \mathrm{in} . \times 5$ in. $\times 5$ in., which had a 2 in . dia. hole in the centre of it, so that the whole arrangement could be placed on the top of the pole. I fixed the motor and gear box on to the block of wood, and I used a $40: 1$ worm and worm wheel reduction, as this was rather necessary to stop the curtains opening and closing at supersonic speeds. This is how I finally ended up after a lot of experimenting.
Every screen is different though, and you have to know the exact conditions sur-rounding- jt ; therefore, it is rather difficult to make the apparatus for one screen which will be suitable for another.-L. R. Fisher (Glasgow).

Sixteen Exposures on " 120 " Film

CIR,-There is one point W. Houghton did not mention in his article "Sixteen Exposures on a 120 Film" (June issue).

The trailing end of a 120 (or 620) film ends about 2 in. beyond the "16." To cover the new picture space $\frac{18}{8} \mathrm{in} .+1 \mathrm{l}_{8} \mathrm{in}=2 \frac{7}{16} \mathrm{in}$. of film are required. The $\frac{13}{} \mathrm{in}$. is, of course, the width of the top part of the mask from the top of the original picture space.
Obviously, only about two-thirds of the picture space will be covered. This will be further reduced by the tape holding the film to the backing paper. In short, the first exposure will be lost.
To avoid this it is only necessary to ignore the " 16 "; make the first exposure on " 15 ," carry on to the " 1 ," which will be the 15 th exposure, and make the last exposure when the sleeve of the "hand." appears in the red window.

Another point which may interest readers is that before re-rolling the film I move it
about $1 \frac{1}{8}$ in. back towards the trailing end, using the original tape to secure film temporarily, wind the film on to the other spool, fix the trailing end with new tape and load it in my camera.

I can then make the first exposure on " 16 " and a 17th on the hand!

Finally, some readers may assume that this " 16 on" conversion has altered "this, thar, or the other " of the camera. It has not; it has merely masked off what is too frequently an uninteresting, or distracting, background The novice, in particular, is enabled to use the film previously wasted.-J. R. Dorritt (Smethwick).

Telescope Mounting

 CIR,-The article on S making a small telescope by Mr. Twining in the issue of Practical Mechanics, June, 1952, is most interesting, and I thought the following note may be of interest to other readers.I have constructed a novel alt-azimuth mounting for a small telescope (3 draw. I $1 \frac{1}{2}$ in. O.G.) by using. the main top picce of the well-known Astro Compass, which can be obtained from shops selling ex-R.A.F. equipment. The astro compass head has a fine, neat gear drive for azimuth, and a for azimuth, and a construction is simplicity itself and the wood blocks and tripod can easily be made by any handyman.-F. W. Cousins (Greenford).

The Steam Car; Training of Draughtsmen; Evolution of the Electric Motor SIR,-I have been interested in recent articles regarding thie revival of the steam car.
Such a vehicle would be a big advantage here, a country of great distances and with

seen here during the war, and better no doubt in an emergency.
I was also interested in your recent editorial on the training of draughtsmen. My mind goes back to a place where none of the draughtsmen had had drawing office experience. Sometimes, things that were "designed" in the drawing office were made in the workshop first of all.

Your recent article on the evolution of the electric motor calls for some slight comment. Reference to books by Sylvanus Thompson and other even earlier authors shows that it was Gisbert Kapp, as well as the Hopkinson brothers, who evolved the practical electric motor. Only those who have perused the history of magnetism as well as electricity since the time of William Gilbert can realise just how much evolution was involved. E. W. Chambers (Victoria, Australia).

MECHANICS OF THE MINERALWATER BOTTLE
 (Continued from page 386)

fountain." It was a very simple device, consisting of a large bottle provided with a tube passing through an opening at the top of the bottle almost to the bottom of the latter. This delivery-tube had a simple stopcock at its external end. When the tap was turned on, the pressure of gas within the bottle forced the liquid up the tube and so out of the bottle. Essentially the modern sodawater syphon, with its instant delivery, operates upon precisely the same principle as Plinth's original apparatus, the patented "portable fountain" of the years immedjately preceding the Battle of Waterloo, with the single exception that Plinth's crude stopcock arrangement has long been replaced in the modern syphon bottle with a springoperated valve actuated by a simple lever arm mechanism which is now used universally for the opening and closing of the bottle.
A great number of attempts have been made to construct an ideal mineral-water syphon bottle since those far-off days of Charles Plinth and his pioneer invention, yet, the working principle, despite its essential simplicity, has never been superseded by the ingenuity of subsequent inventors.
The modern soda-water syphon bottle, in which a liquid is actually aerated or "carbonated" within the container by means of carbon dioxide gas, released from a small steel pressure-capsule and thus dissolved in the liquid as it stands in the bottle, is not quite in the same category of inventions. These syphon containers are not so much concerned with the actual small-scale making of aerated waters as they are with their effective storage and delivery fṑ use.
The old-time "pop" bottle has chronological priority to the more costly, dignified and convenient soda syphon. It has also had a greater popularity than the latter at all times. That is why, perhaps, the simple ingenuities of inventors have ever been directed more fundamentally, and, perhaps, more successfuly, to the preservation of "pop" than to the more elaborate and graceful saving of soda.

Just Publistied
 WORKSHOP CALCULATIONS TABLES AND FORMULAE

Tenth Edition

loy F. J. CAMM

A handbook dealing with methods of calculation, solution to workshop problems, and the rules and formula necessary in various workshop processes. It contains all the information a mechanio normally requires.
From all booksellers, 6/- net.
by post $6 / 8$ from the pubisher
GEORGE NEWNES, LTD. (Book Dept.), Tower House, Southampton Street, W.C. 2

A Review of the Latest
 Appliances, Tools and
 Accessories

Karlena Products

A LL the Karlena products, including the mould-making materials and the stonecasting compounds, are easily worked, and they provide a fascinating hobby for the amateur as well as an economic proposition for the craftsman and manufacturer. They are used by artists, sculptors, hobbyists, home-craftsmen and manufacturers, and there is an increasing demand from youth clubs, art schools, rehabilitation centres, model clubs, etc. They are finding a growing application in the ceramic, engineering and building industries, and are exported to places as far afield as Malay, U.S.A; Australia and Brazil.
The flexible mould-making materials are in three grades, known as Elastomold X, Plastimold and Resilomold, and differ in degrees of flexibility and strength. The actual process of making the mould is a simple one: the shredded material is melted into a highly mobile liquid and poured round the pattern, which is, of course, first surrounded by a containing wall. When it sets the mould is in the form of a rubbery substance, which, due to its flexibility, may easily be stripped away from the pattern.

The mould, when it is no longer required, may be cut up and remelted. The three materials are all fully compatible and may be mixed together to obtain any desired

On the right-is the original terra-corta figure of a roadsweeper and on the left a copy Plastimold zwas used for the mould and it was cast in Karlenitc No. 2.
degree of flexibility, and moulds may be prepared from a variety of materials, including wood, metal, stone, plaster, cement, porcelain, bakelite, ivory, terra cotta, clay, etc. For the preparation of foodstuffs, Karlena products are producing a flexible compound known as Confectiomold.
"Karlenite" art stone casting compounds are produced in several grades, known as No. 1, IA, 1B, 2, 2 A and 3. This "Karlenite" plastic marble is a new material which, in plastic form, is very easily modelled and when set closely resembles marble. The compounds are supplied in powder form and their mixing is a very simple procedure Series I, IA and IB require the addition of a petrifying fluid which is supplied with the material, while series 2,2 A and 3 need only the addition of water.
To improve the attractiveness of the finished product, veining may be introduced,
and the necessary pigments and instructions are supplied.

Among the other products of this company is "Resinamel," which is a resin lacquer, specially developed for sealing the surface of porous materials for use as patterns; it gives a hard finish without destroying fine detail and affords perfect protection. "Resinoil" has a two-fold effect when applied to patterns treated as above. It affords protection against the exudation of steam, air, etc., whilst the mould is setting, and "wets" the surface of the mould, allowing the mould material to flow into all the crevices without trapping air.
Blemishes on finished products are often caused by bubbles which are due to interfacial tension, and to minimise this "Meniscoloid" may be added to the slaking water. The addition of this intensely active organic compound also increases the "wetting" effect, which means less water is required and the set material is very much stronger.
"Stonax" is a treatment evolved by the Karlena laboratories for hardening, strengthening and polishing plaster and art stone. It follows the established practice of immersing plaster castings in molten wax, but "Stonax," a transluscent crystalline waxlike substance of incredible hardness, is claimed to be the ideal impregnate, and imparts, in addition, a brilliant liquid-gloss polish.
Miscellaneous Karlena products include "Stiktite," which is a transparent plastic cement for use with "Karlenite " in building up separately cast pieces. "Waxsol" is a solvent particularly suitable for dissolving wax-Stonax mixture, and will dissolve nearly all oils, wax, fats and resins, both synthetic and natural. "Amax," when applied to plaster-of-Paris, accelerates the time taken for setting, improves the hardness of the castings and intensifies its whiteness. Italian Gypsum Plaster is a snow-white hard-baked sculptor's plaster, ideal for pattern making, dental work, etc.

For prices and any other information, inquiries should be addressed to the Karlena Art Stone Co., Ltd., 55, Deansgate Arcade, Deansgate, Manchester, 3

Johnson Photographic Competitions for 1952

O^{F} the two competitions for 1952 , the first has now been judged and the results published. In both competitions there are four classes in which prints may be entered -Class I for landscapes, street scenes and seascapes, Class 2 for portraits, children, animals and figure studies, Class 3 for any subject not covered by 1 and 2 . Class 4 is a special novices class for beginners and is divided into two sections, for those under 18 and those over 18. The closing date of the Autumn competition is October 3 Ist, 1952, and as in the Spring competition, the prizes for the first three classes are one first prize of $£ 10$, one second prize of $£ 5$, five third prizes of $£ 2$ each and five fourth prizes of $£_{1}$ each. In section one of the novices class there is one first prize of $£_{3}$, one second prize of £2, two third prizes of £I each and three fourth prizes of 1os. each. Section two offers two first prizes of $£ 3$, two second prizes of $£ 2$, four third prizes of £I and five fourth prizes of ros. each. In addition there are thirty consolation prizes offered in each competition, each comprising Ios. worth of Johnson chemicals.

The first prizes in the first three sections
of the Spring competition were won by Mr . E. Granger of Hammersmith, Mr. P. Mercer of Tonbridge, Mr. R. J. Smyth of Seaton respectively. The first prize in Section I of the Novices Class went to Mr. G. Atkinson of Skegness and the two first prizes in Section 2 were won by Mr. J. V. Mellors of Chesterfield and Mrs. W. J. Varley, University College of Gold Coast, Accra.

There are no entry fees for the competition and details of the camera, type of film, negative developer, etc., must be given. The processing must 'be the competitor's own work. Entries should be addressed to Competition Dept., Johnsons of Hendor, Ltd., Hendon, London, N.W.4, and full details of the rules may be obtained from the same address.

Collaro Micrograms

$A^{\text {MONG the comprehensive range of }}$ gramophone units and pickups which Messrs. Collaro, Ltd., are exhibiting at this year's Radio Show at Earls Court are a nerv series of portable electric gramophones which represent a remarkable achievement for Collaro designers. Without unduly increasing the micrograms' original overall size, they have made available six models of exceptional tonal qualities for both single-playing and automatic ofieration and for single- and three-speeds.

Each is fitted with a $6 \frac{1}{2} \mathrm{in}$. speaker and incorporates plug-in pickup heads; attractively finished and light enough to be instantly portable. For use on A.C. mains the models include:
De Luxe Micrograms 514 M for singlespeed and $3 / 514 M$ for three-speeds.

Automatic Micrograms RC521AM for single-speed and $3 R C 522 A M$ for three-speed automatic operation (non-mixing).

Automatic Micrograms RC522.AM for single-speed and $3 R C 522 A M$ for three-speed automatic operation, playing Ioin. and 12 in . records mixed in any order. Further particulars can be obtained from the above firm at Ripple Works, By-pass Road, Barking, Essex.

CEARS AND GEAR-CUTTING

Edited by F. J. Camm.

Price 6s. from all Booksellers or 6s. 6d. by post from George Newnes, Ltd. (Book Dept.), Tower House, Southamp ton Street, London, W.C. 2.

SPARKS' DATA SHEETS

 are the Safest, Simplest and Finest and Tested Radjo Designs.SPARES SETS THE STANDARD THE " FNTERPRISE"
Very efficient 3 -Valve plus Rect. TRF Med/Lons-wave Recejver for A.C. Mains. 41 Watts of Quality on Radio and P.U. Good Range and Selectivity for a ctrcuit of this type. External or Mains Aerjal. D/Sheet, etc.. $3^{12} 21$ Post Paid.

THE "ENSIGN
For those who want Good Quality from their "Local." Stations, in areas where high selectivity is not essential, Plus most
pleasing P.U. reproduction. pleasing P.U. reproduction. 4t Watts Output. Med/Long-waves. External or
Mains Aerial. Easy and Economtcal to
Bulld. D/Sheet, etc., $3 / 24$ Post Pald.

SPARES MEANS SATISFACTION
THE " CHUNXY " PORTABLE, An All-dry 2-Valver which does give really good 'Phone slgs. on Med, and, Long-waves. in Dorset 70 'miles from nearest Regional Station and 115 miles from Droitwich, both giving very good "phone sigs. Size approx. tons. 3121 Post Paid. Tions. "2 Post Paid.
THE "MIDDY." A 2 -valver whlch glves " Ship-to-Shore " transmissions when used with a short aerial. Good speaker results. All-dry batterles. The Ideal set for CampIng, the Bedside. Caravans. The Den and Padd.
THF: " POCKET PAK." All-dry Pocket I-valve Portable. Frame aerial. Good "phone sigs. Med. Wave. $3 / 21$ Post Pald. All-dry Batts. Good 'phone sigs, $3 / 2$, Data Sheets available from a Crystal Set COMPONENTS SUPPLIED
L. ORMOND SPARKS (M)

48A, HGH ST.. SWANAGE, DORSEI

G.E.C. \& B.T.H.

GERMANIUM

CRYSTAL DIODES

G.E.C. GLASS TYPE $5 / 1 \mathrm{gin}$. $\times 3 / 16 \mathrm{in}$ B.T.H. LATEST TYPE MOULDED IN THERMO-SETTING PLASTIC
Eoth Wire Ends for Easy Fixing. 4/6, each, postage 21 d . SILICÓN CRYSTAL VALVE 316 each, postage $2 \frac{1}{2} \mathrm{~d}$. Fixing Brackets 30 , Extr. but high qualişy Crystal Set included with each Diode, and Crystal Valve. COPPER INSTRUMENT WIRE ENAMELLED, TINNED, LITZ, TTON AND SILK COVERED Most gauges available. B.A. SCREWS, NUTS, WASHERS soldering tags, eyelets and rivets.
EBONITE AND BAKELITE PANELS, EBONITE AND BAKELITE PANELS,
TUFNOL ROD, PAXOLIN TYPE COIL FORMERS AND TUBES. ALL DIAMETERS. Latest Radio Publications. SEND STAMP FOR LISTS.

CRYSTAL SET

 INCORPORATING THE SILICON CRYSTAL VALVE Adjusted Iron Cored Coil. RECEPTION GUARANTEED Polished wood cabinet, $15 /-$, post 9 d . A REAL CRYSTAL SET NOT A TOY POST RADIO SUPPLIES 33 Bourne Gardens, London, E. 4

DIESELS, KIT SETS,
RADIO CONTROL UNITS AND ACCESSORIES
E.D. 2.46 c.C. MARK III (SERIES 2) RACING ENGINE Size : Height $2 \frac{1}{4}$ ins., Length $3 \frac{1}{2}$ ins., Width $1 \frac{1}{3}$ ins. Soeciatly designed for use as a diesel, Glo-plug or spark ignition engine, the two-forty

THE REST OF THE E.D. DIESEL RANGE E.D. 46 "BABY"
 E.D. MARK IV 3.46 c.c. Diesel
E.D. MARK 4.5 water-cooled Diesel
22.15 .0
62.17 .6
$\pm 3.5 .0$
64.2 .6

MISS E.D. 2 LAUNGH
(1) scale of the Channel Conqueror). 36 ins. long with $10-\mathrm{in}$. beam. (Buile as illustration.)
Price, 19.10 .0 .

OTHER KIT SETS

 E.D. Radio Queen Kir Set, Price 44,5 . E.D. Challenger Hydroplane Kit, Pric C2. 12.6.E.D. Aerocar Kit Set, Price 22.12 .6.

E.D. MK. IV. RADIO CONTROL UNIT, TUNED REED, 3 CHANNELS
Comprising transmitter, control box and receiver, incorporating reed unit giving output for three separate channels. The channels can operate either escapement andlor electric motors. 9 channels can be introduced.
Unit complete
Receiver
Transmitter and Control Box
(
All Prices include Purchase Tax.

Price 625.0 .0 Price 115.0 .0 Price $\mathbf{E 1 0} 0.0$ 43.15.7

(1) Walden Branches are ready to deal with your Pheoto Copying on the spot

Every Halden branch fully equipped and ready of plans, deeds, documents, etc., by any of the usual processes. To the larger of the most modern equipment for the production of their own photo copies. in connection with the production of maps. Haldens are licerised by the Controller of H.M. Stationery Office to reproduce Ordnance Survey Maps colour. (4a5) OF MANCHESTER

[^0]
GALPINS

ELECTRICAL STORES
408. HIGH ST., LEWISHAM, S.E.I3 Tel:: Lee Green' 0309. Nr Lewisham Hospitol TERMS : CASH WITH ORDER: NOC.O.D. All goods sent on 7 days' approval against

EARLY CLOSING DAY THURSDAY
EX-U.S.A. W.D. ROTARY TRANSFORMERS, 12 voles D.C., input 500 voles, 50 mlamps, 275 voles 100 mlamps D.C. out put. Complete with smoothing switches, fuses, etc, as new, $17 / 6$ each, carriage $2 / 6$,
can be run on 6 volts, giving hall the stated

MAINS TRANSFORMERS (NEW), 2001250 volts input, in steps of 10 volts, output, $0,6,12,24$ volts 6 amps, 4216 each, post 116 . Another às above but $10-12 \mathrm{amps}$, 25130 amps , $75 /$-each, carriage 316 ; another. input as above, output 0118130136 volts 6 amps, $47 / 6$ each, poist $1 / 6$.
EX-NAVAL ROTARY CONVERTERS, 110 volts D.C. input, output 230 volts A.C. 50 cycles, I phase, 250 watts capable of 50% overload, weight 100 lb ., price女 $10110 /=$ each, carriage forward.
ROTARY CONVERTERS, $24-28$ volts D.C. input, 1,200 volts $70 \mathrm{~m} / \mathrm{amps}$, D.C. output, 101- each, P.F.
SWITCHBOARD METERS, 4 in . scale moving coil (D.C.) only 0 to 14 amps, 1716 each, post 116
MAINS TRANSFORMERS (NEW), input 2001250 voles in steps of 10 voles, oulput $35010 / 350$ volts $180 \mathrm{~m} / \mathrm{mmps}$, volts 42 mps . 5 volts 3 amps, 6.3 volts 4 amps. $180 \mathrm{~m} / \mathrm{amps}, 6.3$ volts 8 amps , $0 / 415$ volts 4 amps, 45/-each, poss 116 ; another 500101500 volts $150 \mathrm{~m} / \mathrm{amps}, 4$ volts $4 \mathrm{amps} C . T$., 6.3 voles 4 amps , C.T. 5 voles $3 \mathrm{amps}, 4716$ each,
post 116 anocher 425101425 volts 160 post 116 ; another 425101425 volts 160
mlamps, 6.3 volts 4 amps, C.T. twice 5 volts mamps, 6.3 volts $4 \mathrm{amps}, \mathrm{C} . \mathrm{T}$. twice S volts
$3 \mathrm{amps}, 4716$ each, post 116 . MAINS TRANSFORMERS (NEW), input 2001250 voles in steps of 10 voles, output 350101350 volts 300 mlamps, 6.3 volts 8 amps twice, 4 voits 4 amps, 5 volts 4 amps . 701 -each, carriage 316 ; ditto, 450101450 volts $250 \mathrm{mlamps}, 6.3$ volts 8 amps twice, 4 voles 4 amps, 5 voles 4 amps, 701-each, carriage 316 another, input as above, output 500101500 volts $250 \mathrm{~m} / \mathrm{amps}, 6.3$ voles 8 amps twite, 6.3 volts $4 \mathrm{amps}, 4$ volts $4 \mathrm{amps}, 5$ yolts 4 amps, $751-$, carriage 316 . Another, wound to (electronic) specifications,
350101350 voles $250 \mathrm{~m} / \mathrm{amps}, 4$ volits 8 amps 350101350 voles $250 \mathrm{~m} / \mathrm{amps}, 4$ voirs 8 amps, 4 volits 4 amps, 6.3 volts 8 amps, 01216.3 voles $2 \mathrm{amps}, 701$ - each, carriage paid; another, input as above, output 50013501013501500 volts 250 miamps, 6.3 volts 6 amps, 01216.3 volts 2 amps, $0 / 415$ volts 4 amps twice, 751 -
MAINS TRANSFORMERS (NEW), suitable for spot welding, input 2001250° volts, in steps of 10 volts, output suitably
tapped for a combination of either $2 / 4 / 6 / 8110$ tapped for a combination of either $2141618 / 10$ MAINS TRANSFORMERS, 230 volts inMAINS TRANSFORMERS, 230 volts in-
put, 15010150 volts 200 m , amps, 6.3 volts put, 15010 imps, 5 volts 2 amps outpur, 231 -each. AUTO WOUNDVVOLTAGE CHANGER TRANSFORMERS, tapped CHANGER TRANSFORMERS, tapped
Oll1012001230 volts 350 watts
: 551 - each. post 116 ; as above, but 500 warts, 701 -each, post 116 ; as above, but 500 watrs, 701 - each,
carriage 316 : as above, 200 wates, 401 - each, carriage
post $1 / 6$.
EX-RADAR MAINS TRANS FORMERS, 230 volts input 50 . cycles I phase, output $4,50015,000^{-}$voles approx. amps, 2 volts 2 amps , these transformers are new, immersed in oil, can be taken out of the oil and used as television transformers giving output of $10 \mathrm{~m} / \mathrm{mmps}$, overall size of transformers separately $5 \frac{1}{2} \mathrm{in} . \times 4 \frac{1}{\mathrm{in}} . \times 4 \mathrm{in}$. and 3 in. $\times 3$ in. $\times 2 \frac{1}{2}$ in., price 75% each. carriage paid. 2001250 volts A.C., calibrared at 3 d . or Id. per unit, 5 amps load, 45/. each, 10 amps load, 5716 each.
ELECTRIC LIGHT QUARTERLY TYPE CHECK METERS, all for 2001250 volts A.C. 50 cycles 1 phase, 5 amps load 1716 each, post $116 ; 10$ amps 211 - each, post 116; 20 amps load, 251 - each, post 116 . RECTIFIERS (NEW). D.C. output 37 volts 50 amps , complete with mains trans former, 230 volts A.C. input 50 cycles I phase output to match the required voltage for the rectifier, $\& 15$ per set, carriage 101-EX-R.A.F. ROTARY CONVERTERS 24 volts D.C., input 50 volts, 50 cycles, phase at 450 watts outpur, complete with step-up transformer 50 to 230 volts, $£ 91101-$ each, carriage 101 -.
Please note: All Transformer prices have been increased by 10\% due to rises in cost of materials. Prices quoted in this advt. supersede all prices previously quoted.

THE STEEL NUT \& JOSEPH HAMPTON LIMITED WODEN WOAKS WEDNESBURY PHONE-DARLASTON-331

remporary
recording of any sound you like. Your children as they talk or play, your favourite singers, radio programmes, bird and animal sounds can be stored for as long as you wish.
The sound to be recorded is simply picked up on a microphone or taken The recorder is fited with radio set. The recorder is fitted with a special magnetic device which "prints" the sound upon the special tape. The tape is in spools which play for appropidly wind or, unwind the tape to get to particular parts where one spool contains several recordinis. The instrument just as it automatically prints, also automatically erases unwanted recordings, and as there is no mechanical contact, the tape can be used over and over again The recordines are free from distortion and no knowledge is required for operation. Complete kit of parts with 6 valves and portable or table model cabinet and full instructions, $£ 295 \mathrm{~s}$. Od. (or £9 15s. Od. deposit), plus $15 /$ - carriage and insurance. Alternatively the innit ready built complete with reel of tape and crystal microphone $\$ 3615 \mathrm{~s}$. Od. (or $£ 25 \mathrm{~s}$. Od. deposit), plus 15/- carriage and insurance
Instruction Booklet. -Shows in close detail exactly how to assemble and operate the recorder, is free with kit or available separately at $2 / 0$ (credited if you buy the kit or completed recorder).

Ne. 2A ONE-VALVEALL DRE SFT L. \&: M. wave headphone receiver which can be built into a bakelite cabinet as to hold the batterles and be self-contained, then use the 3 -valve set cabinet. Total cost. $15 /-$, plus cabinet.
No. 3 A.C.
${ }_{5}^{\text {D. }}{ }_{5}$ B. AN.
valve.
Mave Sup
wat
wave Super
het, built-
earth. in fine
wooden cabi-
net. sizellin.
x $5 i n \mathrm{in}$ x 7 in . 1 light and casily carried
edge-lit dial with station edge-lit dial with station names monosit guarantee. $£ 8 / 5 /-$, or $\mathrm{f} 3 \mathrm{~B} 2 / 6$
E.P.E. LTD. (Dept. 1), WINDMILL HILL, RUISLIP, MIDDX. and at 152/3, FLEET STREET, E.C.4.

THOUSANDS OF MEN in important positions were once students of The Bennett College. They owe their success to Personal Postal Tuition-The Bennett College way. You have the same chance to qualify for a fine career, higher pay and social standing.

SEND TODAY for a free prospectus on your subject. Fust choose your course, fill in the coupon and post it

TO THE BENNETT COLLEGE, Dapt. H. 76, SHEFFIELD Please send me free your prospectus on:

```
SUBJECT
```


ADDRESS

One of these courses will lead to your advancement

Accountancy
Auditing
Book-keeping
Commercial Arithmetic
Costing
Economics
Agriculture Architecture Aircraft Maintenance Buiding Carpentry Chemistry Civil Engineering Diesel Engines Draughismanship Electrical Engineering Electric Wiring

Modern Business Methods Languages

Shorthand
English Subjects
General Education
Geography
Journalism

Engineering Drawings 1.c. Engines Machine Design Mechanical Engineering Motor Engineering Plumbing
Power Station Engineering Press Tool Wort. Quantity Surveying Radio Engineering Road Making

Literaturi
Mathematics
Public Speaking
Police Subjects
Short Story Writing

Sanitation
Sheet Metal Work
Steam Engineering
Surveying
Telecommunications Television
Wireless Telegraphy Works Management Workshop Practice and many others

QUERIES and ENQUIRIES

> A stamped, addressed envelope, three penny stamps, and the query coupon from, che current issue; which appears on page 88 (THE CYCLIST), must be enclosed with every letter containing a query. Every query and drawing which is sent must bear the name and address of the reader. Send your queries ro the Editor, PRACTICAL MECHANICS, Geo. Newnes, Litd., Tower House, Southampton Street. Strand, London, W.C.2.

Processing Cow Horns

PLEASE send me particulars of how to process folish.
Are there any books on the above and where can they be bought; are the re books on bone and born turning? -G. Duncan (Forres)
N order to clean and process a cow or ox horn for ornamental mounting or other use, first of al emove all roughnesses from the horn by means of a spokeshave or a sharp knife, or rasp. This is followed by abrasive treatment by means of a file and various grades of sandpaper. Pumice powder, made into a paste with water, is next applied. Finally, a paste of whiting and oil is applied to give the horn its final smoothness. An extra final treatment for smootheres with whiting mixed to a paste with vinegar is. The use of calico mops mounted on high-speed revolving buffing wheels will improve the final smoothness of the horn and willsave much time and labour. Many ornamental workers in horn apply the palm of the hand to give the desired degree of smoothness to the horn.
dust has also been used to impart a final sheen
If the horn is dirty and greasy, washing with soap and water, the latter containing a little soda or ammonia, is called for. Apart from this preliminary cleaning, you will note that the process of preparing and "dresswith trimming it and with smoothing its surface by asping, cutting, filing and abrasive treatment, using irst a coarse abrasice and, finally, a ine, gente on such as common whit.ng. As a finishing operation, ve recommend the rubbing ar a uch as sewing-machine o.d, into the horn by means he wax film will tend to pick up dirt and dust. The inal oil freatment will sick up dirt and dust the horn material and will add depth and richness the it.
So far as we have been able to trace, there are no vailable books dealing with the subject of working in orn and bone material. You may possibly be able W. \& G. Foyle, Litd., Charing Cross Road, London, W.C. 2 , or from any other good secondhand bookseller. Another yood firm for your inquiries in this direction Another good firm for your inquiries in this direction Edinburgh.

Re-staining and Varnishing a Violin

I HAVE an old violin which I would like to re-stain and varnish. Would you please Iet me know how to make the stain, also the right
kind of varnish to put on ?-J.-G. Huggins kind of varn
(Enniskillen).
F you think anything of your present violin, and if its tone is good, you will be advised not to attempt to re-varnish it, because this is a very skilled business, and the tone of the instrument may easily be altered during the process. For such an instrument, a mere
rubbing down, now and again, with a very small rubbing down, now and again, with a very small quantity of raw linsed oil is sufficient. fidd, however, the old you decide to re-varnish and re-stain the fidale, The is is done by very carcful scraping with a sharp penknife blade. It is not sate to use any chemical solvent on he instrument. After the varnish has been removed, rub the instrument all over and as eveniy as possible
with very fine glasspaper, paying particular attention with very fine glasspaper,
to the back and the belly.
The instrument will now be ready for stainlng and arnishing. To effect this, proceed as follows
Lightly rub the violin all over with pure turpentine (NOT turpentine substitute). Wipe it as dry as possible and apply to it by means of a f
varnish brush the following spirit varnish.
Shake up quarter-pint of methylated spirit with a mixture of equal quantities of red sanderswood and urmeric. It will take several days to prepare this soak in the spirit for at least 60 hours, being shaken up soak in the

In another quarter-pint of spirit, dissolve zoz. of gum sandarac. Then mix the two batches of spirit noz of white shellac. Finally, filter the resultingliquid through fine cloth. The product will be an elastic
spirit varnish of a warm amber colour. It should be applied in several coats (at least four or five) to the violin, allowing the one coat to dry before the next one is put on. It dries fairly quickly. When a good body of the varnish has been put on and allowed to dry and harden, it must be rubbed down with pumice powder powder being wiped off with a damp rag. The final polish is obtained by rubbing with a paste of tripoli powder and water or a paste of crocus powder and raw linseed oil. Thelast finish of allis imparted by rubbing theinstrument vigorously all over with the palm of the hand. This should give a glass-like surface. This very occasionally with the smallest possible quantity of a high-grade raw linseed oil.

Making Boot Polish

COULD you give me the formula fot black boot polish and the method of boilimg or mixing?
YOU have been using entirely the wrong materials 1 for your manufacture of shoe polish. Such materials could only give you a sticky, non-drying, greasy product, which would never be satisfactory. Here is a good formula for th
effective black boot or shoe polish Grey Carnauba wax plack pootish
Gre

Beeswax
70 parts (by weight).

Readers are asked to-note that we have discontinued our electrical query service. Replies that appear in these pages from time to time are old ones and are published as being of general interest. Will readers requiring information on other subjects please be as brief as possible with their enquiries

Ceresine (white) wax
 Oleic acid (dyed black with nigrosine dye)

first of all warm the oleic acid (olein) and dissolve sufficient nigrosine or other black oil-soluble dye in it to colour the liquid a deep black. Next mix the waxes and gently melt them together. Add the dyed olein acid and then the turpentine (which may be mixed, if required, with an equal volume of turpentine substitute (white spirit) to lower the cost). It may be desired to add an ounce or two of nitrobenzene to perfume the product, nitrobenzene having a strong almond-like odour.

THE P.M. BLUE-PRINT SERUICE

12FT. ALL.WOOD CANOE. New Series, No. I. 3s. 6d.*
10.WATT MOTOR. New Series. No. 2, 3s. 6d.* COMPRESSED.AIR MODEL AERO ENGINE New Series. No. 3, 5s.*
AIR RESERVOIR FOR COMPRESSED-AIR AERO ENGINE. New Series. No. 3a, Is.
'SPORTS" PEDAL CAR. New Series. No.4, 5 s ."
F. J. CAMM'S FLASH STEAM PLANT. New Series. No. $5,5 \mathrm{~s}$. SYNCHRONOUS ELECTRIC CLOCK. New ELECTRIC DOOR.CHIME. No. 7. 35. 6d.* ASTRONOMICAL TELESCOPE. New Series. No. 8 (2 sheets) 7s.
CANVAS CANOE. New Series. No. 9, 3s. 6d.
DIASCOPE. New Series. No. 10, 3s. 6d.*
EPISCOPE. New Series. No. 11, 3s. 6d.*
PANTOGRAPH. New Series. No. 12, Is. 6d.
COMPRESSED.AIR PAINT SPRAYING PLANT. New Series. No. 13, 7s. 6d.*

E20 CAR

(Designed by F. J. CAMM)
MASTER BATTERY CIOCK
Blue-prints (2 sheers), 3 s . 6d
bove clock, I
OUTBOARD SPEEDBOAT
LIGHTWEIGHT MODEL MONOPLANE Full-size blue-print, 3s. 6d

P.M. TRAILER CARAVAN Complete set, 10 s , 6d.

P.M. BATTERY SLAVE CLOCK-2s.* " PRACTICAL TELEVISION" RECEIVER (3 sheets), 10s. 6d.
The above bluc-prints are obtainable, post free, from Messrs. George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C. 2.

An * denotes eenstructional details are available, free. with the blue-prints.

The above mixture, after thorough stirring, is run into shallow tins or other convenient containers to cool It is then ready for use. It gives a hard, brilliant polish film, which is beneficial to the leather and is not sticky. Moreover, the product is economical, very materials being used to give a good polish. Th materials can be obtained from any firm of laboratory Tatlock, Lid., Kemble Street, Kingsway, London W.C.2.

By using a brown or orange oil-soluble dye in place way.

Ultra-riolet Ray Lamps

WISH to construct a sum-ray lamp cither of the carbon-arc or mercury vapour tube type (I) Which of the now
(i) Which of the two types of lamp gives the
(2) Where I could purchase both rungstenarcs and the discharge tube?
(3) If I decide on the discharge tube, where I an ob:ain a circuit diagram?-R. Oram (Birmingham, 15).
1.HE greatest output of vlcra-violet rays is likely to be obtainable from arc lamps. The amount of ultra-violet light which is generated in addition to the
visible light will depend on the amount of various salts visible light will depend on the amount of various salts
impregnated in the carbons. Plain carbon arcs, which impregnated in the carbons. Plain carbon arcs, which may operate on A.C. or D.C., produce light very similar to daylight, whilst the inclusion of a core of nickel causes a higher proportion of long-wave ultra-violet light to be generated. Pure tungsten-cored carbons generate shorter waves. and are useful for surgical or local therapy. Electrodes of pure tungsten operate on
D.C. only. The output from an arc lamp may be trans mitted through quartz lenses to minimise the risk of mitted burns

You may be able to obtain tungsten-cored carbons from one of the following firms

Electro-Alloys, Lid., 12 , Brunel Road, London, W. 3 Blackwells Metallurgical Works, Lid.; Thermatel House, Liverpool, 19.

Everitt \& Co., Ltd., 40, Chapel Street, Liverpool
Tungsten Manufacturing Co., I.td., 68, Victoria Street, London, S.W. I. be obtainable from one of the A discharge lamp may be obtainable from one of the following firms

London Commercial Electrical Stores, Lid., 20-22, Cursitor Street, London, E.C.4*

Perihel, Ltd., Edge Street, London, W. 8. N. Wembley, Midds.

Buckley (Uvral), Ltd., Beta Works, Riverside, London, S.W. 15
W.C.C. Hawkins \& Co., Ltd., 30, Drury Lane, London, W.C.2.

Alternatively, you could use one or more 125 -watt lighting discharge lamps having a quartz tube. We would advise you, if possible, to obtain a circuit diagram from the suppliers of the lamp.

Preparing Goat and Calf Skins for Vellum

 Making(I) CAN you tell me the various methods of If lime steeping is used, what obtained cheap solvent to remove lime residue (2) How is the transparent effect obtained in calf vellum ?
(3) What is the method of removing natural grease after de-hairing
(4) What are the quantities of alum and salt
(5) Is there any book obtainable on vellum
making ?-James Hutchinson (Londonderry).
(I) THERE are many methods of de-hairing calf aind de-fleshed the skins, to immerse them in a "milk "of lime and water in a stone trough for r $4-16$ days. During this time, the skins are turned over daily and at the end of the period they are removed from the liquor. This lime and water treatment loosens the hairs. Any excess of lime is removed from the skins by placing them in cold water and running them backwards and forwards over a sort of large drum or paddle wheel.
Usually, a mechanical arrangement is made use of for Usually, a mechanical arrangement is made use of for
this purpose, the wheel making about 40 revolutions this purpose, the wheel making about 40 revolutions
per minute. Many of the hairs fall out during this per minute. Many of the hairs fall out during this
operation; the remainder are pulled out by rubbing a blunt edge over the skin.
(2) The translucent effect in calf vellum is obtained by very prolonged liming (sometimes with the addition of a little caustic soda in the water) followed by very effective de-hairing. The skin is sometimes de-fatted by immersion in a grease solvent such as trichlorethylene or by treatment with a mildly alkaline solution. A sheet of thin white paper is finally pasted down on to the inner side of the skin, the whole then being passed through pressure rollers
(3) Natural grease is usually removed from the skin by a prolonged process of lime soaking. The lime slowly saponifying the grease and converting it into insoluble calcium soaps, which are subsequently removed by scraping or other forms of abrasion. Alternatively, the skin can be de-greased by a short immersion in a warm, dilute caustic soda solution (rin 5). The newest form of de-greasing methods comprise the use of organic solvents such as naphtha, trichlorethylene and petroleum distillates.
(4.) The quantities of alum and salt to be used in the of the cure which is being attempted As are and type about equal quantities of alum and salt are appropriate.
(5) You will probably be able to obtain a small handbook on vellum manufacture from Dryad, Ltd. St. Nicholas Street, Lecicester
The following books would also be of help to you in your work:

H. G. Bennett: "A Animal Proteins."

H. Crockett: "Practical Leather Manufacture."
H. C. Standage: "The Leather Workers" Manual" J. T. Wood: "The Puering Bating and Drenching You may be able to obtain some of the above sccondhand from Messrs. W. G. Foyle, Ltd., Charing Cross Road, London, W.C.z. They can all be obtained new from a good firm of booksellers such as Messrs. H. K. Lewis \& Co., Ltd., I36, Gower Street, L.ondon, W.C.I, or Messrs. Wm. Brice, Ltd., S4, Lothian Street, Edin-
burgh, whilst, of course, some of them may je available burgh, whilst, of course, some of them may je available
in your nearest reference library.

Overhauling a Car Battery

WHHAT is the best way to take out the cells and plates from a motor-car battery? I wish to wash out the cells of a 6 -volt battery and replace
plates if necessury. What acid should I require plates if necessury. What acid should I require
to make up a solution-say, 400 z . ?-E. A. Owen to make up
(Hereford).
A BOUT once a year it is a good plan to empty the A electrolyte from a batrery, filling the battery with
distilled water, which is emptied dut after a short distilled water, which is emptied dut after a short
period; the battery then being refilled with fresh acid period; the battery then being refilled with fresh acid battery recharged.
The cells are in one block, but can be opened up as ollows, if necessary. First empty and wash out the cells. Then remove the lead connecting bars from between the cells. In order to do this a fin. diameter hole can be drilled centrally through each connecting bar until the bar is free enough to be prised off. The pitch-sealing compound is then melted by means of a hot iron or a fine flame and cut out from around the edges of the lid; the plates may then need prising out of heir cells, using a lever and a wooden block. The cells should then be cicaned out and
When assembling the plates, use new wooden separators, with their corrugations or ribs facing the positive plates. The plates and cell lids may then be replaced and the lids sealed with melted pitch, a fine flame afterwards being run along the joints to ensure tightness The connecting bars may then be soldered on using a small blowlamp flame, plumbers solder and tallow fo with asbestos cloth. After cooling the battery may be filled with acid and recharged
Commercial sulphuric acid has a specific gravity of about 1.84. In oraer to obtain the correct density for time, allowing the solution to cool down if necessary during the mixing.

Re-liming Woodwork

COULD you let me have an oulline of the process of liming oak furniture? We have a and I wish to remove the surface by scraping and to re-lime it.
If you can recommend me a small treatise on cellulose finishing of woods I should be grateful. -E. H. Moore (Ipswich).
TT is quite understandable that any wood surface shiny, glossy character polished will take upon itself which you complain cannot Hence the shininess of the liming of the woodwork. However, since you wish to re-lime the woodwork, the existing wax polish should be removed by scrubbing the woodwork with ho paraffin. After this, the woodwork should be scrubbed with a hot solution of one part of caustic soda in six parts of water, and, finally, well rinsed down with hot water The "lime" which is used for furniture treatment is usually common whiting which has been passed thinough a very fine mesh, such as muslin. This product is mixed to paste consistency with a solution of one par of glue in 10 parts of hot water. The paste is brushed over the surface of the wood and then pressed into the grain with a soft pad. Before the paste has had time to dry, a damp cloth is wiped over the wood so treated so that the surplus paste on the surface is wiped away, eaving the paste in the pores of the wood. The wood is then put aside to dry out thoroughly (without heat for a few days, after which it is surface-treated by any of the usual methods. The normal surface treatment Books of interest on the subject of cellulose finishing A. E. Robinson : "The Application of Cellulose Lacquers and Enamels." R. C. Martin: "Iacquer and Synthetic Enamel Finishes" " "Cellulose Lacquers."

Boat Engine Problems

I HAVE converted two 20 five pontoons into a lat-bottomed craft, displacement 2 tons.
1 wish to fit an engine and propeller as cheaply as possible, and am hoping to convert an old car required, number of revolutions per mine and diameter and pitch of propeller. I wish to travel at about 10 knots. Is there a formula? J . Lappage (Yiewsley).
$T E N$ knots is too high a speed for a craft of this type, in the first place. The maximum economical speed
for a displacement boat is given approximately by the formula: speed in knots $=\mathbb{I} \cdot 2 \sqrt{\mathrm{~L}}$ where $L=$ the length of the boat on the waterline. Assuming a waterline length of 3 oft. for your boat, this gives a speed of 6.6 knots.
There are no simple formula for the engine h.p and propeller size, but for a 3 oft. boat of normal design, t2 b.h.p. engine would be required with a propeller 12in. diameter X Irin. pitch running at 1,000 r.p.m As your boat is not of normal shape but is narrow for its length, having a beam. of only 5 ft . gin., a considerably lower power engine would probably be satisfactory. I would suggesi a 6 b.h.p. engine with'g propeller rzin.-13in. diameter and roin. pitch running at I,000 r.p.m. This would give a speed of 6 knots, which is quite sufficient for normal river use.
A secondhand marine engine. would be preferable to an amateur-converted car engine. If a car engine is used, remernber that a thrust bearing must be placed between the engine and propeller and that if river water is used direct for cooling the engine, the water jacket is liable to silt up in muddy water.

Remedying Flare in a Telescope

THAVE built my own telescope using an achromatic object glass of exceptionally large diameter in relation to its focal length; the ratio is 1 : 8. 1 am using it with eyepleces of the Kellner type in which, like the Ramsden eyepiece, two plano-convex lenses are mounted with their
convexed surfaces towards each other. The convexed surfaces towards each other. The trouble is' that when the telescope is directed on whole field of vision is flooded with light which Whope fred of vision is fooded with light which impairs definition. Stopping down the object the flare or at any rate renders it invisible. F. Marshall (Cardif).

The illustration shows a sectional view of, top, the Ramsden eyepiece and below, the Kellner.

THE Kellner and the Ramsden eyepieces give a flat 1 field with a wide angle of vision, but they both have the great disadvantage of giving what has been described as a "ghost " of bright objects. With a very large-aperture object glass of comparatively short focal length, this "ghost" would be intolerable and might render observation impossible. This false light is the result of reflection from the inner or convexed surface of the field lens, the lens nearest to the O.G., forward through the lens itself and back again from the
front, flat surface to a focus very near to the focus of the front, flat surface to a focus very near to the focus of the eye lens. The accompanying diagrams show both the Ramsden and Kel!ner lens arrangements.
With a large open aperture O.G., the remedy is to use the Huygenian type eyepiece, the form and con struction of which are drawn and described in our September, r95I, issue.
A Kellner eyepiece can be very useful for the observation of faint objects, nebulas and star groups of for moderately bright ones, if the O.G. aperture is stopped down a little.

Hand Cleansers

HOW can I make hand cleansers (on a small I find that as luse a lot of these the commercial Irticle is expensive. Can they be home made article is expensive. Can they be home made
cheaply from easily-obtained ingredients? L. Wilton (Stafis).
(I) An abrasive paste type of hand cleanser may be (1) made quite simply by mixing about ro parts o soap powder with 90 parts of a gently-abrasive material,
such as powdered pumice or a similar substance. The produst can be compressed into biocks by means of
hydraulic power of about it tons per sq. in. Alter natively, it can be tamped down into tins.
(2) The jelly forms of hand cleansers are much more expensive, for which reason they are not seen as frequently as are the abrasive cleansers. They are, however, for the most part, exceedingly effective. Try the following
A. Petrol, paraft

Carbon tetrachloride spirit or benzole Oleic acid
B. Ammonia $\begin{aligned} & \text { Methylated spirit }\end{aligned}$

Add Acetone. B to with rapid stirring until a smooth, thick jelly results. If the jelly is not thin enough add water, drop by drop, until the desired consistency is attained Store the jelly-like produce in jars having tightlyscrewed tops.
You will be able to obtain the above ingredients from any local firm of laboratory furnishers, such as Messrs. W, and J. George and Becker Lid., $157, \mathrm{Gi}$ Charles Street, Birmingham, 3.

Welding and Brazing at Home

I WISH to do my own welding and brazing. compressed air which I already have? Welding would consist of items such as $2 \mathrm{in} . \times 2 \mathrm{in} . \times 3 / 16 \mathrm{in}$. angle iron, this being about the largest.
If I have to use oxygen is there any danger in either storing or using same ?
Can you give the name of any firm who make ype whing and brazing any books on jobbing ? M. (Derby).
COAL gas as drawn from the mains consists of a and other hydrocarbons. Applied principally as a fuel and other hydrocarbons. Applied principally as a fuel gas in blowpipes for the cutting of steels and brazing,
the rather low flame temperature, coupled with the fact that the gas contains certain impurities, have limited the field of application for general welding purposes. Air-coal gas flames have a temperature of approximately 1,600 deg. C., whilst oxy-coal gas reaches 2,000 deg. C.
There is no danger in storing oxygen if you take reasonable precautions, and the British Oxygen Co, ark Lane, London, .1 , publeuld read carefully. It is entitled "Safety in the Use of Compsessed Gas Cylinders," and is obtainable gratis frompthem. We suggest that you read also Technical Information Booklets Nos. 1-15, all these are free. This company also markets an oxygen hand-cutter in various sizes under the trade name of "Cutogen"; we think this will fulfil your requirements.
'Messrs. Johnson, Marthey and Co., 73/83, Hatton Garden, E.C.I, are manufacturers of brazing and soldering materials, and they, to0, issue considerable literature to anyone interested.
We give information on this subject in our Reference Book, and we feel you can obtain books dealing exclusively with welding from your local library. The book, "The Welding of Cast Iron by the Oxy-acetylene Process," published by Sir Isaac Pitman, Lid., is wel worth reading and gives much detall regarding the systems, torches, rods, etc.

Workshop Floor

WHAT is the best type of floor for a small work shop? Where can 1 obtain the materials ror it-iniess you advi
N. Johnson (Erdington).
IN our opinion a wood floor is by far the best for a small workshop. It is resilient and warm to the feet. It is not easily affected by oils, paints, chemicals, etc. In case of local damage, it is easily replaced or repaired in such areas. At does not crack and it will dropped on to it are not so readily broken as they ar in the case of other floors-concrete, for example.

The next-best floor is one of concrete, made from Portland cement or coarse and fine stone "aggregate." This is a hard, enduring floor, which is easily swept and kept clean. When well laid, it is fairly damp resistant.
Asphalt floors are expensive and, although they are ometimes apt to cr, they are cold to the feet and are utstanding feature is if the asphalt is too hard. Their esistance, but they is their very high damp and water many other agents.
Your choice should lie between- a wooden and concrete floor. If possijle, we advise you to have wooden floor. If you decide on a concrete floor, Portland cement can be obtained from your nearest builder' merchant, whilst aggregate of stone or other variety can be obtained from Mr. A: M. MacCarthy, 37, Sandford Road, Moseley, Birmingham, 13.

Just Published

8th (Fully Revised) Edition of the
 PRACTICAL MOTORIST'S ENCYCLOPEDIA

By F. J. Camm

400 pages, 493 Illustrations.
17/6, or 18/- by post from :
GEORGE NEWNES LTD., TOWER HOUSE,

Bargains in Ex-Service Radio and Electronic Equipment
A.C. MAINS 2001250 volts GRAMOPHONE MOTORS.
Fitted with 9 -inch turntable and mounted on 8 -inch metal plate for crystal pick-up. Mfg. special line.
CLYDESDALE'S
PRICE ONLY
58/Bd. EACH POST I5 AMP 3-PIN SOCKET. With foot-operated switch. Safery Type, in black moulded plastic box, size $5 \times 4 \times$ 17. Mig. Surplus'; regular price 231.

CLYDESDALE'S $7 / 6 \mathrm{~A}$ POST CRYDESDALE'S

7/6d. ЕАсн
POST

HYDRAULIC PUMP. Made in U.S.A
input: 24 voles D.C. 16 amp. Cap. $3 \frac{1}{2}$ galls. per min 600 lbs. per sq. in. Intermittent operation. Dim.
$13 \times 6 \times$ Stins.
CLYDESDALE'
52/6d. \qquad CARRIAG

SYNCHRONOUS MOTOR

Operating on 100-120 volts or 200-240 volts A.C. mains. Ideal for models, recorders, etc. 4 hole fixing (with fixing serews). Spindle dia. : 1 in.; length: If ins. Speed
1,500 r.p.m.
CLYDESDALE'S $27 / 6 \mathrm{~d}$ PRICE ONLY 27/6i. PAID

HAND

Designed for W.S. 48 and W.S. 18 driven by two handies, complete with operator's seat. Speed should be 50170° r.p.m.

Smoothed outputs 162 v .60 mA .3 .1 v .3 a, and 12 v . Generator Dim. : $51 \times 5 \frac{1}{8} \times 6 \frac{1}{3}$ ins. Wgt. 13 lbs . Leg wiseat Dim. $33 \times 5 \times 2 \frac{1}{8}$ ins. Wgr. Si lbs.
Legs (2) Dim.: $25 \times$ ins.
$45 / \mathrm{EACH}$
CARRIAGE PRICE ONLY

$$
C H
$$

PAID

Still availabie

for use as UNIVERSAL ELECTRIC MOTORS Motor Generator, type 28 ... each $32 / 6$
Mosor Generator, eype 29 ... each 3216
Motor Generator, sype 30 ... each $25 /$.
Connection data supplied.

BATTERY CHARGER Rectifier type 42A. Ref. 100B 11630.
A compace battery charger. Ourpur 4 amps at 6 or 12 voles D.C. Input 230 v. A.C. 50 els, with ampmeter, re moveable fuses, control switch for each circuit, input and output points. contained in well-ventilated dim. $12 \times 63 \times 6$ ins. for wall or bench mtg.

CLYDESDALE'S

> PRICE ONLY
\&5.19.6
EACH
CARRIAGEPAID
NEW-LIST OF EX-
SERVICE ITEMS BC SERVICE ITEMS
Price $1 / 6$. Price credited on first purchase of 101 - value

PUMP DESICCATOR ADM. PATT. 12128 FOR TELESCOPES AND

BINOCULARS
Hand operated complete with spare gel cell and conn tubes. Stroke cap 480 c.cs.; fitted humidity gauge, reads 101100 per cent. vacuum gauge 0130 in . In wood transit case, $19 \frac{1}{2} \times 12 \times 9 \mathrm{in}$.

CLYDESDALE'S
PRICE ONLY
£5.10.0
CARRIAGE PAID
 the only Postal College which is"part of a world-famous Industrial Organisation. - Aeronautical Engineering - Motor Engineering • Draughtsmanship • Elect. Engineering - Production Engineering - Management • Languages - Refrigeration Engineering - Civil Service - General Certificate of Education - Radio, Television and Electronics - University Training • Mathematics - Mechanical Engineering - Heating \& Ventilating Engineering • Public Speaking - Police - Telecommunications, etc. etc. Special Courses for A.M.I:Mech.E., A.M.I.C.E., A.M.I.P.E., A.M.Brit. I.R.E., A.F.R.Ae.S., City \& Guilds Exams., etc.

INSTITUTES
associated with
MARCONIPHONE COLUMBIA

COURSES FROM 81
PER MONTH

This coupon entitles you to a FREE copy of "Successful Careers ' Post to E.M.I. Institutes, Dept. I44, 43. Grove Park Road, Chiswick, London, W. 4

Name

Address...

FRANK'S of GLASGOW

EX.GOVT. PRISMATIC BINOCULARS Best British makes, 6×30. Eyepioce locusing. Complete with web case. Guaranteed $\mathrm{f} 7=19$-6
condition, Post $2 /$ extra.
U.S. ARMY LENSATIC COMPASSES incorporatel lens system and sighting vein, thereby cnabling bearings to be taken. Card diameter Ilin. Weight $2 \&$ oz Unused and perfect. Complete
including postage. 22/6

BRITEX MICROSCOPES

A soundly designed and well constructed microscope with built-in illumination. Specifica-

MSE OPTICAL UNITS

 totally enclosed and a sight can readity be caken down the spindle centre, through the lorse on to the vorkpiece markings. Avanable in sianks of No. 2 or Na. Horse taper. Unused and perfect at almost half makers' price, $\begin{gathered}\text { including postage. \& } \\ \text {, 15-0 }\end{gathered}$

EPISCOPE LENSES

This is the only optical equipmene required for the construction of a "Home "Episcope. This single unmounted optically ground and polished plano-convex Lens is loin. focal length; diameter is 4 in . and consequently prints of up to p.c. size can be projected to give a bright and large image of excellent definition. We will gladly demonstrate our "Biscuit Tin": Model to callers. Supplied with constructional diagram. $12 / 6$ SATISFACTION GUARANTEED ON
ALL PURCHASES OR FULL REFUND

A few oddments in precision measuring tools available. Unique and interesting stocks of Astro Telescopes and Binoculars; Drawing and Surveying Inserumenes; Navigational Equipment. Photographic Goods. We specialize in apparatus for the home conseructor Lists a vailable

Grams: BINOCAM, GLASGOW
Instrument makers and Dealers since 1907

THE "FLUXITE QUINS". AT WORK
" Our mower's as sound as a gun. Mended with FLUXITE-well done 1

It works a real treat, Cuts the lawn nice and neat, And saves you some shoe leather, son.

For all SOLDERING work-you need FLUXITE-the paste flux -with which even dirty metals are soldered and "tinned." For the jointing of lead-without solder; and the "running" of white metal bearings-without "tinning "the bearing. It is suitable for ALL METALS-excepting ALUMINIUM.

With Wluxite joints can be "r wipeat',
 successfiully that rue impossibie by curly ottser inctiod

Used for over 40 years in Government works and by leading engineers and manufacturers. Of all Ironmongers-in tins, from 1/- upwards.
TO CYCLISTS : For stronger wheels that will remain round and true, here's a timelested tip. Tie the spokes where they cross with fine wire AND SOLDER. It's simplewith FLUXITE-but IMPORTANT.

ALL MECHANICS WTLL HAVE

THE "FLUXITE"
GUN, wuts "FLUX
ITE " where you
want it by a simple
presaure.
Price $2 / 6$ or filled
$3 / 6$.

FLUXITE

IT SIMPLIFIES ALL SOLDERING

Write for Book on the ART OF "SOFT" SOLDERING and for Leafert on CASE-HARDENING STEEL and TEMPERING TOOLS wilh FLUXITE. Also on "WIPED JOINTS.". Price $1 \frac{1}{2} d$ d. Each.
FLUXITE LTD., Dept. P.M., Bermondsey Street, S.E.l

You Can Become a HANDICRAFIS INSTRUCTOR

EXPERIENCE NOT ESSENTIAL Men who enjoy making things in wood or metal can turn their hobby into a permanent and interesting Career ! Short hours, long holidays, and security in a job you would really enioy, can be yours if you become a Handicrafts Instructor. Let us send you details of the easiest and quickest way to get the necessary qualification.

We definitely Guarantee

 "NO PASS-NO FEE"If you would like to know about our unique method of preparing you for one of these appointments, write today, and we will send you an
 FREE and without obligation. Mark,
your letter "Handicrafts Instructor." your letter "Handicrafis Instructor." 591, Shatespeare House, BIFI 17/19. Strafford PI., London, W.I DLL

Three models so outstanding in their conception and construction that they will excite the enthusiasm of every cyclist. You are sure to want one of these "King" sets when you see their modern styling and brilliant new features. Ask your local cycle dealer to show them to you.

Price 36\%- to 50\%

(Minor illus. 36/-)
 LUCAS \% wher CYCLE DYNAMO 5ETS

TRANSFORMERS
No. 1. 250-0-250v. 80 ma 0-4v. 5a. 6.3v 3.5a. 0-4-5v. 2a., $171 ., 1$. $350-0-350 \mathrm{v} ., 17 /$. No. 3. 26 v . 2.5 a , tapped to give almost any voltage up to 26v. I d e a 1 or
chargers, W.D. motors, etc. 1616. No. 4. $4 v .-9 v .-20 \mathrm{v}$ 4 amp. For 2,6 and 12 vole chargers, 161 . No. S. Auto wound,
$10=0.110-200.230$. 250 v . 150 watts. for general voltage chang general voitage chang No. 6. 250-0-250v, 100 ma . 6.3v. 3.5a 5v. 2a., 221.
Mo. 7. Television Auto with Overwind $0-200-230-250-290 \mathrm{v}$. $\quad 500 \mathrm{ma} .6 .3 \mathrm{v} .7$ a 0-2-6.3v, 2a, 38/6. Vlewmaster Type 6.3v. 7a, 0-2-6.3v. 2a., 35/-.

Abl types upright or drop through. No tapped 200-230-250v. Interleaved, Im pregnated, Screened, Guaranceed.
Terms: C.W.O., C.O.D. or pro forma.
HILLFIELDS RADIO,
8, BURNHAM ROAD, WHITLEY, COVENTRY.

Balipens refilled for
 2

Your ball point pem has an inl comainet which YOU can refill in two minutes. Fifteen average size $3 / 1$ tube of

ALL PEN INK

Five Colours. Pos. Free with full insiructions on receipt of P.O. MODERN INKS LTD. (Dept.625)

14, St. James Street

VOL. XX
AUCUST; 1952

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Ltd., Tower House, Southampton Street, Strand, London, W.C. 2

Phone: Temple Bar 4363
Telegrams: Newnes, Rand, Londion

Comments of the Month

By F. J. C.

The Road Safety Debate

THE House of Commons on June 20th debated the question of Road Safety, and supported the motion expressing concern " at the enormous number of accidents, fatal and non-fatal, on the roads of this country and requests that further measures shall be taken to improve road safety."

One speaker said that he thought the peak had been reached of what could be done by educational methods. Safety in future would depend more and more upon improvement of the roads and in reconstruction. Another speaker drew attention to the fact that last year 46,000 riders of motor cycles were involved in accidents and he thought that speeds of 70 miles an hour were an embarrassment to other road users, and that it had been suggested that a speed-capacity-limiter should be fixed in the manufacture of motor cycles.

At present a youth, once he has attained a provisional licence, can sally forth on the most powerful machine on the market capable of spceds up to 100 miles an hour. By the time he has become reasonably experienced such a youth must have a goodly score of accidents both to himself and others to his discredit.
Another speaker said lectures and inspections of school-children's bicycles had been conducted for some time by the police, and he commented "to my mind the fact that a child's bicycle was examined and that the headmaster was informed if the brakes were not safe, and if the bicycle was dangerous, contributed very largely to road safety."

Unfortunately, statistics do not confirm this. Most accidents to children are caused by inexperience and the carelessness of other road users, and not by inefficient machines. Naturally, as was to be expected, cycle tracks came in for comment. One M.P. wanted to know why cyclists did not use them and said that instead of using those on the Southend Arterial Rcad cyclists ran races on the main roadway.
Replying to the debate, Mr. Gurney Braithwaite, Parliamentary Secretary to the Ministry of Transport, said that the new requirements which would appear in the revised Road Traffic Acts were directed at pedal cyclists and pedestrians as well as at motor vehicle drivers. The prinary factor, he said, in the vast majority of accidents, was human error on the part of drivers, motor cyclists, pedestrians and pedal cyclists. The cyclist and the motor cyclist are extremely vuinerable, and if a motor cyclist were involved in an accident he and his passenger, if any, were almost inevitably killed or injured, whereas a similar accident involving a four-wheeled vehicle frequently results in nothing more than damage to the vehicle.
We are.glad to note that the revised Road Traffic Acts will be directed to pedestrians. It is our view. as a result of a careful observation over a long period of years that they
cause far more accidents than is generally realised, accidents in which they do not themselves become involved. Motorists are observing the right of pedestrians on the zebra crossings. Their use by pedestrians must be made compulsory. Whether such compulsion will be extended to make the use of cycle tracks. by cyclists compulsory is not yet known. It is certain, however, that all road users are going to sacrifice some of the liberty they have enjoyed in the past.
The law must be brought into line with present conditions. The ever-increasing volume of traffic crowding on to our largely out-of-date roads, and the fact that for some years to come the Government will be unable to spend money on modernising them, make drastic measures necessary.

Motorised Bicycles-A Legal Point

A^{3}YOUTH who had stolen or taken away without the owner's consent a motorised bicycle was recently charged with taking the machine and of driving without a Third Party Insurance and a driving licence-three charges altogether. It was successfully pleaded that as he pedalled the machine away and the motor had not been used he did not require a certificate of insurance nor a driving licence, and the three summonses were, therefore, dismissed. This may seem hard on the owner of the machine, and suggests that the police were careless in framing the charges or not bringing alternative charges.

Motorised Bicycle Developments

THE sales of motorised bicycles continue to rise, and as a result of experience many improvements are being introduced. Reinforced front forks, for example, are now available as an accessory, sprung in the manner of a motor cycle, and there are improved clutches and free-wheeling devices. A discussion among a group of motorised bicycle owners recently took place with the object of ascertaining whether an association under the title of the Motorised Bicycle Association could be formed to watch the interests of the owners of these vehicles, and to disseminate information concerning them. It was decided to form a foundation committee to explore the matter. At the meeting, which was attended by some motorised bicycle users who are members of a cycle touring club, it was stated that there was no organisation at present which was friendly towards this type of vehicle, and that the only alternative was to form an association of their own. In this view we concur.

Road Safety On The Radio

IN a recent radio programme a discussion took place between representatives of the various classes of road user. We do not know what purpose this discussion was intended to serve. Certainly it could not have been intended to reach a conclusion or final solu-
tion. Like discussions of a similar nature such as politics or music this one merely enabled the various speakers to defend a particutar class of road user they represented, to air their views and also to leave the listener in the air.

A representative of the Automobile Association stressed the danger of too many cyclists riding abreast. Although we disagree with this practice, as indeed does everyone else associated with the cycling movement, there is little evidence to suggest that it is responsible for accidents.

"Britain's Cycling Frankenstein"

TAMES KAIN has produced a magnium opu; under the above title dealing with the struggle for British cycling road sport from 1888 to 1952. He says, relating to one organisation, that it is a Disunited Colossus and the raison d'être of this document is, in the words of Omar Khayyám, "To grasp this sorry state of things entire, shatter to bits, and then remould it nearer to the heart's desire." He plumped for the formation of an English Cyclists Union, a new body to take over the control of road sport. The document in its 27 foolscap pages traces very accurately the turbulent history of cycling sport.

It commences with the famous resolution passed at the 1888 A.G.M. of the N.C.U. : "The N.C.U. as a public body desires to discourage road racing, and calls upon clubs to assist it by refusing to hold races upon the roads, and it prohibits any of its officials from officiating or assisting at any road races, and refuses to recognise any records made on the road, and that this be added to the rules."
The N.C.U. must not be permitted to forget that resolution which threw the first spanner into the works of road-sport, and has been responsible for the formation of so many bodies which it has described as "dissident". and which it has alternately threatened, cajoled, proclaimed, promised amresties to, and in general tried to stifle. Its general attitude has been: Here is a strange thing which we do not understand-let's kill it! However, Kain, who had so much to do with the B.L.R.C. in its formative years, traces the whole history of the League and its relations with the Union, the Government, and the R.T.T.C. and outlines the internal trouble within its ranks. He pays tribute to our own efforts on behalf of the League, and summarises our interview with the Minister of Transport when we extracted the intriguing information that no complaints had been received from police or public concerning massed start-racing, and that the only complaints received had come from rival cycling organisations.

This is a document which fairly presents the case and should be read not only by all participants in ihe dispute, but by m those who have not yet formed an opinion as to the merits of the Lergue case.

Cycle Racing

 A Monthly SummaryBy W. J. MILLS

A^{F}
FTER last year's successful début, the Daily Express's Tour of Great Britain for 1952 will undoubtedly be one of the majur cycling stories of the year, perhaps even overshadowing the world's championships, which will be running at the same time.

The race has been extended to cover 16 days, starting at Hastings on August 22 nd, and finishing at London on September 6th. In between, the field of sixty selected riders will race west to Weymouth, then up through Wales to Carlisle, as far north as Dundee and then south through Newcastle and Norwich.

Last year's winner, Ian Steel, of Scotland, who this year scored such a brilliant win in the Warsaw-Berlin-Prague race, will find competition much keener. Teams have been promised from France, Belgium and Italy, but perhaps even more interesting will be the team from Western Germany, unknown factors as far as we are concerned.

With $£ 1,000$ in prize money at stake, and $\mathbf{r}, 600$ miles in which to earn it, the race takes on more and more a resemblance to the world famous Tour de France.

For this year, the Express confirm that the race will again be run under British League of Racing Cyclists Rules, which means that, even though the N.C.U. have at long last decided to recognise road racing, no Union riders may compete.

The obvious solution, of course, would be for R.T.T.C. and B.L.R.C. to combine, not only over this race, but over all road racing, with the League given the actual organisation to handle-for they have the officials, capable - of running such an event, which the Union lack.

But it cannot happen this year. The big stumbling block is the fact that the N.C.U. do not, so far, recognise the " independents" or semi professionals, and without these riders, an event such as the Tour of Great Britain could not be run.

ELSINKI results will by now have proved the National Cyclists' Union right or wrong over their Olympic selections but if they have been right, it is more thanks to the riders than the Union.

There has never been a more sorry story than that of this year's N.C.U. Olympic
planning. It boils down to too many committees . . Olympic Training Committee, Olympic Committee, Racing and Records Committee, Massed Start Committee . . . all these had a finger in the Olympic pie, and with the personal rivalries between N.C.U. officials, some selections took on a "political" aspect.

Pity the poor riders, subject to the whims of conflicting committees!
For 1953, why don't the N.C.U. appoint just one, all-important and over-riding committee, charged with supervising all riders in the running for international selection, planning their training and racing, naming the events in which they will compete abroad, and without any last minute reversals of elections by some other committce?

WORLD'S cycling championships, at the end of this month (August) will be more than usually interesting. In normal years, the far-off countries don't send riders for the world's events, but, in Olympic years, with, riders already in Europe for the Games,
naturally, the teams plan to compete in the "double."
This year's world's series are split up, the organising nation, Luxembourg, staging only the two road races, amateur and professional, on a small circuit outside Luxembourg town.
Lacking a modern track, Luxembourg tried to farm out the track events to near-by Roccur stadium in Belgium, but the financial details could not be mutually solved, and so the track events will be held in Paris, on the Parc des Princes track.

British interest centres on Reg Harris, of Manchester. Can he win the world's professional 1,000 metres sprint championship for the fourth year running?
There is only one rider who might stop him. Sid Patterson, of Australia. The best of friends off the track, these two are deadly rivals in action, and with Harris now slightly past his peak, and Patterson coming up fast and strong, I wouldn't like to forecast the result.

Russell Mockridge, of Australia (if he hasn't taken the plunge into the cash ranks by thenj, should be the winner of the worid's amateur sprint title, but I rather fancy the chances of our own Cyril Peacock, the Tooting glassblower. Here is a rider who can develop into a second Harris.
$W^{\text {ITH the professional class of riders now }}$ fully established at Herne Hill, it is to be hoped that the N.C.U. will send, to the world's championships, a full professional team, at the Union's expense if necessary. After all, the N.C.U. take an extra cut in the gate money for every event in which British riders compete, and the Luxembourg. Paris combination should result in a good gate.

Naturally, Harris and fellow Mancunian Cyril Bardsley will be in the sprint race; Jack McKellow is good enough for the 5,000 metres pursuit race; he clocked 6 m .46 .4 secs. over the distance at Herne Hill, and this is a time good enough to get him into the last eight of the world's series.
But we can field, for the first time in living memory, a team in the professional road race, with diminutive Dave Bedwell, of Romford, at the head of the team. Bedwell, for his many wins in British League road races, has been steadily improving ever since he switched over to the N.C.U. as a professional this year. Lacking professional road races in this country, he has had to go abroad for experience, and has shown up well in a variety of road races against international fields. He could be backed up with Derek Buttle (also from Romford), the Hendry brothers, Alex and Andrew, of Scotland, Les Wade, of London, and Alec Taylor, of London, to make a full team of six.

AROUND THE WHEELWORLD

By ICARUS

Frank Urry Honoured
M^{Y} Urry on being to colleague Frank Urry on being awarded the M.B.E. in the recent honours list. The award was made for his services to cycling, and there is no one alive to-day who can claim to have done anything like the amount of unpaid work and propaganda to popularise cycling which Frank has done. I am ignoring here even the work of the paid advocates who have a reason for their work-they are paid to do it, not necessarily because they believe in it.

Frank, on the other hand, is purely altruistic. The honour comes to him as a private individual and not as a member of any organisation. He resigned all connections with the C.T.C. some time ago. He obtained his love of cycling on the open road from his father, the late Jack Urry, the editor of Bicycling News, which was founded in 1871, and which was the oldest cycling journal in the world. It was on that journal that Alfred Harmsworth, later Lord Northcliffe, served his apprenticeship to journalism. He was assistant editor.
Frank Urry wields a pretty pen and he is a poet of no mean merit. It is true to say that he set the style for all modern descriptive writers on the pastime of cycling-often imitated but never equalled. Whilst others pay lip service to the wonders of cycling but seldom use the two-wheeler, Frank cycles regularly every day and his writings are from first-hand experience of the districts with which he deals.

In this he differs from so many other writers who mug up their articles from guide books, and lend verisimilitude to their writings by interlarding a couple of photographs of the district obtained from some of their friends. When it was considered that an award should be made to someone associated with the pastime of cycling Frank was indeed the obvious and only choice.

The 100 Miles

THE- 100 miles record continues to attract the aces. Each time the record is broken it would appear that-it has been put on the shelf for a long time, awaiting the arrival of some future Goliath to knock a few seconds off of it. Yet it was only in 1950 that 'Wilmot, of the Midland A.C., broke the
record with a rice of 4 hrs. 12 min .22 sscs . Ken Joy has cast envious eyes at this rezord for some time past, and when he set out to beat Wilmot's time no one thought that he would knock five and a half minutes of of it and return a time of 4 hrs. 6 min. 52 secs. It is not so many years ago that it was tro ight almost impossible to beat the five-hour mark. The Bath Road Club Limited 100 has always provided opportunity for riders with aspirations to break the record.

It was in I9I9 that the B.R. Limited 100 was won by a ride which took over five hours. The redoubtable Frank Southall lopped it down to 4 hrs. 45 min .27 years ago, and this was beaten by Temme in 1926.

Southall, however, was not content to rest on his past glories, for in 1933 he brought the record to 4 hrs . 30 min . Io secs. Only two years after that Capell returned a time
just under the four and a half hours, this being followed by Mosedale's ride of 4 hrs . 27 min. 23 secs.

There the record stuck until r950, when Ken Joy knocked another quarter of an hour off of it. Now he has beaten the record again.

Some time in the not too distant future someone will drop it to four hours-and then I wonder what the time for the ride will be when it is put on the shelf as unbeatable?

How Many Cycle Shops ${ }^{T}$ THE Board of Trade has performed a
useful seivice in analysing and classifying England's shops. The foreigner has always somewhat sneeringly regarded us as a nation of shopkecpers. The B.O.T. report shows that there is one shop for every 89 persons in Great Britain. The report also discloses that there arc 7,548 cycle and accessory shops in Great Britain, or approximately one to cvery 15,000 cyclists.

Cycle shops form the smallest total of shops operating in a particular line. There are those who think even now that cycle shops are too few and far between.

What is a Miuselte?
IAVE you noticed how this term (a misnomer, I suggest) is creeping into cycling terminology? The argument now is whether one should use a saddle bag, a touring bag, or a musette. Consulting my dictionaries I find that a musette is a small oboe, an old French bagpipe, a simple pastoral melody, a rustic dance, a reed stop on an organ, but nowhere can I find the word used as meaning a bag or carrier.

It is obviously a word wrongly used.
The League and the Union
Δ T the moment of going to press, no word A has reached me regarding the result of the meeting between the League and the Union with the Manufacturers Union acting as convener and mediator. I am not

SKELWITH FORCE
hopeful that very much of use will emerge. The parties to the dispute are too embittered, particularly the two bodies which have been beaten, to reach an amicable settlement. The N.C.U. is already dabbling in massed start. A new era in cycling sport was born ten years ago and events have justified it. I forecast that within 25 years the R.T.T.C.; or such other body as supplants it, will be running massed start racing. It is possible that by that time the B.L.R.C. will have absorbed the R.T.T.C.

The N.C.U. is being advised to run its own stage events next year. If it does $s 0$, conditions will be really chaotic. Only one body should run massed start on the roadsthe League. It has more experience than either of the other bodies, it has pioneered it in this country, and I strongly suspect that the Union interest in these events is artificial. In the event of the Union adopting this unsound advice, and as a result the authorities jump down on all cycling sport, there will be only one body to blame, and that is the Union-a point which must be borne in mind when it comes to attaching blame.

Massed start is at present being run under two codes, and a writer in a contemporary asks how long it will be possible to conduct sport under these conditions. He says that the R.T.T.C. are doing everything that is possible to reverse this policy, and refers to the system of secrecy and hole-and-corner methods adopted by time trialists, who still operate their sport under conditions of fear of the police, as they did 50 years ago. So rigid are the rules that the courses are coded, preliminary announcements of the events are not' allowed, and conspicuous costumes are taboo. Regarding this latter, is anyone in any doubt that a man in normal time trial costume is riding in a time trial? It is almost as farcical as the garb of an R.R.A. record breaker which was supposed to detract attention from his activities, but only succeeded in doing the reverse.

I suggest that if time trials were run openly and not furtively, if publicity both before and after were permitted, there would be far more adherents. As it is, League events are attracting large numbers away from time trials and keeping many others just entering the sphere of cycling sport away from them because of the attraction of publicity, and the feeling that the world is looking on.

Time trials engender the thought that the rider is doing something wrong, although strangely enough the police are usually told
list as a result.
The modern generation prefer public spectacle to private pottering and pedalling in a surreptitious manner.

The S.R.R.A

THE Southern Road Records Association, founded in 1889, grew out of the Southern Road Riding Association, which was formed on January $27 \mathrm{th}, 1893$, on the initiative of J. Blair (Catford C.C.), J. Keen (Redhill Wanderers) and G. H. Smith (Anerley B.C.), in an effort to regulate the sport of road racing in the south, which had fallen into disrepute through lack of any kind of organisation. The S.R.R.A. undertook the checking of claims and the hall-marking of records set up on southern roads at 50 miles, 100 miles, and 12 and 24 hours.
G. H. Smith was the first hon. sec., and as a result of the energetic action of the Association order was soon restored among the southern racing cyclists, and thus having outlived its period of usefulness the Southern Road Riding Association went out of existence in 1898. It was soon found, however, that things were drifting back to the old state of disorganisation, and unscrupulous "record" breakers, mostly trade amateurs out for cheap notoriety, began to appear.

This resulted in the formation of the Southern Road Records Association on August 22nd, I899, as a result of the efforts of F. Hortop (past president) and the late W. L. Woolveridge, to take up the work of checking and passing records where the Southern Road Riding Association had left off. No less than 176 records have been placed on the books of the Association,

The lovely approoch to the
dd Parisi Church, past old
houses of many types - some Tudor others early stuart.
when an Open event is to take place! Yet the very rules of secrécy were introduced to prevent them knowing. All very stupid. When some of the old men of the movement have died off and younger men are able to have their say, a fresh outlook may be brought to bear. Certainly some change will have to take place in time trialing if it is to survive the onslaught of massed start racing. The young generation of cycling now coming along will not join an R.T.T.C. Club. They will be attracted to massed start by the press announcements, and will not enter the ranks of the time trial
which has established an extensive system of checks.

The Association, in its 1952 Handbook, states that it is fully alive to the politics of modern fast road-riding, as is evidenced by their determination to discourage paced record breaking on the roads, the institution of two classes of records, thus preventing competition between amateur and professional, and the elimination of any artificiality in the conditions and courses used, most of the courses being "out-and-home." Such advantages as a favourable wind being limited to half the journey. There have been only five presidents and eight hon. secs. during the 53 years of its existence.

Daily Express "Tour of Britain" Cycle Race THE Daily Express "Tour of Britain," the greatest event ever to be seen on the roads of Britain, will begin on Friday, August 22nd.

This year the race will last for sixteen days, covering 1,600 miles in fourteen stages, two more than last year.

There are two days' rest, one at Blackpool on Wednesday, August 27th, after the fourth stage, and one at Scarborough on Wednesday, September 3rd, at. the end of the tenth stage.

The field will include last year's winner, Ian Steel, who won the recent Warsaw-toPrague Race, and the first twenty riders in the forthcoming Brighton to Glasgow Race. There will also be a strong challenge from foreign and works-entered teams.

Starting from Hastings, Sussex, on August 22nd, the Tour will take riders through England, Wales and Scotland. The finish will be in London on Saturday, September 6th.

Route: Friday, August 22nd, Hastings to Southsea; Saturday, 23rd, Southsea to Weymouth; Sunday, 24th, Weymouth to Weston-super-Mare; Monday, 25th, Cardiff to Aberystwyth; Tuesday, 26th, Aberystwyth to Blackpool ; Wednesday, 27th, rest day at Blackpool ; Thursday, 28th, Blackpool to Carlisle ; Friday, 29th, Carlisle to Glasgow; Saturday, 3oth, Glasgow to Dundee; Sunday, 31st, Dundee to Edinburgh; Mondyy, September Ist, Edinburgh to Newcastle ; Tuesday, 2nd, Newcastle to Scarborough ; Wednesday, 3 rd , rest day at Scarborough ; Thursday, 4th, Scarborough to Nottingham ; Friday, 5th, Nottingham to Norwich; Saturday, 6th, Norwich to London.

FRONT PAEE NENS FOR RACING MEN!
 Dunlop Announce

 New Range of Tubulars FASTER! STRONGER! WATER-PROOFED! his season you pick your jacing tyres from an entirely new Dunlop range of eleverm of cycle tubulars - one or more for every - designed to tubulars - Their special new featian tread patterns,sport. help you win-include side-slip, stronger Casing, greater resistance to
waterproof sidew. Ride like Reg. on DUNLOP. WATERPROOFING. The sidewalls of Dunlop Tubulars Nos. 2, 3, 4,5 and 7 are this protects the special waterproofing solution. so increases the life special waingt deterioration and
REG. HARRIS rides DUNLOP 75

MOSQUITO

THE KING OF CLIP-ONS
38 cc. 20 m.p.h. 250 m.p.g.
2 to 1 Gear Reduction.

ALL SPARES IN STOCK.

Mosquito takes the sigh out of cycling
ITALIAN MADE.
IMMEDIATE DELIVERY.
ES3 - \quad - OMPLETE.
SEND EOR LIST.

...then fit Ferodo Brake Blocks before you go!

Whatever the conditions . . . driving rain or scorching sun . . . Ferodo All Weather Brake Blocks will give you smooth, snatch-free braking.

Fit them before you go on holiday and be sure of safe, comfortable, more enjoyable touring.

Special softer quality blocks for alloy rims are available.

FERODO

ALL WEATHER

BRAKE BLOCKS

250,000 CYCLISTS USE PALCO \& FOR COMFORT AND SAFETY

- Lessen wobble over bumps - Reduce skidding on any surface - Assure Safety when cornering - Increase braking efficiency - Lengthen life of tyres - Guaranteed to last many years without replacement LIGHTWEIGHT for 25/NORMAL CYCLES Per pair HEAVY DUTY for MOTORISED CYCLES, TANDEMS, etc.

PLEASE STATE SPINDLE SIZE WHEN ORDERING
Write for free leoflet
PALCO CYCLE PRODUCTS LTD.,
DEPT. (P.M.), 22I KNIGHTSBRIDGE, LONDON, S.W. 7
DOUBLE AGTION PUMP

The most efficient cycle pump

DUO
BUILT ON AN 'ENTIRELY NEW PRINCIPLE THE DUO

Pumps air into the tube when you draw the handle out as well as when you push it in. The leather washer of the ordinary pump is replaced in the DUO by valves at each end of the barrel, with a double valve at the end of the plunger rod.
\qquad
Price, Standard 15 in . model, 713. Racing 18 in . (3i azs.), 916. Motor cycle pump, 14in. or 15 in ., 8/9.
FRANK THROWER (DISTRIBUTORS), LTD., 59, Brompton Road, London, S.W.3.

EVERYTHING FOR THE HANDYMAN

 SHEET PLASTICTimber, Wood Mouldings, Dowelling, Table and Chair Legs, Lamp Standards, Coffee Tables, Foot Stools, Sea-grass, Plywood, Hardboard, Veneer, Marquetry Veneers, Balsa Wood, Stains and Polishes, Wheels, Cabinet Handles and Knobs, Cabinet Fittings; Sheet Strip and Tubular Metal, Hinges, Screws, Transfers, Dolls ${ }^{1}$ House Fittings, Electrical Accessories, Saws, Planes, Vices, Drills, etc., and Hundreds of Other Lines.
Picture Frames and Cabinets made to order. No Catalogues or Price Lists available. Please mention this advertisement when calling.
B. KOSKIE

72-76 LEATHER LANE, HOLBORN, E.C.I Open 8.30-5.30.
Closed 1 o'clock Saturday.
Phone : Holborn 4777

Wayside Thoughts
By F. J. URRY, M.B.E.

Out With Youth
N mid-April I fulfilled an arrangement of the winter making to take my three grandchildren ranging in age from eight to fourteen on their first cycling tour Anxious parents pressed me not to take them too far or too fast; they need not have worried on that account, for it was they who waited for me at cross-roads and junctions, greeted me as a slow old coach and generally developed the unkind habit of referring to me as the "old gaffer," which I suppose is the way of school children, free of restrictions or imposed restraint. How delightful it is to be out with youngsters who want to know so much of the countryside, then a bower of blossom loveliness, for it was the end of Easter week and the beginning of the next one we were roaming-flitting around the steeply pitched lanes of a beautiful corner of Worcestershire and Herefordshire. For six nights we made headquarters at a small village beyond Knightwick, in the valley of the Teme, in a fine old manor house looking across the small lake to the hump of the Ankerdyne, and there we slept in comfort and fed on the plain luxury of the countryside. We packed lunches and trickled out fo: the day; and what days among the woods and over the downs, by fields of daffodils and through cherry orchards foaming in their loveliness of bloom, with hedgerows painted with primrose and violets, and here and there fields goldspangled with cowslips. The great main roads penetrating this locality are hilly, but their gradients are as nothing to the lanes developed from the farm tracks of old which wriggled over the low banks without any thought of engineering. And it was in these lanes we spent our glorious days, for no one else wanted them except the sparse local traffic

Making Cyclists

THE only disability we found was the scarcity of "pop" shops where we could buy drink to have with our lunch, and often enough we managed to persuade some good dame to brew the tea we carried along, so that most of our mid-day meals were taken out of doors, with the blue sky
above us, and the wonderful sunshine distilling the faint perfume of the cherry. To wander in this fashion, carefree and minus the need to make any destination, is one of the small glories of roaming, and the hills do not matter then, for after the climb there is always the swoop down again, taken by my young companions like wild young partridges with all the gaiety of irresponsibility, while I followed circumspectly with brakes hard on to enjoy the beautiful outlook and the sensation of riding through a bouquet, picking up the tribe at the next cross-roads, consulting the map, and trying to teach them something of the gentle art of direction. I remember the first morning after our arrival at Whitbourne we took one hour to make the four miles to Clifton-on-Teme, but it is four miles of climbing, with half a mile of unrideable slope running through a wood, and the temptation to explore that dim, forested hillside looking out on a sea of bloom was too good to miss. Then in a delightful little café in Clifton it was pop and cakes and ice cream, and the growing wonder in me is how those two boys and a girl could eat and still be so full of activity. The long swoop
came on the way to Harpley (a village I had never before visited), followed by the usual long climb to High Lane on the StourportBromyard road, and thence into the Herefordshire town for lunch. And it was hot when we reached the summit of the Downs and found a shady spot to rest and eat apples.

The Envy of Age

THAT evening we partook of an excellent dinner, a trifle of T.V. and billiards, and then early to bed. The sun was a powerful factor the next morning, and I was too heavily clad as well as lazy. It was a long climb to Linely Green, through orchard after orchard of cherry bloom, with the misty outline of the Ankerdyne behind us, and before the mistier one of the Malverns, edge on. It was too hot to toil up those vigorous pitches, so we walked, argued, heard the cuckoo and dozens of larks celebrating the coming of spring in all its glory.
"Loveliest of trees the cherry now
Is hung with bloom along the bough, And stands about the woodland drive Wearing white for Eastertide."
Houseman must have passed this way in the days of his youth, and been enchanted, as I was then. But the youngsters-they had found a tiny cottage where there was pop on tap and were thereby made jubilant. Some miles farther a cottager made us a large pot of tea, and on a primrose and jewelled bank we ate ham sandwiches, tomatoes and hardboiled eggs, after which I believe I werit to slecp, what time the youngsters had made a grass track in the field and were fiercely racing round to the bewilderment of the woolly inhabitants. How I envied them such energy. We slipped down to Alfrick and the Teme meadows, and it snowed on us the wind-blown blossom of the cherry. "A great fruit season" said one old farmer to me, "if we don't get any May frost nips; but shall we sell the produce if there's no sugar for preserving?" Yes, we all have our problems, one after another, which is the way of life, and I suppose without them life would lack a certain amount of fighting interest. Then the children saw an ice-
cream sign and there was another longish rest before we made our headquarters, and that most refreshing of meals on hot days-tea.

The Enjoyment of Spending

"WVE want to go to Malvern" was the
chant that greeted me in the morning, so to Malvern we went over the lanes wày through Alfrick, Smith End Green and Leigh Sinten, with the Leigh Brook vur laughing comrade for part of the way. Leigh, I think, was the first place the childiren found their favourite refreshment, and they needed it, for the heat was the heat of mid summer, and a long, slow climb to the foot of the hills. Young people, like the ladies, can't enter a town-without desiring to buy something, and the smallest of the bunch gallantly informed me I must "lend" nim some money-he'd left his at the hotel. I left them to it for nearly an hour and enjoyed a quiet smoke, what time they returned loaded with the mosi remarkable collection of presents. most of which, from my point of view, were just impossible. Then we went to lunch in a most respectable way with clean hands and faces and appetites on the colossal scale. It was worth the cost to see those scions of the race enjoy the gastronomical exercise, and then want 10 start right away. And there I rebelled, for a smoke in the shade of a tree with a comfortable bench as a rest and the wide, misty vision of the Severn Valley at my fect was my idea of a happy half-hour-and I had it. We returned by the lovely vale of Suckley, and so hot was the air that we actually paddled in a littie brook beyond the village. This, in their estimation, was a most delectable interlude, and I finally had some diffculty in getting them going again and home in time for tea and a bath to follow before an excelient dinner, at which I may add the youngsters helped to carry in and clear the meal-very good practice for them, too.

The End of it

THEN came the week-end spottled with occasional rain, and a visit from doting parents to assure themselves the children were cared for and as clean in hand and ear as they should be. A pleasant interlude, with lunch at the Court and tea at Clifton, and a trific of time for collecting large bunches of primroses and violets. That night it rained hard, and the morning light was sharp and brittle compared with the misty, hot days we had enjoyed with a sun that burned your skin and made shaving a slightly painful process. The visit of the car party had been the chance for sending our spare raiment home instead of carrying or posting it, and now that the day descended in rain I daren't risk getting the youngsters soaked or I should not be allowed to borrow them again. Just after lunch the deluge did slow to a trickle, so we blew up a tyre and unfurled out macks, jut before we could don them the splashing rain was jumping a foot high in the courtyard, so we resoried to billiards of a sort, and T.V. The next day we were due home, a perfect April morning, clear as a crystal with the Malverns seemingly so near you thougit you could make them in half an hour. But our route, alas, was in the opposite direction, with the wind behind bringing up little drifis of storm through the fringes of which we scurried to shelter. Our eighteen miles to Droitwich-where we entrained to escape the heavy traffic of the big main roads-were charming, for the air was so vivid that the pictures became pleasantly purposeful etched on the ever-changing skyscape. An idle interval for refreshment, another little ride and then lunch-copious and plentifulbefore boarding the train, and so ended a trim and delightful break.

CYCLORAMA By H. W. ELEY

Sojourn to the Sea

AUGUST still remains the holiday month, and I suppose that the incidence of school holidays largely dictates when "Mum and Dad" decide to take their vacation. The August-by-the-sea custom is ingrained in the hearts of the British people, and this month will see the usual exodus to Blackpool, and Eastbourne, and Llandudno, and Scarborough, and all those delightful resorts in sunny Devon. Railway stations will be packed, luggage will go astray, innumerable sand-castles will be built only to be washed away by the remorseless tide. And . . . there will be wise folk who will travel to the coasts by cycle! The bike plays its humble but noble part in conveying thousands of happy folk to the sunlit sea, and it is surprising to note the large number of cycles fifted with ingenious carriers for babies. And there are the tandems for father and mother, and the bright and gleaming sports models for hefty boys and girls. It's good to ride to the coast whether the destination be romantic Devon, quiet Suffolk, or the breezy north-east coast, where Whitby and Filey always call me with insistent charm.

Singing in the Rain

IRATHER think that there is a song, sung by "crooners," with this intriguing title but it is not the crooner, with h:s curious moaning, that I have in mind, but a day when the rain fell in gentle cascades almost the whole of the day

day.

 . a lush July day, when I had hoped to cycle over to Long Ditchbury, and inspect some brown leghorn pullets at Holly Tree Farm. But, despite the rain, I decided on a ride, donned my "weather-wear," saw that my pouch was filled, and set off. How good to feel the rain upon one's face! How good to hear the water gurgling in the ditches! And when I was approaching the village ofNettlecote, I heard the singing in the rain and came up with two cheery cyclists on holiday tour. They did not mind the rain. They revelled in it. Both hailed from industrial Lancashire, and exuded all the geniality of that lovable shire. We rode together for a while, and when we reached the "Ram's Horn " at Thatchford Green, we were of one mind ... to pack up our riding for a while, and talk over a pot of ale An obliging landlady allowed us to park our bikes in a barn, took our "macs" to dry, and served us with nut-brown ale in pleasing blue and white mugs. I mentioned the singing, and found that my Lancashire friends did a lot of singing at concerts-up in the Wigan district. We talked of Lancashire comedians, of Lancashire soccer teams, of the correct way of serving tripe and onions, and had a happy hour. A chance meeting ... but how joyous these chance encounters can be, when one loves the open road, and loves his fellow men!

Defeating the "High Fares" Bogy

I TALKED with a cycle dealer recently about his sales of machines, and the general state of business. He had a wellstocked shop in a small Midland town, and reported that business was good. The interesting thing he told me was that several of his sales of new bikes had been to men and women who were starting to cycle to work, in an effort to beat the high transport fares. Of course, cycling to ard from one's place of business has been advocated by the advertisers of cycles for many years: it has such obvious advantages. No bothering about train and 'bus times, no tedious waiting in queues, no crowding into stuffy train compartments! My dealer-friend had, wisely, taken advantage of the trend in his town, and had "tied up" with it by means of publicity in his shop. A colourful "streamer," produced quite cheaply by the local ticketwriter, was displayed on his window, and
its message was ..." Cycle to and from work, and save those high fares." The message was repeated inside the shop, by means of a small card on the counter, and the dealer told me that he was arranging for a short series of advertisements in the local paper, on the same theme. Here is enterprise! I feel that it will be rewarded by increased sales!

I Meet a Tricyclist

O^{N}

 E may ride many miles to-day without ever seeing a tricycle! But the other day, in a quiet suburban road, I met in old and quite venerable gentleman, riding a tricycle which must have been manufactured many years ago. I chatted with him, and found that he was quite an enthusiast for "three wheels." Not always had he trundled about the streets of the little town on a tricycle: he was proud to tell me of cycling exploits in his youthful days, of long touring rides into Scotland, into mid-Wales, and through Devon lanes. Seventy-six was the age of my tricycling friend, and he was a splendid advertisement for the health-giving virtues of wheeling!
A Letter from Hereford

$\mathbf{M}^{\text {Y }}$ mail-bag often contains letters from cyclists who tell me of the delights and scenic beauties of their native shires. Sometimes, I get a letter enthusing about leafy Warwickshire; sometimes the letter paints the charms of Cornwall, and advises me to ride into the magic west, and commune with pixies on the wild Cornish moors, and find enchantment in Cornwall's rocky coast-line. The other day, my "county letter " came from Herefordshire, and told of Hereford Cathedral, that noble pile in red sandstone, with its impressive Norman nave. Told, too, of the fine half-timbered, black-and-white house in Hereford, at High Town. This old structure dates back to 1620 , and is one of the works of that famous Herefordshire architect, John Abel, who was given the title of King's Carpenter by Charles the Second, because of his notable work throughout the county. My correspondent mentioned Hereford cider, and (evidently being of an historical turn of mind) went on to tell of the days before the Romans came, and Herefordshire was inhabited by the Silures... ancient people who ultimately found a refuge in Wales. Leominster . . . the ancient "Leofric's Minster". . . came in for mention, and I was reminded that Leofric was that Saxon earl of Mercia who wedded Godiva-the lady whose ride through Coventry is still remembered ${ }_{2}$ and repeated in pageants even to-day. I must go to Herefordshire, and seek out my happy correspondent.

2nd Edition
 Every Cyclist's Pocket Book

By F. J. CAMM.

A New 400-page Pocket-size ($5^{\prime \prime} \times 3^{1^{\prime \prime}} \times \frac{3}{4}^{\prime \prime}$) Reference Book, Road Guide and Technical Handbook for Cyclists.

7/6 (by post, 7/10)

From George Newnes Led., Tower House,
Southampton Street, Strand, W.C.2.

[^1]Published about the 30th of each month by GEORGE NEWNES, LIMITED, Tower Holise, Southampton Street, Strand, London, W.C.2, and Printed in England by W. Speaight \& Sons, Ltd., Exmoor Street, London, W. 10 . Sole Agents for Australia and New Zealand-Gordon $8:$ Gotch (A/sia), Ltd. Sole Agents for South Africa-Central News Agcmey, Itd. Subscription Rate (including postage): For one year, Inland añd Abroad 14s. (Canada 13s.). Resistered at the G.P.O. for transmission by Canadian Magazine Post-

THE "TWIN"
 POCKET RECEIVER

This interesting eircult is designed around the famous " fwin " valve now

 available as a British midget typeoperating from midget dry batterles By the use of midget components and the elimination of tuning colls the set, when not in use, is small enough This set requires no aerial or earth, and can be used indoors or out. giving stations on the medlum waveband. Full instructions, circuit, point-to point wiring diagram, and component

PRICE $3 / 3$ POST FREE.
SWIFT RADIO (P)
137, Cotham Brow, Bristol,
ORDERS BY. POST ONLY

EITHER IT IS or it isnit!

JUBILEE hos been our reginered trade name for 30 years, ond may not be used to

THE FINEST CLIP in the wold L ROBINSON \& CO., (GILLINGHAM) LTD., tondon Chambers GILIINGHAM KENT PHONE 5282

Hex Marlast

A guaranteed accurate, all-plated watchmaker sy.15.0 (plus $2 /-0$. \& p.). Fits 8 mm . and lt's the cheapest prectsion lathe on the market. Send cash with order (returnable if not delighted) or stamp for photo with

HENRY COLR
2~3. Giay's Inn Rosd, Lont. C)

FIBARGAIN LINES
GARIRARD 3-speed GRAM UNITS with two separate hi-fi Decca Marnetic or Acos
GP crystal pickup heads. price fi2.5.0. 30in. high, pull-out motorboard cut for RECORD PLAYEF CABINETS in brown
rexine. 39 6. PORTABLE MICROGRAM CABINETS. take gram unit, amplifer and

 KITS, 301 n . high, complete to last screw,
$85 \mathrm{H}^{2}$ to $10 \% / 6$. Send 21 d . for full catalogue. NORTLEREN RADIO SERVICES, 16 , Kings Colve PRImrose 8314.

IMPETUS Precision PLANERS

Clrcular sarety type cutter-head High quality tempered steel knives, Tables
mounted on machined inclined ways. Ground table-surfaces. Fences adjustable to 45 deg. 4 in . MODEL, $\mathbf{2 9 . 1 0 . 0}$ Motorised, E18.10.0. 6 in. MODEL Catalogues of other 'Impetus' Products. JOHN 1. M, S. STEEL, Dept. 80, JiN BiNGLEY, YORKS.
Phone : BINGLEY 3551 (4 lines)

SURE AND R KOFYT
MAKE MONEY AT HOME with this AMAZING BARGAIN The frst job you do can

SILK SCREEN
colour printing OUTFIT

ON 7 DAYS' AIPRROVAL

 tains all parts and complete supplies, accessorles We soue COLOUR and six colours. Included is our FREE 10/- youpherrecourse which makes your sucoess pounds or PRIAT certain You can colour whole areas or Intricate Cash Price delivered $\begin{array}{ll}\text { the } & \text { designs on any material. Print Posters, Notices, } \\ \text { Grectings Cards, Make Transfers, etc. etc. "Dryy- }\end{array} \quad$ on'y $47 / 5$ Way glo and Flock finishes also availabie.WOOD
PARTS
METAL PLASTICS CLOTH PAPER FLOCK Anything
OIRDRR NOW MONEY BACK ample Print (i4 details $1 / 6$
(credited). A.P. SUPPLIES SEDGEFORD KING'S LYNN NORFOLK

REFILL YOUR OWN BAIL PEN VISCOID REFILL KIT Post Free $3 / 8$

OMPLETE WITH TOOL AND ILLUSTRATED INSTRUCTIONS	Contains Ink for	Blue. Red or Gre
15 Large Refills	Trade suppliet.	VISCOID INKS (PM), B. Sherlock Mews,

(P)

MICROMETER $0^{*}-1$ USEFEL TOALLTRADES 17/6 JAMES CHAMBERS \& SONS Pree 78. JUNCTION RD., LONDON:- N. 19

ALUMINIUM SHEET

FOR SALE
9 Ton, 8 ft. $\times 3$ ft. $\times 20$ gauge (soft) 10 Ton, 6 ft. $\times 3$ ft. $\times 18$ gauge CGA $\begin{array}{rl}10 \text { Ton, } 6 \mathrm{ft} \text {. } x & 3 \mathrm{ft} \times 20 \text { gauge CGA } \\ 5 \text { Ton, } 6 \mathrm{ft} . x & \mathrm{ft} . \times 16 \text { gauge CGA }\end{array}$ CALLOW CO 10, KINGLY STREET REGent 2933 (7.lines). Est. 1 CHAND GENER ATOR BATTERY car batterles. topping up on cold mornings, etc. Can be made into wind charger. Self-contained in strong metal
case fitted cut-out. handle and wring. case fitted cut-out. handie and wiring.
Woll charge at 4 amps. or more Ready
for immediate use. Brand New in for immediate use. Brand New in A.C. $\frac{t}{\text { S. }}$ and H.P. Electric Motors. L. C. NORTHALLL, 16, Molly Road, Quinton, Birmintriam
Phone : WOO 3166.

CIRCULAR SAW ASSEMblies

 Spindie Assemblies with Ball Bearings Blocks and Flat Pulley Combined, Sawing. Grinding and Drlli-
Ing Machines from 42/9. F.H.P. Morors, t. H.P. Return Deilvery.
Send 8d. for fully illustrated BEVEILLEE PRODUCTS, Ranskill, Notts.

STAINLESS STEEL CYLINDERS
Working pressure 40 LP.51. Tapped both ends, \ddagger gas. Sultable for Compressor Tanks, Pneumatic Units, Gases, Hydraulics and Liquids.
w. T. HUMPIIRIES,

Poughill, Bude, Cornural
$35 /$

GENERAL

 CERTEFICATEOF EDUCATION EXAM THE KET TO SUCCESS AND
Essental to success in any walk of hife at home for the important new Gienera Crrt. of Education Exam. you choose your own subje
SEND FOR VIREE 136-PAGEBOOK Full details of how you can obtain thi valuable Certifcate are given in our
136-page Gulde-Fiker and withou obligation. Write to-day.
B.T.I., 160 , AVON 1 HOUSE, $356-386$,
OXFORE,

NO PASS-NO FEE
adana printing machines
Print in the odd hours with an $\rightarrow{ }^{01}$ crafts. No. $111 / \mathrm{S}$ No. 2 211/ Mmethin
 folder fo Dept P PM.56
achines) L(d. TwickenADAN A (Printing Machines) LId., Twicken-
ham, orcall 8 , Grays Inn Rd., London, W.C.

PLASTICS

sold: Perspex sheets and offcuts in stock, large quantity of clear and all colours, $1 / 16$ in. $-\frac{1}{2}$ in. thick at cheap price ; Cellulose Acetate film, Moulding Powder, etc.
Please send your enquiries to:
MULTITEX LIMITED 10-11, Archer Street, London, W. 1 Tel. : GERrard 9520 and 5728

ELECTRADIX RADIOS

Special Parcels Offer!

Parcel containing good selection of components valuable in every junk box. All clean, dismantled from Government
surplus: 7 lbs.,
list 10 assorted wound coils
and 2 paxolin formers, Send orders to Dept. H.
214, Queenstown Road, London, S.W.O.
\Longrightarrow Telephone: MACaulay $2159 \Longrightarrow$
CHEMISTRY APPARATUS
COMPLETE PRICE LIST

BECK $60^{\text {(Scientific Depl. A) }}$ Stoke Newington, London, N. 16

HARD TIMES!!! DON'T Lee le
Get You DOWN ! !
HERE'S a BIT of GOOD NEWS LAWRENCE SLASHED PRICES TRANSFORMERS, A.C. 2001240 V $16+6 \quad 11 \mathrm{~A}$. $111 /$; ditto, $6+4 \mathrm{~V}$. 6A STRONG DOUBLE LEVER SWITCHES. 31-, Rheostat 5 and ohm, 51 -. We still do our ROVEX 12V. D.C. and Speed Control as C2i1sio and also POWER UNITS to your Requirements at less than
PRE-WAR PRICES. Ask for LIST

LAWRENCE M.O.
134 Cranley Gardens, London, N. 10
Tel.: TUDor 1404. Dept. PM.

TELEPPHONF, SETS, comprising
 free Makes an excellent inter-otice works or domestic installation, Really
professional instruments. Brand new professional $\begin{aligned} & \text { instruments. Brand new } \\ & \text { not rubbish. } \\ & \text { Single instruments, } \\ & \text { 18/6. }\end{aligned}$. B BTTERY CIIARGERS for A.C lators at ${ }^{2}$ amp. Parts with diagram
17/6. Complete. $21 / 6$. Postage 10 A FGR TRICKLE COARGING CAR CELLLS, parts with dlagram, Output Post. 1 -. 3 amp . output, $50 /-$
POWERFUL for all Metals. Plastics. etc. Operates
from 6 v battery or through trans former rrom A.C. mains. Engraver. Instrument Wires. Ebonite. Metals
Workshop Materialis.
Iliustrated List 2 d
ECONOMIC ELECTRIC CO.
64 London Rd., Twickenham

When replying to advertisers announcements please mention Practical Mechanics.

Free Guide -- sUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship Jig \& Tool Design
Press Tool \& Die Design
Sheet Metalwork
Automobile Repairs
Garage Management
Works M'gmnt. \& Admin.
Practical Foremanship Ratefixing \& Estimating Time \& Motion Study Engineering Inspection Metallurgy
Refrigeration
Welding (all branches) Maintenance Engineering Steam Engine Technology 1.C. Engine Technology Diesel Engine Technology

Eiec. Draughtsmanship

Machine
Automobile
Structural
R/F Concrete
Structural Engineerring
Mathematics (all stages)
Radio Technology
Telecommunications
Wiring \& Installation
Television
Radio Servicing
Gen. Elec. Engineering
Generators \& Motors
Generation \& Supply-
Aircraft Mainten. Licences
Aerodynamics
Electrical Design Ordnance Survey Dr'ship

BUILDING AND STRUCTURAL

L.I.O.R.
A.M.I.S.E.

Building Construction
Costs \& Accounts
Surveying \& Levelling
Cterk of Works
Quantity Surveying
A.R.San.I. M.R.San.I. L.A.B.S.S.

Builders' Quantities Carpentry \& Joinery Buidaing Inspector Building Draughtsmanship Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptors
Woodwork Teacher
Metalwork Teacher Housing Manager (A.I.Hsg.)

Common. Prelim. Exam. A.C.I.S., A.C.C.S.
A.C.W.A. (Costing)

School Attendance Officer
Sanitary Inspector
Civil Service Exams

BECOME A DRAUGHTSMAN-LEARN AT HOME AND EARN BIG MONEY

Men and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

\star
 OVER SIXTY YEARS OF CONTINUOUS SUCCESS

NaIIONAL INSTITUTE OF EMGINEERING

(Dept. 29)
148, HOLBORN; LONDON, E.C. 1
SOUTH AFRICA: E.C.S.A., P.O. BOX NO. 8417, JOHANNESBURG

This remarkable FREE GUIDE explains:

* Openings, prospects, salaries, etc., in Draughtsmanship and in all other branches of Engineering and Building.
* How to obtain moneỳ-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY INTERESTING COURSES TO SELECT FROM!

A.M.I.Mech.E., A.M.I.M.I.,
A.M.Brit.I.R.E. A.M.I.P.E.,
A.M.I.C.E., A.M.I.Struct.E.,
A.M.I.Mun.E, M.R.San.I.
A.M.I.E.D., A.F.R.Ae.S.,
London B.Sc., Degrees.

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO fies

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.
If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.

ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

[^0]: J. HALDEN \& Co., 8, Albert Square, MANCHESTER, 2

 Branches at: London. Newcastle-on-Tyne, Birminghom, Glasgow, Leeds and Bristol

[^1]: "Practical Mechanics" Advice Burcau 11 st , 1952, COUPON This coupon is available until August 31st, 1952, and must be attached to all
 stamps. A stamped, addressed envelope nust also be endoned. stamps. Al stamped, addressed envelope nust also be enriase
 Practical Mechanics.
 August, 1952.

