£200 FREE COMPETITION

NEWNES

EDITOR:F.J.CAMM
MAY 1952

PRINCIPAL CONTENTS

A TAP RE-SEATING TOOL FLUORESCENT LIGHTING MAKING A POTTERY KILN

GENERATION OF MIGRO-WAVES FOOT-DRIVEN OUTBOARD UNIT EARTHING CIRCUITS AND TRIPS

WORLD OF MODELS QUERIES AND REPLIES CYCLIST SECTION

"REEVESCO" No. 2 SENSITIVE TYPE BENCH DRILLING MACHINE

A Gd. stamp will bring you a copy of our comprehensive Ilhistrated catalogue with. details of many "L.B.S.C."
desianed small steam locomodesigned small steam tocomo-
lives; uorkshop equipment. lives: workshop equipment.

Brief speciGcation Cavacity
Spindle travel.
in. Diameter of column $\begin{array}{ll}\text { Rin. } & \text { Diameter of table } \\ 3 \mathrm{in} . & \text { Height of colurnn }\end{array}$ Column to chuck 3 in. Wein. Wht, approx. Build this superb machine yourself. Blueprints and full set of easily machined astings. Postage ${ }^{3 / 4}$. Centre column. extra 11/6. Postage $0-3$ in. drlll chuck, extra $33 / 6$.
"REEVESCO" M.E. PAINT SPRAY GUN

Designed especially for Model Englneers. Fully atomising and not to be spray" type. "Used either with hand orerated pump or compressor. Easily built and
tonal screw cap containers can be supplied to facilltate quick colour changing. Capacity,
pint. Weight. 12 ozs. Working pressure pint. Weight. 12 ozs . Working pressure 5 lb . up.
Build this Invaluable IIttle tool yoursolf. Blueprints with full instructions casting
plus postage 1/-.
Also avallable with castings ready machined-42'6, plus postage $1 /$. Additional screw cap containers, 9d. each.

A. J. REEVES \& CO.

416, MOSELEY ROAD, BIRMINGHAM, 12
Grams : "Reevesco, Birmingham." Phone : CALthorpe 2554
"THE CHOICE OF EXPERIENCE"

If you have camera, send 5/- for this Trial Set of Chemicals

Doing the work yourself is half the fun of photography. You save money and have no end of a thrill in making the negatives and getting a few prints from them. It's quicker, too. You see the results within a few hours of taking the snaps. Start, right away, by sending for this five shilling trial set. It comprises :-

* I-oz, (25 cc.) bottle of AZOL developer.
* 4-oz. tin of Acid Fixing salts.
* M-Q Pactums, print developer.
* 1-oz. (25 cc .) bottle of 142.
*. 25 sheets of Contact paper. 24 by 31, and the easy-to-follow instruction book which tells you how it is all done.
Enclose P.O. Write your name and oddress in block capitol letters and mark the fron of MECHAN'CS OFFER.

PRICE $3 /=$
includes the purchase cax, packing and full

NEW HOME PHOTOGRAPHY You should read this book. Nearly 100 pages, 130 illustrations. Packed with all sort of useful hints and dodges for getting good results. Get copy today. It will help you to make better snapshots. Your dealer sellsit or a copy will be sent, post free for 216. Enclose P.O Write name and address in capitals and mark envelope "Practical Mechanics New Book Offer

MODEL POWER BOATS

Ilfustration shows boiler connected to our Uniflow Engine. It is capable of steaming any engine having a lin. bore and stroke double-acting cylinder. A most efficient boiler for power boats.

FOR THE AMATEUR CONSTRUCTOR

Burrell Type Traction Engine

Drawings and castings of the Byrrell Type Traction Engine-scale lizin. are among the many outfits available for the amateur constructor at moderate prices.

Full details of these and other models and accessories are contained in our " Madel Supplies " Booklet, Ref. MS. Price 6 .

BASSETT-LOWKE LIMITED MORTHAMPTON

LONDON
MANCHESTER:
112 High Holborn, W.C.I
28 Corporation Street

Held as usual in the New Horticultural Hall, London, this is your opportunity to show your model to, and in competition with, enthusiasts from all over the world. Do not delay, send for full details to-day

Post this coupon to the
Exhibition Manager, 23. Great Queen St. W.C. 2.

Please send me full details and competition entry forms for the 1952 'Model Engineer' Exhibition.

NAME
ADDRESS

- a blade for every cutting job

All good craftsmen know the scalpel sharpness. They're fitted to value of edge tools that are sharp the appropriate knife in a few secand stay sharp. That's why you'll appreciate X-acto. All of the 23 X -acto blades, gouges and routers are designed for specific cutting jobs and made from the finest surgical steel, precision ground to onds. A twist of the sleeve and the blade inserted. A twist back again and you have a rigid, perfectly balanced knife with the sharpest blade you can buy-the finest cutting tool any craftsman can desire.

Blades are sold in packets, from $2 / 6$ for 5 , Gouges $5 /$-for 5 and Routers 4/- for 4. Cbtainable only from X-acto Stockists. Write for illustrated folder showing the complete range of X -acto Tools and Tool Kits to :-

TRIX LTD. (Dept. A), 11 OLD BURLINGTON ST.,

PREMIER RADIO ${ }^{\text {Cmom }}$

B. H. MORRIS AND CO: (RADIO) LTD.
 We can supply all the parts to help you.
Bakelite Cabinet (Brown or Ivory)... 1768 Packing and Insurance... plus recti Punched chass1s, 3 -valve plus rectiEngraved Glass ©̈lals, $180-50$ and woo- 2.200 m . With station names, ". new winvebands. T.R.F. Colls, 180-550. 800 Drum (2iln. diam.) Driving head . Double pointer
Spriag cord (yardi)
Nylon cord (yard)
Dial Front Plate … $\quad \cdots \quad \cdots \quad \begin{array}{r}8 \\ 8\end{array}$ SAND $1 / 6$ FOR EAS̈Y TÖ FÖLLOW CIRCUIT DIAGRAM ANGRAMS PRICED PARTS LIST. Which shows you how YoU at a total cost of 56.9 .6 . plus 2/6. p. \& c . The Radio is a TRF 3-valve and metal rectifier Recelver for operation on $2200 / 250$ volt A.C. mains. Waveband coverage is
$180 \% 550$ metres on medium wave and $180 \% / 50000$ metres on medium wave, and is lifuminated. The attractive bakelite cabinet to house the Receiver, size 12in. long. Sin. Wide, bin. high, can be supplied
in either walnut or ivory colour.

TRTEEE-RIZCE AERIAL. Brand New Ex-U.S.A. 12ft.-3 ift. screw-in sections of copper-plated steel, highly fiexible with non-stick screw fts, tapering ifn. to In. In container, \%9. Plug-in Type 3/9. packing and carriage $1 / 6$. Insulated
base, $2 / 6$. METAL RECTIFIERS-FULL IVAVF 12 V., 1 amp., 8 N -: 8V., 1 amp., $4 /-$. E.H.T. Pencll Type. $1 \mathrm{~mA} ., 4 / 7$ each. $1,000 \mathrm{v}$ 1 mA., 6/- each
An CRtirely ingu MICROPIIONE which can be safely used on A.C.D.C amplifers. High impedance. No background noise, really natural tone. The Ideal Mike for tape, wire and disc record
ing and squad projectors. Dimensions: 1in. deep; 2lin. dia. H.T. ELIMINATOR AND SRICKEE All parts to construct an eliminator to give. an output of 120 volts at $20 / \mathrm{mA}$. Uses metal reotifer, MAINS NOISE ELIMINATQK KIT Two speclally designed chokes with three smoothing condensers with circuit
djagram, Cuts out all mains noise. Can diagram, Cuts out all mains noise. Can
be assembled inside existing recelver. 6e assembled

FRACTIONAL II.P: MOTOR A 50 v . 3 phase A.C. motor, 140 th b.h.D. by famous maker, supplied complete
with resistor. condenser and cfrcuit with resistor, condenser and cfrcuit diagram to convert the motor to $\frac{\mathrm{h}, \mathrm{p}}{}$
for use on 240 v . single phase A.C. mains. Dimensions: 5 ing lons (exclusive of spindle), 41 in . deep : 41 in . high. Brand new. 25\%. Plus $2 / 6$ carriage and packing. ACCUMULATORS
By world-famous maker; 2 volt 10 a., $4 / 21$.
ADJUSTABLE BENCH LAMP Complete with flex, lampholder and reflector. $25 /-$ Post and insurance $2 /$ -
(Dept. P.M.) 207 * EDGWARE ROAD • LONDON * W. 2 TERMS ILI, 6 pim: SATURDAYS, Phones: AMRascador 4033, PADdington $3271 / 2$ TERMS OF BUSINESS: CASH WITH ORDER OR C.O.D. OVER \&1. Please add 1/- for Pos

IMPORTANT ANNOUNCEMENT. We cannot accept responsiblity for or quarantee any kil or component sold as a Premler product by firms other than ourselves. All prices onoted in our advertisements are those niling at to alleration without notice.

Sensitised Materials for PHOTO COPYING and BLUE PRINTS

As actual manufacturers of all types of sensitised photo materials, Haldens are in a unique position as prínt room suppliers. Materials for Blue Prints, Dyeline Prints, Gas Developed Prints, Sepia Prints, "Ferazo" Blue Prints, Ferro Gallic Prints, etc.
The brand names "Dyalyn," "Neut"alyn," " "Vaporax,"," "Cyano," "Ferazo" are your guarantee of complete satisfaction.

Illustrated is the
"Ferazo" Developing Machine. Write for fully descriptive leaflet.
(15) 7. HALDEN \& CO., LTD., 8, ALBERT SQUARE, MANCHESTER: bianches at London, Newcastle-cn-Tyne, Pirminghem, alasgow, Leeds and Gristol

* GREATEST VALUE FOR MONEY

 ever offered Home Constructors.Modelmakens.Handymen!
Complete Wolf Cub HOME CONSTRUGTOR OUTFIT

contuins 3 MAJOR KITS-

*

EVERY PART IS INTERCHANGEABLE The only equipment of its kind where every part is interchangeable. Each kit is powered by the Woif Cub Home Constructor a" Electric Drill. Thus you can begin to build up a complete outfit starting with the "Cub" and then add popular priced accessories and kits (as illustrated) or buy a complete outfit all at once.
SOLD BY ALL REPUTABLE TOOL DEALERS

LATHE KIT

DRILLING, GRINDING AND POLISHING KIT

Write at once for foscinating, fully picturised folder, "Profitable Pleo sure"

WOLF ELEGTRIC TOOLS LTD : PIOLEER WORKS HANGEB LANE LONDON W. 5
TELEPHONE: PERIVALE 563I-4 BRANCHES: BIRMINGHAM MANCHESTEB: LEEDS BRISTOL GLASGOW

SAW KIT

DUKE \& CO.

Radio and Electrical Accessories by Post

PERSONAL RADIOS̄.-Price E5/1916, 4 v . T.R.F. receiver with choice of walnut brown or ivory plastic cabinet. Complete instructions for building this popular set, including point to point wiring instructions are supplied with the kit of parts. There is no other comparable set available today at this price. When ordering, please state whether you require A.C. model or A.C.ID.C. model. Postage and packing $3 / 6$ extra. Assembled ready for use, 35/- extra.
VALVES. We are one of London's largest stockists of valves of all types. Send stamp for 1952 Valve List and Radio Catalogue. Valves, New, tested, some slightly smoke-stained : EF91, EF92, EB91, EL91, EL32. EF36, EF50, ECC91, 6 K 7 , IT 4, IRS, UF41, UY41, 2t 1019 . OZ4, PEN220A, VPT210, 8D2, 9D2, I5D2, SP2, KT32C, PEN 383 , UF41, UY41, $2 t .1019$
VP133, all at' 619.

\section*{	SALVAGE MAINS
TRANSFORMERS	} Bargain offer of transformers, guaranteed for three months and in perfect condition, 260-0-260, 6.3 v., 3 a. Postage 2%.

STANDARD O.P. TRANSFORMERS Salvage. Unused. Tested. Will match nearly all normal O.P. valves wheh $2-5$ ohm speech coils. 319 each. Postage II.

EXTENSION SPEAKERS.-Price 1917 each. Latest cype baffle with gold sprayed metal speaker fret. 6in. P.M. Speaker. Postage 11 -

TYPE 2511196 RECEIVER.-Price 719 each. A real bargain. For $\$$.W. reception. Valves and some parts removed, but the following remain: 4 Tuning condensers, 32 fixed condensers, 28 resistances, Trans., Switches, Vicontrols, Viholders. Ideal We supply drawing for modification to mains set with each unit.

DUKE \& CO., 621, Romford Rd., Manor Park, E. 12 GRAngewood 6677.

8.6.Srown

The first choice of RADIO OPERATORS throughout the world These headphones feature a High Permeability Reed luned to $1,000 \mathrm{c} / \mathrm{s}$. and directly coupled to a conical aluminium diaphragm. Earpieces individually adjust-
able while in use for sensitivity and ible while in use for sensitivity and D.C. Resistance : 4,000 ohms. Impedance : 16,000 ohms at $1,000 \mathrm{c} / \mathrm{s}$. The S, G. Brown range of headphones covers types for many specific require-
ments. Deails of the full. range are available in the illustrated Brochure "PM"-sent on request.

I.C.S TRAINED MEN are in Greater Demand than Ever-maximum production depends on high technical skill, such as that acquired by I.C.S. Students TENS OF THOUSANDS MORE TRAINED MEN ARE URGENTLY NEEDED NOW -BUT THERE IS NO WORTH-WHILE PLACE FOR THE UNTRAINED

Ambitious men everywhere have succeeded through I.C.S. Home-Study Courses. So also can you.

The man with an I.C.S. Training in any one of the subjects listed below knows it thoroughly, completely, practically. And he knows how to apply it in his everyday work.

Accountancy
 Adverlising

Air Conditioning Architecture Architectural Drawing Auditing
Boiler Engineering
Book-keeping
Building Construction Building Specifications Business Training
Business Management Carpentry and Joinery Chemical Engineering Chemistry, I. \& 0.
Civil Engineering
Clerk of Works
Coal Mining
Commercial Art
Conerete Engineering
Diesel Engines
Draughtsmanship
Drawing Office Practice

Electrical Engineering Motor Kechanics Electric Power, Lighting, Motor Vehicle Elec. Transmission, Traction Eng. Shop Practice Farming (Arable" and Livestock) Fire Engineering Foremanship Fuel Technology Heating and Ventilation Horticulture
Hydraulic Engineering Illumination Eng. Industrial Management Machine Designing Machine-Tool Work Maintenance Eng. Marine Engineers Mechanical Drawing Mechanical Engineering Mine Surveying
Mining Engineering Mōtor Engineering

Municipal Eng. Plumbing
Production Engineering Quantity Surveying Radio Engineering Radio Service Eng. Refrigeration
Sales Management Salesmanship Samitary and Domestic Engineering Sheet-Metal Work Short-Slory Writing Steam Engineering Structural Steelwork Surveying
Telegraph Engineering Television Technology Welding, Gas and Elec. Woodworking Drawing Works Engincering

Students intending to sit for examinations in Architecture, Quantities, Civil Eng. Mech. Eng,, and others, should enrol NOW for preparatory Courses.
Using a specially preparèd Study Programme, the student studies in his spare time, at his own pace and, with time for revision. sits with full confidence of success.
Courses are also available for most other Technical, Professional, Commercial, and Civil Service Exams., including General Certif. of Education.
(I.C.S Examination Students are coached until success.ul.) Moderate fees include ALL books required. GENEROUS DISCOUNT TO H.M. FORCES
If you need technical training, our advice on any matter concerning your work and your career is yours for the asking-free and without obligation. Let us send you our special free booklet on the subject in which you are specially interested. DON'T DELAY. Make ACTION your wotchword.
The successful man DOES to-day what the failure INTENDS doing to-morrow. Write to us TO-DAY Dept. 169A, I.C.S., 71 KINGSWAY, W.C.2.

CUT HERE

INTERNATIONAL CORRESPONDENCE SCHOOLS LTD. Dept. 169A, International Buildings, Kingsway, London, W.C.2.
Please send me the free booklet describing your Courses in

Name................................
Address

Addressen for Óverseas Readers
Australia: 140, Elizabeth Street, Sydney.
Egypr: 40 , Sharia Abdel Khalek Sarwat Pasha, Cairo. Eire: 13, Anglesea Street, Dublin, C.4.
India : Lakshmi Bldg., Sir Pherozsha Mehra Rd., Fort, Bombay.
New Zealand: 182, Wakefield Sereet, Wellington N. Ireland: 26, Howard Street, Belfast. South Africa: 45, Shortmarket Street, Cape Town.

BSR

SHADED POLE MOTOR

Type TPI

A two-pole induction motor that has been designed to give the maximum efficiency with the minimum physical dimensions.
The motor is ideal for gramophone motors, fans, motor displays, wire and tape recorders, timing mechanism, and many otherapplications. SPECIFICATION
Voltage : 2001250. Frequency: 50 cycles. Starting Torque: 1.0-1.5 inchlozs. Full Load Torque : $1.2-2.0$ inchlors. Malins Consumption: $10-15$ watts. Speed (light) : 2,900
r.p.m. Shaft Diameter: 1560 in. Weight : ili. Dimensions: 23 in. $\times 2-7116 \mathrm{in}$. $\times 1-7116 \mathrm{in}$.

THE PULLIN

MUITHRAMGE TEST SET,Series 100
The unlversal testing set. Sensitivity : 1,000 ohms per volt. Strong metal case with carrying handle, complete with leads with detachable bulldog clips and test prods. Size 9 in, x 51 in. $\times 4$ in.
RANGEA
A.C.ID.C. Volts : $10,25,100,250,500,1,000$. D.C. Milliamps : 2.5, $10,25,100,500$. A.C. 1 D.C. Microamps : 100 Mieroamps 10 -volt range. Resistance Ranges : 0/I Meg. (13,500
ohms mid-scale). 0/10,000 ohms (135 ohms ohms mid.scale).
fll.Ils.
Cash, or 40/-deposit and 12 monthly payments of $20 /$ EMAIL ORDER SUPPLYCO.,

33 TOTTENHAME RADIO CENTRE, MUSeum 6667

THE "ZYTO" $3_{\frac{3}{3}}^{3 \text { " }}$ LATHE

BRITAIN'S FINEST LATHE VALUE 12 $\frac{1}{2}$ " BETWEEN CENTRES

Back Geared, Gap Bed, Tumbler Reverse, Screwcutting, Surfacing, Sliding, Full Compound Slide Rest with Rack Feed, Hollow Mandrel, Hollow Tailstock No. 2 M.T., Set over Tailstock. Supplied complete as shown with full set Changewheels, Backplate, etc.
bRief specification
Helght of Centres, 3 in.
Distance between, Centres, 121 in.
Helght from Grp, 411 n .
Heightrom Saddle, 2 in
Headstock Mandrel, admit: tin.
Tallstock Barrel, admits $\$ 1 \mathrm{n}$.
Headstock Pulley, 3 speeds, in. Flat Delt
Faceplate Dlameter, $6 i n$.
Overall Length of Lathe, 3in.

BOOK YOUR LATHENOW

Fully illustrated leaflet of the "ZY7O" Bench and Motorised Lathe free and post free on request.

S. TYZACK \& SON Lº

341-345 OLD STREET, LONDON, E.C.I
TELEPHONE: CLERKENWELL 8301 (TEN LINES)

PROTECTION FROM RUST

V.P.I. (Vapour Phase Inhibitor)

V.P.I. coated paper protects steel and other metals from Rust by rendering the surface of metals impervious to the effects of moisture and atmosphere. The active ingredient of V.P.I. is a vapour which is given off slowly by the coating. V.P.I., paper is unique in that it prevents Corrosion even when Moisture and Oxygen are present.
Apply linings of V.P.I. paper to drawers, tool boxes, micrometer cases, etc., and tools will be protected. Cover lathes with a shroud of V.P.I. paper.

If totally enclosed V.P.I. has an active life up to four years. In general use in the workshop protecting tools; from 6-18 months, according to the period exposed to air currents.

Supplied in packets containing 8 sheets, 15 in . x 20 in.
PRICE $3 / 6$ POST FREE
Cash with order.
WILLIAMS-COOK LTD.
96A, CURTAIN ROAD, LONDON, E.C. 2
Also manufactured to special requirements for indusfrial and export users, advice and quotations on application.

DRILL BITS E PLASTIC RYNPLUGS

All building materials yield at once to the amazingly sharp and hard Tungsten Carbide Tip of the Mason Master. Effortless, rapid, silent and vibrationless, Mason Master drill bits can be used almost indefinitely Without wear or abrasion. Plastic Rynplugs are virtually indestructible; hard enough to be hammered into the hole yel pliable enough to expand readily and "grip" the softest plaster wall. Impervious to moisture and in handy packs for are sold in handy packs for pocket or toolbox.
Write for illustrated booklet ' L

KARLENITE plastic MARBLE

Crystalline! Veined! and sets Rock Hard!

KARLENITE is an entirely new artificial stone plastic for casting Book-ends, Ash Trays, Wall Vases, Statuettes, Plaques, etc.
'Karienite" sets rockhard with a scintillating crystalline structure like marble or Alabaster for colour, veining, texture, density and hardness. It is enormously strong, highly resistant to heat and impervious to water. Literally any type of veining can be simulated in any combination of colours, and a wide range of 'Veining Pigments' is available for this purpose.

MAKE YOUR OWN flexible MOULDS

INFINITE REPETITION CASTING

Perfect Detail!

ELASTOMOLD, PLASTIMOLD and RESILOMOLD are synthetic rubber materials for making permanient flexible moulds. Ideal for repetition casting of Book-ends, Wall Plaques, Statuettes, Ornaments and Models, in quantities of dozens, hundreds or thousands as needed.

The method of use is incredibly simple, and moulds can be prepared from models made of Wood, Metal, Plaster, Stone, Glass, Earthenware, Ivory, etc. ELASTOMOLD.
MOLD and R MOLD and RESILOMOLD the most minute details of ornamentation and surface texture. They are equally suitable for casting articles in Cement, Plaster or 'Karlenite.'

Such moulds are virtually indestructible, but all materials are fully recoverable and may be used over and over again for making new moulds.

KARLENA accessories for Modern Art Moulding

 MENISCOLOIDFor completely eliminating air pockets and blowholes in plaster.
'Meniscoloid' is a powerful 'wetting agent.'. When added in minute quantities to plaster it immediately releases all trapped air and causes the plaster to flow into the crevices of the mould.

Water activated with 'Meniscoloid' will readily 'wet' even wax, whereas untreated water contracts into beads when applied to the greasy surface.
"Meniscoloid" is essential for accurate plaster casting, especially for fine detail work and particularly when using greasy moulds. It adds practically nothing to production costs.

STONAX

A stone-hard synthetic wax for impregnating plaster casts. Gives a non-scratch, non-smear, high gloss finish.

AMAX 104

Plaster hardener.
This complex chemical salt not only gives harder plaster casts, but intensifies the whiteness to 'snowblinding' degree. 'Amax 104' is most economical in use.

Glasic

A most effective glazing and waterproofing agent for cement and natural stone. Renders surfaces completely impervious to oil and water, etc.: and also resistant to heat, abrasion and resistant to heat, abrasion and
chemical attick. Simple 10 apply either by brushing or immersion.

Send for full details of this new Moulding and Casting technique. Invaluable for students, hobbyists, sculptors and craft workers.
KARLENA ART STONE COMPANY LTD.
Plastics 2.F. Division
55 DEANSGATE ARCADE, DEANSGATE, MANCHESTER,3?

TACHOMETERS
Read 0-6,000 r.p.m. Designed to read impressions per hour. Is a mechanical tachometer. flangefor panel mounting Fiangefor pant mounting. Hatted by three screw
holes in flange. Clear holes in flange. Clear white figures and white depth behind flange I $\underline{i m}$. Entrance for shaft at back, takes $\frac{1}{1 i n}$. square drive, uni-directiona only. Heavy chromium plate bezel. By $\mathbf{3 0 / =}$
Smith's Industrial Instruments. Post free

VACUUM GAUGES
2 im , overall diam., standard $\frac{1}{0} \mathrm{in}$. thread, input Scale $0-30 \mathrm{in}$. and $0-76 \mathrm{~cm}$. mer David Harcourt, Brand
Post free /

PRESSURE GAUCES As above and calibrated 0-100 P.S.I. and $0-7$ kilos per $s q$. em.
Post free $15 / \mathrm{m}$

OIL PUMPS

Hand operated, by Tecalemit, suitable for all types of non-continuous machinery lubrication. For vertical fixing. Sold at many times our price. Exit port at base complete with nipple for standard thread fit-
 ting, filling hole at top, and fine gauze filter. Size excluding lever, $6 \frac{1}{2} \times 3 \times 4$ ins. deep Heavy black crackle finish. Absolutely foolproo!, should last a llfetime. Post free $35 /$ -

LINE RESISTANG

New, by Smith's Industrial instruments. Designed for counting sheets, is a mechanical counter operated by adjustmachinery, left-hand knob set: reads to 99999 In metal case, approx. $3 \times 2 \times 401=$
Post free

BUNSEN BURNERS

 Superior type, built-in pase: base heavy black crackle finish, burner of plated brass. Sleeve air inlet control. Surplus to a welf-known manu. facturer's stock, made to retail at $1 / 6$i7/6. Brand new. Post free

RUBBER SEATS

Brand new. latex sponge MH density. Many types and sizes including:D. 131 D-shaped, $151 \quad 15 / \mathrm{l}$ wide $\times 16 \times 2$ ins.
F. 043 Bar seat, $12 \times 1 / 6$ 2tins. F.041 Bar seat, $14 \frac{1}{2} \times 14 / 6$ Add I 13 postage and packing for each one ordered. 200/250 inpur, other 200 watt apparatus. New. 7 fL watt appa 3-core cable,
spring-held spring-held
Outpus plug. Size 5 .
S. $\stackrel{x}{x}$ 2ins. $18 / 6$ Post free. $18 / 6$

AERO-SPARES CO.
(Dept. 19), 70171, HIGH HOLBORN
LONDON, W.C.I. Phone : AM8 2871 , 8 large pages, packed with bargalns.

THE "FLUXITE QUINS"" AT WORK
"Our toaster is up ta its tricks, But it won't take a jiffy to fix. With FLUXITE you see, Look out!" shouted EE.
There's another slice going for six I'

For all SOLDERING work-you need FLUXITE-the paste flux -with which even dirty metals are soldered and "tinned." For the jointing of lead-without solder; and the "running" of white metal bearings-without "tinning" the bearing. It is suitable for ALL METALS-excepting ALUMINIUM-and can be used with safety on ELECTRICAL and other sensitive apparatus.

With Fluxite joints can be "6 wiped "9 séccessfully that ure impossible by tury other method

Used for over 40 years in Government works and by leading engineers and manufacturers: Of all Ironmongers-in tins, from 1/- upwards.
TO CYCLISTS ! For stronger wheels that will remain round and true, here's a timetested tip. Tie the spokes where they cross with fine wire AND SOLDER. It's simplewith FLUXITE-but IMPORTANT.

ALL MECHANICS WLL HAVE

FLUXITE

IT SIMPLIFIES ALL SOLDERING
Write for Book on the ART OF " SOFT" SOLDERING and for Leaflels on
CASEHARDENING STEEL and TEMPERING TOOLS with FLUXITE.

FLUXITE LTD., Dept. P.M., Bermondsey Street, S.E.I

MAKE MONEY-making casts

 with V —AMMORDA grand spare-time occupation
wrthour any previous experience, you can mass produce any object from a cliessman to a candlestick, statuette or model ship, in plaster, resin, concrete, etc. ... with " VINAMOLD," the flexible mould that gives the BEST results. Easy to work, can be used over and over again. Needs NO special equipment, provides a
proftable and enjoyable spare-tlme occupation with profitable and en
minimum outlay.
"VINAMOLD" is the nexible mould employed by leading industries, including the big film studios: Trade enquiries are invited.

Wrise for full details and instructions.
VINYL Products lid., (Dedt. P.M.2), Butter Hill, CARSHALTON,

'MARLCO' H.S.S. KEYWAY. BROACHES

\star Range : No. I Set $\frac{1 i n}{}$. $-\frac{5}{16} \mathrm{in}$. No. 2 Set $\frac{5}{16}$ in. $-\frac{1}{2}$ in.

* For PARALLEL or TAPER keyways to B.S.S. 46, or non-standard.
* Sold in sets or individually.

Full particulars on request.
W. H. MARLEY \& CO., LIMITED ENG. T. DEPT., New Southgate Works, I05, High Road, London, N.JI.

Telephone: ENTerprise 5234

CONVECTOR HEATER

BABY ALARM

SOIL HEATER

14 DAYS' APPROVAL

Our data shows cleariy and
concisely how to make modern equipment. We invite you to judge this data for yourself, send for it. study it, and if you think there are any snags please recurn it. We will gladly refund your cash in full.
Remember you simply assemble standard components into our craftsman-made cabinets, thereby getting professional instruments at half cost.
Our data sheets (Blueprints, etc.), which ire continually being revised, are available as follows: Radio 1/6, T.V. 716, Radiogram 216, Personal Portable 216, Electric Bed Warmer 115 , Clothes AirerlDrier 116, Soil Heater 116. Convector Heater 116 , Baby Alarm 116, Seed Propagator 116. Many others in preparation

BED WARMER

CLOTHES AIRERIDRIER

TELEVISION E. FE (I) WINDMILL HILL, RUISLIP MANOR, MIDDX and at 152-153, FLEET STREET, E.C.4.

For Metallworking

or Woodworking

engineering company limited, beeston, nottingham.

THERMOLECTRICS LTD. CHAPEL WORKS . HAMPTON-ON-THAMES.
 Here is an opportunit, for the amateur engineer to acquire a precision Bi-metal Thermostat consrolling A.C. currents of Amp within the temparature range 50 degrees to 200 degrees Fahrenheit. The range of application is wide and includes. Temp. warning devices, control of small ovens, incubators, Electric Blankets. etc. ASBESTOS FLEXIBLE HEATING ASEESTOS FLEXIBLE HEATINC CORD. H. per yard. In the following resistances : I5, 25 . 200 . 400 Stanms per yard. For Eleceric Blankets, Small Ovens, experimental heating DRAWING AND INSTRUCTIONS

 for the construction of 60 in . $\times 30 \mathrm{ih}$. ElecericBlanket, 215 each. $\overrightarrow{\text { ASBESTOS SLAG WOL. If per to }}$
ASBESTOS SLAG WOOL, II-per tb. INE-CORD SWITCHES. I Amf
THREE HEAT SERIES PARALLEL LINE-COR 250 v . 716 each.
BI-METAL. 6 in, wide $x .03 \mathrm{sin}$. 401 - per lb .

FRANK'S of GLASGOW

EX-GOVT. PRISMATIC BINOCULARS
Best British makes, 6×30. Eye-picee focusing. Complete with Wab Case. Guaranteed $£ 7-19-6$

EX-R.A.F. REV. COUNTERS

A beautifully made centre zero instrument for the
 direct reading of revs. up to I.400 F.P.M. Clock or anti-clock. Dial is $4 \frac{1}{2} \mathrm{in}$. and incorporated in the instrument are two additional countersone a trip which can be zeroed, and the other a cumulative counter (as in a car speedomecer). New and
perfect, post included, $\mathbf{3 7 / 6}$

PRISMATIC OPTICAL UNITS
No magnification but can be adapted for use as prismatic monocular,

including postaze. 10/6

MSE OPTICAL CHUCKS

This soolmakers. chuck is an optical locating device and a chuck combined in one tool. UNUSED AND PERFECT at almost half maker's price.
(Please state chuck capacity required.)
Optical units only for fitting to customers' existing chucks, $61 / 5 /$. . Postage, $1 / 6$ extra. Full details on request.

EX-R.A.F. MARCHING COMPASSES

Mk. I. Approximately 2 in . sq. Jewelled bearings. A precision compass with which
accurate bearings can be taken. NEW or as new.
Including postage,

BRITEX MICROSCOPES

A soundly designed and well-constructed microscope with built-in illumination. Specifica-

SATISFACTION GUARANTEED OR FULL REFUND
CHARIES FRANK mam sum
Instrument Makers and Dealers since 1907.

67-73, SALTMARKET

GLASGOW, C.I

have been used by the Engineers and Surveyors responsible for the world's most famous constructions. The more important your work the greater the necessity for Reliable and Accurate Instruments. Insist on using only Thornton's for complete satisfaction. Illustrated catalogue sent post free on request.

$$
\begin{aligned}
& \text { A. G THORNTON LTD } \\
& \text { Drawing Instrwment "Specialists } \\
& \text { WYTHENJHAWE, MANCHESTER } \\
& \text { Tel: WYThenshawe } 2277 \text { (4 lines) }
\end{aligned}
$$

EXPERT ADVICE ON YOUR CAREER

An unusual opportunity you cannot afeopd to miss

FREE CONFIDENTIAL ADVICE FORM

Please send me a copy of "ENGINEERING OPPORTUNITIES" and your expert advice on how I can best advance my career and make the most of to-day's opportunities. I understand that the details given on this form will be treated in strict confidence and assume no obligations whatsoever.

NAME.
(PLEASE WRITE IN BLOCK LETTERS)
AGE.
DATE.

ADDRESS

> Are you looked upon as an up-and-coming man in your job Have you already been noticed by the right people or are you just one of the crowd, plodding along in a rut that leads nowhere? YOU have it in you to succed-to be somebody, but only experts can help you find out where YOUR opportunity lies. Fill in this Confidential Advice Form and our Carcers Experts-they have helped thousands of men just like you-will send you a frank, personal letter of advice on your best method of achieving success in Engineering. Whether you act on our suggestions will be for you to decide. But you owe it to yourself to find out what you COULD achieve. ..

What type of position appeals to you most
Have you a particular hobby or recreation?
Where were you educated i.
At what age did you leave school?
What were your strongest subjects at school?.
Have you attended classes since leaving school
Have you any knowledge of technical subjects? (II so, give details).

What is your present occupation ?
What positions have you previously held ?

Have you served an Apprenticeship? (If so, give details).

Would you like to secure promotion in your present work or prefer to enter.a different branch of the Engineering industry ?

What salary would you be prepared to accept for the time being ?
If you would like to put some ietters after your name, please state what examination or qualification interests you

If, after considering the foregoing information, our Advisory Expert believes that you would benefit from a special course of instruction, how many kours a week could you devote to it?
On taking the course would you need the immediate assistance of our Employment Dept. (licensed annually by London County Council) ?

Any other information about yourself which you think will assist us to weigh up your case before we send you a letter of personal advice.
the handbook and personal advice are free \& without oblication

Complete and post this Advice Form today!
THE ADVISORY MANAGER

IF YOU PREFER NOT TO CUT THIS PAGE, COPY THE FORM OR WRITE A LETTER

MAY, 1952
 VOL. XIX
 PRACTICAL MECHANICS EDITOR
 No. 221
 F. J. CAMM

Owing to the paper shortage "The Cyclist," "Practical Motorist," and "Home Movies" are temporarily incorporated.

FAIR COMMENT
Nuclear

AN official of the Aircraft Nuclear Propulsion project of The General Electric Company of America says that nuclear energy is ideal for the propulsion of aircraft. It will, I think, be many years, however, before we have an aircraft propelled by atomic energy. Aircraft design at present is veering towards jet and turbine propulsion, the planes themselves somewhat resembling the darts of our school days. Of course, the advantages of a highly concentrated source of heat as is possible with fission are great. The consumption of rare elements such as uranium 235 or plutonium 239 could only be justified in an emergency such as war, for it is unlikely that in peace time the considerable sums necessary for development would be made available. The development of the atom bomb and other devices dependent upon nuclear energy in conformity with our rearmament programme make the possibility of atomic propelled vehicles a problem for future development. It is interesting, however, to think about those possibilities. A nuclear aircraft could encircle the earth many times without stopping, travel around the world at local midnight with the lower vulnerability which night flying confers. The careful husbanding of fuel and the detailed planning of flight speed and altitude would be unnecessary. Such a plane could fly at maximum speed at any altitude and be sure of having sufficient fuel to return to its base. The general design of the aeroplane, which under present systems is limited by fuel storage space, such as large tanks which may have to be built into the wings, thus preventing the use of the most ideal form of aerofoil, would undergo radical change. The performance possibilities of a nuclear plane would be limited only by the freedom of the aircraft and power plant from breakdown, and by the ability of the crew to endure long hours of flight and exposure to nuclear radiation.
One pound of uranium 235 on undergoing fission will liberate heat equivalent to the energy contained in $1,700,000$ pounds of petrol and the superiority of nuclear fuel over chemical fuel is thus $1,700,000: 1$. There have been
many proposals for an atomic power plant including the use of turbine-driven propellers, a turbojet in which the reactor takes the place of combustion chambers and a ramjet engine also substituting a reactor for the combustion chamber. In all cases, except that of the ramjet, and other direct 'air cycles, it is necessary that heat be transferred in a coolant from the reactor to the propelling machinery. The reactor would take the form of a cylindrical body throughout which a fissionable material, such as uranium or plutonium, is distributed. The reactor would also contain passages for the flow of coolant through it, necessary for removal of heat. It would contain a material called a moderator such as graphite, ordinary water, heavy water, beryllium or beryllium oxide.

Reaction commences with the capture of a neutron by a nucleus of, say, uranium 235, and since neutrons are present in small concentrations everywhere in the atmosphere, this serves to start the reaction. Immediately after the capture of the neutron, the: nucleus disintegrates with the liberation of two to three neutrons and two atomic nuclei, both smaller than the original nucleus.

Recently the American Government announced that the nuclear aircraft programme is entering a new phase. The aircraft gas-turbine department of a large American company is producing the propulsion system and an American aircraft company is producing the air frame. As 1 have said, we are at present committed so far ahead to our current production and design of planes that nuclear aircraft will not appear for

some yaars, except perhaps as experimental prototypes. But that they will come is beyond all doubt.

OUR 200 COMPETITION

THE free-for-all competition announced last month has already competition closes on June ist, so there is still time for every reader who has not already done so, to get to work. The rules of the competition are repeated on page 270 of this issue.

"TELEVISION PRINCIPLES AND PRACTICE"

W^{E} have just published an important new handbook' entitled " Television Principles and Practice." It costs 25 s ., or 25 s .8 d . by post, and contains 215 pages. The chapters are: The BBC Television System; The Television Camera ; From Transmitter to Receiver; Projection Time Bases; D.C. Receivers; Aerials; A London-Birmingham Converter; Servicing; Interference; A Pattern Generator; Choosing a Receiver; The Beveridge Report; Dictionary of Television Terms; Index. The edition is necessarily limited by the paper position, so copies should be ordered without delay.

"SUCCESSFUL CONJURING FOR AMATEURS"

READERS will remember that some years ago Norman Hunter, a former colleague of Maskelyne, contributed a long series of articles on the secrets of conjuring. This material has now been collected into book form and has just been published by C. Arthur Pearson, Ltd., at 18s., or I8s. 6 d . from the offices of this journal. It is the most comprehensive book on the subject of conjuring ever published. Issued under the title of "Successful Conjuring for Amateurs" it covers such subjects as: Conjurors' Equipment; Tricks with Flowers; Magic Wands; Card Tricks; Coin Tricks; Tricks with Billiard Balls; Chemical Magic; Cookery Tricks; Levitation; Lamp and Candle Tricks; Tricks with Ropes. The text is illustrated by 400 diagrams and half-tones, and it contains everything the modern conjuror needs to know.-F.J.C.

The completed Chimes.

THE task was undertaken from first principles and so entailed some entertaining experimentation, which eventually led to the satisfactory result which is here described. When the door bell-push is pushed the Westminster chimes are played on four notes, $\mathrm{G}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, in the following order:

$$
\begin{array}{llllllll}
\mathrm{I} & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\mathrm{E} & \mathrm{C} & \mathrm{D} & \mathrm{G} & \mathrm{G} & \mathrm{D} & \mathrm{E} & \mathrm{C}
\end{array}
$$

It is therefore necessary to have four gongs and to strike each gong twice in the cycle. This can, of course, be arranged in many ways, but for simplicity it was decided to use a camshaft fitted with four double cams, and to rotate the shaft by means of a clock weight so that, on release by a relay-operated trigger, the shaft makes one complete revolution before coming back to its stop, resetting the trigger in the process. A uniform speed of rotation is achieved by making the shaft drive a clock mechanism from which the spring and escapement have been removed, and to which an air-paddle on the fastest spindle has been fitted. The gongs consist of brass tubes, as in the usual two-gong type. A feature of

Making Westminster
Constructional Details of an Interesting
this design is that the operation of the chimes is not affected by the duration of the contact at the bell-push. As soon as the button is depressed the apparatus commences its cycle, and will complete it whether the

> This article was first published in the July, 1949, issue of Practical Mechanics, which is now out of print. It is now reprinted in response to many requests from readers.

circuit continues to be closed or not. If the visitor continues to press the bell the cycle will simply repeat.

The Gongs

Reference to a book on physics revealed that the frequency of a musical note doubles in every octave, i.e., the frequencies of two notes an octave apart are in the ratio $1: 2$, the higher note naturally having the higher frequency; that an octave consists of 12 equal semi-tone intervals; and that the natural frequency of vibration of a tube varies inversely as the square of its length. It was therefore possible to construct the table (see opposite page), giving the relative frequencies and lengths for a full octave.

The "relative frequency" column is constructed by inserting in geometric means between I and 2 , and the "relative length" column is obtained by dividing I by the square root of the corresponding relative frequency.

In the present case we are only concerned with the notes G, C, D and E, but the full octave is given for the benefit of those who may wish to construct chimes giving other tunes.

The actual lengths, diameters and thicknesses of the tubes are immaterial, provided that the lengths are in the proportions 1.000 : 0.866: 0.817: 0.773, and that the diameters and thicknesses of all the tubes are equal. In the present case

Fig. I (Right),-Details of the striker mechanism.

Fig. 2 (Left).-Relative positions of cams, looking from " E " end.

Fig. 4.-Details of weight assembly.

Tubular Door Chimes

Mechanically-operated Unit

tubes Iin. o.d. by No. I6 SWG were selected, having the following lengths:

$$
\begin{array}{ll}
\text { G } & 20.000 \mathrm{in} . \\
\text { C } & 17.32 \mathrm{in} . \\
\text { D (or, say, } & 175 / 16 \mathrm{in} .) \\
\text { E } & 16.34 \mathrm{in} .(\text { (or, say, } \\
& 15.46 \mathrm{in} . \\
\text { (or, say, } & 15 / 32 \mathrm{in} .) \\
15 / 32 \mathrm{in} .)
\end{array}
$$

It is probable, however, that larger and longer tubes, say, 14 in . o.d. No. 16 SWG, with " G " 3 oin. long, would give a better tone. The suspension was done with wire loops, as shown in Fig. r, with satisfactory results, but other means, such as nylon threads, might be slightly better.

Strikers

The principle of the strikers is illustrated in Fig 1, from which it will be noted that when at rest the striker should be well clear of the tube. The inertia, or momentum, of the blow: carries the head beyond its rest

Fig. 5.-Side vierv of speed regulator drive.

By G. MURRAY

position to strike the gong, and the elasticity of the striker rod withdraws the head so that the blow is sharp. The rope facing on the stop beam "deadens" the vibration of the striker rod and so prevents repetition. The tension of the springs is a somewhat critical factor and the correct tension was arrived at after some experimenting and adjustment. The springs used were the light type used in some armlets (for holding up shirt sleeves) and the adjustment provided consists of a bicycle-spoke nut. on a threaded hook, as shown in Fig. I.

Table of of Relative Frequencies			
No. of note	Notation	Relative frequency	Relative length
1	G	1.000	1.000
2	G ${ }_{\text {\% }}$	1.059	. 974
3	A	1.122	945
4	$\mathrm{A}^{\text {P }}$	1.189	. 919
5	B	1. 260	. 892
6	C	1.334	. 866
7	C	1.414	843
8	D	1. 496	. 817
9	D	1. 586	. 795
10	E	1.680	. 773
11	F	1. 782	. 750
12	F	1.888	. 729
13	GI	2.000	707

Cams

The cams were made of $\frac{1}{4} \mathrm{in}$-thick laminated bakelite (a similar tough material would do equally as well) forced on to the $3 / 16$ in. diameter silver steel camshaft. Each cam is different from the other three, as indicated in Fig. 2, in which the relative positions on the shaft looking from the " E " end are shown. The method for working out

Fig. 3 (Left).-Details of trigger mechanism and relay, and section showing pivot for trigger lever.

Fig. 6 (Below).Details of main frame, camshaft bearings, and catch.

This sketch of the completed chimes shows the decorated box and position of the strikers.
the cam position is also shown in Fig. 2. A circle is divided into eight equi-angular sectors, the eight radii being numbered I to 8 in a direction contary to that of the rotation, and the appropriate note letters are set against each. The cam shapes are easily derived from the resulting diagram.

Trigger Mechanism

On the " E " end of the camshaft, outside the frame, a fibre pulley to carry the weights is fitted, with a projecting stop to engage the trigger mechanism, which is shown in Fig. 3. The lever turns freely on a spindle firmly attached to the frame and is retained in a "neutral" position by a light wire spring of the shape shown. The trigger is sweated to its spindle, which turns freely in sheet brass bearings sweated to the polepieces of the relay.

Relay

The pole-pieces, which form the frame of the relay, are made of 1 in . by I/I6 in. strip

iron and the core is made from a round bar $\frac{1}{4} \mathrm{in}$. diameter. The ends of the core are slightly shouldered and riveted into holes in the pole-pieces after the coil is in position. The armature is a piece of iron in. by $1 / 16 \mathrm{in}$. by I in. sweated to the vertical arm of the trigger. Adjusting screws with locknuts are provided to limit the travel of the armature. It is important that the armature should not come too close to the poles (about I/i6in. minimum) as otherwise residual magnetism may prevent proper operation, and the travel should be kept to the minimum necessary to operate the trigger.

The coil contains about 1,000 turns of No. 26 gauge enamelled copper wire and was wound on a lathe. The coil former was made by wrapping several turns of stout writing paper around $\frac{1}{4}$ in. diameter rod and smearing Durofix on the paper as it was wrapped. The flanges of the former are of $I / 16 \mathrm{in}$. fibre-board, glued to the paper tube.

It is important to grease the $\frac{1}{4} \mathrm{in}$. rod so that it can be withdrawn after serving as a mandret for winding the coil. It is also advisable to support the flanges of the former with metal washers to prevent splaying during winding. Elecirically-minded readers may criticise and improve on this. The coil actually used, however, is compact and gives excellent resilts when operated on is volts A.C. from a bell transformer. It would probably work equally as well from batteries. The ends of the coil wire are simply carried to terminals mounted on the back-board, and connected into the door-bell circuit.

Weights

Considerable thought and some experimentation were devoted to devising a simple weight system which could be regulated and be easy to rewind, since the weights control the speed of operation. The arrangement finally adopted is slown in Fig. 4. This consists of two weights of different size connected by a cord of "plastic string," which is readily obtainable. The weights are made of brass tubes containing lead shot, the quantity of which can be adjusted until the proper conditions are obtained. It is obvious that the difference between the weights provides the operating torque, while the small, or
counter-weight, determines the tension necessary for the driving friction. The cord should be as long as possible, consistent with the space available, so as to give as many chimes as possible between winds. Rewinding is done simply by lifting the larger wêight and, therefore, the height at which the apparatus is fixed should not be more than about six feet, and it should be placed on a conveniently accessible position. The diameter of the cord and the shape of the groove in the driving pulley should be combined in such a way that the cord bears on the sides of the groove, not on the bottom of it.

Speed Control

A small clock which had been discarded as beyond repair was dismantled, the spring and escapement were removed and a copperfoil air-paddle of the largest size that could be accommodated in the available space was soldered to the fastest spindle. A small fibre pulley was forced on to the winding spindle. The clock was ther mounted on the backboard so that the small pulley was in line with the pulley at the "G" end of the camshaft and the two pulleys were connected by a belt made from a leather bootlace. The tension in the belt can be adjusted by rotating the clock on its mounting bracket, which is secured by a nut to one of the columns of the clock-frame. (See Fig. 5.)

Main Frame

This is made from 1 in. by $1 / 16 \mathrm{in}$. strip iron, bent to shape and riveted together as shown in Fig. 6, in which it will be noted that the camshaft is held in slots by means of bolted catches. This arrangement permits the camshaft, with its cams and pulleys, to be assembled complete before placing in posi-
tion. The camshaft assembly is shown in Fig. 6. This shaft should run freely in the bearings but with a minimum slack and endplay, the latter being prevented by the collars which bear on the inside faces of the frame.

The striker shaft is fixed and is held in position by collars placed on the outside of the frame. The strikers turn freely on the striker shaft and are held. at the proper spacing by sleeves made of bamboo cane to avoid chatter noises, slipped over the shaft as shown in Fig. 8.

Hack-board and Cover

The back-board was made from Iin. thick pine and an oak cover box was fitted as shown in Fig. 9. A decorative design in

Fig. 8.-Striker shaft and spacers.
brass may be fixed to the front of the box. If the box is waxed light oak and the brass work highly polished the general appearance is quite pleasing, but other, perhaps, more modernistic designs may appeal to other readers. The brasswork might be chromeplated and the cover could be worked in aluminium or coloured Perspex.

The iron parts should be protected by enamelling or lacquer applied before final assembly, care being taken to remove all paint or lacquer from the bearings and other working surfaces, which should be lubricated with a good light oil applied very sparingly.

CRAFT workers who have made experiments in clay modelling, and particularly those who have already constructed and made use of the simple potter's wheel which was described in this journal in December last, will, doubtless, have cast around for some workable means of adequately firing their clayware in order to convert the soft, plastic material into the hard, unglazed "biscuit" pottery proper.

At first thought it might appear to be a very simple matter to construct a really practical furnace or kiln capable of rurning out pottery articles of small size on a home scale. In fact, however, this is far from being the case. In the first place there are many different types of kilns to choose from-electric, or coke-fired, updraught, dawn-draught, direct firing, muffle fired, large, small, firebrick, asbestos, etc.the various types and modifications of constructional materials used being, fairly numerous. Secondly, the kiln must be of small dimensions so that it becomes "easy" in fuel, and so that all work may be conducted on a necessarily small experimental scale. The kiln must be capable of attaining a temperature of at least $1,100 \mathrm{deg}$. C ., which is a true white heat, for although the mere surface glazing of pottery articles can be effected as low as 800 deg. C., a kiln which is intended to be used for the serious purpose of adequately firing the various hard pottery clays becomes more or less useless unless it is able to reach up on occasion beyond a round thousand degrees of well-maintained Centigrade temperature.

The kiln described in this article is primarily of the coke-fired, "up-draught" type. It would, of course, burn coal, wood, or, indeed, any other variety of solid fuel. It can be made to any required size or altered in size when desired. Possibly, too, it might be converted into a kiln of the gas or electricheating type, although it is not very likely that this modification will be required in view of the present costs of gas or electricity supplies. Therefore, interested readers building this kiln are well advised to stick to solid-fuel firing which, after all, is the oldest known heating principle in the pottery world.

The kiln may be constructed in various positions. It may be built standing directly on the ground, as shown in the illustration,

Details of a Practical Coke-fired Kiln for Craft-pottery Firing

By J. F. STIRLING

or it may be incorporated into an existing old cellar fireplace, provided that the latter has a good flue and is adequately lined with firebrick or other high insulating material. Usually, the best site for a kiln of this type is out-of-dwors in a sheltered position so that all danger of fire is well minimised.

Heat Conservation Essential

Maximum conservation of interior heat must be the aim of the constructor of any type of pottery kiln, since valuable heat is wasted and the attainment of high temperature absolutely precluded if the generated heat is allowed to leak away and escape by radiation. That is why the entire set-up must be effected in firebrick or in some other type of heat-insulated brickware.
Let us begin with the actual oven or inner compartment in which the clay articles are to be baked. It is, of course, possible to do without this enclosing muffe or compartment, but, in this event, the clay articles have to be enclosed in some type of protective cases, or "saggers," of refractory material,
for otherwise they would be directly exposed to the flames and to the hot gases of the furnace, which influences would be to their constant detriment.
Muffles of various sizes and patterns can be obtained from dealers in potters' requisites, such as Wengers, Ltd., of Eururia, Staffs, but it is well to remember that an ordinary fireclay crucible of sufficient size can be used as a pottery muffle. So, too, can even a common flower pot laid on its side, provided that it is perfectly dry to begin with, although such an article, even when quite dry, is liable to crack and to spall or flake a good deal as the higher firing temperatures are reached.

Another type of improvised muffle may consist of a fairly substantial sheet of true asbestos (not the asbestos-cement composition used for roofing and similar purposes) fitted together into the shape of a cube and held in this position by means of adjacent firebricks, the joints of the asbestos wall so formed being carefully luted-up with ordinary clay or fireclay cement.

Sectional diagram showing the imner and outer construction of a simple pottery kiln.

Small Kiln is Economical

The size of the enclosed muffle should be about Ift. cube. Although it will not provide for any large-size articles to be baked therein, we must remember that the smaller the model the less the fuel used, which fact, in these days of high fuel cost, is of primary importance. Bear in mind, also, that this is inerely an experimental kiln, designed mainly with the aim of allowing the homecraft pottery worker to attain some practical experience and facility in pottery firing and general kiln working at the lowest capital and maintenance costs. Having derived reasonable success with a kiln of this type, the individual worker may always consider going on to better things.

A study of the accompanying illustration of the kiln in section will show that the inner muffle rests directly on a brickwork ledge by means of its own weight. The entire muffle is closely surrounded with brickwork, a space of about three or four inches being provided all round the muffle for the passage of the hot gases from the coke fire which rests on firebars set into the supporting brickwork about a foot or ten incties below the muffle.

The firebars are raised about six inches above the ground in order to form a suitable ashpit from which the ashes may be raked from time to time. The best floor for the ashpit consists of a two-inch layer of cement (preferably refractory cement) laid on a bed of rubble. Over the upper surface of the cement is laid one or two sheets of asbestos and, finally, a half-inch sheet or plate of iron or steel.

The fluc of the kiln consists of an ordinary drainpipe. If this is not sufficiently long to give a good draught, it may be extended by means of another length of earthernware os iron pipe incerted into or constructed over it.

Firebrick Surround

The whole of the inner brickwork of the furnace or kiln must be constructed throughout of firebrick material, or of refractory brickwork of some other kind. For a really good.job, refractory brickwork or firebrick should be used exclusively for the making of the entire furnace set-up, but if expense is a primary consideration, the outer brickwork may be effected in common brick material, or even in old or secondhand building bricks, and one or two extra brick courses may be added to make up for the lack of thickness. of firebrick. The rear and sides of the brickwork surround of the kiln should be well mortared with any good refractory cement or mortar. A serviceable mixture for such material consists of about equal parts of crushed, baked fireclay and ordinary unbaked fireclay made into a plastic paste with water, and a little raw clay.

In order to insert the pottery articles into the muffle and the withdraw them after firing, one end of the muffle must be left open. After the insertion of the articles, this open end is closed by means of a sheet of asbestos, or a thin stone slab, which is placed close against it, the joints being luted-up with a fireclay plastic paste. The whole of this side of the kiln will then have to be brickedup in the usual manner, but ordinary clay should be used for the mortaring because this side of the kiln will be required to be pulled down in order to reach the muffle again after the firing and to extract the contents therefrom. The mortaring of the brickwork on this side should, naturally, be of the lightest description possible. Despite this, it is of the highest importance to ensure that every chink and crevice in the brickwork of the furnace is properly plugged and mortared up with clay or some other suitable refractory material, for, in a furnace of this type, every scrap of heat is precious.

The Spy Hole

A very desirable refinement for the working of the kiln can be provided by setting an iron tube of about 1 in. internal diameter into the brickwork of the "removable" side of the kiln, so as to provide a "spy hole," the inner end of the tube proceeding an inch or two into the muffle itself, and the outer end of the tube being plugged with a lump of hard clay. After removing this plug, the condition of the muffle interior can be viewed directly during the heating process.

If a kiln of this type is erected out of doors in a very exposed position, it will be as well to plaster a clay paste over the sides and top of the whole of the exterior brickwork in order to lessen the escape of heat by radiation and, also, to protect the kiln during its working from heavy or continuous rain and from other inclement weather conditions.

Firing the Kiln

After placing the clay articles in the muffle and building-up the open side of the kiln, a slow fire is started in the grate by means of paper, wood and coal. This fuel, once ignited, then requires a small addition of
coke in order to keep it gently burning. If the kiln has been freshly erected, it is best to maintain a slow fire for as long as possible in order to dry out the walls of the furnace. A complete day's preliminary slow firing is not too long. Indeed, the slower the

A potter's cone before and after firing to 1,000 deg. C.
firing of this kiln, the better the pottery, for imperfectly fashioned clay articles can very frequently be cracked, spalled or distorted by over-rapid firing.

When it is desired to increase the kiln temperature the fire in the grate is gradually built up into a roasting, roaring mass by means of small coke. In this matter the length of the kiln chimney or flue pipe will determine the draught and the ease with which a fire can be maintained under good burning conditions. Suffice it to say that the average kiln firing lasts from 8 to 12 hours and sometimes longer, according to the type of pottery which is being fired. It is here that actual visual inspection of the muffle interior through the "spy hole" is of the greatest assistance in determining how long to continue the firing.
Incidentally, from dealers in potters' requisites may be obtained various cones and miniature pyramids composed of special claylike materials which soften and thus cause the cone or pyramid to bend over at predetermined temperatures. The experienced potter usually places one or two of thes a cones in such a position in the muffle that they are able to be observed directly
through the spy hole during the firing of the killn.

Ample Cooling Time Important

After the contents of the muffle are adjudged to be well and properly fired, the fire in the grate is damped down by raking it out or by covering it with ashes. Ample time should be allowed for the kiln to cool down thoroughly before the removable side is pulled down in order to get at the muffle and its contents. A kiln may appear to be perfectly cold outside, yet it may hold much interior heat. So much, indeed, that the sudden inrush of cold air on to the still very hot pots within the muffle may cause them to crack. As a rule, it is safest, on the first operation of the kiln, to allow it a good three days in order to remove its pottery contents without risk of such thermal mishap.

Operation

In the operation of a kiln of this type nothing of the general cleanliness, convenience and ease of working characteristics of the electric and gas-fired kilns must be expected. But then, of course, the coke-fired kiln can be set up and operated at a mere fraction of the working cost of its more efficient and aristocratic relatives.

Given a properly built coke-fired kiln, the success of its firing depends mainly on the regulation of its furnace draught and the adequate conservation of its internal heat. There is always a merely small up-draught at first and, to the inexperienced user of the kiln, this may give rise to some trouble in the starting of the fire. However, as the kiln structure gradually warms up the draught becomes better and better in consequence. If, by chance, the draught is too free at first, it is probable that, subsequently, the extra heat obtained from the fire in the later stages of the heating will merely go up the chimney and be wasted completely. Do not, therefore, ever attempt to "force" a kiln fire during its initial and early stages.

As a final and important hint, do not try to design and build up any kiln of this type on too large a scale until you have at least obtained adequate experience and familiarity with the details of working a small-sized kiln, and of economically managing its fire. An interior muffle of about fft cubic capacity is sufficient for any inexperienced pot-tery-minded individual to start with. Such a muffle capacity will accommodate about a dozen average small-sized pots.

[^0]

Constructional Details of a Useful Appliance for Home Use

By A. D. STUBBS

advancing the knurled head of the internal sleeve a sixth of a turn, but if corrosion has really got to work on the seating, you may have to advance the sleeve, in easy stages, for half a turn or more. The finished job leaves nothing to be desired.

Constructional Details

The whole of the tool is made from mild steel. Fig, 2 gives the internal slceve in half section. The bore size is not arbitrary, since the spindle can be machined to suit, so the $29 / 64 \mathrm{in}$. dimension can be reduced if you wish.

Fig. 2.-Section and end viese of the imernal sleeve.

If you have no knurling tool the slecve could te machined from hexagon mild steel for use with a spanner, but only a very light pressure is needed when the cutter is in action.

My screwing is 26 threads per inch. You need a finc thread, but here again there is no reason to keep to the 26 if your change wheels do not come just right.

The taper screwed body is shown in Fig. 3, also in half section, and it is assumed that your lathe can be set over for taper screwing. Alternatively, two or more bodies could be machined, with parallel threads to suit the taps fitted in your home, in which case I suggest that the total length of the body should remain at $1-1 / 3 z \mathrm{in}$. The knurled portion could be set amidships, with one size thread to the right and another to the left
then, with luck, two sizes will sce you successfully round the house. By keeping to 1-1/32in. or somewhere near it, you retain a long internal thread, so lengthening the life: of the tool.
Knurling is not essential, but if you resort either to hexagon or to the use of a footprint wrench on a turned diameter, be very light handed when screwing the body into the tap. Aluminium taps in particular do not take kindly to rough usage.

Main Spindle

Fig. 4 shows the main portion of the spindle, $7 / 16 \mathrm{in}$. diameter, but it should be a sliding fit in the sleeve. Remember that the cutter threads may not be $5 / 16$ in. Whitworth, but otherwise the job is straight forward. The tommy bar is 2 in. long overall and is a drive fit in the spindle.
Having reseated the only bad tap which 1 possess, of course I had to go all round the house, so now I do not anticipate requiring the tool for another twenty years or so, but if I had either purchased one or em-: ployed a plumber I should have been out of pocket, as all the steel used came from that untidy heap of raw material on the floor of my workshop.
Incidentally, I am going to find the set of cutters very useful as end mills, and with that in mind an arbor has already been produced.

Fig. 4.-The main spindle, showing the hole for sommy bar, and phreaded end for cutter.

Fig. 3.-Part section and end view of the taper-screwed body.
re-washering (pernaps it is superfluous to mention the advisability of closing the main valve) and the taper threaded body of the tool is screwed into the body of the tap. This assumes that the taper body is near enough to the cutter to allow the taper to seat well into the tap. Now screw down the internal sleeve, Fig. 2, until the cutter face contacts the tap seating, and operate the cutter by rotating the tommy-barred end.
If the tap seating is only just below par, it can be brought into good condition by

Fluorescent Lighting

Fig. 1.-Circuit diagram for a single fuorescent tube.

FLUORESCENT lighting although not now used a great deal in homes, seems to have great prospects in the near future.

The first thing to consider if contemplating installation of fluorescent lighting is the life and cost of components. There are four main parts, viz.: chokes; tube ; starter switch and power factor correction condenser. There is, of course, the tube holder and other fixing devices.

The Tube

This is the part which does the work and provides the light. The rest of the equipment required is for starting purposes only.

The various sizes of tubes, and wattage, are given in the accompanying table.

Nominal length	Dia. of tube	Wattage
5 ft .	$1{ }^{1} \mathrm{in}$,	80
4 ft .	$1 \frac{1}{1} \mathrm{in}$.	40
${ }_{2}^{3 \mathrm{ft} \text {. (2) }}$	${ }_{1} \mathrm{in}$ in in . (I)	30 20 20)
$1 \frac{1}{\mathrm{f}} \mathrm{f}$.	Iin.	15

The tube may have bipin ends or may be bayonet cap, depending on the make. The life of a tube is about 3 times that of a filament bulb, that is, an average of 2,500 to 3,000 hours. After 3,000 hours the tube should be replaced even if it still works as its efficiency begins to drop rapidly. With regard to the prices of tubes: they vary from £I to 25 s . for an 80 watt straight tube, and other prices in proportion according to the size of the tubes.

The Choke

This is a special component and not one as used for radio. It has to carry first a heating current of 1.3 amps (for 80 watt) and a continuous current of approximately .85 amp . (again 80 watt A.C. tube) ; so it has to be designed to stand these currents, yet still have an inductance to do its job properly. The price varies from 25 s. to $£ 3$ and it has a long life if treated properly.

The Starter

This may be of two main types:-(I) The gas or glow type which consists of a bulb with helium at a reduced pressure. It is a small gas discharged tube of the negative glow type, the electrodes of which form the switch contacts. One or both electrodes are of bimetal strip operation, described later. The price is about 5 s . Type 2. Instead of

Its Operation and Advantages Briefly Explained
By E. GODLEY

the bimetal strips being heated by the passage of current through the helium gas, they are heated by a small heater, which is run in series with the lamp. The contacts are closed when cold, while in the first type the contacts are open when not in use. The starter will last for up to 15,000 hours, if used under proper conditions.
In Fig. 1, RI and CI are to cut down

Fig. 2.-Circuit arrangement for twin tubes.
interference with radio and television. Values are RI about 100 ohms ± 20 per cent. ; Ci $.005 \mu \mathrm{f}$. ± 20 per cent.

Operation

In Fig. I, switch SI is closed and the current flows through the heaters, the starting switch and choke. The starting switch, if of the glow type, when first switched on allows a current of about 100 milliamps to flow through the helium gas, so heating up the bimetal strips, the contacts close and allow a current of 1.3 amps. (80 watt tube) to flow through the heaters. When the contacts close they short out the voltage across the helium gas so that the starter cools down and the bimetal strip contacts open suddenly. The magnetic field round the achoke quickly collapses causing a high voltage to be induced across the choke (approx. 750 volts) and this fires the tube, which has been ionised near the ends by the heaters. Once ionised the gas in the tube will then continue to carry a current. This short circuits the starting equipment. The voltage developed across the tube when running is about 106 volts.

Stroboscopic Effect

One of the chief disadvantages of fluorescent lighting is the stroboscopic effect, i.e., where things such as moving machinery appear to stand still or even move backward. These are, of course, optical illusions. Sometimes it is desirable to lessen or cut out this effect. It is done by having two tubes wired as in Fig. 2, with condenser C2 in the circuit of one of the tubes. This not only makes the tubes flash out of synchronism but makes the power factor near unity. The value of condenser to use is 7.5 $\mu \mathrm{f}$. ($8 \mu \mathrm{f}$. may be used with success, and 275 volt A.C. working is advised). This
arrangement cannot be used on direct current supplies.

Other disadvantages are if the tube is to be used below $10^{\circ} \mathrm{C}$ it is more difficult to make it strike. Below $5^{\circ} \mathrm{C}$ it is impossible to use ordinary fluorescent tubes.

Operating on D.C.

If fluorescent tubes are used on D.C. a resistance must be used to limit the current as the choke's D.C. resistance is too small to do this. Also, mercury tends to collect at one end of the tube on D.C., but this can be overcome by reversing the polarity of the mains at intervals, say, every day of use. Below 220 volts D.C. starting may be difficult and is not recommended.

Advantages

The advantages of fluorescent lighting are the efficiency is greater than other types of lighting. Efficiency is about 35 lumens per watt after 100 hours of tube life. About 20 per cent. of energy consumed is given out as useful light. (See Fig. 3.) In a filament lamp only 5 per cent. or less is useful light. Fluorescent lighting can be used where heat is not wanted because running temperature of tube is only $20^{\circ} \mathrm{C}$ above ambient temperature. Colour and absence of glare are further advantages of fluorescent lighting. Colour can be varied by the powder used in the tube during manufacture. Also, it is not a point source of light so no hard shadows are formed. By having two lamps very little shadow is formed so parts of the room which are normally in semi-darkness can be used, and so less space is wasted.

From the foregoing notes it will be seen

Fluorescent Tube

Electrical input

Energy Output

$1!$	4
405 watts	$45-5$ watts
Vislble	Padiant heat
light.	
Conducted and	
convected heat	

Fig. 3.-The relative efficiency of a fluorescent tube and a filament lamp.
that the initial cost of installation of fluorescent. lighting is higher than that now used, viz., filament lighting, but after installation fluorescent lighting has so many advantages it is well worth the cost and wih its greater efficiency running costs are much lower.

Making a Vertical Enlarger

Constructional Details of Apparatus for Enlarging " 120 " Films

By D. H. INGHAM

(Concluded from page 239 April issue)

TWO blocks of metal measuring approximately $2 \frac{1}{2}$ in. $x 2 \mathrm{in}$. $x \frac{3 i n}{4}$. weré cast in a suitable tin and, after marking out, as much surplus metal as possible was cut away. Then the brackets were worked into shape with a half-round file. The slots in the end may vary in size according to the type of camera used. (See Fig. 6.)

Lamphouse

Constructional details are found in Fig. 7. Little comment is necessary, except to mention that the hole in the top allows for horizontal as well as the vertical adjustment of the lamp. The bracket at the rear serves as a holder for the camera back whilst in position on the enlarger. The lamp stem is a gin. length of $\frac{1}{2} \mathrm{in}$. brass tube, with a thread at one end for a $\frac{1}{2}$ in. brass lampholder.

Gallery

Here again we resort to the use of $\mathrm{I} / 32 \mathrm{in}$. sheet copper and curtain rail. The rail is cut to a length of $11 \frac{3}{2} \mathrm{in}$, and bent round till the ends meet to form a circle $3^{\frac{3}{4} \mathrm{in}}$. dia.

Fig. 6.-Perspective view of camera mount.
After bending, bind a length of wire round the perimeter to hold the ends together, tin the narrower flange and sweat on to a piece of copper 33 in . dia., and solder up the ends. Finally, cut a hole in the centre of the copper $\mathrm{I}_{4}^{3} \mathrm{in}$. dia.

Next cut out a piece of copper to the
imensions given in Fig 8 and drill a $\frac{1}{2}$ in.

Fig. 7.-Sectional rierw of lamphouse and gallery.
hole in the centre. Solder a rin . piece of $\frac{1}{2}$ in. Yorkshire copper to the perimeter of the hole, and drill and tap the side of this to admit a fin. thumuscrew. Bend legs A and B down till bases are 2in. apart and likewise with C and D . Make a $\frac{1}{8} \mathrm{in}$. lip on

Fig. 9. (Left).Part sectional viert showing details of pulley assembly.

Fig. 10. (Right).Details of spacing saddles, and method of fixing stay wires.
each leg as shown, and solder centrally to gallery.

Gallery Cone or Cowl

Details of the cone, which is cut from sheet copper, are shown in Fig. 8, and when finished it is soldered to the top of the gallery.

Pulley Assembly

Details of this are found in Fig. 9. The shaft is a $4^{\frac{1}{4} \mathrm{i}} \mathrm{i}$. piece of $\frac{1}{2} \mathrm{in}$. mild steel and the bearings can be cut from $\frac{1}{2} \mathrm{in}$. Yorkshire

Fig. 8.-Details of gallery parts.
copper tube, the ends being stopped.
The I ${ }^{\frac{1}{4}} \mathrm{in}$. pulley was originally a V-pulley. One flange was cut away and a x ind . dia. brass washer bolted to the end, and this allows a wider surface for the elevating rope to wind on to.
The stay wire.rope is anchored to the pulleys through the holes shown with nipples

from cycle spokes. Care being taken to splay out the wire ends before soldering.

The method of fixing the stay wires to the saddles at the top of the upright columns is shown in Fig. 10.

Elevating Ropes

The elevating ropes are cut from $3 / 32$ in. wire rope and measure 2 ft . Iin. and 2 ft . 6 in . respectively. The counterweight is suspended from the large pulley on the 2 ft . 6 in. piece, whilst the enlarger is suspended on the $x \frac{1}{4} i n$. pulley by the 2 ft . Iin. piece, and attached to the enlarger by means of a small " S " hook, affixed to the loop of stay wire on the bracket as thown in Fig. 2.

The counterweight is a piece of 2 in . brass tube filled with lead, the weight first being determined by experiment.

Extension Box

In the case of a camera which possesses extending bellows, this part may not be necessary as the distance required between lens and negative may be covered by the range of the bellows. This being the case, the legs for the camera mount will be shorter.

The distance between lens and negative

Fig. 11.-Plan and side elevation of extension box.
can be determined by experiment, prior to the construction of the box, details of which are given in Fig. II. The depth of the box will vary according to the focal length of the camera used. As the boxes are a sliding fit, it may be found advantageous to construct more than one-each of different depths; by this means a much wider range of enlargement than formerly stated may be permitted.

For finishing the enlarger the whole of the interior, including the gallery, is painted with photographic or drop black paint. The exterior of the lamphouse and the base likewise. The copper. and brass parts may be polished with steel wool and lacquered with water white cellulose lacquer.

The gallery, lamphouse and condenser assembly are all separate sections, fitting loosely together. The whole assembly rests firmly on the bracket arms, thus allowing easy access to all parts, and allowing the body to be simply lifted off for storing purposes.

The flex is bound to the stay wire to keep it out of harm's way.

To ensure that no light would escape from the condenser assembly a piece of thick blotting paper was sandwiched between each joint, the paper then being trimmed off to form an efficient gasket.

Great National Free-for-all Competition £200 IN PRIZES!

WE invite all our readers to enter our latest competition, details. of which first appeared last month. Readers will see that the competition is divided into four sections with prizes of $£_{25} £_{2} 15$, and $£_{2} 10$ in each section.

There is no entrance fee!
The competition is only open to regular readers of this journal and entries must be accompanied by the coupon on page 64 (Cyclist supplement).

Here is a chance for inventive readers to put their talents to good account, for apart from the prizes we shall pay ar our standard rates for all ideas published but which are unsuccessful in gaining a prize.

Almost every reader has either thought of or actually made some gadget, some improvement to an existing piece of apparatus, or some device which he has not been able to obtain because it is not on the market.

There are hundreds of things about the home which are in need of improvement, even in the most modern and
up-to-date households. A great deal of the housewife's work can be drudgery. Perhaps you can suggest a device for making such work less irksome. A simple washing machine that will fit into the sink; an ash and cinder disposer; . a hand-operated clothes washing machine; new uses for the vacuum cleaner; improvements to the lawnmower; garage accessories; lighting devices. These are but a few of the directions to which you can turn your inventive ability. There are hundreds of others. Spend a little time working them out and putting the details down on to paper. It is not necessary, of course, to make working models; drawings and descriptions will suffice. We do not, however, bar models. They may be submitted as well if they are necessary to explain the idea.

Flat owners particularly, because of their limited space, will welcome suggestions for small labour-saving devices which they can accommodate in their small homes. A fan-operated clothes drier and airèr, a small refrigerator, a tap-
operated food cooler, a carpet sponger, an upholstery cleanèr, a mechanical pot scourer-there is plenty of scope.

Readers should note that the closing date is June Ist, and where drawings or models are required to be returned, stamps should be enclosed.

See that your name and address is written on every drawing and document.

See that the descriptions and drawings are sufficiently detailed to enable the judges to clearly visualise your idea.

All entries, of course, must be the original work of the competitor and they must not have been published before. They must not be copies of existing devices, fixtures or apparatus.

You may submit entries in each of the four sections listed below :
I. Kitchen appliances (cooking, washing).
2. Cleaning items.
3. Leisure aids.
4. General household fitments.

Readers may submit any number of entries in each and all of the sections.

RULES

1. All entries must be original and the unaided work of the competitor. They must not be copies or infringements of existing apparatus.
2. Each entry must consist of drawings and a written description explaining the device. Drawings need not be to scale, although scale drawings are preferred. They may be made in pencil or in ink. Models as well as drawings may be submitted if desired. The coupon on page 64 must be enclosed.
3. We reserve the right to publish any of the entries, but competitors will be advised beforchand in case they wish to apply for a patent.
4. Each entry must clearly indicate the size, shape, conception and operation of the idea and describe the materials to be used in the making. The availability of such materials, cheapness of manufacture and total cost will be taken into consideration by the judges who will be presided over by the Editor of this journal.
5. Stamps to cover the return of the drawings and/or models must be enclosed with each entry.
6. All entries must be submitted not later than June Ist, 1952, when judging will commence. The result will appear in our August issue.
7. Entries should be addressed to The Editor, Practical Mechanics, Tower House, Southampton Street, Strand, W.C.2, and envelopes or packages should be marked "Competition" in the top left-hand corner.

Earthing Circuits and Trips

The Efficient Earthing of Electrical Apparatus in Accordance with I.E.E. Regulations

IN order to avoid the risk of electric shock and fire in the event of failure of the insulation of electrical apparatus, it is common practice to connect the metallic framework of the apparatus and the metallic sheathing of the cable conductors to the general mass of earth. Earthing is required, under certain specified conditions, by the Regulations for the Electrical Equipment of Buildings (the I.E.E. Regulations) issued by the Institution of Electrical Engineers ; the Electrical Regulations of the

Fig. 1.-Path of earth fault current in a threephase circuit.
Factory and Workshops Act ; the Coal Mines Act ; and the Quarry General Regulations (Electricity), 1938

Components of the Earth Loop

Every effort should be made to keep the earthing resistance low enough to pass sufficient current to operate the fuses or the excess current protective trips, in the event of an earth fault resulting from the failure of insulation between the conductors and metallic sheathing. In order to ensure this, the impedance of the earth loup should not exceed the value given by

Voltage to earth of the system.
Operating value of the excess-clirrent protective device.
As indicated in Fig. 1, the path of the earthfault current on a motor or other circuit may include the following items:
(a) The windings of the generating plant or transformer.
(b) Cables between the supply plant and the faulty apparatus.
(c). Possibly the windings of the consuming plant.
(d) Resistance of the faulty insulation.
(e) The impedance of the consumer's earth continuity conductor.
(f) The impedance of the consumer's earthing lead.
(g) The resistance of the consumer's earth electrode.
(h) The resistance of the earth between the electrodes.
(i) The resistance of the supply plant carth electrode.
(j) The impedance of the supply plant earthing lead.
Item (h) is so low that it can be neglected.

In many cases item (g) is fairly high, whilst item (i) may not be very low in the case of an isolated consumer fed from a transformer on the consumer's premises. However, if the supply plant is accessible to the consumer these three items can be eliminated from the earthing circuit by connecting the framework of the plant to the earthed neutral point of the system by means of a low-resistance conductor, as shown at X in Fig. 1. If, however, the supply plant consists of a step-down transformer which also supplies other consumers, the supply authority may not favour the metalwork being earthed to this point on account of the risk that an earth fault on the plant of another consumer may raise the voltage of the neutral, and thus make the framework of the connected plant dangerously "alive."
Since one cannot predict at which point an earth fault will occur, or the severity of the fault, the items (c) and (d) will be unknown. In fact, an earth fault may occur at a point on the winding which is connected to the earthed neutral conductor, as shown in Fig. 2. In this case no excess current will flow in the circuit, and the voltage V_{1} between the framework of the plant and earth would merely be equal to the line-toneutral voltage V_{s} less the volt drop V_{2} on the live line and the consumer's apparatus. The volt drop V , on the neutral line is normally less than 5 per cent. of the line-toneutral voltage V_{s}, and would not introduce

Fig. 2.-Conditions with earth fault on neutral of single-phase apparatus zuith urearthed metallic sheathing.
any serious risk of shock. Fig. 3 shows that if the fault occurred on a conductor directly connected to the live main the metallic sheathing would become alive at the voltage V_{4}, which is actually equal to the line-to-neutral voltage V_{N} of the system less the volt drop V_{3} on the line cable. V_{4} is likely to be more than 95 per cent. of VN. In this case also, if the metallic sheathing is not earthed, no excess current will flow, and excess-current devices will not cause the faulty circuit to be isolated from the supply.
Earth Fault Current, Heating and Voltage
Fig. 4 shows a more usual type of fault at some intermediate point on the windings of earthed plant. An excess current will flow because there is a path for the fault current through the earthing circuit consisting of the

Fig. 3.-Conditions with earth fault on live side of single-phase apparatus vith unearthed metalic sheathing.
earth continuity conductor (e), the earthing lead (f), and the earth electrode (g). The value of the earth fault current will largely depend on the impedance of the earthing circuit, whilst the voltage V_{8} between the metallic sheathing and earth will be equal to the sum of the volt drops V_{5}, V_{6} and V_{3} across these parts. This volt drop V_{8} will be equal to the product of the earth-fault current I and the impedance of items (c), (f) and (g) of the earthing circuit. Provided that the earthing conductors are fairly straight and do not pass through iron and steel tube (so that little or no magnetic field will be produced by fault-current through the earthing conductor), the impedance of the earthing circuit will be practically the same as its resistance. This should be low in order to allow maximum earth-fault current to flow so as to operate the excess-current trips, and in order to limit the voltage of the metallic sheathing.
As in any other conductor, current through the earth wire will create heat, the rate of heating being proportional to $I^{2} R$, where I is the fault current, and R the resistance of the earthing circuit. It is essential that the earthing conductor be large enough to carry the fault current without dangerous overheating ; that there should be no high resistance connection in the earthing circuit at which sufficient heat might be generated to start a fire; and that the resistance of the earthing circuit and the operating values of the fuses, or trips, be low enough to cause a faulty circuit to be disconnected before its temperature has risen to a dangerously high value.

In view of the many variable quantitics in the earthing circuit, it is probably best to regard the earth protection as unsafe if it would allow the metallic sheathing of the apparatus or cables to remain alive at more than 40 volts to earth. In this case the resistance $\left(\mathbf{R}_{\mathrm{E}}\right)$ composed of items (e) (f) and (g) of Fig, 4 through the earthing circuit from the metallic sheathing to the general mass of earth should not be more than the value given by the formula

$$
\mathbf{R}_{E}=\quad 40
$$

Operating value of fuses or excess current trips.
Thus for a circuit which is protected by a fuse rated at 5 amps , and melting at about io amps, the maximum earthing resistance $\left(R_{E}\right)$ should not exceed 4 ohms. For a cir-

Fig. 4.-Volt drops in earthing circuit under fault conditions.
cuit protected by a fuse rated at 15 amps , and melting at about 30 amps , the earthing resistance should not exceed I .33 ohms.

It should be noted that the volt drop or difference which may exist between any two points of the earthing circuit under fault conditions will be equal to the product of fault current and the resistance (ohm's) hetween the two points. It is of interest to note that the I.E.E. Regulations specify a maximum resistance for items (e) and (f)

Fig. 5-Connections of a voltage-operated trip in a-three-phase motor circuit.
of Fig. 4 of I ohm, measured from any point on the metallic sheathing of any apparatus to the, connection to earth. With a 1 -ohm resistance the voltage difference between the metallic sheathing and the earth electrode under fault conditions could be equal to the operating value of the fuse or excess current trip, expressed in volts. Thus, with a trip operating at 30 amps this value of resistance could allow 30 volts to exist between the sheathing and the carth electrode, with possibly a much higher value between the sheathing and the general mass of earth, or any material, such as piping or structural steelwork, which is in contact with earth.

A Practical Example

The difficulties of providing efficient protection against earth faults is seen by considering a fairly large motor, such as a $60-\mathrm{h} . \mathrm{p}$. 400 -volt three-phase motor. Such a machine may have a full load current of about 83 amps , and is unlikely to be protected by excess-current trips which are set at less than roo amps. With such a setting, however, the maximum resistance of items (e) (f) and (g) should not exceed $\frac{40}{100}=0.4$ ohm if the voltage between the metallic sheathing and earth is, at all times, to be limited to 40 volts. Such low values of earth circuit may be practicable if the metallic framework is connected to the earthed neutral point of the system and if the earthing circuit is regularly tested and maintained. If, however, earth-fault current has to pass down an earth electrode and into the general mass of earth, it may be very difficult to maintain such a low earthing-circuit resistance. It will be appreciated that the resistance of many earth electrodes varies from time to time due to variation in the dampness of the soil, and may also increase due to chemicals in the soil being dissolved away.

It may be noted that the value of earthing resistance specified for items (e) (f) and (g) of the $60-\mathrm{h} . \mathrm{p}$. motor is lower than the maximum value specified for items (e) and (f) by the I.E.E. Regulations. Another point which may be noted is that the maximum amount of heat which would be allowed by an earthing-circuit resistance of 0.4 ohm and excess-current trips set at 100 amps is, by the formula: rate of heating $=$ $I^{2} R, 4,000$ watts or 4 kW . In the event of there being a resistance of 0.1 ohm at one point of the earthing circuit the heat generated at that point might be as much as 1 kW , the same as given by

a small electric fire. The risk of fire, if the

 circuit is not quickly disconnected, will be obvious, as will also the need for the avoidance of high resistance connections in the earthing circuit.So far no standard earthing system appears to have been agreed upon for various conditions. It is interesting to note that the Quarries General Regulations (Electricity), 1938, require that where the earth plate for the metallic sheathing is not connected to the earth electrode for the system neutral, the resistance between them through the earth (items (g) (h) and (i) of Fig. 1) shall not be more than 2 ohms, or else the resistance of the consumer's earth electrode (g) shall not exceed 2 ohms. Such low values are often very difficult to obtain on a quarry, and it will be appreciated that, even with earth electrode resistances limited to those values, dangerous conditions may exist under some fault conditions.

Voltage-operated Leakage Trips

The difficulty of providing efficient protection against earth faults by direct connection of the framework and metallic sheathing to earth is recognised in most regulations, which, in certain circumstances, require other methods of protection against : earth faults. For example, the I.E.E regulations require the provision of earth leakage trips to disconnect all live conductors of the faulty circuit from the supply on the occurrence of an earth fault, with the exception of the following cases: (I) where the maximum possible fault current can be proved to be more than the operating current of the fuse or excess current trips protecting the circuit;

Fig. 6.-Incorrect location of earth electrode for voltage-operated leakage trip.
(2) where the current rating of the circuit breaker or fuse does not exceed 100 amps and the metalwork is connected to a suitable earthing terminal, provided by the supply authority, to to a suitable water main; (3) circuits using only insulated apparatus ; and (4) electrode water-heater or electrodeboiler installations where the shell is solidly connected to the neutral conductor.
There are two main types of earth leakage trips. The first type is operated in the event of a rise of voltage between the protected metal and earth; such voltage should not exceed about 40 volts. The second type of trips operates when the leakage current to earth reaches 15 per cent. of the rated current, or 5 amps , whichever is the greater. The latter type, current-operated trips, are required by the quarries regulations for apparatus exceeding 650 volts A.C. and for portable and transportable apparatus operating on more than 125 volts A.C
The connections of the former type of trip, voltage-operated, in which a leakage trip coil T is connected between the metallic sheathing of the plant and the earth electrode E, is shown in Fig. 5. Should the metallic sheathing become alive at about 40 volts the resultant current through the coil T will create sufficient electro-magnetic
effect to attract the armature ; the movement of the armature then opens the contacts C to de-energise the trip coil B of the circuit breaker. The voltage-operated trip has the advantage that a small fraction of an amp. leakage current will cause the circuit to be isolated from the supply; in consequence the earth electrode provided for the trip coil T need not be of very low resistance. Other systems need a low resistance earth electrode, and do not operate until an appreciable leakage current flows. The voltage-operated trip has the further advantage that the device can be tested quite simply by pressing the test key K to connect one fole of the supply to earth through the high resistance R, thus creating an artificial leakage current.

Whilst the directly earthed protective system can function with either fuses or circuit breakers.with excess-current trips, the voltage and current-operated trips can only be used with circuits controlled by circuit breakers with voltage trips. Either type of trip may be used on individual circuits, in which case the earthing systems used with voltage-operated trips must be separate. On the other hand, one trip may be provided for the whole of an installation, in which case the whole installation will be switched off automatically in the event of a leakage in one item.

Voltage-operated trips may, however, be rather troublesome in damp situations, due to frequent tripping resulting from slight leakage which may not be serious. The lead L, from a voltage-operated trip coil T to earth, should be insulated in order to avoid the possibility of the coil being shortcircuited by the lead making contact with the protected metalwork in any way. Voltageoperated trips can also be used in addition to direct earthing, as shown in Fig. 6. In this case the earth electrode for the trip coil \mathbf{T} must be placed outside the resistance area of the electrode E provided for direct earthing, say, more than io yards away. Otherwise, as in Fig. 6, the voltage V_{4} across the trip coil T may be less than the voltage V_{2} across the direct earth electrode E. In any case, with the connections shown in Fig. 6, the volt drop V_{2} due to an earth fault at the motor will be less than the voltage V_{3} between the motor frame and earth by the amount of the volt drop V_{I} across the earth continuity conductor. From the point of view of safety it is an advantage to connect the trip coil T to the metalwork at the opposite end of the circuit to the direct earthing connection. In any case, the continuity resistance must be kept as low as possible, especially if direct earthing is used as well as voltage-operated trips. It must be remembered that such direct earthing may unintentionally exist due to contact between metallic framework or sheathing and earthed piping or structural steelwork.

Current-operated Leakage Trips

Provided that the insulation of a circuit is sound, the current which passes in one direc-

3 Phase Supply

Fig. 7.-Comnections of two types of currentoperated earth leakage trips.
tion through one or two lines of an alternating current system at any instant will return through the other line or lines; thus the algebraic sum of the currents in a sound A.C. circuit will be zero. This is the principle of current-operated trips which are shown in Fig. 7. At A all the lines of a circuit pass through a ring type current transformer with a secondary winding which is connected to a trip coil T. Alternatively, as at B, each line may have a separate current transformer with the secondary windings connected to the trip coil T_{1} in such a way that the resultant current of the secondary windings will flow through the trip-coil. If the circuit is sound there will be no resultant current and the electromagnet effect -of the current in the lines will be cancelled out.

In the event of an earth fault, as indicated in Fig. 7, some of the current flowing to the apparatus through one line or lines will return to the supply plant through the other line or lines ; there will then be a resultant current and resultant magnetic effect in the ring type transformer, or resultant current in
the separate transformers, which will cause current through the trip coil to trip out the circuit breaker. With this system it is essential that the earthing circuit be maintained at low resistance in order to allow the passage of appreciable fault current.
It will be noted that current-operated trips directly control the fire risk, since they directly control the possible fault current which may be maintained. They only indirectly control the possible shock risk, however, because this depends on the resistance of the earthing circuit. Volt drop is equal to the product of current and resistance (or impedance). Voltage-operated trips directly control the shock risk, but only indirectly control the fire risk, because the heating effect and current depend on the resistance of the earthing circuit through which fault current flows. Heating is proportional to $I^{9} R$.

Conclusions

We may conclude that, in general, direct earthing is a reasonably good method of protection against earth fault risks for small
apparatus and low current circuits. It may also be suitable for a high current circuit where the metalwork and metallic sheathings can be connected to the earthed neutral point of the system. Assuming low continuity, resistance of the earthing conductors currentoperated trips should be quite satisfactory where a low resistance earthing connection can be provided or the metallic sheathing can be connected to the earthed neutral point of the system. It would, however, appear that voltage-operated trips have definite advantages for circuits, especially of high rating, where a low resistance earth connection is impracticable. Low resistance earthing continuity conductors are, however, essential if the plant is also earthed directly, whether intentionally or unintentionally.

The resistance of the earth continuity conductors should be tested periodically, together with the resistance of any earth electrode which is also provided for direct or solid earthing. Such testing is called for by all regulations which are concerned with this problem.

Making a Control Box

By E. W. DEAN

SINCE the end of the recent war I have acquired from various sources a number of fractional h.p. electric motors both AC/DC and DC only for operation on 6, 12 and 24 volts, and these have been adapted for an electric drill, a grinder, a polisher, and on occasions a coil-winder.

In order to run these machines it was necessary to wind a suitable transformer with a series of tappings, and as this entailed connections to switches and rectifiers, it was decided to construct a complete control-box containing all these parts, and with a fully switched and metered output.

A suitable transformer was obtained having a large core area of about 5 sq . in., and this had marked primary tappings of $10,0,200,220$ and 240 . The secondary tappings were unmarked and these windings were removed without disturbing the primary section.

It was decided that a ratio of 8 turns per volt per sq. in. would be suitable for winding the new secondary, and a quantity of 16 gauge enamelled copper wire was obtained and wound with the following tappings: 0 , $5,5,5,10,10,10,10,15$ volts, each layer being interleaved with brown paper varnished with shellac. After completing this work I found among my stock a length of
enamelled copper strip of $3 / 16$ by $\frac{1}{4}$ section, and this was wound on as well with the idea of using a spot-welding or a low voltage soldering bit.
vice versa, so that either the large tappings The transformer was then fastened in a- at one end may be used or the small tapbox with a hinged lid which originally contained a bomb-sight azimuth bracket, and a piece of tufnol sheet cut to size and fitted into the top for the panel above the transformer.

The components shown in Fig. I were fitted into the panel and wired as shown in Fig. 2, the rectifiers are $10-12$-volt $\frac{1}{2} \mathrm{amp}$. selenium rectifiers wired in parallel and bolted to the side of the case, the sides of which were drilled in order to assist the cooling of the rectifiers.

The terminals ABC are connected as follows: A to one end of the secondary windings, and each of the tappings are connected to a switch contact

Fig. 1.-The panel of the control box.
pings at the other end. By moving the meter switch the voltage across AB or BC may be checked on the 70 -volt meter.

A DC-only machine is connected across the DC terminals and switched by the DC switch, the voltage being varied by altering the voltage across the terminals AB.

Similarly the two-pin socket is connected across the AB terminals so that the electric drill may be plugged straight into it.

The high-voltage tappings of the primary were brought out on to insulated terminals in order to use a 240 -volt soldering iron when required.

The high-current tappings are brought out to two large terminals at the top lefthand of the board.

The whole box is closed and locked and a series of different plugs are available.

Fig. 18a.-Reflex Klystron CVir6.
(By courtesy of E.M.I. Research Laboratories, Lrd.)

THE development of radar during the late war and the increasing demand for further channels of communication have resulted in extensive researches being made into what is termed the micro-wave band of the electro-magnetic spectrum.
It is the object of this short article to familiarise the non-technical reader with the uses of electro-magnetic waves in the ultrahigh frequency range and to explain in simple fashion, by analogy and definition, the manner in which energy of this nature is produced and radiated into space.

Fig. 2.-Graphical representation of an electromagnetic wave.

It is desirable at an early stage in such an endeavour to confess that without recourse to mathematics much of the phenomena referred to may not be capable of a rigorous treatment. To offset this and-it is hopedto increase the value of the article to the more serious reader an extensive bibliography is given, in conclusion, and many of the finest books and articles on the subject tabulated as suggested works of reference.

Radio Waves

Radio waves are electio-magnetic waves fundamentally similar to light waves, and for this reason they appear in the electro-magnetic spectrum along with the other energy carriers of free space. The electro-magnetic spectrum is represented diagrammatically in Fig. I, and from this it will be-seen that the characteristics which distinguish any one class of wave from another class are frequency and wavelength; frequency is defined as the number of vibrations, or waves, or cycles of any periodic phenomena per second; and wavelength as the distance lerween two

GENERATING MICRO

The Scientific Principles Simply Treated

similar and successive points on an alternating wave, e.g., between successive maxima or minima. The relationship between frequency and wavelength is given by the expression-

$$
\lambda=\frac{c}{f}
$$

Whère λ is the wavelength c is the velocity of propagation f is the frequency.
The velocity of propagation is a universal constant equal, according to Michelson, to $(2.99796 \pm 0.00004) \times 10^{10} \mathrm{~cm}$. per sec. in vacuo; this is generally accepted as $300,000,000$ metres $/ \mathrm{sec}$. (i.e., 3×10^{8} metres/ sec.).

$$
\text { Thus } \lambda=\frac{3 \times 10^{9}}{\mathrm{f}} \text { metres. }
$$

A graphical representation of an electromagnetic wave is shown in Fig. 2, and the wave must be considered as a travelling disturbance in space produced by the accelera-
they are unaffected by the ionosphere.* For this reason they are ideally suited for shortdistance communication and radio navigational aids, such as radar. It is a feature of an electrical circuit carrying current which is alternating that electrical energy is radiated therefrom as electro-magnetic waves. This, however, is very small and insignificant, unless the dimensions of the circuit approximate the order of magnitude of a wavelength of the current therein. It is for this reason that a power carrying lead and return cable having, say, a spacing of 15 ft . and a current of frequency 50 cycles/second radiates practically no energy ; since the wavelength at 50 cycles $/ \mathrm{sec}$. is $\frac{3 \times 10^{8}}{50}=6 \times 10^{6}$ metres, a distance approximating to a $1 / 6 \mathrm{th}$ part of the meridian of the earth. Even when we consider a radio wave having 3,000 kilocycle frequency the wavelength is 100 metres long and the "radiator" needs to possess dimensions

tion of an electric charge, and comprising an electric field at right angles to a magnetic field, both of which are moving at the same velocity (i.e., c) in a direction normal to the plane containing the two fields.

Now, radio waves are sub-divided into specific groups according to frequency and wavelength: there are long waves (low frequency) ; medium waves (medium frequency) ; short waves (high frequency); and ultra-short waves (ultra-high frequency). The last-mentioned group may have wavelengths of such a low order that they are most easily expressible in centimetres, and such waves are termed centimetre waves or micro-waves ; they are generally considered to lie between the wavelength of 3 m . ($100 \mathrm{Mc} / \mathrm{s}$) and Icm . ($30,000 \mathrm{Mc} / \mathrm{s}$).
It is a property of centimetre waves that they have substantially straight-line propagation, analagous to that of light waves, and

Fig. 3 (Left).-Relative size of parabolic reflectors required to produce identical beams at various frequencies.

Fig. 4 (Right).-In an electro-magnetic wave, points EI_{I} and MI are in time phase and space quadrature.
approaching this value. With centimetre waves, however, the problem is very much changed; the wavelength may be 10 cm : or lower, and this facilitates the construction of radiating devices large in comparison with the wavelength yet reasonable in overall dimensions. This is shown comparatively in Fig. 3^{2}, the reflectors being parabolic in shape as these have found much favour, for propagation of centimetre waves, in that if the distance to the focal point is a number of wavelengths, optical conditions are approached and the wave across the mouth of the reflector is a plane wave.

The Generation of Radio Waves

It has been explained in earlier references
*Ionosphere-the region above the earth's surface in which jonisation occurs.

NAVES FOR RADAR

By F. W. COUSINS, A.M.I.E.E.

that radio waves are electro-magnetic and consist of two fields-an electric field and a magnetic field in time phase and space quadrature, that is to say, points such as maxima and minima on the respective waves are coincident in time but at 90 deg. to each other in space (Fig. 4). Such waves are produced in the ether* by oscillatory electrical circuits, a portion of the energy in the circuit becoming detached and radiated into space.

To fully appreciate this phenomenon and the principles involved it is profitable to digress a little and consider the genealogy of the oscillatory circuit, thereby to prepare the way, smoothly, for a study of high frequency

(a)

(b)

Fig. 5:-Simple oscillatory circuits.
oscillators specifically designed to produce the centimetre waves.
One of the most homely mechanical devices using an oscillatory "circuit" is the pendulum clock, the oscillatory mass being used to "feed back" a portion of its energy to maintain the pendulum action and drive itself. All oscillatory devices depend upon a state of resonance which is characterised by a "see-sawing" of energy to and fro from potential energy to kinetic energy, at a rate depending on the mass and stiffness of the mass suspension member or analogous. properties. It can be shown that the period of oscillation T for a mass M supported by a
*The ether is a hypothetical non-material entity supposed to fill all space, and capable of transmititing electro-magnetic waves.

spring of stiffness S is given by the expression : $\mathrm{T}=2 \pi \sqrt{ } \mathrm{M} / \mathrm{S}$
Similarly for a pendulum of length " 1 " the period T is expressed

$$
\mathrm{T}=2 \pi \sqrt{ } 1 / \mathrm{g}
$$

where g is the gravitational constant.
Now in the electrical oscillatory circuit M and S are equivalent to the electrical properties L (inductance) and C (capacitance), and once again the period T of the oscillatory phenomena is expressed as :

$$
\mathrm{T}=2 \pi \sqrt{\mathrm{~L}} . \dot{\mathrm{C}}
$$

$$
\begin{aligned}
& \text { and since frequency }=\frac{I}{T} \\
& \text { frequency }=\frac{I}{2 \pi \sqrt{L} \cdot C .}
\end{aligned}
$$

Consider the simple electrical circuits shown in Figs. 5(a), (b) and (c). In the first case, Fig. 5(a), the switch is open and the condenser is uncharged; now close the switch, Fig. 5(b), and the condenser becomes charged due to the plates of the condenser being in electrical contact with the poles of the battery.
If now the switch is moved to the position shown in Fig. 5(c) the condenser is able to discharge and a current flows through.the inductance L. When the condenser is charged an electric field exists between the plates thereof, and when the condenser is discharging the current flow through L causes a magnetic field to appear. It can be shown that the magnetic field is at a maximum when the electric field is zero.
Naturally an automatic switch must be employed, and in early oscillatory circuits this took the form of a spark gap. The spark gap behaves as a switch "closing," or breaking down as it is called, when the condenser reaches a finite voltage; such a circuit is shown in Fig. 6. If an alternating voltage is applied as portrayed, then as the voltage builds up so the condenser becomes more charged, and as the voltage falls to zero so the condenser will be able to discharge via the spark gap. With such a circuit the electric and magnetic fields are oscillatory and in time and space quadrature.

If the condenser plates are separated, then a greater volume of space is made available for carrying both the electric and magnetic fields-the circuit is then termed an open oscillator and the electric and magnetic fields produce an electro-magnetic wave in time phase and space quadrature.

If the condenser is separated to a marked extent, then the plates may be considered to form an aerial wire and earth; if these are joined by a wire having a certain amount of self inductance a simple aerial circuit is formed (Fig. 7).

If a source of alternating E.M.F. is included the operation will be similar to that described, it being desirable to emphasise that the radiated wave consists of electric and magnetic fields in time phase-it not being possible

Fig. 18b.-Another reflex Klystron CVII6. (By courtesy of E.M.I. Research Laboratories, Ltd.)
for them to-exist out of time phase on their journey through space, even though the fields induced in the circuit proper are 90° out of time phase.
Spark gap circuits are now rarely used since the spark tranismitter generates damped waves which have several undesirable qualities. The most important oscillators of recent years have been valve oscillators using the triode valve, which is fundamentally an amplifying valve. It is the ability of the triode to amplify which permits the oscillatory phenomena to occur in the attendant electrical resonant circuit; since the input power required is less than the amplified output,

Fig. 8.-Simple triode amplifier.

Fig. 9.-Curve showing how grid volts control anode current.
the output may be used to feed back a certain proportion of energy and supply its own input, thereby sustaining the oscillations. It is usual for such a valve oscillator to take power from a D.C. source and convert it into an A.C. output.
A simple triode amplifier is shown in

Fig. 6.-Two diagrams showing automatic switching in oscillatory circuits.

Fig. 10.-A simple valve oscillator circuit.
Fig. 8. It must be appreciated that electron flow from the cathode to the anode is strictly dependent upon the grid voltage; and since electron flow to the anode is the anode current, the grid volts are able to control the anode current over a considerable range (Fig. 9). Now grid volts are constantly changing in harmony with the A.C. supply and the anode current is made to rise from zero to maximum positive values, and this produces an alternating voltage in the inductively coupled output circuit. If the grid volts are supplied from the alternating output, Fig. ro, and the resonant circuit L.C. provided, then a simple valve oscillator is obtained. The grid supply is termed "feed back" and the oscillatory circuit is generally referred to as the "tank circuit," since a storage of energy is effected therein, not dissimilar to the flywheel of an internal combustion engine or the like.

In a reasonably well-designed circuit the oscillator may permit anode current to flow for approximately one-fifth of each cycle, the tank circuit using its "flywheel" action to sustain the oscillatory phenomena while the triode valve is resting.

A large number of valve oscillator circuits have been designed, and three of the most widely used are shown in Figs. 11(a), (b) and (c).

Limitations of Triode for High Frequency

 OperationThere are very definite limitations to the maximum frequency which may be obtained from a triode oscillator of the conventional pattern. These limitations arise from the electrode and electrode lead inductances, the capacitance of the inter-electrode spaces, and the electron transit time. Electron transit time is defined as the time taken for an electron to go from the cathode to the anode of a thermionic valve, and to give some idea
of this value it can be shown ${ }^{2}$ that in a triode the time required for electrons to move from the cathode to the grid plane is given by the relationship:

$$
\mathrm{t}=\frac{5 \times 10^{-3}}{\left(\mathrm{Eg}+\frac{\mathrm{Eb}}{\mu}\right)^{\text {I }} \mathrm{s} \text { where }}
$$

Fig. 12.-Forced air cooled ultra-high frequency triodes ($1,000 \mathrm{Mc} . / \mathrm{sec}$.).
s is the cathode to grid distance in cms .
Eg is the control grid voltage.
Eb is the anode voltage-and
μ is the amplification factor.
In the normal operation of triodes it has been usual to arrange the phase difference between the grid and the anode potentials to be π radians, and it is therefore necessary

Fig. IIa.-Colpitts feedback oscillator circuit. in Fig. 12.
to keep the transit time of the electrons at a small fraction of the oscillation period.

At a frequency of operation producing waves of about 10 metres wavelength the period of oscillation approaches the electron transit time, and this seriously upsets the phase relationship necessary for the maintenance of the oscillations.

The most obvious remedy was to make the physical spacing between the electrodes as small as possible, so that although the electron velocities were still comparatively low, the short distances traversed made the actual transit time more suitable for the high frequency operation. The result of this scaling down of the physical dimensions produced the "acorn" and door-knob" valves, names now well accepted and originally coined because they were so highly descriptive of their appearance.

Another technique consisted in making the valves with grid, anode and cathode in planar form, and these were termed "lighthouse valves." Difficulties due to transit time phenomena were still in attendance, however, and speaking generally operation was restricted to a frequency of 1,000 Mc/sec.
Representative of the ultrahigh frequency triodes embodying the very latest techniques, such as forced air cooling, are the ACT22 and ACT23 made by The Gencral Electric Co., and shown
(To be continued)

Fig. 11b.-Hartley feedback oscillator circuit.

Books Reviewed

Racing Through the Century. By G. S. the difficulties which were faced and overcome Davison. Published by The T.T. by the early riders.
Special. Price 9s. 6d. net.

TIHE author realising that, because of the immensity of the subject, he would not be able to cover every event and incident in the world of motor-cycling since 1900, has stressed those occasions which he remembers personally. Into the 176 pages of this book is packed a wealth of personal recollection of machines and events and, perhaps more important, riders. At the commencement of the book, motor-cycling was in its infancy and the reader is taken through the sport's colourful history step by step, from the days when there was a $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. speed limit on English roads, to 1951, when Geoff Duke was the first man to become "Double Champion" in 350 c.c. and 500 c.c. classes. The bulk of the illustrations in the book are in cartoon form and portray many famous riders of the past. The foreword is written by Geoff Duke, who says that "Racing Through the Century" has given him his first insight into

The Past Presented. By Professor A. M. Low. Published by Peter Davies, Ltd. Price 12s. 6d. net.
THHE author's purpose is to present in easy-to-read form the salient facts about how the English people lived in the different periods of history from 1066 to the present day. He aims to prove that history is exciting when viewed from the point of view of the ordinary person of the time's activities and beliefs and the conditions in which he lived. History is boring, says Professor Low, only when the reader has to wade through masses of dates and uninteresting details of the uneventful reigns of various monarchs. The chapters of "The Past Presented " are formed by the reigns of various kings and queens, but only for the convenience of using the name to define the period. The authentic sketches with which the book is profusely illustrated were specially drawn
and are of such things as houses, clothing, weapons, transport, etc. A special index enables the reader to look up historical phrases and names encountered in plays and books in their proper setting.

Make and Do the Wooderaft Way. By J. G. Cone. Published by C. Arthur Pearson, Ltd. Price 7s. 6d: net.
W RITING under the nom-de-plume
"Eagleye," J. G. Cone was a regular contributor to the official organ of the Boy Scouts, "The Scout," and it is in response to many requests from readers of his articles on gadgets for the patrol room and camp, that this book was produced. The very many illustrations are all by the author and each of the articles dealt with has first been made and tried out by "Eagleye" before being described. Each different branch of the fascinating subject of woodcraft has a chapter devoted to it and several more are concerned with camping in all its phases. This volume should appeal, not only to scouts, but to all those who enjoy camping and particularly those who prefer to make their own gadgets.

LOCOMOTIVE VALVE GEARS

Constructional Details of Models of Valve Gears in Wood and Metal

THE table referring to scale reduction for models is given at the foot of this page. If the model is to be used for lecture purposes, the $2 \frac{1}{2} \mathrm{in}$. by 4 in . size will not be sufficiently large to be seen by the whole class, for it must be noted that the important thing for students to observe is the position of the edges of the valves in relation to the edges

By E. W. TWINING
(Concluded from page 234, April issue)
CT, crosshead thickness pieces. GPי, gudgeon pin. CL, crosshead extension lug. PR, piston rod. P, the piston. PL, piston lower half. PB, piston back. CYB, cylinder back plate. CYM, cylinder middle plate. CYT,

Fig. 6.-The four plates which make up the cylinder.
of the ports and the position of the piston indicator on the percentage scale. In such a case it would be advisable to double the size of the model and this dcubling would, of course, double all the scale fractions given in the table below. No. I becoming $\frac{2}{\mathrm{I}}$, No. $2 \frac{\mathrm{I}}{\mathrm{I}}$, and so on to No. 8 which would become $\frac{1}{4}$.
cylinder thickness plate. CYF, cylinder front plate. PV, piston valves. VR, valve ród. VS, valve spindle. VA, valve adjustment. UL, union link. CL, combination lever, RR, radius rod. EL, expansion link. LT, link trunnions. DB , expansion link dicblock. LG, link girder. RA, reversing arm. RS, reversing shaft. RVR, reversing rod. QS, quadrant sector.
single calibrated line made on the backplate and the pointer on the reversing rod, together with the knurled clamping nut, serves exactly the same purpose as a correctly modelled sector with a reversing lever. The reader must recognise the obvious fact that there is not sufficient'space available at the driving wheel end of the model to accommodate the usual form of screw, or lever, driver's reversing gear, and, after all, it is quite unnecessary; the arrangement shown provides all that is needed for " notching up" the cut-off and expansion periods by the valve.
Fig. 6 is a drawing of the four plates which make up the "cylinder"; the differences between them should be carefully noted; particularly the dimensions " X " and " Z ." The first is the normal cylinder diameter whilst " Z " in CYM, the third plate from the

Fig. 9.-The plates for forming the expansion link.
front, has a larger opening in order to provide a rebate in which PB, the piston backplate, slides. Fig. 7 shows the shapes of the four plates which make up the piston. One of these, " P ," is continuous with the piston rod and with the middle plate of the crosshead, all the plates of which latter are drawn in Fig. 8.
 pin. DA, the driving axle. CR, the connecting rod. RC, the return crank. RCP, return crank pin. EC, eccentric rod. CH , crosshead.

The last item, as shown in the drawing, is not really a quadrant, nor yet a sector but the

TABLE OF SCALE REDUCTION

$\times 1$	Cylinder	$2 \mathrm{in} \times 4 \mathrm{in}$.	Scale	1/1	A model only of about rolin. gauge.
$\times 2$	"	5 in. $\times 8$ in.	"	$\frac{1}{2}$	1 sin . gauge pleasure railway.
$\times 3$	\#	7 in . $\times 12 \mathrm{in}$.	\%	3	light, narrow gauge railway (24in.).
$\times 4$	"	ro in $\times 16 \mathrm{in}$.	"	4	Industrial narrow gauge railway.
$\times 5$	"	12 ! in, $\times 2$ in.	\%	t	Industrial narrow gauge railway.
+6	"	$15 \mathrm{in} . \times 24 \mathrm{in}$.	"	A	Light railway, 3 ft . to 3 ft . 6 in. gauge.
$\times 7$	"	17 ${ }^{\frac{1}{2} \text { in. } \times 28 \mathrm{in} \text {. }}$	"	1/7	Normal weight, standard gauge.
$\times 8$	"	20 in . $\times 32 \mathrm{in}$.	,	1	Heavy 2 cylinder, 8 coupled std. gauge.

The last detail drawing which it is thought necessary to give is Fig. 9. This represents the parts of the expansion link, composed of three main plates, four distance pieces, all alike, and which must be cut from a little thicker plate than that used for the two parts of the radius rod, and a washer to separate the link from the backplate. The curvature of the middle, slotted plate of the link must exactly equal the radius swept out by the dic block in the radius rod. The remaining parts of the model will, it is hoped, be obvious
from the general arrangement, Fig. 5 .
All pins, trunnions and working parts should be turned from brass rod and all screws, of brass, should have B.A. threads.

The models of the Walschaerts gear shown in the photographs and drawings (see April issue) are all designed for inside admission, which is, of course, now almost universal practice, and in putting a finish to a model when it is made, the inside of the valve chest, between the ports, may well be enamel-
painted vermilion and the exhaust spaces, at the ends, blue; these colours suggesting the hotter and cooler steam respectively. The cavitics of the ports and the cylinder can very well be of some neutral colour, such as grey. In all the large models made by the writer's firm, the backplate or frame was lacquered black and-the mahogany - plywood panel french polished.

The reader may be interested to know that the valve gear and motion, shown in Fig. 5,
was designed by the writer for, and was built into, two narrow gauge locomotives and that the full cut-off percentages worked out, in actual practice, at approximately the figures given for the subject of Figs. I and 2.

Reference has been made to the use of these models for lecturing purposes. Such lectures can, of course, be delivered not only to men actually employed in handling locomotives, but before engineering students in technical schools and engineering colleges.

Earth-satellite Vehicles

With Notes on How to Calculate Their Orbital Speed

ASATELLITE vehicle-a space-depôtis circling the Earth at a height of 3,200 miles.
How long does it take to get around, and what is its speed? If it were describing this orbit around Mars instead of Earth, what now would be the figures for time and speed?

The average reader who is unable, through lack of time and other circumstances, to go profoundly into these matters will assertand rightly-that it is a subject which is tied up with a good deal of high-flying mathematics; though the spirit may be willing, the exacting conditions of everyday life make it difficult for some to plan a protracted study of space mechanics.

However, as in many ather cases, a large part of its more onerous demands can be bypassed, and when the amateur discovers that he can work out for himself simple problems by easy arithmetic, it not only deepens his initial interest but enlarges his vision, giving an added urge to pursue the theme more extensively. Interplanetary matters are coming in for an ever-increasing amount of attention in magazines and the press. At the moment, a lot of factors militate against the actual projection of a spaceship right away from the Earth's pull, but attention is now being focused on the possibility of launching a space-depôt to act as a stepping-stone toouter space, where it would serve as a refuelling and repair station. Moreover, it would be equipped in such a way as to act in the capacity of a " roadhouse" or place of rest-a veritable space-port. We must also think of it as a centre of activity for radio, radar and TV exploitation and research, to say nothing of its obvious service to astronomy.

Tangential Send-off

If a space-station is taken out into the void and brought to rest it immediately begins to fall in the rational way, but, if given a proper tangential send-off, the centrifugal force set up will balance the inward pull of gravity and continuous orbiting takes place as with the Moon. Anything that continuously slows the vehicle will cause it to spiral inwards and ultimately crash, so it must be well outside our atmosphere. There are actually two celestial loops or orbits, the ellipse and the circle; our calculations apply exclusively to the laiter. The true circle is an immensely rare figure in space, so much so, that it may be wondered of what use it is to examine it arithmetically.

Changing the Orbit

The following is one instance :

A satellite vehicle is running in an elliptical orbit ; it is on an astronomical commission and the pilot receives a request from the astronomer on board to put the vehicle into a circular path for observational purposes; the arithmetic of such an orbit now has an immediate value.

Again, although the path of planet and moon is elliptical, the astronomers themselves set up a sort of average path, treating it as a
circle and quoting widely upon it in the mathematical sense. Consequently, the tyro is on perfectly safe ground and his efforts will not be wasted.

"Free Fall"

When any object whatever is tracking round a central orb in an elliptical or a circular path under the influence of its own momentum and the pull from the orb (when it is floating freely, or " free-wheeling "), it is said to be in free fall. A space-station will certainly possess a limited amount of accelerative machinery. This must be shut down, likewise the engines of a spaceship if this is the

Fig. I. Diagram illustrating circular orbits; true and false. vehicle in question. All thrust must be absent; if we saw a rocket out in the void and observed, that it was "blasting," it cannot be in free fall.

Circular Orbits

In Fig. I are four circular tracks around a planet. Two are seen edgewise, and therefore appear as straight lines. Three of these orbits are concrete and stable for they satisfy an indispensable ruling which is, that centre of circuit and orbcentre shall coincide.
The track x does not fulfil this condition, and it is important to appreciate that this orbit, and any such orbit, is entirely fictitious; it just cannot exist, in spite of any symmetry it may otherwise possess. The mass or weight of any kind of vehicle does not count in the least. The time it takes to make a round is called the Period, T, and for our purpose is carried to three decimal places. π is $3 . \pi 416$. We obtain the diameter D of the orbit and extract the square root, then
$\mathrm{T}=\mathrm{D} \times \sqrt{\mathrm{D} \div \text { (a number from the accom- }}$ panying table). As the space-depôt is 3,200 miles up, it must be 7,200 miles from centre, so D will be 14,400 miles, with square root I20, thus :

$$
\begin{aligned}
& T=\frac{14,400}{I} \times \frac{120}{1} \times \frac{1}{504,360}=3.426 \mathrm{hrs} \\
& \text { The speed } \mathrm{S}=\mathrm{D} \times \pi \div \mathrm{T}, \text { or }
\end{aligned}
$$

$S=14,400 \times 3.1416 \div 3.426$. This is :
$\frac{14,400}{I} \times \frac{3.1416}{10,000} \times \frac{1,000}{3,426}=13,204 \mathrm{~m}$. p.h.
So our satellite vehicle rushes around Earth at 13,204 m.p.h., completing a round trip in $3 \mathrm{hrs} .25 \frac{1}{2} \mathrm{~min}$. If it described this orbit around Venus instead of Earth, what now would be the figures?
$T=\frac{14,400 \times 120}{454,750}=3.799 \mathrm{hrs}$.
$S=\frac{14,400}{I} \times \frac{3.1416}{10,000} \times \frac{1,000}{3,799}=11,908 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

The reader can deduce the figures for Mars, taking care to use the Martian number in the table.

Earth-satellite Vehicle!

The first Earth-satellite vehicle will probably be about 500 miles up-which means an orbit of diameter 9,000 miles, having for square root 94.868 . We require its time and speed.

$$
T=\frac{9,000}{I} \times \frac{94,868}{1,000} \times \frac{1}{504,360}
$$

or 1.693 hrs .
Its speed S is $9,000 \times 3.1416 \div 1.693$ or 16,701 m.p.1s.

In the distant future, space-depôts will be established around other orbs as well as Earth. If the last-named was tracking around the Moon instead of Earth,

$$
\begin{aligned}
& T=\frac{9,000}{I} \times \frac{94,868}{1,000} \times \frac{I}{54,480} \\
= & 15.672 \mathrm{hrs} .
\end{aligned}
$$

and S comes out at $\mathrm{I}, 80 \overline{4} \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
Doubtless, the reader requires to be satis-

Central Globe	Radius (M/s.)	Working Number
Earth	4,000	504,360
Moon ..	1,080	54,480
Venus .	3,840	454,750
Mars . .	2,100	164,150
Jupiter..	43,280	8,927,000
Saturn	35,750	4,884,000

Table of working mumbers.
fied as to the accuracy of his results. It happens that there are time-keepers in space which serve to check them. Circling the plane! Jupiter at an average height of $373,43 \pi$ miles above its surface is satellite Europa, making her round in 85.22 hrs .

Let us take our space-station far afield and launch it around Jupiter in an equivalent orbit.

Distance to centre will be 416,711 miles, giving $D, 833,422$ miles, with square root 912.92.

$833,422 \times 912.92$

(Jupiter Working Number)
$=85.22 \mathrm{hrs}$.
The concordance fully attests the reliability of our arithmetic.
$\mathrm{D} \times . \pi \div \mathrm{T}$ gives 30,724 m.p.h. as the speed; an average figure for Europa, but, in the case of our satellite vehicle, uniform.

The "Propeloar"

Detaiis of a New Foot-driven Outboard Unit

ANOVEL unit for propelling small boats is being marketed in the United States of America. Known as the "Propeloar," it dispenses with rowing and allows both hands to be free for fishing, shooting and other purposes.

Easy Fixing

The device is every compact and when in use is simply clamped on to the transom of the boat, as shown in Fig. 3. It will be seen, with reference to Fig. I, that the Propeloar consists of two chief parts, the pedalling unit and the propeller unit, the two parts engaging at the drive housing when assembled on the boat. The drive is by means of rope and chain, the pedals being given a to-and-fro movement.

A boat fitted with this unit can reverse, stop or turn quickly, and with little effort on the part of the occupant. Steering is

The "Propeloar" leaves the hands free for fishing, etc.
effected by turning a small crank on the end of an inclined shaft, as seen in Fig. I.

Fitting the "Propeloar"

The unit will fit any small row-boat without any alterations, providing that (I) the distance from the transom to the farthest edge of the rear seat is less than 19in., as at A, Fig. 2 ; (2) the distance from the transom to the nearest edge of the centre seat is more than 44 in ., but less than 6 in. (dimension B, Fig. 2); (3) the depth of the transom is $15 \frac{1}{4}$ in:, or less (dimensions \mathbf{C} and D, Fig. 2).

Fig. 2.-Measurements to note when fitting the unit.
than 44 in . from the transom the seat can be moved back. If the nearest edge is farther than 6 in ., the seat can be moved forward, or the Propeloar seat could rest on a box or other support If the transom of the boat has a greater depth than 15 in . it should be reduced to that dimension, otherwise the propeller may strike the bottom of the boat while in the reversing position.

Lubrication

In order to ensure easy operation of the unit the bearings should be lubricated with a suitable motor oil occasionally. The gears in the underwater housing are topped with oil to the top of the gears. If the propeller unit is not turned upside down very much the oil should last for many months.

Adjustments

If any adjustment is necessary, the rear seat can usually be moved back or reduced in width without any inconvenience. Should the nearest edge of the centre seat be less

Light Construction

Made chiefly of aluminium, the complete unit weighs only 251 l . and cạn be quickly folded for easy carrying. The price in the United States is about 49 dollars. Further

particulars can be obtained from Skinner Supply Coy., 774, Folsom Street, San Francisco, 7, California, U.S.A.

Fig. 3.-Perspective sketch showing the "Propeloar" in position on a small boat.

BOOKS FOR ENGINEERS

By F. J. CAMM

Refresher Course in Mathematics, \&/6, by post $9 /-$
Newnes Metric and Decimal Tables, 3/6, by post $3 / 9$.
Newnes Electrical Tables and Data, 10/6, by post II/-.
Slide-rule Manual, $5 /-$, by post $5 / 3$:
Mathematical Tables and Formulx, 5/-, by post 5/3.
Dictionary of Metals and Alloys, 10/6, by post $11 /$ -
Wire and Wire Gauges Nest Pocket Book), 3/6, by post 3/9.
Practical Mechanics Handbook, 12/6, by post 13/-.
Television Principles and Practice, 25/-, by post 25/8.

Trans-mountain Model Railway : Models at a South African Exhibition

MANY readers will be interested in the accompanying plan (Fig. I) of Mr. Arthur Oswald's trans-mountain model railway on the Dietschiberg, Lucerne,
ling expertly, from the initial digging and blasting through the earth and mountain rock to the final stages of concreting and the laying of the railway track through the tunnel. The tunnel is shored up by means of a wooden basis with iron struts at intervals, the whole covered with the concrete.

So now Mr. Oswald has attained his ambition to run his trains round a complete circuit: previously they had to run so far and then reverse but now they can continue right round and back to the starting point, having travelled through two spiral tunnels en route. Alt the rolling stock is, of course, to Continental

Fig. 2.-One of Mr. Oswald's assistants is seen here in the south-rvest spiral tunnel on the model railzayy during the concreting of the floor. The floor has already hardened qohere he is standing.
tercentenary of the landing of the first white settlers at the Cape under the leadership of Jan van Ricbeeck. A Van Riebeeck Festival is being held, culminating in the unveiling of a National monument.
Celebrations extend all over the Union. At Cape Town a large area of reclaimed land on the foreshore has been devoted to an important Festival Exhibition, which opened in

Switzerland: also the snapshot (Fig. 2) taken during the completion of the new south-west spiral tunnel that was added to this delightful outdoor model railway during 1951.
I have visited this railway many times and hope to do so again this spring or summer. It is all to a scale of one-tenth full size, and is wholly electrically controlled. Two or three years ago I commented on the building of the south spiral tunnel excavated by Mr . Oswald and part of which runs underneath his own home at the summit of the Dietschiberg, a small mountain near Lucerne.

Spiral Tunnels

Mr. Oswald has built up the whole of ihis railway himself, over a number of years and with the help of various assistants. The building of the two spiral tunnels has cer-
pattern, and the locomotives are of the electric types that are now almost universal in Switzerland.

Models at S.A. Exhibition

South Africa this year is celebrating the

Fig. 4 (Above).-Model loco and coaches of the 3 ft. 6 in . Cape Railvays. Scale 7 mm. to 1 ft. Fig. 3 (Right).Model of a stage coach. Scale 7 mm , to 1 ft .
tainly been a most ambitious project and this Swiss enthusiast must feel it is a great achievement now they are completed. The latest, south-west tunnel is 398 ft . long which means that the railway now comprises $\mathrm{I}, 400$ ft . of double track in its complete circuit.

As Mr. Oswald is a civil engineer by profession, he is able to carry out his tunnel-

Making a Light Forge
CIR,-I was interested in the small forge described by Mr. Ilston, but it seems to me that it requires a great deal of footwork, as the only air available is that supplied by the tyre inflator, which will have a capacity of about $1 \mathrm{cu} . \mathrm{ft}$. of free air only at, say, 70 strokes per minute.
As the whole idea of a blower is to increase the oxygen supply, I would suggest that an induction blower, as shown by the accompanying sketch, would supply a much greater volume of air.

The air receiver must be capable of supporting a pressure of about 20 lb . per sq. in. to supply the blast air and should be fitted with a safety vaive.

An induction blower for a light forge.

The writer once had to adapt a large hearth $t 0$ be blown by a 90 cu . ft . free air per minute compressor which was , quite inadequate coupled as in Mr. Ilston's forge, but when fitted with a kin . diameter jet blowing into a 3 in . induction pipe the result was most pronounced, and the demand on the compressor reduced to about one-third.-J. E. Drinkwater (Wallasey).

Stereoscopic Photography

$S^{I R},-$ The revolutionary letter fron G. IV. E. Hicks printed in your January number has much good sense in it-except that a stereoscopic camera is not absolutely essential to the practice of stereoscopy.

There are people, doubtless, who find it tedious to have to use a stereoscope for viewing stereograms, as compared with viewing prints held in the hand, or in an album. Now, every photographic dealer's window offers in grand variety viewers for colour transparencies made with one-lens cameras. There is no more trouble in viewing a stereoscopic slide in a stereoscope than the other sort in a one-eyed viewer. Why are not all miniature cameras that are specially designed for transparencies made stereoscopic? It cannot be because of the added weight and expense, which are not as great as might be imagined.
G. W. E. Hicks may be surprised to know that there is newly come to the market a stereoscopic camera of his specification"fitted with a pair of single achromatic lenses, with apertures no larger than $f / 16$ " - or approaching it. It is the "Robin Hood "made by Standard Cameras of 66, Villa Road, Birmingham, 19, and it costs only twelve shillings and sixpence.-S. H. S. Moxiy (Lymington).

Interplanetary Space Travel

SIR,-Your correspondent W. E. Hadfield raises an important point in connection with space travel. Theoretical science advances so rapidly, and we become so familiar with its more popular fringes, that we tend to forget the colossal distances which separate us from the other stars. How can we mortals hope to visit stars which take rays of light many years to reach ?
However, when in doubt, or requiring a sensational theory, turn to "Einstein and Relativity." First, if Mr. Hadfield is prepared to even suppose a rocket speed of 18,600 m.p.sec. ($\mathbf{X} 2,657$ escape velocity, and at the moment, remotely foreseeable rocket speeds), why not go the whole hog ? Once in space a small thrust from rocket motors would gradually build up any desired speed, the limiting factors being time and the amount of fuel available. (The latter being the crippling proviso with present-day propellants.) So let us add a further zero to the speed to be really dazzled by speculation.

According to relativity, time slows down when approaching the speed of light. A space ship accelerating to 98 per cent. of the speed of light would, from the point of view of the occupants, take a certain period of time to do so-say, two years. From the point of view of the Earth, however, it would have been II years. The nearer the speed of light is approached the more fantastic becomes the divergence. Thirty-three years on a space ship attaining 99.9999 (to 18 places of decimals) per cent. of the speed of light would be 10,000 million years on earth! If the occupant could look back, he would see a man be born, live his life, and die, all in the space of five seconds-provided that his eyes were quick enough to follow the rapid movements. What price time and distance now ?

As regards meteoric bombardment, apparently 750,000 million million missiles hit the atmosphere every day, which, very approximately, is one every square yard, 50 miles above the earth. Taking this and the minute size of the majority of the particles into account, it is estimated that only minor precautions need be taken.
For anyone interested in space travel I thoroughly recommend that easily read book by the chairman of the B.I.S., Arthur C Clarke, called "The Exploration of Space." -H. H. Porritt (Newcastle-on-Tyne).
$S^{1 R}$, With reference to W. E. Hadfield's letter in the March issue, headed " Interplanetary Travel," may I point out that Professor Einstein's "Relativity Theory " may provide part of the answer to interstellar travel.

With its usual fickleness, nature seems to have provided a means by which man may eventually reach the distant nebula.

Relativity theory states that time slows down as speed increases, until the speed of light is arrived at, and then time stops. This
theory led to what is known as the "twins paradox," which is that if twins were born and the one child were shipped of in a rocket at the speed of light and the other stayed on Earth, then if after 80 years (Earth time) the prodigal son returned, he would still be a babe in arms while his brother would bè an old man of 80 . Though ludicrous at first sight, many eminent scientists and mathematicians believe implicitly that if the experiment could be carried out the theory: would be proved.

So, perhaps, travel into the light years may te practicable one day when man's ingenuity has devised the machine.-Dennis URCH (Newport, Mon).

An Electric Lighter

$S^{I R}$,-Replying to the criticisms of my electric lighter, which was published in the March issue of Practical Mechanics, my intention was to offer something simple, handy, and which could be made with few tools, such as are to be found in the average household. As described, the lighter is exactly how I and many others use it, but it is up to readers to improve it and make it safer if they wish. I am aware that part B is "live," but the chances of getting a shock cannot be accurately estimated.

With regard to the question of fire risk owing to the close proximity of the inflammable liquid, as shown in Fig. 2 (March issue), this, of course, need not be kept near the lighter. Also, there is nothing to prevent any reader from unplugging the unit directly after use, or to make a hinged door in front of the serrated terminal plates. The insulated handle of part C can be used safcly, provided, of course, that the user does not put his fingers on the terminal plates.
The improved type of striker handle shown in the accompanying sketch may be preferred. The hollow handle, of wood or plastic, is filled with cotton wool saturated with petrol or methylated spirit, the end of the handle being plugged with a tight-fiting cap. The lube condle for an electric lighter. dle for an electric lighter. taining the wick can be earthed, as shown.E. D. Misrahi (Kfar Hanasi, Israel).
[The device is contrary to I.E.E. regula-tions.-ED.]

Electrically-operated Film Screen

Curtain

SIR,-I wish to fit up an electrical device for opening and closing a film screen curtain. The curtain is in two halves and moves to and from the centre. I wish to incorporate limit switches at the end of both directions. The size of the screen is 6 ft . I shall be greatly obliged if you can help me with this device.-S. B. Bagley (Woodsetton).
[R_aders' suggestions are-invited.-ED.]

REFRESHER COURSE

IN MATHEMATICS
By F. J. CAMM
8/6, by post 9/-

Cliter

G.R. High Light Exposure Meter

A
COMPLETE kit of parts for constructing a high light exposure meter is being marketed by Messrs. G. R. Products, Lid., 22, Runnymeade Avenue, Bristol, 4. The meter measures the incidental light reaching the subject and operates in both natural and artificial light. A high sensitivity meter movement is operated by a solenium cell and

The G. R. high light exposure meter in use.
reading is obtained in "light units." When this is applied to a conversion dial the correct exposure may be calculated. The
"light unit" readings are in two ranges-$0-6$ for low light intensity and $6-11$ for high light intensity and the change over is made by means of a push-button switch, discon-

A Review of the Latest Appliances, Tools and Accessories

necting a 12 ohms resistor for range operation.

The kit is accompanied by a sheet of full scale diagramis and comprehensive constructional details. The information is easy to follow and the few tools necessary will be

Rear vier: of the meter, showing the conversion dial.
possessed by most people in their homeworkshop.

The case is cut from opaque black Perspex sheet and the component parts are joined with Perspex cement. This is a material which is easy to work and one which may be highly polished.

Club-Reporifs

Aylesbury \& District-Society of Model Engineers

THE February meeting was devoted to a model night. Among the models on view, all of which were locos, was a Great Northern tender built by Mr. E. D. Hasberry, and a "Pamela" class chassis. This loco has progressed considerably since we last saw it, and its builder, Mr. C. Gill, has continued his excellent standard of workmanship.

On the " O " gauge side, Mr. Stevens brought along the first stage of his "fine scale" layout, which promises to be most interesting when it is completed.-Hon. Sec. E.. H. Smith, Mulberry Tree Cottage, Devonshire Avenue, Amersham, Bucks.

Ilford \& West Essex Model Railway Club A LTHOUGH we have not issued a report recently, activities have beer continuing unabated, the club generally and its various sections having met regularly.

As a result of the exhibition at. Ilford at the end of September in connection with the Festival of Britain, we have welcomed several new members.

Speakers have included Mr. P. J. Dupen upon the construction of his model contractors' locomotive," Lord Mayor "; Mr. Fleetwood Shaw upon his own model railway,

One of these meters was made up, from the kit of parts supplied, in the Practical Mechanics workshop and, when tested, was found to be an accurate guide, comparing 810 favourable with a commercial meter which was known to be reliable.
The price of the High Light Meter kit is 42s. 6d., and G. R. Products also market a kit for a Reflected Light Model, priced at 37s. 6d

Lucas Accessories

$T H E$ new Lucas Cycle Accessories current retail price list has been sent us by Joszph Lucas Ltd., Great King Street, Birmingham, 19, together with brochures on the new King range cycle dynamo sets, large range of cycle bells and many varieties which were exhibited at last year's cycle show. The profusely illustrated price list includes a range of cycle bells and many yarieties of battery lamps, both front and tail, approved reflec:ors, and the famous King of the Road cyclometer for 26 in . or 28 in . wheels. The chief features of the new "King" range of dynamo lighting sets is modern streamlining and a central conical formation in the lens which has the effect of projecting an intense spot beam.

The new Lucas Minor headlamp.

THE WORLD OF MODELS (Contimued from page 280.)

in metal, wood and cloth, etc. The series begins with models of primitive forms of transport such as basket carriers, (men with baskets slung on a simple yoke carried across the shoulders) and the earliest forms of passenger travel, sedan chairs. These are followed by ox-wagons of various kinds, with their long teams of oxen yoked in pairs and the coloured drivers with their fantastically long whips. As the country developed the stage coach also appeared, and so is included in the series (Fig. 3): also individual types of transport such as the Cape Cart and the Spider, the latter deriving its nickname from its small body and high, delicate wheels.

Then follow railsay models; showing clearly the development of locomotives through the carly part of this century (Fig. 4). The series finishes with a fine model of the ""Blue Train," which is entirely air-conditioned and is hauled by an all-electric locomotive for part of the journey and thea taken up by the powerful isF steam locomotive (Fig. 5). Both these locomotives are of British design and buikd.

As a unified display these models will be most impressive and an interésting illustration of progress in transport. The realism imparted to these models by the British craftsmen who built them is remarkable. They are also unique in that they are all made to the same scale and with a uniform degree of accuracy and finish.
and $\mathbf{M r}$. F. H. White upon turning smal boiler fittings.
The recent film night provided a further selection of films kindly lent by British Railways and was much enjoyed.

The annual general meeting takes place on May 7th.-Hon. Sec.: E. W. Cornell, 42, Lincoln Road, Forest Gate.

Birmingham Society of Model Engincers

 THE above society held its annual general L meeting at the White Horse, Congreave Street, on Wednesday, March 19th. Mr. H. Wright, the treasurer, gave a very healthy report on our finance in spite of the increased cost of running the society.Mr. W. H. Heaton, the chairman, gave a report on our activities with special reference to the West Midland. Loco Rally.

Social and loco trials were held, including a day for the public. The climax was reached on the anmual National Rally, when Sunderland Society received our medal for the greatest distance travelled to our track, also a cup for the finest loco.

The last event, a social, finished with a grand firework display which completed our summer programme at Campbell Green, Sheldon.

Our winter season was filled with lectures by members, and the place of honour must be given to Mr. J. N. Maskelyne for his finc lecture on loco design and models.

Hon: Sec.: R; Pritilips, 98, Filberstone Avenue, South Yardley, 26.

WIN SUCCILSS IN LIFE

Pelmanism Develops Your Latent Talents

1N this crowded world there are more good jobs looking for good people than good people looking for good jobs. For so fcw of us are ready for opportunity when it occurs.

Are you ready to grasp it, whether it is the chance of a more interesting and more remunerative post or a fuller and freer life in some other direction. Will you have the courage and clear-headedness to seize and use your chance

Take up Pelmanism and prepare now for to-morrow's opportunities. You are then training, not only your mind, but your whole personality. Pelmanism rids you of handicaps which hold you back -be it self-consciousness, lack of initiative, fear or self-doubt or simply a tendency to worry about trifles.

Pelmanism also automatically develops your real self. Talents which you never knew you possessed come to the surface. For Pelmanism trains your mind and character just as physical exercise trains your body.

Remember-Everything you do is
preceded by your attitude of mind.
The Pelman training for successful living has been proved by over 750,000 men and women of every type and calling. It is so clearly explained and carefully graded that anyone can follow it. It is modern psychology made practical.

Reduced fees for serving and ex-Service members of Her Majesty's Forces.
(Apply for Services Enrolment Form)

The general effect of the training is to induce an attitude of mind and a personal efficiency favourable to the happy management of life.

Send for Free Book
The Pelman Course is simple and interesting and takes up very little time. You can enrol on the most convenient terms. The Course is fully explained in "The Science of Success," which will be sent you, gratis and post free, on application to-day to :-

PELMAN INSTITUTE,

 130, Norfolk Mansions, Wigmore Street, London, W.I. Established ower 50 years. Callers welcomed-POST THIS FREE COUPON TO-DAY"
To the Pelman Institute,
Wigmore St., London, W.r.
"The Seience of Success" please.
Name
Address

DRULL-POWER

 HANDY: UTILITY 1/4" DRIL 86.19 .6
 It's a joy so possess, a pleasure to use, this compact, superbly powered $1 / 4^{\prime \prime}$ Drill. Drills holes up to $1 / 4^{\prime \prime}$ diameter in steel (double in hardwood)... drills cast iron, plastics, brick and tile . . . and with accessories ... buffs, burnishes, grinds, etc. Can be quickly assembled with the Handy-Utility Bench Stand as a very useful drill press or with the Horizontal Stand it becomes a Bench power unit.

PRODUCTS OF THE H.U. DIVISION OF BLACK \& DECKER LTD.

OBTAINABLE FROM YOUR LOGAL TOOL SHOP, IRONMONGER, ELECTRIGAL DEALER OR Store

GALPINS
 ELECTRICAL STORES

408, HIGH ST., LEWISHAM, S.E. 13 Tel.: Lec Green 0309. Near Lewisham Hospital. TREMS : CASH WITH ORDER. NO C.O.D. All goods sent on 7 days' spproval against eash. EARLY CLOSING DAY THURSDAY EX-R.A.F. ROTARY CONVERTERS, 24 volts D.C., input 50 volts, 50 cycles, 1 phase at 450 watts output, complete with step-up transformer 50
c9110/- each, carriage 101 -.
MAINS TRANSFORMERS (NEW), inpue 2001250 volts in steps of 10 volts output 350101350 volts $300 \mathrm{~m} / \mathrm{amps}$. 6.3 volts 8 amps twice, 4 volts 4 amps, 5 volts 4 amps, 651- each, carriage $3 / 6$, ditto, 450101450 volts 250 mlamps 6.3 voles 8 amps rwice 4 volts $4 \mathrm{amps}, 5$ volts 4 amps , 651 each, carriage 316 ; another, input as above, output, 500101500 volts 250 mlamps 6.3 volts 8 amps twice 6.3 volts 4 amps, 4 volts 4 amps, 5 volts $4 \mathrm{amps}, 701$-, carriage $3 / 6$. Another, wound to (electronic) specifications, 350101350 volts $250 \mathrm{~m} / \mathrm{amps} 4$ volts 8 amps, 4 volts 4 amps, 6.3 volts 8 amps, 01216.3 volts 2 amps. 6316 ench, carriage paid: another, input as above, output
50013501013501500 volts $250 \mathrm{~m} / \mathrm{mpps} .6 .3$ 50013501013501500 volts $250 \mathrm{mlamps}, 6.3$ voles 6 amps, 01216.3 volts 2 amps, $0 / 415$ volts 4 amps twice, 6716 each, carriage 316.
SWITCHBOARD METERS, 4 inch scale moving coil. (D.C) METERS, 4 inch scale moving coil (D.C.) only 0 to 14 amps, 1716 each, post 116 . Ditto, A.C.ID.C., EX-RADAR MAINS TRANSFORMERS 230 volts input 50 cycles 1 phase, output $4,50015,500$ volts approx. 80 mlamps 6.3 volts 2 amps, 4 volts 18 amps 2 volts 2 amps, these transformers are new immersed in oil, can be taken out of the cil and used as television transformers giving cutput separately $5 \frac{1}{2} \mathrm{in}$. $x 41 \mathrm{in} . x 4 \mathrm{in}$. and 3 in . x $3 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$, price C 3 II 01 -each, carriage paid. ROTARY CONVERTERS, $24-28$ volts D.C. input, 1.200 volts 70 m/amps D.C. output, 101 each. P.F.
MAINS TRANSFORMERS (NEW), suitable for spot welding, input 2001250° volts, in steps of 10 voles, ourput suitably tapped for a combination of either $2 / 41618110$ or 12 volts 50170 amps, 8716 each, carriage 716.
AUT

AUTO WOUND VOLTAGE CHANGER TRANSFORMERS, tapped OIIIOI 2001230 volts 350 watts, 4816 each, post 116 , as above but 500 watts 6216 each, carriage
316 : as above 200 watts, 351 - each, pest $1 / 6$. 316 : as above 200 watts, 351 -each, pest 116.
RECTIFIERS (NEW), D.C. output 37 voles 50 amps, complete with mains trans former 230 volts $\mathrm{A}:$ C. input 50 cycles phase output to match the required voltage for
carriage lol-.
Carriage $\operatorname{EX}+$ NAVAL ROTARY CONVERTERS, 110 volts D.C input, output 230 volts A.C. 50 cycles, 1 phase, 250 watts capable A.C. 50% cycles, phase, 250 watts capable elollol-each, carriage forward. ELECTRIC LIGHT QUARTERLY TYPE CHECK METERS, all for 200/250 volts A.C. 50 cycles I phase, 5 amp load, 1716 each, post 116 , 10 amp $21 f$ each, post $116,20 \mathrm{amp}$ load, 251 - each, post $1 / 6$. MAINS TRANSFORMERS (NEW), 2001250 volts input, in steps of 10 volts, outputs; each , post $1 / 6$. Another as above but $10-12$ amps. 4816 each, post 116 : another, as above but $25130 \mathrm{amps}, 701$ - each, carrlage 316 ; another, input as above, output 0118130136 volts, 6 amps, 4216 each, post 116.

EX-U.S.A. W.D. ROTARY TRANSFORMERS, 12 voles D.C., input 500 voles, 50 mlamps. 275 voles 100 mlamps D.C. output. Complete with smoothing switches, fuses, etc., as new, 1716 each, carriage 216 , can be run on 6 voles giving haRIABLE RESISTA
VARIABLE RESISTANCES, 9 ohms, 4 to 12 amps, 301 - cach
SYNCHRONOUS F.H.P. MOTORS, complete with a large selection of gear
wheels 2001250 A.C. mains wheels 2001250 Y., A.C. mains, 1416 each inpue $150101150 \mathrm{Y}, 200 \mathrm{mla} 63$ y 80 y input, $150101150 \mathrm{v}, 200 \mathrm{mla}$., 6.3 v. 8 amps PRE-PAYMENT 1% SLOT METERS, 2001250 volts A.C., calibrated at 1 d . or Id. per unit, 5 amp loart, 45 t - each, 10 amp load, 5716 each
HAND-DRIVEN GENERATORS, oLtMAINS TRANSFORMERS (NEW) Input 2001250 volts in steps of 10 volts, outputs, 350101350 velts $180 \mathrm{~m} / \mathrm{amps} 4$ volts 4 amps 5 volts $3 \mathrm{amps}, 6.3$ volts 4 amps, 3916 each, post 116 ; another 350101350 valts 180 miamps 6.3 volts $8 \mathrm{amps}, 0 / 415$ voles 4 amps, $39 / 6$ each, post 116 ; another 500101500 volts $150 \mathrm{~m} / \mathrm{a}$. 4 volts 4 amps C.T., 6.3 volts 4 amps, C.T., 5 volts 3 amps, 4216 each, post 116 ; another 425101425
volts 160 mlamps 6.3 volts 4 amps, C.T. volts 160 mlamps 6.3 volts 4 amps, C.T.
twice 5 volts 3 amps, $42 / 6$ each, post $1 / 6$.

CLYDESDALE

Bargains in Ex-Service Radio and Electronic Equipment

HAND GENERATOR 10 WATT MK. It
In original cartons.
Designed for W.S. 48 and W.S. 18 driven by two handles, complete with operator's seat. Speed should be 50170 r.p.m.

Smoothed outputs 162 v. $60 \mathrm{~mA} ., 3.1 \mathrm{v} .3$ a and 12 v Generator Dim.: $54 \times 5 \frac{1}{3} \times 6_{3}^{3}$ ins. Wgt. 13 lbs Leg wlseat Dim. $33 \times 5 \times 21$ ins. Wge. $5 \frac{1}{5}$ lbs CLYDESDALE'S CLYDESDALE'S $45 /$ EACH CARRIAGE
PRICE ONLY

meral case, dim. $12 \times 63 \times 6$ ins. for
PRICE OMLY'S 25.19 .6
PRICE ONLY

METAL (MINE)
DETECTOR No. 4 Of Cdn. design and construction, using IT4 pentodes. Comprising: TC Amplifier, Search Coil. Sweep Pole, Control Box, Headphones, Test Unit and Rucksack. Complete less basteries in fitted cransit CLYDESDALE.
CLYDESDALE'S 66.19 .6 RICE ONLY 16.19 .6 CARRIAGE PAID

> Scill available:for use as BATTERY
CHARGER CHARGER Rectifier tyep 42 A
Ref. $100 \mathrm{~B} 1 / 630 \mathrm{C}$ Ref. 100 B 11630 . A compact bat-
tery
charger,
Out. put 12 vomps at 6 or 12 volts D.C. Input 230 V. A.C. 50 cls with ampmeter, removable fuses. control switch for each circuit, input and output points, contained in well-ventilated black crackle Il or bench mtg.
EACH

Re?. ZA17571
POWER SUPPLY UNBT NO. 7.
For charging 6 vole accumulators by hand. Designed for the WS-21 $17 \times 108 \times 7$ stal case. dim. 17×108 xins, with de tachable lid, containing hand driven generator with gearin 8 mechanism, which delivers 6 volts D.C. at out and battery clamp.
CLYDESDALE 'S $£ 25.0$ PRICE ONLY EACH CARRIAGE PAID

NEW LIST No. 88 Giving detalls and illustrations of ex-service items and rancelting al supplements.
NOW READY
READY $1 / 6$
PRICE $1 / 6$ Price crediced on first purchase of 101 - or over.

JIJEA PMEA A A P SUPFLY 2, BRIDGE STREET
Phone: South 2706, A9. Branches in Scotland, England and Northern Ireland,

How the Famous Bennett College

 can help you to success through PERSONAL POSTAL TUITION in any of these subjectsH^{1}ERE IS A WAY to achieve your ambitions. Whatever your educational standard, however much you fear the exams. which will qualify you in your profession, The Bennett College will help you to success in your career.

You will be coached until you qualify
This guarantee is given to every Bennett College student.

By post, your personal tutor will smooth out your difficulties. You will work in your own home, at your pace, wasting no time. You will soon qualify for a better-paid post. Now is the time
Plan your future now, before it is too late. Send the coupon to-day for The Bennett College prospectus on your subject.

YOUR FUTURE IS HERE
One of these subjects will qualify you for higher pay and status. Write your choice on the coupon (or put down any other that interests you).

Accountancy * Agriculture * Architecture * Auctioneering * Auditing \star Aviation-Eng. and Radio * Book-keeping * Building \star Carpentry \star Chemistry * Civil Eng \star \& Commercial Art \star Civil Service \star Gommercial Aritnmetic * Company Law * Costing * Diesel Engines \star Draughtsmanship * Economics * Income Tax * Jigs, Tools and Fixtures * Journalism * Languages * Mathematics * Mechanical Eng. * Mining * Modern

> Business Methods * Motor Eng. * Plumbing * Police * Press Tpol Work * Public Speaking \& Quantity Surveying * Radio Eng. * Royal Society of Arts \& Salesmanship * Sanitation * Secretarial Practice * Sheet Metal Work * Shorthand \star Structural Eng. * Surveying * Telecommunications \star Television \star Transport * Viewers, Gaugers and Inspectors * Works Management * Workshop Practice * and many others.

Please send me your prospectus on my subject.
name. ADDRESS. Age (if under 2).

GENERAL CERTIFICATE OF EDUCATION

Full guaranteed tuition in your choice of subjects. For prospectus write GCE on the coupon.

EXAMS.: Through The Bennett College you can qualify as F.C.A. - F.C.C.A. - F.P.C.A. -F.C.W.A. - F.C.I.S. - F.C.C.S. -F.I.B.-F.A.I.-F.A.L.P.A.-F.I.Hsg--P.I.H.V.E.-M.I.Mun.E-M.R.San.I.-F.R.I.B.A.-M.I.C.E.-M.I.Mech.E.-M.I.Struct.E.-F.R.I.C.S.-F.I.Q.S.-M.I.Fire E; -M.Inst.T.

OUERIES and ENQUIRIES

> A stamped, addressed envelope, three penny stamps, and the query coupon from the current issue, which appears on page 64 (THE CYCLIST), must be enclosed with, every letter containing a query. Every query and drawing which is sent must bear the name and address of the reader. Send your queries to the Editor, PRACTICAL MECHANICSS. Geo. Newnes, Ltd., Tower Hólse, Southamptor - Street, Strand, London, W.C.2.

Underglaze Pottery Decoration

I HAVE a plain white, bone china tea seryice gold. ${ }^{\text {and }}$.mesirous of edging each piece widh Can you inform me of thether it is erithin the and materials ased, sand whether it is within the scope-of the handyman? believe each piece has to be subjected to heat after painting, and if can a high enough remperature be attained in the home?-D. G. Jarman (Ipswich).
WE presume that you are referring to the usual process of underglaze pottery decoration, using genuine gold. We are afraid that you will not be able to undertake such a process, because it necessitates the possession of a pottery kiln capable of attaining a cmperature of at least 840 deg. C. Such a process is definitely not within the scope of any average handyman, You would have to obtain a quantity of "potters" gold " from Messrs. Johnson, Matthey \& Co., Ltd.,
Hatton Garden, London, E.C. . This is a very expensive Hatton Garden, London, E.C.I. This is a very expensive material. It is painted on to the surface of the cup
with an ordinary fine brush, after which the cup is with an ordinary fine brush, after which the cup is then placed into a "glost" pottery furnace in which it is slowly raised to about 840 deg . C. for several hours,
being allowed to cool slowly afterwards. This is the being allowed to cool slowly afterwards. This is the only process. Which will dive the true underglaze permanent decoration in colour on any ceramic surrace, You can, of course, surface-paint the pottery ware
with an imitation gold ceramic paint obtainable from with an imitation gold ceramic paint obtainable from various firms of handicraft dealers such as Si Nicholas Street, Leicester, but all such paints are . Neholas naturally, very imperm
If it is your desire to go in for the complicated subject of ceramic decorations, you should obtain, and carefully study, various books on the subject from your local reference library or county library. subject in a comprehensive manner.

Casting Garden Ornaments

Recently I designed a figure, about $36 i n$. high; ment. What is the most lasting and weatherproof material to, use? I had in mind something like a magnesite composition, or a suitable cement, but am not sure of how they react in extremes of temperature. Please advise me of any special preparation for moulds and possible suppliers, T. Fisher (St. Ives).

AN outdoor casting material as good as any for your parts. fine sand (not sea sand) parts; fine sand not sea, sand), 1 part; asbestos powder, I part; stone dust or other fine, light-coloured filler, I part. This is merely slaked with water to mortar consistency and then charged into the mould. Magnesite compositions are quite effective and they
have the advantage of expanding very slightly-on have the advantage of expanding very slightly - on from them. A good magnesite composition has the following ingredients :

> Calcined magnesite Fine filler
part
This mixture is slaked to mortar consistency, with a solution prepareill dissolving 40 parts of magnesium chloride in to partsof water: Thé mixture takes about 30 hours to set
The ingredients mentioned above are obtainable
As follows:- powder : Messrs. Turner Bros.s Asbestos Co., Ltd., Rochdale, Lancs; Messrs. J. Milne Cooper \& Co., Ltd., Kobar Works, Bradford, Yorks.
Magnesite : Messrs. Everitt \& Co,, Ltd., 40, Chapel Street, Liverpool, 3 .
Magnesium chloride : Messrs. S. Pitt \& Co., Ltd., 95, Bath Street, Glasgow
"Vinamould" A special moulding composition suitable foi \dot{i} all kinds of ornamental casting. This is supplied by Vinyl Products, Ltd., Butter Hill, Carhalton, Surrey. For your type of work it is, we think uperior to the more ordinary types of gelatines and clue moulds:

Plating'Wooden Articles

T WISH to develop a bright metallic finish on lectro-plate on a graphite coating previously electro-plate on a graphite coating preyiousy
applied ? The finish desired should be as near
to bright nickel or brass as possible.-A. Taylor (Bírkenhead).
ARTICLES of wood can be plated quite satissurface sandpapering; is immersed for a time in artul surface sandpapering; is immersed for a time in a solution of 10 parts of gelatine in 90 parts of warm water. It is then dried, without washing, and brushed over with the finest graphite or plumbago, which latter
would then adhere well to the surface. After this it is immersed in a copper-plating bath of the following approximate composition
Copper sulpha
Sulphuric acid
I $\frac{1}{2} \mathrm{lb}$.
Walphu
I gallon

Plating of the copper should proceed for about five minutes; merely a thin coating of copper being equer-coted article is quickly rinsed and then plate in the following bath :

Nickel ammonium sulphate
Nickel sulphate $80 z$.

I gallon
Here, of course, a nickel anode must be used. The current should be about $4 \mathrm{amps} . / \mathrm{sq}$. ft . of surface to be plated and the plating may be continued for about half

Readers are asked to note that we have

 discontinued our electrical query service. Replies that appear in these pages from time to time are old ones and are published as being of general interest. Will readers requiring information on other subjects please be as brief as possible with their enquiries.an hour, of until a plating of the required thickness ha been obtained. The nickel plating is. then rinsed in cold water and allowed to dry. The plating thus obtained will be a matt one, but it can be polished up by any of the usual polishing methods.

Making Red Lead or White Lead
CAN you give me any information on how to lead $?$ I remall quantity of white lead or red lead? I remember reading once that scrap lead is cut up and put into an earthenware vessel, acetic acid poured over it and left for some time to dissolve. Is this idea correct, and can yóu develop it further ? W. A. Farquhar (I.o.M).
WHITE lead is manufactured along the lines which are now coming into use. The method which you

THE P.M. BLUE-PRINT SERUICE

I2FT. ALL-WOOD CANOE. New Series, No. I, 3s. 6d.*
10-WATT MOTOR. New Series. No. 2, 3s. 6d.* COMPRESSED-AIR MODEL AERO ENGINE. New Series. No. $3,5 \mathrm{~s}$.*
AIR RESERVOIR FOR COMPRESSED-AIR AERO ENGINE. New Series. No. 3a, ls. "SPORTS" PEDAL CAR. New Series. No.4, 5s.* F. J. CAMM'S FLASH STEAM PLANT. New SYNCHRONOUS ELECTRIC CLOCK. New Series. No. 6, 5s.*
ELECTRIC DOOR-CHIME. No. 7. 3s. 6d.* ASTRONOMICAL TELESCOPE. New Series: No, 8 (2 sheets), 7s.*
CANVAS CANOE. New Series. No. 9, 3s. 6d.* DIASCOPE. New Series. No. 10, 3s. 6d.*
EPISCOPE. New Series. No. 11; 3s. 8 d .*
PANTOGRAPH. New Series. No. 12, Is. 6d.* COMPRESSED-AIR PAINT SPRAYING PLANT: New Series. No. 13, 7s. 6d.*

620 CAR

(Designed by-F. J. CAMM)
MASTER BATTERY CLOCK*
Blue-prints (2 sheets); 3 s .6 d .
Art board dial for above clock, is
OUTBOARD SPEEDBOAT*
10s. Ed. per set of three sheet
LIGHTWEIGHT MODEL MONOPLANE Full-size blue-print, 3s. 6d.
P:M. TRAILER CARAYAN
Complete set, 10s. 6d.*
P.M. BATTERY SLAVE CLOCK—2s.*
"PRACTICAL TELEVISION" RECEIVER (3 sheets), 10 s .6 d.
The above bluc-prints are obtainable, post free, from Messns. George Newnes, Ltd., Tower House, Southampton Street Strand, W.C.2.
-An * denotes constructional details are available, free, with the blue-prints.
outline is known as the Dutch process. It is about the oldest cf all methods and one of the best. The scrap ead is melted and cast into thin grids or bars, which are then stacked one on top of the other in an earthenware vessel, care being taken to expose as much of the ead surface as possible. A small quantity of acetic acid diluted with an equal volume of water is then poured over them. The pot is then placed in warm surroundings. In the older processes the pots were placed on beds of manure or spent tannage. The acid is gradually vapourised by the heat, and its fumes attack the metallic lead, converting it into lead carbonate, or white lead. The process takes about three months.
An inferior form of white lead can be made quickly by adding a solution of ammonium carbonate to a solution of lead acetate or lead nitrate, whereby the white lead is precipitated at once. The solutionstrengths are immaterial, but it is better to have them fairly strong
Red lead is lead oxide, $\mathrm{Pb}_{3} \mathrm{O}_{4}$, or minum, and is best obtained by subjecting white lead in shallow layers to a prolonged heating in contact with air. The white lead ill slowly become coloured as ine red The exceed 450 deg. C the whitelead is heated must begin to evolve deg. Cot otherwise the read lead will which is quite straightforward but phich cals one accurate temperature determination and control'.

Cleaning Chromium-plated Fittings

Please suggest a chemical means of cleaning P chromium-plated fittings such as are used in bathrooms and on doors.

The problem is to remove (a) Hard water deposits ; (b) Accumulations of paint without damage to the surface of the plating.-P. Ward (Gosport)

ALTHOUGH chromium is plated in an extremely hard form, it is better not to use abrasive cleaners from, chromium surface. To remove hard-water deposits a cloth charged with dilute acetic acid (50: so). The acid will quickly dissolve the deposit, after which the area should be swabbed over with warm water and carefully dried.

For removing hardened paint deposits, merely dissolve a little candle wax in acetone, and then brush the solution on to the deposits. Allow it to remain thereon for five minutes, then gently scrape the, softened paint deposits away with a blunt edge. Finally, wipe over the entire area with a soft cloth moistened with the pure acetone.
Neither of these treatments will affect the chromiumplating in any way.

Ordinary. benzene, or a $50 \div 50$ mixture of benzene and methylated spirit, may often be used for the purpose in place of acetone.

Identifying Mineral and Vegetable Oils

I HAVE a lot to do with different types of oil for various reasons would like to know how to be able to tell a mineral oil from a vegetable one.

Is there any simple test method or must I use a microscope ?-S.A.C. Reay (R.A.F., Rugby).

THE main distinguishing tests for mineral and ready saponification are chenical in nature, such as the caustic soda solutions, the tendency of most vegetable oils to rancidity on standing, and the behaviour of such oils on treatment with strong sulphuric acid. Obviously, these are not tests which can be done " at sight.
The mineral oils are derived from petroleum. The most convenient distinguishing test for them is to observe their appearance when sunlight is allowed to fall on them obliquely. Almost invariably a mineral oil will show its characteristic fluorescence, which will be green, blue, yellow-green or yellow-blue according to the nature and type of oil. An oil which is thus fluorescent in sunlight (or in ultra-violet light artificially produced) is always of mineral origin. An oil which does not fluoresce under these conditions is always of vegetable origin. This applies independently of the colour or viscosity of the oil.
When, as is sometimes the case, a mineral oil is mixed with a vegetable oil, the product acquires the fluores cence of the mineral oil. In such an instance, the presence of the admixed vegetable oil cannot be detected by such a quick, rough and ready means, and laboratory chemicarsests would have to be applied to determine the amount and extent (if any) of the admixture.
The use of a microsepe whe method of distinguishing between vegetable and mineral*oils.

Heat-resisting Varnish

I REQUIRE a heat-proof, or at least heatresisting, varnish for table mats made from plywood: Very small bottles of this are available from art shops but are rather expensive. Have
you any suggestion or advice to offer, please? you any suggestion or an
R. Wallis (Norwich).
THE various bakelite resin varnishes will usually bakelite powder for making your own varnish can be obtained from Bakelite, Ltd., 18, Grosvenor Gardens, London, S.W.I, or from one of the subsidiaries of this company, but a much better ready-made varnish based on bakelite can be had in I lb. tins from Messrs. Smith and Walton, Ltd:; Haltwhistle, Northumberland.
For resisting temperatures up. to about 200 deg. C_{5} a synthetic resin of the "Melamine" type is necessary"
but, unfortunately, you will not be able to obtain this résin in small amounts.
In our experience, any ordinary cellulose lacquer, coated thickly, gives a good heat-resisting clear varnish: This can be made by dissolving to syrup consistency in mixture of equal amounts of amyl acetate and acetone brush-or spray-applied
Another type of heat-resisting, quick-drying varnish is polymethyl-methacrylate dissolved in toluene or xylene. This varnish can be obtained from
Products, Ltd., Butter Hill, Carshalton, Surrey.

Atlantic Crossing Details

COULD you please tell me the names of the 1. Sail and steam together.
2. Steam and paddles.
2. Steam and padew.
3. Stam and screr
4. Motor engines?
-4. Motor engines?
I. The first steamship to cross the Atlantic was the by Mr. Scarborough, of Savannah, in the American State of Georgia, and was named by him after his home-town. The "Savannah" left New York on May 20th, 1819, and arrived at Liverpool some 26 days later. It was, of course, a paddle vessel and it was fully masted as a sailing ship. Its Atlantic passage was made partly under steam and partly under wind. In fact, its full steaming time during the voyage was only 80 hours. Neveriheless, it arrived with its coal fully consumed
2. The first Atlantic crossing in a paddle vessel purely under steam (i.e. without wind assistance) was made by the "Great Western." This vessel sailed from Bristol on June 17th, 1838, and arrived at New York 18 days later
3. Captain John Ericsson, a Swedish engineer, designed a steamship, the "Francis Boyden," which was screw-propelled, had a speed of about 10 knots
and which made the Atlantic voyage in 1837 and which made the Atlantic voyage in 1837.
It was, however, wind assisted. The first big attempt It was, however, wind assisted. The first big attempt
to use a screw-propelled vessel was made in 1845 , when the "Great Britain" sailed from Liverpool on July 26th, 1845 , and arrived at New York on August 10th. 4. Your query concerning the first At lantic motor ship is not a very straightforward one, since the term "motorship" may be given a number of different meanings. However, taking the term to designate a vessel burning fuel onl, the first of the Atlantic vessels of this type was the Saturnia, which hrst made the crossing in 1920. It was designed and owned by Italia Anonmina di Navigazione.

Eel Grass Board : Rendering Gloss Paint Absorbent : Radiant Heat

I. Where can "Eel Grass Board" be obtained, have a sound-proofing effect equivalent to a 14in. brime cost? 2. Can anything be to render it absorbent to an ordinary gloss paint to rend
3. What is the difference between the rays emitted by the "radiant heat" element and emitted by an electric fire ?-F. W. Hewlett (Birmingham).
I. We doubt whether "Eel Grass Board" is now I. obtainable in this country. It is merely a sort of straw-board impregnated with plaster. We do not
think that you will be able to obtain it locally from any ' builders' merchants but you might try Messrs. Baxendale and Co., Ltd., Manchester. Sinoe this material is not ordinarily called for nowadays, we cannot give you a figure for its cost. Straw and grass boards of this description have a sound-deadening effect of roughly one-half that of solid brick or stonework, but much depends on the precise way in which the board or sheet is fixed and anchored in or to its surroundings and/or supports.
We suggest that you would get a much better, cleaner, lighter and more efficient product by using glass wool sheets specially prepared for sound-ceadening purposes. For particulars apply to Fibreglass, Ltd., Ravenhead, St. Helens, Lancs.
2. There is nothing which can satisfactorily be
added to a gloss paint or, indeed, to any other added to a gloss paint or, indeed, to any other type
of paint, to render it absorbent. If the gloss oil paint is thinned down sufficiently with white spirit, it will dry out with a dull, "flat" surface which will absorb small amounts of moisture from the atmosphere. If this fhat surface is. given one or two coats of distemper, its absorbency will be increased. "or a good absorbent flat oil paint you might well try "Murac" wall paint, which is manufactured by Messrs. John Hall and Co., Ltd.; Hensgrove, Bristol, 4. No matter how highly pigmented a true oil paint may be, it can never be greatly absorbent owing to the oil which it contains and which, especially after drying to a hard, resinous absorption of moisture. " radiant heat" emitted by "radiant heat" ond "radiant heat emitted by ramiant heat and any difference between these heat radiations and those dires. All these radiations are composed of relatively fires. Al these radiations are composed of relanively in rheumatic and other bodily conditions. "The great advantage of the special heat-ray " health " lamps is focused more accurately.

Re-magnetising Bulle Clock Magnets
I WISH to make a pair of solenoids for remis of in that it battery north pole in the middle and south. poles at both ends.
I have had several of these clocks for repair Can magnetism almost or completely gone. Can you give me data for winding a pair of
coils for this purpose to work off $240-v o l t y . C$.

Method of re-magnetising a Bulle clock magnet by means of a powerful electromagnet.

mains, either in series or parallel with each other?

 The dimensions anot reproduced).
Am I right in assuming that it will not be necessary to make additional coils with cores
large enough to pass the bends on to the middie large enough to pass the bends on
portion ?-A. D. Jones (Dorking).
W^{E} suggest that you build an electromagnet core of soft iron or mild steel to the dimensions given in the accompanying diagram. A coil on the centre S.S.C. enamelled wire, this coil being fed from the 240 -volt direct current mains through a fed from the fire element. The direction of current through the coil should be such as to give the shorter poles north should be such as to give the shorter poles north
polarity, and the long pole south polarity. With these polarities the permanent magnet should be at tracted when placed on the top of the electromagnet after the current has been switched on.
To magnetise the permanient magnets the current should then be switched on and off for a few times A magnet of this type may not have a great retentivity the open magnetic circuit.

White Footballs

I. AM interested in the white ball now being extensively used in League and other asso-
iation football matches, and have experimented with painting, ordinary (brown) football casesbut the white paint chips off after one game. Could you indicate how the ordinary brown leather case
can be made white throughout?-G. P. Williams (Dover).
OBVIOUSLY, there is no such thing as "white and whiteness is usually taken as being an absence of colour. There is no method of whitening a leather football case apart, of course, from the use of the several white paints which are available for this purpose To get the type of article which you desirc, you will have to make an entirely new football case from what is known as "' white leather.'2 This is not actually a
bleached leather. It is a.leather which has been bleached leather. It is a leather which has been subjected to prolonged extraction of grease and oils and has then been pigmented by the pressure-rolling of a white inert substance; such as zinic oxide or titanium
oxide, into its pores. We do not suppose that you have available the necessary plant for precesses such as this, so that, ordinarily speaking, we feel that any process of inherently whitening leather will be quite beyond your reach as an individual. The white leathers, however, are commercially available and you might obtain a quantity from a firm such as. Messrs:
G. W. Russell, Ltd., Hitchin, Herts, or from Dryad, L. W. Russell, Ltd., Hitchin, Herts, or from Dryad, interested in the matter, we suggest that you get into touch with the Brirish Leather Manufacturers' Association, Milton Park, Egham, Surrey, who would, we think, be prepared to give you practical details of the
latest processes of whitening hides or of rendering latest processes of
them light coloured.

Re-enamelling a Car

M^{Y} with, is think, Valspar synthetic enamel. While the condition of the paintwork is notitoo bad, I wish to Daint the car black. To do this

I assume It shall have to use a synthetic enamel if I am not to strip off the old paint completely, or to take great pains in "sealing", the present onamel. The-car was sprayed cream and the resulting finish is best described as "eggshell" in texture. My queries are
I. Is there a special stopping material for use with synthetic enamels to fill in defects or can the ordinary stopping material be used? 2. Is there any special undercoating that hould be used?
3. Is the "eggshell" finish mentioned. above can a high-gloss finish be obtained
4. What percentage of thinners to enamel should be aimed at in the final coat ? I assume thiriners for painting, i.e., pure turps.
5. Assuming that spray painting of synthetic enamel is not advised, can you suggest a.good Alexander (Welling).
I. If your car has been painted with a synthetic 1. enamel it should be readily possible for you to paint, quite satisfactorily, a black enamel over the is also of a synthetic nature. To get the best results is also of a synthetic nature. To get the best results
the composition of the black enamel should be identical the composition of the black enamel should be identical With that of the white enamel so far as the enamel medium is concerned. We do not think it will be necessary for you to strip off the old enamel before applying the new one, but if you prefer to do this you Will find that the enamel will readily strip off after of benzene and acetone
2. A good stopping material for your purpose would chain stores. This is merely a fine aluminium powder chain stores. This is merely a fine aluminium powder incorporated into a thick cellulose medium. It dries with fine sandpaper.
A good undercoating for use on metal would be either the lead pigmented enamel or paint which is manutactured under the name of Ledium by Messrs. This is particularly useful when the metal is desired to be adequately rust-proof. Another undercoating to be adequately rust-proof. Another undercoating for average purposes w
nary aluminium paint.
nary aluminium paint. "The semi-rough or eggshell" finish which. you mention is always an inherent property of the varnish, not of the method of its application. The eggshell agent, such as aluminium stearate, into the enamel, or by making up the enamel with a low boiling-point solvent so that the enamel dries rapidly. It can, of course, be produced by a judicious combination of these methods. But the point to note is that, normally, the finish of the enamel is conditioned by the composition of the latter and not by its mode of application. In ordinary circumstances the slower drying the enamel the higher the gloss obtained from it. nitely not similar in composition to thinners which are used for ordinary oil painting or enamelling. In the latter case, as you say, pure turpentine, or a mixture of pure turpentine and white spirit, would be admirable for making a good job, but such would be totally inadmissible as thinners for synthetic enamels. Usually, these thinners consist of a mixiure of the solvents which have been used in the making of the enamelitself. The mixture of thinners may be in this case (and usually. is) rather complex, containing liquids such as acetone, other organic esters. A simple thinning liquid for average purposes.can be made up by mixing together acetone, ethyl acetate, amyl acetate in approximately equal proportions, but the total amount of this' mixed liquid should not exceed 20 per cent: of the volume of the paint or enamel.
5. A suitable paint remover for the existing cream of of equal quantities of benzene and acetone. This liquid will become more effective if it contains about 5 per cent. of dissolved wax-paraffin wax or beeswax, or even candle wax. The function of the wax is to prevent the too speedy evaporation of the softening liquid when it is brushed over the paint surface, thereby giving the liquid a longer time to act before it is completely dissipated:

Painting on Glass

CAN you give me, any information regarding windows of shops? I have tried different enamels, also flat oil paint stippled over, but none of these seem to make a successful. job.-W. A. Pitts seem to make a.
(Douglas, I. of M.).
$0^{1 L}$ paints are quite useless for furting en glass because the oil does not spread on the glass easily. The best paints for the purpose you name would
be the thin cellulose enamels which can be obtained be the thin cellulose enamels which can be obtained from most paint dealers. In our opinion, you would get good results if you made-use of the ordinary artists cellulose paints for: glass decoration. These can often oe obtained in local handicraft shops, 'and in dealers obtain them locally send an enquiry to Dryad, Ltd obtain thern
St. Nicholas Street,
Leicester. These people are wellSt. Nicholas Street, Leicester. These people are well
knewn-handicrafts dealers, and we think they will be able to supply you with the right paint for your job. Alternatively you might inquire at the various firms producing artists? paints, such as:-Reeves \& Sons Ltd., I8, Ashwin Street London, E.8; Winsor \&
Newton, LAd., 38 , Rathbone Place, London, W, $; ~$ Newton Litd., 38 , Rathbone Place, London, W, 1 ;

Surplus
 Aircraft Maiterial AND SUPPLIES FOR MODEL ENGINEERS
 BOLTS, SCREWS, NUTS, RIVETS, WASHERS, EIc.

${ }_{338}$ No. $2 \mathrm{BA} \times 26 \mathrm{in}$ Por Gross
338 2BAX2.6in. Bolt Stee
108 6BAX in. Bolt Steel
658 8BAX Illltin. Bolt Steel
75 No. $6 \times$ in. Csk. Self Tap
649 EBAX 7116 in. R.H. Screw $132 \mathrm{in} . \times 311$ Gin. R.H.H. Rivët Copper \ldots.... R.... Rivet 22 Ill 6 in. $\times \frac{1}{2}$ in. R.H. Rivet Stee!
5027 8BA Int. Tap
5038 8BA Die
5040 IOBA Die
FREE LIST OF MORE THAN 216
700 ITEMS INCLUDING plit Pins, Taper Pins; Tension and Compression Springs, Gauges, Spirit Levels, Shock Absorbers, Tubing, Gears, Motors, Switches, Electromagnets, Flex, Terminals, Resistances, Condensers, Meters, Rectifiers, Heaters, Brushes, Accumulators, Silver Solder, Tiber Grindstones, Spanners, Taps and Tube, Grindstones, Spanners, Taps and Nipples, Ball Oilers, Ball Races, etc., etc.
Cash with order. Over 10/- post Free. 28 days' approval.
Send NOW for List and mention
"Practical Mechanics
K. R. WHISTON
NEW MILLS, STOCKPORT

JOHN FARMER

BURGIAAR ALARMS, as described in P.M. for Feb. We can supply the camera control (type 48) at 15 i-, post
$1 / 6$. Sockets to fit, $1 /$ for two, post 3d. Micro switches, $3, j^{6} 6.3 \mathrm{v}$. bulbs. 8 d . each, P.V.C. moulded wirc, 10%, per 100 yd . coll. Units made up as specificatlon, teated and complete, 30 i- each.
post $1 / 6$. CI. NOMETERS, large, by E. R. Watts \& Son, London, Graduated
to 45 degs., spirit level, in perfect condilion. Complete with mahogany case, at only a fraction of original
cost. our pice, fy/10/e, post $1 / 8$. investment for all who teach or are internated in navigation. Fitted for up to 6 shots. Complete with bake1to Case. brand new. 376 each post fuxgate. size 51 in, dia, 3 in, high. Others used and less case but perfectly serviceable, 76, post 13 . BATREN-
IUYG'S COURSE INDICATORS, Mk. II, by Ellott Bros., I.ondon. ment, complete with wooden case at only a fraction of original cost, 70 , zero to 2, comb. sq. $i n$. In brass cases With protective covers, Size, sin. dia, LNGINEER'S CALIPIERE, Buck \& Hickman. Ain. Inside and outside, brand
 bi hours, provides half scond impulses. Complete with stop/start device. suppressor winding key. Brand new, at only a raction of the original cost, 15/- each, FOR प1ERS, Pri. 200-220-240v. Sec. 30 v . at 2 amps, tapped at 3-4-5-6-8-9-10-12-15-18-20 and 24 volts, $22 / 6$ each post $1 / 3$. in, copper mesh, 20 per inch. Will give your home-made set that "professlonal " look, $2 / 6$ per sheet. post 8 d.
A copy of our 1952 catalogue sent free
JOHN FARMER (Dept. A.2), 194 HARBORNE PARK RD., HARBORNE, B'HAM, 17

THE mable cellulose. High impact strength. Retains shape and never damages the work. Solid steel hammer body with knurled face - retaining pegs at both ends. Standard Hammer has cylindrical faces. Six weights (4ozs to 2 lbs.$)$. Dome, cone, taper, or wedge shapes also supplied. Ideal for machine shop use and general assembly work. Write for details.

THOR HAMMER Co., salop street,
 BIRMINGHAM, ENGLAND. 'Phone : VICtoria 0987-8.

SPRAY GUNS for attaching to vacuum cleaners once more in stock Will fit to almost any make of cylinder vacuum cleaner. Supplied with thrce nipples for cellulose, paint or distemper, 13/6 each, plus 9d postage
SENSITIVE MICROAMP METERS ($0-500$ microamps) for exposure meters, movement will fit a box the size of ten Players, 7/6. Unbreak able sclenium cells for use with-above meters, $6 / 6 ; 17 \mathrm{~mm}$. x 43 mm Instructions for making up supplied
TWO-WAY INTERCOMMUNICATION between rider and sidecar passenger, cycle or motorcycle. Complete and foolproof, $19 / 6$. NOISE SUPPRESSORS for "dirty" mains, fully screened, $10 / 6$ each, size $4 \mathrm{in}, \times 3 \mathrm{in}$. 1 tin. Or sausage-shaped type for vacuum cleaners electric drills, etc., $19 / 6$ each.
RESISTANCE MATS, 230 v., 130 watts, for warming developing dishes, glazing and drying prints, tropical fish, chick brooders, etc: 10 in . $x 6 \mathrm{in}$. $x 1 / 32 \mathrm{in}$., $2 / 6$ each, plus 3 d . post.
HAND GENERATORS can be used for a variety of purposes, windchargers, electric drills; slow rotary display stands, etc. 'Conversion sheet supplied. 24/- each.
COLOUR SCREENS for television receivers ; 9in., 11/-; 12in., 13/inc. postage
PARKRADIO OFMANORPARK, 676/8, Romford Road, London, E. 12.

TELEPHONE SETS. comprising G.P.O, hand-phones, 2 bells, 2 pushes and 80rt. twin wire. Price 65- post free. Makes an excellent inter-ofice
works or domestic installation. Really not rubbish. Single inscruments, 18.6. B ATTERY CHARGERS for A.C mains. For charging 2-volt accumu lators at 1 amp. Parts with diagram
$\mathbf{1 7 / 6}$. Complete, 21/6. Postage 100 17/8. Complete, 2IV. TRICKIE CHARGING CAR Wi.LS, parts with diagram. Output 14 amps. or 6 amp . or output 50 ,
CAESIUM PHOTO-ELECTRIC CELLS. The only satisfactory cell for amateur projectors, relays, etc. Perfect
production for speech and music. 3 pin production for speech and music. 3 pin
socket size $27 / 16 i n . x$ 11/16in. Price
ECONOMIC' ELECTRIC Co.
64, London Road, Twickenham

ELECTRADIX RADIOS

for
RADIO, ELECTRICAL AND MECHANICAL APPARATUS \& LABORATORY INSTRUMENTS

Write to Dept. H.
214, Queenstown Road, London, S.W. 8 \Longrightarrow Telephone MACaulay $2159 \Longrightarrow$

FOR SUMMER SAILING

There is nothing which reflects the modeller's skill to better advantage than model boat building. Modelcraft offer a fine series of plans for yachts of all types, launches, etc. The following selection (from the Modelcraft List, 11 -, post free, with refund voucher) is typical.

'KESTREL'

24 in . yache. Plan includes
treatise on building and
sailing ${ }^{\text {NTERNATIONAI }}$
'M' CLASS Racing Yacht OSPREY
50 in . model
"MERLIN'
36in. M.Y.A. model ... 8/6
' DAYTONA' Motor Cruiser 33 in , model ... $\quad . . \quad . . .1016$

Add U/- for postage and pocking

MODELCEAFT

77 (L), GROSVENOR RO., LONDON S.W. 1

LANGUAGE PROBLEM SOLVED

by the Pelman Method
THE problem of learning a Foreign Language in half the usual time has been solved. The Pelman method enables you to learn French, German, Italian and Spanish without translation
By the Pelman method you learn French in French, German in German, Spanish in Spanish, and Italian in Italian. English is not used at all. Yet the method is so simple that even child can follow it.

Specially reduced fees far serving and

Grammatical complexities are eliminated. You pick up the grammar almost unconsciously as you go along. There are no classes to attend. The whole of the instruction is given through the post.
The Pelman method of learning languages, which has now been used for over
25 years with such success, is explained in four little books, one for each language FRENCH, SPANISH, GERMAN
(Also Courses in Afrikaans and Urdu)
You can have a copy of any one of these buoks, together with a specimen lesson, gratis and post free, by writing for it o-day

.... POST THIS FREE COUPON TO-DAX

To the Pelman Languages Institute,
130, Norfolk Mansions, Wiemore St
130, Norfolk Mansions, Wigmore St
London, W. 1.
Please send details.of Pelman method of learning

> French, German, Spanish, Italian
> (Cross out three of these)

Name
Address

REG HARRIS puts everything he knows into his final effort.

This determination to win has helped him to capture the World's Professional Sprint Championship three years in succession. Another factor in his success has been his superb generalship-and that includes choosing the top tyres. Dunlop, of course.

Give yourself a Champion's Chance -fit DUNLOP

1H, 305

Multimeters, $2 \frac{1}{8}$ in. Calibrated in volts, ohms and mA . Supplied as a kit with black bakelite case, 6in. $x 41 \mathrm{in}$. $x 11 \mathrm{in}$. Resistors for D.C., volts $0-3,30$, $150,300,600$ and $0-60 \mathrm{~mA}$. Scale reads ohms $0-5,000$ with 11 volt battery, 24/6. Polished Bakelite Panels. $16 \frac{1}{2}$ in. x 7in. x lin., 31-. Black, 31-. Red or Light Blue, $3 / 6$.
Army Carbon Microphones. Switeh in handle, 4/9. Trans. to mateh, 4/6.
Moving Coil Mierophones with Pressel 5witch, 6/6. Matched Transformer, 5/-. 6 v. Vibrator Packs in black metal cases. $7 \frac{1}{2} \mathrm{in} . \times 31 \mathrm{in} . \times 5 \mathrm{in}, 200 \mathrm{v} .40 \mathrm{~mA} ., 2216$. Powerful, Small Blower Motors, 24 v , A.C.ID.C., 14%.

Transformers. Input $200 / 240 \mathrm{v}$. Sec. tapped 3-4-5-6-8-9-10-12-15-18-20-24-30 volts at 2 amps., 2116 . 12 months ${ }^{\text {g guar }}$ antee.
Selenium Rectifiers F. W. 12-6 volt, 3A., 14/6. 4A., 26/-. A., 5/6. H. W., 250 v. $/ 120-\mathrm{mA} ., 9 /-$

Miniature Motors, 12 v. or 24 v. D.C. with gear box and governor controlled speed, 14/न.
D.P.D.T. Relays. Operate at 200/300 volts D.C., 131. D.P. Make and Break, 816. Any combination or voltage can be supplied at varying prices.
24 v. A.C./D.C. Morors, $3 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{\mathrm{in}}$., 13,6
110 v. A.C./D.C. Reversible Motors, $3 \frac{1}{2} \mathrm{in}, \times 2!\mathrm{in} ., 15 / \mathrm{m}$.
New Deaf Aid Miniature Valves. DLT2 and CKS12AX, 9\%-. Ideal for radio control units.

All Carriage Paid.
THE RADIO \& ELECTRICAL MART,

253B, Portobello Road, London, W.ll.

Park 6026.

2-2

 " King " Major, Minor or Sports Three models so outstanding in their conception and construction that they will excite the enthuslasm of every cyclist. You are sure to want one of these "King " sets when you see their modern styling and brilliant new features. Ask your local cycle dealer to show them to you.
 Prices 36/- to 50/-
 (Major illus. 47/6)
 LUCAS CYCLE DYNAMO SETS

TALEIE PRONECTORS. $-16 \mathrm{~m} / \mathrm{m}$. B.T.K. model S.R.B. Sound and stlent. complete with valves, lamps, lens, speaker, transormer, Also spares available. GB model L516, $16 \mathrm{~m} / \mathrm{m}$. complete with valves, lamps lens, but less speaker and resistance, £75. Projection Lenses, Dallmeyer. $33 \mathrm{~m} / \mathrm{m}$ diameter mount. $50-65-75 \mathrm{~m} / \mathrm{m}$., 65^{\prime} - each.
POVVERE SUPPLY UNIT No. 7 for charging 6 volt recumulatorsiby hand, consisting of a hand senerator 6 volts D.C. at. 4 amps.
complete with accumulator box, automatic cut-out in large steel case. 16in. x 101n. I 7tin., only 45/- carriage paid.
CATIDDE RAY TUBF, No. 3BP1.-NeW 3in. tube with shield and holder, userul for bullding oscilloscope, etc.. $35 /$. Post $1 / 6$. THROAT MICROPHONES. - Amerdean win-button type with strap lead and plug. 5'- each. Post 6d.
AFAD SET ADAPTOR.-MCr85 High to ow impedance, $2^{\prime} 6$ cach. Post 61.
PHOTO FLOOD LAMPS.-1.000 watt. 3 volt, $10 /-$ each. Post $1 /$ -
REMISTANCR BA ATS.-Mako Ideal beating mats Cor Aquariums, Photographic solutions. Print dryers, etc. Mains voltage. post free.
ACFIL PUMPS.-These pumps enable you to fill all accumalators on the bench with the carboy at floor level. Brand new only 30 ', post 1/6.
INTERESTED IN FISIIING: ?Then send or one of our tapered whid aertals and make yourself a nie rod warth pounds. Consists of three tubular steek, copper platod sections ift. long, which screw into rlage 2i-. (Eire, 6/6.)
CUTTER HISADS. -" Recording " high mpedance. Amazing bargain at $55:-$ each post $1 /$ -
CUTTER STYLII, 6/e per doz. large quantity available at special rates. SLOEV MOTION DIALS. Gin. Scaled -100. reduction 200 to 1 or direct, ideal for price, while they last, $5 / 6$ each, post $1 /$ RIROMIDE PAPIIL-Glossy grades I and 3. 511 n . $x 51 \mathrm{in} ., 7 / 8$ per stoss, post 6 ot.

PLASTICA in soft, normal or hard. Double weigh't 12in, x 101 n , at $77 / 6$ per gross, $27 / 6$ for 50, post $1 /-: 15 /-$ for 25 , post 1 H , also 15 in . x 12 n . soft only, $117 / 6$ per Eross, $39^{\prime} 6$ for 50
WILCO ELECTRONICS
204. LOWER CRODISCOVIBE ROAD.

VOL. $X X$
MAY, 1952
No. 360

All letters should be addressed to the Editor, "THE CYCLIST,"
George Newnes, Ltd., Tower House, Southampton Strect, Strand, London, W.C. 2 .

Phone: Temple Bar 4363
Telegrams: Newnes, Rand, London

COMMENTS OF THE MONTH

MASSED START-N.C.U. CAYES IN!

B.L.R.C. WINS IO-YEAR BATTLE

MASSED start racing was approved at the National Cyclists' Union General Council meeting on March 22nd, by the acceptance of the proposal to delete the "banning of massed starts" from the N.C.U. rule book. The proposal was discussed and passed in a matter of minutes. Thus, the fierce opposition put up by the Union during the past ten years against this modern form of racing came to an ignominious end. It is not the first time in the chequered history of the Union that it has been proved to be the apostle of a lost cause, and we are wondering what value can be placed on its words and its opinions by the Home Office and the Ministry of Transport in the future. It is true that the N.C.U. has been proved wrong in its gloomy forecasts as to what would happen after the war if massed start races were permitted on the roads by the march of events. Ten years of this form of racing have proved all the critics wrong. Moreover, the success which has attended these races has converted thousands of cyclists to its ranks. Little wonder, therefore, that for the past two years there has been dissension within the ranks of the N.C.U. which now finds itself between Scylla and Charybdis, for in approving massed start it now has to setule accounts with its uneasy bed partner, the R.T.T.C. Still, adversity makes strange bedfellows. It may be that by the time these words appear in print some sort of condominium may have been arranged.
The decision by the N.C.U. by 50 votes to 20 to run massed start races, raises a problem for the B.L.R.C., the secretary of which states that the League programme will be adhered to and will run strictly according to schedule. The Tour of Britain will run as planned. The Daily Express, sponsors of the Tour, announce that there is no reason why they should withdraw their support from the event because the N.C.U. decision has no bearing on it. At the time of going to press the R.T.T.C. is convening a meeting to take place on May 25 th, to consider the position. Whether the B.L.R.C. would join forces with the N.C.U. or, as the originators of massed start in this country, will continue to operate as an autonomous body (as it has every right to do, since it has more experience of massed start than the N.C.U.), remains to be seen.
The massed start committee of the N.C.U. will formulate rules on which their races are to be run. They are to cover multi-stage racing as well as single stage events. The trade, which offered to act as arbitrators in the dispute between the three bodies, is naturally anxious, now that the B.L.R.C. has won the day, to effect unity between them. The harsh words of the past, however, and the methods adopted by the N.C.U. to impose its will may not soon be forgotten. The leopard cannot so quickly change its spots!

A Deciding Factor

W^{E} like to feel that our continued efforts over the past ten years on behalf of the League have been a deciding factor in the
conversion of the N.C.U. We drafted the memorandum on massed start, and with W. J. Mills and J. Kain formed the delegation which visited the Ministry of Transport to put the League case. At that meeting we learned of the methods which had been adopted behind the scenes to get massed start racing stopped. We said then and we say now that those methods were not worthy of a sport which is supposed to be clean. Indeed, it is doubtful whether without the considerable support we gave to the League that it would have survived. Percy Stallard was the first, in June, 1942, to challenge the N.C.U. by promoting the first British road race from Llangollen to Wolverhampton. He and his supporters were suspended because of a breach of the Union's rules. He then sponsored the Midland League of Racing Cyclists which later combined with similar break-away movements in London and Yorkshire and finally became the B.L.R.C.

No doubt the Tour of Britain last year and the success which attended it has had much to do with the final conversion of the N.C.U. It achieved more publicity in the national press than any other form of track or road racing.
Now that the fight is over we may hope that the three bodies will get together and in future work on terms of amity with one another. From the rumblings which reach us, however, there seems little possibility of this taking place yet. There will be at least three months lapse before the N.C.U. can run its first race. Perhaps that time can

Nusper susee
Alittle villige close to the
county border near capel The interesting church contains two old brawies ant fint ithoug te tobevarok. The villoge is sal in buvely wooded country,
be used to heal the breach, now that Great Britain is running cycle races on lines which are accepted in most other countries. This does not necessarily mean that there will be a decline in time trials, which are still run on the furtive, hole and corner and surreptitious lines which were necessary when the police attitude towards cycling was as severe as it now is towards motoring. Undoubtedly, however, many racing cyclists will divert their attention from time trials to massed start, preferring the glamour and the publicity of modern cycle racing to the small amount of publicity which is accorded to time trials-even classic time trials.

The dispute need never have arisen had wise councils prevailed at the start. The N.C.U. for over fifty years has been endeavouring to force cycle sport on to closed circuits. It banned time trials, whether paced or unpaced, attempts at road records and all other forms of road racing.

Another factor created by this new position is the attitude which the Government is likely to adopt if two bodies sponsor mass start racing. It has already threatened action, but promises to leave time trials alone. If massed start racing is banned, the N.C.U. will be entirely responsible for it, and in that unhappy event there will be a secession of members from its ranks, since the majority of its members want massed start racing.
It is our fervent hope, now that all has been said and victory won, that unity should replace the splitting discords of the past, and the personal vendettas forgotten.

Zebra Crossing Regulations Amended

THE pedestrian crossings regulations have 1 been amended by the Minister of Transport, the Hon. John S. Maclay, C.M.G., M.P., in the light of experience gained since "zebra" crossings were introduced on October 31 st, last year. The new regulations came into force on March 12th.
The main changes are concerned with the marking of crossings. Their effect is that, if it happens that a crossing does not comply strictly with the provisions of the regulations about the lay-out of the lines of studs or about black and white striping, the crossings will still be valid provided that the general appearance of the lines of studs and the black and white stripes is not materially impaired. Moreover, the first stripe at each side of an uncontrolled crossing is no longer required to be black.

Other changes are :
Bicycles, whether or not mechanically propelled, which are not fitted with sidecars, are exempted from the restrictions which may be imposed under the regulations on waiting vehicles on the approaches to crossings. It is also expressly provided that these restrictions do not apply to vehicles which are stopping to give precedence to pedestrians using a crossing.
The Minister is given power, in particular cases, to authorise crossings over 16 ft . or less than 8 ft . wide.

DYNAMO LIGHTINC

With Notes on the Dyno-hub

THE dynamo has its advantages and disadvantages compared with the battery lamp, but for the rider who has to do good deal of cycling after dark it is definitely a good investment.

The main disadvantage of a dynamo is, of course, the friction drag on the tyre, but to the reasonably active rider this should not be a drawback, although drag and the additional weight have been the main reasons why lightweight users and clubmen have not favoured this form of lighting in the past. A further disadvantage is that the lights go out when the cycle is at a standstill and, when stopping on a dark road, it would be well to remember this. Some of the more modern dynamo headlamps, however, carry a battery and have a twoway switch which enables the rider to change over to battery lighting when a stop is made.

Offsetting these disadvantages is the fact that a dynamo can produce a much more powerful light, which is constant (a battery lamp dims as the dry cells near the end of their life) and, having no batteries to replace, it is cheaper to run. To the country rider a powerful headlamp is almost a necessity for picking out the additional

Fig. 1.-The lamps are commected in parallel with the dynamo, and earthing may be carried out either by using the mounting brackets or by connecting the casing of the two lamps to the dynamo casing by means of zuires.

Fig. 2.-Ensure that the pulley wheel is bearing correctly on the side of the tyre.
hazards of an uneven verge, winding roads and unexpected obstructions where street lighting is almost non-existent.

The principle on which the dynamo functions is that magnetic lines of force due to the north and south poles of a permanent magnet cut the turns of a winding and induce a voltage into them; the winding being connected to an external circuit (the front and rear bulbs) a current will flow.

The magnetic field cutting the turns of the winding can be produced in two ways. First, by a stationary magnet and revolving winding and, secondly, by a stationary winding and revolving: magnet.

By C. J. J.

In addition to the friction-driven dynamo there is on the market a type of dynamo included in a specially made hub, the prototype of which was introduced by the Raleigh Company. The design eliminates friction drag and, of course, less effort is required to obtain an effective light.

Since then the Raleigh Company have introduced car type lighting, and this combines the original type of dyno-hub with a three-speed gear. The current produced by the dyno-hub is passed to the accumulator unit which includes a rectifier for converting the A.C. to D.C. (accumulators may be charged by D.C. only). The accumulators are of the dry type and the only attention they require is to be fed with distilled water periodically. This type of lighting means that a steady continuous light is provided irrespective of the speed of the cycle or whether it is moving or at a standstill. Excessive standing, however, will, of course, as in a car, cause the cells to become run down, but provided that riding time exceeds standing time they may be recharged.

The Circuit

With the friction-driven dynamo both the headlamp and the rear lamp are supplied from the dynamo and are connected in the circuit in parallel (see Fig. r). There are two methods of making the earth connections; either mount headlamp, dynamo and rear lamp straight on the cycle frame, cleaning away enamel under brackets, etc., so as to ensure a good electrical connection, and using the frame as a return to the dynamo for the current, or by using additional wiring and connecting the headlamp casing to the dynamo casing, and the same with the rear lamp. The other connections in the diagram (Fig. Y) from dynamo to headlamp bulb and from dynamo to rear lamp bulb are selfexplanatory. The second system mentioned, using wires instead of the frame to complete the circuit, is the better of the two, there being less chance of making a high-resistance connection.

The Correct. Bulbs

The bulbs in both lamps must be chosen with regard to the voltage and amperage rating of the dynamo. For instance, a typical dynamo is designed to yield a 6 volt, 3 watt output, which is a current rating of .5 amp ., and the bulbs used should always be those recommended by the makers of the dynamo. The rear lamp bulb is nearly always a 6 volt, .04 amp., while that for the headlamp may be a 6 volt, .45 amp . For different types of units other ratings are used, but a good cycle dealer will usually know which are correct.
The sum of the amperages of both bulbs should not exceed the total amperage rating of the dynamo and the bulbs previously mentioned are used in this particular combination so that the greater part of the power is concentrated in the headlamp, the rear lamp receiving only enough to ensure that it is seen.
If bulbs of lower wattage rating than that which is correct are used, they are certain to "blow " after a very short time of use, and when bulbs of too high a wattage rating are employed, the result is a light which' is much too dim.

Fitting the Dynamo

The dynamo may be driven by either the front or rear wheels, according to individual preference, but whichever one is used, the method of fitting is the same. It should be mounted as close to the wheel as possible, in the " off" position, so that the whole of the serrated portion of the driving pulley bears on the side of the tyre, see Fig. 2. If tilted at an angle the top edge of the driving pulley will bear on the tyre and quickly wear a groove in the rubber. In order that the driving pulley will lay correctly with the run of the wheel, the dynamo should be mounted so that its centre spindle is at right angles with the rim of the wheel, and this can only be achieved with the dynamo in such a position that a straight line drawn through its vertical centre and continued passes through the wheel spindle, see Fig. 3.
These adjustments may be made very easily as they have all been taken into account by the manufacturer and are usually only a matter of adjusting a nut and bolt or two.
The mere fact that you are using a high powered dynamo does not necessarily mean that you will obtain a light of maximum brilliance and the design of the actual headdamp and reflector must be considered. V,arious manufacturers claim different advantages for their own particular lamps; it may be a special type of reflector, a highly con-

centrated beam, and so on. Sometimes additional refinements are fitted, such as a dimmer or an arrangement incorporating an extra bulb and a battery, which may be brought into operation by the touch of a switch.

There are available, commercially, special rubber caps which may be fitted over the driving pulley and these help to minimise tyre wear and suppress noise. Whilst these are readily available on the Continent, where the dynamo is used far more than in Britain, they may not be so easy to obtain in this country. If they cannot be purchased, a good substitute is the rubber sealing washer which is fitted round the stopper of a quart beer bottle. The tractive qualities of the rubber,are every bit as good as the serrated steel of the original driving pulley.

Cycle Racing

 A Monthly Summary.

 A Monthly Summary.}

LES WILLMOTT, the " forgotten man" of road racing, is hoping to get his big chance this month (May) to prove that the National Cyclists' Union have been consistently wrong about him.
Hundred miles record holder, 100 miles time trial champion, and a gallant second in last year's Isle of Man mass start road race, Willmott has persistently been ignored by the N.C.U. when picking international teams for road races, and no amount of pressure on Union officials will bring out a satisfactory reason.
But Willmott is now serving in the Army, and the Army Cycling Union have picked him as one of the team they are entering in the I4 days "Route de France" road race, which starts at Rouen on May 4th. (Other riders will be Pete Proctor, national mass start champion, Brian Robinson and Bernard Pusey. . all currently serving.).
The N.C.U. are themselves entering a team in this race, which is, in effect, a Tour de France for amateurs, and they have namedPete Proctor, Brian Haskell, Dick Henley and Gordon Thomas. Yes, Proctor is named for both teams!

I rather suspect that the Army will hold out to have Proctor in their team, and that the N.C.U. will substitute Bob Maitland in theirs . . . and the two four-man teams will actually compete in the race, to all intents and purposes, as an eight-man team.

BUT 1 look to the Army boys to put up the better showing, for the Procior-Willmott combination should be formidable. If so, the Union will have to scrap much of its Olympic planning, which, so far, seems to be based on using the self-same riders who, year after year, have failed in the world's championship road race.

Willmott, although young and inexperienced, can be in my opinion; developed into a second George Fleming (remember, he won the Paris to. London road race back in 1947P). I was in the Press car that followed him in his break away attack in the Isle of Man race last year . . a solo effort with 30 mountainous miles in front of him. True, he was overhauled by the more experienced Dick Bowes, who beat him into second place, but Willmott surely proved that he has the courage and audacity, plus the proved leg power, that brings victory in international road racing.

LATER in May, the N.C.U. are to send two riders over to Finland, to compete in a road race on the Olympic course. They should bring back some useful information about the route, especially on the correct choice of gears and tyres.

ALTHOUGH Good Friday marked the opening of the Herne Hill track season, the month-long gap before the regular series of Saturday promotions start up means that the public have to be wooed afresh. The season proper begins on May Ioth, when, after years of shilly-shallying, the N.C.U. have finally entrusted the running of all maior promotions to a professional organiser.

To Johnnie Dennis goes the unenviable task of trying to pull Herne Hill out of the red, and he is pinning his faith on his newlyformed professional " school." By May roth he hopes to have a full score of riders signed up in the cash ranks.
What he needs most to attract the public, though, are -personalities, whether amateur or
pro. In the days of the great Frank Southall, the mere billing of his name on the posters was sufficient to fill the track, and if he had Harry Wyld as an opponent, you could bank on a " sell out."
Of the newly-signed pros. I can only spot one who might fill the vacancy as personality No. I at the track; and that is the ex-rebel rider, Dave Bedwell, of Romford. He has quit the British League of Racing Cyclists and rejoined the N.C.U. His five

Ian Steel, Great Britain's champion long: distance rider for 1951, rides with "Palcas." Ian was the winner of the "Daily Express" Tour of Britain, and the Irish Grand Prix, at Phoenix Park.
feet nothing, his aggressive style of riding and his really good finishing sprint should soon make him a firm favourite with the crowd.

GERMANY is sending over a full team, eight strong, of Olympic possibles for an Olympic style match against the N.C.U. possibles, and first encounter will be at Herne Hill on May 17th, followed by other matches at Manchester, Coventry and Birmingham, and perhaps a return match at London on May 24th. I wonder if the Germans will have found a second Toni Merkens ? This Cologne boy was a great favourite in England before the war-he won the British sprint championship in the years before it was restricted to our nationals. (He died of wounds received during the war on the Russian front.)

Which reminds me of yet another great German sprinter, the professional Albert Richter, also a popular visitor to Herne Hill. A staunch enemy of the Nazis, Richter was shot while resisting arrest on the Swiss frontier-he was, the Nazis claimed, trying to smuggle currency out of Germany.

WEMBLEY is well advanced with plans for the six 'days' race at the Empire Pool Arena, from May 18th to 24th, but there will be a big change in this year's event.

Instead of being a continuous 144 hours' race, with the riders creeping around at two miles an hour in the morning hours, the race
will shut down completely at two in the morning, and all riders will sleep until early afternoon, when racing resumes.
While this destroys the continuity of a "six," it must be admitted that the early morning crawl, with the riders mounted on touring bicycles, fat tyres and sprung saddles, has become a farce.
Names of riders are not available at the time of writing, but we are promised a very much stronger British participation than in previous events-Wembley now having the Herne Hill pros. to draw upon.

THE Australian team of professional roadmen now in France have not made an impressive debut, and their hopes of getting an invitation to ride in the famous Tour de France (their main objective) are small,
In the six days' Paris to Nice race, at the end of March, Pete Anthony and Dean Whitehorn were so far behind that they were eliminated on the second day; Eddy Smith retired at the end of the same day, leaving only Johnnie Beasley to struggle on, well down the list, to the closing stages.

A
LSO in Europe is another Australian, Russell Mockridge, track champion down under, and over here at his own expense, with an eye on the Olympic sprint sitle.
But just because he has paid his own fare over, Mockridge is in trouble with the Australian Olympic Federation. All Australian Olympic entrants, in return for the heavy expense of sending them to Helsinki, have to sign a $£ 800$ bond guaranteeing that they will stay amateur for two years after the Games.
Mockridge, so far, has refused to sign the bond on the plea that he his paying his own expenses throughout.
Seeing that he was only narrowly beaten, after getting a very rough ride, by the Italian Sacchi in the final of the world's championship last year in Milan, Mockridge is Australia's main Olympic hope-and I am sure some compromise will be found so that he can get his revenge over Sacchi in Finland.

The Italians, by the way, have no such scruples about keeping their men amateur ; Sacchi has been told by the Italian Cycling Federation to stay amateur until the Games, then, the day after, with, they hope an Olympic title, he is to turn professional and rush down to Paris to compete in the world's professional sprint championship.

I_{A}^{A}
AN STEEL, winner of the 1951 Daily Express Tour of Britain, and Alec Taylor, Belgian born London boy, who was second to Steel, are probables for the forthcoming Warsaw-Berlin-Prague 14-day race. Six riders have been invited to compete in this 1,265-mile event and these will be selected from Ian Greenfield, M. Howarth, J. Wilson, F. Seel, B. Woods, and K. Jowett. The party, including three officials, manager, masseur and mechanic, will fly from London to Warsiw on April 25 th, and return from Czechoslovakia on May 18th. As with the Tour of Britain, there wil be 12 days of racing interspersed by two rest days. The race starts on April 30th, the first rest day being on May 5 th in Gorlizt, Germany ; the second rest day will be on the roth in Bad Schandau. Although this race has its fair share of mountainous country over which the riders must travel, their great difficulty lies in the appalling road surface. Indeed, the cobbled sets of the Mile End Road, London, or those of many northern towns in this country, would be a welcome relief from "roads". that more nearly resemble ploughed fields hardened but not flattened by pressure.

AROUND THE WHEELWORLD

By ICARUS

Kyclists and Motorists

ARE the interests of cyclists in respect of the use of our roads really in antagonism to the interests of motorists? Are these interests not coincident in that both cyclists and motorists are eagerly desirous to ensure safety as well as convenience in road traffic ? It is now getting on for 50 years since the advance of motoring prompted the wish to have motorists as members.

The Cyclists' Touring Club was incorporated in 1887 under the Companies Act as a limited company for purposes not of gain. Being so purposed, it could obtain the Board of Trade's licence to be registered with limited liability without the need of including " limited" in its name. By 1906, motorists on the roads increasing monthly to an amazing extent, the Club thought it to be advisable so to alter its memorandum as to change its name to Touring Club, and to admit motorists as members. For many motorists had ceased to be members of the Club, its membership then being about 32,000 as against 60,000 a few years before. The existing members were far from unanimous in desiring the change, many thinking that, if in fact the interests of cyclists should clash with interests of motorists, promotion of the latter would have preference. Still, there was a majority in favour.

Changes in a company's memorandum are possible in spite of dissenting members, but only to a limited extent and only if the Court confirms the changes, and this Chancery Judge declined to confirm. He may have attached more weight than was its due to a statement in the affidavit by which the Council's chairman supported the petition for confirmation "that touring on bicycles has gone out of favour chiefly on account of the introduction of motor-cars, which, besides being more attractive in themselves, have to a great extent destroyed the pleasure of cycling and have increased the risk of accident in the use of bicycles."

The legal mind delights in an argument that is plausible even when unsound, and the learned Judge saw in the affidavit the ghost of a conflict. "It seems to me," he said, "that one of the present objects of the Club, namely to protect bicyclists in their touring; would be to protect them against that very danger which the chairmian has emphasised in the affidavit which he has filed. It the business of catering for motorists is combined with this, the club could only protect bicyclists against the dangers arising from motors by taking measures against another class of its own members. The result wouid be that it would be impossible to combine the business of catering for and protecting the rights and interests of motorists, with the business of catering for and protecting the rights and interests on the roads of those who ride bicycles and tricycles." So the petition to change was refused; a petition made to-day might well succeed.

Spending the Club's Money

THE Cyclists' Touring Club is an incorporation. It is a company in which the liability of its shareholders is limited to the amount of their guarantees. This is so, although the word "limited," which forms a necessary part of the name of a trading company, does not appear. For the Cyclists' Touring Club is not a profit-making association ; it exists solely to promote the interests of its members. From 1878, when the Club began its long career, till 1887, the Club
existed as an unincorporated association of members.

Among the many interesting episodes in the Club's history was the legal question that arose when, in 1910, Mr. Shipton retired from his office as secretary. He had served the Club well over a period of twenty-five years, and the council of the Club wished to give him a pension. The great majority of the members agreed, and the gift seemed to be an eminently reasonable one. But then one of the objects of the Club is that " no portion of its income shall be paid directly or indirectly to the members of the Club"; and Mr. Shipton was a member. A proviso that payments "for services rendered to the Club" could be made.

The council, sought guidance from the Chancery Judge. Was the pension a mere sentimental gift to an old servant who had already been paid all that was legally due to him'? If so, it could not be in return for services rendered. But, though gratuitous, was it not conducive to the objects and interests of the Club?

The Chancery Judge had no difficulty in sanctioning the payment. Directors of a company are not to keep their pockets buttoned up and defy the world unless they-are liable in a way that could be enforced at law; for most businesses flourish by liberal dealings. This is what the Judge said: "The payment to a retired servant of the Club by way of annuity is within the powers of the Club as being a payment in furtherance of the best objects of the club. The fact that the payment is made by gratuity and not under any legal liability does not make it a pay ment outside the objects of the Club. Payments for services actually rendered are not limited to payments legally due under legal contract. The payment is not a payment to a member as such, or because he is a member. It is a payment to a person because he has rendered services to the Club, and it is not necessary for Mr. Shipton to resign his membership to enable the Club to pay this pension or to entitle him to receive it."
To be able, by generous treatment of old servants, to attract really good officials is conducive to the objects of the Club. Pay-
ment for long and faithful service alread ${ }^{\text {T}}$ rendered is within the powers, none the les because payment was gratuitous and there was no legal obligation to make it.

The Cyclists' Touring Club began its career in 1878 during the days of the boneshaker and the Ordinary. Its members were all men. When you examine the bicycles of the period you can see why it was never intended for women! For what woman in a dress complete with bustle, corseted and encumbered by thick and heavy petticoats could ride a bicycle, let alone find pleasure in it? Women, however, were determined to invade this new domain of man and changes in dress styles, at first timorous but later daring for the time, began to take place. The changes coincided with the arrival of J. K. Starley's safety Rover in 1885 . Dunlop produced his pneumatic tyre in 1888 . Roads. began to improve and bicycles were made for women as well as for men. Motor cars had scarcely commenced to come on the roads, ${ }^{\text {? }}$ and it is not surprising that women joined the ranks of the C.T.C. in increasing numbers. They were obliged to flout existing styles in dress and adopted rationals, bloomers, the zouave and shorts, as well as divided skirts.

Road Accidents

A CCIDENTS on the roads of Great

 Britain in January resulted in 14,195 casualties, including 377 killed and 3,347 seriously injured.Compared with January, 1951, there was an increase of 67^{8} in the total and of 13 in the killed. The chief increases were in the figures for pedal cyclists, which rose by 199, to 2,709 , and those for passengers in vehicles, which rose by 255 to 3,543 .

Figures for pedestrians, on the other hand, showed. little change. Casualties to adult pedestrians numbered 2,762 and casualties to child pedestrians 1,423 , making a total of 4,185 or 20 more than in January, 1951 .

Despite the continued upward trend, the accident figures for January were still considerably below those for January, 1938 , when 15,745 casualties, including 514 killed. were reported.

then fit Ferodo Brake Blocks before you go!

Whatever the conditions ... driving rain or scorching sun . . . Ferodo All Weather Brake Blocks will give you smooth, snatch-free braking.

Fit them before you go on holiday and be sure of safe, comfortable, more enjoyable touring.

Special softer quality blocks for alloy rims are available.

FERODO

ALL WEATHER

 Brake blocksSTANDARD SIZES

8
 d A
 PAIR

кeep

 your eye Halfords
Cycling Safety Campaign

-the greatest invention PALC(C) since the pneumatic tyre

- Lessen wobble over bumps
- Reduce skidding ABSORBERS
on any surface
- Assure safety when cornering
- Increase braking efficiency
- Lengthen life of tyres
- Guaranteed to last many years without replacement
All these and many other advantoges qre gained by fitting PALCO Shock Absorbers. Join the many chousends of Paleo Safery Campaigners.

FOR STANDARD CYCLES De-Luxe type 25/=

- ily fuxe Adjusa lo rider's weight. Recommended by leading Cycle Clubs. Stocked by all leading Cycle Dealers. Descriptive Leaflets free
PALCO CYCLE PRODUCTS LTD
(Dept. PM), 221, KNIGHTSBRIDGE, LONDON, SW7.

Kendal westmorland.
The ancjent town, gateway to the Lakes noted for its cloth, Kendal Green, the industry dating from Flemish wesvers of the if th century

The Application

PRACTICAL cycling means in its degree practical mechanics, and if they are not applied to your property, practical cycling goes lame. Fortunately, the bicycle has been so designed and, in the years of its existence as a mobile vehicle, so improved that the attention it requires for perfect response to your muscular efforts is very small, but it is important, far more important indeed than is generally recognised. 1 say that because the average bicycle will function under the most appalling neglect. We all see large numbers of them so suffering and complaining of their treatment, or lack of it, every day, and by that indication alone we should be keen enough to see our property is considered as a piece of delicate machinery which we have to make work, and for the selfish sake of conserving our own energy, not to mention our decent pride in ownership, ought to give it the attention it deserves. After all, there is comparatively little to do in the way of adjustment, for the good machine usually runs thousands of miles without attention other than lubrication. But when a bearing does show a bit of a shake, take it up; when a chain is too "loopy" tension it, and just occasionally adjust pedal bearing and tighten cotter pins. Simple tasks requiring but a few minutes of attention, yet how thoroughly neglected. I hear dozens of squeaky bicycles in the course of a week's riding asking for oil, or cotter-pin tightening, and the people propelling them do not seem to care, for if you dare mention the matter the reply is usually a rude one. Of course, it is their own business ; if they prefer to ruin their machinery and make the going hard for the sake of five minutes' attention that is their look-out ; but you may depend on it that neglect of this nature spills over to brake adjustment and enters into the risky part of slack attention affecting every road user.

How It Pays

HAAVING delivered myself of that homily, suggested by a rough examination of the bicycles at the works, let me confess I 2) Wo not clean my own machines, but have always personally attended to their lubrication and adjustment. Perhaps I am pernickety about these matters because I like my machine to run silently even over the rough stuff, and so always see that brakes and guards are. properly anchored, and run over the nuis and clips at infrequent intervals, and if a rattle does develop between these attentions then I ferret it out and make the cure. Even

Wayside

the trigger can be quictened when the machine is travelling over granite setts by the twist of a rubber band; and when on tour I aways carry bits of elastic for emergency guard fixing, or a parted bag strap. I believe in being the complete cyclist, ready for any of the small emergencies of the road, and it is astonishing how often these things are wanted, mainly by my companions.
on its wing a hundred remembrances of such hinted journeyings, and if I could see my years again I do not think I would have one of them altered. "And similar magic stirs me now, though the distances are clipped by the passage of the years; by the same process the hours of freedom are lengthened, for the year's work has been shortened for me, and its'leisure time extended. I shall be out and about now that the Easter holiday traffic has died down, initiating several young friends of mine into the gentle art of cycle touring with a hope and kindly expectation that later in life they will follow a good habit and remember another old cyclist of bygone days.

Habit is Safety

TN the meantme I am keeping pretty fit by the process of my daily journeys and the week-end wanderings that take little notice of the weather. In the carlier part of the year both these habits were slightly in-

By F. J. URRY

I also carry a tiny first-aid set when touring, and have never used it on my own behalf, but dozens of times for the benefit of other people, as often as not strangers to me. I suppose the habit has given in me a certain sense of security, and now the folk 1 ride with seldom take the trouble to provide such extras, but rely on me. I suppose the whole of my emergency kit does not weigh half a pound, but it has been good value on numerous occasions. For the machine itself, in addition to a minimum of tools and repair outfit, a few nuts, washers, spare valve parts and chain links are frequently of value and no great handicap in weight. No doubt this habit developed in me when bicycles were not so reliable, when we carried a small soldering iron and its necesssities to repair parted brake cables, and spare tubes and repair gaiters for badly cut covers. Those days of roadside adventures have gone ; tyres and brakes are now wonderfully reliable, and even change-gears (a bugbear of old) seldom give any cause for complaint. This generation of cyclists is fortunate, without knowing it.

Soon on the Road

THE days are near when we shall all be thinking in terms of touring, for the Easter recess sets us free for a few days to make anticipation a reality. After that some fortunate folk will be taking the road every week of the season, making of this lovely land a playground for a limited period of their existence. Old as I am I think there is no finer game extant ; to sally forth over the friendly shires knowing, little of your luck until you have tested it, and invariably finding it gracious. To go wel found as far as machine and man can make it so is to go comfortably, and usually to find the rest of the adventure acting accordingly. Now and again you might strike a bad patch of weather-that will depart in due time-or a poor response to all the good accommodation you have dreamed aboutand that will only be for one night-and in any case these things are part of the expected fun awaiting every roamer to match the philosophy of his living, and should bé taken as such. The true traveller ought not to expect everything favourable, but if it so happens to be then he is indeed-a-fortunate soul ; but he should not grouse when things go a trifle awry, since in any case they are usually of short duration, and only punctuate the long list of experience. This touch of spring trembling in the air carries
in such a manner glazing, road surfaces matter of luck. I do not like such was a tions and confess they make me nervots, for I cannot fall to-day so athletically as was once the case, and if there is a car following closely I hate to think what it may do to me. As a winter cyclist I do not like these ultra-smooth road surfaces, and think the pebbly mantled highway is far safer, not only for my kind, but for all the uraffic. But I understand this type of surface finish does not wear so well in heavy traffic conditions as the tight, smooth road. Suction is the great destroyer of the pebbly surface, something we seldom thought of in the old days before the giant tyres of the heavy vehicle; so we have to take the risks of icebound roads occasionally or do as I do, travel my daily journeys more sedately. That is the only road risk I really fear; all this talk of traffic congestion just goes over me; I don't like it, but it does not worry me in the least when I am on my home to work and back journeys. Comie the opportunity of a long week-end or a tour I can dodge most of it without any trouble, for if you can read a map it is astonishing how many lane ways you can find to almest anywhere, ways that take you into the rich heart of the country and present new scenes at the price of a few more miles and possibly a few more hills.

Making a Choice

P

EOPLE frequently ask me to suggest the best bicycle-a tall order. I do often write a specification for friends in the hope they will follow the advice and give to cycling the interest in comfort most of us give to other things, but when they ask me what transfer this machinie should carry, I feel a diffidence in making a decision for them. I will tell you why r At the moment I have nine bicycles in use and on loan, mostly in use, and they are made by different manufacs turers, and quite candidly I can find no disparity in their running qualities. They are all good ones, and two of them are more than twenty years old, but seem to me. to be as lively as ever. Now and then I hear an individual aver, and occasionally a writer indite, that such and such a machine is the firiest made, or ever made.' All I can say to that is the person concerned never had a really good bicycle before, and is mistakenly comparing the new possession with his previous ownership without any competent knowledge of the products of the dozens of makers' who can and do build an equally good bicycle.

CYCLORAMA

 By H: W. ELEY

A Note from Newbury

HOW I enjoy receiving letters from cyclists who are readers of this "Cyclorama" feature ! My mail often contains a cheery note from a rider who calls my attention to some wayside curiosity, or to an ancient inn, or to a village church where perhaps some Normian arch has enchanted the eye, or where some effigy, reposing on a stone slab, has brought back memories of ancient days. Last week I received a letter from a Berkshire cyclist, chiding me for so rarely referring to that charming county, and asking whether I knew Speenhamland, a part of Newbury. Well, I have ridden through Newbury more than once, but I did not know of the verse writen by Quin in the visitors' book of "The Pelican" -. . . formerly the King's Arms. I like these quaint lines:-

The famous inn at Speenhamland,
That stands beneath the hill,
May well be called the Pelican,
From its enormous bill."
Newbury is an ancient place, of course, in the old days a clothing town, and there is a quaint and very old Cloth Hall still súrviving. I must make a note to see more of Berkshire and its immemorial downs. I recall that at Wantage, at the foot of the downs, Alfred the Great was born . . . in the year A.D. 849.

May Day Revels

ITHEY have almost disappeared, the oldtime gay revels which marked the coming of the merry month of May! Only in a few of our towns and villages are the old customs kept up, and 1 think it is a pity that they have been permitted to die out ; but we live in an unromantic age, and seem to be too busy for the simple revelries of our forefathers. But in Knutsford, in Cheshire, May Day is still a day on which to rejoice and parade the streets, and dance around a Maypole and welcome the spring. I have been in this pleasant town on the Ist of May, and recall with pleasure the
garlands, the ribbons, the laughter and the dancing with which the good, inhabitants greet the "Queen of the May." We could well do with a revival of old customs; for they have their roots deep in the past, and some of the "seasonal ceremonies "go right back to ancient pagan times.

The Prestige of Cycling

IHAVE of ten thought that something might be done to raise the prestige and status of cycling. For far too long it has been the "Cinderella" of our national pastimes, and 1 read recently of some suggestions put forward at a meeting of the Pedal Club. What about a University "half-blue" for cycling? What about a fine central club, in London, for cyclists from all over the country-a kind of super headquarters-an "opposite number," in the cycling movement, to the R.A.C. in the motoring world. Another syggestion was for the publication, by H.M. Stationery Office, of a comprehensive "Blue Book" on cycling. I am not sure that I can visualise the useful nature of this, but at any rate, here are a few suggestions for raising the prestige of the cycling movement; a movement which means so much in health and pleasure and convenience to all our people, young and old.

Putting Back the Clock

BACK to $1913 \ldots$ a year before a peaceful world was plunged into the first "Great" War! The year was brought back to my mind by finding, amid a welter of papers in an old desk-drawer, the souvenir programme of a Dunlop Cycling Club "outing " from Birmingham to historic Stratford-on-Avon. I recalled the hot July day. I remembered the ride, with fairly frequent stops for refreshments. I chuckled as I recalled the efforts of some of the party to display their oarsmanship on the romantic Avon. The cycling movement was strong, indeed, in the Dunlop organisation in those far-away days; of course, cars were few, and restricted to top-line executives. Every-
one rode a bike. The Para Mills factory at Aston Cross was the hub of the business. Gigantic Fort Dunlop had not been built, and on the land where it now stands, sportsmen shot snipe and hares! Ah well! Time marches on . . . and it is better to put that faded programme back in its drawer, and "slip the gears" into 1952 ?

Derventio

CHE village where 1 spend my happy retirement is but a few miles from ancient remembering the lessons of my school-days, and recalling that Derby is the site of the Roman "Derventio." I like to wander through Derby sireets, for the place, despite its throbbing modern industry, retains rare bits of 'the olden days. All Saints' church, now the pro-cathedral, has a noble late perpendicular tower. Inside, there is a stately tomb, enriched with marbles, colour and gilding, of "Bess of Hardwick," the termagant Countess of Shrewsbury. There is also a somewhat grotesque monument to the second Duke of Devonshire and family. Much of Derby's fame and importance derived from the fact that here, in the old days of railway supremacy, were the great locomotive works of the old Midland Railway. To-day, Derby is the home of RollsRoyce ! Yes ! there is much pleasure in av ride to "Derventio"
. a wander through the famous Municipal Art Gallery, a pot of ale in the ancient Dolphin Inn, and a bit of musing upon the fact that along those same streets, where factory workers now cycle in hurrying throngs, Roman soldiers oncr marched, manifesting the might and majesty of Rome.

Ready for the Tour

UITE soon, before the year advances into full summer, and while the hedges are at their green best and the birds in full song in thicket and woodland and copse, I hope to be a-touring-wheeling away to quiet Suffolk, and the lanes which Constable loved. The bike is tuned up, tyres in good trim, little drops of oil have been injected into vital parts, and I have a roadworthy mount, with a comfortable saddle and good brakes. When I set off, in the early hours of a June morning, I shall be able to give my full attention to the sights and sounds of the English road. It will be a road of romance, for I plan to travel through parts of leafy Warwickshire, to touch Northamptonshire, Bedfordshire and Cambridgeshire, and so come to Suffolk, where I have always found rare delight and scenic charm. I-look forward to a peep at Clare, a visit to Long Melford . . . and a few days at Southwold, that quiet place by the sea, quite unspoiled by the horrors of the up-to-date, noisy seaside " resorts." -Maybe I shall ride to ancient Dunwich, once the capital of East Anglia, now the victim of serious coast erosion, and but a shadow of its former self. At Southwold I shall enter that glorious church, and see the old "stocks" by its entrance; If shall again be thrilled by the medieval " jacks"-in the form of men in armourquite a feature of this grand church, which is the glory of the town. I just want good weather, with lots of sun, but even if it rains, and clouds are my lot, I shall be happv in the saddle and find joy in every mile.

> EVERY CYCLISTS' POCKET BOOK $7 / 6$ or $7 / 10$ by post from 400 pages, fully 11 7/6 or $7 / 10$ by post from
GEO. NEWNES, LTD.
> Southumpton Street. Strand, London, w.C. 2

Published about the 30th of each month by GEORGE NEWNES, LIMITED, Tower House, Southampton Sireet, Strand, London. W.C.2, and Printed in England by W. Speaight \& Sons, Ltd., Exmoor Street, London, W.10. Sole Agents for Australia and New Zealand-Gordon \& Gotch (A/sia), Ltd. Sole Agents for South Africa-Central News Agency, Ltd. Subscription Rate (including postage): For one ycar, Inland and Abroad 14 s . (Canada 13 s .). Registered at

TRANSFORMERS No. I. 250-0-250v. 80 ma . $0-4 \mathrm{v} .52 .6 .3 \mathrm{v}$. से.5. 0-4-5v. 2a., 17
 Nanging up or down $16 \frac{\text { gen }}{}$ Sv. 2a. 22le. -200-230-250-290v 500 . ma verwind C-2-6.3v, 2 a., 3816.
All.types upright or drop through. No
others available. Primaries on $1,2,4$ and tapped $200-230-250 \mathrm{v}$ Interleaved, Im piegnated, Screened, Guaranteed.

hillifeds rado

©, BURNHAM ROAD; WHITLEY, COVENTRY
I. Will Teach You to Play the Piano

 midict ane naid on oot thom aut min puibyy maks weleoure sverswhere. Sun. clear, faccinating lessons, nsing ordinary muaical notathon, tho freatsinh methods.
POHT, in your houe. mathing impossible and enabiling youg to read aut play at dight any staudard musical
woruposition. My class is seldom lefs than 2,000 puplif. I have taught over
85,40, and I CAN TEACH YOU. Free hrok and advice. © Mr. H. BECKER
(Wept. 58),
The Rall, Bightwu,
Sussex.

THE FINEST CLIP
 in the world

A. C. ELECTRIC MOTORS SPECIAL OFFEŔ. 230 volts Capacitor Single Phase. 6 (New) (carriage, 516). Model-Electric 416 , post free. Also: commutators, armatures, laminations for models. Send S.A.E. for List.-L. C. NORTHALL, ham, 32. Retail: 416, High Street,

Na MAN CAN KNOW TDO MUCII OF IHS PRODUCT

THE ULTRA LEAS COMPANY
75. Finsbury Court, Finsbury Pavement, London, E.C.2.

Plastices ıro

11 Whitworth Street, Manchester, 1. Tel: Cen. 7081-2 and Cen. 1000
BRITAIN'S LEADING STOCKISTS AND DISTRIBUTORS
PERSPEX" (Acrylic) sheet, rod and tube.
CRINOTHENE."
B.X. ACRYLIC ROD.
P.V.C. SHEETING (Admiraly Specification)

CASEIN" Rod, Sheet and Tube.
CELLULOSE ACETATE Film and Sheet
Oficial Stockists for:
B.X. PLASTICS LTD. UTILEX LTD.

Catering especially for Industry, The Hobbyist and the Model Maker alty, most Government Departments, Schools,

Trade and Technical enquiries solicited.
Fabrication, Engraving, Moulding, Cutting to Size, Shape, Contour a speciality

LAWRENCE'S SMASHING BARGAINS
24130 V . Selenium Rectifiers, 21 ka 2316: 6112115v. 3a., 1416: 24130 v 6a., 3516 : 6112115 v .6 a .21216.
230 v.
Transformer A.C., 230 v
6-8a., 2016.
Battery Charger, 6 v . 3 a., 2816 ; 12 v .
2. 2816. Carriase Paid over 20

LAWRENCE (MAIL ORDER)
(Dept. P.M.), 134, Cranley Gardens,
N. 10 , London
IMPETUS Precision PLANERS Circular safety type cutter-head Hilgh
aunlity tempered steel knives. Tables quality tempered stel knives. Tabies
mounted on machined inclined ways Grounted on machined inclined wayes adjustable to 45 des. Motorised, ${ }^{4} 17.10 .00 .6$ in MODEL
 JOIIN P. M-S STEEL, Dept. 80 , Phone : BINGLEY 3551 (4 Lines)

ALUMINIUM SHEET

 FOR SALE9 Ton. $8 \mathrm{ft} . \times 3 \mathrm{ft} . \times 20$ gauge (soft) 10 Ton, $6 \mathrm{ft}. \times 3 \mathrm{fr}$. $\times 18$ gauge CGA 10 Ton, $6 \mathrm{ft} . \times 3 \mathrm{ft} \times 20$ gauge CGA Ton, $6 \mathrm{fr}, \times 3 \mathrm{ft} \times 16$ gaug
CALLOW \& CO
PEGent 2933 (7 lines). Ext. 11

BATTERY CHARGERS

amp. Brand new in steal case rith Ammeter for $200-250$ volt A.C. mains Only 52/6
(delfvery 2/6) guaranteed
THAMES VALLEY PRODUCTS (P)
Price of The "Adept' Bench

 Bd
Aak your dealer.

RADIOGRAM PARTS
Decca A C. Gram. motors. adjustable
78 or 33 f r.p.m. 44 . ditto for 3314.45
 Decca Lightwelght Pick-up with Acos high- Complete3-speed undt, comprising,
546. Comp
motor. Std. and L. P. Pick-u and Automotor. Std. and L. P. Pick-ur and Auto-
stop, fioz. Cabinet. in hrown rexine, 52,6. Collaro, g-record A.C. Autochangers fitted Acos
hitithead.
3-sneed
 and treble lifts, amazing tonal realismo. complete, eas 12.6 A. Al pabice incluce,
carriage. Fuil Bargain catalogue, 2dd. N.R.S., 16. Kine's College Rord,

REFILL YOUR OWNBALL PEN

 VISCOID REFILL KIT Post Free $3 / 8$ Complete with Tool and Illustrated CONTAINS SUFFICIENT INK FOR 15 LARGE REFILLS Available in Blue, Red and Green.Trade Enquiries Invited. VISCOID INKS (P.M.) Sherlock Mews, Ba
London, W.I.
ADANA PRINTING MACHINES

ADANA (Printing Machines) Ltd., Twickenham, oreall 8, Grays Inn Rd., London, W.C.

ADEPT WOIKG, SBPLLERS STAESET, SHEFFIELD. 8

SPARKS'

DATA SHEETS

are the Sarest. Simplest end Finest and Tested Rado Designs.

ANNOUNCING MY NEW 6 E SERIES EGONOMY PLUS EFFICIENCY

HERE ARE THE FIRST TWO THE "ENTERPRISE .

Very Effclent 3-Valve plus Rect TRF Med Long-wave Recelver for A.C. Maing
Watts of Quality on Radio and P.U. ood Range and selectivity for a circuit
 0/Sheet, etc.. 321 . post pald.
THE " ENSIG:
For those who want Good Quality from
heir to Local Stakions. in areas where high selectivity stations, in areas, where THE one. 4i watis Output. MedLong waves. External or Mains Aerial. Valves
$6 .{ }^{2} 6$. 6 Plus Rect. Easy and Economical My Two IATESTR All-dry Battery De-
signs which have already proved by Sale and Relorts. that THE "CHUNDIY" PORTA ARLE An Phone sles. on Med. pnd Lons-waves.
Self-contained aerial and batteries. Tested in Dorset 70 miles from nearest Regional
Station and 115 miles rom Droltw ch, both giving yery good phone sigs. Size approx
fin. x 4 in. $x 2!\mathrm{n}$. Data sheet with instruc tions 3 2.: jost paid. THE "MiDDY." A 2-valver which Eives amazint results on M. and L. Waves and with a short aerfal. Good Speaker results ing tho Bedstio. Caravans and Yachth
Dorset tested. DiSheet. 32 , post paid. SPARKS SETS SET THE: STANTARD REMEMBER TIIERE IS A WIDE RANGGX DATA SHEET FORM FROM A CRYGTAL GET TO A 9.VALVE QUALITY RADDO

COUPONE:NTS sUPPBHED
L. ORMOND SPARKS (M)

48A. BIGII ST, SWV WMGE, DORSET
JAGROSE LATHES
IMMEDIATE DELIVERY!

JAGROSE $3^{\prime \prime}$ LATHE, $8^{\prime \prime}$ BETWEEN CENTRES
uriasing, Serew-cutting, Set-over Tailstock, Hollow Mandre, Complere with set of

£28-10-0

E.P. Terms: $\mathbf{4 5 - 0 - 0}$ deposit, 7 monthiy SPECIAL LONDON AGENTS POR HES FAMOUS

3 in. Dreadnoughe il Model $\mathbf{4 3}$-10-0 3 in . Heav:- Duty Model $\quad \mathbf{1 6 5 - 6 - 0}$ 4 in . Dreadnought Model LES-5-0 fin. Dreadnought Moth Stand El4e-7-6 3 Bin. Dreadnought, Motorised, TRADE ENOUYIES INVITED.
JAMES GROSE LTD.
379.381, EUSTON ROAD; LONDON.

THE "TWIN" ONE VALVE POCKET RECEIVER

This interesting circuit is designed available as a British midget now operating from midget dry batterjer By the use of midget components and the elimination of tuning cojls the set when not in use, is small enough
to slip into the jacket pocket. This set requires no aerlal or earth. and can be used indoors or out, giving
powerful headphone reception of many powerful headphone reception of many
stations on the medjum waveband. point wiring dlagram, and component

PRICE 3 3 POST TREE.
SWIFT RADIO (P).
137. Cotham Brow, Bristoi,

ORDERS BY POST ONLY

Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship
lig \& Tonl Design
Press Tool \& Die Design Sheet Metalwork Automobile Repairs Garage Management Works M'gmnt. \& Admain. Practical Foremanship Ratefixing \& Estimating Time \& Motion Study Engineering Inspection Metallurgy
Metallurgy
Refrigeration
Wefrijeration Alaintenance Engineeriug Steam Engine Technology 1.C. Engine Technology Dicsel Engine Technology

Elec. Draughtsmanship Machine
Automobile
Structural
R/F Concrete
Structural Engincertug
Structural Enginceriage
Mathematics (all stages) Radio Teclunology Telecommunications Wiring \& Installation
Television
Radio Servicing
Gen. Elec. Engineering
Generators \& Motors
Gencrations \& Supply
Aircraft Malnten. Licences
Aerodyramics
Electrical Design Ordnance Suryey Dr'ship

BUILDING AND STRUCTURAL

1.1.0.B.	A.R.San.I.	M
A.M.I.S.E.	L.A.B.S.S.	.
Building Construction		tities
Costs \& Accounts		inery
Surveying \& Levelling		
Cierk of Works		ghtsmansh
Quantity Surveyiag		mtilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptors Woodwork Teacher Metalwork Teacher Housing Manager (A.I.Hsg.)

Common. Prelim. Exam A.C.I.S., A.C.C.S. A.C.W.A. (Costing) School Attendance Ofticer Samitary Inspector Civil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME AND EARN BIG MONEY

Mer and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the Gencral Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

OVER SIXTY YEARS OF CONTINUOUS SUCCESS

NATIONAL INSTITUTE OF EMGIMEERING

(Dept. 29)
148, HOLBORN, LONDON, E.C. 1
SOUTH AFRICA : E.C.S.A., P.O. BOX NO. B417, IOHANNESBURG
FOUNDED 1885 - FOREMOSY TODAY

[^0]: Tell the chief that, apart from a navigational crror, the new rocket is a complete success."

