A NOVEL HOT-AIR ENGINE

NEWNES MECHANICS

PRINCIPAL CONTENTS

PORGELAIN ENAMELLING STEREO-PHOTOGRAPHY WORLD OF MODELS

MODERN DETERGENTS SLUSH-GASTING SUPPLY VOLTAGE PROBLEMS

TRAINING POLICE BRIVERS AN ELECTRIC ALARM CYCLIST SECTION

When I want a CLIP I turn to

TERRY'S
 (the Spring people)

I go to TERRY'S for all kinds of CLIPS - steel, bronze, stainless, etc. When I want a clip máde to specification, Terry's Research Department is a big help in the matter of design (Terry's with 96 years' experience should know a thing or two ?)

Want to know all about springs? Here is the most comprehensive text - book on springs in existence.

Post free 12,6

All you require to start picture-making

 JOHNSON QUTFITS FOR HOME PHOTOGRAPHY

THIS picture shows the No. I Printing Outfit containing everything necessary for making prints from your own negatives. Can be used for the dish development of roll film. The outfit includes a plastic Printing Frame, Safelight Lamp, Dishes, Measure, all the chemicals required, and a fully illustrated instruction book. 32/6
There are four larger outfits in the series or you can buy the additional items singly as the standard of your work improves.
SEE YOUR DEALER
JOHNSONS OF HENDON, LTD.

We are the largest manufacturers of high-grade Drawing Instruments and Slide Rules in the British Empire, and our Kinwest Drawing Materials have gained a reputation throughout the world for superb quality and accuracy. Insist on using only Thornton's for complete satisfaction.
Our illustrated Catalogue, which includes particulars of Drawing Instruments, Drawing Boards, Tee and Set Squares, Scales, Curves. etc., is sent Post Free on request.

GAUGGE 'O'

HOCO'S \& ACCESSORIES

Bassett-Lowke Loso's and Accessories are immensely popular amongst Gauge ' O ' enthusiasts because of their accuracy and true-to-life realism which adds interest to any Model Railway System. Sturdily built they are the best value offered for money.

B.R. (L.M.R.) 4-4-0 compound This smart 8.R. Locomotive, shat will run speedily and does not require large curves. The compounds
work on all parts of the B.R. system, and this work on all parts of the B.R. system, and this che shapely and characteristic outlines. Price, including P.T. Clockwork E7.6.8: Electric, E8.8.0. Fulf derails in our Gauge ' O ' Catalogue.

ROLLING STOCK. Tinplate goods Rolling Stock, beautifully made. Open Van as illuseríted. 1014. Also ayailable Covered Van, 11111 , and Brake Van, 1319.

BASSETT-LOWKE LTD.

Head Office and Works: NORTHAMPTON London: 1/2 High Holborn, W.C.I Manchester: 28 Corporation St.

THE "ZYTO" $3 \frac{3}{8}$ " LATHE

 BRITAIN'S FINEST LATHE VALUE 121" BETWEEN CENTRES

Back Geared, Gap Bed, Tumbler Reverse, Screwcutting, Surfacing, Sliding, Full Compound Slide Rest with Rack Feed; Hollow Mandrel, Hollow Tailstock No. 2 M.T.. Set over Tailstock. Supplied complete as shown with full set Changewheels, Backplate, etc. BREEF SPECIFICATION Height of Centres, ainn
Distance between Centres, I2titn. Hethat from Gam 41/n. Heikht from Saddle Ein.
Guldo Screw a P Gulde Screw, 8 T.P. Tailstock Barrel, admits :17. Headtock Pulley 3 S Speeds, 1 n . Flat Belt Faceplate Diameter, Gin, sin.

FRICE

£26/15/6

Please ask for our new
Easy fayment Plan

1800 YOUR YATHE NOM
 Fully illustrated lesflet of the "ZyTO" Bench and Motorised Lathe free and post free on icquest.

S. TYZACK \& SON LD

34I-345 OLD STREET, LONDON, E.C.I TELEPHONE-: CLERKENWELL 8301 (TEN LINES)

We've been painting the Lily!

. . . we've been gilding refined gold:-
When people told us, as they regularly did, that our Flamemaster Hand Torch was the finest and handiest tool of its kind in the world, we thanked them blandly. And all the while we were quietly playing about with the design in order to make it finer and handier
The outcome of this conspiracy is the Flamemaster Mark II. Here are its recognition points.
I. We've added an inch in length to the neck, because we find that gives better balance, particularly when large flames are used.
2. The aluminium-alloy die-cast body is that much stronger than the pressing previously employed.
3. The pilot-jet-adjustment has been improved to withstand leakage even at really high pressure.
4. The Maxiflame jet unit is now capable of burning propanc and methane (natural gas) in addition to butane and coal gas. That's the Flamemaster Mark II-very much at your service for brazing, hardsoldering, glass working, or flame heating of all descriptions. The built-in economiser, the interchangeable flame units, the oxygen-air mixer and all the available attachments remain . . . as good as ever. Tel : West Bromwich 1824. London Office: 28 St. James's Square, S.W.1. Tel: Whitehall 6002.

\$. 1 . Wrown

for LONG LIFE and TROUBLE-FREE SERVICE
This is a featherweight model of exceptionally strong construction and high sensitivity. It appeals equally to both amateur and proressional adin engineers, It incorporates powerful cobalt D.C. Hesistance : 4,000 ohms.

Impedance : $14,000 \mathrm{ohms}$ at $1,000 \mathrm{c} / \mathrm{s}$. For full details of other models in the wide Brochure "P.M."

\&.(G. Brown fto
 SHAKESPEARE ST., WATFORD, HERTS. Telephone: Watford 7241.

INDISPENSABLE
 IN THE WORKSHOP HANDY IN THE HOME

THE RAWLPLUG POPULAR OUTFIT

Larger sizes are obtainable. Whatever, your fixing problems, there's a Rawlplug Device that will solve it for you-casily and quickly. Rawlplugs make neat and absolutely firm fixings in any material from brick or tile to stone or slate, with a size for every screw from No. 3 up to ${ }_{5}^{5 i n}$. coach screws. Rawlplug Tools are casy to use and ensure a perfect hole without damage to surrounding surfaces. Other Rawlplug Devices include Rawlbolts for heavy duty fixings, Rawlanchors and Toggle Bolts for thin or hollow materials and Rawlclips for instant fixing of conduits and cables to girders-a device in fact for every need.

(5)TILE CEMENT Rawlplug Tile Cement is a liquid cement possessing very strong adhesive qualities. For replacing tiles to walls, floors, fireplaces, hearths, curbs, etc., in kitchens, lavatories, bathrooms, halls, bedrooms, reception rooms, etc.
SCRAPER A remarkably efficient and economical scraper, built to last a lifetime. Gives smooth finish without chatter or scratching. Easy-grip handle made solid with blade carrier in seasoned hardwood, polished and varnished. Total length approx. $6^{\prime \prime}$. Fitted renewable $2!^{\prime \prime}$ Cadmium
 Plated Steel Blade, with cutting edge ground like a razor.

FUSE WIRE be prepared for blown fuses A useful card carrying 3 gauges of fuse wire (5 amp . for lighting, 10 amp . for heating and 15 amp . for power). Directions for use are printed on the card which is punched for easy hanging near the fuse box.

SELECTED MISCELLANEOUS ITEMS

EX-GOVT. PRISMATIC BINOCULARS

Best British makes, including Kershaw, Ross, etc. $6 \times$ 30. Eyepiece focusing. Complete with Web
Case. Guaranteed condition. Case. Guaranteed condition. Post 21- extra.
£7-15-0
U.S. Govt.

STAR IDENTIFIERS
Consists of Star Base and seven Templates. Can Consists of Star Base and seven Templates. Can Instructions and leatherette $4 / 6$
wallet. Postage 9 d . extra.

PRISMATIC ELBOW TELESCOPES

Power 7 x . Weight 6 lb . Image erect. Definition | is crisp and |
| :---: |
| $\substack{\text { free from distortion. } \\ \text { Post free. }}$ |

SLECTOR SIGHTS
Beautifully constructed instrument consisting of lamp-house with dimmer-switch attachment and condenser as film-strip viewer, etc. Ready $15 /$ (ineluding postage.) $15 /$ -

PRISMATIC

 OPTICAL UNITS No magnification but can be adapted for use as prismatic monocular, rifle-sight, etc. Wcighe only 14 ozs. (including postage).10/6

SATISFACTION GUARANTEED OR. FULL REFUND

CHARLES FRANK

Instrument Makers and Dealęrs since 1907.
GLASGOW, C.I

$\substack{\text { Black } \\ \text { DEKKR }}$ HANDY UTILITY tools

Cash
\&11.7.6
or $67 / 6$ DEPOSIT and
12 monthly payments of $16 / 8$
Vertical bench stand for above $£ 5.10 .0$
Complete $1_{2}^{\prime \prime}$ Drill with Bench stand: CASH $\subseteq 16.17 .6$
or 25.17.6 Deposit and 12 monthly payments of $21 / 8$.
We specialise in easy H.P. terms on the fuli range of Black \& Decker "Handy-Utility" tools.

		Cash	Deposit	12 monthly Payments
Handy Utility		£6.10.0	¢1.10.0	$11 / 8$
Vertical bench stand for above		£2.19.6	-	
Horizontal stand for above		17.6	-	
Buffing and polishing kit for above	...	19.6		-
Drill Kit Complete (3in.)		E11.15.0	E3.15.0	1618
Sin. Sander Polisher		¢9.17.6	¢2.17.6	151.
Electric Saw		¢15.15.0	¢5.0.0	2116

SEND S.A.E. FOR LISTS

MALL ORDER SUPPLY CO.
The Radio Centre (Dept. PM),
$\mathrm{M} \cdot \mathrm{O} \cdot \mathrm{S}$
33, TOTTENHAM COURT ROAD,
LONDON, W. 1
Tclephone : MUSeum $-6667 / 8 / 9$

I.C.S TRAINED MEN are in Greater Demand than Ever-maximum production depends on high technical skill, such as that acquired by I.C.S. Students
 TENS OF THOUSANDS MORE TRAINED
 MEN ARE URGENTLY NEEDED NOW -BUT THERE IS NO WORTH-WHILE PLACE FOR THE UNTRAINED

Ambitious men everywhere have succeeded through I.C.S. Home-Study Courses. So also can you.

The man with an I.C.S. Training in any one of the subjects listed below knows it thoroughly, completely, practically. And he knows how to apply it in his everyday work.
scconutancy
Advertising
Air-Conditioning
Architecture
Architectural Drawing

Auditing

Boiler Engineering
Book-kreeping
Building Construction
Building Specifications
Business Training
Business Management Carpentry and Joinery Chemical Engineering Chemistry, I \& 0 . Civil Engineering Clerk of Works Coal Mining Commercial Art Concrete Engineering Diesel Engines
Draughtsmanship Drawing Office Practice

Electrical Engineering Electric Power, Lighting, Transmission, Traction Eng. Shop Practice Farming (Arable and Livestock)
Fire Engineering Foremanship Fuel Technology
Heating and Veatilation Horticulture Hydranlic Engineering Illumination Eng.
Industrial Management Machine Designing Machine-Tool Work Maintenance Eng. Marine Engineers Mechanical Drawing Mechanical Engineering Mine Surveying Mining Engineering Motor Engineering

Motor Mechanics Motor Vehicle Elec. -Municipal Eng. Plumbing Production Eugineering Quantity Surveying Radio Engineering Radio Service Eng. Refrigeration
Sales Management Salesmanship Sanitary and Domestic Engineering
Sheet-Melal Work Short-Story Writing Steam Engineering Structural Steelwork Surveying
Telegraph Enginecring Television Technology Welding, Gas and Bhec Woodworking Drawing Works Engineering

Students intending to sit for examinations in Archifecture, Quantilies, Civil Eng. Mech. Eng., and others, should enrol NOW for preparatory Courses.
Using a specially prepared Study Programme, the student studies in his spere time, at his own pace and, with time for revision, sits with full confiderce of success.
Courses are also available for most other Technícal, Pro!essional, Commercial, and Civil Service Exams., including General Certif. of Education.
(I.C.S Examination Students are coashed until successful.)

Moderate fees include-ALL books required. GENEROUS DISCOUNT ,TO H:M. FORCES

If you need technical training, our advice on any mater concerning your work and your career is yours for the asking-frce and without obligation. Let us send you our special free booklet on the subject in which you are specially interested. DON'T DELAY. Make ACTION your watchword.

The successful man DOES to-day what the failure INTENDS doing to-morrow. Write to us TO-DAY

Use this Coupon-

INTERNATIONAL CORRESPONDENCE SCHOOLS LTD.
Dept. 169A, International Buildings, Kingsway, London, W.C.2.
Please send me the free bookler describing your Courses in

Name.
(USE BLOCK LETTERS)
Address

Addresses for Overseas Readers
Australia: 140, Elizabeth Street. Sydney.
Egyps: 40, Sharia Abdel Khalet Sarwat Pasha, Cairo. Eire: 13 , Anglesea Street, Dublin, C.4.
India: Lakshmi Bldg., Sir Pherozsha Mehta Rd. Fort Bombay.
New Zealiand: 182, Wakefield Strees, Wellington

5 VALVE AC/DC SUPERHET. Liong, medium and short wave,
 valves, 12 months guarantee.
£9.5.0. carriage and insurance 5%.

Ex-Navy TELEPHONE
 These require
no battertes, no battertes,
aro complete - with generator and senderwhich
gives a h igh gives a high
pltched mote. pitched note above any
ofother poise. Size 7in. x 9f0.
x 7 innting a 1
mountin. Price mounting. Price
376 each, plus
SLIDER RESISTORS
Heavy daty, fitted reet. Size, 7in. X liin. 1.2 ohms,
15 amps. Price 51 , Size 9in. x lifin 3 ohms, 10 amps. Price 15/=
Size 1315. x $111 \mathrm{nh}, 11$ ohms
4.5 amps. Price $22 /$ -
MULTI-SPEED MOTORS

You can adjust this motor to almost any speed you want it will work directly off A.C. mains. or if you require greater power or greater speed work th motor is fitted with a gear box enabling speeds down as low as i r.p.m. to be obtalned. 14/6.
E.P.E. LTD.

WARM YOUR HOUSE THE MODERN WAY, MAKE A CONVEGTION HEATER Using Ex-Admiralty HEATING
UNTTS fitted with 3-pin brass ONFTS fitted with 3 -pin brass enclosed elemento are used and those agaiv are enclosed in sheetmotal half cyllmdrical containers. Fit one of these into a
metal cabinet, and you have an metail cabinet, and you have an placess where appearance is not important, all you need extra is the wire, as the heaters. Work
perfectiy well as they are. withperiectiy well as they are. With out extra casing, the being totally enclosed.

 warmers under benches, otc. Eight of these in series will consume 1 K.W. and will
wido area.
Orders.by post dealt with by our Rusilip depot. To Equipmont. Ltd., Dept 1. Windmill HiM, Rulslip.

WINDMILL HILL, RUISLIP MANOR, MEDDX. and at $152-15 j$, FLEET STREET, E.C.4.

HANDYMEN-HERE'S THE SOLDER

For reliable, economical home repairs, Ersin Multicore is the solder to use. It cuts costs by avoiding wastage-the 3 cores of exclusive Ersin Flux ensure that there are no solder lengths without flux. It saves time because the 3 - core construction means thinner solder walls, quicker melting and speedier solder-
 ing. It can be used for every
soldering job, replacing stick solder, fluid and paste fluxes.

SIZE I CARTON

THIS SIZE 2 (HANDYMAN'S) CARTON COSTS omely
Contains approximately 3 ft . of 16 S.W.G. Ersin Multicore Solder; sufficient for 200 average joints.

MULTICORE SOLDERS LTD. MELLIER HOUSE, ALBEMARLE ST.. LONDON, W. 1 - REGent 1411

Every time this door slams a little more of the mortar or putty drops out. Why? Because it sets hard and shrinks and does not really stick. They should have used Seelastik. Seelastik forms a watertight, airtight seal and remains flexible and elastic when set ; it sticks tenaciously even to highly polished surfaces, such as glass, as well as to any combination of brick,
cement, stone, plaster, wood, metal, tiles, glazed earthenware
A Seelastik seal costs 1 d . to $1 \frac{1}{2} \mathrm{~d}$. a foot, depending on its width. It is light-coloured, and can be painted 24 hours after it is put on.
You can buy Seelastik-packed in handy cartridges, and applied by the Expandite gun ($50 /-$ with two nozzies)-or in 3/- tubes, which are self-contained sealing tools.

Selastile seals the gap

EXPANDITE LTD., CUNARD ROAD, LONDON, N.N. 10
ELGAR 5151

DUKE \& CO.
Radio and Electrical Accessories by Post

SALVAGE RADIO AND RECORD-CHANGER UNITS.-Prices from | |
| :--- |
| $9 / 17 / 6$ |
| for $5-V a l v e$ |
| 1952 Superhet chassis, with latest. Pin Type Midget valves. | and chassis measurements without obligation. Also Collaro Auto-Record Changer units for A.C. All Units tested and guaranteed. Fit one of these chassis and a record changer unit into that cabinet you are building and you will never regret it, and save yourself pounds into the targain.

COACH SEATS.-Price 22151 - for spring upholstered double seat and back, Moquette or Hide covered. Dunlopillo filling, 51- extra. Carriage extra.
MOTOR\$. - 1116 H.P., $160-250$ V. A.C. or D.C., 3,000 r.p.m. Price 3916 ., plus MOTORS. 1116 H.P. $180-250$ V. A.C. or D.C., 3,000 r.p.m. Price 3916 , plus
216 postage. 1116 H.P. 80 V. D C., with $8 i n .3$-bladed fan attached. Price 251 , plus. 216 postage.
BARGAINS IN WIRE.-Spring steel wire, 11 . per reel of 50 yds . . 014 in . dia. or 25 yds. . 032 in . dia.; 5 reels for 41 .. Nickel Chrome Wire, 416 per reel of 50 yds. . 014 in : dia. or 25 yds .032 in . dia. This wire is unobtainable to-day at these low prices, and is invaluable in the workshop. Postage II-per reel.
BEDSIDE RADIOS.- Build our popular 5 -valve T.R.F. set yourself for $\mathbf{6 S 1 1 2 1 6}$. Complete kit of parts, including point to point wiring schedule and complete assembling instructions. Choice of ivory, green or walnut-brown cabinet in beautiful piastic. For. A.C. or Universal. There is no other comparable set of its kind at these prices to-day. Assembled ready for use 351 - extra. Packing and postage 216.

COLOUR TELEVISION.-Enjoy the latest in television. Colour filter which gives beautiful colour tints to all outdoor scenes. Blue skies, pink and red centre tints and green grass will come through with the aid of one of chese filters which you simply attach to the outer screen of your set. Price $10 / 9$ for a 9 in . screen, 1216 for a 10 in , screen, and 1916 for a 15 in . screen. Works with a black screen or with a lens
VALVES.-New stocks of valves available. Send stamp for our valve list. We may have the valve you are looking for. Ask for catalogue of our Radio and Electrical bargains.
TRA NSFORMERS. -Salvage Mains Trans, 719 each, 260-0-260, 6,3 v. 3 A. Post $1 / 3$ Standard O.P. Trans, 319 each, post If. All tested and guaranteed.
METAL RECTIFIERS. - Price 719 each. Postage 116. Made by Westinghouse. As used in T.V. circuits. With suitable Condensers will give supply of 250 V . an output of 330 V . at 220 mA ., $\frac{1}{2}$-wave eype. A real bargain.
WIRE WOUND RESISTANCES.-Price $1 / 9$ each, postage 3d. A precisionwound job on a ceramic former, giving I meg. I watt to f per cent, accuracy. Made

DUKE \& CO., 621, Romford Rd., Manor Park, E. 12 GRAngewood 6677.
and at 219, Ilford Lane, ILFORD, Essex
ILFord 0295
ALL MAIL ORDERS TO ‘ 621

'HANDY UTILITY' 1/4" DRILL £6. 10

Know a good tool when you see it? Then take a look at this sleek, sturdy, superbly powered $1 / 4^{\prime \prime}$ electric drill! Feel how it fits the hand. See how surely it drills into steel, brass, cast iron... into hardwood, brick, tile! See how quickly and easily it can be fitted up as a drill press with the Handy Utility $1 / 4^{\prime \prime}$ Drill Stand, for accurate repetition work; or used for light grinding and buffing with the Horizontal Stand. See them all at your dealer's. They belong to the famous 'Handy Utility' range of low-priced electric tools.

Haviximuly

Other HANDY-UTILITY tools include
HANDY UTILITY 6" HEAVY DUTY 'LECTRO-SAW' E15. 15.0 HANDY UTILITY $1 / 2^{\text {" }}$ DRILL $E 11$. 7.6 HANDY UTILITY 5" SANDER-POLISHER 69 . 17 . 6

PRODUCTS OF THE H.U. DIVISIOIN OF BLACK \& DECKER LTD.

> OBTAIMABLE FROW YOUR LOGAL TOOL SHOP, ELECTRICAL DEALER, IRONMONGER OR STORE

Mors sizes ourluble from stock
Buidae manicis ticularly recommended for drilling brass．＇Range of sizes： .35 mm ．（．0138＂）to 3.0 mm ．（．1181＂）

FLAT DRILLS

Similar to pivot drills but made in larger sizes．Range of sizes： .25 mm ． （．0098＇）to 3.0 mm．（．1181＂）

SINGLE SPIRAL

 FLUTE DRILLSFor drilling small holes to extremely fine limits．Range of sizes： .1 mm ． （．0039＂）to 3.0 mm．（．1181＂）

JOHN FARMER

108．MAINS MOTWRS， $200 / 250$ v．A．C．
h．p．The Ideal workshop motor h．p．The Ideal workshop motor．
Fitted 3 Bin．shart and lilin．dia． V ．
pulley．Shunt wound r．p．m．size overall less shaft and pulley， ioln．long．5iln，wide，5lin．hlgh．Sup plied with steel mounting table 161 n long． 71 in ．wide． $6 \frac{1}{3} \mathrm{ln}$ ，hlgh．price com－
plete， $30 /$ each，earr． $3 /-.67$ ．HOTOR
 verted to efficlent $200,250 \mathrm{v}$ ．A．C．motor
for sewing machines，small grinders． etc．Current approx．I amp，approx． are 7 i．．long， 3 in ．dia．Std．base mount－ ing．ball bearings，complete with cont－ version data，new．15i－each，post $1 / 6$ ．
vV pulleys to nit， 28 extra． 38.
verpier couvtrus 0－9099． digit is $1 / 10$ ths．Direct side shaft ilm．
 at $3-4-5-6-9-9-10-12-15-18-20$ and 24 v． 226．each post $1 / 3.19$ ，${ }^{19}$ ， full－wave bridge，D．C．output of 12 V ．at
2 amps ．from A．C．Input of 15 v ．An idea！ 2 amps from A．C．Input of 15 V ．An idea． above transformer．New，unused，with fxing brackets，15／－each，post 8d，
132．MOTOR BLDWERS， 24 v．A．C． D．C． 43 in ：long，motor 21 in ．dia．，blower post 10d 53．H0OVER 10／－each BEOVYIRS． 80 V．D．C．．or suitable for 110 叉．A．C．Will operate from 230 V．A．C． 150．watt lamp in serjes．，Identical to Maner 15／－each post $1 / 1$ ．3．BOMBSIGHT COMPU TORS，＂Sperry＂U．S．A．Originally costing
ex－Govt bargains are one of the best
builable to－day Contain three 24 v ．motors，gyroscope． various vacuum bellows，counters gears，worms，helical drives，differen tials，silver steel shafts，levers，levels
steel bands，tubing，ball and othe steel bands，tubing，ball and other trols－and dials，indicator lamps switches etc．etc．Enclosed in black crackle cases 191 n ．x 151 n ．x $71 \mathrm{n} .$, sus pended by shock absorbers in tubula 8／－． The above are a few bargains from ou
lists．Send for your free copy now．
JOHN FARMER（Dept．A．2）， 194 HARBORNE PARK RD． HARBORNE，B＇HAM，I7

MAKE MONEY—making casts with $V \| N A M O L D$

A grand spare－time occupation
WITHOUT any previous experience，you can mass produce any object from a chessman to a candlestick statuette or model ship，in plaster，resin，concrete，etc． he $B E S T$ results．Easy to work，can be used over and he BEST results．Easy to work，can be used over and proftable and enjoyable spare－time occupation with profitable and en
＂VINAMOLD＂is the flexible mould employed by leading industries，including the big film studios．Trade enquiries are invited．

Wrise for full details and instructions．

VINYL PRODUCTS LTD．，（Dept．P．M．2），Butter Hill，CARSHALTON

INTRODUCED？
This picture on the front of our Hand－ book is symbolical to many thousands of men like yourself．For them it has
meant success－not fallure ：By follow－ ing any of the TWELVE radio circuits and full constructional details given in NUR NEW ENLARGED＇1HOME CONSTRECTORS HANDROOK＂。 they now enjoy greater pleasure（and profit：）from building their own Radio and Test Equipment：Remember，the secret is in our unique LIFE－SIZE， ＂EASY－AS－ABC＂point－to－point COASTRUCTION SFIEETS．Every agart is broken down to a simple sub－ system of identifying all parts cobtain－ able from us）．ensures that even the COMPLETE NOVICE can build our most complicated multi－valve receiver knowing beforehand that success is assured！ALL of OUR compónents are standardised so that many ctrcuits can be bulit WITH THE SAME COM－ PONENTS！See what this means in terms of time saving ！Also think of the vast experience that can be gained REMEMBER－NO COMPETCATRD ALIGNMENT OF TUNED CIRCUITS IS REQUIRED since our unite are PRE－ －The price？ALIGNED！ SEND NOW for YOU及 copy，obtain－

RODING LABORATORIES（Dept． 694，Lea Bridge Road，London，E． 10 ．

MODELCRAFT

promally annommee

 A MAGNIFICENT NEW KIT OF A FAMOUS SHIP

Here is a magnificent kit designed and produced by people who know ships which builds into detailed reproduction of the detailed reproduction of the The kit is complece and includes part-shaped timbers, 22 finely. part-shaped timbers, 22 finely-full-size, clearly detaited plan. Price, including Pur. Tax. 921. Price, including Pur. ax.
(add for post and
pocking).
FROM YOUR LOCAL MODEL SHOP
MODELCIBAFT
II(L), GROSYENOR RD. LONDON, S.W. 1

MODEL RAILWAY CLUB EXHIBITION

EASTER WEEK, TUES. APRIL 15 to SAT. APRIL 19
The work of members of the Model Railway Club, over 3,000 models of locomotives, coaches, wagons, signals and working tracks. Free rides behind real steam engines.

CENTRAL HALL, WESTMINSTER

Tuesday, 2 p.m. to 9 p.m. Thereafter, II a.m. to 9 p.m. ADMISSION - Adults $2 / 3$, Children under $14,1 / 3$ Special terms for organised parties on application to R. C. Fanton, 162a, Strand, London, W.C. 2.

Appearances are Deceptive

Certain lathe accessories are being manufactured to the Myford pattern and some Myford users are being dis. appointed. To avoid such disappointment-

> Insist on Cenuine MFOTD

You can build an Oscilloscope, giving a better performance than the average
commercial scope with our : Scope, commercial scope with our Scope tube-Mu-metal shicld, 2 EFSOs, 2 EB3/4s, etc. Can be nodified in a lew hours with our own conversion data. in steal case, 6 in . $\times 6$ in. $\times 1$ isin. Price 701.-

Moving Coil Microphones with Pressel Switch, 616. Matched Transformer. 61 . 6 v. Vibrator Packs in black metal reses $71 \mathrm{in} . \times 31 \mathrm{in}$., $\times 5 \frac{2}{2} \mathrm{in} ., 200 \mathrm{v}$., 40 mA . 2218 . Powerful, Small Blower Motors, 24 v . A.C.ID.C., I41-.

Transformers. Input 2001240 v . Sec. tapped 3-4-5-6-8-9-10-12-15-18-20-24-30 volts at 2 amps., 2113. 12 monshs' Euarantec.
Selenium Rectifiers F. W. 12-6 volt. 3A.. 1416. 4A., 261\%. 1A., $516 . \mathrm{H}_{3}$ W., 250 v. 1120 mA ., 816.

Miniature Motors 12 v. or 24 v. D.C. with gear box and governor congrolled speed, 141.
D.P.D.T. Relays. Operate at 20013C0 volis D.C. 6 mA. . 131%. D.P. Make and Break, 816. Any combination or voltage can be supplied at varying prices.
24 v. 'R.C.ID.C. Motors 3 lin. $\times 2$ in. 1316.

110 v. A.C.ID.C. Reversible Motors 3 in. $\times 2$ iir.; 15 j.
New Deaf Aid Miniature Valves. DL72 and CKSI2AX, 91.. Ideal for radio control units.

Heater Elements. $24 \times 75 \mathrm{w}$. Flat Copper Plate, $4 \mathrm{in} . x 2 \mathrm{in}$. $x 1 \mathrm{in}$., $1 / 6$.

All Carriage Paid,
THERADIO \& ELECTRICAL MART.
253B, Portobello Road, London, W.II.
Park 6026.

EXPPRT ADVICE ON YOUR CARPER 144-PAGE BOOK-Free!
 An unusual opportunity you cannot afford to miss

> Are you looked upon as an up-and-coming man in your job? Have you already been noticed by the right people-or are you just one of the crowd, plodding along in a rut that leads nowhere? YOU have it in you to succeed-to be somebody, but only experts can help you find out where YoUR opportunity lies. Fill in this Confidential Advice Form and our Careers Experts-they have helped thousands of men just like you- will send you a frank, personal letter of advice on your best method of achieving success in Engineering. Whether you act on our suggestions will be for you to decide. But you owe it to yourself to find out what you COULD achieve. .. .

FREE CONFIDENTIAL ADVICE FORM

Please send me a copy of "ENGINEERING OPPORTUNITIES" and your expert advice on how I can best advance my career and make the most of to-day's opportunities. I understand that the details given on this form will be treated in strict confidence and assume no obligations whatsoever.

NAME. (PLEASE WRITE IN BLOCK LETTERS)
ADDRESS
AGE.
DATE..

What type of position appealsto you most ?
Have you a parcicular hobby or recreation?
Where were you educated :
At what age did you leave school ?
What were your strongest subjects at school ?
Have you attended classes since leaving school
Have you any knowledge of technical subjects? (If so, give details).

What is your present occupation
What positions have you previously held?

Have you served an Apprenticeship : (If so, give details).

Would you like to secure promotion in your present work or prefer to enter a different branch of the Engineering industry

What salary would you be prepared to accept for the time being?.
If you would like to put some letters after your name, pleasestate what examination or qualification interests you.

If, after considering the foregoing information, our Advisory Expert believes that you would tenefit from a special course of instruction, how many ksurs a week could you devote to it ?.,
On taking the course would you need the immediate assistance of our Employment Dept. (licensed annually by London County Council) ?
Any other information a bout yourself which you think will assist us to weigh up your case before we nend you a letter of personal advice.

Complete and post this Advice Form today: THE ADVISORY MAN̈NGER
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
410A, SHAKESPEARE HOUSE, 17/19, STRATFORD PLACE, LONDON W.I.

IF YOU PREFER NOT TO CUT THIS PAGE, COPY THE FORM OR WRITE A LETTER

Owing to the paper shortage "The Cyclist," "Practica! Motorist," and "Home Movies" are tempararily incorporated. FAIR COMMENT

By The Editor

Changes in Patent Law

MANY important changes in the patent law are incorporated in the new Act, the first really comprehensive statute relating solely to patents since the Act of 1852 , which was responsible for setting up the Patent Office under a commissioner or agent. Before that date an inventor had to visit a number of different departments and pay a number of different fees totalling about $£ 65$, and he was personally responsible for carrying his documents from one department to another.

This may seem a lengthy process, but it was far quicker than our present system under which over a year elapsed between the filing and granting of a patent.

The commissioners continued to administer the Patent Office until the passing of the Patents, Design and Trade Marks Act of 1883, when they were replaced by a Comptroller General of Patents, Designs and Trade Marks under the Board of Trade. At that time there was not any search for novelty when a patent was filed, with the inevitable result that several inventors obtained patents for the same invention.

An inventor, it will be seen, did not have to prove novelty and originality as he does to-day. It was not, however, until 1902 that an Act was passed which insisted on the institution of the search for novelty, although the Act did not become operative until January Ist, 1905, when a separate Act dealing with Trade Marks was passed. Two years later came the Patents and Designs Act, 1907, and in 1949 the present Act. There have, of course, been amendments to the previous Acts and these are, to some extent, incorporated in the new Act.

One of the fundamental changes made by the 1949 Act is in connection with the Dating of Patents and the date from which the various time-limits prescribed by the Act are calculated. Previously, the date of the patent was the date of the application, and the time allowed for putting the application in order was 18 months from the date of the application. The dates at which renewal fees became due were calculated from the date of the patent, but the term of the patent, subject
to the payment of renewal fee was, for patents granted after August ist, $\cdot 1948$, 16 years from the date of filing the Complete Specification.

Under the new provisions, the date of filing the Complete Specification is the basic date for all purposes. It is the date of the patent, the date from which the term of the patent is reckoned and which determines the dates on which renewal fees become due. The time allowed for putting an application in order is calculated in all cases from the filing date of the Complete Specification, and the search for novelty extends to Specifications and other documents published before this date. The Provisional Specification is now merely a document of record to be referred to if it is necessary to establish a priority date for any of the claims in the applicant's Complete Specification. Thus, the Complete Specification is not now limited to what is disclosed in the Provisional Specification, and this is an important concession. It saves an inventor from having to apply for permission to amend, and from having to take out secondary patents or patents of addition.

Another important change in patent law concerns prior publication of the invention. Hitherto, the Comptroller could refuse to accept a specification if the invention was wholly described in the prior publication; even though the patent was not turned down on those grounds he could insist upon a paragraph being

inserted drawing attention to the prior publication.

Under the new Act the Comptroller is empowered in all cases to refuse to accept a specification unless the objection is avoided to his satisfaction, and the provision for the insertion of a reference is not reclaimed.

There are some new grounds of opposition, such as prior user, want of subject matter or invented merit. Under the original law it was necessary for the inventor to apply for a patent either alone or jointly with another person or persons, even though he had agreed in advance that the patent when granted should be vested in another firm, usually the inventor's employer.

FREE MODEL AEROPLANE

BLUEPRINT NEXT MONTH!

NEXT month's issue will contain a free Is, blueprint of the P.M. Cabin High-wing Flying Monoplane. It is rubber driven and therefore an ideal machine for those who wish to take up the fascinating hobby of model acroplaning. It may be built quite cheaply in two or three evenings. It has been thoroughly tested, and is a high-performance duration flicr.

This is a blueprint for which we should charge is. in the ordinary way.

We shall also anmounce details of a National Competition with over $£ 200$ in prizes.

"PRACTICAL ENGINEERING" FREE BOOKLETS

AS from February 29th issuc every copy of Practical Engineering will contain a 20 -page booklet packed with valuable workshop tables, data and formulx. For a nominal sum a waterproof and greaseproof wallet is supplied in which the booklets may be kept. The booklets are of a handy vest pocket-book size, and cover the subjects of General Workshop Formulac, Workshop Trigonometry, Drills and Drilling, Screw Threads and Screwcutting, Gears, Turning and Fitting, Heat-treatment, and Electrical Data.-F. J. C.

Perspective view of the finished harmonograph.

THE harmonograph is a machine for recording vibration figures produced by swinging pendulums. A large number of devices all based on the same fundamental principle have been designed for this purpose, some making use of three or more pendulums.

The simplest harmonograph, however, is one which makes use of two pendulums, one universally pivoted so that it can swing in any direction; and the other, which carries the stylus arm, pivoted so that it swings in only one direction, and it is this type which is here described.

The machine enables the students of vibration to study the laws governing them, for the result is far more graphic than complicated formulx, because the swing of a pendulum is of much longer period and larger amplitude than with smaller and more
(s)

A Machine for Recording the Path of
Free-swinging Pendulums

By F. J. CAMM

rapid vibration, such as the movements of the particles of a heated body. Apart from this scientific interest, however, the tracing of pendulum curves has a fascination all its own. It is of endless interest to watch the stylus tracing out a figure, and to observe how it is finally developed. It is impossible ever to produce two recordings exactly alike, although some may be very closely akin. The variety and intricacy of the designs produced are infinite, and there is the added pleasure of being able to vary the design by adjustments of the position of the pendulum weights, the height of the record-
ing table above the point of suspension, raising.one pendulum, lowering the other, and vice versa.

The illustration shows the simplicity of the construction. A table supported on three legs and having holes cut in to clear the pendulum rods is the basis of the construction. The rest consists of a gimbal arrangement carrying the table, and another pendulum carrying the arm into which the stylus is fixed.

For the stylus I used a ball-point pen refill. This has a left-hand thread, and if the hole in the wooden arm is carefully drilled the refill may be screwed in and will remain firmly fixed. The top of the table should preferably be covered with glass, otherwise the ball end of the pen will follow

Fig. 2.-Plan of the stand top shozving the position of the holes for taking the pendulum rods.

Fig. I.-Elevations and plan of the wooden stand.
the grain of the wood and destroy the continuity of the liñes.

Another method of recording is to smoke a piece of glass which, after the tracing is complete, may be used as an ordinary photographic negative. In this case the ball pen refill can be replaced by a piece of rod having a gramophone needle soldered into one end. The designs reproduced in this article were made in that way. Further designs appear on the cover of this issue.

The Gimbal

It will be seen from Fig. 3 that this consists of two parts, the first a large washer, and the second a collared disc. This latter is secured to the pendulum by means of a grub screw. Those readers who do not possess a lathe will be able to make this by soldering a collar into the centre of a brass disc and drilling a 1 in. hole to suit the 3 ft . pendulum rod. Into this disc are soldered two gramophone needles. Fig. 3 shows the details of the large washer. It will be seen that this has to be recessed and grooved in a particular way with alternatihg grooves and. recesses above and below to accommodate the needle points on the upper disc, and the

Fig. 3.-Details of the table, pendulum rod and gimbal.
needle points fixed to small plates screwed to the table top. The recesses can be cut with the point of a $\frac{1}{8} \mathrm{in}$. drill. The grooves should be filed at an angle which will permit the maximum swing of the pendulum without the gramophone needle fouling the sides of them. The drawings clearly show the construction of this item.
The pendulum weights can be made by filling tins with molten lead, and drilling a hole down to suit the pendulum rod. The pendulum weights are adjustable up and down the rods by means of locking screws.

The Recording Pendulum.

The pivot points for this are soldered into a brass bar drilled to take the pendulum

Two examples of designs produced with the harmonograph.
rod and is fastened to the rod with a locking screw. At the top of this rod is fixed a wooden beam fastened by a tape hinge to another piece of wood of equivalent length and section, to the top of which is screwed the wooden arm carrying the stylus. In the inert position the stylus is at the exact geometrical centre of the recording board. The latter is attached, of course, to the top of the front pendulum. The rear pendulum pivots on two plates with grooves in them,
and which are fixed one on each side of the rear hole in the table top.

It will thus be seen that the height of the recording table, the height of the pendulum weights, the height of the hinged arm, and the degree of swing of the pendulums are all variable, enabling an infinite variety of designs to be produced. The carefu! student will keep recordings of the positions, and endeavour to produce two alike.

A useful experiment after one design has been completed is to change the stylus for one containing a different coloured ink such as

Two more examples of harmonograph designs.
red, and superimposing a fresh design over the first. In this way by using a variety of colours the most complicated and fascinating harmonographs can be produced. Needless to say, the very smoothest of papers should be used to reduce the friction between the stylus and the paper. The lower the friction the longer will the pendulum swing, and the finer will be the design.

Fig. 4.-Plan and side view of the hinged stylus arm and details of one of the pendulum weights.

PRACTICAL STEREO-PHOTOGRAPHY

How to Take Stereograms with a Single-lens Camera

THERE is no reason why a photograpner should wait for a two-lens camera to enjoy the magic of stereoscopy. The ordinary one-lens camera can be used to make a beginning, indeed, there are those who never use anything else. Moreover, the underlying reasons of stereoscopy will be mure quickly understood this way.
A stereoscopic camera has two lenses spaced apart the same distance as the human eyes, and takes two pictures that represent the views seen by the two eyes separately. These two views are slightly different, as can be seen with exaggerated effect should the hand be held outsiretched at arm's length before one; and the view looked at through the fingers, which form a part of it. The two prints of a stereoscopic pair viewed in the stereoscope combine to give an illusion of natural solidity, roundness and relief.
To use a one-lens camera to make stereograms two negatives must be made separately, the camera being moved $2 \frac{1}{2} \mathrm{in}$. or 65 mm . sideways between the exposures. To make a slide (as stereograms are often called for short) two identical prints from the same negative will not do-in the stereoscope they look quite ordinary.

Suitable Subjects

Of course, with two exposures made one after the other, moving subjects are barred, but plenty remain that do not show movement, including interiors, architecture, landscapes, garden scenes and all table-top subjects. Much good portraiture has been done in this way, the sitter usually getting most of the credit and deserving it.

With interiors there is a painless way of starting. With these, in ordinary photography, it is very usual to make two exposures, one four times the other, to provide against errors. As every photographer knows, the resulting negatives will almost invariably give identical prints. If the camera is shifted about $2 \frac{1}{2} \mathrm{in}$. sideways between the exposures by sliding camera, tripod and all, the prints will make a stereoscopic pair.

Camera-supporting Tray

A simple fitting is shown in Fig. I, that makes sliding the camera sideways between exposures easy. It is a tray that clamps to the tripod head with the ordinary screw. The upturned rim acts as a guide for keeping the camera straight, prevents minor accidents, and acts as a measure of lens separation, having a scale of millimetres along the back edge. This sort of tray can be elaborated by adding holes or slots to take the camera tripod screw, in which case only one side of the rim is needed, to keep the camera straight and provide a scale.

A stereoscope is necessary for viewing the slides, except for those gifted people who can teach themselves to view slides with the naked eyes. Stereoscopes are not easy to find in shops, either new or second-hand, but they can be put together at home without expense or difficulty. Precise details for their construction are not given here, for the final form that such an article is to take depends on the material available, and the skill of the worker.

Simple Stereoscope

The main features of a stereoscope are shown in Fig. 2. In its simplest form, a stereoscope consists of the lens panel alone,

By S. H. S. MOXLY
the slide being held in the hand, but the manipulation of this needs experience. A beginner is advised to attempt something more ambitious, and construct the apparatus as shown in Fig. 2. For a "mock up". the lenses can be stuck to the panel with sticky plaster ; the panel itself, of three-ply or cardboard, can be nailed to the two strips that form a baseboard. The slide carrier can, crudely, be of three-ply with elastic bands to hold the slides at their ends. It is not strictly necessary to fit the carrier so that it slides on the baseboard for focusing, but it is preferable, especially if the lenses are of six inches focus, or more.

Now about measurements : the lenses can be two magnifying glasses from a stationer's, as near the focus of the camera lenses as possible. They will almost certainly be of longer focus, but no matter, for lenses of

Scale of millimernes for camera movement

Fig. I.-Camera-supporting tray.
double focus give pleasurable viewing, if not scientific exactitude. The distance apart to mount the lenses, centre to centre, is again 65 mm ., or $2 \frac{1}{2}$ in., the same as the normal taking separation, and mounting separation, too, as mentioned later.

The distance from lens panel to carrier will be such as to give a comfortable focus, and with $3 \frac{1}{2} i n$. lenses is often fixed. The size of mount the carrier is to carry is for the present not strictly standardised. The stereoscopic societics use a mount 7 by $3 \frac{1}{2}$ in., but there are several otber sizes that have been standardised since their foundation, and one of these, 6 by 13 cm . is recommended as being small enough for easy stowage and large enough to accommodate any pair of prints properly mounted at 65 mm . centres. A slide 7 by 13 cm ., an uncommon stan-

Fig. 2.-Perspective view of a simple stereoscope.
dard, is also used and the same carrier can take both.

Mounting the Prints

As to mounting the prints, it is as well not to be too fastidious at first ; perfection can be left for later. The first thing that is wanted is to know which is the right-eye print and which the left-eye print. If in any doube it can be settled by looking at the pair loosely assembled under the stereoscope: if the prints are the wrong way round they will not give the natural relief that is expected. When identified, mark the prints \mathbf{R} and L on the back. That having been settled, trim the two prints to exactly the same size, with their levels the same, i.e., so that the top and bottom edges cut across objects at the same height. Then mount the prints, preferably on a dark mount, with their distance points 65 mm . apart (foreground objects will be a few millimetres closer), and, of course, on the same level. The distance apart is not too critical ; an error of 5 mm . will not matter in a first attempt.

Window Effect

Viewing such a slide in the sterascope it will be found that the edges of the prints are themselves stereoscopic, and that they combine (or "fuse" as the steroscopist has it) to form a frame around the view at a definite distance of its own; this is called "window effect." If the window happens to come between the view and the viewer it will be in the usual place for a window, and all is satisfactory, but if it appears behind the view or, at any intermediate distance it will seem strange. In this last case it is possible to adjust the window for distance (supposing the prints not to be stuck down) by trimming off, a millimetre at a time, from both inside edges to move the window away, and from both outside edges to bring the window nearer. In the case of table-tops, they sometimes look very well if the window is behind.

About the separation to use with closeups: should no part of the view be closer than roft., the normal separation of 65 mm . is correct; otherwise use a lens separation equal to one fiftieth part of the distance of the nearest object. Thus a flower growing in a bed two feet away should be taken with a separation of half an inch.

Softer Negatives

Stereoscopy demands a somewhat softer negative than ordinary photography. An ordinary photograph relies mainly on shadows for its relief, and so needs strong, dark shadows to give "snap and sparkle." A stereogram gets its relief almost entirely. from the fusing of the two different prints, and unless the shadows, as well as the highlights, have good detail, they will fuse as blank masses and show as planes. A general rule for stereograms is to allow a double exposure three quarters development time, and a grade softer paper. Experts are also agreed that P.O.P. is much better for stereograms than bromide paper, having a longer range of tones and giving more detail in the extremes of light and shade.

Two warnings: always get a separation of as near to 65 mm . as possible in mounting (to avoid eye-strain) ; and always bear in mind that it is what you see in the stereoscope that matters, and not the slide held in the hand.

By A. D. MANSON

The completed experinenal hot-air engine.

A ring made from $\frac{1}{4} \mathrm{in}$. square iron rod, or cut from plate, is fitted on the outside of the other end. It can be brazed on or soft soldered. The chamber should then be placed in the lathe and the ring trued up, as it has to carry the working cylinder.

Working Cylinder

This cylinder is made from a piece of mild steel pipe, the finished size being $1 \frac{1}{8} \mathrm{in}$. bore by $3 \frac{1}{8} \mathrm{in}$. long. The outside should be turned bright, and the step to receive the flange should be cut for a

THE hot-air engine here described works on a new principle devised by the writer. As will be seen by the sketch (Fig. 1) it is simple and, therefore, should not be difficult for the average mechanic to construct.

The illustration shows the piston, which is tubular, to be directly connected to the displacer so that they move togethier as one piece.

The working cycle is as follows: starting on the out stroke. As the piston moves out the cold air contained in the cold portion of the displacer chamber A is displaced to the hot end and the pressure gradually rises, so driving the piston. At the end of the out stroke the piston comes to a position where the two ports X register, and therefore all the air above atmospheric pressure escapes from the hot end. On the return stroke the small quantity of hot-air remaining in the hot end of the displacer chamber is displaced to the cold end and cooled, therefore, a partial vacuum is formed, which increases as the stroke continues and the piston is thus forced in by the pressure of the atmosphere until near the end of the stroke, when the air-inlet port registers with that of the working cylinder. Air now rushes in to fill the vacuum and the cycle of operations is thus completed.

The following are the advantages for this type of hot-air engine: the heated air-during the out stroke remains in the hot end till the end of the stroke and it is discharged directly from the hot end to the atmosphere and thus heating of the cold end is avoided to some extent. The incoming air is always at atmospheric temperature and pressure.

The engine is double-acting and can be reversed. There are few moving parts, no additional mechanism being required to drive the displacer.

Constructional Details

Starting with the displacer chamber, this is made from a piece of mild steel tube, or it can be constructed from sheet metal not more than $1 / 32$ in. thick. One end is closed by a piece which is cut a little larger than the diameter of the chamber. It is then beaten out hollow or dished, as in Fig. 1, and fitted in the end of the tube, being secured air tight by brazing or welding.
distance of $3 / 16$ in: at one end. Before smoothing our the bore the air-inlet ports and the exhaust port should be drilled, care being taken to ensure-their correct positions.

The cylinder flange is made from a piece of mild steel plate $3 / 16 \mathrm{in}$. thick. It should be turned, and a spigot of $1 / 32 \mathrm{in}$. deep made on the inside to fit the mouth of the displacer cliamber. A light groove should be cut in the other side to mark the pitch circle of the eight fixing screws, the holes for which should now be drilled. The flange can now be used as a jig to drill the tapping holes in the chamber flange ring. The fange can now be pressed or lightly driven on to the cylinder and solder should afterwards be applied all round the joint. A thick paper gasket rubbed with oil and graphite will make an air-tight joint when the cylinder and chamber are finally united together.

The Displacer

The displacer can be made from a piece of tube or from sheet metal about $1 / 32 \mathrm{in}$. thick. The outside diameter should be r/16in. less than the inside diameter of the chamber. One end is dished like that of the chamber, while the other is about $\frac{1}{8}$ in. thick and flat. All joints on this part should be brazed or welded and air tight. A hole
should be drilled in each end at its centre to take the $\frac{1}{4}$ in. bore exhaust pipe, C.

The Piston

The piston, which is in the form of a tube, can be brass or other anti-friction metal. It should be $4 \frac{1}{2} \mathrm{in}$. long by $\mathrm{I} \frac{1}{8} \mathrm{in}$. outside diameter and a fairly tight fit in the cylinder. A flange $3 / 16 \mathrm{in}$. thick, having four equally pitched countersunk holes for the $\frac{1}{8}$ in. screws that unite it to the displacer, is fitted at one end. It can be brazed or soldered to the piston and afterwards this part should be trued in the lathe and the outside diameter of the flange made equal to that of the displacer.
There is also a disc soldered in the piston tube flush with the flange at this end. It is about $\frac{1}{8} \mathrm{in}$. thick and is bored at its centre to take that part of the exhaust pipe which is fitted inside the piston. The air-inlet pipe should then be made and fitted; care

Fig. 2.-Fitting for. raking the small end of connecting rod.

Fig. 4.-The methylated spirit lamp.
is necessary to fit them in their correct positions. (See Fig. 1.)

A short piece of brass rod (Fig. 2) having a slot to take, the small end of the connecting rod has also to be fitted and soldered inside the piston. The hole for the gudgeon pin is then drilled square through the piston tube and the piece of brass, which thus forms the bearing for the gudgeon pin.

Fig. 1.-This sectional view of the hot-air engine shows the simplicity of the design.

The gudgeon pin is held ini position by a short screw passing through the upper side of the top end of the connecting rod and for a short distance into the pin itself. A hole in the piston tube allows the screw to be fitted.

Having got the piston to this stage it should now be made a good sliding fit inside the cylinder by lapping, using metal polish as a grinding medium.

Two or three asbestos washers are fitted between the piston flange and the displacer to prevent, as far as possible, heat getting to the cold end. By varying, the number of the above-mentioned washers the length of the displacer can be finally adjusted.

When assembled the piston should move freely the full stroke of the engine, and allowing $\mathbf{x} / \mathbf{1} 6 \mathrm{in}$. for clearance ; the displacer should not rub on the inside of the displacer chamber.

The exhaust should be on top and the air-inlet port on the underside of the cylinder. The connecting rod does not need to be heavy. A disc or a double-web crank can be used. The crankshaft may be $5 / 16$ in. diameter and the flywheel about 5 in . diameter.

Fig. 3.-Perspective view of the fire-box.

Cooling Water Tank

This tank can be constructed of galvanised iron. It will have to be soldered to the displacer chamber, and the bottom, which should be $1 / 16 \mathrm{in}$. thick, will have to project
$\frac{1}{2}$ in, at each side to take the holding-down screws, as the thrust and pull of the piston is taken on this part.

The fire-box (Fig. 3) is made of $1 / 32 \mathrm{in}$. galvanised iron. Long studs pass through the ends and hold the centre part, which carries the funnel, in place. It can be lined inside the ends and the centre part covered with asbestos sheet to conserve the heat.

Three air holes, $\frac{1}{2} \mathrm{in}$ diameter, are drilled on each side at the bottom of the ends of the fire-box. A small fire door is fitted at one side to allow the lamp to be removed and to prevent too much cold air entering here.
The lamp for burning methylated spirit is provided with a rectangular reservoir, having a short length of $\frac{1}{4} \mathrm{in}$. tubing soldered at the bottom, on the other end of which is another piece of tubing fitted with three $\frac{3}{8} \mathrm{in}$. diamieter burners (Fig. 4).

The wicks are made of asbestos cord twisted together. The lamp should be placed centrally under the hot end of the displacer chamber. The base-board may be of oak or other hardwood $\frac{1}{2}$ in. or $\frac{5}{8}$ in. thick, It should have two endpieces screwed on to prevent warping, as shown in the photograph of the completed model.

An Electric Alarm.

Details of a Simple Conversion

By C. HEYES

THESE notes concern the modification of an alarm clock, so that when the alarm is set to go off at a pre-set time, a circuit is completed and a bell connected to the mains commences to ring, and will con-

Side elevation, and general arrangement of an electric alarm device.
(I) that the alarm can be set for any time in the twelve-hour cycle at a moment's notice, and (2) that there is no disfigurement or.damage to the clock itself. Therefore, the attachment can be disposed of if and when it becomes nećessary, and the clock then reverts, to 'its normal operation.

Operation

The sketches are selfexplanatory and show the principle quite clearly, the sequence of the operations being that the back of the container is opened, the clock removed and wound up, the alarm is set to the required time, and the clock is replaced. The switch "A" is put in the off position, and the back is closed. The switch " B" by the mains plug is switched on. When the alarm is set off, the winding key turns and knocks on the switch. This completes the circuit and the bell rings.

Bell Circuit

I have not attempted to set out a design for the container as so many alarm clocks are
of different sizes and shapes. The bell circuit can be operated either from the mains, via a transformer, or from batteries, in which case the container would be made larger and self-contained.

Temporary Fixing for Electric Wiring

WHEN putting up temporary electric wiring which is expected to remain in position for some time, the following fixing will provide a secure and efficient job. The idea is based on the old-fashioned wireless screweye insulator. A quantity of large cup hooks is obtained and a short piece of soft rubber tube is slid on to the hooks, as shown. The hooks are then screwed into any convenient place at frequent intervals along the path of the wiring, and the cable is then run out

Using an insulated hook for temporary electric zviring.
and slipped on to the hooks. This method does away with the usual practice of taping temporary wires in position and produces a very neat effect in a short space of time.R. G. Ilston.
tinue to do so until the sleeper awakes and switches it off.
I have seen one or two designs that will do the above, but each one has certain disadvantages, these being-(I) that the clock is permanently disfigured through the fixing of contacts to the dial, and (2) that the alarm can only be set for one particular time.

The advantages of my arrangement are-

FOR THE MODEL MAKER

THE MODEL AEROPLANE HANDBOOK

By F. J. CAMM

312 pages.
303 Illustrations.
12/6 (13/- by post).
Construction and Principles of all Types
FIOM GEORGE NEWNES, LTD., TOWER HOUSE, SOUTHAMPTON STREET, STRAYD, W.C. 2

Hollow or Slush-casting

Alloys Used in Casting : Types of Mould: Slush-casting Bench: Slushing Fixture: Cothias Process

By H. K. BARTON

ALTHOUGH the diecasting of metals, by both pressure and gravity methods, offers great scope to the designer, it is not entirely free from limitations. The most notable of these is the restrictions that it imposes on the form and nature of cores, as compared with other foundry processes. In diecastings the largest cross-section of a core must necessarily occur at its intersection with the cavity, i.e., no cored hole can be larger internally than it is at its mouth. It is true that by the use of "knockouts" and collapsible cores this limitation may, in part, bo circumvented; this invariably entails a sharp increase in initial tool cost. Indeed,

Fig. I-Shush mould mounted on hinged
conditions have varied appreciably from the optimum, it is more likely that thin sections of the casting will have filled up solid, the skin of thick section deep in the cavity will have fallen away from the mould surface, and parts of the casting near the gate will probably have slushed out together with the surplus metal.

Slush-casting, in fact, is a craft in a way that diecasting is not ; it depends almost wholly upon the acquisition through experi-

\qquad holly upon the acquisition through experi-

all dies embodying moving cores are disproportionately higher in cost than equivalent two-part dies, since not only the cores, but the .mechanism for actuating them, demand much time on the fitting bench to assure correct operation and smooth running.

There are many types of article, particu: larly in the field of toys and novelties, which though of complex form and intricately cored, are of too transient an appeal to justify the laying-out of large sums for tools. Normally, great strength is not expected of such articles; where this is so it is often advantageous to produce them by the slush-casting process, using metals of low-melting point instead of the commercial zinc or aluminium alloys utilised in diecasting proper. Slush-casting differs from diecasting in that the internal shape may be just as intricate as the external, but is entirely lacking in precision since it is not formed against any constraining surface.

Simple Process

In theory at least, slush-casting is a very simple process; molten metal is ladled into a mould shaped internally to the desired outward form of the article and, after a judicious pause, the mould is inverted and the metal tipped out again. Some of it, naturally, has chilled on the cool mould wall ; if the casting temperature of the metal, the mould temperature and the duration of the pause for cooling have all been correctly assessed, the skin of metal left in the mould ranges from I/32in. to $3 / 32 \mathrm{in}$. thick, is complete and unbroken, and forms a perfect replica of the finest details of the cavity. If the rather critical
ence of a successful technique, rather than upon strict attention to the control of a limited number of variables as in the operation of a machine. In slush-casting, should the metal in the pot become too hot, the operator allows it to cool a second or so in the ladle before pouring; as the temperature of the mould varies the pause for cooling is changed in compensation. The technique of slush-casting, accordingly, can only be

Fig. 3-Details of a typical toy-mould.
acquired by practice ; here it is only possible to describe the various methods adopted and the type of equipment required.

Use of Suitable Alloy

The first essential to the successful production of slush-casting is the use of a suitable alloy, and it must necessarily be one with a wide freezing range between liquidus and solidus. This follows from the manner in which a metal solidifies in contact with a cool surface. At the instant of contact a thin skin of fine grain is. formed, and on the inside of this is built up more slowly a network of needle-shaped and branching crystals, very like frost patterns on a window. In an alloy of small freezing range the formation of this dendritic network is closely followed by the onset of complete solidification, but where the freezing range is wide the network can become locked and ramified whilst the bulk of the metal still remains fluid. It is this property that commends such alloys for use -in slush-casting, for by their use a skin of

sufficient rigidity to support itself is formed at the cavity surface, while the internal portions of the charge are still fluid enough to be slushed out.

Lead-antimony-tin Alloys

Lead-antimony-tin alloys are used almost exclusively, and though only when slushcasting is carried out on a large commercial scale is any attempt made to hold to a fixed specification, the alloys most often used are similar in composition to printers' type metal. Indeed, discarded metal type is often used by small-scale operators. The best for the purpose is founders' type, which contains more than to per cent. of tin and around 24 per cent. antimony (remainder lead) but this is now seldom obtainable. Most of the loose type (separate letters) now in circulation is "Monotype," and has a lower tin and antimony content. Additions of block tin and, occasionally, antimony are necessary until a melt is arrived at which does not fall away from the cavity surface when the mould is inverted. The occurrence of dull "orangepeel" patches in the hotter parts of the mould usually indicates that more antimony is needed.

Book-fiorm Slush Mould

The simplest type of slush mould is that of book form, which can be used whenever the cavity is shallow enough. In deep cavities the swinging apart (instead of a straight pull) sometimes causes distortion of the casting In order to simplify mould construction it
is desirable not to hinge the actual blocks, but to bolt them to a hinged frame as indicated in Fig. I. The frame members are slotted, both to accommodate moulds of different size and to allow them to be located at different distances from the hinge. If near the hinge

Fig. 4-Slushing
fixture with tilted metal pot.
Counterporse
-
-

filled with metal exceeds three or four pounds, i! is necessary for ease of working to provide non-manual means of supporting and tipping.

Slushing Fixture

A fixture-it ${ }^{-}$can hardly be termed a machine-for this purpose is illustrated in Fig. 4. It consists of a fabricated base with a sheet-metal furnace housing on the left. The metal-pot is fitted with brackets so as to be lip-tilting, the nearer axle being fitted with a handwheel and the further orie with a projecting crank carrying an adjustable couinterpoise : Immediately in front of the metal pot (i.e., to the right in the figure) is a bracket. A carrying the-fixed mould member. This is pivotally mounted so that it can be freely rotated in a vertical plane. The moving member is similarly attached to a steel rod, which can both slide and rotate in the fixed mounting B. At the rear of B is a thinner angle-plate C; strutted at the sides, with a keyhole opening through which the rod passes. The end of the rod is fitted with a plastic knob. With this arrangement the moving member is brought forward until it meets and registers with the fixed one, the two then being rotated until the pouring-cup of the mould is immediately below the lip of the pot. The latter is now tipped forward to fill the mould. After the appropriate pause, the knob on the left is swung to invert the mould, the slushed metal falling into a miniature ingot mould placed beneath. Further rotation of the mould now brings a projecting peg P into line with the keyhole slot, and so allows the moving member to be drawn back. The purpose of this peg is, of course, to prevent the mould members from coming apart during pouring.

Hand-operated Machine

In addition to special fixtures of the same general rature as that discussed abovewhich can be taken as typical-some use has been made of true diecasting machines for slush-casting. These have been of handoperated, upflow type, the use of an upflow machine having the advantage that it obviates the necessity for inverting the mould. The old Dorman machines (Fig, 5), once much used in railway maintenance shops for the castings of bearings are admirable for the purpose. (Continued on page 198)
the clamping pressure is greater, but further away a nearer approach to a straight draw is obtained.

Slush-casting Bench

A convenient layout for a slush-casting bench is shown in Fig. 2 ; the melting pot, fitted with an immersion-type heating coil, is at the right. Adjacent to it is a cast-iron pallet-a heavy, shallow dish-into which the slushings are tipped. The melting pot is sunk into a cutaway portion of the sheetmetal bench with its rim resting on a thick asbestos gasket. Beneath the bench the pot is surrounded by heavy lagging. To the right of the bench is a rack upon which the castings are placed to cool. The operator dips metal from the pot with a small ladle, steadily fills up the closed mould, holding the clamping frame together with his left hand, pours any surplus metal left in the ladle back into the pot, and almost simultancously inverts the mould over the pallet, slushing out the surplus metal and allowing the edge of the mould to tap lightly on the side of the pallet. The mould is now opened with both hands
and the casting removed, either with a pair of tweezers or by means of an awl carefully inserted into the hollow pip at the gate. Gates for slush-moulds differ considerably from those used in either gravity or pressure diecasting, the usual form being a more or less hemispherical cup with a short channel of pencil-lead diameter joining it to the cavity.

Typical Mould

A typical mould is shown in Fig. 3. The vents are V-shaped slots cut with a hacksaw held obliquely. Either aluminium or bronze may be used for moulds; the former is particularly suitable for book moulds on account of its lightness, but bronze moulds hold fine detail better. Either can be cast to form, needing only to have the joint faces filed to a match and the cavity surfaces polished.

The method of slush-casting described above is applicable primarily to small articles, but quite large statuary and other similar work can be produced by the process. If, however, the weight of the mould. when

Fig. 5 (Left)-Sectional view of Dorman hand-operated plunger type machine. Fig. 6 (Centre).-The machine as modified for shish-casting. Fig. 7 (Right).-The Cothias methat of coring hollow articles after ponring.

How Police

Afterthoughts on a Visit by the House of Lords Motor Club to the Police Driving School at Hendon

By THE MARQUIS OF DONEGALL

Lord Waleran, secre-

WAT the Police Driving School actually got on this extremely interesting visit were twelve peers-road-racing drivers and/or pilots, plus a few quite able-bodied and knowledgeable types.
The Metropolitan Police Driving School is adjacent to the Hendon Police College. All the premises were formerly part of Graham White's Airport Country Club:

They consist of a large building of classroums and canteen, a garage-workshop, a private test-road and a skid-patch about the size of the Round Pond on Hampstead Heath.
The Police Driving School was formed on January Ist, 1935, under the auspices of Captain Minchin, formerly of the Royal Artillery and Royal Tank Corps. At that time, starting in a small way, the school turned out 42 trained police drivers every five weeks. To-day the intake is 100 a month, and the rate of police accidents has fallen from one in 8,000 in 1934 to one in 68,000 in 1950. One in ten of 999 calls results in an arrest; the ordinary bus accident rate is one-and-a-half in 10,000.
The greatest cause of accidents is lack of concentration-having words with the wife or girl friend being a recurrent contributory circumstance. Conversely, there is nothing to show that listening to the radio plays any part in the accident graph, although tuningin would strike the citizen as an obvious source of accidents, to be compared with the occasional coughing or sneezing fit that sometimes flurries a driver. However, statistics, which as we all know can lie, do not support the citizen's view.

The Raw Recruit

The system of intake at the Police Motor School is somewhat complicated, and I do not think that we need to go into it in great detail. Let us concentrate rather on P.C. 50 who is sent to the school. He immediately comes under the wing of Chief Superintendent W. M. Taylor and Chief Inspector Walker.
P.C. 50, they hope, has never in his life attempted to take a motor-car to pieces let alone drive one. They like to get them raw on the principle that it is far easier to instil good habits than break bad ones. He spends one week in the classrooms learning the Highway Code, and getting an idea of what goes on under the bonnet.
The other four weeks of his course start on the private motor road, gravitate to quiet public roads, and gradually to more difficult roads and night driving.
tary of the House of Lords Motor Club, in full pursuit of the " bandit car" on the skid patch at the Police Driving School, Hendon. The surface is a mixture of oil and water and marks are deducted for knocking these strategically placed quoits, which are actually old motor tyres.

By the end of his five-weeks course. P.C. 50 will have had about 800 miles at the wheel and about 1,200 miles hearing the other two drivers of the team of three in one car being guided by the allotted instructor.

At the end of this he gets a written examination on the Highway Code, skidding, driving test, maintenance examination, and he becomes a general divisional driver.
Captain Minchin manages to keep an individual check on the mileage of his graduates. If a graduate has, through no fault of his own, not accumulated sufficient mileage, he is hauled back to the school for further practice. The doubtfuls are also noted and come up for further tuition.

Driving the Black Maria

Now here is a thing that surprised me. The next promotion is to drive a police van -a small Black Maria ?-so P.C. So comes to the school to learn how to drive a van in the approved manner.

If he is brilliant, he is removed from this

Eldorado of Black Maria driving and comes 'back again to the school for advanced training for another five weeks. (Coach driving and high-powered cars.)

Leaving the coaches to bulldoze their way through the English country lanes, P.C. 50 is told, when he gets on to the high-powered cars, that "ramming " is old stuff. Now the technique is to follow close on the bandit's tail thus producing a psychological effect. In the meantims, you are, of course, "calling all cars," and he will eventually be erapped in an inextricable maze of converging R.T. Police cars.

The advance wing of the Hendon Driving School uses at present a Super Snipe, $4 \frac{4}{4}$ Lagonda, 25 Speed Alvis, $2 \frac{1}{2}$ Riley, 6 -cylinder Citroën, 38 Buick, $4^{\frac{1}{2}}$ Bentley, Javelin, Triumph, 6-80 Wolseley, Chevrolet and Bedford Coach.

There is yet another course dedicated to the Traffic Patrol Wing who are commonly known as the "Courtesy Cops." They have. special courses in public address system and legal peculiarities of their job. There are a number of Police Motor Schools in the country including Lancashire and Essex.
All the instructors for these schools were trained at Hendon and in the "bag "Captain Minchin has graduates from the Gold Coast, Palestine, Singapore, Iraq, West Indies, Ministry of Transport, Marine Officers, Army, Air Ministry Examiners and 12 lady Police Drivers.

As to the training, it may be that Captain

The House of Lords Motor Club visit to the Police Driring School, Hendon. Left to right : (front row) Chief Superintendent W. M. Taylor, M.M.; Lord Gifford, R.N; Captain R. P. Minchin, O.B.E. ; Lord Sandhurst, O.B.E.; Lord Moynihan, O.B.E., T.D.; Lord Waleran; Chief Inspector Walker; (back row) Lord Canden.; Inspector Tisdall; Lord Swaythling, O.B.E.; Lord Keyes, R.N.; Lord Buckinghamshire; Mr. Dudley Ryder (House of Lords official), and an onlooker.

Minchin and his team were expecting their Lordships of the House of Lords Motor Club to be argumentative.

The method of turning out of traffic to the right is eminently sensible:-(I) decide the right-lane of traffic, (2) check speed if necessary and change into lower gear, (3) put out your hand to indicate turning right, having looked in your mirror, (4) pull in your hand and stick up your traffic indicator, (5) stop, wait for a suitable opportunity and then get on with it.
" Really, Minchin, you must have a very heavy brake-lining bill, if you don't teach your students the value of combining the change-down with applying the brake-pedal. Furthermore, according to your theory, your student is never in the right gear for an unexpected break-through."
" Donegall, this is rather like taking one sentence out of a two-hour speech. Of course, they learn to combine the brakepedal and the change-down, but you must surely remember that when you first got -a fast car your one desire was to see whether it was possible to change-down at $80 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Human nature does not change, and I cannot afford to have my gear-boxes ruined by youthful enthusiasm."

The Skid Patch

They put us on the skid-patch, covered in oil and water, with quoits sticking up. Every quoit knocked counted a mark against their Lordships.

Nothing exciting occurred during this little test as far as I was concerned; I knocked four quoits out of 25 and can only excuse myself on the basis that I was driving a

38 h.p. Sedan Buick and did make the circuit in the specified time (22 m.p.h.)

The remarkable thing was that Lord Waleran, secretary of the H. of L. Motor Club, driving his Citroën Six, try as lie would, could not skid at all. All that happened when he tried to skid was that one of his front tyres went right down on to the rim. Of course, he was seconds within the allotted time for the circuit because be never had to bother about skidding and simply wove his way between the quoits as though he had been driving down Piccadilly.

To sum. up, I forgot to mention that one basic principle that the Hendon School teaches its pupils is never to risk becoming "the meat in the sandwich." In other words, on a three vehicle road never overtake a vehicle going the same way as yourself if you will be alongside it at exactly the same moment as the vehicle coming in the opposite direction. If one vehicle has to swerve for a bicycle, you will probably get away with it. But there will come a day when both

The visiting House of Lords Motor Club pauses for a breather during a road dentonstration near the Police Driving School, Hendon.

Items of Interest

End of a Pioneer Railway Line

ASMALL railway line that made history is to be closed down because it no longer pays its way. It is the Canterbury and Whitstable line, $6 \frac{1}{2}$ miles long with an 828yard tunnel, the first railway to haul farepaying passengers regularly by a steam locomotive.

Opened in 1830, the railway used Stephenson's locomotive, "Invicta.". This was five years after the Stockton and Darlington line was inaugurated, but that railway was then pulling its passenger coaches by horses.

In 1832 the C.W.R. ran Sunday trains, which were well patronised, till the clergy of Canterbury protested, and the Sunday trains were cancelled after two months. In

1834 this little railway issued the world's first season tickets.
It is claimed that the brick bridge which carries the line over the road at Whitstable is the world's oldest railway bridge.

New Twin-jet Delta Fighter

THE accompanying illustration shows Britain's first operational twin-jet Delta fighter, the new Gloster GA5 aircraft of the Hawker-Siddeley group. Although its speed, range, armament and radar gear are secret, it is claimed that the GA5 is better qualified than any other aircraft in the world to destroy atom bombers from any country that might declare itself the enemy of the free world.
your opponents have to swerve for bicycles, or other hazards. That means disaster !

As far as the House of Lords Motor Club is concerned, we had a most instructive day, and it emerges a hundred per cent.-if only by the fact of the staggering reduction in Police-driven accidents-that the Hendon Police Driving School is doing a great service to all roadfarers both in this country and in the British Commonwealth beyond the seas.

The new Gloster GA5 fighter in fight.

SLUSH-CASTING (Continued from page 196)

As may be seen from Fig. 6, which shows the machine somewhat modified for its new task, the gooseneck and metal pot are mounted beneath a flat metal table. Through this the nozzle projects, and the assembled die, locked with C-clamps, is aligned above it. Around the nozzle is a short powerful spring, with a turned collar surmounting it; and it is upon this that the die is placed, gate downward. Above the table is an arch carrying a vertical screw, this being fed down until the die is forced into firm contact with the nozzle. The rack-and-pinion operated plunger is now depressed by swinging the capstan-wheel, thus filling the die, but is immediately drawn back again. Simultaneously, the clamping screw is slackened off to break the nozzle seal, and the surplus metal runs back through the cup-shaped nozzle into the gooseneck. The free entry of air is essential to the quick running off of the slushed metal.

Cothias Process

For completeness, this bricf survey of slush-casting methods and equipment must include a reference to the related Cothias process, which falls half-way between slushcasting and gravity-casting. In the Cothias process, which is virtually restricted to the casting of pedestalled statuary, the metal is poured into a wide-mouthed inverted mould, partly filling it (Fig. 7), and a steel core is brought down quickly into the mould. This displaces the metal, which fills the cavity and overflows. When the casting has cooled the core is stripped out and the mould dissembled. The only equipment required is a mandrel press to carry the combined core and plunger. Cores used in the Cothias process are subject to the same limitations as those in diecasting dies; they must be free from undercuts. In consequence, the wall thickness of Cothias-cast statuary is inevitably non-uniform.

Porcelain Enamelling

Details of the Process Simply Explained
By F. SPICER

IN recent years there has been a considerable increase in the use of porcelain enamel as a finish for many domestic articles such as refrigerators, boilers, cookers, etc. Originally, porcelain enamel was purely
ing glass-like properties, bringing this, by smelting, to a molten mass and then discharging it into cold water. The thermal shock results in the shattering of the mass into particles suitable for milling. Chemi-

Fig. 1.-Spray booths in the enamelling department. (By courresy of Rubery Ozven and Co., Lid.)
decorative, but now we look for many other qualities in the porcelain coat.
Observing a pieçe of enamel-ware we see a triumph of chemistry and engineering-the welding of glass to steel. What goes to the making of such a complex weld? In the last decade improvements in porcelain enamelling have been numerous, due to close co-operation between the steelmaker, the enamel manufacturer and the actual enamel user. The steelmaker hetped considerably when he introduced small amounts of titanium into his steel: Enamels have been developed that fuse at lower temperatures, and that can be applied in thinner coats. Acid-resisting enamels have been introduced. The equipment used has been improved. The industrial market has opened up new fields such as a coating for marine and aircraft exhaust systems, electrical resistors with the resistance wire embedded in the enamel l_{i}
Vitreous or porcelain enamelling is a process consisting of six main divisions :
r. The manufacture of the enamel frit.
2. Preparation from the frit of wet enamel ready for processing.
3. Cleaning of the metal surface of the articles to receive the enamel.
4. Application of the enamel.
5. Drying of the coated articles.
6. Firing of the enamel to produce the final finish.

Manufacture of Frit

This is a process for reducing many complex ingredients into a uniform mass possess-
cally, porcelain enamel frits may be considered as alkali-alumino-fluoboro-silicates, although they will contain many other ingredients.

Mixing should be accomplished mechanically to ensure intimate association of the refractory and flux materials.
Many types of enamel frit are produced; such as:-

Ground Coats

(a) Cobalt ground coats. (b) Acid-resisting ground coats. (c) Coloured ground coats. (d) White $\mathrm{g}: 0 \mathrm{on}$ d coats.

Cover Coats

Non ac:d-resisting enamels :-
(a) Clear enamels.
(b) White enamels (zircon). (c) White enamels (antimony).

Acid -resisting enamels:-
(a) Ciear A.R. enamels. (b) White A.R. enamels.

Preparing

of Enamel

The manufacture of enamels consists of mixing and grinding.
enamel frits, clays, opacifiers, colour, electrolytes and water. The frit used will depend upon many factors such as base metal, whether for acid resisting, for decoration or protection, etc. Taken in sequence the other mill additions are:-
(a) Clays:-Clays are added for many reasons, including its facility for keeping in suspension small particles of milled enamels. It also acts as a binder and influences the fusing temperature and physical structure, and the coefficient of expansion. It also has a bearing upon th: final appearance of the enamel with regard to opacity; colour and brilliance.
(b) Opacifying Agents:-The opacity of white enamel frit is in itself not high enough, and some opacifying agent is added to bring up the opacity to the required standards. These opacifiers fall into three groups: (a) the insoluble types, such as tin oxide, (b) crystallites, such as antimony peroxide, fluorides and zirconia, and (c) gas opacifiers. These are usually organic compounds that form microscopic bubbles which act as opacifiers.
(c) Colour Oxides :-These are added to the frit to produce the desired shade of colour, and belong mainly to the metalic oxides group as follows :-

Blue enamels are derived from cobalt oxides. Yellows and oranges from cadmium sulphide compounds. Browns from chromium, iron and manganese. Reds from cadmium and selenium conpounds. Greens from chromates. Blue-greens are a mixture of chromium and cobalt compounds. Black is derived from the calcined compounds of iron manganese, cobalt, chromium and occasionally nickel.
(d) Electrolytes are dissolved salts which are added to act as flocculating agents, helping the clay to keep the particles of fine enamel in suspension. Some of these sa'ts

Fig. 2.-Atricles passing through a fichling tume?.
are shown in Table \mathbb{I}, although this represents only a few.
(e) Water is an important factor which will depend upon the nature of the frit and other additions, size of mill, etc. The type of water used has a great bearing upon the final result.

Milling

The correct milling of the materials has been the subject of many discussions and many technical papers and each investigator has his own theory of what is correct with regard to angle of nip, pebble charge, pebble size, frit charge, water content and mill speed.

Mills are usually of monolithic porcelain construction or are lined with porcelain. Grinding efficiency . depends upon many factors, all of which can be varied. One authority outlines these as: the total charge; the volume of balls; size of balls; speed of rotation of the mill; viscosity of the batch being wet ground; order of grinding; duration of grinding; initial grain size of charge.

The ball or pebble charge, consisting of either selected flint pebbles or porcelain balls, should occupy at least 50 per cent. to give efficient results. The size of the balls will vary from 1 in . to 2 in . but whichever size is used, they only should be used in the load A mixture will give uneven grinding of the slip. The load of frit, etc., should occupy a further quarter of the mill.

The speed of the mill will have an important bearing upon the size and quality of the slip being ground, and will vary from 17 r.p.m. for a 7 ft . 6 in . diameter mill to 40 r.p.m. for a 1 ft . diameter mill. The degree of grinding will depend upon the job the enamel has to do, but it must be ground to conform to standards of fineness and specific gravity. After milling the slip is screened to eliminate coarse particles which would interfere with spraying operations to follow.

Preparation of the Metal Surface

The preparation of the metal surface to receive the enamel is one of the utmost importance in all industrial finishing operations. It is particularly so in enamelling. Sheet metal should be degreased, cleaned and pickled, and, if desired, nickel dipped to promot? cohesion of the enamel, while cast iron,

Fig. 4.-A batch type furnace.
(By courtesy of Incandescent Heat Co., Led.
due to its structure, should be shot blasted only. Pickling usually means a-messy kind of yob with water and acid everywhere, but this need not be so. The plant shown in Fig. 2 was developed by Metalwash Machinery Corporation of America in conjunction with Landers, Fray and Clark. This machine
is so designed that it can be placed directly in the enamel set up, no fumes escaping, and the articles are kept wet (preventing rusting) until they emerge from the drying chamber.
Shot blasting is well known, and these machines, are a part of every enameller's set up.

TABLE I: USES OF VARIOUS SALTS

Salt	Use	Quantity
Magnesium Sulphate	To prevent setuling of tough particles of frit. If used in excess is harmful causing sponginess and loss of gloss.	1-40z, per icolb.
Sodium Aluminate	Used mainly in acid-resisting enamels. Used in excess results in loss of gloss and "orange peel surface."	Up to 402. per roolb.
Calcium Chloride	Helps to prevent scumming of acid-resisting enamels.	202. per 100 lb .
Sodium Nitrate	Improves set of enamel, minimises rus: spotting. Lessens possibility of cracking.	Up to 202. per 10016.

Fig. 3.-Showing the supports for plates as they enter the contimous furnace.
(By courtesy of Incandescent Heat Co., Ltd.)

Porcelain enamels consist mainly of two or more coats, a ground coat and a final or cover coat. A ground coat is applied for two reasons: (a) to provide good adherence, and (b) to prevent reactions between the base metal and the cover coat. The function of the ground coat has a great influence on the final result, having a direct bearing upon blistering, copper-heading, fish-scaling, etc.

Cover coats are, as their name implies, the final appearance of the article. It must be a closely adherent coat and resist corrosion, abrasion and damage.

Application of Enamel

Application of the enamel is usually carried out by dipping and slushing or by spraying. For small articles dipping is usually employed but where the parts being processed have pockets, etc., that are likely to retain enamel, they are sprayed.

Methods of dipping can only be determined at the dipping tank itself and will deperd upon shape and size. If after dipping imperfections are visible, the article should be re-dipped at once. After draining they should be removed to the drying racks. Corners and edges likely to chip may be reinforced by a further dipping in the ground coat tank.

It is essential that enamel should be constantly stirred to maintain the correct specific gravity and to prevent enamel from settling
at the bottom of the tank. The temperature of the bath should be controlled to avoid waste of enamel: If -allowed to exceed 70 deg. F., the enamel will tend to adhere in heavier coats.

Spraying is carried out by the atomization of the enamel slurry through spray guns. This method of applying a coat of material is so well known through the spraying of cellulose and synithetic enamels that I need not dwell upon it. (See Fig. I.)

Drying

This is usually 'carried out 'in special drying rooms or continuous drying chambers. It is an important factor in enamelling and the speed of moisture removal from the surface should not be greater than the flow of water to the surface brought about by capillary action. Should the enamel surface dry and set before all the water has evaporated, the result will be chipping and erasing of the surface in the firing operation.

Firing the Enamel

This is the re-smelting of the small particles of enamel frit into a smooth and continuous layer. Time, temperature and methods applied all have a bearing on the final result and must be carefully controlled, otherwise "scrap" components will result.

All articles before introduction into the furnace should be perfectly supported to prevent sagging and deformation (see Fig. 3). The temperature must be pyrometrically controlled at, for sheet steels, between $840-880 \mathrm{deg} . \mathrm{C}$., and for cast irons between 700-780 deg. C., depending upon which coat is being applied. Furnaces may be of the batch or of the continuous type and heated by either gas, electricity, oil or solid fuels. A batch type furnace is shown in Fig. 4. The continuous type furnaces have à pre-heating zone, fusing zone, and cooling zone, the time of fusing depending upon the
speed of the conveyor belt. Sheets are usually hung parallel to the line of travel in large tunnel furnaces, although occasionally they are set at right angles to help circulate the heat in the fusing zone, giving more uniform and efficient fusing.

Small plates can be fired in the furnace showin in Fig. 3, supported on spikes.

Inspection

Inspection should be carried out visually for:-
Blistering or bubble formation.
Chipping: breaking away of enamel, exposing ground coat or bare enamel.

Copper heads : reddish brown scots, breaking up the surface of the enamel.

Crazing: fine, almosi invisible lines in the surface enamel.

Fish scale: chips of enamel resembling fish scales, which leave the surface of the ground coat but usually only during the fusing of the final coat.

Experienced irispection can single out these defects and decide whether they can be salvaged by applying another coat or whether they must go for chipping and reenamelling.

Testing of the Surface

B.S. 1344: 1947 lists the following as tests for determining the properties of enameis.
I. Acid resistance.
2. Alkali resistance.
3. Resistance to thermal shock.
4. Heat resistance of enamels on cast iron surizces.
5. Abrasion resistance.
(I) Acid resistance tests are carried out only on enamels specified as acid resistant.
(2) Alkali resistance tests are carried out on such articles as wash boilers, sinks, baths, etc., where the surface will be subject 10

TABLE II: SPRAYING SOLUTIONS-STRENGTH AND TEMPERATURE

-Station'	Spray Solution.	Strength	Temp.	Time Min.
1	Emulsion cleaner	-	160 deg . F .	11
2	Cold water $\begin{aligned} & \text { Alkaliclean } \\ & \text { Cl }\end{aligned}$	1 to :170z.ig.	160 deg . F.	1/3
4	Cold water	7 io 12 per cent.		${ }_{2}^{1}$
5	Sulphuric acid	7 to 12 per cent.	$150 \mathrm{dcg}$. F.	${ }_{1}^{21}$
7	Nickel dip (single salts)	11103 oz./g.	170 deg . F.	21
8	Cold water $\quad .0$, $\quad \therefore$			${ }^{1}$
10	Neutraliser(soda ash plus borax) Air blast	- 0.45 to0.5s percent:	$\begin{aligned} & 155 \text { deg. F. } \\ & 220 \text { deg. } F \text {. } \end{aligned}$	${ }_{5}$

Gloss: Reflectance, lustre, etc.
Orange peel: a surface resembling the skin of an orange.

Sagging: sagging of the cnamel in loops, etc.

Warping: Deformation, of the original shape of the article, usually to the release of stresses set up in the metal during forming.

An Electric Lighter

By E. MISRAHI

THE accompanying sketches give details of an electric lighter which I found more simple and easier to make than those described in Practical Mechanics during the past years. I have been using it for over ten years without trouble.

The list of materials required is as follows:

Part A.

1. Glass bottle or jar.
2. Two strips of brass or copper sheet.
3. Copper or brass wire, or brass nails.
4. Cork or wood plug.

Part B.
I. Two pieces of shect brass of copper, filed or hacksawed as shown.
2. Mica or asbestos sheet.

Part C.

1. Insulated handle (wood or plastic).
2. Copper or brass tube with end filed at an angle.
3. Coiton wool packing.
Partly fill the bottle or jar with water and dissolve in it a tiny quantity of table salt -about a quarter of a teaspoonful. Insert the cork and electrodes and connect to mains and part B as shown in Fig. 1. Dip part C in the petrol or methylated spirit and strike part BI from top to bottom (Fig. 2). A spait will result, which will ignite the cotton wool packing (part C3).
Too much salt will blow the fuses and

Fig. 1.-Details of the salt solution container and striker plate.

the action of sodas, soaps, etc.
(3) This is to determine the resistance of enamel to fluctuations in temperature, such as those met with in cookers, etc.
(4) Carried out for similar reasons as abjve.
(5) This is to determine the resistance of enamels to abrasion by scouring with cleaning powd:rs, ctc.

Fig. 2.-The lighter suitably housed in u casing.
put part Bi out of action. The spark shouid be similar to the spark of a petrol lighter.

REFRESHER COURSE
 IN MATHEMATICS
 By F. J. CAMM

8/6, by post 9/-

Trwo typical "surface-active" agents. On the left is the liquid "Teepol," whilst on the right is seen a jar" of the solid white "Perminal" material.

FOR a century or more it has been orie of the aims of the chemist to produce materials which possess all the good properties of soap without its inherent disadvantages. Up to recent times, however, such aims were denied a full or even a partial success, mainly on account of our not knowing exactly what happens when soap is made to exert its well-known traditional detergent action. When it became more clearly understood how soap acts in washing articles and in making them clean, it was at once possible for the chemist to produce materials in which the detergent properties of soap are, as it were, concentrated, heightened and in many ways reinforced.

To unders:and the detergent action of soap we must consider one of the important physical properties of all liquids, namely, that known as "surface-tension." All liquids tend to behave as if they carried on their surfaces a tightly-stretched elastic skin which has the effect of confining the mass of liquid within a certain space or volume, and which renders it difficult for the liquid to make a close and actual contact with the surface of any other material. If a liquid is freed from all external influences it tends to compact itself into a perfectly spherical mass, because, of all shapes, the globular one contains a maximum of matter having a minimum of cxternal surface area. This is another way of saying that the inner attractions of the molecules existing within a mass of liquid combine together to prevent the liquid from spreading, and that the anti-spreading tendency is powerfully reinforced by the highly-stretched skin effect which closes down the liquid on itself and tends to resist the liquid's true surface contact with any other closely adjacent surface.

The Floating-needle Trick

This is the fundamental effect of surfacetension which underlies the old parlour trick of floating a steel needle on the surface of water in a tumbler or in a basin. The same effect is operative when we try to wet a metal plate with water, and especially when, as is so often the case, the metal surface has a slight and invisible film of grease on it. Instead of flowing uniformly on the surface of the plate, the latter surface appears actively to resist or oppose the spread of the water. The liquid simply rolls ofi the plate like " water on a duck's back " (which, incidentally, is still another effect produced by the same underlying cause). The water breaks up into countless globules or droplets, and if these are examined under a lens thev will

The Modern

The New Chemistry of "Soapless Soaps," Welting Agents
all be seen tending to form the globular shape so far as they are able. In a word, the water exhibits a very strong unwillingness to flow or to spread in the thin, uniform, film which one would normally expect it to do. It will not wet the surface adequately.

The almost spherical nature of the raindrop gives us another example of the effect of surface-tension on liquids. The raindrop in falling through the air is freed from all external forces except that of gravity, and because this gravitational force is applied more strongly to the lower part of the drop the latter becomes somewhat elongated, or slightly pear-shaped, instead of being perfectly .spherical as it would otherwise be.

Electrical Forces

In all liquids there are, indeed, powerful molecular and, in fact, essentially electrical forces existing in the liquid surface which, so far as they can, resist what would otherwise be the natural fluid-flow and spread of the liquid. It is because of these forces of surface-tension. that any liquid behaves like a nervous individual forever shrinking into himself and being unwilling to make contact with other people unless absolutely forced to do so.

To a greater or less extent the same surface-tension effects are in evidence whenever textile fabrics are immersed in water. If they carry the slightest trace of oil, grease or similar substance they are always difficult to wet adequately. The water, as it were, cannot get at the surface of the fabric. If the fabric surface is soiled with dirt particles the water is unable to loosen them, to soften and to peaetrate beyond them. It cannot float them off and thus remove them. The interfacial tension between the liquid surface and the surface of the fabric is too great.

The Mechanics of Washing

When, however, the water is made soapy, or when soap is rubbed on to the fabric surface, the soap itself is able to lower this molecular tension in both surfaces. Contact between the water and the fabric to be cleaned becomes more readily achieved. And not only this, but, by a lowering of its "skin" effect or surface-tension, the water solution of soap is able to be brought into a condition of surface bubbles or lather which has a powerful mechanical effect in dislodging the extremely fine particles of dirt and grime which may have become partially embedded in the surface interstices of the material which is being washed.

Another effect of the soap is to form a weak emulsifying solution which, although it caninot actually dissolve the insoluble dirt particles, holds them in suspension in the water and so permits of their ready removal from the fabric surface by subsequent rinsing.
Here, in short, is an outline picture of the true mechanics of washing from which it will be seen that the soap performs many operations, among which are those of wetter, softener, latherer, penetrator and emulsifier.

Although soap has been known to civilisation at least since the time of the Romans and, perhaps, considerably before that era, it has been left to modern chemistry to ferret out just why it is able to function as such an effective washing-agent or deterge:1t, and especially why it is so well able to lessen the interfacial tension between the water surface and the surface of the material to be washed.

Hydrophobic and Hydropliilic

Regarded chemically, sjap is a raiher peculiar material. Perhaps it is unnecessary in

An industrial cista at Stanlow, Cheshire. This nezv plant, which is concerned with the production of wetting agents, detergents and surface-active materials, is owned and operated by the Shell organisation.
these days to stress the fact that ordinary soap is the product of the interaction between $a \cdot$ strong alkali and a fatty-acid, and, therefore, that it is essentially the fatty-acid salt of an alkali metal such as sodium or potassium. There are other metallic soaps, but, since these are all insoluble in water and have no detergent action, they do not concern us.
In our mind's eye, we see a single molecule of soap as having an extended backbone of carbon atoms, and, like a fish, to have a head and a tail. The head of the soap molecule comprises a special group of atoms which are powerfully hydrophilic (water-loving). Its tail, on the contrary, consists of another group of atoms which is equally strongly hydrophobic (water-fearing). It is the intense affinity of the water-loving head of the soap molecule which enables the soap seemingly to take a grip on the water and to interfere with its surface forces, and thus to reduce the surface-tension of the liquid.

The soap, you see, acts as a material which enables the water to spread itself more freely and more readily over an otherwise water-resisting surface. It functions, in modern parlance, as a " wetting agent."

Turkey-red Oil

About 1860 a liquid was discovered which,

An industrial plant at Stanlove, Cheshire, for the recovery of sokeents used in the extraction of "Teepol" zvetting agent from the crude petrolernn residuc used for its mamufacture
for the first time in chemical history, had similar wetting powers to those of a soap solution. This was the famjus Turkey-red oil, made by the action of sulphuric acid on castor oil and so named because it was at once taken into use industrially for the dyeing of Turkey-red on cotton fabrics.
Although castor oil is quite insoluble in water, Turkey-red oil is perfectly soluble therein, and it has been used in the dyeing industry very extensively as- a welting and a penetrating agent to enable "difficult" but brilliant and fast dyes to penetrate the yarn or fabric to which they are applied.
During World War I, when the Germans bezame acutely short of fats and had to choose between their utilisation either for soapmaking or for foodstuff production, they developed certain synthetic materials based on the original Turkey-red oil. These included mainly the "Nekals," the "Igepons" and the "Gardinols" of the Ruhr dye-manufacturers, all of which were of theoretical interest and, as it happened, of certain specialised industrial use, but which were mostly far tos costly in those days for ordinary household and domestic employment.

Petroleum Products

Just prior to World War II, it was discovered that a readily available and relatively non-costly source of materials for synthetic detergent manufacture was at hand among the products of petroleum refining. This led to a complete overhaul of the chemical technology of these materials, and to the rapid development of their produc tion from petroleum sources. Research went on in three countries-Britain, America, Germany-but probably the greatest developments took place in Amierica: In that country alone, the year's output of the various " soapless soaps "-was 6,000 tons for 1940. Ten years*afterwards (1950) the annual American output was estimated at no less than 500,000 tons, more than 60 per cent. of which was destined for the domestic market.

British production of these "surface-active" compounds, as they are now categorically designated; has, since the war, been increasing by leaps and bounds, this production rate being closely followed on the Continent. Nowadays, there is hardly, an industrialised nation which does not commércially produce its own compounds of this type, since, froin a purely economic standpoint, to say nothing of a national one, much is to be gained by the resulting savings in natural fats, a large proportion of which may now be devoted entirely to essential foodstuffs

The tall fractionating towers of the newo petroleum plant engaged in the manufacture of surfaceactive agents at Stanlow, Cheshire.

production.

The present-day surface-active compounds (which comprise the wetting agents pure and simp.'. , and those new materials which have been developed more specifically as soap substitutes, or, at least, as "soap-assistants" in consequence of their powerful detergent properties) may be divided into several distinct classes. The most prominent of these in this country are the higher alkyl sulphates, a complex mixture of which, in the form of a thick, yellow liquid, is now produced extensively by the Shell organisation under the name of "Teepol." Wide and varied are the uses of this material. It has become well-nigh indispensable over a wide range of textile, engineering and other activities both as an efficient wetting agent and as a detergent compound. Materials of this general type are produced from the olefine by-products of petroleum refining, these being treated with sulphuric acid and then purified from the crude reaction materials by solvent-extraction.

On the other hand, there is another class of wetting agent and surface-active compounds known under the title of the "Perminals." These take the form of a white powder. The material can be produced in various types and modifications, but, chemically, it is a "substituted alkyl naphthalene sulphonate," or, in ordinary terminology, a mixture of compounds made by treating naphthalene derivatives with sulphuric acid.

A third class of these products is to be seen in the Sulphonated Lorels and the Gardinols which are sulphonated fatty alcohols. Other synthetic detergents are Cetyl pyridinium bromide ("Fixanol C") and cetyl trimethylammonium bromide (" Lissolamine A "). These are of special. interest in that, in addition to being powerfully detergent, and surface-active, they possess bactericidal and bacteriostatic properties. Up to the present, their development has been undertaken mainly in America.

Added to the ever-growing list of these surface-active compounds we may note the various alkyl aryl sulphonates ("Nacconol," "Santomerse"), the fatty-acid sulphonated compounds ("Mersolate "), the sulphonated alkyl amides (" Igepon T"), sulphonated fatty-acid esters ("Igepon A "), the sulphosuccinic esters ("Aerosols "), and the various petroleum sulphonates, such as "Petrosol."

It will be noted that the majority of the above classes of compounds depend essentially for their properties on the introduction of the sulphuric acid radical into them, just, indeed, as was the first of these materialsthe nowadays " old-fashioned " Turkey-red oil.

Advances in Laundry

In the laundering industry the use of these compounds has produced many important changes. It has made possible the lowtemperature washing of fabrics, particularly of woollens and silks, thus making more practicable the washing of materials dyed with delicate and fugitive colours. To ensure full efficiency of the many specialised laundering processes, these surface-active compounds, detergents or wetting-agents may nowadays be combined by admixture with various alkalis-known in the trade as "builders"-which enable the work of washing to be done at high speed and with the minimun of risk.

Uses in Engineering Technology

In the dyeing, bleaching, textile-finishing, and in the various anti-shrink processes, modern wetting-agents are now playing an enormous part. In engineering, too, these compounds have risen to a rank of similiar importance, being nowadays often indispensable in aqueous degreasing, pickling, wetgrinding and electro-deposition processes. The powerful wetting properties which they possess have been utilised to increase the efficiency (and also to lessen the amount) of the water used for dust-laying purposes in mines, tunnels and quarries.
In the cosmetic and the pharmaceutical trades the detergent, wetting and emulsifying properties of these new compounds are
now being widely exploited, as witness the numerous proprictary " soapless shampoos," whilst their penetrating action is, on the pharmaceutical side, being made use of in various cleansing and remedial pastes and lotions.

At the-risk of wearying even the avowedly

Illustrating the effect of "surface-tension":- what happens to a film of water when it is applied to a greasy plate. The thin layer of water breaks up into innumerable globules, each being drawn up and separated from its neighbours by the forces of surface tension.
our country in which they lend a powerful aid to the maintenance of strict cleanliness of processing plant and equipment, not to mention their help in increasing the effectiveness of sterilisation. In the paper, rubber, paint, as well as in the cement, concrete and even leather and allied industries, these sur-face-active compounds are of equal importance. Even in the domain of agriculture and horticulture wetting agents are now being brought into use to increase the efficiency with which various insecticides and fungicides are able to attack plant and tree pests by increasing the penetration or ensuring the more active, rapid and even-spreading of the toxic solution which are applied.

Truly, indeed, are the modern "soapless soaps" and the various active - materials in general to be classed among the wonders of modern synthetical chemistry. Although their introduction to our civilisation has lacked the spectacular
technical reader, it would be possible to extend the present enumeration of the various industries in whose techniques and processes, one or other of the new surface-active and detergent synthetics has achicved a degree of high importance. One might, for instance, refer to the application of these modern substances in the food industries of
nature, and even the element of drama. which has been accorded to many of the new drugs and similar chemical compounds, the utilisation of the "surface actives" has, on all sides, been quite as eagerly grasped at, whilst their possibilities are such that no individual can predict the future developments to which they may lead.

BOOKS REVIEWED

Model Railway Power Signalling. By E. F. Carter. Published by Percival Marshall and Co., Ltd. 142 pages. Price 95. 6d. net.

THE author of this book, who is an expert on model railway work, deals with the subject of model railway power signalling in a very comprehensive manner. The whole field of power signalling and point operation is covered in non-technical language so that the novice should have no difficulty in understanding how to make and wire into his lay-out the necessary apparatus to enable points and signals to be operated by power. Included in this informative book is a chapter on the possibility of electronic "l light ray" control, especially for operating engine whistles. The book is illustrated with numerous diagrams.

The Motor Manual. Published by Temple

 Press, lid. 272 pages. Price 6s. net.THIS practical handbook, now in its thirty-fourth edition, deals with the working principles, construction, maintenance and economical running of the motor-car. In this new edition, which has been entirely rewritten, comprehensive information is given covering the design and working principles of modern cars and their accessories, and the reader is shown how to ensure efficient trouble-free running, and economical main-

Gears \& Gear Cutting BY F. J. CAMM $6 /-$, by post $6 / 6$ From GEORGE NEWNES, LTD. Tower House, Southampion St., Strand, W.C. 2

tenance of his motor vehicle. The book is well illustrated in line and half tone.

Puffin Building Books. PC7a, PC8, PC9. With notes and drawings by Margaret and Alexander Potter. Published by Penguin Books, Harmondsworth, Middlesex. Price 4s. 4d. each. THESE three books contain thin card sheets of coloured designs for cutting out and making a Half-timbered Village. No
paste or other adhesive is required. Part I (PC7a) contains designs for a Hall House, Tiled Cottage, House with $\mathrm{Ga}^{1}{ }^{2} \mathrm{a}$, House built on Crucks, and a Market Haii: Part 2 (PC8) contains designs for a Pair of Cottages with Outshut; a Coaching Inn, and a Row of Shops. Part 3 (PC9) contains patterns for a Manor House, Tithe Barn, Cottage Row, and Farmhouse with Outbuilding. Each book also contains full instructions for cutting out and putting the models together.

"I seem to recall your saying this was one inixer that DIDN'T need a cover."

Overcoming Supply

 Voltage Fluctuations
Bridge Circuits and Negative Feed-back By A. M. st. CLAIR

AGREAT deal of the electronic test equipment made and used by amateurs is excellent, both in design and workmanship, provided that its supply voltages do not vary. This latter is, however, a condition not frequently met with. Not only is there the regulation of transformers and power packs to contend with, but in many areas the constancy of the public supply mains, owing to prevailing conditions, is not what it used to be. Even the two per cent.

Fig. 1.-Diagram of a Fig.2.--Simple singleWheatstone bridge. valve circuit.
tolerance of a fairly well-regulated A.C. line is sometimes a variation to be reckoned with.

For the amateur of limited purse, the cost of an elaborate power pack is something to be avoided if at all possible; and a fully stabilised pack, versatile enough to run each or several of a varied, selection of test-units, is both claborate and costly. There are, fortunately, alternatives.

First, we may adopt means to render our equipment more or less independent of supply voltage. There are two chief methods.

Utilising a Bridge Circuit

The first is by the use of a bridge circuit. In Fig. I, we have a conventional Wheatstone bridge. Across points C and D a meter is connected and across A and B a voltage E is applied. The condition for balance, i.c., for no current in the meter, is that $\frac{r_{1}}{r_{2}}=\frac{r_{3}}{r_{4}}$. This is independent of E . For conditions not very far removed from balance, the actual current in the meter is not greatly affecied by small changes in E. Hence, if we can design an instrument to use a bridge as its measuring circuit, we shall, for posițions near balance, be independent of the bridge voltage at least.

Consider the circuit of Fig. 2, it might be a part, for example, of a simple valve-voltmeter, or a signal tracer. It is obvious that any change in H.T. volts will seriously affect the indications on the meter. This applies to any circuit where a meter is run directly in an anode or a cathode lead. The changeover to a hridge can be simply made. In Fig. 3, r_{1}, r_{2} and r_{1} have been added. The valve itself becomes r_{3}. The meter is now connected between the anode and the junction of r_{2} and r_{4}, and reads the off-balance current of the bridge. Resistances r_{1} and r_{2} are equal, and r_{1} is slightly greater than the D.C. resistance of the valve. It is made variable
in order that the bridge may be brought to balance before taking a reading. It will, in many cases, be found necessary to fit a more sensitive meter.

While in this simple circuit a measure of immunity from voltage variation is obtained, it has the disadvantage that a change in H.T. affects the dynamic curve of the valve, hence the effective value of r_{3}. This can be overcome as in Fig. 4. Here we have a second valve, V_{23} acting as r_{s}. It is operated under the same conditions of bias and anode load as the measuring valve, and hence its characteristics change in such a manner as to compensate for any changes in those of V_{1} due to voltage fluctuations. It now becomes necessary to make one or other of the anode loads variable for balancing purposes. This circuit, using a double triode such as the 6\$L7 or 6SN7, can be made very compact and reliable. The variable to be measured must be presented at the grid of V_{1} as a D.C. voltage. As a D.C. valve - voltmeter, using 6SL7, with anode loads of 1.2 megohms, it is only necessary to provide a suitable switched range-resistor in the grid circuit of V_{1}. Having calibrated on D.C., the addition
 of a diode probe or rectifying stage makes the instriument into a peak valve-voltmeter. If amplifying stages arc added, to increase sensitivity, or as a part of a signal tracer or signal-level checker, separate means must be adopted to immunise these from voltage fluctuations. The bridge method is readily applicable only to the measuring stage.

Negative Feed-back

This brings us to the second principlenegative feed-back.

The uses of negative feed-back to eliminate distortion are well known. It is perhaps not so widely realised that negative feed-back also confers upon apparatus employing it, a greater or less degree of independence from changes, not only in supply voltage, but also in value characteristics due to ageing or deterioration, and even changes in component values (unstable resistors, etc.). It is obviously, therefore, a desirable feature in any instrument amplifying stage.

If B is the fraction of the output of an amplifier which is fed back negatively, and Ao is the gain of the amplifier without feedback, its gain with feed-back is given by $A=\frac{A_{0}}{1-\beta . A 0}$. Now, if Ao is very large, $\frac{\text { Ao }}{I-\beta . A 0}$ is very nearly equal to $-\frac{I}{B}$ For example, if we start with a gain of 10,000 , and feed-back I/Ioth of our output, $A=\frac{10,000}{1-\frac{1}{1} \times 10,000}=\frac{10,000}{1-1,000}$, which is

$$
1-\frac{1}{10} \times 10,000
$$

Fig. 3.-Modifying a simple circuit to a bridge.

Fig. 4.-Adding a valve to compensate for voltage fluctuations.
very nearly equal to -Io . But $\beta=\frac{\mathrm{I}}{\mathrm{IO}}$, so that
Ao is approximately equal to $\frac{-1}{\beta}$. (The negative sign indicates 180° phase-shift). If the basic gain of the amplifier falls to 5,000 , due to any cause whatsoever, including mains voltage drop, the gain with feed-back becomes $\frac{5,000}{I-\frac{I}{I 0} \times 5,000}=-\frac{5,000}{499}$, still approxi-$1-\frac{1}{10} \times 5,000$
mately 10. Hence, an instrument amplifier, for stability, having a required gain of a certain value, should be constructed to have a very high gain, and given negative feed-back equal to $\frac{1}{\text { required gain. }}$. Schematically, this is shown in Fig. 5. The amplifier, whose output stage is shown in "skeleton" fashion, will have a gain of $\frac{r_{1}}{r_{3}}$, and a phase reversal, since the portion of the output fed back is $\frac{\mathbf{r}_{2}}{\mathbf{r}_{1}}$.

Stabilised Power Pack

It is not always easy to feed-back a large fraction of the output of an amplifier in a negative sense. If the amplifier has a wide pass-band, and possesses, as most do, differing phase shifts at differing frequencies, considerable experiment may be required before the maximum possible feed-back fraction for stable operation, and the best method of applying it, are found. For these and other reasons, a simple form of stabilised power pack is a useful article to supplement the measures already suggested. A suitable circuit is shown in Fig. 6.

Fig. 6.-A typical stabilised power-pack circuit.
The valves are of the power-triode type. $\mathrm{PX}_{4} \mathrm{~s}$ are suitable, and most of us can dig up an old pair of-some such valves. The bleeder and the grid resistor are I megohm. The grids are returned to a point which is negative with respect to the cathodes; if the output volts tend to drop, the bias drops, "opening up" the valves, and thereby boosting the output. The adjustment of the bleeder will give a point where good compensation is obtained.

By "MOTILUS"

Exhibition Model 00 Gauge Railway: The "Commodore Vanderbilt" : Scale Model Bucket Dredge

DURING 1950, two members of the Leipzig Model Railway Club, Germany, toured many of the large towns in their country displaying a most picturesque and interesting model railway, combined with an exhibition of pictures of the German State Railways. It is the first time that this kind of exhibition has tourec Germany, so it is not surprising that during a stay in Berlin these enthusiasts gave 2,500 demonstrations

One of the members, Mr. G. Arndt, recently sent me some photographs of the railway, taken when the exhibition was in the Museum at Eisenach. The model railway was built entirely by members of the Leipzig Club. It is OO gauge, operated by the 2-rail electrical system, with pantograph connections. The whole layout measures

Model Bucket Dredge

Those who have spent a few idle
moments watching a bucket dredge at work in some canal or harbour may not have regarded the squat, dark vessels as an attractive subject for a model. These dredges are usually painted in drab colours which are suitable for the clearance work on which they are engaged.

Nevertheless, readers will see from the accompanying illustration (Fig. 3) that, disregarding the dirt imposed by working conditions, and with contrasting paintwork, a bucket dredge can make a most interesting model subject. The machinery on the model has been painted to give a smart appearance, but otherwise the model is accurate to the finest decail. The decks are painted white, superstructure is grey and black, machinery is electro-plated, with silver gears and black framework.

The model illustrated is of the Ham III, a non-propelling bucket dredge, built by Messrs. Lobnitz and Co., Ltd., of Renfrew, Scotland, in 1947. A dredge of this type is towed into position for operation and then anchored. Although it is non-propelled,

about 19 ft . 6 in . by 6 ft . 6 in ., so it must be quite an imposing display. The use of realistic mountain scenery makes it most attractive, with tunnels, bridges, roads with traffic and wayside villages, numerous station buildings, and the track ingeniously laid at various levels.

The "Commodore Vanderbilt"

Readers will remember my previous references to the gauge O models of old-time American steam locomotives in the collection of Mr. H. Buhlimann of Zürich, Switzerland. I have just received a new photograph (Fig. 2) from Mr. Buhlimann showing one of the latest additions to his collection: the "Commodore Vanderbilt," an American old-timer of 1885 . The model is entirely hand-made and shows an

Fig. 1.-(Left.) Part of the large 00 gauge model railway built by members of the Leipzig Model Railway Club, shorving a mixed goods train just entering a tumnel.

Fig. 2.-(Above.) The "Commodore Vanderbilt": a hand-made gauge O model of an American locomotive of 1885 .
when the anchors are down the anchor hawsers run to mancuvring winches on the decks, which allow the vessel a certain amount of limited movement. The ladder over which the buckets move is controlled by a crane, which raises or lowers the ladder to the required depth, the maximum depth for dredging being 60 ft . 750 cu . yd. of spoil can be collected per hour, bucket capacity being $28 \mathrm{cu} . \mathrm{ft}$.

This model was built to the order of Messrs. Lobnitz and Co., Ltd., by Messrs Bassett-Lowke, Ltd., of Northampton. It is to a scale of ${ }_{4} \mathrm{in}$. to Ift., and is to be used for exhibition purposes.

Fig. 3.-Exhibition model of a non-propelling bucket dredge, "Ham III," built to a scale of $\ddagger \mathrm{in}$. to 1 ff .

Miniature Scale Indoor Railways

Constructional Details of a Novel System Utilising Auxiliary Loco-motors

AN enlarged plan of switches 2 and 3 is given in Fig. 7; here the lower diagram indicates how two such switches can be made to fit together so as to have both up and down lines open simultaneously. It will be noted that no switches appear on the surface of the model; they are fitted in the channels to guide and deflect the slides.

Referring back to Fig. 6, the reader may ask what the other switches, 4 and 5, are required for. The answer is: that an up train may, if the up platform is occupied, have to be run into the down platform, and

By. E. W. TWINING

(Concluded from page 168, February issue)
down there on the lower level, each spring pulling on a short lever soldered to the shaft. These shafts can be straight lengths of wire of about No. $16 \mathrm{~S} . \mathrm{W} . G$. The freely automatic switches need no shafts, just pins.

In Fig. 9 I have drawn a cross-section of the track in open country. This shows, on the right-hand side, a cutting ending in a tunnel front, or portal, and on the left a portion of an embankment. In both cases the woodwork construction is suggested. Although the dimensions figured are for one-tenth of an inch to the foot the channels, slides and track centres will be the same, whatever the scale. The tunnel opening can be much smaller for the onesixteenth inch and, of course, smaller still for the one-twentieth scale.

Obviously bridges, like tunnels, can span the railway but there can be no underbridges or viaducts ; this is perhaps a pity, although I do not think these will be missed very much. I have always advocated concentrating on landscape and letting earthworks be the principal engineering features:
Before the top surface plywood is put down finally the whole of the insides of the channels, the switches and the slides should be well blackleaded and polished to reduce wear and friction, and it may be well to make some unobtrusive portion of the top surface removable for later access to the slides.

Ballast, Sleepers and Permanent Way

I have suggested that the surface plywood be faced with cartridge-drawing paper ; the idca of this is to provide... a smooth- and white surface for painting on. This paper need oaly be a strip or band of width equal to the "permanent way," including the ballast ; it can be stuck down after all the woodwork construction is completed as one

broad band and then cut away with a razor blade where the upper slots occur in the plywood, letting the edges of the slot serve as a guide for the blade.

Since there will be no flanges on the wheels of the trains and no actual rails in relief, both sleepers and rails will be drawn on the cartridge paper. Either flat oil paint or water colour can be used, but I am inclined to advocate water colour: First wash over the whole surface of the paper with a. tint of colour for the ballast. Sepia, with a little body white added, will give the desired result ; then with the same colour, without the white added, neatly paint in the sleepers. These can be drawn singly with a water-colour brush or by cutting a little stencil to do, say, a dozen or more at a time. A stencil, if properly set out and cut, ensures that the spacing and sleeper lengths are true and uniform.

When all sleepers are in, the rails have to be drawn, and for these I think thatdraughtsmen's waterproof ink will be the best. There are several ways of drawing these lines truly; the best would be to make a little wooden block to fit and slide in thetop slot, such a block having clips to hold two ruling pens, correctly spaced to gauge. Another way is to use an ordinary bow compass for ink, preferably a spring bow. This can be applied in such a way that the point of the compass projects well down into the, slot in the track. Fill the pen of the compass with Indian ink, introduce the point into the slot, pressing it up to one edge of the same; bring the pen down on to the paper and draw the line, letting the thickness of the line be regulated according to the scale of the railway and the opening of the compass according to the gauge; by this method only one rail is drawn at a time. When all is finished, including lines to represent switch tongues, frogs and check rails, give the whole of the paper a coat of some hard, colourless spirit lacquer of which celluloid, dissolved in amyl acetate, is the best.

Speeds

Now, a few words regarding the speeds at which these miniature trains should be run. If the scale is $1 / 120 t h$ full size the model should run a scale mile in the same time as a full-size train. As shown in the table for a pivot, running down to the foundation shelf below; a very simple matter. In Fig. 6 M.C. is mechanical control ; S.C. is spring control in one direction only ; and F.A. means freely automatic, moved as required by the slides.

A Main-line lunction

A plan of an und down main-line junction is shown in Fig. 8. In this only, one switch needs to be mechanically controlled and that, of course, is a facing point. The -working of the remaining three is explained on the drawing.

There is one little matter regarding these switches which I might mention and that concerns those left open for one track by springs. Although it is possible to. get a spring of a certain type $ب \mathrm{p}$ on the switch level, I think it would be very advisable to carry shafts for them down to the base board, like those for the mechanical type, and put the springs-which can be rubber bands-
in the February issue a one-hundred-andtwentieth scale mile measures 44 ft ., and if we assume that the prototype train is travelling, say, 60 miles an hour then our model should take one minute to cover 44 ft . of track; in other words and figures its speed should be about 8.8 in . per second. On the $1 / 16 \mathrm{in}$. to the foot scale it will be 5.5 in. per second, and on the $1 / 20 \mathrm{in}$. scale 4 -4in. per second.

A local stopping train, such as I have illustrated in Figs. 2 to 5 , should not be run at much more than one-half the foregoing speeds, whilst expresses can have up to so per cent. inches-per-second added, representing 90 miles per hour.

I think it pretty safe to say that the majority of model trains are run too fast, and, for the sake of realism, excessively high speeds should be avoided. For this reason it will be found imperative that the gearing between the electric motor and the wheels of the motor truck should be altered so that the truck can be run with full current on and yet travel at a much more moderate speed than it was originally made for.

There are just a few other points that occur to me to mention in connection with the proposed model-railway scheme; one is that express tender engines cannot be run

Fig. 9.-Cross-section of an embankment and cutting.
to the opposite end of a train in the way described for tank engines. Neither can they be turned on a turntable. If an engine is to be turned end for end it will have to be done either on a simple triangle of track or by running it around a loop. Both of these methods have been resorted to in full size practice when new engines were too long for existing turntables.
One other point: This scheme lends itself admirably to the adoption of early period and historic engines and trains. One of my coirespondents wishes to model old London and South Western stock, including those extremely pretty engines of Joseph Beattie. This he can do quite well as can anyone else having a love for railway history. Even the Rainhill trials of 1829 on the Liverpool and Manchester Railway could be reproduced in miniature.

> A Review of the Latest Appliances, Tools and Accessories

"Reservoil" Oil-retaining Bearings

THE Morgan Crucible Company, Ltd., Battersea Church Road, London, S.W.II, have issued a brochure (SD_{40}) giving complete technical information concerning their "Reservoil" bearings. An all-important factor in the smooth running of all types of machine is efficient lubrication. Bearings have to maintain continuous service, and failure of one of these small components may put a costly machine out of action with consequent loss of production. To reduce the risk of failure much labour is involved in the routine oiling of bearings. "Reservoil" makes a substantial contribution towards solving this twin problem of bearing failure and expensive lubrication. The new "Reservoil" oilretaining bearings are manufactured by powder metallurgy methods from carefully selected bronze or iron powders. These bearings are tool-made to precision limits, their special porous structure enabling them to hold up to 30 per cent., by volume, of oil. This reserve of oil provides sufficient lubrication for all but the most severe conditions of load, speed and temperature.

A companion brochure (SD4I) contains lists of the large number of standard size "Reservoil" bushes which are normally held in stock. Copies of both brochures are obtainable from the Morgan Crucible Company, Lid., at the address given.

Ex-Government Radio Equipment

THE Clydesdale Supply Co., Ltd., have just issued the new list (No. 8) of exGovernment electronic and radio equipment. This useful list, which runs to 180 pages,
includes such items as amplifier units, test equipment, plugs and sockets, various types of meters, electric motors, transformers, capacitors, and a variety of other components used by experimenters. The list, which is priced at is. 6 d ., is obtainable from the Clydesdale Supply Co., Ltd., at 2, Bridge Street, Glasgow, C. 5 .
Miniature Ball Bearings (A correction)
IN our January issue we published a note concerning the new catalogue issued by Miniature Bearings, Ltd., of Sloane Street,

Three examples of "Reservoil" bushes-cylindrical, flanged and self-aligning.

London, S.W.I. The catalogue should have been referred to as the R.M.B. English catalogue, but owing to a printer's error the
letters "B.M.B." wère used which are the initials of the British Manufactured Bearings and Co., Ltd., of Crawley, Sussex. This firm also issues a very comprehensive catalogue of miniature ball bearings for all purposes, the sole selling agents being B.M.B. (Sales), Ltd., 2, Balfour Place, Mount Street, London, W.r.

Spring Design and Calculations

WE understand that, owing to increased costs, the new edition of the book bearing the above title, and published by Herbert Terry and Sons, Ltd., Redditch, is now I2s. 6d., and not 10s. 6d., as formerly.

Aeronautical and General Instruments

A ERO-SPARES Co., 70-71, High Holborn, London, W.C.I, have issued a new list (No. 500) of their ex-Government instruments of all kinds ranging from small electric motors and air blowers, to aeronautical and navigation instruments. The model engineer and experimentalist in want of such articles as transformers, rotary converters, pressure gauges, flexible drives or hydraulic pumps, will find a variety of these articles included in this comprehensive list, which also includes photographic and opitical equipment. Most of the items listed are illustrated.

NOW READY!

The Entirely New 12th Edition of the Famors Standard Work

THE PRACTICAL WIRELESS ENCYCLOPAEDIA

By F. J. CABM

Considerably enlarged, amplified and entirely re-written and re-illustrated. Complete Television Section, with theoretical and constructional data.

Price 21/- or $21 / 10$ by post from:
GEORGE NEWNES LTD., Tower House, Southampton Street, Strand, W.C. 2
 for anti-frecze purposes
addressed to our associated company, Messrs. Jos. Crosfield and Sons, Ltd., Warrington, and we gather that in a recent issue of Practical Mechanics you have recommended glycerine for anti-freeze purposes.

We would, however, point out that although in normal circumstances glycerine is used for anti-freeze, owing to the short supply position and the demands of essential industries we are unfortunately unable to make glycerine available on the home market for this purpose. -Glycerine, Limited (London, E.C.4).

Magnification of a Telescope

CIR,-With reference to the query and reply on the "Magnification of a Telescope" in the October issue of Practical Mechanics, the determination of the focal length of a compound eyepiece is difficult,

A cut-out wedge $10 \mathrm{~cm} . x 1 \mathrm{~cm}$. Graduations along the base represent mms .
and the calculation of the magnification from these methods is inaccurate. A very simple method which is quite accurate, especially in lower-powered telescopes and binoculars, is to measure the diameter of the entering and emerging rays.

To do this:-
I. Focus the telescope on a distant object.
2. Turn the instrument to a light or white object which fills the view
3. Hold the wedge, described farther on, roin. from the eyepiece. and measure the diameter of the disc of light.
4. Measure the diameter of the eyeglass and objective, then magnification
diameter of objective
$=$ diameter of disc of light
A measuring wedge can be built up from brass or cut out from a 6 in. $\times 2$ in. piece of metal. A micrometer, if available, can also be used, but it is advisable to clamp it in an unmovable position to avoid fatigue in measuring.-A. Reader (Dundee).

Tricycles

CIR,-As a tricycle rider of 12 years' experi1 ence I was very interested in the notes on tricycles in your July and October issues. The writer in the July issue speaks of "quite large rallies of tricycles," in his boyhood. I can assure him that "The Tricycle Association" is a going concern in England. It now has 350 members of whom 250 are active, some being prominent speedmen.

My "Trike" is a racing model, which I took over from the late Albert Watson when he joined the R.A.F. in 1939. On this machine he broke the $50-$ mile British Road Record (unpaced) in 1936. That record still stands at two hours 40 seconds. A year later he
broke the Edinburgh-York record on the same machine, and this record still stands, at II hours io minutes. This machine has a differential gear. These gears are not made now for tricycles, as the firm which produced them was blitzed in the war and did not resume production. Post-war tricyles have one-wheel drive. I believe this would partly explain why Watson's records have stood so long.

Re the notes in your October issue, the writer says how difficult it is to learn to ride a tricycle. It is for the large majority, but a few take to it quite quickly. Not being able to ride a bicycle is an advantage here, because the learner has nothing to unlearn; one who has been used to a bicycle begins on a tricycle by trying (unconsciously) to balance it. It balances itself. Your writer mentions certain disadvantages about tricycles. But these machines have some good points, too, viz:-

1. They are quite manageable on ice where a cyclist would come to grief.
2. They are very handy in thick trafficone has no need to dismount. I can reverse mine, it having a fixed wheel.
3. They do not wobble when climbing a steep gradient.
So, in spite of being a trifle slower, about two m.p.h., they are a practical proposition.D. M. Ross (Turriff, Áberdeenshire).

Steam Buses

CIR,-Your correspondent, Mr. E. O. Crosse, recalls the "National" steam buses and wonders why that form of transport died out.

Having been connected with the development of the Nationals sinice 1897 I am able to give the facts.

It is correct that the National Steamers were the fastest and most comfortable buses of their time, maintenance costs, however, especially the boilers, were very heavy, and when at the end of the first. World War competition became fiercer and costs higher it was found that 34 -seater buses in London could not be made to pay.
Shortly before the war ended, Mr. W. J. Iden, who had a year or two carlier resigned from the position of Chief Engincer to the London General Omnibus Company, joined the National Company with a view to organising the manufacture of coke-fired lorrics for the Army; the anticipated War Office order did not materialise and he turned his attention to negotiating an agreement with the L.G.O.C.

Under that agreement the L.G.O.C. undertook not to operate an agreed London radius and the National not to run inside; the L.G.O.C. took over the National garages in London.

Mr. Iden being somewhat "petrol-minded" the National Board decided to scrap the steam chassis and to mount the bodies, after enlarging them, to $42-45$ seats, on exW.D. A.E.C. chassis; these, together with some ex-General B-types, were used to start up services in various South of England districts.
It is of interest to note that shortly before the changeover the troublesome boiler had, by following up suggestions made by members of the works staff, evolved into what came to be known as the "thimble tube" type, and that to the present day it is made and used for industrial steam supplies.

The "thimble tube" modification, however, arrived too late to save the steamers from being scrapped, and now they are only a memory.-W. J. MORISON, M.I.Mech.E. (Stornoway).

Painting Over Creosote

SIR,-Your correspondent A. Holdsworth need not worry at all. All he need do is to give his creosoted surface a coat of "Rotarista" paint, and then he can carry on with any paint, cellulose, or whatever he likes, and the creosote just won't come through.

This paint is a sort of bitumen material and is turned out in three or four colours and an aluminium finish

I have had personal experience of painting Rotarista over creosote, soot-stains, knots, rusty steel, brand new asbestos, brand new galvanised iron, and all sorts of troublesome surfaces, and I have never known a failure. I have used it for about three years.

I get it from my local paint suppliers and I have no interest in it whatever except as a satisfied user. I have passed on the good news to many of my friends and they all agree that it is a real undercoat with, apparently, no disadvantage whatever. The manufacturers, Dennis and Roberts, Ltd., 14A, Clumber Street, Nottingham, issue a brochure on the paint which can be obtained from the address given.-W. E. Bryan (Derby).

Inflating Toy Balloons

SIR,-I have noticed that one of your readers, R. F. Borrill, desires to inflate toy balloons. I therefore enclose a sketch of my piece of apparatus which works quite satisfactorily. The only precaution necessary, once the apparatus is fitted up, is that whilst inflating, the pump should be held in an upwards, vertical position, as the pressure of gas in the balloon is not sufficient to make the ball valve in the football connector return to its seating if

Simple apparatus for inflating toy balloons from low-pressure gas supply
held vertically downwards.
I might add that on New Year's Day, 1950, L released a balloon which was inflated by this apparatus, and the filling was ordinary domestic coal gas. On January 5, 1950, this balloon was picked up in some fields outside Reggio, in Northern Italy.

It was returned to me in due course, along with the scrap of paper on which I had written my address.-G. Lord (Radcliffe).

An Aspect of Perpetual Motion

$\mathrm{S}^{\mathrm{IR}, \text { Bell in the Deceriber, } \mathrm{I} 95 \mathrm{I} \text {, issue of }}$ Practical Mechanics has opened up a new field of thought for obtaining "perpetual motion."

Let us first consider the basic principles on which his idea depends.
(I) The approximate resistance of mercury at a temperature $t^{\circ} \mathrm{C}$. is given by the equation

$$
\mathrm{Rt}=\mathrm{Ro}\left(\mathbf{I}+\mathrm{at}+A \mathrm{t}^{2}\right)
$$

where $\mathrm{Ro}=$ resistance at $0^{\circ} \mathrm{C}$., $\mathrm{Rt}=$ resistance at temperature $\mathrm{t}^{\circ} \mathrm{C}$., a and β are coefficients of increase in resistance with temperature.

When $\mathrm{Rt}=0$ ohms.
Then $I+a t+\beta t^{2}=0 . \quad \therefore$ at $+\beta t^{2}=-1$.
For normal temperatures β is very small and $\mathrm{a}=0.000879$. Let us assume that the above equation holds for extreme temperature changes.
Then at $=-1$

$$
\therefore t=\frac{-i}{0.000879}=-1138^{\circ} \mathrm{C} .
$$

This temperature is very low indeed and to my knowledge a temperature lower than -273 deg . C. has not yet been reached. If a temperature within this region could be obtained, it would give a further guide as to whether mercury could have zero resistance.'
(2) Consider the ring of mercury into which a bar magnet has been introduced. At a temperature of approx. - 1138 deg . C. let us assume that the ring of Mercury has zero resistarice. Then the induced emf. E. in the mercury ring, caused by a movement of the bar magnet, produces a current in the ring of:

$$
\mathrm{I}=\frac{\mathbf{E}}{0} \times 10^{-8} \text { amps }=\text { infinite current. }
$$

This infinite current would produce an opposing magnetic field of infinite strength:
We should find that any movement of the permanent magnet in a longitudinal direction would be impossible. No matter how slowly the magnet was removed, an induced emf would be formed in the mercury ring, causing an infinite opposing magnetic field which would form a "magnetic lock."-Dennis Terry (Oldbury).

Interplanetary Travel

SIR,-Whilst appreciating that many things IR,- commonplace to-day which only a few decades ago would have appeared literally miraculous, I must confess my inability to accept the view that "some day" journeys may be made even to the planetary systems of " other stars" (sic!).

My knowledge of astronomy is perhaps elementary, but I remember Alpha Centauri as being the closest star to the solar system some four and a third light years away!
It seems reasonable to doubt whether a man-made vehicle will ever travel at the speed of light! (Certainly this velocity will not be exceeded.)

Supposing a speed of $18,600 \mathrm{~m}$. p.sec. could be attained (relative to earth) by a rocket, a velocity beyond the comprehension of most people-including myself !-then the travellers inside would be more than 80 years older on their return from a non-stop visit to our nearest neighbour, which is a pretty insignificant star anyway.
From this point of view it seems to me we are bound to confine ourselves to our planetary neighbours, which surely gives us enough to accomplish.

It is as well to remember that we have to traverse a distance to Pluto forty times as great as from Earth to the sun!

Whilst on the subject, however, I would like some information concerning meteoric bombardment. We have no conception of the truly appalling effect of a collision with a
body speeding towards us at from to to 50 m.p.sec. No projectile on earth comés near the lower figure in velocity!
Harvard Observatory once estimated that the Earth encounters over roo billion every 24 hours, not including the regular meteoric showers-Perseids, Lyrids, Andromedes, etc. How is it proposed to guard against, or evade, these frightful bullets, ranging in size from a speck of sand to a chunk of rock ? -W. E. Hadfield (East Molesey).

Water Softening Data

$S^{I R},-$ May I draw your attention to certain statements which appeared in the article "Making a Water Softener " (January issue).
I. To obtain the hardness in grains per imperial gallon, i.e., English degrees, it is recessary to take 70c.c. of sample in the shaking bottle, and not 60 as stated. Incidentally, as it is current practice nowadays to record hardness in parts per million (rooc.c. of sample required), many laboratory furnishers no longer supply $70 c . c$. graduated shaking bottles.
2. Calcium carbonate, CaCO_{3}, is not really the cause of hardness in water, as it is only very slightly soluble. In fact, it is a common fallacy to say that tap water contains chalk. It does not. It contains calcium bicarbonate, $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right) 2$, which deposits chalk when the water is boiled, $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ $=\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$.
3. Likewise, no calcium carbonate is absorbed in the base exchange process. The calcium and magnesium ions take the place of sodium in the zeolite, and the sodium ions go into the water. Sodium zeolite (base exchange salt) + calcium sulphate (a typical hardness salt $)=$ calcium zeolite + sodium sulphate (a soluble salt). When the softener requires regenerating, sodium chloride (common salt) is added to reverse this action thus: calcium zeolite + sodium chloride $=$ sodium zeolite + calcium chloride, and we are back where we started.
I realise that the article referred to dealt primarily with water softener construction, an excellent idea. However, I mention the above facts as briefly as possible in case anyone should be misled on the technical side of the instructions.-D. A. Bayliss (Enfield).

Club Reporls

The Ramsgate and District

 Model ClubWIITH the New Year well into its stride this club is looking forward to many interesting evenings. In February a social evening and film show was held on the 13th and a puppet show on the 27 th. Our outdoor activities for the summer months are now being arranged and we are also preparing to hold our exhibition during the iatter part of the year. We have an active membership of between 30 and 40 and are keen to increase this. The club is open every Wednesday and Friday when prospective members would be very welcome. Our interests cover most branches of model work. -Secretary: Mr. E. Church, "Avis," St. Mildred's Avenue, Ramsgate.

Harrow and Wembley Society of Model Engineers

THE above society held its annual general meeting on Wednesday, January 9 th, at Heathfield School, College Road, Harrow.

Mr. F. Sedcole, the society's chairman, summarised the activities of the club, with a special reference to the healthy financial state of the club during the past year. Thanks were given to all members for the interest shown in the society's activities, particularly those who have helped in the construction of the club's elevated loco track at Headstone Lane.

On the election of officers for the present year, one or two changes took place, Mr. S. J. Hobson is now assistant secretary, a post that is not-new to him, having held the position on a previous committee. Mr. S. L. Brown takes over the post of librarian, and the re-established office of entertainments and exhibition secretary has been entrusted to Mr. S. R. Emery. The committee also had a couple of changes. Mr. E. R. Uphill now takes charge of the general section, whilst Mr. F. A. Cottam takes over the loco section.

Future Programme

March 5th, committee meeting; March I2th, Mr. Fox on plating and finishing; March 26th, a talk on heavy transport.-Hon.:

Secretary: C. E. Salmon, I I, Brook Drive, Harrow.

Beaufoy Model Engineering Society

MIEMBERS of the above society meet every Monday, Tuesday, Thursday and Friday at the Beaufoy Institute, 39, Black Prince Road, S.E.II. An extensive workshop is available for all members at a nominal charge. Patterns and castings are made on the premises, and a welding and brazing plant is available. Machine tools comprise 20 lathes, 4 milling machines (horizontal and vertical), 3 shapers, B. and S. surface grinder, B. and S. horizontal grinder, besides drilling machines and the usual small tools.

New members are cordially invited to make use of these facilities, and members of other clubs might find some use for our extensive workshops.-Hon. Sec., S. T. Hunt, Beaufoy Institute, 39, Black Prince Road, S.E.İ.

Aylesbury and District Society of Model Engineers

THE annual general mecting of the club held on January 16th saw only one new face on the committee. Mr. C. Gill was elected in place of Mr . Gower, otherwise last year's officers and committee continue to serve.

For the club, 195I was a very successful year, in which the commencement of the large-scale track, purchase of the " O " gauge track and visits by Mr. J. N. Maskelyne and Mr. G. Dow were only a few of the highlights. The members contributed a varied and very interesting collection of talks and demonstrations, which, with two model nights, completed a year of monthly meetings. -E. H. Smith, hon. sec.; Mulberry Tree Cottage, Devonshire Ave., Amersham, Bucks.

Kodak Recreation Society (Experimental

 Engineers and Craftsmen Section)WTE have pleasure in announcing that our next open exhibition will be held in the Kodak Hall, Wealdstone, Middlesex, on Sarurday, March 29th, and Sunday, March 30th, 1952.

Further particulars regarding exhibition classes, etc., can be obtained from the Hon. Asst. Secretary, C. R. L. Coles, at the above address.

HICHSTONE

UTILITIES

Crystal Sets. is a real radio recelver. which is fitted with a permanent crys not have a set in not have a set in
your own room? your own room?
1ot 6 , post 6d. De Luxe Receiver in polished oak
cabinet,
18/6, $\begin{array}{rr}\text { cabinet, } & \text { 18/6, } \\ \text { post } 1 /-, & \text { each. }\end{array}$ Spare Permanent Detectors, 2 each.
When ordered separately, 26 . With clips When ordered separately, 2.6. With clips brand new, S. G. Brown, G.E.C., etc.. 15/-, New Headphones, 10 - a pair. Balanced armature type (very sensitive), $12 / 6$ a pair.
 3.6. Bal. armature type, $4 / 6$; ex-R.A.F. good order. 5 ' 6 (better quallty. ${ }^{3 / 6}$), all
post 8 d . Headphones with moving coll mike, 15;- Similar phones with throat mjkes, $12 / 6$, post 8d. Hendphone Cords, $1 / 3$ a pair, post 3d. ikeplacement Bands,
$1 / 3$, post 4 d. Wre Bands, 6d.
(Ail lieadinones Isted are suitable for
nse with our Crystal Scis.)

These Transformers. These guaranteed
tranformers work from any A.C.
Malns, giving 3. 5 , Malns, giving 3. 5 ,
or 8 volts output ait 1 amp.o operate bulb.
buzzer or bell. Will supply light in bedroom or larder. etc. either the above or batteries; $6 / 6$, post-6d. Plastic Case. Easily connected to give
Two-Note Chime from Front Door, and Single Note from Rear. Operates from 6-9 volt Batteries or Transformer (shown
above), $19 / 3$, post $10 d$. Ex-R.A.F. 2-valve (2-volt) Mierophone Amplificrs as used in 'plane inter-com. to make up a dear-ajr outht, intercommunication system, or with crystal set: complete
with valves and fitting instructions. $20 /$. post 1/8. Use?ul wooden box with partitions to holl amplifier, 2^{\prime} - extra. Ditto, less
valves. $10 /$. One-valve amplifier, complete valves. 10/- One-valve am
with valve, $10 / 6$, post 13 .
Iand Mierophonos, with switch in handle and lead. 4/-. Similar instrument, moving Soarking Plur
Sparking Plik Neon Testers with vestpocket clip. $3 / 3$, and with gauge, 316 , post 3d.
 etc. $3 / 6$. post 4 d .
soldering
Irons. Irons. Our nevz
stresm-
lined
iron is is
it Curved Pencil Bit. $200 / 250$ v. 50 watts, $10 /-$ post 64.5 Standard lron with adjustable
blt. $200+250$ v., 60 watts, $12 /-$, post 6 d . Heavy bit. 200250 V ., 60 watts, $12 /$, post 8 d . Heavy replaceable and fully guaranteed. Small Soldering Irons, for use on gas, $1 / 4$, post
4 d . Resin-cored solder for easy soldering 4 d. Resin-cored solder for easy soldering
日d. packets or 1 lb . reels, 6 - postage extra. Microphones. Just the thing for im. promptu concerts, room-to-room communiSuspension type. 86 . Post 60 . Mike Suspension type;
Rutfons (carbon), $2 /$ Most
Transformers, $5 /$ Ali Transformers, 5/-. All post 4d. each. $1.230 \mathrm{v} ., 2 \mathrm{amp}$. In case with suppressors, etc., easily converted to run as a high
voltage motor, 25, carr. 3,8 . Also 12 v input: Output $6 \mathrm{v} ., 5 \mathrm{amp}$. $150 \mathrm{v} . .10 \mathrm{~mA}$. and 300 V.. $20 / 240 \mathrm{~mA}$., 2p/6. carriage $3 / 6$. Morse Keys.-Standard-size keys wired to work Buzzer or Lamp, 3/- post Gd. Slightly
Smaller keys, 2/6, post 4d. BUZZERS, 3 3, or heavy duty. 4/8, post 5d. Terminals, brass, 2BA, mounted on strid, densert, 2/6, post 4spaced Varinbir contrimmers, 26, post 4 d . 24 volt, $15 \mathrm{~m} \mathrm{~m} / \mathrm{m}$.,
M.E.S. libulos for model rallways, etc. M.E.S. lisulbs for model rallways, etc.,
 111n. packet of 10 , 2/6. post 3d. Also 150 mA . Stantard Type, 6/-, post 8d
Burgain Parcels of really useful equip-
ment, containiag Switches, Meters, Conment, containiag Switches, Meters, Con
densers, Resistances, Phones, etc, 10^{\prime} or double assortment, 176 : treble 25% All carriage paid. This country only. Fleld Intercommunication Sets, complete with ringing hand generator, bell, signal lamp, morse key, relay, in strong metal case with circuit diagram, 25/- each, carr. phone Twin Bells, with box, 5/-, post 9 . Telephone hand generator, with handle, $7 / 6$, post $1 / 6$: Bell. 3/6, post 6 d.
Meters 10 V. 21 n . Rectifier (A.C.) in wooden carrying case, $14 / 6,15$ v. 212 n .

 movements, $6 f$ post 8 d.
Money refunded if not completely satisfled.
HICHSTONE UTILITIES
58, New Wanstead, London, E.11. New Illustrated List sent on request with

MODERN DRAWING OFFICE Furniture

No finer range of Drawing Office Furniture is available than tha Halden range. Every up-to-date refinement making for greater accuracy, greater ease In use, and economy of space has been Introduced to the Halden designs. Tha range includes Drawing Tables, Cabinets, Drawing Boards, Filling Cabinets, Trestles and Glass Tracin: Tables. Large size boards made to custoreer's own specification. For all office furniture and accessories consult :-

Haldens
 (B)
 OF MANGHESTER
 J. HALDEN \& CO., LTD., 8, ALBERT SQUARE, MANCHESTER, 2.

Branches at :-London, Newcastle-on-Tyne, Birmingham, Glasgow, Leedz and Bristo',

GALPINS

ELECTRICAL STORE
408, HIGH ST., LEWISHAM, S.E.13 Tel.: Lee Green 0309. Near Lewisham Hospital. TERMS: CASH WITH ORDER NO C.O.D.

EARLY CLOSING DAY THURSDAY
MAINS TRANSFORMERS (NEW), input 2001250 volts in steps of 10 volts output $350 / \varrho / 350$ voles 300 mlamps. 6.3 voles 8 amps twice, 4 volts 4 amps, 5 volts 4 amps, 651 - each, carriage 316 , ditto, 450101450 voles 250 mlamps 6.3 voles 8 amps twice 4 voles $4 \mathrm{amps}, 5$ volts 4 amps, $651-$ each, carriage 316 ; ancther, input as above,
output, 500101500 volts 250 mlamps 6.3 volts 8 amps twice 6.3 volts 4 amps, 4 volts 4 amps, 5 voles $4 \mathrm{amps}, 701$-carriage 316 . Another, wound to (electronic) specifications, 350101350 volts 250 mlamps 4 volts 8 amps, 4 voles 4 imps, 6.3 voles 8 amps, 01216.3 volts 2 amps, 6316 each, carriage paid; another, input as above, ourput
50013501013501500 voles 250 mlamps, 6.3 50013501013501500 voles $250 \mathrm{~m} / \mathrm{amps}, 6.3$ volts 6 amps, 01216.3 volts $2 \mathrm{amps}, 01415$ voles 4 amps twice, 6716 each, carriage 316.
SWITCHBOARD METERS, 4 inch scale SWITCHBOARD METERS, 4 inch scale moving coil (D.C.) only 0 to 14 amps. 1716 each, post 115 . Ditio, A.C.ID.C. MAINS TRANSFORMERS (NEW). inpur 2001250 velts in seeps of 10 volts, inpue 2001250 velts in steps of 10 volts,
outputs, 350101350 voles 180 mlamps 4 volts 4 amps 5 volts $3 \mathrm{amps},-6.3$ volts 4 amps , 3916 each, post 116 ; another 350101350 volts 180 mlamps 6.3 volts 8 amps, 01415 volts 4 amps, 3916 each, post 116 i another
500101500 voles 150 mla. 4 volts 4 amps C.T., 6.3 volts 4 amps, C.T., 5 yoles 3 amps, 4216 each, post $1 / 6$; another_ $425 / 01425$ volts 160 mlamps 6.3 volts 4 amps, C.T. twice 5 volts 3 amps, 4216 each, post 116.
EX-RADAR MAINS TRANSFORMERS 230 volts input 50 cycles 1 phase, output
$4,50015,500$ volts approx. 80 mlamps 6.3 volts 2 amps, 4 volts if amps 2 voles 2 amps, these eransformers are new immersed in oil, can be taken out of the oil and used as television transformers giving output
of 10 mlamps, overall size of transformers separately $5 \frac{1}{2 n}, x 4 \frac{1}{i n}$. $x \mathrm{in}$. and 3 in . x 3in. x 2 inin., price EMiol-cach, carriage paid. ROTARY' CONVERTERS. $24-28$ volts D.C. input, 1,200 volts 70 mlamps D.C. Output,
MAINS TRANSFORMERS (NEW), suitable for spot welding, inpue 2001250 volts, in steps of 10 volts, output suitably tapped for a combination of eicher 2141618110 or 12 volts $50170 \mathrm{amps}, 87 / 6$ each, carriage 716.
A UT

AUTO WOUND VOLTAGE CHANGER TRANSFORMERS, tapped Olllol 2001230 voles 350 watts, 4816 each, post 116 . as above but 500 watts 6216 each, carriage 316 ; as above 200 watts, 351 - each, post 116 .
RECTIFIERS (NEW) D C. RECTIFIERS (NEW), D.C. output 37
volts 50 amps, complete with mains trans volts 50 amps, complete with mains transI phase outcut to match the required I phase outfut to match the required voltage for the rectifier, $t / 5$ fer set,
carriage 101 .
EX-NAVAI ROTARYCONYERTERS EX-NAVALROTARYCONVERTERS A.C. 50 cycles, I phase, 250 wates capable of 50% overload, weight 10 lbs., price flollol, each, carriage forward. ELECTRIC, LIGHT QUARTERLY volts A.C. 50 cycles | phase, 5 amp load 1716 each, post $116,10 \mathrm{amp} 21 /$ each, post 116,20 amp load, 251 -each, post 116 .
MAINS TRANSFORMERS (NEW), MAINS TRANSFORMERS (NEW), 2001250 volts input, in steps of 10 volts,

outputs, $0,-6,12,24$ volts 6 amps, $37 / 6$ | outputs, 0, | $6,12,24$ volts 6 amps, 3716 |
| :--- | :--- | :--- | each, post 116 . Another as above but

$10-12$ amps, 4816 each, post $116 ;$ another, as above but 25130 amps, 701 - each, carriage 316 ; another, input as above, ourpur 0118130136 volts, $6 \mathrm{amps}, 42 / 6$ each, post
116 . II6. EX -R.A.F. ROTARY CONVERTERS. 24 volts D.C. input 50 volts, 50 cycles, 1 phase at 450 watts output, complete with
step-up transformer 50 to 230 voles, step-up transformer 50 to 230 volts,
E9liol- each, carriage 101 -, EX-U.S.A. W.D. ROTARY TRANS FORMERS, 12 volts D.C., input 500 volts, 50 mlamps. 275 volts 100 mlamps D.C output. Complete with smoothing carriage 216 , can be run on 6 volts giving half the seated output
VARIABLE RESISTANCES, 9 ohms, 4 to 12 amps, 301 - each.
SYNCHRONOUS F.H.P. MOTORS complete with a large selection of gear wheels 2001250 V., A.C. mains, 1416 each. input, $15010 / 150 \mathrm{v} ., 200 \mathrm{~m} / \mathrm{a} ., 6.3 \mathrm{v} .8 \mathrm{amps}$ 5 V. 2 amps output ${ }^{21 /-}$ each.
PRE-PAYMENT II. SLOT METERS 2001250 volts A.C., calibrated at id. or Id. per unit, 5 amp load, $45 /$ each, 10 amp load HAND-DRIVEN GENERATORS, cut.put 6 volts $5 \mathrm{amps}, 17 / 6$ each.

THE LONDON ASSURANCE Very good people to deal with

W Hen you fill in the coupon below, you take the first step towards the soundest investment a man can have-a Life Policy with The London Assurance.
And the sooner you do this, the less itwill cost you to get the policy you need, which our free informative booklet will help you to choose wisely.

> The first thing to do is to get this book

HAS IT OCCURRED

TO YOU: A moment's carelessness - and you may find yourself sued for damages of hundreds of pounds. But 10/- a year is all it costs to protect yourself with our Fersonal Liability Insurance. Interested? Then write YES beside this paragraph, and cut it out with the coupon.

QUERIES and ENQUIRIES

A stamped, addressed envelope, three penny stamps, and the query coupon from the current issue, which appears on page 48 (THE CYCLIST). must be enclosed with every eetter containing a must bear the name and address of the reader. Send your queries to the Editor, PRACTICAL MECHANICS, Geo. Newnes, Ltd. Tower House, Sourhampron Street, Strand, London, W.C.2.

Preserving and Dyeing Sheepskins

WHAT process is necessary to clean, preserve
and dye sheepskins which have just been flesh-dressed and washed
I have some sheepskins in this condition and am desirous of treating them to prevent sweating,
and wish to dye them for rugs.-D. G. Mainand wish to dye
waring (Swansea).
PREVIOUS to dyeing, the sheepskins must be cured solution consisting of ilb of alum xlb of common salt, and about \ddagger peck of bran in 'I gallon of boiling water. This solution should be well stirred and covered for some time in order to allow the bran time to swell. The solution is allowed to cool before the skin is placed in it. The skin is then left in the solution for two or three days until the curing or tawing is completed, which latter may be known by a characteristic white line of skin being left when a part of the skin is folded up and pinched between the fingers. At this stage the skin is removed from the solution, stretched on a frame or over a door or board, and curried by scraping it in every direction with a blunt edge in order to remove the inner part or membrane of
the skin. The skin is now allowed to dry slowly, and the skin. The skin is now allowed to dry slowly, and the scraping, continued, being supplemented by shaking and by rubbing the skin between
skin will now be ready for dyeing.
skin will now be ready for dyeing.
In order to dye the skin thus prepared, it is placed, wool side downwards, into the hot dye bath, and allowed to remain therein for about two hours. The dye bath depends largely in composition upon the type of dyeing which is required. A dye of the "basic" class should be used. An average strength of the bath would consist of about six parts of dye and three parts of sodium sulphate (Glauber's salt) dissolved in 9 I parts of water. If the shade is not deep enough, the skin can be returned to the bath and re-dyed. Finally, the skin is well washed in warm water and allowed to dry in the
air. It should be observed that this treatment will only dye the wool, and not the actual skin itself.

Drilling Holes in Glass

CAN you tell me how to drill small holes, and also in bone porcelain about $3 / 16 \mathrm{in}$. thick? and also in bone porcelain about 3/16in. thick?
If special equipment is needed, where can it be obtained? T. L. Green (Rye).
T HERE is nothing complicated about drilling small holes in glass. The only special commodity called for is an abundant supply of patience
First of all, using a hard steel point, make a scratch on the glass at the place where the drill has to be started. The drill tip should be as hard as possible. Some recommend that it should previously be heated to dull red heat and then plunged into mercury, but we hardly think that this is necessary: The drill point should continually be moistened with genuine turpentine (not "turps. sub."). Do not press the drill too heavily and, Run the drill at an ordinary speed. It may take as much Run the drill at an ordinary speed. It may take as much you will:have to go so carefully. If you should wan you winl have to go so carefully. If you should wan to enlarge the hole, use a rat-taled file wetted with to drill, always start, with the finest practicable drilland be content to' enlarge the hole afterwards by the file be content to enlarge the hole arterwards by the file able to drill a $1 / 16$ in. hole direct and without the recessity for subsequent enlargement.

Drilling in any: sort of porcelain requires similar precautions, but it is much easier to carry out for, although porcelain has a very hard surface, it is often surprisingly soft and " drillable" inside.
In answering your query we have as sumed that you do not wish to use a fine diamond-tipped drill, but, if so, these may be obtained from any wholesale firm of dealers in iewellers ${ }^{2}$ tools as, for example; Messis. Robert Pringle \& Sons, Ltd., $40-42$, Clerkenwell Road,
London, E.C.r. 'Such tools, however, are not easy to use.
Running an I.C. Engine on Hydrogen
CAN you inform me if it is possible (with a Combustion engine on hydrogen? Ansor how
coment much volume of hydrogen per minute would be
needed to run, say, a Ford ${ }^{\text {8 }}$ engine ?-R. W. Fetting (Islington).
IT is possiblé, but not practicable to run an ordinary - car engine on hydrogen. In the first place, this gas is expensive. It has to be stored in heavy cylinders, and necessitates the use of a specially-designed "gas carburettor" (a gas valve), It actually detonate during combustion, its rate of burning, being toó high for ordinary engine purposes i. Hence, you would always get back knocking. You would require a higher
compression engine. Thiss, too would increase the compression engine. This, too, would increase the tendency to knocking and the entire engine, under
hydrogen running, would rapidly knock itself to pieces. hydrogen running, would rapidlÿ knock itself to pieces. Coal gas, of course, contains hydrogen, but it also contains carbon compounds" which serve to diminish Hence, under the proper conditidns, coal gas can be It is an quite imperine fued
It is-quite impossible to determine accurately how much hydrogen would be required per minute to run your engine. We must know the type, of engine, its capacity of cylinders, and other factors as well But capacity of cylinders, and other factors as well. But find that the engine would require $2=4$ gallons- of the gas per minute of normal nunnirig with-ordinary load This consumption zwoild be increased with heavier oads and greater apeds oads and greater speeds. ou, perhaps, may be abl . do the calcuation better. y it completely; the combustion product being Water (in the form of steam).

> Readers are asked to note that we have
> discontinued our electrical query service.
> Replies that appear in these pages" from
> time to time are old ones and are published as being of general interest. Will readers requiring information on other subjects please be as brief as possible with their enquiries.

Making a " Stevenson's " Screen

PLEASE supply particulars for making a ments.-R. Warnett (Urbridge).
B^{Y} " Stevenson's" screen, we assume that you name. This is simple enough in construction, and $i t$ name. This is simple enough in construction, and it It is merely a sort of housing or sheltering device for meteorological instruments of various kinds. In its

THE P.M. BLUE-PRINT SERVICE

 I2FT. ALL-WOOD CANOE. New Series, No. I, I0-WATT MOTOR. New Series. No. 2, 3s. 6d:* COMPRESSED-AIR MODEL AERO ENGINE. New Series. : No. 3, 5s.*AIR RESERVOIR FOR COMPRÉSSED-AIR
AERO ENGINE. New Series. No. 3a, Is.
SPORTS" PEDAL CAR. New Series. No.4, 5s.*
F. J. CAMM'S. FLASH-STEAM. PLANT. New Series. No. 5, 5s.*
SYNCHRONOUS ELECTRIC CLOCK. New
ELECTRIC DOOR-C'HIME. No.' 7. 3s. 6d.*
ASTRONOMICAL TELESCOPE. New Series. No. 8 (2 sheets), 7s.*
CANVAS CANOE. New Series. No. 9, 3s. 6d.* DIASCOPE. New Series. No. 10, 3s. 6d.*

EPISCOPE. New Series. No. 11, 3s. 6d.*
PANTOGRAPH. New Series. No. 12, Is. 6d.* COMPRESSED.AIR PAINT SPRÁAYING 620 CAR
(Designed by F. J. CAMM) MASTER' BATTERY CLOCK*
Blue-prints (2 sheets), $3 s$. 6d
Art board dial for above clock, Is
O.UTBOARD SPEEDBOAT*

WEIGHT MODEL MONOPLANE Full-size blue-print, 3s. 6d. P.M. TRAILER CARAVAN

Complete ser, 10s. 6d.*
P.M. EATTERY SLAVE CLOCK-2s:* PRACTICAL TELEVISION" RECEIVER (3 sheets), 10 s .6 d .
The above blue-prints are obtainable, post free, from Messrs. George Newnes, Lted., Tower House, Southampton Street, Strand, W.C.2.
A_{n} * denotes constructional details are available, free, with the blue-prints.
common form, it consists of a wooden büx or enclosurie ce between) and lowered walls, these serving to protect the instruments from sun, rain and winds whilst, at the "săme time, permitting frce ventilation

The screen may be made in any size convenient for the accommodation of your instruments. It is best made in welf-seasoned pine, paitted cull black inside and a dull green on the outside. The screen should stand on four wooden legs, and the base or floor of the actual sonstuction 3 f actual construction of the screen may be dictated according to your own mend from in. to tim. thick, and left between the double roof

Matt Black Paint

WISH to paint some photographic paris such as 1. metalic slides, lens mountings, etc., and market
Can you give me a formula, or supply me with the address of a firm that would supply WOU omit to state the actual colour whichyou wish on the matt paint to be, but, since you* require it for scientific apparatus, we presume zthat you. will wish it to be black, Excellent matt black paints are manufactured for such scientific work by Mersrs Johnson $\&$. Sons, Ltd., Hendon; Lendon, N:W.4 and; also, by Ilford, Ltd., Ilford, London. These can be obtained direct from the makers and also from any large firm of photographic dealers,: such as Messis. Wallace Heaton, Ltd., New Bond Strect, London, W.I, or Messrs. Jonathan Fallowfield, Ltd., Newman Street, Londons- W. I
Such a paint can readily be made by dissolving celluloid in a mixture of three parts acetone and one part amyl acetate, until a liquid of thin paint consistency is: obtained. Into this liquid, ordinaty carbon black or lampblack is ground until a paint with sufficient
body is obtained. If this paints tends to dry out body is obtained. If this paints ten
glossy, add a little more acetone to it.

Lime-Sand Bricks

CAN you supply me with particulars of the coloured? manufactured - the these brich are reasonable lasting quality, and do not require one-quarter the "burning" of a clay brick.

I believe the main factor is the quality of the sand, and if this is so, an analysis of the best type Would
I IME-SAND bricks are more difficult to make than ordinary clay bricks, despite their being fired a lower temperatures than the latter. Both-the sand and the lime should be as iree from iron as possible. The sand should comprise an approximately equal mixture of high-quality coarse and fine sands. This is mixed mabout equar pamped ond compressed Finally it is air dried and conveyed to electric kilns in which it is slowly heated up to about $1 ; 000 \mathrm{deg}$. C. After baking, the bricks are slowly cooled and, usually, they are afterwards given a coating of glaze.
There are several textbooks in which you will find the details of lime-sand brick manufacture. One or other of these should be obtainable, on request, from your local County Library. We advise the following
volumes :-A. B. Searle \& E. Dobson: "A Rudimentary Treatise on the Manufacture of Bricks and Tiles," 1936. A. B, Searle: "Modern Brick," (2 vols.) A. B. Searle: "Clayworkers' Handbook."
H. Wilson: "Ceramics: Clay Technology." A. W Comber: "Magnesite as a Refractory," 1937.

Removing Stains from Porcelain-surfaced Bath

I HAVE been using a brown-coloured bath salt stain rings the bath which I am unable to remove with paraffin or bleach liquid.
The bath is almost new and has a high porcelain gloss. Which I do not wish to damage. The stain appears to be in the surface of the enamel.
Could you please suggest methods which I could try to remove the stain, now several weeks old,
without harm to the porcelain enamel ?-S. Kremer (Manchester).
I is one of the defects of the modern porcelain porous to absorb stains and other contaminants which find their way underneath the surface glaze and resolutely resist chemical removal therefrom. There is no infallible method of removing the brown stain from your porcelain bath. You might, of course, common whiting, or, alternatively, with a paraffinwhiting paste, taking great care not to abrade the porcelain surface. If this does nor work, the alternative method is to bleach the stains away. For this purpose swab on to the surface of the porcelain enamel a clear solution made by grinding up chloride of lime with sufficient water to form a thin, creamy liquid. This is dabbed on to the bath eriamel and is followed, almost immediately, by dabbing on of dilute acetic or hydrochloric acid (one in five). These two solutions can be
dabbed on alternately and repeatedly until they
penetrate the porosity of the bath surface and thereby remove the stain. Afterwards, the bath should be filled with cold water so that any surplus solution which has penetrated the enamel may be leeched out by the water

Stiengthening and Veining Plaster Casts

I WILL be very grateful if you would kindly

 let me know how ornaments, etc., made from plaster of Paris can be made strong and is it possible to ".vein" plaster of Paris to resemble marble ?-C. H. Downs (Johannesburg S. Africa).PLASTER-CAST objects cannot be made completely abrasion-resistant. You can make them much stronger by incorporating about ro per cent by slaking the mix not with plain water, but with olution of ro parts of glue or gelatine in 90 patts o warm water. This solution will be practically solid. a normal temperatures. Hence, it must be used warm It will delay the setting of the mixture very considerably or which reason it should not be: used when quick setting of the mixture is essential. Further hardening can be effected by brushing the above warm solution liberally over the already cast objects. This procedure "fills" the surface pores of the plaster with glue or gelatine. It not only ?makes the objects easier to paint and colour, but it also imparts alittle extrastrength to them.

Ve'ns in plaster casts can be produced by partially building up the cast with ordinary plaster of Paris mixture and by inserting at intervals, on the semi-dry material, thin layers of a paste made by grinding, th ein material with glue or gelatine solution. The bes material for the necessary veins comprises variou mixtures of inert mineral colours. One such mixture for example, consists of Chromium Oxide (Green) and slate dust suitably proportioned to give the righ colour. Other mixtures may consist of Yellow Ochre Red Iron Oxide-and Mineral Black or Lampblack.
We must say, however, that unless these veins in effective or lifelike.

Rug-binding Solution

CAN you inform me if there is a rubber or - other solution made that can be sprayed on the underside of a home-made stair carpe to scal the wool and prevent it being pllied out If this is not possible, could you supply me with names of the makers of a base that
Γ HE rug-binding product which you mention Γ consists, usually, of stabilised rubber latex This is brushed on to the underside of the rug or mat on which surface it coagulates rapidy into an enduring film and thus seals the loose ends of the rug thread ogether. Such material, in liquid form, can be obtaine from most wool shops and stores. A product of thi description known to us is the "Airlync" Rugbinding Walcs

If you want an actual adhesive film or membran for your work, you would do best, we think, to apply to or your work, other of the big London stores. Alternatively, you could apply to one of our advertisers of plastic mou could or to Herts Pharmaceuticals, Ltd., Besseme moad, Welwyn Gardcn City; Herts.

Ink Eradicator ; Window Cleaning Fluid

 WHAT is the formula for an ink eradicator Also, could you suggest a formula for a windo cleaning fluid. One which will not leave a smear cleaning fuid. One (Bridgwater).A GOOD ink eradicator for ball-pen ink can readily A be made by dissolving a teaspoonful each of common salt and washing soda in a cupful of cold water. Two dessertspoonculs of bly well ground up with the of lime) are then thor the milky liguid is then filtered resulting solution and the mililit becomes almost clear through fine blotting paper untilit becomes almost in will This. is the ink eradicator which you require. It will six or eight weeks. It is best used by brushing or dabbix or on to the writing to be removed, this being followed by a similar dabbing or rubbing on of dilute acetic acid (one in five).

An excellent window cleaning fluid can readily be prepared by discolving two parts of Teepol or Tergitol in 98 parts of warm water. Unfortunately, however, the above ingredients are not easily procured, even
from chemical suppliers such as Messrs. Griffin $\&$ from chemical suppliers such as Messrs. Grifin \& Tatlock, Ltd., Kemble Street, Kingsway, London, will be able to make a good window cleaning fluid on the following lines :

Strong ammonia 2 tablespoonfuls.
Whiting 4 tablespoonfuls.
Methylated spirit, 2 tablespoonfuls
Water to I pint.
Apply thinly and uniformly to the glass. Allow to dry and then wipe off with soft paper or cloth
The above preparation may be poured into a wet cloth for application to the window after most of the cloth for application has been previously wiped off the glass.

Crystal" Paint

BEFORE the war, a paint was obtainable for use on glass. I believe it contained camphór, and sold under the trade name of Joy.

This paint was applied freely, and after running, set in a variegated crystal pattern.

Can you inform me where such a paint can be obtained to-day, whether the glass needs any form of preparation prior to painting, also the best meme glass lampshades.-S. C. Male (Bristol).
WE think that the paint you mention contained about
five per cent. of naphthalene, - not camphor. This so-called "crystal" paint was not successful and, so far as we have been able to trace, is not now available.. Confirmation on this point, however, may be obtained by inquiry to The National Paint Federation, Paint Industry House, 79/80, High Holborn, London, T. T .

The glass should not need any special preparation prior to coating with this paint, other, of course, than an ordinary cleaning to render it reasonably greasefree.

The simplest method of removing the paint from glass would be to immerse the glass pieces bodily in a strong solution of caustic soda, say, one part in six parts of water The solution should be used preferably warm, and the paint will become loosened almost immediately.
Modern paints for glass application can be obtained, we think, from Dryad, Ltd., St. Nicholas Street, Leicester. Here, of course, we are referring to the fine "artistic", paints, and not to the ordinary varieties of house paints.

Test Instrument for Temperatures

I WiSH to make up a test instrument to read temperatures between 30 deg. and 100 deg. F. I have in mind the electrical resistance method for which is required a galvanometer and
nickel coil element operating the galvanometer.

A Wheatstone Bridge circuit for test instrument.

If I bought the element I understand the temperature resistance equivalent would be
at 30 deg. F. 99.5 ohms ; 100 deg. F. 118.40 ms .
Can you advise me on a suitable instrument to obtain and also how to set up (We equipme
A COIL of nickel or pure platinum could be wound on a frame or mica or steatite. If required the coil
The resistance measurement may be carried out by connecting the coil in one arm of a Wheatstone Bridge circuit. The bridge may have equal ratio arms and preferably, a pair of compensating leads connected in the fourth arm: The compensating leads run paralle to the actual leads to the pyrometer coil, and cons
The circuit is shown in the accomprnying diagram the out-of-balance current through the galvanometer gives the temperature directly if the scale is suitably calibrated. Initial setting may be done by adjustmen of batiery curtent until some definite deffection is meter in the bridge circuit. A suspended coilpcrmanent meter in galvanometer would be suitable.

Liquid Glue

[^0]This glue will be permanently liquid. It will make a good binder for wood-shavings or sawdust, the proceand then to pack it into metal moulds under light pressure.
The addition of formalin to the glue would ruin it The formalin would insolubilise the glue and thus previce Fom having any bonding effect on the wood particles. Formalin can only be used on a glue afler will be made too hard to have any adhesive effect
The following books on adhesives would, we think, be of interest to you
"Industrial Cold Adhesives," by E. Dulac ; "Cements, Pastes, Glues and Gums," by H. C. Standage; "Moderr Glues and Glue Testing,"" by C. H. Teesdale ; "Glue and Gelatine, A Practical Treatise on Testing and Use," by R. L. Fernbach;' "The Manufact
These volumes can be obtained through any good $\underset{W}{ }$ bookseller, and G. Foyle, Ltd., Charing Cross Road, London \mathbf{W}. and
W...

Heat Treatment of Metals

J WAS very interested in your article on coslettis . ing, and shall be glad if you will tell me how much phosphate of iron per gallon of water would at working strength.
Could you also inform me where I could obtain Ingram (Wednesbury).
THE solution of sodium phosphate of which you speak can be of any strength-say i oz, dissolved ar a pit of or steel in sucha solution is quite effective in phosphat ing the mer the cosiettising. The cleaned iron ar steel pricle through a solution ol he cleaned zinc phorphate which process develops on the acid zinc phosphate, which procer of zinc phosphat urface of insoluble and non-hygroscopic and which which is insoluble and nonion herefore, gives high protection to the metal. Agam immaterial.
We recommend that you should adhere to the process, using the simpler solution of sodium phosphate which you mention, and that this solution should be used warm (at about $50-60$ deg. C.). The article should not be rinsed after immersion in the solutal, surface dur phosphate layer is formed on the metal surface during the subsequent drying of the article, The odium phosphate solutite indefinitely If it picks at working strength quite indefinitely. If it picks up be filtered. e filtered.
There is really no such thing as the "chemical heat treatment" of metals. We can only assume that you refer to the chemical treatment of metals at elevated temperatures. Such processes will be found described in any textbook on the heat treatment of metals. Such Iibrary There are numerous volumes local As regards steel and the ferrous metals, the following volumes will be of interest: F Gioliti: "Heat Treatme

解 J: W. Urquhar (2 vols.).

Paint Stripping and Wax Polishing

I WISH to change some heavily painted doors burned a great deal of the paint off but the surface is still greasy. Could you inform me of the correct procedure to follow, and whether th wood should be treated with linseed oil before being waxed? Is there a special wax for this purpose ?-J. Russell, Sneddon (Glasgow)
YOU do not mention the nature of the woed from woods are more naturally greasier than others. Hence, we are unable to say whether the wood still carries its own oil or whether the oil has been derived originally from the paint. In any case, it would have been better to have removed the paint from the wood by means of one of the orthodox paint-stripping compositions than by means of an ordinaryblowlamp. Assuming, however, that the - wood has been satisfactorily stripped of its' paint, and that it is only at present merely "greasy," the best procedure for you to follow would be to scrub the naked surface of the wood over with a solution of caustic soda (1 in $\cdot 10$). After this, scrub the wood thoroughly with soap and warm water and then. allow it to dry. The wood should then be sandpapered smooth. It will not be necessary to treat it with linseed oil before waxing the wood. Merely rub the wax mixture on the wood surface and then leave it overnight before finally polishing. A good wax mixture for the purpose would be a mixture of 70 per cent. prime yellow Carnauba wax and 30 per cent. yellow beeswax. Thirty per cent of this mixture should be dissolved in 70 per cent. of warm white solid and pasty and, thereby, eminently suitable for solid and pasty and,
wood-waxing purposes

It is, of course, much cheaper to use an ordinary white wax or paraffin wax for the purpose, but all such waxes are intrinsically soft and are much prone to persistent fingermarking.

WOLF ELECTRIC TOOLS LTD PIONEER WORKS TELEPHONE: PERIVALE $5631-4$
 hanger lane
 LONDON
 \%. 5
 TELEPHONE: PERIVALE 563I-4.
 BRANCHES: BIRMINGHAM
 MANCHESTER LEEDS
 BRISTOL
 GLASGOW

POVVER MICROPIONE INSERTS.
Tannoy self energising, carbon, which can be used directly with a mierophone transformer, requiring no external voltag
Dlam. 2 in. x 1 in . 5 - each. Post 6 . THROAT MHCROPIIONES.-American twin-button type with strap lead and plug. 5/- each. Post 6d.
IIEAD SET ADAPTOR-MC385 High to low impedance, $2 / 6$ each. Post 61.
230 volt $10 / \mathrm{e}$ each Post $1 /=-1,000$ watt. RESISTANCE MATS. -Make Ideal heating mats for Aquariums. Photographje solutions, Print dryers, etc. Mains voltage.
Black heat, size 10 in . x 61n. Price, $2 / 6$, Black hea
post free.
B.T.H. 18 mim TALKIF, PROJECTORS. -Complete. Model S.R. B., also spares. ACFIL PUMPS.-These pumps enable you to fill all accumulators on the bench
with the carboy at floor level. Brand new. with the carboy at floor level. Brand new.
only $30 /$, post $1 / 6$. SNTFRESTED IN FISIITNG?-Then send for one of our tapered whip aerials and
make yourself a fine rod worth pounds. make yourself a ine rod worth pounds. Consists of three tubular steel, copper
plated sections 4 ft , long which screw into each other and are well finlshed. 7/6. carriage 1/-.
THICRMOSTAT STVITCHI-BImetal type in sealed glass tube, $21 \mathrm{in} . x$ in. 30 deg; Cent. Ideal for Aquarjums, Wax and Oil
Baths, Gluepots, etc. Will control 1 amp at 240 v., $5 /-$ each.
CUTTER IHEADS.-"Recording " high impedance. Amazing bargain at 55/-each, CUTYER STYLII, $6 /-$ per doz., largo quantity availabe at sperial splendid 8 jewelled movement, fange type, made to stringent Govt. specification. Brand new, guaranteed. Ideal for car, study, hedroom. etc. will withstand vibration and shocks. Special offer $65 /$ each. post irce.
approx $25-y$ d, colls , $7 / 6$, post covering, SLOW-NOTION DIALS. 6in. Scaled 0 -100, reduction 200 to 1 or direct, ideal for wavemeters, signal generators, etc, our price, while they last, $5 / 6$ each, post 1/-. Case. Fits on forehead. Leaves both bands free, $10 /$ post $1 /$ - . VEI:DER COUNTEIR 0-9999, inn. x In. x
in. Very useful. $10 /$ each, post Gd. BROMIDF, PAPFR.-Glossy grades 1 and $3,52 \mathrm{in}$. $x 5 i n .$. weight 12in. x 10 in , at 77/6 per gross packet, also 15 in , x 12 in . soft only, $117 / 6$ per gross racket.

WILCO ELECTRONICS

204. LOWFR ADDISCOMBE ROAD, CROYDON

DRILL BITS \& PLASTIC RYNPLUGS
All building materials yield at once to the amazingly sharp and hard Tungsten Carbide Tip of the Mason Master. Effortless, rapid, silent and vibrationless Mason Master drill bits can be used almost indefinitely without wear or abrasion. Plastic Rynplugs are virtu ally indestructible; hard enough to be hammered into the hole yet pliable enough to expand readily andaster wall Impervious plaster wand chemicals they moisture in handy packs for areskid or hacks fo
Write for illustrated bookiet ' 1

JOHN M. PERKINS \& SMITH LTD
 Lonvon roapmorns.baunston. Mear Ruciv, Encland.

THERMOLECTRICS

LTD
CHAPEL WORKS
HAMPTON-ON-THAMES.
Here is an opportunity for the amateur engincer to acquire a precision Bi-metal Thermostat, capable of controlling 50 dearees Fab

ASBESTOS FLEXIBLE HEATING CORD. I/ yd. Various Resistances: 15, 25, 200, 400 ohms per yd
ASBESTOS SLAG WOOL for the thermal insulation of hot-water tanks. I/. 1b.

THREE HEAT SERIES PARALIEL LINE CORD
SWITCHES. | Amp. 250v., " off" position each end. 716 each.
3in. 7 B.A. FINE SILYER-TIPPED CONTACT SCREWS, 6d, each BI-METAL, 6 in. wide $\times .036 \mathrm{in}$. 401 - per Ib.
WE INVITE YOUR ENQUIRIES FOR ASBESTOS MILLBOARDS AND SPECIAL ALUMINIUM FOIL-BACKED THERMAL INSULATION.

GREATEST INVENTION SINCE THE ALPHABET Gives the RIGHT word at a glance!

Every man or woman who uses words, will find this Idea and Word Chart a priceless boon. It's a godsend to all. It gives the word you want when you want it. Words and ideas leap into the mind-vitalise the message-grip the interest - sway - Convince compel. - Easy-quick-sure.
Have you always at immediate command just the word you need ? You can have. It's easy with this amazing Chart. Send for a free specimen copy embodied in a descriptive brochure. Enclose $\mathbf{2} \frac{1}{2}$ d. stamp for postage.
PSYCHOLOGY PUBLISHING CO., LTD. (DEPT. PR/HY19) MARPLE CHESHIRE

CLYDESDALE

 ELECTRONIC IGNITION TESTERType V.E.D. Patt. 563562 . Made by English Electric. A Cathode Ray tester employing an entirely new technique in ignition testing of internal combustion engines. Enables the electrical performance of the entire ignition system to be observed on the screen of the Cathode Ray Tube while the engine is running. Will operate from 6, 12 and 21 volss D.C., or 230 v . A.C. Built into a black crackle case, with hinged
front and carrying handle, dim. $154 \times 8.2 \times 111$ ins. front and carrying handle, dim. $154 \times 82 \times 111$ ins. CLYDESDALE'S
PRICE ONLY PRICE ONLY 235.0.0 CARRIAGE 220 VOLT D.C. CHARG. For charging 1 to 60 cells at 3 amps. Made by Bepco. Canada, with 100 ohms
resistance, 5 A meter, 220 v . resistance, 5 meter, 220 V . all mounted on metal case $21] \times 13 . \times 43$ ins Well ventilated with four furll mouncing.
CLYDESDALE'S
PRICE ONLY 2.5 .0 PRICE ONLY
CARRIAGE PAID

Ref. ZA17571
POWER SUPPLY UNIT NO. 7
For charging 6 volt accumulators by hand.
Designed for the WS-21, a stout metal case, dim. $17 \times 10^{1} \times 73$ ins., with derachable lid, containing hand driven generator with gearing mechanism. which
delivers 6 volts D.C. at 4 amps., also 6 vole cutout and battery damp.
CLYDESDALE'S 2.5 .0
PRICE ONLY'S. EACH CARRIAGE PAID

Bargains in Ex-Service Radio and Electronic Equipment
£35.0.0
NEW LIST No. 8
Giving details and illus-

BATTERY
CHARGER Rectifier type 42A A compact battery charger, Oulput 4 amps at 6 or
12 volts D.C. Input $230 \mathrm{v} . \mathrm{A} . \mathrm{C}^{2} 50 \mathrm{cls}$. with ampmeter, removeable fuses, control switch for each circuit, input and output points, con. tained in welloventilated black crackle wall or bench mtg. EACH
CARRIA CARRIAGE PAID

Still available :- UNIVERSAL ELECTRIC MOTORS
for use as Motor Generator cype 28 each 3216 $\begin{array}{llll}\text { Motor Generator eype } 28 & \ldots & \ldots & \text { each } 3216 \\ \text { Motor Generator type } 29 & \ldots & \cdots & \text { each } 3216\end{array}$ Motor Generator type 30 each 25 Each Connection data supplied. each 251-

Ex U.S.A.A.F. in original carton, Combined Pressure and Vacuum Pump.
137113798 made by G.M.C.IDelco (U.S.A.) 24v. D.C.II.2A 6,500 r.p.m., t h.p. motor, with vacuum and pressure pumps, whole assembly $12 \times 7 \frac{1}{2} \times 7$ ins. Shock med. CLYDESDALE'S fi.4.0. CARRIAGE CLYDESDALE'S ${ }^{\text {E }} 4.4 .0$. CARRICE ONLY PAID
 trations of ex-service
items and cancelling all previous lists
supplements.
NOW READY $1 / 6$ Price credited on first purchase of 10% or over.

Best British Bargains by

ELECTRADIX

METERS. D.C. Moving Coil 2in. dla. $0-50$ A. $15 /-0-20$ I: $7 / 6$. I).C. Meving
Iron 2iin. flush $0-9$ V. 6/6. 0.25 A., $12 / 6$, Iron 21 in . flush $0-9$ V. 6/6. $0.25 \mathrm{~A} ., 12 / 6$, post gd.
Electrostatic Voltmeters 2 inn. flush, 1,500 V., Everett Jidycumbe $65 /$.

RECTIFIERS, Wave Selenium 500 V . 7/6. 20 V. $1 \frac{1}{2}$ A.. $15 /-24$ V. 3 A., $21 / \mathrm{F}$ WORSE KEYS, AIr Ministry model on hakelite base, precision built, perfect BATTERY CHARGERS. Metal Ilectifier BATTERY CHARGERS. Metal lectifier units made to sjeclfication. Send us your iuquiries. Hewitic type Rectifier by F.C.C., $365 / 410$ outpit, a mmmeter, volt18.2 A. 2 kh . output, a umeter, voltmew Hewitic type valre, £8s, ex Battersea works.
WELDING PLANTS by Smiths Welding Co. U.S.A. large model for welding and cutting Toreh Body L.'T. entting rssembly $\$ \mathbf{B}$. Oxy, reg., fitted two gauges, B. B. Acet. reg. with two gauges, thro $12 n$.
hose with nipples s27 $10 s$. Smaller hose with nipples 827 10s. Smaller
model with attachuents for welding only, E.t2 10 . Brand new.

RESISTANGES. Variable wire wound, 500 olams A A., 15/-; 1152 ohms 2 A., double tube $30 /-; 6$ olims 10 A., $27 / 6$; 6 ohms 6 A. $25 /-$
TRAKSFORMERS, double wound 1 kW . 230 V. 1110 V. $50 \mathrm{c} / \mathrm{s}_{4} \mathrm{S.P}$. 8810 s . carr. $5 / .500 \mathrm{~W}$. Auto Met-Vie. $230 / 110$ FH, totally enclosed, is 10 s .
CHOKES. 3 II, 100 mA., 20 II. 300 MA. $10 \mathrm{H}, 200 \mathrm{~mA}$.
MOTORS. A.C. $\$$ h.p. $230 \mathrm{~V} ., 1,400$ r.p.mi., £5 10s. D.C. $\frac{1}{2}$ h.p. 240 V. shunt, $£ 415 \mathrm{~s}$. h h.j. 230 V. A.C., 1,425 r.p.nt., S.P., E8, carriage extra. A.C. 3 -phase Motors, (G. L.C., shaft ext. both ends, $\frac{1}{4}$ h.p.
$400 / 440$ V. and $230 / 50 \mathrm{S.P}$., 10 s. 400/440

ELECTRADIX RADIOS

214, QUEENSTOWN ROAD, LONDON, S.W. 8.
\Longrightarrow Telephone: MACuulay $2150=$

Car style lighting for Cycles -

 The "King" rangedynamo is
powerful $6 v .3 \cdot 3$
watt generator
with combined
bracket and tail
lamp.

LU@ AS "Kimg of the Proad" CYCLE DYNAMO SETS

JOSEPH LUCAS ICYCLE ACCESSORIESI LTD CHESTER ST \because EIRMINGHAM

CHEMISTRY APPARATUS
COMPLETE PRICE LIST

BECK ${ }_{60} \begin{gathered}\text { (scientific Dint. A) } \\ \text { HIGH STREET, }\end{gathered}$ Stoke Newington, London, N. 16

No. 358

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Lid., Tower House, Southampton Street, Stretnd, London, W.C.2.

Phone: Temple Bar 4.363
Telegrams: Newnes, Rand, London

Comments of the Month

SOME PLAIN SPEAKING ABOUT ACCIDENTS

WHO IS TO BLAME? CAN THEY BE REDUCED?

THE villification of motorists and cyclists who are consistently blamed for the rising toll of the road, the invitation from high legal luminaries to magistrates to impose more severe sentences, the bleatings of those self-appointed representatives of pedestrians and cyclists, and ill-informed criticisms by those who know little of cause and effect have become main features of our daily newspapers. We deplore the comments of High Court judges, who wish to set aside the whole basis of courts of summary jurisdiction by inviting local magistrates to prejudge issues before the evidence has been heard. Local magistrates' courts were called into being so that they could exercise the quality of mercy.

Now the most savage fines and sentences are being imposed. Charges of dangerous driving are being brought where hitherto the milder one of driving without due care and attention more accurately fitted the offence No one wishes to defend a motorist driving a car whilst he is drunk. But suppose he has sufficient wits to draw into a side road until the effect of alcohol has worn off? Sooner or later a constable arrives whilst the driver is still in his drunken stupor, and charges him, as well as his passenger, if he has one, with being in charge of a car whilst under the influence of alcohol.

One might reasonably ask what he is expected to do. Is not the attitude of the authorities in this matter a direct invitation to the driver to "chance it" and drive on? In such a case he might seriously injure or kill someone. Should he abandon his car and endeavour to roll home, like the rolling English drunkard who made the rolling English roads? Even a cyclist who was too drunk to ride his bicycle was summoned for being drunk in charge of a bicycle!

What would be said of a tailor paid to make a suit of clothes who misappropriated the money for other purposes and then had the power to prosecute his unfortunate client because he was walking about nude? The plain fact is that millions of pounds over the past thirty years have been extracted from road users in the name of the Road Fund and from petrol tax to have our roads made adequate to accommodate the ever-growing volume of traffic. But the money has been used for other purposes, and now the State wishes to penalise road users because of the State's failure to do what it has been paid to do. In any ordinary business directors who misappropriate funds would find themselves in prison. The State, however, can do the most illegal and immoral things and get away with it, passing the buck, so to speak, to its victims.

In spite of the new zebra crossings accidents will not be materially reduced by them, nor will they be until their use is made

By F. J. C.

compulsory. This, of course, will be quite unpalatable to that body known as The Pedestrians Association, which seems to regard pedestrians as a class apart, and overlooks the fact that we are all pedestrians at some time.

For years writers on cycling have pressed for severer sentences on motorists convicted of dangerous or careless driving. They think that is the'solution to the problem. If it is, then all road users guilty of dangerous use of the roads should be prosecuted and heavily fined. Pedestrians are a major cause of accidents by their carelessness on the roads. They more often than not escape injury themselves having caused a collision between two cars.

Road travel to-day has, in the name of road safety, been converted into a frustrating obstacle race at snail's pace, and yet accidents continue to rise. Surely someone at the Ministry of Transport with a scintilla of intelligence is able to draw the proper conclusion from that? Everyone using the roads should be brought within the traffic laws. It is nonsense to talk about motorists and cyclists being in charge of lethal machines. A pedestrian can be lethal, far more so, for he can wander aimlessly on any side of the road, whereas traffic is compelled to keep to the near side.

As it is, the war goes on between motorists, cyclists and pedestrians, and the real cause of the holocaust is obscured in the quagmire of tangled verbiage and confused thinking.

The governments of the past thirty years are to blame for the inadequacy of our roads, which have failed to keep pace with the growth of traffic. They cannot plead shortage of funds. They have had the money in plenitude but have used it for other purposes. The Road Fund, when it was introduced by Lloyd George; was to be used for no other purpose than the making of new roads and the modernising and repair of old roads.

In order to make our antediluvian road system work we have introduced thousands of regulations and erected so-called safety devices which have done precisely nothing to reduce the toll of the roads. What would be said of the Thames Conservancy if, when the river is in spate, it put down more sluices instead of pulling existing ones up? That is exactly what has happened to the roads. Traffic is safer when kept fluid and apart than when coagulated into a mass proceeding along the road in a series of clots, with dozens of pedestrian crossings between the traffic lights. A very small percentage of accidents are due to speed according to official figures, yet most of the palliatives are based
on the asinine belief that it is. The average speed through London, according to Scotland Yard figures, is seven miles an hour!
Out of 372 cases recently investigated blame was apportioned as follows:
Lack of, inadequate, or incorrectly sited sign-posting, 119; tram tracks, lack of white lines or cat's eyes, and dangerous road surfaces, 154; obscured visibility and congested areas, 34; kerbstones, badly laid out road junctions and miscellaneous, 22.
Over the last three years as a result of increased traffic the average monthly toll of killed and injured on the roads has risen from just under 13,000 to over 18,000 , an increase of nearly 40 per cent. If this rate of increase is continued casualties this year may approach the pre-war annual total of 230,000. The Parliamentary Secretary to the Ministry of Transport has been discussing the matter with local road safety committees, but we fear he has learned little from this. Local road safety committees can only deal with- the matter as it affects them locally. The matter needs to be discussed on a national scale. The Parliamentary Secretary could, however, save his time, for he has in the archives of his Ministry memoranda and reports by the dozen dealing with the subject, and advising him to take certain remedial measures. We suggest that he reads those reports.
Let the critics ponder over these matters!

Legality of Pedestrian Crossings

DOUBTS have been raised as to the legality of pedestrian crossings following reports of an unsuccessful prosecution at Bristol on January 24th, but the Ministry of Transport considers that nothing in that decision detracts from the legality of any crossing marked with stripes, beacons and studs in accordance with the new Pedestrian Crossing Regulations. It must be remembered, however, that the courts must decide the legality or otherwise of particular crossings. It is not a matter for the Ministry of Transport to issue statements of this sort for the guidance of magistrates. If they feel that the decision at Bristol was a wrong one, they have every means of appealing against the judgment.

Restriction on Hire Purchase Agreements

 RECENT Board of Trade Order restricts the terms for initial deposit and repayment period in the hire purchase agreements related to the purchase of bicycles. For. bicycles the deposit is 25 per cent., and the maximum period within which the balance of the price must be paid is one year.
EVERY CYCLIST'S POCKET BOOK

$7 / 6$ or 7.9 by post from the offices of this journal.

Building
 Construction, Brazing and Finishing

WHEN red heat is reached, warm the end of the brazing rod and dip it into the flux, some will adhere to the heated end of the rod and the rod should be touched lightly against the tube just above the edge of the Iug.
If the heat is correct and all cleaning operations have been carried out; the rod will melt and flow into the gap between tube and lug. Feed the brass info the joint until it runs through and just shows at the side of the head tube. Make sure that it runs through all round the tube, then whilst still hot, turn the job on its side so that the head tube is vertical and complete this joint in a similar manner. Some makers-prefer to clean up the joint at this stage as it is easier to handle.
The rest of the "diamond" can be assembled with flux and the straight edge Fig. 2B bolted through the bottom bracket shell. Next, the down and seat tubes are lined up parallel with the straight edge and then drilled and pegged to hold firm. The test bar, Fig. 2C, is inserted through the head tube and lined up with the seat tube by taking comparative measurements from the straight edge, Fig. 2A, which is held across the down and seat tubes. Drill and peg all joints even if the tubes are a tight fit in the lugs. Check again with the straight edges for alignment. All tubes should be in the same plane the C/L bisecting all tubes irrespective of diameter. Proceed to braze the remaining joints as before, turning the job round so that the metal flows "downhand." If the edges of the lugs start to curl up (for example the ends of scroll or spear point pattern cutouts) tap them down gently on to the tube whilst they are still warm ; do not attempt to fill up the gap with brassthe lug should touch the tube. After brazing and before the chain and seat stays are assembled, file up and polish behind the seat lug and bottom bracket shell as these are very difficult places to clean up once the stays are in position.

Chain and Seat Stays, ete.

The next operation is the fitting and brazing of the rear fork ends to the chain stays. These should be cleaned, fluxed and pegged like the main joints, taking great care to sec that the angles of the wheel slots in the fork ends are identical, as correct rear wheel alignment is impossible if they are not alike. An alternative method of brazing these joints is to load the end of the tube with flux and powdered brass and then heat the joint until the brass flows through.
After brazing and cleaning up, the fork ends should be set so that they will be parallel when in position, next fit the chain stays into the bottom bracket, fluxing and pegging as usual. Care must be taken to get chain stays identical in length so that the wheel will line up correctly. A rear wheel should be tried in the rear fork ends and when it is held to the back of the slot, the rim should be central between the chain stays. An ordinary cycle rear spindle fitted with cones and nuts should be used as a distance piece between the rear fork ends and it should be adjusted so that the distance between the inside faces of the fork, ends is $\frac{1}{4}$ in. wider than

(Continued from page 35; February issue.)

the finished size, as the operation of brazing in the chain stay and seat stay bridges causes slight distortion and the fork end opening becomes narrower. This spindle -helps to locate the chain stavs whilst the seat stays are attached.

The seat stays should have a small air hole drilled near the top on the underside; and brazing can then be proceeded with as before, turning the job over to obtain "downhand " conditions.

There now only remains the chain and seat stays bridges and other bits and pieces such as pump pegs, mudguard eyes, etc., to be located and brazed to the frame and the frame is then ready for tracking up, filing and polishing.

The Front Forks

The front fork should next be dealt with and the same routine followed, that is, cut the tubes to length, clean them and the crown,

A light forge suitable for brazing small cycle and engine parts.
etc., apply flux and assemble. Remember that the fork column is butted or reinforced at the bottom and this butted portion must not all be cut away.

Some manufacturers prefer to braze in the fork ends first and then fit the blades to the crown, others prefer the crown brazing to be done first and the fork ends lined up with a. suitable spindle. No matter which method is used the front wheel must fit centrally between the blades. Furthermore, the blades must be parallel, that is one fork end must not be in front of the other and air holes must be drilled to relieve the presure inside the fork blades. It is best to set the fork as accurately as possible before brazing and as with the frame there must be no misalignment or straining or serious distortion will take place.

If building without a jig, an easy way of lining up the blades is to fit a straight piece of $5 / 16 \mathrm{in}$. diameter bright steel bar in the fork ends and. place a similar bar on the front of the blades just below the crown and then: "sighting " them, any discrepancy will be shown greatly exaggerated by the two bars. Brazing should be carried out as previously described, the spelter should flow right through the crown and show on the column. Do not, however, hold the job at a high temperature for longer than necesary

The "bits," i.e., lamp bracket boss, and mudguard eyes should next be added. The type that locates in a hole drilled in the tube are the handiest to use unless jigs are made.

Tracking Up

After brazing the next operation is tracking up. It may be argued by some persons that, as all parts were assembled and pegged before brazing in perfect alignment, this should not be necessary. In practice, however, slight distortion usually takes place, so both frame and fork should be checked with the straight edges and fixtures and any errors corrected. Taking the front fork first, it will be seen from the drawing that the inside face of each fork end is equidistant from the centre line and the axis of the front wheel spindle is parallel to the front face of the crown. That is, one blade must not be in front of the other. Check this latter dimension by inserting one of the $5 / 16 \mathrm{in}$. diameter bars in the fork ends and "sighting" its position relative to another placed on the front of the blades just below the crown, as previously described. If any error is found the crown should be held in a vice and the blades set correctly. Small errors can be rectified cold, but if the discrepancy is great, local heat must be applied before setting. Next the blades should be lined up with the aid of the fixture, Fig. 2D. The fork should be placed front downwards with the column between the locating blocks and the position of the front fork ends noted. The width of the fork ends is determined by the width of the front hub used and this should have been marked out on the fixture previously. The fork ends should be set $\frac{1}{3} \mathrm{in}$. wider than this and the inside face of each fork end must be equidistant from the centre line. The fork should be held in the vice and each blade set to the correct line on the fixture, local heat being applied if necesary. Finally, try the front wheel in the fork, it should fit in withcut having to spring the fork blades, and it should fit centrally between the blades.

To track up the frame the fixture Fig. 2B should be bolted through the bottom bracket and then held in the vice. Start with the down tube, by checking with a pair of calipers the alignment of the tube. A reading should be taken near the bottom bracket and another at the other end of the tube. If these measurements from the tube to the straight edge are not identical distortion has taken place, and it must be corrected in a similar manner to the fork blades, only it must be remembered that the gauge of the down tube is much thinner than fork blades, so if heat has to be applied it should not be excessive.

When the down tube is parallel to the straight edge, the fixture should be slackened off and rotated until the straight edge lies alongside the seat tube. Comparative measurements should be made from the tube
to the straight edge and any errors corrected as before.

Both tubes will. now be in the same plane and at right angles to the axis of the bottom bracket ax́le. The fixture can now be removed and the test bar for aligning the head and seat tubes should next be fitted into the head tube. If the head tube is true with the seat tube there will be a gap of $1 / 16 \mathrm{in}$. between the bottom of the test bar and a straight edge, which should be laid alongside the down and seat tubes about 6 in . from the bottom bracket. It is absolutely vital that correct alignment with the seat tube is obtained or the machine will not steer correctly. Therefore, check with the straight edge on both sides of the tube and set the head tube if necessary by holding the head on. a bar held in the vice and twisting the frame into alignment. If care has been taken during the building, with drilling and pegging very little rectification is necessary, in fact, a few minutes spent on making sure during the preliminary stages of construction can save an hour or more later.

Now that the "diamond" is true there
only remains the chain stays to be tracked up. This is done by first checking with the long straight edge which should be held touching the head and seat tubes. The little pointer should be set so that it just touches on the inside face of the rear fork end. Then the straight edge should be tried on the other side of the tubes and, if the chain stays are correct, the small pointer should touch the other fork end. If there is any error the 'chain stays must be pulled only half the distance shown by the pointer. They should be set so that the rear fork end opening is $\frac{1}{8} \mathrm{in}$. wider than the width of the hub used -and the fork ends set so that they are parallel.

Filling and Polishing

The final operations of filing and polishing can make or mar the appearance of the finished machine. File marks show up very badly on plated and coloured enamel finishes, so great care should be taken to eliminate them.

The lugs should be filed thin at the edges, all cutouts cleaned out and most important of all there must be no undercutting of the
frame tubes at any point or this will seriously weaken the frame. If chrome plating is included in the specification, fine files and emery tape must be used intelligently to prepare the surface for the polishing.

The crown ballrace should be fitted at this stage and it should be a light driving fit on to the seating. Bottom bracket threads should be retapped and a cup tried in each side, all lubricator holes drilled and tapped and the head race seatings reamered true. It is best to do these operations before enamelling as it is very difficult to avoid marking the enamel if much work has to be done afterwards. Another job which is best done before enamelling is to make sure that the seat pillar will fit in the seat tube.

After filing up and all drilling and tapping is completed, the frame should be polished with emery tape all over and the frame is ready for enamelling.

Best quality work is usually treated with some form of rust preventative such as "bonderising" before enamelling, so have this carried out by a reputable firm who specialises in stove enamelling.

The Modern Bicycle and Motor-cycle

A Few Facts and Figures Concerning the Machines of Pioneer Days and the Present Time

SO far as I am-aware the Russians, have not yet invented the bicycle. Nor do they use it as much as we do for, in 1943, there were under a million in use in Russia as compared with $12,000,000$ in the U.S.A. and $10,000,000$ in this country.

We are, in fact, incomparably the greatest users, makers and exporters of bicycles in the world. The same applies to motor-cycles and now looks like being followed by mechanically assisted bicycles of which I counted I 8 different makes at the Earls Court show.

But before we proceed, let us assist the Russians-when they have finished appropriating the airplane, television, the atom bomb, radio, penicillin, radium, the submarine, photography and almost everything else-to invent the bicycle.

They will have to ante-date Mr. Kirkpatrick Macmillan of Dumfries who, in 1839, made the first proper bicycle (see last month's issue). He was even fined for furious riding. Macmillan's rear wheel was the larger.

It was the fortuitous outbreak of the Franco-Prussian war that threw some 500 bicycles intended for France on to the British market and laid the foundation of British supremacy in this field.

Front wheels grew in size and the "pennyfarthing" was known as the "Ordinary." What we would call the ordinary was called the "Safety" and came into being when H. J. Lawson, in 1876 , thought up the idea of propelling the bicycle by a geared-up transmission on to the rear wheel. The boom came in the 'gos with the advent of the Dunlop pneumatic tyre. This can be illustrated by the simple fact that in the Exhibition of 189098.6 per cent. of the " bikes" had solid tyres, whereas in. 1894, 89.5 per cent. already had pneumatic tyres. At this period there was a bicycling school in Long Acre; 76 weeklies and I4 monthlies were devoted to the sport. Machines weighed up to 50 lb . as compared with to-day's 30 lb . average.

In the old days, a bicycle cost about $£_{j} 0$. Between the wars the cost went down to the \AA_{5} level and now-for the luxury types--we are rapidly getting back to the pioneer prices.

Nowadays there is a tendency towards the mass use of famboyant colour schemes, many of them very attractive, and an increase in the use of alloys such as duralumin.

By THE MARQUIS OF DONEGALL

It is not the custom of makers to give the weight of their machines, but they vary between 30 and 40 lb ., and the tendency is towards lightweights.

The remaining marked tendency is towards a decrease in chromium-plating with consequent increase of paint area, as during the war. Undoubtedly, the highly ingenious "Derailleur "type of gear is catching. on increasingly in this country.

Motor-assisted Bicycles

To describe the tiny motor, attached to a bicycle, as the greatest locomotive innowation since the invention of the wheel, would be an exaggeration.

It has existed for a very long time and 1 had one at the end of the first World War. It involved an auxiliary back wheel which the motor drove and was a somewhat clumsy, though efficient, contraption.
But when no fewer than 14 separate manufacturers displayed auxiliary engines at Earls Court, and the National Federation of Motorised Cyclists has been formed, the movement and its implications can hardly be ignored.

It is inevitable, whether these new-type roadfarers like it or not, that they will be known as "Poppers," and it is a somewhat frightening thought that any one of them who has passed the test on a pop-cycle is fully entitled to ride at 120 m.p.h. up the Great North Road on a Vincent $£ 504$ "Black Lightning" having achieved that speed-if still alive-in 44 seconds.

Another sobering thought in connection with Poppers is that they are increasing the number of law-breakers in direct proportion to their own recruiting figure of 800 per week. As far as I know they all run on a mixture of petrol-and-oil and it is against the law to fill them up with such a mixture.
On the other hand, ancient motorised cyclists, such as I, have a rooted aversion from putting in the necessary ingredients separately. Good mixing is part of our art just as much as the brewing of a secret wax is alchemy-in-excelsis to the ski-runner. Thus, only by breaking the law, is the best popping achieved and something will have to be done about it.

As a graduate during War Correspondenia days-(2nd World War, please!)-from a motorised cycle to an Autobyk, ("Excelsior"" is now very smart and grown-up at about £80), I am still a Popper at heart and have the same morality problem over fuel.

But I am in the position of a very lightskinned coloured person and so able to "pass": in my case, to be accepted without too much sniggering into the great brotherhood of real motor-cyclists.

Not so the 100 per cent. Popper whon neither the pedalling cyclist nor the goggled and crash-helmeted fraternity will condescend to own.

But this world is full of rough justice, and if we go on breeding at the rate of 800 a week, we Poppers will soon be in a position to turn the social tables on all other roadfarers. Let the National Cyclists' Union, the Cyclists' Touring Club, the R.A.C. and the A.A. think again.

In the transition stage between the Popper and the motor-cycle we must mention the power-wheel and the Scooter-type. The power-wheel, by Tube Investments Lid., ir:corporates a rotary two-stroke engine in the hub of the rear wheel. The petrol tank is combined with the luggage-carrier. The Lambretta is an example of the Scootertype and claims $140 \mathrm{~m} . \mathrm{p} . \mathrm{g}$. as ${ }^{\circ}$ opposed to the power-wheel's 220-300 m.p.g. It incorporates a pillion saddle and spare wheel.

Motor-cycles

As in the case of bicycles, this country produces and exports by far the greatest number of motor-cycles of any nation in the world. Although we cannot be said 10 have a monopoly of world leadership in motor-racing, the Continent has for years been trying to take the motor-cycling supremacy from us. It is estimated that the number of motor-cycles on Britain's roads to-day has increased by about a quarter of a million since 1939 to about three-quarters of a million. Part of this increase can, of course, be attributed to the increasing cost of running a car. But quite a proportion of it can be attributed to the improved mechanical smoothness in running and all-round comfort of motor-cycle riding.
(Continused on page. 47)

Around the Wheelworld

By ICARUS

Raising the Prestige of Cycling

ASPEAKER at a club luncheon recently made seven suggestions for raising the prestige of cycling. Chief of them were that a club for cyclists should exist in London, each manufacturer should produce a really super de luxe machine, H.M. Stationery Office should publish a Blue Book on cycling, and there should be a University half-blue for cycling.

There was a club for cyclists in London in the early part of the present century; it had spacious rooms for meetings, a restaurant and a-bar. Prominent cyclists like C. A. Smith and S. F. Edge subscribed the money to bring it into existence, but it failed within a year. At that time there was a similar call for a club on the lines of the R.A.C. When it was created, however, those who had asked for it did not-support it, and I do not believe such would be any more successful to-day, probably less, because cycling in those days was the hobhy of the rich. It was not a utilitarian vehicle as it is to-day.

Cyclists in general do not patronise expensive clubs, and it would be impossible to start a club for cyclists in London which could provide meals and amenities at a price they are willing to pay. That is why the cycling organisations have lists of recommended tea houses. Cyclists in general have not a lot of money to spend.
Regarding the super de luxe machine 1 do not know what specification the speaker had in mind, but most manufacturers I thought have a machine which would answer to that sobriquet. Yet to-day no manufacturer could depart from his manufacturing programme, and even if he could the demand for such a machine in view of the ruling high prices of even standard roadsters would be very small, probably in the region of $£ 40$ or more.

Regarding the Blue Book, here again I doubt whether H.M. Stationery Office are best equipped to produce such a volume. I should have thought that was a matter best tackled by those already in the publishing trade with experience of cycling and its history. The Stationery Office has not the means of distribution which ordinary publishers have. If they produced a Blue Book on cycling they would be pressed to produce one on boating, and all other sports.

Motorised Bicycles

AREADER sets me a poser. He possesses a motorised bicycle, and wants me to recommend a suitable club which he may join. I do not know of one. The motor cycling clubs do not accept motorised bicyclists as members, and they are frowned upon by the Cyclistṣ' Touring Club, the secretary of which has already expressed his views concerning them. He thinks they are neither flesh nor fish.

As the use of motorised bicycles is growing and will continue to grow, the moment seems, right for someone to form a Motor Bicyclists' Association. This might mean a secession from the ranks of the C.T.C., some of whose members own motorised bicycles, and because of that are denied legal aid. It is not possible to form a very accurate estimate of the number of motorised bicycles now on the roads. Possibly it is of the order of 50,000 , and from this pool can be drawn a sufficiently large nucleus to found a national body to watch the interests of its members. A motorised bicycle according to some is not a cycle, according to others it is a bicycle-assisted motor, others insist that it is not a motor
cycle, but none can deny that it is a twowheeler, and as such it should have some body to watch its interests.
The C.T.C. with its unfriendly attitude towards it and mechanical-propelled vehicles generally is obviously not the body to start it, even though it were minded to alter its Articles of Association to do so. In any case, its general outlook is archaic and sour, and confined to "fahting for sarclists's rahts!"

-B.L.R.C and Manufacturers' Union

W. C. RAINS, hon. general secretary of the B.L.R.C., tells me that the League welcomes the offer of the Manufacturers' Union to mediate on the question of road racing control. In the interests of the sport nationally, and in view of the rapid approach of the 1952 season the League stresses the urgency of the matter.
The fact-that the Manufacturers' Union has had to make this offer to mediate, indicates that none of the national bodies is able or capable of doing so.

The Late Horace Cunnington

I
DEEPLY regret the passing of my old colleague, Horace Cunnington, the wellknown London Clubman and Press Photographer, who worked for The Cyclist up to 1940. He was keen as a clubman and a willing and ready helper, particularly on record attempts, as Heppleston and Earnshaw will testify. He was a member of the Tooting Bicycle Club, and last year was elected president. His interest in the club was such that last year he resumed racing. In his second race after 13 years he rode a " 12 "" covering 230 miles-the best result. IJis photographs of cycling events were expert.

Sir Arthur Du Cros Married

MI $\begin{aligned} \text { congratulations to Sir Arthur Du Cros, }\end{aligned}$ Bart, on his marriage to Miss Mary Louis Joan Beaumont, which took place on December 22nd at the British Consulate in Nice. Sir Arthur is the sole surviving member of the famous Du Cros family which founded the original Pneumatic Tyre Company which later became the Dunlop Rubber

Company. Miss Beaumont was for many years secretary and family companion to the late Lady Du Cros. She is a linguist, and they motored exterisively in Japan, China, Korea, Australia, Africa, and the Americas. They drove their own cars on Service in London during the last two wars.

Sir Arthur was himself a famous racing cyclist, and was present when Hume won the first races ever to be run on pneumatics at the Queen's College Sports, Belfast, in 1889. He has often shown to me the varfous trophies and prizes, including inscribed gold watches, which he has won on the track. Although over 80 years of age he is still extremely athletic. He was the guest of honour at the Roadfarers' Club Dinner two years ago when the diamond jubilec of the markcting of pneumatic tyres was celebrated. Harvey Du Cros, Senior, and his four sons, Harvey, George, William and Arthur (now Sir Arthur) between them founded the famous company.

At that dinner I was delighted to meet Lord Courtauld-Thomson, K.B.E., C.B., son of R. W. Thomson who patented the principle of the pneumatic tyre in 1845 , six years after Macmillan had produced the first pedal cycle.
Reflector Studs-Centre or Side of Road? DISCUSSIONS are taking place as to whether the cat's eye studs. would be better located at the nearside of the road instead of the centre as at present. In the latter position they tend to keep motorists to the centre of the road and thus away from the nearside kerb, which is a definite advantage for cyclists, especially in fog.

On the other hand cyclists would welcome the nearside location where they are more readily picked up by the headlamps of bicycles which are nearly always ridden on the nearside of the road. The danger with the nearside location is that parked vehicles would block them out for considerable distances, especially on main roads which carry considerable volume of night traffic-Birmingham-Coventry to London, for example.

Personally, I favour the central position

> EVERY CYCLISTS' POCKET BOOK
> (Vest Poekent sizee) 400 pankes, fully illustrated. 7/6 or $7 / 9$ by post from
> southampton Sireet. Strand, L.ondon. W.C. 2

A magnificent panorama of Dale country seen from the ancient Stone Circle of Arbor Low, looking across High Rake to Fin Cop with the High Peak countrv iu the far distance.

Cycling is graad fion....
IT'S TIME YOU HAD A

Cycling really is grand when you ride a B.S.A. with B.S.A. 3-speed hub with Snap Control for quick, positive change of gear.

keep Kouneve on Halfonds

other people's throats.
GROOMBRJDGE

people of the truth of these things, as difficult as it is to get them to "train" for their cycling pleaśures when they have given up the game for so many years. But once you can convert, and the individual is willing to follow "advice, such folk become the greatest cycling advocates extant, sometimes to the extent of becoming a nuisance to their friends. I once asked one such why he so forcibly rammed his enthusiasm down

A Good Protector

THINK I mentioned some months ago that I bought a plastic cape guaranteed to be tough and not to leak at the seams, and sure enough it has carried itself bravely. I have given it great use-or rather the weather has-and have not taken any particular care with it, for it has been used as a roadside carpet on numerous occasions, and often enough jammed into the bag after -a shake to remove the surface water. Naturally it does not stick and that is a real gain over the oilskin ; and it seems to be less hot on a long, rainy ride, but possibly that notion is due to the cool weather of summer and autumn. Anyhow I am glad to have it now so many moraings are draped with rain, and at twenty-five shillings it is a cheap line. (Perhaps the price has risen since I bought it-I do not know.) The only weakness was the thumb tapes which pulled from their anchorage very early on, but as I seldom use them that was little loss. Now a good cape is a good thing for' a regular rider, one he can slip on and

By F. J. URRY

And So it Goes

"TT'S all very well for you, "but I can't do it. I'm too old and tired." This from a man nearly ten years my junior who was once a fine cyclist, and is now in the sere and yellow with a vengeance. I don't say it is his own fault for none of us can or should condemn the other fellow's way of living, but I am certain the ease of these modern times have had their effect on him and made some difference between what should be a mellow autumn instead of the chilly winter. It makes one feel very sad, this dropping away from a bright and lively youth to a dodderingness long before the count of time has justified it-if ever it does in any of us. My friend had been unwise and regretted it now, and I was arguing it was not too late to repair some of the lost activity by quietly riding a bicycle. But he shook his head; not only had the muscles suffered but the nerves also, and the press of traffic just frightened him. I report this incident because I feel so many people of my generation have fallen into the same ploy of inactivity through developing the easy habits without considering the later years of life and all they can mean to a man if he retains a reasonable fimess, and what better for this purpose than cycling? It is something worth more than a passing thought among the active cyclists of to-day. So many of them do not see the results of inactivity until it comes, their way, and then it is too late. My advocacy to remain a cyclist in the full sense of that term holds for the individual far more than a liking for the pastime, for verily I believe it means a full life and a happy one.

The Way to Comfort

TT
so happens that occasion arises when the muscles are not too kindly disposed to undertake the task allotted to them. That is a reminder of the years, and as such I accept it. If I never had an ache or felt a stiff tendon creak it would, I suppose, be unnatural, and when this occurs the use of a little lower gear and a mile of very quiet progress has always restored the muscular performance to normality. People are in too much of a hurry to admit they are too old, when really they are too lazy to rid themselves of the ancient creak; it disappears so easily if you will let it, and then the rest of the day is restored to you, if not so young as it once was, at least to desirable pleasantness. I know it is difficult, to persuade
"Because," he said, "I know how much better I am, happy in the feeling and in my cycling," and really what can you say in criticism? Occasionally I am taken to task as an ulura enthusiast, but most of my critics overstep the mark by insisting on my dislike of other modes of travel as an excuse for themselves. They, of course, are entitled to their opinions, but apparently because the means of fulfilling mine are cheap and simple, they are not publicly popular. Yet I maintain if you like a thing, say so, and as I presume everyone likes good health, and since in my view cycling is one excellent way to obtain and retain it, I am bound to keep on saying so.

Making Converts

TT is true we are in the dull season of the year, and following on a rather dreary summer and autumn, outdoor wanderings are not everyone's desire. Yet the worst of the weather (excluding snow and icy road surfaces) is never as bad and not nearly so uncomfortable as it looks from the inside of a warm room. I took a man for a ride on a recent Sunday morning because the local golf course was closed owing to the rain-soaked turf. I loaned him a bicycle, saw that the position was right, draped him in a big cape and away we went. In eight miles a farmer friend gave us a farm-kitchen greeting and half an hour's yarn ; a little farther down the road I collected a rabbit on his behalf from a keeper friend. In a little less than twentyfour miles we came home with nothing worse than dampened shoes and stockings, and his comment was, the exercise, despite a slightly uncomfortable seating department, had done him far more good than yarning in a club house and drinking liquid he did not really require. I told him the saddle trouble would quickly disappear with regular riding, and as an old cyclist he believed me; but he wanted to buy the bicycle, saying he had never ridden a better or one that fitted him so perfectly. That, of course, was the result of moderate gearing and proper positioning. I do not sell bicycles, but am told that one will not be returned to me until the delivery of a new one made to its specification; a wise man, I think, to mix his games, to bite off his quota of fresh air under exercise and occasionally change his visions. It is so easy to get into the habit of going the same way and tramping the same sward when we have the whole of an area to choose from. That indeed is another value cycling carries, you really see and know your countryside without galloping the miles away.
out hurt to be treated very casually withwhy I mention it here ; and that is the maker is not given on the cape, but if I remember rightly it was "Polus," or some such name; anyhow, a title in the mackintosh world I had not before heard. And while on this subject of capes, when will someone give us a pair of leggings similar in design to those made by Brooks of saddle fame some years ago, the backs of the legs open, but the thigh pieces similar to the all-in leggings ? Perhaps the answer is that, with shorts the main cycling wear, the need for leggings of any kind has largely disappeared, but there are stil! hundreds of thousands of us riding to work who would welcome nether protection.

THE MODERN BICYCLE AND MOTOR-CYCLE

(Coniinued from page 43)

Historically, it is interesting to note that the "Petrol-Cycle" ante-dates the "Ordinary" bicycle in that Edward Butler, of Erith, took out a patent for the mechanical propulsion of cycles in 1884.
Before the Act of 1896 which abolished the man with the red flag, Butler had constructed a tricycle contraption with two front wheels and a water-cooled driving wheel at the rear. Steering was by two levers and the hub incorporated an epicyclic 6-I reduction gear.
It is difficult to mention particular makes of motor-cycles without giving an impression of favouritism, but a few facts can do no harm
A.J.S. motor-cycles, for instance, hold more world records than any other British make and they made, among their famous winners, the machine ridden by Hugh Viney in the International 6-days' trial. The B.S.A. Company have recently completed the shipment of their hundred-thousandth export machine since the war. Australia bought 5 I per cent. of their overseas output, and they claim one-third of British motor-cycles exported to the U.S.A.

Australasia is likewise Royal Enfield's best market overseas, and Triumph are supplying more than 70 police forces throughout the world, apart from a recent order for the Icelandic post and telegraph service. Unless the Icelandic tracks-you can hardly call most of them roads-are greatly improved since was there in 1941, this will certainly be a mass machine-rattling test.
 Word from Wiltshire NE of those good correspondents of mine, writing to me about the English scene, and mentioning places of interest discovered on cycle tours, sends me greetings from the ancient town of Malmesbury, in Wiltshire. Do I know the fine Market Cross of the I4th century? Am I aware that Malmesbury is the site of a great abbey, founded as far back as A.D. 680 ? Well, I was aware of these facts, and I do know something of this old Wiltshire town. I recall a summer's day many years ago when, touring Wiltshire (with the main object of a visit to Stonehenge), I stopped at Malmesbury, admired the ancient Cross, consumed a mammoth lunch at "The Bell"-and came away with a feeling of affection for the place and its people. Wiltshire is not as well known as it deserves to be: myself, I love its rolling uplands and its thatched cottages, and I ever have awesome thoughts of Stonehenge and its unfathomable mystery.

Many "Breeds"

T was outside a little inn called "The Contented Man ' that I saw the collection of cycles and discovered that every one was of a different make. The machines belonged to a bunch of fine young fellows and girls from a neighbouring manufacturing town
out for a spin in the green countryside. I like examining bikes, and I found when I looked at these well-kept machines that the collection contained a Royal Enfield, a Hercules, a Raleigh, a Sun, a Robin Hood, a B.S.A., a Coventry Eagle, and an Armstrong! Mixed breeds
but each bearing a famous name, and a worthy example of British cycle-manufacture. In the inn, chatting with the members of this town club, I talked of bicycle names and cycling, and I enjoyed the company of these factory lads and lassies. . . happy in their freedom of the road. In fact, I suggested that the name of the inn might wel! be changed to "The Contented Cyclists"!

Holiday Vista

ON this chill March day, with the wind blowing through the trees which are not yet garbed in green, it seems a far cry to summer holidays, but I am thinking of them because on my desk there is a kindly invitation to spend a week in July with an old cycling friend who now lives in peace and quietness in "silly Suffolk." Well, it would be no bad plan to ride slowly down quiet Suffolk lanes and visit Clare and Long Melford, and, maybe, ride to the coast and do a bit of fishing with some old East Anglian worthy in Sole Bay. Quite pleasant to visualise a trip to ancient Ipswich, where stands the "Great White Horse" of Dickensian fame, and where the hum and bustle of modern industrial life rubs shoulders with the slow and stately past. And there is all the magic of Constable to lure one... yes! perhaps I will accept that invitation, and-when high summer comessojourn in Suffolk.

OUR COMPANION JOURNALS

Practical Wireless, 1/-Every Month
Practical Television, 1/- Every Month
Practical Engineering, 6d. Every Friday

Dancing Daffodils

THOSE golden trumpets which wave so gaily in the breeze in the Rectory garden delight me a lot: Poets have sung the praises of the daffodil, and in truth there are few more glorious flowers. Beneath the ilex tree in the Rectory garden there is a veritable carpet of them, and those bulbs I planted in the border of my own garden have come to fine fruition, and make a splendid show. I like to think of them as Easter flowers, and I know that on Easter Day bunches of them will grace the altar in our village church, breathing the message of new life, and the re-birth of beauty in every garden and field and hedgerow. Not all the roses which will bloom in June delight me more than these golden blooms which are the queens of spring and the heralds of summer sunshine which I hope will follow.

Village Signs

FROM time to time one sees letters in the Press about the desirability of erecting signs in our villages, portraying the name of the village prominently and giving facts about its history, its points of interest, and its place in the annals of our chequered story. I seem to remember that the late Ed. J. Burrow, who loved the English scene quite passionately, was a strong advocate of the village sign, and, in conjunction with the Dunlop Company, he did something towards the erection of a number of signs. I suppose the war killed the scheme, but I am all in favour of such signs. How often does one approach a village, see little or no indication of its name, and nothing to show that it possesses something of genuine interest to the historian or the antiquarian? And we must not forget what a boon signs would be to the tourist from overseas! Bright and colourful signs, gay with crests or pictures of items of interest, would be a fine thing. Maybe our "planners" might be persuaded to do something about it!
bless my Sturmey-Archer, and ponder upon
the good things which we enjoy in this year

[^1]Published about the 30 th of each month by GEORGE MEWNES, LIMITED, Tower House, Soushampton Street, Strand, London, W.C.2, and Printed in England by W. Speaight \& Sons, Lid., Exmoor Strect, London, W.10. Sole Agents for Australia and New Zealand-Cordon \& Gotch (A/sia), Lid. Sole Agents for South Africa-Central News Agency, Ltd. Suhscription Rate (itacluding postage): For one year, Inland and Abroad 14s. (Canada i3s.). Registercd at
the $\mathrm{G} . \mathrm{P} . \mathrm{O}$. for transmission by Canadian Magazine Post.

G.E.C. \& B.T.H. GERMANIUM

CRYSTAL DIODES

B.T.H. LATEST TYPE MOULDED IN

THERMO-SETTING PLASTIC
Both Wire Ends for Easy Fixing. 416 each, postage $2!\mathrm{d}$.
SILICON CRYSTAL VALIVE 316 each, postage 21 d .
Fixing Brackets 3 d . Extra
Wiring instructions for a cheap, simple but high quality Crystal. Set included COPPER INSTRUMENT WIRE ENAMELLED, TINNED, LITZ.
COTTON AND SILK COVERED. Most gauges available. B.A. SCREWS, NUTS, WASHERS soldering tags, eyelets, and rivets. TUFNOL ROD, PAXOLIN TYPE COI FORMERS AND TUBES. ALL DIAMETERS. Latest Radio Publications. SEND STAMP FOR LISTS.

CRYSTAL SET

 NCORPORATING THE SILICON CRYSTAL VALVE RECEPTION GUARANTEED Polished wood cabinet, 151-, post 9d. POST RADIO SUPPLIES 33 Bourne Gardens; London, E. 4TRANSFORMERS

t 350-0-350v., 171 ped to give almos 26 v voltage up Whargers, models, 1616.

No. 4. 4v.-9v.-20v. 4 amp. For 2,6 and 12 voit chargers, 16/No. 5. Auto wound, 10-0-110-200-230. 250 v . 150 watts.
For general yoltage for gen
$n, 1616$. changing, up or down, 1616.
No. 6. $250-0-250 \mathrm{v}, 100 \mathrm{ma}, 6.3 \mathrm{v}, ~ 3.5 \mathrm{a}$ 5v. 2a., 221.
Il types upright or drop through. No tapped 200-230-250v. Interleaved, Im pregnated, Screened, Guaranteed,

C.W.O., C.O.D

HILLFIELDS
 RADIO

8, BURNHAM ROAD, WHITLEY, COVENTRY

FOR SALE

ALUMINIUM AND ALLOY SHEET, all sizes and gauges.
CALLOW \& CO
10, Kingly St., W.1.
(Regent 2933, (PB Ex.) Ext. 11.)

WORKSHOP EQUIPMENT
BALL BEARING PLUMMER BLOCKS, Standard Spindles for sawing, itn. 259. Coll dijling from $4 / 6$. Flanges, Bearings
 Sench, 8d. machines, 38/9. nch, Bd. for. fully illustrated Catalogte. C CIECTiीC MOTOPS iPECIAL OFFER, \rightarrow h i, 420 r.p.m 30v. Capacltor Single Phase, will rur Brand comestic A.C. Mains. Price econditioned, G.E.C., \&illoiO. Carriage 16 both types. Many other Radio and C. Northalf, 16, Holly Md., Quinton, Smethwick. Phone: WOO 3166

NQ MAN CAN KNOW TOD MUCH OF HIS PRODECT

THHE UETR LENS COMPANY
75, Finsbury Court, Finsbury Pavement, London, E.C.2.

KARLENITE Plastic MARBLE

Crystalline! Veined!-and sets rock hard!
The entirely new artificial Sione for casting Bookends, Ashtrays, Wall-Vases Statuettes, etc. KARLENITE sets rock hard with a scintillating crystalline structur like marble or alabaster." It is enlormously strong. thighly resistant to heat,
impervious to water. Literally any type of natural "veihing ". can be simulated impervious to water. Literally any type of natural ""veihing ". can be simulated
in any colour. A range of pigments is available for this purpose. Most attractive in any colour. A range of pigments is availa
marbie effect in models, plaques and staruary.

MAKE YOUR OWN Flexible MOULDS Elastomold Synthetle Rubber for

 perfect detail and repetition casting.ELASTOMOLD makes flexible moulds. that faithfully reproduce even the mos minute details of ornamentation and surface texture. ELASTHMOL is is permanent Mquids can be taken from any type of material inciuding Karlenite, wood, meral plaster, cement, stone, glass, ivory. ELASTOMOLD is ineredibly simple to us nd from the moulds casts can be taken easily, quickly without flaw
Send for full details of this easy, fascinating and profitable hobby.
KARLENA ART STONE COMPANY LTD.
55, DEANSGATE ALASTICS 2, FEANISION, MANCHESTER,

REFILL YOUR OWN BALL PEN VISCOID REFILL KIT

 Post Free $3 / 8$ inc. tax Complete with Tool and Illustrated CONTAINS SUFFICIENT INK FOR IS LARGE REFILLSAvailable in Blue, Red and Gr
VISCOID INKS (P.M.)
6, Sherlock Mews, Sak
hadiogran parts
L. ROBINSON \& CO., (GILINGHAM)LTO.,

Decea A.O. Gram. motors adjustable 78 or $331 \mathrm{r.p.m} \mathrm{~m}$. 44 ditto for 331,45
and i 78 , instantiy switchable, f6.10.0.
 G.P. 20 hil-fi crystal plckups, 13.13 .6 with lid, tha.5.0. Collaro, 9-record A.C. Autochangers fitted Acos h1-f
head. single-speed mode1, head. single-speed model, 512.2 .0 :
3-speed model ${ }^{\text {s. }}$ N.R.
phony. Amplifier with bass, middle phony : Amplifier with bass, middle and treble lifts, amazing tonal realism,
elo.4.6. Bass Reflex Cabinet Kits.
complete, $\frac{\text { E4.12.6. All prices include }}{}$ complete, 84.12 .6 . All prices include
carrlage. Ful Bargain Catalogue, 5d.
N.R.S.; 16, Kinu's Colleqe INoad, London, N. 1.3 .

BATTERY CHARGERS

ADANA (Printing Mathines) Ld Twicken ham, or call 8, Grays Inn Rd., London, W.C.I

SPARKS'
 DATA SHEETS

Are the Safest, Smiplest anll Minest and Tested Dosigns Sceond to Fone sparks' sets set the standaind

THE MY TWO LATEST
TME, "CHEMMY" PORTA HELE rood 'Phone sigs. on Med. and Loag-waves Self-containied acrial and batteries. Tested In Dorset 70 miles from nearest Regional Station and 115 miles from Droltwich, both giving very good 'phone sigs. Size appro
8in. $x 41 \mathrm{n} . \mathrm{x} 2!\mathrm{n}$. Data Sheet with instru tions $3 /=$ plus 2k, stamp.
THE "MMDY:" A 2-valver which Eives amazing results on M. \& L. Waves and with a short aertal. Good. Speaker results All-dry batterles, The Ideal Set for Power Yachts. Dorset tested. DiSheet. $3!=$, plus

THE "CRTERRION" RADMGRAN, A design for tho Quality Enthisiast. 2 Correcting stare bigh and \% Note. Voltage Amplifier, Phase Splitter P.P. For A.C. only. Always plaised.
3 Sheets ofFul-size Plans. PIus Descriptive
matter etc. THE "CONQUFST." An Effclent A.C. Valves, 3 Wave Bands. A.V.C. 4 Watts THE "CHALLENGER."An Outstauding A.C./D.C. Portable for use in any room ircuit, plus Rect, $3 /-$. THE "CUB." A.C.iD.C. 2-Valver Plus Rect. TEIE "CADET." A.C.ID.C. 4 Watt Amplt THE "OLD FOLK'S TWO." An A.C.ID.C. THE "POCKET PAK." All-dry Pocket phone sigs. Med. Wave, 3 THE "JUNIOR." 1-valver M, maves. Data Sheets available from a Crystal Set
to a g-Valve Raviogram. Stamp for List COMPONENTS SUPPLIED
L. ORMOND SPARKS (M)
48.1, HIGII ST., SWANAGE, DORSKE

JAGROSE LATHES
IMMEDIATE DELIVERY:

JAGROSE 3" LATHE
urfacing, Scrent Tails tock Hollow Mandrel Complete with ser of \&28-10-0
E.P. Terms : 65-0-0 deposit, 7 monthl

SPECIAL LONDON AGENTS PORTASS LATHES
3 in. Dreadnought 11 Model [39-10-0 in. Heavy Duty Model E65-0-0 Itin. Dreadnought Model \&85-5.0 ${ }_{6} \mathrm{in}$. Dreadnought Motorised, , $144-7.6$ 3yin. Dreadnought, Motorised, ith Stand C79-10-0 or on Easy Payment Terms.
TRADE ENOUIRIES INVITED
JAMES GROSE LTD. 379.381, EUSTON ROAD, LONDON 379.381, EUSTON ROAD, LONDON,
N.WUS 5231

MAKING A BURGLAR ALARM? (Practical Mechanics, February, p. 165) A.M. UNIT CAMERA CONTROL TYPE 48 less the relay not required, 15/- each SHROUDED SOCKETS to fit, 6d. each, 6.3V BULBS for indicator, 9d, each. P.V.C. MOULDED WIRE for the closed circuit, $10 j=$ per 100 yd coll.
THERMOSTATS, can also be used in
the closed circuit for fire Alarm-glass enclosed to break at $90^{\circ} \mathrm{F}$. 3,6 each.
JOHN FARMER (Dept. A.2.) 194 HARBORNE PARK ROAD, BIAMINGHAM 17.
See also our advert. on p. 186

Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

BUILDING AND STRUCTURAL

L.I.O.B.
A.M.I.S.E.

Building Construction
Costs \& Accoumts
Surveying \& Levelling
Clerk of Works
Quantity Surveying
A.R.San.I.
M.R.San.I.

L.A.B.S.S. A.R.I.C.S.

Builders' Quantities Carpentry \& Joinery Building Inspector
Building Draughtsmanship Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education
Book-keeping (all stages) College of Preceptors
Woodwork Teacher Metalwork Teacher Housing Manager (A.I.Hog.)

Common. Prelim. Exam.
A.C.I.S., A.C.C.S.
A.C.W.A. (Costing)

School Attendance Officer Sanitary Inspector Civil Service Exams.

BECOME A DRAUGMTSMAN-LEARN AT HOME AND EARN BIG MONEY

Men and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of

Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and carning capacity.

OVER SIXTY YEARS OF CONTINUOUS SUCCESS

NATIONAL INSIITUTE OF ENGINEERING

(Dept. 29)
148, HOLBORN, LONDON, E.C.I
SOUTH AFRICA : E.C.S.A., P.O. BOX NO. 9417, JOHANNESBURG

I32-PACE BOOK FREE!
 SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:

* Openings, prospects, salaries, etc., in Draughtsmansłip and in all other branches of Engineering and Building.
* How toobtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MAWY IUTERESTING COURSES

 TO SELECT FROM!A.M.I.Mech.E., A.m.I.M.I., A.M.Brit.I.R.E. A.M.I.P.E., A.m.I.C.E., A.M.I.struct.E., A.M.I.Mun.E. M.R.San.I. A.M.I.E.D., A.F.R.Ae.S., London B.Sc., Degrees.
Fully guaranteed postal conrses for all the aboce and many other examinations and carcers. Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.
If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885, our success record is unapproachable.
ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

\leadsto Free Coupon

To: NATIONAL INSTTTUTE OF ENGINEERING (Dept. 29), 148-150, Holborn', London, E.C. 1

Please Forward your Free Guide to
NAME.
ADDRESS . \qquad
(2) AERO (3) RADIO (4) BUILDING
(5) MUNICIPAL WORK

The subject of examination in which I am especially interested is

[^0]: WISH to make a cheap liquid glue, suitable for binding wood shave mould the mass Can to how mould or pressure mound mass. Can you please explain the method and state if formanin
 Also, can you recommend any books on glues, adhesives and their uses?-A. R. Hiscock (South bourne).
 A GOOD liquid glue for your purpose can be-made in hours in a. non-metallic y: Bol 25 parts of glue, 65 parts of water and four parts of nitric acid, stirring the liquid frequently. Then allow it to cool down and stir into it about $1 / 8$ part of Lysol or carbolic acid.

[^1]: "Practical Mechanics" Advice Bureau
 COUPON This coupon is available until Mar. 31st, 1952, and must be
 attached to all letters containing queries, together with 3 penny attached to all etters coataining queries, together with 3 penny Practical Mechanics.

