MAKING A SYNCHRONISED FLASHGUN

NEWNES PRACHICAL MECMANICS
 EDITOR:F.J.CAMM

JANUARY 1952

PRINCIPAL CONTENTS

ELECTRIGALLY-DRIVEN LAWN MOWER SMALL PUNCHING PRESS UNUSUAL TRANSPORT SYSTEMS

RE-WIRING A CAR MAKING A WATER SOFTENER A TOOL-POST GRINDER

WORLD OF MODELS QUERIES \& REPLIES CYCLIST SECTION

When I want a CLIP I turn to

TERRY'S
 (the Spring people)

1 so to TERRY'S for all kinds of CLIPS - steel, bronze, stainless, etc. When I want a clip made to specification, Terry's Research Department is a big' help in the matter of design (Terry's with 96 years' experience should know a thing or twa!)

Want to know all about springs? Here is the most comprehensive text - book on springs in existence.

Post free $10 / 6$

Solc Makers: HERBERT TERRY \& SONS, LTDi. REDDITCH - London - Birmingham •• Manchester

LDOK!

5 Power-Onerated tools for the Pice of One!

No handyman or model engineer can be without this useful and adaptable tool. It is driven by a \ddagger h.p. A.C. motor and the power cost is infinitesimal. A 13 ft . airline enables the job to be reached without difficulty. Complete outfit, including. A.C. motor compressor, 13 ft . airline, cycle pump or Schrader valve connector and attachment for drilling, grinding and buffing. Write today for full details, stating current available and whether Schrader valve or cycle adaptor required. A larger compressor can be supplied if required.

THE OVERSEAS ENGINEERING CO. LTD. 194.200 BISHOPSGATE, LONDON. E.C. 4 Tel.: BlShopsgate 9878 (5 lines)

Cables: MYCAMYN, LONDON

ACCESSORIES FOR

THE GAUGE 'O' ENTHUSIAST

BASSETT-LOWKE accessories and fittings are immensely popular amongst Gauge ' 0 " Modellers. Their accuracy and realism greatly enhance Model Railway systems, creating the most true-to-life atmosphere. Also they are the best value for money.

WRITE TODAY for the enlarged GAUGE•O'
CATALOGUE
$\rightarrow \sqrt{0} \sqrt{12}$
 details of a host of accessori
only 11 . Ref. : GOII8.

BASSETT-LOWKE LTD.

Hecd Office and Works: NORTHAMPTON
London: II 2 High Holborn, W.C.I
Manchester: 28 Corporation St.

THE "ZYTO" $3_{\frac{3 "}{3 / 2}}$ LATHE BRITAIN'S FINEST LATHE VALUE 1212". BETWEEN CENTRES

Back Geared, Gap Bed, Tumbler Reverse, Screwcuiting, Surfacing, Sliding, Full Compound Slide Rest with Rack Feed, Hollow Mandrel, Hollow Tailstock No. 2 M.T., Set over Tailstock. Supplied complete as shown with full set Changewheels, Backplate, etc. bRIEF SPECIFICATION
Helght of Centres, 31 in
PRICE
Ieleht from
Height from Saddle, 2 a.
Guide Screw ${ }^{8}$ T.P. I.
Headstock Mandrel. admıs 11 a .
Tallstock Barrel, adnils Itia.
Headstock Pulley, 3 Speeds. 31n. Flat Betr
Faceplate Diameter. 6 in .
Overall Length of Lathc, 30in.
BOOK YOUR LATHE NOW
Fully illustrated leaflet of the "ZYTO" Bench and Motorised Latho free and post free on request. S. TYZACK \& SON L ${ }^{\text {º. }}$. 341-345 OLD STREET, LONDON, E.C.I TELEPHONE: CLERKENWELL 8301 (TEN LINES)

By using an ordinary box camera and the Johnson Indoor Photography Outfit you can take splendid indoor snapshots of your family, friends and pet animals. Think of the opportunities for unforgettable pictures. Happy, natural, homely scenes. Mother darning socks by the fire. Father washing up. Baby brother in his bath. The chances you will have are endless.

JOHNSON INDOOR PHOTOGRAPHY OUTFIT

Complete, in box, with Torch, Reflector, Batteries, Adapter, four PF. 14 Photoflash Bulbs and full instructions.

Only

PRICE
 10/8 (Inc. P.T.)

From all Photographic Dealers.
JOHNSONS OF HENDON LTD. LONDON, N.W. 4

CLYDESDALE
 Bargains in Ex-Service Radio and Electronic Equipment

Dessicator Pump Dessicator Pump Coolant Pump

BATTERY CHARGER

Rectifier type 42A. Ref. 100B/1630. A compact battery charger, output 4 amps. at 6 or 12 volts D.C. Inpur 230 v. A.C. $50 \mathrm{c} / \mathrm{s}$ with ampmeter, removable fuses, control switch for each circuit, input and output points, contained in well-ventilated black CLYDESDALE'S 55,19 CARRIAGE PRICE ONLY L5. 19.6 each PAID

> SHADED POLE MOTORS for 2301250 y. 50 crcle. A.C. mains. for 230 2
H. 313 Y. 11100 h.p., 1,500 r.p.m., wgt, 5 |lbs. H. 313 il100 h.p., 1,500 r.p.m., wgt, S|lbs
each \&1.15.0. H. 314 I 1100 h.p., 1,500 r.p.m., Wgt. 4 ibs.
each 1.7 .6 . H. 321 SR.I, 3,000 r.p.m:, wge. 2ilbs., H. 322 SR.2, 2,000 r.p.m., wge. lilbs., each ©I.5.0.

Still available :- New List No. 8

(U) T Y CN D A LI S CO.LTD. GLASGOW STREET

Branches in Scotland. England and Northern Ireland.

Pelmanism
develops:-

- Courage
-Initiative
-Judgment
-Will-Power
-Concentration
-Self-Confidence
Pelmanism
climinates :-

Worry

P'cssimism
Depression
Frustration
Forgetfulness
Weakness of Will

HOW TO LEARN LANGUAGES

The Pelman Languages Institute teaches French, German, Spanish and Italian without translation. The Pelman method is explained in fourlithle books, Write for the book that in Write for the book harinterests you and it will be sent to you by return, logether writh a specimen
lesson, gratis and post free. Reduced jees for reee. Reduced Jees for
serving and ex-Service sering and arers of His Mojesty's
mem Forces. Peltnan Languages Institute, 130, Norfolk Mansions, Wigmore Street, London, W.1.

TAKE UP PELMANISM

For Progress and Prosperity

DELMANISM is a working course in Practical Psychology directed to the needs of the average man and woman
The Pelman Course is based on over 50 years intensive study concurrent with experience in dealing with the difficulties, failings, fears, aspirations and ambitions of more than 750,000 men and women of all ages and occupations in all parts of the world.

You would like your affairs to prosper and your income to increase. Pelmanism will help you to achieve this and will enable you to develop that zest for living which comes with an awakened mind also with quickened mental powers, your awakened ability will enable you to enjoy those purchasable pleasures that come with extra money

Reduced fees for all serving and ex-Service members of His Majesty's Forces (Apply for Services Form)
The Pelman Course is simple and interesting and takes up very little time; you can enrol on the most convenient terms. The Course is fully described in a book entitled "The Science of Success," which will be sent, gratis and post free, on application to :-

PELMAN INSTITUTE,

130, Norfollc Mansions, Wigmore St., London, W.I
Established over 50 years.
Callers welcomed.

-- -- - -POST THIS FREE COUPON TO-DAY

 To the Pelman Institute,130, Norfolk Mansions, Wizmore Street, London, W.I.
Please send me, gratis and post free, a copyy of Science of Succes.

Name
(Block letiers please)
Address

The acid-free cored

 solder for every handymanThis new non-resin cored solder is an indispensable addition to every home workshop, replacing stick solder and n ${ }^{n}$ and paste fluxes. It contarus two cores of Arax Flux, a flux so fast that Arax Multicore Solder can even be used for soldering blued spring steel without pre-cleaning. Flux continuity is assured, there is no ivaste, and no extra flux is required. If desired, the flux residue can be easily washed off with water.

SIZE 8 CARTON 5/. EACH

A CCMPLETE RANGE OF MULTICDRE SOLDERS IN THIS SINGLE HANDY KIT
The Multicore 2/-Solder Kit contains two specifications of Arax Multicore for metal soldering and two specifications of Ersin Multicore for electrical and radio work.

MULTICORE SOLDERS LTD. mellier house, albemarle st., LONDON, W. 1 REGent 1411

TEA URNS, brand new, 12 gallons size, with brass run-off tap. Usual price $65 /-$, our price $35 /-$
BULLET-PROOF MATS, 24 in . $\times 24 \mathrm{in}$. $5 /$ each
BOSTIK ADHESIVE, ${ }^{\text {Black, }}$, 89AA, quart sealed drums, $5 / 6$, dozen $60 /$ STONE CELLULOSE PAINT, 5 -gallon drums, 27/6, worth double. RUST PREVENTATIVE, 5 -gallon drums, 25/-
AIR TUBING, fabric govered, $\ddagger \mathrm{in}$. I/D, new $1 / 6$ yard, dozen yards $10 / 6,100$ yards 75% -
PLASTIC ASBESTOS COMPOUND, Shell-Mex makc, suitable for glazing, leak stopping, numerous other uses, $141 \mathrm{~b} .6 / 6$, cwt. 45/-.
REXINE, 50 in . wide, $12 / 6$ yard, Balloon fabric, 40 in . wide, $8 /-$ yard.
RUBBER DINGHIES, 8 ft . diameter, cost $£ 84$, our price 80%.
PLASTIC FELT, large size remnants, green or brown, suitatle for cars, office floors, making fitted cheap carpets, $5 /$ - square yard, 25 square yards $£ 5$.
MARKING OR STENCIL INK, pint tins, $2 / 6 \mathrm{cach}, 20 /$ - dozen.
WIRE GUARDS, fire guard shape, $62 \mathrm{in} . \times 26 \mathrm{in}$. overall size, 1 in .
square mesh, 76 each.
GALVANIZED STRANDED WIRE, looped end, 40 in . long, 6/dozen, 48/- gross. Carriage or postage exirra. BATLEY \& CO.
GORSEY WORKS, STOCKPORT
Phone : STO 3880

95 MACHINE VICE.

186E FITTERS' VICE

THE STEEL NUT \& IOSEPH HAMPTON LIMITEO

WODEN WORKS WEDNESGURY PHONE DARLASTON 331

Appearances are Deceptive

Certain lathe accessories are being manufactured to the Myford pattern and some Myford users are being disappointed. To avoid such disappointment-

Insist on Genuine
 MTSDRD

All building materials yield at once to the amazingly sharp and hard Tungsten Carbide Tip of the Mason Master. Effortless, rapid, silent and vibrationless, Mason Master drill bits can be used almost indefinitely without wear or abrasion. Plastic Rynplugs are virtually indestructable; hard enough to be hammered into the hole yet pliable enough to expand readily and grip the softest plaster wall. Impervious to moisture and chemicals cliey
are sold in handy packs for are sold in handy
Write for Mlusthated booktea

DUKE \& CO.

Radio and Electrical Accessories by Post
RADIO CONTROL UNIT.-Including 3lin. eweeter speaker, 25 resistances, L.F. trans., 2 instrument type fuses, 7 viholders (ceramic). 2 Acorns (ceramic). 7 V . controls, relay. 2 co-ax. conn. Partly wired in clean chassis and cabinet of pleasing appearance, with all the usual parts. Could be modified to receiver or amplifier. Price 1216 , pose 21 .
CLOCKWORK MECHA
CLOCKWORK MECHANISM. - A good b:y for the amateur mechanic with ideas. Beautifully engineered clockwork movement, Type ROF(B) \&5S1. Possible uses include Exposure Timing Unit, Regulator, Tine Swisch, Clock, etc. Information and drawings of possible modifications can be supplied. Complete unit, Price MiDGGET.
MIDGET RADIO.-Latest model 4 V. T.R.F. for A.C. or Universal with ncw and improved circuits in plastic cabinet, ivory, green, or walnut coiour. An a mateur can build this set with full instructions supplicd. No other comparable set available tojay at this price. Previous purchasers can obtain eircuit modification drawings for improved roception and selectivity on request. Complete CONDENSERS. - Electrolytic $16 \times 16 \mathrm{mid} .500 \mathrm{v}$. D.C. 419 ea.i $12 \times 12 \mathrm{mid}$. CONDENSERS.-Electrolytic 16×16 mid. 500 v . D.C. 43 ea i $12 \times 12 \mathrm{mid}$. 1 and . 01 mid., 201. per 100 . Bias, 50 mid. 12 v. D.C., 9d. ca. . SPEAKERS, 5 in SEeare in polished wooden cobineriporfa
SPEAKERS.-Sin. Sceaker in polished wooden cobinet, pericct for an extension to that other rocm lisy hice this, Price 519 , post 11 . Matching Trans multi ratio (2020 ol ms) and pentode for use cither in a recciver or as an extension. Price 4i9, pest 11 -. MOTORS. -l/1s h.p. Ideal for sewing machines or any small machinery. Will run on any voltage from 160 to 250 A.C. or D.C. 3,000 r.D m. Fan-cooled, silent running. Shaft dimensions, $5116 i \mathrm{ir}$. x lin. Motor dimensicns. bin. x 4in. approx. Made by Croydon Manufacturing Company. Price 3916 . Postage 216 . TV INTERFERENCE SUPPRESSORS.-EX W.D. TyPE, very efficient. Available for Aerials or for Motors, Appliances, etc. Price 116 ea... post 9d. instrumeni sevice in brand new condition. Useful for tools, fishing tackle, hinges and locking device, in brand new cond Size 7 lin $x 6$ lin. $x 6$ in. Price 216 ea Shect steel box with carrying straps, size $101 \mathrm{in} \times 81 \mathrm{in} . \times 5$ inn., Price 21 -, post SPRING STEEL WIRE.-Sizes .014 in . and .032 in . in 50 yd . and 25 yd . reels respectively. Practically unobtainable to-day, indispensable in the workshop. Price 11 - per reet, 5 reels for 41 -
MIDGET SMOOTHING CHOKES. Fully tested and guaranteed. Made by well-known manufacturers. Bargain Price 16 ea., post gi.
YAL VES. - Send stamp for our valve list. We arc ane of Lencion's largest stockists of valives of all types.

DUKE \& CO., 621, Romford Rd., Manor Park, E. 12 GRAngewood 6677
and at 219, Ilford Lane, ILFORD, Essex
HFord 0295
ALL MAIL ORDERS TO * 621

Buwnu provins IN THE WORKSHOP THE HOME

RAWLPLUG
FIXING DEVICES

Larger sizes are obtainable.
Whatever your fixing problems, there's a Rawlplug Device that will solve it for you-easily and quickly. Rawlplugs make neat and absolutely firm fixings in any material from brick or tile to stene or slate, with a size for every screw from No. 3 up to $\frac{3}{3} \mathrm{in}$, coach screws. Rawlplug Tools are easy to use and ensure a perfect hole without damage to surrounding surfaces. Other Rawlplug Devices include Rawlbolts for heavy duty fixings, Rawlanchors and Toggle Bolts for thin or hollow materials and Rawlclips for instant fixing of conduits and cables to girders-a device-in fact for every need.
Rawlplug fixing devices and products can be obtained from Ironmongers, Hardware Dealers, Stores or Model Makers Suppliers.

SGRAPER

A remarkably efficient and economical scraper, built to last a lifetime. Gives smooth finish without chatter or scratching. Easy-grip handle made solid with blade carrier in seasoned hardwood polished and varnished. Total length approx. 6 in . Fitted renewable $2 \frac{1}{2} \mathrm{in}$. Cadmium Plated Steel Blade, with cutting edge ground like a razor.

The indespensable adhesive for instant use on crockery, glass, wood, metal, celluloid and the thousand and one things handled by the hobbies enthusiast. Instant drying, insulating, waterproof and heatproof. Durofix is grand for repairs to electrical, sports and leather goods.

DUROGLUE

UNDILUTED ANIMAL
GLUE OF INCOMPARABLE STRENGTH

Ready for instant use for the many purposes for which an extra strong glue is needed. Wood, cloth, fabric, felt, leather and any greaseless surface can be stuck with Duroglue.

APPLIED LIKE
PUTTY,
DRIES LIKE WOOD
Can be cut, planed, polished and painted like wood. Will take nails and screws like wood. It does not blister, crack or decay. Rawlplug Plastic Wood is actually the best quality product of its kind on the market.

A LIQUID CEMENT of TREMENDOUS STRENGTH

Remarkable for its great adhesive qualities, Rawlplug Tile Cement speedily fixes loose tiles to walls, floors, fireplaces, hearths, curbs, etc., in kitchens, lavatories, bathrooms, halls, bedrooms, reception rooms, etc.

THE RAWLPLUG COMPANY LTD. LONDON. S.W.7.

Every time this door slams a little more of the mortar or putty drops out. Why? Because it sets hard and shrinks and does not really stick. They should have used Seelastik. Seelastik forms a watertight, airtight seal and remains flexible and elastic when set; it sticks tenaciously even to highly polished surfaces, such as glass, as well as to any combination of brick,
cement, stone, plaster, wood, metal, tiles, glazed earthenware . .
A Seelastik seal costs $\frac{1}{1}$ d. to $1 \frac{1}{2} \mathrm{~d}$ a foot, depending on its width. It is light-coloured, and can be painted 24 hours after it is put on. You can buy Seelastik-packed in handy cartridges, and applied by the Expandite gun ($50 /-$ with two noz-zles)-or in $2 /$ - and $3 /$-tubes, which are self-contained sealing tools.

Sensititied Materiarts mit photo coprime ambelue prints

As actual manufacturers of all types of sensitised photo materials, Haldens are in a unique position as print room suppliers. Materials for Blue Prints. Dyeline Prints, Gas Developed Prints, Sepia Prints, "Ferazo" Blue Prints, Ferro Gallic Prints, etc.
The brand names " Dyalyn," "Neutralyn," "" Vaporax,", "Cyano," "Ferazo" are your guarantee of complete satisfaction.

Illustrated is the "Ferazo" Developing Machine. Write for fully descriptive leaflet.

Hablems

(15) 1. HALDEN \& CO., LTD,, 8, ALBERT SQUARE, MANCHESTER

Most sizes available from stock!

Bridges micrilis
STRAIGHT FLUTE DRILLS. A well-designed drill parlicularly recommended for drilling brass. Range of sizes: .35 mm . (.0138") to 3.0 mm . (.1181")

WRITE FOR STOCK LIST S. N. BRIDGES \& CO. LTD.

Bridges Place, Parsons Green Lane, London, S.W.6.

Warm Your House the Modern Way
 not important. all work perfectly well as they are, without extra casinu. the totally enclosed. PHICES $2 \mathrm{~K} . \mathrm{W} \cdot 220,230 \mathrm{~V} .12 / \%$
$\mathrm{~K} . \mathrm{W} .220$
230 v . (TWo elements used in serles) Carriage $2 /$-extra per heater Sketches and detalls HEATING UNITS fttei with 3-pin brass plug and
socket. Copper-clad enclosed elements are used and those agaln are en closed in sheetmetal hal cylindrical containers
Fit one of these into metal cabinet. and you have an excellent con fection heater. In places where appearance Is
you need extra is the
 re supplied with each heater. $2 \mathrm{~K} . \mathrm{W} .110 \mathrm{v}$. These are ldeal for greenhouse heating, or for space heating or foot warmers under benches, etc. Eight of these in serles will consume 1
$\mathrm{~K} . \mathrm{W}$. and will spread the heat out over a wide area DRIP PUMP This is a seml-automatic pump which permitsithe llquid to drip which permitssitne for occasional is as a suds pump for drilling or turning. Solid brass construction also userul for exhausting, compressing, or liquid pumping. Fitted with a non.retur

SLIDER RESISTORS

Heavy duty type size

Size 7 in . x l! 1 n ., 1.2 ohms, 15 amps Prtce 15^{-}
Size 91 n . $\times 11 \mathrm{in} ., 3$ ohtns, 10 amps . Prlce 151-
Stze 134 in . x 14 in ., 11 ohms, 4.5 amps Price $2 \not 2 /$

REDUCTION GEAR BOX
 Totally inclosed in alu
m intum
housinm houging
Size $51 / \mathrm{n}$.
$3: \mathrm{in} x$ in 3in. x inin
Thrce speed obtrinable gain with
with uses in the model engineer's workshop. Price only 86 plus su. Do
HAND HAND
OPERATED
PUMP
(SELF-
PRIMING) Can be usod to dellver water, oll, spirit In fact. any non-corrosive lsquit, the rate of turning it. This is actually an ex-W.D. pump. and it is fitted with ${ }^{8}$ splined shait. You fit a handle yourself Lime lifeal use is a bilge pump for boats
Lity. 3\% 6 .

OCTUPUS CLIPS Adjustable hose clips. exhaust repairs ote
Max. dlameter 1 in minimum diameter ilin Price 1 - each. Speclal
quite ror quantity,
quvte for quaut

Ex-Navy

TELEPHO
x 9in. X 7 Ifn. wali
mounting. Price 3 , 6
each. plus 3,6 carviage.
These require no batwith generacomplete sounder which and high-pltched gives a high-pitched note, other nolse. Size. 7 in 153. FLEET STREET. E.C.4.

I bought this wonderful Wolf Cub $\frac{1 / 4}{4 \prime}$ electric drill for only $\mathbf{~} 5.10 .0$ -the sturdiest, most powerful and compact machine I have ever used. Even more astounding was my discovery that by adding a few parts which cost me $£ 4.0 .9$, I became the proud possessor of a complete saw kit as well.

WEXTiLutuves

and that's not all the Read all about the grcatest value for money ever offered in Home Workshop and Handyman tools. Copy

free on request.
 TITY RadIo INTERFEBENGE

 SUPPRESSOR
 Sbecially designed for use witio Wolf

Television Suppressors also available for fitting by Wolf Service Engineers. 8/6 inclusive.

Cub Drills. Supplied ready to attach to "Cub" lead. Conforms fully with official regulations. Only 23/6.
 Wonderful Wolf Cub story!
Write today for new fully deseriptive illustrated folder.
ful Lathe kit. Then with the Drilling, Grinding and Polishing Set I shall own a complete Wolf Cub Home Constructor Outfit. Just what l've wanted for years - and at such low cost as I never dreamed possible. Cub Home Constructor never dreamed possible.

LATHE for $\mathbf{~ 2 . 8 . 0 " ~}$

 I intend to add a few more parts to give me a power-[^0]
We've been painting the Lily!

. . . we've been gilding refined gold!
When people told us, as they regularly did, that our Flamemaster Hand Torch was the finest and handiest tool of its kind in the world, we thanked them blandly. And all the while we were quietly playing about with the design in order to make it finer and handier . . .
The outcome of this conspiracy is the Flamemaster Mark II. Here are its recognition points.
I. We've added an inch in length to the neck, because we find that gives better balance, particularly when large flames are used.
2. The aluminium-alloy die-cast body is that much stronger than the pressing previously employed.
3. The pilot-jet adjustment has been improved to withstand leakage even at really high pressure.
4. The Maxiflame jet unit is now capable of burning propane and methane (natural gas) in addition to butane and coal gas. That's the Flamemaster Mirk II -very much at your service for brazing, hardsoldering, glass working, or flame heating of all descriptions. The builtin economiser, the interchangeable flame units, the oxygen-air mixer and all the available attachments remain . . as good as ever.

A Rance
PRO DUCT CHANCE BROTHERS LIMITED, Dept. F20, Lighthouse Works, Smethwick 40, Birmingham. Tel : West Bromwich 1824. London Office: 28 St. James's Square, S.W.1. Tel: Whitehall 6002.

Britool 0-9 B.A. Box Spanner Tool sets. Chrome Alloy Steel, in steel boxes, 2610. Móving Coil Microphones with Pressel Switch, 616. Marched Transformer, 51-. Small 24 v. D.C. Multi-geared Motor with reversible clutch, 1116 .
Multimeter Kit. 2 lin. Meter. Reads volts D.C. $3-30-150-300-600$ and $m A$. 60 : also $0.5,000$ ohms when used with is v. Battery. In black ebonite case $6 \mathrm{in}, \times 4!\mathrm{in} . \times 1 \mathrm{in} ., 2416$.
$\overline{1001120}$ v. A.C.ID.C. or 240 D.C. Motors, $1 / 16$ H.P., s/icin. spindle each end, $5 . \mathrm{in}$. $x 3 \mathrm{i} \mathrm{in}$. 321 - each or fitted with 21 in . Grindstone, 3616.
6 v . Vibrator Packs in black metal cases.
 $\frac{7}{2} \mathrm{in} . \times 3 \frac{1 \mathrm{in} ., \times 5}{} \times 5 \mathrm{in} ., 200 \mathrm{v}$., $40 \mathrm{~mA} ., 2216$. A.C.ID.Ç., 141 -.

Army Carbon Microphone, with $\$$ witch, 416. 'Trans. to match, 416 .

Transformers. Input 2001240 v. Sec. tapped 3-4-5-6-8-9-10-12-15-18-20-24-30 volts at 2 amps., 2113 . 12 moñths'guarantre.
F.W. Metal Rectifiers. 12 or 6 vole $\frac{1}{2}$ A, 516.4 amp., 26/-.
Miniature Motors 12 v. D.C. with gear box and governor controlled speed, 141-. D.P.D.T. Relays. Operate at 2001300 volts D.C. 6 mA ., 131 .
$\overline{24}$ v. A.C.ID.C. Motors $3 \frac{1}{2} \mathrm{in}, \times 2 \mathrm{in}$., 1316.

110 v. A.C.ID.C. Reversible Motors $3 \frac{1}{2} \mathrm{in}, \times 2 \frac{1}{2} \mathrm{in}$, 15%.
New. Deaf Aid Miniature Valves. DL72 and CK512AX, 91. Ideal for radio control units.
Heater Elements. 24 v. 75 w. Flat Copper Plate, 4 in . $x 2 \mathrm{in}$. $\times \frac{1}{2} \mathrm{in}$., 116 .

All Carriage Paid.
THE RADIO \& ELECTRICAL MART.
253B, Portobello Road, London, W. il

Park 6026

"KARLENITE" PLASTIC MARBLE

The entirely new Artificial Stone for casting Bookends; Ashtrays; Wall-vases ; Statuettes, etc. "Karlenite" sets granite -hard with a scintillating crystalline structure which very closely resembles marble. or alabaster. It is enormously structure which very closely resembles marble or alabaster. It is enormously
strong; highly resistant to heat and impervious to water. Literally any type of strong; highly resistant to heat and impervious to water. Literally any type of available for chis purpose.

MAKE YOUR OWN FLEXIBLE MOULDS

in "PLASTIMOULD" SYNTHETIC RUBBER

Prepared in liquid form for making permanent elastic moulds. Ideal for repetitioncasting Plaques, Bookends, etc., in plaster, cement or "Kartenite." Lt willizaithtully "Plastimould " is incredibly simple to use and moulds can be taken from any type of pattern, including wood, met .I, plaster, stone, glass, ivory, etc. Send Is, for full details of this easy, fascinating and profitable hobby. Money funded to bona fide enquirer
KARLENA ART STONE CO. LTD.
(Dept. PMII), 55, Deansgate Arcade, Deansgate, MANCHESTER, 3

Yo

can become a first-class RADIO ENGINEER

Our Home-Study Courses in Radio, Television and Mathematics are a proved success. Students tell us how our training has helped them to earn money in their spare time, start businesses of their own, or get bigger salaries. One student recently reported that he is now earning $£ 1,600$ a year. Send for free details. Write your name and address on a postcard (2d. postage) and address it to the Principal : r. HEATH BRADLEY, T.C.R.C., 36, Northfield Road, Kingwood, Hats.
(Please mention M.69)
T. de C. RADID COLLEGE

HOME-STUDY COURSES IN ELECTRONICS \& MATHEMATICS

GREATEST INVENTION SINCE THE ALPHABET Gives the RIGHT word at a glance!

Every man or woman who uses words, will find this Idea and Word Chart a priceless boon. It's a godsend to all. It gives the word you want when you want it. Words and ideas leap into the mind-vltalise the message-grip the interest - sway - convince compel. Easy-quick-sure.
Have you always at immediate command just the word you need? You can have. It's easy with this amazing Chart. Send for a free specimen copy embodied in a descriptive brochure. Enclose $2 \frac{1}{2} \mathrm{~d}$. stamp for postage.
PSYCHOLOGY PUBLISHING CO., LTD. (DEPT. PR/HV18) MARPLE CHESHIRE

HTHLHCLOLR HOBBY CHEST

This magnificent moulded cabinet contains the finest kit of hobby knives and tools it is possible to buy. Made in England by craftsmen, for craftsmen, it brings to the art of cutting the precision that is the aim of every model maker and craftworker. See it at your dealers. Try the wonderful balance of the X -acto interchangeable blade knives. Study the scope of the 25 X -acto blades and cutting tools, each one designed to suit a specific cutting need, and all made of the finest
surgical steel. The simplicity and accuracy of the balsa

X-acto Burlington Hobby Chest Comprises the three complete selection o interchangeable seal. pel-sharp blades, block plane. balsa sirip per, sleel rule and sanding

JOHN FARMER

3. BOMHSLGLIT COMPUTORS "Sperry." Cost originally E350. Contain three
vacuum
bellows. motors, gyroscope.
counters, gears. worms, heltcal drives datier entals, silver, steel shafts, levers. levels. tubing, ball and other bearings, fextble
drives, several controls and dials, drives, several contres and
indicator lamps, switches, etc., etc. In black cracklo cases size i9in. x 15 in . x 7in. suspended by shock abox x bers. In metal tubular frames. Unused, ${ }^{2}$ a
bargaln at
$6 \neq 6$ bargain at 676 each. carriage 7,6 . Input $200-225-2+0$ volts. Output $3-5-6$. 8-9-10-12-15-18-22)-24 and 30 volts at 2 amps. Brand new boxed, $22 / 8$ each. A.C. Mic. Internal rect., basic moveA.c. M/C. internal rect. basic movemountiny New 20 - each most 6 d . 24 v. A.C.J.C. thin. Iong. motor 24 in.
dia.. blower casing approx. $3 \ln$. dia. New 10-each prost ad. 150. MICRAPilivives, 2 types (a) Caribon diferential builet sliaped. fitted switch.
1,9 cach post $4 d$. (b) MC hand type. fit each post 46 . (b) M C hand type.
fited switch 36 each post $8 d, 272$. BOND Tissi wils, "Record." 0 to 1 ohms, 2 ln. scale, battery compartment, in brown bakelite cases with
shoulder straps. New. 20, each. post
 facture, precislon turned silver steel. fit 316 in . sharts. Hin. dia.. 3116 in . Wide.
in. wide including boss fited set screw. in. Wide including boss fitted set screw.:
boss inn, dia, 3.lin. to bottom of "V." New, unused, 16 each. post 3d. 15:- per doz. post \&d. 311 . TIMF, sliviciles. Consist of high grade clockwork movement. Setting dial up
to 36 hours, ntted 2 amp. 3 -pln plug. to 36 hours, nited ${ }^{\text {Requires } 3} 32 \mathrm{in}$. square winding key (not supplied). Brand new, 30/- each, post 6d. Size 3 in. long, 211n, dla. 325. NTLEL FBONF, kreen crackle finish,
felt lined, $10 \mathrm{in}, \times 2$ in, $x 9 \mathrm{in}$. high, fitted felt lined, $101 \mathrm{n} . \times 2$ xin, $x 91 n$. high, nitted
clip fasteners. The few small holes in Itd should make them adaptable for many uses. first ald, shoe or to ol boxes, cycle panniers. etc. 211 each. post $1 / 1$.
The above are a few items taken from our latest list which is obtainable now from

JOHN FARMER (Dept. A.2), 194 HARBORNE PARK RD., HARBORNE, B'HAM, 17

Plastics tro

11 Whitworth Street, Manchester, 1. Tel: Cen. 0272-1725.
BRITAIN'S LEADING STOCKISTS OF
" PERSPEX" (Acrylic) sheet, rod and tube
B ACRYLICROD.
P.V.C. SHEETING (Admitaley Specification).
"CASEIN" Rod, Sheet and Tube
CELLULOSE ACETATE Film and Shect.
Official Stockists for: B.X. PLASTICS LTD, UTILEX LTD. Catering especially for Industry, The Hobbyist and the Model Maker Contractors to the Admiralty, most Government Departments, Schools,

Trade and Technical enquiries solicited.
Fab:ication, Engraving, Moulding, Cutting to Size, Shape, Contour a speciality.

THERMOLECTRICS
 LTD.
 CHAPEL WORKS . HAMPTON-ON-THAMES.

Here is an opportunity for the amateur engineer to zequire a precision Bi-metal Thermostat, capable of controlling A.C. currents of AMP within the temperature range 50 degrees Fahrenheit to 200 degrees Fahrenhe

ASBESTOS FLEXIBLE HEATING CORD. IIyd. Various Resistances: 15, 25, 200, 400 ohms per yd.
ASBESTOS SLAG WOOL for the thermal insu lation of hot-water tanks. II Ib.
THREE HEAT SERIES PARALLEL LINE CORD
SWITCHES. I Amp. 250v., "off "position each end. 716 each
1 in .7 B.A. FINE SILVER-TIPPED CONTACT SCREWS, 6d. each BI-METAL, 6 in, wide $\times .036$ in. 401 - per lb
WE INYITE YOUR ENQUIRIES FOR ASBESTOS. MILLBOARDS AND SPECIAL ALUMINIUM FOIL-BACKED THERMAL INSULATION.

BUILD THIS
ACCUIRATELY SCALED DOLLS HDUSE

With a MODELCRAFT plan, you can build a jin. to Ift. true-scale cottage or bungalow, the latter being easlly convercible to a house. Fittings are available. Sliding pancls make rooms individually accessible. Plans ar BUNGALOW PLAN (GB106) ... $4 /$ CONVERSION TO HOUSE PLAN COTTAGE PLAN (GB/08) (GB/07) $2 / 6$ Postoge - 1 Plan, 3d., 2 or mare plans, $6 d$
The MODELCRAFT LIST
gives details of more than 600 plans, plonbooks, kits and occessories coveriny shios aircraft, rood vehicles, houses, " lineside" Kits, eic.. If- post free, it includes a 11 . refund vausher for use in buying Madeleraft goods.
Modelerait
Ltd
I7(L), Grosvenor Rd., London, S.W.I

EXPXRT

 ADVICE ON

 ADVICE ON 144-PAGE BOOK-Free!

An unusual opportunity you cannot afford to miss

Abstract

Are you looked upon as an up-and-coming man in your job? Have you already been noticed by the right people-or are you just one of the crowd, plodding along in a rut that leads nowhere? YOU have it in you to succeed-to be somebody, but only experts can help you find out where YOUR opportunity lies. Fill in this Confidential Advice Form and our Careers Experts-they have helped thousands of men just like you-will send you a frank, personal letter of advice on your best method of achieving success in Engineering. Whether you act on our suggestions will be for you to decide. But you owe it to yourself to find out what you COULD achieve....

fREE CONFIDENTIAL ADVICE FORM

Please send me a copy of "ENGINEERING OPPORTUNITIES" and your expert advice on how I can best advance my career and make the most of to-day's opportunities. I understand that the details given on this form will be treated in strict confidence and assume no obligations whatsoever.

NAME.
(PLEASE WRITE IN BLOCK LETTERS)
AGE
DATE

ADDRESS
What type of position appeals to you most?
Have you a particular hobby or recreation 8.
\qquad
\qquad
What were your strongest subjects at school?
Have you attended classes since leaving school f....
Have you any knowledge of technical subjects ? (If so, give details).

What is your present occupation 1.
What positions have you previously held ?.

Have you served an Apprenticeship? (ll so, give derails).

Would you like to secure promotion in your present work or prefer to enter a different branch of the Engineering industry ?

What salary would you be prepared to accept for the time being ?...
If you would like to put some letters after your name, please state what examination or qualification Interests you

If, after considering the foregoing information, our Advisory Expert believes that you would benefit from a special course of instruction, how many hours a week could you devote to it :..
On talking the course would you need the immediate assistance of our Employment Dept. (licensed annually by London County Council) ?
Any other information about yourself which you think willassist us to weigh up your case before we send you a letter of personal

advice.

the handbook and personal advice are free \& without obligation

Complete and post chis Advice Form today!
THE ADVISORY MANAGER
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
4IOA, SHAKESPEARE HOUSE, 17/19, STRATFORD PLACE, LONDON W.I.

IF YOU PREFER NOT TO CUT THIS PAGE, COPY THE FORM OR WRITE A LETTER

Owing to the paper shortage "The Cyclist," "Practical Motorist," and "Home Movies" are temporarily incorporated. FAIR COMMENT

Craftsmanship and Incentive

Aprominent member of the late Government, at a recent meeting, uttered some words which are worthy of wider publicity than they received. He said : " The best incentive of all is service. All great patriots, all great scientists and artists, all craftsmen, and, in fact, men and women of all kinds, have always known that, and have long been guided by it. If we cannot ensure that our society rewards the useful a lot better than it rewards the socially unjustifiably useless, useful citizens, managers and professional men, as well as rank and file workers, will be discouraged, and will actually lose efficiency."
It is a fact that the nation which shows the greatest degree of enterprise, which assiduously applies itself to discovery and invention, cannot be conquered and must survive as a great Power. It cannot be said that this country has always rewarded its most useful citizens. Taxation to-day is at such a high level that there is a risk that enterprising people will feel that the incentive, if any, is too small a reward for the effort involved.
An individual, of course, cannot reap where he has not sown. Almost every day I receive letters from ingenious readers who have conceived an idea, invented a new piece of apparatus, or made something which they wish to market. It is a deplorable fact but none the less true that the State during the past 50 years has steadily destroyed the encouragement for any man to exploit the fruit of his own brain.

The position at the Patent Office is a sufficient deterrent. It takes a year or more from the filing of a specification before the patent is granted, presuming that the official search has not discovered inventions which have anticipated. Once the patent is granted, patent fees are on a rising scale for 16 years. Forcign patents have to be taken out to prevent unscrupulous manufacturers in other countries from pirating the invention. This, plus the tooling up costs, the purchase of raw materials, and the large sums of money which must be spent in other ways before goods actually reach the market cause many a good invention to be stillborn.

SELLING AN INVENTION

I^{T}T is practically impossible to sell an invention to an existing manufacturing concern for any considerable sum of money. It might be asked: Why bother about a patent at all? Why not proceed with manufacture without it ? That would be a policy fraught with danger. The possession of a patent, whilst it is not a complete protection against an action for infringement, is some sort of a safeguard and until it is challenged in the Courts its owner is considered in law the proprietor of the invention which the patent is intended to protect.

Many patents have been set aside in the Law Courts, and a poor man could be utterly ruined. If you have not large sums of money at present the development of an invention by an individual seems scarcely worthwhile. The only way of making money out of an invention is, of course, to develop it yourself if you are able to find sufficient backing, otherwise, if you can interest a manufacturer, you must accept a royalty. Even then you may not make much money if the manufacturer concerned does not energetically exploit the patent. That is why I always advise readers in these circumstances to insist upon a minimum annual royalty for the full term of the contract.
Presuming, however, that large sums are made, taxation at the present level takes most of it back. So when Mr. Morrison was paying lip service to the need for rewarding the useful citizen for his fruitful productivities, it would have carried more weight had he provided

[^1]some tangible evidence that the State proposed to back it up.

This is a question which transcends all political issues and parties. It is a matter of national concern, and we hope that the Government will take heed.

It is idle for any Government to encourage enterprise and then to regard the enterprising person as one to be penalised by high taxation.

There are many problems which beset Governments which could be solved by a nation-wide appeal for their solution with the promise of financial reward for those whose inventions are adopted.

MODEL OF MacMILLAN'S BICYCLE

A S announced elsewhere in this issue, next month we shall be describing the construction of an accurate working scale model of the first rear-driven bicycle made by Kirkpatrick MacMillan in 1839. This machine has become famous and the centenary of its ifvention was celebrated in 1939 by the formation of the Centenary Road Club, whose members are chiefly drawn from bicycle manufacturers. There were no chains, ball bearings, or chain wheels in those days. The readers interested in bicycles will, undoubtedly, wish to make one of these attractive models, the first authentic details of the prototype of which will appear with the article next month.
The only machine in existence is a replica of MacMillan's machine in the Science Muscum, at Kensington. Drawings of it have hitherto not existed.

THE B.R.M.

AM sorry that the B.R.M. Car, which showed such promise, has been so disappointing in its results. Bearing in mind that British prestige in automobile racing was at stake it would appear that the wrong method has been adopted. No private undertaking can expect to have available the personnel and the factory equipment necessary for a vast and expensive venture of this sort.

It would have been wiser perhaps had all of the motor firms interested in motor racing collaborated in the production of the B.R.M. instead of leaving it to the enthusiastic development of private individuals. -F . J. C.

MAKing

THE construction of the child's cycle trailer described in this article was undertaken only after due study of the advantages and disadvantages of the trailer and those of the more conventional sidecar.
A trailer is simply attached to a cycle and when unhitched its two wheeled nobility facilitates easy handling. It is thus practicable to employ any one of a number of cycles for towing, an interchange being simply and quickly effected. Further, by using the tow. bar as a handle one has to hand a most serviceable pram.

Another point worthy of note is that the load due to a trailer is applied in line with the frame of the cycle and cannot therefore cause "side drag" or other stresses, which might well be harmful to the frame of a lightweight machine-as could be the case on attaching a home-made sidecar.

Safety Precautions

The foregoing features, however, must not be adopted at the expense of safety, and so the possibilities of overturning and of breaking adrift have had to be reckoned with and adequately guarded against. Overturning is taken care of in a design productive of a very low centre of gravity-manifest in the wide wheelbase and low slung coach-while breaking adrift is rendered well nigh impossible by a method of doubly securing the tow-bar to the saddle pillar of the towing cycle.

During -stringent tests on the completed trailer, all attempts to cause overturning failed and were res:sted with what appeared to be ample margin, and in over two years' service on the roads there has never been cause for anxiety in this respect.

- Cycle Trailer

Constructional Details of a Strong and Serviceable Outtit

By J. H. LONG

Comfort and Appearance
The illustration (Fig. I) shows the wellbalanced car-like lines embodying a design giving complete protection from the weather. Plenty of headroom allows a waterproof hood to be fitted, if desired, but in order to dispel the fear of feeling "closed in" very ample windows of Perspex have been provided. The interior is furnished with a high backed, lightweight upholstered chair. It is detach-
by any handyman. Lathe-work and weld ing are avoided, and no sheet metal panel is bent in more than one plane. Tinned mild steel sheet (20 s s.w.g.) was used in the original trailer in order that the seams might be sweated together, dispensing with rivets for the sake of appearance, but if there is no objection to rivets, sheet aluminium or aluminium alloy could be substituted-and with a saving in weight.

Fig. 1.-The completed trailer in use.

Coachwork

The outline of the side of the coach on a background of squares is given in Fig. 2. If a piece of white ceiling paper is pasted on to the sheet metal and marked off in 2 in . squares, then by using these as a guide the outline can be accurately reproduced. It will be seen that the overall length of the coach is 2 ft . 1 Iin. and the height 1 ft . $1 \mathrm{I}_{\frac{1}{4}}^{2} \mathrm{in}$.

After cutting out, the serrations are bent over at right angles to form the seams-in different directions for
able to allow access to stowage space in the rear and, incidentally, provides a comfortable wayside seat.
A simple and well-known principle of independent wheel springing gives good riding qualities at all speeds.

Simple Construction

The trailer was designed for construction

Fig. 2.-One side of the coach draün to scale on a background of 2 in . squares.
each side of the coach. A tip which makes for neatness is to leave a small gap in the roots of the " V " cuts forming the serration, otherwise, when they are turned, unsightly kinks are likely to appear at these points. To impart a finished appearance to the window spaces the writer sweated $\frac{1}{8} \mathrm{in}$. dameter iron wire around the periphery of each side opening while the windscreen was framed in $\frac{3}{3}$ in. $\times \frac{1}{8}$ in. brass strip. An alternative method, of advantage where the coach work is in aluminium or similar metal would be to substitute the iron wire and brass strip with $\frac{3}{8} \mathrm{in}$. half round aluminium strip.

The text, however, deals with the former, but there should be no difficulty here. The front and apron is shown in Fig. 3, while

Fig. 3.-Dimensions of coach front and apron.
the rear panel (not shown) is rectangular in shape, measuring Ift . $8 \frac{1}{2} \mathrm{in}$. by Ift .4 in . When the four panels comprising the coachwork are being sweated together, the rear panel should be so positioned that its lower edge projects 1 in. below the corresponding edges of the two sides. Then later, when the floor and its framework have been inserted, this edge together with the bottom edge of the apron can be bent over, drilled, and fastened to the framework with wood screws (see Fig. 6).

Windscreen and Side Windows

The method of fitting the windscreen and side windows is shown in Fig. 4. They are fitted on the inside of the coach and secured from the outside with 4 B.A. brass serewsjust long enough to engage the full thickness of the Perspex without standing proud, and spaced about 2 in . apart.
To cover up sharp edges and to impart rigidity, the Perspex is trimmed flush with the top of the coachwork, and in fixing the two side windows it is ensured that they will be kept in close contact with the exposed edges by arranging that the uppermost screws follow the outline of the coach rather than that of the window opening. The windscreen 'and windows should be cemented in position with a liberal application of a thick creamy mixture of putty and paint of the same colour as the interior finishing coat.

Framework and Floor

In Fig. 5 is shown the floor framework which is constructed of hardwood, well jointed, glued and screwed together. The floor, of three-plywood, slopes downwards from front to rear. It is screwed to the recessed cross-piece and to the flange formed by the tin-plate strip of " L " section which is in turn screwed to the inner sides of the framework, as in Fig. 7. The insertion of the framework (floor fitted) in the bottom of the coach is illustrated in the underside view, Fig: 6.

Wheels and Suspension

Based on the simple lever principle isee Fig. 8) the load on the wheel spindle creates

Fig. 5.-Showing the construction of the floor framezork.
a moment about the pivot which is counterbalanced by an opposite moment due to the reaction of the compreession spring attached to the fork extension. The strength of the springs determine the riding qualities. If they are too weak there mãy be a tendency to undue swaying óver uneven road surfaces,

Roundhead

Fig. 6 Rear panal of caachwork bent over and screwed to framework
Front panel of coach screwed to tramework. crossoiece

Plywood floor

Fig. 7

Tin plote $3 / 4^{11} \times 3 / 4$

Figs. 6 and 7.-Underside of coach-chassis and detail of floor fixing.
but on the other hand springs which are too strong will lack sufficient resilience for reasonable comfort. A dealer in motor cycle spares will be able to supply the springs. They are made from $3 / 16 \mathrm{in}$. diameter steel wound into a coil of $1 \frac{1}{2} \mathrm{in}$. diameter with a normal uncompressed length of 3 in. and consisting of five turns finished off in eyes at both ends to take fixing bolts.

Fixing the Mudguards

The mudguards should be very firmly fixed to the wheel forks since they are subjected to the full vibration of the whee's (see Fig. 8a).
(To be contimued.)

Fig. 8a.-Wheel assembly.

4 B.A. roundhead screws
Fig. 4.-Perspective vierv of coach, shozving the "Perspex" side windows and-windscreen.

Fig. 8.-Details of the wheel assembly and fork extension.

EVERY CYCLIST'S POCKET BOOK

By F. J. Camm

A New 400-page Pocket-size Reference Book, Road Guide and Technical Handbook for Cyclists.

120 Illustrations, Fully Indexed.
84 Pages of Road Routes of England and Scotlans'.
Price $7 / 6$ net, or $7 / 9$ by post, from George Newnes, Ltd., Tower House, Southampton Street, Strand, W.C.2.

A Synchronised Flashgun

An Easily-made Unit for the Amateur Photographer

By D. GREENALL

MANY amateur photographers are deterred from flash work not merely through the expense of the actual flashbulbs, but by the cost of the necessary synchronised flashgun, especially when they are not in possession of a modern camera with a synchronised shutter.

Flash work can be divided into two classes for most amateurs-open flash and slow speed synchronised flash. Open flash needs only an ordinary torch fitted with a suitable adaptor to take the flashbulb, but has the drawback that only subjects containing no movement can be attempted. When subjects with movement are tried, even at slow shutter speeds, some means must be found to ensure that the flashbulb is fired during the short period in which the shutter is open. This requires a form of switch to synchronise flash and shutter, and provided that speeds above $1 / 25$ th second are not used, a suitable switch can be made by the average handyman without much difficulty.

The synchronised flashgun described here was made at low cost using materials easily obtainable, and will give results equal to commercial articles at two or three times the cost. It consists of a battery case taking two or three U. 2 cells, an adaptor to take whichever type of flashbulb it is intended to use, a reflector, and a simple switch which is connected to the camera release socket by means of a flexible cable release. The battery cas: and reflector are joined to the camera by a short rigid bar upon which the synchronising switch is mounted. This ensures that the cable release remains in a constant curve which is essential for consistent accuracy of timing.

The Battery Case

A suitable torch can be purchased quite cheaply at the local chain stores, the best type being those in which the bulb holder is mounted on the body of the torch. The focusing head, if fitted, is removed, leaving the M.E.S bulb holder in position at the top

Rear view of the flashgun.
of the battery case. In flash work it is innportant that the batteries should possess sufficient power to fire the flashbulb, even when part-used, so that a 3 or $4 \frac{1}{2}$ volt battery torch should be bought if possible. If the standard U. 2 type of battery case is used, the special high amperage batteries for flash work made by G.E.C. can be fitted.

Wiring

The next step is to fit two sockets to the battery case from which the switch leads are taken. Wander plugs are used for this purpose of the combined socket and plug type, as shown in Fig. I. A wooden collar is made, shaped as in Fig. 2, $1 \frac{1}{2} \mathrm{in}$. in dia-

Figs. 1 and 2.-Details of the combined plug and socket, wooden collar, and connections.
meter and $\frac{1}{2} \mathrm{in}$. thick. A $\frac{3}{4}$ in. diameter hole is cut in the centre of the collar and two more holes $\frac{1}{8} \mathrm{in}$. in diameter drilled in the straight side at right angles to the centre hole. These are to take the wander plugs which are pressed home and secured by a touch of adhesive, leaving the socket portion protruding from the collar. A short wire is now soldered to the battery case and connected to one plug. A second wire is soldered to the base of the bulb holder and connected to the other plug. It is important to ensure that these two wires do not touch, as a short circuit between them will fire the bulb.

Adaptors

Finally, the adaptor to take the flashbulb is screwed home securing the collar in position. For amateur use the small flashbulbs with A.S.C.C. caps (i.e., single centre contact car type caps) are probably the most suitable, so a M.E.S. to A.S.C.C. adaptor is chosen. If, however, the more powerful bulbs with E.S. caps are used, then an M.E.S. to E.S. adaptor can be fitted equally as well.

The Reflector

The final stage in completing the flashgun itself is the reflector. In the case of the one illustrated, a conveniently shaped 6 in. diameter aluminium lid was utilised. A circular hole $\frac{13}{4} \mathrm{in}$. in diameter was cut near one edge to allow the adaptor and bulb to pass through, and a strip of aluminium rin. wide by 5 in . long bolted to the back of the reflector. At the other end of this strip a

Front vievv of the flashgun ready for use.
Terry's rin. spring tool clip is bolted, the end of the strip being bent round the clip as shown in Fig. 3 to keep the reflector support at right angles to the clip.

Where a ready-made reflector is not available one can be made by cutting a 6 in. diameter circle of sheet aluminium. A segment is cut away and the two edges brought together, forming a shallow conical refiector. The support strip is then bolted through these two edges and the spring clip attached as before.

The reflector is now attached to the battery case by means of the spring clip and the flashgun part of the apparatus is complete. Those who do not wish to attempt synchronised flashwork before they have mastered open flash need proceed no further for the present, as the flashgun in its present form

Fig. 3.-Showing how the reflector is fitted.
is quite suitable for open flash work. One advantage of this particular form of construction is that no alterations are made to the body of the torch, the gun can be used for open flash work by means of the torch switch, and the torch can always be reverted to its original function without difficulty.

The Synchronising Switch

Construction of the switch can best be followed by reference to Fig. 4: It consists of two strips of plywood, hinged at one end and carrying the shutter cable release at the other, secured in the lower portion by the small metal strip "A." The upper portion carries a bolt " B " screwed directly into the plywood to which is attached one lead from the battery. To the lower piece of plywood is bolted a strip of springy brass or steel "C" to which the other battery lead is connected. This is so positioned that when the hinged part is depressed, bolt " B " meets the spring contact "C" and closes the circuit, at the same time depressing the cable release and operating the shutter. Fine adjustment when synchronising is made by screwing " B " in or out as required.

Camera Bar

All that now remains to be done is to provide a means of connecting the flashgun and switch to the camera. A camera bar is made from a brass strip $\frac{1}{8} \mathrm{in}$. thick by $\frac{3}{4} \mathrm{in}$. wide, of a length suited to the camera in use. The synchronising switch is bolted to the bar between the gun and camera. A $\frac{1}{4}$ in. bolt is passed through the screw-cap on the base of the torch to secure the flashgun to the camera bar. A good solid washer should be fitted to the inner side as the thin metal of the cap will not otherwise stand the strain. A standard camera case retaining screw is used to secure the camera by means of its tripod bush.

The two leads from the switch are fitted with wander plugs at their farther ends and plugged direct into the sockets on the battery case.

Synchronising the Flashgun

Before attempting to synchronise the flashgun it is necessary to understand the characteristics of modern flashbulbs. A.
flashbulb consists of a glass bulb containing a quantity of metallic filling in the form of either very thin foil or very fine wire. In the centre is a filament to which is attached a small quantity of explosive paste known as the "primer." When current from the battery is passed through the filament the "primer " is exploded and the metallic filling ignited, producing a brilliant flash. This sequence from closing the electrical circuit to the bulb reaching its peak brilliance takes I/ 50 th second for most bulbs (Speed Midget excepted), plus another $1 / 50$ th second for the flash to drop from peak brilliance to zero. Thus, if we use a shutter speed of $1 / 25$ th second and arrange for the closing of the

+
Fig. 4.-Details of the synchronising switch.
eletrical circuit and the opening of the shutter to coincide, we can be reasonably sure of getting the whole of the flash.

To synchronise the flashgun first assemble the completc apparatus, inserting an ordinary torch bulb in the battery case. Next set the shutter to "bulb" and adjust the length of screw "B" on the switch so that the bulb lights when the shutter blades are just opening. Now set the shutter at $1 / 25$ th second, remove the back of the camera and stand facing a mirror. Look into the back of the camera and press the switch, when the flash of the torch bulb should be seen during the brief interval when the shutter is open. If the flash is not seen it means that the switch is closing the circuit a fraction of a second late, so the adjusting screw "B" should be screwed in a turn or two. The final test is to use a flashbulb,
but in practice it will be found easy enough to synchronise the gun using this method.

Use of the Gun-Open Flash

The simplest way to use a flashgun is the open flash method, in which no attempt is made to synchronise the gun with the camera shutter. The procedure is to put the camera on a tripod and set the shutter at "bulb." After preliminary focusing, etc., the shutter is opened, the flash fired and shutter closed, all in quick succession so that existing lighting does not have time to take effect on the film and thus increase the exposure. Open flash is usually restricted to still life subjects or posed set-ups with no movement. It has the advantage of simplicity and uses the full duration of the flash. Moreover, the flashgun can be held in the hand and the direction of the lighting thus altered to suit the subject. When the gun is attached to the camera one is restricted to frontal lighting, which is rather flat in effect.

Synchro-flash

When the flashgun is synchronised to the shutter the scope of the camera is increased greatly and can include subjects normally tackled by the amateur with the aid of photofloods, with the advantage that instantaneous exposures can be made with ease of children and animals indoors, and other subjects in situations where it is impossible or dangerous to set up photofloods. When using the flashgun care should be taken to depress the switch smoothly and quickly, as undue slowness in operating it may result in the flash firing before or after the shutter.

Types of Flashbulb

The following bulbs are among those most suitable for amateur use. They are powerful enough for normal subjects at medium distances and are not unduly expensive.

Philips

$$
\left.\begin{array}{ll}
\text { P.F.14 } & \text { Is. Id. each } \\
\text { P.F. } 25 & \text { Is. 4d. each }
\end{array}\right\} \quad \begin{aligned}
& \text { A.S.C.C. Cap. } \\
& \text { P.F. } 56
\end{aligned} \text { Is. 8d. each } \quad \text { E.S. Cap. }
$$

G.E.C
$\left.\begin{array}{ll}\text { Speed Midget } & \text { Is. 3d. each } \\ \text { G.E.NO. } 5 & \text { Is. Id. each }\end{array}\right\}$ A.S.C.C. Cap.

Items of Interest
 Diesel-electric Power Unit

Robot Air Squadron

I^{T}T is reported that the American Air Force is forming an operational squadron of robot bombers, called Matadors. These radiocontrolled aircraft have been designed to do the work of conventional light tactical bombers. Similar in appearance to piloted 'planes, they will be launched from ramps and guided to their targets by radar.

New British Jet Research Aircraft

T was recently announced by Handley Page 1 Lid. that a new jet-powered prototype research aircraft, the "H.P.88," designed in collaboration with, and constructed by Blackburn and General Aircraft Ltd. at Brough, has successfully completed its first test flight. This new high-speed aircraft has an experimental Handley Page wing, and is powered by a Rolls-Royce "Nene" turbo-jet engine. On its initial flight the aircraft was flown by Blackburn test pilot, Mr. G. R. I. Parker, D.F.C. A.F.C., D.S.M.

A NEW power unit incorporates a highpowered main line locomotive engine, 1,200 b.h.p. at 600 r.p.m., eight-cylinder
"Vee " engine, type " H.S.T.Vee 8." This new traction unit is identical with those ordered for the largest diesel-engined locomotive contract so far placed in this country, namely, for 48 locomotives for the Western Australian Government Railways. The unit was on show at the recent Engineering, Marine and Welding Exhibition at Olympia.

Side view of the new jet research aircraft.

A "Free"-pendulum Electric Clock

Constructional Details of a Novel Electric Timepiece

THE impulse relay is illustrated in Fig. 11.
It is quite simple in operation but it is essential to use care and precision in its construction, since its working is synchronised with the pendulum.
Referring to Fig. II, a rocker arm (I) pivoted at (2) is carried between two sheet brass supporting plates (3), the backplate only being shown. At its lower end the arm carries a soft iron armature (4), and at its upper end a gathering pawl (5) consisting of a piece of .oroin. steel soldered to the top of the arm and at right-angles thereto, as shown. The armature (4) is riveted to a lug on the bottom of the arm.
Also pivoted between the plates is a 15 -tooth wheel (6) being an escape wheel from the movement of a small balance clock. A piece of .oroin. stecl (7) is arranged to form a back-stop bearing on the wheel. A return spring (8) is fixed at its lower end to one of the supporting plates (the one shown) so that its upper end bears upon the top of the rocker arm. Two 6BA screws (9) held in brackets soldered to the plate shown are arranged so that the movement of the arm can be regulated to enable the gathering pawl (5) to gather one tooth of the wheel (6) at each stroke and, on its return by the spring (8), to propel the wheel one tooth past the back-stop (7) in an anti-clockwise direction.

Contact Arms

Soldered at right-angles to the spindle of the wheel (6) is a piece of 12 -gauge brass wire (r 0) $\frac{1}{2} \mathrm{in}$. in length, at the outer end of which is soldered a silver contact (II), as shown, rounded off and polished smooth. It will be seen that the contact revolves with the wheel (6). A second silver contact (12), carried at the end of a piece of fine watch mainspring, about $\frac{1}{1} \mathrm{in}$. wide is fixed by means of a small insulating block to the front plate so that at one point during each evolution of the wheel (6) the contact (II) brushes against and passes the fixed contact (12) as the wheel is rotated by the returning pawl (5).

The position of the arm (10) in relation to the teeth of the escape wheel is immaterial since the proper contacting position of (II) and (12) can be obtained by adjusting the position of the block holding the spring of contact (12), viz., immediately prior to contact being made, contact (II) should be carried to within about $\frac{1}{16} \mathrm{in}$. of the contact face of (I2), i.e. On the return of the socker arm (I).

On propulsion of the next tooth forward, contact (II) should be carried on to and past contact (I2), making contact therewith en route, its position at the end of that stroke being out of contact with (I2). Note that the whole operation, i.e., the " make and break " of contacts (II) and (I2) is done during the propulsion of one tooth of the wheel (6). The length of the arm (Io) is sufficient to give contact (II) enough motion for this to be done. An clectro-magnet (13) is placed between the plates so that when energised it attracts the armature (4).

Sheet brass, No. 16 gauge, can be used for the plates (3) and the rocker arm (1). The escape wheel (6) with its arbor, as taken from a clock movement, can be pivoted between the plates, and a similar arbor can be used to carry the rocker arm. The distance between the plates will therefore depend on the length of these arbors, which should not be too short since the magnet (I 3) has to be inserted between the plates. The outside diameter

By J. M. AUST
(Concluded from page 96, December issue.)
of the wheel (6) is $\frac{1}{2} \mathrm{in}$. The return spring (8) is a piece of watch mainspring about $3 / 32 \mathrm{in}$. wide and should be strong enough to propel the teeth of the wheel (6) past the back-stop (7), which is sprung lightly on to the wheel as also is the gathering pawl. Care should be taken to see that there is no loose movement of the wheel (6), the teeth being propelled accurately one at a time.

Impulse Relay Magnet

The magnet (13) is wound with No. 30 S.W.G. enamelled copper wire. The armature (4) should not touch the core of the

Fig. II.-Impulse relay (near-side plate
removed).
magnet when the latter is energised as magnetic hysteresis may interfere with it and delay the return of the rocker arm.

The supporting plates can be soldered to a baseplate and the whole movement mounted on a wood base about $3 \mathrm{in} . \times 2 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. Two sets of terminals, one for the contacts of the movement and one for the magnet are secured to the wood base and the required connections made thereto. Note that contact (II) is "earthed " to the frame. A bracket to support the movement is screwed to the back-board of the clock behind the dial position.

This completes the pendulum and the mechanism used in maintaining its arc.

The Electric Circuits

The positive and negative terminals of the photo-cell are connected directly with the moving coil of the micro-ammeter. Experiment will show which connections operate the needle in the required direction.

The contacts of the micro-ammeter movement are connected in series with a two-volt hand-lamp battery and the coils of the Siemens relay.

The contacts of the Siemens relay are connected in series with the terminals of the electro-magnet (13) Fig. II and a supply
sufficient to operate this magnet so that it attracts the armature (4) Fig. II.

The contacts of the impulse relay are connected in series with the impulse magnet (6) Fig. I and a supply of about 60 volts at 1 amp, preferably D.C.
It should be noted that a variable rheostat must be connected in series in the last circuit so that the strength of the impulse and hence the pendulum's are may be regulated.

Operation

Assuming that the pendulum is at rest and that the light (1I) Fig. I is on. In this position the shutter obscures light from the photo-cell plate.

T lic pendulum is now swung gently to the left, carrying the shutter with it. In so doing the aperture is opened and light falls on the plate which then generates a current sufficient to swing the needle of the micro-ammeter movement over so that the contacts of the movement complete the circuit through the coils of the Siemens relay. The contacts of the latter are then closed and complete the circuit through the magnet of the impulse relay, whereupon the pawl (5), Fig. II, gathers one tooth of the wheel (6).

This is the position when the pendulum reaches the extremity of its left-land swing. On its return and at a point before it reaches dead-centre the shutter sufficiently obscures light from the photo-cell to allow the circuits to be opened and the returning pawl of the impulse relay propels the wheel one tooth forward.

Now, if the pendulum is rated so that it is of second's length, it will be seen that this series of operations will take place 30 times per minute and, as the wheel (6) has is teeth, it will, therefore, make a complete revolution twice per minute. It follows, therefore, that the contact (II) will also revolve twice per minute and will meet and pass contact (12) twice per minute, energising the magnet below the pendulum armature in so doing.
It is important to note carefully the following points :-
(a) The moment of release of the rocker arm depends upon the moment at which the photo-cell plate is sufficiently obscured to release the electric circuits.
(b) At this moment, contacts (II) and (I2) meet and the impulse magnet below the pendulum is momentarily energised. The pendulum armature should then be overlapping the left-hand edge of the magnet cores by about $1 / 16$ th of an inch.
(c) It follows that these positions can be obtained by adjusting the position of the shutter on its arm. The best position can be obtained by moving the pendulum by hand slowly from left to right and observing the point at which the impulse is given to the magnet below. If the impulse is too early the shutter should be moved to the left and vice-versa.

The best position of the impulse magnet is with the centre of its poles about $\frac{1}{8} \mathrm{in}$. to the right of the dead centre line of the pendulum The object of this is to avoid a direct downward pull on the pendulum. A momentary sideways pull on the armature is all that is required to maintain its arc, and on no account should the impulse be sufficient to shake the pendulum. Care should be taken to see that the armature and magnet poles arc at right angles to the plane of the pendulum's oscillation.

The photo-cell remains obscured whilst the pendulum swings to the right,

A point to note is that, once properly adjusted, the pendulum itself controls the
mechanism and the impulse is, therefore, given at the correct moment each time. In other words, the impulse cannot be given to the pendulum until it is in the correct position to receive it.

The Dial Movement

The movement is a standard half-minute impulse dial movement which requires an electric impulse at half-minute intervals, and this can be obtained by using the pendulum impulse circuit in the following manner :-

The coils of a Siemens relay, resistance about 70 ohms, are connected in parallel with the terminals of the impulse magnet at the bottom of the clock. The contacts of the relay are connected in series with a dry battery of about 12 volts, and the terminals of the dial movement which is then operated when the impulse magnet is energised every half-minute.

The dial is made from thick white card, 8 in . in diameter, with Roman numerals. The dial movement is already provided with two 6 BA holes for fixing the dial thereto. If the dial is made from thin sheet metal it can be setured to the movement direct with 6BA screws. If, however, card is used for the dial,
it will be necessary to make a dial plate, 8 in. in diameter, to place behind the dial card; both are then screwed to the movement, as above.
The dial is supported between the sides of the clock case by means of lugs or brackets soldered to each side of the dial plate, and these slide into metal clips screwed to the sides of the case in the appropriate position. In this way the dial and movement can be removed easily. The leads to the movement should be long enough to allow the dial to be removed and should terminate in small wire pins or "wander plugs," so that they can be readily inserted in the clip terminals of the movement. The leads are fixed at the top of the clock so that they do not fall when the dial is removed.

Switching Arrangement

A switch can be inserted in the dial movement circuit so that the dial movement may be stopped if so desired. A further refinement can be added whereby the dial movement is switched into parallel circuit with the terminals of the magnet of the impulse relay. The movement then receives an impulse 30 times per minute, enabling the hands to be advanced
at the rate of 15 minutes in one minute. The switch for this arrangement can be seen on the right-hand side of the pendulum in the accompanying photographic illustration.

Clock Case

A suitable case for the clock can be built up on to the back-board, using ${ }_{3} \mathrm{in}$. wood about 6in. in width, with a glass panel door, etc., as shown.

It might be wondered why a voltage of 12 is given for the dial movement when these movements normally work from $3-4$ volts. The reason for this is that it was found that, owing to the very short period of the impulse, 4 volts were insufficient. A proper response was obtained by increasing the voltage.

Also, it will be found advisable to connect a . 1 mfd . condenser, preferably a non-inductive resistance, across the contacts of the Siemens relay to damp sparking.
Finally, it should be added that the clock is somewhat unorthodox; the writer does not know of a similar one having been made. The data given are those designed by the writer. Possibly, those who undertake to make the clock will be able to improve on the details or design.

A Tool-post Grinder

How to Make a Precision Tool for the Model Engineer By W. Brown

TTHE easiest and certainly the cheapest way for model engineers to acquire equipment is to make it. Although a precision grinding spindle seems rather an ambitious project, the design described here was evolved with the object of producing such
lower half of the cradle being of such a height that the spindle centre coincides with the lathe centres. The drive can be from a layshaft, using a large wooden pulley, or from a small motor mounted behind the lathe. The use of round belting allows ample
traverse without traverse without
risk of the belt coming off.
Construction of the Spindle

This is made from $\frac{3}{4}$ in. bore M.S. pipe with a nominal O.D. of .55 in. After clearing the bore to accept a $\frac{1}{4} \mathrm{in}$. diameter rod, the outside is rough turned to $33 / 64 \mathrm{in}$. and the Fig. 1.-Section of the completed rool-post grinder. $3 \ggg 0$
a precision job with the minimum of trouble and at a low cost. To avoid excessive turning, most of the larger parts are machined from standard sizes of mild steel pipe and, including the bearings, the total cost is under twenty shillings.

Design

As shown in Fig. I, the design comprises a spindle assembly 1 mounted on two journalthrust bearings 8 and built into an outer casing 9. A fixed sleeve 10 locates the wheel end bearing and a thrust ring 14 in conjunction with springs 15 exerts a predetermined pressure on the drive end bearing so as to compensate for wear and eliminate chatter. The drive is by $\frac{1}{4} \mathrm{in}$. diameter belt to the pulley IG, and the spindle will accommodate up to a 3 in. diameter wheel $\frac{1}{2} \mathrm{in}$. wide for external grinding, the wheel being fitted direct to the spindle nose and held in place by the drawbolt and washer shown in Fig. 2. For internal grinding, ready mounted wheels are used, these being held by the spring collet and drawbolt shown in Fig. 3. The mounting of the spindle on the lathe has been omitted, but the best method is to use a split cradle bolted to the T-slot of the cross-slide, the
wheel flange rough turned and bored to be a light tap-on fit on the spindle. This flange is then brazed or silver soldered in position and the complete spindle returned to the lathe for finish turning between centres to the sizes given, the end being threaded at the same time. A $\frac{1}{8} \mathrm{in}$. hole is drilled as shown
and the keyway cut from the saddle so as to break into this hole. The spindle is then accurately chucked and the $5 / 16 \mathrm{in}$. diameter counterbore and 20 deg. taper added. These must be concentric with the outside diameter (Fig. 5).
List of Components

Part No.	Component	Material	$\begin{aligned} & \text { No. } \\ & \text { Off } \end{aligned}$
1	Spindle Assembly	I in. M.S. Pipe	1
2	Spacing Sleeve	in. M.S. Pipe	1
3	Spacing Collar	Iin. M.S. Pipe	I
4	Key	Cast Steel	1
5	Lock Ring	M.S.	1
6	Lock Screw		1
7	Spring Washer	-	1
8	Bearing L J T $\frac{1}{2}$		2
9	Outer Casing	1 in. M.S. Pipe	I
10	Inner Sleeve	sin. M.S. Pipe.	1
1 I	Screw 3/16in. B.S.F. Countersunk	M.S.	4
12	Bearing Cap	M.S.	2
13	Thrust Washer $1 / 16 \mathrm{in}$. thick	M.S.	I
14	Thrust Ring	M.S.	1
15	Spring (see Notes)		6
16	Pulley	Aluminium	\%
17	Wheel Washer	M.S.	I
18	Drawbolt	M.S.	1
19	Washer	M.S.	1
20	Nut lin. B.S.F.	M.S.	3
21	Collets $1 \mathrm{in} ., 5 / 32 \mathrm{in}$., 3/16in.	Silver Steel	x each
22	Drawbolt	M.S.	\boldsymbol{x}

Fig. 4.-Section of the outer casing and inner sleeve.

Spacing Sleeve and Collar

These are made from $\frac{1}{2}$ in. M.S. pipe, the bore being cleared to a slide fit on the spindle and reduced on the outside to $\frac{3}{4}$ in. diameter. The length of the sleeve is important (Fig. 6).

Casing and Inner Sleeve

The casing is made from $I \|$ in. M.S. pipe, the outside diameter of which is I.69in. Care is required in turning the bore, as this must be a good fit on the outer races. A good stout tool bar should be used and the finishing cuts should be very light to avoid spring. The bearings can be used as a gauge, and they must be a tightish slide fit in the bore. The outside diameter is then turned to size, the end squared and the piece parted off to the correct length. Finally the two ends are threaded. Next, the inner sleeve is made from In. M.S. pipe, with the outside diameter turned to a slide fit in the casing and then parted off accurately to length. The bore need not be touched (Fig. 4).

Thrust Ring

This is made from a short length of $1 \frac{3}{8} \mathrm{in}$. M.S. bar and to avoid break-through it will be found that it is best to square the ends first, and then mark off and drill the six II/64in. diameter holes (Fig. 8). The depth of these is important, as it controls the degree of preloading of the bearings. The part can then be re-chucked and the holes checked that they are running true. The centre hole is then drilled and bored to size, after which the component is reversed, faced to length and the chamfer added to the bore. The piece is then mounted on a mandrel ant the outside diameter finish turned to exactly the same size as the inner sleeve, i.e., a slide fit in the outer casing.

Preloading

The published rating of the L J T 솔 bearings at 4,000 r.p.m. is 1251 b . each for radial loading. Assuming that $25-3 \mathrm{olb}$. is utilised for preloading as a thrust load this leaves roolb. per bearing for radial load, and

Fig. 6.-Spacing sleeve and collar,

Fig. 7.-Details of bearing cap and lock ring.
for intermittent use this is ample for the purpose in mind. To obtain this pressure care should be taken that the long spacing sleeve, the inner sleeve and thrust ring are made accurately to length and that the depth of each of the six holes in the latter component is to size and uniform. This leaves a space of $9 / 16 \mathrm{in}$. for the springs in their compressed condition. The springs are made from .028 in . diameter piano wire with a bore of I in. A continuous length can be made, winding at 20 turns per inch., and it will be found that when cut in lengths of a shade over 3 in . and the ends ground to give an overall length of exactly ${ }_{4} \frac{3}{} \mathrm{in}$. the rating will be in the neighbourhood of 281 bs ./inch deffection. This gives a total deflection of $\mathrm{I}_{\frac{1}{8}} \mathrm{in}$. for the six springs, so giving a shade over 3olb. preloading. The success of the spindle depends on the preloading, and a little time spent on getting this right is well worth while. A further point to watch is that the springs are a free fit in their holes.

Assembly

The other parts present no problems, and when thesc are made assembly can begin. First fit the inner sleeve so that it is exactly ${ }_{5}^{5} \mathrm{in}$. from one end of the casing. Drill and tap a $3 / 16 \mathrm{in}$. hole at one of the positions shown and fit a temporary screw. The remaining three holes are drilled, countersunk and tapped, care being taken that the countersinking is deep enough to let the screw heads sink below the surface. The temporary screw

Fig. 5.-Section of spindle asscmbly.
the casing until it is flush with the end. This cap should be locked by centre pops as before. The pulley, key and lock ring are next fitted and the whole unit tightened up with C-spanners. Lastly, the lock ring (Fig. 7), and pulley are drilled and tapped $\frac{1}{2} \mathrm{in}$. deep to take a $\frac{1}{8}$ in. BSF round head screw fitted with a spring lock-washer. This completes the assembly of the spindle unit.

Drawbolts and Collets

For securing wheels for external grinding a 7 in . length of 1 in . diameter M.S. is threaded

Fig. 8.-Sections of thrust ring and pulley.
both ends, as shown. The single nut holding the wheel washer should be brazed or riveted in place. For wheels thinner than tin . packing washers will be required but $\frac{1}{2}$ in wide wheels are recommended. Two locknuts should alvays be used to prevent the wheel coming loose.

For internal wheels the collets shown in Fig. 3 are required and these
should be made from silver steel, hardened and tempered to a full blue. Three sizes should be hin., $5 / 32 \mathrm{in}$. and $3 / 16 \mathrm{in}$. diameter shanks, as these are common sizes. The same drawbolt will do for all three collets and once
is now removed and the hole countersunk for the last screw. Finally, there of these screws are locked by stabbing the casing metal into the screw slot. The fourth screw is left free and suitably marked as this is used for recharging with oil when required. The bearing is now fitted to this end and secured by its bearing cap. This can be locked in place by two or three centre pops on the thread junction. The thrust washer, thrust ring and springs are now inserted from the open end and the spindle from the opposite end. Next follow with the spacing sleeve, bearing and collar, finally screwing the bearing cap into
again two lock-nuts should be used.

Lubrication

Any light machine oil is quite suitable, and in oiling it is better to err on the generous side. No provision is made for exclusion of dirt other than the close fit of the bearing caps on the spindle, and the oil helps to form a seal. A few annular grooves in the bore of these caps can be added as a refinement, and this helps in excluding dirt from the bearings by providing an additional oil seal.

BOOKS FOR ENGINEERS

By F. J. CAMM

Screw Thread Tables, 51-, by post 5/3.
Refresher Course in Mathematics, 8/6, by post 91 .
Gears and Gear Cutting, 61-, by post 616 . Workshop Calculations, Tables and Formulae, 61 -, by post 616.

Dictionary of Metals and Alloys, 1016, by post, III.
Wire and Wire Gauges (Vest Pocket Book), 316, by post 319.
Newnes Metric and Decimal Tables, 3/6, by post 319.

Practical Mechanics Handbook, 1216, by post 13/-.
Screw Thread Manual, 61-, by post 616.
Slide-rule Manual, 51-, by post 5/3.
Mathematical Tables and Formulae, 5I-, by post 513 .
Every Cyclist's Pocket Book, 716, by post 7110.

Published by
CEORGE NEWNES, LTD., TOWER MOUSE, SOUTHAMPTON STREET, STRAND, W.C.2.

A
 sinall PUNCHING

Constructional: Details of a Handy Tool for the Workbench By W. A. THORPE

THE press shown in the accompanying illustrations will punch cleanly with a $\frac{1}{4}$ in. punch through $1 / 32$ in. mild steel or . 090 al!oy.
The construction of the press is a fairly simple matter poovided acess3 ty a lathe and drilling mach is availabe. The welding can be done by a local garage. The base is made from a piece of channel iron of the dimensions given in Fig. 4. Nothing is tied down to rigid sizes and proportions can be varied to suit taste and material available. The design of the press provides for quite a reasonable amount of leverage and versatility.

Welding the Body

The first operation is to get the $1 \frac{1}{2}$ in. square mild steel welded to the piece of

Fig. 2.-Details of the ram lever bracket, fulcrum pillar, and links and pins.
$1 \frac{1}{2} \mathrm{in}$. round which has been well chamfered to allow plenty of surface for the weld, as indicated in Fig. I. The 3 in tapped hole can be drilled in the lathe whilst facing up the ends, or can be drilled in a drilling machine. The $\frac{7}{8} \mathrm{in}$. reamed hole for the ram (Fig. 5) must be bored or drilled truly square with the bolting-down face. The $\frac{3}{3}$ in. diameter hole can be drilled and chamfered at the top: The chamfer stops the spring jamming up; all other holes can be put in except the two $\frac{1}{2}$. tapped holes on the front, which are marked off from the ram-lever bracket. The fulcrumr pillar, shown in Fig. 2, can be
made next. The $\frac{5}{8}$ in. diameter stem should be a nice fit into the body. The slot might

Fig. 1.-Plan and side vicz of the body.

Side viev of the completed press.
be made without difficulty First, drili a in hole 3/16in. down from the centre of the $\frac{1}{4} \mathrm{in}$. hole and at right angles to it; then saw down to reach the bottom of the hole, and proceed to file out the slot as shown in the drawing. All the other slots can be formed in the same manner; the diagrams of links and pins are self-explanatory. The

Fig. 3.-Details of the die plate, locking cam, dies and punch. Note the flat which is flued : along the inside edge of the cam.
position of the spring dolly should be marked off whilst the lever is in position on the body.

Die Plate

The die plate (Fig. 3) is the next step, and, as can be seen, is of simple construction. The reason for the two counterbored holes is to allow for alignment with the punch should any slight inaccuracy occur on the punch or die. The cam rod needs a little explanation. The idea is to provide for easy removal of the die from the plate. First, bend the rod as shown and then file a flat on the inside edge of the rod so that when the rod is inserted in the die-plate with a die in
position it just clears the die. Then round off the top edge of the flat, when it will be found that a slight pressure on the rod will lock the die tightly in position. Details of the lever, which is made from $\frac{3}{4} \mathrm{in}$. by $\frac{3}{8}$ in. mild steel, are given in Fig. 6. The punches and dies can be made to suit requirements.

Fig. 4.-End view and plan of base.

Fig. 6.-Dimensions of main lever and details of stud for fixing the body to the base.

Another view of the completed press.

Finishing

The finished press can be painted a grey colour and fitted with plastic knobs on the lever ends which greatly improve the appearance. Finally, a little care should be spent in fitting the parts together, as loose holes in links and levers loses part of the effective stroke, which of necessity is on the small side.

Fig. 5.-Details of ram, connecting lerer and spring.

The Tipsy Top

THE top shown in the diagram, which recently came on to the market, is spun like an ordinary top and it acts like one until its speed begins to drop, when it will turn completely over and spin on its peg. This has mystified a number of readers.

The vendors are unable to explain the mystery. There is no point on which the top can revolve and so when it is spun it also rocks from side to side, and this creates a force which at a certain point in its gyration will invert it.

If a small point is inserted at the exact centre of the hemispherical base the top will spin without inverting itself, That is the answer to the problem.

The top in action, and showing the additional centre point

An Electrically-driven Lawn Mower

The Simple Adaptation of a Roller Lawn Mower for Electrical Operation By T. H. R.

AWELL-KEPT lawn is a mixed blessing, as unfortunately it has to be cut! With the price of commercial powerdriven machines so high, the average householder resigns himself each week-end to the harrowing task of cutting the grass with an ordinary hand-driven machine. For readers wishing to avoid this, this article has been written.

Assuming the reader possesses a standard type of roller lawn mower, its conversion as here described to an electrically-driven machine can be effected with very little labour, and at a cost which should not exceed about seven pounds.

Scope of the Machine

In this adaptation, the motor is arranged to turn the cutting cylinder only, and is not intended to propel the mower along, as this would involve a larger motor, and also the provision of a clutch to facilitate turning corners.

In addition to the mower, the following parts are required:-

One $\frac{1}{4}$ h.p. electric motor, I,425 r.p.m., to suit mains voltage.

Fig. 1.-Spindle extension.
Length as required of 5 -amp. 3-core rubber-covered cable.

Metal cased 5-amp. 3-pin switched-socket box.

Three 3 -pin 5 -amp. plugs.
One 3 -pin 5 -amp. socket.
Two 3 in. diam. " V " pulleys for $\frac{3}{4} \mathrm{in}$. spindles.

One leather " V " belt of suitable length.
Lengths of I in. x I in. angle iron.
Special spindle piece (sce below).

Mechanical Adaptation

The spindle extension is shown in Fig. I, and is turned from a piece of Iin. diam. mild steel rod. If the reader is not in possession of a lathe, most garages will turn this piece at a small cost.

Fig. 2.-Mounting brackets for motor.
The nut from the right hand end (facing the direction in which the mower travels) of the cutting cylinder is removed, and this extension piece screwed. on instead. One of the pulleys is then placed on the spindle.
The next step is to disengage the roller from the cutting cylinder, and as most machines have three cog wheels under the cover plate, this can be done simply by removing the centre cog.

The motor should now be bolted to the in. X I in. angle irons which are cut and bent as shown in Fig. 2. Before drilling the side

The mower in use.
supports on the actual mower, the belt should be slipped over the pulleys, and, holding the motor in position with the belt tight, the holes should be marked on the mower supports, which can subsequently be drilled. Final adjustments of belt tension can be made by moving the motor in the slots in the angle irons. The motor should be kept as low down as pessible by using a short belt.

Finally. a hole should be cut in the cover plate to take the spindle extension and the plate screwed back into position.

Electrical Wiring

Fig. 3 shows the wiring circuit. A sufficient length of three-core cable for the lawn in question is fitted with a 3 -pin plug for the house end and a 3-pin "on-line" socket for the mower end. If difficulty is experienced in obtaining the latter, an ordinary wall-fitting socket may be used, screwed to a disc of 5 -ply wood. It is a good idea to construct a winding drum for the cable if its length extends over a hundred feet.

The 3-pin switched-socket box is bolted to the machine handle in a position where the switch can be reached conveni-

General arransement of motor and driving belt.

View showing motor mounting, extension spindle and pullsy.
ently. From the switch box a short length of cable terminating in a 3 -pin plug connects to the main cable. The last few inches of the main cable should be wound with cord and a loop formed for attaching to a hook on the machine, thus preventing strain on the plug.

Connection is made to the motor by another 3 -pin plug, which fits into the switched-socket box.

Fig. 3.-Wiring connections.
This system of wiring is considered essential in the interests of safety. Occasionally it is necessary to handle the blades when adjusting clearances or removing wads of grass, and at these times the lead from the motor should always be unplugged at the switch-box, thus completely isolating the motor. If this is not done, a faulty switch or an accidental knock may result in severe injury.

It is essential to securely earth the third wire in the cable at both motor and switchbox, making sure that the bolted contacts are bright and clean.

At the house end the connection should be made to a 5 -amp, lighting circuit, bringing an earth wire, if one is not present, from the steel conduit on the power circuit. Alternatively, a power point may be used, through a 5 -amp. fused switch.

Care should be taken that the line wire and not the neutral is connected through the switch at the mower. The price of 5 -amp., 3 -core, rubber-covered cable is about is. 3 d . per yard, but the writer obtained on the surplus market some at a considerably lower cost. It is strongly recommended that good quality cable be used, that it be well dried after being wet, and is periodically examined for faults.

Method of Operation

It might be thought that the trailing wire would often become entangled with the machine, and that the danger of cutting the cable would be considerable; but by adopting a regular system of procedure, neither of these troubles need arise.

The secret lies in arranging the cable prior to starting. Fig. 4 shows in full line how this should be done; the dotted line indicates the direction of progress. With this system the cable will follow down and across the lawn quite automatically.

When turning at the end of a row, always s:ep over the cable. In other words, the
operator and not the machine should cross the cable.

Finally, a word about speed. Probably 90 per cent. of the work in pushing a hand mower is consumed in turning the cutting blades; when this is done by motor it is possible to push the machine across the grass at a consíderably greater speed. For this reason, with the pulley sizes as given above, the cutting cylinder is arranged to rotate more quickly than is usually the case. It is therefore advisable to make quite certain that there are no stones on the lawn, otherwise the cutter blades may be broken. If it is considered that the cylinder is revolving too rapidly, its speed can be reduced by putting a smaller pulley on the motor.

Fig. 4.-Diagram indicating divection of travel when using the mover.

The First Trans-Atlantic Wireless Signal

The Fiffieth Anniversary of Marconi's Triumph

ON Wednesday, December 12th, last year, Marconi's Wireless Telegraph Co. Itd. celebrated the fiftieth anniversary of the first spanning of the Atlantic Ocean by wireless. This great feat occurred only four years after Marconi had first demonstrated, to the G.P.O. authorities, that it was possible to pass intelligence between two places only a few yards apart using only the ether as a medium.

Since that time the science of wireless has progressed rapidly until, to-day, it plays a major part in our lives. No other invention has so influenced man's social and commercial life; high-speed communication, navigational and safety aids, radio, radar and television, all now being accepted as an integral and necessary part of our existence and administration.

All this really started when Marconi, and the earliest members of the famous company he founded, decided that the radiation of wireless waves was not limited to short ranges but could be propagated over long distances. In order to prove the theory they decided to send signals from England to Newfoundland.

Despite the scepticism of others Marconi was confident that his experiment would be successful. His unswerving faith and determination infected the engineers and helpers he had gathered around him and plans were prepared for the passing of wireless signals from England to the New World.
Poldhu, in Cornwall, was the choice for the erection of the transmitting station, a station which was to be a hundred times more powerful than any previously erected.

Major Set-backs

There were minor and major set-backs; one, the wrecking by a storm of their first acrial array of twenty 2 roft, masts, would
have daunted most people but the group who then comprised the Marconi Company set off on another tack and erected a fanshaped aerial 150 ft . high.

Marconi, with two of his engineers, Kemp and Paget, arrived in Newfoundland and here they received help and encouragement from the (then) Governor, Sir Cavendish Boyle, and the Prime Minister, Sir Robert Bond A room in the Barracks Hospital, on Signal Hill, St. John's, was placed at their disposal.

Aerial Failure

Here, again, aerial trouble was encountered for their first attempt to raise as long an aerial as possible, by means of a balloon, was ruined when high winds carried the balloon away.

Speed was now of great urgency for a schedule of transmission had already been arranged and it was imperative that the receiving station was functioning perfectly, in time. The next attempt to raise an aerial on Thursday, December 12 th-this time on a kite-also failed. Once again an untimely wind carried the elevator away. Determinedly, relentlessly, another kite was sent up . . . it held.

The Final Stage

The next stage was, perhaps, the hardest of all, the silent watch on the ether, ear phones clamped on heads; straining to hear, and then three dots, the Morse code signal for the letter "S." This was the prearranged signal. The Atlantic had been spanned by wireless and the Marconi Company had started what was to become a vast network of wireless covering the whole world.

Some of the early apparatus at the Poldhu Wiveless Station. The banks of condensers are carried in metal containers in the wooden rack. On the extreme right is the spark gap, used in sending the first Trans-Atlantic signals on the $12 t h$ Decenber, 1901.

Studies in Electricity and Magnetism

Inductance : Voltage Dropping : Condensers and Capacity

Inductance of a Field Magnet

Suppose the field magnet system of a generator sets up a total flux of one million lines of force; that the total turns on the shunt winding is 1,000 ; and that the field current is 0.5 ampere.
The inductance can be estimated from these three figures-flux, turns, and steady current. For,

L (in Henries) $=$ Total flux \times turns

Current $\times 10^{8}$
$=$ flux-turns per ampere $\div 10^{\circ}$.
If tlux \times turris per ampere $=10^{\circ}$, we have $10^{8} \div 10^{8}=1 \mathrm{H}$. An inductance of one Henry corresponds "with 100 million " flux-turns per ampere," i.e., if the current is changed at a rate of one ampere per second, one volt will be self-induced.
Observe, however, that the above formula makes no use of rate of change of the current. The "current" stands simply for its steady value, in amperes.
For the field system, the total flux is 10^{6} lines, and

$$
\mathbf{L}=\frac{10^{6} \times 10^{3}}{0.5 \times 10^{8}}=20 \mathrm{H}
$$

If we switched-off the field current in $0.01 \mathrm{sec} .$, the rate of change would be $0.5,0.01$ $=50$ amperes per scc, and the

Self-induced E.M.F. $=\mathbf{L} \times$ rate of change of current.

$$
=20 \times 50=1,500 \mathrm{v}
$$

In a previous article we defined the ratio \mathbf{L} / \mathbf{R} as the inductive time-constant. If the resistance of this shunt winding was 100 ohms, $L / R=0.2 \mathrm{sec}$.-on applying a voltage to the shunt, the current will take one-fifth second to grow to about 60 per cent. of its final steady value.
This particular field system has only a moderately high inductance, but it is seen that a small time-delay is introduced which may be important in the working of certain control devices.

Inductance in A.C. Circuits

The time-delay has far-reaching conse-

(a)

(b)
quencies in A.C. circuits.
We have a voltage wave that is varying and alternating rapidly at, say, 50 cycles per sec . The voltage goes through a complete cycle in $1 / 50$ th sec ., or grows from zero to maximum (a 1 -cycle) in $1 / 200$ th sec .

If a large inductance is connected across the mains, the current too will alternate at 50 cycles $/ \mathrm{sec}$., but it cannot keep step with the voltage. When the current is growing, a back e.m.f. opposes its growth; when it is falling away, the magnetic field will cut the turns in the opposite direction, inducing an e.m.f. which tries to keep the current " going."

In fact, the mains voltage will be opposed all the time by a back e.m.f. (Fig. 6a) of the same waveform as the voltage, but 180 deg. out of phase.
In the case of a pure inductance-having no resistance-the current-wave will be

(Concluded from page 99, December issue.)

delayed a full f-cycle (Fig. 6b) : it falls 90 deg. out of step with the voltage. This has interesting results.

"Wattless Power"

Since there is no resistance, no heat will be generated, so volts \times amperes cannot express truz power dissipated as heat.

There is no power dissipated. All the energy goes to building up a magnetic field, and is returned into the circuit when the field collapses.
Being a

(a)

4 eycre
Phase-Shift

Fig. 6.-Effect of p:ire inductance in delaying the rutrent a 1 -cycle in an A.C. circuit. An alternatirg back E.M.F. (a) is generated, equal and opposite to the supply zoltage at all instants.
said to be purely "wattless." If you connected a pure inductance across the mains, you would find that the electricity meter does not register any energy consumption, even though a low inductance would take a large current.

In every actual coil, however, there is some resistance. The current will not lag by as much as 90 deg., but somewhat lessenough to make up for the true power dissipated as heat. The fact that an inductance of low resistance dissipates but small power makes it economical for A.C. voltagedropping.

Fig. 7.-Simple illustration of the use of an inductance for A.C. voltage-dropping-considering only the true power for a small 1 Io v. A.G. motor, i.e., the pozverfactor of the motor, is assumed to be unity.

Reactive Voltage Dropping

Let us consider a small A.C. motor, illov., requiring, say, 100 watts of true power, i.e., an in-phase current of $100 / 110=0.91$ ampere. We want to run this off $\mathrm{a}_{2} 230 \mathrm{v}$, supply.
If we employed a resistance (Fig. 7a) for dropping, we have to get rid of $230-110=$ 120 V , and, at 0.91 IA , the resistance required is $120 / 0.91=132$ ohms. The power dissipated (i.e., wasted) will be $120 \mathrm{~V} . \times 0.91 \mathrm{~A}=$ 109 watts-which is more than the power taken by the motor.
An alternative is to use a transformer or auto-transformer; or a series choke. As for the resistance, we require a choke having a certain ohmic value-reactive ohms. But since the resistance of this can be quite low, little power will be wasted; volts are "dropped" because they are annulled by an
equal and opposite back e.m.f.-e.m.f. of self-induction.
This choke is substituted for resistance in Fig. 7b. We must be careful with our calculations here. The drop across the choke is at 90 deg. to the current, so we must not write $230-110=120 \mathrm{v}$. The relations are those of a right-angled triangle (Fig. 7c), the 230 v . being represented by the hypotenuse OP. The required drop in the choke will be (to a suitable scale) the length of the perpendicular PM, or by vector arithmetic:
Volts to be dropped $=\sqrt{230 v .^{2}-110 v .}{ }^{2}$

$$
\begin{aligned}
& =100 \sqrt{4.08} \\
& =200 \mathrm{~V} . \text { approx. }
\end{aligned}
$$

Then, with a current of o.g1A (we take no account in this article of reactive current taken by the motor), the choke must be of $200^{\prime} 0.9 \mathrm{I}=220$ (reactive) ohms.
The inductance may theñ be found by the A.C. formula: Inductive reactance $=$ $2 \pi \times$ frequency $\times \mathrm{L}$, where $\mathrm{L}=$ Henries. In this case,
$\mathrm{L}=220 / 22 \mathrm{ff}=220 / 314=0.7 \mathrm{H}$.
Since the current is varying during each cycle, design of iron-cored A.C. inductances is not quite straightforward, but the above principles will suggest how to make a very rough estimate of the turns required, for a given flux and core size, i.e., to provide 0.7×10^{8} flux-turns per ampere.
If the resistance can be kept low, reactive methods are much more economical than resistance-dropping, but have the disadvantage of lowering the power-factor.
While wattless currents do no useful work (other than to provide essential magnetic fields), the supply cablés, transformers, etc., must be large enough to carry the total current-wattless and wattful. Extra chargés, on a kVA. basis, are generally made if the power-factor of an installation is below a stipulated figure.

Condensers and Capacity

Little has been said in these articles regarding electric fields and the laws of electrostaticsan important but neglected subject these days, which is covered very fully in textbooks of electricity and magnetism.

Space will permit of only a bare outline of condensers. Any two conductors separated by an insulating space, or "dielectric " (which may be air, or vacuum), possess electrostatic capacity.
What does that mean ? We can understand the capacity of a glass jar or a tank, but electricity is not a thing which can be measured out in ${ }^{*}$ so many pints or gallons. Yet it is true to say: the larger the electrical capacity between a pair of conductors or plates, the greater the quantity of electricity (Q) that must be "poured" in (to use a loose descriptive term) to give rise to a potentialdifference (V) in volts.
Electric " quantity" (Q) is expressed in coulombs. It is a definite quantity, numerically equal to 6.29×10^{18} electrons! A much larger unit of quantity is the ampere-hour, already briefly mentioned $=$ amperes \times hours. Coulombs =amperes \times seconds $=$ ampere-hours $\times 3,600$, i.e., there are 3,600 coulombs in IAH.

REFRESHER COURSE
IN MATHEMATICS
By F..J. CAMM
8/6, by post $9 /$.

Fig. 1.-Railway on Salisbury Cathedral spire (f. W. Gray © Son).

IN these days of fast rail transport, one's ideas tend to regard the movement of passengers and goods as occurring along a pair of rails over more or less level country. The undulatory character of the ground to be traversed, however, was one of the problems which faced the pioneers of the many narrow-gauge lines now operating successfully in different parts of the world, and the further desire to economise in track width and operating costs was a powerful factor in the minds of those engineers who designed the various monorail systems. In the notes which follow, the reader can trace the influence of the normal method of rail transport in securing like benefits under vastly different conditions of operation.

A striking example occurs in the restoration of the lovely spire of Salisbury Cathedral, which for some years past has shown signs of grave deterioration through

Unusual Trans

Including a Double-rail Track Up a Cathedral Spire 1

stress of weather and ferrous metal corrosion, To preserve the spire-and, incidentally, the whole Cathedral from the damage that would ensue if the spire collapsed-it has become necessary to rebuild completely the topmost 20ft., and to restore extensively the next $25-35 \mathrm{ft}$. The height of the spire is approximately 400 ft . above ground level, and as the original oak internal scaffolding still remains, with which the early builders erected the spire, the problem of transport for the material required in the rebuilding process was solved by laying a double-rail track for approximately 120 ft . up the spire, as seen in photographs Figs. I and 2. (To the left of the track in Fig. I may be seen the ladder used by the steeplejacks.) It is thought that this is the first occasion when a railway has

Fig. 2.-Showing the track up the spire (7. W. Gray \& Son)

Fig. 5.-Loco for Lartigue monorail system (Hunslet Engine Co.).
been used for work under such hazardous conditions.
The track consists of two parallel lengths of 3 in . x I $\frac{1}{2} \mathrm{in}$. rolled steel channels in approximately 10 ft . lengths, with 2 in . $x \frac{3}{4} \mathrm{in}$. flat mild steel sleepers at 3 ft . centres, each section of the track having fishplate joints with C.S.K. screws and nuts. The track was supported and held clear of the spire by hardwood blocks-see also Fig. 3 which shows the skip on its way up with material -with long galvanised iron bolts securing sleepers and blocks to the inside face of the spire.

Fig. 3.-Method of securing track to spire, with trolley going up (7. W. Gray © Son).

The skip, or trolley, which runs along the track was supported on wheels having ball bearings and controlled by a galvanised hightensile steel wire rope secured at its upper end to a 5 cwt . electric hoist motor. To safeguard against fracture of the cable, spring loaded safety cams were fitted, the movement of these forcing serrated steel teeth into the sides of the track and so holding the trolles rigid to the rails. Fig. 4 gives a view of the trolley from above, and affords some idea of its great height above the Cathedral grounds.

Before leaving this example of rail transport, it is interesting to contrast the forces in play on the track and on the hauling medium with those which occur on a normal rail gradient. In the latter, adhesion is always the important factor, but in the foregoing case adhesion is practically non-existent. With the spire height of approximately igoft. and base of 45 ft ., the "gradient" of the line is approximately 8 in 1 , as measured by ordinary standards, and the load

ort Systems
 By G. W. McARD, A.M:I.Mech.E.

therefore hangs almost entirely on the cable -or the safety device!

Monorail System

In the late igth century many designs of monorail vehicles were produced in the anticipation of obtaining high speed transport ($120 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.) and an absence of any risk of derailment. In the illustration, Fig. 5; is shown one of the locomotives built by

Fig. 4.-View of trolley, looking downwards (7. W. Gray E' Son).
the Hunslet Engine Co. for the Lartigue system in which the C.G. of the vehicle was approximately level with the rail surface. Although called a monorail system, these units actually used three rails, i.e., two guide rails and a single main carrying rail, and do not appear to have achieved any great success. In fact, serious problems arose through the lack of reasonably equal loading in the pannier type coach and wagon stock, and the despatch yard had some tricky problems to solve.

Uniline System

A method which more truly deserves the name monorail is that shown in the illustrations, Figs. 6 and 7, and known as the Uniline system. This has been designed for operation in extensive areas under development where no further use might be found ultimately for a railway of orthodox design, and where heavy mineral loads call for transport over relatively rough and hilly country with moderate-sized power units.

- As will be seen, the power unit itself follows modern diesel shunting locomotive practice except for the wheels which carry
large-size pneumatic tyres. The locomotive is of the $2-4-2$ type, and hauls its train of vehicles on a narrow track or roadbed of concrete approximately 3 ft . wide, in the centre of which is mounted a single rail for guiding purposes only. Rollers with vertical axes are mounted at the leading and trailing axle centres of all vehicles and, engaging with the centre rail, serve to guide the complete

Fig. 8.-Diagram of Uniline track and guide rollers (7. Brpckhouse \& Co.).

Fig. 6.-Uniline system of transport (J. Brockhouse Eo Co.). train to its destination. Switches and; gain is in the reduced demand which such crossings are provided where necessary, and a scheme makes on steel supplies, this being as the drive has the advantage of a rubber- around 25 per cent. only of that used for to-concrete engagement, the normal factor the ordinary two-rail track. Fig. 8 is an of adhesion obtainable is around 0.8 instead end view of the arrangement of the guide of 0.2 for steel wheels and rails. A further rail and pulleys.

Fig. 7.-Rear view of Uniline train (7. Brockhouse EO Co.).

The Mechanics of Bull-fizhting

What Goes on in a Modern Bull-ring, and Details of the Equipment Used

FEW tourists who spend ten shillings of their £roo to sample the Spanish national "sport" realise that an enormous industry lies behind the blood and -șand of the bull-ring.

Behind all the glamour which sends the tourist away slightly sick at the defenceless horses being prodded, though very seldom injured in these days, and rather sorry for the bull whose doom is sealed in a blaze of glory rather than in the ignominy of the slaughter-house, only a few realise that in the industry at least three hundred thousand people are fully employed.

First of all there is the raising of the specially bred thoroughbred bulls. The best are traditionally those of the Duke of Veraguas, but he sold his bull-ranch some time ago for a very large sum.

Bulls of the Veraguas calibre depend in value on the age of the bull: a two-year-old about $£ 100$, a three-year-old $£ 150$, and a four-year-old £300.

It is impossible to find out exactly how many people live from bull-fighting. First, there are the ranches, then the architects and masons who are building bull-rings all the time, either in localities which have none or replacing arenas which have become too small not only for the inevitable increasing populations of a Catholic country, but also because the popularity of bull-fighting is increasing in spite of the astounding growth of professional football in Spain.

Apart from these, a large number of magazines, with their critics, are devoted entirely to bull-fighting. The bull-fighters themselves are what we would call a trade union. A top matador receives from £ 1,500 to $£ 4,000$ at the current rate of exchange for his afternoon's work-if he gets away with it. One has to remember that in the matador's career only about half the stars have died outside the ring. This is rather interesting psychologically because they mostly go on for a number of years after they have become the idol of the public; but sooner or later they seem to get over-confident and they meet the one bull of their career that just decides not to play the game the way they expect him to do. A classic example was, of course, Manolete, who caught it in the end and for whom the whole of Spain went into mourning.

The Swords

Let us now get down to real mechanics. The swords which the matadors use are made exclusively in Valencia. This may appear to be a paradox because, as every one knows, Toledo has been as famed as Sheffield for its blades for considerably more centuries. But, apparently, making swords and brewing Guinness have in common that it is the local water that does the trick.

A first-class sword costs about $£ 30$. The cheaper ones have no groove whereas the expensive ones have three grooves, and the theory that they are more deadly has long been exploded. An ungrooved sword weighs over a pound, whereas the three-grooved sward weighs less than half-a-pound.

Apart from the sword with which the matador attempts to make the kill in one thrust between the bull's shoulder blades, there is another kind with which he gives, if necessary, the coup de grace. This has a cross-bar 4 in . from the sword's point to prevent it entering farther. It is only used if the bull is practically dead but standing up

By THE MARQUIS OF DONEGALL
through reflex muscle action. Otherwise, the coup $d c$ grace is given to the recumbent bull by an assistant with a short dagger toin.long of lancet-shape.

The Picador

We now come to the picador-the chap on the horse. He has a lance about $9 f \mathrm{ft}$. long the pointed end of which is rather like a skistick, meaning that it has a round piece of wood to prevent the lance entering the bull's neck more than 2 in . The whole lance is made of beechwood. The object of the presence of the picador and his horse in the bull-ring is that the effect of trying to
have at the back of him Queen Ena, an Englishwoman.

The "peto" is a rin.-thick layer of cotton padding. It goes along the whole of the port side of the horse, and unless an unfortunate accident occurs the bull's horns cannot get through it. Occasional accidents do happen, but it is by no means in the picador's interest if they do, because he is not protected in any way more than the horse on the starboard side. Certainly, thought has advanced, because, on the only occasion that-I have ever seen an injured horse about to be gored, they got the bull away and killed the horse immediately-a very different story from what used to go on 28 years ago.

The picador's armour is quite simple. It only has to protect his right foot and leg

A matador about to make the kill.
lift the horse weakens the neck muscles and lowers the position of the bull's head without which it would be impossible for the matador to make the kill with his sword.

For years before the 1914-I8 war my mother and a certain Señor Julia, O.B.E., one of the founders of the Spanish R.S.P.C.A., worked to get some protection for these worn-out old slaughter-house horses which are, unfortunately, an essential to the very existence of a bull-fight. But it was not until Spain's benevolent dictator, Primo de Rivera, came in during the 'twenties that I had an interview with him and showed him some photographs taken of a new protection for the horses which the French Government, being rather in the position of our Government about cock-fighting to-day, had insisted should be used if bull-fighting in France was to continue at all.

The "Peto"

Among Primo de Rivera's many reforms, such as the reorganising of the telegraph and telephone system under American guidance and the reorganisation of the railways and their stations, the making of tap-water potable all over Spain and many others; probably the one for which animal lovers will remember him best was the introduction of the "peto" or shield for the horses in the bull-ring. He was fortunate cnough to
up to half-way up his thigh. This used to be made of steel, but is now made of duralamin. If the picador falls off he is in the same position as a knight in armour or a turtle on its back-he can only crawl around in the sand and hope that the cape-waving toreros will divert the attention of the bull from him and his mount. Mostly they do, but as they are naturally more interested in the man than in the mount, that is where the accidents sometimes happen.

The Bull-fighter's

 DressNow we come to the bull - fighter's dress. He wears cotton stockings underneath heavy artificialsilk stockings. Before the age of cellulose these were woven in Valencia and, as a consequence, the Valencian workshop has now gone out of business with the necessary stockings being dealt with by the vast Barcelona textile industry. One interesting point is that when a bull-fighter is in mourning his stockings have to have black clocks instead of rose coloured.

His dress costs $£ 150$, but in the old days it cost far more, being of pure silk, with embroideries in gold and tinsel, and always with the risk that there is no knowing whether it will last a day or a whole season. In the last bull-fight I saw before leaving Spain a few months ago, it was certain that one matador would never wear his glamor-ous-looking pair of breeches again.

Formerly dark colours prevailed, but now they go in for turquoise blue, Nile green and light rose. The hats are extremely difficult to make and must be the most expensive men's headwear in the world. However, Spain does quite a good export trade to Central and Southern America where the paraphernalia of bull-fighting is exclusively Spanish.

The first infliction that the bull receives is when, having been kept in the dark for some five hours, the "mayoral "-the chap who has accompanied him from his breeding ranch-leans over and sticks an arrow through the skin of his neck with, for
example, the silk ribbon of red and white of the Duke of Veraguas, just before he charges into the ring.

The "Banderilla"

The only thing that we have not dealt with is the "banderilla." . This is a stick about 3 ft . long, made of light wood, and its business end finishes in a harpoon-point. In the sequence of the fight there is, first, the bull entering the ring, secondly, its being played by the cape-waving toreros, thirdly, the tiring of the bull's neck against the horse, fourthly, the "banderilleros" who plant
these sticks on either side of the bull's vertebrae at the neck. Sometimes the matador elects to do this himself, and that is considered an extra good show.

Occasionally a super-intelligent or completely moronic bull will refuse to play. In this case the "banderillas" are encased in a sort of carton which lets loose half-adozen firecrackers. Contrary to common belief, these firecrackers are not exploded in the bull's inside but are merely for the purpose of making a noise which, it is hoped, may goad him into action.

To many people it is a splendid spectacle, and although it is true that the bull has
no chance unless he completely refuses to play, and is led out by a cow to the slaughter house, it is equally true that a bullfighter's life is by no means enviable. As to the horses, I consider it quite amazing that the Spanish people should ever have accepted the Peto-shield at all after centuries of horse goring. Thought moves quickly these days and there may come a time when the picador will be mounted on a mechanical horse which will achieve the only object of the presence of horses in the bullring-the lowering of the bull's head through exhaustion of his neck muscles. We can only hope that this may come to pass.

How to Rewire a Car

Making Up a New Loom and the Use of Sleeving

MANY people who normally think nothing of carrying out household electrical repairs and wiring fight shy of rewiring a car. Yet, providing the job is attempted in easy stages, no serious difficulty need be experienced, especially if the correct wiring loom for the car is available.

Correct preparation, as always, ensures success in this type of work, and the first thing to do is to try to obtain a ready-

By W. TOPPING

rewire becomes automatically a longer job, for a loom must be specially made up.

The loose-cable method is fairly satisfactory, but it is infinitely preferable to make up a loom in compact runs properly sleeved. If a wiring diagram of the car is unobtainable, it is helpful to make a rough sketch of the circuits to be used. Then the various lengths, such as dashboard to lamps, junction box to dynamos etc., must be measured by running a single length of cable along the proposed route along the framework. As far as posible keep all wires together inside large-diameter sleeving. It is helpful if the old ionm is preserved as much as possible in one piece, then it can be used as a pattern.

Drawing the Cables

Draw the cables through the sleeving with a strong steel wire soldered on to the ends of three or four cables at a time, and
made loom. This may be bought from a car electrical agency, or, possibly, from the makers of the car. A complete wiring diagram for the car should also be obtained.

A new loom is invariably made up with different coloured cables, and on the wiring diagram these are indicated as numbers, with a key beneath, thus obviating difficulty in tracing circuits.
For a start, the old loom should be stripped from the car, notes or sketches being made of the general lay-out of the main and auxiliary harness.

Fitting a New Loom

Then the new loom can be installed. Make sure that it is adequately clipped to the chassis or body of the car, and that no possible chafing of wires will occur from any moving or hot parts.

It is as well to remember that most cars use the frame or body of the vehicle as an "earth" or return to the battery, so that any items of equipment on the car that make bad electrical contact with the frame should be checked and, if necessary, cleaned.

It is an entirely different matter, however, if a ready-made loom is not available. The
use sleeving that is large enough to accommodate all the cables with case.
Branching-off, where two or three wires are required to branch away from the main harness, can be achieved neatly by drawing the wires that are required to branch off up to the position where they are intended to leave the main loom. Slit the large sleeving at this position and prise the cables out. Then pull them through until the required length is obtained. A short length of sleeving should now be cut of the same diameter as the main sleeving. Warm the short length over a flame, stretching it with two screwdrivers as shown in Fig I. When the sleev-

Fig. 2.-Using, sleeving for covering the joint of a branch-off with the main loom.
ing is hot and expanded it will slide over the main sleeving easily. Slip it up to where the wires branch from the slit and ease it over the join, covering the slit. When the short length cools it contracts, forming a permanent seal over the branch. (See Fig. 2.)

Fitting Terminals

Such branches-off may be used for the dynamo leads, coil, petrol pump and lamp feeds, etc. Where terminals are fitted, a small length of small-diameter sleeving should be slipped down the cable first. The

Fig. 3.-Using sleeving for finishing terminal ends.
terminal should then be soldered on. After the solder has cooled, the piece of sleeving can be moved up to cover the join at the terminal. This gives a neat effect, and is also a more satisfactory electrical job. (See Fig. 3.)

It may be necessary to make up a loom in two or three pieces, but, where possible, junction boxes should be used in preference to snap connectors. Normally, however, it is possible to make up a loom in two pieces only; one being the dashboard to front lamps, dynamo, cut-out, etc., and the other for the tail lamp, stoplamp; fuel tank unit (often forgotten, by the way !) and any other items fixed to the rear of the car.

Any wiring in the interior of the car is done with loose single-cable lengths, extra protection being unnecessary.

A word of warning-use only the correct cable when rewiring, which is a $70 / 36$ size varnished eable. If the above hints are carried out a very satisfactory job will result.

Model Railway Activity in Lucerne : Scale Models in Pretoria : Scenic Backgrounds. By "MOTILUS"

MANY readers will remember my previous accounts of the activities of the brothers Brast in Lucerne, Switzerland. When not attending to their garage business, their chief hobby interest is still their $7 \frac{1}{4} \mathrm{in}$.-gauge passenger-carrying model railway on which they run!British-style model steam locomotives, all built by the brothers and one or two friends (Fig. I).
The Brast brothers have now moved the whole model railway to a new and better site about two miles from the centre of Lucerne. It is alongside the main road and only just across the road is the popular Lucerne Lido where numerous visitors to the town, as well as residents, come to spend carefree leisure hours, and the miniature passenger-railway is now an added attraction for their entertainment.
I visited Lucerne last September and was able to take a few photographs of the rail-
medal for his display, which caused quite a railway is all-electrically controlled. So stir among visitors to the exhibition, and no far most of the locomotives and rolling doubt inspired others with ideas for model stock have come from England, so that

Fig. 1.-Keen zworkers on the "Brast model railway" near Lucerne pause long enough for a snapshot to be taken while they group round one of their British-pattern model steain locomotives in between rums.
way on its new site. The work of re-building the railway has meant that there was no time for making new locomotives, but the three steam models these Swiss enthusiasts have already built are still working very well: a "King George V," "Royal Scot" and "Flying Scotsman."

Scale Models in Pretoria

Readers will, I know, be interested to hear of enthusiasm for scale models in Pretoria, South Africa. A correspondent, Mr. J. Goodenough, of Pretoria, has written to tell me of the formation of a Northern Transvaal Models Club. This club held their first exhibition in 195 I , when Mr . Goodenough exhibited his excellent gauge o model railway layout (Fig. 2), and from the photographs he has sent me it can be seen that this railway is most comprehensive already, although further extensions are planned.

Mr. Goodenough was awarded a silver
railways of their own. I expect the whole exhibition that the club organised will result in some lively enthusiasm for the model hobby generally in this part of South Africa.

Mr. Goodenough's
Fig. 3. - An untouched, black and white photograph of the four, coloured, printed scenic strips that comprise the set for a model railway background. The four scenes can be arranged in any sequence.
the railway itself is in the style of British Railways. The locomotives running during the exhibition were made in Northampton, and comprised two $4-4-0$ compounds, two 6-coupled tanks and four

Pacific type "Flying Scotsman " locomotives, (Continued on pagè 138)

Fig. 2. - Mr. 7 . Goodenough's Gauge O, electrically - controlled model railway, shown at the Northern Transvaal Models Club Exhibition.

THIS article is intended to help those wishing to construct a simple and efficient domestic water softener.
In the first place, it is strange that so few people know the benefit to be obtained and the money which can be saved by installing a water softener. There are many makes of these on the market, but they are dear, and usually complicated with change-over valves, etc.

The whole subject of water softening being such an absorbing one, a few general elementary remarks on the subject are given before commencing to explain the construction of a small water softener.

Hardness of Water

Water which will not readily lather with soap is said to be hard.
The amount of soap the water will destroy before producing a lather determines the degrees in hardness. For every degree of hardness in a tank of 500 gallons of water, Ilb, of soap is wasted before a lather is produced.
Thus, if water contains 16 degrees of hardness (the usual average), 16lb. of soap would be wasted before a lather could be produced for every 500 gallons of water used.
Not only does soft water save soap, but if water of zero hardness is used only half the usual quantity of tea, coffee, cocoa, etc., normally used with hard water is necessary. Thus it will be seen that an efficient household softener soon saves its cost.

The trouble of fur and mud in kettles, radiators, etc., with its consequent loss of efficiency is entirely eliminated with zero water. Water is rendered hard by its contact with, and consequent absorption of, the mineral salts, etc., peculiar to each district.
The most common are calcium and magnesium ; calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ or chalk is a very common cause of hardness.

There are two methods of removing the calcium and magnesium:
(I) By adding lime and soda in the correct proportions. This precipitates the CaCO_{3}, which is then removed from the softener as sludge, and is a method mostly used for manufacturing purposes.
(2) By passing the water through a substance which has the property of absorbing the CaCO_{3} until it becomes saturated. This is called a base-exchange method and is largely used for domestic softeners, and was the method adopted by the writer.
The material used can be obtained from most large manufacturing chemists, and the amount used by the writer was 7 lb . All substances used as a base-exchange material

Making a

 WATER SOFTENER
Constructional Details of a Small Apparatu's for Domestic Use. With Notes on Water Softening

get saturated with hardness until they cannot soften any more water. But they have the property of becoming regenerated when a solution of sodium chloride (common salt) is passed through thema simple process.

It will now be seen that the size of the softener decides the-amount of water it will soften before it requires to bs regenerated.

A Small Softener

Thus, if a softener containing 7 lb . of

Fig. 1.-General araraigement of the apparatus. base-exchange material would soften iso gallons of water, one holding 56 lb . would soften 1,200 gallons before requiring regeneration. The softener made by the writer held 7 lb . of "Doucil" and was constructed of a 4 ft .6 in . length of 3 in . water pipe, and its general arrangement is as shown in Fig. I.

A reducing socket, 3 in. to $\frac{1}{2} \mathrm{in}$., was fitted to each end, and a rubber connection taken from the cold-water tap to inlet. A piece of copper gauze, $1 / 16 \mathrm{in}$. mesh, was fitted in both sockets, as shown in Fig. 2, to keep the material in place during use, and to prevent it getting washed away during regeneration.

A point to remember in construction is to keep the outlet from the softener higher than, or on the same level as, the inlet.
If it is placed lower, when the tap is turned off, the water will still flow until it empties softener to outlet level.

Owing to the slight resistance the baseexchange material gives to the water under the usual water pressure, it may be neces-
sary to strengthen the rubber tube to prevent bursting. This was accomplished by armouring with wire. The total number of gallons of water softened before regeneration was necessary was found to be 150 gallons, and the operation took one hour.

Regenerating Solution

Regeneration is accomplished by making a brine solution of Ilb . of ordinary household salt dissolved in 2 gallons of water. A brine tank, as shown, is placed on a shelf immediately above softener.

It should be remarked here that this amount is necessary for regenerating 7 lb . of this base-exchage material only.

If a larger softener was constructed, holding 14 lb ., then the brine mixture would be 2 lb . of salt to 4 gallons of water, and so on. It is generally accepted that it is better to regenerate in the opposite direction to the flow of water through the softener. To do that, all that is necessary in this case is to take off rubber connection from inlet and refix on outlet, and connect on the brine tank pipe and turn on tap. This should be just opened sufficiently to let brine mixture pass through softener in half an hour. Then 2 gallons of water should be put into brine tank to follow on with at the same rate.

The rubber tube is then put back on cold tap, as before, and softener back-flushed out until all brine is washed out. The softener is then ready again to soften another 150 gallons.

After the initial expense entailed in making and erecting the softener, the only cost of operation is the salt for regeneration. This worked out at one penny for every 150 gallons of water softened.

Fig. 2.-Section of the softening tube.

The hardness of the water supply used by the writer is 22 degrees, and by simply passing it through this softener it comes out at zero.

Should the water supply be less than 22 degrees, then a corresponding larger amount of water can be softened before regeneration is necessary.

Testing Water for Hardness

As previously mentioned, the amount of soap water will destroy before producing a lather determines the hardness.

Testing is accomplished by means of a burette, which is graduated in cubic centimetres (see Fig. 3).

The burette, a $\frac{1}{2}$-litre bottle of soap solu-
tion and the shaking-bottle, can be obtained from The British Drug House, City Road, London. The shaking-bottle should be marked at 60 cubic centimetres.

To test water, fill the shaking-bottle to the mark.

Fild burette with soap solution to mark O, Add soap solution to water 1 cubic centimetre at a time and shake vigorously. When a lather is obtained which will last five minutes, read the burette. The number of cubic centimetres of soap taken, less one, is the degree of hardness.

Thus, when water is at zero hardness, one cubic centimetre only of soap solution is necessary to produce a lather.

The following data were collected during
a_ test made with this softener. The hardness of the water used was 22 degrees, and the whole 180 gallons of water was passed through softener in one hour :-

No. of gallons passed through softener	Degrees of hardiness of water leaving
25	softener
50	Zero
50	Zero
100	Zero
105	Zero
125	0.5
150	1.0
160	2.0
170	3.0
180	4.0

In conclusion, I would mention that these practical results which I have obtained can, with experience, be further improved upon.

New Multicraft Kirs

TWO new boxed kits of specialised hobby and craft tools have just made their appearance, on the market. They are the Multicraft "Cadet" and the Multicraft "Major" kits, offered by the manufacturers of the wellknown Multicraft precision cutter.

Since this all-British designed and made knife was first offered on the home market over two years ago, the makers have added a number of useful new blades and accessories. The knife-itself is complete with four individually shaped blades which are safely housed inside the handle. They are firmly locked into the patented, tapering chuck. The blades are manufactured from finest Sheffield carbon steel, and can be constantly ground and honed, which ensures them a very long life. Replacements are also available cheaply.

The new accessories, which fit into the same knife handle, include a set of three chisels (M. $5 \frac{1}{8} \mathrm{in}$., M. $6 \frac{1}{4} \mathrm{in}$. and M. $7 \frac{3}{8} \mathrm{in}$.) ; a 2 in-long saw-tooth blade (M.8), and a set of three Abrafile round files (M. $9 \frac{1}{8} \mathrm{in}$., M.Io $3 / \mathrm{I} 6 \mathrm{in}$. and M.II $\frac{1}{4}$ in.), each 3 in. long. An ingenious new tool has been added in a saw frame which screws into the knife handle after removing the chuck. This comes complete with a standard 6in. hacksaw blade and a 6 in . Abrafile tension saw blade, for cutting wood, metals, ivory, plastics, etc.

The new kits embrace a complete range of tools and blades, with many duplicates. The "Cadet" kit is housed in an attractive plywood case, with a particularly novel and practical method of holding the blades ready for service. The "Major" kit is supplied in an attractive solid beechwood presentation case, with routed sections to hold all the items.

The same manufacturers are also marketing a novel sanding block with continuous sandpaper bands in three grades of surface.

Multicraft "Major" tool kit.
block and reapplying the tension. The shape offers various radii and a sponge-rubber cushioned pertion to meet the needs of all classes of work. Further particulars may. be obtained from. Multicrafts Tools, 29, Bolsover Street; London, W.I.

A Review of the Latest Appliances, Tools and Accessories

British Motor-cycles of 1952

TONE AND COX, LTD., 44, Fleet Streat, London, E.C.4, have just issued the second edition of "British Motor Cycles of the Year," in which particulars are given of all motor-cycles, small and large, of British manufacture or British assembly, power units for bicycles, and also three-wheelers. There are illustrations of over 110 models. The book, which runs to 160 pages, is divided into five sections: I Auto-cycles and Lightweight Models; 2, Power Units for Bicycles; 3, Standard Touring Models; 4, Racing and Competition Models; 5, Three-wheelers. A supplement at the end of the book contains current prices as at November, 1951, and details of the latest new models. The book; which is priced at 35 . 6d. net, is obtainable from the publisher at the above address for 3s. 9d. post free.

Miniature Ball Bearings

WE have received a copy of the new edition of the B.M.B. English catalogue of miniature ball and roller bearings, issued by Miniature Bearings, Ltd., 192, Sloane Street; London, S.W.I. Compared with the 1949 edition, the principal chenges are precision steel balls of chrome steel, hardened and polished; precision steel rollers; sealed ball bearings; and sealed self-aligning angular contact ball bearings. These bearings are supplied in a variety of types suitable for such applications as electrical or mechanical measuring apparatus; electric motors; sewing machines; model aeroplane motors ; magnetos ; dental apparatus ; and pocket dynamos. Further particulars can be obtained from the above address.

A New year resolution

Start the New Year well with a gesture of goodwill to friends and relations with whom you wish to keep in touch regularly.

A Gift subscription to PRACTICAL MECHANICS will remind them of your good wishes throughout 1952.
It is very simple to arrange, for we can send subscriptions to any address, at home or abroad, at the annual rate of $\mathbf{I 4 S}$. (Canada I3s.). Just write to the Subscription Manager, PRACTICAL, MECHANICS (Dept. N, I), Tower House, Southampton Street, Strand, London, W.C.2, enclosing the addresses of your friends, with remittance to cover, and we will do the rest.

A special. New Year's Greetings letter will be sent with the first gift copy, informing the recipient that you have arfanged the subscription as a.gift for-1952.
 heading in your September issue.

As pointed out in the Fire Protection Association's Technical Booklet No. 6Portable Fire Extinguishing Appliancessoda/acid type extinguishers should not be subjected to temperatures below 40 deg . F.
The reason for the above recommendation is that the amount of sodium bicarbonate which water can absor's is limited by the temperature, and if the temperature of a saturated solution falls, some of the bicarbonate will be precipitated, thus detrimentally affecting the performance and efficiency of the extinguisher.

It is also recommended in the booklet, under "Care and Maintenance," that these extinguishers be inspected once a year and that 20 per cent. should be tested by discharge each year in rotation so that every extinguisher is discharged at least once every five years. It is a.mistake to suppose that they will remain in good condition indefinjtely. Our experience of them contradicts this view.
Finally, it is not strictly correct to say that both the vessel containing the acid and the vessel containing the sodium b:carbonate are sealed. The acid bottle certainly is sealed in the "strike the knob" type, but, although the portion of the outer container above the water line in which the gas pressure is effective when the extinguisher is operated is sealed by the solution, the container itself is an open vessel.-W. H. Tuckey (Fire Protection Association, London, E.C.4).

Using Neon Lamp for Testing

CIR,- The latter part of the query from D.
Cash (Cambridge) dealt with on page 70 of your November issue, may possibly be concerned with the "relaxation oscillations" which can be produced in a neon lamp by connecting it to a direct current supply of 170 volts or more with an ohimic resistance, and a condenser in shunt-or in series.
Depending on the values of resistance and capacity in the circuit the lamp can be made to flash at regular intervals over a wide range of frequencies, from one every 20 minutes or thereabouts down to a sequence of flashes too rapid to count. The interval between flashes is closely proportional to the product of the resistance and capacity, so that two given capacities could be compared by counting the rapidity of flashing when each in turn is used in the circuit.
The action depends on the fact that if a potential of about 170 volts is applied between two electrodes in neon gas, the gas becomes conducting and luminous, and remains luminous while the potential is reduced, until about 140 volts is reached, when it becomes dark again. When the circuit described is closed the condenser first becomes gradually charged through the resistance until the voltage across the lamp reaches the "striking " value. The lamp then strikes, and while it glows it gradually discharges the condenser, until the
voltage falls to the "extinction" value. The cycle then starts afresh.
The mathematical theory of relaxation oscillations was first given by B. van der Pol in the Philosophical Magazine of November, 1926, page 978.-W. HaIL (Dublin).

Grinding Twist Drills

S
SIR,-Referring to the article "Twist Drill Maintenance" in the November issue, Mr. C. W. Tinson asserts that "any device needing rotation of the drill through 180 deg. to reset it for grinding the opposite side should be rejected."
Jigs of the kind he condemns do not do a bad job if properly handled, and are undoubtedly more reliable than freehand grinding within the range of their capacity. Generally they are not available for drills less than fin . diameter.
It might be objected that the clamps described, being bevelled at 40 deg., allow as much as 9 deg. steepening of the slope of one point cutting edge compared with the other honed to 31 deg .
I have myself designed a turnover device for drills of the smaller diameters, but do not release the drill from its clamp, the opposing

A $\frac{1}{16} \mathrm{in}$. drill (under a magnifying glass) and held in a pin chuck.
station being registered by a dividing plate, as in dividing heads. The accompanying photograph shows the result obtained on a I/rin. diameter drill.-W. D. ArNot (Bedminster).

Rotation But Not " Centrifugal " Force
CIR,-It is difficult to see how "Centrifugal Force" has been used throughout the ages when there is no sucli thing. The word " centrifugal " means "flying from the centre," so that if there were a "centrifugal forces acting on the people on the rotor
(described in the November issue), there would have to be some force urging them to go outwards from the centre. The only force acting on the person is one inwards, trying to urge them towards the centre. They themselves may be exerting an outward force on the rotor, but the writer of this letter is not concerned with the forces on the rotor.
The people who use this phrase have a completely wrong idea of the nature of the problem and are misleading others as well. They are, therefore, far from practical, since practice and theory should pay equal regard to truth. The person inside the rotor would by nature continue along the line AB. This is called the law of inertia, i.c., the tendency to persist in an action (or lack of one). He does not do so because the force \bar{F} is trying to make him move towards the centre-the result, therefore, is that he will move round with the bowl. (Diagram A.)
It will be seen from this that there is no outward force (i.e., along OA) acting on the

man and, therefore, there is no "centrifugal force."

The problem should be solved as follows
X is the frictional force. (Diagram B.)
\mathbb{W} is the weight of the person.
F is the force urging him towards the centre.

Since the person does not slip down, $X=W$.

By the laws of friction $\frac{X}{\vec{F}}=\frac{100}{168}$ (using the given numbers).
By the laws of rotation $F=\frac{W}{32}\left(\frac{\pi N}{30}\right)^{2} R$
Where $\mathbf{N}=$ number of revs. per min $\mathbf{R}=$ radius of rotor. $\pi=3^{1 / 7}$ (approximately).
Combining these equations we have:
$\mathrm{N}=\sqrt{\frac{32 \times 900 \times \mathrm{F}}{\pi^{2} \times W \times R}}$ $=25$ approximately.
-T. A. Grocock (Bishop's Stortford).

A Camera Curiosity

CIR,-In the article on the above subject which appeared in the August issue, your contributor mentions Professor Piazzi Smyth. He was most certainly an innovator and deserves every credit for his pioneer work. Unfortunately, in my copy of his book, the old-time silver print illustrations have almost faded out and are now valueless as photographs.
It is, however, remarkable that the ordinary amateur photographer should have allowed himself to be "led up the garden path" by camera manufacturers, etc., for a period of over one hundred years, into a general tacit acceptance of the one-eyed type of camera, as a complete piece of photographic apparatus.

It is indeed strange that educated persons, who would rightly regard the loss of one eye as a serious calamity, are nevertheless quite content to look around the world with (photographically speaking) one eve shut, and then fail to realise why their pictorial results achieved at so much cost with expensive equipment are, as a rule, so grievously disappointing.
A normal photograph taken with an inexpensive stereoscopic camera fitted with a pair of single achromatic lenses, with apertures no larger than $f .16$, is far superior to
anything the finest "Leica" or "Contax" can produce, inasmuch as the stereo-camera takes the complete picture as seen by both the right and left eyes of the observer.
A stereoscopic photograph seen through the stereo-viewer reproduces the actual scene in three-dimensional perspective. No other type of camera, however expensive, can do this. -G. E. W. Htcks (Kyrenia, Cyprus).

Earth Fault Risks
SIR,-With reference to the article entitled, - Earth Fault Risks," by J. L. Watts, appearing in your November issue, I wish to point out two statements which are misleading. In Fig. I, one of the phase connections is labelled neutral.
On page 61, column three, it is stated that the full load current of a 15 h.p. $400-$ volt, three-phase motor, is about 38 amps . The normal current taken by motors of present-day design is approximately 21.5 amps . Possibly your contributor has taken the figure of 38 amps from a table relating to singlephase motors.-D. G. Belcher (Gosforth).

The Aurhor's Reply

 J. G. Beicher, his remarks are correct, and I must apologise for having "overlooked these points. On Fig. 1, the zvord "Neutral" should appear on the line going down from the "Three-phase Supply Plant" to the "Earth" Connection."
Re column three of page 6I, the full load current vuill be about 21.5 amps so that the excess current trips may be set at about 30 amps, instead of 50 amps . In order to allow 30 amps earth leakage current the maximum resistance of the earthing circuit must be limited to $230 \div 30=7.67$ ohms.-J. L. WATts.

THE WORLD OF MODELS
(Continued from page 134)
all of which ran throughout the six-day exhibition without a hitch, during which time they travelled approximately eighty miles!

The majority of the station buildings and other model buildings that make the railway so interesting are in South African stÿle, and so is the mountainous scenic background that towers behind.

Scenic Backgrounds

All model railway owners who have practised their hobby for a number of years will remember the introduction of realistic, printed scenic backgrounds for OO and O gauge layouts, in pre-war days. A coloured, scenic background certainly enhances any model railway, but not all owners feel they have sufficient artistic talent to design and make their own. So for those who enjoy pushing the levers but who are not so happy pushing a paint-brush it will be good news that they can now once more obtain printed scenic backgrounds suitable for their OO or O gauge railways.

A well-known model railway manufactur ing company have recently produced a new series of printed scenic strips, available in sets of four strips (Fig. 3). These depict four varied English country scenes: a small provincial town, a pastoral scene, sea and cliffs, and the fourth shows hilly, moorland country. The four sheets may be used in any sequence, so that they can be placed to suit the railway layout. Each strip measures about 3 ft . long by 9 in . high. Full particulars can be obtained from Messrs. Bassett-Lowke, Ltd., Northampton, or from their London branch.

Clut Reports

Harrow and Wembley Section of Model Engineers
ON Thursday, November 22nd, the society held its annual dinner at the Headstone Hotel, North Harrow, and about eighty members and friends were present.

Mr. Conway, engineering officer of Harrow Schools, proposed the toast to the Society and its well-being, and success for the future. In reply, our chairman, Mr. F. Sedcole, expressed appreciation for the society's Felfare and mentioned the importance of having a social side to such a society. He also extended thanks to the ladies who had given their help during the year. Mr. Ryan then toasted the ladies and also expressed his appreciation of their kindaess and assistance.
Mrs. Sedcole, our chairman's wife, presented the cups to the prizewinners of our recent annual exhibition. Some of the prize-
winning models were on show during the evening.
The rest of the evening was very enjoyably spent with party games, competitions, etc. Congratulations are due to Mr. S. R. Emery who was responsible for the organisation.

The winter programme is well under way and we all look forward to some very interesting lectures, etc.-Hon. Sec., C. E. Salmon, II, Brook Drive, Harrow.

The Peterborough Model Engineering Society

ON Friday, November 23rd, at the invitation of the National Gas Board, members saw an interesting film, "Asphalte Paves the Way," by courtesy of Messrs. Esso Petroleum Co. Ltd.; another film showed, inter alia, the use of this firm's products in relation to model engineering.

The next meeting will be, subject to confirmation, a visit to Peterborough Gas Works, date and time to be announced later.

Further details and membership conditions from Hon. Sec., Mr. R. H. Smith, 3I, New Road, Woodston, Peterborough.

Books Reviewed

Thrills and Spills. By Eric Leyland. Published by Ward, Lock \& Co., Ltd. 160 pages. Price 8 s .6 d . net.

THIS is the book for the modern boy who takes an interest in all sports connected with speed and action. In this book he can relive the thrilling episodes of the DirtTrack Speedway; Gliding; Motor Racing Track ; Motor Cycle Trial ; Racing Bicycle Track, and Ice Rink. The book not only gives inside information on these sports and the star personalities connected with them, but also some thrilling stories. The book is illustrated with 80 vivid action drawings and four colour plates.

The Villiers Engine. By B. E. Browaing. Published by C. Arthur Pearson, Ltd. 186 pages. Price 6s. net.

THIS handbook, which is a second edition, is one of the Motor Cycle Maintenance and Repair Series, and is a practical guide covering all Villiers engines from 1913 to the latest models. The general care and maintenance of the engine is fully explained.

The first chapter deals with the cycle of operations of the two-stroke engine, and other chapters are devoted to overhaul and servicing; lubrication systems; the flywheel magneto; electric lighting systems; the Villiers carburettor; autocycle engines, and engine-gear units. The book, which also includes a handy fault-finding chart and an index, is illustrated with numerous half-tones and line drawings.

The Lightweight Motorcycle Handbook. By Bernal Osborne. Published by Temple Press; Ltd. 136 pages. Price 5s. net.
7 HIS handbook is intended as a guide for those whose business or pleasure transport depends on the efficient working of the lightweight two-stroke motorcycle engine, including cyclemotors. Such power units also include those fitted into lightweight motorcycle frames. The book deals fully with such subjects as decarbonising, renovation of the power unit, the electrical side, and transmission topics. The book is well illustrated with line drawings and diagrams.
"When you make your next Flying Saucer I would suggest you dispense with the cup,
 AND THE TEA!"

HIGHSTONE UTILITIES

Crystal Sets.
Our latest Model is a real radio receiver, which
is fitted with permanent crysnot have a set in your own room? in pollshed oak cabinet. Spare Perinanent Detcctors, $\dot{\text { Whe }}$ each. post $1 /$: and screws, 210 post 3 L . Headphones, brand new, S. G. Brown, G.E.C. etc., 15/-, New Headplones, 101 a pair. Balanced armature type (very sensitive), 12,6 a pair
Both post 8d. New Single Earpieces, 3/6. Bal. armature type, 4/6 : ex-R.A.F. earplece, 2/- post 4d. Headphones, 17
good order. $5 / 6$ (better quality, 7), all post 8d. IIcadphoaes with moving coil mikes, 12/6, post 8d. Headphone Cords, 13 a pair, post $3 d$. Replacement Bands, $1 / 3$, post 4d. Wire Bands, 6d.
All Headphones listed are sultable for we wh our Crystal sets.)

Bell Transformers.
These guaranteed Transformers worls from any A.C.
Malnş. alving 3. 5 , 1 amp., operate bulb bedroo supply light in bedroon or larder, ctc. bither the above or batterles, 616 , post 6 d . plastic Case. Easily connected to give Two-Note Chime from Front Door, and Single Note from Rear. Operates from 6-9 above), 19/3. post 104. Ex-R.A.F. 2-valve (2-volt) Arierophone in self-contained metal case ican be used to make up a deaf-ald outfit, intercommuntcation system, or with crystal set: complete post $1 / 8$. Useful wooden box with partitions to hold amplifer. 2 - extra. Ditto, less valves, 10^{\prime}. One-valve amplifier, complete with valve, 10,6 . post 1
Hand Mlerophones, with switch in handle and lead. 4/-. Simliar instrument, moving coll. \%/6. post 6 a.
Sparking Plur Neon Testers with rest-
pocket clip, $3 / 3$ and with pocket clip, $3 / 3$, and with gauge $3 / 6$, post $3 d$. mains, showing " live "side of switches. etc., 3/8. post 41.

Soletering
Irons. Our news. stream Ined iron is
ftted With
50 watts, 10%. Curved Pencil Bit.. $200 / 250 \mathrm{\nabla}$. 50 watts, 101 . bit. $200 / 250 \mathrm{v} ., 60 \mathrm{watts}, 11 /$, post 6d. Heavy Duty lron, 150 watts, $14 / \mathrm{F}$, post 86. All parts sollering Imons, for use on gas, 1,4. post 4d. Resin-cored solder for easy soldering 6i. packets, or 1 b . reels. 6 - . postage extra. Mierophones. Just the thing for impromptu concerts, room-to-room cominuni
caton, etc. Bakelite table model, 69 Suspension type, 8/6. Post 6d. Milke Suspension type, ${ }^{\text {But }}$ Moving Coil, 4.6 ; Transformers, 5/-. All post 4d. each. Rotary Transformers, $24 v$ input ; Output 1.230 v., .2 amp . in case with suppressors etc. easily converted to run as a high
voltage motor. $25 /-$ carr. $3^{\prime} 6$. Also 12 v . input: Output 6 v ., 5 amp , $: 150 \mathrm{v} . \mathrm{I}^{2} 10 \mathrm{~m}$ input: Outputt 6 v., 5 amp, 300 v.. $20,240 \mathrm{~mA}$.. 22.6 , carriage 36 Morse Keys. - Standard-size keys wired to
work Buzzer or Lamp, 3/-, post Gul. Slightly smaller keys. 26, post 4d. Terminals, brass. 2BA. mounted on strip 6d. pair. .0005 Airspaced Bariable Con-
densers, $2 / 6$. post $4 d .00003$ twin gang with trimmers, 26 , post 41.24 rolt, $15 \mathrm{~m} / \mathrm{m}$. $1 /$ each. $10 /$ doz., post $4 d$. Vander Plugs, Brass, $1 / 6$ doz, post $4 d$. Fuses. 15 amp . and 250 mA . same price. Hydrometers, Standard Type, 6^{1}-, post 60 .
Bargain Parcels of really useful equip ment. containing Switches, Meters, Con densers, Res1stances, Phones, etc., 10/or double assortment, $17 / 6$: treble,
Field Intereommunication Sets, complete With ringing hand generator, bell, slgna case with circuit diagram, 25 each, carr $2 / 6 ; 47 / 6$ pair, carr. $3 / 6$. Ex-G.P.O. Tele phone Twin Bells, with box, $5 /$, post 961. post 1/6: Bcll, 3,6. post 6d.
Heters. 10 V., 21 in . Rectifier (A.C.). In wooden carrying case, $14 / 6$ ion 15 . 3.500 v . $31 \mathrm{n} .$, mic.. $20^{\prime}-: 6,000$ v. $31 \mathrm{in} .$, mic., $5 \% / 6$
 in case with switch, 7,6 .
completely satisfied
HIGHSTONE UTILITIES
New Illustrated List sent on request with
New Illustrated Eist sent on re

It's called the 'HANDY UTILITY' 5" Sander-Polisher, but that only tells you half the story! It cleans up wood and metal, it grinds, buffs, burnishes and wax polishes. It removes rust and paint from metal surfaces with the cup wire brush. And as a drill it has a capacity of $1 / 4$ inch in steel! With its accessories it has a hundred money-making, labour-saving uses-and it's one of the famous 'HANDY UTILITY' range of low priced electric tools.

Other 'HANDY-UTHLITY' tools include

$$
\begin{array}{ll}
\text { H.U. } \frac{1^{\prime \prime}}{\prime \prime} \text { ELECTRIC DRILL } & £ 6.10 .0 \\
\text { H.U. } \frac{n^{\prime \prime}}{\prime \prime} \text { ELECTRIC DRILL } & £ 11.7 .6 \\
\text { H.U. } 6^{\prime \prime} \text { H.D. 'LECTRO-SAW’ } & £ 15.15 .0
\end{array}
$$

and a wide vaprety of useful accessories

HANVYY:TITIITY

FRODUCTS OF THE H.U. DIVISION OF BLACK \& DECKER LTD.
OBTAINARLE FROM YOUR LOCAL TOOL SHOP, ELECTRICAL DEALER; IRONMOMGER OR STORE

GALPIN'S

ELECTRICAL STORES
408, HIGH STREET, LEWISHAM, LONDON, S.E.I3

Tel.: Lee Green 0309. Near Lewisham Hospital. Terms: Cash With Order. No C.O.D. All goods sent on 7 days' approval against cash. Early closing day Thursday.

MAINS TRANSFORMER (new). Innut $200 / 250$ volts in steps of 10 volts. Output 350-0-350 volts, 300 miamps., 6,3 4 amps., 65/- each, carriage 3/6. Ditto, $450-0-450$ volts 250 m/amps., 6.3 volts 8 amps. twice, 4 volts 4 amps ., 5 volts 4 amps ., 651- each, carriage 316 . Another, input as above. Output $500-0-500$ volts $250 \mathrm{~m} / \mathrm{amps}$., 6.3 volts 8 amps. twice, 6.3 volts 4 amps., 4 volts 4 a mps., 5 volts 4 amps., $70 /-$, specificarions, $350-0-350$ volts 250 mlamps ., 4 voles 8 amps., 4 volts 4 amps., 6.3 volts 8 amps., $0-2-6.3$ volts 2 amps., 6316 each carriage paid. Another, input as above. Outpur 500-3 50-0-350-500 voits 250 mlamps., 6.3 voles 6 amps., $0-2-6.3$ volts 2 amps., $0-4-5$ volts 4 amps. twice, 6716 each, carriage
$3 / 6$. SWITCHEOARD METERS. 4 in . cale, moving coil (D.C.) only, 0 to 14 amps. 1716 each, post 116 . Ditto, A.C.ID.C., 2216 each, post $1 / 6$. Another 0 to 30 amps.,
A.C.ID.C., $25 /$, post 116 . MAINS TRANSFORMERS (new). Input 200-250 TRANSFORMERS (new). Input 200-250 voles 180 mlamps., 4 volts, 4 amps., 5 volts 16 Anps., 6.3 150 $350-0$ mps., 3916 each, post 16. Another $350-0-350$ volts 180 miamps. 6.3 volts 8 amps., $0-4$-5 volts 4 amps. voles $150 \mathrm{~m} / \mathrm{a}$. 4 volts 4 mps, C , 0-500 volts 4 amps. C.T., 5 volts 3 amps., 4216 each, post $1 / 6$. Another, $425-0-425$ volts 160 milamps., 6.3 volts 4 amps., C.T. twice, 5 volts 3 amps., 4216 each, post 116 . EX
W.D. SURPLUS METERS. 2 in. seale, 0 to 20 volts, 616 each, post 6 d . 0 to 40 volts, 716 each, post 6d. (both moving coil). Thermo coupled 0 to $350 \mathrm{~m} / \mathrm{amp}$. 116 each, post 6d. SWITCHBOARD 4 in. scale Amp. meters, moving coil meters 100 to 250 amps., complete with shunt 301- each, post 116. EX-RADAR MAINS 50 eycles, । phase. Output $4,500-5,500$ volts approx., $30 \mathrm{~m} / \mathrm{amps}, 6,3$ volts 2 amps . 4 volts $1 \frac{3}{2}$ amps., 2 volts 2 amps., thes transformers are new, immersed in oil Can be taken out of the oil and used as television transformers, giving an ourpue of 10 mamps.: overall size of transiormers separately $5 \frac{1}{2} \times 4 \frac{1}{2} \times 4 \mathrm{in}$. and $3 \times 3 \times 2 \frac{1}{2}$ in price £31101- each carriage paid. ROTARY 1,200 volts 70 m. 24-28 vols D.C. Anput. , 200 volts $70 \mathrm{~m} / \mathrm{amps}$. D.C. output. 101 VOITAGE CHANGER TRANSFOR MERS T RAN RANFR watts, 4816 each post 116 -230 volts 350 500 watts, $62 / 6$ cach, carriage 316 . As above, 200 watts, 351- each, post 116. volts 55151 each carriage 51 TYPE 101 R.F. UNITS (new) Containing six valves, including grounded grid triode F.H.P., 24 volt universal motor, numerous resistances and condensers, etc. 351- each carriage 316. MAINS TRANSFORMERS (new). Suitable for spot welding. Input $200-250$ volts in steps of 10 volts. Outpur suitably tapped for a combination of either 2-4-6-8-10 or 12 volts at $50-70$ amps., 8716 each, carriage 716. EX-NAVAL ROTARY CONVERTORS. 110 volts D.C inpur. Output 230 volts A.C., 50 cycles I phase, 240 watts, capable of 50 per cent overload, weight $100 \mathrm{lb} .$, price $£ 10 / 10 \mathrm{l}$ LIGHT QUARTERLY TYPE CHECK METERS. All for $200-250$ volts A.C. 50 cycles, i phase, 5 amp. load, 1716 each post 16 , 25t- each, post 116 . MAINS TRANSFORMERS (new) $200-250$ volts TRANSFORMERS (new). 200-250 volts input in steps of 12116 . ach post 16 12,24 volts 6 amps., 3716 each, post 116. Another as above, bur $1 / 6$ Another as above, but $25-30 \mathrm{amps}$ 701 each, carriage 116. Another, input as above, output $0.3,18,30,36$ volts 6 a mps $42 / 6$ each post 116 EX \mathbf{R}. A.F ROTARY' CONVERTORS. 24 volts D.C. input 50 volts, 50 cycles, 1 phase at 450 watts output, complete with step up iransformer 50 to 230 volts, $\mathrm{E} 9 / 10 \mathrm{l}$ each, carriage 101 E. EX-U.S.A. W.D. ROTARY TRANSFORMERS. 12 volts D.C. input, 500 volts, $50 \mathrm{~m} / \mathrm{a}$. 275 voles, 100 mlamps. D.C. output, complete with smoothing switches, fuses, etc., as new 1716 each, carriage 216, can be run on 6 volts giving half the stated cutput.

SSUCCESS ?
The demand for qualified technicians to fill well-paid industrial posts grows daily. An E.M.I. course of training is your quickest way to a key position. Our Home Study courses cover all the subjects listed below. As part of the great E.M.I. Group (H.M.V., Marconiphone, etc.), we have first-hand knowledge of the technical training required in modern industry. No other college can offer you such a practical background of industrial experience.

POST THIS COUPON NOW

 EM.I. INSTITUTES, Possal Division, Dept 144 E,M.I. INST YASK, ROAD, CHISWICK, LONDON, W.4. Acase send, without obligation, your FREE BROCHURE.
have marked the subieas which interest me.
\square Mechanical Eng. Electrical Eng. \square Draughtsmanship \square Radio Television Production Eng. Automobile Eng. Aeronautical Eng. \square General Cert. of Education (Matric) Civil Service Also Courses for A.M.I.Mech.E. A.M.I.C.E.E. A.M.Briti.R.E.E., Also Courses for A.MUI
A.F....Ae.s. CITY and GUI
Telecommunications, etc.
NAME. adDress

SELECTED MISCELLANEOUS ITEMS

EX-GOVT. PRISMATIC BINOCULARS
Best British makes, including Kershaw, Ross, etc. $6 \times$ Eye-piece focusing.
Case. Guaranteed condition. Post 21 - extra.
£7-15-0

U.S. Govt.

STAR IDENTIFIERS
Consists of Star Base and seven Templates. Can be used to spot or identily stars. Complete with instructions and leatherette
wallet. Postage 9d. extra.

PRISMATIC ELBOW TELESCOPES
Power $7 \times$. Weight 6 lb . Image erect Definition Fose from distortion
free.

27/6

REFLECTOR SIGHTS

Beautifully constructed instrument consisting of lamp-house with dimmer-switch attachment and condenser
of 3 lenses in housing. Readily adapted
$\begin{aligned} & \text { as film-strip viewer, erc. } \\ & \text { (including postage). }\end{aligned} \quad 15 /=$
PRISMATIC
OPTICAL UNITS
No magnification but can be adapred for use as prismati Weight only 14 ozs. $10 / 6$
(including postage).

SATISFACTION GUARANTEED OR FULL REFUND
CHARLES FRANK
Instrument Makers and Dealers since 1907.
67-73, SALTMARKET
GLASGOW, C. 1

Interesting Bargains
CRYSTAL SETS. - The Lesdix Festival Madel, wound coil, var, tuning condenser everset diode detector, phone transformer with socket, all fitted in black bakelite case, 6 in. $\times 4 \frac{1}{2}$ in. $\times 1 \frac{1}{3}$ in., supplied with headphones specially sensitive to erystal reception, fitted cord and plug, all aerial tested, $30 / \%$, post $1 / 6$. Crystal set only with terminals for own headphones, 21/. post 1 l-.
MORSE PRACTICE KITS on baseboard fitted A.M. precision Key, twin-coil Buzzer battery holder and terminals with connection diagram and single phone with headband and cord, 716.
MORSE KEYS. A.M. type, 2/8, post 9d, Fractice Key on wood base with space for buzzer and brass terminals, 216 , post 9 d . RUZZERS. Practical type tunable note, in metal case, 216, post 6d. Twin Coil new G.P.O. type, 216 , post 6 d . Townsend high note wavemeter Buzzer, 5%.
MAGNETS. Swift Levick S.L.S. 36 circular horseshoe 1 in. diam., sin. thick, circular horseshoe fin. diam., $\frac{1}{3} \mathrm{in}$. Polar gap, drilled poles, weight 20 z ., in. Polar gap, drilled poles, weight 202, , diam. \$in. shick. 3/16in. centre hole, 316 . D.C. Electro. Magnets, twin coil, weight 10 oz ., lift 4 lb . on 6 v ., 3 lb . on 4 v . and $1 \frac{1}{2} \mathrm{~b}$. on 2 v , new surplus, 5 l h , post 6 d . HEATER ELEMENTS. 24 volts 75 wates, for seil warming, etc., $1 / 6$ ea. Ten can be used in series off 240 volt mains. Special price for quantity orders. RECTIFIERS, 1 wave Selenium, 500 CONDENSERS. 250 volt Paper I plus 1 mfd . and $2 \mathrm{mfd} ., 716 \mathrm{doz}$. Hermetically sealed. 8 mfd .400 volts, 4 mfd . 1,000 velts, sealed. 8 mfd .400 volts, $4 \mathrm{mid} .1,000$ vclts, TELEPHONE CONSTRUCTOR'S PARTS, ex G.P.O., for wall mounting, PARTS, ex G.P.O., for wall mounting, comprising bracket mike in bakelite case.
Magneto Bell, transformer, condenser, Magneto Bell, transiormer, condenser, strip in pol, wood box 8 in . $\times 6 \mathrm{in}$. $\times 3 \mathrm{in}$ trip in pol, wood box 8 in . $\times 6$ in, x Sin., hand magneto Generator and single

ELECTRADIX RADIOS

214, Queenstown Road, London, S.W. 8 Telephone: MACaulay $2159 \Longrightarrow$

MAKE MONEY-making casts

 with MNAMEDA grand spare-time occupation
WITHOUT any previous experience, you can mass produce any object from a chessman to a candlestick, statuette or model ship, in plaster, resin, concrete, etc. . with "VINAMOLD," the fexible mould that gives the BEST results. Easy to work, can be used over and over again. Needs NO special equipment, provides a prolitable and en minimum outlay
"VINAMOLD" is the flexible mould employed by leading industrics, including the big film studios. Trade enquiries are invited.

Write for full delail's and instructions
VINYL PRODUCTS LTD., (Depi. P.M.2) Butter Hill, CARSHALTON

REFIL YOUR OWNBALLPEN

 VISCOID REFILL KIT Post free $3 / 8$ inc. tax Complete with Tool and Illustrated CONTAINS SUFFICIEN NORNS SUFICIENT INK FOR IS LARGE REFILLS Available in Blue, Red and Green Trade Enquirios Invited. VISCOID INKS (P.M.) 6, Sherlock Mews, Baker St.,INTERESTED IN FISHING?
Then send for one of our tapered whip aorials and make yourself a fine rod worth
pounds. Consists of three tubular steel. counds plated sections 4 tit. long which sorew into each other and are woll finishcd,
$7 / 6$, carriage 1/-.
SOME OF OUR OTHER BARGAINS SHOWCASES.-Hardwood with plate glass opening front, 3 ft, $31 \mathrm{n} . \times 2 \mathrm{xt}$ 3in. $x 51 \mathrm{in}$. ideal for shops. factories, etc., 45^{\prime}-, cge. 10!TIIERMOSTAT SWITCIL-Bimetal type in sealed glass tubs, 24in. "tin. 30 derg
Cent. Ideal for Aquarlums, Wax and Oil Baths, Gluepots, etc. Will control 1 amp at $240 v . .5 /$ - each.

Cent., $35 /$-.
CUTTER HEADS.-" Recording " hich impedance, Amazing bargain at $55 /$ - high CUTLERS STYLIK, 6!- per doz, large rates.
Jowelled movement flayita splendid \&-da stringent Govt. specification. Brand new guaranteed. Ideal for car, study, bedroom, etc.. will withstand vibration and shocks ACCUVULATOR CHARGERS in Mack cracklo case with fuses and meter, 6 an 12 volts at 4 amps. Bargain Price. E\&/19/6. TWIN FLEX in
TWIN FLEX in blaok braided covering. SLOW-MOTION DIALS. 6in. Scaled $0-100$. reduction 200 to 1 or direct, ideal for wavemeters, signal generators, etc. Ou price, while they last, $5 / 6$ each. post $1 /-$ IIEADLAMP Toomplete with Battery VEEDER COUNTER $0-9999,1 \mathrm{id}$. If . inn. Very useful. 10'- each, post 6 d .
BROMHDE PAPER.-Glossy grades 1 an BIROMIDE PAPER.-Glossy grades 1 and AUTO TRANSFOR gross, post 611.
AUTO TRANSFORMEXR, 230115 Folts 500 watts 50 cycle 3 , fully shrouded, new
Made by Met. Vic. \& $/ 110^{2}$ - 0 ach. RECTIFIERS SELEENIUM ?
$200 \mathrm{~mA} ., 26 \mathrm{cach}: 441$ volt 40 mA ., $10 / 6$ vach Voltage Doubler, 168 volt $40 \mathrm{~mA}, 9$ - cach Bridgc type 24 volt 75 mA . $4 / 6$ each: 36 $7 / 6$ each amp. 48 volt $150 \mathrm{~mA}, 18$ volt 75 mA volt 600 mA . 35 l - each : 96 volt 2.5 amp . 701. each.

TI RSTINGHOUSE MRIDGE TYPF.,
12 volt $1 \mathrm{amp}, 126 ;$
24 volt $500 \mathrm{~mA}, 106:$ volt $1 \mathrm{amp}, 10 \mathrm{c}$
WILCO ELECTRONICS
204, LOWVER ADDISCOMBE ROAD.

QUERIES and ENOUIRIES

A stamped, addressed envelope, three penny

 stamps, and the query coupon from the curren issue, which appears on page 32 (THE CYCLIST), must be enclosed with every letter containing a query. Every query and drawing which is sent must bear the name and address of the reader Send your queries to the Editor, PRACTICAL MECHANICS, Geo. Newnes, Ltd, "ower W.C. 2.Southampton Street, Strand, London,

Time Lag in Photocells
IS the lead-sulphide photo-conductive cell the and has it a similar time lag? -J . McQuaid, (Enniskillen).
IN a general way, the lead-sulphide photocell (and other cells like it, such as the copper oxide cell Both classes of cell alter in ectrical resistance unde variations of illumination and darkness, but the selenium cells are much more reliable. Cells of the lead-sulphide class invariably have a time lag, but this is not constant being ar a minimum when the cell is freshly prepared and increasing with the age of the cell. The time lag of these cells depends, also, on the precise physica character of the cell, and of the layer of lead sulphide or other sensitive material which is used therein. Usually, the time lags of
of a good selenium cell.

Adhesive for Rubber Floor Covering

I WISH to make sufficient of an adhesive comrubber covering floor. The floor will be subject to daily scrubbing so the adhesive should not be water soluble. Ihave a number of car tubes that could perhaps be used for liquefaction, and shall be grateful
for any advice you can give me.-J. W. Holliday (Okehampton).
YOU cannot utilise old rubber tubes to make any scrap rubber would her solution or adhesive, since the designed rubber mill. That is mainly the reason why all amateur attempts to make rubber solutions fail

Your best plan will be to use a bituminous solution or paint. Give the floor surface a thin coating of this paint. Then apply a thin coating to the underside of the rubber coating. Let both surfaces dry. Then recoat the surfaces and bring them together under firm pressure-preferably using a roller of some description The rubber flooring will now lie flat and its adhesiv will readily resist water.
You should be able to obtain bitumen solution locally, or else in Tavistock or Plymouth. If not, apply to Wailes Dove Bitumastic, Ltd., Collingwood Buildings Newcastle-on-1yne. This arm, we belie.

Tinting Sea Shells

CAN you give me any information concerning pea shells various colours -J. W. Hancock (York).
SEA shells are most difficult to dye or to tint evenly ollows Thoroughly clean the shells and render them as white possible by soap-and-water scrubbing. Then immerse them overnight in a solution made by dissolving 3 parts of tannic acid in 97 parts of water. After this, allow the shells to dry without rinsing. Then immerse them in a cold solution of 5 parts dye in 95 parts of water. Gradually heat the dye solution to near boiling point during ne hour. Retain it at that temperature for another 10 minutes. Then allow it to cool, and fnally remove the shells and give them a short rinse in cold water. Al his time the shelis should be kept on the m rder to avoid their becoming dyed unevenly.
For the above purpose use only aniline dyes of the basic class, such as methylene biue, briliant green nagenta, methyl violet, safranine (yellow), etc. Thes can be purchased, price about 2 s . per oz., from mos Reynolds and Branson, Ltd., of Leeds, or Messrs Vicsons, Ltd., 148, Pinner Road, Harrow, Middx. Some of the ordinary household dyes (but not all) are amenable to the above use.

Galvanising Steel Tubing

I MANUFACTURE tubular steel gates, and wish you give particulars of the best method and the plant required?
Also, what is the cost of galvanising $x \mathrm{sq}$. ft. steel ?-P. Lowther (Ross-on-Wye).
THE galvanising of iron and steel is an enormous subject, and it forms the basis of a very large
industry in this country. Without specia! plant, know-
ledge, skill and experience, you could not possibly hope to compete commercially with even the smallest of the existing galvanising firms.
In general, there are two methods of galvanising, viz.:
(a) Hot-dipping. In this method the steel or iron material, after acid-dipping is mechanically lowered into a bath of molten zinc which is covered with a layer of flux. The metal sheet is then withdrawn, rinsed and dried
(b) Electro-zincing. Here the zinc is electrolytically deposited on the steel or iron surface.
There are advantages in both methods, but you would find the electrolytical method the simpler of the two. All you would require would be an acid-dipping tank for the pre-treatment of the tubular steel, and electroytical or "deposition" vat, and a vat for rinsing the vork, plus, of course, the necessary supply of controlled direct current.
If you would care to write to any of the following firms: Messrs. Wm. Canning and Co.; Ltd., Great Hampden Street, Birmingham; Messrs. R. Cruickshank, Ltd., Camden Street, Birmingham, I; Messrs. Grauer and Weil, Ltd., 3/4, Hardwick Street, London, E.C. $;$ Messrs. Holykem, Ltd., Hockley Hill, Birmingham; mentioning your aims and giving some idea of the amount of material which you would have at any given time, you will receive information respecting the fitting-up of a complete plant for electro-zincing. You will find such plant far simpler to operate than any

It is absolutely imposs

Readers are asked to note that we have discontinued our electrical query service. Replies that appear in these pages from time to time are old ones and are published as being of general interest. Will readers requiring information on other subjects please be as brief as possible with their enquiries.
galvanising I sq. ft. of steel or iron. On the face of things, such cost might seem very low, possibly a penny or soration, such as labour charges, electrical charges, sideration, such as labour charges, electrical charges,
overheads, capital cost of plant, and so on. These must all be assessed before an accurate costing can be worked out.

We would advise you in the first place to submit your scheme to one or other of the above makers of information and advice into consideration.

THE P.M. BLUEPRINT SERVICE

I2FT. ALL-WOOD CANOE. New Series, No. I. 3s. 6d.*
I0-WATT MOTOR. New Series. No. 2. 3s. 6d.*
COMPRESSED.AIR MODEL AERO ENGINE.
New Serles. No 3. 5 s.
AIR RESERVOIR FOR COMPRESSED.AIR
AERO ENGINE, New Series. No. 3a, Is.
SPORTS "PEDAL CAR. New Series. No. 4.5s.* F. J. CAMM'S FLASH STEAM PLANT. New Series. No. 5. 5s.
SYNCHRONOUS ELECTRIC CLOCK. NEW
ELECTRIC DOOR-CHIME. No. 7. 35. 6d.*
ASTRONOMICAL TELESCOPE: New Series. No. 8 (2 sheets). 7s.
Canvas Cande. New Serics. No. 9. 3s. 6d.*
DIASCOPE. New Series. No. 10. 3s. 6d.*
EPISCOPE. New Series. No. II. 3s. 6d.*
PANTOGRAPH. New Series. No. 12. Is. 6d.*
COMPRESSED-AIR PAINT SPRAYING
PLANT. New Series. No. 13. 7s. 6d.* 620 CAR
(Designed by F. J. CAMM)
MASTER BATTERY CLOCK:
Blueprints (2 sheets), 3 s .6 d .
OUTBOARD SPEEDBOAI *
los. 6d. per speciont
LIGHTWEIGHT MODEL MONOPLANE
ull-size blueprint, 3s, Ed

P.M. TRAILER CARAVAN

P.M. BATTERY SLAVE CLOCK-2s.*
"PRACTICAL TELEVISION" RECEIVER (3 sheets) 10 s . 6 d .
The above blueprints are obeainable, pose frec, from Messrs. George Newnes, Lid., Tower House Southampton Street, Strand, W.C. 2
An * denctes constructional details arc available, free, with the blueprints.

Bakelite Varnish

I AM building a skeleton-type processing drum suitable for palnting both drum and tank to withstand chemical action of developers to withstand chemical action of developers and materials to be painted include, tin, brass, wood and iron.
If there is a ready-made paint, from where is it obtainable ? -J. Bonell (Nottingham).
IN our opinion, there is no paint which will perdevelopers and fixers. That is why parts subjected to he action of these solutions should be made in stainless teel, monel mutal, plastic material, vulcanite or porce lain, slate, glass, etc.
The best advice we can offer is that you use a bakelite varnish impregnated with a pure titanium oxide (white) pigment. This should give you maximum resistance to these solutions. Titanium oxide in commercial grades can be obtained from British Titan Products Co., Ltd., Coppergate, Yorks, and bakelite varnishes S.W. I. Possibly, the li, Grosvenor Gardens, London, you whether pigmented you can get a ready-made bakelite paine Messrs. Nobles and Hoare, Ltd, is Cromwell Road, London, S.E.Y, or Messrs. Pinchin, Johnson, Lid., General Buildings, Aldwych, London, W.C.2.

Papier Maché
 Gold Paint

(I) WHEN pulping old newspapers would the (I) addition of caustic soda reduce them to a fine pulp? If not, can you advise me of an agent that would do so? The resulting pulp would have
to be handled by children, so the agent would to be handled by children, so the
have to be harmiess to the skin.
(2) Can I mix a cement with the pulp so that the models "set" instead of having to dry out hard ?
(3) Could you tell me the makers of "Oro
gold paint ?-J. D. Williams (Teignmouth).
(I) THE addition of caustic soda, even in small -) amount, to the water used for pulping paper This material, however, is very dificult to get rid of, a task which requires persistent washing of the pulp. Since you say that the pulp is to be used by schoolchildren, we would definitely advise you not to use the caustic soda treatment. Traces of the caustic might casily be conveyed to the children's mouths, with rather bad consequences
In place of caustic soda, use a little ordinary washing soda, which is not caustic and which is more easily removed by washing. Forits success, the simple pulping which you describe ought to be more of a mechanical than a chemical process. Which means that greater reliance ought to be placed on fine shredding, beating and tearing, etc., of the paper than on the addition of chemical disintegrating agents to the water (2) Ordin the pulp, alt is distortion in the finished material Ordinarily; the distortion suld be mixed with glue water (hot) say the of glue in 20 parts of water-and then allowed to set. We realise, however, that the handling of gluey material by chiliren might be very undesirable. We suggest herefore, that the paper pulp should be incorporated with a mixture of approximately equal parts of Portland cement and some fine filler, such as china clay, kiesel guhr, whiting, brick-dust, stone dust, powdered asbestos or any similar fine inert material which is available. You will probably have to make a few experiments in order to obtain the right proportions of any given materials
(3) We believe that the gold paint which you mention is made by Messrs. Johnson and Bloy, Ltd, Metana
House, Hind Court, Fleet Street, London, E.C.4, who are specialists in these metallic printing and writing inks. From this firm you can also obtain at very reasonable rates in very fine grindings, which, mixed with gum water, can be converted in our opinion, it is preferable, in aints as required. In our opinion, it is preferabie, in a school, up whenever it should be required. up whenever it should be required.
and Sons, Lid., 18, Ashwin Street, London, E. 8 C. Roberson and Co., Ltd., 71, Parkway, London N.W. I Messrs. J. Bryce Smith, Ltd., II7, Hampstead Road, London, N.W.I; and Messrs. T. N. Lawrence and Son, 7, Red Lion Court, Fleet Sirect, London, E.C.4.

Dark Stain for Floors

I BELIEVE a dark stain for floors can be manu factured from a suitable mixture of lampblack, shellac and methylated spirit. Can you please confirm this and give the percentage of suitable mixture'?-G. H. Bridgland (Bath). suitable mixture
A VERY serviceable dark stain for floorboards can Ω be produced by the use of lampblack, drop black
or carbon black. The procedure is simple enough. carbon black. The procedure is simple enough. paraffin. Work into this a small proportion of one o the above blacks. The black will not dissolve in the oil, so that the liquid Will have to be kept shaken. Remove all varnish from the foorboards, and brush them over with the above mixture, preferably applied with beesway in the usual way. This will give you a wemi-gloss floor which, with repolishing'now and again will remain in good condition for 20 years or more

Do not use too much of the black in the mixture, otherwise it will tend to rub off when the floor is dry. Another black polish is composed of I part of shellac dissolved in it parts of methylated spirit.
When all the shellac has dissolved, sufficient black should be worked in to colour the medium black. This is wiped ot brushed on to the floor. Note that the black is of itself quite insoluble in the medium, being only held in suspension therein. Heace, it does not act as a dye or a stain which is transparent. In order to make a transparent black stain or a semi-transparent one, you must make up a shellac solution in methylated spirit and then add a little black spirit-soluble dye, which you should be able to
or colour merchants.

Dyeing Carbon-tetrachloride and White

 Spirit Mixture.WOULD be glad to know of a dye to colour a
mixture of carbon-tetrachloride and paraffin oil mixture of carbon-tetrachloride and par

I have tried unsuccessfully artists' oil colours. In my researches I placed in a clear glass bottle some water. Into that l poured a mixture of carof such proportions paramin oil, coloured, and of such proportions that it just sinks to the
bottom of the bottle. Now I wart it to withbottom of the bottle. Now I wart it to withIn practice the colours seem to get disintegrated some of it sinking to the bottom like a powder,
leaving parts of the carbon-tetrachloride-paraffin leaving paris of the car
I would also like to ask if there is any means of causing the water part of it to come crystal clear after the shaking in a shorter time than about wo weeks as it se
(Twickenham).
YOUR whole trouble is due to the fact that not every dye which is soluble in water is soluble in paraffin and/or carbon-tetrachloride. Furthermore, artists ${ }^{3}$ oil colours are not dyes. They consist of insoluble pigments ground up with oil and sometimes with waxes
and other media. Hence, although the oil and and other media. Hence, although the oil and waxes dissolve in your carbon-tetrachioride-paraffim
mixture, the pigment does not. It remains insoluble mixture, the pigment does not. It remains insoluble and either sinks to the bottom of the liquid or remains
suspended therein, producing, as you say, the effect of "disintegration" of the colour.
You will at once solve the difficulty by employing a dye which is soluble in the paraffin. Any oil-soluble or wax-soluble dye will serve for this purpose. There are, for example, the well-known "Waxoline" series
of dyes manufactured by I.C.I., Ltd. There are various other oil-soluble dyes, which you will be able to obtain from any London chemical suppliers, as, for example, Messrs. Grifin and Tatlock, Led., Kemble Sereet, Kirgsway, London, W.C.2, or Messrs. A. Gallenkamp and Co., Ltd., 17-29, Sun Street, Finsbury Square, London, E.C.2. Any of these dyes will colour the Faraffin and the carbon-tetrachloride, giving a perfectly transparent liquid without any "disintegration" or sediment, but they will not colour the water, since thesc dyes are insoluble in water. On the other hand, water
soluble dyes will not usually colour oils, such as soluble
paraffin. If sou shake up water and paraffin together, the two liquids will separate very rapidiy. When carbontelrachluride is present it tends to form an emulsion
which does not separate so quickly, and which, as you which does not separate so quickly, and which, as you mention, may take a long time to do so. Furthermore, particularly in the presence of strong light, carbonthe water, forming traces of hydrochloric acid therein. All these changes influence the rate of separation of the mixture, and there is nothing which you can do about it. If, however, you confine yourself to paraffin and water you will not have any trouble in this respect.

We note that you do not tell us the proportions of paraffin, water and carbon-tetrachloride which you use The more carbon-tetrachloride there is present the
greater the non-separating trouble may tend to become.

Painting Over Creasote

A^{S} I have mistakenly icreosoted some wood following points: (1) Is there any paint I couid purchase or make up that can be painted on to creosote without I can apply a finishing coat of paint? creosote produce an oily patch inside and creosote produce an only patch inside and side, which would be painted?
(3) If the inside of the hardboard were painted fixing, would this arrest the action of the creosote? (4) Does creosote dry off in time
(5) Could you please suggest treatment or cure ?-A. Holdsworth (Thornton Heath).
YOU do not say whether the creosoted woodwork is
of small or large dimensions. If it is a smal article a few days' soaking in a weak solution a smal article a few days soaking in a weak solution of caustic
soda (say 1 part in 8 of water) will remove the creosote, soda (say i part in 8 of water) will remove the creosote, so that, after washing and slow drying, you will be able to paint directly on to the wood in the normal way. this solution, and subsequent thorough washing.
In fact, it is advisable to give any heavily creosoted area of woodwark this type of treatment, always provided that the caustic solution can be thoroughly washed away afterwards.
If the creosote stain still remains after the wood has thoroughly dried out, give the surface a coating of
shellac varnish. Follow this up with another thin aluminium paint layer, and another thin shellac varnish layer. Let the whole harden properly, and then apply the ordinary surface paint of your choice. A wood
surface will have to be very heavily creosoted for it to surface will have to be very heavily creosoted for it to project a creosote stain through those protecting layers. Always, if possible, apply the caustic soda treatment first. It means that you will have so much less absorbed creosote to contend with. Do notlet the caustic solution come into contact with any glued joints (including plywood edgez), since it has a st
destructive action on the gluc.
destructive action on the gluc. no need for you to fit a new hardwood surface to the woudwork in question

Creosote does dry out of woodwork in time, but it is a process which takes years, and the creosote always leaves a certain amount of non-volatile residue in the
wood.

Windings for Small Motor

HAVE the field magnet and armature stampings for a small electric motor, as shown in the accompanying diagrams, and shall be glad if you 230 volt A.C. mains, 50 cycles, single phase.
230 volt A.C. mains, 50 cycies, single phase.
The armature has eight slots and the conmutator 24 segments. The field and armature are laminated and the motor is not enclosed.
I would like the motor to have sufficient power to drive a sewing machine. What type of resistance should i use for slow running? -I. H. Hamamond (Slough).
T HE motor is rather small for use on 230 volt mains, wound. Is is, however, doubrful if the motor will be capable of driving a sewing machine, unless the

Field magnet and armature-stampings for a small electric motor.
latter happens to be a very light and easy-running Each
Each field pole could have 300 turns of $35 \mathrm{~s} . \mathrm{w} \cdot \mathrm{g}$. enamelled wire, the two coils being connected in series with each other so as to create poles of opposite The armanure colld have seight coils withe armature. The armature could have eight coils with a coil span from slots one to four, etc.; each coil having 330
turns of $39 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled wire with turns of 39 s.w.g. enamelled wire with loops brought ture placed so that slots one and four are equidistant from the centre of one pole face, number the commutator segments which then lie under the nearest mutator numbers two and three. All numbering is considered clockwise at the commutator end. Connect
the start of the coil in slots one and four to segment the start of the coil in slots one and four to segment one, the first loop to segment two, second loop to three, and finish of the coil to segment four. Connect the start of the coil in slots two and five to segment four, first
loop to five, second loop to six, finish of the coil to segment seven, and so on.
The control resistance should be capable of carrying 0.4 amps . and should have a resistance of about 350 ohms.

Etching on Glass

I AM etching designs on glass by means of taking prints from an engraved copper plate.
The method 1 use is to spread an acid paste consisting of hydrofluoric acid, ammonium bifluoride, barium sulphate, and gum tragacanth knife. After scraping the surplus waste a palette knife. Afrer scraping the surplus paste from the plate with the knife, 1 then take a print from the plate with pottery tissue as in the litho process. prevent distorting the design and left for about one minute, after which the print is removed and a one minute, after which the pr.
These prints have to be used as soon as they are made because they dry quickly and they do when they are dry but the etching is only faint and inconsistent.

Is there any way to make these prints so that
later date, either by the litho process or by a tean
fer printing process?
YOU will be able to get over the rapid-drying trouble by replacing the water of the acid paste with a mixture of water and glycerine, but we cannot tell you he best proportions acase. This wils be a mater for experiment, but, at a considered guess, we sho
two parts water, one part glycerine, by volume.
Glycerine is a very hygroscopic substance, and any preparation containing a substantial amount of it drying-rate of your acid paste by adjusting the amsount of glycerine in the water which you use for making the of glycerine in the water which you use for making the
paste. Since you will not be using any greater quatity
of actual liquid, you will not be reducing the "strength" of the corrosive paste.
Hydrofuoric acid is a volatile substance. Its presence in the paste is essential for the "biting" action on the lass.
Now, if you spread the paste on any tissue or other
sufface and allow it to dry, the hydrofluoric acid goes off, and, as allow it to dry, the hydrofluoric acid goes wetted again, loses much of its corrosiveness. When therefore, you see, rather impossible to preserve the paste or the pasted tissue by drying, and then render it again corrosive by wetting. The hydrofluoric acid, the vital material of the process, has gone, and all the
wetting in the world will not bring it back to the wetting in t
paste again.
It is mainly for this reason that the paste must be ised whilst it is still wet, for, under those conditions, it will still contain a proportion of the hydrofluoric acid.

Paste for Wallpaper: Size Solution

CAN you recommend an adhesive that would elief kind thick wall paper of the brown panelled relief kind to a plastered wall, and hold it there? painting a wall and prevent the paint from pecling due to dampness caused by rain or steam? I understand that white lead would serve this purpose, but apart from being expens
THERE is nothing better than a home-made flout urface. A good recipe is the following
Make two quarts of flour into a stiff batter with cold water. Then gradually stirinto it three gallons of boiling water. Allow the mixture to stand a lew hours before using. The addition of glue size will make this paste more sticky, but, on the other hand, it is liable to contract in drying, thus causing the paper to crack and to wrinkle up at its edges. The addition of a tablespoonful of Venice turpentine to the above paste has been recommended to give it extra sticking power. Venice turpentine is not ordinary turps. It is a special variety, and is almost honey-like in consistency.
If the wall is at all porous, it should b
If tae wall is at all porous, it should be brushed over with a hot solution of size (one part size, Io parts water. This will be absorbed by the wall and will bind the loose particies together. It will not, however, keep damp at bay. After the sized wall has dried out, of equal parts of brmalin ond water with a mixture of equal parts of formainn and water. The formalin by enabling it better to resist damp. A damp wall, by enabling it better to resist damp. A damp wall, after a careful investigation. White lead is not suitable for this type of wall treatment. There are many proprictary substances which can be used for treating damp walls: Most of them are merely solutions of various waxes. You can make such a solution for yourself by dissolving ordinary candle wax in hot paraffin. This, when absorbed into the plaster of a wall, will go far towards keeping damp at bay, but the waxed surface Youders it difficult to secure good adhesion of wallpaper.
You will be able to obtain size, formalin and any other decorators' materials from Messrs. James Beard, Lid.,

Dyeing and Waterproofing a Cotton Garment

I HAVE fust bought an Army hooded smock (ex-Govermment stock,) which would make an
ideal wind jacket for ski-ing. ideal win
like is made of light, close-woven cotton cloth it showerdine.
Can you advise me regarding a solution to use in order to render this garment more water resistant ? At present it will only keep out slight
showers.-G.H. Kyan (Petts Wood) showers.-G. H. Kyan (Jeas wood).
WE presume that you will use an ordinary household dhe garment is of cotton cloth, you should not have any trouble in the dyeing process, although the fabric may tend to shrink a little
In order to render the garment more water-resistant after the dyeing and subsequent rinsing of the garmen immerse it in a quantity of very soapy water. Afte half an hour's immersion, withdraw it, wring it lightly and then immerse it in a solution of alum (five parts alum, 95 parts of water). Let it stay in this solution for one hour with frequent stirring. Then, without
rinsing, pass the material through a roller and hang it rinsing, pas
The action of this process will be to form an insoluble aluminium soap within the fibres of the material, and stringent processes of waterproofing would only resul in the material losing its soft, wearable character, and would render it rough to the touch, and stiff and unpleasant to wear.

"THE CHOICE OF EXPERIENCE"

A Life Policy with The London Assurance gives a man such obvious advantages-security for his family, a capital asset when he needs money -that he is bound to see the value of it. Less obvious is the fact that the - sooner he takes out his Life Policy, the less it costs.
The first step is simple. Post the coupon for a copy of our free book.

That's all. When you've read it, you'll have a very clear picture of what you ought to do, and how to do it.

AND WHAT ABOUT ACCIDENTS:

Among other things, "The London" can insure you against accidents -with the advanstage of 15% discount on your Personal Accident Policy premiums if your life is also insured with us at normal rates. If you would like to know more about this, write YES in the margin against this paragraph and cut it out with the coupon.

THE LONDON ASSURANCE

Very good people to deal with

単

THE LONDON ASSURANCE
1 King William St., London, E.C. 4
Please send me jour booklet
"How to be well Assured"
Name
Address
 man was has never been proved conclusively but it seerns most
likely that the idea came from a Frenchman, Pierre Michaux, in 1861. In November 1868, Rowley B. Turner brought a Michaux "Velocipede" to England. In 1869 various English mäkers were selling copies of it, and it was on machines of this type that Turner, John Mayall and Charles Spencer made their historic ride to Brighton.

The three pioneers set off from London on Feb. 19th, 1869. and Mayall-who had earlier attempted the ride, and failed -reached Brighton in 16 hours. "The Times ", whose reporter followed the trio to Crawley in the comparative comfort of a pair-horse carriage, described the ride as "An Extraordinary Velocipede Feat". It certainly was ...

 brinklow, rugby.

You Can Become a HANDICRAFTS INSTRUCTOR

EXPERIENCE NOT ESSENTIAL
Men who enioy making things in wood or metal can turn their hobby into a permanent and interesting
Career/ Short hours, long holidays, and security in a job you would really enjoy, can be yours if you become a Handicrafis Instructor, Let us send you details of the easiest
and quickest way to get the necessary and quickest

We definitely Guarantee
"NO PASS - NO FEE"
It you would like to know about our unique method of preparing you for one of these appointments, write roday, and we will send you an informative IA4-page HandbonkrREE and without obligation. Mark
your letter "Handicrafts Instructor"

British lastitute of Engiaeering Techaolong
591. Shakespeare House. RTFF 17/19, Stratford PI., Londoo. W.I 31 S:

CHEmISTRY apparatus

Send 2!d. stamp for

COMPLETE PRICE LIST

8 5CM (Scientific Dent. A)
Stoke Newington, London N 16

VOL. XX
JANUARY, 1952
No. 356

All letters should be addressed to the Editor, "THE CYCLIST," George Newnes, Lid., Tower House, Southampton Street, Strand, London, W.C.2.

Phone: Temple Bar 4363
Telegrams : Newnes, Rand, London

Comments of the Month

HERNE HILL-NO CLUB PROMOTERS

TTHE N.C.U., in a laconic statement to the Press, says that it proposes to employ a full-time promoter to run meetings at Herne Hill and generally to manage the track. In a letter to all clubs which hitherto have promoted Herne Hill events, the Union says that it is proposed that the new promoter shall be responsible for all promotions at Herne Hill, but the extent to which this decision can be implemented cannot be decided until the appointment of a track promoter has been made.

The object behind this move would appear to be to convert loss into profit. Since the N.C.U. took over the Herne Hill track it has lost on its events. If it hopes by monopolising Hernc Hill events to make a profit, it will certainly have to vastly improve the quality of its programmes, the nature of its events, and the volume of its publicity.

With a declining membership it may be difficult for the N.C.U. to carry out its plans efficiently because of its diminishing revenue.

The attendances at the Saturday afternoon meetings at Herne Hill have been steadily falling. This should be an indication that the style of event is not wanted to-day. Indeed, it is doubtful whether any style of track racing can provide a gate large enough to make its promotion worth while.
It is no use living in the past. The days of Shoreland, Bidlake, Edge, and others, the days when races could be subsidised by firms manufacturing patent foods such as the Cuca Cocoa people who put up the famous Cuca Cup, and the days of cycling giants are over. In any case, there are far too many events.

The cycling public is probably heartily sick of the internal disputes between the R.T.T.C., the N.C.U., and the B.L.R.C. Naturally, cyclists interested in sport are split into factions. Those violently anti-N.C.U. are not likely to support N.C.U. events at Herne Hill. The dissident bodies, offsprings of the N.C.U., have now become more powerful than the body from which they sprang. In general it may be said that sporting cyclists take their sport too seriously. There is far too much control, far too much talking, far too many jealousies, far too many personal feelings.
Lip service is paid to the desire for unity, but when the partics do meet they go over the same old ground and tear one another to pieces. It has become an internecine conflict, and if it is allowed to continue these three bodies will destroy themselves.
We see no solution to it short of getting rid of the people who have promoted this bitterness all these years. These old men of the movement who consider that they have become the proprietors of cycling, year in and year out plug their same silly last-century views and think they can control a modern generation of cyclists and administer the quack nostrums of the past.
We are certain that if the three bodies concerned were strong enough to eliminate

By F. J. C.

from positions of authority all those known to have promoted bitterness, irrespective of their years of service to the movement, and replace them with some younger and more reasonable executives, agreement would undoubtedly be found and the strife would cease. For ourselves we are determined to see that no more raw deals are handed out by any of them, and !we shall relentlessly watch those who carry on this dangerous policy.

MACMILLAN'S BICYCLE

T
HE model of the first rear-driven bicycle which was constructed by Kirkpatrick MacMillan in Courthills, in Scotland, in 1839, is completed. It will be fully illustrated and described in next month's issue. We have been engaged on this model for some time. It is built to a scale of $1 \frac{1}{2}$ in. to the foot, and is to scale in every particular. The wooden wheels are built up with separate felloes, dowelled, with mortised and tenoned spokes, shrunk-on metal tyres, twist-grip operated brake for the rear wheel, keyed-on cranks to the rear wheel, and, of course, it is a working model.

Before its construction could be commenced, drawings of the copy of the machine, which is in the Science Museum at Ken-
sington, had to be prepared. As far as we have been able to trace, this is the first time that a set of drawings of the machine has been prepared, and the first time a model of it has been made.

It may be remembered that the credit for the production of the first rear-driver was accorded in the first place by the cycling historian, H. H. Griffin, to Gavin Dalziell, but later researches compelled Dalziell to admit that MacMillan had preceded him by many years.

The eventual fate of MacMillan's machine is not known, nor is it known with exactitude who built the copy of it which is in the Science Museum. We have presented the latter with a set of drawings. It is unlikely that MacMillan worked to any preconceived design. It is apparent that he created the details as he went along, as is seen from the fact that the front fork stem is inclined at a different angle to the front forks, which indicates that after he made them he had to set them forward to clear the backbone.

He had an æsthetic eye, for the shape of that backbone with its suggestion of a sleek racehorse in flight could not have been arrived at accidentally. He must have spent a considerable time chalking it out on the smithy foor to have arrived at those pleasing curves. The smithy floor was, and in many cases still is, the blacksmith's drawingboard!

The famous York shive landmark in lipper
Wharfedale

The "Berini" unit hails from Holland and has several distinctive features.

MR. J. S. MACLAY, the new Minister of Transport, officially opened the third post-war Cycle and Motor Cycle Show at Earls Court on November 1oth. Once again the show had been arranged so that it would take in two Saturdays, so as to give a chance to view the exhibits to those unable to spare the time during the working week.
There was no show last year and this one had, in consequence, been looked forward to with greater eagerness. Although prices of other commodities have risen sharply during the past two years, cycles and accessories do not share in the general rise : they are on an average only a few shillings more than they were in 1949.

Cycles

On the Armstrong stand, the "Continental North Road " attracted me, It has a "Cyclo" four-speed gear and a double chainwheel giving a choice of eight gears, " 53 I" tubing is used in the make-up of the frame structure. This tubing is also used for all the Continental and "Moth" lightweights.

A machine that will delight the tourist was shown by B.S.A. on Stand No. 43. It is the "Ideal Tourist," and was developed from opinions expressed by prominent members of the Cyclists' Touring Club. It is complete in every detail, even down to pannier bags, and I particularly liked the finish of Oxford blue enamel with double gold lining. As an indication of the prosperity of the cycle trade in general and the B.S.A. company in particular, their trading profit last year was $£ 2,109,922$ as against $£ 1,125,859$ for the year before.
The Dunelt Cycle Co. were showing their products for the first time since the war. The "Dart" model on Stand No. 88 was the highlight; the lugs are neatly patterned and well filed down, the rubing is the well-known " 531 "" and $3 / 16 \mathrm{in}$. head bearings are fitted. The latter is a feature I should like to see generally adopted by the trade to the most neglected and hardest-used bearing on a bicycle. The "Dart" at £18 19s. Id. was very good value indeed.
Stand No. 71, occupied by Elswick Hopper, was a blaze of colour. "On the Elswick "Avenger" and Hopper "Vampire" clubman models, red, green, or mauve finishes are optional and the seat tubes have a newlydesigned chevron transfer incorporating the respective trademarks in the centre. A very attractive coloured embossed nameplate is affixed to the head tube, completing a machine to delight the beart of the clubman.
On Stand No. 35 R. O. Harrison had one of the most expensive machines at the show :

THE CYCLE SHOW

A Review of the New Cycles and Components
at Earls Court

By R. L. JEFFERSON

this was "The Criterion of all our endeavours." It has a full flamboyant finish on polished plating, the fittings are nearly all alloy, Dunlop Ultralite tyres are fitted, and a four-or five-speed $3 / 32 \mathrm{in}$. chain gear completes one of the most attractive machines at the Show. The retail price in lugged form is £SI 3s. 8d.'; a welded model with the same specification is sold for $£ 488 \mathrm{~s}$. 2d.
The very large stand occupied by Hercules was even more colourful than at the last Show, and for those interested in the technical aspect of cycle construction the photo-elastic polaroscope showed them how the Hercules enginecrs subject cycle components and frames to stresses far beyond the limits to which these parts are put in normal use.

The cycles exhibited are the most representative in the company's history. The already well established "Kestrel" is available now with 23 in. frame and 27 in . highpressure wheels and tyres.
Two new models in the sports range were shown, a massed-start model, the "Maestro," and a track cycle, the "Lapwing." The "Maestro" has a four-speed "Cyclo Benelux" gear, Dunlop high-pressure rims on Bayliss-Wiley hubs, Ultralite tyres, G. B. alloy brakes, and a Mansfield Ormonde saddle. The head and seat angles are 72 deg. parallel, the frame is made up in A. and P. Super-Kromo tubing and the price is $£ 34$ complete, tax paid.
The Lapwing model has a wheelbase of 39in., Dunlop No. 3 tubulars on sprint rims, B. H. "Solite" hubs, Iin. pitch transmission, and a Mansfield Ormonde sprint saddle. This frame is also made up in A . and P . Kromo, the head angle is 73 deg. and the seat 72 deg., and retail price is $£, 33$.
A young lady of whom we shall all be hearing a lot in the near future was on the Hercules stand. Mrs. Eileen Sheridan was greeting cyclists and dealers; she will ride for Hercules in record attempts next season.
Hetchins, of Seven Sisters Road, Tottenliam, has long been famed for elaborate lugwork. This was excmplified on Stand No. 30, where were shown various models. of complete cycles and frames. The frames ranged from fi4 ros. od. upwards and complete machines ranged from $f 36 \mathrm{ss}$. rod. upwards. The lugwork of the "Magnum Bonum " model was in particular most elaborate.
Stand No. 28 was occupied by W. F Holúsworth, of Beckenham, Kent : here we saw for the first time a feminine counterpart of the popular "Cyclone" frame which has sold in such large numbers since the last show.
The "Typhoon" has a very good specification; the frame structure is made up of butted " 531 " tubes, including fork blades, and chain and seat stays, a Brooks Bry saddle, Dunlop high pressure tyres and a Williams C34 chainwheel and cranks completc a machine, at a basic price of $£ 27$ 195. 8d. that represents very good value. The firm's well known "Allez" accessories were again nuch in evidence
On Stand No. 79 the James Cycle Co. had a brave display of sporting and utility cycles. The " Olympic Ace" held pride of place with its " 531 " frame, high-pressure rims and tyres and B. H. "Airlite" hubs.

Of particular interest on this stand was the "Sprite " iuvenile cycle retailing at $£ 8 \mathrm{I} 2 \mathrm{~s} .8 \mathrm{~d}$. The frame is a single-tubed brazed structure
with a low bracket, 16 in . Dunlop cushion tyres, ' waterproof saddle and a choice of maroon or royal blue enamel.
I was attracted to Stand No. 44 by the new Phillips "Springlite" cycle. In this design the entire rear triangle swivels around the centre line of the bottom bracket, but brake position is not affected and any type of hub or chain gear can be fitted. The moving parts of the shock absorber and the bottom bracket pivots are all provided with pressure gun lubrication and replaceable bearings.
Two stands, Nos. 41 and 49, were occupied by Raleigh Industries Ltd., and these provided displays of Raleigh, Humber, Rudge and Robin Hood cycles. The area occupied by these stands was no less than 2,000 square feet.
Among the new models, were the Raleigh Super Lenton, the Rudge Aero special, and the Humber Streak. The finishes were either electric blue flamboyant or orange lustre and 27 in . high-pressure, wheels and tyres were fitted, also "Maes" alloy bends or a 2 !in. steel stem, alloy hooded lever brakes and a Brooks Bry saddle. The price of $£ 20$ 19s. 6d. is most reasonable.
Raleighs are doing good work with their "Silver Knight" Road Safety Scheme for children, and a knight in very shiny armour was mounted on a rotating tricycle. This display attracted almost as much attention as one of the actual track machines used by double World Champion Reg Harris.
The Royal Enfield stand was notable for "Unitized" frame construction, which is an electronic welding process. On the "Firefly" de luxe model, the frame was constructed of " 531 " tubing and Endrick rims and Sprite tyres were fitted. A Bayliss-Wiley oilbath bottom bracket unit was included and a choice of red, blue, or green finish was available at $\mathrm{ErP}^{2 \mathrm{~s}} .3 \mathrm{3d}$. This new model was the lowestpriced cycle in the "Unitized" range.
Two new models were presented on Stand No. 68 by the Sun Cycle and Fittings Co., the "Soleil D'Or " and the "Sid Pat-terson"-the latter model is of course named after the Australian profes-

The new Phillips spring fiame with shock absorber. sional cyclist now riding for the company, and a Sid Patterson model with all the features this rider favours was on show. Sun also supply frames to the trade.

Auxiliary Motor Units

At the 1949 Cycle Show there were no auxiliary motors displayed; this year no fewer than ten firms were showing these little units, some of them being most ingenious.

On Stand No. 60, we had the "Berini" unit from Holland, in which the cylinder is inverted and the whole unit is very compact, weighing only 15 llb . complete. There are only three moving parts-piston, crankshaft, and connecting-rod.

The " Bantomoto" auxiliary unit has direct drive to the rear wheel; it has a 40 c.c. engine of compact design. The speed of this model, the Mark I, is between 5 and 17 m. p.h.

A last-minute arrival at this stand was the Mark 2 unit fitted with clutch-operated gearbox, giving two speeds and a neutral position. The speeds (on the level) are from $8 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. to $24 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. I examined this gearbox in some detail as the stand attendant had the cover removed, and it struck me as a robust unit and very well made. It operates on the epicyclic principle.

Belt-driven Unit

On Stand No. 57 the British Salmson Engineering Co. were showing the "Cyclaid." This is a belt-driven unit in which the belt pulley attaches to the rear-wheel spokes, and the unit is sprung on a long adjustable coil spring; a twist-grip throttle control is a very desirable feature.
A four-stroke two-speed model was shown by "Cucciola" on the stand of Britax, Lid. The unit is mounted below the bottom bracket, the drive is by chain, the gearbox is of the pre-selector type, dynamo lighting is built in, and the weight of this complete unit is $17 \frac{1}{2} \mathrm{lb}$. and the price is $£ 40$.
On Stand No. 56 the "Cyclemaster" unit was shown, and the latest model has an " Eadie" coaster hub as standard equipment, the unit being sold complete as a wheel with a $26 \mathrm{in} . \times$ I $\frac{1}{2}$ in. tyre. On this stand a sectional engine gave visitors a good idea of the working of the unit ; there was also a display stand of components in exploded form.
Stand No. 58 was occupied by the beautifully made " Mosquito" unit, and there were several standard makes of British bicycles to which this unit was fitted. The engine is mounted below the bottom bracket, the drive is by means of a large-diameter ribbed roller, and a gear reduction of two-to-one gives a minimum speed of $4 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The engine capacity is 38 c.c., weight 15 lb . approximately, and the price $£ 27$ Ios. complete. This unit was fully described in a recent issue of Practical Mechanics.
On Stand No. 61 Messrs. Sinclair, Goddard \& Co. were showing the very compact "Power Pak" units, which were exhibited twice at the Festival of Britain recently. The 195249 c.c. "Power Pak" unit has a newly designed petrol tank of over half-gallon capacity, a driving roller of material claimed to be almost everlasting, and a new non-flood carburettor which is not affected by rough

Accessories

A very welcome exhibit was that of $B . \& T$. (Essex), Ltd., who were showing two new lines of celluloid mudguards at competitive prices. The "Meteor" is 2 ! in . wide and sells at IIs. Iod. with reflector and IIs. in plain form, while the "Vampire," a racing guard of $2 \frac{1}{8} \mathrm{in}$. width and centrally ribbed, retailed at 12 s .4 d . with reflector and IIs. 6 d . without.

Leather of the buthide variety was the dominant note on the stand of J. B. Brooks \& Co., the well-known saddle firm. The reintroduction of the BI7 champion Swallow will be welcomed by legions of keen sporting cyclists ; the saddle top is cut away for easy leg action and cool riding, and the dimensions are In $\frac{1}{2} \mathrm{n} . \times 6 \mathrm{in}, \times 3$ in. All the other wellknown Champion range were displayed and attracted discriminating cyclists of all types.

The old-established firm of Constictor, as always, came up with some new lines. One was a hub with steel barrel and alloy flanges, this being a double-sided hub for chaingear and fixed or freewheel. There is also a new alloy rim, the "Mamba," and a new steel pedal, the "Viper." The well-known and long-established Conloy products in rims for wired-on tyres, including the Conloy "Asp" and "Boaloy," were again on view and proved as popular as ever.

The biggest novelty on the " Cyclo" stand was the fitting of a three-speed "Benelux " gear to a "Perry" coaster hub on a standard light roadster bicycle. All the other wellknown "Cyclo" lines were again presented, not the least interesting being the tool display which so facilitates the repairers' work.

The commanding stand occupied by Dunlops was notable for a new tourist Sprite cycle cover. The walls of this cover are in plain grey rubber, whilst the casing is stouter than hitherto; the liveliness of the cover remains as before. In the tubular tyre range Dunlops introduce a massed-start tubular, the No. 5; this has a very stout casing, a ribbed centre tread and file-pattern sides. The tread centre is of black carbon rubber and should wear very well; it is moulded on to a translucent rubber base. Detailed improvements have taken place in the established range of Dunlop tubulars, the No. o has been slightly increased in size and has a new non-skid tread-this tyre is primarily designed for stecply banked tracks. The No. I, a slightly heavier type than the No. o, also has a non-skid tread. The tubulars known as Nos. 2, 3, 4, 5 and 7 are supplied with waterproof side walls.

The latest introduction by Firestone tyres was the "Power Drive" oversize cover in $26 \mathrm{in} . \times I_{8}^{3} \mathrm{in}$. size. It has a wide flat tread which minimises the risk of skidding and, at the same time, transmits the maximum power from the roller. A De Luxe edition of this cover is made up of compounded material to give maximum wear.

A neat feature on the G.B. stand was a finger adjustment built into the brake lever hood, this enables cable adjustment to be made with the thumb and finger.

Stand No. 95 was occupied by John Bull; they were
featuring the New Service tyre, which, as is by now well known, was the cover used by the riders on the 5,000 mile
roads. The main bearings are situated directly over the tyre and thus take the full driving load. The magneto, carburettor, sparking-plug and silencer are immediately accessible and are unaffected by weather conditions.

Over 5,000 of these units have been sold by dealers throughout the country. Some of the opinions of these dealers were displayed on the stand.

Major headlamp,
The new Lucas King range. Left to right:
dynamo and sports headlamp. journey to apland and back The covers ar of pure rubber in sizes $26 \mathrm{in} . \times 1 \frac{3}{8} \mathrm{in}$., $26 \mathrm{in} . \times$ $1 \frac{1}{2} \mathrm{in}$. and $28 \mathrm{in} . \times \mathrm{I} \frac{1}{2} \mathrm{in}$. Wally Summers, the leader of the trip, was on the stand to greet cyclists and explain the merits of the covers. The ever-popular John Bull racing rollers were also helping to bring the new cover to the attention of cyclists and dealers.

On the Michelin stand, No. 96 , we saw a

An" exploded" view of the "Power Pak", showing the bearing arrangement of the motor.
new high-pressure cover known as the " 25 ." Fast cornering is assured by the herringbone grooving on the tread and the walls are thin and skin-sided ensuring a fast and safe tyre.

The " foundations," as it were, of many modern cycles were on view at Stand 98, which was occupied by the Reynolds Tube Co. There were shown specimens of the wellknown " 53 I "tubing in both plain and butted form. A new line in handlebar bends and stems, known as the "Franco-Belge," was shown, available either in "s 53 " steel or light alloy.

A striking display was that by SturnieyArcher on Stand No. 42. The central attraction was an enormous demonstration of the principles of the epicyclic gear, so long an established feature of these world-famous hubs. In addition, there was a demonstration of the production of alternating current in the Dynohub. All the firm's well-known models of hubs were again displayed together with a very efficient trigger control.

Lucas Lamps

Stand Nos. 100 to 103 inclusive were occupied by the very old-established firm of Joseph Lucas, Ltd. In addition to the already well-known lines the firm had an entirely new range of dynamo sets. These were the "King Major," "King Minor" and "King Sports." The dynamo unit is common to all three sets and in the $\mathrm{CO}_{33} \mathrm{~A}$ model, rated at 6 volts, 3.3 watts. The rear lamp is incorporated in the dynamo and is of a pleasing shade of grey plastic with a detachable red transparent lens of wide visibility.

The switches of all three headlamps are of neat streamlined design incorporated into the locking clamp of the lenses. The "King Major" has a 4 in . lens of concentric design with a chromium-plated bulb shield. The twin-bulb headlamp is of the car-iype, the lens giving a wide range of visibility. There is a standby battery for use when the cycle is stationary. This set retails at $£ 27 \mathrm{~s} .6 \mathrm{~d}$. in chromium-plated finish and $6,25 \mathrm{~s}$. in silver finish. The "King Minor" has a headlamp of $2 \frac{1}{\mathrm{i}}$. diameter and employs a single bulb which gives an intense spot beam effect. Of interest to the lightweight enthusiast is the "King Sports," with a headlamp of the long streamlined shape so popular with clubmen. It is of 21 in . diameter and retails for $£ 1$ 18s. 6d. in chromium finish and for I6s. 9d. in silver finish.

In the space at my disposal it is impossible to do justice to the great British cycle industry, for great it is, not only in quantity but most definitely in quality.

In all, a good show and one emphasising the firm foundations on which the British cycle industry rists.

Around the Wheelworld

By ICARUS

Pedestrian's Duty to Take Care

ITis often said that a pedestrian cannot commit any traffic offence on the road, but the Judicial Committee of the Privy Council a few months ago had to consider the problem whether a pedestrian owes a duty to other users of the road. The Committee decided that he does, and so once and for all doubts on the matter are dispelled.

The essence of the statement is that when two parties are so moving in relation to one another as to involve risk of collision each owes to the other a duty to move with due care. This is true whether they are both in control of vehicles or both proceeding on foot, or whether one is on foot and the other controlling a moving vehicle. Viscount Simon, who delivered the judgment, said : "If this were not so the individual on foot could never be sued by the owner of a vehicle or damage caused by his want of care in crossing the road. Instances may easily occur, for example, if the individual's rashness causes the vehicle to pull up so suddenly as to damage his mechanism or results in following traffic running into it, or indeed in physical damage to the vehicle itself by contact with the individual.
"When a man steps from the kerb into the roadway he owes a duty to traffic which is approaching him, to exercise due care."

Animals on the Road

AOTHER legal point of interest concerns damage caused by animals straying on to the highway. We have all seen straying sheep, cows and horses which endanger traffic. In the event of a collision with such animals can the driver or the rider obtain redress from the owner of the peripatetic animal? The chance of getting compensation from the owner of the animal is so remote as to be negligible. The law in regard to fencing has not altered with the advent of swiftly moving vehicles along the roads. To point out the absence of a fence or the dilapidation of a fence is not a defence in itself. There is no obligation on a landowner to put up a fence at all.

The cyclist and the motorist are wholly dependent upon themselves for their security during their journeys. Fences are put up largely to keep trespassers off and to prevent loss. It was not with solicitude for passing traveliers that farmers erected fences. Fences were put up possibly to keep his cattle on his own land. That was so before the days of road travel and it is still so. In other words the farmer owes no legal duty to passing road-farers. Even proof that the farmer was negligent would avail an injured person nothing.

The B.L.R.C. 10 Years Old

THIE annual general meeting of the British League of Racing Cyclists, which took place on December 9th, was the occasion for celebrating the tenth birthday of its existence. It was in 1942 that a small body of cyclists organised the first road race under League rules. As a result of this event 21 riders were suspended for life (please laugn, dear reader!) by the National Cyclists Union. These suspended riders were the nucleus of the B.L.R.C. It has yeen a thorny yet succesful ten years. Gradually the League is winning over its opponents and even the N.C.U. is wallowing between the Scylla of Mass Start and the Charybdis of eating its
own words. The opposition to League events has, of course, had a stimulating effect upon it.

The rapidly falling membership of the N.C.U. shows that the opposition to the opposition is gaining momentum. The League has made every gesture. It has offered to affiliate. It has proposed agreements which would ensure the continuity of all the organisations concerned. Owing to the great

Pozver whheel manufactured by Tube Investments Ltd.
success of the Tour of Britain the N.C.U quickly published its sub-committee's report on road racing, which advocated a programme of events in opposition to the League. As the chairman said in his speech this amazing volte face brought forth a Ministry of Transport edict to the cffect that a further increase in road racing would be frowned upon and possibly legislated against.

If the Ministry has in mind the excellent

The road to Ilam, Staffordshire. Below the steep hill lies the famous fishing inn, the Izaak Waltan. To the right rise Bunster and Ilam Tops.

H. MILLER \& CO., LTD.. BIRMINGHAM. 6

Cycling is grand fou....
IT'G TIME YOU HAD A

9 d well spent

Ferodoall-weather Brake Blocks give you safe, smooth, snatch-free brak-ing-and yet cost only 9d. a pair!

Made of a special friction material, these wonderful blocks are ideal for cycles of all types, with special soft quality blocks for alloy rims.

You can brake with confidence-on
FRODO

All Weather BRAKE BLOC Prom an cyledederess PRICE 9 per pair

кeep youn eye on Halfords
 ... and be sure of the finest selection of spares, accessories and equipment, including a full range of "Halford "
 "Raleigh" and "Robin Hood" Cycles-there's a Halford's branch in every large town.
 THE HALFORD GYGLE GOMPANY LIMITED head offioe
 239; CORPORATION STREET, BIRMINGHAM, 4

branches in england, scotland and wales

Let's STOP here!

You can stop anywhere with FIBRAX
FIBRAX - does its job in practical fashion-gently yet so firmly! Made in two types for all brakes: soft red for alloy rims, black for steel rims. Both act well and last long.

FROM ALL
GOOD
DEALERS

BRAKE BLOCKS
FIBRAX LIMITED, 2 TUDOR STREET, LONDON, E.C. 4
F. 1850

THE "FLUXITE QUINS" AT WORK

"Al soldering it's FLUXITE that serves,
So give it the praise il deserves. Our cule lillte train Is mended again,
Buf gosh ! I!'s too Jast for the. curves ! '

For all SOLDERING work-you need FLUXITE-the paste flux - with which even dirty metals are soldered and "tinned." For the jointing of lead-without solder; and the "running" of white metal bearings-without "tinning" the bearing. It is suitable for ALL METALS-excepting ALUMINIUM-and can be used with safety on ELECTRICAL and other sensitive apparalus. W'ilh Flwaite joints can be "6 riped"' successfully that are innpossible by any other method
Used for over 40 years in Government works and by leading engineers and manufacturers. Of all lronmongers-in tins, from 1/- upwards.
TO CYCLISTS! For stronger wheels that will remain round and truc, here's a timetested tip. Tie the spokes where they cross with fine wire AND SOLDER. It's simplewith FLUXITE-but IMPORTANT.

Write try Boak on the ART OF "SOFT" SOLDERING and for Leaflets on CASE-HARDENING STEEL and TEMPERING TOOLS wilh HLUXITE, FLUXITE ATwo "W"IPED JOINTS." Price 114. Each.
FLUXITE LTD., Dept. P.M., Burmondsey Street, S.E.I

date, and while good for the young people, is too strenuous for the clderly. What nonsense; yet sure enough such arguments have a very important impact on the minds of men after they have passed beyond the fifty mark. It is not true as far as the good cyclist goes; I can understand the casual rider finding the pastime "hard work" if or when he assays to ride a day of thirty to fifty miles without any previous practice and probably on an unsuitable bicycle.

The Better Method

AThe fall of the year the old rider who has tried to take advantage
of his leisure time to add a trifle to his total cycling mileage is usually a fit man and ready to face the more rigorous conditions of late autumn and winter, when the loud October skies are with us, to be followed by the early frosts. It is just another reason why we should make the best of our riding time by seeking every opportunity to be out and about while we need not use up too much of the lamplight on the long way home. I remember last year going a short touring holiday with a friend of mine, and after enjoying a very broken weather-week of rid-ing-and it certainly was broken-he said it was the best "free" holiday he had had for years. He 'phoned me a few days ago to ask if we could do a similar journey saying he believed that active break of last year set him up for the winter ; a very nice compliment to cycling, and one which would not be paid by the majority of folk when about half the mileage we made was sprinkled with rain. I shall have to see what we can do about it for there are other people to be considered on the holiday list. In this matter how selfish we are: everybody else's holidays, if they are not of your party, are a nuisance, and how glad you are to see them return to work! It is, I suppose, partly the result of having no spares these days; even one away adds a trifle to other people's burdens, and we are inclined to resent it. So I am now making all the use I can of the remaining "long evenings" of the year, extending the home journey to a round of between 20 and 30 miles and drifting home just before or just after lighting-up time. In that I am fortunate, for my bicycle is my daily mode of travel, so I'm always equipped to make use of a slack afternoon, or if the day is beautiful, call it one.

How Folk Forget

COMETIMES my friends say to me when I meet them returning from one of these paunts, "Don't you ever get tired of cycling ?" Tired in the physical sense, of course I do ; not weary, but just comfortably tired and glad to know a meal will be ready for me, a smoke, a read, and a comfy bed. There is time for all things. But tired of playing the cycling game, no. There is so much variation in it, so much to suit the mood, so much to see when all the familiar places differ by the touch of wind and weather. The cycling-fit individual who gets tired of the cycling game is, in my opinion, persuaded out of it by his friends under the mental pressure that it is out of

That is why I say to the growing oldsters, don't give up cycling, but allow yourself to use it more easily so you can enjoy it with all the old cuiet surprise if not the old speed and distance. I am doing this and I know, nor am I altogether regretting the passing of strenuous youth, for n) one expects me to ride rapidly or cram too many miles into the day's journey. I am taking cycling now like the reading of a well-loved book, and as I turn the comers on my wanderings and note the changes and rememter the old days and their adventures, it is like living again the more hectic days of my youth. This mode of cycling need not preclude a man from motoring if be so desires; why should it ? As a matter of fact, if he remains a cyclist he will discover, as I have, that motoring possesses speed and ease, but little else worth while in comparison with cycling.

The Big Changes

NATURALLY I have not arrived at such conclusions without going through the process of a lifelong's experience. There was a time in my youth when everybody who could afford it (how times have changed) rode a bicycle; there were no cars. Then when they did appear, mostly manned by adventurous wheelfolk, the very class who cursed them as the devil's playthings are now the lype of folk who clutter up our town streets with their private buses. The drift from cycling to cars was slow, and only in the last 20-25 years has it taken the big, upward curve. Like other people, I tried out the new mode of travel having an indulgent parent, but I soon tired, for while it could take you long distances it seemed always to be in a hurry, and at the end of the day left you with that unsatisfied feeling following bodily idleness. So I went back to a bicycle-indeed, I never left it-and my opinion of motoring as a method of country wandering has never altered, and probably never will now. I do not disdain it, but merely prefer to ride, and only use the car when time is urgent or the distance too great for my muscular comfort. Probably I get more real quiet pleasure from my cycling than ever; it is difficult to assess, because while some of the youthful fun has departed, it has been replaced by a serenity of outlook and a contentment of easy roaming that were not prominent in the riding of my younger years. The folk who say cycling is only for the young and active are merely excusing their own inabilities, or so it seems to me; they have gone beyond it because they
wanted to or were persuaded to, and in that matter I have been lucky, for my people, if they have not always encouraged me to ride, have never tried to turn me into a motorist.

The Way to Assess It

RIDING to town every day, an out and hone journey of about sixteen miles, I think I know something of the traffic conditions. That they have become more dangerously intricate the last two years is a verdict to which I would agree, and most of the danger undoubtedly arises from impatience. If road experts want to assess traffic faults in an honest manner, then in my judgment the way of undertaking such a job should be by bicycle. No doubt our pan-jams will smile at such a suggestion, but I know it to be correct, and if they are traffic experts, as they like to believe themselves, they should know it, too. You see so much more of the behaviour of road users from the saddle of a bicycle, because the rider goes slowly enough to absorb, to witness the faults of all types of wayfarer, and perhaps more than anything clse the intolerant impatience practised, impatience which, more often than not, destroys manners, gains nothing and leaves the irlividual practising it as well as the victim of his rudeness, out of temper with himself and humanity at large. It seems to me it is a dreadful thing to contemplate the accident list of the road and realise that at least half of the trouble would be cured by the simple practice of good manners. For be it understood that bad manners in one person begets the same conduct in another until it becomes a sort of competition who can best "get away with it." I see this kind of conduct most days of the week, and the more I see it the greater I hate it; yet no one has yet suggested a solution to the problem. It is peculiar, to say the least of $i t$, that our civilisation is based on decent conduct, to observe the rules self-imposed, to avoid offence to other folk; and the breaking of that fine institution in the matter of road manners by so many people is to be gravely deplored.

It is Worth It

NOT long ago I was out with the dawn, having broken the desire to turn over and go to sleep again with the mistaken thought that a little more bed was better than all the fresh air. But when breakfast has been put away and you wheel into the quiet air which seems to be painted with the dawn tints of a lovely morning, you wonder. why the spell of sleep on such days is not more frequently broken. I went by lanes to a rendezvous to see a sporting event, and came to my appointed spot in time to see a fine, upstanding young man cover the imposed " 50 " (with a couple of halt signs in, it) inside two hours. One is almost glad at such moments to know this fierce riding for the old inhabitant of the game is over, and in thinking so is the more impressed and refreshed to see how the new generation of speed cyclists have made foolish the old time returns of my day, when "evens" counted a first-class ride. It was a morning well spent, a lovely suroll through the still clear $a^{a} r$, a jolly renewal of old acquaintance and to crown it a performance in athletics worthy of the boy who accomplished it. Before most of the vorld had rubbed the sleep from their eyes I had a second breakfast-and very good, too-and then skirted twenty miles round the lanes on the way home for lunch. And after lunch-well, I'm afraid I didn't know much about it until the tea bell; that's the penalty the ancients pay for loss of sweet slumber, but it is a very pleasant penalty.

to its stone façade. Tradition has it that it was at this forge that Dick Turpin, on his memorable ride from London to York, halted his mare, "Black Bess," for reshoeing. Maybe this is but a legend, but I recall that when I saw the forge and its giant shoe, I conjured up mental pictures of the immortal Dick and his exploits, and it is no bad thing that the dashing highwayman should be commemorated in this fitting fashion.
The areas Castle fundeat in the eleventh century.

To Greet a New Year

WHAT better way to greet a New Year than to ride out to an English village and enjoy the January countryside? True, my village in Derbyshire where I toasted 195: in an ancient inn, was a somewhat grey and grim place . . . but the bells of the church were pealing merrily, and, appropriately, the name of the inn was "Three Bells." I sipped ale with a buxom landlady who was still young enough to make New Year resolutions, and who had vowed, as the old year ticked out its last minutes, to give up cigarette smoking! Now this is a common enough resolution, and often broken as quickly as made ... so, when the green days of spring are here I shall ride again to this inn and see whether my cheery hostess has kept her vow! The raindrops dripped from the trees as I rode down the lanes, but a robin sang sweetly from a farm gate, and towards noon the sun shone and the raindrops glistened like jewels on the bare hedges. A good New Year's Day and from my heart 1 greeted all cyclists everywhere. Good riding throughout 1952!

Cycle Exports Record

IN1951, Britain exported the record total of $£ 20,309,055$ worth of cycles and motorcycles. Malaya, India, British West Africa and Brazil bought most of the $1,817,150$ cycles, and Australia, U.S.A. and Canada most of the 64,954 motor cycles. This is good going, and a fine tribute to the enterprise and efficiency of the British cycle industry. Here is a manufacturing field in which Britain excels, and it is good to think that all over the world, cyclists regard "British made" as the hall-mark of high quality and the passport to good riding.

A Famous Forge

ONE of my correspondents who writes me regularly about his tours and trips sends me an interesting note about some riding he did recently in Nottinghamshire-where he explored the Dukeries and mused upon the old-time magnificence of Welbeck and Portland and the stately homes of dukes and earls. At Carlton-on-Trent he was fascinated by the famous forge, which has a wooden horseshoe over 12 ft . high attached

By H. W. ELEY

Incidentally, Nottinghamshire is a good touring shire, and I commend it to riders who are seeking fresh fields and pastures in 1952.

Purchase Tax Anomalies

FEW taxes have been more unpopular than the Purchase Tax, and the Chancellor of the Exchequer will doubtless be approached by many organisations this year with a view to some of its anomalies being removed. The National Committee on Cycling, that body which does much for the industry and for riders, has been-informed that when the Chancellor makes his next general review of the Tax and its applications, he will consider the representations made by the Committee regarding touring bags. Cyclists ask that the Tax should at least be reduced from 66_{3}^{2} per cent. to $33 \frac{1}{3}$ per cent., because touring bags are in the same class as the brief cases and school bags from which the Tax has now been wholly removed.

Snow Scene

COME folks like to see snow only on Christmas cards! Others revel in a countryside covered with a mantle of white, and take joy in watching the virginal flakes swirl from the leaden skies. Here in my Derbyshire, with its peaks and moors, there can be snow in abundance, and lanes can quickly become impassable through drifts. Hard weather . . . yes! but the snow scene has its own beauty, and I know of few finer sights than the snow-clad slopes where the toboggans run so gaily, and where one can easily imagine that one has been magically transported to Swizzerland. Dwellers in this wintry area have garnered wisdom over the long winters, and at the first hint of snow, see that spades are handy for "digging out " operations. And wood-sheds are full of logs, so that when the snow swirls outside on a January night, there might be bright and crackling fires indoors.

Lure of Lichfield
AM fortunate in living fairly near to ancient Lichfield, that small cathedral city
which lies amid green fields almost in the heart of England. It has two twin attractions
the beautiful cathedral, and a wealth of historical lore. And how ancient is this small Staffordshire city! It has existed since about the year 300, and at one time ($787-803$) was the Metropolitan See of the Saxon kingdom of Mercia. The cathedral, so often called "The Lady of Cathedrals" because of its grace and charm, dates back to the thirteenth century. Actually, it is the successor of a seventh century building, and is an edifice of which all England may well be proud. The three graceful spires, known as "The Ladies of the Vale" are a landmark for many miles around, and the truly magnificent West Front contains over one hundred exquisitely carved statues, portraying kings, queens, and bishops of bygone days. Lichfield is the birthplace of Dr. Samuel Johnson, one of the greatest literary figures in history, and compiler of the first full-length English dictionary. Johnson's house still stands in the Market Place, and its numerous exhibits are of great interest to visitors. Lichfield has been the residence of many of the famous David Garrick lived in Westgate; Dr. Erasmus Darwin in Beacon Street; Joseph Addison at the Deanery ; and Elias Ashmole lived for a time opposite St. Mary's Church. Riders who find themselves in this ancient and lovable place should not fail to visit the beautiful Stowe Pool, on the edge of which is the Church of St. Chad . . . the first Bishop of Lichfield, who christianised the kingdom of Mercia. Yes! beauty and history, and literature all combine at Lichfield, and the place is one of England's treasures.

Treasures of the Inn

NO institution is more closely woven into English life than the inn ... whether it be in a green hamlet, a market town or a great city. The inn is a piece of English history; like a thread, it runs through the story of our wars, our sports and pastimes, our rural and urban occupations . . . and in a changing world, the English inn remains true to its old traditions . . . a place for the traveller to greet with joy at the end of his journey, a place for men to congregate and talk, a place for the quiet game of dominoes or "shove-halfpenny"; a place where one may drink ale and smoke a pipe and forget for a while the frets and furies of this modern world. But I wanted to say something about inn treasures; some are rich in old pewter tankards; some, have fine collections of "horse brasses ; " some have monster pike and bream, and chub, in glass cases in little bar parlours; others have good collections of old sporting prints on the walls of rooms where the ceilings are blackened with the smoke of innumerable pipes-rooms whose rafters have rung with the rollicking choruses of old English songs. In my retirement I have discovered an inn where the collection of horse brasses is particularly fine, and I find joy in chatting to the man who made the collection . . . for he is a "horsey" soul, a son of the stable and harness-room. Yes! there are treasures in the inn.

PRACTICAL ENGINEERING
 6d. Every Friday

[^2]Published about the 30th of each month by GEORGE NEWNES, LIMITED. Tower House,
Southampton Street, Strand, London, W.C.2. and Priated in England by. W. Speaight \& Sons, Southampton Street, Sirand, London, W.C.2. and Printed in England by W. Speaight \& Sons, Lid. Exmoor Strect, London, W.10. Sole Agents isor Australia and New Zealand Gordon \& Rate (including postage): For one year, Inland and Abroad 14s. (Canada 13s.). Registercd at the C.P.O. for transmission by Canadian Magazine Pest.

G.E.C. GERMANIUM CRYSTAL DIODES

SUPREME CRYSTAL DETECTOR
Midget Size, Sll6in, x 3/16in. Vire Ends for Easy Fixing 46 each, postage $2 \frac{1}{d}$. Witing inseructions for a cheap, simple but high quality Crystal Sei included, -.. available.
SILICON CRYSTAL VALVE 316 each, costage 21 d.

COPPER INSTRUMENT WIRE ENAMELLED, TINNED LITZ, COTTON AND SILK COV
Most gauzes availible. B.A. SCREWS, NUTS, WASHERS soldering tags, eyelets and rivet5: EBONITE AND BAKELITE PANELS FORMERS AND TUBES ALL DIAMETERS.
Latest Radio Publications. SEND STAMP FOR LISTS.

CRYSTAL SET

 CORPORATING THE SHICOCRYSTAL VALVE CRYSTAL VALVE
Adiustable lron Cored Coil RECEPTION GUARANTEED Polishod wood cabinet. 151., post 9\%,
A REAL CRYSTAL SET NOT A TOY
POST RADIO SUPPLIES 33 Bourne Gardens, London, E. 4

WALTONS of WOLVERHAMPTON

Special Offer in Ex-Government H.T. Batteries. All tested before despatch. $60+1 \frac{1}{2}$ volt. Ideal for deaf aid, personal sets and elec-
tronic equipment, 46 , each, tronic equipment, 46 , each, post 9 d .
72 11 volt ditto., 6 /- each, post 9d. 60 vole Seandard 6 - each, posi $1 /=$ or 2 for $11 /=$, post 16 . We still have many Valves at Special Clearance prices. Send
S.A.E. to-day for oul complete S.A.E. to-day for oul complete

Waltons Wireless Stores 48, STAFFORD STREET, WOLVERHAMPTON

FOR SALE

ALUMINIUM AND ALLOY SHEET, all sizes and gauges. CALLOW \& CO. 10, Kingly St., W. 1. Regell 2933. (PB Ex.) Ext. 11.)
A.C. ELECTIRIC MOTORS
 on normal domestic A.C. Mains, Price \&5. Brand new.
 Corrage $5 / 6$ both types. Many other S.A.E- for List.
C. C. Northall, 16, Molly Rid., Quinton,

NO MIN CAN KNOW TOO MLCH DF HIS PRODUCT

THE ULTHLA LENS CHVIPANY,
75, Finsbury Court, Finsbury Pavement, London, E.C.2

HOME \& HOBBY BARGAINS

ELIECTRIC IBLANKETS to warm the bed on chilly nights: complete blanket from gr/is/- or we can supply the infra-1ed warming elements to atach to your
own blanket for only $25 /-$ inc. post. Unit comes complete and ready to use, with instruction leaflet.
FXXPOSURE AIETER kit for home assembly : sensitive meter and photo-electric cell to suit. with instruction leaflet. 13/6, inc. post.
CRYSTAL, SETKITS, with headphones; permanent, fndestructible diode crystal condensers: wire for coll, etc. 18,9, plus 9d. post. Same kit, without 'phones MODFI, RAII, WAY POWNE PACKS for working track and track lights : 230 v RADIO RIENOTE CONTROL, by "FHght Control." transmitter and recelver kits
tor operating all types of models. Our home-built equipment is the cheapest in the or operating all types of models. Our home-built equipment is the cheapest in the country, super lightweight and proved efficient by many trophy winners send III equipment, $4 / 6$, plus 2 jd. post.
MAGNETICRBCORDINRG. All accessorles in stock, send s.a.e. for Hst specifying
Magnetic Recording. CONVFIRT OUR RADIOGRA:1 into a recorder with Masnetic Recording. CONVERT BOUR RADIOGRAAM into a recorder with instantly removable conversion kit : no screw-holes, etc. to disfigure grem,
and gram. can stile be used for disc records. Complete kit. \& $/ 14 / 10$. Instruction
ing and gram. can still be use
leafet, 1 -, plus 2 !
ILRFETRIC MOTORS and equipment of all types in stock, send s.a.e, for list
specirying Electric Motors.
PARK RADIO OF MANOR PARK
676,8, ROMFORD ROAD, LONDON, E. 12

Balipens refilled for $\frac{1}{2}^{\text {D }}$

1 rave wixu wis. wix container which YOU can refill in
two minutes. Fifteen average size ball pens can be refilled from one
3 il tube of

ALL PEN INK CLIP in the world
L. ROBINSON \& CO., (GILLINGHAM)LTD. Hin. Thatoma

BATTERY CHARGERS

 Only 52/6
(delivery $2 / 6$) suaranteed.

THAMES VALLEY PRODUCTS (P) 23. Camaen Ave, Feitumam, Midax. IMPETUS Precision PLANERS Circular safety type cutter-head High mounted on machined inclined ways. | Ground table-surfaces. Fences |
| :--- |
| adjustable to 45 deg. |
| 9.0 .0 | Motorised, 17%.10.0. 6 in. MODEL

£2\%.10.0. Motorised $£ 44.0 .0$. Send for £2\%.10.0. Motorised E44.0.0. Send for
Catalogues of other 'Impetus products. JOHN P: M. S. STEEL, Dept. 80, ADANA (Printing Machines) Ltd., TwickenADANA (Printing Machines) Ltd., Twicken-

SPARKS'
 DATA SHEETS

Are the Sarest ermplest and Finest and Tesfed Designs Second to None. SPARKS' SETS SET TIIE STANDARD

MY TWO L.ATEST

THE "CHUMAYY" PORTABLI: An All-dry 2 -Valver which does give really
good 'Phone sigs. on Mied. and Long-waves. Self-contained aerial and batteries. Tested in Dorset 70 miles from nearest Regional giving very good 'phone sigs. Size approx. gin. X 41 in . $x 21 \mathrm{in}$. Data sheet with instruc tions 3^{\prime} - plus 24d. stamp.
THE "MIDDY.
amazing results on M . \& L L. Waves and "Ship-to-Shore " transmissions when ased With a short aerlal, Good Speaker results. Ali-dry the Bedside. Caravans, The Den and Yach, the Bedside. Caravans, The Den and
Yorset tested. D/Sheet. $3-$, plus

THE "CRITERIOX" RADIOGRAM. A design for the Quality Enthuslast. ${ }^{2}$ Correcting Stage High and Low Note. Output. A Watts. Neg. F.B. M/L Waves. For A.C, only. Always praised. TRE CONOURSTT." An Effelent ACd Valves. 3 Wave Bunds. A.V.C. 4 Watts
Output. P.U. Connections. $3 /-$. TIIF ". CHALLENGER." An Outstanding A.C. D.C. Portable for use in any room without perial or eart
THE © CUB,"A.C.D.C. 2 -Valver Plus Rect. rire co ("an):T," A.C.ID.C. 4 Watt Arinl fler, 2 Valves, plus Rect.. 3/-
THE " OLI FOLK'S Two." An A.C.D.C. 2-Valver, plus Rect., having Station Selec THE: "POKET PAK," All-dry Pocket 1-valve Portable, Frame aerlal. Good
'phone sigs. Med, Wave, 3%. THE "JUNIOR." 1 -valver M/L waves. Data Sheets avallable from a Crystal Set COMPONENTS SUPPI.IED
L. ORMOND SPARKS (M)
48.1, HIGH ST., SWAN IGE, DOHSET

DREADNOUGHT LATHES
The Portass Lathe \& flachine Tool 6
Butterinere Rd. Tel.: 51353. Sheffield 8.

GENERAL CERTIFICATE

OF EDUCATION EXAM THE KEY TO SUCCLSS ANI

Essential to success in any walk of life. Whatever your age, you can now prepare at home for the mportant new General cert. of Edubation exam, (you choose FEW" terms.
SEND FOR FREE 136-PAGEFBOOR Full details of how you can obtain this valuable Certificate are given in our
136-page Guide-FItici; and without
obligation. Write to-day.

NO PASS-NO FEE

Free Guide - SUCCESS IN ENGINEERING

One of the following Courses taken quietly at home in your spare time can be the means of securing substantial well-paid promotion in your present calling, or entry into a more congenial career with better prospects.

ENGINEERING, RADIO, AERO, ETC.

Aero. Draughtsmanship
Jig \& Tool Design
Press Tool \& Die Design Sheet Metalwork
Automobile Repairs
Garage Management Works, M'gmnt. \& Admin. Practical Foremanship Practical Foremanship
Ratefixing \& Estimating Ratefixing \& Estimatin
Time \& Motion Study Time \& Motion Study Metallurgy
Refrigeration
Welding (all branches) Maintenance Engineering Steam Engine Technology I.C. Engine Technology Diesel Engine Technology

Elec. Draughtsmanship
Machine
Automobile Structural R/F Concrete Structural Engineering Mathematics (all stages) Radio Technology Telecommunications Wiring \& Installation Television Radio Servicing Gen. Elec. Engineering
Generators \& Motors
Generation \& Supply
Aircraft Mainten. Licences
Aerodynamics
Electrical Design
Electrical
Survey Dr'ship

BUILDING AND STRUCTURAL

L.I.O.B.
A.M.I.S.E.

Building Construction
Costs \& Accounts
Surveying \& Levelling
Clerk of Works
Quantity Surveying
A.R.San.I.
M.R.San.I.

L.A.B.S.S.

Buitders' Quantitles
Carpentry \& Joinery
Carpentry \& Joiner
Building Inspector
Building Draughtsmanship Heating and Ventilating

GENERAL, LOCAL GOVERNMENT, ETC.

Gen. Cert. of Education Book-keeping (all stages) College of Preceptors Woodwork Teacher Metalwork Teacher Housing Manager (A.1.Hsg.)

Common. Prelim. Exam
A.C.I.S., A.C.C.S.
A.C.W.A. (Costing)

School Attendance Officer
Sanitary Inspector
Civil Service Exams.

BECOME A DRAUGHTSMAN-LEARN AT HOME

- AND EARN BIG MONEY

Men and Youths urgently wanted for well paid positions as Draughtsmen, Inspectors, etc., in Aero, Jig and Tool, Press Tool, Electrical, Mechanical and other Branches of Engineering. Practical experience is unnecessary for those who are willing to learn-our Guaranteed "Home Study" courses will get you in. Those already engaged in the General Drawing Office should study some specialised Branch such as Jig and Tool or Press Tool Work and so considerably increase their scope and earning capacity.

OVER SIXTY YEARS OF
 * CONTINUOUS SUCCESS

NATIONAL INSTITUTE OF ENGINEERING (Dept. 29)

148, HOLBORN, LONDON, E.C.I
SOUTH AFRICA : E.C.S.A., P.O. BOX NO. 8417, JOHANNESBURG

132-PACE BOOK FREE!
 SEND FOR YOUR COPY

This remarkable FREE GUIDE explains:

* Openings, prospects, salaries, etc, in Draughtsmanship and in all other branches of Engineering and Building.
* How to obtain money-making technical qualifications through special RAPID FULLY-GUARANTEED COURSES.

MANY INTERESTING COURSES TO SELECT FROM!
 A.M.I.Mech.E., A.M.I.M.I., A.M.Brit.I.R.E. A.M.I.P.E., A.M.I.C.E., A.M.I.Struct.E., A.M.I.Mun.E. M.R.San.I. A.M.I.E.D., A.F.R.Ae.S., London B.Sc., Degrees.

Fully guaranteed postal courses for all the above and many other examinations and careers. Fully described in the New Free Guide.

THE ACID TEST OF TUTORIAL EFFICIENCY SUCCESS-OR NO FEE

We definitely guarantee that if you fail to pass the examination for which you are preparing under our guidance, or if you are not satisfied in every way with our tutorial service-then your Tuition Fee will be returned in full and without question. This is surely the acid test of tutorial efficiency.

If you have ambition you must investigate the Tutorial and Employment services we offer. Founded in 1885 , our success record is unapproachable.
ALL TEXTBOOKS ARE SUPPLIED FREE PROMPT TUTORIAL SERVICE GUARANTEED NO AGENTS OR TRAVELLERS EMPLOYED

\checkmark Free Coupon
 To: NATIONAL INSTITUTE OF ENGINEERING (Dept. 29), 148-150, Holborn, London, E.C.I
 Please Forward your Frec Guide to NAME
 ADDRESS

[^3]The subject of examination in which I am especially interested is

[^0]: \star Prices and deseriptions subject to alteration without notice.

[^1]: SUBSCRIPTION RATES
 including postage for one year Inland 14s, per annum Abroad - - . - 14s. per annum. Canada - - . - 13s. per annum. Editorial and Advertisement Office: "' Practical Mechanics," George Newnes, Ltd. Tower House, Southampton Street, Sirand, W.C. 2 'Phone : Temple Bar 4363
 Telegrams: Newnes, Rand, London. Registered at the G.P.O. for transmission by Canadian Magazine Post.
 Copyright in all dranings, photographs and articles published in "Practical Mechanies" is specially reserved thronglrout the countries signatory to the Berne Convention and the U.S.A. Reproductions ar initations of any of these are therefore expressly forbidden.

[^2]: "Practical Mechanics" Adrice Bureau COUPON This coupon is available until Jan, 31st. 1952, and must be attached to all letters containing queries, together with 3 penny stamps. A stamped, addressed envelope must also be. enclosed Practical Mechanics.

[^3]: My general interest is in : (1) ENGINEERING
 (2) AERO (3) RADIO
 (4) BUIILDING
 (Flace a cross against (5) MUNICIPAL WORK
 the branches in quhich
 you are interested.)

