A FREE GIFT AND A NOVEL PRIZE COMPETITION.

Amrowncement of Alfred Grithan \& Co. (M. Graham), 25, Savik Rov, London, Wok:

At last an Accumulator which can be charged quickiy but discharged slowly

AFTER successfully solving the problem of the H.T. Accumulator, Oldham now presents in the new O.V.D. a slow discharge Accumulator incorporating entirely new principles of construction. With the growing popularity of Dull Emitter Valves
there has been an incessant demand for a small accumulator suitable for use with two and three-valve sets, capable of holding its charge over long periods without sulphation. Read below and see how, in the new O.V.D., Oldham has now overcome every previous obstacle.

ON the introduction of the Dull Emitter Valve, a new problem began to loom on the horizon for tie accumulator manufacturer. With the valvemaker producing valves of almost negligible consumption it tecảme increasingly obvious that old ideas had to be swept overboard. The old idea was that an accumulator should last the average valve se: anything from a weck to a fortnight and should then bz recharged. That was alright with bright emitters consuming 75 amp . each but when consumption was dropped to one tenth of an ampere at 2 volts, a new kind of accumulator became necessary. An acceumulator which would hold its charge for weeks on end without the necessity of recharging.

Oldham solves the problem of re-charging

Here, then, was the problem how shou'd it be solved? One way would be to increase the thickness of the plates. But this introduces another difficulty - the difficulty of.recharging. Obviously a thick plate will hold its charge for many weeks. It won't buckle. and it is reasonably free from the risk of sulphation. But it cannot easily be recharged. It must be charged slowly and for a long period on end. Compare the thick plate if you like to a thick mass of absortent material dipped in liquid. It will take a long time for moisture to penetrate to its inmost recesses, but cut it in strips and the liquid can take effect àt once. That was exactly what Oldham did. The new Oldham O.V,D. plate is the equiva. lent of a thick plate made up of laminations. Electrolyte can penetrate completely through the plate and get to work upon its several surfaces. So the new O.V.D., therefore, incorporates every advantage of a thick plate with none of its disadvantages. It can be charged

Type O.V.D.
2 volts-for use with Dull EmitterValves. Fitted with the new Laminode Plate. Dimensions 6 ins. by 3 ins. by $2 \frac{1}{2}$ ins. 10 amp. hours.

quickly - that is to say, at the normal accumulator charging rate. There is no fear that it can be damaged during charging. And it will readily take up its charge.

A plate that cannot buckle or sulphate

The new O.V.D. plate, owing to its exceptionally rigid girder-1ike construction, cannot buckle. Nor can it sulphate even if left for months witbout being recharged. Owing to the internal construction of the stout class cell no separators are necess.ry.

The mew O.V.E. supplie elnargent reacy far mse

This new Accumulator is supplied "dry charged." This means that it has already been charged at the factory. Merely add acid and wait for a short while f:r the cell to get active and it can be used at once. Think how thi; w.ll benefit you. No long first charge to delay you. The O.V.D can come straight off the dealer's shelf to your home and within an hour can be delivering its stored-up energy.

Every O.V.D. made under the Special Activation Process

The famous Special Activation Process which has made the name Oldham a household word for reliable accumulators is used in the O.V.D. Its Laminode Plates are manufactured under the same conditions as other Oldham plates. As a result the samo high standard of efficiency is available At the low price of $5 / 6$ the new O.V.D. otfers remarkable vaiue. Its stout clear* glass container-rugged enough to withstandeven the hardest knocksits coloured terminals of generous size-and its non-splash vent cap bespeak the quality product. Ask your Dealer about it to-day.

Oldham © Son, Ltd., Denton, Manchester

London Office and Service6, Eccleston Place, S.W. 1 Phone: Sloane 2701

Makers of the Oldhant
 犦.T. Accumulator. famous for its expandire bookease principles of Cersetustion.

Choose your programmethese Eureka Ortho-cyclics will find the Station

AT last here is a variable Condenser which makes station hunting a pleasure. The Eureka Ortho-cyclic utilises new prin. ciples of tuning. The old idea of crowded wavelengths jostling each other at one end of the dial has gone for ever. In the Eureka one degree on its 100° dial covers one Geneva wavelength of 10 kilocycles separation, irrespective of its position. The first fifteen degrees on the dial covers fifteen wavelengths precisely-no more and no less. Whereas this same movement with an ordinary Condenser would cover no less than 51 possible wavelengths. And the second fifteen degrees on the Eureka Orthocyclic still covers only fifteen wavelengths-and
so on right through the dial one degree equals one wavelength. As evenly, in fact, as the rungs of a ladder.
This is the kind of tuning you have always longed for. Now you can get razor sharp selectivity at small cost. The new Geneva wavelength plan makes ortho-cyclic principles of tuning essential. The ether is being divided into wavelengths of 10 kilo-cycles separation. That is to say, using a Eureka Ortho-cyclic Condenser there can never be more than one station to any degree on the dial. It will be impossible with a sensitive Set equipped with Eureka Ortho-cyclics to hear two stations at the same time. See this all-metal, low loss, Condenser at your Dealer's to-day-you will be amazed at its low price for such a beautitully constructed instrument.

Six exclusive
Eureka features:

1. Compact design permits a panel depth of only 2 inches.
2. Ball bearingsthroughoutensure velvet-smooth action.
3. One - hole or three - hole mounting as desired.
4. Electrical losses so low as to be negligible.
5. Earthed rotor ensures stable reception.
6. Permanent contact guarantees continuous silent performance.

Prices:

$$
\begin{aligned}
& \cdot 0005 \mathrm{mfd} . \\
& .0003 \mathrm{mfd} .
\end{aligned}-15 / 6
$$

SLOW MOTION DIAL

Engraved o to 100, right to left, for kilo-cycles, and o to 100, left to right, for wave-lengths. Beautifully constructed in metal throughout to fit all Condensers, including the Eureka Orthocyclic, with 1-inch shafts.
Easily fixed to set. Price $4^{\prime} 6$

ensure reliable sets.

Constructors who desire smooth working and efficient sets use "Cosmos" Precision components.

- The "Cosmos" Rheostat. The principal features of the "Cosmos" Filament Rheostat are its sturdy construction and reliable, smooth movement:- The contact arm cannot casily be damaged, having its movement on the inner side of a porcelain bobbin which carries the windings: Other pleasing features of this Precision Rheostat are the handsome knob and dial, ONE HOLE fixing, and the small space it occupies.

Made in four types, two of which are double-wound for
DULL or BRIGHT Valves and one a Potentiometer.

Description	Ohms.	Currents	Price
Single Wound	6.0	1.0 amp .	s. d. 4 6 5
Double ${ }^{\text {a }}$	20 34	. 2.	$\begin{array}{ll}5 & 0 \\ 5 & 0\end{array}$
Potentiometer	34 300	-2.	$\begin{array}{ll}5 & 0 \\ 6 & 0\end{array}$

The "Cosmos" Permacon is an ideal fixed condenser, being light in weight, of guaranteed accurate capacity, and having the lowest possible losses.
The dielectric is mica, and each condenser is tested at 500 volts during inspection. Nickel-plated cases give thein a particularly neat appearance.

The "Cosmos" Coupling Unit. Real purity of reproduction can only be obtained with resistance capacity coupling. The "Cosmos" coupling unit with a suitable valve is as effective as an ordinary transformer-coupled stage. It avoids all distortion and effects considerable economies in first and operating cost.
Designed primarily for use with the "Cosmos" S.P. Blue Spot Valves, it can be used successfully with any valve having an amplification factor of 30 or more.

[^0]155, CHARING CROSS ROAD, LONDON, W.C. 2

In 1910

In 1910 arose the problem of designing condensers for aircraft wireless sets.
The glass Leyden jars of those days were too bulky and too fragile, and there was no other suitable condenser made.
Thus it was that William Dubilier turned his attention to the subject and commenced his pioneer experiments. He immediately realised that to design a condenser which should be compact, unbreakable, and at the same time efficient under the high frequencies and voltages of wireless circuits would call for much specialised research.
He was successful in that same year in producing the first con-
denser to meet these requirements. Its dielectric was Mica.
Three years later, encouraged by the War Office, he commenced upon the manufacture of condensers on a large scale, and the Dubilier Condenser Com. pany at once assumed the leadership which it holds to this day.
For sixteen sears we have specialized in the manufacture of wireless condensers, and for all products tearing our name we have continuously insisted upon that high standard of efficiency which we as Radio Engineers know to be so essentia!.
Naturally this high standard implies a slightly increased selling price, but it undoubtedly results in the production of condensers in which you can have complete confidence.
And the possession of such condensers is essential to good results whether you build a crystal set or conduct laboratory research.

ADVERT. OF THE DUBILIER CONDENSER CO. (1925) LTD. ADVERT. OF THE NUBILIER COND, NORTH ACTON, W. $\mathrm{F} \%$
WORKS, VICFORIA ROAD,
TELEPHONE : CHISWICK $2241-2.3$.

Awarning whistle-a "Stand Clear!" and the steel Goliath swingsitsburden, dangling on the end of an iron chain, through space. The old adage says, "A chain is no stronger than its weakest link." The constant lifting of heavy weights imposes a severe strain on a chain. The molecular structure of its metal becomes changed. To use a technical term, it becomes crystallised or brittle. And a brittle chain would te a danger because it might readily sinap. But engineers have a remedy. At regular intervals the chain is annealed and the displaced and distorted molecules are permitted to resume their normal positions.
You may not be interested in cranes, but as a wireless enthusiast you are certainly concerned with the molecular structure of metal. Take, for example, the filament of an ordinary valve. It becomes incandescent in use - the intense heat slowly alters its molecular structure and makes it brittle. That is why it fractures so readily. It has lost its pliability through excessive heat.
An entirely new kind of fila. ment has now been produced, however, which operates practically without heat.

TYPES AND PRICES Red Band. Pre-eminent among H.F. valves. Consumption 1 amp at 18 volts
Black Band. An ideal supersensitive Detector.
tion 1 amp, at 18 volts

The New Cossor Stentor Two
Green Band. For Power Valve use-ideal for Super Sets. Consumption 15 amp at 18 volts

It is only to be found in Cossor Dull Emitters. This Kalenised filament can never become crystallised or brittle because it functions without visible glow. But long life is not the only advantage to be derived from the Kalenised filament. Its low specific resistance permits an exceptional length being used. Obviously a long fila. ment will give off, more electrons than a short one. And the efficiency of a valve is measured by its electron emission.

Co-Axial Mounting, too, ensure 3 that this long filament is mounted in absolute alignment with the grid and anode. The whole structure is permanently interlocked by means of a seonite insulator at its head. Even the hardest shock cinnot dis. place either the filament, the grid or the anode. As a result, lifelong uniformity of characteristics is assured.
The combined use of Co -Axial Mounting with the new Kalenised filament will give you greater sensitivity, completefreedom from microphonic noises, superior tone and greatly increased length of life, while current cornsumption has been reduced to one-tenth of an ampere at 1.8 volts. Your dealer has these remarkable valves in stock.

RADIO NOTES AND NEWS.

The Mars 14-Valve Set-B.B.C.'s Birthday Week-Home Secretary to Broadcast-Who is Pronto?--Aerial Slashing.

The Mars 14-Valve Set.

MARS will be receding from the earth again by the time these lines are in print, and no doubt the daily papers will heve given the latest news of "P.W.'s" attempt to pick up signals from the mystery planet. At the time of writing the tests of the 14 -valve set-specially constructed for Mars-have been carried out, and have given proof that it is one of the world's wonder sets. In "Current Topics" this week will be found further details of this remarkable radio receiver.
the set is switched on the curtain rises, and the loud speaker's voice comes from behind the footlights?

B.B.C.'s, Birthday Week.

THE special B.B.C. Birthday Week broadcasts will open with a Huguenot service, from the crypt of Canterbury Cathedral, on November 7th. This will be followed by a performance of "The Messiah," conducted by Sir Henry Coward, who is bringing a strong chorus to London from Sheffield.

Capt. Oriirski, the famous Polish airmin who flew from Warsaw to Tokio and beck, broadc.sting a flyigg ta!k.

Who is Pronto?

A^{s}several readers have claimed that they have picked up the Pronto station, I think it's about time somebody came along and pricked this Pronto bubble, good and hard. For if you sit up all night and listen to every programme that's in the ether you won't get Pronto, 'exs there's no such place.

As a matter of fact, I think that the station that keeps saying "Pronto" is Naples, Pronto being a word much used in Italian tests. Anyhow, if it isn't Naples, it certainly isn't Pronto.

Killed by Radio.

AFEW months ago I chronicled the accidental death of an American announcer, killed through touching a live wire at the broadcasting station. Now I am sorry to have to record a similar fatality at the Rugby station, the first accident of the kind in Great Britain. The victim was Ralph Leary Oldfield, an electrician whose home was at Folkestone. He was in charge of the powerhouse at the time, and nobody was aware of the tragedy until his dead boly was found, with

On Thursday, Nov. 11th, special Armistice Day programmes will be broadcast, morning, afternoon and evening.
the hand burned through coming into contact with a wire carrying 3,000 volts. The proper entrance to this part of the building is by a gate that automatically switches off the current when opened, but for some reason he appears to have climbed into the enclosure by means of a ladder, and thus deprived himesif of the usual safeguard.

The Falling off of $5 \times X$.

R^{B}ECENTLY I had a grouch about the strength of Daventry; which during the past few months has fallen off badly, leaving many listeners right in the lurch. Ever. since I have been hoping for a marked improvement, but it seems a long time coming. Many correspondents complain that 5 XX is no better than some of the German stations ; and it is a fact that while Daventry has been going down the hill, the Germans have been practising the
(Continued on neat paje.)

NOTES AND NEWS.
 (Continued from previous page.)

"Excelsior" stunt, and have climbed steadily. What's the matter with the British Long-wave-fellow?

"My Programme."

THE third of the special programmes selected for the B.B.C. by famous people is to be given on Saturday next, October 30th. On this occasion the Rt. Hon. J. R. Clynes, M.P., will give us his idea of a good evening's entertainment, the items he has selected starting at 8 p.m. and concluding at $10.15 \mathrm{p} . \mathrm{m}$.

It was Mr. Clynes who, as Lord Privy Seal in the Labour Government, first introduced the microphone to Downing Street, by permitting the broadcasting of a reception held at No. 11.

Aerial Slashing.

ANORWOOD reader tells me that there has been an epidemic of aerialslashing in Upper Norwood. Apparently a gang of half-witted hobbledehoys, with receding chins and a crude sense of humour, think they are being funny when they succeed in cutting a wire or two, and bringing down receiving aerials. They ought to be exterminated, like any other wretched wireworms.

National Wireless Week: NOVEMBER 7th - 13 th, "Let your Friends Listen."

The Coal Question.

WHO is responsible for all this sameness about the programmes?" writes a critical correspondent. "All I can hear on my set is coal, and what the coal-miners are doing, the price of coal, the coal-owners' views, and conferences on coal, and a daily musical interlude by Mr. Maurice Cole:"

So I've written and told him the fault's not " mine"!

New Broadcasting Authority.

MRS. PHILIP SNOWDEN is being mentioned as one of the Commissioners who will be appointed to help Lord Clarendon on the new British Broadcasting Corporation.

The Corporation will take over from the B.B.C. on January 1st, and although time is getting short, there is great official reticence about the new concern that in future will control broadcasting. Lord Clarendon's appointment, first forecast in this journal, is now generally accepted as a fact, but apparently we must wait for the full official announcements until the P.M.G. makes a statement in the House next month.

Always and Always.

THEHE great contralto arranged her Lady Duff Gordon gown with infinite care. She touched her hair daintily so that cach strand was meticulously in place. She bowed her lips and powdered her pose with infinite care. The great audience was waiting-,
"'Ladics and gentlemen,' spoke the radio announcer, 'Madame Jupre will now sing "Always."," ". "- Radio Digest."

The Hofmann Recital.

INTERVIEWED upon his arrival in England, Josef Hofmann, the worldfamous pianist, declared he was going to play Liszt's Rhapsody No. 2 to the microphone, because a wireless fan asked him to do so! The enthasiast in question was an emigration official who seemed suspicious of the great pianist until he was shown the B.B.C. contract. Inmediately the word "wireless" was mentioned all

TECHNICAL TERMS ILLUSTRATED.

TERE was a stout lady dispenser, So fat that she thought she'd commence a
Reduction of diet.
She started to try it-
But nothing on earth could

his doubts vanished, and the atmosphere became so friendly that the official asked Mr. Hofmann to oblige with the Second Rhapsody, and obtained the promise!

Short-Wave Programmes.,

AWILLESDEN reader tells me that using the detector portion only of the Simonds Short-wave set, he gets a strange foreign station, transmitting music, etc., late in the evenings. The wavelength is a little helow Königswusterhausen's, and the power and quality apparently too good for an amateur. Can anyone identify these transmissions?

Valves Given Away.

AT every meeting of the Bristol and District Radio Society, the assembled members ballot for a valve! Readers living in the vicinity who fancy their luck should join up and have a go for one of these buckshee bulbs. The secretary's address is Mr. J. R. Houghton, 2, Elm Lane, Redland, Bristol.

Britain's S.B. Schemè.

0or about November 1st, the B.B.C.'s new linc-repeater station at. Gloucester will be ready for service. Designed to improve simultaneous broadciasting, and to provide a better land-line link between London and the West, it will do for the West Country stations what the Leeds repeater is already doing for the northern stations. In future Plymouth or Cardiff will be able to tap in to the London and other programmes at the Gloucester switchboard, instead of duplicating lines right ecross the whole country.

A Wireless Winner.

A^{N}N Edinburgh boy, John Hood, who has won a $£ 200$ scholarship, owes his good fortune to broadcasting. His father, listening in one night, heard an announcement that entries were being received for this scholarship, which entitles the winner to two years free education at Geelong College, Victoria. The application was made, examinations followed, and now young Hood is to proceed to Australia, where he may study for a commercial, professional, or farming career, whichever he pleases!

Another Station for Denmark.

IAM informed by the Standard Telephones and Cables, Ltd. (formerly Western Electric Co., Ltd.), that the Danish administration have just ordered a complete 5 kw . broadcasting station from them. It is to be erected at Kailundborg, and all the equipment will be made in London.

The New "Beam" Stations.

THE new " beam " transmitting station at Bodmin with its corresponding re-ceiving-station at Bridgwater, and their "opposite numbers" in Canada, have opened a new era in wireless communication. They are the first of their kind in existence, arranged to focus the radiated energy into a beam, like a searchlight, instead of broadcasting it in all directions. Bodmin uses a power of 20 kilowatts, and 95 per cent of the energy is directed along the beam.

Could They Handle Broadeasting?

SENATORE MARCONI is hopeful that the stations could be used to transmit ordinary broadcast programmes to and from Canada, in just the same way that they can transmit ordinary morse messages. All the stations had to pass a severe test before they were taken over by the Post Office, and opened for public messages to Canada. For a whole week, from October 7 th to 14 th , they sent and received messages between England and Canada, at the rate of 100 words a minute. And not only was this great speed maintained, but they did it for 18 hours out of every 24 !

ARIEL
 Transmitter on Short Waves, E. J. SIMMONDS, M.I.R.E. (Slaff Consultant.)

ITH the approach of autumn and winter conditions, many experimenters interested in the reception and transmission of short wave-lengths will be devoting increased attention to this fascinating and useful work. To such this
the necessary favourable conditions to exchange signals with any part of the world, using input powers of less than 100 watts. Clearly, therefore, unless future amateur short-wave work is carried out on welldefined lines, with special regard to the many outstanding problems, its usefulness will be much restricted.

It is of utmost im. portance that all workers should keep a log wherein should be entered the fullest details of each reception or transmission, the local meteorological conditions, particulars of periodical fading effects, etc.

If you are a transmitter, end in twoway communication with, say, an Austra. lian or New Zealand station, inquire the meteorological conditions at the distant
article is addressed, as it endeavours to indicate a few of the many jroblems to which timo may be profitably given, and to press the importance of careful experimental work on definite lines as opposed to mere DX work.

The foundations of amateur short-wave work were undoubtedly laid by the DX

work of the amateur pioneers, but with the technical knowledge now available regarding the behaviour of short waves, and the increased efficiency of transmitter, aerial and valve design, it becomes possible under
station, also when your. signals were first audible, and the "fading away" "period. During your communication also obtain frequent values of your signal strength from the distant operator, and if possible carry out this daily programme with the same station for a fortnight or more.

From the data thus available it will be possible to plot a curve of the diumal signal strength variations of the transmitter at that particular receiving station, and if the tests are spread over a long period, the seasonal variations will also be apparent. Obviously the transmitter and receiver adjustments must remain as constant as possible during, such tests. This is given as an example of what may be accomplished by careful and systematic log work.

Efficient Receiver.

A simple two-valve receiver. (1 Det. and 1 L.F.) of efficient design and layout suitable for these wave-lengths, and which can be thoroughly recommended, is indicated in Fig. 1.

The broad details of this type of receiver have been dealt with in past numbers of this journal, and it is therefore not necessary to discuss them again here.
There are, however, some points of improvement, which are worthy of consideration in the design of the L.F. part of the apparatus, which add considerably

to the selectivity of the set. It is the endeavour of the designer of modern J.F. transformers for broadcast reception to obtain, as far as practicable, equal amplification throughout the range of musical frequencies, and this condition is of primary' importance to obtain faithful reproduction. The use of an I_F. transformer of this type in a short-wave receiver, which is, of course, designed for Morse reception, will amplify with the desired signal all other interfering sounds caused by atmospherics, 50 cycle A.C. main hum, ctc., resulting in a noisy background of sound, against which it is difficult to read weak signals.

Utilising Tránsformer Peak.

If, however, an L.F. transformer with a sharp amplification peak between 800 and 1,000 cycles is used, in conjunction with telephones of the reed type which are also resonant to these frequencies, the pitch of the C.W. signal can be arranged to fall within this band, and will then be amplified to a much greater extent than the other interferences. Many of the older types of transformers designed in pre-broadcast days are still available, and have this desired amplification characteristic.

Another method of note tuning is indicated in Fig. 2, which shows the primary of the L.F. transformer shiunted by a trap circuit, A, which may be tuned to any desired audio-frequency.
(Continued on next page.)

This trap circuit will by-pass practically all frequencies except the band for which it is tuned. This selected band, which by suitable design may be quite narrow, is passed on to the L.F. valve for amplification, and the unwanted audio-frequencies are effectively filtered out. The following are suggested values for the components: $L=1$ Henry iron core choke, which should have the self-capacity reduced to a minimum ; $\mathbf{C 1}=0.1 \mathrm{mfd} . ; \mathbf{C 2}=0.01 \mathrm{mfd}$.
The L.F. transformer may be of the modern design. The values of L and C indicated for the tuned trap will give an
resonant frequency of the telephones by changing the values of either L or C in the trap circuit A.

Every experimenter should use a wave-meter, and wave-length readings of all stetions heard should be entered in the station \log with other details of the transmission. During the course of the year the writer receives a very large num. ber of postal queries relating to the wave-length of particular stations, showing that few workers are equipped in this particular. For ordinary reception purposes the wave-meter need not be an expensive instrument, as a simple oscil-
 lating circuit (see Fig. 3), will function as an absorption wavemeter. The necessities in constructing such an
 instrument
are a variable condenser,
approximate frequency of 800 eycles. This value, of course, may be changed to suit individual requirements, and also the
good both electrically and mechanically, and an inductance of such design that while electrical losses are reduced- to a minimum, due regard is given to rigidity of construction in order that calibration may be held with reasonable accuracy.
Neon Testers.
In operation the wavemeter is placed in the oscil-: lating field of the secondary (grid) coil of the receiver, and a sharply defined click is heard in the telephones of the receiver when the wavemeter is tuned to resonance. The eddition of a small neon tube such as is used in standard spark plug testers (see diagram) gives a visual indication when the wave-meter is used in transmitter adjustment, the neon tube glowing brightly with the chaiacteristic orange glow when the eircuit is tuned to the frequency of the transmitter. In this connection greater accuracy and sensitivity can be attained by using a Weston Thermo-couple Radio-frequency ammeter instead of the neon tube.

A recent devclopment of great interest and utility is the work of Dr. Greenleaf Pickard, of U.S.A., on the horizontal reception of short waves. This is a branch of work particularly suitable for amateur investigators, as the apparatus required is not costly, and suitable aerials may be erected with ease. An acrial under the
roof or along a suitable indoor passage will be found to work well, and a standard twovalve receiver (det. and 1 L.F.) will be quite sufficient for C.W. reception.

The added sensitivity of the supersonic heterodyne to modulated transmissions will be an advantage when telephony is being recfived.

Fig. 4 indicates types of acrial suitable for this work, and it will be observed that they cssentially consist of a symmetrical horizontal component connected to the detector by two parallel radio-frequency lines.

The best results will be obtained if the dimensions of the horizontal component are a half wave-length, giving a current node at the centre. Thus for 40 -metre reception the horizontal portion of such an aerial might be approximately 20 metres in length.
Recent Results.
If possible a short vertical outdoor aerial with usual earth connection should also be crected, in order that direct comparisons may be mado between the reception factors of the two aerial systems, and to this end arrangements should be mado to quickly switch from one aerial to the other so that signal strength variations on the two systems may be noted.

Those workers interested in the problems of short-wave transmission can use these types of radiators for transmission with good résults, and it may be of interest to refer to the recent work done by the writer on indoor acrials.

Using an acrial under roof of house, as shown in Fig. 5, both for transmission and reception, consistent two-way communication was maintained with Australia for two hours each morning, giving an average signal strength of R4 at the Australian receiver. The wave-length used for these tests was $32-1$ metres, with an input of 100 watts to a master oscillator transmitter. (Continued on next page.)

The question of feeding short-wave acrials by parallel radio-frequency transmission lines is of great importance, and a consideration of some methods which apply equally to receiving and transmitting will now be given. The great adrantage of using this type of feeder is that the aerial proper may bo erected comfaratively free of earthed bodies, which tends to give a much greater efficiency, and which becomes more marked as the wave-length is reduced.

The method commonly adopted by many workers of feeding the so-called Hertz aerial by a single wire is open to the serious

objection that this type of feeder is very likely to have a free electric field, and corsequently radiate some energy, and this radiation will interfere with the calculated operation of the horizontal-component of the acrial.
Figs. 6 A and B indicate two systems of feeding at the roltage node- A for'a vertical aerial (this is the system used with such success by the American broadcasting sitation on 32.79 metres) and B for a horizontal aerial. B is interesting as one of the fecders is not connected to the aerial, and functions by cancelling the free field of the connected wire, thus avoiding useless radiation of energy from the feeder line.

The "Skip" Phenomena.

All listeners on short waves have doubtless observed from time to time the marked periodic changes and signal intensity from distant stations, and to these phenomena has been giveth the broad name of "fading." A careful study of this curious and interesting effect is of the greatest importance, as patient investigation may yield results which may be a yery important contribution to our present imperfect knowledge of the ionised layers of the upper atmosphere (the so-called Kennelly Heariside layer), its day and night and saasonal variations in height, which have a very important bearing on the angles of reflection of different frequencies and also the "skip distance" effect. A few words of explanation regarding the meaning of the term "skip distance" may not bo amiss at this point.

Take as example the behaviour of a wave-length of 32 metres. Experimental evidence shows that the day "skip" is" "approximately 500 miles, while the night "skip" is approximately 2,500 miles in winter and perhaps 1,500 miles for summer. Refer to Fig. 7, which shows the rays from the transmitting station T, learing the
aerial at an angle to the horizon, and being reflected back to the earth by the Heaviside layer. There is thus a zone betweon T and B where no signals will be recuived from T, and this is called the "skip" distance. Now imagine a receiser at point R, just on the edge of the zone of reception R. As the height of the Heaviside layer is constantly changing, the angle of reflection C will also vary, causing the zone of reception to swing hackwards anr? forwards over the receiver at R, and thus giving a great variation in signal intensity, while if the rone B swings oway in the direction of D , the signals may totally disappear from the receiver at R. It will be readily scen that in transmitting signals to, say, the Antipodes, the path of the rays will include a large number of refections between the Heaviside layer and earth.

Interplanetary Communication.

The extent to which the rays from the transmitter penetrate the Heaviside laycr is largely dependent upon the frequency (mave-length) and type of aerial used, and the height of the layer, and recent experimental work indicates that for weves below 10 metres a large percentage of the nnergy projected by the transmitter passes through the layer and goes out into interplanctary space, never returning to the earth, which suggests that if cver interplanetary communication is possible it will be accomplished br the use of wavelengths below 10 metres.
It should be explained that practically all short-wave transmitting acrials radiate a horizontal or direct ray; as well as the angular ray, which necounts for the reception of these signals over comparatively short distanees.

This horizontal radiation is, however, quickly absorbed, and its effect becomes negligible after a few miles.

A^{N} N interesting low-frequency coupling method which will give most excellent results if constructed with the correct ratio transformer is shown in the diagram. The circuit makes use of both transformer and choke coupling, and combines the advantages of both types with the disadvantages of neither.
It is possible to obtain the remarkable purity of choke coupling with the amplification which usually is only possible when a high ratio transformer is used. It is well-

up in the initial stage of L.F. coupling immediately introduces distortion, due to the low impedance of the primary winding. By means of the coupling coutlenser Cl , a portion of the rectified D.C. impulses are shunted to the grid of the low-frequeney valve via the secondary winding of the transformer, whilst an alternative path through the primary winding induces an E.M.F. in the secondary and considerably augments the variations of the grid potential.
The author has carried out several tests and the results show that an extremely high ratio transformer of 6-1 or 8-1, is possible without in any way affecting the reproduction of audio-frequencies. Indeerl, the overall amplification is increased, and should the

circuit be coupled up as a plain transformer the volume drops, and there is a noticeable alteration in the quality which cannot be improved by the alteration of H.T. and grid bias.
The blocking condenser, C2, can have a valuc of 0003 , and is intended to by-pass the rectified impulses in the orthodox manner. For the anode voltage, it is advisable to keep this above 60 volts, whilst the grid-bias voltage value must be increased correspondingly with the increase of H.T.

ECONOMY IN LARGE CONDENSERS.

W
HEN more than onc set is in use, or when one is in the habit of experimenting with circuits, it is convenient to provide for the use of large capacity condensers across the H.T. battery outside the set, rather than to incorporate the condensers separately in cach set used. Similarly, the smoothing circuit across the loud speaker may very well be built up outside the set. The diagram shows the wiring for a small panel (about 7 in. by 5 in .) which provides for a bank of condensers across the H.T. battery leads, and also for a smoothing circuit across the loud spaaker. Either terminals or plug sockets may be used on the panel, as desired. It is, of course, unnccessary to provide on input terminal on this panel for "L.S. plus," but one may be added if desired. lonown that to use a high step-

BROADCASTING NOTES.

FROM OUR BROADCASTING CORRESPONDENTS.

Corporation Stakes Again-The Charter The 5 XX Argument-The Power of "Mic"-Chamber Concerts-- A Monthly Dance NightNews for the West-"Radio Radiance"-Strengthening Variety.

Corporation Stakes : Minor Events.

wITH Lord Clerendon es Chairman, Lord Gainford as I ice-Chairman, and Mrs. Snowden the representative of women and Labour, interest is now centred in the other members of the Corporation Board. It is definitely understood that one of these will be a "City" man, and the name of Sir Gordon Neirn is mentioned in this connection. Another will be an educationist, probably an exheadmaster of one of the Public Schools. The remaining post will probably go. to an ex-Post Office official.

The Wireless League Campaign.

The Wireless League has started an energetic campaign against the policy of the Government in proposing to appropriate about balf of the Licence revenue both now and in future. One of the speakers at the meeting of the Council of the Wireless League declared that if he were to conduct himself with trusts funds in the same way as the P.M.G. he would be arrested.

Mandarism at the Post Office.

From the angle of officialdom, there is nothing more to discuss about broadcasting so far as its future constitution is concerned. The Charter has been drawn, and approved by the Cabinet. The Post Office have prepared for the P.M.C. his speech to Parliament in which he will enunciate the permanent policy of "grab"-the policy which if applied will certainly lead to the celipse of the British Broadeasting Service. It remains to be seen whether there is really any responsibility to Parliament under present constitutional practice. There is no doubt whatever of the view of the electorate, and probably of the majority of members of both Houses. They wonld be dead ageinst such predatory tacties. They would reduce the Licence fee if there were a surplus.

The Daventry Controversy.

The perennial Daventry controversy has broken out again. This time it is an agitation to make 5 XX really alternative to 2 L O. Some listeners are complaining bitterly that Britain's premier transmitter should be merely a relay station. Now the last time this agitation occurred the B.B.C. foolishly gave war; and tried to provide an alternative service through 5 X X. The result was to displease millions of listeners who had got into the habit of expecting London on 5 XX . The real point is that there should be another Daventry station for an alternative service. But the vast army of rural listeners who repend on 5 X X will always insist-and lightly-that they should have London on one Daventry aerial.

Mrs. Patrick Campbell

Listeners will be glad to know that Mis Patick Campbell will appear before the microphone at London on November 14th at 5.15 p.m.

Paderewski.

There is a strong probability of another broadcast recital by Paderewski in November. Efforts are being made to clinch this for the National Wireless Week programmes.

Mr. Eric C. Dunstan, the 2 L 0 anuouncer, who has been appolnted general manager of the Idian Broadersling Co.

Drawing Power of the Miterophone.

It has been suggested that the broadcasting of an appeal as frequently as once a week is too great a.strain on the benevolence of listeners. When the B.B.C. standardised its arrangements so that there would be an appeal only once a week, at 8.55 on Sunday evening, many people were of opinion that results would fall off and that the appeals would soon be withdrawn. This has not proved to be the case. Substantial results are still received, and there is no indication of surfeit or decline. For instance, it is stated that, as a result of the appeal made by Mis. E. M. Wood for the Winter Distress League on Sunday, October 10 th, over $£ 500$ in cash was received in the course of a few posts, together with several tons of clothes.

The International Chamber Concerts.

The B.B.C. has yielded gracefully to the complaints of those who have been com-
plaining of the absence of any alternative on the nights when the International Chamber Concerts are given. These concerts are so high-brow and difficult that only a very small proportion of musiclovers themselves cen understand and enjoy them. A special and a successful endeavour has been made to secure the most obscure music from remote corners of Europe. In future these shows will not be compulsory Simultancous Broadeasts, and there will probably be a different kind of programme from Daventry.

A Monthly Dance Night for $5 \mathbf{X X}$.

The B.B.C. is considering a proposal for a new monthly dance-night feature from Daventry. Last year's experiments in catering more adequately for dancers by radio were not too successful. The B.B.C. went to some pains to keep Daventry running until one in the morning twice a week. And then when listeners were asked their opinion of the arrangement, only three wrote in. When the late service was discontinued there was no audible grumbling. In the light of later exploration it is possible to state what was wrong with the experiments last year. The point really is that hardly any of the vast army of rural listeners to Daventry care to dance after eleven o'clock. But they do want to dance from eight to eleven o'clock sometimes. Thus there is a real demand for a monthly dance night from Daventry, the programme to run from 8 o'clock.

Viscount Grey for Armistice Day.

It is understood that the main talk on Armistice Day will be given by Viscount Grey of Fallodon, who will be heard from about 8.20 to 8.50 on that night.

Good News for the West.

The new West Country Repeater station will be working in a fow weeks' time. 'This installation is similar to the repeater station at Leeds, which has transformed the character of the progiammes of the North. The new Gloucester apparatus will be a tremendous boon to Cardiff, Swansea, and Plymouth.
"Radio Radiance" Litigation.
It is a pity that litigation should have been necessary in the matter of the future activities of "Radio Radiance," the reme originated and developed by the B.B.C. in co-operation with Mr. James Lester. The B.B.C. failed to get an interim injunction, and it remains to be seen whether the cause will go forward for trial.

Strengthening Variety

The B.B.C. are evolving a scheme whereby it is hoped that the variety artistes required for broadcast programmes throughout the country may be rewarded as well as they are by music-hall syndicates. If this proposal comes to anything, the B.B.C. would no longer be handicapped by the hostility of the music-hall interests. Nor would artistes themselves have to worry about the ban clause of contracts-the thing which is so perturbing now. As soon as the B.B.C. can support its variety artistes, some of these can turn their backs on the music-hall stage.

SOME USESNOF FICHOKES

ANY ordinary inductance coil, whether it be of the basket, spider-web or honeycomb plug-in type or of the simple solenoid pattern, is, in certain circumstances, an H.F. choke. The term is quite self-explanatory and can be read literally as meaning a component that tends to prevent the flow of H.F. current. But to do this it must have a high self inductance in proportion to that of a coil. that is normally used in a circuit tuned to

the frequency of the H.F. currents it is desired to choke.

Low Self-Capacity Necessary.

This is to say, that it is useless to employ a 75-turn basket coil to choke H.F. currents due, for instance, to the transmissions of $2 \mathrm{LO} ; 250$ turns or so should be employed, while for 5 X X 250 would be too small, and at least 500 would be necessary. The basic idea non-technically expressed is simply this: If the choke is to choke it must be a coil of a number of turns in excess of the largest coil that conld be used with or without condenser tuning to tune to the frequency it is desired to choke. Further, it must be of low self-capacity, or otherwise the H.F. currents will treat it as a fixed condenser and pass through without attempting to disonver whether they can overcome the barrier of high self inductance.

Basket or spider-web winding is excellent for coils intended to act as chokes, but the resultant size of, say, one of 750 turns is such that it is necessary to adopt some other

An Article that will Interest all Valve Enthusiasts.
By G. V. DOwDrivg, Gradit.e.E. ('Technical Editor).
method if compactness is to be obtained The use of fairly fine wire (up to 32 S.W.G., S.S.C.) is permissible and, providing layers are fairly well separated, multi-layer solenoid winding is quite efficient. The H.F. choke used in the 1926 Unidyne was àn example of simpile com-pactconstruction, and the details of this are well worth while repeating.
Two ounces of 32 -gauge S.S.C: wire should be obtained. The former can bedinary wooden consist of an ordinary wooden bobbin, such wire. It should have an internal diameter of $\frac{3}{4}$ in. and an internal (cheek to cheek) length of 2 in . A small rod of wood of this size could be used, and two circular end pieces $1 \frac{1}{4} \mathrm{in}$. in diameter fitted.

The important point about such a choke is the method of winding. The dimensions can be slightly altered; for instance, a bobbin $2 \frac{1}{2} \cdot \mathrm{in}$. by 1 in . would be $0: \mathrm{K}$., but the 500 turns of 32 S.W.G. must be wound not as cotton is wound on a cotton reel, but in the following manner :

Leaving about 5 in. for connecting purposes, wind about 32 turns in a bunch, then pass along the former a little way and wind another 32 turns in a bunch. Then a further two bunches and the laver is complete. It should be covered with a single layer of ordinary waxed paper and then another series of little bunches wound on, starting at the same end as the previous layer. Four layers of about four bunches per layer will conclude the 500 turns after which a length of about 5 in . can be left for connecting and the little choke is finished. To make a neat job of it a layer of Empire cloth should be wrapped round it.

The Filadyne Chokes.

There are many different makes of H.F. chokes on the market, including the "Cosmos," " Marconiphone," "Lissen," "Peto-Scott," etc., prices leing uniformly round about 10 s., with the exception of the " Cosmos," which is only 6s. 6d.

Having shown that H.E. chokes are both easily makable and readily pirchasable, we will endeavour to indicate a few of their
many uses. An example which readers will immediately call to mind is the Filadyne, only in this the H.F. chokes must have an abnormally low ohnic resistance on account of the fact that they are required to pass the filament current.

Shunting the H.T.

H.F. chokes are employed in practically every transmitting circuit. but it is with receiving that we are concerned. In Fig. 1 is illustrated a method of coupling an H.F. valve to a detector by means of an "H.F.C." The circuit is similar to an H.F. det.

resistance capacity coupled, except that the H.F. choke takes the place of a resistance. We prefer the choke to the resistance method the tuned transformer system is superior to both, although it involves the employment of an additional control.
The operation of the H.F. choke in Fig. 2 is more clearly defined and it is in this case more an adulitional refinement than an alternative to anything. Its purpose is to isolate the telephone receivers and H.T. battery from the H.F. portion of the anode circuit, which consists of the reaction coil X and a variable condenser which controls regeneration. A classical modification of this method of " shunting the H.T." is the famous Reinartz circuit.

A Practical Illustration.

The efficiency of a good H.F. choke can be illustrated in quite a simple manner. Take

any ordinary valve receiver and touch the grid socket of the detector valre-holder, a position shown theoretically in Fig. 3 at X. Signals will decrease in strength and may disappear entirely. Then connect an H.F. choke by one of its terminals to that same point. Although its other terminal is in (Continued on next penge).

direct metallic contact through its winding to \mathbf{X} touching this, which is shown as \mathbf{Y} in Fig. 3, will have no apprcciable effect. Replacing the choke for a coil of similar dimensions to that one used in the A.T.I. or reaction position, it will be found that touching either the grid socket or the free
which frequently results when telephone receivers are included directly in the anode eircuit of a valve in a dual-amplification receiver. Connected, as shown in Fig. 6a, the 'phones have to carry both H.F. and L.F. impulses, and turning onc's head round to speak to a friend, or handing him the 'phones to wear, means that retuning is necessary. By means of an L.F. choke, two H.F. chokes and a fixed condenser, the telcphone receivers can be completely isolated from the H.F. part of the set and from the H.T. current, and can be left to deal with only those L.F. impulses necessary to operate the diaphragms. The circuit is shown in Fig. 6b and is merely the well - known L.F. choke capacity bypass system with the addition of two H.F. chokes.

A unit made up on the lines of Fig. $6 c$ can be inserted between the 'phones or loud speaker and
terminal of the coil will cause loss of signal strength.

Telephone By-pass System.

Now an H.F. choke will freely pass L:F. impulses and direct current; so the fact that we can get a direct metallic path to the grid without providing a path of escape for H.F. currents is of distinct importance and one that amateur experimenters will do well to remember. For instance, in Fig. 4 an L.F. transformer is shown with its secondary winding to all intents and purposes directly connected across the grid and filament of a valve without, by virtue of the insertion of an H.F. choke, providing an H.F. leakage path. Reflex enthusiasts will recognise the value of this, as also they will of Fig. 5. In this latter instance two H.F. chokes are joined each by one terminal to one side of a grid condenser. What happens to the other terminals of these two H.F. elnoles will not affect the H.F. currents passing through this grid condenser, and external grid biases and what-not can be introduced with perfect freedom. Naturally, as H.F. chokes will pass direct current such as flows from an H.T. or L.T. battery, it must be ascertained that they do not cause D.C. "shorts." Burnt-out valve filaments sometimes result if precautions against these are not taken.
Probably not a few readers have experienced that trouble of instability and howling

those H.F. curtents which claim the 'phones as a by-pass condenser.

A Special Circuit.

In order to provide a further illustration of the utility of H.F. chokes we have devised a special circuit and one that many readers may find attractive. It is shown in Fig. 7 and is an extension of the :aerial elimination scheme-described in "P.W." No. 227. If an amateur has two extension leads connected to the set in parallel and running from his receiver to different parts of the house he can use onc as an aerial and the other as an earth, or, rather, as a counterpoise aerial, and get excellent indoor aeria! results merely by bringing in four
H.F. chokes and two fixed condensers. It is necessary that the choke-condenser loud-speaker by-pass system be incorporated in the set, and, by the way, it is distinctly advisable to do this in any case when extension leads are employed. A complete unit including this can, however, be made up on the lines of Fig. 8 to attach to the terminals of the existing set. The two 0003 mfd . fixed condensers across the extension lead terminals are not essential.

An L.F. Link.

Now examining Fig. 7 it will be seen that the H.F. chokes form definite H.F. breaks in the extension leads. From an H.F. point of view a very clear insight into the operation of the circuit will be gained by covering. over all these chokes with a piece of blank paper. It will then be seen that the top extension leads form an aerial going through a 0003 mfd . fixed condenser straight to the grid of the first valve. The botton extension leads act as a counterpoise and are connected through a 001 mfd . fixed condenser to the filament circuits of the valves. Take away that covering piece of paper and a link through which L.F, impulses can flow to the loud speakers is revealed. But as these links are H.F. chokes from a practical purpose they might just as well be blank paper
 Fig. 8 can, it should be added, be used with any loud-speaker receiver.

A Vast Subject.

The two scts of extension leads should be fairly well separated. Readers interested in the system arc advised to refer back to the article on the subject previously mentioned.
The system described is a well tried one, and has given excellent results for both local station work and when receiving distant stations.
In conclusion, if this brief article has indicated just a few of the possibilities of the intelligent use of H.F. chokes it will have served its purpose. The subject is a vast one, and, while these handy components are already well to the fore in receiving systems, in our opinion their importance has not been sufficiently stressed in radio text-books. Perhaps it is on account of their unique versatility that they do not command their own chapter headings :

IN CASH PRIZES FOR "P.W." READERS

great chance for amateur constructors

WHAT YOU HAVE TO DO-

The Editor of POPULAR WIRELESS is offering 5 prizes of $£ 25$ each and 5 of $£ 15$ each to readers of POPULAR WIRELESS who enter the "P.W." Constructors' Competition by filling up the coupon on this page. There is no entrance fee.

The prizes will be awarded under the following categories:
A. A prize of $£ \mathbf{2 5}$ for the best home-made L.F. amplifier unit. Second Prize $\& 15$.
B. A prize of $£ 25$ for the best home-made Variable Condenser, approx. capacity 001 mfd. Second Prize $\mathcal{E} 15$.
C. A prize of $£ 25$ for the best original wireless receiving set component. Second Prize $\mathcal{E} 15$.
D. A prize of ≈ 25 for the best home-made Variometer for B.B:C. wave-lengths. Second Prize $=15$.
E. Special prize for readers under 16 years of age. A One Valve B.B.C. wave-length (not 5XX) receiver, size limit for panel 10 in. by 7 in. First Prize $\mathcal{E} 25$. Second Prize $\mathscr{E} 15$.

READ THESE RULES CAREFULLY.

The First Prize of $\mathbf{2} 25$ in each class will be awarded by the Editor of POPULAR WIRELESS for what he considers the best constructive effort within the terms laid down for the respective classes. In all cases workmanship and design and the amount of actual "home made" apparatus will be primarily considered in the judging. The second prizes will follow according to merit.
The Editor may divide any of the prizes, at his discretion. The Editor's decision will be absolutely final and binding in all respects.
Any number of entries may be sent, but each entry must be separate and distinct in itself and must be accompanied by a separate signed coupon (as given here). Thus, if you want to enter two of the classes, just buy another copy of "P.W." which will give you the necessary coupon.

All apparatus must be addressed to :
"Amateurs' Radio" Competition, The POPULAR WIRELESS, 7/9, Pilgrim Street, Ludgate Hill, London, E.C. 4 (Comp.)
and it must reach that address not later than TUESDAY, November 16th: Nothingarriving thereafter will be admitted for adjudication. When packing your apparatus, pack carefully and make sure that you enclose stamps to cover the cost of its being sent back to you, otherwise its return cannot be guaranteed. And when sending up your apparatus please use on the parcel a label (according to the class you are entering), see page 396 . This will greatly facilitate the work of handling entries. Every care will be taken of entries, but no responsibility can be undertaken in this respect. This contest is only open to bona fide wireless amateurs.
Any apparatus of professional make (other than the smaller component parts and accesories) will be disqualified.
No one connected in any way with POPULAR WIRELESS is eligible to compete.
Apparatus will be returned-as soon as possible after the adjudication.

ENTRANCE FORM.

```
I (Signature)...
```

of (Address)
an annateur in wireless construction; teish yo enter the "P.W." Constructors" Còmpetition Class. (urite " A," " B, , " C," " D " or " E "" ts the case may be) and hereby agree to abide by the Editor's decistion. I declare that the entry herewith submitted, is of iny own construction. (If under 16 years, please state age.) To the Editor ("Amateurs' Radio" Competition Dept), POPULA WIRELESS. 7/9. Pilrrim St., Ludgate Hill. London, E.C. 4 (Comp

SOME very interesting obseryations on different methods of battery charging were recently made by Mr. W. C. Brooks of the Hartford Battery Manufacturing Company of U.S.A., and are reported in one of the American journals.
"The idea of the trickle charger," said Mr . Brooks, at a meeting of the Battery Manufacturers' Association, " is not new. In the trickle charger a small six-volt battery is permanently connected to a rectifier, which in turn is provided with a standard plug for light-socket attachment, just as an electric toaster. There are four types of rectifiers used for changing the alternating to direct current. after it has been transformed at the proper voltage for charging the battery. All these rectifiers are similar to radio detectors.

Four Types of Rectifiers.

- The four types of rectifiers are: First, the bulb or racuum tube, such as tungar and rectigon ; second, electrolytic, which is divided into alkalinc and acid; third, vibrator ; fourth, erystal. In the bulb rectifier, a small two-element vacuum tube is employed, and this is perhaps the most popular rectifier thus far.

The electrolytic rectifier was first developed and most commonly used in the alkaline type, being formed of a single cell having aluminium and lead elcetrodes and a borax solution. The second type of electrolytic rectifier, which is a new development, uses an acid electrolyte and some rare metal or alloy electrode and a lead electrode. The most familiar combination is the tantalum rectifier. This has been successfully used and is a desirable arrangement because it has approximately the same electrolyte as the battery. The only difficulty with this type is a tendency to go dry in continuous operation, especially in a warm place, but if it is properly proportioned it will need water no. more than a battery.
"The third division of rectifiers, that of the vibrating typc, may well be dismissed from consideration, because it depends upon a vibrating armature, which produces sparks creating interference for the set.
"A new type of rectifier for this service, which will probably have increasing application in the future, is the dry crystal. Since the trickle charger will require only a small amount of current it seems easily possible to multiply the number of detectors until they have sufficient current-carrying capacity to operate a trickle charger. There is considerable work being done on this charger at present, and undoubtedly in the near future some of these devices will be on the market."

The foregoing gives a very useful short summary of the methods at present in vogue, and it is particularly interesting to note that a rectifier of the crystal detector type is likely to come into use. The currentcarrying capacity of the ordinary crystal detector is, of course, extremely small, but provided a detector of this type could be found with a considerably greater currentcarrying capacity and capable of being used in parallel with other rectifiers of the same kind, there would appear to be no reason why a practical dry rectifier should not be made on these lines.

Conzerning Siazle Coatr s!.

A new type of wireless receiving valve has been placed on the market by one of the

American manufacturers, and employs alkali vapour as a filler. There is nothing particu. larly ṇew in the use of alkali vapour, but the novel features of the new valve'are connected with the internal design, the valve being designed so that it may be used in the standard broadcast receiver without the necessity for any change in the wiring or circuit arrangements. It is stated that a slight improvement is noticed, however, if the grid return be connected to the filament negative. High sensitivity and smooth oscillation make this valve particularly useful in short-wave receivers.
single control method will not work or, at any rate, will work with only poor results. It is especially desirable to arrange that the layout of the components be the same and the wiring in both of the H.F. circuits should correspond both as regards the placing of the bars and the dimensions of the same. Some amateurs make the mistake of introducing a switch in one of the circuits so that it may be cut out at will, but unless this component be very carefully compensated it is liable to upset completely the conditions necessary for the use of a dual condenser with single control.

A New Super-Het. Fiame.

In a super-heterodyne receiver interferences often arise owing to the intermediats amplifier being directly affected by long-wave signals. In order to overcome this difficulty, a special type of frame aerial circuit has lately bcen devised by P. W. Willans, the well-known radio engineer, which depends upon the principle of arranging the aerial in such a way that it is for practical purposes non-inductive at intermediate frequencies. The presence of an inductance of any considerable area between

This Americun Recsiver is stated to hava taken eight months to desiga and two months to buidd and is valuad at neariy $\mathbf{5 9 0 0}$.

It is frequently possible, where two stages of H.F. amplification are used in a set, to mount the two variable condensers upon the same spindle, or to connect them together mechanically in such a way that they are controlled by a single knob. Many constructors imagine that the arrangement of the single control for the two condensers is simpler than in fact is really the case. It- is necessary that not only the two condensers, but also the two coils or. H.F. transformers should be exactly matched if this single control method is to be successful, and furthermore the two H.F. circuits must be matched in all details; unless this condition is properlv sealised the
the grid and the filament of the first valve, owing to the potentials set up across it when long-wave signals are incident upon it, causes interference, as mentioned above, by energising the intermediate amplifier. In the Willans arrangement a frame aerial is connected between the grid and filament, the frame aerial being divided into two portions which are electrically equal and are arranged in such a way that they are coupled together but wound in opposite directions. If these two halres are exactly equal and in opposition it is clear that the voltage produced between the grid and filament will be for practical purposes zero,
(Continued on page 518.$)$

Britain's Best Broadcasting Sets Components and Accessories.

This week the interest of motorists is directed to the Motor Show; Olympia.
The wireless Portable Set has given a keener enjoyment to motoring, and is therefore an asset to any car.
The use of OSRAM VALVES is a guarantee of Better Wireless.

The current consumption is only $1 / 17$ th of an ampere. It combines to perfection the qualities range and purity - surprising volume, greater than that expected from a valve with so low a current consumption. None know better than users of OSRAM VALVES how reliable and consistent is the performance of every single type, due to the soundest methods of construction, and to the unrivalled excellence of the OSRAM Dull-Emitter filament.

The Giseovour quarantee

Sold by all Wireless Dealers, Electrical Contractors, and Stors.

THERE are some famous lines in Gilbert end Sullivan which, referring to the gentle and time-honoured ert of courtship, would have us believe that success in such a fateful occupation
" Is purely a matter of skill
Which all may attain if they will;
But every Jack, he must study the knack,
If tie wants to make sure of his Jill."
Naturally, I hasten here to assure the reader that I am by no means going to attempt a disscrtation on the above unirersally recommended pastime. But it has often struck me that Gilbert's celebrated lines might be rery well applied to the art of getting an oscillating crystal contact to perform its required function on demand, so to speak: In fact, when you say that the process of getting a good crystal contact,

Fig. 1. An old detector moderaised.
suitably included in an oscillating eircuit, to generate its oscillations is nainly a matter of skill and of attaining a certain degree of that indefinable quality, "knack," you have sunmed the whole matter up very nicely, and in a manner which is unassailable.

A Very Important Point.

There are quite a number of "amateur' crystal enthusiasts, to my knowledge alonc, who have tried out various crystal oscillation generating circuits, and who have before very long given up their experiments in disgust owing to the fact that they have been unable to get the crystal to develop any semblance of an oscillation. All of which is very unfortunate, because there is a tremendous amount of interest to be had from a few successful experiments with crystal oscillators.

The fact is, however, that these ill-fated enthusiasts did not take the trouble to acquire the necessery knack of getting theil crystals to oscillate. Hence the resilting failures.

For reasons such as the above, therefore, it has occurred to me that it might be of interest to some readers if I set down in a brief manner the various little practical points which must be observed when conducting experiments with crystal oscillation generating contacts, referring in particular to the means by which such contacts may be made to give rise to oscillatory currents most readily.

Now, in the first place, it is a well-known fact that a considerable variety of metallic and semi-metallic rectifying contacts will give rise to oscillatory currents when they are arranged in suitable circuits. But for all prectical usage it is generally necessary to employ a steel-zincite contact for this purpose. In the hands of the amateur no better crystal oscillation generator can be obtained than a contact between a piece of steel wire and a good zincitc crystal. The zincite crystal must be a good one, however. That is a very important point.

The Crystal to Use.

A large proportion of the zincite on the market at the present day is utterly useless for oscillation purposes. Zincite which is coke-like in appearance may or may not rectify; but for crystal oscillator experiments the zincite used must possess en appearance similar to a very deep ruby-red piece of glass. Such crystals examined by reflected light appear almost black, and their surfaces are perfectly smooth.

Losser, the discoverer of the practical method of crystal oscillator working, and his co-worker, Nicolaieff, and others, prepare their zincite by fusing the mineral in a small laboratory electric furnace. It is then allowed to cool slowly, carefully fractured, and selected portions of the fused mineral are then utilised. In practice, however; this procedure cannot be followed by the amateur. And fortunately, for average results, it is not required, for a good piece of zincite will generally oscillate perfectly, provided it is dealt with in the right way.

There is a wide divergence of opinion as to the exact type of device in which the
oscillating contast should be mounted. Some expcrimenters have produced quite good results merely by mounting the zincite in the crystal cup of an ordinary crystal detector, and by replacing the cat'swhisker by a thin piece of steel wire, Nevertheless it is often a difficult matter to effect a satisfactory adjustment with this crude form of erystal oscillator.

The Miller Detector.

A better pettern, is that illustrated at Fig. 1. This piece of apparatus is really an old crystal detector. Such articles are to be had very cheaply from firms supplying surplus radio apparatus, and they generally contain either silicon or iron pyrites crystals. By replacing the old crystal in one of these detectors with a fragment of zincite, and by using an ordinary pin or a short length of thin watchspring as a contact, a rery efficient crystal oscillator can be made. The adjustment control by means of the ebonite knob is excellent for the purpose.
Still another efficient form of crystal oscillator is that illustrated at Fig. 2. The

Fig. 2. Mr. I. Miller's special detector.
'design of this is due to Mr. L. Miller, A.M.I.E.E. In this instrument both the steel contact and the crystal itself are capable of adjustment. Moreover, as the crystal is mounted in on ordinary spade terminel tag, a number of these mounted crystals may be arranged radially around the vertical axis of the ebonite knob, and thus a number of different crystals may readily be tested within a very short time.
(Continued on next page.)

Having now discussed the characteristics of zincite for oscillating purposes, and also the methods of mounting the crystals, let us now consider the practical means of getting the crystal contact to generate its oscillatory currents. Suppose, for this purpose, we imagine that the crystal oscillator is connected up in eny well-known oscillatory circuit, such as, for example, that shown diagrammatically at Fig. 3. This circuit merely acts ás an oscillation generator. It
contact will tend to become far too critical of adjustment for practical usage.
The amateur should remember also that the frequency of the oscillations generated by the crystal contact depends not only upon the amount of capacity and inductance included in the circuit, but also upon the E.M.F. of the applied current. Thus, if, after carrying out the various manipulations outlined above, and carefully regulating the current supply by means of the potentiometer adjustment, the crystal fails to oscillate, try the effect of a coil containing a larger number of turns than the one in use, at the same time, however, keeping the condenser setting constant. After this the readjustment of the condenser setting may be attended to, and the latter should then be adjusted so that its yanes are more widely separated.

Practical Advice.

There is now the question of the resistance which is included in every crystal oscillator circuit. This resistance is shown in the circuit, Fig. 3, at R. The function of this resistance in the circuit is to permit the crystal contact to attain a negative characteristic in its current curve- This resistance must always be of such a value that it is greater than the negative resistance of the crystal contact (which latter value is nearly always ahout 800 850 ohms). Therefore, the resistance, R, in any crystal oscillatory cireuit must not be less than 1,000 ohmis. The resistance should also be inductively wound in order
is a useful one for testing out the capabilities of different specimens of crystals, the oscillations being heard in the 'phones in the form of a characteristic quiet hum.

In order to get the crystal to oscillate in such a circuit (or in any other circuit, for that matter) first adjust the crystal contact so that the steel wire makes a light contact with the fragment of zincite. Then switch on the local battery to such an extent that about 3 - volts pass through the crystal. Adjust the condenser so that about half its maximum capacity is included in the circuit. If audible oscillations are generated by the crystal contact a steady hum will be heard in the 'phones.

The Crystal Contact Adjustment.

Assuming, however, that the result of the above operations is a mere silence, the next thing to do is to manipulate the crystal contact adjustment and to see if this makes any difference in the results. If a frigid silence still greets these endeavours, leave the crystal contact lightly adjusted, and suddenly turn on the full voltage of the battery. Here is a point which is worthy of attention, for it often happens that the sudden turning on of the full E.M.F. of the battery is sufficient to start the crystal oscillating.
Another little point to bear in mind is that the crystal may often be made to begin its oscillations if the panel of baseboard of the instrument is sharply tapped with a finger. It is best to give the end of the steel wire a rounding off by rubbing it a few times over a sheet of sand-paper, for if the end of the wire is too sharply pointed the
that it may act as a choke in preventing the oscillations generated by the crystal contact from flowing through the local battery circuit. For this purpose an ordinary choke coil may be used, and it will be of interest to the experimenter to try the effect of using choke coils of varying resistances on the ease with which the oscillations are generated

Fig. 4 indicates the most usual type of circuit employed for crystal H.F. amplification. It will be noted that fundamentally the circuit remains exactly the same as the basic circuit, Fig. 3, on which the principle of the crystal's oscillatory function is dependent. Thus, in such a circuit, and, in fact, in any type of crystal oscillatory circuit, the above. mentioned points connected with the obtaining of the necessary oscillations apply in an equal manner.
Given a good seusitive piece of zincite, there is
 nothing difficult about getting it to generate oscillations provided the task is gonc about in the right manner. And it is fortunate that zincite which rectifies well is also generally an efficient oscillation generator.
To any amateur who hàs atteripted experiments irr the subject of crystal oscillations and who has obtained nothing but bad results, I would stress most particularly the fact that a really sensitive

The presence of the paper in the loudspeaker will not affect the tone and volume of the reception obtained. It will simply act as a convenient protecting device, and, when cleaning time for the loud-speaker comes round again, all it will be necessary to do will be to remove the piece of stretched paper, and to substitute a fresh one in its place.
piece of zincite must be employed. There are a number of crystal dealers who supply zincite which has been specially selected for oscillation purposes. The cost of such crystals is generally about two or three times that of an ordinary crystal of the same mineral. But, for the experimenter, it is an investment worth making, for working with one of these crystals, the amatenr may feel sure that the mineral is in good sensitive condition. And thus if only poor results are forthcoming the cause may be looked for in the circuit itself, or, more generally, in the technique of working.

Finally, it is often the case that a steelzincite contact will begin its oscillations readily, but it will refuse to maintain them. The cause of such short-lived oscillations is mainly to be looked for in the employment of too much capacity in the circuit, and also in the use of a bad steel contact point. Work, if possible, with the variable condenser almost at a minimum setting, and do not employ a steel contact which is too fine. By these means the stability of the circuit will be increased, and the oscillations will be generated steadily and more or less continuously.

A LOUD-SPEAKER PROTECTING DEVICE.
 By J. F.C.

THE diaphragm of the average household loud-speaker is notoriously prone to accumulate a varied colleetion of dust particles. Complete protection against this state of affairs may, however, be obtained by following a very simple procedure.

Unscrew the horn of the speaker, remove any particles of dust, etc., then obtain a small (roughly circular) piece of greaseproof paper, and stretch it tightly across the stem of the loud-speaker. Prick one or two small holes in the stretched paper with a small pin, and then attach the loud-speaker horn in the usual way, taking care, during the operation, to maintain the grease-proof paper in a perfectly taut condition.

Have you

a gramophone?

The LISSENOLA can be fitted to it in a second. Never again will you use telephones after hearing what can be done with the LISSENOLA Loud Speaking Unit and a'horn made by yourself quickly and easily from materials purchasable anywhere for a few pence, or by fitting the LISSENOLA to your gramophone.

The LISSENOLA Loud Speaking Unit is the essential electro-magnetic sound reproducing mechanism of a loud speaker, concentrated in the most effective manner yet achieved, and produced by large production methods at A RECORD IN LOW PRICE. You cannot make it dither or resonate-it will carry high voltages without any sign of overloading-it is not to be confused
with any imitations which lack its splendid magnets, its non-resonant case, its fine tone qualities and tremendous power.
You add your own built horn to the LISSENOL \AA and you have a big, full-powered, senior model loud speaker equal to the most expensive you can buy, With each LISSENOLA you are given full size diagrams and clear instructions showing you how to make a big horn. In addition you, can also buy the LISSENOLA Reed which adapts the LISSENOLA to take any cone or other diaphragm working on the reed principle. You have in the LISSENOLA therefore the means of trying every known alternative of sound reproduction, an advantege which no other loud speaker gives you.
Your dealer will gladly demonstrate-take no substitute for the LISSENOLA-come firmly away if you are offered anything else. If any difficulty send direct to factory. No postage charged, but please mention dealer's name and addres3.

THE LISSENOLA

Made Golden Toned for your Enjoyment

Full directions for making this horn are given with every " LISS. ENOLA."

A cone diaphragm loud shragm load easily bé constructed. The stlucted. ilfation
shows one method of mounting.

The "LISS. ENOLA" in. stantly corverts any. gramophone into a loud speaker.

The "LISSEN" Reed Attachment (pal. pending) for use with cone diaphragm loud speaker. Price 1/.

You, too, will be delighted at the increase in selectivity and signal strength when you plug-in a LEWCOS Coil.
Independent National Physical Laboratory tests prove the superiority of the LEWCOS Coilthe most efficient commercial coil produced. Strongly constructed: Neat appearance.
Try a LEWCOS Coil in your set-it makes all the difference! Your dealer stocks or can obtain LEWCOS Coils. Descriptive leaflet gladly sent on request.

No.	25	35	40	50	60	75	100	150	200	250	300
Price.	4/6	4/6	4/6	5/-	5/6	5/6	6/9	7/6	$8 / 6$	$91 \cdot$	10/0

The

LONDON ELECTRIC WIRE COMPANY \& SMITHS, LTD. Playhouse Yard, Golden Lane, London, E.C.E

All enquiries for LEWCOS RADIO PRODUCTS - should be made to your local dealer.

HEWCOS Inductance Coil

(9)

THE FINEST H.T. BATTERY IN THE WORLD-Post Free!

good reasons why it will pay you to order your H.T: Batteries from us.

1. Your battery will reach you as "fresh as a crisp roll," because we send out such large numbers DAILY - no lost voltage through standing about on shelves.
2. You get your full money's worth of battery by ordering from us-there are no middlemen's profits for you to pay.
3. You get an H.T. Battery that is made in London, and everything about it, Capital, Materials, Labour, is British-with a capital " B."
4. You get a Battery that will give the longest possible life of perfect reception, because it has been scientifically designed, and the "elements" are so generously proportioned-nothing is skimped.
Get your Fellophone Battery either from one of our seven -branches (see below) or direct from us. Just send Postal Order, Money Order, Cheque, or (registered) Cash. But do it now.

60 Volt

FELLOWS, PARK ROYAL, N.W. 10

Send for 48-page Catalogue No. 33,
FREE

Branches:

LONDON: 20, Store Street; Totienham Court Road, VV.C. BIRMINGHAM: 248, Corporation Street. (CCombrsal 453). BRIGHTON: 31, Queen's Road. (Brighion 899).
CARDIFF: Dominions Acrade, Queen Srreet (Cardif 7685).
 TONBRIDGE 34 . Quarry Hill. (Tonrbride Ce 12).
BUY DIRECT AND 5AVE MONEY

T has recently been shown that cali. bration charts for tuning circuits can be compiled for a number of coils upon one sheet. Indeed, a number of variables can be so plotted that any value which is connected closely with others is easily read off by using a ruler.
The method is called the Principle of Alignment. due, we believe in the first place, to M. D'Ocagne, and it is proposed to give here the simplest forms of its application.

These calculations are easy, but set them out by the Principle of Alignment, see Fig. 1, and note that the current in milliamperes has been drawn along a line to a convenient scale, and that the volts are set out similarly on another scale below. Commence by choosing a maximum and minimum between which values are required; the upper and lower values can be to quite different scales so long as each is accurately drawn. It is to be noted that the increase occurs in opposite directions.
For simplicity, in Fig. 1, we have shown zere in both cases; further, since it is obvious that a zero current through any

Take, for instance, the voltage drop due to a rheostat-a point which often baffles beginners, since when using a strange valie one is not quite sure. whether the rheostat is of the correct resistance to protect and control the filament.

Calculating Resistances.

It is considered necessary to use a P.M. 4 power valve in the last stage of our set. Reference to the maker's figures shows that 3.8 volts must be applied across the filament, following which 1 ampere (100 milliamperes) is consumed. Then, by Ohm's ${ }^{1}$ aw; $C=\frac{\mathbf{E}}{\mathbf{R}}$ where $\mathbf{C}=$ the current, $\mathbf{E}=$ the voltage, and $\mathbf{R}=$ the resistance. We want to find what volts are required to push the 1 ampere through the rheostat-i.e. $\mathrm{E}=\mathbf{C R}$. We have, say, a 10 ohm rheostat, then $E=1 \times 10$, which equals 1 volt
That rheostat will drop the battery volts by 1 , and we have a 4 -volt accumulator ; 4 volts $-1=3$, the minumum volts left to apply to the filament, which is just ebout right in this case.
 resistance of this nature will give a zero volts drop, a line is first drawn from zero to zero. Now take the 10 -ohm rheostat and calculate the volts drop for any valve by Ohm's Law, drawing a line in the correct place across the chart. Wo have taken the calculation as above, drawing a line from - 1 amp . to 1 volt. The two lines will intersectand you may call that point your 10 -ohm rheostat.

Now note, that a ruler placed across the ampere-volt lines, provided always that it passes through the 10-ohm rheostat point, will give the volts drop according to the current taken by the valve. In such a way a comprehensive valve chart can be drawn up on the lines of Fig. 2. The cross lines ean be removed, of course. once the points of intersection are marked.

correct condenser reading is obtained on the lower scale. The ideal tool would be a straight-edge of steel into which has been inserted at one edge a needle point. This (Continued on next page.)

The above upplication, though useful, is not so apt as that of condenser dial readings against wave-length. Since, unlike a curve of wave-length against condenser rcading plotted on squared paper, where one curve - per coil is required, once having drawn the upper and lower lines a number of pointseach representing a coil-can be set out between.

Wave-length Calibration.

In this connection, and in the majority of other cases, one must be sure of the rate of increase of onc value relative to the other. The original type of variable condenser of semi-circular moving vanes had a straight-line increase of capacity. That is to say, given a capacity of approximately 0003 at 45 degrees, then at 90 degrees it is approximately $\cdot 0006$, and so on increasing in proportion to the dial reading. But wave-length increases only as the square of the capacity. If, therefore, the capacity on the lower line is set out in equal divisions representing the dial reading, then the wave-length on the upper line must be squared, as we have shown in Fig. 3.
The procedure in this case is to take readings of two broadeast stations of known wave-length, draw a line from the degrees to the metres in both cases, and where the lines cross that point can be called the coil in question. Now, set a straight-edge to an unknown and required wave-length, let the edge pass over the coil point, and the

conjunction with a squarc law condenser. In this type of unit it is claimed that the capacity increases in such a manner that the increase of wave-length is directly proportional to the dial reading. In both cases, however, it is advisable to make the initial observations somewhere between 60 and 130 degrees, since the capacity at the lower and higher points on the scale may be unreliable. The coil points thus

WITH the autumn days now setting in, wireless enthusiasts may expect a whe good deal of high winds, breezes h are capable of putting even the most efficiently and strongly constructed aerial to stringent tests of stability. Of course, an aerial may sway in the wind and not come to any great harm. But one effect of a swaying aerial is sometimes to cause a peculiar fading phenomenon to be set up in the reception which the set produces, a fading which is peculiarly rhythmical in character, and which is naturally intensely annoying to the listener.
This swaying effect may be completely got rid of by adopting the following method
prevent any gentle sway of the aerial mast itself.

With this arrangement in operation, what happens is this. When a high wind comes along and sways the aerial, the weight immediately compensates the movement, especially if the motion is in a vertical direction. More than this, the arrangement prevents horizontal sway, because by means of it the aerial is always kept in a taut condition, thus making it diffieult (and, in many cases, impossible) for any side to side swaying motion to takc place.

A corner us lie suntrut-roum at the copennagen broadcasting statuan
of stabilising the aerial : Procure two small pulleys, a suitrble piece of iron or lead weighing ten or twelve pounds or more, and a length of strong rope. The rope should preferably be tarred, or treated in some other manner which will render it waterproof and rot-proof.

Automatic Adjustment.

The manner in which these articles are combined will be seen from a glance at the illustration. One end of the rope is securely attached to the aerial mast. It is then threaded over-one of the pulleys near the last of the aerial insulators, and then over the other pulley which is attached to the
"THE RADIO CONSTRUCTOR"
aerial mast by means of a short length of the rope. The weight is firmly fastened to the free end of the longer length of rope passing over the pulleys. It dangles about five or six feet below the level of the aerial.
The actual weight of the lump of metal attached to the free end of the rope should be just sufficient to keep the aerial nicely taut, but it should not be sufficient to

latter could be ansed as a pivot centred on the coil point, while the rule is swung over the scales.
In connection with Fig. 3 it must be said that the squaring of the top line is unnecessary if the chart is to be used in

obtained represent values as they are. That is to say, the wave-length is that due to the inductance of the coil, its self capacity, the end on capacity of the condenser, and the casual capacities of the connecting wires and the like.
Following this, it is interesting to note that a line drawn from zero wave-length through any coil cuts the capacity line to the left of zero degrees, and it is reasonable to say that this negative value exactly represents the sum total of the inherent capacitics to the same scale as the condenser readings. From the simple chart it is impossible to get at the self capacity of any coil, but one can, at least, make comparisons between coils working on nearly the same wave-length.

It is feared thiat these notes are somewhat sketchy, but they serve to show the way to and tho method employed in the Principle of Alignment.

Improvised Wave-meter.

These calibration charts constitute very useful guides when tests of a new receiver are to be carried out, for it is nsually an easy matter to pick up two known stations and then when the graphs have been plotted the chart will render scarching for other transmissions a much simpler matter.

Conversely, of course, the chart can be used to find out the wave-length of a station that is not known. Having tuned-in the station, the rule applied across the chart will give the approximate wave-length that station is working on. This enables DX searching to be carried out quite successfully and with a minimum of trouble without the need for a wave-meter, always an expensive item to purchase and a. difficult one to calibrate accurately if constructed at home.
The readings obtained by means of the Principle of Alignment will not, of course, be so accurate as those obtainable by means of a well - made and calibrated wave-meter but they will constitute a rough and ready guide when searching for distant stations, or when trying to find out what station you have received when no call sign or aunouncement is given.

2. The case does not make the Watch

THE most exquisite case imaginable will not makeanaccurate timekeeper. Unless the delicate mechanism is assembled and adjusted by experienced hands with the same care as those which fashion the case, the watch will not fulfil its purpose.
As in timekeeping, so in Wireless. Take the fixed Condenser. In outward appeirances two of different makes may be identical. As with the watch, however, the correct functioning does not rely upon the case alone. How, then, are you to judge a Condenser? You buy this, more than any other component in your set, in the dark.
Do not prejudice the success of your Receiver for the sake of a few pence; p n your faith to T.C.C:- the proved Condenser. One embodying the experience of over twenty years Condenser making. One which is the choice of the foremost radio technicians of the country. One whose sale extends to several millions. With a T.C.C. Condenser in your Set, you are freed from condenser trouble-for ever.
T.C.C. Mica Condensers come in capacities from '0009 to 001 . price $2 s$. $4 d$. The Mansbridge type ranges from 0009 at 2 s . 0 d . to 2 mfds . price 4 s .8 d .

Gilbert Ad. 6191

Here's Proof that the 'LOTUS' Survives Shock and is anti-microphonic!

F IGHT Lotus Valve Holders fitted with large power valves and fixed to tailboard of a Ford motor lorry, driven over rough roads for 30 miles survived the test.
At the finish each spring was as it started-perfect. No damage or looseness at the connection of leg socket and spring -no valve became loose from the holder. Both were electrically perfect all the way.
That is why we guarantee the security of Lotus Valve Holders against shocks and vibration.

Prices:
Combination
grid leak
and Valve
HOLDER
$3 / 9$
valve
HOLDER With
Terminals 216
valve
HoLDER
Without
Terminals 23

Fit the Lotus to your set and protect your valves

From all Radio Dealers

 BUOVANCT

Pat. No. 256833.
Made from best bakelite moulding with springs of nickel silver and phosphor bronze valve sockets.
GARNETT, WHITELEY \& CO., LTD. Lotus Works, Broadgreen Rd., Liverpool. Maters al le tamous "Lotus" Vernier Coll Holder
MANCHESTER EXHIBITION-Stand NO. 15.

O^{N}October 27th, Poptlar Wire. LeSS will repeat an experiment which it made about two years ago when the Planet Mars was very near the earth. On October 27th that planet will come into a most favourable position for observation; indeed, the most favour-
able position that it will occupy for a hundred years. Its distance from the earth will be $42,600,000$ miles, and although this is actually $8,000,000$ miles farther from the earth than it was in 1924, this fact is offset for European and American observers by the fact that the planet is 32 degrees farther north.

Listening For Mars.

Readers of Popular Wireless, will remember that in 1924, in view of Senatore Marconi's suggestions that certain peculiar signals on a very long wave-length might possibly be emanated from Mars, we constructed what was then the most powerful valve set in existence-viz. the famous "P.W." 24-valve set. Over a period of two or three nights, when the planet was in its most favourable position, we conducted a series of experiments on very long wavelengths in an attempt to receive signals, if any, from the planet Mars. These experiments were conducted in the presence of Press representatives and several wellknown scientists, and our readers will also remembet that these impartial observers agreed that at certain times signals, although not in any known code; were received on"a wave-length which we believe was somewhere near forty thousand metres. These facts were common knowledge at the time and were reported in the Daily Press, and although much ridicule was poured on the experiment by those who make excessive use of the word "impossible," and although we ourselves were not inclined to credit these signals as being sent out by people on Mars, we nevertheless conducted that experiment in the firm belief that nothing is impossible and that, however fantastic an experiment, it is usually the fantastic which offers the most startling results.

This year we have determined to make another effort and to see whether those untranslatable signals, which were definitely proved not to be atmospherics or from any other earthly source, can be received again. Since 1924 considerable progress has been made in wireless reception, and it is now no longer necessary to use such an unwieldy and complicated receiver as the 24 -valve set which we built two years ago.

The New Set.

In consequence, the technical staff, under the direction of the Technical Editor, Mr. G. V. Dowding, have specially designed and constructed a. new receiver for this cxperiment. The receiver is a 14 -valver. Full technical details, together with diagrams and photographs, will, if possible, be published in our next issue, also a report on the conduct and result of the experiment which we shall carry out on the evening of October 27th.

The following details, however, regarding this 14 -valve set may be of interest to our readers.

The set consists of :
(a) A 2 -valve tuned H.F. unit emploving special transformers of our own design ;
(b) A 3-valve resistance capaeity coupled H.F. unit ;
(c) An intermediate 2 -valve tuned H.F unit employing a special form of coupling;
(d) A detector unit which can act as a limiting stage;
(Nothing above a desired strength of signal will have any effect, so that a means for the suppression of atmo. spherics is provided.)
(e) An L.F.. unit consisting of three stages resistance coupled with two parallel power valves in the last position.
set consisting of two H.F. and detector, to a 12 -valve set consisting of seven H.F. detector, and four L.F. valves.
In the test for receiving signals from Marz the full number of valves will be used with alternate periods of listening on short waves and very long waves. Incidentally, the receiver will also be used at a future date for many interesting transatlantic and other DX- tests this winter: We have already received K DKA on a very small frame aerial in a badly screened building with remarkable volume and freedom from interference from atmospherics, and we anticipate many interesting results with this receiver when used in connection with a series of experiments which we are planning for a later period in the year.

Note The Date.

Octoher 27th will, indeed, be a red-letter day for many astronomers, and all over Europe and America they will be examining Mars through their telescopes.

The Worcestershira Cadets trying out a 10 -watt wireless set during recent manceuvres-;

These five units constitute the long-wave receiver which can normally operate from fifteen hundred to forty thousand metres; but in addition there is connected to the receiver :
(f) A 2-valvic super-héterodyne oscillator unit specially designed for the reception of short waves, from thirty metres up. After passing through this unit the energy can be carried to the main receiver and amplified at five thousand metres or at any other desired long-ware lengths.

The Units.

The units (a), (b), (c), (d), (e) and (f) can be arranged in any order. It will be scen that many combinations are possible, ranging from that of a 5 to a 14 -valve super-heterodyne set and from a 3 -valve

The Wireless League, we are interested to note, has advised its members that the period round about October 27 th will be the most favourable for the reception of any possible signals which may be transmitted from the planet Mars, and amateurs are asked to make observations of any unusual signals or disturbances at this time and to communicate with the head office of the Wireless League so that the observations may be co-ordinated.
At any rate, speculation at the present moment is very futile, but on October 27 th it will be interesting to observe whether these unintelligible signals will again be picked up. If they are, and if we receive them on our 14 -valve se tand they are also received at other points, interest will indeed be concentrated anew on the possibilities of life on Mars.

YOUR GUARANTEE - SEE IT ON YOUR COMDONENTS

The Proved "POPULAR" CONDENSER

A CKNOWLEDGED alike by Amateurs and Experts as being the most efficient Condenser of its kind-the Bowyer-Lowe "Popular" is the result of years of experience and experiment, and embodies the latest ideas in electrical and mechanical design.
The hundreds of letters from satisfied users proves the excellence of its performance and its adequate title.
Designed without freaks or frills the Bowyer. Lowe "Popular" is by its design inexpensive

P The RADIO CONSTPUCTOR

- your purpose admir. ably but for one or two points. Tell me what thev are, and. I can probably show you an mexpensive way of overcoming your difficulties.
At the same time, if you want to build a really up-to-date instritment, "The Radio Constructor": can be relied upon to give you

I^{N}this, the first, issue of "The Radio Constructor," I am privileged to tell you something of the policy of this new supplement to Popular Wireless, and to talk quite frankly about my ideas for its future conduct. By the courtesy of the proprietors of Popular Wireless this section of the jourmal will be placed entirely in my charge. In it I hope to be able to give you each week the results of my personal work and experiments, in the form of constructional articles describing sets I have actually made and thoroughly tested in my own laboratory, and descriptions of interesting now experiments and tests which can be easily repeated by readers themselves in their own homes.

Considering . Your Pocket.

As one who has been personally engaged in experimental and constructional work for many years, I am very interested in the financial aspect of home construction, and am particularly keen on finding methods for reducing the cost of home building. This aspect of set building will be found carefully considered in the pages that follow, for while the tastes of those who want the best will be catered for, every endeayour will bo made to show how to obtain the best results by really economical methods.

Thus, in the present issue, you will find the first of a series of articles showing how to modernise your older sets at. very small costs, thus carrying you along until such time as you find it convenient to build a more modern receiver. I firmly beliere that such a policy will do more to popularise radio than one which aims at immediately serapping everything and starting afresh. By proving the efficiency of modern methods by trial, it will ultimately lead to a much wider use of modern receivers.

As I explained in an article in last week's Popular Wireless, the arrangements made by the proprictors of this journal enable me to devote just as much time as I desire to my literary and laboratory work, and thus I am now able at once to conduct many researohes, and develop and test certain new ideas which otherwise would have had to wait for some time.

From Home and Abroad.

I am, further, in the closest touch with research workers both in this country and abroad, and these, too, are co-operating with me in a number of ways. The result will be, I hope: that readers of "The Radio
sound and tested de-
Constructor " will find an abundance of interesting constructional and experimental articles, full of up-to-date ideas.

For several years I have regularly received letters from home constructors in all parts of the world, and, although from their very number it is impossible to reply to all of them individually, the suggestions made have often led to the con-

struction of receivers which have proved very popular, For this reason alone such letters are most welcome. What, for example, is your ideal receiver?
Do you think it worth while to make a receiver more complicated in order to receive Radio-Paris and Daventry? What type of set do you wish to see modernised? Do vou prefer 2, 4 or 6 -volt valves? Let me have your views and opinions, for in this way I am able to gauge your requiremonts. "Perhaps your present recciver' suits
signs in which careful regard will be paid to both efficiency and your pocket.

An Independent Policy.

Finally, it should scarcely be necessary to add that the editorial policy of "The Radio Constructor" will be strictly impartial, for only in this way is it possible to gain and retain the confidence of the reader. The Editor of Popular Wireless in the issue of September 18th (page 150) has already made the position of this journal quite clear, and I can only add that I am in the fullest agreement with all his

A year or two ago the position of the designer of sets for the home constructor was made the more difficult by reason of the absence of any wide choice in the components he could use to build a really efficient set. Practieally all readers want to know the name of the actual component: used, and the policy of naming the parts incorporated in the set described will be followed in the pages of the "Radio Con. structor," but I am anxious to make it clear that the British manufacturer is now producing such excel. lent components that in the great majority of cases the reader can substitute other we!lknown makes withont the slightest loss of efficiency. All responsible authors make their selection over a wide range of components, in order to maintain a strict impartiality.

With these opening words, then, we will "ring up the curtain," and leave you to view, criticise, and, I hope, enjoy the first issue of "The Radio Constructor."

C UPERLATIVES have
been used so often in connection with wireless circuits that I hesitate to describe the circuit I am about to give you as "t astounding " in case this rather overworked adjective fails to impress upon the reader that I have something really good to show him.

Let me say at once that of all the simple
circuits I have tried none have interested me more or given better results from a single valve than the one described below. For-
detector, and only 60 volts high tension, this lititle set immediately gave the following results.

The theoretical "Hale" circuit.

1. Fuil Joud spcaker strength on 2 LO (seven miles away) using my ordinary outdoor aerial.
2. Adequate loud speaker volume for any ordinary sized living room on 12 feet of wire as an indoor aerial.
3. Comfortable daylight telephone reception from Bournemouth on the same twelve feet of wire. In fact, when the lond speaker was connected one could just hear the announcer's voice when standing quite close to the horn.
tunately the circuit is extremely simple, it can be made up in a wide variety of waya, and so can be tried by thousands of experimenters within half an hour of reading this article.

An Experimental Model.

My own experimental model on which I investigated the circuit is shown below, being merely a boxed condenser arotind which the various components have been serewed and rapidly wired up. With a single 06 ampere dull emitter, a permanent
4. Comfortable telephone strength from Birmingliam (both Bournemouth and Birmingham reception just referred to were in full daylight and free of London).
5. After dark dozens of stations were heard in the telephones, using the outside aerial; and late at
at once that the circuit is by no means an ordinary reflex, and to the best of my knowledge is different from anything yet published for home constructors, although it slightly resembles the Trinadyne circuits previously des. cribed in Popular Wireless.

The arrangement, as will be seen from Fig. 1, consists of the usual aerial tuning devices, a crystal rectifier in series with the primary of in L.F. transformer, and-here ${ }^{\circ}$ is the essential point-a very peculiar connection of the secondary of the transformer with the grid of the valve. In the anode circuit of the valve is a reaction coil, after which we proceed with the telephones or loud speaker in the usual way.

How the Circuit Works.

Examining the circuit in its detailed functioning, the following processes may be said to take place. First of all, the oscillatory currents set up in the timed circuit are rectified by means of the crystal, and applied to the grid and filament of the valve rectifier. Indecd, if the I.S. connection of the transformer were taken straight to filament, the arrangement would be identical with the ordinary crystal detentor and one stage of low-frequency amplification. The latter arrangement will give quite good results near a local station, but will not give good distant reception. In such an arrange. ment, of course, there is no reaction coil.

The "Haie" circuit with Kemartz" reaction.

How I first tested the circuit !
night I obtained smailroom loud speaker strength from two of the Madrid stations (Union Radio aud Radio Iberica).

At first glance you may. very likely say "Oh, a reflex circuit!" and immediately think of all the troubles generally associated with reflex receivers -instability, squawks and howls, critical adjustment, uncertain reaction control, and abóve all, a particular sensitiveness to chonges in transformers and valves.

Allow me to state

The circuit is the invention of my friend, Mr. G, W. Hale, and is fully patented by lim. The more technical reader will be particularly interested in the following virtues of the circuit: 1. Undesirable lowfrequency reaction phenomens cannot occur. 2. No damping has to be introduced to obtain stability. 3. No part of the winding of the iron core transformer is connected to earth, and consequently low-frequency electrical disturbances, which usually cause so much trouble in reflex circuits, are avoided.

It will also be noticed that both primary and secondary windings of the iron core transformer are connected to the grid of the valve, thus preventing many undesirable low-frequency "chain " and reaction effects.
In the past it has been proposed to insert a reaction coil in the anode circuit of the valve as a certain amount of the high. (Continued on next page.)

> THE "HALE" RECEIVER
> (Conlinued from previous page.)
frequency energy gets through the transformer to the valve and, this being so, there is a possibility of applying it again in a magnified form to the grid circuit through the reaction coil. Such devices as usually described are unstable, erratic and critical, and although I have tried a number I have failed to get really satisfactory results from them.

An Important Difference.

The new arrangement, however, is vitally different in its action, for the high-frequericy currents in the tuned circuit are applied very simply to the grid and filament of the amplifying valve by means of the self capacity of the transformer and its windings. Thus, while the high-frequency currents cannot pass through the windings as can the low-frequency currents, the connection from the aerial to I.P. and direct to I.S. enables the high-frequency currents to be applied to the grid with ease. This is because there is an appreciable capacity effect between the primary and the secondary windings and in the windings themselves, which allow the high-frequency currents to pass direct to the grid.

They are therefore magnified by the valve and appear in the anode circuit in a much amplified! form, whercupon they are re-applied to the tuned circuit and amplified once more. By making the reaction coupling tight enough, a state of continuous oseillation can be set up.

Good Amplification.

Now, obviously we are going to get a very considerable amplification of signals in this way. Notice. however, that the crystal detector and the primary of the transformer are placed across the tuning condenser, and therefore rectified currents pass through the primary of the transformer, differences of potential are set up across the secondary windings. and these (the low-frequency

impulses) are applied to the grid and fila. ment, and thus the valve becomes a lowfrequency magnifier.

You will notice the arrangement differs from the ordinary reflex in several ways. For example, the usual reflex receivers first of all magnify the high-frequencr signats, and generally the magnified plate corrent is rectified and re-applied to the valve, which then acts as a low-frequency amplifier. This generally means two tuning controls, whereas the present arrangement has only one.

Everyone who has handled reflex circuits knows how in practically all cases the setting is completely upset by any alteration of the crystal, and how critical such sets are in regard to low-frequency transformers. Let me tell you the following points regarding the new circuit.

Nine Good Points.

1. It is astonishingly good on its highfrequency side and is equal to many 3 -valve sets.
2. Not only does the circuit work well

with any good make of low-frequency transformer and valve, but its functioning is not greatly altered by reversing the I.P. and O.P. connections.
3. Reaction control is steady, progressive and without overlap. Furthermore, you do not get any squarks or grunts until the reaction coupling has been carried beyond the oscillation point.
4. The circuit works just as well when Reinartz reaction is applied to it, and in fact I prefer this form.
5. Adjustment of the crystal does not send the receiver into violent squawky oscillation.
6. This circuit is not sensitive to A.C. hum, clectric light main disturbances, and other irritating noises which make themselves so objectionable on the usual reflex receivers.
7. Further note magnifying stages can be added without upsetting the receiver. In this way it differs remarkably from the ayerage reflex.
8. Stages of high-frequency amplification can be added without difficulty.
9. Notice that there is but tuning control and one reaction control.

Constructional Notes.

Above I am griving you a diagrammatical drawing showing you how to join up any parts you may have by you, so as to try this circuit for yourself. I have been so interested in it for my own use that I have brought out a form of the circuit in which Reinartz reaction is used and the whole set is made up in cabinet form. It is, so to speak, a " de luxe " application of the circuit, and as it is particularly simple to control and highly economical in operation, many readers may care to make it up in this form. For this reason I am giving füll constructional details.

Here, then, are the components needed to make up the "de luxe" Hale single-valve receiver.

One ebonite panel 16 by 8 by $\frac{3}{16}$ or $\frac{1}{4}$ inch. (Any good ebonite of guaranteed quality will suit. I have used Radion Mahoganite.) One cabinet $8 \frac{1}{2}$ inches deep with baseboard and brackets. This is a standard size of cabinet and is easily obtainable from any of the cabinet manufacturers.

One 0005 mfd. variable condenser (Igranic Pacent straight-line frequency).
(Continued or neal page.)

THE "HALE" RECEIVER.

(Continued from previous page.)

Dial for same (Radion Mahoganite).
Two board-mounting coil brackets.
One low-frequency transformer of good make (Gambrell).
One anti-vibration valve socket (Lotus).
One board-mounting filanent resistance (Lissen).
One 0003 mifd variable condenser (Polar junior). This is an inexpensive condenser with a convenient dial, using almost the whole rotation for passing from minimum to maximum. It suits excellently as a reaction condenser, but its rather high minimum makes it less preferable than the other types for the grid circuit tuning condenser in this set.)

One on-and-off switch (Igranie).
One single circuit open jack (BowyerLowe).
One plug for same (Bowyer-Lowe).
One Mansbridge condenser, any value from + to 2 mfd . (Dubilier).
One high-frequency choke (Varley).
One permanent crystal detector (R.I. permanent detector).
Strip of ebonite to carry six terminals, 8 by 2 by $\frac{1}{4}$ inch.

Small piece of ebonite for mounting R.I. detector.
Six terminals.
One 9 -volt grid-bias battery with wander plugs.

Connecting wire such as Glazite.

Plug-in roils to suit wave-length.
Tiansfes if desired.
It will be noted that I have named those components actually used in this receiver, but it should be eniphasised that any good equivalent makes will work just as well.

For example, actually I have used a straight-line frequency condenser because it was convenient and because in a coupled circuit which I may try in this receiver, such a condenser may have calibration advantages. However, with the aerial directly coupled the additional capacity so "tacked on " to the circuit will alter the "straight line". frequency reading in this condenser, and so a straigat-line wave-length type would be just as convenient.

There are no particu--lar points to explain wiring up the receiver, as the drawings show details quite clearly. The baseboard filament resistance I have used is a 40 obm type, so as to enable 06 ampere dull emitters to be used. However, this resistance can easily be used at the "full-on" position and experiments carried out with 2 -volt valves, or at intermediate positions for others.

Operation.

When you have wired up this set, or for that matter, any other arrangement of the circuit, the following points will interest you.
I have actually tested this circuit very exhaustively with severad (Continued on next page.)
makes of 06 ampere dull emitter; the various small power valves of Marconi, Osram, Mullard, Ediswan, B.T.H., and other makes: with 2 -volt valves such as the Cossor Point One, Cossor Stentor and other leading makes; and with bright emitters.

Any Valve Can be Used.

I have, of course, tried both the highfrequency and low-frequency amplifying valves in these types. Although the set will work on practically any valve, the best results are obtained with those designed for low - frequency amplification. Typical economical valves which I have found to give excellent results in six, four and two volt types respectively are Marconi or Osram D.E. 8 L.F. in six volts; B.T.H. B. 6 in four volts; and Cossor Stentor in two volts.

Connect your aerial and earth in the usual way, plug in your coils, say a No. 35 to begin with for the aerial, and a 75 for the reaction, put the reaction condenser at zero, plug in your telephones, and, of course, with your batteries connected up, set your filament resistance to a suitable position and switch on by pulling the switch outwards. Turn the condenser backwards and forwards and try moving your reaction condenser slowly. You will probably find that the set-goes-gradually into oscillation. At once turn back again to prevent interference with other receivers. In any case, I suggest that you do not try out this receiver for the first time until after the broadcasting hours. When you have become used to the control you will not bc likely to cause trouble by , oscillation. You will soon "get the hang" of the set, and you will find it astonishingly scnsitive.

The other evening, although the reaction setting was well below oscillation point, I succeeded in hearing no less than four foreign broadeasting stations by simply rotating the single tuning condenser. Two of then were brought up to quite moderate

All terminals are kept at the rear of the sct

At the same time astonishingly good results are given with the 06 ampere valves with 60 volts on the plate. With those valves just mentioned as trpical $100^{\text {to }} 120$ volts give wonderfully good results, and, indeed, on a good average outdoor aerial up to 10 or 15 miles from a broadeasting station, loud-speaking reaults can be heard all over the house. Grid bias should be adjusted by trial.

Reinartz Reaction.

In the aerial circuit you will want a 25,35 or 50 coil depending on the wavelength range required, and for the reaction coil a 35,50 or 75 , or the equivalent of other makes, according to your aerial damping. With small or indoor aerials a smaller reaction coil may be needed. To make sure that you have your reaction coil connected the right way round in this circuit, notice the following: Aerial is connected to the pin of baseboard coil socket and the rcaction condenser is connected to the pin of the reaction coil socket. The sockets are placed side by side in such \& way that the pin of one is alongside the socket of the other.
loud-speaker strength by adjustment of the reaction control.
To make sure that this set works well in all conditions I have tried it on several aerials and, in fact, one of the first experimeuts conducted with it was to take it round to a friend who now has only a temporary aerial made of about No 26 S.C.C. Wire slung out of the window to a pole at the bottom of the garden. The maximum height of this aerial is about 10 feet and my friend's locality is rather screened. Although he had not previously handled the set, after two or three minutes' trial he succeeded in bringing in, and easily identifying in the telephones, Dublin and a number of continental stations.
I want you to write to me to tell me the results you get with this circuit in whatever form you make it up. In any case, try it as quickly as you can ; you will find it one of the most astounding crystal and single-valve sets ever devised.
One final word of warning. Do not abuse the sensitiveness of this receiver by always working on the elge of oscillation. Shortly I will tell you how to make a nontradiating Hale receiver with several advantages.

ALMOST every home constructor now buys his panel cut to size, and dcsigners are keeping more and more to standard sizes, which can bo boüght rearly cut and packeted in all the reputable makes. While the panels so purchased can be relied upon to be accurate to within a very small fraction of an inch, it is unfortunately the case that the cabinets are by no means so reliable.

Fitting a Panel.

If you are unfortunate enough to find that your pancl is just a little too large for the cabinet you desire to use, be very careful how you proceed in making it fit. Usually the difference in size is not more than an eighth of an inch, and to cut off a strip only this width, quite unifornaly, is no easy task, even for the experienced constructor.
The best way to proceed is to mark off the width of the strip it is desired to remóve by seratching a fine line on the back of the panel, clamp the panel to the table (a useful clamp will very likely be found on the kitchen mincing machine!) and cut along the line with a fretsaw.
If a fretsaw is not/available, do not attempt to cut off the strip with an ordinary hack-saw unless you first take the precaution of clamping the ebonite between two straight-edged pieces of wood which can act as guides to prevent the saw slipping.
If the piece to be cut off is very narrow, it is safest to rely on the file cutirely for removing it. A fairly rough file should be used as the finer varicties clog too easily.

Clgar Boxes.

A collection of empty cigar boxes can be turned to very useful account in the amateur's workslop. In one I always keep the following tools:

Scriber.

Centre punches.
3 in. steel rule.
Dividers for marking out large circles.
Small screwdrivers.
Snall pliers.
Miniature spanners.
This box is taken off the shelf whenever I begin-laying out a panel. In a second box is a collection of 4,6 and 8 B.A metal screws and nuts, and in a third my collection of drills and countersinks. A fourth box is devoted to mica and tinfoil, and a fifth to measuring instruments.

The larger boxes can very conveniently be used for sundry small items always wanted in a hurry, one box being devoted to fixed condensers, another to grid-leaks and anode resistances, and a further onc to valveholders. Temporary valve-stands are easily improvised from the small boxes such as are used for 25 cigars, inch holes being drilled in the lids.

It will be found that a valve will rest easily in such a hole, the edge of the base resting on the box top, and the pins passing through. This method of holding is much preferable to drilling separate holes for each pin, as one need not trouble to look at the base before plasing the valve in its socket.

This adaptor enables you to neutralise your old set. want to get modern results?

Not at all! In this new spries of artieles I want to tell you how many existing sets of standard design can be brought up to date with a very small expenditure of time and money. I have in view the more popular type of home-built receiver, and I think you will be very surprised and, I hope, pleased when you find how easily several important modern improvements can be effected.

First of all, let us consider how the AVE you an old and trusted wireless set that has been giving you good service for many long months, but which vou feel is really out of date? It is a shame to scrap it, although, naturally, vou want to keep abreast of modern improrements. If you are a keen wireless
modern sets differ from the " old stagers." In both old and new sets we have H.F. valves, detectors and notemagnifying valves; we have coils. condensers, L.F. trans-formers-all very much the same as before, and the

number of entirely new types of compo nents is
relatively small. Where the new set scores over the old is in sensitivity - the ability to
"fan." you have probably planned to build a really up-to-date set soon. Possibly you have not yet all the new components ready to hand, and in any case there will be a frightful bother if you start pulling the family set to pieces before the new one is ready.

What You Can Do.

At the same time it is very annoying when you feel that those interesting distant transmissions which you can just hear faintly in the headphones would come in much better with the same number of valves on a modern receiver. Again, your know that when the local station is not working, your set is good enough to bring in several other main stations, but what a pity your get is not selective enough to cut out the nearby "big noise." Must you really
give better long - distance results, or better local recep. tion with a much smaller aerial; selectivity - enabling us to cut out the local station within a few metres on either side of its best tuning point; and, lastly, in better quality.

Of course, to get the very best results you should build a new set to one of the many new modern designs, but even with the old one, astonishing improvements can be effected lyy following the suggestions I am about to give you. In this first article I propose dealing with a popular type of threevalve circuit, which has been made up in many different
resembles it in many points, and you will see how to make several changes right away. If, as may very likely be the case, your receiver is similar to this in most of its essential features, you will be certainly surprised at the improvement in such a set as a result of an evening's work.

A Popular Circuit.

The circuit I have in mind is a threevalve receivel with one stage of H.F., a detector, and one note magnifying stage. We will assume that the aerial coil is carried in a two-coil holder, the sccond coil of which provides magnetic reaction. Stability in the H.F. stage is obtained by a potentiometer, and for the H.F. coupling you have one of the popular barrel-type H.F. transformers, with four pins, made to fit a valve socket. The primary is tuned with a 0003 mfd . variable condenser, and in the detector stage you have the usual leaky grid condenser method of rectifying.

Changing the H.F. transformer for a different type.

BRING YOUR OLD SET UP-TO-DATE
 (Continued from previous page.)

The anode circuit of the detector valve contains the reaction coil, and an L.F. transformer couples the detector to the note magnifying valve. There are two terminals for the H.T., and two for the L.T. Two terminals are provided for the loud speaker, and there are, of course, aerial and earth terminals. The circuit is

illustrated in Figurc 1. Note that the filament resistances are all in the negative filument leads.
Such a-set, carefully adjusted, should give quite good results, but will be very broad in tuning, and will not obtain the best sensitivity possible with modern valves.

Aerial Circuit.

First of all, substitute for your 'aerial plug-in coil one of the several makes of special plug-in coils, such as the Lissen X or the Igranic Unitune. You will then remove the aerial connection from the aerial terminal and connect this to one or other of the \mathbf{X} coil tappings (test will show you which is the better of the two), or in the case of the Unitune coil, you will connect the aerial to one tap and the earth to the gther.

This will ouly take you a minute or two, and if you do nothing else to the set you
-may, in certain circumstances, get an improvement in selectivity. Possibly you will be dise opointed with the change. Do not blame the coil or the coupling methord, for I cau soon tell you why the results are not what you expect.

A Simple Explanation.

The tapped aerial coil is a very useful device when properly connected in a suitable set, and can greatly enhance the selectivity, but if you use it without further changes in such a circuit as that shown in the diagram, you will quite possibly get weaker signals and no extra selectivity.

When the grid circuit of a valve is tuned to the same frequency as the anode circuit, there is a great tendency for persistent oscillations to be set up, due to the reaction effects between the plate and grid circuits, provided by leakage of fields and by capacity in the valve itself. To prevent this persistent oscillation, the use of a poteutiometer has been very popular in the past. The potentiometer is a device which will introduce damping into the grid circuit, by making the grid of the valve positive; or, put in another way, as the plate circuit is feeding back more energy than can be
quite enough to "hold the set down" without the grid being made positive by means of a potentiometer: In fact, we may have such heavy losses introduced by the aerial that we can use the reaction coupling shown to inerease-signals, before reaching

that objectionable oscillation point which we are trying to avoid.
By using a tapped coil in the acrial. we reduce the acrial damping quite considerably, but in so doing we may make it nécessary to introduce corresponding losses by means of the potentiometer, thus effectively nullifying the benefits the tapped coil would give us. That is why the use of a tapped coil often effects no great improvement. I shall return to this point later.

The plug-in H.F. transformer is connected

normally absorbed in the grid circuit, the potentiometer introduces sufficient losses to absorb that surplus energy.

Now, the introduction of losses to compensate for too mucl feed - back is by no means a desirable state of affairs. It is something like throw. ing away part of your money because you cannot get it all in your purse. The more losses you introduce the less efficient your set will be.

Now, the aerial itself, when connected as shown in the first diagram, or " directlycoupled," as we call it, introduces certain losses into the first circuit, for the aerial itself has resistance, and indeed in the case of many aerials the damping so provided is
to four pins, corresponding to the pins at the base of a valve, and the diagram, Fig. 3, shows you low the connections are made. I have drawn them as the valve socket would appear on the underside of the panel where it is wired up. Possibly, in your set the I.P. and O.P., or the I.S. and O.S., connections are reversand

Transformer Connections.

The two pins which would correspond to the grid and anode of the valve are the two secondary terminals, while the two pins corresponding to the filament pins of the valve go to the primary winding.

Probably you will have tuned the primary winding in your existing set: Notice if this is the case, that one terminal of the primary goes to the anode of the valve, and to the variable condenser (if correctly wired up, it should go to the fixed vanes), while the other terminal goes to H.T's positive and the moving vanes of the variable condenser. The two secondary windings are led to the positive of the filament of the detector valve, and to the grid condenser and leak respectively.

[^1]

Note.-In this section Mr. Harris will discuss each weele interesting points from the large correspondence he regularly receives. Readers are invited to write to him on matters of interest, and extracts from their letters, together with Mr. Harris' comments, will be published from time to time. It must be pointed oul, however, that general and technical queries cannot be answered in this section, lout should be addressed to the Technical Query Department, complying with the conditions laid down under the heading, "Technical Queries" in each week's issue of Popular Wireless.

HAVE just received a letter from a friend in Alassio, Italy. Alassio, by the way; is situated between Nice end Genon, on the northern coast of the Gulf of Genoa. For reasons of health he has been compoiled to take up his residence in this part of the world, and having settled his household effects is now anxiously awaiting

the arrival of wireless apparatus fiom England. "I do not know what reception here will be like," he writes, "three hundred yards behind the house a mountain slopes down into hills. Rome has a clear field over the water.

Some Aerial Difficulties.

"Power and lighting are in every room of the house, so there will be no difficulty in accumulator charging. I have with me a Tungar charger for H.T. and L.T. and the aecumulators are on the way. The licence is about $£ 17 \mathrm{~s} .61$. , and I understand there is an extra charge for valves. I have only seen four acrials in Alassio. They are all of the double type, and much longer than any I have seen at home.
"Ms difficulty is the aerial question.
"Onall five sides of the house I have plenty of room for any kind of an aerial of any length. Right or wrong, I prefer the single type, which I believe you advocated some tims ago. My difficulty, however, is bringing the aerial and earth into the house. Whoover built the house must have had in his head the idea of a stronghold ! It rests on a bed of solid concrete 18 to 20 feet deep, and the stuff extends all around outside for

6 feet. The outside walls àre 2 feet 6 inches of stone, impossible to cut through. The windows are equally impossible.
They are protected with either outside wooden blinds or semi-outside shutters or both, and are set in steel frames. I cannot see low on earth I can get through into the house. I am lost without my wireless. I want to hear of 'that deep depression' over England. When I get going, I will give you an account of the conditions of reception."

Some Suggested Cures.

Beginning with the carth, I have written to my friend suggesting he makes a good, sound soldered connection with the watei supply to the louse, using, as a further precaution, a number of buried wires or earth plates distributed around the house and joined to the water-pipe system just outside the house. Occasionally, particularly in countries such as Italy, the waterpipe may be carried a considerable distance before it joins a main pipe, and possibly through the air or other substances, which may be fairly effective insulators.

In such cases the effect of joining you earth lead to the water-pipe system is to give a very long earth lead which is allways undesirable. If the additional connection is made to a number of earth plates or buried wires as close to the house as possible, this effect may be largely reduced and the water-pipe can then act as a "lead-in"
With regard to the aerial lead-in, the problem is certainly more difficult, and I am suggesting as one solution. drilling the window-pane and fitting one of the Silvertown window-pane insulators which, incidentally, are quite short.
Supplied in the box is a small copper bit and a
quantity of carborundum powder, so that by fitting the bit into one's ordinary drill, a hole can be drilled in even a thick window glass with astonishing ease. I speak from experience in this matter, as I have already fitted two such insulators in one of the side windows of my laboratory (the window, by the way, is of quite heavy glass, through which I was able to drill in less than fifteen minutes).

Finding the Space.

Probably there will be sufficient space between the outside of the insulator and the wooden shútters in a suitable window, and if a heavily insulated flexible wire is con-. nected to the exterior terminal of the insulator and then threaded through the slats of the shutters, it should be possible to open or close ther without more than bending the flexible wire to enable the glass window to be opened when desired. In order to take the strain of the flexible wire, I have suggested that the aerial connection outside should be made in the manner shown in the sketch.

The Earthing Switch. .

Suitable control of an earthing switch from the house is not easy in such circumstances if the earthing switch is really to carry out its duty effectively. It should be remembered that any scheme which merely earths the aerial, at the same time leaving the lead-in attached to the aerial, or within a very short distance of it, is not a particularly efficient safeguard, for we simply provide the "lightning with two paths to earth in parallel, one straight to the earth and the other through the set.

Probably the bulk of the discharge will go to the direct earth, but a tiny fraction of it is quite enough to wreck a receiver. However, in such localities as that in which my friend finds himself, I am strongly in favour of adequate earthing of the aerial by means of a proper switch.
In the case of the average suburban aerial, such as we find in this country, I have much doubt whether any real danger exists save in very exposed places where the aerial is particularly high.

WHEN a piece of red-hot iron is dipped in cold water, it suddenly contracts and be'comes hard and brittle. With one or two notable exceptions, this tendency to become brittle is shown by all metals with high melting points, and is dependent, among other things, on the rate of heating or cooling.
Now take the case of Radio Valves. The filament in the ordinary valve on the market to-day has to be heated to incandescence to produce the requisite electronic emission, and owing to its remarkably small dimensions, the rate of heating and cooling is very rapid, process which quickly produces brittleness, and eventually tendency to fracture.
With the new Six-Sixty Point One Valves, there is absolutely no "glow " whatever from the filament when operating at the rated voltage, in fact, there are no valves on the market to-day that can boast of a longer life because there are no valves that operate at a lower temperature.
In addition, every advantage of the special Six-Sixty filament-which requires barely 1 amp . to ensure the best results-is utilised to the highest degree possible by our Duo-Triangular system of suspension to produce the perfect valve.
It is interesting to note that Messrs. A. J. Stevens \& Co. (1914), Ltd. have decided, after exacting and exhaustive tests to standardise Six-Sixty Valves in their famous "Symphony" Range of Receivers.

S.S. 2A., E.F. and L.F. D.E., $I \cdot 8$ volts, 1 amp.' H.F., L.F. and Detector 14/= S.S. 10.
D.E., 2 volts, 15 amp., Power Amplifier . . 18/6

S.S. 7.

D.E., 3.7 volts, I amp., Power Amplifier . . 18/6

$$
\text { S.S. } 8 .
$$

D.E., 3-4 volts. 1 amp., General Purpose .. 14/\%
These prices do not apply in the Irish Free Sinte. Descriptive leaflet S.S. 9-26 with parliculars of complets range free on application.

By O. J. RANKIN. WELL-ORGANISED workshop is the job half finished, a fact often realised by those who take more than a passing interest in their hobby.
The following hints are intended for owners of semi-organised workshops-i.e. in cases where all tools occupy their proper places in racks, nests of drawers, etc., and

Fig. 1.-A tidy receptacle for small screws. where all materials and parts are left lying about in a state of disorder.

In order to be able to place one's hand on some small screws of the right size; at the right moment, those screws must first be placed in a certain receptacle kept exclusively for those particular screws, and not mixed up with other screws, terminals, etc., of various sizes. Here one requires a shallow wooden box divided off into a number of sections, or failing this, one may use a nest of empty tobacco tins (2 oz . size), which may be screwed down to a rough baseboard in the manner shown in Fig. 1.

One nest of tins might be kept exclusively for small serews, another for nuts and washers, another for terminals, and so on. Similar tins may be arranged to accommodate lengths of brass rod and tube. (Sec Fig. 2.)

To construct such a container, or rack, as shown in the sketch, one will require six tins and a piece of board about 12 in . long
by 8 in , wide and $\frac{1}{2}$ in. in thickness. Remove the base from each of the three tins intended for the top, so that they form bands, and nail them to the board in the approximate position shown. Then attach the other tins to the lower portion of the board, nail the board to the wall, and the rack is ready for use.

A Place for Everything-

We usually purchase rods and tubes in 12 in . lengths; the distance between the two rows of tins on a rack kept specially for whole materials should therefore be about 8 in . For shorter materials the top tins may, of course, be placed proportionately lower. A very useful rack might consist of six sections (12 tins), the upper row of tins being arranged in step fashion in order to accommodate materials from about 3 in . to 12 in . or more in length.

Fig. 8.-How to store brazs rods and tubes.

Nuts should be stored in small boxes or tins, or kept on wire rings. A large slip-on paper-fastener will accommodate several dozen of the snaller sizes. A system favoured by many is shown in Fig. 3, where the nuts are kept on vertical screwed rods attached to an odd strip of ebonite, which is screwed down to a fairly heavy wooden base.

Fig. 3:-A handy rack for nuts.
The idea outlined in Fig. 4 may be extended and adopted to many different purposes; it shows how an old metal spider coil former may be mounted on a suitable support and made to serve as a

Fig. 4. -A revolving raok lot small parts.
revolving rack for small nuts, washers, eto., small rubber or hardwood knobs being fitted over the ends of the spokes in order to prevent the various fittings from slipping. off.

Eig. 5.-An casily-made ebonite parol rack.
All panels should be kept in a proper rails, such as that shown in Fig. 5. This may be easily built up from a few pieces of board at a cost not exceeding the wear and tear of the saw and hammer.
 SALES DEPOTS.
BIRMINGHAM.Guas Hempton Strees. LONDONN.-90. High Sereet. Comden Town.
BRISTOL
 LONDON.- i2, Shafteaburs Avenue. WC. 2
Also supplied by all CA.V. Service Stations and recoraised Witeless Deciert Hrike for copy of C.A.V. Iluitrated Radio Caialinguc.

Trinhlow: Chiewick yeot.
Jilegrams: "Vapserse. Are Landee"

MODEL \square SUPPLIED HT. 3
 (60 VOLTS)
 SUPPLIED READY FOR USE NO FILLINE WITHHACIO NO CHARGING

Dimensions $8 \frac{1}{2} \times 7 \% 7{ }^{3}=\mathrm{High}$
Weight Charged 16*/ 1 bs-Dry13年/bs
ALSO SUPPLIED IN $30 \varepsilon 90$ VOLTS MODEL H.T.4-30VOLTS - 30\% MODEL H.T. 5 . 90VOLTS - 90'

Who earns your money? Who spends it? Who chooses your parts for you?

No set published by any periodical could use only one make of parts or could use the same make of transformer, for instance it would not be fair to advertisers if they did not all have a share in this kind of mention. BUT YOU ARE FREE TO CHOOSE YOUR OWN PARTS.
Your transformer, for instance. Never again pay a high price for your transformer no matter what may be specified-the new LISSEN has revolutionised all previous ideas of transformer price and performance.
So good is it, that all our own high priced models, which have been on the market and largely sold for several years past, have been unhesitatingly withdrawn in favour of this new LISSEN.
The fine tone and great power of this new LISSEN Transformer have been proved by the trade-they are largely using it for their cwn built-up sets.

> It Fully Amplifies Every Note-Every Harmonic-Every Overtone.

Choose the New LISSEN. First for its Performance, Secondly for its Price. AĆTUALLY TEST IT FOR 7 DAYS-IF NOT SATISFIED THEN TAKE IT BACK TO YOUR DEALERS OR SEND IT BACK TO US
Our new direct to dealer policy of distribution (which cuts out all wholesale profits), aided by our huge production proxramme and the opecial plant installed to turn it out have enabled us to sell this new LISSEN Transformer
at an unheard-of low price.
se it for 1,2 or 3 stages L.F.

It will suit every circuit and every valce you will want to use.

USE LISSEN FIXED CONDEN. \$ERS, TOO, Mica \& Mansbridge Type
LISSEN Mica Type CONDENSERS
Small energy-conserving condenșers-note the new case which enables the condenser to be used upright or flat. At present the new ease but will quickly become a LISSEN standard.

Capacities
0001 to.001 1/- each (much reduced) 002 to $0061 / 6$ each (much reduced)
Accurate to 5%-they never leak-they ever vary.
LISSEN Mansbridge Type CONDENSERS.
To a fine LISSEN quality condenser is anded the specially moulded case-the condenser cannot short circuit on to its case. The new LISSEN case protects you if the condenser is used in any circuit connected straight on to the electric light mains. And due to our new policy of direct to dealer distribution this LISSEN Condenser costs no more than the ordinary type.

LISSEN FIXED GRID LEAKS
A case of these was left on our factory roof during the summer of 1925 , soaked in rain, baked by sun and the resistance value of these leaks never altered.
All capacitics, previously 1'8, Now 1/- each.

Improve every circuit by using LISSEN parts wherever you can-save money too -for now you get keen prices as well as fine quality.

LISSEN LTD., 8-16, FRIARS LANE, RICHMOND, SURREY. Managing Director: T. N Cole.

COULD we but peép into the iwireless den of some ardent experimenter, the chances are that we should find him delving among a mass of wires and components quite bewildering in its complexity to the uninitiated. Should this be one of the occasions upon which the latest idea did really work, then, no doubt, we should be surprised at the good results obtained with such a set.
However, even if the experimenter's "hook-up" is quite orderly and compact, it must suffer from a lack of coherence as a whole, and has an amazing facility for collecting dust, the bane of all radio work. Moreover, although this arrangement is to a certain extent flexible and adaptable, a lot of time and thought is wasted in changing from one circuit to another.

Invaluable for: Experimental Work.

From time to time various systens liave been devised in order to obviate these disadvantages, but none of them have given that extreme flexibility and limitless adaptability that is demanded by the true experimenter. Again, success in experimental work necessitates apparatus that can be rapidly connected up into any form of circuit, no matter how unorthodox. and then the experimenter, no longer hampered by the mechanical difficulties of carrying out his ideas, can give full vent to his inventive faculties.
The Interplex system is the outcome of attempts made about two years ago to design what was then considered to be the ideal experimental set, one which should be self-contained, neat of appearance, and yet possess infinite adaptability to experimental conditions.
Ignoring previous ideas, the original set departed in many ways from the then current practice, but it has proved eminently suceessful and invaluable for experimental work of all descriptions.
Although the system is now two years old, I have refrained from describing it before until it had been exhaustively tested and proved capable of being adapted to the rapid progress recently made in radio technique. The apparatus described herein has been specially constructed for the purpose of this article, and, while it is to all intents and purposes a replica of the original, it incorporates all the improvements sug. gested by past experience. Even now the possibilities of the Interplex system have
by no means been exhausted, and I am confident that this improved installation will satisfy the requirements of the most exacting experimenter.

Two Outstanding Features.

From the photograph of the coniplete system, it will be seen that the general appearance is quite neat and compact. The general scheme of construction, which has of late become very popular, is such that all components are mounted within the cabinet, and only controls and terminals are visible on the panel face.

Two outstanding features of the system are, firstly, the method of assembling the units, namely, two bars in the cabinet face between which the unit panels are engaged in any positon, and secondly, the grouping of components into different classes of units, the idea being to minimise inter-unit connections by joining up groups of components in a certain way to form units having a particular electrical function to perform, but without in any way diminishing the general flexibility. In fact, the Interplex system may be likened to a box of radio bricks with which any combination

A complete Interplex frame with panels: (1) aerial and earth unit; (2) crystal deteotor panel ; (3) variable condenser units ; (4) universal valve unit; (5) L.F. coupling panel ; (6) two-Valve L.F. unit.

What may at first sight appear to be a single ebonite panel in the face of the cabinet is in reality a number of unit panels, some of which are fitted at the back with baseboards, upon which are mounted such components as valve holders, transformers, etc.
The means of retaining these unit panels in position in the face of the cabinet is, as will be seen in the above photogiaph, such that the device permits of any order of assembly; as each unit, can be lifted out and replaced in a moment, or slid along the bottom bar of the cabinet front. The weight of components mounted in each unit retains it firmly in position. The cabinet is mounted on four short legs, so that it can be placed on a table, but, if desired, it may be fixed to a wall just above the operating bench.
of components can be readily built up from a crystal set to a superhet. Another point of general interest is that constructional work is very easy, amounting almost to the assembly of simple components, while the overall cost is very moderate. The full number of units need not be constructed all at once, ánd quite a useful installation can be built up with half the number.

As in most-unit systems, the input terminals on each panel are on the left and the output terminals on the right, so that the inter-unit connections are of minimum length. In general, terminals connected to points of ligh potential will be at the top of the panel. and those
(Coutinued on paye 503.)

John Scott-Taggart, F.Inst.P., A.M.I.E.E.

IN this, the first announcement of the new S.T. series of valves, I would, as the designer, like to make some preliminary remarks.

I have for several years watched valve development very closely, noticing the advantages and disadvantages of every type and every process. When II decided to enter the manufacturing field myself, I resolved to combine the best features of existing valves with my own ideas. The Company of which I am now managing director has acquired a licence under all the leading patents which have contributed to valve development in order that we shall not be hampered in any way in producing the best. Although this has added to the manufacturing cost and minimises the profit, I was not prepared to place a valve bearing my name on the market unless it represented the highest technique in valve manufacture and design.

While head of the Elstree Laboratories, my duties included the technical criticism of existing valves and acquiring an intimate knowledge of their respective advantages and limitations, and I would not have produced a series of valves unless I believed they would stand out above others.

3 3
 NEW
 VALVE

IT is because I feel acutely that my teclnical reputation is staked on these valves, that I propose-having satisfactorily established the design and manufacture-to satisfy myself that each valve is within the necessary specification, and then to initial every carton to certify that the valve is fully up to standard.
In launching a new valve, no risks can be taken. The valve you buy will have been tested under my personal supervision-a laborious task-but then the whole business of S.T. valves will be run on personill lines. I do not believe in treating valves as a species of electric lamp or as so much merchandise. Every valve I sell, every valve you buy, is a valve in which I shall retain a personal interest. Each valve is designed for a specific purpose, although the series have many merits in common. I have aimed at a high mutual conductance, a large filament operating at a very low temperature, and taking a minimum of current, a long life for the valve, a high vacuum, a big factor of safety in every direction, robustness, and absolute uniformity. The S.'T. valve is strong, entirely non-microphonic and foolproof, but is built like a chronometer.

Types and prices to be announced shortly.

S.T. LaIMITED
2. MELBOURNE PLACE, ALDWYGH
-W.C. 2

electric light in your home-?

SO WHY NOT GET YOUR H.T. SUPPLY FROM THE MAINS?

You can make sure of a perfect and constant High Tension supply, entirely free from crackling, hum or ripple.

TUDORADIO MAINS UNITS

can be connected to the nearest lamp socket. Current consumption is negligible, and expensive and troublesome batteries can be done away with once and for all. There are two types: D.C. for direct current and A.C. for atternating currents. There is no risk to your valves or set with either of them. Ask your dealer for details or apply direct to:

THE TUDORADIO COMPANY, LIMITED, TudorWorks,Park Royal, London, N.W.IO.

Telephone: Wembley 41.

CAXTON 4-VALVE CABINET

Made for Sets, "As good as money can bay," "Harmony Four Receiver," "The Melody Three"

Special Cabinets made to Customer's measuremenis. Prices quoled.

Cash with Order. Fumed Oak
\&1 5 (1)
Dark or Jacobean Oak
¢1 100
Real Mahogany
£1 14 0
Detachable $\mathbf{7}^{\prime \prime}$ deep Base Board to mount $21^{\prime \prime}$ by $7^{\prime \prime}$ panel to slide out of Cabinet front.
Also supplied at $10 /=$ extra with two beaded front doors placed 2 ins. in front of the enclosed panel.
Ebonite or Radion Panels Supplled and perfectly Fitted at low extra cost.
All Polished with the new enamel that gives a glass hard surface that cannot be soiled or sc-atched. SENT FREE.-Catalogue of standard Wireless Cabinets in various sizes and woods. Packed and delivered free in U.K.
CAXTON WOOD TURNERY CO., Market Harborough

THE INṪERPLEX.

(Continued from page 499.)
connected to points of low or earth potential beneath these or at the bottom of the panel.

As each unit is designed for a certain purpose, they may be assembled so that the order of connections follows that of a conventional theoretical circuit diagram. In fact, once the idea of the system has been giasped, it is an extremely easy matter to connect up the units direct from such a diagram, and no matter how complex the latter may be, very few inter-unit connections are needed.

Everything Accessible.

While the Interplex system permits any circuit to be connected up in the minimum of time, and into onc compact whole, it is chicfly intended for experimental work, and not so much as a multi-circuit receiver. For this reason an attempt has been made to include as many as possible of the essential components, with provision for the maximum variety of interconnections, and the ready accessibility of any part of the system is a feature that experimenters will appreciate. Every unit, every component, in fact, every terminal end connection, is easily accessiblc for inspection or alteration in a moment, no matter where it may be situated.
Unlike other unit systems, the Interplex units do not include any inductances, as experience has shown that it is highly desirable to keep such components apert from the main apparatus, so that the coupling, replacoment, etc., of coils may be easily carried out.

It is most convenient to have all fixed inductances such as chokes and H.F. transformers on the lid of the cabinet, while coils of an experimental nature, where valucs of inductance and coupling are to be varied, are best placed on the bench or table beneath the set. For this reason the body of the cabinet is raised on four legs so that nothing shall interfere with the accessibility of the unit panels and their controls.

Six Classes of Units.

The length of the containing cabinet places a limit on the number of valves that may be employed, and in order that this length should not be more than three feet, it was deeided to use four valves, this number being sufficient to cover most work, excluding superheterodynes, in the case of which a second frame work standing on top of the cabinet can be built to carry the I.F.A. valves. However, although but four valves are provided for, the extreme adaptability and flexibility of the system is such that it will be a very considerable time before its possibilities are exhausted.

The units, of which there are ten, are divided into six classes. The number of each class considered sufficient for general requirements has been decided upon after much experiment, but therc is no reason why anyone should not make up as many of each as he requires, extending or building up the carrying framework in sections. Before proceeding with constructional details we will first consider briefly the design
and purpose of cach unit. In the photograph of the cabinet will be seen on the extreme left Unit No. 1, the aerial and earth panel on which are mounted main terminals for permanent connection of the aeria! and earth leads, and subsidiary terminals for other connections to these points. The unit also contains a variable condenser which can be used in any manner to tune part or whole of the aerial circuit. or as a wave-trap condenser.

Most Interesting Panel.

Unit No. 2, the crystal detector panel, comprises input terninals on the left to either a permanent detector for standby work or to an experimental type. Output of the detectors to the two terminals on tho right or through a jack into which can be plugged 'phones or the juput of an audiofrequency circuit. This unit is useful when experimenting with reflex circuits, and in conjunction with Unit No. 1 and suitable inductances it constitutes apparatus for experiment. with simple crystal receivers.

Unit No. 3 is the variable comilenser panel, of whioh three are used in the systepn, the condensers being of different types and capacities.
economise components the primary of the transformer is also used as the coupling choke. A 0001 variable condenser is also mounted to fill up available panel space and is useful for control of capacity reaction, etc.
Unit No. 6 is the two-valve audio-frequency amplifier. Experience has demonstrated the need of an amplifior of more or less fixed design needing little attention and capable of being brought into circuit in the minimum of time.

The input coupling is a transformer with choke-capacity coupling between the two valves. This constitutes, with the separate grid bies, filament control and enode filament voltages provided for each valve, a reasonablo distortionless amplifier. Grid bias batteries aro contained within the unit. Two jacks are provided so that either one or two valves may be used, and a plug connected to the input terminal can be plugged into the jack of any other unit to which it is desired to add audio-frequency amplification.

The Battery Leads.

Filament current to each of the four valves of the system is supplied by a length of flex furnished at cach end with a plug

A back-of-panel photograph, showing the wiring of the units in the photograph on y8ge 499.

On the panel are mounted three pairs of terminals wired in parallel across the condenser, and to these terminals can be connected grid or anode circuit inductancos, H.F. transformers, etc., so that these units form the basis of any tuncd circuit or tuned coupling that may be required.
We now come to the most interesting unit of the system, the universal valve unit, No. 4, of which there are two. This unit is so arranged that valves of any type can be used in any desired manner, such as detector, amplifier or oscillator, by making connections from appropriate units to certain terminals on the panel. The design of this important unit will be described more fully when we come to consider its construction.

Economising in Components.

Unit No. 5, the intervalve L, F. coupling unit, provides a moans of employing either resistance-capacity, choke-capacity or transformer coupling. This unit is useful when experimenting with reflex circuits or where a high resistance or an iron-cored choke is required. The connections to the primary and secondary of the transformer are variable; and interchangeable condensers are provided across both windings. To
one end plugging into sockets on the valve units and the other into sockets on the filament control panel, which is mounted underneath the bottom of the cabinet. In this position the sockets are completely protected from the danger of accidental short circuits. On this panel are mounted four groups of five sockets wired up to four terminals, which are connected to the accumulator in such a way that each valve by means of its group of five sockets may be supplied with current at 2, 4 or 6 volts. Thus various types of valves, bright, dull or semi-dull emitters, may be worked at the same time. The panel also incorporates a master rhcostat and a fuse box. The H.T. supply is also by means of flexible leads, one for each valvo, a wander plug at each end plugging into a socket on the valve panels and into the H.T. battories.
A telephone jack is used in each valve unit as well as in the anplifier so that telephones or an audio-frequency circuit may be plugged into the anode circuit of any valve. Withdrawal of the plug does ros break the anode circuit, end this feature is of valuo as breaking into any anode circuit can be done rapidly.

Throughout the units, all fixed condensers are of the interchangeable type.

TheRetrosonic Receiver

SONE months ago interesting accounts were published in the daily press of the results achieved by a young Sheffield amateur, Mr. H. W. Roberts, with a now.
type of circuit, known as the Retrosonic.
The complete receiver was publicly shown for the first time at the Olympia Extibition where it attracted considerable attention. The chief claim "made for the new circuit is unnsual range, in view of the fact that it comprises only three valves, combined with a high degree of selectivity.

Tuned Loop Circuit.

Ko details were available of the actual circuit arrangements until the recent publication of patent specification No. 256,998 covering the principles employed.

Those who are well versed in the mysteries of radio science will be the first to admit that results are sometimes achieved by methods which do not appear to conform to recognised practice. At first sight the Retrosonic circuit must apparently be included in this class.

The inventor states that the aim of the improved circuit is to secure from three valves a volume of sound equivalent to
efficiency in shutting out unwanted signals even when these cmanate from a powerful transmitting station at close range.
The second feature that. calls for comment is the fact that the circuit is not reflesed in the ordinary sense of that term. Although some sort of feed back action undoubtedly takes place between the valves it is not of the ordinary kind. Another poirat of interest is that the second valve functions without any direct high-tension voltage beingapplied to the plate.

H.T. Shorted.

Finally, it is apparent that the hightension battery is shorted through the telephones or loud speaker windings and the primary winding of the inter-ralve transformer 15. This, however, is a not matter of great importanee, since the resistance of the shorting path is very high.

that of an ordinary set having five or six valves, together with greater purity of tone and a proportionally extended range of reception.

So far as selectivity is concerned, the characteristic feature of the circuit is the use of the tuned loop circuit 9,10 , shown in the middle of the circuit diagram. In the first place, this appears to, be an ordinary rejector or trap circuit well-known in itself, but for some peculiar reason, which the inventers themselves are apparently unable to explais, it acts with extraordinary

Commencing on the input side it will be seen that the tapped inductance 5 conveys the received radio impulses directly to the grid of the first valve through a biasing coll 8. Regarding the first valve as a radiofrequency amplifier only, amplified highfrequency currents will fow through the reaction coil 12 in the plate circuit of that valve. Simultaneously, a part of the aerial energy, reinforced by reaction from the coil 12, will find its way from coil 5 through the direct lead YY provided to the loop circuit 9,10 , and will impulse the latter.

In other words, the one-point tapping through the lead $Y Y$ from the grid of the first valve to the loop circuit 9,10 transmits voltage impulses which build up by resonance effect into a swirl current of considerable magnitude inside the loop circuit, provided the latter is accurately tuned to the wave-length to bs received.

Large voltages will accordingly be produced across the coil 9 , from which they will be applied between the plate and grid of the second valve, and corresponding amplified currents may be expected to flow in the plate of that valve. The coil 9 co-operates with the coil 11 to form a radio-frequency coupling, and inductive effects are accordingly transferred through that coil and the transformer 15 on to the grid of the third valve. The plate of the third valve, it will be seen, is provided with a high-frequency path through the shunt telephone 16 , and the reaction coil 12 back to the plate of the first valve.

- Cumulative Rectification.

The process of rectification must be assumed to be a cumulative one. Those high-frequency impulses that are applied directly to the grid of the first valve are rectified owing to the presence of the grid cell 8. Partial rectification also takes place in the case of high-frequency energy reaching the second valve via the loop circuit 9 , 10 , owing to the action of the grid battery \& Finally, a blocking condenser 17 isolates the grid of the third valve.

Rectified impulses from the first valic will accoidingly flow in the coil 12 , and because this is coupled to the coil 5 are transferred to the coil 5 , giving rise to a species of low-frequency reaction between
(Continued on page 506.)

INDIFFERENT RECEPTION

may be probably due to Battery neglect. Test your Batteries regularly to obtain utmost efficiency.
"Goltone" RADIO METERS Double Rear initution Montice

10 Volts and 100 Volts Side Reading, Price $\mathbf{8} / 6$ Centre Zero Readin Patent App. As illustrated Price 10/6 Strong lined Cases, $1 / 6$ cach.
Flush Pattern (Patent App.). Dia, of Dial, I $\frac{1}{2}$. Centre Zero Reading App.). Dia. Price $12 / 9$ Centre Zero Reading Panel Mounting PUSH BUTTOXS, $1 / 6$ pair. See Catalogue R/I 5 for details of wide range.

86 Boltorne
 HIGH-TENSION BATTERY ELIMINATORS

REMARKABLY SUCCESSFUL!

Operate your Wireless Receiver from the Lighting Mains instead of using wasteful and expensive High-Tension Battcries.
First cost saved in a short time. Give increased volume and purity of tonc. A refinement and convenience beyond praise. Simply plug in to any convenient lampholder. Complete with Adaptor and Flexible Connecting Cords, ready for use.
DIRECT CURRENT MODEL. \mid ALTERNATING CURRENT MODEL.

Approx. Voltage Tappings, $30,50,75$, 90 and 120 . Five separate tappings. Price complete $£ 3$

Approx. Voltage Tappings, $30,60,90$ and 130 Volts. Each voltage tapping is duplicated thus, providing 8 separate tappings. Price complete £5:10, including valve.
Please state voltage and frequency of Lighting Mains when ordering.
Sce Cataloguc No. R/Iz5 for particulars of fulb range logeh her with dectils of "Constriuctional Kits."

HIGH and LOW TENSION ACCUMULATOR CHARGERS for HOME SERVICE

No Technical knowledge or attention required. Clean, Economical and Efficient. Simply plug in to any convenient lampholder. Complete with Adaptor and Flexible Cord. Full instructions supplied.
The "Indispenso" (Direot Charges the High Tension Accunulator at no extra cost, when light is in use. Price complete 6 /-

 The "Alterno" (Alternating Ourret.) Charges the High Tension Accumulator at negligible cost.
Price complete $21 /-$ "Pendelton"
(Patent App.) (Alternating Current.) Clarges the Low Tension ${ }^{2}, 4$ or 6
Volt Accumulator economically and effectively. No renewals. Simple and rele approx. 2 Amps.
Price complete, £2:12:6 As illustrated, fitted with Ammeter, When ordering please state Voltage and Frequency of Lighting
 ductsare stocked Nesuxsmanke PANEI by the Leading

Ask your Dealer for the 'BECOL' LOW. LOSS FORMER-the Former of the Future.
Specially designed for low loss. Has large air space between wings. Easy windings. British made from the famous "BECOL" genuine ebonite. Size $3^{\prime \prime}$ diameter to outside of wings. Prices: $6^{\prime \prime}$ lengths $3 /$. (postage 9d.), $4^{\prime \prime}$ lengths 2/(postage 6d.), $3^{\prime \prime}$ lengths $1 / 6$ (postage 6d.).
THE BRITISH EBONITE CO, Ltd., Hanwell, London, W. 7

THE RETROSONIC RFCFIVHR
 (Continued from page 504.)

the plate and grid circuits of that valve. In addition some of the audio-frequency currents find their way to the loop circuit 9,10 , and are thus amplified at low-frequency across the plate, and grid of the second valve. Finally, audio-frequency currents Howing in the coil 9 are transferred aeross the coil 11 to the grid of the third valve through the transformer 15.

Special Lcop Circuit.

The inventors lay special stress upon the dimensions of the radio-frequency transformer comprising the loop circuit 9,10, and the coil II. They state explicitly that for receiving broadcast signals between 100 and 603 metres the primary coil 9 must heve 64 turns of 24 S.W.G. wire and the secondary coil 11, 89 turns of 28 S.W.G. wire, giving an inductance value of 389 microhenrys.

They add that although the bigh-tension. battery is not directly connected to the plate of the sccond valve, it is found in practice that a difference of potential will be set up between the plate and grid of that valve, corresponding approximately to the terminal voltage of the high -tension battery. Thus potential difference can actually be detected (so long as the set is energised and signals are being received) by means of a
volt meter connected across plate and grid of the second valre.
To summarise the operation of the receiver in the inventor's own words, "the incoming signals are applied at radio frequency directly on to the grid of the first valve, and simultaneously (in part) on to the grid of the second valve through therbranch lead to the loop circuit 9,10 .

The Rectification Process.

"From here they are transforred to the grid of the third valve and so back to the coil 12.
"Partial rectification takes place in the

A Retrosonic Receiver as constructed by the firm bearing that name and incorporating a hornless loud speaker and all batteries.
first valve owing to the action of the grid battery 8, and à similar operation takes plece at the second valve owing to the presence of the grid cell 8.
"Finally, any high-frequency energy reaching the grid of the third valve will be rcctified by the action of the blocking condenser 17 ."

Results Obtainable.

On a recent test the "Retrosonic" receiver has proved itself capable of extremely gratifying results. It is apparently best used with an outdoor aerial and on the occasion referred to was able to pick up practically any of the provincial stations at will, while 2 L 0 was on and only a few miles away from that station. All stations with the exception of one or two were picked up at good signal strength on the loud speaker. A remarkable feature being the fact that Cardiff was picked up clearly and at good volume on the loud speaker, while London was. busily turning out orchestral music. The test proved that when working correctly the "Retrosonic" is undoubtedly capable of surprising thungs with commendable qualities for range work and a surprising degree of selectivity. On the whole the set is an extremely interesting one, and worthy of the attention of the amateur.

cLIMAX for"P.W."

 HIGH TENSION SUPPLY UNITS

The "technical designers of "Popular Wireless" A.C. and D.C. UNITS used, specified and recommended CLIMAX Components.
You can be certain of success when you construct your H.T. Supply Unit by following the lead of "P.W." experts in their issues of September 11 and October 10.

CLIMAX AUTO-BAT TRANSFORMER

Showrosms,
257, High Holborn. Telcphondon, W.C.I. Telcphone

Holborn 2538.

CLIMAX SPECIAL CHOKE Ref. No. CN ${ }_{25} 6$ Price $10 / 6$ CLIMAX POTENTIAL DIVIDER yo,000 ohms for D.C. Price $5 /=1$ A.C.
20,000 cLIMAX
CLIMAX RADIO ELECTRIC, LTD., Quill Works, Putney, London, S.W. 15. Telephone: Putney 2599.
All Communications to above address.
three types now available :-
For 2 Voll Accumulators

TYPE G220.
2 Volts, 2 amps. Amplification Factor 11/-
(or 4 Voll Accumulators) TYPE Q306.
3 Volts, 06 amps.
Impedance 25,000 ohms.
Amplification Factor 7 .
11/-

For 4 Voll Accumbilators

TYPE G410.

3.8 Volts, 0.10 amps

Impedance $20,000 \mathrm{ohms}$ Amplification Factor 7 11/-

If unable to obtain from your dealer, apply direct to actual manufacturers NBLSON BLECTRIC CO. LND.
138, Kingston Ril., Londion, S.MM.19

Again to the fore with the foremost "four"

We are already showing in our windows the wonderful "EVERYMAN'S FOUR," the most efficient Receiver for long and short range reception yet produced.
Complete Components for the "Everyman's Four." TWO-RANGE.

SUPPLIED FOR 212:17:9
SPECIAL DROP FRONT CABINET $\{3: 3: 3$
THE AMPLIFEX LOOP is the only aerial loop adapted for the reception of ALL European Broadcasting of the Solenoid type and collapsible on the same principle as a tripod hy simply turning one thumb screw THE AMPLIFEX is designed upon the latest engineering principles in loop construction. Wound with FLEXIbLE SILK COVERED STRANDED COPPER WIRE which has a very low resistance. EXTENDED $39^{\prime \prime}$ wide, $43^{\prime \prime}$ high. WEIGHS ONLY 7 libs, EASILY PORTABLE, BEAUTIFULLY FINISHED in Mahogany.
PRICE ONLY £3-0-0

OUR INTERNATIONAL RADIO CATALOGUE (3rd Edition) will be sent to all enthusiasis scnding od. to cover cost of postage and packlng.

WILL DAY, LTD.
 (DEPT. J.)

19, Lisle St., Leicester Sq., London, W.C. 2
Telephons kesent 4577
Zalegram: : Titles. Westrand. I.ondon.

The "BULLPHONE" Nightingale

CLEAR TONE

 GREAT VOLUMESpecification. - Height 2 in., Bell Mouth 14 in. Nicliel Arm and Stand. Black Crystal bell head, as photo. Also de luxe model, mahogany finish bell, same size, 65\% cash or $10 /$ deposit. List free.

Will not overloadfrom 2 to 10 valves.

ACCLAIMED THE WONDER SPEAKER OF THE WORLD

The pure rich tone of the Bullphone is true to its name-the "Nightingale."

2F $\begin{gathered}\text { deposit and } 12 \\ \text { monthly pay- } \\ \text { ments of } 5 /- \text { or } \\ 60 /- \text { casb. }\end{gathered}$

Individually tested and guaranteed to be superior to any other Loud Speaker, regardless of price, for finish, purity and strength of tone and value. Cash Price $60 /=$, post free United Kingdom.

Apply through your local dealer or send direct to us. 'Deposit returned if not highly satisfactory.

Traders and manufacturers are invited to submit wireless sets and components to the "P.W." Technical Dept, for test. All tests are carried out with strict impartiality in the "P.W." Test room under the supervision of the Technical Editor, and the general reader is asked to note that this weekly article is also intended to provide a reliable and unbiassed guide as to what to buy and what to avoid.-EDITOR.

A NEW FIXED RESISTOR.

MESSRS. LIONEL ROBINSON \& CO, 3, Staple Inn, London, W.C.I, recently sent us a hand-made model of their new fixed resistor, which is to be retailed at $1 / 9$. Although remarkably simple in design, this component is quite a novel one and will fill a longfelt want. It consists of a resistance winding fitted with four terminals and soldering tags. Two of these terminals are tappings, so that the device enables three values of resistance to be obtained. Thus in a 3 -valve set the resistor would allow the use of three valves of different voltages to be used, or it would provide sufficient compensation to cover the switching off of one or two valugs of those operating at similar voltages. It is to be made in various types to suit different types of valves. Were the two tappings placed at certain points the device as a
whole would allow six values of resistance to le obtained. It has numerous possibilities, and is a refinement that will in our opinion easily find a secure place on the market. It is neat and compact in design and can be mounted on cither a panel or on a baseboard. Messrs. Lionel Robinson were rather apologetic about their hand-made sample; they need not have been, for if the machine-made models are no better then we can still style them "well made and nicely finished !"

TWO T.C.B. COMPONENTS.

These two T.C.B. components conisist of a 300 -ohm potentiometer and a 30 -ohm filament, rheostat, and were sent us for examination and test by the makers, Messrs. Wavio, Ltd., of Hitchin, Herts. They both operate on exactly the same principle and, in fact, are almost identical
in appearance. The movement is a norel one and consists of an application of the Archimedein screw pinciple. The resistance elements are wound on small cylinders and the contacts travel upand down them (distences of about one inch) smoothly and firmly. Every setting is definitely positire. Both components are designed for panel mounting and occupy remarkably smaH spaces both above and below. They are very stoutly made, and their resistanoes are very accurately stated. The potentiometer costs $3 / 6$ and the 30 -ohm rlieost at $2 / 6$; other values are, of course, available. They are excellent little devices and represent decidedly good value for money. but we suggest there would be good sale for further models fitted with dials and pointers, even at increased prices. The modern amateur and even the present-day listenor is a precise sort of operator and likes the definitely informative dial and pointer.

DECKOREM RUBY VALVE REFLECTOR.

Messrs. A. F. Bulgin \& Co., 9-10-11, Cursitor St.. London, E.C.4, seem to make a speciality of novel radio refinements. The latest to land from this source is somewhat reminiscent of a bicyele reflector, although it is much neater and is nicer finished than some of these articles. Actually it is a new type of valve window fitted with a ruby lens which reflects the slightest glow from the valve behind it. In the case of very dull emitters a special bracket attachment can be obtained which completely solves what would otherwise be a nasty problem. This new Deckorem "line" costs 9d. (Continued on page 510.)

A WIRELESS SETand'HART' BATTERIES

 Make Winter Evenings Perfec?

 Make Winter Evenings Perfec?}

TO get the best results and the greatest pleasure from vour wireless set this winter, you simply, must use "HART" Batteries.
Their steady voltage, low resistance and big reserve of power ensure reception at its best.
Used for both Low and High Tension Supply "HART"," Accumulators "increase the power and improve the tone."

$\mathbb{H} \mathbb{A} \mathbb{R} \mathbb{T}$

"ENDURO" Model Low Tension Accumulator, 2 volt io Amperc Hour Price 6/a
"RAy" Model High Tension Accumulator, 20 volt 14/6; 30 volt 22/Write for particulars of the full range of "HART" Models to Dept. P.W.4. We are exhibiting at the Manchester Wireless Exhibition, Oct. 26th to Nov. 6th. STAND 42.

[^2]
THIS NEW BRETWOOD COMPONENT

(STRAIGHT LINE FREQUUENCY CONDENSER)
has ALL the essentials of a REAL Low Loss, Slow Motion, Straight Line Frequency Condenser.

High Class Workmanship and Finisb. All parts guaranteed dead true to within one-thousandth of an inch.
Easy to Mount and Connect.

LOW LOSS. Losses minimised, th: supports being two only amd with very small area surface.
STRAIGHT LINE FREQUENCY. Fixed and moving platez soscially designed to give this
VERNIER. Noiseless aljustment with a taduction of 40 to 1 . Dial siving 360 degrees registering in all 3.600
degrees.

CONSTANT. Constancy is obtained by rigid construction. All wear is automatically taken up throush conica and ball thrust bearings.
EAND and Body Capacities. These are completcly eliminated by insu:ation and the special setting of vanes.
CALIBRATION of Vernier. Calib:atiou over the whole vernier is given by
the automatic indicator of pumbers and degrees.

CRID LEAM de LUXE

The Syphon Container now embodied in our new de Luxe Kodel Griy Leaiz is a vast improvement which makes the readings on a nar with a straich: line frequency condenser. It guarantces constant supply and even distribution of the reststance cicment

Accurate readings from $\$ 0.000$ ohins to to megohms.
 Grid Leak de Luxe.
Grid Leak with Con.
denser Anode Resistance PRICE $3 / 6$
$4 / 8$ $4 / 8$
$3 / 6$

Brilish Throughout and carry the "Bretwood Guaranee." Obtainable frons mosh Dealers or from Sole Manufacturers.
BRETWOOD LTD., 16, London Mews, Maple St., London, W.I

SPECIFY coatheb PRODUCTS A manufacturer report manufacturer reports loud speaker resuhts" were obtained with the Watmel Auto - Choke. " Speech was clear and sharp and inusic free from distortion.
 Get full particulars of Watmel Auto-Choke Grid Leak, and Combined ixed Gric Leak and your dealer, or write dircct your dealer, or to manufacterers.

THE WATMEL WIRELESS CO., LTD., 332a, GOSWELL ROAD, LONDON, E.C.1. Thereenkill ${ }^{\text {Te990 }}$ Representative for Lancs, Yorks, and Cheshire:
Mr. J. B. LEVEE, 23, Hartley Street, Levenshulme, Manchester.

REFLEX Lows COILS

wound under Burndept Licence 168249 UNMOUNTED $25,30,35,-8 \mathrm{~d}$. : to $1500-10$ MOCNTED $25,30,35,-2 / 5$: $101500-119$

FILADYN: COILS

As wound for and used by "Popular Vireless." Choke Coils No. 250 Unmounted Mounted (Short Wave lengths) 5/Choke Coils No. 500
(5 XX)
10;
18'
Spider Coil $10 / 60$ (short wave Mounted 5:length)
5 XX

Obtainable by return post from

reflex radio Co., 102, High St., Stoke Newington, N. 16

"The Shining little beggar performed splendidly

Letters are continually reaching us testifying to the volume and sensitiveness of "Syl. verex" Radio Crystals. The enthusiastic author of our headline writes :
. . Have been a value user for nearly two years, but relurning from holidays a few weeks ago had perforce to use a Crystal Set. I used a piece of 'Sylverex. which had been knocking about in my wireless drawer, 3 et the shining little beggar perfornted splendidly H.P.."

SylvereX
Sooner or later you will come to the "Sylverex" Crystal. Why not buy yours now and obtain with it a free gift of a "Sylverex" Fountain Pen? The "Sylverex" Fountain Pen is a well made British production, self-filling, guaranteed, and fitted with a 14-carat. gold-plated nib-a gift well worth having. Your dealer will give you the Pen with For two "test" size crystals at $1 /$-cach every 2/-size Crystal you huy. The you can have a "Sylverex "Pen also.
standard size "Sylverex" Cry. standard size "Sylverex" Cry-
stal costs 2/- and is the finest
crystal value on the market. crystal value on the market.

* guaranteed product fully equal in performance to those sold at thrice its price. For panel mounting or one-hole fixing. If out of stock locally the component will be sent from address below on receipt of P.O. for $2 / 6$.

All enquiries to SYLVEX,
LTD., 144, Theobald's Road, London, W.C. 1

Obtainable Wholesale from:-Messrs. Brown Bros. Ltd ; East London Rubber Co., Ltd.; Pettigrew \& Merriman, Ltd.; Hobdays Ltd.; Sun Electric Ltd., \&c. \&e ©

APPARATUS TESTED
 (Conlınued from page 508.)

complete with mounting secrews, and at thïs price is quite cheap. Besides its undoubted utility it enhances the appearance of as panel and gives it a distinctly novel effect.

FOUR \cdot NEW EDISWAN VALVES.

The Ediswan people have been responsible for the production of some really nice little valves in the past, and we have always had something more than a " sneaking regard" for that sturdy little power valve, the P.V.6, D.E. But the new group of Ediswan two-volters carries just as much all-round efficiency and general "punch" throughout (and, of course, -it includes valves suitable for all sorts of purposes), but is, moreover, very well to the fore in respect of that most modern requirement, L.T. economy. The Ediswan group in question includes the following four valves, P.V.2, G.P.2, D.R.2, and R.C.2, and samples of these were recently sent us for test purposcs. These four valves are included under a heading in the Ediswan catalogue, which reads "New $\frac{1}{4}$-watt valves." The P.V. 2 takes slightly more than a quarter of a watt, but none of the other three takes anything above one fifth.
G.P.2; Fil. volts, $1.8-2.0$; Fil. amp., $\cdot 1$; anode volts, $60-120$; amplification factor; 10 ; impedance 16,500 ohms: Price 14 s .

Designed for H.F. amplification and initial stages of L.F. amplification, this little valve, despite its extraordinarily low
wattage, can rake up enough electrons to pass over. $4 \mathrm{~m} / \mathrm{a}$ of anode current. at zero grid rolte, using 120 volts H.T. However, this is not the Ediswan valve we would choose-for ang initial: stage of L.F. amplificestion, but it functions very well inded as an H.F. amplifier preceding both tuned anode and transformer couplings. It also operates well as a detector, although it is not intended by its makers for this work. The D.R. 2 is the " $\frac{1}{4}$ watter" designed for use as a detector.
D.R.2; Fil volts, 1•8-2.0; Fil. amps, 1 ; anode volts, $40-80$; amplification factor, 8 ; impedance, 27,000 ohms." Price 14s. .

As previously indicated, this valve is specially suitable for detection, although it can be used as 'an L.F. amplifier. In this latter case up to 100 volts H.T. can be employed, that is, of course, if suitable grid bias is provided. Tested in a "P.W." Continental Two-Valver (H.F.-Det.) with an Ediswan G.P. 2 occunying the first valve holder, it operated wish perfect satisfaction. Reaction control was smooth end steady ond signals had that "body" which is so lacking when a poor rectifier is used. Even DX stuff seemed to lose something of its reediness on this occasion.
P.V.2; Fil. volts, 1.8-2.0; Fil. amp., 15; anode volts, $80-120$; amplification factor, 6 ; impedance 9,000 ohms. Price 18s. 6 d .

Considering that this little power tube consumes but one-third or less the amount taken by the P.V.6, D.E., which is hardly a wasteful valve, the punch it delivers is really excellent. As we mentioned before, we haṽe ālways admired the 6 D.E., but candilly, we con ider its economical brother
an even better proposition. Messrs. Ediswan. are indeed making. strides forward. The importance of the fact that the economy of the "1 =waitter". is not attended by a poorel" performance than the " 1 -watter" deserves due consideration. We tried the P.V. 2 in a three-valver (H.F.-Det. trans former coupled L.F.), and being a power valve it naturally went in the last holder. It had as companions the G.P. 2 and the D.R.2. The mellowness and volume; was a credit to a fine little team. In a second stage of L.F. the P.V. 2 handled a jery respectable volume quite capably. The P.V.2, in our opinion, is a valve that will gain considerable popularity,
R.C. 2; Fil. volts, 1.8-2.0; Fil. amps.; -1; anode volts, $80-120$; amplificatión factor, 30 ; impedance, 150,000 olims. Price 14s.

This "two-volter" is a resistance coupling valve for use in LI:F. amplifiers Messrs. Ediswan say in their catalogue that, " it is important that the anode resistance should be between 1 and 5 megohms." The grid leak recommended is 5 megohms, and the coupling condenser .0003 mfd . Under these conditions, we have been able to obtain enormous amplification with R.C.2's, but there has been a olipping of side-bands and a tendency to H.F. inter-action. We are in communication with the Ediswan people on these points and may have further comments to make at some future date. We have obtained good results with the R.C. 2 in standard hookups, but these have not employed components of values as recommended, and the good results as provided may only be a slradow of those of which the valve is really capable.

IF YOU USE COILS USE BURNDEPT COILS

Burndept Coils

Data preparat in Buennogrt Research Laboratarics

$\begin{aligned} & \text { Cont } \\ & \text { No. } \end{aligned}$			Promery Tuning os Avifage IP.aig Afrul intth oot Condenser				Condfnser in Parrlel WITH COHL					$\begin{aligned} & \text { Cont } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Car. } \\ \text { No. } \end{array}$	Pars B
			Condenser in Sirtes		Condenser in l'arallel		Scrondapy Circuis			Tuned Anode Circurss				
			min.	max.	\%n.	mas.	min.	$\left.\right\|_{\text {max }}$	mex. cot	min.	$\int_{\min ,}^{\operatorname{mon} 5}$			
3	2	4	-	-	-	-	19	60	85	17	42	3	931	
	6	4	-	-	-	-	35	100	140	30	70	5	932	
10	9	5					45	125	175	35	90	90	933	
is	14	5	110	190	-	-	55	160	220	45	110	15	934	40
20	22	5	130	220	235	325	70	200 250	285 360	55	180	20	935	4.0
25	36	8	150	250	300	415	115	250	360	70	180	25	936	30
	${ }_{82} 8$	8	185 885	280 320	350 390	S25	174 175 20	315	${ }_{5}^{450}$	90 119	220 270	35	937 938	3 3
50	120	8	205	375	430	710	210	350 465	590 655	119 139	270 325	30	939	30
60	380	9	2.40	430	540.	-900	260	. 570	800	160	400	60	940	3
75	275	10	285	\$90	650	1150	310	700	1000	200	500	75	941	
100	580	20	450	750	950	1600	470	1000	14.30	325	720	100	942	4
250	1150	18	650	1050	1300	2300	650	1450	2030	455	1000	150	943	
200	2300	17	900	1450	2900	3300	950	2000	2865	650	1400	200	944	${ }^{5} 0$
300	5000 11000	16 16	1300				1350 2000	3000	4230 6280	. 950	2100 3100	300	946 947	6
400	11000 25000	16 22	1900 2700	3000 4500	3850 5 7	6700 62000	2000 3000	4,00 6600	6280 $9+50$	1400 2200	3100 4700	400 600	947	6 7 7
1000	57500	24	4200	6800	3) ${ }^{\text {a }}$	15200	4500	10000	14300	3500	7000	1000	951	
1500	135000	30			13500	26000	7000	15300	21300	9500	119co	1500	953	

BURNDEPT were the first to introduce Coils, and our tremendous lead has been fully maintained. Experience tells. For over five years Burndept Coils have been recognised as the most. efficient type of multi-layer coil made. They are of robust construction, completely enclosed in hermetically scaled coñtainer, and the appearance is now all that can be desired. Send for the Burndept Literature.

Head Office \& Factory: Blackheath, London, S.E. 3

'Phoue : Lee Green a roo. Telegrans: Burnacoil Phone London.

London Offices \& Showrooms: 15, Bedford st., Sirand, W.C.2
'Phone: Gerrard 9072. Tclegrams: Burndepl Westrand Londn.

AGENTS \& BRANCHES EVERYWHERE

SIEMENS "FLUID" LeGLanché cells

for H.T. purposes

A novel Feature

The new form of excitant which we supply with these cells renders them as clean and convenient to use as the so-called "dry" cell. "Creeping" of the salts is cntirely climinated and NOISELESS RECEPTION ENSURED.
H.T.i Size

It is more economical to purchase the larger size, having regard to the ratio of output in comparison with the price.

Sizo.	Nominal E.M.F.	Dimensions overall $\begin{gathered}\text { approximate }\end{gathered}$	Maximum Economioa! Discharge Rate.	Weight Without approrimat \qquad	Ratio of output	$\begin{gathered} \text { Price } \\ \text { per cell } \\ \text { complete. } \end{gathered}$
	Volts.	Inches.	Ailli-_fimps.	ozs.		d.
H.T. 1	1.55	1) dia. $\times 13$ [high	5	3	1	10
H.T. ${ }^{\text {H. }}$ H. H.	1.55	$1 / 1$ 11	10	6	2 5	$\begin{array}{ll}1 & 3 \\ 1\end{array}$
H.T. 3	1.55	$1 / 2 \times 5 \frac{1}{2}$			5	

Complete batteries in wond boxes can be supplied for 50 volts (36) cells; 60 volts (44 cells) ; and 100 volts (72 cells).
Our new catalogiue of "Siemens" Radio Batteries will assist in the selection of the most suitable size of battery for any radio purpose. It also shows how to obtain the most efficient service from "Siemens" Radio Batleries at the lowest operating cost. A copy will be sent post free en request.
SIEMENS BROTHERS \& CO., LTD., WOOLWICH, LOHDON, S.E. 18

RADIO PROGRESS! THE WONDERFUL
 "Nightingale" Master Crystal Detector
 Trade Mark. Paient applicd for

Ideal for Reflex and following H.F. Will not break down under strongest signals - and just as efficient in all other positions! Read Press reports !

THE 1927 DETECTOR!

Complete for easy panel mounting 2/6. Guaranteed for five years, UTMOST TONAL PURITY-ELECTRICAL AND MECHANICAL STABILITY-VOLUME.

THE FINEST DETECTOR IN THE WORLD.
Advt. of N.M.C. Detectors, 30, Princes Parade, London, N. 3.
"All through the night, zntil the hou" before the daan, that marvellous roiec shinll hold the woodland spellbound."

Just select your programme ELECTONE does the rest.

Choose the ftems which appeal to rou, note the times at Which they commence, and arrange your plugs on
the face of the Electone at the corresponding times the face of the Electone at the corresponding tlmes ing off and on. Electone does it all-automiatically. Without Electone your set is incomplete. Incidentally it sares nearly 50 per cent. on accumulator nnd H.T. battery current, deas realy doubling the infe of the ralves. Ask your dealer: 10
of dificulty, write direct $10:-$

EREDK, J. GORDON \& CO., LTD. G2, Charlotte street, LONDON. W.1.

Price

 $27 / 6$Electone is a handsome. reliable, timepicce.

Mantefachitrers of Autoveyous Thermionic Reinys, and new vuloes of clltupes. Wrile for par So when your 'VALVES' get old or burned Send them to us-and we, to you, Will send them back 'MADE GOOD AS NEW.'"

Restored to function with original characteristics. EFFIGIENGY MAINTAINED. RESULTS CUARANTEED! B.E. 4/-; D.E. 2v. ${ }^{3}$ 7/6; D.E.' 06 8/-. Price 7. ist for Pouer Valces on application. We return the ace nal Valve yo
THE NORTH LONDON VALVE CO., LTD. 221, Cazenove Road

Stoke Newington, N. 16.
Liberal Discourts to Wireless Agents

All Editorial Communications to be addressed to The Editor, POPULAR WIreless, The Fleetway House, Farringdon Street, London, E.C.4.

NORMAN EDWAF
Editor
OS, M.Inst.R.E., F.R.S.A.,

Technical Editor:
a. V. DOWDING, Grad.r.E.E
K. D. ROQERS. Technical Editors: P. R. BIRD.

Scientific Adviser
Sir OLIVER LODOE, F.R.S.
Staff Consultants :
Dr. J. H. T. ROBERTS, F.Inst.P. J. F OORRIGAN, M.SC., A.I.C.;C.E. FIELD, B.So.; E. J. SIMMONDS, M.I.R.E., F.R.S.A.

Foreign Correspondents :
F. M. DELANO, Pario: Dr. ALFRED GRADENWITZ, Berlin; L. W. COREETT, Now York; P. F. MARTIN, Italy; W. PEETERS, HOLLAND.

The Editor vill be pleased to-consider articles and photographs dealing with all subjects apportaining 10 for manuscrint and plotos. Earbery care rill be tiven lo return MSS no: accepted for publication. stamped and aidressed envelope must be sent vith ccery articlc. All inquiries concerning adrerlising ccery article. All inquiries concerning adrerlising John H. Lile, Lid., 4 Ludgate Circus, London, E.C. 4.

As muck of the information given in the colunins of this paper concerns the most recent decelopmeents in the Radio world, some of the arrangements und specialities described man be the subject of Letiers Patent, and the amateur and the trader would be woll adviscd to oltain permission of the patentees to use the pateuts before doing 80.

Readers' letters dealing with patent quiestions, if sent to the Editor, trill be foricarded to our ouvn patent 10 readers. The envelope should be cloarly marked "Putent Adrice."

TECRNICAL QUERIES

Letters should be addressed to: Technical Query Dept., "Popular Wireless," The Fleetway House, Farringd on Street, London, E.C. 4 .
They should be veritten on one side of the paper only, and MUST be accomponird by a stampat nddrssed entrlope.
Queries should be asked in the form of the uwmbpred ouestions: (1), (2), (3), elo., but nay bo accompaniet by a short letter gixing any necessary additional particulars as briefiy as possibie.

For, etery qucstion asked a fee of G d. should be enclosed. A copy of the numbered questions should be kept, 80 that the replies may be girent under the unmbers. (It is not possille to reproduce the question in the nnstepe.) BLUE PRINTS. A series of 20 Blae Prints can be obtained from the Query Dept. price 63. per Blue

Only a limited number of circuits are covered in this series und full details of the circuit arrangements Qvasaole in Blae-Prizi form are published fortnightly iv the advertisement columns of this journal.
All other back-of-panel diagrams are specially drawn up to suit the requirements of individual eaders at the following rates: Crystal Sets, Ed. : One-Valve Sets, Cd.: One-Valve and Crystal (Reflex), 1s.; Two-Valve and Crystal (Refles), le. ; Two-Valve Sets, 1s. Three-Valve Sets, 1s. : Three-Valve and Crystal (Retlex). 1s. 6d, Four-Vaive Sels, 1g. Bd. MattMETERODYNE DIA ARABS, all which ircespelive HETERODYNE DIAGRAME, Of Valves used. are 2 s . Rd. which. trespective
tions is reluited an additional tee of 18 must be enclosed.

Wiring diagrams of commercis! npparatus, suzh as sets of ady particular manufacture. etc., cannot be supplied. (Such particulars cad only be obtained from the makers.)
Readers mas submit their own diagrams, etc., for correction or for criticism. The fee is 1s, per diagram, and these should be large, aud as clear as possible.
No questions can be answered by 'phone.
Remittances should be in the form of Postal Orders.

Questions
 and Answers

FILADYNE-SET CONDENSER.
Filadyne Two Valier " (London, E.11): -I hare hooked-up the Filadyne 2. "alve Circuit, that was described in "P.W.," No. 218, but as I had an L,F, transformer on hand I used that instead of the Ferranti recommended.
The set does not at present go as it should and I think this may be due to the fact that whereas the Ferranti has a fixed condenser (Continued on page 515.)

BANISH DETECTOR TROUBLES

BY MEANS OF THE

CARBORUNDUM
 STABILISING
 DETECTOR UNIT

Whether you be a Crystal or Valve user, the Carborundum Stabilising Detector Unit will greatly improve your set. It is really permanent-no cat's-whisker -no adjustments!
In conjunction with Valves it ensures Stability, Increased Selectivity, and will, undoubtedly, improve the quality of Reception.
INSTAL THE CARBORUNDUM STABILISING DETECTOR UNIT FOR PURE AND FAITHFUL REPRODUCTION.

BRITISH MADE. ONE-HOLE FIXING.

PRICES, INCLUDING POSTAGE,
No. 32-Carborundum Stabilising Detector Unit, complete with No. 30 Detector, but without Dry Cell

No. 30-Carborundum Detector -
Send for Descriptive Folder W. 3 to-

SEE OUR EXHIBIT-STAND No. 12, MANCHESTER "EVENING CHRONICLE" WIRELESS EXHIBITION.

THE LATEST INVENTION
 The New Magnetic MICROPHONE BAR AMPLIFIER
 An efficient NON-VALVE NOTE AMPLIFIER which yields Threeto Tenfold Amplification from'the 'Phone Terminals of any Crystal or Valve Set.
 NO ACCUMULATORS REQUIRED.
 NO H.T. BATTERIES.
 Six pairs of Wireless Headphones, or any $2,000 \cdot 0 h m s$ Loud Speaker may beoperated from a single 3 -volt Dry Battery.

LOW CURRENT CONSUMPTION.

The Magnetic Microphone Bar Amplifier uses less than t° of an ampere, ore 3 -volt dry cell, at a cost of 3 ! -, lasting upwards of 300 working bours, No Diaphrasms. No Distortion. No Fragile Parts. Nothing to Compact and eavily microphonic noises. Unaffected by vibration. Compact and easily portable. ANYONE CAN ADJUST IT!
Amplified Speech and Music as clear as from a good Valve Set. A boon to persons of impaired bearing.

PRICE 38/- Complete.

No separale Trabsformer required.

We stock components, valves and accessories of every description for sets described in this-and in all other Wireless Publications. We bave a highly organised and efficient Mail Order Department and guarantee not only safe but prompt delivery. Why waste tinue and money when you can seud your order direct to us. Your enquiries will receive our careful and prompt attention.
Economic Electric Lta iof iefzror sal

"POPULAR WIRELESS" Advertisement Rates

| WHOLE PAGE $£ 40$ | QUARTER PAGE \&10 |
| :--- | :--- | :--- |
| HALF PAGE.: $\& 20$ | EIGHTH PAGE |
| 55 | | Narrow Column Advts. (3 cols, to page) per inch 30/ Minimum Space accepted ... half inch 15/NO SERIES DISCOUNTS ALI COPT AND BLOOKS MUST BE IN ADVERTISEMENT COPY SUBJECT

TO EDITORIAL APPROVAL
HAND ISSUE TO ENSURE PBOODS

ALL Communications respectfing

JOHN H. LILE LTD. 4 Ludgate Circus London E.C.4. Phone: City 7261

Invaluable to

EVERY Amateur

and Constructor.

The "POPULAR WIRELESS"

BLUE PRINTS of TESTED CIRCUITS

Every wireless amateur and every wireless constructor will-find these "POPULAR WIRELESS" Blue Prints absolutely reliable. They have been most accurately drawn, and every circuit has been tested under normal broadcasling conditions by the technical staff of "Popular Wireless." It will be seen from the complete list given below that the series covers a very wide field. The veriest tyro will find each print most straightforward to follow and the receivers most easy to construct.
P.W. BLUE PRINT

Number

1. DETECTOR VALVE WITH REACTION
2. UNIDYNE DETECTOR VALVE WITH REACTION.
3. 1-VALVE L.F. AMPLIFIER.
4. CRYSTAL DETECTOR WITH L.F. AMPLIFIER.
5. H.F. (Tuned Anode) AND CRYSTAL, WLTH REACTION.
6. H.F. AND CRYSTAL. (Transformer Coupled, without Reaction).
7. 1-VALVE REFLEX WITH CRYSTAL DETECTOR (Tuned Anode).
8. 1-VALVE REFLEX AND CRYSTAL DETECTOR (Employing H.F. Transformer, without Reaction).
9. H.F. AND DETECTOR (Tuned Anode Coupling, with Reaction on Anode).
10. H.F. AND DETECTOR. (Transformer Coupled, with Reaction).
11. DETECTOR AND L.F. (With Switch to Cut Out Mo Valve).
12. DETECTOR AND L.F. UNIDYNE (With Switch to Cut Out L.F. Valve).
13. 2-VALVE REFLEX (Employing Valve Detector).
14. 2-VALVE L.F. AMPLIFIER (Transformer Coupled with Switch to Cut Out Last Valve).
15. 2-VALVE L.F. AMPLIFIER (Transformer-Resistance Coupled with Switch for Cutting Out Last Valve).
16. H.F. (Tuned Anode), CRYSTAL DETECTOR AND L.F. (with Switch for Last Valve).
17. CRYSTAL.DETECTOR WITH TWO L.F. AMPLIFIERS (with Switching).
18. 1-VALVE REFLEX AND CRYSTAL DETECTOR, with 1-VALVE L.F. AMPLIFIER, Controlled by Switch.
19. H.F. DETECTOR AND L.F. (with Switch to Cut Out the Last Valve).
20. DETECTOR AND 2 L.F. AMPLIFIERS (with Switches for 1, 2, or 3 Valves).

ALL "POPULAR WIRELESS" BLUE PRINTS - 6d. EACH

All orders for thesc Blue Prints should be sent direct to the "Popular Wireless "Queries Department, Fleetway House, Farringdon Street, London, E.C.4, enclosing a stamped addressed envelope and a postal order for 6d. for each Blue Print Ordered.

RADIOTORIAL QUESTIONS \& ANSWERS.

(Continued from page 512.)
across its primary winding, my own L F , transformer has not.

To test this theory I connected across O. \dot{P}. and I.P. a 0002 fixed condenser that I have on hand, and I found this improved matters. Would a larger fired condenser be better, and would it be an advantage to use a fixed condenser across the telephone terminals?
Yes, if there is only a small condenser across the primary it. will often be found advantageous to When the L. F transformer has no condenser across its prinary about $00 \pm$ mfd. will be required there to make the set function smoothly
A rather larger canacity condenser will be required for the telephone terminals-generally a 005 mfd.

Easily Made Coils.
L. E. A. (Stansted, Essex). - I wish to make my own tuning coils for a crystal set that I sin building, to receive $2 \mathrm{I}, 0$ programmes only. What is the easiest coil to make and

what wire shall I use? The coil will be tuned by a variable condenser having a maximum capacity of . 0005 mfd ., and as I shall be using it on a fairly short aerial I should like to know the best number of turns to wind on the coil.

The easiest coll to make and one that is eminently suitable for the purpose, is a "spider web" coil, as shown in the accompanying llustration, This is wound upon a cardboard forneer, which may be purchased at any wireless dealers for a few pence. need aboust 40 turns in order to tune to $2 \mathrm{~L} 0^{\circ} \mathrm{s}$ wave-length.

CONSTANT FILAMENT SUPPLY.

J. W. (Seven Sisters Road, London). "Where can I obtain large porous pots for making up the charging apparatus described in 'P.W?'No. 226?"
These puts can be obtained from the Economic Electric Co., Ltd., Fitzroy Square, London, W., or from Grafton Electric, Ltd., 5t, Grafton Street, W. 1.
Back Numbers of "P.W."
"Back Number" (Loughton, Eissex).I am very interested in scveral of the sets that have been described in back numbers of Popular Wireless (of which I am a new reader). Will you please inform me where I can obtain back numbers, as I find a difficulty in ordering odd copies from a newsagent.

Back Nos. of Popular Wireless can be obtained from the Amalgamaterd Press (1922), Ltd., Back Number Dept., Bear Alley, Farringdon St., E.C.t, price 4d. each, post irec.

WHY SIGNALS ALTER IN NOTE.
"Hetrrodyne" (Conlville, Leicestershire). -Why is it that when tuning in a continuouswave signal the note alters with the adjustments made, but when tuning spark stations the note remains constant, except when it is made hóarse by oscillation?
The note or pitch of a spark station depends npon the frequency of the transmitting spark, and it is. therefore, not altered by any tuning adjustments at the recelving end.
(Conlinued on next page.)

HERE is something out of the ordinary -something that will increase the efficiency of your set-add to its appearance.

The two windings on the one Rheostat do make all the difference-it can be used for both bright and dull emitter valves and has been specially made for this purpose.
One of the windings has a resistance of 6 ohms and also continues on to another strip winding of 30 ohms.
The resistance wire is wound on to a hard fibre strip under great tension and is immune from damage. One hole fixing, terminals conveniently placed. Contact arm has smooth, silky action. All metal parts nickel plated. Complete with ebonite combined knob and dial. From all good dealers or direct.

$$
\begin{aligned}
& \text { The PEERLESS' } \\
& \text { DUAL RHEOSTAT } \\
& \text { price } 3^{\prime} 9^{\text {EAen }}
\end{aligned}
$$

Write us at once for Trade: Terms.

The Bedford Electrical and Radio Co Ltd

22, Campbell Road, Bedford.

It is personal experience that counts; special sets and other people's experience are certainly of interest, but your own experience on the set that you have built, are building, or intend building is the one satisfactory test for a wire-wound resistance.

Uniformity in value, silence in operation, mechanical stren th and purity of tone. Surely you are the best judge of their characteristics.

The Mullard standard of production allows one result and one only. Complete satisfaction, however severe the tést.

WIRE WOUND ANODE RESISTANCE
The MULLARD WIRELESS SERVICE Co., Ltd. Mullard House, Denmark St., London, W.S.2.

RADIOTORIAL

 QUESTIONS \& ANSWERS:(Continued from previous page.)

The note of a C.W. station is not fixed at the transmitter, but depends upon a "beat" elfect. The receiving set is made to oscillate at a irequencys near receining set inconing oscillations, and the diference in the frequency of the two sets of oscillations produces a beat at andible frequency. If the receiver is nujusted so that the local osciliation-frequency is altered the difference between the two will alter also, altered, the difference between the two will alter also,
and therefore the recelved note will alter. It is and therefore the recelved note "in alter. it is readny made to vary from a very low pitch, up to a wave-length of the super-imposed local oscillatlons.

P.W. COH TABLES.

No. 2-Bisket or Spider.Wer colls. (i) Anode Colls witi Partllel tuning CONDENSER

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Turn } \end{gathered}$	$\begin{aligned} & \text { Gange } \\ & \text { nf } \\ & \text { Wire } \\ & \text { S. W.G. } \end{aligned}$	Wavelength, in Metres.				Suitable No. of turns in reaction coil.
		Capacity of the Parallel Condenser. $=.0003$		Capacity of the Parallel Condenser $=.0005$		
20	24	Max.	Min.	Max.	Min.	20-10
30	24	275	95	350	110	$20-40$
40	24	375	130	475	145	$20+40$
50	20	470	170	600	190	20-50
60	26	580	205	735	230	$30-60$
70	26	690	245	880	270	40-80
80	28	805	280	1020	315	40
90	28	915	320	1160	360	40 \% ${ }^{\text {\% }}$
100	28	1035	365	1320	405	40-80
125	30	1320	465	1880	520	40-80
150	30	1060	b85	2110	650	40-80

Wind coils on a former having eleven spokes or slots, with an !nside diameter of 11 inclies.

- The tablos assume the use of a normal P.M.G. acrial, general-purpose valves, and conventional aerial, coneral-purpose valves, and The values would be considerably modifled by the use of special anti-capacity valves and valve-holders, or condensers with specially low minimum capacity.

CAN I WORK A LOUD SPEEAKER ?

J. F. A. (Petersham) -I wish to work a loud.speaker, and at present my signals are too loud to be comfortable with 'phones on. Would a one-valve I.F. amplifier be suffigient to work a small loud speaker of the "junior" or "baby " type ?
It is difficult to know what you mean by "too-loud to be comfortable,"' as some people can enjoy signals which are dearening to other people. The usual rule as to whether a loud speaker will work when an L.F. stage is added is to place the "phones upon is table in the centre of the room. If speech is then audible all over the room a loud speaker will nicely fill it, or if music only be distinguished clearly a small loud speaker will give good results.

Where the signals are not loud enough to be heard in this way results with a loud speaker will be disap. pointing, as the input is not sufficient for satisfactory working.

EXTRA FILAMENT RESISTANCE FOR DULL EMITTER VALVES.
T. B. S. (Croydon). Can you tell me how to work out what extra resistance is required when using a dull emitter instead of a bright emitter on the same accumulator?
First of all, it is necessary to discover the resistance of the dull emitter valve when it is to be used. In it is one of the types which take 00 amps. at 3 volts. then the resistance of its flament will be po (in
accordance with Ohm's law $\mathbf{R}=\frac{-}{\mathbf{C}}$) that is, 50 ohms.
Now if a G-volt accumulator is to be used, obvously the total resistance in circuit must be such that when it is divided into 6 it gires '06, and noimore. .06 divided into 6 will give this value, which fis 100 (Continued on next page.)

> National Wireless Week:
> NOVEMBER 7th-13th,
> "Let your Friends Listen."

Six Shillings' Worth of Music for 3d.

A New Music Weekly OUT TO-DAY MODERN

MELODIES

The Latest Song and Dance Successes Every Week.

FULL MUSIC SIZE

Owing to its splendid value the de. mand for this New Music Weekly is sure to be enormous. To make certain of securing your copy every week GIVE A REGULAR ORDER FOR "MODERN MELODIES" TO YOUR NEWSAGENT, BOOKSTALL OR MUSIC DEALER.

QUESTIONS AND ANSWERS.

(Continued from previous page.)
olims, and this will be required in the circuit. The fllament of the valve will contribute 50 ohms, leaving another 50 to be provided: 10 ohms will be coveved another 50 to be provided 10 ohms wil be covered and thus a fixel resistance of 40 ohns should be employed in the particular example given.

In formula form, V^{8}
Where

$$
\mathbf{R}=\frac{-}{\mathrm{C}}-\frac{\mathrm{C}}{\mathrm{C}} \mathrm{ohg}
$$

$\mathbf{R}=$ total additional resistance required, which wit include that provided by the filament rheostat
$\mathbf{C}=$ normal current consumption of the dull emitter vi valve which it is desired to use
V1 = the voltage specified for the dull emitter valves by the makers:
$72=$ the voltage of the accumulator or battery in mac.

THE "SPIDER."

As a number of points have arisen with regard to readers' apparatus already on hand, etc., thesc aro dealt with under the various headings below:
Valves-Detector Position.
The only vaives sultable for the "Spider" detector (centre) position are the D.E.R. or the B.T.H. B.5. Although the former (D.E.R.) normally require in 2-volt accumulator, it will not work from this when

For the bonstructor

The method of cutting out the last stage of low-irequency amplification (transiormercoupled) by means of an S.P.D.T. switch is show above. The Hate lead of the preceding valve is disconnected between the reaction coll and the L.F. primazy. The side ncarest the valve is take! to the centre of the
Bwitch, whilst the primary zide goes to the switch, whist the primary side goes to the is "Down" this lead is restored.

The top switch contact is joined to a point between "phones and tho plate of tho last valve, so when the svitch is "Up," the transformer is put out of circuit and the preceding valve's plate current flows through the phones instead of through the primary.
used as a Frigudyme Detector (becanse of the resistance of the chokes used in the filament eircuit), so a 4-volt accumbulator must be used. With a 4 -volt accumulator the resistance of the rheostat can be turned nearly "all out" as the resistance of the chokes will safeguard the valves irom excessive flament current.

Note. - If a 0 -volt accumulator is heing used because the H.F. and L.E. amplifying valves are of the 6-volt" type, this accumulator may be used for the centre (detector) valve also. But in this case the detector valve's rheostat should not be turued "al out," but should be adjusted so that the correct filament voltage is applied to the valve.

This can be dene by applying a voltmeter across the two flament legs of the valve, and adiusting the Theostat so that the voltmeter reads 1.8 to 2.0 volt in the case of the D.E.R., and 2.8 to 3 volts in the case of the B.T.H. B.5.)
Amplifter Positions.
The first and the last valves of the "Spider " are acting respectively as ordlnary H.F. and L.F. amplifiers, so that any valres suitable for these positions can be used there, with the normal filament voltage appropriate to the valves, and the normal accumulator

Condensers.

Separate condensers may, if desired, be used to tune the sccondary, and the H.F. stage, insteard of the twin-gang condenser. This, however, means that the simplicity of control is lost so one of the chicl advantages of the "spider" would be forfeited by the use of two variable condensers.
Coils.
The colls for the "Spider" can be ohtained readymade from the Rellex Radio Co., 102, High Street London, N. 16.
General Remarks.
The pictorial diagram of the Spider's Web on page 366 of P. P." No. 228 (October 16 th issue) was not up by "The Splder" but was published to indicate the long-distance possibllities of the receiver,

Columbia

DRY BATTERIES FOR ECONOMY

DEPRECIATION of cell life and power is actually much less on sets operated and maintained by COLUMBIA Batteries. Initial cost on dry batteries is moderate, they give long service and eliminate the expense of frequent and troublesome accumulator renewals. There is a Columbia Battery for every purpose-use them for every radio battery need. Safe, clean and easily handled, long and inexpensive service and amazing efficiency.

The right battery in the right place naturally means a great deal to your reception. Therefore "How to get the most out of your radio batterics " is a little book which will be most useful to you. It is packed full of really practical and interesting information. These booklets are sent free on request.

Send for "How to get the most out of your radio batteries" and "Choosing and using the right radio batteries." It is astonishing what will result in marked economy in operation and improved quality of reception when you have a little definite knowledge as to the correct use of your radio batteries.

Ask your dealer for Columbia High Tension Battery No. 4780 60 volts, a special size with extra large radio cells. Or Columbia High Tension Battery No. 477045 volts (extra heavy duty), for long service and economy. Columbia Radio "A" Dry Cells for Dull Emitter Valves will meet heavy current demands and give much longer service than other batteries. All Columbia Batteries are fitted with spring clip terminals to ensure quick and secure connections.

ASK ANY GOOD DEALER FOR COLUMBIA.

J. R. MORRIS, 15/19, KINGSWAY, LONDON, W.C. 2

Telegrams: Colcarprod, London.
Telephone: Gerrard, 3038.
Scollish Representative :
John T. Cartwright, Cadogan Street, GLASCOWW.

YOU will have no difficulty in finding "THE DAILY CHRONICLE" Wireless Programme!

THIS IS A SPECIMEN.

To be found on Page 2 of
"THE DAILY CHRONICLE"
Every Day.

AUTOMATIC CONTROL With our Alarm Clook Attachmont yoll can stop and start sour set automatically at any sinie sou wish send Fow for free particulars. Attachment $2^{\prime} 9$, post free. Fully guaranteed. $\overline{\text { Dept. A. R. B. ELIS }}$, Artlur

EBONITE PANELS

OR STRIPS, ETC., DESCRIBED IN THIS ISSUE (OR ANY OTHER) CAN BE OBTAINED IMMEDIATELY THROUGH ANY TRADER FROM-
TRELLEBORGS EBONITE WORKS, LTD., AUDREY HOUSE, EIY PLAEE, LONDON, E.G.1'

FOR CLEARER RESULTS USE THE clarebex aerial
Non-directional; snow, rain and wind have no effect; and ideal for limited space. PRICE 17.6. Particulars sent on request. H. SANCTO, (P.W.), Ticehust, Sussex

1

TECHNICAL NOTES.
 (Conlinued from page 474.)

since the aerial is arranged so as to be noninductive. Across one half of the frame aerial, however, is now placed a variable condenser which upsets the equality of the two halves in the frame aerial, but permits the adjustment of the discrepancy. Or, to put the matter in another way, the potential difference between the grid and filament, owing to the inductive effect of the frame aerial, can be controlled by means of the variable condenser which is placed across one half of the aerial. The controlled part of the aerial is tuned to the desired frequency (by means of the condenser), and this way the valve responds to signals of the desired frequency, whilst the potential differences caused by longer waves are practically without any interference effect.

Piezo Electricity.

Some very interesting experiments have recently been made by \mathbf{E}. Giebe upon the effect of small pieces of quartz cut in a special way and subjected to alternating potentials. This kind of effect is generally known as "Piezo elcetricity," and it is no doubt well known to readers that the application of a potential difference on opposite sides of a piece of quartz (cut in the proper way) will cause a minute change in the dimensions of the piece. Conversely, if the quartz be mechanically vibrated, alternating potentials will be produced at its opposite surfaces.

An arrangement of this kind lias lately been used, particularly in America, for standardising the broadcast wave-lengths, as the "quartz oscillator" (as it is now called) gives an extremely constant frequency of oscillation. In passing, it should perhaps be mentioned that although the quartz increases and decreases in length with the applied alternating potentials, and therefore sets up actual mechanical vibrations, its natural frequency of vibration is so extremely high that it is capable of responding with considerable accuracy to vibrations of the frequency gencrally known as "radio-frequency."

Novel Equipment.

It has now been discovered that if a quartz rod be enclosed in a partially evacuated glass bulb, the application of alternating potentials to the quartz, of a frequency coinciding with the natural mechanical frequency of vibration of the quartz, will cause the quartz to exhibit r uniform glow. Partial resonance and higher harmonic oscillations produce a luminosity of the rod, but this is not so pronounced as when the quartz is vibrated at its resonant frequency.

In this way, it is said to be possible to determine, in a darkened room, the nature of the electrical characteristics of a circuit by simply observing the quartz rod, the latter being, of course, appropriately connected into the circuit and the observer - being practised in the observations.

Special configurations are produced in the distribution of the luminosity in the quartz when high harmonics of the natural frequency are applied.

TOO MANX TALKS ?
The Editor, Popular Wireless.
Dear Sir,-That paragraph of your "Broadcast Notes" in to-day's issue of "P.W. " headed "Threat of Longer Talks" should be enough to cause 75 per cent. of the $7 / 22^{\circ}$ g to curl up and dic. This talk question is one that, more than ever, needs contimuous and vigorons combating in a " bad Press."
Pe have a sufficiency of talks already.
Please bear in mind the Chairman of the forthcoming. B.B. Commission (the Earl of Clarendon)
is reported to be a keen educationalist. (Oh, help !) It seems to me that a start has already been ulade to collar the "main part of the programme" - to wit, Mr. Piunket Greene'g lecture recitals, 8.4." to 9,15. As a friend remarked, rather tersely,
Aiter a day's work the average listener does not want thesc "up-lift orations," and lie will not have them-he just switches off. When he gets weary of switching off his set he will switch off his licence iee. The latter method will probably have more effect than all the adverse comments ever written,
Please, please, dear "Broadeast Notes," use your nes and influence to stem this blight of TALK, TALK, TALKI

Tours wocfully,
77, Llanover Road,
Wembley, Middlesex

IN APPRECIATION

The Editor, Popular Wireless.
Dear Sir,-On June 19th you pnblished a threevalve ret, Which you named the "Suburban." have made this set up, and wish to finform you that the reception is the best. I have cver had on a threevalve receiver, considering that 1 am about trelve miles irom " 2 I, O." London, Daventry and Radlo-Paris, come in well on a large loud apeaker; but, so far, I have not been successfinl in getting other stations.
One thing I would like to tell you is that accidentally I joined up my accumulator so that the positive became the negative, and vice versa, and I was agreably-surprised when I received six times the power, 1 have, slace continued, with the same resuits.
I am uslng the new Fdiswan $\frac{1}{1}$ watt 2 volt accumulator combination. G.P. . D.R. . P.2, Thanking you for letting us have such a good

Yours faithfully,
Beechwood," Morton Gardens, G. BICHARDS:
Wallington.
SOME SHORT-WAVE RESULTS,
The Editor, POPCLAR WIRELEEG.
Dear sir,-1 have only recently finished the Simmonds 10 -metre receiver described in "P.W." about a year ago. Not having a D F.Q. valve at the time and being anxious to fry the sct out, I used a D. F. 4 valve as a detector and a D.E. 3 as the L.F. valve. I must. say I never expected the resalts obtained, no difficulties being experienced in receiving telephony down to 28 metres, upon which wavelength Italian $1-A \mathrm{E}$ (Rome) was received from 10.43 to 12.4 p.m., on Oct. 12 th at a strength varying between
R. 4 and R.6. The following stations have been R. 4 and R.6. The following stations have been received and ideutifled on telephony, G-5 T Z, The last of these has been received ons 45 metres The last of these has been received on 45 metres very night for the last two weeks.
Would any short-wave enthusiast, sceing this Croydon) $G-2 V$ mease the addreases of $G-5.1$ Y (Croydon), -2 , and I-A E (Rome), so that ceports of their transmissions can be forwarded to
Trusting that you will find space in "P.W." for this letter.

$$
\text { Yours faithfully }{ }_{A}
$$

$$
\text { A. G. } 3 \text { URGESS. }
$$

P.S.-G.E.C. variable condensers are used, and an extension liandle has been flted to the grid-condenser (-0t02). A sct of Tddystone Short-Wave Colls is used instend of those described.
20, Gunnersbury Park Gardens,

$$
\text { Acton, W. } 3 .
$$

FLEWELLING ON A FRAME,
The Editor, Popular Wireless
Deat Sir, - Sceing the article in Popular Wireless of Oct. Sth about fine resuits in a London fiat on a I would try fit out. I had an old frame aerial on the spare shelf, so that was wound with twelve turns, (Continued on next page)

Coustinghnoworallhesfinite

Materials used in Dry Batteries are SELF-DESTRUCTIVE and must and do continuously eat themselves away.
Gradual destruction is constantly reducing capacity.
Amp. hour is the only vital and absolute essential factor in a battery.
Makers never state and cannot give any amp. hour capacity.
Makers cannot test for amp. hour capacity.
Makers' voltage statements absolutely unreliable.
Average working value is 1 volt only.
Voltage drops haphazardly and uncontrollably.
Crackling noises caused by decaying material and cannot be stopped.

Five Dry Batteries of $\mathbf{1 0 0}$ Volts each cost more than a Tungstone-which will last the lives of many persons.

Reliable Service Remembered

TUNGSTONE 60 Voit 3 a.h. Actual and Guaranteed is more efficient than a 100 Volt Dry Battery. Will outlive Hundreds of Dry Batteries.

NO CRACKLING OR PARASITICAL NOISES ON WIRELESS PHONES OR LOUDSPEAKER. NO FROTHING, FOAMING, hEAT AND OTHER TROUBLES.

Tungstone (Patented) Tapping-Off Cell-Connector. By means of the Wander Plug supplied free, Tappings can be taken off as required at any two-volt cell or any varying series of cellis.

Charging high tension on Low tension charging-plant

All H.T. Tangstone Accumulators are fitted with a Patent Equipment whereby each series of 12 Volts can be coupled in parallel so that these H.T. Batteries of whatever voltage can be charged at local Garages and Charging Stations on a 12-16 Volt Low Tension Charging Plant.
TUNGSTONE HIgh Tension 60 Volt Battery 3 a.h. is sold in the Unlted Kingdom on monthly payments over extended period. Apply for particulars. Further interesting informatlon on points of this advertisement are to be found on pages 58,59 , and 67 to 73 of the lliustrated Booklel
T.A. 59
TUNCSTONE ACCUMULATOR CO., LTD., SI. Bride's House. Salisbury Square. London, E.G.A

[^3]

CORRESPONDENCE.
 (Continued from previous page.)

Extract from Radidea's article in Manchester Evening Chronicle, Sept. 30th, 1926.
\because During the week-end 1 have been resting one
of the new BENJAMIN SP.55 Valves, this of the new BENJAMIN
being a 6 -volt power valve.
It has an anode impedance of 3,500 ohms, an amplification factor of 5 , with short-path construction and dull-emitter filament.
I used the new reflex unit. which is described in the forthcoming new edition of the Wireless Guide, and obrained a volume equal to any two-valve set employing a detector and ons stage of L. F.
This unit was connected to the new Chronicle Crystal Set giving full loud speaker volume from MANCHESTER: in fact, wo loud for an ordinary sitting room.
I started off with HILVERSUM on Sunday, ruming in the morning service at 9.45, followed by e lesson in some other language.
FRANed hour, and immediately the MANCHESTER Station closed at $6 \mathrm{p} . \mathrm{m} 1$ tuned in COPEN HAGEN, giving the time signal and chimes. At the close of the MANCHESTER transmission I tuned in DUBLIN, followed by
BRESLAU, UNION RADIO, MADRID. BRESLAU, UNION RADIO, MADRID. and the lady giving the late news from ROME. heard distinctly and 1 logged 22 amateur transmitters during the day.
DAVENTRY was at good loud speaker strength, and the transmission from PARIS, Eiffel Tower, was good phone strength. As I pointed out...
this type of valve is
the finest in the world for a reflex set,
giving full volume with a beautiful quality.

THE BENJAMIN RANGE.

S.P. 18 RED 14/- Fil. Volts 16 Amps 3 S.P. ${ }^{18}$ GREEN $14 / /$ Fil. Volts 1.6 Amps ${ }^{.3}$ D.E. $5518 / 6 \mathrm{~d}$. Fid Volts 3.5 Amps A. 09 S.P. 55 BLUE $18 / 6 \mathrm{~d}$. Fil. Volts 5.5 Amps .03
S.P. 55 RED $22 / 6 \mathrm{~d}$. Fil. Volts 5.5 Amps .25

SHORTPATH YALVES

THE BENIAMIN ELECTRIC LIMITED Brantwood Works. Tottenham, London, N. 17.
being two fect square. My first station was Aberdeen coming in at good phone strenath, which is about 300 miles away; then the German station, I believe, which sends out a series of Ms and S's during the Sheffeld 7 to 8 milles a way, was a bit too loud to be hecele, 2 the runners, ${ }^{2}$ am building wed in for the frrst of future dates on $\mathrm{T} . \mathrm{S}$. A. Work, hoping other readers will try it out with success.

Yours faithfully
dohy Sutton.
P.S.-Will be pleased to give other readers any answers to my results.
Main Road, Bamford, nr. Sheffeld.

FROM AN AUSIRALIAN READER.

The Editor, Popclar Wirelesa.
Dear Sir-I sce by nuy latest copy of "P.W' July 3rd, 1026. that a listener in Wigan "cloes" 98 hours a clay listening. Recently I met a boot. maker nt Poowong (Vietoria) whose sole companion is the wircless. His loud speaker may be heard going anywhere in the tornship between the hours of $11.30 \mathrm{a} . \mathrm{m}$. to 11 p.m., ditring which time the Mel breguentiv picks up amateur broadcasters as well as interetate. so his total is at least 10 hours a day These are Melbourne broadrast times: $11.30-2,3-5$, $5.45-11$. He has the speaker in the same room as that in which be works and it is going full blast.
A word of appreciation also for your blue prints, installed a two-valve (det. and T. F.) made from one of your circuits about 80 iniles from Melbourne. The following stations were my flrst night's result, giving distance. power and'wavelength
3 L 0 Melbourne 5 kilo . 89 niles. . 371 metres
 $2{ }^{2} \mathbf{Y}$ Do. 5.00 watts. 4 Q G Brisbane 5 kilo 5 C L. Adelaide $\quad 5 \quad, \quad .500$ 5 DN Do. $1 \cdot 5$. . 580 .. 318 ", These stations were licard quite loinly enough" for two independent listeners to confrm the reception by earing the call sign.
My next effort imas a "Unidyne," and on this. using a frame aerial inside a house, I was able to receive all the alrove stations toget her with 2 F C Sydney (10 killo, 00 mives 110 metre, for whe 5 kil 2000 miles 1050 ares came in on fair ? 5 kilo, 2000 miles, 1250 metre) came in on fair phone Australin at distonces from 100 vards to f00 miles Austam at aspetive mansmittIng stations, but liave tried no serlous DX work yet.
Both sets are extremely easy to handle, fiving excellent reception, and I am very plased with thes results obtainct. I look forward with pleasure to receiving miy cony of your maper, though it is two months old and deripe much interest and instriction from its pages. With congratulations and wishes for your future sticcess.

Yours falthfully,
Mitcheli.).
Cole Street, Gardenvale, Vietoria, Australia.

SOME D.K. CRYSTAL RESULTS.

The Editor $;$ Popular Wireless
Dear Sir,-I think that the following may be of some interest to your readers $r e$ my DX crystal set csults.
The circult is quite straightforward. using n quality coil tuned by a 0005 mid. Ormon
Some montls erystal used is Gecozite. out clearly. About a fortnight ago I receiver Iadior Wien so distinctly that I was even able to hear the tieking of the metronome betreen items. This station II understand is situated in Vienna. On Sunday night the 10 th October, after 5 N O had closed down, I was successful in tuning in eleven stations,
some of them at remarkable strength. Again, last night, I had been listening to 5 NO on this crystal set, and after it had shetit down at 120° clock, after dance music, I heard a faint voice, and on returning I lieard the Bournemouth statiou announeing that it was closing down, at really remarkable strength.
I own valve sets, with which I have received quito a few American stations, but I consider that my results with the crystal set are far more interesting. I am a reqular reader of your paper since the arst number, and appreciate it very much.

Yours faithfuliy,
c. L. Foxilit
P.S.-Acrial about 30 ft . average height, 70 ft . in leagth. Farth, 2 zine plates connected by bare acria vire, buried one at cachend of the garden, underncath the aerial.

Redholne, North Arente, Gosforth,
Newenstle-on-Tyne.
In our October 16th. issue, an error occurred in Messis. Svdney Bird and Sons' adwertisenent. Thie statement uras made that-the Gyldon Triple-Gang Variable Condenser at $£ 310$ s. is used in the "Spider" whereas it is of course, the Cyldon Twin-Gang at
$£ 210 \mathrm{~s}$. which is included.

AGENTS WANTED for the Centrotd Wireless Components (Stand 95 Radio Exhibition). Those with
a sound connection please send full particulars and Camden Engineering Co.. Ltd., Bayhan

Place, Camden Town, London, N.W. 1

EBONITE FITSHES
 FOR MOUNTING

ON WOOD.
Orders under 1\%.
end lat postage. Two regaired
 Hole in Bush...6BA, $4 \mathrm{BA}, 2 \mathrm{BA}, 1 / 4{ }^{\prime \prime} 5 / 16^{\prime \prime} 3 / 8^{\prime \prime} 7 / 16$
Price each: 1d. 1d. 1d. 2先, 2d. 2d. 2d,

Waldra BAEE BADIO Co.
aidram Road, Forest Bill, London, S.E. 23

\section*{A Smail Deposit Buys

the Set you want?

the Set you want?

How often have you wished for a multivalve Set, but have been discouraged by the cost? Our Catalogue " P " tells how almost any well-known Receiver can be yours for a small initial payment. Everything is guaranteed. Let us know your requirements and we will advise you. Write to: New Times Sales Co.
77. City Road. E.C.

PEPAIRS sets rmunes

Offictally Approved by Radio Association.

"EKCO" H.T. UNITS ARE
THE BEST OBTAINABLE as we SPECIALISE solely in their manufacture the "EKCO" is not a "Side Line!
AT A REASONABLE PRICE because our chormous output enables us to cut the manufacturing costs to a minimum.
THE MOST POPULAR on the WORLD MARKET as proved by huge sates at home and abroad.

ILLUSTRATED

Modet	Voltage Tappings	D.C. Price A.C.	
IA	One	\%2	
2.	Two	£2 15	£6 10
v^{3}	Three	${ }^{23} 7$	${ }^{2} 7$
$\mathrm{V}_{2} \mathrm{~A}$	I Variable, 1 Fixed	845	
$\checkmark 3$	2. Variable, 1 Fixed	£5 100	¢9
\checkmark_{3}	3 Variable	$88 \quad 26$	
3A	Special " Marconi Straight 8 " Model	88	19100

TRADE
ENQUIRIES
INvited

E. K. COLE, Ltd. wifsiclif-on-SEA.

ASK YOUR DEALER for the new

The New J.B. S.L.F Condenser is made on lines similar to our Low Loss Type (Pat. No. 241,805). In addition, its many excellent new features include Special Bearings Top and Bottom which eliminate springs. Side and end play in the centre spindle is impossible. The Top Bearing is of łarge diameter and friction-lined, which ensures an absolutely smooth movement. The brass vanes are supported at tips to ensure accurate spacing. End plates are highly polished and all fittings are heavily nickelplated.
Particulars of the new J.R. Guig Control Dual Condenser on application.

Fitted with $4^{\prime \prime}$ shaft, sold complete with 4° Dial and is more compact than most S.L.F. Condensers." Retail Prices:
.0005 mfd . .. ${ }^{-6}$..
. 00035 mfd 10/6
.00025 mfd. 10/.
.0005 mfd . Twin Low Loss Conden.
ser 4" Bakelite Dial .. each $21 /$ -
.0005 Triple Gang Control Condenser less dial £2-7-6

THE BEST AMPLIFIER

and the CHEAPEST
both to fix and operate
${ }_{\text {THE }}^{\text {IS }}$ NEW NON-VALVE MAGNETIC MICROPHONE
BAR AMPLIFIER

REALLY GOOD LOUD-SPEAKER RESULTS from CRYSTAL RECEPTION of average streagth. WEAK CRYSTAL or VALVE RECEPTION made STRONG AND CLEAR IN HEADPHONES. ENABLES even very DEAF PERSONS TO HEAR from Crystal Sets.
Not a Microphone Button. Entirely free from distortion and micro phonic noises. No valves, accumulators or H.T. Batteries. No fragile parts. Nothing to get out of order. A child can adiust it. Operates on one or two Dry Cells lastiag over 3 months.

EQUALLY EFFICIENT ON VALVE SETS
Order from your dealer or from Sole Manufacturers and Patentees:
NEW WILSON ELECTRICAL MANUFACTURING CO., LTD., 18, Fitzroy Street, Euston Road, London, W.I.
 the minimum space, being. only it in. deep. Of the finest Balseliţe, it bas nichel silver springs and contacts of pure silver. Soldering contacts can be made to suit any wiring.

PRICES:
No. 9 , as illus- $4 /$
Others from . $2 / 9$

LOTUS JACK
Designed to take up the least space, the depth back of pancl being if in. Made from best Bakelite mouldings with nickel silver springs and pure silver contacts. Onchole fixing. Soldering contacts can be brought into any position.

PRICES
No. 3, as illus- $2 / 6$ trated Others from 2/- to 3/-

LOTUS JACK

PLUGS

Designed for use with Lotus Jacks. Made from best Bakelite mouldings and nickelplated brass, To fix, the wires are placed in slots and gripped in position by a turn of the screw cams.

PRICE $2^{1}=$

J[OTTUIS
 JACKS.SWITCHES-PLUCS

Garnett, Whiteley \& Co., Lid. LOTUS Works, Broajgreen Road, Liverpool. MANCHESTER EXHIBITION, Stand No. 15

[^4]

TWO-volt valves can be run off a four or six-volt accumulator providing sufficient resistance is -broughf in series to reduce the current flow to the required value. A valve rated at four volts 25 amp . will have a resistance of about 16 ohms following Ohm's lew of voltage dividerl by current equals resistance. To ensure that only 25 amp . flows through such a ralve when it is coupled to a 6 -volt accumulator, at least 24 ohns resistance must exist in the filament circuit. The ralve's resistance being 16 ohms it is obvious that an additional 8 ohms are necessary and these, or rather this value, is supplied by the filament rheostat.

Now many amatcurs appear to bolieve that a resistance occasions but little loss and merely cuts down the current to the required value just at that point where it is desired-i.e. in this case, at the flament of the valve. But this is not the case, and how wasteful resistances in a circuit can be is illustrated by the following example.

A 2 -valve receiver employing two valves is operated on a 4 -volt accumulator. The two valves are really cach two volters rated, say, at 2 volts 25 amp ., and in order that their filaments shall not be orer-run, 30 . ohm rheostats are used and are carefully adjusted. Now these two valves will each have ar resistance of 8 ohms, but to keepp the current down to 25 amp . with a 4 -volt accumulator 16 ohms resistance is required, so that each filament rheostat must be adjusted so that it provides 8 additional ohms.

Considerable Wastage.

The significance of this figure is this We have just shown that our 2 volt 25 anp. valves have resistances of 8 ohms each, so that it is clear that instead of using 8 ohmis of resistance in the form of a rheostat we could place another valve of a similar nature in series with each of the existing valves. The 25 amp. of current which would flow through the whole circuit would operate the filaments of these valves quite successfully. Therefore with our 4 -volt accumulator we could run 4 valves with no greater expenditure of energy than would be required for two. This shows very clearly the amount of wastage that can ocour in a resistance.
To carry the example farther it would obviously be better to join the tiwo cells of the 4 -volt accumulator in parallel, and by thus doing halve its voltage and double its capacity.
In conclusion, amatcurs should not judge a valve by its current consumption so much as by its wattage. On the face of it a 6 -volt valve taking 1 amp. might seem more economical than another valve taking . 25 amp . at 2 volts, but whereas the first eats up 6 watts of cnergy the latter consumes only $\cdot 5$, and is, therefore, superior from that point of view. A six-volt 20 actual ampere hour accumulator would run the six-volter for 200 hours, but if its cells were in prallel to give two volts it would run the 2 -volt valve for 240 hours.

This mark is PRODUCTS our Guarantee.

'PHONE REPAIR SERVICE

Hoadphones Re-wound or Re-mngnettsed, 4/6. Loud Speaker Re.wound, 4/6. Translormers Re-wonnd.
$5 /$. Re-magnetising only 2/: All work guaranted. $5 /$ Re-magnetising only $2 /=$ All work guarantecd.
Postage extra. Write for trade terms.-H, R. P. Co.
R

BUILD YOUR OWN LOUD-SPEAKER RECEIVING SET FOR \&1. instruction book, written for novices, with photos, diagrams, templates.' 2/=, post free. PUBLISHER, Liss Printing Works, LISS, HANTS.

Hale Receiver Cabinets

House a good set in a quality cabinet
That means a Unica Cabinet!
For the Hale Receiver, designed by Mr. P. W. Harris, there are two types available-In ool 22/6 In Mahogany 24/6. (Prices include base. board.) Sent under C.O.D. system. Unica Cabinet Co., 73, Camden St., N.W.1.

(1) Don't nay more. You can't buy more. Now design eliminates losses. New springing system gives better results.
JAMES CHRISTIE \& SONS, Itd.
246 West Street. SHEFFIEID.
DONT PAY
$\left|\begin{array}{c}\text { DONT PAY } \\ \text { MORE }\end{array}\right|$ London Agents: A. F. BULGIN \& OO.

ALL THE LATEST "P.W." SETS

Supplied as finished instruments or in parts for home construction.

NOW is your opportunity to acquire a really good set at a very reasonable price. Under the famous PILOT service, you can obtain from us all the parts for any set published in the various wireless papers, and you may rely upon receiving free advice and kelp from our Technical and Scrvice Department. On the other land, if you prefer to have your set ready built, we can supply it at , a small extra cost. In cither case, you are assured of first-class resuits.

This week's attractions:

The HALE 1-Valve Reflex Set

(Hescuibed by Mr. PERCY IF. MARRIS in the supplememt fo this issme.)

The finished instrument, approved by Mr. P.W. HARRIS as being equal to the original mode in every respect.
Highest quality components throughout, including Marconi Ideal Transformer, etc:, Aerial Tested Marconi Royalty 12s. 6d. extra.
PII.OT kit of components
7176

Polished Ebonite Panel, $16^{\prime \prime}$ by $8^{\prime \prime}$ by $4^{\prime \prime}$, drilled
$\cdots 3140$
Polished Mahogany Cabinet and Base.
96
76

- When a complete Kit of Components is ordered, a Marconi Royalty of $12 / 6$ IL Every finished set we sell is tested under the supervision of Capt. Tingey, A.M.I.R.E. [Late of Radio Press Laloratories]
Wonderful success of the
"P.W." SPIDER SET.
- phenomenal demand has arisen for this popular. Set. Are you building it the safe PILOT サay?
Finished Instrument f s. d. (Aerial tested and guaranteed, less coils and valves).. 1200 Complete PILOT Kit
of parts 6 Red Trians
Red riangle Panel is
(matted and drilied)

matted and drilled)
Cabinet and Dase.
board... .. I 206

PETO-SCOTT CO., LTD.

Head Office \& Works : 77, City Rd., LONDON, E.C. 1
Branches: 62, High Holborn, London, W.C.1. WALTHAMSTOW-230, Wood Street. PLYMOUTH-Bank of England Place. LIVERPOOL-4, Manchester Street.

A HOME-MADE WIRE GAUGE

NE of the most useful instruments which the practical wireless constructor can possess is a wire gauge. And yet, despite this fact, how often is it that such an implement is to be fouind among the equip. ment of the home workshop or lababotory ?
The wire gaige described herein is an instrument which can be made by any amateur possessing facilities for simple brass cutting ard working.
The illustration in which theewire gauge is depicted is, for the most part, selfexplanatory. It will be scen that the gauge is made in two pieces-viz. a metal sheet on which is marked a scale, and the metal pointer arm.

The Pointer Arm.
The metal sheet should consist of brass of $\frac{3}{3}$ in. thickness. The pointer arm may, if necessary, be a little thinner than this, but, nevertheless, it is best to have the whole instriment solidly made in order to prevent the possibility of it getting bent, and, consequently, of its accuracy being lost.

The pointer arm is riveted on to the brass slifet in the usual scissors manner, and the arm should be at least four inches long from the rivet to the tip of the point.
Very great care must be taken to ensure that the brass faces (drawn black in the diagram) are perfoctly parallel. This can be brought about by the gentle usage of fine emery or sandpaper.

Ersy to Calibrate.

The scale may be either scratched on the brass sheet, or else it may be drawn oń a small strip of papes which is gummed down to the brass.

In order to calibrate the gauge, all that it is necéssary to do is to take a feiv pieces of wire of known standard thickness, and to insert these in tuim between the measuring faces of the instrument. Holding cach piece of wire in this position, a mark or seratch is made to indicate the position of the pointer on the scale.'. In this manner a complete scale may be built up.

SPLENDID VALUE! Bargain Clearance of Famous A.F. Marconi R.B. 10 Crystal Detector and 1-Valve L.F. Amplifier Receivers with two new Osram Valves. Straight from factory of leading wireless makers. Closed cabinet contains engraved, ebonite panel thickel fittings, 2 spade variable verniers, T.C.C. and M.S.I, fixed Cond'r., 2 H.F. Chokes, Detector Vaiveholder, Terminal plug sockets. Long and short wave switch, wiring diagran, etc. All new and nearly completely wired. New valve fitted and one spare. Great Bargain, 12s.6d.

Post 1s. 3d.
Guaranteed exactly as above. Valves alone worth the money
We stock thousands of Radio and Electrical Bargains, all shown in our new enlarged list, price 4d., for which the printers charge us 9td.
ELECTRADIX RADIOS,218, UPPERTHAMES STREET, LONDON, E.C.4. 'Phoue: City oIgI

TRANSFORMERS REWOUND Transformers. Phones. Loudspeakers, Rewound and Repaired to Maximum Efficiency.
All One Price $/ /$-each, Don't discard if burnt out.
All work guaranteed for 12 months. Write for tradeterms. TRANSFORM CO., H5, LINKS RD., TOOTINC LONDON, S.W.I7

1. Valve Aupliffer, 201 -, as new; Valves, D.E. O6. 7 ค; Headphones, 816 nair; new 4 -Volt sccumulator, $13 / \%$ new $60-$ Yolt H.T., guarantecd $7 / \cdot ;$ 2.Vaive All-Station set, f4. A pproval willingly. Write for free bargain list. P.Taylor, 57.Stuldey Rd.,Stockwell, London.

FREE WIRELESS OFFER
As an advertisement we are Giving Away, absolutely Free, Crystal Sets, Loud Speakers and Components, etc. No Mig. Co., 43, Lonsdale Road, Kilbura, London, N.W.B.

ALL MAKES OF HEADPHONES \& LOUD SPEAKERS repaired at shortest notice. Headphones re-wound, te maguetised and overhauled, $5 / \%$ re-magnetised and over-
hauled, $3 /-$. Loud Speakers from $3 /-$. Postage paid. hauled, 3/\% Loud Speakers from 3'-. Postage paif.
SAVE YOUR VALVES

SAFETY FUSE
COSTS PENCE
A. H. HONT, LTD.

WANDER PLUG
SAVES POUNDS
Dept.12). Oroydon, Surrey

HONEST VALUE

Note how short the ordinary dull filament is compared with that of the Mullard P.M. Filament for the same operation, illustrated proportionally above. This ordinary filament consumes $2 \frac{1}{2}$ times more current than the Mullard P.M. Filament and gives inferior results.

The miserly length of the ordinary bright filament coupled with its huge current consumption, seven times greater than that of the Mullard P.M. Filament, throws out in marked contrast the superior value offered by Niullard P.M. Valves.

Compare the length of any ordinary valve filament with that of the Mullard P.M. Filament for the same operation, and you will see the greatly increased value you receive for your money when you buy Mullard P.M. Valves.

Add to this advantage the greater thickness of the Mullard P.M. Filament and the huge emission surface that is available will be apparent.
This abundant emission surface is the essence of the improved results and wider control range to be secured with Mullard P.M. Valves. Still further value for your money is assured by the enormous saving in upkeep costs that results from the low current consumption (only one-tenth ampere) of Mullard P.M. Valves, apart from the fact that valve renewals due to accidents are practically eliminated owing to the extreme toughness of the Mullard P.M. Filament.
In every way you stand to benefit by using Mullard P.M. Valves.
Ask your radio dealer for Mullard P.M. Valves with the wonderful Mullard P.M. Filament.

[^5]Fof 4-volt accumulator
or 3 dry colld THE P.M. 3 (General Purpose) 01 amp . $1 \leq /-$ THE P.M. 4 (Power) 0.1 amp. $18 / 6$

For 6. wolt accumulator orlls
THE P.M. 5 (General
Purpose) 01.1 mp . $18 / 6$ THE P.M. 6. (Powes) $018 / 6$
For 2.volt accumulator
THE P M. 1 H.F.
THE P.M, 1 L 1 ainp. $14 / \%$ THE P.M. $2^{0} 1$ (Power) $14 /-$ THE P.M. 2 (Power) 018 amp. Tkese trices do not apply i/3 Irish Free State.
British Made in a
British Factory

SUPPLEMENT

Presented FREE with " Popular Wireless," week ending October 30th, 1926.

THE H.F. AND DET. RECEIVER. difficult to operate. Thus, the whole design of the the cabinet resting on its. back and the panel in position in the cabinet and tight up against the
baseboard, and the fillets on the side of the cabinet. After this the components on the baseboard can be mounted and the set is ready for wiring up.
 out very long-distance reception successfully it is
not a set that could be said to be specially designed for the "DX fiend." In other words, the set is built more on the household-anybody's--set principle; to give results under all conditions and under
anybody's control, and not as a stunt, ultra-selective, ultra-sensise set, when can
the H.F. and Det. receiver is not a difficult task if the
diagrams given are carefully diagrams given are carefully
followed, and the components followed, and the components
mentioned in the list of parts mentioned in employed. Though other types could probably be used with success, it will simplify
the building of the set if the constructor will keep to those constructor will keep to those
makes specified. In this case, the drilling diagram will be of This is not a difficult task, especially if the con-
full use and the layout shown in the diagrams and
photographs will not have to be altered, as might be the case if different components were utilised. soldering. If he is not so used, we advise him to try it, because a well soldered set is, in our opinion, far trimming the panel to fit the cabmet will be obviated, more satisfactory, both in appearance and operation, and this is a task, tedious in the extreme, whirb can well be avoided it possibie. Shourd the panel have
to be trimmed it should be done with a coarse file-if badly out of truth-
and not a fine one

 changes. One of these is the H.F. and detector

 two years ago.
The example described in this article employs
transformer coupling between the H.F. and Det.

valves, a refinement which makes for easy handling and stability in the receiver. Ease of operation

 diagrams, that transformer coupling and its ease of control and stability is coupled with reaction on the aerial, which gives the required selectivity and increases the sensitivity of the set.

Thus, only three main controls are needed, the two tuning condensers and the reaction variation, though when extremely weak signals are being copied" the filament rheostats can be used as final aids to maximum sensitivity. Separate H.T. would be an unnecessary refinement, and so the set has been designed with the same H.T. on the two valves. As the actual valves will be more or less similar in characteristics, this is a point which makes for easier construction and less complicated

It is, of course, obvious that in a receiver of this description, where H.F. impulses are being dealt with, all unnecessary wiring must be omitted and the layout of the receiver must be duly considered, so that the more important leads shall be short and straight.

SHORT LEADS IMPORTANT.

 valves are short-in the case of the coupling between the two valves the leads are extremely short-a!! these characteristics making for ease of control and sensitivity-the two main factors in the operation of a set of this description.

Another point that makes for ease of operation and stability of the receiver is the fact that parallel aerial tuning is employed. This enables the set to
 employed, the set might become unstable and

A TWO.VALVE AMPLIFIER.

This two-valve L.F. amplifier has been designed primarily to act as a note magnifier to the H.F and Det. receiver previously described, though there is no reason why it should not be used with
other sets if it is so desired. The only point about using it with other sets is that the L.T. - to H.T.connected in the amplifier would have to be broken
if the set to which the amplifier was to be attached had H.T. - joined to L.T.+.
The panel lay-out of the amplifier follows closely
the lay-out of the H.F. and Det. receiver so that
 pleasing four-valve receiver, the switches on the aq plloms
 of the 72 -volt batteries should
 5
3_{0}
0
0
0
0
0
0
0
0 in the photographs being of
Lissen manufacture. operation. In operation the controls are easy to handle. The valves
 that the set is just not oscillating, the variable condensers should rotated If the

The best thing to do is either to study the valve guide
recently published in "P.W." (Nos. 203 to 206), or else to go by the makers' instructions, using the valves recommended ticular set. Any of the valve manufacturers will be pleased to give advice on the subject
of suitable valves.

$$
\begin{aligned}
& \text { woy yo } \\
& \text { ase jelon } \\
& \text { LHUUV }
\end{aligned}
$$

The main essentials are a clean iron, well heated,
 not use the solder sometimes recommended as "soft " or " suitable for wireless work." This often contains an exceptionally high percentage of bismuth, making it easy to melt but also causing it to crystallise after a time, thus making an unsatisfactory joint. Tin all the terminals and tags to be soldered before applying the wire to them, and in this way with careful use of flux and a hot iron a really satisfactory joint will be made. The wire that is most conveniently used for this work stations on the headphones, and those more near on the loud speaker at good volume.
An interesting feature about the amplifier is the
fact that a variable L.F. transformer is employed.
 this series is a good example of a suitable ampli-
fier, and makes the set into a really powerful fier, and makes the set into a really powerful
four-valver, which will bring in many stations at loud-speaker strength, besides picking up long-
distance transmissions at good volume on the distance transmissions at good volume on the

The use of plug-in coils and a plug-in H.F transformer enables the set to be used on any wave length above 200 metres, so that the lower band POINT-TO-POINT CONNECTIONS. Aerial terminal to moving plates of -0005 variable condenser, socket of fixed coil holder, and grid socket of first valve holder. Earth terminal to fixed plates of 0005 variable condenser, plug of fixed coil holder, L.T. positive, and one side of eaeh rheostat. Other side of each rheostat to one fllament socket of corresponding valve hoider. Remaining filament soekets joined together and to L.T. negative, which also goes to H.T. negative. Plate socket of first valve hotder to one flament (primary) soeket of H.F. transformer holder, and to moving plates of $\cdot 0003$ variable condenser, fixed plates of which go to the other primary soeket and H.T. positive. Grid (secondary) socket of H.F. transformer holder to one side of grid leak and condenser unit ; other secondary socket to L.T. positive lead, other sides of grid condenser and leak to grid socket of second valve holder. Plate socket of seeond valve holder to socket of moving coil holder, plug of which goes to botiom 'phone terminal. Top 'phone terminal to H.T. the 'phone terninals. positive. A 002 fixed condenser is conneeted across

broadcasting wave-lengths can be covered, as well as that of Daventry, Radiola, etc. For the lower band a transformer covering 150-500 metres should โе! coil holder, and 50 and 75 for reaction. Daventry will require a transformer covering 1600 metres,

 most general-purpose valves will operate well in the set. If the utmost is to be obtained, perhaps high
 could be tried, but in a set of this description we doubt if the results of special valves really justify
 types. The valves tested and found most satisfactory were (among others) : on the H.F. side, D.E. 3 B.,
 B. 4 among the 6 -volters.
Of detector valves there are a large number, for all the above were found to operate successfully in the detector position, so that the set could use two of the preceding types, if the constructor desired. Other well-known valves of the general-purpose

The next thing to do is to slide the panel and

If the bias battery or L．F．transformer come up against the lower ends of the side pieces in the case，these latter can be shortened to clear the components＇without in any way weakening the instrument or spoiling its appearance．

CONNECTING UP COMPONENTS．

 suotitisod әл！ of the various connections．Occasionally these may not agree with the photographs as to exact positions， but wherever possible（without sacrificing clearness）
 a great point，and the learls need not be nade to
follow exactly－bend for bend－every wire denoted
 of the photographs，enable the constructor to build

a duplicate instrument of that photographed and described in these pages．
 16 gauge square section tinned copper wire，and
in arranging these to leave as much room as
possible between them so that the wiring．can be carried out without having to crowd the leads too much．

> The panel lay－out of the amplifer is one of neatness and especially if the panel is badly cut and needs a great deal of squaring up．If it has to be done，a rough file or rasp should be employed，
and the final smoothing of the edges should be carried out by means of fairly coarse emery cloth or fairly coarse emery cloth or

The panel should be drilled su！pup әч7 о7 su！pıos⿱亠䒑⿱日十 diagram given on page 4 ， after which the panel can
be mounted on the baseboard， and the terminals，switch and rheostats fixed in position on the panel．After this the remaining components should be placed in positions on the of su！puodsanios preoqaseq
 original model and clearly
 gram and in the photo－
graphs．Care must be taken graphs．Care must be taken
in arranging these to lea

 until the best results are obtained for the particular valves in use in the first stage of the amplifier，and connected．The switching enables either one or two
 ance coupling gives purity of reproduction，although extremely loud signals may be received．

THE BATTERY CONNECTIONS．

A back－of－panel view of the amplifier with valves and
are provided－one on the panel on the left，and the others on a terminal strip on the back of the set．

 and they are internally connected to the terminals at the back of the set．Thus the leads from the batteries need not show at all，and the six terminals on the panel make connection by means of wire or brass strips with the corresponding six on the
 the photograph，showing the two sets connected
In order to match the other receiver the American

Presented FREE with " Popular Wireless," week ending October 30th, 1926.
plate current in accordance with the variations of effect of increasing signal strength by quite an distance between the grid, plate, and filament of appreciable extent, besides improving the to ne and quality of reproduction.

In any case the quality will depend upon the correct use of the H.T. and grid bias batteries,
 these may be of flex if variations of ratio are to be
 by the connections shown in the diagram, and so stiff wires were used.

Other constructors might differ in opinion, and агәм spraן xәy !! UeId poos e aq pinom 7 ! os substituted for the three stiff ones going to
the primary and secondary terminals of the L.F. transformer.

POWER VALVES.

'rəy! and although the first valve should have a higher impedance than the last, we found B.4's gave excellent results with about $100-120$ on the anodes.

Other makes have also been very satisfactory. The impedance of the first valve should not be too high, or otherwise the signals, when that valve is
 distorted. 20,000 ohms should be ample to give good results in this amplifier, and we have tried the leartron 25 .B, followed by a B.4, D.E.5, or D.F.A.I with considerable success.

The H.T. voltage available should not be less than 108 max. and a 9 -volt grid bias battery, tapped o that variations of $1 \frac{1}{2}$ volts can be obtained, will be necessary.

When connecting up the amplifier to the H.F. and Det. receiver the six terminals on the right of the receiver are connected to the six on the left of the amplifier so that they correspond (L.T. + to L.T. + , and so on).
that the constructor need not fear that his results will be spoiled or marred by such an experience.

On actual test the 2 -valve receiver coupled to
the amplifier simply refused to the amplifier simply refused to howl, no matter

 Other side of each rheostat to one fllament socket of 8utpuodsancos of dipls uo reulurai entifisod. L'T terminal on panel, also to remalning flament sockets
of valve holders. H.T. positive 1 terminal on strip to H.T. positive Plate socket of 1 st valve holder to bottom centre
contact of switch Left-hand bottom contact to one side of anode resistance and .01 condenser. OOther side of resistance to H.T. positive 2 . Other side of condenser to grid
socket of and valve holder and to one side of grid leak. Other side of grid leak to G. B. negative e. Plate socket of
2nd valve holder to one output terminal and to bottom
 Remalning output terminal to H.T. positive 3.
 of this article that the amplifier-can be used in conjunction with sets other than the H.F. and
Det. receiver previously described. We should like to emphasise the L.T. to H.T. - connection once more to make sure that constructors do not use the amplifier with a valve set having L.T.

+ taken to H.T. - without first seeing that the L.T. - to H.T. - connection in the amplifier is omitted.

For use with a crystal set such precautions are unnecessary, and the input terminals of the amplifier are merely connected up to the 'phone terminals of the crystal set. The other four terminals on the left
of the amplifier are neglected except, perhaps, for the one marked L.T.-. This
should be first tried should be first tried
unconnected to anything, and when \longrightarrow A mplifier the terminal marke H . 1 to the H.F. and Det. receiver, and through direct age is given to that terminal is passed on to the receiver independent of the voltages applied to
 H.T. +3 terminals.

> MICROPHONIC HOWLING.

ग!иочдолэ!u-! valve holders the amplifier evinced no inclination to howl even, when the instrument was subjected to severe mechanical shocks. The only type of howling that is likely to take place would be caused when the loud speaker and the set were used close to-
gether.

On test this was not experienced, but it may be as. well to mention it in case any of our

It is caused by the sounds emitted by the loud speaker impinging on the valves themselves, and thus causing the electrodes in the valves to vibrate slightly.

[^0]: Type " 0 ." the Unit alone ... $8 / 6$
 Type " V." the Unit incorporating spring valve holder (as illustrated) $10 / 8$
 Type the Unit incorporating spring valve holder (as illustrated) 10 ,

 # METRO-VICK SUPPLIES LTD.
 (Proprietors : Metropolitan-Vickers Electrical Co., Ltd.) METRO-VICK HOUSE,

[^1]: How to convert the Figure 1 circuit to that of Figure 2 will be explained next week.

[^2]: HART.ACCUMULATOR CO., LTD., STRATFORD, LONDON, E. 15

[^3]: WIIRELESS.-Capable, trustworthy men with spare time who wish to substantially increase income required where we are not fully represented. Applicants must have practical knowledge of installation of Set and Aerial, be a householder or live with parents and be able to give references; state age and experience. Address: Dept. 32, General Radio Company, Limited, Radio House, Regent Street London, W.1.

 ## STRAIGHT LINE FREOUENGY
 - 0005 VARIABLE GONDENSERS
 6/6 Complete with Knob and Dial. Ebonite ISON'S Radio Stores, 47 , Orford Rd, Walthamstow
 HEADPHONES REPAIRED Re-wound \& re-magnetised 5/- per pair. Loud Speakers repaired $5 /=$. Translormers re-wound $5 /-$ each. All Write work guaranteed and tested befove delivery Write zor Trade Prives. MASON \& PO., 44 , Ehast Road, City Road, 1795.1.

[^4]:

[^5]: Mullard THE MASTER•VALVE

