EUROPES LEADING WICRO MAGAZINE
\square

MicroCentre introduce

High Resolution Graphics

Demographic Display
3.D display with angled labels

Management ihformation

3.D plots

Control system display
-

Up to 16 colours can be displayed simultaneously, from a choice of 4069 . Areas can be filled with colour, windows created, graphs plotted, etc-all under control of simple Basic, Fortran or Assembler functions.

At the heart of any Cromemco graphics system is Cromemco's "SDI" board, the most versatile video interface in the microcomputer industry today. The Cromemco SDI is designed to meet the challenge of professional and industrial environments where uncompromising performance, reliability, and continued compatibility are essential.
With its high point resolution, colour map selection, dual page windowing
function, automatic fill mode, and NTSC or PAL broadcast compatibility, the most demanding requirements for a video interface can be met. The SDI provides a choice of 4096 individual colours and up to 754 by 482 point resolution. Its different modes of operation include bit or nybble mapped displays with varying levels of resolution, and window effects requiring as little as 12 k data storage.

RGB-13 Colour Monitor
The Cromemco RGB-13 Colour Monitor has been specially designed for optimum colour graphics performance when used with Cromemco's SDI video interface. It includes a fine-pitch 13 CRT with a high-precision electron gun, internal magnetic shielding, and implosion protection band. The monitor combines alphanumeric character generation with colour graphics and
high resolution, to give an overall performance vastly more superior than conventional colour TVs or CRT terminals.

Graphics Software
Cromemco's graphics software package provides an interface to Fortran IV, Ratfor, Macro Assembler, 16 K Extended Basic and 32 K Structured Basic. It is written for ease of use and takes full advantage of the RGB-13 monitor's special graphics facilities. Thus it is efficient, flexible and extremely fast. The package contains routines to change the colour map, scale the display area, draw dots, lines and circles, display text, and fill areas with colour. Screen addressing can be by absolute or relative coordinates.

Model Z2H/GS Graphics System The $\mathrm{Z} 2 \mathrm{H} / \mathrm{GS}$ is a special configuration of the $\mathrm{Z}-2 \mathrm{H}$ Hard Disk computer which includes full graphics capability and software. Yet at under $£ 8,000$ it's a fraction of the cost of comparable systems. It is ideal for applications in medical imaging, computer-aided instruction, pattern recognition, and the television industry.

The Z2H/GS includes a Z-80A processor, 64 k of RAM memory, integral 11 megabyte hard disk, RGB-13 colour monitor, 2 floppy disks, printer interface, RS-232 serial interface, and graphics software package.

MicroCentre
Tel: 031-556 7354

Published by-Sportscene Publishers (PCW) Ltd., 14 Rathbone Place, London W1P 1DE, England. Tel: 01-6377991/2/3. Telex: 8954139 A/B 'Bunch' G London

Copyright notice Personal Computer World is published by Sportscene Publishers (PCW) Ltd. © 1980 Felden Productions. No material may be reproduced in whole or part without written consent fron the copyright holders.

Printed by Riverside Press Whitstable

Cover by Chris Maughn
85 MICRO MUSIC MAKING: Don Finlay analyses a new micro music software package.

GATEWAYS TO LOGIC: Derrick Daines continues his series on teaching microcomputing to others.

101 ON THE LEVEL 10 Cure those tape troubles with B Ward's

 ALC circuit.
103
 BACK ISSUES: Buy now while stocks last!

104 COMPETITION: Win a DAI colour computer in our 'help the handicapped' essay comp.

105 COMMONS
Lloyd MP reports from Westminster.

106 COMPUTER GAMES: David

Levy spotlights Othello.

113 COMPUTER

 ANSWERS: Your problems solved bySheridan Williams and his team.

116
 PASCAL BENCHMARKS:

 Chris Sadler replies to readers' letters following our recently-proposed Benchmarks suite.
119 CALCULATOR CORNER: Dick

Pountain reviews the HP 34C.

121
 PATTERNS:
 Alan Sutcliffe continues his series.

124PACK IT IN: Squeeze more data onto your disks or tapes.

125 FEATURE INDEX: Guide to this year's $P C W$.

127 MICRO CHESS:

By our resident expert Kevin O'Connell.
$128^{\text {DIRECT }}$ ACCESS: with TRANSACTION FILE, new-look PACKAGES, USER GROUPS, DIARY DATA and NETWORK NEWS.
$133^{P C W}$ SUB SET: More assembler sub-routines, compiled by Alan Tootill.
$136^{\text {PROGRAMS: }}$ latest listings.

183 CHIP CHAT: Europe's leading microgossip page.

COMPUTECH for apple COMPUTECH for T川ए

> Well proven software for business applications on the
> ITT 2020 and Apple microcomputers.
> Prices excluding V.A.T. for cash with order, F.O.B. London NW3

PAYROLL	(300+ Employees, 100 Departments, hourly, weekly, monthly. Very powerful but easy to use)	£375
SALES LEDGER	(500+ Accounts, 100 Departments).	£295
PURCHASES LEDGER	(500+ Accounts, 100 Departments).	£295
GENERAL (OR NOMINAL) LEDGER	(1000 Accounts, 100 Analyses, multipurpose package). Job costing etc.	£295
UTILITIES DISK 1	(Diskette patch, slot to slot copy, zap etc).	£20
APPLEWRITER	(Word Processing, see below for U/L case).	£42
VISICALC	(Financial Modelling, Costing, Analysis).	£95
CAI	(Converts Apple pictures for ITT display).	£10

AND NOW HARDWARE!

LOWER \& UPPER CASE CHARACTER GENERATOR

Replaces character generator to display upper and lower case characters on screen, includes patches to work with Applewriter, supplies the missing link! Specify Apple or ITT

COMPUTECH DIPLOMAT H/S SERIAL INTERFACE
This card has been designed and built to the same professional standards that have resulted in the success of our software. The DIPLOMAT observes the proper "handshaking" protocol so that you can drive fast printers and send and receive date from other peripherals at high speeds without loss of data. Switch (\& software) selectable baud rates to 19200 and many other options. Plug compatible with 'terminal' or 'modem' wired peripherals. Guaranteed.

MICROLINE M80 PRINTER
£350
This neat, reliable machine prints at 10 characters per inch, 80 characters on an 8 inch line, or 40 expanded characters, or 132 very readable characters, upper and lower case and graphics, 9×7 dot matrix, 6 or 8 lines per inch. Parallel interface is standard, serial optional. Both friction and sprocket feed are standard, tractor optional. We can also supply the parallel interface card for Apple System computers for $£ 80$ and a driver to enable both text and graphics to be used. Optional custom colour matching for Apple or ITT. Optional character sets. Trade supplied at very generous discounts for modest quantities.

THE FABULOUS MICROMUX 8000
from £800
This is a brand new product, an asynchronous serial multiplexor with up to 16 ports, any one of which may communicate with any other independently, like a 'telephone exchange' for data! Built in test function. Firmware may be customised for special applications. Available in multiples of 4 ports up to 16 .

COMPUTECH SYSTEMS

168. Finchley Road, London NW3 6HP. Tel: 01-794 020巳

CW computers Litd
 55 Bedford Court Mansions, Bedford Avenue, London W.C. 1. call only by appointment

1

SUPERBRAIN

Intelligent Video Terminal Systems
350 K or 700 K of Disk Storage Super Brain's CP/M operating system boasts an over whelming-amount of available software in BASIC, FORTRAN, COBOL, and APL. What ever your application ... General Ledger, Accounts Receivable, Payroll, Inventory or Word Processing,
SuperBrain is tops in its class. And the Super Brain QD boasts the same Super Brain QO boasts the same powerful performance but also
features a double-sided drive system to features a double-sided drive system to
render more than 700 K by tes of disk render more than 700 K bytes of disk
storage and a full 64 K of RAM. All storage and
standard

COMPUSTAR
 MULTI-USER TERMINAL SYSTEM

CompuStar user stations can be configured in a countless number of ways. A series of three intelligent-type terminals are offered. Each is a perfect cosmetic and electrical match to the system. The (expandable to 64 K) is just right if your requirement is a data entry or inquiry/response application. And, if your terminal heads are more sophisticated, select either our CompuStar 20 or CompuStar 40 as user stations. Both units offer dual disk storage in CompuStar 40 as user stations. Both units offer dual disk storate
addition to the disk system in the CompuStar. The Model 20 addition to the disk system in the CompuStar. The Model 20 features 32 K of RAM (expandable to 64 K) and 350 K of disk
storage. The Model 40 comes equipped with 64 K of RAM and over storage. The Model 40 comes equipped with 64 K of RAM and over
700 K of disk storage. But, most importantly, no matter what your 700 K of disk storage. But, most importantly, no matter what your
investment in hardware, the possibility of obsolence or incompatiinvestment in hardware, the possibility of obsolence or incompati-
bility is completely eliminated since user stations can be configured bility is completely eliminated since user stations can be configured
in any fashion vou like - whenever you want - at amazingly low in any

DISK STORNGE
Options for the Superbrain and Compustar Video Terminal "Backup" for the 20 megabyte Century Data drive is provided via the dual disk system housed in the CompuStar or the Super Brain. The Control Data CMD Drive features a removable, front-in-sertable top loading cartridge of 16 megabyte capacity plus a fixed disk capacity of either 16 or 80 megabytes.
Each drive is shipped equipped with an ElA standard 19" rack mounting system and heavy duty chassis slide mechanisms to permit easy accessability for fast and efficient servicing.

$* * * *$	WIDELY USED IN UK AND USA	$* * *$
****	TESTED AND PROVEN	$* * * *$
**** POWER AT YOUR FINGERTIPS	JUST COMPARE THIS LIST	$* * *$

No other program in the world combines these features in one. Many other programs, less integrated, do not provide even some of those features to be found on our 'bus'.
$1=$ Total integration of sales''purchase 'nominal 'stock 'addresses etc
$2=$ Full random access enables retrieval of any record in a second
3 = Flexibles prompts enables word change even to foreign language.
4 = Files may be named and set to drive default, maximising storage
5 = Easy to use, menu driven, no serious need of manual.
6 = Tested and debugged in many installations world wide
7 = Priced less than the acquisition of a library of programs.
8 = The program is totally in core, maximising disk space.
$9=$ Core program means that disks may be interchanged during use.
$10=$ Core program means your main drive is

11 = Numerous reports may be generated (eg: sale ledgers up to 30).
12 = Invoice produces immediate stock update + double journey entry.
13 = Reference on invoices enable cost centre build-up on ledgers.
14 = Stock valuations and re-order reports easily generated.
15 = Bank balance and reports plus standard mailing facilities.
16 = Customer statements and invoices printed on plain paper.

As prices vary from dealer to dealer we append for your guidance, some details of the justification in our prices being higher than the cash/carry concept of trade. A standard Superbrain $64 \mathrm{~K} \star 320 \mathrm{~K}$ Disk at 1795.00 includes the following values not normally expected at the lower price.

1) Equipment is burned and tested for a minimum 48 hours
2) Delivery in U.K. is free of charge
3) All goods \& software are stocked on immediate delivery
4) 6 month main unit, 12 month memory guarantee
5) $24 / 48$ hour mailing of any spare module free within warranty
6) Same service as 5) outside warranty for ad hoc charge
7) 10 free Diskettes (28.50)
8) 10% of hardware value in free software (1795.00)
9) Positive before **and **after sales service

If the transaction includes a printer and the business programs then the following are also added:
10) All cabling between printer and Superbrain free (25.00)
11) Ribbon and thimble free (eg: Spinwriter $4.75+9.75$)
12) Extra 10 Diskettes free (28.50)
13) Additional free software based on 10% of printer value
14) Free training session plus all necessary follow up
15) Box.printer paper (28.50)

A typical deal could look like this:
Superbrain 1795.00
NEC Spinwriter 1695.00
3490.00

BUS Program 775.00 plus Basic 150.00 (less 349.00) $=576.00$
Total Purchase Price 4066 plus V.A.T.
The total value of free items on this deal was in excess or 500 pounds in virtue of incidental items as well as extended warranty and software.
Do consider your purchase on the basis of some of the things you may be likely to need after your equipment purchase, and may either fail to obtain because the dealer has no stock or has lost interest in you, or because you aimed at the short term gain in price and are then compelled to pay heavily for small needs afterwards.

*** MAIN MENU DISPLAY ***

New! Produced in U.K. and widely used in England and the U.S.A. Complete Business Package

INCLUDES EVERYTHING FROM INVENTORY TO SALES SUMMARY PROMPTS USER AND VALIDATES ENTRIES. MENU DRIVEN PET AND CP/M SUPERBRAIN, TRS80 ii, N'STAR, IMS5000. APPROXIMATELY 60-100 ENTRIES/INPUTS REQUIRE 2-4 HOURS WEEKLY AND ENTIRE BUSINESS IS UNDER CONTROL
*PROGRAMS ARE INTEGRATED . . SELECT FUNCTION BY NUMBER
$01=$ "ENTER NAMES AND ADDRESSES
02=*ENTER/PRINT INVOICES
$03=*$ ENTER A ${ }^{\circ} \mathrm{C}$ RECEIVABLES 04=* ENTER PURCHASES
05=*ENTER A'C PAY ABLES
$06=$ *ENTER'UPDATE INVENTORY
07=*ENTER'UPDATE ORDERS 08=*ENTER'UPDATE BANKS $09=$ *REPORT SALES LEDGER
$10=$ *REPORT PURCHASE LEDGER
$11=$ *INCOMPLETE RECORDS
$12=$ *USER DBMS AREA
ENTER WHICH ONE?

> 13=*PRINT CUSTOMERS STATEMENTS $14=*$ PRINT SUPPLIER STATEMENTS $15={ }^{*}$ PRINT AGENT STATEMENTS $16=*$ PRINT TAX STATEMENTS $17=$ LETTER TEXTAREA $18=$ ALTER VOCABULARIES $19=$ PRINT YEAR AUDIT $20=$ PRINT PROFITLOSS A'C $21=$ OPEN AREA
> $22=$ PRINT CASHFLOW FORECAST $23=$ ENTER PAYROLL (NO RELEASE) $24=$ DISK SWAP'EXIT

DATABASE MANAGEMENT INCLUDES
*** FILE OR RECORD CREATE'DELETE'AMEND'SEARCH'PRINT 4 WAYS ** * INFORMATION RETRIEVAL ON ANY KEY RECORD OR PART THEREOF *** AUTOMATIC CHECK TO PREVENT DOUBLE ENTRY TO FILE SYSTEM *** DYNAMIC ALLOCATION OF INFORMATION CONSERVING DISK SPACE.
VERY FLEXIBLE. EASY TO USE
G.W. COMPUTERS LTD. UK ARE THE PRODUCERS OF THIS BEAUTAFUL PACKAGE. "AUTHOR" TONY WINTER (B.A.LIT; B.A.HON.PHIL).
PET VER 3.00 LOW LEVEL INTEGRATION $=475.00$. PET VER 4.00 INCLUDES AUTO STOCK-UPDATE $=575.00$. PET VER 5.00 INCLUDES AUTO BANK UPDATE $=£ 675.00$. CPM VER 6.00 IN CORE, TRANSLATABLE PLUS DBMS $=775.00$. CPM VER 7.00 AUTO STOCK-UPDATE $=875.00$. CPM VER 8.00 AUTO BANK UPDATE $=975.00$. CPM VER 9.00 INCLUDES OPTIONS 19, 20, 22, 23 (LATER RELEASE). +++ EACH LEVEL AUGMENTS LOWER ONE

> WE EXPORT TO ALL COUNTRIES CALLERS ONLY BY APPOINTMENT CONTACT TONY WINTER ON $01-636821001-6314818$ 55 BEDFORD COURT MANSIONS, BEDFORD AVENUE., LONDON W.C.!. NOTE!!! LEVEL 9.00 TOTALLY IN CORE PROGRAM LEAVES MASTER DRIVE FREE (SAVING OF 200 POUNDS HARDWARE).

IMPORTANT!!! No computer hardware is ever of value without software, so we provide you with a starting set of programs **** free **** at 10% of hardware purchased. A Superbrain and NEC Spinwriter could give you up to 400 pounds of programs. See [].

High Technology

 We make our competition obsolete
with Information Master. ${ }^{\text {IM }}$

Information Master ${ }^{m m}$ is the sophisticate of software packages, but it also speaks your language. Its uncomplicated Englishspeaking design makes it easy to learn No programming knowledge is necessary Put it in your Apple II*, and you're ready to go.
High Technology's Information Master organizes and prints everything from mailing lists to stock market data. Specify what records to store, type in the information, and Information Master organizes, calculates, stores and reports. Design your own reports and labels. Information Master is revolutionary in its adaptability and comes with a simple step-by-step instruction manual. Its screen layouts are designed to show you maximum information for easy operation. Information Master is so smart it stops mistakes that our competition lets you make.
If your computer dealer doesn't have Information Master, see one who does. High Technology's perfect complement to Information Master, Data Master, ${ }^{\text {m" }}$ allows you to change your mind months later without redoing all the work you've already done. Ask about

Available in the U.K. from
Pete \& Pam Computers
98 Moyser Road
London, SW 16 6SH
0.1-677-2052

[^0]PETE \& PAM COMPUTERS
Microcomputer hardware \& software Specialists in Applefare
Peter \& Pam Fisher
WE DISTRIBUTE FOR MICROSOFT, HIGH TECHNOLOGY, STONEWEAR COMPUTER STATION, CALIFORNIA PACIFIC, DAKIN $5,8 R O D E R B U N D, S T A R C R A F T$. SUB LOGIC AND
M \& R ENTERPRISES. DEALER.ENQUIRIES WELCOMED.

HAVE YOU BEEN WATCHING OUR ADVERTISEMENTS?
Spend time reading through this one to find out how you can make more use of your Apple II.

M \& R ENTERPRISES

SUP.R.TERMINAL. An 80 column by 24 line plug-in compatible board for
APPLE 11. 128 ASC 11 chrs. Upper and lower case -- with descenders. Shift
lock feature. Synchronous operation with APPLE. Incorporates PASCAL and
BASIC control characters.
£ 195.00
MICROSOFT
2.80 SOFTCARD. A true microprocessor plug-in board to allow you to run CP/M software, Includes MICROSOFT's BASIC 5.0.
£175.00
ard for APPLE. Requires 16 Sector System (DOS 3-3)
$£ 110.95$
RAMCARD + DOS 3.3 toget her, special price $£ 139.95$ FORTRAN for SOFTCARD. Has a strong advantage over APPLE Fortran 4 to 6 times faster because it generates true machine code rather than "p" code. $£ 99.9$ information. Special Price €359.95 - NOW avallable for APPLE. Ask for fore BASIC COMPILER for SOFTCARD. Get fast program execution times without giving up BASIC. 3.10 times faster than interpreted BASIC. $\quad 192.95$ OL YMPIC DECATHALON. Latest game from MICROSOFT. 10 events presented In extraordinary graphics. 1.8 players can play. $\quad \mathrm{£14.95}$ ADVENTURE. Fes, his is the original writer for the PDP11, and played during TYPING TUTOR. Runs in INTEGER (incl. relocated) It works. $£ 8.95$ NOW available on disk Applesoft $£ 10.95$

PERSONAL SOFTWARE

VISICALC. Yes, the one sold elsewhere for E125. Our price $£ 75.00$ PET VISICALC - complete, sealed package -
DESK TOP PLAN. Develop your own large' business model.
HIGH TECHNOLOGY
INFORMATION MASTER. The latest data management system from High Tech, We use it for all our book-keeping up to trial halance and for our price lists. Can De user trailored for many uses.
DATA BASE MANAGEMENT SYSTEM.High Tech.'s original system. Not as many features as Info. Master but is user oriented with lots of error trapping.
DATA MASTER. A utility for use with both info. master and D.B.M.S. allows wide set of para field types, transfer data from one system to another, using a STONEWARE
D.B. MASTER. Up to 1020 Bytes per record - Up to 100 flelds per record - Up to 9 screen pages per record - up to 4 fields in primary ISAM Key Suppor ts great Data Base Management for big applications
$£ 109.95$

GAMES

TRANQUILITY BASE - Try to land a HIRES space craft £13.95
BLOODY MURDER - Like playing with knives? (Integer) Disk $£ 9.95$
MICROLEAGUE BASE BALL with real HIRES little people
EDUCATIONAL
ARISTOTLES APPLE - Tutorial Aide $£ 17.95$
PERIPHERALS PLUS
VERSAWRITER. A low cost graphics tabler for APPLE
JOYSTICK T.G. Products robust joy stlck - and self cantering
COMPUTER STATION
PASCAL GRAPHICS DUMP PROGRAM for Paper tiger 440 \& 445 \& 460 \& NEC Spinwriter and Anades 9501
ENHANCED GRAPHICS DUMP PRDGRAM also available for above $\quad £ 22.95$
VISILIST lists out the grid location and formulas of any Visicalc ff $£ 22.95$
$£ 22.95$
$\mathbf{£} 10.95$
$\mathbf{8 1 9 . 9 5}$
APPLEWRITER GRAPHICS. Links with Applewriter and any of the 28 character se1s. Supplied in APPLE'S "Doe Tool Kit" to provide word processing with a dilference. Tiger 4406/4456 \& Silentype.

CALIFORNIA PACIFIC GAMES
AKALABETH Latest Adventure type game $£ 16.95$
Trilogy
£15.95
$\mathbf{1} .95$
HEAD DN From Japan
ع 13.95

CONTINENTAL SOFTWARE
LOS ANGELES MONDPOLY. Detine your own street names or take a trip round
LOS ANGELES MONDPOLY. Define Your own street names or take a trip round
the streets of L. A. Allows you change the rules
15.95
$\mathbf{f} 15.95$
$\mathbf{f} 5.95$
VARIOUS State revision 7 or earlier
(29.95
BASF 5.25 in DISKS FOR APPLE. At a good price $\quad 10$ for $£ 18.50$ Aids 3.3.12 Utility programs on one Diskette. (16 sector) Well documented

STARCRAFT (Tokyo)

APPLE GALAXIAN The best 'Invader' game we've set 1 bar none. We meàn is!
GALAXY WARS A
BRODERBUND Do liku Strik $£ 13.95$
BRODERBUND Do you like Startrek adventures? 4 GALACTIC SAGAS From Broderbund, provide a level of complexity and sophistication not seen be
GALACTIC EMPIRE, TRADER AND REVOLUTIDN (3 separate disks)

TAWALA's LAST REDOUBT
PLEASE ADD 15\% VAT TO YOUR ORDER POSTAGE AND PACKING FREE - ASK FOR OUR FULL CATALDG WE SELL ALL SORTS OF THINGS FOR APPLE TEL 016712052 (24 HRS) 7 DAYS A WEEK 26 MOYSER ROAD

Microtrend software and the AdlerAlphatronic nOw YOU'RE TALKING BUSInESS

Microtrend Ltd., has software now for the microcomputer with a future This wide range of well-specified, user- friendly and professionallypackaged products includes five accounting systems, two word processors (plus an inter-micro communications sustem for electronic mail and other data transfer operations).

Acler Business Sustems provide Microtrend's Trendisk/1 Data Management Sustem free of charge with each Plphatronic.

Combine our excellent software with the superb Alphatronic and you are really talking business. Microtrend products are available off the shelf from your local dealer or distributor. Call 0423-711878 or write to Microtrend Ltd.,
P.O. Box 51,

Pateley Bridge,

[GATE PLST]

ASTEROIDS IN SPACE (32K-d) Blas approaching Asteroids - beware aliens

HORRIBLESCOPE ($32 \mathrm{~K}-\mathrm{d}$) Funniest horoscopes, great for parties! Includes your own insults
SPACE (48K-3) Simulation of human life in space You
develop characters - 6 games
SPACE II (48K-D) A continuation of SPACE, with more characters and games
ADVENTURELAND (32K-3) An enchanted world of lost treasures, wild animals - magic al beings
PIRATE ADVENTURE ($32 \mathrm{~K}-\mathrm{C}$) Can you recover Long John's lost treasure?
ADVENTURELAND AND PIRATE ADVENTURE (48K) Both
games on one disk
FASTGAMMON (M-24K-C or D) Best computer backgammon available, with sound, hires graphics and cartoons.
You'll play for hours
TEMPLE OF APSHAI (48K-D) Mythical labyrinth with fearsome monsters \& treasure monsters \& treasure
THE WIZARD AND THE PRINCESS (48K-D) Best game everl 100 of beautiful Hires pictures. It is possible to win - if you perseverel 520.50 DATESTONES OF RYN (48 K - C or D) Built in scoring system - C $£ 9.25$ beat your friends.
"MYSTERY HOUSE" HI-RES ADVENTURE (M-48K-D) See each room in 3D-type graphics
CONEY ISLAND ($16 \mathrm{~K}-\mathrm{c}$) 22 Fast paddle games for 1 or 2 players Colour graphics
OTHELLO (16K-C) -by Softape - the best Othello game we've seen SAUCER WARS $(24 \mathrm{~K}-\mathrm{C})$ Oneperson game, with 150 levels of difficulty
VOYAGER EXCURSION ($24 \mathrm{~K}-\mathrm{C}$) Hires lunar loading game
FORTE (16K-C) A music language -You can save your songs
APPLE TALKER (M-16K-C) Create programmes so your Apple talk to you
APPLE LIS'NER ($\mathrm{M}-16 \mathrm{~K}-\mathrm{c}$) Create programmes which understand up to 31 spoken words

TALKER and LIS'NER are compatible with each other
GOLF (20K-C) 18 holes for 1 or 2 players - full chaice of clubs and direction $£ 5.00$
AIR FLIGHT SIMULATION (16K-C) only
OIL TYCOON (16K-C)
only
only
WINDF ALL $(32 \mathrm{~K}-\mathrm{C})$ The oil crisis game
B-1 N UCLEAR BOMBER ($16 \mathrm{~K} \cdot \mathrm{C}$) FIy this Russian defences - and back! $£ 9.25$

NORTH ATLANTIC CONVOY RAIDER (16K-C) The Bismark convoy raid of 1941
ELECTRIC CRAYON ($8 \mathrm{~K}-\mathrm{C}$) Full colour graph ics editor
U-DRAW ($16 \mathrm{~K}-\mathrm{C}$) Hires graphics editor
MUSIC BOX (8K-C) Full 3 octaves by semitones,
Note-time, rests, tempo + full colour eight show!
MAZE GAME ($16 \mathrm{~K}-\mathrm{C}$) 3-D Colour Maze Game
RACER ($24 \mathrm{~K}-\mathrm{C}$) Best arcade racing game - Hires graphics $£ 8.00$
BREAKTHRU (M-16K-C)
SPIDER TAG (M-16K-C) only
ATOMIC CASINO ($16 \mathrm{~K}-\mathrm{C}$)
only
HIRES BASEBALL (M-16K-C)
(Telepathy and Psycho-kinesis
TV network
THE COUNT (32K-C) You awake in a brass bed -in a
castie - in Transylvanial
VOODOO CASTLE (32K-C) Rescue Count Cristo from his fiendish curse!
STRANGE ODYSSEY ($32 \mathrm{~K}-\mathrm{C}$) Escape from an ancient alien
civillsation
ALL THREE ABOVE GAMES ON ONE DISK £25.00
MYSTERY FUN HOUSE ($32 \mathrm{~K}-\mathrm{C}$) Days of fun, but very difficultI $£ 9.00$ AKALABETH (48K-D) 10 Hires monsters, infinite dungeons, perfect perspective
£21.50
FRACAS ($32 \mathrm{~K}-\mathrm{C}$ or D) up to 8 players - monsters, sound - greatC $£ 13.00$
BATTLESHIP COMMANDER ($32 \mathrm{~K}-\mathrm{C}$ or D) Strategy with sound
cartoons \& lights!
C $£ 10.00$
D $£ 12.00$
very difficult!
ASTRO APPLE (32K-D) A serious horoscope
£21.25
THE PRISONER (48K-D) A nightmare world of 1984 -
avoid brainwashing!
£12.50
COMPUTER NAPOLEONICS (48K-D) Traditional war game meticulous detail
ACANTHOPTERYGIAN FORTUNE TELLING (22K-D)
Great for parties!
£37.75

SARGON II (M-24K-D) The champ - No better chess for the Apple A2-FSI FLIGHT SIMULATOR (M-34K-D) Extended and improved version, including British ACE 3D Aerial Battle Game only $£ 21.00$

PLUS LOTS MOREI! S.A.E. for full list
All programmes in Applesoft, unless M (machine code) C - on cassette D - on diskette

VAT ALREADY INCLUDEDH Just add 50p P and P to your order and sned with cheque /P.O. to:-

Microcomputers are coming - ride the wave! Learn to program.
Millions of jobs are threatened but millions will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency, with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program,
 debugging, and clear documentation
BOOK 1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs. BOOK 2 High and low level languages:
flowcharting; functions; REM and documentation; INPUT. IF..THEN GO TO: limitations of flowcharting; functions; REM and documentation; INPUT, IF....THEN, GO TO; limitations of
computers, problem definition. BOOK 3 Compilers and interpreters: loops FOR...NEXT RESTORE; debugging; arrays; bubble sorting; TAB BOOK 4 Advanced BASIC; subroutines; strings; files; complex programming; examples; glossary.
Also THE BASIC HANDBOOK (BHB) £11.50 An encyclopaedic guide to the major BASIC dialects. A must if you use other peoples' programs
and: ALGORITHM WRITER'S GUIDE (AWG) £4.00 Communicate by flow chart! Learn to use $\mathrm{Yes} /$ No questions for: procedures, system design, safety, legislation etc.

Understand Digital
 Electronics

Written for the student or enthusiast, this course is packed with information, diagrams, and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters, and simple arithmetic circuits; and finally to an understanding of the design and opera-
 tion of calculators and computers
BOOK 1 Decimal Octal, hexadecimal, and binary number systems and conversion between number systems; negative numbers; complementary systems. BOOK 2 OR and AND func. tions; multiple-input gates; truth tables: De Morgan's Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic. BOOK 3 Half, full, serial, and parallel adders; subtraction; processors and ALU's; multiplication and division. BOOK 4 filp flops; shift registers; asynchronous, synchronous, ring, Johnson, and exclusive-OR feedback counters; ROMS and RAMS. BOOK 5 Structure of calculators; keyboard encoding; decoding display-data; register systems; control unit; PROM; address de-coding. BOOK 6 CPU; memory organisation character representation; program storage; address modes; input/output systems; orogram interrupts; interrupt priorities; programming, assemblers; computers; executive programs: operating systems
DIGITAL COMPUTER LOGIC \& ELECTRONICS. (DCL) £7.50 A course covering the material in italics above, but at a slower pace. (4 vols)
GUARANTEE - No risk to you. If you are not completely satisfied your money will be refunded without question, on return of the books in good condition.
PLEASE SEND ME:
CPB $£ 10.00$
BHB ($\mathbf{E 1 1 . 5 0 \text {) }}$
AWG (£4.00)
DDS (£13.50)
DCL (£7.50)

FOUR WAYS TO PAY

1) A U.K. cheque or a U.K. postal order (Not Eire or overseas)
2) A bank draft, in sterling on a London bank lavailable at any major bank
3) Please charge my Access/M.Ch \square Barclay/TrustC/Visa \square Am. Exp. \square Diners \square
4) Or phone us with these credit card details - 048067446 \{ansaphone) 24 hour service.

Card No
Signed
THESE PRICES COVER THE COST OF SURFACE MAIL WORLOWIDE. AIRMAIL: Eur, N.Af, Mid.E. add $\%$ to price of books: Jpn, Aus, N.Z. Pcfc add \% ; elsewhere add $1 /$
Name.
Address.
U.K. Delivery: up to 28 days

Cambridge Learning Ltd., Unit 70 Rivermill Site, FREEPOST, St. Ives Heuntingdon, Cambs PE17 4BR England. Reg. in Eng. No. 1328762

Manchester - the birthplace of the British computer is to stage the most significant computer event ever to be held in the North of England.

Three Day Exhibition \& Seminars 29, 30 April, 1 May 1981
 New Century Hall and the National Computing Centre

Exhibition

The comprehensive microcomputer exhibition being held at the New Century Hall will include micro systems, business microcomputers, personal computers, word processors - in fact a full range of products displaying the versatility of the micro for all types of business, for use in education and as a personal aid in the office or the home.

Exhibition Tickets

Admission to the exhibition will be by ticket only. $£ 1.50$ (inc. VAT), available at the door. A special offer of 3 tickets for $£ 3.00$ is available on tickets purchased before 17 April 1981. These tickets can be obtained from the Online offices. All ticket requests must be accompanied by cheque/postal order and a suitable S.A.E.
Please complete the coupon below or attach your business card.

Micros in Education

Friday, 1 May 1981
Manchester University
This special seminar will be of interest to everyone involved in education. It has been designed and is chaired by
John Coll, one of the country's leading exponents in this field. The speakers have been drawn from those most active in this area - the majority being practising teachers.

Seminars

The one day seminars run in conjunction with the exhibition will be held at the National Computing Centre in its well appointed Atlas Theatre. Special arrangements have been made to bus delegates from the N.C.C. to the Exhibition each day.

Wednesday	29 April	Micros in Manufacturing
Thursday	30 April	Micro Systems in Business
Friday	1 May	Microcomputer Update (technical)

Please send me Seminar details
I am interested in Micros in Education \square
Please send me Exhibition visitor tickets at the special offer of 3 tickets for $£ 3.00$ (minimum).

I enclose cheque/postal order, made payable to Online Conferences Ltd, for
together with a stamped addressed envelope.

NAME
$\mathrm{Dr} / \mathrm{Ms} / \mathrm{Mr}$
TITLE
COMPANY
ADDRESS

The best in data base management for your micro-computer

Get the most out of your micro-computer. Use our advanced and progressive data management system

HDBS is an extended hierarchal data base system offering

- fixed length records
- file-level read/write protection
- one-to-many set relationships

MDBS is a full network data base system offered as an upgrade from HDBS... or it may be ideal as your initial system. Unique and versatile, it adds these features:

- full network CODASYL-oriented data structures - variable length records
- multiple levels of read/write protection
- one-to-one, many-to-one, and many-to-many sets
- non-redundancy of data, easy updating
- occurrences of a record type may own other occurrences of the same type
- a single set may have multiple owner and member record types

> MDBS-DRS. As an add-on to MDBS, the DRS system offers extraordinary flexibility in data base restructuring to meet new needs.
> - Item, record, and set types can be added, deleted, or renamed in an existing data base as well as other data base characteristics. You can redesign the data base after it is already on-line!

MDBS-RTL. As an add-on to MDBS, the RTL (Recovery Transaction Logging) logs all data base transactions, so that in the event of a system failure, the data base can be recovered with minimal loss of information

- The recovery processor permits selective reloading of the data base from the transaction file. Users can log messages, indicate complex transaction sequences, and effect selective control over the recovery process.

MDBS-QRS. An interactive Report-
Writer/Query-System for HDBS/MDBS data bases.
Features

- may be customized for non-technical users
- complex retrieval conditions may be specified
-d etailed reports can be quickly generated
- wildcard and "match-one" string specifications included

HDBS and MDBS Packages Include:

-DDL data definition language analyzer/editor

- 260-page users manual
- DMS data management routines callable from host language
- Sample application program and DDL files
- Relocator to re-org all routines
- System specific manual for bringing up our software

Coming soon: Multi-User Versions of MDBS, and a 28000 Version.

54-page "primer" on data base systems for micro-computers only $£ 5.00$ per copy.

Both HDBS and MDBS Systems.

- Run under.

CP/M with Microsoft BASICs, FORTRAN or COBOL; InterSystem PASCAL/Z; Sorcim PASCAL/M; Micro Focus CIS COBOL; Digital Research PL/I
MVT/FAMOS with BASIC
OASIS with BASIC
TRSDOS and NEWDOS (Models I and II) with Disk BASIC
Nortr. Star DOS with North Star BASIC
Apple DOS and Applesoft BASIC
Machine Language Interface available on all above systems.

- Up to 254 record-types definable in the data base; each record-type may contain up to 255 item-types: each item-type may be up to 9,999 bytes in length.
- Names of data items, records, sets, and files are
wholly user definable.
- Commands to add, delete, update, search, and traverse the data base.
- Straightforward use of ISAM-like structures.
- Records can be maintained in several sorted orders.
-Written in machine language for maximum execution efficiency and minimal memory usage
- Independent of types and sizes of disk drives. Support data base spread over several disk drives (max. 8): disks may be mini- or full-sized floppies or hard disks.
- Available versions: $Z 80$ (requires approx. 18 K), 6502 (approx. 26K), 8080 (approx. 22K)
Total memory requirement must allow for buffer areas.
- 8086 version available. (Call or write for details and prices.)

Ordering and pricing information:
(applicable to Z80, 8080 and 6502 versions)

HDBS E2	¢235.00	When ordering, specify intended use
MDBS	600.00	with. ..
DRS	150.00	1. North Star DOS and BASIC
RTL	150.00	2. CP/M - Microsoft BASIC 4.XX
ORS	300.00	3. CP/M - Microsoft BASIC 5. XX
HDBS upgrace to MDBS	440.00	4. CP/M - Micros oft BASIC Complier
MDES with DRS, RTL and		or FORTRAN 80
ORS	950.00	5. CP/M - Micros oft COBOL 80
HBDS/MDBS DRS Manual	30.00	6. CP/M - InterSystem PASCAL/Z
RTL Manual	5.00	7. CP/M - Sorcim PASCAL/M
ORS Manual	5.00	8. CP/M - Digital Research PL/1
System Specific Manuals each	h 5.00	9. CP/M - Micro Focus CIS COBOL 10. TRSDOS/NEWDOS and TRS
Within a given operating system, add £240 for each additional language selected.		10. TRSDOS/NEWDOS and TRS Disk BASIC (Models I and II)
		11. Apple DOS and Apples oft BASIC
		12. MVT/FAMOS and BASIC
		13. OASIS and OASIS BASIC
		14. Machine Language Programs
		(Specify operating system)

Finally, our software may cost a little more, but it's worth a lot more in quality and versatility.

SYSTEMS PLUS LTD.,

19c Glengormley Park, Newtownabbey BT36 7RE
Tel: Glengormly 42117.

At SEED you will be dealing with professionals with extensive experience in all fields of computing, add to that our four years of dealing exclusively with only one type of microprocessor assures you of obtaining a system tailored to suit your application. You may wish to develop your own software or alternatively only require a small accountancy system; for which our 'SYSTEM ONE' would be ideally suited. Larger applications requiring up to 40 megabyte of online storage, four terminals and two printers then our 'SYSTEM 12' range is for you.

Prices range from $£ 565.00$ to £20,000.00+, we not only suit your application but also conserve your bank balance. If you are thinking. of installing a micro computer system, then give us a call and take advantage of our free advice. In the unlikely event of our current range not being able to accomodate your requirements, then our shortly to be announced 6809 based system may well be the answer.

PLEASE CALL US ON 0543378151 FOR YOUR FREE DEMONSTRATION OR DETAILS WITHOUT OBLIGATION.

Strumech Engineering Electronics Developments Limited

HITTECH ELECTRONICS
 54HIGH ROAD, SWAYTHIING, SOUTHAMPTON S02 2 JF
 TEL 0703581555 TELEX NO. 47388 HTEL

COLOUR MONITOR

System
Supply
Inputs

Connectors
Bandwidth
Timebase

Positional error
E.H.T.

Degaussing
Controls
Operating
Temperature Range
CRT

Either 625 lines, 50 fields interlaced or 624/626 50 fields non-interlaced.
Nominal 220-240V (180-265V r.m.s.) 48 to 54 Hz .
R.G.B. and composite sync.

TL compatible with 390R load. socket.
5-pin DIN.
$10 \mathrm{MHz} \pm 2 \mathrm{~dB}$.
Pull-in range $\pm 500 \mathrm{~Hz}$
Hold in range $\pm 1 \mathrm{~K} \mathrm{~Hz}$.
Flywheel time constant 2 mS . $\pm 3 \%$
Approximately 23 KV .
Automatic at switch-on.
Power ON/OFF; Brightness.
$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Rectangular 382.3 mm (14" Screen diagonal). 90° deflection.
Precision in-line gun. Vertical stripe screen.

Power Consumption
Size (cased)
Colour (cased)
M2 14" RGB (cased)
Delivery \& insurance

55 W maximum.
$13.5^{\prime \prime} \times 15.5^{\prime \prime} \times 19^{\prime \prime}$
Cream/brown.
£318.00
£15.00

PERFECT FOR
 COLOUR VIEWDATA

SUIMLOCK BONDAIN

 makes the decisions easier
£19.95 (inc. VAT)
Famous Casio Reliability Guaranteed 1 Year Complete with Batteries Cover and Full Instruction Book.

38 PROGRAM STEPS 55 SCIENTIFIC

FUNCTIONS
7 MEMORIES
18 PARENTHESES
TRUE ALGEBRAIC LOGIC INTEGRATION
LINEAR REGRESSION LOG, EXP, \& POWER REGRESSIONS
$f x$ 31-29fns-Green Display $£ 12.95$ fx 120-40fns-Green Display $£ 17.95$
$f x$ 39-40fns-Green Display $£ 15.95$ fx $310-50 \mathrm{fns}$-LCD $£ 17.95$
$f x 68$-38fns-LCD Credit Card $£ 19.95$ fx 330-38fns-LCD $£ 15.95$
$f x 81$-30fns-LCD $\quad £ 12.95 \quad f \times 510-50$ fns-LCD-10 digit $\quad £ 19.95$
$f x 100$ College-44fns-LCD $£ 15.95$ fx 2600-43fns-LCD $\quad £ 19.95$
$f \times 3200$-43fns-LCD-10 digit £21.95 fx 6100-39fns-Clock,Stp.watch,Alarm £19.95 fx 7100-39fns-CI.,Alm.,Stp.wch.,Cr.Cd. £24.95 fx 8100-46fns-Cl.,Calendar,Alm.,Stp.wch. £24.95

> Sumlock Bondain Lta. 263-269 CITY ROAD, LONDON EC1V 1JX Tel: 01-250 0505 Telex 299844 and at Cannon Street Station, London EC4

All prices include VAT, p \& p. 24 Hour Ordering Service Barclaycard/Access accepted Above offer applies UK only.

Qumb
womsot dimetil ame

APPROVED

for
Commodore
Apple II
North Star Horizon
Industrial Micro Systems $\mathbf{5 0 0 0}$
\& 8000

APPROVED

by
Local Government Central Government National Laboratories Maritime Research Universities Schools

APPROVED
by
Accounfants
Importers/Exporters
Refailers
Manufacturers
Printers
Surveyors

WE WILL GET YOUR APPROVAL

Why? Because Micro-Facilities know that whether you are a. large establishment or a small business you are going to need help and good service. We believe, and our hundreds of satisfied customers seem to agree, that the service we give is second to none.
Our service starts right from your initial contact. We will meet with you to discuss your requirements and your business, without blinding you with computer jargon. We will arrange for you to have a demonstration of one or more computers from our range together with programs to suit your particular needs. If a ready-made program is not suitable then we can analyse, design and program your particular procedures (we have nearly twenty years experience of doing this).
As a further service we are able to arrange both leasing and financing of your computer equipment.

Micro-Facilities Ltd. 129 High Street,
Hampion Hill, Middlesex TWI2 INJ

Our service does not stop when you have purchased your system; to ensure the smooth transfer of your work we train you and your staff to use the computer and its programs in your own environment. As additional security we offer full maintenance contracts. Above all we will be available to give you genuine after sales service. Not for just one week or one month but everytime it is wanted.
Please contact us to discuss your problems and requirements, we offer you a lot more, but only charge the same. Our ability will give you peace of mind and confidence that the job will be done properly.
Central Computer \& Telecommunications Agency Approved Tenders from Local Authorities, Education and Government Departments welcomed.

Matrix Printer

125 cps
printing speed
CCITT V24 (RS232)
interface
80-132 characters per line
£460

Prices from
 * $\lesssim 495$

Emulations:

APL, DEC VT52, ICL 7181 Honeywell VIP 7006 \& 7250
*Prices inclusive of delivery in UK and cables ready to plug in.

N 7 M: Nit

LABORATORIESLID
Head Office \& Sales:
King Street, Odiham, Hampshire RG25 1 NN
Tel: 025-671 2910 Telex; 858815

Sales and Service:
North East Tel: York (0904) 412043
North West Tel: Stockport 061-4910134 Midlands Tel: Birmingham 021-707 7170 East Anglia Tel: 022364862
Scotland Tel: Edinburgh 031-554 0051

ComServe COMPUTER SHOP PRESENTS

THE ELEGANT, EXPANDABLE

video genie system

£364 inc VAT. Postage. Requires T.V. or monitor - $£ 80$ if bought with Genie

Comprises standard 16 K computer. 3 manuals. Demonstration tape. Lead for additional cassette player. Lead for monitor.

FREE
FREE
FREE
FREE
FREE

Standard cover. Head cleaning/demagnetising tape.
Programs: Games. Utilities. Subroutines.
Standard soundkit
Comserve joysticks
Coloured plastic folders for manuals or screen overlays.
CWO to
ComServe

We supply various printers.
We will supply. $\$ 100$ expansion box, colour boards, disk drive, fast tape drives, RS232 interfaces as available.
We are Genie specialists
S.A.E. for further information. Items and prices are as at time of going to press and are subject to alteration.

NASCOM SYSTEMS \& PERIPHERALS

 MOTHER/BUFFER/PSU BOARD

A 12×8 piggy-back board for the Nascom 1, it contains a five-slot motherboard, quality 5A power supply and reliable buffering with reset jump. The board facilitates easy floppy disk expansion.
$£ 85$
$+\mathbf{£ 3 . 5 0} \mathbf{P} \& \mathbf{P}+$ VAT

FLOPPY DISC SYSTEM
Built and tested stand alone unit with $1 / 2$ drives for both Nascom $1 \& 2$.
Single driveCPIM (160K). £450 + £4 P\&P + VAT Double drive CP/M (320K) . . . $£ 640+£ 4$ P\&P + VAT Single drive D-DOS system . . $£ 395+£ 4$ P\&P + VAT (enables existing NAS-Sys software to be used) Spare drive $\ldots \ldots \ldots \ldots \ldots .{ }^{2} 205+£ 2 P \& P+$ VAT Verbatim Diskettes $£ 3.75+$ VAT each
10 for $£ 32$ + VAT
Nascom 1 owners: Add $£ 10+$ VAT to prices above for Reset Jump Kit
NASCOM 1 kit $£ 125+£ 1.50$ P\&P + VAT NASCOM 1 built $£ 140+£ 1.50$ P\&P + VAT
SPECIAL INTERFACE OFFER
NASCOM 2 WITH 16K RAM BOARD BUILT £345.KIT £295 (+ £2 P\&P + VAT)

NASCOM IMP PLAIN PAPER
PRINTER $£ 325+£ 2.75$ P\&P + VAT
RAM BOARDS-SPECIAL PRICES
16K RAM $£ 90+£ 1$ P\&P + VAT
$32 K$ RAM $£ 110+£ 1$ P\&P + VAT
48 K RAM $£ 130+£ 1 \mathrm{P} \& \mathrm{P}+$ VAT
64 K RAM $£ 150+£ 1 \mathrm{P} \& \mathrm{P}+\mathrm{VAT}$
SOFTWARE ON TAPE
BASIC Programmers Aid $£ 13$ + VAT
8K BASIC $£ 15$ + VAT ZEAP $2 £ 30$ + VAT
SHARP MZ-80K + Peripherals Bi-Directional Serial Board $£ 99.50+$ VAT MZ80FD (twin floppies 208K) $£ 675+£ 5$ P\&P + VAT MZ80P3 Printer $£ 425+£ 5$ P\&P + VAT MZ80 I/O Interface $£ 99+£ 2$ P\&P + VAT CPIM 2.2 £200 + VAT
Stock Control, Sales/Purchase Ledger and other business software and games In stock. Full list available on request.
SPECIAL INTERFACE OFFER 48K MZ-80K System $£ 46$
$+£ 10$ carriage + VAT

ENCLOSURES
VERO Frame $£ 32.50+£ 2$ P\&P + VAT
Microtype M3 Case $£ 24.50+£ 2$ P\&P + VAT
Kenilworth Case $£ 49.50+£ 5$ P\&P + VAT
2-card support kit $£ 7.50+$ VAT
5 -card support kit $£ 9.50$ + VAT

PERIPHERALS

3 Amp PSU $£ 32.50+£ 1.50+\mathrm{P} \& \mathrm{P}+$ VAT Motherboard $£ 5.50+$ VAT Mini Motherboard $£ 2.90$ + VAT VERO DIP Board $£ 12.50+$ VAT I/O Board $£ 45+\Sigma 1$ P\&P + VAT Buffer Board $£ 32.50$ + VAT EPROM Board kit £55, built $£ 70$ + E1 P\&P + VAT
A-D Converter $£ 49.50$ + VAT Dual Monitor Board £6.50 + VAT EPROM Programmer $£ 25.95$ + VAT Castle Interface $£ 17.50$ + VAT Port Probe $£ 17.50$ + VAT
FIRMWARE IN EPROM IMP-PRINT $£ 30$ + VAT NASPEN $£ 30$ + VAT ZEAP $2 \mathrm{E} 50+$ VAT NAS-SYS 1 £25 + VAT NAS-DIS $£ 37.50$ + VAT NAS-DEBUG $£ 15$ + VAT NAS-SYS $3 £ 25+V A T$ Programmers Aid $£ 28+$ VAT

SHARP PC-1211 POCKET COMPUTER

The PC-1211 uses BASIC and has up to 1424 program steps. 80 character input line with full editing facilities, 18 user definable keys, 24 character alpha-numeric LCD display. Optional cassette interface is available. PC-1211 is battery-operated, has auto power off function and maintains all programs and data in its memory even after the power has been turned off.
Cassette interface
E86.92
$£ 13+$ VAT

+ £1 P\&P + VAT

CENTRONICS MICRO PRINTERS

High periormance - Low cost
737-£425 + £3 P\&P + VAT
737 Dot Matrix Printer runs at 80 cps (proportional) or 50 cps (monospaced) giving text processing quality print. This new printer is capable of printing subscripts and superscripts.
730-£375 + £3 P\&P + VAT
730 Dot Matrix Printer can print 10 cpl or 16.5 cpl at 100 cps and 165 cps respectively.

Both printers have 3-way paper handling and parallel interface as standard. RS 232/V24 serial interface is optional.
Fanfold paper (2000 sheets) $£ 18+£ 2.50 \mathrm{P} \& \mathrm{P}$

ПШ® WATFORD ELECTRONICS

NEW SUPERBOARD SERIES II
Ready built \&Tested

New from OSI - Series II. Everything series I had but with more on a single board Ideal for the beginner or experienced engineer alike It needs only a 5 V 3A power supply to be up and running. Fully expandable to a
Floppy Disc and small business system.

SEIKOSHA GP80A

his Unihammer dot Matrix Printer gives Normal and Double Width Characters as well as Dot resolution Graphics

Printing Speed 30 cps Character Set 5×7
Matrix

- Print Density 12 CPI
- Paper Feed at 80 CPL

Parallel Interface Standard

EPSON TX80

A complete 80 column dot inatrix printer, available in tractor or friction feed versions

Speed: 125 cps

- Undirectional print
- PET compatible graphics

Various Interfaces available from $£ 45$
500 Sheets of paper FREE!

SUPERPRINT 800

Series 2 User's Manual The best single source of information £6.95, no VAT

- 6 latch outputs available for control purposes.
- Full machine code monitor and I/0 utilities in Rom.

Superboard II Series II

Black ABS case Extra 4 K Ram PSU 5A Ready Built Numeric Key Pad Kit 610 Expansion Board (expandable to 24 K) CD3P Floppy Disc £ $24.50+$ VAT f $16.95+$ VAT f $19.95+$ VAT
f $11.95+$ VAT £ 11.95 £150.00+ VAT $\mathrm{E} 269.00+$ VAT
£6.95, no VAT

Video swap tape \& UHF modulator FREE!

SOFTY

The complete microprocessor for the engineer and beginner alike.

- Displays memory contents on standard UHF TV
- Can replace monitor Rom to test and develop programs
- Ideal training aid.
- Two 8 -bit $1 / 0$ ports.

Fast cassette interface

- On-board Eprom programmer
- Sopies so ware.

Price: Kit...................... $99.00+$ VAT Ready built......... $120.00+$ VAT

FREE 2716 with each Softy

This rugged and reliable printer offers more features printer onfers more feature and flexibility than new Special Offer price

- $64,72,80,96,120$, or 132 characters/line - RS-232, $20 \mathrm{ma}, 1$ EEE-488 and Centronics - Self-tesi switch. - I/O fitted as standard. - 16 baud rates to 19,200. - Tractor and Friction Feed - 60 lines per minute. - Multiple character sets facility

500 Sheets of paper FREE!

VIDEO GENIE
 acmomem
 Computer System

- 16K User Ram
- 12 K Microsoft

Basic
in Rom.

- 64×16 line

Display

- 128×48 dot graphics resolution
- Software
compatible with
TRS80 level II.
- Built in Cassette Recorder
- Output and Control for Second Cassette
- Full expansion via Expansion box ro Disc-Printer

A Z80 based computer system with Full Keyboard and built in
\& PE
Cassette recorder plus outputs for Monitor and/or TV
Parallel Printer Interface £35 + VAT

ACCESSORIE

[^1]
33/35 CARDIFF ROAD, WATFORD,HERTS. Telephone 40588

The above is just a selection of our vast stocks of brand new, full spec, To Order: Pleaseadd 15%
less than P10 add 40 P\&P to all orders unless stated. On orders of Terms of Business: Cash/Ch

Cash/Cheque/P.O.'s or Bankers
Government, Education Authorities \& Trade Welcome.
Access Orders: Minimum $£ 10$ please.

48 JUNCTION ROAD, ARCHWAY, LONDON N19 5RD 100 yds from Archway Station \& 9 bus routes TELEPHONE 01-2639493 01-2639495

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS AND COMPUTERS

VIDEO GENIE based on TRS80

Utilises Z80, 12k level II Basic, Integral Casette Deck, UHF O/P.
16k RAM
all TRS80 features
£289

maxicas
PLEASE ADD VAT 15\% TO ALL PRICES. POSTAGE ON COMPUTERS, PRINTERS \& CASSETTE DECKS CHARGED AT COST. ALL OTHER ITEMS P\&P 30p. PLACE YOUR ORDER USING YOUR ACCESS OR BARCLAYCARD (Min. Tel. order £5.00).

TRADE \& EXPORT ENQUIRIES WELCOME, CREDIT FACILITIES ARRANGED.

TELEPHONE
01-263 9493/01-263 9495
-UK101 SOUND
SOUND GENERATOR AND COMBINED PARALLEL IN/OUT PORT KIT CONTAINING P.C.B., AY-3-8910, 6520 PIA, FULLY DOCUMENTED AND DEMO TAPE. $£ 29.95$

AY-3-8910
£8.50

UPA 101 SOFTWARE	
SPACE INVADERS	6.50
REAL TIME CLOCK	3.00
CHEQUERS	3.00
OTHELLO	4.00
GAME PACK I	5.00
GAME PACK II	5.00
GAME PACK III	5.00
SCREEN MONITOR	4.00
ASSEMBLER EDITOR	14.90
10xC12 BLANK TAPES	4.00

CPUS	
Z80 2.5 MEG	7.95
Z80A 4 MEG	9.95
6502	6.95
6800	6.50
8080	4.75
9900	25.95

SUPPORT CHIPS		81LS98	1.25
280 STC	5.95	SN74365	. 52
280 CTC	5.95 6.95	SN74366	. 52
280A CTC	5.95	SN74367	. 52
280A P10	6.95	SN74368	. 52
2804 6520	3.95	BT26	1.50
6522	6.85	8T28	1.50
6532	8.50	$8 \mathrm{8T95}$	1.50
6821	4.25	8796	1.50
6850	3.60	8 8797	1.50
6852	4.35	8T98	1.50
8212	1.95	- BAUD	
8216	1.95	BAU0	.
8224	2.75	MC14411	8.75
8228	3.75	MM5307	8.75
8251	4.95		
8253	9.75		
8255	4.50	AY-5-1013	3.95
TMS9901	13.16	AY-3-1015	4.75
TMS9902	11.18	MM5303	4.75
TMS9904 (74LS362)	4.21	TMS6011	3.55

Black \& White model $£ 85.00+$ VAT $+£ 4.50$ car Green model $£ 95.00$ + VAT + £4.50 car

OVM Video Monitors:Precision engineered Video Monitors, with a $9^{\prime \prime}$ screen, accepting standard 1.4 V P-P inputs at 75 ohms or high impedance.
Metal cased, solid state and reliable, white or green.
The choice is yours.

LOWE

Bentley Bridge, Chesterfield Road, Matlock Derbyshire. Tel: 0629 2817-2430.
Trade enquiries welcome.

INMOYATIVE TRS-80 SOFTWARE FROM THE PROFESSIONALS

INSTANT SORT/SEARCH DATABASE

Everything in electronics takes a finite time, consequently nothing can be instantaneous. However a database that will search 500 records and sort the names into alphabetical order in $11 / 2$ seconds, that will go on to do the same thing with 1,000 names in only $21 / 2$ seconds, is fast. If you add that ability to search 500 or 1,000 records for a specific range of names or ages or sexes or whatever, in such a small amount of time that it is not worth timing it, then the program deserves to be described as instantaneous. Especially as these times are attained on a standard Level II TRS-80.

These results are achieved, obviously, by some very clever machine language coding. This however is not enough. After all GSF from Racet will sort 1,000 arrays in about 11 seconds and that is indeed a clever program. No, in order to achieve the results required from this program it is necessary to change one's entire overview of database

There are many databases available for the TRS-80 now. All of them have been designed to store as much data as possible, as easily as possible. Not as an afterthought, but nor as a prime design requirement, they have also incorporated as fast a sort as was practicable. This program was designed from the outset to achieve unbelievably fast sort and search times. Indeed we do not recommend this database for application in which fast searching or sorting is not a prime requirement. And what are the applications? It's a hackneyed phrase to say that they are limited only by the user's imagination, but that's about it. Let's take an example. Suppose you are running a marriage or data bureau. An ordinary database will file all the names and addresses away together with the necessary informatlon as to sex, age and so on and with some you would be able to sort the list, so that only people with simllar characteristics were eventually obtained. With this database you could, for instance, file the name, sex, age, category of hobby, category of chief interest, vital statistics and other data so that at the fouch of a button you could Instantaneously display on the screen all women of a certain age with certain vital statistics, living in a certain area. You could also display men wlth similar (excluding the vital statistics!) data that fall'into similar categorles. And all of this almost instantaneously. Not everybody runs a marriage bureau, but other applications are not hard to think of. Estate agents can file details of property away so that they can instantaneously obtain data on houses in a certain area or of a certain size. Doctors can reach information as to patients with similar diseases, ages or whatever immediately. In the home, a record library can be stored and every record by a certain composer written in a certain year can be accessed without delay. The list of applicatlons is endless. For any use where it is important to extract information within a certain range or it is important to sort informatlon, this database will find a use.

The prime commands and features of this program are as follows:

Dataflle creatlon

1. Create a file.
2. Add a record.
3. Dlsplay a record.

Tape a file.
Amend a record.
Amend a record.
Load a tape.

Sort/Search

Sort up or down
Page forward or backward.
Select a range for search.
Select or exclude a category
Select or exclude on initial letter.
Resort records in a sort.
New sort all records.
Extended sort.
Arithmetic.
Display file data.
Load a tape.
Printout sorted data.

The data is displayed in columnar form and the data may be alphabetical, alphanumeric, integer or decimal. The number of columns is from 2 to 10 and the records may contain a maximum 44-60 characters depending upon the number of columns used. Columns may be of any width within the screen capacity but integer or decimal columns more than five and six characters wide respectively will not have the option of searching within a range.

The program consists of two parts. The first is used for entering the data and the second for the sort or search. The second part overlays the first when it is loaded so only 4 K of memory is used by the entire program. The remainder of your memory space is available for data. The amount of data that can be contained will of course depend upon the amount of memory available, but as a rough guide a 16 K user will be able to manipulate at one time 250 records of 39 characters each or 514 records of 17 characters each. As a further rough guide on sorting speed, the time to sort 1,000 records on fields of random strings of random length, or of random number between 1 and 99,999 , averages under $21 / 2$ seconds.

Numeric columns either integer or decimal may be arithmetically manipulated almost instantaneously. A total may be cast or an average taken for any numeric column up to five digits. This is so fast that when adding 1,000 numbers totaliing over 50 million, only a slight hesitation can be noticed before the total is given.

In summary therefore this program is ideal for any application concerning the manipulation of information whether it be business, personal or hobby which can be comfortably displayed as one record per line upon the screen and in respect of which it is required that super fast searches or sorts be carried out. The program is supplied on cassette. At this time it is not compatible with disk systems. A disk version is in the course of preparation. The cassette includes a set of data randomly generated which can be fed into part 2 of the program to demonstrate the fantastically fast sort and search features.

Tape for 16K TRS-80 or video genie£19.50

All prices exclusive of VAT which should be added at the prevailing rate. Postage and packing including VAT 75p regardless of the number of programs ordered.

Send large SAE (44p) for our current Catalogue of TRS-80 software. Add £1.85 for a binder.
A.J.HARDING [MOLIMERX]

MOLIMERX LTD.

INNOOV:ATIVE
 TRS-80 SOFTWARE FROM THE PROFESEIONALS

SUPERSCRIPT

SuperScript is a series of machine language programs which will permanently customise Tandy's Scripsit to a user's own requirements, particularly as to his printer. It also adds a number of enhancements to the original Scripsit program. The program includes a number of features which we do not have space to list here, but the three principal ones are that the user can now access the Disk Directory from within SuperScript, listing all files and the number of free granules on the diskette. Files can be killed from within SuperScript so as to make extra space to fit in a large text file. The third and perhaps the most Important enhancement is to permit almost any printer to be used with Scripsit. It includes eight drlver routines for both serial and parallel printers and these include utilities to enable the user to sculpture a customised serial or parallel driver to his own particular requirements. If your printer will backspace then underlining and slashed zeroes are options. Dedicated drivers in the package are for Diablo parallel and sérial, NEC5330 parallel and serial and two general purpose drivers.

Disk for minimum single drive 32K machines 119.50

DUEL-N-DROIDS

A "second generation" Androld Nim. Leo Christopherson has done it again! Two androids battle it out before your eyes with laser swords! There are two forms of play. In the first the player controls one androld and the computer the other. The player must achieve a certain rank of skill as a swordsman to enable the android to go on to fight a tournament. The player's android is controlled by four keys and the higher the rank that the player can attain the better the chance that his android will beat the computer when it enters the tournament. Tournaments are of two types. In one, the player's android is pitted against an equally ranked android controlled by the computer. In the other the player's android fights against androids controlled by the computer of random ranking. Android Nim by Christopherson created something of a revolution in microcomputer games and Duel-N-Droids follows on in this same tradition. Excellent sound is provided in the program.

Tape version 16K TRS-80 or video genie£9.50, Disk version 32K one drive $£ 12.50$

BASKETBALL

Another highly graphically orientated machIne language action game with sound. Each game lasts four minutes and either two players take part or one player plays the computer. The graphics are based on a three dimensional depiction of a basketball court on which there are two players. One is controlled by each human player if two are playing, or when a human player plays against the computer the home player is controlled by the computer. The appeal of the game is its realism. The court player may be controlled in one of four directions, may dribble and shoot for the basket. The player who scores the most baskets in the four minutes of play wins the game. Tape version 16K TRS-80 or video genie£9.50, Disk version 32 K one drive£12.50

QUAD

Quad is three dimensional noughts and crosses. As its name implies, it is played on a cube of four layers each with four ranks. Like noughts and crosses the aim of the game is to get crosses or noughts in a line either horizontally, vertically or diagonally. The cube is depicted graphically on the VDU and either two players may take part or a single player may play the computer. Four levels of difficulty are provided and a time clock is also included for each move. A particularly important feature of the game is that the cube on which the game is played may be rotated so that the player can see it from a different angle. A number of commands are provided including setting up previous positions, backing up to a previous position, progressing to the next position, reversal of order of play and switching of opponents. This is a complex game of strategy in which the player will need all of his skills.

Tape version 16K TRS-80 or video genie£9.50, Disk version 32K one drive£12.50

CODE BREAKER

Code Breaker is a.logic game with sound effects. It is not necessary to describe this program in great detail because it is essentially a computer adaptation of the well known logic game Mastermind. The object of the game Is to determine with as few moves as possible the colours and positions of four secret code pegs. For each move the colour and position of four pegs is chosen and the response of the computer is with a black, white or pink peg In respect of each position of the player's peg. These three colours have different meanings and from their positioning It is possible to logically deduce the position of the hidden pegs. The program features sound effects and a graphic layout of the code pegs.
fape for 16K TRS-80 or video genie£6.50

All prices exclusive of VAT which should be added at the prevailing rate. Postage and packing including VAT 75p regardless of the number of programs ordered.

Send large SAE (44p) for our current Catalogue of TRS-80 software. Add $£ 1.85$ for a binder.

28 COLLINGTON AVENUE,BEXHILL-ON-SEA, E.SUSSEX.

PET' MACHINE LANGUAGE GUIDE

Contents Include sections on:

- input and output routines.
- Fixed point, floating point,
and Ascil number conversion.
- Clocks and timers.
- Bulit-in arithmetic functions.
- Programming hints and suggestions.
- Many sample programs.

If you are ìnterested in or are already into machine language programming on the PET, then this invaluable guide is for you. More than 30 of the PET's built-in routines are fully detailed so that the raader can immediately put them to good use.
Available for $\$ 7.95+\$ 2.00$ postage and handling.'Payment is in U.S. dollars or charged to your Barclaycard or Eurocard include card number and expiration date. Quantity discounts are available.

4E5EF\%

ABACUS SOFTWARE

P. O. Box 7211

Grand Rapids, Michigan 49510

The TINY Pascal System turns your APPLE II micro Into a 16 -blt P.machine. You too can learn the language that Is slated to become the successor to BASIC. TINY Pascal offers the following:

* LINE EDITOR to create, modify and maintain source
- COMPILER to produce P-code, the assambly langauage of the P-machine INTERPRETER to execute the compiled P-code (has TRACE) structured programmed constructs: CASE-OF.ELSE, WHILE-OO, IF.THEN. ELSE: REPEAT-UNTIL, FOA.TOIDOWNTO-DO, BEGIN.END, MEM, CONST, VAR ahray

Our new TINY Pascal PLUS + provides graphics and other bulltin functions: GRAPHICS. PLOT, POINT, TEXT, INKEY. ABS AND SOR. The PET version supports double density plotting on 40 column screen giving 80×50 plot positions. The APPLE II version supports LORES and for ROM APPLESOFT owners the HIRES graphics plus other fealures with: COLOR. HGRAPHICS, HCOLOR, HPLOT. PDL and TONE For those who do not require graphics capabilities, you may still order our original Tiny Pascal package.
PET BASIC 4.0 version avallable February 1981
TINY Pascal Plus + GRAPHICS VERSION includes manual
PET 32K NEW Roms cassette
PET 32K NEW Roms dliskette.
APPLE II w/ROM Applesoft only w/DOS.
TINY Pascal NON.GRAPHICS VERSIONS Includes manual PET 16K/32K NEW Roms cassette.
APPLE II WIROM ADplesoll 32 K wion
APPLE II w/RAM Applesoft 48 K w/OOS.
USER's Manual (refundable with software order).
6502 Assembly Listing of INTERPRETER-graphics
non-graphles
Inctudes Aumar Posinge so Europe
Eurocto Accens. Barciyc zet oic

IBM SELECTRIC GOLFBALL PRINTERS AND INPUT, OUTPUT 735 TYPEWRITERS

PRINTERS FROM

£195.00
735 TYPEWRITERS FROM £245.00
WIRING AND COMMISION
TO SUIT ACULAB INTERFACE
£48.00
ACULAB INTERFACES EX STOCK
£155.00

ALSO AVAILABLE

IBM 71, 72, 82 typewriters.
Full workshop facilities for rebuilds and servicing. Keyboard ASCID-ASCII, 10-12 pitch, language conversions undertaken.
$11^{\prime \prime}, 13^{\prime \prime}, 15$ " platen lengths, split platens pin feed platens. Operational keylever repeats fitted on request.
Full IBM range of $10-12^{*}$ pitch heads including language, symbol and metric.
Language keybuttons blue or grey

WE BUY SELL OR EXCHANGE ALL IBM SELECTRIC TYPEWRITER MODELS

For further details phone Stuart Kirby or
Louis Baker Prices excl VAT @ 15% carriage \& packing, callers by appt only please

Saul Lodge, Saul, Gloucester GL2 7JE
Tel: 0452740612

REAL SUPPORT

HELP WHEN AND WHERE YOU NEED IT!

IIIZ-PC-1211 PC-3200

FULL BUSINESS SYSTEMS
WITH SOFTWARE NOW AVAIL. ABLE.

A SYSTEM IN YOUR POCKET COME AND SEE THE PRINTER

THE ULTIMATE SMALL BUSINESS SYSTEMHERE NOWI

Word Processing,
Top quality - Low cost
Data Processing
Hard Discs - Multi User

NorthStar

NASCOM, the greatest drama since CROSSROADS. Phone NOW for NEWS and PRICES.

BOOKS - large range in stock S.A.E. for list PRINTERS - MEDIA - CUSTOM \& PACKAGE SOF TWARE. If you have a PROBLEM, try us FIRST!

Phone CHRIS ROB INSON on IPSWICH (0473). 50152 for help or to make an appointment.

15 LOWER BROOK ST. IPSWICH. SUFFOLK.

Microcomputers on a mini budget

Businessmen and professional people alike can rid themselves of day-to-day problems and increased workload with a microcomputer.

Just a few tasks a microcomputer could be organising for your company, division or department:-

- Accountants
- Estate Agents
- Retailers
- Insurance Brokers
- Doctors
- Dentists
- Solicitors
- Architects
- Engineers
- Chemists
- Farmers
- Bankers
- Teachers

Sales Ledger Purchase Ledger Nominal Ledger Sales Forecasting Stock Control Job Costing Estimating Payroll
Word Processing
(automatic compilation editing and production of repetitive letters and documents)

- Prices exclude VAT

Johnson
 HIIIn

Johnson House, 15-79 Park Street,

Stack-Apple announce their APPLE-SHOP
 fast delivery one year warranty 0 full technical support

At last! A source where you can get any Apple-orientated product quickly, at a fair price and, most importantly, with the service and support that have made STACK-APPLE Britains' number one Apple supplier!

MICROSOFT Z-80 SOFTCARD

Microsofts innovative peripheral card turns Apple into one of the most flexible CP/M based systems you can buy. The Softcard actually contains a Z-80 processor and lets you switch between the Apples' 6502 and $\mathrm{Z}-80$ with simple commands, so you can use software written for either processor.
The Softcard gives you the two software standards-CP/M 2.2 and Microsoft 5.0 Basic with PRINT... USING, 16 Digit precision, CALL, CHAIN, COMMON, powerful file handling. Applesofts' graphics extensions are also supported. Softcard allows you to run almost any CP/M based language or applications package.

Nett
VAT
Total
£170.00
£25.50
£195.50

M \& R ENTERPRISES SUP-R-TERMINAL

This is the best of the 80 col . boards. 80 x 24 Upper lower case, user defined character sets in RAM. The Z-80 softcard and super-r-terminal work perfectly together. If you are planning to use existing CP/M packages written for an 80 column terminal they should be
compatible with this combination. The softcard B10S allow you to emulate any common VDU or terminal using the Apple keyboard and Super'R'Terminal.

Nett
VAT
Total
£245.00 £36.75 £281.75

SPECIAL
Z-80 Softcard and Super’R'Terminal Combo
Nett
VAT
Total
£370.00
55.50
£425.50

ANADEX GRAPHICS CARD

Our own printer card designed specifically for the Anadex DP9500/1 and new DP9000/1 printers. The card behaves as a normal Apple centronics interface but also
includes powerful graphics dump software on the ROM permitting dot-fordot reproduction of a hi-res image on the printer with almost any imaginable format either hi-res, page, normal or inverse, expanded in X or Y directions with varying scale factors, left, right or centre justified across page.

Nett £140.00 £21.00 £161.00

CCS ASYNCHRONOUS SERIAL

This is the serial card that goes where Apples' fears to tread! SWITCH SELECTABLE board, rates from 50 to 19.2K baud. On-board crystal, supports hardware handshaking with RTS, CTS DTE, DTR. Recommended for use with Apple Pascal, softcard, daisy-wheel printers, modem control etc.

Nett
VAT
Total
£113.00
£16.95
$£ 129.95$

VERSAWRITER

Versawriter is a highly versatile graphics tablet of robust construction that is a tremendous aid in using Apples' high resolution graphics. Cursor movement with simultaneous display of $X Y$ co-ordinates and
independent control of drawing size and scale. User defined shapes can be created, stored, positioned, rotated, even coloured (Up to 106 colours are available!). Apple with versawriter and printer can form quite an effective computer Aided Design at a fraction of the cost of conventional systems.

Nett
VAT
Total
£117.00
£17.55
£134.55

APPLE COMPUTER CARDS

Nett £113.00	VAT £16.95	$\begin{array}{r} \text { Total } \\ \mathbf{£ 1 2 9 . 9 5} \end{array}$
	Communications	
Nett	VAT	Total
£130.00	£19.50	£149.50
	Centronics Parallel	
$\begin{aligned} & \text { Nett } \\ & £ 130.00 \end{aligned}$	VAT	Total
	£19.50	£149.50
	Parallel Printer	
Nett$£ 113.00$	VAT	Total
	£16.95	£129.95
	Pascal Language Systems	
Nett £299.00	VAT	Total
	£44.85	£343.85
	Apple Fortran	
Nett$£ 120.00$	VAT	Total
	£18.00	£138.00
	DOS 3.3	
Nett$€ 39.00$	VAT	Total
	£5.85	£44.85
	Eurocolour	
Nett£113.00	VAT	Total
	£15.95	¢129.95
	roto-Typing Card	
Nett£15.00	VAT	Total
	£2.25	£17.25

STACK-APPLE No 1 for Apple Products

MOUNTAIN HARDWARE

$\begin{aligned} & \text { Nett } \\ & \text { £168.00 } \end{aligned}$	Clock Calendar	Total$\mathbf{f 1 9 3 . 2 0}$
	£25.20	
	Music System	
Nett$£ 312.00$	VAT	Total
	£46.80	£358.80
	Rom Writer	
Nett$£ 106.05$	VAT	Total
	£15.91	£121.96
	Rom Plus	
Nett£128.89	VAT	Total
	£19.33	£148.22
Copy Rom Superb disk copy utility on		
Nett £30.00	VAT	Total
	$£ 4.50$	£34.50

CALIFORNIA COMPUTER SYSTEMS

Centronics Card (new)		
Nett	VAT	Total
$£ 95.00$	$£ 14.25$	$£ 109.25$

IEEE-488 GPIB (Revised firmware) $£ 212.00$ £31.08 £243.80 Synchronous Serial RS232
$£ 113.00 \quad £ 16.95 \quad £ 129.95$
Asynchronous Serial
£113.00 Clock Calendar (new)
$£ 14.85$
Programmable Timer £12.60
.85

$£ 84.00$

 PIA (uses 682116 I/O lines)$£ 84.00 \quad £ 12.60$ £96.60 12K PROM/ROM/RAM card $£ 75.00$ £11.25 £86.25 240 Arithmetic processor
£240.00 $33 / 4$ digit BCD A/D unit
£120.00 $£ 18.00$
$£ 276.00$

Please send me:

\qquad

Cheque/P.O. enclosed for: $\mathbf{£}$

Name
Address \qquad

Prices include delivery.
Offical orders welcome.
STACK-APPLE 290-298 Derby Road,
Bootle, Liverpool 20.
Telephone: 051-933 5511.

CALL IN AND BUY A BETTER BUSINESS CREAM

ONE OF THE UK'S TOP BUSINESS SYSTEM DEALERS FOR BOTH THE
COMMODORE PET RANGE.
PROFESSIONAL DEMONSTRATIONS AND ADVICE.
WIDE RANGE OF RELIABLE \& POWERFUL HARDWARE TO CHOOSE FROM.
COMPREHENSIVE CHOICE OF FLEXIBLE SOLID SOFTWARE FOR MOST BUSINESS APPLICATIONS, i.e. WORD PROCESSING, PAYROLL STOCK CONTROL, RECORD KEEPING, INVOICING, AND FULL ACCOUNTING PROCEDURES.
OUR OWN EXPERIENCED SOFTWARE HOUSE TO HANDLE PROMPTLY \& PROFESSIONALLY ANY BESPOKE SOFTWARE OR TAILORING NEEDS TO PROGRAMS.
FAST DELIVERY (MOST ITEMS ARE EX-STOCK) FULL ENGINEERING SUPPORT.
FULL STOCK OF BOOKS, DISCS, TAPES, \& OTHER ACCESSORIES FORTTHE COMPUTER USER.

BUY FROM CREAM - IT MAKES GOOD BUSINESS SENSE.
CALL US TO DISCUSS YOUR PARTICULAR APPLICATION
POWERFUL APPLE II COMPUTER AND THE FULL
CREAM COMPUTER SHOP

380 STATION ROAD, HARROW, MIDDLESEX HA1 2DE. Tel. 01-863 0833

[^2] Surrey CR2 5AA
Tel: 01-668 0761/2

MIDAS S100 SYSTEMS

MIDAS 1 : From $£ 750$

MIDAS 2 : From $£ 1580$
MIDAS 3 : From £2150
MIDAS 4 : From $£ 5900$
ITHACA-DPS 1 : From £1075

- Our versatile $Z 80$ Microcomputers are available as standard units or custom configured to your exact specification from a comprehensive range of stocked S100 boards.
- Disc storage capacity of the MIDAS 3 can be 2 M Bytes, expandable to over 20M Bytes with a Winchester Hard Disc Unit in our MIDAS 4 range.
- MIDAS runs CP/M and MP/M is also available. Other Software includes M-BASIC, C-BASIC, FORTRAN, COBOL, CIS-COBOL, PASCAL and Word Processing.
- A MIDAS 3, with 64 K RAM and 2 M Bytes storage on two $8^{\prime \prime}$ drives with two Serial I/O Ports and CP/M 2 only $£ 2835$
Multi-User System (four users) - MIDAS 3 with four 48 K blocks of RAM, 1 MByte disc storage on two $8^{\prime \prime}$ drives and four Serial I/O Ports, and CP/M $2+\mathrm{MP} / \mathrm{M}-£ 3850$.
- Printers, VDUs and other peripherals stocked to give complete package systems at keen prices.
- Business Packages include Accounts, Stock Control, Purchase Ledger etc etc.

Boards stocked from Ithaca, Godbout, SSM, S D Systems, Vector, Micromation Mullen, Mountain Hardware, Hi-Tech, Video Vector, Pickles \& Trout, Central Data, Cromemco, Thinker Toys - Send for full Price List (many available in kit form).

PROCESSOR		RAM	
Z80 Starter Kit	£188	Dynamic RAM 16K - 64 K	from $£ 205$
SBC100	£208	Static RAM $8 \mathrm{~K}-64 \mathrm{~K}$	from £95
SBC200	£237	Memory Manager	£52
Z80 CPU's 4 MHz	from $£ 130$		
		1/0	
EPROM		2S/4P prov 4 K RAM/4K ROM	£169
2708 EPROM. (16K)	£60	$2 \mathrm{~S} / 2 \mathrm{P}$ or $2 \mathrm{~S} / 4 \mathrm{P}$ or	
2708/2716 Programmers from	£134	$3 \mathrm{P} / 1 \mathrm{~S}$ or $4 \mathrm{~S} / 2 \mathrm{P}$	from $£ 135$
2708/276 Programmers from		Analogue 8 or 12 bit	from £287
		Optically isolated I/O	£114
VIDEO		IEEE 488 Interface	£350
16 lines, 32/64 ch	from $£ 104$		
24 Lines, 84 ch	from $£ 265$	MISCELLANEOUS	
		Real Time Clock	£180
DISC CONTROLLERS		High Dens Graph/8K RAM	£333
Versafloppy S/D	£198	Hi-Tech Colour	£295
Doubler D/D	£280	Motherboards - various from	£34
		Extender Board/logic probe	£39
SOFTWARE		Maths Board AMD 9511	£330

CP/M 1 \& 2, MP/M, PL/1, C-BASIC 2, M-BASIC V5, XYBASIC, FORTRAN 80, COBOL 80, CIS-COBAL, PASCAL/Z,

 PASCAL (UCSD), PASCAL M/T, Forth, MAC, ZSID, Disassembler, Wordstar, Datastar, Magic Wand,Wordmaster, Supersort etc etc.
MAINFRAMES
We are the sole UK Distributor for Integrand Mainframes and Disc Enclosures, available in nine models including Desk Top and Rack Mounting, with or without provision for Disc Drives. All units totally enclosed, painted on all external surfaces and complete with power supply etc.

WRITE OR PHONE FOR CATALOGUE PRICES EXCLUSIVE OF VAT

System VIP

* Vector 3 terminal with 6-slot SI00
bus.
* Fast (4 MHz) CPU using the powerful Z80.
* 56K of user RAM.
* SerialRS232 port (110-9600 baud selectable), 3 -bit parallel ports.
* 80×24 display using 8×10 matrix.
* Full QWERTY keyboard plus separate numeric keypad and capacitance keys.
* UNISTOR disc drive giving 315K bytes of storage.
PLUS CP/M 2, Microsoft BASIC 80, SCOPE (text editor) and RAID (simulator debugger).

Almarc $+$ Vector Graphic

The complete partnership in Microcomputing

System B

* Vector mindless terminal.
* Z80 CPU with fast 4 MHz clock.
* 64K bank-selectable RAM (56K user RAM)
* 4 serial ports (all switch-selectable 1 10-9600 baud), 5 parallel ports.
* Flashwriter II video board (80×24).
* Interrupt handling on I/O board.
* Twin disc drives - 630K capacity.
* CP/M 2.2 operating system.

PLUS
Microsoft BASIC 80, SCOPE (screenoriented program editor), RAID (full screen dynamic s'mulating debugger), ZSM Z80 Assembier.

System 2800

* Vector 3 console chassis with 12 inch CRT and capacitance keyboard.
* Z80 based single board computer with serial port, 38 -bit parallel ports, 3 PROM slots and IK RAM.
* 64 K dynamic memory board and disc controiler.
* Flashwriter II video board (80×24).
* 6 slor SI00 motherboard
* Switch-selectable asynchronous baud rates (110-9600 bits/sec).
* IBM-compatible DUALSTOR twin 8 inch double density disc drives, giving 2M bytes capacity.

At ALMARC Data Systems, you can be sure of our experience of hundreds of Vector Graphic systems installed throughout the U.K. - all with 12-month warranty and the back-up of full service facilities carried out by experienced staff.

ALMARC are the specialists in Vector Graphic equipment with applications in word processing, business
systems, laboratories, research, schools, colleges, universities and industry. Plus an ever-growing list of compatible software Pascal, Fortran, Cobol, APL, Algol, Basic Compilerandothers.

We will be pleased to demonstrate how ALMARC + VECTOR GRAPHIC Systems equals The Complete Partnership in microcomputing.

LONDON COMPUTER CENIRE

NE!N! - IMPROVED! Additional Facilities RP 1600

NEW LOW PRICE £1095

60 CHARACTERS PER SECOND
THE FASTEST DAISY WHEEL PRINTER.
FAST, heavy duty commercial DAISY WHEEL printer, with high quality printout, coupled with low noise necessary for office environment. 124 char: upper/lower case. * 10/12 chars per inch giving 126 or 163 columns. * 15 inch wide friction platen. *BOLDING, underline, and host of other features. "Centronics type parallel interface as standard options: serial interface £60. *PET interface £65. * APP LE interface $£ 75$.

Made by Ricoh in Japan Dealer enquiries invited

TRACTOR FEED OIE £175 SHEET FEEDER
OPTIONAL EXTRA $£ 550$.

ULTRA QUIET. HIGH quality PRINT COWER CASE DECENDERS BI DIRECTIONAL, LOGIC SEEKING PRINT HEAD $80,66,132$ Columns per IIns UNICUE BOLOING BUILT IN FEAT URE 64 Graphic
Characters (TRS SC \& Prestel) 9×9 PRINT MATRIX. \& Sign Forms Handling: Top of Form Horizontal and Vertical Tabs. Centronics paraliel interlace standard, Optional extra replaceable head. oealer enquiries inviteo

80 CPS + double spacing and mono spacing 10 and 16.7 CPI • $n \times 9$ proportional spacing, 3 way paper handling * 96 character set Expanded print *ight margin justification * Underlining Bidirectional ${ }^{\text {E }}$ £ sign contronies parallel and serial interfaces standard "optional extras: PET \& Apple interfaces.

OKI MICROLINE 80/132. THE QUIET PRINTER YOU CAN LIVE WITH

WITHESIGN
To quitiest Dot Matrix available. 40,80 or 132 cols per line excellent print quality" 3 way paper handling: letterheads, fanfold, or paper rolls * graphics *ideal for saftware written for large 132 col printers * continuous rating printing day in and day out * centronics parallel standard. Options: Rs- 232 PET Apple NEW LOW PRICE f350 DEALER ENQUIRIES INVITED

State of the art second generation computer Over 10,000 already. sold in USA, 8 slot bus ensures expansion of hard discs \& other peripherals., 76 Key professional keyboard, self test on power up, TRSDOS \& Level III basic standard. CP/M available as option. making a wide range of accounting, educational, scientific \& word processing packages instantly usable.
Nation wide service through 180 Tandy stores \& computer centres.
NOW WITH CP/M 2.24 £1999

CPM SOFTWÁRE
Word Star
Word star mail merge
Magic Wand
Data Star
T/Maker
Report Writer (VisiCalc)
Accounts Packages
Payroll
250.00
315.00
250.00
195.00
175.00
90.00
from 295.00 from $\quad 295.00$

Various other packages, available - ask for details.

SOFTWARE FOR TRS-80 Electric Pencil (disc)
Electric Pencil (cassette)
Scripsit (disc)

NEW SUPER BRAIN DUAL DENSITY $£ 1595$ QUAD DENSITY $£ 1995$

Now with CP/M 2.2 \& increased disc storage. Twin $280-A 4 \mathrm{MHZ}$ * 2 disc drives, dual density 320 K quad density 700 K storage *64K Ram * High resolution 12 inch CRT 80×24 lines upper/lower case * 2 RS- 232 printer ports * CPM 2.2 operating system *M basic, COBOL, FORTRAN, Pascal, Word processing \& accounts packages available DEALER ENQUIRIES INVITED.

New greenscreen VDU, with rock steady display. Redesigned 32 K expansion intrface with trouble free disc operation, two 40 track teac disc drives, complete with cables.
Tridata sales, purchase, invoicing, payroll packages available.

$$
\begin{array}{ll}
\text { Scripsit (casse tte) } & 60.00 \\
\text { Mail Merge for Pencil/Scripsit } & 45.00 \\
\text { VAT Aid Programme } & 45.00
\end{array}
$$

MISCELLANEOUS
Floppy discs (Box of 10) including library case. Xcel Silver $5^{\prime \prime}$ single sided double density For Pet, Apple, TRS-80 \&
Superbrain
25.00

Xcel Gold $5^{\prime \prime}$ double sided double density
For Superbrain
30.00

Memorex 8" Single Sided
double density
60.00 Qume Daisy Wheels
35.00
75.00

LOW COST WORD PROCESSOR I

Based on TRS-80 level 216 K cassette recorder, electric pencil software, upper/ lower case mod, printer interface and OKI Dot Matrix printer. Complete ready to go $£ 895$ free mailing list program. WORD PROCESSOR II
Same as above but with 48K, 2 disc drives and ricoh daisy wheel printer $£ 2275$ WORD PROCESSOR III
Based on Superbrain computer shown above. With Ricoh printer \& "Magic Wand" the ultimate in word processing. Letters automatically formatted with addresses fetched from separate file. Complete system $£ 2950$. Invoicing, stockcontrol, sales ledger, purchase ledger, payroll available for above computers from $£ 250$ per package.

DATABANK

BUSINESS - PACK

- WORD PROCESSOR
- PAYROLL
- BANK ACCOUNT

MAILER/LETTER - CASH REGISTER - STOCK CONTROL SALESMAN COMPLETE PACKIC LIBRARY APPLE II / IT T 2020
(disk)
ONLY: $£ 99$

SPECIAL - PACK

* SUPER STOCK CONTROL

Stock update - valuation - indexes

* FILING CABINET
* DOUBLE ENTRY LEDGER
* YEAR PLANNER

COMPLETE PACK(inc. DISK, DOCUMENTATION A POSTAGE): APPLE II / |TT 2020 (disk)

\star INCREDIBLE PRICES
OR MORE DETAILS FROM:-

ORDER
 NOW.

[DATABANK [

66, Queens Road, Loughborough, Lelc.

 Tel. 0509217671GAMES-PACK

- Snooker
- Crossword
- Noughts \& crosses
- Space dogfight
- Startrok
- Phaser
- Jet flight
- Spaceship
-Klingon
£ 20 (Inc. aiak a postroso)
APPLE \| - ITT
- STATISTICS
- GRAPH PLOT $£ 20$
- ASTRONOMY

APPLE II \& ITT 2020 Price includes: DISK \& POST

SAVE MONEY WITH

 DATABANK

Cheque with order for our 'by-return' mail service.

Your computer? mORE DETAILS Apple II \square ITT2020 \square |disc |

Name
Address

Postcode

If you're looking for an above average line printer at a lower than average price then the WH14 from Zenith Data Systems is your first choice

Microprocessor controlled, this compact tabletop unit can be used with most computers through a standard serial interface. It provides hard-copy output of your programmes as you execute them, plus handy copies of address lines, lists and other programming data for educational or business applications.

Features include:

- 5×7 Dot matrix printing
- Clear easy-to-read images
- Upper and lower case characters
- Operator/software selectable line width: 132, 96 and 80 characters per line.
- Sprocket paper feed with adjustable spacing
- Stepper motor feeds allows 6 or 8 lines per inch vertical.
- Form feed operator/computer control
- Microprocessor based electronics

And at $£ 449$, exclusive of VAT and delivery charges, the WH14 puts economy first in line too.

Generous OEM
discounts are available.

Zenith data Hearle systems

For full details of the WH14, complete this coupon and return it to:

Zenith Data Systems Division, Heath Electronics (UK) Ltd., Dept. (Pcw 391), Bristol Road, Gloucester, GL 2 6EE.

Name
Company
Address

SOFTWARE FOR APPLE/PET

NOW you can WRITE PROGRAMS FAST for the Apple II/PET. Using our modular data handling approach, many tasks are reduced to your calculations - plus simple calls to our routines to handle all the disk input/output - screen editing and input of data report production.
At a cost of $£ 40$ for the main 4 modules (Define DESCRIPTION - READ file DESCRIPTION FETCH - STORE) its going to pay for itself very quickly. Also available are: AMEND - MOVE - MOVE COMPUTED - PRINTER (PRINTER requires MOVE and MOVE COMPUTED).
ALL 8 MODULES for $£ 64$ - with more modules to follow.

COMMODORE WHY PAY MORE? SAVE $£ 200$

3032 PET - 3040 Disc - 3022 Tractor Printer -c2N Cassette - 2 Cables - Pet Revealed. Our price $£ 1722$ (ex. VAT). Save $£ 50$ on most units. Full range of Commodore programs available plus programming and extended maintenance.

APPLE

- The Apple is great in a business environment, with our commercial systems software.
- An Apple based Word Processing System is available for only $£ 1990$, including software.
File management/database systems available.
- For the technically minded there are CCS boards, including Arithmetic Processor, ROM, IEEE interface, Synchronous and Asynchronous Serial Interface, and an A-D converter.
* 18 months guarantee included

HIRE - ном CCS Microhire

- The leading microcomputer hire company.
- Available are: Apple, PET, Exidy Socerer, Seed System One/ MSI 6800, NASCOM/MICROS, and the Tandy TRS 80.
- Perioherals also available, and software!
- New monthly rates - $£ 79$ to $£ 99$ per month (8 K to 48K).
cCS Microsales
and
CCS Microhire

WE HAVE RELOCATED! Visit or contact us at our new showroom
7 The Arcade Tel No. (04626)-73301
Letchworth Telex 261507 (Ref 3244)
Herts

STAROUEST

INVASION ORION

an Automated Simulations Game

Welcome aboard the STARFLEET. INVASION ORION is more than a unique space battle game designed to challenge your tactical skill and imagination; it is in fact, a multitude of games that should provide you with years of enjoyment. In addition to the Space Battle program itself, the cassette supplied with the game also includes a separate programme that allows you to set up any of the 12 scenarios using 2 to 15 spacecraft described in the manual or to create entirely new ones based on your favourite science-fiction novels, films or your own vision of the history of the future.

£13.95 Lu 16k Cassette (INC. VAT, P.\&P.)

Starfleet Orion

£12.95
Same system as 'Invasion' but for 2 players, includes Battle Manual and Ship Control Sheets.

Rescue at Rigel

£10.95
Is a graphic, real-time quest. As Sudden Smith with Force Shield and Blaster you make your way through several levels and scores of rooms to find and beam to safety the prisoners.

ALGRAY House, 33 Bradbury Street. Barnsley. South Yorkshire Tel: Barnsley (0226) 83199

The Z19 'intelligent' Video Terminal, from Zenith Data Systems, is ideal for a wide variety of high-speed data handling tasks.

Compatible for use with ELA RS-232 or 20 mA current loop, it has all the capabilities and features you'd expect from a top-of-the-line peripheral.

Z80 Microprocessor based electronics

- Special deflection system for sharp resolution
- Full editing functions, plus user-definable keys
- Reverse video by character

24 lines of 80 characters plus 25th user status line

- 5×7 Dot matrix (upper case)
5×9 Dot matrix (lower case)
128 characters (95 ASC11 and 33 Graphic)
ANSII and DEC VT 52 compatible
And there's one feature of the Z19 you wouldn't expect. The price. Just $£ 548$ exclusive of VAT and delivery charges.

Generous OEM discounts are available.

Zenith data Heary systems

For full details about the Z19, complete this coupon and return it to:

Zenith Data Systems Division, Heath Electronics (UK) Ltd., Dept. (Pew 3/84), Bristol Road, Gloucester, GL2 6EE.

Name
Company \qquad
Address \qquad

Old tricks for new Pets. . .

COMMANO-D is a FOUR KILOBYTE Rom for the $4000 / 8000$ Basic 4 Pets with all the "Toolkit" commands RENUMBER (improved), AUTD, OUMP, OELETE, FINO (improved), HELP, TRACE (improved \& includes STEP), and OFF - plus PRINT USING - plus four extra disk commands INITIALIZE, MERGE, EXECUTE: and SENO - plus extro editing commands SCROLL, MOVE, OUT, BEEP, and KILL - Plus SET user-definabla soft key, 190 characters - plus program scroll up and down - plus 8032 control characters on key. Ask for Moded

New tricks for old Pets. . .

OISK-O-PRO is a FOUR KILOEYTE Rom that UPGrades 2000/3000 Pets, but lets you keep all your ald software - including Toolkit. As well as REPEAT KEYS and PRINT USING, you get all the Basic 4 disk commands CONCAT, OOPEN, OCLOSE, RECORO, HEAOER, COLLECT, BACKUP, COPY, APPENO, DSAVE, DLOAO, CATALOG, RENAME, SCRATCH and
OIRECTORY - plus extra disk commands INITIALIZE, MERGE, EXECUTE OIRECTORY - plus extra disk commands INITIALIZE, MERGE, EXECE BEEP and KILL - plus SET User definabla soft-key, 80 charactars plus program scroll-up and ecroll-down. We recommend the 4040 diak or upgraded 3040 for full benefit of disk cammends. Ask for Madel DOP-16N for new Pets 2001-3032, and 2001-8 with retrofit Roms \& TK160P Toolkit. $£ 50.00$ plus Vat, other models available.

PRONTO-PET herd/soft reset switch for the $3000 / 4000$ Pets. We don't think you'll "crash your Pet using our software, but if you do the Pronto-Pet will get you outl Also clears the Pet for
the next job, without that nasty offlon power gurge. $£ 9.99$. Vot

and no tricks missed!

KRAM Keyed Random Access Mathod. Kid your Pet it's an IBM! VSAM disk handling for 3032/4032/8032 Pets with 3040/4040/8050 disks means you retrieve your data FAST, by NAME - no tracks, sectors or blocks to worry about. Dver 2,500 users worldwide have joined the "Klub"I Now you can too. at the 1981 price, $£ 75.00$ plus vat. SPACEMAKER All our Rom products are compatible with each other, but should you wont, say, Wordpro with Kram, or Disk-o-pro with Visicalc, then spacen the flip of aw both Roms to adoress ane

We are sole UX distributors for all these fine producte, If your CBN dealer is out of atock, they are available by mail from ue, by oheque/Access/Baralaycard (UK post paid) or send for details.

Two more products from Mutek BASIC 1 \& 3

Two replacement PROMs for all OSI and UK 101 BASIC-in-ROM systems: BASIC 1 removes the input 'mask' to allow direct entry of graphics from either keyboard or cassette
BASIC 3 contains the patch for the string-handling 'garbage collector' bug, as published by the OSI/UK User Group

$£ 15.00^{\text {+hat }}$

for the pair, including notes and installation instructions

Serial to parallel converter

300-9600 baud RS232 serial input Centronics-compatible parallel output

$£ 40.00^{\text {that }}$

including case, cables and documentation

SHARP MZ-8OK INTERFACES

- Parallel Printer Interface
- Serial Printer Interface £150
- Bi-Directional Serial Interface £210
- 16-Channel A/D Convertor Unit £280
- Fast Data Acquisition System 40,000 readings/sec. 4 analog channels IN and 4 channels OUT.
P.O.A.

PET INTERFACES

IEEE-488 Compatible Units

- 16 Channel 8-Bit A/D Convertor £300
- 8 Channel 8-Bit D/A Convertor £350
- 8 Channel 12-Bit A/D Convertor £600
- 12-Bit D/A Convertor
P.O.A.
- X-Y Analog Plotter Interface £200
- Digital Data Input Unit, 64 Bits £400
- Digital Data Output Unit, 64 Bits $£ 350$
- 16 Channel Relay Unit $£ 350$

Also...

- USER Port Convertor A/D plus D/A £200
- Fast Data Acquisition System

40,000 readings per sec. $4 \mathrm{~A} / \mathrm{D}+4 \mathrm{D} / \mathrm{A}$
P.O.A.

All units boxed complete with IEEE-488 address internally selectable, with integral power supply, cables, switch, fuse, indicators and illustrative BASIC software.

TERMS: All prices EX-VAT. P\&P extra. Cheques should be made payable to 3D Digital Design \& Development. All goods supplied under 90 days warranty. CUSTOM DESIGN UNDERTAKEN

TOMORROW TODAY

 at Birmingham Computer CentreCommodore official distributors

3016, 3032, 3008 PETs
The reliable value for money system with after sales support, instruction and training facilities and a wide

Disk

 drive with controller £1,044 + VATThe incredible computer system. Now available ex-stock including the new dual drive duble sided floppy.disk.
THE ULTIMATE IN DAISYWHEEL PRINTERS RICOH RP 1600

Camdon Electronics, First Floor, 462 Coventry Road, Small Hoath, Birmingham B100UG. Tolephono 0217738240 Open Mon.-Sat. 9.30-6.00 p.m. a member of the computer re tailers association

All the power and built-in peripherals for business and educational computing in one compact, desk top unit.

The Z89 Series Microcomputer.
Designed and built to the highest specification, the Z89 combines reliability and efficiency with ease of operation. And is backed, of course, by our excellent after sales service.

Features include:
Z 80 CPU

- Built-in floppy Disc with optional dual external drives
- Built-in Z19 VDU
- Up to 65K RAM
- Three serial RS-232 I/O
- Operating systems C/PM \& H.DOS.
- Languages: M-Basic,C-Basic, Fortran,Pascal, etc.

And with generous OEM discounts available you can see why the Z 89 is a better computer.

Zenith data
 systems

 HEATH zenurnFor full details about the Z89, complete this coupon and return it to:

Zenith Data Systems Division, Heath Electronics (UK) Ltd., Dept. (${ }^{\circ} \mathrm{c}$ звя 1), Bristol Road. Gloucester, GL2 6EE.

Name
Company
Address

CRAcuts three teeth

The appointment of the CRA's three-man steering. committee is no surprise to readers, I hope, after the irritation felt in Commodore circles recently. My phone was still warm from the imprecations of a Commodore dealer complaining of the treatment meted out in this column to said company, when he rang again, having rapidly changed his, tune.
'Have you seen,' he asked 'the new terms and conditions? I don't know, just as you think they've turned over a new leaf they come out with someth ing stupid like this - the Computer Retailers' Association is in an uproar. . ' and so on.

The story goes something like this. Last year, an ambitious company called Isher-Woods went bust. The proprietors sold the company off, lock, stock and barrel, for' a song. Isher-Woods was a PET dealer. In stock at the point of bankruptcy was a fair old heap of PET equipment which had not been paid for and when Commodore rolled up to collect its share of the debris, it turned out that it wasn't going to be paid for, either.

Apparently Commodore had failed to put in a fairly standard clause to the effect that it was entitled to a priority share of the money raised by selling the equipment, or that the machinery belonged to Commodore until it was sold. Commodore accordingly retired to lick its wounds and redraft its terms and conditions of sale.

The clause which says that a dealer's stock of PETs remains the property of Commodore until it is paid for is one result and not many PET dealers would argue with that. What has enraged one or two of them are two extra clauses. One, rather astonishingly, claims that 'time is not of the essence' in delivery and the other insists on a trust fund for the money received from any PET sales.

The 'time' clause is explained as follows: if goods from Commodore are delayed, then a dealer has to wait for two weeks 'minimum' before he can contact Commodore
and insist on prompt delivery. As one dealer said, angrily, 'If we get goods on 30 days credit and can't sell them for at least two weeks, then it becomes 14 days credit at most.'

If the other clause is invoked (Commodore says it won't be) then the dealer won't be getting even 14 days. All the money he gets from the sale of the equipment has to go into the bank. Not his bank, but a special account belonging to Commodore. He has, in effect, to pay cash.

Hence the setting up of a special PET division within the CRA and, for good measure, special Apple and Sharp divisions, too, representing the dominance in the UK market of the three machines.

The Sharp division couldn't happen in America, because there is a deal between Sharp, and Zilog, which gave Sharp the licence to make the Z80 micro for the MZ-80K from its own design. The deal prohibits Sharp from selling into Zilog's patch. Mind you, this nice little carve-up is close to ending. Watch the American press for the announcement of the next Sharp over there, deal or no deal.

Medical marvel

'Doctor, I need another tetracyclene prescription the symptoms are easing encouragingly but I feel prognosis will be greatly enhanced by taking a prophylactic attitude to reinfection and I'll collect the form from you this afternoon.'

Well, you might just as well, mightn't you? The doctor has no real idea of whether s/he prescribed only one week's supply last time or two, and whether you did or didn't have the second prescription. S/he can find out, but just writing all the repeat Px forms can take over four hours each day.

Medicom, which is moving into surgeries with micros, has now produced a system
to keep track of repeat prescriptions. It also does other practice managment jobs, but repeats alone will pay for it, they say..Details 01-5795845.

Which Cobol?

We can expect some interesting fights in pubs among people who like writing programs in Cobol on micros. Some of them will be staunch supporters of the Cobol compiler which Micro Focus supplies and which runs on several orthodox 8 -bit micros plus the powerful Intel 8086 16 -bit micro.

Others will be enthusiastic about a new Cobol called Alpha Cobol, a version which coverts Cobol into instructions for the Alpha Microsystem, a machine that uses the S100 bus, but in most other respects looks like a good old-fashioned 'big mini', rather like a DEC PDP -II in fact.

The proponent of the new Cobol is Angusglow, whose proprietor is Tony Sale. His claims for the compiler include: 'The only true multi-user (concurrent compilation); the fastest compiler; the most intelligent (error detecting and correcting); the fastest in execution; produces the most compact code; has the most extensive level 2 implementaction (?).'

Contact him on 02302
2788 or his agent, Leo Scheiner, 01-4860702.

ZX80 wisdom

It is more important to tell an operator what to do after pressing RUN, than it is to tell the operator why the computer does what it does when you do.

That gem of wisdom is contained in my latest copy of the ZX80 micro user Interface, which emerges from the National User Club every so often.

It comes after a neat list of standards (standards being things that computer people love to play with) which you need if you are going to swap programs with other ZX80 users. And it is in an equally neat list of reasons why you should avoid most documentation, this being something else which computer people love to play with.

I'd welcome some readerthoughts on documentation; and you can start from this thought that there are two types of documentation: first, there is the documentation you add to your own programs so that while you are writing them you can find out what you've done wrong. And second, there is the sort of documentation you add to a program which somebody else will run, so that they can run it.

The first case would contain an Apple and two disk drives fully connected, Microsense suggests. The second case holds a video monitor; by plugging the monitor into the Apple and plugging the lot into the mains, you have an instant Apple demonstration kit for a mere $£ 60$. Phone Hemel Hempstead (0442) 48151.

They don't write numbers like this any more; Intel's latest offering is a 16 -kbit static RAM chip. It's cheaper than it it might be, because it has spare transistors on the chip. Like the chip soon to be released by Inmos, Our Own Taxpaid Chip Company, this memory chip can be tested on the production line - any dud columns of transistors can be switched out of the array and new ones switched in. So Intel gets more good chips and so it charges less. Still doesn't make the chip all that cheap, but one day it will.

It's the first sort that Tim Hartnell is talking about of course, when he says if the algorithm is not transparent, document.' He has in mind the time when you want to change the program and won't be able to understand the brilliant flash of insight which produced the code late one night. The second sort is much more important to someone who is trying to sell 1000 copies of his code; he wants to make sure that nobody who didn't pay for the program can run it. Not, that is, without the little booklet that tells him what to do to avoid the dis-aster-trap he has set (and it is the booklet which costs $£ 15$, not the cassette or disk).

Standards on the ZX80 are more important than on many micros because it has no printer yet so you have to type out your programs by hand. And standards such as 'the symbol * signifies a blank that is necessary in a PRINT statement' are essential in this case. So write to Unit 3, Woodthorpe Road, Ashford, Middx TW15 2RP for the
Users Club, and send an SAE for details.

MZ-80K
 hot upkit

Newbear just can't leave well alone on the Sharp MZ-80K micro - it has launched more additional functions, in software, available on cassette. Apparently you get 11 additional functions without the use of any extra memory. The package costs £12.50. They are: Break, Trace, Single step, Block delete, Renumber, Auto number, String inequalities, Logical operators, Set Reset, USR(x) and Print cursor control. Details on 635 30505.

Enter the heavies

Big companies find it hard to do original things, mainly because they don't run out of money. So it was that the network of computer dealers in Britain appeared courtesy of no large established comp anies, not even the ones like IBM, ICL or Univac or even Digital Equipment, Zilog or Intel, who could have been expected to have some idea of what to do. Now that many of the pioneers are rich and established, it is much harder to get into the market and so, here come the big guys at last.

Curry's was the first and now Xerox has climbed in. It has opened two stores in London, calling them 'onestop business efficiency stores' in massively expensive, prestige offices in the city centre. Well, the West End, actually. And it is planning more in other major towns over the next 18 months.

I notice it sells Apple. A good move - as long as it doesn't fall for the Apple III (see story elsewhere)

Details on 01-370 6971

Smooth scroller

You will have noticed my fondness for the Hitch Hiker's Guide to the Galaxy in the past. Accordingly, you will have dutifully glued yourselves to the screen of your telly, now that it is out from behind the modest shrouds of radio, and you will have noticed that the Book (electronic, containing useful information on 100,000 planets) has the dinkiest little video display. And it's only a couple of inches thick!

Well, save the excitement - it's a fake. That screen doesn't have a single computer
generated line, word or letter on it - it's all animation from an art studio - and is in fact a standard cinema screen. The projector is out of sight.

That said, you will have noticed that there was a nice, smooth system for moving all the lines of text up one line when the page was full unlike the abrupt flicker you're used to on your micro.

That, surprisingly enough, is available on a real computer terminal. Un fortunately, it's not only very expensive (it is Digital Equipment's VT100) but DEC can't make enough to give one to everybody who likes them.

So you can buy a little machine which emulates it, from Mostek, using its own version of the Zilog $\mathrm{Z80}$ micro. It'll produce a split screen, just like the Guide, and the lines will scroll smoothly. But it won't make God vanish in a puff of logic. Details on 01-294 9322

Intel EAROM

Intel's latest clever chip is a memory which has the ominous-sounding ability to be reprogrammed from a distance.

It is a 'permanent' memory chip like the ones which most micro builders use to hold the monitor program (the one which runs constantly on every machine, waiting for you to press a key and then deciding what that key means) but unlike the normal permanent chip (EPROM) which can only be changed by completely erasing everything in it with ultra violet light, this one can be erased by electricity.

That means, theoretically, that Transam's idealistic service to users of its original

Triton kit - it supplies all new software free to users of the old software - could be done by phone. The Transam computer could phone yours, and tell the circuitry to erase this chip, then load in new data.

This is one of several excit ing possibilities which Intel is suggesting in an attempt to wake us all up to the arrival of the new chip. When it actually arrives.

Posh printer

Anybody who has ever watched in fascinated horror as someone leans over the printer and puts his foot in the box of concertina-folded continuous paper, will understand why Data Dynamics is so pleased with its £995 fast (120 characters per second) terminal. It has the paper inside, out of cigaretteend and coffee-spill dangers. And the price looks good enough for them to quote in their announcement, usually a good sign. Details on 01-8489781.

Authors wanted

Successful Software for Small Computers is a book which you may have read recently, especially if you use Tandy's TRS-80 Model I.

The next publication from the same house could be absorbing reading for your computer because the publishers, Sigma Technical Press, is looking for software authors.

Sigma sees two types of publishable software: collections of small- to medium-size. programs and large, specialised business programs. The big

This is Lear Siegler's latest dumb terminal but it is actually a bit smarter than a truly dumb terminal, says Lear. But it's not smart. Ask Lear, not me: they're on 0486780666.

NEWSPRINT

business software will be supplied on tape or disk with a booklet to back it up. The smaller stuff will be supplied in a book, with optional tape or disk back-up. Either way, the author will receive royal ties exactly as if he'd written an ordinary book. Details on 0625531035 , or write to 5 Alton Road, Wilmslow, Cheshire SK9'5DY.

Forth sally

It has always been rather frustrating to those of us who waited to find out how to write programs in the language Forth to be told that virtually the only micro which could understand it was a strange beast supplied by RCA.

Since the claims made for Forth include the suggestion that it takes a tenth of the time needed to get a Basic program working properly the frustration was felt quite keenly

So a Forth compiler at £100 looks like a brilliant idea. It comes from some one called F Donavan, whose address looks very similar to that of one of this magazine's own consultants, and the price includes 'a comprehensive manual, the Using Forth book, two sample programs, and the compiler itself.

The only snag is that I can't afford the Research Machines RML $380 Z$ which the compiler runs on. A lot of schools already have these machines, of course, but the rest of us will have to wait for a version for the 6502 micro (found in PET, Apple, Acorn and Microtan). The formation of a new subset of the RML user group is similarly good news for them but not for most of us.

Donavan explains the choice: 'I am a non profit making enterprise, existing to promote the easy exchange of software amongst 380 Z owners.' He or she is at 35 St Julians Road, St Albans, Herts

Ah well, just have to get the $£ 120$ Forth package from Digital Devices which runs under CP/M. It's one of several CP/M compatible packages written by the US company Supersoft, which DDL is selling here. Details on 089237977

ZX80 active display

The one thing that nobody was ever going to do with a Sinclair ZX80 toy computer was to play Space Invaders. It couldn't be done because the computer can't generate the picture of green meanies at the same time as it decides where to move them, or whether one has been exterm. inated. So much for theory.

Ron Bissell and Ken

Macdonald of Solihull have blown theory right apart by producing a program called Amazing Active Display. You can get it two ways, possibly three. First, you can buy Tim Hartnell's book Making The Most Of Your ZX80, where the program is listed and explained, as one of several examples of how to program the computer. Second, you can buy the active display program for $£ 5$ from Ken Macdonald, who wants an SAE sent to him at 26 Spiers Close, Knowle, Solihull, West Midlands B93 9ES. Third, Clive Sinclair himself the proprietor of the ZX80, is tickled pink by the amazing display because it can make Space Invaders possible after all. And he is setting up a software division, much to the disappointment of ACT Petsoft which had hoped to have his exclusive franchise. This software division hopes to sell programs from everybody, including Bissell and Macdonald. It doesn't stock Space Intruders (that's the ZX80 version) yet, because it wants a version that will fit into the memory of the standard ZX80 and at the moment Bissell's code needs most of 2 kbytes, twice that of the standard machine.

Speech recognition

PCW's editors made an interesting visit to the National Physical Laboratory a week or two back. They saw what is claimed to be a new approach to speech recognition by computer - in this case an LSI-11. NPL suggests that recognition systems which depend on words or phonomes are pretty limited in their application and not only that: most
systems available at the moment are trained to recognise only one voice. NPL's system overcomes these disadvantages by accepting speech continuously and cleaning' it of its natural colour - intonation, pitch, speed and so on. The resulting 'speech' sounds weird but is just about recognisable for humans.

During this stripping process, the number of bits required to represent, say, one second of speech are drastically reduced from 80,000 to 1600 , therefore speeding up the next stage that of matching the input with sounds, words and phrases held in the ccmputer's memory. At the moment, this table is limited to around 64 words because of the time taken to match the incoming patterns with each table entry as they came in. Of course, if time didn't matter then the table could be as long as you like - have a few megabytes on disk, why not?

The NPL system doesn't mind too much if you're in the habit of running your words together; it could pick three words out of 'notinews - if the match table contained the words not, tin and news, for example. All this talk of matching tables has probably diverted attention from the fact that the system actually works as a sub-phoneme level using 16 speech features. There are more, in fact, but they haven't been implemented yet. The features are stuck together to form a pattern for each word or phrase to be matched.

The hard work, that of reducing speech down to the minimum recognisable size, is done by nine analogue processors working in parallel. Each board is res-

PCW 'Reader Survey' (inexplicably referred to last month as 'Printer Survey') winner Larry Woods of Birmingham 's Aston University, pictured receiving his prize, a Sharp MZ-80K. Larry, an assistant librarian at the university, will be able to use the machine as part of a microcomputer project he is undertaking. Pictured from left are: Derek Bailey, of Camden Electronics, Small Heath; Larry Wood; Ron Bailey, also of Camden Electronics; and Paul Streeter, Sharp national sales manager. Our thanks to Sharp for donating the computer and to the 7000 -odd readers who took part in the survey
ponsible for reducing a different speech feature to its its component parts. The results are then blended together to form the input to the LSI-11

Now, the main reason for this news item is to announce a Speech Recognition Club which is open to commercial establishments (subject to committee approval) who feel that they could contribute to and benefit from an association with the speech recognition unit at the NPL and with other companies working on related projects. For example, a manufacturer joining the club may well find a software house already involved in producing programs which he could use in his-systems. There is an entry fee of around $£ 8000$ but which is varied according to the benefit derived from the association. No-one joining the club will have to reveal anything about their developments other than that which they wish to reveal. The NPL will share its accumulated experience in speech recognition and, hopefully, will see its brain. child incorporated in commercial products

The man to contact is Dr David Schofield, NPL Teddington, Middlesex TW11 0LW. Telephone : 019773222.

Happy ending

For a few horrible moments, it looked as though Britain's pioneer micromaker, Tang. erine, might have to polish up its image.

The company has just launched a £200 'black box' which turns your ordinary television (rented, even) into a Prestel terminal. So what could go wrong with its image?

Administrative confusion is one answer, unnecessary suspicion of their customers could be another. Either way it seems the problem has been solved, a tremendous relief for the British computer kit business. It started as a joke. For Datalink's Xmas issue we invited people who had trouble in their relationship with their computer to write to one of the paper's less feminine staffers, Benjamin Wolley, for instant psycho-system analysis.

In amongst all the wisecracks was a plea from a Tangerine customer whose kit had been lost in the post and who had been trying for four months to find out where it had gone and who was responsible. Tangerine had written a rather unsympathetic letter, he said, stating that he should seek compensation from the Post Office (maximum $£ 10$ or so, since the parcel was uninsured).

We were all delighted to find, when we contacted

You're never alone

 with a Commodore PETIf you buy just any make of microcomputer you could find yourself on your own. And that's serious. Because without first class software and support, all you're left with is a box of wires.

On the other hand, when you buy Europe's No. 1 microcomputer, the Commodore PET, you have access to the largest and finest range of software in the UK today; the most experienced dealer network; 24 hour field maintenance service; plus our very own training courses and user's club - all to ensure that you get the best from your system.

Adda Computers Lta Advanced Manageme C.S.S. (Business Equipment) Lid. E8, 01.2549293 SE13.01.3184213 Computer Sales \& Sottware Centre Lid.
Cream Computer She HARROW, 01-863083 EDGWARE, O1-952 0526 Henderson Bennett, Home and Business Computers,
E12.01-4725107 mpiters NW9, 01-2047525 Logic Box Lid. Merchant Systems Ltd Micro Computer Centre SW14, 01-8787044 HAMPTONHILL, O1-979 4546 Sumlock Bondain Sumlock Bondain Ltd,

Mhouse Designs LId,

 ALTON, 84517 H.S.V.Lto MMS LtdBEDFORD, 4060 D.D.M. Direct Data Marketing Amplicon Micro Systems 168 BRIGHTON, 562163 Etc) \td CAMBERLEY 2044 CAMBRI Computer Store, Wego Computers Ltd. DataviewLtd Amplicon Micro Systems Lto CRAWLEY, 26493

S.M.G. Microcomputers, GRAVESEND, 55813
South East Computers.
HASTINGS, 426844
HATFIELD, 60980
Alpha Business Systems, HERTFORD. 57425
Commonsense Business Systems
Ltd, HIGH WYCOMBE, 40116
Kingsley Computers Litd, HIGH WYCOMBE, 27342
Brent Computer Systems, KINGS LANGLEY, 65056
Computopia Lid.
LEIGHTON BUZZARD, 37660
South East Computers Ltd,
MAIDSTONE, 681
J.R. Ward Computers
MILTON KEYNES 5628
Sumlock Bondain (Eas
Ltd, NORWICH, 2625
T\& J Johnson (Microco Etc) Ltd, OXFORD, 73
READING 61492 '
SLOUGH 72470
B
SOUTHAMPTON, 738248
H.S.V. Lto
SOUTHAMPTON, 22131
Super-Visio
SOUTHAM
Symtec Systems Ltd, SOUTHAMPTON, 38868
Stuart R Dean Lid,
SOUTHEND-ON-SEA, 62707
The Computer Room
TUNBRIDGE WELLS, 41644
Orchard Computer Services, WAL INGFORO 35529
WALLINGFORD, 35
Photo Acoustics WATFORD, 106
Microchips,
WINCHESTER 68085
P.P.M. Ltd.
WOKING, 80111
Petalect Electronic Servic
d, WOKING, 69032
WOODSTOCK, 812838
S. HUMBERSIDE
BIRMINGHAM. 7728181

GRAVESEND, 55813 , South East Computers, Bromwall Data Services Ltd, HATFIELD, 60980 HERTFORD. 57425 Commonsense Business Systems Kingsley Computers Ltd, Brent Computer Systems. kings Langley, 65056 Computopia Ltd
LEIGHTON BU South East Comouters L't MAIDSTONE, 681263 J.R. Ward Computers Ltd, Sumlock Bondain (East Anglia) T\&V Johnson (Microcio Etc) Ltd, OXFORD, 73101 READING, 61492
SLOUGH, 72470 Business Electronics.
SOUTHAMPTON, 738248 S.SV. Ltd, SOUTMPTON, 2213

SOUTHAMPTON, 774023 SOUTHAMPTON, 38868 stuart R Dean Lid The Computer Room Orchard CoEwtis, 41644 WAL INGFDRO Services hat Acraics, 35 WATFORD, 40698 Microchips.
WINCHES WOKING. 80111 Petalect Electronic Services Oxford Computer System WOODSTOCK, 812838 MIDLANDS \& BIRMINGHAM. 7728181

Computer Services Midlands Ltd, BIRMINGHAM, 382417 Marchant Business Systems Ltd BiRMINGHAM, 7068232 Micro Associates. BIRMINGHAM, 3284574 Peach Data Services Lto. BURTON-ON-TRENT, 44968 Jondane Associates Ltd,
COVE NTRY 664400 COVENTRY, 664400 Davidson-Richards Ltd. DERBY, 366803 Allen Computers,
GRIMSBY, 40568 Cadd is Computer Systems Ltd, HINCKLEY, 613544 Machsize tid. LEAMINGTON SPA 31 LEAMINGTON SPA, 312542 Arden Data Processing
LEICESTER, 22255 Roger Clark Business Systems Ltd, LEICESTER, 20455 Lowe Electronics,
MATLOCK, 2817 A. J. R. Office Equipment Services Lid, NOTTINGHAM, 206647 Betos (Systems) Ltd, NOTIINGHAM, 48108 PEG Associates (Computer Systems LId), RUGBY, 65756 Walters Computer Systems Ltd,
STOURBRIDGE
70811 STOURBRIDGE, 7081 System Micros Ltd,

YORK \&

N. HUMBERSIDE Ackroyd Typewriter \& Adding Machine Co. Ltd, BRADFORD, 31835 Microprocessor Senvices, HULL. 23146
Holdene Ltd, LEEDS, 459459 South Midlands Communications Ltd. LEEDS, 782326 Yorkshire Electronics Services Ltd, MORLEY, 522181 Computer Centre (Sheffield) LTd SHEFFIELD, 53519 Hallam Computer Systems SHEFFIELD, 663125 Siliorficuiness systems Ltd. SHEFFIELD, 484466

But how can Commodore offer so much? Well, we've been in the high technology business for over 20 years, whereas many of our competitors have just started out. We even manufacture the silicon chips for other microcomputers. This enables us to keep our costs to you down, so you can buy a self-contained PET for $£ 450$, or a complete business system from as little as $£ 2,000$ (+ VAT).

Of course, you could buy a box of wires for about the same price. But all you'll get from our dealers is sympathy.

NORTH EAST
Currie \& Maughan
GATESHEAD. 774540 Elfton Lrd.
HARTLEPOOL, 61770
Dyson Instruments,
HETTON, 260452
Fiddes Marketing Litd FIddes Marketing Ltd
NEWCASTLE, 815157 Format Micro Centre,
NEWCASTLE 21093
Intex Datalog Ltd,
STOCKTON-ON-TEES, 781193 S. WALES \& WEST COUNTRY Radan Computational Lto BATH, 318483 C.S.S. (Bristol) Ltd, BRISTOL, 779452 T \& V Johnson (Microcomputers Etc) Ltd, BRISTOL, 422061 Sumlock Tabdown Ltd Sigma Systems Sigma Systems Ltd
CARDIFF, 34869 Reeves Computers Lid CARMARTHEN, 32441 A.C. Systems,
EXETER 71718 EXETER, 71718 GLOUCESTER, 411010

Jeffrey Martin Computer Services Ltd, NEWQUAY, 2863 Devon Computers, PAIGNTON, 526303 A.C. Systems, PLYMOUTH, 260861 J.A. D. Integrated Services, Business Electronics Business Electronics,
SOUTHAMPTON, 738248 Computer Supplies (Swansea) SWANSEA, 290047

NORTH WEST \&

N. WALES

B \& B (Computers) Ltd. BOLTON, 26644 Tharstern Ltd, BURNLEY, 38481 Megapalm Ltd 3801 Catlands Information Systems Catlands Information Systems Ltd, WILMSLOW, 527166

LIVERPOOL

Aughton Microsystems Lid,
LIVERPOOL, 5487788
Stack Computer Services Ltd.
LIVERPOOL, 9335511

MANCHESTER AREA
Byte Shop Computerland, MANCHESTER, 2364737 Computastore Limited, MANCHESTER, 8324761 Cytek (UK) Ltd, MANCHESTER, 8724682 Executive Reprographic Ltd,
MANCHESTER, 2281637 Professional Computer Service Professional Computer Services SCOTLAND Gate Microsystems Ltd
DUNDEE. 28194 Holdene Microsystems Lt Holdene Microsystems Ltd,
EDINBURGH, 6682727 Gate Microsystems Lid. GLASGOW, 2219372 Robox Ltd, GLASGOW, 8413 Thistle Computers (Macmicro) INVERNESS, 712774 Ayrshire Office Computers KimaRnock, 4297 Thistle Computers,
N. IRELAND N. Ireland Computer Centre HOLLYWOOD, 6548

Remember how once we all speculated that bubble memory might get so cheap that we'd use bubbles instead of floppy disks? You didn't? Well I did and I'm still wrong. This shows why: on this highly costly card is as much memory as you get on one floppy disk - half a megabyte. But that explains why diskettes are getting cheaper, doesn't it?

Tangerine ourselves, that in charge of the problem was a company director called Mike Rose. It wasn't only his name which pleased us, it was the speedy way he moved into top gear, got the system crunching and despatched a new Microtan to our microlorn reader the very same day.

Apparently something (they didn't specify what) had given the Tangerine man who had originally written to the customer the notion that he was perhaps trying to get an extra machine. Once assured by Datalink of the man's sincerity, all was sweetness and light and he received his machine by return of post.

Not content with that, Tangerine tells us that it has 're-assessed its delivery system' to make sure that the same problem doesn't recur.

Most parcels that the Post Office is given get where they are sent (providing the label doesn't get unstuck) so it is quite realistic of Tangerine to save the 30 p insurance per parcel it would cost to give $£ 100$ cover. But I do think that if a company decides to save this money, it should compensate unhappy buyers without question and Tangerine obviously agrees.

Just a small memory from the past to wind up with: ten years ago I ordered a stereo pre-amp and two power amplifiers from Sinclair. They arrived and I couldn't make them work, so I sent them back with a snooty letter. Sinclair didn't receive them. When I wrote again a month later, having checked with the Post Office, I had no doubt that I had fallen into the hands of big indifferent bureaucracy and would never see my amplifier again. I was right. By return of post, with no questions asked, Sinclair refunded not the amplifier but the full cost of the system, together with a note hoping that my sad experience hadn't deterred me from buying again. As a result, I have always trusted Uncle Clive's mail order
ethics and, in future, I shall feel similarly about Tangerine.

Communicate with PET

Connect your PET to other computers - not just ICL ones but even networks of them, with a program called Intercomm, or a program called Syncomm, from Cortex in Bedford.

It enables you to get all the central computer's data set up locally and squirted through as fast as possible. It also allows you to dig out information from the central network and to do this from a central database management system (it doesn't say which). The only thing against it is that Intercomm on disk costs a mere $£ 350$ an and Syncomm on disk a piddling £1700 including extra bits of hardware and installation costs. Cortex is in Tavistock House, 34-36 Bromham Road, Bedford; tel 0234213571.

Coventry courses

Somebody who knows nothing about computers but has $£ 75$ to spend can spend a day at the Coventry management training centre in Leamington Spa, where they believe that 'the only reason for not using computers in more aspects of business is people's reluctance and lack of knowledge.

F'ees include lunch, coffee, tea and VAT, and the course covers such essential details as input, output, processor and memory, plus information on types of system, something on Basic, and a chance to use a computer.

For somebody with a bit more money (around £167) there is another course, lasting three days, based on the Commodore PET. And if you can bring your own PET
you get a discount of nearly £25. This course aims to teach you to program in Basic. Details on 092636621

6809 board

People who buy cars are not interested, advertising men have discovered in how powerful, flexible, multicylindered, overhead-cammed or other magic words apply to the engine. Write an ad about the engine and watch them all turn the page unread. Daft.

Similarly, people who buy microcomputers do themselves no service when they regard the microprocessor inside it as an irrelevance. And such people will certainly not be attracted by an out-of-the-ordinary machine with a very out-of-the-ordinary micro chip inside it, the Motorola 6809.

This can be said with confidence. Acorn has been selling a 6809 -based board for a year. Well, offering one but selling. . . no, not really. South West Tech has a 6809 processor available - powerful, but the number means nothing even to the people who buy it, it seems.

Now an independent consultant, D A MacDonald, has produced a board using the 6809 - designed to appeal to people who in the past used its ancestors, the Motorola 6800, and the Synertek System 65 based on the 6800's cousin, the 6502 . MacDonald's system is a single board, and he claims it is compatible with the rather expensive boxed system of multi-cards which Motorola
called the Exorciser when it was launched six years ago. That should mean, compatible with the then popular D2 development evaluation board, too.

Details on 0489281108

Solicitor's software

It has been said that Solicitors' Accounts are the most complicated form of bookkeeping there is. It was said by PK Microsystems, in fact, a company connected with Keith Jones of The Software House - and PK has just produced a system which solicitors can use to keep their accounts on an Apple II microcomputer. It had better be good; the programs cost $£ 1500$ and with a complete system thrown in, including disks, you pay up to $£ 5300$. Details on 01-637 2108

NorthStar stats

Infoworld, the US fortnightly magazine, described as 'the best on the market' a piece of software from a company called Ecosoft. The program runs on North Star micros and is called U Microstat a statistics package which consists of programs which perform the most common statistical procedures. It needs a minimum of 32 kbytes, a dual drive disk system, and a good video and versions are available for the different operating sys-

This shows the scene inside the Bristol area school Portway, in Shirehampton, where pupils are setting up a commercial computer programming service, based on a Cado 20 computer supplied by the man with the beard, Robin Laney, who is managing director of DRG Business Machines. It's part of the Young Enterprise scheme - they're going to computerise the school's accounts.

2 Dysan Diskettes FROM STOCK

30,000 Diskettes is our stock level ! FOR IMMEDIATE DELIVERY

Call Ann Perkins or Dan Taylor on Dysan Hotline: Weybridge (0932) 48346/7

HAL COMPUTERS LIMITED

57 Woodham Lane, New Haw, Weybridge, Surrey KT15 3ND.

TWO SUPPLIES HOTLINES!

The Solution to your Short-Run Form problems!

* Single and Multi-Part Forms from our standard sizes to suit your systems. From 1000.
* Word Processor Letterheads (tractor or friction feed).
* Self Design Layout Sheets.
* Full Artwork Service.
* Listing Papers, Word Processor Papers, Self Adhesive Labels.
* Diskette Storage Systems.

Small-User Packs of Listing Papers

\qquad
$11^{\prime \prime} \times 91 / 2^{\prime \prime} \quad$ (plain or green music line) £ 6.00 £ 11.75
$8^{\prime \prime} \times 91_{2}$ " (plain only) $£ 5.50$ £ 10.50
$11^{\prime \prime} \times 14 \frac{1}{2}$ " (green music line only) $£ 6.00$ £ 11.75

These prices INCLUDE VAT and P \& $P=$ CASH with order please!

Call Bob Humphrys or Richard Wells on Forms Hotline: Weybridge (0932) 48218 PRINTOUT BUSINESS FORMS
57 Woodham Lane, New Haw, Weybridge, Surrey KT15 3ND.

Printout Business Forms

You may never have thought of your pocket calculator as a fire hazard; none theless, there is a very small chance that it could generate a spark when you press the keys. This microterminal from Burr-Brown may also generate a spark, but since it is guaranteed waterproof there is no chance of fumes or petrol vapour or gas reaching the spark. Clever, huh? Costs $£ 300$. Details on 092333837.
tems, either CP/M or North Star DOS.

UK agent for the software (and all other Ecosoft packages) is Digital Devices Ltd, also a Horizon dealer.
Contact Val Long in Southborough, Tunbridge Wells, on 0892 37977 .

Sorcerer software

Games still come top of most lists of software sent in. Whether 'Know Your Sorcerer' counts as a game or as serious software for the Exidy Sorcerer or not is hard to judge, but Liveport has put the three $£ 6$ programs under this title at the top of its list of 20 packages now available for this machine. Most of the next 17 packages have typical names - 'Shoot Em Up Cowboys' and 'Stranded in Deep Space' giving way to a couple of mathematical routines, plus something called
'Mortgage and Interest', which almost certainly isn't much good in the UK since the whole batch was written in America by North American Software. However, for serious programmers, there is a disassembler to analyse the programs written for the Zilog 280 micro inside the Sorcerer. There is also a Basic macro renumber and linker program, one of the three most expensive at $£ 17$. Details from Liveport on 0736798157.

Creative
 change

We at PCW have all the time in the world for an American magazine called Creative Computing, because we have good taste. So now that David Ahl and his mag have changed address, we will share it with you to prove how informative we are. The new address is 39 East Hanover Avenue, Morris Plains, NJ 07950. The new
building also contains
Microsystems, and SYNC, plus the book, software and consulting sides of the group. SYNC? It's the ZX80 mag over there.

Chip chat

Chips, chips, and more chips - on show with masses of plugs, sockets, and other bits and pieces - are to be discussed in serious papers at Seminex a show from 23 to 27 March at Imperial College. Details from Seminex Ltd on 089238664.

May the fourth be with us soon

You know what the Apple II and III are; now, what do you think Apple IV and V will be? The answer is: soon. Apple is the bright new star of the American stock market, having put its amazing growth up for grabs and

As plotters.go, this may not be right up to architect/draftsman standards. As matrix printers, go, it's a damn fine plotter. Roxborough makes it in enough versions that you can connect it to Apple, PET, HP and any other sort of cheap micro using a Centronics or RS232 port standard. It looks like a useful printer, too. Details on Rye (079 73) 3777. Apple is going to drop it.

The idea that nobody wants it is not altogether accurate. Dealers like Apple III because it offers a good profit margin. Profit, however, only comes on sale, and I'm blessed if I can see what will cause the dealers' customers to buy the thing. It offers one or two facilities but for so much more money compared with the old Apple II that most users will settle for the old one. Especially with all the old software and add-ons you can get already and can't yet get for the III.

American dealers are already letting it be known that they want none of it. And in order to stop the share price going down too embarrassingly, the company is likely to start leaking details of its next, exciting, world-shaking products the Apples IV and V. Apple V is the answer to Commodore's Vic. It should be exactly what Sinclair and Acorn have proved people want - something to get started on for as little as possible.

Apple IV is The Big One however. Its existence is still -
having hit the jackpot. The next thing to happen could well be a stock value dive, for two good reasons.

First, a lot of people who bought stock did so because they knew it would resell for a lot more than they paid for it. People inside the company with advantageous stock options, (for example did you hear about the Apple director who made all his stock over to his wife a few years back, when it was worth a few pennies and since got divorced, leaving her with $\$ 25$ million and him with a few thousand?), or just good horse-backers who saw a winner. They will sell because they planned to.

Others will start to hear worrying things about the Apple III, most to the effect that nobody wants it and that
officially secret but it came out through Motorola contacts who couldn't resist crowing about the multi million dollar order they just had for the 68000 chip.

The 68000 is still the biggest, most powerful single bit of silicon you can plan to buy and some think it will be the world's biggest micro even after Intel produces its 32 -bit version. Apple is putting that 68000 micro into the IV and will attach a version of the software Bell Labs developed for running disk storage - Unix - plus a wide range of other language options. I still don't have details or price. Apple is being a bit paranoid about this one.

Tandberg tries again

Tandberg, best known for its tape recorders, has passed through an unfortunate phase of trying to sell its own design of microcomputers to schools. Instead it has picked up an American machine, the Boles 3450 micro. The microsystem itself is well worth considering. It isn't quite down there with the Gemini and Superbrain, by the figures I've seen, but it is a reasonable price, something which nobody could expect after the original Tandberg system.

This one just so that you don't get confused, is called the TG3450. It is made 'to Tandberg's specifications' according to Mike Keenan of Tandberg, but it is being marketed in this country by Boles \& Co (UK) Ltd, the UK arm of the American trading company (Boles Inc) which produced it. Details on 0372 65461; talk to Alan Marchant.

S100graphics

Plug in a board and get cheap graphics on a system. All you need is the S100 bus inside the system to plug the board into. The product is the board from Almarc Data Systems and the company claims it is usable with all Vector Graphic systems in conjunction with a standard Vector Graphic memory board holding 8 kby tes of RAM. Details on 0602 625035.

Atom club

I am having some trouble debugging the of ficial software supplied with my Acorn Atom. Since there are now around 5000 other users, I assume that some of them are having similar irritating problems - isn't there somebody out there trying to start a user group? Get in touch with me, (via $P C W$) and I'll publicise it. I might even join.

WE HAVE ALL THE NEW ATARI ${ }^{*}$ VIDEO GAME PROGRAM ${ }^{m}$ CARTRIDGES.

ATARI EBG $\stackrel{+}{\text { vat }}$

 TELEPHONE FOR FREE BROCHURES 01-301 1111

THE GREAT COVER-UP!

Not since the days of Watergate has there been a public scandal of such far-reaching implications.

It has recently come to the attention of the PCW Secret Police that certain regular readers have been storing their valuable back issues 'au naturelle'.

We consider this practise to be singularly lacking in dignity, and would therefore appeal to you in the name of common decency to please ensure that your
magazines are properly dressed at all times.
This may be achieved by the simple expedient of purchasing one or more of our sturdy yet colourful $P C W$ binders.

So why not join in the great cover-up and preserve your precious PCW's in their original pristine perfection.

Just check the coupon at the foot of the page.

It's good news once again - this month we announce ComputerTown Gateshead. This has been started by John Stephen Bone plus ten computer-owning volunteers. This particular ComputerTown, like Sutton-in-Ashfield before, is closely affiliated with a computer club - New. castle Personal Computer Society, in fact. Anyone in the Tyne \& Wear district who'd like to join in the fun, please contact John at 2 Claremont Place, Gateshead, Tyne \& Wear - he'd love to hear from you. More news from John when we hear how his first day went (he started on Saturday 10 January).

Since we launched ComputerTown last November we must have had letters from at least 30 people, but so far we've only heard about three ComputerTowns actually starting. Are there more of you out there who haven't told us about your activities, or do some of you need a gentle reminder? We'd really like to have the time and money to ring everyone up periodically and whisper words of encouragement, but sadly we have neither, so it's really down to you, individually, to find the enthusiasm and drive to get your local ComputerTown started. Don't pretend that it will take up too much of your time - Eastcote gets around six hours' attention per month from each of its volunteers. The sessions are run twice a month for two hours each. Demand is increasing quite heavily but then again we are meeting quite a few people through the project who are capable of running ComputerTown evenings themselves. This should mean that those with little time to spare should not necessarily have to increase their commitment. Surely you can find just six hours per month?

Another thing that's beginning to happen in Eastcote is that adults are coming along and seeing their children getting stuck in to the computers with out any fear or problems. Six-year-olds arrive and, within ten minutes, are operating the PETs as if they'd grown up with them. The problem for the adults is that they're frightened of making fools of themselves in front of all the children. Even worse, we suspect, is the thought of a child explaining how to use the machines. Accordingly, there is a movement in favour of adults-only evenings or even some sort of formal lessons away from ComputerTown as such. At the moment it's fairly tentative but if the pressure increases then we'll be taking one or other of these alternative approaches.

The third thing that adults find disconcerting is that ComputerTown works on the 'discovery' principle of learning. If they run into difficulties they can
chew the problem over with the in evitable group of onlookers and, if that fails, they know they can come to one of the three or four qualified organisers. I suspect that this all appears pretty chaotic to those used to a more formal learning environment. Enough, enough - let's move on to the other news of the month.

Arthur French from Crawley Teachers' Centre has kindly sent us a cassette tape for the new ROM PET called 'This is a PET and this is what it does'. The program occupies 10 k and is really quite excellent - we shall be using it at ComputerTown Eastcote next Tuesday. Any other ComputerTowns who'd like a copy should send a cassette and the return postage to CTUK! at 7 Collins Drive, Eastcote, Middlesex We'll send your cassette back with the program encoded on both sides but we will only provide this service to those running ComputerTowns, needless to say.

It looks as if a ComputerTown West Bromwich will come into existence soon. Sorry to be a bit mysterious - but if you're in the area and interested in contacting the organisers then we at CTUK headquarters will pass your letters on. Similarly, anyone in the Winslow area of Buckinghamshire who might be interested should write to us here and we'll pass your letter on to someone in that area.

Have a peek at this month's 'Commons Report', you'll see that ComputerTown has caught the imagination of Ian Lloyd MP. Needless to say, we have offered to run a ComputerTown Houses of Parliament whenever he likes. We shall pursue this idea and keep you posted.

Nick Green of Commodore kindly sent us a couple of cassettes containing 40 programs. These form the basis of Commodore's Workshop Software which is used by educational establishments around the country where teachers are learning about microcomputing. According to Kit Spencer, these programs are considered to be in the public domain and anyone associated with ComputerTown is free to copy them. At Eastcote, where we evaluated the programs, we chose seven as being particularly suitable for use in ComputerTowns. Anyone interested in using these programs should write to us and we'll pass your address on to Commodore, who'll do the rest. Once again, this only applies to bona fide ComputerTowns.

Anyone in Aldershot who's interested in starting a ComputerTown should contact David Williams at 94 Gloucester Road, Aldershot, Hants GU11 35H. At the moment David is looking for kindred spirits. A trip home on the
underground following the PCW Christmas festivities may pay dividends. Les Ord of RAF Uxbridge expressed great interest in the idea so anyone else in the area should write to Les there. Incidentally, we already know that he'd get a sympathetic hearing from Mr Colehan, the borough librarian, if he wants to use library premises. We also bumped into Frank Fadipe who lives at 1 Brook Close, Ruislip. He's got an Apple and would be interested to hear from others in the Ruislip area who would be interested in getting something going there.

Julian Allason (founder of Petsoft and now publisher of Printout) came up with a smart idea the other day. Knowing how busy we are running $P C W$, he suggested that we might find people prepared to take over the central organisation of ComputerTown at colleges and universities. It seems that such establishments are often looking for real projects for students to run in order to gain practical experience. It sounds like a great idea to us - any offers?

Pete Shaw kindly wrote from Clacton-on-Sea in Essex to offer us help in London; he also mentioned that he might be getting something going near where he lives. Anyone interested write to us here and we'll pass your letters on. Another Essex man, Philip Joy, writes from Romford to say that he'd like to start a ComputerTown in his area. Anyone else in the area who'd like to join him write to Philip at 130 Rush Green Road, Romford, Essex

Simon Withers, who is 13 , writes from Wigan to volunteer his services to anyone willing to start a ComputerTown in his area. Simon can be contacted at Kilmartin, Bellingham Mount, Wigan Lane, Wigan WN1 2NJ.

Lovely Cherry Watret of Microsense thinks that Hemel Hempstead is ripe for its own ComputerTown. Accordingly, she visited Eastcote recently to see how things operate there. Someone else who has visited Eastcote is Ian Thomasson and he is now planning to start a ComputerTown of his own in Rayners Lane. Anyone in the area who is interested should contact lan at 16 High Worple, Rayners Lane, Harrow, Middlesex.

Look out for your local ComputerTown in our quarterly User Group Index - it will be listed under the National section.

Finally, thank you all very much for all your enthusiasm and interest in ComputerTown. Please keep in touch and tell us how things are going in your neck of the woods. Remember, we'd like to see thousands of ComputerTowns all over the country! We look forward to hearing from you.

Spring in San Francisco from £440

Enjoy a two-centre holiday in sunny Càlifornia, 1-9 April, 1981 just in time for the 6th West Coast Computer Faire.

Lounge on Santa Monica beach, visit the first ever computer store or maybe even take a peek at Hollywood. Follow this with a few days in San Francisco visiting the Computer Faire and possibly pop down El Camino Real to Silicon Valley.

All this, and much more can be yours if you take advantage of Meridian Tours' special offer to PCW readers, details of which are now being finalised.

Three holidays are planned, each of which ensures that you are in San Francisco for the duration of the Faire, which must be the biggest micro-dedicated show in the world. The first holiday comprises one night in Los Angeles at the first-class Sheraton Miramar at Santa Monica Beach followed by six nights in San Francisco at the Civic Centre Holiday Inn, just round the comer from the Faire. The second holiday provides the chance to spend three nights in Los Angeles and four in San Francisco while the third allows you to "do your own thing' for a week following one of the above holidays, simply retuming to base for the joumey home.

The holiday price includes all flights, hotel aocommodation, supervised transfers between airports and hotels, entrance to the Faire, a copy of the conference proceedings and compulsory insurance. The cost does not include transport to and from Gatwick, meals abroad or additional accommodation for those wishing to stay an extra week.

Car hire can be arranged at special rates by Meridian before departure and special excursions may be booked with their local representatives while abroad.

Having said all that, this promises to become quite an event in the PCW year; it's bound to be fun - even for those who aren't too interested in computers. They can make the most of San Francisco with its Golden Gate Bridge, cable cars, Chinatown, Fisherman's Wharf - not to mention a more recent phenomenon, lobby watching in the Hyatt Regency.
For further information and a booking form write to West Coast Trip, PCW, 14 Rathbone Place, London W1P 1DE.

This holiday is being organised by Meridian Tours Midlands Ltd who are bonded tour operators (Air Tour Operator's Licence No. 700B)

There are times when news of the mundane has implica tions that could be called sensational. In this case, that news is that the manufacture of small $51 / 4$ in Winchester disk drives is becoming routine and that instead of pioneering new technology, manufacturers are sticking to 'conservative' design and manufacturing principles.
What this means, in turn, is that the small and inexpensive Winchester drive will soon turn from technical wonder to commonplace.
ler and data separator while adhering to the Shugart interface standard. Manufacturing Winchester drives is the product of experience and that investment in experience will soon begin to pay off in reliable volume production.

It is well known that one of the main reasons Apple did not include a hard disk option in the Apple III is that there was no source of drives that could produce in the volume that Apple would require to meet its needs.
> ..the small and inexpensive Winchester drive will soonturn from technical wonder to commonplace:

Manufacture of 8 and 14in Winchesters is gearing up something fierce in Silicon Valley, with a new company called Quantum recently formed for the express purpose of manufacturing drives that are compatible with the Shugart interface. There is quite a bit of carping among drive manufacturers about the Shugart interface, but like the S100 bus it has a foothold that is not likely to disappear. Of greater interest to users of personal computers, however, are the goings-on in the $51 / 4$ in Winnie world.

First to market a $51 / 4 \mathrm{in}$ drive was Shugart Technology, a company formed after the founder of Shugart Associates was eased out of the company he started (a not uncommon occurrence in this industry). Shugart Technology has since been renamed Seagate, and the original Shugart is now announcing its own $51 / 4 \mathrm{in}$ drive. The other serious contender in the market is IMI, a Cupertino-based company which is located right across the street from Apple.

Indications are, that as production volume increases, these highly reliable drives will be selling in OEM quantities for around $\$ 800$. That means that a 6 megabyte disk system should be available to end users for around $\$ 1500$ in the near future. But, as in the past, users will probably become blase and treat even this phenomenal amount of storage as the norm.

Another question is that of the controllers. IMI has built in its own control-

Now that production looks like it is indeed going to come up to a decent volume, there are rumours that Apple is planning to include that option.

There are even rumours that Apple will begin to manufacture its own $51 / 1$ in Winchesters, either independently or under licence from an established manufacturer. At any rate, if these rumours are true, Apple will have to initially buy in pretty sizeable numbers in order to keep up with the current trend toward these fantastically small mass storage devices.

Rumours

Now here is a super rumour, so if it doesn't happen, don't blame me, but if it does, you heard it here first. According to obscure sources, Sperry Univac is reputed to have a true Josephson computer working in the lab. Josephson junctions are those circuits that operate best at a temperature near absolute zero. The Sperry machine is said to operate around 2 degrees absolute, and Sperry's solution to the repair/service problem is supposed to be simple replacement. If all goes well, the machine should be announced in about two years. There has been no word about how the company plans to ship such a product, but many inane suggestions come to mind. Perhaps it'll set up a plant at the north pole.

Another it-should-happensoon report concerns a personal computer that will fit in a case small enough to
fit under the seat of a plane and be complete. By complete, I mean full keyboard, 64 k RAM, CRT display, $51 / 4$ in floppy drive and running $C P / M$. The little bird who told me this one has not been known to be wrong very often in the past, but, of course, I can't say which bird it is.

The trend towards practical voice I/O is receiving another boost from Centigram Corporation with a new improved version of their Mike voice terminal. Mike incorporates both voice output and voice recognition. The terminal can be trained to recognise up to 99 separate words, which it converts to codes and sends to the host computer via an RS232 channel.

Mike is not limited to that set of 99 words; either; the host computer can dynamically swap word sets in Mike's memory so that the operator can work with an arbitrarily large number of sets of 99 . The computer
accuracy when training Mike and then testing the terminal against a tape recording. At the same time, it recognises that voice I/O is still in its infancy and there is not really a practical limit to the refinements they feel would really be desirable.

The world of local networking is getting another boost from Giltronix, a Palo Alto company specialising in automatic switching (mostly of the RS232 variety) among computers and various peripherals. The company started out producing simple RS232 switch boxes, so you cculd switch, say, between a CRT terminal and a hard copy terminal. It has recently come out with an intelligent controller (run by an 8085) that can control traffic between five serial ports, an IEEE-488 interface, two parallel ports, and 16 DPDT DIP relays.

This little wonder sells for $\$ 599$ in kit form and is positioned midway between the manual switches
> -.. a personal computer that will fit under the seat of a plane.
can also limit recognition possibilities to subsets of the current 99 so that there will be less chance of confusion within the current set.

Mike uses a method of digital recording which generates patterns by analysing words spoken into it by the operator. Centigram says it has achieved 100% lab
and a $\$ 40,000$ unit meant for the big boys. The service it provides at an amazingly righteous price is a traffic centre for data acquisition, multiple computer communications, and very versatile process control. My 'Fearless Forecast' is that Giltronix will be heard from loudly in the near future.

'Honestly mum he never speaks to me these days.
He just leaves me the occasional floppy disk.'

COMMUNCATIONS

PCW welcomes correspondence from its readers but we must warn that it tends to be one way!
Please be as brief as possible and add "not for publication" if your letter is to be kept private. Please note that we are unable to give advice about the purchase of computers or other hardware/software - these questions must be addressed to Sheridan Williams (see 'Computer Answers' page). Address letters to: 'Communications', Personal Computer World, 14 Rathbone Place, London W1P 1DE.

Easier entry

As a half-blind, one-fingered keyboard-poker, I have found that the easiest way of entering a long program singlehanded from written matter is to dictate it first onto tape on an ordinary tape recorder; then, using headphones, type it in at a rate appropriate to one's ability. This way eads to far fewer errors (spaces for example, can be counted aloud both on dictat ing and on playing back), far less fatigue and is much quicker. In addition the listing can be much more easily checked (again via the headphones) and it seems to allow much earlier under standing of the program.

The method is so success ful that I am considering modifications to my PET to allow the built-in cassette to be used for the job. Peter Tyler, Attenborough, Notts.

MWfor WP

Your penetrating article on the Microwriter (November $P C W$) rightly lists its values as a portable word processing system but makes the peculiar suggestion that the terminal price, around $£ 400$, is too costly.

As a marketing consultancy with no connection whatever with Microwriter, we were one of the first MW users two years ago and our system has proven the equal of dedicated WP setups costing thousands more - with the added benefit of true portability. Like any WP system, it has seen continuous use in producing personalised direct mail letters and standard documents requiring successive updatings. But unlike others, it has also enabled me to cope personally with secretarial chores when staff are absent and confidential correspondence that cannot be routed through a secretariat.

To gain the cheapest comparable WP facilities with VDU and letter quality print ing would require at least a Superbrain or Superpet 8000 plus peripherals at upwards of $£ 3000$. And you cannot put a PET in your briefcase and write your reports at home or during train journeys, as you can with the MW.

The usual objection to the MW, its non-qwerty key. board, is actually beneficial in learning the system. I was using the MW fluently within a week, whereas our new

Superpet with Wordcraft (acquired for its large disk memory) will take our secretaries weeks of training before it shows any real gains in productivity.

It beats me how your writer can suggest that under $£ 2000$ is too much to pay for a full word processing system, including all peripherals and with the benefit of portability, when you could pay the same again for a comparable system, that was non
portable and more difficult to learn!
Nick Robinson, Datanews Services, Luton.

It is not possible to compare the Microwriter system directly with more expensive, conventional word processors (and such a comparison was deliberately avoided in the review) because the latter offer many facilities which are not available on the MW we tested - automatically searching for and substituting strings, for example, or reading names and addresses from a separate file when printing direct mail letters. The extra facilities of more complex WP systems contribute to the longer training periods which they require - Ed

Sordnot defunct'

We would like to formally request a retraction of the statement ' (not to be confused with the long defunct Japanese Sord)' in 'Yankee Doodles', January PCW.

As one of the two importers of the Sord range of microcomputers into the UK we feel very strongly that such sweeping statements, which are very detrimental to our business, should be published with out first check
ing the facts. We are already
finding that questions over the security of Sord are being asked by prospective purchas. ers.

Sord is not only still in existence but is one of the leading manufacturers in Japan. The basic unit, the M223 Mk III, is based on a Z80A CPU with an AM9511 APU, integral VDU and twin 350k Teac disk drives. The unit is very flexible and has expandability options of add on 8 in IBM compatible
floppy disks, 8 mbyte hard disk with magnetic cartridge backup and a complete range of peripherals including colour graphics, paper tape, extra VDUs, data pads, etc.

For 1981 Sord is introducing two new ranges of products. Firstly, the M243 which has as standard 192 k bytes of RAM (and can be extended to approximately 1 mbyte) and 8in IBM compatible units; hard disk etc, are all available. Secondly a new series of 16 -bit computers, the M400 series, based on the 8086 CPU and with up to 1 mbyte RAM and with internal 8 mbyte hard disk.

As you can see, progression is fast and to state that Sord is defunct is a gross error
Paul Whitehead, Exleigh Business Machines Ltd, Penzance.
'Yankee Doodles', of course, reflects and reports the situation in the USA where, we understand, Sord products are no longer sold. We're glad to assure readers that, as Mr Whitehead states, the company itself is by no means defunct and that its products continue to be sold in Britain. $-E d$.

No LIST

B Mistry's method of preventing listing on Ohios or UK101s also prevents the program
from running.
The following routine causes the computer to jump to the machine code monitor if the program (which runs as normal), is stopped or exited:
10 POKE 4,0 : POKE 5,254
If somebody tries to list the program they will discover that it is impossible to get to command mode. To RUN again, stay in the monitor, put C 3 H into 0004 H and A8H into 0005H. Type : then A274G - and run or list as required.
10 POKE 4, 17 : POKE 5,189 will cause a cold start and make things even more difficult! For automatic start of Basic programs after loading, first save the program. When OK appears, stop the tape using the pause control type "? POKE 515,0: RUN", release the pause control and hit RETURN.
Dave Henniker, Edinburgh

Printer interface

This is a very low-cost RS232 to 20 mA converter for those guys that don't want to spend mucho pounds on a commercial converter. I use it between my Explorer 85 RS232 printer port and an LA 36y printer
Les Solomon, Popular
Electronics, New York

1211 problem

Many thanks for mentioning the 'PC-1211 Users Club' in the December edition of PCW. I would like to offer the services of the club to help solve any problems readers of $P C W$ have with their PC-1 211/TRS-80 pocket computers in the same way that the ZX-80 Users Club appears to be of service.

Any queries sent in can be forwarded to us at the

Low-cost RSL32 to 20 mA converter - see 'Printer Interface':

COMMUNICATIONS

address below and we will solve them as quickly as possible.

Also, we were pleased to see the PC-1211 information in 'Calculator Corner', but please remember that it is a computer, not a calculator.
Robert Valt, PC-1211 Users Club, 281 Lidgett Lane
Leeds LS17 6PD, Yorkshire

Telesolution

Recently, a telecommunications problem in my office started a thought process which rapidly led to my concluding that the problem could be solved using exist. ing technology but in a novel manner. Furthermore, the idea has world-wide application potential and could be patented. Hopefully no-one has a similar system in their lab! Are any fellow PCW readers interested? If so, please make contact.

New readers may be interested to know that I started reading $P C W$ last autumn after reviewing two other magazines: the choice was an easy one. I hope PCW maintains the educational items in particular; I recommend the magazine to other newcomers.
T R Armstrong, 21 Merdon Ave, Chandlers Ford,
Eastleigh, Hants SO5 1EH

Image digitiser

In the July 1980 PCW, Dr Steve Abbott requested information regarding the eventual availability in England of the Periphicon image digitiser.

We are pleased to inform you that we stock both the 32×32 and the 64×64 pixel models in Denmark, complete with housing, cable and TV camera lens. We have started using this interesting device in industrial robotics mainly and have developed a range of supporting software. As one example of its applicat ions, we can mention that it is used on the Champion Spark Plug production line to control preset spark plug gap as well as electrode quality

One application which we would find very interest-
ing, but which we have no time to develop, is a character recognition device, perhaps combined with one of the new language dictionary chips, to enable direct reading of normal printed manuscripts. Perhaps that would be an idea for Dr Abbott!

The price for the 32×32 unit is about $£ 300$, and for the 64×64 unit about $£ 800$ E-C Data Inc, Tornevangsvej 88 , POB 116, DK-3460 Birkered, Denmark

NEWtip

Having recently purchased a UK101, I have found it is possible to retrieve programs after typing NEW.

When NEW is typed, the 101 places zeros in locations 769 and 770, which are the top of program pointers in RAM. By keeping a note of the various values which the locations contain for your programs, it is possible to retrieve them after you have typed NEW.
P Mirams, Northwich,
Cheshire

Microsin libraries

I am an external postgraduate student at Loughborough University and I am writing a thesis for a Masters degree in Library Studies entitled The Microcomputer and the Library'. I would be very glad to hear from anyone operating or using a microcomputer in any form of library or information work, to learn what systems they are using and to hear about their problems and successes. Andy Dawson 53 Downton Avenue, London SW2 3TU

The Basic saga

The dispute between Malcolm Peltu and D McFarlane ('Communications', Decembor 1980) is akin to deciding whether Robin Cousins or Sebastian Coe is the greater sportsman - like is not being compared with like

Basic was designed to

'No we can't tonight Gerald, it's not safe!'
enable beginners (not necessarily programmers) to make use of a computer as a mathematical and analytical tool as quickly as possible, while Cobol was aimed at the business programmer. Basic programs tend to be short and short-lived, while Cobol programs (outside 'real-time' transaction processing applications) tend to be large, may have to run regularly for years and will handle far greater combinations of data than the average Basic program. The accounting package described in the NCC book reviewed by Peltu (September Bookfare) is almost certainly typical.

Thus, professional programmers take many manhours to make sure that their programs are 'right', and to document them so that other programmers and their successors can understand the logic in order to amend it correctly when necessary (large systems tend to change, even while the programs are being written!). Less than 50 percent of a programmer's time is spent in writing code.

It would not be possible to write the average Cobol program in standard Basic. On the other hand, few professionals would attempt to write a predominantly mathematical routine in Cobol, although the facility to link subprograms written in different languages would enable them to write, say, a control and file-handling routine in Cobol, which would invoke a Fortran routine to perform statistical analysis on the input data. (Not being a mathematician, I wonder how much better Fortran is than Basic - apart from being compilable, I mean.)

I hope Mr McFarlane does not ignore the wider world of programming altogether. I do advise him, though, to use the System 4 Cobol reference manual as a doorstop or bookend until he can scrounge a copy of an ICL Cobol training manual (System 4, 1900 or 2900 versions, though the former probably describes the simplest implementation) which will be much more readable.

Having said all that, I agree that Mr. Peltu has gone out on the wrong limb for once. I believe that the real conflict is the one which will occur between the "complete language' Ada and Cobol (or Fortran or Basic. not to mention Jovial, Coral 66 and RTL2), and which is prefigured by the Pascal v the others debate.
Frank Little, Swansea

OhOhGuy
 It's the privilege of user

 groups to moan and to dream of the ideal machine, but Guy Kewney (Oh Oh Ohio in last issue's Newsprint) certainly got the wrong idea!He quoted the piece out of date and out of its user group context, which assumes that everyone knows the good points of OSI's kit. The standard Superboard like all machines has a few limitations but a typical member's machine has one and a half times the screen display and three times the Basic speed of the TRS-80 for example, a screen editor and extensive machine code monitor builtin, and plenty more besides, a all for around £250. And despite Guy's comments the kit is robust and consistently reliable - something that I believe can't be said of the 'Big Three' systems. All of our moans in the piece quoted have since been resolved - even the documentation, now produced for Ohio by the Howard Sams publishing group.

For more details contact the dealers, or the user group through me.
Tom Graves, 19a West End, Street, Somerset.

Computing philatelist found!

In answer to Nigel Stokes' query about computing philatelists, I am one such! I use an Apple II with disk drive to store want lists of stamps needed in files by country. These I then update and send to my correspondents around the world.

I am also working on the planning stage of a catalogue program to update the value of my collections and to diagnose the areas showing the greatest appreciation, etc. I would be very grateful to hear from anyone else working in similar, or other, philatelic fields.
John Oldfield, Calle Galatxo 29, Capdella, Mallorca, Spain

Big keys please

One of our customers is the Spastic Centre of NSW sheltered workshop and training centre, in Sydney We supply them with software for their nine Apples. The Director has asked me to try to find a source of special keyboards with large letters, with the keys having separation one from the other. They would have to be connectable and compatible with the Apple, of course. The object is to allow those with spastic problems to use the Apples and make fewer mistakes.

Apple education in Cupertino doesn't know of a suitable supplier, I wonder if any of your readers can help? Keith Stewart, Seahorse Computer Services, PO Box 47, Camden NSW 2570, Australia.

In the microcomputerjungk The Sharp MZ-80 system now with

Since its introduction, the Sharp MZ-80 system has proved to beone of the most versatile systems in the micro jungle, for commerce, industry and enthusiasts alike.

Now the MZ-80 Computer system has even more versatility thanks to CP/M, giving greater adaptability to face the future. After all look what happened to the Dinosaur.

The MZ-80 system
is made up of the $M Z-80 K$
computer with the powerful Z-80 microprocessor.
MZ-80FD Floppy Disc storage unit, now with
CP/M $M^{\top \pi}$ for even greater versatility.
MZ-80P3 dot printer producing ultra Sharp print out copy.

urvival depends on adaptability: P/M has even greater versatility:

Your Sharp Microcomputer Dealers

AVON
BCE SHOP EQUIPMENT LTO - BRISTOL
TEL: 0272425338 TEL:0272 425338
OECIMAL BUSINESSM/CSLTD - BRISTOL
TE. 0272294591 8EDFORDSHIRE H. B. COMPUTERS (LUTON) LTD LUTON TEL:OS82416887

BERKSHIRE
BCG SHOP EQUIPMENT LTD. READING. TEL-0734 54015 NEWBEAR COMPUTING STORE LTD - NEWBURY
TEL: 063530505 BUCKINGHAMSHIRE
INTERFACECOMPONENTS LTD AMERSHAM
TEL: 0240322307
CHESHIRE
 STOCKPORT. TEL: O61-491 2290
CLEVELAND
HUNTINGCOMPUTER SERVICES LTD-STOCKTON TEL: 0642613021
DEVON
BCG SHOPEQUIPMENTLTD. PAIGNTON. TEL:0803 557711 PETER SCOTI (EXEIER) ITD. EXETER. TEL EXETER 73309 DORSET
DORSET
SOUTH COAST BUSINESS M/CS FERNDOWN, DORSET TEL:0202893040
ESSEX $\begin{aligned} & \text { PROROLE LTD - WESTCLIFFE ON SEA TEL } 0702335298\end{aligned}$ GLOUCESTER
GLOUCESTERSHIRE SHOP EQUIPMENT LTO LANCESTER TEL: 045236012
LANCASHIRE B B (COMPURE) LTD. BOLTON TEL: 020426644 MICRODIGITAL LTD IVERPOOL. TEL O51-2272535
SUMITAEECTRONICSLD.PRESTON. TE: 077255065 SUMITA ELECTRONICS LTD PRESTON TEL: TO
SUMLOCK SOFTVARETD MANCHESER. SOUND SERVICES. BURNIFY. TE . 02823848
LEICESTERSHIRE
ARDENDATA PROCESSING. LEICESTER TEL:0533 22255 ARDEN DATA PROCESSING LEICESTER. TEL:O533 22255
GILBERTCOMPUTERS.LUBENHAM. TEL: 085865894 LINCOLNSHIRE
HOWESELECT \& AUTOM. SERVS. WASHINGBOROUGH TEL: LINCOLN 32379
LONDON

CENTRAL CALCULATORS LTO - LONDON - EC2
IEL.OT-7295588
DIGTIAL DESIGN \& DEVELOPMENT DIGITIAL DESIGN \& DEVELOPMENT - LONDON. W EURO-CALCLTD LONOONE.C 2. TEL O1-7294555 EURO-CALC ITD LONDON W.C.1. TEL: OT-4053113 IAXREST LTD. LONDON EC1. TEL: $01-4031801$
LON COMPUTER SHOPS LTD-LONDON W1. PERSONAL COMPUTERS LTD LONDON. TEL O 016268121 SCOPF. LONDON EC2M 4HX. TL: O1. 2478506
SUMLOCKBONDAINLTD LONDONECIROAA SUMLOCK BONDAINLTD LONDONEC1ROAA VIDEO SERVICES BROMLEV TEL:O1-4608833-3003
CREAMCOMPUTER SHOP HARROW TEL:O 038083 NORFOLK
SUMLOCKBONDAIN (EAST ANGLIA) LTD - NORWICH
TEL:0603 26259
NORTHAMPTONSHIRE
HB COMPUTERS LTD KETTERING - TEL: 053683922
NOTTNGHAMSHIRE
KEENCOMPUTRS. NOTTINGHAM. TEL. 0602583254
MANSEEID BLISINESSM/CSITD. MANSEIED.
MANSFIELDBUSINESS M/CS LTD - MANSFIELD.
TEL: 062326610
TEL: O623 26610
OXEN OXFORDOX12BC.TEL: 086549349
SALOP
COMPUTER CORNER SHREWSBURY - TEL: 074355166 SOMERSET
NORSEIT OFFICE SUPPLIES LTD - CHEDDAR
IEL: 0934742184
SUFFOLK MICROTEK IPSWICH - TEL: 047350152
SURREY PETALET ELECTRONIC SERVICES
R BM. DATA SERVICES 69032
R BMM DATA SERVICES
CROYDON TEL:O-684 1134
BARNES CONSULTANTS.GUILDFORD SARADAN ELECTRONICS SERVICES
WALLINGTON. TEL: 016699483
\& V OHHNSON (MICROCOMPUTERS) CAMBERLE Ti.
SUSSEX M HOFFICE EQUIPMENT. BRIGHTON TEL:0273697231 TYNE \& WEAR WALES
CITMADIO CARDIFF. TEL:O222 28169
SIGMA SYSTEMS LTD. CARDIFF TEL 02221515 MORRISTON COMPUTER CENTRE 46 CROWNSTREET WEST MIDLANDS CAMOENELECTRONICS SMALL HEATH (BIRMINGHAM) IEL. 21.738240 . ETD BIRMINGHAM TEL: $021-2333045$ JAXREST LTD BIRMINGHAM. TEL:O21-3284908
NEWBER COMPUTING STORE LTO - BIRMINGHAM TEL: 021-7077170 YORKSHIRE DATRON INTERFORMLTD SHEFFIELD. TEL: 0742585490
BITS \& PC.S WETHERBY, W YORKSHIRE TEL:: 093763744 SCOTLAND
A\&G KNIGHT. ABERDEEN. TEL: 0224630526
BUSINESS \& ELECTRONIC M/CS EDINGURGH TEL: $031-2265454$ RONIC M/CS - EDINGURGH FORTRONIC LTD DUNFERMLINE TEL : 0383823121
STRATHAND LTD GLASGOW TEL: $041-5526731$ NORTHERN IRELAND
O\& MSYSTEMS BELFAST 49440 EIRE ORROWS WORLOLTD DUBLIN 2 TEL: 00001776861 ISLEOF MAN
DELTA SYSTEMS LTD DOUGLAS TEL: 06244586

Find out today what a Sharp Microcomputer will do for you.

A few years ago, computers could be divided (by word-length) into mainframes and minicomputers - fewer than 20 bits to the word and it was a minicomputer; otherwise, it had to be a mainframe. When the microcomputer came along with an 8 -bit word length, it fitted in neatly below the mini but when the 32 -bit 'superminis' were announced, the dividing line began to blur and it became necessary to find other ways of classifying machines. Some people just said, 'a mini is a computer produced by a minicomputer manufacturer' and left it at that. Now that microcomputer manufacturers are producing 16 -bit machines which compete directly with minicomputers, it is difficult to know whether it is appropriate to think in terms of 'supermicros' or to treat them as normal minis. In either case, the Onyx C8002 is the first of the 16 -bit Z 8000 -based systems to be made available in this country.

The Z8000 processor has an interesting history. Originally it was designed to be supplied in two versions: the Z8001 had a total of 45 distinct instructions (or 105 mnemonics or 187 instructions including all variations - it depends on what you want to count) and could address eight Mbytes via memory management hardware, while the Z8002 had a straightforward 64 kbyte addressing range (no fancy hardware extras) and slightly fewer instruc. tions. Both processors offered 16 16 -bit registers, or eight 32 -bit registers or four 64 -bit registers. If desired, the first eight 16 -bit registers can be further subdivided into 168 -bit registers. Recently, Zilog announced that a third version which incorporates hardware paging will emerge. In the course of events, the Z8000 design, particularly in its Z8001 form, seems to have run into more revisions than even Zilog can be happy with, with the result that a
number of OEMs have been unable to deliver the memory managed systems they had designed in advance of quantity production.

In the meantime, Onyx has hedged its bets: it, too, wanted a large-memory Z8000 system but began with the more readily available Z 8002 and then designed its own memory management system to expand the Zilog processor's addressing range from 64 kbytes to 1 Mbyte. It was this ploy which enabled Onyx to win the race to provide the first commercially available supermicro system. Confusingly, although this system is known as an Onyx C8002, the other system which Onyx offers, the C8001, incorporates a Z80A processor rather like the Z8001 implied by its designation.

Having resolved the hardware question, there was still a requirement to provide enough software to compete with the established minicomputers and
once again two choices were available. Firstly, one could beef up the current 8 -bit software, offering (for example) MP/M 8000 , exploiting the rudimentary scheduling offered by MP / M. It is doubtful, however, whether this package would behave as flexibly and coherently as a modern minicomputer operating system designed in and built for the type of processing environment at which this product is aimed. As an alternative, one could adapt a ready. written, well-established minicomputer operating system to run on one's own hardware. Accordingly, Onyx has obtained a licence to provide Western Electric's Unix V7, running under the name Onix.

In fact, this 'lock, stock and barrel' approach has left a few, for the most part fairly cosmetic, patches showing. For instance, at login, the system comes up with 'UNIX' rather than 'ONIX' and there is the occasional reference to 'PDP11' in the documentation. Finally, for the British user, it is somewhat disconcerting to work on a computer which insists on telling the time according to Silicon Valley (Pacific Standard) Time.

Hardware

The least impressive feature of the Onyx is its looks - it's not that the box is particularly ugly but one expects such a 'big' machine to need more than a $22 \times 17 \times 8 \mathrm{in}, 60 \mathrm{lb}$ metal cabinet with a key-type on/off switch and a single on/off light at the front. Installation involves releasing the carriagelock which stops the disk heads from flopping about, plugging a terminal into the 'console' slot at the back, plugging the machine into the mains and switching on. As the fans start (one for the disk, the other for the rest of the system) so does the Winchester drive sounding like a jet engine warming up until it gets up to speed (3600 rpm) and settles to a steady hum.

In the meantime, the system puts itself through a series of hardware tests, displaying the message 'C8002 SELF TEST COMPLETED' on the console when it is finished, followed by the prompt. Of course if something is wrong then a suitable message appears instead. A simple carriage return will initiate loading from the disk while a 'T' will load from magnetic tape.

Immediately beneath the cover are two printed circuit boards (side-by-side) which completely span the box so that the first impression is that it is packed full of components. However, further examination reveals a second layer of PC boards, beneath which lie the Winchester drive unit, the magnetic tape unit (accessed through a slot in the front), the power supply and fan. The top two boards comprise the processor board and a 256 kbyte memory board, while the next layer provides a second $1 / 4$ Mbyte of RAM and the mass storage controller board. All boards are interconnected by cables along their common edge across the middle of the box so there is no backplane as such.

The processor board contains a 40-pin Z8002 which, according to Zilog, has a cycle time of 250 ns and executes everything but 'multiply' faster than a PDP11/45. This is supplemented by the AMD 9512 floating-point processor capable of 64-bit floating or
fixed point arithmetic, incorporating its own stack and capable of interrupting the Z8000 on completion of computation. Unfortunately, there was no way to access this device through the software supplied with the review machine. Apparently an imminent operating system revision will, once implemented, allow this feature to be used.

All the I/O ports stem from the processor board - they are wired onto a plate at the rear of the cabinet via 25 - and 37- way D-sockets. There are ten serial ports; nine of them are RS232C, of which one supports a standard synchronous modem employing bisync or SDLC protocols, while the other eight are for terminals or printers. The console port has hardware switches on the processor board but all the rest have software selectable baud rates from 300 to 38.4 k . The tenth serial port is a high speed ($880 \mathrm{kbits} /$ sec) RS422 port designed for local networking with other C8002s. There is a single parallel port -16 bidirectional, buffered and terminated TTL lines (eight for data, eight for control) for a parallel printer or similar peripheral.

The rest of the processor board contains circuitry to drive a DMA channel for communication with the disk controller and for the Onyx special, the Memory Management Controller, which extends the Z8002's address range from 64 kbytes to 1 Mbyte via a mapping system (based on a 2 kbyte page) which effectively generates a 20-bit address. In addition, this device makes it possible to maintain separate program and data areas for each process, each area being addressable up to the maximum 64 k . This represents an improvement over many 16 -bit minis where the 64 k limit must include both instructions and data.

The memory modules are each composed of four 64 k banks of 4116 s (16 k dynamic RAMs) together with refresh hardware and parity checking. The cards supplied filled the cabinet, although, according to Francis Kelly of Keen Computers, systems with 1 Mbyte (ie two additional cards) would be supplied fitted with a larger top cover which allows more room.

The mass-storage controller on the fourth board incorporates a Z80A processor with 64 kbytes of memory. Some of the memory is used to hold the software necessary to control the disk and tape hardware and the rest is used as a disk sector cache. Frequently accessed sectors will not initiate any disk-seek activity as they will still be left in this memory from the last access. Transfer is from disk memory to main memory via the 8-bit DMA channel. The controller is capable of supporting a total of eight disk drives (10 Mbyte, 18 Mbyte or 40 Mbyte). However, the system as a whole cannot support more than one controller so that there is no likelihood of improving efficiency by separating filestore from paging memory.

The disk drive on the review machine was the IMI 7710 Winchester with a capacity of 10 Mbytes when formatted and which is also used in the Corvus sub-system and the Cromemco Z 2 H . The special Winchester read/write heads together with the two actual disks (providing three data surfaces or 350 data cylinders, depending on which direction you look) are enclosed in a sealed, contamination-free clear plastic
container. The specification claims zero preventative maintenance and a halfhour repair time, which sounds as though they just throw away the broken unit and stick a new one in. Mean access time is rated at 50 ms .

A magnetic tape drive is built into the Onyx to enable an external backup. The $4 \times 6 \times 3 / 4$ in cartridges are inserted through a slot in the front panel of the cabinet and have a capacity of about 12 Mbytes. An entire 10 Mbyte disk can be dumped in about 15 minutes. Alternatively, it is possible to transfer individual named files from disk to tape and vice versa so that any given user can, on a multi-user system, maintain a personal backup cartridge. Finally, the operating system can be loaded from tape.

During the time we had the review machine a number of different terminals were attached (without any difficulty) to the system, including our own ADDS Regent 25 and Cossor Unitels and as well as Hazeltines and ITTs at Queen Mary College, Keen Computers supplied an Ann Arbor Ambassador as the console device. Unfortunately, with such an exciting computer at the other end we .didn't have much time to investigate the facilities offered by this intelligent (Z80A controlled) terminal. Physically it features a 15 in P39 phosphor non-glare screen with a detachable (up to 4 ft) 94-key keyboard divided up into a qwerty area, an editing/numeric key pad (programmable) and a programmable 12 -key top row (24 functions via the shift key). The display screen provides 60 lines of 80 characters. This gives a pretty cramped screen of smallish characters but the line count can be decreased by the operator down to a minimum of 18 lines of correspondingly larger characters. In fact 30 lines was a perfectly comfortable compromise.

A 'Setup Mode' can be invoked within which all terminal-type functions such as baud rate and scrolling/paging can be defined. Once these specifications are made the information is stored in RAM which is maintained by battery when the terminal is switched off so that it doesn't have to be reset every time it is used. In addition, it is possible to define a window anywhere on the screen and to restrict operator access to this region; further, you can define fields (in 'form-filling' mode) within which operator entry may be forbidden, curtailed (eg numeric only), formatted (eg right-justified), or hidden (eg passwords). Such fields may be selectively transmitted to (or omitted from transmission) to the host machine or to a

printer.

On completion of the boot-up procedure, the console will have to be placed within the Onix operating system. Since none of the other terminals will, be 'live' at this point, the console is in single-user mode, useful for certain operations (eg, backing up the disk) when it would be dangerous or a nuisance to have other users on the system. As soon as the console is logged out (Ctri-D), the multi-user Onix system boots in, enabling all attached terminals for logging in. Onix is the Onyx implementation of Unix V7. It would seem to be appropriate to try to give some idea of what the system feels like, particularly for readers accustomed

Cambridge
Cambridge Compuler Stores
1 Emmanuel S!, CB 1 INE
Tel: 022368155
Cornwall
Benchmark Computer
Systems Lid
Tremena Manor
Tremena Road
S: Austell, PL25 5GG
Tel: 0726610000
Dublin
Lendac Data Systems Lid
Tel:0001 37
Glasgow
Byleshop Computerland Lid
Magnet House
61 Waterloo St. G2 7 BP
Tel: 0412217409
Leeds
Holdene Lid
Manchester Unity House
11/12 Rampart Road
woodhouse St
Tel: 0532459459

London

Byteshop Computerland Lid
324 Euston Road
London W1
Tel: 01-3870505
Digitus
9 Macklin Stree
Cove Garden WC2
Tel: 014056761
Jarrogate
67 Tulsemere Road
West Norwood
Tet: 01-670 3674
Manchester
Byteshop Computerland Lid
11 Gatew ay House
Piccadilly Statıon Approach
Tel: 0612364737
NSC Computers
29 Hanging Ditch
Tel: 0618322269

Newbury

Newbear Computing Store
40 Bartholomew St
Tel: 063530505
Nottingham
Byteshop Computerland Lto
92A Upper Parliament St.
NG 1 6LF
Tel: 060240576
Sheflield
Hallam Computer Systems 451 Eccleshall Road, S I I 9PN Tel: 0742663125
Southampton
Xitan Systems
23 Cumberland Place.
SO1288
Tel: 070338740
Sudbury
Eurotec Consultants
Holbrook Hall
Little Waldingford
Tel: 0206262319
Business \& Leisure
Microcomputers
16 The Square
Kenilworth
Tel:0926 512127

Watiord

ux Computer Services
108 The Parade
High Sireet
Tel: 092329513

Comart Microcomputer dealers are located strategically throughout the country to give support, guidance and assistance. In the event of difficulty contact Comart direct

comart communicator

The clean simplicity outside...

Comart'sCP 100 Communicator is the new British designed, British made Microcomputer from Comart. It is the result of a carefully conceived development programme. It exploits Comart's first hand experience of the British computer market, and their growing strength as a manufacturer.

CP 100 is the first of a new generation of flexible, expandable micros specifically developed to suit British operating conditions and communication requirements.

The clean lines outside, conceal the power within; its S-100 bus means wide ranging peripheral support, and simple after sales care. And, that's not all. Communicator is built to keep your future options open. It's ready for Prestel, asynchronous, and synchronous operation. It has expandable memory capability and yet it's price competitive as a stand-alone system with its CP/M ${ }^{\text {TM }}$ operating system, and support software.

Find out more about Communicator today.

The U.K. Leaders in Microcomputer Development, Application and Support.

comart

St Neots HUNTINGDON Cambs PE 19 2AF Tel (0480) 215005 Telex: 32514 Comart G.
to a single-user system. (A fuller description appears in a separate Unix article in this issue).

In response to the 'login:' prompt, the user is required to type a directory name followed (after another prompt) by a password which is not echoed on the screen. The directory name refers to the user's own file space and the password guarantees the user privacy of access. After logging in, the command 'ls' will produce a list of all the entries in the directory. These entries may be the names of files containing programs, or data, or text, or the names of other subsidiary directories. In fact, the user's own directory name is simply another entry in some higher-level directory so that the entire file-structure is a massive tree-like hierarchy stemming from a ROOT directory. (This is the directory the console is logged into after booting up.) For security reasons it is possible for users to prohibit access by other users to one or more of their files, the access attributes of a file 'defining whether or not it is readable, writeable and executable. An executable process (including 'system' processes such as editors, translators and utilities) can be initiated simply by typing its name; two or more processes can, in one command, be initiated for sequential or parallel execution and a file containing a series of commands can be created, made executable and run. Finally, no practical distinction is drawn between I/O devices and disk files (eg the Serial Line Printer is a 'write-only' fine called 'slp').

The question is: Is Onix really Unix? We decided that, since every reference on the screen is actually to 'Unix' rather than 'Onix', it must be, but then wondered how successfully Unix had migrated from its birthplace in the PDP architecture. This is not such an easy question to answer so we sought the assistance of the Computer Systems Laboratory at Queen Mary College. This unit, under Professor George Colouris, runs a network of three PDP11s, all running under Unix, and has developed a quantity of software, including some for computer-to-computer communications. The Onyx was linked into this network with no difficulty and communications established. With the $11 / 34$ behaving as a terminal, a small C program was typed into the Onyx This was compiled with the Z 8000 C compiler and then used to handle the handshaking while a much larger program (a QMC editor) was transferred at a much higher speed.

C is a high-level system language in which almost the entire Unix operating system is written. It has specially convenient data-types for system work and, because it is a high-level language, it is fairly easy to use. It is thus a straightforward matter to modify or adapt Unix to specialised applications. To transfer Unix to a new machine one needs a C compiler that will generate the machine code of the target system and a few device-specific handlers. The whole operating system can then be compiled like a normal program and executed on the new system.

However, there are bound to be a few chinks in software which has migrated in this way. For instance, at run-time, the little communications program flagged an OVERFLOW error which seems to have been caused by the

Z8000 C compiler allocating register space more economically than its PDP 11 counterpart (ie, an 8 -bit register). There were no such problems with the (much larger) editor so we must assume that portability from the PDP will be fairly straightforward - and, of course, this sort of problem would not arise with anything developed on the Onyx itself. We were able to crash the system by creating absurdly large arrays - not very nice in a multi-user environment. More serious was the fact that the system could be crashed by omitting the EXIT instruction from a C program. The compiler really should be able to pick up faulty syntax of this kind.

Other software on the system included a Pascal compiler (based on the UCSD system but without GET or PUT) which generates native Z 8000 code rather than p-code, and a special Z8000 implementation of adb (the Unix assembler/debugger). Apart from these, most of the system routines and facilities seemed to be direct recompilations of the PDP originals, as described above: These included bc and dc, the Unix desk calculator programs and nroff and eqn, the Unix text-formatting packages. There was a slight feeling of fragility about the system (the occasional unexpected occurrence or unusual error message) as though not all utilities had been completely tested. As the software matures, however, we can expect this to fade and certainly the new (forthcoming) releases promise to incorporate more of the features which make up the 'standard' Unix system, including:

- access to the floating-point hardware; - f77, the Fortran '77 compiler;
- Basic, apparently a special Z8000 version of Microsoft;
- Cobol ANSI '74, level 2 with multikey ISAM;
- UUCP communication software, the Bell equivalent of the QMC routines which we used.
- a screen-oriented editor;
- the GAMES package, SPELL \& CRON;
- Codasyl DBMS (Microseed);
the portable C compiler.
The Pascal compiler, which was not supported by any documentation, was slightly slower than we had expected. In addition, on one trial we hit a series of run-time errors which, when corrected, revealed a batch of unrelated but previously unflagged compile-time errors. It is difficult to be certain about the mechanism which gives rise to this phenomenon but it is clearly undesirable for compile-time errors to be masked in this fashion.

Overall, however, we were impressed with the power and flexibility of Unix and with the fidelity of the Onix implementation, as far as it has gone. Our thanks to the Computer Systems people at Queen Mary College for their enthusiasm and instructive help.

Timings

Unix provides a program called TIME which can be run in association with a specific process and with which most of the figures given below were obtained. When a process has finished, TIME provides three figures:
Real - elapsed time measured on the system clock (rounded to the nearest second);

User - time actually spent executing the program. (When we ran the same job several times simultaneously, this produced a wide variation in results so we think it needs attention before it will be accurate.);
System - time spent obeying system calls initiated by the program.

In fact, TIME samples the processor ${ }^{\text {, }}$ every 60 th of a second in order to discover which process is actually running at that instant, so that the figures given for user and system are 'statistically' accurate rather than 'absolutely' accurate, as one would expect with stopwatch timings. There is a certain amount of system time required regardless of the number of tasks being executed so when the system was run as a single user system the sum of the user and system time was a smaller percentage of the real time than when several tasks are run. (Similar system overheads built up when a large number of jobs were run.) Real is taken off the system clock and is slightly longer than a stopwatch timing since TIME itself is a program that is running during the interval that the process is being timed.

As a final caveat, it would be unreasonable to expect identical timings for two runs of the same job, even in single-user state, owing to the system activity inherent in managing a large block of memory (paging) and an even larger backing store (disk access is optimised through a very large buffer). Nevertheless, we felt that the figures obtained under the 'real' heading were sufficiently meaning ful, particularly as a basis of comparison one with another, to be worth recording here.

The first tests to be run were the multi-user tests described in a previous article. Test 1 is designed to tie up the processor (it is Basic Benchmark 7 translated into Pascal) while Test 2 is an I/O test (listing the character set onto the terminal 100 times). Tests 3 and 4 write and read records to and from the disk. Test 3 opens and closes the file between each access while Test 4 simply opens the file once to write and once to read. All tests are run with one, two, three and then four users, the idea being to measure the effects of increasing usage on the system. Only (the longest) real timings are shown, since it is the effect on actual time elapsed which is being sought.

As was expected, system overheads accounted for most of the time on the processor test so that the four processes took markedly less than 4×1 process would. For the I/O test, we unfortunately had to use two terminals at 9600 baud and two at 2400 (all we had). The timings show, though, that this job was completely limited by the terminal speeds (that is, sending characters to four terminals is no slower than sending to one). By comparing the figures for tests 3 and 4 it is possible to get some idea of the weight of system calls necessary to open and close the diskfile between accesses although these tests did not seriously test the file I/O owing to the size of the disk buffer (64 k) compared to the file size $(12.8 \mathrm{k})$. Overall, however, although these tests were probably not as successful (or stressful to the system) as we would have liked, it is probably true to say that the system can cope very well with four users at the level
of activity indicated by the tests and that no catastrophic loss in response time occurs at this loading.

We felt the need to push the system quite a bit harder by increasing both the loading and the number of users. Compiling a Pascal program seemed to place pressure on the system and so, for this test, we decided to compile the first multi-user test. Compiling makes ample use both of the processor and of disk accesses and should therefore provide a realistic loading.

As the figures show, the system seemed to cope best at about four users and still offered good response up to six users. After that, response drops off badly as the system struggles to meet all the demands made on it, spending more time moving code backwards and forward from the disk and correspondingly less time on the user programs. (The ultimate catastrophe, known as 'thrashing' would occur when all its time is spent on these disk transfers.) As it is, with eight users executing programs on the system, a 40 -second compilation would take nearly ten minutes to complete. (Timings would have been even worse if the users were compiling different language source code as all the compilers are re-entrant so on our test only one copy of the Pascal compiler was being used.)

While we had the review system in our possession, we were fortunate to be able to link it into a network of PDP11s, all running under Unix in the Computer Systems Laboratory at Queen Mary College. We were able to compare its performance, in single user mode, against that of a PDP11/34 (also single user) with 192 kbyte of memory (in single user mode the amount of memory is irrelevant) and a massive 132 Mbyte Winchester disk system. These tests were devised by the QMC Computer Systems Laboratory and were written in C. The first one was designed to tie up the processor by initialising a 10000 element array 100 times while the second listed a large file to the terminal using the NROFF text formatter (an I/O test). The final one wrote single characters into a large disk file and then read them back. Everyone was surprised at how well the Onyx performed against the pricier $11 / 34$, especially in the I / O test. The $11 / 34$ seems to beat the Onyx when accessing disks, as is shown in the 'system' times.

Finally, the Pascal Benchmarks were run on the Onyx in single-user mode but without the 'arithmetic' tests (MATHS, REALARITHMETIC, REALALGEBRA), owing to the absence of floating point facilities. The figures from TIME varied quite a bit between runs and, since we felt it was unfair to compare these, which included the TIME overhead and went from load to completion against those of other machines which went from S to E, we ran the whole lot through again with a stopwatch.

As expected, the stopwatch timings are all below the figures from TIME, although the differences varied more than we would have liked. The compiler produced Z8000 object code. When these figures are compared with those obtained for OMSI Pascal running on a PDP11/04, a slower processor, it seems that there is scope for a more efficient compiler.

Potential

There seem to be two major areas where the Onyx can make an inpression. The first is probably in educational institutions both for teaching programming and computer systems and as a research tool. Unix provides a good development environment for programmers and an especially gentle entry into the arcane world of systems programming. With a sound implementation of Pascal, Fortran, Basic and Cobol, the system should adequately provide for high-level programming teaching regardless of the programming philosophy adopted. However, the absence of a backplane rather rules out specialised hardware-dependent laboratory or control applications.

The second area should be small scale commercial software houses. Facilities exist within Unix for the creation of highly effective turnkey systems and when Microsoft's Bascom is im: plemented, commercial development work could take place on the Onyx and the finished software downloaded for distribution on single and multi-user micros. Moving in the other direction, with a fairly extensive Cobol compiler, a relational database and good networking facilities (all promised), mainframe-scale development work could be undertaken. In either case, the size and scope of the Onyx system seem well suited to offer a flexible environ ment for a wide range of commercial applications. In addition, since little of this type of application software exists at present, there is the opportunity to establish an early footing in what could turn out to be a rapidly expanding software market.

Documentation

The review machine was accompanied by three large Unix manuals, draft copies of the Onyx C8002 User's Guide and Software Release Notice and user manuals for the Ann Arbor VDU and the Anadex printer. The Unix manuals are the standard Bell labs set - The Programmer's Manual and the twovolume Supplementary Documents. This material is also supplied on the system - a good idea since software updates can incorporate amendments to the documentation and, in addition, the user can reproduce as many copies as required. Onyx doesn't seem to have taken advantage since there are still references to PDP 11s within the text. The first manual is divided into eight sections: Commands; System calls; Subroutines; Special files; File formats and conventions; Games; Macro packages and language conventions and Maintenance. Each section describes every program pertaining to that section so there is a certain element of repetition in the descriptions. There is also a great deal of cross-referencing but, since 'the obvious is often left unsaid in favour of brevity;' this makes the manual hard to use unless one adopts a scholarly approach and makes intense use of the index which accompanies the text.

In contrast, the supplementary text contains 38 essays and tutorials on a variety of topics (Unix for beginners, The editor, The C language, etc). These are carefully and clearly written and an excellent way of learning about Unix for anyone willing to submit
themselves to the 'tutorial' discipline and pace. For reference purposes though, it's a pity there isn't something between the exhaustive tutorials and the laconic Programmer's Manual.

The 33-page draft C8002 User's Guide describes how to install and run a C8002, but too superficially to be really useful to anyone who needs more than straightforward 'operator knowledge' about the system. There really is a need for a more detailed description of the system and its procedures. The seven-page Software Release Notice simply lists the software available and repeats the tape-loading sequence found in the User's Guide. There was no Pascal manual at all.

Expansion

The minium system configured for four users comes with 256 kbytes of memory, the 10 Mbyte Winchester and magnetic tape backup. The system can be expanded to an eight-user system with up to eight 40 Mbyte drives and 1 Mbyte of memory (according to Keen - the sales literature says the top memory is $1 / 2$ Mbyte). It would probably be unwise to think in terms of eight heavy users on the full complement of disk drives, particularly with the 4 MHz processor and comparatively slow (only one controller) disk system.

On the software side, there is the hope that the vast and ever-increasing quantity of PDP originated Unix software will migrate quite happily onto the Onyx C8002.

Prices

Now for the bad news - the Onyx system is totally unbundled. Thus the review system was priced at $£ 19,060$ plus VAT, which breaks down as follows:

C8002/512/10Mb $£ 13,700$
Onix/8
£2300
C Compiler
$£ 550$
Pascal Compiler
$£ 550$
Onix Manuals
£70
Ann Arbor Ambassador VUD
$£ 995$
£895
Anadex 9500
£19,060
Total:
ther prices quoted by Keen are
Four user systems:
C8002/256k/10Mb £13,050
c8002/256k/18Mb
Onix/4
$£ 1400$
Eight user systems:
C8002/512k/18Mb
£14,950
Add-on hardware
10 Mb add -on disk
£3300
18 Mb add-on disk $\quad £ 4450$
256 kb memory board $£ 2400$
Additional software:
Microsoft Z8000 Basic £375
CBasic II Compiler £150
Fortran IV
£150
RM Cobol
$\AA 550$
Bysync Comm Package
£475
We have stated that the Onyx C8002 competes in the traditional minicomputer market and it is interesting to see how competitive it is. The closest match we could find (to the bottom of the range) was a Comma Hawk (PDP11/ 23 with $256 \mathrm{k}, 5 \mathrm{Mb}$ fixed, 5 Mb re movable) four user system for $£ 10,200$. This price doesn't include the Unix licence (free for educational users,

Conclusion

Did we like it? Definitely - it was exciting to have such compressed computing power humming away in the front room throughout Christmas and New Year but then all we had to pay for was the electricity. For those who must pay more for their programming pleasures there are other considerations. The hardware seems reasonably reliable - occasionally it took two goes to boot in - but Keen Computers remedied the only real problem we encountered a memory failure, probably due to lugging the system about too much with commendable rapidity. The software is a bit limited at present but this should expand and improve in quality and the PDP Unix software is obtainable (not to say available). The Z8000 assembler is a software plus and the current lack of floating point facilities a definite minus.

With the forthcoming crop of multiuser systems, we are likely to face uncertainties similar to those which abounded in the early days of eight-bit micros. In this context, Onyx seems a good bet because it seems to have selected the correct processor to guarantee early production and to have adopted sensible software. It is difficult to know when the expansion limit of 1 Mbyte of main memory, eight Winchesters all on one controller and no proper backplane, will become a handicap - that really depends on what configurations the other designers can come up with.

For the educational user, the facilities offered are slightly greater than those available on a PDP 11/23 - only 64 kbytes of user memory (for program and data) and 256 kbytes memory in toto - but a less flexible range of diskdrives and a higher price-tag. For the commercial user the promised software (Cobol '74, Fortran '77, DBMS and BASCOM) should prove superb tools for giving a competitive edge to production software provided these arrive before the competition can get their systems to the market. For the Unix enthusiast, Onyx will supply the sources for the device-drivers and those parts of the system for which any licenceholder can show a need.

It would be misleading to end on anything buta positive note. . . therefore, it is a pleasure to welcome the first of the supermicros into the British computing arena.
Pascal Benchmarks
Real
Benchmark (from TIME) Stopwatch

magnifier	1	0.5
forloop	7	6.1
whileloop	6	5.9
repeatloop	7	5.4
literalassign	8	6.7
memoryaccess	8	6.9
vector	24	22.7
equalif	10	9.9
unequalif	10	9.9
noparameters	8	7.4
value	9	8.0
reference	8	7.9

Better than Adventure?

We reckon that CATACOMBS, our latest game in the Adventure mould, is better than the original: You'll need a 16 or 32 k PET with disks to find out if we're right - and $£ 27$.
Also for disk owners we've two new games collections, each of six programs on one disk - BRAIN TEASERS (£15) and GAMES PLUS (£12). On a more serious note there's DISK APPEND and DISK MERGE at $£ 15$ each, and for $£ 22$ MASTER DIRECTORY is a powerful package that will keep track of all your disk files. We are official WORDPRO and VISICALC dealers and we can also offer KRAM for $£ 59$:
There are dozens of great PET programs in our free 1981 Catalogue, together with supplies and some nifty gadgets - like the KL-4M four-part harmony music board which comes complete with the excellent VISIBLE MUSIC MONITOR for $£ 34$. Also from the States we've PAPERMATE, a really versatile word processor that does everything that most people will ever want - for $£ 25$ on tape or disk!
We've the TOOLKIT at $£ 29$ (Basic $4 £ 34$), and for $£ 45$ you can choose between PIC-CHIP and SUPERCHIP (now also available for Basic 4). Short of sockets ? Then we can offer both in one 4 k chip for $£ 90$. If you've still got OLD ROMs then how about the OLD ROM PACKAGE - Toolkit; Superchip, and extension board for $£ 75$, the price you could have paid for Toolkit alone until recently.
From plug-ins to a plug-on, the PRESTO DIGITIZER, at a Supersoft price of just $£ 18$, saving you $£ 24$! Back to software with PEP, or PET ENHANCEMENT PACKAGE. For $£ 25$ you get a double-density PLOT command, computed GOTO and GOSUB, INPUT with timeout and many more original features. If you fancy writing your own machine code, we have MIKRO and MAKRO assemblers at $£ 50$ each.

SUPERSOFT

AN INEXPENSIVE MEW DATA STORAGE DEYICE FOR THE OASCOM IS HERE AT LAST!........
Fop under 2325 you get a TWO drive expansion for your computer. The full hit includes two minicassette drives, interface board, firmware, cables, manual, etc. Two mini-cassettes also included.

Alse.
 Serial RS232C te Centronics Parallel Interface Adaptors....from E50-90 All prices exclude V.A.T.
C.I.E.L. are interested in your designs. Excellent rates for any professional hardmara or software.

Send s.a.e. for more details and price list to;
Computer Interfocing \& Equipment Limited,
Pinme

46, Moredun Park Gardens, Edinburgh, EH17.
Tel. Edinburgh (031)664 3877, accounts. or,
Glasgow (041)2213399 Sales \&Technical Enquiries
\# 5% DISCOUNT TO COMPUTER CLUBS

* dealer enquiries welcome

| Mame |
| :--- | :--- |
| Comaty |
| Adress |
| Post Cole |

Rip off

Let's put the record straight, for a start. The true author of the Ski-Jump Simulation program that we published three months back was Clive Riches of Sprowston,
Norwich, and not as credited at the time.

The story goes like this four months ago ' YCW ' received four programs from a reader, and very nice they were, too. One of them was subsequently published but no sooner was the issue on the newsagents' stands than we got a letter from Clive.
'Oi!' he said, 'that program is mine! It's a straight steal of one I did for my A-levels, and I can prove it!'

Getting to the bottom line, Clive was right - he had been ripped off by a youth who had been able to make straight copies from disks held at. Norwich Polytechnic Not only had he copied Clive's program, but those of three other students, too! Then he simply stripped off any identifying lines and coolly submitted them to this page for publication and payment!

In the end, justice was done. The real author received payment and the thief has been blackballed, but I can't help wondering what sort of an idiot would do a thing like that in the first place.

I can imagine only two reasons: (1) the honour and glory of seeing his name in print over a published program, and (2) the money. If the first was his motivation, then the supposed honour is sour; when he proudly flashes the magazine about, he knows that his friends' congratulations are undeserved. If the second, then the idiot might have guessed that the original author would spot the publi cation and the events would take the turn that they did. Or perhaps he was simply taking a chance on it? Either way, his action was contemptible.

In point of fact, I suspect that it was money he was after, because I am told that he wants to set up in business selling software preferably someone else's, I suppose. You could be sure that he won't be allowed to advertise in this magazine, but readers in the Norwich area had better look to the security of their programs!

Security

Time was when the whole society of computer users was a sort of scattered village, with everyone knowing everybody else, but one of the results of the explosion in computer use is that all sections of society can get to use them - and that means the young and the old; honest and dishonest; wise and foolish; adequate and inadequate; law-abiding and criminal. New forms of crime are enabled as fast as old ones are rendered difficult. by computers. Clive Riches is only one victim among what will, without doubt, be a vast army of victims of a type of crime impossible a few years ago.

Computer users will have to come to terms with this and take what precautions they can - especially as the Law has not yet caught up with new methods of data storage. It must be recognised that storing programs on disk in a College or Polytechnic is virtually the same as leaving them lying about in a public place. This isn't much help to young folks like Clive, who are dependent upon what is provided, and college authorities must recognise that as they provide lockers for students to store books, sports gear and suchlike, so it is their duty to provide secure storage for computer data and programs. The method is easy, once the need has been recognised - students log in and are given access to a restricted number of files.

We have the technology why are we not applying it?

There are two human failings here that I would like to draw your attention to. The first is that, because we work and study with another person, we are loath to think of them as thieves. 'Our school isn 't like that!' we say, or, 'I can't believe he would do a thing like that!' That is a failing that crooks take advantage of.

The other failing is that once a school - or any individual or group of individuals - gets a reputation for harbouring crooks, it is extremely difficult to get rid of it. 'Give a dog a bad name. . .' That human failing is the one that dishonest people whine about the most, of course. For a school, it means that in order to undo the dishonesty of a few, thousands must labour long and hard. That is why I hate thieves and vandals so much - and why I crack down on them so hard in my own school.

Programs received

PET subroutines by Neil Stoker (16) of Gateshead. Planet Predictor by D H Matthews of Brussels. Anti-Aircraft Gun by Daniel Brown (13) of London. Space Station Alpha by Jonathan Lansdell of Wokingham. Shootout by Matthew Sargaison (11) of
Berkhamsted.
Mole Hunter by Carl Birks (14) of Southport.

The submission from Jonathan Lansdell was particularly interesting, although we cannot publish it. It is very long - some 19 pages but represents not an actual program so much as an idea. At first sight, spending this much time and effort into re fining an idea might seem pointless, but it isn't. With a complex notion such as Space Station Alpha, getting the idea down onto paper is a necessary first step - it's much easier to make changes at this stage than it is when you have begun to write the program, or even when flowcharting has begun.

Jonathan is also right in supposing that ideas are saleable. I once had a friend who wrote for the film industry and.who earned $£ 30$ (a lot of money in those days) for an idea scribbled on the back of an envelope.
(Yes, it was eventually made into a film.)

No - the main reason that we are not publishing is because of its great length. It is also some where between an 'idea' and a 'program'; what the film industry would call a 'treatment'. One also suspects that when our friend comes to translate his treatment into a program, he may find that he needs more computer memory than most of us have available; a common failing with treatments.

Still - 'You Gotta Have A Dream!' - and why not?

I was also happy to get Matthew Sargaison's program Regular readers may recall that we published a Space Defence program by Stewart Sargaison some time ago well, Matthew is Stewart's kid brother. That's quite a computer family they ve got going there in Berkhamsted; I was privileged to meet them all at the PCW Show - kids, dad, even grandad - all interested in computers. Great!

Talking of grandads reminds me: a kind old gentleman came to see me at the PCW Show to say that he thought that I was writing no not only for young readers, but also (as he put it), 'the young in heart'. Thank you sir - I hope so. All the kids that I know have a very-welldeveloped sense of what is 'fair' and will, I hope, agree with my comments about program theft.

TRS-80 L2 GRAPHICS

by Torstein Kongshem
3 • RIHT"INPUT SCREEN SIZF (HC:RIZONTAL \& VERTICAL)"
4 INPUT H:INFUT V
$5 \mathrm{H}=\mathrm{H}-1$: CLS
$6 \mathrm{~B}=\mathrm{RMD}(5)+1$
10 FOR $\therefore=\varnothing$ TO H STEF B
$2 \emptyset 3 \pm T(A, 2)$
$3 \varnothing$ NEMT A
$40 \quad 2=2+1$
45 IF $2=V$, IVT $2=0:$ GOTC $6 \varnothing$
50 GOTO 6
$60 \mathrm{C}=\mathrm{RKD}(5)+1$
$7 \varnothing$ FCR $D=\varnothing$ TO H STEP C
$80 \operatorname{SLS}$ S (D, K)
90 NLXP D
$100 \mathrm{~K}=\mathrm{K}+1$
110 IF $K=V$, IET $K=0:$ GOTC 6
120 GOTO 60

All you ever wanted to know about Unix - courtesy of Chris Sadler and Sue Eisenbach.

The December 1980 issue of the American micro magazine Byte carried an item which commented on the number of 'Unix-like' operating systems which were being advertised. The author, Sol Libes, mentioned three: Xenix, from Microsoft, for all the 16-bit processors, OS-1 from Electrolabs and a third, for Z80s, from Morrow Designs. Had he read the advertising copy for that very issue, Sol Libes would have been able to add Cromix (from Cromemco), Uniflex (from Technical Systems Consultants), Idris (from Whitesmiths) and OS-9 from Microware. Even then he would have missed out Onix, Omnix, Tynix and Zilog's plans to sell Unix proper on its Z8000 systems.

Now, most of the above will work only on one processor or another; and some of them have been designed from scratch (incorporating Unix-like features) while others have been transferred directly (under licence) from the Bell Labs system sources, but all exist because of the high regard in which the system software community holds Unix.

Unix was developed in Bell Labs (the research and development company of AT\&T) in 1969 by Ken Thompson, whose main objective was to create a hospitable environment for software development. By 1971 Thompson, who had been joined by Dennis Ritchie, had produced the first single-user version, running on PDP 7s and 9s and drawing somewhat on some of the features of Honeywell's Multics mainframe operating system which had been developed at MIT. The second version was on a PDP 11/20 while the third incorporated multi-programming and could run on the entire PDP 11/34-70 range. The fourth version could run on the Interdata $8 / 34$ as well as a PDP. Nowadays, most installations run Version 6 on PDP 11s although Version 7 exists, running on large PDP 11s and the VAX 11/780. Apart from the new micro-versions catalogued above, Amdahl last November announced a version running on one of their mainframes.

Bell Labs is a branch in a.tree of companies, the root of which is the corporation AT\&T (see Figure 1). A series of legal judgements in the United States during the fifties has led to the application of major monopoly constraints (the AT\&T family of companies is to be involved in communications only) to its marketing policy. This
colours almost everything about getting and implementing Unix. It appears that, although Western Electric (the marketing company of AT\&T) will take your money when you buy Unix, it is not allowed to treat you like a customer. For instance, it is not allowed to advertise, there is no maintenance or support, no warranty and no trial period. The terms are strictly cash in advance and the amount paid varies from $\$ 4000$ to $\$ 40,000$, depending on who you are and what exactly you buy. For customers who only require Unix to run the products they sell, binary code should be sufficient. Western Electric allows object code to be sold for the same price as source for a second CPU. It also makes special arrangements with large software suppliers (Onyx, Microsoft) who supply object code only. Purchase price covers the licence only, the handling charge (expenses and medium) being extra. Bona-fide degreegiving educational institutions only have to pay the handling charge. The software comes on a nine-track magnetic tape with one set of manuals.

It is a comment on the quality of Unix that, even though Western is forced to treat its customers (about 2000 sites) as shoddily as this, and even though the bulk of distribution goes to educational users (65 percent), the revenue obtained from Unix is big enough to have featured in one aspect of AT\&T's recent reorganisation (ie it is recognised as a significant source of income).

What 's so special about Unix?

In order to discover why so much fuss has been made of this piece of software, it is necessary to look at those features which constitute any operating system and see which aspects Unix implements in a special way. Every interactive operating system incorporates at least two things - a command interpreter to decode instructions input by the user and act on them and a peripheral management system so that I/O devices, data files, and user and system programs can be located and manipulated at will. In addition, a multi-user system must have a scheduling algorithm and a filesecurity system in order to allocate the system resources among competing users. The first of these tries to ensure a unique share of the processing facilities
for each user while the second provides a unique share of the storage facilities.

A good operating system will have a concise and logical command format that is easy to learn and quick (and consistent) to use. In addition, the peripheral management system should make efficient use of disk space. There are many other features which are highly desirable in an operating system but it is probably best to look first at the four essentials: a command interpreter; a peripheral management system; a scheduler and a security system to deal with the extras afterwards.

The Unix command interpreter is a program called the shell. The basic command format for the shell is a single word (generally two letters), which will normally be the name of a particular program which performs the action commanded, eg
\$Is (\$ is the Unix prompt)
will execute the program 'Is' whose function is to list the user's filenames on the terminal screen. Similarly, \$who
will execute program 'who', which displays a list of all users currently on the system. Should the called program require parameters, these will be passed with the command line. The shell assumes that the user's terminal is the default input/output peripheral, although this can be easily over-ridden by means of the operators ' $<$ ' and ' $>$ ' such that
\$ prog $>$ filename (where filename may be a perhipheral)
will have the effect of executing the program 'prog' and directing the output to the specified file. Likewise \$ prog < filename
will execute 'prog' accepting input from 'filename'. There are other operators which can be used in shell command lines and these will be discussed later.

The shell's mode of operation is quite complex. Once the required command has been interpreted and the requisite program located on the disk, a 'fork' process is initiated (any program in a state ready for or during execution, is called a 'process' in Unix). What the fork does is to create two versions of the shell, one called the parent process and the other, the child process. At this point a second program (exec) loads in the code for the child process and begins to execute it. All the information available to the parent process (ie the information about the 'environment', which terminal to talk to, which
files are accessible, etc) is inherited by the child (see Figure 2). In the meantime, the parent process is still active, although in some cases it may not have anything to do until the child process completes. For instance, any command terminated by ' $\&$ ' will pass control back to the shell while it is executing, so that the shell can deal with the next command in parallel. Commands separated by a ':' will be handled in sequence. This is the first hint that Unix is a clever operating system.

The filing system owes its strength to its simplicity - merely a tree-structure whose root is a directory (a list of names of other files) and whose final branches are the programs and data files of the system and the users (see Figure 3). Disks full of files, organised into subtrees, may be attached (mount-
not have write access, Unix doesn't write it back to the disk after usage); $\mathrm{x}=$ permission to execute a file (files created using an editor don't have this permission unless the user specifically changes a file's access rights).

Access rights are granted on three levels:
rwx

(owner) \quad\begin{tabular}{c}
rwx

(group)

\quad

rwx

(world)
\end{tabular}

The above describes a file which is wide-open. Utilities exist which make it possible for the user to protect files from, or to make them available to, users in his group (a special designation of users) or to all users.

The designers of Unix have been at great pains to make operations concise and efficient for its users, who have repaid with fierce loyalty. But Unix makes very little attempt (short of giv-
presents to the user. Some may be impressed by the power of the shell, others by the simplicity of the filing. system, but every development user will know that no off-the-shelf operating system can exactly match the particular requirements of the current programming job. The real strength of an operating system lies in its adaptability - its capacity to accept patching or rebuilding as the programming environment evolves.

Several powerful operating systems seek to meet this requirement by offering a wide variety of 'building' options. When the operating system is set up, a 'generation' program asks the user which of the available options should be built into the system. The result is a more-or-less customised system. The Unix approach is completely different. terminated by the end of file marker (CTRL-D). (No record structure or file headers exist.) At any given time, a logged-in user will occupy some position in the tree. Any file to which access is required will lie in a directory and the 'path' is the route taken from one point to another. Paths can be stipulated either in absolute terms (eg /usr/chris/ notes) or sometimes relative terms (eg '. .' means 'next highest level ') in commands to the shell. Additionally, I/O devices are treated simply as entities in a directory dev so that it is straightforward to direct output to, say, a line, printer (ie, $\$$ file $>/ \mathrm{dev} /$ slp where 'slp' regers to 'serial line printer'. Finally, the shell can interpret an extremely generous selection of wildcard designations so that '?' refers to any character in the sense that 'a?e' stands for 'aae', 'ale', etc. Similarly, [. .] means 'in the range' so that [a. .c]xyz stands for axyz, bxyz, cxyz. Finally * stands for 'everything' or 'any string'. So, *ing will find 'string', 'writing', 'laughing', etc. More than one wildcard can be used in a single string.

Security is dealt with by a password system. Each user logs into a named area on the file tree and must supply a password to gain access. All the passwords are held in a publicly available (at least for reading) file called 'passwd" - but in encrypted form. In addition, every file reference in a directory includes a string of bits which grant (or withhold) access rights as follows: $\mathrm{r}=$ permission to read;
$\mathrm{w}=$ permission to write (if a file does

Figure 2 Fork process

Fig 3 Directory hierarchy
ing some error diagnostics) to keep its users from making mistakes - the user is assumed to be intelligent. This is in contrast to some operating systems (particularly on mainframes) which assume their users to be button-pushing morons who must continually be stopped from doing something stupid. Nevertheless, with all the attention paid to the user, Unix does not seem to have the capacity to save the machine much work - it is known to need comparatively large amounts of memory and disk space and the scheduling algorithm is perhaps not as sophisticated as it could be . Still, if a system has to be kind to users or kind to machines, few would choose the latter.

Adaptability

The previous section attempted to give some idea of the sort of face Unix

Fig 4 The pipe

LUNAR LANDER SURPEME (16K/G/B)medium \& long-range scans show planet surface in aryln detail. Continuously updated STATUS AEPORT gives vertical, horizontal \&s relative velocity, altitude fue landing site. 8 gkill selections. Brilliant graphics E13.95 time version from our Invasion Earth author,
using M / C code sub-routines to Special features include larger galaxy shielded homing, warheads (fired by klingINVASION EARTH (MC/G) - New improv ed version! 4 complexity ratings. 10 overall speeds. Variable shot speeds $\&$ alien descent
rate. 4 invader types. Intelligent homing rate 4 invader types intelligent homing,
exploding, angled, direct, mulitiple warhead exploding, angled, direct, multiple INVASION EARTH (MC/G)-as above with
SOUND EFFECTS using AY-3-8910 CHIP "NASCOUNT" - PEROSNAL FINANCE ($16 \mathrm{~K} / \mathrm{MC}$) - Make life simpler with this finance planner. Budget income/expenses surpluses \& deficits. Can be used to check bank account \& record past income /expenses 50 entries eachperiod. Five digit codes with
analysis by code $\& s$ sub-code. Calculate cumulative cash flow to specified month end Output to cassette sp printer. $\varepsilon 12.95$ CONSTELLATION (16K/B)-Turn your from any point in the Northern Hemisphere at any time \& date. Display stars by magnitude, Identifying number or constellation. The telescope can be raised \& Iowered,
zoomed in \& out. Also output of star m zoomed in
** NASCOM 1 - COTTIS BLANDFORD cassette interface for N2 format, reliability order,
$=$
Nascom BASIC (State Tape BASIC if required). MC=Machine Code, $G=N$ ascom
Graphics. 8 k RAM required uniess otherwise Graphics. 8k RAM required uniess otherw ALL PROGRAMS SUPPLIED ON CASSETTE
FORMAT.

NASCOM 182

MUSIC BOX

Now you can make music with

 ASOM. Easy to follow program allows you to key in old favourites or ctave range with staccato option. 9 empos. Set note duration or tap in thythm as required.Comprehensive editing. Delete, insert or amend notes. Single-step forwards \& within declared array size.
The program includes tape generating \& play-back routines $\&$ is supplied with 2 or connecting your Nascom to an ampli ier/speaker such as our unit below. $\operatorname{Min} .16 \mathrm{~K}$ required - please state T 4 or Nas-sys/2 or $4 \mathrm{MHz} /$ with or without
Onaphics.
Only AUDIO INTERFACE BOARD \& SPEAKER

Compact \& ready assembled, suitable for use programs. 3 simple connections. Complete with instructions on programming for

AY-3-8910 SOUND CHIP

Program up to three independent channel with music \& sound effe
SOUND CHP INTERFACE BOARD Using the PIO, program up to four sound sounds. Each board contains an interface allowing a further board to be attached. Only simple link changes required. Connect to 213 mpli
SOUND CHIP DEMO PROGRAM - Firat mode gives direct entry to chip registers, making experimentation simple \& thus rapid appreciatIon of chip's potential. Second
mode turns keyboard into 7 octave 'piano diaplaying state of zegisters \& notes (up to

GAMES GRAPHICS ROM

Contains graphics characters Jor NASDICE \& a number of other userful charact ers. Uses NAS-GRAROM socket. $£ 15.00$ GAMES ROM ADAPTOR- allows switch ing between NAS-GRAROM \& GAMES COMBINEDROM \& ADAPTOR $\quad \mathbf{E 1 8 . 9 0}$

- Hangman
-Wumpus ${ }^{+}$
-ShareValuation ${ }^{+}$
- Plus Others
* Requires more than IK. RAM
- Cassette Use
- Program Efficiency

128Pages

E4.95
Including Postage \& VAT
Cassette Tape of Programs above plus book £14.95

PHPDS ASSOCATES 3, DOWNS AVENUE, EPSOM, SURREY. KT18 5HQ
or Telephone Epsom (03727) 21215 Quoting your Access Card Reference. No callers please.

The bulk of the operating system was written in C, a high-level system language (also developed at Bell Labs). There was a time when 'high-level' and 'system' were mutually exclusive when applied to languages. Although C is not the only such language around, it is a fairly powerful example of its kind and has the right sorts of control and data structures to make it relatively easy to set up activities at system level. It also produces very efficient run-time code. (It is said that Zilog's interest in Unix stems from its discovery that \mathbf{C} was more efficient than PL/Z, Zilog's own 'system' language.) In addition, Unix provides a large number of routines which provide access to the system tables and other information which is essential to system programming.

Further, since the shell has very little processing capability in its own right, it relies on calls to lower-level utilities. Since the source for these utilities is written in C, it is a simple matter to modify or replace these to suit one's purposes and still make them available via the shell. Finally, Unix can migrate to foreign hardware more easily than most operating systems (which is why you are likely to see it around quite a lot) because one simply needs a good C compiler generating the required machine code and, apart from device handlers, a few hardware-specific routines and a few time-critical routines, the whole system can be built like an ordinary program.

At a higher level, the shell will execute any filename which it is supplied so that a file containing a sequence of commands can be submitted to the shell which will process them, one command at a time, as directed. This is known as 'programming the shell' and has developed some very powerful features:

1. Commands can be strung together with \& or ; or on consecutive lines; 2. Parameters can be passed into dummy string variables;
2. The control structures
if <condition> then<action> fi
case < instance > in <list>)< action> $; ;$ action> ; . . ; esac
for <instance>" in <list> do <action> done
while <condition> do <action> done are implemented;
3. Output from one program can be directed (as input) to another program running in parallel, without requiring an intermediate datafile or explicit synchronisation, by means of the 'pipe' function (:). Thus, \$nroff <text: pr will invoke 'nroff' (see later) to process file text and output to program 'pr' (the line printer) line by line. Figure 4 illustrates this mechanism.

These facilities enable the system programmer (or anyone else who wants to spend the time) to create a custombuilt environment with utilities which perform exactly the tasks required, invoked by appropriate names - eg 'chatty' Unix would have a file 'remove' which contained the single (standard) Unix command rm followed by \$1, a dummy string variable for the filename; alternatively CP / M could be emulated by calling this file ERA. In fact, it is even possible to replace the entire shell (in its role as the place which users log into) so that users find themselves in a special environment (turnkey, or dedicated to one function).

For the most part, however, pro-
grammers will be happy to accept the bulk of the Unix environment as they find it, as it contains a broad range of system facilities. The Unix ethos distinguishes between: 'commands' which are utilities directly available for invocation at the terminal, like editors \& compilers; 'subroutines', which are self-contained segments of code available to users within their programs: and 'system calls' which are far from self-contained, burrowing into the inner workings of Unix itself to achieve some system function like accessing a file or loading and executing a program. Both commands and subroutines can and do make implicit use of system calls, but Unix is especially flexible in making the naked system calls so easily available
to the general user.

Commands

Standard Unix comes with ed which is a fairly ordinary line-oriented editor with a few irritating features (eg no prompt at the beginning of each command line). Anyone in this country either has, or should, be able to get hold of em (an improved line-oriented editor or, better still, ded (a screenoriented editor) - both emanating from Queen Mary College, London University. One unusual feature of these editors is that it is possible to pass commands out to the shell from within the editor.

There is a C compiler, obviously, as it's the father of the Unix system in the sense that everything else sprang from the digital equivalent of its loins. A utility called lint will accept a C source program and perform 'strong' typechecking and a number of other checks (presumably the actual compiler is a bit sloppy about these things, probably to cut down on compile-time). Developers are advised to use lint on all completed programs, particularly those which may have to travel (see Onyx review). Alternatively, there is a portable C compiler which should aid in producing less troublesome transfers.

There is a Fortran compiler and in version 7 this is the full (structured) Fortran 77 implementation called f 77. The Unix approach to Fortran is somewhat mixed - rumour has it that the first Fortran IV compiler was produced in a fortnight for a bet! Any language deserves more respect than that. And yet there is Ratfor - the structured preprocessor for Fortran which lies at the heart of 'Software Tools' - yet another Bell Labs development. Under Unix, Fortran porgrammers are encouraged to write their programs in Ratfor. Failing that however there is struct which will convert a Fortran program into a Ratfor one. This is then fed to the Ratfor preprocessor which produces another Fortran program for onward transmission to 977.

The standard Pascal compiler under Unix is Tanenbaum's 'Amsterdam' Pascal which generates a pseudocode (not p-code) with great efficiency and some thorough error checking. It is also possible to compile directly into native PDPP11 machine code (assuming you have a PDP11). This is a longer process but produces faster code since the psuedo-code interpretation phase is eliminated. On the Onyx, the UCSD Pascal compiler was used. For both of these, the compiler outputs to a fixedname file (typically a.out) from which the user is expected to extract the
object file. This could be a great nuisance during heavy program develop. ment.

Other offerings under Unix include APL, Lisp. BCPL (an ancestor of C), ALGO68s (from Manitoba) and POP -11 (from Sussex).

There is a wide range of development tools including:

- yacc (for 'yet another compiler compiler') and lex (a lexical analyser), for buildihg your own compiler or crossassembler:
- make for maintaining (ie making global amendments to and then recompiling) a suite of (usually interlocked) programs;
- adf a debugger featuring core-dumps, breakpoint execution etc;
- Id (for 'loader'), a link loader which enables the assembly of collections of self contained object-modules into something executable;
- ar (for 'archive'), a library creation and manipulation package, and
- as an elementary assembler.

Text-handling is a part of the raison d'etre for the entire Unix project at Bell, so there is an unusually large range of programs which transfer, format and otherwise manipulate text files. Chief among these are nroff and troff which can detect formatting commands embedded in text-files and implement these on a line-printer or phototypesetter respectively. In addition, however, there are egn, which enables the user to insert mathematical equations into text - tbl, which offers the same facilities with tabular formats - spell - which will check the spelling of every word in the text-file against 30,000 (American) English words (this will only be valuable in this country when the project to Anglicise all these words has been completed) and a large number of smaller-scale programs which search, sort, count and otherwise manipulate the words and letters in text-files. Finally, pr and cat handle the output of these files onto the printer or terminal.

There are programs to pass messages from one user to another, whether the recipient is currently logged-in or not. There are other programs which permit (and control) communications between different Unix systems, interconnected in some way.
Finally, there are all the 'extra' programs such as a games package which includes chess (another Bell speciality), Othello, Blackjack and Moo (numerical Mastermind). The program learn accepts input in programmed-learning format and uses this to control 'lessons', there being six such files to introduce the new user to Unix. Unfortunately the feedback mechanism is not sufficiently sensitive for this program to be a particularly powerful educational tool. There are a pair of 'desk calculator' programs, de which provides immediate mode, Polish notation arbitrary precision arithmetic capabilities and be which is simply a pre-processor which allows one to pass input to dc by means of C-type syntax.

Conclusion

Many of the features described here deserve more attention than we have been able to give them and there are many other useful or interesting features which we could have discussed,

GOTO page 146

Clearly ahead of its time.

When you buy what is regarded as the best daisywheel printer terminal in the world - the Qume Sprint 5 - you expect a backup service to match. ISG Data Sales Ltd., your official UK distributor of Qume terminals, provide just that:-

- On-site installation, commissioning, service and maintenance by our own trained engineers.
- Fast response to service calls
- Maintenance contracts
- Ex-stock delivery of Qume terminals, accessories and supplies
- Purchasing or leasing options
- THE MOST COMPETITIVE PRICES AROUND.

The Qume Sprint 5 offers:-

- Letter perfect printing at 45 or 55 cps .
- Over 50 different type styles including APL, scientific symbols and international character sets
- Smart microprocessor utilisation for powerful flexibility
- 43 Qume-defined commands for operator control
- Convenient switch selectable functions on front panel
- Built-in diagnostics
- Serial or parallel interface
- MultiColor ribbons

If you want to be ahead of your time, ask for Qume - from ISG
Data Sales, your official UK distributor

Fairacres Estate, Unit 9, Dedworth Road, Windsor, Berkshire. Telephone: Windsor (07535) 57955 Telex: 849110.

SYSTEMS ANALYSIS

PART7:THEFIRSTSTAGE NSPECIFYINGA PROGRAM

Lyn Antill continues her series aimed at bridging the gap between the micro expert and the would-be user.

So far in the series we've looked at the need for systems analysis, the means of analysing the user's requirements and at the way in which a buyer can go about looking for hardware and software. All these jobs can be done by someone who didn't know anything about computers when he started, because they rely so much on knowing what the micro is going to be used for. The user is the one who knows about the job that is going to be done on the micro. If he can put that knowledge in terms of requirements that the computer people can understand and if he can ask the right questions about the systems he is offered, then he can make a sensible choice of system. At least he can if there is a system on sale which meets his requirements.

If you have not managed to find a suitable program package and a machine to run it, and if you still feel that a microcomputer system is going to be the best solution for your problems, then you have to start breaking new ground. You will have to write your own program, or get someone else to write one for you. One thing that you have to accept before you embark on such an enterprise is that it will not provide you with a quick solution to anything (except, perhaps, for the problem of how to use all that spare time and cash you didn't know what to do with!). In other words, writing a program takes time, and having a program written for you takes time and costs money, and it's only justified if it saves you more of both in the long run.

Specifying a program is probably the most difficult part of systems analysis for the non-programmer to come to terms with. Indeed, many people who are good programmers themselves would find it very difficult to write a specific ation for someone else to program from. All sorts of information has to be communicated to the programmer. Some of it is straightforward. Some aspects may be difficult but still perfectly clear-cut, eg, calculating PAYE, where, even though the rules are comp: licated, there is a standard way of doing things and knowing whether the answer is correct. Unfortunately, there are also areas where there are no rules and where people have relied on their common sense to decide how the work should be done. Obviously computers do not have common sense so the work must be spelled out in detail if it is to be programmed. If you leave it to the programmer to do this you may well
find that his view of common sense does not agree with yours, or that he simply does not allow for the odd-ball situations that you know keep cropping up. Another thing which has to be communicated is the sequence in which different tasks have to be done, especially the occasional jobs like end of month and end of year.

Because there is so much information involved in a computer program specification, this is one area that has been thoroughly investigated by the NCC, and most of their forms are devoted to various aspects of program specification. There is so much involved and it is so important to get it right, that I will be spreading the subject of specify. ing a program over two months.

What machine are you writing for?

As well as deciding who is going to write the program, you need to decide what machine you are going to buy. There is more freedom of choice here because there is not the problem of teaming it up with an existing program package. Before you decide, you should have worked out what constraints your program is going to make on the choice - what memory; does it need a full size screen; graphics; disks? You will want to choose a programmer who is familiar with the machine (or a machine your programmer is familiar with) and the particular features of the machine will have to be borne in mind when designing the programs.

It's a toss-up just how soon to buy the machine. You don't want to part with all that money before you have to, but then you don't want to find that deliveries are late and your programmer is twiddling his thumbs in your time. So, once you've decided on a machine, you need to check out two things how long it will take to get one delivered (and functional), and how long it will take to get hold of a programmer and get him to the stage of sitting down at the machine. If you're thinking of writing the programs yourself, get hold of a machine as soon as possible, because it always takes longer than you think it will to learn your way around the machine and the language. This means that the more time you have to spend on playing around the better. It also means that you have more time to ask questions about all the snags you're bound to hit as you try to find your way through the manual.

Who's going to write the program?

Before looking at the job of writing a specification, I would like to look at the question of who is going to use that specification. This is because you can get away with less formality if the program is to be written by you or someone close to you. Many teachers of systems analysis would regard that statement as a heresy and would point out the danger that the lack of formality may hide a lack of clear thinking that would lead to disaster later on and, of course, that danger does exist. Nevertheless, it is clear that good programs are sometimes written from informal specifications by people who know what they're doing. The important part is to specify the overall pattern correctly, the skeleton, or, more properly, the structure. If the structure has been laid down clearly, then an informal specification can afford to be sketchy about the details, eg, 'prepare invoice' is a perfectly good instruction to someone familiar with the way you prepare your invoices, but would need to be spelled out in more detail to a stranger.

Well, could you write the program yourself? You may already have decided that you don't want to or don't have time to, or that what you want is far too complicated for a novice. But if you're toying with the idea, and can't decide whether it's feasible, the only way of finding out for sure is to try. The only trouble with this is that you may have used up quite a lot of time before you discover that the answer is 'No', and this could be very frustrating. But if you want to try (for the experience if nothing else) then you need to start on a simple problem, or at least a problem with a simple solution. You will probably go for Basic as this is the most popular language on micros, and it is the easiest one to write simple programs in (although this is a rather circular definition of simplicity). Basic was designed for doing calculations and for passing information to and from the operator. If this is the sort of program you had in mind, you stand a fair chance of learning enough Basic to write the program satisfactorily. Also, it's much easier to test this sort of program because you can see whether you are getting the right answers to the calculations by working out a few of the answers yourself.

Files were added to Basic as an after-
thought and different Basics have differ. ent ways of handling them - some nicer than others. It's more difficult to test file handling programs, because you have to write another program to read back the file you've written and if the results are not what you expected, it's not always obvious whether it's the reading or the writing that has gone wrong. It's more disastrous if a file handling program goes wrong because not only will you have wrong answers this run but you will have duff input to the next run unless you re-create your data. File handling programs also call for greater thought about security and backup procedures and this relies on better knowledge of the operating system for taking copies, renaming files, etc. Students are quite a way through a course in Basic (or Pascal) before they do any file handling. Cobol is the only language avail able on a micro where you start with file handling but you have to learn quite a lot of Cobol before you write any programs at all. So, if yours is a file handling program, I would think very hard (and possibly take some tuition) before embarking on that as a first foray into programming.

Experimenting

Whether you are thinking of writing the program yourself or getting someone else to do it, you may well want to start off by doing some experimental programming - trying out different ideas to see what looks best. This is rather like an architect drawing sketches of a building showing what it might look like and getting his client to decide what he wants before the detailed plans are made. This is not something that you will find recommended in a textbook, probably because it is not really feasible on a mainframe, although it is precisely what I intend doing this year at work where we are toying with the idea of creating a database on our mainframe. It is a technique that I have always used but it probably only works for me because I am a user and a programmer as well as an analyst. This is very rare in mainframe situations, but quite common on micros. For this reason, the program sketch is worth writing into the textbooks, as an early stage in the design process.

If you are writing your own program and it's not too complicated, you may well be able to go from the experiment. al program to the finished product without writing down a formal specification. This only works if you can keep the whole of the program in your mind's eye while you are working. What tends to happen is that things go fine for a while and then you start adding bits, or making corrections, and you patch the code to cater for things you forgot the first time through. The patches get patched again for the second round of amendments and the program starts getting into a mess. You forget which is the latest version of the program and the listing and try amending the wrong one. And so on. Most programmers (except perhaps for a few youngsters brought up on a strict diet of structured programming) will have gone through the galling experience of each new patch creating several new bugs. This is bound to catch up with you at some point as your programs get bigger, but you always
think it won't until some time after it has.

This is the biggest pitfall for the programmer (layman or professional) so even if you think you can tinker around on the machine, experimenting with ideas and refining them, do make sure that you take a long cold look at what you have done - see to what extent it meets your requirements and don't be afraid to throw away a first attempt when it appears to be getting too messy. You won't have lost the ideas, but they will be better for being put back together in a more coherent structure. (If it's any consolation I shall have to throw away the first draft of this article because I've caught myself writing this under the wrong section heading. When you read it it'll be in a different place. PS: the second draft got thrown away, too, because I'd started to tackle things in the wrong order!) Don't be afraid to doing a bit of redrafting but if you're doing too much of it it's because you didn't think the problem out properly in the first place, or because the problem was more difficult than you realised or knew how to handle.

If you want to get a professional programmer in, or you want to do a professional job yourself, then you must write the specification out properly.

This is the culmination of the systems analyst's job.

Run chart

The first thing to specify is the way in which programs fit in with each other and with the user's clerical procedures, and the way in which files are passed from one program to another or from one run of the program to the next. If you have only one program and no data other than DATA statements in the program, then the run chart becomes trivial and can be ignored. In all other cases it should be drawn even if it appears to be very simple. A Run Chart is drawn up from the Systems Outline Charts, and shows how data is input to a particular program to be processed, how programs store data on files, or read stored data from files produced by other programs, and create output on the screen or on the printer. It is a flowchart and uses different symbols to indicate the different elements involved.

It is customary for the Run Chart to be produced at various levels of abstraction, but on a micro it is probably quite satisfactory to draw it at the programmer's level, using actual files and programs, rather than talking generally about processes and storage. The symbols used are shown in Figure 1, and Figure 2 gives an example of a

Fig 1 Run chart symbols

Fig 2 Specimen run chart

Run Chart in use

All flowcharts should observe several general principles. They start at the top and work down to the bottom. Standard symbols should be used so that their meaning is immediately apparent. The symbols should be joined by lines (which should never cross) with arrows on them to indicate the direction in which the diagram is to be read. On a run chart this arrow represents the flow of control within the program. It should be clear where data enters the program from the outside and where the flow starts and stops. The flowchart is not intended to be a confusing bit of technojargon. It is the simplest way of representing flow through a variety of processes. If it is not self-explanatory this isn't because it's a flowchart but because it's a bad one. Simplicity is the key both to clear thinking and to good communication.

Several things are identified in the Run Chart which then have to be specified in detail later on. These are screen dialogues, reports and printouts, files, programs. I like to tackle them in this order, if only because that puts the easiest ones first. Every other part of the specification should be crossreferenced to its place in the Run Chart.

Screen layout charts

These are done on a piece of glorified graph paper. Ordinary graph paper would do but it won't convey quite the right shape for the letters. The correct paper has oblongs rather than squares A full size screen is usually 80 chs wide and 24 lines deep, but many screens are less than this. So the first thing to do is to check the size of screen that you'll be using.

Unless the screen format is particu larly important, or you want to create interesting graphics effects, then it is probably sufficient to draw up samples of each dialogue on ordinary paper and leave the exact spacing to the programmer. The main danger here is of trying to fit in more characters than you have available, especially with a smaller screen. But this can be avoided by remembering to count any long lines, and also allowing a character position for each punctuation mark.

Printer layout charts

The same goes for these as for the screen layout charts. The first thing to check is the size of your printer. If you have particular requirements - like wide forms that have to be printed - then these will have been taken into account when you bought the printer. Normal requirements for reports, etc, where the exact spacing is not critical, can be drawn up on ordinary paper, but if you are using pre-printed forms, eg, to print invoices, where much of the information has been printed on to the paper and the computer has only to fill in the gaps, then these must be specified formally on the correct paper. This is the only way in which the programmer can work out the exact spacing required to get the items to print in the right places. This sort of exact printing is far easier to do in Cobol than in any other language I have come across,
because it permits you to incorporate the complete format of each different sort of line into the data definitions within the program. With Basic you have to mess around with TAB statements with every field you print.

Some printers have variable spacing, which could have some effect on the use of printer layout charts for specifying fields to be filled in one pre-printed forms, but this shouldn't cause any real problems. Other printers have facilities for printing double size letters for headings. Again, any use of this should be indicated on printer specifications.

Figure 3 shows an example of a printer layout chart.

Error messages and reports

These aren't really a separate item. Every time an error might occur, there should be an indication of the message which should be sent to the operator indicating what has gone wrong and what should be done about it. This is always the area where the operator needs the most help and the most thought should, therefore, be given to this type of message. There is nothing more frustrating for the user than to be confronted with a message he doesn't. understand and to be stuck in a situation he can't see how to get out of. One of the worst situations for the operator - and the one where he is most likely to lose confidence in the competence of the programmer - is where the program suddenly drops out of Basic and announces 'SYNTAX ERROR AT LINE 99'. The ability of Basic to produce such messages for the programmer is one of its strengths, but statements such as these are completely meaningless to the nonprogrammer. What is more, the operator has no idea what has happened to any data that was being processed, files have not been properly closed, and any pretence at security and control over the program has been lost. This message indicates that the program has failed to test for potential errors, and has blindly tried to execute something impossible.

The user should have a good idea of the sorts of clerical error that might occur, eg, trying to post an amount to an incorrect account because the
account number has been mistyped. However, s/he may not be too clear about what sorts of errors could occur from the computer's point of view. Things which it is easy for a human to check may be difficult for a machine and vice versa. A user may also not be familiar with the program instructions that are being used, or the way in which data is stored and retrieved by the use of certain commands. This of ten makes it difficult for the user to imagine the sorts of errors that are going to occur in day-to-day operation. Conversely, it is often difficult for the programmer to put himself in the position of the operator who has no idea of the logic of what is being done inside the machine and so has no idea of why mistakes are occuring, or what to do about them.

The only way in which a satisfactory solution can be worked out is for the programmer and the user (and that includes the keyboard operator as well as the boss) to sit down together and discuss what is going on, both in the office and in the machine.

Forms design

You may be trying to write programs to use your existing forms, in which case you must make sure that the programmer has copies of all of them and knows how they are used and how they fit in with the other parts of the program specification. There again, you may be designing new ones. I have already outlined the way in which the layout is specified for the programmer, but there are a few other things to be borne in mind.

Forms are fed through the printer in different ways on different machines. On a typewriter, they are always fed through from the back, and there is always a chance to open the carriage and correct the adjustment of the paper if necessary. A typewriter uses a friction feed, normally works on single sheets of paper and can be adjusted for a variety of paper thicknesses including multiple copies. Some printers have a friction feed and have hoppers for single sheets. Others will only work on rolls of paper (like a Telex machine) others have a sprocket feed mechanism and have to use fan-fold paper with

GOTO page 145

Layout for aged debtors report. prog ADR
Page No 99
Aged Debtors Report
As at DD/MM/YY

Account No
999999
Name
xxyxyxxmxxxyxux
Date Due
Amount
££££9.99

Total on this page ££££££9.99
Total so far
££££££9.99
N.B. '9', indicates any number
' x ' indicates any character
DD/MM/YY shows that the date is to be printed in the English style. $£$ indicates that the $£$ sign should precede the first significant digit. Each page should carry the same page header and trailer. The final page should conclude with the following: Total No Debts $=999999$ Total Amount £££ £ £ 9.99
Fig 3

BENCH
 TEST

BIGBOARD

PCW welcomes Dr Neil Cryer to what we hope will be the first of many

Benchtests by him.

The name Bigboard reflects the facilities offered by this single board computer, rather than its size. At only $81 / 2 \times 133 / 4$ in, it is small enough to fit into a large keyboard case, which was how I first saw it at the Breadboard exhibition in November, 1980.

At the moment, it is available only as a kit and is advertised as being suitable for people with some hardware/software experience. It comes without the necessary ancilliaries of an ASCII keyboard, a power supply and a video monitor, and with no floppy disks. For review purposes, however, the suppliers, Maclin-Zand, provided a ready constructed board, tested to the minimum configuration advertised.

Facilities

Bigboard comes with a floppy disk controller, and gives a full 64 k of RAM. Maclin-Zand says that it will eventually be available made up and in a case as a complete system.

The minimum configuration has no spare ports; the existing two drive the floppy disk system and the ASCII keyboard. Extra kits are available - one supplies an extra PIO giving two spare 8 -bit ports, and another is available for adding two serial ports with software programmable baud rates (50 to 19.2 kbaud), while a third provides a counter timer chip to give a real time clock, together with floppy disk shut down after any 30 second period of inactivity. No further expansion is intended, which some users may find limiting.

I see Bigboard as providing the heart of a system comparable with Superbrain.

Construction

The instructions in the construction manual are clear, concise and adequate for the manufacturer's target customers experienced with hardware and software. Other users might find them too brief, as there is no advice on such things as identifying resistors and soldering.

To put myself in the position of someone making up the kit, I asked the agents to supply me with the components for the serial port so that I could see how easy it was to construct using the instructions. I consequently fitted six ICs, a crystal and 20 sundry other components. There were no problems. The component positions were marked on the board in the usual way and the soldering was no finer than with most other computer boards.

As with any kit of this type, there is little documented help for anyone unlucky enough to have a system which doesn't work first time. The instructions do offer a few suggestions as to the areas of the circuit which may be responsible for certain faults, but essentially the user would have to be experienced enough to trace through the circuit using suitable equipment, Maclin-Zand does, however, promise a full back-up service.

Installing the system

The system will operate without floppy disk drives, but since I imagined that most people would be buying it largely because of the controller, I wanted to incorporate this. So I connected two 8in Shugart SA800 units.

The video section provides a 60 Hz
frame signal for a monitor which gave no problems. I would not advise anyone to fit their own modulator for running this board on a normal television because any display of 80 characters per line is generally unreadable on a normal television. Although Maclin-Zand says that later versions of the board will operate with a 50 Hz frame frequency, I would still advise use with a monitor.

Memory
 arrangements

Bigboard has a full 64 k of usable RAM, plus $2 k$ of video RAM, plus up to 8 k of EPROM type 2516. The video RAM and EPROM are addressed at the cost of temporarily switching out some of the 64 k main RAM. Bigboard switches between alternative memory blocks by addressing an appropriate output port location.

On power up, Bigboard switches out the first 16 k of RAM and makes the 8 k block of EPROM available instead. It starts by executing the monitor program in this EPROM at address zero. The first instruction is the $Z 80$ block move, which relocates the monitor to the top of RAM. Bigboard then makes a simple jump to the new copy of the monitor in RAM which then switches the bottom block of RAM back into use. Pressing the reset button does the same trick. 6 k of the EPROM are not used at the moment and so are free for user programs. The memory-mapped video display similarly block switches between video and normal RAM. For the rest of the time, the whole of RAM is available for use in whatever way the user wishes. This contrasts with systems
where some of the memory addresses are taken up permanently with EPROM.

Bigboard's ports, in common with all Z80 systems, are addressed by separate IN and OUT commands and don't take up memory locations. Its port addresses are used not only for the usual input and output from the board, but also to control the baud rate of the serial ports, scrolling for the video, and block switching of the memory as described above.

The character set

Like many systems giving 24 lines of 80 characters, each of Bigboard's characters is formed using a 5×7 dot matrix. I found these characters rather difficult to read and I was particularly unimpressed by the way lower case is presented as a smaller version of upper case. I would have preferred a true lower case, although I appreciate that, with so few dots available, it would have required some compromise in displaying the descenders of letters, like y and g.

This character set would detract from Bigboard being used as the basis for a word processor unless a separate serial terminal is used with its own character set: Alternatively, if a suitable program was written, Bigboard could drive a daisywheel printer to give a quality printout.

The system commands

Bigboard powers up to display the message '. . . system 3.3 . . .', followed on the next line with an asterisk and a dash as a non-flashing cursor. Eleven single letter commands are available before CP/M is called up: in particular, D to display the contents of a block of memory; M to display the contents of successive individual memory locations to allow them to be changed; R to read a sector from disk into memory; and of course B to boot in CP/M.

Two commands strike me as unnecessary: one to test memory and the other to verify that two memory blocks hold the same information. I feel that these are only needed if the system has problems with corrupted data in memory, and that for a properly debugged system there are many more useful commands that could be supplied instead, for example, to write a block of
memory out to disk.
Bigboard requires all commands with numbers to be typed in with only commas as separators and with no extra spaces anywhere. This is simple to get used to, but might be a little annoying at first to anyone used to a freer format.

I see purchasers adding other commands to the monitor program which, at present, makes no use of the scroll and cursor movement facilities, available as subroutines. I think it's a pity that Bigboard doesn't come with these; it would seem a relatively simple matter to provide full cursor control and on-screen editing, which would make such a difference.

Keyboard

Any keyboard should be suitable, provided it supplies the ASCII codes directly along seven wires (bits 0 to 6) together with a strobe signal going high or low when the data is ready. The strobe line prevents there being significant problems with contact bounce. All power supply lines are available on Bigboard's key board connector.

Floppy disks

Bigboard uses the 1771 controller chip and can drive up to four SA800 or similar disk drives. Connections are standard. It powered up without trouble and, on typing B for boot, came up with the message ' $60 \mathrm{k} \mathrm{CP} / \mathrm{M}$ version 2.2'.

With the use of CP / M, a wide range of software should be available for purchase, although any with specialised screen displays may have to be modified. As it is too early for any commercial software to be advertised for Bigboard, and as the review board was supplied with no software other than CP/M 2.2, I borrowed a copy of Basic from another CP/M system. I found no problems running it.

I checked a large number of the disk copy, verify and editing commands without any problems.

Video

The video is memory-mapped in a 2 k section which Bigboard block switches; it is therefore independent of the main RAM at the same address, 3000 H .

When the screen is written to, it fills from the top down and, when it is full, the display moves up each time a

Technical Data

CPU:
Memory:

Bus:
Ports:
System: S/W:
Z 802.5 MHz
64 k dynamic RAM
+8 k EPROM type 2516 (Only the 2 k system monitor supplied) +2 k video ram Not available
2 serial, 2 parallel uncommitted

+ ASCII keyboard port

OPTIONAL ANCILLIARIES
For full potential an 8M Shugart SA power supply is needed.
$+2 k$ video RAM
800 compatible disk drive and
associated power supply.

NECESSARY ANCILLIARIES
(Not supplied with the kit)
Power supply: +5 V 3 A
$+12 \mathrm{~V} .25 \mathrm{~A}$
$-12 \mathrm{~V} .2 \mathrm{~A}$
ASCII keyboard with strobe line
Video monitor

new line is entered. The screen may also be scrolled up or down by writing to an appropriate port, in which case any lines moving off the top will reappear on the bottom and vice versa. I see few occasions for using this facility.

Writing to the screen is by means of a subroutine in the monitor and occurs at the current cursor position which may be moved up/down, left/right. The user could also block switch in the video RAM and write direct to it, but the method of scrolling the screen would have to be taken into account which would make the programming trickier.

Expansion possibilities

Bigboard has been designed to be complete in itself, and no external bus connector of any sort is provided. The system shouid be used within the facilities offered. and should not rely on later exparsion, as this may not be simple or inceed possible.

Documentation

Bigboard is supplied with an 11 sheet construction manual, a seven sheet user manual, a seven sheet theory of operation manual and very clear circuit diagrams. The manuals are rather brief, but are in accordance with Bigboard, being for people with some expertise.

At a glance

Bigboard has some very attractive features, in particular the incorporated floppy disk controller and the full 64 k RAM.

In summary, Bigboard's ports could drive a printer, a modem, a serial terminal and an ASCII keyboard and still have one 8 -bit port spare. As no software is supplied to run the system, the user would have to write it himself.

With Bigboard, a system of video monitor, keyboard, 8in floppy disk with CP/M and power supplies can be put together for less than $£ 1000$, which is certainly not unreasonable.

Overall I consider Bigboard to offer good value for money. I found it easy to set up and use and I suspect that for those with some experience it would be fairly straightforward to build from a kit. The lack of a bus arrangement limits expansion considerably but then you do get quite a system for your money. The ability to use CP/M makes an enormous number of packages available to the user and that, coupled with the 64 k memory, must be one of the strongest points in Bigboard's favour.

Printina MP 185 electro-sensitive print mechanism

The MP 18 S is a fairly compact electrosensitive printer that functions in an unusual but very clever fashion. The print needles are mounted on a plastic arm that moves in and out of the printer frame itself, while the connection to the print needles is made by seven wiping contacts, plus a separate set that generates the timing signals. Due to its method of construction this printer needs to be ordered with a special printed circuit board, which serves two purposes. Firstly, it provides a mount for the printer and enables the paper feed to function, and, secondly, it carries gold-plated tracks that enable the connections to be made to the print needles. The print mechanism and the mounting board are both available from Seltek Instruments Ltd at $£ 58$ and \&4.25 respectively.

The mechanism itself is simple and there is little to be said about how to use it. Printing is carried out from left to right in a serial fashion: that is, dot column by dot column. The timing tracks on the board indicate when to turn off the motor power at the end of a line and when to start printing a new line. Print format is 5×7 bit, and the unit can print up to about 21 characters on the paper. The spacing between dot columns is determined by an extermal dot clock. By varying this clock frequency you can alter the number and the size of the characters that are printed.

As the unit is so simple I will only give a brief description of the control logic required. A block diagram of the control circuit is given in Figure 1. When the motor is started, one of the moving contacts will indicate when the start of the line is reached; when this occurs you must allow a short delay before starting to print. This delay will give the left hand margin. The frequency of the dot clock determines the dot spacing and should be varied to taste.

The nextstage is the column counter, which determines which of the five possible seven-bit data words is output by the character generator. This counter should count from 1 to 7 , then reset to 1 and start counting up again. The first five counts will select the five possible columns of the 5×7 character cell while the next two counts will give a space between the characters.

A further stage is the character counter. This addresses the line store RAM and selects the 6-bit data for each character in turn. These six data bits go to the character generator where they select the correct page of 5×7 data. This character counter is incremented by one each time the column
counter resets from 7 to 1 . The counter's upper limit is determined by the number of characters you wish to print. When the counter reaches its maximum count, the line of print is finished and the various stages should be reset ready for the next line. Power to the motor should be turned off when indicated by the timing contact. You can see that this printer builds up characters from left to right and that the characters to be printed are sequentially read out of the RAM until the line is finished. The motor requires a supply of approx 5 V . The print head supply should be somewhere in the region of $40-60 \mathrm{~V}$ between the paper roll and the print needles. The pulse width required to print a dot should be adjusted to give good print density. If you wish to print large characters, you will find that the individual dots are not very clear; one
way around this problem is to print two adjacent dots instead of one. This will complicate the circuit slightly but the resultant print is much more legible.

> Olivetti series PU1828\&PU1840 parallel thermal printers/plotters

These two mechanisms look like stretch. ed versions of the PU- 1800 printer described in January. The main difference is that both units have a modified timing dise which enables them to print a continuous field of characters or dots; both units can thus be used as printers or plotters. The PU-1800 cannot be used as a plotter because it can only

Fig 2 Diagram of character cell covered by each thermal element and relationship of DT $1+2$ and STLN timing signals to character matrix for PU 1828 printer.
print columns of five dots. The PU-1828 and the PU-1840 are both available from Roxburgh Printers Ltd and cost $£ 40.50$ and $£ 76.50$ respectively. The PU- 1828 is a 28 -character printer that has one element for each character field; the PU-1840 is a 40-character printer that has one element for every two characters.

The PU-1828 differs from the other units in that it has one print element per character, which makes it somewhat easier to drive because there is no need to work out which character out of two is being printed. When designing a control circuit for this printer, you first need to know which dot in the character zone is to be printed next. After the DT1 and the DT2 signals have been ORed together and debounced by a suitable monostable, the resultant pulse train should go to a counter. At the start of the print cycle, this counter should be set to zero. The first DT1+2 pulse to occur will then set this counter to 1 , indicating that the next character to be printed is the first in the character field. The control logic must now load the first dot of the 28 characters to be printed into the 28 -bit latch. When the next DT1+2 pulse occurs this will enable the latch outputs to print a line of 28 dots. This pulse will also increment the counter indicating that the next dot to be printed is the second one in the character field; the control logic must now load the state of the second 28 dots into the latch ready for the next DT1+2 pulse. Each successive DT1+2 signal thus enables the latch outputs and increments the counter by one. When

Fig 3 Connection diagram for PU 1828 flexible connector.
the counter reaches a count of 6 , the dot selection logic should be disabled; the next DT1 +2 pulse to occur is the last of the first group (see Figure 2). This pulse should reverse the count direction so that the next pulse to occur will cause the counter to count down from 6.

At this point, the print head also reverses the direction of its travel and the paper is spaced up by one dot line. The next DT1 +2 signal is thus the first of the second group, decrementing the counter by one to 5 . The counter now indicates that the fifth dot of the dot line can now be loaded into the 28 -bit latch ready to be printed by the next DT1+2 pulse to occur; this pulse will also decrement the counter to 4 . This process continues until the counter reads 1 ; the logic now loads the first dot of the second dot line into the latch ready to be printed by the next DT1 +2 pulse, which also decrements the counter to 0 . The counter is now reset to 0 by the STLN signal and the count direction is set to 'up'; as this occurs, the print head again reverses and the paper is moved up by one dot line again.

The next DT1+2 signal to occur is the first of the third group and this increments the counter by one to indicate that the next dot to be printed is the first of the third group. The cycle then continues as outlined above so that, at any time, the control logic can look at this counter to find out which dot is next in line to be printed. The next step is to determine which row is being printed. The best way to do this is to use a counter that is reset to 1 by the first STLN pulse to occur after the 'print start' command. This counter will thus indicate that the first row is being printed. After seven DT1+2 pulses, this counter will increment by one to indicate that the second row of dots is being printed, and so on. In this way you can keep track of which row is being printed at any one time.

Now that you know which row and column is being printed, you can identify any dot out of the 5×7 character matrix. As explained above, the state of this dot now has to be loaded into the 28 -bit latch; since there are 28 latch positions the loading routine must be carried out 28 times, once for each
character position. The dot counter and the row counter remain fixed for each line of dots. You now have to determine the state of the first dot. To do this, the first RAM location is addressed and the resultant 6-bit output is fed to the character generator ROM. This ROM outputs seven-bit slices out of a 5×7 character zone; a 3-bit address from the coloumn counter will indicate which of the five possible 7 -bit slices will be output. This 7 -bit word is then further processed by a data selector (controlled by the row counter) which selects one of the seven bits and outputs it. The single bit of data that results is then loaded into the first location of the 28 -bit latch. The next RAM location is now selected by a counter and the stored character data is output to the character generator ROM; the row and column counters do not change while this is going on.

The single bit data output of the data selector is then loaded into the second latch position. This process continues until all 28 latch positions have been filled, at which point the cycle stops, and when the next DT1+2 pulse occurs the latch outputs will be enabled and the 28 elements will simultaneously print a complete line of 28 dots. As this occurs, the column counter will increment by one and the row counter may also change. The control logic must now cycle through the 28 RAM locations again in order to load the data for the next dot into the latch. The cycle continues as outlined above until the entire row of characters is printed. When the row counter reaches eight, the selection logic should be disabled; the power to the motor should be turned off when the next STLN pulse occurs, and a dynamic break circuit should be employed to bring the motor to a swift halt. When you wish to print another line, the motor power should again be turned on and the control logic must wait for the next STLN pulse, which will initialise all the counters and allow the cycle to continue as outlined above. If you refer to Figure 6, you will find a block diagram of the control circuit as described above, which should help you to understand the circuit operation.

The PU-1840 is a 40 -character print-

Fig 4 Diagram of character cell covered by each thermal element and relationship of $D T$ $1+2$ and STLN timing signals to character matrix for PU 1840 printer.

Fig 5 Connection diagram of PU 1840 flexible, connectors.
er that uses 20 thermal elements. Each element covers an array of 14 x n dots which can contain two 5×7 character cells as shown in Figure 4. This printer could be used with a modified version of the control circuit suggested for the Olivetti PU-1800 thermal printer in January's 'Printerfacing', but for the purposes of this article I will suggest an alternative circuit that you may like to try out.

With the circuit described in January, most of the processing required to determine which dots are to be printed next is carried out in the interval between DT signals. Further, this processing must be repeated for every thermal element. In the case of the PU-1840, this would mean 20 times. Now for the PU-1840, the interval between DT signals is approximately

Fig 6 PU 1828 suggested control circuit block diagram.
2.7 ms ; you therefore have only about $130 \mu \mathrm{~s}$ in which to read a character out of the line store RAM into the character generator, select the correct bit from the resultant character column output and load this bit into the correct position of the 20 -bit latch.

This might seem to be pushing things slightly, so I have devised an alternative circuit where all the processing is carried out before the start of the print cycle. With this circuit, the data for each element is stored in a shift register, from which it can be read out and sent directly to the print element drivers with the minimum of fuss. This approach is probably the best to use with a series parallel printer that has a large number of columns, such as the PU-1840. By referring to Figure 7 you will see how each print element of the PU-1840 scans through two character cells within the $14 \times n$ bit character zone. The diagram below this figure shows how the information required to print these two characters would be stored in a 70 -bit shift register. Each group of five dots that makes up each row is stored in the sequence that it will be required by the print element.

Now, since 70 -bit shift registers are probably rather hard to come by, I would suggest that you use a RAM

instead. For instance, a 256×4 bit RAM could be used to replace four 70-bit shift registers - these days RAMs are also very cheap. The PU-1840 has 20 print elements so you will require five RAMs. By referring to Figure 8, you will be able to get a rough idea of how the circuit functions. The first section is the address counter for the line store RAM. When the print cycle is started, this counter should be reset: The least significant bit of this counter can be set independently of the rest and it determines which character is to be printed, ie, left to right. The counter itself cycles through a count of 1 to 20 . The resultant 6 -bit address goes to the line store RAM. The character stored in the selected RAM location is then output to the character generator.

Also feeding this character generator is a row counter that determines which of the seven possible rows is to be output. This row counter is incremented by one after the address counter has cycled througn a full count of 40 . The character generator thus outputs the five-bit data for the first row of each of the 40 characters stored in the line store RAM. The output of the character generator is then loaded into one of the four 5 bit parallel load serial output bidirectional shift registers. When the first rows of the first four right hand characters have been loaded into these shift registers, the data is shifted out and serially loaded into the first five locations of one of the 256×4 bit RAMs. The direction in which the data is shifted is determined by the control logic and it will reverse after the second set of five-bit data is shifted into the RAM. The five 256×4 bit RAMs are addressed in turn and eventually the first five RAM locations will contain the data for the first row of 20 right hand

Fig 7 How data for one thermal element is stored in a
70-bit shift register.

Unique in concept-the home computer that grows as you do! The Acorm Atom
 Special features include * FULL SIZED KEYBOARD
 plus VAT and p\&p

 * ASSEMBLER AND BASIC * TOP QUALITY MQULDED CASE NEW!Colour Encoder for full colour graphics
$£ 21.50$
The Acorn Atom is a definitive personal computer. Simple to build, simple to operate. A powerful, full facility computer with all the features you would expect.
Just connect the assembled computer to any domestic TV and power source and you are ready to begin. (Power requirement: 8 V at 800 mA). There is an ATOM power unit available - see the coupon below.

Free with every ATOM, kit or built, is a computer manual. The first section explains and teaches you BASIC, the language that most personal computers and the ATOM operate in. The instructions are simple and learning quickly becomes a pleasure. You'll soon be writing your own programs. The second section is a reference

The picture shows mixed graphics and characters in three colours

manual giving a full description of the ATOM's facilities and how to use them. Both sections are fully illustrated with example programs. The standard ATOM includes: HARDWARE

- Full-sized QWERTY keyboard 6502 Microprocessor Rugged injection-moulded case 2 K RAM - 8 K HYPER-ROM - 23 integrated circuits and sockets Audio cassette interface UHF TV output Full assembly instructions SOFTWARE
- 32-bit arithmetic $(\pm 2,000,000,000)$ High speed execution 43 standard/extended BASIC commands Variable length strings (up to 256 characters) - String manipulation functions 27×32 bit integer variables - 27 additional arrays Random number function PUT and GET byte WAIT command for timing DO-UNTIL construction - Logical operators (AND, OR, EX.OR) Link to machine - code routines PLOT commands, DRAW and MOVE

Your ACORN ATOM may qualify as a business expense To order complete the coupon below and Return Return as received within 14 days for full money refund if not completely satisfied. All components are guaranteed with full service/repair facility available

The ATOM modular concept The ATOM has been designed to grow with you. As you build confidence and knowledge you can add more components. For instance the next stage might be to increase the ROM and RAM on the basic ATOM from $8 \mathrm{~K}+2 \mathrm{~K}$ to $12 \mathrm{~K}+12 \mathrm{~K}$ respectively. This will give you a direct printer drive, floating point mathematics, scientific and trigonometric functions, high resolution graphics.
From there you can expand indefinitely. Acorn have produced an enormous range of compatible PCB's which can be added to your original computer. For instance:
A module to give red, green and blue colour signals Teletext VDU card (for Prestel and Ceefax information) An in-board connector for a communications loop interface - any number of ATOMs may be linked to each other or to a master system with mass storage/ hard

CO MPUTER ${ }^{\text {ta Marret }}$ Hill
CAMBRIDGE CB2 3NJ

Cambridge

Cambridge Computer Stores Emmanuel St, CB1 1 NE Tel: 022368155

Cornwall

Benchmark Computer Systems Lid
Tremena Manor
St Austell, PL25 5GG
Tel: 0726610000
Dubiln
Lendac Data Systems Lid 8 Dawson St Tel: 0001372052

lasgow

Byteshop Computerland Ltd
Magnet House
-041 22174027 BP
Tel: 0412217409

Leeds

Holdene Lid
anchester Unlty House
11/12 Rampart Road Tel: 0532459459
London
Byteshop Compuírland Lid
324 Euston Roád
London W
Tel: 01-387 0505
Digitus
9 Macklin Stree Covent Garden WC2 Tel: 01-4056761
Jarrogate
67 Tulsemere Road,
West Norwood,
Tel: 01-6703674

Manchester

Byteshop Computerland Lid 11 Gateway House Piccadilly Station Approach 3647
NSC Computers 29 Hanging Ditch

Newbury

Newbear Computing Store 40 Bartholomew St
Tel: 06353050
Nottingham
Byteshop Computerland Lid
92 A Upper Parliament St,
NG 1 6LF
Tel: 060240576
Sheffield
Hallam Computer Systems 451 Eccleshall Road. S11 9PN Tei:0742663125

Sputhampton

Xitan Systems
23 Cumberland Place,
SO 1 2BB
Tel: 070338740
Sudbury
Eurolec Consultants
Holbrook Hall
Little Wald ingford
Tel: 0206262319
Warwicks
Business \& Leisure
Microcomputers
16 The Square
Kenilworth
Tel:0926 512127

Watford

Lux Computer Services
108 The Parade
High Street
Tel: 092329513
Comart Microcomputer dealers are located strategically
throughout the country to give support, guidance and assistance. In the event of difficulty contact Comant direct

System Flexibility

Cromemco give you the high performance, reliable computer power you need now, with the in-built capability for future expansion and adaption as demands and requirements change.

The choice is wide. Cromemco's S-100 bus construction provides for expandable memory capability and the widest choice and future options in peripheral support.

Now there is the exciting range of Cromemco High Resolution Colour Graphics Systems.

Applicational Versatility

Cromemco's CDOS Operating System supports proven, well documented Software for Business, Industry, Science, Research and Education; COBOL, RPG II, Macro Assembler, 16 K and 32 BASIC, FORTRAN IV, LISP, RATFOR, Word Processing and Data Base, are all included in the range.

Now, there is the new CDOS compatible, Cromix Multi-user Multitasking Operating System which opens up new avenues in application and performance for Cromemco System Users.

WOULDN'T YOU LIKE AN OSCAR FOR A SUPERB PERFORMANCE

To a casual glance, we must admit that there are several other computers which superficially resemble OSCAR. However, if you peek under the stylish structural foam housing, with its separate keyboard for better ergonomics, you'll notice the differences.

S100 SYSTEM

OSCAR has a 6 -slot motherboard, housed inside the VDU housing, with proven IDS Sl00 cards to international standards for a flexible, easily maintained, system.

4MHz Z80A PROCESSOR CHIP

Possibly the most powerful m.p.u. chip in its class, running at full speed, makes OSCAR more powerful than many mini-computers.

64K DYNAMIC MEMORY

A full sized system for your full sized applications.

DISKETTE OR HARD DISK

The options are yours, starting with twin floppies at 400KBytes per drive or an l1MBytes Winchester located inside the VDU housing
Maximum size? We're not saying, as we keep on increasing it, but it's unlikely to be too small.

CP/M ${ }^{\text {TM }}$ OPERATING SYSTEM

Use of the industry standard CP/M ${ }^{\text {TM }}$ Operating System means that a wealth of applications software will run on your OSCAR.

VISUAL DISPLAY UNIT

With the green phosphor recommended by opticians for low eyestrain, the VDU also has a bonded face-plate for extra safety. There is a full character set with real descenders on the lower-case letters. There are 24 lines each of 80 characters.

KEYBOARD

Separate keyboard with full QWERTY and numeric pad for fast entry.

PRINTER OPTIONS
A range of printers is available. Your dealer can help you select the appropriate one for your requirements.

Designed and manufactured in the United Kingdom by:INTERACTIVE DATA SYSTEMS LTD
14 Heathfield, Stacey Bushes, Milton Keynes MK12 6HP

Please send details of OSCAR and your other S100 products to:
\qquad

APPLICATION PROGRAMS FREE

Sales, Purchase and Nominal Ledgers plus Stock Control and Payroll are available from your dealer and to avoid the problems of pirating, all you have to pay for are the manuals and the media. If these packages do not suit, your dealer will be able to offer alternatives, although, these are unlikely to be free!

NATIONAL SERVICE NETWORK

It's no good owning the best system if you can't get it mended, so IDS have arranged for q National Service Network to offer maintenance contracts on your OSCAR.

PRICE

An OSCAR with twin floppies costs from $£ 2,495.00$ (excluding VAT and printer)

NOW

Cut along this line, complete and post for further details.

Buckinghamshire, England Telephone (0908) 313997

Address

To element
drivers
the Olivetti thermal printer series. Please bear in mind that the ideas given above are just suggestions and will require further development to suit your particular application. Remember that you can always contact me by writing to (not telephoning) $P C W$ if you run into difficulties. I will try to help out anyone who bothers to ask.

Datac DMI 40 print mechanism

The DMI40 is a 40 -column seriesparallel impact printer with five solenoids mounted on an oscillating frame, each covering eight character cells. The mechanism can also be used for graphics and plotting because the print is not constrained by a preset timing disc to print only in columns. In order to print a complete line, the print head must make seven passes over the paper as well as two passes for the line space. It operates at approximately two lines per second. The basic mechanism prints on pressure-sensitive paper only, but a version fitted with a roll holder will shortly be available. The DMI-40 is available from Datac Ltd and costs approximately $£ 139$.

The DMI-40 is rugged and should therefore give years of trouble-free service. The motor and the five solenoids both require a 12 V DC supply. The dot timing signals are generated by a slotted strip and a LED and phototransistor assembly. This timing assembly generates one dot pulse DTS for each dot position. Using a 5×7 character matrix, each dot line will contain 240 dots; each print element thus prints 48 dots for each pass across the paper. By referring to Figure 9 you will see the zone that each print element covers; each zone contains eight characters and there are five zones across the width of the paper. During operation the five zones are printed simultaneously.

Designing a control circuit for this printer will pose problems similar to those posed by the Olivetti seriesparallel printer mentioned in January. From Figure 9 you will see that each print element prints eight characters. The print element moves from left to right and then from right to left down through the column of eight characters. On each pass, an element can print up to 48 dots. The timing strip generates 48 pulses as the print head moves across the paper; at the end of each dot row a fairly long home region is located where no pulses are generated. During this home period, the print head reverses and the paper is spaced up by one dot line. Figure 10 shows a block diagram of a suggested control circuit. The four important stages on this diagram are the column counter, the character

Characters
Fig 9 Character zone covered by each print element.

new practical computing books

prentice-hall books

Michael P. Zabinski Introduction to
TRS-80 LEVEL II BASIC and Computer Programming
With step-by-step instructions, this practical book shows how to use the TRS. 80 for a wide range of applications from multiplication tables to computer graphics and video games.
$£ 7.10$ pb 186 pages 13 -499962-2
Hubert S. Howe, JI.
\square TRS-80
Assembly
Language
For the first-time user as well as experienced users of the TRS-80. this book covers introductory concepts. practical programming applications. ROM and RAM usage, and disk operating systems.
£6.45 pb 186 pages 13-931121-1
Lance A. Leventhal
\qquad Microcomputer Experimentation with the Motorola MEK6800D2
A complete introduction, this new book stresses practical applications of microprocessors in such areas as instrumentations, communications, test equipment, and industrial and process control.
£11.00 pb 368 pages 13-580761-1

Lance A. Leventhal and Colin Walsh \square Microcomputer Experimentation with the Intel SDK-85

A series of laboratory experiments with over 70 fully documented programs are provided that cover all the basic aspects of using microprocessors in engineering systems design.
$£ 10.35 \mathrm{pb} 384$ pages $13-580860-X$

Prentice-Hall International
Prices are correct at the ume of
be subject lo change.

sams

 booksStephen M. Murtha and Mitchell Waite

\square CP/M" ${ }^{\prime \prime}$ Primer

Illustrated throughout with diagrams and photographs, this book gives clear instructions on how to use and work with the CP/M ${ }^{T N}$ disk operating system which is very popular for the 8080, 8085 and $Z 80$ microcomputers.
£7.75 pb 92 pages 672-21791-0

Howard M. Berlin
\square Circuit Design Programs for the TRS-80

This book provides a variety of useful BASIC programs that will greatly simplify the design and analysis of common circuit problems.
$£ 5.80 \mathrm{pb} 140$ pages 672-21741-4
Howard Berenbon
\square Mostly BASIC
Applications for Your Apple II
£7.10 pb 152 pages 672-21789-9

Howard Berebon

\square Mostly BASIC
Applications for Your PET
£7.10 pb 160 pages 672-21790-2
Howard Berenbon
Mostly BASIC
Applications for Your TRS-80
£7.10 pb 168 pages 672-21788-0

book orders

These books can be ordered from your bookseller or in case of difficulty from Department 30 .
Prentice-Hall Internationa!,
66 Wood Lane End, Hemel Hempstead, Hertfordshire, HP2 4RG, England.
Please mark the number of books you wish to order in the boxes beside each title and return the advertisement to the address above with your payment.

Name \qquad
Address \qquad

I enclose a cheque/P.O. for £
Please add 55 per book for postage and packing. Payment should be made out to International Book Distributors. Please allow 28 days for delivery.

INTEGRATED SMALL BUSINESS SOFTWARE ISBS

Professional Business Packages for Microcomputer systems include:

- PAYROLL
 - STOCK CONTROL - ORDER ENTRY \& INVOICING
 - COMPANY SALES
 - COMPANY PURCHASES
 - GENERAL ACCOUNTING - NAME \& ADDRESS SYSTEM

Available as individual modules or complete system to run on RAIR BLACK BOX, NORTHSTAR, HEATH, CROMEMCO, DYNABYTE, IMS 5000/8000, ALTOS ALTAIR, SUPERBRAIN, MICROMATION and most other 8080 based systems.
Contact Lifeboat Associates, 32 Neal Street, London WC2 or your nearest dealer. SYSTEMS GROUP LONDONW1 01-7348862

BUTEL-COMCO

RP1600 Daisywheel Printer

List Price:
$£ 1450$
(excluding Vat)

- Price includes an interface
- Interfaces available are

Serial V24/IEEE/Centronics/Qume/Hytype

- Trade/OEM discounts available

Write or call for further information
Butel-Comco Limited I I am interested in purchasing the RP1600
50 Oxford Street, I- for connection to
Southampton, I Name
Telephone 070339890 I Company
Telex 47523 I Address
BUTEL
Technology for business

Fig 10 Suggested DMI 40 control circuit.

counter, the row counter and the zone counter. The column counter keeps track of which column is to be printed at any one time. At the start of a print cycle when the cuntrol logic detects the home signal, the various stages are reset At this time the column counter will read 0 to indicate that the first column is to be printed. Some time after the leading edge of the DTS signal all the processing will have been carried out and the 5 -bit latch will contain data for the first dots to be printed. The control logic will then print these dots and then on the trailing edge of the DTS signal the column counter will be incremented to read one, indicating that the column number one is next to be printed. This continues until the counter reaches a count of five, which is the space column and so no dots will be printed.

The next DTS pulse will cause the counter to reset to zero, thus indicating that column number zero is to be printed next. In this way, the control logic always knows which dot is being printed next and therefore it has time to get the next series of dots loaded into the 5 -bit latch. The column counter is an up/down counter; for the first eight characters it counts up from zero to five and for the next eight characters it reverses its count direction and counts down from five to zero. This is to allow for the print head reversing after every row of dots and is under the control of the control logic.

The next stage is the character counter. This counter keeps track of which character is being printed. The counter is clocked by a carry signal from the column counter; this carry is generated every time that the column counter resets. From start, this counter will count up to seven which is the last character of the first row. The next carry pulse now causes the counter to reverse its count direction. The next carry will now decrement the counter to six, and so on. When the counter now reaches zero it will again be reversed by one carry pulse and the next carry pulse will increment the counter to one again. In this way, the character counter keeps in step with the print head as it zig-zags across the paper.

The third stage is the row counter which keeps track of which row is
being printed. This counter is incremented by a carry pulse that is generated every time that the character counter reverses. From reset this counter counts up to nine, when the motor should be stopped, as the print cycle plus line space is now finished. The four-bit output of the row counter goes to a data selector which selects one bit from the seven that are output by the charac ter generator ROM. This bit will belong to the row that is being printed at that time.

Next is the zone counter, which cycles through the five zones that cover the paper while the other stages remain fixed. The zone counter cycles through a count of zero to four selecting, in turn, five blocks of eight characters each from the line store RAM. The 3-bit data from the zone counter also goes to the output latch where it selects the bit that corresponds to the character zone being printed. This allows five bits of data to be loaded in turn into the output latch ready for printing. Thus, as the zone counter cycles through the five blocks of data, one of the eight available data words is being selected by the character counter The five data words that are thus selected go in turn to the character generator, which outputs a 7-bit data word which is sent to the data selector where one of the seven bits is passed and then loaded into the five bit output latch in the position pointed to by the zone counter. You can see that the dot selection process only has to be repeated five times, whereas the Olivetti series-parallel printer required that the selection process be repeated ten times, which is a little bit more difficult. This circuit might seem a little complex at first but if you spend some time study ing Figure 9 so that you become famili
ar with the print format and how the data bits have to be selected in turn, you will understand the operation that much better.

The block diagram and the description is given only as a guide to point you in the right direction and you will have to undertake a certain amount of development work before you have a working printer, so good luck.

Conclusion

I hope that you have enjoyed this short series of articles, which was inspired by a letter in 'Communications' last July by reader H P Stearn, who asked if it was possible to interface a cheapo calculator type printer to a KIM computer.

In order to make this series useful to as many people as possible, I have refrained from any mention of specific microprocessor systems, and have given a short survey of the various cheap dot matrix printers that are available in this country. I have also explained how the units work and suggested ideas for control circuits. Since the interface requirements of most peoples' systems will differ, this side of the construction has been left to you

With the circuits given you will have to load the ASCII data for the line to be printed into the block that is shown as the line store RAM on my block diagrams. All the circuits suggested are self-contained in that they only have to be loaded with a line of data and told to print. This means that the micro is not tied up controlling a peripheral that could function on its own. Since you will be building the unit yourself, the extra work and cost involved is not too important. I estimate that for between $£ 50$ and $£ 100$ you should be able to build a control circuit for the printer of your choice.

At the end of the exercise you will have a printer that costs less than a commercial unit and you will also have had the satisfaction of building the thing yourself. You could, of course, write suitable software that would enable your micro to control the printer directly. This approach is certainly far cheaper but it does have the disadvantage of tying up your processor when it could be doing other things. Remember that if you run into any problems you can contact me via PCW and I will do my best to help you out.

Suppliers of units mentioned are:
Seltek Instruments Ltd, The Old Pied Bull, High Street, Stanstead Abbots, Herts SG12 8AB, tel 0920871094. Roxburgh Printers Ltd, 22 Winchelsea Road, Rye, East Sussex TN31 7BR, tel 07973 3777. Datac Ltd, Tudor Road Broadheath, Altrincham, Cheshire WA14 5TN, tel $061-9412351 / 2$.

Makers or breakers?

Mindstorms sounds like the title of a John Lennon song It represents the kind of cultural and personal thoughtquakes and whirlpools of ideas which helped to shape Lennon and which, in turn, he helped to create.

Mindstorms (at least as
far as this 'Bookfare' goes) is also the title of an important new book by Seymour Papert. In it he explains why he believes that computers could become an educational aid which will overcome 'mathophobia' and the cultural blocks which have divided people from an early age into arts/ humanistic/'creative' or maths/scientific/'boring' technological ghettoes

Architect or Bee?, on the other hand, sounds like the start of a children's ABC or a constructively censored version of the old Birds and Bees tale. It is, however, a question based on a phrase from Karl Marx and the title of another thought-stirring book which examines the relationship (or possibly the power struggle) between people and technology.

The author of this book, technologist and active trade unionist Mike Cooley, uses the Marxist analogy because it encapsulates his fear that computers are being used to emasculate creative skills.

Marx wrote: 'A bee puts to shame many an architect in the construction of its cells; but what distinguishes the worst of architects from the best of bees is namely this. The architect will construct in his imagination that which he will ultimately erect in reality. At the end of the labour process, we get that which existed in the consciousness of the labourer at its commencement.

Supported by a range of practical examples, Cooley shows how computers have been used to
human creativity from many jobs, such as toolmaking and engineering design, thereby diminishing human beings and making them 'subordinate to the machine.

Unlike many left-wing critics of technology, however, Cooley also shows how computers could be used as a human-enhancing, liberatory form of technology. He shares with Papert a belief that, in the right political and cultural environment, computing could be a positive social force.

Cooley states unequivocally 'Human ingenuity, expressed through appropriate science and technology,
could do much to free our world from squalor and disease and fulfil our basic needs of food, warmth and shelter.' Papert believes that, by placing computer power in the hands of many people, the personal compu ter explosion will open new opportunities for imagination and originality. "There might be a renaissance of thinking about education,' he concludes.

They also agree that the determining factor in the direction taken by computing will not be technical but political and cultural. Mindstorms are needed, they argue in their different ways, in order to create an environment which places the fulfilment of individual creative potential as well as community well-being as a prime social goal. 'The bottom line for such change is political,' as Papert inelegantly expresses it.

Papert, however, is a technological optimist who believes that the capitalist environment could, after some mindstorming, be a suitable base for nourishing the darling buds of computer creativity. Cooley, on the other hand, believes that the forces currently dominating most societies (and he is critical of Russian
communism as well as Western capitalism) are so strong that computing will be used by those in power to 'gain control over human beings' because, as a headline in The Engineer once stated: 'People are trouble but machines obey.'

Cooley quotes positive examples of the use of computers in 'humanenhancing' roles but regards them as insignificant drops in the political ocean compared with the majority of industrial applications.
Papert, however, quotes his own personal experiences with one computer educational project as proof of the potency and practicality of his vision.

Papert is a professor of both mathematics and education at the Massachusetts Institute of Technology (MIT). Since 1967 he has been developing a special computer language for use by children called Logo. The Logo group in the Artificial Intelligence (AI) laboratory at MIT has used Logo with a movable device called a Turtle as a means of teaching mathematical concepts like geometry and the Newtonian laws of motion as well as computer programming techniques and structured systems thinking.

Papert, however, predicts that the mindstorms set off by computer techniques like Logo will create new
approaches to the whole process of education and training. He explains the twin objectives of Logo by pointing out that the Greek word 'math' meant 'learning' and that Logo has applications both in mathematics and in ' 'mathetic' (learning about learning) techniques.

He believes that the com puter can make formal, abstract ideas concrete and personal to a child. Even 'difficult' concepts like differential geometry can be translated into Logo programs which control the movement of the Turtle.
The child views Turtle geometry partly as a game which tries to create different shapes made up of simple program steps which move the Turtle forwards, to the right, etc.

For example, a child could be asked to: 'Play Turtle. Draw a circle.' After experimenting with Logo programming, the child will realise that drawing a circle involves the repetition of a large number of very small Logo programming steps of the form FORWARD 1 RIGHT 1 1 , where ' 1 ' indicates to the Turtle to 'move a little bit'.

This is effectively an intuitive analogue of the differential equation, a concept that is fundamental to traditional applied mathematics. Differential calculus describes growth by explaining what is happening at the growing tip; the Turtle program describes the difference between where it is now and where it shall be in a moment.

Although the child will not be immediately aware of the relationship between the Logo circule program and the differential calculus, Papert believes that the knowledge which the child learns in a concrete way will become a point of reference when learning about wider mathematical ideas.

Most significantly, claims Papert, the child will be learn ing the languages of mathematics in a natural way and will not feel excluded from the world of mathematics as do so many children when faced with traditional, formalised classroom maths.

Papert describes the learning environment created by Logo and the Turtle as a Mathland in which children can learn the language of mathematics as naturally as English children learn English in England and French children learn French in France. What is more, he argues that procedural and systems thinking inherent in computer techniques and systems 'powerful intellectual tool'

As one child working with Logo described it, structured
programming techniques break complex ideas into 'mind-sized bites'. The child may initially learn the benefit of this when trying to draw a figure with the Turtle but finds bugs in the program. An unstructured program is difficult to debug but the fault in a well-organised modular program is more easily identified and rectified.

Working in the Turtle Mathland, children therefore learn a systematic approach to generalised problem solving. The child knows why, for example, overall complex problems should be broken into simpler, 'mind-sized bites' and can be related to problems that are already understood. From drawing a circle, more complex problems can be explored. The notion of debugging teaches a child that there are no simple right/wrong solutions to the process of exploring new ideas and that a key question is whether the overall 'theoretical' structure is 'fixable' or basically

incorrect.

From a cultural point of view, this type of use of computers to 'concretise' formal ideas could help to break through what he calls the 'balkanisation of human knowledge which children come to see as a patchwork of territories separated by impassable iron curtains.' Difficulty with school maths is frequently the first step of an 'invasive intellectual process that leads us all to define ourselves as bundles of aptitudes and ineptitudes, as being "mathematical" or "non-mathematical"
"artistic" or "non-artistic"," he says.

Echoing the McLuhanism 'the medium is the message', Papert expects that the versatility of computing could, in the appropriate political and social environment, break through the shackles of traditional school maths which were created by the in adequacies of teaching tools in the past.

As he explains, 'A major factor that determined what went into school maths was what could be done in the setting of school classrooms with the primitive technology of pencil and paper.' This forced an emphasis on tasks like drawing graphs and writing formulae and created the notion of maths as an abstract, formal technique.

Yet, as Papert explains, mathematics can be based on physical actions. For exam ple, Descartes apparently invented analytical geometry by observing the movements of a fly on his bedroom ceiling and Papert himself related mathematics to his childhood understanding of how the gears of a motor car
worked. He has used Logo to analyse a supposedly purely physical activity like juggling into mathematical notions of structured thinking just as the 'physical' act of drawing a circle should be used to illustrate the theoretical concept of differential equations.

The challenges posed by Papert to traditional educational notions and description of possible learning innovations makes Mindstorms a stimulating book but more as a mind-rippler than a mind-stormer. Although his theory is a general one Papert uses Logo as the only specific example, so that the book becomes mainly a justification for Logo. It also gets bogged down in a great deal of educational theorising which is an example of the 'thought balkanisation' which Papert so dislikes.

If ycu are an educationalist to whom 'Piaget's epsitemology', is second nature then you will not, as I did, begin to feel excluded from a special 'education psychology club' in parts of the book. The fixation with Logo and a too liberal' sprink ling of educational jargon makes Mindstorms a book of specialist interest to those already involved in computing and/or education rather than a major work of general importance, which its thesis could have justified.

Papert also dismisses criticism of his beliefs too glibly. He accepts that the use of computers in education may not have the effect he intends. In most cases of existing educational use, he admits, computers are being used primarily to put children through their traditional arithmetic or spelling paces, reinforcing traditional school drill and practice techniques and imposing rigid, automated methods on children. Instead of becoming a tool, like a 'pencil', that children can use to experiment with, to think and to make things with, the computer imposes its way on the child.

His only answer is to say that he has seen children interact creatively with Logo and that he hopes experiments like Logo will stimu late a major change in 'how things might be'. In other words, he has little more to offer than wishy washy wishful thoughts.

Mike Cooley takes a much harsher and, to me, more realistic view of the equivalent dichotomy between experience and promise in the application of computing to employment.

He describes how humans and computers could interact creatively at work. It is possible, for example, to program a numerical-control machine by allowing the skilled craftsman to instruct the machine directly through
a physical medium, such as turning a crank or moving a joystick, rather than using a symbolic programming language. This is close to Papert's Turtle concept of 'programming through doing' There is also a technique of computer-aided design in which the designer's special skills and aptitudes for assessing complex situations and making intuitive leaps is emphasised, with the computer acting best as an excellent analyser and computational machine.

Cooley has also been actively involved in the Lucas Aerospace Combine Shop Stewards' Committee which has been internationally recognised as a major contribution to creating an environment in which industrial democracy is used to direct technology to socially beneficial uses. When faced with the prospect of redundancy, the Combine Committee created a corporate plan which included the development of a special vehicle for children with spina bifida, a life support system to help people with heart attacks to get to hospital, solar collecting equipment and a vehicle that could run on rail and roads. They would also like to have money to build kidney machines.

Unlike Papert's promotion of Logo, however, Cooley does not build a revolutionary mountain by clutching at these few positive straws. He uses these
examples, however, to get to the political and economic 'bottom line' when he quotes the secretary of the Combine Committee who said, 'It is outrageous that our members in Lucas Aerospace are being made redundant when the state has to find them £40 a week to do nothing except suffer the degradation of the dole queue. . . Our workers should be given this money and allowed to produce socially useful products such as the kidney machine.' Social usefulness, however, is a not a bottom-line profitmaking criterion in business.

Cooley provides many examples to show that a major management aim in introducing new technology is to reduce reliance on human skills and to improve productivity. He quotes an American systems designer, Robert Boguslaw, who put into words the usually unstated assumption and objective of many managements. Boguslaw says that systems designers should analyse the ways in which human behaviour can be controlled and to create the instruments which can achieve that control. In systems design, he says, the 'human operating units' have many disadvantages. "They are somewhat fragile, unreliable and limited in memory capacity. But beyond all this, they sometimes seek to design their own circuitry. This in a material is unforgivable and any systems utilising them must devise appropriate safeguards.'

The bluntness of this quote is appalling, regarding people as 'materials' and 'operating units'. But many computer systems are designed precisely to this specification - to design human creativity and 'unreliability' out of rather than into the svstem. As an advert for a computer-aided design pack age put it: 'If you've got a guy who can produce drawings non-stop all day, never gets tired or ill, never strikes, is happy on half pay, with a photographic memory, you don't need (the name of the package).'

Cooley detects atrend towards developing library, medical, educational and other systems in which human/computer interaction communication replaces 'the rich interaction which comes from people discussing work problems with each other.' He fears, quite rightly, that this could lead to the loss of the open ended cross fertilisation which flows from natural human interaction and that 'human beings could become industrial Robinson Crusoes in an island of machines.

Apt and vivid phrases like these bring Cooley's work to life. The book is liberally peppered with crisp
force people to become 'operating units' and discards them when they become too old or unreliable to obey the machine's commands.

It is a pity, therefore, that he should fall into the simplistic Marxist cliche that the potential of technology to free rather the enslave workers 'can only become actuality' when workers 'own the means of the production' and 'the object of their labour.' However, he also points out that Lenin believed that 'capitalist' techniques of automation should be the foundation of 'socialist' organisation and the Soviet Union espoused with enthusiasm the management notion of Taylorism or Scientitic Management This was introduced in the first wave of manufacturing automation in the early 20th Century by Frederick Winslow Taylor who summarised its aim as; 'In my system the workman is told precisely what he is to do and how he is to do it and any improvement he makes upon the instructions given to him is fatal to success' (sounds just like Boguslaw).

The means of production in 'socialist' countries clearly does not in itself harness technology to more humanistic ends. Solving the problems so lucidly posed by Cooley will need a much subtler, more complex approach than Cooley's solution

Two other criticisms slightly tamish Cooley's otherwise refreshingly stim ulating book. Firstly, it is unworthy of his otherwise highly perceptive technological descriptions to suggest that, because IBM operating systems have hierarchical structures and use words like 'supervisor', the technology intrinsically implies a particular management philosophy; such technical developments were related to available technology and to solving the practical problem of scheduling multi programming and multiaccess to systems, not to imposing a fascist organisational regime.

Secondly, and this is acknowledged by Shirley Cooley who edited the book, it is not so much a book but a compilation of various writings and speeches; as such, it is a bit disjointed and repetitive in places but this is overcome by the vigour and clarity of most of the text.

Between them, Cooley and Papert raise many urgent and important questions about the application of computer technology. From their different perspectives

AWord Processor, Report Writer, MailingSystem, Data Base Manager, anda

 Computer all for $\operatorname{sl} 1995$

Yes,we are offering all this with our SERIES $50005^{\prime \prime}$ floppy-disc system for the incredibly low price of $£ 1995$.*

Not only do you get a powerful $\mathrm{Z}-80 \mathrm{~A}$ system on the $\mathrm{S}-100$ bus built to high quality standards by Industrial Microsystems, one of the longest-and best-established companies in the microcomputer industry, and supported by Equinox, specialists in microcomputers and multi-user systems.
and dual 5" double-density drives with the option of a third drive (or quad capacity drives in place of doubledensity) in the same cabinet. Additionally,there is the Turbocharger option providing both enhanced disc capacity, disc performance and diagnostics.And if even greater storage is required we can supply $8^{\prime \prime}$ floppy drives and cartridge disc drives.
A powerful system for the computer-user and system developer - and one with eventual access to $\mathrm{OS} / 2000$, the Industrial Microsystems networking system. And for the office or business user we are including as standard a powerful Word-Processing
package (Wordstar), a Mailing and Letterwriting package (Mail-Merge) and the Datastar Data Base Manager. All these packages are widely accepted and professionally written by Micropro International.
Being CP / M based, the system with suitable configuration will also run the business software developed by (for instance) Graffcom,Peachtree, Paxton, etc.
It will also run a wide range of languages - Basic,Cobol, Fortran, Pascal,APL,Algol,C.Lisp,and Forth and will support a wide range of addon S-100 devices, such as floating point processors, Prestel interfaces,speech synthesisers,digitisers and plotters,etc.

And just to make certain that you get full use out of your system, nationwide field service support is available at a modest extra cost.
*add VAT and the terminal and printer of your choice at the costs shown.

All prices exdude VAT, carriage, training and installation and are subject to our standard terms and conditions.

OEM dealer and educational enquiries welcome.

ECUINOX

COMPUTER SYSTEMS LIMITED

Kleeman House, 16 Anning Street, New Inn Yard,London EC2A 3HB
Tel:01-739 2387/9 \& 01-729 4460
they converge on the belief that computers could enhance human life, although they can also impose int inat inhumane conditions at work and in education.

Their interplay between practical politics and philosophical, humanistic thoughts would have appealed to John Lennon. Unfortunately, as Lennon's death showed, mindstorms can prove to be insufficient to overcome the forces of fear, violence and frustration created in a society where individuals feel alienated and part of a soul-less machine rather than a living, caring comm unity.

Myth tickle

The Myth of the Micro by Ridney Dale and Ian Williamson is like a tasty and nourishing Christmas pud coated in shocking-pink marzipan. The startling cover may attract attention but spoils the wholesome goodies inside.

As with many other of the flood of books about the microelectronics 'revolution' the Myth of the Micro has been tarted up to try to appeal to the mass market created by the Horizon 'Chips' TV programme and Dr Chris Evans' Mighty Micro book and TV series. The Dale and Williamson twist is to disguise a very lively and readable introduction to micros and programming techniques as an attack on the micro 'myth' makers.

This leads them to scatter some sour-grapeshot against the pundits who have predicted the future importance of microelectronics. They reserve particular bile for Chris Evans and the title of the book seems clearly aimed at his Mighty Micro.

They make much of their attack using a generalised, guilt-by-implication technique. 'Futorologists have the misfortune to be spectators, divorced from the game - perhaps disinterested ly observing the play from the sidelines,' they comment.

Who are they talking about? Surely not Chris Evans? At the National Physical Laboratory, he was in the thick of micro developments and his team was one of the first in the UK to make innovative uses of the micro, particularly in socially useful activities like the Mavis aid to the disabled or the Mickie hospital patient interviewing system. Yet Evans is high on their list of myth makers.

Or could they be talking about a person who helped to trigger the fears about mass unemployment caused by the micro because of a report he helped to produce? But then Iann Barron, director of Inmos, minicomputer pioneer and co-author of The Future with Microelectronics could
hardly be described as 'divorced' from the micro game. So, come on, Dale and Williamson - name some names please.

They quite blatantly state that 'Having thoroughly aired the scepticism with which we approach the myth of the micro what dare we ourselves say constructively about the world we face in the coming decade?' Without pausing for breath to at least attempt a justification, they launch into almost 50 pages of mainly superficial futurology and micro mythmaking.

Without giving any real contradictory evidence and without stating who said that micros would be the only factor in increased unemployment, Dale and Williamson dismiss fears that information technology could contribute to the 'collapse of work' using the standard argument of 'we will lose more jobs if we do not use technology.' In fact it is they who create myths. Clive Jenkins, Barrie Sherman, Colin Hines and others who have written and spoken about the micro threat to unemployment have based their projections on the fact that rapid microinspired employment changes is happening at the same time as factors like world recession and a population bulge caused by the early sixties baby boom are already increasing unemployment throughout the world.

Yet, by their own calculations, they accept it is not unreasonable to project the loss of $1 / 2$ million jobs in manufacturing industry in the 1980s and that in the service industry, 'the less privileged and organised members of society will no doubt be sacrificed in the interest of economy.' If this is not a cause for concern, if the human suffering likely to be created is not cause for voiciferous, emotional questioning, then what is? It is not myth making to call attention to the possible exacerbation of such human problems.

Dale and Williamson also mount a superficial, uninformed attack on Chris Evans' notion of Ultra Intelligent Machines. As is typical of many critics of artificial intelligence, they virtually define intelligence as that which a computer cannot at present do. When a computer can do something that was once regarded as a sign of human intelligence, like playing a good game of chess, it is dismissed as no sign of intelligence at all.

Compared with the substantial, stimulating analyses by Papert and Cooley in the books reviewed earlier in this 'Bookfare', the futurology and sociology of Dale and Williamson is lightweight punditry.

To concentrate on what

I regard as the distasteful wrappings of the Myth of the Micro is unfair to the bulk of the book which is a readable, witty, intelligent introduction to concepts like algorith ms, binary arithmetic, computer architecture, sof tware, microchip making and other basic microelectronics and computing techniques.

It does get quite heavily into the details of circuitry and binary rather emphasising the uses of information technology and, as such, might lose people who want to relate the technology to their real working lives.

Dale and Williamson do, however, use familiar metaphors and examples of micro-control, say, in a washing machine. Anyone wanting to get into bits and gates is therefore likely to find the Myth of the Micro accessible and informative.

The book's publishers and the authors have, however, led with their glass chins by emphasising the superficial shock-horror antimyth mythology of the book with slogans such as 'Don't be fooled by technofear', on the cover. Don't be fooled by publishers' blurbs and authors' wild hobby horses is my advice. Despite them, you might actually get to the succulent goods that lie behind the gaudy wrappings.

Basic bashing

In the December $P C W$, I was taken to task by reader D McFarlane for my frequent attacks on Basic. In Mindstorms (reviewed above) Seymour Papert provides some more ammunition for my Basic bashing.

He calls Basic a typical example of the QWERTY phenomenon. The layout of the standard typewriter keyboard (with QWERTY as the top alphabetic row) was designed to overcome the way keys jammed on manual typewriter keyboards if the typist went too fast. But when this technological limitation was overcome, the QWERTY design remained because so many typists had been trained on it.

In the same way, he says, Basic took root on micros because it was possible to have Basic on systems with the small memory capacities of early microcomputers. But when the technical constraints were removed and hardware became cheap. er, Basic lingered on.

Complex arguments are invented to justify features of Basic that were originally included because the primitive technology demanded them or because altematives were not we川 enough known at the time the language was designed,' comments Papert.

He continues: 'An example of Basic ideology is the argument that the language is easy to learn because it has a very small vocabulary. The surface validity of the argument is immediately called into question if we apply it to the context of how children learn natural languages.
'Imagine a suggestion that we invent a special language to help children to speak. This language would have a small vocabulary of just 50 words, but 50 words so well chosen that all ideas could be expressed using them. Would this language be easier to learn?
'Perhaps the vocabulary might be easy to learn, but the use of the vocabulary to express what one wanted to say would be so contorted that only the most motivated and brilliant children would learn to say more than "hi".
'This is close to the situation with Basic. Its small vocabulary can be learned quickly enough. But using it is a different matter. Programs in Basic acquire so labrinthine a structure that in fact only the most motivated and brilliant ("mathematical") children do learn to use it for more than trivial ends.'

Of course, this seems to contradict the experience of many schools where it appears that children find it 'easy' to learn Basic. Papert's answer is that 'Most teachers do not expect high performance from most students, especially in a domain of work that appears to be as "mathematical' and "formal" as programming. Thus the culture's general perception of mathematics as inaccessible bolsters the maintenance of Basic, which in turn confirms these perceptions. ${ }^{\prime}$

Ultimately, he believes, Basic 'neutralises the potentially revolutionary nature of computer technology, which he believes could transform maths and other teaching methods. And there endeth my latest sermon on the evils of Basic.

Reviewed in this month's 'Bookfare' were:
Mindstorms by Seymoure Papert (The Harvester Press, Brighton, £9.95) Architect or Bee? by Mike Cooley (Langley Technical Services, 95 Sussex Place, Slough SL1 1 NN, £2.50 plus 50 p post and packing) The Myth of the Micro by Rodney Dale and Ian Williamson (Star paperback, \&1.50.)

Your local National Computer Exhibition

Your 'Local' National Computer Exhibition. Hundreds of exhibits, computers for large companies, small companies, departments, depots... Systems for accountants, shop keepers, estate agents, solicitors, manufacturers, importers, exporters, retailers, wholesalers, butchers, bakers, candle stick makers... Peripherals and software for mainframes, minis, micros... Ancillaries, software, services and supplies for existing and potential computer users.

Why should you go to Computermarket '81

MTo be sure you
know what you're
talking about in
this age of micro
electronics And the
silicon chip" -
ChaIRMAn CHAIRMAH "ITO see if vJu can DIRECTOR
"To investigate
the closer controi
of your costs and
resources"

- PRODUCTION
DIRECTOR
"To consider how a reduce labour time in reproducing contracts and agreements"
 "Tosee how 1 nexpen-
sive it could be for.
a word proceseor a word processor to qet moreaccirate and up-to-date information to help you make better business decisions" businesg decigions"

"To find out if anyone has a software package that will save writing your own riting - SOFTWAR
 procedures streamline,

into see what
computer cont
graphiçs can

WCHOMUSICWAKTG:
 Don Finlay analyses the music-making method used by the MTU Instrument Synthesis Software Package.

In principle, it is easy to turn a series of binary encoded numbers into analogue voltages, which then drive loudspeakers to produce sound. The broadcasting and recording companies are using this process very successfully to achieve high quality and low noise, withoul the distortion of normal tape recording processes.

To synthesise sound, however, is not so easy if natural or interesting effects are wanted. The lack of repeated patterns means that either the digital samples must be calculated as needed, a job which is still beyond any computer at the rates necessary for high quality, or they must be calculated at lower rates and then stored on tape for playback at normal rates, a process which involves expensive buffer stores to smooth the rate of output of the taped samples. A tape store is needed because, as yet, no electronic memory is feasible for the size required. A small computer with 32 k memory can give only one second of sound at a reasonable sampling rate of 32 kHz , needed for hifi.

So we-are driven to using repeated patterns in our permaih, computers. I have described, in previous articles, how
to generate organ-like notes and play tunes with them in a Nascom 1 system (PCW Vols 2, 8 and 3,5) and how a package by Micro Technology Unlimited uses similar principles but adds four waveforms to get four-part harmony in a PET (PCW Vol 4, 1). The method adopted in both systems is to set up a 256-byte waveform table and scan through it repeatedly, skipping samples as necessary to get the frequencies of the equal-tempered scale.

But why limit the table length to 256 bytes? Could there not be a compromise belween this and 32 k ? In fact there can, and the methods of setting this up are the main advances offered in the Instrument Synthesis Software Pack. age', again by MTU, written by Frank Covitz and Cliff Ashcroft, and made available for the 6502 -based PET, KIM and AIM systems. Obtainable from IJJ Design Ltd, 37 London Road, Marlborough, Wilts SN8 2AA, it consists of a 55-page booklet and a cassette and costs $£ 30$ plus VAT. It is intended for use, initially, with a hardware board carrying a single digital-to-analogue converter and 500 mW audio amplifier,
which gives mono output and is sold with the simpler software at $\$ 57$ plus VAT, as described in the January 1981 issue of PCW. However, stereo options are protided. for in the new software, so that the four 'voices' could be distributed as required between two outpuls if the hardware were available. Much more interesting sounds can be produced and many of the effects of an analogue synthesiser can be imitated.

Principles

In a musical instrument which is sounding a steady tone, such as an organ pipe, there is a fundamental frequency and a number of harmonics of this frequency which give a periodic waveform. This can be reproduced reasonably well by storing just one cycle of the waveform in a table, usually occupying one page of memory, and scanning it repeatedly.

However, it takes time to build up a steady tone in a pipe, and it also takes time for the tone to die away when the wind supply is stopped. If sudden

switch-on and release are allowed in a computer simulation, the imitation is not so good. It is far worse when simulating other musical instruments which do not have a steady tone at any time, such as plucked string types guitars and harpsichords, for instance So a first approach is to control the build-up and decay of amplitude of a waveform with a fixed harmonic content, allowing also for a steady por tion ('sustain') if wanted. We could have a sequence of several cycles for the attack stored in a section of memory several pages long, then a repeatable sustain page and another sequence of several page/cycles for release

However, even this technique occupies too much memory. Our 32 k memory contains only 128 pages, so a 440 Hz waveform (concert pitch A) would scan through the whole memory in only $128 / 440$, or about a third of a second. This is less than the decay time of many real instruments.

There is another aspect to consider. This is that, during the attack and decay cycles, the harmonic content of the waveform also changes. A simplified explanation is that, for example, in a plucked string, air friction is greater for higher harmonics, so these die down more rapidly. So any method of specifying attack and decay waveforms should allow for amplitude variations of each harmonic.

Figure 1 shows a simplified example with a fundamental and second harmonic only. The harmonic rises immediately to a value greater than the fundamental but dies away more rapidly. The waveform, and its analysis into fundamental and harmonic, are shown in (a) and (b) respectively.

To avoid having to use all our memory in reproducing this waveform, we approximate it into a number of steps - a form of quantisation. Figure 2(a) shows an eight-step approximation to the analysis of Figure 1(b). For each step, we can carry out a Fourier synthesis and create a waveform page containing the appropriate level of fundamental and harmonic, so this will occupy only eight pages of memory. Now, in playing through these waveforms, we should ideally use interpolation between the tables but this would again be too slow for real-time playing. Instead, we repeat each page as many times as needed before moving on to the next one, making the total time the

Fig 1(a)

Fig 1(b)
same as for the original waveform. Figure 2(b) shows the waveform produced by this 'stair-step' approximation. It is simplified, showing only three cycles for each waveform instead of 32 ; even so, to make the figures less complex, eight steps is rather a small number, and 20 is more typical for the steps to be inaudible.

Figure 2(a) is calibrated in 'tempo periods' rather than seconds. This is because the tempo setting in a piece will affect the timing but not the tempo periods. A tempo period is in fact equal to 'tempo setting' multiplied by 'sampling time' (118 microseconds). This time between samples is determined by the software loop which has to get samples from each of the four sets of waveforms (or four samples from one waveform, etc), add them, output them, and increment the pointers ready for the next samples. The 6502 is extremely efficient at this because of its 'zero-page indexed addressing' mode. Surprisingly, even a 4 MHz Z80A could not better it Even so, the time taken limits the range of frequencies to a maximum of 3.5 kHz .

In the tempo period scale in Figure 2(a), for example, a tempo setting of 80 decimal gives 80×118 microseconds, ie, just under 10 ms per tempo period. The whole time axis then occupies about 2.5 seconds. Each tempo period corresponds to scanning one page, so each of the eight pages is scanned 32 times in succession

Although setting up the waveform tables according to this diagram implies

Fig 2(a)

decaying sound, scanning in reverse order can give a controlled attack. Varying numbers of repetitions of individual waveforms may be used to alter the rate of change, or to improve the resolution. Figure 3 shows two other sequences.

Two data tables per 'instrument'

In addition to the set of waveforms, we need instructions telling the computer which waveforms to use and how many times they are to be repeated. So we have a 'waveform set' and a 'waveform sequence table'. Any waveform set can have several sequence tables controlling it at different times. For convenience, a waveform sequence table is always allowed one page of memory, so occupies much less than the waveforms. In cases where the sound must decay to zero in a time less than provided for by the 256 tempo periods, the end table entries are made to scan a 'silent' waveform, consisting of a page of 80 s (hex), since offset binary coding is used.

Software implentation

All the MTU software is carried out in machine code, as for the earlier version. There is just one line of Basic, which clears the screen and calls up the starting address of the machine code routine. Program execution is automatic after loading the PET from a cassette and it can be re-executed by the usual RUN command.

However, we are promised a 'human interface' with a graphical entry mode or alphanumeric mode for very large pieces and this should be available any time now. At present, all instructions and data have to be turned into hexcoded bytes and entered into appropriate memory locations. The codes have nothing to do with the 6502 , but are interpreted by the MTU monitor software according to principles which are, on the whole, very well explained in the software book. Each command resembles an instruction to a microprocessor, in that it has a single byte operation code followed by one or more bytes of data or address operands. Execution follows the command string from an address SQSTRT (sequence start) whose location depends on the computer being used, but is 0 E 00 H in the PET.

Constucting a
 waveform set

It would be very tedious for the programmer to have to work out the amplitudes of several harmonics in each of about 20 waveforms in a sequence, and then get the microprocessor to calculate each waveform in turn. Instead, it is assumed that each harmonic grows or decays in a linear manner between breakpoints specified by the user and the monitor interpolates between the breakpoints for the intermediate waveforms. The command consists of the operation code F5H, starting and end page numbers relative to a memory boundary LOWLIM (page 20 in the PET), and a series of $x-y$ co-ordinates for each harmonic, where x gives the page number of a breakpoint and y the amplitude of the harmonic in that page. Terminators FFH are inserted after each harmonic, and 00 H ends the command. The waveforms are then calculated and entered into the correct pages by this command; since this sometimes takes several seconds it is best done before a piece is played.

A noise component can also be specified by this command, using hex numbers 80 or more in the position of the harmonic number.

In creating this waveform set, amplitudes are not normalised, because the versatility of the system requires the user to retain control of amplitude. It is necessary, though, to guard against overflow and against too small an amplitude, which will give poor signal-to-noise ratio. Rule-of-thumb advice is given to aim at a total harmonic amplitude sum of about 350 for a large number of harmonics, or 300 for only a couple, on the basis that the theoretical maximum of 255 results in smaller waveforms be cause of cancellation effects between harmonics.

Constucting a waveform sequence table

The obvious way of telling the computer how to scan the waveform set is to type the waveform page numbers one at a time into the appropriate page of memory reserved for the waveform sequence table. For the simple example of Figure 2, the first page number would be typed 32 times, then the next 32 times, and so on, until the page is filled with eight sets of 32 repeated page numbers.

Rather than do this, we use the 'arbitrary waveform sequence table' command. In this, the op code, F 8 H , is followed by an instrument identity number (one nibble - allowing up to 15 instruments, since zero is reserved for a silent instrument; the other nibble of the byte is not used); then pairs of bytes, the first of which gives the relative waveform page and the second the number of repetitions; and finally, a terminator FFH. So the table for Figure 2 could be constructed using commands which occupy only 19 bytes instead of 256.

However, for many instruments a useful sequence can be constructed even more simply. For struck or pluckedstring instruments, there is a sharp

attack and then a decay which decreases more slowly as time goes on, as in an exponential decay in an electric circuit. So a sequence which can generate a decreasing rate of decay automatically could be very useful.

This is done in the 'simple stretch' option of the 'build waveform sequence table' command, which needs only five bytes. The first one is the op code F 6 H , and in the second one are two nibbles which define the simple stretch option (using zero) and instrument identity number. The third byte specifies the degree of stretch to be used; its first nibble defines the length of the initial block in the table and its second defines how many times a block is to be repeated. The fourth and fifth bytes define the starting and end page numbers. For instance, if the initial block length is one and each block length is repeated once before incrementing the block length, we may get a table of this form: 0506070708080909090 A 0 A 0 A .

A little thought reveals that this would turn a linear fall of amplitude into a quadratic one or, to use MTU's description, it gives 'quadratic stretching'. The same sequence in reverse would give a rising waveform amplitude whose rate of rise decreases with time, giving an inverted quadratic. Since the sets of waveforms are built using linear interpolation, this is a very powerful pair of commands, on which the authors should be congratulated.

Generating attack, sustain and release (ASR)sequences

For sustained wind instrument sounds such as trumpet, clarinet, and horn, we need a more complex sequence table. The 'simple stretch' option nibble in the F6H command set is now changed so that it is an odd number, and used to determine the length of the sustain phase. This length is in fact made equal to $32 * \operatorname{INT}(\mathrm{X} / 2)$, where X is the nibble, and the last waveform of the attack phase is scanned this number of tir es for the sustain period. Three more byies are added to the command to determine the release sequence.

ADSR envelopes, as used in some analogue synthesisers, are not mentioned
by MTU. The extra letter refers to decay before the sustain period and is sometimes wanted to simulate, for instance, the decay of a piano string vibration after the key is struck but before the key is released. Probably the arbitrary sequence command should be used here, as the stretch options do not allow for three sections.

As might be expected, an even value of X in the sustain-length nibble is made to do something different from when it is odd. In fact it is made to give a pseudo-tremolo effect which the authors describe, fairly, as 'warble'. In this mode, during the 16X table entries of the sustain period, the sequence cycles through the last three waveforms in the attack set, playing them twice each to and fro, so that they take eight table entries per cycle. For a typical tempo setting, this gives a rate of about 13 Hz .

Strumming sounds

One more command is provided for creation of a waveform sequence table. This one simply modifies an existing table by taking the first block of entries from it, and repeatedly copying them into the new table until the page is full. This uses the op code F 7 H , with two nibbles for source and destination instrument identities and one more byte for the block length to be copied. Uses include synthesis of strumming sounds for plucked or struck instruments.

Note coding

So far, I have summarised the methods of creating musical instruments within the computer. We now have to look at the way in which notes are coded. In the previous software (PCW Jan 81), each note of the scale was given a single byte which had to be entered into a song table. This byte was used to access an address where a two-byte code for the frequency (in fact, the skip needed in incrementing the sample pointer) was stored. This was a little trying to use, as the codes bore no resemblance to musical notation. In the latest version, it is even more trying, because each note has four possible identity codes!

The reason for this is that sometimes we need to change the computer specification for an instrument according to the note it is to sound. A natural

Last year we tested or reviewed 141 PET
programs, evaluated 54 peripherals ranging from light pens to printers, and ran
27 major articles on PET programming. Our gossip columnist blew the gaffe on dozens of inside stories, receiving two death threats, five poison pen letters and a dead rat for his pains. We also published 53 letters from PET users, 88

listings, 105
programming hints, and 116 news stories about the CBM/PET. All this added up to more than 150,000 words of essential PET information.
We are PRINTOUT, the independent magazine about the CBM/PET. Shouldn't you subscribe?

To PRINTOUT PO Box 48, Newbury, Berkshire RG16 OUJ, England. PCW381 My Name is
Address.
musical instrument covering a wide range of notes has different characteristics of timbre, volume, attack and decay for different notes, so the requirements of good simulation must take account of this. In addition, aliasing can occur if there are too many harmonics in a computer-generated waveform, which can happen in high notes; but if we cut down on the harmonics in these high notes, the lower versions will sound impoverished. Ideally, we should have a waveform which is individually controlled for every note. As always, compromise is made, and in this system any particular note can use any of three instruments, created as already described.

A note code occupies one byte. Of this, the six least significant bits select 63 notes (zero is used for a rest) and the other two select the three instruments or a 'sustain' mode. The sustain mode is necessary to allow tied notes to carry on sounding when other parts are changing in a new musical event. This means that, usually, the programmer does not have to regard a break between repeated notes as an event, as in the previous software, since normal decay will take place, and sounding the note again by using the sustain code will have the required effect. In this sense, programming is easier. In another, looking at the printed page which shows 252 codes against an enlarged pair of musical staves, it is certainly not!

There has to be a command to specify which instruments are called up by the different modes for the four voices. This uses the op code $\mathrm{F1H}$, and it is followed by bytes defining the mode table and the four instruments used by the four voices. I found this section of the software difficult to grasp as there isn't a clear example, but eventually worked out the following sequence of commands to provide one: F1 014567
F1 0289 AB
F1 03 CD EF
In this, voice one uses instrument four for mode one; voice two uses instrument five for mode one; voice three uses instrument six for mode one; etc and voice four uses instrument FH for mode three. The order of the four voices is implied by the position of the nibbles of the last two bytes in each line.

As before, the song table, which corresponds to a musical score, comprises a series of groups of bytes. If four parts are being used, each group starts with one byte for the duration of the event and the remaining four are the note codes for voices one to four in order. Where a voice is inactive, a zero is inserted. The principle to follow in coding for the three optional instruments is to use one of the modes one to three for the initial entry of any voice but if it is to carry on sounding without repeat then use the sustain code in the next event. Codes up to 3 FH represent the sustain mode.

Transposition

The restriction of the note range to 63 may not always be acceptable, so two commands are provided to shift the notes by 'offsets'. One enables any or all of four voices to be shifted down one octave or up two octaves, and the other gives absolute offsets of -12 to +24 half-steps (semitones) or relative
offsets of -15 to +15 . Absolute offsets cancel previous ones. My criticism of the previous software, that transposition was limited to an octave upwards, has been fully overcome.

Finally, in the set of commands, two more set the number of voices to be interpreted from the song table and the tempo, and there is, of course, one to locate the start of a song table sequence to be played.

User impressions

I received the cassette carrying the 'INMUS MONITOR' software with three demonstration programs some time before the 'Instrument Synthesis Software Package Release 1' arrived. The difference from the previous package was immediately apparent. The first program is a demonstration which can be run in an 8 k system, although this is really inadequate for the package. This contains short note sequences of scales and arpeggii, and a chord sequence, to be played in one, two and four voices as appropriate, with changes of instruments giving different effects: plucked string instrument, trumpet-like instrument (using the three modes), weird metallic instrument, constructed with only fifth, seventh, tenth and fifteenth harmonics, oddball instrument using the warble effect, and a chiming instrument made by modifying the previous one. The software booklet contained the complete listing for this program in assembler language format with explanation column, so I was able to study it in detail. The instrument descriptions I have listed here are those given by MTU in this listing, and are apt.

As before, no knowledge of 6502 code is needed to use the package.

The sounds produced by the demonstration program show the versatility of the system in a very effective way. They are marred to some extent by noise, which is inevitable in an 8 -bit system where sometimes only six bits are being used (one-voice note sequences). Slight clicks can be heard occasionally and there are long pauses between playings of the note tables while new waveforms are created. Truly, music is one of the most demanding applications for a computer!

Also on the cassette is a program based on Bach's Sinfonia No 14. This produces some good harpsichord sounds and some unconventional ones, and requires 16 k of memory. Finally, there is Tchaikowsky's Dance of the Reed Flutes from the Nutcracker Suite, requiring 32 k and giving a fair imita tion of orchestral sounds. No listings are provided for these two programs, although they can be examined by entering machine code mode on the computer and looking at the memory. The command and note sequences for the Tchaikowsky occupy only locations 0 E 00 H to 1 B 4 EH in the PET, so it wouldn't be necessary to look at the whole 32 k . However, the commands for some of the instruments used in these programs are listed in a very useful 'Library of Instrument Definitions' in the software book. Twenty instruments are specified, each defined by a pair of instructions to build the waveform set and the waveform sequence table, and some with extra sequence tables.

You don't really understand a system, though, until you have tried to program it youself. I decided to write a short program to see if I could generate a number of instruments and use them in the three modes, as they had caused me trouble in the reading. There's a natural tendency to 'switch on Bach' when you have a twangy sound available, so 1 programmed the first few bars of his Toccata in D major (BWV-912) and entered the 'plucked catgut' instrument from the library, plus two softer versions of it which I invented for the other two modes, and used there for all four voices.

Memory allocation was the first problem. There is a lot about this in the software book, which seems overwhelming. Anyone working in machine code faces this - you have to specify where you are putting your codes as there is no high level language to do it for you. However, examining the default settings carefully showed that I had plenty of room. The playing sequence code starts at 0 E 00 H and goes upwards through memory, being followed normally by the song table, which has to be called up from memory addresses specified in the playing sequence. There is a 'LOWLIM' boundary at 2000 H ; waveforms are constructed in pages counting up from here, but waveform sequence tables count down from it, so there is a danger of song table and waveform sequence tables colliding. Also, a silent waveform is entered into page 20 H (all 80 H) and its corresponding sequence table into page 1 FH (all 20 H). If you don't construct your own waveform, a sinewave is entered into page 21 H and its sequence table into page 1EH (all 21 H). This isn't written out in so many words in the booklet, so I checked it by examining memory.
I wanted to create three instruments, so their waveform sequence tables would occupy pages 1EH, 1DH and 1 CH , over-writing the sinewave. This would leave pages 0 EH to 1 BH , available for the playing sequence table and song table - ample for this need.

The three sets of waveforms would use 11 H pages each, so would occupy pages 21 H to 53 H . Even this simple program requires more than 16 k of memory, which would give only up to page 3 FH , so it's fortunate that my PET had 32 k

The command sequence code turned out to occupy memory from 0 E 00 H to 0 ECCH , so 1 started the song table at 1200 H , leaving plenty of space for atterthoughts on instruments. If I eventually code the complete toccata - unlikely, as it is a very long work - I would have to move LOWLIM up, or possibly use the top of memory, for the song table. This is allowed for in the monitor.

I wrote out the command sequence on paper first, so that I could add memory locations and keep a check on where I had reached when entering it; it went in with only one major error, which took some time to find by studying sequence tables to see which had gone wrong. The song table was more difficult; I have already mentioned the problem of reading the four possible codes for each note, and when it goes in as sets of five bytes but has to be entered using the PET cursor on a block with lines of eight bytes of memory, the

GOTO page 146

CHAPTER8:PERIPHERALS

Derrick Daines continues his series on teaching microcomputing to others.

So far the microprocessor has been discussed almost entirely in connection with computing. Now is the time, however, to stress that although computing is an important application, it is only one among many. Hazarding a guess, I would estimate that less than ten percent of all micros in use today are in computers and that this eventually will level off at about three to five percent. The rest will go into an infinite variety of industrial, commercial and domestic appliances.

It is not that the actual numbers of computers will drop - on the contrary, they will increase as never before but that there will be an explosive growth in the range of products using the micro. Where this process will end is anyone's guess and it is this very fact that endows the long-term future with its most exciting aspects.

Earlier in the series we stressed that microprocessors can be put to an amazing variety of uses simply by attaching different peripheral devices. A peripheral is any device that can be coupled to the micro, by means of which the micro is controlled or communicated with, and through which the micro can communicate with and/or manipulate the outside world. It can be extraordinarily simple as in the case of a switch, or fantastically complicated like an electronic typewriter keyboard. (Figure 7 in chapter 3 shows some peripherals.)

Switch inputs

Any on/off switch can communicate with a micro. Apart from switching the power supply on or off, or resetting all contents to zero, the switch can also be used to input information of one kind or another. An example would be a road pad to count the number of vehicles, or a light-operated switch to count the number of articles passing along a conveyor belt. A few years ago a switch of this type was used to count bees entering and leaving a hive.

The switch may also be used to program the micro. Impecunious souls with patience may easily rig up a set of switches that are used to input binary-coded information into memory; the Open University has for years used just such a device (called 'Opus') for teaching the rudiments of computing. One sets up the eight binary switches and then, when satisfied, presses a push-button to transfer the data into memory.

A slight extension of this idea
provides a restricted keyboard. The addition is a dedicated chip which turns hex to binary, so all that is needed are 16 simple pushbuttons labelled 0 to F . Such microcomputers are available for as little as $£ 40$ in kit form, with 256 bytes of memory, which would provide very useful computing facilities and enable the control of peripheral output devices.

Computer terminals

Ideally, a terminal should be in two halves to stress the fact that it comprises two separate units. One part is an extended keyboard (with its associated electronics) and the other is a Visual Display Unit (VDU), like a television set without the sound. Many install ations will indeed use an unmodified television in the same way that TV games do.

Some of the mystery of the VDU will disappear if the student is en couraged to examine the display very closely, when it will be found that each character consists of a pattern of dots or very short dashes (see Figure 1.) The characters are coded by circuitry in the VDU in a manner similar to the ASCII system detailed below but working in reverse. Figure 2 is an example of a 7×5 matrix.

Computers with graphics capability use a variation of the technique in order to draw diagrams and pictures of all kinds. The screen is divided up into a very large number of cells, each one of which is accessed by one particular memory location within the computer.

By addressing the memory the cell can be turned on or off - white or black. The definition varies from one manufacturer's product to another and of course depends upon the number of cells on the screen. Other computers allow for different numbers to be loaded so that the circuitry can then decode it and display the cell in a choice of colours. Home computers boasting colour graphics are becoming very popular.

Newspaper photographs can be used to illustrate the basic idea, and no doubt many will have seen the type of computer photograph that prints the image in close typescript, wherein the shading is produced by different printed characters. What is important with all of these ideas is not the fine technical detail but the main outline of the technique involved.

Another offshoot of all this work is the enhancement of photographs by computer - a technique that was used on the pictures sent back by Mariner

Fig 2

Fig 3 To the micro, the PIA looks like just another block of memory.
from Mars, for example.
The typewriter keyboard is the principal method by which the human communicates with the computer. The basic principles have been taught already, with the dedicated chip turning the number input into binary code. With the introduction of a full keyboard, students will want to know how the computer deals with letters, spaces, brackets, etc. The answer lies with the ASCII code, which is given in Table 1. ASCII stands for American Standard Code for Information Interchange and was originally designed for the transmission of news reports, telegrams and the like over wire. Although other systems have been tried, the ASCII code remains the most popular, sometimes with local variations. (There is no $£$ sign, for example.)

ASCII code

To change a character to its hex equivalent, find the character on the chart, note the number of the column and then the number of the row. (MSB stands for Most Significant Bit.) Thus ' A ' in hex is 41 , while the lower-case ' a ' is 61. To change from hex back into script is obvious - find the column, then the row. Thus 3 F is?

In passing it might be noted that this adds a slight complication to computing since (eg) 3 F can stand for a question mark, an instruction to stop or the numeric value 63 (decimal), depending entirely upon the context. As far as the micro is concerned, however, it is still either an instruction or data in the manner described in a previous chapter. When instructed to print, it sends the data to the printing device which decodes it back into characters.

The complication is more than offset by the advantage of having a binary code for script, making it easy to use the micro for text manipulation. Perhaps the most spectacular application of this is in programs for word processing, but all computer programs make use of it to a greater or lesser extent.

A very useful program for those with a 6800 -based computer is contained in Table 2. Children of 8 years old and up will happily translate their name or other short message into ASCII-coded hex and then trot over to the terminal. The computer asks them to type in their list of hex numbers, automatically printing a space after each pair of input symbols. The child signals the end of his input by typing RETURN, which prompts the computer to translate the hex into a row of script. It then waits for the next inputs. This has been found to be a most successful program with a number of points to commend it. (1) It accustoms children to the ASCII code; (2) it restricts the child's use of the keyboard to the numeric keys and A-F; (3) the child learns of the computer's infinite patience; (4) the principles of coding generally are absorbed; (5) the lesson is self-correcting and (6) the child is highly motivated.

Need it be added that the program is also great fun? Somewhat deliberately, there is no way that a keying error can be corrected. With coding errors added, the printout frequently causes great hilarity plus, of course, great satisfaction when something is printed out correctly.

Table 1 ASCII to hex conversion table.
This program accepts a series of Hex numbers and prints out their ASCII equivalent.

0100	CE 0200	LDX	Starting address of title text
0103	BD E07E	JSR	Print intro text
0106	CE 000	LDX	Routine start to clear all temp storage.
0109	4F	CLR (A)	
010A	A7 00	\rightarrow STA, X	Store A, indexed.
O10C	8C 00FF	CMP X	Has index reached 00FF?
010F	2703	-BEQ	
0111	08	INX	Increment index
0112	10 F 6	-BRA	Branch always
0114	CE 021E	\rightarrow LDX	Start of instruction text
0117	BD E07E	BSR	Print text
011A	CE 0000	LDX	Point to first empty store
011D	BD E1AC	BSR	Fetch 1st digit from keyboard, put in A
0120	81 OD	CMPA (A)	Is it C / R ?
0122	27 1F	- BEQ	If so, done with entries
0124	16	TAB	Copy in B
0125	BD E1AC	BSR	Fetch 2nd digit, put in A
0128	8030	SUB (A)	Subtract ASCII bias
012A	8109	CMP (A)	
012C	2302	- BLS	
012E	8007	SUB (A)	
0130	58	\rightarrow ASL (B)	
0131	58	ASL (B)	
0132	58	ASL (B)	
0133	58	ASL (B)	
0134	1B	ABA	Add A to B. (Result is ready-to-print hex code in one memory)
0135	A700	STA (A), X	Store A, indexed
0137	BD EOCC	BSR	Print a space
013A	08		Increment X by 1
013B	8C 00B4	CMPX	Has index reached allowable limit?
013E	2703	- BEQ	
0140	7E 011D	JMP	to step 011D above; repeat input
0143	8604	\rightarrow LDA	with ASCII code, "end of text"
0145	A7 00	STA (A), X	
0147	CE 0238	LDX	Start address "Your code was"
014A	BD E07E	BSR	Print text
014D	CE 0000	LDX	Point to first
0150	BD E07E	BSR	Print to end of text
0152	7E 0100	JMP	To start; begin all over again
TEXTS			
0200	C/R, L/F,	NUMBER C	ODE 04
021E	C/R,L/F,	Please type y	our code C/R, L/F, L/F, 04
0238	C/R, L/F ,	Your code w	as-04

Program begins at 0100 .
Table 2 Decoding program.

the $A B C$＇s of CPMM

 $(5)=$

NEW！CP／M HANDBOOK MAKES CP／M EASY AS ABC

CP／M－the industry standard in operatingsystems：now Sybex makes it easy as ABC with a new step－by－step guide：THE CP／M ${ }^{\text {® }}$ HANDBOOK（with MP／M ${ }^{\text {m }}$ ）．
Gain a clear understanding of CP／M＇s basic operation，learn how to use the editor and assembler，then explore all versions of $C P / M$ ，including $C D O S$ and mult－user MP／M．
Numerous sample programs，practical operating hints and handy reference tables make the CP／M HANDBOOK a must for anyone－from beginner to experienced programmer．
For sophisticated edifing or simple copying，the new CP／M HANDBOOK gives you a hand－and makes CP／M easy as ABC By Rodnor Zaks， 250 pp．，Ret．C300，
$C P / M^{*}$ and $M P / M^{\text {tm }}$ are trademarks of Digital Reseorch

Get your copy of the CP／M Handbook from your local Computer store or Bookshop．In case of difficulty，send cheque／P．O．for $£ 8.95+70$ p post \＆ packing to the SYBEX UK Distributor．

The
 Temple House， 43／48 New Street， Birmingham B2 4LM

Please send me a copy of the CP／M Handbook
I enclose Cheque／P．O．for $£ 9.65$

KEENCOMPUTERS

NETWORKING SYSTEMSFOR MICROCOMPUTER POWER ON TAP.

Miracle

Applications unlimited with database flexibility.

Add up to 72 Mb of Corvus hard disc drive to a single-user microcomputer system - Apple, S-100, Superbrain, LSI-11 and many others - and you're half-way towards a Miracle. Add on more microcomputers, link them up with a Constellation shared data multiplexer - and you've arrived.

Miracle puts distributed data processing on tap - with each user station enjoying high-speed access and total flexibility. A Miracle system can be as big or as small as you want - as and when you want it. With a 4-micro Miracle system you can save $£ 7,000$ on a minicomputer system - and gain database flexibility.

Onyx C8000 Series

Your powerful new ally in

 applications technology.Processor, memory, fixed 8-inch disc and cartridge tape come in a single compact powerhouse - and in two versions.

The powerful 16 -bit C8002, which handles up to eight users, has a faster throughput than the PDP-11/45. With its UNIX 7 timesharing operating system, the C8002 gives you the power of a mainframe in a desk-top device. Extra user stations and storage capacity can be added in minutes; and C8002s can be connected together in a network.

The 8-bit C8001 is ideal for one or two users and can be easily upgraded to the C8002.

EXPAND YOUR N NEEDS EXPAND WITI

AND YOU CAN START WIT

Miracle

A Miracle system has almost unlimited scope for accessing shared data via multiple terminals in accounting, word processing, financial planning, stock control, graphics, critical path analysis and database management applications - and at the same high-speed as with single-user systems.

In addition to his own dedicated computer and associated memory, each user has access to a central hard disc memory - without interference from other users. Miracle also makes it possible for like computers to

Five-user scientific

Miracle system
 configured for accounting, word processing, stock control, critical path analysis and database management applications.

communicate with each other in the

 network and for peripherals to be shared.Apple, Alpha, Altos, Superbrain, TRS-80 Models 1 and 11, DEC LSI-11 and all S-100 bus computers.

The system will interface with all these micros - in any combination. Traditional peripherals, such as printers and VDUs, plus interactive devices like speech output, voice recognition, colour graphics, light pens and digitisers can also be linked up to give a Miracle system unrivalled configurability. A single-level Miracle network polls up to 8 computers; and a two-level network allows up to 64 computers to share the disc memory.

The Constellation shared data multiplexer is used to connect the computers in the system to 10 Mb or 18 Mb of Corvus hard disc drive. Using four disc drives the total capacity of a Miracle system can be extended by up to 72 Mb . Corvus will work with your existing software and give disc accessing speed which is normally twenty times faster than with floppies.

Mirror back-up system

The unique Corvus Mirror provides an inexpensive back-up for the hard disc system. It interfaces the data signals on the disc with a 100 Mb capacity video tape system; and the entire contents of a 10 Mb disc can be archived in about 15 minutes.

Making use of a comprehensive range of languages, from $\mathrm{BASIC}, \mathrm{COBOL}$, and FORTRAN to PASCAL, ALGOL and APL, the applications of Miracle are flexible and almost limitless. Cost effectiveness is enormous - for the simple reason you never have to buy more system than you need.

TWORK AS YOUR MIRACLE AND ONYX.

H A SINGLE-USER SYSTEM.

Onyx C8000 Series

In fields such as computer aided design, critical path analysis, finite element analysis, document production, phototypesetting, surveying, cartography, and internal electronic mail, the Onyx C800? proves that microcomputer systems have not only caught up with minicomputers - but actually overtaken them!

Take, for example, the PDP. $11 / 45^{\circ}-$ a superb minicomputer system by any reckoning. Yet how does it compare with the C8002's compact and cost-effective package of 18 Mb of Winchester hard disc drive, 12 Mb of 3M cartridge tape drive, 512 Kb of RAM and 16 -bit $Z 8000^{*}$ processor?

The plain fact is that all but one of the Z8000's instructions are faster than with the PDP-11/45and the C8002 costs a few thousand pounds less.

Both the C8002 and C8001 can be directly connected to almost any standard terminal, printer or modem. Disc

Ambassador

User-definable terminal provides cost-effective flexibility.

This powerful and flexible terminal implements a major portion of the ANSI X3.64-1979 standard - with a comprehensive set of cursor, erasure, editing and transmission commands; and a full complement of graphics.

The Ambassador can be customised by selecting the required features, downloading command functions, setting up operating parameters and defining function key operations.

30/60 line display, selectable cursor display and user-selectable page, window and status areas are available on the 15 -inch green phosphor screen. A 94-key detached keyboard is standard, including 13 programmable function keys, cursor movement and numeric pad, and system keys.

KEEN COMPUTERS BRING YOU SERVICE ALL ALONG THE LINE.

The Keenstar range of over 200 hardware and software products is backed up by a complete servicefrom consultancy to after sales.

Consultancy has been the cornerstone of Keen Computers' success. They will correctly identify a user's problems and requirements; then design, develop and commission a system which exactly fits the bill.

Software capability has an important role to play in providing cost-effective solutions. And this capability has enabled Keen Computers to assemble many of the software packages in the Keenstar range - as well as providing custombuilt software, as required.

ENQUIRIES FROM OEMs, DEALERS AND OVERSEAS WELCOME

5b the Poultry Nottingham NGI 2HW Tel: 0602583254 Telex: 37297 (keenco)

In addition to staff training, Keen Computers organise seminars for top management - so that they can fully appreciate a system's potential and derive maximum benefit from it.

Purchase and leasing terms -

 made available over 5 years through a leading finance company - are supported by full maintenance service. Special short-term hire facilities are also available for customers who want to appraise equipment or test software and systems before commiting themselves.Trouble-free operation and prolonged life for Keen Computers' installations can be safeguarded with cost-effective maintenance agreements.

Microcover Guarantee is that extra bonus for all Miracle/Onyx systems - providing delivery, installation, commissioning and 90 -day on-site parts and labour warranty in the quoted price.

Calculators

It may seem odd that hitherto I have made no mention of calculators. This is because we have been concerned with the mainstream of technological development and where that stream is likely to take us. Although fascinating and worthy of a study in itself, it is my view that the calculator stands a little aside from the mainstream, an end in itself without the potential for future development that the micro has.

The programmable calculator is a hybrid, standing between the calculator and the computer proper. Certainly the programmable calculator has considerable potential as a teaching aid with which to illustrate the stored program concept and give students sufficient practice at writing simple programs, but needless to say, such programs will be of the number-crunching variety.

It is one of the small ironies of history that up until about 15 year ago, all research and development went into designing computers that did considerably less than the average hand-held calculator of today. What was termed a computer then we now call a calculator. There is the blessing that now mathematicians have nearly all they ever wanted in the programmable calculator, the close identification of the computer with higher mathematics has been relaxed. It is also true that the manufacturing techniques that went initially into the calculator have been turned with benefit to the computer as we know it today.

Both the calculator and the computer use binary arithmetic but their internal structure or architecture how the bits and pieces are fitted together - makes the calculator good at number-crunching and good at control. Certainly the computer can impress you or I with its speed and accuracy but, compared with the calculator, it is neither fast nor accurate It is, in fact, extremely difficult to program a computer to do mathematics, as anyone who has studied such a program will tell you (I mean, of course, in machine code. When we use Basic, for example, it includes a floatingpoint arithmetic program in its structure).

The calculator chip therefore makes an excellent peripheral for the micro, especially in the computer. The micro takes care of all the control functions switching gates on and off, shunting data about, running programs and generally being a busybody - and when it needs operations on numbers, it flings the details to the calculator. It's all rather like the boss of an international corporation having an accountant at his elbow - he could do it himself, but it is more efficient to let the other do it. Quick as a flash the calculator chip flings back the answers and the micro deals with them. Both chips are doing what they do best and obviously the installation of a calculator in a computer speeds up the operation of most programs.

Figure 3 gives a block diagram of the installation, based upon the National Semiconductor MM 57109 calculato chip. The PIA (Peripheral Interface Adaptor) is simply a device that allows the two chips to talk to each other, while the separate clock shown is for the use of the calculator only, allowing
it to run at its own speed once it has been given a job to do. Within the calculator chip itself, apart from the obvious calculating circuitry (see Figure 4), are a number of registers and a memory, which is rather like the accountant having his own scratchpad or jotter. It should be obvious that the user cannot access the memory directly, but must in effect say to the micro, 'Please ask the calculator what it has got in its memory, so that you can tell me.' Because of this, perhaps the hardest part of having such a calculator coupled to the micro is learning to trust it.

Since the chip has full trig functions, squares, roots and pi, can operate in degrees or radians as well as utilise its memory as a constant and deal with brackets embedded four deep, the calculator constitutes a very powerful adjunct to the computer.

Printers

A very wide variety of printers are available as peripherals. Perhaps the simplest would be the Morse ticker-tape printer that might make a suitable project for boys to make out of Meccano. Stepping up from that are 20 -and 40 column printers that use rolls of addingmachine paper. These are very widely used for program development and for some types of accountancy work. In a more expensive bracket still are fullwidth printers mainly of two types. The first are dot printers employing a set of solenoid-driven needles which are driven forward in a matrix pattern on the lines of Figure 2. The other is based on the electric typewriter and is the most expensive of all.

The latest developments in this field do not rely on the impact of some

Fig 4 Calculator block diagram

Fig 5

Fig 6

Your search for the right price stops here.

Pet

Well known for making short work of accounting, word processing, mailing lists. A great buy from NSC.

Apple

You know what the Apple system will do but you don't know the deal we're offering. Come and see for yourself.

Rair

The exciting new $3 / 30$ system offering 5 mb of fixed disc storage on brand new $51 / 4$ " Winchester drives. 64 K Machine $£ 4,313$ incl. VAT. Full range of black box systems available. Rental terms available.

Cromemco

We can now supply the Cromix operating system for single and multi user working. The first big system operating system to be offered on a small system-the only system which offers up to 63 K memory space per user.

Acorn Atom

Now available ex-stock. Special offer to ZX80 owners: We will take your ZX80 in part exchange for an Atom.

Used Bargain: Second hand ZX80's from $£ 50$.

North Star Horizon

A complete word processing system extendible from $32 \mathrm{~K}-56 \mathrm{~K}$ RAM, with up to four mini disc drives, 4 MHz Z80A processor, serial and parallel I/O ports and extended BASIC. Full range of accounting packages available. You can lease this very popular system for as little as $£ 25$ per week.

Bargain Offers

South West Technical Products
56K6809 based system, with twin $8^{\prime \prime}$ disc drives and Centronics 779 printer. From $£ 3,163$ incl. VAT., while stocks last. Keenest prices around on individual boards and peripherals

48K Apple for $£ 695$

Buy a 16 K Apple from NSC
Computer Shops now and get 32 K FREE.

After Sales Service

When you buy from NSC Computer Shops you have the opportunity to take advantage of a special service contract on favourable terms.

Order by post with confidence

Instead of calling personally at NSC Computer Shops you can send cash with order. Orders are despatched by carrier please telephone for details of delivery charges

BOOKS: Send s.a.e. for our full price list, or call in at our shop to see our wide range of publications.

All our priçes are heavily discounted and therefore payment must accompany the order Credit card payments will be accepted. Please quote credit card number and type of card.

WE WILL NOT BE
 KNOWINGLY UNDERSOLD.

gadget bashing its image through a ribbon, but upon the arcing of tiny sparks from electrodes to a microscopic-ally-thin aluminium layer on black paper. The spark burns away the aluminium to reveal the black underneath. These printers are very much faster than the other types and, because there are few moving parts, are also cheaper, but of course the paper is more expensive.

However fast they appear to be, printers remain the slowest of peripherals and any computer confined to driving only a printer is grossly underused. the problem of keeping the computer in step with the printer is solved by the latter having memory capability equal to one line-lingth. Some will remember whole pages. The computer is then able to execute other tasks until signalled by the printer that it is ready to accept more data.

Recording data

When the power is switched off, any program stored within most computers is lost. For this reason - as well as for those occasions when the program bombs - all computer users feel the need for some form of long-term storage of programs. Then again, data of all kinds must be stored when it is not actually used by the computer. Three methods are in current use magnetic tape, paper tape and magnetic disk. All are easy to understand but it is probably best to introduce students to paper tape first as they can see and decode the information stored.

Samples of paper tape are easy to come by from firms using this form of storage, provided that the teacher is able to explain what he or she wants it for and the firm is satisfied that no breach of confidentiality is likely. About 6-9ft per pupil is sufficient. Now there are four ways to hold a strip of paper and Murphy's Law ensures that no-one will hold it the right way, so the first exercise must of necessity clear up this point. The sprocket holes are smaller than data holes and are in a continuous line to the right of centre, while the curl of paper will be away from the user. Some manufacturers provide tapes with broad blue arrows printed on them to show the direction of movement and some punches automatically cut the ends of the tape with a vee for the same purpose. Both systems help a great deal.

Have the student draw a pencil line under any selected row of holes and write it on scrap as a binary word. Usually there is no difficulty in getting them to understand that a hole represents a binary 1 and that the absence of a hole represents a binary 0 .

Given previous experience of decoding binary to hex and hex to ASCII, most people will be able to decode a few rows before boredom sets in, but nothing more is required for them to have grasped the idea. The keen or fortunate may have come across something intelligible and will pursue it doggedly to the end.

Now that much earlier commercial computer equipment is being disposed of at give-away prices, it would be a good plan for schools to acquire papertape punches or readers. The first translate depressions of keys or computer-held data into holes in tape, while the readers accept punched tape
and translate it into a stream of data for transmission to the computer.

The cassette tape recorder is a very common piece of equipment nowadays - so common that, in any given class of children, half are likely to own their own. This is fortunate because the cassette is increasingly used for data storage. The system relies upon electronic circuitry that translates binary 1 and 0 into high- and low-pitched tones. The idea is quickly grasped and there is little that one need do to illustrate except put such a data tape into an ordinary machine and allow the class to hear the stream of tones, or if a computer is available, to have it echo onto the VDU screen the data being received from cassette.

One can discuss what is known as the baud rate - the number of binary bits per second that are transmitted. The children will be impressed to learn that the standard for magnetic tape is 300 baud, so that if the tape is travelling at its standard 17/8in per second, 1 ft of tape holds 1920 bits of binary. This is impressive, although computer users frequently grumble about how slow it is. I know - I'm one of them. It also means that the average C-60 tape will store some $1,080,000$ binary bits, or 135,000 computer words.

Just about the same order of storage is provided by the disk system. This too is familiar in concept but there are a number of important differences
between computer disks and the domestic LP. Firstly, it is magnetic, like the tape. Secondly, it spins very much faster and thirdly, it is not sequential. To put that another way, you do not have to play all the recording to get to a bit at the end.

The point can be illustrated by two simple cardboard models from the SMP books, Man Uses the Computer and Computer Bits \& Pieces, (Blackie, 1967). A length of ticker tape is analogous to the cassette tape. Children write a lot of names on it and then feed it through two slits in a piece of card so that only one name can be read at a time. Now to find a particular name, the tape must be fed through from the beginning - perhaps in its entirety. The disk system can be modelled by a disk of card with the names arranged in segments, one name per segment. (See Figures 5 and 6.) The pick-up head is modelled by a small window of card free to slide up and down a fixed guide. To find a particular name with this system, one simply pushes the window up, looking at the first one or two letters of each name, until one finds the one wanted.

For computer users, the difference is one of up to half an hour with tape compared with milliseconds for disk. Not only that, but disk allows the computer to access program and information freely, jumping from one program to another without any human inter-

Fig 7

Fig 8

Fig 9
vention - a process known as chaining. A little thought, and you will see that this greatly multiplies the power of even the humblest computer.

In practice, up to four disks can be accessed at once. Moreover, disks are double-sided and/or double density as well, so that the information readily accessible attains astronomical proportions, with yet more available in no more time than it takes to change a disk. Such devices are expensive at the present time, although blank disks are themselves cheap. Since the advent of home computing, smaller devices known as mini-floppies have become available. The disks are flexible, as their name implies, and hold a little under half a million bits per side, although the same remarks about double density apply. The latest developments in this field include Winchester storage and stringy floppies. The Winchester is a more sophisticated disk system with a greater storage capacity and shorter access time, while the stringy floppy is a continuous tape.

ROM and his relations

Another device for the long-term storage of information is Read-Only Memory (ROM). It is an ordinary integrated circuit in appearance but locked within it is a stack of memory, each with its own address and each with its separate contents in binary. These are, of course, determined during manufacture.

Originally the ROM was developed for housekeeping duties within the computer - all those little chores connected with power-up, interrupts, print-out, reading from the keyboard and so on. These tasks are carried out so regularly that they are standard sequences and perfect meat for automation. With a ROM containing these programs, the user can access the appropriate address and forget about the details of the chore. Examples of this were the BD E1AC and BD E1D1 instructions of machine code, where E1AC is the address appropriate to the task of reading an input from the keyboard.

Slightly more expensive than ROM is PROM, or Programmable Read-only Memory, in which the purchaser may encode his own memories and is thereby not confined to those supplied by the manufacturer of the chip. To be sure, the manufacturer can and does supply ROMs to specification, but the lead-time can be quite long and the method is not viable unless thousands of identical ROMs are required. With the PROM, however, small batch quantities are possible since the customer programs them himself on a fairly simple device.

There are several other devices related to the ROM, but the last one I wish to mention here is the EPROM, which finds favour among amateur users and small businesses. EPROM stands for Erasable Programmable Read-Only Memory and, as its name implies, the user can program it, use it for as long as is desired as a ROM and then erase the program (under ultra-violet light) ready to program it again. Although the most expensive of the three devices, it obviously has a great appeal.

Currently, ROMs are used almost

Fig 10

Fig 11

Fig 12
exclusively for the storage of programs, but there is no technical reason why they should not also be used for the storage of data in small quantities. Some industrial environments would be totally unsuited to the storage of data on tape. Besides which, tape machines and disk readers are enormously bulky by comparison with the ROM and their costs disproportionate.

Some computer games and television games are already available as ROM and it seems certain that the scope will widen. The more versatile home computers are made with sockets for a plugin ROM. Manufacturers are beginning to supply the simpler versions of Basic as ROM and it doesn't take much imagination to see that all written or printed matter is capable of being stored for eternity in ROM. I confidently expect a considerable amount of development in this field - perhaps beginning with statistical data. It is only the longer works that need disk or tape
storage, although this will become less true as the manufacturer packs more and more into his integrated circuits.

Between them, the three ROM. types cater for all the market requirements. The EPROM provides for oneoff applications such as the average home-user might require, the PROM caters for the small business entrepreneur who hopes to sell a few hundred gadgets containing a micro and PROM, while if you are a large manufacturer or governmental agency, the ROM is very cheap.

Perhaps before we leave the ROM family, one further advantage over other forms of data storage ought to be stressed - the data is not degradable under normal storage conditions. Tape and disk-stored data are susceptible to degradation due to magnetic field and dust and indelicate handling. Paper tapes tear, magnetic tapes get fouled up or torn or creased, disks get scratched.

Output switching

The micro is great for switching things: the number of devices that it can switch directly is governed by the length of the computer word, but the practical limit is set by the bulk of the PIA's (Peripheral Interface Adaptors). The average home computer has room inside for about six or eight of these devices, each one addressing up to 16 or 32 separate lines with suitable multiplexing. However, this number can be greatly extended as I will show.

The simplest method is shown in Figure 7. ' 0 ' is an opto-isolator inserted to isolate the computer from the circuitry that follows - possibly high-energy circuits that could damage the micro. Figure 8 is a diagram of the working of the opto-isolator. A rise in voltage caused by the presence of a binary 1 causes the LED to glow. Encapsulated with it but electrically separate is a photo-resistor or (sometimes) a phototransistor. Both are encouraged to operate when light falls upon them, so the output is an image of the input, but in the event of something going wrong with later parts of the circuit, no damage can accrue to the micro.

Following the opto-isolator of Figure 7 is a transistor used as a switch. For small-current applications, this is sufficient, but for heavier currents and perhaps alternating current, the transistor switches-in a relay to carry the heavier current. Relays of this type commonly carry a few amps but for even greater currents, the first relay can switch in a nother, really rugged. This application would be suitable for heavy duty motors or electric heaters. (Figure 9)

A model railway is a small-current application that is both an excellent demonstration piece and a first-class school project. There is no limit to the size and complexity of the layout as far as the computer is concerned, but for a discussion of the general principles involved, I will confine myself to the layout of Figure 10. At the most this would accommodate three locomotives at A, B and C. Three switchpoints at 1, 2 and 3 would energise whichever section of track was open. (See Beale, Model Railway Encyclopaedia and other works.) A rail gap at point 4 would isolate the section 3-4 and one or two other gaps might be needed, depending upon the working and number of locos involved. Initially, a loco would be energised (off to full on) by action of the pointswitches but see later for speed and other controls.

Normally, pointswitches are selfholding. That is to say, they remain in whatever condition they are placed without the need for further current applications. Therefore simple control of locos is gained by merely switching over the appropriate pointswitches through circuits as per Figure 7. Signals however are different, whether semaphore or lamp. They need a continual supply of current. It would be uneconomical and perhaps even impossible to devote the computer to the job of continually addressing the signal, so we have recourse to a self-latching circuit as per Figure 11. Here it will be noticed that action of the relay closes a pair of contacts A1 that bypass the energising device, thus the relay remains on after the initialising pulse. When we wish to switch it off, we actuate a
release switch that is normally closed, thus breaking the circuit to the relay coil. Spring action pulls it off. The release switch can be another relay or transistor switch, but the relay is better in this case and it could act in a similar capacity for several self-latching devices at once.

Suppose that we build on the system until we have neither the room nor the cash to accommodate enough interfaces and switching circuits? There are several ways out of the dilemma. Electronically, we could multiplex in the manner previously described and it could be made extremely compact and not too expensive. For school use however I recommend the uniselector. It can be obtained very cheaply on the surplus market, it is reliable and above all else, its action is visible to the students. The uniselector is a selective switch with
one way in and a choice of routes out. (See Figure 12). It was designed and built for the Post Office for the automatic switching of telephone lines, in which the actuating pulses were provided by the dialling mechanism. The number of pulses determined the route taken. The computer/small relay combination can handle this pulsing very easily from one address out of the PIA, while another signal from the PIA would then be routed as chosen to any one of 25 lines. The scheme is shown in Figure 13.

If that were not enough, there is no reason why, on a super-scale model railway, we could not emulate the Post Office and cascade uniselectors, allowing one to address hundreds of lines from the PIA board.

With the wide range of skills involv. ed, building and running a model

Fig 13 Small relays needed on stepping + data (switching) lines.

Fig 14 Uniselector

Fig 15

Fig 16 Experimental rig

Record keeping problems? Our CCA Data Management System solves them easily.

Having information at your fingertips can make your job a whole lot easier. And that's what the CCA Data Management System is all about.

With this Personal Software ${ }^{\text {'* }}$ package and an Apple 11^{12} disk system, it will be far easier to keep inventories, custom -er lists, accounts receivable and payable records, patient histories and many more items.

In fact, you can use the CCA DMS for all of your data management needs, rather than buying (expensive) or writing (time consuming) separate programs for each application. That's because DMS lets you create your own filing systems, adapting itself to the types of records you keep. You specify the number and names of each data field-without any programming.

With DMS keeping all of your records, you only have to learn how to use one system. That's easier, too. It's menu driven, with plenty of prompts to help you create files and add, update, scan, inspect, delete, sort, condense and print data. Our comprehensive 130 -page step-by-step instruction manual even provides complete "how to" inventory and mailing list applications so you can start processing immediately.

DMS is a very powerful system, with more file and record storage capacity than other data base programs on the market.
ACT
Micro
Computer
Programs

And it also gives you greater data handling flexibility. To customize DMS, write add-on BASIC programs that read or write DMS files and perform any kind of processing you want.

You can sort and print your data in nearly any form of report and mailing label you want. Sort data by up to 10 fields for zip code, balance due, geographic location or whatever And print reports with subtotals and totals automatically calculated.

Apple DMS has two additional features. Its ISAM search method helps you find any item on a diskette within 10 seconds. And it's Data Interchange Format Program allows you to move DMS files into our Apple VisiCalc'" program-the "electronic worksheet"-for powerful, flexible calculating.
Ask your dealer to show you how easy computerized record keeping is. To locate the nearest dealer, contact
ACT (Microsoft) Limited

For free details plus the address of your neare ACT dealer send us your name and addre:

Name:
Address:

Postcode:
Tel:
ACT Microsoft Ltd.
5/6 Vicarage Road, Edgbaston, Birmingham B15 3ES
Tel: 021-454 5341
Telex: 33934
railway on the above lines would be a most admirable project for a Senior school and I am sure that many such projects will be undertaken, both by schools and solo enthusiasts. For the general reader, the point to be absorbed is that a single micro can and does switch a very large number of electronic and electrical circuits. What one does with the secondary circuits so switched is limited only by the imagination. They range from slot machines to control systems for giant oil tankers.

Every switchable item could be under the control of a micro or fullyfledged computer. Already some enthusiasts in the States have computeroperated lawn mowers, for example, while in this country the notion of computer-controlled central heating has become so commonplace that in compu. ter circles it is a standing joke.

Digital to analogue

The title will not convey much to many readers, so it must be explained that the computer is termed digital because it deals with numbers. However many electronic applications are analogue, which is to say that instead of two states (on or off), there is a whole range of states. A good example familiar to all is the volume control knob. Turning the knob adjusts the output over a wide range and to within close limits. Now by combining voltage-adding and multiplex circuits, we are able to make a digital-toanalogue converter. The simplest modelling of the method is the numbering round the skirt of some control knobs; a numeric input is turned into a sliding scale of output.

If you imagine that users are going to be confined to audio, then your imagination is still in bottom gear. That model railway engine's speed can be controlled, for example, as can any electric motor. Electric heaters can be precisely controlled, as well as a host of other industrial devices. Nevertheless audio applications will probably intrude into our lives first. For example, electronic organs have over the last four or five years shown the most remarkable development, but there is a lot more to come. Synthesisers are prime targets for micro control and with the marriage of the micro-controlled synthesiser and electronic organ, I expect whole orchestras of super-realistic sound to be available to one-finger players within the next decade.

There is also a type of computer termed an analogue computer. We don't hear so much of it these days and its use seems to have been confined to the higher mathematical processes of integration and differentiation and the interaction of constantly-sliding states as in complex mathematical models of systems. Recently, there has been a move to combine digital and analogue computers, but the potential is not clear. It seems likely that the uses of the combination will remain in the sphere of higher mathematics, but, as yet, no one can tell.

Stage lighting has been under computer control for some time now and with the plummeting cost of control devices it is certain that even village hall companies will invest, while less ambitious lighting control devices will begin to creep into the home, with perhaps a dozen or so lamps under the
control of a single micro.
It is extremely simple to make an analogue output control physical movement by means of a stepping motor, for example, or some types of plunger both of which give rise to a number of possibilities, particularly in hazardous industrial applications.

Analogue to digital

The opposite transformation is equally possible and maybe the most familiar application is the joystick control common to many TV games. Here it is worth noticing that a physical movement has been turned to digital data via analogue voltages; a situation ripe with potential. Any physical movement will suffice to feed information to the micro-movement of the head of a bedridden patient, for example, the movement of a steering wheel, the turn of a road wheel, the spin of a wind-speed indicator, the growth of a plant, the opening of a door or the movement of wind and tides.

It will be noted that the A/D converter is essentially an input device for the micro, while a D/A converter is essentially an output. When the two are used together some interesting possibilities arise, especially in the field of motor control. By use of a feed-back loop the motor can, as it were, keep the micro informed as to its current state of position (Figure 14). Perhaps the most spectacular application of this at the present time is the graphic plotter. At first sight this device looks somewhat like a printer, but instead of printing text, the plotter draws pictures. It does this by means of a pen head free to move in an East/West direction under the control of a stepping motor (a special kind of electric motor able to move in small increments.) Another stepping motor controls the movement of the paper in a North/South direction. Combining the two movements backwards and forwards, the result is an impressive drawing based on
data accessed by the computer. Currently such plotters are used in drawing weather maps and a wide variety of engineering drawings.

A very good model of the graphic plotter is the child's toy known as Etchasketch, which forms a good teaching aid in classrooms devoted to learning about the future. The Etchasketch control knobs are numbered round the skirt, lending themselves admirably to a written form of program to draw given pictures. If a child was given the task of writing such a program he would learn much - as would any other child that attempted to follow the program later.

A/D converters are, of course, capable of much more than this. By coupling them directly to dedicated micros and/or other circuitry, the retail cost of digital voltmeters and similar test equipment has shown a dramatic fall in recent years. Anyone with an A/D converter and the smallest of computers can, with a minimum of programming effort, provide himself with the facilities of a digital voltmeter, ammeter, ohmmeter, frequency meter, oscilloscope, transistor checker and curvetracer, plus a number of other things - surely a most telling argument for a micro in a school department, regardless of budget.

Sound generators

Manufacturers have produced sound generators by incorporating two or three simple amplifiers, a noise generator, envelope shapers and multiplex switching all within one little package. Waveform envelope shapers give a note to its characteristic timbre and make it possible to distinguish a violin from a shriek, although both may have the same pitch and duration.

A simple application is to couple a micro, a tone generator and some ROM and you have a whole range of noises suitable for fitting inside a child's

GOTO page 144

SOME TRANSDUCERS

Lamp, tungsten	Aerial
Lamp, X-ray	Thermometer
Lamp, arc	Piezo-electric crystal
Pressure gauge	Ohmmeter
Brake meter	Milometer
Decibel meter	Carignition
Laser beam	Human muscles
Human mouth	Microphone
Heater, electric	Depth gauge
Horn	Bell
Voltmeter	Gas meter
Electricity consumption meter	Petrol gauge
Frequency meter	Frequency generator
Clock, electric	Detonator
Light meter	Colour temperature gauge
Auto pilot (?)	Torch
Gas sensor	Human eye
Human nose	Human skin
Welding arc	Loudspeaker
Motor	TV screen
Ammeter	Weighing machine
Speedometer	Geiger counter
Spectrometer	Altimeter
Barometer	Human brain
Battery	Human ear
Human tongue	Joystick

Lamp, tungsten
Lamp, X-ray
Lamp, are
Pressure gauge
Brake meter
Laser beam
Human mouth
Heater, electric
Horn
Voltmeter
Fiecticity consumption meter
Frequency meter
Light meter
Auto pilot (?)
Gas sensor
Human nose
Welding arc
Ammeter
Speedometer
Spectrometer
Battery
man tongue

- there are many, many more.

Aerial
Thermometer
Piezo-electric crystal
Ohmmeter
Mometer
Human muscles
Microphone
Bell
Gas meter
Petrol gauge
Pequency generator
Detonator
Torch
Human eye
budspeaker
V
Weighing machine
Geiger counter
Human brain
Human ear
Joystick

Now we're perfect!

With the addition of the HP/85 Personal Computer to our range.

the
 ع1,750 + war

The HP85 is designed for personal use in business and industry, by professionals such as engineers, scientists, accountants and investment analysts.
The keyboard, video display, printer, cartridge type unit and operating system are all built into one desktop unit.

Official Orders from bona fide commercial and government organisations welcome.
For further details ask and we will send you a 24 page colour brochure and full price list.

MICRODIGITAL

Retail Premises at: 25 BRUNSWICK STREET, LIVERPOOL L2 OPJ. Tel:- 051-227 2535/6/7

1-1.35
Moil Orders to: MICRODIGITAL LIMITED FREEPOST (No stamp required) liverpool 12 2AB

CRODGZALEATMOOXIVNTCRODTG

A low cost Tektronix 4010 sofrware compatible option means that we can offer the well-known Lear-Siegler ADM 3A with powerful graphics capablity. A Z-80A imicroprocessor and RAM sufficient to provide a, 512×250 dot grid and automatic scaling from a 1024×780 dot grid enable point plotting. ctor drawing and alphanumeric character display.
Call today for a demonstration or more details.
PERIPHERAL HARDWARE LIMITED
Armfield Close West Molesey Surrey Telex 922175
IRELAND
Dublin 952316
01.9414806

A member of the VOLLWOOD Organisation

When loading programs from cassette to microcomputer via the DIN socket on the cassette recorder, the signal level to the computer is a function of the volume control. As the input circuit of the microcomputer which converts the audio analogue signal to a digital signal has a certain threshold and perhaps built in hysteresis, it is necessary to set the audio level above a minimum for the circuit.

The cassette when playing back via the DIN socket also produces an audio signal via the loudspeaker. It is quite useful to hear the audio signal of the cassette recorder when loading programs but the required level for the microcomputer may make the audio level too loud for normal hearing. Another problem may arise when loading a program from a cassette which was recorded on a different machine, with a different audio level. The volume control will have to

If you're having tape troubles then this simple circuit from B Ward should help.

cell $\triangle \mathrm{G}$ is wired in the feedback loop of the operational amplifier. The input signal to the ALC circuit goes to the operational amplifier and the rectifier circuit. When the average input signal

Fig 1 Block diagram of NE570
be adjusted to the optimum level for correct loading.

To overcome these problems, here's an automatic level control (ALC) circuit to fit between the cassette and the microcomputer interface. With this circuit, a constant output voltage is obtained over a wide variation of input voltage. The circuit consists of two dual inline (DIL) modules and several discreet components, the total cost being in the region of $£ 5$.

Principle of operation

The ALC circuit used is a Signetics NE570 Compandor. This circuit was originally designed for telephone network requirements where the audio signal is compressed before transmission over a telephone link and then expanded back to the original dynamic range at the other end. Figure 1 shows the basic block diagram of the NE 570. In fact there are two identical circuits within the module, hence two pin numbers are given for each of the signal lines. The circuit consists of:

- a full wave averaging rectifier, providing gain control current IG; - a variable gain cell $\triangle \mathbf{G}$;
- an operational amplifier.

The NE570, as previously stated, may be wired up as a compandor, expandor or for our case an ALC circuit, as shown in Figure 2. The variable gain
varies, the gain control current IG from the rectifier changes the gain of the variable gain circuit in the feedback loop of the operational amplifier. The net result of this is that for a large input variation one obtains a constant output level.

The dynamic range over which a constant output level is obtained can
be controlled by resistor RX. Reducing the value of $R X$ reduces the dynamic range. For this application, where the maximum dynamic range is used, an infinite value of RX is used - that is, no resistor at all. Figure 3 shows the response of the ALC circuit for maximum dynamic range. It can be seen that the output voltage remains relatively constant for an input variation of 10 millivolts to 3 V RMS, which is nearly a 50 dB variation of input signal.

ALC circuit

Figure 4 shows the proposed cassette recorder to microcomputer interface circuit. The NE570 wired up as an ALC circuit drives an operational amplifier buffer whose gain can be set to any amount from 0 to +5 . The buffer amplifier also avoids overloading the output operational amplifier of the NE570.

As can be seen from the circuit diagram, only a 12 V power supply is required. The components' values shown are those which I used, because they were available. The four 0.68 nF coupling capacitors could be any value between 0.47 nF and 1 nF . I used one quarter of an operational amplifier RC 4136 , but any 741 type operation amplifier would be suitable.

Setting up and testing

I recommend that the circuit be wired

Fig 2 NE570 connected as ALC circuit

15 good reasons for visiting Cambridge

1. Sharp Pocket Computer
2. TRS-80 Model I \& II
3. Apple II \& III
4. CBM (PET) 3000
5. North-Star Horizon
6. Cromemco
7. Hewlett-Packard HP-85
8. Acorn Atom
9. UK-101
10. X-Y Plotters
11. Qume
12. Farm Systems
13. Word Processing
14. Computer Books

With a uniquely comprehensive selection like this all generally on demonstration and available from stock with full support by our team of computer professionals - you'll have the ideal chance of finding precisely the right system for your application. Looking for a microcomputer? - then visit us at:

Cambridge Computer Store
1 Emmanuel Street Cambridge CB1 INE
Telephone: (0223) 65334/68155

r'ig 3 Input/output characteristics of ALC circuit
up using either wire wrap or solder sockets for the two DIL modules.

If an oscilloscope is available, play a program cassette tape and measure the output wave from of the NE570 on pin 7 ; it should be 2 V peak to peak. Vary the volume control of the cassette recorder and the output of the ALC should remain constant. Note that at maximum volume control setting there is considerable signal distortion with the cheaper cassette tape recorder and hence this should be avoided.

Place the oscilloscope on the output of the capacitor from the operational amplifier and vary the potentiometer. The signal should vary from 0 V to 10 V
peak to peak. Connect the output of the circuit to the microcomputer; try loading a program and adjust the potentiometer until the correct output voltage is obtained so that the program is correctly read. It should now be possible to adjust the volume control over a wide range with satisfactory program loading.

Component list

$1 \times$ NE570
$1 \times \mathrm{RC} 4136$
$4 \times 0.68 \mathrm{uF}>+15 \mathrm{~V}$ working
$2 \times 3.3 \mathrm{uF}>+15 \mathrm{~V}$ working
$1 \times 15 u F>+15$ V working

Fig 4 Cassette recorder to microcomputer interface
$1 \times 30 \mathrm{pF}$ capacitor
$2 \times 33 \mathrm{k}$ resistor 5 percent $1 / 4 \mathrm{~W}$
$3 \times 10 \mathrm{k}$ resistor 5 percent $1 / 4 \mathrm{~W}$
$1 \times 50 \mathrm{k} \mathrm{pot}, 1 / 4 \mathrm{~W}$

BACK NUMBERS

PLEASE NOTE THAT THE FOLLOWING ISSUES ARE SOLD OUT
 VOLUME 1 Nos. $4,5,6,9,10,11,12$
 VOLUME 2 Nos. $5,6,8$
 VOLUME 3 Nos. 1, 2, 3, 4
 ALL OTHER ISSUES MAY BE
 ORDERED USING THIS FORM.

Volume 1 No. 1 May 1978 Mascom 1/77-68: The Mighty Micromite/A charity system
Volume 1 No. 2 June 1978 Research Machines 380Z/ Computer in the classroom/ The Europa Bus.

Volume 1 No. 3 July 1978 Buzzwords - A to Z of computer terms/Pattern recognition/Micro music
Volume 1 Number 7 Interfacing PET to X-Y Plotter/ Structured Programming/ Programming Decision Tables
Volume 1 No. 8 December 1978 Computers and Art/3-D Noughts and Crosses/Mickie - the interviewing micro

Volume 2 No. 1 May 1979 Small computers for small organisations/Sorcerer graphics/Chess Programming Hints/ Parkinsons Revas.

Volume 2 No. 2 June 1979 MSI 6800/Witbit - disassemble your programs/The Multilingual Machine/Polytechnical Processing.
Volume 2 No. 3 July 1979
Vision link: Interfacing and Software for the Superscamp

VDU/Pet Preening/Extended cursor graphics for the TRS. 80.

Volume 2 No. 4 August 1979 The North Star Horizon/High Speed Cassette Interface for the SWTP 6800/Garage Accounting program/Apple Medical Application.

Volume 2 No. 7 November 1979 PCW Show issue/6800 Bug/Hard disk security/ Detecting literary forgeries/ Benchtest - the Challenger C3
Volume 3 Number 5 May 1980 Benchtests - TI 99/4, Altos ACS-8000-2, HP-85/ West Coast Faire report.

Volume 3 Number 6 June 1980 Benchtests - TRS-80 Model II, Periflex 630/48/ Stringy Floppy Checkout/ Compucolor Case Study
Volume 3 Number 7 July 1980 Benchtests - Acorn Atom, DDE SPC-1/Animistics -Humanoid Micros/Sharp PC 1211 review

Volume 3 Number 8 August 1980 SuperBrain Benchtest/ Printer Survey/ROMPLUS+ Checkout

Volume 3 Number 9 September 1980 Benchtests BASF 7120, CBM 8032/ Hi-Tech Colour Board Checkout/Portable Basic

Volume 3 Number 10 October 1980 Benchtests - DAI Personal Computer, Atari 400 and $800 /$ Robotics/ 3D Graphics/Program 'Tuning'

Volume 3 Number 11
November 1980 Benchtest

- SBS 8000/ComputerTown

UK! - Community Computer
Literacy Project/Apple

Colour Graphics

Volume 3 Number 12 December 1980 Benchtest - Raannd SP1/Pascal MicroEngine/Microwriter Check-out/Micro-based Toys Review

Volume 4 Number 1 January 1981. Benchtest - Transam Tuscan/Printer Surrey Update/MTU PET Music Board Checkout.

COMPEHHYON

Modem microcomputer technology has many applications, but one where it has so far had little impact is in reducing the problems of disability.
To mark the designation by the United Nations of 1981 as The Intemational Year of Disabled People ', PCW, in conjunction with the IYDP Technology Working Group, is holding a competition for the best article on the subject:
'The application of micro-computer technology to the problems of disability'.
There must be many possible applications for microtechnology in the fields of physical and sensory disabilities - remember, these include handicaps such as deafness, blindness, diabetes and epilepsy, as well as the more obvious physical impediments .

lst Prize

DIIPMiSONATHONLPUHM:

2nd Prize 3rdPrize 8100 \&50

Articles of around 2500 words are invited, which can be either theoretical or a description of an actual application (with photographs, if possible), and which we will print in PCW later in the year. Entries will be judged by PCW's Editor, David Tebbutt, Adrian V Stokes, Chaiman of the IYDP Technology Working Group and Judith Hann, presenter of Tomorrow's World and science writer.
Please send your entry to IYDP Competition, 14 Rathbone Place, London W1P 1DE, to arive not later than 30 April 1981, enclosing a suitable SAE if you would like it retumed.

International Year of Disabled People

COMMONSRIEPORT

The articles I have read recently on ComputerTown have encouraged me to think that this concept will be applied throughout the UK as rapidly as it deserves. In recent years I have come to the conclusion that the UK is most proficient at diagnosing the 'British disease' and much less effective at suggesting and taking the proposed action. This is a most heartening exception and I look forward to hearing that the examples of Sutton-in-Ashfield, Street and Eastcote will be widely followed.

There have been several developments at Westminster in recent weeks, even if we do not have our own ComputerTown centre - yet. Perhaps the most significant is the belated appointment of an actual Minister of Information Technology, indicating that the Government has at last recognised the importance of this area. Kenneth Baker will bring energy and enthusiasm to this task, but he will have to be a fast learner and his success will be proportionate to his determination to ensure that Information Technology is appropriately and intensively developed in all govenment departments and not exclusively in or by the Department of Industry.

Within the House of Com. mons itself two developments deserve a mention. The first is the advent of the 'POLIS' system, which was formally inaugurated on December 15 by Philip Whitehead, Chairman of the Computer Sub -Committee of the Services Committee. This acronym reveals that Parliament has acquired a Parliamentary On -Line Information System. It was supplied by Scicon Computer Services, a BP subsidiary and is intended to meet a requirement by Members and their staff for: 'instant access to up-to date information on parlamentary papers and proceedings, UK and EEC legislation, current affairs, and other items of specific interest to Parliamentarians.'

The hardware consists of six British-made Cifer 2632s with printers, three Cifer 2684 terminals with printers and magnetic diskettes in Norman Shaw (our annexe). The database, to which the system is linked by private lines with 9600 baud modems, is held on Univac 1100 computers in Milton-Keynes. There is also a 5 D 11 -PDP-11 system with printer and disk storage in Norman Shaw. The software has also been developed by Scicon and is based on the use of a UNIDAS information retrieval system

WESTMINSTER NEEDSA COMPUTERTOWN

by Ian Lloyd, MP

on the mainframe and is transaction oriented, using TIP/CMS. Mr, Chris Baker, of SCICON, will supply either details or explanation on (0908) 565656.

But what does it all do and who can use it?

At present, the only input is Parliamentary Questions. Thousands of these are asked and answered every month that the House is in session and it is important to be able to discover quickly who has asked the question, what has been asked, what answer has been given and by which minister. Hitherto the Library and the Table Office (a small department which handles the questions and motions put down by members) have been completely dependant on a manual index. The advantages of rapid search and analysis by computer will need no advocacy, but I think that experience will demonstrate many unsuspected advantages.

The database will eventually be extended to include proceedings, papers, legislation, UK and EEC official publications, international and foreign official publications, press comment and miscellaneous Library material. Even when fully develop-
ed it will not be a system to which Members have direct access. But a request to the Library will produce information virtually immediately.

In due course Members (and other users) will be able to provide the Library with an information profile and thus receive a regular printout of any material which has been added to the database within this definition of their interest or interests.

The House of Commons Computer Sub-Committee decided at an early stage that there was likely to be a demand for outside access to this information and that, since most of it was in the public domain, the demand should be met wherever possible without prejudice to the primary objective of providing an improved service to Parliament itself. Organisationsoutside Westminster may apply to the Library of the House for access to the system on a subscription basis and may install their own terminals.

All this is very heartening, even if the initial system covers only a small segment of the wide spectrum of information which the House of Commons itself generates and requires. When, in due

course, answers as well as questions are included, immediate public access to what is undoubtedly one of the most comprehensive databases in the Kingdom - the daily input to Hansard - will be possible. All this information is already available today, unsorted, unclassified, virtually on a random basis. The country, as things are, does not really get value for the money which it spends on the large machines which Whitehall has created to deal with the innumerable questions which MPs ask on their constituents' behalf.

While all this was going on downstairs, a most interesting speech on microelectronics was being given upstairs by the Rt Hon James Prior, who was addressing that august body, the Parlamentary and Scientific Committee. Jim Prior, I am delighted to say, is a recent convert to the significance of microelectronics. As St Paul once said, the late Christian is always more welcome than the early Christian, though it is a sentiment which many find puzzling and paradoxical. The text of his speech deserves much wider circulation than it received, but there is one argument with which I disagree. The Secretary of State for Employment does not believe that the microelectronics revolution is, in fact, a 'revolution' at all. He believes it is similar to the revolution heralded by the discovery of steam, electricity and the internal combustion engine and that 'historical precedent gives us reason to expect that society will take it all slowly and quietly, in its stride.' I believe this to be a profound misjudgement of the difference between all previous technologies which have enhanced the power of human muscle and this unprecedented and novel technology which will enhance, exponeentially and with dramatic effect, the power of the human brain.

I do not believe that the effects will be negative or damaging for society as a whole. No system which enables men to eliminate drudgery, danger or monotony from what has hitherto been defined as 'work' can be other than beneficial if wisely and intelligently harnessed to human need. But I have no doubt that the effects will be traumatic for some, difficult if not impossible, to anticipate, and catastrophic where there is mindless resistance and a total lack of imagination. I have written to Jim Prior about this and in my next article will discuss his reply.

David Levy examines the underlying principles of the century-old
game of Reversi.

This month we are going to take a look at the game of Reversi (which has recently become known as 'Othello'). This is a superb game simply because the rules can be learned in less than one minute, yet it can take years to master. It is more complex than draughts (checkers) but far less so than chess. And it is great fun to play.

Reversi was invented in England during the early 1880 s , and so it should now be celebrating its centenary. The game is played on an 8×8 board with discs which are coloured black on one side and white on the other. The players move alternately until the board is full or until neither side may make a move, at which point the player with the most dises on the board is the winner. If a player reaches a position in which he has no moves at his disposal, he must pass, and the right to move is returned to his opponent.

In order to make a legal move, a player must put down a disc with his own colour uppermost, so that the disc being put down and another of his dises which is already on the board contain between them an unbroken line (horizontal, vertical or diagonal) of his opponent's pieces. These pieces showing the opponent's colour are then flipped over and now belong to the player who has just moved, but they may be flipped back later by a move made by the opponent. If the disc being put down forms more than one 'sandwich', all the sandwiched dises are flipped.

The first four moves must all be made in the four central squares of the board, d4, e4, d5 and e5, and herein lies the one and only difference between Reversi and 'Othello'. In Reversi, the two players may choose where they play within these four central squares. Thus, the player who moves second may either force his opponent to make the first two moves in a horizontal or vertical line or offer his opponent the choice between that and a diagonal line. Black moves first and if he decides to put a disc on (say) d4, White could force him to play in a horizontal or vertical line by himself playing on the only diagonal spot, e5. Or White could leave
the choice open by playing on e4 or d5.
In Othello, which was 'invented' in Japan during the early 1970s, Black starts the game with dises on d 4 and e 5 , White with discs on e4 and d5. If this really is a new game then I have just invented a wonderful game called David Chess, in which the rules are exactly the same as in normal chess except that White must make his first move on the King's side. (Incidentally, Kevin O'Connell has invented another game, almost as interesting as my own, called Kevin Chess, in which White must make his first move on the Queen's side, and we are both going to patent our games and try to make as much money out of the licensing fee as did the man who 'invented' Othello).

Since the principles of playing Reversi and Othello are identical, we shall now refer to the games under the combined name of Reversi/Othello.

Fig 1. Starting position

How to playa good game of Reversi/Othello

Having explained the rules of the game, we should now examine some of the more important principles or heuristics of good play. Figure 1 shows the initial
position of Othello, in which Black may play on $\mathrm{d} 6, \mathrm{c} 5, \mathrm{~d} 3$ or f 4 . All of these moves are nothing more than reflections of each other, so the decision as to where Black should place his next disc is completely immaterial. I would suggest that your program choose between the four squares at random, so that the human player will be faced with a visually different board position more often.

The first principle of the game is that it is the end result that counts, not who has most discs on the board during the earlier parts of the game. In fact, it is very often the case, particularly in games between beginners and experts, that the beginner has the vast majority of dises until near the end of the game, and he finally loses by an absolutely enormous score. One reason for this is that until the very final stages of the game, material (ie, the relative number of white and black discs on the board) is much less important than structure , where your discs are situated) and mobility (how many moves you have at your disposal). If you have a lot more discs than your opponent, he will tend to have the greater mobility, so it is usually the case that a strong player will try to minimise the number of dises that he turns during the first part of the game. Of course, this strategy can be taken too far. One Othello program which is commercially available recently lost two games in a Pris tournament when it turned so few discs that its opponent scored a clean sweep during the first 20 moves. Such accidents are rare, but your program should prevent them.

Material and mobility are easy to measure, but structure is much more complex. Certain aspects of structure are obvious, and these help us to formulate a sensible strategy. For example, a disc on a corner square can never be captured, so it can form an ever growing base from which its owner can expand outwards unmolested. For this reason, the player who first captures a corner very often wins the game. Since a corner square is so desirable, it is very disadvantageous to place a disc on any of the squares b2,g2,b7 or g7, since this almost always leads to the loss of the adjacent corner, when the opponent gets one of his own men on the long diagonal for just long enough to make a sandwich that includes the $\mathrm{b} 2 / \mathrm{g} 2 / \mathrm{b} 7 / \mathrm{g} 7$ square. Similarly, the squares $\mathrm{b} 1, \mathrm{a} 2, \mathrm{~g} 1, \mathrm{~h} 2, \mathrm{~b} 8, \mathrm{a} 7, \mathrm{~g} 8$ and h 7 are undesirable, as they allow an opponent to creep along the edge and finally capture the adjacent corner. On the other hand, since a1 is such a good square and b1, b2 and a2 are so bad, it is obviously desirable to have discs on c1, c3 and a3, so that one day the opponent will be forced to capture these discs, putting his own disc on b1, b2 or a2, and you will be able to recapture, putting your disc on a1.

This analysis of structure can be continued, by placing greater value on the squares d 3 and e 3 than on $\mathrm{c} 2, \mathrm{~d} 2$, e 2 and f 2 , on the grounds that if a player occupies the third rank, when his opponent occupies the second rank, he will be able to make a capture on the edge of the board, and edge squares are worth having. In fact, the value of edge squares is an extremely complex subject, well beyond the scope of this
article, but suffice it to say that a lot of erroneous ideas have been expressed about edge squares. Certainly b1 and a2 are bad squares to occupy from the structural point of view, but in fact it is edge formations that are really important, and not individual edge squares.

How the game changes

The nature of the game changes as more and more discs are added to the board. In the early stages (the opening) and the middle-game, structure and mobility are all important, but in the final analysis it is the player with the most discs on the board who wins the game. It is therefore clear that up until a certain point in the game, structure and mobility should be the most heavily. weighted features in the evaluation function, while during the last few moves the evaluation should become more and more oriented towards the number of black and white discs actually on the board. One way in which this might be accomplished is to have an evaluation function of the form: $\mathrm{W}_{1} \times$ (MOBILITY + k x STRUCTURE) $+W_{2}$ x MATERIAL
where $W_{1}=e^{-n z}$ and $W_{2}=\left(1-e^{-n z}\right)$ $\mathrm{n}=$ number of discs on the board k and z are constants
When the number of discs on the board was low, ie during the early stages of the game, W_{1} might be just below 1 , while near the end of the game, when n approached $64, W_{1}$ approached 0.

Quantifying the features

Mobility is easy to measure, being merely the number of moves available, but in a tree searching program the matter is not so simple, The reason for this is that after a white move, it is possible that White has a very low mobility because he has just made a number of captures (ie flipped a number of black discs), whereas after Black's reply move White might have a much higher mobility because Black has flipped a number of discs back. It is therefore rather mean. ingless to compare mobility evaluations at odd and even ply, so the tree should be searched to a uniform depth, or at least all terminal nodes should be either at odd or even ply. In this way the program can happily compare its mobility in different positions, whereas were it to compare the mobility after a White move with the mobility after a Black move, the answer would be meaningless.

Material is also easy to measure, being merely the count of how many White and Black discs are on the board. The most difficult problem is how to measure the structural aspects of the position. One obvious method, which has gained wide support, is to weigh the squares of the board in some way that reflects which ones are desirable and which ones should be avoided. A simple weighting map is shown in Figure 2.

All things being equal, which they never are, the above map represents an acceptable valuation of individual squares, but the problem is made more complex by the fact that occupation of one square may well change the desirab.

Fig 2. Possible square weightings to reflect good and bad squares.
ility of occupying some other square, and this change might have an effect of fatal proportions. A simple example is the question of the b2 square. It is very bad to occupy it, because occupation of b2 might lead to the loss of a1, but if you already occupy a1 then b2 can do you no harm. A map of square values must therefore change dynamically as the game progresses, a nd your program should be able to cater for these changes.

The openings

Reversi/Othello is not yet sufficiently well analysed for us to be able to tabulate the best and worst openings, but that is not to say that we cannot make some definite remarks about opening play. Indeed, it is quite possible for your program to build up its own openings library, given one or two elementary principles.

We have already discussed the subject of mobility. Another important aspect of opening play is the apparent undesirability of being the first player to place a disc outside the central 16 squares. The reason for this is rather obvious if you are the first to place a disc one rank or file away from the edge, your opponent will probably be the first player to place a disc on the edge of the board, and edge squares are important. Therefore, if your program could analyse exhaustively the first 12 moves of the game (remember that there are 4 discs on the board at the start), it could determine which side was ahead in mobility in every variation, and it could also select the move or moves which gave itself the best chance of being the first player to place a disc on the edge of the board. This exhaustive 12 -ply search might take a great deal of time, but it would only need to be done once, and the results could be printed so that you would be able to construct an openings book comprising optimal play (at least, optimal in the context of this strategy). Then, even though your program might only be able to perform a 3 -ply or 4 -ply search during the game, it could play the first few moves on the basis of the exhaustive 12 -ply search.

I should perhaps add that it is not yet known the extent to which the 'Sweet 16 ' strategy is likely to be successful, but that, combined with a mobility feature, should enable your program to write a strong openings book.

The middle game

We have examined the form that a Reversi/Othello evaluation function might take, and it only remains for the reader to select his weightings, which he can perhaps do on a learning basis. The small number of independent parameters (W_{1}, k and a.) makes it relatively easy and quick to play a large number of test games in which one version of the program employs one set of parameters while its opponent uses another set. At the end of a series of such games, the programmer can select optimal weightings. (Once again, let me remind you to ensure that, in its quest for high mobility, your program does not give away all of its discs.)

The end game

Since the total number of discs on the board is the final and absolute criterion for determining the winner, it is clear that your program should, during the last few moves, search the game tree to its very end, and apply only material as its evaluation feature. How far from the end of the game an exhaustive search is possible will depend upon the speed of your processor and the efficiency of your program. For this reason, it is doubly important to have an efficient move generation routine. The advantage of being able to search the whole of the game tree from six or eight moves prior to the end of the game, are rather obvious.

Writing the program

This article contains all that you need to know to be able to devise a suitable evaluation system for the game. Your program will be a traditional tree-search. ing program, employing the alpha-beta algorithm and all the tricks associated with it (alpha-beta window; killer heuristic; iterative deepening; move sorting; etc). Some of you may have missed my earlier articles in which I went into great detail over these essential elements of game playing programming, and I would strongly urge you to beg, borrow or even buy the back numbers of the magazine so that you will be properly acquainted with all the principles of treesearching, otherwise most of my articles

will be lost on you.
 Examples of computer play

Just how strong are the best Othello programs compared to the strongest human players? Since the game is quite complex, and humans have more difficulty envisaging board positions after a number of discs have changed colour and changed back again (and again and again), the relative difference between the best humans and the best programs should be much smaller than is the case in, for example, the game of chess. And that is exactly how things are. The world's strongest human players are not demonstrably better than the best Othello programs and I would guess that within a year or two there are programs which will never, ever lose a game to a human.

In order to test the world's best
human players against good Othello programs, Professor Peter Frey, of Northwestern University, Evanston, Illinois (home of the famed CHESS 4.n programs), organised a man v machine tournament on June 191980 at the Northwestern campus. Six Othello programs were pitted against the two top ranking human players in the world, Hiroshi Inouie of Japan (the current World Champion), and Jonathan Cerf of the USA (runner up in the previous World Championship but winner of the title in October 1980.) The result of the tournament was a win for Inouie, but he did lose one game, to a program written in London named The Moor*. Cerf also lost a game, to a program written by Dan and Kathe Spracklen of Sargon fame. Since June the programs have all been debugged to some extent, and I imagine that if the tournament were to be replayed the humans would have more difficulty finishing at the top.

To produce programs that can play this well, normally requires a substantial commitment in man hours. But there is no reason why the readers of this magazine cannot write a program to play at or near expert level. Mike Reeve, who programmed THE MOOR, didn't even know how the pieces moved when he began working on the game, so some advice from a strong player is very useful; you can achieve quite a lot with the information I have given you.

The following games show The Moor in action, and illustrate some of the finer points of Othello/Reversi.
*The Moor was written by Mike Reeve, a postgraduate student at Imperial College, University of London. Expert advice was provided by Michael Stean, a chess Grandmaster who is also a very strong Othello player. The program was written for Philidor Software, a company owned by myself and Kevin O'Connell, and will be available later in 1981 as part of the Scisys range of game playing computers.

Game

First a position, taken from a game in the third Othello/Reversi tournament for computers organised by the French magazine L'Ordinateur Individuel, in May 1980. In this game The Moor, searching to a depth of only 2 -ply, had fallen foul of a program looking to 6 -ply (The Moor was a development version, written in Pascal). Black, our opponent, had just made a mistake, and I give this position only to illustrate the point that having a large number of
discs on the board is not always a good idea, even near the end of the game. Look what happens now, from a position in which Black is 'winning' by 46 discs to 11 , with only seven squares left to play on. We begin with White's play at move 58: (White moves are W, Black moves are B)

54 W b1	55 B PASS	56 Wh 8
57 B PASS	58 W h2	59 B PASS
60 W h1	61 B PASS	62 Wb b2

and now neither side may move again, so the game ends, with White 39 dises to Black's 24.

The previous episode shows just how easy it is to be deceived into thinking that having a big material advantage is decisive. In the next game, for which you will need an Othello set if you wish to follow it properly, Black gets into serious trouble from early on, and then makes a serious mistake which costs him the first corner. This game was played at the finals of the 1980 British Othello Championships in London, immediately after Neil Cogle won the Championship title. It illustrates my argument that a computer program can already play at the same level as top human players.

Game two

Black: Neil Cogle (1980 British Othello Champion - for humans!)
White: The Moor (4-ply look ahead)

1 B c5	2 W e6	$3 \mathrm{Bf5}$
4 W c 4	5 B c3	6 W d 3
$7 \mathrm{Bf4}$	8 W b3	$9 \mathrm{~B} \mathrm{b4}$
10 W	11 Bd 6	12

So The Moor has gained the first disc on the edge of the board, and to redress the balance Black takes the dangerous square a2 .

$13 \mathrm{~B} \mathrm{a2}$	$14 \mathrm{~W} \mathrm{f6}$	$15 \mathrm{~B} \mathrm{e7}$
16 W f8	$17 \mathrm{~B} \mathrm{b5}$	18 We
19 B f 7	$20 \mathrm{~W} \mathrm{a5}$	21 B a 6

Black was already in a bad way, with a disc on a2 and a deficit in mobility, but this move is a fatal mistake which puts his position beyond repair. See if you can spot The Moor's killing reply.

22 W a3
Now you can see the danger of playing on a2. Black must lose the a1 corner.

Now that The Moor has a corner, it uses it as an impregnable base from which to expand its control of the board.

$27 \mathrm{~B} \mathrm{f3}$	28 W g 3	29 Bf 2
30 W g 4	$31 \mathrm{~B} \mathrm{h5}$	$32 \mathrm{We2}$
$33 \mathrm{~B} \mathrm{e1}$	34 W d 2	35 B h 4
$36 \mathrm{~W} \mathrm{d7}$	37 B c 8	

White can afford to concede virtually every edge square at this stage of the game, in the knowledge that his corner anchor on a1 will eventually allow a clean sweep of the edges.
38 W g1 $39 \mathrm{~B} \mathrm{d1} \quad 40 \mathrm{~W} 6$
41 B h6 $42 \mathrm{Wg} 5 \quad 43 \mathrm{~B} \mathrm{c} 2$
44 W b1 45 B b2

Now that al is already occupied, putting a dise on b2 is relatively unimportant.
46 W a7 $\quad 47 \mathrm{~B}$ g2
There is no way that White can be kept out of h1. If Black plays on f1, White replies on c 1 and then Black is forced to play on b7 and g2 within the next few moves.
48 W h1
49 B h2
50 W f1
51 B b7 $\quad 52 \mathrm{Wc} 1$
53 B PASS

Black has no moves, and White continues its march around the edge of the board. 54 Wh 35 B PASS 56 Wh 7 57 B PASS $58 \mathrm{~W} 88 \quad 59 \mathrm{~B} \mathrm{~g} 7$
Black's problems are aggravated by the fact that by now The Moor is examining the whole of the game tree exhaustively, and is always making the very best move.
61 B PASS 62 W e8
63 B PASS
64 W b8
Neither side may move to a8, so the game comes to an end with The Moor winning by 61 discs to 2 , which is rather like being several queens up at the end of a game of chess.

Finally, I shall give without comment the game won by The Moor against World Champion Hiroshi Inoue of Japan, on June 19 1980. The final score in this game was $36-28$ in favour of the program, and not $34-30$ as reported in the tournament bulletin.
Black: The Moor
White: Hiroshi Inoue

1 B d6	2 W c6	3 B c5
4 Wc 4	5 Bb 3	6 We 6
$7 \mathrm{~B} \mathrm{c7}$	8 W b5	9 Ba 6
10 Wc 3	11 B c2	$12 \mathrm{Wb4}$
13 B f4	14 W f5	15 B f 3
16 W e3	17 B a3	$18 \mathrm{~W} \mathrm{d7}$
19 B d 3	20 W g 4	21 B f6
22 W a	23 B d8	24 W b6
$25 \mathrm{Ba5}$	26 We 7	27 B h3
28 W e8	29 B 88	$30 \mathrm{~W} \mathrm{f7}$
31 B c8	32 W g5	33 B h6
34 W h5	35 B h4	36 W g6
$37 \mathrm{~B} \mathrm{h7}$	38 W c1	39 B d 2
40 W b2	41 B d1	42 We 1
43 Be 2	44 W f1	45 B f2
46 W b1	47 B g8	48 W g1
49 B b7	50 W a7	51 B g2
52 W g 3	53 B h1	54 Wh 2
$55 \mathrm{~B} \mathrm{a1}$	56 Wh 8	57 Bg 7
58 W b8	59 B a8	60 W a2

Black wins by $36-28$.
To the best of my knowledge, this is the first time that a computer program has ever defeated a human World Champion in a game of pure skill.

NOW THE INTEGRAL SYSTEM WITH PERFORMANCE, QUALITY, EXPANDABILITY \& RELIABILITY; ESSENTIAL FOR A BUSINESS SYSTEM.

LOOK AT THESE STA NDARD A1 FEATURES, INCLUDED IN THE PRICE.

* DOSKET OPERATING SYSTEM
* FORTRAN IV
* UTILITIES
* DIAGNOSTICS

620 K BYTES ON DUAL MINI FLOPPY DISKS

ABC 26:- 2.3 MBYTES ON DUAL 8 INCH FLOPPY DISKS

* BASIC INTERPRETER/COMPILER
* Z80 ASSEMBLER
* LIBRARY
* EDIT (\& MORE)

HARDWARE

* SEPARATE SCREEN BUFFER
* IEEE 488 INTERFACE BUS
* LARGE GRAPHICS SET
* 12 FULL RS232 PORTS
* 16 SEPARATE USER DEFINABLE KEYS
* DMA FOR HARD DISK ATTACHMENT
* 64K BYTES RAM
* REAL-TIME CLOCK (INTERVAL TIMER)
* GREEN SCREEN
* SEPARATE KEYBOARD
* SECURITY LOCK
* HARD DISK AVAILABLE
* MULTI USER HARD DISK AVAILABLE SOON

A1 ELECTRONICS ABC 26 £4750 A1 ELECTRONICS ABC $24 £ 3350$

OPTIONAL SOFTWARE

* CP/M
* SALES LEDGER
* PURCHASE LEDGER
* NOMINAL LEDGER
* STOCK CONTROL
* WAGES/SALARIES
* ABOVE INTEGRATED PACKAGES
* WORDSTAR \& MAILMERGE
* ISR DATABASE

ALL WITH SUPPORTING DOCUMENTATION AND LICENSING AGREEMENTS.
£150
£200
£200
£200
£200
£200
$£ 800$
$£ 350$
£400

ALL PRICES EXCLUDE VAT
BY MARCH 31ST 1981, A NATIONAL DEALERSHIP NETWORK, WILL BE OPERATIVE FOR THIS POWERFUL MACHINE.
IF YOU ARE AN ESTABLISHED \& PROFESSIONAL DEALER, WISHING TO APPLY, PLEASE CONTACT:
SUN Computing Services Ltd 138 Chalmers Way North Feltham Trading Estate Feltham Middlesex
TEL. 01-751 5044 TWX 8954428 SUNCOM 6

Why the Sinclair ZX80 is Britain's best selling

Built:E999s

Including VAT, post and packing, free course in computing, free mains adaptor

Kit: £7995

Including VAT, post and packing, free course in computing.
This is the ZX 80 . A really powerful, fullfacility computer, matching or surpassing other personal computers at several times the price. 'Personal Computer World' gave it 5 stars for 'excellent value' Benchmark tests say it's faster than all
 previous personal computers

Programmed in BASIC-the world's most popular language - the ZX 80 is suitable for beginners and experts alike. And response from enthusiasts has been tremendous-over 20,000 ZX80s have been sold so far!

Powerful ROM and BASIC interpreter

 The 4 K BASICROM offers remarkable programming advantages:

* Unique
'one-touch' key
word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
* Unique syntax check. A cursor identifies errors immediately.
* Excellent string-handling capabilitytakes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison).
* Up to 26 single dimension arrays.
* FOR/NEXT loops nested up to 26.
* Variable names of any length.
* BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
* Randomise function, useful for games and secret codes, as well as more serious applications.
* Timer under program control.
* PEEK and POKE enable entry of machine code instructions.
* High-resolution graphics.
* Lines of unlimited length.

Unique RAM

The ZX80's 1 K -BYTERAM is the equivalent of up to $4 K$ BYTES in a conventional computer-typically storing 100 lines of BASIC.

No other personal computer offers this unique combination of high capability and low price.

The ZX80 as a family learning aid. Children of 10 years and upwards are quick to understand the principles of computing-and enjoy their personal computer.

The Sinclair teach-yourself

BASIC manual

If the specifications of the Sinclair ZX80 mean little to you-don't worry. They're all explained in the speciallywritten 128 -page book (free with every ZX80). The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programmingfrom first principles to complex programs.

Kit or built -it's up to you

In kit form, the ZX 80 is pleasantly easy to assemble, using a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9V DC nominal unregulated. If not, see the coupon.

Both kit and built versions come complete with all necessary leads to connect to your TV (colour or black and white) and cassette recorder. Plug in and you're ready to go. (Built versions come with mains adaptor.)

personal computer.

Now available for the Xx80.... New I6K-BYTE RAM pack

Science of Cambridge Ltd.

Massive add-on memory. Only £49.95.
The new 16K-BYTE RAM pack is a complete module designed to provide you-and your Sinclair ZX80-with massive add-on memory. You can use it for those really long and complex programs-or as a personal database (Yet it can cost as little as half the price of competitive add-on memory for other computers.)

For example, you could write an interactive or 'conversational' program to show people what your ZX80 can do. With 16K-BYTES of RAM, they could be talking to your computer for hours!

Or you can store a mass of dataperhaps in a fairly simple program-such as a name and address list, or a telephone directory.

And by linking a number of separate programs together into one giant, but modular, program, you can achieve the same effect as loading several programs at once.

We're also confident that it won't be long before you can buy cassette-based software using the full $16 \mathrm{~K}-\mathrm{BYTE}$ RAM. So keep an eye on the personal computer magazines-and brush up your chess perhaps!

The RAM pack simply plugs into the existing expansion port on the rear of the ZX80. No wires, no soldering. It's a matter of seconds and you don't need another power supply. You can only add one RAM pack to your ZX80-but with 16K-BYTES who could want more!

How to order

Demand for the ZX80 exceeds all other personal computers put together! So use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt-and we have no doubt that you will be.

To: Science of Cambridge, FREEPOST 7, Cambridge CB2 1YY.
Remember: all prices shown include VAT, postage and packing. No hidden extras. Please send me:

Qty	Item	Code	Item price $£$	Total $£$
	Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	02	79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s). Price includes ZX80 BASIC manual and mains adaptor.	01	99.95	
	Mains Adaptor(s) (600 mA at 9V DC nominal unregulated).	03	8.95	
	16K-BYTE RAM pack(s).	18	49.95	
	Sinclair ZX80 Manual(s). (Free manual with every ZX80 kit or ready-made computer.)	06	5.00	

I enclose a cheque/postal order payable to Science of Cambridge Ltd for $£$
Please print
Name: Mr/Mrs/Miss \qquad

Use your TANDY, APPLE, PET or SORCERER with our Daisy Wheel Printer for typewriter quality printout.

The STARWRITER daisy wheel printer gives top quality printout for any computer with a Parallel or Centronics interface.

Features include

* Standard Diablo Hytype II Print Mechanism
* Proportional Spacing capability
* Bi-directional printing (with suitable drivers)
* Up to 15 inch paper width
* Uses standard Diablo wheels and ribbons

Only $£ 1,200$ Ex. VAT

Contact Geoff Wilkinson
for further information.
Telephone: (0736) 798157

Revas request

Can you tell me where I can
get a complete listing of Parkinson's Revas (1.5k Z80
Reverse Assembler)?
One other thing that may be of interest to users of the RML 380 Z and an Anadex DP9501 doing HRG hard copy: if you are using a two-wire serial link at highest baud rate and are having extra dots printed, go down to 1200 baud or, better still, parallel mode. This occurred on the program that I have written for Anadex driving and not RML's driver program. If anyone would like further details they may contact me directly.
CJPink, 14 Cowbeck Close, Parkwood, Rainham, Kent.

Thank you for a most useful tip, I know lots of people are working on high resolution graphics hard copy. The
information that you want on Parkinson's Revas can be found in PCW vol 2 nos 1, 2, $3,4,7,8$ and vol 3 no 1

There was also an offer in vol 2 no 1 which read as follows: 'REVAS on cassette in relocatable form £4, listing of a suitable loader included. You tell the loader where to load REVAS, the REVAS program origin, REVAS workspace origin the loader does the rest. State CUTS or NASCOM standard. From D W Parkinson, Well Cottage, The Street Tuddenham, Ipswich IP6 9BT SW

Atarianswer

I was very interested in your review of the Atari 400 and would like to know whether you recommend it compared with other systems. How much is it going to cost? Are there any drawbacks with the keyboard? What is the actual memory configuration? Will the graphics plot off the screen? Can I use other software than that developed for the Atari 400? A K Timms

As I had no inside information on the Atari, I sent your letter direct to Ingersoll
Electronics, 202 New North
Road, London N1 7BL, who kindly replied most promptly
with this answer:
We expect that the suggested retail price of the Atari 400 with 16k RAM will be $£ 395$ inc VAT. With the full colour range capability, on-screen editing and all the features described in your excellent original write-up ($P C W$, Oct 80), coupled with consumer end-users' requirements for ease of operation and reliability, the Atari represents a significant advance
'There are no particular drawbacks with the monopanel keyboard and it is capable of all the functions of a standard typewriter Qwerty keyboard. It also has the advantage that if liquids are spilt over it, it will not immediately blow up the electronics.
'The Atari 400 has 10 k ROM plus 16 k RAM plus a ROM cartridge slot, which can hold up to 16 k depending on the size of the ROM cartridge pack being used. You will therefore be able to write programs of up to 16 kbytes long. The graphics do plot off the screen. The Atari 410 cassette recorder will not accept any other brand of software as they are not written in the same Basic. Steve Bernard, Ingersoll Electronics Ltd.

It is very hard for me to comment on the above statements as the machine has yet to be released. On paper it certainly looks good value for money, especially at under $£ 400$.
SW

Numerial nasty

I have unearthed a peculiar fault in the Nascom Microsoft Basic (8 k version 4.7). The following results appear: PRINT 26.53-26 yields the result $\mathbf{5 2 9 9 9 9}$. On further investigation, I noticed a large number of similar results, and the program $10 \mathrm{~A}=\mathrm{A}+0.01$: PRINT A: GOTO 10 seems okay up to .83 but the next value given is $\mathbf{8 3 9 9 9 9}$. Is there a problem confined to version 4.7 of Microsoft Basic? Does it appear on all Nascom 2 machines? What is the precise mechanism for the failure? Is there a cure for it? M D Heden, Ampthill, Bedfordshire

The problem that you have found exists on any system that uses 'pure binary' for its representation of decimal numbers. Certain numbers can be represented exactly in both denary and binary;
examples are $0.5=0.1$ $0.25=0.010 .75=0.11$, etc; however, the majority cannot, eg,
$0.2=0.0011001100110011$ recurring.

Computers have limited storage and therefore numbers have to be represented by a fixed number of bits (binary digits); a common number might be 32 bits of which 24 would be the mantissa and eight the exponent (there are many good books dealing with this and a good one is Computer Science by C S French, DP Publications). Using 24 bits, 0.2 is held as 0.19999999881 ; now as long as the version of Basic only prints six or seven decimal places, the error will not appear until this number has been added up many times, but as soon as this erroneous value has been added up enough times, it will soon appear. This weird effect can also be observed by trying the following program:
$10 A=10000001$
$20 B=10000000$
$30 \mathrm{C}=0.0000001$
40 PRINT A/C-B/C; (A-B)/C This has serious implications when developing programs, especially in the scientific field, and should always be borne in mind. The cure for it in some applica tions, such as finance is to work always in pence and not in pounds, dividing by 100 when necessary for display purposes. It is not confined to Nascom or, for that matter, any particular machine, as it is not the fault of the machine but rather of the version of the language implemented. SW

Text troubles

Soon I will have totted up 50 years of writing. I am getting more and more frustrated with the time taken to type a 'clean' copy so I would like a word processor. I have set a budget of around $£ 1000$ and would like your advice. I realise that disk drives are out, but I would like a nice keyboard, a reasonable printer (Centronics 737 or Epsom MX80 will do), use of my own TV, display of 'long' lines, plenty of RAM (would 16k suffice?); and a 'ready-to-go' system.
$J H$ Miskin, London
I am sorry to disappoint you, but I don't really think that you will be able to put a system together for under $£ 1000$ that will satisfy a professional such as yourself. I will explain why. Firstly, the printer will cost you
around $£ 400$ of your budget, leaving £600 for computer and cassette. Although this will enable you to buy a computer, it will inevitably have 16 k or perhaps 32 k of RAM; if you are going to do without disks then you will need as much memory as you can possibly get.

Assuming each page has 36 lines, and 55 characters per line, that makes approx $2000 \mathrm{ch} /$ page or $2 \mathrm{k} /$ page . Therefore ten pages need 20k RAM. You will also have to have a program to perform the word processing which may take anywhere from $8-20 \mathrm{k}$ depending on sophistication, making perhaps 30 k in all. I don't think it would be practical to type and edit fewer than 20 pages at a time.

Another point is that it will take around four minutes to load 20 k of text from cassette; this may not worry you, but you ought really to make regular backups of your text each time you edit it. With a disk system I do this about every ten minutes.

You also want a 'turn-key' system, and I know of none for under £1000.

To be more optimistic, there are hopes, for example, the Nascom II with Naspen, which is certainly cheap and good value for money. Look at a stringy floppy system, too, and get a quote for a maintenance contract. An alternative is the PET with a ROM-based word processor, but unfortunately the new 80 -column PET is outside your price range at about £825 plus VAT for a 32 k system; you would be wisest to try and save up for this version, but I wouldn't be talked into getting anything less than 32 k ; again, look for a stringy floppy for that. SW

ZXpansion?

I am considering buying a
ZX80. What is the availability of peripherals like. Is it possible to expand it cheaply?
DBloodworth (and many other users throughout Britain!)

You may find that you obtain better, more up-todate answers by writing directly to the National ZX80 user group. The address is: Tim Hartnell, ZX80 Users Group, 44-46 Earls Court Road, London W8 6EJ.

It is essential that you enclose an SAE. You can obtain monthly copies of their newsletter called

‘Apple
 Mobil

OilCompany Ltd.

says so . . .

'Just one 48 K Apple, VisiCalc, disc-drive and printer enabled us to save over $£ 13,000$ p.a. in outside computer bureau costs' states Mobil's Manager, Financial Analysis, Mr E.A.F. Peach. 'With this sort of saving it is hardly surprising that our use of Apples has grown from one Apple to five in under six months. Our trolley-mounted Apples bring the analytical powers of VisiCale direct to the user's desk; and the simplicity and robustness of the system make it as easy to use as a desk calculator. Apples are now producing virtually all our a nalytical work,

RANK XEROX says so ...

'If small businesses are to continue trading successfully during the next 10 years they cannot afford to let the business equipment revolution pass them by' observed Mr B.H. Nicholson, International Director of Rank Xerox Ltd., at the recent opening of the Xerox Store, Piccadilly, London.
'This store carries almost everything the small business needs, and that has to include Apple microcomputers, and the sofrware programs that go with them. Our research has identified 500,000 small businesses in the UK: Apple will feature strongly in our service to this mass market.'

CROWN JOINERY and LAMINATING

 says so . . .'Faced with a 100% increase in turnover in our factories in Chesham and Aylesbury, we recently installed an Apple microcomputer in our Accounts Department' comments Mr R.F. Alderton, Partner of the Company. 'The results have been a revelation to us. Apple gives us prompt management information on sales and bought ledgers, our cash flow situation is much improved because of our debt analysis control, and my P.A. accountant has really enjoyed the transition to computerised accounting with Apple.

If you direct, manage or control a company or department then the Apple Computer can help you.

Apple means...business
software which is available and in
everyday use now. Below is listed just a small selection of business management programs available for users of the Apple
Computer System:
Apple Cashier

- Apple Desk Top/Plan
- Apple Plot
- Mailing List
- Job Costing System
- Stock Control
- Time and Cost Recording

Accounting Programs for Apple Users:

- Apple Business Controller
- Fixed Asset and Plant Package
- Incomplete Records
- Invoicing System
- Sales Accounting and Invoicing System
- Sales and Purchase Ledgers

Specific professions can benefit too:

- Agriculture and Business Group Package
- Architecture
- Contract Costing
- Estate Agents
- Matching Vehicle Service Records
- Personnel Matching

AND IN ADDITION-most companies can use

- Payroll and Salaries
- Apple Writer (Word Processing)
*This is just a small selection of the hundreds of programs available for the Apple business user.
*Prices exclusive of VAT and correct at time of going to press.
- Apple is a irademarh of Apple Computa Inc, Cuperinins, Callfornia, USA.

APPLE MEANS . . . that you can have immediate access to vital, accurate business information, keep that same information up-to-date more easily and have printed copies instantly, thus giving your company or department a competitive and efficient edge.
Apple means . . . solving problems not creating them! Executives can make valuable use of their Apple System within only a few hours of delivery, administrative staff lose any fear of computers and are soon planning and printing their data at the touch of a button.
Apple means . . . reliability and service. To assure the Apple user that there are no unanticipated service costs and that their System is fully maintained, Apple offer an optional, renewable Extended Warranty
Apple means . . . you are not alone. Over 200,000 Apple Systems have been sold throughout the world. At $£ 2,400$ (smaller starter systems available) the Apple Business System is capable of running any of the programs listed here and many more besides.

microsense computers limited

Finway Road, Hemel Hempstead, Herts HP2 7PS. Hemel Hempstead (0442) 4!19! and 48151. Telex: 825554 DATEFF G.

Apple means . . . educationalists, scientists, engineers and computer professionals have a choice. Apple grows - with many useful accessories including sound, music and colour graphics. In addition to the BASIC language, Apple have their own UCSD Pascal, and more recently PILOT for the courseware author, and FORTRAN for the scientist.
Apple means . . . a problem shared is a problem solved when you share it with an Apple Dealer. For details of your nearest dealer please contact us at the address below

COMPUTERANSWERS

Interface by sending $£ 7.50$ (UK) £9.50 (Europe) or £13.50 (elsewhere) to: National ZX80 Users Club, Unit 3, Woodthorpe Road, Ashford, Middx. TW15 2RP. SW

Words wanted

Can you tell me where I may get a book on the subject of word processing? Also the following books: Electronic Logic Circuits by J R Gibson, published by Arnold and Systems Design with Micro processors by Zissos published by Academic Press?
Name and address supplied
I wonder why you requested to remain anonymous?

You should be able to order the two books mentioned above from any good bookshop - after all, this is their job.

As for books on word processors there is Wordprocessors Report and Supplement by Lamsac 1978 at around $£ 4$ if you can still get it; also, Word Processing in the Modern Office by Paula Cecil, published by Addison Wesley in 1980 for $£ 7$ and there is also a magazine called Which Word Processor? available from some stationers.
SW

Mathematical micro

Can you give me any problems to work on using my micro. They are best kept to something mathematical, but I would prefer to try something that no-one else has yet solved; are there any such problems?
THutchinson, Weybridge, Surrey

Try these:
Has $\mathrm{x}^{4}+\mathrm{y}^{4}+\mathrm{z}^{4}=\mathrm{N}$ got any any whole number solutions? Has $\mathrm{x}^{4}+\mathrm{x}^{4}+\mathrm{z}^{4}=\mathrm{N}$ got any whole number solutions, where N is an exact fourth power?

Let's hope they don't
keep you awake all night. SW

Data difficulty
 I have an Apple II and

recently bought a 6502 manual and assembler with a view to writing subroutines for Basic programs. I cannot see how to pass data and variables (strings in particular) between Basic and assembler.
Miss H Prince, Harrow, Middx
You have hit on one area that is lacking in many micros, the Apple being no excep tion. However, all is not lost, as page 137 in the Applesoft manual explains all.

Let us consider variables
only. Whichever variable is
defined first in the program can be accessed via locations hex 69 and 6A. However, only the first one can be located in this way. Let us assume that line \emptyset of our Basic program is \emptyset MDS = "Mike Dennis". At locations 69 and 6A will be found two bytes that, together make up an address where MD\$ can be found. This address depends on the size of the program but whatever value this address is, it can be found from these two locations. Let us assume that location 69 holds 9 E and 6 A holds 35. At address 359 E will be found the following data, ASCII M then ASCII D at location 359 F . The $\$$ isn't stored. At location $35 \mathrm{~A} \emptyset$ will be found a byte whose decimal equivalent is the current length of the string in this instance it will be 11) which explains why strings have a maximum length of 255 . The next two bytes hold the address of where the string will actually be found, say 8 E 98 . This address will dynamically change every time AS is referenced by the program but we can always find this address via 69/A. Try writing simple programs and then looking at the various memory locations either from Basic or alternatively via the monitor.

The next two bytes are set to zero; this is to leave room to store real variables. Other variables can then be found on seven byte increments from the address given at 69/6A but you do have to know in what order your variables appear in the program. Mike Dennis

APL available

I have just read the letter from L Davies of Cheshunt on the subject of APL on a Tandy TRS-80. You may be pleased to know that there is an APL subset for the TRS-80 called APL 80 and this is available in both disk and cassette form from:

Micro Computer Applications, 11 Riverside Court, Caversham, Reading, Berks.

I have a copy of the tape version and am well pleased with it.
P G Hughes, Bracknell, Berks
This letter needs no answer from me but it does illustrate a good point - that interaction from readers will help make these pages more up-to date and readable. Thank you Mr Hughes. SW

TVtips

I am considering buying either a Superboard II or an Ohio Challenger, $P C W$'s review stated that the computer was built for use with a domestic television - does
this mean that I will not be able to use a standard monitor with it?
P Beauchamp, Hinckley, Leics

The main difference between domestic TV and a monitor les in the manner in which the signal is transferred from the computer to it. The domestic TV expects the signal to be a radio-frequency (or rf) modulated signal. In other words, it expects to see a signal similar to that which crawls out of the end of your TV aerial lead. To this end, many single board computers (including the Superboard and UK101) are fitted with modulators that 'prepare' the computer video signal into a suitable form for the domestic TV, ie they have UHF modulators fitted. A TV monitor, on the other hand, expects a standard unmodulated video signal and this is also provided on the UK 101 at pin 12 on J2, the earth being on pin 11. You should connect your monitor to this point. You may need to adjust contrast and brightness to achieve a decent picture.
Mike Dennis

Speedier shapes

I have a 32 k ITT 2020. It is a bit slow, especially when drawing shape tables. Is it possible to speed it up to 2 MHz ? Also I am thinking of buying a disk drive from the US. Will it run on my present power supply? Terence Wong, London

I'm surprised that you think the ITT 2020 slow, particuarly as it is virtually identical to the Apple II which has always been considered to have quite respectable Bench-
mask timings, although I appreciate the fact that they don't test shape tables. Normally, the solution that I would suggest would be to incorporate some assembler subroutines but as these are extensively used already there is very little to be gained in that area. If you knew exactly what shapes you wanted and exactly where they were destined to go (and not to move around) then you could POKE directy into the screen memory using machine code for speed. However since this defeats the object of 'drawing' hapes, it's not of much practical use. You can't run the ITT at 2 MHz for many reasons, such as the fact that the screen display is tied into the clock-rate, and so I am afraid that you will have to learn to live with the status quo - after all there are a heck of a lot of dots being plotted which must take some time to plot!

In answer to your second question, there is no problem with buying a disk drive from the States as far as power supplies are concerned since it runs off the DC supplied and not the mains. You may have some difficulty with the slight difference between the clock speeds of the Apple and ITT. They are marginally different and can cause difficulty when, for instance, trying to read on an ITT a disk recorded on an Apple. It all depends on the tolerances of the respective disk drives. If you have access to a disk-speed test disk then one answer (if you are experiencing this problem) is to set the speed to run slightly fast for one machine but slow for the other and so achieve a compromise Mike Dennis

'It's amazing - with these microcomputers we only need one filing cabinet instead of five!"

Chris Sadler presents a selection of reader's letters resulting from the recently proposed Pascal Benchmarks.

As promised, here are the collected timings of the Pascal Benchmarks as sent in by PCW readers. Some of the letters we received appear below. First, however, the misprints (p61, PCW Dec) - five in all, starting with program VECTOR where the second for-loop should read:
for $\mathrm{j}:=1$ to 10 do
The second error is in program UNEQUALIF where the 'else' line should terminate with a semi-colon. The third is in program VALUE, procedure VALUES, the body of which should read: $\mathrm{i}:=1$

Program MATHS was a bit of a mess so I've listed it - see Listing 1. Now for the letters.

```
program maths;
var k: integer;
        x,y: real;
begin
    writeln ('s');
    for k:= 1 to 1000 do
    begin
        x:= sin(k);
        y:= exp(x);
    end;
    writeln ('e')
end.
```

Listing 1

I have just tried out your Pascal Benchmarks on our Apple II Pascal system but I have made two amendments to the programs. For convenience, I replaced all WRITELN('S') by READLN and all WRITELN (E ') by WRITELN(CHR(7)). This meant that programs did not start running until I pressed RETURN and gave an audible bleep at the end, resulting in easier timing. The second essential - change was in PROGRAM MATHS where you try to take the EXP of K from 1 to 1000. This will, of course, result in a floating point error when you try to calculate EXP(1000)! I also wrote a couple of other test programs which time an iterative and a recursive calculation, as in Listings 2 and 3.
Dr John Rostron, Dept of Biology, NELP

We adopted the ' s ' and ' e ' scheme to conform to the Basic Benchmarks (and because not every computer produces a
tone on CHR(7) but the tactile start and audible finish is a good idea which certainly makes timings more convenient. Iteration and recursion are interesting to compare but since both use the same procedure-calling mechanism although for a different number of calls - they don't distinguish different aspects of the compiler.
program iteration;
var i, k : in teger;
function ifac (n : integer);
var i, f : integer
begin

$$
\begin{aligned}
& \mathrm{f}:=1 \\
& \text { if } \mathrm{n}>1 \text { then } \\
& \text { for } \mathrm{i}:=2 \text { to } \mathrm{n} \text { do } \mathrm{f}:=\mathrm{f} * \mathrm{i} \text {; } \\
& \text { ifac:=f } \\
& \text { end; } \\
& \text { begin } \\
& \text { readln; } \\
& \text { for } \mathrm{k}:=1 \text { to } 1000 \text { do } \\
& \text { i: }=\text { ifac(} 10) \\
& \text { writeln }(\operatorname{chr}(7)) \\
& \text { end }
\end{aligned}
$$

Listing 2

```
program recursion;
var \(\mathrm{i}, \mathrm{k}\) : in teger;
function rfac ( n : integer);
begin
    if \(\mathrm{n}>1\) then rfac: \(=n * \mathrm{rfac}(\mathrm{n}-1)\)
                            else rfac:= 1
end;
begin
    readln;
    for \(k:=1\) to 1000 do
        \(\mathrm{i}:=\operatorname{rfac}(10)\)
    writeln (chr(7))
end
```

Listing 3

I have just read the Pascal Benchmarks article and found it most helpful. I had been looking for some way of comparing my own Pascal system with others and have now run all the relevant Benchmarks (my system does not yet support REAL arithmetic or reference parameters).

The Pascal system in question is one which I developed myself for the TRS-80 Model I and which is now available from A J Harding (Molimerx). It compiles first into a form of p-code and then translates the p-code in to Z80 machine code, hence the rather fast
times.
I should like to take this opportunity of thanking you for your coverage of Pascal in PCW. Please carry on the good work!
Tim Bourne, Hemel Hempstead.
Congratulations on writing your own compiler and I hope you don't mind my naming it as such in the timings table. Please press on with the REAL arithmetic.

You may be interested in the enclosed timings which I ran on our departmental PDP11/04. The system comprises a Unibus PDP11/04 processor, 64k MOS memory, two RK05 disk drives and a bunch of exotic lab peripherals which are irrelevant in the present context.

The Benchmarks were compiled with the OMSI Pascal 1.2 compiler running under RT11 V3B. This compiles Pascal source code into MACRO (PDP11 assembler language) which is then assembled and linked. All Benchmarks were self timing, using the system clock which runs at line frequency (although these times should probably only be considered accurate to 0.1 sec .

As you can see, the execution times are an order of magnitude faster (with the exception of the floating point routines) than the Benchmarks run on the H11A which you reported in December. The slow floating point execution is a consequence of the 11/04 system having no EIS or FPP installed. However, as the 11/04 and LSI 11/2 are roughly comparable in terms of performance, this OMSI Pascal compiler may be of interest since the differences in performance seem to be largely a function of the software, which can be run on any RT11 system with sufficient memory.
Dr J B Brooke, Department of Applied Psychology, UWIST

The OMSI Pascal timings make an interesting comparison with those of our H11A. We seem to benefit from the EIS chip and suffer for the p-machine.

I enclose the Benchmark timings achieved by Pascal-Z version 3.2 on my Midas 3 system, which comprises an S100 system with $4 \mathrm{MHz} Z 80$ and 64 k RAM running under CP/M 2.1.

The Pascal-Z times are quite favour-
able except in those areas requiring calculation, as in REALARITHMETIC and REALALGEBRA. The relatively bad timings for calculations are undoubtedly due to some extent to the maths chip used in the H11A, but in view of the low precision used by Pascal-Z (seven to eight decimal digits, with all REAL numbers held as binary in a 32-bit two's complement field where the first eight digits are exponent), I feel that the results are significant.
Mr C J Neville, Welling, Kent
Thank you for your Pascal-Z timings your floating point software certainly does seem a bit slow.

Enclosed are timings run on a Commodore PET with the TCL Pascal Chip, using the resident compiler. Due to lack of disk space I could only test a few of the Benchmarks with the disk compiler but they came out approximately five percent faster than with the resident compiler.
Mr C Cook, Middlesbrough
It's a pity that the one major Pascal compiler produced in Britain is so slow, even when compared with the Apple II Pascal which uses the same processor and also goes through pseudo-code.

The prospect of the Pascal Benchmarks being used in all future PCW Benchtests of Pascal systems is so appalling that I must point out the glaring shortcomings of the Benchmarks published before they become any more widely used:

1. Probably the most important problem is that the short tests, such as memoryaccess, have an inner $x 10$ loop as well as the outer $x 10,000$ loop in order to give a reasonable runtime for stopwatch timing. This means that memoryaccess, for example, executes 110,000 for statements and only 10,000 assignments in its run; thus the time for the statement supposedly being tested is quite swamped and quite misleading times result. Useful results can be extracted by doing the right arithmetic, but what is really required is a set of figures which can be compared directly, which could be achieved if ten assignment statements were written out explicitly, and similarly for most of the other tests.
2. No test is made of operations on character type data; why not?
3. It certainly is worth noting that no account has been taken of the speed of compilation. Again, one can only ask, why not? In practical program development, this factor is at least as important as the execution speed.
4. Some figures on memory usage really should be provided. The size of the compiler at least should be easy to find out. The size of the object code generated could be tested by compiling some standard program of reasonable size, say a standard sort of algorithm, and this would also give a useful test of compilation time, execution speed of a typical mix of statements and show up quirks in the system. Pascal standards are much more widely adhered to than Basic standards, so development of a reasonably large Benchmark program should not present serious problems.
5. Finally, the programs printed contain several errors. As well as the traditional 'misprints', the program statements should be of the form program benchmark(output), to be accepted by a standard compiler.

In conclusion, yes it is a nice idea to have some standard Benchmarks for Pascal but only if they are thorough and informative.

PS - Whatever happened to case statements and function subroutines? Paul Farrell, Birmingham

To tackle the points in order:

1. I have always claimed that one of Pascal's strengths is its readability. My apologies - we now have positive proof that it cannot be as readable as we thought. How else can one explain the following? Program MEMORYACCESS (and all of the other 'short' tests) has a 10,000 step loop, within which is a ten step loop, contained within which is the assignment statement which we are trying to time. Simple arithmetic dictates therefore that the assignment statement will execute $10 \times 10,000=$ 100,000 times, once for every iteration of each for-loop. If there were a semicolon between the last 'do' and the ' $1:=\mathrm{j}$ ' (and this is where the readability comes in) then the quoted figures would be correct; but there isn't, so they aren't.
2. This is a good point. Most character handling routines in our PCW series performed using library string-handling routines and indeed we published our own emulation of the UCSD stringhandling routines in our PCW series 'The Complete Pascal' (which is soon to be published as a book entitled Pascal for Programmers published by Springer-

Verlag). Since these vary considerably both in form and in scope, there didn't seem any way of comparing them and it never occurred to us to descend to character-handling per se. I accept, however, that some types of programming deal almost exclusively in characters (imagine trying to write an editor?) and we would be pleased to hear from Pascal programmers with this type of experience who can suggest a brief, effective test of these facilities.
$3 \& 4$. I feel that Sue and I were frank enough about the limitations inherent in the ideas behind our Benchmarks when we wrote the original Benchmark article. These remarks are simply Mr Farrell's own ideas for a different type of Benchmark with a different set of limitations.
5. There are five Pascal compilers (commercially) available for 8 -bit microcomputers in this country. At least one of these will flag a compile-time error if the 'standard' syntax is used and the rest will certainly ignore it.
PS The CASE statement is structurally similar to the IF. THEN-ELSE statement and the function-calling mechanism is similar to the standard call-byreference. It seems unlikely, therefore, that a compiler-writer would be able to find any shortcuts in implementing these and so we could see no point in Benchmarking them.

Finally, we would like to thank everyone who wrote in to us. There are still some gaps in our table which I would be grateful if readers would help us to fill; we need: Pascal/M, Pascal/MT, TCL Pascal under CP/M or resident, Whitesmiths Pascal, UCSD Pascal on a Z80A processor.

PASCALBENCHMARKS SUMMARY

Table 1 Pascal Benchmarks summary. Timings are in seconds, rounded to nearest 0.1 sec

If you have a contribution for Pascal
Benchmarks, send it to Chris Sadler,
c/o PCW, 14 Rathbone Place, London W1P 1DE.

TUSCAN FROM TRANSAM

Take astep up toyournext Computer!

THE CONCEPT

How many ways are there to buildan S100 system? Not many, and all expensive.TUSCAN changes all that.

Five S100 boards on one single board - just for starters. Plus five extra slots for future expansion.

What a combination! 280 and S 100 with the TRANSAM total package of system and applications software.

How do we do it? Our prices start at $£ 195$ and you can build up in easy stages to a fully CP/M compatible disc based system. Something to think about!

THE HARDWARE

The first Z80 single board computer with integral S100 expansion. British designed to the new IEEE (8 BIT) S100 specification, the TUSCAN offers total system flexibility. A flexibility available now.

The board holds the equivalent of a 280 cpu card, $8 \mathrm{k} \mathrm{ram}, 8 \mathrm{k}$ rom video and $\mathrm{I} / 0$ cards with 5 spare S100 expansion slots and offers a price/performance ratio which is hard to beat.

Justcompare our price with a commercial S 100 ten slot motherboard with this specification.

THE SOFTWARE

TUSCAN offers the user the choice of system monitor, editor, resident 8 k basic, resident Pascal compileror full CP/M disk operating system. All options are upwards
compatible and fully supported with applications software. Both $514^{\prime \prime}$ and $8^{\prime \prime}$ drives are supported in double density.

THE PACKAGE

TUSCAN is available in kit form or assembled. With several hardware and software options to suit your requirements and budget. Attractive desk top case also available holds $2 \times 51 /{ }^{11}$ Drives.

NOBODY DOESIT BETTER!

Send to Transam Components Ltd., 59/61 Theobald's Road, London WC1.
I am interested in the TUSCAN Z80 based single board computer
with S100 expansion and enclose a S.A.E. for further details.
Name
Address
Telephone

Dick Pountain tests Hewlett Packard's problem solver.

Introduced to the UK in November 1979, the HP 34C is Hewlett Packard's latest programmable calculator, though inevitably it has been somewhat overshadowed by the remarkable alphanumeric 41 C . While the HP 34 C is an altogether more modest (and much cheaper) machine, it has some features which will endear it to the mathe-matically-involved user.
As one would expect, the 34 C is very well-made and finished, in a strong ABS case and large, positive, 'click' keys with sloping lower surfaces which bear a second function symbol.

Power is supplied by a battery pack which can be recharged without removal by plugging in the supplied AC adapter. The calculator may be used on AC while recharging. A fully-charged pack allows about three hours of continuous operation.

The suffix C denotes that the 34 C has continuous memory, ie, memory contents are retained when switched off. No bulk storage by cassette tape or magnetic card is provided so atten. tion must be given to the state of battery charge, as it must to good documentation of programs. Programs in the calculator are safe for around one month without recharging.

The display, surprisingly, is a traditional red LED 10-digit affair with no frills; a pity that an LCD unit, as on 41 C , could not have been adopted to prolong battery life.

Memory

The 34C has its memory allocated as follows: 70 lines of program and 20 data storage registers, plus four stack registers, a 'last x ' register and the ' I ' register for indirect operations. Program data and I registers are continuous; the others are lost on power off.

More than 70 lines of program memory may be used by repartitioning the memory; this task is handled automatically in a very straightforward fashion. As the seventy-first program line is entered, a data register (R. 9 the highest numbered) is converted into seven extra program registers. Data registers are converted as required, from the top, until a maximum of 210 program lines are accommodated, leaving only the I register for data storage.

To check how many data registers are left at any point, one presses the MEM command which displays the highest program line number and highest memory free. Simple, effective and much less confusing than messing around with partitions.

Functions

The 34C has a useful set of scientific functions including trig and their inverses (but no hyberbolics), exponentials, roots, reciprocals, factorials, rectanguiar to polar, degrees to radians, sexagemisal conversions, FRAC, INT and ABS. In addition to these usual functions are some useful statistical ones; $\Sigma+, \Sigma-$, standard deviation, mean, linear estimate and correlation coefficient, and linear regression. The
two final tours de force are SOLVE and integrate, about which more later.

These functions are accessed by a deceptively simple-looking 30-key board, by making almost all the keys serve no less than four functions. To this end, three shift keys labelled f, g and h are provided.

The display formats are fixed point, scientific and engineering and the display status is in continuous memory.

As expected from HP, the 34 C operates in Reverse Polish Notation and the excellent 300 page manual lays heavy stress on the full use of the stack, including the stack-fill technique and Horner's method for reducing poly. nominals to nested first order expressions.

Programming

All the necessary instructions for full programmability are provided; that is to say, conditional and unconditional branching, register arithmetic (including multiply and divide), six levels of subroutine, loop control and flags and indirect operations. In true HP style, no less than eight conditionals are available: $x \leqslant y, x>y, \quad x \neq y, x=y, x<0, x>0$, $x \neq 0, x=0$. Four flags with set and test are provided.

The destination of jumps is either a numeric label $0-9$, or to an absolute address stored in the I register. In addition, two user-defined keys A and B can be used as labels to execute programs from the keyboard. If more than two programs are stored, the remainder are executed by GSB and the numeric label of the start. GTO.nnn sends control to line nnn without executing the program and is useful in editing.

The loop control functions ISG and DSE are of the sophisticated multi argument variety, with start value, test value and increment value, as on the 41C. They work only on the contents of the I register, as do the indirect commands which include STO, RCL, STO + etc., GOTO, and GSB.

Program editing is straightforward with automatic insertion and manual delete. The only gripe here is that both back and forward step are shifted functions requiring two keystrokes. Program steps are well displayed with a three digit line number separated from the instruction code. When keying in, the step just entered is displayed and all instructions are fully merged to occupy one line.

In short, the 34 C has features to allow program structures as sophisticated as those of the TI-59, Casio 502 or the HP 41C. The only criticism in this area is the slow speed of execution. For my Benchmark I, the 34 C took 67 secs, as opposed to 36 sec for the TI 59 and 7 sec for the Casio.

Benchmark No.	
I \quad HP 34 C	
(store and recall)	67
II (multiply)	98
III (cos)	170
IV (log)	105

Solve and integrate

These two special features of the 34 C have been widely advertised by HewlettPackard and will recommend the machine to mathematicians andengineers.

They are hard wired routines, executable by a single keystroke. SOLVE finds zeros of a function defined in a users subroutine. 'Integrate' evaluates definite integrals of the function by a rather sophisticated numerical method.

To use SOLVE you first write a subroutine which evaluates $f(x)$. Then enter two estimates of x between which you wish to find a root of $f(x)=0$. Then on pressing f SOLVE, the calculator will search for and evaluate the desired root. If no such root exists in the range, the routine may find a minimum or an asymptote if such exist. In this case, an Error message results and values are left in the X, Y and Z registers, which enable further analysis. SOLVE may be used in a program, in which case it acts as a conditional test causing a branch if x is not a root.
$\int y$ or integrate is used in a similar way, entering the upper and lower limits of integration and pressing $\mathrm{f} \int_{\mathrm{x}}^{\mathrm{y}}$. The value of the integral is displayed and its range of uncertainty is stored in the Y . register. This latter is a nice touch which put this routine a cut above the Simpson's Rule programs which are available for other calculators. You can specify the level of accuracy of your function by using FIX n to limit the number of decimal places computed. Integrate will then calculate the integral to this degree of uncertainty, choose its own number of iterations. Obviously a less certain result is more quickly calculated, often remarkably so. Integrate can be used in programs and in a subroutine used by SOLVE, but cannot be used recursively to calculate multiple integrals.

Both these routines are more sophisticated than the usual ones found in calculator program libraries. They are rather slow in operation, often taking several minutes to evaluate an integral to high accuracy. Nevertheless, having them permanently on tap should be attractive to the right sort of user. At around $£ 83$, the HP 34 C is competing with the TI-38C and the Casio fx-502p, both of which have continuous memory and more of it.

However, particularly among the scientific community, the Hewlett Packard name and quality reputation exact a price premium which overrides such strict value-for-money considerations. With the undoubtedly useful SOLVE and 'integrate' facilities, it will find many users in the laboratory and lecture theatre. I found it a pleasant machine to use, well documented and presented, but rather slow.

HP 41 C $^{-}$	TI-59	Casio 502
31	36	7
32	54	13
49	76	53
34	51	32

The Benchmarks consist of 100 loops of the function indicated. Times are in seconds

Epron $\mathrm{m} \%$ 70

- The budget version of the MX80 that must be what everybody has been waiting for. A quality printer from the world's largest print head manufacturer.
- 80 characters per second (Uni-directional)
- 9×7 matrix (63 dots maximum per character) - 80 or 40 characters perline " LF and FF lother details as MX80 (see below) except no VT.

NEW
80 COLUMN $32 k$
ONLY $£ 825$ + VAT Standard Large Keyboard
$16 k$ - £499 + VAT
$32 \mathrm{k}-£ 559+$ VAT
Very popular for home 8 business, using 8 k Microsoft Basic in ROM. Both models are with new improved. keyboard and all with green screen. Extra Cassette Deck $£ 55+$ VAT

Compukit okisici
mpurik disc daives with up to 32 k RAM expansion free
games

* 9 Digit extended Basic
- Plugs straight into 8k Compukit requires no hardware mods. (5v. 5 A required for 610) 610 Expansion (8k) ONLY £159 + VAT Disc Drive with DOS ONLY £285 + VAT

nEC Spinuriter
for the professional word processing system $£ 1390$ + VAT
Model 5510 - RS232, Model 5530 Centronics 8 bit par. NEC's high quality printer uses a print "thimble" that has less diam, and inertia than a daisy wheel. (128 ASC// chrs.) " 5 copies *Friction or Tractor fed " 55 chrs. per second.

Model GP80 ONLY £250 + VAT Complete range of Interfaces available
*Tractor Feed " 80 column
*One needle dot matrix " 5×7 matrix Feed "Up to 8" plain paper "3 copies

TVI Terminal

FULLY INTELLIGENT TERMINAL

* 24×80 display with dual intensity. blinking, reversed, underline and protected fields "96 ASCII characters (upper and lower case) *Separate numeric keypad *Auto repeat TVI 912C ONLY £475 + VAT
- IDEAL FOR HOBBYIST \& EDUCATION
* 128 Characters *ASCll "30 chs second *80 chrs or extended per line * 12 lines per inch " 6 lines per inch (9 for graphics) *5 lines per sec. (7.5 for graphics) *Pin

Olympin EswIOO

L-LOW COST DAISY
 At last a quality daisy wheel printer at matrix prices.
*96 character set *10, 12, 15 pitch and proportional spacing *Up to $13^{\prime \prime}$ paper width * Centronics Interface

ONLY $£ 836$ + VAT

Epson MH8O

TANDY, SHARP, PET, APPLE, etc.
Bose 2 Moobl s508 with
 Performance Impact Printer Suitable for most Micro's Fearures inc: Friction \& Tracto
20 mA IEEE 488 \& Centronics $1 / 0$ - 15 Baud rates to * 9×9 dot matrix * Logic Seeking * Bi-directional * 96 ASCII Characters * 64 Graphics and 8 International Characters "Centronics 1/P with optional RS232 and IEEE 488 * Four print densities $40,80,66$ or 132 columns "Multiple type fonts *Self Test* Self Diagnostics "Buzzer for end of paper and bell code error

Tractor Version $£ 359$ +VAT
Tractor and Friction $£ 399$ + VAT

Oki microline 80

Small, light, quiet matrix printer. 40,80 or 132 cols . 6 or 8 lines per inch.
96 ASC $11+.64$ graphics character set with Centronics compatible interface ONLY $\mathbf{E 3 2 9}$ + VAT RS232 version available.

Centronics 737

LETTER QUALITY PRINTER

*Dot Matrix: 7×9 "Paper Handling: 3 way * Pitch: 5, 10 or 16 characters per inch "Speed: 80 characters per second proportionall 50 characters per second monospaced

- Line Length: 40,80 or 132 characters * Standard Interface: Parallel

ONLY £349 + VAT

SALES. HOTLINE 025656468

FULL SERVICE BACKUP - FULL DETAILS ON REQUEST INCLUDING PRINTOUT Please add VAT @ 15%. Carriage extrą, will advise at time of order. Official orders welcome 61 NEW MARKET SQUARE, BASINGSTOKE, HAMPSHIRE Telephòne: Basingstoke (0256) 56468 (4 lines) Telex: 858757 Buy in confidence. If on receipt of yourrorder the goods do not meet with your
 satisfaction, return within 7 days for full refund. Credit facilities arranged. DISCOUNTS: Attractive quañtity disčounts for OEM, Educational \& Dealers also in association with O.S.I. COMPUTERS, ESHER, SURREY. Telephone: 037262071

The moves a knight can make on a chess board are a rich source of mathematical pastimes. In 1512 Guarini put two white knights on the top corner squares of a 3×3 chess board and two black knights on the bottom corner squares. He asked what was the smallest number of moves in which the pieces could be interchanged, the black pieces to the top corner squares and the white ones to the bottom corners.

One of the most discussed of all puzzles is the tour of a single knight to every square of the chess board, visiting each square just once and returning to its starting point. Euler was working on this in the 1750 s - he is the same man who had figured out the famous problem of the bridges of Konigburg some 20 years earlier.

The puzzle I am going to describe here concerns the shortest path a knight can take from one square to another. What is the smallest number of knight's moves that are needed to get from any square to any other square on a 5×5 chess board? Generalising it to boards of different sizes will be left to you.

Figure 1 shows the least number of moves needed by a knight starting from a corner square to reach any other square. There are three squares that cannot be reached in fewer than four moves, all - as it happens - along the diagonal. No square needs more than four moves.

There are five other distinct possible starting points: all others are equivalent to these by rotation and reflection. Similar arrays can easily be made for each of these five cases and Figure 2 shows them in various states of completion. You are invited to fill in the remaining cells. You will find that in no case are more than four moves necessary.

Here is the terminology I shall use in discussing this puzzle:
Board The 5 x 5 board of squares; Square or cell a single square on this board;
Move a knight's move in chess, one square orthogonally then one square diagonally;
Trip a sequence of one or more moves from one cell to another;
Value (of a cell) the least number of moves to reach the cell from the starting point;
Generation all the cells on a board with the same value; the first generation is all those with value 1 , and so on.

The procedure for calculating all the values on a board for a given starting point is straightforward. The first step is to mark with value 1 all those cells which can be reached in one move from the start square, which is marked 0.

The second step is to take each of these squares just marked in the first generation and mark with value 2 all those cells which can be reached in one further move, except for those which have already been given a value This step is then repeated for each succeeding generation until all the squares have been marked. This all seems straightforward and you might think that writing a program to do it was hardly worth talking about. Certainly there are no deep principles or difficult ideas involved. Nevertheless, this innocent puzzle is like a small jewel box: open it, set about solving it by program, and there are all these tiny fascinating questions.

2	3	2	3	4
3	2	3	2	3
2	1	4	3	2
3	4	1	2	3
0	3	2	3	2

Fig 1 Least number of knight's moves needed starting from a corner square.

Notice, for example, that towards the end, for the last one or two generations, it would be more efficient to invert the procedure and look at each remaining cell in turn to see if it could be reached in one move from a cell in the last generation. If you completed the squares in Figure 2, you have made this switch in method without even thinking about it. With only one cell left unmarked you can simply see that it can be reached in one more move. No need to look at every cell in the last generation to see where they lead to.

This typifies one of the common problems in programming. A task may be so trivial for a human to perform with pencil and paper that the method used is hardly thought about, while to write a program to do the same thing automatically turns out to be awkward. Turning back now to the main puzzle, there are, as is often the case, items to be selected, moves to be made, or conditions to be met which are easy to do by hand and eye but tricky to turn into code.

The problems here are:

1. Selecting the squares in the generation just produced as the starting points for the next generation. Visually, it is not necessary to inspect each square to
see if it is one of those with the right value as the eye picks them out without the need for any apparent thought;
2 To list the squares that can be reached from a given one in a knight's move is trickier by program than it is by hand;
2. Ensuring that the squares that are one move away are within the area of the board may not even be noticed as a problem by a human solver but a program is certain to need to test for this.

I have written two programs to list the number of moves needed to reach any square from a given starting point. The different approaches and methods vary in the quantities of code, storage and processor time they need. This may not matter for these smallish programs but they are often important factors, especially when a small machine is being used. For larger problems they can make the difference between being able to solve it or not on your computer.

There are no best solutions, however.

Fig 2 Partly completed arrays for the other five possible starting squares.

It all depends on what resource you are most keen to save: programming effort, storage space or running time. And usually there are trade-offs as less use of one resource entails more use of another.

Fig 3 Data structure for program A during the second generation.

In program A I have concentrated on simplicity of coding, with liberal use of memory and reasonable but somewhat wasteful effect on run time. The approaches to the three problems stated above are:
A1 For each generation of starting squares, the whole 5×5 board is scanned for cells with the right value. Inefficient, but simple to code;
A2 For the knight's moves from a given square, a table of eight pairs of relative coordinates is used. These are added in turn to the position of the base cell to give all those that can be reached from it in one move;
A3 The 5×5 board is embedded in a 9×9 board so that there is a border of two squares all round. These border squares are initially set to a different value to those in the inner board: this is the simplest way of testing for moves that go off the board.

Fig 4 Data structure for program B at the same point.

How this works out in detail can be seen by looking through program A.

In program B the following methods are used for the three problems:
B1 Instead of scanning the 5×5 array for cells with the current value, a list is kept of cells in the order in which values are allocated to them and grouped by value. There is a pointer to the first cell
with each value;
B2 To generate the knight's moves from a given square, code replaces the list of relative coordinates;
B3 Similarly, to test whether a square is off the board, logic is used rather than the border of squares.

These different approaches can be adopted independently. However, having an array of cells to scan as in A1 works naturally with having border cells as in A3. A mixed method, with a list of cells as in B1 and an array corresponding to the same cells as in A1 but without the border squares, is quite workable. The method of generating the knight's moves does not affect the way the other problems are solved.

Now let us turn to some possible refinements. First there is the possibility already mentioned of switching the method of scanning for the last generation or two. This is not relevant to method B1 because the cells to be used are already listed and in any case there is no representation in this method of the cells which have still to be allocated values: they are simply the ones that are not yet on the list.

The point at which it is advantageous to switch to the alternative scan is when there are fewer cells left to be given values than there are in the generation just completed. This is easy enough to test for. A new counter is needed for the number of cells in the current generation while the number of cells remaining is $25-\mathrm{M}$. These should be compared at the end of each generation, that is after statement 440 in program A. A piece of code is then needed, modelled on statements 320 to 440 . The statement corresponding to 340° is altered to test for equality with -1 , indicating a square not yet allocated a value. The statement corresponding to 380 is altered to test for equality with $\mathrm{N}-1$, indicating a cell in the last generation. The saving is small, even if a larger
board were being dealt with, but it serves to illustrate the kind of refinement possible.

Programs A and B are almost the same length. The main loop in A is only half the length of that in B, including the subroutine but not the print statements. The code in A is easy to follow. In B the code to generate the knight's moves is more opaque - it just happens to work. The main difference between the programs is the way the data is organised - an array in A and a list in B. This is illustrated in Figures 3 and 4 which shows the state of the data at the same point part way through the second generation of cells.

Symmetries

There is another kind of saving that a human might make in solving this problem, by taking advantage of different kinds of symmetry. The 5×5 arrays contain two sorts of redundant information. First, some of the arrays have an axis of symmetry. Figure 5 shows these for the six cases of Figures 1 and 2. The array in Figure 1, for example, is symmetrical about the diagonal through the start cell. It is only necessary to compute the values for the cells along the diagonal and on one side of it: those on the other side can simply be copied. They are all needed because a path to a cell on one side of the axis of symmetry may go to a cell on the other side. In Figure 1, for example, the cell value 2 in the middle of the bottom row can only be reached in two moves via the 1 cell in the other half of the array.

In the six arrays there are four different kinds of symmetry, including none in the second array. This is reduced to three kinds as it will be shown in the next section that the sixth array need not be computed. This still leaves code to be written to distinguish the cases, and further code for the

$530 \mathrm{R}(1)=1$
$540 \mathrm{~S}(1)=1$
$550 \mathrm{~T}(1)=1$
$560 \mathrm{~T}(2)=2$
570 FOR I=T(L)TOT(L+1)-1
$580 \mathrm{P}=1$
590 Q $=2$
$600 \mathrm{U}=\mathrm{R}(\mathrm{I})$
$610 \mathrm{~V}=\mathrm{S}(\mathrm{I})$
620 FOR J=0TO3
$630 \mathrm{X}=\mathrm{U}+\mathrm{P}$
$640 \mathrm{Y}=\mathrm{V}+\mathrm{Q}$
650 GOSUB 800
$660 \mathrm{X}=\mathrm{U}-\mathrm{P}$
$670 \mathrm{Y}=\mathrm{V}-\mathrm{Q}$
680 GOSUB 800
$690 \mathrm{P}=\mathrm{P}+\mathrm{J}-2$
700 Q=Q-J
710 NEXT J
720 NEXT I
$730 \mathrm{~L}=\mathrm{L}+1$
$740 \mathrm{~T}(\mathrm{~L}+1)=\mathrm{N}+1$
750 GOTO 570
800 IF X<1 THEN 920
810 IF X>5 THEN 920
820 IF $\mathrm{Y}<1$ THEN 920 830 IF Y>5 THEN 920 840 FOR K=1TON
850 IF R(K) <> X THEN 870 860 IF S(K) $=Y$ THEN 920 870 NEXT K $880 \mathrm{~N}=\mathrm{N}+1$ $890 \mathrm{R}(\mathrm{N})=\mathrm{X}$
$900 \mathrm{~S}(\mathrm{~N})=\mathrm{Y}$
910 IF N=25 THEN 930 920 RETURN 930 PRINT"MAX VAL = "; L 940 PRINT R,S,T 950 END
$R \& S$ list cells, T is pointers to $R \& S$
Set pointer to current position in T
Index of last entry made in R \& S
X and
Y coordinates of start point
Pointer to 1st item in R \& S
Pointer to start of 1st generation in R \& S
Main loop for a generation: only 1 item 1st time
Start values for relative X and
Y coordinates
Copy X and
Y coordinates and base cell
Loop to generate relative coordinates
Set absolute \mathbf{X} and
Y coordinates
Test if this cell is on the board \& not yet set
Set 2nd set of
absolute coordinates
Test these
Increment relative X and
Y coordinates
End of loop for coordinates
End of main loop
Increment L for next generation
Enter pointer for start of next generation in R \& S
Return for next generation
Subroutine to test cell coordinates
Is X coordinate on the board
Same test for the
Y coordinate.
Loop to test if this cell has already been set
If X coordinate is different, next entry
If Y coordinate is the same, cell already set
Next item in list
Cell not yet set: increment pointer
Put new X and
Y coordinates in the list
If all cells set go to print results.
Return to main program

Program B
diagonal and vertical symmetries. A lot of effort for rather small return. On larger boards there will be relatively fewer arrays with symmetry, so that even here the saving will not be great. The second kind of symmetry arises from the fact that in the set of cases for all six starting points, most paths appear twice: once for each end, if the end cells are of different sorts. For example, in Figure 1, to get from a corner square to the centre takes four moves. In Figure 2(e) it takes four moves to get from

Fig 5 Axes of symmetry for the six arrays of Fig 1 and 2.
the centre of a corner square. The only routes which are not duplicated are those which begin and end on the same kind of square. In Figure 1 again, the route from corner to opposite corner is not repeated elsewhere. To take advantage of this kind of symmetry would
kind of improvement that should be considered even if it is rejected.

Generalisation

It has already been suggested that these programs can be generalised to deal with larger boards. But before that we should put in a loop to set up the different start squares automatically.

Fig 7 Central squares on a 6×6 board.

This could be done just be setting the coordinates explicitly. In terms of program A this is done in statement $290 \quad A(3,3)=0$ then $A(4,3)=0$, $\mathrm{A}(5,3)=0 \mathrm{~A}(4,4)=0$ and $\mathrm{A}(5,4)=0$. But since we want to extend this to the general case it is better to generate these values by program:
290 FOR G=3TO4
292 FOR H=GTO
294 A(G.H) $=0$

482 NEXT H
 484 NEXT G

This leaves one last awkwardness in generalising to any size of square board. Odd and even sizes differ slightly. With an even-sided board there is no centre square but a set of four central squares, as shown in Figure 7 for a 6×6 board. It is not possible to omit the array starting at one of these squares without a bit more thought. Not all the paths from such a square will have been dealt with in earlier arrays. But the only cases not covered are trips from one central square to another. The moves needed are also shown in Figure 7. Let us, for the sake of discussion, not rely on this always being the case. The outer loop for the 6×6 board would then be 290 FOR G $=3$ TO5

292 FOR H = GTO5

To generalise this further to cope with both odd and even boards, the following code is needed:

290	INPUT D	Board size Half board size
292	E=INT (D/2)+2	Hall rounded down +2
294	F=INT (D/2+0.5)+2	Half board size rounded up +2
296	FOR G=3 TO E	The 2 loops 298 FOR H=G TO F
as before.		

Various statements throughout the program would need to be changed to use D, the length of the side of the board. For example, the test for completion of the array would become

410 IF M=D* D THEN 470

The dimensions of A would have to be increased to allow for the largest board that was to be solved. Similar amendments would be needed in program.B.

GOTO page 146

PACKITIN

by Roger Morgan，Joan Rosell and John McMullan

Most microcomputers are able to store large volumes of data on magnetic media such as cassettes or floppy disks． Nevertheless，when used for automatic data collection，even the largest cassettes or disks can be too small．This article describes a method for improving the storage capacity for numerical data． The specific examples are intended for the PET but it is easy to adapt them for any Basic－speaking microcomputer．

Numbers are usually stored as strings of numeric characters，which can in－ clude the numbers 0 to 9 ，the sign，the decimal point and the exponent E ，and they are terminated by a terminator character，such as a new line．Such storage is provided very simply by the Basic interpreter by means of a state－ ment such as 10 PRINT 1 ，X．In mathematical terms this is known as counting in base ten．

It is possible to represent numbers by counting in bases other than ten． Computers count in binary or base two using symbols 0 and 1 ．Assembler code usually counts in hexadecimal，using 0 to 9 and A to F．In fact，any integer base is permissible provided that one has enough distinctive symbols．The advantage of using a higher base than ten is that it allows one to represent a bigger range of numbers with a given number of characters．To make this clearer，let us consider the problem of representing positive whole numbers． In decimal counting，a two－character number has a maximum value of 99 ．In binary characters，the maximum is 3 （11）．If one goes to a higher base，such as 16 ，the maximum rises to 255 ． Generally，the maximum integer which can be represented by C characters when counting in base B is $B C-1$ ．

For the present purpose，the advan－ tage of counting in bases higher than ten is that it allows one to use fewer characters to store numbers of a given range．Once again，let us make this clearer by studying the problem of storing positive whole numbers．Let us imagine that an experiment produces results over the range 0 to 4095，as might result from a 12 －bit A / D con verter．In decimal notation，this can require up to four characters，plus a terminator character．If instead one chooses to count in base 64，one needs only two characters plus a terminator． Thus the number of characters is reduced from five to three．Indeed，if one decides to insist that all numbers should be two characters long，one can do without the terminator altogether， reducing the character count to two． This last step is almost always bene－ ficial because，though it apparently ＇wastes＇a character for numbers from 0 to 63，this wasting is not really a waste because one would have needed two characters anyway，the number and the terminator．

As an example of the benefits of such，an approach to storing large volumes of data，consider Program 1.

A random whole number is generated with value between 0 and 4095 ，by line 20．It is then divided up into two parts the first representing＇sixty－fours＇and

```
1 LET Q=32
    10 DIM M(1006), C$C10日a
    20 LET R=INT(RNDK1)*64*E4)
    30 LET RI=INT (R/G4)
    40 LET RE=R-{64*F1)
    5 0 ~ P R I N T ~ F R 1 , ~ F \% ~
    60 LET M(C)=F
    100 LET F*=CHF:(R1+Q)
    110 LET E= =CHR*(R2+Q)
    120 PRINT H*;B%;
    13E LET C$(C)=A+$Bt
    140 PRIHT C$(C)
    220 IF C=19ag GOTO 290
    220 IF C=1040 GOTO 290
    254 GOTO 20
    300 PRINT 1, 1,
    310 FOR C=01 TO 939
    310 FOR C=0 T0 9% 
    330 PRINT M(C)
    339 PRINT M(C)
    350 NEXT C
    355 PRINT
    355 PRINT
    360 OFEN 1,1,1
    37a FOR C=0 TO 9%9
    339 PRINT#1,CI(C)
    390 FRINT C:(C).
    409 LET A$=LEFT$(C$(C),1)
    410 LET B = =RIGHT\(CF(C),1)
    420 PRINT A$; B
    43A LET R1=ASC(F*) -R
    440. LET R2=ASC(Bま)-G
    450 LET R={R1*64) +R=
    4 6 0 ~ P R I N T ~ R ~
    470 NEXT C
```



```
    60% STOF
Program 1
```

the second representing＇units＇，by lines 30 and 40 ，and then for interest and illustration，the original number and its two divided parts are printed out in ordinary decimal notation by line 50．The two parts are now given a character representation and the ob－ vious ones to use are 64 characters of the ASCII set，starting at 0 ．Unfor－ tunately the characters 0 to 31 are unprintable in the sense that they are control characters rather than screen symbols，so they are somewhat diffi－ cult to follow；it makes better sense to use the 64 characters starting at 32 （space）and ending at 96 （backward arrow）．All these characters are prin－ table，so it becomes easy to display them for interest and illustration； this is done by line 120 ．Next comes one of the useful features of Basic character facilities，the ability to add strings to form longer ones．This is done in line 130 ，forming a string which when printed by line 140 ，should look identical to the pair of characters printed by line 120.

The above has accomplished the essential encoding of the numbers，and has also stored the results of encoding in the arrays $\mathrm{M}(\mathrm{C})$ and $\mathrm{C}(\mathrm{C})$ ．Lines 300 to 350 record the 1000 numbers on to cassette tape using the conven－ tional decimal system with a newline as the terminator，also displaying the numbers to ensure correct operation． Lines 360 to 500 record the numbers in their encoded two－character form， without a terminator，and also display the two－character string，the two separate single－character parts；and the
decimal number equivalent，again to satisfy oneself that the system really is working．

When this program was run on a PET，the recording of the first batch of data，from line 300 to line 350 ，was found to take $4 \min 25 \mathrm{sec}$ ，while the second batch in its encoded form， including the time taken to decode for display on the screen，took only 2 m 45 s ．Thus there is an appreciable saving of time in recording．More significantly， when the two batches of data were replayed through an ordinary audio tape recorder，the decimal batch took up 3 m 57 s of tape，while the encoded batch took only 1 m 20 s ，almost exactly one third of the tape．

```
1 IIM A(1000),D(1000)
2 LET Q=32
10 OFEN 1,1,0
15 PRINT "FOUHD IATA"
20 FOR C=9 T0 999
30 INFUT#1,A<C
4 0 \text { PRINT R(C)}
```



```
60 CLOSE 1
100 PRINT "TO GOO ON PRESS KNEY RHD RET
105 INFUT Z*
110 OPEN 1,1.0
115 PRINT "FOUND DATB"
120 FOR C=0 TO 999
130 GET#1,At
140 GET#1,F
160 LET R1=ASC(FA*)-Q
1.0 LET R2=HSC(B$)-Q
18@ LET D(C)={R1*E4)+R2
190 FRINT ICC)
20日 NEXT C
210 CLOSE
22G FRIHT "TO YERIFY PRESS KEY FNDD RET"
225 IHFUT 25
230 FOR C=6 T0 999
244 IF R(C)< \ILC) THEN FRINT "ERRCIR ";C
245 IF H(C)=D(C) THEN PRINT C;" OK"
250 NEXT C
260 FRINT "IOHNE
360 STOP
Program 2
```

Having recorded the data，it is neces－ sary to write a decoding program for recalling it－see Program 2，which also checks that the system has worked． Lines 10 to 60 recall the decimal－ recorded numbers and put them into array $\mathrm{A}(\mathrm{C})$ ．Lines 110 to 210 recall the encoded numbers，decode them and put the results into array $D(C)$ ．Finally lines 230 to 260 compare the two arrays and notify any mistakes．When this program was run，the recall of the first batch took 4 m 30 s ，the second batch took 2 m 15 s and there were no errors． Thus the system saves recalling time as well．

Having succeeded in our initial aim， it is tempting to push the idea as far as it will go，by counting in the highest base available to us．With the PET and most other microcomputers，the maxi－ mum number of different characters is 256 ，so it should be possible to count with this as base．This makes a very useful facility for 8 －bit A / D converters， which have a range of positive integer outputs from 0 to 255 ，allowing each measurement to be stored with only a single character．As mentioned earlier， some of the characters are unprintable， but this does not prevent their use on tape．The program might then be very

```
10 DIM M(1000)
    20 LET R=INT (RND(1)*254)
    30 FRINT R.
    46 LET M(C)=R
    5 0 . L E T ~ C = C + 1
    60 IF C=1000 G0T0 90
    70 GOTO 20
    90 F'RINT
    10E1 OFEM 1,1,1,"DATA254"
    110 FOR C=0 TO 999
    120 PRINT年1, M(C)
    130 FRINT M(C)
    140 NEXT C
    150 LLGSE 1
    155 F'RINT
    1G0 OPEN 1,1,1,"DATB254"
    170 FOR C=6 TÖ 999
    172 IF M(C)<9 THEN J=1
    174 IF M(C)>=9 THEN J=?
    180゙ LET H*=CHRま(M(L)+J)
    190 PRINTH1, F%:
    200 FFFIHT MCC)
    210 NEXT C
    220 CLOSE 1
    230 STOF
Program 3
```

simple；the main job of encoding would be done by a line such as
10 LET A $\$=$ CHRS（ X ）
Attempts to use such an approach met with some unexpected faults．The symbol corresponding to CHRS（ φ ），the ASCII character NUL，caused the pro－ gram to crash during recall，for reasons which are by no means clear．Fortu－ nately，it is easy to avoid the problem by changing the program line to 10 LET A\＄＝CHRS（X＋1）

This allows the program to store and recall the number \emptyset without crashing， but also restricts the largest number to 254 instead of 255 ，an acceptable limi－ tation．A further problem produced the rather bizarre effect of missing a
number whenever it had the value 9 （corresponding to CHR\＄（10），the ASCII character LF or line feed）．This could have been avoided by adding 10 to every number，but since this would restrict the maximum number to 245 it was felt to be extravagant．Instead the inelegant procedure was adopted of adding 1 to the number if it was less than 9 ，and 2 to the number otherwise． This restricts the maximum to 253 ．

Program 3 generates random num－ bers from 0 to 253 ，records them in the usual decimal notation，and then records them again in coded form．When tested on a PET，the recording of the first batch of data took $3 \mathrm{~m} \mathrm{40s}$ ，and the second took 1 m 50 s ．Playing back through an audio tape recorder，the first batch occupied 3 m 20 s and the second batch 50 s ，representing a tape saving of a factor of four．Recalling the numbers using Program 4 took 3 m 50 s for the first batch and 1 m 40 s for the second batch，with no errors．Thus this is a very satisfactory system．

Up to now we have dealt with whole numbers only．Some types of data recording systems can produce decimal fractions and it would be useful to devise ways of handling them．The simplest way is probably to multiply them up to a whole number，possibly rounding or truncating where appro－ priate．Alternatively，it would be possible to encode the figures before the decimal point and after the decimal point as separate entities，imitating what is already done in ordinary decimal

```
10 IIM A(10000), B< 1000)
10 Imm R(1606), B<1000)
30 FOR C=0 T0 g99
30 FOR C=0 TO G
40 IHFUT# 1,A(C)
5 0 ~ P R I N T ~ प ् H ( C ) , ~
6. NEST C
PO FRINT
90 CLOSE
1%9 FRINT
110 UPEN 1,1,0."DATB254"
110 UPEN 1,1,6. DR 
lug FOR C=员 TO 999
146 GET#1, 隹
50 LET こ=ASC(R素)
52 IF Z<10 THEN J=1
154 IF Z \>=16 THEN J=2
156 LET E<C\ = Z-J
156 LET E(C)=Z-
60. FRINT B(C),
17@ MEXT C
ga PIOSE
190 CLOSE
```



```
220 IF A(C)< E(C) THEN PRINT "ERROR",C
220 IF A(C)<又E(C) THEN PRINT "ERROR"
23G IF F(C)=E(C) THEN FRINT C, "OK"
551 NEXT C
60 FRIHT "DINE"
300 STOP
Program 4
```

counting．Indeed，the system can be made as simple or as complicated as the user needs it to be．

The operation has been described entirely in terms of cassette recording． Obviously，however，the system can be adapted to suit floppy disks．In this case，the object is not to save time，since disks are so quick anyway，but rather to improve the storage capacity．The factor of improvement should be roughly in the same proportion as the saving in tape consumption．It is worth remarking，however，that we have not actually tested the system with disks．

Corimpinalter

FEATURE INDEX

Benctiest		Evaluations		Special		Programs	
Transam Tuscan	4－1	MTU PET Music Board	4－1	reaumes		TRS－80 Four in a Row	4－1
Vector Graphics VIP	4－2		4		4－1	PET Convoy	4－1
		Cacuator		MAVIS - Aid for	4－1	PET Wire	4－1
				Handicaṕped	4－1	PET Maze Chase	4－1
Secrets of Systems Analysis		OT1		Model Train Control		PET Android Attack	4－1
Analysis Gateways to Logic	4－1，2	Casio Routines	4－1	System	4－1，2	PET Obstacle Course	4－1
Gateways to Logic Computer Games	4－1，2	More Casio Quirks	4－2	Data Tape Recovery	4－1		4－1
Computer Games Face to Face	4－1			The Last One （Program－writing		ZX80 Bumper Bundle	
Printer Interfacing	4－1	ICOXeS		system）	4－2	（3 programs）	4－2
Microchess	4－1	1980 Complete Volume	4－1	Punter＇s PET	4－2	PET Brick Stop	4－2
Multi－user Systems	4－1						
Patterns	4－2	－－nacte					
		ZX80 Printer	4－2				

by Kevin O'Connell

 JAWS MKIIILast month I promised to let you know how the Chess Champion Mark V* fared in the Islington tournament. Although it somewhat disappointed its programmer, it still acheived a better performance rating than, to my knowledge, any other chess micro has yet achieved.

In 1979 Sargon 2.5 (as it then was) played in a human tournament in the United States and obtained a rating of 1640. In Islington every one of the Chess Champion's opponents was rated 1700 or over and by scoring $2^{1 / 2}$ points out of 6 it achieved a rating for itself of 1700 , thus proving itself to be a stronger player than 80 percent of all serious human chess players and stronger than more than 99 percent of humans who play chess. It might have done even better but for a bug that caused it to lose its last round game without a real fight.

Chess Champion's best game of the tournament was played in the 4th round, its human opponent having a rating of 1760 , placing him comfortably among the top 1% of humans. The game developed as follows:
White: A Bice
Black: Chess Champion Mk V

1	d2-d4	d7-d5 2
2	e2-e3	Ng8-f6
3	Bf1-d3	e7-e6
4	f2-f4	Bc8-d7
5	Ng1-f3	Bf8-b4+
6	c2-c3	Bb4-e7
7	Nb1-d2	$0-0(K e 8-\mathrm{g} 8)$
8	$0-0($ Kel-g1)	Be7-d6
9	Nf3-e5	b7-b6
10	a2-a4	Nb8-c6
11	Qd1-f3	h7-h5?

A weak and rather curious move that surprised the programmer and the onlookers.

12	Qf3-h3	Qd8-e7
13	g2-g4	h5x94
14	Ne5xg4	g7-g6
15	Ng4-e5	a7-a5
16	Qh3-h6	Ra8-c8

Although Black has developed all of its pieces, White's position is much better. Black has no active plan to use as a counter to the slow build-up of a king-side attack by White. However, computers do not relax, while humans do.
17 Rf1-f2?
Bd6xe5!

This wins at least an exchange (rook for knight or bishop). If 18 f4xe5 Nf6-g4 followed by 19. . Ng4xf2
18 Rf2-g2
White thought that he had a very strong attack after this move and it was the best practical chance.

18

18	Bd3xg6	Be5-d6
20	Rg2xg6+	

At this point some of the spectators began to laugh at the program's poor play: snatching at material and allow. ing a mating attack - little did they know. . .
20
Kg8-f7
21 Rg6-g7+ Kf7-e8
22 Rg7xe7+ Ke8xe7
$23 \mathrm{Kg} 1-\mathrm{f} 1$
Otherwise the black rooks would immediately start an invasion along the open g-file.

$23 \quad$| 24 | Rf8-g8 |
| :--- | :--- |
| Re8-f8! | |

Building up irresistible pressure against the white king.
25 Nf3-g5 Bd7-c8
26 Qh6-h3?
This hastens the end, but White was already lost.

26	én-e5	
27	Qh3-g3	Nf6-e4
28	Ng5xe4	

White's best chance was $28 \mathrm{Qg} 3-\mathrm{h} 4$, hoping that Black would get lost in the complications after 28. Ne4xg5. But White was now feeling rather demoralised.

Rg8xg3

29 Ne4xd6
Bc8-h3+!
There is no rush to recapture the material - that can wait while Black further improves its position.

30	Kf1-e1	Rg3-g1+
31	Ke1-f2	Rg1.g2+
32	Kf2-e1	c7xd6
33	d4xe5	d6xe5
34	b2-b3	Rg2xh2
25	Bc1-a3+	

This was White's very last hope, but it was completely crushed by
35 ... Ne6-b4!!
A beautiful move. If 36 c $3 x b 4$ Rf8g8 $\quad 37$ b4xa5+ Ke7.f7 (or any other white square) and then 38 . . .Rg8-g1 will be mate.
36 Ra1-d1 Rf8-g8
37 White resigned
It is mate in two (at most).
This game was impressive not so much because the machine beat the human, even though I believe this is the strongest human any micro has ever beaten in open competition, but because of the manner of the program's victory. White made a serious mistake and was then ground relentlessly (and rapidly) into the dust.

If you have a chess program that can play anything like as well as the Chess Champion Mark V then please let me know (send me some games it has played) and I will be delighted to mention it in this column, as well as booking it a place in the next World Microcomputer Chess Championship.
*The Chess Champion Mk V is not commercially available at present.

TRANSACTION FILE

The classified service that's free to non-commercial readers. Advertisements (50 words max) to:
 PCW Transaction File, 14 Rathbone Place, London W1P 1DE.

For sale

Grandstand/Fairchild . . . prog TV game in good cond \& fuiliy WSORKing, c/w box instructions, PSU, 1 cartridge, £35 ono. Als
cartridges (Spitfire, Breakout, cartridges (Spitfire, Breakout, Tel Barry after 4.30 or weekends. $01-5011661$.
ZX80 . fully ass, working, in inc mains adaptor, manual \& all leads. Inverse video switch fitted plus tape with many progs, sub plus tape with many progs, sub cond, $£ 90$. Tel 021-3511730.
Nascom $1 \ldots$ with $\$ 100$ bus, $16 k$ static RAM, switchable NasSys T4, CUTS \& Nascom tape ints (variable baud to 1200), port status indicators many extras, all documented, fully cased, remote kbd 200 software (not games) £450. Tel Langport (0458) 350834 .
PET 32k... large keyboard. green screen, new ROMs fuperman inc Toolkit. Rabbit disk DOS. Computhink dual disk disk DOS. Computhink dual dis of software etct, sensible offers please. Tel 0905813558.
UK101 $\ldots 8 \mathrm{k}$, Microtype 3 case AY 8910 sound board, complete with leads, tapes \&
documentation, ready to run £300. Tel 041-956 1768. Ex IBM/360 . . golfball console, converted for office golfballs, parallel interface, complete with manuals, connector \& details of how to interface to a parallel port port, many extras available if req. Comp Shop asks $£ 650+$ VAT Aylward, 063456830 .
KB756 keyboard . . \&35. 211-A RAMs, new, $£ 2.50$ or $£ 40$ lot (20) Superboard P1A $£ 15$. Light pen, £8. ETI March 77 to April 79. offers. Mistry 75 St Margaret'
Apple II $+48 \mathrm{k} \ldots$. With disk \& controller. 4 m
$01-4505049$.
TRS-80 L2 16 k . . little used VDU, cassette, P/S, ref manua some games tapes, $£ 380$. Tel
Medway 31757 after 7.
T158 . . good cond, in box with manuals, charger, module etc, in a few progs, \&40. Tel Tim,
Burnham-on-Sea (0278) 785845.
ZX80 ... boxed as new, Sinclair built with leads \& PSU, $£ 75$. Also $£ 43$ of commercial software, $£ 20$
or both for $£ 90$. Tel Menai Bridge

TRS-80 L2 16k... with monitor \& software, editor/assembler Bug, monitor 3, Sysdmp, 6 months old, perfect \& boxed as new worth $£ 600$, accept $£ 395$.
Tel 095480437 , eves.
UK101 . . . prof built, tested, cased, assembler /editor, plus own software, 4k RAM, manuals etc,
$£ 230$ ono. Tel 01-300 5987 . ZX80... Sinclair built, never use used, genuine reason for sale, offered complete with all lead
manual, Sinc PSU, expansion board with additional 1k memory. cost $£ 136$, accept $£ 86$. Tel By flee By fleet 40712 .
PET 32 k . . disk sy stem comprising 8k PET, 24 k Expandamem, new ROMs, Computhink 40 key disk over 250 progs $£ 1150$,

UK101.. $8 \mathrm{k}, 2 \mathrm{MHz}$, cased, progs, Basic $\&$ a m / c code, cass int inust. training manual toads of info, prof assemb, lightly used improved PSU, £260. 140 London Road Nantwich,
Cheshire, Tel 027064403.
HP6 7 . . . mag card prog calc, in very good cond with standard
pac, $£ 90$. Tel 021-421 5372 .

TRS.80 L2 16k
. 16k, latest ROM (needs no debouncing), numeric keypad, crer all manual \& sample tapes, TV mod, etc £350. Software: renum
adventure, typing tutor, flight simulator, duel'n'droids, otc \& $1 / 2$ doz books, \&100. Going to Hons
Kong. Tel Theo, $01-274403$.

PET 8 k .
. new PET 8 k . . . new ROM, built-in cassette; progs: business develop ment, games \& manuals, all for Worplesdon 234474 eves or w/ends.
PET 16k. . new ROM, large keyboard, green screen, cass deck, Toolkit, all as new, documen tation, many games, progs \& 81413 (Greenock).
Data Dynamics .. 390 RO printer, ASCII, plain paper,
teleprinter 110 baud (ideal for
UK101/micros), $£ 250$. Tel 01-959 1844, eves.
Acorn Atom .. 4 k RAM, integer Basic \& assembler in 8 k ROM , PSU \& manuals, built by Acorn. Tel Hemel Hempstead 50500 eves.
Keyboard . . serial printer, 180 Cps, Dacoll LX180, standard V24, RS232 int, monodirectional with stand, form feed control, etc, $£ 20$
$£ 200$. Tel Iver $(0753) 652389$. UK101 . . 8k, cased (Microtype) 2 k Cegmon monitor ROM \& 2 others, sound boarted for TV cassette, etc, all leads, cass player. tapes \& documentation, £285. Tel Bill 041-956 1132 (eves) or
$041-204$
2737 ext 34 (day).
UK101. . 8k Microsoft Basic, 2 k monitor, 4 k RAM, prof built with case, fully working, TV set \& cass gam games on tape
$£ 210$. Tel 0245
$\mathbf{4 6 9 3 7}$ w/ends.
S100 i. bits \& pieces, 8k SRAM card, i 6 k SRAM (inc 4 k chips), 8 -slot motherboard in rack mount chassis with 12.5 A/2 A/2 A PSU, other bits MPU \& TTL chips available. Tel Max, Southampton (0703) $553660 \&$ ask for prices. Colour Micrographics . . \& modulator \& interface for 16 k old ROM PET, instruction \& demo
cassette,
\& 70 . Tel 01-840
3610 .
Sorcerer II 48k . . . Microsoft remaining, with Hitachi TR Q299 cass, 12 unopened Microdigital cassettes, manuals, cables, Adventure cass, $£ 650$ or with Hitachi VM910'9"prof monitor, only £700. All private owner ${ }^{2}$ months. (Retail was 11130 . Steve, Kings Lynn 61538. weekdays 6 am -8 pm .
Fairchild Grandstand ... video entertainment computer, 4 cartridges (Tanks Codebreaker, Robot Wars, Tic Tac Toes) with many other games \& variations, hardly used \& in good cond, ${ }^{\text {\& }} 90$
the lot. Tel Farnborough 54344. Sharp PC1211 . . . pocket comp owner now a computer science student, moving to mainframe $£ 90$ ono. Tel A Scobie, 031-667 6557 after 6.
Nascom 1 ... 16k RAM, 8 A Basic \& Zeap etc, $\& 350$. Tel Paignton (0803) 521237.
HP41C ... 41 C prog calc with alphanumeric display \& per manent memory, complete with manuals, keyboard overlays case, warranty card $\%$ bx, offers around £140. David Morgan, 5 Ashmole Close, Lichfield, Staffs WS149R'S
tel Lichfield (05432) 51300. ZX80 ...guaranteed as new, complete inc leads, mains adaptor, manual, extra 1 k £100. Mr C England Headlands Whitley, Dewsbury, W Yorks.

System 68 . . . home built computer, as ETI magazine, in Verocase, inc b/w TV \& 2 systems oundls, $£ 300$ ono. Also Petso oundbox with demo tape $\&$ anstructions sheet for use on 2nd cass port
(0438)
55807 ono.
eves.
PET serial interface. . drives any $V 24$ serial device, eg Qume Sprin brand new, complete with manuals, maker's price $£ 147.50$ sell for $£ 95$. Tel 03533205 eves.
Triton.. with L 7 monitor \& Basic (Basic not fitted, no nontherboard, full doc \& plenty if software, full on-board RAM. Teleprinters type 7 , one working ne for spares, with service data, reperforator \& tape reader (5 holes), $£ 30$ the lot. Geoffrey Hillier, 5 Ga Gregory St, Lenton,
Nottingham, tel 0602'783938.

Apple $11+48 \mathrm{k}, \ldots 2$ disk drives $\&$
 Silentype printer, DOS 3.3, database \& w/p software, full doc as

Apple II $48 \mathrm{k} .{ }^{\circ}$ \& t win disk since May, many games \& useful s/ware routines, games paddles, manuals \& orig packing, $£ 1100$. Tel Norwich 810675.
T159 . . . brand new, complete, bargain at $£ 110$ ono. T Lawler, Brywater, Ripple Tew

Printer .. super fast 1801 pm erial int $£ 300$ ono. Key board, TASA solid state, parallel ASCH, \& 30 ono. Tel Tring 4797 or St
Albans 64077 .
Sharp TV . . . 4.5" screen with radio \& clock, ideal for use as small monitor for micro (RF in only), ${ }^{£ 50}$ ono. Tel Robert,

ZX80. with Sinclair mains adaptor, leads \& manual, $£ 60$. $021-4447320$ eves.
PET 2001 16k . . . new keyboard \& ROMs, ext cass, lots of s/ware inc 3D Star Trek, Space Invaders Micro Chess, Breakout
Dissembler, Assembler, several Microsoft progs, also manuals \& 6502 , 660 . Tel 01-807 8249 anytime.
ZX80 ... as new, Sinclair built with adaptor, leads \& manual
$\xi_{7} 70$ Tel Horndean (Hants)

Teletype . terminal, cheap hard copy, 130809 .
MZ-80K . . . 20k RAM, in maker's box, as new, bought August last year, inc m/c code tape, Crystal Basic tape \& manuals, plus Space Invaders, delivery not possible, \&500 ono. M Davies, 12 Bishops
Ave, Llandaff, Cardiff CF5 2 HJ . Ave, Llandaff, Cardiff CF5 2 H Superboard II ... 4 k RAM, 8 k Basic, RS232, video \& cass int, properly cased \& assembled, go with all cables, 4 manuals \& sample cassettes, $£ 210$. Tel Windsor 61258 most days. all eves.
PET 8k ... as new with large number progs, d350. PET cass £40. Tel High Wycombe 33164 .
Complete set . . PCW mags, May 7 -Jan 81 (33 issues), 25 ;
Mar 79 -Jan 81 (23 issues) Practical Computing complete except Sept 78 Oct 78 , Dec 79 Nov 80, Nov 78 , Jan 81 (24 Issues issues), £3.50; Creative
Computing Nov 77-Dec 78 plus June 79 , also By te Dec 79, £2. As ets or $\& 12$ the lot, buyer collects. Tel R Wilmot, Horsham (0403)
69835 .

Tangerine Micron... 8 k RAM ${ }_{1}$ 1 /case, chunky graphics \& ASCII kayboard, some games inc space
Invaders, $£ 320$. Tel $01-6906676$.

PET 8 k . . int cass, old ROMs, calc keyboard, upgraded to 32 k $01-5827766$ any time.
Nascom 132 k . . Stuart colour board, Nassys \& Nasbug monitors, Verocase, 8 k Basic \& Zeap assembler on tape, 10 books, oads of progs, good cond, reliable 5 pm .
ZX80 . fully built inc all leads manuals \& memory exp board with additional 1 k RAM $£ 80$. Te Medway, Kent, 063430329 after

HP25C . . . continuous memory, 8 registers, 49 steps, 10 -digit
accuracy, charger, separate charging cradle, spare batt pack 2 yrs old but little used \& still with orig packing \& manuals, owner has bought micro, $£ 50$ Cambridge Terrace, Douglas, IoM.
Expandarnem... board, converts 8k PET to 32 k , complete with Tel manual \& test tape, $\delta 16$
Sorcerer 32k . . Basic (Microsoft 8k), s/ware manual, h/ware manual, cass recorder, many progs inc 1 Adventure game,
\&50. Tel Kim Wood, Eris 2399 r 2 rite 8 Ash Close, Lakenheath Camp, Brandon, Suffolk
TRS-80 L2. .4 k with VDU, SU, manual, instruction tapes, 6 monthsl old, $£ 225$ ono. Tel Alsager (09363) 3365.
12'" monitor . . . new ICL ncased, boxed with ocumentation, giveaway at $£ 50$ or quick sale as surplus to req.

Wanted

Apple II + . ${ }^{\text {dive }}$ with single disk preference, cash waiting. Tel Ken, 0632678828 anytime.
Constructed ZX80... will pay around $£ 60-£ 70$. Contact Jame 62620

Back issues . . . of
Microcomputing, March, April May August \& September. Tel
Nottingham (0602) 206573 .
HP97...prog printing calc or imilar. 21 Leicester Rd, Poole or tel 0202761936
pCW Vol 3 No 1 . moderately good con
272148

Helping Hand. . - say an hour a week for 2 months to get going With a ZX80. Location 2 mins Baker St tu
$2557(\mathrm{pm})$
2X80 . . . must be in good working cond, tel Chelmsford (0245) 57350 eves or w/ends

8 " Shugart 800 i series disk also Centronics 100 series type S100 dynamic memory boards. Harold Easton memory boards. House Broadley St, London NW8, tel 01-723 5822 any time.
PCW Vol 3 nos 1,4 . willing to Alexander Holt Plymt Alexander Holt, Plymtree (08847)

SC/MP MK14.. any reasonable
cond, Mk 5 PCB \& RAM I/O if poss, spare parts \&/or upgrade per PCW articles to PROM proRkammer or intelligent int for 50408 eves

Large keyboard PET
have intact expansion port \&r
4116 sockets. Can collect (50
miles). Tel Sandiway 883436
Eight 6550 . . . RAM chips req to help old PET recover its memory Please send details to Mr D Johnston, 12 Balgillo Rd, Broughty Ferry, Dundee DD5 3L

PCW's 'Packages' section is produced bi-monthly, alternating with our 'In Store' hardware guide. We have confined coverage to business packages which are available and supported at national level and which have been in use for at least six months in a minimum of five sites. Producers of packages which fall within these constraints should send details or updates to: Packages, PCW, 14 Rathbone Place, London W1P 1DE.
The layout has been designed to allow you to discover which packages are available for the computer if you already have a machine. In either case the code enables you to look up the supplier's name and telephone number in the table below.

Code	Company
A1	ACT/Peisoft
A2	Arden Data Processing
B1	B+ B Computer Lid.
B2	Beam Business Centre
B3	Benchmark Computer Systerns
B4	Bristol Software Factory
C1	CAP-CPP Products Lid.
C2	Commodore
C3	Compsoft
C4	Comput-a-crop
C5	Computastore Ltd.
C6	Computech
D1	Data Bank
G1	GraffcomSysterns Lid.
G2	Grama(Winter)Lid.
G3	Great Northern
H1	A.J. Harding
H2	HartfordSoftware
H3	H.B. Computers

Telephone
$021-4545348$
05332255
020426644
$01-6361392$
072661000
02722340
$01-4040911$
$01-3885702$
048339665
$01-499697$
$01-4996987$
$01-7940202$
0509217671
$01-7348862$
$01-668210$
0532450667
0424220391
060676265
053683922

H4	Hipposoft
I1	Intereurope Software Design
12	Intex Datalog Ltd
J1	T.V. Johnson
K1	Katana Management Services
K2	Keen Computers
L1	Lifeboat Associates
L2	Liveport (Exidy Sorcerer Firmware)
I3	Ludhouse (Computing) Lid.
M1	MicroComputer Applications Lid.
P1	Padmede Computer Services
P2	PersonalComputers Lid.
R1	Rockliff
S1	SMGMicroComputers
S2	TheSoftwarehouse
S3	StageOne Software
S4	Systematics International
S5	Sumlock Bondain
T1	Tridata Micros Lid.
V1	Vlasak Electronics Lid.

Applications			
Application	Machine	Price	Code
Appointments planner	Commodore/ Computhink	£100	S3
Assembier dev	PET/CBM	£ 50	L2
Bank accounts	Apple Il	£10	D 1
	Computhink	£100	S3
	ITT 2020	£10	D1
	PET	f10	D1
Bonds/pension quotations	Commodore/ Computhink	£100	S3
Budgeting package	MCZ Zilog	£500 +	II
Bureau de change	CBM	£8	H3
Cash flow	Apple II	£75	P2
	Apple 11	£80	V1
	CP/M	£250	L3
	PET	£8	A)
Cash register	Apple 11	$£ 10$	D1
	ITT 2020	$£ 10$	DI
	PET	£ 10	D1
CBasic	Tandy Model 11	£70	M1
Company secretary	CP/M	£450	C4
Conference organiser	MCZ Zilog	£500+	11
Contract costing	CP/M	£2000	L3
CP/M \& utilities	Tandy Model II	£150	M1
Credit control	Apple II PET	$£ 98$	$\mathbf{P} 2$
Database management/Information retrieval	ACT800	£225	H4
	Apple	¢150	A2
	Apple	¢150	K2
	Apple	£60-140	S2
	Apple	fl^{150}	S5
	Apple II	£98	P2
	Aple 11/1TT 2020 Commodore/	£100	S4
	Computhink	¢45-250	53
	CP/M Cromemco	${ }_{\text {£ } 250}$	C4 $\mathrm{B3}$
	North Star	L250	B
	Horizon	£250	B3
	PET	£170	C3
	PET	£325	AI
	PET	£225	H_{4}
	PET/CBM	875	B1
	PET/CBM	E50/150	C2
	PET/CBM	£150	${ }_{6}$
	Tandy Model 1	£25-80	M1
	TRS-80	£60	S2
	TRS-80	£150	J1
	TRS-80	£32.50	H1
	8000 Series	POR	C2
Disk operating system	PET/CBM	£150	BI
Estate agent	Apple	£850	A2
	Apple	£850	S5
	Apple	¢850	K2
	Apple 11	£175	P2
	Apple11/ITT 2020	£750	S4
	CBM	£30	H3
	Computhink	£250	S3
	CP/M	£750	C4
	PCC 2000 Simpelec Triton 3	£350	B3
	PET	£25	Al
Equipment lease/rent/ HP	CP/M	£400	G1
Financial modelling	CP/M	$£ 400$	G1

Application
Financial planning
Ceneral ledger/NL

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Applicution \\
Petaid report generator
\end{tabular}} \& \multirow[b]{2}{*}{Machine Commodore/ Computhink} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{\begin{tabular}{l}
Code \\
\$3
\end{tabular}} \& \multirow[t]{2}{*}{Application Statistics} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Machine \\
Apple \\
Apple II \\
TRS-80
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Price \\
flso \\
f100-195 \\
f45
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Code \\
G3 \\
P2 \\
\$2
\end{tabular}} \& \multicolumn{4}{|l|}{Mechines} \\
\hline \& \& \& \& \& \& \& \& Machine \& Application \& Price \& Code \\
\hline Petsoft programs \& PET/CBM \& £160 \& J \& \multirow[t]{30}{*}{Stock control/ recording} \& \multirow[t]{2}{*}{Altos (CP/M. MP/M)} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \dot{£} 300 \\
\& \text { POR }
\end{aligned}
\]} \& \& ACT 800 \& Database management/ Word processing \& \[
\begin{aligned}
\& \mathrm{E} 225 \\
\& \mathbf{E 3 7 5}
\end{aligned}
\] \& \({ }_{\text {H4 }}\) \\
\hline Planning/Maint enance \& PET/8032 \& ¢595 \& Sı \& \& \& \& \({ }^{\text {A2 }}\) \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Altos (CP/M, } \\
\& \text { MP/M) }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Integrated accts \\
Mailing list \\
Stock control/recording
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& £ 300 \\
\& £ 75 \\
\& £ 300
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\]} \\
\hline Postal advertising response package \& Apple \& £350 \& S2 \& \& Apple
Apple \& POR POR \& \[
\begin{aligned}
\& \mathrm{K} 2 \\
\& \mathrm{~S} 5
\end{aligned}
\] \& \& \& \& \\
\hline PR/advertising package \& Commodore/ Computhink \& £1000 \& S3 \& \& \begin{tabular}{l}
Apple \\
Apple Apple II
\end{tabular} \& \[
\begin{aligned}
\& £ 150 \\
\& £ 80 \\
\& £ 35 / 98
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { G3 } \\
\& \text { S2 }
\end{aligned}
\] \& Apple \& \multirow[t]{2}{*}{Database management/ information retrieval חatabase management/} \& ¢150 \& K2 \\
\hline Price lister \& свм \& £12 \& H3 \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
Apple II \\
Apple II \\
Apple II/ITT 2020
\end{tabular}} \& E285 \& \(\mathrm{V}_{1}\) \& \& \& flso \& A2 \\
\hline Printers job control \& Commodore/ Computhink \& £250 \& S3 \& \& \& \& \[
\begin{aligned}
\& \mathrm{S} 4 \\
\& \mathrm{H} 3
\end{aligned}
\] \& \& Database management/ information retrieval \& £60-140 \& S2 \\
\hline Production analysis \& Apple II CP/M PET/CBM \& \[
\begin{aligned}
\& £ 75 \\
\& £ 700 \\
\& £ 300
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{P} 2 \\
\& \mathrm{C} 4 \\
\& \mathrm{~B}!
\end{aligned}
\] \& \& Commodore/ Computhink \& £100/250 \& \[
\begin{aligned}
\& \text { KI } \\
\& \text { LI }
\end{aligned}
\] \& \& \begin{tabular}{l}
information retrieval \\
Estate agent \\
Estate agent
\end{tabular} \& \[
\begin{aligned}
\& £ 150 \\
\& £ 850 \\
\& £ 850 \\
\& £ 850
\end{aligned}
\] \& f850
f850 \\
\hline Prof appts groups \& 8080/Z80 \& £275 \& G3 \& \& \multirow[t]{2}{*}{CP/M
\(. \mathrm{CP} / \mathrm{M}\)} \& \[
\begin{aligned}
\& £ 500 \\
\& £ 325
\end{aligned}
\] \& \[
\stackrel{\text { L1 }}{\mathbf{C} 4}
\] \& \& Estate agent General ledger/NL \& \multicolumn{2}{|l|}{18300
E300} \\
\hline Prof appts Individ \& 8080/Z80 \& £220 \& G3 \& \& \& \& B3 \& \& General ledger/NL
General
General
Cencral leger/ NL \& \multicolumn{2}{|l|}{1300
8300
808} \\
\hline Prof client billing \& 8080/Z80 \& £330 \& G3 \& \& Cromemeo 1TT 2020 \& \[
\begin{aligned}
\& £ 10 \\
\& £ 300
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { D } 1 \\
\& \text { PI }
\end{aligned}
\] \& \& General ledger/ \(/ \mathrm{NL}\) L
Incomple rects
Incomplete records \& \multicolumn{2}{|l|}{} \\
\hline Programming aids \& Apple 11 \& £40 \& P2 \& \& \[
\text { ITT } 2020
\] \& ¢150 \& \({ }_{\text {P1 }}\) \& \& Incomplete records Invoicing \& \(\begin{array}{ll}\text { ¢250 } \& \text { ¢29 } \\ \text { S2 }\end{array}\) \& S2 \\
\hline Property management \& CP/M \& £450-1000 \& C4 \& \& North Star \& \multirow[t]{2}{*}{¢450} \& \multirow[t]{2}{*}{B3} \& \& \begin{tabular}{l}
Job costing \\
Mailing list \\
Mailing list
\end{tabular} \& \multicolumn{2}{|l|}{} \\
\hline \multirow[t]{28}{*}{Purchase ledger} \& Apple \& £300 \& A2 \& \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& \text { PCC } 2000 \\
\& \text { Simpelec Triton } 3 \\
\& \text { PET }
\end{aligned}
\]} \& \& \& \& \multirow[t]{2}{*}{Mailing list Mailing list} \& \multicolumn{2}{|l|}{\({ }_{¢ 500}{ }_{50}\)} \\
\hline \& Apple \& \(\mathrm{f} 300^{0}\) \& S5 \& \& \& \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{\text {f14 }}^{5300}\)}} \\
\hline \& Apple \& \({ }_{\text {f }} 5300\) \& K2
C 6 \& \& \& \({ }_{\substack{\text { c12/25/ } \\ 350}}\) \& B2 \& \& Mailing list
Mail shot \& \& \\
\hline \& Apple if \& £300 \& P1 \& \& PET \& ¢10 \& Al
D1
1 \& \& Payroll
Payroll \& \multicolumn{2}{|l|}{POR SS} \\
\hline \& Apple II \& £295 \& P2 \& \& \multirow[t]{2}{*}{PET} \& \& D1 \& \& \({ }_{\text {Payroll }}\) \& POR \& K2
A2 \\
\hline \& Apple 11 \({ }_{\text {Apple } 11 / \text { ITT } 2020}\) \& \({ }_{\text {£ } 250 \text { P }}\) \& - \({ }_{\text {S4 }}\) \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \& Payroll \& \multicolumn{2}{|l|}{\(\begin{array}{cc}\text { POR } \\ \text { ¢200 } \& \text { A2 } \\ \text { S2 }\end{array}\)} \\
\hline \& СВМ \& £350 \& H3 \& \& РЕТ/СВМ \& \& \& \& Postal adverrising \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
S2 \\
K2 \\
A2
\end{tabular}} \\
\hline \& Commodoré \& \& \& \& PET/CBM \& \& A2

Bl
C 2 \& \& response package Purchase ledger \& \multicolumn{2}{|l|}{}

\hline \& CPMputhink \& ${ }_{\text {PSOR }}$ \& $\begin{array}{r}\text { S3 } \\ \hline\end{array}$ \& \& PET/CBM \& £150 \& \& \& Purchase ledger \& £300 \&

\hline \& CP/M \& ¢450 \& G1 \& \& \multirow[t]{2}{*}{PET/Computhisk PET/8032} \& $\begin{array}{lll}\text { 250 } & \text { R1 } \\ \text { f395 } & \text { Si }\end{array}$ \& G2
R 1 \& \& Purchase ledger \& ¢300 \& S5

\hline \& CP/M \& Es00 \& L3 \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{${ }_{\text {f30-50 }}$}} \& \& Sales ledger \& £300 \& A2
K 2

\hline \& CP/M \& E425 \& Li \& \& | Tandy Model I |
| :--- |
| Tandy Model 11 | \& \& \& \& Sales ledger \& £300 \& SS

\hline \& Cromemio \& £250 \& $\stackrel{\text { B3 }}{ }$ \& \& | Tandy Model 11 |
| :--- |
| TRS-80 | \& \multicolumn{2}{|l|}{} \& \& record accounting \& £3000 \& S2

$\mathrm{G3}$
$\mathrm{G3}$

\hline \& ITT 2020 \& ¢300 \& PI \& \& TRS-80 \& \multicolumn{2}{|l|}{${ }_{\text {£ } 2115}$} \& \& Statistics ${ }^{\text {Stock control/recording }}$ \& \multicolumn{2}{|l|}{${ }_{1500}^{53000}$}

\hline \& North Star \& \& B3 \& \& TRS-801 \& \multicolumn{2}{|l|}{${ }_{\text {f200 K }} 115$} \& \& Stock conirol/recording \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{$\begin{array}{ll}\text { POR } \\ \text { POR } & \text { K2 } \\ \text { A2 }\end{array}$}}

\hline \& PCC 2000 \& 1230 \& B \& \& \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& \text { TRS-801 } \\
& \text { TRS-801I } \\
& 8080 / Z 80
\end{aligned}
$$

\]} \& \multicolumn{2}{|l|}{| $£ 200$ | T1 |
| :--- | :--- |
| $£ 375$ | T 1 |} \& \& \multirow[t]{3}{*}{Stock control/recording Stock control/recording Stock control/recording Time/cost recording} \& \&

\hline \& \multirow[t]{3}{*}{Simpelec Triton 3
PET

PET} \& £350 \& \multirow[t]{2}{*}{${ }_{\text {B2 }}^{\text {B4 }}$} \& \& \& \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& £ 275 \\
& £ 325
\end{aligned}
$$

\]} \& \[

$$
\begin{aligned}
& \mathrm{T} 1 \\
& \mathrm{G} 3
\end{aligned}
$$
\] \& \& \& \multicolumn{2}{|l|}{${ }^{880}$}

\hline \& \& ${ }_{\text {E93 }}{ }^{\text {che }} 120$ \& \& \& $$
\begin{aligned}
& 8080 / Z 80 \\
& 8080 / Z 80
\end{aligned}
$$ \& \& \& \& \& £450 \& S2

\hline \& \& 350 \& A) \& TAP business system \& PET \& £125. \& H2 \& \& Video message \& $¢ 200$ \& ${ }_{\text {G }}{ }_{\text {K }}$

\hline \& PET/CBM PET/CBM \& $$
\begin{aligned}
& \text { £200 } \\
& \text { POR }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{C} 2 \\
& \mathrm{~J} 1
\end{aligned}
$$
\] \& Text file librarian \& Apple 11/1TT 2020 \& £125 \& S4 \& \& Word processsing \& f75 \& ${ }_{\text {A2 }}$

\hline \& | PET/8032 |
| :--- |
| Tandy Model 1 | \& ${ }_{\text {¢ }}^{695}$ \& \[

$$
\begin{aligned}
& \mathrm{S} 1 \\
& \hline 1
\end{aligned}
$$
\] \& Time/cost recording \& Apple Apple 11 \& £450

£ 300 \& ${ }_{\text {P1 }}^{\text {S2 }}$ \& \& Word processing
Word processing \& ¢60 \& S2

\hline \& Tandy Model II \& 190 \& M1 \& \& Apple Il \& ${ }^{\text {f12 }}$ \& P2 \& Apple ! \& Word processing \& 110 \& DI

\hline \& TRS-80 \& £22s \& $\stackrel{\mathrm{H}}{1}$ \& \& Commodore/ \& \& \& \& Cash fow \& ¢80 \& V1

\hline \& TRS-801 \& £225 \& Ti
K1 \& \& Computhink \& POR \& G3 \& \& Cash flow \& ¢75 \& P^{2}

\hline \& TRS-8011 \& $\underline{6375}$ \& TI \& \& Cromemco \& £250 \& B3 \& \& Credit control \& ${ }_{\text {f } 98}$ \& ${ }_{\text {P1 }}$

\hline \& Vecior \& £400 \& C5 \& \& ITT 2020 \& $£ 300$ \& P1 \& \& Database management/ \& \&

\hline \& 8000 Series
$8080 / 780$ \& ${ }_{6275}$ \& C2 \& \& Normiar
Horizon \& ¢250 \& B3 \& \& information retrieval \& 198 \& ${ }^{\text {P2 }}$

\hline \& 8080/280 \& ¢ 425 \& L1 \& \& PCC 2000 \& \& \& \& Estate agent ${ }_{\text {General ledger/NL }}$ \& ¢225 \& P2

\hline Revolving credit \& Cromemco \& ¢400 + \& B3 \& \& PET/CBM \& E300 \& B2
B1 \& \& General ledger/NL \& ¢295 \& ${ }^{\text {P2 }}$

\hline Sales ledger \& Apple \& $£ 300$ \& A2 \& \& Tandy Model I \& POR
POR \& M1 \& \& Incomplete records \& f125 \& P^{2}

\hline \& Apple \& $\{300$ \& S5 \& \& Tandy Model \& \& \& \& Integrated acctis \& ¢855 \& V_{1}

\hline \& Apple ${ }^{\text {Apple II }}$ \& ¢290 \& C6 \& Utilities \& Apple 11
ITT 2020 \& ${ }_{\text {f20 }}$ \& C6 \& \& Integrated accts \& ¢340 \& ${ }_{\text {P1 }}$

\hline \& Apple II \& E 300 \& P1 \& \& \& \& \& \& Invoicing \& £140 \& V1

\hline \& Apple II \& f295 \& P2 \& Utility set \& CBM \& $¢ 78$ \& H3 \& \& Invoicing \& ${ }^{5300}$ \& P1

\hline \& Apple III/TTT 2020 \& ${ }_{\text {cis }} 2350$ P \& S4 \& vat \& PET \& £17.50 \& A1 \& \& Job costing \& ${ }_{\text {f125 }}$ \& ${ }_{P}{ }^{\text {P2 }}$

\hline \& CBM \& £350 \& H3 \& VAT master \& CBM \& 125 \& H3 \& \& ${ }_{\text {Job costing }}$ \& ${ }_{180} 830$ \& P1

\hline \& Computhink \& POR \& S3 \& vat register \& TRS-80 \& $f 15$ \& HI \& \& Mailing list \& ES0 \& Dl

\hline \& $\mathrm{CP} / \mathrm{M}^{\text {c }}$ \& f450 \& C4
Gl \& Vet package \& PET/8032 \& POR \& S1 \& \& Mailing list \& ${ }_{\text {¢ } 225}$ \& ${ }_{\text {P2 }}$

\hline \& CP/M \& ${ }_{\text {f } 500}$ \& L3 \& Video message \& Apple \& £200 \& G3 \& \& Pad to plotter system \& ${ }_{6250} 5375$ \& $\mathrm{P}^{\mathrm{P} 2}$

\hline \& CP/M \& ${ }_{\text {¢ } 425}$ \& Li \& Warehousing \& PET/8032 \& POR \& S1 \& \& Payroil \& 8200 \& P2

\hline \& ${ }^{\text {Cromemco }}$ \& ${ }_{\text {£250 }}$ \& ${ }_{\text {B }}^{\text {C6 }}$ \& Word processing \& ACT 800 \& ${ }^{\text {c }} 375$ \& H^{4} \& \& Payroll \& ${ }_{\text {¢ }}^{10} 5$ \& ${ }_{\text {C6 }}^{\text {D }}$

\hline \& 1 1TT 2020 \& £300 \& PI \& \& Apple \& $\begin{array}{r}660 \\ 875 \\ \hline\end{array}$ \& \$2 \& \& Personnel records. \& £98 \& $\mathrm{P}^{\text {P2 }}$

\hline \& North Star \& \& \& \& Apple \& ${ }_{6} 75$ \& K2 \& \& Production analysis \& 575 \& ${ }^{\text {P2 }}$

\hline \& Horizon PCC 2000 \& £250 \& B3 \& \& Apple \& ¢75 \& ${ }^{\text {A2 }}$ \& \& Programming aids
Purchase ledger \& ${ }_{\text {E }}^{1315}$ \& ${ }^{\text {P1 }}$

\hline \& Simpelec Triton 3 \& £350 \& B2 \& \& Apple 11 \& ${ }_{\text {c7 }}^{150} 50-300$ \& P2 \& \& Purchase ledger \& £300 \& P1

\hline \& PET \& ${ }^{1300}$ \& B4 \& \& Apple if \& ${ }_{¢} 120$ \& V_{1} \& \& Purchase ledger \& £295 \& P^{2}

\hline \& PET \& ${ }_{\text {E95/350 }}$ \& C1
Al \& \& Apple if \& \& D1 \& \& Purchase ledger \& ${ }_{¢ 315}$ \& ${ }_{\text {c }} \mathrm{C}$

\hline \& PET/CBM \& POR \& ${ }^{\text {J1 }}$ \& \& Apple II/ITT 2020 \& ¢180/95 \& ${ }_{5}^{54}$ \& \& Sales ledger \& £300 \& P1

\hline \& PET/CBM \& ¢200 \& ${ }^{\text {c } 2}$ \& \& CBM Commodore/ \& \& \& \& Sales Iedger \& £295 \& ${ }^{\text {P } 2}$

\hline \& PET/8032 \& ${ }_{\text {c }} \mathbf{6 3 9 5}$ \& S1
M 1 \& \& Computhink \& ${ }_{1} 120$ \& S3 \& \& Sales ledger \& ${ }_{610} 129$ \& ${ }_{\text {C6 }}$

\hline \& Tandy Model II \& ¢90 \& M1 \& \& CP/M \& ¢500 \& K1 \& \& Statistics \& f100-195 \& ${ }^{\text {P } 2}$

\hline \& TRS-80 \& £225 \& H1 \& \& CP/M \& ${ }_{5400}^{1150260}$ \& Cl_{1} \& \& Stock control/recording \& ¢285 \& V_{1}

\hline \& TRS-801 \& ${ }_{\text {c225 }}$ \& ${ }_{\mathbf{K} 1}^{1}$ \& \& ITT 2020 \& ¢40 \& DI \& \& Stock control/recording \& \& ${ }^{\mathbf{P} 1}$

\hline \& TRS-8011 \& E375 \& T1 \& \& MCEZ Zilog \& \& 11 \& \& Stock control/recording \& 110 \& D_{1}

\hline \& Vector \& £400 \& C5 \& \& \& ${ }^{40 / 20}$ \& \& \& Time/costr recording \& $¢ 300$ \& P1

\hline \& $$
\begin{aligned}
& 8000 \text { Series } \\
& 8080 / \text { Z } 80
\end{aligned}
$$ \& ${ }_{\text {c }} \mathbf{6 2 5 0}$ \& C2, \& \& PET \& £40 \& DI \& \& Time/cost recording \& $¢ 125$ \& ${ }^{\text {P2 }}$

\hline \& 8080/280 \& ¢425 \& 11 \& \& ${ }_{\text {PET }}$ PET \& \& $\mathrm{Ha}_{\text {A }}$ \& \& Word processing \& f_{120} \& ${ }^{\text {c } 6}$

\hline Salesman \& Apple II \& £10 \& DI \& \& PET \& ¢325 \& C5 \& \& Word processing \& ${ }_{\text {¢ } 150-300}$ \& P2
D1

\hline \& ITT 2020 \& 110 \& D1 \& \& PET/CBM \& 275 5150 \& C2 \& \& Word processsing \& ${ }_{6} 75$ \&

\hline \& PET \& 110 \& D1 \& \& PET/CBM \& f75/150 \& J \& \& Word processing \& \&

\hline Screen generator \& MCZ Zilog \& [75 + \& 11 \& \& PET/CBM ${ }_{\text {Tandy Model } 1}$ \& \& G2 \& | Apple 11/ |
| :--- |
| ITT 2020 | \& Database management/ \& \&

\hline S/L, P/L \& \& \& \& \& \& Tandy Model 11 \& £175-240 \& M1 \& \& Estate agent \& f750 \& S4

\hline stock control \& CP/M \& £1000 \& 13 \& \& TRS-80 \& \& \& \& Financial planning \& f2s0 \& S4

\hline Solicitor's complete \& Apple \& £3000 \& S2 \& \& TRS-80 \& £15 \& HI \& \& Mailing list \& £100 \& S4

\hline \& \& \& \& \& Vector \& £400 \& ${ }_{\mathrm{C} 5}$ \& \& Office admin
Payroll \& ${ }_{\text {c } 21000}$ \& S4

\hline Solicitor's package \& PET/8032 \& £750 \& S1 \& \& 8000 Series \& f250 \& \& \& Purchase ledger \& f250P \& 54

\hline
\end{tabular}

USZR GROUPS INDEX

Here are the details of additions and changes recently notified. If we have failed to include YOUR group (or have published incorrect information) either here or in the complete listing, then please address changes/additions to: PCW (User Groups Index), 14 Rathbone Place, London W1P 1DE.

Finally, the next complete listing will appear in our May issue.

INTERNATIONAL

Sym-1 Users' Group. Publishes a quarterly ne wsletter Sym-physis Annual sub $\$ 13.50$ (airmail). PO Box 315, Chico, CA95927. USA.

NATIONAL
British Amateur Robotics Association. Recently formed for anyone interested in robotics. Membership free but small production charge for newsietter. Waterloo Rd, Penylan, Cardiff S Glam.

UK Pilot User Group. Send an A4-size SAE for fact sheet on various Pilot versions available. Common Pilot Reference Man: ual available for 85 . Versions of Pilot available for different machines. Contact: Alec Wood, boys Cross Lane Bebington, Wirral, Merseyside L63 3 AQ .

ZX80 Users Club. Bi-monthly newsletter, software bank, technical support. Annual membership $£ 6$ (UK) or $£ 10$ (overseas). Contact: $\mathrm{ZX80}$ Users Club PO Box 159 Kingston-upon-Thames, Surrey KT2 5 U 2.

BUCKS/BERKS

Anyone interested in joining an Apple Users Group in the Bucks Berks should contact: S F Proffitt on Marlow 73074 (evenings) or 7507298 (day).

DERBYSHIRE

Derby \& District branch of IPUG meets second Thursday each month. Contact: Raymond Davies Derby DE1 2GG.

EAST MIDLANDS
The East Midlands Independent TRS-80 Users Group now has to charge for its newsletter. Send 50 p for Issue 4 (balance credited to your account). Contact: Mike Costello 17 Langbank Avenue, Rise Park, Nottingham NG5
$5 B U$.

LONDON

East London Computer Club. Meets every Friday at 7.30 in term at North East London Polytechnic, Romford Rd Precinct, Stratford E15. Contac John Grieve, 01-533 4761.

NORTH-EAST
North-East RML 380Z Users ${ }^{2}$ Group. Meets monthly at MicroElectronics Education Centre, The Polytechnic, Newcastle upon Tyne. Contact: M Hatfield or R Reed, Computer Unit Northumberland Building, The Poly technic, Newcastle-upon268 (office hours). 26002 ext

SCOTLAND
Central Scotland Computer Club Meets twice monthly in Falkirk College of Technology, Grangemouth Rd, Falkirk. Contact: Jam James Lyon, 78 Slamannan Rd, Falkirk FKi' 5 NF, tel (0324) 22430.

Computer = Town Centres

EASTCOTE: Meets 1st \& 3rd Tuesdays monthly in Eastcote Library from 6-8pm. Contact: CTUK! Eastcote 7 Collins Drive, Eastcote, Middx HA4 9EL.

DIAFIYATA

Bilbao, Spain	Electrical \& Electronic Equip Exbn - ELA Contact ECL Ltd, 01-486 1951.	2-8 Mar
London, England	(Wembley Conf C) Microsystems '81 Exbn. Contact: IPC Exbns Ltd, 01-837 3636	11-13 Mar
Glasgow, Scotland	(Albany Hotel) Computermarket. Contact: Couchmead Ltd., 42 Gt Windmill Street, London W1. 01-437 4187	17-19 Mar
Malmo, Sweden	Computer Exbn - DATAKRAFT. Contact: ECL Ltd, 01-486 1951	23-27 Mar
Manchester, England	(New Cent. Hotel) Computermarket. Contact: Couchmead Ltd., 01-437 4187	24-26 Mar
Dublin, Eire	Int Computing Exbn - COMPUTEX. Contact: SDL Exbns Ltd, Dublin 763871	24-27 Mar
London, England	(Wembley Conf Centre) Numerical Control Equip Exbn \& Conf. Contact: British Numerical Control Socy, 01-579 9411	30 Mar - 1 Apr
Birmingham, England	(Albany Hotel) Computermarket. Contact: Couchmead Ltd, 01-4374187	$31 \mathrm{Mar}-2 \mathrm{Apr}$
London, England	(West Centre Hotel) Peripherals '81 Exbn. Contact: IPC Exbns Ltd, 01-837 3636	1-3 Apr
London, England	(West Centre Hotel) Computermarket. Contact: Couchmead Ltd, 01-4374187	7-9 Apr
Paris, France	Int Exbn of Electronic Components. Contact: French Trade Centre, 01-439 3964	7-11 Apr
Kenilworth, England	(Nat. Agric. Centre) Computer Numerical Control Equip, Machine \& Services Exbn \& Conf. Contact: Corinthian Exbns, 01-681 7055	12-14 Apr
London, England	(Grosvenor House) All Electronics Show. Contact: All Electronics Show, $(0799) 22612$	22-24 Apr

NETWORKNEWS

Personal computer networks have been springing up all over the States for 18 months or more and now we have two in Britain. As more networks appear - and as more facilities are added to existing networks - we'll report them in this section, which appears monthly.

Sun 1200-2200. Facilities:
bulletin board, program library for downloading (all in Microsoft Basic).

National TRS-80 Users' Group. being set up at time of writing, will be available to all micro users not just TRS-80 owners. initially access charge will bee a
$\boldsymbol{1 1 0}$ sub, but as more join, this
will be reduced and refunds made accordingly. Facilitie bulletin board \& programs for downloading. Contact: Brian Pain, tel 0908566660 (office).

Sub Set is not confined to $Z 80$ routines; by sheer coincidence the original contributors were $Z 80$ users, but contributions, documented as shown here, are most welcome from users of other processors. Send your subroutines to: PCW Sub Set, PCW, 14 Rathbone Place, London W1P 1DE

Block move

The first Datasheet this month, HEXMV, is a collection of routines from Paul Zarucki of Solihull. These translate a block of binary data to ASCII-hexadecimal characters, which are stored at a specified location with a checksum appended.

HEXMV is used to prepare for the serial transmission of ASCII data from one micro to another. Several systems put data to backing storage in this form. Storing data in ASCII-hexadecimal has the advantages of allowing for the 176 possible non-ASCII bytes to be used for control purposes or for redundant bits to be used in the detection and correction of transmission errors. It has the disadvantages of occupying twice as much space as the original data and therefore taking twice as long to transmit and allowing twice as many opportunities for errors in transmission to occur.

There are other situations, apart from data storage, where it is useful to convert and hold data in ASCIIhexadecimal, in order to distinguish it from control information. Write in
and tell us of any you have found. Just as we received these routines, Nigel Stephens of Wembley wrote to tell us how neatly Intel's MDS monitor converts a binary to an ASCII-hexadecimal digit and pointed out that the technique could be adapted to any machine with a DAA (decimal adjust) instruction, such as the M6800. So, in place of Paul's original HEXASC routine, we have borrowed the Intel technique Nigel wrote in about.

Motorola

HEXMV is our first Datasheet for the Motorola M6800 processor, which has two 8-bit accumulators, A and B, a condition codes register and a 16 -bit index register, stack pointer and program counter. Don't skip this Datasheet, you Z80 owners, but enjoy the simple directness of the M6800 instruction set, with addresses the right way round, superb indexed addressing facilities and BSR (a relative call), then consider how you would do the job with the Z80's abundance of 16 -bit registers and its digit rotating instructions. See Figure 1 for the appearance of the stack while HEXMV is being executed.

Datasheet

[^3]MICROWART
WE'RE WARNING YOU

If
 you don't

 have a Superboard or UK101 you're going to regret not being able to buy these amazing add-ons!
CEGMON

The new monitor for all OSI and UK10I systems, with the right range of features!
> * Twin-cursor screen editor *

\star Improved keyboard routine * * New screen-handler * with fully programmable protected areas, screen and 'window'-clear, cursor controls
\star New machine-code monitor * with load/save, tabular display, 'modify' entry for text and hexadecimal, breakpoint handler, block move, and much more

* Disc bootstrap *
* Full compatibility *

Complete with full manual and card for only $£ 29.50$

HIGH-SPEED CASSETTE INTERFACE

Really fast cassette loading at 4800 baud: loads an 8K BASIC program reliably in under half a minute!

Switchable to standard 300 baud for compatibility with existing software.

Ready built interface unit for a mere $£ 22.50$

All prices quoted exclude VAT
MUTEK
Quarry Hill, Box, Wilts
Tel: Bath (0225) 743289

;/ (including checksum) stored at destination.			
Parameters still on stack: SOURCE ADDRESS $=$ input value $+n$			
(points to checksum)			
;/ BYTE COUNT = zero			
;/ REGs USED: XR, ACCA, ACCB and CONDITION CODES			
; STACK USE: 8			
;/ LENGT	: 89		
;/ PROCESSOR: M6800			
HEXMV:	CLR A	; initialise checksum	4F
	PSH A	; and put on stack.	36
	TSX	; point XR to stack workspace.	30
	LDA A 6,X	; initialise	A6 06
	SUB A \#2	; destination	$80 \quad 02$
	STA A 6,X	; pointer to	A7 06
	BCC A7	; DEST-2 for	2402
	DEC 5,X	; pre-incrementing.	6 A 05
A7:	LDX 3,X	; fetch next byte $\mathrm{XR} \leftarrow(\mathrm{XR}+3-4)$	EE 03
	LDA A 0,X	; of binary source.	A6 00
	TSX	; convert to ASCII, store	30
	BSR HEXMV1	; at dest. and update	8D OB
	TSX	; pointers \& checksum.	30
	DEC 7,X	; decrement byte count \&	$6 \mathrm{~A} \quad 07$
	BNE A7	; repeat until zero.	26 F4
	LDA A 0,X	; append checksum	A6 00
	BSR HEXMV1	; to ASCII data.	8D 02
	PUL A	; clear stack of checksum.	32
	RTS	; return.	39
; convert byte from binary to hex, move it to			
; destination and update pointers and checksum.			
HEXMV1:	BSR BINASC	; convert byte to ASCII-hex	8D 19
	INC 4,X	; update	$6 \mathrm{C} \quad 04$
	BNE A8	; source	2602
	INC 3,X	; pointer	6 C 03
A8:	INC 6,X	; update	6 C 06
	BNE B8	; destination	2602
	INC 5,X	; pointer.	6 C 05
	INC 6,X	;	6 C
	BNE C8		$26 \quad 02$
	INC 5,X		6 C 05
C8:	LDX 5,X	; $\mathrm{XR} \leftarrow(\mathrm{XR}+5-6)$	EE 05
	STA A 0,X	; store ASCII at	A7 00
	STA B 1,X	; destination.	E7 01
	RTS		39
; convert byte to two ASCII-hex bytes in A \& B ; and update checksum.			
BINASC:	TAB	; $\mathrm{B} \leftarrow \mathrm{A}$.	16
	AND A \#0FH	; separate byte into two	84 OF
	AND B \#FOH	; hex. digits in A and B.	C4 F0
	LSR B	; logical shift 1 bit right.	54
	LSR B	;	54
	LSR B	;	54
	LSR B		54
	PSH A	; save A.	36
	ADD A 0,X	; add checksum to A.	AB 00
	ABA	; add B to A.	1B
	STA A 0,X	; put updated checksum on stk.	A7 00
	PUL A	; restore A.	32
	BSR HEXASC	; convert hex digit to ASCII.	8D 06
	PSH A	; save A.	36
	TBA	; $\mathrm{A}-\mathrm{B}$.	17
	BSR HEXASC	; convert hex digit.	8D 02
	PUL B	; restore A to B.	33
	RTS		39
; hexadecimal to ASCII conversion subroutine.			
HEXASC:	ADD A 90H	; so A-F will give carry on	8 B 90
	DAA	; decimal adjust.	19
	ADC A 40H	; add any carry \& 40H.	8940
	DAA	; decimal adjust.	19
RTS			39

REAL TIME CLOCK £26

* Time down to tenths of secs.
* Day of week
* Day on month with Leap Year correction
* Month
* Interrupt output
* Crystal controlled
* Rechargeable battery backup. All functions software controlled.
MM58174 I.C. with data £14 SAE for more details. Mail order only.
LINTRONICS 37A Chiltern Ave.
Bushey Herts. WD2 3QG

Dave Barrow who, in last month's HLFHL, gave the shortest solution to $\mathrm{HL}=\mathrm{HL} / 2$, when HL contains four BCD digits, has now sent the fastest solution so far received. It takes 82 93 T states and 23 bytes. He has also given this version of HLFA, eight bytes shorter than that printed in February:

| HFA: JR NC,LB1 | ; skip if no cy. |
| :--- | :--- | :--- |
| LB1: ADD A,A0H | ; make cy. worth 10. |
| RRA | ; divide by 2. |

; cy. into units? ; skip if not. ; else convert ; carried 8 ; into 5.

LB2 RET

32-bit binary

You don't often see routines to do calculations on 32-bit binary numbers, not even in expensive books on micro- 4 -byte integer divide in our second Datasheet, DIV4. In the true spirit of this series, Paul will be interested to see any better attempts and so will we.

Datasheet

LISURIELINES

The check digit problem set in puzzle number 16 proved to be a little tougher than usual, and only about 30 entries were received.

In inverse proportion to the number of entries were the cries of 'too easy' this time only two correspondents complained - although one reader pointed out that there was no need to give the information about successive primes and another said that there was no need to
specify the modulo.
I'm not sure about that last comment but anyway the solution was as follows: Weights 1.82
2.86

3-94
4-53
5-59
6.61

And the required checksum (not check

!!MEMORY UPDATES!

TRS80, APPLE, SORCERER, SUPERBRAIN ETC. FROM $£ 18.50$ per 16 K .
EPROMS: 2716 £5.00 EACH
EPROM PROGRAMMING FROM 2OP PER UNIT.
CLEAR TONE COMPUTER CONSULTANTS LIMITED PRINCE OF WALES INDUSTRIAL ESTATE ABERCARN, GWENT. NP1 5RJ
TEL: NEWBRIDGE (0495) 244555

NASCOM SOFTWARE

We offer the following quality sofiware for NASCOM systems:
NASPAS - a 12 K PASCAL compiler which produces $\mathbf{Z 8 0}$ code directly i.e. no. P-code. The compiler offers floating point and integer airthmetic, arrays, sets, strings and all major Pascal statements together with fully recursive functions and procedures with value and variable parameters. The object programs run very quickly. Price: $\mathbf{£ 3 5 , 0 0}$
NASMON - A new monitor for NASCOMs. Occupies $4 k$ and includes a sophisticated screen editor, a 'front panel' mode, blocked and buffered tape routines and powerful debugging commands. Price: $£ 30.00$ in EPROM
BAS 12 K - a 12 K BASIC interpreter offering 11 digit precision arithmetic, PRINT USING, IF. . THEN. . ELSE and other advanced features. . Price: £25.00
NASGEN - a fast 3 K assembler generating full symbol table and with many assembler directives and commands
Price: $£ 15.00$ on tape, $£ 25.00$ in EPROM NASNEM - a $21 / 2 \mathrm{~K}$ disassembler which inter faces to NASMON's front panel to produce single step disassembly. Optionally it produces labels and o/p may be directed to a text buffer suitable for NASGEN.
Price: $£ 10.00$ on tape, $£ 15.00$ in EPROM. All the above software runs under NASMON except NASPAS which can run under NASMON or NASSYS.
All prices are fully inclusive
FREE: a free CHESS program with every order of NASMON.
Full details may be obtained from:
HISOFT 60 Hallam Moor, Liden, Swindon Wiltshire.

APPLE SOFTW/ARE	
Business	
Visicalc	75.00
Mailing System	55.00
Word Processing	45.00
Write-On	60.00
Retail Inventory	40.00
Disk Inventory	25.00
Data Base	10.00
Education	
Algebra 1	7.50
Function Plot (2-dim.)	15.00
Statistical Analysis	15.00
Paddle Graphics	20.00
Typing Tutor	7.50
Utilities	
Crystal Cat	10.00
CRAE-editor	10.00
MCAT-catalog	5,00
available together CRAE \& MCAT	13.00
Games	
Bridge	10.00
Fastgammon	15.00
American Football	10.00
\& many others	
Add 15\% VAT Postage \& Packing Free	
Contact: SBD SOFTWARE 15 Jocelyn Road Richmond Tw9 2TJ	
Tel : 01.9405194 Telex: 22861	

SPECIALS FOR PET

FANTASTIC MUSIC MACHINE!
Write a play music on your PET. Displays notes as they play. 4 voices, chords, re-definable keyboard and waveforms, Repeat segments, re-arrange, transpose, change tempo, key etc by just typing a row of letters, Save/load music with tape or disk. Includes amplifier, manual and $\mathrm{m} / \mathrm{code}$ program on cassette. $8 K-32 K$. old or new ROMs HARDWARE + SOFTWARE: only £37
PROGRAMMER's TOOLKIT - $16 / 32 \mathrm{~K}$ New ROM: makes programming less like work! $£ 30$. LIGHT PEN + SOFTWARE - plugs in. £22 SCOTT ADAMS ADVENTURES 1 \& 2: classic game: needs 24 K . Each $£ 7$ (both $£ 13$)
SUPER MACHINE CODE WORD PROCESSOR: does all you'd expect for $£ 75-150$, and also gives re-definable keyboard, works with tape \& disk files, old or new ROMs, any printer, AiND 80column PETS!! We didn't believe it either: $£ 35$ (£37 disk)
ALL PRICES + VAT PLEASE, BUT POSTAGE FREE. SEND FOR LIST \& MÓRE DETAIL.

"turns a board into a real computer:" NASCOM 2 SUPERBOARD COMPUKIT
also uncut for Nascom $1 \&$ OEM
Direct from us or from your dealer - but make sure you see a
GENUINE 'MICROCASE'
Simple Software Ltd 15 Havelock Road Brighton Sussex BN1 6GL (0273) 504879

digit - someone else picked me up about that!) was 51 .

The winner by random selection was again from overseas - Brussels to be exact - Mr Hans Van Leeuwen.

Congratulations - your prize is on its way from Angleterre (or should we say Engeland?).

Quickie

Sorry quickie addicts, nothing this month since you got two last month.

Prize puzzle

This month's prize puzzle will probably eliminate all those readers who don't have alpha facilities on their calculators. But necessity is the mother of invention, so perhaps they'll find some other means of cracking this problem.
1 The 49 letters shown in the grid can be formed into seven by seven-letter words and the initial letters of each of the seven words will form an eighth word which is the answer to the puzzle. 2 Alongside each letter is also a num-
ber in the range 1-6. This indicates the number of squares that must be traversed to reach the next square. 3 Starting with the letter D in the centre of the grid move the number of squares specified (in this case six) East, West, North or South (assuming North is at the top of the grid) and you will arrive at another square.
4 If any move takes you beyond the edge of the grid, you should assume that the grid 'wraps round'. Thus, if a Northerly move takes you to the top of the grid, the count of squares should continue from the foot of the same column.

T_{4}	R_{6}	E_{3}	S_{6}	T_{5}	S_{6}	O_{5}
U_{2}	Y_{3}	L_{4}	S_{2}	O_{5}	N_{2}	A_{3}
R_{5}	B_{3}	S_{1}	E_{2}	E_{1}	R_{2}	N_{5}
Y_{6}	L_{5}	R_{2}	D_{6}	N_{3}	D_{2}	I_{1}
E_{5}	A_{4}	T_{6}	S_{1}	B_{3}	N_{5}	G_{5}
A_{3}	E_{2}	E_{5}	A_{2}	T_{3}	G_{4}	R_{6}
Y_{2}	A_{1}	T_{1}	T_{3}	R_{3}	N_{1}	I_{6}

5 Hence, from the start point, a move of six squares East will take you to the right hand edge after three squares and the fourth, fifth and sixth squares should be made from the left-hand edge of the same row to bring you to the letter R2.
6 In this way the initial move can take you to either the R2, E2, N3 or S1 squares immediately adjacent to the start letter.
7 No square may be landed on more than once. Diagonal moves are not permitted.
8 A correct series of moves throughout the grid will yield seven consecutive seven-letter English words, the initial letters of which, taken in order, will then give the required solution.

One word only required.
Answers on a postcard please, to Puzzle number 19, PCW, 14 Rathbone Place, London, W'P 1DE, to arrive no later than March 31. The prize is the usual book token.

PROCRAMS

TRS-80 Show Jumping

by Roy Bowden

This must be the best TRS- 80 program we've ever received! It is a game for one to four players each of whom must make their way round the course using the arrow keys. Start by positioning your horse under the START hitting S when you reach the right position. Press R to start your round. As you reach each jump a picture of it will appear and a square will appear in the top centre of the screen. You then have two seconds to put in your figures relating to the
height and the spread of the jump. Low height is represented by number keys 1,2 and 3 , medium by 4,5 and 6 and high by 7,8 and 9 . Spread is dictated by which of the keys in the group is chosen. 1, 4 and 7 represent no spread and 3,6 and 9 represent maximum spread. The only other point worth making is that the vertical arrow comes out on the listing as a square bracket. Good luck!

```
70 CLEAR 2ø00:RANDOM:DEFINT A, G,J,K,N,U-Y
70 CLEAR 2000:RANDOM:D
I0Q PRINTAJJE, "SHDW JUMPING"
10 PRINT:M402, %***********
1&Q FOR
70 INPUT HOW MANY CDMPETIT
180 IF NK1
200 FOR C=1 TO N:PRINT"COMPETITOR NUMBER";C
210 INPUT"NAME OF RIDER, HORSE.";R&(C),H$(I:)
220 NEXT C
230 PRINT:PRINT"PLEASE WAIT WHILE THE JUMPS ARE CHECKED.
250 C=0:JN=0:J=0
270 GOSUR 600
280 IF P=1 THEN JP(2)=1:JP$(1,2)="H5-1"
90 IF P=2 THEN JP(2)=4:JP.क(1,2)="H5-1"
300 IF P=3 THEN JP(2)=7:JP$ (1,2)="H5-7"*
30 GOSUB 500
320 IF P=1 THEN JP(3)=2:JP$(1, \zeta)="S5-0":JP& (2, З)="H5-1
# IF P=2 THEN JP(3)=5:JP& (1,3)="S5-0":JP& (2,3)="H5-4
350 GOSus 600
360 IF P=1 THEN JP(4)=1:JPq(1,4)="H5-1"
37 IF P=2 THEN JF(4)=4:JP$ (1,4)="H5-4"
390 JP(5)=4:JP$(1,5)="H5-4"
400 JP(E)=7: JPs (1, E)="H5-7"
410 JP(7)=4:JP
430 IF P=1 THEN JP(E)=1:JP& (1, E)="MS-1
TO CLEAR 2(S),RR(4),SP&(2,15),JP(15),FA(4),CL
```


PROCRAMS

$\begin{array}{ll}"+J P \$(1,12)+" 11 \quad " \quad 11 \\ 710 & P 28=P 28+P C \\ 7\end{array}$

$)+P A 8+$ STRINGs $(15,32)+" 2 "+P A 8+$ STRING $(3,148)+P A s+" \quad "+P A 8$

70 P78 $=$ SAR +1

EOD PRINT"THE COURSE IS MEARLY READY,
E2D PO $=$ STRING\& (E, 179) + STRING\& (E, 191)

840 G1s=STRING\$ (36. 188)
ESO Gご\$=PAs+STRING\$ (5,32)

E70 O2s $=G 2 \$+G 2 \$+P R \&+G 3 \$+G 28+G 2 \$+P A *$

ESO $M 1 \$=M 1 \$+P E \$+M 1 \$+P E \$+M 1 \%$
900
$M 2 \$=S T R I N G \$(7,131)+P A \$$
900 M2\$=STRING\$(7,131)+PA\$
$910 M 2 \$=M 2 \$+M 2 \$+M 2 \$+M 2 \$+S T$

940 T1 $\$=$ CHR $\$(184)+$ PA $\$+$ STRING $\$(9,18 \varepsilon)+$ PA $\$+$ CHR $\$(180)$

80) $974=C H R \$(1 E 0)+C H R \$(190)+$ PA\$ + CMR $\$(136)+$ CHR\$ (157) + STRING $\$(13,140)+C H R \$(174)+C H$

$1010 \quad 038=C H R \&(184)+5 T R$
1020
$S 18=P A \$+P B s+P A \$$
$1040 \mathrm{~S} 3 \$=\mathrm{PA} \$+\mathrm{PB} \$+\mathrm{PB} \$+\mathrm{PB} \$+\mathrm{PA} \$$
$1040 \mathrm{~S} 3 \$=\mathrm{PA} \$+\mathrm{PQ} \$+\mathrm{PB} \$+$
$1050 \mathrm{~S} 4 \$=\mathrm{PA} \$+\mathrm{PG} \$+\mathrm{PA} \$$

1090 S8s=PA $4+$ PG $\$+P G s+P A s$

$110 \mathrm{~J} 1 \$=\mathrm{PA} \$+\mathrm{PG} \$+\mathrm{PA} \$$
$1120 \mathrm{~J} 2 \$=$ STRING $\$(2,191)+\mathrm{PH} \$+\mathrm{PA}$
$1130 \mathrm{~J} \$=$ STRING $\$(3,191)+\mathrm{PH} \$+$ PR
$1130 \mathrm{JJs=STRING} \$(3,191)+$ PH $\$+$ PR $\$$
$1: 46 \mathrm{~J} \$$ =STRING $(4,191)+$ CHR $\$(32)+$ CHR\$ $(32)+$ CHR\$ $(136)+$ STRING\$ $(2,191)$
$1: 46$
1150
$J 5 \$=5$ STRING $\$(5,191)+$ PH $\$+P A \$$

$1180 \mathrm{JBs}=5 \mathrm{STR}$
$1190 \mathrm{~K} \$ \mathrm{~J}=\mathrm{J} 1 \mathrm{~s}$
$1200 \mathrm{~K} 2 \mathrm{~s}=\mathrm{PAs}+\mathrm{PH} \$+$ STRING $(2,191)$
$1210 \mathrm{~K} 38=\mathrm{PA} \&+\mathrm{PH} \$+$ STRINGs $(3,191)$
$1220 \mathrm{~K} 4 s=\operatorname{STRING} \$(2,191)+$ CHRS $(132)+$ CHR\$ $(32)+$ CHR\$ $(32)+$ STRING\$ $(4,191)$
$1220 \mathrm{~K} 48=$ STRING $\$(2,191)+$ CHR\$ $(13$
1230
$K 5 \$=P A \$+$ PH $\$+S T R I N G S(5,191)$

$1260 \mathrm{~K} 8 \$=\mathrm{P}$ I $+5 \mathrm{STRINGS(5,451}$)

$1280 \mathrm{~W} 2 \mathrm{~s}=\mathrm{PA} A+\mathrm{PG}+\mathrm{PB}+\mathrm{PA} \mathrm{s}$
1290 W3 $2=P A \$+P 1 \$+P A \$$
$1290 \quad W 38=P A \$+$
1300 W $4=W 2 \$$
$1300 \mathrm{~W} 48=W 2 \$$
$1310 \mathrm{WS}=\mathrm{WJ} 9$
1320
$1320 W E s=W 24$
$1350 \quad W 7 \%=W 3 \$$
$1330 \quad W 7 \$=W 3 \$$
$1340 \quad W E \%=W 28$
1340 W8 $=W 28$
1350 WS $\$=W 3 \$$

1370 F2s $=P A \$+C H R \$(32)+P A \$+P A \$+S T R I N G I(5,131)+C H R \$(32)+P B \$+P A s+P A \$+P B 8+C H R \$(32)+P$
$137 \| F 28=$ PA $\$+C H R \$(\$ 2)+P A \$+P A \$+S T R I N G \$(5,131)+C H R \$(32)+P B \$+P A \$+P A \$+P B \$+C H R \$(32)+P$
$A \$+P A \$+C H R \$(188)+C H R \$(17 E)+C H R \$(32)+P A \$+P Q \$+C H R \$(32)+P E \$+P R \$+P R \$+P B \$+C H R \$(32)+C H$
Rs (188)
R\$ (188)
$1380 \quad \mathrm{~F} 2 \$=F 2 \$+P A \$+P B \$+P E \$+P B \$+C M R \$(143)+C H R \$(140)+C H R \$(32)+P A \$+P A \$+S T R I N G \$(3,32)+$
PA $\$+$ PAs + CHR $\$(32)+$ PAs
1385 PRINT"NOT LONG NOW, ...""
1390 F3 $\$=$ PA $\$+C H R \$(32)+P A \$+P A s+S T R I N G s(3,131)+S T R I N G \$(4,32)+P A \$+P A \$+5 T R!N G \$(2,32)$
$139 \square F 3 \$=P A \$+C H R \$(32)+P A \$+P A \$+$ STRING $(3,131)+$ STRING $\$(4,32)+P A \$+P A \$+5 T R!N G \$(2,32)$

+ PA $\$+P A \$+C H R \$(131)+C H R \$(143)+$ STR1NG $(3,191)+$ STRING $\$(2,32)+P A \$+P A \$+$ STRING $(2,32)+$
+PA\$ $\$$ PA $\$+$ CHR $\$(131)+$ CHR $\$(143)+$ STRING $(3,191)+$ STRING $\$(2,32)+$ PA $\$+$ PA $\$+$ STRING $\$(2,32)+$
CHR\$ $(176)+$ CHR (179)
140 F $\$ \$=F 3 \$+$ STRING $\$(3,131)+$ PA $\$+$ CHR $\$(188)+$ CHR $\$(32)+$ PA $\$+$ PA $\$$ +STHINGs $(3,131)+$ PA $\$+$ PA

1400 FS $5=F 3 \$+5$
$8+$ CHRs (32) + PA 8

RING $\$(2,179)+$ STRING $\$(3,175)+$ STR1NG $(2,179)+$ CHR

6) +STRING $(5,179)+S T R I N G \$(2,176)+S T R I N G \$(2,179)$
7) +STRING\$ $(5,179)+$ STRING $(2,176)$ +STRING $(2,179)$
1420 F $4 \$=F 48+$ STRING $(3,176)+$ STRING $(2,179)+$ CHR $\$(176)+$ PA $\$$
1430 GOTO 2118
1440 GOSUB 2030
14S0 PRINTSTRING\$ (11, 32) ; S1s;STR1NGs (J6, 32) ; S1 s
14EO PRINTSTRING (1め, 32) :S2\$;PO\&:S2\$

1480 PRINTSTRING $(8,32)$; $54 \$;$ PO $\$: 548$
1480 PRINTSTRING\$ $(7,32): 55 \$ 351 \$ 155 \$$

```
4\angle0 IF P=2 THEN JP(\varepsilon)=4:JP$(1,8)="H5-4"
```

4\angle0 IF P=2 THEN JP(\varepsilon)=4:JP$(1,8)="H5-4"
440 IF P=z THEN JP(\varepsilon)=4:JP$(1,8)="H5-4"
440 IF P=z THEN JP(\varepsilon)=4:JP$(1,8)="H5-4"
4EO JP(9)=6:JP$ (1,9)="S1E-b"
4EO JP(9)=6:JP\$ (1,9)="S1E-b"
470 GOSUB E0e
470 GOSUB E0e
480 IF P=1 THEN JP (10)=1:JP\$ (1,1u)="HE-1"
480 IF P=1 THEN JP (10)=1:JP\$ (1,1u)="HE-1"
4 9 0 ~ I F ~ P = 2 ~ T H E N ~ J P (1 0) = 4 : J P * (1 , 1 ~ \|) = " H S - 4 "
4 9 0 ~ I F ~ P = 2 ~ T H E N ~ J P (1 0) = 4 : J P * (1 , 1 ~ \|) = " H S - 4 "
490 IF P=2 THEN JP(10)=4:JP*(1,1|)="H5-4"
490 IF P=2 THEN JP(10)=4:JP*(1,1|)="H5-4"
510 GOSUB E|0
510 GOSUB E|0
S*)

```
S*)
```



```
SNO
```

SNO
S50 JP(13)=5:JP$(1,13)="S5-5":JP$(2,13)=",45-4"
S50 JP(13)=5:JP$(1,13)="S5-5":JP$(2,13)=",45-4"
570 JP(14)=1:JP$(1,14)="H5-1"
570 JP(14)=1:JP$(1,14)="H5-1"
590 GOTO 560
590 GOTO 560
ED0 P=RND (3): RETURN
ED0 P=RND (3): RETURN
EE0 PR\&=CHRs(191):PEs=CHR*(131):PC =CHR\$(92):PD $=CHR$(93
EE0 PR\&=CHRs(191):PEs=CHR*(131):PC =CHR\$(92):PD $=CHR$(93
E70 PE$=CHR&(140):PF&=CHR$(143):PGs=STRING$(4,131)
E70 PE$=CHR\&(140):PF\&=CHR$(143):PGs=STRING$(4,131)
M,

```
M,
```



```
+PA$+PB$+" 
```

```
+PA$+PB$+" 
```



```
550 JP(12) =7:JP$ (1,12)="H5-7"
```

550 JP(12) =7:JP\$ (1,12)="H5-7"
"+PD\$+

```
"+PD$+
```

710 P28 $=$ P2 $2 \$+$ PC $\$+$ STRING $(12,32)+$ " 6 1HL

920 MJs = PA $\$+$ STRINGs $(7,131)$

PRINT\＆GRAPHICS GRAPHICS \＆PRINT

IF YOU NEED AN 80 COLUMN
PRINTER WHICH WILL HANDLE
ANY PLAIN PAPER UP TO 8.5 INCHES WIDE
HAS 96 ASCII CHARACTERS，PLUS U．K．，
GERMAN AND SWEDISH SPECIAL
CHARACTERS，NORMAL OR DOUBLE WIDTH WITH FULL GRAPHIC
CAPABILITIES WITH A
RESOLUTION OF 480 DOTS PER LINE－
THEN LOOK NO FURTHER－ ALL THESE FEATURES AND MORE ARE AVAILABLE NOW FOR LESS THAN $£ 300$
INCLUDING VAT AND DELIVERY！！ send a SAE to：－
SCALE ENGINEERING
6 GOSS BARTON NAILSER AVON BS 19 2XD Also available：
VARIOUS SERIAL INTERFACES 2 SPEED MOD FOR ONLY £ 10 LOWER CASE VIDEO MOD £ 10 LOWIC PROBE，etc．

STOKE OUTRIENT

for
TUSCAN and TANGERINE and

VIDEO GENIE＋SOFTWARE
and
BOOKS

MICRO－PRINT Ltd．
 59，Church Street，Stoke on Trent．
 （0782）48348．Barclaycard and Access

GOOD THINGS FOR 6800 SYSTEM BUILDERS	
CSH001－SWTPC mpb／2 motherboard	\＆24．20
CSH002－SWTPC MPA／2 CPU board	$\varepsilon 11.50$
CSH005－SWTPC MPL／A	ع 6.60
2．Assembled Boards	
CSHOOS－SWTPC MPA	875.
CSHOO4－SWTPC MPA CPU，MIKBUG	E49．50
3．Components	
M6800 M6821．M6850，M6810 \＆M6875	
CSHO2i－Molex connecto	\＆ 2.50
10 pin male，pack of 10.	
10 pin female，pack of 10.	
CSHO30 MOTOROLA 6800	
	$\varepsilon 6$
Prices include postage but add	
COMPUSENSE LTD．PO BOX 169 LONDON N 13 4HT Tel： 01.822068	

MICROMART

ZX80LIVEACTION SOFTWARE

Top quality games at unbeatable prices：－ BREAKOUT（ $1 \mathrm{kO} ; \AA 4.00$ ．SPACE INTRU－ DERS（2K）：$£ 4.00$ ．Also MOVIES（2K plus） 7×8 character pictures displayed in rapid rotation giving animation effect；$£ 3.00$ ． No hardware modification whatsoever． Written in machine
TV Syncronisation
TV Syncronisation．${ }^{\text {SOUNDS }}$ INCREDIBLE？YES，but it true．Reviews say the ZX80 can＇t be used for continuous live action ARCADE type games．－WELLIT CAN－WE＇VE DONE IT－SEEING IS BELIEVING－Send cheques or PO＇s for program listing（or SAE for list of all software）to：－ MACRONICS，（K．Macdonald） 26 Spiers Close，Knowle，Solihull，B93 9ES．

NEW

OHIO SUPERBOARD III

Immediate Delivery
Full Warranty \＆Back Up New Low Price

SEIKOSHA PRINTER

Home and Educational Use UK101／SUPERBOARD II ADD ONS
48×30 Video Conversion $£ 15$ 16 k Memory Expansion from $£ 40$
Send S．A．E．for free prog．＋price list High Educational and Club Discounts

NORTHERN MICRO

 add 15% VAT 29 Moorcroll Park Tel．HOLMFIRIH New MillHUDDERSFIELD 10 om－8pm Mon－Sa

topmark

NEW！NEW！NEW！ apple

APPLE FORTRAN
（Needs language card）
Send only $£ 120$＋VAT $£ 18$（Fortran only） or $\quad £ 419+$ VAT £62．85（complete system，includes Pascal and language card）
NEW！NEW！NEW！
NEW ！DOS 3.3 －much improved capacity $\mathrm{£} 40+$ VAT $£ 6$ ．
NEW！Eurocolour card－vastly superior to previous versions $£ 113+$ VAT £16．95
Official Government and Educational orders accepted．
Contact Tom Piercy at
Topmark Computers， 77 Wilkinson Clase， Eaton Socon，St Neots，Cambs．PE19 3HJ
Huntingdon（0480） 212563

ETIRED．＂ $4 G 0 T 0422$

4220 FOR $K=1$ TO 2000：NEXT K
4230 GOTO 2110
4250 CLS：PRINTCHR\＆（23）
4268 PRINTO320，＂WINNER IJF THIS COMPETITIUN＂
4280 IF FPR（V）$=100$ THEN PRINT＂DISQUALIFIED UR RETIRED－＂：PRINT＂ND WINNER，＂：GOTO A3
428
20
429
4290 PRINTR $(V): "$ RIDING
43DE PRINTH\＆（V）；＂：：－＂：PRINT＂FAULTS ：＂；FA（V）${ }^{43}$
4310 PRINT＂TIME：＂IUSING LLS：CL（V）
4320 PRINT：PRINT：PRINT＂WOU！V VU 1, IKE＂
4330 PRINT＂ANOTHER COURSE ？（Y／N）
4340 Is＝INKEY\＄：IF $1 \$="$＂
4350 IF I $\$=" Y "$ THEN RUN
4360 IF I\＄O＂N＂THEN a320
4370 END
Listing courtesy of London Computer Centre

PET Grand Prix

by Michael Matar
This runs on a new ROM PET．You have race track，competing against a PET－ to steer your car around a convoluted driven rival．

1 REM GRFINI FRIX B＇MICMAEL NATAM
2 CLR：GOTOGGag

$E_{1} 4 / 2=1: 43=1$
10 FORA＝1 TOBM
（1） $1 \cdot 32767+A: A 2=33667+H$
SHOKEW，$:$ FOKER2， 0
8 MEKT
IFT：＂＂ 1 ＂THEH56
IFTS＝＂E＂THENFOKE3334S．Q：GUTUEG
1 PUKES3350，Q：FUKE 3330 ，
42 POKE $33094,0:$ FOKES3695．0
43 FOKE32895，Q：PGKE：32975，W：FOKE33015，Q
44 FOKE33G18，Q：FOKE32898，Q：IF T\＆${ }^{\circ}$＂H＂THEN5
45 FORF $=1 T$ TS
46 ค $2=82822+(46$ 象F 3 ）
47 POKEFI2． 6
45 HEXT
50 FORA3＝1T035
60 A4 $=($ A $3 * 40)+32808: A 5=(A 3 * 40)+32847$
？O FOKEA4，Q：POKER5， 6
：HEXT
IFT\＄＝＂M＂THEN96
81 POKE33396，Q：POKE33399，Q：FOKE33400，Q：POKE33438，Q：FOKE33439，Q：POKE33440，Q

30 FORA6＝1T020

110 PGKEAT，$Q: P G K E H E, Q$ FOKEFG，Q
111 HEXT
120 IFTs＝＂E＂THEH136
121 FOKE $33338,6:$ FUKE33 378.0
122 POKE 33413，0：POKE33419，0
136 FORE＝1 105

$141 \mathrm{~A}=32989+\mathrm{B}: \mathrm{A} 2=33276+\mathrm{B}$
$142 \mathrm{H}=33636+8$
143 POKEH，Q：FOKE33255，Q：FOKE33213，Q ：IFT
144 PGKE33185，G：FOKE33106，0：FOKES3107．G：FOKE33147，0
150 POKEW2，Q：POKEB2，Q：POKEE3，Q：PGKEH2，
155 NERT
156．FOKE 32942，32
160 FORW3＝1T03
$176 \quad B 4=33095+N 3: E 5=33216+(W 3 * 40)$
13E PCINEB4，Q：PUKEB5，C
105 Ne．
166 PRIFTT＂예 LFF＇S－＇UU＂；R4；＂FET＂；K
130 FORRE＝ 1 TO4
$30\left(107=\left(60^{\circ} 40\right)+33465\right.$
$2: 5$ NEXT
216 POKE33565，32
22 FOKE 33284,12 FOKE3．3425，Q ：FOKE33535， 0
530 IFD＝5THEN2400
231 FOFF $=1709$

E 4 HEXT
255 IFR $=1$ THE 1316
256 IFRS $=2$ THE 212400 ：$[1=0: F:=-1: K=0: R 4=0: A 4=33182: R 3=-1: B 5=0$
265 FDKEK， 42 ：FOKEJ， 144
E6G POKE33469， Q
C74 FORI $3=1$ TO3E10
З 84 HEKT
$30(C=F E E K(166)$
301 A＝A－1：IFA＝22THEHざと0
36 C IFXC33266THEN315

316 IFC＝10THENTII＝－1： 60 T0360
329 IFC＝1 THEND $=1$ ：GOTOSE0
336 IFC $=86$ THEND $=-40: 60 T 011000$
340 IFC＝3сTHEND $=49:$ GOT0369
$350 \mathrm{I}=0$
$360 N=X: K=K+D$
$37 G$ GUSUB10日G
37：IFA＝23THEH390
330 FOKEH，Q2：FOKEK，R2
396 GISUB2060
410 G0T0300
$600 \mathrm{BE}=\mathrm{FNLJ}(1):$ Q $2=32$

PROCRAMS

$610 \%=N:$ FOKEX， $179: 1$ FB6C． 26 THEN：$=X-1:$ GOTO650
620 IFB6C． 51 THENK $=\%+1:$ GOTO65

640 K＝K－40
650 IFPEEK（K）$=$ QTHENB5 $=\mathrm{G}:$ GOT01020
$652 \mathrm{BF}=\mathrm{BF}-1$

EEG RETURTN

701 G070656

1001 IFB5 JQTHENGOSUB6Q日
100．IFKS＝32THENRETURN
1603 IFKS $=$ QTHENB $=$＂F WFLL＂： $19=2: 00101620$
1004 IFKS＝144THENB $\hat{1}=$＂FET＂：COT01020
1016 RETURN
1920 PRINT＂FFYOU HFNE HIT＂ ，Bt ；

1025 FORA $=1$ TOS
1026 FGKEM， 170
1931 POKFN 42
1931 RKN．
165 NEXT．
． $036 \quad A=23:$ ： $3=03+1: 1$ FQ3 $\geqslant 1$ THEHQ $2=127$
$1 \overline{1} 40 \mathrm{RETURN}$
1590 IFRHIU 1 ）
$1510 \mathrm{R}=40$ ： 00702410
1510
$15=46:-40: 601024060$
$1530 \mathrm{IFJ}=33430 \mathrm{THENF}=-1: \operatorname{GOTO} 24 \mathrm{a} a$
$1540 \mathrm{IFJ}=33386 \mathrm{THEMR}=-1: \mathrm{COTO24日月}$
1550 IFJ $=33469 \mathrm{THENR}=-1: G 0 T 02409$
$1564 \mathrm{IFJ}=33360 \mathrm{THEHR}=49: 60 \mathrm{O} 02400$
$1564 \mathrm{IFJ}=3336$ THEER $=49:$ GOTO24 150
1580 IF $=33549$ THEHR $=-40:$ GOT02406
$1596 \mathrm{IFJ}=33426$ THEN 1610
1600 G0T0240
1610 IFFNIT 1 ）（．5THENR $=-40$ ：GOTO2480
$1620 \mathrm{~F}=-40$ ： 00 O 0246 E
1709 IFRND（1）（．5THENR $=40$
1710 G0T02406
2006 IFJ＝33176THENF $=-1: 60 T 02400$
2061 IFJ $=33456$ THENQ4 $=0: R=-40: 60 T U 2406$
2605 IFQ4＝THENISSO
2010 IF $=3317 \mathrm{~S}^{2}$ THENR $=-40: 00 \mathrm{TOC46}$
2911 IFJJ334G日THEN2089
2012 IFJJごDOQTHENZAR
2015 IFJ＝3295 THEN1TG日
2120 IFJ $=32933$ THENR $=1:$ COTO2464
2030 IFJ $=32945$ THEAR $=49: G 0 T 0: 464$
296 IF IF $=32949$ THENR $=1$ GOTO24016
2671 IF $J=32366$ THEHFF $=46:$ GUT024
2071 00T02406
207 IF $1 F=33123$ THEHR $=4 \overline{1}: G 0 T 02400$
$20.1 \mathrm{IF}=336165$ THENR $=1: 60 T 02469$
2074 IFJ $=33069$ THEMR $=-49: 60102406$
2075 IFJ＝3312THEHR＝1：GOTUZ406
20630702406
2009 IF $=33486$ THENF $=-1: G 0 T 024010$
20SS IF I $=3348$ THENR $=-1: 60 T 02490$
2095 IF $J=33475$ THENFS $=8 \cdot \cot 0230$

2106 GOTO240
$2404 \mathrm{~J}=\mathrm{J}$
$2416 \mathrm{~J}=\mathrm{J}+\mathrm{R}$
2415 IFJ $=33475$ THEN250
24201 IFD＝5THENRETIIRN
2431 C0T03064
$2434 \mathrm{IF} 13=3347 \mathrm{STHEHJ} 3=3.3767$
2435 FCIKEJ， 144 ：FOKEJ3， 32
2449 RETURT
$250 \mathrm{~K}=\mathrm{K}+1$ ：PRIHT＂，${ }^{\text {a }}$ LFFS－TUU＂；R4；＂FET＂；K
3510 GOTO2420

2610 B0T0302

306 IFR4＝3THENB＠59
$3936 I F K=3 T H E N 3070$
3635 G0T02434
3050 1FR4＝K－1THEM308E
3060 FRINT＂YOU HRVE EEATEN FET＂：GOTO3160
3010 PRINT＂PET HAS BEATEN YOU＂：GOT03100
3080 PRINT＂YOU FAND PET HRVE DRFWN＂：GOT03190
3116 IFR $4=3$ THEM 3146
312060704000
$2149 \mathrm{I}=5:$ GOSUB2090
$3150.177=17+1$
3160 IFKC3THEN 3140
317060103910

3915 FRINT＂YOU FINISHED＂；Y7；＂FLACES FHERD OF PET＂
$4 G 60$ FRINT＂FRESS SFFCE FOR NEXT GO＂
40101 CLR
4062 IFPEEK（166）O 6 THEV 400 n $^{\circ}$
44161 GOT05GA6
5916 CLR
5916 FRINT＂JIF YOU WAMT FINOTHER LOOK AT THE RULES THEN FRESSCR），GTHEEWIEE＂
5010 PRINT＂JIF POU WAHT ANOTHER LOOK AT THE RULES THEN FRESS（R），OTHERWISE＂；
$5 G 20$ PRINT＂FRESS（N）＂
5021 FRINT＂IF YOU DO HOT WANT FHOTHER GO THEN PRESS RETURN＂；
$55^{5}(188=F E E K(166):$ IFNB＝22THEN10145
5 S＠3 IFNG＝
5637 IFRE＝6THENSQ36
Sa4 IFHE＝2S5THENS6．30
3900 PRITH＂
301 PRINT

1 IGEA PRIHT＂YOU CFAH COHTFOL YOUR CAR WITH THE CONTROLS IMIICGTED BELOW＂ 1 H019 FRTNT＂

MICROMART

U．K． 101 SOFTWARE ＂YOU＇RE THE BOSS＂

The Business Game that lets you control a Company and make all the decisions．

Requires 8 K
£6．95 inclusive of VAT and p．\＆p．

PET SOFTWARE

We have a range of games and educational programmes on cassette．Write for a free list and see what we can offer you with a ＂by return service＂

Appendeck Ltd．， 12 Cleeve Close，Astley
Cross，Stourport－on－Severn，Worcs．
DY13 ONY

EX EQUIPMENT SALES：

5 to 8 Channel Mechanical Paper Tape Readers made by Kode Lid．$£ 10.00$ each．Carriage $£ 1.50$ 5 to 8 Channel Paper Tape Punches made by Addo．$£ 15.00$ each．Carriage $£ 3.00$ Keyboards－Mechanical action with interlock， complete with smart case and control panel－ not encoded $£ 7.50$ each．Carriage $£ 3.50$ Power Supplies－excellent stabilized power supplies made by Weir for Kode Limited． $£ 10.00$ each．Carriage $£ 3.50$ ．
Small Electronic Sub assembly Racks with cards containing variety of TTL circuits and BC107 transistors etc．$£ 5.00$ each．
Carriage $£ 1.50$
7 track $1 / 2$＂Magnetic Tape handlers ex Honey－ well equipment，ideal for HiFl enthusiasts or fast dump．$£ 20.00$ each．Carriage at cost or buyer collects．More details on request． Technical details are available for all above items．
Write or call VALLDATA SERVICES， 26 High Street，Melksham，Wilts，Tel 0225－705957

NUSED TELETYPE ASR33＇s

V24 INTERFACES ARE STANDARD
ALL UNITS CARRY 30 DAY RETURN－TO－DEPOT WARRANTY £250＋VAT
（QUANTITY DISCOUNTS AVAILABLE）
Call or Write to Chris Turner ADP Netqork Services Ltd． 179－193 Great Portland Street London W1．Tele：01－637 1355

μ Hex EPROM PROGRAMMERS

426 2508/2708/2758/2516/2716
Dual and Sing1e supply Eprons. 995
416 2704/2708/2716 Dusi only. 65
$4802704 / 2708$ Kit $£ 35$. Built $£ 40$.
All programmera require only standard power supplies.
The $426 \& 416$ are cased and have pushbutton selection.
Program any length block into the Eprom. Software included. Range covers 280 8080, 6800 and 6500. State machine.

PIO, PIA INTERFACE MODULES
Available for 280/8080 and 6800/6500.
Prices inolude carriage. Please add VAI
SAE for further product information.
MICROHEX COMPUTERS
UNION STREET, TROWBRIDGE, WILTS.

PET COMPUTERS Southampton

New 4000 series PET's now axalable (identical to 3000 series but with SUPERPET Operating system) For a limited penod at following prices 400 8N £405, 4032N £620, C2N Printer £35
2001 . SS Small Keyboard PET £395 TENSAI Cassette Deck with counter, CB2 so TOOLKIT E45 or $£ 35$ with computer $£$ We also HIRE Commodore equipment by the week $8 \mathrm{~K} £ 23$ (Invaders, Microchess) \& Cassette Floppy Disk Únit £30,
Pe Printer $\mathbf{C 3 0}$
Some new and exthire 3000 PET's aveilable e.g. 32 E £565
fôk E 475 Matching beige dusicovers for all modets $f 4$ Software ICommodore, Petsoft|, books and many other PE related items stocked. All prices exclude VAT Dfficial Commodore Dealer

S
 UPER-VISION

13, St. James Road, Shiriey, Southampton
After hours (0703) 554488

PET'S

PETS - We Sell Them
As authorised Commodore Dealers we stock Discs, Oki Microine 80 Decwriter LA34 Texas 810 . Qume Sprint 5 - all at com: PETS - Wetitive prices
PETS - We Buy Them
Part Exchange is very weicome, we also
PETS - We Hire Them

Our specialist hire service, with main
senance included for all Commodore equipment.

- Complete systems for evaluation
- Multiple units for educational courses - Single units for individual use

From 1 day upwards, all units available. PETS - Software
We are fully authorised BUSINESS SOFTWARE DEALERS for Commodore SoftWare - COMPAY COMSTOCK. WORDPRO etc, Also PETSOFT, BRISTOL SOFTWARE, LANDSLER PAYROLL \& HOTEL SYSTEM,
PLUS for ACCOUNTANTS, the unique
CSM INCOMPLETE RECORDS PACKAGE
Mis the best available.
MAIL - ORDER
All Hardware and Software can be bought by Mail Order Delivery by Securicor, or Registered Post. Discounts for Cash \& Carry Mail-Order. Access accepted or by Leasing (subject to acceptance)

129 High Street. Hampton Hill, Middlesex.
TW12 1NJ 01.979 4546 or 01.941 1197°

```
1510 PRINTSTRING&(5.32):S78:G2$:578
J20 PRINTSTRING& (4,32);S8s:G24:58s;:RETLRN
1530 GOSUB 2040
1540 PRINTSTRINGS(8.32):W1S:STRING&(37, J2):W1%
15SD PRINTSTRING*(7,32);W2&;STRING& (35, 32) ;W2%
1560 PRINTSTRING&(7,32);W38;M15;WJ$
1580 PRINTSTRING (7,32);W5s;M3%;W5$
    1590 PRINTSTRING& (7,32);WE$;M2$;WE$
    1600 PRINTSTRING$(7,32);W7%;MJ$;W7$
    1E10 PRINTSTRING$(7,32);WEs;M2%;WE$
    1€20 PRINTSTRING$(7,32);W9$;MJ$;W9$;:RETURN
    1E30 GOSUB 2030
    1640 PRINTSTRINGS(8, 32) #J1s;STRING$(3E,32);K1क
    1E50 PRINTSTRING$(7,32);J2$;PD$;K2$
    1660 PRINTSTRING$(6,32);J3$;STRING$(36,32):K3*
    1680 PRINTSTRING$(4, 32);J5*;STRING$(36,32):KS$
    1690 PRINTSTRING$(4, 32);J6$:PO&:KE$
    1700 PRINTSTRING$(4,32);J7$;G1$;K7%
    1710 PRINTSTRING$(4, 32) : S&$;G2&;KE$::RETURN
    1720 GOSUB 2030
    730 PRINTSTRING&(11,32);S18;STRING&(35, 32) :51b
    1740 PRINTSTRING4(10, 32):S2s:STRINF&(F,32);CMA$(176);(%MRO(188);CHR$(143);STRING$
    (18, 131):CHR& (14.3):CHR& (188);CHR& (176);STRING%(E,32):S2%
```



```
    1760 PRINTSTRING&(8,32N;S4$(18R) ;CHR) (176);S4%
    1770 PRINTSTRING$(7,32);55%;PO$;S5$
    1770 PRINISTRING& (1;32) :S5%;10$:S5$
    1790 PRINTSTRING$(5,32):57$:132*;47%
```



```
    1830 GOSUB 2050
    1840 PRINTSTRING4(24,32):019
    1850 PRINTSTRINGS (22,32):02%
    18E0 PRINTSTAING& (21,32):DZ*
    !880 RETURN
    #GZ 「न-NT:PRINT
    1900 PRINTSIRING* (25, -2):T13
    1910 PRINTSTRING: (23, 32):T2
    1920 PRINTSTRING& (22,32);T3$
    1930 PRINTSTAING(20, 32):T5
    1540 PRINTSTRING&(20,32);T5
    1960 RETURN
    1970 GOSUE 2050
    1980 PRINTSTRINGI (24.32):C19
    1990 PRINTSTRING$(22, S2) O2%
    2000 PRINTSTRING& (21,32);035
    2010 PRINTIGOSUE 1640
    2020 RETURN PRINT:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT:RETURN
    2040 PRINT:PRINT:PRINT:PRINT:PRINT:PRINT:PRINT:RETURN
    2050 PRINT:PRINT:PRINT:PRINT:RETURN
    2110 C=C+1:JN=0
    2120 CLS:PRINTCMR$ (23):PRINT
    2150 PRINT"COMPETITOR NUMBER";C (C)
    2150 FOR K=1 TO 1400:NEXT K=GOSUB %170:1HOTU !27N
    2170 CLS FTP1&: PRINTP2$;: PRINTP3&
    2190 PRINTP4%;:PRINTPS*4:PRINTPE&
    22006 PRINTP781, PRE ; PRINTaE01, JP&(1,1u) : :PRINT\E31, B
```



```
    2230 PRINTPAS::PRINTA912,CHR$(94);:PRINTA922, CHR$(Y4)
    2240 PRINTD931,"[
    2250 PRINTP9&::POKE 16383,191:RETURN
    2270 X=64:Y=4S (XOR K=1 TD SD:NEXT K
    2290 RESET ( }X,Y\mathrm{ Y):FOR K=1 TO 50: NEXT
    2300 I$=INKEY&:IF Is="# THEN 2280
    2310 SET (X, Y)
    2330 ON I GOSUS 2430, 2440,2450, 24E0
    2340 RESET (X1,Y1):IF POINT (X,Y)=0 THEN \3B%
    2350 X=X1:Y=Y1 
    2360 ON I GOSUE
    2370 GOTO 2340
```



```
    2390 Ib=1NKEY&:IF 1$="" THEN 233
    2400 IF I$="S" THEN 2470
    2420 GOTO 2350
    2430 X1=X:Y1=V:X=X-2: RETURN
    2440 x1=x: y = = : }x=x+z:\mathrm{ :RETURN
    2450 X1=X:Y1=Y:Y=Y+1:RETURN
    2460 X1=X:Y1=Y:Y=Y-1:RETURN 
    2470 I$=1NKEY#:IF I*E""THEN 2476
    2490 GOTD 2410
    2510 IF(x(112 OR X) 117) OR V(41 THEN 2T20 
```



```
    2530 SET( 
    2550 IF Y=41 THEN CLS:PRINTCHR&(23)
    2550 PRINTAL|E, "*********"
    2570 PRINTa470, "** START *"",FOR K=1 TO %50:NEXT K
    2590 C1=D:C2=.00:FA=0:CLS
    2600 GOSUE 2170
    2510 CL$="£.££"
    2E20 IF C2)=.59 THEN C1=C1+1:C2%.N0
    2640 PRINTD9E0, "FAULTS8";FA:
    2650 PRINT2970. "CLOCK:"!
    2EEO PRINTUSING CL&;CL;
    2670 GOSUB 2450:SET (X,Y):RESET(X1,Y1):FOR K=1 TO 25:NEXT K
    2520 C2=C2+.01
    2680 C2=C2+.01 ( Y OND (x)111 AND X(118) THEN JS=1:GOTO 2&2@
    2700 GOTO 2E20
    2720 CLS:PRINTCHR$ (23)
    2720 CLS:PRINTCHR& (23)
    2730 PRINTa84,"***********"
    2750 PRINTa212, "***********
    2760 PRINTA45E, "YOU RRE NOT APPRDAGMINE
    2770 PRINTAS24,"THE START CORRECTLY
    2780 PRINTAEED, "WAIT PLEASE.
    2790 FOR K=1 TO 1200:NEXT K
    2820 CLS:J=J5
    2830 IF JS)=7 THEN J=JS-1
```


2950 IF JS） 13 THEN J＝JS－3
 2850 IF JS $=1$ OR JS $=2$ OR JS $=4$ UR $J S=7$ UR,$S=8$ UR $I S=10$ UR JS $=14$ THEN（ 3 OSUB 1440

 2870 IF JS＝3 OR JS＝11 THEN TOSUS 16302880 IF JS $=5$ QR JS $=15$ THEN $\operatorname{tiOSUB} 1530$
2890 IF JS＝6 THEN GOSUB 1830
2910 IF JS $=12$ THEN IDOSUB 1890
2920 IF JS＝13 THEN GOSUB 1970
2930 N18RCHR（1EE）＋STRING $(4,140)+$ CHR $\$(188)$
$2940 \mathrm{~N} 2 \mathrm{~F}=\mathrm{PA} \mathrm{\$}+\mathrm{PH} \$+\mathrm{PA}$ \＆

2950 PRINTAE 4, N2
2980 PRINTD128，N3
2990 PRINTAES，J；
3000 GOSUB 3490
$3020 \mathrm{JN}=\mathrm{JN}+1: 1 \mathrm{~F}$ JS（）JN THEN 371 G
3030 GOTD 2070
3050 IF $J N=15$ THEN 3880 ELSE 3 3E0

3090 IF RF く JS THEN 3
3100 FA $=5 \mathrm{~A} \rightarrow \mathrm{~S}$

3130 SN－JN－1：CLS：PRINTCHS\＄（23）

31EO FOR E＝0 TO 2
$3170 \operatorname{seT}(A, \xi)$
3120 NEXT B，A
3190 FOR $K=1$ TO 50
3200 IIB＝INKEYBSIF II＊＝＂＂THEN 3220
3210 goro 3250
3230 NETO K 3300
3250 IIFVALくII
32E0 IF II＝JP（J5）THEN $H=R N D(1 u)-1$ HLASE 3 3unt
3270 IF R＝9 THEN R＝1 ELSE H＝D
$3220 \mathrm{~J}=\mathrm{JP}(\mathrm{JS})+\mathrm{R}:$ IF II $=\mathrm{J}$ THEN ：rest
$3300 \mathrm{FA}=F A+4$ ：CLS：PRINTI：HRE（23）
3．J10 PRINTAJE4，＂YOU DID HOT CIIEAR
3330 FOR K＝1 TO SOD：NEXT K
3340 GOTO 3790
33E0 ON I GOSUB $2430,2440.2450,2450$

3370 DN I GOSUB $2430,2444,2450,2464$
3320

3400 SET (X, Y)
4410 I（ASC（IS）AND 3 ）+1
3420 ON I GOSUB 243日，2440，2454，24EV
3440 RESET $(X 1, Y 1)$ ：IF POINT $(X, Y)=\varnothing$ THEN 34E』
3460 ON I GOSUB
3470 GOTO 3440
3480 SET（X，Y）：GOTO 3525
3490 C2＝C2＋．O1：IF C2）$=.59$ THEN $C 1=C 1+1: C 2=$ ，И0
3500 CL＝C1＋C2：RETURN
RINTASED, "FAULTS.

3560 IF $X=85$ AND（ V ） 3 AND $Y(7)$ THEN $J S=5: 150 \mathrm{ru}$ ； j 2 M
3570 IF $X=68$ AND（ Y ） 3 AND $\vee(7)$ THEN JS＝6：G1\} 10 2 2824
3598 IF $Y=15$ AND（ x ） 39 AND x（36）THEN $J 5=7$ ：GOTD 2820
3500 IF $Y=15$ AND（ x ） 29 AND $x(36$ ）THEN JS＝5：GOTI \＃BEM
3510 IF $Y=35$ AND（ x ） 29 AND $x(35)$ THEN JS＝9：GOT） 28219
3520 IF $Y=35$ AND（ x ） 67 AND $x(74)$ THEN $J 5=14: 130$ TO 2820
3530 IF $Y=6$ AND $(x) 9$ AND $x(15)$ THEN $35=12: 161970$ 2824
3540 IF $Y=15$ AND（ x ） 9 AND $x(16$ ）THEN JS $=13$ ：GOTO＂E20
3550 IF $Y=21$ AND $(x) 9$ AND $x(16)$ THEN ．TS $=14:(59 T),-826$

3690 GOTOB 3410
3710 CLS：PRINTCHRZ（23）
3720 PRINTIPRINT：PRINT＂YOU HAVE HEEN＂
3730 PRINT：PRINT＂DISQUALJFIED＂
3750 PRINT：PRINT＂FOR TAKING A JUMP＂
3750 PRINT＂OUT OF ORDER．＂
3755 FOR $K=1$ TO 1 1000：WEXT n
3770 GOTO 4030
3790 CLS：PRINTCHRE（23）
उOAD PRINT：PRINT：PRINT＂YOUA MQUE：JUST C：DLIECTED
3810 PRINT＂SOME FAULTS．
$3 E 20$ PRINT：PRINT：PRINT＇DC VDU WANT TI
3840 IF RT\＆＝＂Y＂THEN JSGض
3550 IF RTK＝＂N＂THEN 3050
3650 GOTO 3820
3880 CLS 3890 PRINTa393．
3890 PRINTa393．F1s
3910 PRINTa521，F3\％
3．920 PRINTa585，F48
3930 FOR $K=1$ TO $1000:$ NEXT K
3940 GOTO 4030
3950 CLS：PRINTCHR＊（23）
3970 PRINTA394，＂YOU HAVE＂
3980 PRINT $2458, ~ " S I G N B L E D " ~$
3990 PRINTOS2Z，＂YOUR RET I REIMENT
4000 PRINTa5S5，＂＊＊＊＊＊＊＊＊＊＊＊＊＊＊：＊＊＂
4010 FOR K＝1 TO 750：NEXT K
4030 CLS：PRINTCHRE（23）
4040 PRINTD322，＂RESUL $\overline{1}$ FOR

4070 IF JSUJN THEN PRINT＂DISSUM，TFIEO＂：FA＝140：（G）TO 409 M
4090 FUR $K=1$ T0 $20 n 0$ ：$N E X^{7} K$
4100 RT\＄＝＂
$4110 \mathrm{~V}=1$
4120 FA $(C)=F A: C L(C)=C L$
4130 FOR $K=1$ TO r_{0}

4150 NEXT K
4170 IF $C=N$ THEN 4250
4190 CLS：PRINTCHR\＄（23）
4200 PRINTA322，＂BEST RESULT SO FAR：－＂：IF F＇A（U）$=100$ THEN PRTNT＂DISM．JA－IFIED OR R

MICROMART

BIG EARS

SPEECH
INPUT
FOR
YOUR
COMPUTER

BIG EARS opens the door to direct
man machine communication．The system
comprises analogue frequency separation filters， preamps and signal conversion，together with quality microphone and extenslve software．
Words，in any language，are stored as＂voice－ prints＂by simply repeating them a few times in ＂learn＂mode．Using keyword selection techniques， large vocabularies can be constructed．
Use BIG EARS as a front end for any application： data enquiry，robot control，starwars possibilities are unlimited
BUILT，TESTED \＆GUARANTEEO ONLY $\mathbf{\&} 4$ ！
PRICE INCLUDES POSTAGE \＆PACKING PLEASE ADO VAT AT 15\％，
PLEASE STATE COMPUTER：UK101，SUPERBOARD．NASCOM2．
MICROGRAPHICS
Colour Converslon for
UK101／NASCOM $182 /$ Superboard．
COLOUR MODULATOR
RGB in．PALUUHF out
Please add VAT al 15% to all priceś
Barclay／Access orders accepted on telephone
WILLIAM Dower House，Billericay Road，．．． STLJAFT Essex CM133SD．
SYSTEMS Ltal Telephone：Brentwood 10277181024

VIDEO GENIE

f344 VAT paid Everything included Fully tested and run，and with full cassette modification

TOM CROSSLEY
B．Sc．，M．I．Mech．E，Engineer Sutton Springs Wood，Chesterfield， S44 5XF
（0246） 850357 Ext． 10

APPLE \＆ITT 2020 BUSINESS

 SOFTWAREProfessionally written packages now availa－ ble with comprehensive manuals，built－in validity checks，interactive enquiry facilities， user options，satisfying accountancy，Inland Revenue and Customs \＆Excise requirements． On diskette under DOS 3.2 in Applesoft with SPACE utility．Not adaptations．Writ－ ten for Apple System．Support all printer interfaces．Sales，Purchases and General Ledgers $£ 295.00$ each．Manual only $£ 3$ ． Payroll $£ 375$ ．Manual only $£ 4$ ．
General Ledger supports Incomplete Records，Job Costing，Branch and Consoli－ dated Accounts，etc．
General Ledger Applications Manual $£ 10$ ． Prices exclusive of V．A．T．From our shop or your nearest stockist．

COMPUTECH SYSTEMS

168 Finchley Road，London NW3，
Tel：01－79a 0202

MICROMART

PROCRAMS

PET！

Contact PI－LOK Systems Ltd for all your software needs．
Send s．a．e．for list of currently available programs．
We also provide programming support for IBM370，IBM3790 and WANG2200．
313 Bury and Rochdale Old Road，
Heywood，LANCS．Ol10 4GN．
Telephone 070669693（Ansafone）

FREE details of independent advice and experience as well as discounts on a wide range of computer hardware，software， suppliers，etc．

Send large SAE to Dept PCW， COMPUTERCLUB， 42 Great Windmill Street，London IN1V 7PA

MINIDISK DRIVES 40 Track
SA400 Compatable but only $21 / 4$ inches wide！Ex new equipment and completely re－tested with three month guarantee．
Limited quantity available at $£ 130.00+£ 2.50$ carriage + VAT Total price $£ 158.38$
Send SAE for details to： Disks，12a Millfield Lane，London， N6 6JD

MINE OF INFORMATION LTD

1 FRANCIS AVENUE， ST ALBANS AL3 6BL ENGLAND
Phone： 072752801
Telex： 925859
MICROCOMPUTER CONSULTANCY \＆ BOOK SELLERS

PART－TIME FROM HOME

MICRO PROGRAMMING SMALL BUSINESS APPLICATIONS
TEL 01－989 0430

PET Aircraft Landing

by K Bywater

This program is for either new or old slope，adjusting its speed and height to ROM PETs and will fit into 8 k ．You avoid stalling，landing too soon or over－ have to fly the aircraft down the glide－shooting．


```
    4E EETE5 IF-I=".4THEN4G
```



```
    ## FF!H+"#WN
    E5 r&[n;
    * "R!t!"
    "5 F%%NT"
    TE FRINT"
    SG FFINT"
    jE FRINT"
    % PRIHT"
    104 FRIHT"
110 FRIHT""
```



```
* INETRUMENT PFNEL ***** *'""
CG FH=0:H=1900: PS=150:FG=0:EF=1:EP=3000
    230 GOEUFEH00
    240 G0SU820日0 RG=RG+FF
    \41 IFSA=1THEN&!I=\DD 1:IFXDS?THEN243
```



```
    24% IF SH=:THENFRIHTDI &"'rOU FREE * STFLLING T\"
    245 Er =EF +(EF&S4:) IFEP) 10006THEHEP=100氏0
```



```
    *)
```



```
    -5* IF=2=1THEPUUF=1:Z2=0
    #F IFZ1=1THETRZ=1: Z1=0
    SN
    こGU HII=HD+INT(COS(FG*%/180)*FS+.5)
```



```
    85 IFSF=1THENFS=HS+INT(104.TF,M) 10:G0T0S02
    SQ6 L=1-(CUE《RG%\pirE))*FE/150
    3g}\mathrm{ IFHE 32THENSH=1:GOTOS2S
    304 IFHE< I IGRHI\ (FA=GORU=1 THEN\SA=1
```



```
    C5 IFT=10FC=2THENFORI = 33649T033664:FOKEI, 32:NEXT
    こ6 IFC= =THEN3EG
    3% IFFFS: 21GNINDFADGTHEHC=1
```



```
    365 IFSF=1 THEFUGOSUK66190:00T0400
```



```
    4019 H=N+INT(<AS*SIN(HG*\pi/186) +L *COS(HG%\pi/18G)) 
    &-0 COEUE5264
    425 IFH>190@THEWFOKEPV, 32:GOTOE.44
    +36 IFH[33370THENTV165
    40%=HL/F00:Y=(<195G-H)/150)
    460 IFINT (%)=1NT(%+.5)THENK=INT (%): GOT05600
    4SO :=INT< ( ) +. S
    SE(IFINT (V)=INT('r+.5) THEN'=INT(Y):G0T0540
    E4ब % =G. IF%=INT(M) THENGG=QS+1
```

560
FOKEFY，RC
$601 F V=3 \times 7 E 8+1$
2こ0 RC＝ERK
640 FOKEFW SOCOS
640 FOKEFW SOCOS 64 FOKEFV，SQRQS
FOKE33715，32：POKE33717，32：FOKE33719，326501 IF $2=$ OTHEN $2=1$ ：F OKE 23723,32
650 IF $2=9$ THEN $2=1$ ：FOKE 3723,32
ES2 IFFSJこ5DTHENU＝1：FRINTD1＊＂FLANE HM゙G JUST LOST WIHGS！！J＂：$[=2$

65 IFASンE25RHILASく250THENPRINTD1G"IHNGER! HIR SPEED TO HIGH. 工"
656 GOTOC4

2010 TETR
こ020 IFR*="〉"THENEF=1
202 1FR $\ddagger=1+$ "THENEF=0
O34 FRF=" ("THEHEF=-1

- 0 - IFR土="•"THENAF=-
- IFR: $==$ = ${ }^{\circ}$ THEMAF $=6$

080 RETURH
\qquad

560 FRINT ${ }^{2 z}$ PRINGLE
5040 PRINT"
5040 PRINT"
5650 FRINT" EEHG. FE',S
\qquad
FLFFS UCARR. FSE.
5060 PRINT
": ERMG. FE','S
5.00 RETURN
5 S G15 AS=INT (AS +. 5)
EET1 IFHCSRNDH

50. PRINTTAB(20)

$5=55$ FORI $=33$ T 28 T033768: FOKEI, 32 : NEXT
5 250 PETIRH
$60001+E=H 6-3-F F$

Sets FETLRT
6150 1FW=1 THEHR1日G

E:29 IFHI $=19006 \mathrm{HNHS} 209$ THEN 729
E:29 IFHI $=19606 H$ NIAS: 206
E. 25 IFHI $=19906 T H E N$ i 25

E15 GOSUBEGOD.PRINT"I THIHK 'TOL COLLI IO EETTER - TR'P FGFIN!": 00TO130日0

T104 FRINT STO CJPY METEORITE!! :GOTO:SGAD

OG GUSE

$\therefore 41$ FRIN""SLNLERLGFRRIFGE, ELIT THE EOTTON HFLF GF"
$-14 c$ FFIHT GF THE FLFHE SEEMS TO EE MISS1HG!!":GOTO13000

5006 f0SUS1こ009

- TVECS FRINT"MAEROFLFNE HHICH TOU COHTROL FRUM THE"

"HOL FRINT "MECREEN WHICH HAS FI FRTH FLOTTED GH IT,"
© 640 FKIFTT"WI HE NECESSAPY INSTRUMENTS WILL FPPFEFR"
SOU5 FRINT"RIN THE EGTTOM HHLF OF THE SCREEN.
:0050 GOSUE11006

1 G65 FFI 1 HT"
: GG PG FRINT"IHE '' KE' INCREFSES RATE OF CLIMB.
:OGT FRINT"IHE KET TECRERSES RATE OF CLIHE.

10925 FRINTH HE ME NE'T IHCRERSES THE ENGINE RENS.
10096 FRINT"lHE KEY DECRERSES THE ENGINE REVS."
1095 FRIHT"HE ${ }^{\prime \prime}$ KE' MAINTRIHS THE SAME EHGINE REVS.
O106 GOJUE1150a
10110 FRINT"MgMPMHE, KEY LOWERS \& FAISES THE
.

10117 PRINT"RTOLBII HE KEY'S " $6,1,2,3,4,5,6,7^{\prime}$ OFERATES"
10115 PRIHIT"THE FLAPS AT FIVE DEGREE INTERVFLS.
1.51:0 GOSUE11009

1035 FRINT
10306 FRINT"期HMO PLAY THIS GANE IT WUULII BE BEST IF";
16035 FRINT"YOU KHOW THAT TO LFIND THE FEFFOPLANE AT
10310 FRIHT "LEFST 15 DEGREES OF FLHF SHIULD EE ON"
16315 FRINT "AT TOUCHDOHN. - 0 NOT FUT ANY FLAFS ON"
! 320 FRINT"IF YOU FRE DOING MCRE THFN 125 MPH

LGS25 FRTHT"M⿴囗TRLLIHG SPEEIS, THAT'S WHEN YOU FALL"
15326 FFIHT"OUT OF THE SK'r', FRE う2 MFH WITH FLAFS \&
633G FRINT"LFHIUING GEFR JOWH, OTHERWISE STRLLIHG"
USE FRIHT"SFEEI IS :1可 PMPH.
6050 60suB1 1 ELG

16JE2 FORI=1TC11:GETR土: NEKT
16 GE PRIHT" RMINSTRUCTIDNS AGAIN THEN PRESS "*" IF"

F

 or machine code．－Generates notes over an 8 octave range －Driven from most paraflel output －ports．
－Plugs into Mi－Fi for full sound．
－Complete with full documentation． and programming examples 218.65 （kit）， 221.65 （assembled and tested）
Multiple to tested）
Multiple boards may be used to great
effect
REPLACEMENT NASCOM INTER－
CONNECTING CABLE WITH MUSIC
BOARD HEADER CONNECTORS－ E4．99

Software for instant enioyment－MUSIC MAKER comprehensive music entry program，can
nandie multiple channels，$(16 \mathrm{k} \mathrm{min})$ ， －$\$ 7.50$
plep 65pence per order．
BBF ENGINEERING
Buckingharm Drive，Luton．Beds

CARDIFF MICRO CENTRE

PETs \＆SUPERPETs
SHARP MZ－80s
HEWLETT PACKARD

COMPUTER BOOKS
SIGMA SYSTEMS
54 Park Place
Carclitf 2151．5／34869

Boftcentre

OVER 100 PROGRAMS FOR CBM／PET
end 14 p stamp for free catalogue
60 p stamps for catalogue
－60p stamps for catalogue
＋free pro
Part exchange your unwanted（Brand Label）
Top Royalties for yourars． 1．T．P Guality programs－send cassette． （1．T．FiSharp TRS80／V．Genie also wanted） EPSON TX－808 \＆365
FRICTIONTRACTOR
RADOFIN．TELETEXTCONRERTOR PETMASTER SUPERCHIP \＆45 TOOLKIT VERBATIM MD525－01 DISKS（PET／ITT PET SOUND BOX E14．50． co

PET CASSETTE
WITHANTAL）
（PANIO MONITOR \＆ MOST MICROS BOUGHT，SOLD DPTELED ${ }^{26}$ ALABANY ROAD
Callers strictly by appointment

SUMMER SCHOOL In Personal Computing

covering
＊Programming（high and low level）
－micro－architecture
－input－output control
－interfacing
＊practical sessions
July 1980 for two weeks residential
at University College of Wales，
Aberstwyth
detalls from
PC Summer School．
Sandmarsh，Queens Road，
Aberstwyth，Dyfed，ST23 2HH
Tel： 0970617749

Dola
 osofofware
 117 BLENHEIM ROAO, OEAL, KENT

UK 1013802 and smali ACORN programs
UK 101 The DOLA PIANOLO uses the AY-3-8910 sound chip. The keyboard acts as piano keys, and the note played not only sounds on the loudspeaker but is also shown
screen by the depresslon of the appropriate piano key. In order to time the chip it is necessary to perform part of the control routine in machine code. This is done, and there is an automatic scan of all registers which enables simple sound programming to your own wishes.
ACORN FREQUENCY COUNTER. Written for the small Acorn this program takes a TTL compatible input and gives
a frequeney readout. It will range automatically from pulses second to seconds/pulse dependant on the input. Accurate to 12500 pulses/second and down to as slow as you like. Has been used to set a variable oscillator to every accurate second/pulse.
PUBLICATIONS TTL DESIGN CONSIDERATIONS. Dab bling in TTL? This explains the pitfalls that newcomers DECOUPLING, CLOCKS, FAN OUT, SIMPLE INTER. FACING, RACE HAZARDS and much more. Useful materia for someone who wants to do his own designing, or just
understand more. SAE for full llst

UK 101 \& SUPERBOARD * SOFTWARE
The top ten from the guy who wrote "LE

1. GALACTIC HITCHHIKER (8K) An

Adventure, all in Machine Code. A beauty
2, STARTR
the info on display all the time
3. SUPERTREK (8K) A graphics version. moving Klingons in real time.
4. PIRANHA $=A$ fun, real time graptics gam
5. BREAKOUT* A smashing version wit
6. machine-code to move the paddle
mean
7. LUNAR LANDER A real challenge. You 8. WTOCKMEt down in less than 3 hours. 9. Limplation for would be millionaires. 10. HANGMAN Y Excady got it. Others available include a BASIC TUTOR prosrams) and lots moregames. Note that these are ORIGINAL PRICES: 8 K \&4. 4 K £2 all inclusive from 28, Aimonside
28. Simonside Walk. Ormesby, Cleveland.
Phone (0642) 321266

SEND JUST $£ 1.00$ for a cassette of THREE BLIND MICE, a ridiculous new game from SOUTHERN. You have to dodge the mice while trying to cut off their tails
The tape contains two copies of the game .1) In source BASIC See how slowly it runs
2) The same program compiled by ACCEL2, Southern's new compiler for Disk BASIC. See how Fast it runs!
Compare the two versions, and then think what ACCEL or ACCEL 2 could do for your BASIC programs.
ACCEL Compiler for Level 2 BASIC $£ 19.95$ ACCEL2 Compiler for Disk BASIC $£ 39.95$

SOUTHERN SOFTWARE, P.O. Box 39

Eastleigh, Hants. SO5 5WQ

PROCRAMS

```
16391 GETR&:IFR:=""THEN10391
10392 IFR:="R"THEN100GG
1039E FRINT "?":FOKE5946E,12:RETUFN
```



```
!305 FORI=1TO1060.GETR变:NEXT
1010 WAI T59416,4,4
150GG FGKE=3468,14.PRIHT"
lal
2015 RETURH
130QE FORI=1TO2000-NEXT GOSUE:GU0:FRINT"APRESS SPACE-BAR TO CONTINUE.
351G WAIT59410.4,4
13415 FORI=1TOMa:GETR : NEMT
13020 CLF OT=1 - SOTOS
Listing courtesy of Eurocalc Ltd
```


PET Bouncy

by Jeff Aughton
This will run on any PET and even has whose direction can be altered by inser sound effects, if you've a Soundbox. ting paddles in its path.
You have to hit targets with a ball,

GATEWAYS TOLOCIC

Continued from page 99
toy (Figure 17). Merely by altering the ROM, different sounds can result anything from a rumbling bomb blast to a high pitched ricochet.

It so happens that the human voice is composed of noise and musical pitch so $t_{1 . a t}$ more and more products are making their appearance that actually talk to the user and the vocabulary is limited only by the size of memory store. Texas instruments has produced a gadget that looks like a large calculat-
or, which ASKS the child to spell. As the child taps out the spelling the device repeats the name of the letter and finally tells the child either that the spelling is wrong, or compliments him and gives the next word.

Again, the applications are enormous. One begins to approach the dreams of the science fiction writers. Imagine your cooker TELLING you when the roast begins to burn!

In the shorter term, a sound generator chip will provide students with many happy hours of experimentation to produce an enormous range of sounds. Adding on a few more bits and pieces opens up a veritable gold-mine for experimentation. Here are a few chips already available in addition to the sound generator - (1) an organ master-
oscillator chip that produces the 12 semitones of the chromatic scale, at a very high frequency or pitch; (2) divider chips that reproduce any input tone at successively lower pitches, commonly up to eight; (3) the chord generator chip that produces a minor or major chord from any keynote input and (4) a rhythm generator chip able to trigger up to 12 instruments at once in any one of a number of named rhythms (see Figure 18).

In the longer term the voice-reproducing capability of the sound generator chip has enormous potential in the education of the slow reader, the blind, or the child not yet able to read.

Since a microphone is an analogue device, it is clear that coupling it to a computer through an A/D converter opens up some interesting possibilities and already circuits are available that allow the human user to instruct his computer through voice alone. Couple that with the previous device and you have a fully-interactive situation with the computer and user talking to each other in the most literal sense. As yet the vocabulary that the computer understands is generally limited to Basic commands, but with careful programming, more can be added. That class exercise with a child playing the role of Fred becomes more important with every passing day.

Transducers

According to my Penguin Electronics Dictionary, a transducer is any device for changing energy in one wave-form to energy in another wave-form, taking 'wave' in its widest possible sense. Now wave-form energy at its lowest possible frequency is undiscernible movement. As frequency increases it goes on to visible movement, sound, heat, infrared, visible light, ultra-violet, X-rays, radio and electricity. Therefore, a transducer is a device for changing any of these to any other - including any that I may have missed out. The transducers with which we are most concerned at the moment are those that effect changes to or from electricity, such as a microphone or loudspeaker. It would be a good idea to have older students write down as many transducers as they
can think of in a given time - say 15 minutes. Table 3 is the result of my attempt at this exercise. It is of course by no means exhaustive and readers are invited to add to it.

The point to ponder is that the electrical side of any transducer can and probably will be connected to a micro or computer. Dwell on it for a while. Muse on it while waiting for a bus, or in the bath. Pick one or two at random and think of the possibilities, the implications and the problems. It can almost be guaranteed that no matter how way-out your ideas, someone will have thought of them before you and will be working to make them practical and commercial propositions.

Some combinations with the computer at first glance seem to be absurd. Connect an aerial to a computer? Whatever for? Yet for some years now the BBC have broadcast extremely accurate time information from their transmitter at Rugby. So, couple a micro to an aerial and your home computer has access to real-time information. Then there are the Viewdata systems - pages and pages of information receivable on any TV set with suitable modifications. Several manufacturers retail their home computers with an added board to receive Viewdata. These computers not only receive the news but are able to do something about it! Then in that home of popular computing - California - there is already at least one radio station dedicated to micros, transmitting information to be received and stored by home computers.

Look for the unusual. Television cameras are dirt cheap compared to what they were ten years ago, but the amateur has so far hardly used them at all. Even commercial and industrial users seem to confine their use to the reduction of pilfering. Yet even as I write, the Japanese are working on what is essentially a battery-powered TV camera in which the 'film' is a computer memory. Plug it into the TV when you get home.

SECRETSOF SYSTEMSANALYSIS

Continued from page 67
sprocket holes and perforations. Many printers cannot deal with the type of multipart stationery that is commonly used in offices. Of course, you bore these limitations in mind when chosing your printer and discussed them with. your stationer.

Typewriters have another useful facility which does not occur on a standard printer: the margin release. If you have an 80 -column printer, you are stuck with 80 columns and cannot go any nearer to the edge of the page than that. There may well be a standard page length, too, so that you cannot go right to the top or bottom of the page. Your supplier will have

the exact figures.

It is very helpful to the operator and saves a lot of wasted paper - if you make sure that the programmer builds in a halt before starting on a bit of printing, or even prints a dummy line first, so that the paper alignment can be checked.

Next month

So far, I have tried to cover all those parts of the program specification that refer to what goes on outside the machine. If you can think of anything else that is going to be happening on your machine in terms of input or output, make sure that your programmer knows about it. In a large mainframe computer set-up, this would have to be done formally, but better results can be achieved in the micro situation by user and programmer chatting about them, but more of that anon. Next month I shall continue with those parts of the program specification that refer to things going on inside the machine Processes and Files.

NASCOM GRAPHICS

VERY HIGH RESOLUTION FOR. NASCOM 2
380×220 individually addressable points FEATURES:

* fully bit mapped from dynamic RAM
* software controlled
* software supplied for point-plot, line-draw,-block-shading and display control
* mixed text and graphics
* real time plotting from

ASSEMBLER

* real time plotting from BASIC with NAS-SYS-3
* BASIC plot-then-display with other monitors
* display size variable to suit memor memory available (approx 10 k reqd. for full screen)
* professional double-sided PCB
* built \& fully tested with plug, socket and cable
* comprehensive documentation with full instructions for simple installation.
Price including p\&p . . . $255+15 \%$ VAT BO systems Itd.
6 Laleham Ave, Mill Hill, London NW7 3HL TEL: 019590106

VETS FOR PETS

Anita Electronic Services (London) Ltd are speciatists in the repair and service of Commodore Pets.
We offer a fast on-site service, or alternatively repairs can be carried out at our workshops should you wish to bring in your Pet.
Pet maintenance contracts are available at very competitive prices. Trade inquiries welcomed.

For further information, tel or write to:
John Meade
Anita Electronic Services
15 Clerkenwell Close, London EC1 $01-2532444$

We also specialise in the repair of all makes of office equipment.

A family of high lovel languages from RHA (Minisystems) Lid.
ALGOL-60, the language from which PASCAL is derived. A mature implementation with comprehensive operating system and machine code interfaces.
SYSTEM-ALGOL, the subset of Algol-60 in which all the compilers are written. Compiled code is shorter, execution faster.
280 based CP/M systems including TRS80 RML Algol-60, includes the option of 32 bit integers instead of floating point. About 7 times faster than TRS80 level II BASIC; speed comparable with Microsoft Fortran. Document $£ 10$, system soft Fortran. Document $£ 10$. system £99+VA
leaflet.
PDP11 with RT-11, RSTS, RSX or IAS and PDP8 with OS/8 or stand alone

Complete package including both compilers in machine readable source form $£ 250+V A T$. Documents only $£ 10$. The author of the compilers is available as a consultant.
83 Gidey Way, Horspath, Oxford OX9 1TQ (08677) 3625)

HANGMAN
OTHELLO
STARSHIP
ADVENTURE
HEXAPAWN

PONTOON
LUNAR LAND
AWARI
SOLITAIRE
DRAUGHTS

Send a large sae for the NEW CATALOGUE

CDS MICRO SYSTEMS
10 Westfield Close, Tickhill Doncaster DN11 9LA Mail Order Only

Marick UK101 Software on tape
8K: Quest for the Golden Crown $£ 5.50$. An adventure game - with graphics for the UK 101. Search through the Labyrinth for the Golden Crown and othe other treasures hidden within, but beware of the Guardians!

Our other popular programs:
$£ 3.00$ each or $£ 2.50$ each for 2 or more. 8K : Nuclear Holocaust 8K; Home Finance 8K: Asteroid Runner 5K: Space Descender 4K: Alien Invaders 4K: UK 101 Breakout 4K: Snakes \& Ladders 4K: Fruit Machine 4K: The MymYgame 4K: Drawing Machine

UK 101 Hardware
Build our sound unit and bring amazing sounds to your programs. We supply P.C.B Manual describing Software and Hardware, Construction details and software on tape for only $£ 9.50$.
Cheques, PO or SAE for details to: Marick Department 21.
1 Branksome Close, Paignton, Devon TQ3 1EA.
*Special Offer: Snakes and Ladders and MymYgame only $£ 4.00$

DELTA SYSTEMS LTD

Agents for DYNACOMP SOFTWARE
PET. APPLE II Plus. TRS 80 (Level II)
BRIDGE $2.0 \quad £ 7.50$ (TRS 80 only)
Hearts 1.5 £6.25 Data
Cribbage £6.25 Smoother £6.25
(TRS-80 Only) Fourier
Chessmaster £8.30 Analyzer £6.25
(TRS-80 Only) Transfer
Startrek 3.2 £4.00 Function
Space Tilt $£ 4.50$ Regression $!\& 11 £ 8.30$
(Apple only) Black Hole $£ 6.25$
Games Pack $1 £ 4.00$ (Apple only)
Games Pack $2 £ 4.00$ Valdez
Graphix
$£ 5.50$ Flight
TRS-80 Only Simulator
Tidy £4.50 Text Editor
All programs on tape with
superb documentation.
VAT extra. Postage 20p.
Send for full detailed list.
32 Finch Road, Douglas, I sle of Man.
062427522

To advertise in

MICROMART
Please ring Jacquie Hancock
on 01-631 1682

Continued from page 123

I hope you will implement this generalised program on your own machine. It will probably be easier with program A, but either of mine or a new version of your own may be used. This will allow you to solve the following puzzle that I will leave with you till next month.

MICROMJSTCMANTAG

Continued from page 89
mind and the eyes rebel after a while. Nascom's mode of entering maching code, where you can just enter one byte after aniother without having to step the cursor in eight places for each new line, is much easier.

The start of the toccata is a fast, rising octave scale in D major. With an instrument such as a harpsichord, the decay of each note continues after the next one has been struck, so I arranged to 'strike' each of the first four notes using voices one to four in mode one in turn, sustaining the ones that had been sounded. I had to come back to voice one after this and repeat the technique, but the effect of sustaining over four notes was quite pleasing. I used mode two to get a louder note at the bar line, and mode three to get a still louder effect for the next section, again with

but we have tried to look at Unix from the points of view of several sorts of users. At system programmer level the Unix system is wide-open, having been written in C and having commands and system calls which make accessible most of the system information and operations. This provides a particularly hospitable working environment for system programmers and, in consequence, it is probably within this group that Unix finds its most ardent admirers.

For the applications programmer, Unix provides a flexible and efficient interface to its development tools

The largest number of moves needed to get from any square to any other on a 4×5 board is four. What is the smallest square board on which five moves are needed to get from any square to any other? And then the same problem for six moves, and for as many more cases as you and your computer care to run.

Next month I shall be writing about a game that is a cross between chess and battleships. Each player moves a Queen (or other chess piece) round a board that the other player cannot see, trying to land on or at least pass through the square that the opponent's piece is on. Without further information that would be blind man's buff. But you are told where the other player was before the last move, as well as when a hit or a pass has been made. Try it.

good effect.

I have not been able to try out as many things as I would like, owing to editorial deadlines, but have done enough to convince myself that the MTU software provides a very powerful and versatile system, marred slightly by noise and limited frequency range in the sound, and by the complexity of writing a musical score in hex code. I look forward to the human interface which will overcome the last. Musicians would, of course, prefer to use a conventional piano keyboard for entry, but this would add considerably to the cost. And, a practical point, couldn't the booklet be decently bound with a spiral, instead of being stapled at one corner and punched with three holes for which you can't get an American ring binder?

Acknowledgements to the City University Microprocessor Laboratory, for the loan of a PET 3032.
although the commands are a bit curt for many tastes. On a busy system where many users are making demands on the system resources (although not necessarily simultaneously) some sort of housekeeping routines, as well as good accounting and rationing procedures, would have to be developed. On an educational system where new programmers are being introduced to programming and don't need to be confused by having to learn the operating system as well, a subset of the commands with some more obvious names would probably be an advantage. However, as the students gained familiarity with the system, Unix may become vulnerable to the 'malicious junkie' syndrome sooner than other, more restricitve operating systems might. Finally, for the commercial systems developer, Unix affords a straightforward mechanism for implementing a reliable, multiuser turnkey system.

BLUDNERS

Last month's 'Greenfingers' program has been causing consternation among PET aficionados. Rumour has it that POKEing 59458 causes an internal conflict in PET resulting (sometimes) in chip damage. We spoke to the program's writer who tells us that he uses it without problems. He also tells us that Commodore used to market the program on his behalf. You have been warned.

Sheridan Williams mentioned that to convert from an old ROM to new ROM involves the substitution of a single chip. In fact, depending on your precise model, four or seven chips are involved. Hence the price of $£ 38$ plus VAT. Last month we announced the winners of a 'Printer Survey' - it should, of course, have been Reader Survey.

Twice as much on ONE BOARD at around HALF THE PRICE!

Three years' development went into BigBoard, designed from scratch to run the latest version of CP/M, so just imagine what software you could run WITH NO MODS! Add a couple of 8 "Disk Drives, a Video Monitor and Keyboard, an enclosure and the Power Supply option - and you've got a complete business system for about ONE THIRD the COST!

That's what BigBoard can offer - flexibility, power, and incredible economy! Send for your BigBoard TODAY!
Buy in confidence! Full technical back-up provided in UK
Requires + 5V @ 3 Amps + / - 12V @ 0.5 Amps.

Please send me__ completely assembled and tested
Complete with rechnical Manuals
BigBoards at $\mathbf{5 2 3 . 2 5}$ (inc. $\mathbf{6} 5$ INSURED DELIVERY and 668.25 VAT) each, total t \qquad I enclose cheque for or PAY BY ACCESS, giving card number and signature

PLUS THESEOPTIONS ON THEBOARDAS WELL

Serialllo Full 2 channels using the Z-80 S 10 and the SMC 8116 Baud Rate Generator. You get FULL RS232 For synchronous or asynchronous communication and clocks can be transmitted or recelved by a modem in the former. 8 oth channels can be set up for either data communication or data terminals. Supports mode 2 lnt PRICE JUST $\mathbf{C 7 0}$ (inc. p\&p)

Two Port Parellel I/O	Uses Z-80 PIO so give full 16 bits, fully buffered and bi-directional. User selectable hand-shake polarity. ONLY $£ 35$ (ins. p\&p)
Real Time Clock	Uses Z.80 CTCand can be conligured as a counter on Real Time Clock. ONLY $£ 22$ (inc. p\&p)
CP/M 2.2	The popular CP/M D,O.S. as modified by Micronix Systems to run on the $\mathrm{B}_{4} \mathrm{~g} 8 \mathrm{oard}$ is just $\mathbf{C 9 9}$ (inc. p\& (p)
Power Supply Complete assembled and cased $¢ 60$ ($¢ 2$ p\&p)	

Cheques payable to Maclin- Zand Electronics Ltd., please. Cash with order.

Name
ACCESSNO
Address
\qquad
\square

Signature

Sole European Distributor.
Distributors wanted for UK and Europe
Maclin-Zand Electronics Limited,
38 Mount Pleasant, London WCIX OAP
Tel: 01-837 | $65 / 01-2787369$ Telex 8953084 MACLING.

IF YOU WANT TO BE CONVERTED. . . READ ON
 FAST 12 BIT A/D AND D/A CONVERTERS FOR A VARIETY OF MICROS:

FOR APPLE LOM 10

* 16 SINGLE ENDED OR 8 DIFFERENTIAL INPUTS
* 30 KHZ DATA THROUGHOUT
* INPUT RANGES $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0-5 \mathrm{~V}$, $0-10 \mathrm{~V}$
* EXTERNAL TRIGGER UNDER SOFTWARE CONTROL
* A/D's CAN BE SYNCHRONISED.
£375.00
FOR S100 LOM 11
* AS FOR APPLE, PLUS POWERFUL TIMER
* EVENT TIMER, TIME OF DAY, AUTO INTERRUPT ETC.
* AUTOCHANNEL INCREMENTING.

FOR APPLE LOM 20

* 2 INDEPENDENT D/A's
* 3 MICROSEC SETTLING TIME
* 8 BIT PARALLEL PORT FOR PEN DOWN, ETC.
* OUTPUT RANGES $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$, $0-5 \mathrm{~V}, 0-10 \mathrm{~V}$.

FOR S100 LOM 21

* 4 INDEPENDENT D/A's
* 3 MICROSEC SETTLING TIME
* OUTPUT RANGES $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$, $0-5 \mathrm{~V}, 0-10 \mathrm{~V}$.
£275.00

$$
\begin{array}{r}
£ 495.00 \\
\mathrm{D} / \mathrm{A}
\end{array}
$$

FOR ANY MICRO WITH DUAL PARALLEL I/O PORT (380Z, ETC)
12 BIT A/D WITH 20 MICROSEC DATA THROUGHPUT - LOM 30

* GIVES 8 CHANNELS ON APPLE WITH CCS DUAL PARALLEL I/O CARD * GIVES 4 CHANNELS ON 380Z, ETC.
* INPUT RANGES 0-1 V, 0-5 V, 0-10 V, SWITCH SELECTABLE
* A/D STANDS OUTSIDE COMPÚTER FÓR GREATER STABILITY * OWN INDEPENDENT POWER SUPPLY. £295.00
PRICES FOR COMPLETE APPLE, ALTOS, AND S100 SYSTEMS (PLUS SOFTWARE) ON APPLICATION ALL PRICES EXCLUSIVE OF V.A.T. INCLUSIVE OF POST AND PACKING CASH WITH ORDER

LOMBARDY COMPUTERS
121, HIGH STREET, BERKHAMSTED, HERTS HP4 2DJ. TEL (04427) 4247

Please add 50 p for postage and packing for orders under $£ 50.00$. Prices include VAT. Minimum order $£ 15.00$.

Calona Limited

Third Floor Broadway House 112-134 The Broadway Wimbledon London SW 19 1RH
Telephone 01-543 1008 Telex 923416 CLNLDN G

MICROS MEMORIES TTL's \& INTERFACE DEVICES

Z80	$£ 6.50$	6800	$£ 6.00$	6502	$£ 6.50$
Z80A	$£ 8.50$	6802	$£ 8.50$	8080 A	$£ 4.50$
8085A	$£ 11.00$	6809	$£ 16.00$	2650 A	$£ 16.00$

LARGE RANGE OF PERIPHERAL DEVICES AVAILABLE.

	SPECIAL OFFERS					
	$\mathbf{1 . 2 4}$				$\mathbf{2 5 . 9 9}$	$\mathbf{1 0 0}$
		$£ 2.00$	$£ 1.80$			
$£ 1.60$						
$2114 \mathrm{~L}-450 \mathrm{~ns}$	$£ 3.90$	$£ 3.60$	$£ 3.40$			
2708	$£ 5.00$	$£ 4.50$	$£ 4.00$			
$2716(+5 \mathrm{v})$	$£ 15.00$	$£ 12.00$	$£ 10.00$			
$2732(+5 \mathrm{v})$	$£ 2.00$	$£ 1.80$	$£ 1.60$			

Please add P\&P 40p and VAT at 15\%
TECHNOMATIC LIMITED

Retail Shops:
17 Burnley Road,
London NW 10
367 Edgware Rd., W2

Mail Order
17 Bürnley Road, London NW10 Tel: 01-452 1500/ 450-6597

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">P C</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">S</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| P C |
| :--- | :--- |
| S |</table-markdown></div>

 TRITON - TUSCAN

 TRITON - TUSCAN}

WE - SUPPLY any TRITON or TUSCAN system. Built, customised or in kit form.
WE - ADVISE and can write any business suites based on these systems.
WE - PROVIDE Standard Suites for Estate Agents, Insurance Agents, Business Accounting and Word Processing.

KIT ENHANCEMENTS FOR TRITON

- VDU RAM Peek, Reverse Display, Screen Antiflash, Bleeper. REF. 502/1 £23.00 FOLLOWING PLUG DIRECT INTO MOTHERBOARD (On D/S. PCB) NO MESSY CABLEFORMS
- 2708 EPROM Programmer. (L7.2 \& L8.2 Monitor). REF. 501/1 £29.50
- Modified BIOS ROM for 9.2 SYSTEMS TO USE 501/1. REF. 504/1 £10.00 - S100 Converter and "CONDUCTOR" Socket on D/S PCB. REF. 503/1 £25.00

ALL KITS SUPPLIED COMPLETE AND WITH FULL INSTRUCTIONS. KITS READY-BUILT AND TESTED POA.
all phices exclude vat a carriage

PURLEY COMPUTER SYSTEMS LTD

P.\&R COMPUTER SHOP

EPSON MX-80 80.GPs. DOT MATRIX PRINTER WITH SPECIAL INTERFACES. 3982 IBM I/O PRINTERS. VDU's. ASCII KEYBOARDS. ASR. KSR, TELETYPES. PAPER TAPE READERS PAPER TAPE PUNCHES. SCOPES. TYPEWRITERS. FANS 4" $5^{\prime \prime} 6^{\prime \prime}$. POWER SUPPLIES. STORE CORES, TEST EQUIPMENT, AND MISCELLANEOUS COMPUTER EQUIPMENT. OPEN:- MON TO FRI $9 \mathrm{am}-5 \mathrm{pm}$ SATURDAY TILL lpm.

COME AND LOOK AROUND

SOLCOTT MILL, GOLDHANGER RD, HEYBRIDGE, ESSEX. PHONE MALDON 57440

LONDON COMPUIER CENIRE

NEW! Revolutionary! Epson MX80F/T £425 the PRINTER with FRICTION \& ADJUSTABLE

Removeable TRACTOR FEED

Dual print modes letter quality standard dot matrix

ULTRA QUIET.

LOWER CASE DECENDERS
BI DIRECTIONAL, LOGIC SEEKING PRINT HEAD 40,80,66,132 Columns per line
UNIQUE BOLDING BUILT IN FEATURE 64 Graphic Characters (TRS 80 \& Prestel) 9×9 PRINT.MATRIX. £ sign
Forms Handling; Top of Form Horizontal and Vertical Tabs.
Centronics parallel interface standard.
Optional extra Serial PET \& APPLE interfaces. Easily replaceable head.
After $50,000,000$ to * 100,000,000 characters the head can be replaced without technical knowledge or assistance for $£ 15.00$

* Approx. 38,000 copies of A4 letters.

programming FOR THE SINCLAIR 2×80

 course\% \%

This poptiar course designed for the 2×80 is now available in a new enlarged edition. It consists of a book together with a cassette of ready-to-run programs, which are explained in the text together with many other useful programming examples. It is not just a book of programs - the emphasis is on understanding the examples given and writing your own. PEEK and POKE, USR and machine code, arrays, flowcharts etc. are all dealt with, together with a section on pr.

$$
\begin{aligned}
& \text { PRICE } £ 8.95 \text { INCLUSIVE }
\end{aligned}
$$ RECEIVED BEFORE APRIL lst

SEND SAE FOR OUR LATEST CATALOGUE OI $2 X 80$ SOFTWARE

Acorn Atom

acorn atom softhare on cassette. figures hefer to total memory required. ATOM INVADEFS (12K) Exciting machine code game using graphics mode 4 and Bound output. I or 2 players, high score, 3 invader types, 11 colunns $x 5$ HOM BREAKOT (4V) PRICE 112.00 ATOM BREAKOVT (4K) Another fast and entertaining machine code gane with 9
levels of play, advancing wall, high score etc. Sound output PRICE
$£ 5.00$ PINBALL (6K) See if you can light up all the letters and win a free ball High score, 1 or 2 players, gravity simulation, sound output, graphics mode 2. Fast moving machine code game PRICE $£ 6.00$ THE FOLLOWING PROGRAMS REQUIRE $4 K$ MEMORY AND ARE PRICED AT £3.50 EACH:PONTOON; BIO-RHYTHMS BATTLESHIPS; ALIEN DESTROY; MINEFIELD; HORSE RACE Cassette of four 2 K programs: Torpedio;Lunar lander;Reaction test; Hangnan $£ 5$. ALL PRICRS INCWISTVE

MAIL ORDER ONLY
BUG-BYTE Software

(RO Version £836 + VAT) Manufactured in W. Germany by OLYMPIA INTERNATIONAL SOLE UK DISTRIBUTOR: DATAPLUS LTD.
[H] Hithe

KRAM ELECTRONICS

30 HAZELHEAD ROAD, ANSTEY, LEICESTER 0537213575

| CENTRONICS 737
 PROPORTIONALL SPACING
 PRINTER £395 |
| :---: | :---: | :---: | :---: |

Memories

$2114-300 \mathrm{~ns}$	$1 \mathrm{k} \times 4 \mathrm{SRAM}$	1.89
$4116-200 \mathrm{~ns}$	$16 \mathrm{k} \times 1 \mathrm{DRAM}$	2.41
$2708-450 \mathrm{~ns}$	$1 \mathrm{k} \times 8 \mathrm{EPROM}$	3.46
$2516-450 \mathrm{~ns}$	$2 \mathrm{k} \times 8 \mathrm{EPROM}$	4.62
$2716-450 \mathrm{~ns}$	$2 \mathrm{k} \times 8 \mathrm{EPROM}$	4.62

Please add 50 pence for postage.
Send SAE for price list.
Prices not inclusive of VAT.

STRUTT LTD

3c, BARLEY MARKET STREET, TAVISTOCK,
DEVON, England, PL19 0JF.
Tel: TAVISTOCK (0822) 5439/5548
Telex: 45263

Capple
Sales and Service

VISICALC $£ 95$

A program which can generate complex models using simple steps, for virtually any financial application.

APPLE PLOT £42
This program allows the user to take advantage of Apple's high resolution graphics by plotting numeric data in a variety of ways. Links directly to Visicalc.
Order both of these superb programs for only $£ 120$
ARISTOCARDS ONLY £65 EACH
A range of plug compatible boards for Apple II or ITT 2020 HIGH SPEED SERIAL INTERFACE

PARALLEL INTERFACE
CENTRONICS INTERFACE
*Manuals available separately at $\mathbf{£ 2}$ each DEALER ENQUIRIES WELCOME

ALL PŔICES EXCLUDE VAT
WE STOCK AN EXTENSIVE RANGE OF HARDWARE AND SOFTWARE FOR THE APPLE II, INCLUDING COMPLETE BUSINESS SYSTEMS
FOR FURTHER DETAILS OR A DEMONSTRATION

OF OUR PRODUCTS

RING 01-880 4846
SIMON COMPUTERS LIMITED 28 LOWER ADDISCOMBE ROAD, CROYDON, SURREY CRO 6AA

MODEL I

LEVEL II CASSETTE

 GAMESAdventures:-
Adventureland" Pirates Cove* Mission Impossible The Count* Voodoo Castle Strange Odyssey
Mystery Fun House Mystery Fun House Pyramid of Do
Ghost Town Adventure Sampler* Air Raid* Air Traffic Contro ${ }^{\circ}$ Alien Invaders Android NIM Backgammon Balloon Race Barricade
Baseball Basebal
Bee Wary Bingo Bowling ITen Pin Bridge Challenger Challenge Cribbage Dogstar
EndZone II
Fastgammon*
Galactic Blockade
Galactic Empire
Galactic Revolution Galactic Trade Gammon Challenger* Gangster
Hangman
I Ching.
I Ching
Invaders from Space Kamikaze
Kreigspiel II
Lost Outchmans Gold Mastermind II*
Mastermind II* Noughts \& Crosse Othello IIt Pentominoes

Pinball*
Pork Barrel Pre School Games PR Dogfight. Robots
59.50 Round The Horn
99.50 Safari
69.50
Safari
Santa Paravia

Sargon Il*
Space Battles
Star Trek III. 5
Taipan
Time Trek*
Ting Tong*
Trek '80
Trolls Gold
Tycoon
Warfare
X-Wing Fighter II UTILITIES
APL-80*
Accounts REC II
Appointment Log
Astronomy
Basic IP*
Basic Toolkit*
Biorythms
Calendar Functions
Copys.
Data Base II
Debug*
Dosort
Electric Pencil*
Electronics Asst
ESP Tester
File Handling
Finance I
Finance II
Forth (Incl. Primer)
Fourie Transforms
Graph Builder
£9.50 G.S.F.*
£6.50 General Accounting £9.50 Ham Radio
£6.50 Histograph/Scattergram
£5.50 Home Finance
£6.50
Infinite Business*
E6.50 Inst. Calculator
E6.50 Inventory 'S'
. 99.50 Inventory Control -6.50 lQ Builder (Vocab) £6.50 Q Builder (Spelling) £6.50 1 Q Builder (Stories) 56.50
IO Builder (Pre School) £6.50 10 Builder (Numbers) E6.50 IRV*
E6.50 Keyboard 80 *
99.50 Levellil Basic.
£9.50 Linear Programming
£6.50 Magic Paper Calculator
£9.50 Math Drill
E6.50 Math Library
E6.50 Math Library II
£4.50 Medump ${ }^{\text {E }}$
55.50 Microtext Editor
£6.50 Mortgage Calculator Multi-Choice
59.50 Pascal*.
£6.50 Personal Finance
. $£ 7.50$ Personal X-REF
f11.50 Pilot 2.2*
f 11.50 Pre Flight
R4
50
Renumber
. $£ .50$ Remodel+Proload
. 9.50 RPN Calculator
£17.50 RSM2 Monitor*
f12.50 Statistics
f23.00 S.T.A.
£23.00 S.T.A.O."
£50.00 Star Finder
${ }^{\text {® }}$ £6.50 ${ }^{\text {Super Simon }}$
$£ 16.00$
Super T-legs

T-Step

Sy.
System Copy*
. $£ 7.50$ System Copy*
f7.50 Timser
$\mathbf{F 7} 50$ T-Shor
£37.50 T-Shor +
. $£ .50$ Tarot Cards
. 9.50 Teachers Assistant
$£ 17.50$ Teachers Assistant II
. 68.50 Tiny Comp*

£6.50 TRS-80 Opera
E650

$£ 31.00$ Yybar
£31.00 Yybar 76 Basic Programs
. $£ 7.50$ Manual for Above
. 516.00 Libüary 100 .

£11.00 D/SK ¢9.50
 D......

A.P.L. 80^{*}

Accounts Receivable
Advanced Personal
£16.50 Amateur Radio System
f7.50 Auto Disk Directory
£9.50 C.C.A. Data Management
£30.00 Compress It
$£ 75$
Data Base III
f9.50 DCV-1
5.00 Dynamic Data Base
58.50 Electric Pencil
File

E .50
File Manager $80 .$.
$£ 8.50$ Forth* (Incl. Primer)
$£ 6.50$ General Ledger II
£6.50 General Ledger II
69.50
Inventory 'S'
$\mathbf{5 5 . 0 0}$ Inventory II
f5.00 Inventory II
f9.50 KVP Extender
526.00 Levell in Levelli*
£11.50 Mailist IV Leve....
£6.50 Newdos Plus"
£9.50 Newdos 80 *
£9.50 Payroll (Tridata)
11.00 Print Spooler* ${ }^{*}$
.f6.50 Roots
23.00 RSM 20 Monitor*
£6.50 Simplify-lt
15.50 SCRIPS SUPERSCRIPT*
£16.00 ST-80D Terminal
16.00 ST-80D Terminal
£7.50
ST-80 III Terminal
£6.50 Visicalc*
£7.50 Taranto \& Associates Conversio
£8.50 of Osboume \& Associates Business
f9.50 Programmes
£6.50 Accounts Payable
£12.50 Cash Journal (for G/L)
£6.50 Invoicing
99.50 Accounts Receivable...... $\mathbf{£ 9 0 . 0 0}$
f9.50 General Ledger
£12.50 Complete Co-ordinated $£ 90.00$
£6.50 with Manuals $\mathbf{E 3 5 0 . 0 0}$
£ $£ 9.50$ *Denotes Machine Language
£9.50 TRS-80 Trademark of Tandy
£23.00 Corp. CP/M Trademark OD
f7.00 Digital Res. C-Basic Trademark of
£40.00 Compiler Systems. f40.00

MODEL II

CPM 2.2 X

CBasic 2 (CP/M). Postmaster (CP/M)
Supersort III (CP/M) Superson ili (CP)
RSM II
ICP/M) T/Maker (CP/M) ©30.00 GSM II

Development System Utility Package

WORD PROCESSORS Electric Pencil II (CP/M) .£200.0 Electric Pencil II TRSDOS . $\$ 200.00$ Magic Wand (CP/M) $£ 230.00$ CP/M)
BUSINESS SYSTEMS
Osbourne \& Associates Pro-
grammes in CBasic:-
Accounts Rec \& Payable $£ 150.00$
General Ledger …...... 150.00
General Ledger
Accounts Rec \& Payable $E 200.00$ eneral Ledger $£ 200.0$

CP/M USERS GROUP
23 VolumesEach £ 12.00
ALL PRICES INCLUDE VAT AT
15\%, PACKING \& RETURN
POSTAGE TO U.K. ADDRESSES. PRICES TO OVERSEAS
ADDRESSES INCLUDE RETURN AIRMAIL. SEND 50p FOR
DESCRIPTIVE CATALOGUE

MICROCOMPUTER APPLICATIONS
11 RIVERSIDE COURT, CAVERSHAM,
READING RG48AL, ENGLAND.
TEL: (0734) 470425

TRIDATA COMPLETE BUSINESS SOFTWAREPACKACES

> SALES INVOICING
> SALES LEDGER
> * PURCHASE LEDGER * NOMINAL LEDGER * PAYROLL
> * STOCK CONTROL

for use on TANDY TRS 80
 TANDY TRS 80 Mk. II SHARP MZ-80K - PET AND SUPERPET * APPLE

Our business packages are supplied with master diskettes, detailed operating manuals and tra ining procedures. For small businesses and traders with up to 700 employees, 9,999 customers and 9,999 suppliers, our proven programs written by experienced DP professionals provide fast, simple control, with built in security routines for prevention of unauthorised use, abuse or mishandling.
Over 550 Tridata business systems are now in use.
TRIDATA WARRANTY

Every Tridata program has a written 12 month warranty and can be
automatically updated to conform to any legislation that may alter your
accounting procedures.

Send me details of the Tridata Business Software Systems. Iam interested in

PURCHASE LEDGER SALESLEDGER PAYROLL NOMINAL LEDGER SALES INVOICING STOCK CONTROL

For TANDYTRS 80
TANDY TRS 80 Mk .11 SHARP MZ-80K

PET
SUPERPET
STOCK CONTRO
APPLE

SEND THE COUPON TODAY OR TELEPHONE

Company
Address

Xitan
 South Coast Leaders in Microcomputer Support Application and Service

Xitan - First for Business \&Commercial Systems
Xitan's specialised Administrative and Operational Microcomputer Systems provide cost effective computer support for wide ranging business organisations; from low entry level, stand alone systems for the smaller business, to integrated multiuser/multitasking systems to meet the more specific needs of the larger business enterprise.

Xitan - First in Science and Research

Xitan support the more personalised requirements of the scientific and research users universities and colleges, and in government and independent research establishments with comprehensive practical experience embracing hardware, system, and applicational software.

Xitan - First in Industry
Xitan's depth in microcomputer experience is playing an increasing role in the rapidly developing industrial applications for production and process control, and in product and production development operations.

Xitan - First for Service

Xitan's local reputation is founded securely on Service- both in system development-software and hardware support, and service in the field.

CASH AND CARRY SUPERDEALS

SUPERSOFT

WORDSTAR
2250
DATASTAR
E180
MAILMERGE SUPERSORT 5125

Dealers: Best Discounts

Telephone: 01-840-1926

Floppy disc File

Easy reference filing system for your flexible computer discs, files 20 discs per binder. File sheets retain 4 discs, have reinforced binder edge and file reference tab. Leaves punched for 2 and 3 hole binders. Also available for $8^{\prime \prime}$ discs, files 10 discs per binder.
-Please state size when ordering Binder complete with 5 leaves $£ 4.95+$ VAT
Pack of 5 leaves only $£ 1.55$ + VAT

BASF and Memorex mini discs $£ 27$ + VAT per box (10)
Clean your monitor screen with the revolutionary Quick Wipes, Anti-Static tissue. Removes dirt, dust and static in one wipe. $£ 2.75$ per can + VAT
 computer centre limited

67 Regent Road, Leicester LE1 6 YF. Tel: 0533556268

Machine-Independent Organic Software Tools (MINT)
 M.D. Godfrey, H.J. Hermans, D.F. Hendry and R. Hessenberg July 1980 . xviii $+438 p \rho$. E' $12.00(U K$ on(y) / \$28.00, 0.12.286980.x
 MINT Machine.Indopendent Organic Sothware Toois) is a novel maans for communicating ranging from home computers to major industrial or scieinitic sysiems.
 Computers and People Series
 Communicating with Microcomputers

 with and controlling computers. It providess all the information raquired 10 use and implementsoftware tools. Examole implementations are given tor two computer systems. The level is

An Introduction to the Technology of Man-Computer Communications Ian H. Witten
July $1980, \times 1 /+16400$.
Herdbeck. 88.80 (UK
Hordbeck: E8.80 (UK oniv) / \$18.00, 0.12.760750.1
Paparbock: E4.95 (UK only) / \$10.50, 0.12.760752.8
With the controversial and much heraided microprocessor revolution upon us there is an urgent need to unvell the mystery dividing Man from machine. This book is about communicetion both within the syatem and between it and the outside worid.

Computers and People Series

On Becoming a Personal Scientist

Interactive Computer Ellcitation of Personal Models of the World Mildred L.G. Shaw
1980, xul + 332pp., E23.20 (UK on/y) /\$56.00, 0.12.639280.3
Personal construct psychology was developed by George Kelly in the early fiftiesto expla inhow similar events could produce different bghevlour in differ ent people. Central to his theory was a view of man as a parsona/scientist forming theories about his world, testing and revising them against personal experience, and acting on the basis of them. He devised the repertory grid technique to elicit the unique dimensions along which each individual. classiffes his world. Using the basic philosophy of personal construct theory and the repertory grid, the author of this produce, objectively and explicitly, a model of his view of the world and his attitudes towards it.

Academic Press

A Subsidiary of Marcourt Brace Jovanovich, Publlshers London New York Toronto Sydney San Frenclico 24.28 Oval Road, London NWI 70 X , England 111 Flfth Avenue, New York, NY 10003 , USA

THE BASIC HANDBOOK

An Encyclopedia of the Basic Computer Language By Dr. DAVID A. LIEN 360 pages Softback Price $£ 11.70$
"Everything you need to know about the most important statements, functions, operators, and commands." (Book Reviewer)
"This book provides the key that
 can open your computer to programs
written in BASIC dialects supplied with more than 50 of the world's most popular computers.'
(Kilobaud Microcomputing)
"The book is a very useful tool, which covers not only the possible uses, but test methods as well for each command or statement".
"The BASIC Handbook fills a void in the hobby computer field and does it well."
"'This book is what has been needed as a universal guide for those like me who are not familiar with all of the various 'dialects' of BASIC."
"This is the only book now available to help software fans convert 'foreign' programs for use on their own computers." (Creative Computing)
Available at bookshops or your local computer store. In case of difficulty, send Cheque/P.O. for $£ 11.70$ to the U.K. Distributor

The Computer Buahshop
Temple House, 43/48 New Street, Birmingham B2 4LH

PRICES STHASHIED

Commodore Computers

3032 32K. Basic $2.0 \quad 625$
3040 Disks. Dos $1.2 \quad 625$
3022 Printer 405
4032 32K. Basic 4.0 . 640
4040 Disks. Dos•2.1 © 640
8032 32K. Basic $4.0 \quad 855$
8050 Disk. Dos $2.1 \quad 855$
8024 Printer. $160 \mathrm{cps} \quad 1095$
(Prices Ex. VAT)

We also have readyo made packages for Accountancy applications, Business planning, Database Handling and Word Processing. As experienced data processing professionals we are the best people to help you.

> LOGIC BOX LTD 31 PALMER STREET LONDON SW1

Tel: 01-222 1122/5492

WESTERN COMPUTERS stock the full range of Apple products and Apple compatible peripherals 48K APPLE with video output 695.00 DISK DRIVE with controller (DOS 3.3)
383.00

DISK DRIVE W/O controller 299.00
PARALLEL PRINTER CARD 104.00
SERIALINTERFACE CARD 113.00
PASCAL language system 299.00
FORTRAN for language system 120.00 12 inch VIDEO monitor (green screen)
162.00

CP/M

Z.80 SOFTCARD for CP/M and Mbasic version 5.0
195.00

BASIC COMPILER compatible with Mbasic $\vee 5.0$ and $3-10$ times faster execution. Includes Macro-80 assembler.
FORTRAN-80 ANSI-66 (except
for complex) Much faster than
Apple Fortran. Includes
Macro-80.
205.00

COBOL-80 Ansi-74 Includes
I.S.A.M.
325.00

BUSINESS SOFTWARE for
APPLE CP/M.
SALES LEDGER $500+$ accounts 295.00 PURCHASE LEDGER
with nominal
345.00

STOCK CONTROL 295.00

PAYROLL (up to 300
employees)
345.00
(All prices exclusive of VAT)
Please give us a ring or send for our catalogues.
WESTERN COMPUTERS LIMITED,
BLACK POOL AIRPORT, BLACKPOOL, LANCS.
Tel: (0253) 42660/41879 Telex 67162

Applesoftware from Leicester Computer Centre

the mine
 eqremerer
 by R. Wagner

\star Now with mathematics routine \star
THE CORRESPONDENT is sure to be one of the most versatile programs in your library! It can be used as:
A Text Processor: Upper/lower case, 1-80 cols. (4-way scrolling). Text move/copy/insert/delete, tabbing, justify text, auto-centering and more!
A Database (with or without printer!) Extremely fast find routine and easy editing make it a natural for free-form data files. Create and fill out forms, access phone lists or index your magazines.
A Programming Utility: (printer or not). Examine, edit, transfer random or sequential text files. Create versatile exec. files. Even put bidirectional scrolling in your own programs!
Use the Correspondent to print-out your Visicalc formula. Apple disk $£ 29.95$ + VAT

SUPER DISK COPY III

48K \& DISK II required, APPLE II or APPLE II PLUS
SDC is a menu-driven programme that allows manipulation of all types of files under DOS 3.1,3.2 and 3.3. SDC is the only disk utility available for the APPLE that combines these features: COPY single files (Integer, Applesoft, Binary, or Text), COPY DOS, COPY entire disk, UNDELETE deleted files, LOCK or UNLOCK files, PLOT of disk usage, and optional rearrangement of files so that they occupy contiguous sectors for improved of files so that they occupy contiguous sectors for improved
access times, SDC supports the wildcard character " $=$ " in file access times, SDC supports the wildcard character " $=$ " in file
specifications. SDC makes the conversion to DOS 3.3 less painful specifications. SDC makes the conversion to DOS 3.3 less painful
(than MUFIN) and also allows files to be transferred back to DOS 3.2 since both 13 and 16 sectored disks can be accessed at the same time.
$£ 24.95+$ VAT

Apple-Doc

An Aid to the Development and Documentation of Applesoft Programs This 3 program set is a must to anyone writing or using programs in Applesoftl It not only provides valuable info. on each of your programs, but allows you to change any eiemen throughout the listing almost as easily as you would change a single line!!
With Apple-Doc you can produce a list of every variable in your program and the lines each is used on, each line called by a GOTO, GOSUB, etc., in fact, every occurance of almost anything! You can rename variables, change constants and referenced line numbers or do local or global replacement editing on your listing

Apple-Doc is a must for the serious Applesoft programmer.
Diskette complete with full documentation $£ 24.95+$ VAT

PASCAL-FORTRAN COMPATABLE An exciting new addition to your Pascal library - enables you to create 3D graphics, viewable from any angle and distance. As easy to use as Turtlegraphics. Procedures include Ortho Perspec, Rotate, View, Move to-3, View-from. Complete with comprehensive instructions

Apple World

is here. The fast 3D graphics package that runs on your Apple II plus. Zoom, pan, tilt and scale your own designs on the Apple screen, at only $£ 24.95$ + VAT

Plus a complete range of "off the shelf" programs for finance, commercial, scientific and education. Keep yourself up to date, send for our "Fact Sheets" giving full program details.
Now available Apple FORTRAN, Dos 3.3, Apple Plot
 computer centre limited 67 Regent Road, Leicester LE1 6YF. Tel: 0533556268

Apple III! Send for details now

DEVELOPED BY G.W. COMPUTERS LTD NOW AVAILABLE FOR DEMONSTRATION IN THE NORTH. Freshfield Computer Services MAIN MENU DISPLAY

* Programs are integrated.
$01=$ "ENTER NAMES AND ADDRESSES 02=*ENTER/PRINT INVOICES
$03={ }^{*}$ ENTER $A^{\prime} C$ RECEIVABIES
04=" ENTER PURCHASES
05= *ENTER A'C PAYABLES
06"*ENTER'UPDATE INVENTORY 07**ENTER'UPDATE ORDERS $08=$ *ENTER'UPDATE BANKS 09=*REPORT SALES LEDGER $10=$ - REPORT 12=*USER DBMS AREA
:SELECT FUNCTION BY NUMBER
13=*PRINT CUSTOMERS STATEMENTS 14"*PRINT SUPPLIER STATEMENTS $15=$ *PRINT AGENT STATEMENTS 16"*PRINT TAX STATEMENTS 17"LETTER TEXT AREA 18=AL TER VOCABULARIES 19-PRINT YEAR AUDIT $20=$ PRINT PROFITLOSS A'C $21=0$ PEN AREA
22=PRINT CASHFLOW FORECAST $23=$ ENTER PAYROLL (NO RELEASE) $24=$ DISK SWAP'EXIT

FOR FULL DETAILS SEE GW COMPUTERS AD

SUPERBRAIN + SUPERBRAIN + SUPERBRAIN
SUPERBRAIN 320K 1695.00
SUPERBRAIN 800K 2195.00
PRINTERS + PRINTERS + PRINTERS + PRINT
NEC-5530PRINTER 1595.00
MICROLINE $80120 \mathrm{CPS} \quad 475.00$
SOFTWARE + SOFTWARE + SOFTWARE
BUS VER 6.00 CP/M 775.00
BUS VER $7.00 \mathrm{CP} / \mathrm{M} \quad 875.00$
BUS VER $8.00 \mathrm{CP} / \mathrm{M} \quad 975.00$
BUS VER 9.00 CP/M 1075.00
PLUS: Word Star - Mail Merge - MBasic 80 Supersort
PLUS: Graham Dorian Software Systems Payroll, Stock Control, Ledgers etc.

Demonstrations by Appointment only

ADD SPEECH TO YOUR COMPUTER SYSTEM MICROSPEECH 50 SPEECH OUTPUT BOARD

LOW COST £99.50 + vat

Price includes software on mini floppy disc $(6800$ Flex 1), operators manual, circuit diagrams and postage (in the UK). MICROSPEECH 50 enables your computer system to generate a speech output. The text to be spoken is entered in the form of phonetic spelling. Using the 'Synthesis by Rule' technique, the MSP5 software converts the phonetic code into control parameters that drive an electronic model of the vocal tract. The output of this model is synthetic speech. Unlike other techniques, this method has very low memory requirements for the text, and is capable of generating an unlimited amount of speech.

FEATURES

- Plugs into the SS50 bus on the SWTP 6800 computer system. It fits into the main 50 way slot, being the same size as a memory board.
- MSP5 software uses only $4 K$ of memory
- 9 parameter vocal tract model.
- Real time software converts phonetic spelling to speech.
- External input for special musical effects.
- Software includes male/female voice option, repeat function, and text editing.

AVAILABLE FROM
TIM ORR Design Consultant
55 Drive Mansions, Fulham Road, London SW6 Tel: 01-731 2077

TRS 80 MODEL III

The Model It has arrived in the U.K. * NEW FEATURES AVAILABLE * * Upper and Lower Case characters (standard * Real Time Clock $\star 500$ or 1500 Baud Cassette * Parallel Printer Interface (standard) *Auto Repeat keys * Flashing Cursor * New Characters, Greek, Japanese Kana * Numeric Keypad \$16, 32 or 48 K * Room for iwo D.D. Disc Drives \& Interface $* 12^{\prime \prime}$ VDU

* All in stylish cabinet

16K £649 INCLUSIVE

INTIELLIIGENT:ATTEAACSTL

\&

MiCROSYSTEMS

Home Computers $£$
Commodore VIC 5K 299
PET 8K 4008 375
PET 16K 4016 459
PET 32K 4032 559
Cassette. 39
Toolkit 24
Super Pet 799
8050 Disk 799
Printers
Epson MX80B 359
Centronics 737 349
IA Software for North Star Horizon Automated Accounts
-520 and
-520 and
Stock Control/Invoicing - 299 integrated with
Stock Control/Invoicing - 299 integrated with Automated Accounts Automated Accounts
Professional Computers
Superbrain
32 K R AM +320 K 1299
64 K RAM + 320K 1399
64K RAM +688K QD 1699
32 K DD dual drive. 1399
32 K QD dual drive 1549
48 K DD dual drive. . 1549
Printers
Diablo 1199
Spinwriter 1399

Easily installed into existing Automated Accounts users systems 1 year Guarantee

Prices Ex VAT.

intracept

USER-DEFINED GRAPHICS

For Nascom 1 \& 2 (or similar Microcomputer)

* 64 Defineable characters (16×8 dot matrix) - expandable to 128
* No soldered connections to Nascom 2 - simply plug in. (Details given of minor modification required for Nascom 1).
* May be used in conjunction with existing graphics ROM. (Software options allow 256 characters to be displayed from all three sources [i.e. Alpha-numeric, Graphic ROM \& user-defined] at the same time).
* Bus expansion NOT required. (May be used on unexpanded Nascom 1!) - characters are programmed through the parallel ports.

USER-DEFINED COLOUR GRAPHICS

* Used in conjunction with above, enables each of the 256 characters (including alphanumeric) to be INDIVIDUALLY programmed with 16 foreground and 16 background colours.
* On-board expansion to maximum 128 user-defined characters. Price to be announced.

INTRACEPT ELECTRONICS LTD
(Dept PLW) 203 Picton Road, Liverpool L15 4LG.
Tel: 051-733 3042. Extn. 143

MICROTYPE MODEL 3 CASE
Ready cut for SUPERBOARD/UK 101, NASCOM 2 and blank for HOMEBREWS
Produced in black ABS Plastic, complete with fixings and instructions, space for PSU, expansion, force feed fan, numeric pad and

(110) Mine of Information Limited Microcomputer Consultancy \& Booksellers

BDOKES FOR ZSO \& EOSO SYSTEMS 3.00 The 280 Instruction Handbook by Nat Wadsworth
3.90 The 8089 I/O Processor Handbook (+8289) by Adam Osborne

4,90 280/8080 Assembly Language Frogramming by Kathe Spracklen
5.90 The 8086 Frimer by Stephen Morse
6.50 8080/8085 Software Design Book 1 by-Titus et al
6.50 8080/8085 Software Design Book 2 by Titus et al
6.50 The 280 Microcomputer Handbook by William Barden
6.90 Using CP/M : A Self-Teaching Guide by Fernandez \& Ashley
7.50280 Microprocessor Book I (Programming) by Nichols \& Rony
7.90 8080A/8085 Assembly Language Programming by L Leventha
8.50280 Microprocessor Book 2 (Interfacing) by Nichols \& Rony
8.50 Programming the 28000 (C281) by Richard Mateosian
8.90 The CP/M Handbook (C300) by Rodnay Zaks
8.90 S80 Software Gourmet Guide \& Cookbook by Nat Wadsworth
9.50 Programming the 280 (C280) - 2e by Rodnay Zaks
9.50 The 5-100 Bus Handbook by Dave Bursky
10.50 The 8086 Book by Rector \& Alexy
10.50 280 Assembly Language Programming by Lance Leventhal
11.50 The 8080/8085 Microprocessor Book by INTEL
12.50 28000 Assembly Language Programming by Leventhal et al

OTHER USEFUL BODKS
3.60 Illustrating Easic by Donald Alcock
5.50 More Basic Computer Games edited by David Ahl
6.90 Beginner's Guide for the UCSD Pascal System by Ken Bowles
7.50 Pascal User Manual \& Report - Ze by Jensen \& Wirth
7.50 Programming in Pascal (Revised 1980) by Peter Grogono
8.50 Intro to Pascal Including UCSD Fascal (P310) by Rodnay Zaks
9.50 Microcomputer Problem Solving Using Pascal (UCSD) by Bowles
9.90 The Basic Handbook by David Lien
10.50 6502 Assembly Language Frogramming by Lance Leventhal
11.20 Writing Interactive Compilers \& Interpreters by Peter Erown
14.90 The Byte Book of Pascal edited by B W Liffick
8.50 - Volume 1: Basic Concepts - 2e by Adam Osborne
29.50 Volume 2: Some Real Microprocessors + updates by Osborne
29.50 Volume 3 ! Some Real Support Devices + updates by Osborne

SEND FCR OUR FREE CATALOGUEOF 100 SELECTED MICFOCOMPUTER BODKS
Prices include P+P in UK.
For overseas delivery add 10\% (surfacemail) or 20\% (air mail) Orders to: Mol (PW2)1 Francis Avenue•St Albans•Herts AL3 6BL. England. Phone 072752801 - Telex 925859

SHARP MZ-80K SOFTWARE

 For Games Business EducationSend now for our FREE CATALOGUE

TRADE ENQUIRIES WELCOME

Ask most people what they would like as their first peripheral and the chances are they will say "Printer". Here is an attractive electrostatic printer from the famous firm of Centronics. Capable of printing in three sizes of typeface it is easily attached to your machine by way of the parallel interface. The logic is fully TTL compatible and STROBE, Acknowledge and Busy lines are provided to make life easy.
"Cost of this wonderful peripheral is a mere $£ 195.00$ + VAT The printer comes complete with documentation, connector and cleaning paper as well as a roll of the printing paper." (extract from COMPUTING TODAY).

Ex-STOCK from HENRY'S

Ideal for PETS-TANDY-NASCOM's
Specification

- 150 lines per minute
- Selectable 204080 columns
- $120 \mathrm{~m} / \mathrm{m}$ aluminium - Finish paper unaffected
by Heat, Light or Humidity.
- Full character ASC II set.
- Paper Feed, 220-240AC mains.
- On-Off Print Select.
- Paper Advance - Empty Controls.
- Size $10 \frac{1}{2} \times 13 \frac{1}{2} \times 4 \frac{1}{2}$ " Weight 10 lbs

Ideal for Home or Small Business use.
LIMITED QUANTITY DON'T DELAY
Brand new boxed fully guaranteed list price of this machine. $£ 459.95$ inc. VAT.

OUR PRICE
E195.00 inc of VAT
POST PAID

Complete with Full documentation connector \& Printing Paper -

HALF PRICE OFFER

Just Plug in and it's ready to go!
AS RECOMMENDED BY "COMPUTING TODAY" MARCH/MAY 1980

CENTRONICS
QUICK PRINTER

COMPUTER SEND BROCHURE 15p FREE STAMP

Computer Kit Division
404 Edgware Road, London, W2, England 01-402 6822

TRS-80+VIDEO GENIE=MICR0 80

An equation that solves your

micro problems

More and more owners of these two computers are finding that a subscription to MICRO-80 helps them to get the best out of their equipment. MICRO-80 is a specialist magazine devoted solely to these systems. It is full of programs, hardware hints, problem solving and other articles on the TRS-80 and Video Genie. Find out what you have been missing by completing the coupon and sending with your remittance.

```
TO: MICRO-80 (UK SUB DEPT) 24 WOODHILL PARK PEMBURY TUNBRIDGE WELLS KENT TN2 4NW
```

PLEASE SEND ME A SAMPLE COPY OF MICRO-80. I ENCLOSE CHEQUE/P.O. FOR $£ 1.50$.

NAME.
ADDRESS .

PCW 3/81
aculab
Connects directly to TRS-80 Level 2 Keyboard. Operating and file handling software in ROM. 8 commands add 12 powerful functions to Level 2 BASIC. No buttons, switches or volume controls. Full control of all functions from Keyboard or program. Daisy chain multiple drives. Certified digital tape in endless loop cartridges. Reads and writes in FM format at 9000 Baud. Soft sectored with parity and checksum error detection for highly reliable operation-just like discs. Maintains directory with up to 32 files on each tape, tapes may be writeprotected. Supports Basic and machine-language program files, memory image and random access data files. 12 character filespecs-: "FILENAME/EXT:d" (d is drive no. $0-7$). Automatic keyboard debounce. Full manual with programming examples and useful file-handing routines.

COMMANDS (usually followed with a filespec and possible parameter list).
@SAVE, @LOAD, @RUN -for BASIC programs, machine language programs and memory image files. @GET, @PUT -moves a 256 -byte record between a random access file and BASIC's data buffer. @KILL -removes a file from the directory and releases tape sectors for immediate re-use. @LIST -displays file directory along with sector allocation and free sectors. @NEW -formats tape and creates ablank directory.

Master drive with PSU, Manual and aselection of tapes. For TRS-80 £169-00, for Video Genie £174-00. Slave drives $£ 125-00$. (add $£ 2-00$ p.p. + vat).
(Export orders ppchargedat cost)
floppy tape,
The tape that behaves like a disc, For TRS-80 LEVEL II and Video Genie.
 information, Telephone 0525371393 aculab 1 tr. 24 Heath Road, Leighton Buzzard, Beds. LU7 8AB

You stand out in a crowd

Your business is not exactly the same as any other and neither are its problems. Any solutions are probably unique and must be tailored exactly for you.

Youknow your business better than anyone else and any system designed should use your knowledge. The micro-computer specialist should show you how to use the computer to meet your business requirements

You should be able to get the micro computer which best suits your business. It should be chosen after your requirements are specified.

You and your staff have a right to know all about YOUR system, including helping to program it if you want to. Training is your right - not an additional service

If microcomputers cannot satisfy your business needs. you want to know - you don't want false promises.

67 Nova Road, Croydon, Surrey CRO 2 TN.
Telephone: 01-688 6013

FOR ALL YOUR BUSINESS, EDUCATION \& LEISURE COMPUTER REQUIREMENTŚ!!!

APPLE II
TRS-80
SHARP
NORTH STAR
HORIZON
TANGERINE
J.K. 101

NASCOM
+PRINTERS AND MAGAZINES** STATIONERY***

BUSINESS+ INDUSTRIAL CONTROL

OTHER PERIPHERALS Thetford Lowestoft BOOKS** St. Edmunds

WE ARE HERE!!!
88 St. Benedict's Street NORWICH NR2 4AB Tel. (0603) 29652 24 hr . Answering Service.

Intex dataloc lid

COTIPUTERS

MICROPAY-200

£195.00 + VAT
Micropay-200 is a complete payroll System designed to run on COMMODORE 32K PET microcomputer, interfaced to dual floppy disk drives and a printer

The System provides:

1. Weekly/monthly paysips
2. Summary page of all payments and deductions that month Summary page of all payments and deductions for the tax year to date.
3. Weekly/monthly cash analysis slip for all cash payments made.
4. Monthly summary of all payments and deductions
. Year end summary of all payments and deductions

STOCK CONTROL 3750

Stock Contral 3750 is a complete stock control system designed and written to meet the needs of a small business,
It will accommodate up to 3747 stock items and runs on a COMMODORE PET micro-computer interfaced to a printer and COMPU/THINK disk drives.
The System incorporates programs to:
Set up a Suppller file
2. Set up Stock files
3. Copy Data files
4. Insert/delete stock records
5. Insert/delete supplier records.
6. Update/display stock flle.
7. Update/display supplier file.
8. Print stock list.
10. Print reorder report
11. Print stock movement report.
12. Print stock valuation report.

And perform other useful routines.
Stock Control 3750 is fully protected from misuse and can easily be used by someone with no knowledge of computers or their operation.
The System costs $£ 195.00+$ V.A.T. and this price includes a full back-up and advisory service from INTEX DATALOG.

FOR FULL SPECIFICATION WRITE TO
INTEX DATALOG LTD. DEPT PCW 0281
EAGLESCLIFFE IND. EST., EAGLESCLIFFE
CLEVELAND TS16 OPN. T'EL: 0642781193

MAIL ORDER SERVICE

BARCLAYCARD - ACCESS

INDEX **DUSTCOVERS PET - ALL MODELS T/T43 PRINTER ANADEX DP8000 CBM 3040 DISK
CBM 3022 PRINTER COMPUTHINK DISK ACCOUSTIC COVER FOR CBM 3022 PRINTER CBM 3022 PRINTER BASF BASF ACCUTRAK
LIBRARY CAS
LIBRARY CASE
**BLANK CASSETTES C15 (PER 10) C15 (PER 10)
C60 (PER 10)

TOTAL
PRICE INC.
$5.75 \quad 6.90$
$\begin{array}{ll}5.75 & 6.90 \\ 5.75 & 6.90\end{array}$
$3.50 \quad 4.35$
$\begin{array}{ll}3.50 & 4.35 \\ 3.99 & 4.80\end{array}$
$3.00 \quad 3.75$
49.00 6
$\begin{array}{ll}35.00 & 40.83\end{array}$
$30.00 \quad 35.08$
$3.50 \quad 4.60$
$\begin{array}{ll}4.00 & 5.75 \\ 6.00 & 8.05\end{array}$

"* * CONNECTORS		
USER/EEE PORT	1.30	1.78
CASSETTE PORT	99	1.43
USERPORT COVER	2.50	3.16
MALE 'D' PLUGS	2.50	3.16
FEMALE D'SOCKETS	3.50	4.31
'D CONNECTOR COVERS	2.50	3.16
***RIBBONS		
TELETYPE 43	7.72	9.17
ANADEX DP8OOO	2.75	3.45
ANADEX DP9500/1	15.00	18.40
CBM 3O22	2.75	3.45
QUME (FABRIC)	4.25	5.18
QUME (CARBON M/S)	4.50	5.46
QUME (CARBON S/S)	5.00	6.04
DAISY WHEELS		
QUME SPRINT 5	6.50	7.76
***PROGRAMMERS TOOLKIT		
** *SPECIAL OFFER		
OLD ROMS 8K	65.00	75.90
NEW ROMS 8K	65.00	75.90
NEW ROMS 8/16/32K	45.00	52.90

*** CONNECTORS CASSETTE PORT USERPORT COVER MALE 'D' PLUGS

D' CONNECTOR COVERS

TELETYPE 43

NADEX DP8000

CBM 3022
OUME (FABRIC
QUME (CARBON M/S)
DAISY WHEELS
. 5
$65.00 \quad 75.90$
$\begin{array}{ll}65.00 & 75.90 \\ 45.00 & 52.90\end{array}$

PROKIT 1

PROKIT 1 - PROGRAMMERS AID.
ADDS THAT TOUCH OF PROFESSIONALISM TO EVERY PROGRAM YOU WRITE
NUMERIC INPUT ROUTINES - AUTOMATICALLY ADD LEADING AND TRAILING ZERO'S AND RESPOND ONLY TO MERIC KEYS AND DECIMAL POINT
GENERAL INPUT ROUTINES - SET THE LENGTH OF FIELD REQUIRED. SPECIFY WHICH CHARACTERS YOU WANT PET TO RESPOND TO AND ALL OTHERS WILL BE IGNORED.
DATE INPUT ROUTINE - THE PROGRAM WILL NOT CONTINUE UNTIL YOU HAVE ENTERED A VALID DATE.
STRING SEARCH ROUTINE - FINDS A MATCHING SUBSTRING WITHIN A STRING ENABLES YOU TO USE ON GOTO WITH ANY CHARACTERS. NOT JUST NUMBERS. SCREEN ROUTINES - CAN STORE SCREEN DISPLAYS IN MEMORY AND RETRIEVE THEM IN A FLASH - SUPER FOR MENUS AND GAMES!
PR,OKIT 1. DEFINITELY THE BEST THING FOR PROGRAM. MERS SINCE THATT OTHER KIT! AVAILABLE ON DISK OR TAPE READY TO INCORPORATE IN YOUR OWN PRO. GRAMS'
PRICE £40.25 INC. VAT AND POSTAGE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 74LS SER 74LSOO \& RIES \& \& \& 1 \& , \& \& \& \& \& \& \& \& \multicolumn{3}{|r|}{\begin{tabular}{l}
MAGTRONICS LTD 3 GOLDHURST TERRACE LONDON N.W.6. \\
TELE. 01-624-9847
\end{tabular}} \\
\hline 74LS01 \& . 18 \& 74LS114 \& . 35 \& 7445242 \& 1.90 \& DISK \& ETT \& \& \& \& \& \& \& \& \\
\hline 74LSSO2

74 \& 18 \& ${ }^{\text {74LSS122 }}$ \& . 70 \& 74LS243 \& 1.90
2.10 \& UNCO \& NDI \& \& GU \& ARA \& \& \& \& \&

\hline 74LSO4 \& . 22 \& 74LS124 \& 1.40 \& 74LS245 \& 2.50 \& UNCO \& \& NAL \& GU \& Ara \& \& \& \& \&

\hline 74LS05
74 LSO 8 \& .22 \& 74LS125 \& . 40 \& 74LLS247 \& 1.20
1.80 \& 5.25" \& MIN \& ISKET \& TES \& SIN \& SIDE \& \& \& M \&

\hline 74LS09 \& 22 \& 74LS132 \& . 65 \& 74LS249 \& 1.25 \& \& 1 SE \& \& \& \& £20 \& \& \& \&

\hline 74LS10 \& . 22 \& 74LS133 \& . 40 \& ${ }^{\text {744LS251 }}$ \& 1.10 1.10 \& \& ISO \& \& \& \& \& \& \& .P \&

\hline 744SS12 \& . 22 \& 74LS138 \& . 70 \& ${ }^{7445257}$ \& 1.10 \& 5.25" \& MIN \& ISKET \& \& SIN \& SIDE \& \& PP \& RT \&

\hline $74 \mathrm{LS14}$ \& 70 \& 74LS145 \& .70
1.10 \& 74LS258 \& 0.95
1.65 \& \& 10 S \& TOR \& \& PER \& £20. \& \& \& \& I

\hline 74LS15
$74 \mathrm{LS20}$ \& . 22 \& 74LS148 \& 1.70 \& 744L5260 \& r

3
30 \& 5.25" \& MIN \& ISKET \& \& SING \& SIDED \& \& \& C.M \&

\hline 74LS21 \& 22 \& 7415153 \& . 55 \& ${ }^{7445266}$ \& $\begin{array}{r}3.40 \\ .45 \\ \hline\end{array}$ \& \& SIN \& SIDE \& \& PER \& DEN \& \& \& NSI \&

\hline 74LS22 \& . 22 \& 74LS154 \& 1.40
15 \& 744L5273
745279 \& 1.75 \& 8' \& ${ }_{26}{ }^{\text {SIN }}$ \& TOR \& \& SING \& DEN \& Sity \& \& NS \&

\hline 74LS27 \& . 22 \& 74LLS56
7415157 \& 7.75 \& ${ }^{7445280}$ \& 1.75! \& 8" \& SIN \& SIDE \& \& DOU \& E DEN \& Sity \& \& D10 \&

\hline 74LS30 \& . 20 \& 74LS158 \& . 65 \& ${ }^{74 \mathrm{LS} 299}$ \& 0.95 \& \& 26 \& TOR \& \& PER \& £24. \& \& ALL \& ST \& $E D$

\hline 74LS32 \& . 28 \& 74LL160 \& 1.10 \& ${ }^{744 L 5293}$ \& 0.95' \& 8" \& DOU \& E SID \& \& SING \& DEN \& ITY \& \& \&

\hline ${ }^{744537}$ \& . 26 \& 74 LS162 \& 1.80
1.10 \& 74LS298 \& 1.40 \& \& 26 \& TOR \& \& PER \& £30 \& \& \& ON \&

\hline 74LS338
$774 \mathrm{LS40}$ \& . 22 \& 74LS163
74LS164 \& 1.80
1.10 \& 74LS324

$74 \mathrm{LS325}$ \& | 1.80 |
| :--- |
| 2.55 | \& 8" \& 26 \& ESID \& \& PER \& \[

$$
\begin{aligned}
& \text { E DEI } \\
& \text { £30. }
\end{aligned}
$$
\] \& ISITY \& \& OT \&

\hline 74LS42
74LS47 \& . 65 \& 74LS165 \& . 80 \& 744-5326 \& 2.55 \& \& \& \& \& \& \& \& \& \&

\hline 74LS48 \& . 85 \& 74LS166 \& 1.70 \& 74i-S352 \& 2.55
1.35 \& \& ord \& und \& f \& 0 \& 0 \& P\&P. \& Add 15\% \& VAT \&

\hline 74LS49
74LS54 \& 1.00
.20 \& 74LS169
74 LS170 \& 1.70
170
1.70 \& 7415353
7415365 \& $\begin{array}{r}1.35 \\ \hline .60\end{array}$ \& \& \& \& \& \& \& \& \& \&

\hline 74LS55 \& 20 \& 74LS173 \& 1.10 \& ${ }^{7445366}$ \& . 60 \& \& \& ot \& \& es \& ard \& nd \& ft secto \& sk \&

\hline 74LS63
74LS73 \& 1.50
35 \& 74LL173
7415175 \& +95 \& ${ }^{7445367}$ \& . 60 \& \& \& \& \& b \& hone \& for \& tation. \& \&

\hline ${ }^{744574}$ \& . 35 \& 74LL181 \& 2.75 \& ${ }^{7445373}$ \& 1.75 \& \& \& gneti \& ca \& ds, \& a car \& tridge \& , digital \& assette \&

\hline ${ }^{7445856}$ \& . 35 \& 74LS190
$74 \mathrm{LS191}$ \& 1.20

1.20 \& 74LL3374 \& | 1.75 |
| :--- |
| 1.75 | \& \& \& \& \& \& \& tock \& \& \&

\hline 74LL578 \& . 35 \& $74 \mathrm{LS192}$ \& 1.10 \& 74L5377 \& 1.75 \& \& \& \& \& \& \& \& \& \&

\hline ${ }^{\text {74LLS83A }}$ \& .85
1.00 \& $74 \mathrm{LS193}$ \& 1.10 \& 74LS378 \& 1.30 \& \& Offi \& ord \& ers \& from \& hool \& , col \& ges, univ \& rsities \&

\hline 74LS 86 \& $\begin{array}{r}\text { + } \\ + \\ \hline 85 \\ \hline 8\end{array}$ \& 74LSS194A \& 1.00
.90 \& 74LL5379
745381 \& 1.40
3.65 \& \& \& \& \& Gov \& Bodi \& sacc \& \& \&

\hline 774591 \& . 99 \& '74LS196 \& 95
95 \& ${ }^{7445386}$ \& 1.75
1.75 \& E. PR \& \& \& мем \& ORIES \& \& c pus. \& \& SOCKET \&

\hline 74LL592 \& . 60 \& 7415197 \& . 95 \& 7415393 \& 1.50 \& 1702 A \& \& 500 p \& 2114 \& \& 400p \& 6502 \& 800 p \& \&

\hline 7445954 \& 1.00 \& 74LS424 \& 4.50
1.25 \& 74LS3395 \& 1.80
1.70 \& 27276 \& \& ${ }^{4500 p}$ \& 2114 \& \& 500p
$500 p$ \& 6800
6802 \& ${ }^{7000}$ \& 8 PIN
14 PIN \& 9p

\hline \& $\begin{array}{r}1.25 \\ \hline\end{array}$ \& 74.5447 \& 1.25 \& 74.5398 \& 2.70 \& 25321 \& +5v) \& 2700 p \& 4116 \& \& 500p \& 8080 A \& 4500 \& 16 PIN \& 11 p

\hline ${ }^{7415109}$ \& 35 \& 74LS490 \& 1.95 \& 74.5399
745668 \& 1.60
1.95 \& \& \& \& 6810 \& \& 350 p \& 8085A \& 1100p \& 24 PIN \& 22 p

\hline ${ }^{7445112}$ \& 35 \& ,74LS240 \& 2.10 \& 74.56669 \& . 95 \& \& \& \& \& \& \& \& \& \&

\hline 7415113 \& \& 74LS241 \& 1.90 \& 74LS670 \& . 95 \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

'THIS BOOK IS EXCELENT' -Clive Sinclair
 This unique book contains 30 programs all designed to fit in the Basic 1 k version of the SINCLAIR ZX-80!! With this book you will realise that the
 BLACKJACK - actually contains a full pack of cards, shuffles them, keeps track of the dealer and players card totals, and the money bet, all
 MEMORY LEFT - an incredible routine especially useful as it enables you to know exactly how much memory is left, even during the running of a
 DR. ZX-80 - A conversational program with the computer as analyst
 GOMOKU - the computer challenges you to this complex Japanese game, Incredibly this program including display of the 7×7 board fits into 1 k - it Other programs included are HORSE RACE, LUNAR LANDER (with moving spaceship), NOUGHTS AND CROSSES, NIM, SIMPLE SIMON, HANGMAN,
 As well as the programs, the book illustrates programming techniques you can

 \section*{£6.95

 \section*{£6.95 (plus 50P p\&p)} (plus 50P p\&p)}
 available by mail order only

 $\mathrm{ZX}-80$ is more powerful than you ever imagined!112 pages packed with solid information! within 1k. program. This also illustrates USR routines. which uses an ingenious method of storage. only does so because it uses the display as memory! LIFE, MASTERMIND, PINCH and seventeen others. use in your own programs - space compression, PEEKs and POKEs, USRs and so on.

Please send me. . . . copies of 30 programs for the Sinclair ZX-80 1k
NAME
ADDRESS

MELBOURNE HOUSE

 PUBLISHERSOrders to: 131 Trafalgar Road, London SE 10 Correspondence Glebe Cottage, Glebe House, Station Road, Cheddington. Leighton Buzzard. Bediordshire.

Please enclose cheque or P.O, for $£ 7.45$ per copy Orders outside the UK $£ 7.95$

COMPDIFES

From as little as $£ 20$ per week for your own business system with video screen, keyboard, twin floppy disk unit and printer. Choose any of the software programs available i.e.

* Word processing
* Incomplete records
* Payroll
* Time recording
* Invoicning
* Stock control
* Book-keeping
* Information retrieval
* Cash flow
* Projection analysis And when you've finished your easy days work we've got a few games for you to relax to including Space Invaders. We have first hand experience in dealing with businesses and can offer you expert advice in setting up your very first system. We can also offer installation, training and maintenance contracts.

Special desk work station	C8M 8032 Computer In
Lockable disk boxes	C8M 8050 Floppy I
Payslips	Oume Sotings Daisy
Sound boxes	SERVICES
HARDWARE	Installation
CBM 3032 Compuler	Traming
CBM 3040 Flogoy	Maintenance
CBM 3022 Printe:	After Sales Service
Call into the	

Payslips disk boxes Parslips
Sound bo Sound boxes
HARDWARE CBM 3032 Compuler CBM 3040 Flogpy Call into the DA VINCI COMPUTER SHOP
 65 High St., Edgware, Middx.

Tel. 9520526
Open Mon-Fri. 9-5.30. Sat 9.30-5.00
ter shope or send for details PLEASE SENDME DETAILS:

Name

Company
Position
Address

omio.
 .. 24 hours a day!

Yes that's right, we are at your service 24 hours a day offering a complete OHIO SCIENTIFIC service, giving technical imformation, advice on hardware expansion and satistying your requirements in any of the following:
OSI SYSTEMS-including the popular SUPERBOARD II and CHALLENGER 4P as either cassette or disk based systems.
OSI SOFTWARE-cassette and disk based software covering a broad spectrum of uses. Some of the cassette based software can be run on the UK101
BEAVER SOFTWARE-business, educational and entertainment software -prof essional programs with full listings and documentation. Also available for other essional programs with full listing
programs especially the UKIO1.
BEAVER PROGRAMMING AIDS-including video workpads, BASIC workpads machine code workpads, cassette index cards, labels and blank cassettes, all available for OSI UK101 and TRS-80.
In addition to the above, we also have available cases for the SUPERBOARD II (and others).
Demonstrations of all the systems and software available can be arranged in your own home or business premises (within a 50 mile radius of Oxford).

SYSTEMS
Norlett House, Dormer Road, Thame, Oxon OX9 3UC Telephone Thame (084421) 5020 (24hr)

Wego ComputersLtd

Mark Sense Card Reader

"A pencil, a card, and this lowcost reader. . . it's the new, fast way to enter data into your microcomputer.' Versions available able to communicate with PET, APPLE, TRS-80, or any S100 or RS232 bus. Ideal for business and education applications

Wego Sequential Switching Unit

Allows up to 5 devices to be connected to the mains, and with one switching operation power up and down all the devices, in the correct sequence.
CBM approved $£ 75.00$ + VAT

$£ 89.50$ + VAT

CBM approved Prices from £620 + VAT

Numeric Key Pad for the Apple.
A 13 digit Key pad (0-9, -, ENTER) to run in parallel with the numeric section of the APPLE Keyboard. Supplied with connecting cable, plugs and sockets.

California Computer Systems Cards for the Apple. Synch Serial Card £119.97+VAT Asynch Serial Card $£ 106.37+$ VAT Parallel Card £ 79.97+VAT Arithmetic Proc. Unit£ $\mathbf{2 6 5 . 9 7 + V A T}$ Programmable Timer £106.37+VAT IEEE GPIB $£ 199.50+$ VAT A/D Converter £ 99.72+VAT ROM/PROM Module £ $70.89+$ VAT
Sole UK Distributors Clock Card
£ $83.33+$ VAT
£ 79.97+VAT

Available from your local dealers, or direct from Wego Computers Ltd., 22A, High Street, Caterham, Surrey CR3 5UA. Tel: (0883) 49235 Telex: 933660

Authorised COMMODORE \& APPLE Deaiers

VIDEO GENIE PROGRAM

At last, a program for the Video Genie owner, which not only explains the many things not covered by the instruction manuals but also shatters those many 'trade secrets', showing what to do to allow you to use the Genie to its full potential

Speeding up - which tells you how to speed up your Basic programs and at the same time save space. Machine language - explains what you need to get into machine language and its benefits. Abbreviations - a list of all the 'shorthand' you can use on the Genie which is not shown in the manual. Memory size - obvious to the Tandy user, but not so to the Genie owner, this explains it all. InkeyS - is just not explained in the manual, yet a very useful command as you will find out. Programs - tells you exactly why some TRS-80 programs are just not compatible.

Then comes the information concerning the hardware of the Genie:
Loading problems - the bugbear of all the micros. This will help considerably. Second Cassette - gives details of exactly what you can do with it to your advantage. Getting sound - easily, without the need of a sound box either. Converting television - get rid of the wobbles, use it as a monitor instead. Screen adjustment - no more losing either the top or the bottom line. Gain adjustment - will sort out the loading difficulties for once and for all. Azimuth adjustment - will show you how to check, and even adjust, the azimuth of your tape head.
Modifications - explains all the mods which can be undertaken. Peripherals - and what you can hang on to the Genie. Dismantling - diminishes the fear of getting inside, which is very easy indeed. And finally, there's an adjustment program included.

Written by a qualified engineer and authorised Genie dealer, this program really does explain everything. No Genie owner should be without it.
It's from Kansas-and only from Kansaswhich means it's good and at a sensible price $£ 9.50$.

nsas
Kansas City Systems,Unit3, Sutton Springs Wood,Chesterfield,Derbys.Tel 0246850357
PCW 166
All prices VAT paid and post free. First class return post service. Barclay-

NORTH STAR BUSINESS SYSTEM

WORD-PROCESSING STOCK CONTROL INVOICING
SALES \& PURCHASE LEDGER
ETC. ETC.

C
B
A

EX-STOCK

 PROVEN RELIABILITYSAMPLE RECOMMENDED SYSTEM (AS ABOVE):-A Horizon Computer (64 K Ram 2 D/D Drives)£2080.00
B TVI-912C VDU, numerous features £595.00
C NEC RO Spinwriter (RS232) + tractors £1775.00
COMPLETE SYSTEM PRICE (Includes cables) £4450.00
ABOVE SYSTEM WITH DOUBLE-SIDED DRIVES £4730.00
FREE! WORDSTAR plus CP/M with above system.INVENTORY Package - With Sales \& Purchase Management System£295.00KDS Development System for North Star BASIC£50.00
KDS Disk Despooler - North Star DOS despooler $£ 50.00$
CP/M V2.2 - supports double-sided drives£95.00
WORDSTAR V2.1-- Superb word processing package £175.00
MAIL-MERGE - Adds form letter generation to WORDSTAR £55.00DATASTAR - CP/M compatible Database Management SystemNorth Star UCSD PASCAL-D/O System£145.00
Microsoft BASIC interpreter V5.1£105.00
Microsoft BASIC compiler V5.1£155.00
Microsoft FORTRAN-80£195.00
Econoram IIa - 8 K Static Memory£205.00
Econoram XX - 32K Static Memory with bank switching £355.00£100.00DMB-6400-64K Dynamic RAM with bank switching .Godbout Interfacer $1-2$ full RS232 serial 1/O card£495.00
Switchboard - 2 Serial, 4 parallel I/O card£135.00
OKI Microline-80 Printer - Lightweight, 80 cps , Graphics£155.00
Paper Tiger Printer - 2K buffer, full graphics, form-feed£325.00
Anadex DP9500 Printer - Fast, bi-directional, logic-seeking£595.00

PHONE US OR CONTACT YOUR NEAREST DEALER

CODASLTD

Pontypridd Wales Tel: 0443-406450
CONOUEST COMPUTER SALES LTD
Benfleet Essex Tel: 03745 -59861 DIGITAL DEVICES LTD
Southborough Kent Tel: 0892-37977/9 FYLDE MICROCOMPUTER SERVICES Blackpool Lancs. Tel: 0253-692954 THE HARDCORE SOFTWARE CO. London NW3 Tel: 01-722 6436 HOTEL MICROSYSTEMS LTD Middlesex Tel: 01-890 9696 JAD INTEGRATED SERVICES Plymouth Devon Tel: 0752-626164 KBS COMPUTER SERVICES Liverpool Tel: 051-236 8333 KBS COMPUTER SERVICES Cardiff Wales Tel: 0222-394313 KBS COMPUTER SERVICES Coventry Warwicks. Tel: 0203-27266 LOVEDEN COMPUTER SERVICES LTD Grantham Lincs. Tel: 0476-72000 MICRO FACILITIES LTD
Hampton Hill Middx. Tel: 01-979 4546 MICROSYS LTD
Prescot Merseyside Tel: 051-426 7271 MICROTECH COMPUTER SERVICES Liverpool Tel: 051-236 2208/9 SAPPHIRE SYSTEMS
Billericay Essex Tel: 02774-57743
SPOT COMPUTER SYSTEMS LTD Doncaster Yorks Tel: 030250833 S. SYSTEMS

Crawley Sussex Tel: 0293-515201
STAG TERMINALS LTD
Teddington Middx. Tel: 01-943 0777
SUMLOCK-BONDAIN LTD
London EC1 Tel: 01-250 0505
VIDEO VECTOR DYNAMICS LTD Glasgow Scotland Tel: 041-226 3481/2

UK Distributor:
 INTERAM Computer Systems Ltd.
 59. Mo̊reton Street,
 Victoria, London SW1V 2NY
 Tel: 01-834 0261/2733
 Telex: 925859

COMPUTER PRODUCTS LTD

The North's Leading Nascom Specialist

NEW PRODUCTS FOR NASCOM

PROGRAMMABLE CHARACTER GENERATOR FOR NASCOM 2
Gives 64 Programmable characters 8,192 Programmable dots Free demonstration software. Ask for details. $£ 60.00$

DISCS:

\qquad £380.00
Double drive with CPM \& EBASIC £640.00
Ask for details. Professionally designed for your NASCOM.
KENILWORTH CASE:
A hight quality case made from stelvetite coated steel and solid mahogany
£49.50
Mounting kit for two cards
Mounting kit for five cards
£19.50
SARGON CHESS PACK: \qquad
This pack includes the book and a tape with Sargon prepared to run under NASSYS. Also included is a special graphics rom and a PCB giving your NASCOM the ability to switch between two graphics ROMs, your original and the chess ROM.
All the above for onlv
£35.00
INTERFACE EPROM BOARD:
Provides sockets for both 2708 and 2716 EPROMs (up to 16 EPROMs) and also provides a fully decoded socket for the NASCOM 8 K BASIC ROM. Th is board is produced to full NASBUS specification and can be used in "page mode" together with the new NASCOM RAM B. Wait states may be generated on board to allow a NASCOM 1 to run at 4 MHz in BASIC. The complete kit at only
$€ 55.00$
CASTLE INTERFACE:
Gives the following features: Auto tape drive * Auto cassette muting *Auto serial printer muting * 2400/1200/300 BAUD cassette. This interface built and tested complete with documentation at only
ASTEC 10" B/W MONITOR:
£17.50
A professional cased 10 -inch Monitor giving superb resolution,

only

$€ 99.50$
ANALOGUE TO DIGITAL CONVERTER: \qquad
This unit gives 4 channels with an Input Range of 0 to 120 mV up to 0 to 24 V . Conversion time (average) 0.5 mSec . Supplied built and tested at only
£49.50
DUAL MONITOR:

$$
:
$$

This kit allows switching between two monitors on a NASCOM 1
e.g. T4 and NAS-SYS
£6.50
PORT PROBE
A very useful device for testing and evaluating ports and
peripheral software with improved documentation
£17.50
HEX AND CONTROL KEY PADS:
Our popular range of add-on keyboards for the NASCOM micros.
HEX for NASCOM 2
HEX \& CONTROL KEYS for NASCOM 1
£40.50
CASSETTE MACHINE:
at 2400 bd and above, manufactured by SHARP
PROGRAMMERS' AID:
$€ 25.50$
In 22708 EPROM gives the NASCOM rom BASIC many extra commands: AUTO, RENU, DELE, DUMP, FIND, HEX, APND,
HELP. . . etc.
£28,00
BITS \& P.C.S GAMES TAPE 1:
$€ 8.00$
Good value, ten excellent games
PRINTERS: \qquad
We have a good range of printers, all of which will work on the NASCOM, RICHO, EPSON, IMP, QUME ANADEX.
BOOKS:
Full range including INMC mags.
MEDIA:
Paper, diskettes, ribbons, leaderless cassettes, VDU tables etc. MEMORIES:
4116, 4027, 2708, 2716.
BUILT SYSTEMS REPAIRS MAIL ORDER and ADVICE are our SPECIALITY.

BITS \& P.C.s Computer Products Ltd. 4 Westgate, Wetherby, West Yorkshire. Tel: 093763744.
SAE for details: prices exclude VAT and postage and package.

FOR PET, SUPERBOARD,UKIOI,NASCOM.

* COMPLEX EFFECTS AND MUSIC
* USES INCREDIBLE AY-3-8910
* COMPLETELY BUILT, SIMPLY PLUGS IN
* BASIC OR MACHINE CODE
* BUILT IN AMP \& SPEAKER + STEREO
* INCLUDES 28 BIT I/O PORTS
* COMATIBLE WITH OTHER EXPANSIONS
+ VAT
* FREE DEMO PROGRAM + INSTRUCTIONS Send for free information leaflets.
NB: 8 T 28 buffers (Superboard/UK 101) next $6502 @ £ 3.00$ per pair if required

SOON
 EPROM Programmer for' Superboard/UK 101.
 AVAILABLE!! Peripheral board 24 I/O lines for
 PHONE, WRITE FOR DETALLS. relay driving etc., etc.

SUPERBOARD II $50 \mathrm{~Hz} \rightarrow \mathrm{E}_{2} 59$ + VAT

610 EXPANSION $£ 159$ + VAT
CD3P FLOPPY DISC $£ 285$ + VAT
BASE 2 800MST PRINTER £ 359 + VAT

SOFTWARE EXAMPLES
Nascom - Star Trek Basic 16k @ $£ 6.75$
List of Pet, Nascom,
Pet - Cribbage Profesional 24k @ £14.95 Superboard + UK101 Pet - Cribbage Profesional $24 \mathrm{k} @ £ 14.95$ Software free.
Trade enquiries welcome. Send
Telephone orders Welcome for extensive software list. 0603416352
57 PARANA COURT SPROWSTON 57 PARANA
NORWICH NR7 8BH $\quad 050846484$

Happy Memories

4116	200 ns	$£ 2.95$	2114	200 ns	$£ 3.25$
2114	450 ns	$£ 2.55$	2716	5 V	$£ 6.75$
2708	450 ns	$£ 3.95$			

Memorex soft-sectored mini-discs with free plastic library case $£ 19.95$ per 10.

Low profile I.C. sockets:
Pins: $\quad \begin{array}{llllllll}8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 \\ 40\end{array}$
Pence: $\begin{array}{lllllllll}10 & 11 & 12 & 16 & 17 & 19 & 21 & 28 & 37\end{array}$

Memory Upgrade Kits for TRS-80, Apple, 20-20 etc from $£ 23.60$
Please phone (054-422) 618

ALL PRICES VAT INCLUSIVE

Please add 30p postage to orders under $£ 10$. Government + Educational orders welcome £10 minimum Dept PCW
 Happy Memories Gladestry Kington Herefordshire HR5 3NY
Tèl: (054 422) 618

£550

Send cheque or money order for
$£ 645$
INCLUDING VAT \& DELIVERY IN THE U.K.)

Refuge House, 2-4 Henry Street, Bath, BAl IJT. Telephone: 0225•65379

Please allow 28 days for delivery

* New offices opening shortly at 15 Grand Parade, Brighton

CRYSTAL ELECTRONICS CC ELECTRONICS

SHARP MZ80K

For the latest competitive PRICE
Contact us
Before you accept discounts elsewhere. GIVE US A TRY
CRYSTAL ELECTRONICS is the home of XTAL BASIC ACCLAIMED BY MANY

Bi-directional serial board for your SHARP RS232 compatible ' <150 Baud to > 2400 Baud adjustable 5,6,7,8 Bit words, plugs into MZ80 I/O £99.50 plus VAT

MZ80K owners - are you XTAL followers? NO! Then please read on. XTAL BASIC (SHARP)

Takes 5 K less memory, has all the features of SHARP BASIC PLUS Multi dim strings, error trapping, logical operators, machine code monitor, more flexible peripheral handling, improved screen control, increased list control, auto run, If. then.. else-and it doesn't stop there-it grows. You can extend the commands and functions at will-10K, 12K, 16 K , BASIC?

SHARP to XTAL BASIC conversion program is included £40 plus VAT
Members of Computer Retailers Association \& Apple Dealers Association
Shop upen 0930-1730 except Saturday \& Sunday
40 Magdalene Road. Torquay, Devon. England. Tel: 080322699 Telex 42507 XTAL G

Eerelssom compuler services

For All Your

SALES AND SERVICE
Contract Maintenance:-

* On-site repair contracts
* Total system or only items required
* 24 hrs response to calls
* Very competitive rates

Ad-hoc Repair Service:-

* Ring for repair quotation
* Same day service
* Collection from Red Star if required

Hardware and Software Sales:

* 32K RAM free with each system purchased with this advertisement
* Totally Integrated Ledger system complete for $£ 3262.00$

For further information ring Byfleet (09323) 45330
Fergusson Computer Services "Sharberry", Maitland Close, West Byfleet, Surrey

Master Your Micro FASTwith...

Little Genius floppy diskette based courses will teach you, how to use your system and how to realise the full potential of the "Mighty Micro". These fully interactive computer lossons will guide you quickly to a high level of understanding and confidence in your ability to make the most of your microcomputer system.
Courses now available:

Applesoff BASIC
Advanced
Applesoft BASIC
Palsoff BASIC Advan

FET BASIC
Advanced PET
BASIC

Little Geniusp

Each course, comprising a floppy diskette, and starting instructions, cosis only £ 40.00 plus VAT.
SPECIAL" 3 in one" OFFER for 3 courses covering the same system only £99.00 plus VAT
Little Genius courses are available from most com;puter retail outlets, or direct mail order irom:

LITTLE GENIUS

Suite 504, Albany House, 324 Regent Street, London W1R 5AA Telephone: 01-580 6361

APPLEOH DISK DANVES

DUAL DISK UNIT

DISK CONTROLLER CARD
$E 519$
E 49

* Two Disks in one Cabinet
* Has its own Power Supply Unit
* Connects to standard Apple Disk Controller Card
* Runs all Apple Software including Pascal
* Japanese quality and reliability

APPLE DEALERS:- Write or phone direct to Cumana and specifications plus dealer discounts will be mailed to you.
(1)

TRS-80 DISK DAIVES

DUAL DISK UNIT

2×40 Track Drives
2×80 Track Drives
SINGLE DISK UNIT
1×40 Track Drive
1×80 Track Drive
TRS 80 DISK CABLES
2 Drive Cable
4 Drive Cable

E440 2595

E236
E315

EDUGATIONAL \& CUANJITY DISGOUNTS

VERY GENEROUS EDUCATIONAL AND QUANTITY PURCHASE DISCOUNTS ARE NOW AVAILABLE ON CUMANA TRS 80 DISK DRIVES. OUR DEALERS WILL BE HAPPY TO SUPPLY PRICE QUOTATIONS

Call your nearest dealer for a demonstration:

RADIO SHACK LTD.
188, Broadhurst Gardens,
London NW6
Tel: 01624.7174
COMPSHOP LTD., 14, Station Road, New Barnet, Herts. Tel: 01 -441-2922
COMPSHOP LTD.
311, Edgware Road
London W2. Tel: 0i-262-0387
MICRO-CONTROL LTD.,
224, Edgware Road,
London W2. Tel; 01 -402-8842
LONDON COMPUTER
CENTRE, 43 Grafton Way,
London W1. Tel: 01-388-5721
TRANSAM COMPONENTS
LTD., 59-61, Theobolds Road,
London WCi.
Tel: 01 405-5240
N.I.C. 61, Broad Lane,

Tottenham, London N15
Tel: 01 - $808-0377$

ZERO ONE ELECTRONICS 36, Oaklands Avenue, THORNTON HEATH. Surrey
Tel: 01-689-7924
P \& J EQUIPMENT LTD.
3 Bridge Street.
GUILDFORD
Tel: 0483-504801
SEVET TRADING, 14, St
Paul's Street, Bristol 2
Tel: 0272-697757
PARWEST LTD., 58, Market Place, Chippenham Tel: 0249-2131
COMPUTERAMA LTD.
5. Cleveland Place East, London Road, Bath. Tel: 0255-333232
ENSIGN, 13.19, Milford
Street, Swindon, Wilts.
Tel: 079342615

CAMBRIDGE COMPUTER STORE, 1. Emmanuel Street Cambridge. Tet: 022365334
PORTABLE MICRO-
SYSTEMS, 18. Market Place, Brackley, Northants
Tel: $0280-702017$
I.C. ELECTRONICS Flagstones, Stede Quarter, Biddenden, Kent. Tel: 0580-291816
MICRO CHIP SHOP, 190, Lord Street, Fleetwood. Lancs. Tel: 03917-79511
MICRO CHIP SHOP,
197, Waterloo Road, Blackpool. Tel: $0253-403122$
MICRO CHIP SHOP.
93. Friargate, Preston, Lancs Tel: 0772-22669
HARDEN MICROSYSTEMS
28-30, Back Lord Street. Blackpool. Tel: 0253-27590

NORTH WEST COMPUTER CONSULTANTS LTD
241, Market Street, HYOE
Cheshire
Tel: 061-366-8624
HEWART MICRO
ELECTRONICS, 95, Blakelow
Road, Macclestield
Tel: 0625-22030
KARADAWN LTD.,
2 Forrest Way, Warrington
Tet: 0925-572668
PHOTO ELECTRICS,
459, London Road,
Sheffield
Tel: 0742-53865
GNOMIC LTD.,
46. Middle Street,

Blackhall, Hartlepool
Tel: 0783-863871
EWL COMPUTERS LTD.
8, Roval Crescent, Glasgów. Tel: 041-332-7642

Hazeltine 1000

The low, low priced teletypewritercompatible video display terminal with $12^{\prime \prime}$ screen. $(12 \times 80) 64$ ASCII alphanumerics and symbols. Full/Half Duplex. RS232.
£199

Hazeltine 2000

The world's largest-selling teletypewritercompatible video display terminal. Features include: $12^{\prime \prime}$ screen (74×27)64 alphanumerics and symbols. 32 ASCII control codes. Switch-selectable transmission rates to 9600 baud. Three switch-selectable operating modes fullduplex, half-duplex or batch. Direct cursor addressability. Dual-intensity video. Tabulation. Powerful editing capability Remote keyboard. Selective or automatic roll-up. RS232.

E299
Low cost matrix printer.
Ideal for Microprocessor users such as Hobbyists \& Educationalists or for any lowbudget application.
*Full upper/lower case ASCII PLUS GRAPHICS Mode.
*80-column printing with adjustable tractor feed.
*30 cps print-speed with 1-line buffer

Now with Upper \& Lower Case
$12^{\prime \prime}$ screen (24×80). XY cursor addressing 64 ASCII alphanumerics \& symbols. Dual' intensity detachable keyboard. Choice of 8 transmission rates up to 9600 baud. RS232 Range of options including printer port ($£ \mathbf{£} \mathbf{7 0 . 0 0}$)
$f 399$
Modular one edit
All the above plus full edit capability, tabulation, 8 special function keys

+ many other features. E695.00
POLLING MODELS also available-P.O.A
*Standard and Double-width characters (12 cpi and 6 cpi)
*Standard parallel (Centronics-type) interface.
*Optional Interfaces available for RS 232, IEEE 488, Tandy, PET, Apple II
ONLY \&199 plus carriage \& VAT (mail order total $£ 240.35$).
$1=4=$ Electronic Brokers Ltid.,G1/65 Kings Gross Road, London WCIX 9LN. Te:-01-2783461. Telex 298694

Mini~Digital Cassette Recorder An alternative to disc for program \& data storage

FEATURES

* The Philips MDCR 220 mechanism of proven reliability
* Holds up to 120k Bytes/Cassette with fast data transfer
* Extra memory board with RAM and ROM to hold operating software
* Will read \& write (in blocks from 256 bytes to 60k Bytes), backspace \& search for end of data on tape
* Compatible with 6502 based systems ie PET, AIM65, OHIO, KIM, COMPUKIT ETC.

LIMITED OFFER TILL END OF APRIL £195 + VAT

PRICES (INCLUDING MANUAL) MINI RECORDER MECHANISM

Hire	Bargain
from	Inc VAT

New Ex VAT

```
£25 . .PET 32K . . . . . . . . . \(£ 500\)
```

£25 . .TRS80. $£ 280$
.ITT2020 48K£600-. £18..SOCCERER 32K. . £400 £68 . .SUPERBRAIN 64K.£1450 £60 . .HORIZON 56K. . . .£900
£28 . .Euro \& Apple II 32K. $£ 610$

SALES or LEASE or EXCHANGE

CENTRONICS 779 $£ 500$ + VAT
APPLE II Guaranteed EUROPLUS.
Price $32 \mathrm{~K} £ 610+$ V.A.T. Lots of exciting software, all types of cards: Asteroids in space, Zork Adventure, Rainbow software, hire text graphics space invaders. Z 80 Card/CPM/ COBOL, PASCAL, FORTRAL, ALL NEW

SUPERBRAIN 64K

£1450 + VAT
HIGH LEVEL LANGUAGES AVAILABLE

Di O E O M G

01-368 9002 + EVENING 12 DENE ROAD LONDON, N. 11.

I enclose cheque/P.O. for $£$
Butel-Comco Limited Garrick Industrial Centre Garrick Road Hendon London England NW9 6AQ Telephone 01-202 0262
Telex 47523

``` \(\qquad\)
```

INSTANT H.P. CREDIT AVAILABLE

```
Please send me
Please send me
Name
Name
Address
Address

MZ-80 Computer 48 K MZ-80K 28K UPGRADE MZ-80 I/O Interface Unit MZ-80 FD Dual Disk Drive MZ-80 FDK Additional MZ-80FD MZ-80 RS232 Interface MZ-80 P3 Matrix Printer CP/M Operating System PC-1211 Pocket Computer CE-121 Cassette Interface RP1600 Daisywheel Printer Ledger and stock control packages free with computer systems


\section*{EXHIBITION \& CONFERENCE March 11-13, 09.30-18.00 daily Wembley Conference Centre}

\section*{Exhibition admission \(£ 1.00\) A complete} study of microprocessors in use.
Microsystems '81 consists of a wide ranging exhibition, together with a three day conference and three one-day microprocessor awareness courses. Together they comprise an invaluable opportunity for those interested in microprocessor applications and the latest developments in microelectronics technology.
Take advantage of this unique event to examine and discuss a comprehensive range of microprocessors, peripherals, memory products and personal computers together with the software which accompanies them.

For * advance exhibition tickets at \(£ 1\) each, write to:
Microsystems Tickets
IPC Exhibitions Ltd, Surrey House,
1 Throwley Way, Sutton,

Surrey SM1 4QQ
*Please note applications for tickets cannot be accepted after February 23, although tickets will be available at the door price \(£ 1\). Cheques should be made payable in UK sterling to IPC Business Press Limited.

For Conference details write to: The Conference Administrator IPC Conferences Ltd, Surrey House, 1 Throwley Way, Sutton,
Surrey SM1 4QQ

\section*{SOFTY Software Development System \({ }^{\text {f }}\). AND EPROM PROGRAMMER}

SOFTY is intended for the development of programs which will eventually
software residing in ROM and forming part of a microsystem. During the soffware residing in ROM and forming part of a microsystem. During the
development stage of a microsystem, SOFTY will be connected in place of th development stage of a microsystem, SOFTY will be connected in
firmware ROM via a ribbon cable, terminated in a 24 pin DIL plug.
firmware ROM via a ribbon cable, terminated in a 24 pin DIL plug.
Data may be entered into the SOFTY RAM via the serial port, parallel por Data may be entered into the SOFTY RAM via the serial port, parallel port, direct memory access, or the keypad, and manipulated using the assembler processor can be 'turned off', and the external microsystem and it's resident microprocessor allowed to access and run the program in SOFTY's RAM and/o programming socket. In this way, modification can be made until the required program is complete - the contents of the RAM being clearly visible as a 'page on TV or monitor. 4 pages are available, 2 of the Data RAM and 2 of the programming socket.
In the end, when the program is complete and working, the DIL plus is, removed and replaced by an EPROM device programmed by SOFTY. SOFTY is able to program the 2704/2708/2716 family which have 3 voltage rails -
To help in the process of program development SOFTY has various assembler key-functions, which include - block shift without overwriting, block store, cursor control, matich byte and displacement calculations (for jumps etc). A high speed cassefte interface is also provided for storing working programs
and useful subroutines.
SOFTY kit of parts: (including zero insertion force socket for EPROM programmer) Price \(£ 100+\) VAT (postage paid). SOFTY built \& tested - \(£ 120+\) VAT (popstage paid). Built SOFTY power supply \(-£ 20+\) VAT (postage paid). Write or telephone for full details.

\section*{NeN}

SOFTY CONVERSION CARD EX.STOCK
Enables SOFTY to program the single rail EPROMs 2508, 2758. 2516, (INTEL 2716), 2532.

Selection of device type and 1 K block are by 4 way pcb slide switches. Programming socket is zero insertion force. Supplied ready built \(\&\) tested with Dip jumper for connection to SOFTY, £40 + VAT (postage paid).
\(\mathrm{N}^{2}\)

\section*{EX- STOCK EPROMS}
\begin{tabular}{lllll} 
& 1.9 & \(10-24\) & \(25-49\) & 50 up \\
2708 ( 450 ns ) & \(£ 3.90\) & \(£ 3.50\) & \(£ 3.10\) & \(£ 2.90\) \\
2716 ( 450 ns ) & \(£ 6.00\) & \(£ 5.50\) & \(£ 5.00\) & \(£ 4.50\)
\end{tabular}

Single rail
Deduct a further \(5 \%\) for cashl with order on these low EPROM prices.

Add VAT at 15\%. Postage paid.

MODEL UV 141 EPROM ERASER
- Fast erase times itypically 20 minutes for 2708 EPROM)
- 14 EPROM capacity
- Built in 5 to 20 minute timer to cater for all EPROMs
- Safety interlocked to prevent eye and skin damage
- 'MAINS' and 'ERASE' indicators
- Rugged construction

Priced at only \(£ 78+\) VAT post paid
MODEL UV 140 EPROM ERASER
Similar to Model UV141 but without timer
Low price at only \(£ 61.50\) + VAT post paid
WRITE OR TELEPHONE FOR FUL! DETAILS OR SEND CHEQUESIOFFICIAL COMPANY ORDERS TO

\section*{GP Industrial Electronics Limited}

Unit 6, Burke Road, Totnes Industrial Estate,
Totnes, Devon. Tel. Totnes (0803) 863360 Sales, 863380 Technical. Telex No. 42596
TRADE \& EXPORT ENQUIRIES WELCOME


The Microlink interface makes it easy to use your micro for tasks such as:
* Replacing chart recordings by computer analysis * Automating experiments * Adding data processing capability to monitoring instruments.


The MICROLINK interface consists of a mainframe incorporating a power supply, an IEEE 488 interface and a cabinet holding up to 10 modules - this construction means that an interface can be configured to your precise requirements. Modules available include:* Analogue to digital converters * Digital to analogue converters * Analogue X-Y plotter driver * Analogue input conditioning modules \(*\) Relay outputs \(* B C D\) character inputs \(*\) Signal conditioning inputs *High speed clock and multiplexer.

Write or telephone with details of your application, and we will quote you for a configuration to meet your needs.

\section*{Biodata}

Biodata Ltd., 6 Lower Ormond St., Manchester Ml 5QF.
Telephone:
061-236 1283.

\section*{P马uTHEpels}
(Excluding primers)
Sharp Cassette Decks ASTEC 10" Cased Monitors.


Nexos Ricoh RP 1600 Daisy Wheel Printer. Dlablo Daisy Wheel Printer. Nascom Micro Imp, Dot Matrix Plain Paper Printer. Centronics Dot Matrix. Anadex Dot Matrix. Newbury Laboratories Dot Matrix Impact Printer.

\section*{8ermuane}

Northstar. CAP-CPP. Cromemco Petsoft. Supersoft. Nascom.

\section*{EOAKK}

Very full range of books on 6502, Z80, Languages, Interfacing, Introductory books and games and General Programs.

HORIZON
Mascom

SHARP


Personal Computer World. Computing Today. Practical Computing. Educational Computing. Liverpool Software Gazette. I.N.M.C. Newsletter.

\section*{TBD-OUSFOR NHSem}

Input/Output Board. PIO Kit. Counter Timer Kit. UART Kit. Nas-Pen Text editor.

ZEAP 2.0 in EPROM or on Tape Nas- Sys 3 Enhanced version of Nas-Sys 1.
Nas-Dis-Disassembler. Debug-Dynamic Debugger
INTERFACE
Geminifloppy disc system D-DOS or CP/M single or dual drive.
ROM EPROM board
EPROM burner 2708 and 2716
BITS AND PC's
Tool Kit. Port Probe. Hex Key Pad. Sargon
Chess. Programmers Aid. Dual Monitor

\section*{Board.}

\section*{BUSINESS \& LEISURE MICRO COMPUTERS}

Olympia Opus daisy wheel printer breaks £1000 barrier


Screen plus -
Reverse video and blanking control unit perhaps the most advanced video control device for your Nascom. Castle Interface

WILLIAM STUART
Colour Graphics for Nascorn 1 \& 2.
Speech Recognition Unit
I WINCHESTER
TECHNOLOGY
Colour Graphics \(1 \& 2\)

\section*{Business \& Leisure Micro Computers}

16 The Square, Kenilworth, Warwickshire CV8 1EB. Tel: (0926) 512127

\section*{THE WESTFARTHING}

\section*{SMALL}

BUSINESS SYSTEM
for Apple/ITT 2020 micros
Designed from first principles for the family business, it will pay for itself by keeping the accounts in good order, saving management time on paperwork, and accountants fees.

FUNCTIONS: (in short, everything you need)
- Invoicing ( + discounts, quotations, delivery notes)
- Customer accounts and shop sales
- Bank and cash balances calculated weekly
- Sales and overheads (30 categories) totalled weekly
- VAT return calculated (while you have lunch)

\section*{SPECIAL FEATURES FOR OWNER-MANAGERS:}
- VAT-inclusive bills split automatically
- Messages can be printed on invoices
* Automatic payment entry when customer pays on the spot
- Uses plain fan-fold paper, prints your heading
* S/A customer address labels printed
* User's Manual (50 pages) in clear, non-technical style
- Designed to be user-modifiable

Requires 48 K RAM, Applesoft in ROM, 1 or 2 disc drives, printer, Program lives in core. Includes pages of program information, hundreds of REMs, disc map, etc.

Cost: \(£ 750+\) VAT ( \(£ 750\) only to non-regd trader). For information, send \(£ 1\) for 10 page description or \(£ 10\) for User's Manual.

Westfarthing Computer Services Ltd., 21 Wendron St., Helston, Cornwall. Phone Helston [03265] 4098.

\section*{NEW SERVICE} Selling your micro? Looking for a bargain?

\section*{Try us at}

\section*{Westwood Computers}

As well as an extensive range of NEW machines we also have an agency department for USED machines. We test and guarantee the performance of the machines we handle!
Visit our showrooms and see our range of microcomputers for business and personal use. We can show you the SHARP MZ80K, the APPLE II PLUS, the CYPHER 2684, and the \(Z\) PLUS range which extends to a 20 MB hard disk multi-user system.

100 programs free with every SHARP MZ80K
We have an extensive range of COMPUTER BOOKS, APPLE PROGRAMS, and are distributors for SCOTCH DISCS and TAPES.


BROWSERS WELCOME!
Westwood Computers Limited

\footnotetext{
On street parking
117 TENNANT STREET, FIVE WAYS, always available.
aIRMIN GHAM 0216325824
}

\title{
Have we got a program for you!
}

EXCELLENT QUALITY PROGRAMS CHOSEN FOR THEIR SUPERB GRAPHICS AND SMOOTH ACTION
Apple TRS 80 Video Genie ZX80


Dodge the alian Ramships and fire missiles to destroy them before they get you. The alien Flagship uses his deadly laser bolt to transform a Ramship into another Flagship or into your ship's double. Look out!! Destroy your double and you could destroy yourself. TRS 80 Level 1 or 11.16 K Tape \(£ 10\) Hours of exciting fun.


For the first time the amazingly popular ASTEROIDS pub game is now available for your microcomputer. Huge asteroids have invaded the galaxy. Your mission' is to destroy them and the alien saucers before they destroy you. But beware, big asteroids break up into smaller ones. TRS80 Levels \(1 \& 11.16 \mathrm{~K}\)

\section*{Tape}

Video Genie 16K Tape
Apple 11 or \(11+32 \mathrm{~K}\) Disk

GALAXY
INVASION
WITH SOUND


The newest and most exciting invaders type game yet! Cruel and crafty aliens attack Earth. You are the sole defender. As you fire your laser at the aliens they swoop down and bomb you. Exciting use of graphics! Must be seen. TRS 80 Level 1 or 11.16 K TRS
Tape
Video Genie 16K Tape


\section*{THE ESSENTIAL SOFTWARE COMPANY} (Viscounti Ltd.)
47 Brunswick Centre, London WC1N 1AF 01.8373154
I have a .. \(\qquad\) microcomputer
\(\square\) Please send me your software catalogue. I enclose a stamped self addressed envelope.
\(\square\) Please send me
I enclose a cheque/postal order for \(£ \ldots\)
(plus 50 p post \& packing)
Signature
Name
Address
Address
Postcode

VISIT US AT OUR NEW ENLARGED PREMISES MICRO BUSINESS CENTRE

\section*{тм \(1 \times \rightarrow\)}
offers its ACCOUNTS' SUITE for \(32 \mathrm{k} / 16 \mathrm{k}\) new ROM 'PET', CBM disk \& tractor printer.

Mutually compatible programs can be used independently \& do not need special stationery
ANALYSED CASHBOOK - the core of the system. Item, Cheque No., VAT Rate, Bank, Cash, Vat, Net \& Account. Auto Vat calculation \& Totals for each page. Autoselection of nominal \& personal items for posting to Ledger. £75+VAT

LEDGER/STATEMENT - Dual purpose program creates Ledger for each Account, balancing when you wish. Also provides a Statement for customers. \(£ 25+\mathrm{VAT}\).

INVOICE - Formatted Invoice with Item, Debit, Vat, Vat Rate, Net and Account columns \& Totals. £25+VAT.

CHEQUEWRITE - Writes cheques, records "counterfoil", auto-interface with ANALYSED CASHBOOK. (Needs stationery approved by Bank). \(£ 25+\) VAT.

Axon also offers:
DATASTAX - all purpose utility for transferring data: keyboard/tape/disk/video/printer in any logical direction. Disk not needed. On tape or disk. £15+VAT
* "8" DISK DRIVES

CUSTOM CHARACTER - design your own character
for printing. Mathematical symbols, Greek \&c. On tape or disk £8+VAT.

\section*{Advanced Computer Equipment(Leeds)lid}

\section*{95, MEADOW LANE, LEEDS, 11. Tel. 0532446960 \\ New microcomputer store NOW OPEN PRYCES SKHATTERRED}
COMMODORE PET
32K Professional keyboard green screen £575
Dual disk drive 347k
Cassete deck C2N
Printer 3022 Matrix Tractor

\section*{SHARP 280}

48 K with 34 K user RAM
£475
36 K with 22 K user RAM
20K with 6K user RAM
£422
Disk drives, printers etc.

APPLE II PLUS
48K Auto start
Disk with controller
Disk without controller Hitachi 9" monitor B/W
£695
£ 345
£295
£120

\section*{PRINTERS}

BD80P - Hi-speed bi-directional with adjustable tractor feed 750 byte buffer. Fantastic offer \(£ 395\). IEEE * Parallel or RS232
SUPERBRAIN64 K with single density 320 K disk£145032 K with single density 320 K disk£1395
64 K with douple density 700 K disk ..... £2300
Operating system * MBASIC * COBOL * FORTRAN

\section*{SUNDRIES}

Data tapes super quality (10)
£3.75
\(51 / 4^{\prime \prime}\) certified verbatim (10)
Plain listing paper 2000 units
£12.50
Books * Games * Programs * galore
Visicalc * Desktop planner special offer

Please add VAT to all goods except books - cash \& carry or 24 -hour delivery - your choice. All equipment is factory fresh and fully tested in our own workshops Standard conditions of sale applies too all products.


the computer people's printers

\section*{design \(\circ\) documentation illustration \(\circ\) typesetting software/hardware interfacing}

Specialist text preparation and typesetting for system producers and retailers: special characters like \(\mu, \Omega, \uparrow\) and \#, and dozens of typefaces in hundreds of sizes, with on-line interfaces to word-processors. Reduce your print costs and increase your impact and sales by professional preparation of your material

Call Tom Graves on Street (0458) 45359 19a West End, Street, Somerset BA16 OLQ


Lion has tamed the microcomputer market by amassing a wealth of experience in micro-based small business systems, and by selecting the best systems available to market and support

Lion's Business Systems Division is ready to demonstrate the power and flexibility of the micro in commercial applications, and is backed by Lion's established reputation for professionalism and support.

Phone now, at either location, to arrange a demonstration to show how micro's can help you, and why Lion is King of the Jungle.

Credit cards welcome and lease facilities available.
LION MICRO-COMPUTER SHOPS, LTD.
At Lion House
227 Tottenham Court Road London W1P OHX Tel: 01-580 7383 21 Bond Street Brighton Tel: (0273) 601838

\section*{AFTER THE BEST SELLING \\ 'PET REVEALED' AND 'LIBRARY OF PET SUBROUTINES' COMES ANOTHER BOOK FROM NICK HAMPSHIRE.}

\section*{PET GRAPHICS}

The way information is displayed on the screen can make or ruin any program whatever the application. This book shows how you can fully exploit the graphics possibilities of the PET, essential reading for anyone wishing to write good useful programs. The book contains dozens of example programs including a comprehensive graphics package written in machine code (resides in the top 2 K of memory). The contents of 'PET Graphics' include: How the PET display works - designing a display format - cursor control in PRINT - using POKE - an introduction to the machine code graphics package (you don't need a knowledge of machine code to use this package, but the full source code listings are given for those interested), among the packages over 30 routines are those to draw bars, borders, character blocks, reverse field blocks, double density point and line plot, fine density bar plot, block scrolling; scrolled multiple page screen, repeat key and protected screen areas, multiple page displays, macro character generator, etc. - Other sections of the book cover - interactive graphics, with full circuit designs and comprehensive support software for adding a light pen to the PET - simple switch and joystick input devices - a review of add on hardware to give the PET high resolution graphics capability.

Price \(£ 10.00\)
All the programs in 'PET Graphics' are available on CBM format disk price \(£ 10.00\)

\section*{The Sinclair ZX80 is innovative and powerful. Now there's a magazine to help you get the most out of it.}

\title{
Get in sync
}


SYNC magazine is different from other personal computing magazines. Not just different because it is about a unique computer, the Sinclair \(\mathbf{Z X 8 0}\) (and kit version, the MicroAce). But different because of the creative and innovative philosophy of the editors.

\section*{A Fascinating Computer}

The \(\mathrm{ZX80}\) doesn't have memory mapped video. Thus the screen goes blank when a key is pressed. To some reviewers this is a disadvantage. To our editors this is a challenge. One suggested that games could be written to take advantage of the screen blanking. For example, how about a game where characters and graphic symbols move around the screen while it is blanked? The object would be to crack the secret code governing the movements. Voila! A new game like Mastermind or Black Box uniquely for the ZX 80 .

We made some interesting discoveries soon after setting up the machine. For instance, the CHR\$ function is not limited to a value between 0 and 255 , but cycles repeatedly through the code. CHR\$ (9) and CHR\$ (265) will produce identical values. In other words, CHR\$ operates in a MOD 256 fashion. We found that the " \(=\) " sign can be used several times on a single line, allowing the logical evaluation of variables. In the Sinclair, LET \(X=Y=Z=W\) is a valid expression.

Or consider the TL\$ function which strips a string of its initial character. At first, we wondered what practical value it had. Then someone suggested it would be perfect for removing the dollar sign from numerical inputs.

Breakthroughs? Hardly. But indicative of the hints and kinds you"ll find in every issue of SYNC. We intend to take the Sinclair to its limits and then push beyond, finding new tricks and tips, new applications, new ways to do what couldn't be done before. SYNC functions
on many levels, with tutorials for the beginner and concepts that will keep the pros coming back for more. We'll show you how to duplicate commands available in other Basics. And, perhaps, how to do things that can't be done on other machines.
Many computer applications require that data be sorted. But did you realize there are over ten fundamentally different sorting algorithms? Many people settle for a simple bubble sort perhaps because-it's described in so many programming manuals or because they've seen it in another program. However, sort routines such as heapsort or ShellMetzner are over 100 times as fast as a bubble sort and may actually use less memory. Sure, 1 K of memory isn't a lot to work with, but it can be stretched much further by using innovative, clever coding. You'll find this type of help in SYNC.

\section*{Lots of Games and Applications}

Applications and software are the meat of SYNC. We recognize that along with useful, pragmatic applications, like financial analysis and graphing, you'll want games that are fun and challenging. In the charter issue of SYNC you'll find several games. Acey Ducey is a card game in which the dealer (the computer) deals two cards face up. You then have an option to bet depending upon whether you feel the next card dealt will have a value between the first two.

In Hurkle, another game in the charter issue, you have to find a happy little Hurkle who is hiding on a \(10 \times 10\) grid. In response to your guesses, the Hurkle sends our a clue telling you in which direction to look next.
One of the most ancient forms of arithmetical puzzle is called a "boomerang.' The oldest recorded example is that set down by Nicomachus in his Arithmetica around 100 A.D. You'll find a computer version of this puzzle in SYNC.

By selecting the ZXBO or MicroAce as your personal computer you've shown that you are an astute buyer looking for good performance, an innovative design and economical price. However, selecting software will not be easy. That's where SYNC comes in. SYNC evaluates software packages and other peripherals and doesn't just publish manufacturer descriptions. We put each package through its paces and give you an indepth, objective report of its strengths and weaknesses.

SYNC is a Creative Computing publication. Creative Computing is the number 1 magazine of software and applications with nearly 100,000 circulation. The two most popular computer games books in the world, Basic Computer Games and More Basic Computer Games (combined sales over 500,000 ) are published by Creative Computing. Creative Computing Software manufactures over 150 software packages for six different personal computers.

Creative Computing, founded in 1974 by David AhI, is a well-established firm committed to the'future of personal computing. We expect the Sinclair ZX80 to be a highly successful computer and correspondingly, SYNC to be a respected and successful magazine.

\section*{Order SYNC Today}

Right now we need all the help we can get. First of all, we'd like you to subscribe to SYNC. Subscriptions are posted by air directly from America and cost just \(£ 10\) for one year ( 6 issues), \(£ 18\) for two years ( 12 issues) or, if you really want to beat inflation, \(£ 25\) for three years (18 issues): SYNC is available only by subscription; it is not on newstands. We guarantee your satisfaction or we will refund the unfulfilled portion of your subscription.

Needless to say, we can't fill up all the pages without your help. So send in your programs, articles, hints and tips. Remember, illustrations and screen photos make a piece much more interesting. Send in your reviews of peripherals and software too-but be warned: reviews must be in-depth and objective. We want you to respect what you read on the pages of SYNC so be honest and 'forthright in the material you send us. Of course we pay for contributions-just don't expect to retire on it.

The exploration has begun. Join us.


\section*{TTIEPETIERTT CDTIPUTER EПIITEERITG LTV}

CROMEMCO Systems \& Software
SYSTEM ZERO - the latest low cost computer from Cromemco
CP/M 2.2 for Cromemco systems \(£ 95\)
64K S100 Memory Boards \(£ 350\)
California computer systems S100
boards and complete systems available
10 Megaby te Cartridge Disk
(5 Megabyte fixed 5 removable)
and controller for the S100 Bus
£3,950 including installation
(London area)
We supply computer solutions to business problems
* Software packages
* Hardware maintenance
* Hardware configuration and design

We also have an "Aladdin's Cave" of computer spares, power supplies, boards, chips, etc, etc.

For further details and information, please contact:
Independent Computer Engineering Limited, 16/18 Littleton Road, Ashford, Middlesex. Tel: 07842 47171/2.
Telex: 8952042 (DPCUST G)


EPSON - MX8O DOT MATRIX PRINTER
The printer you have been waiting for
* \(9 \times 9\) matrix (true descenders in lower case)
* 80cps bidirectional printing with logical seeking print head (maximises throughput)
* 96 ASCII character set, plus 64 graphics incorporating 4 switch selectable European language options.
* Programmable forms handling
* 12 different print modes, up to 132 characters per line
* Operator controls and indicators, including self test feature.
* - options - high resolution graphics, dual friction/tractor feed unit
* £395 - with standard parallel interface (interface options - RS232, Pet, TRS80, MZ80, Apple).
ALL PRICES EXCLUDE VAT

\section*{MILNE SOFTWARE}

\section*{MICRO-WORD}

Is a low cost letterwriter/word processor for the 16 K PET \& PET printer - ideal for the hobbyist, small business, school club etc. Just look at the features. .
* Doesn't need a second cassette unit!
* Lower case, enlarged \& reversed print!
* Save pages of text on tape, recall \& edit on screen before printing!
* Prints letterheadings \& details - circular letters can be printed easily \& quickly!
AND THE PRICE? INCLUDING POSTAGE, PACKING \& INSTRUCTION BOOKLET. . JUST £9.95!!

\section*{CAR-PIC}

Let "CAR-PIC" guide you through the problem of buying your next car. Just feed in all of the requirements such as top speed, fuel consumpiton, etc, and "CAR-PIC" will display from its files of old \(\&\) new cars the details of those that fit your specification. INCLUDING POST \& PACKING. . .JUST \(£ 7.95!\) ! ( 8 K new ROM PETS)

MILNE SOFTWARE
153 WAKEFIELD STREET, EAST HAM, LONDON E6 1LG.

\section*{The Best}

\section*{CHESS COMPUTERS}


\section*{THE CHESS COMPUTER SPECIALISTS}

FREE leaflet by International Grandmaster Raymond Keene on "How to Get the Most Benefit from a Chess Computer".
Simply send off the form below (or phone) for full details of our range of new and second-hand chess computers (all fully guaranteed) - including the fastest and strongest, the BORIS/SARGON - and a free copy of Raymond Keene's leaflet.
COMPETENCE, 30 Baker Street, London W1
Telephone: 01-229 8275 Mon-Fri 10 am - 5 pm

\footnotetext{
Name .
Address
. . . . . . . . . . . . ........................................ . . . . . .... . . . . . . . . .
tel.
date ...........
Details and leaflet please!
PCW 3.81
}


Cunard Hotel Hammersmith 10-12 September 1981


\section*{The Show which brings your market direct to you . . .}

The Personal Computer World Show is the only exhibition exclusively for the small computer industry. It is your opportunity to meet, face-to-face, potential buyers who visit the Show specifically to see demonstrations and discuss the application of your products.
This is the Show where buyers come to buy ... not just look.
To discuss how the 4th Personal Computer World Show could form the focus of your 1981 promotional calendar contact Timothy Collins on 01-486 1951 or write to him at Montbuild Ltd, 11 Manchester Square, London W1.
\begin{tabular}{lrl} 
Abacus & 24 & Currah \\
Acorn Computers & 74 & Data Bank \\
Aculab & 161 & Data Plus \\
Advanced Computer & & Davinci Comp \\
Equipment & 178 & Digital Design \& \\
Algray & 33 & Development \\
Almarc Data Systems & 19 & Display Electronics \\
Anglia Comp Centre & 161 & Easi Comp \\
Beaver Systems & 164 & Electronics Brokers \\
Biodata & 175 & Essential Software \\
Bits \& PCs & 168 & EuroCalc \\
Bug Byte & 150 & Equinox \\
Business \& Leisure & & Ferguson Computers \\
Microcomputers & 176 & Freshfield Computers \\
Butel & 173,78 & GP Industrial \\
CCS Microhire & 32 & Gate Microsystems \\
Calco & 34 & Graham Dorian \\
Calona & 148 & Grama Winter \\
Cambridge Comp & & Greenbank Electronics \\
Store & 102 & Graffcom \\
Cambridge Learning & 8 & Guestal \\
Camden Electronics & 35 & Hal \\
Chromasonic & 20,21 & Happy Memories \\
Commodore & 39 & A JHarding \\
Comart & 75 & Heath \\
Competence & 181 & Henry's \\
Comp Shot & \(184, I B C\) & Hitech Electronics \\
Computech & 2 & ISG Data Sales \\
Computerbits & 179 & Independent Computer \\
Computer Bookshop & 92,155 & Engineering \\
Computer Interfacing & 58 & Intelligent Artefacts \\
Equipment & \(5 n t e r a m\) Computer \\
Computermarket & 84 & Systems \\
Computopia & 19 & Interactive Data \\
Comserve & 16 & Systems \\
Cream \(\operatorname{Microcomputer~}\) & 27 & Interface \\
Shop & Intex Datalog \\
Creative Computing & 180 & Intracept Electronics \\
Crystal & 170 & Kansas City \\
Cumana & 171 & Keytronics \\
& & Kram Electronics \\
& & L\& J Computers \\
& & \\
\hline
\end{tabular}

172
31
150
164

168 Lombardy Scientific
172 London Computer
177 Centre
157 Lowe Electronics
82 Macklin-Zand
170 Magronics
156 Map
Melbourne House Publishers
Micro
Microbusiness Centre
165 Nicrobyte
78 Microcentre
169 Microdigital
Microdigital
168
22,2
31,33,35
160
160
12
64

181

76

162
166
166
24
151
102

Microputer Applications
Microsystem
Microtek
Microtrend
Micro Type
Mighty Micro
Mike Rose Micros
Milne Software
Mine of
Information NCS Computer Shops

Nowbury
Northamber


The Job is a police magazine and guess who appeared in it recently? - Rupert Allason, brother of 'Squire' Julian, no less. It seems that while on holiday in the Bahamas, he hired a glass-bottomed boat and hurtled off to \(400 \cdot y\) ard long Stocking Island for a sunbathe. Imagine his amazement then when an aeroplane decided to crash there. The two very dazed occupants run for the ferry which was just leaving, shouting to Rupert, 'The plane's yours, you can keep it.' Rupert, suspecting a crime, went to investigate what appeared to be hay bales but which turned out to be bales of marijuana. Rupert whizzed off in the glass-bottomed boat, managing to head off the ferry, and on arrival back to Stocking Island he whipped out his policc. warrant and arrested the criminals for illegal entry to the Bahamas. Back on patrol as a 'special' he was looking forward to a return visit as a witness in the
court case when he heard a rumour that the evidence had disappeared, 'just as if it had gone up in smoke,' one Bahamian is rumoured to have said. . . Latest gleeful discovery of software vendors is that their business is akin to running a bordello - you sell it and you've still got it. Nigel Coster of London Computer Centre asked us not to mention his name as the source of this epigram, by the way. . . Rumour has it that PET buyers are in the very best of company (kneel, kneel, curtsey, curtsey) - Buckingham Palace bought one from Ron and Derek Bailey of Birmingham's Camden Electronics. . . Remember our January cover? - it was the one with the salesman and the customer on it. A lot of people rang to ask which article it referred to - and we thought the word 'Secrets' was a dead give-away. Another person who rang to complain was the artist, Colin Hadley. You may
have noticed that the 'bar code' on the cover actually gave Colin's name and, even worse, his phone number. Imagine how he felt early on Boxing day morning when some nerd rang to say, 'I've cracked the code - do I win a prize?'!!!
. Computer Genius Leads Britain's Brains.' So ran a press release from British Mensa, announcing the appointment of its new chairman - none other than Clive Sinclair. . While on the subject, 'Uncle' Clive was seen recently at the Consumer Electronics Show in Las Vegas. Well seen at the show isn't quite true, he was more often lying on the grass outside the Hilton Rotunda. Since Las Vegas is in the desert, the grass has to be kept permanently watered so we presume that a at the end of each day's sunbathing there was a Cliveshaped patch of desert in the middle of the lawn. . . We must have had printer surveys on the brain last month we even announced winners for one!! It should have read Reader Survey. Our apologies to the 26 readers who thought they'd turned into printers. . . We suspect

156 178
179
Personal Computers OBCComputers
Petsoft6
98
Phipps98
Portatel ..... 157
Printout ..... 78
88
Program Power ..... 62
Pramglow ..... 173
Purley Comps
Science ofCambridge110,111
Sharp ..... 50,51
Silica Shop ..... 43
151
Sirton ..... 28
St Commercial
Systems
154
Strumech ..... 11
151
Sumlock BoundainSun Computin:
Services ..... 109
Supersoft ..... 58
Systems Plus ..... 10
Swanley Electronics ..... 178
TVJ Micro Computers ..... 25
148
Tex Microsystems ..... 170
This could be fun ..... 149
Tim Orr ..... 156
TransamTri-Data
152Watford Electronics 18,19
WEGO166
West Farthing Comps ..... 176
Western ComputersXitan Systems
(but can't prove it) that Malcolm Peltu is really Milton Friedman in disguise. See the cover of the new Free to Choose paperback and then look at Malcolm. A certain magazine which we lovingly call Toady is about to launch a low-'Budgett' version of Chip Chat. Or so we hear.
If you've got a
PET and you've POKEd 59458 , then turn immediately to Bludners. . . Finally, this is your last chance to take advantage of our West Coast Faire offer on page 46. Whether you're a dealer or just plain interested, this is the only exclusively micro show in the USA. Covering two floors it's got everything on display, from stands you couldn't swing a cat in, displaying new products which may one day become big, to enormous stands put up by the microcomputing 'establishment'. Being in San Francisco, it's well placed at the top end of 'Silicon Valley for visits to manufacturers and software houses. If you don't fancy that, San Francisco ain't too bad, either.


NASCOM 2 GAMES TAPE
featuring Space invaders and Android Nim, Re-numbering
ogram and other goodies!
\(\mathbf{£ 7 . 5 0}\) + VAT

\section*{NEC \\ SPINWRITER \\ only \\ \(£ 1490\)}


NEC's high quality printer uses a print "thimble" that has less diameter and inertia than a daisy wheel. giving a quieter, faster, more reliable printer that can cope with plotting and printing (128 ASCl| characters) with up to five copies, friction or tractor fed. The ribbon and thimble can be changed in seconds. 55 characters per second bidirectional printing -
with red/black, bold subscript, superscript, proportional spacing, tabbing, and much, much more.


\section*{COMP POCKET COMPUTER GREATEST BREAKTHROUGH YET
} - Programs in BASIC "OWERTY" Alphabeti Keyboard - 1.9K Random Access Memory Long Battery Life
Computer power that once filled a room can now be carried in your pocketl it's easy to load with ready-to-run software from cassette tape linterface and recorder optionall or program it yourself in easy-to-learn BASIC. 24-character
liquid crystal readout displays one line at a time. Special liquid crystal readout displays one line at a time. Special
feature is advanced non-volatile memory allows you to feature is advanced non-volatile memory allows you to Note: Memory must be iransferred to tape before changing batteries. Automatic statement compaction squeezes every ounce of memory space. Features power-off retention of programs and data. Powerful resident BASIC language includes multiple statements, math functions, editing, strings, arrays and much more. Multiple program loading capability subject to RAM availability. Carrying case and batteries included


\section*{ACULAB FLOPPY TAPE} The tape that behaves like a disc, for TRS-80 LEVEL 2 £169 + VAT
The Aculab Floppy Tape for the TRS 80 and Video Genie is a highly reliable digital storage system that provides many of the advantages of floppy disks at less co
debounce routine for the Level 2 keyboard.
Connects directly to TRS-80 Level 2 Keyboard. Operating and file handling software in ROM. 8 commands add 12 powerful functions to Level 2 BASIC

\section*{THE VIDEO GENIE SYSTEM}

£299 - 16K WITH
, K user Ram BASIC in ROM - Fully TRS-80 Lesoft software compatible Huge range of software already available - Self contained, PSU, UHF modulator, and cassette - Simply plugs into video monitor or UHF TV - Full expansion to disks and printer - Absolutely complete - iust fit into mains plug. The Video Genie is a complete computer system, requiring only connection to a domestic 625 line TV set to be fully operational; or if required a video monitor can be connected to provide the best quality display. 51 key typewfiter style keyboard, which features a 10 key rollover. Supplied with the following accessories:- BASIC demonstration tape; - BASIC manual; Beginners programming manual. Write useful programs in the BASIC computer language yourself

\section*{EPROM \(2716 £ 12.50\) +vat}


YOU NEED NEVER MISS AN IMPORTANT CALL AGAIN TWO CORDLESS TELEPHONE SYSTEMS - DIRECT FROM USA


\section*{THE ALCOM}
only \(£ 147\) + VAT
Base station connects to your telephone line. Remote handset cllps to your belt and gives you push-bution dialling Bleeps when call arriving - Nicad rechargeable batteries. se unit


LOW COST TELEPHONE £99.95 ANSWERING MACHINE
\(\underset{+ \text { VAT }}{ }\) Microprocessor controlled answering machine. Plug into your phone line. Records any phone call messages. Remote bleeper enables you to listen to your messages from anywhere in the world. Uses standard cassettes. Comes complete with mains adaptor, microphone, remote bleeper base unit, cassette with 30 sample pre-recorded messages.


This new unit from the world's most successful micro company is now available immediately with software. The basic unit comes complete with 64 thousand characters 1/ million extra characters including the disc operating y milion ext cisc expansion is now available. The Modell is a complete unlt with a full heyb. humeric pad and \(12^{\prime \prime}\) screen characters. The computer is supplied with both the disc operating system and the Level III Basic.
A full self test routine is written into the power up procedure o eliminate incorrect operation. Both serial and parallel expansion sockets are standard. A printer is a plug-in operation
Both hardware and software necessary to talk to a mainframe are included. Terminal usage is very possible. With the addition of CPM2 you can operate with COBOL, FORTRAN MBASIC, CBASIC in which languages are many othe \(\mathrm{CP} / \mathrm{M} 2 \quad \mathbf{E} 5.00 \quad\) M BASIC \(\mathbf{£ 1 5 5 . 0 0}\) \(\begin{array}{lrlr}\text { CP/M2 } & \mathbf{£} 5.00 & \text { M BASIC } & \mathbf{£ 1 5 5 . 0 0} \\ \text { CIS COBOL } & \mathbf{£ 4 0 0 . 0 0} & \text { FORTRAN } & \mathbf{£ 2 2 0 . 0 0}\end{array}\) \(\begin{array}{lrl}\text { CIS COBOL } & \mathbf{£ 4 0 0 . 0 0} & \text { FORTRAN } \mathbf{£ 2 0 . 0 0} \\ \text { C BASIC } & \mathbf{£ 7 5 . 0 0} & \text { WORDSTAR } \mathbf{E 5 5 . 0 0}\end{array}\)



THE ATARI VIDEO COMPUTER 1. GAMES SYSTEM

883.00 now offers more than 1300 different game variations and options in twenty Game Program \({ }^{\text {TM }}\) cartridges! Most Cartriages only \(£ 13.90+\mathrm{VA}\) Most Cartriages only \(£ 13.90+V A\) editions Basic Maths, Airsea Battle, Black Jack, Breakout
Surround, Spacewar, Video Olympics, Outlaw, Basketball Hunt \(G\) Score*. Space War, Sky Diver, Air Sea Battle, Codebreaker*, Miniature Golf. Extra Paddle Controllers *Keyboard Controllers - E14.90 + VAT \(-\mathbf{8 1 8 . 9 0}+\) VAT SPACE INVADERS NOW IN STOCK E25


COMPUKIT UKIOI
* 6502 based system - best value for money on the market. © Powerful 8 K Basic - Fastest around * Full Owerry Keyboard 4K RAM Expandable to 8K board. \# Power supply and RF Modulator on board. \# No Extras needed Plug-in and go. \#Kansas City Tape Interface on board. . Free Sampler Tape Iearn about Micros, but didn't know which machine to buy then this is the
lon 't know which mach
machine for you.

40 pin Expansion Jumper Cable for Compukit expansion \(\mathbf{E 8} .50+\) VAT
Build. Understand and Program your own KIT ONLY \(\mathbf{£ 1 7 9}+\) VAT

Computer for only a small ourlay NO EXTRAS NEEDED
Available ready assembled, tested \(\mathscr{G}\) ready to go \(£ 229+\) VAT
NEW MONITOR FOR COMPUKIT UK101
- In 2K Eprom 2716 Allows screen editing - Saves data on tape - Flashing cursor - Text scrolls down \(£ 22.00+\) VA Special Bonus SAVE E22. New Super Monitor inc. in each kit or sold separately for \(\mathbf{2 2}+\) VAT.
\begin{tabular}{lr} 
FOR THE COMPUKIT \\
\hline Assembler/Editor & \(\mathbf{£ 1 4 . 9 0}\) \\
\hline Screen Editor Tape & \(\mathbf{5 5 . 9 0}\) \\
\hline
\end{tabular}
\begin{tabular}{lr}
\multicolumn{3}{l}{ Garne Pack: } \\
\hline 1. Four Games & \(\mathbf{£ 5 . 0 0}\) \\
\hline 2. Four Games & \(£ 5.00\) \\
\hline 3. Three Games 8K only & \(\mathbf{£ 5 . 0 0}\)
\end{tabular}
\begin{tabular}{lr} 
Super Space Invaders IצK) & \(\mathbf{5 8 . 5 0}\) \\
\hline Space Invaders & \(\mathbf{5 5 . 0 0}\) \\
\hline Chequers & \(\mathbf{E 3 . 0 0}\) \\
\hline Real Time Clock & \(\mathbf{E 3 . 0 0}\) \\
\hline Case for Compukit & \(\mathbf{E 2 9 . 5 0}\) \\
\hline
\end{tabular}

\section*{+5 \\ HITACHI PROFESSIONAL MONITORS \\ \(9^{\prime \prime}\) - £129 £99.95 \\ \(12^{\prime \prime}\) - £199 £149}
- Reliabillty Solid state circuitry using an IC and silicon transistors ensures high reliability - 500 lines horizontal esolution Horizontal resolution in excess of 500 lines is achieved in picture center. Stable picture Even played back pictures of VTR can be displayed without jittering. - Looping video input Video input can be looped through with built-in termination switch. External sync operation (available as option for U and C types) Compac onstruction \(T\) wo monitors are mountable side by side in a standard 19 -inch rack
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { ENGLISH COLOUR TV/ } \\
& \text { AMERICAN NTSC } \\
& \text { COLOUR MONITOR }
\end{aligned}
\]} \\
\hline Suitable for Apple, Atari and Texas 99/4 & f295 + VAT \\
\hline 8MHz Super Quality Modulators & ¢4.90 \\
\hline 6 MHz Standard Modulators & \(\underline{52.90}\) \\
\hline C12 Computer Grade Cassetres & 10 for \(\mathbf{E 4 . 0 0}\) \\
\hline Anadex Printer Paper - 2000 sheets & 225.00 \\
\hline Floppy Discs 5\%" Hard and Soft Sectored & 53.50 \\
\hline Floppy Disc Library Case 5 / \({ }^{\prime \prime}\) & 53.50 \\
\hline Verocases for Nascom 1 \& 2 etc. & \(\underline{24.90}\) \\
\hline Keyboard Cases & 69.90 \\
\hline
\end{tabular}

MEMORY UPGRADES
\(16 \mathrm{~K}(8 \times 4116) £ 29.90\) +VAT
\(4 K\) Compukit \((8 \times 2114) £ 29.50+\) VAT

\section*{SPECIAL OFFER}

We will part exchange करत⿱ your Sinclair ZX80 for

\section*{NEW TV GAME BREAK OUT}

Has got 10 be one of the world's greatest TV games. You reall get hooked. As featured in ETI. Has also 4 other pinball games and lots of options. Good kit for up-grading old amusemen
MINI KIT - PCB, sound \& vision modulator, memory chip and de-code chip. Very simple to construct. \(£ 14.90\) + VAT OR PCB \(£ 2.90\) MAIN LSI \(£ 8.50\) Both plus VAT

Refurbished ZX80's-fully guaranteed \(\mathbf{£ 6 9 . 9 0}\)
(Supply dependant upon stocks) any of our products.


\section*{We have one of the largest collections of Computer Books under one roof, atong with}

WE ARE NOW STOCKING THE

\section*{APPLE II AT}

REDUCED PRICES


Gotting Started APPLE II is facter, smat powerful than its predecessors. And it's more fun to use too powause of buils-in features like
- BASIC - The Language thar Makes Programming Fun - High-Resolution Graphics (in a 54,000-Point Array) for Finely-Detailed Displays. Sound Capability that Brings Programs to Life. Hand Controls for Games and Othe Human-Input Applications. Internal Memory Capacity o 48 K Bytes of RAM, 12 K Bytes of ROM; for Big-System Per formance in a Small Package. Eight Accessory Expansion Slots to let the System Grow With Your Needs.
You don't need to be an expert to enjoy APPLE II. it is a display and start using programs (or writing your own) the first day. You'll find that its tutorial manuals helo you make it your own personal problem solver.
of software for the PET and TRS80
Corne and see for yourself.


APPLE DISC II
Disc with Controller
\(£ 349+\) VAT
E349 + Vat
noian orive

Delivery is added at cost. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order


Europes Largest Discount Parsonal Computer Stores' quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number
MAIL ORDER AND SHOP: CREDIT FACILITIES ARRANGED - send S.A.E. for application form.
14 Station Road, New Barnet, Hentfordshire, EN5 10W (Close to New Barnet BR Station - Moorgate Line) Telephone: 01-441 2922 (Sales) 01-449 6596 Telex: 298755 TELCOM G
OPEN (BARNET) - 10am - 7pm - Monday to Saturday
NEW WEST END SHOWROOM:
311 Edgware Road, London W2.
OPEN (LONDON) - 10am - 6pm - Monday to Saturday
( IRELAND: 80 Mariborough Street, Dublin 1. Telephone: Dublin 749933
* COMPSHOP USA, 1348 East Edinger. Santa Ana, California, Zip Code 92705

We are now entering our fourth financial year of dealing solely in the personal computer market - in fact, we started it! Over this period, Personal Computers Limited have formed a group of graduate specialists who will help you in the fields of word processing, financial planning, statistics, economic modelling, forecasting, accounting systems, foreign exchange, banking and oil exploration. We also do rather well with computer graphics and highly recommend the graphics tablets and our plotter for Apple.
We can also offer two excellent items of software - Format 40 and Visicalc - at a combined price of ONLY £189, and the Super Sound Generator for only \(£ 90\) ! (excl. V.A.T.)


\section*{8" Disk Drive (above left)}

Our \(8^{\prime \prime}\) disks are still as popular as ever -2 drives give you 1.2 MB with all the reliable security of Shugart Technology. Easily interfaced to Apple, uses the same D.O.S.
A.I.O. Serial and Parallel Card (above centre)

Three hand-shake lines (R.T.S., C.T.S. and D.C.D.). Firmware for serial interfaces on-board, software for parallel printer available, 2 bi-directional 8 bit parallel ports, plus 4 additional interrupt and hand-shaking tines.
Light Pen (ahove right)
A much sought after product which we introduced to the U.K.

\section*{80 Character Card (below left)}
opens up the real commercial world for all Apple owners.

\section*{Paper Tiger (Below centre)}

132 character line, plus graphics, 8 character sizes, ordinary paper, mutliple copy, upper and lower case 96 character, parallel/serial, form control.
Centronics 730 (Below right)
A substantial, robust printer from a miajor manufacturer. 3 way paper handling system, 100 character per second. Special low-cost including interface. 96 characters.


\section*{Items pictured}

Sharp MZ - 80K
A new generation of personal computer, self contained, versatile and starting at only \(\mathbf{E 5 7 0}\) lexcl. VATI. Expiore the Zilog \(\mathbf{Z} 80\) now the easy way. Disks and printer available shortily.
Numeric Keypad
with 8 function keys is a must in all financial applications.

\section*{TCM 100 \& TCM 200}
both now have graphics as well as their own power supply, essential with this type of printer.
Qume Sprint 5
The quality word processing printer. Clean, clear executive reports the way you want them. Can print up to 5760 points per square inch - or even print in 2 colours.

\section*{This iswhat wedo andwedo} it rather well!```


[^0]:    Apple II is a trade name of
    Apple Compuler. Inc

[^1]:    TEX Eprom Eraser 6 Mhz Modulators 8Mhz Modulators Cassette Recorders $8^{\prime \prime}$ Fan-Fold Paper 500 sheets
    $91 / 2^{\prime \prime}$ Fan-Fold Paper 500 sheets
    £5.95 HEX PAD
    ASCII Keyboard 756 CEGMON any version Space Invaders 8 K BASF Floppy Discs - each

[^2]:    OPEN TUESDAY - SATURDAY 10AM - 6PM.
    (3 MINS FROM HARROW-ON-THE-HILL TUBE STN
    ACCESS AND BARCLAY CARD WELCOMED.

[^3]:    = HEXMV - Block move.
    ;/ CLASS: 1
    ;/ TIME CRITICAL ?: No.
    ;/ DESCRIPTION: Takes a block of data up to 256 bytes long, translates it into ASCII-hexadecimal and deposits the result in a destination table with a one-byte (two ASCII-hex digits) checksum appended.
    ACTION: 1. Initialise checksum to zero.
    2. Subtract 2 from destination address.
    3. Read byte pointed to by source address.
    4. Unpack low \& high nibbles and add both to checksum.
    5. Convert to 2 ASCII-hexadecimal digits.
    6. Increment source address by 1 .
    7. Increment destination address by 2.
    8. Store MS-digit of ASCII-hex at dest. address and LS-digit at Dest. address +1 .
    9. Decrement byte count and so to step 3 if not zero.
    10. Read checksum then repeat steps 4 thru 8.
    11. Return to calling program.

    SUBr DEPENDENCE: None.
    INTERFACES: None.
    INPUT: Parameters supplied on stack by calling program: SOURCE ADDRESS at SP+1 and SP+2 DESTINATION ADDRESS at $\mathrm{SP}+3$ and $\mathrm{SP}+4$ BYTE COUNT at SP+5
    OUTPUT: $2 n+2$ (where $n=$ byte count) bytes of ASCII-hex data

