

THE BLAND LEADING THE BLIND? Secrets of business computer buying

The best computers PLUS the best service

At MicroCentre, we're concentrating our resources on what we genuinely believe are the very best computers available today. . . . Cromemco computers, naturally. This way we can offer you the best deal possible.

What we don't do

What we don't do is spread our expertise thinly amongst umpteen different systems, or try to stock every S100 product on the market. We don't claim to offer "impartial" advice on the best buy. And we don't sell from price lists or catalogues.

The MicroCentre approach

Some micro-computer suppliers work like that, but we don't. Because we realise that when you're buying a computer you want more than the "brochures and boxes" approach. You want to see computers running; to try them out with different software products: to study the documentation; above all. you want expert answers to your most searching questions.

Cromemco specialists

That's why we've specialised in Cromemco systems. Not simply because we think Cromemco systems are the best serious computers available at the price.

Cromemco Model Z-2H hard disc computer. 10 megabyte hard disc, 2 floppy discs, Z-80 computer and 64K memory. MicroCentre price $£ 5,326$.

But because by doing so we can dedicate our time, energy and resources to giving you the highest standard of Cromemco support possible.

Demonstrations

So when you visit MicroCentre expect to find Cromemco systems on permanent

MicroCentre's Cromemco demonstration room, with the full range of Cromemco computers, peripherals, operating systems and software products on permanent exhibition. Why not pay us a visit? We're only an hour's Shuttle flight from Heathrow!
demonstration; expect the full range of Cromemco peripherals: single-user and multi-user systems; and interactive graphics.

Software

Expect a choice of operating systems and compilers to evaluate; expect complete documentation; and expect the largest collection of Cromemco systems software in the UK.

Expertise

Expect to find in-depth professional expertise at MicroCentre, the kind that is only acquired by installing Cromemco systems all over Britain. Expect a thorough appreciation of how Cromemco systems can be applied ... in business, scientific research, industrial engineering, medicine and education.

Support

Expect to get frank, accurate answers to your questions at MicroCentre. Above all, once you've bought a Cromemco system from us, expect to get a very high standard of technical support with your hardware enhancements and continuing software needs.

At MicroCentre, simply expect the best.

Founder Angelo Zgorelec

Editor David Tebbutt

Deputy Editor Peter Rodwell

Sub Editor Jon Wall

Art Director Paul Carpenter

Art Assistant Shelley Gray

Editorial Office 14 Rathbone Place London W1P 1DE

01-6377991
Advertisement Director Stephen England 01-6364461

Assistant Advertisement
Manager Patrick Dolan 01-636 4463

Advertisement Executive Jacquie Hancock 01-631 1682

Production Manager Dick Pountain

Typesetter Jane Hamnell

Published by Sportscene Publishers (PCW) Ltd., 14 Rathbone Place, London W1P 1DE, England. Tel: 01-637 7991/2/3. Telex : 8954139 A/B 'Bunch' G London
Copyright notice Personal Computer World is published by Sportscene Publishers (PCW) Ltd. © 1980 Felden Productions. No material may be reproduced in whole or part without written consent fron the copyright holders.

Printed by Riverside Press
Whitstable

NEWSPRINT: Guy Kewney reports on the latest micro happenings.

48 FAIRE: GOTO
California next Spring with $P C W$.

49CTUK! NEWS: Yes, Computer-

Town UK! is happening - we bring you the latest developments.

50 communica. TIONS: Our readers in their own write.

$53^{\text {BENCHTEST: }}$
 $53_{\text {Lyn Antill builds }}$

 and tests the Transam Tuscan.58PRINTERS: We update last August's printer survey.

65 Joanne loves MAVIS: How

 micros have helped one little girl overcome her handicap.
69 SECRETS OF

 SYSTEMS ANALY-SIS: Lyn Antill continues her series with tips on handling salesmen.

71COMPETITION: Win $£ 100$ in a 'help the handicapped' essay comp.

73 BOOKFARE: 73 Malcolm Peltu has something for everyone this month.

77 ${ }^{\text {GET ON THE }}$ RIGHT TRACK:

Real-time control using trains as an example.

[^0]

Cover Illustration Colin Hadley

- YOUNG COMPU-
 TER WORLD:

Especially for our younger readers.

- COMPUTER - ANSWERS: Your

 problems answered by Sheridan Williams and his team.89 COMPUTER GAMES: David
Levy takes an indepth peek at poker.

- FACE TO FACE: Continuing his

 series on the man/ machine interface, David Hebditch looks at finite state automata.97PRINTERFACING: Hook a printer to your micro, with Peter Faff.

10 GET WELL $10-$ SOON: How to recover from a data tape disaster.

109 PET QUAR'TET: his PET to 'sing'.

113 MICRO CHESS: chess expert Kevin O'Connell.

115 MULTI-USER SYSTEMS: Sue

 Eisenbach and Dr Adrian Stokes start a new series.
116 CALCULATOR

handy routines for Casios.

121 PCW SUB SET: Alan Tootill

 brings you more useful assembler sub-routines.
124 EEATURE

 complete 1980.125 NEWCOMERS A quick intro for those new to the micro scene

$126^{\text {DIRECT }}$

 ACCESS: with PACKAGES, DIAR Y DATA, TRANSACTION FILE, and USER GROUPS.$136^{\text {PROGRAMS: }}$ Our readers' latest listings.

14.6 LEISURE LINES: More

 brainbursters from J J Clessa.

Oki microline 80

THE WORKHORSE MICRO PRINTER Small, light, quiet matrix printer.

* 40,80 , or 132 cols. " 6 or 8 lines per inch - 96 ASCII + 64 graphics character set with Centronics compatible interface * 9×7 matrix
- 80 chs. per sec. * 200×106 head warranty *No duty cycle limitation "Double width characters *Friction and Pin Feed "Rugged business use - metal chassis - two motors
Now ONLY $£ 349$ + VAT RS232 option available

disc 9 Digit extended Basic
- Plugs.straight into $8 k$ Compukit requires no hardware mods. (5v.5A required for 610) 610 Expansion (8k) ONLY $£ 159+$ VAT Disc Drive with DOS ONLY $£ 285$ + VAT

exatron Stringy Floppy

COMBINES ECONOMY OF CASSETTE WITH SPEED \& RELIABILITY OF DISC

16k loads in approx. 24 secs. - Wafers to 75 ft (48k approx.)

PET	TRS 80	APPLE	
ONLY	ONLY	ONLY	
£199	£188	£199	
	$+V A T ~$	$+V A T$	$+V A T$

Stringy Floppy with 10 Wafers (Tapes) BUS EX. 2 for 1. Machine Lang. Monitor

Base 2 model boomst

80 COLUMN HIGH PERFORMANCE IMPACT PRINTER - suitable for most Micros. JUST LOOK AT THESE STANDARD FEATURES:
-RS-232, 20mA, IEEE 488 and Centronics $1 / 0$ *15 Baud rates to 9,600 • 100 Chrs. per second Bidirectional * 6 print densities $60,72,80,96$, 120 or 132 Chrlline *Self test switch * 96 Chrs. ASC. Il Standard * Auxilliary User Defined Ch
set "Tractor and fast paper feed/graphics
ONLY - $2 k$ Buffer "Accepts $81 / 2$ " max. paper pressure 800 MST £295 + VAT feed and 91/2" max. paper tractor feed.
850 MST $£ 375$ + VAT Model 850 - utilises Fifo, 125 cps.

Anacom 150

+ VAT 8 chs vertical * 136 seeking "Centronics and/or RS232

150 CPS, 15" carriage dot matrix printer
*150 chs per sec *9×9 dot matrix 70 chs per inch horizontal " 6 or

5010 148 - COMPLETE RANGE OF INTERFACES TANDY, SHARPE, PET, APPLE, etc.
 Epson MH8O

9×9 dot matrix * Logic Seeking * Bi-directional -96 ASCII Characters * 64 Graphics and 8 International Characters *Centronics I/P with optional RS232 and IEEE 488 " Four print densities 40, 80, 66 or 132 columns *Multiple type founts "Self Test "Self Diagnostics *Buzzer for end of paper and bell code error

Now ONLY £359 + VAT

> NEVER KNOWINGLY UNDERSOLD WE WIL MATCH OR BEAT ANY PRICE CURRENTLY ADVERTISED FOR THESE PRODUCTS

ehcel Discs

neC Spinwriter
 for the

 professional word processing system f 1390 + VATModel 5510.RS232, Model 5530 Centronics 8 bit par. NEC'shighquality pr int er uses a prin "thimble" that has less diam. and inertia thana daisy wheel. Givinga quieter, aster more reliable printerthat cancopellchs, with upto copies friction or tractor fed. $55 \mathrm{Chrs} / \mathrm{sec}$.

Dip 81

FULL 80 COLUMN IMPACT PRINTER

100 characters per second, bidirectional, low profile, ideal for hobby or educational. at ONLY £249 + VAT

Ohio Superboard III \& Challenger IP series 2

*Ready Built $8 k$ Microsoft in ROM, 6 digit floating point basic plus full features. $4 k R A M$ expandable to $32 k$.
SUPERBOARD III (24×24 format) $£ 159+$ VAT or switchable to 48×12 POWER SUPPLY $5 \mathrm{v}, 3 \mathrm{~A} . \quad £ 27+\mathrm{VAT}$
CASE £29 + VAT
CHALLENGER 1 P Series 2 . . $£ 219$ + VAT (Superboard is used in Challenger)

FULL SERVICE BACKUP - FULL DETAILS ON REQUEST INCLUDING PRINTOUT Please add VAT @ 15\%.Carriage extra, will advise at time of order. Official orders welcome 61 NEW MARKET SQUARE, BASINGSTOKE, HAMPSHIRE Telephone: Basingstoke (0256) 56468 and 56417 (4 lines)
Buy in confidence. If on receipt of your order the goods do not meet with your satisfaction, return within 7 days for full refund. Credit facilities arranged.
formerly Mighty Micro
DISCOUNTS: Attractive quantity discounts for OEM, Educational \& Dealers also in association with O.S.I. Computers, Esher, Surrey. Telephone: 037262071

COMPUTECH for apple COMPUTECH for IM!

Well proven software for business applications on the
 ITT 2020 and Apple microcomputers.
 Prices excluding V.A.T. for cash with order, F.O, B. London NW3

PAYROLL	(300 + Employees, 100 Departments, hourly, weekly, monthly. Very powerful but easy to use)	£375
SALES LEDGER	(500+ Accounts, 100 Departments).	£295
PURCHASES LEDGER	(500+ Accounts, 100 Departments).	£295
GENERAL (OR NOMINAL) LEDGER	(1000 Accounts, 100 Analyses, multipurpose package). Job costing etc.	£295
UTILITIES DISK 1	(Diskette patch, slot to slot copy, zap etc).	£20
APPLEWRITER	(Word Processing, see below for U/L case)	£42
VISICALC	(Financial Modelling, Costing, Analysis).	£95
CAI	(Converts Apple pictures for ITT display).	£10

AND NOW HARDWARE!

LOWER \& UPPER CASE CHARACTER GENERATOR

Replaces character generator to display upper and lower case characters on screen, includes patches to work with Applewriter, supplies the missing link! Specify Apple or ITT

COMPUTECH DIPLOMAT H/S SERIAL INTERFACE
This card has been designed and built to the same professional standards that have resulted in the success of our software. The DIPLOMAT observes the proper "handshaking" protocol so that you can drive fast printers and send and receive date from other peripherals at high speeds without loss of data. Switch (\& software) selectable baud rates to 19200 and many other options. Plug compatible with 'terminal' or 'modem' wired peripherals. Guaranteed.

MICROLINE M80 PRINTER
£425
This neat, reliable machine prints at 10 characters per inch, 80 characters on an 8 inch line, or 40 expanded characters, or 132 very readable characters, upper and lower case and graphics, 9×7 dot matrix, 6 or 8 lines per inch. Parallel interface is standard, serial optional. Both friction and sprocket feed are standard, tractor optional. We can also supply the parallel interface card for Apple System computers for $£ 80$ and a driver to enable both text and graphics to be used. Optional custom colour matching for Apple or ITT. Optional character sets.. Trade supplied at very generous discounts for modest quantities.

THE FABULOUS MICROMUX 8000
This is a brand new product, an asynchronous serial multiplexor with up to 16 ports, any one of which may communicate with any other independently, like a 'telephone exchange' for data! Built in test function. Firmware may be customised for special applications. Available in multiples of 4 ports up to 16 .

COMPUTECH SYSTEMS

168, Finchley Road, London NW3 EHP. Tel: 01-794 020e AGENTS THRDUGHOUT THE UK AND OVERSEAS

From Motor...

The way things are developing leaves little doubt: while the motor was in every sense the driving force in the first half of the present century, the second half will clearly belong to the dator. The nearer the good old motor, as an additional source of power in our daily lives, gets to the limits of its capabilities, the more the new dator will be called upon to keep things moving. Less motorization - more datorization.

The history of the motor and the development of the dator are strikingly similar. Available in its early days only to a selected few, the motor is nowadays indispensable to almost everybody. Once the engineers and the businessmen had realized its tremendous potential, things began to move - literallymuch faster and very soon almost everyone had his own car, his own private means of transport, for bu-
siness and pleasure alike.
The 1980s will be for the dator what the 1920s were for the motor. But with one little difference: the "Iuxury" of a professional, reliable high-performance data processing machine is in fact something we can all afford now. For business or private use. Even people who, technically speaking, haven't a clue will find it almost impossible to go seriously wrong with a modern dator.

G.L. runs a small company specializing in exclusive equipment and fittings for boats:
"The ABC80 is my dator for costing and checking materials, invoicing; work planning and word processing. I can now do my invoicing 8-10 times faster. Suddenly l've got enough time again and don't have to rely anymore on my old rule-of-thumb calculations. And my wife does our word processing on the dator as well."
H.W. is an executive in an international food manufacturing group: "The ABC80 is my dator for developing programmes for the central computer. At last I can do my programming in peace and quiet and the company saves up to 30% into the bargain, because I no longer need to work on-line."
P.A. is production manager in a medium-size factory making effervescent tablets:
"The ABC80 is my monitoring and control dator. You can't imagine the problems even a missing tube-cap used to cause on our packaging line in the old days. Now, with uniform production throughput, we're not only saving time and money - we've also built up a great working atmosphere among our personnel."
C.W. is a teacher in a perfectly ordinary school in a small town: "The ABC 80 is our dator for teaching and learning. Every student learns in five lessons how to write his own programme, get rid of his computer complexes and is fa better prepared for almost any career."
P.A. is an engineer in a laboratory investigating air conditioning systems: "The $A B C 80$ is my dator for calculating fan performance. Waiting for days for data from our central computer department is a thing of the past for me. If l've got an idea - or a customer comes up with one suddenly on the phone - I can get cracking on my dator right away. That's what I call service."

H.E. has three children and

 is a dyed-in-the-wool private user: "The ABC80 is my home dator. Befor I got it I hadn't the faintest idea about computers. Now I know that there's nothing magic about them. And l've discovered that you can do no end of useful things with them quite apart from the fun we all have with the dator almost every day."
...to Dator*

So much for these six satisfied users selected from the total of ABC 80 dator pioneers which now exceeds 15,000 . Now let's see what the ABC 80 dator engineers at Luxor Sweden's leading manufacturer of sophisticated electronic equipment, have to offer:
The screen: $12^{\prime \prime}$ with built-in sound generation and graphics/Niew data-compatible/Real-time clock.
The keyboard: High quality com-
ponents/National typewriter standards with umlauts/Special shift key for letters and bounce-free function up to 30 characters per second. The microprocessor: Built into the keyboard/Z80A with 16 K Basic Interpreter and 16 K user storage/ Basic version also has interfaces for parallel, V24 and cassette connections.
The cassette tape unit: Doublefrequency encoding with transmis-
sion rate of 700 baud/Start and stop program controls/Fast forward and reverse/Counter.
The main options: User storage can be extended up to $32 \mathrm{~K} /$ Diskette storage up to 2×1 MBytes/Daisywheel printer with standardized interfaces/Separate numerical keyboard/ Plotter/Digitizer/Video and colour TV adaptor/UART/IEEE adaptor/AD and DA converters/Relay matching.
*Swedish for computer

ABC 80 - The professional microcomputer from Luxor in its basic version: display unit, keyboard and cassette tape unlt.

The comprehensive Basic Interpreter is ideal for convenient writing of sophisticated programs. The following standard applications are available: book-keeping / invoicing / stock control/salaries and wages /word processing / address register/data bank administration. Other programming languages are possible.

Datormark Ltd
Seven Hills Road
Walton-on-Thames
Surrey KT12 4DG / England

[^1]My special interest is:

Name:	Address:	
Company:	Town/Post code:	Please send me literature on the ABC80.
Position:	Telephone:	Please let me know my local ABC 80 dealer .

We are the peripherals suppliers who do more than just supply.
We get you going . . . and keep you going - with expert maintenance and service back-up on the machines that we supply.
We sell: Low cost $80 \mathrm{col} / 100 \mathrm{cps}$ and $132 \mathrm{col} / 150 \mathrm{cps}$ matrix printers High quality Qume Sprint 5 daisy wheel impact printers An impressive new family of VDU's - three models to suit all requirements.
We are appointed distributors for peripherals we sell and provide full engineering back-up. We sell end user and OEM. And we stock a wide range of supplies land accessories.

So, before you buy, make sure you've got details from ADC.
Because you may find you'd prefer to rent . . . and we do that, too!
Contacting us won't cost you a thing - and we've a great deal to offer.

> Access Data Communications Ltd., 228, High Street, Uxbridge, Middlesex.

Telephone: Uxbridge (0895) 30831 or 59205.

TIITITIIE EDITIFUTERE Ltd•

VISICALC
 TM

VISICALC AND A PERSONAL COMPUTER DO TO THE CALCULATOR, PAPER AND PEN WHAT WORD PROCESSING HAS DONE TO THE TYPEWRITER AND PAPER: REVOLUTIONIZEIT.

Take virtually any problem you would explore using calculator, pen, and paper, working in rows and columns. Apply VisiCalc and you'll see why every reviwer of this product has said the same thing: VisiCalc developed.

With VisiCalc, you work with an electronic worksheet of up to 63 columns and 264 rows. At the juncture of any column and row you can type in words or numbers. To put Visicalc to work, you first create any format or form you need by typing in words - just like writing column headings across the top of a piece of paper and items down the left side. Then, where you want the worksheet to perform a calculation, you type a formula. VisiCalc automatically performs all arithmatic functions, net present value, and transcendental functions. Instantly - and we mean instantly - VisiCalc displays the results. And if you change any of the numerical data, the electronic worksheet instantly displays a new result. Automatically. You can play "what if" as of ten as you wish to solve thousands of different problems. When finished, you can get a hard copy of all the information on your worksheet from your computer printer

Absolutely no programming is necessary. VisiCalc does all the work. Now, isn't THAT magic?

-

ANYONE WHO WORKS WITH NUMBERS USES VISICALC
Managers and Management consultants: plan budgets, compare actual results to budgeted forecasts, and modify project most powerful and easy-to-use projection tool ever developed.
Financial Analysts:
quickly determine rate-of-return under varying assuptions using the built in net present value functions. VisiCalc will also compute financial ratios, and project tax consequences.
Accountants:
develop financial starements and "pro formas making changes and comparison easily with VisiCalc's ultimate "what if" recalculation feature.
$£ 69.50$

+ VAT
For PET
£99 different scenarios for client discussion and documentation different scenarios for client discussion and documentation. Engineers and Scientists: appreciate VisiCalc's transcendental innctions, scientific nomeric calculations.
Marketing Managers! find VisiCalc is the answer to every forecasting and budgeting need. They refine assumptions-commission rates sales costs, advertising expenditures, leads, sales closing percentage and watch the effect on the botton line.

CCA DATA MANAGEMENT SYSTEM

TM
simple. You'll find it easy to store the system, sort, update and print all kinds of files. Files for your mailing list, accounts receivable or payable, customer list, expense reporting, budget analysis, or any report you need. The 130 page manual has full instructions plus samples for a mailing list and inventory application.

The CCA/DMS stores and retrieves information. It is very simple to learn and use, and at the same time provides real data processing capabilities for you and your APPLE II.

You can computerize most, if. not all of your record keeping. DMS will give you control over any type of information which lends itself to "row and column" storage, retrieval and analysis.

If you are familiar with the concept of a computer "data base" the power and flexibility of the DMS will amaze you. If you are not familiar with "data base" operation, don't worry. It is logical and

CCA/DMS FEATURES

Fields may be alphanumeric, numeric, integer, floating point, or fixed decimal with commas.
Fields may be COMPUTED FIELDS.
Fields may be alphanumeric, numeric, integer, floating point, or fixed decimal with commas.
Fields may be COMPUTED FIELDS. DMS will compute any field within a record, using constants or other fields in the same record. Functions include add, substract, multiply, divide and raise exponential powers.
Records are easily located, using the scan feature. Scan for records with a field over, below, or between a range of values.
Records are easily added and updated. DMS "prompts" you with questions.

A MUST FOR EVERY APPLE II IN BUSINESS

Multi-diskette capabilities for larger files-up to 85,000 characters per file!
Sort the records into almost any order, using up to 10 fields as "keys". So you can sort for customer numbers; within zip code, for instance.
Delete records, "compact" files, and backup files on data diskettes easily.
Print reports with records in any order
Select fields to be printed.
Print mailing labels.
Numeric totals and subtotals can be specified when a value in an unrelated field in the same record changes, For example, sort, subtotal, and print according to department, or month, or customer number, or model number.

DESKTOP PLAN - A Programming Language for Analysis Desktop plan is the software tool that makes it practical to develop your own customized.

Strategic plan analysis Budget planning system Capital budget planning Cashflow planning
Product pricing analysis Job development estimating Job cost estimating

Profit \& loss projections Manpower requirement planning Salary/labor cost planning Balance sheet projections Financial report preparation Make/buy analysis Sales forecasting WITHOUT PROGRAMMING AT A LOW ONE-TIME COST !

Apple FORTRAN

 newest computer in dusiry standard. ANSI X3.9.1978.provides a comprehensive software design envifonment including an editor, linker, file handier. assembler. Apple Pascal compiter, and system libray, operating in ine Apple Language System, - elimimates the need to recomple or reassemble existing code fles
when incorporating them into FORTR AN programs. compited P.code and assembied machine code can be combined with a FORTRAN P. code tie through the Apole Language System 's minker facitities.. - allows you to take full advantage of Apple 's Hires graphics capaoilifies by interfacing to graphics routines in the system hbrary... - gives programmers access folarge hbrarres of m
FORTRAN is a famifar, welle stablished language

- provides access fo special Apple leatures, such as sound gen atron and conitrol paddies. through its system library routines. - permits you to combune several source files in a single compilation inrough compler diractives in the source code.

First, Some Words About FORTRAN ' 77
FORTRAN 77 Contans signilicant additions and enhancements 10 the previous 1966 standard. For example mixed-mode arithmetic expressions are allowed Structured plogramming is supported ihrough expanded if statement constructs Logical IF. Block IF. ELSE
IF. ELSE, and ENO IF statements provide a vasily improved method of clearly and accurately specifying the llow ol piogram conirol CHARACTER dala type replaces Hoilerith. alphanumeric dala can be repres ented as strings rather than artay elements

Some Specifics About Apple FORTRAN
Some Specifics about Apple FORTRAN
Apple FORTRAN is the ANSI Slandard Subsel FORTRAN 77 It also supnorts enhancements and lacillies thom the ful FORTRAN 77 tanumitye lt partlicular

- Subscripl expiessions may include array elements and funcion calls

- DO statement

single variables.
onstants or smbele varititles.
:Onstan/s or smple variables

- All combinations ol FORMAT TEOUNFORMATTEO and SEOUEN-

IAL-DIRECT hies are allowed. wilh ine lollowing testrictions:
-BACKSPACE is supported only tor tites colinected to the blocked -OIRECT Hiles musi be connecied to biack devices -DIAECT illes must be connecied to brock devices Apple FORTRAN contans a number of en
oslance. the §INCLUOE ditective allows you soutce code For eveloped code inlo your program withoul having it previously. his is usetul, This is useful, 10 e xample. when you are writng many subroutines which use the same COMMON block You can write the COMMON block 1 sisi once, and $\$$ INCLUDE in in every subrouine - An addonional parameter to the OPEN statemern
specily whether the file is blocked or unbocked

£46.50

+ VAT

FORTRAN FOR YOUR APPLE

£110

+ VAT

FORTRAN/s a powertul programming language. especially suitable for work in mathematics, engineering and ithe sciences. Apple KORTRAN. Usable with the Apple Language System, is the ANSI
Standard Subset of the recently-defined FORTRAN 77 slandard' in several areas, ADole FORTRAN conians enhanced leatures and capabulifies.
ADple is providing FORTAAN ior use bv lecmical protessionats and educators who are both lamilar with the FORTR AN langirage and are using packages written in FORTRAN Becinuse FORIRAN is a well. established language. large libraties of FORIRAN programs applications. Apple FORIAAN provides the sophuslicated FORIRAN user with the capability to develop new and modily existing FORTRAN programs on an Apple. Apple does not recommend FOATRAN for the individual new to programming.

There are lwo minor dillerences Delween ine ANSi Standard Subse

 FORTRAN 17 and Apple FORIRAN Ihey are- Subprogram names cannol be passed as parameters
- INTEGER and REAL dala lypes have dilferent slo age require

Apple FOHIAAN is witten in Pascal and produces P code which iuns Apyle FORIRAN is written in Pascal and
in the Apple Pascai Operating Syslem
oiskettes: 16 sector tormat
To use Apple FORTR AN, you will need:

- Apple II or Apple II Plus each with the Apple Language System - Apple Dish ll dive with coniroller
- video monitor or television

While a singie dive syslem is adequate tor very simall programs. Iwo setrous proglam deveroprier:1

apple II

When Stephen Jobs and Steven Wosniak launched their first APPLE II, they were far from realising the worldwise success this microcomputer would have. Nearly anything can be done with the APPLE II. Whether it be business, science, leisure or art, your APPLE II can handle it all. (We've even seen an APPLE preparing coffee lately!)

It's full expansion capabilities enable you for example to connect your APPLE II to 4 disks, 2 printers, one tape cassette recorder, and one optical pen still leaving you room for 4 other connections. Therefore your APPLE will never become out of date and will always be able to adapt to new techniques, however versatile or varied the they may be.
Two types of computers are now available

- APPLE II: this system is supplied with INTEGER

BASIC, high resolution graphics routines, mini-assembler, disassembler and system control firmware in ROM. Demo.programs and manuals are oriented around INTEGER BASIC.

- APPLE II PLUS: this system is supplied with APPLESOFT extended BASIC (including high resolution graphics routines), disassembler and new auto-start system control firmware in ROM. Demo programs and manuals are oriented around APPLESOFT extended BASIC.

Integer Basic or Applesoft Basic are available as plug-in card options for 110. - each.

Both APPLEs are based on the 6502 microprocessor, they include: sockets for up to 48 K RAM, 8 peripherals board connectors, speaker, two hand controllers, cassette interface, colour graphics hardware, I/O connectors and typewriter style ASC II keyboard.

PRINTERS
Centronics 730 £ 390 Centronics 737 £ 490 Axiom IMP2

APPLE PASCAL offers extended features employing today's latest high-level structure programming language. PASCAL operates in a 48 K APPLE II or APPLE II PLUS with one to six disk drives and the APPLE language system. An external 80 column terminal can also be attached.

IUTMIE EOMPUTEFS LTOO

 PET 2001-2008-3016-3040 3022-8050-8032This family of Basic systems compares quite favorably with mini and large computer systems. These systems are highly competitive ir maintaining financial records, storing records, controlling appliances, typewriting, sales analysis, and inventory control. PET systems are just what the small business user needs. It may also be scaled down to the users particular needs. Their applications are endless PETs are popular not only in business but also at home. They have a self-contained monitor. The PET is concisely built with its numeric key pad key board.
$8 \mathrm{~K}, 16 \mathrm{~K}, 32 \mathrm{~K}$ memory
Full expansion capabilities for cassette, disks and printer.

> $\because-20102+$ VAT

PET 2001
This microcomputer has the small keyboard and the Integral tape deck. Also comes with 8K Byte memory.

E $389+$ VAT
PET 2008
A popular micro-computer build with a green self-contained monitor with new large
keyboard. Comes with 8 K Byte memory:
8495

+ VAT
PET 3016
This model has also the new improved large keyboard and Integral screen. It has 16 K Byte memory.

PET $3032 £ 595$ + VAT

PET 3040
Dual Drive Disk System: Built for the PET micros, it allows you rapid access to both programs and data. 343 K user storage.
$£ 595$

+ VAT

> PET 3022

PRINTER (tractor feed): Prints on multiple copy paper all the PET characters, letters, numbers, and PET graphics,
$£ 399$

+ VAT
ALSO AVAILABLE: PET 8050: $£ 850$ + VAT. PET 8032: $£ 850$ + VAT

PET 3040 Disk Systems

$£ 650$ +vat

PET 3022 Printer (Tractor Feed)

$£ 399$ + vat.

TRANSFERRING STANDARD CP/M APPLICATION PACKAGES TO APPLE APPL
CP/M
Literally thousands of CP/M based applicar lons can be easily transferred to run on the Apple. It is simply a matter of converting programs from standard $5^{\prime \prime}$ and $8^{\prime \prime} \mathrm{CP}^{\prime \prime} / \mathrm{M}$
disk format into CP / M disk format. This is done by transferring CP/M files from $C P / M$ machine to the Apole via a serial I/O port. You'll need an Apple High Speed Serial interface or an Apple Communicat ions interface; a connecting cable; and, of course, a CP/M machine from which to transfer. Utilities that make this proces easy are supplied with the Z.BO Softcsio

USING PERIPHERAL WITH THE Z-80 SOFTCARD
A Z.80 Soficard system will run with all standard Apple peripheral I/O cards and most independent peripherals including any printer that is supported by Apple printer same I/O environment as Apole Pascal a good rule of thumb is that the SoftCard will interface with any peripheral ther currently works with Apple Pascal.
The Z.80 SoftCard will support up to six disk drives. 24×80 column video cards such as the Videx and Sup-R.Term are supported as are most popular 80 Hazeltine and Soroc.
In addition, user I/O drivers can be easilly

CP/M FOR YOUR APPLE !!

The Microsoft 280 Softcard

- A LITTLE STROKE OF GENIUS FOR YOUR APPLE II.

WHY CP/M?

Next to the SoftCard itself, CP/M is the most important key to allowing a wide Apple of $\mathrm{Z}-80$ software to run on the Apple including version 2.2 of the CPM operating system in the SoftCard package.
More soft have your choice of many sophisticated system, word processing, accounting, business and professional software packages when you have CP/M.

Unlike standard Apple DOS, CPM supports many languages in addition to BASIC. Compiler.
And CP/M has many conveniences not found in Apple DO8. Such as basy interface to machine language programs: faster disk $1 / 0$ simple file transfer; and wild card file-narning conventions that allow you to refer to multiple files with one name.

Included as standard with CP/M 2.2 is a complete set of system utilities that give you complet. These include PIP operating purpose file transfer utlity and STAT, a program that lets you keep track of import. ant system information such as disk space and file size. SUBMIT and XSUB allow you to execute batch processing jobs. And a powerful text editor, assembler, and sophisticated as sembly lathguage debugger, are al so included.

The Z-80 SoftCard is not an emulator. It is an actual Z-80 chip plus interfacing circuitry on a circuit board that plugs directly into any of the slots on your Apple (except slot 0).
The $Z .80$ does not replace your 6502 ; it adds to it. You use $Z .80$ mode when you want to run $Z .80$ software. Switching back and forth is simple.

When you are in $Z .80$ mode, the $Z-80$ assumes all the processing tasks, but the
6502 continues to handle 6502 continues to handle $1 / \mathrm{O}$. Thus, you you are in Z-80 mode.

MEMORY REQUIREMENTS
To run the 2.80 SoftCard requires a disk. based Apple II or disk-based Apple II Plus if used with at least 48 K RAM memory additional RAM can be utilized
Whether you have a 48 K system or a 60 K system with Language Card. 4 K of RAM is required to handle the Apple screen and CP/M sector read and write routines. CP/M occupies 7 K of RAM, 2 K of which can be used by other programs such as BASIC. The standard versions of Microsoft extensions except high-resolution graphics, requires slightly more than 24 K RAM, So BASIC and CP/M together occupy just over 29 K RAM.
The version of BASIC that supports highresolution graphles is somewhat large because 8 K of screen memory is necessary for high \&esolution graphics. It occupies just than 38 K , for both CP/M and the high. resolution version of BASIC.

BEYOND MICROSOFT BASIC
Microsof 5.0 BASIC is provided with the Z.80 Softcard. Microsoft FORTRAN. COBOL, BASIC Compiler, and Assembly Language Development System will be available and sold separately to $\mathbf{Z . 8 0}$ Soft Card users.
Just imagine the power of your Apple
Computer when it has one of the following Computer when it has one of the following: Microsoft FORTRAN-80.Comparable to the
FORTRAN compilers used on large mainFORTRAN compilers used on large mainframes and minicamputers, Microsoft's
FORTRAN 80 brings the world's most popular science and engineering programm. ing language to the Apple. Compilation is very fast lup to several hundred statements per minutel and less than 25 K bytes of memory are needed to compile most programs. All of ANSI FORTRAN $\times 3.9$ 1966 is included except the COMP LEX data type. Therefore, you may rake advantage of
the many application programs already written in FORTRAN
Microsoft COBOL-80. The most widely used language for business applications, Used language is excellent for inventory, personnel. pay roll, order entry, accounting and forecasting applications. Fowerful use of disk files, CRT screen handling, easy-to use syntax and readable programs give programmers the tools they need to mieet he rising challenge of dota processing. Microsoft's COBOL.80 is an ANSI standard COBOL with many enhancements.
2.80 SOFTCARD PRODUCT SPECIFICATIONS £25

$=$

Disks

Memorex $5 \frac{1}{2}{ }^{\prime \prime}$ for Apple, TRS-80 PET etc. 10 for $£ 19.50$

OKi MICRO LINE 80
FOR APPLE II
OKiu80 + Parallel interface

+ Graphics $£ 475$
(see below)
£475
Parallel printer interface for APPLE
£110.00
(wire included) $£ 99$

40, 80, 132 columns (compressed and doubled characters)

- 80 characters per second
- 96 characters ASCII and semi-graphic 7×9
- 6 or 8 lines an inch
- Original + 2 copies
- End of copy detector
- Parallel interface

OPTIONS: - Adjustable tractor $£ 90$
Adjustable tractor
Serial Interface RS232c/v 24 : $£ 80$
Mail order only - All prices include postage in U.K. - VAT not included and are correct at time of going to press.

NAME
Tel
ADDRESS

QUANTITY	ITEM	ITEM PRICE	TOTALS

All items guaranteed 12 months. Some items not ex-stock All orders will be acknowledged. if delay unacceptable, orders may be cancelled and money will be refunded.

HARD COPY HIRES PAGES FOR OKI MICROLINE 80 AND APPLE
This was obtained with the Minimic Computer
Hard copy. Microline 80 and APPLE with disk

WHEN CUSTOMERS
 COME BACK THE REASONS ARE SIMPLE:-

*High quality
*Low prices * Speedy service * Reliability

Try our programs today - you will be suprised!

REMEMBER:-
DATABANK
DEVELOPS

\star INCREDIBLE PRICES! ORDER *
or more details from:
嘈 DATABANK
66, Queens Road, Loughborough, Leic. Tel. 0509217671

Cheque with order for our 'by-return' mall service.

Your computer? MORE DETAILS Apple II \square IT T2020 $\square|d| s c \mid$
Name
Address

SUPERBR

Intelligent Video Terminal Systems
350 K or 700 K of Disk Storage Super Brain's CP/M operating sy stem boasts an overwhelming amount of available software in BASIC, FORTRAN, COBOL, and APL. What ever your application . . . General Ledger, Accounts Receivable, Payroll, Invehtory or Word Processing, SuperBrain is tops in its class. And the Super Brain QD boasts the same powerful performance but also features a double-sided drive system to render more than 700 K bytes of disk storage and a full 64 K of RAM. All storage and
standard!

COMPUSTAR"
 > MULTI-USER TERMINAL SYSTEM

 MULTI-USER TERMINAL SYSTEM

 MULTI-USER TERMINAL SYSTEM}CompuStar user stations can be configured in a countless number of ways. A series of three intelligent-type terminals are offered. Each is a perfect cosmetic and electrical match to the system. The CompuStar $10-\mathrm{a} 32 \mathrm{~K}$ programmable RAM-based terminal (expandable to 64 K) is just right if your requirement is a da ta entry or inquiry/response application. And, if your terminal heads are more sophisticated, select either our CompuStar 20 or
CompuStar 40 as user stations. Both units offer dual disk storage in addition to the disk system in the CompuStar. The Model 20 features 32 K of RAM (expandable to 64 K) and 350 K of disk storage. The Model 40 comes equipped with 64 K of RAM and over 700 K of disk storage. But, most importantly, no matter what your investment in hardware, the possibility of obsolence or incompatibility is completely eliminated since user stations can be configured in any fashion you like - whenever you want - at amazingly low in any

DISK STORIGE

Options for the Superbrain and Compustar Video Terminal "Backup" for the 20 megabyte Century Data drive is provided via the dual disk system housed in the CompuStar or the SuperBrain. The Control Data CMD Drive features a removable, front insertable top loading cartridge of 16 megabyte capacity plus a fixed disk capacity of either 16 or 80 megabytes.
Each drive is shipped equipped with an EIA standard $19^{"}$ rack mounting system and heavy duty chassis slide mechanisms to permit easy accessability for fast and efficient servicing.

No other program in the world combines these features in one. Many other programs, less integrated, do not provide even some of those features to be found on our 'bus'
$1=$ Total integration of sales"'purchase 'nominal 'stock 'addresses etc
2 = Full random access enables retrieval of any record in a second
3 = Flexibles prompts enables word change even to foreign language.
4 = Files may be named and set to drive default, maximising storage.
5 = Easy to use, menu driven, no serious need of manual.
$6=$ Tested and debugged in many installations world wide.
7 = Priced less than the acquisition of a library of programs
$8=$ The program is $* *$ totally $* *$ in core, maximising disk space.
$9=$ Core program means that disks may be interchanged during use.
$10=$ Core program means your main drive is ** free thor data
11 = Numerous reports may be generated (eg: sale ledgers up to 30).
12 = Invoice produces immediate stock update + double journey entry.
$13=$ Reference on invoices enable cost centre build-up on ledgers.
14 = Stock valuations and re-order reports easily generated.
15 = Bank balance and reports plus standard mailing facilities.
$16=$ Customer statements and invoices printed on plain paper.

As prices vary from dealer to dealer we append for vour guidance, some details of the justification in our prices being higher than the cash/carry concept of trade A standard Superbrain 64 K * 320 K Disk at 1795.00 includes the following values not normally expected at the lower price.

1) Equipment is burned and tested for a minimum 48 hours
2) Delivery in U.K. is free of charge
3) All goods \& software are stocked on immediate delivery
4) 6 month main unit, 12 month memory guarantee
5) $24 / 48$ hour mailing of any spare module free with in warranty
6) Same service as 5) outside warranty for ad hoc charge
7) 10 free Diskettes (28.50)
8) 10% of hardware value in free software (1795.00)
9) Positive before $\#$ and after sales service

If the transaction includes a printer and the business programs then the following are also added:
10) All cabling between printer and Superbrain free (25.00)
11) Ribbon and thimble free (eg: Spinwriter $4.75+9.75$)
12) Extra 10 Diskettes free (28.50)
13) Additional free software based on 10% of printer value
14) Free training session plus all necessary follow up
15) Box.printer paper (28.50)

A typical deal could look like this:
$\begin{array}{ll}\text { Superbrain } & 1795.00 \\ \text { NEC Spinwriter } & 1695.00\end{array}$
3490.00

BUS Program 775.00 plus Basic 150.00 (less 349.00) $=576.00$
Total Purchase Price 4066 plus V.A.T.
The total value of free items on this deal was in excess or 500 pounds in virtue of incidental items as well as extended warranty and software
Do consider your purchase on the basis of some of the things you may be likely to need after your equipment purchase, and may either fail to obtain because the dealer has no stock or has lost interest in you, or because you aimed at the short term gain in price and are then compelled to pay heavily for small needs afterwards.

*** MAIN MENU DISPLAY ***

 New! Produced in U.K. and widely used in England and the U.S.A.

 New! Produced in U.K. and widely used in England and the U.S.A. Complete Business Package

 Complete Business Package}

$01=$ ENTER NAMES AND ADDRESSES	13=*PRINT CUSTOMERS STATEMENTS
02=*ENTER/PRINT INVOICES	14=*PRINT SUPPLIER STATEMENTS
03=*ENTER A'C RECEIVABLES	15=*PRINT AGENT STATEMENTS
04=* ENTER PURCHASES	16=*PRINT TAX STATEMENTS
05=*ENTER A'C PAYABLES	17=LETTER TEXT AREA
06=*ENTER'UPDATE INVENTORY	18=ALTER VOCABULARIES
07=*ENTER'UPDATE ORDERS	19=PRINT YEAR AUDIT
08= 'EINTER'UPDATE BANKS	20=PRINT PROFIT'LOSS A'C
09=*REPORT SALES LEDGER	$21=$ OPEN AREA
10=*REPORT PURCH ASE LEDGER	22=PRINT CASHFLOW FORECAST
11=*INCOMPLETE RECORDS	23=ENTER PAYROLL (NO RELEASE)
12=*USER DBMS AREA	$24=$ DISK SWAP'EXIT

USER DBMS AREA

$13=$ *PRINT CUSTOMERS STATEMENTS 14-PRRINT SUPPLIER STATEMENTS 15=*PRINT AGENT STATEMENTS 16=*PRINT TAX STATEMENTS 18=ALTER VOCABULARIE 19=PRINT YEAR AUDIT 20=PRINT PROFIT'LOSS A'C 21=OPEN AREA $23=$ ENTER PAYROLL (NO RELEASE) 24= DISK SWAP'EXIT
. ENTER WHICH ONE?
DATABASE MANAGEMENT INCLUDES
*** FILE OR RECORD CREATE'DELETE'AMEND'SEARCH'PRINT 4 WAYS *** INFORMATION RETRIEVAL ON ANY KEY RECORD OR PART THEREOF *** AUTOMATIC CHECK TO PREVENT DOUBLE ENTRY TO FILE SYSTEM *** DYNAMIC ALLOCATION OF INFORMATION CONSERVING DISK SPACE.
VERY FLEXIBLE. EASY TO USE.
G.W. COMPUTERS LTD. UK ARE THE PRODUCERS OF THIS BEAUTIFUL PACKAGE. *AUTHOR* TONY WINTER (B.A.LIT; B.A.HON.PHIL).
PET VER 3.00 LOW LEVEL INTEGRATION $=475.00$. PET VER 4.00 INCLUDES AUTO STOCK-UPDATE $=575.00$ PET VER 5.00 INCLUDES AUTO BANK UPDATE $=£ 675.00$. CPM VER 6.00 IN CORE, TRANSLATABLE PLUS DBMS $=775.00$. CPM VER 7.00 AUTO STOCK-UPDATE $=875.00$. CPM VER 8.00 AUTO BANK UPDATE $=975.00$. CPM VER 9.00 INCLUDES OPTIONS 19, 20, 22, 23 (LATER RELEASE). +++ EACH LEVEL AUGMENTS LOWER ONE.

WE EXPORT TO ALL COUNTRIES CALLERS ONLY BY APPOINTMENT CONTACT TONY WINTER ON 01-636 8210
89 BEDFORD COURT MANSIONS, BEDFORD AVENUE, LONDON W.C.!.
NOTE!!! LEVEL 9.00 TOTALLY IN CORE PROGRAM LEAVES MASTER DRIVE FREE (SAVING OF 200 POUNDS HARDWARE).

IMPORTANT!!! No computer hardware is ever of value without software, so we provide you with a starting set of programs **** free **** at 10% of hardware purchased.
A Superbrain and NEC Spinwriter could give you up to 400 pounds of programs. See [].

++++++++ SPECIAL INSTITUTION AND UNIVERSITY DISCOUNTS +++++++++
MOST ITEMS IN STOCK. (ACCESS 'AMEXCO' BCLYCARD OTHERWISE CHEQUE WITH ORDER)
CONTACT TONY WINTER 01-636 8210
89 BEDFORD CT MANS, BEDFORD AVE W.C. 1

Benchmark Compute Systems Lid
Tremena Manor
Tremena Road
St Austell. PL 25 5GG
Contact: John Fisher
Tel: 0726610000 Dublin
Lendac Data Systems Ltd
8 Dawson Si Contact: Danny McNally Tel: 0001372052 Glasgow
Byteshop Computerland Lid Magnet House 61 Waterloo St, G2 7BP Contact: Gordon Coventry Tel: 0412217409 Telex: 779263 BYTE GW G

Leeds

Holdene Ltd
Manchester Unity House 11/12 Rampart Road Woodhouse St
Conlact: Jim Jackso
Tel: 0532459459
Telex: 556319 HOLDEN G
London
Byleshop Computeriand Lio 48 Tottenham Court Road
W 185 4TD
Contact: John Braga Tel: 016360647
Digitus
9 Macklin Street Covent Garden WC2 Contact: Alan Wood Tel: 01405676
Manchester
Byteshop Computerland Lid Byteshop Computer

1) Gateway House Piccadilly Station Approach Contact: Peter King Telex: 666186 COMMAN G NSC Computers 29 Hanging Ditch Contact: Adam Wiseberg Tel: 0618322269
Newbury
Newbear Computing Store 40 Bartholomew St
Contact: Tim Moor
Tel: 063530505
Telex: 848507 HJOLPN
Nottingham
Byleshop Computerland Lid 92 A Uper Parliament St. NG 16 LF Contact: David Clarke Tel: 060240576 Telex: 377389 BYTENO G

Shenfeld

Hallam Computer Systems
451 Eccleshall Road. S 11 9PN Contact: Stuart Pulford el: 074266312

Southampion
 Xitan Systems

23 Cumberland Place.
SO1 2BB
ontact: Geolf Lynch
el: 07033
Sudbury
Euroter Consultants
Little Waidingto
Contact: Dr Klimowicz
Tel: 0206262319
Telex: 987248
Warwlcks
Business \& Leisure Microcomputer
16 The Square
Contact: David Searle Tel: 0926512127

Comart Mlcrocomputer

deaiers are located
strategically throughout the country to give support, guidance and assistance. in he event of difficuity contact Comart direct.

System Flexibility

Cromemco give you the high performance, reliable computer power you need now, with the in-built capability for future expansion and adaption as demands and requirements change.

The choice is wide. Cromemco's $S-100$ bus construction provides for expandable memory capability and the widest choice and future options in peripheral support.

Now there is the exciting range of Cromemco High Resolution Colour Graphics Systems.

The U.K. Leaders in Microcomputer Development, Application and Support.

Applicational Versatility

Cromemco's CDOS Operating System supports proven, well documented Software for Business, Industry, Science, Research and Education; COBOL, RPG II, Macro Assembler, 16 K and 32 BASIC, FORTRAN IV, LISP, RATFOR, Word Processing and Data Base, are all included in the range.

Now, there is the new CDOS compatible, Cromix Multi-user Multitasking Operating System which opens up new avenues in application and performance for Cromemco System Users.

comart

KGB MICROS LIMITED

THE PROFESSIONAL ORGANISATION OFFERING HARDWARE AND SOFTWARE PLUS FULL CLIENT SUPPORT WHO WISH TO MAKE YOUR BUSINESS OUR BUSINESS
SUPERBRNN

THE MICRO COMPUTER THAT HAS THE BEST PRICE/PERFORMANCE RATIO.

$£^{1495}{ }_{\text {(вак вам) }}$

MICROLINE 80

INDIVIDUAL PRICE 2500.00 DIABLO 630

THE COMPLETE WORD PROCESSING SYSTEM

SUPERBRAIN + DIABLO 630 PRINTER THE PROVEN 'WORD STAR' PACKAGE

£2995

INDIVIDUAL PRICE £1675.00

SOFTWARE SUPPORT

* KGB offer a wide range of standard software - FORTRAN, COBOL, BASIC, PASCAL.
* KGB will customise our software packages to meet your unique requirements - Invoicing £95, Sales Ledger $£ 235$, Purchase Ledger $£ 235$, Nominal Ledger $£ 235$, Payroll $£ 335$.
* KGB will design and implement software to suit your business needs.

KGB Micros Ltd., 88 High Street, Slough, Berkshire. Tel: Slough 38581/38319
Superbrain ls the reglstered trademark of Intertec Data Systems. Prices exc. VAT.

The Microlink interface makes it easy to use your micro for tasks such as:
*Replacing chart recordings by computer analysis

* Automating experiments * Adding data
processing capability to monitoring instruments.

The MICROLINK interface consists of a mainframe incorporating a power supply, an IEEE 488 interface and a cabinet holding up to 10 modules - this construction means that an interface can be configured to your precise requirements. Modules available include: * Analogue to digital converters * Digital to analogue converters * Analogue X-Y plotter driver * Analogre input conditioning modules *Relay outputs $* B C D$ character inputs * Signal conditioning inputs *High speed clock and multiplexer.

Write or telephone with details of your application, and we will quote you for a configuration to meet your needs.

Biodata Ltd., 6 Lower Ormond St., Manchester Ml 5QF. Telephone: 061-236 1283.

The best in data base management for your micro-computer

Get the most out of your micro-computer. Use our advanced and progressive data management system.

HDBS is an extended hierarchal data base system offering

- fixed length records
- file-level read/write protection
- one-to-many set relationships

MDBS is a full network data base system offered as an upgrade from HDBS... or it may be ideal as your initial system. Unique and versatile, it adds these features:

- full network CODASYL-oriented data structures - variable length records
- multiple levels of read/write protection
- one-to-one, many-to-one, and many-to-many sets
- non-redundancy of data, easy updating
- occurrences of a record type may own other occurrences of the same type
- a single set may have multiple owner and member record types

MDBS-DRS. As an add-on to MDBS, the DRS system offers extraordinary flexibility in data base restructuring to meet new needs.

- Item, record, and set types can be added, deleted, or renamed in an existing data base as well as other data base characteristics. You can redesign the data base after it is already on-line!

MDBS-RTL. As an add-on to MDBS, the RTL (Recovery Transaction Logging) logs all data base transactions, so that in the event of a system failure, the data base can be recovered with minimal loss of information.

- The recovery processor permits selective reloading of the data base from the transaction file. Users can log messages, indicate complex transaction sequences, and effect selective control over the recovery process.

MDBS-QRS. An interactive Report-
Writer/Query-System for HDBS/MDBS data bases. Features..

- may be customized for non-technical users - complex retrieval conditions may be specified
- detailed reports can be quickly generated
- wildcard and "match-one" string specifications included

HDBS and MDBS Packages Include:

-DDL data definition language analyzer/editor

- 260-page users manual
- DMS data management routines callable from host language
- Sample application program and DDL files
- Relocator to re-org all routines
- System specific manual for bringing up our software

Coming soon: Multi-User Versions of MDBS, and a 28000 Version.

54 page "primer" on data base. systems for micro-computers. only E 5.00 per copy.

Both HDBS and MDBS Systems...

- Run under.

CP/M with Microsoft BASICs, FORTRAN or COBOL; InterSystem PASCAL/Z: Sorcim PASCAL/M; Micro Focus CIS COBOL;
Digital Research PL/I
MVT/FAMOS with BASIC
OASIS with BASIC
TRSDOS and NEWDOS (Models I and II) with Disk BASIC
North Star DOS with North Star BASIC
Apple DOS and Applesoft BASIC
Machine Language Interface available on all above systems.

- Up to 254 record-types definable in the data base; each record-type may contain up to 255 item-types; each item-type may be up to 9,999 bytes in length.
- Names of data items, records, sets, and files are wholly user definable.
- Commands to add, delete, update, search, and traverse the data base.
- Straightforward use of ISAM-like structures
- Records can be maintained in several sorted orders.
-Written in machine language for maximum execution efficiency and minimal memory usage
- Independent of types and sizes of disk drives. Support data base spread over several disk drives (max.8): disks may be mini- or full-sized floppies or hard disks.
- Available versions: $\mathbf{Z 8 0}$ (requires approx. 18 K), 6502 (approx. 26K), 8080 (approx. 22K)
Total memory requirement must allow for buffer areas.
- 8086 version available. (Call or write for details and prices.)

Ordering and pricing information:
(applicable to $\mathrm{Z80}, 8080$ and 6502 versions)

HDBS	£235.00	When ordering, specify intended use
MDBS	600.00	with
DRS	150.00	1. North Star DOS and BASIC
RTL	150.00	2. CP/M - Microsoft BASIC $4 . X X$
ORS	300.00	3. CP/M - Microsoft BASIC 5.XX
HDBS upgrace to MDBS	440.00	4. CP/M - Microsoft BASIC Complier
MDBS with DRS, RTL and		or FORTRAN-80
QRS	950.00	5. CP/M - Microsoft COBOL-80
HBDS/MDBS Manual	30.00	6. CP/M - InterSystem PASCAL/Z
DRS Manual RTL Manual	5.00	7. CP/M - Sorcim PASCAL/M
RTL Manual QRS Manual	5.00 5.00	8. CP/M - Digital Research PL/1
Systern Specific Manuals each	h 5.00	9. CP/M - Micro Focus CIS COBOL
		10. TRSDOS/NEWDOS and TRS
Within a given operateng system, add		11. Disk BASIC (Models I and II)
£240 for each additional language selected.		11. Apple DOS and Applesofr BASIC
		12. MVT/FAMOS and BASIC
		13. OASIS and OASIS BASIC 14. Machine Language Program
		(Specify operating system)

When ordering, specity intended use with

1. North Star DOS and BASIC
2. CP/M - Microsoft BASIC 4. XX
3. CP/M - Microsoft BASIC 5.XX . CP/M - Microsoft BASIC Complier or FORTRAN-80
4. CP/M - Microsoft COBOL-80 6. CP/M - InterSystem PASCAL/Z 8. CP/M - Digital Research PL 9. CP/M - Micro Focus CIS COBOL 10. TRSDOS/NEWDOS and TRS Disk BASIC (Models I and II) 11. Apple DOS and Applesoft-BASIC 13. OASIS and OASIS BASIC 14. Machine Language Programs (Specity operating system)

Finally, our software may cost a little more but it's worth a lot more in quality and versatility.

Micro Data Base Sustems
 from

SYSTEMS PLUS LTD.,
19c Glengormley Park, Newtownabbey BT36 7RE.
Tel: Glengormly 42117

Adda make it their business to get in first purpose-built machines; ond you can use a large on all that's best and new in PET hardware and software \ldots and in finding out how to make the latest advances work more profitably for you.

All the advice, assistance and arrangement of demonstrations you could ask for are there for the taking. And that's just for starters. Long term Adda look after your future require ments with software, full engineering support and maintenance contracts that can include machine loan.

In addition to the 16k PET 3016 and 32k PET 3032, Adda offer you the new 32 k PET 8032 - with 80 columns, 12 -inch screen and a keyboard that really gets down to business. Recent advances make possible some exciting applications for these mighty micros.

Link the 32 kPET up to the

Wordcraft word processing program and you have a very sophisticated word processing system for less than $£ 4000$. lt's a word processor and more-because it can also be used as a small business machine.

The Wordcraft program comes on a mini floppy disc ready for use on a Commodore 3040 diskette drive. The whole system gives you word processing to standards achieved by expensive selection of output printers including dot matrix, golfball and daisy wheel. So much for wordsnow for some action: phone 01-579 5845.

If you're looking for mainframe access, the Communicator 1 mainframePET link enables file transfer to be made in both directions... with a PET Communicator system configured with either dual floppy disc or cassette tape drive and a printer.

Files transferred from mainframe to PET can be manipulated locally and data transfer monitored on the PET screen. It's a fast way of cutting costs on bureau time share-and it also doubles up as a fast normal terminal. The Communicotor 1 mainframe-PET link paves the way to big cost savings. Your first step is digital input to 01-579 5845.

More cost savings can be realised when you link up three to eight PETs to one Commodore disc drive and a printer using Mu-pet (Multi-User PET) - and you don'thave to make any program changes. As a Mupet dealer, Adda can put you fully in the picture. Just phone 01-579 5845 for a demonstration of Mu-pet being put through its paces.

Cambier so The World's no. 1 mierocomputer Chess Program by Uim Rens

Gambiet 80 was the most successful commercially available Chess Program at the official World Microcomputer Chess Championship in London, September 1980.

FACILITIES INCLUDE:

* O levels of play from speed chess to tournament level
* Grophic board display
* Chess Clock
* Game record. in standard notation on the screen and optionally on a printer
* Board set up for solution of chess problems
* 'Take-back' facility
* Continual display of moves being evaluated bu the program
* Mate anticipation

The fastest serious program for the TAS. 80 or Video Genic

CHRISTMAS OFFER FROM SHARPSOFT

HARDWARE
SHARP MZ80K 20K Model £445.00
SHARP MZ80K 36K Model £495.00
SHARP MZ80K 48K Model £545.00
sharp mz80P3 Printer £515.00
SHARP MZ80FD Dual Drive Floppy Disk. £755.00
SHARP MZ I/O Interface Unit. $£ 95.00$
SHARP PC1211 Pocket Computer £95.00
SHARP CE121 Cassette Interface for PC1211 £15.00
SHARP RD610 Cassette Player f20.00

SOFTWARE

Full range of software for the MZ80K available including

System software: \quad Search \& replace Assembly code (Sharp) Variable table utility Machine code (Sharp) Zen Assembler Xtal basic (${ }^{\text {B }}$ CP/M®

Utilities:

Ardensoft toolkit Renumber \& tape copy Machine code dump

Business software: Payroll Purchase \& Sales Ledger Mailing list Stock control Costing Package Simple Word Processor and a large selection on games etc.

SHARPSOFT - USER NOTES is the name of a new publication giving all the latest news of the SHARP MZ80K products, software and programming tips. The first issue will be available early January 1981.
Send a 20p stamp for our SHARPSOFT hardware/software catalogue and a subscription/registration form for your copy of the SHARPSOFT - USER NOTES.
PURCHASE A MZ80K from us and get a games tape, 4 blank Sharpsoft Cassettes and one year's free subscription to the SHARPSOFT - USER NOTES.

ALL SHARPSOFT - HARDWARE PRICES INCLUDE VAT. DESPATCH \& TRANSIT INSURANCE.
SEND TO:
SHARPSOFTLTD 86-90 PAUL STREET, LONDON EC2A 4NE.

New Seikosha GP80 Printer for educational and home use. Smallest, plain paper 80 column printer on the market.

Features:

Plain paper
80 column width
30 cps
Full ASC11 character set
Graphics facility
5×7 dot matrix
Double width characters Pin feed
Centronics interface standard
Other Interfaces and cables available:
IEEE/488, PET, TANDY,
APPLE, RS/232C.
Ring Sheila Maycroft at DRG Business Machines for your nearest dealer. 13/14 Lynx Crescent, Winterstoke Rd.,. Weston-super-Mare, Avon B24 9DN.
Tel: (0934) 416392
(IIRCi) A Dickinson Robinson Group Company.
 TELEPHONE 01-883 3705 01-883 2289

YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS AND COMPUTERS

[MEMORY EXPANSION KIT
Suitable for UK101, Superboard
expansion using 2114's each board
has 16 K ram capacity kit contains:

* On board power supply
* 4K Eprom expansion
* Fully buffered for easy expansion via 40 pin socket
* 8 K kit £ 89.95
* 16 K kit
* Printed Circuit Board
* 40 pin- 40 pin header plug
f12295
E 29.95
£ 8.50

\qquad

CASES

Available for
U.K. 101, Superboard

Nascom
Appx. DIM. $17^{\prime \prime} \times 15^{\prime \prime}$
$435 \times 384 \mathrm{~mm}$
PRICE $£ 24.50$
Post \& Packing $£ 1.50$

UK 101 P.P.I.

BUILT \& TESTED. INTERFACES TX80 PRINTER DIRECT, CAN BE PROGRAMMED TO OPERATE RELAYS, MOTORS, VARIOUS OTHER PERIPHERALS "CENTRONICS COMPATABLE PLUGS INTO IC SOCKET. RED BINARY DISPLAY FULLY DOCUMENTED.
£29.95

-PRINTERS

EPSON TX-80 £349

[^2] graphics int erface: Centronics parallel, options: PET, Apple and
aerial.

[UK101

£179 IN KIT FORM
£229 READY BUILT
\& TESTED
£255 COMPLETE IN CASE
4 K EXPANSION (8×2114)
NOW ONLY $£ 18.00$
No extras required

* Free sampler tape
- Full Qwerty keyboard
* 8 K basic
* Ram expa
* Kansas City tape interface
* NEW MONITOR ALLOWS FULL EDITING \& CURSOR CONTROL
 TRADE \& EXPORT ENQUIRIES WELCOME, CREDIT FACILITIES ARRANGED.

TELEPHONE
01-263 9493/01-2639495
-UK101 SOUND
SOUND GENERATOR AND COMBINED PARALLEL IN/OUT PORT KIT CONTAINING P.G.B., RY-3-8910, 6520 PIA, FULLY DOCUMENTED AND DEMO TAPE $£ 29.95$

AY-3-8910
£8.50
-UK 101 SOFTWARE SPACEINVADERS 6.50 REAL TIME CLOCK $\quad 5.00$ CHEQUERS OTHELLO GAME PACK I GAME PACK II GAME PACK III SCREEN MONITOR $\quad 5.00$ ASSEMBLER EDITOR 14.90 10xC 12 BLANK TAPES 4.00

Z80 CPUS	
2.5 MEG	7.95
Z80A 4 MEG	9.95
6502	6.95
6800	6.50
8080	4.75
9900	25.95

SUPPORT CHIPS	
Z80 CTC	5.95
Z80A CTC	6.95
Z80A PIO	5.95
Z80A PIO	6.95
6520	3.95
6522	6.85
6532	8.50
6821	4.25
6850	3.60
6852	4.35
8212	1.95
8216	1.95
8224	2.75
8228	3.75
8251	4.95
8253	9.75
8255	4.50
TMS9901	11.16
TMS9902	11.18
TMS9904 (74LS362)	4.21

I.C. SOCKETS		
8 pin	DLL	W/W
14 pin	.09	.25
16 pin	.11	.35
18 pin	.16	.42
20 pin	.20	.62
22 pin	.22	.65
24 pin	.24	.70
28 pin	.30	.80
36 pin	-	.99
40 pin	.40	1.10

81LS95	1.25
81LS96	1.25
81 LS97	1.25
81LS98	1.25
SN74365	. 52
SN74366	. 52
SN74367	. 52
SN74368	. 52
BT26	1.50
8T28	1.50
$8 \mathrm{T95}$	1.50
$8 \mathrm{T96}$	1.50
8797	1.50
8 T 98	1.50

BAUD RATE GENS			
MC14411	8.75		
MM5307.	8.75		
UARTS			
AY-5-1013	3.95		
AY-3-1015	4.75		
MM5303	4.75		
TMS60.11	3.55		

FANTASY...

Does the glory road beckon? Would you sail with Sinbad, revisit Middle Earth, see the hurtling moons of Barsoom? Then the DUNJONQUEST microcomputer games are for you!

. . . ROLE PLA YING . . .

Take the part of a stalwart adventurer - bargain with a tight-fisted innkeeper for the weapons of yore -- go in quest of hoarded riches, hidden secrets and forgotten lore.

... ADVENTURE!!!

Within the ruined shrine lie not only rich sacrifices to the dread insect god but also the valued possessions of other adventurers who never returned from .. . The Temple of Apshall

- First in the DUNJONQUEST sertes
- Hours of solitaire excitement - you alone against all the perils the computer can summon!
- Each game as short as you like - or as long as you survive!
- Four levels - Over 200 rooms and passages
- Explore where you dare - fight or flee when you must?

DUNJONQUEST is role playing, graphic, real-time 'adventure', where your alter-ego's survival depends not only on you finding the right way, but also on his own intelligence, intuition, ego, physical strength, constitution, and dexterity. You can have a character created for you or create your own. You can bargain with the innkeeper for the type of weapons, armour you need to survive.
DUNJONQUEST is that good that we offer a 10 day money-back guarantee if you're not satisfied, what could be fairer than that.
The Temple of Asphai comes with 56 page BOOK OF LORE describing the Monsters, Treasures, Magic /tems, and over 200 rooms and passages along with the Traps that infest the nether regions of Asphai.
gUARANTEE - If you don't like The Temple of Asphal then return within 10 days for a complete refund

(including VAT, P. \& P.)

ALGRAY House, 33 Bradbury Street, Barnsley,
South Yorkshire Tel: Barnsley (0226) 83199
0000000
008.880

0800080
088880
0808080
060088

FOR ALL YOUR BUSINESS, EDUCATION \& LEISURE COMPUTER REOUIREMENTS!!!

APPLE II \& III
TRS-80
SHARP
NORTH STAR HORIZON

TANGERINE U.K. 101

NASCOM
VIDEO GENIE
Dereham•
+PRINTERS AND
OTHER PERIPHERALS
BOOKS**
SOFTWARE* MAGAZINES** STATIONERY***

BUSINESS + INDUSTRIAL CONTROL

WE ARE HERE!!! 88 St. Benedict's Street NORWICH NR2 4AB Tel. (0603) 29652
24hr. Answering Service. Open on Sundays during Dec.

Call in and buy a better husiness

Commodore 8000 series business computers

CREAM ARE THE COMPLETE COMPUTER SHOP
CLIENTS WHO BUY FROM OUR LARGE MODERN SHOP, 3 MINS FROM HARROW-ON-THE-HILL TUBE STN. TAKE FULL ADVANTAGE OF OUR PROFESSIONAL DEMONSTRATIONS, ADVICE, PROMPT DELIVERY AND FULL ENGINEERING SUPPORT.

WE CARRY NOT ONLY A COMPREHENSIVE RANGE OF HARDWARE BUT ALSO POWERFUL BUSINESS PROGRAMS FOR MOST APPLICATIONS i.e. WORD PROCESSING, PAYROLL, STOCK CONTROL, RECORD KEEPING INVOICING ETC, OUR OWN TOP QUALITY ACCOUNTING CONTROLLER PROGRAMS, WRITTEN BY OUR OWN SOFTWARE HOUSE OFFER BUSINESSES MAINFRAME/MINICOMPUTER QUALITY AT MICROCOMPUTER PRICES.

A TYPICAL BUSINESS SYSTEM FROM CREAM CONSISTING OF COMPUTER, DISK DRIVES PRINTER AND SOFTWARE CAN RANGE FROM AS LITTLE AS $£ 2200$ + VAT - A PRICE MOST BUSINESSES CAN EASILY JUSTIFY:

BUYING FROM CREAM MAKES GOOD BUSINESS SENSE BUYING FROM CREAM IS GOOD NEWS FOR HOBBYISTS TOO.

OUR DISCOUNT PRICES MEANS YOU CAN AFFORD MORE THAN YOU INITIALLY THOUGHT POSSIBLE.
i.e.

APPLE II 16K EUROPLUS COMPUTER £590
16K MEMORY UPGRADES £50 PET COMPUTER 8K SMALL

KEYBOARD £389
LARGE KEYBOARD $£ 410$
16K LARGE KEYBOARD $£ 500$
32K LARGE KEYBOARD £610
ALL + V.A.T
 HAND HELD COMPUTER 1K RAM BASIC LANGUAGE. ALPHANUMERIC KEYBOARD 24 CHARACTER DISPLAY £79.95.
 TAPE INTERFACE £12.95.
ADD 15% V.A.T.

FOR BUSINESS, HOME, EDUCATION, RESEARCH \& LEISURE - IT PAYS TO BUY FROM CREAM. DISKS, CASSETTES, BOOKS, \& ACCESSORIES ARE ALL READILY AVAILABLE.

ALL MACHINES GUARANTEED 12 MONTHS

CREAM COMPUTER SHOP 380 STATION ROAD, HARROW, MIDDX, HA1 2DE. 01-863 0833/4
TUESDAY TO SATURDAY - 10 AM - 6 PM ACCESS, BARCLAYCARD AND MAIL ORDERS WELCOMED

Iondon Computer Ientrelimited

60 CHARACTERS PER SECOND
THE FASTEST DAISY WHEEL PRINTER.
FAST, heavy duty commercial DAISY WHEEL printer, with high quality printout, coupled with low noise necessary for office environment. Nationwide service by NEXOS. 90 day warranty provided at your premises.
124 char: upper/lower case. 10/12 chars: per inch giving 126 or 163 columns. * 15 inch wide frintion platen. */reverse Top of the form, BOLDING, underline, and host of other features. "Centronics type parallel interface as standard options: serial interface 60* PET interface 65 * APPLE interface 75.

NEW SUPER BRAIN
DUAL DENSITY £1595
QUAD DENSITY £1995
Now with CP/M 2.2 \& increased disc storage. Twin Z80.A 1 MHZ * 2 disc drives, dual desnity 320 K quad density 700 K storage * 64 K ram * High resolution 12 inch CRT 80×24 lines upper/lower case * 2 RS- 232 printer ports * CPM 2.2 operating sy stem - M basic, Cobol, Fortran, Pascal, Word processing \& accounts packages available Dealer enquiries invited

RICOH RP 1600

SUPERBRAIN
\leftarrow APPLE \leftarrow PET ヶHORIZON Etc

NEW LOW PRICE £1095
SHEET FEEDER OPTIONAL EXTRA £550.

State of the art second generation computer. Over 10,000 already sold in USA, 8 slot bus ensures expansion of hard discs \& other peripherals., 76 Key professional keyboard, self test on power up, TRSDOS \& Level III basic standard. CP/M available as option. making a wide range of accounting, educational, scientific \& word processing packages instantly usable.
Nation wide service through 180 Tandy stores \& computer centres.
NOW WITH CP/M $2.24 £ 1999$

New greenscreen VDU, with rock steady display. Redesigned 32 K expansion intrface with trouble free disc operation, two 40 track teac disc drives, complete with cables.
Tridata sales, purchase, invoicing, payroll packages available.

OKI MICROLINE 80/132. THE QUIET
PRINTER YOU CAN LIVE WITH

The quitiest Dot Matrix available. 40,80 or 132 cols per line. excellent print quality * 3 wav paper handling: letterheads, fanfold, or paper rolls *graphles "ideal for software written for large 132 col printers "continuous rating printing day in and day out *entronics parallel standard Options: Rs-232, PET, Apple Dealer enquiries invited.
NEW LOW PRICE $£ 399$

MX80

TRS-80 Graphics *Prints 48,66, 80 and 132 columns with true decenders at 90 cps * logic seeking, bidirectional 9×9 point head "upper and lower case" forms handling: Top of form, horizontal and vertical tabs* Centronics parallel interface standard "optional extras: seral, PET and Apple interfaces Also Available
TX80 £325 (Not Illus)

80 CPS + double spacing and mono spacing 10 and 16.7 CPI * $\mathrm{nx9}$ proportional spacing, 3 way paper handling " 96 character set * Expanded print * Right margin justification * Underlining* Bıdirectional * Pound sign contronics parallel and serial interfaces standard * optional extras: PET \& Apple interfaces.

CPM SOFTWARE
Word Star
Word star mail merge
Magic Wand
Data Star
T/Maker
Report Writer (VisiCalc) Accounts Packages Payroll
Payroll
for details

SOFTWARE FOR TRS-80
Electric Pencil (disc)
60.00
35.00
75.00
250.00 315.00 250.00 195.00 175.00 90.00 from 295.00 from $\quad 295,00$

MISCELLANEOUS
Floppy discs (Box of 10) including library case. Xcel Silver $5^{\prime \prime}$ single sided double density For Pet, Apple, TRS-80 \& Superbrain 25.00 Xcel Gold 5" double sided double density

For Superbrain 30.00
Memorex 8" Single Sided
double density
35.00

Qume Daisy Wheels $\quad 5.00$
Ricon PP 1600 heels
Paper, Ribbons, etc.
5.00
5.00

POA
60.00
45.00
45.00

Scripsit (cassette)	60.00
Mail Merge for Pencil/Scripsit	45.00
VAT Aid Programme	45.00

LOW COST WORD PROCESSOR I
Based on TRS-80 level 216 K cassette recorder, electric pencil software, upper/ lower case mod, printer interface and OKI Dot Matrix printer. Complete ready to go $£ 895$ free mailing list program. WORD PROCESSOR II
Same as above but with $48 \mathrm{~K}, 2$ disc drives and ricoh daisy wheel printer £2195 WORD PROCESSOR 11
Based on Superbrain computer shown above. With Ricoh printer \& "Magic Wand" the ultimate in word processing. Letters automatically formatted with addresses fetched from separate file. Complete system £2950. Invoicing, stockcontrol, sales ledger, purchase ledger, payroll available for above computers from $£ 250$ per package.

LONDON COMPUTER CENTRE LIMITED 43 GRAFTON WAY, OFF TOTTENHAM COURT ROAD, LONDON W1 TEL: 01-388 5721 OPENING HRS: 11.7 MON-FRI, 12.4 SATS.

SIRTON COMPUTERS
 76 Godstone Road, Kenley (Nr Croydon)

 Surrey CR2 5AA Tel: 01-668 0761/2
MIDAS S100 SYSTEMS

MIDAS 1 : From $£ 750$
 MIDAS 2 : From $£ 1580$
 MIDAS 3 : From £2150 MIDAS 4 : From $£ 5900$

ITHACA-DPS 1 : From £1075

- Our versatile $Z 80$ Microcomputers are available as standard units or custom configured to your exact specification from a comprehensive range of stocked S100 boards.
- Disc storage capacity of the MIDAS 3 can be 2 M Bytes, expandable to over 20M Bytes with a Winchester Hard Disc Unit in our MIDAS 4 range.
- MIDAS runs CP/M and MP/M is also available. Other Software includes M-BASIC, C-BASIC, FORTRAN, COBOL, CIS-COBOL, PASCAL and Word Processing.
- A MIDAS 3, with 64K RAM and 2M Bytes storage on two $8^{\prime \prime}$ drives with two Serial I/O Ports and CP/M 2 only £2835
Multi-User System (four users) - MIDAS 3 with four 48 K blocks of RAM, 1 MByte disc storage on two $8^{\prime \prime}$ drives and four Serial I/O Ports, and CP/M $2+\mathrm{MP} / \mathrm{M}-£ 3850$.
- Printers, VDUs and other peripherals stocked to give complete package systems at keen prices.
- Business Packages include Accounts, Stock Control, Purchase Ledger etc etc.

Boards stocked from Ithaca, Godbout, SSM, S D Systems, Vector, Micromation Mullen, Mountain Hardware, Hi-Tech, Video Vector, Pickles \& Trout, Central Data, Cromemco, Thinker Toys - Send for full Price List (many available in kit form).

PROCESSOR
Z80 Starter Kit £188
SBC100
SBC200 £208

Z80 CPU's4 MHz

EPROM
2708 EPROM. (16K)
£60
2708/2716 Programmers from
VIDEO
16 lines, 32/64 ch
24 Lines, 84 ch

DISC CONTROLLERS
Versafloppy S/D £198
Doubler D/D
from £104
from £265
£280

RAM

Dynamic RAM $16 K-64 K$	from $£ 205$
Static RAM $8 K-64 K$	from $£ 95$
Memory Manager	$£ 52$

Memory Manager
£52

I/O

2S/4P prov 4 K RAM/4K ROM
£169
$2 \mathrm{~S} / 2 \mathrm{P}$ or $2 \mathrm{~S} / 4 \mathrm{P}$ or
$3 P / 1 S$ or $4 S / 2 P$
from $£ 135$
from £287
£114
£350
mISCELLANEOUS
Real Time Clock
£180
High Dens Graph/8K RAM £333
Hi-Tech Colour £295
Motherboards - various from £34
Extender Board/logic probe £39
Maths Board AMD 9511 £330

SOFTWARE

CP/M 1 \& 2, MP/M, PL/1, C-BASIC 2, M-BASIC V5, XYBASIC, FORTRAN 80, COBOL 80, CIS-COBAL, PASCAL/Z. PASCAL (UCSD), PASCAL M/T, Forth, MAC, ZSID, Disassembler, Wordstar, Datastar, Magic Wand, Wordmaster, Supersort etc etc.
MAINFRAMES
We are the sole UK Distributor for Integrand Mainframes and Disc Enclosures, available in nine models including Desk Top and Rack Mounting, with or without provision for Disc Drives. All units totally enclosed, painted on all external surfaces and complete with power supply etc.

WRITE OR PHONE FOR CATALOGUE PRICES EXCLUSIVE OF VAT

APPLE゚II DISK DRAVES

DUAL DISK UNIT

DISK CONTROLLER CARD

E498
E 49

* Two Disks in one Cabinet
- Has its own Power Supply Unit
* Connects to standard Apple Disk Controller Card
* Runs all Apple Software including Pascal
* Japanese quality and reliability

APPLE DEALERS:- Write or phone direct to Cumana and specifications plus dealer discounts will be mailed to you.

TRE-80 DISK DAIVES

DUAL DISK UNIT 2×40 Track Drives 2×80 Track Drives

SINGLE DISK UNIT 1×40 Track Drive 1×80 Track Drive

TRS 80 DISK CABLES 2 Drive Cable
4 Drive Cable
$E 440$
$E 645$

E236
E345

E20
 ㅌ32.50

TRS. 80 DEALERS:- Write or phone direct to Cumana and specifications plus dealer discounts will be mailed to you.

EDUGATIONAL \& QUAWTITY DLSCOUNTS

VERY GENEROUS EDUCATIONAL AND QUANTITY PURCHASE DISCOUNTS ARE NOW AVAILABLE ON CUMANA TRS 80 DISK DRIVES. OUR DEALERS WILL BE HAPPY TO SUPPLY PRICE QUOTATIONS

Call your nearest dealer for a demonstration:

RADIO SHACK LTD. 188, Broadhurst Gardens London NW6 Tel: 01624.7174	N.I.C. 61, Broad La
	Totlenham, London N 15
	Tel. 01.808 .0377
	KATANNA MANAGEMENT
COMPSHOP LTD., 14. Station	SERVICES, 22. Roughtons.
Road, New Barnet, Herts.	Galleywood, Chelmstord.
Tel: 01.441-2922	Tel 0245.76127
COMPSHOP LTD.	I.C. ELECTRONICS.
311. Edgware Road	Flagstones, Stede Quarter.
London W2. Tel. 01.262 .0387	Biddenden, Kent.
	Tel. 0580.291816
MICRO CDNTROL LTD.	
224, Edgware Road,	CAMBRIDGE COMPUTER
London W2. Tel O1.4028842	STORE, 1, Emmanuel Street.
	Cambridge. Tel. 022365334
LONDON COMPUTER	
CENTRE, 43 Gration Way. ${ }_{\text {L }}{ }_{\text {London }} \mathbf{1 .}$ Tel $01.388-5721$	PORTABLE MICRO.
	SYSTEMS, 18, Market Place,
	Brackley. Northants
TRANSAM COMPONENTS Tel. 0280-702017	
LTD. 59.61 Theobolds Road.	
London WC ${ }^{\text {l }}$	COMPUTERAMA LTD.,
Tel: 01.405 .5240	5. Cheveland Place East,
	London Road, Bath.
	Tel: 0225-333232

ENSIGN, 13.19. Milford Sireet. Swindon. Wilts. Tel. 079342615

SEVET TRADING, 14. St. Paul's Street. Bristol 2 Tel. 0272697757

PARWEST LTD., 58 . Market Place, Chippenham. Tel 0249-2131

HEWART MICRO.

ELECTRONICS, 95, Blakelow
Road, Macclesfield
Tel: 0625-22030
HARDEN MICROSYSTEMS,
28.30. Back Lord Street. Blackpoal. Tel 0253.27590
MICRO CHIP SHOP.
197. Waterloo Road, Black poal
Tel: O253-403122

MICRO CHIP SHOP.
190. Lord Street. Fleetwood
lancs. Tel 03917.79511
EWL COMPUTERS LTD.
8. Roval Crescent, Glasgow Tel: 041.332 .7642

NORTH WEST COMPUTER
CONSULTANTS LTO.
241, Market Street, HYDE
Cheshire
Tel: 061 .3668624
ZERO ONE ELECTRONICS
36, Oaklands Avenue.
THORNTON HEATH
Surrey
Tel 01.689 .7924
\& J EQUIPMENT LTD
3 Bridge Street
Tel: 0483.504801
Tel: 0225.333232

35 Walnut Tree Close, Guildford, Surrey, GU1 1 4UN. Telephone: (0483) 503121. Telex: 859680 (Input G).

Please add VAT to all prices. Delivery at cost will be advised at time of order.

ccs

SOFTWARE FOR APPLE/PET

NOW you can WRITE PROGRAMS FAST for the Apple II/PET. Using our modular data handling approach, many tasks are reduced to your calculations - plus simple calls to our routines to handle all the disk input/output - screen editing and input of data report production.
At a cost of $£ 40$ for the main 4 modules (Define DESCRIPTION - READ file DESCRIPTION FETCH - STORE) its going to pay for itself very quickly. Also available are: AMEND - MOVE - MOVE COMPUTED - PRINTER (PRINTER requires MOVE and MOVE COMPUTED).
ALL 8 MODULES for $£ 64$ - with more modules to follow.

COMMODORE WHY PAY MORE? SAVE $£ 200$

3032 PET - 3040 Disc - 3022 Tractor Printer -c2N Cassette - 2 Cables - Pet Revealed. Our price $£ 1722$ (ex. VAT). Save $£ 50$ on most units. Full range of Commodore programs available plus programming and extended maintenance.

APPLE

- The Apple is great in a business environment, with our commercial systems software.
- An Apple based Word Processing System is available for only $£ 1990$, including software.
File management/database systems available.
- For the technically minded there are CCS boards, including Arithmetic Processor, ROM, IEEE interface, Synchronous and Asynchronous Serial Interface, and an A-D converter.
* 18 months guarantee included

HIRE - наом CCS Microhire

- The leading microcomputer hire company.
- Available are: Apple, PET, Exidy Socerer, Seed System One/ MSI 6800, NASCOM/MICROS, and the Tandy TRS 80.
- Perioherals also available, and software!
- New monthly rates - $£ 79$ to $£ 99$ per month (8K to 48K).

ccs	Microsales	WE HAVE RELOCATED! Visit or contact us at our new showroom	
	and	7 The Arcade	Tel No. (04626).73301
ccs	Microhire	Letchworth Herts	Telex 261507 (Ref 3244)

Pascal

Micro Computer Connections announce the arrival of the "Pascal Utility Package." This brand new package available to Apple Π users and has been developed to help those users with some experience in BASIC to become aquainted with USCD PASCAL. Four procedural units are provided, in a format easily adaptable to any application. They simplify input/output formating, allow access and/or change in the disc directory from a Pascal program, perform integer. . . string... real conversions, and support files of variablelength records.

Five useful sample programs have been incorporated on the disc. They are a set of simple PASCAL demos with listings on BASIC equivalents, a routine to view disc files in ASCII or HEX code, a text formater for simple word processing, a program to maintain a variable-length data file for the international traveller.

There is also our"Birthday Surprise" to celebrate the arrival of this unique program which is offered for immediate release only through Micro Computer Connections at the special introductory price of $£ 40$.

For details see reply coupon below.

41 High Street, Egham, Surrey TW20 9DS. Tel. (0784) 37433/4.

All your answers at the touch of a button.

DWIROS of STEFFID for

 (C) Soul Gulc co the ultimate name in micros

Cromemco new System Zero/D

Complete Systems supplied for Business, Research, Education and Industry

DATRON import direct from Cromemco DATRON supply and support nationally DATRON stock Cromemco Micros, Cards \& Software.

DATRON prices:

Unit	RAM	ROM	Disc	
System Zero/D	$64 K$	$4 K$	$2 \times 390 \mathrm{~K}$	$\mathbf{£ 2 , 5 2 4}$
System 2	$64 K$	$4 K$	$2 \times 390 \mathrm{~K}$	$\mathbf{£ 2 , 0 9 5}$
System 3	$64 K$	$4 K$	$2 \times 1.2 \mathrm{M}$	$\mathbf{K}, 746$
Hard Disc Z2-H	64 K	4 K	$10 \mathrm{M}+2 \times 390 \mathrm{~K}$	$£ 5,373$
Z2H Colour Graphics	64 K	4 K	$10 \mathrm{M}+2 \times 390 \mathrm{~K}$	$\mathbf{£ 7 , 8 0 0 *}$

Prices include Interfaces for VDU, dot matrix and letter quality printers, documentation and systems familiarization.
*/ also includes $13^{\prime \prime}$ RGB Monitor
and $2 \times 48 \mathrm{~K}$ graphic memory cards.
Wide range of languages, 16 K and 32 K Basic, Rationalized Fortran and Fortran IV, Lisp, RPG etc. Operating systems - Cromemco CDOS, CP/M Compatible or Cromix for Multi-User Write or 'phone for free advice and catalogue or call in for demonstration. Demonstrations. 9am-5pm Monday-Saturday.

BOOKS from DATRON all books in stock at press date

Yout First Computer	f. 2 aks	¢5.95
The BASIC Handbook	David Lien	£11.00
Learning Level II	David Lien	£11.00
Illustrating BASIC	Donald Alcock	¢3.25
Basic BASIC	Donald M. Munto	¢2.40
The Little Book of BASIC Siyle	Nevison	¢5.75
Some Common Basic Programs	Osborne	¢7.95
Some Common Basic Programs CBMIPET		¢8.95
32 BASIC Programs for the PET	Rugg 6 Feldman	$¢ 9.75$
BASIC Cookbook	K. Tracton	$f 3.95$
BASIC for Beginners	B.M.J. Kavanagh	¢3.25
A guide to BASIC Programming	Spencer	¢8.85
A Guide to PLIM Programming	McCracken	¢7.95
Pascal An Into to Methodical Prog.	Findlay 6 Watt	¢ 4.95
Introduction to PASCAL	Welsh \& Eider	f6.95
Programming in PASCAL	Grogone	C6.95
Primer on PASCAL	Conway et al	67.10
Struct. Prog. 6 Problem Solving with PASCAL	Kieburt	f8.40
Problem Solving using PASCAL	Bowles	¢7.95
An introduction to Programming and Problem Solving with Pascal	Schneider	¢5.20
PASCAL Programming	L. Alkinson	f6.95
COBOL for Business Applications	Philippakis	f10.25
Learning COBOL Fast	de Rossi	¢6.45
FORTRAN Techniques	A. Colin Day	¢2.95
FORTRAN Fundamentals	J. Staingraber	¢3.45
Problem Solving a Struct. Prog. in Fortran	Friedman E Koftman	¢9.95
An Intro to Prog. G Applications with FIRTRAN	Hull 6 Day	$¢ 8.45$
280 Micro Handbook	W. Barden	¢6.95
280 Programming for Logic Design	Osborne	¢ 6.30
280 Micto. Prog. 6 Interfacing Bk. 1	Nichols 6 R Rony	£7.75
280 Micro. Prog. 6 Interfacing Bk. 2	Nichols 6 Rony	¢8.50
280 Assembly Language Prog.	Leventhal	¢8. 15
280 Programming for Logic Design	Osborne	f6.30
Programming the 280	Laks	¢9.75
Mostek 280 Micro Software Programming Guide		¢ 8.00
6502 Assembly Language Prog.	Leventhai	¢8.25
6502 Applications Book	Sybex	¢8.95
Programming the 6502	Zaks	¢8.75

Programming a Micro 16502$)$	Foster	¢7.25
PET Work Books Val. 1-7 (excl. 3)		f15.00
PET Work Book Yol 3 (Graphics)		f3.00
The Best of Micro. Vol 1		¢5.50
Vol 2		f6.50
The PET Revealed		f10.00
Library of PET Subroutines		f10.00
Peanut Butter \& Jelly Guide to Micros.	Willis	f6.35
A Career in Computing	Penney	¢ 4.25
Philips Guide to Bus. Computers \& the Electronic Office	Enticknap	¢3.00
The S. 100 Bus. Handhook	D. Bursky	¢9.15
The CPIM Handiook	A. Zaks	f 8.95
Using CPIM	Fernandez. Ashley	¢5.95
Computer Games	Nahigian \& Hughes	¢8.40
6502 Games	A. Zaks	f8.95
Basic Computer Games	Creative Computing	f5.50
More Basic Computer Games	Creative Computing	¢5.50
Game Playing with BASIC	Spencer	¢5.50
How to Build a Computer Controlled Robot	Loofbourrow	¢5.95
1976 US Comp. Chess Championstips	Levy	¢5.00
TV Typewriter Cookbook	Lanc aster	¢7.50
TIL Cookbook	Lancaster	¢7.15
CMOS Cookbook	Lancaster	$¢ 7.50$
Home Computers - Beginners Glossary 5 Guide	Miller 6 Sippl	¢4.75
Home Computers Vol. 1 Hardware	Didday	¢5.20
Home Computers Vol. 2 Hardware	Didday	£ 4.60

DATRON INTERFORM LTD

The ALTOS ACS 8000 range of business/ scientific micro computers creates a new standard in quality and realiability in high technology micro computers.

Hard Disk/Multi User Systems

The Winchester hard disk/multi user systems are now available supporting up to 4 simultaneous users and providing a maximum of 58 Megabytes of hard disk data storage

The systems are truly flexible and allow expansion of the ALTOS floppy disk system to keep pace with the users requirements

Still single board. features include

- a high speed I/0 section with up to six serial ports and one 8 bit Parallel port
- up to 208K of on board R.A.M
- High speed (4 MHz.) D.M.A. control as standard.

Yes. mini power and at micro cost too.

Hard Disk Security Back-up

The 17.5 Megabyte funnel tape unit permits selective dumping from the Winchester at a rate of 1 Megabyte per minute.

Built-in Reliability

The ACS 8000 range are true single board micro computers making them extremely reliable and maintainable. All electronics are socketed for quick replacement. Complete diagnostic utility software for drives and memory is provided.

The board and Shugart floppy disk drives are easily accessible and can be removed in less than ten minutes.

Quality Software

Unlimited versatility. The ACS 8000 range support the widely accepted CP/M and MP/M operating systems plus basic (Microsoft and CBasic). Cobol. Pascal. and Fortran IV. All available now.

Logitek in conjunction with its own microsoftware house. Interface Software Ltd of Camberley are able to supply a wide range of proven 'off-the-shelf' business software including general accounting. word processing. stock control. mailing list etc.

There are already over 1000 micro computer installations using this software. A track record which we consider speaks for itself. Why 're-invent the wheel' when there is standard software of this quality available now?

Communication Software

Two new custom software packages are now available for the Altos Computer System operating with $C P / M$ to enable it to communicate with remote machines over ordinary telephone lines. ASYNC is an asynchronous package that operates with almost any remote machine. SYNCH is a synchronous package for use with the IBM 3780 protocols.

Custom Graphics \& Scientific Software

A full graphics and scientific package is now available for use for the Altos with FPP.

GRAFLIB is a custom Altos software package containing a complete range of FORTRAN - callable graphics subroutines. It is designed with DRE RG-512 board. or a Tektronix 4000 series graphics terminal Several multi-colour X-Y plotters are supported allowing hard copy in addition to screen graphics.

After Sales Support

Logitek are supported by DDT Maintenance Ltd who provide a nationwide field maintenance service for Altos products and offer the option of maintenance contracts.

Availability

Logitek carry deep shelf stocks of Altos hardware and compatible peripherals.

மciris

LOGITEK, E.I.C. Electronics Ltd. All enquiries to

8-10 Fazakerley St., Chorley, Lancs. Tel: 02572 67615/70206

also at
30 Kelvin Ave.,
Hillington Industrial Estate,
Glasgow G52 4LH
Logitek are now the exclusive distributors of Altos Computer Products for the U.K. and Eire

TOMORROW TODAY at Birmingham Computer Centre

Commodore official distributors

3016, 3032, 3008 PETs The reliable value for money system with after sales support, instruction and training facilities and a wide range of programmes.

The sophisticated quality system with a reputation for advanced design and

The incredible computer system. Now available ex-stock including the new dual drive duble sided floppy disk.
THE ULTIMATE IN DAISYWHEEL PRINTERS RICOH RP 1600

> Camden Electronics, First Floor, 462 Coventry Road, Small Heath, Birmingham B10 OUG. Telephone 0217738240 Open Mon.-Sat. 9.30-6.00 p.m.
A MEMBER OF THE COMPUTER RETAILERS ASSOCIATMN

The Z19 'intelligent' Video Terminal, from Zenith Data Systems, is ideal for a wide variety of high-speed data handling tasks.

Compatible for use with EIA RS-232 or 20 mA current loop, it has all the capabilities and features you'd expect from a top-of-the-line peripheral.

- Z80 Microprocessor based electronics
- Special deflection system for sharp resolution
- Full editing functions, plus user-definable keys
- Reverse video by character
- 24 lines of 80 characters plus 25 thuser status line
- 5×7 Dot matrix (upper case)
5×9 Dot matrix (lower case)
- 128 characters (95 ASC11 and 33 Graphic)
- ANSII and DEC VT 52 compatible

And there's one feature of the Z19 you wouldn't expect. The price. Just $£ 735$, exclusive of VAT and delivery charges.

Generous OEM discounts are available.

Zenith data HEATM Systems

For full details about the Z19, complete this coupon and return it to

Zenith Data Systems Division, Heath Electronics (UK) Ltd., Dept. (ṔCW II), Bristol Road, Gloucester, GL2 6EE

Name
Company
Address
\qquad
\square
\square

XITAN SYSTEMS LTD The South's CROMEMCO experts

Need a Hard Disk System with FAST RELIABLE Backup?
Xitan now have the answer with the $\mathrm{Z}-2 \mathrm{H}$ plus DC 300
Tape cartridge BACKUP system (S100 controller, drive, psu \& software).
The Cartridge BACKUP system is available separately for existing Z-2H users (13.4 Megabyte capacity - 1
Megabyte per 5 minutes).

Utilities/Software for CROM EMCO Systems.
Tired of XFER - Use FCOPY or DFCOPY. Single sided $8^{\prime \prime}$ copy in 54 seconds, Double sided $8^{\prime \prime}$ copy in 104 seconds, $£ 50.00$ ea. Need to build Assembler libraries - try LIBR at $£ 50.00$.

CP/M 2.2 and MP/M 1.1 available for System 3 and $\mathrm{Z} \cdot 2 \mathrm{H}$ systems.
EASYFORM. For creation/editing of forms on the 3102 VDU with structured Basic. Forms useable from Cobol, Fortran etc. $£ 160.00$.

BUSINESS SOFTWARE
CROMEMCO systems - a complete Business system based on the system 3 from CAP-CPP. Phone for an appointment to see it running.

For the smaller customer, we have an integrated Sales, Purchase and Nominal system for the North Star Horizon.
Nothing fancy - but installed and running for over 7 months. IT WORKS!
WHATIF! Cash Flow, Accounts budgetting utility. Just released. Incredible value at £95.00.
Also available an Incomplete Records system for the Horizon.

SPECIALS.

Real Time Clock - S100 - 100 microseconds up to 99,999 days $£ 155.00$. Hi-Tech S100 PAL colour card, 24×40 Prestel format $£ 295.00$. Video Vector Fastlib £495.00. Dual Tandon Double/sided 40 track minifloppy sybsytsem $£ 625.00$.

INTEGRATED SPECIALIST SYSTEMS.
MEDIDATA 32,000 patient Doctors' system. Installed \& running. Prices from $£ 7500.00$
RETURNED ALE. Run a brewery? Keep track of returned ale and reclaim Excise Duty. Track down production \& storage problems. Copes with $10,000+$ barrels. Prices from $£ 8500.00$.

Xitan Systems also supplies and stocks vdus, printers, NORTH STAR HORIZON computers, Commodore Business Machines PETs, S100 boards, and books. We are here to demonstrate the range of quality microcomputer systems available for use today. Ring up for an appointment now! You'll not be disappointed. We have Osborne's Sales Ledger and Payable Ledger in source form for use on Cromemco System 3 with CBASIC2, and we can offer a customising service on these programs. Additional software includes Microsoft Basic Interpreter and Compilers, Cbasic, Macro80, and CP/M for the North Star Horizon

Xitan Systems Ltd., 23 Cumberland Place, Southampton SO1 2BB.

Tel: (0703) 38740

TEMPLEMAN SOFTWARE LIMITED
 25-26 Greenhill Street, Stratford Upon Avon Warwickshire CV37 8LR
 Telephone: Stratford Upon Avon (0789) 66237

8" DOUBLE SIDED, SINGLE DENSITY FLOPPY DISC DRIVE.
*THEY HOLD FIVE TIMES AS MUCH INFORMATION AS 5" DRIVES, I.E. ONE MILLION CHARACTERS.
*TWO VERSIONS OF DOS ARE SUPPLIED; MAXIDOS AND NORMALDOS.
*PASCAL IS AVAILABLE.
*ITT SILVER OR APPLE CREAM CASING.
*R.R.P. £1550 (exc. VAT).
*DEALER ENQUIRIES WELCOME.
SOFTWARE IS OUR MIDDLE NAME

All the power and built-in peripherals for business and educational computing in one compact, desk top unit.

The Z89 Series Microcomputer.
Designed and built to the highest specification, the Z89 combines reliability and efficiency with ease of operation. And is backed, of course, by our excellent after sales service.

Features include:

- Z80 CPU
- Built-in floppy Disc with optional dual external drives
- Built-in Z19 VDU
- Up to 65K RAM
- Three serial RS-232 I/O
- Operating systems C/PM \& H.DOS.

Languages: M-Basic, C-Basic, Fortran,Pascal, etc. And with generous OEM discounts available you can
see why the Z89 is a better computer.

Heathen systems
For full details about the Z89, complete this coupon and return it to:

Zenith Data Systems Division, Heath Electronics (UK) Ltd. Zenith Data Systems Division, Heath Electro
Dept. (PCW II), Bristol Road, Gloucester, GL26EE.

Name
Company
Address
\square

NBMZ8OK MONITOR LISTING NBMZ80K BASIC LISTING NBMZ80K ZEN EDITOR/ASSEMBLER TAPE \& MANUAL MZ8OK MACHINE CODE TAPE \& MANUAL MZ80K ASSEMBLY LANGUAGE TAPE \& MANUAL
NBMZ80K V24/RS232 PRINTER INTERFACE
DISKS \& PRINTER NOW AVAILABLE
A COMPLETE BUSINESS SYSTEM LESS THAN $£ 2000$.

MICROCOMPUTING I.C.'S

MC6800
 MC6802

MC6809
MC6810AP
MC6821
MC6840
MC6850
MC6852
MC8062P
MC14536P
MC3459
MC345
Z800 CPU 25 Mn
Z80 CPU 2.5 Mhz
Z80 CTC 2.5 Mhz
$Z 80$ CTC 2.5 Mhz
280 P 102.5 Mhz
280 P10
$Z 80$ S 10.
Z80A CPU 4 Mhz
Z80A P10 4 Mhz
Z80A CTC 4 Mhz
SC/MP 11 (INS806ON)
NS8154N
6502
6522 VIA
6532
6545 CRT CONTROLLER
6551 ACIA
8080A
224
8228
DM 8835 N
8216
$£ 6.75$
$£ 10.50$
£ 10.50
$\& 17.75$
$£ 3.61$
$£ 4.63$
$\begin{array}{r}\text { § } 10.50 \\ \hline\end{array}$
£
$\mathbf{~} 4.99$
$\begin{array}{r} \\ \hline\end{array} 4.75$
2.88
$\Upsilon 2.50$
$\$ 2.50$
$\mathbf{\Sigma} 2.43$
82.43
142.50
142.50
$\quad 88.99$
$\begin{array}{r} \\ \mathbf{8} \\ \mathbf{8} .99 \\ \hline\end{array}$
$\begin{array}{r} \\ \hline\end{array} 7.99$
$£ 7.99$
$\boxed{8} 5.57$
$£ 25.57$
$£ 10.50$
$£ 10.50$
$£ 10.00$
$£ 10.00$
$£ 10.00$
$£ 10.00$
$£ 11.30$
$£ 8.18$
¢8.18
88.99
58.14
88.14
$£ 9.75$
$\Sigma 18.50$
$\varsigma 9.99$
$\varsigma 5.50$
$\begin{array}{r}£ 2.95 \\ \hline\end{array}$
$\begin{array}{r}12.00 \\ \\ \hline\end{array}$
\&1.35
ع. 1.35
$\mathbf{C 2} .25$
§2.50

SPECTACULAR

NEW LIW PRICES:

 Nonth Sian * HORIZON

SPECTRONICS U.V. EPROM - ERASING LAMPS

19th - 30th JANUARY MINI BARGAINS \& SPECIAL OFFERS AT ALL BRANCHES

JANUARY SALE

Send for details of New Sharp add ons.

80/132 CH PER LINE (SWITCHABLE); 125 C.P.S: 2 K BUFFER; V24 RS 232/ CURRENT LOOP INTERFACE SPEED SWITCHABLE BETWEEN 110.9600 BAUD VARIABLE WIDTH CHAR AVAILABLE UNDER SOFTWARE CONTROL: SPROCKET FEED; 4×9 DOT MATRIC; PAPER WIDTH 4.5" TO 9.5

PRICE $£ 499.00$

PE 14	ERASES UP TO 6 CHIPS, TAKES APPROX 19 MINS	£45.00
PE 14T	ERASES UP TO 6 CHIPS. TAKES APPROX. 19 MINS	£59.95
PE 24T	ERASES UP TO 9 CHIPS. TAKES APPROX. 15 MINS	£87.00
PR 12ST	ERASES UP TO 16 CHIPS. TAKES APPROX. 7 MINS	£186.24
PR 320 T	ERASES UP TO 36 CHIPS. TAKES APPROX. 7 MINS	£302.00
U.V. EPROM ERASING CABINET		
PC 1100	ERASES UP TO 72 CHIPS. TAKES APPROX 7 MINS	£693.00
PC 2200	ERASES UP TO 144 CHIPS. TAKES APPROX. 7 MINS	£1142.00
PC 3300	ERASES UP TO 216 CHIPS. TAKES APPROX. 7 MINS	£1595.00
PC 4400	ERASES UP TO 288 CHIPS, TAKES APPROX. 7 MINS	£2047.00

NewBear
 for the widest selection of computing books NEW BODK LIST

MEMORIES
 4116 (16K DYNAMIC) 2716 (INTEL + 5V TYPE)
 $£ 4.50$
 $£ 12.50$

 2708$£ 4.50$
£45.00
ع59.95
ع87.00
£186.24
£693.00
ع142.00
£2047.00

NEWBEAR COMPUTING STORE LTD, (HEAD OFFICE) 40 BARTHOLOMEW STREET, NEWBURY, BERKS TELEX 848507 NCS
(MAIL ORDER) TEL. (0635) 30505
FIRST FLUOR OFFICES, TIVOLI CENTRE, COVENTRY ROAD, BIRMINGHAM. TEL, 0217077170
220-222 STOCKPORT ROAD, CHEADLE HEATH, STOCKPORT
TEL. 061-4912290
PLEASE ADD V.A.T. TO ALL PRICES.

If youre looking for an above average line printer at a lower than average price then the WH14 from Zenith Data Systems is your first choice.

Microprocessor controlled, this compact tabletop unit can be used with most computers through a standard serial interface. It provides hard-copy output of your programmes as you execute them, plus handy copies of address lines, lists and other programming data for educational or business applications.

Features include:

- 5×7 Dot matrix printing
- Clear easy-to-read images
- Upper and lower case characters
- Operator/software selectable line width: 132, 96 and 80 characters per line.
- Sprocket paper feed with adjustable spacing
- Stepper motor feeds allows 6 or 8 lines per inch vertical.
- Form feed operator/computer control
- Microprocessor based electronics

And at $£ 510$, exclusive of VAT and delivery charges, the WH14 puts economy first in line too.

Generous OEM
demem mambe Zenith
data HEATH
For full details of the WH14, complete this coupon and return it to:

Zenith Data Systems Division, Heath Electronics (UK) Ltd., Dept. ([pCWII), Bristol Road, Gloucester, GL2 6EE.

Name
Company
Address

Just give me one good reason why you or I should prefer to buy our computer from the Sole Distributor? The obvious reason (that nobody else supplies it) is not acceptable because that is true of nothing - not even IBM restricts itself to selling through its own outlets these days.

The question arises because of a curious telex, which arrived on the $P C W$ news desk just after the expiry of Compec, the country's largest computer show. The telex came from Nottingham micro man Tim Keen. It was not so much a statement, more a contradiction. It read:
CONTRARY TO A RECENT PRESS RELEASE ONYX SYSTEMS INC HAVE NOT APPOINTED A EUROPEAN DISTRIBUTOR.
VERIFICATION CAN BE
OBTAINED FROM THE
PRESIDENT DOUG
BROYLE, TELEPHONE USA =)' (@-- $/ /$).
4089466330
KEEN COMPUTERS LTD
HAVE BEEN APPOINTED
DISTRIBUTOR FOR ONYX FOR UK

What had happened was that at Compec, a company called Graham Dorian Software Systems had announced that it was the sole UK distributor. Th is sort of thing doesn't happen of ten. Normally such squabbles are carried out in gentlemanly seclusion, not with enthusiastic letters to the press.

Tim Keen is not a man to let such matters pass unnoticed just because of gentlemanly traditions. If there's a fight, he tends to want to win - if you don't want blood on the carpet, move the carpet. Carpets accordingly began to be moved. Doug Broyle was telephoned, as per instructions - and he was said to be engaged. His marketing chief at Onyx Systems explained: 'One of our distributors has been a little overenthusiastic.'

The story doesn't end there. Two more UK-based firms, currently supplying original equipment made by Texas Instruments, are going to add Onyx to their ranges. If they, too, call themselves 'sole distributor' - I'm blessed if I can see the point. If I buy something, I want to know that some where, there is another firm who can put it right.if my source goes bust. I won't buy from a sole source. Am I alone?

The bigger they come...

The best news for users of the TRS-80 is that Visicalc is going to be runnable on that machine. Visicalc is not really a program as such - it is a piece of software that eliminates the need to write some programs.

Two fascinating little details about Visicalc: first, it was the winner of the most prized US micro award earlier this year (Adam Osborne awarded it his White Elephant trophy); second, the orthodox data processing business doesn't believe it exists.

When I first found that Visicale didn't exist, I was a bit surprised. Storekeepers in the USA say that more
people have bought Apple II micros just to run Visicale than for any other reason. Mike Gurr, a veteran of that most orthodox of data processing offices, the one inside British Oxygen Corporation, now sells Apples and Visicalc and swears that. no user of Visicalc has ever been unhappy with it.

When Mike was recently (November) asked to speak about small systems, angry orthodox data processors rose to their feet at the seminar, and called him a cowboy. Why? Because he was selling a program and was not 'supporting' it - that is a phrase meaning 'going round to the customer once a month, drinking coffee from his vending machine and soothing him about the number of times the software failed in the previous four weeks.'

Mike Gurr protested that Visicalc, since it didn't fail, didn't need 'support'. He wasn't actually called a liar by the dinosaurs, but

The next occasion on which I found that Visicalc did not exist was inside a big oil company. A programmer for the big central computer found one of the company executives using an Apple II.
'What are you running on it - Star Trek?' he asked. The user described Visicalc. 'Can

Next time some idiot tells you that micros are only toys, show him this pic. The huge black box on the right is a Solartron 1170 frequency response analyser. The most effective device which Solartron íc big company, subsidiary of Schlumberger, which owns Fairchild) could find to process the data generated by this device was an Apple II. Solartron sells the Apple as part of the data management system.

NJWSPRINT

you produce something like Visicalc on our big central computer?' asked the user and the programmer foolishly said he would try. For his pains he was told by his boss, the data processing manager, that first, Apple II computers were not authorised by the DP department, so there were none in the company (there were over 30); second,
Visicalc was a dream, and no such program could be written; and third, if it could be written, it would not fit on a tin-pot video games machine like an Apple II Finally, his promotion to the Chicago office was cancelled for disloyalty. You think I'm kidding, don't you?

By the way, the seller of Visicalc for the TRS-80 is A J Harding. I can't resist this. Harding has also 'in conjunction with ACT (Petsoft), been appointed sole TRS' 80 distributors in the UK for Personal Software of the US.' Contact the joint sole distributor on (0424) 2230391. But try not to take the mickey - he's a good supplier.

Unique Unix

Over the next two years or so plausible salesmen will start to make more and more mileage out of the fact that they can offer a ' 16 -bit multiuser' business system

The question to ask them is not 'what is 16 -bit?' but, 'is the operating system Unix compatible?

The latest system to hit the headlines, the Onyx is. Another system with a claim to be considered is the South West Technical Products machine, the 6809 , which has an operating system called Uniflex. And Ithaca is working on a version of its own operating system (for the Z8000 chip) which will do the same.

Now, why should you care?

On a simple level you will have noticed, even if this is the first computing magazine you have ever picked up, that the number of references to CP/M indicates clearly that it is important.

It is important because so many people use it, so that not having it looks suspiciously like ignorance. It is also important because it allows the user of one CP/M machine to run programs written for another machine.

The question is: how?
Programs do not spend all their time calculating and computing, despite popular myth. Most computer programs spend all their time either waiting for input or looking for a pattern of numbers and letters (such as David Tebbutt, or Bumper Harris, or ticket no 345/ 4567.98) in one block of mass storage, and then arranging it in another block
of storage (either a mass store like disk, or an output store like a piece of paper.)

The business of finding one of those patterns in a disk, or in a tape, or merely in a block of memory, is shockingly tedious and detailed. The computer has to move the reading head of the disk to the index, to find where it wants to look. It has to wait for the index to spin past it. It then has to find the track of the disk where the item it wants actually is. It then has to move the head and wait until it has got there It then has to read the track, and wait until the start of the right record comes past. It then has to read off the disk into the right part of the computer's own internal memory. Then it finds that that was not the right part of the disk, and starts all over again

Oddly enough, this is exactly what most of an operating system does. It does it in its own sweet way, and it does it reliably and simply. All the programmer needs to know is the right operating system call, and the system does it all for him.

Give the operating system the call belonging to another operating system and, if you'r lucky, nothing will happen.

Unix is an operating system, designed by Bell Labs for the very good reason that Bell liked using minicomputers made by Digital Equipment, but didn't go a bundle on its operating systems. Bell, being rather bigger than Digital, decided to make its own - and by all accounts, did a better job than most.

The operating system Bell made attracted many admirers and imitators. Some, like Onyx, actually got a licence from Bell to produce a version of Unix itself (Onyx calls its version Onix, and sells Onyx systems with Onix on them to Bell itself).

The point is that the Digital Equipment mini computer, the PDP/11, in all its versions, is a 16 -bit machine. It gets information from memory and storage in chunks of 16 binary digits at a time. CP/M gets its chunks in 8-bit 'bytes' and is
therefore no earthly use on a 16-bit machine. It may be possible to make CP/M look like Unix, in the same way as it may be possible to make two bicycies look like a car (you strap two side by side, bolt the handlebars to a steering wheel, and cover it with a car body) but the resulting contraption has none of the advantages of either CP/M nor Unix, and most of the disadvantages of being neither.

If someone tries to flog you a 16-bit system because it has a 'better' operating system than Unix, believe him by all means. But avoid it unless it is Unix compatible.

Anyone who has ever taken a heavy tape recorder all the way back to Tottenham Court Road or the local equivalent for a repair, only to find that the cable connecting it to the amp was broken internally, will suddenly understand why engineers need special equipment to test the 25 -wire cables that connect computers to printers. This one costs $£ 165$ and tests each wire in turn, showing which are broken, which are connected to others, which are connected to the wrong pin of the plug, and so on. Details on 01-941 3604

And incidentally, if anyone tries to sell you an operating system on the grounds that it is multi-user, be pleased, but asked for assurances that it is also multi-processor. But that, as Kipling said, is another story

Sharp
 competition

If anything is going to worry Commodore over the next year, it is going to be Sharp The Commodore is currently top seller in this country and the new range of machines with big screens has been neatly priced, and quickly available (see' 'Egg On Face' elsewhere in 'Newsprint').

However the PET, for all its virtues, is not a Japanese computer. It is an American machine, with some models made in Europe. And neither the European nor the
American electronics factory has quite got the hang of making kits the way the Japanese have - that is, they aren't as reliable.

Now that Sharp has got its MZ 80K fitted out with the necessary extras (printer and disk storage) to turn it into a proper system rather than a desk-top novelty, its reputation for working as soon as a plug is fitted and
distributors to take it up by dozens.

In the words of Bruce Everiss, outspoken boss of Microdigital (a Lasky subsidiary), 'There have been batches of PETs where six out of ten have needed attention before they could be sold. Of all the Sharps I've sold, maybe two have needed attention - and I've sold many more Sharps than PETs!'

Sharp's answer to the new PET, however, looks as if it needs a bit extra. Like the new PET, it displays a row of 80 characters across every line on the video screen. Like the PET, it comes with the option of a big disk store. And like the PET, it includes a workmanlike printer. However, the new Sharp PC3200, despite 64 K and a snazzy keyboard, still looks a bit pricey. The disk is not as big as the much-slandered Commodore 8050 drive. And if the price is attributable to the printer, then the printer should be a lot nicer, as printers these days are good and cheap. At $£ 3000$, the PC3200 needs that bit extra - maybe reliability will do it? On the other hand, maybe Commodore has made the 8030 PET more reliable? Watch this space.

Sharp's new PC3200 system

Egg on the face

Considering how beastly I was to Kit Spencer of Commodore in this column two months ago, he was astonishingly polite when he phoned.

I knew what he was going to say. 'You're going to tell me that the new disk drive, the 8050, was available roughly a week after I wrote my piece saying it was late, I told Kit.

He was, and he did: 'We were late on the printer,' he said, in anguished tones, 'and ever since, people have been expecting us to be late on everthing.' True. 'We just can't win. If we announce it well in advance, we're preselling. If we keep it secret until it's available, nobody believes we've got it.' True. 'Well, at least I hope we'll talk to each other a bit more in future,' he ended. I hope so too. Still, not too much harm done, because at the time of writing, orders still outstripped available disk drives by quite a bit. By the time you read this, the backlog might be cleared a bit and you may be able to get one.

Burning chips

Beginners in the computer field often ask shyly: exactly what is the use of read-only memory - how do you get something in them to read? The answer, of course, is that they are no good at al ? without some means of getting program or data in. And normally, this costs money, either through a company which offers a programming service or through the purchase of a programming machine.

One supplier of such chips, Celdis in Reading, has decided to leap to the aid of people with neither service nor programmer to hand. Celdis is supplying all PROMs with free programs in them You, naturally, supply the program and Celdis engineers load them. This offer is available on all orders, no matter how large or small, promised Dave Watson at Celdis. He may see something of a boost in memory sales. Details on 0734582211.

Charity chess

PCW's computer games expert, David Levy, recently raised $£ 2000$ for the Bournemouth Symphony Orchestra by playing 30 chess games simultaneously.

The BSO receives only enough state funding to support ten of its members, a situation which Levy describes as 'tragic'. He made the exception to his 'no exhibition matches' rule because of his love of classical

'Yer Honour, I wuz driving wiv don care an' attention, when suddenly, I wuz distracted from my scrutiny of the M4 by the enchantin' chimes of that well-known ditty. "Oh Danny Boy", rendered in 'eart-breakin'syncopation by me Casio M12 musical alarm watch, which my wife 'ad programmed in on account of it was St Patrick's Day. Trans fixed by the magical appearance of the notes on the LCD five-line musical stave (which appears on the front of the watch display, yer Honour) I would still have been compe tent to continue proceeding along the highway but for the unfortunate occurrence of the rhythmic response from me foot, what began tapping all involuntary on the brake pedal causing loss of road adhesion.
music. Of the 30 games, he won 24 , drew two and lost four.

Chatty chips

Until now, getting a computer to talk was a job that left y ou little choice. Either you bought a standard Texas Instruments speech chip, or you had a hard time, or it cost you plenty.

A 'considerable advance' is a new General Instruments chip which gives a choice between lots of low quality chatter, or fewer beautifully-
pronounced words.
It gives a maximum number of 3825 'sequences' of synthesised speech, says General Instruments (these sequences are normally words or phrases) and the quality "is normally significantly better than telephone voice quality' - it approaches that obtainable on Radio One.

The snag is that you have to connect it to a computer board yourself, or use General Instruments' own PIC micro - ah, you don't have one? No, me neither, and I don't know where you'll find it. Ask GI on 01 4391891.

Name change

When Oxford Computing dreamed up a writing pad which entered data directly into a computer, the name Datapad suggested itself. Un fortunately, somebody failed to discover that the same name had suggested itself rather earlier to a company called Quest. I hope that somebody enjoys the hot water. Meanwhile, Oxford Computing has renamed its OCL Datapad as the OCL Saker. Less obvious what it does, perhaps. Still, at least it is just as obvious as before that Oxford Computing is in Reading, on (0734) 587138.

Local S/W support

When someone tells you that you need 'support' for a product, you know one thing: it doesn't work. In the case of computer programs, this is only forgivable if the program was written for you and you alone. Nobody can catch all the faults in a piece of software all by himself. So it is a very sensible idea of a group of software writers to get together to arrange mutual support (sounds disgusting) for the 'tailored' products. The idea is that a small producer of programs joins the league and when a customer living more than 50 miles away wants a copy of his software, he doesn't supply it himself but gets his local colleague operator to supply it.

Tailored software, by the way, is software which is cut from a basic pattern on a design of cloth which can fit everybody. The local supplier just puts in the details needed for the local application.

According to one of the founders of the new Software Producers Association, Peter Wills, 'The range of computers covered by the association is wide and currently there are programs available for most general business applications. There are also systems available for the more specialised areas such as agriculture, garages, engineers, auctioneers and market research agencies, to name but a few.

The Association aims to 'set very high standards' and is prepared to back them up by offering a money back guarantee on all products. Mind you, I can think of a lot of suppliers who would draw the line well before they got that far. And I have to admit that there are many doubts as to whether tailored software, however weil supported, is really worth the extra money it costs, by comparison with off-the-shelf stuff which

PROGRAMMED FOR FUN

The Sharp MZ-80K personal computer can handle serious business as well as the next microcomputer. But it can also be programmed for fun.
This masterpiece of low-cost, easy-to-use, micro-processor technology takes over where TV games end, becoming a sophisticated source of endless hours of family entertainment. And for youngsters, of course, it has added educational value, providing a very useful introduction to the computerised world in which they will live and work.
A comprehensive catalogue of fascinating computer games is now available for use with the MZ-80K: races, battles, quiz games, exploration, showjumping, space adventures; trials of skill and concentration, pitting players against each other or against the computer. Exciting, entertaining, educational, and with such variety of appeal that the incentive to play is never dulled.

COMPUTER GAMES Cassette-based for use with MZ-80K £5 to £12 (see catalogue)
From the leading SHARP microcomputer supplier
HB COMPUTERS LTD
22 Newland Street,
Kettering, Northamptonshire

Telephone 0536520910
often comes at under $£ 100$
Details from Peter Wills on 0272312079 or David West on 061-832 6792. Wills works for Mercator Management Consultants in Bristol and West for Chess Consultants in Manchester.

Telesoftware

It may turn out to be easier to 'tune in' to a program for your computer than to pick out a tape, load it and start it up, especially if you don't have the right tape to hand.

The matter is, at least, being investigated. The project is a huge col laboration of various people starting with the BBC and working out. The man at the centre, who wants to hear from anybody else with ideas on the subject, is Mr L Mapp, research fellow at Brighton Polytechnic. The way Mr Mapp describes the project, it could be the first real use for those brief pages of news that the BBC and ITA broadcast in their teletext services, Ceefax and Oracle (apart from putting subtitles on films for the benefit of the deaf). Instead of getting lines of print, the receiver would get a computer program, complete with instructions to the computer on how to load and run it

Mr Mapp thinks it will help teachers. 'Currently,' he tells me, "using a microcomputer to assist in teaching requires a good knowledge of computer programming finding a suitable program, transferring it to a computer's memory and then
checking its reliability, is often a daunting task.

What isn't clear yet is whether we are going to get a new microcomputer out of all this. The Beeb is known to be planning a 'teach yourself micros' machine and this project is based on ten prototype 'receivers' - that is, television sets with microcomputing abilities, made by Mullard.

Three years ago, this would have been a splendid way of launching a British microcomputer. Now it may be too late, and I predict the project will either switch to a standard existing micro the Newbrain? - as the basis for its existence, or will go the way of the Open University computer.

I hope it survives. Just think of what the BBC and ITV could do for program distribution! And if they did it properly, just think of what that would do for compatibility standards. Details from Mr Mapp on 0273 606622.

C/P Net launced

Telling somebody who has just pushed the budget to the limit to get a microsystem that, 'you should have asked yourself which network it uses,' may be regarded as unnecessary provocation. If you can't really afford one, why bother about the cost of a whole lot joined together? And to these people, the announcement of CP/Net will appear to be so much

This is a picture of a hell of a lot of very special transistors. They are Intel's new electrically eraseable permanent memory, the closest step so far to a memory chip that retains its memory when the power fails but functions normally. Putting data into this new 16 kbit chip (2 kbytes) takes absolute ages. - a 21 volt pulse is needed for 10 milliseconds. A computer that had to store data at that speed would never get anything done, so clearly that side has a long way to go. But at least it is no longer necessary to pull the chip out of the computer and bake it under ultra-violet light to get rid of the data when it isn't wanted. Instead, it takes 20 milliseconds to erase eight bits with another electrical pulse.
irrelevant hot air.
The object of launching th is network is not to allow each computer caưght in it to send messages to another. It is to save money. It works in the same way as sharing a taxi saves money - you have to have four or five people all together, going the same way - but it works.

CP/Net comes from Digital Research and is now officially here as the ultimate version of $C P / M$.

CP/M gave the user storage capacity on disks. MP/M gave two or more users on the same computer their own slice of that computer. CP/Net gives every computer user his own slice of disk storage, printers, modems or any other expensive, seldomused luxury. Details are available from the European agent, Vector International, at Research Park, B-303 Leuven in Belgium, tel 32 016202496.

But like present CP/M versions, CP/Net will only work on $8080 / 8085 / \mathrm{Z80}$ based micros. If you want a network for a PET, contact Kobra, whose MU-PET system has been sold to 60 network users in the two months after it was launched. Mu-Pet allows up $1: g$ eight PETs to share one or more Commodore disk drives and any compatible printer. When somebody configures a big (hard) disk to look like a PET disk, then Mu-Pet will look wonderful, because the big disk will cost much less per byte than floppies. Details on 01-579 5845. For Apple users, see last month's item on Nestar and contact Colin Crook or Ian Powers on 089559831.

Cobol for Apples

The fact that a company like Micro Focus has produced a Cobol compiler for the Apple II is not an invitation to its 150,000 -odd owners to learn how to write programs in Cobol. It is a concession to reality

Reality is the fact that Cobol is an old language, not very good at performing the tasks that today's micros are best at. It is at least as awful (in purist terms) as the Basic all we micro owners use and five times as hard to find faults in programs written in it, and ten times as hard to correct them. Okay, so that's just opinion - but it's a

common one

The reason it is important is simple: most of the world's professional full-time software writers know how to write in Cobol and in nothing else.

Their employers, seeing 150,000 Apples rolling around, would like to start producing programs to run on them - and all their current programs are written in Cobol

Micro Focus produced the
first Cobol compiler for the Intel 8080 some time ago but that micro is not the chip inside the Apple. To get the Micro Focus onto the Apple, they had to wait for Micro soft, who launched a little plug-in unit called the Z80 softcard, which actually puts a new microprocessor into the Apple - a micro on which Micro Focus's Cobol will run. So, for that matter, will Microsoft's Cobol - but the word so far is that Micro Focus (a British company) has a rather better Cobol than Microssoft's. Talk to Micro Focus on 01-722 8843

Microwriter based WP system

Typoists tend to make mistokes. Users of the ultraclever six-finger typing keyboard (see our December review) tend to make mistakes too and it's sensible to get a computer to sort them out.

A system for connecting the Microwriter to a computer has been developed by South West Technical Products. The computer concerned is the SWTPC machine, and the software which handles the connecting is a word processor called Autotext. This goes further than just handling the input from the Microwriter, they say; it also allows it to be used as part of a flexible filing and word processing business system, For instance names and addresses may be handled in combination with text, to produce personalised overdue account letters and other correspondence where a different amount of money can be inserted into the text of each individual letter. Details on 01-4917507

Zilog seeks compatibility

'We want to ensure that all software for the Zilog Z8000 micro, whether written by Zilog, independent vendors or others, is transportable and compatible,' said a top Zilog man in the UK recently

This sort of statement about any other micro, if made by the proprietor, would be dismissible with some colourful metaphor about breaking wind in a gale, but with the $Z 8000$ there are two good reasons for taking Zilog seriously.

First, all the software theories on which the original designers of Zilog's programming languages based their chip designs have been fully catered for in the Z8000. It was Charlie Bass's theory that all Zilog languages should link to each

YOU DONT NEEDA MAGIC WAND TO SAVE £7,000 ONA MINICOMPUTER AND GAIN DATABASE FLEXIBILITY.

JUSTA MIRACLE.

WThen 2.8 Apple micros share up to 40 Mb of Corvus hard disc capacity through a Constellation host multiplexer, you get a Miracle no less. A Miracle is the answer to the bottlenecks that can happen with a mini-network. And more. A Miracle can outpertorm a mini-network and save you money all along the line.

Stack up a 4-Apple/Miracle system aganst a mini system with 4 passive terminals and you've hit on an intelligent way of saving yourself $£ 7,000$.

So much for the sizze. But what aboul the hard facts?

THE HEART OF THE SYSTEM

At the heart of the Miracle is the Constellation

 host multiplexer. This allows 2.8 host micros to share high-speed access to one common Corvus disc drive. The micros are connected in star configuration and each of their interfaces uses the standard Corvus bus. And with the Constellation at the centre of things all the micros in the network are active.There's also room for expansion to a multilevel network: as many as eight host multiplexers can be linked together which, in turn, allows up to

64 micros to share the disc. A user can implement Miracle using 2.8 micros and later upgrade with no penalty in cost or software effort

HARD DISC STORAGE

The big thing about the Corvus hard dise drive is that it can normaliy be accessed twenty times faster than floppies. In real terms this means $2 \cdot 3$ minutes for sorting a complex file instead of 15-20 minutes.

Convus is a fixed disc 10 Mb storage device which has a closed-loop filtered-air system to provide enhanced reliability in a contamination-free environment. The disc controller, based on the Z-80 processor with 16 k of RAM, provides the intelligence for the system without the costs'and overheads of a dedicated central computer; and the ROM-resident software is interfaced to both BASIC and the new Apple PASCAL operating systems. You can use as many as four Corvus disc drives in a Miracle system to give a total capacity of 40 Mb .

BACK-UP TRANSFER

When it comes to back-up transfer you've no problems with a Miracle: the unique Mirror

A single-level Miracle will handle up to 8 computers

system, which is included as standard, dumps up to 300 Mb on to video tape at 1 Mb per minute.

All this is just the beginning of the Miracle because its multiplexer opens up no end of possiblitites for sharing peripherals and communicating with other Apples in the system. 3.4 devices can be connected to each Apple in the system: for example a printer, an interface for graph plotter and digtiser, a light pen, a graphics terminal or a pair of floppy discs.

A MIRACLE FOREVERYONE

So much for the Apple-oriented Miracle. But what if you're not an Apple user? The good news is that a Miracle system can be built with other micros: S100 computers, TRS80, and Commodore in any mixture you. like

In short, a Miracle can happen in all shapes and sizes. Send for our brochure and we'll show you how.

Romputers

5b the Poultry, Nott ningham NG1 2HW

tel: 0602583254 t telex: 37297 (keenco) CRA
28 Lower Addiscombe Road. Croydon CRO 6AA. tel: 01.6804646.

Keen Computers' extensive range of products and services gives you hard and soft options: we supply Apple, North Star, Commodore and Sharp computers. For details of one of the most extensive ranges of special applications software, peripherals and a host of exciting add-on goodies that will really let you take the lid off computing, send for the new KEENSTAR catalogue.
other through the operating system so that sections of Basic code could link to sections of machine level direct code in ROM and to sections of code called up, say, from disk.

These theories apply (rather less fruitfully) to the Z80, which was not Zilog's ideal machine but merely their way of getting into the market; that is, it was more than half a copy of the Intel 8080 (and still is). More to the point, everybody who uses the Z 280 has gone too far down many paths of their own choosing to pay much attention to Zilog's theories.

On the big Z8000, it may not be too late for Zilog to influence us all. And the bold bid which Zilog has made is to establish 'calling conventions' for programmers. These are designed to enable Z8000 programs written in any language to call Z8000 programs written in any other language, just as Bass dreamed when he designed PL/Z (a language).

The standards specify practices. That makes them very hard to impose on users, who tend to blunder into these things and work out what their customs and practices were later, looking back. They specify how one language should pass parameters to another language, how the registers should be used, and how Zilog itself has done these things in the software it has written so far

Now the important thing about this is that, naturally, we humble home programmers are hardly ever going to bother our heads about how we pass parameters or handle registers. But the people who write the languages we will one day use do. Compiler writers get very worked up about register usage and any su ccessful establishment of good habits now could be enormously useful to Basic Bangers in three years' time.

If Microsoft and Personal Software and Microdatabase Systems and all the other software kings pay attention, of course.

Details from Phil Pitman on Maidenhead (0628) 36131.

In the lab

The criticism levelled at the first Commodore PETs and the feeling in some quarters that such toys should not be allowed to taint a scientific environment did not seem to herald an auspicious future for these machines in the scientific laboratory. The situation was not helped by the suspicion among some managers that the main reason their junior personnel requested such things was to play 'Star Trek' during tea breaks - and beyond.

Despite such obstacles, however, the PET and similar machines have now
found a place in the scientific laboratory and are increasingly mentioned in research papers. Research into certain aspects of nuclear magnetic resonance spectroscopy being carried out by L E Erickson of the National Research Council in Ottowa requires a magnetic field of specific strength and direction. Such a field can be provided by using three pairs of coils mutually at right angles and a recent paper describes the use of a Commodore PET to control the set up, After the field strength and direction required have been input by the experimenter, the PET performs the necessary mathematical transformations and uses the data to control the power supplies of the three pairs of coils. A feature of the program is that it compensates automatically for the earth's magnetic field.

The interface uses 12 -bit digital to analogue converters and data is transferred to the power supply interface by a 20-byte serial, bit parallel transfer. Odd-numbered bytes are for synchronisation of the transfer and evennumbered bytes are composits of address and data. The program is written in Basic and the entire transfer takes 0.3 seconds. The author notes that this would be much faster if machine language programming were used to control the timing.
Geoff Turner

Nets working

Personal computer networls are at last appearing in Britain. Networks have been booming in the States for 18 months or more and are a well-established feature of the micro scene over there. By the time you read this, Britain will have two, one in Hull and one in Milton Keynes.

First off the mark was Frederick Brown in Hull, whose network opened in September. He has a 48 k TRS-80 with four disks, linked to a modem and available to all callers.

The other system, being set up as $P C W$ went to press, is run by the National TRS-80 Users Group and also (naturally) has a TRS-80 at the centre of things.

Access to both systems is free and available to anyone with the necessary hardware You need a micro (not necessarily a TRS-80) and a modem, although you could get by with a terminal

Both systems can presently cope with only one user at a time and both offer a similar service: a bulletin board, on which you can leave messages - either personal to and accessible by one other user or 'global' and a library of programs
which you can download and execute/save on your own machine. The programs are in Microsoft Basic for maximum machine independence and at the time of writing Frederick had a dozen on his system.

Use of these networks naturally depends on the availability of low-cost modems which have to be approved by British Telecom - no easy (or cheap) matter. Hopefully, now that two networks are running, the demand for cheap modems will increase and we'll see some on the market.

Frederick reports that he has half a dozen regular users who live locally, a couple in Scotland and others in France and Holland. He also gets the occasional trans-Atlantic link-up from personal computer users in the States!

The Hull service is a vailable on Thesdays and Thursdays, $7-10 \mathrm{pm}$ and at weekends from 12 noon to 10 pm . For further details ring Frederick on Hull (0482) 859169 - but not during the network's operating hours or you'll get an earful of modem carrier.

For details of the TRS-80 User Group Service, contact Brian Pain on (0908) 566660 (office hours).

CBM announces new micro

The nicest thing about the PET, when it was first announced, was the keyboard. After that, the video screen.

That may be a bit hard to swallow today, but four years ago, when the first prototype appeared in Europe, there simply was no other machine available with a keyboard that had an alphabet on it. The Motorola -D2 kit, with 16 keys, was seen as the only serious rival for the Kim 1 (also 16 keys) until you got into the ludicrous price ranges of the Altair, or the newly-
announced Research
Machines 380Z. Anyway, the
PET had a whole keyboard and a whole screen, not just a row of watch read-out digits.

Now Commodore is launching a machine without a screen. Is this clever? we ask ourselves. And the answer is: 'At under $£ 200$, yes.'

The machine, the Video Interface Computer, is going to be called VIC. It looks as though it will be just what Texas Instruments would have made its home computer if it could have done: colour, sound, programmable function keys, PETbasic, and plug-in programs. When? VIC, 'first being launched in Japan, is intended to be marketed in the UK towards the middle of 1981,' says Commodore. I can't wait.

Cheapo DB

At $£ 23$ it must be the cheapest-ever database system. By the definitions enclosed with the announcements, it can't be all that bad to use. And nobody will stock it.

Our dealers have advised us that they consider a retail price of $£ 150$ would be more appropriate, in relation to similar products, claims the aggrieved company which produced it, Spider Software. It's the Apple dealers who are causing the problem, say Nick Spicer and Dick Williams at Spider. Well, they don't say so specifically but their utility database runs on an Apple, so it must be.

The dealers have a point As Spider observes, 'a full demonstration of the database's capabilities may take as long as half an hour, resulting in a relatively low profit to the retailer, and in the possible loss of more lucrative sales.'

One can't help feeling that some compromise solution must be possible but Spider absolutely refuses to raise the price, 'Much as we are in business to make a profit, this program uses standard routines which we have developed for bespoke business software,' the Spider pair say intransigently 'And as such, we consider that D/DATABASE is essentially a loss-leader and an advertisement for our services. Naturally we appreciate the dealers' point of view.

They won't raise the price 'artificially' because 'we cannot justify a higher price and this would defeat the whole object of the exercise.'

And here's the bit that hurts: they won't take a full page advertisement explaining the reason for the low price and showing what a marvellous product it is, because they can't afford $£ 300$ to launch 'an almost profitless product.

Make of that what you will. One day, we may be able to review this miraculous product that allows you to get 116,352 characters worth of storage onto the Apple disk. But until then, Spider is at 98 Avondale Road, South Croydon, Surrey CR 2 6SB, phone 01-661 2365.

New stringy

Perhaps the 'Stringy Floppy' designers were a little too ambitious when they announced this data storage device as a cheap replacement for a disk. At any rate, the UK dealer, MBS Terminals, has now announced a rather simpler version of the endless. loop tape, a version which connects through an RS232 interface. Details on Byfleet (09323) 49511.

Product Code Description
A2S 1016 P HARDWARE
A2S M0003 A2M0004 A2M0016

DISC DRIVE WITHOUT CONTROLLER
DISC DRIVE WITH CONTROLLER
16K ADD ON RAM
CARDS \& ACCESSORIES

A2B0001

A2B0002
A2B0003
A2B0005 A2B0006 A 2 B0007 A2B0007 A2B00009
A2B0010 MHP-X003 MHP-X006 MHP-X007 MHP-X015 A2B0017 E2B101 A1-02 10-5-16 10-5-17 13-3-2 13-3-4 13-5-5 H/SP/LAB A2M0019 A2M0019 A2M0027 A2 M0029 H/CON 70 H/SP/LIN E2B108

A2D0005

A2D0006 A2D0006 A2D0009 A2D0010

E2D001

A2D0012 APPLE BUSINESS CONTROLLER PROGRAM A2D0013 APPLE POST PROGRAM
A2D0018 APPLE BOWLING DISCETTE
A2D0025 APPLE CASHIER PROGRAM
A2D0026 APPLE WORD PROCESSING PROGRAM A2T0013 MICROCHESS 2.0 CHESS CASSETTE

PROTOTYPE/HOBBY CARD
PARALLEL PRINTER INTERFACE CARD COMMUNICATIONS CARD
HIGH SPEED SERIAL INTERFACE CARD
PASCAL LANGUAGE SYSTEM
CENTRONICS CARD
APPLESOFT FIRMWARE CARD
INTEGER CARD
MOUNTAIN HARDWARE CLOCK/CALENDAR CARD
MOUNTAIN HARDWARE SUPERTALKER
MOUNTAIN HARDWARE ROM PLUS BOARD
MOUNTAIN HARDWARE ROMWRITER
EUROCOLOUR CARD
APPLE BLACK \& WHITE MODULATOR
A1-02 DATA ACQUISITION CARD
ALF MUSIC SYNTHESIZER CARD
A LF TIMING MODE INPUT BOARD
ALF ALBUM MUSIC DISKETTE NUMBER ONE
ALF ALBUM MUSIC DISKETTE NUMBER TWO
ALF ALBUM MUSIC DISKETTE CHRISTMAS
HEURISTICS SPEECH LAB
PROGRAMMERS AID 1
AUTO START ROM PACK
GRAPHICS TABLET
HEURISTICS CONTROLLER 70
HEURISTICS SPEECHLINK 2000
IEEE INTERFACE

SOFTWARE

CONTRIBUTED SOFTWARE VOLS 3-5
CONTRIBUTED SOFTWARE VOLS 1-2
MICROCHESS 2.0 CHESS DISK DISC UTILITY PACK

VISICALC DISC \& BOOK COMPLETE

Dealer/OEM enquiries welcome. Tel (0442) 48151 and 41191
Telex: 825554 DATEFF G

Prices exclusive of carriage and VAT and are correct at time of going to press. Available from Apple Dealers all over the UKfor your nearest please contact Microsense Computers.

microsense comphters limited

Finway Road, Hemel Hempstead, Heris HP2 7PS
Product Code Descriprion

Price (4)

A 2L001A A 2 L0002 A2 L0003 A2L0005 A2L0006 A2L0006 A2L0012

A2D0000 A2M0009 AD/LB
MD5 172 APP1
APP2
APPLETEL
DIST/APP
E2B013

A 2 M 0034
A2C000 1
CENT 737
TIGER/G TIGER /C TIGER/D TIGER/P
T1810
LP5
LP9
15.00
340.00
27.00
27.00
9.00
194.00
194.00
42.00
42.00
15.00
125.00

DOCUMENTATION
APPLE II REFERENCE MANUAL
6502 HARDWARE MANUAL
6502 SOFTWARE MANUAL
APPLE II BASIC PROGRAM MANUAL
APPLE II REFERENCE MANUAL
APPLE II REFERE
APPLE II BASIC TUTORIAL MANUAL
GENERAL ACCESSORIES
(10) BLANK APPLE DISCETTES

VINYLCARRYING CASE
MINI DISC LIBRARY BOX
DISCOFLEX FILING CASE - MINI
APPLE DESK TWO TIER
PRINTER TABLE
APPLETEL SYSTEM
DUSTCOVER FOR APPLE II
APPLEJUICE RESERVE POWER SUPPLY
PRINTERS \& ACCESSORIES
SILENTYPE 80 COLUMN GRAPHICS PRINTER
10 ROLLS OF THERMAL PAPER FOR
SILENTYPE PRINTER
CENTRONICS 737 PRINTER C/W ADAPTOR PAPER TIGER PRINTER WITH GRAPHICS OPTIO CONNECTOR CABLE FOR TIGER PRINTER GRAPHICS SOFTWARE FOR TIGER PRINTER TIGER PAPER 2,000 SHEETS $11^{\prime \prime} \times 9.5^{\prime \prime} 1$ PART TEXAS OMNI 810 PRINTER
PAPER 2000 SHEETS $11^{\prime \prime} \times 15^{" S}$ S/PART
PAPER 3000 SHEETS 8" x $12^{\prime \prime}$ S/PART
VIDEO MONITORS
12" BLACK AND WHITE VIDEO MONITOR 9" BLACK AND WHITE VIDEO MONITOR 9" HIGH RESOLUTION BLACK AND WHITE VIDEO MONITOR
VIDEO MONITOR
CABLE FOR VIDEO MONITOR

Spring in San Francisco from $£ 440$

Fnjoy a two-centre holiday in sunny California, 1-9 April, 1981

 just in time for the 6th West Coast Computer Faire.Lounge on Santa Monica beach, visit the first ever computer store or maybe even take a peek at Hollywood. Follow this with a few days in San Francisco visiting the Computer Faire and possibly pop down El Camino Real to Silicon Valley.

All this, and much more can be yours if you take actvantage of Meridian Tours" special offer to PCW readers, details of which are now being finalised.

Three holidays are planned, each of which ensures that you are in San Francisco for the duration of the Faire, which must be the biggest micro-dedicated show in the world. The first holidiay comprises one night in Los Angeles at the first-class Sheraton Airamar at Santa Monica Beach followed by six nights in San Francisco at the Civic Centre Holiday Inn, just round the comer from the Faire. The second holiday provides the chance to spend three nights in Los Angeles and four in San Francisco while the third allows you to 'do your own thing' for a week following one of the above holidays, simply retuming to base for the journey home.

The holiday price includes all flights, hotel accommodation, supervised transfers between airports and hotels, entrance to the Eaire, a copy of the conference proceedings and compulsory insurance. The cost does not include transport to and from Catwick, meals abroad or additional accommodation for those wishing to stay an extra week.

Car hire can be arranged at special rates by Meridian before departure and special excursions may be booked with their local representatives while abroad

Having said all that, this promises to become quite an event in the PCW year; it's bound to be fun - even for those who aren't too interested in computers. They can make the most of San Francisco with its Golden Cate Bridge, cable cars, Chinatown, Fisherman's Wharf - not to mention a more recent phenomenon, lobby watching in the Hyatt Regency.
For further information and a bouking forn write to West Coast Thip, PCW, 14 Rathbone Place, London WIP 1DE.

This holiday is being organised by Meridian Tours Midlands Ltd who are bonded tour operators (Air Tour Operator's Licence No. 700B)

CTUK! Sutton-in-Ashfield is up and running. Its first night attracted between 80 and 150 people

By any account it's a wonderful start - congratu lations to you all.

Eleven computers were made available - five Atoms, two Sinclairs, a UK 101, a 6800 an Apple and a Sharp - and people of all ages and from all walks of life came along to join in the fun. The pre-launch publicity was a bit haphazard - a poster in the library put up the previous day, a (very) brief mention on Radio Trent and, probably most successfully, word of mouth.

With a dab of Superglue and a couple of strong brackets the Sutton organisers have installed an Atom in the library, permanently available for anyone on the list of 'authorised' users Training sessions are being run by a pair of 15 -yearolds Chris Holloway and Darren Flint

Phil Stone, a director of local firm, Intercom, brought along the office Apple and drew a large audience by running 'Lemonade Stand' and with demonstrations of his stock system.

Shortly after the event we were sent clippings from four local papers plus a note from the librarian
'The suggestion of staging a ComputerTown UK! publicity evening, plus the feature of having a computer permanently on show in Sutton-inAshfield library, sounded very attractive - we like to think of the library as a progressive establishment and are always anxious to encourage events and unusual activities which will bring people through our doors. It would also help to change the rather dowdy image that libraries seem to project. It was obvious that an event like this would have the greatest appeal to teenagers who, as far as libraries are concerned, are the most difficult group to recruit as users.
'Thursday was chosen, as our least busy evening, for the main computer demonstration and the machines were set up in a public area just inside the main doors. This proved an immense draw and the area was hectically busy all evening. I would have reservations about staging anything on this scale again in a public area, since it could have easily detracted

ComputerTown UK is a nationwide network of voluntary computer literary centres.
from our main purpose book supply. To move it to a non-public area would, I suppose, have ruined the object of the exercise, which is to bring computers to the general public.
'The Atom which is now permanently available within the library has had heavy usage, particularly at lunch time and during the evening, with youngsters who are qualified to operate it demon strating it to, and training, others. The library staff have very little involvement other than in giving a tape and a manual to people whose names are listed as "approved" users. Having watched this exercise with some interest, there do appear to me to be some slight drawbacks - some of the approved users are using the machine for purely selfish reasons and make no attempt to train others. Also, some are hogging the machine and not allowing others a chance to try their skills. On the whole, however, the experiment has been a great success and I am very pleased that the library has taken part in it."

So there we have it - the librarian's story. I'm sure that it would help to show this issue of CTUK! News to any librarian thinking of giving support to CTUK! The problems mentioned those of hogging machines and not hel ping others should be fairly easy to overcome - in Menlo Park library they maintain a \log of machine use. In busy periods people sign on for half-hour slots and for that half hour they can do what they like with the machine but at the end of the time they must hand over to the next person on the list. Up to two additional people can sign on for the same slot if they want to watch or maybe they do some sort of deal with the person who booked as prime user. Often people would rather watch others fooling around than miss out completely. 'Validation' sessions, as they are called in America, take place at set times and comprise an hour of formal teaching. In this way, the body of approved users keeps growing (and the pressure for machine time)

A number of lessons have been learned at Sutton The ones not mentioned so far are:

- On an introductory evening, restrict the number of programs being run to one per machine This is your only hope of getting a newcomer off the machine because, if you keep changing the programs,
(s) he'll be there all night. - Don't start off as big as Sutton.

Knock up a booklist for the librarian. If the books are available this will draw in new readers like nobody's business.

- When training people, make sure that is the trainee and not the trainer who is actually at the keyboard

There is a definite need for some 'this is a computer and this is how it works' type of software - any offers?

Now for the rest of the news. We've had several letters from people interested in starting local ComputerTowns, including some from those in the business who feel that they'd like to make machines and premises available to the project. The first is from Mike Baker who is setting up an Ealing ComputerTown He has already hooked the interest of his borough librarian and is to see him in a day or two - unfortunately we will have gone to press before we hear how Mike got on.

The next letter comes from the Ohio Scientific UK User Group. Tom Graves writes to say that he plans to use the Wordsmith premises (they print the OSI newsletter among other things) and, with support from Mutek's Dave Graham and Steve Hanlan from Beaver Systems, they will be starting their CTUK! in Street, Somerset. They tell us that the local Currys manager has also shown interest and.said that he would try to enthuse Currys' Bristol computer department. Already Tom has a C2, a C3 and one, or possibly two C1 systems At the moment the main requirement is for volunteers because they won't be able to start running the project until mid-January. Any one interested, regardless of machine loyalty, please contact Tom on Street (0458) 45359.

Edward Teague expects to open CTUK! Romiley soon. His phone number is 061 4307255

P J Colmer wants to start a CTUK! in the Salisbury area. He is a fifth-form student and at the moment doesn't have a computer. He and his friends are willing to put in the effort in Salisbury - is there anyone out there who'd like to join in? All letters direct to 'Ivanho', Woodgreen, Ford ingbridge, Hampshire, or telephone Breamore 551.

Euan Fyfe writes from Chiswick to offer his services. We have put him on to

Malcolm and Jo who are also in Chiswick. We look forward to hearing things from you soon.

Mr Jefferson of Piercebridge, Darlington already makes his PET available to children at his remedial teaching school but in the Christmas holidays he plans to try it out on the village children as well. We suspect you may have just started a Piercebridge ComputerTown, Mr Jefferson. Anyone interested write to 19 The Green, Piercebridge.

COMICS sounds like a ready-made ComputerTown. In fact in Newcastle they are in the process of setting up a computer literacy charity called 'Interface'. Anyone in Tyneside who'd like to join in please contact Pete Rowan, 10 Lambton Road, Newcastle Newcastle-upon-Tyne, NE2 4RX.

Robert Clifford is anxious to start a group in the South Benfleet area. We've put him onto the SE Essex computer club but anyone else interested should write to Robert at 52 Woodham Road, South Benfleet, Essex, SS7 5DG.

Andy Fenner is an enthusiastic newcomer to computing. He'd like to help with a ComputerTown in the Ilford area. Anyone out there thinking of starting a
ComputerTown shoula contact Andy at 47 Kingsley Road, Berkingside, Ilford, Essex.

Martin Kennelly reckons the ComputerTown idea is 'the greatest' and he's getting cracking on a group in the Allestree, Derby area. He's about to buy a Tandy and he reckons the local church will make room for him. Anyone wanting to join in the fun should contact Martin on Derby (0332) 550408 or write to 18 Welwyn Avenut, Allestree, Derby, DE3 2JQ

Our thanks to all those people mentioned who seem so keen to make CTUK! a reality.

Finally some good news from ComputerTown, USA! which has been awarded a grant from the National Science Foundation $\$ 224,000$. . DOI please note!

And that about wraps up the news for this month Keep writing in with details of your local CTUK! activi ties and don't forget - we aim to cover the country with ComputerTowns so we still need several thousand more volunteers. Write to ComputerTown UK! 14 Rathbone Place, London W1P 1DE. Please don't phone the $P C W$ offices because we run CTUK! in our spare time

PCW welcomes correspondence from its readers but we must warn that it tends to be one way! Please be as brief as possible and add "not for publication" if your letter is to be kept private. Please note that we are unable to give advice about the purchase of computers or other hardware/software - these questions must be addressed to Sheridan Williams (see 'Computer Answers' page). Address letters to: 'Communications', Personal Computer World, 14 Rathbone Place, London W1P 1DE.

Interesting ideas

While I enjoy reading the reviews of the more elaborate equipment coming on the market, I should like to see Benchtest reviews or some such thing on the popular machines that have been around for a bit. Prices, the competition and your style of review have all changed so how about doing the Apple, PET, TRS -80 , etc, again? I should also like to see an indepth appraisal of the stringy floppy type of storage system compared to disk units, some of which now seem to be available for not much more than the floppy tape systems.
Peter Tootill, Liverpool
Thanks for your suggestions. You'll be pleased to hear that we ve already started work on the first one -Ed.

Wanted-
 programmers

The letter from Terry Rigby (November 1980) on the MZ-80K he won last year, contained the remark, 'I wonder how many people like me have a computer but don't have a real application.' As head of a university department I have the opposite problem; ie, a fair number of problems which would benefit from the use of computers but neither the time nor the money to do so.

For example, in our department we have a number of small computers (Olivetti, Apple, Nascom, Sharp) and access to the university mainframe computer (Vax) but are hard pressed for time to develop (a) special input/output devices for these, and (b) programs both to run these devices and for other purposes.

If it is indeed correct that there is a pool of skilled builders/programmers of computers in this country, I would like to suggest that we (and others like us) would be most happy to cooperate
with them to find a use for this talent. Would you, or one of your readers, like to organise this?
Prof J F Lamb, Head of Department of Physiology \& Pharmacology, St Andrews University, Fife. Anyone interested write direct to Professor Lamb at the above address - Ed.

Bouquets and brickbats

Thanks for an interesting publication. I appreciate particularly:

Your impressive array of specialists. Your publication is one of very few (in my experience) which appears to seek out an expert to cover each separate topic - right from assembler level programming to 'Chip Chat' with all the meaty coverage of hardware and software in between.

The appearance of "Transaction File' indicates to me a real interest in the reader. Most publications concentrate on projecting their advertisers' and potential advertisers' images to 'best' effect and, while I can understand that this is, to most people, 'good' business sense, I find that your clear wish to provide a useful and informative publication shows through on every page. This more than any other single feature makes $P C W$ my favourite computer publication.

I hope you will continue to publish 'Computer Answers' or its equivalent. It is most useful in helping me keep abreast of the real state of the technology, ie the truth behind the glossy advertisements. Not just the Skeleton in the cupboard, but the frequent pleasant surprises which some products reveal through Sheridan's page. I'm also pleased to see his insistence on finding experts to answer readers' queries.

One comment I have on some micros - why is it that some manufacturers bow to the convention of 'Qwerty' configuration keyboards and then promptly make it almost unusable by non-standard
key positioning? I will be the first to applaud the introduction of a faster keyboard layout but until then let's have the proper 'Qwerty' layout with standard keyspacing and inclination. Michael Bews, Liverpool

Mjdkf llkdirhcci hfihfn jh jhd qoypid! -Ed

New technogoly

You will be glad to hear that $P C W$ is not the only perpetrator of Bludners. Ms London recently headed its recruitment section thus:

T J Grant, Bushey Heath, Herts

ACC lives

I would like to apologise to Mr Bendall (November PCW) on behalf of the ACC for the lack of communication with my predecessors. The ACC is alive and kicking, having awakened from a somewhat dormant period. I would also like to answer the queries he raised in his letter, point by point:

1. Firstly, I would like to thank him for his various articles for Accumulator, the newsletter, none of which have reached the current editor (Derek Fordred). If he would care to send any future articles to either Derek or myself I will endeavour to ensure that they are acknowledged/published; 2. The ACC year $79 / 80$ was extended to cover the period to September 80 and hence to include issue 6 of the newsletter. The current year 80/81 started 1 October 80 and ends on 30 September 81. The current rate of subscription is $£ 3.50$ per volume; however this is to be increased to $£ 4.50$ per volume of Accumulator
(subject to ratification at the EGM, 15 December, Conway Hall). Further details of membership and membership forms are available from the membership secretary Jim MacDonald (send an SAE please);
2. Last year's membership actually exceeded 1500 ; 4. The AGM was duly notified to the members in the last issue (issue 6) of Accumulator, and was held on 9 October 80 ; 5 . The new executive committee is: Chairman, Peter Whittle; Gen Secretary, Phil Warn; Treasurer, Alan Secker; Membership Sec, Jim MacDonald (1 Carlton Court, Studley Grange Rd, London W7 2LU); Newsletter Editor, Derek Fordred (72 Mill Rd, Hawley, Dartford, Kent); 6 . The $80 / 81$ editions of Accumulator will be published in November, January, March, May, July and September.

The ACC does not charge an excess for overseas members (however, as you can well appreciate, even surface postage is considerably more expensive to destinations outside the UK). Peter Whittle, Chairman, ACC

Microwriter reply

As you have undoubtedly learned to expect, no matter how favourably you treat an in ventor's brainchild, his parental expectation for unstinted praise always exceeds the objective evaluator's supply of favourable adjectives. With this in mind, may I first thank you for nice things you have written about the Microwriter and then comment on some of the slight negatives.

First - not terribly im. portant - the 'Memory Full' does not crash the machine, even in this software version, although you correctly point out that our updated program, which is on line and should be available very soon, will improve this routine and practically every other limitation y ou mention. For your present information, however, when you fill the memory and are so informed
by the display, you can come back to the text point simply by pressing 'Control-H'.

But I most regret your comments on pricing of the Microwriter and comparison to the Tandy price. Yes, your point about mass production is true but notwithstanding, the omission in your logic of your comparison is the fact that we provide our customers with much higherpriced CMOS components, which make the Microwriter fully portable.

I emphasize the point on price because there is nothing quite like the term 'overpriced' to chase away potential customers - and that's the basis of our survival, isn't it?
Cy Endfield, Microwriter Ltd

Quickie reply

If the version of Basic on the Ohio Superboard is similar to that of the CBM then here's an answer to the "Ohio Quickie' in October's PCW.
$\operatorname{PEEK}(\mathrm{S})=49$ is a logical expression which delivers true (-1) or false (0). Thus $\mathrm{V}=\mathrm{PEEK}(\mathrm{S})=49$ means $V=(\operatorname{PEEK}(S)=49)$. This is quite obvious on the Algoltype languages which use := for assignment and = for relations
U P Cheah, Walsall

Time-sharing hobbyist
 I have read $P C W$ ever since

 the first issue, and have always found the articles excellent. However, I have one complaint. You have never given a thought to the computer enthusiasts like myself. I do not own a micro. Quite honestly I cannot ever see a time when I will own one. I have instead for many years bought time from various time-sharing systems - in some instances the organisation whom I had asked about buying time has allowed me free access to their system, albeit limited to certain times of the day and usually all day Sunday, which for an enthusiast like myself is ideal. I must admit that my user number has usually had a low priority code attached to it and I have usually been limited to 100 pages of memory but it gives me all the power I can use.Surely there are others like myself who have had the 'good fortune' not to have been caught up in the microrevolution but are still
involved in computing as a hobby. I would appreciate any contact with kindred spirits.

One minor difficulty caused in part by the home computer is the sudden and dramatic increase in the cost of second-user terminals. Not many years ago it was possible to pick up terminals for $£ 50-100$. Now the similar equipment is on sale for £300-400.
P H Charlton, Hull, North Humberside

101 clear-up

The following subroutine may be of interest to any UK101 owners who, like myself, have been looking for an easy way of clearing the screen (ie, without entering a whole string of numbers in DATA statements):
1000 POKE 129,255:POKE 130,211
1010 POKE 131,255:POKE 130,211
$1020 \mathrm{~A} \$=$ "sixteen spaces" $1030 \mathrm{~A} \$=\mathrm{A} \$+\mathrm{A} \$+\mathrm{A} \mathbf{S}+\mathrm{A} \boldsymbol{\$}+$ $A S+A S+A S+A S+A S+$ A $\$+\mathrm{A}$,
1040 RETURN
Vince Early, Orpington

Buying blues

There is no doubt that the small computers currently available on the UK market represent good value for money. It is a pity that the selling of such advanced technology has more in common with the 19 th than the 20th century.

As a prospective purchaser of a small computer, I have been, as they say, investigating the market. Mail order has caused several acquaintances near heart attacks and big telephone bills; terms like 'rip-off' and 'swindle' have been used. Many firms launch advertising campaigns long before they are in a position to deliver; one hears of power supplies (rather essential!) being three months in the coming when the computer (and its guarantee) arrive within a week or two. And why, in this area of digital devices, cannot your advertisers add VAT, postage and packing, and all those little extras that are needed to run the machine? £150 announces one - actually nearer $£ 200$ is needed to obtain the machine.

I decided to avoid these problems by attempting to buy a machine in a shop and set off for the Edgware Road. I needn't have bothered. Not
only is almost everythingout of stock but little interest is shown in the customer. In one shop I observed a gentleman performing prodigious feats on a small machine for at least ten minutes before fortuitously discovering he was a sales assistant. No one asked whether I wanted anything and I left without the slightest notice being taken of my presence. Curiously enough they did have a small machine I might have been interested in, but no matter By comparison, buying hi-fi in the Tottenham Court Road is a positive pleasure.

Colleagues in the business advise me to wait a while or forever?
Professor J C Marsden, Tunbridge Wells, Kent'

Anti-UST

While writing a program for a small local firm I was asked to write a program which couldn't be listed - only RUN. At the time I was using an Ohio Superboard and I found that an amendment to the pointers used by the LIST routine did the trick. The first line points to the address of the next line and so on. So, by zeroising this first pointer, only line one will be listed. The program will still work since these pointers are not used when the program is run.

As the lowest line number on a Superboard is $0, I$ suggest that you put a REM statement in at this position. A POKE 769,0 will zeroise the pointer, while POKE 769,7 will restore it.

Users of other machines should be able to use this method - it's simply a case of finding out where programs are stored in memory and studying the first few bytes for the pointer. B Mistry, Bradford
Those with PETs may get some useful tips from the 'Get Well Soon' article later in this issue $-E d$.

Squire's squawk

Poor old Commodore. No fewer than four separate digs at them in your November issue.

There has been much cause for criticism in the past but the interesting point is that the company has been making huge efforts to remedy these problems.

Printout's postbag provides a pretty good barometer of Commodore's performance. The number of letters of complaint received during the last couple of months has declined sharply. These days even their documentation is readable.

Credit where credit is due might encourage some of the other manufacturers to put their houses in order. Julian Allason, Printout

That's funny. Kit Spencer rang us to say almost the same thing -Ed.

A Toady trick

I fear that Trevor Lusty may have been paid more than his due for his program in your November issue; he has used the old PET programmer's trick of increasing the printer line feed length to make a program look longer. Compared with another PET program in the same issue, Mr Lusty's is $11 / 2$ times the length. Well, I suppose that will teach you to dig at his native publication with almost unsolvable anagrams. David Boreham, Fife

Sharp crash

Regarding R L Tucker's query (PCW Nov '80) about why his MZ-80K occasionally crashes when LIMIT MAX is used, Sharp's reply seems a trifle coy.

There is, in fact, a bug in Sharp's cassette Basic Interpreter. When the internal clock is set using the TIS function part of memory used by the LIMIT MAX command is overwritten. So this is a likely problem on an y cassette-based MZ-80K.

How to overcome it? Surely Sharp didn't suggest GOTO 1200, which the Monitor will simply ignore. The instruction is GOTO \$1200. A misprint perhaps? In any event, a 'cold Hart' is 'cold comfort' to anyone wishing to reset maximum memory while retaining an existing program. My sugges tion to R L Tucker and other others experiencing this problem is to forget about MAX, determine the top of memory value for your particular configuration and use that value with the LIMIT command instead. For a 24 k RAM machine the value is 28672 (4k monitor +24 k RAM $=28 \mathrm{k}$ or 28672 bytes) and in this case the command is LIMIT 28672.

It works for me everytime. E W Hare, Haslemere

25 Ways to use VISICALC Software on CBM/PET or Apple

1. A Birmingham sales rep. uses VisiCalc to do his sales reports, sales summaries and expense accounts.
2. A farmer in Wiltshire compares budgeted and actual expenditúre, analyzes transactions and solves numerous other business problems.
3. A Louisiana shipyard manager does inventory pricing, cost estimating, and stability and tonnage calculations
4. A City financial analyst, who computes and prints trust fund reports for his clients, says, "VisiCalc is paying for itself over and over again. An excellent money maker.'
5. A California real estate and financial planner automated much of his work with VisiCalc's powerful features. For example, he has created an array of 13 certificates of deposit with varying base amounts, term periods, and interest rates, with associated calculations for required "breakeven" terms and interest rates when current date and available money market rates are entered. Penalties for early withdrawal are applied and gain/loss shown if proceeds reinvested. Daily compounding of interest is provided for
6. A ceramic tile manufacturer has "new applications all the time," including costing model, budget preparation, ceramic empirical formula calculations and financial analysis. Says, "VisiCalc is dynamite."
7. The financial director of a Newcastle company does his budgeting and plarining.
8. A professional translator using VisiCalc for cost/profitability comparisons, budgeting and income tax, says VisiCalc is the "best microcomputer application program I've ever seen."
9. A chemical research scientist keeps weekly budget planning, tax records (income and deductions), medical expenses and personal inventory.
'10. An Australian manufacturing firm manager's uses include factory production reports, labour costing, calculation of recent price increases, and "a race horse selection program that is yet onlv moderately successful."
10. A Swiss retail food store manager uses VisiCalc for profit centre calculations, enabling him to know the net profit of every store on a monthly basis with the in put of only three reference numbers.
11. A life insurance agent, who already prepares client proposals combining insurance and other investments and quotations on small group plans, says, "I can't wait until I really learn how to use VisiCalc - it's outstanding.'
12. A Norwich company secretary appreciates VisiCalc's "ease of use" while doing corporate budgeting, sales forecasts, production forecasts, financial report analysis and ratios, and construction cost analysis.
13. A London management consultant's uses include analysing key financial ratios and balance of business planning and modelling business performance, and management training.
14. An electrical engineer does his business plans, balance sheets, cash flow analysis and sales forecasts. Says he likes VisiCalc's "protection from errors and mistakes."
15. An Oregon medical laboratory director does his workload calculations and space forecasting.
16. A New York finance manager does balance sheet forecasting and keeps a five-vear income statement.
17. A Surrey teacher likes the built-in formula calculations when doing statistical research, charts, football statistics, classroom marking and home budget projections.
18. An anesthesiologist calculates gas flows on anesthesia equipment, plus a running record of income tax, pending orders and com puter hardware and software expenditures.
19. An executive of a major management consultancy explains how they had used an expensive time-sharing service which tied up a programmer/analyst to create and run the models, so there was always someone between their needs and the final results. "We attempted to duplicate what we had at the service bureau and surprised ourselves that we could do it easily and without specialised programming skills. Now we have evolved far more sophisticated forecasting and modelling tools that go well beyond enything we originally envisaged. These analyses are used by us on behalf of our clients or prospective clients and they help us get more business."
20. A Manchester optician took the hand calculations out of his budgets and sales projections.
21. A senior financial analyst does his balance sheet financial analysis (ratios, rates, yields, etc.) and financial modelling such as profit plans.
22. The president of a New York retail business is using VisiCalc to figure out how he can pay for his personal computer. (He should talk to the guy mentioned in number 4!!
23. The ro-owner of a Nuneaton restaurant calculates food costs, bar costs and total operation cost projections.
24. A Massachusetts student is crunching numbers at Harvard Business School with VisiCalc....straight to the head of the class.

£125+VAT

VisiCalc is the award winning program from Personal Software. It handles mathematical and financial forecasting - and solves just about any problem that can be represented in tabular form. Try it at your nearest PET or Apple dealer or send for your copy direct from:

Radclyffe House, 66/68 Hagley Road, Edgbaston, Birmingham B16 8PF. Tel. 021-455-8585 Telex 339396
PET is the trademark of Commodore Systems. Apple is the trademark of Apple Computers.

Lyn Antill builds and tests an all-British system.

The idea of the Tuscan is stunning you start off with a kit costing less than $£ 200$ and keep building it up until you have a full size 64 k , twin disk, S100, CP/M machine. The improvements can cost as little or as much as you want to pay at any one time - from $£ 10$ or less for a couple of extra RAM chips to $£ 350$ for a disk controller and one drive. The finished machine has a very professional appearance and the specification looks good, too. You can stop off at several
different stages in the building process and have considerable choice as to the eventual configuration.

Transam developed the idea after evaluation of its previous computer kit - the Triton - which is a multiboard system. One of the novel features of the Tuscan is that the 8 k Basic system is accommodated on one board, which also holds slots for up to five additional S100 boards, all of which will fit into the one case. The 8 k Basic board holds four Basic ROMs,

8 k of user RAM, the processing logic and the video logic.

You can, in fact, have a smaller system than the 8 k Basic, because Tuscan will work on a $2 k$ Monitor ROM (called Mitsi) with 1 k of RAM. This is suitable for such applications as process control. You don't even need to buy a keyboard if you can borrow a terminal to plug into the board while you're programming it. Several colleagues of mine have made the kits to control laboratory equipment; unfortunately none of them has, to my knowledge, succeeded in designing the interface to the equipment, so I can't yet comment on the Tuscan in this role.

A route up from the Basic, or a more expensive alternative to it, is the 32 k resident Pascal system. This is another novel idea and the Pascal looks very good. (Transam wrote the TCL Pascal for the PET.) Program storage could still be on cassette. Programming teachers dream of the day when Pascal takes over from today's Basic; perhaps the Tuscan is a further step in realising that dream.

If you don't want resident Pascal, you can just go the whole way to a disk system, possibly starting off with just one disk while you save up for the other. To do this you need at least 32 k of memory, a disk controller and one or two disk drives. The cabinet has room for two $51 / 4 i n$ disk drives, or a separate drive is available for twin 8 in disks. Printer connections are provided, and if you want a graphics terminal this can be arranged with an appropriate memory-mapped video control card.

Building the minimum system

The assembled and tested version only costs an extra $£ 40$, so don't bother reading this section unless you relish the prospect of soldering (and much head-scratching when things don't work first time).
To place my comments in context, I must point out that I had never held a soldering iron before, let alone used one on a computer, nor did I know anything about electronics or microcomputer hardware or logic. My object in building the kit was partly educational - as a teacher of com. puter studies, I wanted to know what went on inside a computer and this seemed a good way of finding out. It also seemed like a cheap way of getting a computer for myself. I knew I could never go out and write a cheque for $£ 1500$, which was the absolute minimum for the sort of system I wanted, but this way I could buy a bit at a time.

Sue Eisenbach had seen the Tuscan kits while they were still in the design stage and thought that they would form a suitable basis for a 'Build your own Micro' course - which she duly
set up. So it was that a mixed group of scientists gathered together in the physics lab and got to work, with advice from two electronics experts. Transam said that the kits took six hours to build, so we doubled that, allowed a bit extra for tea-breaks and interruptions and a bit more for sorting out mistakes, and set aside three days for the course. This was a mistake. We spent the whole three days soldering, working out what all those little things that looked like sweets were and whether we had all the right ones, squabbling about who'd pinched whose soldering iron, and muttering darkly about incomprehensible manuals.

We should have all taken home a copy of the Hardware Manual the week before so that we could have worked out in advance what it was that we were supposed to be doing and what equipment we might need.

Working on the board was great fun but we all found the power supply downright frustrating. I would certainly recommend buying that ready-made as the saving is minimal. We didn't really know which gauge of wire to use. If we'd been able to do our sums, we should have been able to work it out but it would have been nice to be told. A fourth day was spent fiddling around, going back to Transam for extra pieces of ribbon cable, etc, checking each other's work and moving the bits we'd soldered into the wrong holes! Even at the end of this time several people hadn't completed their power supplies or connected things like keyboards.

Then came the agony! It was time to try the boards out. There are two problems in dealing with a board as large as this: several people found it awkward to handle and were concerned lest they crack it and lose all their money's worth, or at least that components put in earlier would take too much of a battering as later ones were dealt with. (The manual does indicate what order to do things in.) The other problem occurred to us as we queued up to use the one monitor - you can't check the work as you go along! From some there were cries of ecstasy as the welcome Mitsi message appeared, while others groaned as a strange tartan pattern came up. (This is an initialisation error caused by things like setting the Power On Jump switch or the System switch incorrectly.) I kept quiet, as my board showed no signs of life whatsoever.

The manual gives no real clues as to where to start looking for faults. It's a case of looking at all 101 sockets and the components slotted into them for bent pins and faulty soldering, for ICs inserted the wrong way round and for any items that might have been misplaced. Another week of careful checking went by before it was decided that four of the boards had faults on them, one of which turned out to be a bent pin after all. Transam admitted it had had faults with the first batch of boards but was able to put ours right within a week. (And that was before it knew I was doing the Benchtest, just in case you're suspicious!)

The housing for the Tuscan (and the Triton) is expensive at $£ 85$. Our

Tuscan's case hinges open neatly to show the motherboard with its five S100 slots
engineers were convinced that the board and power supply could probably be fitted into a much cheaper home-made box by anyone with access to metal-working or plastics moulding facilities. But they admitted that the size, strength and shape required for holding the keyboard and disks as well, and for supporting the TV or monitor screen, could not easily be provided for less. And, anyway, it is handsome

Fitting the board into the case ought to be straightforward, but the documentation completely overlooks the fact that some of us don't even know what a dipole switch is, or how to connect coaxial cable or the wires to the tape-recorder. The guys at Transam were always very helpful answering my questions. Perhaps when enough other people have asked such questions, they will put all the answers into an expanded manual.

Another thing to bear in mind when assembling a kit is that you have to specify every single thing you want to buy, down to the last nut and bolt. This probably means that you will be making several visits to Transam for the bits you've forgotten, or having a
long chat with the salesmen about what you're going to need for the application you have in mind. Also, nuts and bolts and sockets and wires may not be expensive in themselves but they do tend to add up, and so does VAT at 15 percent.

Hardware

As well as my own system, with 8 k and resident Basic, Transam provided a system with twin $51 / 4 \mathrm{in}$ disks. It also markets a Centronics printer in matching trim.

The Tuscan is based on an 18 by 11 in single board. The case provided by Transam is 24 in deep by 18 in wide by 8 in high. It is metal with a white, textured finish and has a good, solid feel to it. It is quite big and heavy; too deep, in fact, to sit comfortably on my desk

The CPU is a Z80A which will run at 2 MHz or 4 MHz . Most of the machines are currently being set up to run at 2 MHz because the faster 2516 EPROMs are difficult to obtain. A complete system at 4 MHz would only cost about $£ 100$ more. The board can hold up to 8 k of ROM and 8 k of RAM. A total of 64 k memory can be ac-
commodated, with the top 8 k being ROM and the rest RAM. Static or dynamic RAM cards can be added to make up the 48 k extra.

The video logic on the board gives a screen size of 16 lines of 64 characters. This is not memory-mapped, although there is a line buffer. The EPROM character generator provides 128 characters including upper and lower case letters and 32 'blobby' graphics characters. This can be re-programmed to give a user-defined character set. Output is to a monitor or, via a UHF modulator, to a domestic TV set. The clarity of the characters left something to be desired on my 6 in portable TV but they were fine on Transam's 9 in monitor. The onboard video works at $1200 \mathrm{chs} /$ second. There is a 'wrap around' effect on the screen which you are warned about in the manual. This is normally only encountered when the cursor is flashing at the extreme left of the screen and results in a flashing point at the extreme right.

Transam is working on a system with output to a colour monitor. Other I/O facilities are: RS232 serial in/out switch selectable up to 4.8 kbaud; 8-bit parallel input port; 8-bit parallel output port; software and hardware selection of I/O devices; eight levels of vectored interrupts; and spare uncommitted ports for user definition.

The disk drives are Shugart SA400 or SA800 compatible, using IBM format soft-sectored single or double density disks. Up to four disk drives may be used which can be either $51 / 4$ in or 8in or any combination.

Two keyboards are available to fit into the case, one of which has a numeric keyboard and cursor keys. The smaller, $56-$ key keyboard, which is only anchored at its four corners, bends a bit as you strike the keys, although I understand that there is a standard cradle that can be fitted to support it if it is likely to get too much of a pounding. The 71-key board is perfectly trim. My own machine - and another new one I tried out - developed keyboard faults as it warmed up. Characters appeared on the screen when the keys had not been touched, or failed to appear when the key was struck. This may have been caused by key sticking, or, as Transam suggests, be due to a faulty batch of keyboards from the suppliers. I have seen several different machines in use which had perfectly adequate keyboards, including the Benchtest machine which took a goód hammering, so the problem is obviously not inherent.

If you are going to use a machine with resident Basic or Pascal, then you will need a cassette on which to store programs. Transam doesn't supply a specific cassette player to go with their systems, or even any of the wires, although they will give advice on buying and interfacing a cassette player of your own. They are hoping to make use of stringy floppies in the near future.

Software

There is an 8 k Basic available in ROM, a 10 k disk Basic, a 32 k resident Pascal (with the first 8 k in ROM) and a disk

Pascal. These are all TCL's own software. Once you have built the full CP / M system, then you should be able to take your pick of all the CP / M software, although Transam hasn't got anything running yet. (Some CP/M programs rely on memory mapping, which isn't available with the on-board video but requires a separate video card.)

Basic

The 10 k disk Basic is intended to be a superset of the 8 k resident Basic with additional commands for handling disk files.

I was a bit surprised when the IN. PUT statement on the resident Basic jumped up to the top left-hand corner of the screen each time and over-wrote whatever was there, including its own '?' prompt. I forgot to ask Transam whether this was intended, but it had me worried until I realised that it should be preceeded by CLS which clears the screen. This doesn't happen on the disk Basic. Spacing of input and output can be done quite nicely with TAB and SPC, and the '?' prompt can be replaced with one of your own choosing for any INPUT statement, making for a sensible dialogue with the user.

The Basic is fairly standard with a good range of mathematical functions. It has a precision of $6^{1 / 2}$ digits, allowing for rounding of the last digit. There are no matrix manipulations per se, although multidimensional arrays (up to 256 dimensions!) are permitted, always provided there is enough memory. I ran out of space using three dimensions with anything larger than DIM $\mathrm{M}(9,9,9)$, and DIM $\mathrm{M}(4,4,4,4)$ was the largest four-dimensional array 1 could manage, but I was only using a 32 k system. To use string arrays of more than 50 characters, it is necessary to CLEAR space for it early on in the program.

Long names are permitted for variables, although only the first two characters are treated as significant. Upper and lower case letters are interchangeable in variables and in commands. Tuscan has a neat way of storing the Basic without any spaces and putting them back in again when it lists the program. This is done to save storage space without reducing program readability. The manual gives a long list of ways to avoid wasting space, including that particular trick which is anathema to teachers of programming - avoiding REM statements. Unless you are programming entirely for your own amusement, when lost time and faulty programs cost nothing, then it is cheaper to buy more memory than to waste time struggling through a long program with no REMs.

Good string handling instructions are provided: you can pick any number of characters from the beginning, middle or end of a string, or find out whether a particular smaller string is present within it. A SWAP statement swaps the contents of one variable with another, or one string with another. This is very handy when sorting.

I ran into two problems with the file handling, both of which Transam's programmer was able to sort out for me. The first one was that I got a

DATA ERROR when I tried to read records which contained both strings and variables. This was resolved by putting a ',' between each data item as it was written to the record, just as one would when typing several items on the screen at once. As a writer of commercial programs I was delighted to see ROPEN, RGET and RPUT to open a file for random access, get records from it and write records to it, eg, RGET $1,15, A \$$ will get the 15 th record on the file on channel 1 and place it in As. Unfortunately, a copying error in my disk caused it to hang on ROPEN. The master disk in Transam's workshops did this perfectly but I wasn't able to try out the random files as well as I would have liked - file handling is central to most of my programs.

One very nice feature of TCL Basic is the amount of work that can be done in command mode. DIR is available from Basic, files can be opened and closed, and you can use it in calculator mode, eg, PRINT $(274 / 47.5+43 * 0.75)$ will work out the answer and print it on the screen. It is also possible to CALL one program from another. This enables one to create libraries of useful routines.

Pascal

Unfortunately I didn't get-a chance to use the Pascal, but the description in the manual of the facilities it offers looks very promising and TCL Pascal certainly enjoys a good reputation.

Packages

There aren't any yet, although Word master and Wordstar are being worked on and others are in the pipeline.

Documentation

The hardware manual is critical for anyone building their own system. It has been written by and for people who know what they are doing. The level at which the explanations should be pitched is obviously difficult to determine - if it sounds too easy you'll skip what you ought to be reading and if it's not easy enough you'll get lost.

I had expected to find the in structions for making the board to be the most difficult but in fact they were the clearest. Perhaps the writer was aware that this was likely to pro. vide the greatest difficulty and had taken extra care. The instructions for the power supply were sketchier but this didn't concern the physicists in our group, who worked straight from the wiring diagram: although I was able to understand what they were

Benchmark timings

These are for the slower 2 MHz ver sion of Tuscan rather than the 4 MHz , which should have given correspondingly better results. (All timings in seconds.)

BM1	2.3
BM2	13
BM3	26
BM4	27
BM5	32
BM6	48
BM7	68
BM8	6

Almarc + Vector Graphic The complete partnership in Micro computers

System 2800.

* S-100 bus
* Switch-selectable asynchronous baud rates between 110 and 9600 bits/second.
* Vector-3 console chassis with 12-inch CRT
($18^{\prime \prime} \mathrm{W} \times 121_{2}^{\prime \prime} H \times 21^{\prime \prime} \mathrm{D}$)
* Capacitance Keyboard 6 slot motherboard and power supply.
* Z-80 based single board tomputer with 1 sefirial port, 38 BIT paraliel ports, 3 PROM slots, and

1K RAM. Flashwriter II. Video board, 64K dynamic memory board and disc controller. DUALSTOR enclosure with two 8 -inch double density disc drives, total disc storage capacity 2.4 mbytes.

* Version 4 extended systems monitor on PROM, Vector CP/M2.2. SCOPE. Screen Oriented Program Editor, full screen dynamic simulating debugger, ZSM Z-80 assembler, Microsoft. BASIC-80Release 5.

System 'B' \quad * 18 Slot Motherboard.

* 64 K Bank Selectable Ram
(56 K available to user).
* 3 Serial Ports, 2 Paraliel Ports.
* Twin Disc Drives, 630K Capacity.
* Z-80 CPU, with Fast 4MHZ Clock.
* Interrupt Handling on 1/0 Board.
* Vector Mindless Terminal.
* Flashwriter II Video Board (24×80). * CP/M2.2 Operating System. Plus Microsoft Version 5 BASIC, SCOPE Screen Oriented Program Editor, Full screen dynamic simulating debugger, ZSMZ-80 Assembler.

At Almarc Data Systems, when you buy Vector Graphic Micro-Computers, you are assured of Almarc's experience of over 430 systems installed throughout the U.K. - plus their back-up offull service facilities carried out by experienced staff.

Almarc are Specialists in Vector Graphic equipment which includes MicroComputers for research, laboratory work, word
processing, business systems, schools, colleges, universities and industry. Plus an ever growing list of compatible software including Pascal, Fortran, Cobol, APL, Algol, Basic Compiler and others.

We will be pleased to demonstrate how Almarc + Vector Graphic Systems equates to The Complete Partnership in Micro-
Computers.
doing, I would never have had the confidence to do it that way myself. The instructions for the UHF modulator appear to be wrong - at least the way I read them, which I did several times until the salesman suggested I try it the other way round. The keyboard connections were easy to follow but I despair of ever connecting my tape recorder (it's probably one of those things

At a glance

FIRST IMPRESSIONS	
Looks	$* * * * *$
Setting up	$* * * * *$
Ease of use	
LANGUAGES	$* * * *$
System Software	$* * * *$
Basic	N/A
Packages	
PERFORMANCE	$* * *$
Processor	not reviewed
Cassette	$* * *$
Disk	
COMPATABILITY	$* * *$
Hardware	$* * *$
Software	$* * *$
DOCUMENTATION	$* * * *$
VALUE FOR MONEY	

***** excellent, **** V. good, *** good, ** fair * poor
which is easy when you know how but I don't). The user-definable ports are left entirely to your own imagination. Of course they could be used in a great variety of ways but it would help if the manual gave you some idea of the sort of information that could be fed down them and what the machine could be expected to do with it, what instructions could be used to interpret it, etc.

The 'How it Works' section is for experts only. How many users are really likely to know the significance of such a pin being high or low? Many will, but there will also be many who won't but would like some enlighten ment on the subject.

The only documentation I can com pare this with is Heathkit, who charges considerably more for its manuals (and its kits, come to that) but which are very much more detailed and much easier for the non expert to follow. Perhaps Transam should investigate the market for such an 'Idiot's Guide'.

I shouldn't have had any difficulty with the Assembler language section for five years of my life I wrote all my programs in Assembler and converted them myself into hex - but I didn't actually get any Assembler programs going. Those of my colleagues using the minimum Tuscans for process control are going to need a much fuller guide to Assembler programming than this. My first Assembler manual for a system little bigger than this occupied

PRINT	TO	STEP	TAB	DEF
CLS	OR	AND		END
DATA	XOR	+	@	GOSUB
EDIT	*	1	ASC	INPUT
FOR	<	$=$	CHR\$	LIST
GET	FN	PI	HEXS	LET
IF	SPC(COS	LEN	OUT
LINE	ATN	FRE	RND	RUN
NEXT	EXP	INT	SQR	REM
ON	INP	PEEK	VAL	STOP
RETURN	LOG	SIN	MID\$	SCR
READ	SGN	TAN	>	WIDTH
SWAP	STR\$	RIGHT\$	< $=$	ELSE
TRACE	LEFTS	STRING\$	$>=$	
NOT	INSTR	AUTO	>	
CALL	THEN	LPRINT	<>	
DUMP	VDU	LOAD	REST	
ERASE	CLEAR	OFF	RAND	
GOTO	DIM	POKE	SAVE	
The following additional commands are in the disk Basic				
GET \# INPUT \# LINE INPUT \# PRINT \# CREATE OPEN	CLOSE RENAME			
	RGET			
	RPUT			
	DELETE			

[^3]a complete volume and told you every thing you needed to know about every instruction.

Resident Basic is described in the general software manual and there is a separate volume for disk Basic. These are on a par with most people's Basic manuals, ie, they are brief and presuppose a knowledge of the language, meaning I can never find the instruction I'm looking for. I am not complaining about this manual in particular but about micro manuals in general. They always look as though they were put together in a hurry (which they probably were) but never seem to get tidied up even after the first rush of new products has settled down a bit.

The Pascal manual is a pleasing exception, written as an introduction to the language as well as a manual and providing plenty of examples of the instructions as used in programs. I suppose Transam worked on the assumption that most people will already be familiar with the hardware and with Basic but that most will be coming fresh to Pascal and will therefore need more help.

Potentialuse

This machine is aimed at anyone who wants to start small and work up. The 8 k Basic system is roughly comparable in price and performance with the 8 k PET but lacks its compactness and the convenience of the built-in screen and cassette. The twin disk system is again broadly comparable in price and performance with, say, the Superbrain, but again lacks the built-in screen Where the Tuscan scores is on its versatility - starting with something almost at the bottom end of the market and going up almost to the top. I wonder when Transam is going to bring out a multi-user Tuscan?

I would imagine that three separate types would be interested in the kits electronics wizards who just like building things, engineers and scientists who want to control laboratory equipment and people with limited finances and great expectations. Prominent in this last group would seem to me to be school teachers They are likely to have access to equipment such as voltmeters and would benefit, as I did, from the knowledge of computers gained by making one. However, I do feel that such people would need more help from the documentation.

TCL Pascal is something of a pacemaker. Will the micro user be jolted out of his Basic mentality? The resident Pascal system could be just the thing to do this. Certainly there are many of us who believe that good, reliable, portable packages will not really be achieved, at least not at the right price and in the right quantity, until they can be written in Pascal. Basic is too muddly and one version differs too much from another.

Prices

The best thing about Tuscan prices is that they keep going down - in last summer's price list, 48 k of dynamic RAM was $£ 398$ and now it is $£ 285$! A remarkable reduction by any

GOTO page 134

PRINTERS

This is an update (not a replacement) of the printer survey we published in last August's $P C W$. Since that time, a number of new machines have appeared and we've included as many of these which a) have come to our notice and b) we've been able to get details of.

One encouraging trend is that prices seem to be dropping all the time, particularly at the lower end of the market, which is good news for the home/small business user.
For a while now we've been moaning about the disproportionately high cost of printers compared to that of mechanical typewriters (which contain several hundred expensive-to-make moving parts).
At last, though, prices are beginning to reflect the relative simplicity of some printers - Centronics, for example, has just dropped the prices of its 730 and 737 models (see August) to $£ 375$ and $£ 425$ respectively.

Daisy wheel printers are also getting cheaper. The Ricoh RP1600, for example, is now available from at least one shop for $£ 900$ retail, compared to its $£ 1300+$ price tag of mid-1980. And if you're prepared to sacrifice speed, you can get even cheaper daisywheels but be warned - the 17 characters per second printing speed of these low-cost machines can seem painfully slow if you're doing a lot of printing!

Finally, a new market is beginning to appear in the form of 'intelligent' electronic typewriters with computer interfaces. These can be used off-line as a normal typewriter or on-line as a letterquality printer or even as a
terminal.

Model
Print mechanism type
Line or character

Speed cps \quad Max	

Lines/min $\quad \frac{\text { Min }}{}$
\quad Min

	13
Characters/inch	hother

Lines/inch
Proportional spacing
Bidirectional printing
Justification
Multiple copies
Ballistic head
Matrix format
Change print size
Change type font
No. in character set
Headlife (million chrs)
Descenders
Underlining

| $\begin{array}{l}\text { Ribbon life } \\ \text { (million chrs) }\end{array} \quad$normal |
| :--- | :--- |

Mobius loop type?

Graphics
Bidirectional movement
Pin feed
Tractors

Dual tractor	
Paper widths	Min

Sheet feeder
Paper cutter

Serial interface
Max baud rate

Buffer \quad| Opt. |
| :---: |

Parallel interface
Parallel transfer rate (ch/sec)
Self-test
VFU
Switchable forms length
Punched tape
8 Channel cartridge
Electronic + No. channels
Paper-out sensor
Measurement in inches width $\frac{\operatorname{lepth}^{\text {deight }}}{}$
Approx weight (lbs)
Cost
Key

Key Dot Matrix	PH Print Head
DW Daisy Wheel	P Pressure Sensitive
DW D Drum	E Electro Sensitive
DR Drum Wheel	TH Thernal
SW Spin	
GB Golf Ball	* Half Space Facility
CM Comb	\square Optional
CH Chain	\square

DW Daisy Wheel
DR Drum
GB Golf Ball
CH Chain

Standard

Access Data
 Communications

 (0895) 30831Adler Business
Systems
01-6868344

ADC	ADC
1251	2401
DM	DM
Both	CR
125	240
70	

P80	P360	P250
DM	DW	DM
CR	CR	CR
80	17	250

120	198	
$10 / 12$	10	$10 / 12 / 15$
6	6	$6 / 8$

-

7×9	7 or 9×9
96	96

96	100	96
100		300
2		2

0.5	1.6
$21 / 2$	4
$10^{1 / 2}$	$15^{1 / 2}$

19,200	19,200
$2,8 \mathrm{k}$	
750	10 k

$91 / 2$	15.5	
9600		19,200
		2
256		0.5 k
16.3	20	24
10	13	17.7
6	5.5	8.27
15	26	50
$£ 450$	$£ 650$	$£ 1300$

GB Golf Ball
CM Comb

60 PCW

Model		Mannes- man Tally 0734 580141	Pertec (0734)			Qume (0734) 584646	Roxburgh 07973377	
		TZ200 Q	P80	P360	P250	Sprint 3/45	8480C-FF	8480C-TF
Print mechanism type		DM	DM	DW	DM	DW	DM	DM
Line or character		L	CR	CR	CR	CR	CR	CR
Speed cps	Max		80		250		100	100
	Min			17		45		
Lines/min	Max	200			100			
	Min	125	52					
Characters/line	80							
	132							
	other		120 opt	158/198	158/198			
Cháracters/inch	horizontal	10	10	10/12/15	10/12/15	10/12	10	10
Lines/inch vertical		6/8	6	6	6/8	6/8	6/8/12	6/8/12
Proportional spacing								
Bidirectional printing								
Justification								
Multiple copies		6	4	6	6		2	2
Ballistic head								
Matrix format		$\begin{aligned} & 7 \times 8,7 \times 10 \\ & 5 \times 7,5 \times 9 \end{aligned}$	7×9		7×9		9×7	9×7
Change print size								
Change type font							PROM	PROM
No. in character set		96	96	100	96	96	224	224
Headlife (million chrs)			100	50	100	20	100	100
Desceriders								
Underlining								
Ribbon life (million chrs)	normal	12	2	3.5	2	0.2	2	2
	carbon							
Mobius loop type?								
Graphics								
Bidirectional movement								
Pin feed								
Tractors								
Dual tractor								
Paper widths	Min	4						2.5
	Max	15	10	15.5	15.75	15	10	10
Friction feed								
Sheet feeder								
Paper cutter							Te a r	r
Serial interface								
Max baud rate		9600	9600		19,200		4800	4800
Buffer	Opt.	1k			2k			
	Fixed		256	1 k	512		80	80
Parallel interface								
Parallel transfer rate (ch/sec)		100k						
Self-test								
VFU								
Switchable forms length								
Punched tape								
8 Channel cartridge								
Electronic + No. channels								
Paper-out sensor								
Measurement in inches width		28	16.3	21	24	22.5		
$\frac{\text { depth }}{\text { height }}$		24.5	10.2	13	18	13.5		
		11	6	5.5	8.3	7		
Approx weight (lbs)		110	16	29	55	28	19	21
Cost		n/a	$£ 478$	£666	$£ 1311$	\$1900	£253	£280
Key: DM Dot Matrix PH Print Head DW Daisy Wheel P Pressure Sensitive DR Drum E Electro Sensitive SW Spin Wheel TH Thermal GB Golf Ball * Half Space Facility CM Comb Optional CH Chain Standard							Both available in March 1981	

In the microcomputerjungt The Sharp MZ80 system now with

Since its introduction, the Sharp MZ-80 system has proved to be one of the most versatile systems in the micro jungle, for commerce, industry and enthusiasts alike.

Now the MZ-80 Computer system has even more versatility thanks to $C P / M,{ }^{(12)}$ giving greater adaptability to face the future. After all look what happened to the Dinosaur.

The MZ-80 system
is made up of the MZ-80K
computer with the powerful Z-80 microprocessor.
MZ-80FD Floppy Disc storage unit, now with
CP/M ${ }^{\text {(ww }}$ for even greater versatility.
MZ-80P3 dot printer producing ultra Sharp print out copy.

urvival depends on adaptability: PP/M has even greater versatility.

Your Sharp Microcomputer Dealers

BERKSHIRE
BCG SHOP EQUIPMENTLTD. READINC. TEL: 073454015
NEWBERCOMPUTINGSTORE LTD
TELEWBURY. 063530505 BUCKINGHAMSHIRE

CHESHIRE
CHESHIRE
CASHREGISTER SERVICES. CHESTER TEL: 0244317549
FLETCHERWORTHINGTONITD. HALE. TEL O61-9288928 FLETCHER WORTHINGTONLTD. HALE TEL O61-9288928 STOCKPORT TEL: 061-491 2290
CIEVELAND
EL: 0642 COMPUTER SERVICES LTD - STOCKTON
DEVON BCG SHOPEQUIPMENTLTD PAIGNTON - TEL:080355771
PETER SCOTT (EXETER)LTD. EXETER . TEL: EXETER 73309
DORSET
OUTHCOAST BUSINESS M/CS. FERNDOWN. DORSET
ESSEX PROROLELTD WESTCLIFFE ON SEA . TEL: 0702335298 GLOUCESTER

SE SHOP EQUIPMENT LTD
ANC
B\& B (COMPUTERS) LTD • BOLTON - TEL: 020426644
MUCRODIGITAL LTD LIVERPOOL.TEL: OS1-2272535
UMITAELECTRONICSLTD. PRESTON. TE: 077255065 TEL: O61-2283502 SOUND SERVICES BURNLEY. TE: 028238481
LEICESTERSHIRE ILBERT COMPUTERS LUBENHAM - TEL: O85865894 INCOLNSHIRE
HOWES ELECT. \& AUTOM SERVS. WASHINGBOROUGH
LONDON
CONDON
C.S.S. BUSINESS EOUIPT LTO-LONDON • E8
TEL: OT-836 1176

CENTRAL CALCULATORS LTD-LONDON - EC2
PIGTIALDESICN \& DEVELOPMENT. LONDON.WI
URO-CALCLTO LONDONE.C. TEL: 01-7294555
EURO-CALC LTD.LONDONW.C. 1 . TEL: Oi-405 3113 JAXRESTLTD LONDONEC1 TEL:O-103 1809
ION COMP UTER SHOPS LTD LONDON W. 1.
PERSONAL COMPUTERS LTD. LONDON. TEL: O .6268121 COPE LONDON EC2M 4HX. TEL-O1- 2478506
UMLOCK BONDAIN LTD-LONDON ECIROAA
TEL: $09-2532447$ SIDEO SERVICES 8 BROMLEV TEL:01-4608833 CREAM COMPUTER SHOP. HARROW. TEL: $03-3800833$ NORFOLK TEL: 060326259
NORTHAMPTONSHIRE NOTTINGHAMSHIRE
KEEN COMPUTERS. NOTTINGHAM. TEL:0602 583254 TEL: 062326610
OXEN
MODES SCIENTIFIC CONSULTANCY OXFORD
TEL: 086545172
SALOP SOMERSET NORSET OFFICE
TEL 0934742184
SUFFOLK
MICROTEK - IPSWICH - TEL 04735015 SURREY
ETAL ECT ELECTRONIC SERVICES
WOKING TEL: O486269032
ROYOON . TEL: 01.6841134
BARNES CONSULTANTS GUILDFORD
WALLINGTON TEL: 016699483

T\& V JOHNSON (MICROCOMPUTERS) - CAMBERLEY
SUSSEX M HOFFICEEQUIPMENT. BRIGHTON. TEL:0273697231
TYNE \& WEAR
M.S. LTD SUNDERLAND - TEL: 0783480009

WALES
CITMADIO. CARDIFF TEL:O222 28169
SIGMA SYSTEMSLTD. CARDIFF TEL: 022221515
WEST MIOLANOS
TEL:O21.-7738240 ESS. LTD BIRMINGHAM. TEL:O21-2333045 AEWREARCOMPUTING STORELTD -IRMINGHAM POINTCRAFT. BIRMINGHAM - TEL: 021-233 2325 YORKSHIRE DATRONINTERFORMLTD. SHEFFIELD - TEL: 0742585490 BITS \& P.C.S. WETHERBY. W YORKSHIRE TEL: 093763744 SCOTLAND
A \& GNIGHT. ABERDEEN. TEL: 0224630526
BUSINESS \&ELECTRONICM/CS EDINGURGH
TEL O31. 2265454
FORTRONIC ITD DUNFERMLINE. TEL 0383823121 TRATHAND LTD GLA NORTHERNIRELAND

FAST 49440
ETREMORROWS WORLD LTD - DUBLIN 2
TEL: 00001776861
ISLE OF MAN
DELTASYSTEMS LTD DOUGLAS TEL: 06244586
COMPUTER
APPLCATIONS

Find out today what a Sharp Microcomputer will do for you.

Coriojoiticer BINDERS KEEPERS LOSERSWEEPERS

Half the people you meet today are not preoccupied with pollution, perversion or persecution. It's worse than that - they've lost a copy or two of PCW and don't know where to find replacements.

So keep your copies of PCW in a beautiful bright yellow binder. $£ 2.95$ worth of smart security.
Just check the coupon at the foot of the page.

One of the nicest applications of microelectronics is to the problems of the handicapped. For the first time in history the blind can 'see', the deaf can 'hear' and the mute.can 'speak'. Here is one example of such an aid. Julia Howlett reports.

Joanne is five years old and a severe spastic - she's unable to speak or make controlled movements, which poses many problems for a bright youngster, both at school and at play. Until February this year Joanne's main means of communication was by eye movement, pointing at symbols, which she manages very successfully and at great speed. She was also at that time just learning to use a switch-operated typewriter called POSSUM. The input to a POSSUM can be varied according to the type of disability and in Joanne's case, I think, she was using two buttons in the beginning.

Since February, Joanne has been the proud user of another device, called MAVIS (Microcomputer-based Audio/ Visual Information System). This is a specially-designed personal computer, developed at the National Physical Laboratory in conjunction with Loughborough University, under the guidance of the late Dr Chris Evans, and funded by BP. Trials so far have been very successful and all the prototypes currently under test have been built to full production specification. Joanne is one of those taking part in these field trials.

MAVIS was designed to enable the development of handicapped children through both formal education and through play. Until recently Joanne has used the system mainly for play, manipulating colours on the attached TV screen and making tunes with the builtin music function. As her skills develop, she'll be able to have a go at drawing and take part in computer games with the rest of her family.

Joanne's formal schooling began in
autumn 1980 and to prepare for this her teachers were given instruction in the system's use. MAVIS enables her to achieve a greater degree of independent communication than was ever possible using the eye-pointing method. Joanne manipulates a switch rather like a windscreen wiper to select from coloured symbols displayed on the TV screen and for the first time in her life she finds that she can scribble and 'turn' the pages of a book. Th is sort of activity is very encouraging for Joanne and gives her the motivation to explore the system further. Who knows - there's no reason why MAVIS shouldn't be used to send electronic signals to any device capable of acting on them. Remote control of moving toys seems like an ideal application for a child like this. The possibilities are clearly endless.

One of the good things about MAVIS is that it doesn't need a computer specialist hovering around. Mums and dads, teachers and kids are all able to use it with very little training. At the same time there's no reason why someone who's interested shouldn't write their own programs, thus widening the potential still further. Standard offerings are word processing, games, music facilities, environmental remote control, switch control and wordstore typing packages. Since parents and teachers are not always willing or able to prepare software packages, the aim is to give the user maximum independence by providing these prewritten packages. The system is easily portable (thank goodness for micros!), providing the maximum continuity between Joanne's home and school environments. In effect this is Jo's electronic exercise
book and is both simple and enjoyable to operate.

Another MAVIS system has been installed at Banstead Place assessment centre, which caters for several disabled school leavers who are experiencing difficulties in going on to further education or employment. Banstead uses the system for a variety of purposes including assessment, in which the screen equivalent of a form can be filled in by students who would be unable to do this in any other way without help. It is used in teaching both literacy and numeracy as well as specific topics such as the Highway Code. Since television has been the main source of out of school entertainment, the arrival of MAVIS has been something of a welcome relief since it offers the opportunity to play games and really communicate with each other.

Results coming in from these trials are being used to influence future MAVIS developments and will be of great benefit when planning the use of computers for the disabled. These devices will become a fundamental part of the lives of disabled people around the world, being used at home, at work and in their recreational activities. And Jo, with her parents, is a pioneer in these new techniques. Watching her progress will reveal vital information in the struggle of all disabled people to achieve independence and minimise their frustration.

If you know of an area in which microelectronics could be used to help the disabled, turn to page 71 for details of an essay competition in which you could win $£ 100$.

Cambridge
Cambridge Computer Stores
1 Emmanuel SI, CB 1 INE
Tel: 022368155
Cornwall
Benchmark Computer
Systems Lid
Tremena Manor
Tremena Road
St Austell, PL25 5GG
Tel:0726610000
Dublin
Lendac Data Systems Lid
8 Dawson St
Tel:000 1372052
Glasgow
Byteshop Computerland Lto
Magnet House
1 Waterloo St G2 $78 P$
Tel: 0412217409

Leeds

Holdene Ltd
Manchester Unity House
11/12 Rampart Road
Wood: 053245945
London
Byteshop Computerland Lid
48 Tottenham Court Road.
W1854TD
Tel: 016360647
Digitus
9 Macklin Street
Covent Garden WC2
Tel: 014056761
Jarrogate
67 Tulsemere Road
West Norwood,
ondon SE17
Tel: 01-670 3674
Manchester
Byteshop Computerland Lit
11 Gateway House
Piccadilly Station Approach
Tel: 0612364737
NSC Computers
29 Hanging Ditch
Tel: 0618322269
Newbury
Newbear Compuring Store
40 Bartholomew
Tel: 063530505
Nottingham
Byteshop Computerland Lid
$92 A$ Upper Parliament S
NG1 6LF
Tel: 060240576
Shetfield
Hallam Computer Systems 451 Eccleshall Road. S 119 PN Tel:0742663125
Southampton
Xitan Systems
23 Cumberland Place.
SO12BB
Tel: 070338740
Sudbury
Eurotec Consultants
Hotbrook Hall
Little Waldingford
Tel: 0206262319

Warwicks

Business \& Leisure
Microcomputers
16 The Squar
Kenilworth

Watford

Lux Computer Services
108 The Parade
High Street
Tel: 092329513
Comar Microcomputer dealers are located strategically
throughout the country to give
support, guidance and
assistance. In the event of
difficulty contact Comart direct.

comart communicator

The clean simplicity outside...

...conceals the pedigree inside.

Comart'sCP100 Communicator is the new British designed, British made Microcomputer from Comart. It is the result of a carefully conceived development programme. It exploits Comart's first hand experience of the British computer market, and their growing strength as a manufacturer.

CP100 is the first of a new generation of flexible, expandable micros specifically developed to suit British operating conditions and communication requirements.

The clean lines outside, conceal the power within; its $\mathrm{S}-100$ bus means wide ranging peripheral support, and simple after sales care. And, that's not all. Communicator is built to keep your future options open. It's ready for Prestel, asynchronous, and synchronous operation. It has expandable memory capability and yet it's price competitive as a stand-alone system with its CP/M ${ }^{T M}$ operating system, and support software.

Find out more about Communicator today.

Unique in concept-the home computer that grows as you do! The Acorn Atom
 Special features include * FULL SIZED KEYBOARD * ASSEMBLER AND BASIC * TOP QUALITY MOULDED CASE * HIGH RESOLUTION COLOUR GRAPHICS*

 The picture shows mixed graphics and characters in three colours

 The Acorn Atom is a definitive personal computer. Simple to build, simple to operate.

เที่

เที่

 A powerful, full facility computer with all the features you would expect.Just connect the assembled computer to any domestic TV and power source and you are ready to begin. (Power requirement: 8 V at 800 mA). There is an ATOM power unit available - see the coupon below.

Free with every ATOM, kit or built, is a computer manual. The first section explains and teaches you BASIC, the language that most personal computers and the ATOM operate in. The instructions are simple and learning quickly becomes a pleasure. You'll soon be writing your own programs. The second section is a reference

The ATOM modular concept The ATOM has been designed to grow with you. As you build confidence and knowledge you can add more components. For instance the next stage might be to increase the ROM and RAM on the basic ATOM from $8 \mathrm{~K}+2 \mathrm{~K}$ to $12 \mathrm{~K}+12 \mathrm{~K}$ respectively. This will give you a direct printer drive, floating point mathematics, scientific and trigonometric functions, high resolution graphics.
From there you can expand indefinitely. Acorn have produced an enormous range of compatible PCB's which can be added to your original computer. For instance: - A module to give red, green and blue colour signals Teletext VDU card (for Prestel and Ceefax information) An in-board connector for a communications loop interface - any number of ATOMs may be linked to each other or to a master system with mass storage/hard copy facility Floppy disk controller card. For details of these and other additions write to the address below. ACORN
COMPUER ${ }_{\text {4a Market Hill, }}$ CAMBRGE CB2 3 NJ

Your ACORN ATOM may qualify as a business expense. To order complete the coupon below and post to Acorn Computer for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied. All components are guaranteed with full service/repair facility available.

We've made it....

A 315 K Disk Unit to Plug Directly Into Your Sorcerer for only $£ 599.00$ Complete

* 315K Formatted Storage
\star Up to Three Add-On Drives * Micropolis Drive Mechanism \star Complete and Ready to Run
* ASK YOUR DEALER FOR A DEMONSTRATION

Contact Geoff Wilkinson
for further information.
Telephone: (0736) 798157
LIVEPORT

So far in her series about installing a microcomputer in a business, Lyn Antill has described the lengthy but very necessary decision-making processes which you should go through before even looking at actual computers. This month, Lyn discusses the next decision-making stage - finding the computer which
best suits your application.

As I pointed out at the end of the previous article, you cannot isolate the choice of the machine from the choice of the software that operates on it. The two are complementary - only the complete computer system can solve your problems. Having said this, however, I shall be dealing with the two separately, partly for reasons of space but partly also because the micro and the software may be coming from different sources.

Background material

Now, it goes without saying that you've been reading all the $P C W$ Benchtests and if you've succeeded in digesting all that material then you probably feel like a walking encyclopaedia on the subject of microcomputer hardware. Or do you? Perhaps you actually feel more confused than ever. The very fact that a Benchtest tries to answer everybody's questions makes it less likely that it will give a full answer to the questions you are asking. It's possible that you don't agree with all the answers. Even if the reviewer likes the documentation, for example, it doesn't necessarily mean that you will. Again, reviews are written soon after the machines make their first appearance and there are often teething troubles which are later ironed out, giving the impression that the machine is less reliable than it turns out to be in practice.

Reviews of machines won't tell you what you should buy but they do have several useful functions:

- they introduce you to what's on the market;
- they highlight some of the good and bad features;
- they give an indication of the sorts of questions that should be asked;
- they contain factual information about the machines and the suppliers.

Other people's machines

There's nothing quite like seeing a thing working to decide whether or not you like it. Of course, with a micro we come back to the problem of distinguishing between what is specific to the machine
and what to the program, but some things can be clearly distinguished. If you don't like certain messages that appear on the screen, then that is the fault of the program, as it is when calculations are not done to your liking, or files kept quite as you want them. Other features are obviously those of the machine - the amount of noise it makes, its size, portability, robustness and physical appearance.

For other features, the causes may not be so obvious. A program may appear to be slow and for this there is a variety of possible causes - a slow machine, inefficient programming, inefficient language (Basic programs are slower than programs in compiled languages, such as Cobol), slow VDU, or it may just be that the program is doing lots of things you didn't know about. (The converse is true of many demonstration programs which are doing very little that is not immediately apparent on the screen, thus appearing very quick and efficient.) Many machines come with the screen built-in and so you are stuck with what's offered, but others can be attached to a variety of terminals - in which case, don't judge the quality of the micro by the VDU, and vice versa.

Another thing that can only be assessed on a working machine is the keyboard and anyone who spends a lot of time at a keyboard is very fussy about the feel of the keys and their layout. For example, some of the terminals at the Polytechnic where I work have the 'Break' button very close to the 'Return' and students are continually disconnecting themselves because their finger slipped. Silly things like this can lead to great irritation and time-wasting.

Good features on a keyboard, like function keys and cursor control, are only good if your program uses them. CAP-CPP, for example, writes for a very wide range of machines, so its programs ignore features such as these as it cannot rely on any particular machine having them, or using them in the same' way. The same is true of many bought programs. So don't be carried away by the salesman's raptures - ask to see how you yourself will be able to make use of any special features and decide if that
usefulness is worth the extra price. If the keyboard will be used by someone else (eg your secretary), then let him/her make the decision.

If someone else likes - or dislikes their machine, this does not oblige you to agree with them. For instance, at the Polytechnic we've recently bought some Ithacas and we have all been struck by the same feature - the row of switches and flashing lights. The computer scientists were ecstatic, and I was horrified. Now I don't want to say that the Ithaca is either good or bad, merely that different people look for different things and that the sort of non-computer business people I work with do not usually want to be reminded that the nice little black box that does the accounts is actually a computer.

Microshops

The marvellous thing about micros, as opposed to any other sort of computer, is that you can just go into a shop and look at them. So make sure you do just that! Have a good look, chat to the salesman, collect all the free sales literature you can. You can only make a good choice if you know what is available and who you like to deal with.

There are two extremes of reaction to avoid. Either the thought of having to computerise is so awful, or you are so shy, that you can't face the thought of having to go through the door more than once and, afraid to ask too many questions, you take the first system that appears to do the job. Or else you are so enthralled by the first system you see that you never ask whether there is anything else that can do the job better or cheaper. Just remember that it is your money you are parting with, for the hardware and the software, and even more for the time it takes to get your own work set up and running on the new machine. Your time and effort won't appear on any bill but it could be the greatest cost of all.

In London we have a wealth of micro shops - no doubt this is true of other large cities - but not everyone is so fortunate. At the $P C W$ show I met a businessman from the Channel Islands who was sure he would be buying a PET simply because they were the only machines offered on his island. It was
only a short flight to the Apple dealer but if the computer went wrong at the start of a foggy spell his business would grind to a halt because the serviceman would not be able to fly over. Still, if he only knew what other shops were offering he would be able to keep his PET dealer up to the mark and would know what he could reasonably expect of him in terms of delivery, support, etc.

Talking to salesmen

We all know the caricature of the salesman - fast talking, only interested in taking your cash, telling you all the good things you didn't want to know and ignoring all the bad things you did, or trying to bulldoze you into buying something you don't know you want. Sue Eisenbach tells the story of a time she went to collect a machine for a Benchtest and was having a very interesting conversation with the guy in the shop when she happened to mention that she wanted to buy some equipment. Instantly he went into 'sales mode', stopped talking to her as an intelligent human being and went into his standard patter, even forgetting to mention that the machine he was offering her wasn't even working properly!

Of course, not all salesmen are like this. I know some who are super really trying to find out their customers' needs and provide the best equipment, advice and support. These are the ones who stay in business.

But even the best salesman cannot meet your requirements if he doesn't understand them, which is why you should have armed yourself with your list of user requirements, constraints and ideas for potential solutions. Explain these as concisely as you can, using a 'top down' approach - eg, 'Hello, I'm thinking of buying a computer system.' Well, you might have wanted to buy some blank cassettes or to complain about something.
'I run a motor accessories shop which employs two assistants,' tells him that you want a business system rather than a computer game, and also the size of business he's catering for - you don't want a Sinclair, nor something with four terminals.
'I'm having trouble with stock control: we try to record every item that is sold so that we know what to reorder but often find items have been missed off the reorder list so that we are out of stock' - now he knows that you want a stock control system not a pay. roll, giving him an opening for discussing the way in which the system he offers could solve your problem.

If he says, 'I have the very thing here,' he probably hasn't - he still hasn't got enough information to go on. But even if he does say this, you have your list of volumes of transactions, information to be stored, reports to be produced, etc, so that you can ask in telligent questions about the system he is demonstrating.
'How many separate stock items can this record? What analysis of figures can it provide at the end of the day, month, etc?' As you go through the factual questions you will get some of the answers you need. You will also get clues to follow up - supplementary questions, things you weren't sure about, things you didn't like.

If he does go into 'sales mode' and starts reciting that well-rehearsed patter, what should you do about it? That rather depends on how naturally polite you are. Many people find it rather difficult to butt in, preferring to accord a speaker the courtesy of listening to the end, even if he is not telling quite what they wanted to hear. Others are sharp enough to be able to interrupt and get an immediate response, but most of us are likely to feel out-talked.

Perhaps one way of coping with this situation is to listen (after all, there is usually quite a lot of information put into the patter) and to make a mental list of all the things he is not telling you. We all do this to TV adverts: 'Most cats prefer. . . 'Prefer it to what?' we ask ourselves. Use this technique on the salesman. One can then politely enquire 'What about. ..?', giving him the chance either to fill in the gap in his patter, or to admit that perhaps the system left something to be desired in that respect, and offer some alternative.

Ideally, you want to see a demonstration of the program on the very machine you are being offered, but this is rarely possible. Only a limited number of demonstration machines can be set up in the shop and they will only have small data files. You will have to decide how different machines will fulfil your requirements. There's no easy way of doing this but be a little sceptical of bland assurances and try to make sure that your screen really will be brighter, your disks faster, your print clearer, or whatever.

What can a salesman tell you about a machine?

My technically-minded friends will probably answer 'Not very much!', because they are only thinking about technical information. There will be technical questions to be answered like 'Can this micro be interfaced with that VDU?' - and a technical expert or a manual will have to be consulted, but there are very important questions that only the salesman can answer:

- 'How much does it cost?' (including all the extras you will need to run the programs you had in mind).
'What is the delivery time?' - the time it's actually going to take, rather than the one they quote on the adverts. 'By the time you read this it will be in your shops,' usually implies that the advertiser thinks printing magazines is a very much slower business than it really is. Even when he points to a micro on the shelf, make sure that all the extras are there, too.
- 'What sort of guarantee do you offer?'
- 'What about maintenance contracts?' - 'Will your engineers install the machine for me and, if so, will there be a charge for this?'

Talking to engineers

This can be very difficult for the businessman - you don't know what questions to ask and, even if you do, you don't know what to make of the answers. My main problem has been that the engineer is primarily interested
in theory rather than practice. For example, if a businessman asks: 'Can this printer be used on that micro?' he actually means 'Is there a standard connector and do you have it in stock?' whereas the engineer is answering the question 'Could it be done?' and not thinking too much about whether he could find the time to work out the connection and wait for the required parts to be delivered.

The only real advice I can give (apart from continuing to increase your own technical knowledge by reading $P C W$) is to decide what questions you really want to have answered and to stick at it until you get answers.
'What is the mean time between failures of this product?' (ie, how long, on average, does this work before going wrong?). In fact, this is a difficult question to answer because so many of the products being sold are new on the market and there has not been time to gather such statistics.
'How long does it take to repair the most common faults on this product?' (including the time it takes the engineer to get there and to obtain spare parts if necessary).
'Is there a standard connection between the micro and this printer (VDU, disk drive, etc)?'
'Have you actually got this configuration working somewhere?'
The practical problems that arise when setting up a microcomputer system are frequently trivial and irritating and can be very timeconsuming both in engineer hours and in working hours lost on the micro. If your engineer already has this configuration working in a few other places, you know that he should be able to get yours up, too. This may well influence your choice of machine, if the advantage for you of having the thing up and running quickly outweighs the advantage of the updated version that your engineer hasn't tried yet (but is dying to have a chance to). If you are in this situation you may decide to be sceptical about his enthusiasm for the new product.

Don't let him blind you with science, but if he can put across technicalities in words you can understand, then listen.

The choice

This will depend on a lot of factors, including things like software, which we haven't discussed yet. It is not a choice that can be hurried because there is so much more involved than in buying, say, a car. A computer system is a composite of several pieces of hardware
and some software. The thing to do is make a list of all the possibilities, remembering to write down all the bits required for each one. This will serve as a checklist to make sure that nothing has been forgotten (there always seem to be more extras than you bargained for), to enable you to work out the cost of each option and to list its advantages and disadvantages.

You may find that one system stands out as the only real possibility but often there's not all that much to choose between them. In that case, don't agonise over which is the best one; go for the one you fancy, but not until you have read next month's article on Choosing Programs!

COMPEAHON

Modem microcomputer technology has many applications, but one where it has so far had little impact is in reducing the problems of disability.
To mark the designation by the United Nations of 1981 as "The Intemational Year of Disabled People", PCW, in conjunction with the IYDP Technology Working Group, is holding a competition for the best article on the subject:
"The application of micro-computer technology to the problems of disability".
There must be many possible applications for miciotechnology in the fields of physical and sensory disabilities - remember, these include handicaps such as deafness,
blindness, diabetes and epiepsy, as well as the more obvious physical impediments .

We are offering a prize of $£ 100$ for the best article of around 2,500 words, which can be either theoretical or a description of an actual application (with photographs, if possible), and which we will print in PCW later in the year.

Entries will be judged by PCW's Editor, David Tebbutt, and Adrian V Stokes, Chairman of the IYDP Technology Working Group. A third judge will be announced soon.
Please send your entry to IYDP Competition, 14 Rathbone Place, London W1P 1DE, to arive not later than 30 April 1981, enclosing a suitable SAE if you would like it retumed.

Corsonatiter

FRUSTRATED S100 USERS CAN NOW GIVE THEIR FLOPPIES A SLIGHIIY BETIER MENORY.

OUIDYOU BELIEVE

 40 MEGABYIES?MD10 is our new low cost cartridge disc controller. It completely eliminates the storage and back-up problems associated with floppy discs. It interfaces Sl00 micro computers with industry standard 10 Megabyte (5 Mb fixed, 5 Mb cartridge) disc drives.

By daisychaining up to 4 disc drives you can have no less than 40 Megabytes of fast, on-line storage

NO MORE BACKUP PROBLEMS

The limited storage capacity of floppy discs was recently solved with the introduction of the "Winchestertype" disc drive. But this introduced a new problem. backup...! The MD10 cartridge disc controller interfaces with 10 Megabyte capacity disc drives which combine a 5 Mb fixed disc and a 5 Mb industry standard (BM-5540 type) removable cartridge disc. Each disc is individually addressed and accessed. This means that all important programs and data files can be kept on the fixed disc and, when required, copy the whole disc onto the cartridge for security or backup purposes.

MD10,THE INTELIGENT...LOWCOST... CARTRIDGE DISC CONTROLLER

The MD10 contains an on-board 8085 process or, 1024 Bytes of random access memory and a bootstrap PROM which, depending on the operating system used, will enable any SlO micro computer to boot from the hard disc rather than from the floppy. Data is transferred at a rate of 2.5 million bits per second between the controller and the drive.

The controller accepts, interrupts and performs CRC error checking. Bus compatible, the Sl 00 transfers 8 -bit data between the CPU and the controller and serial data between the controller and the disc drive(s).

MD10 CONTROLLER FEATURES

* Designed and made in England
* EEE Sl00 bus standard * On-board 8085 CPU and RAM
* On-board bootstrap PROM
* Controls up to 410 Mb disc drives
* On-board error checking
* Fully tested and bumt in
* Low power consumption
* Supports many types of disc drive
* Complete documentation and software * 3 month warranty The 8085 CPU on the controller takes care of the data transfers between the Sl00 bus and the on-board RAM. The on-board 8085 allows normal processing to continue in between data transfers to and from the MD10 controller and disc drive. This is especially important for multi-user systems.

NEWTONS Laboratories now supply ex-stock complete subsystems consisting of the controller and 10 Mb AMPEX disc drive for $£ 3995$ (l-off end-user) including a rewritten BIOS for CP/M 2.2. The controller board alone costs $£ 600$ (l-off end-user). The disc drive alone costs $£ 3395$ (l-off end-user). Manual only £10. OEM and quantity discounts are available. Dealer and export enquiries (not USA) are invited.

MD10S100 CARTRIDGE DISC CONTROLLER

FOR BROCHURE
Name
Title
Company
Address.

Postcode

Telephone
ORDERS FOR MANUALS MUST BE PREPAID

111-113 Wandsworth High Street, London SW18 4JB. Tel: 01-874 6511 Telex: 21768 (NEWTON G)

Business before people

This month's Bookfare follows the computer industry's traditional equivalent of putting the cart before the horse. Books about the business come first and get more prominence than a book about the needs of computer users.

I have decided to adopt this approach because I feel the number of books under review about the business of computing (six) require enough space to do them justice (or injustice). I also feel that $P C W$ readers might perceive that books about choosing one's first computer or applications are more important than ones concerned with the psychological and sociological aspects of human/computer interaction. In the short term they are probably right, just as hobby freaks are right to take umbrage with my recent attacks on Basic.

I hope, however, that the long-term human and strategic aspects of computer development will eventually be given their due priority, after which disclaimer, here goes with a look at the six latest pillars of business computing wisdom.

A good place to start is with the facts. And there is one clear fact about the use of small computers in business - there is a lot of money involved. In probably the best in-depth study of the current state of microbusiness affairs in the UK, Microcomputer Systems in Business, edited by Derek Pedder for BIS Pedder Associates, provides a valuable insight into the product, market and usage trends of small systems in the UK. One startling statistic summarises the microcomputer boom: in 1976 there were 274 systems installed in the UK, valued at less than $£ 15,000$; at the end of 1979 there were 44,510 , which, according to other Pedder statistics, is over 50 percent more than the total number of installed computers over $£ 15,000$. By 1984, Pedder estimates there will be almost 400,000 microcomputers in the UK at an average growth rate of about 55 percent in the installed base.

In 1977 there were only 18 different types of computer under $£ 15,000$ installed in the UK; by 1979 there were at least 137 , with the variety of options continuing to grow at a rapid rate. As Pedder comments, 'If user choice has so far been a complex (or hit and miss!) task, it is likely to become even more so in the future.

With the value of the 1979
installed base something like $£ 115$ million, and likely sales in the next few years averaging at least £200 million, it is hardly surprising that new manufacturers and systems suppliers are being attracted like piranha fish to a crowded swimming pool.

Although microcomputers have been nourished by the domestic and hobbyist user, the target of systems suppliers is moving to business applications. According to the Pedder report, at the end of 1979 about 38 percent of installed microcomputers (17,000 systems) were used primarily for domestic and personal tasks. By 1984, however, Pedder expects that only about 6 percent (25,000 systems) will be in the domestic/hobby category (the survey does not include education as a separate category).

Even given that new cheapo packaged systems like the Sinclair ZX80 are giving a fresh boost to the home computer market, it is clear that suppliers will be placing increasing emphasis on the lucrative business market, particularly in manufacturing industry where the number of microcomputers in use is expected to grow from 4000 (9 percent) in 1979 to 150,000 (38 percent) in 1984 , and in professional and scientific services, where. over 87,000 new systems are expected to be sold.

These figures, like Pedder's book, are of prime interest to the computer suppliers, as an aid to their strategic planning. But their message is also of significance to all microcomputer users because they indicate the kind of marketing and systems development environment in which they will have to pick their way to find an appropriate business tool.

Pedder places the user point of view in context by identifying the suddenn ess of the business micro revolution: '1979 was the year the microcomputer market caught fire,' he points out. In addition to technological advances, an important catalyst was a growing awareness among potential users; the resultant fire is now spreading so rapidly that it is in danger of getting out of control. Manufacturers are having difficulty in satisfying the explosive demand at a time when skilled computing expertise is very thin on the ground.

The rate of market growth and shortage of experienced software staff mean, according to Pedder, that the widespread use of packaged application software is 'the only means by which the projected 1984 installation
figures can be achieved; neither investment nor programming manpower is available to achieve this degree of market penetration with bespoke applications for every user.

Yet, he observes, improve ments are needed in the reliability and convenience of packages if software does not prove to be a dampener on users and suppliers. He also points out that the micro market has 'spawned a variety of middlemen between the hardware or soft ware originator and the ultimate user' and that business strategies of manu facturers are in a constant state of flux

All this leaves the potential purchaser 'with a very difficult set of decisions to take' in selecting a system, with increasing importance being given to applications, software.

This is the cue to introduce two extremely useful and practical books aimed at facilitating the 'very difficult set of decisions' when selecting a system. Buying A Business Computer by Michael J L Turner covers the whole spectrum of choosing a new computer system, particularly if you are on your first trip into the computer minefield. Choosing Programs for Microcomputers by John Lane focuses on how to select applications programs for microcomputers and is based on a survey conducted by the National Computing Centre.

Both books adopt a 'checklist' approach to guiding the reader. As its foreword states, Lane's book 'is not a panacea, nor will it tell you which is the best system However, if followed, it will prompt you into asking questions, of yourself and your supplier, that will lead you into making a wise choice.' This is substantially true and could also be applied to Turner's book, although it should be pointed out that the necessarily generalised nature of the advice in such books means that a great deal of the 'wisdom' - or lack of it rests on the user's astuteness in applying general guidelines to particular requirements.

Tumer's book is aptly subtitled 'a systematic plan for computerisation', as it emphasises the importance of creating and implementing a coherent systems strategy, beginning with defining business objects and ending with the live switchover to the computer service.

Turner provides a great deal of commonsense advice, based on practical experience of helping users to become computerised. For example, he warns against building up
expectations that a computer which successfully handles one task, say purchase ledger, will automatically deliver other benefits of automation that may have been touted by salesmen.

Reducing administration costs, he says, may be the main reason for considering computerisation but it is 'rarely achieved'. A computer, however, is likely to help stabilise administration costs over a long-term period even if the workload increases.

He also warns that for some small businesses, the need for standardisation imposed by computers may be unacceptable.. Smaller companies, he says, often benefit from the fact that they can cater for the idiosyncratic requirements of each customer. Turner advises, 'When you investigate the feasibility of a computer system, all these individual requirements have to be identified; a conscious decision must be taken as to whether the business can stand the degree of standardi sation that will be required by the computer and what the cost of handling exceptions will be.

In addition to generalised but pertinent - advice like this, Turner also follows the process of computerisation step-by-step, punctuated by checklists, detailed examples of types of systems and procedures (such as a specimen invitation to tender) - all expressed in clear, basic English.

The main fault - and this is an almost universal failing of computing and systems people - is that Turner gives insufficient priority to the human factor, both in the systems design process and in the operation of the system. 'The general effects of a computer system on a company 's staff are fairly well understood,' he states But this is simply untrue:

As will be discussed later in the review of Human Interactions With Computers the human, sociological and organisational impact of computerisation is poorly understood. The impact on job design, staff satisfaction and motivation, industrial relations, etc, are only beginning to become accepted as an intrinsic and vital part of computerisation, although it is well known that many computers fail through lack of attention to the human factor.

Turner provides much good, sensible guidance on the systems side of computerisation -- the problems and the opportunities, the costs and potential benefits But he says little about human factors, such as the
best form of interactive dialogue and screen formatting from the human psychological point of view, machine ergonomics, and industrial relations consequences.

John Lane's Choosing
Programs for Microcomputers is also essentially a book about evaluating systems characteristics, with little about the human factors in the software. Nevertheless, it is valuable and useful and a good complement to
Turner's. In the third quarter of 1979 , the National Computing Centre sent about 900 questionnaires to potential suppliers of applications software for microcomputers about 100 companies replied.

The results of this survey confirm those of Derek Pedder's. About 600 different software products were identified, covering 80 types of application - from accounting to bakery administration Many of the suppliers were newly-formed companies and 55 percent of the suppliers had employed staffs of less than five. Coupled with the fact that over 60 percent of the companies supplying software are in the South East of England, Lane points out that the level of support provided for applications packages could be very small. This, coupled with the price that the user is willing to pay for it should therefore
be a significant part of the evaluation.

Despite the apparent over. whelming predominance of Basic as the hobbyist micro language and the relatively short time that Cobol has been available on micros, almost 30 percent of the packages are written in Cobol and under 50 percent in Basic. In addition to presenting the results of the survey and a list of suppliers, Lane also offers guidelines on how to use and get the best from applications packages, detailed examples of typical basic business packages (including guidelines on different capabilities that can be expected from differently priced systems), and an easy-to-read introduc tion to the basic concepts of microcomputers. As in any book that attempts to provide detailed advice to particular suppliers, including examples of costs, it is inevitable that the in formation can quickly become out of-date and is likely to be incomplete even at the time of compiling, given the rapidly changing state of the market. This should be borne in mind when reading and using this book

An interesting finding, which once again emphasises the significance of software over hardware, is that there was little correlation between
the prices charged for software and the value of the hardware on which they run. Although for the hardware costing less than $£ 5000$ it was true that the cheapest software was available (generally under $£ 500$), for hardware in the $£ 5000$ to $£ 10,000$ range, software was evenly spread over the $£ 500$ to $£ 3000$ band.

Lane concluded with some invaluable advice, such as: 'Approach software with caution, assuming the worst; there are good packages around, but you cannot judge on price alone, you have to probe a lot deeper. Keep in mind what you really want the computer for before you set your mind on a particular make or model ; in other words, approach selection with your own needs upmost in your mind.

If you are a practising accountant, you will have a clear idea of what you want from a computer. The question is really whether a computer would do you any good at all; if you are an accountant and think it will, then the Guide to Systems for Practising Accountants would be a reasonable starting point. It provides general background to the types of computer service available (bureau, in-house, use of consultants, etc). The major part of the guide is an analysis of 70 suppliers who claim they have suitable systems (covering the whole spectrum of computing, not just microcomputers). With the proviso that this analysis could also become out-ofdate, the Guide is a worthwhile investment if a decision has been made to use a com puting service

Successful Software for Small Computers by Graham Beech is also of benefit to a specialist market - programmers with a scientific bent - although it could have been a much more important book with wider interest had the author developed his idea in a less restrictive form.

Beech says the original motivation for the book was to answer a typical problem of students he has taught: 'I can write Basic but I cannot design programs. Within one book he hoped to bring together a description of general programming techniques with examples of Basic programming for a particular subject, emphasising reliable design techniques

Its value, however, is limited because the examples have a strong mathematical and scientific flavour and therefore do not appeal to people frightened by equations. The important program design techniques discussed are related to a specific

Algol-like language called a Program Description Language (PDL), rather than to elucidating these ideas via more generalised insights Having shown how a welldesigned program can be written in PDL, Beech translates the PDL into Microsoft Basic, where it becomes easy to be bogged down in the trees of PDL and Basic translation without seeing the woods of good programming techniques.

A chapter in the book Human Interaction With Computers by Michael Jackson (see below), offers a much better insight into the overview of programming techniques, although Beech's book will be useful to some Basic programmers.

Although its cover and title claims that Your First Computer by Rodnay Zaks is a 'guide to business and personal computing', I can find little in it of value to a business user and I feel the novice hobbyist could also find a more satisfactory introduction. Zaks adopts the traditional hardware, bits, bytes and circuits approach to describing the nature of microcomputers. I criticised the Turner and Lane books earlier in this review because they did not emphasise the human aspects of systems enough. But at least they are written in plain language and focus on business systems.

After an initial chapter of waffle about the shape of society in the future using the wonders of microcomputing power, Zaks immediately becomes involved in talking about how to plug the micro in and get the system going. We are over a third of the way into the book before business applications are introduced, where the des-
criptions are heavily-
riented to program code
If the book is used by people developing business oft ware, its lack of discus sion of good programming techniques and software engineering will create many problems. I cannot see any businessman really wanting to write an accounts package, say, based on the flimsy advice in this book and I cannot see many hobbyist being interested in the business applications described.

And now to what I regard as the most important book of all.

Behavioural problems

Computers have a potentia flexibility that makes them seem infinitely adaptable to different tasks. And yet this adaptability is more projected than real. Getting a computer to do what you want is exceedingly difficult.'

With these words, Hugh Smith and Thomas Green encapsulate the dilemma posed by computing power. The generalised flexibility that is at the core of that power also poses major problems to the people who have to design and use computers for specific tasks. Michael Jackson (he of structured programming rather than soul-singing fame) poses the same problem from the point of view of a programmer writing a complex software system: "The programmer, unlike the mechanical engineer, is free to weld any part of a program to any other part or, indeed, to mix up the parts in any desired way. It need not be conside red that this part is made of steel, that from glass and a

third from plastic. Nor does the stuff of programs provide any constraints, such as the strength of materials or a required power-weight ratio. Any program, however poorly conceived, can be made to work by ad hoc patches.
'Since the structural form of the program,' Jackson continues, 'is largely invisible to its buyers and users it is horribly easy - and tempting - to allow the quality of design to sink to a standard that would not pass muster for a moment in a motor car or bridge.

Smith and Green are the editors of Human Interactions With Computers, which brings together experts from many disciplines - sociology, psychology, business administration and computing - to show how much (and how little) progress has been made 'to narrow the gap between the computer and the user, to produce packages that the user wants in ways that the user can grasp

Jackson provides a notable contribution to the section in the book on programming research. He explains why existing programming languages are inadequate for producing well-engineered software because they fail to distinguish between the problem being solved and the particular coding used to get one machine to solve the problem.

At the user end of the spectrum, Hugh Smith himself provides an excellent chapter on human-computer communications. Like most current writings on this subject, Smith's major contribution (and of the whole book) is to highlight those areas which should be given more attention by research. ers and systems designers. He also exposes the lack of real research to provide good answers to the problems raise raised.

Technological and economic objectives, Smith says, are more easily set and carried through than social ones. 'Consequently social studies of the effects of technology tend to resemble a post mortem, ie, a search for cause and effects which can seldom be used to benefit the patient.' Until better social studies are available, he suggests, it is still worth while to spend 'more time thinking how we might build humans into systems rather than designing them out in pursuit of technical advances.

The topics covered by Smith and other contributors indicate the scope and importance of the social and human requirements. These range from global questions, like how people perceive computers and the impacts of
computer-based automation on employment levels, to systems design tasks, such as appropriate response times and assessing the merits of different forms of in formation retrieval dialogue.

Then there are the human aspects in specific applica: tions systems such as medical decision making, architecture, education and decision making and in the more detailed systems development aspects, such as programming.

In some areas, Smith admits that there is very little research, such as in how well systems meet 'end user' expectations (the end user, of course, is the real user, ie, the typist, manager booking clerk who actually uses the system to carry out a real world task). This is extraordinary, given that the end user should be the raison d'etre of systems design.

Niels Bjorn Andersen and Leif Bloch Rasmussen from Denmark believe that increased industrial democracy will help to raise the computer expert's level of consciousness' about the aspects of systems design over and above the technical/ economic issue. They say, 'The traditional expert strategy for systems design, with or without a hostage from the user department, is not going to work in the long run.'

Mike Fitter and Max Sime raise the crucial issue of what happens to the decisionmaking proces when people rely on interpreting computer processing routines, such as air traffic control, production management - or even starting (or preventing) the Third World War.

The dependence on computers for decisionmaking should become a shared process between man and machine, they say. But in order to achieve this, it will be necessary to ensure that the complex computer system can explain its own behaviour and 'rationale' for reaching a conclusion in a way that can be understood by the person in terms of human perceptions of reasoning. This requires a great deal of more work both in understanding human reasoning and psychology as well as developing better forms of computer 'reasoning' and man-computer dialogue.

Applied psychology also has an important role to play in improving programming languages and methodology, according to Thomas Green. For example, he says that any psychologist knows that slips of the pen are hard to find, just like misprints on the page.' He goes on: 'I hope that this "discovery" seems banal to you and provokes
the thought "Well I don't need a psychologist to tell me that!" But the designers of Fortran overlooked it.'

A mistype in Fortran could still make 'sense' to the compiler, although not the sense you wanted, he points out. A widely used statistica package (SPSS) demands that certain control records start in column 16: 'God knows how much expensive time has been wasted by th is unnecessary whimsy, left over from punched cards and the Fortran input/output structures, 'Green comments.

Every person involved in designing, using, selling or selecting a computer should read Human Interactions With Computers. Much of it might be irrelevant to the particular computing concerns facing the reader immediately. It raises far more questions than it supplies answers. Some of the contributions are woolly and some are esoteric.

But together, the contribintors demonstrate that, although the technological computer revolution has begun, we are still stumbling in the dark in our attempts to tackle the most important
task of getting the computer to do what we want it to do, where the 'we' encompasses any role that human beings can adopt in relation to using computers or being affected by a computer system.

This month's Bookfare reviewed
Human Interaction With Computers, Hugh Smith and Thomas Green, editors (Academic Press, \&6.40) Microcomputer Systems In Business edited by Derek Pedder (Gower Press, £25.00) Choosing Programs for Microcomputers, John Lane (National Computing Centre, £8.00)
Buying a Business Computer, Michael J L Turner (The First Computer Handbook, Whitney on Wye, Hereford, £9.75)
Your First Computer,
Rodnay Zaks (Sybex, £5.95)
Successful Software for Small Computers by Graham
Beech (Sigma Technical
Press, £5.50)
Systems for Practising Accountants edited by Barry Knight (Computer Guides Ltd, 30-31 Islington Green, London N1, £24.00)

BUTEL-COMCO

RP1600 Daisywheel Printer
60cps!

List Price: £1450
(excluding VAT)

- Price includes an interface
 - Interfaces available are
 Serial V24/IEEE/Centronics/Qume/Hytype - Trade/OEM discounts available

Write or call for further information

Butel-Comco Limited

50 Oxford Street, Southampton, England SO1 1DL Telephone 070339890 Telex 47523

Technology for business

I am interested in purchasing the RP1 $\mathbf{6 (1)}$ I ior coninection to.
Name
Company
Address
1
Telephone

EIOT11
 In the first of two articles, Jeff Barton descrime control applications.

The control of a model railway layout is one of the more 'attractive' applications for a microprocessor. One of the final year projects for my Joint Honours Degree in Computing and Electronics at Durham University has been to design, construct and program such a system. Besides its obvious attraction as an intelligent toy, the control of a train set layout is a very complex Real Time Control System (RTCS). These two articles will summarise the RTCS developed at Durham and illustrate the techniques used for automatic route generation and execution with built-in collision avoidance.

This system differs from the commercial ones on offer in that the track is controlled rather than the trains. The commercial systems require some sort of 'loco module' in each engine and superimpose the coding signals sent out by the microprocessor controller on top of the power to the track. There is only one continuous length of track and, although the power is always applied. to it, an engine only responds when addressed by the microprocessor.

The system at Durham reverses this situation and locos on the layout need no modification at all. The track is split up into short, isolated lengths or sections and each section is individually controlled by the microprocessor. The section driver circuitry is designed so as to produce a TTL-compatible signal to indicate when a train is drawing power from a section. It is also possible for th is signal to generate an interrupt which, as will be seen later, is an extensively-used facility.

The computing system is provided by an MSI 6800 microprocessor system (uPS) which controls the $10 \mathrm{ft} \times 5 \mathrm{ft}$ track layout via the Train Layout Interface (TLI). An overall view of the system architecture is shown in Figure 1 and a plan view of the layout in Figure 2 . There are 19 sets of points and 41 totally isolated sections of track, although only 32 are so far implemented. Each point can be switched to either direction and each section is capable of driving an engine at one of 16 speed settings in either direction under program control. The system software allows the simultaneous control of multiple trains on the layout.

Hardware

The TLI provides the necessary decoding and conversion of signals between the TTL logic levels of the uPS and those required by the layout. This is performed by eight boards. Six of these are 'module boards', each providing the necessary logic and driver circuitry to control a group of eight
sections of track. The 'decoder board' performs all the buffering and decoding of control signals prior to their connection to the backplane. The 'points board' supplies the logic and driver circuitry to enable any of the sets of points on the layout to be switched to either direction. The TLI is controlled via just one 6821 PIA so the interface to processor connection comprises 16 data, four control lines and an earth. These signals are decoded by the various boards and drive the layout via two 100 core cables.

Operation

Every action which can occur on the layout is totally under the control of the operator via the console. On each program run, train movement is not possible until an explicit command is entered. The user is provided with 26 different possible command functions to enable the layout to be operated either under manual control or automatically. It is possible to display status reports on the console at any time to inform the user about any desired system parameter.

The software displays a descriptive prompt each time that input is required from the user. This means that even a first-time user can control the layout within a short length of time at the console.

The program makes the system appear to be 'intelligent'. It is possible to place a train anywhere on the layout and after instructing the program of its location, together with a variable length list of sections to pass through, the program generates a route. This-route is capable of driving the train through all the specified sections (and any that interconnect them), switching points as required, until the train reaches its destination. The actual execution of this route may occur at any time after it has been created and the positions of other trains on the layout need not be the same at the time of execution as that at route creation.

The routes operate on a localised basis; this means that each runs as a separate task within the system and allocates, uses and frees sections and points as it needs them. If two trains are about to collide on the layout, the program detects this and prevents it.

When taken to the general case with a lot of routes executing concurrently, this localised method is probably the most satisfactory way of operating the system. However, the solutions for escaping from deadlocks have not yet been implemented due to lack of time. Deadlocks and the 'master task' method will be discussed later.

Automaticroute generation and execution

It is obviously necessary for the program to be able to determine how the sections of track are interconnected so it can calculate how to get from A to B. This information is contained in three tables, called 'postab', 'points' and 'slips'. Each table comprises a list of pointers to the beginning of each of the variable length data entries. Sample entries for these tables are given in Tables 1, 2 and 3.

postab	fdb	sec00p
	fdb	sec01p
	\vdots	
	fdb	sec31p
sec00p	fcb	1,1
sec01p	fcb	1,2
sec02p	fcb	0
	fcb	$3,3,3,3,3,3,3,3$
	fcb	$3,3,3,3,3,3,3,3$
	fcb	$3,3,3,3,3,3,3$
	fcb	$24,24,24,24,24,24$,
sec03p	fcb	24,3
	fcb	$4,4,4,15,15,15,15,15$
	fcb	$15,15,4,4,4,15,15,15$
	fcb	$15,15,15,4,4,4,4,4$

Table 1

points	fdb	psec00
	fdb	psec01
	\vdots	
	fdb	psec31
psec00	fcb	$29, \$ 11,0$
	fcb	$8, \$ 11,1$
	fcb	-1
psec01	fcb	$0, \$ 12,0$
	fcb	$11, \$ 12,1$
	fcb	-1
psec02	fcb	$24, \$ 13,0$
	fcb	$3, \$ 13,1$
	fcb	-1
psec06	\vdots	fcb
psec07	fcb	-2
	\vdots	-1
Table 2	\vdots	

slips		
	fdb	slip06
	fdb	slip09
	fdb	slip11
	fdb	slip15
slip06	fcb	$5,18, \$ 17,0$
	fcb	$18,5, \$ 17,0$
	fcb	$5,7,17,1$
	fcb	$7,5, \$ 17,1$
	fcb	$17,7, \$ 17,0$

fcb	$7,17, \$ 17,0$
fcb	$17,18,177,1$
fcb	$18,17, \$ 17,1$
fcb	-1

Table 3
The 'postab' table is used by the route specification command to discover the next section in the route which will eventually take the train to its destination. There is one entry per section and this is of one of two types - 'brief" or 'long'. It can easily be seen that to travel from section 01 (see Figure 2) to any other section in an anticlockwise direction (referred to as the 'positive' direction), the train must always pass through section 02 next. Tinerefore the entry for section 01 in 'postab' is of type 'brief'. On the other hand, the entry for section 02 is of the 'long' type since, when travelling in a positive direction, the train could enter section 03 or 24 , depending on the setting of point 13. This method of storing data enables easy calculation of the route by simply walking through the table. For example, if the user enters ' 0 ' and ' 26 ' as the start and end sections respectively, the program first accesses the entry for section 01. This is of 'brief' type, so the program stores the one and only next section, 02, and then looks in 'postab' at the entry for section 02. By using section 26 as an index within this entry it finds that to travel from 02 to 26 requires passing through section 24 next. This process is continued until it arrives at its destination - in this case the route is $01,02,24,25,26$. Although not yet implemented, to travel in the negative direction simply requires using 'negtab' instead; this will, of
course, be different since section 01 now has two possible next sections. . . and so on.

Once the list of consecutive sections has been completed, the points settings which are required to create this desired route must be calculated. Two further tables, 'points' and 'slips', contain the necessary information for this purpose A point is simple and has possible either one entry and two exit paths, or two entry and exit path, depending on the train's direction. If a train arrives at a point switched incorrectly, no serious damage occurs as the points are spring loaded to account for this. However, it is obviously desirable to simulate the real life case whenever possible and so the point is always switched to the correct path. A slip is slightly more complex, with two entry and two exit paths. There are four slips on the layout, at sections 06, 09, 11 and 15. Each is operated by a single, bi-directional point motor and can be considered to direct a train into the 'opposite' or 'adjacent' section, depending on their setting. If slip 06 (point 17) is set to 'opposite', a train entering it from section 05 will depart on section 18 and a train from section 17 will depart on section 07. In the 'adjacent' setting trains from sections 05 and 17 will depart on sections 07 and 18 respec tively. If a route passes through a slip section, it is necessary to treat it as a special case requiring further processing.

The list of consecutive sections is now considered to be a series of pairs of source and destination sections. Each pair in turn is applied to the 'points' table to determine if a point must be switched in order to travel from the source to the destination section within
each pair. Using the route calculated above to travel from section 01 to 26 , the pairs $.01+02,02+24,24+25$ and $25+26$ are considered. Each section has a corresponding entry within the 'points' table. Section 01 is first considered as the source and 02 as the destination section by examining the entry in 'points' for section 01. Although this entry tells how to get to sections 00 or 11 by switching point 12 , it has no information on how to get to section 02 . Section 02 is then considered as the source and 01 as the destination and the process is repeated by examining the entry for section 02. Since this entry contains no information on which point to. switch to get to section 01 from section 02 , it can be safely assumed that no point switching is necessary to travel between sections 01 and 02 . Therefore the next pair in the list, $02+24$, is considered. The entry for section 02 this time says that to travel to section 24 from 02 requires point 13 to be switched to a direction ' 0 '. The program stores this information and interchanges source and destination and looks again in 'points' for section 24 to section 02 information (the case of section 08 to section 00 illustrates the need for this usually redundant test) This procedure is continued for every pair in the list until all the point switching information for the route has been compiled

A value of ' -2 ' for a section entry in 'points' indicates that the section is a slip and so requires further processing. In this case the triplet of source, slip and destination sections is extracted from the list. The table 'slips' is then used to determine the switching information.

Fig 1 System architecture

Fig 2 The train layout

\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{START -} \& section number

\hline \& direction

\hline \& speed setting

\hline \multirow[t]{2}{*}{ACTTOP ->

02
00} \& next resource

\hline \& to free

\hline 09 \&

\hline -13 \& point 13

\hline 00 \& direction

\hline 00 \& null value

\hline \multirow[t]{6}{*}{ACTMID \rightarrow} \& section currently

\hline \& powering train

\hline \& speed setting

\hline \&

\hline \&

\hline \&

\hline \multirow[t]{4}{*}{ACTBOT \rightarrow} \& next resource

\hline \& to allocate

\hline \&

\hline \& end of route flag

\hline
\end{tabular}

Table 4

The final result of this processing is a data structure (as shown in Table 4) containing all the necessary information for the route to be executed. Each section or point entry in this table is of 3 bytes in length, with the first byte being the number of the resource itself. In order to distinguish between the two types of resource, the point addresses are stored as two's complement values. The second byte is the direction to which the resource is to be set, and the third byte is either the sections speed setting or, in the case of a point entry, a null value.

The most important piece of information when executing a route is the number of that route assigned to it at creation time. This is used by the subroutines as an index into the many tables of pointers and essential data so that all of these routines are shareable between routes.

As a train progresses through its route, the program maintains three tables, 'acttop', 'actmid' and 'actbot', each with an entry corresponding to the route which is an address pointer into the data structure created for that route. When the command is given to begin executing the route, all three pointers are initialised to the start of the data structure. Each time the next required resource is successfully allocated and set up (either powered up with interrupt capability enabled or switched), the 'actbot' pointer is moved down the structure by one entry (ie three bytes).

When the train enters a new section the 'actmid' pointer is moved to the next section entry further down the structure and when a resource is freed by the route after it has been used, the 'acttop' pointer is similarly moved. These three pointers are therefore used to keep track of the active subsection of the route within the larger confines of the data structure.

The use of two further tables, this time containing data values, called 'ahead' and 'behind', enable the number of reserved resources in front of, and behind, the engine to be recorded. Again, these tables contain one entry per route. Both counters are initialised to zero when the route is first begun and they both have maximum values which are determined by program constants. The 'ahead' counter is incremented each time the next section in the route is allocated successfully the allocation of a point resource does not affect the counter. When it reaches its maximum value of 'maxfor' the program moves from allocating new resources to freeing used resources.

When the 'actmid' pointer is updated to point to the next section through which the train is to pass, the 'ahead' counter is decremented and the 'behind' counter is incremented. Unless the 'behind' counter is less than or equal to 'minbak' the 'acttop' pointer is updated and the resource at which it pointed in the data structure is freed. The freeing of a section resource decrements this counter but freeing a point resource does not affect it. These counters therefore ensure that 'maxfor' sections in front of and 'minbak' sections behind, together with the section currently powering the train, are held in a 'locked' state by the route. At present both of these constants have the value ' 1 ' and so a total of three sections (maximum) are activated by the route at any one time during its execution.

The end of a route's data structure is indicated by a value of -1 for the resource entry. On reaching the end of the route, the train is stopped and all resources held by the route are freed again. A resource entry of -2 indicates that the route is to be operated continuously and so as each of the three pointers 'actbot', 'actmid' and 'acttop' reach this value they are reset to the top of the data structure again. This route
would continue until either it or the program is aborted.
Besides executing the automatically generated routes as described already, it is also possible to run multiple trains on manually produced routes. With patience, this allows the compilation of very complex 'demonstration calibre' routes. The system software treats each executing route as a task, running a program within the system. By the use of scheduling, it is possible to achieve multi-tasking and so multiple train routes may be operated concurrently in real time.

Perhaps the easiest way of considering the methods employed would be to regard the system as emulating a 'pseudo micro-programmable machine'. To avoid too much confusion, let us cali the program that a task runs a 'task code program' or 't-code' rather than a program. A t-code can be any number of 'high level' instructions in length and each of these instructions is performed by a routine of 'low level' (6800) instructions. An example of a 'high level' instruction is, "SET SECTION 10 TO A SPEED SETTING OF 5" which would appear in t-code as three bytes: 01,10 , 05 . The first byte, 01 , is the op-code for this 'high level' instruction and the second and third bytes are the necessary operands to set section 10 to a speed 5 When the 'pseudo program counter' for the task reaches this instruction, the op code (01) is used as an index into a jump table containing the start addresses of the 6800 subroutines which carry out the instructions. For this particular in struction the routine obviously requires two operands - a section number and a speed setting. It therefore accesses the two bytes following the op-code by using the 'program counter' and then updates the current route's entry in the 'program counter' table so that it contains the address of the next 'high level' instruction. Then, after updating the speed tables to modify the speed for the desired section, it returns to decode the next high level instruction as determined by the pseudo program counter.

There are currently 27 different 'high level' instructions which a route task can execute. They vary in length from the single byte instructions such as 'NO-OPERATION' (op-code $=00$) and 'UPDATE STATUS ON CONSOLE' (op-code $=11$) to instructions requiring
one operand such as 'SLEEP X TIMES 40 ms ' (op-code $=14$) and 'EXECUTE ROUTE X' (op-code $=17$), to twooperand instructions like the one already described and 'SWITCH POINT X TO DIRECTION Y' (op-code =07) to the longest three-byte operand instructions such as 'SET SECTIONS X THROUGH Y TO DIRECTION Z (op-code $=04$) and 'IF X IS LESS THAN OR EQUAL TO ZERO THEN JUMP TO ABSOLUTE ADDRESS YZ OTHERWISE CONTINUE' (op-code = 25). The ' x ', ' y ' and ' z ' refer to the first, second and third bytes following the op-code for the instruction.

Besides being able to exercise total control of the layout from within such a task, additional facilities are provided. It is possible for a t-code to initialise a loop counter and, by successively decrementing this and performing a conditional jump, carry out a circular route for a certain number of times before continuing with a different part of the route. Absolute unconditional jumps are also provided for. One of the third-year projects for next year is to write a high level language and compiler for controlling routes.

Collision avoidance

The task of detecting that two trains are about to collide is performed by the routines concerned with the allocation of resources to a route. Whenever a train needs a point to be switched, or a section to be powered on, in order to contínue its travel, an attempt is made to reserve that resource in the systems tables. If the resource is free it will be allocated to the route and the train allowed to continue. If the resource has already been reserved by a nother route then to proceed would result in a collision. The section currently powering the train which made the unsuccessful reservation attempt is therefore set to a
speed of zero, stopping the train. The route task is then suspended for two seconds, after which a further attempt is made to allocate the resource. If this is also unsuccessful the cycle is repeated until the resource becomes free and the route is able to both reserve it and resume execution. This process relies on the assumption that the route which had already reserved the resource will free it again within a finite time. The allocation of these resources is performed on a first come, first served basis, so at present it is possible for a freight train to delay an express train this is a refinement for the future.

The present implementation of an automatic route maintains a lookahead of one section in front of the train and one section behind it. These values can easily be altered but for maximum efficiency they should be as small as is practical. If a very long train is to be run on the layout, then it is obviously important to ensure that sufficient sections are kept reserved behind the engine to prevent another train hitting the last few trucks. However, if the train causes 'locks' to be placed on sections it does not need, other trains will be unnecessarily delayed and the likelihood of a deadlock occurring is greatly increased.

If there are sufficient trains on the layout to form a 'nose to tail' queue with each route waiting for a resource to be freed by another, it will not be possible for any of the routes to continue. This is a 'deadlock', to which there are many solutions. One of the more desirable ones is to prevent them happening in the first place. This could be done by some sort of 'master task' being responsible for ensuring that a resource is only given to a route if that route can successfully terminate within a finite time. This method entails checking that the rest of the route to be executed will be free when required. If
a large number of routes are running concurrently then this master 'overseer' will spend most of the processor's time examining the possible future contentions with other routes. This vast requirement for processing power would not be possible with a single processor system and so to implement this approach introduces all the additional problems of a multi-processor configuration.

Another method involves each task trying to solve its own problems if it discovers itself to be in this state. The execution of the complex code then occurs only when a deadlock arises instead of each time a resource is requested. However, this may mean that the routes spend most of their time escaping from deadlocks instead of reaching destinations. It seems likely that some form of compromise between these two types of solution would provide the best results.

The ability to determine the existence of such a deadlock is by no means easy to implement and the methods of escaping from it more difficult still. Reversing into sidings or backing over points together with dynamic re-routing of the train are some of the obvious possible methods yet these introduce further complications. If a route tries to solve a deadlock by reversing and thereby causes another deadlock, how is this one to be solved? It is obviously impossible for the route to escape from this situation by itself, but does it signal this to the other routes and let them try to provide the answer? Or does it call for the temporary execution of a master task as described above? At present there are no facilities for any form of intercommunication between tasks and each executes in a totally isolated environment. The need for signalling between concurrent tasks is an essential requirement and is under investigation.

BACK NUMBERS

PLEASE NOTE THAT THE FOLLOWING ISSUES ARE SOLD OUT

VOLUME 1 Nos. $4,5,6,9.10,11.12$
VOLUME 2 Nos. 5. 6, 8
VOLUME 3 Nos. 1, 2, 3.4,
ALLOTHER ISSUES MAY BE
ORDERED USING THIS FORM.

Volume 1 No. 1 May 1978 Nascom 1/77-68: The Mighty Micromite/A charity system

Volume 1 No. 2 June 1978 Research Machines 380Z/ Computer in the classroom/ The Europa Bus.

Volume 1 No. 3 July 1978 Buzzwords - A to Z of computer terms/Pattern recognition/Micro music

Volume 1 No. 8 December 1978 Computers and Art/3-D Noughts and Crosses/Mickie - the interviewing micro

Volume 2 No. 1 May 1979 Small computers for small organisations/Sorcerer graphics/Chess Programming Hints/ Parkinsons Revas.

Volume 2 No, 2 June 1979 MSI 6800 /Witbit - disassemble your programs/The Multi lingual Machine/Polytechnical Processing.
Volume 2 No. 3 July 1979 Vision link: Interfacing and Software for the Superscamp VDU/Pet Preening/Extended cursor graphics for the TRS. 80.

Volume 2 No. 4 August 1979 The North Star Horizon/High Speed Cassette Interface for the SWTP 6800/Garage Acco unt ing program/Apple Medical Application.
Volume 2 No. 7 November 1979 PCW Show issue/6800 Bug/Hard disc security/
Detecting literary forgeries/ Benchtest - the Challenger C3

Any one issue 95p; Any two issues $£ 1.75$; Any three issues $£ 2.50$; Any four issues $£ 3.00$. All additional issues $@ 50$ peach. Binders@ $£ 2.95$. All prices include post and packing. Cheque or P.O. payable to (PCW) Sportscene Pub lishers Ltd., 14 Rathbone Place, London W1P 1DE. Please allow up to 3 weeks for delivery and don't forget to state clearly your name and full address with your order. Please send me the following copies of PCW. I enclose a cheque/P.O. for £

Volume 1

Volume 2

Volume 3

Name

Address
*Tick appropriate boxes

CHAPTER6: THEMICROPROCESSOR

Derrick Daines continues his series on teaching microcomputing to others

We have reached the point where a computer can shunt data about automatically, like a toy engine shunting trucks. What is now needed is knowledge of how the data gets there in the first place, how it is brought out and, by no means least, why these processes are so vital for our future. But first we need a long cool look at the microprocessor.

Looking at the microprocessor from the outside reveals nothing. We see an integrated circuit with a lot of pins sticking out of it - nothing more. However, concealed within that black, uninteresting package is every device that we have so far learned about, and more. Again, we must be selective. A lot of the stuff that is in there is not necessary for our students to learn about unless they wish to specialise, so here I will confine myself to the essentials.

To begin with, it contains those good old favourites, the A and B registers. These are the registers upon which arithmetic functions are performed - in binary, of course. There is an Arithmetic Unit, which does the actual adding and subtracting, and the Control Register recently met. Other registers will be mentioned as the need arises. In addition to these short-term memories and gating circuits, there are also masses of gates needed to shunt data about and the multiplexing or decoding circuits which determine which gates are to be opened and which closed. Some micros also contain their own clock and clock counter, while others require an external clock. All require an external crystal for accuracy, since this item is very bulky.

By anyone's standards, that's a whole lot of goodies to be packed into one small container and it is one of the miracles of modern technology that this has been done. We have already introduced our pupils to the enormous feat of miniaturisation, but it does no harm to stress it.

In our discussion of the Control Register, we simply stated that the next instruction is fetched from memory but of course this cannot be fetched from anywhere. The instructions must be in sequence or chaos results. In fact any part of the computer memory can be used to store data or instructions and frequently the two terms are interchangeable, so a Program Counter is required to keep track of where the next instruction is to be fetched from. Unless it receives instructions to the contrary, the Program Counter is notched up ' 1 ' after each operation, so that consecutive instructions are nor-
mally at consecutive addresses. The special instructions applicable to the Program Counter are of course the JUMP instructions met already. The Program Counter is otherwise just a register like the others.

The Index Register is also inside the micro and is one of those gadgets that once you have it, you wonder how on earth you managed without it. Normally it is incremented by 1 every time that we do an operation such as multiple addition, which makes it easy for the computer to multiply or divide. Like the Program Counter, the Index Register is directly accessible and may be loaded with any number at any time.

The Condition Code Register tells us indirectly of the state of various registers, such as if they are negative or overflowing, etc. This is of interest mainly to the programmer in his development of the program, so I do not intend to refer to it again. Interested readers are referred to the literature applicable to their particular micro. General readers may note that it is there, and then forget it.

Similarly for the Stack Pointer another special-purpose register within the micro. Briefly, it points to the address at the top of a stack of data and is chiefly used when the computer
jumps to execute sub-routines; that is, frequently used portions of program.

Instruction codes

A little reminder here would do no harm. The salient facts of computer operation are that, by transferring a word of binary bits from memory to the Control Register, the circuitry decodes them as instructions to open this gate and that. This causes one instruction in the program to be carried out.

Table 1 gives a carefully-selected number of hexadecimal codes. Again, there is no need for the general reader to remember all this stuff - particularly as each micro has its own instruction codes - and just grasping the main idea is sufficient. The instructions given are for the Motorola 6800 micro and also given are mnemonics for each instruction, which will be mentioned again shortly.

To follow what happens, let us take a simplified view of one or two instructions. The LD(A) instruction (86 in hex) is read by humans as 'Load accumulator A'. The micro also takes this as meaning, 'with whatever number is immediately following.' Therefore a complete hex instruction might be 8600 (load A with zero) or 868 E (load A with hex 8E).

Hex Instructions (for 6800 Microprocessor)

Hex	Mnemonic	Instruction
1B	ADA	Add Accumulator B to Accumulator A
89	ADC(A)	Add to Accumulator A whatever is coming next. Carry if Nec.
8B	$\operatorname{ADD}(\mathrm{A})$	- Ditto, but do not carry
24	BCC	Branch if carry clear
25	BCS	Branch if carry set
27	BEQ	Branch if equal (result of previous test)
2 C	BGE	Branch if greater than or equal to zero
2 F	BLE	Branch if less than or equal to zero
2B	BMI	Branch if minus
26	BNE	Branch if not equal
20	BRA	Branch always
8D	BSR	Branch to sub-routine
0 C	CLC	Clear carry
4 F	CLA(A)	Clear accumulator A
81	CMP (A)	Compare accumulator A with the following number.
5A	DEC(B)	Decrement accumulator B by one.
5 C	INC(B)	Increment accumulator B by one.
7E	JMP	Jump to the address following.
86	LDA(A)	Load accumulator A with the number following.
01	NOP	No operation
39	RTS	Return from sub-routine.
10	SBA	Subtract accumulators.
82	SBC(A)	Subtract from accumulator A, the following number.
97	STA(A)	Store accumulator A at the following address.
3F	SWI	Software interrupt - halt.
16	TBA	Transfer contents of accumulator A to accumulator B
17	TAB	Transfer from A to B

Table 1 A selection of instruction codes. Note that the full instruction set for the 6800 microprocessor is very nearly 200 different instructions, covering almost every conceivable requirement.

When the instruction is encountered, it is stored in the micro's Control Register, thereby opening the appropriate gates and at the same time signalling the micro to wait for the next binary word which, as the gates are ready open to receive it, is shunted into Accumulator A.

At this point, pupils might wonder how the computer knows the difference between the 86 (instruction) and 8 E (data). The short answer is that it knows by the context. Once it had received the 86 , it waited for the data to follow.

Sometimes it does not need to wait. For example, instruction 16 (binary 00010110) tells the micro to transfer the contents of Register A to Register B (thereby erasing any previous contents of B, incidentally). Now once the micro has opened the appropriate gates and counted eight pulses, the job is done and the next instruction is fetched.

Similarly, some instructions are three words long. For example, CE tells the computer to load the following numbers into the Index Register, which is long enough to hold two hex words. Therefore a complete instruction might be CEA04A, which means, 'Load the Index Register with the value A04A.' Inherent in the instruction CE is a code that instructs the micro to expect two words.

As to the question, 'Does the micro ever get things mixed up?' - ah ha! Therein lies a tale! The short answer is that no, the micro never gets things mixed up but the programmer does. For example, if he wanted the program to jump to where it would read 868 E (load A with 8 E), but made a tiny mistake so that the program missed the 86 and fetched the 8 E instead, the micro would understand that as, 'Load the Stack Pointer with the next two hex words.' It doesn't take much imagination to see that in these circumstances the program would go wrong, with the micro reading data as instructions and vice-versa. This process is known as 'bombing' and usually results in the entire stack of memory being loaded with rubbish. This is perhaps the major reason why people fight shy of machine code, as the hexadecimal method is called.

In Table 2, I illustrate a short program in machine code, suitable for the Motorola 6800 micro. It presumes a keyboard input and a VDU output (see later for explanation of these terms) and as the earlier program for the cardboard computer did, simply multiplies any input number by four. The product appears on the VDU and is in hex.

If the reader does not have access to a computer, please don't worry. As I have said, it is not my intention to instruct on how to program and as long as the reader can see points of similarity between Table 2 and Figure 10 of Chapter 3, that is all that matters. The following notes will help to explain the program and illustrate some points of interest.

The first column of Table 2 lists the memory locations in which the instructions are stored. Note that they are in hex. The program contains one, two and three-word instructions and the memory list must take account of this, since of course only one word may be stored in each memory.

The second column lists the hex instructions. (Remember that two hex

Sample Program

0100	CE 0000	LDX	Load index register with zero
0103	BD E1AC	BSR	Fetch number from keyboand, into Accumulater A
0106	16	TAB	Copy it in Accumulator B
0107	08	INX	Increment Index register by 1.
0108	1B	ADA	Add contents of B to A
0109	8C 0004	CPX	Compare Index with value 4
010 C	26 FA	BNE	Branch if not equal.
010E	BD E1D1	BSR	Print out value of accumulator A
0111	3F	SWI	Stop.

Table 2
symbols make one word.) In the case of hex instructions that are more than one word long, the actual data stored is given after a space. Thus in the first few memories the following are stored:

Memory	Hex 0100	Binary
0101	00	11001110
0102	00	00000000
0103	BD	00000000
0104	E1	10111101
0105	AC	1100001
0106	16	000101100

and so on.
The third column contains the mnemonic and, on the right of that, are comments for the use of the programmer and anyone who reads the program. Even the most experienced programmers use this area a lot as it helps enormously to come back to a program later. I usually make a habit of including arrows for the same reason.

The reader will understand most in structions quite readily. The BD or jump to sub-routine instructions cause the micro to jump and execute special short routines held in memory addresses E1AC and E1D1. These are provided by the manufacturer in a special dedicated chip called a Read Only Memory (ROM) for the obvious reason that the micro can read memory contents but cannot alter them by sending in new data. I shall have more to say about these devices later. The first sub-routine halts everything until an input is received from the keyboard; the second causes a printout of the contents of Accumulator A.

The BNE instruction (Branch if Not Equal) may, however, cause some furrowed brows. If we're jumping back seven instructions, why the FA? The answer lies in a clever little provision by the manufacturer of the micro. Following a Branch instruction, data from 1 to 7 F is read as a FORWARD jump while from 80 to FF is read as a BACKWARD jump, counting down.

Finally, the 3 F instruction is vital. Without it, the micro would read whatever else happened to be in that memory location and would execute it. The chump doesn't know when it's finished, you see. Inevitably the whole thing would 'bomb'.

For a variety of reasons I have a personal preference for machine code programming over any other computer language. I find it precise, economical, and altogether highly satisfying. I use it whenever I can. Of course other people will have their preferences, too, but I stress my own here to encourage those who may be put off by apparent dif.
ficulties and talk of programs 'bombing'. Firstly, the difficulties are more apparent than real and like most difficulties tend to disappear when one gets down to the job. Secondly, even if the program does 'bomb', nothing has been damaged. All that has happened is that the memories are loaded with rubbish - that and nothing else. One simply reloads the program.

Under the age of 11 , no programming of any kind should be attempted by even the brightest children and one should not expect machine code programming to be attempted by anyone under 13 or 14 , but the broad outlines can be learned by children in the middle school. That is to say, they should be aware of the hex coding of instructions and have a general idea of how these instructions are carried out by the micro.

Compilers

It very soon occurred to some bright folks that there was no reason why the computer should not be used to write programs - that is to say, treating an objective program like any other form of data to be worked on. With memory stores running into thousands, it seemed that some could be put aside to form a sort of look-up table so that the human user could input the mnemonics of Table 1 and get in return the machine code applicable. It proved to be very easy of realisation. From there it wasn't very difficult to having the computer write out the entire program in machine code from the sorted list of mnemonics provided by the user. The stumblingblock of JUMP instructions was hurdled by the simple expedient of applying a unique code word at every point to which a jump was made as well as from which a jump was made. Thus all that the program did was run through the objective program twice - the first time assembling all the hex instructions and the next time counting the length of jumps. When the program was finished it could either be printed out for use elsewhere or on another occasion, or be transferred to memory ready for im. mediate use.

Notice very carefully that the second (objective) program was produced as a complete program in its own right. Once it had been compiled, the original compiling program was no longer needed.

Interpreters

The essential point to grasp about an interpreter computer language is that it is working all the time. As the name

Table 4 Runs exactly as program in Table 3
suggests, the interpreter stands between the machine and the human operator, constantly translating inputs and outputs from one to the other. Such a computer language is termed 'highlevel' and there are many such available today. Fortran was the first on the scene, but there are also Cobol, Basic, Lisp, Pascal, Pilot and many others, some of which are applicable to one manufacturer's product only. Every language has its own vocabulary and syntax and is like learning any other language such as Latin or French. (One would be perfectly entitled to put on forms, 'Languages spoken-Computer'.)

Of all the widely-used high-level languages at the present time, Basic is the easiest to learn since it uses a number of well-understood English words and phrases such as RUN, STOP, GOTO and so on. Because of this, Basic is a firm favourite among those learning programming for the first time. Every manufacturer of home computers offers it - some in several versions, with more and more facilities on offer.

The great advantage of interpretive programs is that they relieve the human operator of the necessity to keep track of data. No longer is there any need to tell the computer to put this data in that register or take this data out of any particular memory - the program does that automatically, while the human operator can concentrate on the overall strategy. If we want two numbers multiplied, we say so. The interpreter does the rest.

It should be clear that an interpreter is a highly-specialised machine code program in which a programmer has already done all the hard work. His program de codes our English inputs into hex instructions. It is his program that keeps track of all the registers, memories and what-have-you. His program keeps notes of where everything is.

Compare Table 3 with Table 2. The two programs do exactly the same job of multiplying by four any number that is put in, and printing out the answer, but how much easier it is to understand the Basic program of Table 3! How much quicker to program it!

Before we go on to compare the two programs in a little more detail, a few notes should be made for the benefit of readers who are new to it all.

Each line in Basic must have a statement number. I have given them the numbers $10,20,30$ etc, but they may be any numbers at all, up to 9999. When the program is run (by typing RUN, incidentally), the Basic interpreter executes the statements in numerical order. If the program of Table 4 was entered, it would be executed exactly as Table 3. The advantage is that extra statements can be inserted at any time without the necessity of retyping the whole program.

The statement LET X = 4 causes the interpreter to pick a memory location of its own choosing, load it with the value 4 (translated into binary) and label the memory ' X '. The label is stored in a special section so that when. ever the program encounters the variable ' X ', it goes first to the memory store to find where it has put the value it has labelled.

The same applies to the next statement, except that an INPUT statement causes the program to wait for a value to be input from the keyboard, exactly as the BD E1AC instruction of Table 2. The value is then dealt with as before.

Line 30 is self-explanatory, but notice that an asterisk is used for the multiply sign, to prevent confusion with an X. As for line 40, some versions of Basic don't even need to be told to stop. When no more instructions are available, they stop of their own accord. Other

Fig 1
versions insist upon it and won't run until a STOP or END statement is inserted.

The operator types the program exactly as per Table 3 (or 4) and then types RUN. The result is exactly as in the previous program examples - a question-mark for a prompt and when a number is typed in, the computer prints out four times the number.

At first sight, Basic might appear to be quicker and simpler and use less memory, but this is simply not so. The very simplest Basic takes up nearly 3000 memory stores by itself, while a good working version will use 8000 . The very best versions occupy no less than 16000 memory stores, but these are very sophisticated versions indeed, with some very advanced features not likely to be needed by-many people, although with the plummetting cost of memory, today's luxuries become tomorrow's necessities. More and more manufacturers are offering Basic as a plug-in extra, with a subsequent saving in memory anyway. As an indication, most home computers are provided with an initial memory store of $4000-8000$ and these can be easily added to.

A much more important difference between machine code and Basic is speed of operations. Basic can take up to 1000 times the operating time of machine code for the same function The reason why is not hard to find. The complete program of Table 3 is loaded into memory almost as it is - each symbol translated into binary. While running, the Basic program must access each memory - maybe thousands - to find the next statement to be obeyed. Then it must bring out all memories pertaining to that statement, decode them, sort out the data part(s) from the instruction part(s) and go through thousands of similar operations before it can obey the instruction.

Figure 1 might help to make the situ. ation clearer. The micro itself works in binary. The running Basic interpreter works in hex, while the user's program is superimposed on Basic and utilises English and decimal arithmetic. Every single letter, symbol and number of each instruction must be translated step by step all the way down to binary, worked on and then re-translated all the way up. The achievement is astonishing, especially when one considers that for 99 percent of the time the user is unaware of any delay what soever because the peripheral devices are not as fast as the interpreter.

Nevertheless, there are times when one is rudely aware of how slow the interpreter can be. The writer has more than one Basic program that is so slow that one has time to drink a cup of tea while waiting for a response. There is no doubt that if speed is required, machine code provides it. One would expect some improvement in the speed of interpreters in the future, but even without it there would always be considerable scope for Basic. For one thing, it is excellent at number work and for another, it is supreme as a learning tool.

On balance, it is my conviction that in the world of tomorrow the greatest impact will come from machine codes and their derivatives, the language of the microprocessor. The reasons for th is conviction will I hope become clear later in this series.

*includes delivery within Mainland U.K. *includes 12 months guarantee. *tested before despatch * bona fide official orders welcome

Prices.	Nett	VAT	Total
MZ 80k Computer 48k RAM	460.00	69.00	529.00
MZ 801/O Interface unit	82.00	12.30	94.30
MZ 80 FD Dual Disk Drive	650.00	97.50	747.50
MZ 80 P3 Printer	430.00	64.50	494.50
CP/M Operating System	200.00	30.00	230.00
PC 1211 Pocket Computer	82.00	12.30	94.30
CE 121 Cassette Interface	12.00	1.80	13.80
ledger and stock control available free with full system purchases.			

CRYSTAL ELECTRONICS CC ELECTRONICS

THE SKY'S THE LIMIT

 FOR YOUR SHARP MZ80K with SHARP CP/M 2.21 (XTAL)CP/M is the trade mark of Digitai Research.
This sophisticated interactive program development system will give your home computer BUSINESS/INDUSTRIAL potential:

Basic CP/M facilities include:

- Dynamic file management - Fast assembler
- General purpose editor - Advanced debugging utility

YOUR SHARP CP/M 2.21 (XTAL) PACKAGE INCLUDES

- Hardware modification (if fitted by a SHARP dealer does NOT break the guarantee)
- SHARP CP/M 2.21 (latest version) on disc
- XTAL Monitor and Operating system
- 7 Digital Research manuals
- CP/M Handbook (by RODNAY ZAKS)
- 12 months guarantee and up-dates

IF YOU ARE A SHARP MZ8OK OWNER, CP/M 2.21 (XTAL)
IS A MUST FROM £200.00
Ask your SHARP dealer for further details or contact CRYSTAL ELECTRONICS
CPIM SOFTWARE HOUSES - XTAL CAN HELP YOU ESTABLISH YOUR SOFTWARE ON THE SHARP
Members of Computer Retailers Association \& Apple Dealers Association
Shop open 0930-1730 except Saturday \& Sunday
40 Magdalene Road. Torquay. Devon. England. Tel: 080322699 Telex 42507 XTAL G

Fercusso COMPULER SERMICE

For All Your

(G)PDCHE

SALES AND SERVICE

Contract Maintenance:-

* On-site repair contracts
* Total system or only items required
* 24 hrs response to calls
* Very competitive rates

Ad-hoc Repair Service:-

* Ring for repair quotation
* Same day service
* Collection from Red Star if required

Hardware and Software Sales:-

* 32K RAM free with each system purchased with this advertisement
* Totally Integrated Ledger system complete for $£ 3262.00$

For further information ring
Byfleet (09323) 45330
Fergusson Computer Services
"Sharberry", Maitland Close, West Byfleet, Surrey

Kit comments

I was informed recently that a computer kit is 'easy - just like Airfix.' The young man expressing this view had never assembled a computer kit before, so it was really quite arrogant of him. As might be expected, he had cause to regret his rash words when his assembled computer refused to oblige with a screen prompt and he was forced to seek help.

In a way, he was right - a kit is a kit and if you follow instructions the thing should go together quite well. The trouble is that not only is there a constructional element to the task but an electronic element, too. Now, given great care, some skill and a little luck, the assembled kit should work perfectly as soon as it's switched on, so why do so many constructors need help?

I regard kit construction as a task involving the correct solution of a multitude of puzzles. Components need to be correctly identified, for example, and manufacturers of electronic components don't help with their frequently confusing markings. Then there's the need for neat soldering. Just the tiniest solder splash can prevent a computer from working, or even destroy expensive ICs. A solder splash can also provide puzzling symptoms of malfunction, sometimes intermittent, which are the worst faults to locate.

Manufacturers of kits may not thank me, bút I also have to point out that assembly instructions are usually inadequate and often misleading. I cannot criticise too freely, however, because I know from experience how difficult it is to write instructions that are clear and yet concise. Then again, the writer of the instructions must start assuming knowledge on the part of the constructor, otherwise he would have to begin by telling you how to plug a soldering iron into the mains and switch on! (Even then, I suppose that someone would complain that it didn't explain what a soldering iron was and why wasn't one provided with the kit?)

Then there's that difficult to-quantify commodity experience. The experienced constructor will have a multitude of little dodges to help him in his task, wrinkles that no-one is going to bother to write down because, individually, they are trivial
but which together are labour saving and usually successful. They are the stuff of experience and, as tyros in a card game find out, experience doesn't come cheaply.

I told the story of my young friend to a chap even older th an I and he sighed heavily. 'Ah, the arrogance of the young!' he said, shaking his head. I don't think there's much difference between arrogance and confidence and I'm in good company Winston Churchill once said, 'I am confident; you are arrogant; he is pig:headed. Without the confidence to try, I am sure that many tasks would never even be attempted, let alone brought to successful conclusion. An old saying has it: 'He didn't know that it couldn't be done - so the fool just went out and did it.' He must have been young.

So - if you fancy
constructing a computer kit, go right ahead. As I said, with great care, some skill and a little luck, you'll succeed. Notice, however, that I mentioned only a little luck and a lot of care. The job must be approached with respect - it is most definitely not 'just like an Airfix kit'!

Teachers' PET

Teachers and administrators with a PET computer will be interested in the Schools Administration System offered by the Mellor Computer Consultancy, 125 Longhurst Lane, Mellor, Stockport. Using student records as a database, the system produces lists of all kinds, standard letters, labels and figures for the DES Form 7. It also produces the analysis of exam results, option pools for the Secondary Third Year and even substitution lists for absent staff

It looks good to me. Apparently the work was commissioned by Manchester LEA, and Mellor will be pleased to send you details or give demonstrations.

Queueing

If you have ever helped out in a shop or in any place where the public come and go, you will have noticed that you are 'run off your feet' at one time and then, suddenly, things go quiet. That's just how it is here. After the last few months, with programs and letters dropping on my mat by every post, suddenly there there's a breathless hush!

Unless I've said something to upset every youngster who reads YCW - it must simply be the fickle finger of random events. It does mean, however, that I cannot include a
'Programs Received' section this month, cause there ain't none! (Bang goes my chance of making a take-over bid for $P C W!)$

Like the shopkeeper scurrying to serve everyone as quickly as possible, I have made it a Golden Rule to clear my desk every month and this has meant that only the very best programs received in any month have been published. Now I find myself without a single one! So I think that for the future I'll hang on to those 'second division' programs a little longer, just in case. In fact, a sort of queue.

So, all you budding genii, we still want those programs and letters. Long programs are good; so are rehashes of old games, but short programs and new applications are better!

Helping the blind

Talking of new applications, one lady approached me at the $P C W$ Show with a request for help. She is a teacher of
backward children who also suffer from sigh t defects tunnel vision, partial blindness and so on - and she wanted to know how the microcomputer could help. Of course, I was able to tell her about speech synthesisers and the like, but it occurs to me that somewhere in the great Out There there'll be somebody with more ideas.

How about it? Get your thinking caps on and let us and her - know about your bright notions. You'll be doing a lot of very unfortunate kids a lot of good. You may like to submit your suggestions to the 'Year of the Handicapped' competition - see elsewhere in this issue.

Arcade games

Another lady teacher raised a point that worries a lot of people. Is the arcade-type of computer game a 'good thing' or a 'bad thing'? She was definitely 'agin 'em,' as are (I think) most teachers. Me.- I'm not so sure. I have a sneaky feeling that kids who get hooked on arcadetype games are very soon going to want to alter them and start writing their own and then they're into programming.

The amusement arcade itself is another matter very often unsavoury and unwashed characters hang about these places and the prices charged are, in my view, extortionate. But the game itself, on a home, club or school computer - why not? I would like your views on this matter. Do the arcade-type games do anything at all other than exercise manipulation skills? It's a topic for a discussion that could get quite hot!
 "As used by J.R."
value from 1F9C at address 1 F99.

Addr	Old	New
1E99	15	1 C
1E9C	19	15
1EEA	19	15
1F95	0 E	79
1F96	00	87
1F97	18	32
1F98	05	FA
1F99	79	xx
1F9A	32	C9
1F9B	FA	00
1F9C	XX	0 E
1F9D	C9.	00

3. Type K and carry on with SYSGEN.
SW

Collecting garbage

Which computers besides the PET exhibit the garbage collection problem? I wish to sort 100 strings in less than one minute; is that reasonable and, if so, how? Can you recommend any single board computers?
Len Wood, Bourne End, Bucks.

The problem of garbage collection is not caused by the machine or by the language Basic but by the particular version of Basic.
Normally garbage collection is meant to aid the programmer, not hinder him but the problem comes to a head when sorting. As far as I remember, all versions of Basic that I have used on different machines have this problem and your solution lies in one of the methods outlined in a previous 'Answer': compare the strings for order, but swap pointers, not the actual strings. A better solution is to buy one of the many machine code sorts available which will perform your sorting in seconds rather than minutes.

I cannot recommend any single board computers without some details of your requirements.

SW

Serial for PET

İ have a PET 3032 and IEEE 488/RS232 interface for a printer. This works well at 300 baud with the printer. I wish now to work at faster baud rates, up to 9600 . Can I write a machine code program using the 'user
port' as an RS232 serial port? I need a program that will accept serial data at up to 9600 baud and place it some where in memory so that I can look at it in Basic Graham Smit, Warmond, The Netherlands

Although it is possible to write a routine which will make one of the data lines available on the user port act as a serial transmitter, it is not really practical for high baud rates; it is difficult to provide an accurate timing pulse because the PET has to service the keyboard, run programs, ete.

It would be better to adjust the interface to run at a higher speed. This can normally be done by changing a switch setting, or by twiddling a potentiometer inside. At high baud rates it is important that the computer knows whether the receiving device is capable of accepting data. This is normally done by providing another wire, which the terminal sets to a negative voltage when it is incapable of receiving data. If this is not provided, but the terminal is capable of sending data to the computer, then the same procedure can be carried out in software. Failing this, the data must be sent in packets which the terminal can handle. If the PET is receiving data, it will be necessary to write a machine code routine to accept the data and place it directly in memory, as Basic is not fast enough. It will be necessary to reset the Basic top of memory pointers to reserve a section of store as a character buffer. In this case the software method of handshaking would be the best

The user port can more readily be used as a parallel port, as the timing is not so critical; in this case the eight I/O lines are used for data transfer and the two control lines are used to indicate data acknowledgement, and data available. A machine code routine to do this can allow data rates in excess of 9600 baud. Mark Wratten

Charity plea

Let me start by saying that we are a registered charity, so money is tight. We provide industrial therapy for all Birmingham and much of the West Midlands. Our need is to
provide regular surveys giving us and our clients better insight to the operation of the unit, to obtain a general view of our turnover and the success rate of our placings outside, along with current trends. We have no experience at all of compu. ting, and no contacts whatsoever. We need a very elementary machine with the logic of a simpleton. Would the Sinclair ZX80 be of any use?
R M Heney, BITA, Birmingham

Mr Heney provided a fairly comprehensive description of the required data structure but only minimal description of what routines he requires. He is in obvious need of a systems analyst who can help them determine what he really wants. He obviously knows what he wants, but will have to be shown how to specify his requirements in detail.

All that I can say at this stage, Mr Heney; is that the ZX80 is not at all suitable for your purpose and that you do not require an elementary machine.

If anyone in the area is prepared to advise BITA, I will forward their letter. I would have thought that they should approach a local computer club as a first step, but am not convinced that they should try and get all the work done for free. Are all their requirements performed free by other trades? By asking for free program analysis they may find that they are lumbered with a very poor makeshift program which actually costs them more in extra work. Anyway, good luck to them in their search. SW

Tuscan tips

I am looking for an inexpensive single-board computer with flexible expansion possibilities, which will permit data capture in the labora. tory, as well as some analysis Have you any views on the Transam Tuscan in this context?

A Sharp, Tayport, Fife

The Transam Tuscan is most unusual in being a single-board micro-computer designed to the new S100 standard. The important feature of $S 100$ is that the computer is designed

COMPUTERANSWERS

to take slot-in expansion card cards, all made to the same standard bus design, so that (in theory at least, and usually in practice) an S100 card from any manu facturer can be used in any S100 machine.

This obviously makes the Tuscan potentially attractive for your application - what ever I/O or processing facility you need, just plug in the right card! With so many suppliers, there's almost bound to be a source for what you need
whether it's A to D, D to A , a disk controller, extra memory, floating point arithmatic, etc. Of course, the cost can soon mount up with all those cards. . . although the Tuscan can only (!) take five extra cards at one time.

Another advantage of the Tuscan for your needs is that, being based on the $Z 80$, it can be used with the CP/M disk operating system: This will then allow you to pick and choose your software from a wide range of sources. You can obtain a variety of different assemblers, and interpreters or compilers for many high-level languages Basic, Pascal, APL, Fortran, even Micro-Cobol

However, when comparing prices you should bear in mind that the advertised starting price of £195 is just for the basic board, and does not include such essentials as a keyboard, UHF modulator, etc. You may well prefer to attach a standard VDU with its own keyboard, rather than add these features separately.

The micro-computers which seem to have become the most used for your type of application are the PET, and the Hewlett-Packard HP85. While the PET would be not dissimilar in price to a Tuscan plus keyboard and screen, the HP85 at nearly $£ 2000$ is in another price bracket. It might also be worth looking at the type of system you could put together using Microtan 65 and Tanex, with associated racks and cards.
PL McIlmoyle

Cassette subs

Can you suggest a subroutine to provide cassette data file statements for the Nascom 2 similar to the INPUT \#-1 and PRINT \# -1 on the TRS-80? As well as this, a method of switching the cassette on and off under program control would be welcome bonus.
A Hetherington, Cleckheaton
Much as we would like to help, neither PCW nor I are philanthropic institutes, for this task is not so simple? To write, debug and validate machine code subroutines of this sort would
almost certainly cost several hundred pounds at least!

Enough of the bad news. The good news is that it's already been done, in effect As you may know, there are a number of Basic interpreters commercially available for the Nascoms. At least one of these (XTAL Basic from Crystal Electronics) has the ability to CSAVE and CLOAD data in arrays. Indeed, this same facility is available in Nascom's own 8 k Basic, designed specifically for the Nascom 2. However while this feature is available when running with the T-4 or NAS SYS monitors, it is not available with the ROM or EPROM versions of Nascom 8 k Basic running with the T-2 Monitor.
PL McIlmoyle

Dates disgust

I was really disgusted at September's 'Computer Answers' in which some moron called Sheridan Williams has used my Gregorian to Julian algorithm without acknowledgement. It doesn't work; when imple mented properly it does. It should be valid from $1 / 1 / 190$ $1 / 1 / 1900$ to infinity not just to year 2400. You shouldn't use real arithmetic and neither should you use Basic which is not suitable for describing algorithms or any other purpose. As anyone who has used structured programming can tell you it is easy to understand several short routines than one long one. Using integer arithmetic is much faster also
R J Baker, London

I want to answer this letter, as it gives me the opportunity to answer others who enquire whether they should go for Pascal or Basic. The above is just a precis of a very long letter from someone who felt that they had a grievance, and I have sent a detailed reply to him personally even though he didn't send an SAE and despite his abusive turn of phrase.

Each time you boil a kettle, do you credit the people who discovered how to boil it before you? The Gregorian to Julian problem is nearly as trivial, especially as I have seen 10-y ear-olds work out their own algori thms. The algorithm used was my own discovery. Why would anyone who wants such an algorith m require one that works outside the range 1901-2399 especially when used for business purposes? Also, why worry whether the answer takes 0.02 s or 0.01 s to run - it is being performed once only, therefore time and accumulation of errors are insignificant. Running cine films at 300 frames per second is quicker than 25
fps but for ordinary viewing is pointless.

I agree that Pascal is a better language but so is a Rolls-Royce compared with a Mini (or should I say Metro). The point is that you need a larger system to run Pascal than you do Basic. The magazine would not sell well if we ignored all those ZX80/Acorn Atom/ PET/etc owners. ZX80 owners are usually very short of memory (sorry, their machines are!) and an algorithm such as mine is essential to reduce the amount of coding. If they were to use your program the they would have used a large chunk of their precious memory. I assume that you are the proud user of a diskbased system and perhaps have forgotten the more lowly users. I do agree that, generally, a well-structured program is easier to read, but remember that there are libraries of sub-routines that have been compiled and tested and which don't have to be decyphered before they can be used.

Finally there is an error in the routine, not mine but PCW's; the two sets of signs should read $\bar{\mp} \pm$ not $\pm \pm$. SW

Small machines,big question

I would like to buy a computer for around $£ 200$ including VAT with the aim of eventually being able to do the following: 1 , learn to program from the manual provided; 2 , use floating point arithmetic and trigonometric functions; 3 , play games with fast-moving graphics; 4, play the computer at chess; 5 , write teaching programs, including text, for my child ren; 6, program in machine code; 7 , use a computerdriven speaker; 8 , not have to change my initial machine for a more powerful one later.

Could you comment on this list in relation to the Sinclair ZX80, the UK101, the Ohio Superboard, the Acorn Atom and any others that could be considered?

Could you also comment on the differences between the Superboard and the UK101, the difference between a single board, and a computer proper, and whether programs in Basic taken from a book of programs could be used in any machine with Basic. I R Walker, Ilkeston

Taking your points in the same order

1. Excellent as some manuals may be, (and leaving much to be desired, as others do), it's hard to beat a good book if you want to learn to
program. Personally, I like Illustrating Basic by D Alcock. Ideally, go on a course, get a friend to teach you, or join the local computer club, where you'll get 'hands-on' experience; 2. The original version of ZX80 Basic provides neither floating point nor trig functions. These will be available in the future for the ZX 80 and are available for all the other three machines;
2. I haven't come across chess programs for any of the machines you mention, but that's not to say that they may not be around, or become so later. I wouldn't suggest writing your own, unless you are expert in both chess and computers!
3. Yes, all four machines will let you write teaching programs, using text. You might well find yourself wanting to add extra memory if you go in for a lot of text; 6. Machine code program ming is possible on all of these computers, although the ZX80 is limited to PEEK and POKE;
4. The Acorn Atom is the only one of the machines you list which has an in-built loudspeaker; interfacing the others would need some skill in electronics, at the least; 8. If you want to avoid having to change you compu ter by expanding it to take more memory, disks, a printer, etc, then the Acorn Atom is designed for just that. An expansion system for the Ohio Superboard and the UK 101 has just been announced by Zen Computers while such facilities for the Sinclair ZX80 are still in the future;

The Superboard and the UK101 are very similar, the most obvious differences are the number of characters per line on the screen (25 for the 'standard' Superboard, 48 for the UK101), and the price. The Superboard is only available made up, and in this form is cheaper than the UK101. However, the UK101 in kit form is cheaper

Single board computers are indeed 'computers proper'. it's just that they are rather small computers! By definition all the components are located on a single printed circuit board, and this is usually sold without a case, though cases are becoming available for many of them.

If you take programs in Basic from books or magazines, you will very often have to alter them to suit the particular 'dialect' of Basic used by your machine. This is especially true of input/ output and file statements. If the programs use PEEK or POKE statements you will have to alter the addresses to match your machine's memory map.
PL McIlmoyle

Discover the full professional power of Hewlett-Packards personal computer.

Now you can extend the HP-85's power simply by plugging in highperformance printers, plotters and flexible disc systems.

Power where you need it.

The HP-85 puts professional problem-solving power wherever you need it. There's a video display with high resolution and editing capability. A whisper-quiet thermal printer for hard copies of display graphics and alphanumerics. A magnetic tape unit with up to 217 K of storage per cartridge. And a complete keyboard, including eight keys you can define yourself. Powerful, easy-to-use features, thanks to HP's extended BASIC programming language.
Decide the peripherals you need.
HP's Interface Bus (HP-IB/IEEE488) lets you add up to 14 peripherals or instruments. No need to write special operating programs- HP's peripheral ROMs do it for you.

New HP enhancement ROMs and modules give you access to 80 K bytes of operating system, without significantly reducing user memory. The HP 2631B printer means highspeed, high-quality printing. And the HP 7225 Graphics Plotter gives you high-resolution, publication-quality graphics on paper or film.

For extra memory storage, use the HP 82900 series of $51 / 4^{\prime \prime}$ flexible disc drives. Each drive gives you about 270 K bytes of formatted storage on double-sided, double-density discs. The operating system is in the Mass Storage ROM, leaving the HP-85 main memory free.

Behind the HP-85 computing system is the strength of HewlettPackard. Continuous commitment to quality. One-source service and support.

For more details or a demonstration, contact your nearest HP Dealer shown below.

HEWLETT PACKARD

[^4]

Call: Once someone has put some money into the pot during a round of betting, the next player must put in at least the same amount if he wishes to remain in the game. Putting in the same amount as the others is known as calling. When all the players have put money into a particular betting round, that round may only end when all of the players bar one have called - at that point everyone has put in the same a mount.
Raise: Is it possible to put in more that the previous bettor and this is known as raising. If the first player puts in $£ 1$ and the second player wants to put in an extra $£ 1$, he will say something like 'your $£ 1$ raise $£ 1$, and put $£ 2$ into the pot. Once there has been a raise it is necessary for all the players after the last raiser to call the bet before the round is at an end, so that everyone will have contributed the same amount to the pot. The maximum that can be raised is the amount in the pot before the raise takes place. So if the pot stands at $£ 1$, and the player bets $£ 1$, making the pot $£ 2$, the second player can put in the $£ 1$ to meet the bet and then raise $£ 3$ (the current size of the pot).
Pass: Sometimes known as 'fold'. This is what happens when a player decides that he no longer wishes to take part in this particular hand - he turns his cards face down and relinquishes all claim to the money. Beginners often think that passing is cowardly but in fact more hands are passed by good players than by bad ones.

Some basic principles

Two essential principles should be followed in a game of stud poker. On card two and card three (ie when you have a total of two or three cards, including the down card), you should never put money into the pot unless your cards so far, including the down card, can beat every hand that you can see on the table. The reason for this is obvious enough - if your up cards are a 6 and an 8 of different suits, and your down card is a 2, and if your opponent is showing a 5 and a 9 of different suits, you should not be putting money into the pot because you are beaten 'on the table' and your opponent has a hidden card which may well go nicely with the others. Many beginners make the mistake of assuming, in a situation such as this one, that they have just as much chance of 'hitting a pair' (ie getting another 2,6 or 8 on the fourth of fifth card) as their opponent and so it is almost an even money shot if they stay in the pot. But this is false accounting. Firstly, your opponent may already have a pair - his down card might be another 5 or a 9 . In this case he will

Animate is a machine language program representing an entirely new breakthrough in the use of graphics on the TRS -80 or Video Genie microcomputers. As Walt Disney and others found to their profit some years ago, if you draw a number of separate pictures slightly different to each other, and then display them consecutively sufficiently fast, a moving picture is produced. This is precisely what Animate does. Pictures are built up as a sequence of frames, each one being as small or as large as you wish and composed using an easily used graphics cursor. The entire graphics content of a frame can be shifted in any direction so as to move objects without the need to redraw them in each new position. As each new frame is completed it is automatically stored in memory and given a number, so that it may be recalled and edited at will. The timing of the projection of each frame is definable up to a maximum of 100 seconds. When the picture is completed it may be viewed and edited as you wish. When the final picture is complete it may be stored on cassette as a SYSTEM program. Thereafter it may be loaded and accessed either by Animate or by any Basic program. Thus the same picture may be used in any number of different Basic programs, if you wish. Animate is available at present only on cassette for Level II or Genie machines of 16 K and up. A disk version will be available shortly. A comprehensive manual is included.

$$
\text { E Plus VAT and } 75 p P \text { \& } P=£ 17.94
$$

Send large SAE (38 p) for our current Catalogue of TRS-80 software. Add $£ 1.85$ for a binder.

A.J.HARDING [MOLIMERX]
 MOLIMERX LTD.

Cincurctar
S
mocen bin
28 COLLINGTON AVENUE,BEXHILL-ON-SEA. E.SUSSEX.
TEL: (0424) 220391
TELEX 86736 SOTEX G
certainly beat you if you do not draw a pair; he may beat you even if you do draw a pair because his pair of 9 s or 5 s may be higher than your eventual pair; and if he does not yet have a pair and you both draw a pair, he has better chances than you because his cards at the moment are higher than yours, so it will be odds on that his pair will be higher than yours. The only way that you can win is if he does not make a pair and you do, but then your pair may be 'open' (ie both cards face up) in which case he will not put any money into the pot on card five. If you don't believe me, try it for yourself.

The second golden rule is that when betting on card four, don't put money into the pot unless you have "equity', that is to say, unless the ratio of the money already in the pot to the money you are now putting in is no less than the odds against you having a winning hand when the last card is dealt.

A simple example will explain th is principle. Suppose that you hold the $2,3,4$ and 8 of hearts (the 2 is the down card) and that your opponent is showing the 5 of clubs, the 5 of diamonds and the 10 of spades. The pot stands at $£ 10$ and your opponent bets $£ 10$. What should you do? In order to win the hand, and to be sure that you are winning the hand, you need to hit a fifth heart to make a flush. Then, unless your opponent already has three of a kind or two pairs, and makes a full house on the last card, you must hold the winning hand. And if he does have a chance of making a full house you will see it from his fifth card, so there will be no danger of your betting too heavily on the fifth round.

Since you need to hit a heart to win and you have already seen four hearts (the ones in your hand), you know that of the 45 unseen cards remaining (the 44 in the deck and the one down card in your opponent's hand) there are nine hearts. The odds against your hitting a heart are therefore $(44-9): 9$, or $35: 9$ (almost 4 to 1). But your equity, or investment odds, are only $2: 1$, because there is $£ 20$ currently in the pot and you must put in $£ 10$ to stay in. In making this calculation it is important to remember that the money in the pot does not belong to you in any way, even though you put some of it in there - the money belongs to the pot until someone wins it. It is also important to remember that you cannot usually count on winning any more money on the fifth round of betting, because your opponent will not be obliged to put in any more money, but there will be some occasions when it is reasonable to assume that your opponent will put money in the pot after the fifth card.

It is precisely because of this concept of equity that it is vital to make a goodsized bet when you are in the lead, because otherwise you are making it cheap or free for your op ponent to stay in the pot, and then he may hit better cards than you do later on in which case he will 'steal' the pot. In the above situation, for example, if your opponent bets only $£ 1$ instead of $£ 10$, he is playing like a sucker. You call his $£ 1$ bet and now you have $11: 1$ money odds while the odds against hitting a winning card are only about $4: 1$. If your opponent plays like that often enough, in the hope of 'sucking you in' to the pot
when you really should be out of it, he will be sorry to see his financial empire crumbling as you get better cards than him one hand out of five.

These two golden rules provide the basis for solid play in a game of fivecard stud. Of course like most rules of thumb, there will be occasions when they should be broken, but it takes a good player to recognise these situations and, until you or your program is a regular winner, you should play it safe. There is one exception, and that is concerned with bluffing, about which I have written a little in the past. To play good poker it is essential to bluff occasionally, but the good player will judge when to bluff by taking careful note of his opponents' styles of play and their mannerisms. I shall write more on the subject of bluffing next month, when we will be looking at draw poker, so for our stud poker program let us assume, for the time being, that there will be no bluffing. I shall give an algorithm for programming stud poker but its parameters are subject to variation at the reader's discretion. In order to illustrate the algorithm, I shall describe one hand of stud poker in some detail and for the sake of simplicity I shall assume that the program is playing against only one opponent - you may extend the principles of the algorithm to a higher number of players and I would recommend five or six as being the right number for a personal computer program.

The algorithm in action

Our stud poker algorithm is based on a system for estimating the probability that our opponent's down card is of a certain denomination. These probabilities are adjusted in the light of information obtained from his play, or more precisely, from the way that he bets during the hand. Other factors, such as bluffing and poor play by the opponent, could also be included in such an algorithm but for the purpose of this example I shall keep things as simple as possible. The reader ought to have little difficulty in generalising from this example, to produce a routine that implements the algorithm successfully.

Let us suppose that when the cards are dealt the program receives the Ace of clubs as the down card, and the 9 of hearts as the up card. The opponent has the 8 of diamonds as his up card. PROGRAM: (A C) 9 H
OPPONENT: (??) 8 D
Before the betting begins, we can already make certain probability estimates about our opponent's down card. We have seen one ace, one 8 and one 9 , and there are 49 unseen cards at this stage in the proceedings. Of these 49 cards three are aces, three are 8 s and three are 9 s and there are four of every other denomination. So without any more information to go on, we can estimate the probabilities of the opponent's down card being an ace as $3 / 49$, of its being a king as $4 / 49$, a queen $4 / 49$, and so on, giving us Table 1.

The program has the highest face up holding (9 is higher than 8), so it opens the betting. There is an 'ante' of $£ 1$ in the pot, so the program bets $£ 1$ and the opponent decides to call, putting in $£ 1$

DENOMINATION	PROBABILITY
Ace	0.061
King	0.082
Queen	0.082
Jack	0.082
10	0.082
9	0.061
8	0.061
7	0.082
6	0.082
5	0.082
4	0.082
3	0.082
2	0.082

Table 1 Probabilities for opponent's down card before first round of betting (correct to three decimal places)
to make the total amount of money in the pot $£ 3$. From the fact that our opponent called, it is reasonable to make two deductions: (a) he almost certainly has a down card which can beat a 9 , otherwise he was very foolish to call the bet; (b) he may have a nother 8 , giving him a pair of 8 s but if he did have a pair of 8 s he might well have raised the bet, so he is probably less likely to have another 8 than to have a $10, \mathrm{~J}, \mathrm{Q}, \mathrm{K}$ or A . (This deduction can be made into a learning mechanism, so that after playing a long session against the same opponent, the program could estimate the number of hands in which the opponent had not raised with a pair on card two.)

We must now apply some formula to adjust the old probabilities in the light of the new information received. This must be done in some way that weighs the importance of the old information relative to the new. Since the information that we had prior to the first round of betting was all a priori information, whereas we now have some a postori information, I would give the new information something like four times as much weight as the older information. Furthermore, I would suggest that we assume it to be twice as likely that the opponent's hole card was an A, K, Q, J or 10 than another 8. So from the assumptions made on the basis of the one called bet we can estimate the probabilities of the various denominations being the opponent's down card as in Table 2.

These fractions come from the fact that we wish to estimate the probability that he holds an Ace, King, Queen, Jack or 10 as being twice as much as the probability of his holding an 8 , and we must have all the probabilities adding up to 1 . We estimate the probabilities of his holding a $9,7,6,5,4,3$ or 2 as being zero, on the assumption that he is not playing badly, though as I mentioned before, this presumption can be varied by the program itself.

We must now combine the old and new probabilities in accordance with their weightings (new:old $=4: 1$), and so the new measure for the opponent holding an Ace as his down card is given by:
$(0.061 \times 1)+(0.182 \times 4)=0.789$
The measure for the King is given by $(0.082 \times 1)+(0.182 \times 4)=0.810$
The Queen, Jack and 10 have the same old estimates and the same new estimates as the King, so their revised measures are all given by:
$(0.082 \times 1)+(0.182 \times 4)=0.810$
The measure for the 9 is given by: $(0.061 \times 1)+(0 \times 4)=0.061$

The starting point for Professional quality Dealer
enquiries
Dealer invited Digital Data Storage System MBS Texmoinals

MBS Terminals Ltd., Aldwych House, Madeira Road, West Byfleet, Surrey KT14 6BA Telephone: Byfleet (093 23) 53151 \& 49618 Suppliers of Computer Peripherals

Ace	King	Queen	Jack	10	9	8	7	6	5	4	3	2
$2 / 11$	$2 / 11$	$2 / 11$	$2 / 11$	$2 / 11$	0	$1 / 11$	0	0	0	0	0	0

$(2 / 11=0.182 ; 1 / 11=0.091)$
Table 2

The measure for the 8 is given by: $(0.061 \times 1)+(0.091 \times 4)=0.425$
And the measures for the $7,6,5,4,3$ and 2 are all given by:
$(0.082 \times 1)+(0 \times 4)=0.082$
Finally, to arrive at the new probability estimates for all the denominations, we need to normalise these figures so that the total probability adds up to 1 . So we sum the above measures: $0.789+(4 \times 0.810)+0.061+$
$0.425+(6 \times 0.082)=5.007$
and divide each of them by 5.007 to arrive at the new probability estimates (Table 3).

DENOMINATION	PROBABILITY
Ace	$0.789 / 5.007=0.158$
King	$0.810 / 5.007=0.162$
Queen	0.162
Jack	0.162
10	0.162
9	$0.061 / 5.007=0.012$
8	$0.425 / 5.007=0.085$
7	$0.082 / 5.007=0.016$
6	0.016
5	0.016
4	0.016
3	0.016
2	0.016

Table 3 Probabilities for opponent's down card after the first round of betting.

The first round of betting is now over, and the dealer gives each of the players one more card. The program receives the 7 of spades while its opponent gets the 10 of clubs, so the situation on the table now looks like this:
PROGRAM: (A C) $9 \mathrm{H}, 7 \mathrm{~S}$
OPPONENT: (??) $8 \mathrm{D}, 10 \mathrm{C}$
and there is $£ 3$ in the pot. The oppon. ent is now 'high', ie he has the highest cards showing on the table, since 10,8 is better than 9,7 , and so it is the opponent to open the betting on this round. He may check, or he may bet anything from $£ 1$ to $£ 3$. Let us assume that he bets the maximum of $£ 3$.

The first thing that the program must do is to determine whether or not, on the basis of the probability estimates that it had before this $£ 3$ bet, the opponent is likely to have the winning hand and if so, by what margin of probability. In order to be winning at this stage, the opponent must hold, as his down card, an Ace, an 8 or a 10. An ace would give him A, 10, 8 against A, 9,7 , while a 10 or an 8 as the down card would give him a pair. From Table 3 the program can determine that the probability of its opponent's down card being an A, 8 or 10 is:
$0.158+0.085+0.162=0.405$
So the probability that he does not hold the winning hand is $1-0.405=0.595$, and the odds against the program having the winning hand are $0.405: 0.595$, or $1: 1.47$. If the program calls the $£ 3$ bet, since the pot now stands at $£ 6$ the program will be getting $2: 1$ money odds, so the program definitely has enough equity to call the bet because $2: 1$ is better than $0.68: 1$. From this
calculation the program may determine that it is safe to call the bet. The algorithm ought to have some randomlybased adjustment in its calculations to determine when to raise rather than call - possibly this might be a probability function whose input parameters are the actual odds against the opponent having the better hand, and some measure of how the opponent sees the situation. It is clearly better for the program, when raising the pot, to have its strength hidden in the down card if it wants the opponent to stay in the hand, while it is better to have all its strength on the table (with the 'threat' of more strength in the down card) if it is trying to bluff its opponent out of the pot.

Having made the above calculations, the program has determined that it is safe to call the $£ 3$ bet but since the odds against the opponent having the best hand at this stage are only $1.47: 1$, it would be a little imprudent to raise at this stage. What the odds should be is not an easy question to answer but I would recommend not raising unless the odds are at least $2: 1$. (In fact I would recommend an over-riding heuristic, under which the program would never raise when the opponent could have a cast iron cinch, as here, if he has another 10, the opponent knows for sure that he is winning.)

The program therefore calls the $£ 3$, making the total in the pot $£ 9$ and the dealer gives out another card to each player; this time the program gets the 6 of diamonds and its opponent the Jack of spades, so the situation on the table is now this:
PROGRAM: (A C) $9 \mathrm{H}, 7 \mathrm{~S}, 6 \mathrm{D}$
OPPONENT: (??) $8 \mathrm{D}, 10 \mathrm{C}, \mathrm{JS}$
and there is $£ 9$ in the pot. The opponent is still high, since $J, 10,8$ is a better holding than $9,7,6$, but the program's hidden Ace is still an important card, because unless the opponent already has a pair or an Ace, the program is still winning. The situation has now been made even more complicated because the latest cards to be dealt give each player, in theory at least, the chance for a straight if the fifth card is exactly right. For example, if the opponent's hole card is a 9,7 or Q, he can make a straight on card five by hitting a 7 or Q (if he holds a 9), or a 9 (if he already holds a 7 or Q).

The opponent's betting situation has improved somewhat since his highest face up card is better than the program's highest face up card, the opponent's second highest up card is better than the program's, and so is his third highest up card. So the opponent happily tosses in $£ 9$ with a smile on his face that the poor microcomputer cannot see. What should the program do now? Answer: stay calm and calculate the odds. In order to be winning at this stage, the program's opponent must hold an Ace, 8, 10 or J as his hole card. The probability of this, from Table 3 , is:
$0.158+0.085+0.162$
$+0.162=0.567$

This means that the program probably doesn't hold the winning hand at the moment, but the odds against it holding the winning hand are only $0.567: 0.433$, or $1.31: 1$, whereas if it calls the $£ 9$ bet it is getting $2: 1$ money odds, since the $£ 9$ bet has made the pot up to a total of £18. Therefore, the program should still call this bet, even though the odds indicate that at this stage it is probably not holding the best cards. So the program calls the bet, the pot stands at $£ 27$, and the fifth and final card is dealt. The program gets an Ace while its opponent gets another Jack, so the players have the following cards showing:
PROGRAM: (AC) $9 \mathrm{H}, 7 \mathrm{~S}, 6 \mathrm{D}, \mathrm{AD}$
OPPONENT: (??) 8 D, 10 C, J S, J H and there is $£ 27$ in the pot. The human opponent now feels very smug, with a pair of Jacks showing, and says, 'I suppose I ought to bet something here is $£ 20$.'

The principles apply here, just as they did on the previous rounds of betting, except for the fact that this is the final round, after which whoever has the best cards will take the money. The program calculates that to beat it the opponent must have a Jack (for three Jacks) or a 10 or 8 in the hole (for two pairs). The probability estimates indicate that the total probability of the opponent having the winning hand is:
$0.162+0.162+0.085=0.409$
therefore the odds against the program are 0.409: $(1-0.409)=0.692: 1$, well below the money odds, so there is every reason to call the final bet.

Refinements to the algorithm

There are various ways in which the reader might care to modify this algorithm. To begin with, there is the fact that when, for example, the opponent hit a 10 at card three, the program knew that its original, a priori estimate of the probabilities wasn't accurate because the 10 of clubs was actually still in the deck. At that point it could have recalculated the original a priori probabilities in the light of the news that the 10 of clubs and 7 of spades were still in the deck after card two and this would have the effect of making the calculations of the probability estimates more accurate from card three onwards.

Another useful idea is to modify the probabilities all the way through the hand on the basis of the opponent's betting. If the opponent shows strength (ie raises when he could call, or bets when he could check) the program could assume that it was more likely that he held a good card, and adjust the probabilities for the good cards upwards by (say) 10 percent, normalising the others as necessary. If the opponent showed weakness by checking when he might have been expected to bet, then the probabilities for the good cards could be adjusted downwards by 10 per cent.

Bluffing plays an extremely important part in poker, so it would be as well to assume that on a certain percentage of occasions the opponent will bluff, and then adjust this percentage over a

David Hebditch discusses a method of designing man-machine interactions.

A 'finite state automaton' may be formally defined as ". . . a machine that 1. recognises its current state from a narrowly-defined set of states;
2 scans input, character by character, and classifies it according to a narrowly defined set of classes;
3 takes an action and alters its state, based upon the current state and the class of the current input character, (see reference).

Finite state automata (FSA) are extremely useful devices for the formal specification of free-format input messages and to date, they have mostly been employed in language processors. A simple and consistent extension can be employed to convert the specification into a computer program. Where free-format input is not being used, FSAs can be employed to specify the checking to be carried out on 'complex' input fields such as dates, self-checking numbers, structured codes and so on.

A particular benefit of the technique is the ease with which programs may be subsequently modified to incorporate changes in the input format. Furthermore, the technique imposes a standard structure on such programs which further aids their maintainability.

FSAs are defined using circles for states and arrows for the transitions between them. An example is shown in Figure 1.!

Figure 2 shows a simplified state diagram for the input of a date in the format DD/MM/YY (eg 16/6/80).

States are usually numbered sequentially and in Figure 2, State 1 is concerned with 'days' and scans the input, character-by-character, accumulating a numeric item. Slash ($/$) causes the FSA to move to State 2, which scans the 'month' and the FSA stays in this state while it continues to receive characters 0 through 9. Slash (/) causes a transition to State 3, which accepts numeric characters for the 'year' until any other character causes the FSA to terminate.

Any state diagram may be rewritten in the form of a matrix. This is done by showing the states as columns, input classes as rows and the transitions as 'next state' entries in the matrix itself. There are three states (1, 2 and 3) and ' 0 ' can be used to indicate an exit from the automaton. The three input classes are $0.9, \quad / 1$ ' and 'other'. So the state matrix for our simple date routine is as below:

Interpretation is simple; if the FSA is in State 1 and a ' 3 ' is entered then the automaton remains in State 2. If a ' $/$ ' is entered while in State 2, a transition

Fig 3
takes place to State 3.
Of course, this routine is oversimplified. The state diagram shown in Figure 3 is more comprehensive. Try to interpret it before reading further.

A number of 'improvements' have been made. These are:
1 Hyphen (-) and point (.) are now acceptable alternatives to slash (/) as delimiters.
2 If at any time the user presses '?' the input so far is cancelled and he can start the date again.
3 Similarly, if the user presses '!' the FSA goes to the 'end' routine. This enables the program to complete the date from the contents of the last date entered. For example, if the user types the date 16-6.80 and subsequently enters 18 ! the program will transform this to 18-6-80.

Using '!' alone will 'Dupe' the whole date.

Translating Figure 3 into a state matrix produces:

The matrix shows how the entry of any other character causes the date to reset. If this is not the desired approach 'other' characters could be included in a different class (eg 0-9)

The state matrix merely indicates the logical flow of the Finite State Automaton. No actual processing is taking place. To define the checking and manipulations of the input we make use of an action matrix.

Note: Actions always take place before transitions. The actions which may be required in our date example will include:

- concatenating one numeric digit with the previous one;
- storing a complete input number as a 'day';
- storing an input number as a 'month';
- storing an input number as a 'year'; - checking the complete date.

The action matrix for the date example is shown below, along with a list of the actions to be taken. (It is assumed that initialisation has taken place).

FACETOFACE

Actions:

A Concatenate digit $\operatorname{eg} \mathrm{N}=\mathrm{N} * 10+$ digit
B Store number as 'day' eg $D=N: N=0$
C Store number as 'month'
eg $M=N: N=0$
D Store number as 'year' eg $Y=N: N=0$
E Reset all items
eg $N=0: D=0: M=0: Y=0$
F Duplicate as necessary
eg $\mathrm{IF} \mathrm{D}=\mathrm{O}$ THEN $\mathrm{D}=\mathrm{OD}$
IF $\mathrm{M}=0$ THEN $\mathrm{M}=0 \mathrm{M}$
IF $\mathrm{Y}=0$ THEN $\mathrm{Y}=0 \mathrm{Y}$
Check for errors (see below).
If no errors save date eg $O D=D$:
$\mathrm{OM}=\mathrm{M}: \mathrm{OY}=\mathrm{Y}$
Exit date routine.
For the time being, the error checking has been omitted.

Clearly, it is not practical to continue to treat the logical structure of the FSA and the associated processing separately. Combining the state-flow and action together makes the processing of the FSA much clearer. Given that the action must always take place before the statetransition makes the merging of the matrices simple. A combined matrix for the date routine is shown below:

| States | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Input
 classes | A | NS | A | NS | A | NS |
| 0.9 | A | 1 | A | 2 | A | 3 |
| -1. | B | 2 | C | 3 | D | 4 |
| ? (other) | E | 0 | E | 0 | E | 0 |
| ? | F | 4 | F | 4 | F | 4 |

A $=$ Action
NS = Next State

Error handling

The same matrix concept may be employed to specify the occurrence of error conditions in an FSA. The type of error which may occur includes:

- day number not in the range 1 through 31;
- day number too large for month eg $>28,>29$ or >30;
- month number not in the range 1 through 12 .

Some conditions (eg input character not in an acceptable class) may be handled in the state matrix (eg by returning to the beginning of the input sequence).

A possible error matrix for our date routine may be as below:

Input classes	1	2	3
$0-9$	0	0	0
$\%$	1	$2-3$	4
$?$ (other)	0	0	0
!	5	5	5

Errors:

0 No error message but Action
1 Day <1 or >31
2 Month < or > 12
3 Day $>28,>29$ or >30 for certain months:
eg
D >28 and $M=2$
AND Y MOD $4 \neq 0$
D >29 and $\mathrm{M}=2$
AND Y MOD $4=0$
D> 30 and
($\mathrm{M}=4$ or $\mathrm{M}=6$ or $\mathrm{M}=9$ or $\mathrm{M}=11$) 4 LEN $(\mathrm{Y})>2$ AND NOT END-OF. STRING
5 NO PREVIOUS DATE ENTERED (ie $\mathrm{OD}=0$ or $\mathrm{OM}=0 \mathrm{OR} \mathrm{OY}=0$) but Action F exits date routine.

The error handling can be further incorporated with the earlier combined matrix as follows:

Input classes	1			2			3			
	A	NS	E	A	NS	E	A	NS		E
0.9	A	1	0	A	2	0	A	3		0
	B	2	1	C	3	2.3	D	4		4
? (other)	E	0	0	E	0	0	E	0		0
! (end)	F	4	5	F		-	F	4		

The number of states, input classes, actions, conditions and errors will obviously vary according to the complexity of the item being processed.

The programming of finite state automata is relatively easy and can be performed in high level languages so long as they support the following functions:

- two-dimensional matrices and

- ON . . . GO TO . . . or
 ON ...GOSUB ... or PERFORM . . . DEPENDING ON

functions

The following example shows how the date processing routine can be programmed in MBASIC.

This material is based on a paper presented by T A Dimock of Cornell University at a conference 'Pragmatic Programming and Sensible Software, held in London in 1978.

AWord Processor, Report Writer, MailingSystem, Data Base Manager, anda

 Computer all for $\{1995$

Yes, we are offering all this with our SERIES $50005^{\prime \prime}$ floppy-disc system for the incredibly low price of $£ 1995$.*

Not only do you get a powerful Z-80A system on the $\mathrm{S}-100$ bus built to high quality standards by Industrial Microsystems, one of the longest-and best-established companies in the microcomputer industry, and supported by Equinox, specialists in microcomputers and multi-user systems.
and dual 5 " double-density drives. with the option of a third drive (or quad capacity drives in place of doubledensity) in the same cabinet. Additionally, there is the Turbocharger option providing both enhanced disc capacity,disc performance and diagnostics. And if even greater storage is required we can supply $8^{\prime \prime}$ floppy drives and cartridge disc drives. A powerful system for the computer-user and system developer - and one with eventual access to OS/2000, the Industrial Microsystems networking system.

And for the office or business user we are including as standard a powerful Word-Processing
package (Wordstar), a Mailing and Letterwriting package (Mail-Merge) and the Datastar Data Base Manager. All these packages are widely accepted and professionally written by Micropro International.

Being CP/M based, the system with suitable configuration will also run the business soft ware developed by (for instance) Graffcom, Peachtree, Paxton, etc.

It will also run a wide range of languages - Basic, Cobol, Fortran, Pascal,APL,Algol,C.Lisp, and Forth and will support a wide range of addon S-100 devices, such as floating point processors, Prestel interfaces,speech synthesisers, digitisers and plotters,etc.

And just to make certain that you get full use out of your system, nationwide field service support is available at a modest extra cost.
*add VAT and the terminal and printer of your choice at the costs shown.

Series 5000 with 64 KB Dynamic RAM, dual $5^{\prime \prime}$ double density drives, CP / M Operating System, Wordstar, Mail-Merge and Datastar
$€ 1995$
The same system with quad drives in place of the double density drives $£^{2230}$
Add-on double density drive $£ 290$
Add-on quad drive $£ 405$
Peripherals:
Televideo 912C VDU £595
Elbit 1920X VDU with Wordstar
keyboard
f^{895}
OKI Microline 80 printer
Texas 810 150cps printer
NEC Spinwriter RO Word
processing printer
$£ 1850$
All prices exclude VAT, carriage,training and installation
and are subject to our standard terms and conditions.
OEM dealer and educational enquiries welcome.

COMPUTER SYSTEMS LIMITED
Kleeman House, 16 Anning Street, New Inn Yard,London EC2A 3HB Tt': 01-739 2387/9 \& 01-729 4460

PRINTERFACING

Peter Faff continues his series on low-cost printers and how to connect them to your micro.

This month I will continue by looking at examples of matrix printers that are readily available. Each month I will try to give examples of printers that use all three technologies to give you as much choice as possible. Each article will contain a description of the mechanical operation of the printer, details of the printer timing signals and ways in which the printer could be interfaced to a control circuit or micro.

These articles are intended to be used as design guidelines by persons with a reasonable amount of knowledge of, and experience with, digital circuitry. Beginners will find that full constructional projects for working matrix printer units have been published in the well-known electronic hobby magazines over the last few years.

TI Thermal printers

Texas Instruments manufactures two types of thermal printer mecahnism the EPN 9112 12-character printer and the EPN 912020 -character printer. Both are available from Marshalls and cost approximately $£ 38.00$ and $£ 52.00$ respectively. The mechanical construction of both units is similar and very simple. The paper feed is carried out by a large-diameter rubber roller which is driven via a gear chain by a stepping motor. The ceramic print head is clipped into a holder and is held against the roller by spring pressure. The print head itself consists of a parallel array of heating elements which are multiplexed into groups of five - see Figure 1, which also shows the electrical connections to the printers. The print heads are fabricated on a ceramic substrate using beam-lead technology. Each element has a diode connected in series to eliminate problems when the elements are multiplexed. The elements should run from a supply of about 14 V and they require a pulse width of about 10 ms ; the peak current drawn by a cold element is about $200-300 \mathrm{~mA}$, falling to $50-100 \mathrm{~mA}$ as it warms up. Figure 2 shows a suggested drive circuit that can be used with both units. The fiveelement connections should be taken to 14 V to heat an element, and at the same time a digit connection should be grounded to enable a particular digit. To use the minimum amount of power, the elements should be enabled one at a time while the digits are strobed sequentially, although if a faster print rate is required then a number of digits could be grounded while a particular element is energised; this way several dots can be printed at the same time, at the cost of increased power consumption. The connection to the EPN 9112 is by a flexible 18 -way printed circuit connector while the EPN 9120 uses a 25 -way wire connector (see Figure 3). In both cases,
the motor requires a supply of approx 17 V ; the two windings should be energised in turn to rotate the motor by one step and a circuit to achieve this is given in Figure 4.

The Texas Instruments thermal printers are reasonably simple to use. For an interface and control circuit, the basic units required are as follows: (i) a RAM array to hold one line of character data; ie, 12 or 20 6-bit words; (ii) a character generator ROM that outputs data in 5 -bit rows. This ROM should allow the data for one character to be output row by row; (iii) element drive, digit select and drive and motor control circuits, and, finally; (iv) hard-wired control logic or a suitable program to control all the above units. Figure 5 is a block diagram of a suggested system.

Figure 5 shows a 5×7 character cell; a typical ROM will contain 64 such character cells which can be selected by a 6 -bit address bus while a further 3 -bit address line allows the user to select one of seven rows of five bits. The line of data to be printed is stored in the RAM array. When
printing starts, the control logic uses a 3-4 bit address line to select the digit to be printed, the RAM outputs the 6 -bit digit data to the character generator ROM and at the same time the control logic selects the first row to be printed: When the row has been printed, the control logic selects the next digit and the data for the next character is fed to the ROM. This is repeated for 12 or 20 digits. After a full line of 5 bit rows has been printed, the control logic selects the next row stored in the character generator and again steps through the $12 / 20$ digits. After seven rows have been printed the cycle is completed and a new line of data can be entered into the RAM. After each full row of dots has been printed, the motor should be incremented by one step; in this way a line of characters is printed sequentially in groups of five dots. If you do not like the idea of building a circuit to do all this then you can, of course, write a suitable program but you will still require a character generator ROM and the interface circuits to drive the printer.

Fig 1 Electrical configuration of EPN 9112 and EPN 9120 print heads.

Fig 3 Connections to EPN printers.

Fig 2 Suggested drive circuit.

L ${ }^{2} J$ Computers

3 CRUNDALE AVENUE, KINGSBURY NW9 9PJ 01-204 7525 THE "PET" SPECIALISTS

SOFTWARE

As well as a full range of Petsoft and Commodore Software, we have some highly reliable "Home-Brewed"." programs available. STOCK CONTROL \& INVOICINGon invoicing, search etc. Cassette, disk ($\&$ colour print option).
CASH BOOK
Enter daily/weekly amounts printout and totals, weekly
monthly analysis, totals and balances. monthly analysis, totals and balances

MACHINE HIRE Typewriter \& Plant Hire
OUTSIDE SERVICES (For Mini-Cabs etc.) £220

Sae for free software booklet
SPECIALISTS IN:
Commodore Business Programs: Superpay; Bristol Trader, Item \& Monitor: Word Processing

3 to 8 PETs only need 1 DISK DRIVE
Daily demonstrations: Ring for details.

TRY US!
Y OU WILL NOT BE DISAPPOINTED

Ext.
Ext. cassette decks (t counter) Ess

SUPERPETS NOW EX STOCK!

Printers	Disc Drives	Sundries
PET 3023	PET 3040	Tool kits: library cases
PET 3022	Compu 400K	Disks: C12 cassettes
Centronic 779	Compu 800K	Paper (roll \& tractor feed
Spinwriter	Interfaces	Labels: Dust covers
The "MUPETs" are HERE!		
3 to 8 PETs only need 1 DISK DRIVE		
Daily demonstrations: Ring for detailS.		

THE ESTIMATES WE SUPPLY \& INSTALL ARE COMPLETE ESTIMATES GIVEN FREE WITH NO HIDDEN EXTRAS: FULL BACK-UP: GUARANTEED EXPERTISE

* PRICES do not include vat

PERSONAL SHOPPERS WELCOME Phone \& Mail Orders accepted.

ALL GOODS SENT SAME DAY WHEREVER POSSIBLE LARGE S.A.E. FOR LISTS ETC.

SPECIALISED SOFTWARE APPLICATIONS UNDERTAKEN. RING FOR DETAILS

2 FOR JUST OVER THE PRICE OF 1 !
We now have limited stock of new cassette decks with a built-in counter soundbox for PETS!
At ONLY £65*
Orders dealt with in strict rotation.

NASCOM $1 \& 2$

WORDEASE-WORD PROCESSOR (MC)

 Professionally written 4 K word processor:-14 IIne window on text buffer \& extensive
on-screen editing facilities. Insert \& delete on-screen editing facilities. Insert $\&$ characters, lines \& paragraphs. Text manipulation-copy from one section of text to another, or read in additional material from tape to any point in the text.
FIND \& REPLACE facility.

Exceptional formatting capacitility
commands embedded in text allow comple te flexibility e.g. variable tab position, indent 'MACROS' permits automatic inclusion of headings, footings \& other 'text repeats', \&

Output to printer - can vary character delay, inhlibit line feeds $\&$ force upper case if required. Text can be saved on tape \& recovered
An extensive manual is supplied (itself prepared on Wordease). The method o sample text. $\mathbf{£ 2 5} 00$

```
SUPER STARTREK(B/16K)
Spacefighter(B/G)
Alien Labyrinth(B/G/16K)
Driver(B/G)
Sheepdog Trial(B)
Slalom(B/G)
Biorhythm(B/G)
```

All programs supplied on cassettes
$\mathbf{G}=\mathbf{B A S I C}, \mathrm{MC}=$ Machine Code.
8KRAM required unless otherwise stated,
PLEASE GIVE FULL DETAILS OF YOUR
NASCOM

* *NASCOM
Interface for
N 2 format, interface 6.30 or $£ 13.30$ with program order

MUSIC BOX

Now you can make music with allows you to key in old favouram have fun composing your own tunes. 7 octave range with staccato option. 9 tempos. Set note duration or tap in Compr as required
end hensive editing. Delete, insert or amend notes. Single-step forwards \& backwards through tune. Add new lines The program includes size. play-back routines $\&$ is supplied with 2 demonstration melodies \& instructions for connecting your Nascom to an amplifier/speaker such as our unit below Nas-sys/2 or $4 \mathrm{MHz} /$ with or without graphics. $4 \mathrm{MHz} /$ with or without
MUSICAL BREAK-OUT/ (MC/G)
You have 8 chances to hit all the bricks out of a moving wall. The object is to keep the ball in play. As in squash, the angle of
bounce is not always predictable. Good reflexes required. If fitted with an amplifier / speaker, different notes are produced on
hiting the various bricks. $\mathbb{£ 6 . 9 5}$

COWBOY SHOOT-OUT(MC/G)

Full feature Cowboy Shooting game for 2 players. Two versions played alternatelyStreet ${ }^{\text {3 }}$ avoiding the moviag Chuck Wagons and then through a wall which has to be demolished first. Complete with sound of fitted to an amplifier/speaker. $£ 6.95$

AUDIO INTERFACE BOARD \& SPEAKER

Compact \& ready assembled, suitable for use programs. 3 simple connections. Complet with instructions on programming for sounds $£ 9.75$.

[^5]
Olivetti series-parallel thermal printers

This is probably the most common thermal printer in existence. It can be found in various guises in the majority of thermal printing calculators, and is also available as a new unit, type PE 1800, from Datac Ltd for approx $£ 38$. To save wear and tear on my typing finger I will refer to the Olivetti series - parallel printer as the OSPP from now on.

The OSPP is a compact 20 -column matrix printer that is mechanically very simple and reliable. The character field is divided up into 20 columns of five dots each by an internal timing dise and so the unit is not suitable for continuous graphics. The print head comprises ten thermal elements and each element prints two characters see Figure 7

As you can see from Figure 7, each element covers two characters and during each print cycle a total of 100 dots can be printed by each element. A print cycle starts and finishes with the print head at the extreme right of its travel. This point is indicated by the timing signal STLN. When the motor is operated, a cam causes the print head to oscillate across the paper. The print head begins to move from right to left and the strobe disc generates dot timing signals DT1 and DT2 which can be simply connected together. After ten DT signals have been produced, the mechanism causes the paper to space up by one dot line and the print head reverses direction to move from left to right generating
a further ten DT signals. After these ten DT signals, the print head is back in the start position and another STLN signal is generated. The cycle can be continued as above to cover another two dot lines until the next STLN signal. After five STLN signals, a complete field of 100 dots will have been covered and the print cycle should be stopped by turning off the motor.

The timing signals are generated by a rotating disc and wiping contact arrangement within the printer and Figure 8 gives the full relationship between the DT1, DT2 and STLN signals and the dots that go to form a character. When the motor is running at the correct voltage the pulse widths should be approximately as shown.

From Figure 8 it can be seen that the two dot signal lines DT1 and DT2 carry alternate pulses. These pulses indicate when the print element is in the correct position to print a dot. In practice, the DT1 and DT2 signals should be connected together to give a pulse train that consists of discrete groups of five pulses. This pulse train should be debounced by a monostable with a pulse-width of approx 1.5 ms ; the resultant signal can then be fed to the control logic to determine the sequence that dots should be printed to build up a character. It can also be used to enable the high current drivers for the individual heating elements.

The signal STLN occurs after every 20 DT signals and indicates that the print head is in the home position. STLN should be debounced by a 2 ms monostable and the resulant signal is used by the control logic to stop the
printer at the correct point in the print cycle. From Figure 8 you will see that it takes 100 ms to print two dot lines and it will thus take approx half a second to print an entire line of characters and line space ready for the next line of print.

The printer comes with a 17 -way flexible PCB connector. Figure 9 shows how this is wired. The OSPP comes in several versions, with or without a paper release lever. The mounting arrangements (feet) can differ and there are several motor voltages but this should cause little trouble since the important characteristics are all the same

The supply rail for the elements is approx 20 V and to heat an element it must be connected to ground; a current limiting resistor of approx 47 ohms should be used in series with each element and the drive signal should be gated by the DT1 + DT2 signal to give a current pulse of about 1.5 ms . To get a good print it may be necessary to alter the values of the current limiting resistors. The drivers could be darlingtons or VMOS FETs - the choice is left to you.

The motor will operate from a supply of about 6 V and the motor control circuit should contain an electronic braking circuit to ensure that the printer inertia does not cause the motor to coast on past its home position. The easiest way to brake the motor is to short the two terminals together when the supply is removed; this allows the motor's back emf to bring the motor to a swift halt. Again the finer details of the circuit are left

Fig 4 Suggested drive circuit and timing for stepping motor.

[^6]Fig 6

Fig 5 Block diagram of suggested control circuit for TI thermal printer units.

* Paper feed at these points

Fig 7 Print area covered by each print element.
to the constructor.
The element drivers and the motor control circuits are quite straightforward but the difficult bit is the rest of the control logic that decides when to print a dot. to build up each character. To keep the control logic simple you should let your micro do most of the hard work of selecting which dot to print. To print a line of characters it is necessary to turn on or oft each of the ten element drivers in sequence. Referring to Figure 7, you can see that one element prints two characters. The characters are printed line by line alternately and the direction of motion reverses after each line; somehow you must generate a serial bit stream corresponding to the numbered dots in Figure 3. Since there are ten elements, the process must be repeated ten times during an interval of approx 3 ms between DT signals. The element drivers should be controlled by a 10 . bit latch. The control logic must set or reset each bit in turn, depending on whether or not a dot is to be printed The outputs of the latch are enabled by the DT1+DT 2 signal to print the dots at the same time.
This impact printer mechanism is very similar to the Olivetti thermal printer mentioned earlier. It is a compact 20: column matrix printer and again it is available new (as type PU 1100) from Datac Ltd for approx $£ 59$ or it can probably be found living in an Olivetti printing calculator (Logus series). Mechanically, the unit bears little resemblance to its thermal brother but the print is built up in the same way and the timing signals are similar: Since this is an impact printer it generates a certain amount of noise but this is only a minor problem. With two-ply carbonless paper this printer can produce one copy, and ribbons for the printer are available from many shops. The printer mechanism is quite complex but provided it is treated with respect it should give years of trouble-free service. It is a good idea to blow paper dust out of the printer after using a few rolls of paper and putting a drop or two of oil on the rotating parts will not do any harm.

The printing is achieved by ten metal needles which rest in guides under a removable cover. Each needle is. coupled to an anchor that moves backwards and forwards, and is held against spring pressure to a magnetised metal bobbin; when the coil wound on a bobbin is energised, the magnetic attraction is neutralised and the spring causes the anchor to move forwards. This motion is transmitted to the print needle which also moves forward and hits the ribbon and paper, thus producing a dot. Later in the cycle, a rotating eccentric shaft pushes the anchor back onto the bobbin where it is again held by the magnetic attracttion. The needles are moved across the paper by a perforated guide which sits in a cam. The paper feed and line spacing is also determined by th is cam and cannot be altered and the timing signals are again generated by a rotating disc and spring wiping contact. The needles build up characters in a similar way to the thermal printer; Figure 10 shows the dots within two character cells that each needle covers.

Fig 9

Fig 11 Timing signals

Fig 10

With this printer you must use a 5×7 matrix since this is defined by the main control cam.

The timing signals generated by this printer are shown in Figure 11. There are three timing signals: DST and DSTP are generated 20 times for each rotation of the control cam and PST is, generated once every four cam rotations. DST indicates to the control logic that it can energise the coils to print a dot, and DSTP that follows is the signal to turn off the current through the coils. When the signal PST overlaps with signal DST then the printer is in the correct position to begin printing. The print cycle should be stopped after 80 DSTP signals have been received and an electronic brake in the motor control circuit is required to prevent the motor from coasting on past the stop position. The coils require a supply of approximately 38 V and suitable drivers would be VLN $2003 / 2$ darlington arrays. The motor supply is nominally 18 V but this may need to be adjusted to obtain a printing speed of 1.7 lines per second.

Figure 12 shows how the two
sockets attached to the printer are connected up; these are on a standard 0.1 in pitch and matching plugs should be easy to find.

The circuitry required to work th is printer would be similar to that required for the thermal version. A 10 bit latch would be used to control the state of the ten coils, the signals DST and DSTP turn the coils on and off, and the signal DSTP must also be used by the control logic to determine which particular dot out of two 5×7 arrays is to be printed. This processing must be carried out for each of the ten print needles and will need to be carried out in the space of a few milliseconds.

Using the Olivetti series parallel printers

Since the two Olivetti printers mentioned earlier are both very similar you will find that the same circuitry can be used with only a little modification to operate both units. Before you start
 is to make computers relatively simple and therefore better it will change the way you think about computers.

BCG Computer Systems Ltd
The Promenade
20 Gloucester Road
Bristol BS7 8AE
0272 425338/41979

The Computerist
642 London Road
Westcliff on Sea
Essex
0702335298
Crystal Electronics Ltd
40 Magdelene Road
Torquay
Devon
080322699
Datron Micro Centre
2 Abbeydale Road
Highfield
Sheffield
0742585490

Digital Design \& Development
Duchess House
18-19 Warren Street
London W1P 5DB
01-387 7388
Electronic Business Systems Ltd
54 Clement Street
Birmingham B1 2SW
021-2333045
Euro-Calc Ltd
Euroc House
128/132 Curtain Road
London EC2
01-4053223

Gilbert Computers
Old Hall Lane Lubenham
Leics
085865894

HB Computers
22 Newland Street
Kettering
Northants
053683922

Howes Elect.

Microcomputer Centre
Newton Street
Lincs
0522 32379/791088
Newbear Computing
40 Bartholomew Street
Newbury
Berks
063530505
Norset Office Supplies Lid
Myrtle House
Bath Street
Cheddar
Somerset
0934742184
Personal Computers Ltd
194-200 Bishopsgate
London
EC2M 4NR
01-626 8121
PMS (Print Marketing) Ltd 82 Sea Road
Sunderland
Tyne \& Wear 0783480009

Scope
Stone House
Houndsditch Entrance
128/140 Bishopsgate
London EC2m 4HX
01-2478506
Sigma Systems Ltd
54 Park Place
Cardiff
S. Wales

022221515
South Coast Business Machines Ltd
South Coast House
Wimborne Road
Ferndown
Dorset
0202893040
Sumlock Bondain Ltd
263-9 City Road
London EC1V 1JX
01-250 0505
Sumlock Bondain (East Anglia) Ltd 32 Prince of Wales Road
Norwich NR1 1 LG
060326259
Tomorrow's World Ltd
Grafton Arcade
Dublin 2
Dublin 776861
This is a list of dealers participating in associated advertising and not a full list.

Business Systems. Audio. Video. Calculators, Cash Registers. Copiers, Microwave Ovens.
work it is a good idea to experiment with the printer so that you become familiar with its operation. Try to design a simple circuit that will make the printer print a solid five by seven array and then stop. This circuit can later be incorporated in the control logic.

As mentioned previously, each printer has ten printing elements which must be energised in parallel. The best way to achieve this is to use a 10-bit latch so that you can load the state of each element into the latch as it is determined by the control logic. When all ten bits have been loaded, a separate input can be used to enable all the outputs when the next dotprint signal is received.

Since each print element covers two character fields you will need to determine which character the element is over at any one time. You will also need to keep track of which row is being printed and also which particular dot in that row is being printed. All this can be done with an arrangement of counters and logic or a suitable program by using the timing signals that are generated. After a dot signal has been received you should be able to determine which particular dot in the character field is to be printed.

At the start of the print cycle all the counters should be reset. To find the row number you should use a counter that is incremented after every ten dot signals. An up/down programmable counter that counts from one to five will give you the dot number with the aid of a bit of extra logic to control the resetting and the count direction of the counter. From START, the count sequence will be: START .5-4-3-2-1-5-4-3-2-1-1-2-3-4-5-1-2-3-4-5- (repeat from START). To determine which character (left or right) is being printed is a little more difficult but again a counter and some simple logic should suffice.

A 20 -character memory is required to store the line to be printed and a 6 or 7-bit RAM should do for this. The micro will load the line to be printed into this RAM and the control logic will read this data out as the print cycle progresses. The next major stage is the character generator; this will probably be a ROM and it must output data in groups of five bits that correspond to the slices down a 5×7 character cell.

A six-bit address from the line storage RAM is used to select the particular character 'page' in the ROM and a 3-bit address from the row counter will select the correct row out of the seven in each 'page'; a further circuit, controlled by the dot counter will then select the correct bit out of the five that appear at the ROM outputs. Finally this bit must be loaded into the 10 -bit latch in the correct position for the digit to be printed.

Before anything can be printed, a digit counter must cycle through ten

Sotor/timing connector
Fig 12.

FIg 13 Character cells covered by print element.

Fig 14 Block diagram of suggested control system.
of the 20 digits stored in the line RAM. Every alternate character should be read out to the character generator and a single bit will be loaded into the 10 -bit latch as outlined above. This is repeated until each bit in the latch has been filled and a line of dots can be printed.
lt is now only necessary to design a suitable control circuit that ensures that the operations explained above are carried out in the correct sequence to produce a coherent line of print. Figure 13 shows how the individual dots in the character field are numbered for both printers. It also shows the row and column numbers and the direction of movement of the print element. Figure 14 shows a block diagram of the system outlined above but please bear in mind that this is given only as a guide and you will have to take your brain out of neutral while you design this system. Depending on how ambitious you feel, you might end up with a system that is self-contained and only needs to be
loaded with 20 characters and told to print, or you could reduce the hardware down to the basic interface circuits needed and concentrate your attentions on developing a program that will carry out all the processing. This latter approach is probably cheaper but since I am a hardware freak I will leave the software approach alone.

Olympia NMP 20 printer mechanism

The Olympia is a low cost 20 -column printer that uses metallised paper. The unit is very compact and comes with a hinged lid that also serves as a paper roll holder. You might be able to get hold of a secondhand Olympia CPM12 or CPM12/1 calculator within which you should find an NMP20 mechanism lurking. If you use a calculator unit you will have to remove the interface board and add the missing components to be able to use the full 20 -column width; this should be fairly

Fig 15 Suggested circuit of multiplexed interface board for NMP 20

Fig 16 Block diagram of suggested control system for NMP20

Fig 17 Suggested circuit using a shift register for parallel operation.
straightforward if you copy the existing circuitry. Alternatively you can buy the unit new, in which case you should contact Dataplus Ltd. The printer comes in two versions. The cheaper of the two at approx $£ 35$ comprises the basic mechanism without the interface board. This interface board reduces the number of connections required from over 100 to 23 ; the circu it is quite complex and expensive to construct, so the printer with interface board will set you back about $£ 90$.

The printer mechanism itself is very simple and robust and the only moving part apart from the hinged lid is a small DC motor that drives the paper
feed roller. In operation, the printer generates no timing signals and the size of the print can be varied over a wide range by simply adjusting the speed of the paper feed.

The printing is carried out by a parallel array of 100 sprung metal fingers or needles. These are moulded into a small unit that screws onto the frame and plugs into the interface board underneath. The needles are arranged as 20 groups of five needles each. There are several ways that this unit could be used. Firstly, you could buy the unit with the interface board or you could design your own interface board to save money. The idea of the interface board is to reduce the number of connections going to the printer and this is done by connecting the needles into ten groups of ten needles which can be multiplexed in the normal fashion. The alternative is to dispense with the interface board altogether and operate each needle individually. This method will enable you to achieve a very high printing speed but it does mean a lot of wires need to be used for interconnections; also, the power consumption could be quite high.

Figure 15 shows a suggested circuit for an interface and multiplexing board. This is similar in concept to the board that comes fitted to the NMP20 but it uses VMOS FETs instead of bipolar devices and as such should be more reliable, I have not yet tried this circuit but it should work. (If not than a little experimentation is in order let me know if you try it.) Basically this circuit divides the needles into ten groups of ten; the needles are commoned together and connected to the FETs DT1 to DT10. These FETs are switched by the two 5 -bit latches which store the parallel data output from the character generator ROM The individual groups of ten needles are connected in series with a blocking diode and a current limiting resistor and can be sequentially connected to Vp by high current FETs. These are controlled by the one of ten decoder. The paper is connected to ground by a roller in the paper feed. The diodes in the return line raise the potential of the paper roll slightly above ground.

In use, the character generator would load two sets of row data into the 5 -bit latches, the one of ten decoder would select a digit group and the outputs would be activated. This would allow current to flow to one group of ten needles. The PD between the needles and the roll is approx 50 V and so the resultant arc would cause a dot to appear on the metal surface. To prevent a needle from printing a dot, the relevant common line must be grounded via DT1-DT10, which are controlled by the latch. When a common line is grounded, it presents a preferential path to the current and so no arcing occurs at the needle tip. The one of ten decoder and the five-bit latches should be CMOS devices operating at 15 V to provide sufficient drive voltage for the VMOS FET switches.

Figure 16 shows a suggested block diagram for the remainder of the circuit. This is fairly straightforward

GOTO page 134

TUSCAN FROM TRANSAM

Take astep up toyournext Computer!

THE CONCEPT

How many ways are thereto build an S100 system? Not many, and all expensive.TUSCAN changes all that.

Five S100 boards on one single board - just for starters. Plus five extra slots for future expansion.

What a combination! Z80 and S100 with the TRANSAM total package of system and applications software.

How do we do it? Our prices start at $£ 195$ and you can build up in easy stages to a fully CP/M compatible disc based system. Something to think about!

THE HARDWARE

The first $Z 80$ single board computer with integral S100 expansion. British designed to the new IEEE (8BIT) S100 specification, the TUSCAN offers total system flexibility. A flexibility available now.

The board holds the equivalent of a 280 cpu card, $8 \mathrm{kram}, 8 \mathrm{k}$ rom video and $\mathrm{l} / 0$ cards with 5 spare S100 expansion slots and offers a price/performance ratio which is hard to beat.

Just compare our price with a commercial S100 ten slot motherboard with this specification.

THE SOFTWARE

TUSCAN offers the user the choice of system monitor, editor, resident 8 k basic, resident Pascal compiler orfull CP/M disk operating system. All options are upwards
compatible and fully supported with applications software. Both $514^{\prime \prime}$ and $8^{\prime \prime}$ drives are supported in double density.

THE PACKAGE

TUSCAN is available in kit form or assembled. With several hardware and software options to suit your requirements and budget. Attractive desk top casealso available holds $2 \times 514^{1 \prime}$ Drives.

TRANJAM

NOBODY DOES IT BETTER!

GETWELLSOON A TAPE RECOVERY SYSTEM

Ever pressed 'record' by mistake and started to overwrite your only copy of a much-loved program? Alan Shelley explains how to cure this and other tape-related ills.

The program to end all programs is complete. You worked well into the small hours to finish it, could hardly sleep for thinking about it and finally when you did, strings of graphics characters switched themselves on and off in splendid arrays, and that neat new maths function that really clinched things munched its way through byte after byte in a multi-coloured field of data statements. Next morning you've come down blearyeyed, intent on reliving the glory of this thing you've created. You switch on, check the cassette is rewound, slip it into place, type LOAD and start the cassette player. The message 'SEARCHING FOR ULTPROG' displays itself and you wait happily.

That's funny, it's never taken this long to find it before; you check the tape is going round, then - horror! The record button is down and there is no second copy... Who hasn't pressed 'record' by mistake and realised too late when hours of work have been lost? Well all is not lost, there are ways to rescue what's left. This article explains how to do it on the Commodore PET and it may well be possible to develop similar methods for other micros.

First, let's consider how a Basic program is held in memory. Each program line consists of a line number, followed by the statement(s) comprising the line itself, then a zero byte which marks the end of the line. In front of each line number are two 'link bytes' which contain the address of the first of two bytes in front of the next line number. At the end of the program, instead of an address, two more zero bytes are found. This pair of zero bytes with the zero at the end of the last line form a group of three zero bytes at the end of the program. The link byte before the first line of the program is preceded by a zero byte; this is at memory location 1024 (hex 0400). See diagram 1.

By means of the link bytes, the operating system can skip through the program examining line numbers without having to go through every statement; this is used in executing GOSUB and GOTO statements, for example.

When a program is saved on tape, the PET operating system gets the start address of the program (this is usually 1025 [hex 0401] and is held in two bytes at locations 40 and 41 [0028 and 0029 hex] [122 and 123 for old ROMs hex 007 A and 007 C$]$) and the end address, which obviously varies according to the length of the program. These two addresses plus the program name form the header which is preceded by a timing tone. The program itself follows, and is also preceded by a timing tone. Both the header details and the program are recorded twice and
in each case the two copies are separated by a short 'bleep' of the timing tone. This is known as a 'redundant recording' method and is used in the interests of reliability.

When the program is loaded into memory from tape, the first thing encountered is the timing tone which enables the operating system to adjust itself to the tape speed. This is another reliability feature, by virtue of which the system tolerates a variation of run. ning speed from machine to machine. The next thing encountered on the tape is the program name, followed by the start and end addresses. If the program name matches the one required, these addresses are stored in memory for reference. Starting at the location indicated by the first address - usually 1025 (hex 0401) - the program is loaded into memory (RAM) byte by byte. As each byte is loaded, a checksum bit is calculated and, if this does not agree with the checksum bit on tape, an error count is incremented and the location is noted. If errors have been noted after the first copy of the program has been read, the system starts at the beginning of the program in memory and compares the error locations with the second tape copy. Whenever a correct byte (tested by the checksum bit) occurs on the second copy, this is substituted for the faulty byte in memory and the error count is decremented. If uncorrected errors still exist at the end of the second pass, the message 'LOAD ERROR' is displayed on the screen. If no errors have occurred on the first pass, the program in memory is complete and the system simply scans to the end of the second copy.

Now, with a program tape which has lost its header and possibly part of the program, the first problem is that of giving the computer something to find, since it cannot switch straight into loading a program totally unprepared. It
cannot manage without at least a smal part of the timing tone and it needs the start and end addresses of the program. In order to recover a damaged program, a way has to be found to provide this information and the obvious way is to use the header of another program. First, wind the damaged recording to a position just before the start of the unerased portion (this can easily be found with the help of an audio cassette player or by pressing 'play' on the PET cassette deck and holding down the ' $<$ ' key on the keyboard; if there is a recording present, the ' $<$ ' sign will be printed repeatedly on the screen). Having positioned the damaged tape correctly in readiness, place another tape in the cassette deck, preferably with a program known to be longer than the corrupted one. (If a shorter one were used, part of the wanted program would be lost because, when the end address obtained from the program header is reached, the computer stops loading information. The way round this is to make up a 'dummy header' with addresses that will cover any length of program. This will be dealt with later.)

The method now is to enter 'LOAD' and start the cassette deck in the normal way. However, as soon as the message 'FOUND PROGNAME' appears, press the cassette stop button but do not touch the computer. Remove the dummy tape and substitute the corrupted tape, then start the cassette deck again and the computer will continue to read the tape, apparently blissfully unaware that anything untoward has taken place. At the end of the read one of four things will happen:

1. The message READY appears and the recovered program will list normally (success!!);
2. The message READY appears but the program will not list;
3. The message ?LOAD ERROR appears and the program will not list; 4. The system 'hangs' - either of the

above messages may be displayed but the cursor does not reappear.

If the program is complete, ie, it has lost no more than part of the header, then No 1 will probably happen and the program should also run. It is possible, however, for No 1 to occur with an incomplete program so it is worth checking this before running it, although nothing worse than an undefined statement error is likely to occur. If the first program copy has been corrupted, there is about a 10% chance of 1,2 or 3 happening and a 90% chance of No 4 . If the system hangs, unless you know how to 'uncrash', you have no alternative but to switch off and start again. Since uncrashing is such a useful procedure, especially when working with machine code, a separate paragraph will be devoted to it later.

Now if either of alternatives 2 or 3 have occurred, it is necessary to do some machine code adjustments which can be time-consuming, and to have either the tape Monitor or new ROMs with the resident Monitor, or to devise a routine using PEEKs and POKEs. The object is to discover whether or not anything has been loaded and, if so, whether it is the required program or
just garbage. In order to be able to determine this, it is a good idea to familiarise oneself with the appearance of a program in memory before attempting the rescue operation. This may be achieved as follows: first load or key in a short program - say about ten lines or so - written for the purpose if necessary. What it does is unimportant, since we only want to look at it in code. Having keyed in the program, enter the command SYS 1024. This will cause the contents of the various registers to be displayed, which will look like the first two lines of diagram 2 , although the actual values may vary.

The contents of memory can be displayed by typing ' M ', followed by the start and end addresses (in hex) of the section of memory required to be examined. Thus M 04000480 (the spaces are necessary), followed by return, will display the first 128 bytes of memory where the program resides and will include the whole of your program if it is short enough. Compare this with diagram 2 and you will be able to identify the various parts of the program. Note that the link bytes preceding each line of the program actually point to the start of the next line. A method

using PEEKs is described later and this avoids the need to enter the Monitor.

Now, to get back to what may have been loaded from the corrupted tape. Enter SYS 1024 then display the first 128 bytes of memory as described above and examine them to see if they conform to the pattern of a program. If not, then the whole recovery procedure will have to be repeated, but if they do then the link bytes should be examined Since the program would not list, the link bytes must point to the wrong addresses and the reason for this is that the program has been loaded into the wrong place in memory. This can be remedied in one of two ways: either by changing the link bytes to point to the correct addresses, or by moving the program up or down in memory into the correct position. Both are laborious procedures to carry out manually, but there is no need to do this because entering SYS 50242 (50234 for old ROMs) calls the subroutine which puts in the correct link bytes throughout the program. Any garbage there might be at the beginning of the program is left and when the program is saved again, this will be saved along with it, unless it is deleted first. This is possible to do because it will always have a spurious line number associated with it, which happens because the operating system takes whatever happens to be in locations 1027 and 1028, where it expects to find a line number, and interprets it as such.

When using this SYS 50242 (50234 old ROMs), the system will hang if, for any reason, the three zero bytes at the end of the program are missing and, if this happens, the only thing to be done is to insert them at the end of the saved material by the use of the Monitor (or PEEKs and POKEs), after uncrashing the system of course. (Uncrashing does not cause the contents of memory to be lost.)

This process of program recovery is usually a lengthy business because the failure rate is so high. So, when repeatedly doing this exercise it is worth clearing the whole of memory each time by switching the computer off and on again, so that anything that is subsequently loaded is easily distinguishable from the AAs which fill virgin memory. Actually, it is better to use SYS 64721 (64824 old ROMs) which will clear the whole of RAM from 1024 upwards and will reset the pointers without the need to switch off. This will leave a machine code program in the second cassette buffer intact.

One word of caution here. It is wise, having rescued a program from a partially erased tape, to save it before doing anything else because if it happens to be incomplete in some aspect, or has picked up some incorrect bytes, it is quite possible to hang the system merely by trying to edit it. In fact, even the SAVE could be tricky, so first enter the command CLR which will reset any pointers which have been disturbed.

The use of a dummy header was mentioned earlier; since the purpose of this is to prevent the object program being truncated by having the end address too low, it is necessary to put a fairly high address into the pointer to the start of variables. This is done by POKEing into the pointer an address
which is near the top of the memory The pointer is held at addresses 42 and 43 in the new ROMs, so the command POKE 43, PEEK(53)-4 (old ROMs A=PEEK(134) : POKE 124, A-4) will set the end of Basic 1024 bytes below the top of memory, since location 53 is the high byte of the top of memory address. Then enter SAVE "DUMMY HEADER" and press play and record on the cassette player. Let it run for about 20 seconds then press RUN/STOP and switch off the cassette. As we only want the header, there is no point in leaving it to record the whole of memory.

After using the dummy header in a rescue operation it is necessary to set the end of Basic pointer to the end of the rescued program otherwise it will not SAVE properly. There is no need to do this if No 1 occurred, since it will have been done automatically by the operating system. The method is somewhat laborious as it involves searching through memory for the three zero bytes at the end of the program as follows: enter SYS 1024 followed by M 04008000 . This will cause the contents of the whole of RAM to be displayed on the screen. It will, of course, scroll up at a rate of knots but slowing it by pressing the RVS key should enable you to pick out the three zero bytes as they go by. If memory was cleared by switching off before making the recovery, the program will be followed by clear memory which will be displayed as a large block of AA bytes and will be easily recognisable. If necessary, displaying 128 bytes at a time will make the job easier but obviously longer. Having found those three zero bytes, determine the address of the first byte following them - a simple matter, since the address of the first byte of each line is displayed at the beginning of the line. Let's assume the one in question is 0434 , as in diagram 2 . Now, still in the monitor, enter M 0028 0030 and two lines of memory will be displayed which contain the pointers vital to the operating system. Cursor up to the third byte on line 0028 , change it to 34 (or whatever is applicable) and the next one to 04 (or otherwise as applicable), and then press return. The rescued program can now be saved again before doing anything else, apart from checking the three zero bytes at the end.

To examine the contents of memory by means of PEEKs instead of entering the machine code Monitor, the following routine should be entered as direct commands
CLR : POKE 43, PEEK (53)-1
POKE 42,0 (RETURN)
FOR $1=1024$ TO $32768:$ PRINT 1
PEEK (1), : WAIT 59410,4, 4
NEXT (RETURN)
(For old ROMs the first line should be amended to:
CLR : A=PEEK(134):POKE $124, A-1$
POKE 123,0 (RETURN))
This will display the contents of RAM from the start of Basic upwards and it will consist of each address followed by its contents. The WAIT has been included to make it more convenient in use since the routine will only run while the space bar is depressed. To stop the program, press the space bar and the RUN/STOP key simultaneously. The WAIT may not work on old ROMs so, if this is the case, it should. be omitted
and you will be able to slow the oper ation down by using the RVS key. The POKE at the beginning is necessary to set the variable storage area high up the memory, in order to prevent the routine from corrupting any of the rescued program data. When running the routine, the thing to watch for is the three consecutive zeros or, if these are not present, a succession of 170 s which correspond to the AAs of virgin memory. If the three zeros are absent, they should be POKEd in place of the first three 170s. Having found or entered the three zeros, the address of the location following them should be determined as above and the following additional direct command should be entered:
$1=$ (here put the required address)
POKE 43, 1/256: POKE 42, 1INT(1/256)
(For old ROMs change 43 to 124 and 42 to 123 as before)
Following this, SYS 50242 (50234 old ROMs) can be entered as above and the program can be listed and saved.

The foregoing method is the only hope of recovering what remains if the 'middle marker' has been lost, but is little more than academic if this is still intact.

A reliable method of recovering a damaged program, provided erasure has not gone beyond the middle marker, is to use the PET's own operating system to load it by calling the relevant subroutines. This has to be done in machine code and a Basic loader for an appropriate program on new ROMs only is given. The machine code program
resides in the second cassette buffer and is run by our old friend SYS 826 which produces the normal message PRESS PLAY ON TAPE 1.

Before pressing play it is necessary to position the object tape as already described. When play is pressed a quicklychanging series of characters in the top right corner of the screen indicates that there is something on the tape and a tell-tale single character in the top left corner indicates what has been found, as follows:
A - there is a signal present on the tape @ - the timing tone is present

- loading is taking place

Loading is complete either when the quickly-changing series stops and becomes a single stationary character (which could be anything), or when the cassette stops and the screen displays READY. In the former case, you should press the RUN/STOP key and enter SYS 883; in both cases.switch off the cassette player and enter CLR. If the CLR is not done, strange results will occur when running programs, "since zero page locations are altered by the routines.

If the doesn't appear, loading has not taken place and this is almost certainly because the program has been erased beyond the middle-marker. The only possibility for recovery is the direct method described earlier.

The reason for two possible results after loading has occurred successfully is that one of two conditions exists First, the program has been erased

GOTO page 133

2 REM M.D.SHEMLEY, OCTOBER 1980
3 FOR I $=826$ TO 969
4 READ A
5 POKE I, A
6 NEXM
7 DATA $160,0,132,201,132,157$
8 DATA 132,206,132,203,132,171
9 DATA $132,192,132,193,132,178$
10 DATA $132,194,200,132,44,132$
11 DATA 212,132,199,132,251,160
12 DATA 4, 132,200,132,252,160
13 DATA $128,132,202,32,18,248$
14 DATA $120,238,17,232,169,132$
15 DATA $133,144,169,3,133,145$
16 DATA $32,158,248,32,66,196$
17 DATA $24,165,31,105,2,133$
18 DA'TA $42,165,32,105,0,133$
19 DATA 43,96,174,73,232,160
20 DATA 255,152,237,72,232,236
21 DATA 73,232,208,242,134,204
22 DATA $170,165,191,141,39,128$
23 DATA $165,44,141,0,128,48$
24 DATA 18,240,19,165,171,240
25 DATA 2,198,44,169,8,133
26 DA'NA $183,165,191,16,2,132$
27 DATA 191,76,66,249,165,178
28 DATA 240,13,165,208,208,9
29 DATA $56,165,221,9,128,133$
30 DATA 221,198,44,76,66,249

- Interchangeable Metal/Plastic Print Wheels
- Automatic Bi-directional Printing - Word Processing Options -Diablo Quality and Reliability •Paper Handling Accessories FOR INNOVATIVE DISTRIBUTION TO OEMs
Call us. . Geveke flectronics Itd. RMC House. Vale Farm Rd. Woking. 0486271337

PETQUARTEI

Don Finlay explains how to start a 'barber shop' harmony group. Apart from yourself,
all you need is a PET and MTU's four-voice music board.

Monophonic music is one of the simple capabilities of most microprocessor systems, enabling the user to play tunes with a square-wave derived from one line of an output port. More interesting waveforms can be obtained by adding hardware in the form of a digital-toanalogue converter. Generating polyphony is more difficult, and the usual home computer is unsuitable for the task; the calculations take considerable time, limiting the sampling rate and, therefore, the range of frequencies that can be produced. However, good software can make it possible to play out a limited number of parts simultaneously.

In September 1977, the magazine Byte carried an article by Hal Chamberlin, entitled 'A Sampling of Techniques for Computer Performance of Music'. In addition to providing an excellent introduction for anyone taking up the subject, this gave the listings for a 6502 machine-code program which enabled the processor to get samples from each of four waveform tables, add them, and output them to a digital-to-analogue converter so as to give an audio output with four-part harmony. The article has been reprinted in The Byte Book of Computer Music, so is easily available

to anyone who reads the advertisements in PCW carefully.

It isn't necessary to read this article, however, nor to understand machine code, in order to use the board and software produced by Micro Technology Unlimited, of Manchester, New Hampshire, and available in Great Britain
from IJJ Design Ltd, 37 London Road, Marlborough, Wilts, SN8 2AA. Hal Chamberlin's software has been extended and adapted for easy use in the PET, and the hardware has been modified so as to run on the single 5 volt supply (instead of the original 12 volt) and output port available on the back of the machine. The complete package, costing $£ 57$, comprises a cassette carrying the 'Music Monitor Interpreter' program, with two sample four-part songs; the hardware board, which plugs into two sockets at the rear of the PET a booklet describing the hardware, with some notes on troubleshooting and a circuit diagram; and a software booklet which describes how to use the system, although it doesn't give any listings of monitor or demonstration programs.

Songwriting

With a little study, the user can start writing his own 'song' programs very quickly. I should say straightaway, however, that programming a four-part song into the PET is not easy, as every piece of data has to be turned into a hex-coded byte, using tables printed in the software booklet.

First, the length of each musical 'event', during which nothing changes, is decided upon and coded according to a table which codifies 15 note lengths in the American notation of whole notes (semibreve) down to thirty-seconds (demisemiquaver). I found it helpful to mark in the English note names against this table. The absolute length of the event is partly determined by this code, and partly by another code which is used to set the tempo and which has to be loaded into another block of instruction data, so fine adjustments can be made afterwards - or coarse ones for amusing or way-out effects. Secondly, each note of the song has to be turned into a 1-byte code, using a table of six octaves. (This is used as an address to locate a 2-byte code for the 'skip' calculations required for any precise frequency.) So the coding for the song table, which corresponds to a musical score, consists of a set of events, each of which starts with a duration and is followed by one to four bytes representing the one to four voices to be played.

If you produce and then run a song table for a hymn tune, or Anglican chant, which might be the simplest thing to try first, it may sound fine or it may sound much too smooth, because there is no break between notes, especially repeated notes. The reason for this is that the note generation routine has no attack and decay program, ie, each note comes up at full volume immediately and cuts off immediately,
so a repeated note is identical with a double length note. This is where the programmer's musicianship is tested; he will have to decide what breaks are needed for repeated notes or phrasing, and program these as separate events, with a corresponding shortening of the event describing the previous set of notes. (A break in a voice is programmed as a zero in the note code for that event.)

Real-time waveform table calculations for attack and decay could, in principle, be carried out, but the program is already stretching the 6502 to the limit in achieving a rate of 8770 output samples per second. This limits the maximum audio frequency which can be generated to less than half of 8770 Hz . Since the sample rate is with in the audio band, it also requires a filter to eliminate the whistle which would otherwise be heard. A filter on the board has a sharp cutoff at 3.5 kHz , which ensures that any spurious frequencies above this value, which may be generated by switching transients in the converter, are also removed. Although this is a long way from hifi standards, it sounds surprisingly good, and the sudden onset and decay of notes does not give clicks, as one might expect. There is a certain amount of background noise - inevitable in an 8-bit system, which is not unduly prominent.

The song table is entered from location 1000 H onwards, and is divided into playing sections by single-byte separators of 00 in the 'duration'
position, used as terminators. The first example supplied on cassette is for ' 76 Trombones', and occupies memory from 1000 H to 1844 H . It gives almost exactly three minutes of music, in an amusing and elaborate arrangement. Secondly, there is 'The Entertainer', occupying 1000 H to 179 FH and running for $31 / 2$ minutes. The user can study the codings for both, by examining the PET memory in machine code mode.

Sequencing

In addition to the song table, a set of instructions must also be provided which specifies tempo, waveforms and sequences of song table to be followed This starts at location 0 F 00 H , and can again be studied on the screen.

There are in all eight different instructions, all starting with FF.

FF 00 NN sets the number of voices to be used, where NN is a code for each number 1 to 4 . This instruction enables the song table to be interpreted as sets of two bytes, for a solo voice, up to five bytes for four parts.

FF $010 B \quad 0 C O D O E$ is the usual instruction to use the four waveform tables stored in pages $0 B, O C, O D$ and OE. If fewer than four voices have been selected by the FF 00 instruction, it is still necessary to specify four here because the PLAY routine is unaltered and steps through four waveform sample additions regardless, maintain ing its timing loop. So any unused voices are directed to a 'silent' page which has preferably all zeros but can be just an unused page of memory full of 24 s or AAs. I found, however, that if I set up only one active voice and had three pages all with AAs for the silent ones, something went terribly wrong with the waveform; examination on a CRO showed a very large pulse superimposed on it. Clearly, something had caused an overflow in the waveform calculations. It didn't occur with only two pages of AAs. The advice to use zeros, given in the software booklet, is good.

FF 02 NN sets the tempo, according to a table of values which in execution are multiplied by the duration values in the song table, in two count-down loops controlling the length of an event. A whole piece, or any sections of it, can be speeded or slowed by this instruction, without altering the pitch.

FF 03 PP is followed by sets of three bytes defining harmonics in amplitude and phase, which set up a chosen waveform in page PP. No limit is quoted for these, but the memory allocated indicates a maximum of 18 harmonics far more than in drawbar organs, for instance, and more than will be heard for notes above about 200 Hz since the filter will eliminate them. A word of warning is necessary: a waveform must not contain any harmonic which exceeds the frequency of half the sample rate (ie, harmonics are limited to frequencies below 4385 Hz). If it does, then 'aliasing' or 'foldover' will be heard; this is the generation of a sort of mirror image frequency, which is lower than 4385 Hz by the amount by which it was intended to be higher. The resulting note sounds random, as it is not harmonically related to the fundamental. For example, if we take a 440 Hz as a fundamental, we can use up to nine harmonies but the tenth will alias.

The filter cannot prevent this, as the waveform is already distorted before reaching it. As the software book says, it may be necessary to use a different waveform table for higher notes.

The software book doesn't give any guidance on good waveforms to choose and, although the monitor and sample programs supplied on cassette sound quite good, there is no indication how these were calculated. Looking up the sequencer for the sample tunes, by dis: playing the block of memory starting at 0 F 00 H , doesn't help because the FF 03 instruction is not used in either of them; the tables were evidently pre-calculated. I soon found a few pleasant sounding ones, though, with some trial and error.

FF 04 PP DD sets up a rectangular waveform in page PP, with duty cycle DD and maximum amplitude deter. mined by a byte in address 00BFH, loaded by the FF 06 instruction. This is not a Fourier approximation, but a block of bytes at the maximum specified amplitude, followed by zeros, in the appropriate page. The recommended highest note to be used with this waveform is middle C, "to avoid significant alias distortion'. I would dispute that th is is the true reason. There are indeed unpleasant sounds with this waveform, but surely the real reason is that the waveform table is nearly always being scanned unevenly, to get the right frequency. If we outputted every sample in the table at absolutely regular intervals, we would have a perfect rectangular waveform with an infinite number of harmonics, and no aliasing.

FF 05 PP creates a silent waveform in page $P P$

FF 06 AM sets the waveform amplitude by putting the byte AM into location 00 BFH , for use in waveform calculations. Usually this is set to 3 F , so that when four waveforms are added, the maximum amplitude cannot exceed FF. If you try using only a single voice, however, you find the quality is greatly improved by increasing this to FE; this is increasing the resolution of the waveform from six bits to about eight bits, improving the signal-to-noise ratio by 12 dB . For some reason the system won't accept FF as a maximum here;
when I tried it the waveform came out with a maximum of only 7 F . The instruction is normally used before the FF 03 waveform instruction, so is out of logical order.

FF 07 HH LL is an instruction to jump to a subroutine starting at HH,LL, which can return to the sequencer if terminated with RTS (6502 mnemonic for return from subroutine - object code 60). No suggestions are made for the use of this; you could, perhaps, print a message or text or words of a song on the VDU

FF FF indicates the end of the sequence, causing the program to return to BASIC control.

Also in the sequencer section of instructions are sets of 2-byte addresses, each of which is the starting address of a section of song data. Any of these pairs which doesn't start with FF is recognised as an address rather than an instruction. The program follows the sequencer instructions in order, so addresses may be repeated if sections are to be repeated.

A sequencer example in the software book uses the instructions FF 00 to FF 04 , mixed in with some addresses. Care is needed in examining this, as there is an FF representing an amplitude within the FF 03 instruction sequence - FF doesn't always indicate an instruction. It would have been better if laid out as one instruction per line, as in an assembly listing, rather than in the tabulated block with eight bytes per line. The small section of song table coding printed as an example is shown in lines of five bytes, which is better. Further study can be made by looking at the memory blocks allocated to song table and sequencer, for the two demonstrations songs. If you are new to the PET, as I was, it also helps to make you familiar with manipulation of its machine code data. However, the sequence blocks in these two programs are even simpler than those in the booklet, although longer.

That tune again

My first attempt at writing a new program was to code my old tune 'Gaudeamus Igitur' (cries of 'Not

that again' resound in the lab when I demonstrate it to another victim - must code another one soon) into a four-part arrangement for male voice quartet, as I happened to have a good version by Leslie Woodgate. The first effort was too smooth, as I hadn't allowed for breaks between repeated notes. Second one was very pleasing, and reminiscent of barber-shop singing, although with organ-like tones. I used the demonstration cassette's waveforms before experimenting with my own, and these were evidently well chosen for my limited range of notes.

Experimenting with your own waveforms rapidly leads to trouble. Because it is possible to use so many harmonics in the Fourier synthesis program, you naturally try looking up a table of harmonics from (eg) Computer Music Journal and synthesising a flute, oboe, trumpet or violin from this. It is very good mental exercise, as the quoted harmonic levels are in dB , whereas the amplitudes needed for this program are linear and in hex. You have to remember that each 6 dB reduction is a ration of $2: 1$, so that for instance a seventh harmonic which is 12 dB down from the fundamental is one quarter the amplitude Not only this, but you must remember that the sum of all the harmonic amplitudes must not exceed 255 decimal, or the table overflows. But you want the sum to be near 255 for good resolution. If you overlook this, the synthesis does not work, or produces a faulty wavetable. I would have preferred to have an error message displayed here, as it is very easy to slip up. Eventually I devised a sequence of operations necessary:

1. Decide the fundamental frequency of the highest note to be played. It is useful to mark frequencies against notes in the table in the software booklet, an aid which the authors should have included.
2. Divide this frequency into 4385 . The integer result gives the highest harmonic permissible.
3. Convert harmonic amplitudes for the required instrument from dB into ratios relative to the lowest amplitude. At this stage, use decimal; let the lowest amplitude be 8 for four harmonics; 4 for eight harmonics; or 2 if 16 harmonics are to be used.
4. Add all these relative amplitudes. If the sum exceeds 255 , reduce them all by the same ratio until they do not.
5. Convert relative amplitudes into hex.
6. Enter into the FF 03 instruction.

I followed this procedure in translating a 'Cornopean' sound for notes up to a 440 Hz . Only nine harmonics are possible, and the amplitudes I arrived at were, in hex, 3A 3520 1D 1A OF OE 0704 . The waveform was entered into page $O B$ and I wrote a program to play out a complete scale covering the six octaves allowed for in the software. The results were better than expected in that several notes above 440 Hz sounded reasonable - possibly because the aliasing frequencies were high enough to be trapped by the filter. The sound was reedy to some extent, but the brightness was limited by the 3.5 kHz upper limit, of course.

Up but not down

Transposition is something all musicians require from time to time. I wondered

how my male voice quartet would sound if I transposed all voices up an octave. This ought to be easy; rather than re-write all the note codes, I could re-voice the four parts with new waveform tables containing no fundamental pitch and only even harmonics (since all the harmonics of a note which is transposed up an octave must be doubled in order). As far as the waveform table is concerned, the page would now contain two complete cycles of the new waveform.

I put in second, fourth and sixth harmonics and found this worked quite successfully, turning my barber-shop into a close harmony 'female' voice sound. It would also be possible, of course, to transpose only some of the voices this way.

Transposition by only a semi-tone or two is not possible, however, with the monitor supplied. One would have to re-write the song table, in the absence of a program to offset the note codes. And I can't see how to transpose down an octave - you can't make a double-
length wavetable

Hardware

In principle, this is very simple, but some unusual and clever techniques have been adopted to enable the 8 -bit binary output signal to drive a loudspeaker using only the 5 volt rail. It consists of three sections: a digital-to analogue converter (DAC); a sharp cutoff lowpass filter; and a power amplifier. The cassette connection is brought through the board, so the cassette deck is plugged onto the back of the board which is in turm plugged into the back of the PET, employing the two ports designated' 'user" and 'second cassette'. A phono socket can drive a loudspeaker, delivering 300 mW into 8 ohms or 500 mW into 4 ohms (not MW as in the brochure - why are some technical people so careless over units?) and the current drain is less than 50 mA quiescent, or 300 mA at full power, squarewave drive

The DAC does not take the easy way
of a special purpose chip, because all those available need split power supplies, either for themselves or for the current converter. Instead, CD4050 buffers are used as switches in a binaryweighted type, using a fairly lavish arrangement of parallel and series buffers and resistors to improve

conversion accuracy by statistical averaging. Twelve gates, in two hex chips, and 17 resistors (fewer than would be needed in the more common ladder network) convert the eight bits into a current which is fed into a three-stage filter, each stage having two poles in 'resonant lowpass', ie the response peaks somewhat; just below cutoff.

Offset binary coding in the software makes it possible for the filters to run from one supply of 5 V also, with direct coupling, and again using CMOS chips. These are CD4069 inverters, and there are three in each stage, giving an inverting amplifier, leaky integrator and ideal integrator with overall feedback through a resistor. The passband ripple is quoted as less than 0.5 dB , and the cutoff slope gives 30 dB attenuation at 1.35 times the cutoff frequency of 3.5 kHz .

The MTU four-voice music board.

Output from the filter goes to the power amplifier; most of the gain here is obtained in three parallel-connected CD4069's which also buffer the filter output to power amp input connection. They drive a Darlington-connected output stage of four transistors, working in Class AB .

A circuit wasn't initially supplied with my hardware booklet, but IJJ soon sent me one on request. It is evidently intended to be supplied; without it you couldn't follow the descriptions or the troubleshooting notes, which are well detailed and should enable easy repair if needed. My board worked first time.

Some PET programs generate a sound signal on a single line which appears on the 'CB2' signal output. This is allowed for by taking it through the board. and mixing it at the input to the power stage, so the board needn't be removed to use this.

Overall impression

The MTU software, described as the 'K-1002-3C', and the hardware board, which is the 'K-1002-2', may not be too easy to use, but they offer an impressive demonstration of what can be achieved by patient work in machine code, in an 8-bit system. Sounds produced cannot compete with electronic music produced by large computers or even by analogue sy nthesisers, but have value in demonstration or
teaching work, or possibly in composition. Defects of digital synthesis are shown up, in the form of noise generated by limited resolution, and the limitation of waveform synthesis at constant amplitude, regardless of frequency, shows up in weak sounds coming from the loudspeaker at low note frequencies. There is also the limitation to 3.5 kHz maximum in the output. However, if songs are coded with each voice given an appropriate amplitude for a limited range of notes, a good balance can be achieved. For the price, the system is good value to any teacher or experimenter interested in music.

Things to come

It is possible to get away from the organ-like sounds that I have been describing by making much more use of large memories. MTU has now. produced an 'Instrument Synthesis Software .Package' which does just this, enabling you to get harpsichord, wahwah, chiming and a whole range of more interesting sounds, still using up to fourpart harmony. I will be reporting on this shortly.

Acknowledgements: To The City University Microprocessor Laboratory, for use of a PET 3032; and to Ted Willett, University Photographer, for the picture.

Secondhand Terminals Stock Clearance

ITEL Model 1051

IBM SELECTRIC (Golfball) typewriter with optical tape reader and tape punch in

compact desk-top unit with RS232 serial interface. EBCDIC coded. Reduced from $£ 375$ to $£ 295$.
Also available a limited number only of machines untested, except for typewriter operation, at $£ 195$.
*DI/AN Model 9030 Desk-top terminal similar to DECwriter LA36. Upper/lower case matrix primter, up to 300 Baud. Features switchable Baud rate, parity, keyboard and duplex options. Reduced from E225. $\quad \mathrm{f} 190$

* DATA DYNAMICS Model KSR 33 Teletype with keyboard and printer for 110 Baud operation. RS232 interface. In excellent condition. Reduced from £175 £150
*DATA DYNAMICS Models ASR 33 and ASR 390 terminals with paper tape reader / punch also available from

The 11th ACM (Association for Computing Machinery) tournament, held in Nashville, Tennessee (October 26-28), was a triumph for Ken Thompson and Joe Condon of Bell Telephone Labs. Their program, running on a PDP 11/70 with some special chess hardware, made a clean score to win this event just one month after Belle took the world title in Linz.

This achievement establishes a new record. In 1977, Chess 4.6 won the world title but could only share first place in the $A C M$ tournament.

Since 1970 the ACM has been won by Chess 2.0 , Chess 3.5 , Chess 3.6 , Chess 4.0, Ribbit, Chess 4.4, Chess 4.5 , Chess 4.6 and Duchess (tie), Belle, Chess 4.9 (with Belle equal second).

This year was certainly the year of the micro, with Bebe (special chess hardware), Challenger (stand alone unit) and Mychess (Cromemco) all doing respectably, as you can see from the table of results.

The following game was described by David Levy, controller of the ACM tournament, as 'one of the most exciting games in the history of this event.' Played in the last round, it decided the tournament.
White: CHESS CHALLENGER
Black: BELLE

1	$\mathrm{e} 2-\mathrm{e} 4$	$\mathrm{e} 7-\mathrm{e} 5$
2	$\mathrm{Ng} 1-\mathrm{f} 3$	$\mathrm{Nb8}-\mathrm{c} 6$
3	$\mathrm{Bf1}-\mathrm{b} 5$	$\mathrm{a7}-\mathrm{a} 6$
4	$\mathrm{Bb5}-\mathrm{a} 4$	$\mathrm{Ng}-\mathrm{f} 6$
5	$0-0(\mathrm{Ke} 1-\mathrm{g} 1)$	Nf 6 xe 4

It just so happens that I am the author of the only book in English about this lively opening variation.

6	$d 2-d 4$	$b 7-b 5$
7	Ba4-b3	d7-d5
8	d $4 x e 5$	$B c 8-\mathrm{e} 6$
9	$\mathrm{c} 2-\mathrm{c} 3$	$B f 8-\mathrm{c} 5$

So far according to the book.
10 Bc1-e3?
This move is not given house room in my book. It allows Black to saddle its opponent with doubled, isolated pawns, $10 \mathrm{Nb} 1-\mathrm{d} 2$ or $10 \mathrm{Bb} 3-\mathrm{c} 2$ would be normal and good.

10	Bc5xe3	
11	f2xe3	Ra8-b8
12	$\mathrm{Nb} 1-\mathrm{d} 2$	$\mathrm{Ne} 4-\mathrm{c} 5$

Threatening a knight fork of the pawns
on e5 and b2.
13 Qd1-el
Nc5-d3
14 Qe1--g3
0-0 (Ke8-g8)

15 Ra1-b1?!
A strong human would have played 15 Bb3-c2, when Black would almost certainly have played 15 . . .Nd3xb2, allowing the combination $16 \mathrm{Bc} 2 \mathrm{xh} 7+$ Kg8-h8 (16. . Kg8xh7 17 Nf3-g5+ Kh7-g8 18 Qg3-h4 Rf8-e8 19 Qh4-h7+ Kg8-f8 $20 \mathrm{Ng} 5 \times f 7$ Be6xf7 - take my word for it that White also wins after the even more complicated Qd8-d7-21Rf1xf7+ Kf8xf7 22 Ra1-f1+ Qd8-f6 - or 22. . Kf7-e6 23 Qh7-f5+ Ke6-e7 24 Qf5-f7 mate - 23 e5xf6 and White wins) $17 \mathrm{Nf} 3-\mathrm{g} 5$ (threatening Qg3-h4) 17. .g7-g6 18 Ng5xe6 f7xe6 19 Bh 7 xg 6 and White is a pawn up with a very strong attack. Though it would be expecting rather a lot from any program to see all that. 15

Qd8-e7?

Results

	R1	R2	R3	R4	Total	Place in World Ch.
1 BELLE	W6	W5	W2	W4	4	1
2 CHAOS	W8	W9	L1	W5	3	2
3 BEBE	D4	W6	L5	W9	$2^{1 / 2}$	6=
4 CHESS CHALLENGER	D3	W8	W9	L1	$2^{1 / 2}$	18
5 CRAY BLITZ	W7	L1	W3	L2	2	-
6 MYCHESS	L1	L3	W7	W10	2	$12=$
7 CUBE 2.0	L5	W10	L6	D8	$11 / 2$	-
8 OSTRICH	L2	14	W10	D7	$11 / 2$	12=
9 AWIT	W10	L2	L4	L3	1	6=
10 CLASH	L9	L7	L8	L6	0	-

Better 15...b5-b4
$16 \mathrm{Bb} 3-\mathrm{c} 2$ Qe7-c5
White cannot now capture on d3 because of Qc5xe3+ (that is what BELLE was planning on), but White has something better.
17 Nf3-g5! Nc6xe5
$18 \mathrm{Ng} 5 \mathrm{xh} 7!\quad \mathrm{Rf} 8$-d8
If 18. . .Kg8xh7?? 19 Qg3xe5 and the knight on d 3 is lost.
19 Nh7-f6+ Kg8-f8
White should now be aiming for Nd2-b3, gaining time, by attacking the black queen, to put his knight on the excellent square d4.
$20 \mathrm{Bc} 2 \mathrm{xd} 3 \quad \mathrm{Ne} 5 \mathrm{xd} 3$
21 Nf6-h5 g7-g6
22 Nh5-f6 Be6-f5?
This move soon lands Black in trouble. 22. . b5-b4 was a good alternative.
$\begin{array}{lll}23 & \text { Qg3-g5 } & \text { b5-b4 } \\ 24 & \mathrm{Nf} 6-\mathrm{h} 7+ & \mathrm{Kf8}-\mathrm{e} 8\end{array}$
24 N6 1
Kf8-e8
25 Nh7-f6+
26 Nd2-b3
At last.
26
27
26 Nf6-h7+
But now White really should have followed up with $27 \mathrm{Nb} 3-\mathrm{d} 4$! (or $28 \mathrm{Nb} 3-\mathrm{d} 4$! or even $29 \mathrm{Nb} 3-\mathrm{d} 4$). If then 27. . Qc4xa2, $28 \mathrm{Nd4-c6}$ wins: Black has to play Kf8-g7 (otherwise $\mathrm{Qg} 5-\mathrm{h} 6$ is mate) then 29 Nc6xd8 and if 29. . .Rb8xd8 30 Nf6-h5 5 followed by Qg5xd8. If Black does not take the a-pawn then he must deal with the threat of 28 Rf1xf5 (28. . .g6xf5 $29 \mathrm{Nd} 4 \mathrm{xf5}$ and mate follows).

28 c3xb4

Kf8-e8
29 Nh7-f6+
Rb8xb4
Ke8-f8,
30 Nf6-g4?
It would have been better to try for the draw with a series of knight checks. Guess what other move is also available! 30
31 Ng4-h6 Qc4-e4!
An important move - centralising the most powerful piece, helping to defend the king-side and pressurising g2. 32 Rf1xf5?!
An interesting exchange sacrifice that just fails. White should have played 32 Nh6xf5 g6xf5 33 Qg5xf5 Qe4xe3+ $34 \mathrm{Kg} 1-\mathrm{h} 1$ with the result that his only weakness (the e-pawn) would have disappeared.

32
33 Qg5-g8+ Kf8-e7
34 Qg8xf7+ Ke7-d8
35 Nh6xf5 Rd6-c6
36 h2-h4
$36 \mathrm{Nb} 3-\mathrm{d} 4$ (that move again) was very much stronger and would have consider. ably improved White's otherwise slim attacking chances.

A very deep move. Black gives up a pawn (with check) to get some time (time can sometimes be at least as important as material, but programs are rarely able to follow such subtle changes in values). White will find its queen on the wrong side of the board and the time it takes to get it back to the kingside is enough to transfer the initiative to Black and enable the latter to launch the decisive phase of the attack.
$\begin{array}{lll}41 & \text { Qg6xa6 } \\ 42 & \text { Qa6-g6 } & \text { Na8-b8 } \\ & \text { Nd3-e5! }\end{array}$
Mate on g2 was prevented but this is a real blow, threatening the queen as well as Rc2xg $2+$ (discovering an attack from the black queen against the rook on b1). 43 Qg6-g8+ Kb8-a7 $44 \mathrm{Rb} 1-\mathrm{f} 1 \quad \mathrm{Rb} 4 \times \mathrm{b} 2$
Threatening mate in two.
$45 \mathrm{Kg} 1-\mathrm{h} 1 \quad$ Re2xg2
White's next few moves would be called 'spite checks' in a game between humans here they are 'horizon checks'. checks".

46	Na5-c6+	Ne5xc6
47	Qg8-a8 +	Ka7xa8
48	a2-a4	Ka8-b8?

What is this nonsense? Fortunately for BELLE the bug scuttles back into the woodwork after a few moves.
49 a4-a5
Kb8-a8?
50 a5-a6
Ka8-a7?
51 h4-h5 Ka7-b6?
52 a6-a7 $\quad \mathrm{Rg} 2-\mathrm{g} 1+$
$53 \mathrm{Kh} 1 \mathrm{xg} 1 \quad$ Qe4-g2 mate

And with that, our resident expert O'Connell was whisked to the local intensive care unit in a severe state of nervous excitement. Massive doses of librium are reportedly taking effect.

15 good reasons for visiting Cambridge

1. Sharp Pocket Computer
2. TRS-80 Model I \& II
3. Apple II \& III
4. CBM (PET) 3000
5. North-Star Horizon
6. Cromemco
7. Hewlett-Packard HP-85
8. Acorn Atom
9. UK-101
10. X-Y Plotters
11. Qume
12. Farm Systems
13. Word Processing
14. Computer Books

With a uniquely comprehensive selection like this all generally on demonstration and available from stock with full support by our team of computer professionals - you'll have the ideal chance of finding precisely the right system for your application.
Looking for a microcomputer? - then visit us at:

Cambridge Computer Store

1 Emmanuel Street Cambridge CB1 1NE
Telephone: (0223) 65334/68155

Commodore Business System

Well-proven systems for the serious user. Our computer stores are staffed by business experts, backed by first class maintenance support.

The Commodore is a complete computerized business system, ideal for first time users. Based on the world famous PET computer, it is easy to use and extremely cost-effective. The system includes large capacity disks
and an excellent quality printer thus bringing many applications within the reach of the small business.

Find out why the Commodore Business System is so popular - call in to any of our shops for advice and a demonstration of this and other systems.

London
48 Tottenham Court Road
London W185 4TD
Tel. 01-636 0647
Nottingham
92a Upper Parliament Street
Nottingham NG 1 6LF
Tel. 060240576 Telex. 377389
Manchester
11 Gateway House
Piccadilly Station Approach
Manchester
Tel. 061-236 4737 Telex. 666168

Birmingham

94-96 Hurst Street
Birmingham B5 4TD
Tel. 021-622 7149 Telex. 336186
Glasgow
Magnet House
Waterloo Street
Glasgow Tel. 041-221 7409
Telex. 779263

- your specialist Computerstore

Until quite recently, multi-user systems had been very much a mainframe phenomenon. Now, however, a number of micro systems are appearing with these capabilities, a trend which should rapidly increase with the recent announcement of $\mathrm{CP} /$ Net.

As many $P C W$ readers may be unfamiliar with the way in which multiuser systems originated, developed and currently operate, we'll begin this series with a look at their history. Next month we will talk about the various implementation approaches and then, in the rest of the series, we'll examine different systems in the marketplace.

The past

All early mainframes were single user; only one person could run a program at one time and, in fact, only one program could be run at one time. This was a quite acceptable state of affairs since cycle times were very slow and operator interventions took only a low percentage of the total time. The user had control over the computer and could interact with and oversee his program while it was executing, although not in today's interactive sense (unless one regards the system waiting for the user to feed more data cards in as 'interactive').

The next few years brought the substantial reduction of cycle times and a new mode of operation was necessary if computers were not to remain idle waiting for human action. Batch processing was introduced to solve this problem. Several jobs were grouped together to form a single batch. A monitor program, sitting in memory, to which control was returned at the completion of a program run, processed the batch. Operator actions were not required during the processing of individual programs.

Unfortunately, as processors became faster, this type of batch processing could not keep the processor busy and the mechanical I / O devices of the time could not be speeded up enough. The next development was to use magnetic tape for I/O. Input could be transferred from cards to tape and output from tape to cards, under the control of a slow, cheap processor. With this kind of arrangement the (expensive) CPU was only idle during data transfer to and from magnetic tape - a much more efficient use of its time.

In a batch processing system the user cannot control his program while it is in the machine and so the monitor had to be capable of coping with any program errors that might occur. For instance, a program might go into an infinite loop (or worse, an infinite loop while outputting to magnetic tape). Although looping might be detected by a conscientious operator watching the console lights, it was better to get the monitor to handle it automatically.

The clock interrupt was developed to force regular entry into the monitor and time limits were imposed on user programs, : The Interrupt mechanism generates a call to the monitor in response to some external event in such a way that the original program can be resumed as if nothing happened. Interrupts have many other uses besides time limitation and their development was a significant step in computer design.

Sue Eisenbach and Dr Adrian Stokes begin their new series devoted to multi-user microsystems with an historical summary of the subject.

Another problem area concerned the accidental destruction of the monitor program or work areas by errors in a user's program. (This fault is frequently not catered for in today's micros.) If this happened, an operator had to restart the machine to continue processing the batch. The program interrupt solves this problem, too. Extra hardware was included in the processor to check the legality of each attempt to write into a memory location and a violation interrupt is generated when an illegal access is attempted.

The program interrupt mechanism also allowed peripheral devices to be used more efficiently. A program can pass a line of output to the monitor which can be transferred, one character at a time, to magnetic tape (or later to disk) using a program interrupt for each character. While data is being transferred, the user program can be processed. The converse would apply to data input. This overlapping of computation with I / O (generally not available on micros) allowed the return to a single machine architecture since computation and I/O could be handled simultaneously by a single processor. Disks allowed more efficient systems to be produced as there's no tape winding time and disks can buffer $1 / 0$ from several devices at one time.

The next software development was the common file store using magnetic disks. The user or the system software could deposit files on the disks to be kept for safe keeping by the operating system, as the now rather large monitor program came to be known.

The availability of interrupts allowed multi-programming operating systems to be produced. A number of programs could share the system resources, particularly the CPU. These almost always worked such that a program ran until it had to wait for something, usually data to be read or output, then the next ran and so forth, possibly with some priority system to allow more important programs to obtain a larger share of system resources. One of the most complex multi-programming systems is IBM's OS/MVT (Operating System/Multiprogramming with a Variable number of Tasks) which, unlike many of its predecessors, didn't allocate fixed memory regions but allowed memory to be re-allocated dynamically. Needless to say, a fairly high proportion of CPU time is concerned with such resource allocation and other functions of the operating system.

Finally, the development of a public file system led to multi-access systems where the user (and there can be as many as 300 users on some systems) sits at an interactive terminal and is able to
control his program. To be more specific, this means that the user may interact with his running program, either to input data in response to prompts or to interrupt its execution. This is achieved using a technique known as 'time sharing' whereby each user is allocated a period of time, often the same for each user but sometimes altered to implement a priority system. The users are allocated the CPU on some pre-determined basis (olten 'round robin') and run during their time slice or until an interrupt occurs (usually input or output). Most multiaccess systems are also multiprogrammed.

So, on mainframes a vast amount of development was required before the user finally regained control over the processor while executing his program. However, in contrast to the first computers, a relatively low proportion of CPU time is spent actually processing users' programs. Rather, the processor spends a fair proportion of its time executing the operating system (for example, dealing with resource allocation).

Microsystems

Nearly all microcomputer systems are single-user interactive systems for several reasons. The first is that such systems are relatively simple to implement. Secondly, micros have limited resources in terms of memory, CPU power and I/O ports. A typical system might have Z80 CPU, 16k RAM and two I / O ports, a configuration which is scarcely sufficient to support multiple users.

By expanding the system configuration to, say, 64 k (usually the maximum possible) and adding extra I/O ports, it is possible to obtain a system which will support a few users but is heavily restricted by CPU power. Of course, it is necessary to modify (enlarge) the operating system to cope with more than one user. Such systems are available on the market but are only satisfactory for a limited number of applications. In order to implement a multi-user system with wider appeal, other techniques must be adopted.

Looking at the components of a micro system, it's clear that the part which runs out of steam first is, luckily, one of the cheapest - the CPU. This points the way to a real multi-user system: give each user his own CPU and a bit of memory and share the expensive components, such as disks (the approach used by CP/Net in fact). In fact, as the number of users increases, larger disks (eg 8in hard disks) become attractive since they are very

GOTO page 133

Compiled by Dick Pountain

CASIO I/OROUTINES

The Casio fx501/502p was the first programmable calculator to provide tape rather than magnetic cards as its bulk storage medium, although now, of course, it has been joined by the Sharp PC1211 and its Tandy clone.

The Sharp possesses two features which make data and program saving far more flexible than on the Casio. Firstly, the recorder may be stopped and started under program control via the Remote socket and secondly, since the Sharp uses Basic, it is possible to save and load selected data memories without overwriting (ie, obliterating) the contents of other registers. This is performed by the PRINT\# and INPUT\# commands with a named data memory, eg INPUT\# DATA $1: A(3)$ loads tape file DATA 1 into memory register A(3). In addition the Sharp can load and run consecutive program files under program control using the CHAIN command.

On the Casio, the data SAVE dumps the contents of all M registers to tape and data LOAD loads all M registers, overwriting their previous contents. The contents of the X, Y and L registers are not dumped and are overwritten on loading and so lost.

Reader Vernon Mantle has produced routines using the non-standard INV EXE instruction which allow saving and loading of the X register without loss of M register data and also independent saving and loading of the F register.

INV EXE is not mentioned in the Casio manual but it can be programmed and has the op code FF-E6. Files saved under program control with INV EXE always have the file number 00 . Vernon has also submitted two short programs which write a succession of data and read the same, under program control, without the loss of M register data. These demonstration routines could easily be modified to perform arithmetical operations on an unlimited chain of data, the practical limit being time, since the saving and loading is rather slow.

Vernon's modified I/O routines are as follows:
SAVE X (writes the contents of the X register to tape under program control). Coding: INV SAVE INV EXE

This routine will write a block of data onto tape. The block label will be F 000 . The block will contain the contents of the X register at the time of execution. All other registers will be unaffected.
SAVE M (writes the contents of all current M registers to tape under program control).
Coding: INV SAVE EXE
This routine will write the M registers' contents to tape, setting the X, Y and L registers to zero but leaving the M registers unaltered. The block label will
be F000.
LOAD X (loads data from tape into the X register under program control).
Coding: INV LOAD INV EXE INV PAUSE

This will read the next block of data on the tape regardless of the block label. If the block was created by SAVE X, the saved X register will be loaded back into the calculator's X register. If the block was created by SAVE M, the saved F register will be loaded into the X register. Executing this routine will not affect the Y , L or M registers.
LOAD M (loads data from tape into the M registers under program control).

Operation

1 Enter program statements
2 Connect calculator to cassette recorder
3 Set recorder to record, start tape running.
4 Press PO to write data blocks to tape.
Coding
PO
5 MIN 0
LBL 0
MR 0
INV SAVE INV EXE (SAVE X)
INV PAUSE INV PAUSE
INV DSZ GOTO 0 MR 0
INV SAVE INV EXE (SAVE X)
Fig 1 Program to write six blocks of data to tape using SAVE X.

Operation

1 Enter program statements
2 Connect calc to cassette recorder
3 Play tape recorded by previous program.
4 Press P1 to read tape and accumulate running total.

Coding
 P1

LBLO
INV LOAD INV EXE INV PAUSE (LOAD X)
INV $\mathrm{X}=0$ GOTO 1

+ GOTO 0
LBL 1
Fig 2 Program to read six blocks of data saved by program in Figure 1, keep running total and display it when last block read in, using only X and Y registers.

Coding: INV LOAD EXE INV PAUSE
This will read the next data block on tape, regardless of block label. If the block was created by SAVE X, it contains only one saved register and this will be loaded into the calculator's F register, leaving the other M registers unaltered. If the block was created by SAVE M, all the calculator's M registers will be overwritten with data from the tape. Executing LOAD M will always set the X, Y and L registers to zero.

I suspect that this is not the end of this subject. I shall certainly be experimenting with Casio I/O routines; one valuable objective would be to find a way of saving/loading selected M registers (if possible) and also selected program memories. I shall also try to produce and report to you a useful calculating routine using SAVE X to write to tape in order to store more than 20 results. Any results of other readers' researches will be gratefully received.

Why the Sinclair 2X80 is Britain's best selling

$\because 516020$

Including VAT, post and packing, free course in computing, free mains adaptor.

Kit:£7995

Including VAT, post and packing, free course in computing.
This is the $\mathbf{Z X 8 0}$. A really powerful, fullfacility computer, matching or surpassing other personal computers at several times the price. 'Personal Computer World' gave it 5 stars for 'excellent value'. Benchmark tests say it's faster than all previous personal computers

Programmed in BASIC-the world's most popular language-the ZX 80 is suitable for beginners and experts
alike. And response from enthusiasts has been tremendous-over 20,000 ZX80s have been sold so far!

Powerful ROM and

BASIC interpreter
The 4KBASIC
ROM offers remarkable programming advantages

* Unique
'one-touch' key
word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have
their own single-key entry.
* Unique syntax check. A cursor identifies errors immediately.
* Excellent string-handling capability takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison)
* Up to 26 single dimension arrays.
* FOR/NEXT loops nested up to 26.
* Variable names of any length.
* BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
* Randomise function, useful for games and secret codes, as well as more serious applications
* Timer under program control.
* PEEK and POKE enable entry of machine code instructions.
* High-resolution graphics.
* Lines of unlimited length.

Unique RAM

The ZX80's 1 K -BYTE RAM is the equivalent of up to $4 K B Y T E S$ in a conventional computer-typically storing 100 lines of BASIC.

No other personal computer offers this unique combination of high capability and low price.

The ZX80 as a family learning aid. Children of 10 years and upwards are quick to understand the principles of computing-and enjoy their personal computer.

The Sinclair teach-yourself BASIC manual

If the specifications of the Sinclair ZX80 mean little to you-don't worry. They're all explained in the speciallywritten 128-page book (free with every ZX80). The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programmingfrom first principles to complex programs.

Kit or built -it's up to you

In kit form, the ZX80 is pleasantly easy to assemble, using a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9VDC nominal unregulated. If not, see the coupon.

Both kit and built versions come complete with all necessary leads to connect to your TV (colour or black and white) and cassette recorder. Plug in and you're ready to go. (Built versions come with mains adaptor.)

personal computer.

Now available for the Zx80.... New I6K-BYTE RAM pack

$\underset{\text { Science of Cambidge Lto. }}{\text { 耳in }}$
6 Kings Parade, Cambridge, Cambs. CB21SN. Tel: 0223311488.

Massive add-on memory. Only £49.95.
The new 16K-BYTE RAM pack is a complete module designed to provide you - and your Sinclair ZX80-with massive add-on memory. You can use it for those really long and complex programs-or as a personal database. (Yet it can cost as little as half the price of competitive add-on memory for other computers.)

For example, you could write an interactive or 'conversational' program to show people what your ZX80 can do. With 16K-BYTES of RAM, they could be talking to your computer for hours!

Or you can store a mass of dataperhaps in a fairly simple program-such as a name and address list, or a telephone directory.

And by linking a number of separate programs together into one giant, but modular, program, you can achieve the same effect as loading several programs at once.

We're also confident that it won't be long before you can buy cassette-based software using the full $16 \mathrm{~K}-\mathrm{BYTE}$ RAM. So keep an eye on the personal computer magazines -and brush up your chess perhaps!

The RAM pack simply plugs into the existing expansion port on the rear of the ZX80. No wires, no soldering. It's a matter of seconds and you don't need another power supply. You can only add one RAM pack to your ZX80-but with 16K-BYTES who could want more!

How to order

Demand for the ZX80 exceeds all other personal computers put together! So use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be.

To: Science of Cambridge, FREEPOST 7, Cambridge CB2 1 YY.
Remember: all prices shown include VAT, postage and packing. No hidden extras. Please send me:

Qty	Item	Code	Item price Total Σ	
	Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	02	79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s). Price includes ZX80 BASIC manual and mains adaptor.	01	99.95	
	Mains Adaptor(s) (600 mA at 9V DC nominal unregulated).	03	8.95	
	16K-BYTE RAM pack(s).	18	49.95	
	Sinclair ZX80 Manual(s). (Free manual with every ZX80 kit or ready-made computer.)	06	5.00	

NB. Your Sinclair $Z \times 80$ may qualify as a business expense.
TOTAL: £
I enclose a cheque/postal order payable to Science of Cambridge Ltd for £ Please print
Name: Mr/Mrs/Miss

megastor andapple

the perfect couple

1 Megabyte on line for £1970

Plug-in compatible with Apple standard $51 / 4$ " disk drives.
Runs on Apple DOS. Includes SVA Disk 2+2 Controller Card.

VLASAK ELEC THNCS Ltd, Ghames Buildinc: Dedmere Road, Marlow, Bucks, SL 71 PB. Tẹlephone: Marlow (STD code 06284) 74789. Telex: 847008 Vlasak G

Continuing PCW's unique series aimed at the serious programmer working in assembler language, Alan Tootill brings more examples of work sent in by readers

We seem to be addicted to relative calling. October's datasheet RLTV, to implement a relative call, has drawn the best response we have had from readers to date.

Mark Restorick, from Oldham, put his finger on a flaw in RLTV. The fourth instruction, ADD HL,SP, could change the state of the flags register, which has not been saved. He gave the solution to move the PUSH AF from 14 th to third instruction and make the instruction which now follows, LD HL, +6 , instead of +4 . Mark also proposed a version of the routine one byte shorter but taking eight more T-states to execute.

Paul Jenner of Southampton sent the code in Figure 1, which we will call RLTVB. It shortens October's RLTV from 27 bytes and 199 T -states to 24 bytes and 188 T -states.

PUSH HL	; save
PUSH DE	; registers.
PUSH AF	
LD HL,+6	; point to return
ADD HL,SP	; address on stack.
LD E,(HL)	; get original
INC HL	; return address
LD D,(HL)	; in DE.
LD A,(DE)	; displacement in A.
INC DE	; increment
LD (HL),D	; return address
DEC HL	; and return it
LD (HL),E	; to the stack.
LD, L,A	; put displacement
RLA	; in HL
SBC A,A	; properly
LD H,A	; signed.
ADD HL,DE	; add to return.
POP AF	; restore
POP DE	; registers.
EX (SP),HL	; put new return on
RET	; stack \& jump to it.
Figure 1	

Figure 1

RLTV transformed

If this series wasn't about showing that routines made public will inevitably be improved, I would kick myself for not having seen this better way of ordering things. Take note all you who keep your software secret and tatty.

In fact, Paul doesn't use this code. He has written interruptable RCAL (relative call) and SCAL (indexed subroutine call) routines for his Nascom, using the 10 H and 18 H restart locations and a common subroutine, GETPRM, to get the parameter in A and the return address in DE. His SCAL routine needs a table of routine addresses and the address of this table is given at locations STAB and STAB +1 , as in the Nascom monitor.

For those of you who still like this system, particularly if you have restart locations still uncommitted, this is how

Datasheet

THE LOWDOWN

 E

My name is Julian Allason and I publish a magazine called PRINTOUT. It is exclusively about the CBM/PET.

I first saw the PET in America three years ago. It was made of wood then. I was so impressed that I came right back and opened a software house publishing PET programs.*

Then a little over a year ago 1 started PRINTOUT. There was a need for an independent magazine that could conduct really thorough evaluations of the flood of new hardware and software products, and report the latest PET developments in detail. Since then PRINTOUT has tested scores of programs and peripherals, and broken the major PET news stories.

We recruited the world's top PET experts to explain the intricacies of the system, to answer your questions and give advice. These days PRINTOUT probably publishes more useful PET information than the other magazines put together. Take a look at the contents of the last issue and you will see what I mean.

There are a whole bundle of changes around the corner that are going to affect every single CBM/PET owner. An example. The complexities of Commodore's new BASIC 4.0 and DOS chips are already causing mind bending problems. Add in the increasing number of plugin ROM chips and the situation's really complicated. PRINTOUT is there to save you headaches, and money too!

We didn't set out to be an encyclopaedia, but there's no doubt that is what PRINTOUT is on the way to becoming - a single reliable source of unbiased information about the PET system. And fun to boot! I don't think you can afford to be without PRINTOUT. So try a copy for yourself. Or better still, subscribe now!
*Petsoft, since acquired by ACT.

PO Box 48,
Newbury, Berkshire RG16 OBD.
Telephone 0635-201131

Please enter my subscription to Volume 2 (1981): I enclose [] £9.50 UK
[] £11 Eire
[] £14.50 overseas Send the full set of Vol. 1 I enclose [] £9.50 UK [] £11 Eire [] £14.50 Overseas Rush me the latest issue. I enclose [] 95p UK \& Eire [] £1.25 Overseas airmail My name is:

My address is:

it goes:RCAL:	
	PUSH HL PUSH AF
	PUSH DE
	CALL GETPR
SCAL	${ }^{\text {JR R RCAL }}$ PL
	PUSH AF
	PUSH DE
	CALL GETPRM JR SCAL2
RCAL2:	
	LD L,A
	${ }_{\text {RBC }} \mathrm{RL}$, A
	LD H,A
RCAL3:	$\underset{\text { POP DE }}{ }$
	POP AF
	$\underset{\text { RET }}{\operatorname{EX}(S P), H L}$
SCAL2:	
	LD E,A
	LD D, 00 H
	LD HL,(STAB) ADD HL, DE
	ADD HL, DE
	LD E, (HL)
	INC HL
	LD D, (HL)
	EX DE,HL
	JR RCAL3
GETPRM:	LD HL, +8
	ADD HLSP
	LD E, (HL)
	LD D , (HL)
	LD A, (DE)
	INC DE
	LD (HL), D
	DEC HL,
	LD (HL), E
	RET ${ }^{\text {c }}$

RLTV run riot

Geoff Barker, who lives near Oxford, asks, 'Why limit calls to the plus 7FHminus 80 H displacement of the relative jumps? Surely an opportunity now exists to go anywhere!' It does indeed, if you don't mind a two instead of a one-byte parameter in the main code; every time the routine is used.

Geoff also thinks that the displacement ought to be from the first byte of the CALL RLTV, to make it similar in operation to the relative jump. That depends on what you are used to. If you write in machine code, you will be used to giving displacements from the first byte of the instruction following the relative jump and will want a routine that handles such displacements for relative calls. If you supply displacements, rather than labels, to an assembler, you will probably be used to giving displacements from the first byte of the relative jump instruction and will be more at home with a relative call routine that handles displacements of this kind. Geoff's code, which we will call RLTVW, is for two byte displacements taken from the first byte of the CALL RLTVW instruction - see Figure 2.

EX (SP),HL
INC HL
; update return INC HL ; address and ; return it (SP),HL . ; to stack. PUSH HL ; save

PUSH DE	; registers.	DEC HL	correct to
PUSH AF		DEC HL	first byte
LD HL, +6	; point to updated	DEC HL	; of CALL.
ADD HL, SP	; return address on stack.	POP AF	; restore
LD E,(HL)	; get displacement	POP DE	; registers.
INC HL	; address + 2	EX (SP),HL	; put new return on
LD D,(HL)	; in DE	RET	; stack \& jump to it.
EX DE,HL	; and HL.	Figure 2	
DEC HL	; disp addr + 1.		
LD D,(HL)	; get		TVW to handle displace-
DEC HL	; displacement	ments fro struction	wing the displacement
LD E,(HL)	; in DE and		wing the displacement,
ADD HL,DE	; add to ret addr.		GOTO page 133

Personal
 World

COMPLETE FEATURE INDEX FOR 1980

Hardware
 Projects

Z80 Homebrew
3-1 elective PROM copier 3-3 TV to Monitor conversion Monito

MK-14-Expansion 3-3
$3-4$

Teleprinter conversion Adding a Z80 to a 6800 system 3-7
VCR to PET interface 3-8 MK14 large LEDs Sound Advice
Int IMP printer to TRS-80'

Benchtest

Luxor ABC 80
WH 89
ACT System 800
Panasonic JD 700 U
Sinclair ZX-80
Challenger C2 4P
Texas Ti $99 / 4$
Altos ACS 8000-2
Hewlett Packard HP-85
Benchmark Timings summary
TRS-80 Model II
Sintrom Periflex 630/48
Acorn Atom
DDE SPC/1
Super Brain
BASF 7120
CBM 8032
Diri $3-10$
Atari 400 \& $800 \quad 3-10$
Benchmarks explained $3-10$
SBS-8000
Raannd SP1/
Pascal Microengine $\quad 3-12$

Series

PASCAL
$3-1,2,3,4,5$
David Levy's games 3-1,2,3, $4,5,6,7,8,9,10$,

11,12
On the line
$3-1,2,3$
Viewdata $3-4,5,6$
Pascal Part 10
Concluded
3-6
IEEE interface - Part 2 3-6
Chess $\quad 3-7,8,9,10,11,12$
Gateways to logic 3-7,8,9,
10,11,12
Face to face 3-7,8,9,10,

11,12
Network Notes
3-7, 9
Secrets of systems
analysis $\quad 3-9,10,11,12$
PCW sub set $\quad 3-9,10,11,12$
Printerfacing $\quad 3-12$

Fact Sheets

6800 opcodes
6502 opcodes

Personal Opinion

The end of work? Lord Avebury
Protest 'against technological determinism ... 3-3
Who needs the CRA?3-4
Schools computing -
David Firnberg
Stating the obvious
Micros in big businesses
Animistics - a look
at 'friendly
computers
Computer/Information technology \& the law

3-4

Evaluations
(Checkout)
Video Genie
Vector Graphic
Flashwriter II
3-2
3-2
Microdata UV8
EPROM eraser
3-5
Softy intelligent EPROM programmer
Exatron stirngy floppy 3-6 380Z High

Resolution Graphics
3-7
ROMPLUS+ for
Apple II
3-8
Hi-Tech VDU board
3-9
Microwriter
Micro-based toys
3-12

Calculator Corner

TI 58/9 Pseudo opcodes 3-1 Casio Fx 502P Brag

3-1
Casio Fx 501/2P
Master Pack
TI 58/9 Economics
Simulations.
Programming efficiency
Casio random number generator
HP 41C review
Artificial Intelligence
Accounts on TI-59
Data Packing
Sharp PC1211
evaluation
Pentathlon program
Aid for the blind
Godel, Escher, Bach
Casio Quirks \& Da 3-10
PC1211 Speed up
3-11
Special
Features
Computer Retailers'

Association

Christopher Evans tribut 3-1
Show chess results $\quad 3-1$

The British Computer

Society
Astrology - case study
IEEE-488 bus explained
Economic simulation
Modern evaluations
5th West Coast Faire report
Wave Synthesis on Nascom 1
Overcoming PET printer problems
Random numbers
Sound to colour conversion
American report
Simple approach to programming
Communication aid for disabled
Imphex - intelligent game PET
House of Commons report
Interrupt handling
3-4,9
Case Study - Compucolor
installation

Poem

Power supplies explained

3-2
3-2
3-2
3-3.
3-5
3-5
3-5
3-5
3-5
3-3

Power supply design
Program structuring in Basic
Sandbach school system
M68000 preview
Case Study -
Apple Installation
3 - D Plotting
Cassette files
Printer survey
Basic Basic
3.6

3-6

Worl Micromcomputer Chess Ch ampionship Portable Basic

3-6
$3-6$
3-6
3-6

Parkinson's Pep-up $\quad 3-10$
Bare Bones of Robotics 3-10
Helping the Handicapped 3-10
Another Dimension $3-10$
Computertown UK 3-11
Apple/ITT colour graphics3-1:
Reader Survey 3-11
Forecasting
$3-11$
$3-11$
PCW Show round-up 3-11
Pascal Benchmarks
Computer Art
ComputerTown UK!
3-12
3-12
3-12
ootball Pools program
CRAM random access circa 1960

Package

 evaluationsSales Ledger
Purchase Ledger
Payroll
Word Processing
Information retrieval \& databases
Integrated accounts
packages
Stock Control

3-1,8
3-2
3-3
3-4

3-7

Programs

BASIC Star Wars
3-1
PET Alien Attack 3-1
Revas (conclusion) REverse
assembler for Z80
Planet name generator 6800

3-1
MK-14 scrolled messages 3-3
6800 Keyword retrieval
system
3-3
PET Kaleidoscope 3-3
Efficient character storage
Z80 Assembler
UK101 Dodgems
TRS-80 Fox and hounds $3-4$
MZ 80K Sine wave
addition
PET Backgammon
UK101 Nedge
PET Horse race
BASIC Renumber
Naming Nascom files
380Z Pictures
Fuel tank calculations PET

3-2
PET large numeral generator
PET tank battle
BASIC string handling routines
UK101 Dogfight
MK 14 Frequency
counter
3-6
North Star Maths test
PET Sweeper
PET Delete/Renumber 3-6
PET Cat and Mouse 3-7
UK 101 Graph
Plotter
UK 101 Black Box
TRS-80 Graphics
PET Robot Nim
PET Golf
PET Nightmare Park
PET Dots \& boxes
PET Bloobers
PET Demolition
Apple Showpiece
PEEK \& POKE for Apple Pascal
PET Giant Slalom
Speed \& Accelleration $\quad 3-9$
PET Racer
PET Fighter Pilot
UK101 Graphics
Apple Plotting
UK101 Gunfight
PET Algebraic
evaluation
ZX80 Breakout

PET Ski

-10
MZ-80K Bouncing ball $3-11$
Superboard/UK101

Bug bypass
PET Replace
TRS-80 Tarot
PET Cat \& Mouse
PET Rebound
MZ-80K Alligator
Swamp
PET Connect
UK 101 Minefield
PET Simon

3-11
-11
3-11
3-12
3-12
3-12
3-12
3-12

This is our unique quick-reference guide, reprinted every month to help our readers pick their way through the most important pieces of (necessary) jargon found in PCW. While it's in no
way totally comprehensive, we trust you'll find it a useful introduction. Happy microcomputing!

Welcome to the confusing world of the microcomputer. First of all, don't be fooled; there's nothing complicated about this business, it's just that we're surrounded by an immense amount of necessary jargon. Imagine if we had to continually say 'numbering system with a radix of 16 in which the letters A to F represent the values ten to 15 ' when instead we can simply say 'hex'. No doubt soon many of the words and phrases we are about to explain will eventually fall into common English usage Until that time, PCW will be publishing this guide - every month:

We'll start by considering a microcomputer's functions and then examine the physical components necessary to implement these functions.

The microcomputer is capable of receiving information, processing it, storing the results or sending them some where else. All this in formation is called data and it comprises numbers, letters and special symbols which can be read by humans. Although the data are (yes, it's plural) accepted and output by the computer in 'human' form, inside it's a different story - they must be held in the form of an electronic code. This code is called binary - a system of numbering which uses only 0 s and 1s. Thus in most micros each character, number or symbol is represented by eight binary digits or bits as they are called, ranging from 00000000 to 11111111

To simplify communication between computers, several standard coding systems exist, the most common being ASCII (American Standard Code for Information Interchange). As an example of this standard, the number five is represented as
00110101 - complicated for humans, but easy for the computer! This collection of eight bits is called a byte and computer freaks who spend a lot of time messing around with bits and bytes use a halfway human representation called hex. The hex equiva lent of a byte is obtained by giving each half a single character code ($0-9, A-F$.) $0=0000,1=0001,2=0010$, $3=0011,4=0100,5=0101$
$E=1110$ and $\mathrm{F}=1111$
Our example of 5 is therefore 35 in hex. This makes it easier for humans' to handle complicated collections of 0 s and 1 s . The machine detects these 0 s and 1 s by recognising different voltage levels.

The computer processes data by reshuffling, performing arithmetic on, or by
comparing them with other data. It's the latter function that gives a computer its apparent 'intelligence' - the ability to make decisions and to act upon them. It has to be given a set of rules in order to do this and, once again, these rules are stored in memory as bytes. The rules are called programs and while they can be input in binary or hex (machine code programming), the usual method is to have a special program which translates English or near-English into machine code. This speeds programming con siderably; the nearer the programming language is to English, the faster the programming time. On the other hand, program execution speed tends to be slower

The most common micro computer language is Basic. Program instructions are typed in at the keyboard, to be coded and stored in the computer's memory. To run such a program the computer uses an interpreter which picks up each English -type instruction, translates it into machine code and then feeds it into the processor for execution. It has to do this each time the same instruction has to be executed.

Two strange words y ou will hear in connection with Basic are PEEK and POKE They give the programmer access to the memory of the machine. It's possible to read (PEEK) the contents of a byte in the computer and to modify a byte (POKE).

Moving on to hard ware this means the physical components of a computer system as opposed to software the programs needed to make the system work.

At the heart of a micro computer system is the central processing unit ($C P U$), a single microprocessor chip with supporting devices such as buffers, which 'amplify' the CPU's signals for use by other components in the system. The packaged chips are either soldered directly to a printed circuit board ($P C B$) or are mounted in sockets.

In some microcomputers, the entire system is mounted on a single, large, PCB ; in others a bus system is used, comprising a long PCB holding a number of interconnected sockets. Plugged into these are several smaller PCBs, each with a specific function - for instance, one card would hold the CPU and its support chips. The most widely-used bus system is called the S 100.

The CPU needs memory in which to keep programs and data. Microcomputers generally have two types of
memory, RAM (Random Access Memory) and $R O M$ (Read Only Memory). The CPU can read information stored in RAM - and also put information into RAM Two types of RAM exist static and dynamic; all you really need know is that dynamic RAM uses less power and is less expensive than static, but it requires additional, complex, circuitry to make it work. Both types of RAM lose their contents when power is switched off, whereas ROM retains its contents permanently. Not surprisingly, manufacturers often store interpreters and the like in ROM. The CPU can only read the ROM's contents and cannot alter them.in any way. You can buy special ROMs called PROMs (Programmable ROMs) and EPROMs (Erase able PROMs) which can be programmed using a special device; EPROMs can be erased using ultra-violet light.

Because RAM loses its contents when power is switched off, cassettes and floppy disks are used to save programs and data for later use. Audio-type tape recor ders are often used by con verting data to a series of audio tones and recording them; later the computer can listen to these same tones and re-convert them into data.
Various methods are used for this, so a cassette recorded by one make of computer won't necessarily work on another make. It takes a long time to record and play back information and it's difficult to locate one specific item among a whole mass of infor mation on a cassette; therefore, to overcome these problems, floppy disks are used on more sophisticated systems.

A floppy disk is made of thin plastic, coated with a magnetic recording surface rather like that used on tape The disk, in its protective envelope, is placed in a disk drive which rotates it and moves a read/write head across the disk's surface. The disk is divided into concentric rings called tracks, each of which is in turn subdivi ded into sectors. Using a program called a disk operating system, the computer keeps track of exactly where infor mation is on the disk and it can get to any item of data by moving the head to the appropriate track and then waiting for the right sector to come round. Two methods are used to tell the computer where on a track each sector starts: soft sectoring where special signals are recorded on the surface and
hard sectoring where holes are punched through the disk around the central hole one per sector

Half-way between cassettes and disks is the stringy floppy - a miniature continuous loop tape cartridge, faster than a cassette but cheaper than a disk system. Hard disk systems are also available for microcomputers; they store more information than floppy disks, are more reliable and information can be transfer red to and from them much more quickly

You, the user, must be able to communicate with the computer and the generally accepted minimum for this is the visual display unit (VDU), which looks like a TV screen with a typewriter-style keyboard; sometimes these are built into the system, sometimes they're separate. If you want a written record (hard copy) of the computer's output, you'll need a printer.

The computer can send out and receive information in two forms - parallel and serial. Parallel input/output (I/O) requires a series of wires to connect the compu ter to another device, such as a printer, and it sends out data a byte at a time, with a separate wire carrying each bit. Serial I/O involves send ing data one bit at a time along a single piece of wire, with extra bits added to tell the receiving device when a byte is about to start and when it has finished. The speed that data is transmitted is referred to as the baud rate and, very roughly, the baud rate divided by ten equals the number of bytes being sent per second.

To ensure that both receiver and transmitter link up without any electrical horrors, standards exist for serial interfaces; the most common is RS232 (or V24) while, for parallel interfaces to printers, the Centronics standard is popular

Finally, a modem connects a computer, via a serial interface, to the telephone system allowing two computers with modems to exchange infor mation. A modem must be wired into the telephone system and you need British Telecom's permission; instead you could use an acoustic coupler, which has two obscene-looking rubber cups into which the handset fits, and which has no electrical connection with the phone system - British Telecom isn't so uppity about the use of these.

This package guide appears bimonthly alternating with our In Store hardware guide.

TRANSAGION FILE

The classified service that's free to non-commercial readers. Advertisements (50 words max) to
 PCW Transaction File, 14 Rathbone Place, London W1P 1DE.

Forsale

Cromemco. . 22 with a 4 MHz Z80A, 4 FDC disk controller, 641 RAM, 21-slot motherboard, twin $8^{\prime \prime}$ disks, only 6 m onths old. Unforeseen financial crisis forces sale
with full doc, $£ 2600$. Tel $051-228$ 0144.

Chess Challenger 7. . still in new cond, mains adaptor, 880 ono. A Samet, 8 Elm Park Ave, London N15 6AT. Tel 01-800 9257 after

T158. . prog calc, well used but in working order with charger, manuals etc, £25. Alastair Mutch 9 pm).
Computhink. 400 k twin disk printer with cable, 3395 Both new cond. Tel Rugeley (08894) 2052.

Olivetti TE 300 . . printer terminal with 110 baud RS23 2 int, paper attn), with stand, cables, some $8{ }^{1 / 2 \prime}$ p aper \& copy of manual. Will demo asking £ 225 . Tel Watford 34560 afte
weekends.

Apple II Plus. 48 k , one disk drive $\&$ controller, all extras inc modulator, many progs 2 months ware only). Also Z 80 softeard. £195. 3 months old Centronics 730 , $£ 450$. Tel $01-4505049$.
TRS-80 Level II. .. 16k, VDU, casse tte, covers, tapes, learning
Basic, stats package $\&$ Basic books 8450 ono. Tel Botley (Hants)
5714 after 5 . 5714 after 5 .
ZX80. . assembled, inc PSU and 4322247 eves.
TRS-80 Level I. . 4 k inc VDU, cass recorder, PSU, game progs, instruction tapes \& manuals, 6 Tel Blackpool (0253) 36646 eves or mornings (shift worker) or all or moekend.
Nascom 1. . with bu ffer board, mother board, PSU, NasSys, 8 k RAM, new case, £150. Also Nascom 116 k , two Basics (one tape,
one EPROM), PSU, all Verocase with 12 " munitor, printer \& sof ware, $£ 450$ ono, may split. Tel Ware, \&450 ono, may split. Tel 57886 night.
Superboard. . . 8k RAM, PSU modulator \& case (not fitted),
offers around $\& 215$. Tel Southendoffers around d215. Tel Sou

TRS-80 Level II. . 32k plus cas-

 sette, manual, video or TV adap tor, tapes, $£ 450$. T8287822 ext 463 day.
PET 32k. (expanded from 8 k), large keyboard, green screen, toolkit, reset switch, cover, progs
$\&$ doc inc PET Revealed, only 3 months old, $£ 650$ ono. Also monitor \& 4 k exp for UK101,
$£ 15 \& \& 25$ resp. Tel 01-5431890

Bits $\&$ PCs. . Toolkit for Nascom
$£ 30$. Sale due to floppy upgrade. £30; Sale due to floppy upgrade.

ZX80. . . one month old with exp board for up to $3 \mathrm{k} \&$ PSU. Checked by Science of Cambridge Switchable video. Reason for sale -upgrading. Accept $£ 80$ ono.
Tel Orpington 70601 .
UK101. . 8 k , assembler, case, monitor in ROM, disassembly of all monitors, $£ 250$ ono or swap for Nascom 1 why? Tel A Crofts,
Warwick (0926) 53868 eve, 44111 Warw
Used VDU. . in good working
8419 after 8pm.
Acorn. . System One, working with Acorn PSU \& programs, 65 burn Rd, Balerno, Edinburgh EH14 7DN.

Sorcerer. . . 32k Cognivox voice syn thesiser/speech recogniser/ music \& sound effects producer. full m anuals (technic al \& software \& £80 worth of software on cassette (mainly games), £700. Write D Mok, 33 St Cross Rd,
Winchester, Hants SO23 9JA.

PET 2001. . 8k old ROMs, calc keyboard, new cassette head jus fitted, $£ 325$ buyer collects. To
view \& test tel 01-582 7766 .
Bargain. . . 2111-2 RAMs (unused) half price, $£ 2$ (32 chips); unused KB756 ASCII key board, £35; Superboard PIA int- 115 ; light pen, $\begin{aligned} & \text { board. B Mistry, } 75 \mathrm{St} \text { Margare ts }\end{aligned}$ Rd, Bradford, W Yorks.
Apple 280 . card as new never used, wi th CP / M, Microsoft Basic 5.0, £180. Tel 01-450 5049.

T159 \& T158. . . both exc cond, boxed with all manuals, cards, \& stats lib module. Offers, tel Dr D
Boxer 038223181 ext 583 or Boxer 03822
0382825090.
Casio FX502P. .. plus FAXI cass int, with instruction and ap Masterpac application book, new cass, total val over $£ 120$ as new cond for $£ 75$, or exch 6502 based m / c code dev board Kiml, Syml etc. Greenload, tel Skipton (0756) 60811.
Triton. . L 7.2 (2 MHz) 8 kext Basic, motherboard, full onboard RAM, manuals, games tapes, cased, working, of fers. 27 Beaumont Ave, Sudbury Middx or tel Rob, 01-450 8911 ext $337 / 324$ office hours.
UK101. . 8k RAM, new monitor, $600 / 300$ baud casse tte, $1 / 2 \mathrm{MHz}$ RS232 int, cased, all sckts fitted (video, TV, etc), low $^{2} 4$
PET 2001. . . 8k, new keyboard \& ROMs, green screen, Basic course on cass, beginner's manual, some games, plenty of magazines, quick sale, $£ 400$ ono. P Griffin 6 Florence St.
Nascom 1. ©T4, NasSys, full doc, £100. Hewart 6800 , full kb 1 k monitor, VDU \& cass, ideal 8458 day, Wokingham 785470 eves.
Used. . . working system, processor, key board, 35 cps printer feed), mag card handler, 50 cps paper tape reader/punch,
manuals, mag cards, paper, complete, $£ 460$ ono. Tel Locks Heath (04895) 3818 .

PET. . $8 k$ old ROM, Expandamem, Toolkit, £500. Compu extension key board, \&50. Buy it
all \& you get 250 free progs. Tel
$01-9482847 / 01-8947149$.
Microtan 65. . . buil t by
Tangerine, keypad, graphics, l/case, mini-motherboard, MPSI
PSU, manual, some simple software, $£ 125$ ono - no split. Farm fill, 55 Meadowfield, Gosforth, Cumbria, tel Gosforth (09405)

345 after 6.

PET 32k . . plus Computhink Petalect maintained, dust cover Petalect maintained, dust cover disks, PET literature, $£ 1000$ ono. Tel 079-78416.
Olivetti... TE300 printer with Bailey bi-dir int (for PET), paper tape read/write, full key board, instr manual, unused since recent service, offers around $\mathbf{H} 300$. Ken Hall, 4 St Paul's Court, Kettering tel 0536515136

2X80. as new Sinc built, with 210028.

Merlin. . electronic toy with Mastermind, Noughts \& Crosses Blackjack, Magic Square Echo display with sound, in good cond $£ 20$ ono. Tel Paul Myatt, Hitchin (0462) 4085 eves \& w/ends.

UK101. . . assembled \& cased, 8 k RAM on board plus spare $6 k$ RAM, extended monitor \& games on tape, cassette, tapes, 5 Basic books, 0225 . Tel Porthcawl (065671)6138.

PE VDU. . board, assembled, 20; Protoboard 6 breadboard Kitt tel 0204694265.
T159. . . prog calc, PC100C printer, 37 spare prog cards, cat \& newsletters, pristine cond, best offer. Andrew Taylor, 01 4445104 , or write 23 Park Hall Rd, London N2 9PT.
8k PET. . . brand new, large key board, new ROMs, fitted mu metal screen eliminating wobble’ £420, buyer collects after 6 or anytime w/ends. Nascom II. . plus 16 k RAM on 48k board, PSU in kit, unwanted gift, £330. Dr V Tam 80 Streathbourne Rd, London SW17
tel 01-736 1212 ext 6338 .

T158C. . . brand new, a T1 58 but with non-volatie memory, stores progs indefinitely, standard module \& manuals, cost $\& 90$, accept $\& 74$, buyer collects. Tel
Whitchurch (Hants) 2602 after 6.

Printer. . Centronics 101 dot matrix, parallel/RS232 int, working, \&100 ono, Nolton 1602A modems, $1800-19200$ facility, built in word checker $V 24$, also line filter units h /book, $£ 150$ ono for pair. Milgo 4400 modems, 4800 baud, with field kits. V24, $£ 35$ each, $£ 60$
pair. Tel Horsh am (0403) 69835 Apple II +48 k . with plenty of software. 12 Harold Ave, Black-
pool, tel $692261 / 67091$.

Sorcerer. . . word proc pac, $£ 90$ development pac, $£ 60$ as ne
with doc. Tel $01-9794370$.
Sharp MZ-80K. . . as new 48 k RAM, inc dis/assembler, de bugger, monitor, Basic listing, software (games etc worth over $£ 200$), home used, only two months old, worth $£ 1000$, accept $£ 750$ ono. Tel 060437402 after 7 or w/ends.
LMP printer. . . recent purchase, need faster one so IMP must go fo \& 260 . 12 Harold Ave, Blackpool, tel 692261.
Nascom 16k. . DRAM board type A, built, working on Nascom R', fum docetc, \&135. With 32 colour graphics board, built but unused, full doc $£ 35$ ono. Tel Oxford (0865) 725495 after 6.30 eves \& w/ends.
UK101. , assembler tape,
manual, hints on use, cost $£ 17$
Sel $£ 10$: Space Invaders in £3. Tel Dave, 031-664 2144 eves. PDP8/S. . with std int $\&$ hispeed reader int, cables, h/books, £150 ono. Reed SW keyboard, gwerty, ASCII new, $£ 35$ ono. Part finished 'Champ' as PE
with articles, $£ 60$. Jack, tel 0705 596058.

Games computer. . Signetics
2650 proc, UHF output to TV, 8 colour graphics, mult resolution to 227×252, sound via speaker \& AY8910, cass int with named files, monitor in ROM, lots of software, manual, also full spec reletext decoder, UHF output $\&$ please, tel 0925811191 eves \& w/ends.
MK14. . . + / / O chip, cost £56 new 6 mon ths ago, unused, needs slight attn, most chips scktd, ofrers around ${ }^{2} 45$? Also alarm bell siren, keyswitches, all unSpa (0926) 38678 after 6 weekdays.

ZX80. . . Sinc built hardly used manual, TV \& tape leads, book of Basic comp games, $\mathcal{L} 70$ inc
$p \& p$. Tel Canvey Island 69902
Printing terminal. . . Friden Flex owriter incorporating 11 " max widn printer, keyboard, ${ }^{8-}$ spares, 110 V AC supply, not 22341 eves $\&$ w/ends
Casio FX502P. . prog sci calc. or together, tel Michael, 01-949 0120 after 6.
Data 100 .. S- 1200 matrix printer, $120 \mathrm{cps}, 192$ char set, 136 int, line buffer, etc. Hardly used (owner needs APL char set), ©650 with manual. Tel Liverpool $051-9242581$ eves.
UK101.. 8k Microsoft Basic, 8k RAM, cased + all leads, various cassettes inc ext monitor \& dis2×8 bit par int using 6522 , VIA 2×8 bit par int using 6522 . Tel Colchester 61193 .
$\mathbf{2} 250$
32 kPET . . . big key board, green screen, cass, software, little used Marshall, 01-659 4748 eves

Apple II +48 k . . disk drive, software inc w/proc, Chess, etc only 6 months old, as new, $£ 950$ ono. Tel (04203) 5273 eves.
77/68. . Mon 2 PCB with TBug, £45; 3 off $77 / 684 \mathrm{k}$ RAM PCB, socketted, exc memories, $£ 15$
each; VDU board, $£ 40 ; 5 \mathrm{~V} 30$ amp Kingshill PSU, £30; Mon PCB + sckts \& bootstrap ROM only $812 ; 5 \mathrm{~V}$ Vero rack with 12 wire wrap edge connectors,
2 $25 ;$ cass int. $£ 10$. Tel 099386

UK101. . 8k RAM, built, cased teads supplied no hidden sna leads supplied, no hid den snags, ono.H Wynn, 89 Ossulton Way. E Finchley, Lond on N2 OJS, tel 01-883 1983 .
ZX80. $\dot{\text { RAM }} \dot{\text { SU }}$ + manuals, exp addn'l 1 k listings for graphics, cables, games, cost new £120 sell at £70. Tel Leatherhead (03723) 7
PET 2001-8. . (8k with int cass \& small keyboard), 30 progs inc Mrek. Wartex, etce, as new 3955 PET manuals, \& assorted pile PET mags, £17.50.
Space Invaders. . \& about 50 other PET games, bought in error, \& card, cost over £20, accept $£ 5$ inc postage. Tel Graeme, Wood-
bridge $(03943$) 3267 .

Aple 1148 k . 2 disk drives ctrir, Apples of th in Rames paddles, many o/put, games paddles, many 1100 games inc Space Invad
Tel Norwich 810675 .

Atari. . video computer with 2 games carts,
working order. Tel $01-3815312$.

TRS-80 L2 32k. . with VDU, exp int, cass, one disk drive, software (Sargon, Adventure, Assemble TBUG) \& manuals, retails for
£1300, sell for £950 ono. Glopton, SuffolkIP136QL

Sharp MZ-80K. . full 48k RAM,
Xtal Basic, assembler, monitor, Basic listing, 9 mon ths warranty hardly used, inc games \& cassettes $£ 625$ for quick sale. Tel Oxford (0865) 880362 .

ZX80. . inc leads, mains adaptor ${ }_{6}$ \& manual, £ 70 ono. Tel 031 -

TRS -80 L 416 k . . +1 + ts of software, 4 months old, would like PET (large key board, new
ROMs). Tel Maidenhead 39393

TRANEAGTION FILE

HP19C. .prog sci calc with printer, 98 step memory, 29 addressable storage registers, mains charger, $h / b o o k s$ \& spare printer paper, \&85. Tel Rickmansworth 76067.

Acorn System 1. . . with extra RAM \& I/O, two books, good offer. Tel Roger Shingler, 021 3530753 after 6.
Telequipment.. $S 61$ scope, single beam, 5 MHz , large 10 cm screen $01-6378882$, of fice hours.
TRS80. . RS232C int, unused with cable \& manual, £65. TRS80 cassettes with d/precision routine 83 Tel Bosco 01-546 2044, Mo Mon-Thurs after 6.

PET. . . new 16k large keyboard with cassette plus extensive games s/ware, as new, 6600 ono. Tel 0274670114 eves.

Printer mechanism. . 40 col LRC 7040 dot matrix with motor mains transformer \& capacitor £40. Tel Wolverhampton
763617 eves.
Acom. . System 1 with VDU card \& modulator doc, 2 books inc 6502 Applications Book, built \& tested, cost $£ 190$, accept \&110. Tel 0532681588.

Nascom 2. . 32k user RAM, graphics in video terminal toroidal txfmr, doc \& tapes, first reasonable offer secures. Tel (0234) 43843 eves or w/ends.

Triton. . L7.2 monitor \& 8k Basic in EPROMs, 19 k RAM, S100 disk interface, RS232, \& cass rec, $£ 500$ ono. SA800 disk drive \& manuals \&225. Tel Stoke-on-Trent (0782) 314053 eves.

2X80. 2k RAM, PSU \& leads, 5 good progs on C12 cassettes, book of progs, \&110 ono. Tel Andrew, Peterborough (0733) 44342 .

Acom Atom. . . 8k Basic $2 k$ RAM, with case, prof built \& tested, all leads \& op manuals. ideal for beginner, fully expand. able ex cond, $£ 155$. Tel Leicester ter 6.

Wanted

MK14. . . revised monitor, socke ted, extra RAM, RAMI/O, working. Willing to pay £30-£35 Tel Martin, 01-393 1054 eves.
Tangerine. . . Microtan 65, ASCII keyboard preferred, Tanex exp considered. Tel George
Rees, Swansea (0792) 61753.

16k Apple II+. . . with Applesoft in ROM, price subject to cond.

Details. of sof tware used
successfully for RTTY \& CW on a UK101. Ward, 44 Northgate Barnsley, S Yorks.

PCW. . Vol 1 no 5. Tel Peter Tootill, 051-220 9733 or 051 . 9227260 ext 250 .

Apple IIt. . . or ITT2020, 16k. mith be in good cond for exch sy nthesiser/recogniser, music production, lots of software \& manuals. Write D Mok 33 St Cross Rd, Winchester, Hants
sO23 9JA.

PCW. . vol 1 nos 4, 5, 6, 7, 9, 10, 11, 12, vol 2, nos $5,6,8$ (in good cond). Contact Aron Felix N-5084 Tertnes, Norway.

DIATYPATA

Birmingham, England	(Edgbaston Cricket Ground) Electronic Business Equip. Exbn - BIZTRONIC. Contact: Groundrule Ltd, 061-928 0406	27-29 Jan
Bahrain	Middle East Electronic Comms. Show \& Conf - MECOM. Contact: Arabian Exbn. Management, 49-50 Calthorpe Rd., Edgbaston, Birmingham. 021-454 4416	$2-5 \mathrm{Feb}$
Eindhoven, Holland	Int. Microelectronics Sub. Systems Trade Fair - Microelectronica. Contact: Golden Gate Exbns Inc, PO Box 428, Los Altos, CA94022, USA	4-6 Feb
Bilbao, Spain	Electrical \& Electronic Equip Exbn - ELA Contact ECL Ltd, 01-486 1951.	2-8 Mar
London, England	(Wembley Conf C) Microsystems '81 Exbn. Contact: IPC Exbns Ltd, $01-8373636$	11-13 Mar
Glasgow, Scotland	(Albany Hotel) Computermarket. Contact: Couchmead Ltd., 42 Gt Windmill Street, London W1. 01-4374187	17-19 Mar
Malmo, Sweden	Computer Exbn - DATAKRAFT. Contact: ECL Ltd, 01-486 1951	23-27 Mar
Manchester, England	(New Cent. Hotel) Computermarket. Contact: Couchmead Ltd., 01-4374187	24-26 Mar

USIRMROUPSTIDEXX

Here are the details of additions and changes recently notified. If we have failed to include
YOUR group (or have published incorrect information) either here or in the complete listing, then please address changes/additions to: PCW (User Groups Index), 14 Rathbone Place, London WIP 1DE. Finally, the next complete listing will appear in our February issue.

NATIONAL

UCSD p-System User Society.
Will hold its first AGM on 30-31 Jan at the Dragonara Hotel Bristol. Registration fee $£ 10$. Membership is £25 pa. Contact : Malcolm Harper, Programming Research Group, 45 Banbury Rd., Oxford OX2 6PE, tel 086558086
TRS-80 Level 1 User Group.
For all users of Level 1.
Quarterly newsletter containing software (which is also available on cassettes). Annual sub £3 (newsletter) or $£ 7$ (newsletter \& cassette). Contact (with SAE) : N Rushton, 123 Roughwood Drive, Northwood, Kirkby,
Merseyside L33 9 UG
British Apple Systems User
Group. For Apple II and ITT
2020 users. Meets first Tues eve and third Sun afternoons each month at The Old
School, Branch Rd, Park
Street, St Albans (ón A5
about 2 miles south of city
centre). Contact : John
Sharp, Garston (09273) 75093 or David Bolton, Park Street (0727) 72917.
TRS-80 Users Group. The group is about to launch a computerised bulletin-board system. Members with appropriate h/ware and s/ware will be able to access a central system outside working hours to leave/receive messages and download programs from the Group's software library. Users of other systems will also be able to use the bulletin board. Contact: Brian Pain, National TRS-80 Users Group, 40A High Street, Stony Stratford, Milton Keynes, tel (0908)566660 (office), 564271 (home).

MIDLANDS

Birmingham Computer Club. To be formed shortly, catering for all micro users. Fortnightly meetings planned but venue not yet fixed. Contact Dr M Bayliss, 021-7437197.

TRS-80 Independent User Group. Recently formed in Birmingham. Contact Mike Bayliss, 021-7437197.

LONDON

TRS-80 Users' Group London Branch, recently formed and meets 2nd Friday each month 6 pm , at 292 Caledonian Rd, London N1. Contact: J Wellsman, 01-607 0157.

Compucolor User Group, London area. Has contacts with both US and Canadian Compucolor user groups. Contact: Bill Donkin, 19 Harwood Ave, Bromley, Kent BR1 3DX.
$380 Z$ User Group, North London Branch. Includes Herts, Cambs, Oxon. Contact: Sheridan Williams 35 St Julian's Rd, St. Albans, Herts AL1 2 AZ.

NOTTINGHAMSHIRE

Ashfield Computer Club.
Meets 1st \& 3rd Thurs each month at Carsic Junior School, membership £3 pa. Contact Deric Ellerby tel 0380753576 or Derrick Daines, tel 0380870841.

SUSSEX
A PET group is being formed on the Sussex/Surrey border, presently centered on Crawley \& Horsham. Aims to meet monthly \& produce a monthly newsletter. Contact: Richard Dyer, 33 Parham Rd, Ifield, Crawley RH11 0ET.

YORKSHIRE

Anyone interested in forming a micro group in the
Doncaster area, contact Mr
P Flinders, tel Doncaster 784954 or Doncaster 868 379, 6-9pm

GET WELLSOON A TAPE RECOVERY SYSTEM

Continued from page 107

beyond the header and part of the first copy of the program has been lost. In this case the cassette will not stop, the load will not have been verified and the link bytes will not have been corrected. Hence the need to SYS 883, which calls the routine to put in the link bytes and the pointer to the end of Basic. Second, only the header has been lost and part of the timing tone remains. In this case, the load will have been verified, the link' bytes corrected and the end pointer entered automatically.

The program can now be listed and run, but before doing so it is obviously prudent to save it again and to check for any obvious errors, if only the second copy was intact.

One last comment: on trying to list the program only a single line may be displayed, consisting of a strangely high line number, a program name then garbage or spaces followed by a few lines of plus signs. This occurs because the recover program is picking up the header of the target program (which has not been completely erased) or the header of the following program on the tape. This should be checked with an audio cassette-player. If the former happens, make sure you position the target tape just before the end of any

Continued from page 115
much cheaper than floppy disks on a 'per bit' basis their only problem in small systems is that they generally cost more than the rest of the system put
timing tone. If there are two timing tones present, the header is complete and the tape should load normally but sometimes, on poor quality tapes, it does not work so it is worth trying a recovery by positioning the tape on the second tone. If the name is that of the program following the target, this is almost certainly due to the erasure having gone beyond the middle marker and the only possible means of recovery is the sledgehammer way.

The uncrash routine is as follows and is suitable only for new ROMs; it is known as 'the hairpin method' and I believe it comes from Jim Butterfield. First, connect pin 5 of the parallel user port to ground - pin 1 on the cassette port is handy for this - then briefly connect pin 22 (Reset line) on the memory expansion connector to ground. This causes the PET to jump to the diagnostic routine in the Monitor and the registers are displayed on the screen. Now enter X, to get out of Monitor, and then CLR to reset the pointers. Finally, disconnect pin 5 from ground. This is not a cure for all ills, crashwise, since some will only respond to switching off.

PLEASE NOTE it is definitely not recommended to po poking about with all sorts of bits of wire so only proper connectors should be used and no responsibility can be accepted if anything untoward should happen while you are using this routine.
number of hands in the playing session. The program can then allow for the possibility of the opponent bluffing when making its calculations, possibly by calling a suitable proportion of slightly adverse equity situations.

More players

If you want to get the most fun out of a poker program, I would suggest that you write one for six players, five hands being played by the program and one by the user. You can use similar probability estimates, although the actual calculations will be more complex and you will find the game with more players is more stimulating than the two-handed game.
together. The largest hurdle to overcome in order to produce a reasonable multi-user system is not the cost of the hardware but the design and development of the more complex system software required to control the hardware.
Many companies are now looking at the question of providing multi-user micro systems and, in the next article, we will describe how these are being implemented and attempt to provide criteria for evaluating these systems.

PCWSUBSET

Continued from page 123

INC HL twice, instead of decrementing it three times, before restoring the registers.

To alter Paul's RLTVB to handle one-byte displacements from the first byte of the CALL RLTVB, you can insert the instruction $\mathrm{SUB}+4$, following the LDA,(DE), and restrict the displacement to the range -124 to +127 .

Geoff goes on to suggest that if
either conditional or unconditional relative calls are needed, an unconditional jump, following the CALL, could be used to skip the two-byte displacement thus:

CALL (opt cond), RLTVC
JR SKIP
DEFW nn nn ; disp
SKIP:

The coding for RLTVC, which wouldn't need to adjust the original return address, could be as in Figure 3.

Care and Fee dint of the Commodore PET

Eight chapters erploring PET hardware Includes reparr and interlacing in lormation. Programming lucks and schematics
Oider mo. Iso

Ordes Mo. ISO

3x Miciosoft asicic Reference Manual
Authoutalive relerence manual tor the ornginal Microsott 9 K and 8 KK BASIC developed tor Altar and later computers including PET. TRS.80. and OSI OSI ownels please take nole'
Order Mo. 151
Efigansion Mandbool for 6502 and 6802
(S 44 Card Manuat) Describes all ol the 45×554 pin S 44 cards incl RAM. ROM. dig $1 / 0$. MUX/A to D. EPROM Piog elc With sehematics and tunct descriptions a must lor every KIM. SYM and AIM owner Order Mo. 152
Mitiocomputer Mpplication Moles
Reprint ol Intels' most important application noles. including ? 708.8085.
8255.8251 chaps. Very necessary for the hardware butt

Oider Mo. 153
Comples Sound Generation
Comples Sound Generation
New. revised applications manual for the Teas Insltuments
Complea Sound Generator. Curcuit board avalable ($\$ 8.95$)
Complea Sound Generator. Curcult board avalable (\$8.95) \$ 6.95
Order Mo. 154
Order Ma. 154
Small Business Programs
Complete progiams tor the business user Mailing List, Inventory, Invorce Witing and much more. Intioduction into Business Applications Many lislings
Order Mo. 156
$\$ 14.90$
The first Book of Omio Scientilic, Vol. I
Conlans an introduction to personal computers and describes the Ohro Screnlitic line Contans explanalory diagiams block. hook up. expan sion. Hichs. hinls and many inleresting listings. Hardware and soltware in lormation nol previously avalable in one compact source 192 pages
Order Mo. 157 Order Mo. 157
The First book of Onio Scientitic, Vol. It
Vot II conlans very valuable inlormation about Ohwo Scientilic microcom puter systems Intoduction to OS 650 and OS65 U. netwothing and dis tributed processing. systems specitications. business appitications. hard and sotware hints and tios
Oider Mo. 15:
Mailing List Progam for Challencel C1/C2 8K
Order Mo. 2004 - Personal Version
$\$ 9.95$
Order Mo. 2005 - Business Version
Ohio Scientilic Eipansion Information
Conversion of CIP (Cassette) to $52 x 26$ display Detailed slep by slep in structions tor doubling the CIP speed and display sige'
Order Mo. 1105
Order Mo. 1105
$\$ 12.00$
Important Software for CBM 16K/32K
Most dowerful Editor/ilssembler tor Commodore CBM $16 / 32 \mathrm{~K}$ on cassette
very tast- Edilor divides screen
Very tast-Edilol divides screen inlo 3 parts Scrolting text window. 24 direct commands. 19 serial commands, status and error messages As semblet can be stated directly trom the edilor or trom the tim monitor
Translales in three passes it an eriol is encountered atomatic ition Translales in three passes it an eriol is encountered. automatic relurn to
the edifor Cassette with OEMO the edifor Cassette with OEMO
Order Mo. 3276
ATTENTIOW APPLE USERS
Same as above for Apple 11 or Apple II plus
Order mo. 3500
Order Mo. 3500
$\$ 89.00$
MONLAMA/1 males Machine Language Programming easy!
In every Commodore CBM there is a spare ROM socket wating lor its MONJANA,I The new MONJANA/I Machine Language Monitor in ROM offers more user guidance and debugeing ards than any other monito avalable loday it is indispensable for anyone intending to take fuit ad vantage of the computers teatuses Trace. link, disassemble. dump. relo cate line assemble and much more fivery command function has de mand printout option Price includes extensive manual
Order Mo. 2001
IAMA.Monitor on cassette for the PET
Similar to MONJANA, I very powerlul
Order Mo. 2002
ELCOMP PUBLISING Ine.
ELCOMP P Phaeter Ave., Chino CA 91710 (714) 591 . 3130
Piease send me the boods/software indicated beiow
$\square 1$ enclose $\$$
\square Send COD (85 extra)
\square Charge my \square Visa \square Mastercharge
Acct No
Expir date \qquad signature
Book No
Book No
Software No

MICROMART
LISTING PAPER
PERSONAL COMPUTER
$11 \times 81 / 2 £ 4.55$ per 500
Add 15% VAT + p/p \& Ins. £1.75
LABELS one across web
$31 / 2 \times 17 / 16 £ 4.95$ per 500
Add 15% VAT + p/p \& Ins. $£ 1.75$
LEO BUSINESS SYSTEMS
4 The Heights
Market Harborough
Leicestershire LE16 8BO

THE ZX80 MAGIC BOOK

£4.75

For machines with 1-3K RAM. New edition 3 contains 20 plus programs including one which allows you to make music with your ZX80, and games such as Moon Lander, Also sections on How it Works, Plotting. Using USR, Converting other BASICs, and Hardware Notes including circuits for static and dynamic memory extension and I/O.

TIMEDATA Ltd. 57 Swallowdale, Basildon, Essex

TANGERINE SOFTWARE
 GAMES (all m/c code)

LIFE-In $4 k$ graphics cells! (3 k).
PONTOON-Your cards dealt graphically (4) Os \& Xs-A self learning version (at least 4 k) HANGMAN-With graphics (4 k)
All 4 on cassette for $£ 4.95$
3K INTEGER BASIC
Hav'nt forked out for Microsoft's yet? Try mine-resides in first 4 k RAM. Includes editor (full line editing) \& graphics. User program resides in 1000 to 1 FFF. interpreter, inc language spec, and demonstration maze drawing program - on cassette $£ 4.95$.
ALL ABOVE ON ONE CASSETTE £8.50. Send order to - M. Blainy

1 Spencer Close Gloucester.

PUSH HL	; save
PUSH DE	; registers.
PUSH AF	
LD HL,+6	; point to return
ADD HL,SP	; address on stack.
LD E,(HL)	; get return
INC HL	; address in
LD D,(HL)	; DE
EX DE,HL	; and HL.
INC HL	; point ret addr
INC HL	; past JR to disp.
LD E,(HL)	; load
INC HL	; isplacement
LD D,(HL)	; in DE
ADD HL,DE	; add disp to
	; ret addr + 3.
LD DE,-6	; adjust to 1st byte
ADD HL,DE	; of CALL RLTVC.
POP AF	; restore
POP DE	; registers.
EX (SP),HL	; put new return on
RET	; stack \& jump to it.

Figure 3
To alter RLTVC to handle displace ments from the first byte of the instruction following the displacement, replace instructions LD DE, -6 and

PRINTERFACING
 Continued from page 103

when compared with the system required by the Olivetti printers. The control logic must decide which row is to be printed; it then cycles through all 20 characters stored in the RAM and loads the output into the correct latch. After two digits, the digit select decoder is enabled and the resultant current pulse prints two digits. The control logic then steps to the next two digits and the process is repeated. After ten steps, the next row is selected and the logic again cycles through the line RAM to print the next line of dots. A similar circuit could be used with the commercial interface circuit but some modification will probably be required

Figure 17 suggests how the interface board can be dispensed with by driving each needle directly. In this case the roll is at Vp potential and to print a dot, the driver connected to a particular needle is switched low and the resultant current flow to ground vaporises the metal film. A 100 -bit shift register holds the data for each

ADD HL, DE with INC HL.

This just about exhausts the possibilities of relative calling. I leave you to select and complete the Datasheet(s) that will best suit your system

Buffers

For something new, we are again in debted to Jim Chance of Birmingham He sends the collection of first-in-firstout buffer handling routines, which is the subject of our Datasheet this month The collection is treated as one item with three entries, as there are so many features common to each part

It is re-entrant and only one copy is needed for any number of buffers in a program. Designed for maximum gene ral application, the coding may not be the shortest but is the kind really worth having in a library.

If you have a pet subroutine which would make a Datasheet then send it in! We welcome subroutines in any micro assembler language, not just Z80. Send it to: Alan Tootill, Sub Set, PCW, 14 Rathbone Place, London W1P 1DE.
driver and the enable input ensures that all the drivers are operated at the same time. The five-bit data from the character generator is clocked into the shift register in a serial format and each digit is sequentially read out of the line RAM and into the character generator. The row selection is performed as in the other circuit. Again this circuit is untested but it should work and anyway a little experimentation is good for the soul.

Anyway, that's it for this month. I hope that you have found this article interesting and informative. If you start to build a system and require more assistance then please drop me a line at the $P C W$ office and I will do my best to help. Next month I will again look at several different printer mechanisms.
Suppliers of units mentioned in this article are:
Datac Ltd, Tudor Road, Broadheath Altrincham, Cheshire, WA14 5TN Tel: 061.941 2361/2.
Data-Plus Ltd, 39/49 Roman Road Cheltenham, Gloucestershire GL51 8QQ Tel: (0242) 30030
Marshalls, Kingsgate House, Kingsgate Place, London NW6 4TA Tel: 01-624 0805

Continued from page 57
standards! The $51 / 4 \mathrm{in}$ disk drives are quoted at $£ 195$ but I gather that these are going down to nearer $£ 150$.
Board, power supply and
56 ch keyboard
£334
8 k Basic +8 k RAM
£102 extra
Case
£85
8 k Basic version assembled
in case.
£621
Dynamic RAM expansion
to 56 k .

Twin $51 / 4$ in disk system,
total cost
£1481
BD80P printer £5 25
CP/M and manuals.
£75

Conclusion

Perhaps one is never totally objective about anything for which one has paid good money. At several times during the building I wondered why I hadn't just gone out and bought an Apple, and then I groaned again when the prices of the Superbrains suddenly dropped. However, the excitement of getting that first Basic program work ing on the machine I had built myself could not have been matched by any thing on a machine I'd brought home in a box. The confidence of working
on the Benchtest disk system has persuaded me to take mine in for an upgrade

The thing I like best about Transam is that it is a British firm doing its own designs and marketing its own product. It really cares about its computers, and its customers, come to that. Dealing
with the supplier of an imported machine is just not the same as dealing with the makers themselves. It is especially nice to hear Transam staff talking about their plans for the future, knowing that the development work is being done just down the road and not somewhere in California.

Face to Face continued from page 95

- | 266, IREM LOM THRCUGGH INFUTT IAATE PHOLEESSING |
| :--- |
| 2070 |
| 2030 |

```
26.6, IR:MM
2070 REM LOOP THROUGH INFUUT IHATE PHOC.ESSING
203U.SNM LAL:H CHAFN.NER.
```

210n FOK $x=1$ TO J.EN(OTb)
2110 C C =MIGI\# (DT*, X, 1) : FEM EXTRACT A CHAKACTER
21213 :REM
2130 REM OETERMINE INPUT CI.ASS
2140 REM

2150 COTO $3000:$ REM GO TO FROCESS CHAFINCTER
2250 :RE:4
3600 FEM
3011 FRM
3020 FEM
3020 REM ROUTINE TO PROCESS THE Cr:ARIACTEKR.
3030 RE M
3030 REM ON MA(STATE, CLASS, 1) GOSUB 501.0, $6000,7000,8000,5000,10000$
3056 KEM
3060 REM DETERMINE THE NEXT ETATE
307. 24 M
3uth STATE = MA(STATE,CLASS, 2)

3100 IF STATE $=0$ THEN GUSUE Y000:FLTUKN: REM EXIT HATL ROUTINE
3110 IF
3120

REM
3130 REM LOIJF BAI:K FOR NEXT CIAARALTEIR
3140 REM
3150 NEXT X
3160 REM
3170 :REM AI.L EHARACTETRS IJF DATE SLANNED
3175 IF STATE 13 THEN STATE $=0$:GOTO 3090
3180 GUSUR BOOO : REM MIJTION FIJIY YEAR
3200 REM
32181 BOTO 10000
3220 REM
5000 KEM
5010 REM
5010 REM
502. . REM
50.10 REM
$50: 0$ REM
5040 REM
5050 REM

$5090 \quad N \$=5$ TFi.(N)
5100 F:M
5110 RETURN
5120 REMM
6010 REM
EO2Z REN ACTIUN 2.
GO30 REM
6030 R:M
CU4O REM STORE NIMEEF AS DAY
6050 : FEM DF $=$ N\$: REM LAY

$\begin{array}{ll}6070 & \text { NS }=\cdots \quad: \text { REM } \\ \text { CLEEAF NHMEE }\end{array}$
6090 :8EM
61(0): RETUF:
6109) RETUN
700 HEM
301 :05M
7020 REM
7039 REM
7040 REM STORF NUMDER AS 'MONTH'
7050 : AEM M\& $=$ NS : REM MONTH
7060 M
$\begin{array}{ll}7060 & \text { M } \$=\text { NS } \\ 7070 & \text { N } \$=\cdots M \\ 7008 & \text { EREM CLEAR NIJMLER }\end{array}$
$\begin{array}{ll}7070 & N= \\ 7080 & \mathrm{~N}=0 \\ \text { :REM CLEAR NUMMEE }\end{array}$
7080 REM
7100 RETURN
7110 REM
E000 REM
8010 REM
3020 REM
8030 REM
BO4O REM STÓFF NUMBER AS YEAR
805w IIEM
$\begin{array}{ll}8060 & Y \$=N \$ \\ 8070 & \text { : FEM YEAR }\end{array}$
$\begin{array}{lll}\text { 8070 } & \mathrm{N}=\cdots \cdots & \text { : } \mathbb{N E M} \text { CLEAR NIJMEER } \\ \text { BOEO } & \mathrm{N}=0 & \text { :REM ZERD NUMBER }\end{array}$
8090 REM
8100 RETHRN
8110 : REM
c/pod RIEM
961.1 , EFM
9020 REM
9020 RFM
90.71 CrM
90.3 H 1 ikM
9040 fFM
9040 RFM
905 F :2EM
405 : REM RESET ALL ITEME.

9100 REM
9110 RETIME
$\$ 120 \mathrm{FEM}$
1001 CO तEM
10010 HEM
10010 HEM
1000
10050 KEM
10030 FEEM ALTTION S
10030 K2
10 M
10 M
10050 REM CHECK COMFLETE DATE
10060 REM
10070 FEM
$\begin{array}{ll}100: 30 & \text { IF } 15=\cdots \text { TVAEN OS }=\text { PUT } \\ 10050 & \text { IF M\$ }=\cdots \text { TVEN MB }=\text { PM\$ }\end{array}$

Change your Superboard or UK101 into a real machine

Two add-ons

 from Mutek
CEGMON

The new monitor for all OSI and UK101 systems, with the right range of features!

* Twin-cursor screen editor *
* Improved keyboard routine *
\star New screen-handler * with fully programmable protected areas, screen and 'window'-clear, cursar controls
* New machine-code monitor * with load/save, labular display,
'modify' entry for text and hexadecimal, breakpoint handler, bloch move, and much more
* Disc bootstrap *
* Full compatibility *

Complete with full manual and card
price $£ 29.50$

48×32 VIDEO CONVERSION

Converts Superboard, C1 or UK 101 display to 32 lines of 48 characters.
Also converts system clock to 2 MHz
—halves program run times!
Compatible with CEGMON monitor
Available as Mutek upgrade or kit
Superboard/C1: upgrade $£ 40$, kit $£ 40$
UK101: upgrade £34, kit $£ 16$
All prices quoled exclude VAT
MUTEK
Quarry Hill, Box, Wilts
Tel: Bath (0225) 743289

ACCEL Compiler for Level 2 BASIC $£ 19.95$ ACCEL2 Compiler for Disk BASIC $£ 39.95$

```
SOUTHERN SOFTWARE,P.O. Box }3
```

Eastleigh, Hants. SO5 5 WO

PET COMPUTERS Southampton

New 4000 series PET's now available lidentical to 3000 series
 the following prices $4008 \mathrm{~N} £ 405,4032 \mathrm{~N}$ £620, C2N Printer $£ 395$

2001-8S Small Keyboard PET E395
TENSAI Cassette Deck with counter. CB2 sound $£ 70$
TOOLKIT $£ 45$ or $£ 35$ with computer
We also HIRE Commodore equipment by the week $8 K £ 23$.
$16 \mathrm{~K} £ 26,32 \mathrm{~K} £ 30$, includes manuals, tutorials, games
(Inyaders. Microchess) \& Cassette Floppy Disk Unit £30,
Some new and ex-hire Printer £300 PET's
Some new and ex-hire 3000 PET 's available e.g. 32 K E565 16 K £475 Matching beige dustcovers for all models E4
Sotiware (Commodore, Petsoft), books and many other PET
elated items stocked. All prices exclude VA

UPER- $\sqrt{\text { ISION }}$

13, St. James Road, Shifley, Southampton
Telephone $(07031) 774023$ After hours $(0703) 554488$

Softcentre

OVER 100 PROGRAMS FOR CBM/PET
Send 12 p stamp for free catalogue or 50 p stamps for catalogue
Part Exchange your unwanted (Brand E'st
op Royaltes for your own original iop quality proggrams
cassette. (Sharo \& TRS80/V. Genie also wanted).
VIDEO GENIE £330 STAS SHP (48K) E499
EPSON TX $80 B$ E365 FRICTION/TRACTOR
$\begin{aligned} & \text { RAOOFIN, TELETEXT CONVERTOR ONLY } £ 187.501 \\ & \text { PETMASTER SUPERCHIP £ } 45 \text { TOOLKIT (N.A) } 39\end{aligned}$
$\begin{aligned} & \text { PETMASTER SUPERCHIP E45 TOOLKIT (N.R.) E39 } \\ & \text { VERBATIM MD52501 DISKS (PET/ITY/CITHINK E22/10 }\end{aligned}$
PET SOUND BOX E14.50. 10×C. 12 CASSETTES $£ 3.60$
COMPUTHINK D/O: 400K EB25 800K £99
PET CASSETTE (PANTAL)
MOST MICROS BOUGHT, SOLD, REPAIRED

[^7]DPTELED
Callers strictly by appointment
$10268-7740891$ NOON . 8 pmm Mon Sat
ALLPRICES EXCLUSIVE OF V.A.T. \& CARRIAGE

PROCRAMS
 TRS-80 Target Practice

by Gordon Mills

```
1.*********************************
2 'COPYRIGHT - GORDON MILLS (1980).
3'**********************************
```

5 DIMA(31)
7 ONERRORGOT0288
10 CLS
15 SH=15: $\mathrm{ST}=15$
26 PRINTCHR $\$(23)$

- 30 PRINTW268, "TARGET PRACTICE"

40 FOR TD=1 TO 1000 : NEXT

- 50 CLS:PRINT:PRINT"THIS IS A GAME FOR TWO PLFYERS -"

51 PRINT:PFINTTAB(6)"THE OBJECT OF THE.GAME IS TO DESTROY AS MRNY TARGETS"
53 PRINTTHB (7)"RS POSSIBLE WITH YOUR FIFTEEN SHOTS. THE PLAYER ON"
55 PRINTTAB(7)"THE LEFT USES THE LETTER ' Z^{\prime} RND THE PLAYER ON THE" 57 PFIINTTRB(6)"RIGHT THE " 1 ' TO FIRE THE MISSILE. THE SPEED OF THE"
58 PRINTTRB(6)"MISSILE LAUNCHER MAY BE YARIED BETWEEN FAST AND SLOW.
60 PRINT: INPUT" ENTER THE NAME OF THE FIRST PLAYER"; R\$
70 PRINT: INPUT" ENTER THE NAME OF THE SECOND PLRYER";B
80 PRINT : PRINT "ENTER SPEED (1 FRST - 10 SLOW)"
90 PRINT:PRINTA\%; :PRINT" "; : INPUTR
92 IF $\mathrm{A}<1$ OR $\mathrm{A}>18$ THEN 98

- 95 PRINT:PRINTB\$; :PRINT" "; : INPUTB

97 IF B<1 OR B>10 THEN 95
100 cls
105 .DATA $1,2,3,4,5,6,7,8,9,18,11,12,13,14,15,16,17,18,19,26$,
$21,22,23,24,25,26,27,28,29,30,31$
106 FOR. $L=1$ T0 31 : RERD $\mathrm{R}(\mathrm{L}):$:NEXT L
110 FOR $Z=1$ TO 10
$120 \mathrm{M}=\mathrm{RND}$ (31)
130 IF $\mathrm{A}(\mathrm{M})=8$ THEN 120
140 IF $M=31$ THEN $M=10$
145 IF $M<2$ THEN $M=2$

- $150 \mathrm{~N}=\mathrm{M}+32$

155 IF $M+Z * 64=0$ THEN $M=10+Z$

- 160 PRINTMM+Z*64, "*"

170 PRINTON+Z*64, "*"

- $175 \mathrm{~A}(M)=0$

180 NEXT 2

- $200 \quad Y=43$

210 FOR $X=0$ TO 127
$228 \operatorname{SET}(X, Y)$
238 NEXT X
233 PRINTE960, R\$;
235 PRIMTC995, B\$;
$240 \mathrm{X}=63$
250 FOR $Y=3$ TO 42
$260 \operatorname{SET}(X, Y)$
270 NEXT Y
$280 \mathrm{CT}=\mathrm{CT}+1$: IF $\mathrm{CT}=150$ THEN 800
282 IF $5 \mathrm{H}=0$ THEN 310
285 FGR $X=1$ TO 68
$290 Y=42$
388 SET (X, Y)
303 FOR TD=1 TO A:NEXTTD
$304 \operatorname{RESET}(X, Y)$
305 G $\$=1$ NKEYS:IF GS="" THEN 308
366 IF GS="て" THEN GOSUB 4610:GOTO 310
308 NEXT X.
310 IF ST=0 THEN 280
315 FOR $X=65$ TO 127
$320 Y=42$
330 SET ($\%, Y$)
333 FOR TD=1 TO B: NEXTTO
$334 \operatorname{RESET}(X, Y)$
335 H\$=INKEY: IF H\$="" THEN 338
336 IF HE="ノ" THEN GOSUB 660:GOTO 280
338 NEXT X
340 GOTO 288
460 PRINTe974,
"; :SH=SH-1:PRINTC974, SH" SHOTS LEFT";
478 FOR $Y=41$ TO 3 STEP -2
$490 \operatorname{SET}(X, Y)$
500 FOR $W=1705$
510 NEXT W
520 RESET (X, Y)
530 NEXT Y
535 RETURN
660 PRINTM1607,
"; :ST=ST-1:PRINTO1007,ST" SHOTS LEFT"
680 FOR $Y=41$ TO 3 STEP -2
$690 \operatorname{SET}(X, Y)$
700 FOR $H=1$ - TO 5
718 NEXT W
$720 \operatorname{RESET}(X, Y)$
730 NEXT Y
735 RETURN
750 GOTO 280
890 CLS:PRINT:PRINTTAB(10)"DO YOU WANT TO PLAY RGAIN (Y/N)"; :INPUTQS
810 IF QS="Y" THEN RUN
820 IF QSO"N" THEN 880
838 CLS:PRINT:PRINT:PRINT:PRINTTGB(20) "THANK YOU FOR PLAYING"
840 FOR TO=1 TO 1008: NEXT

TRS-80 Four in a row

by Spiesoft
This program displays an 8×8 grid in a row wins. Sadly the program and two players take turns dropping doesn't tell you though. 'chips' into it. First player to get four

$\mu \mathrm{HexEPROM}$ PROGRAMMERS

426 2508/2708/2758/2516/2716
Dual and Single supply Eprors. $£ 95$
416 2704/2708/2715 Dual only.£65
480 2704/2703 Kit £35. Built $£ 40$.
All progranmers require only standard power supplies.
The $426 \& 416$ are cased and have pushbutton selection.
Program any length block into the Eprom Software included. Range covers 280. 8080, 6800 and 6500: State machine

PIO, PIA INTERFACE MODULES Available for 280/8080 and 6800/6500.
Prices inolude carriage. Please add Vat SAE for further product information.

MICROHEX COMPUTERS
UNION STREET, TROWBRIDGE, WILTS.

CONFUSED?

DO YOU FIND IT ALL TOO COMPLICATED? ARE THERE TOO MANY TECHNICAL TERMS? WE DON'T JUST SELL MICROS. WE LIVE AND WORK WITH THEM, WE TEACH ALL OUR CUSTOMERS TO USE THEM. BUY A MICRO FROM US AND GET AS MUCH HELP AS YOU

NEED!

MICDOTIEIK

PHONE CHRIS ROBINSON ON
IPSWICH (0473) 50152
ZX80 SPECIALS
SPACE INTR UDERS: Zap the intruders as they attempt to land-a simplified version OREAKOUT: Try to knock all bricks out of the wall before your final ball is lost, $£ 4.00$. MOVIES: 7×8 character pictures displayed in rapid rotation - gives animation effect
(2 K or more for best results), $£ 3.00$. The three above are continuous motion proprams wisplat Mkil: A rounc lets you decide how long a display should hold before your program continues, a keyboard scanning routine (keys 0 to 9) and
a Hexadecimal loader-are included. Write your games using active display features. E5.00 (MKII free for previous active display purchasers - Send S.A.E. and MKI Listing nclusive prices for listing \& details,
S.A.E. for list of all ZX8
Specials.
K. Macdonald, 26 Splers Close, Knowle, Solihull, B93 9ES

MINE OF INFORMATION LTD

1 FRANCIS AVENUE, ST ALBANS AL3 6BL ENGLAND
Phone: 072752801 Telex: 925859
MICROCOMPUTER CONSULTANCY \& BOOK SELLERS

BIG EARS

SPEECH
 INPUT
 FOR
 YOUR
 COMPUTER！

 BIG EARS opens the door to direct

 man－machine communication．The systemcomprises analogue frequency separation filters， preamps and signal conversion．together with a quality microphone and extenslve software．
Words，in any language，are stored as＂voice－ prints＂by simply repeating them a few times in ＂learn＂mode．Using keyword selection techniques． large vocabularies can be construcled．
Use BIG EARS＇as a front end for any applicatlon data enquiry，robot control，starwars－－the possiblittes are unlimited
BUILT，TESTED\＆GUARANTEED M． $\mathbb{2} 4$ PRICE INCLUOES POSTAGE \＆PACKING PLEASE ADD VAT AT Y5\％
PEASE STATE COMPUTER，UK 101 ．SUPERBOARO．NASCOM2． COLOUR MODULATOR
－a G B inpuls PALJUHF output
－Unlimited colour combinations
－TL eic interlace detals supplied
－ 1000°＇s already in use！
кाт：only $£ 12$
Builit T Tested：ony $£ 18$
－olease ado vara at 15% to toll onceses
－BarctaviAccess orders accepted by telephone
WILLIAM Dower Howst，Billericav Roact Meronyate Brent STLAATT E－tonyate，Bitntw

CUT TYPING COSTS

WORDPRO $3 / 4$ TURN PETS INTO WORD PROCESSORS

NOSENT LTD
1－DAY COURSES \＆MANUALS TURN TYPISTS INTO WORDPRO EXPERTS
Details from Tom Nosworthy Nosent Ltd．Tel 094787， 232 Brackengarth， Lealholm WHITBY YO21 2AE

OUR PETMAN SHORTHAND DISK SPEEDS TYPING
READABLE MANUALS SELL PRODUCTS CAN WE WRITE YOURS？

PET CHIPS

PETMASTER SUPERCHIP PIC－CHIP
£45
£45
PROGRAMMER＇S TOOLKIT £29 MIKRO ASSEMBLER
£50
Write for full details of these plug－in PET ad add－ons which fit in the spare ROM sockets of a large keyboard machine．If your PET has a calculator keyboard you＇ll need．an extension board（£13）which will accommodate any two of the chips．
BASIC 4.0 versions are available to fit the 4000 and 8000 series models－write for information and prices．

We also sell programs on cassette and disk （ $£ 2.50$ extra）－there are over a 10 n t choose from including BLOCK RENUNOF（EEATH HALLS OF DEATH（£14），ALIEN ATTACK MAKAO ASSEMBLER At 50 offers an MAKRO ASSEMBLER at $£ 50$ offers an
opportunity for machine code programmer to really flex their mnemonics．

Why not phone for our free cataloguel Why not phone tor our free catalogue
Add 15\％VAT to all prices．Post Free．
SUPERSOFT
28 Burwood Avenue
Eastcote，Pinner，Mid́dlesex
Telephone：01－866 3326

PET Maze chase
 by Steve Clark

The rest of this month＇s programs are all for the PET．This isn＇t a secret plot to promote Commodore＇s products， it＇s simply that we receive an enor－ mous number of programs for this machine．Inevitably，by the time the ＇bad＇are weeded out，we end up look－ ing like a Commodore benevolent
other machines？－send in your good programs．After all we do pay and we don＇t mind what the program is as long as it＇s in Basic，original，bug free and interesting．

All listings are courtesy of Steve Clark and done on a printer borrowed from Cream Computers．
society．How about it all you users of
10 FRIHT＂J＂TAE（1E＂，＂HACE CHASE＂．FRINTTAK（İ）＂

$30 T^{3}="$ MAZE AT TOP SFEED．＂GO＇UBSOMer
3E FOFT $=1$ TOSM ．HEXT

－FFPNT TE＝＂MMYOU

WRIMT TS＝＂\＃
\％i FFIHT T＝＂$\quad=50$ FOINTS＂OUSLIES日Ge
25 FORT 1 TOSN．MEXT
100 FRINT．TS＝＂世IIESTROYING OFPUNNENT SCORES 1000＂：GOSUB5000
165 FGIRT $=1$ TOLNMO HEXT

15 S PRINT＂
1 17 FRINT＂
180° PRINT＂
185 FORT＝ 1 TO1000： 190 PEXT
190 PRINT：TF＝＂LDHIT S＇ANHD 5 ＇RESPECTIVELY TO FIRE．＂：GOSUR500

210 FFINT TI＝＂NTHESE WFILLS LOIK LIKE THIS：－ANI，THEYCAN EE DESTROVED．
215 GOSUESGU0
Z30 GETQ：IFQ $==$＂THEN230

556 FURT $=1$ TOAVe NEXT：PRINT HUW
250 FORT $=1$ TOLG日G：NERT：GOSUB1GMG
490 FOKE153， 0

S39 IFO\＄＝＂N＂THENT1 $=1$

570 GOTO620
501 1F $\mathrm{E}\{=" 8 "$ THEND2 $=$

610 IFO $=$＂ 2 ＂THEND $2=4$
615 IF

 630 OND1GOTO640．650，660．670
$640 \quad z=-49: 60 T 0680$
640
650
$z=-1: 60 T 06.60$
$660 \quad 2=1: 6070684$
$670 \quad=40$
680 x＝PEEK $(\mathrm{A}+2$ ）
G90 IF $7=$ S2THENTS

710 IFX＝5：THENS $1=51+$
330 POKEA， 32 ：$A=A+Z=$ FOKEA， 90
740 ONEVOO TO750， $760,770,7810$
$75.10=-46:$ G0T0790
$760 z=-1: 60 T 0790$
$770 \mathrm{z}=1: 6010794$
$780 z=46$
790 X＝FEEK（ $\mathrm{B}+2$ ）
800 FKI RENGA
816 IFX $=46$ THENS $2=\$ 2+1010$ GOT084

© 40 POKEE， $32: \mathrm{B}=\mathrm{E}+2$ ：POKEB， 35
850 IFM1C332767 THEN3日G4
360 IFMZO32767THEN 35404
870
$880.60 T 0560$
1 Gha REMA＊＊ET UP BOPFLU＊＊＊
1010 PRINT＂＂J＂：FCOTT $=32768$ T032847：POKET， 160 ：NEXT
1036 FORT $=32807$ TO33767STEP40：POKET， 160 ：NEXT

MICROMART

1046 FORT $=33728 T 033767$ ：PUKET， 160 ：NEXT
1650．FORT $=32931$ TO33131STEP40：POKET， 1 EQ ：NEXT
1460 POKE $2932,160: F O K E 32933,160$ ：POKE32972，160：POKE32973， 160

1 10GE FORT $=333047033314$ ：FOH ET， $160 \cdot$ NE ST
11 Wi FU E 32943,1 E9：FOKE 33 E142， 160 ：FKE33122， 160
1110 FORT $=32996$ TO33196STEP40：PUKET，160：POKET＋4．160：NE
1120 FOKT $=1$ TU4 FOKE $32956+T, 100:$ FGKE $32996+\mathrm{T}, 160$－NEX
 1140 NEXT ：FORT $=33506$ TU33511 ：FOKET， 160 ．NEXT
1150 FORT $=1$ TOS：FOKE $33388+T$ ， 160 ：POME $33428+T, 160:$ POKE 33586＋T， 160 ：POKE3362E $+T, 164$ 1160 FORT $=1$ TOS：POKE $33388+T, 160:$ POKE $33428+T, 100:$ POKE $33586+T, 160: P 0 K E 33626+T, 160$
1165 NEXT
11 CORT $=33393$ TO33593STEF40：POKET，160：POKET $+1,160$ ：NEXT：FOKE 33592,160
1 15H FOFT $=33279$ TOB3E39STEP 4日：FUKET，1601：HEXT

－1 If T 己THEHFUKE3349さ＋T， 160 FUKE33132＋T，160

1336 FIMT $=33454$ T03 33459 FOKET． 169 FOKET $+40,160$ NEXT
134 FURT $=33572$ TO 23575 FOKET， $160:$ FOKET +40 ． 160 ．NEX
1.50 FUHES534， 60 FOKE33535． 160
1364 FOFT $=33282 T 0334025$ TEP40．POKET， 160 NEXT

1375 FU1 E S 36.1 ，160：POKE 33401 ， 160
1 SSO FOFT $=351.6 T 0331$ EU：FOKET，16G．NEXT
13 FOWT＝3593T033302 POKET， 160 ：NEXT
$1406 \mathrm{FOFT}=33177 T 033$ e57STEF 4ब：POKET， 160 ：FOKET $+1,160$ ：AEXT
1410 FOKES3341，160：POKE33342，160：PO1 E33381，160 POKE 33382,160
1420 FORT $=33577$ TO3
142 1431 PORE 33625,1633 ：FOI E 33617,1601
1440 FORT $=33478$ TO331985TEF 401 ： $\mathrm{POKENT}, 169$ ： NEXT

14601 FORT $=33372$ TO33379．FOk ET， 1601 NEXT
1470 FORT $=33276$ T033636STEP40：FUKET，1601：PG ET +1 ， 1801 ：NEXT

1490 FGRT $=32849$ T033669STEP4G：POKET， $160:$ FOKET $+37,160$ ：NEXT
15401 FORT $=33450 T 0336505 T E P 40:$ POKET，I6日：
1520 FOKE 33451，160：FQKE33452，16 ：FOKE33431， 160 ：POKE33492， 160

1550 FURT $=32964$ TO 331245 TEF 40 ：PUKET， 160 U NEXT ：FOKE $29962,160:$ POKE 32963,160
1560 POKE32869，34．POKE32926，35
1565 FCKEE3563，164

156 F FURT $=33526$ T033531 ：POKET， 32 ：NEXT
1579 FORT $=1$ TO106
$1=80$
$X=1 N T$

160 FOKEX， 46 ：NEX

162 Ä POKEX， 58 ：NEXT
1621 FORT $=1$ TO10

1623 POKEX， 102 ：NEXT
163 REM＊＊＊INITIFILIZE＊＊＊

2025 IFTI $=$＝＂UG030＂THEN6000
2039 RE TUFN
3000 FORT $=1$ T02

$3020 Z=-4 E: P=93$ ：СОТО 20664
3030
$3046=-1: P=64:$
$Z=1: P=64: C 0 T 03060$
$3050 \quad Z=46: P=93$

 0860

3090 IFX $=35$ THEN3110
3109 POKEM1，Y：M1 $=M 1+2$ ：POKEM $1, P: Y=X:$ NEXT ：GOTOB60
3110 POKEM1，Y：POKEMI $+2,42$ ：FORTT $=1$ TO250：NEXT： $\mathrm{FOKEM1+2,32}$

$3120 \mathrm{MI}=3276$ ？
3506 FORT $=1 \mathrm{TO2}: S 1=51+1000$ ：GOTO860

$3520 \quad Z=-46: P=93: 60 T 03564$
$3539 \quad Z=-1: P=64: G 0 T 03560$
$3549 Z=1: P=64: 00 T 03560$
3549
3550
$Z=1: P=64: 60$ TO3560
$3550 \quad 2=40: P=93$
$3560 \mathrm{X}=\mathrm{PEEK}(112+2)$
 0870

3580 IFX $=16$ GTHENFGKEH2，L： $12=32767:$ GOT0870
3594 IFX $=90$ THEN3610
3609 POKEM12，L：M2＝M2＋Z：POKEML，P：L＝X：NEXT ：GOTOB7
3610 POKEM2，L：POKEMZ $+Z, 42$ ：FORTT＝ 1 TO25＠： NEXT：POKEM2 $+2,32$

3616 POKEA， 90
4999 END
5000 REM＊＊＊SLON HRITER綪
5016 F（RNH＝1TOLEN（T））：PRINTMIII（T＊，W，1）：FORV＝1 TO25：NEKTV，W：RETLURN 6006 IFS1 $\mathrm{HSTHENHS}=\mathrm{S} 1: \mathrm{HS} \$=$＂HIGH SCORE BY＇PLAYER ${ }^{2}$ ：
6010 IFS2 $2 H S T H E H H S=\$ 2: H S \$=" H I G H$ SCORE BY FLAYER \＃2

 60145 PükE15s，0

7010 GOTOG25

6800

A selection from our latest catalogue：－
Printed Circuit Boards for 6800／6809
1．MPS Serial Interface
2．MPL／A Parallel Interface
．MPB／2 SS50 Motherboard
5．MPA／2 6800 CPU assembled
Tape Software for 6800 Systems
1．CST014 TSC Editor
2．CST015 TSC Assembler
3．CST016 TSC Text Processo
保
COMPUSENSE LTD．，P．O．BOX 169 ，
LONDON N13 4HT－TTel．01－882 0681

居 0
 RRISTON
 MPUTER
 ENTRE
 46 CROWN ST MORRISTON
 Tel： 795817 SWANSEA

SHARP
 MZ80
 VIDEO
 PC1211
 GENIE

In our CHRISTMAS catalogue for the

2×80

MASTERMIND＊KALA＊MORTGAGE MORSE BATTLESHIPS TARGET HANGMAN SPIDER TRIANGLES＊ MATHS TEST＊DIAR REGRESSION plus many more
＊Coupon worth $£ 2.00$ with these programmes，one only per order．
＊£2．75，all others $£ 3.75$
Hints and Tips for the ZX80 $£ 3.50$ Hewson Consultants 7 Grahame Close Blewbury Oxon OX119QE 0235850075

Which Way？

－If you＇re lost in the Micro Mate and don＇t know which way to turn．．turn to us
－For impart alal advica from an independen consultant ．．consult us －For bespoke soflwar designed to mere you needs．．you nered us

37 Purbrook Garden
Purbrook，Portsmouth
（Waterlooville 53775

BASIC PROGRAMS FOR THE PET for problems in structural analysis \＆ vibration from 20

Dr．C．T．F．Ross

6．Hurstville Drive，Waterlooville，
Portsmouth．Hants．PO7 7NB

To advertise in

 MICROMARTPlease ring Jacquie Hancock on 01－631 1682

ZX80 SOFTWARE

Pontoon，Guess the Number，Battleships， Slot machine（ 1 \＆II）Maths Quiz， Maze（1 \＆11）
All on one cassette $£ 6.50$ for 1 K Memory．

Send cheque or P．O．made out to P．Branswell to：
BRAMWELL ENTERPRISES
87 ANDERSON CRESCENT，GREAT BARR，BIRMINGHAM B43 7ST

UK 101 \＆SUPERBOARD＊SOFTWARE

The top ten from the guy who wrote＂LE
1．GALACTIC HITCHHIKER（8K）An
Adventure all in Machine Code．A beauty！
2．STARTREK！scrollin！All the info．on display all the time
3．SUPERTREK（ 8 K ）A graphics version．
Suil boldly，through the universe，zapping
moving Klingons in real time．
4．PIRANHA＊A fun，real time graphics game
5．BREAKOUT＊A smashing verslon wit
6．MTUChine－eode to move the paddle．
7．LUNAR LANDER A real challenge．You
8．WTOCK Ret down in less than 3 hours．
9．LE PASSE－TEMPS＊You need this one，
10．if you haven＇t already got it
said sol）Excelient graphics（P．E．
Others available include a BASIC TUTOR ＠10．（comprises $8 \times 4 \mathrm{~K}$ programs）and lots more games．Note that these are ORIGINAL
PROGRAMS，NOT 101 VERSIONS of PRINTI PRICES： 8 K ，$£ 4,4 \mathrm{~K} \varepsilon 2$ all inclusive from Mr．A．Knight
28，Simonside Walk．Ormesby，Cleveland
Phone（ 0642 ）

TRS－80，NASCOM，OTHER Z80 SYSTEMS

BS232C SERIAL INTERFACE－crys

 tal controlled，baud rates up to 19200 ， bi－directional，full handshake，etc．Suit able for connecting to modern，serial printer（ 4 additional signals available CSR，DSR，CD，RI），other computers． Port addresses selectable，TRS－80，Ex pension interface NOT required．Com－ plete kit $£ 68$ ，including cable and plug for keyboard unit and upper／lower case video modification details．PRINTER INTERFACE BOARD－run the Nascom Micro Imp printer from the TRS－80（Expansion Interface not necessary）．Handshake capability，run up to 9600 baud．The cheapest dot matrix，plain paper 80 col ，printer for the TRS 80．Interface board ready built $£ 30$ ，including cable and plug for key－ board unit and upper／lower case video mod details．

LOGIC PROBE－build yourself a really good logic probe．Complete kit £12．
For further details of the above，send a large stamped addressed envelope to
SCALE ENGINEERING，
6 GOSS BARTON，NAILSEA， AVON BS19 2XD
N．B．Prices include VAT \＆postage

PROCRAMS
 PET Convoy

by Jeff．Aughton

Here＇s a challenging game in which you have to land shells on a flotilla of moving ships．Once the ships reach
the edge of the screen the game termi－ nates．It gets progressively more difficult to play as your skills increase．

15605081006

$301414(13) .3(9)$
$40 \quad E=6=10: H=0 \cdot K=0: R=0 \cdot L=33.3$
EO KESTURE FOKI＝0TLI REALM（I）NENT
TO FEM DFFW
G0 FRIMT．FORI＝1T0IS FRIHT＂
38 NERT：FRIHT＂
150 PRINTTHB（29）＂＊
120 FRIHTTAE（33）＂：인
$13 \mathrm{FFIHTTAE}(36) " \approx$

150 PRINT＂A
170 FFINT＂
180 FRIHTT＂
190 PRINT＂
200 PRINT＂：
230 FORI＝32867T033 $675 T E P 40$
240 FUKEI，96：MEXT
2CH FURI＝ 7 TOS ：FUKEL $+1,96$ ：NEXT
260 FGRI $=1$ TGN：READS：$S(I)=X+32888$
260 FURI＝ 1 TIN：RERDS：S（I）＝X＋3
270 FUKES（I），113：HEXT：SE＝TI
200 FRINT＂MNat HITS＂；H；＂ELEVHTION＂
290 PRINT＂む＂；E；＂FEFRING＂；B；＂II＂
$3001 K=K+1$ ：IFK． S NTHENK $=1$
320 M＝PEEK（ 151 ）
$330 E=E-(E) 10) *(M=18)+(E(85)$（ $(M=50)$
$340 \mathrm{~B}=\mathrm{B}-(B)-5) \quad(1 /=42)+(B<50) \quad(11=41)$
FOKE5 40 50．FOR1

380 FOKES94日9，60：T＝T

$41 \mathrm{r}=\mathrm{NNT}\left(\mathrm{F}^{2} \cos (B \mathrm{~B}\right.$ ）＋．S）
$4<0$ IFRHND（ T I $T+T S$ ）THENGERE

46 TREEK 4 （
464 FOKES（K）， $2<$ SKK $=4$
50 REM KHEU
E00 REM SHELL LANIS
520 IFFEEK $(Q)=113$ THENM $=10$
630 FOFI $=1$ TGS：FUKEQ，182－I ：GOSUB960
E． 40 FCIKEU， $3=$ GLSOB960：NEX
550 FOR $1=-3 \operatorname{SO}(1+3)=$ PEEK（ $1+1$ ）
Ee0 FOKEL＋1， $1(\mathrm{I}+\mathrm{W})$ ：NEXT
570 IFN＝3THENT20
GOU FORI＝1TON：IFS（I）OQTHENNEXT
$700 \mathrm{~S}(\mathrm{I})=\mathrm{S}(i d): N=N-1: H=H+1: T(3)=43$
320 FORI $=1$ TOSM0 $:$ HEXT
734 FORI $=-3 T 03:$ FOKEQ
330 FQRI $=-3$ TOS ：F QKEQ $+1, T(I+3)$
740 FIEXT．FHTHENESO
Ed0 REM ALL DESTROYED
$810 \mathrm{~T}=\mathrm{INT}(\langle\mathrm{TI}-\mathrm{SB})$／60）：FOKE525，0
315 FRIHT＂Jarada GAME OVEF＊＊
820 FRINT＂WHOU DESTROYED＂；H；＂SHIPS
Q30 FRINT＂MYOUR TIME WAS＂；T；＂SECS
840 IFK THEN88E
850 FRIHT＂MEECALISE GF YGUF MISEFABLE＂
860 FRINT＂FAILURE YOU SINIST T＇FFE＂
SES FRINT＂FFUHE IF YOU WANT TO FLAY
87 ロ́ FRINT＂HGHIN＂：END
890 PRINT＂MFRESS SFRCE FOR A HARIIER BMME
By0 GETH：IFけまぐ＂＂THENB90
900 IFH＝9THENH＝S：
$9: N=H+1: G 0 T 140$
320 FUKES（K），32：FURI＝ØTOS：POKEM， 241
320 FUKESKK），32：FURI＝OTOS：POKEM， 24
930 PRINT＂sITOTM．SHIP ESCHFES！
330 PRINT＂sdotaw SHIP ESCFFES！＊ $950 \mathrm{~K}=\mathrm{E}: \mathrm{GOTOS1}$
EEV FOR $J=$ ETOTE ：NEST ：RETUEN
960 FOR＝OTOTE：NENT：RETUFN 330 DHTA $160,1319,143,143,141,161,169$ 990 IATA $2,7,43,129,50,85,166,89,125$ 1 G0 PRINT UL ING S－E OMT YOUBMAVE TO 10 E PRINT LIO S－E AND YOURHAVE TO 1036 FRINT＂DESTROY THEM RLL USITVG TH＂ 1046 PRINT＂E GUND（t）IN THE BOTTOM＂ 1056 PRINT＂COFNER CIF THE SCREEN．DN
1660 FRINT＂＂ELEAATIOHE IS MERSUREI I＂
1 ETE FRINT＂H IJEGREES（1E1－85）AFROM TH＂；
1680 FRINT＂E HORIZONTRL．TG INCRERSE＂
1696 FRINT＂FFESS aEE，NTO IECRERSE PR＂，
$\therefore 10 \mathrm{PR}$ PRIT＂ESS REE．MHXIMUM RFHVE OCC＂；
$\therefore 110$ PRINT＂URSUHHEN ELEVAT IOH $=45$ DEG．W
1126 FRINT＂NREERRINGE IS MEASURED IN＂
1130 FFIIHT＂DEGREES FROM－5 \＆THRUUG＂；
1140 FRINT＂H（NORTH）TU SO（EAST）．＂；

topmark

NEW！NEW！NEW！

APPLE FORTRAN
（Needs language card）
Send only $£ 120+$ VAT $£ 18$（Fortran only） or $\quad £ 419+$ VAT $£ 62.85$（complete system，includes Pascal and language card）
NEW！NEW！NEW！
NEW ！DOS 3.3 －much improved capacity $£ 40$＋VAT $£ 6$ ．
NEW！Eurocolour card－vastly superior to previous versitions $£ 113+$ VAT £16．95
Official Government and Educational orders accepted
Contact Tom Piercy at
Topmark Computers， 77 Wilkinson Close，
Eaton Socon，St Neots，Cambs．PE19 3HJ
Huntingdon（0480） 212563

SPECIALS FOR PET

PROGRAMMER＇S TODLKIT LIGHT PEN（＋SOFTWARE） WORD PROCESSOR（M／CODE） MUSIC SYSTEM COMPLETE ADVENTURES $1 \& 2 £ 7$

（ALL \＆VAT BUT INCL．POSTAGE）

 Send for details－state model$=15$ FBC $=46$ THEHFOHEM． $98 \quad M=M-40$
\div IF $2 .=$ THEN2EW

$335 \operatorname{IFFEEK}(N)=32$ RFPEEK $(N)=42$ THEH 359

346 FRINT＂TIME UF＂：GUTO1050
350 PRINT＂HISSET＂：GUSUE1060
351 FORL＝ 1 TGGU日 ：NEXTH：PRINT＂FHOTHER GFME？＂FOKE 155，ध
352 EETQE：IFQ：＝＂＂THEH352

364 PRIHT＂WELL IOUNE＂：EHII

411 OHCGOTO429， $438,446,450$
$42 \mathrm{E} E(こ)=1$ ： $1 \mathrm{FE}(Z-1)=-1$ THEN4日ल
425 OUTOUE
435 GiTOAE

445 GOTO460
$450 \mathrm{~B}(Z)=-40: I F B(Z-1)=40 \mathrm{THEN} 400$
460 OFI＋5：RETURN
6．19 PRIHT＂J＂：TAEIN THIS GAME，＇UU HLST FOLLOH＂
－ $62 G$ FRINT＂A WIRE．WHICH WILL OHLY APPEAF＂
ESG FRINT＂OHE SQUARE RHEAII OF＇YOU，THE＂
E4E FRINT＂MO＇E IN TRE DSLIFL WH＇T，I．E．

G64 FRINT＂MBHEFIGHT＂

680 FRIHT＂M4日期－LEFT
E81 FFIHT＂IT IS OHLY NECESSAF゙Y TU PRESS A KEM TO CHANGE DIRECTION－HOT EVEF＇Y MO
－ 682 FRINT＂TÖ IO WELL RT WIRE，I WOLLI HDNISE YOU TO
E84 PRIHT＂ROLK EETHEEN THE KE＇T＇S RS THE WIRE AIWHNCEE．＂
E86 FRINT＂YOUR FIRST TRY．．
ESU PRIHT＂MFRESE RNY KEY TÖ START＂

－10 PRINT＂SET AEILIT＇T＜1－5，FMARING－FOUR）＂
72n BETW：IFW：＝＂＂THENT20
行
i．46FRINT＂J\＆HIRE
200 RETUFN

1015 FRIHT＂HEELESS！＂：RETURN
1020 IF ？EGTHEN103
1025 FFINT＂－ACCEFTHELE＂：RETURF
1635 PRI\＃TT＂HEHR FERFECT！＂：RETUF：
1650 FRINT＂STORE＝196\％－EXCELLENT！＂：GOT0351
ringing a bell．Only one tiny piece of the wire is on view in front of the ring，so swift reactions are needed．

MICROMART

SUPERBOARD II

STILL the best value in Home Compu
ters. Just compare the features:

* 8K floating point BASIC in ROM
* Full ASC11 keyboard
* Standard cassette/TV interface
* RS232 printer interface
* 4K user RAM

Expandable to 32 K and dual minifloppy.
Full range of OHIO Computers carried.
AVAILABLE NOW FROM:
C.T.S,

31/33 Church Street,
Littleborough
Lancs OL15 8DA
'PLEASE RING OR WRITE FOR LATEST PRICES.

TEL: LITTLEBOROUGH (0706) 74342
or 79332 ANYTIME

PETS - We Sell Them

As authorised Commodore Dealers we stock. and supply all PET Hardware, Computhink Discs. Oki Microine 80 Decwriter LA34, Texas 810, Qume Sprint 5 - all at com peritive price
Part Exchange is very welcome, we also buy for cash.
PETS - We hire Them
tenance included for all Commodore equipment. Complere systems for evaluation Multiple units for educational courses Single units for individual use
From 1 day upwards, all units available. PETS - Sof tware
We are fully authorised BUSINESS SOFT. WARE DEALERS for Commodore Soft-ware- -COMPAY COMSTOCK. SOFTWARE ANDSLERPAYROLIOL HOTEL SYSTEM.
PLUS for ACCOUNTANTS, the unique
this is the best availack MAIL - ORDER
All Hardware and Software can be bough Registered Post. Discounts for Cash \& Carry or Mail-Order. Access accepted or by Leasing (subject to acceptance) MICRO-FACILITIES LTD 127 High Street, Hampton Hill, Middlesex.
TW 12 INJ 01.9794546 or $01-9411197$

PET EXPERTS

SUPERSOFT are specialists in programming aids - like SPEEDSORT (£12) which will sort 1000 strings in about 4 seconds! DISK APPEND adds a program on disk to one in memory - just like the Tookkit - for only £15. BLOCK RENUMBER (12) is an invaluable aid for the serious programmer and SCREENSAVE ($£ 6$) is equally essential for the artistic programmer. If you own a printer then $\mathrm{J}-\mathrm{K}-\mathrm{L}$ is a must, for it copies the screen to the printer every time the keys J, K, L are pressed! (£8)

There are games too in our free catalogue. HALLS OF DEATH ($£ 14$) was described as 'better than Apshai' - but why not judge for yourself. BLACK BOX (£6) and NIMBO ($£ 7$) challenge your logic, whilst at $£ 10$ ALIEN ATTACK and WIZARD'S LAIR require you to be nimble-fingered as well as quick-witted

So now you know. We don't just market the SUPERCHIP - we have over one hundred tried and tested programs in our range
Write to us today for your free catalogue Add 15\% VAT to all prices. Post free.

Eastcote, Pinner. Middlesex
Telephone: 01-866 3326

PET Android Attack

by P Farquhar

This is a sort of sideways-on version of the androids getting to the right hand Space Invaders. The idea is to prevent edge of the screen.

```
S UOSUGS000
10 M=331GE: }\textrm{H}=\textrm{G}:E=24:NJ=0:W=0:WR=-2:WC=1:G1=
30FF=G:FF=G:HC=0.FH=G:MO=20:FC=0, GO=G:SC1=0
40 FL&="*)
G GISUE 12E00GOTO1316
70 FORF=32G01TU33601STEF4G:FOKEF,103:NEX
OGOKES<845,31:FOKE 32925, 31:RETUFN
```



```
120 ==-1 FOR'r=6T015STEF2:FOR%=0TO19STEF2 FOKEZ+X+(40% %'), G4:NEXT :NEXT
```



```
150 2=2+40: FOFY'01T15STEPS: FOKEZ+('44E1), 107:FOKEZ+('440)+20,115:NEXT
160 己=z-?:FURX=OTO1GGTEF:.FOKEZ+X,64:FOKEZ+8+7, %0.64:NEXT
80 F=O:G05UR230
901 FOFI=2TOZ+39. POI EI , 32 NE%
80}\textrm{SFE+4:GOG4E=30
220 100T0100
S4 IFE=THEN2=32348
40 IFS=7THEHF=33000
50 IFS=11 THENF=33168
2E0 IFS=15THENZ=33328
IO IFS=19THERUZ=34:
G0
```



```
310 FLKER,H:FOKE 32792,48:R=33574:FORG=57TO49STEP-1:POKER,F:R=R+2:NEXTA
```



```
350 PRINT"S"
36| FC=1NT\54(RHI(1) +1
374 IFPH:STHENHL=12
390 IFFC= THENFC %="RWWM":CP1=33014
```



```
4361 IFFH=1 THEHSF'$=
4+6 IFPH=ETHENEF's="
    IFFH=3THEPSP:="
    IFFH=4 THEHSF:="" 
470 IFFH=5THENSF:**" 
```



```
*)
SNM IFFH=ठTHENSF*S="
lol
INGO
50 IFFH=11 THENY=16: X2
540 IFFH=1
560 GOISURO90
E:2 GU!5|ES30
5.3 PRIMTFC*:PRINTSF:&
S75 FRINTFT{FS&;PL
50% LK=1:IF'T=XTHENSYSOč6 :GOSUB1160
SGN IFLE = THENGOTG1E:30: IFLK=2THENGOTOSPC
GQU IFLK=2THENGUTUS72
E00 JFHV:="F"THENGUTIG40
ES0 DOSUEE=01
E4W}\mathrm{ FOKEM+160.32: FOR EM-160,32:FUKEM.31
850 1FM%/$="F"THENPK=FK+12:GOSUB760
600 IFHMs="A"THEMGOTOS70
6., 'T=YT + 1:GUTO575
OOD IFTM:
THNH:="8"THENH=H-160:IFM<=32876THENH=32876
*)
TMETURH
\
```



```
60 IFPEEK,FR-1 \=?2THEHP7U
G0 IFRF=4THEHFOUEFF<>12THE
TOOFFFF+E FOKEFK, 2:FOKEFR-2,5
```



```
614 IFRF=WNTHENFFUEFR, S2 RF=6 FN=0 M, ="",RETIFH
8GU MY:="F" FF:=12.FORF=1 TO1Q.GETT''F HEXT
604 RETURIA
840 FL=12.FOFV=1TG4 FUHEFR-%,S2 MEKT FOH,EFR, S2, FOFEFR+1, 32
```



```
8G4 F'K=RF+
```



```
3015 L=E+SN+1+10
#14 IFSC1 STHEHEC1=0
TOU IF:1 C THEHS: =-1% 
```



```
AEd FFINT -f NO
*)
IFINT:HL 10)OHC IOTHENRETURN
14日G1 E=0. IFFH=TTHENG=3:GOTG1010:G=3
```



```
10EO E:E+1 IFE=2THEH2GE0
105G 00101010
1040 % % C+FH
10G6, IK=5,:Q.J=FH&z+4
```



```
16GG NJT=F&T+
1100 RETUFH
```


PET Anagram

by Jeff Aughton

An anagram is displayed which you have to guess within ten seconds．A visual indication of the time passing creates an alarming sense of panic． Constants M and N represent the word
count and number of words given before totalling．Increase the number of words by tacking them on to the DATA statements．

[^8]
CARDIFF MICRO CENTRE

PETs \＆SUPERPETs
$+$ SHARP MZ－80s

HEWLETT PACKARD
COMPUTER BOOKS SIGMA SYSTEMS

54 Park Place
Carcliff 21515／34869
APPLE \＆ITT 2020 BUSINESS SOFTWARE
Professionally written packages now availa－ ble with comprehensive manuals，built－in validity checks，interactive enquiry facilities， user options，satisfying accountancy，Inland Revenue and Customs \＆Excise requirements On diskette under DOS 3.2 in Applesoft with SPACE utility．Not adaptations．Writ－ ten for Apple System．Support all printer interfaces．Sales，Purchases and General Ledgers $£ 295.00$ each．Manual only $£ 3$ ． Payroll $£ 375$ ．Manual only $£ 4$ ．
General Ledger supports Incomplete Records，Job Costing，Branch and Consoli－ dated Accounts，etc．
General Ledger Applications Manual $£ 10$ ． Prices exclusive of V．A．T．From our shop or your nearest stockist．

COMPUTECH SYSTEMS
168 Finchley Road，London NW3，
Tel：01－794 0202

VETS FOR PETS

Anita Electronic Services（London）Ltd． are specialists in the repair and service of Commodore Pets．
We offer a fast on－site service，or alter－ natively repairs can be carried out at our workshops should you wish to bring in your Pet．
Pet maintenance contracts are available at very competitive prices．Trade inquiries welcomed．

For further information，tel or write to John Meade
Anita Electronic Services
15 Clerkenwell Close，London EC1 01－253 2444

We also specialise in the repair of all makes of office equipment．

6250 BAUD for NASCOM 1

This ultra－fast cassette interface board will provide reliable data storage and recall at up to 6250 BAUD on most standard cassette recorders．
e．g． 1 K of data loaded in less than $1 / 2$
seconds.

The modifications required are minor and full documentation is supplied with each board which comes built，tested and guaranteed．
For immediate delivery send $£ 15.95+35$ p P\＆P to：－
65 Portland Street，TROON Ayrshire．Scotland or＇phone 0292311513
Also a comperitively priced EPROM
programming service is provided where we
can suoply the EPROM＇s programmed to
can suoply the EPROM＇s orogrammed to
EPROM＇s on a 24 hour turn round basis．

OSI／UK User Group

Support for

CIM SHI＝，IMFB

the independent user group for all users of Ohio Scientific small computers（Superboard to C3） and UK101
professionally－produced A5－format bi－monthly Newsletter development and documentation programming and planning aids and much more！
£10．00
for six－issue membership／subscription
contact：Ceorge Chkiantz
12 Bennerley Road，London SW11 6DS

GAMES FOR THE SUPERBOARD II

SPACE INV ADERS－ 8 skill levels，invisible invaders，zig－zagging bombs and more $8 K £ 5.00$
BREAKOUT－A very addictive ball game， 12 levels of difficulty and 4 demonstra－ tions models． $4 \mathrm{~K} £ 4.00$
AIR ATTACK－Destroy the skyscrapers or you will crash． $4 \mathrm{~K} £ 2.50$
GUN TURRET－ 4 aliens fly around you， shoot them but beware of the deadly flying saucer． $4 K £ 2.50$
ASTEROID DODGER－Try to catch the alien but don＇t hit an asteroid． $4 K £ 3.00$
SURROUND $-A$ very fast－moving game of skill for 2 players． $4 K £ 3.00$
Computator kits， 8 St Vincent Drive，St Albans，Herts．
All prices include \mathbf{P} \＆P

STOKE on TRENT

for
TUSCAN and
TANGERINE and
VIDEO GENIE and BOOKS

MICRO－PRINT Ltd．
59，Church Street，Stoke on Trent．
（0782）48348．Barclaycard and Access

CHEAP PETS

32K £575
8K £355
Disk Drive $£ 575$
Tractor Printer £355

TELE：－09277－65056（HERTS．）

PET Obstacle Course

by I Platt
This game gets you to drive along a Your success is dictated by the time moving road littered with obstacles．elapsed before a collision．
－ 16 FEM

\bullet

25 REM 3 FE EM ＊ 35 REM 料 I
 oEstacle course 46 REM 料 45 REM＊＊ 5 5 FEM＊＊ 5 EAREM NOTE－GLI ROM FETS CHANGE PEEKE IN LINES 65 FEEM＊＊ANI FIJULST vALUES TU SUIT＊＊ TE REM＊＊

 110 REM
 115 REM ***
 124 FOKE5946: 14

$14 \overline{4}$ FRINT
150 PRINT"N ALL GFE IRIUING A CHR RLONG AN"
16. FRINT" RENDLESS TRHCK. I HE TFACK IS FILLEI WITH"
170 FRINT"MIRS TELLES WHICH Y'OUI HAVE TO TR'T TO"

190 FRINT"MINTO SIICH FH OESTACLE, THEN THAT. I"M"
20UG FRINT"MAFRHITI. IS THE EHI GF THE GHME. IU'RE"
210 FRINT" ATIIE WILL EE II SFLA'TEI FHI SHOULII YOL"

240 FRINT"貽BILITY"

$27 \mathrm{FCHE5} 968: 12$:FRINT"?

CONTROLS＂
260 FRIHT"
20 FFI IHT "NWN

"' ''-------- LEFT"
310 FRINT "MIN HIT RN'T' KET' TO STGRT"
SEn GETA
325 REM **** FRINT UF INITIAL TRHCK **
उँ PRINT"す"

359 IhTA" "ak
369 IIATA" ""* **

360 IATA"ワ"
39 ПトТА"":"

416 IRTA" 4
420 IATA"

43 FORI $=1$ TOB: REATHI (I) : NEXTI

450 FUKEK, 251 : FUKEK $+1,236$
455 REM 料粎 FRINT LINE GIF TRHCK *****

$490 \mathrm{FORO}=1 \mathrm{TU2}$
$50011=1+\mathrm{H}:$ IFM 200 RM 1 THENH $1=\mathrm{M}-\mathrm{N}$
$510 \mathrm{I}=\mathrm{INT}(\mathrm{FND}(1) * 8)+1$
$5 \mathrm{~F} 0 \mathrm{FOR} \mathrm{J}=1$ TOZ
5 Fi FRINTTAE(M)
540 IFPEEK $(K+40)=1020$ RPEEK $(K+41)=162$ THEHK $=K+40: 60 T 0 E 54$
55 IFPEEK $(K)=127$ URF EEK $(K+1)=12$ THENK $=K+40: 100 T 0650$
560 FOKEK. 251 : FOKEK +1.236
SES REI ***** FICCEPT CONTROL *********
570 IFFEEK (151) $=41$ THEN $I=1:$ GOTOEAU
586 IFPEEK (151)=42THENII $=-1$:GOTOE DE
59 HEXTJ : NEXTO: GOTO 430

2 IFPEE $(K+I 1)=127$ ORPEEK $(K+1+I)=127$ THEFHK $=K-I$
630 FOKEK. 32:FOKEK+1, 32:FOKEK-40, 32 : FOKEK-39, 32
$K=K+I 1$: FOKEK, 251 : FOKEK $+1,236$

650 FOKEK-40, 251:FOKEK-39, 236 : FORK=1TU501 : NEXTX
E60 FRINT:FRINT"旦";

GEO FRIMT"BHIT FH'r KE'r FOF: AHOTHER GOT SPACE EAR TOMFINISH"
690 FOKK=1 TO16: GETFF: NE KTX
706 IFFEEK (151) = 255 THENFロム
710 IFFEEK $(151)=6$ THENT: 5
720 EETA

Bring new life to your NASCOM
We offer a new 3 K monitor．NASMON，for both NASCOM 1 and NASCOM 2 systems which gives you more power and flexibility than ever before：
text editor built in．
－＇front pane！＇display of registers，flags etc．this must be seen．
－blocked，buffered tape routines．
－powerful low－level＇search＇and single step commands．
－a total of 34 commands available through the keyboard．

PASCAL IN UNDER 6 K．
NASPAS runs under NASMON or NAS－SYS and offers：
－all major PASCAL statements．
－INTEGER，CHAR，BOOLEAN and
Enumerated TYPEs．
－fully recursive Procedures and Functions with value parameters． many pre－defined functions e．g．SUCC，
PRED，（D）PEEK，（D）POKE etc．

AT LAST，A 12 K BASIC

Running under NASMON，this extended BASIC gives you all the features of an 8 K BASIC plus：
－ 11 significant figure arithmetic．
－IF ．．．THEN ．．．ELSE．
－PRİNT USING．
－Multi－line，recursive functions calls （using DEF）．
－line or screer，editing．
－excellent printer support．
－Renumber and Automatic line numbering．
－and ．．．more！
PRICES
$\begin{array}{lll}\text { NASMON } & \text {（in 3 EPROMS）} & £ 25 \\ \text { BAS12K } & \text {（on tape）} & £ 25 \\ \text { NASPAS } & \text {（on tape under } & \\ & \text { NASMON）} & £ 25 \\ \text { NASPAS } & \text {（on tape under } & \\ & \text { NASSYS）} & £ 30\end{array}$
BUY NASMON NOW and get a FREE Chess program－NASCHK．
New 3 K Assembler
£25 on tape
£25 in EPROM．
HISOFT 60 Hallam Moor，
LIDEN，SWINDON，Wiltshire．

SCHOOL LEAVER

A vacancy exists for a school leaver with an interest in microcomputers．
For temporary work．Would suit someone going up to University in October 1981.
Please apply in writing to：
Imprint Editions， 16 Milton Avenue London N6

DEMONSTRATION EOUIPMENT

FOR SALE AT BARGAIN PRICES

Apple，Sharp，Heath．Send for price list．

DELTA SYSTEMS LTD．，
32 Finch Road，Douglas，Isle of Man．

MAIL

 ORDER ONLY ALL PRICES INCLUSIVE.IDE RANGE OF LOW COST 2×80 SOFTWARE ON CLI CASSETTE. SO FALE ON CIZ CASSETTIE.

We had a very good response to Puzzle 14 - over 200 entries, in fact. Many offered five possible solutions corresponding to the ways in which the $£ 2$ could be exactly spent on the stated denominations of stamps.

But the real test was to use the information given in a logical way so as to eliminate all but the correct solution, which was:
$4 \times 12 \mathrm{p}$ stamps
$6 \times 14 \mathrm{p}$ stamps and

$4 \times 17 \mathrm{p}$ stamps

One of our correspondents said the problem was impossible since 14 p stamps don't exist! Well, I hope he has been watching the papers lately and noticed the new postal charges coming soon - don't say that PCW didn't give you The Warning!

Anyway, the randomly-chosen winner was Mr Peter Cowley of Wrexham. Congratulations, Mr Cowley - a book token will be on its way to you just as soon as we can wake up the Editor.

Quickie

Here's a simple multiplication problem in which each letter represents a different digit:
IF X
$\frac{\text { ATAT }}{\text { FIA }}$

As usual, no answers required, so no prizes.

Prize puzzle

Here's an old problem which should set a few micros and calculators whirring.

Every four years in the village of Poorihana in Burma, the rice-piling ceremony takes place at the appointed hour on the given feast day.

When the ceremony begins, one grain of rice is placed in a chosen spot outside the witch-doctor's hut. Exactly one hour later, two grains are added; after a further hour, three more grains are added and so on - every hour, one more grain is added to the pile than was added at the previous hour.

The ceremony continues nonstop until there are exactly enough grains to give each of the 23 poorest villagers a meal consisting of a quantity of rice grains that is a perfect square - each villager receives exactly the same.

Assuming that the ceremony ends before the next one begins, what is the number of rice grains that each of the 23 villagers receives?

Answers on a postcard, please, to Puzzle No 17, PCW, 14 Rathbone Place, London W1P 1DE, to arrive no later than 31 January.

Submitting programs to PCW

Our programs section thrives on contributions from you, the readers. In particular we're looking for original ideas (no more Nim, decimal-hex conversions, Masterminds, digital clocks, etc please!) and we're not just interested in games - if you've a handy business/ scientific/educational program then we'd be interested to hear from you.

Once you've written and thoroughly debugged your program, send it to us on cassette or disk with, if possible, a
clear printout made with a new ribbon on plain (not lined) paper. Write a covering letter stating briefly what the program is, exactly which machine it's for (ie old/new ROM PET, or TRS-80 Level I or II) and how much memory it requires. On a separate sheet list any special instructions which aren't included in the program and write your name and address on each piece of paper you send us as well as on the cassette/disk. If you'd like your cassette/disk returned then enclose a suitable SAE.
Send your programs to: PCW Programs, Personal Computer World, 14 Rathbone Place, London W1P 1DE.

OLD ROM SUPERPETS

Add the PETMASTER SUPERCHIP to your old Rom 8 k Pet and you will have many of the advanced features of the new 8032 Superpet! Auto-repeat, screen manipulation plus lots more for only $£ 45$. If have Toolkit fitted then you can plug the Superchip into the spare socket - otherwise you'll need to buy an extension board ($£ 13$). Or else why not consider the
TOOLKIT PACKAGE
Buy the Superchip and Toolkit for just $£ 75$ including extension board - you could have paid $£ 75$ for the Toolkit alone until very recently!

Our catalogue of PET programs and supplies has programs for atl models, including the tatest 8032 and 4032 - and it's absolutely free to PET owners.
Add 15% VAT to all prices. Post free.

SUDETSOFT

28 Burmod Avenue.
Eastcote, Pinner, Middlesex
Telephone: 018663326

NEED A SUBSCRIPTION?

See card insert inside front and back covers.

WEST MIDLANDS
 If you want a computer for business use consult the experts!

PAYROLL

STOCK CONTROL
PURCHASE/SALES STOCK/INVOICING INSURANCE BROKERS VISICALC
WORD PROCESSING MAILING LIST etc.

'apple II

SALES AND LEASING
LEASE AN APPLE II 48K SYSTEM INCL. TWIN DISK DRIVES, MONITOR AND PRINTER From $£ 11.50$ per week!

TIIERI BUSITESS EETTRE LTD.

Castle Bridge House, Lichfield Road Wednesfield, Wolverhampton
Tel: 0902725687 for Sales and Service

Master Your Micro FASTwith...

Little Genius floppy diskette
based courses will teach you, how to use your system and how to realise the full potential of the "Mighty Micro". These fully interactive computer lessons will guide you quickly to a high level of understanding and confidence in your ability to make the most of your microcomputer system.
Courses now available:
Applesoft BASIC - Palsoft BASIC
Applesoft BASIC Advanced Palsoll

Using your Apple
PET BASIC
Advanced PET
BASIC

Little Genius

Each course, comprising a floppy diskette, and starting instructions, costs only $£ 40.00$ plus VAT
SPECIAL" 3 in one" OFFER for 3 courses covering the same system only $£ 99.00$ plus VAT.
Little Genius courses are available from most computer retail outlets, or direct mail order irom LITTLE GENIUS
Suite 504, Albany House, 324 Regent Street, London W1R 5AA Telephone: 01-5806361

\section*{TAKE HOME A MICROCOMPUTER OVER XMAS
 | HIRE | BARGAIN | NEW |
| :--- | :--- | :--- |
| FROM | Inc. VAT | Ex. VAT |}

£20PET $£ 340$.
£28EURO \& APPLE II 32K...£610
£25TRS80.£280 .
.ITT2020 48K.£600
£18 . . . SOCCERER 32K. . .£400 . .
£68SUPERBRAIN 64K£1450
£60....HORIZON 56K .. .£900.
SALES or LEASE or EXCHANGE

APPLE II Guaranteed EUROPLUS. Price 32K £610 + V.A.T. Lots of exciting software, all types of cards: Asteroids in space, Zork Adventure, Rainbow software, hire text graphics space invaders. Z80 Card/CPM/ COBOL, PASCAL, FORTRAL, ALL NEW
SUPERBRAIN 64K £1450 + VAT HIGH LEVEL LANGUAGES AVAILABLE

PROMGLOW Lid

01-368 9002 + EVENING 12 DENE ROAD LONDON, N. 11.

New, low, low prices on memories!!!

Compare our prices before you buy elsewhere! All devices are brand new, factory prime, full spec. and fully guaranteed!

MEMORIES			
2114 450NS	${ }^{1+}$	${ }^{50+}$	${ }^{100+}$
2114 L 450NS	2250		175p
${ }_{4116150}^{214 \mathrm{NS}}$	2500 3750	${ }^{2250}$	325p
4116200 NS Ceramic	250p	225p	195p
CMOS RAM 450 NS	550 p	525p	495p
EPROMS			
2708450 NS 2716 Single 5V 450 NS 2532 Single 5V 450 NS	$\begin{gathered} \text { 395p } \\ \text { 395p } \\ 1995 p \end{gathered}$	$\begin{array}{r} \text { 375p } \\ \text { 550p } \\ 1995 p \end{array}$	$\begin{array}{r} 350 \mathrm{p} \\ \text { 495p } \\ \text { 1495p } \end{array}$
TEM ASTEP	IDS		

LINEARS			
ICL 7106 CPL	$575 p$	$525 p$	$475 p$
LCD $10631 / 2$-digit			
LCD Display	$575 p$	$525 p$	$475 p$
NE 555P	$18 p$	17 p	$16 p$
723	$33 p$	$30 p$	$28 p$

All prices exclude pgo and VAT. Please refer to 'Ordering
Information' before ordering. Information' before ordering,
DON'T DELAY - BUY TODAY - SUCH LOW PRICES DON'T LAST FOR EVER!!!

EXCITING, ENTERTAINING SOFTWARE

 FOR THE APPLE II and APPLE II PLUSI!If you liked 'Invaders' you'll love ASTEROIDS IN SPACE by Bruce Wallace! Your spaceship is travelling in the middle of a shower of asteroids. Blast the asteroids with lasers, but beware - BIG ASTEROIDS FRAGMENT INTO SMALL ASTEROIDSI The Apple game
paddles allow you to rotate your spaceship, fire its laser gun, and give it thrust to propel it through endless space. From time to time, paddles allow you to rotate your spaceship, fire its laser gun, and give it thrust to propel it through endless space. From time to time and sound effects add to the arcade-like excitement this program generates. RUNS ON ANY APPLE II WITH AT LEAST 32K AND ONE DISK DRIVE!
£14.95

6809 S-100 SINGLE-BOARD COMPUTER

* Meets IEEE S-100 Standard
* Uses Motorola's Powerful MC6809 CPU!
- 4K, 8K, 16K ROM!
- 2K RAM!
* ACIA, PIA, 8080 Simulated I/O!
* RS - 232 Handshake!
* Selectable BAUD Rates
* Manual includes: $11^{\prime \prime} \times 7$

Schematic, Parts List, User Notes, Software Listings and MORE!

Bareboard
only,
f49! (plus E1 p\&p) ADSMON; Monitor (2716) £251

COMPLETE BOARD only £250! (plus E2 p\&pp

NEWI SUPER MUSIC MACHINE KITI
AT LAST - an affordable kit that can be PROGRAMMED TO PLAY ANY SONG OR GROUP OF SONGS! Instead of a nightmare of numerous ICs and special expensive Bipolar RDMs, the SUPER MUSIC MACHINE uses a SPECIAL MASK PROGRAMMED COMPUTER CHIP, one CMOS gate and the most popular erasable EPROM, the 2708/2716 series. BASIC KIT includes drilted, plated and screened PC board and ALL componenis except the EPROM and 12 V rransformer. The basic kit will plav short renditions of 25 tunes through its 7 WATT AMPLIFIER SECTION. Add an optional ROM and any tune programmed will be played. If you programming your own musicl
FEATURES:
Basic kit contains 25 short tunes in the main ICl
Will address external ROM for up to 1,000 MORE NOTES per ROMI (ROM is not - included)

- Operates on 12 V AC or 12 V DC @ 500 mA . (Using unit on 12 V "DC and with optional ROM requires 9 V bias battery, not included).
- 7 watts of audio power will drive 8 or 16 ohm speakers or horn speakers (not - included).

DIP switches not included.
'NEXT TUNE' provision steps sequentially through all tunes.
adress can be wire jumper selected or board is designed to take DIP
PITCH, VOLUME and TEMPO are all adjustable.
SPECIAL 'CHIME' SEQUENCES can be activated regardiess of tune address to provide for multiple doorbell applications.
All tunes consist of electronic musical notes played one at a time. There are no chords or harmony sound to the music,
STEP-BY-STEP ASSEMBLY INSTRUCTIONS provided
Large number of PREPROGRAMMED ROMS with popular and classlcal tunes ONLY $\mathbf{1} 6.95$ for basic kit (plus $\rho \& p 60$ p)

SAMS BOOKS AT LOWEST PRICES

COMPUTER BOOKS

Microcomputer Primer I2nd Edition
Microcomputers for Business A pplirations
The Howard Sams Crash Course il Microcomputer
Getling Acquainted with Microcomputers
How to Buy \& Use Minicomputers \& Mir rocomputers
Compurer Graphics Primer
TEA: An $8080 \cdot 8085$ Co Resident Entor Assembler
6502 Soltware Design IBook 1
(Book 2
BASIC Programming Primer
DBUG An 8080 Interpretive Debugger
How 10 Program Microcomputers
Boolean Algebra for Computer Logir
Computers \& Piograming Guite to Scientisis \&
Engineers 13 rd Edition
Microcomputer Interlacing with ihe 8255 PPI Chip
Programming 6 Interlacing the 6502. with Experments
TRS 80 intertacing
2.80 Microcomputer Design Projects
2.80 Microprocessor Piogramming \& Interfacing Books 1 and 2 Book 21
Interlacing and Scıentific Data Conmunications Experinients
introductory Experiments in Digital Elecironics and 8080a
Microcomputer Pingramming and Interfacing 18 ook 11
18ook 21
Microcomputer Analog Converter Sofiware and Hardware
Interfacing
The 8080A Bugbook. Microcomouter Interfacing and
Programming
The S. 100 and Other Micro Buses
TV Typewriter Cookbook
Using the 6800 Microprocess
2.80 Microcomputer Handbook

8085 Microcomputer Design
COOKBOOKS
Active.Filter Cookbook
TV Typewriter Cookbook
CMOS Cookbook
The Cheap Video Cookbook
C Converter Cookboo
IC Op.Amp Cookbook (2nd Edition)

ÓN DISKETTE ONI

MICROCHIPS AT MICRO PRICES!

 WITH OUR

 MULTI-PURPOSE IEEE/488 BUS, TALKER/LISTENER

 MULTI-PURPOSE IEEE/488 BUS, TALKER/LISTENER} B0ARD 32 I/P:32 0/P PLUS RS 232

Applications include:-

EDUCATION/EXPERIMENT - allows Pet basic to drive L.E.D.S, switches, relays, etc.
A.T.E. (Automatic Test Equipment) - allows interface to equipment such as D.V.M.S, timers, counters, printers, etc.

Double height Eurocard ($9^{\prime \prime} \times 6^{\prime \prime}$) microcomputer board: requires 5 V (1A) supply ($\pm 12 \mathrm{~V}$ - RS 232 only)

BOARD PRICE: $£ 149.50$: P.s.U.|Pet harness available. For info. contact F. Holmes $\mathbf{M}|\boldsymbol{H}| \boldsymbol{G}$ Leeds 589495 Ext. 294

TRIDATA COMPLETE BUSINESS SOFTWARIPACKACFS

* SALES INVOICING
* SALES LEDGER
* PURCHASE LEDGER * NOMINAL LEDGER
* PAYROLL
* STOCK CONTROL
for use on * TANDY TRS 80
* TANDY TRS 80 Mk. II * SHARP MZ-80K * PET AND SUPERPET * APPLE

Our business packages are supplied with master diskettes, detailed operating manuals and training procedures. For small businesses and traders with up to 700 employees, 9,999 customers and 9,999 suppliers, our proven programs written by experienced DP professionals provide fast. simple control, with built in security routines for prevention of unauthorised use, abuse or mishandling.
Over 550 Tridata business systems are now in use

> TRIDATA WARRANTY
> Every Tridata program has a written 12 month warranty and can be automatically updated to conform to any legislation that may alter your accounting procedures.

SEND THE COUPON TODAY OR TELEPHONE
021-622 6085

Sendmedetails of the Tridata Business Software Systems. I aminterested in PURCHASELEDGER For TANDYTRS 80 SALES LEDGER TANDYTRS 80 Mk .11 PAYROLL NOMINAL LEDGER SALES INVOICING SHARP MZ-80K SUPERPET Name APPLE

Company Address

[55 NTERPRISES

Byrom Software

Computer Plus
FMS 80 (File Management System) Demo Pack (includes manual and disc) £35
$\mathbf{£ 3 9 5 / 2 5}$

Computer Services
Bidirectional driver for Diablo Hytype printers for use on CPM \& CDOS systems

E65/10

CP/M User Library
42 Volumes on $8^{\prime \prime}$ disc £4 42 Volumes on 5 " disc £8

Creative Computing

Digital Research

Information Unlimited
WHATSIT (Database Management System) on North Star on CP/M
on APPLE 2:48k (requires int Basic)
On APPLE 2:32k (requires int Basic)
on ITT 2020 (see Apple)
Spooler for CPM systems $£ 65 / 5$

Diablo driver runs 110 to 9600 baud with autoload for CP/M or CDOS £30/5 OMNIX-UNIX like multiuser, multitasking operating system for $Z 80$ i.e. IMS, Cromemco, | operating system for 280 i.e. IMS, Cromemco, |
| :--- |
| $\begin{array}{l}\text { Horizon }\end{array}$ |
| $250 / 30$ |

Marizon
£250/30
$£ 65 / 20$

MICAH Inc.

Microsoft Inc.

Michael Shrayer Inc
Microfocus Lid.

Micropro Inc.

CP/M for CDOS Users:

Program to Expand CP/M system to be compatable with Cromemco CDOS software

Disc Utilities:
Pack one of CDOS users includes: Fast disc copy, Track test, Disc test, Compare files and others $£ 30 / 5$ Pack two for CP/M users includes
same as pack one £30/5
Pack three for Cromemco users includes same as
pack one and spool and print $£ 65 / 5$

BASIC-80	$£ 175 / 17$
BASICCompiler 5.2	$£ 195 / 17$
FORTRAN-80	$£ 220 / 17$
COBOL-80 4.0	$£ 355 / 17$
EDIT-80	$£ 45 / 11$
MACRO-80	$£ 80 / 11$
MICROSEED	$£ T B A / 20$
MULISP	$£ T B A / 20$
MUMATH	$£ T B A / 20$

Electric Pencil Word Processor	$£ 100$
SSII for tty etc	$£ 100$
DSII for Diablo	$£ 105$
TRS-80 Cassette/disc	$£ 50$

TRS-80 Cassette/disc $\quad \mathbf{E 5 0}$

CIS COBOL version 4.2	$\mathbf{£ 4 2 5 / 2 5}$
FORMS 2	
$100 / 10$	
WORD-MASTER 1.7	$£ 70 / 20$
TEX-WRITER 2.6	$£ 35 / 15$
WORD-STAR 2.1	$£ 240 / 25$
SUPER-SORT: Version 1	$£ 120 / 20$
	Version 2
Version 3	$£ 100 / 20$
WORD-STAR with MAIL-MERGE 2.1	$£ 375 / 20$
MAIL-MERGE 2.1	$£ 70 / 35$
DATASTAR 1.07	$£ 165 / 20$

MAIL ORDER TELEPHONE ORDER VISIT

Send Cash, Cheque, Credit Card No., Postal Order, IMO to L.P. Enterprises, Room PCW, 8 Cambridge House, Cambridge Road, Barking, Essex 1 G11 8NT.
All Payment must be in sterling and drawn against a UK bank.
Subscriptions are processed to start with the next current issue, after the date of order.
These details are all current as of August 1980.
Prices are subject to change without notice, due to fluctuation in the dollar rate.

ORDER INFORMATION

Software prices reflect distribution on $8^{\prime \prime}$ single density discs. If a format is requested which requires additional discs a surcharge of $£ 4$ per additional disc will be added.
Please add VAT and $£ 2.50$ for first class postage, packing and insurance.
If required, DATAPOST D service is available for an extra charge of $£ 7.50$.
All software on this Advertisement is available from stock and a 24 -hour return service is thereby offered on all prepaid orders. When ordering CP/M software please specify the format you require otherwise software will be dispatched on an 8 " single density disc.
For more information on any of these items, please phone, write or visit. (We are open during office hours).

ComServe COMPUTER SHOP PRESENTS

THE ELEGANT, EXPANDABLE

video genie system

£364 inc VAT. Postage. Requires T.V. or monitor - $\mathbf{£ 7 0}$ if bought with Genie

Comprises standard 16K computer. 3 manuals. Demonstration tape. Lead for additional cassette player. Lead for monitor.

FREE
FREE
Standard cover. Head cleaning/demagnetising tape
Programs: Games. Utilities. Subroutines.
FREE
Standard soundkit if wanted
FREE
FREE
Comserve joysticks if wanted
Coloured plastic folders for manuals or screen overlays.

CWO to
ComServe
98 TAVISTOCK STREET, BEDFORD, BEDFORDSHIRE TELEPHONE (0234) 216749

[^9]

£485

Send cheque or money order for
\& 563 (including VAT \& Delivery in the UK) to:

Trade Enquiries
Welcome

Refuge House, 2-4 Henry Street, Bath, BAI IJT. Telephone: O225•65379

Price-bombing is fun... ...especially if you're the buyer!

We've bombed the prices of peripherals again...about $£ 120$ off the price of a popular terminal and printer, and a really low price on a brand-new heavy-duty printer for the commercial market.

Anacom 150 printer

A fast and practical printer for commercial use printing up to four copies as well as the original. 150 characters per second, bidirectional printing, full upper and lower case character set with true descenders on a 9×9 matrix, and programmable doublewidth characters. Adjustable tractor feed, for up to 15 " wide paper; 6 or 8 lines per inch, 10 columns per inch character spacing. Programmable top-of-form and skip controls, $11^{\prime \prime}$ standard form length. Parallel or serial (RS232) interfaces.

Anacom 150 £699

TVI 912C/920C terminal

A fully intelligent terminal at an intelligent price. A $<$ very complete specification includes 24×80 display with dual intensity, blinking, reversed, underline and protected fields; 96 ASCII upper and lower case character set; separate numeric keypad; auto-repeat on all keys; full tabbing facilities and addressable cursor for forms work; single key edit-functions (on 920C version only); serial printer port.
Runs in full- or half-duplex from 75 to 9600 baud. TVI 920C (as shown here) $£ 550$
TVI912C £475

Microline 80 matrix printer

Lightweight but heavy-duty, the now well-known \triangleleft Microline at our unbeatable price of $£ 349$. Full upper and lower case ASCII character set, plus 64 pixel-type graphics characters. Standard, double-width and condensed character sizes; six- and eight-lines-perinch line-spacing. 80 characters per second print speed. New-style print head is lighter, quieter and more reliable than conventional counterparts. Pinfeed and friction feed for up to $9^{\prime \prime}$ paper as standard; adjustable tractor feed option. Roll-holder for paper roll as standard. Parallel interface as standard; serial interface (RS232 or 20 ma) option.

London and South East:
Northamber Ltd
Great Oak House
Esher, Surrey.
Tel: 037262071

CROMEMCO Systems \& Software
SYSTEM ZERO - the latest low cost computer from Cromemco
CP/M 2.2 for Cromemco systems $£ 95$
64K S100 Memory Boards £350
10 Megabyte Cartridge Disk
(5 Megabyte fixed 5 removable)
and controller for the S 100 Bus
$£ 3,950$ including installation
(London area)
We supply computer solutions to business problems

* Software packages
* Hardware maintenance
* Hardware configuration and design

We also have an "Aladdin's Cave" of computer spares, power supplies, boards, chips, etc, etc.

For further details and information, please contact:
Independent Computer Engineering Limited, 16/18 Littleton Road, Ashford, Middlesex. Tel: 07842 47171/2
Telex: 8952042 (DPCUST G)

EPSON - MX80 DOT MATRIX PRINTER
The printer you have been waiting for

* 9x9 matrix (true descenders in lower case)
* 80cps bidirectional printing with logical seeking print head (maximises throughput)
* 96 ASCII character set, plus 64 graphics incorporating 4 switch selectable European language options.
* Programmable forms handling
* 12 different print modes, up to 132 characters per line
* Operator controls and indicators, including self test feature.
* £395 - with standard parallel interface (interface options - RS232, Pet, TRS80, MZ80 Apple).
ALL PRICES EXCLUDE VAT

SPIDER SOFTWARE

CUSTOMISED SOFTWARE
Apple II/ITT 2020 software written to your own specifications Many of our packages already in use. The largest user of postal services in the world uses a Spider Software bespoke mailing-list. Firm quotations given on receipt of program requirements Please write or phone for details.

PACKAGED SOFTWARE
Write or phone for a copy of our free catalogue of Apple/ITT software. Includes:

D/DATABASE

D/DATABASE uses advanced programming techniques and unique data storage and retrieval routines. A special high-speed disc $1 / O$ controls the data held on disc, searching and evaluating information at many times the rate achieved by the standard DOS's random access capabilities. Every possible byte on a disc is available for data storage on a DDA formatted disc - that neans a full 116,352 characters on every disc. D/DATABASE is not operated using limiting numbered indexes. All ${ }^{\circ}$ Conversation' with the system is in the form of logical statements, similar to BASIC statements.
10 databases per disc maximum - 909 useable files per disc. 128 characters maximum record size - 9 character field names. 9 user named fields per record, 27 characters maximum per field within limit of total record size - 16 character index files. DIDATABASE is very user-iriendy.
introductory offer:- $£ 22.95$ including 1 data-disc
Basic and machine-code. Requires minimum 32K

MYSTERY HOUSE

In this hi-res adventure you are transported to the front yard of an old Victorian house. Your friends are being murdered one by one and you must find out why and who the killer is. Over 100 hi-res pictures and an extensive vocabulary of over 300 words. £24.95 on disc only. Machine-code. Requires 48 K .

THE WIZARD AND THE PRINCESS
Fantastic hi-res adventure with hundres of pictures in 21 different colours. Rescue the princess from the wizard after crossing the hazardous desert. The graphics in this game have to be seen to be believed
E29.95 on disc only. Machine code. Requires $48 \mathrm{~K} .+100$ other games, business, science and utilities packages.
Ten $5 \% \%^{\prime \prime}$ blank diskettes. Guranteed 100% error free. £23.95 16 K memory upgrade for Apple/ITT. Guranteed 3 months. Only $£ 4.95$
Prices are inclusive but please add $50 \mathrm{p} p \& p$ for orders under £30.00 totally.

SPIDER SOFTWARE
98 AVONDALE ROAD, CROYDON, SURREY Tel: 01-661 2365

The ANACOM 150 CPS printer that prints its 9×9 dot matrix bi-directional whilst logic seeking the quickest way to print the next line, it has an 136 column format, but accepts tractor feed paper of any width, vertical format is programmable as are double width characters. Interfacing is accomplished by use of a personality board with parallel or series interface. Its modular construction combines rugged quality with convenient serviceability. It is fully warranted with a comprehensive service acility available for continued customer protection.

FEATURES: *150 chs per sec. *Bi-directional printing, logic seeking "Paper width 3^{*} to 15 " 9×9 Dot Matrix "Upper and lower case with descenders "Double width chs " 10 chs per in - horizontal " 6 or 8 lines per inch - vertical "Adjustable tractors *Original and 4 copies *Extended life head *Paper out sensor

GREAT OAK HOUSE, ESHER, SURREY. KT10 9BR
Phone: ESHER (0372) 62071 \& 01-786 2072
Full details on request. Prices exclude VAT \& delivery

The Sinclair ZX80 is innovative and powerful. Now there's a magazine to help you get the most out of it.

Get in sync

SYNC magazine is different from other personal computing magazines. Not just different because it is about a unique computer, the Sinclair $\mathbf{Z X 8 0}$ (and kit version, the MicroAce). But different because of the creative and innovative philosophy of the editors.

A Fascinating Computer

The $\mathbf{Z X 8 0}$ doesn't have memory mapped video. Thus the screen goes blank when a key is pressed. To some reviewers this is a disadvantage. To our editors this is a challenge. One suggested that games could be written to take advantage of the screen blanking. For example, how about a game where characters and graphic symbols move around the screen while it is blanked? The object would be to crack the secret code governing the movements. Voila! A new game like Mastermind or Black Box uniquely for the ZX80.

We made some interesting discoveries soon after setting up the machine. For instance, the CHR\$ function is not limited to a value between 0 and 255 , but cycles repeatedly through the code. CHR\$ (9) and CHR\$ (265) will produce identical values. In other words, CHR\$ operates in a MOD 256 fashion. We found that the " $=$ " sign can be used several times on a single line, allowing the logical evaluation of variables. In the Sinclair, LET $X=Y=Z=W$ is a valid expression.

Or consider the TL\$ function which strips a string of its initial character. At first, we wondered what practical value it had. Then someone suggested it would be perfect for removing the dollar sign from numerical inputs.

Breakthroughs? Hardly. But indicative of the hints and kinds you'll find in every issue of SYNC. We intend to take the Sinclair to its limits and then push beyond, finding new tricks and tips, new applications, new ways to do what couldn't be done before. SYNC functions
on many levels, with tutorials for the beginner and concepts that will keep the pros coming back for more. We'll show you how to duplicate commands available in other Basics. And, perhaps, how to do things that can't be done on other machines.
Many computer applications require that data be sorted. But did you realize there are over ten fundamentally different sorting algorithms? Many people settle for a simple bubble sort perhaps because it's described in so many programming manuals or because they've seen it in another program. However, sort routines such as heapsort or ShellMetzner are over 100 times as fast as a bubble sort and may actually use less memory. Sure, 1 K of memory isn't a lot to work with, but it can be stretched much further by using innovative, clever coding. You'll find this type of help in SYNC.

Lots of Games and Applications

Applications and software are the meat of SYNC. We recognize that along with useful, pragmatic applications, like financial analysis and graphing, you'll want games that are fun and challenging. In the charter issue of SYNC you'll find several games. Acey Ducey is a card game in which the dealer (the computer) deals two cards face up. You then have an option to bet depending upon whether you feel the next card dealt will have a value between the first two.

In Hurkle, another game in the charter issue, you have to find a happy little Hurkle who is hiding on a 10×10 grid. In response to your guesses, the Hurkle sends our a clue telling you in which direction to look next.

One of the most ancient forms of arithmetical puzzle is called a "boomerang." The oldest recorded example is that set down by Nicomachus in his Arithmetica around 100 A.D. You'll find a computer version of this puzzle in SYNC.

By selecting the $\mathrm{ZX80}$ or MicroAce as your personal computer you've shown that you are an astute buyer looking for good performance, an innovative design and economical price. However, selecting software will not be easy. That's where SYNC comes in. SYNC evaluates software packages and other peripherals and doesn't just publish manufacturer descriptions. We put each package through its paces and give you an indepth, objective report of its strengths and weaknesses.

SYNC is a Creative Computing publication. Creative Computing is the number 1 magazine of software and applications with nearly 100,000 circulation. The two most popular computer games books in the world. Basic Computer Games and More Basic Computer Games (combined sales over 500,000) are published by Creative Computing. Creative Computing Software manufactures over 150 software packages for six different personal computers.

Creative Computing, founded in 1974 by David Ahl, is a well-established firm committed to the future of personal computing. We expect the Sinclair 2×80 to be a highly successful computer and correspondingly, SYNC to be a respected and successful magazine.

Order SYNC Today

Right now we need all the help we can get. First of all, we'd like you to subscribe to SYNC. Subscriptions are posted by air directly from America and cost just $£ 10$ for one year (6 issues). $£ 18$ for two years (12 issues) or, if you really want to beat inflation, $\mathbf{£ 2 5}$ for three years (18 issues). SYNC is available only by subscription; it is not on newstands. We guarantee your satisfaction or we will refund the unfulfilled portion of your subscription.

Needless to say, we can't fill up all the pages without your help. So send in your programs, articles, hints and tips. Remember, illustrations and screen photos make a piece much more interesting. Send in your reviews of peripherals and software too-but be warned: reviews must be in-depth and objective. We want you to respect what you read on the pages of SYNC so be honest and forthright in the material you send us. Of course we pay for contributions-just don't expect to retire on it.

The exploration has begun. Join us.

27 Andrew Close
Stoke Golding Nuneaton CV13 6EL. England

A*C* Advanced
 Computer Equipment

95 MEADOW LANE LEEDS II TEL: 0532446960

Ricoh RP1600

ULTIMATE IN DAISYWHEEL PRINTERS

EX STOCK

How your rita

WITH LINSAC PRODUCTS FOR THE SINCLAIR ZX80 LITERATURE
'THE 2×80) COMPANION' Second Edition. A comple te guide to the ZX80 with chapters on operating, ZX80 BASIC, hardware, the Monitor (incl. moving display routine) and programs. Price $£ 10.00$ (add $£ 4.95$ for a cassette of ten programs from the book).
'THE ZX80 MONITOR LISTING'. A full assembly language listing with annotations. Price $£ 10.00$

SOFTWARE

All the following packs come on single C12 cassettes with run instructions, price $£ 10.00$
GAMES PACK 1 - Three Towers, Number Guessing, Mastermind, Sketcher, Hurkle, Nim and Symbol Simon.

GAMES PACK 2 - Nine Lives, The Maze Game, Plain Sailing, Noughts \& Crosses, Chinese Puzzle, Tower of Hanoi, Battleships. GAMES PACK 3 - (for 2 - 4K) Fruit Machine, Four-in-a-Line, Zombies.
EDUCATION PACK 1 - Maths Drill, Dot Recognition, Musical Notes, Spelling Quiz, Day Finder.

EDUCATION PACK 2 - Graph Plotter, Prime Factors, Number Bases, Bar Charts, Statistics.

UTILITY PACK 1 - Memory Display, Hex Code Monitor. Renumber, Memory Search.

All packs except GP3 run on 1 K ZX 80 s, and all prices include postage. Send cheques to:

68 Barker Road, Linthorpe, Middlesbrough, Co: Cleveland TS5 5ES.

SOFTY
 Software Development System ${ }^{\text {t }}$ AND EPROM PROGRAMMER

SOFTY is intended for the development of programs which will eventually hecame. software residing in ROM and forming part of a microsystem. During the sof ware residing in ROM and forming part of a microsystem. During the firmware ROM via a ribbon cable, terminated in a 24 pin DIL plug.
Data may be entered into the SOFTY RAM via the serial port. parallel port, direct memory access, or the keypad, and manipulated using the assembler key-functions. When the program has been entered, and the internal microprocessor can be 'turned off', and the external microsystem and it's resident microprocessor allowed to access and run the program in SOFTY's RAM and/or programming socket. In this way. modification can be made until the required program is complete - the contents of the RAM being clearly visible as a page on TV or monltor. 4 pages are available, 2 of the Data RAM and 2 of the programming socket.
In the end. when the program is complete and working. the DIL plus is removed and replaced by an EPROM device programmed by SOFTY. SOF
program the $2704 / 270812716$ tamily which have 3 voltage rails
program the $2704 / 270812716$ family which have 3 voltage rails
To help in the process of program development SOFTY has various assembler kev-functions. which include - block shift without overwriting. block store
cursor control. match byte and displacement calculations (for jumps etc). A high speed cassefte interface is also provided for storing working programs and useful subroutines.
SOFTY kit of parts: (including zero insertion force socket for EPROM programmer) Price $\mathbf{£ 1 0 0}+$ VAT (postage paid). SOFTY built \& tested - $\mathbf{£ 1 2 0}+$ VAT (postage paid). Built SOFTY power supply - E20 + VAT (postage paid). Write or telephone for full details.

NE^{N}

SOFTY CONVERSION CARD -
EX-STOCK
Enables SOFTY to program the single rail EPROMs 2508, 2758, 2516, IINTEL
2716), 2532

Selection of device type and 1 K block are by 4 way pcb slide switches
Programming socket is zero insertion force. Supplied ready built \& tested with Dip jumper for connection to SOFTY, E40 + VAT (postage paid).
N^{2}

- 40 column electrosensitive printer - 5×7 dor matrix
push button printing of EPROM/RAM/Intercursor contents
- Connects to SOFTY card edge - Well documented * Supplied ready built ε tested, including power supply. edge connector \& paper roll for £145 + VAT (post paid) Spare paper rolls (28,30 metres/roll) - E6.96 + VAT

EX- STOCK EPROMS

| $1-9$ | $10-24$ | $25-49$ | 50up |
| :---: | :---: | :---: | :---: | :---: |
| 2708 (450 ns) $£ 4.00$ | $£ 3.80$ | $£ 3.60$ | $£ 3.35$ |
| 2716 (450ns) $£ 6.95$ | $£ 6.50$ | $£ 5.95$ | $£ 5.40$ |

Single rail
Deduct a further 5% for cash with order on
these low EPROM prices.
Add VAT at 15%. Postage paid.

MODEL UV 141 EPROM ERASER

- Fast erase times itypically 20 minutes for 2708 EPROMI
- 14 EPROM capacity
- Built-in 5 to 20 minute timer to cater for all EPROMS
- Satery interlocked to prevent eve and skin damage
- Convenient slide-tray loading of devices
- 'MAINS' and 'ERASE' indicators
- Ruaged construction

Priced at only $£ 78+$ VAT post paid
MODEL UV 140 EPROM ERASER
Similar to Model UV141 but without timer
WRITE OR TELEPHONE FOR FULL DETAILS OR SEND CHEQUES'OFFICIAL COMPANY ORDERS TO.

GP Industrial Electronics Limited

Unit 6, Burke Road, Totnes Industrial Estate,
Totnes, Devon. Tel. Totnes (0803) 863360 Sales, 863380 Technical. TRADE AND EXPORT ENQUIRIES WELCOME

TEMTUSCANS100

Available in Kit Form or Assembled. All components available separately.
Houses iwo $51 / 4^{\prime \prime}$ drives for a compact business system

TUSCAN main board. The heart of the system with 280 , video, Ram, Rom, and I/0 plus five S 100 slots for expansion

On
Demonstration
NOW
KITS

Completer business systern
48 K with two 5 "drives
from
£235 + VAT
${ }_{\text {E1481 }}$
delivery Ex-Stock

COMPUTER SYSTEMS 'MICRON

EX-STOCK
the latest line in E396.00 superb products on demonstration from inc. VAT BRTISH DESIGN

- 6502 based microcomputer
- VDU alpha numeric display
- Powerful monitor TANBUG
- 8K RAM
- 32 paraliel I/O lines
- 2 serial I/O lines
- RS $232 \mathrm{C} / 20 \mathrm{~mA}$ loop, with 16 programmable Baud rates
- Four 16 Bit counter timers
- CUTS cassette recorder interface
- Data bus buffering
- Memory mapping control
- 71 Key ASCII Keyboard, including numeric keypad and with auto repeat
- Including metal cabinets for both
keyboard and modules
- Including power supply 1OK Microsoft BASIC

EXCLUSIVE TO HENRY'S £195 50\% OFF MAKER'S PRICE
for: Sotware selectable 20,40 and 80 TANDY. column using 120 mm aluminium
PET, 150 lines per minute.
NASCOM ${ }^{\text {Contronics }}$ paraliel data interface for Nascom, Tandy, etc.
240 volt mains input. ASCll character sel
Paper feed, and onloff solect switches
'BELL' signal Waight 1016s SIze: $13^{\prime \prime \prime} \times 10 j^{\prime \prime} \times 4$:

> MONITORS
> New and Reconditioned FROM £35

NĀSC̄OM-1

$12^{\prime \prime} \times 8^{\prime \prime}$ PCB carring 5LSI MOS packages. 161 K MOS memory packages and 33 TTL packages. There is on-board interface for UHF or unmodulated video and cassette on
teletype. The 4 K memory block is assigned to the operaing teletype. The 4 K memory block is assigned to the operaing
syslem and video display leaving a 1 K user RAM. The MPU is the standard $Z 80$ which is capable of executing 158 instructions in. Nascom- 1 Kit Price cluding all 8080 code. $f 125$ Plus Bulte price $£ 140+$ VAT. tobectiso va

PLAIN PAPER Fully built and - 325 PRINTER stylish enclosure INTERFACES WITH ALL MICRO COMPUTERS
The Nascom IMP (Impact Matrix Printer) foatures are 60 lines per minute. 80 characters per line. - Ai-directiongl printing. - 10 line print buffer lincluding upperllower case, \$, C). © Accepts 8;" paper (pressure feed). Accepts. 110 to 9600 . External signal for optional synIDEAL FOR WORD PROCESSING

COMPUTER KEYBOARDS

APPLE COMPUTER KEYBOARD

52 Key 7 Bit ASCll coded Posiluve Slrobe +5 V . 12 V Size $13 \times 4 \%$ " Siurdy Consifuction Sloping Keys Black/ White print Made in USA
for Apple Inc Brand Now E36 incl VAT. Post $£ 250$ tor Apple Inc Brand New E36 incl VAT. PO
Individually packed in ANTI STATIC FOAM 71 KEY ASCII KEYBOARD INCLUDING NUMERIC KEYPAD. $\mathbf{4 9 . 0 0}$ plus $£ 7.36$ VAT TOTAL 566.36 abie Oniy avarlable as lully assembled and lested

CARTER 57 key ASCIl keyboard. Conventional key board. 128 ASCII characters including control keys. Parallel output with strobe Shiflack +5 V and
-12 V OC. $12^{\circ} \times 5.5^{\circ \prime} \times 1.5^{\circ}$ Black keys with white ledgends
FERRANTI - "SIZE $14 \times 6 \times 3$ " SLOPING FRONT 55 Key ASCII Coded in steel case. Complete with Plug and Cable with circuit to convert to T T.L. levels.
condition at oniv $\mathbf{\$ 1 9 . 9 6}$ + VAT, P/P $£ 250$

Mini-Digital Cassette Recorder An alternative to disc for program \& data storage

FEATURES

* The Philips MDCR 220 mechanism of proven reliability
* Holds up to 120k Bytes/Cassette with fast data transfer
* Extra memory board with RAM and ROM to hold operating software
* Will read \& write (in blocks from 256 bytes to 60k Bytes), backspace \& search for end of data on tape
* Compatible with 6502 based systems ie PET, AIM65, OHIO, KIM, COMPUKIT ETC.

CURIRAH COMPUTER COMPONENTS

Unit 7 Hartlepool Workshops, Sandgate Industrial Est. Hartlepool, Cleveland Tel. 042972996

PRICES (INCLUDING MANUAL)
MINI RECORDER MECHANISM
£95.00
INTERFACING BOARD (TYPEA)
MEMORY BOARD (WITH ROMS FOR 6502) £42.50

CASSETTES (BOX OF6) $£ 55.00$

MANUALS (SEPARATE) £15.90

CARRIAGE
£10.00
PRICES EXCLUSIVE OF VAT @ 15\%

OHIO SCIENTIFIC

SUPERBOARDS WITH 32×32 DISPLAYS
Announcing the new 5OHz puard + THE UNIQUE SPECIAL
 32×32 display anda multispeed tape inter ane whit $\mathrm{E} 159+15 \%$ potitree version $£ 225+15 \%$ vat

PRINTERS

Youknow your business better than anyone else and any system designed should use your knowledge. The micro-computer specialist should show you how to use the computer to meet your business requirements.

You should be able to get the micro computer which best suits your business. It should be chosen after your requirements are specified

You and your staff have a right to know all about YOUR system, including helping to program it if you want to. Training is your right - not an additional service.

If microcomputers cannot satisfy your business needs, you want to know - you don't want false promises.

67 Nova Road, Croydon, Surrey CRO 2TN, Telephone: 01-688 6013

If hought with Superboard these items are at the reduced prices shown first. Also sold separately at shown first. Also sold separately VAT. Guard band kit $£ 0(£ 8)$. Modulator and power supply kit £1 (£25). 4 K extra ram £20 (£24). Display ex pansion kit approx 30 lines $\times 54$ characters $£ 15(£ 20)$. Case $£ 23$ (£26). Colour conversion board kit $£ 35(£ 45)$ or built $£ 65$ (£65). Cassetterecorder $£ 14$ (£16). CEGMON improved monitor rom poa. Extended monitor (tape)
$£ 20(£ 20)$. Assembler/Editor $£ 25$ ($£ 25$). Word processor $£ 10$ ($£ 10$)

CHEAPO EXPANSION OFFER Buy a 610 expansion board with 8 k ram on board and space for another 16 K for $£ 159+15 \%$ and get a free 5V 2A power kit and any extra ram you want for $£ 3-50 / \mathrm{K}+15 \%$. Buy a minifloppy +case + power supply +2 copies dos for $\mathcal{E} 275+15 \%$ with the
610 and we will do the extra ram 610 and we will do the extra ram
for $£ 2 / \mathrm{K}+15 \%$ (up to 16 K). for $£ 2 / \mathrm{K}+15 \%$ (up to 16 K).

THE NEW OHIO

SERIES 2 CHALLENGER C1P
Program selectable 24×24 or $12 \times$ 48 displays. Sound, music and voice output. 8 K ram expandable to $32 \mathrm{~K}, 8 \mathrm{~K}$ basic. We dare not publish our cheap price for fear of being perate rivals. Send a highly opaque sae for a stunning quote from the sae for a stunning quote from the masters of cheapo and freebie tradSeries 2 disc version. Again, secr quotations only

The best value in matrix printers and a fantastic cheapo of er to boo OKI Microline 80 (Illustrated $£ 359$ $+15 \%$ BASE 2800 B (New improved version of the 800 MST) 850 model price by secret BASE 2850 Model price by secr quotation only. Anacom 150 and we will supply an interface kit and we will supply an interface kit Superboard for only $£ 1$.

SWANLEY ELECTRONICS

Dept. PCW, 32 Goldsel Rd., Swanley, Kent BR8 8EZ
Telephone Swanley 64851. Please add 40p postage.
Prices include VAT unless stated. Lists 27 p post free. Overseas customers deduct 13%. Official credit orders welcome.

The plethora of small business computers on the market today presents the prospective purchaser with a veritable jungle through which he has to hack a path, take his chances and eventually choose the system that may make or break his company

Lion Micro Computers

227 Tottenham Court Road, London
W1P OHX Tel: 01-580 7383
21 Sond Street, Brighton, Sussex

Lion has tamed this jungle by amassing a wealth of experience in microcomputer based small business systems, and by selecting the best systems available. Our Business Systems Division is ready to demonstrate the power of the micro in business applications, backed by Lion's established reputation for professionalism and system support

Phone now to arrange a personal demonstration and to find out why Lion is King of the Jungle

14" COLOUR MONITOR PRICES

Monitors to both PAL and MTSC standards. For Apple/ Texas T/994 R\&B version available etc. etc. From $£ 299$ + VAT. Attractive trade terms.

OFF AIR
PAL \&
NTSC 14" MONITOR

SKANTIC 3781 14" CTV

Display of American
Standard Video
TEXAS TI 99/4
home computer etc.
FULLY GUARANTEED
PAL VIDEO AND LARGER SIZES AVAILABLE

PurtaTel

VIDEO MODIFICATION SPECIALISTS
ACCESS \& BARCLAYCARD WELCOME

NASCOM-2

MEMORY © $8 K$ MICrosoft BASIC e 2K NAS-SYS 1 monitor 1 K Video RAM - 1 K Workspace/User RAM - On-board 8 sockets provided for memory expansion using stand ard 24-pin devices:2708EPROMS and MK4118 static RAM. MICROPROCESSOR - Z80A which will run at 4 MHz but is selectable between $2 / 4$ MHz . HARDWARE Industrial standard $12^{\prime \prime}$ * 8 PCB, through hole plated, masked and screen printed. All bus lines are fully buffered onboard. INTERFACES - Licon 57 key solid state keyboard (included) Monitor/domestic TV interface - Kansas City cassette interface ($300 / 1200$ baud) or AS232/20mA teletype interface.
The Nascom 2 kit is supplied complete with construction article and extensive software manual for the monitor and BASIC EXPANSION OPTIONS MK4118£10 • VAT each 6K RAM B Board $£ 140+$ VAT 2K RAM B Board $£ 170$. VAT 48 K RAM B Board $£ 200$. VAT

NASCOM-1

12 - 8" PCB carrying 5LSIMOS packages. 161 KMOS memory packages and 33 TTL packages. There is on-board interface for UHF or unmodulated video and cassette or teletype. The 4 K memory block is assigned to the operating system and video display leaving a 1 K user RAM. The MPU is the standard $\mathbf{Z 8 0}$ which is capable of executing 158 instructions including all 808 code. Built price $£ 140+$ VAT.

NASCOMIMP PLAIN PAPER PRINTER

The Nascom IMP (Impact Matrix Printer) features: - 60 lines per minute 80 characters per line -Bl-directional printing e 10 line print buffer Automatic CR/LF - 96 characters ASCII set (includes upper/lower case. \$. £) Accepts $8 \frac{1}{2}$ " paper (pressure feed) - Accepts $9 \frac{1}{2}$ " paper (tractor feed) - Tractor/pressure feed Baud rate from 110 to 9600 External signal for optional synchronisation of baud rate - Serial RS232 interface - Ribbon cartridge $£ 6.60$ + VAT + 50p P\&P - 2000 sheets Fan Fold paper $£ 18.00$ - VAT - £2.50 P\&P

MICROMART

ICs
EPROMS 2708
EPROMs 2716 ….. 56.50 each
MEMORIES 21 L02
4027 4116 2114 Z80 DEVICES MK3880 MK3881 (P10) VOLTAGERE VOLTAGE REGULATO VOLTAGE REGULATORS
$7805 \ldots . e a c h ~$ 80p each 800 each 65p each 65p each 65 peach
65 eeach

65peach
 ${ }^{65 p}$

Add VAT and 30 p P\& F

 to all orders. 80.80 each
£1.50 each
E3.95 each E3.00 each
9.50 each 6.25 each 6.25 each eac
of printer, floppy discs,etc. There is also a built-in 3-octave music function
20K System
32 K System
MZ80FD (twin flopples with 208K) MZ80P3 Printer ...
TZロ0 10 Inter ... $£ 517$ +VAT MZ80 I/O Interface .. $£ 99$ + VAT Stock control \& Sales/Purchase ledger software now avallable.

it's true! A real computer that employs the BASIC programming language and fits into a pocket! The PC- 1211 measures only 175 mm wide by 70 mm deep by 15 mm high and weighs a mere 170 g (less than 6 ounces) yet look at its features! Up to 1424 program steps, 80 character input line with full editing features. 18 user definable keys, 24 character alpha-numeric CD display and built-in tone function are included. An optional cassette interface is available for loading or dumping programs or data. The PC-1211 Is battery operated, has an auto power off unction, and maintains all $£ 91.26$
Plus VAT-P\&P£1.00
programs and data in its memory even after the power has been turned off.

NASBUS EPROM BOARD

Expands Nascoms 182 with up to 32 K of
Eprom. Accepts 2708s or 2716 s . Also 24 pin socket for 8 K ROM. Wait-state fitted for N2 users Board can also su pport Nascom Page Mode Scheme.
$£ 55$ £70

NASCOM FIRMWARE IN EPROM

NASCOM HARDWARE

Motherboard Mini Motherboard 3 amp PSU VERO DIP board FRAME 8 Amp PSU Built I/O Board Buffer Board

Microtype Model 3 Case
55.50 + VAT + 50p P\&P $\varepsilon 2.90$ - VAT + 50 p P\&P £32.50 + VAT - £1.50 P\&P 512.50 VAT +50 p P\&P $£ 3250+$ VAT $+£ 2.00 \mathrm{P} \& \mathrm{P}$ £140.00 + VAT + £2. 75 P\&P $\Sigma 45.00+$ VAT $-£ 1.00$ P \& P $£ 32.50+V A T+50 \mathrm{p}$ P\&P

INTERFACE COMPONENTS LTD. OAKFIELD CORNER, SYCAMORE ROAD, AMERSHAM, BUCKS HPG 6SU TELEPHONE: 02403 22307. TELEX 837788

WE HAVE MOVED-Z TO EXTENSIVE NEW PREMISES
 WWMN London WGIX SLN. Tet:01-2783461. Tetex 298694

HAZELTINE 2000
The world's largest-selling teletypewriter compatible video display terminal. Features include: 12 " screen (74×27) 64 alphanumerics and symbols. 32 ASClI control codes. Switch-selectable transmission rates to 9600 baud. Three switch-selectable operating modes full-duplex, half-duplex or batch. Direct cursor addressability. Dual-intensity video. Tabulation. Powerful editing capability. Remote keyboard. Selective or automatic roll-up. RS-232

HAZELTINE 1000
The low, low priced teletypewriter - compatible video display terminal with $12^{\prime \prime}$ screen (12×80) 64 ASCll alphanumerics and symbols. Full/Half Duplex
RS-232

ALLEQUIPMENT RECONDITIONED UNLESS OTHERWISE STATED

ELECTRONIC BROKERS LTD VDU PRICES

BASIC
Now with Upper \& Lower Case $12^{\prime \prime}$ screen (24×80). XY cursor addresssing, 64 ASClt alphanumerics \& symbols. Dual intensisy delachable keyboapd. Choice of 8 transimission rates up to 9600 baud. RS232. Range of options

All the above plus full edit capability, tabulation, 8 special function keys + many other features. C695.00
POLLING MODELS also available - P.O.A

NEW! NEW! NEW! GP80 GRAPHICS PRINTER

80 column 30 cps matrix printer with full upper/lower case ASCII character set PLUS GRAPHICS FACILITY. Adjustable tractor feed. Standard Centronics parallel interface ONLY $£ 249.00$
Optional interfaces available for RS232, IEEE, Pet, Tandy and Apple.
new Catalogue JUST OUT.
Send for your FREE copy now.

'THIS BOOK IS -Clive Sinclair

This unique book contains 30 programs all designed to fit in the Basic 1 k version of the SINCLAIR ZX-80!! With this book you will realise that the $\mathrm{ZX}-80$ is more powerful than you ever imagined!
112 pages packed with solid information!
BLACKJACK - actually contains a full pack of cards, shuffles them, keeps track of the dealer and players card totals, and the money bet, all within 1 k .
MEMORY LEFT - an incredible routine especially useful as it enables you to know exactly how much memory is left, even during the running of a program. This also illustrates USR routines.
DR. ZX-80 - A conversational program with the computer as analyst which uses an ingenious method of storage.
GOMOKU - the computer challenges you to this complex Japanese game, Incredibly this program including display of the 7×7 board fits into 1 k - it only does so because it uses the display as memory!
Other programs included are HORSE RACE, LUNAR LANDER (with moving spaceship), NOUGHTS AND CROSSES, NIM, SIMPLE SIMON, HANGMAN, LIFE, MASTERMIND, PINCH and seventeen others.
As well as the programs, the book illustrates programming techniques you can use in your own programs - space compression, PEEKs and POKEs, USRs and so on.

$£ 6.95$
 (plus 50P p\&p)

available by mail order only

Please send me: copies of 30 programs for the Sinclair ZX .80 1k NAME

ADDRESS

MELBOURNE HOUSE

 PUBL ISHERSOrders to: 131 Trafakgar Road, London SE 10 Correspondence: Glebe Cottage, Glebe House,. Station Road Cheddington, Leighton Buzzard, Bediordshire.

Please enclose cheque or P.O, for $£ 7.45$ per copy. Orders outside the UK $£ 7.95$

NORTH STAR BUSINESS SYSTEM

WORD-PROCESSING STOCK CONTROL INVOICING
SALES \& PURCHASE LEDGER ETC. ETC.

C

EX-STOCK

 PROVEN RELIABILITY 1 YEAR GUARANTEE
SAMPLE RECOMMENDED SYSTEM (AS ABOVE):-

A	Horizon Computer (64K Ram 2 D/D Drives)	£2080.00
B	TVI-912C VDU, numerous features	£595.00
	NEC RO Spinwriter (RS232) + tractors	£1775.00
	OMPLETE SYSTEM PRICE (Includes cables)	£4450.00
	BOVE SYSTEM WITH DOUBLE-SIDED DRIVES	00
	REE ! WORDSTAR plus CP/M with above system.	

PHONE US OR CONTACT YOUR NEAREST DEALER

CODASLTD

Pontypridd Wales Tel: 0443-406450 CONQUEST COMPUTER SALES LTD Benfleet Essex Tel: 03745-59861
DIGITAL DEVICES LTD
Southborough Kent Tel: 0892-37977/9 FYLDE MICROCOMPUTER SERVICES Blackpool Lancs. Tel: 0253-692954 THE HARDCORE SOFTWARE CO. London NW3 Tel: 01 -722 6436 HOTEL MICROSYSTEMS LTD Middlesex Tel: 01-890 9696 JAD INTEGRATED SERVICES JAD INTEGRATED SERVICES KBS COMPUTER SERVICES Liverpool Tel: 051-236 8333 KBS COMPUTER SERVICES Cardiff Wales Tel: 0222-394313
KBS COMPUTER SERVICES Coventry Warwicks. Tel: 0203-27266 LOVEDEN COMPUTER SERVICES LTD
Grantham Lincs. Tel: 0476-72000
MICRO FACILITIES LTD
Hampton Hill Middx. Tel: 01-979 4546 MICROSYS LTD
Prescot Merseyside Tel: 051-426 7271 MICROTECH COMPUTER SERVICES Liverpool Tel: 051-236 2208/9 SAPPHIRE SYSTEMS
Billericay Essex Tel: 02774-57743
SPOT COMPUTER SYSTEMS LTD
Doncaster Yorks Tel: 030250833 S. SYSTEMS

Crawley Sussex Tel: 0293-515201
STAG TERMINALS LTD
Teddington Middx. Tel: 01-943 0777 SUMLOCK-BONDAIN LTD London EC1 Tel: 01-250 0505
VIDEO VECTOR DYNAMICS LTD Glasgow Scotland Tel: 041-226 3481/2
£295.00
£50.00
$£ 50.00$
£95.00
£235.00
£75.00
£195.00
£105.00
£155.00
£195.00
£205.00
E100.00 £425.00
.
£3495.00
£2495.00

UK Distributor
 INTERAM Computer Systems Ltd.
 59. Moreton Street,
 Victoria, London SWIV 2NY
 Tel: 01-834 0261/2733
 Telex: 925859

GRTE TILROSUSTETIS LITITEU

Scotland's Complete Microcomputer Service

now supply and support:

HARDWARE:
Apple II Systems and Peripherals Commodore Business Systems A wide range of VDUs, printers, etc.

SOFTWARE: Incomplete Records Accounting Sales Ledger Purchase Ledger Nominal Ledger Stock Control Payroll Word Processing Database

Software can be tailored to your requirements or written completely to your specifications.
Our service is comprehensive, ranging from advice on system selection through installation and implementation, to operator training and comprehensive Hardware and Software maintenance.
You don't have to take our word for it.
Call us and arrange a demonstration.

Gate Microsystems Limited

THE NETHERGATE CENTRE, 66 NETHERGATE, DUNDEE. TEL: (0382) 28194.

Wego ComputersLtd

CBM approved £75.00 + VAT

Wego Sequential Switching Unit
Allows up to 5 devices to be connected to the mains, and with one switching operation power up and down all the devices, in the correct sequence.

$£ 89.50$ + VAT

Numeric Key Pad for the Apple.
A 13 digit Key pad ($0-9,-$ - . ENTER) to run in parallel with the numeric section of the APPLE Keyboard. Supplied with connecting cable, plugs and sockets.

CBM approved Prices from $£ 620$ + VAT

Mark Sense Card Reader

"A pencil, a card, and this lowcost reader. . . it's the new, fast way to enter data into your microcomputer.' Versions available able to communicate with PET, APPLE, TRS-80, or any S100 or RS232 bus. Ideal for business and education applications
 California Computer Systems Cards for the Apple.
Synch Serial Card $£ 119.97+$ VAT Asynch Serial Card $£ 106.37+$ VAT Parallel Card £ 79.97+VAT Arithmetic Proc. Unit $£ 265.97+$ VAT Programmable Timer $£ 106.37+$ VAT IEEE GPIB £199.50+VAT A/D Converter £ 99.72+VAT ROM/PROM Module $£ 70.89+$ VAT
Sole UK Distributors Clock Card
£ $83.33+$ VAT Centronics Card £ $79.97+$ VAT

SUMLOCK BONDAIN makes the decisions easier...

HP-32E Advanced statistical and scientific calculator All functions of the 3IE plus hyperbolics and their inverses. Full set of 2 variabie statistics - means. standard deviations, linear regressions. Fixed, scientific ur nginerring display modes lōaddressable storage whirs

HP-37E Basic financial calcu lator Direct and automatic calculation of interest rates and vields, payments. number of payments etc. Applications in leasing, |toans, invest ments. Percentage -retail' and statistical functions.
$£ 41.78$

Discover the full professional power of Hewlett Packard's personal computer.

The portable, stand-alone HP-85 personal computer was only the beginning of a total system. By itself, the HP-85 lets you put professional problem-solving power wherever you need it. Because all its features are built into a single unit weighing less than 10 kgs .

And now you can extend the HP-85's power to match your increasing professional requirements. Simply plug in HP's new highperformance printers, plotters and flexible disc systems. In fact, you can add up to 14 peripherals or instruments. It's up to you.

(hp
 HEWLETT PACKARD

It's your personal computer system You decide which HP peripherals you need.

Add the HP 2631B printer for high-speed, high-quality printing with choice of line spacing, character width and density. Add the HP 7225 Graphics Plotter for high-resolution, publication-quality graphics on A4size paper or film. Add memory with the HP 82900 series of flexible disc drives, each $51 /{ }^{\prime \prime}$ disc providing up to 270 K bytes of formatted storage. And HP's new enhancement ROMs and modules let you expand to 80 K bytes of operating system, without reducing user memory.

See the HP-85 and its new peripherals in action. Getting your hands on so much professional computing power was never so easy.

It costs less from the calculator

 specialists. Advanced calculators to solve your professional problems....with our latest range of advanced calculator to solve your professional problems.

No hidden extras. Every Hewlett-Packard calculator comes complete with: soft, zipup lined case; owner's and application manuals (plus additional applications book where appropriate); factoryfitted rechargeable cells and recharger (apart from the 41C): two rolls of thermal paper on printing machines. Beyond the standard package, we've a wide range of optional accessories and our comprehensive soft ware support, which gives you a choice of applications pacs to really extend your range of ability.

NEW

HP-34C Advanced programmable scientific calcula tor Indirect addressing. Controlled memory varying between 210 program lines and 70 data registers. Innovative SOLVE and INTEGRATE functions. With Continuous Memory to retain data and programs even when $\begin{array}{ll}\text { switched off. } & \mathbf{5 7 9 . 5 0}\end{array}$

rates, vields. paviments. number of payments efr. Applications in sercuritirs Irading. leasing. loans and savings. Calendar functions. Prongrammable farility for individual solutions, With Continueus Memory toretain data and $\mathbf{£ 7 9 . 5 0}$ programs even when switched off. HP-38E lamerchas wersion of HP 38E
(1)

TIT HP-33C Programmable
scientific calculator 4 ! lines
of program memory 3 levels of subroutines
$\$$ addressable storage registers. Integer, fraction
and absolute value of a number. With Cintinuous
Memony to retain data and programs even when
suitched off.

HP-33E Loner cost version

Continuous Memery

$$
\begin{aligned}
& \text { HP33C } £ 59.50 \\
& \text { HP33E } £ 49.83
\end{aligned}
$$

Come to the Hewlett Packard open days at our new premises in City Road, December 2nd and 3rd. Come and hands-on test any of our superb range of products.

Head office: 263-269 City Road, London EC1V 1JX and at Cannon Street Station, London EC4

Tel. 01-250 0505
Telex 299844

Barclaycard/Access, official orders accepted by phon
All prices include postage, packing \& VAT

aculab

Connects directly to TRS-80 Level 2 Keyboard. Operating and fite handling software in ROM. 8 commands add 12 powerful functions to Level 2 BASIC. No buttons, switches or volume controls. Full control of all functions from Keyboard or program. Daisy chain multiple drives. Certified digital tape in endless loop cartridges. Reads and writes in FM format at 9000 Baud. Soft sectored with parity and checksum error detection for highly reliable operation-just like discs. Maintains directory with up to 32 files on each tape, tapes may be writeprotected. Supports Basic and machine-language program files, memory image and random access data files. 12 character filespecs-: "FILENAME/EXT:d" (d is drive no. 0-7). Automatic keyboard debounce. Full manual with programming examples and useful file-handling routines.

COMMANDS (usually followed with a filespec and possible parameter list).
@SAVE, @LOAD, @RUN -for BASIC programs, machine language programs and memory image files. @GET, @PUT -moves a 256 -byte record between a random access file and BASIC's data buffer. @KILL -removes a file from the directory and releases tape sectors for immediate re-use. @LIST-displays file directory along with sector allocation and free sectors. @NEW -formats tape and creates a blank directory.

Master drive with PSU, Manual and aselection of tapes.
For TRS-80 £169-00, for Video Genie £174-00. Slave drives $£ 125-00$. (add $£ 2-00$ p.p. + vat).
(Export orders ppchargedat cost)
floppy tape,
The tape that behaves like a disc, For TRS-80 LEVEL II and Video Genie.
 information, Telephone 0525371393 aculab 24 Heath Road, Leighton Buzzard, Beds. LU7 8AB

$$
\begin{aligned}
& \text { GDELUCLE LELHEL } \\
& \text { SmG Microcomputers } \\
& \text { SOFTWARE } \\
& 39 \text { Windmill St., Gravesend, Kent. } \\
& \text { TEL: 0474-55813 } \\
& \text { Open 9-5.30 } \\
& \text { AD2000 STOCK CONTROL }{ }^{\circ} \text { ODORED }^{2} 395.00 \\
& \text { AD2001 SALES LEDGER } \\
& 395.00 \\
& \text { AD2002 PUR. LEDGER } \\
& 395.00 \\
& \text { AD2003 MAILIST } 1 \\
& 75.00 \\
& \text { AD2004 MAILIST } 4 \\
& 150.00 \\
& \text { AD2010 SOLICITORS PACK } 750.00 \\
& \text { AD2011 PLANNING/MAINT PACK } 595.00
\end{aligned}
$$

DEALER ENOUIRIES WELCOME ********
COMING SHORTLY:- VETS PACKAGE, INCOMPLETE RECORDS \& WAREHOUSE PACKAGE

AGREAT DEAL FROM
 6 NASCOM DEALERS
 and guaranteed after-sales sevice

BUILT FLOPPY DISC SYSTEM FOR NASCOM 1/2 FROM £395+VAT

It's here at last. A floppy disc system and CP/M. drives, CP/M 1.4 on diskette plus.manual,

CP/M SYSTEM.

The disc unit comes fully assembled complete with one or two $5 \frac{1}{4}$ " drives (FD250 double sided, single density) giving 160K per drive, controller card, power supply, interconnects from Nascom 1 or 2 to the FDC card and a second interconnect from the FDC card to two

D-DOS SYSTEM

The disc unit is also available without CP/M to enable existing Nas-Sys software to be used. Simple read, write routines are supplied in EPROM. The unit plugs straight into the Nascom PiO.
a BIOS EPROM and new N2MD PROM.All in a stylish enclosure.
Nascom 2 Single drive system. $£ 450+$ Var Nascom 2 Double drive system $\varepsilon 640$ + Vat Nascom 1 Single drive system. $£ 460$ + Vat Nascom 1 Double drive system£650 + Vat Additional FD250 drives £205 + Vat

Single drive system
£ 395 + VAT (please state which Nascom the unit is for) Certain parts of the CP/M and D-DOS disc systems are available in kitform. Details available on request.

ENCLOSURE FORN2 + 5

The Kenilworth case is a professional case designed specifically for the Nascom 2 and up to five additional $8^{\prime \prime} \times 8^{\prime \prime}$ cards. It has hardwood side panels and a plastic coated steel base and cover. A fully cut back panel will accept a tan, UHF and video connectors and up to 8 D -rype connectors. The basic case accepts the N2 board, PSU and keyboard. Oplional support kits are available for 2 and 5 card expansion. Kenilworth case $£ 49.50+$ Vat
2 -card support kit $£ 7.50+$ Vat $\bullet 5$-card support kit $£ 19.50+$ Vat

INTERFACE ENHANCING UNIT

The Castle Interface is a built and tested add-on unit which lifts the Nascom 2 into the class of the fully professional computer. It mutes spurious output from cassette recorder switching, adds motor control facilities, automatically switches output between. cassette and printer, simplifies 2400 baud cassette operating, and provides true RS232 handshake.
Castle Interface Unit .. $\mathbf{5 7 . 5 0}$ + Vat

NASCOM-2 Microcomputer Kit $£ 225+$ Vat NASCOM-1 Microcomputer Kit $£ 125+$ Vat Built \& tested $£ 140+$ Vat IMP Printer. Built \& tested £325 + Vat

All prices ore correct ot ume of going10 press.

EPROM EXPANSION

The Nasbus compatible EPROM board accepts up to 16.2708 or 2716 EPROMs. It has o separate socket for the MK36271 8K BASIC ROM for the benefit of Nascom-1 users. And for Nascom-2 users, a wait state for slower EPROMs. The board also supports the Nascom Page Mode Scheme.
EPROM Board (kit)
ع55 + Vat
EPROM Board (built \& tested) $£ 70+$ Vat

A-D CONVERTER

For really interesting and useful interactions with the outside worla' the Milham analogue to digital converter is a must. This 8 -bit converter is multiplexed between four channels-all sotware selectabie. Sampling rate is 4 KHz . Sensitivity is adjustable.

Typical applications include temperature measurement, voice analysis, joystick tracking and voltage measurement.It is supplied built and tested with extensive sottware and easy connection to the Nascom PIO.
Milham A-D Converter (built and tested) $£ 49.50$ + Vat

PROGRAMMER'S AID.

For Nascom ROM BASIC running under Nas-Sys. Supplied in 2×2708 EPROMs, Features include: auto line numbering; intelligent renumbering; program appending; line deletion: hexadecimal conversion; recompression of reserved words: outo repeat; and printer handshake routines. Price $\varepsilon 28+$ Vat.
DUAL MONITOR BOARD. A piggy-back board that allows Nl users to switch rapidly between two separate operating systems. Price (kit): $£ 6.50+$ Vat.

BASIC PROGRAMMER'S AID.

Supplied on tape for N1/2 running Nas-Sys and Nascom ROM BASIC. Features Include outo line number, full cross-reference listing, delete lines, find, compacting command, plus a comprehensive line re-numbering focility. Price: $£ 13+$ Vot.

PROM-PROG MKII.

2708 (multi-rail) and 2716 (single-rail) EPROM programmer kit controlled by $\mathrm{N} 1 / 2 \mathrm{PlO}$. Supplied with comprehensive sotware for use with Nas-Sys. Price: $£ 25.95+$ Vat. - All the products are available while stocks last from the Nascom dealers below.
(Mail order enquirers should felephone for delivery dates and post and packing costs.) Access \& Barclaycard welcome.
BITS \& PC'S
4 Westgate, Wetherby, W. Yorks.
Tel:(0937) 23744
BUSINESS \& LEISURE
MICROCOMPUTERS
16 The Square, Kenilworth, Warks.
Tel:(0926) 512127.

ELECTROVALUE LTD.

680 Burnage Lane, Burnage, Manchester M19 1NA.
Tel:(061) 4324945.
28 Si Judes, Englefield Green,
Egham, Surrey TW20 OHB.
Tel:(0784) 33603. TIx:264475.
el:(0784) 33603. Fxx.264475. Tel: (02403) 22307

Tel: (02403) 22307. Tlx:837788.
TARGET ELECTRONICS
16 Cherry Lane, Bristol BS 1 3NG. Tel:(0272) 421196
INTERFACE COMPONENTS LTD. Oakfield Corner, Sycamore Road, Amersham Bucks.
T.

HENRY'S RADIO
404 Edgware Road, London W2.
Tel:(01)4026822.
T|x:262284 (quote ref: 1400)

Intex daidloc LTD COMPUTERS

 MICROPAY-200

 MICROPAY-200
 Micropay-200 is a complete payroll System designed to run on a

STOCK CONTROL 3750

Stock Control 3750 is a complete stock control system designed and written to meet the needs of a small business
It will accommodate up to 3747 stock items and runs on a COMMODORE PET microcomputer interfaced to a printer and COMPU/THINK disk drives.
The System incorporates programs to:

1. Set up a Supplier file.
2. Set up Stock files
3. Copy Data files.
4. Insert/delete stock records.
5. Insert/delete supplier records
6. Update/display stock file.
7. Update/display supplier file
8. Print stock list.
9. Print supplier list
10. Print reorder report
11. Print stock movement report.
12. Print stock valuation report.

And perform other useful routines.
Stock Control 3750 is fully protected from misuse and can easily be used by someone with no knowledge of computers or their operation.
The System costs $195.00+$ V.A.T. and this price includes a full back-up and advisory service from INTEX DATALOG.

For full specification write to:-
INTEX DATALOG LIMITED, Dept CA0980
Eaglescliffe Industrial Estate, Eaglescliffe, Cleveland TS16 OPN.

COMMODORE 32 K PET microcomputer, interfaced to dual floppy disk drives and a printer.

The System provides:

1. Weekly/monthly payslips

2 Summary page of all payments and deductions that month
3 Summary page of all payments and deductions for the tax vear to date
4 Weekly/monthly cash analysis slip for all cash payments made
5 Monthly summary of all payments and deductions
6 Year end summary of all payments and deductions
The System copes with
1 Up to 200 current employees, plus end of the year details of up to a further 400 ex-employees who have left during the year.
2 Suffix L.H.P.V and T cumulative and Week 1 Codes
3 Prefix D and prefix F. BR and NT codes
4 All necessary alterations concerned with changes in income tax rates, band widths and personal allowances.
5 National Insurance Contributions at rates A, B and C for non-contracted out emplovees and at rates D and E for contracted out employees.
6 All necessary alterations concerned with changes in N.I. contribution rates and earnings limits.
7 Up to 5 user.definable wage rates for each employee, plus the normal hourly rate.
8 Holiday pay - including a check on the amount of holiday taken in the year
9 Up to a total of 5 user-definable additions/deductions to the before after tax pay
10 Changing an employee from one N.I. rate to another and backdating such a change
11 Job costing and analysis
THE SYSTEM COSTS $195.00+$ VAT AND THIS PRICE INCLUDES A FULL BACK-UP AND ADVISORY SERVICE FROM INTEX DATALOG. VIDEO GENIE WITH THE HELP OF KANSAS.

The Kansas Editor, Assembler \& Debugger is the program to get you into machine language programming, for not only does it include a full feature editor assembler, but a complete debugger as well - two in one, in fact.

Altoge ther it contains 22 different commands, which are available at all times and simply entered as Input
In addition to the commands you have the option of outputting to either the video, cassette or a printer.
Edit commands include Enter, which allows the continuous entry of text anywhere in the file; Zap to erase lines; New to replace a line with a new one. All with line numbers automatically displayed as a guide.

The assembler accepts source statements in the 280 language, each line divided into fields, including comments which are of course ignored. These include the label, operator and operands, which are all very extensive

Symbols can be used instead of values, or by using the pseudo operand your own value can be asigned to a symbol. There are many commands for
this, all giving a very easy usage of this assembler, whether source or object
The commands for the assembler include Size, Sort, Assemble, Kill, Top, Bottorn, Up, Down, Print, Find.
Error messages are generated if an error is found by the assembler, with the line displayed and the command loop re-entered.
The assembled program can be listed on the video or onto the printer and both the source and object files can be saved onto cassette and read back into memory

The program is line orientated ${ }_{m}$ and so always maintains a pointer to the current line, with the pointer movable by various commands.
The various debugger commands allow a great deal of control and are very extensive, including Copy, Goto, Modify, Fill, Examine and Check
User input can be edited and parameters can be either decimal, hexadecimal or octal.
We believe this to be the best program of its kind on the market, not only for its extensive features but for its ease of operation and especially for its price.
£19.50. Return first class post service. Barclaycard or Trustcard accepted

GRAPHICS ASSEMBLER $£ 850$

Assemble graphics in your Basic program in super-fast machine language - and by simple Basic statements! That's what you can do with the Graphics Assembler
This remarkable program will allow you to take a single line of any Basic program and pack it with machine language graphics and control commands.

The program itself being in Basic means it can easily be incorporated in any of your Basic programs to give extended graphics capability without having to load the two separately

And of course, all kinds of animation of the graphics created can be obtained, using the normal Basic routines.
All that is needed in a Basic program is a 'dummy' line, to take the characters in a string.
As each character is inserted the actual graphic block is shown on the screen.
Just think what you can do with your proyram with various lines containing this facility.
Unlock the entire graphics potential of your Tandy TRS-80 or Video Genie, and see what your computer is really capable of

Kansas City Systems, Unit 3,Sutton Springs Wood,Chesterfield,Derbys.Tel 0246850357

74 LS SERIES													MAGTRONICS LTD 3 GCLDHUST TERRACE LONDON N.W.6. TELE. 01.624-9847		
74LSO1	. 18	74LS114	. 35	74LS242	1.90	DISK	T								
74LS02	18	74LS122	. 70	74LS243	1.90	DISK									
74LS03	18	74LS123	75	74LS244	2.10	UNCO	NDI	NAL	GU	ARA					
74LS04	22	74LS124	1.40	74LS245	2.50										
$\begin{aligned} & 74 \text { LSO5 } \\ & \text { 74LS08 } \end{aligned}$. 22	74LS125	. 40	$74 \mathrm{LS247}$ 74 LS 248	1.20 1.80	5.25'	MIN	SKE	TES	SING	SID				
74LS09	. 22	74LS132	. 65	74LS249	1.25		1 SE	OR		PER	£24			,	
74LS 10 74 LS 11	. 18	74LS133 $74 \mathrm{LS1} 36$	40	74LS251	1.10		(SO							C.P	
74LS12	. 22	74LS138	. 40	74LS253 74 LS 257	1.10 1.10	5.25'	MIN	ISKET		SING	SID				
74LS ${ }^{\text {74 }} 13$. 40	74LS139	. 70	74LS258	0.95		10 S	TOR		PER	£24.00				
74LS14	. 22	74LS145 $74 \mathrm{LS148}$	1.10 1.70	74LS259 74 LS 260	$\begin{array}{r} 1.65 \\ \hline 30 \end{array}$	5.25'	MIN	ISKE T		SING	SID				
74LS20	. 20	74LS151	. 85	74LS261	3.50		16 S	TOR		PER	£24.				
74LS21	. 22	74LS153	. 55	744S266	+ 40	8'	SIN	SIDE		SING	DEN	TY	TR	N	
74LS26	22	74LS154	$\begin{array}{r}1.40 \\ \hline\end{array}$	74LS273	1.75 .65		26 S	TOR		PER	¢25.				
74LS30	20	74LS157 74LS158	. 60	$74 \mathrm{LS283}$ 74 LS 290	$\begin{aligned} & 1.00 \\ & 0.95 \end{aligned}$		26 S	TOR		PER	£32.			S	
74LS32	26	74LS160	1.10	74LS293	0.95	8"	DOU	E SID		SING	DEN				
74 LS33	28	74LS161	. 8 C	74LS295A	1.45		26 S	TOR		PER	£38			ON	
74LS338	. 26	74LS162 74LS163	1.16 80	74LS298	1.40 1.80	8'		E SID		DOU		ITY			
74LS40	. 22	74LS164	.80 1.10	74LS325	2.55		26 S	TOR		PER	£40.00			1	
74LS42	. 85	74LS165	. 80	74:S326	2.55										
74LS48	85	74LS166	1.70	74iL3327	2.55 1.35			und		0 a	50	P	5\%	AT	
74LS49	1.00	74LS169	1.70	74LS353	1.35										
74LS54	. 20	74LS170	1.70	74LS365 7415366	. 60			oth	r	pes	hard	and	ector	disk	
74LS63	1.50	74LS173	1.10 .95	74LS3667	. 60					able	hon	for q	O.		
74LS73	. 35	74LS175	. 95	74LS368	. 60										
74LS74	. 42	74LS181	2.75	74LS373	1.75			gneti	ca	ds,	ca	ridg	tal	sse	
74LS76	. 35	74LS190	1.20 1.20	74LS374	1.75 .75						lso	tock			
74LS578 74LS83A	. 35	74LS192 $74 \mathrm{LS193}$	1.10 1.10	$74 L 5377$ $74 L S 378$	1.75 1.30 1		Of	or		from	hoo	coll		siti	
74LS85	1.00	74LS193	1.10 1.00	74LS378 7445379	1.30 1.40										
74LS 86	. 35	74LS195A	. 90	74LS381	3.65					Gov	d	acc			
74LS901	. 98	74LS196 74LS196	.95	74 LS3 366 74 LS390	$\begin{array}{r}\text { r } \\ 1.75 \\ \hline\end{array}$	E. PR	OMS		MEM	RIES		C PUS.		SOCKE	
$74 \mathrm{LS92}$. 90	74LS197	. 95	74LS393	1.50	1702 A		500p	2114		4000	6502	800 p		
74LS93A	. 65	74LS424	4.50	74LS395	1.80	2708		450p	2114		500 p	6800	700p	8 PIN	9 p
74LS95A	1.00	74LS445	1.25	74LS396	1.70	27161	+5vi	900 p	2114		500p	6802.	1200p	14 PIN	10 p
74LS96 $74 \mathrm{LS107}$	1.25	74LS447	1.25	74LS398	2.70	2532	+5v)	2700p	4116		500p	8080A	4500	16 PIN	$11 p$
$\text { 74LS } 109$	35	74LS490 74LS221	1.95 1.20	74LS399.	1.60 1.95				6810		350p	8085A	1100 p	24 PIN	22p
74LS112	35	74LS240	2.10	74LS669	. 95										
74LS113	. 40.	74LS241	1.90	74LS670	. 95										

Stop Press! Programmable Character Geneiator board for all Ohio Scientific systems. Available from early January - phone for details!

LFE

The ultimate implementation

Board size- 128×128

Speed - less than $11 / 2$ secs/ generation

Full cursor and board scan Load and dump on cassette Full documentation
Price: $£ 10.00$

FIRMWARE

CEGMON Monitor The best thing for OSI systems since OSI itself!

New editor...new screen handler New keyboard haridier New m/c monitor with full range of facilities
Available for Superboard/C1-P. CI-E, C1-U, C2, C4. UK10I £29.50 with 20 -page booklet

HARDWARE

Standard display (25x25) Superboard II, 4K 159.95 Challenger IP. 8K $\quad \mathbf{2 4 5 . 0 0}$ Display upgrade to $48 \times 32 \quad \mathbf{4 0 . 0 0}$ With 48×32 display. 2 MHz speed Superboard II-E, 4K $\mathbf{1 9 9 . 9 5}$ Challenger IP-E, 8K $\mathbf{2 8 5 . 0 0}$ 610 Expander board, $8 \mathrm{~K} \quad \mathbf{1 5 9 . 9 5}$ 610 Expander board, $24 \mathrm{~K} \mathbf{2 5 0 . 0 0}$ Single mini-floppy drive $\mathbf{2 8 9 . 0 0}$ Base-2 matrox printer $\quad \mathbf{3 7 5 . 0 0}$

AIDS

Workpads BASIC, machine-code, video memory-map, variables, etc. 100 -sheet pads $£ 2.30$

Laminated cards as pads, plus 6502 opcodes. number conversions, ASCII, new Challenger graphics set. Cards $\mathbf{£ 0 . 8 0}$ each We also stock Dooks!
video genie system

12K MICROSOFT BASIC
16K RAM, UHF MODULATOR INTERNAL CASSETTE
SECOND CASSETTE INTERFACE

80 COLUMNS
70 LINES PER MINUTE
GRAPHICS CHARACTERS INTERFACES TO MOST MACHINES
 TRS 80 LEVEL II SOF TWARE COMPATIBLE

Dealer List
3 Line Computin ABC Supplies

Advance TV
Services Allen TV Services
Amateur Radio Shop
Anglia Computer Centre Arden Data Beaver Computers

Blandford
Computers
Briers Bookshop
Buss Stop
Cambridge Micro-
computers
Catronics
Cavern Electronics
Computer Business
Systems
Computer and
Chips
Computerama
Computopia
D B Micro-
computers
Derwent Radio Eiron Computers
Eley Electronics
Eley Electromics

Hull 445496 Levenshulme
$061-431.9265$ Shipley 585333

Stoke on Trent

 616929 Huddersfield 20774Norwich 29652 Peterboro' 49577 Leicester 22255 22461 (tiehampton Blandford 53737 Middlesborough 242017 Watford 40698 Newport Pagnell 610625
Cambridge 314666
Wallingto
$6700 / 1$
6700/1
Milton Keynes
314925
Lytham 730033
St Andrews 72569
Bath 333232 Leighton Buzzard Limerick 42733 Scarborough 65996 Dublin 808575/ 805045 Dublin 808575/ 805045

East Midlands Nottingham 267079 Computer Service Emprise Ltd GB Organs \& TV

Colchester 865773 St Saviour Jersey 26788

$$
\begin{array}{ll}
\text { Gems oft } & \text { Woking 22881 } \\
\text { Kansas City } & \text { Chesterfield } 850
\end{array}
$$

$$
\begin{array}{ll}
\text { Gems oft } & \text { Woking 22881 } \\
\text { Kansas City } & \text { Chesterfield } 850357 \\
\text { Systems } &
\end{array}
$$

Systems
Kays Electronics
Leisuronics Marton Nicro-

Chesterfield 31696 Blackpool 2709 Northampt
890661 890661

Mel ton Mowbray Stoke on 541743 Matrix Computer Beckenham 01-658 Systems Midland Microcomputers Microdigital Mighty Micro Mighty Micro
Morrison Computer
Centre
MRS
Communications
Optelco
Q Tek Systems
Radio Shack Ltd
Rebvale Computers $\begin{aligned} & \text { O1-624 } 7174 \\ & \text { Garboldisham } \\ & 316\end{aligned}$
SMG Micro.
computers
SMG MicroTryfan Computers University Radio Stores Ward Electronics
Watford Electronics
$7508 / 7551$ Nottingham 298281
Liverpool 227-2535 Basingstoke 56417 Burniey 32209/ 53629
Swansea 795817 Cardiff 616396/7

Rayleigh 774089 Peterlee 865871 Stevenage 65385 London NW6

Gravesend 55813
Gravesend 55813 Bangor 52042 Not tingham 45466
Birmingham 0 554-0708 37774

Can youafford to be less than excellent?

Whether you're in high vacuum technology, space research, brewing, computers or commerce, if you've got something to control, we've got something with which to control it.
Our top quality range of British designed and manufactured S100 products from INTERACTIVE DATA SYSTEMS are already used in all the above fields and others by many of the country's leading industries and universities etc.
They all chose IDS equipment for excellent reasons, i.e.; EXCELLENT SPECIFICATIONS,

EXCELLENT DESIGN,

'High Vacuum Technology by SCANWEL Ltd, Bala, Gwynedd'
APPLY NOW FOR YOUR COPY OF OUR FREE CATALOGUE.

BRITISH S100 by INTERACTIVE DATA SYSTEMS
The MENDIP range includes:-
£A\&T *
235.00
198.00
114.00
198.00
223.00
105.00
32.50

IDS TERM 40
IDS SARACEN SERIES
4MHz Z280A Single Board Micro Computer,
1K RAM, sockets for up to 32 K EPROM,
2 Serial Ports, 4 channel CTC etc. 2 Serial Ports, 4 channel CTC etc.
IDS 16K SRAM 16 K bytes Static RAM board (2114). 8 K bytes memory board. sided diskette controller.
A mixture of input and output channels of various types to monitor and control external circuitry.
A basic 4 MHz Z80A processor board. Active Termination Board.
A range of "ready-to-go" systems based on
IDS components. from
(VDU and Printer extra)
from
1925.70

We also sell KIT versions how equipment to all except very experienced constructors with adequate test equipment Please add VAT to all prices (standard rate 15\%)

 57 BATH ROAD, WELLS, SOMERSET, BA5 3HS. TEL: WELLS (0749) 75249

Erase Eproms in 8 minutes for under $£ 100$

Happy Memories

4116	200 ns	$£ 2.95$	2114	200 ns	$£ 3.45$
2114	450 ns	$£ 2.95$	2716	5 V	$£ 7.95$
2708	450 ns	$£ 4.75$			

Memorex soft-sectored mini-discs with free plastic library case $£ 19.95$ per 10 .

Low profile I.C. sockets:
Pins: $\quad \begin{array}{lllllllll}8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 & 40\end{array}$
Pence: $\begin{array}{llllllllll}10 & 11 & 12 & 16 & 17 & 19 & 21 & 28 & 37\end{array}$
Euroconnectors:
64/96 Male (right angled) £2.39 64/96 Female $£ 3.52$
RS232 connectors (solder):
Male 25 way: £1.86 Female 25 way: £2.13
Hoods: 66p

ALL PRICES VAT INCLUSIVE

Please add 30 p postage to orders under $£ 10$. Government + Educational orders welcome £10 minimum
Capacity up to 14 EPROTMS
2708 type erased in 4 to 7 minutes
High intensity 254 NM UV source
Safety interlock automatically starts timing sequence Audio tone signals erasure cycle complete
Internal switch to extend erase time.
microdata Computers Ltd, Belvedere Works, Bilton Way, Pump Lane Industrial Estate, Hayes Middlesex

Telephone (01) 8489871 (6 lines)
Telex 934110

Happy Memories Gladestry Kington Herefordshire HR5 3NY
Tel: (054 422) 618

MAP SOFTWARE FAST MAIL

SALES LEDGER - Open item, 350 accounts, 3500 transactions, includes sales invoicing, requires 64 K and 2 floppy drives - $£ 300$
PURCHASE LEDGER - Ditto (no invoicing) - £300
NOMINAL LEDGER - 250 heads of analysis can be set by the user, 2500 transactions, P \& L, Balance Sheet and Trading Account - §300
ACCOUNTS PRODUCTION - Allows production of accounts from the nominal, after allowing for accruals, prepayments and up to 20 closing stock values - £110
STOCK RECORDING - In - Out balance system, receipts, orders, costings, below re-order levels, etc. £250
INCOMPLETE RECORDS - Designed for the professional accountant for production of accounts from Vouchers, Statements, Private Entry Documents etc. £550
As above including word processing for customisation of clients accounts - £900
NEWSBOY - An aid for Newsagents, keeps records of newsrounds, customer accounts etc:-£425
JOB COSTING - Creation, Post Purchases, Invoices, Labour, Stock, Delivery Notes, Status and Profitability $£ 550$

MAP HARDWARE

DOLPHIN BD 80 PRINTER - Full feature, serial or parallel interface (state which please) - £425 + cable
TEXAS OMNI 810 - Printer, very reliable, good for heavy duty utilisation, full 132 character width $-£ 1450+$ cable ANADEX 9500 - Superb fast matrix printer with lots of features including 132 column, character etc., serial interface - $£ 895+$ cable
We also supply SUPERBRAIN \& DYNABYTE Computers, Desks, Stands, Work-Stations, Stationery, Media etc., etc.

Please rush me the following SOFTWARE / HARDWARE:-
\square

Name
Address

Please make cheques payable to MAP as address below. Please allow 7 days for delivery. Hardware orders add £15 packing/ delivery.

IBM SELECTRIC GOLFBALL PRINTERS AND INPUT, OUTPUT 735 TYPEWRITERS

PRINTERS FROM
£195.00
735 TYPEWRITERS FROM WIRING AND COMMISION
TO SUIT ACULAB INTERFACE
£48.00
ACULAB INTERFACES EX STOCK
£155.00

ALSO AVAILABLE
IBM 71, 72, 82 typewriters.
Full workshop facilities for rebuilds and servicing. Keyboard ASCID-ASCII, 10-12 pitch, language conversions undertaken.
$11^{\prime \prime}, 13^{\prime \prime}, 15^{\prime \prime}$ platen lengths, split platens pin feed platens. Operational keylever repeats fitted on request.
Full IBM range of $10-12$ * pitch heads including language, symbol and metric.
Language keybuttons blue or grey

WE BUY SELL OR EXCHANGE ALL IBM SELECTRIC TYPEWRITER MODELS

For further details phone Stuart Kirby or Louis Baker Prices excl VAT @ 15\% carriage \& packing, callers by appt only please

Saul Lodge, Saul, Gloucester GL2 7JE Tel: $0452{ }^{\prime} 740612$

WE HAVE A COMPREHENSIVE AND GROWING RANGE OF SS50 BOARDS AND BUILT SYSTEMS PARTICULARLY SUITED TO EDUCATION, CONTROL SYSTEMS AND SOFTWARE DEVELPMENT.
AVAILABLE: Processor Card £80, Memory Mapped VDU with U/L Case and Graphics $£ 80,16-32$ K RAM Card $£ 130$, Interface Card with Timer and Real Time Clock. Disc Card, Extra Thick Mother Board.

As an example of a built system, the illustration shows Trainer 2, a single disc teaching unit with cassette, TV, keyboard and interface + switchbox to give a compact teaching station for machine control using basic or assemble. Price $£ 1130.00$

WE ARE OFFICIAL APPLE DEALERS.
16K Apple now only $\mathbf{£ 6 9 5}$ All. prices exclude VAT
HEWART MICROELECTRONICS
95 Blakelow. Road, Macclesfield, Cheshire Tel: 062522030

Digital Design and Development
18/19 Warren Street • London W1P 5DB Tel: 013877388

CBM PET SHARP MZ-80K Specialist Suppliers of Complete Systems for Industrial and Laboratory Monitoring and Control.

Please note our new address. Callers welcomed for demonstration and/or discussion.

SHARP MZ-8OK INTERFACES

- Parallel Printer Interface $£ 110$
- Serial Prirter Interface £150
- Bi-Directional Serial Interface £210
- 16-Channel A/D Convertor Unit £280
- Fast Data Acquisition System 40,000 readings/sec. 4 analog channels IN and 4 channels OUT.
P.O.A.

PET INTERFACES

IEEE-488 Compatible Units

- 16 Channel 8-Bit A/D Convertor £300
- 8 Channel 8-Bit D/A Convertor £350
- 8 Channel 12-Bit A/D Convertor £600

12-Bit D/A Convertor P.O.A

- X-Y Analog Plotter Interface £200
- Digital Data Input Unit, 64 Bits £400
- Digital Data Output Unit, 64 Bits £350
- 16 Channel Relay Unit £350

Also....

- USER Port Convertor A/D plus D/A £200
- Fast Data Acquisition System

40,000 readings per sec. 4 A/D + 4 D/A
P.O.A.

All units boxed complete with IEEE-488 address internally selectable, with integral power supply, cables, switch, fuse, indicators and illustrative BASIC software.

TERMS: All prices EX-VAT. P\&P extra Cheques should be made payable to 3D Digital Design \& Development. All goods supplied under 90 days warranty. CUSTOM DESIGN UNDERTAKEN

COMPUCOLOR II
The Priory - Great Milton - Oxon - OX9 7PB - Tel (08446) 729

13" COLOUR MONITOR for COLOUR GRAPHICS et - Built in MINNIFLOPPY DRIVE 51.2 K per side Impressive EXTENDED BASIC On 128×128

GAMES
Formatted Twin Pack

Chess Star Trip Blackjack Cubic Tic Tac Toe Sharks
Air Raid
Star Trader Swarms Bounce Shoot Lunar Lander Solitaire
Maze Master
COMPUCOLOR 11

The Color Advantage
Research studies chronicled in such professional publications as the Journal of Applied Psychology and the Journal of Experimental psychology as well as
extensive on the-job experience have pr extensive on-the-job experience have proven epeatedly that colour displays convey effectively than any other visual metho Color-coded displays lead to easier data recognition, thus minimizing search time and permitting faster operator response. Color dramatically reduces operator fatigue and can cut costly error by as much as 80%.

MODEL 3. 8K RAM MODEL 4, $16 K$ RAM
MODEL 5, 32KRAM MODEL5, 32K RAM CCNF 117 KEYBOARD MODEL 9. "TUTOR", 25 " COMPUCOLOR "EXECUTIVE" MODEL

All systerns include an Instruction Manual
Programming Manual, Sampler sof tdisc Demo piograms and six months free subscription of Colorcue Users Newsletter.

SYSTEMS/UTILITY

ASSEMBLER (16K)
TEXT EDITOR (16K) PERSONAL DATA BASE (16K) MONITOR (16K) CREEN EDITOR $116 K, 117 K Y$ YDI $£ 12.50$ SCREEN EDITOR ($16 \mathrm{~K}, 117 \mathrm{KYBD}) € 20.00$
FORMATTER DEBUGGER (16K)
PILOT (16K)
FORTRAN (32K

$£ 15.00$
$£ 15.00$
$£ 25.00$
$£ 12.50$
$£ £ 20.00$
$£ 20.00$
$£ 20.00$
$£ 30.00$
$£ 40.00$
$£ 25.00$

EDUCATIONAL
BASIC LANGUAGE VOL. MATH TUTOR
HANGMAN

ENGINEERING
STATISTICS 1 (16K)
STATISTICS 2 (16K)
E25.00

INTECOLOR 806
CP/M ${ }^{\text {TM }}$ Compatible System, $19{ }^{\prime \prime}$ Color Data Display with 590 K byte Dual 8^{\prime} Floppy Disk Drive. CP/M Operating System BASIC. Computer Manual and 32 K User RAM.
£2895.00 excl VAT

Color
Communicates Better

CP/M
Compatible
Desktop Computers
These Intecolor desktops are designed to give small businesses the advantages of both color graphics and an abundant selection of readily -available soltware. There are CP/M programs for virtually any business application, which minimizes the need for specially prepared software

Intecolor CP/M compatible desk tops are available in the $13^{\prime \prime}$ contemporary case
(model 8363), 19" contemporary case (model 8963) and $19^{\prime \prime}$ standard case (model 80631 .

RS232 ADAPTOR CABLE 52500 LOWER CASE CHARACTERS LOWER CASE CHAR ADD-ON RAM, $16 K$

ADD-ON PROM SOUNDWARE £ $\begin{array}{r}45.00\end{array}$ KEYBOARD UPGRADE $72.117 \quad £ 95.00$ | KEYBOARD UPGRADE 72.117 | f 135.00 |
| :--- | ---: |
| KE | |
| 101.117 | f 55 | MAINTENANCE MANUAL $£ 25.00$

NEW: in the
 Intecolor 8000 Series Desktop Computers

Intecolor 8964 features $19^{\prime \prime}$ display CP/M operating system and 1182 K byte storage capacity

MISCELLANEOUS HARDWARE
 The CP/M operating system is the latest version of CP/M, and is stored on SofDisk. TM When loaded, it allows the user to run any CP/M program without COBOL, FORTRAN IV or any other pro gramming languas

Languages

A Sof-Disk containing ISC's color version of Microsoft® Business BASIC is also included It provides 19 commands, 29 program state
ments, 15 input statements, 26 arithmetic functions, 15 string functions, and 9 input output functions. In addition, Microsoft COBOL and FORTRAN IV are available as options.
Memory and Mass Storage
CP/M compatible desktops are equipped with 32 K of user RAM lexpandable to 48 K and 8 K of ROM. Two disk drives are avail. able: the 591 K dual $8^{\prime \prime}$ floppy disk drives and the 1182 K double headed drive.

Basic Computing

MICROLINE-80 PRINTER $£ 385$ + VAT

- small, quiet, reliable - and now, cheap!

DAISY WHEEL PRINTERS FROM £1200+VAT for PET, Tandy, Apple, Sorcerer etc.

TOOLKIT FOR SORCERER
Extends Exidy BASIC to give full screen editing, user programmable function keys, auto line numbering, renumber, link programmes together + many other features. Price includes membership of Sorcerer Programme Exchange Club. $£ 30+V A T+50 p p \& p(=£ 35)$.

SORCERER PROGRAMMES
 Send SAE for list.

CP/M

Full range of software available on 8 " discs, eg, WORDSTAR/MAIL MERGE for $£ 300+$ VAT.

BUSINESS SYSTEMS

We specialise in business systems, single or multi-user, at competitive prices. Hard discs available now up to 64 Mby tes. Basic system: $64 k$, dual 8 " diskettes, terminal, S-100, CP/M - £3,100 + VAT.

We offer a personal service to our business customers, and are only able to do that within a 75 mile radius of Bradford.

Basic Computing, 25 Bradford Road,
Keighley, W. Yorkshire.
Tel (0535) 63145

FREE - ADVICE/DEMO/COFFEE

PET NEW KEYBOARD from $£ 399.00+£ 59.85$ VAT $£ 458.85$ COMPUKIT UK101 KIT $£ 179.00+£ 26.85$ VAT $£ 205.85$ UK 101 BUILT SUPERBOARD I STYLISH CASE-UK101/ BOARD TRS80 16K LEVELII 51/4 DISC DRIVE for TRS80 H 14 LINE PRINTER KIT BUILT Y SORCERER $16 / 32 / 48$ $\mathbf{£ 2 4 9 . 0 0}+£ 37.35$ VAT $£ 286.35$ $£ 156.52+£ 23.48$ VAT $£ 180.00$
$+3.39+$ + 4.41 VAT
$£ 29.39+£ 4.41$ VAT $£ 33.80$ $£ 356.00+£ 53.40$ VAT $£ 409.40$ $£ 236.00+£ 39.40$ VAT $£ 271.40$ $£ 356.00+£ 53.48$ VAT $£ 410.00$ $£ 510.00+£ 76.50$ VAT $£ 586.50$ from from $£ 749.00+£ 112.35$ VAT $£ 861.35$
VIDEO GENIE SYSTEM $16 K ~ £ 320.00+£ 48.00$ VAT $£ 368.00$ COMPUTER BOOKS • CASSETTES • DHSKS • PAPER SOFTWARE

2 New TRS 80 Adventures

Vampires Castle
Cratermass
TRS 80
Save the City
Mastermind
Space Attack
0×0
One Arm Bandit
Graphic Aid
SHARP
Sheepdog Trials
Invaders
Submarine
Graph Plotter
UK 101
Renumber
Graphic Finder
0×0
Pontoon

COMING SOON TRS 80 MODEL III

*Stylish Desk-Top Unit * Upper \& Lower Case

* 1500 Baud Cassette
*Model III Basic
*Software compatable with Model I
*Supports D.D. Disks
We are now accepting orders 16K Model III f649 inc.
(Unit 1) 61 Broad Lane Tottenham London N. 15.

PET' MACHINE LANGUAGE GUIDE

By ABACUS SOFTWARE

If you are interested in or are already into machine language programming on the PET, then this invaluable guide is for you. More than 30 of the PET's built-in routines are fully detailed so that the reader can immediately put them to good use.
Available for $\$ 7.95+\$ 2.00$ postage and handling. Payment is in U.S. dollars or charged to your Barclaycard or Eurocard include card number and expiration date. Quantity discounts are available.

फइझ5\% \%\%

ABACUS SOFTWARE

 P.O. Box 7211Grand Rapids, Michigan 49510

PET and APPLE II Users

PASCAL

ABACUS Software makes available its version of TINY PASCAL for the users of two of the most popular personal computers.
TINY PASCAL is a subset of the standard PASCAL as defined by Jensen and Wirth. It includes the structured programming fgatures: IF-THEN-ELSE, REPEAT-UNTIL, FOR TO/DOWN TODO, WHILE-DO, CASE-OF-ELSE,. FUNC and PROC. Now you can learn the language that is slated to become the successor to BASIC.
TINY PASCAL is a complete package that allows you to create, compile and execute programs written in the PASCAL language. You can save source and object code on diskette or cassette (PET version only). Comprehensive user's manual included. The manual can be examined for $\$ 12$ (refundable with software order).

VERSIONS AVAILABLE:
PET 16K/32K New ROMS cassette 850
PET 16K/32K New ROMS diskette $\$ 45$
Apple II $32 \mathrm{~K} / 48 \mathrm{~K}$ Applesoft ROM w/DOS 845
Apple II 48K Applesoft RAM w/DOS 845
TINY PASCAL User's Manual 812
6502 P-Code Interpreter Listing 830
Price includes airmail postage. All orders must be prepaid in U.S. dollars or Barclaycard or Eurocard - include card number and expiration date.

ABACUS SOFTWARE
P.O. Box 7211

Grand Rapids, Michigan 49510
U.S.A.

Research

 Resources Ltd
UNIX on a MICRO

* The new standard DEC/PDP operating system is now available on 6809 micros.
UNIFLEX is a MULTI-USER/MULTI-TASKING system for up to 12 users.
RRL provide the complete system with from 128 k to 768 k RAM.
2.5 Megabyte floppy disk drives and.16 Megabyte fixed disks.
Full range of VDU's, terminals, printers, interfaces etc.

SWTP and GIMIX 6809 computers

* RRL specialises in the EDUCATIONAL and SCIENTIFIC applications.
* Small systems from 32k with 5" disk drives upwards.
* PASCAL, FORTRAN, PILOT, BASIC Compiler, LABBASIC, Statistical Analysis etc.
* D-A, A-D converters and special interfaces to solve your problem.

Memories

$2114-300 \mathrm{~ns}$	$1 \mathrm{k} \times 4 \mathrm{SRAM}$	2.25
$4116-200 \mathrm{~ns}$	$16 \mathrm{k} \times 1 \mathrm{DRRAM}$	2.61
$2708-450 \mathrm{~ns}$	$1 \mathrm{k} \times 8 \mathrm{EPROM}$	3.60
$2516-450 \mathrm{~ns}$	$2 \mathrm{k} \times 8 \mathrm{EPROM}$	7.92
$2716-450 \mathrm{~ns}$	$2 \mathrm{k} \times 8 \mathrm{EPROM}$	7.92
$2532-450 \mathrm{~ns}$	$4 \mathrm{k} \times 8 \mathrm{EPROM}$	23.40

Please add 50 pence for postage and VAT.
Send SAE for price list.

STRUTT LTD

3c, BARLEY MARKET STREET, TAVISTOCK,
DEVON, England, PL19 0JF.
Tel: TAVISTOCK (0822) 5439/5548
Telex: 45263

CASH AND CARRY SUPERDEALS

SUPERBRAIN 64K
£1499 QUAD DENSITY SUPERBRAIN £1950 NEC SPINWRITER £1599 CROMENCO - (All hardware and software in stock for immediate delivery) WORDSTAR £245 MAILMERGE £ 75 WORDSTAR \& MAILMERGE £300 DATA STAR £175 DEALERS: BEST DISCOUNTS

Telephone 01-840 1926

Westwood Computers

117 TENNANT STREET, FIVE WAYS, BIRMINGHAM

In our new showrooms and training centre you can see the complete

Z Plus micro computer systems with word processing, accounts packages, stock control etc.

We're offering practical courses in programming - BASIC, PASCAL and COBOL, The Electronic Office, Computer Accounting, Newcomers Guide to the Computer World, and of course we have one of the most extensive ranges of computer books and services in the city. Browsers welcome
0
AUTHORISED APPLE DEALER

0216325824
On the street parking always available.

Applesoftware from Leicester Computer Centre

by R. Wagner

* Now with mathematics routine *

THE CORRESPONDENT is sure to be one of the most versatile programs in your library! It can be used as:
A Text Processor': Upper/lower case, 1-80 cols. (4-way scrolling). Text move/copy/insert/delete, tabbing, justify text, auto-centering and more! A Database (with or without printer!) Extremely fast find routine and easy editing make it a natural for free-form data files. Create and fill out forms, access phone lists or index your magazines.
A Programming Utility: (printer or not) Examine, edit, transfer random or sequential text files. Create versatile exec. files. Even put bidirectional scrolling in your own programs!

Apple disk $£ 29.95+$ VAT

Roger's Easel

by R. Wagner
At last a program which allows you to draw colour pictures in lo-res graphics, and then permanently link them to your own integer or Applesoft programs. Linked pictures can be displayed on either text/graphics page. (Integer basic).

Apple disk $£ 14.95+$ VAT

By Roger Wagner
An Aid to the Development and Documentation of Applesoft Programs This 3 program set is a must to anyone writing or using programs in Applesoft it not only provides valuable info. on each of your programs, but allows you to change any element throughout the listing almost as easily as you would change a single line!
With Apple-Doc you can produce a list of every variable in your program and the lines each is used on, each line called by a GOTO, GOSUB, etc., in fact, every occurance of almost anything! You can rename variables, change constants and referenced Jine numbers or do local or global replacement editing on your listing.
Apple-Doc is a must for the serious Applesoft programmer. Diskette complete with full documentation $£ 24.95+$ VAT PASCAL-FORTRAN COMPATABLE An exciting new addition to your Pascal library - enables you to create 3D graphics, viewable from any angle and distance. As easy to use as Turtlegraphics. Procedures include Ortho,
 to-3, View-from. Complete with comprehensive instructions $£ 49.95$ + VAT

Apple World

 is here. The fast 3D graphics package that runs on your Apple il plus. Zoom, pan, tilt and scale your own.designs on the Apple screen, at only $£ \mathbf{2 4 . 9 5}+$ VATPlus a complete range of "off the shelf" programs for finance, commercial, scientific and education. Keep yourself up to date, send for our "Fact Sheets" giving full program details
Now available Apple FORTRAN, Dos 3.3, Apple Plot
 computer centre limited 67 Regent Road, Leicester LE1 6YF, Tel: 0533556268

Applo III! Send for details now

Advanced Computer Equipment(Leeds)lid

95, MEADOW LANE, LEEDS, 11. Tel. 0532446960
New microcomputer store NOW OPEN PRUCES SHATTERED

COMMODORE PET

32K Professional keyboard green screen £575
Dual disk drive 347k
£625
Cassete deck C2N
£ 50
Printer 3022 Matrix Tractor
£375

APPLE \|PLUS

48K Auto start
£695

Disk with controller £345

Disk without controller £295
Hitachi 9" monitor B/W £120

SHARP $Z 80$

48 K with 34 K user RAM $£ 475$
36 K with 22 K user RAM £422
20K with 6 K user RAM
£380

Disk drives, printers etc.

PRINTERS
BD80P - Hi-speed bi-directional with adjustable tractor feed 750 byte buffer. 'Fantastic offer $£ 395$. IEEE * Parallel or RS232

SUPERBRAIN

64 K with single density 320 K disk £1450 $\begin{array}{ll}32 \mathrm{~K} \text { with single density } 320 \mathrm{~K} \text { disk } & £ 1395 \\ 64 \mathrm{~K} \text { with douple density } 700 \mathrm{~K} \text { disk } & £ 2300\end{array}$ 64 K with douple density 700 K disk

SUNDRIES

Data tapes super quality (10)
$51 / 1^{\prime \prime}$ certified verbatim (10)
Plain listing paper 2000 units
£12.50
Books * Games * Programs * galore
Visicalc * Desktop planner special offer

S100

Do You Have All These Facilities On Your S100 System, With Just Two Boards?

1. $Z 80 \mathrm{~A} \mathrm{CPU}-2$ or 4 MHz Operation.
2. Z80A CTC -4 Channels.
3. Z80A S10-2 RS-232.
4. Z80A P10.
5. Disk controller; Takes up to 4 disk drives, single or double density operation.
6. 64 k Bytes of memory.
7. EPROM Programmer.
8. Real time clock.
9. Software:

Standard 2k Monitor. CP/M Cold Start Loader. CP/M BIOS (1.4)
Prices:
FDC-1 Board £495.50
Expandoram $£ 327.56$
Mother Board $£ 42.00$
All prices exclude VAT.

SEMEL

MICROCOMPUTER - HARDWARE - SOFTWARE

3c, BARLEY MARKETST.,TAVISTOCK, DEVON. PL19.OJF.
Tel. TAVISTOCK (0822) 5247. Telex: 45263

ASSEMBLER PROGRAMMERS

WE HAVE CAREER OPENINGS FOR PROGRAMMERS WITH EXPERIENCE IN MICRO/ MINI ASSEMBLER/MACHINE LANGUAGE. WE ARE A LARGE COMPANY LOCATED IN CENTRAL LONDON AND ACTIVELY ENGAGED IN DEVELOPING STATE OF THE ART OPERATING SYSTEMS AND COMMUNICATIONS SOFTWARE FOR MINI COMPUTERS.

THESE POSITIONS WILL SUIT YOUNG AND HIGH CALIBRE PROGRAMMERS WHO HAVE AN INTEREST IN GETTING STARTED IN REAL TIME AND COMMUNICATIONS SOFTWARE DEVELOPMENT.

> PLEASE CALL P. MURRAY ON 01-4875881 FOR DETAILS

The North's Leading Nascom Specialist

NEW PRODUCTS FOR NASCOM

PROGRAMMABLE CHARACTER GENERATOR FOR NASCOM 2
Gives 64 Programmable characters 8,192 Programmable dots. Free demonstration software. Ask for details.
DISCS:
Single drive
£380.00
Double drive with CPM \& EBASIC
Ask for details. Professionally designed for your NASCOM.
KENILWORTH CASE:
A hight quality case made from stelvetite coated steel and solid mahogany
£49:50
Mounting kit for two cards $£ 7.50$
Mounting kit for five cards
£19.50
SARGON CHESS PACK:
This pack includes the book and a tape with Sargon prepared to run under NAS-SYS. Also included is a special graphics rom and a PCB giving your NASCOM the ability to switch between two graphics ROMs, your original and the chess ROM.
All the above for only
£35.00
INTERFACE EPROM BOARD:
Provides sockets for both 2708 and 2716 EPROMs (up to 16 EPROMs) and also provides a fully decoded socket for the NASCOM 8K BASIC ROM. This board is produced to full NASBUS specification and can be used in "page mode" together with the new NASCOM RAM B. Wait states may be generated on board to allow a NASCOM 1 to run at 4 MHz in BASIC. The complete kit at only
$£ 55.00$
CASTLE INTERFACE:
Gives the following features: Auto tape drive "Auto cassette muting * Auto serial printer muting * 2400/1200/300 BAUD cassette. This interface built and tested complete with documentation at only
£17.50
ASTEC $10^{\prime \prime}$ B/W MONITOR: \qquad
A professional cased 10 -inch Monitor giving superb resolution, only
$£ 99.50$
This unit gives 4 channels with an Input Range of 0 to 120 mV up to 0 to 24 V . Conversion time (average) 0.5 mSec . Supplied built and tested at only
$£ 49.50$
DUAL MONITOR:
e.g. T4 and NAS-SYS
€6.50
PORT PROBE:
A very useful device for testing and evaluating ports and peripheral software with improved documentation
HEX AND CONTROL KEY PADS: \qquad
Our popular range of add-on keyboards for the NASCOM micros.
HEX for NASCOM 2
$£ 34.00$
HEX \& CONTROL KEYS for NASCOM 1
CASSETTE MACHINE: \qquad
ured
by SHARP
PROGRAMMERS' AID:
$\mathbf{£ 2 5 . 5 0}$

In 22708 EPROM gives the NASCOM rom BASIC many extra commands: AUTO, RENU, DELE, DUMP, FIND, HEX, APND, HELP. . . etc.
£28.00
BITS \& P.C.s GAMES TAPE 1:
ع28.00

Good value, ten excellent games
PRINTERS: \qquad
the
NASCOM, RICHO EPSON IMP QUME ANADEX
BOOKS:
Full range including INMC mags.
MEDIA:
MEDIA:
Paper, diskettes, ribbons, leaderless casse ttes, VDU tables etc. MEMORIES:
$4116,4027,2708,2716$.
BUILT SYSTEMS REPAIRS MAIL ORDER and ADVICE are our SPECIALITY.

BITS \& P.C.s Computer Products Ltd.
4 Westgate, Wetherby, West Yorkshire.
най

Tel: 093763744.

SAE for details: prices exclude VAT and postage and package.

INTELLIIGENTARTEAACS

EastAnglia's LeadingMicro Specialists

We are looking for new applications for microprocessors and are prepared to write software for your application FREE of CHARGE as a development project.

We can provide software for Desktop microcomputers such as the Superbrain and the North Star Horizon; if you feel the efficiency of your business will be increased using one of the machines then please contact us at the address given below.

Intelligent Artefacts is a subsidiary of Sands-Whiteley R \& D, government listed microprocessor applications consultants, we have on our staff Applications Engineers experienced in business admini stration and a wide variety of manufacturing processes. We already supply programs for parts listing, PAYE, Job costing and General Ledger, on low cost hardware, giving all our products 1 year free support.

INTELLIGENT ARTEFACTS LTD Cambridge Road, Orwell, Royston, Herts.
Technical Services Department. Telephone ARRINGTON (022020) 689

Cunard Hotel Hammersmith 10-12 September 1981

The Show which brings your market direct to you ...

The Personal Computer World Show is the only exhibition exclusively for the small computer industry. It is your opportunity to meet, face-to-face, potential buyers who visit the Show specifically to see demonstrations and discuss the application of your products.

This is the Show where buyers come to buy ... not just look.
To discuss how the 4th Personal Computer World Show could form the focus of your 1981 promotional calendar contact Timothy Collins on 01-4861951 or write to him at Montbuild Ltd, 11 Manchester Square, London W1.
PCW 182

Abacus	177
Access Data	6
Acorn Computers	67
Aculab	168
Adda	18
Algray	23
Almarc Data Systems	56
Anglia Computer Centre	24
BFI Electronics	16
BASIC	176
Beaver Systems	171
Biodata	16
Bits \& Pieces	180
Byte Shop	112
Butel	74
CCS Mirrohire	30
Cambridge Computer	112
Store	112
Camden	30
Electronics	$35,179,157$
Chromasonic	22,23
Comart	14,66
Comp Shop	$184, I B C$
Computer Appreciation	95
Computer Bookshop	76
Computopia	39
Comserve	151
Cream Microcomputer	
Shop	26
Creative Computing	156
Crystal	84,172
Cumana	29
Currah	160
DRGBusiness	
Machines	20
Data Bank	11
Datormark	4,5
Datron Microcentre	32

NEW REDUCED PRICES

8K £399
16K £499
32K £599
RRP $£ 795$ for 32 K

The PEDIGREE PETS

use 8K Microsoll Basic in ROM 8K Pet 32K \& 16 K with

new improved keyboard All with green screen
Cassette Deck f55 extra Full range of sotiware avarlable
Interface PET IEEE - Centronics Parallel
Not decoded $\mathbf{E 4 9 . 0 0}+$ VAT Decoded $\mathbf{E} 7.00$ + VAT

NOW IN STOCK SUPER 80 COLUMN PET

only $\mathbf{£ 8 2 5}+\mathrm{VAT}$

NASCOM 2 GAMES TAPE

featuring Space Invaders and Android Nim, Re-numbering program and other goodies! £7.50 + VAT

NEC's high quality printer uses a print "thimble" that has less diameter and inertia than a daisy wheel, giving a quieter, faster, more reliable printer that can cope with plotting and printing (128 ASCII characters) with up to five copies, tion or tractor fed. The ribbon and thimble can be changed seconds. 55 characters per second bidirectional printing -
with red/black, bold, subscript, superscript, proportional with red/black, bold, subscript, superscriot, proportional
spacing, tabbing, and much, much more.

- TEAC FD-50A has 40 tracks glving 125 K Bytes unformatted single density capacity.
The FD-60A can be used in double density recording
The FD-50A is Shugart SA400 interface compatible.
- Directly compatible with Tandy TRS80 expansion

Also interfaces with Video Genie, SWTP, Heathkit, North Star Horizon, Superbrain, Nascom, etc, etc

- Address selection for Daisy chaining up to 4 Disks.

Disks plus power supply housed in case.
$\begin{aligned} & \text { Single } \\ & \text { Disk Drive } \\ & \mathbf{f} 225\end{aligned}+$ VAT $\quad \begin{aligned} & \text { Double } \\ & \text { Disk Drive }\end{aligned} \mathbf{£ 3 8 9}+$ VAT

COMP POCKET COMPUTER GREATEST BREAKTHROUGH YET £99.90

COMPUTER POWER THAT ONCE FILLED A ROOM
CAN NOW BE CARRIED IN YOUR POCK - Programs in BASIC "QWERTY" Alphabetic Battery Life.
Computer power that once filled a room can now be carried in your pocketl It's easy to load with ready-to-run software from cassette tape linterface and recorder optionall or iquid crystal readout displays one line at a time. Special feature is advanced non-volatile memory allows you to power on and off without losing the contents of memory Note: Memory must be transferred to tape before changing batteries. Automatic statement compaction squeezes ever ounce of memory space. Features power-off retention of programs and data. Po'ertul resident BASIC language strings, arrays and much more. Multiple program loading capability subject to RAM availability. Carrying case and batteries included.

Program	Each	Program	Each
Real Estate	$\mathbf{£ 1 3 . 9 5}$	Games 1	$\mathbf{£ 8 . 9 5}$
Civil Engineering	$\mathbf{£ 1 3 . 9 5}$	Business Statistics	$\mathbf{£ 1 0 . 5 5}$
Aviation	$\mathbf{£ 1 3 . 9 5}$	Business Financial	$\mathbf{£ 1 0 . 9 5}$
Math Drill	$\mathbf{8 8 . 9 5}$	Personal Financial	$\mathbf{£ 1 0 . 9 5}$

EXATRON STRINGY FLOPPY FOR TRS80
(Expansion interlace not needed) only $£ \mathbf{£ 1 6 9}+$ VAT

High Speed storage medium that is cheap and reliable Includes 20 wafers - M/C monitor - BUS EXPN cable. £ 169

YOU NEED NEVER MISS AN IMPORTANT CALL AGAIN TWO CORDLESS TELEPHONE SYSTEMS - DIRECT FROM USA

THE ALCOM

only $£ 147$ + VAT
Base station connects to your telephone line. Remote handset clips to your belt and gives you push-butron dialling - Bleeps when call arriving - Nicad rechargeable batteries. Charget in base unit

LOW COST TELEPHONE £99.95 ANSWERING MACHINE

Microprocessor controlled answering machine. Plug into your phone line. Records any phone call messages. Remote bleeper enables you to listen to your messages from anywhere in the world. Uses standard cassettes. Comes complete with mains adaptor, microohone, remote bleeper base unit, cassette with 30 sample pre-recorded messages

THE VIDEO GENIE SYSTEM EG3000
Series

16K
£289
software compatible - Hully TRS- 80 Leve II
sitan software compatible Huge
range of software already avilable Simply plugs ine, PSU, monitor or UHF TV © Full expansion to disks and printer - Absolutely complete - just fit into mains plug.

THE NEW ANADEX DP9501

A PROFESSIONAL PRINTER

HITACHI PROFESSIONAL MONITORS

 $9^{\prime \prime}$ - £129 $£ 99.95$ $12^{\prime \prime}-£ 199 £ 149$- Reliability Solld state circuitry using an IC and silicon transistors ensures high reliability. 500 lines horizontal resolution Horizontal resolution in excess of 500 lines is achieved in picture center. Stable picture Even played back pictures of VTR can be displayed without jittering. with built-in termination switch. External sync oporation (available as option for U and C types) - Compact construction Two monitors are mountable side by side in a standard 19 -inch rack

ENGLISH COLOUR TV/ AMERICAN NTSC COLOUR MONITOR

Suitable for Apple, Atari and Texas $99 / 4 \quad £ 295$ +VAT

8 MHz Super Quality Modulators	¢4.90
6 MHz Standard Modulators	¢2.90
C12 Computer Grade Cassettes	10 for $\mathbf{5 4 . 0 0}$
Anadex Printer Paper - 2000 sheets	25.00
Floppy Discs 5\%" Hard and Soft Sectored	13.50
Floppy Disc Library Case 54/"	c3.50
Verocases for Nascom 1 \& 2 etc.	$\underline{24.90}$
Keyboard Cases	¢9.90

MEMORY UPGRADES

$16 \mathrm{~K}(8 \times 4116) \quad £ 29.90$
4K Compukit (8×2114) $£ 29.90$ +VAT

largest collections of Computer Books under one roof, along with racks of software for the PET and TRS80. Come and see for yourself.

WE ARE NOW STOCKING THE APPLE II EUROPLUS AT REDUCED PRICES

16K £599 32K £649 48K 6659
Getting Started APPLE II is faster, smaller, and more powerful than its predecessors. And it's more fun to use too because of built-In features like:

- High-Resolution Graphics (in a 54,000 -Point Array) for Finely-Detailed Displays. Sound Capability that Brings Programs to Life. Hand Controls for Games and Other Human-Inpu: Applications. Internal Memory Capacity of 48 K Bytes of RAM, 12K Bytes of ROM: for Big-System Performance in a Small Package. Eight Accessory Expansion Slots to let the System Grow With Your Needs. You don't need to be an expert to enjoy APPLE II. It is a complete, ready-to-run computer. Just connect isplay and start using programs (or writing your own the first day. You'll find that its tutorial manuals helo you make it your own personal problem solver.

Please add VAT to all prices - including delivery. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number. MAIL ORDEB AND SHOP: CREDIT FACILITIES ARRANGED - send S.A.E. for application form 14 Station Road, New Barnet, Hertfordshire, EN5 10W (Close to New Barnet BR Station - Moorgate Line) Telephone: 01-441 2922 (Sales) 01-449 6596 Telex: 298755 TELCOM G

NEW WEST END SHOWROOM:

311 Edgware Road, London W2. Telephone: 01-262 0387 OPEN - 10am - 7pm - Monday to Saturday
"Europes Largest Discount Personal Computer Stores"
带 COMPSHOP USA, 1348 East Edinger, Santa Ana, California, Zip Code 92705 . Telephone: 01017145472526

(Part of the Compshop Ltd. Group)

We are now entering our fourth financial vear of dealing solely in the: nersonal computer market - in fact, wra started it! Over this perient. Personal Computers I imiterl have formed a group of graduates specalists who will help you in the fielels of word processing. firancial plamrung, statistics, economic modelling. foresasting. accounfing systems, Ioresqn exchange, hariking and oil exploration. We elise rles rither well with cemputer graphies and highly recommened the quaphics Pablets antid our ploiter for Apple.
We: ean alses isfter iwes expellerot items of soflwares - Format. 10 and Visicalc at a combuned price of ONLY £189, and the Super Sound Generator for only f.90) (excl, V.A.T.)

$8^{\prime \prime}$ Disk Drive (.slorove (e/t)
 the restotife ses urrity of Sturgart Technology. Easily intertacent io Apples. uses the semer UOS

A. I. O. Sermal and Parallel Card (ahoove centre)

Threse harrel shosk: limes (R.T.S. C.T.S. and D.C.D.). Firmware: Io sertal interfices fich besued, software for parillel printer avallahle, 2 hi dirseciorial 8 hit parrillet prati, plim 1 .utclitionol meserrupt and haurl shaking lires.
Lighis Pren filuraver infli,l)
A mise.h inenthe of eser pararlues which we iniroducesd to the IJ.K

80 Character Card (helow le/l)

opens up the real commercial worlif for all Apple owners.
Paper Tiger (Below centre)
132 character linies, plus graphics, 8 character sıes, ordinary paper, mulliple coppy. upper and lower cise 96 character, parallel/serial. Iorm control.
Cenironics 730 (Below right)
A suhstantial, rutanst printer from a major mantulacturer. 3 way paper liandling system. 100 character bear sectanff. Spuctal low cost inclading interiach. 96 charricters.

Items pictured

Sharp MZ - 80K
A new yeneration of personal compuiter, self containvad, versatile and starting at onlv 5570 (excl. VAT). Explore the Zilog 280 now the easy way. Disks and printer availaisle sloortly
Numeric Keypad
with 8 function kevs is a must in all financial appolications.
TCM 100 \& TCM 200
both now have graplics as well as their own power supply, eassential with this type of prititer.
Oume Sprint 5
Thus quality word processing primter. Clean. clear execulive ruports the way you wimt them. Can primt up to 5760 points per square trich or even print in 2 colours.

This iswhat wedo.

 muncio it rather well!
[^0]: 81 GATEWAYS TO LOGIC: Derrick Daines continues his series on teaching microcomputing.

[^1]:
 Please complete in block capitals and mail to:
 Datormark Ltd/Fox Oak/Seven Hills Road/Walton-on-Thames/Surrey KT12 4DG/England

[^2]: Dot-matrix printer with Pet

[^3]: TECHNICAL SPECIFICATION
 CPU: \quad Z80A 2 MHz or 4 MHz
 Memory: $\quad 1 \mathrm{k}-64 \mathrm{k}$ RAM 2 k or 8 k ROM (for Monitor or Basic)
 Keyboard: Full Qwerty 56 ch or 71 chs with numeric pad and cursor keys.
 Screen: Monitor or TV through UHF modulator 64 chs $x 16$ lines with on-board video
 Cassette: Supply your own, and your own connecting wires.
 Disk Drives: Up to 4 , any combination of $51 / 4 \mathrm{in}$ and 8 in single or double density.
 Printer: Dolphin BD80, Centronics 730 or 737 (with proportional spacing)
 Ports: RS232 serial and parallel. modem I/O. User definable.
 System S/W: 2 k MITSI in ROM for minimum system. Built into resident Basic and Pascal. 2k TUBS - ROM for running CP/M disk.
 Languages: Assembler, Basic and Pascal

[^4]: Contact your nearest dealer for a demonstration. Aberdeen Tyseal Typewriter Services, Tel: 29019; Belfast Cardiac Services, Tel: 625566; Birmingham Anglo American Computing, Tel Coleshill 65396; Taylor Wilson Systems, Tel: Knowle 6192; Bournemouth South Coast Business Machines, Tel: Wimborne 893040; Brighton Office Machinery Engineering, Tel: 689682; Bristol Decimal Business Machines, Tel: 294591; Cambridge Cambridge Computer Store, Tel: 65334; Chelmsford Automatic \& Electronic Calculators, Tel: 69529; Dublin Abacus Systems, Tel: 711966; Edinburgh Business \& Electronic Machines, Tel: 2264294 ; Holdene, Tel: 6682727 ; Glasgow Robox, Tel: 2215401 ; Leeds Holdene, Tel: 459459 ; Leicester Sumlock Services, Tél: 29673; Liverpool Rockliff Brothers, Tel: 521 5830; London Automatic \& Electronic Calculators, Tel: 2471886; Euro Calc, Tels: 739 6484, 6368161 , 405 3113; Su mlock-Bond ain, Tels: 250 0505, 6260487 ; The Xerox Store, Tel: 6290694 ; Manchester Automated Business Equipment, Tel: 4320708 ; Holdene, Tel: Wilmslow 529486; Newcastle Thos Hill Group, Tel: 739261; Newport Micromedia Systems Ltd, Tel: 59276; Reading CSE Computers, Tel: 61492; Sintrom Electronics, Tel: 85464; Royston (Herts) Electroplan, Tel: 41171; Southampton South Coast Business Machines, Tel: 22958; Sunderland Thos Hill Group, Tel: 42447; Tunbridge Wells DJ Herriott, Tel: 22443/4; Wallingford Midas Advisory Services, Tel; 36773; Watford Automatic \& Electronic Calculators, Tel: 31571; Woking Petalect Electronic Services Ltd, Tel: 69032; Worthing Office Machinery Engineering, Tel: 207292; Channel Islands: (Guernsey) Professional Business Systems, Tel: 26011, (Jersey) Professional Business Systems, Tel: 75611.

[^5]: Please add 45 p/order P \& P. V.A.T. of 15% payable after $14 / 1 / 81$ Sae for F ULLCATALOGUE to PROGRAM POWER 5. Wensley Road,

 Leeds LS7 2LX.
 Telephone (0532)683186.

[^6]: Character block $000000 \rightarrow 111111$

[^7]: 26 ALBANY ROAD
 RAYLEIGH ESSEX

[^8]:
 $136 \mathrm{H}=\mathrm{B}$ 明 $\mathrm{H}=10$

 15 IEF FHFC $=$ INT WFHI $T I+1$
 160 FEIHT＂J＂THEC16）＂ANAGRAM

 180 FFIHT＂HHICH TOU HA＂E NTG UHEOF＂
 19G FFINT＂HELE WITHIN 16 GECOIS．OHE＂
 20日 FFINT＂E TOUMHA＂E T＇TFEI A LETTEF：

[^9]: We supply various printers
 We will supply S100 expansion box, colour boards, disk drive fast tape drives, RS232 interfaces as available
 We supply some ' 80 , Genie and CP/M programs at 20% discount We buy some secondhand programs fin manufacturers' original pack and with original documentation only)
 S.A.E. for further information. Items and prices are as
 at time of going to press and are subject to alteration

