Project Electronics For Everyone

The Hobbit - Tolkien experts ring the changes on this popular game

SPRING HAS SPRUNG!

Ambit's Spring '84 catalogue

 brings all the parts you need for electronics, radio, audio and computing to your front door.There's details about * an exciting new range of kits and modules being launched into the UK in conjunction with the leading German hobby supplier; full information on our two new regional sales counters in Portsmouth and Broxbourne; new low cost instruments from Black Star -plus all your old favountes:

NiCads, chargers, TOKO coils,

Available from all good newsagents,
or direct from ambit
Order as Stock Number:
02-00009
 filters, and communications ICs, crystal filters, Audio and RF semiconductors - including the biggest range of low cost varicap diodes for all types of electronic tuning.
More than ever, Ambit's concise 'price on the page' Spring catalogue is the one that you cannot afford to be without. It's fully indexed, precise and up to the minute -get a copy now!

We operate a fully on-line telesales service between 9 am and 5.30 pm (Visa, Access, Amex)

all mail order to:

200 North Service Road, Brentwood, Essex telephone (0277) 230909 international

Sales counters at: Park Lane, Broxbourne, Herts Burrields Road, Portsmouth

Figctrontces

PROJECTS

* OFFBEAT METRONOME 11

A metronome with several differences.
$\star 3 \mathrm{HZ}$ - 3 MHZ SINE WAVE GENERATOR27
A sine for every occasion

* LIGHTNING CHESS TIMER 54Don't think - do it now.
FEATURES
\star ALL ABOUT ELECTRONICS PART 8 20
Bistables and counters.
* BREADBOARD 24
What we saw at the show. 41
\star CAREERS IN ELECTRONICS 49 the Roval Air Force
* REVIEW: MEMOTECH MTX 500/512 MICRO
larger memories
\star THE HOBBIT 56
Another lok at N
* A LEAP IN THE DARK 44
Sinclair's new OL microcomputer previewed.
SPECIALS
* THE COMPLETE CUMULATIVE INDEX1978-198331
Profoundly researched, proven in the field, thefinal and definitive guide.
REGULARS
Monitor 6
Points Of View 16
Whats On Next 18
Buylines
26
26
HE Bookshelf 46
Forward Bias 47
HE PCB Service 63
HE PCB Page 64

Note: This month Hobby Electronics and Digital \& Micro Electronics welcomes Terry Johnson as Technical Editorial Assistant. The gent has extensive experience both in journalism and the components trade and is a long-awaited and muchneeded addition to our team. Now, about that box of technical enquiries, Terry
Editor: Ron Keeley
Deputy Editor: Helen P. Armstrong BA
Technical Editorial Assistant: Terry Johnson
Technical lilustrator: Jerry Fowler
Advertisement Manager: Joanne James
Copy Control: Lynn Collis
Managing Editor: Ron Harris BSc
Chief Executive: T. J. Connell
We are not normally able to deal with technical enquiries by 'phone, so please don't ring. Write to us with an SAE.

Lightning Chess Timer - page 54

Breadboard '83 - page 24

Sinclair QL. Micro - page 44

[^0]Printed by The Garden City Press, Letchworth, Herts SG6 1 JS. Covers printed by Alabaster Passmore
Notice: The contents of this publication including all designs, plans, drawings and programs and wil copyright and other intellectual property rights therein belong to Argus Specialist Publications Lid. All rights conferred by the Law of Copysight and other intelfectual property rights by virtue of international copyright conventions are specifically eserved to Argus S magazine to ensure accuracy, but Argus Specialist Publications Ltd cannot be held responsible legally. ©Copyright 1984 Argus Specialist Publications Lid. Member of Audit Bureau
of Circulation.

PREVIOUSLY ADVERTISED STILL AVAILABLE
Tape punch and reader isolating transformer 250 watt
BOAC in-flight stereo unlt

- $\begin{aligned} & \text { £ } 7.75\end{aligned}$

Drill assortmant 4 each 25 sizes between 25 mm \& $2.5 \mathrm{~mm} \quad £ 11.50$
Battery condition tester, less box
Nicad chargers, mains
Flourescent inventor 13 watt from $12 v$
Ten digit stitch pad-pb phone etc.
Uniselector 2 pole 25 way
Water valve mains operated
Counter 6 digit mains operated
ditto $12 v$ resettable
Double glazing clear PVC sheet, $23 \% /{ }^{\prime \prime}$ wide-per running it
Locking mechanism with 2 keys
Magnetic Clutch
Mouth operated suck or blow switch
Solenoid with siug $8-12 v$ battery op.
ditto 230 w mains
Timer Omron STP NH 110 V AC Coll
Key switch with 2 keys dp mains
Air valve mains operated
Latching relay mains operated
Coin op switch, cased with coin tra

THIS MONTH'S SNIP

WHY PAY £10 OR MORE - Make yourself a
Joystick - full details were given in Dec/Jan 'Sinclar Joystick - full details were given in Dec/Jan 'Sinclair
Projects'. We will supply complete kit for $\mathbf{E 2 . 3 0}$. Although destgned for the Spectrum or $\mathbf{Z X 8 1} \mathrm{it}$ Is equally suitable deslgned for the Spectrux
for any home computer

REVERSIBLE MOTOR with control gear Made by the famous Framco Company this robust motor is approx $7 \% h^{\prime \prime}$ long. 3% famous Framco Company this robust motor is approx $7 \mathrm{Y}^{\prime \prime}$ Iong. 3%
dia. $3 / 8^{\prime \prime}$ shaft. Very powerful, almost impossible to stop. Idesi for dia, $3 / 8$ shaft. Very poweriul, almost impossible to stop. Idesi for properly balancer. Offered complete with control gear as follows: 1 Framco motor with gear box 1 push to start switch $\begin{array}{ll}1 \text { manual reversing \& on/off swizch } & 2 \text { limit ston switches } \\ 1 \text { circuir diag. of connections } & \text { ONLY } £ 12 \text { iO }+ \text { postage } £ 2.50\end{array}$ FOR SOMEONE SPECIAL
Why not make your greeting card play a tune? It could play 'Happy Birthday', 'Merry Christm as', 'Wedding March', etc, or 'Home Sweet Home', etc. Wafer thin 3 part assemblies, for
making cards musical. Mini microchip speaker and bavery wit making cards musical. Mini micr ochip speaker and batrery with
switch that operates as the card is opened. Please state tune when ordering. Complete, ready to work Et.25.
REEL TO REEL TAPE DECKS
Ex-Langupge Teaching School. Second, but we understand these are in good order; any not so woula be exchanged. The deck is
standard with normal record, replay facilities and an additions feature is tape rev counter. Nicely finished in teak rype bo
We have 30 only of these. Price $£ 8.50$ each $+£ 3$ carrlage.
TELEPHONE ITEMS
Plug and Wall socket - 4 pin or 5 pin
Plugs onty 4 pln or 5 pln
Modern desk telephone
Modern desk telephon
Hesvy black old type
Hesyy back old t
External bell unit
$€ 3.45$
$£ 1.15$
$£ 7.50$

Bell ringing power
Pick up coil
STABILISED
By LAMDA (USA) - IdER SUPPLY (Mains Input) Regulated for line volts and load current. Voltage regulation. 1% with input variations up to 20% - load regulation 1% from no load to full load - or full load to no load. Complete in heavy dury case - Models avalable: $5 \mathrm{v} \cdot 9 \mathrm{~A} £ 23.12 \mathrm{v}$
$£ 13.25 .15 \mathrm{v} \cdot 1.2 \mathrm{~A} £ 13.25 .24 \mathrm{v}-2 \mathrm{~A} £ 23$.
PRESTEL UNIT plug in IC's - Pric

+ E2.00 posp.
Note: British Tele Note: British Tele
com may not
connect this equip ment as there is no guarantee it, however
it is well worth buying
 it is well worth buying
for its immense breakdow

value - sold originally at'over $£ 150$

FROZEN PIPES. Can be avoided by winding our heating cable around them - 15 mirs connected to mains costs onlv about $10 p$ per week to run. Hundress
flexible 25A ELECTRICAL PROGRAMMER Leann in vour sleep Have radio playing and kettle boiling as you wake - switch on lights do all these and more. By a famous maker with 25 amp onloff switch
Independent 60 minute memory logger. A beautiful unit ot $£ 2.50$. 24 HOUR TIME SWITCH - Made for control of Randall Central Heating Boilers these give 2 on/offs per $24 \mathrm{hrs}$. Equally
suitable for control of immersion heaters of heating systems. $£ 4.60$

50 THINGS YOU CAN MAKE

Things you can make include Multi range meter, Low
ohms tester, A.C. amps meter, Alarm clock Soldering ohms tester, A.C. amps meter, Alarm clack, Soldering
tran minder. Two way telephone, Memory jogger, Live line tester. Continuity checker, etc. etc., and vou will still have hundreds of parts for future project ts. Our 10 Kg
parcel contains not less than 1,000 items . panel meters timers, thermal trips, relays, switches, motors, drills, trips,
and dies, tools, thermostats, coils, condensers, resistors, and dies, tools, thermos tats, coils, condensers, resistors,
neons, earphone/microphones, nicad charger, power unit, multi-turn pots and notes on the 50 projects.
YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.
MINI-MULTI TESTER Deluke pocket size precision moving coil instrument, Jewelled bearings - 2000 o.p.v. mirrored sca
11 instant range measures:
DC volts $10.50 .250,1000$. $D C$ volts $10,50,250,1000$.
AC voltz $10,50,250,1000$.
DC amps $0-100 \mathrm{~mA}$.
Continuity and resistance $\mathbf{0 . 1} \mathbf{~ m e g}$ ohm ind ranges. Complete with test prods and instruction book showing how to Unbellievable value at only $£ 6.75+60 \mathrm{p}$
and insurance.
FREE Amps range kit to enable you to read DC current from 0 10 amps, directly on the 0.10 scale. It'z free if you purchase
quickly, but if you alresdy own quickly, but if you alresdy own
Mini-T-Tster and would like one send EZ.60.

J. BULL(Electrical) Lta.
 (Dept, HE), 34.36 AMERICA LANE, AYWARDS HEATH SUSSEX RH 16 30U. Eslithed 30 YEARS

MAIL ORDER TERMS: Cabh, P.O. or cheque with order. Orders under E12 add 60 p service charge. Monthly account orders accepted from schools and public companies. Access \& B/card orders eccepted dav or Shop open $9.00-5.30$, mon to Fri, not Seturday.

STORE CLOSING SALE

All stocks must go from one of our big warehouses. $10,000,000$ tems, every thing from AERIALS to ZENER will be cleared at
fantastically low prices. If you are a manufocturer you can sav yourself a fortune-send for our Sele List, not for smail buyers o yourself a fortune - sen
minimum order $£ 100$.

EXTRACTOR FANS - MAINS OPERATED

85, Port 1.25.

 $5^{\prime \prime}$ Plannair extractor £6.50. Post $£ 1.25$ $x 4^{\prime \prime}$ Muffin 115 w. £4.50. Post 75p. x4"Mufin 230 N.£5.75. Post 75 p . All the sbove ex-comput those below are unused.
$4^{\prime \prime} \times 4^{\prime \prime}$ E8.50. Post 75p. Americen made $£ 11.50$. post $£ 2.00$.
Tangential Blower $10 \times \mathrm{x}$

air outiet. dual speed
£4.60. Post $£ 1.50$.
TANGENTIAL BLOW HEATER
by British Solartron, as
used in best blow haaters.
2 KW approx $9^{\prime \prime}$ wide e5.95, 3 Kw either g" or 12 " wide
lyour choice) $\mathrm{E6.95}$ com.
plete with 'cold', 'half' and full' hear switch, safery
 cut out and connection dlg, 2.5 Kiw KIT stull available: $£ 4.95+£ 1.50$ post.

MINATUUE WAFER SWTCHES 2 pole, 2 way -4 pole, 2 way -3 pole, 3 way 2 pole, 6 wey
All at 25 peach

BLEEP TONE These work off $12 v$ and have sn unusuat and

CONNECTING WIRE PACK 48 lengths of connec ..1g wire, each 1 metre long and differently colour coded, a must for RED LEDS 10 for 69 p. 100 for $£ 5.75 .1000$ for $£ 52$.

IN LINE SIMMERSTAT ideal heat controller for soldering

VENNER TIME SWITCH
Mains operated with 20 amp switch, one sutomatically correcting for the lengthen ing or shortening cay. An expensive time switch but you can have it for only E2.95 Thase are without case, but we can supply al case - 22.95 this into a normal 24 hr . time switch but with the added actvantage of up to 12 on/offs per 24 hrs . This makes an ideal controller for the imm.

ONISER KIT
Refresh your home, office, shop, work room, etc. with a harder - a complete mains operated kit, case included.
$£ 11.95$ plus $£ 2.00$ post.

OTHER POPULAR PROJECTS

Short Wave Ser - covers a plug-in coils. Kit complete

A C Bridge Kit

3 Channel Sound to Light - with fully prepared metal case. Ditto - made up
Blg Ear, listen through walls
Robot controller - receiver/transmitter
gnition klt - helps starting, saves petrol, improves
performance
Silent sentinel Ulitrs Sonic
Car Light 'left on' alarm
Secret switch - fools friends and enemies alike
3-30v Variable Power Supply
2 short \& Medium wave Crystal Radio
3 v to 96 v Mains Power Supply Kit
Light Chaser
Mullard Unilex HiFi stereo -three modes
Radio stethoscope - fault finding aid
Mug stop - emits piercing squark
Mug stop - emits piercing squark
Drill control kit
Drill control kit - mada up
Interrupted beam kis
Transmitter surveillance kit
Radio Mike
FM receiver kit - for'surveillance or normal FM
Seat Bolt reminder
Car Starter Charger Kit
Sol hequer for plants end soeds Insulation Testar - alectronic megoer
Battery shaver or fluorescent from 12 Matchbox Radio - receives Medlum Wave Mixer Pre-emp - disco spacial with case
Aeriel Fozator - mains operated
Aarial direction indicator
40 watt amp - hifl $20 \mathrm{hz}-20 \mathrm{kHz}$ Microvalt multiplier
ordlnary multitester
Pure Sine Wove Generato
Linear Power output meter
115 Watt Amplifier 5 Hz 25 kHz
Sterso Bass Booster, most items
¢14.50
£9.95
814.95

E25.00
ع9.50
69.50
9.50

£13.95

$\varepsilon 9.50$
69.50
63.50

ع1.85'
ع13.80
ع 8.99
$£ 1.95$
$£ 17.50$
64.80
$£ 4.80$
$£ 2.50$
$\begin{array}{r}£ 2.59 \\ \hline\end{array}$
$£ 2.99$
$£ 3.95$

$£ 3.95$ $\mathbf{£} .95$

£6.95 $\mathbf{£ 2 . 5 0}$

$\mathbf{£ 2 . 5 0}$
$\mathbf{£ 2 . 3 0}$
£ 2.30
$\mathbf{~} 6.90$
$£ 3.50$
$£ 3.00$
E3.00

ع16.50

£7.95
$£ 6.90$
£2.95
ع16.00
£29.50
$£ 5.50$
$£ 9.50$
£3.95
£5.75
£5.75
$\mathbf{E 1 1 . 5 0}$
£11.50
$€ 8.50$

MONITOR

On The Counter

The Meteor 600 is the first in a series of digital frequency counters announced by Black Star. With typical frequency measurement range of $2 \mathrm{~Hz}-700 \mathrm{MHz}$. sensitivity of $<25 \mathrm{mV}$ at 600 MHz and resolution down to $\mathrm{OHz1}$, the Meteor 600 also features $8 \times 1 / 2$ in bright LED displays, three gate times, two inputs, trigger level control and an integral low pass filter.

The counter is housed in a sturdy, custom-moulded ABS case with a tilt stand. The Meteor 600 can be operated from rechargeable batteries or mains and is supplied complete with mains adaptor/charger and comprehensive instruction manual. A wide range of optional accessories is available.

The combination of high specification and reliability together with low cost plus flexibility of bench or field use makes the Meteor 600 useful for anyone involved in the design or service of CB, audio, communications systems etc. The price (excluding VAT) is $£ 115$. A 100 MHz and a 1 GHz version are also available.

Further details are available from Black Star Ltd., 9A Crown Street, St. Ives, Huntingdon, Cambs PE17 4EB Tel: (0480) 62440.

New Vintage

The Vintage Wireless Company, purveyors of obsolete electronics, radio TV and industrial valves, antique wireless equipment, industrial electronics and valve hifi have now established themselves at their new address: Tudor House, Cossham St. Mangotsfield, Bristol BS 17 3EN. Tel: (0272) 565472 (24hr Ansaphone).

Their new business hours are Monday to Friday 9.5 to 5.30, excepting lunch 1.15 to 2.15 , callers by appointment for collection and delivery only till further notice (they are only dealing by mail order at present).

The Antique Wireless Newsheot, their newsletter/catalogue is available at twelve issues for $£ 3.50$ UK and Eire. $£ 5.00$ overseas (air mail).

Putting Pen To Circuit

With the introduction of the new 3211 Pen Digital Multimeter, Dorman Smith Instruments reckon they have the last word in portable measuring equipment. The 3211 is built like a pen which can be held in one hand and touched to the circuit to obtain a reading. Advanced design and the 'touch-to-circuit' concept has enabled this portable digital multimeter to take readings in pr zviously hard-to-reach locations and with an additional HOLD function a reading can be obtained until the operator is able to record it easily.

All controls are arranged for operational use, including the easy to

read digital display - ideal for troubleshooting and maintenance work on computer systems, the 3211 will also make fast, reliable readings possible on other microcircuits and standard electrical devices. An audible tone of sounds reports the results of the continuity tests, function switching and overrange input.
For further information contact Dorman Smith Instruments, Group Publicity Department, Blackpool Rd., Preston PR2 2DO. Tel: (0772) 728271.

Mighty Mite?

An ultra miniature 50 V microswitch with an actuator arm has been announced by Semiconductor Supplies International. The switch's dimensions are height 10 mm (including the pins, and with the lever compréssed), width 8 mm and thickness 3 mm .

The lever on the switch is designed for cam follower applications as well as ordinary compression. Possible uses are tamper proofing or safety switching of small equipment including security equipment such as sensors and for switching scale models and any other miniaturised equipment.

The switch weighs 0.3 gm , and is possibly an example of unusually advanced technology, as according to SSI's new release it has a 300MA single pole changeover, which is probably enough to handle the entire national grid. Anyone intending to use it for 300 mA applications, however, is probably safe to go ahead without making further enquiries as to specification! The price is $£ 4.00$ for ten, p\&p inclusive.

Orders and enquiries to Semiconductor Supplies, 128/130 Carshalton Rd., Sutton, Surrey SM1 4RS. Tel: 01 6431126.

Portable Test Gear

Professional test equipment from Thandar Electronics Ltd.,: the TG 101 is a mains-operated function generator working from 0.02 Hz to 200 Hz .

The frequency is selectable via a fiveposition range switch and a calibrated vernier, or by the sweep input which enables the generator frequency to be adjusted via an external control voltage. Both vernier and sweep input can give more than 1000:1 frequency change within the selected range. A typical external sweep range is $10,000: 1$.

A variable output of 600R is controlled over a range of more than 80 dB up to a maximum of 10 V peak to peak via a single vernier plus two position switched attenuator. The DC offset is switch selectable and the vernier provides adjustment of up to $\pm 5 \mathrm{~V}$ from 6000R.

Square, sine, triangle and the DC waveforms can be selected, and a TTL output is provided. The unit measures $255 \times 150 \times 50 \mathrm{~mm}$ in its ABS case and weighs 1200 gms . It will operate from a $50 / 60 \mathrm{~Hz}$ supply of $100-120 \mathrm{VAC}$ or 200 -240VAC. Price is $£ 99$ plus VAT.

The TM356 is a battery-operated lab multimeter. With twenty nine ranges it can measure voltage from 100 uV 1000 V (750 VAC), current from 100 nA 10A and resistance from 100 mR to 20MR. Battery life from alkaline ' C ' cells is over 3000 hours, and a low-battery indicator shows when 10% battery life remains. The ABS case has a handle and stand for portable and bench use, and the weight is 1200 gm with full batteries. The price is $£ 85$ plus VAT.

A video head tester, priced at $£ 45$ plus VAT, is available in two models, the KNC-909V (for VHS) and LHC-909B (for Betamax) is also available to measure the wear in VCR-heads.
For further information about any of these, contact Thandar Electronics Ltd., London Rd., St. Ives, Huntingdon, Cambs PE17 4HJ. Tel: (0480) 64646.

New For Glue

A new heater called the PTC (Positive Temperature Co-efficient) means that an operating temperature is maintained without a thermostat. This is the new technology incorporated in BetA Fastening Systems' latest addition to their range of four hot-melt glue applicators - a new baby, the BeA Hotfix 180 which brings instant bonding to most materials.
Operating on a 100-240 V power supply, it can be used within three or four minutes of being plugged in. By simply feeding glue sticks into the back of the tool and squeezing the trigger, application of hot-melt glue becomes easy, quick and accurate. The adhesive not only bonds, but seals, insulates, fills and reinforces. There is a range of nozzles for the machine and a variety of

glues for different materials. The Hotfix 180 is double insulated, has a power warning light, and a fully enclosed heater housing. The clip-on stand provides stability.

The price is $£ 16.95$ plus VAT. Enquiries about the range to BeA Fastening Systems Ltd., Swinemoor Industrial Estate, Beverley, Humberside HU17 OLA. Tel: (0482) 861075.

Clean Screen

The introduction of anti-glare filters, manufactured from nylon or such material and in the form of a very fine mesh to defuse reflected light from VDU screens is an excellent idea but one that presents a cleaning job. These filters, manufactured from man made fibres, are now being fitted in contact with the glass VDU screen which accentuates the build up of static. This fine mesh becomes clogged with contaminants, making the screen even more difficult to see.

If water only is used, some of the water penetrates the filter and deposits water marks and contaminants on the screen. There is also the risk of water running down the front of the filter and seeping into the surrounding cabinet. The new 'Data Care' product Anti Static Screen Cleaner is a specially prepared formula of solvents, with anti-static properties, and is used in such a way as to remove contaminants from meshed surfaces.

Anti-Static Screen Cleaner is available in $340 \mathrm{~g} / 400 \mathrm{mls}$ aerosols or in kit form, incorporating an anti-static foam cleaner, anti-static screen cleaner and one hundred lint free wipes. To control static build-up, keep filter/screen in good condition and for general cleaning of hard surfaces found in a computer environment.

More information from Sapona Chemicals Ltd., 46-50 Upper Dean St. Birmingham B5 4SG. Tel: 021-622 6442.

MONITOR

Culture Club

The autumn issue of the British Amatéur Electronics Club's newsletter is mostly taken up with part four of their series by C. Roper, Electronics A-Z, which covers Resistor/Capacitor circuits, AC circuits, series circuits and many permutations. There is also the usual letters page and Notes From An Experimenter's Workshop by H. F. Howard.

The Winter issue should appear in January. The BAEC, apart from its newsletter provides a loan library of electronics books and periodicals, an annual exhibition, and various other membership benefits. Membership for UK and Eire members is $£ 5.50$, overseas surface mail is $£ 7.00$, all European memberships 56.00 , and other airmail memberships $£ 8.50$. Memberships run from January 1 st to January 1st, and members receive all the newsletters for the year they join regardless of which month they join in.

Chairman and editor Cyril Bogod and his helpers were much in evidence at Breadboard this year. Keep up the good work, chaps. Subscriptions and enquiries should go to the Chairman, Mr. Cyril Bogod, "Dickens". 26 Forest Rd., Penarth, S. Glam CF6 2DP

I Have Seen The Future Of Television, But They Won't Let Me Near It.

We can look forward, in the as-yetunscheduled future, to being able to watch two television programmes on one screen: either a step closer to heaven or the ultimate horrorshow, depending on what your attitude to television is. Remembering early catfights around the subject of whether we were going to watch Match Of The Day or The Old Grey Whistle Test, I veer towards the former opinion. At least then you can see what you're fighting about.

The machine in question is a new multifunctional digital TV' by Matsushita of Japan, the people who market under the name National Panasonic in the UK. By 'multifunctional', they mean

that it's a member of the modern generation which can accommodate teletext, viewdata, video equipment, hifi and all the rest.

The 'second screen' is a digitally processed 6 in colour picture which can be inserted in the main 20 in screen (see picture). The TV has its own CPU and, being digital, boasts 'crisper, cleaner images due to the reduction of spots, screen flickering and colour saturation which exist in analogue sets'. Panasonic also say that the set has 30% fewer components than the normal analogue set, which increases reliability and reduces cost. As we have no prices to compare, it remains to be seen whether the reduction in cost will be actually or purely relative.

The infra-red remote controller controls sixty-one functions, including both the picture qualities (brightness, saturation etc) of the television, and any other equipment hooked up to it, and, since the control signal is generated by an 11 bit digital system, it is, they say theoretically capable of controlling up to 2,048 functions.
The development of the household television into the home information centre of the future seems to be well under way, though it is still a minority of houses that have teletext, home computers and VCRs, let alone use them for anything more solemn than light entertainment. Mind you, my mother-in-law gave my granda two winners which she saw tipped on the teletext while she was setting up the VCR for Christmas . . . a few more like that and she'll have covered the cost of the television. Be that as it may, I still remain sceptical that you can afford to budget for more than two people squabbling over the TV (let's be modern and call it a monitor) screen at one time. If we're going to have a VCR, video player and a video camera hooked up to the telly, then the games console and the home computer will have to go in the other room with their own monitor, the
hifi will have to go in the cellar or the attic, and we can soundproof the lot while we're about it. Alternatively, the lounge can be fitted out with individual booths for all the family

So why can't we have the twoscreen television right away? If Panasonic don't move soon, every household will have a second telly, or even a third telly, and we won't need one which shows two progs at once. Maybe it's happened already . . . everyone I know seems to be rescuing discarded black and whites off rubbish tips. We're still looking for a VCR, but no luck yet.

For people who can't afford (or face) even one full-sized TV screen, let alone two in one. Matsushita are also developing a portable $61 / 2$ in rearprojection colour TV which folds down into an attache case weighing 3 kg and measuring $25 \times 8.5 \times 31 \mathrm{~cm}$, about half the size and weight of a normal 7 in screen TV, uses 12 W and can be used as a monitor for other video equipment. Ideal for closet TV addicts, but you can't fold it in half and put it in your back pocket, or scribble addresses on it, so don't expect multifunctional, digital (all typed by hand) HE to go teletext in the near future.

Feel The Heat

Electronic Temperature Instruments have introduced a new all electronic miniature multi purpose thermometer. The Thermotron has two unique features, price and size. At $£ 24.95$ it is half the price of the majority of its competitors, and measures up at $82 \times$ $63 \times 23 \mathrm{~mm}$.

This electronic instrument is an alternative to the glass thermometer for both liquid and air temperature measurement. Its advantages include its easy to read liquid crystal display, long battery life and its waterproof and non corroding sensor. The high impact ABS case is supplied complete with built in wall mounting bracket and table top stand making it truly versatile. This high precision electronic thermometer can measure $0-99^{\circ} \mathrm{C}$ with an accuracy of $0.1^{\circ} \mathrm{C}$.

The Thermotron is particularly well suited for measuring the exact temperatures of air, liquids and semi solids. solids.

For further information and leaflet please contact ETI, Highdown Avenue; Worthing, Sussex. Tel: (0903) 692161.

What? another ETI? Can there be two?

Measure And Dismantle

A pocket-sized Digital Thermometer with $\pm 0.1^{\circ} \mathrm{C}$ accuracy over a temperature range from -200 to $+800^{\circ} \mathrm{C}$, the, Ancom BLR-800 is currently available from Electronic \& Computer Workshop Ltd. The thermometer offers a one ${ }^{\circ} \mathrm{C}$, resolution, repeatability and .a stability figure of $0.01^{\circ} \mathrm{C}$ per ${ }^{\circ} \mathrm{C}$, with a wide range of standard platinum RDT temperature sensor probes. These include air temperature, liquid immersion, surface temperature, hypodermic insertion and fast response types. The sensors are available with conformity to British and DIN standards in grades, A, B, C, D and E and are connected to the instrument by a threeway plug/socket.
The BLR-800 uses a lower power $31 / 2$ digit LCD for data display, which also displays a low battery sign. The internal battery will give over 200 hours continuous operation and accuracy is not affected by battery condition. The BLR- 800 measures $90 \times 145 \times 28 \mathrm{~mm}$ and has a single on/off switch. Calibration is carried out by the user, with boiling water and melting ice references, plus screwdriver adjustments.

The Pantec Major 20K, a general purpose Multimeter, has a sensitivity of 20kR/VDC and 4kR/VDC, with a DC voltage range of 0.15 to 1500 V and AC from 7.5 to 1500 V . Current measurements range from 50 uA to 2.5 ADC and 2.5 to 12.5 AC . Resistance can be measured from $0.5 R$ to 2 MR in four ranges, with ballistic capacitance in the range $100-1,000$ uf to $10-100 \mathrm{mf}$. The multimeter has a 2% accuracy for DC and resistance measurements and 3% for $A C$.

Full protection is provided with a quick-blow fuse, diode system and neon discharger, and the meter comes with shock-proof case and spare fuse. The Major 20 k weighs 600 g and dimensions are $130 \times 125 \times 40 \mathrm{~mm}$.

Effective de-soldering guns in standard and miniature sizes are currently available. The standard gun is 19 mm in diameter, 220 mm long and the
miniature version has a 14 mm diameter and is 165 mm long. Both guns can be purchased for $£ 5.25$ each (plus VAT and P\&P).

The guns can be operated with one hand. Used in conjunction with any standard soldering iron the de-soldering operation is simple - the gun is 'charged' by depressing the spring load plunger. On pressing the release button, molten solder is drawn up into the gun where it solidifies.

For further information please contact Electronic \& Computer Workshop Ltd., 171 Broomfield Rd., Chelmsford, Essex CM1 1RY. Tel: (0245) 262149.

Relay The Message

A low-cost easy-to-use relay board is now available for ZX Spectrum users from Ness Micro Systems.

The NMS Relay Controller has four channels each of which has a double pole 5 A relay rated at 1 kW and 240 V AC or 100 W at 25 V DC and with screwterminal connections to the relays. Unlike other relay boards it plugs into the Spectrums MIC socket leaving the expansion port free and is powered from the Spectrum supply. The controller is extremely easy to use as any of the four relays may be turned on or off by means of a simple BEEP command, either from within a program or direct from the keyboard. Each relay has an on/off LED indicator.

The board is supplied built into a black plastic case measuring $180 \times 110 \times 55$ mm together with 1 m leads. The controllers may be daisy-chained so that more than one may be operated under the control of one Spectrum
The NMS Relay Controller is available from Ness Micro Systems, 100 Drakies Avenue, Inverness IV2 3SD and costs $£ 24.95$ plus $£ 1.50$ post and packing.

Big Cat Free

A new electronic hardware catalogue, from Supercat Electronics Ltd., came out in January and is free of charge. There will be a Summer edition later in the year.

Supercat say that the catalogue is
aimed at hobbyists, educational and small industrial users, as well as general industry and research, and the first issue includes test equipment, power supplies, signal sources, meters, kits, connectors, leads and accessories,

Contact Supercat at PO Box 201. St. Albans. Herts AL1 4FN. Tel: (0727) 62171, giving your full name and address, and stating whether a business or private user, they say.

Aerial Meter

Not as cheap or simple as our recent HE project, but of possible interest to radio clubs, is House Of Instruments' TC40, a field strength meter, from Sadelta, designed to measure the performance of aerials and indicating the prime position for installation.

Aerial signals normally fed to TV or FM receivers are passed to the TC40's 75R coaxial type input connector, where coarse and fine tuning controls give complete and accurate cover over Band TV 45 to 88 MHz , Band II FM 87 to 108 MHz , Band III TV 163 to 230 MHz and Bands IV and V TV 470 to 862 MHz .

Seven level measuring ranges from 100 microvolts full scale to 100 millivolts full scale give accurate indication of on RMS voltage and $\mathrm{dB} / \mathrm{microvolt}$ calibrated scales, allowing measurement down to 20 microvolt ($26 \mathrm{~dB} / \mathrm{microvolt}$). Audio monitoring of AM and FM is available via an internal detector, amplifier and loudspeaker. An Ohms range, complete with probes, is also fitted for continuity and short circuit tests.

This ultra compact, light field strength meter is fully portable with power being supplied by two internal 4 V 5 batteries and comes complete with carrying case and accessories. Ideal for applications, say the manufacturers, are for TV änd Radio Technicians specialising in aerial installation and alignment, who need one complete reliable portable unit. The UK list price is $£ 177$ plus packaging, delivery and VAT.

For further information, please contact Fred Hutchinson at hil, tel: (0799) 24922, or write to Quiswood Ltd., 30 Lancaster Road, St. Albans, Herts AL1 4ET. A leaflet is available.

 items in our Catalogue are available ex stock. The Catalogue is designed for use with our 24 hours "ansaphone" service telephone.

To receive your NEW 1983 BI-PAK Catalogue, send 75p PLUS 25p p\& p to:-
bracket. Emins high-pitched wailing note of varving pitch - 100 cycles per minute. Dims - 90 mm (dia) 60 mm (depth). Power - 12v DC.

Our Price: $£ 5.50$

MINIATURE FM TRANSMITTER Frea: 95.106 MHz . Range: a mile ONLY Size: $45 \times 20 \mathrm{~mm}$. Add: 9 v batt. $\mathrm{E5.50}$
Not licenced in U.K. Not licenced in UK

Use your credit card Aing ws on Wore 3182 now ond get your order aven haster. Goods normally sent 2nd Closs moil. orser
Toul Tout Posuge add 75 p per Toul order.

..... Offbeat Metronome

Andrew Armstrong

A very basic rhythm box for musical practice and improvisation, with a tuning device built in.

Figure 1. The block diagram of the Offbeat Metronome.

THIS is a metronome with a difference. The initial requirement was for a simple metronome which would enable the musician or musicians to practice playing to an even rhythm, instead of succumbing to the inevitable temptation to play faster and faster until collapse from exhaustion ensues. The project became more ambitious when we decided to add a rhythm accent or offbeat to give a variety of rhythm 'feels' to play against. What was wanted, obviously, was a very simple substitute for a drummer. After all, drummers are usually very simple, aren't they?

The other primary motive was to devise an electronic rhythm box which cost less than the $£ 60$ or so demanded for even the cheapest commercial device.

The required variable offbeat was achieved by inserting another note between the regular beats, which can be adjusted to fall anywhere between the two beats, or in unison with one beat to give a stronger accent on that beat, or not to occur at all.

The final embellishment was the addition of a pure " A " tone for tuning purposes.

So the owner of the offbeat metronome has no excuse for being either out of time or out of tunel

Offbeat Circuits

Figure 1 shows the basic functional blocks of the circuit. The oscillator on the top left is one that may be used in any simple metronome project. Next to it is drawn an offbeat comparator block. This is specially designed to add an extra beat between the tock and tick, so that, with the offbeat, the sound is something like tick - bok tock, tick - bok - tock.

Figure 2. The circuit. The tuning oscillator also modifies the sound from the offbeat comparator.

In order to have a tuning aid available, an accurate sine wave oscillator is included, with the aid of the mode switch the oscillator can be stopped from oscillating and instead used to provide a slightly resonant sound on the signal from the offbeat comparator

Pull And Twist

The controls (see photograph) are a pot governing the speed of the main rhythm, a small switch which pulls to turn the unit on, and rotates to control the volume; the pot which alters the relative position of the offbeat, and a two position swich which selects either the metronome or the " A " tone. The pull switch for on/off was chosen on the basis that pull switches don't wear out so fast as rotary switches with continual use, but an ordinary rotary on/off pot will do just as well.
First of all, the detailed functioning of the tuning oscillator: in order for a circuit to oscillate, it must receive feedback to its input with a phase shift on it such that the phase change round the entire loop is 360 degrees. In this circuit the 360° phase shift is achieved by one inversion and two 90° phase shifts. The integrator provides both the inversion and 90° phase shift over a wide range of frequencies. The low pass filter has a phase shift which depends on frequency, so it will only provide a 90° phase shift at one specific
frequency.
So that the filter and the integrator can function without clipping, the feedback is taken via a clipper. The distortion produced by the clipper is filtered out by both the filter and the integrator, so that as long as neither the filter nor the integrator themselves clip, the output sinewave is very pure. Similarly, because the circuit is working in a linear mode,
the frequency is stable and little affected by battery voltage.
IC1 a (see Figure 2) forms the filter, which is a very ordinary low pass design, and IC1b forms the integrator. The clipping action is performed by a pair of back to back diodes, D2 and D3, with capacitor C4 preventing DC current through the diodes from upsetting the bias point of the opamps.

Figure 3. The waveform diagram. The symmetry pot is included to compensate for the unequal positive/negative swing of the metronome signal.

Figure 4. The waveform at the output of IC2 (a 741) as it compensates for distortion produced by the transistors 01 and 2.

The gain of the integrator is switched by switch SW1b. In the low gain position, where some signal is fed into the integrator from the offbeat comparator, the loop gain of the oscillator is insufficient to permit oscillation to occur. However, when the circuit is excited by a sharp pulse, it will ring slightly, producing a somewhat hollow and resonant sound rather like striking a guitar body. In the metronome mode this resonant sound is mixed with the basic metronome tone. Resistors R7 and R8 determine the proportion of signals used.

Time Constant

The metronome oscillator itself uses IC1d. Positive feedback is applied to the op-amp: negative feedback is also applied, delayed by the time constant of C1 and the resistance of RV2 in series with R3
The time per half cycle of the oscillator is set by the time required for C1 to charge between the voltages which can be obtained on the positive terminal of.IC1d, with the output in either of its two states.
This is shown on the waveform diagram, Figure 3. Also illustrated on the waveform diagram is the fact that the output stage of the IC used, an LM324, cannot pull equally as close to its positive power supply as to its negative power supply. Thus, in order to maintain symmetry to keep each half cycle of the oscillator the same length, a symmetry adjustment pot has been incorporated.
The waveform on C1 is also fed to IC1c's positive input. This part of the IC works as a comparator to insert the offbeat. When the output of IC1d is high, and C1 is therefore charging towards a positive voltage, and when the volatge on C1 crosses over the voltage set by the offset pot, the output of IC1c switches in a positive direction.
If the offbeat pot is set to a high voltage, so that this switching does not occur before the output of IC.Id switches low, then the output of IC1c will switch high at this moment. If the output of IC1c has switched high at all, it will switch low at the same moment that the output of IC1d switches high. Thus, the return stroke of this comparator does not insert an extra offbeat, it merely modifies the sound of the tick slightly. If the offbeat comparator is set at a lower voltage than that attained by C1, then the

offbeat comparator will not switch at all, and in this mode an unaccented metronome sound is produced.

Output Amplifier

The only part of the circuit not yet described is the output amplifier. This very simple circuit uses a complimentary pair of transistors as emitter followers to increase the output drive available from a 741 op-amp. These transistors are not biased into class A/B, so a certain amount of distortion is produced on the output. This distortion is not significant for the use
to which the circuit is put. However, it does give rise to an interesting waveform on the output of the 741 itself, as the output voltage frantically attempts to compensate for the distortion being introduced by the transistors (see Figure 4). As a result of this, the distortion produced is not very severe.

The volume control is of a linear type, and the way in which it is used produces an acceptable control law. Resistors R9 and capacitor C8 are included to prevent the possibility of self oscillation of the circuit due to stray capacitance of the output stage causing pickup on the wire from the wiper of RV4.

Construction

First of all, build up the PCB as shown in Figure 5, inserting the ICs last. Connect the controls to the PCB using suitable lengths of wire. Take great care to make sure that both halves of the mode switch are wired up in the correct sense. Failure to do so could result in the metronome and the tuning note being heard simultaneously! Note that the speed control of the metronome is a logarithmic pot, wired up so that anticlockwise rotation increases the speed. This is done in order to give finer control at the higher speeds.
Once all the controls are connected up, the battery should be connected. Care should be taken to ensure that the polarity is correct! The unit should then be switched on, and then either

Parts List

RESISTORS

(All $1 / 4$ watt 5% carbon)
R1, $2,4,7,9,16,17 \ldots10 \mathrm{k}$
R3, 14........................ . . 4k7
R5, 6 . 8k2
R8, 10, $11 \ldots ~ 2 k 2$
R12, 15 $22 k$
R13............................ . . 33k
POTENTIOMETERS

	horiz preset
RV2 100k
	log pot
RV3	... 10k
	lin pot
RV4	. . 10k
	SPST switch
V5 10k
	horiz preset

CAPACITORS

	22 u
	16 V radial electro
C2, 3, 5 10n
	polyester
C4	... 4u7
	16 V tantalum
C6	... 100n
	polyester
C7 4n7
	ceramic disc
C8 22p
	ceramic disc
C9	470u
	16 V radial electro
C10	47u
	electro

SEMICONDUCTORS
IC1.......................... . . LM324
IC2................................. 741
Q1 BC182 etc
Q2....................... BC212 etc
D1-3 1N4148

MISCELLANEOUS

LS1 31/2" 8R speaker
PCB; case, approximately 120×100 $\times 45 \mathrm{~mm} ; 6 \times \mathrm{M} 3$ or 6BA nuts \& bolts; wire, solder etc.

BUYLINES
page 26
a metronome beat or a tuning note should be heard. If the unit does not work properly, first of all check for badly soldered joints or solder bridges. If no such problems are found, but the unit still does not work correctly, then try this list of remedies for likely problems:

1. Metronome does not work at all: check connections to RV2; check that C1 is in the board the right way round; check that the wiring to switch SW1a is correct
2. Metronome works but offbeat function does not: check connections to RV3; check polarity of D1; check wiring to switch SW1b.
3. Tuning note will not work: check connections to switch SW1c; check polarity of C4; also check polarity of D2 and D3; check that about half the battery voltage can be measured with an ordinary multimeter on IC1 pin 5 ; if not, check the bias voltage track for short circuits.
4. No sound is heard at all: check wiring to battery and switch SW2; check wiring to RV4; check wiring to loudspeaker.

Hopefully, having carried out the checks, any fault will be identified, and you will now be faced with a working unit. The next job is to adjust the symmetry control to make sure that the time between the tick and the tock and the tock and the tick on the metronome is the same

First, set the offbeat control fully clockwise or fully anticlockwise, so that the offbeat is not heard. If you have an oscilloscope, then connect the probe to IC1 pin 14, advance RV2 to maximum speed and temporarily connect a 1 k resistor in paraliel with R3. You should now see on the oscilloscope a fast squarewave, and this can be adjusted visually by
turning the symmetry pot. If an oscilloscope is not available, then instead turn the speed control to minimum and time the operation of the metronome with the second hand of a watch or the second count of a digital watch and adjust the symmetry pot for equal timings.

Now it is necessary to set the tuning tone. Switch to the "tune" mode, and the tone should be heard. If a frequency counter is avaitable then the note can very easily be adjusted to 440 Hz (concert pitch A). If a frequency counter is not available it will be necessary to borrow a tuning fork or to use a musical instrument known to be in tune.

Adjust the tune preset pot till a "zero beat" is heard. It may be that the tone cannot be calibrated due to tolerances of C2 and C3. In this case, R13 should be altered to bring the oscillator to within the correct range. If the frequency was too low, decrease R13 one step at a time. If the frequency was too high, increase R13, again, one E12 step at a time.

The unit is now calibrated, and final assembly can be carried out. A row of four holes needs to be drilled in the front of the case to fit the potentiometers. Four holes should also be drilled in the base of the unit, to fit the mounting bolts of the PC board. The loudspeaker should be mounted on the lid behind a grid of holes, drilled to let the sound out. The best way to make sure that the holes are neatly laid out is to lightly centrepunch the material of the lid through a piece of graph paper: 2.5 or 3 mm holes should be suitable.

The loudspeaker is retained in the case by means of two M3 nuts and bolts, fitted with oversize washers, to overlap the rim of the loudspeaker The convenient way to mount the PP3 battery is to use a couple of double

Offbeat Metronome

Figure 5. The PCB overlay. The long lengths of wire used to connect the switches (see photo below) make the mounting less fiddly, while not being so long as to be untidy.
sided adhesive pads, and to prise the things off with a screwdriver on the rare occasions at which it needs to be changed. For this reason, an alkaline manganese type of battery is recommended.

Our prototype uses a plastic case for cheapness and lightness; this muffles the sound a little, so if a very robust metronome is wanted, or a maximum volume, a metal case can be used.

Use Of The Metronome

For some purposes a so-called accented beat is required. If the offbeat is not required at the same time, then the offbeat can be set to occur immediately after the tick, thus turning it into a 'double' beat. If the offbeat function is in use, then the tick is automatically accented to a certain extent. If only a basic metronome function is required, without offbeat, but with very slight accent, then setting the offbeat pot fully clockwise will cause a slight accent to be heard,

If the tuning tone does not stop with the switch in either position, first, check the wiring to switch SW1b. If you are completely confident that this is correct, try increasing the value of R15 to reduce the loop gain in the metronome mode. This should cure the problem.

TT LWES AGAMN!

From the past it came, growing daily, striking terror into the hearts of lesser publications, and spreading its influence actoss the country in its quest to infiltrate every town, every home, every mind
Not a horror story, but a success story. And if electronics theory strikes terror into you, then you neea the help of Electronics - It's Easy. Originally a long-running series in Electronics Today International, Electronics - It's Easy was printed as a set of three books. They sold out. It was reprinted as a single volume. It sold out. Now this phenominally successfui publication is avalable again, in its third reprint. Electronics - It's Easy is a comprehensive and simply-written guide which e:xplains the theory (and the practice) of electronics step by step. Every aspect of the subject is covered, starting with :he? basic principles and working through to the how and why of today's technology
You can obtain your copy of Electronics - It's Easy by mail order using the coupon below. Make cheques or postal orders Divable in ASP Lid, alternatively you may pay by Access or Barciaycard

Send to: Sales Office (Specials).
 513 London Road, Thornton Heath Surrey CR4 6AR

Please send me.....copies of Electronics It's Easy. I have enclosed £..... ($£ 4.95$ each |including p\&p).
I Name
ADDRESS

POINTE OF Y EM

Feel like sounding off? Then write to the Editor stating your Point of View!

To: The Editor, Hobby Electronics. Dear Editor
I have obtained details of a 100 W amplifier unit, designed by ETI TOP PROJECTS. I understand that / can obtain printed circuit boards made specially for the amplifier unit, direct from ETI. Unfortunately. I have not found their address anywhere. I would be grateful if you would send me the address, so that I can finish the project.

Many thanks.
Yours faithfully.
James Bedford,
Halesowen.
West Midlands.
This gentleman may be having trouble finding ETI's address, but he has the distinction of being the first reader to write direct to our new address at Golden Square. Top marks for observation. The good news is, ETI are at the same address; in fact, they sit in the same corridor. The bad news is, that the PCBs are no longer available for this project. Why not have a go at making your own?

A certain irony is inherent in the sharing of addresses, as is clear from this next letter

To: The Editor, Electronics Today. Dear Sir.
I came across a copy of Hobby Electronics the other day, dated December 1982, in which you illustrated a project on phase control called Phase Four, based on the November edition's Breadboard design (a copy of which I do not have).

I would be very much obliged if you could inform me if the components for this project are still available from Newrad Instruments, Tiptoe Road, Wootton, New Milton. Hants, as I am extremely interested in constructing this unit.
I noticed while reading the article that you did not mention if an actual PCB was available, as I have no etching kit at home.

I am writing to Electronics Today about the article in HE because both telex numbers are the same, which led me to believe that HE may have been closed down or amalgamated during 1983. Please accept my apologies if 1 am incorrect.

Your assistance in the above matter would be greatly appreciated.
Thanking you in anticipation.
Yours faithfully.
Malcolm McKenzie,
Aberdeen.
Scotland.

Injury to insult! Insult to injury! Pain in my heart! Have you any idea what it does to an Editor's feelings to see a rival Editor (and one who sits in the same corridor, at that) being pressed to accept apologies for the (possible) continued existance of his offspring? While we're on the subject, please will our Aberdeen readers nip into their local newsagents and enquire why Mr. McKenzie could not obtain a December 1983 issue of our beloved HE? In which case he would have observed that the address, distributors and phone number check, as well as the telex number. The Editors don't though. They've begged us on bended knee to let them contribute, but we won't (it's alright. They won't see this till after it's published).

That said, I'm amazed at our readers' powers of observation. We didn't think anyone would actually read the small print at the bottom of the contents page. Well done.

The observation breaks down a bit at this point. Newrad Instruments, in fact, only supplied the case for the prototype: any suitably shaped and constructed case will do. The only criterion, other than being large enough for the works, is that the Phase Four is a foot switch, so the case must be strong enough to stand up to being trodden on.

However, Magenta Electronics Ltd., of 135 Hunter St., Burton-OnTrent, Staffs DE14 2ST do a kit of the Phase Four for $£ 18.71$ plus 50 p p\&p, case included. Magenta do kits for many HE projects, and their advertisement can always be found in current issues of Hobby

Alternatively, the PCB is still available from Hobby's own PCB Service page

Flasher Flash

Dear Sir.
1 am currently building the hazzard flashing unit as featured in your publication of Spring 1981, and would be very grateful if you could send me a detailed expanation of how the circuit works.
Yours sincerely.
A. J. Keare,

Ringwood,
Hants.
I don't have a copy of Electronics Digest Spring 1981 here to refer to, but the Hazard Flasher project also appeared in HE July '80, when it
included the usual construction/How It Works details, along with the circuit, overlay, parts lists, etc. Apart from this (two page's worth only) we can't give any further details. In this case, we don't have any further details (the project is too old) but in general we can't do detailed additional explanations of projects. If anyone is building a circuit and having difficulty getting to grips with one part of it, or making it work, we will as usual do our best to give an explanation.

Computer Careers

Dear Madam.
After reading your article in careers in electronics in HE October '83 / was extremely interested in the course run by the Polytechnic of Central London with five major computer companies. I would be grateful if you could tell me the address to write to for more information on this course and how to obtain an application form.
Yours faithfully.
K. R. Jones,

Norton,
Cleveland.
The address to write to with any enquiries is the Engineering And Science School Registry, 115 New Cavendish St., London W1M 8JS. A couple of more companies, incidentally, have entered the sponsorship scheme since we published the article.

Component Crisis

Dear Sirs,
I have been buying your mag since February 1982 and I can't honestly say that any of the projects have interested me enough to actually build one. But in HE October ' 83 I did find a project I wanted to build fthe Audio Level Meter) after reading in the Buylines that excluding the PCB this project should cost in the region of f6.50. I thought that with my funds being somewhat limited land whose aren't these days?) this would not only be the ideal project but the ideal price. Or so / thought, because the $x x_{x x} \times x x x x x x x x$ was $£ 1.75$, the bargraph driver $£ 4: 39$, the LED display $f 6.50$, and the tantalum bead 69p. So far 1 calculate that at $£ 13.33$, twice as much as quoted in the Buylines.

Alright, I know it said in the region'

Points Of View

of $£ 6.50$, but there is a somewhat substantial difference between that and $£ 13.50$, and I still have other components to get, like presets, axial caps, polycarbonate caps, resistors, diodes, and if those prices are anything to go by it doesn't look like I will be completing this project.
Finally you also say that the TLO72 and the LED array are the only things the constructor should have any difficulty in obtaining. Well I managed to get the LED display but the TLO72 is not the only thing I've had difficulty in obtaining, in fact most of the components I have found difficult to get hold of.
Yours,
Mr. Watson,
Noddle Hillway,
Hull.

Pardon me for being irrelevent for a moment, but I had a vision of you desperately trying to obtain components from your local greengrocer. Could anything else explain the trouble you're having?

But seriously, and it helps if you plan your buying strategy first like a minor military campaign.

Firstly, we don't know where you're buying your components, and we're not going to ask, believe me, but in that same issue of Hobby Electronics, the LM3915 was advertised for £ 1.95 from Rapid Electronics, who also sold 10 u 26 V tantalum capacitors for 20 p . Someone has borrowed our Technomatic catalogue, but the most expensive display advertised by them in that issue was $£ 2.00$ (they're only f2.50 from RS Components, by the way). Lastly, we can't make out what it was that cost $£ 1.75$, but it seems reasonable to assume that it (they?) was overpriced too.

We check off the value of the components used in a project against a recent price list, then add a margin for error or change. We do not generally include the cost of a case or PCB, because there are so many options available. Nor did we include the cost of a power supply for this project, as $+9-12 \mathrm{~V}$ DC should generally be available in the equipment which the level meter is driving

You should at least change your supplier, and carefully check through the advertisements in the magazine. Contrary to some opinions, we don't print those pages just to fill space: much useful information is there. Essential information, if you want to buy any number of components. Few areas are lucky enough to have a supplier where you can walk into the shop and buy everything you want over the counter at a sensible price. The only other solution is mail order
There is a payoff between buying your components from several suppliers, at the lowest prices, and the convenience of buying from one or two suppliers at a slightly higher price (ever letter or phone call is part of the expense).

Car Power Boost

Dear Sir or Madam,
Could you please give me the address of West Hyde Developments who produce the Sink Box which you have used in your Car Booster Project (HE
July '80). Could you also tell me if you have published any other car stereo boosters since then.
Yours sincerely.
James Bagshawe,
Medical Oncology,
Charing Cross Hospital.

West Hyde Developments were last seen at Unit 8, Park St. Industrial Estate, Aylesbury, Bucks HP20 1ET. Tel: (0292) 20441. Check with them first that they still do the same case or an equivalent.

We haven't published another power booster project, but if you look up the advert from ILP Electronics Ltd., you may find they have what you want.

ZX81 EPROMmer

Dear Sir,
Your magazine has had many great projects over the years and recently some of these have been for the 2X81.
But as a ZX81 user it strikes me that the one project that we really need is an EPROM programmer, a unit specially designed for the ZX computer, complete with a board to connect with the ZX81 for immediate use after programming.
People should be turning to the "PROM" as a more efficient means of storing games, etc. (We have a bad time with tape, you know.) So how about it?
Yours hopefully,
R. Baker,

Trowbridge,
Wilts.

Look out for it in the third edition of our new magazine, Digital \& Micro Electronics, especially for the computer hardware user, which will be on the newsstands in late March.

Obscured Issue

Dear Editor,
I have begun the 30V PSU project in HE September '83. However upon making my PCB, it seems to be that there is an error involving the connection of the preset to the output.
The circuit diagram shows one side of the preset connected to IC2 pin 2. and emitter of Q3. The wiper arm then feeds the output. The other leg of the preset is then shown connected to the +ve side of the meter.

However, the PCB overlay does not
correspond to this, as the wiper arm is shown to 'feed' the meter instead of the output.

I have been buying HE for a long time, but the clarity of the PCB overlay in the project is diabolical!

Could you please then clarify my query, and even perhaps enlarge or clarify the PCB overlay in the preset and transistor region.
Yours gratefully.
M. S. Higgins,

Hillsborough,
Sheffield.
Unfortunately, the detail of the PCB was obscured in the area of the preset by a line representing the wire joining the emitter of Q1 to the base of Q2. It thus appears that the presetis shorted outl

In fact the lower terminal of PR1 has simply been left open circuit, ie connected as a variable resistor. The wiper of PR1 does feed the meter, but electrically this is equivalent to the arrangement shown in Figure 1, and therefore is of no consequence.

Uncommon Problem

Dear Sir,
I am writing to you about a problem I am having in getting hold of components for the Audio Analyser (HE September '82), because they are such uncommon values.
I am finding it hard to purchase them. I would be grateful if you can help me with this problem, if you can supply me with the components or put me on the right track.
Yours faithfully.
Paul Bridges,
Enfield,
Middx.
If these components cannot be found in the catalogue of the regular mail order suppliers (eg. Maplin, Watford, Rapid etc.) I suggest you ring around until you find someone willing to order them in from RS Components.

However, without going to the trouble of cross checking each and every value, it looks to me as if they're all fairly standard values.
The other point you might like to note is that the Audio Analyser will shortly be the subject of Forward Bias, since certain modifications are required to make it completely reliable.

"Acknowledgements"

Lastly, many thanks to Richard Cartmel of Cheshire - we don't often get thank you letters. Glad to hear the introduction to the HE Tape/Slide Synch was a happy one. By the way, if the PCB and the Circuit Diagram don't exactly correspond, the PCB is likely to be the correct one. We haven't had any problems reported. Cheers!

COMING SOON TO

 COPING WITH COMPONENTS

Confused and puzzled by polyester?
Tantalized by tantalum or mystified by metal films?
Then this especially helpful feature will take the worry out of dealing with different types of resistors and capacitors.

THE METRODRIVE

A Hobby Electronics exclusive, lifting the lid on the hidden details of a top secret project from you-know-who.
Faster than a speeding ZX81, more colourful than a Spectrum, flatter than a television and able to leap quanta in a single bound . . . ? All is revealed in next month's Hobby Electronics!

TIME-OUT

A handy easy-to-build project for switching off mains powered applicances after a pre-set time.
The PCB-mounted relay will switch up to 10 amps at 240 V , or heavier loads can be handled by an optional off-board heavy duty relay.
The on-time is continuously variable from 10 to 60 minutes, making this a useful device for many household applications.

ANALOGUE TEST SET

An all-in-one test kit for audio components, it includes a one watt audio amplifier for signal tracing, plus a function generator providing sine, square or triangle wave outputs from 10 Hz to 100 kHz , with the output level variable up to a maximum of one volt RMS. With the addition of a simple multimeter, the Test Set becomes a universal instrument, capable of most audio tests and measurements, including frequency response and gain.

> April issue on sale at your newsagent from 9th March. Place your order now!

Athough these articies are being prepared for the noxt issue, circumstances may alter the final content.

JOIN UP WIH: THYOSOTD
 Professional Soldering Equipment at Special Mail- Order Prices.

EC50 Mains Electronic Iron. proportional electronic temperature $£ 26.19$ control inside the handle. Adjustable
280° to $400^{\circ} \mathrm{C}$. Burn-proof 3 -wire mains lead. Fitted 3.2 mm Long-Life
Features spike-free, solid state bit. $1.6,2.4$ and 4.7 mm available. 240 v a.c.
SK18 Soldering Kit. £15.24 Build or repair any electronic project. LC18 240v 18w iron with 3.2, 2.4, and 1.6 mm bits. Pack of 18 swg flux-cored 60/40 solder. Tweezers. 3 soldering aids. Reel of De-Solder braid. In PVC presentation wallet.

ADAMIN Miniature Iron. £5.97

Passibly smallest mains iron in the world. Ideal for fine work. Slim
nylon handle with finger grip. Interchangeable bits available 1.2, $1.6,2.4,3.4$ and 4.7 mm . Fitted with 2.4 mm . 240v 12 w (12v available). Presentation wallet.
' 1 ' Series Lightweight Irons. $12 w$ f6.23. High efficiency irens fer all electronic hobby work. Non-roll handles with finger guards.

Stainless steel element shafts. Screw connected elements. Slip-on bits available from 1.6 to 4.7 mm . LA12

LnT5SOLD
18w £6.28
model, $12 \mathrm{w}, 2.4 \mathrm{~mm}$ bit. LC 18 Model, $18 w, 3.2 \mathrm{~mm}$ bit. 240 v Std -12 v available. Presentation wallet.

Soldering Iron
Stands. £5.11

Spring/Top only,f1. 84

Replacement Bits
For all above irons. Non-stick designs, machined from special copper alloy, with Inconel retaining ings. Two types - Chromium plated with copper face (for economy and ease of use) and Iron plated with

SIGNAL GENERATORS | $220 / 240 \mathrm{~V}$ ac

FUNCTIOM: All sine/square/triangle/TTL

TE101 0.02 ZLZ 200 KHz
ع113.85
PULSE
TG105 Various tacilities 5 Hz .5 MHz Aub O: Mulliband Sine/Squar
LAC27 10 HZ 101 MHz $\mathbf{E 9 7 . 7 5}$ LAG I2OA LOHZ IWMZ LHZ |lis 1894.50) LAG
RF
SG40
R
S6402 100 кH2 LSG17 100 KHz 1030 MHZ Illst f79.50 $\begin{array}{r}\text { ع } 83.50 \\ \\ \\ \hline 159.85\end{array}$

OSCILLOSCOPES Full specilication any mod on requesi SAE By Dosi.
HM Series HAMEG : TMAMDAR CS TRHO: SIMGLETRACE UK C/P E 303015 MAZ 5 mV 95 mm IUbe lester
SClion

Posiliree
= Oplifonal

Nicrads Ei 250

Wm 10315 mhz 2 mv 6117 display plus Componemi tesier C/P L3 00 HM203/4 OU1 C/P EA.OOI tester
CS1562A Oual 10 MH2 1 ist 5321001 ع239.500
 401.35 3132 Oual 20 mHZ • componen E349.50.
h M204 Ou: 20 MHZ olus component test

v212 Ouat 20 MHZ
E419.75
$\checkmark 212$ Ouar 20 MHP
E676.00
4222 Dual an MH7 phus extra lacilllles
V2a3F Oual Trace pormy
134 Oual Trace
All HITACHI. CROTECH TRIO
HAMEG MOOELS AVALLABLE
SCOPE PRORE KITS
$\times 157.95 \times 1059.45$

£1.05 per Reel
De-Solder Pumps. $£ 6.19$
High Quality version of increasingly popular type of tool. Precision made anodised aluminium body, plunger guard and high-seal piston. Easy

Microcutters. $\mathbf{£ 3 . 2 1}$ Light weight hardened and precision ground. Flush cutting. Screw joint, return spring, cushion grip handles. Safety wire retaining clip.

Solder. $£ 0.90$ dispenser. Approximately 3 metres (26 gm).

Designed specially for LITESOLD irons. Heavy, solid-plastic base with non-slip pads. Won't tip over, holds iron safely. With wiping sponge and location for spare (hot) bits. No 5 stand for EC50 iron No 4 stand for ADAMIN miniature Iron No 3 stand for LA12 and LC18 Irons Ail same price

Pre-tinned face (Long Life). State tip size. iron and type.

EC50	Copper	LIL
Adamin 12 and		$\mathbf{£ 1 . 5 8}$
LA12		
LC18	$\mathbf{£ 1 . 0 1}$	$\mathbf{£ 1 . 5 6}$

For simple, safe and effective de-soldering of all types of joint, using a standard soldering iron. Handy colour-coded packs of 1.5 metres in 3 widths: Yellow -1.5 mm , Green - 2 mm , Blue - 3 mm .
thumb operation. Automatic solder ejection. Conductive PTFE nozule no static problems. quaity Japanese metric hardened and tempered ools. Swivel-top chrome plated brass handles. Fitted plastic cases. 113 set - 6 miniature screwdrivers 0.9 to $3.5 \mathrm{~mm} £ 2.70$ 227 set 5 socket spanners $\mathbf{3}$ to $5 \mathrm{~mm} £ 2.80$ 305 set 2 crosspoint and 3 hex wrenches 1.5 to $2.5 \mathrm{~mm} £ 2.70$

228 set 20 piece combination:
5 open, 5 skt spanners, 2 crosspoint, 3 hex and 3 plain drivers, scriber, handle/holder $£ 4.83$

Set of $3 \mathbf{£ 3 . 6 3}$
Scraper/Knife, Hook/Probe, Brush/Fork. 3 useful double-ended aids to soldering/desoldering! assembly. In plastic wallet.

Top grade resin flux cored 60140 wire, 18 swg, in handy plastic

Our new Beginner's Series tells you all you'd like to know about electronics. From start to finish. All about components and circuits, all the theory ypu need to get ${ }_{100 \mathrm{k}}$ started in the world of electronics.

Figure 3. Function table for the SRtype bistable of Figure 2. The shaded area indicates an operation-mode not recommended for use.

915

Two months ago, All About Electronics concentrated on devices and circuits formed with logic gates. You saw AND gates, and NAND gates, OR gates, NOR gates and NOT gates (invertors) used individually and in circuits to give particular output logic states which depended totally on the applied input logic states (Figure 1). A logic state consists of either a 'I' or a 'O' - that is, it can be one of two options - hence the general name, binary logic, for such circuits.

These binary logic states can be expressed in mathematical terms and written as equations, eg:

$$
A \cdot B=C \cdot D=Z
$$

where the dot between letters A and B, C and D, in the last equation means AND; and the plus sign means OR. (This is binary or Boolean algebra, remember, not conventional algebra.) remember, not conventional algebra.)

Similarly, the logic states can be expressed in electronic terms, as voltages. For example, the logic state 1 could be expressed as the voltage 5VDC, and the state O could be defined as OVDC. The actual voltages used are irrelevant and could be literally any voltages, as long as

1. The voltages, once chosen, are maintained as standard
2. Circuits con nected before and after the logic circuit operate satisfactorily with these voltages
3. The electronic logic gates (normally in IC form) which make up the

Figure 1. Typical logic gates:
a) AND gate
b) NAND gate
c) OR gate
d) NOR gate
e) NOT gate (invertor)

Figure 2. A simple form of electronic memory using two NOR gates - the SR-type bistable.

S	R	0	$\bar{\square}$
5	L	H	L
L	」	L	H
L	L	O_{0}	$\overline{\mathrm{O}}_{0}$
+4.	¢	+	+

circuit operate from (and will not be damaged by) the voltages.
Two main categories of logic gate ICs where shown to exist: TTL (transistor transistor logic) and CMOS (complementary metal-oxide semiconductor)
ICs within each category contain individual logic gates, and choosing a particular type of gate, ie AND, NAND, OR, NOR, NOT, is simply a matter of choosing the correct ic within each category.
These types of gates and the circuits we looked at form combinational logic circuits ie, their outputs vary as a definite combination of the inputs. Such circuits, although they may be used in quite complex control equipment, are really no more than electronic switches the output of which depend on the correct combination of inputs. They display no intelligence of any kind, simply doing what is demanded of them - instantly.

Be Smart - Remember This

One of the first aspects of intelligence whether in the animal world (including humans) or in the electronics world -is memory ie, the ability to decide a course of action dependent not only on the applied inputs but also on a knowledge of what has previously taken place.
Logic circuits can be constructed which remember logic states. We say they can store binary information. The simplest form of logic memory is shown in Figure 2, and is constructed using two NOR gates, cross-coupled so that the output of the first is connected to the input of the second, and the output of the second is connected to the input of the first. There are two inputs to the circuit and also two outputs.

Figure 4. Circuit symbol for D-type bistable.
Now, it so happens that one output is, in most instances, the inverse of the other, so for convenience one output is labelled Q and the other output is $\overline{\mathrm{Q}}$, to show this.
A truth table for the circuit is shown in Figure 3, although more correctly we call this a function table. You see, truth tables are used only for combinational circuits and this circuit, although using combinational gates, is not strictly speaking combinational - you'll see why not, later.

Account has been taken in the function table for changing from one logic state to the other by the symbol: 5 , which indicates that the input state changes from a logic 0 to logic 1. Also, we no longer write the logic states as ' 1 ' or ' O ', but H (meaning high) and L (meaning low).

The outputs indicate what happens as the input states change on these occasions. You can see that if input S goes high (ie, from 0 to 1) while input R is low, then the output Q will be high. If, however, input S then returns low, the output will be Qo - which simply means it remains at what it was. If input R then goes high while S remains low, the output changes to low and remains in that state even if R goes low again.

In other words we have constructed a form of memory, called a latch or a bistable, the output of which can be set to a high state by application of a positive-going pulse to input R. You will understand now, why the inputs are labelled S and R (set/reset) and why this type of circuit is called an S-R type bistable.
The last line of the function table is shaded to indicate that this condition is best avoided, because both outputs are the same. Designers of digital circuits would normally ensure that this condition did not occur in their circuits because confusion can arise.

Stable Vibrations

We have met the bistable before, of course. A bistable is one of a group of circuits - the other two types we said

INPUTS				OUTPUTS	
$\overline{\text { PR }}$	$\overline{C L}$	CK	D	Q	$\overline{0}$
L	H	\times	x	H	L
H	L	X	X	L	H
<	4	\%	<	,	1
H	H	5	H	H	L
H	H	5	L	L	H
H	H	L	X	a_{0}	\bar{o}_{0}

Figure 5. Function table for a D-type bistable. Shaded area indicates an operation-mode not recommended for use.

Figure 7. Function table for a JK bistable. Shaded area indicates an operation-mode not recommended for use.

INPUTS					OUTPUTS	
$\overline{P R}$	$\overrightarrow{C L}$	CK	J	K	0	$\overline{0}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
4	4	\%	\%	\%	4:	n.
H	H	Ω	L	L	a_{0}	$\overline{\mathrm{a}}_{0}$
H	H	Ω	H	L	H	L
H	H	\checkmark	L	H	L	H
H	H	Ω	H	H		

were monostables and astables called multivibrators and they can all be built using logic gates.

There is more than just one type of bistable and the S-R type is really only the simplest - the two types I'm going to show now are far more useful and versatile. Instead of showing their construction using separate logic gates, however, they are shown as block. If necessary they could be build using separate gates but you don't need to know how to construct them because, yes you guessed it - they can be bought ready-built in IC form. First is the D-type bistable. Its circuit symbol is shown in Figure 4 and its function table is in Figure 5.
The main difference between D-type and S-R type bistables is that an input is provided for what is called a clock. Now, the clock is the name give to the output of a square-wave oscillator, of any fixed frequency, which produces definite, fixed period, pulses to operate digital circuits. It is an application of a clock pulse that a D-type bistable will perform its function - so for example if a clock is applied with a frequency of 100 Hz , the bistable will perform 100 functions every second.
Note also the S and R inputs of the S-R type bistable have been replaced by the inputs $\overline{\mathrm{PR}}$ (preset) and $\overline{\mathrm{CL}}$ (clear) which perform similar functions. A last input to the D-type bistable is the D (data) input.

You should now be able to under stand

Figure 6. Circuit symbol for a JK master-slave bistable.
the function table. The first three rows indicate that the $\overline{P R}$ and $\overline{C L}$ inputs override all other inputs (that's why the CK and D inputs are shown as X : because $X=$ don't care). Thus the outputs Q and $\overline{\mathrm{Q}}$ are dependent primarily upon the logic states of the $\overline{P R}$ and $\overline{C L}$ inputs.

However, when the $\overline{P R}$ and $\overline{C L}$ inputs are both high, control of output becomes the prerogative of the CK and D inputs. For example, when the clock is low the output $\mathrm{Q}=\mathrm{Qo}$ ie, it remains the same as it was - no matter what the logic state of the D input (because $D=X$, gerrit?). On the leading edge of the clock pulse, however, output Q follows the logic state of the input D: whether high or low. So a D-type bistable acts like the simpler S-R type but with extra controlling inputs.

Another type of bistable is shown in Figure 6 and is the JK master-slave bistable, it is similar in operation to the D-type bistable but the D type input has been replaced by two separate controlling inputs, J and K. A function table applicable to the J-K master-slave bistable is shown in Figure 7 and you can see how it works from this. The same sort of operations occur as with the D-type bistable but with two main differences:

- the operations take place on the falling edge of the applied clock pulse
- the last row of the function table shows a bistable operation known as toggling ie, the output state changes from whatever state it is, to the other state.

Altogether Now, Vs One At A Time

Underlying the study of bistables which we've looked at so far this month is something far more important than it would first seem. We have actually seen the changeover, from the category of digital electronic circuits known as combinational, to the category of sequential digital circuits. The difference has been that the inputs of

All About Electronics

Figure 8. Four-bit shift register using four, D-type bistables.

Figure 9. Four-bit binary counter using four, JK-type bistables.
combinational circuits are instantaneous and the outputs occur as a direct consquence of the inputs. In sequential circuits, however, the inputs have to occur at the correct times for the outputs to be correct - ie, they have to occur in a set sequence. It is the combination of the clock pulse (providing the sequence) and memory (to enable inputs to be at the right place at the right time) which allows these sequential circuits to operate. And it is these very bistables which we have seen which form the basis of electronic memory. If you can imagine a network of literally thousands of such bistables then you have pictured a simple memory bank: the information stored inside of which may be changed at will by altering the control inputs.

Of course, things are not quite as simple as that. A collection of bistables gives us a method of storing

Figure 10. 7474 TTL dual, D-type bistable.

Figure 13. 4027 CMOS dual, JK-type bistable.
information, yes. But such a collection will not necessarily guarantee that the information is organised. For instance if a certain string of binary digits (known as bits) is stored in the memory bank; how do we know when a string is retrieved, that it is the correct one? What l 'e need is some way of ensuring the infermation out is the same as we fed in.
The way to do this is to store the information in regular formation rather like a platoon of soldiers. If one line of soldiers is our stored 'information' then that line can move about all over the parade ground and as long as they remain in line ie, soldier 1 before soldier 2, soldier 2 before soldier 3 etc, then the 'information' will not be lost or jumbled. In electronic memory the information we wish to store is entered as a row of bits (called a byte or sometimes a word) and kept within the

Figure 11. 7476 TTL dual, JK-type bistable.

Figure 14. 7496 TTL five-bit shift register.
memory in that order.
One way of doing this is with a number of D-type bistables, as in Figure 8. By connecting the output of the first bistable to the Dinput of the second, and the output of the second to the D input of the third etc, a shift register is created. The shift register of Figure 8 has four bistables therefore a byte of four bits can be stored. If a longer byte is required to be stored we use more bistables.

On every clock pulse the output of each bistable in the shift register takes the previous state of the bistable to its left. Thus, is a logic 1 was applied to the input, the outputs of all four bistables at each clock pulse is:

after the first pulse	1000
after the second pulse	1100
after the third pulse	1110
after the fourth pulse	1111

Alternatively, if a four-bit type is applied to the input; each bit applied separately. one bit at a time corresponding to each clock pulse (this is known as serial information) then the outputs at each clock pulse will be, for example using an applied serial byte 1001:

Inputs	Outputs
1	1000
0	0100
0	0010
1	1001

That is, after four clock pulses the serial information entered has been stored in the shift register. This information can be retrieved: serially by applying four more clock pulses and taking the information from the last bistable's output or; as a parallel byte by taking the output of all four bistables simultaneously. The latter is known, obviously, as serial-to-parallel

Figure 12. 4013 CMOS dual, D-type bistable.

Figure 15. 74193 TTL binary counter.

All About Electronics

Figure 16. 4014 CMOS eight-bit shift register.

Figure 18. A half-adder circuit using combinational logic gates.

A	B	SUM	CARRY
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Figure 20. A full-adder circuit using two half-adders and an OR gate.
conversion and is an often used procedure in some complex digital circuits.

Counting

Binary mathematics is very similar to ordinary mathematics (ie, denary - to the base of 10) in that there are times when we want to be able to count using it. Simple counters can be made using J-K type bistables and one is shown in Figure 9. In denary, all counting is to the base of 10, ie 0-1-2-3-5-6-7-8-9then go any further we prefix the digits with a 'carry' ie 10-11-12-13-etc. Then a 'carry 2' ie 20-21-22-23-etc etc.

However, in binary mathematics the base is 2 , so the number system progresses 0-1-10-11-100-101-110-111 etc. Figure 9 shows a four-bit counter which can count, for example, input pulses. The corresponding outputs at each input pulse are:

You will notice that I have reversed the

Figure 17. 4020 CMOS 14-bit binary counter.

Figure 19. Truth table for a half-adder circuit.
order of the counted bits - this is so the least significant bit (LSB) is on the right as it should be and the most significant bit (MSB) is on the left.

Now, although bistables can be formed with individual gates, it is more usual to see them as part of an IC. For example the layout of the 7474 TTL IC is shown in Figure 10 and consists of two D-type bistables. The 7476 TTL IC is shown in Figure 11 and consists of two J-K master-slave bistables. The CMOS version of both these ICs, the 4013 and the 4027 are shown in Figures 12 and 13.

Likewise, shift registers and binary counters would not normally be constructed using separate bistables Figures 14 and 15 show a 7496 TTL shift register and a 74193 TTL binary counter, and Figures 16 and 17 show a 4014 CMOS shift register and a 4020 CMOS counter

Addition and Subtraction

Just as digital circuits can be used to perform functions like counting and storing, they can also be used for other, more usual, mathematical functions like adding and subtracting. For, example, Figure 18 shows a circuit for adding together two bits of binary digits. Now, we should be able to draw up a table from our knowledge of binary numbers giving us the outputs of this circuit and such a table is shown in Figure 19.

This is exactly the same as denary arithmatic where two numbers, say 2 and 3 , give a sum 5 ; but two numbers, say 6 and 4 , give a sum 0 and a carry 1 creating the two-digit number, 10. The circuit of Figure 19 is known as a halfadder because it only performs addition of two inputs. There may be, however,
occasions when three inputs require addition - say if a preceding addition stage has produced a carry output. Well, now we use a full adder as in Figure 20, consisting of two half adders and an OR gate.

Subtraction can be performed using the exact same circuits; after a modification to the number being subtracted. The modification is called "creating the two's complement" of the binary number by inverting every bit and then adding one to that number. In this way, the two's complement of the byte 1010 would be formed.

$$
\begin{gathered}
\text { Number } \\
1010
\end{gathered} \longrightarrow \begin{gathered}
\text { Invert } \\
0101
\end{gathered} \longrightarrow \begin{gathered}
\text { Add } 1 \\
0110
\end{gathered}
$$

So, 0110 is the two's complement of 1010 and the binary subtraction

1101 minus 1010
is the same as

1101 plus 0110

Go Forth And Multiply

Multiplication is easily performed and best demonstrated with denary numbers, but the process is identical in binary. If, say, the two numbers to be multiplied are 60 and 4 , we can arrange the statement 60×4 to read $60+60+60$ +60 , and then use an adder to perform this addition. Division is similar. If the division to be performed is $60 / 4$, we can re-arrange this to read $60 \times 1 / 4=60 \times$ 0.25 , a multiplication, which can be performed as an addition sum, as above.
I haven't spent a lot of time explaining the different mathematical functions in binary, because it isn't necessary that they be learnt. The only thing you need to remember and understand is that all the mathematical functions can be broken down into much simpler steps based on additions and counting. In this way, because digital circuits are very fast in operation, high - speed mathematical calculations are easily performed. We have invented the calculator!
More complex digital circuits have been developed known as arithmetic logic units (ALUs) which performs all the arithmetic functions detailed here plus the standard logic functions of AND OR, etc. ALUs form the core of the digital computer, and a modern microprocessor IC (yer actual microchip) contains among other things, an ALU within its body, allowing the microprocessor to perform the arithmetical functions according to instructions.
The instructions which a microprocessor follows are collectively known as the program and form, literally, step-by-step recipes for the microprocessor to act upon. This program must be stored in electronic memory for it to be at hand, so the microprocessor can read each instruction as required. Thus, what we have seen in this month's All About Electronics, ie bistables, counters, adders. ALUs etc, will form the basis for a future month when we learn about computers themşelves.

Bornard Baboni (publiohers) Ltd., who supply the HE Bookshelf, ply their trade direct.
"Go West, Young Man" ("Man" being a technical term for a person of either sex and indeterminate age) came the cry from our orgenisers for 1983. Argus Specialist Exhibitions. So west we went, all the way to Hammerpmith and the Cunard International Hipl. Wher Having attemptod to run thlighimttrt of the traffic in Hammersmith Broadway, I eventually lost my nerve and went via the underpass - a ten-minute detour. I infiltrated the hotel, waved my pass at the security men, and was confronted at once by a display of computercontrolled railways.

Dave Holladay of Precision Relays Lid. showed me round his simple, two-track, points-switching system, worked by magnets carried under the trains, and Reed switches embedded in the chipboard beneath the track. Apart from the enaines themselves, the most thong itpie vitimatiol wis the

Robots, railways, radio and rockers assemble under Hammersmith Flyover for the electronics exhibition of 1983.

track, and the Commodore 64 which was being used to control them.
The other, miet mbectacular railway payout was laid oun and buiff by the Fratton Bargain Shop in Portsmouth, usina both a Hornby Zero One model noilwit talsjiter in a niammant and Morynn boch and valuring on hurcdirectionarreverse lobip. The two control units used constant, but different voltages, and the trains themselves included engines with and without fitted microprocessor control modules.

Heave To

Meanwhile, back on the Electronics stand, we were kept busy heaving fresh bales of December's HE and January's ETI (the lucky blighters were just in time to get their new issues out in time for spralsont white we had to keep explifinine that Hobby Eiectronies waun due but lor another fortnight . ..)
and flogging back issues and copies of Ham Radio Today and Digital And Micro Electronics - one gent from Sweden bre awey almost an entire set of HRT backissues, saving fimsell qute a few quid compared with portal ordering. Breadboard is, after sil, the inly plame where you can buy the yiers backissues still at the cover price - and inspect them into the berazin!

Editor Ron Koeley se, up the HE Programmable Joystick on a speceinvaders type game, and ETi's technicel department, Phil Walker, connected up ETI's Graphic Equaliser to loudspoaker, and poridet sound pftersio. the form of a computer controlled speegh-symih valich rectiond thenper Birthdey. Dear Christopher in an endless loop, more or less loudly deperding on who mes plopirig welt the equaliserlt E's Ouimmater ndced a fow sleats and flashes to the pronteangs. and when ste gertleman wanted is know whit we didn't have the the

The ASP computing stand is, becyiged by parnest enthusiasts ready to tieve as go an one ior severk! of due mioros on trial.

Bassman up and ruhnirig, we had to explain that it was because we couldn't stock enough batteries to thave everything going at once the real reason may have had sorntting in de with the noise level on the stand.
On the next-door stand, Steve Ireland G3ZZD, Ham Radio's Editor whts हni 'lity engaged in operating the equclat station, GB4 HRT, which they had se up for the show, along with a band of helpers. Conditions on the first day proved poor for DX calling, wo the put the station to good use by falling out to vistors in transit, and guiding them in to the extribition.
On tre other side of the exhibition hall, the Computer magazine staff were manning their own stand, incliting several micros for visitors to iry out for themselves.

Opposite our stand, the British Amateur Electronics Club's stand, courtesy of ASE, featured among other devices a magnificent custom amplifier for keyboards or guitars, complete with flanger, chorus, octeve and two kinds of fuzz, with a complete set of equalisation controls for each of the two channels. The builder, Tony Kozary, who had used circuits from various sources, gave us a demonstration using a clef synthesiser and then let me try my guitar on it. This brought a lot of closet guitar players out of the woodwork, including man-ofmany talents Phil Walker, ETI's lan ("1 really only play the mandolin") and your own editor, who knew three chords, all very loud!

Anyone interested in the BAEC can find their address in Monitor this month

Trial And Triumph

BP Oil's display consisted of several winning robots from their Bullderobot
1- Competition 1983, and a continuallyrunning video showing the actual finals of the competition, a human irama plumbing the depths of despait as complicated and lovingly-crafted pieces of machinery failed to operate to order despite last minute sergery, and the pinnacles of triumph, not to mention incradulity, as the winning robot completed its course, captured the cube and returned to its starting point faster than most eyes could follow it. The wintive time wes slighrly over four seiondi. Nate for tesigners: the mors clesely the rohot is tailored to the task designated, the more likely it is to work! While many a sophistication proved fodder for untimely breakdowns.
At the back of the hall, the Micro Robotics Arena set up by the Assoctaion of Landan Compls er Club's Micro-Robotics Group showed off a number of small robots in on encluntio, presumably to stop the in from eanaping and werrorising the cicht it fultion amply fulfiled by the Tomorrow's WorldRadio Controlled car racetrack a fem stands away). Alongside, yw Hell magnificent fentasy models inhthing = two-foot high Dskek, and the Dafs commander, Davros, in his chariot, sculpted by the King of the Beasties, Robin Hill, were on display.

In the lunch hour the band from the

stand took it in turns to mask efli, wase sandwich, have a bint, and dirculate among the sialls fath का out for hardvire bargains, tamper with Clef Products' range of habonmitimlanablor the second consecuive vear to getaily, recognisably musical sound out of their mierosynth, which in other, mors skilful hands can sound like a whote band), queue patiently for a go on the bank of arcade games supplied by C.B.S. ColeVision and meet up with visiting authors.
I ditin' sctually, attend any of the lecture program which ran throughout most of e. days, llut ollimi who did tell me that thete whrm plenty of seerchiris questiins loming from the audinces. and nu ive a few answe: from the blatwouery hd. Major attreithas wore ofectonio eritsic and hologrithics, and
 all the time from one or another the stands with keyboards or musical equipment on show.

On Sunday afternoon, we wiped the

Whats pupirens kan ty plfarme obsolete
 imagozine in outition Licalcomstrine magozine in quettion Licaficomptr gios BWix with niviting from 3 pince ef circuit boald with a few components clinging to it - none of it, of course, supposed to be working, but who knows? One or two people actually bought extra copies to have a second go at the lucky dip. This unannounced extra came about because of the change of offices: we had a lot of cupboards to empty. So don't expect it every year
What of 1984 ? Where and when? We IJon't know yet, but you can r pect to ree an flended Breadborn thir) ear, with empruitis on prathicil demornty a tions of hindyare, ane migh if firnemise bargaine so alart pirciling volt
 is neit thatses to meit thit ractery unhampered by the peraphanalia of the office, quite apart from any other of numerous benefits. Who says the staff ! aren't there to enjoy themselves?

Sinewave Generator

The variable resistor RV1 is specified as having a single-pole single-throw switch. These types are not usually available, but a component with a DPDT switch may be used. Not included in the Parts List is the battery holder; this is a standard type and may be obtained from Bicc-Vero.

LP1 is given a type GE 1835: this will be difficult if not impossible to obtain! A near equivalent can be had from Maplin under the number WL74R, but it may be necessary to alter the value of R7 to obtain the best results.
The frequency determining capacitors require a special mention. Capacitors C3-C14 require to have their values matched to within one per cent of the stated value. So for example, take C14: the nominal value is 100 pF , which means the value must lie within the range $99-101 \mathrm{pF}$ if the stated frequency range and
stability is to be achieved. Similarly with the other capicitors. Note that the capacitor tolerance itself need not be small; ten to twenty per cent components would be acceptable.

One source for the components is Maplin, and a careful-check through the capacitor index page will reveal the types to obtain. For C2, 7, 8, 16, 18, 20, types given as "Monocap" are suitable; for C3 to C6, "reversolytic" may be use. Other capacitors may also be found in this manner. The estimated cost, less case and battery holder (which may be omitted if required), is $£ 5$.

Metronome

No real buying problems here. All the components are standard and can be obtained from the majority of suppliers who advertise in HE. For
constructors with shallow pockets, a smaller and cheaper loudspeaker, such as Maplin YW53H can be used without losing performance.

Estimated cost is around $£ 5$. This figure does not include the case or PCB, and includes the cost for the cheaper loudspeaker. The PCB, as usual, is available from HE's PCB service.

Chess Timer

A number of components require mention but most are not too difficult to obtain. The first is the 4060 type IC This type is not widely advertised but can be obtained from Enfield Electronics.

The Maplin piezo buzzer is an unmounted device, which means that wire connections must be made very carefully, to avoid damage. An alternative is to use a ready mounted device such as the PB2720. This is available from Electrovalue. The switch used is of the miniature type and generally available.

The cost for the project is estimated at.$£ 4$, excluding the case and the PCB. The PCB is available from HE's own PCB service, if you care not to make your own.

NOW AVAILABLE!

Complete Car Kit and Transmitter Kit
Clear build-up instructions included
only $£ 9.95+50$ p Peep
Also
Porsche 935 Turbo Kit (2 speed)
Kit includes transmitter and full bulld-up instructions
only $£ 17.00$ +50p Perp

$3 \mathrm{~Hz}-3 \mathrm{Mz}$ Sine Wave Generator

Based on a Wein bridge, this sine wave oscillator will give you a wide range and clean output in return for easy construction and an economical price. Sounds like a good deal.

J E Aman

PROBABLY the least complicated and most reliable sine wave generator is the Wien bridge type. It incorporates a bridge network, usually in the feedback loop, to determine the frequency of oscillation (Fo).

The bridge itself is an R-C network (Figure 1), which consists of both a series and a parallel R-C circuit. By using a two-stage amplifier to produce a complete phase shift $\left(360^{\circ}\right)$, a circuit can be constructed using a Wien bridge in a positive feedback loop that will oscillate at a frequency determined by the formula fo $=$ $1 / 2 \pi R C$

A certain amount of attenuation or loss of the positive feedback signal results from the bridge circuit design. The reactive branch of the bridge constitutes an AC voltage divider so that, at the frequency of oscillation, it creates a lead/lag voltage
cancellation, and hence no effective phase shift.

But at any other frequency there is a phase shift and, as a result, the attenuation of the positive feedback is too great to sustain oscillation. Since only part of the signal is fed back to the input, the amplifier needs to have
a specific gain that will counteract the effect of the Wien bridge attenuation. The loss in the bridge can be calculated, and it turns out that the network attenuation brings the positive feedback signal to $1 / 3$ the level

Figure 1. The R-C network which makes up the Wein bridge oscillator.

of the output. So, the gain of the amplifier must be at least three to sustain oscillation.

This gain is controlled by means of a second feedback loop. Since the first amplifier has an open loop gain of many hundreds, the second feedback loop is negative and this holds the overall gain at three.

At frequencies other than fo, the positive feedback will be too small to sustain oscillation. The negative feedback, which is resistive and always in phase, will then dominate.

The circuit of Figure 2 shows an oscillator that will sweep over a large frequency range up (from below 3 Hz to 3 MHz) with low distortion (typically les than 0.2% at 1 kHz). It operates from a PP3 9 V battery and delivers approximately 2.5 volts peak to peak, drawing around 10 mA . From the battery the frequencies covered by the six ranges are:

[^1]

Figure 2. The Circuit. Note that R3a and R3b are two separate resistors. This diagram shows the gain controlled by a filament bulb. See also Figure 3.

Circuit Design

With a 9 V supply line in mind, Q 2 is selected for power and current capability, together with wide bandwidth and low noise. The BC559C was chosen since it meets all the requirements, ie 200 MHz bandwidth, low noise and high gain

Collector current for O 2 is set by R8, which is chosen to drop half the supply voltage while passing 10 mA . This current is low enough to keep noise at a reasonable level and still drives peak currents into, say a 600 ohms load: therefore $4 \mathrm{~V} 5 / 10 \mathrm{~mA} \cong$ 470R.

Q1's collector current should be a small fraction of that of Q2, for low noise; say, a few percent. This transistor also wants to be a low noise type. Its collector current, Ic, is again set by its collector resistor, R4. The resistor should not be too large, though, as this would multiply the effects of stray capacitance. A 2k2 seems a good compromise, because since R4 has about OV6 across it from the base emitter junction of Q2, the collector current is $0 V 6 / 2 \mathrm{k} 2 \cong$ 300 uA , or 3% of Q2. R5 is chosen so that Q1 emitter is a volt or two below Q 2 collector, ie 3 V , therefore its value is $3 \mathrm{~V} / 300 \mathrm{uA} \cong 10 \mathrm{k}$.
Considering the current gain of Q1, R1 and R2 are chosen to bias its base at around half the supply. Their values are not critical, but the current through R1 should be five to ten times the base current of Q1. R1 is bypassed with C15, which is large enough to be a virtual AC short circuit at the lowest frequency, while C16 effectively bypasses any inductance that C15 may exhibit at high frequencies. C18 and C20 perform the same function.
R6 provides current feedback to mprove stability and is chosen for the lowest value that won't load the output. The negative feedback, and
hence the gain, is controlled by a variable resistance. This variable can take the form of a thermistor, a pair of diodes, a low current lamp filament, or even an FET in more sophisticated circuits. Two arrangements are shown here - the thermistor and the filament lamp. Both work very well by increasing the negative feedback when the output signal increases. The filament is much less expensive than the thermistor but may be harder to find!

The bulb used, a GE 1835 has a cold DC resistance of approximately 110 ohms, and together with R7 (equal to 270 ohms), provides the necessary gain of three to establish oscillation. Both devices change temperature and resistance according to the amount of current flowing through them.
The Rs and Cs of the Wien bridge circuit are chosen to give a 10:1
range on each selected position. A dual 5 k pot was chosen to vary the frequency because, as a relatively low impedance, it allows the use of slightly larger capacitors: these, won't be so affected by stray capacitance at the high frequency end. The 470 ohm resistors R3 a, b set the maximum high frequency on each range.

Construction

No great problems here. In fact this project, for its performance, is incredibly easy to build. The PCB helps this, as well as keeping the response more uniform. The capacitors should be close tolerance or selected for the Wien bridge, to keep the frequency dial accurate on all ranges. Leads from the Wien bridge pots and switch should be as short as is practical.

Figure 3. A different method of gain control, where R7 and LP1 are replaced with an R53 thermistor.

Figure 4. The PCB overlay, showing the LP1/R7 arrangement. Note the cluster of components mounted on SW1a, shown in the picture below.

Parts List

RESISTORS

POTENTIOMETERS

RV1a, b 5k dual long pot
RV2.............................. 5k \log pot with SPST mains switch

CAPACITORS

C1 1000u
16 V radial electro
C2, 7, 8, 16, 18, $20 \ldots .$. ... Ou1 ceramic
C3,4 10u
C5, $6 \ldots \ldots1 u$ 16 V non-radial electro
C9, 10........................... . $10 n$
C11, $12 \ldots \ldots$. 1n
C13.............................. 82p

C14........................... 100p
C15, 17, 19................. 470 u
16 V radial electrò
(NB: Wien bridge capacitors, C3 -14, should be selected to values within 1% of that specified.)

SEMICONDUCTORS
Q1...................... BC549C

MISCELLANEOUS
SW1a, b............ 2-pole, 6-way rotary Case, $159 \times 154 \times 64 \mathrm{~mm}$; PCB; knobs; PP3 battery and clips; terminals, wire, solder etc.

BUYLINES

This photograph shows the author's sine wave generator, which works for its living. The circuit here is built on Veroboard; the small PCB is an auto power down circuit which we have not included in the project. Note the cluster of Wein bridge components mounted on SW1. The grey box, top right, contains the battery - a simple modification.

ENFIELD ELECTRONICS 208 Baker Street, Enfield, Middlesex. EN1 3JY. Tel: 01-366 1873

The Complete

The definitive key to every article published in Hobby Electronics from November 1978 to December 1983.

FEATURES

	Issue	Page		Issue	Page
555 Projects	May 79	38	Deep Space Communications	Dec 78	13
AB Circuits	May 79	33	Dictation Machines	Nov 81	54
Aces High	May 83	47	Digital Counters And Timers	Jun 82	71
A Good Joint Is Hard To Find	Feb 82	53	Digits On Display	Nov 81	14
Aerials	Oct 81	15	Directory Of Electronic Kits		
Aerial Tuners	May 79	60	And Modules	Feb 83	37
Affordable Computer, The	Apr 82	45	Directory (Update)	Apr 83	41
Anatomy Of A Space Shuttle	Apr 81	16	Display Techniques	Jun 79	13
Basic Programming	Jan 79	21	Edison Effect, The	Nov 78	27
Beginner's Guide To			Electronic Aids For The Disabled	Jul 81	15
Construction	Aug 82	28	Electronic Espionage	Jul 80	28
Beginnings Of Real TV (The)	Mar 81	18	Electronic Games	Oct 79	38
Binary Numbers	Jul 79	23	Electronic Housekeeping	Nov 82	26
Book Reviews	Jan 83	68	Electronic Music (1)	May 79	19
Book Reviews	Jun 83	62	Electronic Music (2)	Jun 79	4
Burglar Alarm Installation	Aug 79	14	Electronic Revolution, The	May 82	39
CA3130 Projects	Feb 79	38	Electronic Timekeeping	Sep 79	50
Cable And Satellite Television	Sep 83	25	Electronics From Scratch	Nov 78	9
Capacitors	Apr 79	29	Electronics In Diagnostic Medicine	Sep 81	15
Car Electronics (1)	Dec 81	14	Electronics In Musical Instruments	May 81	18
Car Electronics (2)	Jan 82	60	Electronics In Photography	Jul 80	15
Cassette Decks And Tape	Jul 79	13	Electronics In Warfare	Apr 79	38
Choosing A Calculator	Dec 78	60	Electronics On Wheels	Mar 80	38
Circuit Symbols	Nov 78	40	Equalisation In Audio	Jul 82	60
Citizens Banned	Jun 70	38	Expanding The ACE	Aug 83	42
CMOS Special	Jan 80	23	Fault-Finding Made Easy	Oct 82	15
Computer Glossary	Feb 79	57	Feedback	May 79	15
Computer Talk	Apr 82	41	Feedback	Mar 82	36
Creative Recording	Apr 82	76	FET Special	Sep 79	59
Crossing Your Bridges	Mar 79	13	Finishing Touches	Mar 83	12
Crossover Network	May 80	59	Fixed Resistors	Jul 79	28
Cygnus XI	Nov 78	68	FX-Computer Review	Oct 83	16
Data Supplement Part 1	Nov 79	-	A Good Joint (Soldering Technique)	Feb 82	53
Data Supplement Part 2	Dec 79	-	Hands Off (Meter Review)	Sep 82	47
Decibels	Jul 79	44	HC6010 DMM (Meter Review)	Dec 82	65

	Issue	Page
Hifi Specifications	Nov 78	41
History Of Radioactivity	Feb 79	25
Holograms	Feb 79	46
Home Computers	Nov 78	60
Home Computing	Nov 79	16
Home Electronics	Oct 80	44
Housekeeping For Electronics	Nov 82	26
How A TV Receiver Works	Dec 81	61
How To Use An Oscilloscope	June 81	15
1 Almost Met	Dec 83	42
In Car Entertainment	Aug 80	11
Inside Colour TV	Apr 82	16
Inside Teletext	Sep 80	13
Instant Circuit Layout	Feb 79	63
Intellivision TV Game	Sep 80	29
Interfering Waves	Mar 79	69
Internal Resistance	Jun 79	31
Introduction To Test Gear	Mar 79	33
Jargon	Nov 78	70
Junction FETs	Dec 83	44
KEZY Does It	Feb 80	38
Lasers	Dec 78	45
Light And Power From DC		
Supplies	Jan 83	10
Look In The Book	Feb 83	59
Making PCBs	Dec 78	54
Makin' Tracks (PCB Making)	Feb 82	11
Membrane Switches	Oct 81	27
Metal Locators	Nov 78	66
Metertech DVM Review	Aug 82	37
Micro-History	May 82	26
Micro-Mania (Inside		
Microcomputers)	Apr 82	36
Microprofessor Review	Nov 82	54
Microwave Cooking	Oct 79	50
Models Galore At Sandown	Aug 81	20
Moving Coil Multimeters	May 79	22
Narrow Bandwidth Television (1)	Apr 80	40
Narrow Banwidth Television (2)	May 80	54
New Look For Communications		
Satellites	Mar 79	63
Next Instalment (Multivibrators)	Apr 79	51
ORIC 1 Review	Jul 83	36
Oscilloscope, The	Feb 81	18
Oscilloscope Revisited, The	Mar 82	39
OST Rules OK	Feb 79	70
PETing it Together	Mar 80	24
Photocells	Dec 78	48
Piezo Electricity	Jul 80	56
Pinball Wizards	Jan 79	57

Piezo Electricity
Pinball Wizards

Issue	Page		Issue	Page
Nov 78	41	Planning On Success	Sep 82	49
Feb 79	25	Pocket TV	Mar 82	32
Feb 79	46	Project Daedelus	Jan 79	38
Nov 78	60	Project Fault-Finding	Dec 79	4.1
Nov 79	16	Power From Satellites	Aug 79	38
Oct 80	44	Power To The People	Feb 80	51
Nov 82	26	Radio (1)	Jun 81	24
Dec 81	61	Radio (2)	Jul 81	26
June 81	15	Radio Control	Aug 81	15
Dec 83	42	Radio Controlled Gerbil	Apr 83	12
Aug 80	11	Radio Control World	Sep 79	38
Apr 82	16	Radio Servicing Tips	Dec 78	51
Sep 80	13	Reverb Revealed	Jun 82	38
Feb 79	63	RF Breakthrough	Jun 80	37
Sep 80	29	Robots	Nov 78	34
Mar 79	69	Short Wave Aerials	Mar 79	41
Jun 79	31	SI Units	Jut 79	60
Mar 79	33	Solar Cells	Jul 82	9
Nov 78	70	Solder	Jan 79	63
Dec 83	44	Spacelab	Jan 80	38
Feb 80	38	Spotlight On The Spectrum	Aug 82	14
Dec 78	45	Story Behind Stereo	Nov 80	18
		Substi-Tutorial	May 81	28
Jan 83	10	Synthesiser Secrets	Oct 81	53
Feb 83	59	Synthesiser Secrets	Nov 81	28
Dec 78	54	Synthesiser Secrets	Dec 81	29
Feb 82	11	Telephones	Apr 79	8
Oct 81	27	Television Receivers	Dec 79	31
Nov 78	66	Tesla Controversy, The	Dec 78	70
Aug 82	37	Thyristors	Sep 79	14
May 82	26	Tools Tools And Test Equipment	Aug 78	33
Apr 82	36	Survey	Apr 83	36
Nov 82	54	Tools For The Trade	Apr 83	24
Oct 79	50	Top Ten Electronic Games	Jan 81	19
Aug 81	20	Transducers	Jan 82	43
May 79	22	Transducers In Audio	Nov 78	55
Apr 80	40	TV Aerials	Apr 79	19
May 80	54	TV Broadcasting	Nov 79	42
		TV Shopping	Mar 79	45
Mar 79	63	TV Signal Propagation	Mar 79	21
Apr 79	51	UOSAT Report	Aug 81	56
Jul 83	36	UOSAT Report	Oct 81	59
Feb 81	18	Understanding Bias	Dec 78	36
Mar 82	39	Understanding Component		
Feb 79	70	Values	Jun 82	55
Mar 80	24	Understanding The Hall		
Dec 78	48	Effect	Sep 81	23
Jul 80	56	Unijunction Transistors	Dec 79	19
Jan 79	57	Valdemar Poulsen	Jan 79	14

Varicap Diodes
Variable Resistors
Video Discs
Video Tape Recorders
Viewdata
View Into Video Discs
Voyager Car Computer A Zener Diode Primer
ZX81 64K RAM Pack (Review)
ZX81 Software Review
2X81 Review
ZX Interfaces Explained
ZX Software Reviewed

Issue
May 79
Aug 79
Mar 82
Feb 79
Jan 79
Dec 80
Mar 83
Dec 83
Jun 82
Jun 82
May 82
Aug 82
Jul 82

PROJECTS

Aerial Without Wings
Amplifier, 2 Watt
Amplifier, 18 Watt Stereo
Amplifier Module, 508025 Watt
Analogue Audio Frequency Meter
Audio Analyser (1)
Audio Analyser (2)
Audio Level Meter
Audio Millivoltmeter
Audio Mixer
Audio Power Meter
Audio Signal Generator
Audio Signal Generator
Automatic Greenhouse Sprinkler
Auto Power Down
Autoprobe
Auto Tester
Auto Wah
Auto Winder
Baby Alarm
Baby Alarm
Background Noise Simulator
Bargraph Car Voltmeter
Bassman
Battery Charge Monitor
Battery Eliminator
Battery Warning Device
BBC Micro/HEBOT Interface
Bedside Radio
Bench Amplifer
Bench PSU
Bicycle Speedometer

May 83
Jun 80
Jul 80
Mar 80
Oct 79
Aug 82
Sep 82
Oct 83
May 81
Dec 78
Dec 80
Feb 81
May 82
Jun 82
Apr 83
Sep 80
May 83
Jun 82
Aug 83
Jul 79
Oct 81
Feb 81
Dec 79
Dec 83
Dec 80
Nov 80
Jun 83
May 83
Nov 78
Jan 81
Sep 80
Mar 81

Page
67
18
24
12
34
18
62
20
65
66
20
10
59

Big Ear, The
Bike Alarm
Bike Siren
Cable And Satellite Television
Cable Tracker
Car Cassette Power Supply
Car Interior Delay Light
Car Power Booster
Car Rev Counter
Casanova's Candle
CB Push To Talk Switch
CB Selective Caller
CB Squelch Unit
Chuffer
Cistern Alarm
Crosshatch Generator
Combination Lock
27
54
23 Constant Volume Amplifier
11 Continuity Checker
45 Continuity Tester
53 Designing Power Supplies
57 Development Timer
'Diana' Metal Detector
Diana' VCO
Digibell
Digi-Die
Digital Capacitance Meter
Digital Clock
Digital Dice
Digital Frequency Meter
Digital Multivoltmeter
Digital Speedometer (2)
Digital Speedometer (2)
56 Digital Thermometer
57 Digitester Part 1
39 Digitester PSU
42 Direct Reading Frequency Meter
59 Drill Speed Controller
29 Doorbell Monitor
28 Doorchime
24 Doorphone
30 Double Dice
62 Dual Engine Driver
45 Dual Purpose Power Supply
37 Drum Synthesiser
63 Echo Reverb Unit
37 Egg Timer

Issue	Page
Dec 82	80
Apr 82	72
Mar 82	28
Sep 83	25
May 82	65
Feb 79	66
Dec 81	49
Nov 83	26
Jul 80	23
Jan 81	27
Mar 79	16
Jun 83	45
Jan 83	63
Oct 82	58
Jan 81	54
Apr 79	48
Jan 80	31
Sep 79	8
Oct 81	21
Jul 82	57
Aug 79	61
Jun 81	20
Dec 83	56
Jun 82	12
Sep 80	53
Sep 81	10
Nov 82	22
May 79	45
Jan 80	47
Apr 82	25
Nov 78	30
Mar 82	11
Apr 80	33
Aug 82	20
Dec 80	13
Jan 81	42
May 82	10
Jan 83	23
Feb 83	56
Nov 81	38
Jun 79	68
Apr 81	32
Dec 81	66
Oct 81	10
Nov 80	65
Apr 82	11
Nov 83	54
Dec 81	18
May 82	33
Jun 80	43

	Issue	Page		Issue	Page
Electronic Dice	Dec 78	57	Intelligent NiCad Charger	Jan 82	26
Electronic Doorbuzzer	Jul 81	42	Intruder Alarm	Oct 80	59
Electronic Ignition	Apr 80	11	Intruder Confuser	Jan 82	38
Electronic Ignition	Aug 81	10	Jack Lead Tester	Dec 80	49
Electronic Metronome	Dec 78	10	'Junior' Slot-Car Controller	Sep 82	9
Electronic Organ (1)	May 81	11	Kitchen Timer	Oct 80	13
Electronic Organ (2)	Jun 81	43	Lamp Dimmer	Sep 79	33
Electronic Organ (3)	Jul 81	20	LED Tachometer	Aug 79	24
Electronic Organ (4)	Aug 81	42	LED VU Meter	Nov 81	30
Entryphone	Oct 81	10	Light Beam Telephone	Nov 81	10
Envelope Generator	Jun 79	19	Light Chaser	Mar 79	7
Envelope Generator	Jun 81	51	Light Dimmer	Oct 80	33
EPROM (6502-Based) Programmer			Light Meter	Dec 83	12
Part 1	Mar 83	20	Linear Scale Ohmeter	Jul 79	20
EPROM Programmer Part 2	Apr 83	28	Lofty	Dec 82	74
Flashpoint Alarm	Oct 82	9	Low Cost Alarm	Dec 82	70
Flash Trigger	Jan 79	59	Low Power Pilot Light	Sep 81	21
Fog Horn	Jun 80	64	Mains Adaptor	Sep 81	42
Freezer Alarm	Oct 80	40	Masthead Amplifier	Feb 82	42
Gas Detector	Aug 80	57	Medium Wave Radio	Feb 81	56
General Purpose Amplifier	Jan 81	37	Metronome	Jun 80	32
Giant Circuit Supplement	Oct 83	34	Metronome	Nov 81	61
Graphic Equalizer.	Jan 79	7	Microbe Radio Control Systems	Jun 80	11
Graphic Equalizer, Guitar	Dec 81	10	Microlog	Dec 82	9
Gripometer	Sep 83	59	Micromix	Sep 80	19
GSR Monitor	Jun 79	8	Microtrainer Part 1	Jun 82	60
Guitar Fuzz Box	Mar 81	54	Microtrainer Part 2	Jul 82	52
Guitar Phaser	Sep 80	49	Microtrainer Part 3	Aug 82	57
Guitar Preamplifer	Nov 80	35	Microtraining	Sep 82	25
Guitar Tremolo	Apr 81	39	Miniboard Projects (Vero)	Nov 79	20
Guitar Tuner	Nov 79	61	Miniboard Siren	Mar 80	54
Hazard Flasher	Jul 80	62	Miniclocks	May 80	13
Heartbeat Monitor	Feb 81	13	Minisynth With Memory	Nov 80	13
Hebot (1)	Jun 79	10	Minisynth II	Dec 80	66
Hebot (2)	Dec 79	25	Model Train Controller	Apr 79	15
Hebot (3)	Jan 80	56	Model Train Controller	Dec 80	41
HEBOT II	Nov 82	9	Moisture Gauge	Dec 83	49
High Impedance Voltmeter	Feb 81	26	Movement Alarm	Aug 80	49
Hi-Voltage Meter	Oct 83	28	Multi-Option Siren	Oct 79	58
Hobbycom	Apr 80	17	Negative Voltage Generator	Oct 79	24
Hobby 'Scope Part 1	Jun 83	11	NiCad Battery Charger	Jan 81	50
Hobbytune	Oct 79	23	Nobell Doorbell	Oct 80	67
Home Security System	Aug 79	8	Noiseless Fuzzbox	Feb 82	26
Improved Overload Trip	May 79	71	Odometer, The	Nov 82	46
Incremental Timer	Feb 83	12	Op-Amp Checker	Aug 81	62
Infra-Red Remote Control	Feb 80	27	Overvoltage Circuit	Mar 83	68
Infra-Red Remote Controller	May 81	49	Para-Q	Nov 83	13
Infra-Red Remote Controller			Parking Meter Timer	May 79	27
Part 2	Jun 81	60	Party Grenade	Nov 80	41
Injector/Tracer	Aug 79	48	Passionmeter	Feb 80	10

Pass The Loop
Pedalboard Organ
Pedometer/Odometer
Phase Four
Photographic Timer
Photographic Timer
Photon Probe
Planning For Success
Pocket TV
Points Switch
Pop Amps 1: Microammeter
Pop Amps 2. Follow and Hold
Power Amplifier (1)
Power Amplifier (2)
Power Supply
Power Supply Unit
Preamp, 5080
Preamplifier (1)
Preamplifier (2)
Programmable Joystick
Controller
PSU Model (5080A)
Public Address Amplifier
Push Button Dice
Push Button Speed Controller
Push Button Volume Control
Radio Timer
Railway Track Cleaner
Reaction Tester Game
Reaction Timer
Reader's Project: Enlarger Timer
Reader's Project: Simple Stereo
Preamp
Reader's Project: Simple
Tremolo
Rev Counter
RIC Speed Controller
Ring Modulator
RPM Meter
Russian Roulette Game
RZDZ Radio
Scalextric Controller
Scalextric Lap Counter
Scratch And Rumble Filter
Scratch Filter
Shark
Short Wave Radio
Short Wave Radio
Short Wave Receiver
Signal Powered Loudspeaker Protector
issue

Aug 80	41
Dec 81	32
Nov 82	46
Dec 82	37
Mar 79	47
Mar 81	58
Dec 78	18
Sep 82	49
Mar 82	32
Jul 79	46
Jul 79	52
Dec 82	62
May 81	10
Jun 81	49
May 79	9
Sep 83	54
May 80	28
Apr 81	11
May 81	59
Aug 83	11
Mar 80	19
Mar 81	13
Dec 78	57
Apr 80	29
Apr 80	37
Aug 80	29
May 80	45
Sep 81	58
Sep 80	25
Aug 83	60
Nov 83	47
Jul 83	41
Jan 81	27
Apr 80	49
Dec 79	47
Aug 81	52
Apr 81	46
Nov 79	51
Dec 79	11
Jan 80	9
Feb 79	29
Nov 81	19
Jul 79	9
Feb 79	8
Mar 80	57
Sep 81	52
Mar 83	50

Complete Cumulative Index

	Issue	Page		Issue	Page
Two-Tone Train Horn	Feb 81	48	AF Signal Generator	Dec 79	50
Ultrasonic Burglar Alarm	Jul 81	11	AC Meter Booster	Sep 79	63
Ultrasonic Intruder Alarm	Oct 83	63	Audio Limiter	Jan 80	18
Ultrasonic Switch	Sep 79	45	Automatic Fader	Feb 80	20
Universal Relay Driver	Feb 82	18	Basic Burglar Alarm	Jun 79	53
Variable Bench Power Supply	Aug 81	58	Bedside Radio	Oct 79	72
Variwiper	Jan 79	27	Breadboard/Audio Phaser	Nov 82	68
Voice Operated Switch	May 81	24	Breadboard Tone Controls	Sep 82	34
Volume Expander	Jan 82	54	Breadboard VCO	Oct 82	75
Wah-Wah Pedal	Nov 78	37	CA3080 VCA	Feb 79	32
Watchdog	Oct 80	59	Car Lights Delay	Sep 81	38
Whistle Switch	Aug 83	36	Car Cassette Power Supply	Jan 80	44
White Noise Generator	May 79	63	Cassette-Radio Booster	Jun 80	20
Windscreen Washer Alarm	Apr 81	53	Christmas Tree Lights Flasher	Feb 80	21
Windscreen Wiper Delay	Nov 83	36	Class A Amplifier	Apr 80	23
Windscreen Wiper Controller	Mar 81	30	Clipping Amplifier	May 79	24
Win indicator	Feb 80	59	CMOS Logic Probe	Apr 79	26
2X81 High Resolution Graphics			CMOS Logic Probe	Jul 79	42
Board	Jul 83	17	CMOS Monostable	Dec 79	50
ZX Interface Board	Sep 82	14	Crystal Calibrator	Jun 80	56
ZX Sound Board	Jun 83	20	Diode-Transistor Tester	Mar 81	46
			Direct Reading Ohmeter	Apr 81	45
			Doorbuzzer	Feb 80	17
			Electronic Door Buzzer	Mar 79	25
	TS		Electronic Metronome	Jun 79	41
	15		Electronic Thermometer	Jun 79	72
			FET Voltmeter	Jul 79	42
Audio Mixer	Jun 81	58	Flash Slave Unit	Aug 79	66
Car Light Delay	Sep 81	38	Gas and Smoke Detector	Aug 79	57
Electronic Metronome	Jul 81	55	General Purpose Amplifier	Feb 80	18
Guitar Headphone Amplifier	Dec 81	27	Guitar Practice Amplifier	Aug 79	28
Heads and Tails Game	Mar 82	45	HF TTL Oscillator	Jan 79	26
Light Seeker	May 82	55	Headlight Warning Indicator	Nov 83	59
Light/Water Alarm	Sep 81	28	Headphone Amplifier	Sep 79	48
Seven-Segment Display	Oct 81	45	Heads Or Tails	Jan 80	34
Signal Tracer	Apr 82	34	Home Intercom	Feb 79	28
Simple Stylus Organ	Nov 81	58	Hum Notch Filter	Dec 78	52
Simple Timer	Jan 82	25	Infra-Red Intruder Alarm	Jul 80	20
Solar Experiments	Jul 82	25	Insect Repellant	Jul 79	41
Sound Switch	Feb 82	64	Lead Tester	Nov 83	59
Substitution Boxes	Nov 81	26	LED VU Meter	Apr 80	48
Two-Down-One	May 81	33	Lie Detector	Mar 79	50
			Light Change Detector	Jun 80	46
			Light Sensitive Switch	Dec 78	26
			Linear Scale Ohmeter	Feb 79	36
	$17 S$		Logic Lock	Jun 79	72
			Low Battery Voltage Indicator	Jun 80	36
555 IC Monostable Circuits	Oct 79	56	Low Frequency Oscillator	Jan 79	70
555 IC Projects	Mar 79	25	Low Power Flashing Light	Nov 78	71
AF Millivoltmeter	Jun 79	49	Magic Candle	Jul 79	36

Mains Interference Suppression
Measuring Unknown Capacitors Metronome
Morse Practice Oscillator
Nanoamp Meter
Nanoamp Meter
NiCad Charger
Noise Gate
Noise Limiter
Noise Limiter
One Armed Bandit
One Transistor Amplifier
Phase-Shift Oscillator
Power Supply With IC Regulator
Power Supply With Transistor Regulation
Pre-Amp with Stepped Gain Control
Precision Half Wave Rectifier
Preselector, $10-30 \mathrm{MHz}$
Power Supply, 5-13V
PSU with IC Regulation
Quick Transistor Checker
Quick Transistor Checker
Radio 4 Tuner
Radio Controlled Mixer
Reaction Game
Regulation Booster
Remote and Touch Volume Controls
RIAA Stereo Pre-Amp
Ringing Tone Monitor
Scratch and Rumble Filter
Signal Injector/Tracer
Simple Amplifier
Simple MW Radio
Simple SW Radio
Simple Timer
Sine To Square Converter
Single IC Organ
Single IC Power Supply
Single Op-Amp Oscillator
Sound Operated Switch
Sound-Triggered Flash
Speech Processor
Supply Splitter
Suppressor Tester
Sustain Unit
Table Lamp
Thermostat
Issue

Page

May 79	58
Nov 78	44
Feb 80	18
Feb 80	17
Apr 79	45
Jul 79	40
Sep 79	48
Jan 80	70
Mar 79	29
Jul 79	36
Mar 80	72
Dec 78	12
Jan 79	70
Jan 79	33
Nov 78	64
Jan 79	70
Mar 79	19
Apr 80	23
Feb 79	65
Jan 79	33
Apr 79	50
Jul 79	37
Jun 80	36
Nov 83	58
May 79	33
Dec 78	26
May 79	35
Jan 79	37
Nov 83	58
Aug 79	50
Jul 79	35
Mar 79	68
Feb 80	21
Feb 80	16
Mar 79	68
Dec 79	50
May 79	61
Dec 79	38
Jan 79	33
Mar 80	33
Jul 79	37
Jul 80	26
Apr 80	48
Feb 81	30
Sep 79	63
Jul 80	42
Jan 80	52

Three Breadboards For		
Experimenters	Jun 82	
Timer	Oct 79	31
Timer, ZN1034E	Mar 80	23
Touch Switch	Apr 79	33
Touch Switch	Jul 79	38
Transistor Checker	Jun 80	62
Transistor Tester	Nov 78	71
Transistor Tester	Mar 80	33
Transistor Power Amplifier	Nov 78	49
Treble Booster	Apr 79	50
Treble Booster	Jun 79	40
Tremolo Unit	Jun 79	11
Tug O' War Game	Oct 80	24
Two Microphone Amplifiers	Jul 79	39
Two-Tone Alarm	Oct 79	56
Two Transistor Noise Source	Dec 78	17
Two Transistor Radio	Feb 79	32
Ultrasonic Receiver	Feb 80	19
Ultrasonic Transmitter	Feb 80	19
Unregulated PSU	Nov 78	64
Voice Operated Fader	Jul 80	45
Voltage Controlled Filter	Jul 79	38
Waa-Waa Unit	Jan 80	44
Water Alarm	Feb 80	20
Zener Diode Tester	Sep 79	58

SERIALS

Famous Names

Edwin Armstrong	Nov 81	23
Sir Edward Appleton	Sep 82	37
Charles Babbage	May 82	53
J. M. E. Baudot	Dec 82	33
Alexander Graham Bell	Aug 83	52
Karl Ferdinand Braun	Oct 81	25
A. A. Campbell-Swinton	Dec 81	26
Ailen B. Du Mont	Mar 82	47
Lee De Forest	Feb 82	45
Sebastian De Ferranti	Jun 82	29
Michael Faraday	Apr 81	35
Oliver Heaviside	Sep 81	26
Joseph Henry	Aug 81	26
Heinrich Rudolph Hertz	Jun 81	56
Herman Hollerith	Mar 83	65
Guglielmo Marconi	Ap 82	30
James Clark Maxwell	May 81	63

Julius Plucker
Vlademar Poulsen
Sir John Turton Randall
David Sarnoff
William Bradford Shockley
Charles Proteus Steinmetz
William Stockley
Charles Wheatstone
Vladimir Zworykin

Into Digital Electronics

Part 1
Part 2
Part 3
Part 4
Part 5
Part 6
Part 7

Into Electronic Components
Part 1
Aug 81
Part 2
Sep 81
46
Part 3
Part 4
Part 5
Part 6
Part 7
Part 8
Part 9
Part 10
Part 11
Part 12

Into Electronics

Part 1
Part 2
Part 3
Part 4
Part 5
Part 6
Part 7
Part 8

What's In A Name/ Tech Terms

Loudspeakers
Microphones
Pressure Sensors

The Hall Effect

Gadgets, Games And Kits
'O'Level O \& A

Kits
Bio-Activity Translator Car Anti-Theft Alarm Car Clock/Timer
CM100 Circuit Maker
Digital Panel Meter
DIY HIFI/Speaker Review
DM 2350 Meter Review
Dora Chime
Electronic Ignition
Electroni-Kit Construction Kit Memotech 64K RAM Pack Review
Programagame
Power Supply
R/C Servo
Touch Dimmer
Tuner/Amplifier
VU Meter
Voyager Car Computer
Wein Bridge Oscillator

Issue	Page
Jan 81	25
Feb 81	29
Mar 81	53
Oct 81	27

May 81

Jan 81
Feb 81
Mar 81
Apr 81 May 81 Jun 81 Jul 81

Pop Amps

High Impedance AC		
Millivoltmeter	Jul 83	60
Linear Ohmmeter	Mar 83	30
Long Range Ohmmeter	Mar 83	46
One-Op Amp Microammeter	Dec 82	52
Peak Voltage Detector	Feb 83	52
Single IC Millivoltmeter	Jan 83	30
TL Logic Tester	Feb 83	36
Very High Impedance Voltmeter	31	
Voltage Follow And Hold	Dec 82	62

Components For Computing
I/O Ports Dec 82

Randomly Accessing Memory Feb 83
ROMs And EPROMs
Interrupts
Looking At Displays

Careers In Electronics '83
Basic Qualifications
May 82
Technical Writing
British Telecom
Radio and TV Transmission In The TV and Radio Studio Customer Service Engineering Working With Microcomputers

All About Electronics

Part 1: Basics
Electromagnetics And Ohm's Law
Resistance And Capacitance
Semiconductors
Digital Circuits
Transistor Circuits
Jul 83

Jun 79	51
Nov 79	47
Aug 79	22
Oct 82	63
Oct 79	27
May 83	52
Sep 82	47
Nov 78	51
Jul 79	54
Apr 79	24
Jun 82	65
Dec 78	67
Feb 79	34
Feb 80	45
Jul 80	46
Mar 80	29
Jul 80	47
Mar 83	62
Jan 79	67

YOUR CAREER.YOUR FUTURE..YOUR OWNBUSINESS..YOUR HOBBY THISISTHEAGE—OFELECTRONCS! the world's fastest growith industry...

There is a world wide demand for designers/engineers and for men to service and maintain all the electronic equipment on the market today - industrial - commercial and domestic. No unemployment in this walk of life! Also - the most exciting of all hobbies - especially if you know the basic essentials of the subject. A few hours a week for less than a year - and the knowledge will be yours. We have had over 40 years of experience in training men and women successfully in this subject.

Our new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minumum of theory.

You learn by the practical way in easy steps, mastering all the essentials of your hobby or to start, or further, a career in electronics or as a self. emploved servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:

- Build a modern oscilloscope

Recognise and handle current electronic components

- Read, draw and understand circuit diagrams

Carry out 40 experiments on basic electronic circuits used in modern equipment using the oscilloscope

- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T. V., Hi-Fi, VCR and microprocessor/computer equipment.

CACC British National Radio \& Hectronios School Reading,Berks.RGl 1BR

解
COLOUR BROCHURE

Please send your brochure without any obligation to
NAME

ADDRESS

I am interested in;
COURSE IN ELECTRONICS as described above RADIO AMATEUR LICENCE MICROPROCESSORS
OTHER SUBJECTS please state below

We conclude our three-part look at electronics in the Armed Forces with the Royal Airforce, and a round up of addresses.

Unsurprisingly, the ROYAL AIR FORCE also divides its engineering forces into three sections, in this case known as Aircraft Engineering, including and care and maintenance of the aircraft and heavy weaponry, as well as the electrical systems; Electronics Engineering, which includes the care of all communications equipment, flight simulators, and the fine electronics of flight and navigation systems, and General Engineering, which covers carpentry, workshop crafts, ground equipment servicing and ground and vehicle electrical systems.

For engineering in the RAF, the roles are generally divided into Mechanics (who require no formal qualifications to be accepted for training) and Technicians (most of whom require two or four GCE O levels or the equivalent). Men are accepted at $16 \frac{1}{2}$ and women at 17 , and most trades are open to both -although, in accordance with the tradition that women do not go into combat, flying jobs are closed to them. As usual, maths and physics are the prefered GCE subjects, and in some cases are essential. Entrants with four

Helen Armstrong

'O' levels, and between 16 and $181 / 2$ can apply for Apprenticeship training. The upper age limit for training is 39 , a bit higher than for the other two Services. This may reflect the fact that there is less emphasis on personal combat training in the RAF than in the Army or even the Navy: it is highly machineorientated, the purpose being to get fighting, bombing and reconnaissance aircraft into the air, out to their mission, and safely back again. Even so there is an RAF Regiment whose job is to protect the airfields; all personnel have to undergo military training, and meet basic medical requirements, and some jobs - such as flying - are among the most physically and mentally demanding in any Service.

Technician training lasts from nine to eighteen months, depending on the previous level experience of the trainee (some come straight from school, others from industry) and those entering as Mechanics may be selected according to merit for training as Technicians later. People with, or expecting to get, four good ' O ' level passes including Maths and Physics can apply for

Apprenticeship training. This falls into Aircraft Engineering (which is mostly electrics and mechanics). Electronic Engineering (Flight Systems), or Electronic Engineering Technician (Air Communications/Air Radar), which titles are self-explanatory.

Electronic Engineering courses cover three years at RAF Cosford, near Wolverhamptoh. The first year of study is common to all Electronics students, and includes basic electronics, introductions to radio and computers, plus introductory RAF studies such as physical training, weaponry and RAF history. Work on BTEC studies begin

In the second year, advanced electronics theory and practice is covered. Students begin to specialise, and learn about the specific equipment they will be working with; they also visit an RAF station to observe engineering in action, and sit BTEC examinations. In the third year, most time is spent in workshop practice and aircraft servicing within the student's specialisation, with more time at an RAF station. There is also a course in Junior Management, which is the first formal step towards
developing the ability to lead and supervise men, which could later lead to officer training to those with the ability.

At the centre of the course the level of BTEC Higher Diploma is achieved, and there are further opportunities to take higher qualifications and more demanding specialisations.

Unlike the Navy and the Army, Engineering Officers in the RAF do not have to be graduates. Acceptable qualifications however are still demanding, and are candidates are classified as "Qualified" or "Intermediately Qualified": Qualified candidates must have a degree in an appropriate subject (engineering, maths or science, to summarise), or membership, or the equivalent, of one of the engineering Institutions or the Royal Aeronautical Society (to the level of Chartered Engineer in the latter case) or a pass in Part 2 of the Council of Engineering Institutions examinations. Intermediately qualified candidates must have an HNC or BTEC Higher Certificate in Engineering or science, or a City and Guilds Full Technological Certificate in one of the four specified engineering subjects - plus ' O ' level English.

This is a bald summary; there is a complex system of exemptions and equivalents to be taken into consideration. The RAF like all the Services aim to choose men and women suitable for the service and in the process see that they are qualified, or can be qualified, to do the technical job which will be demanded of them; they are nut looking for a sheaf of paper qualifi. ations.

In the RAF equal opportunitie exist for men and women in all engineering jobs, except apprenticeships. You'll get more details from their recruiting literature.

Sponsoring Schemes

While they do not have their own degree college, the RAF has a number of schemes for sponsoring. There is a Cadetship scheme for entrants about to go into a University or Polytechnic, and there is also sponsorship for the Air Transport Engineering Course at the City University in London.

The RAF also wants officers who have had experience in industry and, as for the ranks, the upper age limit for entrance is thirty nine.

All officers entering the service have an initial training of eight weeks at the Officer Training Unit at the RAF College, Cranwell. The subjects covered will be familiar to you by now: leadership, service history and knowledge, administration, tactics and defence, physical fitness and survival.

Subsequently, Engineer Officers train at Cranwell, although there are many other RAF training establishments for other branches. Non-graduate engineers receive Lead-in Training, comprising mathematics and electrical science, drawing, workshop practice and other academic subjects. This is followed, for evervone, by eight weeks

A test crew at Marconi Avionics put he tactical systems of a new Nimrod aircraft, due to come into service in the not too distant future, through its paces. This is the kind of equipment which RAF engineers must be able to maintain.

Service Engineering Orientation Course, which covers the technology and management used by the RAF.

After this, officers specialise in either basic aerosystems or basic communications-electronics. Further education in these fields comes in the form of pre-employment training before each tour of employment for C-Es, and familiarisation training on the aircraft they will be working with for Aerosystems (this is similar to the standard pattern of pilot and aircraft engineer training in civil life, where the pilot or engineer must be specifically trained and qualified for one (or more) type of aircraft before he is allowed to work with it).

The initial Professional Training course lasts about twelve months, after which the officer goes into employment, but both technical and management training continues as the officers progresses.

As the majority of RAF engineering officers neither fly operationally nor engage in front-line combat, most jobs are open to women as well as men provided they have the same qualifications. But whereas it's fair to say, "Why join the Navy if not to go to sea?", it's not fair to say "Why join the RAF if not to fly?". Comparatively few RAF personnel actually fly, or fly in, the aircraft - the majority of them either service the aircraft, or administrate the
service. It is possible to learn flying, though, as indeed it. is in the Navy or the Army.

To join the RAF as an Officer you must be interviewed and selected by either the Air Board (aircrew), the Ground Board (most other personnel) or the Cadetship Board, which selects candidates for University Cadetships. Selection procedures take place at RAF Biggin Hill (home of the Biggin Hill Air Show) and last between three and four days. A permanent commission is initially for sixteen years either from theage of 21 or up to the age of 38 there are also Short Service Commissions of varying length. Promotion is by merit.

Pros And Cons

This article so far has laid out a rough map of the opportunities and commitments which exist in the Armed Forces for people interested in pursuing a career in electronics at any level. I hope I have been able to distinguish between the three services enough. Although they are all run along similar lines and have similar aims I am left with the impression that each has its particular advantages and disadvantages, from small things such as the exact age limits for entry to large

A different aspect of defence work: two operators on the main computer at RAF Brize Norton. Stressing the variety of defence work, operating the administration computer is as far from repairing a fighter aircraft as can be imagined, but it is still a vital part of the defence chain.
matters such as where you would be expected to serve and the opportunity to travel or otherwise.

All the services have the benefits and penalities of a somewhat closed community, as servicemen tend to live on or around bases with other people of the same service. It can be (but does not have to be) rough on family life, as it can involve a good deal of moving around, so that there is not the opportunity to settle into a local community (even a service one) for long periods. Some people find this interesting, others find it disorientating. On the other hand it gives a comparatively well-assured career (although servicemen, especially older ones, are not immune to redundancy; but this does not happen very often) with a good pension for people leaving after a full term career and training and experience (particularly in a technical field such as engineering) which are in demand in civilian employment.

To be eligible for service employment, you must be a British citizen and the child of British citizen parents (which does not mean that you or they have to be born in the UK but does mean that you must have been born within the Commonwealth. Again, as with most Forces regulations, exceptions can be made under the right circumstances. But applicants must be of British nationality on application.

Asking Questions

Career opportunities aside, the Armed Forces exist to defend the UK and territories associated with it against attack; years of peace can suddenly be punctuated by hostilities involving all three Services, as happened with the Falklands war. Engineers even when they are not actually doing the shooting, are occasionally likely to be shot at.

However, the Services are as keen to avoid employing people who are not happy with the conditions of service as those people are to avoid joining them. So it is worth asking questions, if possible visiting services establishments and meeting service people. Joining does not have to be a long-term commitment, so that it is possible to spend a few years in one of the services (the minimum is about three years in most cases) and then decide whether to stay or leave, by which time you will know what is involved and can make the choice with useful experience behind you, and no regrets either way.

Your first step in your investigation is to visit your nearest Services careers office, or to write to one of the addresses listed for brochures, which will tell you roughly what we have told you, and a whole lot more. Then go back to your careers office and start asking questions.

Now, if the RAF will just recognise the
crying need for lady fighter pilots before 1 get to thirty-nine
To find out more about engineering in the Army, write to:
The Engineer-in-Chief's Recruiting
Liaison Office
Royal Engineers
Bromptón Barracks
Chatham
Kent ME4 4UG
Lt-Col J. R. Ellis
Officer Recruiting Liaison Staff
School of Signals
Blandford Camp
Dorset DT11 8RH
The Recruiting Liaison Staff
Headquarters
REMEM Training Centre
Arbourfield
Reading
Berks RG2 9NN
These addresses all apply to officer training. For other ranks, locate your nearest Army Careers Office by consulting the Yellow Pages, local telephone directory, or local library. Prospective Naval Officers should write to:

The Officer Entry Section
Naval Careers Service
Old Admiralty Building
Spring Gardens
London SW1A 2BE
For other ranks look for the Royal Navy and Royal Marines Careers Information offices in the phone book (listed under Naval Establishments). There are about sixty of these countrywide; you can phone them for initial information and literature.

For the RAF, you will have to refer to the nearest RAF careers office initially.

There are two other options to be considered: one is the Youth Training Scheme, for which the Services are now taking some entrants for twelve month engagements, which is a good chance for likely candidates between sixteen (seventeen for girls) and eighteen. The other is the Forces Reserves. Each Service has a Reserve force made up of ex-personnel and civilians who put a certain amount of their time into Service training every year in return for training and payment. Members acquire rank in the same way as regulars: it's a way of becoming involved in the Service without the full career commitment. Places are often limited. Reservists are the first to be called upon in time of war when the services need more personnel.

That concludes our summary: the rest is up to you. And, yes, the rumours that some trainee officers have been asked to obtain a tassel from a striptease dancer as part of their initiative test have been confirmed by our most reputable (ex-Armed Services) sources.

This feature ends Careers In Electronics ' 83 as a regular series, but we shall be' featuring other electronics careers every so often. Suggestions are welcome from anyone with a special interest that we haven't covered yet.

A giant step forward . . . or a leap in the dark?

CLIVE SINCLAIR has just made a grand slam bid for another lion's share of the computer market. Although not without drawbacks, the new Sinclair QL ("Quantum Leap") is a very powerful machine which Sinclair confidently expects to equal the sales performances of the Spectrum. The QL will retail for just £399, including a set of four software packages from Psion. Mail-order deliveries are due at the end of February 1984, with retail sales planned in the year's third quarter. Ordering a QL should not be a problem, as a wide ranging advertising campaign has already begun.
As pointed out at the launch, there is no other computer offering anything like the power of the QL at anything near the price; the inclusion of four useful and well designed programs is a nice touch, and a sensible precaution against one of the most serious threats to a new computer - lack of software support. This is a marketing lesson which Sinclair has learnt thoroughly but which others absorb only at great cost.
But then marketing is largely what Sinclair Research Ltd are all about. The method is easily grasped, if not so readily followed by companies with less nerve. Somehow Sinclair manage to make and sell tomorrow's computer today, at yesterday's price. It is a leapfrogging process that reverses the normal procedure by which marketing-men take surveys to determine what the public wants, and then produce what they think the public needs. It is a technique (which has worked so far) whereby a new and innovative produce creates its own market: after all, was there really a demand for a small inexpensive home computer until Sinclair released the ZX80? The QL may well follow the same pattern.

The QL is very carefully positioned to bridge the gap (if there is one) between home and business computer users: on the one hand it is cheap enough to compete with the BBC Model B, Commodore 64 and the like, but also powerful enough (at least potentially) to compete with Apple, CBM and even the IBM PC. Yet Sinclair candidly admit that although they see the OL primarily as a business machine, they have no idea what uses the QL will ultimately find in the hands of the target 3.5 million users world wide. In other words having created a supply, they earnestly hope that demand will follow!
Certainly the QL has features to attract interest from all sections of the computer-buying public, and promises to be an interesting machine to explore.

Inside Story

The specification of the QL is worth considering in detail. The main processor is Motorola's MC68008, the baby of the 68000 family but neverthe less a most powerful CPU. It has a 32-bit internal structure and is fully compatible with 68000 code. The $20-$ bit wide address bus can directly access 1 M byte of memory (or memory-mapped I/O), but the most attractive feature to Sinclair must have been its 8 -bit data bus, which means the 68008 can be operated with standard byte-wide memories and support chips.
As well as the 68008 the QL includes an Intel 8049 8-bit CPU with 2 K ROM and 128 bytes of RAM on the chip. This handles the keyboard, sound generation and the RS232C receive function. In addition, two custom chips are employed: one is dedicated to memory management and the display, while the other looks after the two microdrives, the local
area network and RS232C transmission. A real-time clock is also included, maintained by a back-up battery - a most useful facility which. in the age of digital watches, is inexplicably missing from most computers.
Internal RAM stacks up at a fairly massive 128 K , of which 9 K is free to the user; an 0.5Mbyte expansion board is promised, which will take total RAM to 640 K 1 The 32 K ROM contains the new QDOS operating system, which promises to be very interesting, and an enhanced version of Sinclair BASIC, dubbed
SuperBASIC.
QDOS is described as " \because. . a single user multi-tasking, time-sliced system and was developed to take advantage of the power of the 68008 CPU. Multi-tasking (the ability to handle several jobs simultaneously) allows the QL to run several programs at once, each with an independent screen window - a feature normally available only on far more expensive computers.
SuperBASIC offers several improvements over the old Sinclair BASIC. For a start it incorporates the structured PROCedure format made popular by BBC BASIC; it is also said to be userextendable and to run at a constant speed, so that program execution time does not depend on the length of the routine. Other features include easy interfacing to machine code, and access to the QDS operating system.

In And Out

The OL's keyboard has a full sized QWERTY layout with sixty five keys including a space bar, five function keys and four separate cursor controls. It is, apparently and at last, a proper keyboard!

Two microdrive units are built in, and a futher six can be daisy-chained onto the expansion socket. However

these must be QL Microdrives; those made for Spectrum cannot be used, though the cassettes themselves are compatible if formatted for the QL.
A port at one end of the computer accepts ROM cartridges up to 32 K in capacity, but once more ZX ROM cartridges are not suitable.
The OL offers alternative display outputs. Best quality is obtained from the Monitor port, which will drive either an RGB or a monochrome monitor. Two graphics resolution modes are available: 512×256 pixels with a choice of four colours (red, green, black, white, plus a 'stipple' feature) or 256×256 with a palette of eight colours. Normal character format on a monitor display is 25 rows $\times 85$ columns.
The UHF TV output display modes are similar, but the use of the stipple feature is not recommended and the character format is typically forty six characters, depending on software.
Other features built into the OL include a local area network (OLAN) providing a link-up for up to sixty-four QLs or Spectrums, two RC232C ports and two joystick ports.

Onwards And Outwards

In addition to the 0.5 Mbyte memory expansion, an interesting list of peripherals and extensions is planned for the QL. The most important of these are the 68000 assembler, the analogue/digital interface, Winchester (hard disc) interface, modem and the parallel printer interface.

Finally there is the manual. A preview copy was released to interested journalists at the press launch, and while it would be unfair to criticise it at this stage it is plainly incomplete, with large sections either missing or very skimpy; one hopes that the final style is less opaque than that of the draft version. Bad documentation is unforgivable and a sin which infuriates reviewers and often leads to unfavourable comment on the computer itself.

Software

The 'software suite' supplied with the QL was written and licensed from Psion and consists of four integrated programs: OL Abacus, a spreadsheet; Archive, a data management/filing system; Easel, a graphics design program; and Quill, a wordprocessor. All four are supplied on Microdrive
cassettes and make extensive use of the ODOS operating system's capability for separate screen windows. At the top of the screen is a Control window, which at all times displays a list of current options available, to the user; few lines of the screen to show information about the work in progress; and the Display window, a large area across the middle of the screen, shows the work.

The screen format is identical in all four programs, as is the command structure, so the learning curve for the complete suite is likely to be quite short. In addition data is transportable from one program to another so that, for example, business graphics can be generated from data imported from the spreadsheet.
Many other tasty features are listed in the documentation, including many found only on up-market business computers, so the indications are that the OL software suit will be a joy and a delight to use - Murphy's Law permitting.

Paper Tigers

Lest readers begin to think that the QL is all things bright and beautiful, a flawless example of computing engineering unmatched by any other, it has to be said that the OL does have a few shortcomings. Indeed the sceptics have already compiled a list of them.
The most serious criticism is the complete lack of a facility found on every computer in the OL's price range . . . a cassette interface (its worth mentioning that a floppy disc interface is missing, too).

The implication of this is that cheap software is unlikely to be available for some time, because blank Microdrive cassettes currently cost around $£ 5.00$ at retail prices, and the medium is not suitable for high speed duplication either. Taking a slightly longer view, though, it will probably not be too long before add-on cassette and/or floppy interfaces are available Another possiblity is that software houses will go for ROM-based programs, though this development must wait on the release of the 68000 assembler.

The Microdrive system itself is not yet proven to the satisfaction of many buyers. However the OL Microdrives

may prove more efficient than those made for the Spectrum: according to the provisional manual, QDS routinely stores as many files as possible in spare memory, reducing wear and tear on the tape and greatly increasing access time. And the 0.5 M byte RAM pack provides a very substantial amount of spare memoryl Another serious, albeit temporary problem, is the lack of a parallel printer interface.

The remaining criticism of the QL (so far) have about them a faint aroma of sour grapes. Complaints have been made about the use of the 68008: its data bus is only 8 -bits wide rather than 16 , so it will be only a quarter as fast as the 68000 because it has to perform four times as many fetches; and with a clock speed of only 7.5 MHz the QL will be slower than some of the faster 8 -bit computers. Well I wouldn't bet on it.
In fact both the 68000 and the 68008 fetch instruction in pairs of bytes (words), so there is not all that much difference between them, and Motorola data shows that on a quick sort' bench-mark test the 68008 clocks in only 10 milliseconds slower (30%) than the 68000 CPU running with a memory management unit And at first appearances, the 68008 instruction set looks extremely powerful and compact (a point made several times by Motorola in comparing their 68000 family CPUs with other 16-bit processors), so machine code programs should run very quickly on the OL .

The remaining criticism to date concerns the choice - or rather the lack of choice - of colours in high resolution graphics mode. This criticism is relevant only to dedicated games-players, and even so its ultimate strength will depend on the effectiveness of the stipple feature in producing shades and tones.

Of course there will undoubtedly be other valid criticisms of the OL (it would be too much to expect any computer to be perfect) and these will show themselves when reveiw models become available. Then experience will tell whether or not the QL lives up to its specification. The QL will not win kudos for the missing cassette interface, but this is not an insoluble problem: where Sinclair leads, others tend to follow, and if fast performance is any guide the OL and its add-ons will be every bit as successful as earlier Sinclair computers.

BOOKSHELF

THE HE BOOKSHELF is pleased to offer you a range of top quality electronics paperbacks for you to read and enjoy delivered direct to your door!

I enclose my cheque/Postal Order/Money Order (delete as necessary)

Questions, answers and errata from readers and writers.

Fog Horn (HE June '80)

The PCB (Figure 3) was the wrong one: the correct one is shown here, right size.
The mercury switch mentioned in Buylines was a mistake (this was for the Eggtimer)

Guitar Phaser

(HE September '80)
In Figure 1, there should not be a link where R9 to 'orange' crossed C10 to +9 V (C10 is a decoupling capacitor across the supply). The resistor from the gate of 01 should be R14; the capacitor from the link of R6 and R8 to OV is C9.
In Figure 3, Q1 and Q2 are shown with the drain and source reversed. The pin-out diagram beneath Figure 1 is correct.

In the Parts List, RV2 should be 470k antilog as in Figure 1

Audio PSU
 (HE February '84)

Last month's Audio Power Supply module had a couple of misprints in it. Under the heading A Choice Of Power the four diodes are described as "N4000"; this should read 1N4000. Further down the same section, a " 50 uF " and a "100uF" capacitor are mentioned: these should be 500 and 1000uFs (as accurately described in the Parts List).

Further down the article, on page 23, an equation is given for the calculation of the output voltage resistor values. This should read: $10 \mathrm{~V} 8 \times 120 \mathrm{R} / 1 \mathrm{~V} 2$ gives 1080 R as the value for R2.

Heading In The Wrong Direction - Veroboard Warning

(HE January ' 83

A little mix-up at the type department resulted in all the Veroboards being incorrectly orientated in our Veroboard layouts in last months HE. The tracks should, of course, run across the page, not up and down. Building the projects as shown would result in everything shorting out to everything else, a fact which should normally become abundantly clear before completion of the project.

Short Circuit Authors

Please will contributors G. Foote and B. Adams get in touch with us.

H.E. PROJECT KITS
 $\begin{array}{ll}\text { I.C.S } & \text { TOOLS } \\ \text { TRANSISTORS } & \text { RESISTORS } \\ \text { CAPACITORS } & \text { HARDWARE }\end{array}$
 CASES KITS
 KITS PCBs
 MAGENTA

MORE KITS AND

 COMPONENTS IN'OUR LISTS FREE PRICE LIST Price list included with orders or send sae (9×4) CONTAINS LOTS MORE KITS, PCBs \& COMPONENTS

ELECTRONICS CATALOGUE

Illustrations, product descriptions, circuits all in cluded. Up-to-date price list enclosed. All products are stock lines for last delivery. Send 80 p in stamps or add 80 p to order. FREE to Schools/Colleges requested on officia letterhead.

SOLDERING/TOOLS

ANTEX $\times 5$ SOLDERINIRON 25W E6. 29	
SOLDERINGIAON STAND	
SPARE BITS. Small, standard, large. E1.04	
each, For ${ }^{\text {d }}$	
SOLDEF. Handy size £1.38	
SOLOERCARTON E2.50	
DESOLDER BRAID B9p	
HEAT SINK TWEEZERS 350	
DESOLDER PUMP 66.48	
HOW TO SOLOERLEAFLET E139	
LOW COST LONG NOSE PLIERS E1.88	
WIRE STAIPPERS 8 CUTTERS E2.88	
PRECISION PETITE	
12VPCBDRILL £12.80	
DRILL STAND ${ }^{\text {P }}$	
$\begin{array}{ll}\text { VERO SPOTFACE CUTTER } & \text { E1. } \\ \text { PININSERTION TOOL }\end{array}$	
PININSERTIONTOOL . 22.52	
	with transistor tester.
CROCODILE CLIP TEST LEAD SET. 10 eads	AC + OC volts. DC current 4 very useful resistance
WESISTOR COLOUR CODE CALCULATOR 23 P	ranges we've used it and we like lt.
CONNECTING WIRE PACK TYPE ED	
colours	Enlovable introduction to electronics. Full of
	very clear full colour pictures and easy to foltow
Small $2^{\prime \prime}$ dia $(5 \times \mathrm{mag})$ £1.32 Large $3^{\prime \prime}$ dia $\left.4 \times \mathrm{mag}\right)$ $£ 2.52$	xt. Ideal for all beglinners - children and
COAE TRIM TOOL 39p	ults. Only basic tools needed 64 full colour
ESET TRIM TOOL 60p	ges cover all aspects - soldering - tautt
FREEZER AEROSOL	
CONTACTCLEANERAEROSOL E1.45	Also full details of how to build 6 prosect
CTAPE (RGB) 3 reels	burglar alarm, radio, games, etc. Requires solder-
SCREWDRIVERSET $\begin{aligned} & 39.98 \\ & \hline \end{aligned}$	ing - 4 pages clearly show you how.
POCKET TOOL SET £3.98	COMPONENTS SUPPLIED ALLOW ALL
	JECTS TO EE BUILT AND KEPT.
JEWELLERS EYEGLASS 81.50	
PLASTIC TWEEZERS ${ }^{\text {che }}$	FUN WITH ELECTRONICS,
palr of probes with les da (Cc). OMAXPUNCHES	COMPONENT PACK E18.48 BOOK EXTAA £1.25.
MMX PUNCHES $3 / 8^{\text {n }} £ 2.98 ; 1 / 2^{\prime \prime} £ 3.06 ; 5 / 8^{\prime \prime} £ 3.17 ; 3 / 4^{n} £ 3.24$.	sook avallable separitaly.
Speakers Min 8 ohm 87p; 64 ohm 89p, 80 ohm	PC8 etching klt $\mathrm{E}^{6.48}$
Sop	ZX81 edge connector $£$
Crystalearpiece 57p	Ferriterod 5 inch 59p
Magnetic earplece 19 p	PP3 clips 10p. PP9 clips 11p.
Stethoscope attachment 69 p	2 Station Intercomm ${ }^{\text {chem }} 10.53$
Mono headphones £3.36	IC Sockels 8 pin 18p; 14 pin 17p; 16 pin 18p.
Stereo headphones E5.49	Traditional Style Bell
Telephone pickup coil 68	Publlc Address Mlc 50k Ea.95
MIn buzzer 6V 75p. 12V 72p.	Mic Insert Crystal ${ }^{\text {a }}$
Eupo breadboard ${ }^{\text {E6.20 }}$	Cassette Mlc $£ 1.29$
8 Dec breadboard $£ 3.98$	Pillow Speaker \quad ¢1.40
Bimboard breadboard \quad ¢6.98	
Verobloc breadboard ¢5.88	
MAGENTA ELECTRONICS LTD HE9. 135 Hunter St., Burton- on-Trent Staffs., DE14 2ST. Mail Order Only. (0283) 65435 S.A.E enquiries. Add 50p p\&p to all orders. Prices include VAT. Access \& Visa phone/post	Official school orders welcome. OVERSEAS: Payment must be in sterling IRISH REPUBLIC + BFPO - UK PRICES. EUROPE: UK PRICES $+10 \%$. ELSEWHERE: WRITE FOR QUOTE Goods normatly despatched by return of post.

A COMPLETE INTRUDER ALARM

EASILY ASSEMBLED ULTRASONIC UNIT CK 5063
Requires no installation. Easily assembled using
our professionally built and tested modules.

- Adjustable range up to 25 tr
- Built in entrance b exit delay
- Built-in timed alarm
- Key operated switch - Off, Yest and Operate
- Uully self-contaned
3^{\prime} Speaker 3515
Now you can assemble a really effective intiuder alarm at this low price using tried and tested Riscomp modules. Supplied with full insiructions, the kit contains everything necessary to provide an effective warning system for your house or flat. Witha buift-in LED indicator and test position the unit is easity sel up requiring no installation. It may simply be placed on a cupboard or desk. Movement within its range
will then cause the bull-in siren to produce a penetrating 90 dbs of sound, or addirional speaker. All pans included and supplied with full instructions for ease of assembly. adiditional speaker. All pans included and suppl
Size $200 \times 180 \times 70 \mathrm{~mm}$ Order as CK 5063

OIGITAL ULTRASONIC OETECTOR US 5063
only $£ 13.95+$ V.A.T.
NETV

- 3 levels of discrimination against false alarms
- Crystal control for greater stability
- Adjustable range up to 25 t.
- 12 V operation

This advanced new module uses digital signal processing to provide the highest level of sensitivity whilst discriminating against potential false alarm conditions. The module has a built- in exit delay and timed alarm period, together with a
selectable entrance delay. plus many more outstanding features.

ULTRASONIC MOOULE US 4012

- Adjustable range from 5 -25it. This popular low cost ultrasonic detector is intruder detectors to automatic tight switches and door opening equipment featuring 2 LED

INFRA-REO SYSTEM
IR 1470 only $£ 25.61+$ V.A.T.

Consisting of separate transmitter and receiver both of which are housed in attractive moulded
cases. the system provides an invisible modulated beam over distances of up to 50ft operating a relay when the beam is broken. Intended for use in security systems but also
ideal for photographic and measurement applications. Size 80 by 50 by 35 mm

POWER SUPPIY \& RELAY UNIT PS 4012

Provides stabilised 12 V output at 85 mA and contains a relay with 3 amp contacts. The unit is designed to operate with up to 2 ultrasonic units
or 1 infrared unit IR 1470 . Prits $£ 4.25+$ V.AT.
SIREN MOOULE SL 157
Produces a loud penetrating sliding tone which produces S.P.L.'s of surtable horn speaker. produces S.P.L. s of 110 dbs at ${ }^{2}$.
Operating from 9.15 V . Price $£ 2.95+$ V.AT
$51 / 2^{\prime \prime}$ HORN SPEAKER HS 588
This weather-proof horn speaker provides extremety high sound pressure levels (110 dbs
at 2 metres) when used with the CA 1250. PS
1865 SL 1865 or SL 157. Price E4. 95 + v.A
3-POS. KEY SWITCH 3901
Single pole. 3-pos. key swrich intended for use

Add 15\% VAT to all prices Units on demonstration
 Closed Wednesday 00 p.
 Saturday 9.00 ro $1.00 \mathrm{p} . \mathrm{m}$. SAE with all anquiries
 Order by telephone or post your credift card

ALARM CONTROL UNIT

Price $\mathbf{E 1 9 . 9 5}$ + V.A.1.
The heart of any alarm system is the control uni The CA 1250 offers every possible feature tha is likely to be required when constructing installation or simply controlling a single magnetic switch on the front door. - Buith-in electronic siren drives 2 houd speaker Provides exit and entrance delays together

- Battery back-up with trickle charging facility - Operates with magnetic switches, pressure pads, ultrasonic or I.R. units
Anti-tamper and panic facility
- Sta bilised output voltage
alarm/anti-tampe - Screw connections for ease of installation Separate relay contacts for external loads Test loop facility

SIREN \& POWER SUPPLY MODULE PSL 1865

only

E9.95

+ V.A.T.

A complete siren and power supply module which s capable of providing sound levels of 10 db addition, the unit provides a stabilised 12 V outpu up to 100 mA a switching reloy is also included the US 5063 to marm used in conjunct

HAROWARE KII
HW 1250
only
£9.50

+ V.A.T

बIFIT

This attractive case is designed to house the
control unit CA 1250 , 1ogether with the appropriate LED indicators and key switch Supplied with the necessary mouming piliars and puriched front panel. the unit is given a
professional appearance by an adhesive silk screened label. Size 200 by 180 by 70 mm

ULTRASONIC MOOULE

Suitable metal enclosure for housing an individual ultrasonic module type US 5063 or US 4012 . Supplied with the necessary mounting pillars and
screws etc For US 5063 order SC 5063: for US 4012 order SC 4012

RISCOMP LIMITED
Dept. HE9
Dept. HE9
21 Duke Street
Princes Risborough
Bucks. HP1 7 OAT
Bucks. HP1 ORT
Princes Fisborough $(084$ 44) 6326

FEEL HEALTHIER WITH ZEPHION
 Bring fresh clean air into your home with the Zephion Air loniser.

Air free from smoke, dust and other pollutants of modern day living can bring to many the relief of breathing comfortably once again.
We are confident that you will be delighted with the Zephion Air loniser, but if you are not entirely satisfied a full money back guarantee is available if items are returned in good condition within 28 days.

BUILD IT YOURSELF! - - - Sllp the Goupon - \rightarrow R To:- Dataplus developments 81 , Chol meley road RG1 3LY TEL:- 073467027

$\square \begin{aligned} & \text { 2EPFIION KITs } \\ & \text { (Kits include all parts. }\end{aligned}$

ZEPHION AIR TONERS BUILT AND TESTED. E34.50p Money immediately refunded if Prices include VAT \& postage; allow 14 days for delivery. DATAPLUS HE
Send for my CATALOGUE ONLY 75p (plus 25p post/packing)

My all-inclusive prices quoted in the Catalogue are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade.

Millions of components : thousands of different lines
Rechargeable Nickel Cadmium batteries (ex unused equipment) AA(HP7) 1.25 volt 500 ma .

Set of four $£ 2$
Plastic container of ten $£ 5$
Watch/Calculator/Lighter etc, Mercury batteries
RW52(PX675) RW54
Made by Ray-O-VAC
RW56 (DH323,WH8)
31 p each or
RW57, RW58
IN4004 or IN4006 Dlodes
TO5 or TO 18 Heatsinks
10 for $£ 2.60,100$ for $£ 2$
300 for $£ 6.48 p$
Clipover Heatsink for $1 / C$ or TO2O2 device $21 \times 18 \mathrm{~mm}$
18 p or 100 for $£ 16.50$ per 1000 for $£ 155$
Heatsink for T03 or Plastic Power 19p,100/£17.50,1000/£165
Modern Telephone Handset and lead in white, red, blue, grey, yellow,
green or black
BU508A TV line output transistor, $1,500 \mathrm{v}, 15 \mathrm{~A}, 125$ wat
£1.53p or 40 for $£ 40$ or 400 for $£ 300$
SEND PAYMENT PLUS 16p SAE OR LABEL ONLY
Prices you would not believe before inflation
BRIAN J. REED
TRADE COMPONENTS
ESTABLISHED 26 YEARS
161 St. Johns Hill, Battersea, London SW11 1 TQ
Open 11 am till 6.30 pm Tues. to SaL. Telephone: 01-223 5016

A Hobby Electronics Hardware Review МЕМОТЕСН $500 / 512$

An impressive new computer from a company best known for ZX peripherals.

David Norman

Memotech has served a long apprenticeship in the field of microcomputers as a manufacturer of high quality $\mathbf{Z X 8 1}$ peripherals, and now they are set to take a slice of the home and business market with their MTX range of computers.

The MTX 500 is their basic machine which has an all-inclusive price of f275, which puts it squarely into the highly competitive area presently dominated by the BBC and Commodore machines. The specifications of the MTX look impressive and now that the machine is in the shops the real tests and comparisons will determine if Memotech have got it right.

If first impressions are important, then Memotech have scored highly their product comes beautifully packed and presented. The micro itself is cased in black anodised aluminium and carries a total of 79 keys which have a crisp and positive feel to them. The
power supply is a separate unit, equally stylish, and rated at 1 A . All the usual cables and documentation are in the box but as you dig in deeper you will find no fewer than five cassettes. There is the introductory tape, a cassette-cleaning tape and a C15 blank tape from Memotech, and games tapes "Toado" and "Draughts" from Continental Software who have produced the first batch of games and utility software for the MTX range.
"Toado", which is a very good frog-crossing-dangerous-things type of game, was responsible for delaying this review for an hour or so, but the introductory tape, which I believe is only the first rush version, leaves a great many things to be desired and is way behind the standards set by the Spectrum's introductory tape by Horizon. However, having spent your $£ 275$ you are in no danger of having to spend any more
cash on peripherals to compensate for shortcomings in the basic package and that is something you cannot say about some of the Memotech's competitors.

RAM Is RAM

The MTX 500 is a 32 K machine, period, No matter what type of graphic mode you choose you have 32K of user RAM: the graphics screen has its own memory and you won't find your precious program space shrinking away to a few kilobytes. However, if 32 K is insufficient for your purpose, you have the option of buying the MTX 512 which is identical to the 500 except that it is provided with a 64 K of user RAM, or you may buy add-on memory boards for the 500 which fit inside the case. Lack of memory is certainly not going to be a problem for MTX users.

Plenty Of Ports

The MTX is a wide computer - about 19 in - so there is plenty of room along the back for a multitude of connectors They are generally high quality sockets, but deeply recessed and therefore difficult to get at, though this won't matter if the machine is going to stay in one place most of the time. The cassette sockets are the 3.5 mm jack type which I think become slack and unreliable after some months of constant use, but they do seem to be popular with computer manufacturers these days. There is a phono socket so that the sound output from the computer can be sent to a hifi. In normal use the sound channels, of which there are four, will pass through the television and can therefore be easily adjusted to the volume of your choice.
Thankfully, the keyboard doesn't beep every time a key is pressed, though doubtless it could be made to do so if you wished. Monitor and printer outputs are present, as are two joystick ports which will accept the popular "Atari" type of joystick. All the important CPU signals are available on an edge connector, though this is normally blanked off in the interests of safety (the machine's safely by the way, not the user's!), and two RS232 interfaces are available as an optional extra. As if this wasn't enough, there is also an uncommitted 8 -bit $1 / O$ port on the PBC itself, just
sitting there as a 16 way IC socket and waiting for the home constructor to pop in a 16 pin header on some ribbon cable so that the micro can start running that proverbial power station.

Up And Running

Connecting the MTX to cassette and television is straightforward. The DIN power supply connector was a very tight fit it its socket, but fortunately once it is in there is no need to disconnect. Not only is there an illuminated switch on the power supply but there is also a reset button on the computer to bring you out from all crashes, infinite loops and other software nightmares. It is as well that there is a light on the power supply since the MTX runs silently, without hums or buzzes. "Toado" loaded easily and quickly from a cheap tape recorder, but loading a program which I had previously saved proved trickier and it took quite a few saves and loads to get the volume levels correct. The cassette baud rate is set at a fast 2400, but since it is under software control it may be changed.
The display on a Hitachi 12 in colour TV was steady and the colours true, though the TV did need retuning after a warm-up period of about half-an-hour. There was no "dot-crawl" on either stationary or moving characters. The format of the screen in character mode
is 40×24 and in general the text is clear and of pleasing proportions. However, I didn't much care for the lower case g sol used the GENPAT command to redefine it. Any character in the standard ASCII set (codes 32 to 127) can be redefined in this way, and you may also define 26 new characters (or graphics) for codes 128 to 154, and type most of them into the computer using the special function keys marked F1 to F8. In graphics mode there are 32 characters on a line, so there is more space between each character. You can use the keyboard to change the character set to Spanish or German, in which case the specialised European symbols occur in place of the English keyboard's square-brackets and so on.
All the video work is done by one chip, the Texas 9929. This is a standard video Display Processing (VDP) chip capable of producing four display modes, 16 colours and up to 32 sprites, about which more will be said later. It is also responsible for producing oval circles on British televisions, which is a problem first encountered by ORIC. Oric solved the problem eventually, and I have no doubt that Memotech will do so as well, but I daresay they will have to suffer a lot of flak from other computer manufacturers until they get it right. One other possible source of complaint is that the leading character position in each line may be lost in the television

		Table 1			
ABS	ASC	ATN	LN	CHRS	CLEAR
CLS	CONT	COS	DATA	DIM	EDIT
EXP	AND	GOSUB	GOTO	INKEY	IF-THEN-ELSE
INPUT	INT	LEFTS	LEN	LET	LIST
LLIST	LOAD	LOG	MID\$	NEW	FOR-STEP-
					NEXT
OUT	PAUSE	PEEK	POKE	PRINT	ON/GOSUB
RAND	READ	REM	RESTORE	RETURN	ON/GOTO
RIGHTS	RND	RUN	SAVE	SGN	SIN
SQR	STOP	STRS	PI	TAN	USR
VAL	VERIFY	OR	NOT	MOD	LPRINT

Table 1. Standard BASIC commands and functions.
TABLE 2

BAUD	CLOCK	INK	PAPER	PAUSE	NODDY
PLOD	CSR	PANEL	SOUND	ASSEM	ATTR
COLOUR	EDITOR	DSI	SDBUF	TIMES	GR\$
SPK\$	ROM	CRVS	VS		

Table 2. The extended BASIC group.
margin. This is not noticeable at first, since the software places print statements a couple of spaces on from the beginning of a line. I put the MTX UHF output onto an old Ferguson 12 in black and white TV and obtained perfect alignment of the screen, with both the start characters and the end characters of each line clearly visible. The general advice must be to try always to buy a TV or monitor with a horizontal hold, accompanied by a plea to the manufacturers to start putting these controls back onto their television sets!

High Command

The MTX has 24 K of ROM, so there is plenty of space for some powerful and sophisticated commands. The manual supplied with the review machine is a provisional version: it runs to 250 pages of A4 paper and contains a wealth of technical information, but even so it is evident that a more comprehensive manual or book will be necessary to enable the user to get the best out of this computer. The ROM contains the BASIC, an interactive language called NODDY and a Assembler/Disassembler with powerful debugging facilities. The MTX BASIC has extra commands to enable the user to handle colour, sound, graphics and sprites without recourse to PEEKs and POKEs (Commodore please
notel) and it should please most people. The basic BASIC seems to have most of the standard commands (see Table 1) You may be disappointed to see that PROCEDURES and DO.

UNTIL constructions are missing, but on the other hand you should be pleased to find that syntax is checked at the time of entry, and that keywords may be entered in a shortened form.
The MTX doesn't like the user to miss out spaces, and requires LET to be used when assigning variables. Listings will therefore look neat and be readable and in any event with so much memory there should be no need to compact the program. To make up for the extra keyboard-bashing, Memotech have provided an AUTO facility whereby your listing has the line numbers entered for you in increments of your choice. In my option this is far more useful than RENUMBER which the MTX doesn't offer, perhaps on the grounds that if you're a using a Memotech computer your listings aren't going to get into the messes that RENUMBER sorts out. It is when you are entering and editing BASIC that the MTX auxilliary keypad comes into use. Insertions and deletions can be undertaken with the minimum amount of fuss and bother. It always

Figure 1. The MTX expansion bus.

Memotech 500/512

takes some time to get used to a new keyboard, and different users have their own personal preferences. Most touch typists, I am told, would prefer the RETURN key to be larger, but its size doesn't bother me. CLS (clear screen) is more of a problem - like the other editing keys it is available as an unshifted key, yet to press it by accident would wipe as many as 960 characters from the screen, and that could be very annoying
Looking now at the extra BASIC commands, shown in Table 2 the power of the MTX should begin to become apparent. NODDY, ASSEM and ROM calls up the NODDY language, the assembler and extra ROMs respectively.

The ROM could contain another language such as FORTH and Memotech clearly have the expansion prospects for this machine well planned out: the ROM cartridges are designed to plug into the CPU bus at the side of the machine.

Assemble, Please

The assembler is called from BASIC, and it assembles the code in situ, as part of the BASIC listing. The assembler itself is fairly basic, but it is easy to use and to edit. Numbers may be entered in either hex or decimal, and addresses are printed out in hex. Address labels are obviously accepted, but lables equated to numeric values are not supported. Define Space and Define Byte (incorporating Define String) can be used, but Define Word is absent. The BBC computer has a assembler incorporated in its BASIC which enables easy machine-code programming of the 6502 processor and Memotech have thus created a similar facility which will help programmers get to grips with the Z80 processor.

NODDY is a new language designed to simplify text handling. It has only 11 commands, but can be incorporated into BASIC in such a way that the two languages work together. Coupled with the MTX editing keys it should take the drudgery out of creating programs with a large textual content. Applications are obviously going to suggest themselves in areas of the school curriculum, in the fast-training of personnel in commerce, and in adventure-game writing. Time will tell how useful NODDY will be, and Memotech are to be congratulated for incorporating it into their computer it's an experiment on their part and a challenge for the software writers to make something of it.
PANEL calls up the front panel display and puts the user directly in control of the MTX monitor at machine code level. There will be many people who have seen a front panel display on the $380 z$ computer in secondary schools or colleges, and the MTX panel is very similar. Basically it is a window looking in at the registers and memory locations of the computer and it is an invaluable aid to all users interested in writing and debugging program and control of 1/O devices at machine code level. To have it already in the machine, and not to have

Figure 2. The MTX features a paged memory system, allowing extra ROM and RAM to be added. The diagram shows the basic MTX 500 configuration; RAM is added in the order (a), (b), (c), and so on.

Table 3

| CIRCLE DRAW | PLOT | ARC | LINE | ANGLE VIEW |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PHI SPRITE | MVSPR | ADJSPR | CTLSPR | GENPAT |

Table 3. The graphic and sprite group; powerful instructions for multi-level, highly mobile screen displays.

Table 4

PAGE : Toggles scrolling of screen data.
EDL : Deletes from cursor to end of line.
BRK : Break out from program.
TAB : Advance cursor 8 spaces.
DEL : Delete character at cursor and close up the line.
HOME : Put cursor to top left of Virtual Screen.
INS : Insert text, expanding line to suit.
CLS : Clear screen.
ENT : Enter (Return).
CURSOR LEFT : CURSOR RIGHT : CURSOR UP : CURSOR DOWN
In addition certain controls keys and certain sequences of key presses give other useful functions:

> CTL W tabs in a backwards direction.
> CTL turns the cursor off.
> CTL D,n sets the background colour to n.
> ESC, B, 2 sets the English character font.
> ESC,K duplicates a line.

Table 4. The MTX provides a number of control and command instructions particularly useful for editing.

Figure 3. The MTX "front panel" will be very helpful when de-bugging machine code programs.
to wait until a software house produces a debug/monitor at a price of between $£ 10$ and $£ 20$, must be a bonus for which Memotech should get considerable credit.

Other interesting commands in this group are the COLOUR, PAPER, INK and ATTRibutes which set up the various colour and printing options: the CLOCK and TIMES which handle a real-time clock in hours, minutes and seconds format, and the SOUND command that passes either 3 or 7 parameters to the Texas 76489 sound chip. This. incidentally, is the same chip that is used in the BBC computer so we can, I hope, look forward to hearing the same richness of tones that that computer is capable of producing.

Virtual Screens

The MTX has an inbuilt method to allow you to create smaller screens within your TV screen. These are called virtual screens, and up to eight are allowed. All print commands are relative to the screen you are using. For example, while you are in BASIC, four virtual screens have already been defined for you, and you are in fact using them.

Message errors come up on VS 7, a screen one row deep at the bottom of the TV. BASIC lines which you are entering or editing are constructed as on continuous line in VS 0 which is four rows deep. The program is listed on VS 1 which is the rest of the TV at nineteen rows deep. When you RUN a BASIC program, you default to VS 5 , which at 24 rows deep is the entire TV screen. This takes some getting used to when you first encounter the MTX, but it is undoubtedly a useful function to be able to isolate and work on just part of the TV screen. RML's $480 Z$ has such a function but that is a computer which costs considerably more than the MTX 500 .

Sprites And Things

The graphics screen has a resolution of 256×192 pixels and the graphic commands are listed in Table 3. PLOT, LINE and CIRCLE are fairly standard point and line drawing commands, but there is also ANGLE, PHI, DRAW and ARC and these are used together to determine the direction of lines and patterns drawn in the style of LOGO's TURTLE graphics. The provisional manual gives short examples of how to
handle these advanced graphics, and it is to be hoped that further instructions will be provided in the final version of the manual.
And so now to the Sprites: "Up to 32 independently controllable user definable sprites, plus pattern plane and backdrop plane" to quote the specifications, but what exactly does this mean? Think of the TV screen as a drawing board with a small piece of paper on it. The paper represents the physical size of the video screen, 256×192 pixels and can be a colour of your choice. This is the "backdrop-plane". Onto that paper, that screen, goes the text and/or graphics shapes in any ink colour you choose. This is the "pattern-plane". Consider the paper and the ink as a landscape. Now imagine a large piece of cellophane, 8192×8192 pixels in size, on which you have placed a small object called a sprite. The cellophane is your "sprite-plane". You can see the landscape beneath the cellophane, except where the sprite obscures it. Furthermore, you can move the sprite across the cellophane (with sprite) relative to the landscape. Finally, imagine that you could have up to thirtytwo separate sheets of cellophane all piled on top of the landscape, and each with a moving sprite on it. That's how sprites help to achieve animation effects, and the commands such as MVSPR (move sprite) and CTLSPR (control sprite) help to set up the operating conditions. Once set, the sprites move around independently of the BASIC program, until such time as their parameters are altered. Collisions between sprites are detected, and can be checked upon by a PEEK to a register in the VDP chip.

Conclusion

The MTX 500 is well designed and carefully constructed, and has hardware and software features that make the $£ 275$ asking price eminently reasonable. It seems to be suitable for both the home market and the educational market, and to novices and experts alike. If Memotech can correct just a few minor problems, and get their promised $C P / M$ and other extensions along on schedule, they will have an excellent all-purpose machine, and 1984 could be a very good year for them.

Lightning

Chess Timer

 Designed for use in chess tournaments, HE's Chess Timer can

 Designed for use in chess tournaments, HE's Chess Timer can be set anywhere between 1.5 and 96 seconds for any be set anywhere between 1.5 and 96 seconds for any timed-move game.

 timed-move game.}

AS the only electronics engineer in Leighton Buzzard Chess Club it was natural that I should be asked to make a 'buzzer' for a Lightning Chess Tournament - and thus save $£ 30$ to $£ 40$ of club fundsl But since I had never played in a lightning chess tournament, I first had to try to inviegle a detailed definition of the required operation of a chess buzzer. A brief description of how chess is played in a lightning tournament may help those who are as unsure as I was.

A player has to make his move on the 'buzz', leaving the interval to the next 'buzz' as his opponent's thinking time. If a player makes his move late he would be reducing his opponent's thinking time unfairly, and if a player moves prematurely he would be giving his opponent an unnecessary advantage. This enforced rhythm of play is quite unlike anything one meets in normal chess.
A period of about ten seconds between buzzes was requested, but as this seemed rather approximate and and arbitrary 1 decided to provide a wide control range so that it could be adjusted on the night.
Another requirement was that the unit should be small and battery powered, with the battery having a minimum of a ten hour life but preferably much longer.

Overview

For a battery powered unit, low current consumption becomes the prime design consideration. A good choice of an audible output device, with low current consumption and a high output sound level, is one of the many piezoelectric transducers currently available. Whilst glancing through the Maplin catalogue recently I saw a transducer that can be driven by a $3-10 \mathrm{kHz}$ square wave and since this sells for about 30p, it seemed ideal.

Mike Vince

The block diagram of the basic functions required are shown in Figure 1. An oscillator with a variable period covering the $1.5-12$ second range is possible; however, it seemed easier to me to design a circuit using a higher frequency oscillator with its output being divided down to give the required period. The 4060 is a combined CMOS oscillator-and-divider IC available at a reasonable price, and this was the obvious choice for the application. The monostable is used to give a short output pulse whose length is independent of the input frequency.

Circuit Description

The full circuit diagram is shown in

Figure 2, and for clarity the oscillator section has been redrawn in Figure 3 showing some of the internal gates of the 4060.

As can be seen, the oscillator is a standard circuit often used in HE projects, and the values of C2, R1, R2 and RV1 have been chosen to give an output frequency in the range 40 320 Hz . The rest of the 4060 is a 14 stage binary counter with the ouputs from every stage being available except for stages 1, 2, 3 and 11.

Since so many outputs are available I chose to provide two speed ranges by utilising the Q9 and Q12 outputs. For the fast range this gives intervals between 'buzzes' of approximately 1.5 - 12 seconds, and for the slow range of approximately 12 - 96 seconds.

Choosing to use different outputs of

Figure 1. The block diagram of the Chess Timer.

OSCILLATOR	DIVIDER	MONOSTABLE	BLEEPER

Figure 2. The circuit. R8 and D5 are optional components which may be required according to the exact method used to give the audible tone.
the 4060 one can of course have other ranges if one wished, Q10 giving half the speed between O 9 and Q12 is achieved by IC2a and IC2b.

Diodes D1, D2, D3 and D4 are included so that a single pole centreoff switch can act as both speedrange select and on/off. When the switch is in the slow position power supply current flows through D1 and pin 2 of IC2a is taken to a high logic level via D3.
The truth table for a NAND gate is given in Table 1, and from this it can be seen that if one input of a NAND gate is held high (lines 3 and 4), then the output level is the inverse of the second input. Similarly if the first input is held low (lines 1 and 2), the output is high irrespective of the level on the second input.

Thus IC2a output, pin 3, has the inverse of the waveform from Q12, whilst IC2b output, pin 4, will be high since pin 5 is held low by R4. IC2d then re-inverts the signal and thus its output, pin 11, has the same waveform as Q12.

A similar process applies with the switch in the fast position; in this case IC2d output has the same waveform as Q9.

Next, C3, R7 and IC2c form a monostable circuit, which is triggered on the rising edge, rather than the falling edge, of the divider output square wave.

IC2c, C4, R8 and RV2 form a gated oscillator and when pin 9 is at a logic high level, a short audio tone will appear at pin 10 (Figure 4). RV2 is

Table 1

	A	B	$\overline{A . B}$
1	0	0	1
2	0	1	1
3	1	0	1
4	1	1	0

Figure 3. The choice of timer intervals is determined by the outputs of IC1. This is a close-up of some of IC1's internal gates.
required to adjust the frequency of this audio tone, since this type of circuit is very sensitive to component tolerances.
If the output of the unit is to be taken to an external amplifier the output may be taken directly from 1C2c pint 10. However, the signal level will be about 8 V peak-to-peak, and one should check whether an attenuator is necessary to reduce the signal level.
If a piezoelectric transducer is used it may be necessary to fit R8, and this will have to be chosen by experiment to match the chosen transducer. The other possibility is to use a small loud speaker, and under these circumstances R8 will become diode D5, and will need to be fitted as shown (dotted in Figure 2).

Construction

The circuit may be built on Veroboard, but I recommend using the PCB as this will produce a neater unit. The PCB overlay, Figure 5, shows the position and orientation of all components, and the ususal care should be exercised over the orientation of all diodes, C1, C3, Q1
and both ICs. Since semiconductors are the most likely components to be damaged by overheating they should be left to last.
(Normal precauctions should be taken when handling the CMOS ICs so as to prevent the possibility of damage due to static; it should be noted that static more often reduces the reliability of CMOS and that complete failure is a rarer problem).

For neatness, Veropins should be used for connecting the wires to the PCB.
The unit can be assembled into any box measuring $43 / 4^{\prime \prime} \times 21 / 2^{\prime \prime} \times 1 \frac{1}{2 \prime \prime}$ or larger. Before connecting the battery

Figure 4. Output signals from ICs, including the audio tone.

IC2C PIN 9

Parts List

RESISTORS (All $1 / 45 \%$ carbon)	
	15k
R2	1 MO
R3, 4	100k
R5	220k
R6	10k
R7	4 k 7
R8	(see text)
POTENTIOMETERS	
RV1	100k
	linear
RV2	470k
	riz preset

CAPACITORS

	47u
	10 v radial electro
C2 100 n
	polyester
C3 1u
	10 V radial electro
C4 10 n
	polyester

SEMICONDUCTORS

IC1	4060
IC2	4093
Q1	BC182
D1-5	1N4148
MISCELLANEOUS	
SW1	. DPDT

PCB or Veroboard; case, $43 / 4 \times 21 / 2 \times$ $11 / 2$ in; piezo buzzer (Maplin QY13P); Veropins, wire, solder etc.

BUYLINES page 26
and turning on, check again for solder bridges or for components the wrong way round, and do check that the battery connections are correct. If you don't, you may need to buy some new components

On the prototype the tranducer was fixed to the front panel with double sided adhesive tape, but before doing so make sure suitable holes have
been drilled in the box to act as a sound outlet.

When ready to test, set the speed range switch to fast and the speed control to approximately half way. If properly built, the unit will now buzz about every six seconds. Check that both speed ranges work and that the control varies the speed. Now set up the chess board - and good luckl

Figure 6. This Veroboard layout is untested and has been laid out without regard to size, to assist experimenters doing their own layouts. It is not the same as the Vero layout used in the original model (see picture, bottom left), which was constructed for a maximum saving on space. Also, the switch wiring in the unmodified model is different from the arrangement used in the project, so don't attempt to copy it. The Verolayout in the photo may offer some clues to anyone doing his own Veroboard.

Choose from our M50 range of exciting products all designed to assist the hobbyist in building an interconnection system most suitable for his particular application:
headers; sockets; colour coded cable; DIP connectors; sub-miniature
D25 way plug, socket and hood.
With the M50 you get much more than justa good contact. You get a complete interconnection system that includes the cable.

Our new catalogue containing over 150 new products is available now

For further information on these products ring (04215) 62829 or write to:

BICC-VERO ELECTRONICS LIMITED

Retail Dept., Industrial Estate,
Chandlers Ford, Hampshire, SO5 3ZR.

TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I. L.P., PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantlty orders which can be programmed to your requirements with no price penalty.

15 VA		
$62 \times 34 \mathrm{~mm}$		$0.35 \mathrm{Kg}$
series	condary Volls	nws
0×010	$6+6$	1.25
0x011	$9 * 9$	0.83
0×012	12+12	0.63
0×013	$15+15$	0.50
0×014	$18+18$	0.42
0×015	22*22	0.34
0×016	$25+25$	030
0×017	$30+30$	0.25
(encased in ABS plastic)		
30 VA		
$70 \times 30 \mathrm{~mm} \text { Regulation } 18 \%$		
1×010	6×6	2.50
1×011	9+9	1.66
1×012	12,12	1.25
1×013	$15+15$	1.00
1×014	$18+18$	0.83
1×015	$22+22$	068
1×016	$25+25$	0.60
1×017	30×30	0.50

Prices including PaP and VAT

VA	Size	$£$	VA	Size	£
15	0	7.43	160	5	12.90
30	1	8.08	225	6	16.30
50	2	1.10	200	7	18.55
80	3	10.81	500	8	25.73
120	4	1173	625	9	31.63

For 110 V primary Insert " O " in place of " X " in type number.
For 220 V primary (Europal inser " " 1 " in place of " X " in rype number,
For 240 V primary (UK) insert " 2 " in place of " X " in ryDe numbe
PMoase add regulation figure to secondary voltage to obtsin off loed voltege

Mail Order - Please make your crossed cheques or postal orders payable to ILP Electranics Ltd.
Trade - We will open your credit account immediately upon receipt of your flrst order.

Post to: ILP Electronics Ltd., Dept. 5 Graham Bell House, Roper Close, Canterbury, Kent. CT2 7EP Tell: (0227) 54778 Telex: 965780

Whe

Walmax

 Processing LtdUnit 8, Gateway TradIng Estate Hythe Road, London NW10 6RJ

Telephone: 01-960 8322
Telex: 8952644

ELECTRONIC COMPONENTS FOR SALE

FANS - Woods, Plannair \& Muffin all at $£ 2.99$ each MOTORS - £4.99 each
Also Capacitors, Diodes, Resistors, Heat Sinks, RIbbon Wire,
Keyboards, Circuit Boards etc. At lowest prices.
Please telephone for further details.

Post \& Packing 50p for KS catalogue of our extensive r wilcome.	ELECTRONIC KITS 75 p for UK kies, $£ 1.00$ for of kits \& Cabinets. Trade.	7 HUGHENDEN ROAD, HASTINGS, SUSSEX. TN34 3TG Telephone: HASTINGS (0424) 436004 Cabiners. Send 20 p S.A.E. for ducational \& Export enquiries
MINI VHF SUPER REGENERATIVE RECEIVER 88.108 MHZ $9 V$ D.C. $£ 5.27$ inc V A.T.	KS 238 3 CHANNE L MICRO. PHONE OPERATED SOUND TO LIGHT. 300 W PER CHANNEL, 240 V A.C. £ 11.58 inc V.A.T	TO LIGHT, OUTPUT 3×1 KW 240 V £ 13.70 inc V.A.T.
UK 823/W rer luisclat date 123 CAR BURGLAR ALARM. READY ASSEMBLED f 11.58 inc V.A.T.	Capacitive Discharge Electronic Ignition $\varepsilon 17.50$ inc. V.A.T.	UK 677/A REGULATED SUPPLY $0.20 \mathrm{~V}, 2.5 \mathrm{~A}$ £ 54.23 inc V.A.T.
	DIGITAL D.C. VOLTMETER, 999 MV - 999 V . $0.5 \vee$ D.C. £ 14.45 inc. V.A.T.	UK 558 600 MHz PRESCALER $+5 \vee$ D.C. f 19.95 inc. V.A.T.
KS 395 30 W Mi-Fi-Audio Amplifier £ 11.58 inc. V.A.T.	NICAD BATTERY CHARGER, 10-20.45.100.150 mA. 15 V D.C. MAX 240 V A.C. £ 8.42 inc V.A.T	UK 114/U 20 W IC Amplifier £ 8.42 inc. V.A.T.

Getting The Hobbit Habit

 Helen Armstrong
A twelvemonth hath passed, and at least some devoted fans of J. R. R. Tolkien are still stuck in the Goblin's Dungeon. How do you rate their chances?

Just over a year and a day ago there appeared in the land a long-awaited adventure game for the Spectrum microcomputer. It was (an awe fell upon me, as the sages would say) based on Prof. J. R. R. Tolkien's fantasy classic The Hobbit. Not only "based on" was it, but sanctioned by the official keepers and guardians of The Hobbit since the Professor's death ten years ago. The arrival of the new game was hailed as a major advance in the art of computer adventure games, and being an old and proud member of The Tolkien Society, I decided to find out what the fuss was about. With The Hobbit now for imminantly) available for the BBC Micro, Oric and Commodore 64, this seems like a good time to report back. Also, we hear rumours that The Hobbit's computer creators, Melbourne House, are starting work on the story's giant sequel, The Lord Of The Rings - in multiple parts.

Reactions to The Hobbit among my acquaintances depended on their previous experience with computer adventure games. Those who (like me) were used to shooting alien invaders and thinking afterwards were astonished by the sheer patience and caiculation needed to make any progress, while underestimating the ingenuity of the program we were communicating with.

Riddles In The Computer

For the uninitiated, an adventure game involves picking your way through a strange landscape in search of treasure, while solving a series of riddles or clues in order to survive. The locations in the landscape are described in text. The player is given a choice of possible routes (usually north, south, east, west, up and down) and, apart from selecting a route, can also give simple commands to the computer to manipulate objects described. For instance, encountering a door, the player could tell the computer to OPEN DOOR. If this doesn't work, which it usually doesn't (that would be too easy) options like UNLOCK DOOR, or

FIND KEY or STRIKE DOOR can be tried. These, normally, are also too easy. The solution might be something like going S (south), to a location where you meet a barbarian warrior, finding a way to KILL WARRIOR who will be carrying a key; you then TAKE KEY, return N and UNLOCK DOOR. This is a simple sequence. You might have to find a sword, first, to kill the warrior and defend yourself from whatever lurks beyond the door. And so on.

The player can also ask the computer for HELP, in which case a cryptic clue might appear. Or might not. It makes the game easier. But not much.

Adventure games require patience.
When The Hobbit came out, it was said to be revolutionary, for three reasons: firstly, thirty of the eighty or so locations are displayed in colour-graphic form; secondly, the commands accepted by the games are much closer to real English than usual. Strings of commands can be accepted as long as they are grammatical, and characters in the game can be asked to act for the players. Lastly, the
characters in the game act independently of the player, moving around by themselves and appearing in unexpected places.

Vive La Difference

As a non-initiate into this kind of game, I didn't appreciate what a difference these things make until I had investigated one or two other adventure programs. Whether the difference is a pro or a con depends on your preference. If you don't like unpredictable adventures, don't play The Hobbit.
Melbourne House are very proud of the vivid colour graphics used, for which the 48 K Spectrum is well suited. These cover the top two thirds of the screen, and were programmed to use much less than two-thirds of a full screen's worth of memory. They appear sketched quickly in line and then filling line by line with colour - a process which, although it does slow the game down, never quite loses its charm, even when

It is apparently advisable to be armed with lunch before facing the perils of the misty mountains. But make sure you eat some, as well.
you have been returned to the Goblin's Dungeon for the fourteenth time in succession

The language which Melbourne House have developed for the game they. call "Inglish" - it looks like English, but isn't, quite, English. One of the ongoing riddles in the game is to find out which words in English are acceptable in Inglish (and when). An unfamiliar word is greeted with the response I DO NOT UNDERSTAND SMITE (for instance). The instruction booklet gives a reasonable guide, but I found that some words listed were not

The Title Graphics, based on the game's cover picture (opposite page).

recognized in some situations.
Others are acceptable in unlikely situations: Chris, a fellow Member of The Society, requested his computer, in a moment of frustration, to KILL LUNCH. His next inventory revealed SOME BROKEN LUNCH - at least it wasn't A DEAD LUNCH, but that would have been no surprise.

The most remarkable feature of the commands is that you can request other characters in the program to act on your
behalf with the command SAY TO (x) "(command)". This process is a vital part of the game. You are, as the manual tells you, only a small Hobbit, and need the aid of a taller, stronger and more powerful character to accomplish your ends. In keeping with the game, the response of other characters is variable. Thus the request SAY TO THORIN "KILL THE GOBLIN" may lead to Thorin attacking the Goblin and killing it, attacking it and being captured, saying "No" and being captured or killed, or merely disregarding you (YOU SPEAK TO THORIN comments the computer), and being captured or killed. Sometimes it is better to ignore the goblins

Try, Try, Try Again

The third feature is the most fascinating/irritating. As with the Inglish, we found we were trying moves just to see what would happen. Many of the characters have the ability to move and pop up randomly around the program. Thus, you may arrive in Rivendell to find

The Hobbit's hallway: probably the most familiar scenario to inexperienced players!

that Elrond has just been killed by a Warg, or meet Gollum unexpectedly at the bottom of the Deep Valley. My spies report that Gandalf has been known to kill Thorin, take Sting and refuse to return it, remove other vital objects and disappear into the program, never to return, or reappear after having earlier been killed. In one reported instance, he picked up the Green Door from Bag End and carried it.throughout the game. (SAY TO GANDALF "HIT GOBLIN WITH GREEN DOOR"???). The more bizzare the incident, the less likely it is to occur, but they happen often enough to add interest to/foul up your progress. depending what your attitude is.

Melbourne House includes a note in the instruction manual: "Due to the immense size and complexity of this game it is impossible to guarantee that it will even be completely error free . . . If however any problems are found we would like to know about them so that future versions may be corrected. " This

The Troll's Clearing appears in red and white for night-time, and blue and white black for daylight.

disclaimer is a bit like the labels in Indian cottons which say that "Variations in the weave and colour are part of the natural beauty of this garment" and musicians who say that bum notes are all part of the spontenaity. As I like Indian cotton and spontenaity (within reason) I normally enjoy the quirks of the program. However, after encountering the DARK in broad daylight as 1 struggled with another recalcitrant clue, I began to wonder whether I could stand that much natural beauty. As I said, adventures require heroic qualities, like not hurling your Spectrum at the telly.

Wait Or Pause?

Leaving this aside, for those who do not have the facilities to SAVE the game at problems points, it is possible to build up a reliable map and use it to work forward to the stick-point. Once there, put it on PAUSE, quickly; the game goes on playing itself otherwise, and the longer you wait, the more likely something unpleasant is to appear or happen. On the other hand, in some places, waiting is a necessary part of the game process.
The manual gives a number of hints on how to conduct the game. You are told to protect Thorin, as progress is

The sudden appearance of the Troll's footprints on the Troll's Path is the nearest thing to animation in The Hobbit's graphics.

impossible without him (and he will fight enemies who are bigger than you, a mere Hobbit). Choosing the right adverb (QUICKLY or CAREFULLY) with your instructions may be crucial. This sounds fascinating, and it does add interest, but as far as we can work out these factors usually only come into play once or twice during the game. Eventually Thorin became such a pest, purloining objects, running off on wild goose chases, refusing to fight and saying HURRY UP at regular intervals, that we killed him just to shut him up (and were immediately killed by two goblins. Whose side is Thorin on, anyway?). There is one point where Thorin appears to be essential, but one acquaintance regularly disposes of him after this point.

If a disaster such as A DEAD ELROND occurs, at random, there seems to be no way of recouping the loss: for instance, once the DARK appears (normally underground) there seems to be no way of extricating yourself. At least, I have yet to meet anyone who has done so. The logic of the Inglish, often a bit strained, breaks down, so that if THORIN ENTERS and you SAY TO THORIN "FIND LIGHT", the computer merely replies I SEE NO THORIN HERE. IT IS DARK. It dawns that you are not so much pitting your wits against the computer, as trying to catch it in the right mood.

While I applauded the idea of making the computer respond directly to English commands (and it is very timesaving to be able to UNLOCK, OPEN, GO THROUGH DOOR), I found that I quickly started looking for ways to key in

The commands to enter the Troll's Cave can be given in one sequence, instead of three as shown here.

commands as briefly as possible. For instance, SAY TO ELROND, "GIVE ME SOME LUNCH PLEASE" (the manual says you must must be polite) resolved itself into SAY ELR "LUNCH". Elrond didn't seem offended.

By The Book?

At the suggestion of Prof. Tolkien's executors, The Hobbit is being sold only with a copy of the novel attached. The idea is that the book will offer clues. This depends on how well you know the book. I found it useless, in fact very misleading. For instance, in the novel, Bilbo and Gollum have a long riddle contest, from which Bilbo escapes, by
In the vicinity of Mirkwood, the Wood Elf appears; travellers report that your chances are better if you are captured.

strategem, without harming Gollum, after obtaining the Ring. In the game, any attempt to converse with Gollum leads to instant strangulation, and the only solution is to take the ring, kill Gollum and run for it.

A number of solutions depend either on keeping someone alive till they have served their purpose, or killing them promptly. It sounds more like Conan than The Hobbit, and doesn't actually improve the quality of the game, either.
On the other hand, anyone who does not know the story will find it helpful to know that the Dragon lies to the East, that Elrond and Thorin are goodies and that Goblins are baddies, that Bard the Bowman can shoot dragons and that Sting can be found in a trolls' hoard. Looked at like that, the book is very helpful indeed.
One of our Members has succeeded in getting into the Lonely Mountain, disposing of the Dragon and returning with the treasure to Bag End. He scored 86.5%, so there are still riddles to unravel. He has found no use for the Small Golden Key. Some riddles seem to have no solution, and others, once solved, seem to give no further help in the game:
In their latest bout of publicity, Melbourne House point out that, as The Hobbit is so complex, people will discuss it. How right they are: I would say it's better as a conversation piece than it is as a game, because one player's experience is not the same as another's - which was always one of the attractions of Prof. Tolkien's writings. Playing the game is like working out a series of riddles where the rules

An attack of nerves stymies the traveller at the Great River.

occasionally change without warning. The random element makes the adventure something more than a chalienge to make a successful map.
The Melbourne House team have expended a great deal of love and care on The Hobbit, employing eighteen months and a number of specialists (an artist, a linguistics expert, etc.) to write it, packing as much into 48 K of memory as possible. (The recently arrived version for the BBC Micro has, alas, no graphics, as the BBC has only 32 K memory). It is going to seem a trifle unsatisfying to anyone who has played an adventure game on a mainframe with hundreds of Ks of memory, but for anyone who plays on micros, The Hobbit is unusually complicated.
It's a pioneering work in translating a story into a computer game, as well, and succeeds in capturing some of the flavour of the original. The long gestation period (and the combined sale with the book, no doubt) have bumped the price up to $£ 14.95$, but in terms of hours occupied it seems worthwhile.

Indeed, I was eventually driven forth from the Misty Mountains simply because I had no time left to go on searching - such are the demands of a non-hero's life. So I shall leave it to someone else to discover what happens if you THROW ROPE CAREFULLY ACROSS RIVER.
Sadly, the version for the BBC Micro has no colour graphics, owing to lack of memory space.

PERMACON

Proved over many years in commercial use, now available to the hobbyist at competitive prices.
STANDARD CONNECTORS TWO PITCHES. 1 AND. 15 FOUR CONTACT STYLES

Further details from:

COLNBROOK ELECTRONICS LTD

Crabbs Abbey, Stowbridge Kings Lynn, West Norfolk PE34 3PE

It's easy to complain about advertisements. But which ones?

Every week millions of advertisements appear in print, on posters or in the cinema. Most of them comply with the rules contained in the British Code of Advertising Practice.

But some of them break the rules and warrant your complaints.

If you're not sure about which ones they are, however, drop us a line and we'll send you an abridged copy of the Advertising Code.

Then, if an advertisement bothers you, you'll be justified in bothering us.

The Advertising Standards Authority If an advertisement is wrong, we're here to put it right. ASA Ltd, Dept 2 Brook House. Torrington Place, London WCIE 7HN

This space is donated in the interests of high standards of advertising.

OVERCHARGED FOR YOUR BATTERIES? RECHARGEABLE BATTERIES
 AND CHARGERS

For Use in Your

Personal Stereo Transistor Torches
Cassette Recorders

Metal Detector Test Equipment Car Kits Electronic Projects

SANDWELL PLANT LTD

656 Chester Road, Erdington, Birmingham
Tel: 021-373 9487 After hours Lichfield 57977
Also at Hitchin, Telephone: Hitchin 733254
Private enquiries welcome. Send SAE for details

PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd., No. 1, Golden Square, London W1R 3AB.

I enclose a cheque/Postal Order made payable to ASP Ltd,
for the amount shown below Price.
OR
I wish to pay by Barclaycard. Please charge my account number

SIGNATURE
NAME
(BLOCK CAPITALS)
ADDRESS
B BLOCK CAPITALS

Price

Boards Required	Price
Add 45pp\&p	
Total Enclosed	ε

PCB FOIL PATTERNS

SINEWAVE OSCILLATOR

The PCB mask for the Sine Wave Generator

The PCB mask for the Lighting Chess Timer.

The PCB foil for the Offbeat Metronome.

Lineage:

30p per word (minimum 15 words) \rightarrow Vद

Send your requirements to: Debbie Miller
ASP Ltd.,
1 Golden Square,
London W1R 3AB

ALARMS

2 ZONE - $633-89$
FULL 2 YEAR GUARANTEE
Aduslable ontry-arit wioh buzzer Reguleted power supply (1.2 amp). - Latching 24 how crreuil.

PLEASE SEND FOR FREE CATALOG. OF ALARM EQUIPMENT FROM SIMPSONS ELECTRONIC ALARMS 70 PRIORY ROAD LIVERPOOL 051-260-0300

LARGE STOCK OF BURGLAR

 ALARM EOUIPMENT: AS used in the trade. JN Security Centre, 176 Sydenham Rd., London SE26 5JZ. 01-778 1111. Showrooms open 6 days.
BURGLAR ALAMR equipment.

 Ring Bradford (0274) 731532 for our catalogue, or call at our large showrooms opposite Odsal Stadium.TO FILL
THIS SPACE PHONE
01-6370699

A1 INTRUDER ALARMS

Wholesale Alarm Suppliers
Latest D.I.Y. \&
Wholesale Published Catalogue Write off for your copy 86 Derby Lane, Old Swan, Liverpool 13
Tel: 051-2883483
or 051-2200590

PLANS 'N DESIGN

AMAZING electronic plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph, surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue S.A.E., Plancentre, Bromyard Road Industrial Estate, Ledbury HR8

BOOKS \& PUBLICATIONS

PARAPHYSICS JOURNAL (Russian translations). Psychotronics, Kirlianography, heliphonic music telekinetics. Computer software. SAE $4 \times$ 9":- Paralab, Downton Wilts.

PRODUCTS TO SELL? USE HOBBY CLASSIFIED

COMPONENTS

BUMPER BOX OF BITS

WOWII We've got so many components in stock, we can't possibly list them all! So buy a box, in it you'lf find resistors, capacitors, displays, switches, paneis with transistors, diodes, IC's, etc., coils.
pots...and so on. All modern parts pots... and so on. All modern parts guaranteed at least 1000 items. Minimum weight 10 lbs. ONLY $£ 8.50$ inc. 48 page catalogue 50p.

ELECTRONICS WORLD
IF Dews Road, Salisbury Wilts Sp2 7 S

FREE! Parcel of L.E.D.'s, switches, components worth £10. Send only 80 p postage. Horsley, 113 Clare Rd, Braintree, Essex.

COMPONENTS, hobby kits, etc. SAE for free list. PIPMarketing, Two Bridges, Blakeney, Glos.

COMPUTERS

CONTROL

Plug-ins for the DRAGON 32 RELAY OUTPUT UNIT FITTED 2 RELAYS - $\mathbf{E 1 6 . 7 5}$ Space for 6 more FAST A-D CONVERTER WITH APPLICATION SOFTWARE £29.50
Other units available. Please send A4 S.A.S.E for the full details.

P.N.P. COMMUNICATIONS

 (Dept. H.E.)62 Lawes Avenue, Newhaven East Sussex BN9 9SB Tel: 0273514465

EQUIPMENT

AERIAL AMPLIFIERS Improve weak television reception. Price £6.70. S.A.E. for leaflets. Eléctronic Mailorder, Ramsbottom, Lancashire BLO 9AGH.

RESISTOR PACKS

FOR ALL PROJECTS

1/4 watt carbon film resistors $5 \% 1$ ohm to 10 M E24 series. Packs of 10 each value (1690 resistors $£ 10.00$. Your choice of qualtities/values 25 for \&1.00. VAT and Post Free.

GORDON HALLET
20 Bull Lane, Malden, Newton Dorchester, Dorset DT2 OBQ

BRITISH TELECOM plug sockets and leads, etc. Tel: C.W.A.S (0274) 308920. Or visit our showroom opposite Odsal Stadium, Bradford.

USE THIS SPACE TO ADVERTISE YOUR HOBBY SHOP

LANCASHIRE

F.E. ETESON ELECTRONICS

158 Lower Green Poulton-le-Fylde Blackpool Tel: (0253) 885107 Open 9:30 am-12:30, 1:30-5:30 Closed Wed. \& Sun.
Electronic Component Specialists

RADIO SERVICES

VINTAGE WIRELESS

COMPANY 1914-1960
Radios, amplifiers, service sheets, valves, vintage components. Books new and used.
Repairs and Restorations. Mail Order only.
Tudor House, Casoham St.
Mangotsfield BS17 3EN Tel: 565472

FOR SALE

100W AMPLIFIER - £9.95 built! or use the same board for $50 \mathrm{~W}, 150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms etc., by using alternative output transistors and PSU. SAE for full details to - ESS Amplification, Innovation House, Guildhall Road, Hull.

KIA Return An Ad No. 13 New variable automatic protection power supplies ... 12-40v/ 5 A STAB . . . Return No. 13 + £5.25 - KIA-8, LS-29 9DZ 1984 Sale Time, 1000 Amplifiers - giveaway prices!!

CABLE TRACKER (HE May 82). Calibrated c / w battery £15.00. B Cowton, 24 Guisborough Street, Sunderland SR4 7SD.

KITS

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolac lightsensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric chloride 55p. Clear acetate sheet for master 14p. Copper-clad fibreglass boe.d, approx. 1 mm thick $£ 1.75$ sq.ft. Post/packing 75 p . White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

Advertising Pays! TO PLACE AN AD PHONE DEBBIE 01-437 0699

Purposefully designed 40 wart R.M.S. and 30
watt R.M.S. B ohm speaker systems recenty
 Beigium. Kits comprise Mullard woofer $18^{\prime \prime}$ in 5° I with foam surround and aluminium voice coil, Mullerd 3° high power domed tweeter. B.K.E. built and tested crossover based on Mullard
circuit, combining low loss components, glass libre board and recessed loudspeaker terminals.
SUPERE SOUNDS AT LOW COST. Kits suppled in polystyrene packs complete win instructions. $8 * 40 W$
$\times 216 \times 445$

- recommended cabinet size 24 $\times 216 \times 445 \mathrm{~mm}$
Price E14.90 each +20.00 P \& P
30W system $160 \times 175 \times 295 \mathrm{~mm}$
Price $£ 13.90$ each $+\mathbf{E 1 . 5 0} P 8$
Designer approved flat pack cabinet kits, including grill fabric. Can be finish
veneer or self adhesive vinyl etc
veneer or self adhesive vinyl etc.
8^{n} system cabinet ki 28.00 oach +82.50 P \& P .
5^{*} system cabinet kit $\mathbf{~} 7.00$ each $+\mathbf{2 2 . 0 0 \mathrm { P } \text { \& P. }}$

STEREO CASSETTE TAPE DECK MODULE
record/play record/play back printed board assembly. Suppled as console of own choice. These units are band cabinet or built and tested.
Foatures: Three digit tape counter. Autostop. Six piano type keys, record, rewind, fast forward, play, stop and
efect. Automatic record level controt. Main inputs pius secondary inputs for stereo michain inputs pius Sensitivity: 100 mV to 2 V . Input microphones. Imput cutput level: 400 mV to both leth and right hand channels. Output Impedance: 10 K . Signal to noise
ratio: 45 dB . Wow and flutter: 0.1%. Power Supply ratio 4
requirements: 18 V DC at 300 mA . Connections: The left and right hand stereo Inputs and outputs are via individual screened leads, ah terminated with phono plugs
(phono sockets provided). Dimensions: Top panel 5 tin iphono sockets provided. Dimensions: Top panel 5 in
$\times 11$ in. Clearance required under top panel 2 in. Supplied complete with circuit diagram and connecting diagram. Attractive black and silver finlsh.
Prlce $£ 26.70+\mathbb{2} .50$ postage and Supplementary parts for 18 V D.C. power supply
Suphing.
itransformer,

LOUDSPEAKERS POWER RANGE THREE QUALITY POWER LOUD SPEAKERS (15.12" and 8" See Pholo) ldeal for both Hi-Fl and Disco applica inns. All units have attractive cast alu speciticationd linish) fixing escutcheons Specification and Prices.
 500 . magnet. 2 aluminium voicecoil. Res. Pra. 20 Hz . Freq. Resp. 102.5 KHz . Sen
97 dB Price. $£ 34.00$ each $+\Sigma 3.00$ P\& 12.100 watt R.M.S. Inpedance 8 otms. 50 or magnet. 2 aluminium voice coill Res.
Frea. 25 Hz Frea Resp to 4 KHz . Freq. 25 Hz Frea ResD to 4 KHz Sen
95 dB Price 26.00 each $+\varepsilon 300$ pg 95 dB . Price $£ 26.00$ each $+£ 3.00 \mathrm{P} \mathrm{\& P}$. oz magnet. 1 l, ${ }^{\prime \prime}$ aluminium voice coll. Res Freq. 40 Hz Frea. Resp to 6 kHz . Sens 92 dB Black Cone. Price $¢ 9.50$ each. Also available with black protective grille Price.

12. 85 watt R.M.S. MCKENZIE C1285GP (LEAD GUITAR, KEYBOARD, DISCOI 2° aluminium voice coil, aluminium centre dome, 8 ohm imo., Res. Freq. 45 Hz ., Frea Resp. 10 6. 5 kHz ., Sens, 98 cb . Price $£ 24.00+$ E3 carriage.
$12^{\prime \prime} 85$ watt R.M.S. McKENZIE C1285TC (P.A., DISCO) $2^{\prime \prime}$ aluminium voice coil. Twin $15^{\prime \prime} 150$ w. $15^{\prime \prime} 150$ watt R.M.S. MCKENZIE C15 (BASS GUITAR, P.A.) $3^{\prime \prime}$ aluminium voice coil.
Die cast chassis. 8 ohm imp., Res. Freq. 40 Hz . Freq. Resp. to 4 KHz Price $£ 49+$ C 4 Die cast chassis. 8 ohm imp., Res. Freq. 40 Hz ., Freq. Resp. to 4 KHz . Price $£ 49+\mathrm{C} 4$

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynarnic tweeters. As a crossover is not equired these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER
 TYPE 'B

TYPE © C

TYPE 'A' (KSN2036A) 3' round with protective wire mesh, ideal for bookshelf and medium sized H_{1} il speakers Price £4.29 each. TYPE 'B' (KSN1005A) $31 / 2$ " super horn. For general purpose speakers, disco and P.A
systems etc. Price \&4.99
syon +hen

TYPE 'C' (KSN6016A)2' $\times 5$ ' wide dispersion horn. For quality Hi-fi systems and quality discos etc. Price $£ 5.99$ each.
TYPE 'D' (KSN1025AI2' * 6 ' wide dispersion hom. Upper frequency response retained extending down to mid range $(2 \mathrm{KHz})$. Suitable for high quality Hi.fi systems and quality discos. Price $£ 7.99$ each.
TYPE 'E' IKSN1038A) 33/4 " horn tweeter with attractive silver finish trim. Suitable for Hi-ht monitor systems etc. Price E4.99 each. TYPE 'F' (KSN1057A) Cased version of type 'E'. Free standing satellite iweeter. Periect add on tweeter for conventional loudspeaker P\&P 30p ea. (or SAE for Piezo leaflets) .

Ported tuned cabinet in hard wearing black vynide with protec tive corners and carry handle. Built and tested, employing 10 in British driver and Piezo tweeter. Spec: 80 watts RMS; 8 ohms: $45 \mathrm{~Hz}-20 \mathrm{KHz}$ Size: $20 \mathrm{in} \times 15 \mathrm{in} \times 12 \mathrm{in}$; Weight: 30 pounds.

BK ELECTRONICS
Prompt Deliveries VAT inclusive prices Audio Equipment Test Equipment by
Thandar and Leader

HOBBY KITS. Proven designs including glass fibre printed circuit board and high quality components complete with instructions.
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensi tive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 voll) Prlce: $\mathbf{E 7 . 9 9 p}$
DIGITAL THERMOMETER $-9.9 \mathrm{C} 10+999^{\circ} \mathrm{C}$ LED display Com plete with sensor. $70 \times 70 \mathrm{~mm}$ (9 volt) Price: $£ 27.60$ p
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controlled. professlonal performance. Range up to 3 miles $35 \times 84 \times 12$ mm (12 volt) Price: $\varepsilon 12.490$
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ RECEIVER 27 MHZ Range up to 500 metres Double coded mod ulation. Receiver output operates relay with 2 amp/ 240 vol contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm} 9 /$ 12 volt) Price: $£ 16.49$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}(9 / 12$ volt Price $£ 10.29$ P\&P All Kits +75 p each. S.A.E. for complete list

BSR P256 TURNTABLE

256 turntable chassis. S shaped tone arm - Belt driven Aluminium platter skate (bias device) - Oarmped cueing lever - 240 voll $A C$ operation (Hz) - Cut-out emplate supplied - Completely manual arm This deck has a completely manual arm and is designed primatily for disco and studio use where all the advaniages of a manual arm are Price £32.35 each. $£ 2.50 \mathrm{Pg}$ P.

0UP POWER AMPLIFIER
 MODULE

READY BUILT

New model. Improved specification MOSFET versions available up to 300 W . R.M.S.

HOME PROTECTION SYSTEM

Better to be 'Alarmed' then terrified
Thandar's famous 'Minder' Burgar Alarm System.
Sta Superior microwave princicile. Supplied as threeunits.
complete with interconnection cable. FULLY complete with
GUARAN TEED.

READY GUARANTEED. BUILT
Control Unit - Houses microwave radar unit, range up to 15 metres adjustable by sensitivity control
Three position, key operated tacia switch - oft - tesi - armed. 30 second exit and entry delay Indoor alarm
104 dB output.
Outdoor Alarm - Ele outpul. Housed in a tectronic swept freq. siren. 98dB case.
Both
chargeable control unit and outdoor alarm contain reduring mains baltures inhich provide full protection $\mathrm{AC} 50 / 60 \mathrm{~Hz}$. Expandable with door sensors, panic SAVE £ 128 Usual price $£ 228.85$ BKE's PRICE \&99.p\&p\&4

NEW OMP1OO Mk. 11 POWER AMPLIFIER MODULE Power Amplifier Module complete power supply and glass fibre p.c.b. assembly. Incorporates drive circuit to power a compatible LED Vu meter. New improved specification makes this amplifier ideal for P.A., instrumental and Hi-Fi applications.
Output Power:- 110 watts R.M.S. Loads:- Open and short circuit proof 4/16 ohms. Frequency Response: $-15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$ T.H.D.:- 0.01%.
S. N.R. (Unwelghted): $--118 \mathrm{~dB} \pm 3.5 \mathrm{~dB}$ Sensitivity for Max Output:-500mV @ 1OK Size: $-360 \times 115 \times 72 \mathrm{~mm}$ Price:- $131.99+$

 B

3 watt FM Transmitter

elearomire
 AUTO-ELECTRONIC PRODUCTS

KIIS OR READY BUIT

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION

IS

AS GOOD AS IT COULD BE?

* is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
* Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginel? Total Energy Discharge gives a more powerful spark fromidle oo the engines maximum leven with 8 cylinders).
* Is the PERFORTANCE SMOCTHIThe more powerful spark of Total Energy Discharge eliminates the "near misfires" whilst an electronic filter smoothes out the effects of contact bounce etc.
* Do the PLUGS and POINIS always need changing to bring the engine back to its best lotal Energy Discharge eliminates contact arcing and erosion by removing the heovy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaperch ioe used even wet or badly fouled plugs can be fired with
* TOTAL ENERGY DISCHARG is a unique system and the most powerful on the market - $3 \% / 2$ times thepower of inductive *vatems $31 / 2$ times the energy and 3 times the duration of ordinary capecitive systems. These are the fects:
Performance at only 6 volts Imax. supply 8 vohs.
SPARK POWER - 140 W , SPARK ENERGY - 36 mJ SPARK DURAIION - $500 \mu \mathrm{~s}$, STORED ENERGY - 135 mJ LOADED OUTPUT VOLTAGE

50 p load $-38 \mathrm{kV}, \quad 50 \mathrm{pF}+500 \mathrm{k}-26 \mathrm{kV}$ We challenget any manufacturer to publish better performance figures. Before you buy any other make, ask for the facts, its probably only an inductive system. But if an inductive system is what you really want, we'll still give you a good deal

* All ELECTRONIZE electronic ignitions feature: EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELIABILITY (14 years experience and a 3 year guarantee).
- IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality 2 uF discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
Most NEW CARS already have electronic ignition. Update YOUR CAR

ELECTRONIZE ELECTRONIC CAR ALARM

HOW SAFE IS YOUR CAR ?

More and more cars are stolen each week and even a sieering lock seems little help. But a car thief will avoid a car that will cause him trouble and attract attention. If your car has a good alarm system well there are plenty of other cars to choose from.

LOOK AT THE PROTECTION AN ELECTRONIZE ALARM

 CAN GIVE* MINIATURE KEY PLUG A miniature jack plug attaches to your key ring and is coded to your particular alarm.
* 2025 INDIVIDUAL COMBINATIONS The sy plug contains two 1% tolerance resistors, both must be the cor ci value and together give 2025 different combinations.
- ATTRACTS MAMIMUM ATTE TIO Whinis alarm system not only intermiremaly sounds the horn, but also flashsthe headlight and prevents the engin beling started
* 60 SECOND ALARM PERIOD Onit trige red th wlarm will sound for 60 seconds, unless cancelled by the ay plug, hefore resetting ready to be triggered gain.
* 30 SECOND EXIT DELAY Thesystem is armed by pressing a small button on a dashboard mounted control pertel This starts a 30 second delay period during which the own em open and close doors without triggering the darm.
$t 10$ SECOND ENTRY DELAY When a dool is opened a 10 second delay operates to allow the ownes to disarm the system with the coded key plug. Latching circuits are used and once triggered the alarm can only be cancelled by the key plug
* L.E.D. FUNCTION INDICATOR An LED is included in the dashboard unit and indicates the systems operating state. The LED lights continuously to show the system is armed and in the exit delay condition. A flashing LED indicates that the alarm has been triggered and is in the entry delay condition
t ACCESSORY LOOP - BONNET/BOOT SWITCH - IGNITION TRIGGER These operate three separate circuits and will trigger the alarm immediately, regardless of entry and exit delays
* SAFETY INTERLOCK The system cannot be armed by accident when the engine is running and the car is in motion.
t LOW SUPPLY CURRENT CMOS IC's and low power operational amplifiers achieve a normal operating current of only 2.5 mA
\star IN KIT FORM It provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, random selection resistors to set the code and full set of components etc. In fact everything down to the last washer plus easy to follow instructions.

EFECRONITE DESICN Dept E. Magnus Rd. Wilnecote Tamworth B77 5BY. tel 0827281000

TOTAL ENERGY DISCHARG (6 or 12 volt negative earth)Assembled re oy 0 til
sperto 19.95
545以 ≈ 4.95
TWIN OUTPUT for car ana meror, with dual ignition
Twir, Astembled eaady to fit $\quad \mathbf{3 6 . 4 5} £ 29.95$ Twin D. I Y parts kit $\quad 24.55 £ 22.95$ pooptre earth INDIUCTIVE DISC AAGF S. 2 , It only)

Assemble ready to fit
£15.95 £12.75

CAR ALARM (12 volt negative earth)

\squareAssembled ready to fit (All wires and $£ 27.55 £ 29.95$ D.I.Y. parts kit connectors incl.) £24.55 £19.95

1 enclose cheque/postal order OR debit my Access/Visá card

Name
Address \qquad

[^0]: Hobby Electronics is normally published on the second Friday of the month prior to the cover date.
 Hobby Electronics, No. 1, Golden Square, London W1R 3ÁB. 014370626 . Telex No 8811869. Published by Argus Specialist Publications Ltd.
 Origination by Ebony Typesetting, Trion House, 13 Dean Street, Liskeard, Cornwall PL14 4AB.
 Distributed by S. M. Distribution Lid, 16/18 Trinity Gardens, London SW9 8DX

[^1]: 1. $3-30 \mathrm{~Hz}$
 2. $30-300 \mathrm{~Hz}$
 3. $300-3 \mathrm{kHz}$
 4. $3 \mathrm{kHz}-30 \mathrm{kHz}$
 5. $30-300 \mathrm{kHz}$
 6. $300 \mathrm{~Hz}-3 \mathrm{MHz}$
