

New cats for old

SEND US THE COVER FROM ANOTHER COMPONENT SUPPLIERS CURRENT CATALOGUE, PLUS A 40p STAMP, AND WE'LL SEND YOU A FREE COPY OF THE LATEST (SUMMER) AMBIT CONCISE COMPONENT CATALOGUE. ALTERNATIVELY YOU CAN SIMPLY BUY A COPY FROM YOUR NEWSAGENT - OR SEND 80p TO THEADDRESS BELOW.......

PROJECTS

* SOUND PRESSURE LEVEL METER 14
Is it a bird? Is it a plane? Is it Motorhead???
*TREMOLEKO36
Tremolo/Echo-style effect for guitars.
POWER SUPPLY UNIT54
Specially designed for use with projects.
*HE GRIPOMETER59

Test your strength, astonish your friends.

FEATURES

*MODEL RAIL COMPETITION 22
Design a computer-controlled railway layout.
*CABLE AND SATELLITE TELEVISION 25
A magnificent aerial display!\star CAREERS IN ELECTRONICS PART 540
Getting into the (TV and Radio) studio. 48*ALL ABOUT ELECTRONICS PART 3
An introduction to resistance and capacitance.
REGULARS
Monitor 6
HE Backnumbers. 10
Forward Bias 11
What's On Next 20
Buylines 34
HE Bookshelf 45
3readboard 58
PCB Service 63
PCB Printout 64

Clever Dick has been despatched overseas to do some important technical research into the effects of solar radiation on the body, not to mention modifications caused by treating the body in question with alcoholic spirits. He'll let you know the results when (if?) he gets back

Editor: Ron Keeley

Assistant Editor:, Helen Armstrong BA
Technical lliustrator: Jerry Fowler
Advertisement Manager: David Kitchener
Assistant Advertisement Manager: Joanne James .
Managing Editor: Ron Harris BSc
Managing Director: T.J. Connell

Cable And Satallite TV - page 25

Tremoleko - page 36

HE Gripometer - page 59

Hobby Electronics is normally published on the second Friday of the month prior to the cover date.
Hobby Electronics, 145 Charing Cross Road, London WC2H OEE, 01-437 1002. Telex No 8811896. Published by Argus Specialist Publications Lid. 'Origination by Ebony Typesetting. Trion House, 13 Dean Street; Liskeard, Cornwall PL14 4AB.

Distributed by S. M. Distribution Ltd, 16/18 Trinity Gardens, London SW9 80X.
Printed by OB Ltd, Colchester. Covers printed by Alabaster Passmore.
Notice: The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international
copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior written consent of the Company. All reasonable care is taken in the preparation of the magazine to ensure accuracy, but Argus Specialist Pulications Lid cannot be held responsible legally. ©Copyright 1983 Argus Specialist Publications Lid. Member of Audit Bureau of Circulation.

KITS OR READY BUITT

TOTAL ENERGY DISCMARGE ELECTRONIC IGNITION

15

YOUR CAR

AS GOOD AS IT COULD BE?

- Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain ful putput even with a near flat battery.
\$ Is it ECONOMICAL or does it "go off" between whio sh the ignition performance deteriorates? Total Energy Pewhargw ght much more output and maintair it fromservice taservice
* Has it PEAK PERFOn thince or is it flet at high and fow revs. where the igntiton output is morginal? Forat Energy Discharge gives a. more powerful park from idie to kie engines maximum leven with Ecydinders.
t is the PRAFORMANCE SMOOTH the more, powert spark of Total Energy Discharge, eliminates the "neary misfires" whilst an electramic filter smaothes ous the affectp of contast bounct etc.
* Do the PLues and prints always need changing to bring the engine back to is th it? gut limgy Discharge eliminates contact arcing and erosion oving the heavy electrical load. The timing stays "spot :an" and the contact condition doesn't affect the performance dither. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
* TOTAL ENERGY DISCHARGE is a unique system and the most powerful on the market - $31 / 2$ times the power of inductive systems $31 / 2$ times the energy and 3 times the duration of ordinary capacitive systems. These are the facts:
Performance at only 6 volts (max. supply 16 volts)
SPARK POWER - 140 W , SPARKENERGY - 36 mJ SPARK DURATION - $500 \mu \mathrm{~S}$, STORED ENERGY - 135 mJ LOADED OUTPUT VOLTAGE

$$
50 \mathrm{pF} \text { load - } 38 \mathrm{kV} \text {, }
$$

$50 \mathrm{pF}+500 \mathrm{k}$26 kV
We challenge any manufacturer to publish better performance figures. Before you buy any other make, ask for the facts, its probably only an inductive system. But if an inductive system is what you really want, we'll still give you a good deal.
\star All ELECTRONIZE electronic ignitions feature:
EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELIABILITY (14 years experience and a 3 year guarantee).
t IN KIT FORM it provides a top performance system at less than half the price of comparable ready buitt units. The kit includes: pre-drilled flbreglass PCB, pre-wound and varnished ferrite transformer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
Most NEW CARS already have electronic ignition. Update YOUR CAR

PROTECT YOUR CAR WITH AN ELECTRONIZE ELECTRONIC ALARM

- 2000 COMBINATIONS provided by an electronic key - a miniature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit codel.
t 60 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.
* 10 SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
- INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
* 30 SECOND DELAY when system is armed allows owner to lock doors etc.
t DISABLES IGNITION SYSTEM when alarm is armed.
* IN KIT FORM it provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everything down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES.
SUPPLIED COMPLETE WITH ALL NECESSARY LEADS AND CONNECTORS PLUS TWO KEY PLUGS

Don't Wait Until Its too Late~
Fit one NOW!

fill in the coupon and send to:

ELECTRONIRE DESIGN Dept'E Magnus Rd Wilnecote • Tamworth B77 5BY tel 0827281000

TOTAL ENERGY DISCHARGE (6 or 12 volt negative earth)

Assembled ready to fit
£2c. 10 £19.95 D.I.Y. parts kit £15.50 £14.95

TWIN OUTPUT for cars and motor cycles with dual ignition
Twin, Assembled ready to fit Twin, D.I.Y. parts kit
$£ 36.45 £ 29.95$
£24.55 £22.95
INDUCTIVE DISCHARGE (12 volt only)
\square Assembled ready to fit
£15.95 £12.75

CAR ALARM

Assembled ready to fit
£ 37.95
D.I.Y. parts kit
£24.95
I enclose cheque/postal order OR debit my Access/Visa card

Name
Address

Well Done, Sir

Readers who can tear themselves away from their soldering irons long enough to read the Daily Rag or listen to the radio news will have heard that legendary all-round computer manufacturing and marketing genius Clive Sinclair (Yes. Sinclair, Clive, as in Sinclair, Spectrum and Sinclair, ZX81 ...) has been honoured with a knighthood in this year's Birthday Honours list. The
rumours say that this came as a complete surprise to Mr. Sinclair, but not to the rest of us. We always knew that the man who enabled the nation to pick up its micro with its daily papers and scared hell into the opposition deserved something special. Apart from a few million quid, that is. So. from Hobby Electronics editorial team, technical department and Beasties, well done, Sir

One problem. Do we address him as Uncle Sir Clive, or Sir Uncle Clive?

The Future Is Here As Soon As You Can Afford It

Questions and answers time again: Grundig International, well-known perpetrators of video, hifi and TV, have initiated a Marplan survey to find out who does what with their television, how, where and when.

Marplan came up with a few interesting facts about the Youth of the Nation and their possessions, and preferences. For instance, 46 per cent of British homes have a second television (we presume they mean one in working order!) and the 'old' telly is often purloined by the younger generation. About 18 per cent of children have their own TV set (. . . that's nearly one in five. My mind begins to boggle. Where did Marplan do this survey??) and, having got it, they watch breakfast telly in their bedrooms!

Their survey also showed that whereas nearly every family in the land has its own radio but only 50% of children do, only 27% of families have a cassette player, but 27% of children do. Against that, 76% of families have a record player, but only 25% of children - this is the portable generation, by the look of it. The kids apparently, from this sample, have not yet moved into the VCR-owing class, but Grundig suspect that there may be specimens lurking out there, the first of a new species. It seems that videos have also eased the family relationships by making it easier to get the kids off to bed with the promise of recorded programmes the next day.
(I can confirm this from experience. My in-laws find it a great relief to leave us in the charge of a recording of The O/d Grey Whistle Test while they go peacefully to bed - same principle, isn't it?)

Another little factoid which emerges, which we all knew in our hearts, is that people, especially children, like to record their favourite programmes and watch them over and over again (so that's why the In-laws won't release the videotapes till after they've retired to bed). Never mind information content Top Of The Pops, Grange Hill, Fame and Kenny Everett are among the favourites. A significant number of families (11 per cent) watch rented video tapes every day.

Your MONITOR person, being an old fogie who merely worships television but was actually raised by a portable radio, finds it encouraging that 92 per cent of children listen to the radio, and many of them like it because they can use their imaginations more than with TV, and they aren't tied to watching, but can get on with something else. Like writing MONITOR, for instance.

Grundig seem to have confirmed a few more things which we all thought we knew anyway, but which nobody had got round to telling us officially: we like video because we can record programmes we would otherwise miss and watch them later (have you any idea the suffering this sort of thing causes to someone who doesn't have a video? Like me?); and that 76 per cent of people who don't have videos would like to have one if only they could afford it (right again!). And that people with two televisions (chance d be a fine thing. I can't even afford one at the moment ...) and who don't have the second one purloined by their offspring (knowing my luck, if I had one, the cat would snatch it) prefer to have one upstairs in the bedroom (so that's what the In-laws get up to . . .) so they can watch it in bed. (Right yet again!) Slightly less expected is that some people watch breakfast television in bed. (How can they? How do they get their eyes open at that time of the day??)

Well, it's nice to know you're nearly normal.

Another factoid which tends to be confirmed by experience is that people want an integrated viewing/listening system, with all their hifi, video, television, radio, and whatever played through one system with 'speakers running anywhere they are desired.'

At this point, Grundig just are not adventurous enough. They conclude that people would like to be able to play everything back through their TV sets. Not round here, you don't! Is anyone out there going to spend $£ 500$ on a new compact disc player and then put it through the telly?? Surely the whole point of those things is that they don't sound as if they have been put through a telly... words fail me!

Let's think positive. When is Grundig,
or someone, going to come up with a decent, domestic-quality, domesticpriced multi-way switching amp? What about the household whose main problem is the inability to keep two cassette players, a record player, radio, television, video, home computer (come on. Dream a bit), closed circuit TV monitoring the food processor, several sets of headphones and an electric guitar running all at the same time? This is the future, believe mel These guys are just not thinking big enough.

Let's get off this provocative subject and onto something more mundane: Marplan have finally come up with some real observations on the effect of television in the bedroom.

For one, it's usually the man who has to leap out of bed to turn the telly off at the end of the evening's viewing. Either chivalry is not yet dead, or else it really is true that women are better at sleeping through a persistent din than men are. Having a television in the bedroom does interfere with other bedroom activities. 17 per cent said it was a problem trying to read and watch telly in bed at the same time. Others grumbled about the effect on knitting, Scrabble and pillow fights. Some even said that having a telly in the bedroom interfered with sex. Somebody ought to tell them to take the telly off the bed.
(Mind you, in a household where the main problem is getting the cat out of the bed, all this good advice isn't going to go very far, is it? These people don't know when they're well off, do they? Foam. Snarl.)

Apologies. This editorial bitterness is merely caused by the stress of having to be polite about the Which Video team so that we can use their TV occasionally. The things we go through . . . however, in order to deal with some of these problems, Grundig have produced a leaflet, How To Choose And Use Your Television. If you're interested in this, send a largeish SAE to "TV Leaflet Offer". Grundig Press Office, 50 Upper Brook Street, London W1Y 1PG. Unfortunately, it lacks a little bit of inspiration on the last range of points discussed above. How about a TV set with a book-prop on top? You have to think into the future, you know.

Cee Bee

At last, CB equipment for use on the 934 MHz UHF band is beginning to raise its head. A firm called BeeWare are producing a transverter, the LA83, which will convert a 27 MHz transceiver to 934 MHz by means of a PL Patch lead between the antenna output of the 27 MHz rig and the input of the transverter, and connection via an n-type connector to a 934 MHz antenna.

For use as home base, the transverter needs a 5A PSU

The 934 MHz band, being UHF, is less prone to interference than 27 megs and (for the time being anywayl) as there are so few units able to access it, its twenty channels are far less crowded than the popular bands. How long will this last, we wonders? Perhaps the interest in UHF is another indication of a more "serious" approach' towards hobby radio in general, along with the swing towards the more demanding rigours of Ham radio by people who began with an interest in CB.
The LA83 will retail for around $£ 200.00$, under the 'Grandstand' label. For further information, contact BeeWare, Adam Leisure Group Ltd., Ripon Road, Harrogate, North Yorkshire, HG1 2AU. Tel: (0423) 501151.

Splashproof Switch

Superswitch Electric Appliancés have added a splashproof, outdoor model to the indoor remotely controlled light switches in their range. The three models now available, all switched by a small, infra-red transmitter, offer the convenience of remote switching for all domestic applications in and around the home.
The splashproof version is in an attractive, white, surface mounting case with a remotely actuated switch and a manual switching button. The Superswitch hand held infra-red transmitter which actuates the switch can be used as much as 50 ft from it, and will operate through glass. Coming home at night, a driver can thus turn on the outside light without having to get out of the car or even open the window. The new splashproof remote control
switch (catalogue number 2715) will switch 5A maximum tungsten lamps or resistive loads, with a maximum of 2A5 for fluorescent or inductive loads. It can be mounted with conduit entry above, below or at the side of the box, with no danger of seepage from rainwater. The infra-red transmitter, measuring only $1.5 \times 5.25 \times 1 \mathrm{in}$, is powered by a 9 V alkaline battery. It has been proven in use with the indoor switches in the range, and shown to give no interference with remotely controlled TV or video recorders.

Superswitch's latest product, which can be installed in one- or two-way switching circuits, has three modes of operation, set up by an internal switch during installation. The options are: switched on by infra-red beam, off manually; switched on as long as either

infra-red or manual switch is pressed, but goes off when released; switch on and subsequently off by either infra-red device or manual switch.

Superswitch say that they are in the business of providing convenience and security in the home. The model 2715 splashproof remotely controlled switch is the latest product with these objectives in mind. Further information from Superswitch Electric Appliances Limited, 7 Station Trading Estate, Camberley, Surrey, GU17 9AH. Tel: (0276) 34556.

Equipment Great And Small

New from Electronic \& Computer Workshop is a particularly strong general purpose knife, precision engineered in vanadium stainless steel. With a blade measuring $31 / 4$ in and a tough, moulded plastic amber coloured handle hinging down to encase completely and protect the blade when not in use, it fits safely and handily into pocker or tool box. The whole knife is of a very high quality, well engineered and
with no play on the rivets. The tensioned handle has finger and thumb grips and clips hold it open or firmly hinged shut. It is priced $£ 2.50$ plus 45 p p\&p and VAT.

The Crotech 3337 dual trace oscilloscope's specifications, overall size and rugged construction make it an effective instrument for the microcomputer and peripherals field service engineer. The front panel has related controls colour linked for ease of use.

A 30 MHz bandwith is specified for the vertical deflection system, but the smooth roll off designed into the amplifiers is said to extend its response to 40 MHz . The rise/fall time of the fast transient or pulse can be readily displayed and analysed via a built-in signal delay line operative on both channels and a fast 11 ns 7 rise time. The Post Deflection Accelerator (PDA) CRT operating at 10 kV enables fast pulses at a relatively low reptition rate to be displayed. Deflection coefficients can range from 5 mV to $20 \mathrm{~V} /$ div. and are complimented by a variable control extending the range to $50 \mathrm{~V} / \mathrm{div}$. This scope also features algebraic addition and subtraction (with Channel 2 inverted), valuable for the servicing and alignment of disk drives.
The 40 ns to $1 \mathrm{~s} / \mathrm{div}$. range on the horizontal deflection is covered by a 21 position calibrated timebase with $\times 5$ magnification. Vertical channel or external source selection and composite trigger for the investigation of non-frequency related signals, plus line frequency highlight the comprehensive triggering facilities of the 3337, which also gives selectable AC/DC trigger coupling. Further a single shot mode with a reset to capture intermittant or single transient signals is incorporated.

Additionally the 3337 will trigger up to 50 MHz in either the Auto or Trigger level mode, the level mode ensuring reliable triggering for complex waveforms and the auto mode giving a bright line in the absence of an input

signal (level selection is also operational here).

The 3337 is priced at $£ 405$ plus $£ 12.00$ p\&p and VAT.

A microprocessor contolled EPROM programmer currently available from Electronic \& Computer Workshop can be supplied in kit for $£ 180$ or built and tested for $£ 270$, plus $£ 1.00$ p\&p and VAT.

The programmer, a stand alone unit complete with power supply, housing and test sockets, has facilities to test, verify copy and program the following EPROMs: 2716, TMS2516, 2732 and 2732 A for 16 or 32 K . Specified controls include a hexidecimal keyboard plus function keys incorporated into a 24 key pad with 12 address LEDs, four function LEDs (error, program, OK and size) and two hexidecimal displays.

Available functions make this microprocessor based programmer a comprehensive unit. Functions include blank test and error, verify test and error, reset, input or modify data in user RAM at a desired address, parallel load capability from a DMA controlled RAM field. OK indication for successfully executed functions, increment function storing the input data via the hexidecimal, and jumping to the next address in the user RAM.

Currently available is a $31 / 2$ digit LCD module, of first class professional quality with 12.7 mm high characters, costing $£ 7.50$ (plus $45 p$ p\&p and VAT). The LCD has an attractive bezel which secures and protects the LCD and incorporates high reliability Zebra strips. These strips consist of alternating parallel layers of conductive and non-conductive silicone rubber. Thus mounted, shock and vibration protection for the LCD is ensured. The connectors futher provide a gas tight seal of the contact surface to assure reliable operation in a hostile environment. The clear bezel ensures the LCD polariser is free from scratches. The assembly is available with a dual inline display, so that the viewing area is in the centre. Clever Dick says he's never seen a Zebra strip; can anyone advise him?

For more information, contact Electronic and Computer Workshop Ltd.. 171 Broomfield Rd., Chelmsford, Essex CM1 1RY. Tel: (0245). 62149.

All Round Exhibition

A new home computing, video and electronics show with families in mind is going ahead at the Birmingham National Exhibition Centre on the 4th, 5 th and 6 th November (going off with a bangl!??). Atari, Sinclair and Ideal Toys are among the suppliers who are exhibiting at Brainwave ' 83 where, we gather, the emphasis will be not only upon household and entertainments electronics, but on making the subject interesting to people of all ages and interest levels, not just for the very technically minded. More information will be appearing in the press, and doubtless in HE too, as it comes out.

Japanese CB Parts

Guildford CB has contacted us to say that, as well as stocking a large number of CB rigs and accessories, as well as a growing range of amateur radio gear (73s to you!), they specialise in hard-tofind Japanese transistors and CB rig components - obviously important for rig doctors who can't find replacement parts. Guildford also supply VHF and UHF aerials and some replacement high wattage valves, and standard tools, plugs and sockets, batteries and PSUs. Trade enquiries are welcome as well as the public, and credit cards are acceptable. I notice from their notepaper that they also do 'video' as well, although they don't specify what, exactly.
All enquiries to Guildford CB, 34 Aldershot Rd., Guildford GU2 6AF. Tel: Guildford 577550,571439 or 573868.

DMM And Sig-gen

Thandar Electonics a new LED $31 / 2$ digit multimeter to their range of DMMs. There is still a large demand for a bench/portable LED instrument where dark conditions apply, and LCD are not suitable. Designated the TM355, the meter has a basic accuracy of 0.25%; $A C$ and $D C$ voltage ranges from 100 uV to 1000 V (750 AC), current ranges from 100 na to 10 M and resistance measurement of 100 mR to 2OMR plus diode check, and is priced at $£ 75.00$ plus VAT.

Thandar have also introduced three new AM-FM memory programmable signal generators to their Leader range of instruments: Designated the LSG215, LSG-216 and LSG-217 they have the following specification: display tuning, address location and output level is indicated in digital format; a 100 point memory programmable for any mix of FM and AM modulation, plus output level and frequency (memory is supported by battery after switch off); full PLL synthesizer system with high stability oscillator; a peak indication meter; frequency ranges covering $\overline{0} .1 \mathrm{MHz}$ to $115 \mathrm{MHz}(-9$ to 120 dBu$)$. Accessories are also available to enable the use of remote controller and a plug in ROM unit to retain a specific programme. For further information please contact: Thandar Electronics Ltd.. London Rd.. St. Ives, Huntingdon, Cambs PE17 4HJ. Tel: (0480) 64646.

Look Into This

Do you wish to examine stress cracks, rod or tube dimensions, breaks in electronic circuits, etc.? If so, then according to Hirsh Jacobson Merchandising Co., what you need is the Micro Mike pocket microscope.

Jesting aside, a little microscope like this, which gives 10x, 20x, 40x and 50x magnification, has a myriad of uses for anyone doing fine work or quality checking. The Micro Mike is USA-made and is guaranteed to function accurately indefinitely. It is a precision,
professional instrument. The standard model is $£ 8.80$ (VAT and postage extra). or $£ 10.80$ for a model with a built-in measurement scale to 0.1 mm . The model in our photograph shows the microscope on the left, with an attachment, the Microlite ($£ 6.00$) which is designed to shine a light precisely onto the field of the Micro Mike in dark places.
It clips into the pocket like a pen, is housed in a light, tough aluminium case, specially designed to focus light into the opening and protect its four lenses from dirt and scratches. Altogether a very handy little beastie someone can give me one for my birthday, if they likel
Enquiries to Hirsh Jacobson Merchandising Co. Ltd., 91 Marylebone High St., London W1M 3DE. Tel: 01935 4709. They do a nice brochure with some photographic samples of the microscope's uses.

Speech Synthesiser

For anyone with a micro and the confidence to know what they're doing with it, General Instruments Microelectronics has introduced a voice synthesis module, the VSM $2128-\mathrm{AL} 2$.

The module contains a single chip, N channel MOS/LSI circuit that is able, through stored allophones, to synthesise any phrase in English, through a stored allophone system. The module is interfaceable with digital systems using a standard $15-$ pin edge connector. Once selected, the module requires no support from user circuits, and enunciates all allophones and signals when complete.
The chip in use is General Instrument's SPO256-AL2 single chip speech synthesizer. The allophone technique of speech synthesis has a low bit rate. Each allophone has a six bit address, and assuming ten to twelve allophones a second in speech. synthesis requires less than 100 bits per second. It does not, unlike earlier
techniques, require the synthesizing and storing of entire words as units.

The cost is around $£ 50$. For more information, contact General Instrument Microelectronics Ltd., Times House, Ruislip, Middx. HA4 8LE. Tel: Ruislip 33355 or 35700.

permanently wired in. Power consumption is half a watt, so that it can be safely left on without running down the battery. The case is ABS plastic and measures $5 \times 41 / 4 \times 21 / 2 \mathrm{in}$. The price is $£ 00.00$ and it will be available from high street stores as well as from Sidha.
Enquiries to Sidha Technology Ltd., 15 Pit Hey Place, West Pimbo. Skelmersdale, Lancashire WN8 9PS. Tel: (0695) 22141.

Pocket Wear

People working on the move will be interested in Semiconductor Supplies' 130 g digital multimeter, which is small enough to go easily into a pocket the DM 2350.

The meter has a $31 / 2$ digit LCD display, 10 mm high with unit symbol (auto/AC/BT/Lo) and a sampling time of 2 s per sample. Features include low power ohms for in-circuit resistance (less than OV4), three step protection by a bleep, a fuse and FET, AC/DC 10MR

Any Old Ion?

Y'all may have heard of the healthgiving virtues of the Negative Ion. What is a negative ion? Never you mind - it's enough to know that negative ions are found in bracing sea air and similar locations, and breathing them, deeply or otherwise, makes your heart beat faster, eyes brighter, head clearer, chest broader, etc. More to the point, stuffy enclosed places are deficient in negative ions, especially places filled with cigarette smoke, hydrocarbon fumes (plastics, petrol, etc.) and inactivity. Which is a fairly good description of the interior of a travelling car.
lonisers for the home and office are now being followed up by ionisers for the car. The "Mountain Breeze" ioniser is made by Sidha Technology, a Lancashire company which 'specialises in environmental health and high technology'. The ioniser works by pouring out a stream of negtive ions, clearing the air of dust, smoke and pollen, helping to relieve hay fever, stuffiness and car sickness and maintaining altertness and the ability to drive on safely with fewer brakes.

The unit can be plugged quickly into the cigarette lighter plug in the car, or

input impedance, high sensitivity with 200 mV range and an adjustable bleep for continuity test work.

The DM 2350 costs $£ 55$ plus VAT, and comes with carrying case, leads, battery, spare fuse and manual. A shunt is supplied to extend the $A C$ amps range to 20A.

Enquiries to Semiconductor Supplies International Ltd., Dawson House, 128/130 Carshalton Rd., Sutton, Surrey SM1 4RS. Tel: 01643 1126.
All backnumbers cost $£ 1.50$ each. For those of you who only want copies of articles, we do offer a photocopying service. Each copy costs $£ 1.50$ and information as to its title and publication date should be given. Ordering backnumbers and photocopies could hardly be easier, just fill in the coupon, cut it out and send it to the appropriate address.

HOBBY ELECTRONICS BACKNUMBER ORDER FORM TO:

> 513, London Road. Thornton Heath, Surrey, CR4 6AR England.

Please send me the following items:
NAME
ADDRESS

Back issues
at $£ 1.50$ each
1 enclose $£$.
Cheques and Postal Orders should be made payable to ASP Lid.

HOBBY ELECTRONICS

 PHOTOCOPY ORDER FORM TO:145 Charıng Cross Road,
Modbay London, WC2H OEE

Please send me the following items:

NAME

ADDRESS

Photocopies of . in the
issue at $£ 1.50$ each

I enclose $£$

Cheques and Postal Orders should be made payable to ASP Ltd.

Questions, answers and errata from readers and writers.

Telephone Timer

The Good News At Last
We have already apologised to readers for the regrettable failure of this project and announced our intention to correct the many design faults in it. The prototype did work and it was assumed that the circuit diagrams and PCB foil patterns supplied related to the working prototype, but it seems now that this was not the case. When we checked we found so many faults that the only recourse was to re-work the design and make new PCB foil patterns to ensure that it worked as described.

This task has been completed and all elements checked, double checked and checked yet again: not only does it work, but the circuit and PCB patterns exactly conform to the new prototype.

These new PCBs are now available and will be sent free of charge to any reader who sends us his old Telephone Timer PCBs together with an SAE adequate to cover the return postage (the boards are identica in size). This free replacement service is available only to readers who return their old boards to the HE editorial office (remember to remove at least the expensive components before you dol). First-time builders of the project must obtain their PCBs through our PCB service in the usual way.
We apologise again to readers both for the faults in the original project, which should have been spotted, and for the length of time it has taken us to correct matters: however we felt it was better to get it right the second time since we didn't the first.

We will be contacting all readers
who have written concerning the Telephone Timer project to ensure that they have the opportunity to successfully complete the project. Ample time will be allowed for other, less demonstrative readers to exchange their PCBs, but we regret that the free replacement offer cannot be maintained indefinitely: it closes without fail on 9th December 1983 and old boards received after that date will not be exchanged.

If any reader is either unable or unwilling to strip down the old boards, we will supply a new PCB component overlay and circuit to enable the necessary changes to be made, but we do not recommend this. Because of the complexity of the design and the faults, a large number of track cuts and bridges are required and such a highly modified PCB cannot be expected to operate reliably. We will, however, supply the modifications notes to any reader who insists and encloses an SAE with his demand.

HE DigiTester

Nearly The Good News
This project is a good example of a design that looked good on paper but completely failed to work in practice. The situation was compounded when the original author was transferred overseas, leaving us with a handful of notes and a cover project to complete!
Once more the project has had to be re-worked, practically from scratch, and although not yet finished work is proceeding rapidly so that we are confident that the Digital Test Unit, as we have re-named it, will be ready for publication shortly.

Hobby 'Scope

No Good News Here
We are currently pursuing every ayenue in our efforts to complete this outstanding project. The Hobby 'Scope was offered to us, accepted and commenced in the June 1983 issue: it will be completed.

The Big Ear

Good News To Come
This project has proved unreliable, when made up by large numbers of readers, because of variations in component tolerances - particularly varying IC specifications (we'd like to design all our projects around MILSPEC components, which would guarantee reliable performance, but they do tend to be somewtiat expensive...)

However, we have recently commissioned a modification to the circuit which should take care of the problem, so look out for it on this page, sooh.

Bat Light

Good News And Bad News
There were three errors in the published project: R12 was omitted from the component overlay; it should go between the two 'spare' pads that are between the supply voltage connections. The other two errors were in Figures 1a and 2 but since the PCB and overlay are otherwise correct, the project will work if it is constructed according to Figure 3, with R12 included.

All three corrections will be published in next month's Hobby Electronics.

COLLECTED BOOBS

Continuing excerpts from the Hobby Electronics Errata Box.

Short Circuit: Guitar Practice Amplifier (HE August '79)

On the Circuit Diagram, the +9 V connection should be to pin 2 of IC1 and not pin 3 as shown.

Home Security System (HE August '79)

Figure 6: There is a track missing from the PCB for the siren. Link the junction of D1 and D2 to the adjacent pad where the 12 V connection is made.

Figure 2: At the lower left corner of the Overlay, the wire marked Terminal Block 2 from R2 should be labelled Terminal Block 1. The OV connection to

Terminal Block 2 has not been shown take it from any convenient point on the OV track.

Miniboard Projects (HE November "79)

This article suffered from incorrect page layouts. To correct these, swap over the Circuit Diagram. Figure 1 on page 21 and Figure 1 on page 27, and swap over the captions for Figure 1 on page 21 and Figure 1 on page 23.
All the circuits and Parts Lists will now make sense.
Figure 3, page 22: O.n the component overlay, the resistor labelled R6 is actually R4.

Guitar Tuner

(HE November '79)
Figure 1: C1 should be O.uF as in the Parts List, not 1 u0.

Figures 2 and 3: There should be a link from IC1 pins 8 and 9 to pin 7. C2 and R2 are transposed, but that won't affect operation.

Parts List: R3 should be increased to 100R to reduce current consumption.

R2D2 Radio

(HE November '79)
Circuit Diagram: Q1 emitter should go to OV; R5 should connect to the junction of C2, R1 and C3.

CET
 ,

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever.

WE'RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP's tradition of entirely self-contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency, flexibility, reliability, easy usage, outstanding performance; value for money.
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.

Most pre amp modules can be driven by the PSU driving the main power amo.
A separate PSU 30 is available purely for pre amp modules if required for
£5.47 (inc, VAT). Pre-amp and mixing módules In 18 different variations.
lease send for details.
Mounting Boards
For ease of consuction we recommend the B6 for modules HY6-HY 13 £1.05
linc. VAT) and the B66 for modules HY66-HY78 £ 1.29 (ine. VAT).
POWER SUPPLY UNITS (Incorporating our own toroidat transformers)

Model Number	For Use With	Price inc. VAT	Model Numbem	For Uso With	Pries inc. VAT
PSU $21 \times$	1 or 2 HY 30	£11.93	PSU 52x	$2 \times$ HY124	617.07
PSU $41 x$	1 or $2 \mathrm{HY60} .1 \times \mathrm{HY6060} ,1 \times \mathrm{HY} 124$	£13.83	PSU 53x	$2 \times \mathrm{MOS} 128$	¢17.86
PSU 42 x	1×HY128	£15.90	PSU $54 x$	$1 \times \mathrm{HY} 248$	¢17.86
PSU 43x	$1 \times \mathrm{MOS} 128$	£16.70	PSU 55x	$1 \times \mathrm{MOS248}$	f19.52
PSU51x	$2 \times$ HY $128,1 \times$ HY244	¢17.07	PSU 71x	$2 \times$ HY244	¢29.75

X in part no. indicates primary vortage. Please insert " in place or

MITHALOT OF GELP from
 =LECTRONICS LTD

CAN HANDLE...
 Unicase

PROFESSIDNAL HIFFI THAT EVERY ENTHUSIAST

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved. in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

PowerSlaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

Please note X in part number denotes mains voltage. Please insert ' O ' in place of X for 110 V . ' 1 ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UCT incorporate our own toroidal transformers.

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Lid. if sending cash, it must be by registered post. To pay C.O.D. please add $£ 1$ to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF

Sound Pressure Level Meter

For those wishing to meet their sound, HE sounds out the meter - an easily calibrated Sound Pressure Level Meter, this is.

James E. Aman

The HE Sound Pressure Level Meter has been designed to provide a modestly priced and - most important - easily calibrated instrument for the measurement of sound levels in the range of 40 to 110 dB SPL. The range of sound pressure levels encountered in normal everyday living varies from about 50dB to around 100dB SPL (Figure 1), so the HE SPL meter is quite adequate for normal purposes, such as setting up a hifi system using a graphic equaliser and the SPL meter to check that the system is producing equal sound levels at all frequencies in the audio band. You can also use it for measuring the noise level from a neighbour's party before calling in the SASI

On average the human ear can detect sound levels over a truly astounding range, from 0.0002 microbars up to 200 microbars, in fact (for comparison, the atmospheric pressure at sea level is $1,000,000$ microbars). That is a range exactly of one million to one, and such large ratios are usually expressed as a logarithmic ratio with respect to an agreed reference level; in sound level measurement, the agreed reference level is 0.0002 microbars,
corresponding to OdB Sound Pressure Level (SPL). This level is also known as the Threshold Of Hearing and at the other end of the scale, around 120 dB SPL, is the Threshold OF Pain, where a sound is so intense as to cause physical discomfort and possible injury. The level which is actually painful is very much an empirical level, different with different people, but 120 dB SPL will cause degradation of hearing.
Traditionally the problem with SPL meters has been to devise a circuit which produces an accurate electrical analogue of the sound level, and then to calibrate a meter scale to accurately reflect changes in the sound pressure level. Normally the scale is logarithmic, since this is the only way to compress huge ratios into a meaningful scale (imagine a meter intended to read units from 0 to $1,000,000$; that's an awfully long scale you've got there!)
The first problem is solved relatively easily by using a standard, known (but

inexpensive) microphone with a reliable linear response; that is, a given increase in the sound pressure level will produce a known increase in the microphone output.

The second problem is solved in a very radical manner, by using a digital integrated circuit to compress the linear scale of 1,000,000: 1 into a logarithmic scale ranging from 40 to 110 dB SPL. The circuit, as you will see, consists of a switched range linear amplifier to boost the microphone signal; a precision rectifier to peak-detect the signal, and a logarithmic 30 dB display driver coupled to a linear motor; the LM3915 LED bar-graph driver is used here as the linear answer to logarithmic metering! Now read on

Sound Circuits

Sound is picked up by an electret condenser microphone, which produces a very strong output to give a good signal-to-noise ratio and freedom from hum and interference. This is fed to the non-inverting input of IC1 via a fixed attenuator consisting of R1 and R2, to reduce the signal to a manageable level.

IC1 is wired as a switched-gain non-inverting amplifier. The feedback around the IC is taken via SW1 so that three different gains are available; thu's the sensitivity is selectable by plus or minus 20dB. The four positions switch from Off to Scale -20dB, Normal Scale and Scale +20 dB .

The supply rails to IC1 are isolated from the main supply by two transistors, Q1 and Q2. The value of

Figure 1. A sample of sound pressure levels encountered in everyday living (if you happen to live next door to a recording studio.).
the capacitors connected between base and earth are effectively multiplied by the beta (DC current gain) of the transistors, typicaly 100 for the types used, forming smoothing capacitors of around .02 farads. These keep the supply to ICi rock steady, even when IC4 draws varying current, resulting in a very stable amplifier.

The output of IC1 is fed to IC2 for further amplification; it goes via PR1, which is used to set the overall system level.
IC3 is connected as a precision halfwave rectifier, where the threshold voltage (OV6) of the two diodes is effectively reduced by the equivalent of the open-loop gain of the op-amp. The precision rectifier is set-up as a peak detector; filter capacitor C8 is charged up on each positive peak, via R13, then discharges via R13 and R12.

This arrangement gives the fast attack and slow decay times required for peak detection; to convert to average-reading, the values of R12 and R13 should be reversed, ie R12 should be 100 k and R13, 1 k .
The signal at the junction of R13 and C8 is a DC level, and this is fed to pin 5 of IC4, and LM3915.
This IC is normally used to drive an array of LEDs in either dot-mode, where only one LED is illuminated at one time, or in bar-mode, where the line of LEDs light up successively. It converts an analogue input voltage to directly drive up to ten LEDs, with the amplitude of the input determining the number of LEDs (in bar-mode) illuminated.
[Internally the LM3915 is very similar to the array of comparators driving the LEDs in this month's Gripometer project - See Figure 4. overleaf.].

Linear To Log

The LM3915 has logarithmic characteristics; each output is turned on by a successive 3 dB increase in the input amplitude, which is exactly the required relationship for measuring sound pressure levels that vary linearly by a factor of over one millionl Instead of tediously having to calibrate a logarithmic meter scale, this IC converts quickly and simply from linear scale to logarithimic.
Each output, which goes 'low' when it is 'on', normally drives an LED connected to $\mathrm{V}+$, and for this reason the outputs are all open-collector, or 'uncommitted'; thus if each output is simply connected to $\mathrm{V}+$ via individual resistors only, the total current that flows from the supply rail is the sum of the currents flowing into each output. In the circuit, the outputs are summed in resistors R16-25, while the total current is measured by M1.

And since each output represents a 3dB increase at the input, the meter reading corresponds to the input level, on a logarithmic scale! The outputs from IC4 are from pins 1 and $10-18$; pin 9 is connected to $V+$ and sets the IC to bar-graph mode, so that as each output becomes active the current it draws is added to the others. Pin 7 is the 'reference output' normally used to set the size of the 'step' at which successive outputs turn on; it is not used for this purpose here, but the value of the resistor connected between pin 7 and OV also sets the maximum current available to each output, so that R15 limits the total current to around six milliamps for full scale meter deflection (corresponding to 90 dB SP on the normal scale).

Figure 3. The PCB and components for the Sound Pressure Level Meter.

Figure 4. Inside the IC4, the LM3915 (see page 15 above).

Construction

Assembling this project should present no unusual problems. The PCB together with the component layout diagram (Figure 3) facilitate construction.

When wiring the microphone jack to the board, a twisted pair or screened lead should be used to minimise hum problems and R26 should be mounted directly on the jack socket. The one specified has an extra shorting contact which opens when a jack is inserted and this spare compact can be used to mount the R2-end of R1

The meter shunt resistor R26 is made up from a 22 ohm resistor in parallel with 150 ohms, and these should be soldered across the meter terminals.

The range/power-on switch, SW1, should present few problems provided the specified type is used; it is a CK 3 -pole, 4 -way switch, readily available from most suppliers, and all the pins are numbered so they are simply connected to the numbered points shown in the overlay diagram.

Please note that the circuit is intended for use with an Altai EM104 electret condensor microphone, which has a high level output and an exceptionally flat response for its type. They are readily available, but if another type is used then the calibration becomes a matter for the dedicated experimenter!

TABLE 1	
SW1 POSITION	IC1 PIN 6
SCALE -2OdB	150 mV p-p
NORMAL SCALE	15 mV p-p
SCALE +20dB	1.5 mV p-p

Table 2		
PIN 5 (V)	METER READING	CURRENT
4.0	90 dB	6 mA
2.8	87	5.4
2.0	84	4.8
1.4	81	4.2
1.0	78	3.6
0.7	75	3.0
0.5	72	2.4
0.36	69	1.8
0.25	66	0.6
0.17	63	0.0
0.	60	

Figure 5. This circuit can be used to calibrate the IC4 circuit.

Calibration

With most sound pressure fevel circuits, accurate calibration requires an extensive range of test equipment and near-perfect acoustic conditions] but not this time! So long as the specified microphone is used, calibration of the HE SPL Meter is simplicity itself. For best results, an oscilloscope should be used, but an ordinary multimeter will do if less accuracy is acceptable.
First disconnect the microphone from the input jack and connect instead the output of an audio signal generator; the signal should be 15 mV peak-to-peak at a frequency of $\approx 1 \mathrm{kHz}$ Now, with an oscilloscope if one is available, observe the output of IC1 at pin 6; it should follow the readings given in Table 1 as the range switch SW1 is rotated.

Leave the range switch on Normal Scale, move the 'scope probe to monitor the output of IC2 and adjust PR1 to bring this to 500 mV p-p. Now you should be able to observe 2.5VDC at pin 5 of IC 4 and a meter reading of 84, equivalent to 84 dB SPL
If the needle fails to come up to 84 don't despair! It can be "tweaked in" by adjusting the value of either R15 or R25; reducing the value of R15 increases the current drive to the meter while increasing the resistor reduces the current; making R26 lower reduces the current but increasing it makes the meter read higher.
For those purists who doubt the effectiveness of the circuit, Table 2 gives the voltages on pin 5 of IC 4 for meter readings at selected points (the meter current is also given to allow a different meter to be used, if necessary - the value of the shunt, R26, will need to be re-calculated though).

The simple circuit of Figure 5 can be connected between pin 5, IC4 and OV, first lifting R13, to check the calibration of the IC4 circuit against: the values given in Table 2, if desired.

Scopeless

If an oscilloscope is not available, the SPL meter can be calibrated with a multimeter set to the AC volts range. (Pop Amp No. 9, the High Impedance Millivoltmeter, is ideal for this purpose).
With the meter set to its most sensitive AC range (eg $3 \vee \mathrm{FSD}$), connect it across the signal source as shown in Figure 6 and adjust the generator for a reading of 1 VAC; then with the attenuator network shown, the required 15 mV p-p can be applied to the input for a reading of 2.5 VDC at IC4 pin 5, and a meter reading of $84 d B$ SPL.

The meter scale face plate should be removed by its two screws and rescaled from 60 to 90 dB across its 11 graduations, ie $60,63,66,69,72$, $75,78,81,84,87,90 \mathrm{~dB}$ SPL.
Figure 6. Using a millivoltmeter to calibrate the SPL meter.

ELEETADTIVKTT FX-COMPUTER

Teach-Yourself Computer and Electronics Construction Kit
A complete introduction to the "How, Why and What" of Computers and Electronics in the most practical way ever devised
THE KIT IS BATTERY-OPERATED AND COMPLETELY SELF-CONTAINED. NO TELEVISION OR OTHER EQUIPMENT IS REQUIRED. VERY EXTENSIVE MANUALS ARE INCLUDED
Ministry of Science and Technology, Japan Prize Winning Product
The FX-COMPUTER is the ideal introduction to the study and understanding of computers and electronics. The kit offers remarkable versatility because the components are interchangeable and circuits are constructed by simply plugging specified components into the board provided in accordance with the instruction manuals. You quickly understand the principles involved and new circuits can be easily devised, built and dismantled. No soldering or wiring is involved, no tools are required; the components themselves complete the circuits.
No previous knowledge is required - very extensive educational manuals have been provided by English experts in computers and electronics. Working through the manuals you will soon be able to write programmes and "run" them and understand how computers work. The following are just a few of the programmes in the Computer Manual (there are too many to list here) and also a few of the projects in the Electronics Manual:

How to instruct the Computer and Store Information into Memories. Use of different Instructions and Programming Techniques. Adding, subtracting, multiplying, dividing, averaging, counting up, counting down, etc. erc. - in Decimal and Hexadecimal. Converting Hexadecimal to Decimal, storing Random Numbers. Games: Tennis, Catch-the-Rat, Gun Fight, Slot Machine, etc. Using the Computer as a Musical Organ, storing and playing-back tunes, etc. OVER 100 PROGRAMMES SHOWN IN THE COMPUTER MANUAL PLUS EXPLANATIONS AND DEMONSTRATIONS OF ALL TECHNICAL TERMINOLOGY
Electronic Components and How they Work - batteries, conductors, resistors, capacitors, diodes, transistors, lamps, photo-electric devices (CdS cell is included in the kit), oscillators, burglar alarms, control systems, organ, lie detector, etc. . etc. OVER 65 PRACTICAL WORKING PROJECTS SHOWN IN THE ELECTRONICS MANUAL.
All this is in ONE kit, costing about the same as the cheapest
"Basic" ordinary Computer
The price is only $£ 69.95$ plus $£ 3.00$ P\&P (overseas rates quoted on request) TRADE \& EDUCATIONAL ENQUIRIES WELCOMED
Send cheque/PO/Access/Barclaycard to DEPT. HEFX. Electroni-Kit Ltd It's not JUST a computer!

ELECTRONI-KIT LTD

 388 ST. JOHN STREETLONDON, EC1V 4NN (01-278 0109)

OFFER ENDS 30/9/83
07526650.11
PRIVATE OR TRADE ENQUIRIES WELCOME
FULLRANGEAVAILABLE
SEND SAE FORLISTS
E1.45 for booklet "Nickel Cadmium Power"
TRADE PRICES FORSCHOOLS \& COLLEGES
SANDWNELL PLANT LTD
2 Union Drive, Boldmere, Sution CoIdfield,
West Midlands O21-354 9764
After Hours: Lichfield 57977
Now open Saturday mornings

RADIO AMATEUR

Train now for the Radio Amateur Licence examination. No previous knowledge needed, only a few hours per week of home study for $\mathbf{3}$ to 6 months. Post coupon now for details or tel. 073451515 (24 hr service)

British National Radio \& Electronics School Reading, Berks. RG1 1BR

ADDITIONS TO OUR LIST
RADIO MOBILE CAR RADIO SPEEAKERS
 $5^{\prime \prime}$ round 8 ohm 10 watt - $£ 2.30$. $8 \%^{\prime \prime \prime}$ round extra thin for door
 - £1.15: $5^{\prime \prime}$ " round 4 ohm 5 watt chassis size 5% " square (approx). - £1.15: $5^{\prime \prime}$ round 4 ohm 6 wart with built in twoeter - $£ 1,15$.

iMPORTANT NOTE: The speaker prices above do not inchede
postage but 10 or more spaskers are post free £1.50 per order.
STABILISED POWER SUPPLY (Mains Input) By LAMDA (USA) - Ideal for computer sdd-ons, d.c. output
Regulated for line vola and load current. Voltage regulation. i Regulated for Ine voles and load current. Voltege regulation. 1 with input variations up to 20\% - load regulaztion 18 from n
load to full load - or full load to no load. Complate in heavy

PREPARED APPLIANCE LEAOS
8uy these, they will save you time and monay. Prices are for smal quantities but if you are buyling $£ 100$ lots or more - halve the
prices. Twin circular white 5 mm length 54 " $-230 ; 3$ core prices. Twin circular, white .5 mm longth $54^{\prime \prime \prime}-23$ p; 3 core
circular, white $99^{\prime \prime}-1.25 \mathrm{~mm}-57 \mathrm{p}$; Twin crrcular black 77
 46 p ; Twin circular bleck $114^{\prime \prime} 1.25 \mathrm{~mm}-69 \mathrm{p}$. Twin circular white $200^{\prime \prime} .75$ fitted 2 pin continental plug one end $-57 p ; 3$ core
clreular white $54^{\prime \prime} .75 \mathrm{~mm}$ core sizes fitted continental two pin clircular white 54.5 .
and earth plug ong end and new type 3 flat pin appliance connector at other end - 750 .
MINIATURE TOGGLE SWITCHES As used on TV cameras and other lightweight equipment. American made by the Arrow ref. TCH3E Single pole changeover, centre off - 46p. Arrow ref. TSH3PCL Single pole chengoover PCB mounting - 46p.
Arrow ref. TCGM Double pole changeover, centre off - 69 .
REED RELAY KIT High inductance coll, moulded to take 4 reeds. operated by three volts DC or 12 ma. Could be used to
close 4 circuits, or with the external magnets supplied, you could close 4 circuits, or with the external magnets supplied, you could
have two normally open, i.e. two changeovers. An exceptional have two normally open, i.e. two changeovers. An exceptiona
bargain at 99 p for the coill -4 reeds and 2 megnets.

ROCKER SWITCHES Standord size fit $11.5 \times 28 \mathrm{~mm}$ cu out. Single pole on/off - 23 p ; Single pole changeover 28 ; Single
pole changeover with centre off -300 ; Single pole on/off with neon 46 pp, for double width cut out DpSt 36 p . DpDT 46 p .
NICAD BATTERY CHARGERS This, although intended to charge button cells, bring leads from the contacts and then it
sult almost any Nicad battery, charge raze approxlmately 15 mA but easy to vary.
MIXER MOTOR if this had a case around it, it would complere mixer as it has a speed control switch giving three changes of main speed and it also has a gear box with two sockets
for paddles. Three lower speeds are evailable from these sockets. tor paddies. Three
E3. $45-$ post 600.
LOW VOLTAGE SWITCH Approx 14 " diameter, the cover unscrews to enable the switch to be fixed and to keep the
contacts covered, contact look capable of up to 10 amps. 23p. PILOT BULBS Standard round 11 mm 6.5 v .3 a by Philips.
12 volt MOTOR BY SMITHS Mado for use in cars. Btc. these a
wound and they becorme more
powerful as load incrases. Size power tu as load incrases. Size
$3 \% /{ }^{\prime}$ Iong by 3 "" dia. They have a good length
Price $£ 3.45$
Price $£ 3.45$.
Difto, but double ended $£ 4.25$.
3.75.

EXTRA POWERFUL $12 v$ MOTOR
Mede to work bartery lawnmower, this probably develops up to

MAINS MOTORS

We have very large stocks of motors from 2 watts to $\%$ hp. Most at
a price well below cost. let us know your requirements. Some new ones just arrived.
67 R.P.M. Motor: $1 / 10 \mathrm{hp}$. reversible mains operated split phase
motor with gear box - shaft fitted with chain sprecket $£ 11.50$ $\mathrm{ER}_{100} \mathrm{f}$ post
120 R.P.M. Moror: $1 / 16 \mathrm{hp}$. Mains driven reversible motor with
gear box, x." shatit from gear box -Very powerful $£ 16.50$ plun $£ 3$
Post. BALANCED MOTOR: Disc or tape drive moxor 1500 rpm reversibl - mains operated. $3^{" \prime \prime}$ die 2% " long with good length $3 / 88^{\prime \prime}$ spindle

CROSSOVER NETWORKS

2.way: 4 or 8 ohm impedance - power input up to 25 W , crossover
freauency 2 kKz with wiring dig. 87 p each. 3.way: 4 or 8 ohm - power input up to 60 W , crossovers at 700 kHz

- BARGAIN OF THE YEAR The AMSTRAD Stereo Tuner.
This ready assembied unit is the ideal tuner for a music
centre or an amplifier, it can also be quickly made into a personal steree radio- easy to carry about and which will
give you suepre ace give you superb recept
Other uses are as a "get you to sleep radio", you could even
take it with you to use in the lounge when the rest of the
family want to vie w programmes In which you are not family want to view programmes In which you are
interested, You can listen to some music instead.
Some of the features are: long wave band $115-270 \mathrm{KH}$ medium wave band $525-1650 \mathrm{KHz}$, FM band 87 -
108 MHz , mona, stereo \& AFC switchable, tuning meter 108MHz, mono, stereo \& AFC switchable, tuning meter
to give you spot on sereoo tunirg, optional LED wave band to give you spot on stereo tunirg, optional LED wave band
indicator, fully assembled and fully aligned. Full wiring up data showing you how to conoect so ampllfier or head phones and detaiiis of suitabie FM arrial (notet ferrite road
aerial is included for medium and long wave bends. All geriel is included for medium and
made up on very compact board.
Offered at a fraction of its cost: only $\mathbf{£ 6 . 0 0}$

VIEWDATA EQUIPMENT
ORACLE VB 100 PCB This is the heart of many viewdata systems, including the Prostel Unit which we are currently selling
This board uses 25 I.C.' 5 , 5 rranaistors, 2 crystals and very many Other components. It has a TV aerial input and a TV UHF modifier
(AZTEC UM 1233) Ws affer this borcd new (AZTEC UM 12331. Wo offer this board, new, unused and comple te except for 6 of the $251 . C$.'s at $E 5.75$. The plug in hotders for
missing $1 . C$.'s are on the board wired ready to recelve them. MINIKEY SERIES KL This is an American made me kevboard with silver contacts as used on Prestel to dial into the Britinh
$65 \mathrm{~mm} \times 5 \mathrm{~mm}$ thick. If has 16 . press buttons, giving standard 0.9 numbers and $A B C D$ faclitites. There are two other buttons engraved asterisks. This is an extremely well made board. $£ 4.60$
TELEPHONE LINE TERMINATION UNIT As With Prestel but undoubtedly suitable for other applications. Impor tant components are phone line isolation transformer and 3 Clare Reed Relivys. All mounted on a peb with 1. . and other components
P.C. 8 s. size approximately $7^{\prime \prime} \times 1 \%,-\in 3.45$. VOLTAGE STABILISED POWER SUPPLY As use with Prestel this has a mains inpur transformer with a $13 \mathrm{~V} \cdot \mathrm{O} .13 \mathrm{~V}$
 output from this is $-27 v-12 v-0+0+12 v+27 v$. Price $£ 4.60$. INSTRUMENT CASE As used with the Prestel unit this comprises an ali chassis and a moulded front plastic cover secured
to the chassis by self -tapping screws. Overall size approk $12^{\prime \prime} \times 10^{\prime \prime}$ $\times 2 \%$ " deen. On the front is fitred the minikeyboard as described above and although originally intended for Prestel, this case should have other uses including.
Price $£ 5.75+£ 1.50$ post.

X-RAY EQUIPMENT
Beautifully made by the American GEC Company. We have a whole range of spares, all unused. X-RAV TROLLEV - This could be
motorised mains or battery driveb with self retrac table flex lead motorised, mains or battery driveb with self retrac table flex lead, which need to be manouvered easily in a relatively confined space Switrhing and breaking is done from the handle and there is ample room and capacity for heavy transformers and smaller equipment.
The overall size of this trolley is approx. $3^{\prime} \times 2^{\circ} \times 3^{\prime} 3^{\prime \prime}$ Pr Price $^{2} 69$. X-RAY HEAD This comprises the x-ay tube in a radiation proo housing with plug in lead connectors. The tube enclosed in the
housing Is a hospizal size tube and unused and new. Price $£ 69$. housing is a hospiral size tube and unused and new. Price £69.
EHT TRANSFORMER \& RECTFIE UNIT We eatimate that the ourput voltage of this is probably 30 or 40 KV . Completely enclos. ed in an oil filled container. size $13^{\prime \prime} \times 14^{\prime \prime} \times 15^{\prime \prime}$. There are four
rectifier sections, each using 20 EHT rectifiers connected in series rectufier sections, each using 20 EHT recififiers connected in series
these plug in for ease of replacement. The unit is these plug in for ease of replacement. The unit is powered by a
600 cycie supply. Price $£ 69.600$ CYCLE SUPPLY UNIT Mains 600 cycie supply. Price $£ 69.600$ CYCLE SUPPLY UNIT Mains operated through a step down transiormer, this contains all the
electronic components to operate the equipment. Price $£ 57.50$.

50 THINGS YOU CAN MAKE

Things you can make include Multi range meter, Low
ohms rester, A.C. amps meter, Alarm clock, soldering iron minder. Two way telephone, Memory iogger, Live
line tester, Continuity chece ker, etc. atc., and you will stlll line tester. Continuity che cker, etc. . tre., and you will still
have hundreds of parts for futurre. profects. Our 10 K 9 parcei contains not less thas
timers, thermal trips, relays, switches, motors, drills, trips, and dies, tools, thermostats, colis, , condersess, resistors,
neons, earphone multi- -urn pors and notes on the 50 proiects
YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ post.
MINI-MULTI TESTER Deluxe pocket size precision mov
 11 instant range measures:
CC voits 10,50, 250, 1000.
AC vits $10.50,250,1000$.
DC mps $0-400 \mathrm{~mA}$.

Continuity and resistance 0.1 meg ohms
in two ranges. Complete with test prods in two ranges. Complete with test prods
and Instruction book showing how to and instruction book showing how to
measure capocity and inductance as well
Unbelievable value at only $£ 6.75+60$. Unbelievable value at
post and insurance.

FREE Amps range kit to enable You to read DC currant from 0.
10 amps, directly on the 0.10 10 amps, directiy on the 0.10
scate. tit's free if you purchase scale. It's free if you purchase
quickl, but if you alrady own
Mini-T-Tester and would like one,

J. BULL (Electrical) Ltd.

(Dept. HE), 34 - 36 AMERICA LANE, Evrublinhed

HAYWARDS HEATH, SUSSEX RH16 3QU. 30 YEARS

 MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders und£12 add 60p service charge. Monthly account orders accepted from schools and public companies. Access \& B/card orders acceptad day or Shop open 900 - 530 mon to Ftt not Saturdar. wite

EXTRACTOR FANS

Mains operated - ex-computer
$5^{\prime \prime}$ - $£ 5.75$, Post $£ 1.25$
$5^{\prime \prime}-£ 8.96$, Post $£ 1.25$
.. $8^{\prime \prime \prime}$ Plannair extractor
E6.50. Post $£ 1.25$.
" $\times 4^{\prime \prime}$ Mu Mfin 115 v .
24. 50 . Post $75 p$.
$\times 4^{\prime \prime}$ Muffin 230 v .
E5.75. Post 75p
£11.50, post $£ 2.00$
12 vot $61 / 2$ extractor
£6.90, post $£ 1.50$.

AUTO \& ISOLATION TRANSFORMERS
2 KW ISOLATION TRANSFORMER 230 v in 230 v out with tapped primary and secondary, facilities any voltage changes that
might be needed. This is a very heavy transformer, American made but not encased. The terminals are along the top on insulation board panels. Both primary and secondary are split so this sould
also also be used as a 2 KW isolation step down transformer. £57.50. the regular price.
2 KW AUTO TRANSFORMER Similar type of transformer to the above but has only the one winding. £28.50 + carriage £3. 1 KW ISOLATED AUTO TRANSFORMER it is not generally realised that many of the American made tools intended for 115 v
If used on building sites and similar damp conditions must be tsolated from the mains for satety reasons, as in many cases the insulation of this equipment is not good enough for 230 v . We
have American made isolated auto transformers, completely enclosed in sheet metal case with carrying handle with 230v lead 3 and 110 American type plug. Price $E 46.00+84.50$ post. 300 WATT AUTO TRANSFORMER completely encased, lead for $+£ 1.50$ post.
100 WATT AUTO TRANSFORMER not enclosed terminals, ou primary with tappings for volrage adjustments. Made to rigid specification tor the GPO $£ 4.60+$ E1 post.
AMERICAN 2 PIN FLAT SOCKETS for use with these auto trans.
3M FACSIMILE EQUIPMENT - send or receive a document $\ln 4$ minutes. This equipment is used for sending letter
and almost any date through the telephone system - "Mail by and almost any date through the telephone system - "Mail by
Phone". The machines we have are the 3 M 600 BB with autofeed Phone". The machines we have are the 3M 600 BB with autofeed
complete with ansafonettes and connector box. We have three sets of the equipment, it is not old, in fact $h \mathrm{~h}$ was used only for sets of the equipment, it is not old, in in good order and certainly
about a year $(1980-81)$, believed to
in a very good condition - coss new over $£ 10,000$. We will accept in a very good condition
E500 the lot - buyer

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs, repeats dally sutomatically correcting for the lengthening or shortening day. An expensive time
switch but you can have it for only $£ 2.95$. switch but you can have it for only £2.95. These are without case
a plastlc case - $£ 1.75$.
Also avallable is this into a normal 24 hr . time switch 12 on/offs per 24 hrs . This makes an ideal controller for the immersion heater ce of adaptor kit is $£ \mathbf{£ 2 0}$.

> IONISER KIT Refresh your home, office, shop, work room, etc. with a
negative 10 N generstor. Makes you feel berter and work harder - a complete mains operated kit, case included. £11.95 plus $£ 2.00$ post

OTHER POPULAR PROJECTS

 Ditto - made up í . Robot controller - receiver/transmitrer lgnition klt - helps starting, saves petrol, improves Silent sentinel Ulitra Sonic Transmitter and receiver Car Light "Ieft on" alarm
Secret switch - fools friends and enemies alike
2 Short \& Medium wave Crystal Radio
$3 v$ to $16 v$ Mains Power Supply Kit
Light Chaser . \qquad three modes
Mullard Uniex HiFi stereo amplifier with speakers
Radio stethoscope - fault finding aid
Mug stop - emlis piercing squark
Morse Treiner -
Drill control kit - made up
Interrupted beam kia
Transmitter
Radio Mike
FM receiver kit -
Seat Bett reminder
Soil heater for plants and seed Insulation Tester - electronic megger Battery shaver or fluorescent from 12
Matchbox Padio - receives Medium Wave
Mixer Pre-amp - disco special with case
Aerial Rotator - mains operated
Aerial direction indicator
40 watt amp - hifi $20 \mathrm{hz}-20 \mathrm{kMz}$
Microvolt multiplier - measure very low currents with ordinary multitester
Pure Sine Wave Generator
116 Watt Amplifier 5 Hz 25 kHz
Power supdy for one or two 115 watt amps
Stereo Bass Booster, most items

COMING SOON TO

THE HE BASIC CIRCUIT SELECTION

A collection of everday useful circuits that form many of the basic elements of electronic design, presented in conjunction with Bernard Babani (Publishing) Ltd., and illustrated by many practical examples from the pages of Babani books.

AUDIO LEVEL METER

Log your audio levels with our compact meter. It uses an LED bargraph - or a series of individual LEDs, if you prefer - to register the volume level of an audio signal.
The design is flexible, so that you can either build it into existing equipment or use it as a stand-alone accessory.

ULTRASONIC INTRUDER ALARM

Designed to register the Doppler shift of reflected ultrasonic sound waves, this unit will detect the slightest movement virtually anywhere in a room.
When it does, the ear-splitting alarm is guaranteed to give even the most intrepid intruder a severe shock!

A ZENER DIODE PRIMER

An "A to Z " of Zener diodes: how to design circuits using them and how to ensure that they work as you expect them to!

HP-VOLT METER
 DANGER . . . 10,000 Volts!!?

You can be sure, now, with aur simple low cost High Voltage Meter. This simple extension to your test bench equipment is designed to put high voltage measurement within the experimentor's pocketbook, and measures voltages up to 10 kV without significantly affecting the circuit under test.

> October issue on sale at your newsagent from 9th September. Place your order now!

XK113 MW RADIO KIT Based on ZN414 IC, kit includes PCB, wound aerial and crystal earpiece and all components 1. make a sensitive minlature radio. Size: $5.5 \times$
$2.7 \times 2 \mathrm{cms}$. Requires PP3 9 V battery. IDEAL. FOR BEGINNERS. 55.00

HOME LIGHTING KITS
Thereskis contain all iesies s. Y componentis ind full vwitch snd control up to 300 w of lionting. TOR300K Remote Control $£ 14.30$

MUPTITER ACE

MICROCOMPUTER

uses FORTH which executes about 10 times faster and requires less program memory than a comparable program using basic. Features 8 K ROM, 3K RAM, built in speaker, 40 key keyboard and a 32×24 line-flicker free display on TV. Comes supplied complete with leads, mains adaptor, a comprel
LO300K

DVM/ULTRA SENSITIVE THERMOMETER KIT

This now design is based on the the ICL7106 chlpl sand $81 / 2 \mathrm{digit}$ liquid crystal dispolay. This kit will form the basis of a digitiol multi-
meter lonly a fow additional ro sistors and switches ara requlred-derails supplied). or a sensitive digitat thermometor ($50^{\circ} \mathrm{C}$ top tis $50^{\circ} \mathrm{C}$)
reading to 0.1 C . The Dasic kit has a sensivity of
 dication and an ultra low power requirement-giving

Price £15.50
raining 5 sample programs.

JUPITER ACE SOFTWARE
J3 SPACE INVADERS $£ 3.90$
Ja SWAMP MONSTERS $£ 3.90$

J5 DOTMAN
J14 ASTRO\& FIVTRAP
\& 4.35

COMPONENT PACKS

PACK 1650 Resistors 47 ohm to 10 Mohm

 10 per value $\mathrm{C4.00}$PACK $240 \times 16 \mathrm{~V}$ Electrolytic Capacitors
$10 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}-5$ pervalue $\{3.25$ PACK 360 Polyester Capacitors 001 to PACK 4 F/250V - 5 per value $£ 5.55$ PACK 445 Sub-miniature Presets 100 ohm to 1 Mohm -5 per value $£ 2.90$
PACK 530
PACK 530 Low Profile IC Sockets 8, 14 and 16
PACK 625 Red LEDs I5mm dia.I $£ 1.25$ and give us your Access or Barclaycard No. or write enclosing service oung cheque or postal order. Official orders accepted from schools, etc. \& weekends

LCD $31 / 2$ DIGIT MULTIMETER 16 ranges including DC voltage ($200 \mathrm{mv}-1000$ v) and AC voltage, DC current (200 mA 10 A and resistance ($0-2$ M) + NPN \& PNP \&ransisto $\mathrm{g}^{\text {ain }}$ and diode check. Input impedsnce 10 M . test leads included ONLY E29.00

ELECTRONIC LOCK KIT XK101

 This KIT contains a purpose designed lock IC, 10-way keyboard, PCBs and al components to construct a Digital Lock, requiring a 4 -key sequence to open and providing over 5000 differen combinations. The open sequence may be easily changed by means of a pre 5 V io 15 V d.c. at 40 HA . Output: 750 mA max. Hundreds of uses for doors and garages, car anti-theft device, electronic equipment, etc. Wil drive most relays direct: Full instruc tions supplied. ONLY £10.50Electric lock mechanisms for use with latch locks and above kit $\mathbf{£ 1 3 . 5 0}$

DISCO LIGHTING KITS

DL 1000K

This
features a bi-directional sequence, speed of sequence and frequency of direction change, being variable by means of potentiometers and
\qquad

z100k

A lower cost version of the ab undirectionai channel sequence with speed variable by means of a pre-set pot. Outputs witched only at mains zero crossing point to reduce radio interference to a minimum. Optional opto imput DLA1 Only $\mathbf{£ 8 . 0 0}$ Optional opto input DLA

-light response. $60 p$

DL3000K

This 3 channel sound to light kit features zero oltage switching, automatic level control 8 buith in mic. No connections to speaker or amp required. No knobs to adjust - simply connect to mains supply \& lamps. (1Kw/Channel)

Only £11.95

Digitise at up to 10 MHz . Store, then display on a UHF TELEVISION. Single shot Capture up to 250 KHz . Storage Facility for less than $£ 100$.
The Tele-Scope is a new concept in data capture utilising the latest Digitising techniques. The Tele-Scape acts controls - displays much like a conventional scope but does much much more.
A kit version is available for $£ 89$ and a Built unit for $£ 109$. A manual is included and specialist parts are available separately.
Prices exclude V.A.T. at 15% with postage and packing'at $£ 2.95$ inc. The manual is available se parately for $£ 1.50 \mathrm{inc}$. which is refundable on subsequent purchase of a unit.

NAME \& ADDRESS

Cheques PO. made payable, I enclose Cash £

HAWK ELECTRONIC TEST EQUIPMENT

Blrcholt Road, Parkwood Industrlal Estate, Maldstone, Kent ME15 9XT. 0622686811

FEEL HEALTHIER WITH ZEPHION
 Bring fresh clean air into your home with

 the Zephion Air Ioniser.

Air free from s̀moke, dust and other pollutants of modern day living can bring to many the relief of breathing comfortably once again.

We are confident that you will be delighted with the Zephion Alr Ioniser, but if you are not entirely satisfied a full money back guarantee is available if items are returned in good condition within 28 days.

BUILDIT YOURSELE!
$\begin{aligned} \text { TO:- } & \text { Dataplus Developments } \\ & \text { 81, Cholmeley road }\end{aligned}$
81, Cholmeley road
Reading, Berks.
RG1 3LY TEL:- 073467027
ADDRESS:-

ZEPHION KITS e £24.15p
(Kits include all parts)
ZEPHION AIR TONERS BUILT AND TESTED. E34.50p

Money immediately refunded if Prices include VAT \& postage; allow 14 days for delivery.

This is the Great

Computer-Controlled Model Railway COMPETITION

Sponsored by Oric Products International Ltd., Beatties of London Limited and ASP Software (a division of Argus Specialist Publications Ltd.).

WHEN it was proposed that there should be a Grand Computer Controlled Model Railway Competition for the 1983 Breadboard exhibition, we rapidly became bogged down with seemingly endless complications. We spent most of the time during discussions simply explaining jargon: what, to a computer hardware man, is a "dead frog"? Something unpleasant by the roadside, was the popular answerl On the other hand our modelling consultant was somewhat bemused by the many acronyms that punctuate conversations between computer buffs: who, or what is a PIA? Bits of what? What is a multiplexer, and so on, and on, and on ... I

In the end we were all quite bewildered - but this confusion ultimately gave us the clue to our Computer Controlled Model Rail Competition: no one, it seems, truly knows how best to marry a computer to a complex model rail layout or what it should do and, particularly, how it should be done.
We decided, finally, that the simplest and best approach would be to throw the thing wide open, with only a few essential restrictions. The only rule of the competition, then, is that the winning entry will be that which demonstrates the most ingenuity.
usefulness and practicality in adapting a modern home computer to control a model railway layout - the what, how and why we quite happily leave to our readers!

The essential limitation we felt obliged to impose is that the layout should measure no more than 6 ft by 2 ft - in other words, something that can be transported to the Breadboard exhibition in Hammersmith in late November this year

We anticipate that most of the entries will be from constructors who have an existing computer interfaced layout, but the competition is open to all comers so anyone who wants to "have a go" will be welcome in the lists. For the benefit of those who fancy their chances at the Grand Prize, here are a few ideas that resulted from the meeting of the minds in Hobby's editorial offices (we won't mention the ideas that evolved later, down at the Royal George!).

- A fairly simple software application would be to write a program for storing and modifying timetables and operating schedules; an extension of this idea would be an interface to position sensing circuits so that an operator
would know not only when the next train was due to leave, but also when it was safe to start down the track.
- One of the most obvious ideas proposed was to program a mimic board which could show not only the track layout but the condition of signal lights and with 'train in section' indication: colour would be necessary for userfriendliness!
- Ways to adapt microprocessor technology to model train control: one option that might be easily constructed would be to computer-control sections of track rather than individual trains. However completely automatic running is not the goal of most railway modellers, so any system should allow lots of room for the operator to control the layout himself.

And that is about the limit of the ideas we came up with before brain fog set in. We'll leave it to the inventiveness and competitive spirit of our readers to stun the judges with brilliant projects we should have thought of . . . But didn't!

澸
 FIRST PRIZE

Hot off the production line, an Oric 48 K colour computer, donated by Oric Products International Ltd.

消

SECOND PRIZE

Gift vouchers to the value of $£ 50$, redeemable on model rail products at any Beatties of London shop.

THIRD PRIZE

$£ 25$ worth of games and utility program tapes from ASP Software.

Entry forms, together with an entrance fee of $£ 1.00$ (cheque or money orders only, please) should be sent to: The Exhibition Manager, BB83, ASP Exhibitions, 145 Charing Cross Road, London WC2H OEE. Closing date is 31 st October 1983. Judging will take place at Breadboard '83, Cunard Hotel, Hammersmith, London W6, on either Wednesday 23rd or Thursday 24th November 1983. Entrants will be informed of the day on which they will be required to present their layouts at the exhibition. Finalists will be asked to demonstrate their layouts at some time(s) during the open days of Breadboard ' $83(25,26,27$ th November) and layouts will be available for collection between 1600 and 1800 hours on Sunday 27th November. The judges decision will be final and no correspondence will be entered into.

Entry Form

PLEASE USE BLOCK CAPS

NAME:
ADDRESS:

TEL NO:
AGE ON 30TH NOV. 1983:

BRIEF DESCRIPTION OF LAYOUT AND FUNCTIONS:

SCALE:
SIZE OF LAYOUT: (MAX 6FT X 2FT):

COMPUTER USED:

COMMERCIAL PERIPHERALS USED:

H.E. PROJECT KITS
 CAPACITORS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for E. E Proiects. We supply carefully selected sets of parts to enable you to construct EE. proiects. Kits include ALL THE ELECC-
TRONICS AND HARDWARE NEEDED. Printeo circuit boards fully etched, drilled and roller TRONICS AND HARDWARE NEEDED. Printed circuit boarss (tully etched, Arilled and rolier
tinned) or Veroboard are, of course, included as specifled In the originalarticle, we evenlnclude
nuts screws and nuts, screws and IC. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES which includes the project - you will need to order the instructlon reprint at an extra 45 p each.

BOOKS: ELECTRONICS \& COMPUTING

Semiconductor Data 日ook Newnes
Basic Electronics Theory and Practice Microorocessor for Hoboyis
Burgiar Alarm Systems
Buriar Alarm Systems
Electronic Projects in Music
Electronic Projects in Photography
Electronic Projects in Home Security
Electronk Proeicts in Home Seccurly
Questions and Answers Electronics
Electronic Projects in the Car
20 Solid State Projects Car and Garage
110 Electronic Alarm Projects
zxai Users Handocook
2xa1 Basic Book
Eytefng Deeper into Your 2x81
${ }_{24}$ The 50 Spectrum Explored
BP 2452 Proiects Using IC 741
BP44 IC555 Proiecis
BP50 IC LM3900 Project
8P65 Single $1 C$ Proiects
BP69 Ele
Electronic Games
BP72 AMirroprocessor Primer
BP73 Remote Control Projects
8P74 Electronic Music Proiect
${ }_{\text {BP8 }} 3$ vMOS Projects
BP84 Digital IC Proiecis
EPB8 How to Use OP.Amps
BP88 How to Use OP.
EP93 Electronic Timer Projects
BP95 Model Rallway Projects
BP97 IC Propects for reginners
BPT 105 A Aerial Proiocts

292 Handbook of integrated Circulis (IC's) Equiv, 8 Substitutes 27 Beginners Guide to Eulding Electronics brojects FIrst Book of Transistor Equivalents and Subsiliules 4 Socond Book of Transistot Equivalems and Substitules How 10 Build Your own Melaf and Treasure Locations
so Circuits Using Germanlum, Silicon and Zener Dioces 50 Cirruits Using Garmanlum, ,ivicon and zener Dloces
50 Proiects Using Relay SCR
 Practical Electronics Caiculation a and Formulas
How to Buid Your $\begin{aligned} & \text { Wn Solid State }\end{aligned}$ Scillosco pe

 PP 10730 Solderiess breadbeard Prolects - Book BP1 10 How to Get Your Eleotronic Projects Working
BPIIT Practical Electronic Buiding Elocks - Book Elementary Electronics. Sladdin. Excellent heory and 35 constuctiona

ZX SPECTRUM AMPLIFIER

250 mW output. Volume control. Internal soeaker. Very simply connected using load/ save lead. Puts real power even into the simplest "Beep" commands. Adds a real "zing" to musical programs and games Requires PP3 battery - not supplied. Very low current drain. Supplied ready built complete with demo software and instruc
ORDER AS: ZX SPECTRUM AMPLIFIER (SAHE) E6.98

ZX SPECTRUM SUPER AMPLIFIER
250 mW output. Now add synthesizer quality to those "Beep" comands. Super circuit with adjustable ATTACK, SUSTAIN and DECAY envelope controls. Plus variable ECHO Generates a wide range of special effects. Five graduated controls. Internal speaker. Very smart case. Requires batteries - not supplied. Very low current drain. Ready built complete with demo software and instruc-
ORDER AS: ZX SPECTRUM SUPER
AMPLIFIER (SSAHE) £'17.98

SOLDERING/TOOLS

ANTEX X5 SOLDERINGIRON 25 W SOLDERING IRON STAND
SPRE BITS. Small standard, large,
FOI $X 5+\times 25$
SO SOLDER. Handy siz
SOLDEACARTON
OESOLDERBAIO
$\stackrel{H}{\mathrm{H}}$

$\stackrel{+}{\mathrm{HO}}$
 LO LO WR PRI

PR 12 DR GR

$12 V$ DRIL GRI GRI

SAW BRAS BUF

BURR SPOT FACE CUTTER
VERO
pinsertion tool
VEROPINS (ok of 100) 0.1 "
MULTIMETER TYPE 11.00 opV
CROCODILE CLIP TESTLEAD SET.
10 leads with 20 cllps
RESISTOR COLOURCODE CALCULATOR
CONNECTING WIRE PACK TYPE ED.
11 COlours
ILUMINATED MAGNIFIEAS
Small 2"dla. ($5 \times$ mag)
Laroe ${ }^{\text {" dial dial }} \times$ mag)
CASTIRONVICE
Large $3^{\prime \prime}$ dia. $4 \times \mathrm{ma}$
CASTIRONVICE
SCREWDRIVERSET
POCKET TOOL SET
DENTISTINSPECTION MIRROR
JEWELLERS EYEGLASS
JEWELLERS EYEGLAS
PLASIC TWEEZERS
PLASTIC TWEEZERS
PAIR OF PMOBES WITH LEADS (cc)
Q MAX PUNCHES

Speakersmin 8 ohm87p;640hm89p; 80 ohm 98p	
Crystal earpiece	65p
Magnetic eatrplece	15p
Stethoscope attachment	ent 69p
Mono headphones	ع2.98
Stereo headphones	£4.35
Telephone plck up coll	ll 72p
Min buzzer 6V	$6 \mathrm{~V} 50 \mathrm{p} ; 12 \mathrm{~V} 85 \mathrm{p}$
Euro breadboard	£6.40
S Dec breadboard	£6.98

-

ADVENTURES WITH MICROELECTRONICS

SImilar to 'Electronics' below. Uses I.C.s. Includes dice, electronic organ, doorbell, reaction timer, radio etc. Based on Bimboard 1 bread board. Adventures with Microelectronics £2.98 Compon

Brimboard breadboard	£6.98
Verobloc breadboard	£4.20
PCB etching kit	£4.98
2X81 edge connector	£2.25
Ferrite rod 5 Inch	59p
PP3 clips	10p
PP9 cllps	11p
2 station intercom	86.75
IC sockets 8 pi	in 17p

(NSEOTRM

We ike tit it and

$\varepsilon 1.14$ $\varepsilon \varepsilon 2.40$ $\varepsilon .88$ $\varepsilon 1.88$ $\varepsilon 32.88$ $\varepsilon 8.85$ $\varepsilon .51 .50$ 88 77号 helping hands ja

 breadboardreadboard
connector
5 Inch

ADVENTURES WITH ELECTRONICS byiom

Aneasy to follow book suitable forall ages. Idealfor beginners. Nosoldering, uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects -including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $£ 2.85$. Component pack $£ 18.98$ less battery.

30 SOLDERLESS BREADBOARD PROJECTS

Clear verobloc layouts and circuit diagrams. Includes fuzz box, radio, metronomes, timers, transistor checker, switches etc.
introduction gives basicinformation on components including reststors, capacitators, I.C.s, tranststors, photocells etc. Ideal for beginners as well as those with Complete kit including verobloc, book and components (less batterles) £24.75
Less book $£ 22.50$, less verobloc $£ 20.25$. Book only $£ 2,25$.

MORE KITS AND COMPONENTS IN OUR LISTS
 ELECTRONICS CATALOGUE

 FREE PRICE LIST Price list Included withorders or send sae (9×4) orders or send sae (9 x 4)
CONTAINS LOTS MORE KITS, PCBs \& COMPONENTS

Illustrations, product descriptions, clrcuits all included. Up-to-date price listenclosed. All products are stock Ilnes for fast dellvery. FREE to Schools/Colleges requested on officlat letterhead.

MAGENTA glves you FAST DELIVERY OF QUALITYCOMPONENTS \& KITS, All products are stock lines and are new \& full specification. We glve pe rsonal service \& qually

MAGENTA ELECTRONICSLTD.	
Mageinta Electronics Ltd,	Add 45 p P\&P to all orders
HA39, 135 Hunter St.,	Prices include VAT
Burton on Trent ${ }_{\text {c }}$	SAE all enquirles,
Stafts, DE14 2ST.	Offlcial orders welcome.
MAIL ORDER ONLY.	OVERSEAS. Payment must be in sterling.
0283 65435, Mon-Fri 9-5	IRISH REPUBLIC and BFPOUK PRICES.
Access/Barclaycard (visa) by phone	EUROPE: UK Prices plus 10\%.
or post	ELSEWHERE: write for quote.

CABLE AND

sAT左

Helen Armstrong
Graham Brant

The arrival of television distributed by cable and by Direct Broadcast Satellite will give a wider viewing choice than ever before. We explain how the different systems will function and interact.

Thanks 10 British Telecom and BTI for permission to reproduce line drawings from their brochyres.

IT IS APPROPRIATE that 1982, as Information Technology Year, saw the green light for both satellite and cable television, as well as the launching of Channel 4. The technological advances of the past decade have resulted all at once in a rapid expansion in the electronic media, which seems likely to change the face of broadcasting as we know it in a surprisingly short time. The technical and political aspects of these sudden changes present problems, not only new, but highly complex, considering the international nature of broadcasting. The debates go on. Only time will tell what form of programme networking will emerge, or how it will affect the TV system we have at the moment. Television has already invaded the territory of the cinema with video, and the uncertainties attending the arrival of rival video systems may be thrown into deeper confusion as television diversifies still further.

Cable Sources

Cable transmission began as long ago as 1929 , with the distribution of radio programmes. The first television systems in this country started in 1948 with companies such as EMI, British Relay and Rediffusion being the early pioneers. From the start the cable systems in the UK have been localised, providing only BBC, IBA and some local community television programmes.

In the USA however, where cable TV is already a fact of life, the lack of a single national television network prompted the growth of cable in areas with little or no service, which was in the vast majority of areas away from the big city centres. VHF systems were generally used since VHF television sets were readily available.

Cable television systems have been set up in various new town develópments around the country on an experimental
basis, starting in 1966 with Washington, Co. Durham, and extending later to Irvine in Scotland, Craigavon in N.Ireland, Brackla in Wales and Milton Keynes, Walderslade and Martlesham in England. The networks used dual cables, coax for the television signal and telephone cable for the audio. These were all set up and run by British Telecom. But all the schemes set up in the sixties and seventies ran into the Government's refusal to let them carry anything other than the two BBC and one ITV channels.
In November 1980 the Home Secretary licenced several pilot subscription TV schemes until December, 1983. Apart from British Telecom, companies involved were Rediffison, Visionhire, Philips Cablevision, Greenwich Cablevision and Radio Rentals - mostly big TV rental companies. The new schemes included general release feature films
and independent TV channels. However, what will happen when the initial period runs out is not known except that it is now generally accepted that cable TV is here to stay and that it will include material completely independent of the BBC and IBA/Independent ITV companies. One result of this is bound to be an expansion of independent programmemaking companies, with no involvement in transmission at all, simply making their own features to market to television companies. Cable networks are also allowed to supply feature films after one year's general release, as opposed to three years for the BBC and IBA - a purely economic arrangement.

Cable networks often use recording and transmission equipment which does not entirely match the 'broadcast standard' used by the big organisations, but this is hardly likely to cause a serious degradation of picture and sound quality - certainly less than that occurring with an ordinary domestic VCR, probably less than that caused by a slightly ill-adjusted telly - not a serious problem.

The System Today

With the present UHF television network the programme source, whether live or prerecorded, is generated at the studio or by an outside broadcast (OB) unit. Programme selection is carried out at a main broacasting centre, or' network switching centre, before the transmitter network is fed with the desired signal. The main UHF signal is then broadcast from about fifty or so high powered transmitters. Some, Crystal Palace for example, transmit at a power of 1 MW erp from the aerial complex. Together these signals reach about 85% of the population of the UK through the extensive network of relay stations, either in operation or in the process of being built, which provide 'fill in' signals in areas of poor reception. Some of these are very localised indeed, particularly in mountainous areas where small valleys can be completely shielded from signals by surrounding hills.

The relay station building programme

A 'spider man' services undergrounds cables.

Figure 1. Translating a VHF cable signal for UHF television reception.
has now achieved an overall cōverage of 99% of the population, which is perhaps one of the highest in the world from a terrestrial system - one of the advantages of being in a small country where networking efforts can be coordinated into a single system.

The initial costs were low, about $£ 1$ per potential viewer, but with small relay stations serving communities of down to 200 people the cost is more like $£ 100$ per head. With such an extensive network already in existence, it is perhaps not surprising that many people are sceptical of the future success of cable and satellite TV. Both the IBA ànd the BBC view cable with suspicion because of the potential loss of viewers and the higher costs generated by more programme competition. The BBC needs a large audience to justify the television licence fees, and the IBA likewise needs viewers to generate advertising revenue.

It is worth remembering that the large UHF stations are near population centres which could easily be cabled, whereas the relays tend to be located
in rural areas which are unlikely to be served by cable. Even plans to run TV cables along sewer networks will not succeed in carrying cables to many country areas!

Cable Works

There have been two approaches to cable distribution systems: Frequency Division Multiplex (FDM) and Space Division Multiplex (SDM) systems. With FDM, a number of television channels are sent down one cable, usually coaxial, whereas with SDM a separate cable is used for each channel, usually with balanced feeders rather than coaxial.
Anything up to seven channels can be provided, but many of the old experimental systems cannot even take Channel 4. About half of the existing channels are VHF, but most are UHF, and will therefore not need an adaptor for the average domestic television set. There are a few systems which use VHF for main trunk distribution and convert to UHF for local distribution. Although most of these systems only relay BBC

Figure 2. Alternative distribution networks: a) Tree and Branch by S tar and c) Multi-star.
and IBA programmes, thefe are a few which provide a pay-TV service, for example in such places as Milton Keynes and Greenwich, London. Most of these existing systems are technically worn out, and further developments have been slow to take place due to the good terrestrial broadcast system. On the Continent, operators have been allowed to broadcast foreign programmes as well as those produced locally, but development has still not taken place on the scale of that in the USA.
The USA cable systems were initially of six to twelve channel capacity using VHF frequencies, mainly relaying a number of channels from an off-air reception point. These later developed into thirty-channel systems, which included channels provided specifically by the specialist cable TV companies. There are now a few 'super' systems in
the cities such as New York and Los Angeles, and these provide up to 104 channels along two cables each of 52 channels capacity. Frequencies used are 54 to 400 MHz , with the 5 to 35 MHz spectrum available for viewer feedback, electronic voting, etc.

Star And Branch

While it might appear straightforward to connect every television consumer into a cable system, the architecture is not simple. There are two distinct systems in use in the UK, both using FDM: the 'Tree and Branch' system and the 'Star' system. The most common is the Tree and Branch, which is easiest to implement. With Tree and Branch all consumers are simply looped together with all services available to each consumer. The system is rather inflexible and has a number of drawbacks. The signal is continually split up on the outward transmission, requiring large numbers of distribution amplifiers which are very prone to producing distortion and unwanted by-products. In a similar fashion any unwanted signals on the network are continually added if they are feeding back to the source, ie the television company. This problem is usually apparent with random noise and noise in the network can be a problem when added up. To overcome this a very high standard of network screening is required, because any extraneous interference has the potential of disturbing the whole system. If a two-way service such as electronic voting is desired, then a very complex digital protocol is required to sort out the mass of data which would arrive at the TV company at the same time.

The Star system has a more complex architecture, but is more versatile and can be readily expanded over a period of time after the main system has been constructed. The disadvantages are very much less than the Tree and Branch, especially with regard to distortion and interference problems at one point in the network, which would be very unlikely to be transmitted to any other part. The technology is very much newer though, and more technical research may be required, unlike the Tree and Branch system, which could be implemented tomorrow. This would provide a good chance to export British technology rather than import foreign products, such as happend in the rush for CB. The architecture is very similar to British Telecom's "System X" telephone system, and it could will be that they are the best candidates to install any future network.

Forty Into One Won't Go

It is unlikely that any future service would be permitted to use VHF, as there are too many mobile radio, aeronautical and general communication services present in the UK, and any break in a large scale cable TV distribution system would provide a potentially major source of interference. It is likely
that frequencies would be restricted to those in the UHF TV band. This provides theoretically a maximum of forty channels per cable; there are however a number of factors which drastically reduce this figure. Local TV transmission channels must be avoided to prevent mutual interference. Local oscillator radiation must also be considered; when a TV receiver is tuned to one channel, then the local ofscillator will usually be at the frequency very near that of another channel in the UHF band. This signal is often radiated from the receiver and can cause problems to a view in the network viewing the channel. Adjacent channels cannot be employed either, since the normal domestic receiver is not selective enough to differentiate between any two consecutive channels. Having taken these factors into account, it seems that it is only possible to utilise between seven and nine of the forty channels at any one timel for interference-free reception, optical fibre distribution would provide a solution, but the high cost of a decoder for each consumer is unlikely to prove attractive in the near future. Perhaps the best solution is provided by the Star system.

The main distribution trunks could then be optic fibres feeding flexibility points, while the individual cables feeding the consumer would use UHF. To overcome the shortfall in capacity of these local cables, programme selection could be carried out remotely at the flexibility points; in the ideal case the consumer would merely type in the programme of his choice. Unlike the Tree and Branch system, therefore, each consumer would not necessarily be in receipt of every channel.

Programmes are received, firstly, by an aerial array, and then processed into a form which can be routed along trunk cables, which may be up to 12 km long. This requires the signal to be converted down to VHF to prevent disasterous attenuation in the cable - even then, amplification is needed every 420 m . Subsequently, a translator link restores the signal back to UHF, with a VHF bypass for 405 line transmission, and radio. From there the signal goes through a series of cable splitters and subscriber taps to TV and radio outlets

in subscribers' homes. Another option which has only been tried experimentally so far is the use of optical fibres for cable transmissions. The economics of cable are such that the cost is approximately $£ 12,000$ per mile. It could cost $£ 6 \mathrm{M}$ alone to cable Bromley in London! To cable the large UK cities and achieve a 50% population penetration could cost $21 / 2$ to $31 / 2$ billion pounds.

Bearing in mind the controversy over Channel 4, it is likely that some organisation will need much more convincing on potential returns before committing themselves to such an investment. The coming of cable-TV is unlikely to create more than a few hundred jobs in the long term, not the thousands predicted in the popular press. A scheme of thought against cable $T V$ is that with the increasing ownership of VCRs, the younger generation are happy with what they have, and the older generation are perfectly content with existing media. This is, however, a rather pessemistic view.

Direct Broadcast Satellite

While cable television shows some signs of being a more conspicuous public issue, as well as a more established basic technology, 'satellite TV', referred to as DBS (Direct Broadcast Satellite) TV, to distinguish it from transmissions which make part of their journey from source to main transmitter via satellite links), is going to be with the general public first. It is, ironically, easier to put up a satellite to carry. TV signals than it is to install ground cables to every television owning household in the UK.

DBS will also be different from cable TV in that it will be under the control of the public broadcasting concerns, the BBC and the IBA. They are under obligation to make the service available to everyone; therefore, the transmissions need to be capable of being received by all households. However, the responsibility for obtaining the dish aerials needed to receive DBS is of course in the hands of the viewer, not the broadcasting organisations!

Figure 3. A typical hybrid VHF/UHF cable system.
Figure 4. Modes of distribution in the existing television network.

Government gave the go-ahead for DBS in the UK in 1982, with the BBC scheduled to start transmission in 1986. The international Telecommunications Union, of which Britain is a member, allocated five satellite channels to each member country in 1977. After thinking about opting out of DBS altogether, the BBC has chosen to participate and has been given two of the UK's five channels. The IBA has not yet been given one, but it is improbable that it won't; however, the remaining three channels remain unallocated as yet. One plan put forward is that one of their channels will be run on an extra license, and concentrate on 'quality' material from archives and foreign programmes - the best of everything, as it were; the other channel would then be a 'commercial' channel, funded by some form of subscription.
The UK's first DBS satellite, Unisat 1, a Eurostar class satellite 21 metres from 'wingtip' to 'wingtip', is being built by United Satellites Ltd., a company jointly owned by British Aerospace, British Telecom and GEC. British Aerospace is responsible for the design of the satellite itself, with GEC-Marconi doing the transponders, and the actual
operation of the transponders carried out by British Telecom. Unisat 1 will carry the BBC's two channels, so other satellites will eventually follow to carry channels used by other authorised broadcasters on the remaining three UK channels. In 1978, the European Space Agency (ESA) launched its Orbital Test Satellite (OTS), for experiments with television and telecommunications in general. The OTS is now being used already by one British company Satellite Television PLC - for broadcasting, but only into Europe.

FM Transmissions

The transmission system employed is different from that used for terrestrial services, in order to achieve maximum efficiency from the power available in the satellite. The TV signal is modulated onto an FM carrier in a 27 mHz wide channel. The use of FM, as opposed to AM, saves about 20dB of transmitting power for equal performance. Each adjacent channel uses different polarisation, which together with the signal capture effect of FM systems, allows a degree of channel overlap so that there are forty channels between

Figure 5. The Direct Broadcast Satellite's likely 'footprints' over the UK and Ireland.

An artist's impression of the Unisat satellite.

11 GHz 7 and 12 GHz 5 , with 19 MHz 2 channel spacing. With each channel being 27 MHz wide, and the spacing between only $19 \mathrm{MHz2}$, side-by-side chiannels are only assigned to countries in widely differing geographical positions. Also, circular polarisation is used - whenever the same channels are being used by countries which are not widely geographically divided (as must happen in some cases) opposite polarisations are used. Satellite locations above the equator, spaced at intervals of six degrees, were allocated to counties according to the suitability of their position in relation to their prospective satellite.
The UK's satellite position is $31^{\circ} \mathrm{W}$, just off the eastern edge of Brazil, with Ireland, Iceland, Portugal and Spain in the same position (so that these related countries can receive each others' transmissions without complicated aerial adjustments). Our channel numbers are, 2, 6, 10, 14 and 18, with right-handed polarisation; several other countries in Europe share the same channels, but with left-hand polarisations.
The satellite must send its transmissions to fall over a narrow area, the UK being only a small land mass. The region 'covered' by the beam when it falls on the earth is shaped, because of the shape of the Earth and the angle of the beam, like an elongated egg, and is called the 'footprint' (a term normally used to describe the area covered by signals or noise affecting the

Figure 6. The integration of all modes of transmission.
ground from above it). There will be a fringe area where reduced signals will be obtainable, but within our own footprint the signal strength will probably be around 140 UV per metre, needing a dish aerial of about a metre in diameter to get a good signai.

Get The Picture?

Obtaining a good signal, however, will require a far more precise alignment than with a UHF aerial (and no twiddling it about on top of the TV set, eitherl) The beam will be narrow and quite low in the sky, and the accuracy of the alignment will have to be within about 0.1°, probably needing special measuring equipment to get an accurate fix - a professional job. This means that the expectation of being able to rotate the aerial easily to pick up European stations, which has been aroused in the popular press somewhat, will not be fulfilled unless some kind of precision mount with predetermined positions is provided (and this is, of course, without taking into account the different European Television standards, some of which are incompatible or only partially compatible with the British PAL system).

The low elevation of the satellite beam will also mean that places to the north, or in hilly areas, or simply behind massive buidings, may not be able to receive the signal. Fortunately, in many cases planners are already looking at communal receiver dishes and distribution systems to keep costs down, and this may be the answer.

So, there is more to DBS reception than merely putting a dish aerial on your roof. The dishes will have to be stabilised against the effects of temperature change, rain and hail, wind etc. and possibly fully enclosed. Other equipment will be needed to sort out the polarisation, to alter the frequency of the received signal for normal UHF TVs, and to convert it from FM to AM. The signal from the dish aerial may also be
amplified by a low noise amplifier before being converted to UHF frequencies. The UHF signal is then routed to the set top terminal where the decoding process takes place.

The aerial itself simply comprises a reflecting surface - the 'dish' - which focusses the signal to a central point, and a 'feedhorn', which actually picks up the microwaves; this is sited on a tripod or similar support, and can be adjusted for the best reception. The dish itself is made of aluminium (or aluminium over a fibreglass support), as though popular pictures show a round dish, by the time they become common a quadrilateral shape is more likely to abound, as this is easier to transport.
The 27 MHz band width for each DBS channel is wider than the 8 MHz channel width used for UHF telly in the UK, which gives a lot of opportunity to improve on the present PAL-based system with the help of the extra signal space. In fact, the BBC has already presented a system known as E-PAL (Extended Pall for just this purpose. However, IBA has come up with a completely new system, known as MAC (Multiplexed Analogue Component)

Cable And Satellite TV

which has now been chosen by an Advisory Panel set up to examine alternative television systems for use with satellite broadcasts, and accepted by the Government. (The document to consult is Direct Broadcasting By Satellite: Report of The Advisory Panel On Technical Transmission Standards, HMSO Cmnd 8751, 1982, £5.20.)

A New Standard

MAC has been developed entirely to suit DBS's FM system, is technically more advanced than E-PAL, and is better suited to adaptíng for High Definition TV, which is still far off but definitely in sight in the future. It's a forward-looking system, much more than E-PAL, whose primary virtue (other than the fact that it is a good TV system) is that it is compatible with current TV receivers.

MAC has found favour with the commercial interests involved as well, including the cable TV companies since, as we said above, much DBS programming will make the final leg of its journey along the cables, being a cheaper option than each of us setting up a private dish aerial. Modifying E : PAL to meet all the cable companies' requirements looks like being uneconomic, so the Advisory Panel recommended MAC on this basis as well as that, having no sub-carrier, it would have been better suited to cable TV. They also decided, ironically, that it would be easier to adapt present receivers to MAC than to E-PAL, for comparable quality. MAC will also be easier to scramble to prevent unauthorised reception of DBS broadcasts - ie ones that haven't been paid forl

At the moment, the European Broadcast Union members are looking at the possibility of a single standard for the whole of Europe - a great boon if television is to have an international audience, and seen decidedly as a means of generating more revenue for the individual television companies. One effect of the increased diversification of television away from the licence-funded BBC with, effectively, only one (two since the arrival of Channel 4) commercial rival, is increased competitiveness between programme-makers and television transmitting bodies.

It is felt that MAC has a likelihood of being chosen as a common European standard, gradually superseding the variations on PAL and SECAM being used in Europe at present. It remains to be seen, of course, whether Europe will opt for MAC as a common standard at alll But EACEM, the European TV manufacturers' Association, has shown some interest in MAC. If television is to look into the future and not simply cling to existing technology, which is slowley but surely becoming outdated, then it makes sense to make bolder moves to help the new developments along.

You Pays Your Money . . .
 The questions of exactly how

Figure 7. Stages in translating a DBS signal for a UHF receiver.
consumers will pay for their cable and DBS programming is far from being resolved. The government has decided against the "pay-as-you-go method for cable TV, and so it seems likely that this will be the case for DBS too, especially if DBS and cable are as intimately linked as it looks as though they might be. One projected method of getting a choice of channels to cable and DBS viewers' receivers is to have subscription channels, so that the viewer only receives the channels which he has paid to view. This also relieves the problem of a limited number of channels being available to any one receiver at one time.
Obviously some method of protection is required to prevent unauthorised viewing. There are two possible approaches to this problem, the negative, where the original signal is left intact, and the positive, were the signal is electronically encoded in some way.
An example of the first approaches is the fitting of a filter in the consumer's feed which removes any channels which have not been paid for. There are two'drawbacks to this: firstly there is an initially large capital expenditure in supplying filters, and secondly. the system is not very tamper-proof.
With this in mind, most systems have opted for some form of encryption. This can range simply from inverting the video to give a negative picture to unconverting receviers, to the RacalOak system, where each frame is randomly sent positive or negative modulated, with the sound sent as 'packets' of digital pulses inside the sync pulse. Of course, the more complex the encryption system, the higher the cost of the equipment needed by each consumer to decode the signal. If an operator accepts a protection ratio of about 90%, then an optimum system can probably be found.
Satellite and cable TV complement each other. And for a future National

An array of solar cells, destined for a communications satellite, takes shape at British Aerospace.

Broadcasting System it is likely to be mandatory that all cable companies will distribute BBC and IBA programmes plus the DBS channels. This, together with single satellite receiving terminals for community TV distribution systems should prevent a sudden rash of unsightly dish aerials sprouting all over the countryside and will save the consumer money. But the individual in a rural area without cable will not miss put - a single dish aerial can be installed, for less than the price of a video recorder
One thing looks certain: the terrestrial TV network is here to stay. Some areas, without cable, and also (especially in the north) facing more problems with clear DBS reception, will be,largely reliant on the present system for many years to come. Nevertheless, the future would appear to be rosy, with plenty of exciting and innovative developments in the air - or should that be "in the pipeline"?

\footnotetext{

17 exciting electronic projects
to build and run on your own micro.
© LIGHT PEN
8 PICTURE DIGITISER
KEY PAD
MODEL CONTROLLER WEATHER STATION + OTHER EXCITING \& INTERESTING PROJECTS

REALISE THE REAL WORLD POTENTIAL OF YOUR MICRO.

A newly released book written by well known author Owen Bishop and published by Bernard Babani gives fully descriptive details on how to build all 17 projects - all are fairly simple and inexpensive to construct - The most complex component the DECODER) is supplied in kit form ready to assemble with all components and plated through PCB. Components for the projects are readily available locally or found in your workshop drawers
Once assembled and connected to your micro the decoder is able to run any or all of the projects simultaneously.
Simple Programmes are included to get you started but of course the more experienced programmer can have hours of fun writing complex programmes to take full advantage of these easy but exciting projects.

Please Send By Return (allow 28 days for delivery)

Feel like sounding off? Then write to the Editor stating your Point of View!

Alternator Alternatives

Dear Editor,
In HE May '83, you replied to M. J. Maddison regarding the use of car alternators. Perhaps the following information may be of assistance in what is usually a very misunderstood. subject.

Firstly, the different categories must be appreciated.

1. Six diode alternators: these require an external source of current to energise the motor, usually via a relay. (Examples: Lucas 11 AC, Duceillier AC28, Simms (early model), CAV AC7 (early model), etc.)
2. Nine diode alternators:' selfexciting, that is, they have some residual magnetism in the rotor. (Examples: Lucas 15AC, 16AC, 17AC, 20AC, etc., CAV AC7, AC203, BUTEC A10, Bosch, Ducellier, Motorola, Hitachi etc.)
3.Permanent magnet alternators, usually single phase and usually fitted to motor-cycles but there are exceptions.
3. Nine diode alternators with the voltage regulator fitted as in integral unit. These are a modification on category 2.

The current output of the alternators using a wound rotor is. achieved by sensing the output voltage which in turn is used to control the current flowing through the rotor. Permanent magnet rotor alternators again sense the voltage. but utilise thyristors to control the output current.
In regard to using any alternator driven by a windmill, what must be looked at is the desired voltage (bearing: in mind batteries will have to be used) and the speed at which the alternator produces a current of 0.5A /cutting-in speed).

Obviously by using a 12 V regulator on a nominal 24 V alternator suitable control can be achieved with a lowering of the cutting-in speed. However, if the alternator is chosen with this in mind, an alternator can be. found which will begin to charge at 250 rpm.

In the main these units are those which are direct drive on a diesel engine, which are slow running anyway.

In this country the two units which are suitable are the 12 V or 24 V BUTEC H1O units as fitted to Gardener diesel etc. The 12 V unit gives up to 100 A at full stick with the 24 V unit giving over 30A. The CAV AC203 from a bus (note: not a coach) is completely sealed and gives 80A at 28 V and uses a voltage and a current
regulator. The snag is that these are expensive.

The choice of what he uses in Kimbali depends on what is available. It is probably that an oriental unit is a better choice out there.
Fancy electronic control systems are not required as the standard units are usually OK. The BUTEC regulator is completely repairable with a 6 V 7 Zener, a BC108 and a 2N3055 plus a few other bits.
If a small car gearbox is used driven backwards, ie the windmill blades driving the gearbox at the propshaft end and the alternator mounted where the clutch is normally four or five differing alternator speeds would be available. You could even drive the alternator backwards and be astounded that it worked exactly the same as forwards!
Finally, Bosch manufacture a special-unit which fits on the axle box of a railway wagon to supply power for lighting, refrigeration etc. This works as soon as the train moves, no matter how slowly.
Yours faithfully.
H. D. Briggs,

Telfard,

Shropshire.
PS. Regarding the "Stall Thief" IHE May '83), this can be achieved to a great extent by supplying the relay winding from the warning light terminal on the alternator. This terminal is the auxiliary output from the three diodes whose purpose is to supply the rotor energising current. The voltage goes from OV when stationary to system voltage 12 V or 24 V at cut-in speed.

This means that any relay so connected will function at tickover or a slightly higher engine speed. With the relay fitted as in the Stall Thief on a mini; for example, the engine will be governed to a speed of about 550 rpm , which means it takes about fifteen minutes to drive it off a pub car park.
Extra connections on the coil or distributor are a giveaway to the "tea leaf". The old Triumph 1300 got over this by using a thin but sturdy coax which looked like standard car-type cable.

Thanks for the suggestion. The Stall Thief author says, yes, this is a simple and ingenious adaptation which should present no problems.
Incidentally, the Police reckon that if you can stall your Tea Leaf for fifteen or twenty minutes, he will-tend to feel that easier pickings can be had elsewhere. "If he's really determined to get in", they say "He will". The art is to confuse him into giving up!

Ignition Transformations

 Dear Sirs,I have just made the HE electronic ignition from HE April 1980 and have a small problem with it.

The spark is small and weak and therefore cold-starting is non-existent, but once running it seems to be ok. Instead of the large $47 k$ resistor I have had to put a $56 k$ one in, the storage capacitors although the correct value are a higher voltage, and thirdly there is a small possibility that the transformer may be a 12 V one.

Please could you indicate which of the above three might cause the problem or anything else that might cause a very poor spark.
Yours faithfully.
Richard Stummer.
Dibden,
Hampshire.
You have three problems here. First, there is no 47 k resistor in the circuit to change; the large resistor. R9 is 47R, not " k ", and the correct value (47 ohms) should be used.

The transformer is used as a stepup transformer, and the larger the ratio the larger the voltage induced in the primary. Since $9: 240$ equals $1: 26$ and $12: 240$ equals $1: 20$, a 12 V transformer will not produce as much primary voltage.

The third problem you may not be aware of: the transformer is a 9-0-9V type, and a centre-tap must be connected to the $\mathrm{V}+$ line, immediately below T1 on the circuit diagram. This connection was omitted from a published circuit.

As long as the voltage rating of the capacitors is higher than that specified, you're quite safe.

Ignition Transformation Part II

Dear Sir.

Some time ago I built the HE CD Electronic Ignition system from HE April '80. The design performs very well. I noticed that you recommend this unit for use with four or six cylinder negative ground cars, 12 V . What if I wanted to use your design on my Honda CG125 motor cycle? Is this possible? It's 6 V , single cylinder four stroke).

I thought that a change in the transformer voltage - say a 6-0-6 secondary, might compensate for the 6 V ignition system - but do I need to change any other values? eg C3, C4 and/or R7 and 88? I would be very grateful if you could advise me.

Thanking you for your time and hoping to hear from you soon.
Yours faithfully,
C. S. Thompson.

Levenshulme.
Manchester.
There is no easy answer to this one. - it effectively needs a redesign on the circuit, which we are not able to do. Have any other readers tried adapting this system for a motorbike?

Components Quest

Dear Sir/Madam.
I have written to you to ask for some information. The problem is that in your magazine the majority of addresses of electronic component suppliers are in the south and I would like to know the addresses of suppliers in the Birmingham area.
This would be very convenient as I live in a small town near Birmingham. Yours faithfully,
A. Patel,

Bilston.
West Midlands.
That's interesting - I hadn't noticed that there was a southern bias in our components directory. It's not intentional. We contacted every supplier whose address we actually had, and with a few exceptions who either did not want hobby custom or had moved away, we published details from all of them.
Your first and best recourse is the Yellow Pages phone directory, which you will find in your public library. Try phoning names under "Electronics Components Suppliers" and "Radio Equipment Suppliers" and anything similar. When you ring up, ask the person you speak to if he or she knows of any other suppliers locally Do that a few times and you will be able to build up a file of suppliers in your area.
Your other solution, of course, is to go mail-order.

Look What The Cat Dragged In

Dear Ed.,
With reference to my Radio Controlled Gerbil project (HE April '83): I was perturbed to see some of your readers thought this was a 'joke'. As a professional electronics designer. such correspondence put into print could seriously damage my career. Indeed, the Arts Council have already rescinded their grant so work on follow-up projects such as the Robot Muskrat and Solar Powered Tortoise have been put in jeopardy fa small town in Suffolk, I believe. / I am currently trying to raise funds from the RSPCA, but if this dogged criticism continues my chance of sponsorship will be catastrophically affected.
Don't these people realise that without such advances in rodent technology the human race would
never have been able to put non-stick frying pans into space?? It's time they took their heads out of the sand, and stuck them in the nearest microwave. Yours sincerely.
Dave Fountain,
2 Rat Terrace,
Clacton-on-Sea,
Essex.
PS. Whatever you do, don't print my address in the magazine.

You don't know when you're well off, matel Never mind the outraged readers. Hibernia The Balrog wants to see you about your abuse of semicolons, and our technical department who has been scouring. restaurants in vain for Artificial Gerbil Fur, wants a word with you, too. All he was offered was a load of 'fresh' stuff, and that was full of bullet holes, too. On the bright side, some minor modifications made in the office mean that you can apply to the British Confections Council for further sponsorship. Where did you say you lived?

Instant Assistants

Dear Sir.
I am writing with reference to a letter in HE April ' 83 from Paul Jenkin of Cornwall. In this letter he raised a couple of queries. 1: I have traced some references to an MOC3020 in an old RS catalogue which describes it as an opto-coupled triac. This is in the July to October 1981 edition of the catalogue. I take the liberty of quoting data from the catalogue:

Technical specification: diode: If max. 50 mA at $25^{\circ} \mathrm{C}$; Vr max. 3 V ; Vf max. 1.5 V at 1 f 10 mA ; triac: Vorm 400 V ; It (rms) max. 100100 mA ; Vtm 3 V at It 100 mA ; coupled characteristics: input current to trigger triac 5 mA typ. 20 mA Max. (main terminal voltage $3 \mathrm{~V}, 150 \mathrm{R}$ load); isolation voltage (peak withstanding) 7500 VAC for 5 s; operating temperature range $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Pin 1 is the anode, pin 2 is the cathode and pin 5 is labelled 'substrate, do not connect'.

With regard to his query on data for the Ferguson 3400, has Mr. Jenkin checked his local reference library? They might have copies of Electrical and Electronic Trader magazine, who may have done one of their excellent service sheets on the 3400. I hope that some of this information may be of assistance.

To change the subject, I have noticed that magazines specialising in CB Radio are fast disappearing from the market, but there must still be a considerable interest in CB. As HE was one of the first UK mags to cover CB (if not the first?) how about resuming some coverage of CB?
Yours faithfully.
M.L. Peake,

Bilston,
West Midlands.
PS What is an HE binder?

Thank you very much, Mr. Peake. To show that CB is far from a lost cause. not only is our relation CB Radio Today still flourishing but we have also had a new arrival recently in Ham Radio Today. Ironically, one spinoff of CB radio has been an increase in the popularity of amateur radio. Can't be bad! On top of that, HE still runs articles (our popular Radio Rules series concluded last month) and projects on amateur and CB - see our CB Selective Caller project in HE January '83, for instance.

Dear Sir.
With reference to the letter published on page 17 of your April issue from Mr. Paul Jenkin, I am enclosing some information concerning the device about which he enquired and would be obliged if you would kindly pass it on to him in the stamped envelope also enclosed.
Yours faithfully.
J. G. Lewis,

Saintfield,
Co. Down.
Dear Sir,
In the April issue a reader enquired about a device marked MOC3020 this is manufactured by Motorola and consists of an LED optically coupled to a silicon bilateral switch. They are for applications requiring isolated triggering of triacs.
Ray Harris.
There you are . . . ask and it shall be given unto you. Our thanks to Mr. Lewis and Mr. Harris. We will pass on the information to Mr. Jenkin as soon as we can extract his address from our April file.

HEBOT Hint

Dear Sir.
In HE November '82, you showed the HEBOT II compatible with the ZX81. I own a 16 K ZX Spectrum. Will HEBOT work on this, will I need an interface, if so which one and will all the poles be the same in the programs? I am a new learner to computers and electronics so please can you reply advising me on these matters. Yours gratefully.
A. J. Arnsby.

Cleestanton,

Shropshire.
No, the interface actually supplied with HEBOT II will not operate on a ZX Spectrum. The HEBOT decodes address lines A6 to A15, and if you look at the table of edge connector functions accompanying the ZX Sound Board project (see HE June '83), you will see that the Spectrum and ZX81 edge connectors, while very similar, are not compatible for addresses above A12. HEBOT's address will be different, but if you use the interface board published in HE September '82, you will have full use of your 16 K memory because, when set up to operate from the Spectrum, this board addresses I/O space, rather than memory space.

Tremoleko

An important point to remember when building this project is that it is going to be subject to heavy wear and tear, probably kicked around on if not off a stage and regularly stomped by heavy footed guitarists! To protect the delicate PCB and components, then, it's worth investing a few extra pence in a solid die-cast aluminium box that can stand up to the worst abuse!

The cost of the parts for the project, including a die-cast box, heavy duty switch is $£ 8.30$ (and this covers VAT, p\&p) from Rapid Electronics. The PCB as usual is being supplied by our own PCB Service.

SPL Meter

One component in this project is critical if the easy calibration procedure is to be followed, and that is the electret condensor microphone The specified type is an Altai model EM-104; if some other microphone is used then the calibration procedure will not produce accurate SPL measurements and the ambitious constructor will have to devise his
own method of setting up the meter! Fortunately this microphone is readily available from a number' of sources, and to make things even easier, Greenweld Electronics (443 Millbrook Road, Southampton SO1 OHX) have kindly offered to supply all the components for the SPL Meter. including the EM-104, the 100uA panel meter and box, for just $£ 19.95$ including VAT, p\&p. The PCB can be made at home from the pattern published on the PCB Printout page, or purchased from Hobby's PCB Service.

Gripometer

All the electronic components may be easily purchased from a mail-supplier such as Cricklewood or Europa Electronics, though there may be some difficulty with the slide potentiometer (essential) and the orange LED (nice but not essential use another another red or yellow instead). The cost of the components should be around $£ 5.00$.

A certain amount of persistance and ingenuity may be needed to complete
the mechanical construction - but we know that HE readers have plenty of both!

Our prototype was constructed from a simple three-sided framework of $1^{\prime \prime} \times 1^{1 / 2 "}$ timber, covered top and bottom by appropriately sized sheets of hardboard, but any construction method may be used so long as it works

The prototype was covered in bright yellow Fablon to provide an inexpensive and bright appearance, with the opening edge of the framework uncovered to allow access to the "cheat switch". But if you want to be a little bit clever, mount the cheat switch so that the tip of the plunger is just inside the framework and carry the Fablon down across that edge, sealing it off. Then the switch is concealed but can still be operated through the flexible Fablon covering - if you know it's therel

Variable Power Supply

A complete kit of parts for this project is available from J. Bull for $£ 13.80$.

Hemmings Electronics Ltd
Electronic Components \& Microcomputers 16 BRAND STREET, HITCHIN, HERTS, SG5 1JE Telephone: (0462) 33031
 Sar 9am ro 5.00 pm
Wed Closed

TERMS OF BUSINESS - Professional quality electronlc components brand new and fuly guaranteed. Mail order by return of post. Cash, Cheque, Postal Order or Bankers Draft with order payable to HEMMINGS ELEC
TRONICS LTD. Access or Barclaycard available using our 24 hour answerphone service. Monthly Credit Accounts available on request to government and educational authorities. Industrial custorners wishing to open a to all orders under C10. All prices are exclusive of VAT. Please add 15% to total including pEp. No VAT on exporl orders or books.

Send for my CATALOGUE ONLY 75p (plus 25p post/packing)

My all-inclusive prices quoted in the Catalogue are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade. See my prices on the following:
CAPACTIORS . . . ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND HIGH VOLTAGE, RESISTORS. 18:th WATT TO 100 WATT; 0.1% To 10% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRimmers, PRESEIS, POTS . . . SINGLE, DUAL, SWITCHED, CARBON, CERME AND WIREWOUND, SINGLE OR MULTITURN, ROTORY AND SLIDE. DIOOES, RECTIFERS, BRIDGES, CHARGERS, STYLI, SOCKETS, PLUGS, RELAYS, TRANSISTORS, ICSS, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, COUPLERS, ISOLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VAlvES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INOICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPLIES, HAROWARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, thermistors, vor's, insulators, cassetes, meters, soloer, HANDLES, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIIGES, SPEAKERS, EARPHONES, SUPPRESORS, MIIEES, HEATIINKS, TAPE, BOAROS and others.

Prices you would not believe before inflation!

BRIAN J. REED
 TRADE COMPONENTS

ESTABLISHED 26 YEARS
161 St. Johns Hill, Battersea, London SW11 1TQ Open 11 am till 7 pm Tues. to Sat. Telephone: 01-223 5016

Pantec's revolutionary hand held multimeter introduces a new
concept in low cost, high sensitivity meters. Banana's full
range of functions make it a must for the electronics hobbyist.
Pantec's revolutionary hand held multimeter introduces a new
concept in low cost, high sensitivity meters. Banana's full
range of functions make it a must for the electronics hobbyist.
Pantec's revolutionary hand held multimeter introduces a new
concept in low cost, high sensitivity meters. Banana's full
range of functions make it a must for the electronics hobbyist.

- You can operate it with one hand

- It's shock~proof - It's totally protected up to 250 v AC/DC
 - It's got audible bleeper for continuity checks and battery test - It's got permanently connected probes (no socket selection)

incl.VATandUK P/P

Ideal for work on optical and electronic equipment, instruments and models. Japanese made, top quality metric tools in hardened and tempered steel, with fitted piastic cases. Swivel-top, chromium-plated brass handles. Not to be confused with similar cheap non-Japanese sets.
SCREWDRIVER SET 113.6 plain screwdrivers, blades 0.9 , $1.2,1.8,2.3,3.0$ and 3.5 mm . Price $£ 2.70$.
SOCKET SET 227.5 socket spanners, 3.0, 3.5, 4.0, 4.5 and 5.0 mm . Price $£ 2.80$.

CROSSPOINT/HEXAGON SET 305. 2 Japanese crosspoint screwdrivers, sizes 0 and 1.3 Hex. key wrenches 1.5, 2.0 and 2.5 mm . Price $£ 2.70$.
COMBINATION SET 228. 5 open spanners 4.0, 4.5, 5.0, 5.5 and 6.0 mm . 5 socket spanners $3.0,3.5,4.0,4.5$ and 5.0 mm . 2 crosspoint screwdrivers bit sizes 0 and 1.3 screwdriver bits $1.5,2.5$ and 3.5 mm . 3 Hex. keys $1.5,2.0$ and 2.5 mm . 1 scriber. 1 swivel-top driver/holder.
Price £4.83. All prices include postage and 15% VAT.
Ring for Access/Barclaycard
Sales or send remittance to:

Light Soldering Developments Limited, 97-99 Gloucester Road, Croydon, Surrey Cho 2DN. Tel: 01-689 0574.

SPECIFICATIONS

- Sensitivity: $20 \mathrm{k} \Omega / \mathrm{N}$ DC and $10 \mathrm{k} \Omega /$ VAC
DC Volts: 0.5-5-25-100-500V
- AC Volts:50-250-1000V (max 750V)
DC Current: $50 \mu \mathrm{~A}-50 \mathrm{~mA}-500 \mathrm{~mA}$ 2.5A
- Resistance: Up to $2 M \Omega$ in 3 ranges
- Accuracy:2\% DC-4\% AC
- Dimensions: $173 \times 86 \times 29 \mathrm{~mm}$ Weight: 200 g
- Supplied with soft carrying case and spare fuse

Write or phone for details

The Banana Multimeter

Carlo Gavazzi (UK) Ltd., 162/164 Upper Richmond Road,

London SW15 2SL
Tel: 01-785 9022 Telex: 8952493

TREMOLEKO

A classic echo-effect unit is expensive to make, but the HE Tremoleko not only gives a fair echo effect, but is inexpensive and straightforward to build - ideal for the guitar player who wants to experiment with different effects.

R. A. Penfold

THE CONVENTIONAL WAY of electronically processing a signal to give an echo effect is to use a delay line of some kind, to give a delay of between 100 ms and 1 second, and to feed the delayed signal back to the input of the line. The signal is therefore fed through many times, getting weaker each time it is fed back to the input and giving a good analogy of a natural echo and an excellent sound effect.

An obvious drawback of this system is the cost of a delay line which gives a sufficientiy long delay time for this application. A bucket brigade type, having a few thousand delaying stages, is the lowest cost approach but even this method is not particularly cheap.

But there is an alternative system which is very simple and inexpensive indeed. Results obtained are not as good as those using more sophisticated techniques, which give a true echo effect, but it is a system well worth trying if a true echo is not feasible within your budget, of if you like experimenting with simple effects units.

The technique is simply to "chop" up the signal from a synthesiser or any other electrical or electronic instrument which has a suitable output signal. The main requirement is that the instrument should have a fast attack plus a relatively slow decay, like the envelope shown in Figure 1 (a). Any monophonic synthesiser should be capable of giving a suitable output signal, and a guitar also gives an output of the correct type. When the signal is

"chopped" by effectively just switching it on and off at a rate of a few Hertz, this gives an envelope of the type shown in Figure 1 (b).

This gives a signal which is similar to that obtained if a short burst of signal is applied to an echo effect unit, with an initial high signal level followed by a signal bursts of identical length but steadily decreasing amplitude, and quite interesting results can be obtained in practice. especially if the unit is used in conjunction with other effects such as

$\xrightarrow[\text { TIME }]{ }$
spring-line reverberations. However, it is important to realise that the effect obtained is not a genuine echo, and that a signal having a long decay is needed at the input to give an output which sounds like a short percussion signal. Results are not likely to be very convincing if the input signal does not have a suitable decay characteristic, or if the signal changes considerably as it dies away. A voice signal, for example, would probably not give good results when used with the unit (although you might find the effect interesting even though it might not be at all convincing as an echo effect).

The Circuit

A simple VCA based on a VMOS transistor is used as the basis of the unit, as can be seen from the circuit diagram of Figure 2.

A VMOS transistor has a very high drain-to-source resistance if the forward gate bias is zero (or very low), but this resistance drops to about 2 ohms if a forward gate bias of a few volts is applied to the device. In this circuit the VCA is formed by R6 and the drain-to-source resistance of Q1. There is very little voltage drop through R6 when Q1 is switched off,

Figure 1. How the input signal is 'chopped' by the Tremoleko.

Figure 2. The circuit.
due to the high input impedance of the buffer amplifier formed by IC2 and its associated components, so the signal reaches the output virtually unattenuated, but when Q1 is switched on, most of the input voltage is dropped across R6 and a high level of attenuation (typically about 66dB) is produced.
Although this is a fairly crude form of VCA it is adequate for the present application, and does have an important advantage over most of the more complex alternatives in that there is no DC shift at the output as the circuit switches from the-high attenuation state to the low attenuation one, and vice versa. This avoids the generation of "clicks" or "thuds" which would inevitably result if even a small DC voltage shift was produced by the circuit.
"Clicking" sounds could also be generated if the VCA was switched very rapidly between_states so that the "chopped" signal had a very rapid rise and fall time. This would give a very unnatural effect, and much better results are obtained if the switching speed is slightly, but significantly slowed down. This is the purpose of C3.

IC1 is used in the pulse generator circuit, in what is basically a well known and frequently used configuration. However, it is slightly different to the standard circuit in that steering diodes D1 and D2 have been included in the timing circuit, and this gives separate timing resistances for the high and low output periods of the circuit. R4 and RV1 control the low output time while R5 and RV2 control the high output period. Apart from permitting the mark-space ratio of the control signal to be adjusted, these two controls also give a substantial degree of control over the operating frequency of the pulse generator. The frequency range is from about 2 HZ with both RV1 and RV2 at minimum resistance to over 10 HZ with both controls set at maximim.

SW1 enables the output of the pulse generator to be disconnected from the VCA; 01 is then cut off, the input signal passes straight through to the output, and the effect is cut out. RV3 is needed to match the output voltage swing of the pulse generator to the input requirements of the VCA, and to an extent the effect obtained

How It Works

The input signal is passed through a voltage controlled attenuator (VCA) and then to the output signal socket by way of a buffer amplifier. The latter is simply needed to give the unit a low output impedance and to ensure that the output of the VCA is not excessively loaded. The VCA will provide an easy path for the input signal if the control voltage is low, but it will provide a very high level of attenuation and effectively block the input signal if the control voltage is a few volts or more.

A pulse generator is used to generate the control voltage, and as this has an output voltage which switches between virtually the negative supply voltage and almost up to the positive supply potential, the VCA is switched between its minimum and maximum attenuation levels. This gives the required "chopping" of the input signal to give the quasi-echo effect.

Two controls enable the high and low output times of the pulse generator to be independently adjusted, and this gives a useful degree of control over the effect obtained. Apart from enabling the "chopping" frequency to be adjusted, it enables short bursts of signal to be allowed through the VCA, short gaps to be placed in the signal, or the on and off periods of the signal to be roughly equal.

Parts List

RESISTORS

R6 . 3k9
R7, $8 \ldots .$. 1 M

POTENTIOMETERS

$$
\text { RV1, } 2
$$

. 2 M 2
1 in carbon
RV3............................ 100k
OW1 horizontal preset
CAPACITORS

SEMICONDUCTORS

IC1, 2 741C
op-amps
Q1 VN66AF or VN67AF VMOS transistor
D1, 2 1 N4148
g.p. silicon diodes

MISCELLANEOUS

SK1
6.32 mm jack with DPDT contacts
SK2 6.35 mm jack
B1 9 volt PP3
SW1 heavy duty push button switch $105 \times 80 \times 50 \mathrm{~mm}$ diecast aluminium box; battery connector; two control knobs; printed circuit board; two 8pin DIL IC sockets; Veropins; wire, etc.
BUYLINES
ES \qquad page 34

Figure 3. The PCB and components.
can be varied using RV3 since it sets the depth of the amplitude modulation.
The current consumption of the circuit is about 4 mA , so a PP3 9 V battery is an adequate power source. source.

Construction

Details of the printed circuit board are shown in Figure 3. Q1 is a MOS device, but both the VN66AF and VN67AF types have built-in 15 volt Zener protection diodes which render normal MOS handling precautions totally unnecessary. These devices are power types, but lower power VMOS devices (such as the VN1OKM) should have a low enough "on" resistance to give good results in this circuit. Also the two devices specified are reasonably inexpensive and are readily availablel Q 1 is mounted horizontally so that it does not protrude too far above the board and prevent it from being installed in the case. This device dissipates an insignificant amount.of power and obviously does not require a heatsink, but it is a good idea to bolt it to the printed circuit board so that it is firmly anchored in place.

In other respects construction of the board is quite straightforward, but the careful to fit the semiconductors the right way round. Also, it is helpful to fit Veropins at points where connections to off-board components will be made.

A diecast aluminium box having approximate outside dimensions of $150 \times 180 \times 50 \mathrm{~mm}$ is reasonably inexpensive but makes a very tough and neat housing for the project. SW1 can be a heavy duty push button type fitted on the top panel of the case, and it can then be operated by foot (although an ordinary toggle or other type can be used if preferred). The two other controls and the two sockets are mounted on the front panel (one of the 150 by 150 mm sides of the case), and SW2 is a set of
make contacts on input socket SK1. The unit will therefore switch on and off automatically when a jack plug is inserted into or removed from SK1. A socket having a single set of make contacts does not seem to be available so a type having DPDT contacts is used for SK1, but note that only two of the six switch tags of this component are connected into the circuit and that the other four are ignored. Of course, if preferred SW2 can be an ordinary switch and SK1 can be a standard unswitched socket.
When the printed circuit board has been connected to the rest of the unit using the usual multistrand hook up wire, the board can be fitted in place inside the case. It slots into a set of guide rails, fitting into the set nearest the rear of the unit with the component side of the board facing towards the front of the unit. There are several suitable spaces where the battery can be positioned.

In Use

The unit is simply coupled between the instrument and the amplifier using normal screened jack lead

Signals of up to about 5 or 6 volts peak to peak can be processed without clipping and severe distortion being produced, and as the noise level of the unit is quite low there should be no difficulty in using it with a fairly low level signal such as that obtained from a low output guitar pick-up. Thus, in most cases there should be no problems when the unit is connected into a system, but it would be advisable to use some preamplification if the unit is fed from a very low level source such as a microphone.
A little experimentation with the two pulse length controls plus the controls of the synthesiser or other instrument should soon show what settings give the best effects. Similarly, a little experimentation with RV3 will enable it to be set for optimum results. In general, the further RV3 is advanced in a clockwise direction the deeper the amplitude modulation of the input signal, but if RV3 is advanced too far it will probably be found that Q1 becomes permanently switched on and little output signal

YOURCAREER..YOUR FUTURE.YOUR OWN BUSINESS..YOUR HOBBY THISISTHEAGE—OFELECTRONICS! the world's fastest growth industry...

There is a world wide demand for designers/engineers and for men to service and maintain all the electronic equipment on the market today - industrial - commercial and domestic. No unemployment in this walk of life! Also - the most exciting of all hobbies - especially if you know the basic essentials of the subject. A few hours a week for less than a year - and the knowledge will be yours. . . We have had over 40 years of experience in training men and women successfully in this subject.

Our new style course will enable anyone to have a real understanding of electronics by a modern, practica! and visual method. No previous knowledge is required, no maths, and an absolute minumum of theory.

You learn by the practical way in easy steps, mastering all the essentials of your hobby or to start, or further, a career in electronics or as a self-
employed servicing engincer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment using the oscilloscope
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi, VCR and microprocessor/computer equipment.

CACC British National Radio\&eHlectronios School Reading, Berks.RGl 1BR

Shelley Partridge

LAST MONTH we looked at starting a career as a Transmitter Engineer with the Independent Broadcasting Authority or the BBC. This month we will concentrate on opportunities for trainee Engineers and Technical Operators in television and radio stations.
Some of you may well be attracted by the idea of playing a creative part in TV or radio programme making through operating sound or camera equipment in a studio. Perhaps you have used video cameras at school or college, or built your own hi-fi equipment; perhaps you belong to a cine club, are a radio ham or work for a hospital radio station, and therefore you would like to make your career working with technical equipment in broadcasting. Because so many people want to work in broadcasting, competition for trainee posts is always fierce. However, you are someone who has a clear idea of the job you would like to do, have found out what qualifications you need to apply for training, and are determined to obtain these qualifications and you are already a dedicated amateur and the kind of person who can work in a team, and cope with some pressure and hassle, then your chances of getting started in a broadcasting career have never been so good as they are now and will be over the next few years.

Both radio and television broadcasting are expanding. The BBC now provides two and a half extra hours of television each day in its Breakfast TV show; Independent Television's new company TV-AM began transmitting in February this year; Channel 4 went on air in autumn '82. Channel 4's money has stimulated the setting up of many independent film and video production companies. Facilities companies providing television studio space, postproduction services and technical expertise to these independents to make programmes for broadcasting and other purposes (training, sales, corporate communications), have been springing up, particularly in London, but also now in other regional centres. Cable and satellite television are only just around the corner, as you know only too well from this month's cover feature.
So let's consider which organisation may offer trainee opportunities, and what they will expect from you in the way of personal and academic qualifications, then look at recruitment and training patterns for each major broadcasting organisation, and conclude by offering some basic tips on how to get started.

Where The Work Is

The BBC employs some 28,000 people in radio and television, with a substantial concentration in various locations in central and west London, but also at regional centres throughout the country. The BBC is the only broadcasting organisation which recruits school and college leavers regularly as trainees into a limited number of job categories. For the

Hobby Electronics looks at the varied world of Studio Engineers in broadcasting.

Picture courtesy BBC.
financial year 1983/84 the BBC are recruiting far more technical trainees than in recent years and anticipate that trainee recruitment will remain at a high level over the next several years.

Collectively the sixteen Independent Television Companies (including TVAM), plus Independent Television News (owned by all the ITV companies except TV-AM which has its own news service), employ nearly the same
numbers in television broadcasting. These employees are, however, dispersed in much smaller units. Thames Television, for example, the largest ITV company, employs about 2,500 people in its Teddington and Euston studios. There are now forty Independent Local Radio stations on air, spread throughout the country, and another ten due to come on air in the next year or so. They vary in size from

Monitoring sound and vision signals before transmission.

Tape editing in a BBC television sound gallery.
fewer than thirty employees to over one hundred. The Independent Broadcasting Authority is responsible for selecting and appointing ITV and ILR companies; supervises programme planning; controls the adveritising and transmits the programmes for all the Companies.
Each ITV and ILR company recruits staff individually. Most of the ITV companies recruit trainees from time to time, the five largest - Thames, London Weekend, Yorkshire, Granada, Central Independent - taking the majority. Although one or two ITV companies (notably Thames and ITN) recruit technical trainees regularly and provide systematic training, in general trainees are recruited on an ad hoc basis when needed, and training is informal.

Basically both the BBC and ITV companies are looking for the same sort of young people to train as engineers and technical operators, in terms of qualifications and qualities, the numbers taken on by the ITV companies being just simply much smaller. This means that competition is always severe for the relatively few trainee posts which do arise in Independent Television, most recruitment being of people with relevant experience. However, in 1983 due to the current
expansion in broadcasting generally and difficulties in finding suitably experienced technical staff, a number of ITV companies are recruiting engineering and technical operations trainees.

Channel Four is a programme commissioning, not a programme making company. Its staff consists of experienced broadcasters and producers (who plan and coordinate programming), administrators and transmission engineers. The Channel is currently commissioning up to 50% of its programmes from independent film and video companies as well as from the other ITV. companies. A few independents are large enough to have their own small studios and editing facilities; many use the studio and postproduction services of the television facilities companies. Some of these companies are now beginning to recruit trainee operators and audio/video engineers since qualified and experienced people in these fields are in short supply.

Recruitment And Training

Broadcasting organisations demand a variety of pre-entry qualifications from
young people who apply for trainee positions. These employers are also at least as concerned to see how you have demonstrated keen interest through practical amateur activities. Applicants selected for training are more likely to have participated, for example, in a local cine or photographic club; college video or radio programme making, hospital or local radio; may have built hi-fi and electronic equipment, run a disco, recorded a pop group, or play a musical instrument. Appreciation is not enough; you need practical experience gained preferably on your own initiative rather than through school studies alone
e. .
in other words the sort of people who read Hobby Electronics!
Whatever the differences between broadcast radio and television and the video industry in terms of recruitment and training, the personal qualities you need to succeed in these organisations are similar. You should be able to work as a member of a team, long often irregular hours and remain calm and efficient under pressure. You need lots of common sense, a cheerful cooperative personality, and a bright, alert, inquiring mind. All these employers would like to encourage more suitably qualified women to apply for training; opportunities are very good. So make sure you choose to study the right subjects - particularly physics and maths.

The BBC

The BBC recruits Technical Assistants (trainee engineers) for network radio and television studios in London and the regional centres (Birmingham, Bristol, Manchester, Wales, Scotland, N. Ireland). 'Technical Assistants/Television and Radio studios' are trained to test, repair and maintain all equipment used to broadcast programmes, and control switching and routing; also to set up and align broadcasting equipment and in some areas operate it.

Training is completed in approximately three years, beginning with the twelve week ' A ' course at the BBC Engineering Training Centre at Evesham. This course goes over basic principles studied in 'A' level Physics and introduces trainees to studio operations - studio layout, camera techniques, sound desk operation. Those who pass (any who fail have to leave the BBC) then proceed to induction and on the job training in television or radio for about eight months before returning to Evesham for the ' B ' course. This is ten weeks indepth study of basic principles and radio and television applications. Then follows another ten to twelve months 'on-the-job' experience before the final return to Evesham for the ' C ' course - a detailed study of broacasting engineering theory, how equipment works, fault finding, using manuals. On successful completion of the ' C ' course the TA qualifies and becomes a Reserve Engineer.

To apply for a Technical Assistant's post you need ' O ' Levels grades A / C or CSE ' 1 ' in maths, physics and English
plus maths and physics studied to ' A ' level or a TEC certificate/diploma in electronics/electrical engineering (with merit passes). You should have a keen interest in and knowledge of electronics possibly audio or video systems.
The BBC also recruits young people with Higher TEC or degree qualifications in Electronics, Electrical Engineering or Applied Physics for direct appointment as Engineers. The BBC's system of recruiting TAs aged 18 to 21 as potential engineer, as well as direct entry graduate engineers, provides suitably qualified young people with an unique choice and opportunity. For, if you have developed an interest in broadcasting engineering early, have studies the right subjects at school and then join the BBC as a TA you can do as well as the graduate engineer. Promotion after training is up to the individual.

Technical Operators

The BBC has recently created a new grade, Recording Operator, to deal with the increased work-load resulting from the great amount of pre-recording of BBC programmes on video-tape, and is currently offering a number of trainee opportunities in West London - at Television Centre, Lime Grove and New Enterprises Studios. Recording Operators prepare and operate video

film and tape equipment used for recording, editing, transmitting TV programmes and studio inserts. They are responsible for lining up programme material on magnetic tape or film and for ensuring equipment gives the highest standard or reproduction. You must be over 18 , with ' O ' Levels grade A/C or CSE ' 1 ' in maths. physics and English, plus science study - particularly physics - to ' A ' Level or the equivalent TEC. You need good visual ability (an interest in film-making or art), and aural and technical ability (shown by such interests as sound recording, music, hospital/amateur radio or electronics. Training will be begin with the ' A ' course at Evesham; then five months 'on-the-job' in video tape and five months in tele-cine, plus further courses at Evesham.
The BBC also recruits Camera Operators to work in television studios

Directors and vision mixers in a Thames Television control room.
at Television Centre, Lime Grove and the Open University at Milton Keynes, Audio Assistants to work in radio and television studios in the Regions; and Technical Operators, Radio to work in Broadcasting House and External Services, Bush House. All Technical Operators start with the ' A ' course at Evesham followed by on-the-job training and experience, and reach qualified operator status in three years.

Camera and Sound Operators work as junior members of a technical operations team in television studios or outside broadcast unit. They set up and operate cameras and associated equipment or sound reproduction equipment, sound booms and microphones, working closely with the production team. Radio Technical Operators route sound programme sources and completed programmes in the main control room, and operate sound reproduction equipment in radio stations. They are responsible for maintaining high technical quality of sound output.

For all Technical Operator grades you must be 18 plus with ' O^{\prime} levels in maths, physics, English or TEC in electrical engineering. You need a good grasp of electricity and magnetism and appropriate practical interests.
The BBC has a small annual intake of Trainee Sound Managers, mainly graduates, for network radio - people with both technical and creative ability. They recruit periodically for the Local Radio Station Assistant's Registry and look for potential broadcasters from University/Polytechnic media studies type courses, with radio experience.

Independent Television

Only Thames Television among the ITV companies offers a formal Technical Training Scheme. About twelve trainees are recruited each Spring to begin nine months at the Teddington

Training Centre in October. The 1983 scheme is recr uiting sound technicians, engineers and two film editors. Successful candidates are in age range 20 to 30, have completed a Higher TEC or degree course relevant to TV engineering (eg Ravensbourne College Higher TEC) or a film/television course or offer relevant professional experience.

ITN recruit six Trainee Broadcast Television Engineers each year to begin training in September and ask for Higher TEC in electrical/commmunications engineering with a broadcasting bias.

Facilities Companies

In the past the Facilities Companies have recruited only experienced staff, but are now also beginning to take on trainees. They look for technically minded young people with an interest in video systems and a background in electronics, usually over 18. You could be recruited as a trainee video tape operator or audio/video engineer or.as an operator to do high quality transfer and cassette duplication work.

Getting Started

Broadcasting attracts many highly intelligent and well qualified people. Many of the trainee engineers and operators offer qualifications and relevant experience whether amateur or professional above the minimum required. Because so many talented young people like the idea of working in broadcasting, both the BBC, and ITV Companies can take their pick from many hundreds of able young people who apply each year.
The BBC has produced a comprehensive series of leaflets on training schemes, different jobs and careers with the Corporation which they

A BBC engineer setting up a video tape recorder.
will send on request. Be sure to specify the kind of work which interests you. These leaflets may also be available in your local careers office. The individual ITV companies provide information leaflets on jobs within their organisations which they will also send on request. In addition, The Independent Television Companies Association is preparing an information pack on behalf of all the ITV companies which will shortly be available; again, when writing be sure to specify the jobs which interest you.

For information on engineering and technical operator recruitment at the BBC write to:

The Engineering Recruitment Officer, BBC Broadcasting House,
London W1A 1AA.
The IBA will supply up-to-date list of ITV and ILR companies; write to:

The Information Officer,
The Independent Broadcasting Authority,
70 Brompton Road,
London SW3.
These addresses are also in the IBA handbook Television \& Radio 1983 published each year and obtainable from most bookshops. For The Independent Television Companies Association, write to:

The Training Adviser,
ITCA Ltd.
Knighton House,
52-66 Mortimer Street,
London W1N 8AN.

Looking For The Opening

The BBC advertises vacancies in specalist publications such as the amateur electronics and radio press (acrording to type of work). in The

Listener, and sometimes The Guardian media page (Mondays). Details of trainee schemes aimed mainly at graduates are notified to University and Polytechnic careers services; those open to school and college leavers are notified to Local Authority Careers Offices in Central London and the South East, and in the Regional centres. Ask your careers officer for details (address and 'phone number in local telephone directory).

Trainee vacancies with the ITV companies must first be notified to the Trade Union (ACTT), 3 Soho Square, London W1. They are occasionally advertised in the national/specialist press, and are sometimes filled without advertising from the suitable speculative applications already held on file. So make sure you get your letter on file when you feel you have a realistic chance of being considered.

A small but interesting number of technical trainee vacancies with video production and facilities companies are notified to Inner London careers offices and to the Capital Radio Jobfinder service. You should also try making direct approaches to some of these companies. There are various reference books which will give you company details (eg Contacts in Stage, Television, Screen \& Radio; The Video Yearbook; The Creative Handbook) held at the Westminster Central Reference Library and other good reference libraries.

If you are interesting in working in Independent Local Radio you should apply direct to the stations which interest you. You could also look into the courses offered by the National Broadcasting School, 14 Greek St., London W1, which provides training in radio production, engineering and journalism for ILR. Unfortunately, although these course are subsidised by the IBA, they are still expensive and Local Authority grants are not usually available.

Finally some tips for all would-be broadcasters:
-Achieve as high a standard of education as possible ensuring you are studying the appropriate subjects.

- Join a cine club or still phetographic club at school, college or in your local area. If you are keen on sound, get involved with hospital or local radio, run a disco, record your lonal group.
-Find out as much as poss. le about the industry by reading books available on working in radio and television, by talking to people who work in the industry, by obtaining free audience tickets for a television studio show recording, by attending the Inner London Education Authority's Christmas Careers Lectures for sixth formers on television broadcasting if you live in the London commuting area (information from your careers officer).
-Watch films and television programmes analytically - which techniques make different programmes work?
-Look into the relevant further and higher education courses. If you decide to apply for a course, check the prospects well in advance to ensure you will be able to offer the right entry qualifications. Make your application as early as possible in the year before you wish to begin the course, and make early enquiries about your grant aid which may be available from your local education authority.

-Prepare yourself to go to interviews, sometimes at short notice; be ready to ask questions.
-Seek further advice and guidance from your local careers officer.
Don't consider a career in broadcasting simply because you think it will be exciting and glamorous. The glamour soon wears off. A camera operator with a heavy cold filming in filthy weather, who has to spend hours waiting for the weather to clear will hardly find the job glamorous.

Good luck with your search!

Shelley Partridge is a Careers Officer working for the Inner London Education Authority's Careers Service and specialises in the Broadcasting, Film and Video Industries.

HORIZON ELECTRONICS H/H Chands) H/H Charlotte St. Rugby Tel: 78138 me quality. TERRIFIC PRICES. Mail order only				
ABOVE: Just a few exmples Send S.A.E./List ADD: 65 p p8p to all orders under $£ 5.00$VAT: add 15\% VAT to total order value				

Send an S.A.E to receive a list of our current electronio project kits.

Elen Electronics

Tired of boring 3 \& 4 channel lighting controllers. Then try our new 8 CHANNEL PATTERNMAKER for spotlights or lighting screens.

16 different sequential patterns including Catherine Wheel, Screen Writer, Checker \& Light Train.
Kit comprices PCB \& all components including 2 K PROM \& Monitor LEDs. Only $£ 27.00$ + VAT.
Hardware kit including case, 12 way socket \& matching plug, mains lead etc. Only $£ 9.50$ + VAT.
Please add 60 p P\&P to order.
ELEN ELECTRONICS
Unit 9, Telford OP. Centre,
Halesfield 14, Telford, Shropshire
Tel: 0952585697
Further details on request

It's easy to complain about advertisements.
 The Advertising Standerde Authority If an advertisement is wrong. woto here to put it risht.
 ASA Lid. Brook House, Tornngton Place, London WCIE THN.

Boo
 KSに
 heis

THE HE BOOKSHELF is the easiest way to build up your library of electronics books. Order today to have these top titles delivered

To receive your books you have only to fill in the form below and send it, together with your payment, to the address stated. S< SEND TO: HE BOOKSHELF, 513 London Road, Thornton Heath, Surrey CR4 4 AR.

I am enclosing my Cheque/Postal Order/
for: (delete as necessary)
£. . . . (Made payable to A.S.P. Ltd)

Please use BLOCK CAPITALS and include post codes. Name (Mr/Mrs/Miss)
(delere accordingly)
\qquad
Address
\qquad
Signature
Date

Books Required
Price

Add 75p p\&p	0.75
Total Payment	$£$

30p	OA
25p	1N9
70p	1N9

 1N916
1N414
1N400
1N400
1N400
1N400
1N54
1NS4
iN54
IN
 UUU
NNN － N4005
N54017

N5401／2 | S920 |
| :---: |
| 8RID | MNO웅 1A $50 V$

1A 100 V 1A 600
2A $50 V$
2A 400
2 400
云云云等

 2N5062
2N5087
2N5172
2N5192
2N5245 \qquad $2 N_{5401}$
$2 N_{5457}$
$2 N_{5459}$
$2 N 5485$ NiN Coil DPDT 5
$24 \mathrm{~V} D \mathrm{C}$ 240 VAC
6 or 12 VD
Coilsp
$24 \mathrm{~V} D \mathrm{DC}$
240 V AC OPTO
ELECTRO electron告菏总

RUGBY ATOMIC CLOCK

This $\mathbf{Z 8 0}$ micro controlled clock／calender receives coded time data from NPL Rugby．The clock $1 .$. ver needs to be reser．The facilities
include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching．A separate timer allows recording of up to 240 lap times without interrupting the count．Expansion facilities provided．

Ready Buill Unit
Reoprint of ET articles at $£ 1.00+£ 5.00$ carr

AS DESCRIEED IN
 June／July／august
 ISSUE
 MICROTRAINER

Complete Kir $\mathrm{f} 64.00+£ 1.00 \mathrm{p} 8 \mathrm{p}$ 1802 Ref $\mathbf{G 7 . 0 0}$
IDEAL for HOBBYISTS－learn and explore the workings of microprocessors and unravel the mystical field of computers． INVALUABLE for training centres，schools and industries－gives effective insight into micros to engineers，electricians etc INEXPENSIVE－a truly low cost teaching aid－in fact a short step towards developing new ideas and systems．

B B C MICRO COMPUTER
 OFFICIAL DEALER
 －

BBC Model B £399 （incl VAT）Carr £8／unit Model A to Model B upgrade kit $£ 50$ Fitting charge $£ 15$

Individual upgrades also available WORD PROCESSOR＇VIEW＇ 16k ROM E52
TELETEXT ADAPTOR £195 WORLDWISE 8K ROM £39 TORCH Z80 DISC PACK E780 Business，Education and Fun Software in stock FLOPPY DISC INTERFACE

BBC FLOPPY DISC DRIVES
Single drive 51／4＂100K £230＋£6 carr．
Dual drive 51／4＂ $800 \mathrm{~K} £ 699+£ 8$ carr．
BBC COMPATIBLE DRIVES
These drives are supplied in BBC matching
SINGLE 100 K £ 150200 K £ 215^{*}
SINGLE WITH PSU 100 K £ 185 200K $£ 260^{\circ}$
DUAL WITH PSU 200 K £355 $400 \mathrm{~K} £ 475^{*}$ 800 K £595
－These drives are supplied with a switch
Drive Cables：Single \＆8 Dual £12 Disc Manual \＆Formatting Diskette $£ 17.50$

MICRO TIMER

The programmable clock／timer is a 6502 based
The programmable clock／timer is a 6502 based
dedicated micro computer with memory and 4 digit 7 dedicated micro computer with mertory and 4 sigit fiming device with following features：
－ 24 hour 7 day timer
－ 4 completely independent switch outputs － 6 digit 7 segment display output to indicate real time tum－off times and reset times
－Individual outputs to day of week，switch and status LEDs
－Data entry through a simple matrix pad
Further details un request
Complete Ki
$\mathbf{f 5 6 . 0 0}+\mathrm{f} 1.00 p \mathrm{f} p$ $77.00+70 \mathrm{ppqp}$

SX1000

Electronic Ignition

- Inductive Discharge

Extended coil energy
storage circuit

- Contact breaker driven

Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles

SX2000

Electronic Ignition

The brandleading system
on the market today

- Unique Reactive Discharge

Combined Inductive and Capacitive Discharge
Contact breaker driven

- Three position changeover switch
- Over 130 components to assemble - Patented clip-to-coil fitting - Fits all $12 v$ neg. earth vehicles

TX1002

Electronic Ignition

- Contactless or contact triggered - Extended coil energy storage circuit - Inductive Discharge Three position changeover switch Distributor triggerhead adaptors included Die cast weatherproof case Clip-to-coil orremote mounting facility - Fits majority of 4 E 6 cyl . 12 V . neg. earth vehicles Over 145 components to assemble.

Electronic Ignition

- The ultimate system Switchable contactless. Three position switch with Auxiliary back-up inductive circuit. Reactive Discharge. Combined capacitive and inductive. Extended coil energy storage circuit. Magnetic contactless distributor triggerhead. Distributor triggerhead adaptors included - Can also be triggered by existing contact breakers. - Die cast waterproof case with clip-to-coil fitting - Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles - Over 150 components to assemble

MAGIDICE
 Electronic Dice

for the tato ttem but great fun

- Total random selection

Triggered by waving of hand
Bleeps and flashes during a 4 second
Tumble sequence
Auto dispolayed for 10 seconds
Muring and O14 switch on 1 second in 5
Hours of continuous use from PP7 battery
Over 100 components to assemble
SPARKRITE 828 8th Street. Walsall. West Midlands. WS 1 3DE England

	SELF ASSEMBLY KIT
SX 1000	$£ 12.95$
SX 2000	£19.95
TX 1002	$¢ 22.95$
TX 2002	$£ 32.95$
AT 80	$£ 32.95$
VOYAGER	£64.95
MAGIDICE	$£ 9.95$

NAME \qquad HE 9

I PROMISED in the August issue of HE that I would discuss electronic components in this month's All About Electronics. And the first component family that we all need to know about in any study of electronics is the family of resistors. We've already talked about resistance of course; we know that a resistor is something which allows an electric current to flow through it. But the current is actually controlled by the value of the resistor. For instance, if the voltage across the resistor is maintained constant, increasing the value of the resistor would automatically reduce the current flowing through it. The three variables of current, voltage and resistance are totally described by Ohm's Law, which say simply that the ratio of the voltage across a body to the current through the body equals a constant which is the resistance of the body. Ohm's Law can be summarised by the formula

$$
\frac{V}{I}=R
$$

from which

$$
V=\mathbb{R} \text { and } \frac{V}{R}=1
$$

can be derived. These three formulae mean that if we know any two of the three variables associated with a resistance, the third can be calculated.

We can express Ohm's Law and these three formulae graphically, as Figure 1 shows. The graph in Figure 1 shows three important points about the relationship between voltage across and current through a resistance:

- it is linear, ie a straight line
- it passes through the origin
- it occurs for negative values of both voltage and current.
A relationship which is defined for negative values of voltage and current is important because it means that Ohm's Law can be applied to resistors used with AC usage - where voltage and
current alternate between positive and negative values.

What Is A Resistor?

With our knowledge of the interdependence of each of these variables of current, voltage and resistance we can now go on to look at the make-up of a resistor. As you know, in electronics there are specific components which we call resistors. Size of each type is not necessarily related to value - in other words you could have a resistor of value 10MR (ie 10 megohms $=1 \times 10^{6} \mathrm{ohm}$) which is smaller than a 10 R resistor. No - size is normally related to the power which a type of resistor can dissipate (ie, release as heat to the surrounding air - more of that laterl).
One type of resistor which we met two months ago was simply a length of nichrome wire. Now, nichrome wire is made with a very even and constant diameter throughout its length. If you were to do a couple of experiments with two lengths of such wire - having different diameters - you would find that their resistance is proportional to length and inversely proportional to cross-sectional area. So: the longer the wire, the higher the resistance; the thicker the wire the lower the resistance (both fairly obvious, I think!). The actual resistance of the wire can be calculated by using the formula

$$
R=p \frac{1}{a}
$$

where $1=$ length, $a=$ cross-sectional area and p is the resistivity of the wire. Any material has its own resistivity: for example, the resistivity of copper is 1.72×10^{-8} ohms per metre and the resistivity of aluminium is 2.82×10^{-8} ohms per metre, and the resistivity of nichrome is $1.10 \times 10^{-8} \mathrm{ohms}$ per metre.

815

So the resistance of a length of material can be calculated from knowledge of these three variables.

If we take the example of nichrome wire and calculate the resistance of a one metre length of wire, of crosssectional area $0.1 \mathrm{~mm}^{2}$, it will give us a good idea of the use of this resistance formula. Now, the resistivity of nichrome is 110×10^{-8} ohm metre, so the resistance is

$$
\frac{1}{a}=\frac{110 \times 10^{-8} \times 1}{1 \times 10^{-7}}
$$

$=11 \mathrm{R}$
From this result, it is fairly obvious that although a material such as nichrome wire exhibits the principles of resistance we couldn't use it to manufacture resistors to any great value - just think of the length of wire needed to make a 1 M resistor.

To make high value resistors a material with a higher resistivity must be used. The most common material used is carbon. Carbon belongs to a group of substances we call semiconductors. For one reason or another (as we'll find out over the coming months) semiconductors are the most important elements in the electronics world. Other semiconductors often used are germanium. and silicon.
Carbon's high resistivity (about 180 x 10^{-8} ohms per metre) means that high resistances can be manufactured with quite small body sizes. Two main types available are:

1) solid carbon resistor (Figure 2). Graphite (a form of carbon) is compressed into a thin rod and metal leads are connected to each end. The rod and connections are encased in an insulating body.
2) Carbon film resistor (Figure 3).

Figure 1. Showing the graphical relationship between voltage across a resistor and current through it.

Figure 2. Make-up of a solid carbon resistor.

Graphite is deposited as a thin film on a ceramic insulating body. A groove is cut into the film until the required resistance is reached. Then metal caps are crimped to the ends to form connections and the whole resistor is coated with an insulator.

Resistors made from carbon are cheap and can be made to quite a high accuracy (say, within 5% of the required value). They are therefore used a lot in electronics. But they do, however, have some disadvantages:

- their resistance varies a great deal with changing temperature
- they are prone to resistance changes due to mechanical shock or just age.

So, for more exacting requirements we use other types

- metal film
metal oxide film.
Construction is similar to carbon film resistors but a layer of metal or metal oxide is deposited on the insulating body. These make much more stable resistors and generally speaking better accuracy can be achieved (say, $\pm 1 \%$ of the required value).

NPV

Generally speaking a wide range of values of resistors is needed anything from a fraction of anm to

Figure 3. How a carbon film resistor is made-up.

Figure 4. The resistor colour code and a table relating to each band and its colour to a resistor's value. The bulk of the colours (red to violet) are the colours of the spectrum.

Figure 5. Simplest resistor circuit it is possible to make - a single resistor connected to a 10 V power source.
several million ohms can be seen in any common piece of electronic equipment. It would obviously be impossible to manufacture every possible value: and anyway, resistors are rarely their exact quoted value - some are made with a tolerance of $\pm 20 \%$, ie they could have a value within the range 20% under to 20% over the specified value. So to provide reasonable coverage of all possible values, resistors are made to standard ranges. A typical standard is the E12 range shown in Table 1

Other standard ranges give different resistance. For example, common American resistances may have values such as 3 K32 and 6K65. When we specify a particular resistor calculated for a circuit, then we have to use the nearest value to it from the standard range. The standard range value is known as the nearest preferred value (NPV). To differentiate values of
resistors (they all look the same, after all, don't they?) we code them with an internationally accepted code known as the resistor colour code. Resistors are coloured with thin loops or bands around their bodies. Cading and decoding what the different bands mean is quite straightforward and is shown in Figure 4.

Each of the first two bands stands for a digit. The third band stands for the 'multiplier' - quite simply the number of zeros behind the first two digits.

Thus a colour-coded resistor whose first three bands are red, violet, yellow would be of value 270000: red $=2$, violet $=7$, and yellow $=$ four zeros, ie 27 k . The fourth coloured band (if used at all) gives the resistor's tolerance.

Now we've looked at resistor values and codes it only remains to look at power ratings, and then we can go to look at circuits using resistors. Last month we discovered the heating effect of an electric current. Power is dissipated in the form of heat whenever a current flows through a resistor, and, if that heat is too great, the value of the resistor may change, or worse still, the resistor may be damaged - it may 'burn-out'. Manufacturers give resistors power rating, and the actual power which a resistor dissipates must always be less than its power rating.

Power dissipated by a resistor is calculated from the power formula we saw last month

$$
P=I V \text { (measured in watts) }
$$

or because $V=I R$ and $I=V / R$.

$$
P=I^{2} R=\frac{V^{2}}{R} \text { watts }
$$

So, knowing the voltage across a resistor, or the current through it, or both, the power dissipated by a resistor in a particular application can be calculated and a resistor can therefore be used of high enough rating.

Resistors In Circuits

We have looked at some simple circuits using resistors over the last two months. It's worth repeating them here, I think, before moving on to more complex circuits. The simplest circuit we could possibly build is shown in Figure 5.

E12 Resistance Values

10	100	1 K	10K	100K	1M
12	120	1K2	12 K	120 K	1 M 2
15	150	1 K 5	15K	150K	1 M 5
18	180	1 K 8	18 K	180K	1 M 8
22	220	2K2	22 K	220K	2 M 2
27	270	2K7	27K	270K	2 M 7
33	330	3K3	33K	330K	3 M 3
39	390	3K9	39 K	390 K	3M9
47	470	4K7	47K	470K	4 M 7
56	560	5K6	56K	560K	5 M 6
68	680	6K8	68K	680K	6 M 8
-82	820	8K2	82K	820K	8M2

Table 1. Resistor values in the E12 range. The first column lists the basic resistor values; all other resistors are simple decades of the basic resistors

The voltage across the resistor, V, is indicated by the arrow shown beside the resistor. The arrow head indicates the more positive side. Current is indicated by the arrow head within the circuit, which should always point in the direction of current flow, ie from positive to negative.

In the circuit of Figure 5 , if $\mathrm{V}=10$ volts and R1 $=100$ R the current, I , must equal (from Ohm's Law)

$$
\frac{V}{R}=\frac{10}{100}=0 A 1
$$

The resistor must therefore be capable of dissipating at least

$$
\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{100}{100}=1 \mathrm{watt}
$$

Figure 6 shows a more complex example of a circuit using two resistors. Such a circuit is often known as a voltage, or potential, divider because the voltage at the junction of the two resistors is always a strict ratio of the voltage across the whole circuit. We can think of the two resistors as forming a circuit which will provide an output voltage which is always a particular ratio of an input voltage.

The voltage at the resistor junction (classed as the output voltage, V out) is given as the ration of the output resistor (R 2), to the total resistance ($\mathrm{R} 1+\mathrm{R} 2$), times the input voltage (Vin). As a formula

$$
V_{\text {out }}=\frac{R 1}{R 1+R 2} \times V_{\text {in }}
$$

And, in the circuit of Figure 6

$$
V_{\text {out }}=\frac{500}{1500} \times 12=4 V
$$

Certain types of resistors (potentiometers - called 'pots' for short) make use of this potential dividing capability to allow a continually variable output voltage to suit the application. The volume controls of a hi-fi system or TV are good examples of this. Such a pot is placed at the amplifier input of the equipment, and the output voltage is controlled by the ratio of the two resistors Figure 7 shows the make-up of a simple pot. By varying the position of the 'wiper' (ie, the junction of the two resistors), the ratio between the two resistors is changed and so the output voltage changes. You should have gathered, from the example of a pot used to control volume from an amplifier, that pots (in fact all resistors too) can be used with AC voltages and signals as well as DC. Figure 8 shows the circuit symbols of a pot.

More Complex Circuits

Electronic circuits, of course, are usually far more complex than those of say. potential dividers and some methods must be established to help us understand them. Take for example the circuit in Figure 9. As the resistors are in series, the current, I, must flow through each of them. The voltage across each of these resistors depends

Figure 6. A voltage divider or potential divider is made with two resistors. The output voltage, Vout, is a ratio of the input voltage, Vin .

Figure 7. Make-up of a pot - a potentiometer. The wiper can rotate around the resistive material altering the ratio between R1 and R2.

Figure 8. a) Symbol of a pot used as a potential divider. b) Symbols of a pot used as a variable resistor - either symbol is correct, but version c shows correctly how the pot is physically connected in a circuit.

Figure 9. A more complex circuit, consisting of three resistors in series. The total voltage is made up of three voltages across each resistor. The current flows equally through each resistor.

Figure 10. Three parallel resistors. In this circuit the voltage across each resistor is the applied voltage, V, but the total current lior, is made up of the three separate currents through each resistor.
upon each resistors value according to the formula.

$$
V=I R
$$

and the total voltage, $V_{\text {tot }}$ equals the sum of the individual resistor voltages, ie

$$
V_{\text {tot }}=V_{1}+V_{2} V_{3}
$$

However, when resistors are in parallel, as in Figure 10, the voltage across each resistor is equal, therefore the current through each is dependent on its resistance, according to the formula

$$
I=\frac{V}{R}
$$

and the total current, $l_{\text {tot }}=I_{1}+I_{2}+I_{3}$.

Equivalent Circuits

We can simplify complex circuits which may seem difficult to understand into equivalent circuits - circuits which theoretically perform the same job with a minimum of components. II say 'theoretically' because these equivalent circuits might not work in a practical
arrangement - they are often only used to aid our understanding of complex circuits.)

A simple example can be made of the circuit in Figure 9. The series resistors can be replaced by a single equivalent resistor. Its value can be found by using the formulae associated with Ohm's Law. We know the total voltage, Vitt, and we know the current, I. Therefore, the equivalent resistor.

$$
R=\frac{V_{10 t}}{I}
$$

But, we also know that $V_{\text {tor }}=V_{1}+V_{2}+V_{3}$.

$$
\text { So: } \quad R=\frac{V_{1}+V_{2}+V_{3}}{1}
$$

But, $V_{1}=I R_{1}, V_{2}=I R_{2}, V_{3}=I R_{3}$, so

$$
R=\frac{I\left(R_{1}+R_{2}+R_{3}\right)}{1}
$$

therefore $R=R_{1}+R_{2}+R_{3}$
In other words, if resistors are in series (and this applies to any number of resistors), their equivalent resistance is found by simply adding their individual resistances. Likewise in the circuit of Figure 10 where three resistors are in

Figure 11. Quite a complex electronic circuit, but we can reduce it in complexity to an equivalent circuit.

Figure 12. An equivalent circuit of that in Figure 13, used to calculate the voltage at point A.

Figure 13. Another equivalent circuit of that in Figure 13, used to find the current, I, in the circuit.

Figure 14. Basic form of a capacitor two paralrel conductive plates separated by a dielectric.

Figure 15. An electrolytic capacitor. The 'plates' are formed by the positive electrode and the surface of the electrolytic. The dielectric is the gaseous oxide layer around the positive electrode.

Figure 16. The circuit symbol for an electrolytic capacitor, showing that it is polarised and must be inserted the correct way round into a circuit. The solid bar indicates the negative lead.
parallel, we know that the equivalent resistance

$$
R=\frac{V}{T_{\text {tot }}}
$$

But, we know that $I=I_{1}+I_{2}+I_{3}$, and

$$
\begin{aligned}
I_{1} & =\frac{V}{R_{1}}, I_{2}=\frac{V}{R_{2}}, I_{3}=\frac{V}{R_{3}} \\
R & =\frac{V}{\frac{V}{R_{1}}+\frac{V}{R_{2}}+\frac{V}{R_{3}}} \\
& =\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}
\end{aligned}
$$

or, inverting both sides

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

In other words, for parallel resistors (any number) the reciprocal of the equivalent resistor is found by adding the reciprocals of the individual resistors.

Don't be put off by all of this: it's often easier to calculate the equivalent value of paralleled resistors than it would first appear. For instance, if two equal valued resistors are in parallel (say, two 10 k resistors) the equivalent value is half of the value of a single resistor (ie, 5 k). If three equal valued resistors are in parallel the equivalent value is one third the value of a single resistor (ie, 3 k 3 , following the above example). With four equal resistors, the equivalent is one quarter, and so on.
The equivalent resistance of two unequal resistors (R_{1} and R_{2}) in parallel can be calculated quite easily by the simple formula:

$$
R=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}
$$

However, if there are three or more unequal resistors in parallel then you'll have to use the reciprocal formula, but that doesn't happen often, thankfully.
Armed with all this knowledge, it is possible now to simplify some quite
complex circuits. An example might be something like that in Figure 11.
We might have to calculate the current I, and the voltage at point A in the circuit. It looks complicated but, in fact, isn't. Take it in the following stages:

1) Calculate the equivalent resistance resistors R4 and R5 - ie, two resistors of 1 k in parallel $=500 \mathrm{R}$
2) Calculate the equivalent resistance of R3 in series with that in stage 1 ie, two resistors of 500R in series = 1k
3) Calculate the equivalent resistance of R2 in parallel with that in stage 2 ie, two 1 k resistors in parallel $=$ 500R
4) The circuit has now been reduced to that in Figure 12. The voltage at point A must be 5 V ie, it is at the mid-point of the potential divider formed by the two resistors
5) The total equivalent resistance is formed by two 500R resistors in series ($=1 \mathrm{k}$) and so the final equivalent circuit is as shown in Figure 13.

From the formulae associated with Ohm's law, the current.

$$
I=\frac{V}{R}=\frac{10}{1000} 10 \mathrm{~mA}
$$

QEDI Simple, isn't it?

The second component family we need to look at is that of capacitors. Any capacitor (Figure 14) consists essentially of two parallel plates of conducting material separated by an insulator (called a dielectric). When a capacitor is inserted in an electric circuit (such as that in Figure 14) so that the voltage appears across the capacitor plates, electrons gather on the negative side. Similarly electrons are repelled from the positive side so that a depletion of electrons occurs there. The circuit symbol for a capacitor is shown in Figure 15.

If the capacitor was instantly disconnected from circuit in this condition this gathering of electrons on one plate and depletion on the other will remain - the capacitor is said to hold its 'charge'.
The capacitance of a capacitor is a measure of its ability to hold this charge and is measured in Farads (abbreviated F). One Farad is a large unit in electronic terms and so capacitors of values in uF (microfarad ie, $10^{-6} \mathrm{~F}$); nF (nanofarad ie, $10^{-9} \mathrm{~F}$), pF (picofarad ie, $10^{-2} \mathrm{~F}$) are often used.
In the same way that resistance of any material can be calculated from the formula

$$
\mathrm{R}=p \frac{1}{\mathrm{a}}
$$

so can capacitance of a capacitor be calculated from the formula:

$$
C=\epsilon \frac{a}{d}
$$

where a is the area of the capacitor plates and d is the distance between plates. The constant, ϵ, is the permittivity of the dielectric used in the capacitor (I suppose it could be called

All About Electronics

capacitivity but that's a bit of a mouthful!). Different insulators have different permittivities and in the same way that conductors are chosen for resistors because of their resistivity, so insulators are chosen for capacitors because of their permittivity.

Although the basic idea of a capacitor consisting of two plates separated by a dielectric remains true whatever dielectric is used, the actual shape and appearance is altered due to the physical characteristics of the dielectric. There are three common solid dielectrics: polyester, ceramic and mica. In addition, there is a capacitor whose dielectric is the thin layer of metal oxide which occurs due to electrolysis - this is known as an electrolytic capacitor. The four types are:

1) Ceramic

Ceramic is very brittle and cannot be easily shaped so capacitors are formed on the simple parallel plate basis already described. Ceramic has a high permittivity and so quite high capacitor values can be made with small body sizes.

2) Mica

Like ceramic, mica is very brittle and cannot be shaped, so again mica is only used in a parallel plate arrangement. Mica's permittivity is not so high as ceramic's, so for the same body size only lower capacitor values can be made. Mica's main advantage is the fact that it allows highly accurate capacitors ($\pm 1 \%$) to be achieved.

3) Polyester

Polyester film is easily shaped and can be rolled between aluminium foil (the plates) to give large areas of plates therefore high capacitor values can be made with small body size.

4) Electrolytic

Electrolytic capacitors depend on the electrolysis of a liquid electrolyte to form a layer of gaseous oxide on one of two electrodes inserted into the electrolyte (Figure 16).
T. Ie two 'plates' consist of the positive electrode and the liquid electrolyte (not the negative electrode!) The distance between the plates is the thickness of the gaseous oxide. Electrolytic capacitors are polarised and so must be inserted into circuit the correct way round otherwise damage will occur. In practice they are marked with a symbol $(+)$ or (-) in indicate polarity, or sometimes the positive end of the capacitor body is ridged. The circuit symbol of an electrolytic capacitor is shown in Figure 17.

It is impossible to manufacture accurate values of capacitors using electrolytic dielectrics but nevertheless they are extremely useful due to the fact that very high values (say, 10000 F) can be made with relatively small body sizes.

All capacitors have a voltage rating and the potential difference applied to a capacitor's leads must never exceed the rated voltage (which is normally printed

Figure 17. The simplest AC capacitor circuit, Calculation of the current flowing in the circuit is identical to a resistor circuit as long as we know the reactance of the capacitor] and that depends on the source voltage frequency.

Figure 18. A potential divider using a capacitor circuit. The output voltage depends not only on the value of the capacitor but also on the frequency of the input voltage!
on the capacitor's body). In a lot of cases the voltage rating will be high enough for the majority of applications but electrolytic capacitors for example have quite low ratings eg 10 V and care should be taken to make sure the rating of any capacitor is not exceeded.
Now capacitive effects are very different in DC circuits from AC circuits. So different in fact that I am going to leave their DC effects until another month. For the rest of this instalment I will concentrate on capacitors in AC circuits.
I have already pointed out that resistors can be used in AC or DC circuits and all calculations are identical in either. The circuits used with resistors can be used with capacitors too, however the similarities between resistor circuits and capacitor circuits only occur when the power sources of the capacitor circuits are AC.
For example, the circuit of Figure 18 shows a capacitor of value 1 uF connected to an AC source of 10 V at 200 Hz . Note that even though the power source is AC, I have assumed the circuit to be drawn in an instant in time - and at the particular instant in question the voltage at the top of the circuit is positive (hence the voltage arrow is pointing upwards and the current arrow heads points to the right). The voltage and current could equally have been the opposite way round if a different instant were chosen.
Now, how can we calculate the current in the circuit?

The answer comes from the fact that any capacitor has reactance (don't worry about what it is - just think of it for the time being as an AC resistancel) measured like resistance, in ohms, but given the symbol X. Now, a capacitor's reactance is given by the formula

$$
X=\frac{1}{2 \pi f}
$$

From this formula, you will see that the reactance is inversely proportional to frequency of the source. So the capacitor's reactance will go down as the frequency goes up.
In other words, we need to know the frequency of the source to define exactly what the circuit does.

At 200 Hz a capacitor of value 1 uF will have a reactance

$$
X=\frac{1}{2 \pi c \mathrm{c}}=\frac{1}{2 \pi \times 200 \times 1 \times 10^{-6}}
$$

$$
=800 \mathrm{R}
$$

So, the current I in the circuit of Figure 17.

$$
I=\frac{V}{R}
$$

or, more correctly speaking.

$$
I=\frac{V}{X}=\frac{10}{800}=12 \mathrm{~mA} 5
$$

Likewise, any other of the circuits using resistors, that we have looked at this month can be used with capacitors (but AC only remember!)

Let's take a last look at the potential divider circuit but with a capacitor instead of one of the resistances, as in Figure 18.
The output voltage is defined exactly as before (but using reactance X, instead of resistance R2) in the formula. That is

$$
V_{\text {out }}=\frac{X}{X+R_{1}} \times V_{\text {in }}
$$

But, we know that reactance, X, changes with frequency, so the output voltage of the potential divider must also change as applied frequency changes! This concept is an important one - it forms the basis of many things, eg tone controls of an amplifier, and we will be studying it a great deal.

But that's enough for this month: we have seen a lot of new things components, circuits, formulae etc. Next month we will look at another family of components - the most important as it happens. Like resistors, this family uses semiconductors as its main elements but with very different effects.

FOR HI-FI \& ELECTRONICS ENTHUSIASTS CONCEPT ELECTRONICS LTD
 51 Tollington Road, London N7 6PB

 Mall order onlyWe are the speciallst of electronic kits and rack mounting cabinets. A catalogue with complete range of products including pre-amp modules, power amp modules, pere and power ampinier modules, complete kits of amplifiers, equalizers, reverberation control modules music menerator, aptrey flourescent lisht and hish equlth rack mounting cabinets etc. with illustrative pictures now availabe at the cost of 35 p mounting 25 p p\&.
Professional rack mounting cabinet

Panel Slze Rear Box Price WH (inch) WHD AL STEEL $\begin{array}{llll}19 \times 5 & 17 \times 4.5 \times 10 & 27.54 & 23.54 \\ 19 \times 4 & 17 \times 3510 & 25.24 & 2.24\end{array}$ $\begin{array}{lllll}19 \times 4 & 17 \times 3.5 \times 10 & 25.24 & 21.24 \\ 19 \times 3.5 & 17 \times 3 \times 10 & 24.09 & 2009\end{array}$ $\begin{array}{lllll}19 \times 3.5 & 17 \times 3 \times 10 & 24.09 & 20.09 \\ 19 \times 3 & 17 \times 2.5 \times 10 & 24.09 & -\end{array}$ $\begin{array}{lllll}19 \times 3 & 17 \times 2.5 \times 10 & 24.09 & - \\ 19 \times 2.5 & 17 \times 2 \times 10 & 22.94 & 18.94\end{array}$ $\begin{array}{lllll}19 \times 2.5 & 17 \times 2 \times 10 & 22.94 & 18.94 \\ 19 \times 6 & 17 \times 5.5 \times 12 & 28.69 & 24.69\end{array}$ $\begin{array}{lllll}19 \times 6 & 17 \times 5.5 \times 12 & 28.69 & 24.69 \\ 19 \times 5 & 17 \times 4.5 \times 12 & 27.54 & 23.54\end{array}$ $\begin{array}{lllll}19 \times 4 & 17 \times 3.5 \times 12 & 25.24 & 21.24 \\ 19 & 17 & \end{array}$ $\begin{array}{llll}19 \times 3.5 & 17 \times 3 \times 12 & 24.09 & 20.09 \\ 17 \times 3.5 & 15.5 \times 3 \times 9 & 21.79 & 1779\end{array}$ $\begin{array}{lllll}17 \times 3.5 & 15.5 \times 3 \times 9 & 21.79 & 1.79 \\ 17 \times 2.5 & 15.5 \times 2 \times 9 & 20.64 & 16.64\end{array}$ $\begin{array}{llll}17 \times 3.5 & 15.5 \times 3 \times 5 \times 12 & 25.24 & 21.24 \\ 17 \times 4 & 15.5 \times 2.5 \times 12 & 24.09 & 20.09\end{array}$

Please add $£ 2.50 \mathrm{p} / \mathrm{p}$ per item
\# Wholly made of black anodised aluminium sheets \# Sultable for high quality amplifers and many other purposes $\begin{gathered}\text { Top, slde and rear cover. removable for access }\end{gathered}$ * Separate front mounting plate * Heavy gauge front panel is of brushed aluminium finish enhanced with two professional handles \# With ventilation slits and plastic feet.
The low cost steel version is also available. The size and features as well as the front panel is the same as the aluminium cabinets except the rear box is manufactured from steel painted in black.

CONTROL MODULES

TY-7 Electronlc touch switch
£2.90 KIt $£ 4.50$ Ass TY-11 Light activated switch
Tr 18 Sound ${ }^{22.20 ~ K i v i t e ~} 8.50$ Ass. Γ - 18 Sound activated switch (Clap switch) $£ 4.50 \mathrm{KIt} \mathbf{£ 5 . 9 5} \mathrm{Ass}$. (voice-switch) $\mathbf{E 5} 5.50 \mathrm{klt}$ e (voice-switch) $£ 5.50 \mathrm{KIt} £ 7.50$ Ass. (Recelver and transmitter)
£17.20 KIt £21.95 Ass.

MAIL ORDER PROTECTION SCHEME

If you order goods from Mail Order Advertisers in this magazine and pay by post in advance of delivery, this publication will consider you for compensation if the advertiser should become insolvent or bankrupt. provided:

1. You have not received the goods or had your money returned; and
2. You write to the publisher of this publication explaining the position not earlier than 28 days from the day you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insolvent to a limit of $£ 1,800$ per annum for any one advertiser, so affected, and up to $£ 5,400$ p.a. in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedures have not been complied with, at the discretion of this publication, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of reader's difficulties.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payments made in response to catalogues, etc, received as a result of answering such advertisements):
CLASSIFIED ADVERTISEMENTS ARE EXCLUDED.

Variable

Chuck out your batteries and get plugged into
the HE 3-30 volt Power Supply.
G. Macaulay

NO MATTER what your interest in electronics, there are two items of test gear that are essential. One is the common or garden multimeter and the other is a good power supply unit.

Most projects which appear in this publication need a power supply in the range of $3-30 \mathrm{~V}$, with a current consumption from a few hundred microamps to several hundred milliamps. Sometimes projects can be run from batteries - but since it costs nearly two thousand times more for battery power than for mains electricity, it obviously makes good sense to use the latter!
Looked at this way, a PSU can be seen as a good investment which will pay for itself in a short time. The design presented here is both simple to build and inexpensive, moreover it has a professional performance. The design is also tried and tested, since several hundred have already been supplied in kit form over the the last couple of years.
The desirable features of such a PSU are fairly easy to summarise.
Firstly, it must be capable of delivering about an amp of current; this will allow items such as power amps to be driven directly from the supply. It must also have a metered output so that the voltage can be set accurately, while low ripple is an important requirement, especially when powering audio and logic circuitry; this design has less than 10 mV ripple voltage on the output.
Apart from these specifications, short circuit protection is essential otherwise you will soon end up with a dead supply, and have to replace the output stage.
Considering the confined space in which many constructors work, it is almost inevitable that the output will be shorted out sooner or laterl No power supply can be guaranteed to operate into a short indefinitely, but the present design will withstand limited duration short circuits without damage.

Last but by no means least the power supply must be portable. 'Murphy's Law' will dictate that the power supply will always be needed in the most inaccessible places!

The Current

The PSU has been designed specifically for experimenters and so meets all the requirements just outlined. Its output is fully variable from three to thirty volts and has automatic current limiting set at approximately 1.1 amps ; the ripple voltage is typically 3 mV peak-to-peak, 1 mV RMS.
The circuit diagram is shown in Figure 1. For descriptive purposes it can be broken down into three parts: first, raw DC at about 30 V is generated from the secondary $(24 \mathrm{~V})$ winding of $T 1$ by the bridge rectifier BR1 and is smoothed by the 2000u capacitor formed from C1, C2.

The next section, based on IC1, generates a very stable, ripple-free reference voltage. The IC is connected as a comparator with a gain of two; at
the switch-on, the Zener ZD1 presents a high impedance and therefore almost the full output voltage appears at pin 3 (the drop across R1 due to an input current of microamps is negligible). The output is also coupled to the inverting input, pin 2, via the voltage divider formed by R2 and R3, so that about half the input is applied to pin 2. Therefore no matter what the condition of the output when power is first applied, the non-inverting input is always more positive than the inverting input, so output must swing towards the positive rail.
But as it passes the Zener voltage, pin 3 stabilises at 15 V , and the output remains rock steady on 30 V . Once stabilised, the current drive to ZD1 is virtually constant and this results in very little ripple voltage on the reference output.
A proportion of the reference voltage is picked off by RV1 and drives the non-inverting input of IC2, another comparator but with a gain of one.
(Editorial Note: Although this circuit is tried, tested and has been proved to be generally reliable, it may not work as described with some 741 ICs. If any instability is encountered, reliable operation can be quaranteed by connecting a resistive divider of 10 k and $4 k 7$ between the 30 V rail and OV , and

Figure 1. The Circuit.

connecting a 1 N4148 signal diode from the junction of the resistors to the cathode end of ZD1 (connect the cathodes together). Then, at power-on, the doiode is forward biased, placing about 10 V across ZD1 and ensuring a positive output from IC1. As soon as the voltage on the inverting input passes 10 V , the new diode is reversed biased and the op-amp will maintain a constant current drive to ZD1. However this modification will only be required in exceptional cases - and it may be simpler just to use a 741 from a different batch.)

MISCELLANEOUS
SW1
DPDT
(part of RV1)
T1 240/24V, 11/2A M1............. 2mA panel meter PCB; case (see Buylines); control knob; $2 \times$ sping-clip terminal; cable clamp; wire, solder, nuts and bolts etc.

BUYLINES page 34

Figure 2. Assembly positions for the power supply's internal mountings: above, where and how to drill; below. the assembly seen from above.

Figure 3. The external mounting positions: above, the front; below, the back.

Pin 6 of IC2 drives the Darlington pair, Q1, 2. Because these are connected in the feedback loop around IC2, the output voltage at the emitter of Q 2 will exactly equal the input voltage on pin 3, since the pin 6 voltage will be forced slightly higher to compensate for the base-emitter voltage of the two transistors, plus the voltage dropped across R5. At the same time, any fluctuation in output voltage caused by varying load currents will be reflected around the feedback loop, and will be similarly compensated for at the output of IC2

The output voltage is monitored by M1 via scaling resistor PR1; current limiting and short circuit protection are provided by monitoring the voltage across R5, which is in series with the load. If excessive current is drawn from the supply, this voltage will go above the OV6 level required to turn on Q3, which then shunts current away from the base of Q1, thereby limiting the output current.

The circuit provides limited protection against operation into a short, and this should be avoided for prolonged periods because Q1 will eventually (and sooner than later) overheat and blow out. However at current of 1 A or less, there is no danger of this occurring.

Construction

The work involved here falls neatly into two parts, mechanical and electronic; however it is far easier to do the mechanical part first. Start with the meter; examine the back of this and you will see two brass nuts. Undo these and remove the retaining shroud.

Next, following Figure 2, drill the front of the case. Attach the pot, SK1 and meter into position. Once this has been accomplished attention can be

turned to the heatsink. Figure 2 shows the position of all the mounting holes whilst Figure 3 shows the general arrangement of the completed assembly. Although it is possible to mark out all the hole positions it is easier, in practice, to use the PCB and transformer mounting holes as a template, as this also saves a considerable amount of time.

The transformer and Q2 can now be mounted. The mounting holes for the latter are already drilled in the heatsink; Q2 does not require an insulating kit in this application.
Lastly the mounting holes for the heatsink assembly should be drilled in the back of the box as shown in Figure 2, and this completes the mechanical assembly.
Now the electronics can commence. The overlay and interwiring is shown in Figure 4. The PCB should be wired first, paying attention to the correct orientation of the electrolytics and semiconductors. Once the board has been completed it should be checked for solder blobs, dry joints etc before

Figure 4. The components. The trick is to get the wire links short enough so that they don't make a 'rat's nest' and long enough so that they don't pull off if any components work loose in transit.
being mounted onto the heatsink.
As shown in the diagram the board is mounted by means of long 6BA screws, secured in position by nuts either side of the board. Ensure that the board is about $1 \frac{1}{2}$ in above the heatsink to facilitate connection to Q2. Before mounting the board, solder flying leads to it, leaving each about a foot long.
Once the PCB is mounted final assembly can commence. Connect the flying leads to their respective destinations, shortening them as required, then fit the completed assembly to the back of the case and the construction is completed.

Setting Up

Adjust PR1 to the half-way point and RV1 to minimum, then switch on. Now if your take RV1 to about the mid-point, there should be an indication on the built-in meter.
Coninect a multimeter, set to read at least 30 VDC , across the output and tweak RV1 until it reads 30 V . Then with the lid removed - and being extremely careful not to come into contact with the mains wiring! adjust PR1 until the PSU meter also reads 30 V . This completes the set-up adjustments and rotating RV1 should now produce an output voltage between 3 and 30 V for you to use as you please.

DURRANTS (ELECTRONIC COMPONENTS) 9 ST MARYS STREET, SHREWSBURY, SHROPSHIRE TELEPHONE 61239

ALL PRICES INCLUDE V.A.T. add 40p P\&P
Resistors $1 / a w 5 \%$ c/film all values 1 peach (min 10); Resistors $1 / 2 w 5 \%$ c/film all vatues $2 p$ each (min 10); Capacitors (polyester). 001 MFD to. $\{$ MFD 8p each; Capacitors (ceramic) 1 pf to. 047 MFD 6p each; Capacitor packs 100 polyester/ceramic $\mathbb{1} 1.50$; Resistor Packs $1001 / / 1 / 2 \mathrm{c} / \mathrm{lilm} 60 \mathrm{p}$; Resistor/Capacitor Packs 100 mixed 90 p; Bush StereoCassette Panel (new with diagram) E1.00; T.C.E. Stereo Decoder Panel (new) £1.00, Copper Clad Board
$81 / 4^{\prime \prime} \times 5^{1 / 22^{\prime \prime}} 75 \mathrm{p}$; Copper Clad Board $4^{\prime \prime} \times 5^{1 / 2^{\prime \prime} 39 p}$: Slide SwitchD.P.D.T. (mintype) 12 peach 10for E 1.00 ; ReedSwitch N/ocontacts 15 peach 10 for $£ 1.20$; M.E.S. Lampholders(screw 10 for E1.00; Reed Switch N/ocontacts 15p each 10for £1,20;M.E.S. Lampholders (screw
down type) batten 10 e esch; Relays 24 v coil 2 polec/over 30paach; Holderfor above 10p down type) batten 10p esch; Relays $24 \mathrm{vcoil} 2 \mathrm{polec/over} 30 \mathrm{peach}$; Holderfor above 10p
each; Connecting Wire Assorted Colours 50 mtrs B0p; Micro switch 10a contacts, lever each; Connecting wire Assorted Colours 50 miss Bop; Micro switch 10a contacts, lever
type 35 p; MicroSwitch Burgess (Min Type) 20p; Bridge Rectifier 30v350ma 25 peach 5 for E1.00; Transistors BFR50-BFY51 15p; ORP12 Light Dependant Resistor £1.20; Cassette Tape Counter Units 45 p; Mains Filter 240v 15A E1.50; Terminal Blocks 12 way 25 p; Stranded Connecting Wire: orange, brown or black 10 yds 20 p; Heat Sink Compound 95 p per tube; Sold ering Irons 240 v 25 w E4.99; 100 mfd 63 v Radial Capacitors 8 p each 10 for 50p; 2.2MFD 63v Axial Capacitors 5 p each io for 40p; 100 Assorted Nuts and Bolts (B.A. \& Metric) 25 p

This is a sample of the many thousands of itemsin stock
Price lists 15p \& 25p P\&P

Modem Kit Only £39.95

* CCITT standard
* 300 baud full duplex
* Direct connection:- greatly reduces data loss associated with acoustic couplers
* Powered from phone lines therefore no power supply required
* Opto coupled data in and data out for intrinsically safe operation
Build it yourself for $£ 39.95$ including VAT and postage (note - case not included).

Racom Ltd, Dept. A.
81 Cholmeley Road, Reading, Berks RG1 3LY Tel: 073467027

CAMTEC CIRCUITS AND SYSTEMS LIMITED
5 York Road, Bognor Regis, West Sussex PO2 10W Tel: (0243) 862911

PROBLEMS WITH THAT PROJECT?

We will - * BUILD
* TEST
* REPAIR
All your Electronics Kits and projects.
Prices from only $£ 5.00$
*Call us now for a quote. *
WEB Logic Systems Ltd 15 High Street, Harpenden, Herts. 05827-62119

When you need to update yourself with all that is available in the "Do-it-yourself" market, then you need the Hobby Herald.

Packed with product information essential to the electronics enthusiast, this new electronics catalogue lists over 60 exciting products ranging from All Purpose Cutters to Verobloc, the solderless breadboard. All products are available throughout the U.K. from over 200 stockists.

HOBBY HERALD

Alternatively ordering products through the Herald is simplicity itself, and you can pay by either cheque, Barclaycard or Access.
So make sure you get your copy of Hobby Herald by ringing

(04215) 6282.9.

BICC-Vero Electronics Lid., Industrial Estate, Chandlers Ford, Hampshire, SO5 3ZR.

BICB
BIGC Vero

SAVE fef's ON HOME HEATING BILLS
UNIQUE DIGITAL THERMOSTAT
POSSIBLE FUEL
SAVINGS OF
UP TO 25%

Normally manufactured exclusively for the trade. Features: Continuous readout of ambient temp via 3 digit 7 segment display - LED indicates when pump is in operation $0.2{ }^{\circ} \mathrm{C}$ Hysterises - 240 v 3 A control contacts - Switched set temperature
 High specification - Simple to calibrate Connect in place of existing thermostat Requires 240 v 2VA supply - Kit includes all necessary components, Enclosure, diagrams and instructions.
Kit price only £29.95. Assembled Price £45.00 plus £1 p\&p (prices include VAT)
Send cheque or PO to: DICON ELECTRONICS LIMITED
Bond Street, Bury, Lancs BL9 7DU Tel 061-797 5666

FREE CAREER BOOKLET

Train for success, for a better job, better pay Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more excitling career.

Leam in your own home, in your own time, at your own pace, Through ICS home study, used by over 8 million already! Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.
Send for your FREE CAREER BOOKLET today -no cost or obligation at all.
 ,79, 80 Now's

Friday November 25th Saturday November 26th Sunday November 27th

10am-6pm 10am-6pm 10am-4pm

Improved venue

We have transferred Breadboard to Cunard International Exhibition Centre, so that we can offer improved facilities to the visitor, including car parking and ease of access by rail, tube and car, all in a modern attractive setting. We have also arranged a reduced hotel/rail fare package to attract enthusiasts from all parts of the country.

Planned features include

1. Full range of lectures planned over 3 days to cover most aspects of electronics and computing.
2. Electronics/Computing Advice Centre - manned by experts.
3. Demonstration of electronic organs and synthesisers.
4. Holography presentation.
5. Practical Demonstration on "How to produce printed circuit boards".
6. Computer Corner - extensive display of computer hardware - "Try Before You Buy".
7. Amateur radio Action Centre.
8. Computer controlled model railway competition.
9. Pick of the Projects - Demonstration of the best from ELECTRONICS TODAY INTERNATIONAL, HOBBY ELECTRONICS and ELECTRONICS DIGEST over the past ten years.
10. Giant T.V. screen video games.
11. Robotic display.

Why not bring the family to the show and enjoy a weekend in London? We have arranged a complete hotel package for our visitors to the exhibition. All inclusive rail tickets also available. Send now for details of what we, the organisers, can offer you.

Write to: Breadboard '83 ASP Exhibitions 145 Charing Cross Road London WC2H OEE

GRIPOMETER

How strong are you? The answer's in your hands!

Ian Hickman

ARE YOU still feeling your way in the Wonderful World of Electronics? Or beginning to get the hang of it and looking for an interesting project to tackle? Either way, look no further! Here is a project which is not too complex, is educational and at the same time fun to build - and use. The components are all standard and inexpensive, so there's no problem there. Furthermore, just to keep your feet on the ground and remind you that electronics has to interface with the everyday world of people and things, the project involves just a wee bit of mechanics. (Did I hear you say UGHI - never fear, for those who can't face the constructional work, a full kit of parts is being made available).

When I visited the annual fair as a lad, beside the big attractions like the steam roundabout with its mechanical organ, and the Dodgems there were smaller attractions as well - perhaps there still are. Among these were various "try-your-strength" stalls, like the punch bag and the one with a bell twenty feet up in the air which you could ring (if you were Superman) by wielding an enormous mallet. There was also one with a couple of handles you could squeeze, and a dial which measured the strength of your grip. This last one always fascinated me, though as a lad I couldn't even reach the handles and in any case preferred to save my pennies for the Helter-

Skelter.

The fairground Test-Your-Grip machine was doubtless all done with good-old fashioned mechanics, but HE now presents an all electronic Gripometer. This is a gripometer with another difference too: with the aid of a secret "go faster"-button, you can astound your friends with your superhuman strength!

Putting On The Squeeze

Figure 1 shows a block diagram of the Gripometer. The "linear displacement transducer" is quite simply a slider type potentiometer with 60 mm travel, and it is operated by a level with a spring return. If you have grappled with the "O" level physics syllabus, you will recognize the three types of lever in Figure 2. The type-3 lever is the one which provides the least mechanical advantage for the "effort" - your hand - and is therefore just the one for our Gripometer! Your handgrip is opposed by a spring and the resultant

Figure 1. A block diagram of the HE Gripometer.

TYPE 1 LEVER e.g. JEMMY

TYPE 2 LEVER e.g. VILLAGE PUMP

TYPE 3 LEVER e.g. ELBOW JOINT

Figure 2. The three basic types of lever.

Figure 3. The Gripometer circuit.
movement of the lever works the linear potentiometer as in Figure 4.
This brings us to the circuit diagram of Figure 3, in which the linear potentiometer is RV1. The norma position of the wiper is near the bottom end of its travel, due to the action of the spring. In this position, the voltage at the wiper is less than $2 / 3$ of the battery voltage, with the result that (as explained elsewhere) the timer IC, IC1, will not oscillate. As the handgrip is squeezed, the wiper of RV1 moves upwards towards the postive supply rail, +9 V . IC1 thus starts to oscillate as a.low frequency, getting higher and higher as the wiper moves upwards. The output at pin 3 is drives the loudspeaker, giving a higher pitched sound the harder you squeeze the handles.
The pulse output waveform at pin 3 of IC1 is also applied to a simple frequency to voltage converter circuit, consisting of C4, D1 and D2, C5 and R8. On the negative going edge of a pulse at pin 3 of IC1, D1 conducts, leaving C4 discharged. On the following positive going edge, D2 turns on and the pulse voltage is shared between C4 and C5. As C5 is the larger, only a little of the voltage appears across it, but C4 is discharged again on the next negative going edge and adds a little charge to C5 on the next positive going edge again, and so on. The charge added to C5 on each positive edge builds up the voltage across C5 until a balance is reached with the discharge current through R8. The higher the frequency of the waveform at pin 3, the more charge per second is fed via D2 onto C5, and so the higher the voltage across it, although the relationship is not linear. This voltage is applied to the non-inverting (+ve) inputs of all four op-amps of IC2. The inverting (ve) inputs of the op-amps are connected to voltages derived from the potential divider chain R9, 10, 11 , 12 and 13. When IC1 is not oscillating, there is of course no voltage across C 5 , so the noninverting input of each op-amp is at a lower voltage than its inverting input.

Figure 4. The mechanics of the Gripometer.

Consequently, the output of each and every op-amp is at $O V$ and none of the LEDs (light emitting diodes) LED1 LED4 is lit.

As you squeeze the handles harder and the pitch of the sound rises, the voltage at the non-inverting input of op-amp IC2d will exceed that at the inverting input. Thus the output voltage of IC2d will rise to +9 V . turning on LED1. As the pitch, and the voltage across C5, rises even higher, the output of IC2c will rise to +9 V , extinguishing LED1 and lighting
up LED2. Then LED3 lights up and finally - if you are very strong LED4 lights. Due to the deliberately arranged ripple on the voltage across C5, between one LED extinguishing and the next one lighting there is an intermediate state where both are alight. Thus although there are only four LEDs (red, orange, yellow and green) there are eight states.: All Off, Red, Red+Orange, Orange, Orange + , Yellow, Yellow+Green and Green.
Note that there is no feedback around the four op-amps - they are

Figure 5. The Veroboard layout.
used "open loop", as simple comparators.

So that is basically how it works. The naughty bit is associated with SW1. The frequency of oscillation depends not only on the voltage at the slider of RV1, but also on the resistance between there and pin 7 of IC1. Closing SW1 connects R4 in parallel with R5, and results in a higher frequency of oscillation for any given setting of RV1. That is to say. the same frequency of oscillation will be achieved for a lower setting of RV1 which is equivalent to making your grip seem much more muscular than it really is!

Construction

No detailed dimensions are given as you will want to make your gripometer to suit your particular handgrip - you may even want to make the whole thing back to front if you are left handed! However, Figure 4 gives typical leading dimensions, and the construction method should be clear from this figure and the photograph. Note that for convenience a tension spring is used in place of the compression spring shown diagrammatically in Figure 1. You should be able to find a suitable spring at your local DIY or junk shop By fitting it further from or close to the fulcrum (hinge point) you will make the handles harder or easier to squeeze respectively, and this provides a convenient method of adjusting the effort required. You
should aim to enable yourself to move the wiper of RV1 about $2 / 3$ of the way up. Then, when the whole unit is complete, if R4 is around 220 (you can experiment with different values here) you should be able to light the yellow LED, whereas with SW1 open the strongest man in the world won't be able to!

The electronics can be built up on a small piece of Veroboard as shown in Figure 5. This fits at the top of the unit so that the four LEDs are easily visible by the person trying his strength, as well as by bystanders. The loudspeaker (2.5 in, 3R) fits next to the Veroboard, whilst the battery and on/off switch can be fitted at the bottom of the unit. The "cheat" switch SW1, which is of the "push for ON, push again for OFF" variety, was mounted so as to be readily accessible but not too obvious.

Setting Up

Before switching on for the first time, thoroughly check. out the construction of the Veroboard circuitry and the wiring to other components loudspeaker, RV1, SW1 and SW2. In particular, make sure that all the diodes, including the LEDs are connected the right way round. Next, disconnect RV1 from the spring lever and set it at the top of end (+9 V) of its travel. Momentarily connect the 9V battery and you should hear a high pitched note from the loudspeaker. If you don't, disconnnect the battery immediately and look for the fault.

Parts List

RESISTORS

(All $1 / 8$ watt 5\%) 10 k	
R1, $\mathrm{R}^{\text {2 }}$. 9.10	220k
	see text
R3, 6	150k
R4	33k
R5	82k
R7	100k
R11	39k
R12, 13, 14, 15	2k2

POTENTIOMETERS

CAPACITORS

SEMICONDUCTORS

MISCELLANEOUS

SW1 SPST
push-on/push-off
SW2
SPDT
toggle
LS1 21/2" ${ }^{\prime \prime}$, 3R
Veroboard, 32 strips $\times 24$ holes; Veropins; PP3 battery and clip: wire, solder, nuts and bolts, etc.

BUYLINES
page 34

This could be a missing connection, but, could just as easily be an unintentional extra one, where you have failed to cut completely one of the tracks of the Veroboard, say. It is worth examining each cut individually with a watchmaker's eyeglass, even more so if you have used a twist drill rather than a proper VERO track cutter.
When you have the sound responding to the movement of RV1. check that one or other of the LEDs lights. With RV1 reconnected to the spring lever, check that its rest position is near the PR1 end of its travel. Adjust PR1 so that there is no sound from the loudspeaker, but so that a low pitch is emitted as soon as the handles are squeezed. With a fresh PP3 battery and SW1 closed, you

Inside the 555

The figure below shows the internal architecture of the versatile 555 timer integrated circuit, a popular IC made by most manufacturers. It can be used in a number of ways, either as a monostable (a "one shot", which produces a single output pulse each time it is triggered) or as an astable (a free-running circuit which produces a repetitive pulse train). In this project we use it as an astable and do not need the facility for resetting the flipflop, so we connect the RESET input, pin 4 , to the positive supply at pin 8.

Whenever the voltage at pin 2 (TRIGGER) falls below $1 / 3 \mathrm{Vcc}$, the lower comparator sets the flip-flop, which turns off the DISCHARGE transistor at pin 7 and drives the output at pin 3 high. Whenever the voltage at pin 6 (THRESHOLD) rises above $2 / 3 \mathrm{Vcc}$, the upper comparator resets the flip-flop which turns on the discharge transistor and drives the output low. The absolute values of the
internal resistors RA, RB and RC which set the trigger and threshold voltages are not very accurate, but their ratios are precise. C2 is simply a decoupling capacitor. The operation of the stable connection shown is as follows.

The voltage at pins 2 and 6 will rise as C1 charges up through R1 and R2 in series, aiming at +Vcc . However, when it reaches $2 / 3 \mathrm{Vcc}$, the upper threshold is exceeded, the upper comparator will reset the flip-flop and the discharge transistor will turn on hard. This will effectively ground the junction of R1 and R2. The voltage at pins 2 and 6 will therefore start to fall as C1 discharges via R2, aiming at ground potential (zero volts). However, as soon as the voltage across C 1 falls below $1 / 3 \mathrm{Vcc}$, the trigger voltage level, the comparator sets the flip-flop, turning the discharge transistor. nff again and the cycle repeats.
The voltage at pins 2 and 6 is

therefore a sawtooth waveform oscillating between $1 / 3 \mathrm{Vcc}$ and $2 / 3 \mathrm{Vcc}$ and back again, whilst the output at pin 4 sits alternatively "high" (nearly at $\vee \mathrm{cc}$) and "low" (near OV ground). If R1 is increased, the frequency of oscillation will fall and vice versa, and similarly with R2. If instead of increasing R1, we return it to a voltage less than +Vcc , this will have the same effect. As we return it to a progressively lower voltage, less than $2 / 3 \mathrm{Vcc}$, the frequency will fall right down to zero, since the voltage across C1 can never operate the upper comparator, and the circuit stops oscillating altogether. Of course when the discharge transistor is ON, C1 is discharged via R2 regardless of R1, so the negative going half of the oscillation always takes the same length of time. Thus at low frequencies, the "square" wave driving the loudspeaker in Figure 3 becomes very asymmetrical.

GROUND thigger OUTPUT
RESET
 $8{ }^{+}{ }^{c c}$. 7 DISCHARGE 6 threshold 5 CONTROL VOLTAGE

Figure 6. The diagram (left) and table (above) show the internal architecture of the 555 timer IC used in the Gripometer. This is described in detail in the box above.
should just be able to light LED4. If you can close the two handles completely, you should fit a stronger spring, but you should have sorted that out early in the constructional stage! With SW1 open it should not be possible to light LED4 even with the two handles completely closed. Note that a fresh battery should be used - as the battery voltage falls the audible output is largely unaffected, but it gets harder and harder to light the last two LEDs!
Having got it all working, you can fit the front panel and decorate it as you will. The Gripometer handles can be finished off using brightly coloured cycle handlebar grips, cut to fit round the outside edge of the handles. This not only provides a comfortable grip, it also adds a professional touch to the finish.

Naturally, when you hand it to your friends to try, SW1 will be open. Before demonstrating your own amazing strength, a little stagecraft exagerated adjustment to your grip and loud clearing of the throat - will provide the necessary cover for you to push SW1. And for your next trick

PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

July 81		
HE/8107/1	Organ 3	¢6.00
HE/8107/2	Organ 4	f6.00
HE/8107/3	Ultrasound Burglar Alarm	¢2.53
August 81		
HE/8108/1	RPM Meter	$¢ 1.77$
HE/8108/2	Thermometer	61.67
September 81		
HE/8109/1	Power Pack	¢1.69
HE/8109/2	Reaction Tester	
	Game	£1.71
HE/8109/3	'Diana' Metal Detector	¢3.31
October 81		
November 81		
HE/8111/1\&2	Sound Torch (Set of Two)	$¢ 5.31$
December 81		
January 82		
HE/8201/1	Intelligent NiCad Charger	$£ 2.83$
February 82		
HE/8202/1	Relay Driver	\&2.07
HE/8202/?	Mast-Head Amp	f1.08
March 82		
April 82		
HE/8204/1	Digital Capacitance Meter	¢4.02
HE/8204/2	Dual Engine Driver	¢3.27
HE/8204/3	Bike Alarm	£2.45
May 82		
HE/8205/182	Digital Thermometer (Set of Two)	$£ 4.62$

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145 Cháring Cross Road, London WC2H OEE
I enclose a cheque/Postal Order made payable to ASP Lid,
for the amount shown below Price.
OR
I wish to pay by Barclaycard. Please charge my account number

I wish to pay by Access. Please charge to my account number

SIGNATURE

NAME
(BLOCK CAPITALS)
ADDRESS
(BLOCK CAPITALS)

Please allow 21 days for delivery

Boards Required	Price

PCB FOIL PATTERNS

Above: The PCB foil pattern for the Tremoleko project.

Above: The master pattern for the SPL Meter.

CLASSIFIED

Lineage:
30 p per word (minimum 15 words)
Semi-display $£ 7.50$ per single column centimetre Ring for information on series bookings/discounts

All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and
conditions printed on the advertisement rate card (available on request)

01-4371002 EXT 282

Send your requirements to: Julie Bates, ASP Ltd., 145 Charlng Cross Road, London WC2H OEF

BOOKS \& PUBLICATIONS

PARAPHYSICS JOURNAL (Russian translations). Psychotronics, Kirlianography, heliphonic music telekinetics. Computer software. SAE $4 \times$ 9":- Paralab, Downton Wilts.

ALARMS
 BURLAR ALARM EQUIP MENT. Please visit our 2,000 sq. ft. showrooms or write or phone for your free catalogue. C.W.A.S. LTd. 100 Rooley Avenue. Bradford BD6 1DB Telephone 0274-308920.
 COMPUTING
 HAVEN HARDWARE
 2X81 £49.90. Inverse Video £4.50. Re peating Keymodule $£ 5.95$. $2 \times$ Spectrum soffware: Repulser truit machines and Solitair $£ 4.95$ each. Mancala and Patience £5.95 each. Jupiter Ace £89.90. Inv Video £4.95. Access taken. SAE for det HAVEN HARDWARE 4 Asby Road, Asby, WorkIngton, Cumbria tel: 094:886627 Agency enquiries welcome

32% of our readers own a computer - reach them with

ASP Classified 01 -4371002

HOBBY SHOP

DAVENTRY

ENOS $\begin{aligned} & \text { HIGH MARCH } \\ & \text { DAVENTRYNN11 } \\ & \text { TOL: }(03272) 5523\end{aligned}$
 * Open Mon-Sat 9am-4pm * Both retailers and wholesalers - Vast stocks of components * Large 'walk-round' electronics supermarkel

TODMORDEN

PROFESSIONAL OR HOBBYIST?
Come and have a look at the EMPORIUM
Bargains galore - catalogue available
Electronic, Electricaland Mechanical Nuts
\& Bolts, Resistors, Capacitators, Meters, Semiconductors and much more.
A. C. TOWNLEY LTO Harehill Mill
Harehill St (oft Burnley Rd), Todmorden Open 8.30-5.30 Sats till 1 pm (lunch $1 \cdot 2 \mathrm{pm}$)

> Should you wish
> to promote your business in
> this section
> ring Julie
> on
> $01-4371002$ extn. 282

IRELAND

IRELAND
Call A \& A ELECTRONICS for wide range of kits 17 Cuala Road Bray
Co. Wicklow
Tel. 01-862422

W YORKSHIRE
ACEACE MAILTRONIX LIMITED 3A Commerclal Street Batley, W'est Yorkshire Tel. O924 441129 Open: $9-5.30$ pm Weekdays 9.30-1 pm Saturdays Retailers and wholesalers

TRANSISTORS

SPECIALOFFER of unmarked transistors (each type of transistor supplied in separate, marked bag). BC338, BC237B, BC239B, BC115, BC173B, BC182B, BC238B. Only 50p for 10 (excluding VAT). Add 25p p\&p. Access/Barclaycard accepted. Van Gelder Ltd, P.O. Box 10, Southend-on-Sea, SS2 6Q6.

SOFTWARE APPLICATIONS

SPY CASSETTE. Spectrum/ ZX81 lets you stop and copy any previously unstoppable tape. Simply press C for instant copy. If a Spectrum $£ 3.95$, ZX81 version £2.50. Bobker, 29 Chadlerton Drive, Bury, Lancs.

EQUIPMENT

AERIAL AMPLIFIERS Improve weak television re ception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder Ramsbottom, Lancashire BLO 9AGH.

FOR SALE

POWERAMPLIFIERS 200 watt £11.95! - case and controls, volume, balance and sockets. $4 \times$ MJ3001 outputs, 100 \& 100 watts!! (R.R.P. \& Data $=$ £38.40). KIA 8, Cunliffe Road, Ilkley.

Whatever you're selling, refer to HOBBY CLASSIFIED

STEREOAMPS 120 watt (60 + 60)...Case - D.I.N sockets and controls... $9-40 \mathrm{v} / \mathrm{smoothing}$.. protected outputs $3 / 15$ tested \& diagrams £10/inc . . KIA-8 Cunliffe Road, Ilkley.
PB2720 SOUNDERS 3 for $£ 1$. 5 mm leds with clips, red or green, 10 for £1. Push to make switches 10 for $£ 1$ P.C.B. containing NE555 and 4011B 25p each 100 uf or 10 uf caps 10 for £1. Post/packing 40p. MicroTech Industries, 1 Pheonix Street, Brighouse, W. Yorks HD6 1PD.

PLANS 'N DESIGN

CONVERT ANY TV into large screen oscilloscope. External unit plugs into aerial socket of TV. Circuit \& plans $£ 3$ or SAE details. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

AMAZING electronic plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph, surveillance devices ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue S.A.E, Plancentre, Bromyard Road Indus trial Estate, Ledbury HR8

There are over 35,000 potential customers looking at this page, shouldn't you be reaching them?

For the best HOBBY CLASSIFIED

COMPONENTS

WAVITBANIDO

Auto Electronics, 103 Coventry Street, Kidderminster
Tel: (0562) 2179
Brand new components by return post or ring with Access/Barclaycard number for same day despatch.
All manufacturers guaranteed new stock. All at most competitive prices. Catalogue available only 50 p. All prices inclusive of VAT.

IN STOCK New telephone plugs and sockets also ZX81 plugs and spectrum plugs and wide range of burglar alarm equipment and all accessories for same plus large range of components. Shudehill Supply Co. Ltd, 53 Shudehill, Manchester 4. 061-834 1449.

KITS

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolac lightsensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.25$. Developer 35p. Ferric chloride 55 p. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick £1.75 sq.ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

DIGITAL WATCH replacement parts, batteries, displays, backlights, etc. Also reports publications charts. S.A.E. for fullist: ProfordsCopners Drive, Holmer Green, Bucks HP15 6SGE.

RECRUTIING? SELLING A PRODUCT? OR A SERVICE?

get maximum benefit for YOUR MONEY
FIND OUT ABOUT OUR WHOLE RANGE OF PUBLICATIONS IN: COMPUTING VIDEO RADIO ELECTRONICS

Simply telephone ASP CLASSIFIED 01-437 1002 (We take Access and Barclaycard)

HOBBY ELECTRONICS ADVERTISERS INDEX SEPTEMBER 1983

A.D. Electronics 44
Ambit International IFC
Audio Electronics 31
Bicc Vero 57
B.K. Electronics IBC
B.N.R.S. 18
J. Bull 19
Camtec 56
Concept Electronics 53
Dataplus Development 21
Dicom Electronics 57
56
Durrant Radio
18
Electroni-Kit 18
Electronize Design
44
44
Elen Electronics
21
21
Hawk Electronics
Hawk Electronics
44
44
Hazzlewood Electronics
Hazzlewood Electronics
34
34
Hemmings Electronics
Hemmings Electronics
44
44
Horizon Elecontrics
Horizon Elecontrics
57
57
ICS
ICS 12, 13
LP 31
Kelan Engineering
35
35
Litesoldering Developments
Litesoldering Developments
24
24
Pantec
Pantec 35 35 44
Parndon Electronics
56
56
Racom
Racom
4
4
Rapid
Rapid
35
35
Brian J. Reed
Brian J. Reed
18
18
Sandwell Plant
Sandwell Plant
OBC
OBC
Silica Shop
Silica Shop 47
Sparkrite
18
S\&R Brewster 46
Technomatic
21
21
TK Electronics
TK Electronics
53
53
Twyford Electronics 56

STEREO CASSETTE TAPE DECK MODULE
Comprising of a top panel and tape mechanism coupled to a record/play back printed board assembly. Supplied as console of own choice. These units are brand new, ready built and tested.
Features: Three diglt tape counter. Autostop. Six plano eject. Automatic record level controt. Main innuts and eject. Automatic record hevet control. Main inputs plus
secondary inputs for stereo microphones. Indut
 Output level: 400 mV to ooth leth and right hand
channels. Output Impedance: 10k. Signal to noise channels. Output Impedance: 10k. Signal to noise
ratio: $45 d 8$. Wow and flutter: 0.1%. Power Supply requirsments: 18 V DC at 300 mA . Connections: The left and right hand stereo fnputs and outputs are via individual screened leass, all terminated with phono plugs (phono sockets provided). Dimensions: Top panel 5 fin Suppled. Complete with circut diagram and conmecting diagram. Atractive black and silver finish.
Price $26.70+\mathbb{2 . 5 0}$ postage and packing.
Supplementary parts for 18 V D.C. power supply
(transformer, bridge rectifier and smoothing capacitot

LOUDSPEAKERS
THREE QUALITY POWER LOUD SPEAKERS ($15^{\prime \prime}, 12^{\prime \prime}$ and $8^{\prime \prime}$ See 'Photo) tions. All units have attractive cast alu minium (ground finish) fixing escutcheons Specificakion and prices. $15^{\prime \prime} 100$ watt R.M.S. Impedance 8 ohms Freg. 20 Hz . Freq Resp to 25 KHz . Res 97 dB . Price: $£ 34.00$ each $+\Sigma 3.00$ P\&P $12^{\prime \prime} 100$ watt R.M.S. impedance 8 ohms. 50 oz magnet. 2" aluminium voice coil. Res Freq. 25 Hz Freq Resp, to 4 KHz . Sens 95 dB . Price: $£ 24.50$ each + £ 3.00 P\&P $8^{\prime \prime} 50$ watt R.M.S. Impedance 8 ohms. 20 oz. magnet. 40 Hz . Frea Resp to 6 KHz Sens 92 dB Black Cone. Price: 99.50 each. Als available with black protective grille Price K9.99 each P\&PE 1.50

12' 85 watt R.M.S. McKENZIE C1285GP (LEAD GUITAR, KEYBOARD, DISCO) $2^{2 \prime}$ luminium voice coil, aluminium centre dome 8 ohm imp. Res. Freq 45 Hz . Fred.

128 watt R.N.S, MCKENZIE C1285ICIP.A., DISCOI 2 alumini $5^{\prime \prime} 150$ watt RM. Res. Freq. 45 HZ ., Freq. Resp. to 14 KHz . Price £22 + £3 carriage $15^{\prime} 150$ watt R.M.S. McKENZIE C15 (BASS GUITAR, P.A.) 3° aluminium voice coil
Die cast chassis. 8 ohm imp., Res. Freq. 40 Hz ., Frea. Resp. 104 KHz . Price: $47+$ f carriage.

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER

TYPE A IKSN2036A) 3 ' round with protective wire mesh, ideal for bookshelf and medium sized Hi-fi speakers. Price $£ 4.29$ each.
TVPE 'B' |KSN1005A) $31 / 2$ " super horn. For general purpose speakers, disco and P.A. systems etc. Price $\mathbb{£ 4 . 9 9 \text { each. }}$
TYPE 'C'IKSN6016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn. For quality $\mathrm{Hi} \cdot \mathrm{fi}$ sysiems and quality discos etc. Price $£ 5.99$ each
TYPE 'D' (KSN 1025A) 2"* ${ }^{\prime \prime}$ " wide dispersion horn. Upper frequency response retained extending down to mid range $(2 \mathrm{KHz})$. Suilable for high quality Hi -fi systems and quality discos. Price e7.99 each
TYPE 'E' IKSN1038A) $33 / 4$ " horn tweeter with atractive silver finish trim. Suitable for $\mathrm{Hi}-1$ monitor systems etc. Price $£ 4.99$ each.
TYPE 'F' IKSN1057A) Cased version of type ' E '. Free standing satellite iweeted. Perfect add on tweeter for conventional loudspeaker
PEP 20p ea. (or SAE for Plezo leaflets).

The very best in quality and value.
Ported tuned cabinet in hard wearing black vynide with protec tive corners and carry handle. Built and tested, employing 10 in British driver and Piezo tweeter. Spec: 80 watts RMS; 8 ohms; $45 \mathrm{~Hz}-20 \mathrm{KHz}$ Size: 20 in $\times 15 \mathrm{in} \times 12 \mathrm{in}$; Weight 30 pounds

Price: $\mathbf{\varepsilon 4 9 . 0 0 ~ e a c h ~}$
ع90 per pair
Carriage: $£ 5$ each $£ 7$ per pair

BK ELECTRONICS
Prompt Deliveries VAT inclusive prices Audio Equipment Audio Equipment
Test Equipment by Thandar and

PANTE

HOBBY KITS. Proven designs including glass fibre printed circuit board and high quality components complete with instructions
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHZ}$ with very sensitive microphone. Range $100 / 300$ metres. $5 \times 46 \times 14 \mathrm{~mm}$ (9 volt) Price: £7.99p
DIGITAL THERMOMETER $-9.9^{\circ} \mathrm{C} 10+99.9^{\circ} \mathrm{C}$. LED display. Complete with sensor. $70 \times 70 \mathrm{~mm}$ (9 volt) Price: $£ 27.60 \mathrm{p}$
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap con. trolled. professional performance. Range up to 3 miles $35 \times 84 \times 12$ mm (12 volt) Price: £12.49p
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ RECEIVER 27 MHZ Range up to 500 metres. Double coded modulation. Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm} 9 /$ 12 volt) Price: $£ 16.49$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}(9 / 12$ volt $)$ Prlce E10.29 PaP All kits +50 p. S.A.E. for complete list.

BSR P256 TURNTABLE

P256 turntable chassis S shaped tone arm - Belt driven Aluminum platter skate (bias devicel - Damped cueing leve - 240 volt AC operation $\left(\mathrm{Hz}^{2}\right)$ - Cut-ou template supplied - Completely manual arm This deck has a completely manual arm and is designed primarily for disco and studio use where all the advantages of a manual arm are Price E31.35 each. 22.50 PGP

ilf POWER AMPLIFIER

MODULE

New model.
Improved specification

3 watt FM

NEW OMP100 MK.H POWER AMPLIFIER MODULE Power Amplifier Module complete ower supply and glass flbre p.c.b. assembly, incorporates drive circuit to power a compatible LED vu meter. New Improved specification makes this amplifier ideal for P.A., Instrumental SPECIFICATION
Output Power:- 110 watts R,M.S
Loads:- Open and short circuit proof 4/16 requency Response:- $15 \mathrm{~Hz} \cdot 30 \mathrm{KHz} \cdot 3 \mathrm{~dB}$. T.H.D.:- 0.01%.
S.N.R. (Unwelghted): $-118 \mathrm{~dB} \pm 3.5 \mathrm{~dB}$ Sensitivity for Max Output:-500mV @ 10 K Size: $-360 \times 115 \times 72 \mathrm{~mm}$ Price:- $£ 31.99+$ OEM's CONTACT BARRY PEARNE Telice:- $\varepsilon 7.00+50$ P P\&

HOME PROTECTION SYSTEM
Better to be 'Alarmed' then terrified.
Thandar's famous 'MInder' Burglar Alarm System. complete with interconnection cable FULI GUARANTEED.
Control Unit - Houses microwave radar unit, range up to 15 metres adjustable by sensitivity control. - armed. 30 second exit and entry delay.

104 dB output - Electronic swept freq. siren. Outdoor Alari output. Housed in a tamper-proof ireq. slren. 98 dB case.
Both the control unit and outdoor alarm contain rechargeable batteries whlch provide full protection during mains failure. Power requirement 200/260 Volt buttons etc. Complete with instructions SAVE £128 Usual price £22885

BKE's PRICE £99.p\&p\&4

SAFGAN DT-520 DUAL TRACE OSCILLOSCOPE. New

 Eriuish model 12 month guarantee. 20 MHz Band Width. Specification: $\mathrm{CH} 1, \mathrm{CH} 2: 5 \mathrm{mV} / \mathrm{div-20V} / \mathrm{div}$. TimeBase: i Sec/div-100ns/div. XY Facilfy: Matched XY inputs. Trigger: Level control \pm slope selection \# Auto, normal, TV Triggering. \# Z-Modulation. \# CAL out $10 \times 8 \mathrm{~cm}$ (5 " C.R.T.) Very sharo trace Graticule blue ruled W $\times 87 \mathrm{~cm}$ (5 C.R.T.) Very sharp trace, Size: H235mm V. 40.60 Hz . ش Price: $£ 241.50$ - FREE Securicor Delivery, Probes: X1 £8.05, X $1 / \times 10$ Switched' $£ 10.93$

