roboy

Ins end Outs of the 0ilger

Simple Audio Projects to Build

Play the AMBIT numbers game ．．．．．．

The long awaited implementation of on－line order processing is with us at last，and whilst this means that orders for in－stock items can now be processed more efficiently，it also means that orders should be submitted using stock codes for best results．Our current catalogue（ 75 p ）includes all order codes（watch out for the new expanded Spring edition），but here＇s an abstract from some of the more popular lines to use as a quick reference．

Remember that you can also access our catalogue via REWSHOP on REWTEL，which now includes on－line current price and delivery information．You need a 300 baud MODEM and RS232 terminal， （various suitable configurations based on popular micros have been published in recent past issues of Radio and Electronics World）．

Prices shown here exclude VAT，and the P\＆P charge is currently 60p per order（unless otherwise indicated）．Remember that our tele－ sales service operates with human beings（not＇dumb＇machines） from 8 am to 7 pm （and frequently later）Monday to Friday，and 9am to 8 pm on Saturdays．REWSHOP operates 24 hours a day， 365 days a year with full price and delivery information．

4000 CMOS						$\underset{\substack{\text { Type } \\ \text { pec914 }}}{ }$ 		$\begin{aligned} & \text { Pite } \\ & 1: 100 \\ & 1: 100 \end{aligned}$		$\begin{aligned} & \text { Stock No. } \\ & 61.00758 \\ & 6100820 \end{aligned}$			Stoch No $61-11223$ 61.11225 6．1722	$\begin{aligned} & \text { Pics } \\ & 2.15 \\ & 1.45 \\ & 1.0 \end{aligned}$		Stoci No． 60.00134 6000135 6000227	$\begin{aligned} & \text { Prter } \\ & 3.10 \\ & 3,25 \\ & 3,55 \end{aligned}$			
rya	Stoer No ．Prue																			
（2000）																				
		${ }_{\text {dirc }}^{4723}$		ग44192		4，	297937	8.00	2RA1038	citioliz	2．10	${ }_{\text {ran }}$	¢	${ }^{1,25}$	small	signal at			120.12098	
			2303724095	${ }^{24 \leq 5198}$	3，．4199090．39		HCXX											12 15 15		
						74 14ceo	3007803	0.55	${ }_{\text {Tod }}$ TOA		1.95			${ }^{0.33}$			1．18	${ }^{18}$	1212013208	0.10
		40085	23 20085 0.99							ciole	2．04			${ }_{3}$	${ }_{\text {Br } 2724}$	2274		${ }_{27}^{22}$		
			${ }^{23400989} 0.54$	${ }^{24} 4$	31．72221			${ }_{0}^{0.568}$			1.95	Mm53200	${ }_{6153200}$	3.30	${ }_{8} 8362$	${ }_{5803352}$	0．4．	${ }_{33}$	12.30308	
			${ }_{2}^{2310}$		${ }^{\text {a }}$	${ }_{1 \times 4}$		56			305		SCaler							
	a							，									${ }^{61}$		triacs	
								26			． 0	（264	\％	127						
	2304022							\％									${ }^{33}$			
－	${ }^{23008272} 0.55$	40				，	3008075	0.56	Lex		2．95	11.159	8101190	1295			0．989			
$\begin{gathered} 0822 \\ 0 \\ 02023 \end{gathered}$	${ }_{2309023}^{2302023}$	${ }^{40192}$	${ }^{23801939} 1.108$	${ }^{212525}$				200	MC131			MSL3212					0．93		${ }_{59}^{2506073}$	2．981
	${ }^{230002024} 50.313$			$\xrightarrow{721525}$	3．172，		${ }_{30.0214}^{3014}$	2．94	Mc，		128	nsw		11.30						
$\begin{aligned} & 082025 \\ & \hline 02025 \end{aligned}$	$\xrightarrow{2304023}$		14ISXX		235			， 68						${ }_{7}^{11.85}$	212236	${ }_{56802369}$	0.38		fo	
$\begin{aligned} & 4020 \\ & 2029 \end{aligned}$								${ }_{2}^{1.20}$			2.75	Msw5 526	610552	${ }^{7} .85$		Power				
	$\xrightarrow{23394023}$	${ }_{\text {lat }}^{\substack{12500}}$					30， 233	2， 2.20			125									
					（2，22）	${ }^{2}$	${ }^{3}$	，			1.92			． 55		${ }_{58,1,237}$	${ }_{3.20}$			
					31，422		${ }_{3074185}$	${ }_{1}^{2,96}$			192		88.0713	${ }^{7} 7.50$	Maf	${ }_{5}^{58,1 / 2323}$	15.50	Shal		
	边	${ }^{\text {cha }}$	31．07205 0.14	Rissa	，			${ }_{1}^{1: 23}$	5156		${ }_{206}$	（cm）		19．595		${ }_{58}{ }_{8}$	${ }^{8.505}$		${ }_{12}^{12000535}$	
	－	${ }_{\substack{74508 \\ 14.509}}$		${ }_{7}^{14.553}$	31，		3074165	${ }^{1.33}$	¢											
$\xrightarrow[\substack{4050 \\ 4051}]{ }$	${ }^{23000550} 0.24$	${ }^{214510}$	2ain		31．7366		${ }^{3}$	${ }_{1.33}^{13}$	S1162	510235	${ }_{2}^{250}$	Spref		5.00	Mpr629	59， 18629	4.9		E0s	
			${ }^{310,07412} 10.14$				3074538	2.10					81082	$\xrightarrow{7,70}$						
${ }_{\substack{4052 \\ 4053}}^{4053}$	${ }_{2304053}$	${ }^{214513}$	，7443 0.32	24.537	31723，			${ }_{2}^{2.95}$	SIIf 6	810138	1.62	${ }^{\text {chatiog }}$	8170	2.45			0．95	${ }_{\text {cox }}^{\text {coxs }}$	${ }_{1}^{152035}$	
			${ }^{3} 30,074150.15$	24ls3	$\underbrace{}_{\substack{3,1.79375 \\ 3,7315}}$		come	${ }_{\text {l }}^{\text {li．08 }}$	S．	${ }^{6} 1.0168$	${ }_{2}^{2.25}$	＋004	61，44	${ }_{\substack{6.00 \\ 4.45}}$	${ }_{\substack{7 \times 33866}}^{\substack{2 \times 366}}$	${ }_{58}^{503388866}$	${ }^{0.245}$	coxad	15．2．	dil6
	－ 230408888.16			Pas			302139	1.08			325	H04			SMAL	SIGNAL fit		C0x2	2020	
$\begin{aligned} & 40085 \\ & \substack{40650 \\ 4070} \end{aligned}$			3422		3178373					2240	．25			${ }^{60}$					21800	18
$\begin{aligned} & 40107 \\ & 4007 \\ & 4070 \end{aligned}$	23000		${ }^{31,042826} 0$				3074157					MC145156	17156	4.60						
	${ }_{2}^{23000273}$		（192380	$\xrightarrow[\substack{745350 \\ 7 \\ 7 \\ \hline 1593}]{ }$	${ }^{\text {and }}$		${ }_{\substack{3507458 \\ 307259}}$	${ }_{\text {a }}^{0}$				SMAIL	trnal			${ }_{600}^{60}$	0.39	corao heo	1518000	12
cin	${ }_{\substack{2300077 \\ 2304076}}^{20}$	${ }^{211533}$	（1a33	${ }^{7}$	3，143989							80182								
	${ }^{2030078}$	${ }_{\substack{24.533 \\ 7153}}$	20333 0.14		cele 31,73939		AR ICs					вс23		${ }^{0.10} 0$	${ }^{285555}$		${ }_{0}^{012}$	coxza	15.23330	20
$\begin{gathered} 49778 \\ \substack{4078} \\ 408 \end{gathered}$	\％083	${ }^{771538}$	5438	2145610	4670	${ }_{\text {MIICN }}$		${ }^{3.88}$					$\underset{\substack{5800238 \\ 590239}}{\text { St }}$	． 08	3 3stas	${ }_{508} 50$	0.49	Ionuple	2.515 mm L	
	${ }_{2}^{23000923}$	${ }^{7}$			4CxX		${ }_{61}^{61000019}$	ci，	cas			－		0.08	${ }^{35565}$		0．588	Cox10 Red	15.220100	217
	2300939			${ }^{7} 1800$					мс33	335										
$\begin{aligned} & \text { cos } \\ & \text { 4502 } \\ & \text { 540 } \end{aligned}$		$\xrightarrow{7} 1.1459$		${ }^{1}$ ccas		（2929	$\xrightarrow[\substack{\text { cifora } \\ 810025}]{ }$	${ }^{1.288}$	¢		${ }_{95,53}^{2,55}$	${ }_{\text {в }}$		${ }_{0.13}^{0.13}$	coicle	Sk5		coxat 0	520a0	${ }_{0} .24$
	2304500		${ }^{31.07454} 0.14$	1 1ecia	29.0	U267			${ }_{\text {kn }}$	${ }^{81.0372}$		${ }_{8}$	cisemest		${ }_{\substack{\text { and } \\ 3023 \\ 3512}}$		${ }_{4.60}^{0.65}$		lod 1 E0，	
$\begin{aligned} & 4506 \\ & \hline 450 \\ & 45080 \end{aligned}$	${ }_{23}^{23}$	${ }^{7}$	（944，	$\underset{\substack{19410 \\ \text { racti }}}{ }$	2903410	［m	8133010	${ }^{0.67}$	${ }_{\text {cke }}$	cirlizeas	0．60	${ }_{80} 8$	${ }_{\text {cter }}^{50} 5$	a，10		Iooes				${ }^{0.51}$
¢ $\begin{aligned} & 4510 \\ & 4510 \\ & 4511\end{aligned}$	${ }^{2304595}$	${ }^{274535}$	927， 6	${ }^{2} 4280$	${ }^{2980220}$		${ }^{6103}$	${ }^{0.70}$		${ }_{\text {¢17 }}^{61039}$			${ }_{58}^{58003546}$		2412					
		74578	07478	${ }_{7}$	2907332			0．05						0.12				L． B	cocurpler	
$\begin{gathered} 45121 \\ \hline 4519 \\ 4515 \end{gathered}$	${ }_{\substack{230451 / 8 \\ 23045}}^{2}$							${ }^{0.65}$	K88	61043		cics	${ }_{\text {cose }}^{5800556}$	0.12	coile	liztasil	－ 0.51	8N3\％	1560370	
	$\xrightarrow{2305546}$	${ }^{2415858}$	2488		2030733 0.75	${ }_{\text {L3 }}^{1 \times 3}$	${ }_{618}^{81030}$	${ }_{0}^{0.99}$				${ }_{\text {BCCa }}$		${ }^{0.22}$			0.15	flat	ouffused	
$\begin{aligned} & 420 \\ & 4200 \\ & 4020 \end{aligned}$	${ }^{230452020}$		Pra99 0.36	${ }^{4}$	290728			${ }^{\text {a，}} 1.75$				${ }_{\text {wps }}$	${ }_{58}^{598080}$	${ }_{0}^{0.30}$	${ }_{\text {S04 }}$			1320	15.03200	
	${ }^{23}$			\％eces	${ }^{29.077185}$		${ }_{6}^{60} 02398$				2．30	2 2x1	${ }_{5}^{5891128}$	0.10		12， 120				
	552\％	citiss	${ }^{495}$	$\xrightarrow{70886}$	${ }_{\substack{29,9745 \\ 2907249}}$		$\underbrace{\text { O2，}}_{\substack{81038 \\ 610041}}$	${ }_{1.98}^{1.81}$		cto	${ }_{2}^{1.35}$	${ }_{\substack{2 \times 1 \\ 2 \times 2 \times 2}}$	580	0.10			－0，	4323	$\underset{15033}{ }$	
	4528	74.5109	41090.25	74cso	${ }^{29} 90743980$		610	110			li．95	${ }_{\substack{27 \times 123 \\ 2 \times 2094}}$	${ }_{59829294}$	0.20			0.07	－${ }_{\text {433 }}^{433}$	$\underset{1503}{1503}$	
$\begin{aligned} & 45323 \\ & 4551 \\ & 4551 \end{aligned}$	退 4323	litislin	Nil13	${ }^{7}$	$\xrightarrow{2020439}$	${ }_{\text {2 }}^{2124}$	comb	c．i．00	${ }_{\text {Kss }} \times$	\％	lis		${ }_{58} 50.02$			${ }_{12}^{12.562963}$	O． 0.62	－	${ }_{15}^{15033230}$	0．20
	5533	${ }_{\text {74．512 }}^{721}$	391122 0.27		${ }^{298}$		${ }_{6}^{61}, 0023820$	${ }_{8}^{8.28}$	${ }_{684}$		： 1,3	${ }_{2}^{2868}$	58．0360	${ }^{0.30}$		alcaps		－ $\begin{gathered}\text { vas } \\ \text { vas }\end{gathered}$	$\xrightarrow{15533930}$	
	4538	${ }_{\substack{74.5123 \\ 72.5125}}^{2}$		${ }_{7 a}$	${ }_{29}^{2977415454} 3$	$\xrightarrow{2 \times 12929}$	$\underset{\substack{\text { ci，} 1023030 \\ 6100320}}{ }$	2．10	квяs4		123	${ }_{\substack{250686}}^{258681}$	${ }_{58}^{58303686}$	a， 0.30	8402	1201225		v3a2	${ }_{1}^{15} 50323$	
$\begin{aligned} & \text { 4.548, } \\ & \hline 4589 \\ & 4959 \end{aligned}$	${ }_{2}^{2304543}$			${ }^{\text {rata }}$				${ }_{\text {12，5 }}^{1.51}$	（extas			${ }_{2}^{250}$			${ }_{\substack{\text { a412］} \\ \text { 日ilass }}}$		0	V510	${ }_{15}^{15553150}$	
			31.71313	$7 \times$	（0）	NE5	${ }_{6103}^{60}$		K8asas			${ }^{254}$	${ }_{580}^{58}$	0.25					${ }_{15 \text { cosizo }}$	
	${ }_{2}^{230453558}$								N¢5		226	${ }_{251}^{251}$	5807	0.28	${ }_{\text {der }}$	，	${ }_{1} 1.55$	¢ 513	${ }_{15}^{150}$	
¢5939	${ }_{23}^{2304555}$		321390.70	${ }^{\text {Ta }}$	${ }^{29787465}$	\pm		${ }^{0.58}$	Ne5					${ }_{\substack{\text { a } \\ 0.28 \\ 0.28}}$	${ }_{\text {H2Pa }}^{1210}$			v527	cosisesid	
1459	2455			${ }^{7}$		Stese	${ }_{6} 6110053$	${ }^{4.05}$	S060		75	avoto	PIWER		Weviliz				${ }_{1}^{1505232}$	
$\begin{aligned} & 4557 \\ & \hline 4559 \\ & 4559 \end{aligned}$	14559		coll	$\xrightarrow{2 c c 1}$	${ }^{\text {a }}$	wess	${ }_{6}^{811005565}$	1.29		\％0		80139	5815139	${ }^{29}$	（1）21			V5331	${ }_{15055330}^{15050}$	
$\begin{aligned} & 4559 \\ & 4 \\ & 45656 \\ & \hline \end{aligned}$	4561		coser	${ }_{\substack{7 \\ 70 c}}^{70}$				${ }^{1.30}$	${ }_{\substack{\text { siche } \\ \text { sic6 }}}$	${ }_{\substack{51 \\ 6105640}}$	1.5	${ }^{80165}$	${ }_{58}^{58} 51515160$	${ }_{0}^{0.36}$				${ }_{653}$	$\xrightarrow{1505320}$	
	－ 23035658	${ }^{7} 7$	3， 37.150			NE5	$\substack{60303 \\ 6100}$	${ }_{\substack{1,25 \\ 128}}$				${ }_{80179}$		${ }_{\substack{0.488 \\ 0.38}}$		12：3135	0.40	cissi	${ }_{1505530}$	
4566 4568	${ }_{\text {che }}^{2304545688}$		cole		${ }^{\text {and }}$	unt	${ }_{610} 102085$	${ }^{3.84}$	Sil6e9			T18314	589		KV1310	12：13205			${ }_{15053} 15030$	
${ }_{4}^{4569}$ 487ve	${ }_{8}^{23020559}$	${ }_{\substack{7451563 \\ 7 / 5154}}^{7}$	3，7．7163 0.36		（27．9920 0.55	cilun		${ }^{0.36}$	S4．567				${ }_{58}^{5815}$		Lenel	8 DIODES			${ }_{15055500}^{15050}$	
¢ ${ }_{\substack{4580 \\ 4581}}^{4}$	2304580 230458 2081			${ }_{7}^{7295908}$		unilioc		0.0 .5	${ }_{1}^{157}$				${ }_{58}^{5817}$						${ }_{15}^{150555520}$	
	${ }_{20}^{2054882}$					cin		0．0．9		$\substack{\text { S1，} 200 \\ 8,093}$			50,15720 50,17500		393	388			1505530	
$\stackrel{4583}{4589}$	${ }_{23}^{23}$			（tact				0.020	cisme			cisis						Thi	colour	
${ }_{\substack{4595 \\ 4702}}$	23.04855 230782 4.50 2.50		31．47175		2972998 2.10				¢101032			${ }_{253}^{2539}$	6001033			${ }_{12005888}^{120598}$		v518		
Ambit international					Telecom directory： Consumer 0277－230909															
																		SEW		
200 North Service Road					Industrial 0277－231616								－${ }^{\text {cha }}$							
Brentwood，Essex					Telex 995194 AMBIT G															
CM14 4SG					DATEL	0271	32628													
E．C．I．S DIS			RIB	OR	R OF TH	E Y	AR			HO	NE	ES	am－	7	MON	－FRI	a	－ 6 p	SAT	

PROJECTS

*SOFT FUZZ 12
Good vibrations for guitars.
¿ZX81 HIGH RESOLUTION GRAPHICS PROJECT 17
Big pictures for a small micro
READER'S PROJECT: SIMPLE TREMOLO 41
Easy effects for guitar or organ.
*STEREO IMAGE EXPANDER 52
How to get a quart-sized sound in a pint-sized room.
POP AMPS No. 9 60
High impedance AC millivoltmeter.
FEATURES
*ALL ABOUT ELECTRONICS 28
Our new back-to-basics series.
FORWARD BIAS 33
A new regular projects clinic column.
*REVIEW: THE ORIC 1 36
Not such a 'BASIC' micro.
*CAREERS IN ELECTRONICS PART 3 48
Looking at British Telecom.
FAMOUS NAMES 55
David Sarnoff of RCA.
REGULARS
Monitor 6
What's On Next 26
Buylines 34
Reader Services 43
Points of View 44
HE Backnumbers 47
HE Bookshelf 54
Clever Dick 56
PCB Services 63
PCB Printout 64
Editor: Ron Keeley

Editorial Assistant: Helen Armstrong BA Technical Illustrator: Jerry Fowler Advertisement Manager: David Kitchener Assistant Advertisement Manager: Joanne James Managing Editor: Ron Harris BSc Managing Director: T J. Connell

High Res Graphics Project - page 17

Stereo Expander Project - page 52

Inside The Oric 1 - page 36
THE HOBBY 'SCOPE: Due to circumstances beyond our control, we regret that the second instalment of this project has had to be withdrawn from this issue of Hobby Electronics. The second part of the Components for Computing article dealing with computer display techniques has also been cancelled. We apologise for these changes, but would like to assure our readers that both articles will be completed in future issues.

Hobby Electronics, 145 Charing Cross Road, London WC2H OEE, 01-437 1002. Telex No 8811896 . Published by Argus Specialist Publications Ltd. Origination by Ebony Typesetting, Trion House, 13 Dean Street, Liskeard, Cornwall PL14 4AB.

FRapid FElectronics

MAIL ORDERS
Unit 1, Hill Farm Industrial Estate,
Boxted, Colchester, Essex CO4 5RD
ACCESS AND
TELEPHONE ORDERS:
Colchester (0206) 36412.

The Rapid Guarantee
\star Same day despatch \star Competitive prices
\star Top quality components.
 Spectrum @ £24.99 including Interface. Spectrum Interface only $£ 15.00$. VIC 20, Commodore 64, Atari 400/800@£14.50.
SPECTRUM JOYSTICK NOW AVALLABLE FROM WHSMITH

Outstanding Features

- Super strong nylon and steel construction, built to last - A total of 8 directions plus
2 large Fire buttons - Arcade proven moulded leaf switches ensure incredible reliability - Complete with self contained boxed interface which simply plugs into the Spectrum expansion port (with or without printer) - Easily programmed in BASIC or M/C.
Full details of Joystick compatible software available. Details on request.

SOLE UK DISTRIBUTOR

 Dept HE 7 . 180a Bedford Road, Kempston, Bedford MK42 8BL

- Recognises LLIST and LPRINT which allows programs to be listed directly from your Spectrum
- Also allows printout direct from BASIC listings without the need for special user calls
- Completely self contained with I metre of ribbon cable and connectors
- Works with any Centronics printer including all Epsons, Seikosha 100A. OKI Microline 80 etc
- Includes driving software which allows up to 128 characters per line
- Full range of business software available
- Fully tested and guaranteed for 12 months

Trade Enquiries Welcome Plus $\mathbb{E} 1.00 \mathrm{P}+\mathrm{P}$

Depithe - 180a Bedford Road, Kempston, Bedford MK42 8BL
performance his comperitive hi:
service hi: performance hi: competilive ONE large 'easy to use' rotary switch
30 protected ranges to 1000 V 10 Amps and 20 Meg Ohms

hisOther features inc. small compact hand held size-basic 0.5% accuracy - high reliability using CMOS circuitry

- large clear LCD display - auto zero, polarity, overange and LO Batt. indication
- diode test - tilt stand with non skid feet - high surge voltage protection etc. etc. AVAILABLE from HOUSE OF INSTRUMENTS and LOCAL DISTRIBUTORS
Just ask for METEX 3000 FREE DATA
Easy to Order: Fill in and post the coupon enclosing cheque/P.O./Credit Card details or Official Order.
VISA

Name
Address.

Tel. No.
Please send:
Metex Type 3000
at $£ 33.93$
(inc. VAT - P - D
Luxury Test Leads
at $£ 5.25$
(inc. VAT - P = D).
Luxury Test Lead Set
at $£ 8.75$
line VAT $+P=D$ I.
Totalf
Please tick and fill in number of card
Barclaycard Access American Express
Credit Card No.
Please allow 14 days for delivery.

House of instruments.
Clifton Chambers. 62 High Street.
Sattron Walden. Essex CB10 1EE
Telephone: (0799) 24922 Telex 818750
hi: romperitive hi:

MONITOR

Have You Heard The One About The Irish Computer Club .?

Dublin computer enthusiasts have formed the Irish Amateur Computer Club, and they are looking for micro buffs from all over Ireland to join them.
''The initial response has been excellent, with our membership now exceeding seventy." writes Secretary Nigel Carey, "Although our members are all very enthusiastic and some are experienced programmers, we are lacking in hardware specialists."
(You are not the only one, Mr. Carey. If too many hobbyists follow the trend and concentrate on micros to the exclusion of hardware, they won't even be able to wire up their own plugs in a few year' timel It won't be "no user-servicable parts" any longer, it'll be "no useable parts servicers" . . . but enought of this . . .
"We are hoping that a mention in your magazine might prompt some of your Irish readers to join the club. The IACC is open to all micro enthusiasts both experts and beginners. We meet at least once each month in Power's Hotel, 47 Dawson St., Dublin (on the second Sunday of each month from 10.00am to $2.00 \mathrm{pm})$. Club members receive regular bulletins and newsletter. Demonstrations, market facilities, lectures and social evenings are just a few of our many activities.
The man to contact is Mr. Nigel Carey, 166 McKee Avenue, Finglas, Dublin 11. I expect they would appreciate an SAE, too.

Texas Rides Again

Texas Instruments have introduced a compact, low cost computer for professionals. The CC-40 is programmable in enhanced BASIC and can run applications software loaded either from solid state cartridges or small tape cartridges. The system is battery operated and can be carried in a briefcase as well as being fully operational as a desk-top computer.

The CC-40 has 34 K bytes of built-in ROM allowing immediate use of BASIC, and the TI BASIC used is compatible with that used in TI's Home Computer family (see Texas For Starters).
$6 K$ bytes of user-addressable RAM can be expanded to 16 K and a module port, provided for up to 128 K of application software, can be used to expand the computer's RAM. The CC-40 has a suggested retail price of $£ 169.95$ and should be available by the time you read this.
A 'Hex-bus' intelligent peripheral interface connector on the module allows connection of current and future peripherals in the Compact family. An RS232 interface, printer/plotter and 'Wafertape' digital tape drive are planned immediately, and other peripherals such as a bar code reader, modems, printers, and a black and white TV interface for the near future. Each unit will include a 'Hex-bus' port and

interface cable, and will be designed to operate with the TI-99 Basic Computer and with an adapter with the TI-99/4A Family Computer

Suggested retail prices are $£ 99.95$ for the RS232 interface, $£ 149.95$ for the printer/plotter and $£ 119.95$ for the 'Wafertape' tape drive.

There will be twenty-two software applications packages available to start with, including Maths, Finance, Perspective Drawing, Advanced Electrical Engineering, Editor/Assembler and games packages on cartridge, and Elementary Dynamics, Photography, Inventory Control and several others on 'Wafertape' cartridges. TI expect to have seventy-five cartridges available by the autumn.

For futher information contact Texas Instruments Ltd., Manton Lane, Bedford, MK41 7PA. Tel: (0234) 67466.

Light Box

Boss Industrial Mouldings, sole UK distributors for Phillips miniature neons, have now introduced blue and green fluorescent neons with AC striking voltages of less than 100 V and 94 V respectively and a life expectancy of more than 20,000 hours. They are

available as individual components or with a butt welded special film resistor suitable for $110-130 \mathrm{~V}$ or $220-250 \mathrm{~V}$ operation at temperature up to $130^{\circ} \mathrm{C}$.
They also do customer-specified neon assemblies for bulk/industrial buyers.
Boss have also added another model to their BIM3000 series: this is a metal case available in two similar sizes, $250 x$ $167.5 \times 68.5 \mathrm{~mm}$ or $250 \times 187.5 \times$ 78.5 mm with a matt black stoved chassis and red, grey or orange stove enamelled top and bottom covers. The design includes integral brackets, etc., for components, PBCs and other assemblies. Custom cut-outs and punchings are available to bulk buyers.

Contact Boss Industrial Mouldings, James Carter Rd., Mildenhall, Suffolk IL28 7DE. Tel: (0638) 716101.

Attention All Suppliers

Manufacturers, Importers, Mail-Order Firms, Clubs, Exhibition Organisers. Hobby Readers need YOU . . .

Hobby Electronics' Monitor pages are our new products, new ideas, and forthcoming events column. The electronics fan has to know you're there before he can take advantage of your services. So please let us know, just as early as you can, when something new is coming up that you want our readers to know about.

Remember that the Hobby readership is diverse. People of all ages and walks of life, from Primary students to Professors, take advantage of our
emphasis on self-education in every field of electronics. They want to find out what it's all about. Help MONITOR keep them in the picture.

Note: Hobby Electronics is produced up to eight weeks before it hits the newstands, so news never comes too soon.

Send press releases and news items to MONITOR, Hobby Electronics. Argus Specialist Publications, 145 Charing Cross Road, London WC2H OEE.

Back On The Streets

It's enough to bring the Editor out in permanent apoplexy, but the new crop of Personal Stereos have arrived. I notice, however, that no-one has yet taken up our challenge to make one that runs on wind power

From Heron Electronics comes the Crown $\mathrm{CH}-10$ at around $£ 24.95$. This little object boasts headphones of an advanced design to give exceptional clarity, four-track, two-channel stereo, auto stop and cue functions, LED battery indicator, balance control and an output power of 30 mW per channel. It measures $94 \times 157 \times 30 \mathrm{~mm}$, weighs 240 gm and comes with a shoulder strap. Enquiries to your local hifi store or to Heron Electronics Lid., Heron House, 19 Marylebone Rd., London NW1 5JL. Tel: 01486 4477. There is also a Ch-20, at around $£ 38.95$, which includes an FM radio with stereo tuner, with a very similar specification.

From Panasonic comes another budget model, the RQ-J75. This will retail for around $£ 33.50$, and Panasonic don't mention any special features with this one except good value for money with their usual high standards. Dimensions are $88 \times 134 \times 35 \mathrm{~mm}$. Enquire at your local Panasonic dealer or to National Panasonic (UK) Ltd., 300-318 Bath Rd., Slough, Berks SL1 6JB. Tel: Slough 34522

A more upmarket portable from JVC has a separate FM radio tuner module, shaped like a cassette tape, which loads into the cassette compartment for use. Not so convenient, perhaps, as a

machine with the tuner permanently built in, but the CQ-F2E boasts advanced features such as an improved tape transport system with and antirolling device, Dolby B, and metal tape compatibility, as well as the more usual features.

The CQ-F2E costs around $\mathrm{f69.90}$. See your JVC dealer or contact JCV (UK) Ltd., Eldonwall Trading Estate, Staples Corner, 6.8 Priestly Way, London NW2 7AF. Tel: 014502621. for more information.

Micro Add-Ons

Kempston (Micro) Electronics' Competition-Pro joystick (featured in Monitor HE May '83) is now available for the VIC-20, and Atari 400 and 800 micros, as well as the Sinclair Spectrum. The Spectrum version costs $£ 25$ including interface, and the new editions cost $£ 16.50$.

Kempston have also produced an interface to link the Spectrum with Centronics-type printers.

The interface is able to recognise LLIST and LPRINT commands, so that programs can be listed directly from the Spectrum and listings (in BASIC only) can be printed out without special user calls. It is also possible to produce condensed, expanded, etc. characters. The interface comes ready to plug in directly to any Centronics type printer, ie all Epsons, Seikosha 100A, OK1, Microline 80, etc. and includes driving software for up to 128 characters per line depending on printer type.

There is also a range of business
software from Hilderbray Ltd., including accounts, and stock control, etc., for use with these printers

The interface costs $£ 45.00$ complete (plus $\mathrm{f} 1.00 \mathrm{p} \mathrm{\& p}$). Orders and enquiries to Kempston (Micro) Electronics, 180a Bedford Rd., Kempston, Bedford MK42 8BL. Tel: (0234) 852997.

Testing, Testing, Testing

Dawne Instruments and Electronics have announced a string of new test instruments in their range.

Two new digital multimeters, the HC6010 and HC7030, have been produced to supplement the successful HC610 and HC703 models. These are $31 / 2$-digit LCD hand-held DMMs with retractable bench stands, and features include automatic zero, polarity and low battery indication, full ranges of DC and AC Volts and Amps, Ohms with switchable hi-voltage for diode testing and lo-voltage for in-circuit resistance tests, overload protection on all ranges, recessed input sockets, and a basic DC accuracy of 0.6% for the 6010 and 0.2% for the 7030. All models carry a year's guarantee and include free test leads, battery and manual. A carrying case is an optional extra at $£ 3.00$.

The HC6010 is $£ 37.00$ and the HC7030 is $£ 47.00$, with the older models slightly cheaper, but prices are quoted here ex-VAT or p\&p, so if you want to buy mail-order you will have to send off for a pro-forma or check the price first

A new $31 / 2$-digit multimeter, the 3300A has transistor hFE measurement facilities for both NPN and PNP devices, with an hFE range of 0 to 1,000 . It directly indicates the hFE values, with about 10uA of Base current and 2 V 8 of Vce. Overload protection is 1000 VDC and 750 V rms AC. Diode test facilities give a maximum of $3 \mathrm{~V} 2 \mathrm{o} / \mathrm{c}$ and OmA2 test current. Other functions include VAC and VDC, DC current to 10 A and resistance to 20 MR , and 800 hours of battery life from one 9 V cell. The cost, ex VAT etc., is $£ 42.00$.

The Model 5000 is a counter-timer produced by GSC. This is a miniature hand-held battery-operated instrument, which measures pulse width in addition to frequency and period, and uses the

latest developments in high speed CMOS logic circuitry to provide characteristics normally only found in expensive benchtop instruments.
The 5000 has an 8 -digit LCD display. It incorporates a wide range of stignalconditioning facilities including attenuation, slope selection, AC or DC coupling and variable trigger control. Signal input for all functions is via a BNC connector with an input impedance of 1 MR , and attenuation settings of $\times 1$, $\times 10$ and $\times 100$ are available.
In the frequency mode the 5000 can handle inputs from OHz 1 to 50 MHz ; the equivalent for the period and pulsewidth modes are 25 ns to 10 s, and either the high or low part of the signal can be selected, as can gate times of $0.01,0.1$, 1.0 or 10 s . Averaging can be carried out over 10,100 or 100 cycles.

The unit is powered by six AA NiCad or alkaline batteries, or by an AC adaptor/charger. We don't have a price for this one, nor for the following:

GSC's Model 3002 autoranging capacitance meter also boasts the virtues of a benchtop machine in a handheld model. The direct capacitance readings are from 1 pF to 10 uF 990 . There are eight automatically selected ranges, and Dawne claim an accuracy of within 0.2% (\pm one count) up to 199 uF , and 1.0\% ditto thereafter. As DC charging characteristics are used for measurement, the meter can be used for measurements on switches, cables and other components as well as capacitors. Input connectors are provided for round or flat-leaded devices
The Model 3002 operates from six AA NiCad or alkaline batteries or from an optional/charger.

The Model 6000 low-cost frequency counter provides two front-panel BNC inputs, one from 5 Hz to 100 MHz with a 1 MR impedance and the other from 40 MHz and 650 MHz with a 50 R impedance. A switchable low-pass filter gives $3 \mathrm{~dB} /$ octave rolloff at 60 kHz for audio and ultrasonic measurements, and gate times of 0.1, 1.0 and 10 s .

Another feature of this new model is a $3 \mathrm{MHz579545}$ temperature-compensated crystal oscillator with an accuracy of ± 0.1 part in 10^{6}.
All enquiries to Dawne Instruments and Electronics, Shields Rd., Bill Quay, Gateshead NE10 ORS. Tel: (0632) 695117.

Tooling Up

Two from Toolmail: a computer service wallet containing twenty-five tools specially chosen for the simple maintenance of microcomputers and similar equipment. Tools include a miniature soldering iron, solder, pliers. tweezers, knife, IC puller, screwdrivers and adjusting tools among other basics. The kit costs $£ 39.50$ all inclusive.
Toolmail are also now supplying a range of Sanwa multimeters. Sanwa offer the widest range of multimeters anywhere in the world and supply

industrial and government users. A brochure with their selection is available from Toolmail.
Toolmail's latest catalogue is now available, with 128 pages, cost $£ 1.00$. Orders and enquiries to Toolmail. (1982) Ltd., PO Box 46, Maidstone. Kent ME15 8EO. Tel: (0622) 683861.

Speed Of Light

For the ardent PCB-maker or anyone going into production even on a small scale, Electronic Assistance Ltd. have two UV exposure units at a reasonable price.

The UV-800 uses four 15 W actinic UV lamps and is capable of etching more than 800 sq cm of pre-sensitised PCBs or lables in less than three minutes, which is appreciably faster than traditional fluorescent tubes can achieve.

The UV-800 uses a very sensitive timer unit based on the ZN 1034E chip which allows repeated exposure to within 0.1% of the set time limit, over a
wide temperature range. This is an integral part of the exposure unit.
Safety and efficient operation features include a flame retardant foam pressure pad designed to avoid displacement of artwork when closing, and a positively interlocked microswitch which prevents UV emission reaching the operator's eyes when the pressure pad is raised.
There is also a more basic unit, of interest to hobbyists, without the timer function but with all the safety features. This is the UV-300, and costs $£ 35.00$ plus VAT. The UV-800 costs $£ 85.00$ plus VAT.
Enquiries to Electronic Assistance Ltd., Unit 1, Brynberth Industrial Estate, Rhayader, Powys LD6 5EN. Tel: (0597) 810711.

Less Taxing

A revolution in coping with that dreaded income tax return is forecast by the producers of Microtax, a new software system developed for Britain's growing number of home computer users.
Microtax, which consists of a set of programs on tape or disk and supporting manual, is claimed to be the first comprehensive, easy-to-use microcomputer system for completing tax returns.
The first Microtax system is an income tax system for the tax year 1982/1983 (ie for the current tax return) - this announcement is a trifle late for anyone who is not him or herself a trifle late, but the $1983 / 84$ will be out in the autumn of 1983. Also available in 1983 will be complementary systems for dealing in more detail with the taxation of business and professional income, and a third system to cover Capital Gains Tax.
In addition to the calculation of tax liabilities, Microtax provides all the details to be filled in on the tax return, and for those with their own printers, a printout of all the relevant details is provided, which can be attached to the tax return.

Microtax can currently be used on the 48 K Spectrum, Commodore VIC 20 with 16 K RAM pack, Commodore 64, Pet 400 Series (disk or tape), Dragon 32 and BBC Model B. Systems are being developed for use on the Sharp M80Z and Newbrain micros - in fact, these will probably be ready by the time you read this.

Microtax was developed by two taxation experts from Tax and Financial Planning Ltd., and took nine months of professional accountancy time and the equivalent of two years of program time to develop for the 1983/4 tax returns. The Microtax package costs $£ 24.94$ all inclusive from Microtax Ltd., Barratt House, 7 Chertsy Rd., Woking, Surrey GU21 5AB. Tel: (04862) 20369. Please state which micro you are using when ordering.

Membrane Keypads

Velleman have announced the introduction of a new range of membrane keypads available with 12 keys (type KB12) or 16 keys (type KB16). Both versions are offered with standard legend or with blank keys to enable customers to print their own legend.

These multi-layer keyboards are manufactured by Velleman using high

quality materials, with the top layer being polycarbonate film which resists scratching, dust and water. Termination is by insulated flat cable and a suitable PBC connector with 2.54 mm (C 1 in) spacing is supplied. Ratings are 24 V and 25 mA maximum.

A data sheet with full technical specifications is available upon request. Price including VAT and postage is f 8.44 for both versions (1 off quantity), with discounts available for larger quantities. Velleman will also manufacture special keyboards to customers own design.

Contact Velleman (UK) Ltd., PO Box 30. St. Leonards-on-Sea. East Sussex, TN37 7NL. Tel: (0424) 753246.

Help From ILP

ILP Electronics have introduced a 15 W (rms) per channel stereo power booster for car radio and cassette players to accompany their 15 W mono power booster already on the market.

Both modules, the mono C15 and the stereo C1515, somewhat resemble electronic hedgehogs and are designed to increase the output power of car radio /cassette players without distortion. They come as encapsulated modules with two-hole fixings, screw terminal blocks for easy wiring-up, automatic supply on switch-on, selectable input level facility and output protection circuitry.

Also from lLP comes 15 VA transformers fully encased in ABS plastic shells with easy fixing by an M4 bush at the base. ILP are planning more transformers in the encased toroid style up to 120 VA .

For information and prices on both components, contact ILP Electronics Ltd., Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP. Tel: (0227) 54778.

Sussex Mobile Rally

The Sussex Mobile Rally is being held at Brighton Racecourse on Sunday July 17th.

Features will include 20,000 square feet of exhibition areas, under cover, free minibus rides between the racecourse and the seafront (about four miles away), trade stands and a huge, popular Bring and Buy stall, and talk-in facilities on S22 and 80m. The rally is designed as a family attraction, not just for diehard fans.

The rally opens at 10.30 am and closes at 5 pm . Admission is $£ 1.00$, free to children and disabled people. There will be free car parking for up to 4,000 cars.

Advance tickets for clubs, and general information, can be obtained from W. Firmager, Flat 2, 23 Chatham Place, Brighton, Sussex.

Turn On The Lites

From Light Soldering Developments comes more soldering equipment and also a piece of gear which isn't anything to do with soldering but certainly utilises their experience with soldering irons.

This is the Adamin Electric Stylus, which employs the blocking foil to mark and label a wide range of materials.

The Adamin is about the size of a ballpoint pen and operates from its own 4 V 5 mains plug and transformer, which fits a 13A socket. The silver-alloy writing tip heats in about 30 seconds to a temperature sufficient to activate the foil to allow writing. The foil comes in a variety of metallic and coloured finishes, and the Adamin is supplied initially with the plug/transformer and nine strips of foil in gold, silver, copper and six colours. The cost is $£ 15.04$ all inclusive.

Litesold have modified their LE4O 24 V electronically controlled iron to incorporate proportional band temperature control. Within this band, power is supplied in regular pulses of equal intervals and of a length which varies according to the actual and 'set' temperature of the iron. At the set temperature, the power-on and poweroff periods are equal. Above and below this, they are modified until, at the limits of the proportional bands, the power is either fully on or fully off.

This system provides an improved temperature control, claim Litesold. To endorse their confidence in the iron, the 'set' temperature at manufacture is $370^{\circ} \mathrm{C}$, lower than many controlled irons, but possible because of the exceptionally good control response of the iron. The lower working temperatures reduces the risk of damage to components and PBCs and allows longer life to the iron and bits.

The temperature can be useradjusted anywhere between 280 and $420^{\circ} \mathrm{C}$ and stability around the point set is typically $\pm 2^{\circ} \mathrm{C}$.

MONITOR

The PU2450 Power Unit, designed for use with the LE40, now features a LED load indicator which glows when the iron is drawing load current. This provides a constant confirmation of the iron's correct operation and is useful for showing the exact setting point when adjusting the temperature.
Mail order prices for the LE40 are $£ 25.67$ all inclusive, for the PU2450 $£ 32.69$ and for both together $£ 57.99$.

Litesold have recently introduced a complete soldering/desoldering kit for hobbyists. This includes an 18 W mains iron fitted with a 3.2 mm copper bit, with two alternative bits of 1.6 mm and 2.4 mm ; three metres of 18 swg fluxcored solder, stainless steel tweezers, three double-ended desoldering tools and a reel of desoldering braid. The kit comes in a clear PVC wallet and is available at the mail order price of $£ 14.55$ all inclusive.

Orders and enquiries to Light Soldering Developments Lid., Spencer Place, 97/99 Gloucester Road, Croydon CRO 2DN. Tel: 01689 0574.

Shorts

For owners of the 16 K Sinclair Spectrum, Sinclair are now offering a 32 K upgrade, priced at $£ 60$ inclusive of all labour and postage costs. Owners who opt for the upgrade are also being offered a free Sinclair 48 K cassette of their choice and the chance to buy Sinclair's ZX Printer at the special inclusive price of $£ 39.95$ (instead of the normal price some $£ 20$ higher).
Sinclair Research Ltd., 25 Willis Rd., Cambridge CB1 2AQ. Tel: (0233) 353204.

A new edition of the RSGB's A Guide to Amateur Radio - the 19th edition, to be exactl - by Pat Hawker G3VA has come out. The book is an all-round handbook, covering topics from basic electronics, detailed looks at the different units of amateur radio equipment, the RAE, operating a

station, international radio amateur organisations and appendices. The book is an 160 -page paperback costing $£ 2.75$, or $£ 3.44$ by post, from the RSGB, Alma House, Cranbourne Rd., Potters Bar, Herts EN6 3JW. Tel: Potters Bar 59015.
Ambit International, the component suppliers who specialise in many unusual and imported lines, have released their 1983/84 catalogue, which is available through newsagents priced 75p. In the event of problems, contact Ambit International, 200 North Service Rd., Brentwood, Essex CM14 4SG.
The Leeds Electronics Show takes place from 5th to 7th July at the University of Leeds. This is a professional show, but anyone wanting information should contact Pat Hyatt on (0799) 26699.

A multimeter also from Electronic and Computer Workshop. This is the Steinel Digi-Check, a $31 / 2$-digit handheld meter of an unusual design. It consists of two probe tips, each weighing 250 gm , which contain the instrumentation (A/D converter on a single CMOS LSI chip), digital display, PSU and battery charger, plus the test lead. The points under investigation can be tested and the display viewed simultaneously, while the scale selected can be changed while the instrument is in use.

Specifications include DCV from OmV1 to 500 V , ACV from 10 mV to 500 and resistance from OR1 to 2OMR; pushbutton reading storage ensures that measurements can be made even in hard-to-reach places, and then the display can be brought out to where it can be read.
For more information contact Electronic \& Computer Workshop Ltd., 171 Broomfield Rd..

Chelmsford, Essex CM1 1RY. Tel: (0245) 62149.

Get Off The Line . . .

A new creature may be appearing in homes and gardens this summer Britian's first legal cordless telephone.
This licence-free gadget is made by Fidelity Radio and has a nominal range of one furlong (700 ft), and perhaps double that from a high place with a clean line of sight. The base unit plugs into an ordinary British Telecom phone socket, and will recharge the batteries in the handset overnight.
The mobile handset is said to sound and work just like a conventional fixed phone, but includes automatic recall of the number dialled (useful for repeat attempts to reach an engaged number) and an intercom call-button for conversation between the base unit and the handset.

This is obviously aimed at businesspersons and the Leisure Class at present, but how long will it be before we can all have one on our bikes? Probably not long. This unit costs £169.00, with a twelve month warranty, and the standard socket is installed by British Telecom for $£ 11.50$. The makers point out that purchase and installation of a cordless phone roughly equates to installation and six years rental of a standard pushbutton Trimphone. Cordless phones have been in use in the USA for nearly 15 years and 'listening in' has not proved a problem, we are told, because any one of the 20,000 different electronic signatures used to link the base and handset units is highly unlikely to be repeated within a quarter-mile radius.

Enquiries to Micro Equipment Centre Ltd., 18 Brock St., Bath BA1 2LW. Tel: (0225) 20312.

TEST EQUIPMENT CENTRES All mooblisonvish

RETAIL - MAIL ORDER - EXPORT - INDUSTRIAL • EDUCATIONAL DIGITAL MULTIMETERS (UK c/P Free)

 KD305 - 16 range 10A DC. 2 meg ohm $K 030 C=26$ range $1 A A C / D C 20$ meg ohm
$K 055 C=28$ range $10 A A C / D C 20$ meg otmm $6010+28$ ranga 10 A AC/DC 20 meg ghm $7030+$ As 6010 but 0.1% hasic K0615-16 range 10A OC. 2 meg plus Hte teste
189M 30 range $10 A$ AC/OC. 20 meg plus Hte
189M 30 rang: 10A AC/OC. 20
tester
HAMD HELD AUTO RAMGE
HAND HELD AUTO RANGE
OM2350w21 range 10A AC/OC 20 meg ohm (Miniature)
HO30 16 range $0.2 \mathrm{AC} / \mathrm{DC} 2$ meg onm H030/B As above plus cont buzzer MD31 22 range 10 AC/DC 2 meg oh ms plus cont. buzzer
taptional carry case C2 95

FREQUENCY COUNTERS

PF M200A 200 MHZ hand held pocket 8 dight LED
8110 A d digit LED banch 2 ranges $100 \mathrm{MHz}{ }^{\mathrm{E}} \mathrm{£77.00}$ 861989 dildill LEO bench 2 ranges 600 MHZ \&113.85 800089 digit LEO 3 ranges 1 GHZ $\quad 8178.00$ TF 200 = 8 diaitic -Gotlonal cirry cie f6as - Boplonal carry case 6.84 TPG00 600 MH? TPI 10001 GHZ
£43.00
ELECTRONIC INSULATION TESTER
YF $501500 \mathrm{~V} / \mathrm{-}-100 \mathrm{~m}$ with carry case
MULTIMETERS UKCIP 65
KRT $1001 \mathrm{~K} / \mathrm{V}$
12 range pocket
12 range pocket
E5.95
22 resce 80 KT
$£ 14.95$ ETC5000/5001 21 ranges 50K/V. ETC5000/5001 21 ranges. $50 \mathrm{~K} / \mathrm{V}$.
Range doubler. 10 AOC O. 818.95. TMK500 23 ranges $30 \mathrm{~K} / \mathrm{V}$. 12 A OC plus cont turzer.
NH56R 20K/V. 22 range pocke ETU 10214 range 2K/V rocker
B30A 26 range 30K/V. IOA AC/DC overload protection, etc.
$360 T \mathrm{R} 23$ range took/V, Large scale 10 A aC/OC plus Hie
AT1020 18 range $20 \mathrm{~K} / \mathrm{V}$. Oefuxe plus He tester
YN 360TR 19 range zok/V plus He tester

VARIABLE POWER

 SUPPLIES (UK C/P £1.00) PP241 0/12/24V. 0/ $1{ }_{£ 35.00}$ PP243 3 amp version $\mathbf{E 5 9 . 9 5}$ PS $1307 \mathrm{~S} 8 / 15 \mathrm{~V} 7 \mathrm{amp}$ Iwin meter DIGITAL THERMOMETER TH301 LCO -50' t to 950° with ther mecouple

BENCH MODELS
TM353-27 range LCO $2 A$ AC/aC
TM355-29range LED IOA AC/DC TM351-29 range LCO TOA AC/OC
200128 range LCD IOA AC/DC plus 5 range Cap. Meter with case
 $1503 \mathrm{a} 4 /$ digit LCD every Yacility 10.05%) 171.00 $1503 \mathrm{Ha} 0.03 \%$ basic version ol above $£ 189.00$ - Dptional carry case 56.84
beckman hand held
$T 10034$ range 10A AC/OC 20 meg ohm
£.56. 35
T110 As above plus Cont. test etc.
SIGNAL GENERATORS

FUMCTION : All sine/square/riangle/TTL etc TG1001 HZ - 100 KHZ
PULSE
TG105 Varlous facililies 5 HZ - 5 MHZ
AUDIO : Multiband Sine/Square
LAG27 10 Hz 101 MHz
AG202A 20 Hz to 200 KHz (lis1 $£ 94501$
SG402 100 KHz to 30 MHz |lizs £79.50)
LSG17 100 KHz to 150 MHz
AUDIO • RF • FUNCTION • PULSE
DSCILLOSCOPES

Full specllication any model on requesL SAE by posi. HM Series MAMEG: 'SC' THANDAR CS' TRID: 3 ' Chotech 'DT' Salgan
SIMGLE TRACE UK C/P 23.00
303015 MHZ .5 mV . 95 mm tube plus componen
tester C/P $\mathbf{E x . 0 0}$
SC $110 A 9$ Minature 10 MHZ tatterv portable
SC 110 Ae. Minlature 10 MHZ batterv portable
Post liee
HM103 15 MHZ $2 \mathrm{mV} .6 \times 7$ display plus component tester C/P © 3.00 £181.70 - Opllonal carry case $£ 6.84 \mathrm{AC}$ adaptor $£ 6.69$ Micads £12.50 OT 520 Oual 20 MH2 \qquad Mm203/4 Oual 20 mil2 plus component tester
CS1562A Qual 10 MHz |Ust £321.00| 3131 Oual 15 MHZ * component tester
 CS 1566A Ouat 20 MHZ Alf lacitities (List £401 351 HM204 Dual 20 MHZ olus component tester $\mathbf{c} \mathbf{3} 49.50$ sweep delay.
CS 1820 Dual 20 MHz with extra facilities OPTIOMAL PROBE KITS ILISI $£ 508.30$ I $£ 485.00$ XI $£ 7.95 \times 1-\times 10 £ 10.50 \times 10 £ 9.45 \times 100 £ 16.95$ HIGH VOLTAGE METER Direct reading $0 / 40 \mathrm{KV}$. DIGITAL CAPACITANCE METER
01 ft to 2000 mid LCO A ranges OM6.013 $\mathbf{~} 52.75$ \{Carrycase $£ 2.95 \mid$

TRANSISTOR TESTER
Olrect reading PMP: NPM. etc.
TCI
[UK C/P 65pl

AUDIO ELECTRONICS cimesed

301 engwarl moan. Lonion w2 1Bn, tEL:01-724 3564 454

SIMCLAIR OWWERS READ THIS FROM

Well now you can find out and laste the very real dilterence by purchasng our lates MACHINE CODED

MACHINE CODE TEST TOOL
The ultimate professuonal futor and de-bug program. we wrote ths to help us withe our own programs - TEST and display machine code insiructions as they're writer. - IDEAL for dom the novice and the expert. - FULLY doxumented with a 32 page tutolia HEX:DECIMAL conversion as sandard Sufpled free with the spectium version. Avallable for the lok 2×81 and $16 / 48 \mathrm{~K}$ spectrum
SPECTRUM CHESS (48k only) Dare you face The Turk
The original Turk was an exghteenth century automaton, a life-size mechankal figure resplencent
costume and seared berind a wooden cabinet on which a diess board and preces were potaced
OCP now ofter you the twentieth century equivaient of that Turk - a chess-playing computer program manr options incluori - DEMONSTRATION MODE

- GOARD EDITOR
- GAMES PRINTOUT FACIITY
- MUO PLAYER MODE
- unfinished games can be stored - RECOMMENDED MOVE
FUL INSTRUCTIONS PROVIDED

ADDRESS MAMAGER.....

Works on the lok and 48 K Spectrum, in $48 \mathrm{~K} \pi$ will store, file, select and retrieve over 400 full addresses lovel
isoo individual names: Dynamk Memory Management and compression tectiniques makes all this possibie and there's a tot more.
FULL SCREEN INPUT and EDITING - see it as a page as it nappens with insert. delete and TAB
MULTIPLE INOE MING - 3 way user defined index enabies you to defirne. catalogue. select and prim entries as needed, lessential for the more sophisticated applications)

- SUPER FRIENDLY - crash-proot, extremely easy to use and efficient an a way that BASK can never be

MAMY USES
AT HOME - (storing addresses. printing out Xmas Card usts etc)
saning customeis into types, areas, size
$\square \longrightarrow$ -
WACHIVE CODE.. MT MAVS ALCTME DIFSREMCE.....
Ple ase rush me: Addras Marnager at EB. 95 each. LISpectrum only.
Chert The Turk at 68.95 each L 15 pecturm
Machine Code Texa Tood at E9.95
Iok box for edition required [IDXB) [Specirum
10753) 888866

NAME:
ADORESS.
POSTCODE

HEI

MAKE YOUR OWN P.C.B's.

Please send full catalogue \square Price includes VAT \& Carriage.
Name
Address

More vibrations than the Beach

 Boys, more Shakin ${ }^{\prime}$ than Stevens, more rattle than a snake, more mystery than Toyah, hairier than those gentlemen on the right, breakin' more glass than Hazel O'Connor, more fuzz than . . . the Beasties??THIS PROJECT is a subtle variation on an old idea. Fuzz-tone is used either purely for effect - heavy metal power chords would not be the same without it - or to mimic the soft clipping tones of an over-driven valve amplifier. Depending on the values chosen for R10, 11, 12, 13, 14 and 15 the unit can be constructed to produce anything from a traditional, harsh fuzz sound to a reasonable imitation of a valve amplifier pushed a little too hard. The 'fuzz control' potentiometer allows variations around the basic sound and, according to one user, at moderate settings "it sounds like Jimmy Page reversing uncontrollably into a large greenhouse". That's a recommendation?!

Fuzz On The Circuit

The first stage of the circuit (Figure 1) is a simple preamplifier, designed to accept an input directly from an

Figure 1. The circuit, with an optional third stafe for experimenters. For other constructors, the third-stage is by-passed by a wire link.

Figure 2. Potentiometer law.

$$
A_{V}(\text { VOLTAGE GAIN })=\frac{V_{O U T}}{V_{I N}}=\frac{-R 2}{R 1}
$$

Figure 3. The operation of an op-amp in the inverting mode under normal conditions. In the Soft Fuzz, however, this is modified by a Zener-like network.

Figure 4. The 'Zener' network and its characteristics.

Figure 5. The operation of the 'Zener' network when the input voltage is positive.
electric guitar. The gain is adjustable between about 2.3 and 13 using RV1. Although a linear potentiometer is specified (generally it's possible to get better quality linear pots than logarithmic types, and a Cermet variety would be a good idea here to reduce the noise to a minimum), the variation of amplifier gain with resistance is not, as shown by Figure 2.

The output of the preamp will range up to about $4 V$ RMS and is AC coupled to the next stage to avoid amplifying the DC offset produced by IC1, which is an LF353 dual JFET opamp. The coupling capacitor C1 should be tantalum bead type, since the polarity of the DC offset voltage may be different from unit to unit, and tantalums can stand up to about OV3 reverse polarisation.

The second stage is the bit that makes the interesting crunchy sounds. It consists of an op-amp connected as an inverting amplifier, with several complicated looking twotransistor networks in the feedback loop. But to describe all this, we're better off first looking at a simplified. circuit.

First though, it ought to be remembered that the gain of an opamp in the inverting mode is as shown in Figure 3. In the main circuit, however, the feedback resistor has been replaced by a network consisting of two transistors, two diodes and two resistors. These form, in effect, a pair of back-to-back Zener diodes in parallel with a resistor. Up to the operating voltage of the "Zeners", the circuit looks like a pure resistance but above the voltage VZ the "Zeners" conduct so the resistor is taken out of circuit. The input/output characteristic of this network (Figure 4) shows that it is linear up to the "Zener" voltage, but clips for input voltages higher than that.

Half of the "Zener" network has
been re-drawn in Figure 5; this is the half that is operating when the input voltage is positive (the resistors have been re-numbered to agree with one section of the main circuit but the values have been changed to simplify the explanation).

Zener Diode Lately?

Generally an NPN transistor will begin to conduct when the base is about OV6 more positive than the emitter. In this case, the base voltage is derived from the input (which is actually from the op-amp output, remember); if the input is say, 1 V , then with the resistor values shown the base will be at OV75 and the emitter at OV5, so the transistor will be cut off and the output is another OV25 less than the emitter voltage. But if the input rises to around 2 V 4 , something different happens; the base voltage becomes 1 V 8 while the emitter voltage is 1 V 2 and the transistor will begin to conduct.

Now if the input voltage rises to around 4 V , say, the transistor is well and truly switched on - however it will only conduct just enough to maintain the base voltage OV6 higher than the emitter, as described. The circuit is thus acting as a Zener diode, maintaining a fixed voltage of 1 V 2 across it, and the input voltage less the collector to emitter voltage appears on the emitter.

Another way of describing this is to say that for input voltages above 2 V 4 only R8 and R9 are left in circuit to oppose the increase in current due to increased input voltage. Hence the current increases twice as much for a given voltage change above the 2 V 4 level than it does for the same change at voltages below 2 V 4 .
The graph of the transfer (input/output) characteristic of the circuit is shown in Figure 6. The

Parts List

RESISTORS

CAPACITORS

(All 25 V axial electro except as noted)
C1 22n
C2, 3, 6 47u
C4 47u
25 V radial electro

C5
22u 16V
tantalum bead

SEMICONDUCTORS

IC1......................... LF353	
Q1, 3, 5	
	PNP general purpose
Q2, 4, 6	
	NPN general purpose
D6	1N4148
1	0.2" Red

MISCELLANEOUS
SW1 DPST min. slide or toggle
SK1, 2PP3
Case, approx $102 \times 102 \times 51 \mathrm{~mm}$; PP3 battery clips; Veropins; PCB; 4 \times M2.5 or 6BA nuts and bolts, wire, solder etc.

BUYLINES .page 34

Figure 6. The transfer characteristics of the Soft Fuzz circuit.

Figure 7. The curve in the lower diagram shows the effect of the Soft Fuzz circuits on a triangular waveform.
resistance of the curve is equal to the slope of the graph, and for the first part it is $2 \mathrm{~V} 4 / 0 \mathrm{~mA} 6=4 \mathrm{kR}$, while for the second part it is 0V8/OmA4 = 2 kR , as expected. This apparent resistance, calculated from the change in current resulting from a change in voltage, is called the 'incremental resistance', and if the circuit is used in the feedback loop of an op-amp, it is plain that the gain at any time will be proportional to the incremental resistance.

Of course this simplified circuit illustrates only half of the network, but the PNP transistor performs an identical function when the input (opamp output) waveform goes negative.

The net effect of placing a network such as this in the feedback path is to reduce the gain as the input signal increases.

By carefully calculating the values of the resistors R10-15, the 'breakpoints' at which the incremental resistance slope changes can be selected to give smooth compression of the signal (clipping is just sudden and hard compression . . .). Three non-linear elements are used to give three breakpoints, and the overall

Figure 8. The PCB overlay.
effect of the unit on a triangular waveform is shown in Figure 7. The breakpoints selected for this project produce a gain of 15.5 for inputs (from IC1b) up to 1 V 4 , a gain of 7.2 for inputs from 1 V 4 to 3 V and a gain of 3 for signals from 3 V to 4 Vg ; thereafter the gain is one, no matter how large the input signal! Hence the triangle wave is amplified with four separate slopes; one generated by each breakpoint, plus the base gain of one.

Construction

The project is easily assembled with the aid of the component overlay, Figure 8. The third stage of non-linear feedback has been made optional so if you wish to proceed with only two stages, insert a link to join IC1 pin 7 to the junction of R13, D3 and D4. The components used for the third network should then be omitted but they can always be added at a later

stage if desired and the link removed.
Connections to and from the board are best made via PCB-pins; both the input and output leads should be screened cable, and keep the leads to the potentiometer as short as possible. The LED power-on indicator is a bit of 'flash', but as it may prevent the unit from being left on it will probably earn its keep! It should be mounted on the side of the box near the on/off switch. The usual alternative, of course, to to use a double-pole jack socket which disconnects the battery when the guitar plug is removed.

An aluminium box is preferred for mounting the PCB, because of its screening property, and the board is easily fixed with four M2.5 or 6BA nuts and bolts.

Sistons		
	$\therefore i^{\circ}$	233
MEfat flm		
oamextaa LOW NOISE 1051p 1Mg 		wine
Pors b		
		3x
PRESET PRIER		
		CHARGEABLE BATERES
	1100	
	${ }^{\text {ks }}$	
56 Ff 10150 HF 10 p -100 nf to 150 nF		
$\begin{aligned} & 100 \mathrm{n} \text { f to } 150 \mathrm{nF} \\ & 180 \mathrm{nF} \text { to } 270 \mathrm{nF} \end{aligned} 14 \mathrm{p}$		
	0.6.6.9 ${ }^{2} \mathrm{a}$ a	soldtaing
	veroboamo	
	${ }^{\circ} \mathrm{O}$ copa	
		Plucst
	ATREAL	
	\%ile mite' 169	
	${ }_{\text {cter }}^{\substack{\text { TRCN }}}$	
Electroivtics		
\%	-	
	Sensirve pee	
	frime Elw melt	con
63		

 Ouantity discounts negotable. TRY US NOW - WE VE GOT WHAT YOU NEED.
 741
741
7417
742
742
7422 742
7423
742
742
742 742
7426
7427
742
743 7430
7432
7433
7437
7438会 7446 A
7447 A 7448等た等 7454
7460
7470 7460
7472
7472 7473
7474
7475
7476 7475
7476
7480 7480
7487
3482
7487 74822
7483 A
7484睪镸さ 7489
7490 A
7491 7491
7492 A
$7493 A$ $7493 A$
7495 A
7 74954
7496
7497 74100
74107
74109 74107
74109
74112
7416 74118
74119 74120
74121
74122 74122
74123
744125 74125
74126
74128知

RUGBY ATOMIC CLOCK
This 280 micro controlled clock／caiender receives coded time data from NPL Rugby．The clock never needs to be reset．The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching．A separate timer allows recording of up to 240 lap times without interrupting the count．Expansion facilities provided．

Ready Built Unit
$145+£ 5.00 \mathrm{carr}$
Reprint of ETI articles at $£ 1.00^{\circ}+$ s．a．e．

As described in
 JUNE／JULY／AUCUST
 ISSUE

MICROTRAINER
Complete Kit $\mathbf{£ 6 4 . 0 0}+\mathbf{£ 1 . 0 0} \mathrm{p} \&$
$8 \vee 18$ A PSU $7.00+70 p$ p\＆p
1802 Ref． $\mathbf{f} 7.00$
IDEAL for HOBBYISTS－learn and explore the workings of microprocessors and unravel the mystical field of computers． INVALUABLE for training centres，schools and industries－gives effective insight into micros to engineers，electricians etc directly involved in the computer field． INEXPENSIVE－a truly low cost teaching aid－in fact a short step towards developing new ideas and systems．

B B C MICRO COMPUTER
 OFFICIAL DEALER
 Plasese phone or ovealablitry

BBC Model B £399
（incl VAT）Carr £8／unit Model A to Model B upgrade kit $£ 50$ Fitting charge $£ 15$

Individual upgrades also available WORD PROCESSOR＇VIEW＇ 16k ROM £52
TELETEXT ADAPTOR £195 WORLDWISE 8K ROM £39 TORCH Z80 DISC PACK $£ 780$ Business，Education and Fun Software in stock

FLOPPY DISC INTERFACE

inc．1．2 O．S．$£ 95+\mathbf{£} \mathbf{2 0}$ installation

BBC FLOPPY DISC DRIVES

Single drive 5%＂ $100 \mathrm{~K} £ 235+£ 6$ carr．

 Dual drive $51 / 4 " 800 K £ 799+$ f8 carr． BBC COMPATIBLE DRIVESThese are drives with TEAC FD50 mechanism and are complete with power supply SINGLE：100K £190；200K £260；400K £340 DUAL：200K £360；400K £490；800K £610 Drive Cables：Single £8 Dual £12

Disc Manual \＆Formatting
Diskette £17．50

MICRO TIMER

The programmable clock／timer is a 6502 based

 dedicated micro computer with memory and 4 digit 7 segment displays to form an extremely versatile iming device with following features：24 hour 7 day timer
－ 4 completely independent switch outputs
6 digit 7 segment display output to indicate real time turn－off times and reset times
－Individual outputs to day of week，switch and staius LEDs
－Data entry through a simple matrix pad
Further details on request
Complete Kit PSU
莦 th t

＊

t
＊ ＋+ 市苦 tht者

Chris Lloyd and Paul Moody

2×81

 H．R．GUNIT

Fed up with chunky，block graphics on yourtexuend on try our High Resolution Graphics board．It allows you to plot at least 512 points（more，with clever programming）and works with either the standard 1 K computer or with a 16 K RAM pack plugged in．

THE POPULARITY of the Sinclair ZX81 has amply demonstrated the high demand for low priced home computers but, after buying their 2X81 and discovering for the first time the joys of computing, many owners soon wish to improve on the basic Sinclair system. Then they find that extra money or a commercial High Resolution Graphics (HRG) board costs almost as much as the original machine.

But wait! The high resolution graphics system decribed here is available as a kit for only $£ 17.50$ and offers facilities superior to many HRG add-ons. It enables the user to define his own graphics symbols - making it possible to plot accurate graphs and shapes, to play games such as chess or Invaders with realistic figures, or to devise any new character - all with a screen resolution of 256×176 pixels. In addition no hardware modificiations are required; the unit plugs directly into the ZX81 ROM socket and is completely software controlled.

Sinclair Displays Itself

One of the main reasons for the ZX81's low price is that it uses very little hardware to produce the display. Instead of a dedicated display chip, Sinclair cleverly manages to trick the Z80 CPU into handling the display, making it behave in a way it is not normally intended to work.

The problem of displaying data this way is simply one of speed. To outpút the characters fast enough, the CPU has to do two things; first it must read the character code in RAM, and second it must find the pattern of dots in ROM that correspond to the required character.

With most processors this is impossible to do at any reasonable speed, but Sinclair has used a special facility of the Z80 CPU - its ability to refresh dynamic memory - to work a neat trick.

Dynamic memory is simply a block of memory cells in which a logic ' 1 ' is stored as a charge on a tiny capacitor, which is itself part of the memory IC (dynamic memory was explained in greater detail in Components For Computing, February 1983 issue of Hobby Electronics). However the charge leaks away fairly rapidly, so that data must be 'refreshed' from time to time. This capability is built into the $\mathbf{Z 8 0}$ CPU and normally it refreshes dynamic memory about once every microsecond, during the second half of each machine cycle. At these times the top half of the refresh address is equal to the contents of the CPU's I register and always remains the same, while the bottom half is equal to the contents of the R register and is incremented each cycle.

This refresh ability is put to full use by the Sinclair Logic Chip, a Ferranti ULA (Uncommited Logic Array). Normally in the first half of a machine cycle the CPU fetches the next instruction to be executed. However the Logic Chip periodically tricks the CPU into putting out the address of the next character to be displayed,

Figure 1. This block diagram shows, in simplified form, how the display is generated.
instead of an instruction, and the RAM returns a character code from the display section of memory. This would be treated as an instruction to be executed, except that the Logic Chip once more fools the CPU by overwriting the data lines, forcing them all 'low' so that the CPU effectively receives a No Operation (NOP) instruction.
Meanwhile the Logic Chip is using the character code data to generate the address in ROM where is located the dot pattern for the selected character. During the second half of the machine cycle - the Refresh cycle - the Sinclair Logic Chip puts out this address on the lower nine address bus lines, overwriting the CPU's lower refresh address bits so that the Logic Chip addresses masquerades as the lower half of the refresh address! The upper bits come, as usual, from the CPU's I register, and together these bits address a memory location in the top 500 bytes of ROM, where the character dot tables are held. The data from the ROM is then sent directly to the display and forms the top row of the displayed character. The Logic Chip address is then changed successively to output the other seven rows of dots.

High Resolution

The ZX HRG board allows the programmer to choose for himself the pattern that will appear on the screen when the Sinclair prints a character. Quite simply, it overwrites that part of ROM which contains the character data - memory locations 7680 to 8191 - by disabling the ROM whenever the address is within that range. So, instead of reading this part of the ROM, the Sinclair is instead directed to the HRG RAM, which has been set up by the programmer to provide the desired high resolution character. For increased flexibility, the HRG system is completely software controlled, allowing rapid selection of either user-defined or normal Sinclair graphics, and of course the two can be combined if the Sinclair ROM data is first transferred to the HRG RAM.

Table 1.

CONTROL NUMBER	HRG FUNCTION
0	HRG OFF. 8
10	DISPLAY LOWER HALF OF HRG RAM.
12	DISPLAY UPPER HALF OF HRG RAM ROAD LOWER 14
LOALF OF HRG HAM RAM TOP HALF LOAD TOP OF HRG RAM	

The Circuit Resolved

The HRG circuit consists of a control section, ICs 1 to 5 , the HRG RAM in IC6 and 7, and the Sinclair ROM, which is unplugged from the ZX81 and re-mounted on the HRG board. All the signal lines and the +5 V and OV supply rails are taken from the ZX81 ROM socket to the HRG unit via a length of ribbon cable and a DIP Leader.
The HRG is located in memory at 7679 (one byte below the start of the Sinclair ROM's character data tables) and it is controlled by POKEing this address with an appropriate control number - either $0,8,10,12$ or 14 as shown in Table 1.

The address is decoded by the 13 input NAND gate, IC5; 7679 corresponds to address lines AO-A8 and A10-A12 all high so, with A9 inverted by IC3f, IC5's output will go low only when this address is present on the bus. The Sinclair logic chip also recognises the address, which is within the ROM space, so at the same time it takes the ROM Chip Select (ROMCS) line low. This signal is inverted by IC3d and forms one input to the NAND gate IC2c. The other input is from IC5, inverted by IC3e, and since these are both high, pin 8 of IC2 will go low.

The purpose of all this is to store the control number in IC1, a 4-bit latch. But because the $\mathbf{Z} \times 81$ itself

Figure 2. The complete circuit of the High Resolution Graphics Board. The $\overline{\mathrm{ROMCS}}$ signal is also from the ZX81 ROM
periodically puts into the HRG address, (approximately once every five minutes, when the system variable FRAMES takes on this value

- see the $\mathrm{Z} \times 81$ BASIC manual, page 179), it is necessary to prevent the 2X81 from accidentally activating the HRG board.
This is achieved by using only even control numbers so that data bit DO is always zero when the HRG is being addressed by the user. The data lines are all taken high during the times when FRAMES is active, so the ZX81 cannot accidentally address the HRG.

DO is inverted by IC3b and together with the inverted DECODE signal produces a high output from AND gate IC4a, which latches D1, D2 and D3 into IC1. The latch outputs, now labelled TOP, WE and DIS, are then used to control the HRG function. Note that TOP follows D1, WE follows D2 and DIS follows D3.

The DIS line is used to select either normal Sinclair graphics or the userdefined characters previously stored in RAM. The output of IC4b goes high whenever address lines A9-A12 are high (ie, whenever the address is in the range 7680-8191), but if the control number 0 has been POKEd then DIS will be low and hence IC2d output will be high. The inverted
$\overline{R O M C S}$ signal will also be high at this time, so the ROMCS signal, the output from IC2b, will be low and the Sinclair ROM will be enabled. At the same time the output from IC2a will go high and since this is connected to the Chip Select ($\overline{\mathrm{CS}}$) inputs of ICs 6 and 7, the HRG RAM is disabled and normal graphics characters will be displayed.

However if any other control number is POKEd the DIS line will be high, ROM $\overline{C S}$ will go high to disable normal graphics, while ES will go low. allowing the user-defined graphics to be displayed.

When the computer is first switched on it is obviously desirable that normal characters are enabled, so R1 and C1 are connected to the latch's Master Reset input and they produce a brief low-going pulse when power is first switched on, clearing all the latch outputs to zero.

The operation of the other two control lines is quite simple by comparison. That WE line is tied to the RAM Write Enable inputs and whenever the control number equals 12 or $14, W E$ goes low and this will enable data to be written to the RAM, ICs 6 and 7. Any other control number will keep WE high so that the RAMs can only be read.

Figure 3. The double-sided, through-hole-plated PCB and component overlay. Readers making up a board themselves will need to wire through-links to connect the two sides of the printed circuit.

Program 0

```
REM "X zeroes"
PRINT"FIRST ADDRESS"
    INPUT A
    PRINT AT 15,0; '.'.;
    LET X$="
    IF X$=""' THEN INPUT X$
    POKE A, 16*CODE X$+CODE X$(2)-476
    PRINT CHRS INT (PEEK A/16+28);CHR$ (PEEK A-INT (PEEK A/16)*16+28)
    LET A=A+1
    LET X$=X$ (3 TO)
    SCROLL
110 GOTO 50
Machine Code Loader routine; enter in the REM statement (Line 1) the number of zeroes specified for the program you wish to use.
```

However there is a slight complication in writing to the character RAMs. During the second half of each machine cycle the CPU's I register puts out the top half of a refresh address. Normally this is of no consequence, but if the user is attempting to write to RAM then the HRG WE line will be low, so whatever appears on the data bus at these times will over-write the character data. The solution to this problem is carried out in the operating software: before the Write Enable is taken low the contents of the 1 register are simply changed so that it is no longer addressing the character RAM space!
Finally, the TOP signal is taken directly to the A9 address input of each RAM IC so that taking this line high (control numbers 10 or 14) addresses the top 512 bytes of the HRG RAM; this facility allows two completely different character sets to be created and displayed.

Construction

There should be no particular difficulty in building the HRG project. All components are mounted on the double-sided through-hole-plated printed circuit board and can either be soldered directly or inserted in IC sockets for safety. The ribbon cable which connects to the ZX81 is soldered to the PCB. No special handling precautions are necessary in the construction - but some care is required at the next stage.

Installation

The Sinclair ROM must be removed from the ZX81 and re-mounted on the HRG board, and the DIP header from the project plugged into the ROM socket. This leaves the edge connector free for use with other accessories.

To open the $\mathrm{ZX81}$ first remove all leads and add-ons and peel off the rubber pads on the base of the computer, making sure that the

Writing to RAM

BEFORE loading characterdefinition information into the HRG RAM, it is first neressary to change the value in the ZX81 CPU's I register as described in the text. This operation can only be performed by a section of machine code program.

The actual operation of writing to the HRG RAM can be carried out either by a BASIC routine, or by machine code. If BASIC is used the m / c program must first be called, then the HRG RAM loaded using POKE commands to the appropriate addresses, then the I register restored to its original value by calling the second section of m / c program. The display will be corrupted while BASIC is loading the RAM data.

The program listing below, in Hex and Decimal, performs the necessary operations on the I register. It must also be used if loading under machine code.

3E00	62,00
ED47	237,71
C9 RETURN TO BASIC 201	
3E1E	62,30
ED47	235,71
C9 RETURN TO BASIC 201	

adhesive film remains attached to the pads. Next remove the five screws now visible and note their order so they can be correctly replaced. The base can now be removed, exposing the copper side of the PCB. Remove the two screws holding it in place and carefully fold back the board, being very careful not to damage the ribbon cable leading to the keyboard, or its connections on the PCB. DO NOT attempt to remove the cable from the PCB, and take note of the direction of the fold in the cable so that it can be correctly repositioned.
Identify the Sinclair ROM (Figure Z) and note its orientation in the socket; then use a small screwdriver to carefully lever the ROM from its socket; work from both ends and be careful not to bend the pinsl Now plug the DIP header into the ROM socket, taking care that it goes in at the right endl it is advisable to gently wipe the header pins with a cloth soaked in alcohol or white spirit before plugging in, and check for loose connections or short circuits.
The ribbon cable is best lead out of a narrow slot filed into the rear of the base. Alternatively it can be taken through the edge connector slot, but it may interfere with some add-ons. In either case it will be necessary to fold the cable through 90° so that it sits flat under the PCB when this is remounted.
Re-assemble the ZX81, then plug the ROM into its socket on the HRG board. Mount the board in the case,

Parts List

RESISTORS

.................1kR
$10 \% 1 / 4$ watt carbon
CAPACITORS

SEMICONDUCTORS

IC1 74LS175	
IC2	... 74LS00
	TTL Quad 2-in NAND
IC3	74LS04
	TTL Hex Inverter
IC4 74LS21
	TTL Dual 4-in AND
IC5 74LS133
	TTL 13-in NAND
,7	114
	MOS 1024x4-bit RAM

MISCELLANEOUS
3×14-pin, 2×16-pin, 2×18-pin, $1 \times$ 24 -pin DIL sockets; 1×24-pin DIL header and approx. $9^{\prime \prime} \times 24$ ribbon cable; PCB; case; wire, solder etc.

BUYLINES
. page 34

screw it all together and you're reading for action.

Testing

If a ' K ' fails to appear when the power has been switched on, check all the connections from the ribbon cable to the HRG board, and remove the ROM and gently wipe the pins to remove any grease. If these measures fail to restore correct operation the ZX81 will have to be stripped and the DIL header checked again; there is very little that can go wrong on the project board, except for putting the ICs in wrong way aroundl

Software To Sample

Four programs are provided to allow you to explore the capabilities of the HRG Board. They all use a section of machine code which, at the very least, changes the value in the CPU's I register (for the reason mentioned earlier).
These programs also use m / c to write data to the RAM (see box) and to perform other functions, too. A "machine code loader" program is listed as Program 0 for those who

Clocking The Z80

TO ensure that all parts of a micro based system are working together, it is essential that all the activities take place at clearly defined times. To enable this synchronisation the CPU is fed with a clock signal, running at 3.25 MHz in the case of the Sinclair 280 CPU.

To understand how the CPU uses the clock cycles, consider what happens when it goes to memory to fetch its next instruction (see figure). The top line shows the regular clock frequency and the line below that the $\overline{\mathrm{MI}}$ output from the CPU, which signals the beginning of an
instruction fetch from memory.
During the first two clock cycles the
address of the instruction to be fetched is output on the address lines, along with a low on RD indicating a read operation. The memory returns the instruction on the data bus, and in the next two clock cycles, the CPU decodes and executes it, simultaneously putting out a refresh address and sending RFSH low.

This group of four clock cycles is called a machine cycle and simple instructions (such as LD A,B) only require one machine cycle for completion. More complicated instructions may require more than one machine cycle.

Figure 4. The component layout inside the ZX81. The 24-pin ROM is mounted in a 28 -pin socket; the hatched area indicates the unused pins.
don't already have a favourite routine of their own. The m / c is stored in memory on locations reserved by the REM statement of Line 1 ; eg if the machine code is four bytes long, then this space is reversed by typing

1 REM "0000"

To load the code, type in the Loader (making sure you have entered the specified number of Os in Line 1) then RUN it. When prompted, enter the starting address of the m / c routine ('FIRST ADDRESS'"), then enter the code one line (two, three or four bytes) at a time; the Loader routine will give a prompt ("L") after each NEWLINE.

When all the Loader has been entered, delete lines 10 to 100 -DO NOT remove Line 1, which contains all the m / c you have just labouriously typed inl Line 1 of the Loader now becomes the first line of whichever program you now wish to try.

The Programs

Except for Program 4, these are all intended to run in 1 K , and with most the display will be limited to an 8×8 character block at the top left corner of the screen. The final listing will only run in 16 K , and gives a full screen display.

Program 1 is a simple routine for testing the HRG Board. It's not terribly exciting (it simply displays 32 thin vertical lines in the top two rows of the screen) but if you'd rather be sure that all is in order before typing in a longer program, try this one first!

Load the machine code first, using the Loader program. The first two lines of code change the value of the CPU's I register, and the next few lines enable the HRG for storing data by loading the control number 12 (OC in Hexadecimal) into the control latch. The middle section of code stores new character data in successive memory locations corresponding to the ROM locations of CHR\$ 0-63 (see page 181 of the Sinclair BASIC manual for the "regular" characters that are being replaced!). The last half-dozen lines of m / c turn off the HRG and restore the original value of the I register.

The BASIC program (which is entered after lines 10-110 of the Loader have been removed) first calls the machine code routine in Line 20; this sets up the character RAM as described. The remainder of the program turns on the HRG in Display Lower RAM mode and prints the new characters before pausing, after which the HRG is turned off by POKEing 0 into the latch.

Characters To Order

Program 2 is a general routine that will probably be used continually, if not frequently! It allows the user to define a character using normal ZX81 block graphics, after which the new character is stored in the HRG RAM.
The pattern of dots which make up each character is held in eight consecutive bytes, each representing
one row of the character. The 8×8 grid depicted in Figure 5, with each bit equal to a one representing a dot and each bit equal to zero, a blank, will be familiar to most readers.

Program 2 first draws a 8×8 blockcharacter grid on the screen, together with a row and column references. The dots which will make up the new pattern are then entered by specifying the row number and the letter corresponding to the column, eg " 2 C " enters a dot in the second column, third row. Mistakes can be erased by entering the co-ordinates followed by the letter R; eg " $2 C R$ " will remove the dot just entered. Entering STOP produces a prompt (L) and the next step is to enter the character-code of the symbol you wish to replace by the new dot-pattern.
The program does all this by storing eight variables, one for each row of the grid, then transferring them to the appropriate eight bytes of the HRG RAM at the address normally occupied by the character being replaced. The character table in the Sinclair ROM starts at location 7680 with Code 0 , a blank, and since each character requires eight bytes the next (Code 1) starts at location 7688. In general, the character with Code ' X ' starts a location ($7680+8$ * Code ' X '). Thus if the new character shown in Figure 6 was to replace ' E ' (Code 42) it would be stored in RAM at

Program 2

High Res Graphics

Figure 5. Character information is stored in memory as a sequence of eight bytes. Bits set to 'one' produce a dot, while bits left at 'zero' are not displayed.

Figure 6. Program 2 allows new characters to be defined and displayed. This figure shows the set-up for defining new characters; in use, the new character 'shrinks' to normal size.

Figure 7. Illustrating the display method for graph plotting. The character (' E ' in this example) is replaced by a dot pattern corresponding to the line segment to be plotted. Extended plots can be formed by joining line segments.

Figure 8. Detail of the line segment shown in Figure 7. The memory location of each byte can be calculated as described in the text.

Program 3

The small-screen graph plotter program; to plot any other graph just change the function in Line 30; eg to LET $Y=$ SIN X to plot a sine curve.
location $(8 * 42+7680)=8016$. Then every time that the HRG unit was turned on by POKEing 7679 with 8 , the new symbol would be printed on the screen whenever the program would normally have printed ' E '.

Graph Plotting

Programs 3 and 4 are essentially the same - both plot a high resolution graph - except that Program 3 runs in 1 K and uses only a portion of the screen while Program 4 needs 16 K and displays over the whole screen. The resolution is the same for both.

Since they are so similar, we will briefly describe only Program 3. It works by consecutively printing a block of the first 64 charcters from the ZX 81 set in an 8×8 grid at the top left of the screen, so that each character has a specific screen location (actually these 'characters' are printed as blanks, but each corresponds to a specific characercode, so the effect is as described).

Then the blanks are filled in with dots corresponding to the points to be plotted. This is done by calculating the location in memory of each of the eight bytes defining a character, then storing a new byte there depending on whether or not there are points to be plotted.

For example, the character 'E' (Code 42) will be 'located' on the screen at a postion three rows down and three rows across. The bottom row of dots making up this character is located in memory at

$$
7680+8 * 42+7=8023 .
$$

Now if a single dot is required to be plotted at a postion corresponding to the first dot on the left, all that is required is for the byte 10000000 to be stored at location 8023, and the required point will be plotted.

The difference between the 1 K and the 16 K programs is that instead of arranging all 64 Sinclair characters in a grid, it first calculates the screen position where the point is to be plotted. A 'blank' character is then printed at that position, and the appropriate byte filled in to produce a single dot at the required coordinates.

All 64 characters are used, so that when the 64th has been printed on the screen, no more points can be plotted - easily, that is. It is possible to re-use characters, eg to create a line drawing such as the one on the cover of this issue by joining line sections together. However this is not the place to explore these possibilities - the technique requires fairly clever programming, however - something that will keep HRG owners busy for some time!

STOP PRESS: Owners of late-model ZX81s may find that the ROM is

 soldered directly into the PCB, rather than plugged into a socket. A different method of connecting the HRG board must be used with such computers turn to Buylines, page 34, for further instructions.
Multicore makes soldet

The Five Core Advantage

Only Multicore wire solders have a 5 -core, or 4 -core flux construction. The 5 -cores identify non corrosive fluxes; the 4 -core, water soluble fluxes.
If you were to slice through a section of Multicore cored solder you would see separate round cores of flux symmetrically arranged around its perimeter. Only a thin wall of solder separates the flux cores from the surface.
What are the advantages of the Multicore construction?

1. Because the flux is peripherally arranged it will react and flow faster.
2. Flux voids are eliminated with Multicore. That's why you can depend on continuity of the flux stream for complete wetting ... every time.
3. Because wetting is faster, complete and uniform, you use less solder and transmit less heat to the joint area. With Multicore Solders, you get the highest purity metals, vigorous fluxing action and a wire solder that meets all applicable International standards.

Ersin Multicore

Contains 5 cores of noncorrosive flux.
Uses: For all electrical joints Handy Pack: Size 19A 60/40 tin/lead 1.22 mm dia £1.50 RRP
Tool Box Reel: Size 3 60/40
tin/lead 1.6 mm dia
£4.37

Multicore Savbit Increases the life of your soldering bit by 10 times. Uses: For all electrical work. Reduces copper errosion Handy Pack: Size 51.2 mm dia £1.38 RRP.
Tool Box Reel: Size 12
1.2 mm dia £4.37

Ersin Multicore
Contains 5 cores of noncorrosive flux.
Uses: Small transistors, components and fine wire. Handy Pack: Size PC115 $60 / 40 \mathrm{tin} /$ lead 0.7 mm dia £1.61 RRP
Tool Box Reel: Size 10 60/40
tin/lead 0.7 mm dia£4.37

RECHARGEABLE BATIERIES

AND CHARGERS
PRIVATE OR TRADE ENQUIRIES WELCOME
FULL RANGE AVAILABLE
SEND SAE FOR LISTS
£1.45 for booklet "Nickel Cadmium Power"

- NEW ALL BRITISH MULTICHARGER -
- new sealed lead range available -

SANDWELL PLANTLTD
2 Union Drive, Boldmere, Sutton Coldfield,
West Midiands $021-3549764$
Lichfield 57977
Now open Saturday mornings

HORIZON ELECTRONICS(Mept H/H Chariote St. Rugby Tel: 78138Prime quality. TERRIFIC PRICES. Mail order only					
REGULATORS $16 / 12 / 18 \mathrm{~V}$ 100 ma twe 123 mp ver 723 var ZENERS 13.3 10 30VI 500 mW 1.3 watl piones IN 4001 4002 IN $54001 / 6$ 5405 5406 BRIDGES 1 amp 50 v 2 smp 10 w 2 $\begin{array}{lll}2 \\ 2 \\ 2 & \mathrm{amp} & 200 \\ 400 \mathrm{a}\end{array}$ 6 ams 100 . 6 amp 200 . 6 mp 400 v . THYRISTORS (plastic) 4 amp 400 w 8 amp 400 v		TRIACS (olastic) TOGGLE SWITCNES Min . SP ST S. Min DP ST tRANSISTORS 861078 $8 c 1088$ BC1098 BC 140 BC 142 BC160 BC70 BY 80139 60149 200 320 320 LINEARIC's 747 748 ICM 7555 ICM 7556 LF 351 LF 353			
ABOVE: Just a lew exmples Send S.A.E./List ADD. $65 p \rho \& p$ to all orders under $£ 5.00$ VAT: add $15^{\circ} \mathrm{*}$ VAT to total order value					

PARNDON ELECTRONICS LTD, Dept No. 23,44 Paddock Mead, Harlow, Eseex CM18 7RR. Tel. 0279.32700

RESISTORS

11/4 Wat1 Carbon Film E24 range $\pm 5 \%$ tolerance. High quality resistors made under strictly controlled conditions by automatic machines: Bandoliered and colour coded.
\qquad
©8.50 per thousand mixed (Min 50 per value)
Volume
Discounts
Avallable Special stock pack 60 values 10 off each

4 mHz micro-chips at micro prices						
280A	-	CPU	£3.25		¢2.83	
280A	-	CTC	¢3.10	Inc	C2.695	exc
280A	-	P10	¢3.10	VAT	C2.695	VAT
280A	-	DMA	£12.00	and pap	£10.435	
280A	-	S1O/O	89.95		¢8.655	
2804	-	S10/2	¢9.95		¢8.655	

FULL LIST AVAILABLE

Send SAE

All prices include VAT and Poet and Packing - No Extras Min. Order - UK £1. 00 Overseas $£ 5$ cash with order please.

COMING SOON TO

PROGRAMMABLE JOYSTICK CONTROLLER

Why wait for a joystick for your favourite games? The alternative is right here: our programmable Joystick Controller can be programmed to over-write the keyboard of any Sinclair micro, or the Jupiter Ace, so that they can be used with any existing games software.
Once the joystick has been set up for a particular application, the program can be SAVED (after the game, for instance) and used again. This unique controller will be available as a kit to Hobby Electronics readers.

WHISTLE SWITCH

Originally designed as a novelty, the Whistle Switch has a plethora of practical applications, especially for disabled persons, or for any remote control function.
You whistle, and they all come running? Not quite . . . but you can switch anything off and on just by whistling a tone.

JUPITER ACE I/O PORT AND RAM PACK

The new Jupiter ACE is proving to be extremely popular with those who are interested in the more practical applications of microcomputers.
With its particular talent for controlling equipment, what could be more appropriate than our I/ O Port and Ram Pack, coming in the August issue?

THE CAR AERIAL AUTO-WINDER

The alternative to driving around with a wire coat-hanger where your car rado aerıaı used to be is to build the Hobby Auto-Winder. It's cheap and cheerful, and it works without you having to worry about it.

CAREERS IN ELECTRONICS

Energy over the air! Part 4 of our practical series for career-builders looks at engineering careers on the transmission side of TV and radio broadcasting.

> August issue on sale at your newsagent from 8th July. Place your order now!

fon the outdoor and indoor enthusiast.

CAN WE SELL YOU SOME

FRESH AIR?

ZEPHION

negative ion generators

Dr J.B.Smith writes:- "Did you know that the air you breathe is made up of billions of tiny molecules, many of which may be either positively or negatively charged ? The negatively charged molecules (called ions) are particularly interesting. For example. they attach themselves to dirt, smoke and pollen particles in the air making them heavier so that they fall to the ground, leaving behind purer air for you to breathe these negatively charged molecules every second flooding your home negatively charged molecules with invigorating mountain-fresh air. your Many users of these ion generators claim greatly Many users of these loss of generators chaim greatly increased alertness, loss of lethargy (particularly in stuffy. smoky offices) and rellef from hay fever. asthma and many breathing
problems."

```
BUILD IT YOURSELF
T0:- Dataplus Developments
    81, Cholmeley road
    Reading, Berks.
PLEASE SEND :-
```

```
ZEPHION KITS e E21.50%
(Kits include all parts)
ZEPHION AIR TONERS
BUILT AND TESTED. E29.BOp
\(\square\) BUILT AND TESTED. £29.BOP items relurned in good condition

\section*{TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO}

IN YOUR OWN HOME-AT YOUR PACE
ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You age of the many opportunities open to the trained man. You study in your own home. in your own time and at your own coaching until you are successful.

\section*{City \& Guilds Certificates}

\section*{Radio Âmateurs}

Basic Electronic Engineering (Joint C\&G/ICS)
Certificate Courses

TV and Audio Servicing
Radio \& Amplfier Construction
Electronic Engineering* and Maintenance Computer Engineering* and Pragramming TV, Radio and Audio Engineering Electrical Engineoring, *nstallation and Contracting
-Quality for IET Resociate Memberahip
CACC Approved by CACC
. Mernber of \(A B C C\)
POST OR PHONE TODAY FOR FREE BOOKLET


\title{
ALL ABOUT \\ ELECTRONICS
}

\section*{Our new Beginner's Series tells you all you'd like to know about electronics. From start to finish. All about components and circuits, all the theory you need to get started in the world of electronics.}

\author{
Keith Brindley
}

ALL ELECTRONICS relies on electricity being controlled, and anything which we call electronic controls electricity; so, the best introduction to a series such as this must be to explain what electricity is. This is essential so that we can understand just how it can be controlled.

To make things as simple as possible let's think of electricity as being a 'flow' of 'something' through metal. It's just like water through a pipe really, like the pipe shown in Figure 1.

Water is flowing throught he pipe from left to right in the Figure, but it could run equally well from right to left


Figure 1. Water flowing along a pipe.


Figure 2. Simple domestic water system. The water tank is at a height, \(h\), above the tap.
- it all depends on whether the pressure of water is higher on the right (in which case the water flows from right to left) or on the left (when flow will be as in the Figure). Water will always flow from wherever the pressure is high to where the pressure is low. In a water system this pressure normally comes from the effects of gravity (Figure 2).

In Figure 2 is a water tank similar to the one in your home. At a distance ' \(h\) ' below this is a tap; when the tap is open, water will flow from the area of high pressure (the tank) to the area of low pressure (the tap). This pressure difference depends largely on the
height, h. A good example of this can be seen in the rate of water flow between an upstairs water tap and a downstairs water tap in a house. Generally speaking the greater the distance \(h\), the greater the flow rate of water out of the tap, because the greater is the pressure difference.

Another method of creating a pressure difference in a water system is to use a pump. A pump can make a pressure difference occur in a level system (Figure 3) or even uphill ie, against gravity (Figure 4).
The pump in a central heating system does just this, forcing hot water around


Figure 3. How a water pump can be used to create a pressure difference and cause water to flow along a pipe.


Figure 4. A water pump can also make water flow upwards, against gravity.
all the radiators in the system. In Figure 3 and 4 of course, the pressure difference now largely depends on the strength of the pump and has little to do with the distance between pump and tap.

Things are very, very similar in an electric system. A simple one is shown in Figure 5 with a battery and bulb along with connecting wires. If you remember, I said earlier on that electricity is simply a flow of 'something' through metal. Well, the connecting wires of the circuit are metal, and they are equivalent to the pipes in a water system. The battery is a source of electricity - in the same way that the tank in Figure 2 is a source of water. The bulb is just an indicator to prove that there actually is something flowing through metal in our simple electrical system, just like the tap showed water flow. Of course the bulb should light - try it if you don't believe me - but why? What is actually flowing through the wire which can make the bulb light up?

\section*{Particularities}

To find out the answer to this question we have to look at the structure of metal itself and of the individual atoms of the metal. Any atom - not just an atom of metal - has a central 'nucleus' containing a number of particles called neutrons and protons. Neutrons (as their name suggests) are electrically neutral; protons, however, each have a single positive (abbreviated to '+ve') electric charge. Now, I'm sure you'll have heard the saying "opposites attract". Well, it is true of atomic particles too. Associated with every postively charged proton in the nucleus is a negatively charged particle. These are much smaller and weigh much less (only about \(1 / 2000\) th) than a proton, but each particle holds an equal and opposite charge. These particles are called electrons, and they fly around the nucleus much like satellites orbit the earth. The feature which makes a metal atom different to most other atoms is the fact that metal electrons are relatively free to move - a metal nucleus doesn't mind giving up one or more of its orbiting electrons to the next nucleus as long as its place can be taken by another electron. So, by making a 'pressure' difference between one end of a row of metal atoms and the other end, we can create a 'flow' of electrons along the row in exactly the same way that water can be made to flow along a pipe. This pressure difference, in electrical terms, is known as electromotive force (abbreviated EMF), ie a force which makes electrons move. Get it? The EMF in the circuit of Figure 5 is provided, of course, by the battery, and EMF is commonly referred to as voltage, or sometimes potential difference when referring to the difference between two voltages.

Nuclei of other materials, eg wood, plastic, glass, hold on tightly to their electrons and so, even with a large applied EMF, electricity can't easily flow through those materials. We say that
metals conduct electricity and those other materials are non-conductors of electricity.

\section*{Sizing It Up}

Just to give a rough idea of the size of the particles we're talking about, it is worth noting their weight. Believe it or not, one proton weighs:

\section*{\(0.0000000000000000-\) 00000000001672 kg .}

That is, \(1.672 \times 10^{-27} \mathrm{~kg}\). That's not a lot! A neutron weighs the same, but an electron weighs only 0.00056 of that, or \(9 \times 10^{-31} \mathrm{~kg}\).

Little wonder we can't 'see' electricity if it consists of a movement of electrons. We can only see its effects - for example the lighted bulb in the circuit of Figure 5.

\section*{An EMF-atic Force}

Electromotive force can be derived in a number of ways, the usual methods being:
i Chemical - dissimilar metals, immersed in a chemical solution eg, lead-acid car batteries, dry cells.
ii Thermo-electric - dissimilar métals are placed in contact and the junction is heated; the size of the EMF is dependent on the temperature of the junction.


Figure 5. A simple electric system. A source of electricity (the battery) is connected to an indicator of electricity flow (the bulb) with metal connecting wires.


Figure 6. The battery, as a source of EMF, creates a current which in turn causes potential differences to occur across the two lengths of nichrome wire.
iii Electrostatic - friction can create free electric charges on the surface of a non-conductor, eg the old trick of rubbing a plastic ruler with a piece of cloth for a few seconds and then picking up small bits of paper with the electrostatically charged ruler.
iv Electromagnetic - when a conductor is placed in a changing magnetic field we say an EMF is induced in the conductor, eg a dynamo.

The term "electromotive force" is normally only used when we talk about the sources of electricity, such as a battery or dynamo. Where an electricity flow causes different voltages in a circuit then we call this voltage a potential difference (abbreviated PD). The general order of things then, is that an EMF creates an electric flow (more commonly called a current) which later on in a circuit produces a PD between different points in the circuit; an example is shown in Figure 6.

The EMF source is a dry-cell battery which has an EMF of 1.5 Volts (abbreviated 1 V 5 ). The battery has a positive (+ve) terminal and a negative (-ve) terminal. The voltage of 1 V 5 is shown diagrammatically with an arrow - we will show voltages between points in the circuit by arrows across the points, with the actual value of the voltage at the side and the arrow-head indicating which point is at a more positive potential.

There is another arrow-head in the figure - it indicates the direction of the electric current. But does it mean that the electrons are flowing from the positive battery terminal to the negative battery terminal? Think about it। Electrons are negatively charged, remember so no, it certainly does not mean this. Electrons must come from the negative battery terminal and go to the positive terminal (opposites attracting!) so, why do we show current flow as being in the other direction? The answer is that, long ago, when the effects of electricity were first observed. nobody knew the cause so they could not know the true direction of the current. Scientists of the time took an educated guess, defined positive and negative sides of an EMF and decided that it would be logical to presume that electricity flows from a more positive potential to a lower, more negative potential. They were wrong!

Electron flow is from negative to positive but, by convention, current flow is from positive to negative. It sound tricky, and sometimes causes problems, but you'll get the hang of it soon enough.

Back to Figure 6 now, and you will see that there are two new things in the circuits, ie the two equal lengths of nichrome wire. Nichrome is an alloy of two metals, nickel and chromium, which displays an odd property - it doesn't conduct electricity as well as most metals. But there again, it is not a nonconductor. It's somewhere in between the two extremes, so that we say that it resists the flow of electricity.

\section*{Resistance}

Because the two lengths of nichrome wire are equal, then the amounts of resistance to current flow in each length are also equal. We'll learn a lot more about resistance later on, but all we need to know about it now is that it is the property of part of an electrical circuit, which changes current back to PD in the general order of circuits which l've already told you about ie,
\[
\text { EMF } \longrightarrow \text { current } \longrightarrow P D
\]

Remembering that if two resistances in our circuit are equal, we can say that the PD created by the current flowing through each length of nichrome wire will also be equal across each length, and so we have OV75 across each length of nichrome wire.

There are four important points which I'll stress before going any further, which are all illustrated by Figure 6.
1) Current flows through things, voltages (PD or EMF) are across things - don't get mixed up!
2) PDs in a circuit always add up to the EMF at the input of the circuit.
3) Current flow through a resistor causes a voltage to occur across the resistor.
Also, generally speaking, inputs to a circuit should be drawn on the left of any diagram of that circuit; outputs (or the effects of the inputs) should be drawn on the right.

Now let's take a closer look at the three new things we've learned about so far: current, voltage and resistance. These three things are inextricably tied together by such a basic electronic law that, in order to get anywhere in electronics, you must know how to use the law and you must also know what the three things actually mean. The law is called Ohm's law and is named after the discovering scientist. But before we look at Ohm's law let's study another, even simpler circuit - it's shown in Figure 7.

In the circuit you can see that the picture of a battery has been replaced by the standard circuit symbol for a battery. In electronics circuits symbols are always used because they provide a neat and standard way of drawing. components - it's easy to understand and also easy to draw. For your reference there is a list of some of the more common components in Figure 13. Incidentally the resistors drawn in Figure 6 and 7 were already symbolised, in case you hadn't noticedl

The EMF of the battery in Figure 7 is 10 V and the current is labelled by the symboll; the arrow head beside I shows current direction. The resistance we'll call \(R\) for the time being. Now, if \(R\) is a measure of the resistor's resistance to current flow, it stands to reason that if we increase \(R\) we automatically decrease the current, I. In terms of a mathematical formula it just so happens that:
\(l \propto \frac{1}{R}(\propto\) means 'is proportional to')
In other words, if the resistance is doubled the current is halved, or if the resistance is quartered the current

\section*{increases fourfold etc etc.}

We can include the voltage across the resistor in this discussion, now, by considering what happens to the current if the voltage changes. Logically, we would expect the current to increase if the 'pushing-force', ie the EMF, increases. The change is in fact directly proportional and so:
\[
I \propto V
\]

Putting the two formulae together we can conclude that:
\[
I=\frac{V}{R}
\]

And, by multiplying both sides of the equation by R :
\[
V=\mathbb{I R}
\]

Likewise, by dividing both sides by I :
\[
R=\frac{V}{T}
\]

So, what we've done is work out a set of formulae which, given any two of the three variables of current, potential difference or resistance, will provide us with the third.

\section*{Ohm's Law Rules}

These written formulae are a convenient and useful way to remind us of the law I spoke about earlier on: Ohm's Law. The law actually states that the voltage across something is directly proportional to the current through it, and the constant of proportionality is its resistance! I'm sure you'll agree that the three forms of the formula:
\[
V=\mathbb{R}, \text { or, } I=V / R \text {, or, } R=V / I
\]
give us a much simpler method of remembering and using the law.
If you recall, way back in Figure 6 the EMF (ie the voltage) of the battery was defined as IV5 (where ' \(V\) ' stands for the unit, Volts). But, up to now, there has been no mention of the units of current and resistance. The units were simply named after two scientists of the time who had done some of the great pioneering work in the study of electricity. The units of current are 'amperes' (abbreviated to 'amps') and those of resistance are 'ohms' (named after - guess who). Actually the units of EMF and PD, volts, are also named after a scientist - Volta - but in practice we tend to simply use 'volts' a nd 'voltage'. whether speaking of a PD or an EMF.
We can now put values into the circuit of Figure 7 to show how the three terms of voltage, current and resistance are interdependent. For example, let's have a resistance, R , of 5 ohms (written as 5 R because ' O ' is ambiguous). We know that the EMF of the battery, and hence the voltage across the resistor, is 10 V and so, using one of the three formulae which can be used to express Ohm's law:

I \(=\frac{V}{R}=\frac{10}{5}=2 \mathrm{amps}(\) abbreviated to 2 A ).
Similarly, if we know the current and the voltage we can calculate the


Figure 7. Showing an electric circuit, but using symbols for each component, not drawings.


Figure 8. Output voltage of a dry-cell battery is steady with time. We call this a direct current (DC) voltage.


Figure 9. A graph of the voltage obtained from the mains supply. This is an alternating current (AC) voltage with a frequency of 50 Hz .
resistance. For example if the current I, = OA1 then:
\[
R=\frac{V}{1}=\frac{10}{0.1}=100 \text { ohms (ie, 100R) }
\]

Easy isn't it?
In electrical terms, quantities like 2A and 100 R are commonplace, but when we get into the world of electronics, things differ. High amperage currents cause quite a heating effect, for example in an electric bar fire or even a simple light bulb (it's the filament glowing white hot which causes the bulb to light up). In electronics we're not at all interested in the heating effect and in most cases we want to reduce this as much as possible, so we use very low currents and very high resistances. Currents in milliamps, ie \(1 / 1000\) ths of an amp or even microamps, ie millionths of an amp, are commonplace. Likewise resistances of thousands of ohms or even millions of ohms are often used. It's as well to get used to using such values in Ohm's Law calculations. For instance the current in a simple circuit, like that in Figure 7 if a \(50,000 \mathrm{R}\) resistor is used, is:
\[
I=\frac{V}{R}=\frac{10}{50000}=\frac{2}{1000}=2 \times 10^{-3} \mathrm{~A}
\]

Incidentally, the usual abbreviation in electronics for a value such as 50000 R is \(50 k\), where the symbol ' \(k\) ' tells you that the value is whatever the number is (ie, 50) multiplied by one thousand. The term ' 50 k ' stands for 'fifty kilohms'. Similarly, 'million' is represented by the letter \(M\) and stands for 'megohm'.


Figure 10. A triangular \(A C\) voltage of 40 V , with a DC bias of 100 V added to it.


Figure 11. A 'piano-wave' \(A C\) voltage. It's the shape of the waveform which makes it sound like a piano.


Figure 12. The waveform obtained from a violin.

In the same vein small values such as \(1 / 1000\) and \(1 / 1000000\) have letters: ' \(m\) ' for 'milli' and \(\mu\) (usually a printed 'u') for 'micro'. It probably all seems a bit daunting now, but don't worry you will get used to it - eventually it will become second nature to you.

\section*{AC/DC: Which Way To Turn?}

So far we have discussed only one particular type of EMF. It's the type we get from a battery, where one terminal is always positive and the other is always negative. If we plotted the EMF on a graph with time along the bottom we would see something like that in Figure 8.
The voltage remains the same at all times; it is steady, and we call the current this type of EMF produces a Direct Current (DC). Similarly we call the EMF that produces such a current a DC voltage, because it creates a steady DC current.

But there is another type of current called Alternating Current (AC). A typical form of \(A C\) is that supplied on the national grid electric system, ie that used in house electric systems. The graph of the house electric EMF would be similar to that in Figure 9.

From this graph you'll see that the voltage swings between positive and negative peaks of 120 V ; it is constantly changing, or oscillating. One 'cycle' of
the voltage starts at OV, then goes positive, then back to OV, then goes negative and finally back to 0 V . If this takes 20 ms (ie 20/1000ths of a second) then with a quick bit of mental arithmetic we can calculate that there are 50 cycles of the waveform in one second. This is the frequency of the waveform and is expressed as 50 Hertz (abbreviated to 50 Hz ), named after a famous scientist (no, he didn't invent rental cars).

The sort of voltage used in mains electricity supplies has a 'smooth' alternation of the style shown in Figure 9 and is known as a sinewave voltage. There are other types, as you might expect, and they don't always oscillate around OV : sometimes an AC voltage can have a DC component in them and could, for example, oscillate around 100V, as in Figure 10. Here you can see a triangular shaped waveform of 40 V peak to peak (ie from top to bottom), but oscillating around 100 V , so that we say that the waveform has a DC bias of 100 V . There are obviously thousands of possibilities, many of which we'll explore in the months to come.

\section*{Sound Scene}

The sound we hear is caused by minute differences in pressure being transmitted through the air. Our ears detect these air pressure variations and change them into signals which the brain can respond to, so we know that one sound is the sound of breaking glass, or another is a piano playing, for example. Now if we had a device which could change the air pressure variations which correspond to a sound into electrical signals, we could then plot a graph, which could be something like those in Figures 9 and 10. The device does exist, by the way, and is called a microphone. If we plotted the graphs for different sounds, we would then find that each sound produces a distinctive graph. Take, for example, a single piano note: its waveform might look a bit like that in Figure 11.

Yes, it's another form of AC waveform, but it's certainly not a sinewave or a triangular wave. In fact, we would be quite correct in calling it a 'piano wave', because all notes played on a piano, anywhere on its keyboard, would create a waveform similar in appearance to our example. It's the shape of the waveform which gives the sound the special characteristics (known as timbre) which allows us to say definitely "Yes, that's a note played on a piano". A note played on a different musical instrument, for example a violin, might look something like that in Figure 12. It's still AC, but is different again in appearance and hence sound, to that of a piano.

\section*{Electric Versus Electronic}

We've now looked at a few typical circuits which are very common when studying electricity. But of course, this series isn't just about electricity is it? It's about electronics. One question you
should have been asking yourselves all the while you have been reading this is - what is the difference between an electric and an electronic circuit? They are obviously very similar because they both rely on the flow of electricity, so where do we draw the dividing line?

Well, the answer is not simple. It is very difficult to give a cut and dried statement, but here are a few guidelines which will help:
- Electric systems are usually, but not always, high-voltage AC (eg, house mains systems) and electronic systems tend to be, but again are not always, low-voltage DC.
- Certain devices are used in both systems to control the flow of electric current. In electric systems these are always 'passive' devices (because they are acted upon) whereas electronic systems also use 'active' devices, which can positively influence a voltage or a current.
- In electric systems, inputs are generally EMFs which are used to create physical effects such as to heat a bar fire, turn a motor or light a bulb. In electronic systems, inputs can be signals (such as that from a microphone when a piano note is played).


A single cell.
A battery. The short
\(\frac{\frac{1}{i}}{\frac{1}{1}}\) terminal is negative ( - ): this is easy to remember because it looks like a minus sign. Batteries are made up of a collection of individual cells.
- An indicator or bulb:

M- A resistor.

Figure 13. Symbols we've met in this instalment.

\section*{Summary}

That's a lot, this month, especially if you've never studied electronics before, and there's an awful lot more to go. But the world of electronics is fascinating, and that always makes learning that much easier, because it's enjoyable.

All the topics we've looked at so far will be studied in greater depth over the months to come, so if there's anything you are not too sure about - don't worry - you'll get a nother crack at it later. You will find that everything in electronics has a simple explanation and the things which appear a mystery now will all become clear as you learn All About Electronics.


\section*{GSC SUPERKIT £19.90}

Learn the wonders of digital electronics!

This practical kit for beginners comes complete with an instruction manual, components, and EXP300 breadboard to teach you all the basics of digital electronics. The course needs no soldering iron; the only extra you need to buy is a \(4 \frac{1}{2} \mathrm{~V}\) battery.
Using the same board you can construct literally millions of different circuits.
The course teaches boolean logic, gating, \(R-S\) and J-K flipflops, shift registers, ripple counters, and half-adders.
It is supported by our theory courses

\section*{DIGITAL COMPUTER LOGIC} \(£ 7.00\)
which covers: basic computer logic; logical circuit elements; the design of circuits to carry out logical functions; flipflops and registers; and

\section*{DIGITAL COMPUTER DESIGN \\ £8.50}

Our latest, most up-to-date course on the design of digital computers, both from their individual logic elements and from integrated circuits. You are first shown the way in which simple logic circuits operate and then, through a series of exercises, arrive at a design for a working machine.
Other courses available include:
MICROPROCESSORS \& MICROELECTRONICS @ £6.50 COMPUTER PROGRAMMING IN BASIC @ £11.50
GUARANTEE No risk to you. If you are not completely satisfied, your money will be refunded upon return of the item in good condition within 28 days of receipt. CAMBRIDGE LEARNING LIMITED, UNIT 98 RIVERMILL SITE FREEPOST, ST IVES, CAMBS, PE 17 4BR. ENGLAND.
TELEPHONE: ST IVES (0480) 67446.
VAT No 313026022
All prices include worldwide postage (airmail is extra please ask for prepayment invoice). Giro A/c No 2789159. Please allow 28 days for delivery in UK.

\section*{SUPERKIT(S) @ 19.90}

DIGITAL COMPUTER DESIGN(S) @ \(£ 8.50\)
.......DIGITAL COMPUTER LOGIC @ £7.00
I enclose a *cheque/PO payable to Cambridge Learning Lid for £........) (*delete where applicable)
Please charge my.
*Access / American Express / Barclaycard / Diners Club Eurocard / Visa / Mastercharge / Trusicard
Expiry Date........... Credit Card No
\(\qquad\)
Telephone orders from card holders accepted on 048067446 Overseas customers (including Eire) should send a bank draft in sterling drawn on a London bank, or quote credit card number.


Address. .

Cambridge Learning Limited, Unit 98 Rivermill Site, FREEPOST, St Ives. Huntingdon, Cambs, PE17 LBR, England. (Registered in England No 1328762)

\section*{Branime \\ TYPE 161B -2ampaching mows DUAL POWER SUPPLY KIT}

INCORPORATES Å POSITIVE \& A NEGATIVE REGULATED SUPPLY
BOTH ARE ISOLATED \& ADJUSTABLE 1.3V TO 16V D.C.
Interconnect to give 2.6 V to 32 V or
\(-1.3 \mathrm{~V} / 0 /+1.3 \mathrm{~V}\) to \(-16 \mathrm{~V} / 0 /+16 \mathrm{~V}\)
Output current 1 A at 16 V to 0.35 A at 1.3 V
Ripple is less than 1 mV

\title{
25.98 \\ inc. P\& P and VAT
}

Built \(\&\) Tested

£ 37.95 inc. PGP and VAT

Comprehensive design
details with calculations
are included so that the kit is an excercise in power supply design. The kit, which uses quality components, is complete with instructions. Case punched and stove enamelled in attractive blue and grey with a printed front panel to give a professional finish.
Excellent for the beginner, the experienced amateur and as a tutorial for schools and colleges.

SEND CHEQUE OR P.O
ALLOW 21 DAYS FOR DELIVERY

BALTHANE IND EST BALLASALLA ISLE OF MAN


Light Soldering Developments Limited, 97-99 Gloucester Road, Croydon, Surrey CRO 2DN. Tel: 01-689 0574.

Forward Bias


Questions, answers and errata from readers and writers.

EVER SINCE physical science established that the electron flows around the electronic circuit in exactly the reverse direction to the one adopted for the sake of convenience by physical scientists, electronics has. proved a contrary art. The precision implied by Boolean algebra, Ohm's Law and M.O.D. specifications has very little in common with the everyday constructor (or, come to that, the everyday designer) labouring painstakingly with off-the-shelf components.

Things have been known not to workl And despite the most careful testing, debugging and resoldering, things have been known to continue not to work.

Mysterious grollies have been known to creep undetected into Hobby Electronics projects, no less, without even mentioning the dreaded scrambled circuit layout which rises up to haunt editors and designers, both of them striving to produce a perfect project to an economically viable deadline (bring on the violins!).

The agonies of the backroom boys are of little consolation to Hobby readers, trying to shake the bugs out of their precious projects without a clue to where the bugs are hiding. Very often, curing the obvious error dosen't provide the answer, and progress becomes (seemingly incurably) arrested.

The aim of this page is to help unstick the stuck by bringing together on one page circuit errors, readers \({ }{ }^{\prime}\) queries, modifications, readers' solutions and general advice directly relating to Hobby Electronics projects.

So that everyone can benefit from the feedback, we would like readers to write in not only with queries about projects but also with news of any successful or unsuccessful tussles they have had with a Hobby project, any methods or minor modifications they have adopted to get a project to work or work better, any responses to other readers' queries, or any errors they think they have detected which we may not know about. As many of the most useful letters as possible will be recorded here, along with any modifications from our own designers and any errata which we become aware of. This will include a regular listing of errata published in recent months to aid the occasional reader.

So don't keep your agonies to yourself. Share them! For persona! replies please send an SAE as usual with technical enquiries (make it second class - first class is a trifle optimistic for this overworked office);

\section*{Beasties} THE AVALANCHE VOLTAGE OF THIS ONE IS SO
HIGH THE SPEC. INCLULES THE PHONE NUMBER
OF THE NEAREST MOUNTAIN RESCUE TEAM!! if it's generally interesting.

And for a kickoff; a note from Owen Bishop, designer of the BBC Micro/HEBOT Interface (HE May '83). Owen writes:
"Yesterday we put HEBOT through its paces with the BBC micro again. It works very well, but looking back I think that one point needs clarifying."
"The input from HEBOT's sensors arrives at the computer along data lines D0 and D3. Data lines D4 to D7 carry no information at this time. Normally, a data line which is not connected behaves as if it has a high input, but it has been found that there is a tendency for unconnected data lines on the BBC machine to float when used with this interface. That is to say, the line may sometimes read as 1 and sometimes as a 0 . It is 1 more often than it is 0 , and there is a tendency for the effect to be most noticeable on line D4. This is possibly due to electromagnetic disturbances picked up from adjacent line D2 of the cable.'
"This effect is easily eliminated by bit-wise ANDing of the data input with the value 15 (0000 1111, in binary). Variations in the most significant four bits thus disappear and we are left with a number which indicates the states of the lower four bits only."
"If the address of HEBOT is represented by the variable HEBOT, as in the sample programms, the
command for reading HEBOT's sensors becomes:
\[
X=\text { ?HEBOT AND } 15
\]

The variable \(X\) then takes a value between 0 and 10 . depending upon which sensors are activated (see Table 2, p. 11, HE November '82)."

\section*{Recent Errata}

HE Starburst (HE September \({ }^{\circ} 79\) ) see Projects From The Past, Points of View HE May '83.
Big Ear (HE December '82) see Ear Errata, Points of View HE March '83. Microlog (HE December '82) see Microlog Mistake, Points of View HE March '83, and Microlog Errata, Monitor and PCB Printout HE January '83.
HE Echo-Reverb (HE May '82) see Designer On The Dole, Points of View, HE December ' 82.

\section*{Past Project Progress}

There is now a PCB available from our PCB service for the Low Cost Alarm (HE December '82) - see the PCB Printout, HE June '83.
The troublesome Telephone Timer (HE June/July '82) is being reexamined from the bottom up by our technical team (all of him), but the solution is not yet on schedule for publication and probably won't be for some time. The Echo Reverb (HE May ' 82 may also be coming in for scruitiny shortly.


\section*{HRG Board}

A complete kit, which includes all the components, the PCB and a case for the project along with a software tape, is being made available by Cambridge Computing, 1 Benson Street, Cambridge. The total cost of the package, including VAT, post and packaging, is \(£ 17.50\).

The tape includes programs both for technical purposes and for games, and enables the user to immediately use the HRG unit to its full extent. Machine code programs for SAVEing and LOADing user-defined graphics, such as those generated by the Program 2 listing in the article, are included on the tape.

If any reader cannot successfully build the HRG Project, it may be sent back to Cambridge Computing, and for a nominal fee of \(£ 8.00\) they will return it in working order.

In some Sinclair ZX81s the ROM is soldered directly to the board rather than plugged into a socket, so an alternative method of connecting the HRG unit must be used. The simplest
safe method is to solder a 24-pin DIL header on top of the ROM; the DIL plug leading to the HRG can then be plugged in and the board itself tucked away neatly under the keyboard. In addition another wire must be run from the HRG board and soldered into the ZX81 PCB. Full instructions for this modification will be provided with the kit of parts supplied by Cambridge Computing.

\section*{Soft Fuzz}

With a simple (but interesting!) project like this, all the components can easily be obtained from one supplier such as Cricklewood Electronics.

Everything is more or less standard and the usual substitituions can be made for the specified transistors if required - BC157, 177 or 307 for the BC212 or a BC237 or 317 for the BC182.

The component costs work out at around \(£ 5.00\) excluding the PCB, case and the smaller odds and ends. The PCB can be obtained from the HE PCB

Service (or you could make it yourself) and a suitable aluminium case (type RB1, \(150 \times 120 \times 45 \mathrm{~mm}\) ) will come out at \(£ 2.70\).

\section*{Stereo Spreader}

No problem with this one, either. Around \(£ 5.00\) will buy all the parts and components, including the case - and that's cheaper than rearranging the walls! Try Europa Electronics, 160 High Road, Willesden NW10 2PB, who stock all the components needed. Their cases are aluminium rather than plastic, but this is preferable, anyway, as a measure of insurance against hum.

\section*{Pop Amps}

All of the components and parts used for these simple circuits are readily available from suppliers advertising in HE. Dedicated experimentors will already have most of the bits and pieces in their 'junk box', but newcomers trying out these circuits for the first time should try to build up a collection of components and parts; the best buys are available from bargain-pack dealers such as BI-PAK, who provide low-cost selections of resistors, capacitors and so on to the electronics world at large. Their address is BI-PAK, PO Box 6, Ware, Herts., or phone 09203182.


The premier electronics show for the enthusiast. Moved this year for your convenience and comfort to the Cunard International Hotel, Hammersmith, London W6

Friday November 25th Saturday November 26th Sunday November 27 th
Why not bring the fanily to the show and enjoy a weekend in London? We have antangec a complete hotel packige for our visitors to the exhibition. All inclusive rail ticketentso available. Send now for details of what we, the organisers, can offer you. Write to
Breadboard 83
ASP Exhibitions
145 Charing Cross Road
London WC2H 0EE

\section*{This year's features include}
- Computer controlled model railway competition. (send off for entry form now)
- Kits to build all sorts of projects.
- Magazines and books covering most aspects of electronics.
- Components and tools at bargain prices.
- Technical advice on electronics projects and Ham Radio technique.
- Clubs/User groups for amateur electronics and computing
- Lectures by professionals on a wide range of topics. eg. Basic Tuition For Beginners,
- Holography and Producing Printed Circuit Boards.

\section*{H.E. PROJECT KITS}

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for E.E Projects. We supply care fuly selec ted sets of pars to enable you toconstruct EE. projects. Kits inched drilied and rolter tinned) or Veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BAA
ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of E.E. which Includes the project - you witl need to order the instruction reprint at an extra 45 p each.

Reprints avalla
```

STALLTHIEF May 83 (ine, ralay
STEREO VOICE OVER UNIT APIII B3
AUTO POWER DOWN
PHASE FOURDOCB?
STEREO NOISE GATE DCC B2
BIGEEAR DCCB2
MOCRMATER NoV 82
OLANAV.C.O. NOV 82
CB SQUELCH UNITOC1 }8
-JUNIOR'SLOTCARCONTROLLERSEDES2

```

```

aUTO OREENHOUSE SPRINKLER JUNO 82

```
TELEPHONE TIMER JUN* 82 less pump and power s
POWER SUPPLY DESION 12 V SOOMA JUn B2

Econamy case We3
OIGITAL THERMOMENTER May 82 excluding case + e3
Sezel
AUDIO SIGNAL OENERATOR May 82
CABLE TRACKER MaY B
DIGITAL CAPACITANCE METE ADR B2
SIGNAL TRACERADCH2
BIKEALARM ADT 82
DIGITALDICE Mar 82
BYCYCLE SIIEN Mar 82
NOISELESS FUZZBOX FOD 82
MASTMEAO AMPLIFIER FED 82
DRUM SYNTHE SIZER DCO 81 . FUII kH
GUITAR HEADPHOME AMPLFIE
GUITAR HEADPHOME AMPLIFIER D OC O1
IN CAR CASSETTE POWER SUPPLY Dec
SCRATCH FILTER NOV 81 MOn
Stereo
LED VUMETER NOY 81 less case
202 Mandbook of Integrated Circuits (ICB B) Equiv. 8 Substitutes
205 First Book of H.Gr
    First Book of Hi-F, Loudspeaker Enclosures
28 Tested Transistor Po
    28 Tested Transistor Propects
Sold State Short Weve Receiv
    A Practical Introduction to Dipital IC's
    How to Build Advanced Shor Wave Receivers
    Beginners Guide to Building Electronic Proiect
    First Book of Transistor Equlvalents and Substitutes
    14 Second Book of Transistor Equlvalents and Substitutes
    50 Circuits Using Germanium, Slicon and Lener Diodes
    50 Projects Using Relays. SCR's a nd TRIACS
    50 (FET) Field Effect Transistor Prolects
Digital IC Equivalents and PII Connection
        Linear IC Equivalents and Pin Connection
        Ho Simple LE. E. Circuits
    5 Prowects in Opto-Electronics
    Electronic Projects for Beginners
        Popular Electronics Frojects
        electronic Music and Creative Tape Recordings
Practical Electronics Calculations and Formulae
        Electronic Security Devices
        50 Circults Using 7400 Series IC's
        Practical Construction of Preamps. Tone Controls, Fillers \& Attn
        Beginners Gulde To Digital Technlques
        Beginners Guide to Microprocessors and Computing
        Transistor Radlo Fauth-Finding Char
        Electronic Household Projects
Electronic Test Equipment Con
        Elactical Computer Experimenstruction
        9 Radio Control for Beginnerimen
        Popular Electronic Circuits - Book
        Electronic Synthesiser Projects
        International Transistor Eqquivalents Guid
An Introduction to ASIC Progr
        An Introd uction to BASIC Programming Techintques
        Easy Electronics - Crystal Set Construction
        Electronic Proi日cts for Cars and Boats
    81 How toldentify Unmarked IC's
03 Multi-Clicuit Board Proiects
    103 Multi-Clrcuit Board Projects
P107 30 Solderless Breadboard Proiects - Book 1
BP109 The Arl of Programming the 1 K ZX81
BP1 10 How to Get Your Electronic Prolects Working
BP114 The An of Prooramming the \(16 K\) ZX81
BP114 The Ar of Programming the 16 K ZX81
BP1 17 Practical Electronic Buiding Blocks - Book 1
BP119 The Art of Programming the \(2 \times\) Spectrum
Semiconductor Data Eook Newnes
Basic Electronics. Theory and practice
lementary Electronics. Sladdin. Excellent theory and 35 coristructional projects
Interfaching to microprocessors and microcomputers
Microproces sors for Hobbyists
Burglar Alarm Systems
ectronic Projecis in Music
Electronic Projects in Photography
Questlons and Answers Electromes
Questions and Answers Electro
Electronic Proiects in the Car
20 Solid State Projects Car and Garage
110 Electronic Alarm Projects
10 Electronic Alarm Projects
Omputing is Easy
\(\times 81 U\) sers Hando
\({ }^{2} 881\) Users Hando
Byteing Deeper Into Your ZX81
The \(2 X\) Spectrum Explored
22450 CMOS J.C. Projects
\(8 P 2452\) Projects Using IC 741
BP44 52 Projects Using
    P5G ICLM3900 Projects
    Single IC Projects
    Electronic Games
A Microprocessor Primer
Remote Control Projects
    Remote Control Projects
Electronic Music Proiects
3p74 Electronic Music Proiect
BP76 Power Supply
BP83 VMOS Projects
mommommomm
BP84 Olgital IC Projects
BP88 How to Use OP-Amps P8 How to Use OP-A Electronic Timer Proiects
Model Railway Projects 8P97 Model Railway Projects BP97 M Projects for Beginners
BP99 Mini Matrix Board Projects BP105 Aerial Prolects
BP106 Modem OP-Amp Proiects
BP115 The Pre Computer Book
\begin{tabular}{|c|c|c|}
\hline 80.68 & METRONOME NOV \(\mathrm{B}_{1}\) & E12.71 \\
\hline 810.22 & TELEPHONE BELL AEPEATER OCI 89 & E13.67 \\
\hline E17.32 & Meal linking wire extra & 140 motre \\
\hline 84.26 & COMBINATION LOCK Oct 81 less soianoid & \(E 18.65\) \\
\hline ¢6.03 & BABY ALARM Oct 82 & ce. 70 \\
\hline E18.71 & Fing B linklng wire & 7 p metre \\
\hline E15.36 & - DIANA' METAL LOCATOR Sept 812 & E34.50 \\
\hline ¢21.83 & REACTION TESTER GAME SODT 81 & E12.et \\
\hline [18.71 & VARIABLE BENCH POWER SUPPLY Aug 81 & ¢28.98 \\
\hline \&21.73 & ULTRASOUND BURGLAR ALARM July 81 & E19.98 \\
\hline E14.08 & ELECTRONIC DOOR BUZZER July 81 & 86.96 \\
\hline E4.88 & ELECTRONIC METRONOME JUIY 8 \$ & 84.90 \\
\hline ce. 10 & CONTINUITY CHECKER June 81 & E5.71 \\
\hline e5.60(liesscase) & ENVELOPE GENERATOR June 81 & E17.96 \\
\hline E17.33 & AUDIO MIXER June 81 & 85.33 \\
\hline 85.33 & PUBLIC ADDRESS AMPLIFIER March 81 & E18.40 \\
\hline E1 9.98 inc case & Extras - horn speskers & E8.83 ench \\
\hline E12.28 less case & PAMIC & 84.40 \\
\hline E18.28 & FUZz80x March 91 & ع10.90 \\
\hline power supply & WINOSCREEN WIPEA CONTROLLER March 81 & ¢8.20 \\
\hline 2 less power supply & STEAM LOCO WHISTLE March \({ }^{\text {B1 }}\) & E12.90 \\
\hline untable troe below). & PHOTOGRAPHIC TIMER March 81 & 83.50 \\
\hline 89.99 & MEATBEAT MONITOR Feb 81 & E24.04 \\
\hline ¢33.88 & TWO-TONE TRAIN MOAN Fab 81 Es.6 & 80 less case \\
\hline ¢3.76 extra & MEDIUM WAFE RADIO Fot 81 & 88.20 \\
\hline case + & BENCM AMP JEn 01 & E10.00 \\
\hline ¢18.80 & NICAD Charger jan \({ }^{\text {a }}\) & ¢8.20 \\
\hline ¢20.98 & CHUFFER Jan 81 , less case & ¢7.53 \\
\hline ع9.09 & BATTE MY CHARGE MONITOR DEC 82 & \(E 5.77\) \\
\hline E21.37 & MEMORY BANK - MINISYNTHE SISE R Nov S Dec 80 & ¢29.98 \\
\hline E3.86 & TRAN8ISTOR TESTER Nov BY EE. 54 inc & ne testisads \\
\hline 811.74 & Quitar Pre.Amp Nov 80 & \({ }^{8.83}\) \\
\hline ع7.29 & Case (diacast) extra & E2.20 \\
\hline \&10.80 & intruder alarm oct bo & ع20.06 \\
\hline ¢10.45 & TOUCH 8WITCH Sept 80 E2.78 less case & a contacts \\
\hline E14.74 & Quitah phaser Sept 80 & c18.28 \\
\hline E21.37 & SOUND OPE RATE D FLASH TAIQGER July 80 no skt & E5.33 \\
\hline ع3.72 & FOG HORN June BO & c6.04 \\
\hline \&4.77 & SPEEO CONTHOLLER FOR R/C April 80 E17.55 & 5 (less case) \\
\hline cs.82 & DIOITAL FREOUENCY METERAPril 80 & E30.96 \\
\hline ع8.98 & CUITAR TUNER Nov 79 & E12.82 \\
\hline ¢ 4.8 .87 & CaRALARM Feb 79 & c12.91 \\
\hline ¢4.06 & & \\
\hline
\end{tabular}

202 Mandbook of Integrated Circuits (ICC B) Equiv. 8 Substitutes
205 First Book of Hi-F LLoudspeaker Enclosures
22128 Tested Transistor Propects
Solld State Short Weve Recelvers tor Beginners
50
A Practical tntroduction to Digital IC's
Beginners Guide to Building Electronic Proiects
First Book of Transistor Equivalents and Substitutes
BP27 Chart of Radio, Electronic, Semi-conductor and Logic Symbols
650 Circuits Using Germanium, Sllicon and Ze
90 (FET) Field Effect Transistor Prolects
P1 Linear IC Equivalents and Pin Connections
BP42 50 Simple LE. Circuits
BP43 How to Make Wolk
BP 45 Projects in Opto Electronics
8P48 Electronic Projects for Beginners
BP49 popular Electronics Frojectis
BP51 electronic Music and Creative
BP53 electronic Music and Creative Tape Recordings
BP57 How to Build Your Own Solid State Oscilloscope
BP59 Second Book of CMOS IC Proiect
保s. Tone Controls. Fillers \& Attn.
BP66 Beginners Gulde to Microprocessors and Computing
BP70 Transistor Radto Fault-Finding Chert
BP75 Electronic Test Equipment Construction
8979 Radio Control for Beginners
BP81 Electronic Synthesiser Projects
BP82 Electronic Projects Using Solar Cells
BP85 internationai Transistor Equivaients Guide
BP86 An Introduction to
8P87 Simple L.ED. Circuits - Book 2 Construction
BP94 Electronic Projects 10 Cars and Boars
BP01 How to Identify Unmarked - Bo s
8P107 30 Solderiess Breadboard Proiects - Book 1
\(8 P 109\) The Arl of Programming the 1 K ZX81
BP1 10 How to Get Your Electronic Prolects W
BP117 Practical Electronic Building Blocks - Book 1
Semiconductor Data Eook Newnes
Basic Electronics. Theory and practice
Elementary Electronics. Sladdin. Excellent theory and 35 conistructional projects
Interfacing to microprocessors and microcomputers
Microproces sors for hobbyists
Electronics. Build and Leam
Eectronic Projecis in Music
Electronic Proects in Photography
Questronic and Answers Electro
110 Electronic Alarm Projects Garage
ORT U 4 sers Hando
Byteing Doeper Into Your \(\mathbf{Z \times 8 1}\)
22450 MOS J.C. Projects
BP24 52 Projects Using IC
BP44 IC 555 Proiects
BP65 Single IC Projects
BP69 Electronic Games
8P74 Electronic Music Proiects
BP76 Power Supply
BP63

\section*{Oric 1}

\section*{Mike Lord}

WHEN Sinclair released the Spectrum in April 1982, the smell of sour grapes quickly filled the air. Several manufacturers immediately announced "me too" products to be available within six months. But now - over a year later - the only serious competitors to the Spectrum that have emerged are the Dragon and the ORIC-1.
The ORIC-1 is manufactured by a new company. Oric Products International, but the design was by Tangerine, who have been active in the computing scene for some time. Up the the time of writing this review, ORIC had been sold by mail order as well as through retail shops. But Oric are dropping the mail order side, presumably because of the growing sophistication of the buying public who are now realising that "Delivery within 28 days" is computer jargon for "Sometime this year or next" and therefore prefer to purchase what is actually available at their local computer shops.
A consequence of this move away from mail order will be a rise in the price of the 16 K version to give sufficient margin to the retailer. It had been advertised (although not actually available) for \(£ 99.95\), which was a lot lower than the \(£ 169.95\) being asked for the 48 K machines, or than could be explained by an estimated \(£ 15\) difference in manufacturing costs.
One last comment before looking at the ORIC-1 in detail. Because of a natural desire to get the news to their readers as quickly as possible, most reviews of new machines are done on "pre-release" or "production prototype" models. This review is different; it has been written from experience with two real "production" machines, one purchased by mail order, the other from a local retailer. Any deficiencies reported will also have been experienced by the general buying public.

\section*{The Hardware}

The first thing that strikes most peopleabout ORIC-1 is the styling of the case and keyboard: it looks very smart. The case is a tough injection moulded assembly in light grey plastic with a black area for the keyboard legends and blue "go faster" stripes. The top of the case is tilted forwards - making the keyboard easier to use - by a wedge shaped piece which houses most of the electronics.
As usual, power is provided by a separate mains adaptor; in this case it comes with an integral 13A mains plug. Contrary to usual practice with small computers, ORIC-1 runs cool, with no signs of any overheating problems. One word of warning to anyone who has both an ORIC and a Spectrum; although their mains adaptors both give about nine volts out and both use the same type of plug to connect with the computer, they are NOT compatible. The polarity of the plug connections to the computer differs, so using the wrong adaptor with the wrong computer is bound to blow up something!


\section*{Key Facts}

The keyboard layout is similar to that of a normal typewriter, with a proper space bar and the shift keys roughly where a typist would expect them. But you can't touch type on it; the hard plastic keytops are too small and you have to press each key with a slow, deliberate, action. The key legends are very clear and - like a normal typewriter - each key is normally only used to produce two symbols, shifted and unshifted. ORIC-1 hasn't adopted Sinclair's "single key" entry for BASIC words, which must be typed in letter by letter; the only abbreviation allowed is the use of ? for PRINT. All of the keys auto-repeat if you keep them held down.

As well as the normal shift keys, ORIC-1 has a CTRL key that can be used in conjunction with other keys to perform certain functions. For example CTRL/F switches the rather loud keyboard click on and off, and CTRL/T switches the keyboard between the Caps Lock and Typewriter modes. There are some potentially annoying combinations here for someone who accidentally presses the CTRL key instead of the SHIFT key below it; CTRL/O for example, which turns off the output to the display. These CTRL functions are not shown on the keyboard

The keyboard also has four cursor movement keys - placed two at each end of the spacebar - which are used in program editing but could also be useful in the games programs.
An ESCAPE key lets you halt a BASIC program, but to halt the computer when it is running a machine code program or when it has hung-up because you have inadvertently POKEd one of the critical system variables, a Reset switch is cunningly hidden where it can only be operated by pushing a pencil through a small hole, cut for this purpose in the bottom of the case. It doesn't always work. Similarly, the power-on reset circuitry doesn't work properly on the author's machine, so after switching on the mains it is usually necessary to pull the power plug out of the socket on the back of the computer and plug it in again before ORIC-1 will set itself up properly.

\section*{Lighting Up}

The display has two basic modes; a low resolution one which uses just over 1 K of RAM, and a high resolution mode which takes up about 8 K .
In the low resolution mode the hardware actually produces a display of 28 rows of 40 characters each, but the top row is reserved for an annoying

\title{
Hobby Electronics reviews the longawaited new lowcost microcomputer.
}


CAPS message to show whether or not the keyboard is in the Caps Lock mode (as if you couldn't guess from looking at what you have typed in), and you can't normally print in the two left hand columns. When you reach the bottom of the screen it automatically scrolls up to make room for a new line.

ORIC-1 has two character sets, each of 96 characters plus their inverse video versions. At power-on one character set contains alpha-numeric characters including both upper and lower case letters - and the other holds 'chunky' graphics symbols. Both sets use a \(6 \times 8\) dot pattern for each character, and these are held in RAM so that you can easily define your own characters to replace any of the standard ones. You can select either one or the other of the character sets as "standard" for the whole screen or - by using a slightly complicated procedure - you can mix the two.

There are actually three variants of the low resolution mode: TEXT, in which you can get black printing on a white background, and LORES0 and LORES1, which set the screen up for white printing on a black background using one or the other of the character sets. There are other differences but they are minor, and anyway the new lines introduced when the screen scrolls up are always in TEXT mode.

Characters can be made to appear in any combination of double height and flashing, and in different colours.

The unusual feature of ORIC's display is the way these various attributes (colour, flashing etc.) are produced. Computers such as the Spectrum divide the screen areas of RAM into two parts, one containing the character to be displayed, the other containing data about the attributes to be used in displaying that character. To generate the TV signal, the hardware reads the contents of both areas in parallel.

The ORIC, on the other hand, has only one area of RAM to hold all of the information about the screen. Each byte of this memory area corresponds to one character position on the screen, and contains either the code of the character to be displayed or an "attribute" code. In generating the display, the hardware reads each byte in turn. If it sees a character code, it sends the pattern of dots which make up that character to the TV screen, but if it reads an attribute code, it uses the new value of that attribute for all of the following characters in that row. The character position on the screen corresponding to that byte in memory is shown as a blank space of the current background colour.

This technique - known as "serial attributes" - is used in Prestel and Viewdata and has the advantage of using the least memory space, but is more limited in terms of display versatility, as a blank space is left on the screen each time an attribute is changed.

In the HIRES mode you get a high resolution ( \(200 \times 240\) pixel) graphics screen on which you can plot points, lines, or circles, with three rows of text at the bottom of the screen. These three text lines can be scrolled without affecting the high resolution area. The high resolution screen uses one byte of RAM for each six pixels, ie 40 bytes for each row of dots, or \(40 \times 200\) bytes altogether. When you select HIRES mode, the screen background colour is set to black and the foreground colour to white, although you can change these using serial attributes just as in the low resolution modes; each attribute byte, then, gives a blank space six dots wide in that dot row on the screen.

In all modes, you have eight colours available for background or foreground: Black, White, Red, Green, Yellow, Blue, Magenta and Cyan. The border around the display area is always black. The TV display is clear and very stable except when a loud sound is being produced. The colour on a standard TV set is good when the TV and ORIC have both been tuned properly, but to tune ORIC's colour modulator takes very careful adjustment through a very small hole in the bottom of the case using a proper trimming tool. Hopefully this should not normally be necessary.

\section*{Sounding Out}

Sound comes from an internal loudspeaker driven by the three channel 8912 sound generator chip. The level is more than adequate, and a
wide range of sounds can be produced by an experienced programmer. For the less experienced, pre-defined sounds can be produced by the delightfully named words ZAP, PING, SHOOT and EXPLODE. Once programmed, the 8912 chip will generate all but the most complex sounds by itself, leaving the computer to get on with something else.

Like all other low priced machines, ORIC-1 uses your cassette recorder for back-up storage, and as with its competitors you need to experiment with the recorder settings to get reliable performance. A DIN-to-DIN cassette recorder connecting lead is provided, but you may have to modify it if you have one of those recorders that doesn't like simultaneous connections to input and output. Relay contacts are connected to the socket to control the cassette motor, where this is allowed by your recorder. Two recording rates are provided: the normal 1200 baud (about 150 bytes/second) and the "Super Reliable" 300 baud ( 30 bytes/second).

Surprisingly, there is no provision for verifying what has been recorded, although ORIC does appear to do some form of check when loading, as a poor quality recording will often give you a FILE ERROR - LOAD ABORTED message. You can save programs and defined memory areas (including the screen and character set areas of RAM) but the only way to save data is by working out where the variables are being held in memory.

\section*{Back Of The Bus}

The back of the case holds the connectors for the mains adaptor and UHF TV output, plus two circular DIN connectors and two good quality ribbon cable connectors. One of the DIN connectors is used for the cassette recorder, the other provides TTL level R,G,B and Sync outputs for driving a colour monitor.

One of the ribbon cable connectors is intended for use with a printer having a standard Centronics interface, but on the models tested it wouldn't work properly with any of the three types of printer available unless the keyboard scanning routine was diabled by invoking a special machine language routine.

The other ribbon cable connector carries the system bus, and will be very useful for adding external devices. Control lines on this bus let you turn off the internal 16 K ROM, and it would seem possible to replace it with external memory or with the "spare" 16 K of RAM from inside the ORIC (48K ORICs use 64 K RAM chips, the top 16 K being normally disabled to make room for the ROM).

If you ignore the warning label and open up the case, you will find a very clean layout inside. The keyboard is on a large single-sided PCB which carries a smaller double sided plated through board holding most of the electronics.

ORIC- 1 uses the 6502 processor chip, running at 1 MHz , supported by a 6522 VIA to handle most of the I/O, the 8912 sound generator, and a 40-pin custom

\section*{Oric 1}

IC which looks after the RAM refresh and the display. Memory is provided by eight 64 K -bit dynamic RAM chips presumably the 16 K models will be fitted with 16 K -bit chips - and two 8 K byte ROMs. There are also several smaller chips used for various miscellaneous functions, an ASTEC UHF modulator, and a robust looking loudspeaker. Overall it looks as if ORIC- 1 is more expensive to produce than the Spectrum, which could prove an important point when the price wars start in earnest!

\section*{ORIC BASIC}

Is a bit like my garden: some nice spots, some that should have been done differently, and a fair population of bugs It is a Microsoft-style BASIC with a considerable number of "enhancements'

Multi-statement lines can be used, but you are limited to a maximum of 78 characters; if you attempt to enter more ORIC beeps at you then - if you persist - ignores the whole line. The facilities for editing a program line are rather oldfashioned and much more error prone than the techniques used by the Spectrum or BBC machines; they are similar to those used on the Apple II. You edit by using the cursor movement keys to position the flashing cursor to the start of the line you want to change, then copy the good bits by typing CTRL/A and change the bits you want changed by typing in the new character(s). If you want to insert something in to the middle of a line you must first use CTRL/A to copy the line up to the point where you want to insert, then move the cursor to a spare part of the screen where you can type in the new part, then move the cursor back to copy the remainder of the original title line. Unlike the BBC machine, ORIC doesn't show you a 'fresh' version of what you are doing, so having edited a line it is always prudent to list it again to make sure that you have done what you wanted to do. You can list a single line, or part or all of the program, but there is no DELETE command.

Variables can be Floating Point, 16-bit Integer, or strings of up to 255 characters, and both numeric and string multi-dimension arrays may be used. Strings - even in array form - only take as many memory bytes as are actually needed; you don't have to declare the maximum length of strings Variable names can be any numbers of characters long, but ORIC only uses the first two so that HE and HELL would be treated as the same variable. Lower case letters can't be used in variable names.

If you don't need high. resolution graphics, you can GRAB the area of RAM it uses for your program and its variables. But it tends to GRAB too much, so that any strings used will overwrite the character sets!

REPEAT-UNTIL loops are provided as well as FOR-NEXT, but there is no WHILE construct. As seems common with most 6502 based BASICs, you are limited in the amount of nesting of FOR-


The component side of Oric's PCB, with their custom RAM refresh chip to the left of the loudspeaker.


The elegantly laid-out track side.

NEXT or REPEAT-UNTIL loops or subroutines, and to the complexity of expressions, but in practice the restriction doesn't appear to be a very stringent one. PULL and POP instructions are provided to clean up the stack if you have to jump out of REPEAT loops or subroutines.

As well as IF-THEN, you can also use the IF-THEN-ELSE construct, but its use is limited by the number of characters you can have in a program line and because you have to be careful about exactly what you put before the ELSE word:

\section*{IF A>9 THEN END ELSE GOTO 100}
for example, will never stop the program
regardless of the value of \(A\).
READ, DATA and RESTORE
commands are provided for handling lists of fixed data, but you can only RESTORE the data pointer to the start of the first DATA statement in the program, not to the start of any chosen DATA line. Single line user-defined functions are provided by DEF FN.

Some new words have been added to BASIC to control the 8912 sound chip. As well as ZAP, PING, SHOOT and EXPLODE, there are three general purpose words: SOUND, which lets you set any of the three sound channels to produce a tone of defined frequency and amplitude, or noise; MUSIC, which is similar but uses musical note and octave numbers to define the frequency, and PLAY which is more complex but lets you control the 8912 chip's envelope generator.

Some nice features of ORIC-1 BASIC
for the machine code enthusiast are DEEK and DOKE, which are like PEEK and POKE but operate on two consecutive memory locations to handle a 16 -bit value, and the ability to input or print numbers in either decimal or hexadecimal. You can invoke a machine code routine with either CALL(X), which runs a machine code routine starting at location \(X\), or with USR \((0)\) which runs a machine code routine that returns a value to the calling program.

Even nicer are the "words" ' 1 ' and ' \(\&\) '. The first is interpreted as a command to execute the machine code whose starting address is held at \(2 \mathrm{F5} / 6\), while ' 8 ' is interpreted as an instruction to. perform the machine code routine whose starting address is held at 2FC/D and which returns a value to the calling BASIC program. Using these two words, a skilled 6502 machine code programmer could extend ORIC-1 BASIC to include new commands and functions.

\section*{Print Where?}

Perhaps the worst part of ORIC-1 BASIC is that concerned with printing onto the screen. The PRINT command itself does not have any equivalent to AT (although a machine code routine to partially overcome this lack is included in the manual), and there are bugs with TAB and with using commas as print item separators, so it is very difficult to print in a defined position on the screen. You can get round this by using the PLOT statement (I) as this puts a single character or a string at a defined position on the low resolution screen, but this means that you have to use something like:

PLOT 18,13 STRS(V)
to just print the value of the variable \(V\) in the middle of the screen, and it doesn't control the printing positions used by INPUT statements. I can't fall in love with a BASIC that forces you to do things like this! In the high resolution mode, the only way to print characters. on the screen above the bottom three text lines is by using the CHAR command which plots a single character at a defined position.

The other high resolution mode commands are CURMOV and CURSET, which move the high resolution plotting cursor to a new position; DRAW, which draws a straight line; CIRCLE, which draws a squashed circle, and PATTERN, which is a fascinating new command that lets you draw different types of dotted lines. A FILL command is also documented and is supposed to fill in a rectangular area of the high resolution screen, but I am unable to get it to work sensibly. POINT tells you whether a given pixel of the high resolution screen is set to the foreground or the background colour.

PAPER and INK commands are available in the low resolution modes, but they only work properly in the TEXT mode, where they change the colour of
the whole screen at once. To do anything more sophisticated, you have to include attribute control codes in PRINT statements as letters preceeded by CHR\$(27), eg

\section*{PRINT CHR\$(27); "AX";CHR\$(27);"@"}
to print a red X, or POKE or PLOT the control codes directly into the right positions in the screen RAM.
Unlike the Sinclair BASIC, the ORIC doesn't do any checking of the program when you key it in, although it does translate any BASIC words it can find to single byte "tokens". Once you are ready to run the program, ORIC's "Trace" feature can help you check it out by displaying the line number of each line executed in part or all of the program as it runs. In practice, the most likely causes of problems will be ORIC's habit of only taking notice of the first two characters of a variable name - so that what you casually think of as two separate variables are actually being treated as the same one - and the diligent way in which it searches for BASIC words in your line, even to the extent of ignoring the presence or absence of spaces, so that the line

\section*{10 LET VIOLET \(\$=\) " \({ }^{\prime}\) BLUE"}
gives an error because ORIC mistakenly sees two occurences of the word LET, interpreting the line as

\section*{10 LET V10 LET \$="BLUE'}

As far as other features are concerned, ORIC-1 BASIC has the usual mathematical, trigonometrical and string functions, and seems to run about 50\% faster than Spectrum BASIC although, that machine is not noted for its speed.

\section*{The Manual}

Apparently the ORIC manual had to be produced in a hurry, just before the first machines were due to be shipped. As a result it contains a fair number of
errors, but the company were quick to include an errata sheet.
Because of the speed with which it had to be produced, the manual is quite brief for such a complex machine, and sometimes you wish that more information had been included. But, overall it is well written and quite humourous; the section on Using a Printer advises you on what to do if you get Japanese characters appearingl

\section*{To Come}

Oric have been advertising a Communications Modem to go with the computer for some months now, but nothing has yet appeared. Similarly the FORTH language cassette which should have accompanied the computer didn't - but we live in hope. For the more distant future, Oric are talking of a fairly cheap disc drive and printer.

\section*{In Conclusion}

It is a pity that ORIC had to be rushed out with a number of deficiencies in the software, and it will be interesting to see whether they simply ignore them or 一 as Acorn do with the BBC machine charge you a "nominal" fee to replace the ROM with an updated version.

In theory, the ORIC-1 should appeal most to machine code and hardware enthusiasts who will be prepared to put up with the messiness of the BASIC to get a computer with a reliable bus connector and one in which machine code routines can be easily mixed with - or even replace - the ROM firmware. And given a good range of supporting software, its price and styling should also make ORIC-1 attractive to those whose primary interest is in playing games.

But because of the intricacies and inconsistencies of ORIC BASIC, I can't unreservedly recommend it to anyone whose main reason for buying a computer is to learn about BASIC - it may well put him off computing for life!



\section*{Simple Tremolo}

\section*{G. V. Whitney, G8RSI}

TREMOLO EFFECT is suitable for most electric guitars or organs, and it has the virtues of being both simple and cheap to build, using only two integrated circuits and a handful of components.

\section*{Circuit Description}

IC1, a 566 , is a digital waveform generator device that can be used as a VCO; normally it can deliver both triangular and square waveshapes but in this application only the former shape is used.

The repetition rate of the waveform is set by RV1 and C3, and with the chosen components a range of one to ten cylces is available - probably adequate for most applications.

IC2 is an MC3340 electronic attenuator IC, originally designed as a remote volume control for TVs etc., with a 50 k pot attached via a long length of cable; however attenuation can also be achieved by varying the voltage on pin 2.

The output of IC1 is applied to IC2 via RV2, which allows the depth of tremolo to be adjusted for the best effect; the decoupling capacitor, C 5 , is deliberately large to allow operation down to low settings of RV1. The value of R1 is a compromise between maximum gain from IC2 (with SW1 open) and best variation of depth.

\section*{Component Selection}

The prototype unit was constructed in a die-cast box, which happened to be about at the timel It actually had more holes in it than metal, so the largest hole was used to mount the foot switch (this was obtained during a local garage clearance and was intended as the "Dip-Main" headlamp switch on a Morris Minorl This type of switch is to be recommended as it is very strong!) Whatever type of switch or box is used, though, it must be capable of being abused: remember, you're going to stand on it!
In the prototype unit the on/off switch was combined with the input jack socket by modifying the earthing contacts on the socket; the negative battery connection was attached to the fixed switch contact and the moving "finger" arranged to contact with it when the plug was inserted. If you do not need this convenience, the switch can be combined with RV1 or RV2.


Figure 1. The circuit.
Figure 2. The Veroboard layout.


Hobby Electronics cannot undertake to answer queries on Reader's Projects.

\section*{Parts List}


\section*{JUST OUT}

\section*{OUR NEW CATALOGUE}

Presented with a Professional Approach and Appeal to ALL who require Quality Electronic Components, Semiconductors and other Accessories ALL at realistic prices.
There are no wasted pages of useless information so often included in Catalogues published nowadays. Just solid facts i.e. price, description and Individual features of what we have available. But remember, BI-PAK's policy has always been to sell quality components at competitive prices and THAT WE STILL DO.

We hold vast Stocks "in stock" for fast immediate delivery, all items in our Catalogue are available ex stock.
The Catalogue is designed for use with our 24 hours "ansaphone" service and the Visa/ Access credit cards, which we accept over the telephone.
To receive your NEW 1983 BI-PAK Catalogue, send 75p PLUS 25p p\&p to:-



When you need to update yourself with all that is available in the "Do-it-yourself" market, then you need the Hobby Herald.
Packed with product information essential to the electronics enthusiast, this new electronics catalogue lists over 60 exciting products ranging from All Purpose Cutters to Verobloc, the solderless breadboard. All products are available throughout the U.K. from over 200 stockists.


Alternatively ordering products through the Herald is simplicity itself, and you can pay by either cheque, Barclaycard or
Access.
So make
sure you get your copy of Hobby Herald by ringing
(04215) 6282.9.



\title{
Feeling stumped? Looking for the right connection? It must be time to reach for HOBBY ELECTRONICS! Here's how . . .
}


\section*{Letters}

While we are always happy to receive correspondence from readers, it is simply not possible for the editorial staff to reply to every letter. Because of staff limitations and the fact that producing the monthly editions of HE must take precedence, we cannot even guarantee to answer letters accompanied by an SAE. Hopefully this situation will prove temporary and we can shortly resume a full service to readers.

In the meantime, to reduce the amount of mail to which we attempt a reply, certain guidelines have had to be imposed:
- Letters from readers who have been unable to successfully build a Hobby project will receive first claim on our attention. But we urge readers to first make sure they understand the problem, and to read all parts of the article thoroughly: it is wasting our time (which is better spent ensuring that current projects are error free) to reply (to pick a common case) that the supplier of certain components is given in Buylines, on page 34.
- Many enquiries are concerned with drafting errors in circuit diagrams or component overlays; corrections for most errors have been published in subsequent issues, so please check your back numbers before writing to us - the information may already be in your hands.

Where there is a definite problem, we ask that readers first try to solve the problem themselves: again, reading the article carefully will often resolve what appears to be a contradiction between, say a Veroboard layout and the circuit diagram.
- If it is necessary to write, please try to supply useful information: it is impossible to give constructive advice to the reader who says "My project doesn't work. Can you help?". The short answer, and the only one possible, is no!

We would like to hear from any reader who has had difficulty with a Hobby project and who has come up with a solution, but we cannot advise when a project has been modified and fails to work: if you decide to make
changes you will have to live with the consequences. Similarly, we are pleased to take readers suggestions for projects they would like to see in the magazine, or for modifications to improve a published project, but we cannot design circuits on request or re-design a project to suit the requirements of a single reader.
- We will try to answer any readers' questions on electronics in general, to suggest sources for components for old projects or to offer whatever advice we can when circumstances permit; however, we cannot advise on the purchase, use or modification of commercial equipment.
- We are unable to advise on the purchase of components in foreign countries; overseas readers are advised to read carefully the advertisements placed in HE by mailorder component suppliers and to write to them directly (this advice also applies to many UK readers wishing to obtain components for projectsl).
- Unless specifically requested to the contrary, any letter to Hobby Electronics may be selected for publication in the magazine, including letters with an SAE if they are sufficiently interesting; in such a case a copy of the editorial comment will be returned to the reader prior to publication.
- Letters not accompanied by a stamped, self-addressed envelope may be selected for publication but will not receive a personal reply. We will attempt to reply to all enquiries backed by an SAE (if writing from outside the UK please include the correct number of International Reply Coupons, available from Post Offices) but we cannot guarantee a reply, nor can the publishers, Argus Specialist Publications, be held legally responsible for the accuracy of the information supplied.

\section*{Writing For HE}
- Hobby Electronics' editor is continually looking for good projects, ideas for projects and designers to
develop an idea into working project.
However unless you are already a seasoned contributor, it is unlikely that your first effort will reach the standard required for publication in the magazine. So if you have an idea or a design and you personally think it would be suitable as a Hobby project, write and tell us about it - and please include a telephone number (night or day, we're open all hours here) where you can be contacted.

Similarly if you are a designer., perhaps with time to develop someone else's ideas, please write or phone the editorl

\section*{Any Old Rope?}

We will also undertake to publish any suitable but undeveloped ideas as experimental "Reader's Projects". The article will generally fill one page when published and should include a circuit diagram and description, parts list, component overlay (the projects should generally be on Veroboard) and some brief suggestions as to how the device might be constructed by the adventurous readerl A working prototype will not be needed, and the flat rate for Reader's Projects will be \(£ 20\).

Simple circuits are also needed for publication as "Short Circuits"; no constructional information is needed, and contributors of "Shorts" will be rewarded with \(£ 10\) per idea.

\section*{The Back-Log}

The above guidelines for writing to Hobby Electronics have had to be drawn up in response to the growing pile of yet un-answered letters from readers.

We apologise to all those still awaiting a reply; we are doing everything possible to clear the jam, but to enable us to do so in reasonable time we are retrospectively imposing the above restrictions on the type of enquiry with which we will deal. Therefore, any letter or question not relating to a Hobby Electronics project or a general electronics enquiry will be returned, with the SAE, to the reader.


\title{
Feel like sounding off? Then write to the Editor stating your Point of View!
}

\section*{Gerbil Grumbles}

Dear Sir,
Our team have recently acquired a copy of the April edition of your electronics magazine. One project detailed caused some very grave concern and is now receiving attention in our laboratories. We understand that "Hobby Electronics" is mainly aimed at the amateur enthusiast and, in view of this, we would like to draw your attention to the "Radio-controlled Gerbil" article, which we consider highly unsuitable for the average constructor. Insufficient construction data is given and we consider the advice on a Grid power supply unsafe and irresponsible on your part.

It is no wonder that British Technology cannot progress if this project reflects the standard of British engineering. Furthermore, we can assure you and your readers that NATO missiles have sufficient failsafe devices to prevent any blanket radio signal from launching them prematurely.

Finally, we would appreciate any information as to where we can obtain the old bed spring.

\section*{Yours faithfully.}

Winston Weinberger.
Shuttle Command Navigation Lab.,
National Aeronautics and Space Administration.
Alabama.
USA.
via Wimbledon. SW19
We're deeply honoured that the Shuttle Command Navigation Team from NASA have found the RadioControlled Gerbil fascinating. Yes, boysl We have a lot in common they said the gerbil would never get off the ground, either.

About the power supply: our technical teams make a point of scouring junk shops and dumps for inexpensive components, and I have it on good authority that we obtained the last dozen or so of this unit; everyone else will have to make do with digital watch batteries.

As for the old bed springs, we must stress old: new springs are too powerful for the bounce/weight ratio of the gerbil and are only suitable for Radio-Controlled Fleas, a project I would not recommend to anybody who does not have a gerbil. So it's back to the dump. If you should meet Mr . Bradshaw there, please introduce yourself. He may be able to help you on the subject of valve technology.

As I said, we are deeply honoured and humbled by your kind interest and
would like to mail this reply to you personally, but what can you do with people who just won't send an SAE? Bearing that in mind, please pass on the following messages: To Mr. Scuttle: well donel You are only the second person, after my six-year-old niece, to spot our little joke about the Eprom Programmer! All the rest of our readers have taken it quite literally, and most of them have actually got it working, poor ignorant foolsl To Mr. Bumphrey: Go onl See if we care. It'll hurt you more than it hurts us. To Mr. Smyth of British Telecom: why don't you sort out the Ham and CB interference before you pick on defenceless rodents? To Miss Hopeful: The Editor has his gerbil working nicely, thank you, and so gracefully declines your own offer to nibble his toes for him. As for the so-called Mr. Wakely of Wimbledon: You don't expect us to be taken in by a stupid pseudonym like that do you? And someone who sends his binders to the vet? Do us a favour. Stick to getting your shuttles off the ground and don't try to fool the experts. Now, onto some real business:

\section*{Dear Sir,}

As a regular reader of your mag. I bought a copy of the April " 83 issue while dashing for the train. The bit that caught my eye was that round red bit on the cover. I've been into radio control models for some time, and thought to educate myself some more. If l'd required the mickey taken. I would have bought a comic. As it is I think you should refund my money for selling me something under false pretences. I expect that a lot of other readers like me will think twice before buying rubbish like this again.
Yours most sincerely.
G. G. Bullivant,

Gosport.
Hants.
Dear Sir or Madam.
I have two sons both at school, both interested in electronics including electrical circuits. In fact one spends most weekends tinkering about with such things.
His pocket money is \(£ 1.50\) per week plus any money he saves by walking to school rather than taking the bus; most is spent on basic things which I know little about such as capacitors, transistors, copper enamelled wire, etc.
However, older son sees March issue of Hobby Electronics, and buys same for the first time, seeing that on page 18 that there is a "Radio Controlled

Gerbil" project for next month. great, thinks young son, waits for
publication, beamingly walks into paper shop and buys April issue, what disappointment, whole thing appears to be a joke. Perhaps to ardent publication supporters it is and they expected it, however, I wonder whether they would feel the same had they spent \(53 \%\) of their weekly wage on something treasured in the imagination, only to find it was a let down.
Your serious observations would be most welcome as I draw this matter to your attention. I wonder whether you are aware of such young subscribers and indeed their gullibility with regard to such matters having indeed not become part of our adult world yet. Yours sincerely.
J. Hedger, Assoc. Mem. ASEE, Dip. Eng. Man.
Abbey Wood,
London SE2.
Speaking as one who has never bought so much as a copy of The Beano since the age of nine without first inspecting the contents, I think this may be a problem related to personal philosphy rather than age. Mr. Bullivant's plight seems to bear this out; in fact the adult commuter may be the most vulnerable of all periodical buyers, as the alternative, being stuck on a train with no reading matter, is too terrible to contemplate. But we do take your point, and hope you will forgive us for taking the mickey just once a year. Of course, every little bit helps
to keep our printers, typesetters, designers, sales team - not to mention we editors - from becoming digits in the unemployment statistics, so we need youl

We would like to offer both Mr. Bullivant and Master Hedger consolation in the form of any one of our back issues, or forthcoming issues, as a replacement for the April issue, so if you will let us know which one you would like, we'll send it on to you.
Don't everybody rushl These good readers can claim their consolation prize for the determined initiative they showed in making their feelings felt. The complaints departments is now closed

PS. We don't want mail from everybody else who has spent \(53 \%\) of their weekly wage on something treasured in the imagination, only to find it was a let-down, either . . . even people who bought the Men at Work album.
(Thinks: we wonder how the gentlemen at the RS Components Technical Department are getting on with the Gerbil? can we expect to see the correctly rated liquorice allsorts in the next edition of their Catalogue?)

\section*{Shock! Horror!}

Dear Sir,
Many years ago as a lad we could buy Shocking Coils run on a \(4 V 5\) battery. with a trembler and two wires and on the end two bits of brass tube.

Have you any plans for the same, or know where I could get the same?
Yours faithfully,
F. S. Clarke,

Horsham.
Sussex.
Don't tempt usl We like pranks as much as the next person (as long as we aren't the victims, of course . . but as celebrities and responsible members of the community we can't, alas, condone or advise on the administering of electric shocks to innocent parties (this does not include members of the Video Today staff) in case somebody has a heart attack and sues us. Besides, we have our hands full already with the Radio Controlled Gerbil terrorising the public!

\section*{Attention All Beginners}

Dear Sirs,
I have been fascinated by electronics for years, but until recently àll my time has been taken up by building up my own small business.

As a new reader of HE I wonder if you could recommend a method of learning about electronics, starting at the most elementary level that I could study at home, at my own pace.

I would also be very pleased if you could recommend any suitable books for the adult absolute beginner, thank you.
M Gadd.
Dudley,

Well, a new series for the complete beginner - whatever his or her age - will be starting in HE very soon. And then there was the first series of all, Into Electronics, which appeared in HE between November '78 and June ' 79 (inclusive). These issues are out of print, but photostats are available at \(£ 1.50\) per article (ie per issue) from our Backnumbers service (see page 47 in this issue). That series was aimed mainly at ' \(O\) ' level students and was extremely popular If you write to Bernard Babani (Publishing) Ltd., The Grampians, Shepherds Bush Rd., London W6 7NF and ask for their catalogue, you will find many small books of circuits for inexperienced constructors there and you can choose at your leisure. And there is absolutely no subsititue for 'hands on' experience in construction A book of breadboard projects is a good place to start because you can
build up the circuits and tear them down again without hours of desoldering. And don't be too reluctant to check out books aimed at younger readers - they are sometimes the best and easiest way to get a good grasp of the fundamentals of any new subject. Good hunting!

\section*{Solar Panels Again}

A reader writes:
Referring to Points of View March 1983, 'Heat But No Light', if Mr. O'Neill is referring to the BPX47A panel, I notice that the panels which are identical to the BPX47A (except that they have thirty-six cells instead of the BPX47A's thirty-four) are used in Chichester Harbour for charging up batteries on navigation beacons. I believe the harbour is under the control of the Portsmouth Harbour Authorities who might be able to tell you where they got the panels from. If it appears that they do not maintain the lights, then try Trinity House.

\section*{EPROM Interfacing}

\section*{Dear Sir,}

I would like to know the way to interface the EPROM programmer to my BBC Model B. As a regular reader of Hobby Electronics, I find that article most interesting. I have already bought all the parts for the project, but now I am confused because I don't know how to interface the programmer to my BBC micro and I don't know how to write a simple software to drive it.
Thanks.
Yours faithfully.
Joseph Obi,
London N1 6.

We do have plans for a variety of interfaces for the HE EPROM
Programmer in due course, so keep watching.

\section*{Personal Project}

\section*{Dear Sir,}

I'm a regular reader of your magazine. ever since I picked up your November ' 82 issue at the local newsagent. Your magazine is very interesting, especially your page.

I haven't built any of your projects so far because I haven't found any that suit my requirements. I'm particularly interested in the personal stereo cassette recorder and I'm looking forward to building one. I hope my idea will be considered. It will be different to play a machine that you made yourself!
Yours sincerely.
Wing Lee.

Certainly no shortage of ambition here! What can I say to this
determined gent, who not only reads his Hobby even when he isn't building a project, but plans to build his own personal stereo? I positively quail to admit that we are not very likely to do a personal stereo project, because the commercial companies have got it down to such a fine art that no magazine could possible compete with them - not a hope! By the time all the parts which are too complicated to make at home had been provided (including the case) there would be little left but the assembly, and it would still be more expensive and less reliable than the ones you can buy in the shops. So it's not feasible as a magazine project. Sorry!

\section*{Looking At TV}

Dear Sir,
Recently I came across an article on Narrow Band TV. Unfortunately it was only the first article.

I have developed an interest in NBTV. Therefore, I wonder if you can supply me with any information or with a source of information.
Yours faithfully.
RE Dixon.
Putnoe,
Bedford.

Two articles in HE April and May '80 will tell you how to set up and use NBTV. You can purchase these articles for \(£ 1,50\) each from our Backnumbers service. Alternatively, try the Encyclopaedia Britannica at your nearest library - they have detailed information on many technical subjects.

\section*{Soldering Iron Kit}

Dear Sir.
Wishing to build the temperature controlled soldering iron IHE October ' 80 ) I wrote to the address given in Buylines at the end of the article, enquiring if the kit was still available.

Although I enclosed an SAE I have received no reply to my letter.
I'd be grateful if you would inform me (a) if Compu-Tech are still in business and (b) where the kit can be obtained if they are no longer in a position to supply it?
Yours faithfully.
H J Holland,
Salisbury.
Wilts.

Enquiries have revealed that CompuTech are still alive and well but have changed address. They are now at Worstead Labs, North Walsham, Norfolk NR28 9FA. Tel: (0692) 405600. They tell me that the kit now costs \(£ 15.38\). Try giving them a call to start with; they may have received your letter by now. If no joy, write again.
Well, isn't that nice! A happy ending, by the look of it.

\section*{IS YOUR CAR AS GOOD \\ AS IT COULD BE?}

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION
* Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
- is it ECONOMICAL or does it "go off" between senvices as the ignition performance deteriorates? Tofal Energy Discharge gives much more output and maintains it from'service to service.
* Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is manginal? Total Energy Discharge gives a more powerful spar- from lalie to the engines maximum leven with 8 cylinders).
t is the PERFORMANCE SMOOIH. The more powerful spark of Total Energy Discharge eliminates the "near misfires" whilst an electronic filter smoothes out the effects of contaci bounce eic.
* Do the PLUGS and POINTS always need changing to bring the engine back to its best? Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
* TOTAL ENERGY DISCHARGE is a unique system and the most powerful on the market - \(31 / 2\) times the power of inductive systems \(31 / 2\) times the energy and 3 times the duration of ordinary capacitive systems..These are the facts:
Performance at only 6 volts (max, supply 16 volts)
SPARK POWER - 140 W , SPARK ENERGY - 36 mJ SPARK DURATION - \(500 \mu \mathrm{~S}\), STORED ENERGY - 135 mJ LOADED OUTPUT VOLTAGE

50 pF load - 38 kV ,
\(50 \mathrm{pF}+500 \mathrm{k}\) \(\qquad\) 26 kV
We challenge any manufacturer to publish better performance figures. Before you buy any other make, ask for the facts, its probably only an inductive system. But if an inductive system is what you really want, we'll still give you a good deal.
* All ELECTRONIZE electronic ignitions feature:

EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELIABILITY ( 14 years experience and a 3 year guarantee).
- IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality \(2 \mu \mathrm{~F}\) discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.

Most NEW CARS already have electronic ignition. Update YOUR CAR

PROTECT
YOUR CAR WITH AN ELECTRONIZE ELECTRONIC ALARM

* 2000 COMBINATIONS provided by an electronic key - a miniature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit code).
* 60 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed
* 10 SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
* INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
t 30 SECOND DELAY when system is armed allows owner to lock doors etc.
t DISABLES IGNITION SYSTEM when alarm is armed.
- IN KIT FORM it provides a high leval of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everything down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES.
SUPPLIED COMPLETE WITH ALL NECESSARY LEADS AND CONNECTORS PLUS TWO KEY PLUGS

Don't Wait Until Its too Late ~
Fit one NOW!
fill in the coupon and send to:
ERECPRONIZE DESICN Dept E. Magnus Rd Wilnecote Tamworth B77 5BY tel 0827281000
\(\square\) Assembled ready to fit D.I.Y. parts kit
£26.70 £19.95 £15.50 £14.95

TWIN OUTPUT. for cars and motor cycles with dual ignitionTwin, Assembled ready to fit
£ 36.45 £29.95 Twin, D.I.Y. parts kit
\(£ 24.55 £ 22.95\)
INDUCTIVE DISCHARGE (12 volt only)
Assembled ready to fit
\(\mathbf{£ 1 5 . 5 5} \mathbf{£ 1 2 . 7 5}\)

CAR ALARM

Assembled ready to fit
£37.95
D.I.Y. parts kit
£24.95
1 enclose cheque/postal order OR debit my Access/Visa card


Name
Address


All backnumbers cost \(£ 1.50\) each. For those of you who only want copies of articles, we do offer a photocopying service. Each copy costs \(£ 1.50\) and information as to its title and publication date should be given. Ordering backnumbers and photocopies could hardly be easier, just fill in the coupon, cut it out and send it to the appropriate address.

\section*{HOBBY ELECTRONICS BACKNUMBER ORDER FORM TO: \\ 513, London Road. \\ nod 6 atagne ity Thornton Heath, Surrey, CR4 6AR England.}

Please send me the following items:
\(\square\)

HOBBY ELECTRONICS
PHOTOCOPY ORDER FORM TO:

\section*{145 Charıng Cross Road, London. WC2H OEE}

Please send me the following items:

\section*{NAME}

ADDRESS

Photocopies of in the issue at \(£ 1.50\) each

I enclose f
Cheques and Postal Orders should be made payable to ASP Lid

\section*{CAREERSIN ELECTRONICS}

\section*{This month we look at the multi-layered career opportunities in British Telecom.}


\author{
Graham McMorrin \\ British Telecom Features Bureau
}

THERE IS a great deal more to the telephone business than installing 'phones and chasing up faulty lines. British Telecom is an extremely large and diverse organisation at the forefront of world telecommunications. It offers a vast range of technical, engineering and electronics opportunities, as well as the scope to develop these skills further, both on the management side, and the purely technical. The convergence of telephony, computing and television technologies made possible by silicon chips microelectronics and advanced "macroelectronic" systems promises to make the next decade one of the most exciting in the history of tele-
communications. British Telecom reckons itself to be well-equipped to meet the challenges that lie ahead: operating the world's fourth largest telecommunications system, Telecom is responsible for the planning, provision and maintenance of the country's local, trunk and international networks. It employs 246,000 people and invests \(£ 1,500\) million a year. Technological developments have moved so fast over the past decade that today's telecommunications industry embraces a great variety of products, services and facilities - everything from satellite transmission to aids for the diabled; from radiopaging to installing domestic telephones - as well as executive technical management and high technology research programmes.

\section*{Telephone Numbers}

There are already 28.5 million telephones throughout the country, as well as 6,600 telephone exchanges, 93,000 telex and 95,000 data connections, 77,000 public kiosks, and 300,000 rented payphones. A further 2,200 new telephones are installed every hour of the working day. About 57 million inland telephone calls are made every day.

Many skills and disciplines are needed to operate a business on such a scale, especially since British Telecom's current exchange modernisation programme means that four new electronic exchanges are being brought into service each week. As Britain's telecommunications system becomes fully digitial, with the introduction of computerised System \(X\) switching systems, a faster and more flexible network will evolve, able to carry speech, text, data and television pictures. The importance of the electronics technician and research engineer will accordingly increase in proportion. In order to compete in a tough, rapidly evolving market, British Telecom has structured its business into four main divisions: Inland, Major Systems, British Telecom International (BTI) and British Telecom Enterprises, with further specialised sections in each. These are self-contained units, each demanding different combinations of technical and electronics expertise; together they represent a comprehensive approach to electronic telecommunications.

\section*{Planning Ahead}

The Inland Division is the largest element, working on Telecom's existing electro-mechanical exchange systems, which will have to cope with the new microprocessor-controlled applications, making the best use of the massive financial investments which the organisation represents. Specialised technical and electronic engineering skills are also needed for the specification and definition of the planned Integrated Services Digital Network (ISDN), evaluating. its possibilities and launching new services.

Another main technical role is preparing for a totally digital network by maintaining the performance of the existing transmission networks. Inland's engineering and scientific staff also provide sophisticated power supplies capable of the higher performance and efficiency required by modern digital switching sytems. Generally, this division has the responsibility for developing policies to ensure that British Telecom's network makes a smooth transition towards its own microelectronics revolution.

The Major Systems Division covers the broad disciplines needed for Research and Development, Procurement, Overseas Liaison and Consultancy. Its aim is to research, identify and exploit major new openings in communications technology, and its


BT runs a motor fleet of over 75,000 vehicles, from heavy duty maintenance trucks to delivery vans. Their 650 motor transport workshops are run by over 6,500 staff, most of whom are trained in their own Motor Transport Training School.

An engineer feeds a new page showing the now well-known British Telecom logo into the update computer centre for Prestel, the world's first public viewdata service, developed at BT's Research Laboratories at Martlesham.
work is centred at British Telecom's Research Laboratories at Martlesham Heath, near Ipswich.

Over 2,000 staff at the laboratories are involved in research; this includes the Advanced Switching Unit or Systems Evolution and Standards Department, and small formations of staff on other projects. The range of skills involved is vast, from objective and applied research, through advanced development, up to field trials, and the testing of new techniques, services and systems.

\section*{A Choice Of Fields}

Current work includes: advanced semiconductor devices, materials, submarine cable systems, digital radio and line systems, telephone design, electronic office automation, video services, optical fibre systems, Prestel viewdata development, voice synthesis for computer-controlled exchanges, advanced Private Automatic Branch

Exchanges (PABXs), packet switching, and general reliability studies.

Other centres for British Telecom's development handle such major projects as the entire System \(X\) development programme, signalling system development, local, junction and trunk transmission studies, and external plant and general customer apparatus. The development and coordination of Systems Evolution and Standards includes skilled staff necessary to establish the architecture and topology of future signal switching and related systems, with responsibility for engineering such services and Radiopaging and small digital exchanges and sub systems that are part of the System \(X\) family of exchanges.
Technicians representing the broad spectrum of computing and electronics are engaged in determining the best standards for components' manufacturers and suppliers, establishing servicing practices for daily use by Telecom's 126,000 general engineers. systems software engineering and
designing data processing equipment. British Telecom designs are internationally competitive, so that as well as serving UK customers, a foundation is also laid for British exports. Teams of technical specialists are maintained to advise overseas administrations on British Telecom's technology, and to seek, develop and enhance UK export opportunities.

\section*{Across The Waves}

The planning, provision and effective running of Britain's international and maritime telecommunications is the responsibility of British Telecom International (BTI). BTI's services range from international telephony, telex, telegram and Telemessage services, direct, privately-leased circuits from Britain to most parts of the world, data transmission via IPSS (the International Packet Switching Service), to Europe and North America, to the provision of specialist business communications with Western Europe, using satellites and small dish aerials located close to customers' premises.

In the field of maritime communications, BTI provides main telecommunications to and from ships at sea using conventional radio, and by satellite to suitably equipped vessels. Oil and gas in the North Sea are linked to the shore by trans-horizon microwave radio. To carry out its job efficiently BTI has developed a growing range of facilities, including operator exchanges and automatic switching centres for telephone and telex services, a variety of specialist coastal radio stations, satellite earth stations and a fleet of cable ships.

Covering such a range of activities, BTI needs a complete collection of engineering disciplines. Much of the engineering work is similar to that done by the Inland Division, including day to day running of the communication network, re-configuration and planning its growth and technical advancement. But there are also several specialist areas such as satellite communications.

Other jobs include the maintenance of submarine cables, servicing the dish aerials at Goonhilly Downs and Madley, and general administration. Each international service has its own management team and technical support staff.

\section*{Business Services}

British Telecom Enterprises covers a variety of specialised national business services, including Radiopaging, Radiophone, Prestel, Yellow Pages, new range and extension telephones and the installation of PABXs and office automation. BTE itself consists of four major, separate businesses.

Firstly, British Telecom Information Services runs Yellow Pages and Prestel viewdata, and uses these as a core for a growing business in publishing, information and advertising (both on paper and in electronic form). The latter
is rapidly expanding as publishing costs increase, and the technology is developing to meet the change in advertising markets away from general to highly specialised campaigns, using different media for differing target audiences.

Secondly. Business Products and Systems provides all the telecommunications equipment business customers need on their own sites. Engineering staff install fully electronic PABXs, telex terminals, modems for data transfer between computers, and a complete range of new microprocessor controlled integrated office communications terminals and systems. These office systems are designed to meet the rapid growth in the data handling needs of businesses.
The third section BT Spectrum, provides value added services such as Telecom Gold's electronic mail and Telecom Tan's computerised business answering service. Other Spectrum services include Telecom Silver's Cardcheck service, for the verification of credit card transactions, and Telecom Red's security alarm services, where a central station receives alarm calls automatically and forwards them to the appropriate emergency service. Telecom Violet provides teleconferencing and high-quality multi-audioconferencing over normal telephone lines. All of these new facilities use microelectronic circuitry to provide a series of services more sophisticated and elaborate then the main telephone network.
Lastly, Customer Services deals with what can be bought from any British Telecom Phoneshop - new telephones and small attachments (answering machines and call makers) meeting a growing demand for more complex telephones with intelligence, memory and display facilities. In all these areas British Telecom engineers are actively involved in product development, from initial specification through to finished product. To do the job effectively, engineers have to be able to co-ordinate eletronic design, mechanical layout, selection of materials and software design - quite a challenge.

\section*{Just The Job}

Telecom's technicians are also called upon to evaluate existing products and, if necessary, make modifications to meet the required standards. Electronic engineering plays a leading role in today's microchip telecommunications, and engineers are needed to design new integrated circuits for a vast array of functions. Such design work involves studying the latest research literature, writing programs for, and then using, both computer simulation and computer design aids, as well as building and testing prototype hardware models.

Qualifications needed differ according to the technical discipline involved and the age and experience of the applicant. Almost all A-level subjects are welcome as entrance qualifications for people who show some potential for management. In the


Going up in the world: many different kinds of long-distance communications receivers fall within British Telecom's territory. Testing and maintaining them calls for skills which can be put to use in the open air, as well as in a workshop!

An organisation like British Telecom is continually updating its equipment to compete on the world communications market, and digital electronics skills are increasingly important as more systems become computercontrolled.

areas of planning and customer service the minimum requirement is four GCE passes, at least two being at A-level, but at one level or other these must include English, Maths and a science subject Physics or Chemistry or a combination of both. A-level passes in Maths and Physics are preferred.

For those interested in engineering, as highly-skilled technical officers. Apprentices are usually aged between 16 and 18, and British Telecom prefers them to have O-level or CSE grade 1 in Maths, and a technical or scientific subject. In engineering, in particular, there are courses leading to various formal qualifications. For graduates there are three main technical streams. Each of these streams also covers a number of work areas, and these may call for people with specialist training.

The first stream involves management, customer services, marketing, planning and forecasting, under the general title of Telecom Staff. Any degree is acceptable, so long as it is accompanied by GCE passes in Maths and English, and preferably Physics and Chemistry.

The second stream has the general title of Data Processing Staff, covering systems analysis and programming, and the preferred degree is Computer Science.

Finally, the Engineering stream covers all technical and research staff. The main work areas are research, development and the planning of switching and transmission systems. Degree qualifications should preferably
be Electrical, Electronic or Communications Engineering.

\section*{Getting In Touch}

The era of the "information society" is upon us, and it is timely that British Telecom has been created as a corporation to meet the country's growing demand for telecommunications services. The information "explosion" means a growing and exciting list of products and services, and the promise of new concepts in communications such as home banking, electronic mail and the fully automated office.

The Government now allows private firms to compete with British Telecom in many of its activities, but Telecom can face the future with confidence, knowing that its knowledge and experience of telecommunications is unrivalled and its staff highly skilled to meet the challenges of the future.
If you are interested in joining Telecom, your first move is to contact your local Telecom Recruitment Manager's office at the Regional Headquarters. You will find the phone number in the introductory pages to your telephone directory, or dialling code book. Tell them what you are looking for and what qualifications or training you already have, or hope to gain. They will tell you where to proceed. It all starts with a phone call.

\section*{MASMHR HTFGHRONICS NOW! The PRACHTCAL way!}

This new style ccurse will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following Build a modern oscilloscope
Recognise and handle current electronic components
Read, draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. \(\mathrm{Hi}-\mathrm{Fi}\) and microprocessor/computer equipment.

NewJob? NewCareer? NewHobby?Getinto Tlectronics Now!



Geoff Maçaulay


\section*{A little more treble on the West Wing, please!}

IN the early days of stereo, the channel separation used to be enormous. Stereo effect records can still be found in second hand shops that demonstrate this; a table-tennis match recorded so that the sound ping-pongs from side to side, or trains that pass through the middle of the house and so on. And anyone who has an early Beatles album in their collection will know that the vocals sound out from one side and the instruments from the other!
In those days, however, separate speakers were a novelty and the maximum separation of the speakers in a 'hifi' radiogram was of the order of a few feet; then, they needed all the electronic spacing they could cram onto a record. Since then the physical separation of the speakers has increased, while the electronic separation has decreased. So much so that many modern recordings sound like they were made by dedicated member of the "Back-to-Mono" club.

Since one cannot easily pull the walls apart to get increased separation, speaker placement is generally a matter of compromise between acceptable channel separation and the size and shape of the listening room. There is an alternative, however. It is possible to


Figure 1. The circuit.
electronically separate the channels during playback, and this has the same effect as physically spacing out the speakers.

\section*{Sound In Space}

A simple but effective circuit for achieving this is the subject of this article. But first to understand how it works it is necessary to understand the difference between stereo and mono sound recordings.

A mono recording is quite simple; all the information - vocals, instruments etc - are all recorded as one signal. A stereo recording on the other hand consists of two signals or channels, which between them contain all the information. When the recording is made a single instrument can be placed on either the left channel or the right channel by means of a 'Pan' control, (actually a simple potentiometer); rotating the Pan pot to the left puts all that signal onto the left channel, while rotating it hard to the right puts the sound on the right. Leaving the control set to the middle position effectively places the sound in the centre of the stereo image because the sound levels recorded on the left and right channels are equal.
However the perception of stereophony also depends on the
phase difference between the signals on each channel and it is this phase difference, which is imparted when the instrument is recorded in stereo, that enables us to further separate the sound after it has been recorded; if these phase differences are emphasised we can effectively increase the stereo separation.

\section*{Spaced Out Circuit}

The diagram of Figure 1 shows the complete circuit of the Stereo Spreader. The Left and Right channel inputs are directly coupled by C1 and C2 to the non-inverting inputs of opamps IC1a and IC1b. To avoid the use of two batteries the op-amps are biased to half-supply by the resistive divider network R1, 2 and 3; capacitor C3 by-passes to ground any AC signal at the junction.
The op-amp outputs are connected together via the two halves of RV1 and R7. Now both are connected as non-inverting amplifiers, with feedback from each output to the respective inverting input via RV1a.or b. Like all op-amps, they will attempt to keep their inputs balanced by adjusting the output until the voltage fed back to the inverting input equals that present at the non-inverting input.
If the input to both op-amps is the same - ie, in phase - then the
outputs will be the same and normal op-amp action will apply. However if the inputs are out of phase then the outputs will no longer be indentical, so that part of the output of one opamp will be coupled via RV1a, b and R7 to the inverting input of the other amplifier. This will then compensate for the extra voltage and, in doing so, will produce a larger out-of-phase 'difference' signal.

The amount by which the difference signal is amplified is determined by RV1, which sets the amount of difference signal coupled from one opamp to the other and therefore functions as a width control. A dual potentiometer is used here for convenience, so that it is not necessary to have to adjust two controls.

\section*{Construction}

The Veroboard layout is shown in Figure 2 and, as long as the cuts are made in the right places and the board checked after assembly for unwanted solder bridges across tracks, there should be no difficulty in completing this part of the project.
For maximum flexibility the unit has been designed to be connected between the audio system's preamplifier output and the power amp input. If these are not separate components in your set, check the back of the amplifier; most modern amps bring out the preamp outputs and the main amp inputs on pairs of phono sockets on the rear panel. If there is no way you can connect the Stereo Spreader between preamp and power amp, you will have to consider some other method of increasing your stereo separation, such as moving house or demolishing some walls! The only other alternative is to use the spreader with taped music only, in which case it can be connected between the recorder output and the amplifier inputs.



Figure 2. The Veroboard layout. The Stereo Spreader must be connected between the preamp and the power amp.


\title{
Bookshelis
}

THE HE BOOKSHELF is the easiest way to build up your library of electronics books. Order today to have these top titles delivered DIRECT TO YOUR DOOR.

\title{
David Sarnoff
}

\title{
Very much a name belonging to twentieth century electronics.
}

WHO WAS DAVID SARNOFF? His name isn't familiar to British ears, yet this was a man who was in contact with every important electronics development of our time. In addition, his life story is almost the classic rags-to-riches American dream, the story of the poor immigrant who by hard work and the ability to recognise a unique opportunity, made a million dollars but Sarnoff made nearer a billion!

He was born in Minsk in Russia, to an orthodox Jewish family, and was educated as a religious scholar. Russia at the turn of the century, as now, was no place for a Jewish family, and the Sarnoffs emigrated to Albany, New York, in 1900. David, sent to a school in which the language was unfamiliar, worked hard, and earned extra money by selling papers, rurining errands, and by singing in the synagogue.

By 1906 his school days were over, and he became a messenger boy for a telegraph company. Sensing that skill was the key to success, he used his first wages to buy a telegraph key so that he could teach himself Morse Code, the essential skill of the telegraph operator

\section*{A Self-Made Man}

Through constant practice, he became thoroughly proficient at Morse Code, and jumped at the opportunity to join the New York branch of the Marconi Wireless Telegraph Company. Wireless Telegraphy was by then considered to be a glamourous career, and a Marconi operator in those days had the sort of standing that a Concorde pilot might enjoy now. The Marconi Company took his training seriously (a tradition that is still maintained), with several spells at sea and on various shore stations.

His proficiency was such that he landed the plum job, the aim of every Marconi operator in the USA. The site was the world's most powerful radio station, on top of the Wanamaker store in Manhattan, and it was there that David Sarnoff became overnight the world's most famous radio operator.

On the night of April 14th, 1912, the " unsinkable" Titanic, on its first voyage, hit an iceberg and sank. The Titanic was a vast ship, built with a large number of watertight compartments, and fitted out in the most lavish way - a style we now find almost unimaginable. You can get a whiff of it from Walter Lord's famous book "A Night To Remember". Among its luxurious fittings was the latest device - a Marconi transmitter and receiver. At the first sign that the


A far, far cry from Wireless Telegraphy: David Sarnoff's çompany, American consumer électronics giant RCA, laboured to put domestic radio and TV on the road. laying the path for the 80s video boom.
'unsinkable' ship was in distress the radio operator started to send out calls, hoping that one of the number of ships in the neighbourhood would respond.

They didn't, because they were busy sending and receiving congratulations telegrams. David Sarnoff, in his cabinat the top of the Wanamaker Store, did. He remained on duty for 72 hours, receiving and passing on messages which were eventually to lead to survivors being picked up.

\section*{Up And Away}

He was rewarded by the Marconi Company with rapid promotion there's a joke among present day Marconi men that they're all waiting for the next Titanic. Curiously enough, this was to lead to a disagreement which would lead Sarnoff to immense wealth and opportunity. In 1915, Sarnoff, now managing the Marconi business in the U.S.A., and also acting for the Army Signals Corps proposed what he called a 'music box'. This was to be a domestic radio.
Marconi himself, who saw radio as a method of saving lives and maintaining essential communications, thought that this suggestion was trivial, and an unworthy use of radio. The two argued fiercely, neither giving ground. Sarnoff resigned to form his own Company, the Radio Corporation of America (RCA). Marconi would never agree to any proposal to manufacture domestic radio, and the company even sold its rights in the name of Marconi as far as receivers were concerned - which is why Marconi transmitters are made by

Marconi, and Marconi receivers by Thorn-EMII

As general manager of RCA, Sarnoff immediately started constructing radio transmitters and receivers. In 1921, he created a sensation by broadcasting the big fight, Dempsey versus Carpentier. so that radio owners knew the result many hours before the papers hit the streets. America went radio mad. By 1924 RCA had sold receivers to a value of \(\$ 80,000,000\). The radio boom had started.

In 1926, Sarnoff formed the National Broadcasting Company (NBC), with the aim of covering the whole of the USAby a chain of radio stations. The first portable radios and car radios appeared, and the boom continued. Sarnoff saw that the new technology would never stay still, and in 1928 built the first experimental NBC TV station.

\section*{Towards TV}

The development of television was to be slower than he anticipated, to some extent because of the false tracks laid by Baird, who by reproducing a picture of sorts with mechanical equipment diverted attention from the real research which was needed. In 1939, however, at the New York World's Fair, RCA were able to demonstrate live television, using the all-electronic system which was already in use in London, and which was continued after the War.
In the 1940-46 period, Sarnoff, with the rank of Brigadier-General, served on General Eisenhower's staff. His work at RCA had not ceased, however, because the team which developed colour TV was already being assembled in the RCA research laboratories. The painstaking efforts of these researchers developed the shadowmask tube and the NTSC colour system, which laid the foundations for all the colour TV systems used all over the world. None of this could have happened had Sarnoff not supported the research effort wholeheartedly.

No-one knows how much it cost RCA to put colour TV on the road. One guess is that over \(\$ 80,000,000\) was sunk into research and production before a cent was recouped in sales - and it was a long uphill struggle before the immense investment paid off. Once again, however, Sarnoff's foresight had resulted in an immense success.

He retired in 1970, and like so many men whose tireless drive has sustained them, died in the next year. His monuments, RCA and NCB, live on.


\title{
The publishers of Hobby Electronics wish to offer their sincere apologies to the reader who missed Clever Dick's column in the last issue. He missed it too.
}

\section*{Alright, I'm back.}

But did anyone notice that I went away? Dol hear screams in the night, the lamenting of women and the pitiful wailing of strong men crying in their beer because Clever Dick did not appear in last month's Hobby Electronics? No, I must be imagining it.

Our first correspondent this month would like to fly the flag

Dear Clever Dick,
Recently the public have been asked to Buy British, where this is possible. Now, can you tell me if there is any British built hand-held multimeter on the market?

By British I mean built in Britain. using British components, by a British company which is not a subsidiary of a foreign company. The kind of accuracy / am looking for is about \(0.5 \%\), or less on a digital meter.

I hope such an instrument can be found. Thank you for your help.

\section*{W. Jackson,}

Cirencester,
Glos.
Unfortunately I can't help you directly, but perhaps some patriotic-minded reader out there will be able to tell us where such a paragon of British craftsmanship may be purchased. Any takers?

And since we're into the matter of assistance from readers, here's another.

\section*{Dear Sir Dick.}

There I was probing about inside my latest Hobby project with the probe of my oscilloscope when the trace faded from the screen and a puff of blue smoke rose from the back of the 'scope. A short time later the back was off and my AVO was put into service. The problem - a burnt out transformer.
As you will appreciate this is the worst thing that could have gone wrong, as no-one sells them off the shelf. Now here comes the plea: does anyone know where I can get a transformer for an ELMAC 4810 Oscilloscope, distributed by Elex Control Systems and made by Yizreel (sic) Electronics?
Unfortunately the manufacturer
has not seen fit to put his address anywhere on the thing.
Yours Hopefully,
S. Rainey,

Latham,
Lancs.
PS Keep up the good work. PPS Notice, not a grovel in sight. PPSP How about a binder, as I'll not be able to afford one after buying a new transformer.

Indeed, finding new transformers for old 'scopes is about as hopeless an enterprise as could be attempted. Nevertheless, we have had some success in such quests in the past, so how about it, readers? Someone must know Elex Control Systems, or possibly even Yizreel Electronics (that's how it was spelt, I swear)

I say, I say. What ho, pip pip and all that

\section*{Dear Dickie old chap.}

Could you possibly tell me where I can obtain a spiffing one volt FSD moving coil meter and how much the jolly thing would cost, as I can't seem to find any jolly mail order companies that do them.
Keep up the good work old bean. Yours spiffingly.
P. Roberts,

Yeovil.
Somerset.
PS You're always complaining about people not using typewriters to type their letters, so I hope you are satisfied with me old chap. PPS I would't mind one of those spiffing binders.

Terribly sorry, old man, but a quick flip through our catalogue collection has completely failed to turn up the item you're looking for. No one lists a "spiffing 1V FAD meter". You could try your local electrical shop - I happened to notice the other day that the other one near me carries quite a range of meters. On the other hand you could convert an easily obtainable 1 mA FSD meter to read IV by adding sufficient resistance in series with the coil to raise the total to 1000R. Then, by Ohm's Law, one volt will produce a current of 1 mA for a full scale
reading. Easy when you know how, isn't it old bean.

Dear C.D.,
I built the Switch Tuned Radio featured in the January issue of HE and when I switched it on, all I got was a very faint constant hiss, even after adjusting RV1.

When you touch the centre pin of the volume control you get a strong whirring noise. I used an oscilloscope to check the output of the IC1 and there was only a very small signal on the lowest possible range.
I am using two general purpose diodes instead of the 1N4148s and a ferrite aerial out of an old transistor radio. I wonder if you might help me what is wrong with it?
P.R. Brown,

Bristol.
What a mess. Just imagine all the complaints I'd get if I decided to change the components . . . . well. alright then.
First of all, check that the audio stage is working correctly by injecting a low-level audio signal (about 0.5 mV ) into IC2. Next, check the DC voltage on pin 5 (the output) of IC 1 ; it should be around 1 V 3 . Now check that the voltage on the wipers of the preset potentiometers are all inteh range OV65 to 7 V. Check that the voltage at the centre-pin of the Varicap diode (the junction of the cathodes, in the circuit) also tracks as the switch is rotated. Now if the radio still doesn't work, after checking all these points and adjusting as necessary, the fault probably lies with your substitute aerial coil; try different taps, if it has them, or different windings, perhaps. If all else fails - GET THE ONE WE RECOMMENDEDI

Components come and components go, but of some there is not a trace

\section*{Dear Clever Dick,}

In the August ' 82 issue of Hobby Electronics, there appeared in connection with the Digital Millivoltmeter project an IC type LH0070. This appeared in Figure 7 of the project.
I am writing to ask whether your back room boys could tell me where I could obtain this and another IC IType LHOO75) as soon as possible, and also would it be possible to include more technical information on the project?


I would like to say that Hobby Electronics is the best practical electronics magazine around. S. Cairns,

Cleckheaton,
West Yorkshire.
I'm sorry but we can't re-write the article for you! However if you have specific questions we'll try to answer them through the (much overloaded) technical enquiry service.
The LH0070 is a precision voltage reference IC; unfortunately it doesn't appear in any of our retail catalogues, but is available from RS Components and so can be ordered through your local dealer. You could also try MS Components Ltd., Zephyr House, Waring Street, West Norwood, London SE27 9LH.

On the other hand, we can find no reference at all to an LH0075. Are you sure that's the number?

And now it's correction time (again). I can't help it if I'm old fashioned

Dear Clever Dick,
Your answer to a reader's question in the March issue sent me into a state of shock from which I have only just recovered. Back to school, friend, to learn the unit of conductance. Please consult (or insult as the mood takes you) B.S.I. 1991 and IEC Symbols for Electrotechnics, where the conductance unit is SIEMENS, symbol G, unit-symbol S. Of course unitsymbol S clashes with the symbol for magnetic reluctance, also S. Are you confused enough to send me a binder? If not, it's a great magazine and please, no more out of character answers. It's not like you.
Yours faithfully.
G. Cox,

Southampton,
Hants.
PS Just seen your April issue: ref. cryptic comment, Paul Jenkin and sixpin DIL MOC 30208017 . This is a triac opto-isolator/switch type MOC 3020. The number 8017 means it was manufactured in 1980, week 17.
Consult R.S. Catalogue page 175 or Maplin's catalogue page 186, triac opto-isolator.

Who's confused? Not me, I can tell you. I know who I am . . I think. However, it has to be admitted: the IEC term for conductance is truly Siemens, symbol G and unit-symbol S . It is not to be confused with reluctance, (symbol S), admittance (unit-symbol S); apparent power (symbol S); gain (symbol G); rating (symbol S, unit-symbol VA or W); or either the Poynting Vector symbol (S) or the symbol for Signal (S). Who's confused? Not me chief.

I have no idea why or how the gentlemen of the IEC chose this particular set of symbols, just that they seem to have been selected according to some obscure standard that has little to do with the day-today practice of electronics. It may be old fashioned but the term 'mho' is both logical and mnemonic, and I'll stick to it.

And since we're on the subject, let's go for one mho time

\section*{Dear Mr Clever Dick,}

I was disgusted to see in the March issue of HE that you thought the unit of conductance is the 'mho' when. as you should know, it is measured in Siemens (symbol S). This is a disgusting error on your part and I
feet that / should receive a Binder for pointing out your unforgivable mistake.
B. Voss,

Crewekerne:
Somerset.
PS Where can you find 240V/20W fluorescent tubes as used in your \(12 / 240 \mathrm{~V}\) inverter feature?

The most disgusting thing is the way. some people try to scrounge a Binder. Where would you usually go for fluorescent tubes? Your local sparks, naturally. Disgusting.

\section*{What's this . . ANOTHER jokester?}

Dear Smarty Pants (or whatever), Just a short note ( A ) to correct a statement you made in the March issue of HE.

In answer to a query regarding the unit measurement of conductance.
you wrongly suggested that the inverse of OHM was MHO . MHO is, in fact, the reverse of \(O H M\). The inverse of OHM is OHW.

A little quiz:
If \(R=O H M, R=M H O\) and \(1 / R+\) OHW, then;
what does \(1 / 9\) equal?
(Clue: What the editor said when first having the name Clever Dick mentioned to him.)
Also, I think your answer may have confused those who do not know the real unit measurement of conductance. The term slips my mind at the moment but, I recall, it has something to do with matelots, or something.

Having never purchased, borrowed, read, or been within a transistorised barge pole's distance of a copy of Hobby Electronics (a silly name anyway) I am not going to get down on one knee like the rest of your Plebeian, sycophantic writers and plead for a Binder. I simply cannot think of a use for ... although, hang on. My favourite girlie magazine is roughly the same size as your Hobbit Electronics (though much more interesting). Therefore, I suppose, if pushed. I could take one of the wretched things off your hands; but only one! I will do anyone a favour, but there are limits.
May the source (gate, drain) be with you.
Paul Ure,
New Brighton,
Merseyside.

Give it a rest (\%). The reverse of OHM is obviously OHW, not MHO, and the symbol, it must be plain, is \(B\). Your clue is therefore not only misleading but misplaced. And with all those references to silly sailors, barge poles and girlie magazines, I'm not sure if you're the kind of person I want reading my column, anyway. However, I'll make an exception just this once, on the condition that you immediately dispose of all those terrible magazines. Send them to me at once and I will see that they're destroyed. Then you can start collecting a morally pure, up-lifting and educational magazine: Video Today.

\section*{c3 \(: 0\)} powis

\section*{WITHALOT OF MELP mom ORE-}

\section*{PRofissinana Ilifil that filk rinilusisi} can hanlit...

\section*{Unicase}

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

\section*{Hi Fi Separates}

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, \((<0.01 \%)\), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front pane incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

\section*{PowerSlaves}

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest,
lowest cost, slave on the market in this format.


Please note \(X\) in part number denotes mains voltage. Please insert ' \(O\) ' in place of
\(X\) for 110 V , ' 1 ' in place of \(X\) for 220 V (Europe), and ' 2 ' in place of \(X\) for 240 V (U.K.) All units except UC̣I incorporate our own toroidal transformers.


TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D. please add \(£ 1\) to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED


\title{
Pop Amps
}

\section*{Simple circuits based on operational amplifiers.}

\section*{No. 9: HighImpedence AC Milivoltmetér}

ONE of the troubles with \(A C\) is that it alternates! No sooner has the current rushed around the circuit in one direction than it changes its mind and starts surging around in the opposite direction. Thus if you have an ammeter connected in the circuit to measure the currents, or the voltages they generate, the needle of the meter has had no time to swing in one direction before it is being forced to swing in the opposite direction. Even the lightest of meter movements has a certain amount of inertia, so it can not respond to alternating current unless the frequency happens to be about 1 Hz or less. Consequently with most alternating currents, which have frequencies in the audio or radio ranges, the needle hovers more or less motionless at the zero point of the scale. There may be several amperes of current and several hundreds of volts in the circuit, yet the meter shows nothing of all this activity.

You can use a hot-wire ammeter or a moving-iron ammeter, but these have extremely non-linear scales and in any event cannot measure small currents. Most people prefer to use a multimeter, switched to an AC range!

When you switch to the AC range of a multimeter, this generally brings a rectifiying bridge of diodes into the circuit so that the current always passes through the meter in a constant direction. Currents or voltages then can be measured fairly easily but even so, there are errors introduced, due to the forward voltage drop across two diodes. With germanium diodes this amounts to an error of about OV2 per diode. Now this does not matter if the voltages to be measured are in tens or hundreds, but makes it impossible to work in the millivolt range. Worse than that, the diodes refuse to conduct at all if the voltage across them is less than 200 mV for germanium diodes or 700 mV for silicon diodes. Then, when the voltage across the diode is enough to make them conduct but is still only a volt or so above the minimum, the ratio of current to voltage is nonlinear. Such a meter will not measure voltages below about 200 mV , and has a non-linear scale at its lower end.


This Pop-Amp presents a simple circuit which has none of these disadvantages. It gives a linear reading of \(A C\) voltages in three ranges, \(0-1 \mathrm{~V}, 0-100 \mathrm{mV}\) and \(0-10 \mathrm{mV}\). As a bonus, it has very high imput impedance of the order of several tens of megohms. It is based on the 531 op-amp which has a slew rate ( \(35 \mathrm{v} / \mu \mathrm{s}\) ) considerably higher than most others. A typical op-amp, such as the popular 741, has a slew rate of only OV5 \(/ \mu \mathrm{s}\). This ability to swing its output voltage at high speed means that it is able to respond better to high-frequency signals. As a result, the circuit does not show any fall-off due to frequency until about 500 kHz - with a 741, the upper limit is about 10 kHz !

\section*{How It Works}

Ignoring the diodes for the moment, the output from the op-amp is fed directly back to the inverting input (Figure 1). In this connection, the opamp is being used as a unity gain voltage follower, and it acts to maintain zero voltage difference between its input terminals. Thus, as the input voltage varies, its output voltage varies by exactly the same amount. This maintains the required zero difference between the two input terminals and the result is a gain of one. This may seem pointless, but we are not actually worried about gain here. The point is that the input of the op-amp has very high impedance, and so draws very little current from the signal source (eg, a crystal microphone). Yet the output of the opamp has low impedance and can

Figure 2. The circuit.


Figure 1. Block diagram of the op-amp unit.
provide more than enough current to drive the movement of a meter.

The input line has a capacitor (C1) which is there to prevent direct current voltages from reaching the amplifier; if the AC voltage we want to measure is a small signal superimposed on a steady DC level, the DC is blocked by the capacitor. Of course as far as the AC signal is concerned, the capacitor might just as well not be there.

This property of capacitors is also of use in another part of the circuit (Figure 2). As the output voltage varies (in sympathy with input voltage), the variations are passed across C3, causing a varying current to flow through one of the resistors R1-R3 to the OV rail. However, the current flowing through the resistors gets there by way of the rectifying bridge and meter.

Now let us see what happens when R1 is switched into circuit. Suppose the input is 1 V , then output is 1 V , and a voltage of 1 V appears across R 1 .


Figure 3. Voltages at various points in the millivoltmeter circuit.
Figure 4. The Veroboard layout. Take care that the diodes are correctly orientated.


The current through R1 is \(1=V / R=\) \(1 / 10000=0.0001 \mathrm{~A}\), or 100 A and this is just enough to give full scale deflection on the meter. Similar calculations show that with R2 or R3 switched into circuit, full-scale deflection is obtained with input voltages of 100 mV and 10 mV respectively. Thus, alternating input voltage causes an alternating current to flow from the op-amp (rectified while passing through the meter), in and out of the plates of the capacitor, and through one of the resistors. The reading shown on the meter is the root mean square (RMS) value of this current.
The input resistor R4 has an alternating voltage at one end of it (as the signal comes to it from C1) but since the amplifier has unity gain, an equal alternating voltage appears at its other end. Consequently, alternating signals cause no flow of current through R4 and as far as AC is concerned, R4 is an open circuit. Thus the circuit does not have the low
input impedance that R4 would otherwise produce.

\section*{Bridging the Gap}

So far, we have ignored the effects of the diodes which were mentioned earlier - their non-linear conduction at low voltages and their failure to conduct at all for voltages below 200 mV : this problem is overcome by the op-ampl Suppose the input voltage increases to a value (say 100 mV ) which is not enough to make the diodes begin to conduct. The opamp now has its non-inverting input at 100 mV , but because the diodes are not conducting this increase has not got back to the inverting input, which is still at OV. The op-amp has plenty of amplification available, so it increases its output voltage by as much as is necessary to bring its inverting input to the same level as the other input. If the voltage drops are taken to be 200 mV across each of the germanium diodes and 100 mV


\section*{MISCELLANEOUS}

SW1 . rotary switch single pole, 3 -way SW2 .................. DPST switch slide or toggle M1 ................. microammeter 100uA FSD, panel mounting Stripboard, \(85 \times 45 \mathrm{~mm}\) ( 17 strips \(x\) 33 holes); 8-pin IC socket; \(12 \times\) 1 mm terminal pins; \(2 \times\) PP3 battery connectors; nuts and bolts, wire, solder etc.

BUYLINES
page 34
across the meter, the voltages at various points in the circuit are as shown in Figure 3. You can see that the input voltage, the PD across the meter and the PD across R1 are all equal to 100 mV , so the effect of the diodes is eliminated! The same applies over the whole range of voltages, and also the non-linearity of diode conduction has no effect on the reading. Virtually no current flows to the inverting input because of its high impedance. None flows through R4 because both ends of it are at 100 mV .

\section*{Construction}

The circuit is built up on a small piece of strip-board (Figure 4) housed in the case which carries the meter and the switches. The case will also hold the two PP3 batteries required for the power supply. It is advisable to use a heat-sink when soldering in the diodes, and take care to insert them with the correct orientation.
C2 is required for frequency stabilization of the op-amp; its precise value does not matter, so if you do not have a 100 pf capacitor handy, it is in order to use one of lower value (for example, 56 pF ). We often use \(1 \%\) or \(2 \%\) tolerance resistors as standard resistors in measurement circuits, but such a degree of accuracy is not usually required in the applications of this circuit. This is why only \(5 \%\) tolerance is specified, but use resistors of higher tolerance if you think you need them!

HE

\section*{TALK TOTHE WHOLE WORLD}

\section*{Study now for the \\ RADIO AMATEUR'S EXAMINATION}

We have had 40 years successful experience in training men and women for the
 G.P.O. Transmitting licence. FREE R.A.E. brochure without obligation from:British National Radio \& Electronics School READING, BERKS. RG1 1BR
Name
Address


\section*{WHY WRITE TO LONDON}

\section*{When you can walk to the Midlands largest selection of DIY.}

Plugs, sockets, connectors, cable, flex, leads, boxes, Aerials, styli, components, elements, semi-conductors, meters.

\section*{In fact the lot!}

Spares and repairs for all electronic, electrical and audio.

\section*{H. G. Electronics Co.}

1350 Stratford Road, Hall Green,
Birmingham B28 9EH
Telephone: 021-777 2369

\section*{Hemmings Electronics LTd}


16 BRAND STREET, HITCHIN, HERTS, SG5 1JE

TERMS OF BUSINESS - Professional quality electronic components brand new and fully guaranteed. Mail order by return of post. Cash, Cheque, Postal Order or Bankers Draft with order payable to HEMMINGS ELEC
ThONICS LTD. Access or Barclaycard available using our 24 hour answerphone service. Monthly Credit Ac counts available on request to government and educational authorities. Industrial customers wishing to open a credit account are required to fumish a bank, reference and two trade references. Postage and packing add 45 oll orders under E10. All prices are exclusive of VAT. Please add \(15 \%\) to total including pEp. No VAT on e port orders or books.



PRINCE MONITOR
A \(12^{\prime \prime}\) monochrome monitor 24 MHz
video bandwldth idal for most personal computers, word processing sclentific
corketc. INPUT VIDEO
i voir p-p composite video
EXTERNAL CONTROLS
INTERNAL CONTROLS
INTERNAL CONTROLS
Horlzontat width, linearity, frequency, Horizonal widt, linearity, frequency,
phase, Focus, Black level, Vertical helght and linearity
TECHNICAL CHARACTERISTICS Scan 625 linnes \(/ 50 \mathrm{~Hz}\), Deflection \(110^{\circ}\).
Character disolay 80 by 24 lines, Vided Character display 80 by 24 lines, Video
Input PHONO, X-ray radiation to IEC spec no 65
SCREEN PHOSPHORS
Black/white, Green or Ora
Green or Green
order

the Commodore 64

asicime peate ana unac

R Conneticion ios TV se or s cotaw or monochiome montor GRAPHics in inerna to the comovier



 Soptres em
Sorves
Sity
sonvo



AnPUT,OUTPUT



 SIMCTLUES
\(\qquad\) KEYBOARD
so moung wey
\(\qquad\)

GRAPMICS
SOUND
Imirnu louandeaner controllied by BEEP Commend
CASSETVE

EXPANSON PORT

CASSETTE LEADS

E113inc VAT
Securicor E6

\section*{DISCO}

Elen Electronics

Tired of boring 3 \& 4 channel lighting controllers. Then try our new 8 CHANNEL PATTERNMAKER for spotlights or lighting screens.
16 different sequential patterns including
 Cathérine Wheel, Screen Writer, Checker \& Light Train.
Kit comprices PCB \& all components including 2K PROM \& Monitor LEDs. Only \(£ 27.00\) + VAT
Hardware kit including case, 12 way socket \& matching plug, mains lead etc. Only \(£ 9.50\) + VAT.
Please add 60 p P\&P to order. obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.


PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE

I enclose a cheque/Postal Order made payable to ASP Ltd,
for the amount shown below Price.
OR
I wish to pay by Barclaycard. Please charge my account number


\title{
PCB FOIL PATTERNS
}


The printed circuit for the \(\mathrm{ZX81}\) High Resolution Graphics Project uses a double-sided board; on the left is the foil patter for the component side and on the right is the bottom foil pattern. The PCB supplied by Cambridge Computing will be a through-holeplated type, but home constructors will need to solder links to connect the top and bottom tracks. Do this very carefully as faults, especially dry joints, can be extremely difficult to locate!


The copper pattern for the HE Soft Fuzz unit.

\section*{Lineage:}

26p per word (minimum 15 words)
Semi-display \(£ 7.50\) per single column centimetre
Ring for information on series bookings/discounts
All advertisements in this section must be prepaid.
Advertisements are accepted subject to the terms' and conditions printed on the advertisement rate card (available on request)

Vish

\(01-4371002\) EXT 204

Send your requirements to: Julie Bates
ASP Ltd.,
145 Charing Cross Road, London WC2H OEF.

\section*{ALARMS}

> BURGLAR ALARM SYSTEMS Everything for a protessional D.I.Y installation, including detailed in. structions. Please send for further de tails to:-

> QUALITY ALARMS
> 48 Cheltenham Road, Gloucester GL2 OLU Tel: 045220184

\section*{CENTURION Al ARMS \\ We manufacture, you save £ £ £'s \\ Send s.a.e. or phone for our Free list of professional D.I.Y. Burglar Alarm Equipment and accessories. Discount up to \(20 \%\) off list prices, eg. Control Equipment from \(£ 15.98\), Decoy Bell Boxes from \(£ 5.95\) inc. \\  \\ FOR SALE}

POWERFUL SW Medium FM portable radio, only \(£ 14.95 p+\) p £2.55. Sharland Enterprises, 7 Mountview, Mill Hill NW7 3HT.
KIA return an ad No. 8
Any quality Fibreglass module £2.50p (Delete) A - \(1-30\) watt power amp; B - Electronic Time \& Relay; C - Magnetic pickup preamplifier. \(\rightarrow 8\) Cunliffe Road, ilkley.
FOR SALE 19" Cord frame fitted with \(\pm 15 \mathrm{~V}\) power supply. Also many I.C.s, components, accessories. Very low prices. Orpington 23812.

\section*{EXHIBITIONS}

SUSSEX MOBILE RALLY A day by the sea with the family for \(£ 1\). Brighton Raceground. 17 th July 10.30am-5.00pm. Free parking. Good catering under cover.

For all your
classified
requirements
ASP Ltd.
01-4371002

\section*{COMPONENTS}

MAIDSTONE ELECTRONIC components shop. Thyronics Control System, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

\section*{ALL NEW COMPONENTS}

C-MOS 4012.8 p, 4017.25p, 4019.14p \(4022.32 p, 4023.12 p, 4024.20 p, 4025\). \(12 p, 4049-18 p, 4071 \cdot 12 p, 4076-28 p\), \(4081 \cdot 10 p, 4518 \cdot 28 p, 4520-26 p_{1}, 4528\) \(34 p, 4557-140 p\), NE567.38p, SPX6.20p,
\(314 A 223.4 p\) TL \(7400-6 p\), 7404.8 p , \(314 A 223-4 p, 1 / L\)
\(7412 \cdot 8 p, 7419.14 p, 7414 \cdot 20 p, 7416 F J\) 12p, 7495-24p, 74L592-24p.

30p P\&P order under £6. No VAT Sussex BN3 100. Tel (0273) 732419

\section*{WHUELPANID}

Auto Electronics, 103 Coventry Street, Kidderminster
Tel: (0562) 2179
Brand new components by return post or ring with Access/Barclaycard number for same day despatch.
All manufacturers guaranteed new stock. All at most competitive prices. Catalogue available only 50p. All prices inclusive of VAT.

IN STOCK New telephone plugs and sockets also \(2 \times 81\) plugs and spectrum plugs and wide range of burglar alarm equipment and all accessories for same plus large range of components. Shudehill Supply Co. Ltd., 53 Shudehill, Manchester 4. 061-834 1449.

> COMPONENTS TO SELL? FOR
> COST-EFFECTIVE RESULTS CALL
> JULIE BATES ASP
> CLASSIFIED
> 01-4371002 \(\times 204\)

\section*{BOOKS \& PUBLICATIONS}

PARAPHYSICS JOURNAL (Russian translations). Psychotronics, Kirlianography, heiliphonic music telekinetics. Computer software. SAC \(4 \times\) 9 ":- Parlab, Downton Wilts.

\section*{SERVICES}

T-SHIRTS ZX81 spectrum white, blue red \(S / / M / L / X L\). £3.25. One per cent screens. 12 Star Lane Estate, Great Wakering, Essex.

\section*{PLANS 'N DESIGN}

AMAZING ELECTRONIC PLANS. Lasers, Superpowered Cutting Rifle, Pistol, Light Show, Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue \(£ 1\) (refundable) - from Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

\section*{EQUIPMENT}

BURGLAR ALARM EQUIP. MENT As used in the trade. JN Security Centre, 176 Sydenham Centre, 176 Sydenham Road, Londón SE26 5JZ Tel 01-7781111 Showroom open six days.

AERIAL AMPLIFIERS Improve weak television reception. Price \(£ 6.70\). S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BLÓ 9AGH.

BURGLAR ALARM EQUIPMENT. Please visit our 2,000 sq. ft . showrooms or write or phorie for your free catalogue. C.W.A.S. Ltd. 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274-308920.

Ultra-vlolet exposure units. Print your own photo-etch P.C.B's' and enjoy the freedom of being able to change your circuits without ruining hours of artwork U.V. - 300 unit ( \(240 \times 150 \mathrm{~mm}\) area/ \(2 \times 8\) watt) £35.00 plus VAT, U.V. - 800 unit ( \(240 \times 350 \mathrm{~mm}\) area/ \(4 \times 15\) .watt) - \(£ 85.00\) plus VAT. The U.V. 800 is controlled by an electronic precision timer. Prices include UK postage. Available direct from manufacturers. Electronics Assistance Ltd., Unit 1, Brynberth Industrial Estate, Rhayader, Powys LD6 5EN. 0597-810711.

\section*{COMPUTING}

HAVEN HARDWARE
2X81 £49.00. Inverse Video E4.50. Re-
peating Keymodule f5.
E5.
K Spectrum peating Keymodule f5.95. \(2 \times\) Spectrum sofware: Repulser fruit machines and 85.05 each. Jupiter Ace £89.90. Inverse Video e4.95.

Access taken. SAE for details
HAVEN HARDWARE HAVEN HARDWARE
4 Asby Roed, Abby, Workington, Cumbris Tal: OO L-6es 627 EQUIPMENT
\(32 \%\) of our readers own a computer - reach them with

\section*{ASP Classified 01-437 1002}

\section*{KITS}

ELECTRONIC kits for sale: Morse Practice £4.10, Dice £8.10. SAE for details. Bee Micro, 33 Bevendean Crescent, Brighton, E Sussex.
PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolac lightsensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric chioride 55 p. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick \(£ 1.75\) sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.
DIGITAL WATCH replacement parts, batteries, displays, backlights, etc. Also reports publications charts. S.A.E. for fullist: Profords Copners Drive, Holmer Green, Bucks HP15 6SGE.
\(34 \%\) of our readers would prefer to purchase kits to make their own projects. Can you help? Tel ASP Ltd. 01-4371002
TELEPHONE Monitor and Transmitter kits. Telephone Monitor connects between Telephone/cassette recorder/ Activates/Stops when handset is Lifted/Replaced. All components including PCB only \(£ 8.60\) transmitter kit complete with easy to follow instructions only £4.80. From Ashley, 10 Stone Road, Coal Ashton, Sheffield S186AH.

\section*{Send for my CATALOCUE ONLY 75p (plus 25p post/packing)}

My all-inclusive prices quoted in the Catalogue are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade. See my prices on the following:
CAPACITORS . . . ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND HIGH VOLTAGE, RESISTORS. 1/8th WATT TO 100 WATT; 0.1\% TO \(10 \%\) CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRIMMERS, PRESETS, POTS . . . SINGLE, DUAL, SWITCHED, CARBON, CERMET AND WIREWOUND, SINGLE OR MULTITURN, ROTORY AND SLIDE. OIODES, RECTIFIERS, BRIDGES, CHARGERS, STYLII, SOCKETS, PLUGS, RELAYS, TRANSISTORS, IC'S, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS; LED'S, COUPLERS, ISDLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VALVES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INOICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPLIES, HARDWARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VDR'S, INSULATORS, CASSETTES, METERS, SOLDER, HANDLES, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOARDS and others.

Prices you would not believe before inflation!

\title{
BRIAN J. REED \\ TRADE COMPONENTS
} ESTABLISHED 26 YEARS
161 St. Johns Hill, Battersea, London SW11 1TQ Open 11 am till 7 pm Tues. to Sat. Telephone: 01.223 5016
H.E. ADVERTISERS INDEX JULY 83
A.B. Engineering

27
A.D.E. 24

Ambit International IFC
Audio Electronics 11
Bib Audio 24, 25
Bicc Vero 42
Bi-pak
42
B.K. Electronics BC
B.N.R.S. \(\times 2\) 51, 62
Branime Marketing 32
Cambridge Learning 32
Circuit Board Components
42
Cricklewood Electronics 15
Dataplus Developments 27
Electronize Design
46
Elen Electronics 62
Flight Electronics 51
Hemmings Electronics 62
H.G. Electronics 62

Horizon Electronics 24
House of Instruments 5
ICS 27
ILP 58, 59
Kelan Engineering 11
Kempston Electronics 5
Litesold Developments 32
Magenta Electronics 35
Oxford Computers 11
Parndon Electronics 24
Rapid Electronics 4
Brlan J. Reed 66
Sandwell Plant 24
Silica Shop OBC
Sparkrite
Technomatic
TK Electronics
25
Wilmslow Audio

\section*{RECRUITING? SELLING A PRODUCT? OR A SERVICE?} GET MAXIMUM BENEFIT FOR YOUR MONEY
FIND OUT ABOUT OUR WHOLE RANGE OF PUBLICATIONS IN: COMPUTING VIDEO RADIO ELECTRONICS

Simply telephone ASP CLASSIFIED 01-437 1002 (We take Access and Barclaycard)


\section*{Bigger and Better}
the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units. components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range. Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

> Lowest prices - Largest stocks
> Expert staff
* Choose your DIY HiFi Speakers in the comfort of our \# two listening lounges
(Customer operated demonstration facilities) * Ample parking *

Send \(£ 1.50\) for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)
- Access - Visa - American Express accepted *
also Hifi Markets Budget Card.


35/39 Church Street, Wilmslow, Cheshire SK9 1AS


Lightning service on telephoned credit card orders!

\section*{MULLARD SPEAKER KITS}

Purposefully designed 40 watt R.M.S. and 30
watt R.M.S. 8 orm devaloped by MULLARD'S apecislist team in Beigium. Kite comprise Mullerd woofer \(18^{\circ}\) or \(5^{\circ} 1\) with foam surround and aluminium voice coil.
Mullerd \(3^{*}\) nigh power domed tweeter. B.K.E. Mullard \(3^{*}\). high power domed tweeter. B.K.E.
buith and tested crossover based on Mullard circuin, combining low loss components, glass fibre board and recessed loudspeaker terminals. SUPERB SOUNDS AT LOW COST. Kits supplied in polystyrene packs complete with instructions. \(8^{\circ} 40 \mathrm{~W}\) system - recom \(\times 216 \times 445 \mathrm{~mm}\)
Price If1 80 wach \(+\mathbf{R 2 . 0 0 P 8 P}\)
\(160 \times 175 \times 295 \mathrm{~mm}\)

Dasigner approved flat pack cabinet kits, including grill fabric. Can be finished with iron on \(8^{\circ}\). system cabinet kit 28.00 esch +22.50 P G P P. 5 system cabinet kit 77.00 each + E2.00 P E P .

\section*{STEREO CASSETTE TAPE} DECK MODULE
Comprising of a top panel and tape rnech inism coupled to one complete uni for horizontal instailation into cabliet or console of own choice. These units are bismi rew, ready built and tested.
antures: Three digit tape counter. Autostop. Six piano eject. Automatic record level control. Maln inputs plun secondary inputs for stereo microphones. Inpur
Sensitivity: 100 mV to 2 V . Input Impedance: 66 K . Sensitivity: 100 mV to 2 V . Input Impedince: 66 KK .
Output lovel: 400 mV to both left and right hend channels. Outpus Impedence: 10 K . Signal to nolse ratio: 45 dB . Wow ond flutter: \(0.1 \%\). Power Supply
requirement: 18 V DC at 30 mA . Connections. The requirements: \(18 V\) DC at 300 mA . Connections: The left and right hand stereo inputs and outputs are via Iphono sockets provided). Dimensions: Top panel 5 tin \(x \quad 11 \mathrm{fim}\). Clearance required under top pansil 2 fin .
Supplied complete with circuit diagram and connecting upplied complete with circuit diagram and connecting price \(\mathbb{2 8} .70+\mathbb{2} .50\) postage and packing.
Supplementany parts tor 18 A D.C. power supply

\section*{LOUDSPEAKERS}

THREE QUALITY POWER LOUDSPEAKERS ( \(15^{\prime \prime}, 12^{\prime \prime}\) and \(8^{\prime \prime}\) See Photo). Ideal for both HI-FI and Dlsco applica-
tions. All units have attractive cast alulons. All units have attractive cast aluSpecification and Prices.
\(15^{\prime \prime} 100\) watt R.M.S. Impedance 8 ohms. 50 oz . magnet. 2 " aluminium voice coil. Res. Freq. 20 Hz . Frea. Resp. to 2.5 KHz . Sens. 97dB. Price: £34.00 each \(+\varepsilon 3.00\) P8. 100 watt R M. Impedance 8 itms. 50 oz magnet. \(2^{\prime \prime}\) alum inlum volce coll. Res. Frea. 25 Hz . Frea Resp. to 4 KHz . Sens. 95dg. Price: £24.50 each \(+\varepsilon 3.00 \mathrm{PsP}\) \(8^{\prime \prime} 50\) watt R.M.S. Impedance 8 onms. 20 oz. magnet. \(11 / q^{\prime \prime}\) aluminium voice coll. Res. Freq. 40 Hz . Freq. Resp to 6 KHz . Sens. 92 dB . Black Cone. Price: \(£ 9.50\) each. Also available wlth black protective grille Price

12. 85 watt R.M.S. McKENZIE C1285GP ILEAD GUITAR, KEYBOARD, DISCOI 2" aluminium voice coll, aluminlum centre dome, 8 ohm imp., Res. "Freq. 45 Hz ., Freq. Resp. to 6.5 KHz ., Sens. 98 dB . Price: \(£ 22.00+€ 3\) carriage.
12" 85 watt R.M.S. McKENZIE C1285TC (P.A., DISCO) \(2^{\prime \prime}\) aluminium voice coil. Twin
cone. 8 ohm Imp., Res. Freq. 45 H 2. Freq. Resp. 14 KHz cone. 8 ohm imp. Res. Freq. 45 HZ ., Freq. Resp. to 14 KHz . Price \(£ 22+€ 3\) carriage.
\(15^{\prime \prime} 160\) watt R.M.S. McKENZIE C15 (BASS GUITAR, P.A.) \(3^{\prime \prime}\) aluminium voice (1e cast chassis. 8 ohm imp., Res. Frea. 40 Hz ., Freq. Resp. 104 KHz . Price: \(£ 47+\) € 4 carriage.

\section*{PIEZO ELECTRIC TWEETERS - MOTOROLA}

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.


TYPE A' IKSN2036A) 3 ruund with protective wire mesh, ideal for bookshelf and medium sized Hi -fi speakers. Price \(£ 4.29\) each.
TYPE 'B' (KSN1005A) \(31 / 2\) " super horn. For general purpose speakers. disco
TYPE 'C' \(\left(\right.\) KSN6016A) \(2^{\prime \prime} \times 5^{\prime \prime}\) wide dispersion horn. For quality \(\mathrm{Hi} . \mathrm{fi}\) systems and quality discos etc. Price E5.90 each.
TYPE ' \(D^{\prime}\) ' (KSN 1025A)2' \(\times 6^{\prime \prime}\) wide dispersion horn. Upper frequency response retained extending down to mid range \((2 \mathrm{KHz})\). Suitable or high quatity. Hi.fi sustems and quality dlscos. Price \(£ 7.89\) sach.
TYPE 'E' IKSN1038Al 3 \(3_{4}\) " horn tweeter with attractive silver finish trim. Suitable for Hi-fi monitor systerns etc. Price £4.9日 each. TYPE 'F' (KSN1057A) Cased version of type ' \(E\) '. Free standing satellite iweeter. Perfect add on iweeter for conventional loudspeake
P\&P 20p ea. (or SAE for Piezo leaflets).


Carriage: £5 each \(£ 7\) per palr

Prompt Deliveries
VAT inclusive prices Audio Equipment Test Equipment by
Thandar and Leader

\section*{PAN Wirl}

HOBBY KITS. Proven designs including glass ibre printed circuit board and high quality components complete with instructions
FM MICROTRANSMITTER (BUG) \(90 / 105 \mathrm{MHz}\) whth very sensitive microphone. Range \(100 / 300\) metres. \(5 \times 46 \times 14 \mathrm{~mm}\) ( 9 volt) Price: \(\mathbf{E 7}\) :99p
DIGITAL THE RM OME TE R \(-9.9^{\circ} \mathrm{C}\) to \(+99.9^{\circ} \mathrm{C}\). LED display. Com plete with sensor. \(70 \times 70 \mathrm{~mm}\) ( 9 volt) Price: \(\varepsilon 27.60 \mathrm{p}\)
3 WATT FM TRANSMITTER 3 WATT \(85 / 115 \mathrm{MHz}\) yaricap controlled. professional performance. Range up to 3 miles \(35 \times 84 \times 12\) mm (12 volt) Price: E12.49p \(^{\text {p }}\)
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ RECEIVER 27 MHZ Range up to 500 metres. Double coded modulation. Receiver output operates relay with \(2 \mathrm{amp} / 240\) volt contacts. Ideal for many applications. Receiver \(90 \times 70 \times 22 \mathrm{~mm} 9 /\) 12 volt) Price: \(£ 16.49\) Transmitter \(80 \times 50 \times 15 \mathrm{~mm}\) ( \(9 / 12\) volt) Price 1 10.29 PAP All Kits +50 p. S.AE. for complete list.

\section*{BSR P256 TURNTABLE}

P256 turntable chassis S shaped tone arm - Bett driven - Aluminium platter. Precision calibrated counter balance Anti-
skaie (bias device) skale (bias device 240 volt AC Dation \((\mathrm{Hz})\) Cut-our template supplied Completely manual arm. This deck has a completely manual arm and is designed primarily for disco and studio use whefe all the advantages of a manual arm are required.

\section*{OUP POWER AMPLIFIER \\ MODULE}


New model.
Improved specification

NEW OMP1 OO MK.II POWER AMPLIFIER with integral heat sink, toroidal transformer power supply and glass fibre p.c.b. assembly. incorporates drive circuit to power a compatible LED Vu meter. New improved specification
makes this amplifier ideal for P.A., instrumental makes this amplitier ide and Hi-Fi applications
Output Power:- 110 watts R.M.S
Loads:- Open and short circult proof \(4 / 16\) ohmes.
Frequoncy Response: \(-15 \mathrm{~Hz} \cdot 30 \mathrm{KHz} \cdot 3 \mathrm{~dB}\). T.H.D.:- \(0.01 \%\).
S.N.R. (Unwelghted): \(-1180 \mathrm{~dB} \pm 3.5 \mathrm{~dB}\). Sensitivity for Max. Output:- 500 mV @ 10 K Vu Meter Price: \(-£ 7.00+50 \mathrm{p}\) P\&P.

\section*{HOME PROTECTION SYSTEM}

Better to be 'Alarmed' then terrified.
Thandar's famous 'Minder' Burglar Alarm System. Superior microwave principle. Supplied as three units. complete with interconnection cable. FULLY OARANTEEO
up to 15 metres adjustable by sensitivity control. Three position, keyoperated facia switch - off - test - armed. 30 second exit and entry delay.

Indoor blarm - Electronic swept freq. siren. 104 d 8 output.
Outdoor Alarm - Electronic swept freq. siren. 98dB output. Housed in a tamper-proot heavy duty metal
Both the control unit and outdoor alarm contain re-
chargeable batteries which provide full protection chargeable batteries which provide full protection during mains failure. Power requirement \(200 / 260\) Volt buttons etc. Complete with instructions SAYE OVER \&100 USUa1 PTiC 22235 - B.K.E.'S BARGAIN PRICE E128.00 - \({ }^{\text {B.E.E.E.s.s. }}\)
S.AE. for colour brochure.


SAFGAN DT. 520 DUAL TRACE OSCILLOSCOPE. New Specification: \(\# \mathrm{CH} 1\). CH2: \(5 \mathrm{mV} / \mathrm{dlv}-20 \mathrm{~V} /\) div. \(\$\) Time Base: I Sec/div. \(100 \mathrm{~ns} / \mathrm{div}\). XY Faclity: Maiched XY inpuls. \#Trigger; Level control \(\pm\) slope selection. * Auto normal, TV.Triggering, Z-Modulation. © CAL output \(1 V 1 \mathrm{KHz}\). . Sweepoutput \(0-9 \mathrm{~V}\). \(\star\) Graticule blue ruled \(10 \times 8 \mathrm{~cm} .\left(5{ }^{*}\right.\) C. R.T.) Very sharp trace. Size: H 235 mm .
 Dellvery, Probes: \(\mathrm{X} 1 \mathrm{\Sigma} .05, \times 1 / \times 10\) Switched \(£ 10.93\).

\section*{B.K. ELECTRONICS}

\section*{100 FREE PROGRAMS FROM SILICA SHOP - WITH EVERY PURCHASE OF AN \\ }


ATARI PRICES REDUCED!
We at Silica Shop are pleased to announce some fantastic reductions in the prices of the Atari \(400 / 800\) personal computers. We believe that the Atari at its new price will become the U.K.'s most popular personal computer and have therefore set up the Silica Atari Users Club. This club already has a library of over 500 programs and with your purchase of a 400 or 800 computer we will give you the first 100 free of charge. There are also over 350 professionally writ below Complete the reply coupon and we'll send you full details. Alternatively give us a ring on 01-301 1111 or 01-309 1111

\section*{ATARI 400 with 16K \\ \(£ 159\)}

\section*{ATARI 400 with 48 K £228}

\section*{ATARI 800}
with 48 K £349

\section*{400/800 SOFTWARE \& PERIPHERALS}

Don't buy a T.V. game! Buy an Atari 400 personal computer and a game cartridge and that's all you'll need. Later on you can buy the Basic Programming cartridge (£35) and try your hand at programming using the easy to learn BASIC language. Or if you are interested in business applications, you can buy the Atari \(800+\) Disk Drive + Printer together with a selection of business packages.
Silica Shop have put together a full catalogue and price list giving details of all the peripherals as well as the extensive range of software that is now available for the Atari 400800 . The Atari is now one of the best supported personal computers. Send NOW for Silica Shop's catalogue and price list as well as details on our users club.
THE FOLLOWING IS JUST A SMALL SELEGTION FROM THE RANGE OF ITEMS AVAILABLE:
\begin{tabular}{|c|c|c|c|}
\hline ACCESSQRIES & Mountain Shoot & Business & DYNACOMP \\
\hline & Rearguard & Calculator & Alpha Fighter \\
\hline Cassettes & Star Flite & Oatabase Managemt & Chompelo \\
\hline Diskettes & Sundar Golt & Decision Maker & Crystals \\
\hline Joysticks & & Graph-lt & Forest Fire \\
\hline Le Stick Joystick & AUTOMATED & Invaicing & Intrudep Ale \\
\hline Misc Supplies & SIMULATIONS & Librariam & Monarch \\
\hline Padiles & Crush Crumble Cmo Datestones of Ryn & Mort \& Loan Anal Nominal Ledger & \begin{tabular}{l}
Maonprobe \\
Moving Maze
\end{tabular} \\
\hline ADVENTURE INT & Dragons Eve & Payroll & Nominoes Jigsaw \\
\hline Scort Adams Adv & Invasion Orion & Personal Finl Mgmt & Aings of The Emp \\
\hline No 1 Adventurelnd & Rescue at Rigel & Purchase Ledger & Space Tilt \\
\hline No 2 Pirate Adv & Ricachet & Sales Ledger & Space Trap \\
\hline No 3 Mission Imp & Star Warnor & Statistics 1 & Stud Poker \\
\hline No 4 Voodoo Cast & Temple of Apshai & Stock Control & Triple Blockade \\
\hline No 5 The Count & Upper Reaches ADs & Telelink 1 & \\
\hline No 6 Strange Ody & & Visicalc & education \\
\hline No 7 Mysterv Fun & BCOKS & Weekly Planner & from APX \\
\hline No 8 Pyramid of D & Basic Ref Manual & Word Processor & Algicalc \\
\hline No 9 Ghost Town & Compute Atari dos & & Atlas of Canada \\
\hline No 10 Sav Island 1 & Compute Bk Atart & CRYSTALWARE & Cubbyholes \\
\hline No 11 Sav Island? & Compute Magazine & Beneath The Prram & Elementary Biology \\
\hline No 12 Golden Voy & De Re Atari & Fantasyland 2041 & Frogmaster \\
\hline Angle Worms & DOS Utilities List & Galactic Quest & Hickory Dickory \\
\hline Defiections & DOS2 Manual & House Of Usher & Inst Comptg Dem \\
\hline Galactic Empire & Mise Atari Books & Sands Of Mars & Lemonade \\
\hline Galactic Trader & Op System Listing & Waterioo & Letterman \\
\hline Lunar Lander & Wiley Manual & Worid War III & Mapware \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Maths-Tac.Toe & Scram & Castle \\
\hline Metric \& Prob Soivg & States a Capitals & Centurion \\
\hline Mugwump & Touch Typing & Checker King \\
\hline Music Terms/Notatn & & Chinese Puzzie \\
\hline Musical Computer & EMI SOF TOVARE & Codectacker \\
\hline My First Alphabet & British Heritage & Comedy Disketre \\
\hline Number Blast & Cribbage/Dominoes & Dice Poker \\
\hline Polycale & Darts & Dog Caze \\
\hline Presidents of U.S. & European Scene Jig & Domination \\
\hline Quiz Master & Hickory Dickory & Downhill \\
\hline Starware & Humpty Dumpty & Eastern Front \\
\hline Stereo 3D Graphics & Jumbo Jet Lander & Galah ad \& Holy \\
\hline Three R Ma & Snooker \& Billiards & Graphics/Soun \\
\hline Video Math Flash & Submarine Commdr & Jax-0 \\
\hline Wordmaker & Super Cubes \& \(^{\text {c }}\) Tilt & Jukebax \\
\hline EDUCATION & Tournament Pool & Lookahead Memory Match \\
\hline from ATARI & ENTERTAINMENT & Midas Touch \\
\hline Conv French & from APX & Minotaur \\
\hline Conv German & Alien Egs & Outlaw/Howitzer \\
\hline Conv hialian & Anthill & Preschool Games \\
\hline Conv Spanish & Attank & Pro Bowling \\
\hline Energy Czar & Avalanche & Pushover \\
\hline European C \& Caps & Babel & Rabbotz \\
\hline Hangman & Blackiack Casino & Reversill \\
\hline truit To Pros 1/2/3 & Block Buster & Salmon Run \\
\hline Kingdom & Block \({ }^{\text {Em }}\) & 747 Landing Simu \\
\hline Music Composer & Bumper Pool & Seven Card Stud \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Sleazy Adventure & Jawbreaker & Programming \\
\hline Solitaire & Mission Asteroid & AlDS from Ater \\
\hline Space Chase & Mouskattack & Assembler Editor \\
\hline Space Trek & Threshold & Dsembler (APX) \\
\hline Sultans Palace & Ulysses/Goiden FI & Microsoft Basic \\
\hline Tact Trek & Wizard \& Princess & Pascal (APX) \\
\hline Terry & & Pilot Consumerl \\
\hline Wizards Gold & PERIPHERALS & Pilot (Educator) \\
\hline Wizards Revenge & Centronics Printers Disk Drive & Programming Kit \\
\hline ENTERTAINMENT & Epsom Printers & SANTA CRUZ \\
\hline from ATAAI & Program Recorde & Basics of Anim \\
\hline Asteroids & RS232 Interface & Bobs Business \\
\hline Basketball & Thermal Printer & Display Lists \\
\hline Blackjack & 16K Memory RAM & Graphics Machine \\
\hline Centipede & 32 K Memory RAM & Kids 182 \\
\hline Chess & & Horizontal Scrolling \\
\hline Entertainment Kit & PERSONAL INT & Master Memory Mao \\
\hline Missile Command & from APX & or \\
\hline Pac Man & Adv Music System & Page Flipping \\
\hline Space Invade & Banner Generator & Plaver Missile \\
\hline Star Raid & Blackjack Tutor & Plaver Pi \\
\hline Super Breakout & Fioing To The Dogs & Sounds \\
\hline Video Easel & Kevboard Otgan Morse Code Tutor & Vertical Scrollin \\
\hline LINE SYSTEMS & Petsonal Fitness Prg & \\
\hline Cross fire & Player Piano & Over 500 progra \\
\hline Frogger & Sketchpad & write for detaits \\
\hline
\end{tabular}

\section*{FOR FREE \\ BRO \\ CHURES \\ 1 \\ \(\square\) \\ \(\square\) \\ -301}

\section*{FREE LITERATURE}
am interested in purchasing an Atari 400/800 computer and would like to receive copies of your brochure and test reports as weH as your price list covering all of the available Hardware and Sottware. Name...

\section*{Address}
```

