

Project Alectronics For Gveryone

Transmitter Push-to-Talk Latch displays Traffic Light Toy for Young Drivers

Play the AMBIT numbers game ．．．．．．

The long awaited implementation of on－line order processing is with us at last，and whilst this means that orders for in－stock items can now be processed more efficiently，it also means that orders should be submitted using stock codes for best results．Our current catalogue（ 75 p）includes all order codes（watch out for the new expanded Spring edition），but here＇s an abstract from some of the more popular lines to use as a quick reference

Remember that you can also access our catalogue via REWSHOP on REWTEL，which now includes on－line current price and delivery information．You need a 300 baud MODEM and RS232 terminal， （various suitable configurations based on popular micros have been published in recent past issues of Radio and Electronics World）．

Prices shown here exclude VAT，and the P\＆P charge is currently 60 per order（unless otherwise indicated）．Remember that our tele－ sales service operates with human beings（not＇dumb＇machines） from 8 am to 7 pm （and frequently later）Monday to Friday，and 9am to 8 pm on Saturdays．REWSHOP operates 24 hours a day， 365 days a year with full price and delivery information．
Ambit international
200 North Service Road Brentwood，Essex
CM14 4SG

4000 CMOS

al way use stocknumber

Type	Stock Mo．	Price	Type	Strock No．	Price	Type	Slock No．	Price
uA75a	6100758	2.35	HA11223	61.11223	2.15	2SK134	6000138	3.10
твавгом	5100820	0：78	H411225	61.71225	1.45	2SK135	5000135	4.25
toal 1028	61.01028	2.11	HA12002	61.12002	1.12	2SK227	5000227	3.55
toalozs	61.01029	2.11	H412017	81.12017	¢ 80	250753	5803753	2.34
2NA1034	61.01034	2.10	HA12402	81.12402	1.95	SMAIL	SIGNAL	RF
（141035	61.01034	2.10	HA12411	81.12811	1.20			
TDA 1054 M	6101054	1.45	HA12412	61.12412	1.55	6FY50	5806500	0.22
TDA1062	6101062	1.95	LF13741	61.13741	0.33	${ }^{67241}$	5805241	0.18
T0A1072	61.01072	2.69	MK50366	61－50366	3.35	${ }^{\text {B2273 }}$	5806273	0.18
toaio74a	61.01074	5.04	HK50375	61.50375	3.85	${ }^{85274}$	58.05774	0.20
toaloas	6101093	1.95	Mm53200	61.53200	3．90	${ }^{\text {BF } 362}$	58.06352	0.49
toalogo	61.01090	3.05				${ }^{\text {BF }} 444 \mathrm{C}$	5806440	0.21
HA1137	61－12411	1.20		SCALER		${ }^{85441}$	5806441	0.21
H21196	6101196	2.00	U264	61.02640	2.27	$\mathrm{BF}_{6} 879$	58．06478	0.66
HA1197	8101197	1.00	U265	6102650	3.16	${ }^{6888795}$	5806679	0.55
T0A1220	51.01220	1，40	$\cup 266$	6102660	2.43	${ }^{\text {BfR }}$ 891	58.07091	1.33
L41303	51.01303	0.99	${ }_{1} 1190000$	61.01190	12.95	${ }_{8}^{8 F 795}$	5810095	0.98
141307	61.01307	1.55	MSL2312月	61.02312	3.94	${ }^{86} \mathbf{W}$ W92	5808093	0.60
MC 1310P	61.01310	1.90	MSL2318	61.02318	3.84		5809090 5821936	0.90
MC1330	61.01330	1.20	MSM5523	61.05523	11.30	${ }_{\text {N／21936 }}^{\text {27x323 }}$	5821936 5806232	5.00 0.60
MC1350	61.01350	1.20	MSM5524	61.05524	11.30	${ }_{\text {2 }}$	58.06232 58.02369	${ }^{0.60}$
Ha 1370	61.19370	1.90	MSM5525	8105525	7.85		58.02369	0.38
HA 1388	6101388	2.75	MSM5526	6105526	7.85		POWER	
（M1458N	61.14588	0.45	MSM55271	61．55271	9． 15		Put	
MC1496P	51.01496	1.25	ICM7106CP	61.07106	9.55	BFW16A	${ }^{5808016}$	． 65
SL1610	6101610	1.92	ICM7107CP	61.07107	9.55	MRF237	58.14237	3.20
S． 1611	61.01611	1.92	（C7137	61.07137	7.50	MRF238	58.14238	18.50
SL1812	61.01612	1.82	1cm72168	51.72161	19.50	MRF245	58.14245	40.00
SL1 1613	6101613	2.01	1см72166	61－72162	19.95	M Mr 4499 A	56.14449	16.50
\＄L1620	61.01620	2.50	1см7217	6107217	9.50	M Pr 472	58.14472	1.25
SL1821	8101621	2.50	SP8629	6108629	3.85	MRFF 475	58．14475	4.60
SL1623	61.01623	2.50	SP664］	61.08647	6.00	MRFE29	58．14629	4.99
SL1625	6101625	2.50	Sp8793	61.08793	7.70	P18811	5818811	9.50
SL1626	15162701		95 H 90	6109590	7.80	TP2320	5812320	10.24
SL1630	61.01630	1.62	HD10551	61.10551	2.45	VM66AF	50．02066	0.95
\＄11540	61.01640	2.25	HA12009	61.12009	6.00	2143866	58.03866	0.45
S． 1541	61.01641	2.25	H044015	61.44015	4.45	2N3866	5813866	1.20
MC1648	61.01648	3.25	H044752	6144752	8.00	SMALL SIGNAL FET		
Toazoaz	6102002	1.25	MC145151P	61.14151	8.00			
Ulin2240	61.02240	3.25	MC145152P	61．14151	． 60	${ }^{\text {BF2 }} 256$	59.00256	0.38
U1 N2242	61.01090	3.05	MC145156P	61－14156	4.60	日f960	6006968	0.99
UL．N2283	61.02283	1.00	SMALL SIGNAL AUDIO			BF961	5006967	0.70
CA3080	6103080	0.70				${ }^{85963}$	60.06963	0.99
CA3089	6103089	1.84				3310	59.02310	0.69
CA3123	6103123	1.40	${ }^{\text {BC }} 182$	5800182	0.10	J176	59.02176	0.65
CA3130E	61.31300	0.80	${ }^{86212}$	5800212 5800231	0.10	$2 \mathrm{Sk55}$	＇59．01055	0.32
${ }_{\text {ca }} \mathbf{3 1 3} 1301$	61．31301	0.90	${ }^{86237}$	${ }_{58} 500237$	${ }^{0.08}$	25K168	59.01168	0.37
CA3140E	61.31400	0.46	${ }^{88} 2338$	5800238	0.08	3Sk45	6004045	0.49
CA3189E	6103189	2.20	${ }^{82} 239$	58.00239	0.08	35k51	60.04051	0.54
CA3240E	61.32400	1.27	${ }^{86} 307$	58.00307	0.08	35k60	5004060	0.58
MC3357	6103357	2.85	8C，308 8c 309	5800308 5800309	${ }^{0.08}$	35k98	6004088	0.99
MC3359 ise	ULN38591		${ }^{86} 309$	5800309	0.08	49673 see 3 SK5 51 40822 se8 3 SK5 1		
U143859	61103859	2.95	${ }^{\text {BC327 }}$	5800327	0.13			
км 3701	61.0370%	${ }^{85.53}$	ac337	5800337	0.13	${ }^{40823}$	5003823	0.65
KM3702	61.03702	14.84	$8 \mathrm{BC413}$	5800413	0.10	3SK11\％	60.04112	4.60
เм3900	61.39008	0.60	8 BC 144	5800014	0.11			
LM3909n	81．39090	${ }^{0.68}$	${ }_{8 C} 815$	5800475	0.10	DIODES		
［M3914 ${ }^{\text {a }}$	61.03914	2.80	$8{ }^{8} 416$	5800476	0.11			． 25
LM3915N	6103915	2.80	${ }^{\text {BC } 546}$	5800546	0.12	8 84244	12.02447	0.17
K84400	61．04400	${ }^{0.80}$	8C550 BC556	5800550 5800556	0.12 0.12	8а379	1203797	0.35
KB4412	6104412	${ }_{1}^{1.95}$	BC556 BC560	5800556 5800560	0	N04981．76	12．49817	0.51
K84413	6104413	1.95	вс560 вс639	58000653 8089	0	0481	1200916	0.07
KB4417	6104417	1.80	8L639 86640	5800639 580043	${ }^{0.22}$	0.44	1200476	0.10
K844208	6104420	1.09		588004018	0.22	PW02	1262006	0.75
10．4420	61．14420	2.65	MPSA13	56.00013 5804063	${ }^{0.30}$	S04	12.24006	0.45
T0A4421	61．14421	2.65	MPSA63 2TX108	5804063 58.01108	${ }^{0.30}$	H005	12.10506	0.28
K84423	6104423	2.30	21×108 27×212	58.09108 58.01212	0.10	1 N 4001	1240016	0.06
K84424	61.04424	1.65	21×212 27×653	5889653	0.20	1 N 4002	1240026	0.07
K84430 K84431	8104430	2.30	21×653 $\mathbf{7 x} 753$	58801753	0.20	${ }^{1} 10004$	1240046	0.07
K84431	6104431	1.95	${ }_{2 \mathrm{~L} 2998}$	58802904	0.25	1 N 4148	12－41486	0.05
K84432 K 64433	6104432	1.95 1.52	${ }_{\text {2N2905 }}$	58.02904 58.02905	0.25 0.25	ins 404	12.54046	0.16
K 64433 $\mathrm{~K} ⿴ 囗 ⿰ 丨 丨 ⿹ 勹 4$	6104433 810443	1.52 2.53	${ }_{\text {2N3905 }}$	588．03905	0.10	1N6263	12.82637	0.12
K¢4437	6104437	1.75	2586464	58.03646	030	VARICAPS		
K84438	6104438	2.22	2586484	5803648	0.40			
K84441	6104441	1.35	2506664	58803666	0.30	$8 \mathrm{BalO2}$	${ }_{12}^{12.01215}$	0.30
k84445	6104445	1.29	${ }^{2506688}$	588．27872	${ }_{0}^{0.40}$	881058	12.01055	0.30
K84446	6104446	2.15 1.65 1	${ }_{251084}^{251085}$	58.01084	0.25	881098	12.01095	0.27
K84448	6104448	1.65	2SA1065t	58.01085	0.25	882048	12.02045	0.36
NE5044	6105044	2.28	2SC1775A	58.01775	0.19	88212	12.02125	1.95
MC5229	61.05229 61.55720	9.60 1.85	${ }_{25 C 25461}$	58．02546	0.24	ITT210	12.02105	0.30
NE5532	51.55320 61.05624	1.65 4.35	2 SC 25478	58.02547	0.24	MVAM115	K KV1236	
SD6000	5106000	3.75	AUDIO POWER			MVAM125	MYAM125 see KV1225	2.45
SL6270	6106270	2.03				KV1211 see KV1236		
SL6310	6106310	245	8 BD 39	5815139	0.29	${ }^{\text {KY1225 }}$	12－12255	2.75
SL6440	8105440	3.38	${ }^{8 D 140}$	58.15140 58.15165	0.31 0.45	${ }_{\text {K K } 1235}$	${ }_{12.12355}$	2.75
\＄66600	61.06600	3.75	${ }^{80165}$	58.15165	0.46	k V 1236	12.12365	2.55
Sas6610	6106610	1.48	80166	5815168	0.48	KV1310	12．13105	0.40
SL6640 S16690	6106649	2.75	${ }^{80179}$	58.75179 58.15180	0.38	kV1310	12－13209	0.40
516690 516700	6106690	3.75	80180	58.15180	0.31			
S66\％0	61.06700	2.75	TIP31A	58.15031	0.35	ZENER DIOOES		
S456710	5106710	1.48	tip 32a	58.15032	0.35			
－ 57225	61.07225	3.65	M． 2955	58.12359	0.61	BZY8BC 400mm．5\％．		
iCM7555	61.75550	0.80	2N3055	58.13099	0.58	207	1200278	0.10
CLB038CC	6108038	4.50	2S8720	5815720	0.10	3×3	1200338	0.10
Mst9362	6109362	1.75	250760	58.17600	0.60	$3 \mathrm{V9}$	1200338	0.10
MS19363	81 09？	1.76	2S．49	60.01048	3.10	${ }^{4 v 7}$	12.00478	0.10
K10170	61.10178	1.87	25．50	60.01050	4.25	5 V 1	1200518	0.10
TK10321	81.10321	2.75	25．183	60.01083	3.55	5vE	1200568	O

PROJECTS
*THE HOBBY 'SCOPE 11Riding out of the sunset comes the most economical'scope in town.
*ZX SOUND BOARD 20
Noises for your ZX81 or Spectrum micro.
*CAR BATTERY WARNING DEVICE 30
Don't let your battery drive you bats.
ڤPOP AMPS NO. 8 36
TTL logic tester.
*CB. PUSH-TO-TALK SWITCHER 45
The biggest advance in radio since the human thumb.
\star TRAFFIC LIGHT TOY 65
Keep the kids off the streets.
FEATURES
FAMOUS NAMES 26
Sir John Turton Randall.
COMPONENTS FOR COMPUTING 38
Looking at displays
*CAREERS IN ELECTRONICS PART 2 52
Getting into technical writing.
THE ELECTRONIC REVOLUTION 56
Bringing it all back home.
BOOK REVIEWS 62
Alarms and investigations.
REGULARS
Monitor 6
Points of View 16
What's On Next 18
HE Bookshelf 29
Buylines 34
HE PCB Service 71
HE PCB Printout 72
Classified Advertisements 73

Editor: Ron Keeley
Editorial Assistant: Helen Armstrong BA
Technical Illustrator: Jerry Fowler
Advertisement Manager: Jolyn Nice
Divisional Advertisement Manager: Gary Price
Managing Editor: Ron Harris BSc
Managing Director: T.J. Connell

Hobby Scope - page 11

Sinclair Sound Board - page 20

CB Rap Latch - page 45

COMTECH ELECTRONICS

THANDAR PORTABLE TESTBENCH

A wide range of high performance instruments, at prices that are hard to beat, puts professional test capability on your bench.
COUNTERS - TF200 10 Hz to 200MHz; TF040 10 Hz to 40MHz; PFM200A 20Hz to 200MHz (hand -held model); TP600 prescales to 600 MHz ; TP 1000 Prescales to 1 GHz . MOLTIMETERS-TM351 0.1 \% 31/2digit LCD; TM353 0.25\% 31/2digit LCD; TM355 0.25\% $31 / 2$ digit LED; TM354 $0.75 \% 31 / 2$ digit LCD (hand-held model); TM451 0.03\% $41 / 2$ digit with autoranging and sample hold.
OSCILLOSCOPE-SC110A $10 \mathrm{MHz}, 10 \mathrm{mV}$ sensitivity, 40 mm CRT with 6 mm graticule divisions.
THERMOMETERS - TH301 $-50^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}, 1^{\circ}$ resolution; TH302 $-40^{\circ} \mathrm{C}$ to $+1100^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{F}$ to $+2000^{\circ} \mathrm{F}, 0.1^{\circ}$ and 1° resolution. Both accept any type K thermocouple. GENERATORS - TG100 1 Hz to 100 kHz Function, Sine, Square, Triangle Wave; TG102 0.2 Hz to 2 MHz Function, Sine, Square, Triangle Wave; $\mathbf{T G 1 0 5} 5 \mathrm{~Hz}$ to 5 MHz Pulse, Free Run, Gated or Triggered Modes.
LOGIC ANALYSERS - TA20808 channel 20 MHz ; TA2160 16 channel 20 MHz .
ACCESSORIES-Bench rack, testleads, carrying cases, mains adaptors, probes,

Send for our latest catalogue and price list. Thandar Electronics Ltd, London Road, St. Ives, Huntingdon, Cambridgeshire PE174HJ. Telephone (0480) 64646. Telex 32250.

ELECTRONICS LIMITED PUTTING THE BEST WITHIN YOUR GRASP Purposefully designed 40 wart R.M.S. and 30
watt R.M.S. 8 ohm speaker systems recently developed by MULLARD'S specialist team in Belgium. Kins comprise Mullard woofer ($8^{\prime \prime}$ or 5° I with foam surround and atuminium voice coll. buit and tested crossover based on Mullard ircuit, combining low loss components, glass fibre board and recessed loudspeaker terminals.
SUPERB SOUNDS AT LOW COST. Kits supplied polystyrene packs complete with instructions. " 40 W system - recommended cabinet size 240 $\times 216 \times 445 \mathrm{~mm}$
Price $\times 14.90$ oach $+\mathbb{E} 200 \mathrm{P}$ \& P. $160 \times 175 \times 295 \mathrm{~mm}$ \qquad
Price f13.90 each $+\mathbf{E 1 . 5 0 ~ P ~ \& ~ P ~}$.
Designer approved flat pack/cabinet kits, Dessigner approved flat pack cabinet kits,
including grill fabric. Can be finishidd with ir on on veneer or solf adhesive vinyl etc.
8° system cabinet kit 68.00 each +2.50 PGP .
5° systom cabinet kit 7.00 each +2.00 PGP .

LOUDSPEAKERS

$15^{\prime \prime} 100$ watt R.M.S. (HI-FI, P.A., DISCO, BASS GUITAR) Die cast chassis, 2' aluminim volce coil, white cone with aluminium centre dome. 8 ohm imp., Res. Freq. 20Hz., Freq. Resp. to 2.5 KHz ., Sens. $97 d B$ (As photograph). Price: $\mathbb{5 3 2 . 0 0}$ ${ }_{12} 2^{2}$ carriage. $12^{\prime \prime} 100$ wart R.M.S. (HI-FI) Die cas chassis. $2^{\prime \prime}$ aluminium voice coil. Black cone. 80 hm mp.in Res. Freq. 291z... Frea.
Resp. to 4.5 KHz . Senis. 95 dB . (As photograph). Price: $£ 23.50+£ 3$ carriage $8^{\prime \prime} 50$ watt R.M.S. IHI-FI, P.A.I 1 is aluminium voice coil. White cone. 8 ohm imp . Res. Frea. 40 Hz ., Freq. Resp. to 6 KHz Sens. 92dB. Also available with black cone fitted with black metal protective grille. (As photograph). Price: White Cone 68.90 Black cone/grille $\mathrm{C9} .50$ PGP $£ 1.25$.
12^{\prime} ' 85 watt R.M.S. MCKENZIE C1285GP (LEAD GUITAR, KEYBOARD, DISCO) $2^{\prime \prime}$ aluminium voice coil, aluminium centre dome, 8 ohm imp., Res. Freg. 45 Hz ., Freq. Resp. to 6.5 KHz .. Sens. 98 dB . Price: $\mathrm{E22.00}+\mathrm{E} 3$ carriage.
$\mathbf{1 2}^{\prime \prime} 85$ wett R. M.S. McKENZIE C1285TC (P.A., DISCOI 2", aluminium voice coil. Twin cone. 80 hm imp. Res. Freq. 45 HZ . Freq. Resp. to 14 KHz . Price $£ 22+63$ carriage. $15^{\prime \prime} 150$ watt R.M.S. McKENZIE C15 (BASS GUITAR, P.A.) $3^{\prime \prime}$ aluminium voice coil. Die cast chassis. 8 ohm lmp., Res. Freq. $\mathbf{4 0 H z}$., Freq. Resp. to 4 KHz . Price: $\mathbf{£ 4 7}+\mathrm{E} 4$ carlage.

PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' $\operatorname{IKSN} 2036$ A) 3 ' round with protective TYPE 'A' (KSN2036A) $3^{\prime \prime}$ round with protective wire mesh, ideal
sized Hi fi speakers. Price $£ 4.29$ each. TYPE 'B' (KSN1005A) $31 / 2^{\prime \prime}$ super horn. For general purpose speakers, disco and P.A. systems etc. Price $£ 4.99$ each.
TYPE 'C' (KSN6016A) 2 " $\times 5$ " wide dispersion horn. Fot quality $\mathrm{Hi}-\mathrm{fi}$ systems and quality discos etc. Price $£ 5.99$ each.
TYPE 'D' (KSN1025A) 2' $\times 6$ ' wide dispersion horn. Upper frequency response retained extending down to mid range (2 KHz). Suitable for high quality Hi-fi syste
discos. Price $£ 7.99$ each.
TYPE 'E' (KSN1038A) $3 * / 4$ " horn tweeter with attractive stlver finish trim. Suitable for Hi.fi monitor systems etc. Price 84.99 each. TYPE 'F' (KSN1057A) Cased version of type ' \mathbf{E} '. Free standing satellite iweeter. Perfect add on tweeter for conventional loudspeaker sustems. Price $\mathbb{E 1 0 . 7 5}$ each PEP 20p ea. (or SAE for Piezo leaflets).

30 LOUDSPEAKER
The very best in quality and value.
Ported tuned cabinet in hardwearing black vynide with protective corners and carry handle. Built and tested, employing 10 in British driver and Piezo tweeter. Spec: 80 vatis RMS; 8 ohms; $45 \mathrm{~Hz} \cdot 2 \mathrm{OHz}$ Size: $20 \mathrm{in} \times 15 \mathrm{in} \times 12 \mathrm{in}$; Weight 30 pounds.

Price: £49.00 each

 £90 per pair£90 per pair

Prompt Deliveries
VAT inclusive prices
Audio Equipment
Test Equipment by Thandar and Leader

Pa Nivier

HOBBY KITS. Proven designs including glass fibre printed circult board and high quality components complete with instructions. FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range $100 / 300$ metres. $5 \times 46 \times 14 \mathrm{~mm}$ (9 volt) Price: $\mathbf{\varepsilon 6 . 5 8}$
DIGITAL THERMOMETER $-9.99^{\circ} \mathrm{C}$ to +99.9 C . LED display. Com plete with sensor. $70 \times 70 \mathrm{~mm}(9$ volt) Price: $£ 22.94$
3 WATT FM TRANSMITTER / WATT $85 / 115 \mathrm{MHz}$ varicap con trolled. professional pertormance. Range up to 3 miles $35 \times 84 \times 12$ mm (12 voli) Price: $£ 10.64$
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ RECEIVER 27MHZ Range up to 500 metres. Double coded mod ulation. Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm} 9 /$ 12 volt) Price: $£ 14.38$. Transmitter $80 \times 50 \times 15 \mathrm{~mm}$ ($9 / 12$ volt Price £9.15. P\&P All Kits +50 p. S.A.E. for complete list.

3 watt FM Transmitter

BSR P256 TURNTABLE

P256 turntable chassis - S shaped tone arm - Brelt driven - Aluminium platter Precision calibrated counter balance - Anti skale (bias device) - Damped cueing leve - 240 volr AC operation (Hz) - Cur-ou tempiate supplied - Completely manual arm This deck has a completely manual arm and designed primarily for disco and stul where all the advantages required
Price $£ 31.35$ each. $\mathbb{C 2} .50$ P\&́P

(1)P POWER AMPLIFIER

MODULE

New model.
Improved specification

NEW OMP100 MK.II POWER AMPLIFIER MODULE Power Amplifier Module complete power supply and glass fibre p.cb assembly incorporates drive circuit to power a compatible LED Vu meter. New improved specification makes this amplifier ideal for P.A., Instrumental and Hi-Fl applications. SPECIFICATION
Output Power:- 110 watts R.M.S Loads:- Open and short circuit proot 4/16
Frequency Response:-15 Hz $30 \mathrm{KHz} \cdot \mathbf{3 d B}$. T.H.D.:- 0.01%.
S.N.R. (Unwelghted): $-118 \mathrm{~dB} \pm 3.5 \mathrm{~dB}$. Sensilivity for Max. Output:- 500 mV (10) 10 K Price: $-£ 31.99+£ 2.00$ P $8 P$ P.
Vu Meter Price: $-\Sigma 7.00+$ P 8 P

HOME PROTECTION SYSTEM

Better to be 'Alarmed' then terpified.
Thandar's famous 'Minder' Burglar Alarm System. Supe rior microwave principle. Supplied as three units, complete with
GUARANTEED.
Control Unit - Houses microwave radar unit, range up to 15 metres adjustable by sensitivity control.
Three position, key operated facia swltch - off - test - armed. 30 second exit and entry delay. Indoor alarm - Electronic swept freq. siren. 104 dB output. Outdoor Alarm - Electronic swept frea. siren. 98 dB output. Housed in a tamper-prool heavy duty metal case.
Both the control unit and outdoor alarm contain reduring mains failure. Power requirement $200 / 260$ Volt $\mathrm{AC} 50 / 60 \mathrm{~Hz}$. Expandable with door sensors, panic buttons etc. Complete with instructions. SAVE OVER £100 Usual price £228.85

- B.K.E:S BARGAIN PRICE $£ 128.00$ - B.K.E.
+ BA
+ $5.00 \mathrm{P} \& \mathrm{P}$
S.A.E. for colour brochure
$12^{\prime \prime} 80$ watt R.M.S. Ioudspeaker.
A supert general purpose twin cone loudspeaker. 50 oz. magnet. $2^{\prime \prime}$ aluminium voice coil. Rolled surround. Resonant fre quency 25 Hz . Frequency response to 13 KHz . Sensitivity 95 dB . Impedance 80 hm Aftractive blue cone with aluminium centre dome.
Price E18.49 each + E3.00 P\&P

MONITOR

New Hifi Amplifier

The AX30 is a new low-cost, high performance hifi amplifier from JVC. The amp boasts 50 W per channel (RMS), and uses a system which JVC call 'Super A' to give the low distortion of a Class A amplifier with the efficiency of a Class B one. Switching (related to crossover) distortion is said to have been eliminated, and TIM distortion insignificant. The power supply is direct low impedance, and the power amp and phono equaliser stages are each direct-coupled to their own power supply stages, to minimise the likelihood of interference. Triple power protection ensures that there is very little danger of damaging speakers or output transistors if you overload the system with too much volume.

The AX30 has a fluorescent peak power display, for power monitoring and as a warning against clipping; two tape deck connections; a video/aux input for audio replaying of video or other sources; independent switches for two sets of speakers, and loudness control, amongst other more usual amp features.

The specification gives output power as 50 W per channel min into 8 R at 1 KHz (DIN); total harmonic distortion at 0.001% at 42 W output, 8 R ; Aux to speaker output 0.007% at 40 W output, 8 R 20 Hz to 20 kHz , with switching and transient distortion zero; frequency response 10 Hz to $10 \mathrm{kHz},+0.5-3 \mathrm{db}$ at 8R; weight six kilos, and dimensions $43.5 \times 11.7 \times 30.3 \mathrm{~cm}(17.4 \times 4.68 \times$ 12.1 in). Cost is $£ 99.90$. For more information contact your local hifi dealer or JVC (UK) Ltd., Eldonwall Trading Estate, Staples Corner, 6-8 Priestley Way, London NW2 7AF. Tel: 01450 2621.

A Knip In The Air

Advertised as specially for the hobby electronics enthusiast, Draper Tools are producing the Knipex range of West German pliers and cutters in various formats.

Knipex electronic pliers in special tool steel have 20 mm jaws with a smooth gripping surface and spring-loaded PVCcovered handles. They come in three patterns. Knipex Relay Adjusting Pliers come in oil-hardened chrome vanadium electric steel and have 34 mm jaws with extrathin tips; designed for adjusting relay springs and other very fine adjustments, they come in four patterns. Knipex Electronic Super Knips, in stainless steel, have fullflush cutting faces for use on soft wire down to 0.2 mm thickness. They have zero-play joints and spring-loaded soft PVC handles.

The range can be obtained from most hardware and electronics shops, or contact Draper Tools Ltd., Hursley Rd., Chandlers Ford, Eastleigh, Hants S05 5 YF .

Computer Camp

Following a successful inauguration in 1982, Camp Aldenham, a Day Adventure and Computer camp for

children is this year running five oneweek sessions (Monday through Friday) from 25th July to 26 th August.
The camp is non-residential and aims to introduce children from five to thirteen to a choice of sports and crafts during the summer holidays when they are often at a loss for anything interesting to do. Activities range from horseriding and sailing to judo and pottery, but of interest to Hobby readers and their families in particular is the Computer Camp and Microelectronics Centre.
This is for children from nine to thirteen and offers personal tuition for two hours a day as part of atteridance at the Camp, and they assure us that everybody attending will actually get ten hours 'hands on' experience in the week. The computers used are Texas Instruments TIOO/4A home computers, plus five full-spec equivalents. Anyone wishing to do the Micro-electronics Centre will get an additional two hours a day in electronics at an all-in supplementary charge, but will miss out on some non-electronic options - not a terrible hardship.
The Camp makes transport available to ferry children there and home again. For more details, contact Camp Aldenham, Aldenham School, Elstree, Herts WD6 3AJ. Tel: Radlett 7553 or 6131, for brochure.

Odd Components

Ambit International (who were nomin-ated-along with Electroplan and Manhattan Skyline-for the title of AES/Electronic Times Distributor of the Year) is sole UK stockist for Alps and TOKO switches and components and has added the new Alps dual-in-line switches, designed to prevent flux ingress when soldering, and the entire range of TOKO F-series push switches, which can be built up from basic modules to various requirements including combined mains and DC

switching capability
Ambit's ever-increasing stock now includes a range of TOKO 20 kHz low pass active filters for the digital audio market, the PAL 0900 series. These are thick-film low pass filters with a variety of terminating impedances with carefully optimised group delay and stopband attenuations up to -95 dB . Ambit has its eye on the emgrance of the digital audio disk which is soon to come on the market, and the analogue to digital and digital to analogue designs required to complement it.

Requests for low cost DC-controllable cassette mechanisms have led to the launch of the AMBTN-3600 mechanism which can be supplied with a variety of heads. The standard version has a stereo record/replay, and an erase head and the motor is from 12 VDC with less than 0.08% RMS wow and flutter.

Ambit, like Alps and most of the other manufacturers it supplies, is aimed primarily at the industrial market but is a source of unusual components and information.

Enquiries to Ambit International, 200 North Service Rd., Brentwood, Essex CM14 4SG. Tel: (0277) 230909.

Software Option

Elkan Electronics has prepared a free package of information sheets, called the Elkan File, on the publications, hardware and software they handle This is mostly concerned with the Sharp pocket computers, the PC1251, PC1500 and OC1211 (plus the Tandy PC2 and Radio Shack TRS-80 PC), the Dragon 32, and the Apple II. They aim especially to provide information in a concise, easy-to-implement form.

This also includes a new quickreference card designed by Nanos Systems Corp. in the USA for the Sinclair ZX80 and 81. The card comes in the form of an accordian-style fold-out with ten panels (twenty pages, in effect) and is said to "contain all the basic information necessary for programming the ZX80 and ZX81". Cards are also available for Apple, Tandy and other micros, from local computer dealers or from Elkan, at $£ 3.50$ each.

Elkan is also the UK and European agent for Rainbow, a monthly magazine for supporting the Dragon 32 and Tandy TRS-80 colour computers, with programs and information. A sample copy costs $£ 1.95$ plus a large selfaddressed envelope stamped with 56 p.

Send for your Elkan File and/or Rainbow to Elkan Electronics, FREEPOST, 11 Bury New Road, Prestwich. Manchester M25 8JZ. Tel: 061798 7613 (24 hour service).

Texas For Starters

A new computer console believed to be the first 16 -bit computer for around $£ 75$ has been announced by Texas Instruments. Unlike most computers in this price range, the TI-99/2 basic computer can use software on solid state cartridges as well as on cassettes. In addition, Texas Instruments is introducing new low cost peripherals and software for the TI-99/2 that will also work with the TI-99/4A family computer. The TI-99/2 is designed to allow computer novices to learn to program a computer in TI BASIC and BASIC- supported assembly language.

The combination of the $£ 75$ computer and the new low-cost peripherals, says Texas, make this the lowest cost computer system on the market. The TI$99 / 2$ will be targeted primarily at the

technical enthusiast, engineer or student in the home. Additionally, they expect the computer to be purchased as the first computer in the home for those who are just beginning their experience with a computer system, or as a second computer in the home after the purchase of a TI-99/4A family computer.

The TI-99/2 console has an elastomeric typewriter-like keyboard with 48 raised moving keys in a staggered QWERTY arrangement similar to the TI-99/4A. The computer has 4 K 2 bytes of built-in random access memory (RAM), of which 4 K Bytes is user accessible, and can be expanded to a total of 36 K 2 bytes of RAM. Most peripherals for the new system will plug into a "Hex-bus" peripheral-interface connector in the rear of the console. The Hex-bus port allows users to connect any peripheral developed for TI's Compact Computer family. Currently, these consist of the RS232 interface, HX-3000, the "Wafertape" digital tape drive unit, HX-2000, and the HX-1000 four colour printer/plotter

Two "Solid State Software" cartridges, Learn to Program and Learn to Program BASIC, will be available initially for the unit. Other cartridges will be available later. Twenty software programs will be available on cassettes at the initial launch. Educational programs include: Picomath-80, Math I and II, Statistics I and II, Sunrise Time, Datetimer and Civi! Engineering. Programs for personal management are: household formúlas, chequebook manager, purchase decisions and general finance. Entertainment cassettes include: Lunar Landing Bioplot, The Minotaur, TI Trek, and Mind Games I, II, III and IV. These programs, as well as user-written programs, can also be run on the TI-99/4A family computer.

The TI-99/2 features monochrome display capability and contains a built-in RF modulator to allow connection to any television. A cassette interface cable is also included to interface directly to the new TI program recorder or many ordinary cassette tape players. In addition, the TI-99/2 comes with an AC adapter, a user's manual and a demonstration cassette, and measures $24 \times 26 \times 35 \mathrm{~cm}$. Availability in Europe is planned for late summer.

For more information contact Texas Instruments Ltd., Manton Lane, Bedford MK41 7PA. Tel: (0234) 67466.

Book For Boffins

Birmingham author Laurence Shaw's latest book The Practical Guide for People With a New Idea, puts the complex and offputting business of patenting into a nutshell. Three or four hours spent digesting this 98 page information packed paper back will turn a good inventor into a potentially rich inventor.
The aim of the book, with a forword by Sir Eric Weiss, President of Foseco

Minsep, is to instruct people with an orginal, potentially lucrative idea, how to protect an invention, product or scheme and exploit it to the full. Market research, approaching the manufacturer, telling the world about an idea, patenting an invention, secret patents, checking if the idea is original, patent costs and life span, are all covered, along with copyrights, designs, licences and how to trademark a product effectively without copying an existing one.

The book costs $£ 5.95$, post paid, from Laurence Shaw, George House, George Road, Edgbaston, Birmingham B15 1PG, and is bound to be interesting to the ingenious mind which wants to turn ideas into hard cash.

Data Store

Fed up with losing your software cassettes, or finding them under the armchair, jammed up with fluff? Arthur Fischer (UK) Ltd. have introduced their CBox Drawer Unit to the UK, designed specially to store software cassettes ina safe and accessible form.

Each cassette is stored in a 'CBox', a cassette-sized, spring-loaded frame which clicks into place in a drawer unit, and lifts out again at the touch of a button. Each drawer unit has ten CBoxes, and the labelling system is designed to be easily altered as necessary.

There are two standards of drawer unit, the standard at $£ 17.50$ and the de luxe (lockable) at $£ 19.50$, including VAT and $p \& p$. Of course, the system could be used by audiophiles as well as computer operators. Orders and enquiries to Arthur Fischer (UK) Ltd., 25 Newton Rd., Marlow, Bucks SL7 1JY. Tel: (06284) 72882.

Hey, Stack!

For those who find the totally flat keyboards of many micros, especially the very small ones, tiring to read and easy to misread, Warp Factor Eight are marketing an extremely simple device - or devices - to alleviate (or elevate) the problem somewhat. It's a set of custom-designed self-adhesive plastic legs to raise your micro to the point (taking the Spectrum as an example) where you can actually see the top row of print over the tops of the keys without having to place yourself vertically above the machine.

MONITOR

Called Hi-Stack, this set of legs seems a little bit pricy at $£ 3.95$ (including p\&p and VAT, however) but in their favour they are extremely smart, solid and (well-made and my sample pair has been doing a great job on my telephone and shows no sign of toppling or coming adrift.

The pack comes with a very comprehensive set of instructions. Orders and enquiries to Warp Factor Eight, 6 Pelham Rd., Braughing, Ware, Herts SG11 2QU. Tel: (0920) 821841.

Join The Club

The British Amateur Electronics Club (BAEC) has announced price rises for 1983 from 1 st July, when the subscription for UK and Eire members will go up to $£ 5.50, £ 8.00$ for overseas airmail members and $£ 7.00$ for surface mail and all European subscriptions. That still leaves plenty of time to join or re-join at the 1982 rates of $£ 4.00, £ 7.00$ and $£ 6.00$ respectively. Payments in sterling only, please.

The BAEC have announced that their 18th Amateur Electronics Exhibition 1983 will be held at The Shelter, centre of the Esplanade, Penarth, South Glamorgan, Wales, from Saturday 16 th July to Sunday 24th July 1983, opening from 7.30 pm during the week and including the afternoons at weekends.

For those new to BAEC, it is the only national amateur electronics club in the UK and is open to everyone interested in electronics, here and abroad. It was founded in 1966 and aims to provide the means for amateur enthusiasts to give and receive help with electronics problems.

The heart of the organization is the BAEC Newsletter, which comes out quarterly (but, since the BAEC runs its year from 1 st January to 1 st January, members will receive all the bulletins for the year they join, regardless of when they join). As well as practical and theoretical articles on all aspects of electronics, it runs Help Wanted, Sales, Exchanges and Requirements sections.

One section of the club, with its own organiser, is devoted to beginners, with advice and equipment offers to get them started, and beginners' articles appear regularly in the newsletter.

Members also receive a library list which is updated from time to time and contains many technical books and magazines, including USA publications. This is run postally. A list of club members is circulated so that members
can contact each other locally and correspond.

A final carrot is a number of special price concessions.

To give you an idea, the January newsletter contains the first part of an article on Basic Semiconductor Theory and Putting it into Practice, thoughtful reports on the Breadboard and Electronic Hobbies Fairs, letters and book reviews, a list of thirty or so well known suppliers offering discounts to members, part one of a series on basic electronics (with a highly practical bias concentrating on resistors), and other general information, A4, card cover, 34 clearly duplicated pages. Good value.
For application forms or further information contact the Hon. Secretary, Mr. J. G. Margetts, 113 South Road, Horndean, Hampshire PO8 OER.

Oric On The Horizon

The 16 K version of the Oric 1 micro should be available in late May/early June, after a delay of several months. Oric say that technical problems due to the specification of a chip changing-late in the day, and also the overwhelming demand for the 48 K version (four times that for the 16 K), have led to the 16 K machine being held up. The micro will be delivered to all existing mail order customers when available, and they will be offered the option of returning the 48 K machines loaned in replacement or keeping these and paying the price difference.

Oric is no longer taking orders by mail, and is instead relying on its extensive network of distributors, including W H Smith, Dixons, Greens, Laskys, Micro C and specialist outlets all over the country, so there should be no problem for anyone in finding a supplier, in fact ... by this time you probably won't be able to move for the things, sitting in smug rows on their shelves, murmuring alluringly "touch my keys, program me, examine my software, take me home". Before you know where you are, even the budgie'll be into Froglets.

Don't say 1 didn't warn youl (Quick, nurse, pass the teabags, she's having one of her paranoia attacks.)

Please address enquiries, if necessary to Judith Pattern Public Relations, 24° Easton Drive, Kingston upon Thames, KT2 70T. Tel: 01546 5144. However, we advise that you speak to your local dealer first, as the PR company are being kept very busy.

Going Out For A Spin

How many of our more youthful readers recall playing 45 s and long players and possibly even the odd 78 on one of those tichy little Phillips (or whoever) portable record-players? The ones with the single speaker (you couldn't call it a loudspeaker) built into a jolly red or blue plastic lid, which lifted off to reveal a five-inch turntable, stout little plastic arm and a foot or two of straggly wire so that you could prop the speaker up just far enough away from the 'player to get an LP on it, and every gust of wind threatened to lift your precious singles off the turntable and send them bowling into a corner . . . sweet memories.

Audio Technical's new AT-727 Soundburger is one of those. The spaceage design, the obligatory connections for two sets of mini headphones, the 110 mV line outputs for connection to a full stereo system, the 30 to $25,000 \mathrm{~Hz}$ frequency response, the DC servo motor and double belt, the signal-to-noise ratio of more than 50 dB , the dynamically balanced tonearm giving superb tracking on any reasonably level surface (can you use it on your knee in the back of a car?) and the optional mains adaptor, its very stereoness, undreamed-of in 1962, cannot mask the immutable truth that what we have here is one of those marvellous take-itanywhere, won't-do-your-singles-any-harm-if-you're-careful-with-it RECORD PLAYERS. And about time too. It even has a carrying strap.

At $£ 89.95$, it's not rock-bottom cheap, but it's bound to catch the eye of itinerant record freaks, or those moving away from the family stereo to the

independence of a bedsit or student room.

But alas, I can't see the Soundburger bringing back the days of twisting by the pool. For one thing, there is no output to external speakers without an additional amplifier, and for another thing, there's no 78 rpm . And as Tony Benyon said many years ago, Leonard Cohen is much more fun at 78 , and I suspect the same goes for Culture Club and Ultravox

I wonder where I put my Phillips plastic portable?

For more information and specification, see your hifi dealer or contact Audio Technicia Ltd., Hunslet Trading Estate, Low Road, Leeds 10. Tel: (0532) 771441.

Sound With Sinclair

Just three months ago, Bi-Pak Semiconductors published details of their first sound generator for use with the Sinclair ZX81 computer, adding much-needed sound to an otherwise silent computer. So successful has this proved with Sinclair users that Bi Pak have now introduced a new modified version for use with all Sinclair computers, ie ZX81. Sinclair Timex 1000 and the Sinclair Spectrum.

Designated ZON X, the unit is selfcontained in a black plastic case with a loudspeaker and manual volume control. No power supply or batteries are required to power the unit - it simply plugs into the rear of the Sinclair computer.

The new unit offers a wide range of sound effects. These are obtained using the three-channel-plus-noise sound chip, and is designed so that the pitches and volumes of the three channels and overall attach/decay envelope can be controlled by simple basic statements. This means that pianos, organs, bells, helicopters, lasers, explosions etc. can be simulated and added to existing program.

For use with the Spectrum there is a further plug-in adaptor which houses a crystal and other electronic devices needed to give unlimited sound facilities.

The ZON X unit is available from Bi Pak Semiconductors, PO Box 6, Ware, Herts. Tel: (0920) 3442/3182. The ZON X for use with the Sinclair Timex 1000 is $£ 25.95$; with special adaptor for Sinclair Spectrum: $£ 32.75$; the Spectrum adaptor only $£ 6.80$. All the above prices include VAT and postage.

Newseum

A new gallery devoted to telecommunications has been opened by the Prince of Wales at the Science Museum in London.

The gallery is titled "Telecommunications - A Technology For Change" and is sponsored by Standard Telephone and Cables (STC) to mark that company's centenary. Its opening also marks World Communications Year, a prime objective of which is to bring the subject more into the public eye. The story of telecommunications over the last hundred years is told in two sections in adjoining galleries, one arranged chronologically while the other displays the technologies which make distance communication possible.

The first section concentrates on the way telecommunications have altered out our lives, and include mock-ups of the telegraph office at Tonbridge Railway.Station in 1895, a ship's radio cabin in 1910 and the radio operator's position in a Lancaster bomber from the Second World War. There are also taped remniscences of life with cable companies between the 1920s and 1950s.

The second part of the exhibition is more technical, and is introduced at the entrance with a display of telephone engineers maintaining the thousands of underground telephone wires concealed beneath our feet, and the giant ' H ' poles that used to follow the roads and railways and are now hardly ever to be seen. Telecommunications terminals, land, sea and space links, and switching systems are covered in separate displays, and there are working demonstrations and computer graphics displays illustrating aspects of communications systems in a memorable and easy-to-follow way. There is a built-in cinema which shows a short film by STC, called "Echoes", which assesses just where we stand at
the moment and where communications may go in the future.

Sounds like a good venue for a school or club outing, for those who don't see themselves getting to London under their own steam. Enquiries to The Science Museum, South Kensington, London SW7 2DD. Tel: 015893456.

Everything's OK

New from OK Industries (UK) Ltd.: a battery-powered wire-wrapping tool, the Just Wrap BJW-3, which uses spooled wire and wire-wrapping posts, together with a wire gun, to make a continuous series of connections without wire stripping, cutting or soldering. The batteries are rechargeable.

Also new are two componenthandling tools. The LB-100 lead bender and crimper is designed for all common axial components such as resistors, diodes and capacitors, and also for many radial and 'TO' packages. The LB100 will do a variety of angles and bends (see illustration). The TP-1 cutter and crimper, is a high carbon steel tool which is designed to handle up to 20 AWG (0.8 mm) soft wire leads and to trim and crimp component leads flush to the PCB prior to soldering.

More specialised are the BB1-1416 and BB1-2428 IC insertion tools, for 14 and 16 pin and 24 and 28 pin ICs respectively (I bet you're wondering how we worked that one out, aren't you?). The tools are nickel-plated steel for durability and protection from static, important for MOS and CMOS.

OK's Electroware division specialises in the supply of tools and accessories for electronics building, and produce a catalogue which features many of OK's lines most likely to be of interest to hobbyists. That, and information about new projects, can be obtained from OK Industries UK Ltd., Dutton Lane, Eastleigh, Hants SO5 4AA. Tel: (0703) 610944.

The first part of HE's learn-as-you-build oscilloscope, at the hobbyist's price.

MOST PEOPLE involved with electronics are aware of the enormous value of an oscilloscope in circuit testing, 'yet how many hobbyists are affluent enough to own one? Hobby Electronics, in cooperation with a leading London component retailer, have designed a low cost modular oscilloscope (the Hobby 'Scope) which, at under $£ 80$, is within the grasp of most hobbyists. Obviously, at this price it would be unreasonable to expect the facilities of a $£ 200$ instrument, yet this simple design should prove to be an invaluable tool to anyone who, until now, has struggled with nothing but a multimeter.

For maximum flexibility, the 'Scope has been divided into separate functional units or modules; for under $£ 40$ there is an $X-Y$ plotter (display unit) which will operate with either the scope add-on, to provide a full single trace oscilloscope, or the curve tracer add-on, which is a useful tool for component testing and identification.

We will be presenting these projects over four issues, beginning this month with an overview and then, in the three subsequent issues, we will give the full circuit and constructional details of the three units described above.

Figure 1. The basic functions of an oscilloscope (see text).

The Oscilloscope

An oscilloscope is a piece of test equipment based around the cathode ray tube (CRT), a device similar to that found in a television, which enables voltage waveforms to be displayed as they vary with time. This is illustrated in Figure 1. The oscilloscope has two terminals referred to as the ' Y Input' for connection to the circuit under test; the Y Input consists of the signal terminal and the ground or return terminal. The waveform shown, in this case a sine wave, is representative of the type of signal to which the Y input is normally connected; it has two important attributes, namely Amplitude and Frequency. The Y amplifier within the scope has a variable or switched gain (amplification factor) normally controlled by a potentiometer and/or multi-gang switch on the front panel of the instrument; the Y gain has to be adjusted by the user so that the physical height of the displayed waveform falls comfortably on the screen. Similarly there is a Timebase control which must be adjusted to suit the frequency of the incoming waveform. The timebase circuit within the scope controls the period of time over which the waveform is displayed from left to right across the screen; if

Figure 2. The sweep moves steadily across the screen, returning rapidly.

this period is too long then too much information (too many cycles) become compressed onto the screen width; if too short, only a fraction of the waveform will be seen. An oscilloscope does not, as you might expect, capture a single sample of the waveform and freeze it on the screen (storage oscilloscopes are able to do this-at much expense!), but repeatedly updates the screen with identical portions of the waveformthis is a necessity imposed by the working principles of the CRT as we shall see, and the consequences are that oscilloscopes are really only useful for displaying waveforms that are repetitive, such as sine waves or square waves. Now, in order that the waveform can be viewed as a stable display there is the additional requirement of a Trigger circuit, whose purpose is to ensure that each time the waveform is drawn on the screen; the starting point is the same 'place' on the incoming waveform. The starting Trigger point is referenced to a particular voltage level on the incoming waveform, and usually can be varied by means of a

Figure 3. The electron beam sweeps an accurate replica of the Y -input.

Hobby 'Scope

control on the front of the instrument; the effect of varying this control is to alter the starting point of the display, which therefore appears to travel leftright across the screen.

The Cathode Ray Tube

A major part of understanding the workings of an oscilloscope lies with the cathode ray tube itself. Physically. a CRT is an evacuated glass envelope (vacuum tube), shaped with a long narrow tube at one end tapering out to form a wide flat round screen at the other end (more expensive tubes taper to a rectangular screen). At the narrow end there are a number of pins which are the electrical connections to the inner works; these lie mainly within this narrow tubular section. On the inside surface of the glass screen there is a coating of phosphor which is electro-fluorescent The basic principle by which a display is produced is that a fine beam of electrons is produced within the far end of the tube and accelerated towards the phosphor screen, which emits light over the area that is being bombarded with electrons. By means yet to be revealed, the electron beam is brought to a focus and can be made to strike any given point of the screen, producing a small spot of light. If this electron beam is scanned about the screen, it traces out a thin line of light because the -phosphor persists in its emission for some tens of milliseconds; providing that the line is retraced by the beam of electrons every few milliseconds or so, a stable display of the line will be seen, without flickering.

The actual geometry of the CRT internal electrodes is fairly complex in a modern high performance tube, howeve the schematic of Figure 2 is an adequate representation of the various internal components, at least for our purposes. The principle by which an electron beam is generated is called thermionic emission. A cylindrical plate of metal, the cathode, is heated indirectly by a tungsten filament inside the cathode. The cathode, like all metals, produces a cloud of electrons around the surface when it is heated, but in great quantity at a temperature that can be practically realised. The electrons thus emitted from the surface of the cathode can easily be persuaded to leave the area by the high positive potential present on the series of electrodes Anode 1 to Anode 3. These three anodes can for the moment be considered as one, held at a high positive voltage of about 2 kV , and consisting of a metal plate with a small hole centered on the axis of the tube. Electrons accelerate from the cathode towards this anode and most of them fly straight through the center hole, eventually to strike the screen. However there is a further obstacle in the path of the electrons, in the form of a grid or mesh electrode, surrounding the cathode and thus between the cathode and anode. The grid is always biassed negative,
relative to the cathode, and acts as a

Figure 4. A simplified representation of the internal workings of the cathode ray tube.

Figure 5. Block diagram of the $X-Y$ plotter.
control over the number of electrons able to leave the cathode. By varying the negative potential applied to this grid, the brightness of the display can be indirectly varied from maximum down to complete darkness (electron beam turned off).

Shaped Fields

As can be seen in Figure 4 there are three anodes in a practical CRT, the purpose of which is to focus the electron beam. Anodes 1 and 3 are held at the same high positive potential whilst Anode 2 is a few hundred volts more negative than the other two 〈but still highly positive relative to the cathode). The geometry of these anodes is arranged so that electrons travelling through the system, but which are off-axis, experience a small accelerating force (electric field) which tends to move them towards the centre of the tube. The potential of Anode 2 is made variable, and on every oscilloscope there is a Focus potentiometer which the user must adjust to produce the finest possible spot size. The physics of the focussing system is too complex for a complete explanation, however a useful analogy is to consider the electrons moving in
electric fields in terms of balls rolling down a hillside (ie in a gravitational field); by shaping the profile of the hillside into a U-shaped channel, it is obvious that any ball initially launched at the side of the channel (ie off-axis) will roll towards the centre as well as down the hillside, and by choosing the exact profile of.the channel all balls, no matter where released, can be made to pass through the same point on the axis. This is what, in electric, terms happens as electrons pass through the anodes and 'meet' at a point on the CRT screen.

The remaining system in a CRT to be described is the electrostatic deflection plates - the means by which the illuminated spot can be moved to a given part of the screen. Beyond the three anodes are two sets of parallel plates at right angles to one another and referred to as the X plates (vertically aligned) and the Y plates (horizontally aligned). By applying a voltage to any pair of plates, an electric field is established at right angles to the electron beam and will deflect it in the direction of the field. The X-plates will produce a horizontal deflection and the Y -plates a vertical deflection. In practice the deflection plates are not parallel but

Figure 6. Block diagram of the $X-Y$, processing unit.

Figure 7. Block diagram of the curve tracer unit.
diverge towards the screen. This is partly to allow for the divergence of the electron beam when deflected, and partly to improve the linearity of the deflection voltage.

A final point to note is that the electrons, having struck the screen, must have some means of returning to their source - otherwise a charge would build up on the screen, repelling the electron beam. This is provided by coating the inner surface of most of the tube, beyond the deflection plates, with a thin layer of graphite and making a connection to it on the side of the tube. This coating, the 'Final anode' is sufficiently thin so that the electrons are not prevented from striking the phosphor.

X-Y Plotter

The X-Y Plotter is the most important module of the Hobby 'Scope. It contains a CRT and all the electronics required to convert the CRT into an easily used display unit, namely the power supplies for the tube and the deflection amplifiers. Physically, the X-Y Plotter is a self-contained unit with a lead at the rear to connect to the mains supply; on the front panel, the CRT screen is viewed through a circular hole and there are two rotary
controls for brightness and focus. All connections to the scope are made to terminal posts on the front panel (X input, Y-input, Ground and external supply) with the exception of the Z input (see later), which is at the rear.
A block diagram of the X-Y Plotter, Figure 5, reveals its simplicity, A transformer isolates the unit from the mains and provides several secondary voltages for the circuit; a 6 V 3 AC winding supplies the CRT heater filament, another winding of 800V AC provides the supply for the EHT accelerator voltages, and the remaining winding provides for the X and Y Amplifiers. The 700 V AC is rectified to produce IkV DC, which is then stepped-up to 2 kV and 4 kV in a four stage multiplier circuit; this is prefered to providing 4 kV direct from a transformer secondary, which would be very expensive because of the heavy insulation requirements. The EHT supply directly feeds the CRT anode voltages and, by means of a resistor potential divider chain, the voltages for the other electrodes. The potentials of the grid and second anode are made variable with potentiometers to allow the brightness and focus, respectively, to be adjusted. The X and Y Amplifiers essentially amplify convenient input
voltage levels of $\pm 2 \mathrm{~V}$ (full scale deflection) to the necessary $\pm 150 \mathrm{~V}$ needed to drive the deflection plates of the CRT.
A further input, called the Z-input, is AC coupled into the control grid to allow the brightness to be controlled dynamically by an external signal, as is necessary for the 'Scope Add-on.

'Scope Module

A block diagram of the unit that turns the X-Y Plotter into an oscilloscope is shown in Figure 6. An oscillator generates a 'sawtooth' waveform which must be applied to the X-input of the $X-Y$ Plotter; this causes the electron beam to sweep smoothly across the screen from the far left to the far right, and then rapidly fly back to the starting point to repeat the sweep. In the absence of any Y input this would cause the display of a horizontal line in the centre of the screen. When a signal is applied to the X-Y Plotter Y-input, however, the beam is displayed so as to display the input waveform plotted against time. The display will also show, albeit faintly, the signal during the rapid flyback of the X deflection. This flyback is undesirable and so is suppressed by a negative going pulse applied to the Z-input of the plotter; it coincides with the flyback period and therefore blanks the beam at this time. An extra Y Amplifier, provided within the 'Scope Module, has switchable gain so allowing a wide range of input voltage amplitudes to be displayed on the scope.
As mentioned earlier, the timebase waveform has to be synchronised with the incoming signal to obtain a steady display; this is achieved with a Trigger circuit, which compares the input signal with the level control potential and forces the sawtooth oscillator to flyback when it detects a coincidence.

Curve Tracer

A curve tracer is a device that allows a plot of a component's voltage versus current characteristic, plotting current on the vertical (Y) axis and voltage on the horizontal (X) axis. This is useful for checking or identifying components such as diodes or transistors, as each device has a characteristic curve (that of a PN junction diode is shown in Figure 7). An oscillator periodically sweeps the required range of current by generating a representative voltage this is applied to the Y input of the plotter. The voltage (which actually represents a current) is converted to a current in a proportional voltage to current convertor and is made to pass through the component being tested. The voltage which then develops across the component is fed to the X input of the plotter.

The oscillator need not be sínusiodal; in fact a symmetrical triangular wave would produce a more evenly bright trace.
The Hobby 'Scope project continues next month.

GT

(1) Modular Amplifiers the third generation

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever.

WE'RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP's tradition of entirely self-contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency flexibility, reliability, easy usage, outstanding performance, value for money.
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.
aipolar modules

Module Number	Output Power Watts	LandImpedence Ω.	DISTORTION		Supply Voltoge Typ	Size mm	WT gms	Price inc. VAT
			T.H.D. Tvpat 1 KHz	$\begin{aligned} & \text { I.M.D. } \\ & 60 \mathrm{~Hz} \text {) } \\ & 7 \mathrm{KHz}: 1 \end{aligned}$				
HY30	15	4.8	0.015\%	<0.006\%	± 18	$76 \times 68 \times 40$	240	c8.40
HYGu	30	4.8	0.015\%	<0.006\%	± 25	$76 \times 68 \times 40$	240	c9.55
HY6060	30 * 30	4.8	0.015\%	< 0.006%	± 25	120×78×40	420	¢18.69
HY124	60	4	0.01\%	< 0.006%	± 26	$120 \times 78 \times 40$	410	£20.75
HY128	60	8	0.01\%	< 0.006%	± 35	$120 \times 78 \times 40$	410	C20.75
HY244	120	4	0.01\%	<0.006\%	± 35	$120 \times 78 \times 50$	520	E25.47
HY248	120	8	0.01\%	<0.006\%	± 50	$120 \times 78 \times 50$	520	£25.47
HY36a	180	4	0.01\%	< 0.006%	$\pm .45$	120×78×100	1030	£38.4 ${ }^{1}$
HY368	180	8	0.01\%	<0.006\%	± 60	$120 \times 78 \times 100$	1030	f38.41

Protection: Full load line. Slew Rate: 15v/us. Risetime: 5us. $5 / \mathrm{N}$ ratio: 100 db
Inpus Impedance: $100 \mathrm{~K} \Omega$. Damping factor: $100 \mathrm{~Hz}>400$.
PRE-AMP SYSTEMS

Module Number	Modulo	Functions	Current Required	Price inc. VAT
HY6	Menno pre amp	Mic/Mag. CarthidgefTuner Ttape/ Aux + Vol/Bass $/$ Treble	10 mA	¢7.60
Hr66	Stereo pre amo	Mic/Mag. Cartridge/Tuner/Tape/ Aux t'Vol/Bass/Treble/Balance	20 mA	£14.32
HV73	Guitar pre amp	Two Guitar (Bass Lead) and Mic * sepparate Volume Bass Treble + Mix	20 mA	f15.36
HY78	Stereo pre amp	As HY66 less tone contrals	20 mA	¢14.20

Most pre-amp modules can be driven by the PSU driving the main power amp.
A separate PSU 30 is svailable purely for pre amp modules if required for
5.47 linc. VATI. Pre amp and mixing modules in 18 different variations.

Prease send for de ta
Mounting Boards
For ease of construction we recommend the B6 for modules HY6-HY 13 £1.0
flic. VATl and the B66 for modules HY66-HY 78 C 1.29 (linc. VAT).
POWER SUPPLY UNITS IIncorDorating our own toroidat wansformers

Model Number	For Use With	Price inc. VAT	Model Number	For Use with	Price inc. VAT
PSU $21 \times$	1 or 2 HY30	E11.93	PSU 52X	2xHY124	¢17.07
PSU 41 x	1 or 2 HY60, $1 \times$ HY6060, $1 \times$ HY 124	£13.83	PSU 53x	$2 \times \operatorname{MOS} 128$	${ }_{5} 17.86$
PSU42x	$1 \times \mathrm{HY} 128$	¢15.90	PSU $54 x$	$1 \times \mathrm{HY} 248$	f17.86
PSU 43x	$1 \times \operatorname{MOS} 128$	¢16.70	PSU 55x	$1 \times \operatorname{MOS} 248$	$\mathrm{C}^{1} 9.52$
PSU 51 x	$2 \times \mathrm{HY} 128.1 \times \mathrm{HY} 244$	¢ 17.07	PSU 71x	$2 \times$ HY244	c21.75

Model	For Use With	Price inc. VAT
PSU 72 x	2×	[22.5]
PSU 73x	' \times HY364 ${ }^{\text {a }}$	-22.54
PSU 74x	$1 \times$ HY368	224.20
PSU 75x	$2 \times$ MOS248. $1 \times$ MOS 368	[24.20

[^0]MOSFET MODULES

Madule Number	Outpur Power Wats rms	$\begin{array}{\|c} \text { Lased } \\ \text { Impediance } \\ \Omega \end{array}$	T.H.D. Typat 1 KHz		Supply Voltage Typ	Sise mm	$\begin{aligned} & \text { WT } \\ & \mathrm{gms} \end{aligned}$	Price inc. VAT
MOS 128	60	4.8	<0.005\%	<0.006\%	± 45	-	20	E30.41
MOS 248	120	4.8	<0.005\%	<0.006\%	± 55	$120 \times 78 \times 80$	850	¢39.86
MOS 364	180	4	<0.005\%	<0.006\%	± 55	$120 \times 78 \times 100$	1025	[45.54]

Profection: Able to cope with complex loads without the need for very special
Slew rate: $\quad \begin{aligned} & \text { protection circuitry (lfuses will sulficel. } \\ & 20 \mathrm{~V} / \mu \mathrm{s} \text {. Rise time: } 3 \mu \mathrm{~s} \text {. } 5 / \mathrm{N} \text { ratio: } 100 \mathrm{ub}\end{aligned}$
Frequency response (-3dB): $15 \mathrm{~Hz}-100 \mathrm{~K} \mathrm{~Hz}$. Input sensitivity: 500 mV rms
Input impedance: $100 \mathrm{~K} \Omega$ Damoing fac for: $100 \mathrm{~Hz}>400$
'NEW to ILP' In Car Entertainments
or cassever Booster Amplifier to increase the output of vour exising car radio
ven easy to use
Robust construction,
£9.14 (inc. VAT)
Mounts anywhere in car
Automatic switch on
Output power maximum 22 w peak into 4Ω
Frequency response (-3dB) 15 Hz to 30 KHz, T. H.O. 0.1% at 10 W 1 KHz
S/N ratio (DIN AUDIO) 80dB, Load Impedance 3Ω
input Sensitivity and impedance (selectable) 700 mV ms into $15 \mathrm{~K} \Omega 3 \mathrm{~V}$ rms into 8Ω Size $95 \times 48 \times 50 \mathrm{~mm}$. Weight 256 gms

C1515
Stereo version of C15.
£17. 19 (inc. VAT)
Stereo verston of C15.
Size $95 \times 40 \times 80$. Weight 410 gms .

WITH ALOT OF HELP rnom ELECTRONICS LTD

PROFFSSIINAL IIIFI THAR EVERY ENTHUSILAST

 CAN HANDIE...
Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY7B to provide a "no frills", low distortion, ($<0.01 \%$), stereo controt unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

PowerSlaves

Our power slaves, which have numerous uses i.e. ins trument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

Please note x in part number denotes mains voltage. Please insert ' O ' in place of X for $110 \mathrm{~V},{ }^{\prime} 1^{\prime}$ in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V U.K.) All units except UC1 incorporate our own toroidal transformers.

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write detalls on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P Electronics Lid. if sending cash, it must be by registered post. To pay C.O. please add $£ 1$ to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

HEBOT Rides Again

Dear Sir,
I have just read the HEBOT II article in the November ' 82 issue of your magazine, where you ask for submissions on the subject of other interfaces.

I own a PET computer by Commodore and would like to know the details of how to control HEBOT II with it, therefore I would be pleased if you could work this out for me as I am not very good at electronics.
PR Brown,
Stevenage,
Herts.
Coming soon in Hobby Electronics!

You Don't Ohm Me

Dear Sir.
As an enthusiastic hobbyist in hifi, 1 want to build your Audio Signal Generator (HE May '82), the relatively simple design of which appeals to me. Unfortunately I cannot obtain locally the prescribed thermistor RA53 (or R53 alternatively). Stockists of electronic components always request the ohmic value of such a thermistor. which is not given in your article. Simply referring RA53 or R53 means nothing to them. To order just one piece from England (Maplin or Watford) is not very convenient.

Physically similar thermistors are available locally (Philips?) as long as I know the correct ohmic value. Another alternative available is to use the slightly cheaper glass-bead type thermistor. I shall be pleased to know if this can be used instead.
Yours faithfully.
J F Bednarik.
Pretoria,
S. Africa.

The RA53 is, in fact, a glass bead thermistor. It is rated at 3 mW at $20^{\circ} \mathrm{C}$ with a resistance of 5 k at that temperature, and has a minimum resistance of 80 R . Hope that helps. PS. You forgot to put your SAE in. Actually about 5% of our enquiries forget to include their SAEs (not counting the ones who don't think of sending one in the first place) which is why they end up here!

But then, if you have something especially pertinent or fascinating to ask or say, and send an SAE, you may have the double honour of a personal reply and a letter on the POV page as well.

Calling All Cars

Dear Sir,
I am a new reader to HE and find it very interesting reading, and will be subscribing to the magazine on a regular basis.
I would gratefully appreciate your experience and knowledge to help me to make my own small alarm paging system with the best possible range. My intention is to install a small transmitter unit in my car which would transmit a signal independently or through the car aerial, activated by vibration sensors, and door switches which would be received by a small pocket bleeper, either carried or in the home.

Being a newcomer to electronics I thought this was a very good idea of mine but like all good ideas I now see something like it is already on the market, but very expensive.

I will be happy to forward any remittance for plans, literature etc. Would you make it as straightforward as possible, me being a newcomer to electronics, and include information of my nearest electronics agent for the best stock of components?

I hope to make this alarm and lots of other items in the near future and look forward to hearing from you. Yours sincerely.
David Knowles,
Barton.
Eccles.
After having thought about this for a bit, we have some ideas on this type of project and, subject to checking the legality of the suggestion as it stands, we hope to be producing one or more projects along these lines.

Does anyone else have any comments or suggestions?

When looking for components stockists, consült our Directory of Electronics Components and Hardware Suppliers (HE October '82) and the update which appeared last month, and also consult our advertisers - don't overlook mail order. It's an extremely reliable way of gaining access to large stocks of components.

Let There Be Lights

Sir,
I have just ordered Counter Driver and Numeral Display Projects from your Bookshelf but I urgently need assistance and direction. You see l'm an amateur and without boring you I will be grateful if you will be able to tell me how I could construct the
words JESUS SAVES to glow permanently and if need be the power supply to go with them to ensure noninterference. If I can be assisted by way of a circuit diagram and list of components I will very much appreciate it. If not, I won't be discouraged from buying HE, it's a great magazine.
Yours sincerely.
David Amakiri,
Crystal Palace,
London.

Dear Sir.

I'm trying to create a waterproof. battery operated clock with an LED display and I was wondering if you could help or put me in touch with somebody who could. The idea is to have the readout on one side of a piece of fabric with the circuit board and battery on the inside.
Yours,
J. Johns,

Kingwood,
Herts.
Firstly, sorry, chaps, but we cannot design circuits to specifications. If the Lord had intended the staff of HE to design circuits to order, He wouldn't have given us a magazine to publish. We don't have an infinite number of hands!
To get a light to glow permanently all you have to do is wire up enough light bulbs, Christmas tree lights, LEDs etc. to create the display you want. I wouldn't recommend domestic bulbs, as they get hot and burn out, but for any other kind of small light source you would need a suitable power supply circuit. That's a basic aspect of electronics, so if you want to get into that, try Power Supply Projects, $£ 1.75$ from the HE Bookshelf service (see page 29), As for Mr. Johns, can anybody help? I must confess, my mind boggles to know what it's for. A digital alarm umbrella? Upholstery for your goldfish bowl? Could there be a new project in this somewhere??

Low Resistance

Dear Sirs, I will firstly say that I qualify as a devoted HE reader and that I have collected every single issue since November ' 78.

Since you seem to be in the know about electronics suppliers I wonder if you could give me some advice on where I can obtain some miniature resistors of power rating OW1 25 or below. These seem to be extremely
difficult to get hold of for some reason.
Yours faithfully.
N.S. Jones,

Stratford-upon-Avon,
Warks.
The resistors you want are in the RS Components catalogue. RS itself only deals with the trade, but any component in its stock can be ordered from your regular retail supplier (most of them deal with RS), although you will naturally have to pay for the service. And then there is our Components. Directory in HE October ' 82 and April ' 82 , and our gallant army of advertisers - a handful of phone calls can unmask wonders, if you know what you're asking for.

Teletext Kits

Dear Sir.
I am interested in Teletext/Prestel kits, could you please advise me of any manufacturers or agents
other than Bradley Marshall Ltd?
Yours faithfully.
C. V. Parker,

Bildeston.
lpswich.
Bradley Marshall Ltd. is the only Teletext/Prestel kits supplier known to us - does anyone out there know of another?

We Can't Amplify

Dear Sirs.
Project: Power Amplifier (HE June '81).
While going through some old HEs I came across this interesting project, but to my surprise the parts list which was provided with the article was incomplete. For example, values of resistors are not always given in the PCB diagram. As I am interested in making one. I would be very grateful if you could send the complete parts list since getting the kit would mean I have to pay more for the postage than the kit.
Thanking you,
V. Alexander,

Selangor,
Malaysia.
Sorry, but this circuit was provided by Capricorn Electronics, and to protect their design the Parts List was not completely described. You'll have to write to the address given to see if they're still supplying the kit or would be prepared to help you with some of the parts.

Out Of Data

Dear Hobby Electronics,
I am desperately begging for your help. I am involved in a college project where there are a few integrated circuits needed. I require data on these ICs to adapt my project to them. This is where the help comes in.
It would be very time consuming to
write to each manufacturer for their data. The datas that / require are as follows:

IC8038, IC7400, IC4093, IC555, IC4534, IC4511, IC4081, IC4011. IC4001. ICULN2803A, seven segment LED FND500, seven segment LED HP 5082-7730.

Are the seven segment displays compatible?

If there are any charges for your service, please send me the bill and I would gratefully pay for the charges.
I do hope that you can help me. I am an HE addict, I have every issue since it was launched on November 1978. A great magazine, keep it up. Yours waiting patiently,
S. Ferrol,

Dagenham,
Essex.
Every now and then somebody asks us for data on one particular device and we happen to have it at arm's length and can provide it - but if we guaranteed this service, and charged for it, well, you the reader would probably not be able to afford the service. There are electronics consultancies in every reasonablesized town in the country, but their services don't come cheap.

Surely your college, either the library or one of your lecturers, keeps data sheets for these devices? That is their job, after alll I would try asking them, first.

Otherwise, you will have to contact the manufacturers, the same as we do when we get stuck, either by letter or by phone. It will help speed up the response you get to do three things: i) find out by phone first of all which department at which address you need to contact to get data on ICs; ii) send an SAE; iii) if you don't hear within a fortnight, phone the department you wrote to and ask if they have your letter.

If you are really stuck, I seem to recall llford Central Reference Library was good on science and technology, although data sheets might be stretching their resources a bit. Their number will be in your phone book.

Sorry we can't help with lists like this. Anyway, you wouldn't get much credit if we did all the research!

Games People Play

Dear Sir,
I have read your magazine with interest since its introduction and have enjoyed constructing many of the projects. I appreciate your encouragement of worthwhile community projects, for example, in the Year for the Disabled.

I would like to suggest a competition to design an original and attractive electronic game which could be used for raising money at various charity fetes, church fairs, etc. The wire loop game surely has been played out and I think there is a good opening for an alternative game which could be played by one or more players and which offered a challenge
and value for money.
I would like to see a worthwhile and practical project to enhance still further the reputation of your
excellent magazine.
Yours faithfully.
J. Dakes,

Stone-on-Trent,
Staffs.
As it happens, we have several ideas for electronic games in the pipeline. We don't actually want to reveal our plans at this stage, but keep looking in HE. And thanks for the kind words.

Mail Order Maestros

Dear Sir,
On Tuesday 7th February, I sent by post orders to three of your advertisers, namely Rapid Electronics, John Bull and Bi-Pak.
I received delivery of the goods ordered, by post, on Friday, Saturday and finally today.

Congratulations to the efficiency of the firms concerned and the Post Office.
Yours faithfully.
M J Turner. Whitstable,
Kent.
Nice to hear about the good things instead of the grollies for oncel And living proof that mail order really does work, for anyone thinking of taking the plunge. Thank you, M.J.

Wah's That Again?

Dear Hobby Electronics,
I would like to enquire about a project which appeared in HE June '82, the Auto Wah. I wondered if a kit is available and how much it is including case and all the necessary bits. Please send me an answer quickly since I want to make it for a friend of mine who has an electric guitar.

Thank you.
Ali Modjdehian.
Sussex University.
The kit for the Auto Wah, with or without case, is available from Magenta Electronics - see their advertisement in this (and every) issue of HE. The produce kits for many HE projects old and new, so they are usually the first people to check.

PS Has your friend warned his neighbours?!!
While offering help and advice about projects and general electronics subjects tends to be priority number one in Points of View, not omitting to mention my colleague C . Dick across the way, we would also like to hear the odd Point of View from time to time, so if you have anything you want to praise, speculate on, comment on or sound off about in the world of electronics, let us know. Its your voice as well as ours. Of course if you don't need a reply you don't need to enclose an SAE either - it gives a wonderful sense of freedom!

COMING SOON TO

 ZX81 HIGH RESOLUTION GRAPHICS BOARD
User-definable, high resolution graphics for the Sinclair ZX81 computer - without fuss! This is a simple add-on PCB that plugs into the ZX81 ROM socket; no modifications to the computer hardware are needed in this project! The ZX HRG is completely software controlled and allows you to program high resolution graphic characters for, say, a Space Invader game, graph plotting or anything else.
Software control allows the high resolution characters, once set up, to be saved on cassette then loaded and re-used at any time, and switching between either HRG user-graphics or the standard Sinclair character set is easy, under software control. Any single element of an 8×8-pixel character can be individually controlled, giving a screen resolution of 256×176, allowing finely details graphics programming.
The ZX HRG Board is the first half of a Sinclair Graphics Package. The second project is a user-programmable joystick controller - the first of its kind! Unlike all others it can be instructed to operate with any commercially available games programme, and will appear in the August issue of Hobby Electronics. A slightly different version for the Sinclair Spectrum will also be out shortly.

SATELLITE AND CABLE TELEVISION EXPLAINED

The communications revolution is nearly upon us! Find out about the technology of tomorrow's entertainment world in our July issue.

ALL ABOUT ELECTRONICS

Commencing a new series, especially written for the novice. All aspects of electronics will be covered in 12 separate parts, leading from basic theory through to descriptions of complete electronic systems.

COMPONENTS FOR COMPUTING

The second part of the article looking at computer display systems, leading up to a simple video display project in a future issue.

THE HOBBY 'SCOPE

Continuing with the circuit details of the X-Y Plotter unit of our super low-cost oscilloscope project.

July issue on sale at your newsagent from 10th June.
 Place your order now!

Athough these articles are being prepared for the next issue, circumstances may alter the final content.

Original Design by Charles Baudouin
Development by Mike Lord

Do your ZX81 or Spectrum programs seem dull and lifeless? Do they lack that Snap, Crackle or Pop? If so then our Sound Board may be the answer!

Our ZX Sound Board is based on the General Instruments' 8912 sound generator chip, which gives you three programmable tones or noise with the option of automatic enevelope control, so your computer can carry on with other things while the sound is being produced. The board has been designed to work on both the Spectrum and the ZX 81 (1 K or more RAM) without modification, and features a built-in amplifier to drive an 8 or 16 ohm speaker as well as a volume control (for work in the early hours!) and a 'Reset' button for turning it off quickly when the neighbours start knocking!

The unit is designed to plug into the rear connector of the computer; a matching edge connector plug is fitted to the rear of the sound board to allow for other add-ons such as the ZX81 RAM Pack or printer.

Circuit Description

The heart of the board is the sound generator chip, IC3. The data needed to program its operation comes in from the computer's data bus, on leads DO-D7, while the IC itself is under control of the signals on the BC1 and BDIR chip inputs. These are
improved by ICs 1 and 2 whenever the computer performs an 1/0 operation with address line A5 or A6 low. These two address lines have been chosen because they do not conflict with any of the $1 / 0$ addresses used by Sinclair add-ons such as the ZX printer. Putting the board in the computer's '1/0 Map' rather than the. 'Memory Map' means that we can use the same board for both the ZX81 and the Spectrum without modification, although it does make use with the ZX81 slightly more complicated
R2 and C3 reset the 8912 chip when power is applied to the board, or it can be reset any time by operating SW1; R3 limits the current flowing through the switch from C3 to a sensible level.

IC3 needs a clock signal of somewhere between 1 and 2 MHz , and this is provided by using part of IC2, (which is a quad 2 -input NAND with Schmitt Trigger inputs), R1 and C1 as an oscillator. The output of the oscillator is buffered by a spare gate from ICI.

The three sound outputs of IC3 are connected togther and to the load resistor R 5 , then the resulting signal is fed through the low-pass filter R4/C4 to round off the edges of the square waves produced by IC3 before being amplified in IC4 to drive the loudspeaker. R6 and C7 guard against ringing and possible oscillation in IC4.

Construction

A single-sided PCB has been used to keep the cost down, so two wires have to be soldered in, as shown in Figure 2. Once this has been done, the resistors, capacitors and IC sockets can be fitted, care being taken to ensure that the electrolytic capacitors are fitted the right way round. Do not fit the ICs themselves yet.

The termination pins of the $23+23$ way socket should now be fed through the board, so that they project out of the component side, the body of the socket being on the track side of the PCB. Position the connector so that it is square onto the PCB, with about half of the length of the termination pins on each side of the board. Solder two of the corner pins to the copper pads first, then check again that the connector is mounted squarely before soldering the other pins to the square pads on the board (some of the pins don't go through square pads, and so don't need to be soldered). Take great care not to create accidental short-circuits to adjacent pads or track when you are making the soldered joints!

The $23+23$ way plug, which is a double-sided PCB, should now be fitted. Again, it must be mounted square onto the main PCB, the contact tails from the socket being bent down and soldered onto it on both sides.

The switch and volume control are

Parts List

RESISTORS

POTENTIOMETERS

RV1 10K preset (see Buylines)

CAPACITORS

(Disc ceramic unless noted)
C1 $\ldots \ldots$..........................1n
C2, 5, 7 100n
C3, 8 4u7 16 V electrolytic
C4 10 .
C6, 9............................. 100u
16 V electrolytic

SEMICONDUCTORS

ICI
.... 74LSO2
Quad NOR gate
IC2......................... . . 74LS132
Quad NAND Schmitt trigger
IC3..................... . AY-3-8912
Sound generator
IC4......................... LM380N
Audio amplifier

MISCELLANEOUS

SK1.......... ZX edge connector $23+23$ way 0.1 in socket with polarising pin in position 3 , wire/wrap contact terminations. PL123+23 way plug SW1 \qquad Single pole momentary PCB; 3×14-pin, 1×28-pin DIL IC sockets; loudspeaker, 8 or 16 ohm; connecting wire, solder etc.

BUYLINES \qquad page 34
to be soldered onto the track side of the main PCB, which has been laid out to accommodate the types given in the parts list.
Finally, a pair of wires should be soldered into the two holes indicated in Figure 2, to connect with the loudspeaker, then the ICs plugged in.

Preliminary Tests

Before doing anything you might regret, check the board very carefully for possible short-circuits between tracks or connector pins. Then check again that the correct components have been inserted in the correct places, and the right way round. If you are very unlucky, a fault which is overlooked at this stage could damage your computer!

Now, plug the board into the back of your computer, REMEMBERING TO TURN THE POWER OFF FIRST!! Restore power to the computer, and check it works exactly as before. Turn the volume control fully clockwise. You should be able to hear a slight buzzing sound from the loudspeaker, which will increase if

Figure 1. The circuit.
Figure 2: PC8 Overlay. Note that SK1, SW1 and RV1 (dotted) are mounted on the track side of the board.

you touch the left-hand terminal of RV1 with the tip of your finger. If you are using it with a Spectrum, then you can check that the sound generator is working by entering the line:
(OUT 159,8: OUT 223.15) which should result in a hissing noise. If you have a ZX81, you will. have to load the 'Demo' program and use that to test the board as described in the next few sections.

Popular Computing

SPECTRUM			ZX SOUND BOARD			2X81		
PIN	A	B	PIN	A	B	PIN	A	B
1	A15	A14						
2	A13	A12						
3	D7	+5V	1	D7	+5V	1	D7	+5V
4		+9V	2		+9V	2	RAMCS	+9V
5	KEY		3	KEY		3	KEY	
6	D0	OV	4	D0	OV	4	D0	OV
7	D1	ov	5	D1	ov	5	D1	OV
8	D2	CK	6	D2		6	D2	\bullet
9	D6	AO	7	D6		7	D6	AO
10	D5	A1	8	D5		8	D5	A1
11	D3	A2	9	D3		9	D3	A2
12	D4	A3	10	D4		10	D4	A3
13	$\overline{\text { INT }}$	ORROGE	11			11	$\overline{\text { INT }}$	A15
14	NMI	OV	12			12	$\overline{\mathrm{NMI}}$	A14
15	HALT	VIdeo	13			13	$\overline{\text { HALT }}$	A13
16	MREO	Y	14			14	$\overline{\mathrm{MREQ}}$	A12
17	$\overline{\text { IORO }}$	v		IOREO		15	$\overline{\text { IOREO }}$	A11
18	$\overline{\text { RD }}$	U		$\overline{\text { RD }}$		16	$\overline{\mathrm{RD}}$	A10
19	$\overline{W R}$	$\overline{\text { BUSRO }}$		$\overline{W R}$		17	$\overline{W R}$	A9
20	-5V	$\overline{\text { RESET }}$	18			18	BUSAK	A8
21	WAIT	A7	19			19	WAIT	A7
22	+12V	A6	20		A6	20	BUSRQ	A6
23	-12V	A5	21		A5	21	RESET	A5
24	$\overline{\mathrm{MI}}$	A4	22			22		
25	$\overline{\text { RFSH }}$	ROMCS	23			23	$\overline{\text { RFSH }}$	$\overline{\text { ROMCS }}$
26	A8	BUSAK						
27	A10	A9						
28		A11						

Table 1. The three columns give the edge connector pin signals for the Spectrum, the ZX Sound Board and the 2X81, from left to right.
This table covers the same ground as the ones published with " $2 X$ Interfaces Explained" (HE August '82, page 12), with some corrections, and can be kept as a handy reference guide to Sinclair micro connections.

Inside The 8912 Sound Chip

The 8912 is basically a three-channel device', although in this circuit all three outputs have been connected to the single audio amplifier.

It contains a variable frequency tone source and a programmable amplitude control for each of the three channels A, B and C. A single - common noise generator is also included, and its output can be added to or replace the output of any of the tone sources. The programmable amplitude control for any of the channels can be controlled by the computer or by an 'Envelope Generator' in the chip itself. This generator can be programmed to provide a variety of envelope shapes,
automatically controlling the output level of the sound channel or channels. The values to be put into R7 selected.

Fourteen registers in the 8912 control the various sound generation functions. They are referred to as RO to R13. R0 and R1 control the frequency of the tone produced for channel A. The larger the number entered into these registers, the lower the resulting note frequency. RO is the 'Fine Tune' register, and can be programmed with any value between 0 to 255. R1 provides 'Coarse' tuning, and can take any value from 0 to 15. R2 and R3 are similar Fine and Coarse tuning registers for channel B, and R4, R5 for channel C.
The frequency of the noise

Figure 3. Envelope shapes available from the Sound Board's Envelope Generator.
generator can be controlled by entering a value from 0 to 31 into R6; the larger the value the lower the basic frequencies of the 'noise' produced.

R7 lets you select noise or tone output (or both) for each of the three channels. The values to be put into R7 should be between 0 and 63, calculated as the sum of:

1 to turn OFF tone from channel A
2 to turn OFF tone from channel B
4 to turn OFF tone from channel C
8 to turn OFF tone from channel A 16 to turn OFF tone from channel B 32 to turn OFF tone from channel C
R8, 9 , and 10 control the output levels of channels A, B and C respectively. If they are loaded with a value between 0 and 15, then the output level for that channel will be determined by the value, 15 being the loudest. If, on the other hand, you enter the value 16 , then the output level for the channel will be controlled by the Envelope Generator.

The Envelope Generator can vary the amplitude of any selected channel(s) to impose any of eight envelope shapes on the sound output, according to the value loaded into the register R13. Details of these envelope shapes are given in Figure 3. Note that some give a continuous (or continuously varying) output, while others give only a burst of sound every time R13 is loaded.
The duration of envelope shapes is controlled by values put into R11 and
 9 into register 13.)

Demo Routines

```
REM 123456789ABCD
LET A$="110000019FFFED59OEDFED51C9"
LET A=16514
FOR B=1 TO 25 STEP 2
POKE A,16*CODE AS(B)+CODE A$(B+1)-476
LET A=A+1
NEXT B
PRINT "REG VAL"
    INPUT R
PRINT R:"
    INPUT V
    PRINT V
    GOSUB 990
    GOTO 110
    POKE 16515,R
    POKE 16516,V
    LET A=USR 16514
    RETURN
```

Note: characters ' 0 ' in line 2 are Zeroes, not the letter ' O '

SOUND BOARD DEMO PROGRAM FOR SPECTRUM
100 PRINT "Reg Val"
110 INPUT "Reg "';R"'Val ";V
120 PRINT R;TAB 6;V
130 OUT 159,R: OUT 223,V
140 GO TO 110

R12; larger values giving longer times. R11 is the 'Fine Tune' register, and R12 provides "Coarse Tune"; both registers can take values from 0 to 255.

There are two further registers in the 8912, known as the 'Address Register' and the 'Data Register'. To put a value into any of the registers RO to R13 you have to put the number of the register into the Address Register, then load the value into the Data Register. Reading the Data Register will give you the content of
the register whose number is in the Address Register.

Programming It

As the board is $1 / 0$ mapped, Spectrum owners should use the IN and OUT commands, the appropriate addresses being:
159 to write to the Address Register 223 to write to the Data Register 191 to read from the Data Register So, to load the value 11 into the
envelope shape register R13, we would use the two statements:

> OUT 159,13
> OUT 223,11

The 'DEMO' program given later simplifies things a little by letting you enter just the register number and contents.
The ZX81, however, lacks the IN and OUT instructions of the Spectrum; this means that a small machine code routine has to be loaded first to access the $1 / 0$ map.

Lines 2-7 of the ZX81 'DEMO' program load this M / C program into the memory space reserved by the REM statement of line 1; once you have run this once then the characters in line 1 will change, and you can delete lines 2 to 7 if you wish. Lines 9990-9994 are a subroutine which calls the M/C routine, putting the value V into the 8912 register number R. Lines $100-$ 160 are a short routine which uses the subroutine at 9990 and lets you experiment with the board by just entering the 8912 register numbers and the values you want stored there.

Sounding Out

Some interesting sounds to try out are listed under the heading 'Sounds to Try". Remember that all of the 8912's registers that are not mentioned should contain ' 0 ' (pressing the board Reset button puts zero into all of the registers). These examples should get you started, then you can make a splash or any other sound you fancyl

Not well known to the public, his experiments with the magnetron effect brought about a breakthrough in the generation of microwaves.

Ian Sinclair

This is no exotic mid-European name, and yet Sir John Turton Randall's fame is of a distinctly select variety. Like many distinguished academics, Sir John Randall is famous to a fairly small number of people who know of his achievements.

That is by no means to say that the achievements themselves are obscure - his work on microwaves enabled radar to play a crucial part in Britain's defences during the Second World War, quite apart from opening the way for the many roles radar has played since that time. In a very different context, it has given rise at some removes to that increasingly familiar phenomenon of our time, the microwave oven. Behind the headlines and high-street familiarity of winning wars and microwave cookery there are always the back-room boffins, rewarded perhaps but rarely renowned.

Sir John Randall was (and still is) one of these. Born in 1905, he pursued a brilliant academic career, and gained his MSc degree from the University of Manchester in 1926, at an age when most students are struggling with a lower degree. He worked in electrical research in the laboratories of GEC between 1927 and 1937, but then returned to academic life as a Warren Research Fellow of the Royal Society in the years 1937 to 1943 .

Microwave Generation

This was no return to ivory towers or dreaming spires. His research in those years was very strongly connected with his work at GEC, and centred on the generation of microwaves. At that time, "microwave" was the term loosely applied to any frequency of more than
about $1 \mathrm{GHz}(1000 \mathrm{MHz})$, and there was at that time no satisfactory way of generating these frequencies at high power. The first radar experiments were, in fact, conducted using frequencies around 50 MHz .
To see why such difficulties existed, we have to think of the methods that were used for constructing oscillators. A conventional high-power oscillator of the mid-30s would use a triode valve, not so very different from the type we still use for the same purpose, with the cross-section shown in Figure 1. Electrons are emitted froin the hot tungsten filament which, for a large transmitting valve, would typically use 115 V 200 A just in heating. These electrons are then attracted by the high positive voltage of the anode, a metal cylinder which forms the outside of the valve and which is water or air cooled.
The flow of electrons between cathode and anode is controlled by a "grid", a coil of wire or a wire-mesh cylinder placed between anode and cathode, whose voltage can be varied. With a high negative voltage on the grid, electrons will be repelled back to the cathode, none reaching the anode; with a positive voltage on the grid, a few electrons land on the grid but most travel on to the anode. The voltage on the grid controlled is the anode current, just as the voltage on the gate of a FET controls the drain current.

Oscillation Limitations

Triode valves of this sort were used and still are produced for radio transmitters, and they could be used as high power oscillators by adding some positive feedback, using circuits such as the one in Figure 2. Such oscillators could

Figure 1. Cross-section of a typical triode transmitting valve.

Figure 2. The type of circuit which would be used as an oscillator with a triode valve.

Figure 3. The magnetron. (a) Views of the structure. (b) The valve, which is a simple diode, is used inside a magnetic field provided by a large coil. (c) The circuit connection to the valve - the current drops suddenly as the magnetic field is increased.

Figure 4. Using the magnetron valve with a tuned circuit. This causes the electron path inside the valve to be corrugated as the anode voltage oscillates.

Figure 5. Cross-section of a cavity magnetron. The cavities act as tuned circuits for a microwave frequency.
produce an output whose frequency is controlled by the inductance of the tank coil and the value of capacitance connected across it, but there was a limit to the frequency that could be obtained. One limitation was simply that it's difficult to make a "coil' of less than one turn, but the more serious limitation was due to the valve itself.

The action of the oscillator depends on the positive feedback from the anode to the grid so that as the anode current increases, and its voltage decreases, the grid voltage is forced to increase. This works normally at low frequencies, but at higher frequencies it starts to suffer from the effect called "transit time".

The voltage between the grid and the filament is never very large, so that the electrons move comparatively slowly between these electodes - slowly meeting at a few million metres per secondl What we're comparing this with, however, is how quickly the voltage at the grid will change if a frequency of a 1 GHz is being generated. One complete cycle of a 1 GHz wave takes just one nanosecond, and the grid voltage would change from maximum to zero in a quarter of this time, 250 picoseconds. At the lower electron speeds, it would be possible for an electron to leave the filament when the grid voltage was positive, butfor the grid voltage to have become zero or negative by the time the electron reached it!

An electron struggling along at a speed which is one hundredth of the speed of light, for example, will cover 3 mm in one nanosecond, which is a lot less than the distance between the filament and the grid of a large transmitting valve. The snag is that if you close up the gap, you are likely to have problems of sparking across the gap, particularly as the metal expands and even more so if there is any vibration.

Enter The Magnetron

Much was done to develop the transmitting triode, but transit time remains a problem that can't be got around in valves any more than we can get around it in transistors. This was the problem that faced two men working at Manchester in the early days of World War II. One of the two was John Randall, the other Dr. Henry Boot. Together, they made the valve that won the war.

For a long time before those days, an effect called the "magnetron effect" had been known - it is used today in an 'A'. Level Physics experiment to measure the ratio of charge to mass for the electron. The cross-section down a simple magnetron is shown in Figure 3; it consists of a diode valve using an electron-emitting cathode and a cylindrical anode in a glass tube, evacuated and sealed, all within a coil which provides a steady magnetic field.

Without any magnetic field, current flows between cathode and anode when the anode is at a positive voltage and the cathode is hot. When the magnetic field is switched on, the electron path becomes bent, and if
the field is strong enough, the electrons will move in circles, just missing the anode, so that the anode current drops to zero.

Now the interesting thing about this device is that the electrons can be moving very fast, so the time needed to perform each revolution inside the anode is very short. The other point is that if a tuned circuit is connected between anode and cathode, the valve will generate oscillations as the electron beam alternately touches and misses the anode (Figure 4). Randall and Boot's great step forward was to combine the valve with the oscillating circuit to form the cavity magnetron.
Perhaps they had been watching a flautist, because what occurred to both of them was that as the electrons travelled past a bottle-shaped cavity in the wall of the anode, the cavity might act as a tuned circuit for microwaves. just as the air inside a flute acts as a tuned circuit for the breath of the flautist. They suspected already that the cavity would act as a resonant circuit; the question was - would it be forced into oscillation by the electrons?

It Works!

Randall and Boot constructed a prototype to test their ideas. The prototype still exists - it would nowadays be classed as a CW magnetron, because it generated microwave radiation continuously, rather than in pulses. To their delight, the frequency of oscillation was very high, well above 1 GHz , and the power, even with continuous oscillation, was also very high. A breakthrough in the generation of microwaves had been made just at a time when such a development was sorely needed.

Pulsing the cathode voltage of the magnetron produced even more dramatic effects - the generation of very large peak powers (up to 100 kW even in these days) which greatly extended the range of the early radar transmitters.

This, combined with the use of high frequencies (which allowed the radar to distinguish between smaller targets and to see more details of large ones) formed the basis of our radar early in the War, and allowed us to concentrate our pitifully small airforce, reduced to a shell by well-meaning pacifist politicians, on facing the enemy, rather than trying to patrol the whole of our shores.

John Randall, like so many distinguished academics, quietly resumed an academic career after the War, and a grateful Government presented him with a prize of $£ 12,000$ in 1949. To understand what that means, you have to realise that you could buy a semi-detached house in Essex for around $£ 900$ at that time. He had been elected as a Fellow of the Royal Society in 1946, and he held several professional appointments in physics before changing his interests to zoology. He was knighted in 1962, and is at present Professor of Zoology at Edinburgh University.

Munfutcores makes soldering easy fast \& reliable

Ersin Multicore

Ersin Multicore, solder contains 5 cores of noncorrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.
Comes in handy dispensers and tool box reels in two different alloys $40 / 60 \mathrm{tin} /$ lead for general purpose electrical soldering and $60 / 40 \mathrm{tin} /$ lead ideal for small components and fine wire soldering.

Size PC115 60/40 tin/lead
£1.38 Handy pack ${ }^{\text {n. } 12 \mathrm{zrmm} \text { dio }}$

Multicore Savbit

Size 3 40/60 tin/lead £4.37 Per reel 1.6 mm do
Size 1060/40 tin/lead

$$
\text { £4.37 Per reel } 0.71 \mathrm{~mm} \text { da }
$$

Size 19A 60/40 tin/lead £1.15 Handy pack 1.22 mm dia

Multicore Savbit, solder increases the life of your soldering bit by 10 times, for better soldering efficiency and economy.
Comes in two handy dispensers and tool box reels.

Size SV130 Savbit £1.73 Per pack

Multicore Alu-Sol

Multicore Alu-Sol, solder contains 4 cores of flux, suitable for most metals especially aluminium. Comes in handy dispensers on tool box reels.

Size AL150 Alu-Sol
£2.07 Per pack. (14*mm dia

Size 4 Alu-Sol
£7.82 Per reel $1 . b m m$ dio
All prices inclusive of VAT.
Available from most electrical and DIYs stores. If you have difficulty in obtaining any of these products send direct with 50 p for postage and packing. For free colour brochure send S.A.E.

THE HE BOOKSHELF is the easiest way to build up your library of electronics books. Order today to have these top titles delivered

To receive your books you have only to fill in the form below and send it, together with your payment, to the address stated. Please allow up to 21 days lor delivery. This offer applies only within the U.K. Prices may be subject to change withour notice.

SEND TO: HE BOOKSHELF, 513 London Road, Thornton Heath, Surrey CR4 6 AR.
I am enclosing my Cheque/Postal Order/ for: (delete as necessary)
f..... (Made payable to A.S.P. Ltd)
VISA OR Debit my Access/Barclaycard
(delete as necessary)

Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/Miss)
(delete accordingly)
Address .

Signature

Books Required	Price	
	Add 75p p\&p	0.75
Total Payment	$\mathbf{£}$	

You're never alone in the dark with a Bat Light

Andy Armstrong

THIS IS a simple but unusual gadget which can enable you to tell if your car battery is getting low, if the fan belt is slipping, or if you have worn brushes in the alternator or similar faults. It employs a LED indicator which can glow red, through varying shades of yellow, to green. The LED is green when the battery is at about 13 V 5 , and red when it is at 11 V 5 . Thus a healthy but offcharge battery at about 12 V 5 will light the indicator to a mid-yellow colour.

Fine, you may say, I know about the battery voltage, but how does that tell me if the alternator brushes are worn out or the fan belt is slipping?
Deduction, that's how.
If you find that the LED will not turn green, no matter how fast the engine is running when the headlights are switched on, then insufficient electricity is being generated to run the headlights and charge the battery at the same time. If the colour remains constant, then the fanbelt is probably slipping but if it flickers, the brushes are likely to be wearing.

Ignore this warning at your peril! A friend of mine did for about two months of daytime driving, then one night on a country lane, the engine and lights just faded out!

Indicator Circuit

The circuit uses a quad op-amp, type LM324. An LM348 would work equally well, and is pin compatible. The circuit splits into two main functions; a triangle wave generator using three parts of the quad IC, and a comparator using the fourth part.

The triangle generator looks complicated but isn't. IC 1 a forms an integrator which can ramp up or down depending on whether the voltage on pin 8 of IC1c is low or high, respectively. IC1C and IC1d define the upper and lower limits of the triangle waveform, by means of a bistable action.

If pin 8 is high, then the non-inverting input, pin 12, of IC1d will be held high via D3, forcing the output at pin 14 high. Since pin 8 is at a voltage near the positive supply, rail, the integrator output (IC1 a pin 1) will be ramping down. This voltage reaches pin 10 of 1 C 1 c , but not pin 14 of IC1d since D4 is reverse biased. When it falls below the reference voltage (derived from the divider chain R4 and R5) on pin 9, the output on pin 8 goes low. This allows the voltage on pin 12 of IC 1d to fall to the ramp output voltage (5 V 8), so the
output on pin 14 also goes low. This, in turn, has the effect of ensuring that the voltage on pin 8 remains low until the ramp output voltage exceeds the 6 V 8 reference voltage present on pin 13 of IC1d.

All this produces a triangle waveform with its limits at 5 V 8 and 6 V 8 . This is fed to the inverting input of the IC16 comparator. The other input of the comparator is fed with a divided down version of the battery voltage, so that the output of the comparator switches rapidly, with a mark to space ratio determined by the battery voltage; R10 is included to ensure clean switching.

While the comparator output is high, the green part of the LED is on; when it is low the red part is on. The persistance of vision of the eye causes the colours to appear blended into various shades of yellow if the battery voltage is in a middle region. Resistors R11 and R12 are different values to equalise the red and green brightness levels. If the battery is either very good or very flat, of course, pure red or pure green will show.

The power supply is also of interest: car electrical systems sometimes have substantial voltage spikes on them. R13, D2, and C2 form a network which prevents these spikes from damaging the IC. D2 supplies an added bonus in that a reversed power supply will only heat up R13, rather than destroying the circuit; in this condition the LED will remain obstinately red, regardless of battery voltage.

One further comment on the functioning of the circuit: the more astute among you may have noticed that the function of parts c and d of the IC is that of a comparator with hysteresis, which can be carried out with a simple op-amp. True-but this circuit was designed for an economical quad op-amp and it has been used to provide a comparator whose switching levels do not depend on precisely how close to the supply rails the op-amp output can swing. For anyone handy enough to do their own layout, an alternative circuit using three opamps is provided, without further comment (Figure 2).

Construction

In the main, construction is straightforward; having made the PCB, and made sure that there are no unetched areas causing short circuits, solder down the components, following the overlay and take care over the polarity of all the diodes and C2.

Several points need to be noted however. When the board is built and checked against the overlay, the bicolour LED should be connected up. Do not at this stage worry which way round it goes. It is then ready for testing. If you have a variable voltage power supply and an accurate multimeter this is simplified-if not don't worry, it's just more time consuming. For those with power supply and multimeter proceed as follows:
Connect the battery indicator to the power supply and, with the aid of the

Figure 1a. The circuit. The colour of the LED varies with voltage.

Figure 2. An alternative circuit using three op-amps.

Figure 3. PCB component overlay.

Figure 1b. Timing waveform. IC1a maintains the voltage on pin 2 at the level of pin 1. The current charging or discharging C1 cancels the current in R1. The total cycle time is 3.3 mS .
meter, set the output to 12 V 5 . The LED should glow with a shade of yellow; if only one colour shows, the power supply connections may be reversed. Assuming a yellow glow is obtained, increase the voltage to between $13 \vee 5$ and 14 V . Somewhere in this region a single-coloured glow should be obtained; if the voltage is outside this range, make a note of the voltage and continue; if the colour is red, then the LED connections should be reversed. Now reduce the voltage to 11 V 5 , around which point a red glow should be seen. If the voltage is outside the range of 11 V to 12 V , or if the pure green glow was not obtained between 13 V 5 and 14 V , then this can be altered: the cause is likely to be the inaccuracy of the Zener 2D1, or of R8 and R9. The cure is to add a resistor in parallel with R8 if the voltages at which pure colours were obtained were too high, or in parallel with R9 if these voltages were too low. In either case, a parallel resistance of 100k will cause a change of about OV3 in the above voltages. Experiments based on this should soon indicate the resistor value needed. This resistor should be added in, above R8 or R9, as appropriate, simply soldered to its leads at the point where they are bent, as shown in the diagram, Figure 4.

For those lacking a bench power supply, a reasonable alternative method is to use the car itself as a means of calibration. The battery indicator should be connected to the supply, in a temporary manner, and the engine started. By choice of the appropriate add-on resistor (if needed) the indicator should be adjusted so that the LED just turns completely green when the engine is running moderately fast. Take care not to rev the engine too fast, as damage may result.

Installation

There are two methods for mounting this unit into the car. The first is to put the entire unit into a plastic box with a small hole drilled in it, with the LED mounted in the hole using the standard LED mounting bush which is normally supplied with the LED. The plastic box can then be mounted in any clearly visible position, probably under the dashboard, using double-sided adhesive pads. In order to make sure that these pads do not peel off after a few months,

Figure 4. Mounting an extra resistor in parallel with R8 or R9. This may be necessary if the voltage is excessive or inadequate at this point.
it's necessary to thoroughly clean the surface to which they are to be stuck so that all grease and dust is thoroughly removed.

An alternative - and perhaps neater method-is to enclose the PCB in a plastic box, which need not be specially smart, and connect up the LED with a reasonable length of flexible wire. In this case it's necessary to take care to observe the LED polarity and to sleeve the connections so that they cannot short. A small hole may then be drilled in an appropriate place in the dashboard, to balance with any other indicator lights, and the LED may be mounted in the mounting bush. The PCB in its case may then be mounted on any convenient surface, the bulkhead for example, behind the dashboard, out of sight.

For either of these methods of installation, the board is best mounted

Parts List

	C2	disc ceramic
100k	SEMICONDUCTORS	
2k2	IC1	. LM324 or LM348
3k3		quad op-amp
39k	ZD1	BZY88C6V8
8k2	ZD2	BZY88C15V
10k	D1,2	1N4148
100R		or equivalent
. 330	LED1/2	. . . red/green
560R		bi-colour LED

MISCELLANEOUS
PCB, wire, solder etc; optional case.
$10 n$
polyester BUYLINES
page 34
into the plastic box with a double thickness of self adhesive pads, and the wiring from the PCB to the supply should be carefully insulated and clipped away from sharp edges where it may abrade. This is very important, because a short circuit of that nature in a car could be dangerous.

For the permanent installation, it is advisable to connect the power side of the unit to a source of power only energised when the ignition switch is on. If the unit is left connected and in operation while the car is stationary, the car battery may be significantly discharged over a period of two or three weeks. The ground side should simply be earthed under any convenient fixing screw in the area.

Variations

As it stands, this circuit is designed for a 12 V electrical system. However, if ZD 1 were changed to a $3 \vee 3$, a limited degree of operation with a 6 V electrical system would be possible, though the LED would be rather dim and, quite possibly, some experimentation would be needed with values of R11 and R12. For use on a 24 V electrical system, ZD1 could be left at 6 V 8 and the value of R8 could be raised to between 15 k and 20k, in order to provide suitable indication.

Should it be difficult to obtain the bicoloured LED, two ordinary LEDs of different colours can be connected in parallel in opposite directions.

Send for my CATALOGUE ONLY 75p

(plus 25p post/packing)
My all-inclusive prices quoted in the Catalogue are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade. See my prices on the following:
CAPACITORS . . . ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND HIGH VOLTAGE, RESISTORS. 1/8th WATT TO 100 WAT; 0.1\% TO 10% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRIMMERS, PRESETS, POTS . . . SINGLE, DUAL, SWITCHED, CARBON, CERMET AND WIREWOUND, SINGLE OR MULTITURN, ROTORY AND SLIDE. DIODES, RECTIFIERS, BRIDGES, CHARGERS, STYLII, SOCKETS, PLUGS, RELAYS, TRANSISTORS, IC'S, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, COUPLERS, ISOLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VALVES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INDICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPLIES, HARDWARE, MOOULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VOR'S, INSULATORS, CASSETES, METERS, SOLDER, HANDLES, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOAROS and others.

Prices you would not believe before inflation!
BRIAN J. REED
TRADE COMPONENTS
ESTABLISHED 26 YEARS
161 St. Johns Hill, Battersea, London SW11 1TO Open 11 am till 7 pm Tues. to Sat. Telephone: 01-2235016

Lighting ELECTRONIC COMPONENTS

THE CHOICE IS YOURS - CALL AT OUR NEW SHOWROOM OR USE OUR VERY FAST MAIL ORDER SERVICE.
EITHER WAY WE'LL KEEP YOU HAPPY *****
Furthermore we promise if any part ordered by mail fails to please just return within 7 days for a full refund,
For a vast selection of electronic components \& equipment of all kinds. Here is just a selection of our stocks. Many more items listed in our catalogue

nesistons						CRICKLEVOOD ELECTRONICS LTD．						
Carbon flem						Cricklewood Broadway，London N＇W2 3ET．Tel． 01452 0161．Tlx． 914977.						
N				40822 40071 180 890								
1			N	（ell		Here＇s a senctrun from out vast spocis，Full brige list free on fequest Orders by phoma quoping All in stock nemsseresparched samp，day．Official orders welcome from Govt Depis，schouls，etc 						
			$\underset{ }{2 N 2923}$									
$\begin{aligned} & \text { WET1 } \\ & \text { WWE12 } \\ & \text { 2W } \end{aligned}$				${ }_{\text {ac }}$								
METALFHM ULTAASTABLE O．4 EXTRA LOW NOISE 1052 to lais？ 24 E 245 1424 60 LOW OMMIC GLAZE KW 0 223t to a 22 E24 11p			（en			Wantiy discounts naylatabe TRY US NOW－WE＇VE GOT WHAT YOU NEED．						
	$\begin{array}{lll}10 & 10 C & 16 p\end{array}$	wire b cable										
		Prikes pat Merire									7	9
	23.6		${ }^{\text {H00 }}$	AC	${ }_{\text {BC559 }}$					（	（180	（20）
	$\begin{array}{llll}3 & 100 & 210\end{array}$		125		BC5598						9	So
					${ }^{179}$	m		W0111001500	505	162 400		
					－ 5 Stoc	000 3 200	07					2
	1				${ }_{8 C 651}{ }^{\text {cha }}$	O	2003		（ratasion 2 25		300	1
					${ }^{\text {BCY7\％}}$				TBA5300 276			
	${ }_{100}^{100}$				${ }_{\text {BCr }} \mathrm{BCO}$		6\％p		274			
	（100			边	${ }_{80132} 84{ }^{\text {a }}$			K01 11001220	3．28	，	${ }^{\text {ap }}$	${ }_{\text {asbe }}$
	${ }^{220}$		2N338A									50
	220						O	K06 600013.40	278			40550
	22						insteo		a			
												${ }_{4}^{4} 5$
					80239a						518	
		Acrial Cable										
		Ra unt										1800
	Iam 63.	T3il NH				${ }^{468}$		（100				6502
	：	Raintow Arbton							UAAATO 1.59			－
	n							$120 \quad 100$				${ }_{\text {cosem }}^{\text {gram }}$
	\％			A				$\begin{array}{lll}1120 \\ Y 20 & 120 \\ 120\end{array}$	C2 2 250			${ }_{80}^{8050}$
								10			，	80004
	Radialsipia							50				
PRE SETS PIMER （DUSTPAOOF） ［3 100＇：io $10 \mathrm{~m}:$								Y10 ${ }^{\text {V10 }}$	50 0.75			
					302494200 80248623 ROL50A 211	（ex						MEMORIES
			（ex			\％						
Standind Ve： 188 Slamdard Hetw		bitchargeabre catienirs			 80437	（10 Sill	（ex	Suoe bight high				
	57			（ex								
（tan cemmet 20					1039		（ex	himes bepitert				
							${ }^{\text {axk }}$					
501210500%				${ }^{\text {BCIIS98 }}$	120				（700	77451377		
			${ }_{2} 2 \mathrm{~N} 400$		${ }^{812530}$ 88535 80							
CAPACITOAS					（10536	（lay		cicle			400． 119	6116 6514 6814
							${ }_{\substack{\text { Bry } \\ \text { Braze }}}$		Sill		（enter	
	formens				${ }^{\text {Bos539C }}$		（ex	uneabics			20°	
					BosseBosacBu6\％							
	All 2 AVV Prumavy			${ }^{\text {BC1 }}$ 869							${ }_{\text {l }}^{10} 180$	${ }^{7445878}$
MOLYCARB 5\％ SIEMENS 75 mm Mini bloc El2						$\begin{array}{lll}\text { Oc70 } & \\ \text { OC71 } \\ \text { OC72 } \\ \text { Oc7 }\end{array}$	OAPs					
	$\left\lvert\, \begin{array}{r} 12012 V \\ 150 \\ \\ \hline 15 \mathrm{~V} \\ 10 \end{array}\right.$								为			
		erd	$\begin{aligned} & \text { 2N } 49013 \\ & \text { 2N4904 } \\ & \text { 2NA9905 } \end{aligned}$		6071180178014	${ }^{\text {Occe }}$	042000^{200}				9016200 W17 320 20	A0cosi6 1490
						IIP						cras 2376 1006 590
								CA3140T 950				
												－3i3lC 699
								ic				
arent ic som							cre：A． 100 V					
								1 CL				
							monv					
	veromoand				${ }^{818199}$			85				
							C106E	40				
							8p					
							06\％msp					
lsomp							1154.650					
								im3352 119				
－ 5.2 .2					${ }_{80} 24545$			$\mathrm{m}^{3} 3685 \mathrm{~N}$				
FEEDTH			，529\％		538			80	7473 7474 $\substack{230}$ 780			
			\％\％				－	lisp	${ }^{245}$			
tanterad							， 14 A					，
							， 14				${ }^{\text {839 }}$	0
				130	${ }^{\text {extas }}$			LM723CH				017
10．35V 140								LM735CN				Otr
				d	${ }^{818539}$	5700		${ }^{3.9}$				
			2N6122 560	8c：214 100	eras．${ }^{\text {250 }}$	－ 62	，	L． M 781 CH 960				
									741008800			
	？1minitum								7408 71005 7500 550			
1035 V 270								（mi83）				${ }_{\text {amp }}{ }_{\text {at }}$
18 15 15 10 l 10 V	${ }^{5}$ Dumme	thans					－11					${ }^{81727}$
			11					Lim1889 ${ }^{3}$		550		89.41
${ }^{21} 210029$		A mmal silection	2N613 ${ }^{1 / 36}$			150 150 25	E24 Sties	N8	${ }^{171188.850}$	${ }^{390}$		To
47 ${ }_{4}^{35}$	＋1		${ }^{\text {ti45 }}$			${ }_{\substack{230 \\ 150}}^{250}$	：4an to	${ }^{\text {N }}$		890		
			90	8Czsic	（1）	${ }_{\substack{350 \\ 320}}^{\text {320 }}$			5			（9912
co		$\begin{array}{ll}\text { 241493 } \\ \text { 2N2102 } & 300 \\ 390 \\ 3900\end{array}$	$25 / 496350$	（ecter		21x $\times 312$	，	${ }_{\text {LM3 }}$	${ }^{742} 23133^{340}$			，
ω	Singes	3＾221：390				240		200		37p	${ }^{690}$	
ELecthotrics									27178			
		${ }^{2 \times 251}$				${ }_{2 T \times 341} 1$			${ }_{74136}$	50		
			${ }^{3 N 1788} 1.12$			27×450		250	24141			If Socker
		－1223								2415240 55p		15
		－『2324 2							14			
103					（1）	$4{ }^{240}$	2001					Witches
47350		（20323				${ }^{240}$		8	${ }^{274148885}$			N
${ }^{63} \begin{array}{cc}63 \\ 90\end{array}$		${ }^{2 \times 2008}$										
5 mm 4	Guss ton m	－				${ }_{27 \times 650}$ 450			$3{ }_{3}$			
？${ }^{2}$	\％（ ypow	， 4					004		（entise	74． 5251	4516 50p	

ZX Sound Board

This project uses the AY-3-8912 Programmable Sound Generator IC, the slightly more expensive of the two General Instrument PSGs. Why the 8192, which provides a single I/O port and is a 28 -pin package, should be more expensive than the 8910 (which has two I/O ports and is a much larger 40-pin chip) is something of a mystery. However, the 28-pin IC is easier to use and allows the PCB to be smaller, too.

There are a few points to note with regard to the components: the potentiometer RV1 should be a miniature Cermet preset on the 5 mm (0.1") format. Similarly, the switch SW1 is a dome top, momentary contact 5 mm PCB mounting type, and should be used to complete a neat job. All the electrolytics are miniature radial types.

The $23+23$-way edge connectors can be difficult to find, however Rapid Electronics of Colchester will be stocking all the parts for the ZX Sound Board, including the edge connectors. A case is really not necessary for this project and the total cost, excluding only the PCB (see page 72) should be around $£ 15$.

CB Rap Latch

Finding a single, convenient source for the components of this project was not an easy task - but after much dilligent searching, it was found that Ambit International stock either the required bits and pieces or suitable substitutes!

The 12 V OUB type relay is listed by their stock code number 46-70030, and the four-way locking audio connectors are available as stock numbers 10-10004 (for the mic connector) and 10-11004 (for the socket).

The very common BC109 and BC 179 transistors are also supplied in plastic rather than metal cases, in
which case they are known as BC239 and BC309 respectively, so don't get worried if you are offered these devices as alternativesl There may be some difficulty, also, in obtaining a 33 u tantalum capacitor (C6); if this is the case, simply use the next largest value (which should be 47u) and replace the 1 MR timing resistor (R9) with the value 680k. This will produce approximately the same timing period (35 seconds, in fact) which can be confirmed by substituting the new values into the formula given in the text. All the polyester capacitors are C280 types.
The cost of this project, excluding the case and PCB, should be around $£ 6.00$. Ambit will supply a suitable case for about $£ 2.36$ if you quote their stock number 21-06103, and the printed circuit board is available through our own PCB Service (see page 72).

Traffic Light Toy

A simple project, this, with a simple list of parts, all of which are available from Greenweld Electronics. Fittingly, the cost is quite low, too; around $£ 2.50$ excluding the case and PCB. The most suitable case from Greenweld is their type V213, which measures $100 \times 75 \times 40 \mathrm{~mm}$ and costs $84 p$ - dearer than a tobacco tin, but neater with it.
We have put the Traffic Light Toy on a PCB because this method of construction results in a more reliable job, and provides less margin for error! The cost could be reduced to rock bottom by constructing on stripboard - however we would not then be able to offer advice or assistance should there be any problems.

Pop Amps

All of the components and parts used for these simple circuits are readily available from suppliers advertising in

HE. Dedicated experimentors will already have most of the bits and pieces in their 'junk box', but newcomers trying out these circuits for the first time should try to build up a collection of components and parts; the best buys are available from bargain-pack dealers such as BI-PAK, who provide low-cost selections of resistors, capacitors and so on to the electronics world at large. Their address is BI-PAK, PO Box 6, Ware, Herts., or phone 09203182.

Car Battery Indicator

None of the components for this ingenious circuit are particularly hard to find. You have a choice of ICs, but the LM324 is the cheaper of the two. Red/Green bi-colour LEDs go by several different code numbers but are generally easily obtainable; however, we know that both TK Electronics and Bi-Pack stock all the necessary, so they are the most convenient suppliers.
The PCB measures only 52 x 40 mm , so only a small case is needed if you choose a concealed installation. Be sure to keep plastic cases away from heat sources, thought
Component cost, excluding case and PCB, should be around $£ 2.00$.

Update

The most difficult component to source for our BBC Micro/HEBOT Interface project proved to be the connector mating with the BBC's Auxiliary Power Output socket. BBC owners might like to know that Kelan (Hobbyboard) Ltd has a large stock of the correct plugs and will happily supply them separate from the BBC/HEBOT interface kit.
The toroid for the Aerial Without Wings project is being supplied by Neosid Small Orders 1982 and is their type number 28-041-28. For reliable long wave reception, the number of turns should be increased to between 20-25. If, in any event, reception appears weak when using the Aerial, winding the additional number of turns should provide a sure cure.

MAKE YOUR OWN P.C.B's.

DIRECTETCH KIT

COPY DIRECT FROM MAGAZINE Or OWN DESIGN Simple system - Complete kit containing PCB, Pattern Transfer \& Etch Resist Sheets, Tray \& Elchant, Copper Cleaning Block, Gloves \& full instructions. $£ 15.60$ Produces 10 PCBs.
Price inclusive of VAT \& carriage. Please allow 21 days for delivery. Cheques, PO's or signed Access orders welcomed.

a division of KELAN ENGINEERING LId Hookstone Park Harrogate, N. Yorks
complete P.C.B. workshop
HB/PCI

Instruments and models. Japanese made, top quality metric tools in hardened and tempered steel, with fitted plastic cases. Swivel-top, chromium-plated brass handles. Not to be confused with similar cheap non-Japanese sets.
SCREWORIVER SET 113.6 plain screwdrivers, blades 0.9
$1.2,1.8,2.3,3.0$ and 3.5 mm . Price $£ 2.70$.
SOCKET SET 227.5 socket spanners, 3.0, 3.5, 4.0, 4.5 and 5.0 mm . Price $£ 2.80$.

CROSSPOINT/HEXAGON SET 305. 2 Japanese crosspoint screwdrivers, sizes 0 and 1.3 Hex . key wrenches $1.5,2.0$ and 2.5 mm . Price $£ 2.70$.
COMBINATION SET 228.5 open spanners 4.0, 4.5, 5.0, 5.5 and 6.0 mm .5 socket spanners $3.0,3.5,4.0,4.5$ and 5.0 mm . 2 crosspoint screwdrivers bit sizes 0 and 1.3 screwdriver bits $1.5,2.5$ and 3.5 mm . 3 Hex. keys 1.5, 2.0 and 2.5 mm . 1 scriber. 1 swivel-top driver/holder. Price £4.83. All prices include postage and 15% VAT.

Aing for Access/Barclaycard

Light Soldering Developments Limited, 97-99 Gloucester Road, Croydon, Surrey CRO 20N. Tel: 01-689 0574.

No. 8: TTL logic probe

THIS CIRCUIT is for testing logic levels in TTL (transistor-transistor logic) circuits. When we discuss these we so often think in binary terms of ' 1 's and ' 0 's, or 'highs' and 'lows', or +5 V and OV levels, that we sometimes lose sight of the fact that TTL input and output levels need not be exclusively 0 V or +5 V . Voltages in between these levels are perfectly acceptable, for these circuits are designed to tolerate manufacturing variability. Nevertheless, there must be standards of some sort, with guaranteed output levels and acceptable input levels.
The INPUT voltage levels specified by the manufacturers for all members of the 7400 TTL family, including the 74LS00 series are:

Logical ' 1 ' - minimum is +2 V
Logical ' 0 ' - maximum is +0V8 Thus any voltage between OV and $+0 V 8$ is recognised as 'logical 0 ' or 'low', while any voltage between +2 V and +5 V is recognised as 'logical 1 or 'high'.

The OUTPUT levels are specified so as to give a margin of error (OV4 to $0 \vee 5$) which puts them securely with in the input ranges:

Logical ' 1 ' - minimum is +2 V 4 $(+2 \mathrm{~V} 5$ for LS)
Logical ' 0 ' - maximum is +0V3 (+OV4 for LS) When we are testing a circuit, it is the input levels which matter most, for the question is: "What effect is this level having on the logic gates to which it is being fed? Which will they take it to be, a ' 0 ' or a ' 1 '?'

The probe tells you instantly how the test output will look to a TTL input. It has a multicoloured LED which glows green for 'low' level, and red for 'high' levels. At intermediate levels, which could mean anything (or nothing) to a TTL input, the LED is out. Should the test output be changing rapidly between 'high' and 'low', the LED glows yellow.

How It Works

The probe is based on two op-amps, both acting as comparators. This

Figure 1. The circuit: watch the probe connections.
project uses the 7611 CMOS op-amp because it can operate on a +2 V 5 supply (actually it works down to + OV5) and its output swings fully to either rail. The test voltage is fed to the inverting input of the first op-amp (IC1) and, at the same time to the non-inverting input of the second opamp (IC2). This voltage is compared with a reference voltage which is supplied to the other input of each opamp from a potential divider (RV1, RV2). The voltage at the wiper of RV1 is set to +0 V 8 , consequently whenever the input voltage from the test point is lower than OV8, the output from IC1 rises sharply to +5 V and current flows through the green element of the LED. The op-amp has no feedback resistor so its full gain is operative and it switches sharply at the threshold point. This means that the green element of the LED is either fully off or fully on, and a clear indication of the state of the test point is given.
IC2 works in the opposite fashion; RV2 is adjusted so that the voltage at its wiper is +2 V . As a result, the output of IC2 swings high and turns on the red element of the LED whenever the test voltage exceeds 2 V A voltage between 0 V 8 and 2 V is too high to turn on the green element.
but too low to turn on the red element, so the LED is not lit. However if the voltage is oscillating between 'high' and 'low' levels, the red and green elements are switched on alternately; the eye merges the

Parts List

RESISTORS

(1/4 watt 5% carbon)
R1.2. . 180R

POTENTIOMETERS

RV1, 2 100k min preset

SEMICONDUCTORS

IC1,2. 7611
CMOS op-amp
LED1/2tri-colour LED common cathode type

MISCELLANEOUS

Stripboard, $78 \times 30 \mathrm{~mm}(11$ strips \times 30 holes); 2×8-pin IC sockets; $3 \times$ 1 mm terminal pins; $1 \times$ red, $1 \times$ black miniature croc clips; 1 x miniature probe clip; wire, solder etc.

BUYLINES
page 34

Figure 2. The veroboard layout. Keep the wire links as neat as possible.
colours and the light from the LED appears to be yellow (the exact shade depends on the mark-space ratio).

Construction

As the photograph shows, this project can easily be fitted onto a scrap of stripboard. It takes its power supply direct from the power rails of the circuit which is being tested and needs only 9 mA , so it is unlikely to
cause an overload. The power leads are fitted with crocodile clips, but it is recommended that you use a miniature probe clip on the test input lead. These spring-loaded hooks, which are sold under various names (such as E-Z-Hook), are very easy to attach to almost any part of a test circuit. You can clip these to the terminal pin of a logic IC, the wire lead of a resistor or (through one of the holes) to the copper track of a circuit-board

Wiring up the probe circuit takes very little time. Points to watch for are:
1). The 7611 is a CMOS IC, so you should take the usual precautions to avoid electrostatic charges while assembling the circuit. It is safer not to put the ICs in their sockets until all the wiring has been done.
2). The test input goes to pin 2 of IC1, but to pin 3 of IC2.
3). The terminal wires of the LED must be correctly connected. The type specified contains two LEDs in a single moulding, and they have their cathode wire in common (common cathode). For the LED used in the prototype, the connections were indicated as shown in the drawing. When you have completed assembly, connect the power leads to OV and +5 V (regulated supply). Adjust RV1, until the voltage at pin 3 of IC1 is exactly +0V8, then adjust RV2 to bring the voltage at pin 2 of IC2 to exactly $+2 V$. Touch the probe lead to +5 V and the LED shines bright red. Touch the lead to OV and it shines bright green. When the lead is not connected to anything you will probably see the LED glowing in various yellowing-orangy shades, due to the test lead picking up alternating electromagnetic interference from the mains. This happens because the opamps have extremely high input impedance.

HE

The Jcopex SG315

A new range of test capabilities
Combined Oscilloscope and Function Generator in one Precision Instrument

SCOPEX Instruments Limited

Pixmore House, Pixmore Avenue, Letchworth, Herts. SG6 1HZ Tel: (04626) 72771 Telex: 825644

The scope
15 MHz bandwidth
5 mV sensitivity
Timebase range
$1 \mu \mathrm{~S}-100 \mathrm{~ms} / \mathrm{cm}$
$8 \times 10 \mathrm{~cm}$ screen
vertical display
$A+B$. B invert
$X-Y$ display,
X deflection
through A channel
for max.
sensitivity
Normal, TV and ext.
trigger

The Function
Generator $0.2 \mathrm{~Hz}-250 \mathrm{KHz}$

Sine

Square
Triangular
DC offset variable
Duty cycle variable
Output 20v,
600 ohms
20 dB attenuator
plus variable
VCF input
TTL sync output

Punction Cenerator can be supplied
separately for you to fit to any Scopex
Dual Trace scope, just state type when ordering, FG4, FG14/25.
Function Generator also available in an instrument case, FG1.

Prices:

SG315-E295+VAT. Price includes Probes and Mains Plug and carriage UK mainland.
Function cenerator for mounting
on Scopex Dual Trace Scopes:
FG4, FG14/25-£69+VAT
Function Cenerator: FG1 -
£79+VAT

COMPONENTS FOR

This month we look into the television screen - or rather, behind it.

Paul Kelly

TODAY, with as little as $£ 50$, it is possible to go out and buy a home computer that plugs straight into a TV set to provide a text and graphics display. High level language programming and interactive graphics require a great deal of simultaneous information to be presented to the computer user and, at present, the cathode ray tube (CRT) provides the only real effective method. Virtually no computer currently on the market is without an interface to either TV or monitor, the exceptions being rather special purpose machines (machine code trainers, industrial controllers etc.) and therefore irrelevant to the mass market. It is hardly surprising, with personal computer sales running in excess of $£ 1 \mathrm{M}$ per annum (in the UK) and with fierce competition between at least a dozen manufacturers, that the price barrier of $£ 50$ has been broken. Once again LSI chips (large scale integration) are responsible for the fall in the manufacturing costs of computers; in particular most of the circuitry associated with the video display can now be provided by an inexpensive device called a CRT Controller.

This month we introduce our subject with some facts and figures relating to the CRT displays (TV and monitors) and the basics of video circuitry, leading to a detailed investigation of CRT controllers next month. Also, there will be a small cheap project intended to illustrate the principles of video generating circuitry: however it will not incorporate a CRT controller but some simple low-cost discrete circuitry with plenty of scope for experimentation.

The Cathode Ray Tube

CTRs are employed in both television sets and monitors in much the same way; an electron beam is scanned across the fluorescent screen in a

CAT RASTER NON.INTERLACED (6 LINES ONLY FOR ILLUSTRATION DOTTED LINES SHOW PATH OF BEAM DURING FLYBACK
(a)

VERTICAL
DEFLECTION

CRT RASTER INTERLACED
(11 LINES PER FRAME SHOWN ONLY, FOR ILLUSTRATIONI
(b)

Figure 1 a, b. A C̈RT raster is generated by scanning an electron beam from the top left hand corner of the screen, one line at a time, down to the bottom right. Figure 1 a shows a non-interlaced raster of 312 lines (only six are shown for simplicity). An interlaced raster, shown in 1b, generates 625 lines (of which 11 are shown here) by scanning, first, the odd-numbered lines. The dotted lines indicate the 'retrace' or 'blanking' periods (flyback).

Figure 2. The time required for the flyback (blanking) periods overlaps the horizontal and vertical scanning periods. Thus the 'active line period' is 52 us instead of 64 us and the vertical picture is 300 lines deep, not 312 . However in computer displays the active line period is limited to approximately 40 us wide and about 200 lines deep.

Figure 3a, b, c. The horizontal and vertical synchronization pulses are combined to produce a 'combined sync' signal; during the vertical sync period, the horizontal pulses are 'stretched' to produce the so-called 'broad pulses' to ensure that the horizontal oscillator stays locked in during these times.
mesh of horizontal lines called a 'raster', illustrated in Figure 1. A periodic sawtooth current waveform is passed through the 'horizontal' magnetic deflection coil of the tube, causing the electron beam to sweep across the screen, tracing a horizontal line across its width and then rapidly flying back to the far left before repeating the process. Simultaneously a much slower sawtooth waveform is applied to the 'vertical' deflection coils of the CRT, and this has the effect of spreading the horizontal traces into a cascade of discrete lines over the entire area of the screen. The fluorescent coating of the screen has the property of emitting light (usually white, but some monitors show green or amber) when bombarded with an electron beam and this emission persists for some tens of hundreds of milliseconds after the electron beam has passed. In Figure 2 the path of an electron beam has been traced out (6
lines only are shown) as in a CRT raster. The dotted line indicates the fast 'flyback' or retrace periods, during which the electron beam is always suppressed. During the forward traces (solid lines) the electron beam may be turned on, for all or part of its travel on each line, by means of a signal applied to the control grid of the CRT; by this means a picture can be built up. In Figure 2 it is shown how the character ' A ' is displayed by the raster. The character will persist without flickering provided that the display is refreshed (ie, the character redrawn) in regular frames and at intervals shorter than the persistence time of the phosphor (fluorescent material).
In a TV set or monitor there are many more lines to a raster than has been shown in the two figures - in fact in the UK there are 625 lines/frame (a 'frame' is a complete picture) for an interfaced TV picture (we will explain
interlacing in a moment) and usually 312 lines for a non-interlaced monitor. Each line is scanned in 64 uS and half a frame (called a 'field' in TV parlance) is repeated every 20 mS . These figures ensure that a flicker free raster can be constucted with no visible 'gaps' between the lines.

Raster Master

Internal to a TV or monitor are all the circuits required to generate a raster. To display a picture it is also necessary to provide two external signals: a control signal that modulates the brightness of the scanning electron beam and some 'synchronisation' signals that force the monitor to generate its raster in registration with the incoming control signal. This control signal is obviously analogue (continuously varying) in the case of a TVं picture so as to represent the various shades of grey, however for a computer display only black and white are normally required so that the control signal is in the form of a serial stream of 'highs' and 'lows'. representing white and black respectively. For a monitor, separate inputs are generally provided for the control signal and sync signal but in a TV set they must be combined (forming a 'composite video' signal) and modulated onto a UHF carrier. Inevitably the process of modulation and subsequent demodulation within the set causes a deterioration in the display quality when compared with a monitor, but it is a small price to pay.

Synchronisation signals for UK standard CRT displays have been drawn in Figure 3: 3a shows the horizontal or 'line' synchronisation signal, which is a negative going pulse of about 5uS duration repeated every 64uS. The negative transition of this pulse triggers the start of each horizontal sweep within the TV set. Figure 3b is the vertical or 'field' synchronisation signal. which also is a negative going pulse, but of 160 uS duration (two and a half lines) and a period of 20 mS (ie 50 Hz scanning rate). The negative transition of this signal triggers the start of the TV set's vertical timebase circuit. As shown in Figure 3 c the vertical and horizontal sync pulses are mixed together to form a combined sync signal. It is essential for picture stability that the horizontal sync pulses are still present during the vertical sync pulses, as the horizontal osciliator in the TV can easily drift out of synchronisation in two and a half lines. The horizontal sync is effectively superimposed onto the yertical sync by 'stretching' the horizontal sync pulses almost to the full length of a line, all but for the last 4 uS or so, during the period of each vertical sync pulse; these are the so-called 'broad puises'. Inside the TV, the sync separator circuit can identify each horizontal sync pulse by the negative transitions of the combined sync signal, even during vertical sync period. To extract the vertical sync itself, an RC integrator circuit having a time constant longer than the short horizontal sync pulses is used. This circuit does not give a trigger output for the ordinary horizontal sync pulses
because, even during the broad pulses, it 'sees' only one long pulse of about two and a half lines width.

In a TV set it is normal to 'interlace' the rasters of alternative frames as shown in Figure 1. This means that the lines making up one-half of a complete picture (one 'field') fall exactly midway between the lines making up the other half of the picture (the previous 'field'), effectively doubling the number of lines of the raster. The purpose of this is to double the vertical picture resolution, showing 625 lines instead of 312 , but without increasing the bandwidth of the picture signal. If all 625 lines were to be displayed sequentially in one frame while maintaining the same bandwidth (and hence line frequency), then the vertical scanning rate would have to be halved from 50 Hz to 25 Hz and the picture would flicker badly. Because of the tendency of the human eye to average the brightness of points (in this case, lines) that are close together, an interlaced scan of a frame appears to flicker much less than the same frame scanned fully sequentially. However interfacing is not often used with computer displays or, if it is, it should in any case be used with caution. The system works well with television pictures where object boundaries tend to be smooth transitions of grey which is not the case with computer displays. The perception of flickering brightness varies from person to person and from picture tube to picture tube. Many people find CEEFAX and the BBC computer display (which can use interlacing) intolerably irritating. Monitors with long persistance phosphors are available specifically for interlaced displays, however, they had a a disadvantage that fast moving objects show a significant afterglow and so are not suitable for video games.

The synchronisation requirements of an interlaced raster as shown in Figure 4 (a) and (b). In principle, interlacing is achieved by scanning $312 \frac{1}{2}$. lines in each field, as illustrated in Figure 1 b (which shows only 11 lines/frame $51 / 2$ lines/field - for simplicity). As you can see from the sync waveforms in Figure 4, there is another oddity included, called 'equalisation pulses'. It is difficult to describe the need for these pulses without explaining the sync separator and trigger circuits inside the TV; suffice to say that the horizontal sync pulses have some influence on the exact trigger point of the vertical oscillator (due to imperfect separation of the two types of sync pulse) and that the equalisation pulses ensure that horizontal sync events leading up to the vertical sync pulses are identical for even and odd fields. These equalisation pulses have no effect on the horizontal oscillator.

Colour It . . .

A colour cathode ray tube contains three electron guns which train on a matrix of red, green and blue phospher dots arranged in alternating sequence (red, green, blue, red, green, blue, etc.) across each horizontal line of the

Figure 4. To maintain the stability of an interlaced scan, 'equilisation pulses' are inserted during the vertical blanking period. Diagram c shows, in simplified form, the waveform of a single line scan.
screen. A 'shadow mask' is placed immediately behind the screen, so designed that each electron beam may strike dots of one of the three colours only. A raster can be produced on a colour tube in the same way as for a monochrome (black and white) tube, ie using sawtooth current waveforms supplied to magnetic deflection coils and effecting all three beams equally. During the travel of the electron beams along the lines of the raster, signals applied to the individual control grids of the three guns will control both the colour and brightness of the picture at each point on the screen. The overall brightness of a spot is the sum of the brightness components of the three colours while the colour is determined by the relative proportion of each colour in the 'mix'.

Compared with a television receiver, colour monitors are relatively simple to drive; there are three inputs called R, G and B, which directly control the spot brightness of the picture in each colour and, of course, a sync input. In hardware terms it is a small step from providing one control signal for a monochrome monitor to provide three signals for a colour one, as we shall explain later.

When colour television was introduced it was thought desirable that black and white sets should also be able to receive the signal. This means that colour information must be added to the monochrome composite signal in such a way that a monochrome receiver will be unaffected by its presence. The method
of encoding colour or 'chrominance' signals on TV broadcast transmissions (in the UK and most of Europe) is called PAL, standing for Phase Alternating Line, and the same method of encoding must be employed by a computer providing an interface to a colour television set.

A full description of the PAL system is beyond the scope of this article, because quite complex mathematics are required, however for interest we offer a brief qualitative description - those of you who wish to experiment with video circuits will be relieved to learn that commercial PAL encoder/modulators are available that accept a standard RGB input and give an output for direct connection to a TV!
Colour information in the PAL system is modulated onto a subcarrier at 4.44 MHz . This frequency has been chosen because it is mid-way between two adjacent high order harmonics (integer multiples) of the TV horizontal frequency $(15625 \mathrm{~Hz})$. Now the added signal falls within the bandwidth of the ordinary monochrome signal (6 MHz) but, because of the chosen frequency of the subcarrier, it is possible to separate the subcarrier from the monochrome brightness or 'luminance' signal within the TV set with minimal interference (in fact, the Fourier components of the luminance signal interleave in the frequency plane with the Fourier components of the subcarrier - but this is a difficult concept without the necessary mathematical background

Figure 5. Block diagrams of a simple computer video display generator, which can read out 256 bits of information (each bit corresponding to a single picture element or 'pixel' per line.) for 256 lines.

Figure 6. The waveforms which would be produced by the system shown in Figure 5.
and this the reason for a 4.43 MHz subcarrier being chosen.
The colour information is 'phasemodulated' onto the subcarrier so as to allow two signals to be carried; these are 'colour difference' signals ($R-Y$) and $(B-Y)$, where the Y is the luminance signal. The three signals of $Y, R-Y$, and $B-Y$ are sufficient to reconstruct the R, G
and B signals inside the receiver. The television set decodes the 'colour difference' information by comparing the phase of the modulated subcarrier with an internal 4.43 MHz oscillator to separate the R-Y signal, and with a phase quadrature $\left(90^{\circ}\right)$ of the oscillator to extract the B-Y information. In order to establish a common phase reference
between the transmitter and the TV receiver, a 'colour burst' signal of ten cycles of 4.43 MHz is transmitted following the horizontal sync pulse, and is used by the TV receiver to lock its internal oscillator. The situation is further complicated by the fact that, every alternate line, the phase of the colour burst is inverted, together with the subcarrier phase. In so doing any errors in phase occurring during transmission through a "foggy" atmosphere, which will cause errors in the displayed colours to appear, will be in opposite senses on alternate lines; the human eye will average these colour errors and will see the correct colour. It is the lack of this refinement in the American NTSC system that has earned it the description 'Never Twice the Same Colour', for in areas of fringe reception in the US (ie, just aboui everywhere) colour TV pictures can be seen with the colours waxing and waning with the wind.
Compared with the price of a portable colour TV these days, a colour monitor (at $£ 300-£ 400$) seems poor value for money. This is misleading because the colour bandwidth of a TV (about $1-$ 2 MHz) results in a very much poorer picture, where computers are concerned, than with a colour monitor; if you look closely at the screen of a high resolution colour monitor you will see that the density of phosphor dots is generally a lot higher than on even the best colour TV set!

Generating Video

The block diagram of Figure 5 is the basis of most computer video circuits. Any picture displayed on a CRT can be considered built up of a number of pixels (picture elements) in a rectangular array; say for example, 256 pixels per line and 256 lines (of a possible 312 non-interlaced). In the case of a computer display, each pixel is either off (black) or on (white) and thus may be represented in the computer by a single logic level (or one bit of data). To represent a picture of 256 pixels by 256 lines a memory of 65536×1 bit capacity is required. In Figure 5 a random access memory (RAM) is used to 'store' a frame of display data. Now in order to produce a signal that can be presented to a monitor video input and so generate a display, it is necessary to read, in sequence, the entire contents of the RAM for each frame at a rate of 256 pixels/40uS, for each line.

All the necessary timing signals for our video generator are produced by a chain of counters and dividers (and supporting logic) clocked by a common 6.4 MHz oscillator (preferably crystal controlled) Figure 6 shows the signals that are generated, and these repeat over the period of one non-interlaced frame. The video RAM is cyclically accessed by an 8 -bit pixel address counter and an 8-bit line address counter, which sequence through all 65536 addresses every frame. Obviously the counters (shown as blocks) are quite complex, in that they are required to start counting after a

Figure 7. The system adapted for use with byte-wide (8 bits wide) RAM; the three low-order address bits AO-A2 are used to LOAD the shift register every eighth clock cycle with a byte addressed by the remaining 13 addresses bits. Because the address bits A3-A7 can address 32 bytes, the display remains $32 \times 8=256$ bits wide.

Figure 8. Using a character-generator ROM reduces the dynamic memory size, but makes the circuit more complicated. Briefly, the RAM is first loaded with 1024 (32×32) characters which will form a 32 -character by 32 -line display. The RAM sequentially decodes address lines A3-A7 and A11-A15 to select the character to be displayed; address lines A8-A10 select in turn each of the eight rows of pixel information for the characters (selected in turn by A3-A7) to be displayed on a particular line (selected in turn by A11-A15). Lines A0-A2 are again used to LOAD the shift register with pixel data once every eight clock cycles. The display is still 256×256 pixels!

period of blanking (flyback) and to stop at the end of the display period of each line (in the case of the pixel counter) or of each frame, (for the line counter), and are triggered by the blanking and sync signals which themselves have been divided down from the clock frequency. Nevertheless, each block in the counter chain can be made from two or three TTL chips, (as will be seen in our project). Notice that the output stream of data is gated with the DE (Display Enable) signal to ensure a black level during blanking; This gives a black border around the picture display and is also used, in some TV sets, as a black level reference.

Most memory devices are organised as 8 bits by so many words, to ease their use with 8 -bit microprocessors. Figure

Figure 9. The pixel information in ROM representing the character ' A ' (a pixel or picture element is the smallest element that can be displayed and is essentially limited by the highest frequency that the display generator or television can handle).

7 shows how our black system can be modified to accommodate these devices. This change is also beneficial when we come to describe how data is written into the video RAM by the microcomputer. Basically, the RAM is addressed, as before, by the high order 13 bits of the 16 -bit pixel/line counter, while the low order three bits of the counter are used to load the output of the byte-wide RAM into an 8-bit shift register on every eighth cycle of the clock. During the other seven cycles the data in the shift register is clocked to the video output sequence. This is an alternative to the more obvious solution of multiplexing the RAM outputs onto the video output with an 8-1 line multiplexer addressed by AC-A2; the advantage of the shift register is that, once the data is latched in it does not matter if the outputs of the RAM change. This becomes important when the RAM is shared with a microprocessor (again more of this next month).
In computing displays that require only a fixed set of characters (alphanumerics) to be displayed it is possible to make a large saving on the size of the RAM required. Figure 8 contains a 2 K 8 -bit 'character generator' ROM which contains data describing (pixel by pixel) up to 256 characters, each of 8 pixels by 8 lines (see Figure 9 for the character ' A '). In addition there is a IK 8-bit RAM which can store 1204 character codes for a display of 32 characters of 32 lines. The data outputs of the RAM address the character ROM, thereby selecting the appropriate character.
For each raster line, addresses A3-A7 select in sequence the character codes of the 32 character line specified by A11-A15 (32 lines). This repeats over eight lines for each character row as the address lines A8-A10 select each of the eight rows of the characters stored in the ROM. This is difficult for some people to visualise. If you imagine the addresses AO-A15 going through a straight binary sequence you should be able to work out what, in terms of character codes in the RAM and character data in the ROM, will appear on the video output stream.

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carafully selected sets of parte to enable you to contruct H.E. projacts. Kitu include ALL the electronics and hardware needed. Printed circuit basids (fully atched drilked and roller tinnedl of Veroboard are, of course, included ss specified in the origins article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES uniess otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET NCLUDED. If you do not have the issue of H.E. which includes the project - you wil

Amprinte evaliable separetely 45p each + p. 8 p. 40p.

AUTO TESTER May 83
STALL THIEF May 83 (inc relay) £10.22
STEREO VOICE OVER UNIT April 83 17.52

OPTIONAL MIC PRE AMP April 83 (no
auto pow
CB.O5
STEREO NOISE GATE Dec 82 E15.36
APE/SLIDE SYNCHRONIZER DOC 82 r1.7
81G EAR Dec 82 less pipe parts EB .21 MICROAMMETER ADAPTOR DEC 82 f4.88
ODOMETEA Nov. 82 f14.96
DIANA V.C.O. Nov 82 f4.89
CB SOUELCCH UNIT Oct 82 ©9.19 'JUNIOR' SLOT CAR CONTROLLER
Sepl 82 E6. 60 less case.
20 INTERFACE BOARD Sopt 82 inc odge con 611.30 .
T.V.I. FILTER July 8205.38

AUTO WAH June 82 E18 88 inc case or
$c 12.28$ less cese
AUTO GREENHOUSE SPRINKLER June 82 C15.38 less pump and powe supply IIZ 2A).
TELEPHONE TIMER June 82 E33.42 less power supply (suitable type below)
PONe 82 f9 9 June $82 f 9.98$
ECHO REVERB UNIT May 82. Less case ES3.98. Economy case WB3 83.78 extre. cluding case + bezel $£ 16.50$ AUDIO SIGNAL EENERA 220.38.

CABLE TRACKER May 82 f9. 9
DIGITAL CAPACITANCE METER. Apr 82 C21.37
SIGNAL TRMCER Apr 82 £3.86
BHKE ALARM Apr 88 C11.7
DHGITAL DICE Mar 82 e7 29.
BICYCLE SIREN Mer 82 C10.89
NOISELESS FUZZBOX Feb 82 E10,46
DRUM SYNTHESIZER
C21.37 SYNTHESIZER DOC 81. Full kil
GUITA
AMPAONE AMPLIEA N CAR
H CAR CASSETTE POWER SUPPLY
SCRATCH FILTER NOV 81 Móno ES. Stereo 58.98
LED VU METER Nov. 81 less case $[4.87$ SIMPLE STYLUS ORGAN Nov 81 less Case E4.98
METRONOMENOV
MORE PROJECT KITS - SIMILAR STVLE TO H.E
INSTRUCTIONS INCLUDED (SEPARATELY 45p EACH)
PLEASE QUOTE REF. NO. WHEN OROERING ecterer' 7.65

B11 IN SITU TRANSISTOR TESTER
f6.98 COMPONENT TESTER 58.88 B4 GUITAR NOTE EXPANDERE17 98 B6 CAMERA OR FLASH GUN TRIGGER Infra red system C12.61
G5 SIMPLE INFRA RED REMOTE CONTROL 1720
87 O-12V POWER SUPPLY E17.9
B9 SOUNO TO UGHT - single channe
68.42 TO

B1O THREE CHANNEL SOUND TO

IN OUR LISTS FREE PRICE LIST
Price list uncluded with
orders or send sae 19×4 ONTAINS LOTS MORE KITS, PCBS $\&$
COMPONENTS

ELEPHONE BELL REPEATER Oct 8 13.67

COMBINATION LOCK Oct 81 less solenoid E18.65
BABY ALARM Oct 81 c8.70. Fig 8 linking wite 7p गmetro
DIANA METAL LOCATOR Sept 81
GEACTION TESTER GAME Seot BI E12.81
VARIABLE BENCH POWER SUPPLY Aug 81 [2 98
ULTRASOUND BURGLAR ALARM July 81 E19.98
ELECTRONIC DOOR BUZZER JUly 8
5.98

ELECTRONIC METRONOME July 81 4.99

CONTINUITY CHECKER June 81.56 .71 ENVELOPE GENERATOR June B 17.98

AUDIO MIXER June 8185.33
UBLIC ADDRESS AMPLIFIER March 1 [19.40. Extras , horn spoakers 58.83 enh, PA MIC E4.4
FUZZBOX March 81 f10.se
NNDSCREEN WIPER CONTROLLER
STEAM LOCO WHISTLE March 8 12.96

HOTOGRAPHIC TIMER March 81 3.50

HEARTBEAT MONITOR Fob 81 c24.98 TWO-TONE TRAIN HORN FEb 81 C5. 60 lass case
modhum wave redib fob 81 ce 20 BENCH AMP Jan 81 c10.60
NICAD CHARGER Jan 8168.20
BATTERY CHARGE MONITOR Dec 82 65.77 . 17 ESISER Nov 8 Dedc 80 c20 98 TRANSISTOR TESTER Nov 81 EE.54 inc osi leads
GUITAM PRE-AMP Nov 80 c6.65 case (diecast) extra EZ.20
NTRUDER ALARM OCt 80 E20.98 TOUCH SWITCH Sept 80075 less case comacts
UUIAR PHASER Sopt 80 £16.28 SOUND OPERATED FLASH TAIGGER July 80 no skt $E 6.30$
OG HOAN June 80 IE. 6
SPEED CONTROLLEM FUH HLL ADOI Q C17.E5 (less case)
UIGITAL FREQUENCY METEA April 80 IGGITAL FA OUT
GUITAR YUNER Nov 79 C12.82
CAR ALARM FOB 79 E12.91

812 WEIRD SOUNO EFFECTS GENERATOR E6.98
B13 AUOIBLE VISUAL METRONOME厄5. 98
B14 ELECTRONIC DICE 55.71
B16 MINI EGG TIMEA $£ 4.34$
B18 LED JEWELLERY -- Cross brooch E2.77 Siar brooch 99.91 Spiral brooch 87.98

MORE KITS AND

 COMPONENTS1982 ELECTRONICS CATALOGUE
liluswations, product descriptions, circuite all in cluded. Up-to-date price list enclosed. All products are slock lines for fast deivery.
Sends 80 p in stemps or add 80 p to order.
MORE H.E. PLUS E.E. and E.T.I. PROJECT KITS IN THE PRICE LIST

MAGENTA gIVEB YOU FAST DELIVEAY OF QUALITY COMPONENTS KITE All products are stock lines-and are new a fuli specification We
wality product to all ouf customer MAV YOUTRIED US?

MAGENTA ELECTRONICS LTD

HY37, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS. DE14 2ST. 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY ADD 45 p P\&P TO ALL ORDERS. PRICES INC VAT

ACCESS and BARCLAYCARD IVISAI ORDERS ACCEPTED BY PHONE OR OS
SAE ALL ENCUIRIES

Prwas inc. VAT

OFFICIAL ORDEAS WELCOME OVERSEAS Poymient mull bo in stopting. IUROPE UK PRICES DIWE IOK MICES C.SEWHEAK Write for quote

SOLDERING / TOOLS

ANTEX X5 SOLDERING IRON 25W
 SPARE BITS. Small standard, large, $85 p$ each. For $X 5+X 25$ SOLDER. Handy size SOLDER CARTON DESOLDER BRAIO HEAT SINK TWEEZERS DESOLDER PUMP HOW TO SOLDER LEAFLET LOW COST CUTTERS. LOW COST LONG NOSE PLIER
WIRE STRIPPERS \& CUTTERS. PRECISION PETITE
$12 V$ P.C.B. DRILL....
aESISTOR COLOUR CODE CALCULATOR CONNECTING WIRE PACK IILUMINATED
Small 2"
(marg $3^{\prime \prime}$ die. ($4 \times$ mag.)
CASTIRON VICE.
SCREWDRIVER SET
POCKET TOOL SET
DENTISTS INSPECTION MIRR
. 12p .12p

f 1.69

11.68
62.69
[11.87 GRINDING STONE... GRINDING WHEEL
SAW BLADE.
BRASS WIRE BRUSH BURR
 PLASTIC TWEEZERS PAIR OF PROEES WITH IEAD... 89 p

$20,000 \mathrm{opv}$. Includes transistor tester $A C+D C$ volts. OC current. 4 very uselul resistance ranges.
We've used it and we like it

MULTIMETER TYPE 2 YN360 TR
 £14.75

30 SOLDERLESS BREADBOARD PROJECTS
Book by A. A. Penfold
Clear verobloc layouts and circuin diagrams. Includes: fuzz box, radio, metronomes, timers, transistor checker, switches, etc. Introduction gives basic information on camponents including resistors, capacitors, IC's, rransistors, photoceil etc. Ideal for beginners as well as those with some experience. Complete kit including verobloc book, and components.

or (Lees merthol
90.25
0.6

BOOKS

SEMICONDUCTOR OATA BOOK
ELECTHONIC PROJECTS FOR HOME SECURITY
ELECT. PROJECTS IN PHOTOGRAPHY
110 ELECT. ALARM PROJECTS MOOEL RAILWAYPROJECTS

BEGINNERS GUIOE TO BUILOING

PROJECTS

ADVENTURES WITH ELECTRONICS

An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Gives clear instructlóns with tols of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $£ 2.40$. Component pack $£ 18.98$ less battery.
stop-by-stop fully ated assembly included together
Highest quality
components are used throughout.

0 00 ?
 BRANDLEADING ELECTRONICS NOW AVAILABLE IN KIT FORM

AT-80

Electronic Car Security System

Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape, C8 equipment

- Programmable personal code entry system
- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen - Fits all 12 V neg earth vehicles - Over 250 components to assemble

SX1000

Electronic Ignition

- Inductive Discharge

Extended coil energy
storage circuit
Contact breaker driven

- Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all $12 v$ neg. earth vehicles

SX2000

Electronic Ignition

The brandleading system on the market today - Unique Reactive Oischarge

Combined Inductive and
Capacitive Discharge

- Contact breaker driven
- Three position changeover switch - Over 130 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg earth vehicles

THIS DEVICE is primarily intended for use with a CB rig, and it provides two functions: first it gives a latching action so that once the PTT (Push-toTalk) switch on the microphone has been pressed and released, the rig will stay in the transmit mode. In order to switch back to the receive mode the PTT switch is again operated briefly; a nother momentary operation of the switch sends the rig back to the transmit mode, and so on. This avoids having to hold down the PTT switch throughout transmissions, and is more convenient in use (especially during long periods of operation when repeatedly holding down the switch can become a bit tedious).
The second function is an automatic return to the receive mode after about 36 seconds. This is included as a failsafe system to ensure that the equipnient cannot be accidentally left transmitting, blocking a channel for a long period of time. If you should accidentally leave the unit in the transmit mode it will simply revert to receive after 36 seconds and prevent the channel from being blocked for any longer than that. It also discourages long uninterrupted transmissions which tend to be unpopular with other CB users! A LED indicator switches on about ten seconds or so before the unit automatically reverts to the receive mode so that the user has reasonable warning before the transmission is cut off. Of course, once the unit has automatically returned to receive it is simply necessary to push the PTT switch again in order to return to transmit.

PTT Switching

The microphone PTT switching and latching action circuits are shown in Figure 1. The PTT switch is usually a double pole changeover type, with the centre tag of one pole connected to earth. The switch is biased to the receive position by a simple spring mechanism, and this produces a short circuit from the NC (normally closed) tag to earth. This is used to provide the path to earth for the loudspeaker and, more importantly, to disconnect the loudspeaker when the switch is placed in the transmit position. This is because there is often a significant level of breakthrough from the microphone to the loudspeaker, and if the loudspeaker was to be left connected it would result in acoustic feedback and could even cause oscillation. The short circuit that is produced from the NO (normally open) tag to earth when the switch is set to transmit is used to operate the transmit/receive switching within the rig. This can be performed using a relay, but in most modern rigs purely electronic transmit/receive switching is used.
The other pole of the PTT switch is used to disconnect the microphone when set to the receive mode. While this may seem pointless it must be remembered that the transmit/receive

R. A. Penfold

> This click-in, click-out latching switch also incorporates a time-out function.

Figure 1. Switching and latching circuits: note the link wire.

How It Works

THE PTT switch is not used to directly control the transmit/receive switching, but is instead used to control a relay and the relay contacts then control the rig. A divide-by-two flip-flop circuit is used between the PTT switch and the relay driver; the output of this changes state each time the PTT switch is operated. If the output of the flip-flop is initially low (the relay is switched off), operating the PTT switch sends the output of the flip-flop high and switches on the relay. This takes the rig from the receive mode to transmit. Operating the PTT switch again sends the output of the flipflop low, so that the relay switches off and the rig is set back to the receive mode. Another operation of the PTT switch sets the rig to the transmit mode again, and so on, so that only a brief operation of the PTT switch is needed to switch modes.

A simple timer circuit is triggered each time the relay is switched on and the rig is placed in the transmit mode. If the relay switches off before the end of the output pulse from the timer, a reset pulse is sent from the relay driver to the timer circuit. This pulse ensures that when the timer is triggered again it commences a fresh timing run and gives a full length output pulse. However, if the pulse from the timer finishes first, the flip-flop is reset and the rig is returned to the receive mode.
A voltage comparator monitors the voltage on the timing capacitor in the timer circuit, and when this reaches a certain threshold level (which occurs about ten or fifteen seconds before the pulse from the timer ceases) the comparator switches on a LED indicator.

switching within the rig will operate very rapidly but not instantly. The result could be a short burst of oscillation, due to acoustic feedback, when releasing the PTT switch since the loudspeaker would be instantly reconnected while the rig would take a moment longer to go to the receive mode. In practice this would be unlikely to happen unless the microphone and the loudspeaker were in very close proximity to one another, but the PTT switch ensures that it cannot occur, as it will only connect the microphone or the loudspeaker to
the rig, and not both at once.
The latching action of the unit is obtained using a simple divide by two flip-flop circuit which drives a relay. The PTT switch provides a short circuit to earth each time it is operated, and this is used to clock the divide by two circuit and change the state of the relay. The latter has a pair of changeover contacts which are used in place of the PTT switch.
Note that the PTT switch must have a link wire added, as shown in Figure 1. If this is not done, the microphone would be disconnected by the PTT
switch when it was released, and the microphone signal would not be coupled through to the rig.

The Circuit

The full circuit diagram of the Rap Latch unit is shown in Figure 2. The divide by two circuit is a CMOS 4020BE device (IC1): it is actually a 14 -stage binary counter but only the first stage is used here. Although it may seem wasteful to leave more than 90% of the device unused, where a single, simple flip-flop is needed there is not much choice. The 4020BE is not an expensive device anyway, and in this application it is ideal because it has a Schmitt trigger input and, together with R1 to R3 plus C1, this eliminates problems of multiple operation due to contact bounce in the PTT switch. The 4020BE is clocked on the negative edge of the input signal and the PTT switch is therefore used to generate a negative going signal when it is operated so that IC1 is clocked immediately, rather than as the PTT switch is released. R4 and C2 provide a reset pulse for IC1 at switch-on, so that the circuit starts with the relay switched off and the CB rig in the receive mode. Common emitter transistor Q1 is used as the relay driver.
The timer circuit is a standard 555 monostable (IC2), and C4 couples a brief trigger pulse to this as the relay switches on. Pin 4 is the reset terminal of IC2 and this is taken high by R8 so that the timer operates normally. However if the relay switches off before the end of the timing period, C3 couples a positive pulse to the base of O3, and this device momentarily pulls pin 4 of IC2 low so that the monostable is reset and will start a new timing run when it is triggered again.

If the output pulse of IC2 is allowed to reach a natural conclusion, a negative pulse is coupled to the base of Q 2 by C 5 , and this results in Q2 briefly switching on. This gives a reset pulse to IC1 so that the relay is switched off and the rig is

Figure 2. The entire Rap Latch circuit.
automatically returned to the receive mode.

IC1 is the voltage comparator, and this has a reference voltage of about half the supply potential set at its inverting input by R11 and R12. R10 couples the non-inverting input to C6, the timing capacitor for IC2, and the potential on this capacitor will normally be less than half the supply voltage. This gives a low output from IC3 and LED 1 is not switched on.
If the charge on C6 is allowed to go beyond 50% of the supply potential, though, the non-inverting input of IC3 is taken to a higher voltage than the inverting input, IC3's output goes high, and LED4 switches on. The output pulse from IC2 does not end until the charge potential on C6 has reached two thirds of the supply voltage, and LED1 is therefore switched on several seconds before the pulse from IC2 ends.

Note that IC3 is a MOSFET input device which draws no significant current from the timer circuit and does not have any detrimental effect on it. Due to the high value timing resistor (that must be used to give the fairly long pulse length from IC2), it is essential to use a good quality component for C 6 ; for this reason a tantalum capacitor is specified. The switch-off time provided by IC 2 can be changed if desired, and the time in seconds is nominally $1.1 \times \mathrm{R9} \times \mathrm{C} 6$. where R is in ohms and C is in microfarads.

Construction

Details of the printed circuit board are provided in Figure 3. IC1 is a CMOS device and IC3 has a PMOS input stage, so these both require the usual MOS handling precautions. Fit them in IC sockets (sixteen pin for IC1 and eight pin for IC3), handling them as little as possible, and do not fit them until the unit is complete in all other respects.
Provided the specified relay is used, this will fit directly onto the printed circuit board. It is possible to use any

Parts List

RESISTORS (All $1 / 4$ watt 5% carbon)	SEMICONDUCTORS IC1 4020BE
R1 10 R	14-stage ripple counter
R2,3 2k2	IC2 . 555
R4 . $22 \mathrm{2k}$	timer
R5 12 l	IC3 CA3140E
R6,7,10 10k	MOS op-amp
R8......................... . . 4k7	Q1,3 BC109 NPN
R9 1 M	Q2.................. BC179 PNP
R11.12.... 3 3k3	D1,2,3 1N4148
R13......................... 1 k 5	LED4 TIL209
CAPACITORS	3 mm red LED
C1..................... 1u 63V	
C2 10 n	MISCELLANEOUS RLA 400 R 12 V relay
polyester	DPDT contacts, min. PC-mounting
C3,5 100n	SK1/PL1 . . . 4-way locking audio
polyester	connectors
C4........................ . 4n7	Four-way screened cable; case;
mylar	PCB; wire, solder etc.
	BUYLINES page 34
C7.................... 100u 16V	

relay having a 12 volt operating coil with a resistance of about 300 ohms or more, provided it has at least two sets of changeover contacts, but if a relay other than the specified type is used it may be necessary to extensively redesign the printed circuit layout, or mount the relay offboard.

An aluminium box measuring 102 mm wide by 133 mm deep by 38 mm high makes an inexpensive but practical housing for this project. If an alternative case is used it is advisable to choose a metal type so that any exposed microphone lead is screened by the case. A somewhat narrower case could be used, but the depth and height dimensions given above represent just about the minimum usable figures.

A LED indicator, LED1, is mounted on the front panel in the normal plastic panel clip, and SK1 is mounted to the right of this (as shown in the
photographs). SK1 will probably need to be a four-way locking audio connector, but a few rigs use a DIN microphone connector and, if necessary, SK1 must be altered accordingly. PL1 is a matching plug for SK1, and this connects to the printed circuit board via a four-core screened cable. The earth connection is carried by the outer braiding of the cable plus one of the inner conductors. This leaves three inner conductors to take the remaining connections.

Wiring SK1 and PL1 to the unit correctly represents the only awkward aspect of construction, and the circuit diagram of the transceiver should include details of the connections between the microphone insert, PTT switch, and microphone plug. Reference to this, plus Figures 1 and 3 of this article should make the correct method of connection clear. If a circuit diagram of the transceiver is

Figure 3. PCB overlay, using the 400R 12 V relay specified.
not available it should be possible to deduce the correct method of connection by opening the microphone and output plug and examining the wiring. It would be sensible not to attempt this project unless or until you are confident that SK1 and PL1 can be connected correctly for your rig!

An exit hole for the output lead is drilled in the rear panel of the unit and this should be fitted with a grommet, A two way terminal strip is also fitted on the rear panel, providing a convenient way of connecting the unit to a 12 volt power source (which can be either a car battery or a CB mains-powered supply).

Inside the Rap Latch.

As explained earlier, a link wire must be added to the PTT switch to prevent the microphone from being disconnected when the switch is released. With most PTT microphones, it is possible to gain access to the switch by removing three screws at the rear and then carefully removing the unit; microphones of this type are readily available, if your rig was supplied with a less accomodating type! There should only be two leads connecting to one pole of the switch - one coming from the microphone insert and the other being part of the microphone lead. The link wire is soldered across the two tags to which these leads connect, but make sure that you do not accidentally desolder one of the leads.

Testing

Connect the unit to the 12 volt DC power source, being careful to get the supply poldrity right. With the microphone connected to SK1 the relay should switch on or off (as appropriate) each time the PTT switch is operated. If the relay if left switched on, after about 20 to 25 seconds LED1 should switch on, and after a further ten to fifteen seconds both LED1 and the relay should switch off. Once the unit is functioning correctly it can be connected to the rig (ie, connect PL1 to the microphone socket of the rigl for an on-air test.

Do you think that designing and understanding electronic circuits is beyond you?

The summer edition of Electronics Digest, Gateway To Circuit Design, provides a step-by-step introduction for the newcomer to the art of circuit design. Firstly, you'll be introduced to the commoner electronic components - but not in a passive way. Electronics is a practical subject, so Gateway To Circuit Design will enable you to build simple circuits for yourself, and take measurements on them (along the way learning how to use a multimeter). Once these introductions are over, Gateway To Circuit Design shows you what goes into the design of a wide range of electronic equipment - for audio, computing and electronic music, for instance.

Gateway To Electronics is an occasional popular series in Electronics Digest, published by Argus Specialist Publications. Previous issues in the series have concentrated on projects; now we'd like you to design your own!

At all good newsagents now or available by post from Electronics Digest, 513 London Road, Thornton Heath, Surrey.

We'd like to show you that you're wrong

ROBOTICS FANS!!! LOOK!!

ONLY
f4.95

"BIG TRAK" MOTORIZED GEARBOX

These units ate as used in the "Blig Trak" computerized vehicie, and offer the experimenter in robotics the opportunity to purchase the electro mechanical pars required in building remore con
al $2 \times 3 V$ motors. linked by a magnetic clutch, thus enabling turning of the vehicte; b) A gearbox
prox 50 rpm .

Data is supplied with the unlt showing various options on driving the motors, as well as a direction controller circuit. enabling the unit to turn right. lefh or go straigt ahead.

2N3055

scoopll

Made by Texas - hull spec devices, 60 pach; 10
for $\mathrm{E4} ; 25$ for $\mathrm{ES} ; 100$ for $[34 ; 250$ for $E 75 ; 1000$ for C 785.

COMPUTER SOFTWARE

We now sell range of tapes and books tor
ORAGON 32, SPECTRUM, ZX81, BBC and ORAGON 32, SPECTTUM, ZX81, BBC and
VIC20. Send i.a.e. for list stating to which com puter requined, or call in our shop.

SIMON GAME
Simon is back again. Another supply of ready buitt PC8's for this flashing light/pulsaring tone com.
puterised game is now with us. Supplied tested

COMPUTER BATTLESHIPS

Probably one of the most popular electronic makes if impractical to test the PC8 as a workign model, although it may well function perfectly, in. stead we have tested the sound chip, and sell the
board for its component value only iPCB may be chipped or cracked). SN76477 sound IC: TMS 1000 u-processor; batt clips, R's, C's etc. Size $160 \times 140 \mathrm{~mm}$. Oniy E1.50. Instruction book and circuit 30 p exta.

LIE DETECTOR
Not a toy, thus precision instrumert was originally
pant of an "Open University" course, used to measure a change in emotional balance, or as a lie dotector. Full details of how to use it are given,
and a circuit diaytam. Supplied complete with and a circuit diayram. Supplied complete with
probes. reads and conductive jelly. Needs $2 \mathrm{a} ; \mathrm{V}$ probes, leads and conductive ielly. Needs 2 i, V - worth that for the case and meter alone!

AA NI-CADS 10 for $\mathbf{6 9 . 9 5}$ Crand new nickel cadmium batteries by GE, stan.
dard 1.2 V at $450 \mathrm{~mA} / \mathrm{H}$. Prolessronal quality with soider tags both ends. Special price, $51.40 \mathrm{ea} ; 10$ for c9.95; Box of 80 c85. Nicad Chargor: Charges up to 4AA, C or D cells

+ PP3. Only $\mathbf{~} 7.95$.

NOW REDUCED TO £3.95
 ELECTRO DIAL

Electrical combination lock for maximum securitypick proof. One million combinationsll Dial is turn
ed to the right to one number, left to a second number, then rught again to a third numbet. Only when thls has been completed in the correct se quence will the electrical contacts clase. These
can be used to operate a relay or solenoid. Overall can be used 10 operate a relay or soleno
dia $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep. Only $\mathrm{E3}. \mathbf{\$ 5}$.

FERRIC CHLORIDE

New supplies just arrived $\overrightarrow{ } \quad 250 \mathrm{mg}$ bags of
granules, easily dissolved in 500 ml of water. Only granules, easily dissolved in 500 ml of wate
ET, 75. Also abrasive polishing block $\$ 5 \mathrm{sp}$.
STABILIZED PSU PANEL
A 199 A versatile stabilsed power supply with both
voltage $(0.30 \mathrm{~V}$) and curremt (20mA-2A) fully varlable. Many uses inc bench PSU. Ni-cad charger, gen, purpose testing. Panel ready bulit,
lested and caliorated $\mathbf{~} 7.75$. Suitable wansformet lested and caliorated E7.75. Suitabie
and pors $\mathrm{EE}, 00$. Full data supplied.

REED RELAYS

Manufacturers rejects -OIL and other PCB
mounting mounting types. SP. OP and $4 P$ - make, break
and c/o contacts. Not tested, so may be only par-

TELESCOPIC AERIALS
As used in Shictaif
100-810 mm. Only spo.
IN4148 - BEST PRICE EVER
Supplied in packs of 100, by Toshita $E 2$ per pack; 3 packs 25.5
packs $£ 115$.

COMING SOON

MORE COMPUTER GAMES PCB'S - MICROVISIONS, ALPHIE, AVENGER, INTRUDER, AND STARBIRD

GREENWELD

443A MILLBROOK ROAD, SOUTHAMPTON SO1 OHX
All prices include VAT - just add 50p post. Tel (0703) 772501

CAMBRIDGE LEARNING SELF-INSTRUCTION COURSES

NEW MICROPROCESSORS \& Microelectronics $£ 6.50$

Now you can learn all about microprocessors their construction, design, and operation - using our programmed learning technique. Suitable for all ages, all levels of interest, this course has been designed for ease of understanding. It assumes no prior knowledge other than arithmetic; and at the end you will know what that piece of "black plastic" in your computer is actually doing.
Contents include: algorithm design, programmable logic, microcomputer architecture, a microprocessor family, semiconductor technology, number systems, arithmetic - integer and floating point, data representation and scaling, 'programming, microprocessor development system.
GSC SUPERKIT
$£ 19.90$

DIGITAL

COMPUTER DESIGN

Learn the wonders of digita electronics - without the problems of soldering.
This practical beginners' kit comes complete with instruction manual, components, and EXP300 breadboard to teach you all the basics of digital electronics. The only extra you need to buy is a $4 \frac{1}{2} \mathrm{~V}$ battery.
This self-instruction course teaches gating, boolean logic, R-S and J-K flipflops. shift registers, ripple counters, and half-adders. This up-to-date theory course covers the design of digital computers, both from their individual logic elements and from integrated circuits. You are first shown the way in which simple logic circuits operate and then, through a series of exercises, arrive at a design for a working machine.
Please send for our free booklist for further information on these and our other courses.

GUARANTEE No risk 10° you. If you are not completely salisfied, your money will be refunded upon relurn of the tiem in good condition within 28 days of recelpt. CAMBRIDGE LEARNING LIMITED, UNIT 95 RIVERMILL SITE, FREEPOST, ST IVES, CAMBS, PE17 $\angle B R$. ENGLAND. TELEPHONE: ST IVES (OL80) 67L46. VAT NO 313026022 All prices include worldwide postage lairmail is exira please ask for prepayment invoice). Giro A/c No 2789159. Please allow 28 days for delivery in UK.

SUPERKIT(S) © 19.90
DIGITAL COMPUTER DESIGN(S) $\mathbb{C} .50$
MICROPROCESSORS \& MICROELECTRONICS @ £6.50

$$
\begin{aligned}
& \text { I enclose a "cheque/PO payable to Cambridge } \\
& \text { for } \mathbb{E} \text { delete where applicablel }
\end{aligned}
$$

```
Please charge my:
```

*Access / American Express / Barclaycard / Diners Club
Fiurocard / Vina / Mastercharge / Trusicard

```
Fixpmry Diate........... Ciredit Card No
```

Telephone orders from enrd holders accepted on 048067.66 Uverseas customers (including Eire) should send a bank draft in sterling Jrawn on diondon bank. or quole credit card number.

Name.

Address. in Eingland No 1328762).

When you need to update yourself with all that is available in the "Do-it-yourself" market, then you need the Hobby Herald.
Packed with product information essential to the electronics enthusiast, this new electronics catalogue lists over 60 exciting products ranging from All Purpose Cutters to Verobloc, the solderless breadboard. All products are available throughout the U.K. from over 200 stockists.

HOBBY HERALD

Alternatively ordering products through the Herald is simplicity itself, and you can pay by either cheque, Barclaycard or
Access.
So make sure you
 get your copy of Hobby Herald by ringing

(04215) 62829.

 SO5 3ZR.

CAREERSIN ELECTRONTCS

> If you are looking to the future with an eye towards a career in electronics, you could do worse than checking out the lot of the technical writer. Theirs is the sort of career which would interest people who care about their work, who would enjoy writing and who like plenty of variation.

ESSENTIALLY, there are two directions a technical writer can take his communicative talent - into technical journalism or technical authorship. Each direction demands a different approach, and each requires a different -writing style (see later examples) but, even so, many similarities exist between the two careers, allowing the possibility of moving from one to the other. I suppose I am a good example of such an exchange. My initial background in writing was technical journalism but, after a number of years, I decided a change was a good idea and so moved to technical authorship. Now, incidentally, I do neither for a living, but it's like riding a bike - once the skills have been learned they will never be forgotten. And writing is a skill. Don't let anyone tell you it's an art which cannot be learned because that is just not sol

The Same But Different

Both technical author and technical journalist are concerned primarily with the reader. The author's reader will probably (though not always) be an engineer or technician: often the service engineer who repairs faulty equipment belonging to a customer. Speed of repair is the most important factor to him - the sooner the equipment is working again, the sooner the customer is happy! Readers of a journalist's work, however, will probably be members of the public, and this pin-points the main difference between the author and the journalist: the author has a captive audience - his reader will read because he needs to know specific information. The journalist's reader will only read if he is interested. So, the writing style must differ to cater for the different readers.

The author must be concise: his work must be purely factual and written in as logical and clear a manner as possible.

Getting In Touch

The two writers' professional organisations, the NUJ and ISTC, will be able to provide information about relevent training courses. Their respective addresses are:

NUJ, Acorn House, 314-320 Gray's Inn Road, London, WC1X 8DP.

ISTC, 17 Bluebridge Avenue, Brookmans Park, Hatfield, Herts. AL9 7RY.

In comparison, a journalist's work may be quite 'loose' and not so strict regarding, say, grammatical construction or formality. This is because the journalist's reader has time to re-read an article if it wasn't fully understood on first reading. Personal feelings may be displayed by the journalist but this would be frowned upon if shown by the author, because the author's reader needs to understand straight away the important points and not be bothered by trivia not directly concerning him.

Illustration is often best by example so I'm going to write two brief paragraphs now, which show the difference between the writing styles of the journalist and the author. Both paragraphs describe the same thing - a TV - and cover the same aspects, but in them the different writing styles (exaggerated for the purpose) are apparent.

How a journalist might write about the

 TV:The latest offering from the Itchitoesanfeet Company of Japan is the K3026, new 26 inch colour TV with advanced microprocessor-controlled circuitry to improve picture quality. Capable of receiving up to 12 different, preselected English TV channels, the set can also be adapted for use worldwide. This TV is the first of a

A page from the technical manual for Multitone Electronics' ICS 100 Internal Communications System. The technical author not only writes the text but also prepares the drawings.
completely new range of 5 screen sizes to be introduced by Itchitoesanfeet. The range will extend down to a 12 inch portable TV and all TVs will feature similar picture quality improvments as in the K3026.

How the author might write about the TV:
A new receiver chassis has been released: the K30. The chassis is used with a range of colour tubes of: 26 inch; 22 inch; 18 inch; 14 inch; 12 inch sizes to give identical electrical features to all. television receivers in the K30 range.

Features include:

- plug-in PCB option to select picture
format (PAL, SECAM, NTSC)
- preselect tuning of 12 reception
frequencies in the range 40 to 860 MHz .
First television to be marketed from this range is the K3026.

You'll see, I hope, that both examples say more or less the same thing but in very different ways!

Qualifications

Any kind of technical writing, combining as it must an understanding of electronics at some level with the ability to write sensibly and with clarity, is a kind of a hybrid craft for which there is very little specific formal training of

The conclusion of the technical author's labours: a service engineer slaving over a hot soldering iron, the technical manual by his elbow.

```
2.5 Slave Power Supply
```



```
        botween the master power sipply bus ano mie slave powees supoly bus
    2.5.1 Mams Input Volt age selection
    The power sumply maybes
    10 VAC. I20 VaC. 220 VAC. 240 VAC
    The power suody mustbe straon
    2.5.2 Output Comnections
    20fl ,".auouch sockets,
    Muithe stave suody bus 
        104"/4" audo moct socter s
    2.6 Slations
    Each stabor comians hs cun mucroprocsssormmich pentoms ine varous
```



```
        *)
        under acove ntwe dase of the unt
    2.6.1 Station Separation
        Slatons showw be mon
    2.7 Line Powered Bus Coupler
    Ame powemed bus counder mables a lee .0| armlobe commecled Io the
    mar cobe metruat reuse off slave powe mpopy,
```

Tasks for the technical author also include writing and preparing other documents such as the installation manual (above), user instruction books and even sales literature.
benefit to the prospective candidate.
Yet, technical authors, who are required to be more precise, generally need a greater depth of understanding and usually come to their trade from a diploma or degree level course in electronics. For such as these, courses are sometimes provided by universities or polytechnics at post-degree level, which offer short but intensive training in the discipline of writing. Such courses force-feed the graduate with enough information to allow a jump straight into either journalism or authorship; this jump can take place at a reasonably high levell

On the other hand, recruitment advertising seeking technical journalists will rarely specify a formal electronics background - though obviously some knowledge of the subject is necessaryl Of more importance in technical journalism is enthusiasm, the ability to work with other people, good humour under pressure (the corridors ring with laughter - Ed.) and the capacity to learn at all times.
At this end of the scale, ' A '-level or even ' O '-level students may be fortunate enough to be employed as a junior assistant; such vacancies often

The technical journalist at work: Steve Ramsahadeo, former project development editor of ETI, makes sure the project works before writing the text.
occur and many good writers have entered journalism or authorship this way. There nothing quite like experience and, it may reasonably be argued, three years of learning how to do the job, while actually sitting at the desk and doing it, will make a more able writer than any degree will. In the end, it all depends on the individual and making the best of an opportunity.

All good employers realise the importance of, and benefits gained by providing, an in-service training scheme of some description for their employees. Some universities, polytechnics and a number of specialist companies can help with such a scheme. All writers graduates, non-graduates, old, young, experienced, inexperienced alike will, because of this in-service training, be able to give greater service to the employer afterwards.

Union Dos

Whatever your career, it is always a good idea to join a professional a uthoritative body. The main journalists' organisation is the National Union of Journalists (NUJ) which, although officially a union, also provides information, news and views of current affairs involving journalists of all kinds. No member is under pressure to take an active rôle in the life of the union but, also, no member is prevented from doing so.

The technical authors" main professional body is the Institute of Scientific and Technical Communicators (ISTC), which provides a similar service as the NUJ in that news, information, details of courses and lectures of interest are regularly circulated to members

The Job Itself

The title 'technical writer' is slightly misleading, actually, since neither journalist nor author spends the whole day writing: putting pen to paper can only be attempted after an amount of research into the topic has been

Technical journalism also requires working with other writer's text. Often this means transcribing hand-written copy, editing it into the prescribed style for the magazine as it is re-typed.
undertaken. The writer must thoroughly understand the subject in order that his words convey the correct and full meaning to the reader because, if the writer doesn't know what he's writing about, how can the reader understand? At best the reader will not grasp the meaning, at worst he will be confused! So the first thing the writer has to do in his work is to study closely and carefully the topic he is going to write about.

The second thing is to think about is: who is the reader? How much does he already know about the subject? It is necessary to decide and define the reader at this early stage, before the writer begins an article or book.

When finally the article, manual, report, pamphlet, or whatever has been written, it must undergo a number of stages of close scrutiny in an attempt to remove all errors: in grammar, spelling, typing, accuracy etc. Often, in these stages, other people are involved, working as a team to produce the final printed work. Inevitably, errors will creep in at any or all of these stages, possibly making their way to the printed page, but a small team of, three people say, with experience, good management and just a little bit of luck, will be able to eliminate the majority.

I hope, in this limited space, I have been able to give an idea of the work of a technical writer, whether a journalist or an author. Both careers can be interesting and rewarding, and can give a high level of job-satisfaction. If you are interested in pursuing either career, your first stop is your local Careers Office; they'll be pleased to help and advise regarding suitability and be able to suggest methods of entering the profession. The rest is up to you!

Our thanks to Multitone Electronics P.L.C., 6-28 Underwood Street, London N1, who kindly supplied the technical manuals illustrating this article.

electropize

 AUTO-ELECTRONIC PRODUCTS

 AUTO-ELECTRONIC PRODUCTS}

KIIS OR READY BUIT

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION
 IS YOUR
 CAR AS GOOD
 AS IT
 COULD
 BE ?

* Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full putput even with a near flat battery.
* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Ehergy Discharge gives much more output and maintains if from service to service.
* Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition oufput is marginal? Total Energy Discharge gives a more powerfut spapk from idle to the engines maximum feven with 8 cylinders).
* is the PERFORMANCE SMOOTHa The more powerful spark of Total Energy Discharge eliminates the "near thisffes" whilst an electronic filter smoothes out the effects of contact bounce eic.
* Do the PLUGS and POINTS ahways need changing to bring the engine back to its best? Totel Energy Distharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance eithet. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
* TOTAL ENERGY DISCHARGE is a unique system and the most powerful on the market $-31 / 2$ times the power of inductive systems $31 / 2$ times the energy and 3 times the duration of ordinary capacitive systems. These are the facts:
Performance at only 6 volts (max. supply 16 volts)
SPARK POWER - 140 W , SPARKENERGY - 36 mJ SPARK DURATION - $500 \mu \mathrm{~S}$, STORED ENERGY - 135 mJ LOADED OUTPUT VOLTAGE

50 pF load - 38 kV ,
$50 \mathrm{pF}+500 \mathrm{k}-26 \mathrm{kV}$
We challenge any manufacturer to publish better performance figures. Before you buy any other make, ask for the facts, its probably only an inductive system. But if an inductive system is what you really want, we'll still give you a good deal.
t All ELECTRONIZE electronic ignitions feature:
EASY FITTING, STANDARDIELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELIABILITY (14 years experience and a 3 year guarantee).

* IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic rools.

Most NEW CARS already have electronic ignition. Update YOUR CAR

PROTECT YOUR CAR WITH AN ELECTRONIZE ELECTRONIC ALARM

* 2000 COMBINATIONS provided by an electronic key - a miniature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit codel.
* 60 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.
\& 10 SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
* INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
t 30 SECOND DELAY when system is armed allows owner to lock doors etc.
* DISABLES IGNITION SYSTEM when alarm is armed
\& IN KIT FORM it provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everything down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES
SUPPLIED COMPLETE WITH ALL NECESSARY LEADS AND CONNECTORS PLUS TWO KEY PLUGS

Don't Wait Until Its too Late ~
Fit one NOW!
fill in the coupon and send to:
EHECTRONIIE DESIGN Dept E. Magnus Rd. Wilnecote. Tamworth. B77 58Y. tel 0827281000
TOTAL ENERGY DISCHARGE (6 or 12 volt negative earth)

Assembled ready to fit
£26.70 £19.95 D.I.Y. parts kit £15.50 £14.95

TWIN OUTPUT. for cars and motor cycles with dual ignition

Twin. Assembled ready to fit Twin, D.I.Y. parts kit
£36.45 £29.95
£24.55 £22.95

INDUCTIVE DISCHARGE (12 volt only)
\square Assembled ready to fit
£15.95 £12.75

CAR ALARM

Assembled ready to fit
D.I.Y. parts kit
£24.95
I enclose cheque/postal order OR debit my Access/Visa card

Name
Address

GMMIET

Portable Induction Loop

Following the degree of interest that our feature on Induction Loops aroused, Vivian Capel has designed a practical system. Now there's no excuse for the hard-of-hearing to be left out of things anymore.

Tech Tips Special

Eight pages of ingenious, novel, and money-saving designs from one of the country's largest design teams - yourselves.

Microcomputer Output Driver

Don't let your micro just sit there, contentedly passing information back and forth inside itself - get it busy working for you, with this 16 -channel output driver.

TV Storage Scope

This little unit will enable you to utilise your TV screen to display oscilloscope waveforms. It's always seemed illogical
that you have to use two CRTs for different jobs, hasn't it now you can use just the one. Not only that, but the unit will store waveforms too, all for under $£ 100$.

Oscilloscope Survey

Just in case you're too lazy to build the TV Scope, we're taking a look at the options open if you want to buy one. And if you're too poor to afford a new scope, we'll be examining the state of the second-hand market too. If you're on the look-out for test equipment, don't miss the July issue of ETI.

> LOOK OUT FOR THE IULY ISSUE ON SALE JUNE 3rd

THE ELECTRONIC REVOLUTION:

In the last of the series, we scan the least celebrated but most ubiquitous aspect of electricity. Without household gadgets, not many people would have the time to experiment with micros or relax with the video. Nor are we just talking about the ladies - you could have been chopping the wood or salting a side of pork. What a difference a plug makes . . .

Getting back to the basics: an early electric eggbeater, c. 1920; with no handle and precious little insulation. it was definitely not intended for portable use!

John Biggins

Over the past hundred and fifty years electricity has brought about two of the most spectacular changes in the entire course of human affairs. One was the communications revolution, which began with the electric telegraph, and gained momentum in the years between the Wars with the development of broadcasting by wireless and television. The other was the great cybernetics explosion which began with the first electronic computers in the years just after 1945 and which was accelerated in the 1950 s and 1960 s by the application first of the transistor and second of micro circuitry. Both these developments have had incalculable effects on the way we live and think. But what about the third and quietest of the electronic revolutions: electricity's overthrow of traditional order in the domestic world?
This might not seem much when compared with the other two. There were no Zworykins or Marconis, and it was only very rarely - with things like the hair-drier perhaps - that electricity produced a completely new service
rather than greatly improving an already existing one. Yet the changes which electricity has brought about in the kitchen and the laundry since 1900 have been quite as momentous in their way as broadcasting or computers. Throughout the developed world even in a fitful sort of way in the Communist part of it - it has liberated half the population from the endless back-breaking tyranny of household labour, reducing domestic service as a form of employment and spawned an economic sea-change (labelled the Consumer Society) in the process. If you want to find the origins of Women's Liberation look as much to the small, mass-produced AC electric motor as to the pill.

Not bad. But how did all this happen? The answer is, very gradually. Public electricity supply had started out in the USA and Britain at the beginning of the 1880s as a street- and house-lighting service and although a couple of the early electricity generating pioneers notably Thomas Edison - had tried to build up demand for power by marketing a range of consumer electrical gadgets, public use of electricity had been very slow indeed to get beyond illumination;

A Crompton electric iron from 1891 - an advance on the old style of fireheated flat-iron.

GEC's 1895 version of the electric cooker; notice the brass lightingstyle switches mounted on one side.
all the more so since the electric light was very nearly strangled at birth by the invention of the incandescent gas mantle in 1881. Electric flat-irons began to appear in the late 1880 s, some of them quite lethal like the French models which operated by means of an arc burning between two carbon electrodes inside the casing. Fitful experiments were made with electric hotplates, but it was not until 1894 that the Crompton firm in the UK began marketing an electric cooking stove, a bulky sheet-iron affair with exposed heating elements made of iron wire wrapped around fireclay bars.

Electric vs. Gas

The design of cooking ranges had advanced a great deal from the open fire days at the beginning of the 19th century. As metal-casting and production engineering had improved a whole industry had grown up supplying standard cast iron coal-burning cookers, sometimes with refinements like water-heaters and glass oven doors. These had done a great deal to make cooking less laborious by allowing the heat to be controlled with some

By 1912, electric cookers had come to resemble modern ones - almost!

Preparing the way for the teabag that mainstay of Western civilisation, the electric kettle, was around by 1905.
accuracy. But kitchen work was still a tedious, time-consuming, dirty business for housewives and servants, with all the early morning ritual of coal heaving ’and clinkering and raking and firelighting to be gone through before cooking could begin. It was not until the first gas stoves appeared in the 1840 s that the work got any lighter. However, gas was not without its drawbacks, as was pointed out by an 1895 publicity blurb emanating from the City of London Electricity Company, which was trying to interest the public in electric stoves:

No danger; No combustion; No chimney; No fires to light and watch; No matches to look for; No heat wasted; Perfect regulation; No more burnt meats or pastry; No explosions; Pure air; Sanitary kitchens -

NO POISONOUS GASES AROUND FOOD WHILE COOKINGI

Still, poisonous gases or not, electricity for cooking took a long time to catch on with the public outside the few wealthy households who could afford a cooker and the electricity bills which
followed. This was partly a result of the fact that by 1914 only about one British home in ten was connected to the mains. But it also stemmed from the faults of the cookers themselves, and in particular their elements, which tended to corrode and burn out in a remarkably short time, as well as short circuiting freely when cooking water slopped over them.
Things took a marked turn for the better in 1906 when A.L. Marsh patented nickel-chrome electrical heating elements. Not only had nichrome a much better resistance than iron or carbon, it was also much less vulnerable to corrosion. Less frequent element changing meant that elements could be better protected inside cooking stoves and at the same time design improved considerably, with blue-grey and later white e namel panels replacing the blacked ironwork of the earlier stoves. And after 1918 electricity tariffs got cheaper as the national system was rationalised and uniform charges came in. Electric cookers began to acquire thermostatic oven regulators in the mid1930s, which reduced the bother of cooking. After this, little improvement took place until the arrival of the microwave cooker in the late 1960 s . Electric cooking never managed to knock gas out of first place as the nation's favourite means of food preparation but it still made a large contribution to the lightening of the housewife's lot.

Putting on the Heat

Ni -chrome elements also did a great deal to aid electric space heating in the later 1900s. Previous attempts at electric room heaters had centred on wall-plates with iron wires embedded in a ceramic surface, or on large incandescent bulbs warmed to red heat, rather than on wire elements around a clay core. Reliable wound-wire

This GEC cooker from 1936 is cut away to show the heating elements, and insulation, of both the oven and the hob.

An "Apollo" electric fire from 1904; the elements are encased in glass globes - like electronic valves!
elements were now possible and by. about 1912 the electric fire had made its appearance in the shape loathsomely familiar to generations of dwellers in digs and bedsits, combining voracious consumption of meter shillings with a heat output barely perceptible more than a yard or so away. A good part of the problem was that until the mid1960s, when decadent foreign notions of central heating began to make their way into the nation's domestic architecture, Britain was a country whose home heating was built around abundant supplies of cheap coal burnt in the most wasteful and inefficient way possible in an open grate.

The legendary dank chill of the British bedroom could not be dispelled by the puny glow of a two-bar electric fire, which rather served to make the arctic

By 1925, electric heater design had achieved a form which remained virtually unchallenged for the next 50 years.

This British Vacuurn Cleaner Company model, from an age when motor cars were scarce, looks as suitable for the Stables and the Garden as for the House, with an attachment for every eventuality.
gloom even more noticeable. Chilblains remained the English Disease and the Permissive Society had to wait for the advent of the gas-boiler rather than the cheap electricity which had done such inter esting things for the social life of the Scandinavians. But all the same, some experiments in economical and effective space heating by electricity were made over the years. After a mere half-century of public electricity supply, in 1930, some unknown genius of the staff of the Watford electricity supply company had realised that, although the generators had to be kept running, very little power was used between 10 pm and 6 am . So why not sell it at cheap rates, so that people would be encouraged to invest in
those new Swedish-built storage heaters carved out of a block of steatite? The result of this unexpected stroke of imagination was the first UK experiment in cut-rate electricity for home heating, or "the soapstone tariff" as it was called.
But even amongst the citizens of Watford, it seems that electric central heating never really caught on. Electric immersion heaters became moderately popular in the 1950 s after the problem of making a watertight seal around the element had been solved. But as for house warming by electricity, the position is best summed up by a plaintive sticker seen a couple of years ago in the back of a decrepit Cortina parked on a London street: "I Had a Rolls Royce, But Then I Invested in Electric Central Heating'

Cleaning Up

The great electric labour-savers were the washing machine and the vacuum cleaner, and although neither of these devices was created by electricity, both owed their existence as a consumer durable to the perfection of small, massproduced electric motors in the USA
around 1910. Between them they not only took most of the pain and drudgery out of the business of household cleaning (a far more time-consuming business then than now, thanks to coal fires and dirty city air) but also made possible a major economic revolution by allowing the disbandment of that huge army of ill-paid female servants who kept the pre-1914 civilised world going, figuring in the households of even the most lowly of office-clerks.

The idea of mechanical clothes washing and carpet cleaning had already been around for quite some time before electricity was applied to them. For most women before the First World War, washing day had been a gruelling weekly ordeal of copper boiler and possing stick (for those who have never heard of it, a length of telegraph pole fitted with two handles to allow it to be pounded up and down on the clothes in the boiler). All in all it was not far advanced from two stones on the bank of a stream, and the idea of a mechanical agitator had been tried in one form or other for over a century: either a barrel with paddles rotated by a crank, or a wooden trough on rockers with a stone roller running to and fro inside.

At the end of the 19 th century some of the larger public laundries had experimented with steam engines as primemovers for mechanical washing. But female muscle power was cheap, and it was not until the mid-1900s that electric motors were tried as motive power for washing agitators, though the water was still heated separately by a coal fire. Likewise, with the cleaning of carpets and furnishings, various ideas had been tried since the mid-19th century to get around the necessity for taking everything out of doors and thrashing it energetically with a carpet beater. Sir Joseph Whitworth had patented a carpet-sweeper with spiral revolving brushes in the 1840 s. And in

Despite its clumsy appearance, the washing machine was a tremendous advance on boiling and hand-washing.

1901, H.C. Booth had developed a system for sucking up dust and decanting it into a cloth bag. The earliest vacuum cleaners were operated on contract by the Vacuum Cleaning Company Ltd. and consisted of vans the size of a small milk float driven around London by uniformed staff who sometimes gave demonstrations at specially arranged parties held for members of society, like a kind of up-market Tupperware. Domestic vacuum cleaners also appeared during the 1900 s, though these were anything but labour-saving devices, requiring as they did two servants to operate them: a maid to do the sweeping and a boy to operate the bellows with a lever, rather like an old-
fashioned harmonium. The trouble was that, prior to 1914, there was really not a great deal of demand for either washing machines or vacuum cleaners. In Europe at any rate servants were cheap and plentiful, so why pay fifty pounds for a washing machine when that amount would hire you a human drudge for a whole year?

Servants' Lib.

Things were rather different in the USA however, even before the Great War. The Americans had always been fascinated by labour-saving devices (much to Europe's amusement) largely because servants had never been plentiful outside the slavery states of the old South. In fact, most Americans had come to America precisely in order to escape from a life of semi serfdom in the Old World. Electric powered vacuum cleaners began to appear in the States around 1912 as the production line techniques of Ford Motors were applied to other items, and since purchasing power was far more evenly distributed there than in Europe they soon found a mass market. Within a few years the same sort of social changes were on the way on the other side of the Atlantic as well. The munitions factories of 1914 18 had given working class girls a line of escape from the hated position of domestic slavery and in addition they had given them wages unimaginable in 1914 - much to the disgust of their betters. When the War ended they were unwilling to re-enter domestic service for the sort of.pay which had been usual in peace time and as a result the pages of Punch were filled with sour little jokes about "the servant problem".

The consequence of this sudden dearth of cheap labour was that interest in electric home aids blossomed almost overnight at the beginning of 1919. American-style mass production soon
appeared in Britain and by 1920 the price of a vacuum cleaner had come down to six pounds from about twenty six pounds in 1913, which put it well within the reach of a skilled working class home. By 1926 the Hoover company had captured the UK market to such an extent that "hoover" made its way into the Oxford Dictionary as noun and verb. Washing machines soon followed and by the mid-1930s the consumer durables industry was well established in Britain, making a major contribution to dragging the country out of the Depression and leaving as its monuments a series of Babylonian- and Egyptian-style factories scattered around the western suburbs of London.
Not only was the burden of housework immeasurably lightened and the working housewife becoming a possibility: the change was already under way towards a new economic world largely geared to the production of consumer goods rather than heavy capital equipment. In time this would be christened the Affluent Society, or the Consumer Society, or Mr. MacMillan's famous "You've Never Had it So Good" society. It would even make its way into the Communist world, in a dingy and semi-competent form, causing no end of trouble as people's expectations of washing machines and vacuum cleaners and electric sewing machines grew far beyond socialised production's capacity to fulfil them.

For the time being though the effects were restricted to the home as electricity finally ousted gas from its position as domestic service number one, so that today a household without electricity is almost unthinkable. The next step? Probably a situation in which all the domestic work will again be controlled by servants, but electronic servants in the form of robots and computers, and housework as such will become a part of history.

The classic upright 'Hoover' from 1936. How many of these, we wonder, are still doing good service?

Hemmings Electronics LTd
Shop opening hours Mon to Fri 9 am to 5.30 pm
Sar 9 am to 5.00 pm . Sar Gam 105.00
Wed Closed

Electronic Components \& Microcomputers 16 BRAND STREET, HITCHIN, HERTS, SG5 1JE Telephone: (0462) 33031

TERMS OF GUSINESS - Protessional quality electronic components brand new and fully quaranteed. Mail TRONICS LTO. Access or Barclaycard available using our 24 hour answerphone service. Monthly Credit Ac counts available on request to government and educational authorities. Industrial customers wishing to open a credit account are required to furnish a bank reference and two trade references. Postage and packing add 450 to all orders under E10. All prices are exclusive of VAT. Please add 15% to total including p\&p. No VAT on ex, port orders or books.

* FULLY ASSEMBLED * COMPLETE WITH CIRCUIT DIAGRAMS FERRITE ROD AERIAL 4 WAY FUNCTION SWITCH WITH POINTER KNOB $\begin{array}{ll}12 \mathrm{~V} \text { d.c. INPUT SUPPLY } & \text { F.M. } 87.5-108 M H z \\ \text { OUTPUT O-IVR.M.S. ADJUSTABLE } & \text { F.M. SENSITIVITY } 2.5 \mathrm{JV}\end{array}$

PRICE $\mathbf{E 6 . 0 0}$ (PLUS $£ 1.25$ p\&p)

* 2 WAY SPEAKER KIT - High Quality Peerless $6 \frac{1}{2}$ " Full Range \& 2" Tweeter. 8 ohms, 25W rms. Complete with Crossover Network and Full Wiring Diagram. PRICE $£ 5.75$ (PLUS £2 p\&p) * 3 WAY SPEAKER KIT - High Quality Peerless 8" Woofer $45^{\prime \prime}$ Midrange \& 2" Tweeter. 8 ohms, 40W rms. Complete with Crossover Network and Wiring Diagram. PRICE $\mathbf{E 9 . 2 5}$ (PLUSE2.50 p\&f)
BOOKSHELF SPEAKERS - Attractive Teak Veneer Finish with Black Clath Front. Fitted with $41 / 2^{\prime \prime}$ Pioneer Full Range Speaker with Metal Dome. High Frequency Port. 85 Watt. Complete with 2 Metre Lead \& Plug. Dimensions $350 \times 210 \times$ 110 mm . ONLY £6.90 PER PAIR IPLUS 2.50 p\&pl
ALL GOODS FULLY GUARANTEED. DESPATCH BY RETURN OF POST. PRICES APPLY U.K. ONLY. TRADE ENQUIRIES WELCOME: CALLERS BY APPOINTMENT ONLY PLEASE

MEON electronics

PO Box 34, Luton, Beds. LU1 1LS

SAVE £4.25 by receiving a FREE magazine binder When you subscribe to

It's true, by subscribing to Hobby Electronics you will not only receive your personal copy direct to your door for a whole year but also have a superb AS P magazine binder In which to keep your coles AND IT's FREE!
All you have to do to receIve your FREE binder is book a new subscription or renew an existing subscription to Hobby Electronics.

What could be simpler? Normally priced at $£ 4.25$, these attractive binders will hold approximately 12 issues of Hobby Electronics. Not for you any longer the chore of having to track down dogeared copies of your favourite magazine, Instead you will merely go to your bookshelf and they will be waiting for you in pristine condition.
Don't miss out on this outstanding offer - subscribe today and receive your FREE bInder within 14 days of your order being received.

SPECIAL OFFER

Cut out and SEND TO :

Electronics

513, LONDON ROAD. THORNTON HEATH, SURREY, CR 4 6AR ENGLAND.
Please send my free binder and commence my personal subscription to with the

SUBSCRIPTION
RATES
(tick \square as
appropriate)

Issue
E11.95 for 12 Issues UK
£13.95 for 12 Issues overseas surface E26.90 for 12 issues Air Mall

I am enclosing my (delete as necessary)
Cheque/Postal Order/International Money Order for $£$
(made payable to ASP Lid)
OR
Debit my Access/Barclaycard *
("delete as necessary)
Insert card no.

Please use BLOCK CAPITALS and include post codes.
Name (Ms/Mrs/Miss)
delete accordingly
Address

Signature

BOOK REV

The theory of digital systems and the practice of home security are the subjects under scrutiny this month.

Digital Techniques and Systems (2nd Edition) by D. C. Green.
Published by Pitman Books Ltd., London, October 1982. $£ 5.95$
Reviewed by Owen Bishop.
This is a course book for examinations of the Technical Education Council but, despite being a seriously intentioned 'textbook', it is attractively laid out and :much of its subject matter is of interest so to the hobbyist

The book is really two books under ; one cover. The first part (88 pages) deeal with digital logic circuits, and the , second part (87 pages) deals with data rtransmission. There are also twenty-six pages of appendices and index.

After a brief introductory chapter, the first part looks first at logic gates, describing the logical action and functions of AND, OR, NOT, NAND, NOR exclusive-OR, and exclusive-NOR in detail. The presentation assumes no previous knowledge of the subject and introduces new concepts in clear language in an easily understood way. Textbook pages often appear to be too cluttered with text and diagrams to appeal to the general reader, but the pages of this book avoid this, even though there is plenty of information to digest on each page.
It is copiously illustrated with line diagrams. The logic diagrams conform to the BS3939 standard throughout. This is a requirement for many electronics examinations and may at first glance be unfamiliar to many of our readers. Curiously, most popular
magazines in the UK use the unofficial so-called 'British' symbols for gates, or the US symbols. The British Standards Institute has gone to great lengths to prepare a very workable standard and its seems strange that it should not have been adopted by the amateur.

The chapter on gates includes truth tables, and a summary of Boolean algebra with a useful table of Boolean logic rules. This leads on to a clear discussion of Karnaugh maps and how they may be used to design logic networks.

There are plenty of illustrative examples, and sets of questions. No answers are given, except to those numerical exercises which appear in the second half of the book. The lack of answers is no disadvantage with regard to logic circuits. When you have worked out your answer, get out a breadboard and a few logic ICs, wire up the circuit and find out in a practical way if your answer is correct. Presumably the author intends readers to do something of this kind, for the book is exclusively a theoretical one, with no practical exercises included. That is not to say it lacks a practical approach for the text is full of references to the many applications of digital electronics.
It also takes a more than usual interest in the internal details of the logic ICs. You will find the circuit digram and a full explanation of the working of TTL gates such as NAND, NOR, AND-OR-INVERT, and AND. Schottky and low-power Schottky gates are also explained. Those readers who have come into electronics as a hobby and who have been content to accept logic gates as 'black boxes' with inputs and outputs and goodness-knows-what inside, will be interested to find out just how these gates work. Manufacturers' data sheets provide so little information on this subject, and are full of unfamiliar jargon such as 'propagation delay', 'fan out', 'open collector outputs', and 'noise immunity' without ever explaining clearly what they mean or how they relate to the circuit on the chip. This book explains all about TTL gates, and CMOS gates, and touches briefly on ECL.
The book then deals with the stock types of medium-scale integrated logic circuit - flip-flops, counters, Schmitt (not Schmidtt, the only error I have found in the bookl) triggers, and shift registers. Once again, we are taken right inside the chips, with full descriptions of what they do and how to use them.
The section dealing with logic circuits concludes with a chapter on computer
memory. Here the emphasis is strongly on main-frame computer memory with a detailed description of ferrite cores, but less on PROMs and RAM than the average electronics/microcomputer enthusiast would like to know. This is no doubt the result of the slant imposed by the TEC syllabus.

The first part of the book is intended to cover the Digital Techniques IIIA and B half-units of the TEC scheme, and appears to do so thoroughly and at an appropriate level. The scheme is listed in an appendix and beside each point is a helpful page reference to the text. The second part of the book covers the Transmission Systems III half-unit.

Transmission Systems is concerned with the transmission of digital data over lines. This includes sending data from one computer to another or the transmission of digitised speech and similar signals over a telephone network. The emphasis is once again on main-frame computers. This section gives an interesting overall account of the main methods of data transmission and the problems inherent in this operation. Those of our readers who wish to expand their general knowledge of this topic would find this readable and of interest. It describes the distortions which alter the shape of a digital pulse when sent along a line and describes how the pulse may be regenerated on arrival at its destination.

Figure 1. Gate symbol standards compared: see above.

There are chapters on digital modulation, data links, pulse code modulation and the use of optical fibre links. There are plenty of block diagrams to illustrate the many systems of transmission described, but no circuit diagrams of the equipment employed. While this section is essential to the TEC student and covers this need fully, it is unlikely to be of interest to the more practical-minded of our readers. The description of modems, for example, would not be of much help to anyone wishing to build and use a modem to send data from one home computer to another.

The book ends with a number of appendices, listing the more frequently used TTL and CMOS logic ICs. One gives a complete explanation of binary arithmatic. Another cross-references the text pages to the TEC syllabuses. Finally there is a set of forty multiple choice questions (with answers) which cover the subject-matter of the whole book.

Conclusions: This is a well written and illustrated book which fulfils its stated purpose of providing for the TEC student of Digital Techniques III A and B and Transmission Systems III. If electronics is your hobby and you want to know more about how to handle logic circuits and what goes on inside them, it is worth while adding this book to your collection. Even if you are not particularly interested in data transmission, the book is still worth the money, just for its extensive treatment of logic circuits. If you are also interested in finding out more about the principles of data transmission, then this is a bonus and you should certainly buy it.

Building and Installing Electronic Intrusion Alarms (3rd Edition) by John E. Cunningham.

Published by Howard Sams and Co., Inc., Indianapolis, USA, August 1982. Distributed by Prentice/Hall International, Hemel Hempstead. $£ 8.20$ Reviewed by Owen Bishop.
This book shows the electronics hobbyist how to protect his home and car from the ravages of would-be intruders and thieves. As the title suggests, the emphasis is on raising a resounding alarm as soon as entry or theft is attempted, with the intention of scaring away the miscreant before he or she has had time to place even a finger upon the prospective loot.

The author makes the important point that commercially installed systems are
usually highly expensive and that a great deal of money can be saved by building it yourself. Against this must be set the fact that wiring a perimeter loop to protect all the windows and doors of your house takes a long time. It is typical of the practical approach of the book that the author discusses at some length the points in favour of and against building your own system or having one fitted by the professionals.

It appears that the hobbyist can produce something every bit as reliable and effective as the commercial system, provided that the basic electronics are understood and the constraints of operat ing such a system are taken into account. There is the bonus that, if you install your own system, nobody else knows how it works. A burglar may know how to by-pass the more widelyused commercial systems, but the home-brew variety may have all sort s of pitfalls for the intruder and this feat ure in itself is a strong deterrent.

Before buying this book, which for its modest size ($16 \mathrm{pp}, 136 \times 216 \mathrm{~mm}$) is relatively though not excessively expensive, you should consider whether you feel able to plan, build and maintain a system which will reliably protect your house or car.

If you are a regular reader of this magazine and have built some of the projects and got them to work, the answer to this is probably 'yes', for none of the projects described in the book is complicated to build and detailed circuit diagrams are given. However, stripboard layouts or PCB designs are not given, so you need to be able to translate a circuit diagram into practical form. If you do decide to buy the book and use it, you will find that the price is reasonable for the amount of expertise and information packed into it.
A list of components is given for each circuit, in which each item is fully described. Thus, if it happens that certain types of component are not readily available in this country (as is almost inevitable when a book is of US origin), you should be able to use the descriptions in the components list to find a suitable substitute. Most of the circuits are based on discrete
components, so eliminating the problem of obtaining obscure types of integrated circuit. A few circuits use the 555 timer and the LM3909 oscillator. There are two circuits employing a combination-lock IC. The LS7225 required for one of these is not widely available from UK suppliers, but is stocked by Ambit International. I have not been able to find a supplier for the other IC, the LS7220, used in one of the car alarm circuits.

The author has a clear style and leaves very little unexplained. On the general level, he has some interesting points to make concerning the mode of operation and hints for using thyristors, unijunction transistors and the 555 IC. Some of his novel circuits are interesting too, particularly the electronic system based on two UJTs, and the voltage-sensitive system used for protecting a car.

The book describes about thirty circuits altogether, including a variety of trigger circuits, photoelectric intrusion alarms, proximinty alarms, audiotriggered alarms, shock and vibration alarms, proximity alarms, audiosounding devices, and car alarms. A few of these are not really feasible or even permissible in UK (for example a radio warning link, and various connections to the public telephone system) but these take up only a small part of the book. Apart from the circuits there is copious detail of the many kinds of switches, pressure-pads and other triggering hardware that is available, and how to incorporate these into your system most effectively. The author considers power supplies, coming down heavily in favour of battery-power, which topic is fully investigated.

The final chapter deals with the vexatious question of false alarms, the bane of so many security systems, both amateur and professional. If your system is prone to false alarms you might just as well have no system at all, for neighbours and others will simply ignore its warnings. Fortunately this aspect of alarm systems is well taken care of the author. He has obviously had much experience in dealing with this kind of fault and explains the many causes of false triggering in great detail, with useful hints on running down the source of trouble and how to cure it.

Conclusion: This is a well-written, fully illustrated book of workable, inexpensive (mainly) and thoroughly practicable circuits for the moderately experienced home constructor. There is plenty of helpful advice and information on setting up a home security system geared to your own circumstances and requirements. The majority of the book is applicable to conditions in UK. If you intend to set up your own system and have the ability to do it, this book is good value for money. If you are thinking about having a system installed commercially, the cost of the book is small in relation to what the system will cost, and it's worth buying in order to give yourself enough background knowledge to be able to define your requirements, keep the 'experts' on their toes and generally ensure that you obtain satisfaction.

EUROPA ELECTRONICS

Mail Order to 160 High Road, Willesden, Lo Idon NW10 2PB TEL; 01-907 1659
SEND FOR A FREE LIST OF OUR LARGE RANGE OF ITEMS ALL DEVICES ARE NEW, FULL SPEC AND GUARANTEED

Post $\&$ Packing: Add $30 p$ to all orders under $£ 5$.
VAT: All UK orders add 15% to total cost including p. \& p.

(VOLTAGE REGULATORS		
${ }_{7}^{17805}$	${ }^{100}$	$4{ }^{45}$
${ }_{7} 715$	40087915	458
${ }_{7}^{7818}$		${ }_{4}^{45}$

Retail Shop: North Parade Electronics. Mollison Way Edgware Middlesex

TYPE 161B
Branime

DUAL POWER SUPPLY KIT

incorporates a positive \& a negative regulated supply
BOTH ARE ISOLATED \& ADJUSTABLE 1.3V TO 16V D.C. Interconnect to give 2.6 V to 32 V or $-1.3 \mathrm{~V} / 0 /+1.3 \mathrm{~V}$ to $-16 \mathrm{~V} / 0 /+16 \mathrm{~V}$ Output current 1 A at 16 V to 0.35 A at 1.3 V Ripple is less than 1 mV

£25.99
 inc. $P \& P$ and VAT

$€ 37.95$ inc. P\&P and VAT

[^1]BRANIME MARKETING LTD dept. ETI
BALTHANE IND. EST., BALLASALLA. ISLE OF MAN

Traffic Light Toy

Andy Armstrong

A project ideal as a present for youngsters

THIS PROJECT, which makes a perfect toy for very young drivers, is a touchoperated traffic light that is stepped through the standard sequence of red, red/amber, green, amber by pressing touch sensitive contacts. There is no worry about the batteries dying quickly, either, as the circuit switches itself off after a short time unless the sequence is stepped.

Traffic Circuits

The CMOS gate IC1a is one quarter of the 4093 device, a NAND gate with Schmitt trigger inputs, wired as an inverter. Normally the voltage on the inputs is above the switching threshold so that the output is 'low'. When the contacts are shorted by touching them, the inputs go momentarily to OV and the output switches to "high' for as long as the contacts are being handled.

The positive-going clock pulse is used simultaneously to drive a two-bit binary counter, formed from a dual D-type flipflop IC2, and a second Schmitt trigger NAND gate set up as a retriggerable monostable.

The clock pulse is gated to the monostable inputs via D1 and begins to charge up C1; when the voltage on the capacitor goes above the trigger threshold level, the output of the gate will rapidly switch to a logic 'low' state; this signal is then used to enable the LED driver gates IC3a,b,d.
The monostable on-time is set, by the value of C1, to allow a reasonable length of time between operations of the touch switch. If the lights are not changed during the on-time, the output of IC1d goes high, inhibiting the driver gates. However if the switch is touched while IC1 d output is still high, the monostable is re-triggered so that the timing period starts anew.
A D-type flip flop has the property that, when it is clocked (by the output of IC1a in this circuit) its ' O ' output assumed whatever logic state was present on its ' D ' input at the time of the positive-going clock edge. Since the 'D' input is here connected to the corresponding ' $\bar{\sigma}$ ' output, every time a positive clock edge occurs IC2a will flip (or flop, as the case may be). However IC2b is clocked by positive going transition of the Ca output, so that it receives only one positive-going edge for every two produced by operating the touch switch.
Two counter outputs, $\overline{\mathrm{Ca}}$ and Qb , directly feed the LED gates for the Red and amber LEDs, while Qa and Ob are

Figure 1. The circuit.
decoded by IC3c and drive the Green LED via IC1c (which is used as an inverter) and gate IC3b. As can be seen from Figure 2, which shows the timing sequence of the circuit, the Green LED is on for only one quarter of the time-which is exactly your experience of traffic lights, isn't it!
The Truth Tables in Figure 3 show that the NOR gates, IC3a,b,d, are enabled when any one input is held 'low'; then any change at the other input will appear, inverted, at the gate output. If any one input is held 'high', though, the output is held 'low', so the gate is disabled (inhibited).

One input of each gate is wired to the output of the re-triggerable monostable, IC1d, so that when its output is 'low' (touch switch operated), the NOR gates are enabled. Then, if पa, Qb or the output of IC1 c goes low, the appropriate gate output will go 'high', turning on Q1, 2 or 3 and lighting its LED. However when the monostable times out, the NOR gate outputs are held 'low' so that the transistors are biased off, and the

LEDs turn off too. The power consumption of the CMOS logic in this state is so low that the battery life is virtually its stated shelf-life!

Construction Talk

Experienced model-makers will find no difficulty in the mechanical assembly of the Traffic Light Toy, whęther they use the proverbial tobacco tin that the prototype was built into, or a plastic case.

Since pipe-smoking relatives are fewer, these days, and a plastic case is in any event safer and easier to use, it might be better not to go scrounging but to buy a small standard enclosure. It must be large enough to take the PCB and a PP3 battery; the PCB measures 70 $\times 58 \mathrm{~mm}$ and a PP3 is $49 \times 27 \times 16 \mathrm{~mm}$, so the case will need to be around $70 x$ 85 mm or $91 \times 58 \mathrm{~mm}$, depending on which way round the battery is mounted.
The construction methods has been lifted directly from the technique used to

How It Works

THE block structure of the Traffic Light Toy is shown below: briefly, the trigger senses when the touch switch is operated and produces a positive clock pulse while the fingers are still in contact with the touch plate. This positive edge steps the counter to its next stage and simultaneously triggers the monostable; the output from this holds open the LED driver circuits, allowing the decoded counter outputs to drive the appropriate signal LED. If the monostable is not re-triggered within a
short time (by once again operating the touch switch), its output goes 'high' and the drive circuits are inhibited, turning off the LEDs to conserve the battery. However, the circuit maintains the previous CMOS logic levels so that the next time the device is used, it steps to the next traffic light state immediately the touch switch is operated. In the 'standby' condition the current consumption is the very small amount drawn by the CMOS gates.

Figure 2. Timing sequence for the Traffic Light.
build the model rail signalling lights in the September 1982 issue of Hobby Electronics. The details are shown in Figure 4.

The materials are readily available from any modelling shop, or even the local ironmonger, if you have one. The bracket holding the LEDs can be cut from 18SWG copper or brass shim, drilled to take the LEDs and then attached to the post by bending the bottom flange and either soldering or glueing it in place.

The light cowlings are formed from copper tube with an inside diameter of 5 mm . The post is a length of $6 \mathrm{~mm}\left(1 / 4^{\prime \prime}\right)$ copper tube; drill a hole in the lid of the case, insert the tube till it projects slightly below the bottom surface and fix it with epoxy glue. A rear cover for the
lights can be fashioned from another small piece of 18 SWG copper or brass shim, but must not be attached to the LED bracket yet !

The printed circuit board can be easily assembled by following the layout shown in Figure 5; it is always advisable to insert the CMOS ICs last to reduce the risk of static damage; in any case treat them with care! Once the board is complete, temporarily connect up the LEDs and the battery; then, by touching or momentarily shorting the touch switch pads, you should be able to step the LEDs through their ordained sequence (not that when power is first applied the logic state of the circuit will be random, so any light or lights may be on).

Next comes the touch-plate; this is

A	B	$A+B$	$\overline{A+B}$	$A \cdot B$	$\bar{A} \cdot B$
0	0	0	1	0	1
0	1	1	0	0	1
1	0	1	0	0	1
1	1	1	0	1	0

Figure 3. Truth Tables for IC3, a 4001B quad'NOR gate.

Figure 4. Construction measurements for the post and cowling.

Parts List

RESISTORS

Figure 5. PCB overlay: insert the CMOS ICs last.

easily made from a small piece of Veroboard with alternate tracks linked. After drilling a small hole in the lid of the box and leading through the wires, the touch plate should be fixed to the lid using dabs of epoxy glue. Mount the PCB and battery in the bottom of the case (double sided sticky pads, two or three layers thick, will do here) and connect up the touch plate wires. It is worth checking at this stage that the touch switch works; it can sometimes fail if your fingers are sticky from perspiration (leaving behind a thin film of conducting fluid) or if they are bone dry. Make sure these are not the causes of failure before you write to the editorl

If you have not already constructed the signal stand, do this now. The LEDs should be connected to the PCB by lengths of colour-coded wire led down the post and through the lid of the case: Take care when soldering the LEDs as they are easily damaged. Solder the wires to the relevent PCB pads (the coloured wires are so you can tell which is which-use red wire for the red LED. yellow and green for the other two and black, say, for the aniode connection) and then screw down the lid of the case. Now attach the rear cover to the back of the LED mounting bracket.

Next paint the completed Traffic Light Toy. Various colour schemes can be used-why be boring-and then you have it. Now all you have to watch out for are the toy traffic policel

TT LWESAGAWN!

From the past it came, growing daily, striking terror into the hearts of lesser publications, and spreading its influence actoss the country in its quest to infiltrate every town, every home, every mind.
Not a horror story, but a success story. And if electronics theory strikes terror into you, then you need the help of Electronics - It's Easy. Originaily a long-running series in Electronics Today International, Electronics - It's Easy wes printed as a set of three books. They sold out. It was reprinted as a single volume. It sold out. Now this phenominally successitul publication is avallable again, in its third reprint. Electronics - It's Easy is a comprehensive and simply-written guide which explains the theory land the practice) of electronics step by step. Every aspect of the subject is covered; starting with the basic principles and working through to the how and why of today's technology
You can obtain your copy of Electronics - It's Easy by mail order using the coupon below. Make cheques or postal orders payable to ASP Lid; alternatively you may pay by Access or Barctaycard

UNBEATABLE PRICES

31/2 Digit LCD Dislay: 1 colon, 3 decimal points, plus/minus sign and lo bat indicator. Complete with low power 7126 display driver
Driver
set at $£ 8.50$
Display separate
Driver separate at $£ 5.50$ each

BC18270p per 10 pieces
BC212 70 p per 10 pieces
BC547 60p per 10 pieces
Spectrol $3 / 4^{\prime \prime}$ Trimmer Pots
at 55p each per pack
per pack
Send large
TERMS: Strictly cash with order. Trade enquiries welcome Handling charge of 50p on all orders under E5

CAMTEC CIRCUITS \& SYSTEMS LTD
5 York road, Bognor Regls, Weat Suscex PO21 1LW TEL: (0243) 822911

TALK TOTHE WHOLE WORLD

Study now for the
RADIO AMATEUR'S EXAMINATION
We have had 40 years successful experience in training men and women for the G.P.O. Transmitting licence

FREE R.A.E. brochure without obligation from:-
British National Radio \& Electronics School READING, BERKS. RG1 1BR

Name
Address
HE/6/817 ...

- A negative ion generator kit

This kit will saturate your home or office with millions of refreshing ions. Without fans or any moving parts it will put out a pleasant breeze. A pure flow of ions pours out like water from a fountain. The result is that the air feels pure, crisp and wonderfully refreshing. $£ 18.00$.
H.E. Scope ZD29. July 83. Ring for price.

Echo Reverb (less case) ZD11. May 82. £29.50.
R/C Speed Controller ZD3. April 80. £13.50. MOSFET Hi-Fi Power Amp ZA94 (2×140 Watts. Less case and hardware). £33.25.

SPECIAL OFFERS

9 Volt Mini Buzzers 60p.
Transducers 32 KHz . Transmit/Receive. £1.00 pair.
All prices include post and V.A.T. Visa/Access Welcome Shop Hours 9am to 6 pm. Mon-Sat

BYTEK
311 Edgware Road London W2
Tel: 01-723-9246

Bigger and Better

the colourful Wilmslow Audio brochure -the definitive loudspeaker catalogue!
Everything for the speaker constructor-kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

> Lowest prices - Largest stocks
> . Expert staff - Sound advice

* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities)
* Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)

* Access - Visa - American Express accepted * also HiFi Markets Budget Card.

35/39 Church Street, Wilmslow, Cheshire SK9 1AS

Lightning service on telephoned credit card orders!

FREE CAREER BOOKLET
 Train for success, for a better job, better pay

Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career. Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!

Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET today-at no cost or obligation at all.

TICK THE FREE BOOKLET YOU WANT

N Name

Address

Dept H626
160 Stitwarts Fivard
 1.622991
lall hours!

DELTA TECH
All wems full site: inlif toy well known mantacturers. Prices Vat inclusive. Postaģ: 20 p

POWER SUPPLY PCB for 1 A5/5V/12V Full data supplied .80p MAINS TRANSFORMER $2 \mathrm{~A} / 9 \mathrm{~V}$ robust Compact by air link 360p PRESETS horizental mini IJ0R to 1 M LOG POTS $4 \mathrm{~K} 7,22 \mathrm{~K}, 47 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$, 2M2 20p ZENER DIODES $(400 \mathrm{~mW}) 3 \mathrm{~V} 31027 \mathrm{~V}$ LEDS 3 mm red, green, vellow and 5 mm green, vellow 9p. ORP1260p BARGAIN PACKS useful values only

THYAISTO 8A.400V
12A luov 1
voltage
VOLTAGE
REGULATORS
REGUL
$19 m 12$
1812
1812
1812
1818
190
1905
1912
18
105
1912
1415
1948
BRIOG
BRIDGE
RECTIFIERS RECTHF
WHMM

1A alsin V
1A 600 V
ZA. 100 V
$A C$
$A C$
$A D$
$A C$
$A C$
$B C$

Hp	BC
AC	
0 BC	

diodes
in 4148
in 4005
SOCKE
\qquad
\qquad

A KIT FOR THE CONNOISSEUR
 THIS BOARD IS SOMETHING SPECIAL"
 ETI APRIL '83

SOUNDS AND MUSIC FOR YOUR ZX81 AND SPECTRUM WITH THIS NEW PERIPHERAL
On-board Prom - Wide range of sounds with 2 basic commands -Easy-10-use program to devise and use your own sound effects. Comprehensive music program with ordinary music notation A-G to copy or write music - Over 800 three-note chords using 16 K Full piano range - Compatible with all 16 K Rampacks.
Complete kit with comprehensive manual and software cassette only £24.95 all inc. Built and tested £29.95. Cased £34.90. (State stereo or mono) Demonstration cassette $95 p$ all inc. Say whether $\mathrm{Z} \times 81$ or Spectrum (16k or 48 k) when ordering.

ALARMS

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EOUIPMENT

AT UNBEATABLE PRICES!

雨

SEND S.A.E. OR PHONE NOW FOR YOUR COPY THIEFCHECK BURGLAR ALARM D-F Y SYSTEM

Thlerañ
DISTRIBUTOA
A.D. ELECTRONICS

DEPT. ETI 6 217 WARBRECK MOOR AINTREE LIVERPOOL L9 OHUO51 5238440

LB ELECTRONICS DISC DRIVE BONANZA

PERTEC FD650 DSDD 8
£199 + VAT
TEAC FD-55F $1 / 2$ Height DSDD 80 track New Cannon $2 / 3$ drlve SSDD Shugart Compatable 40 Track
All $5^{1 / 4}$ drives suitable enr BRC. MICRO POWER SUPPLIES for $5 \% / 4$ disc drives. 5 volts at 1 amp

Courtlands Road. Newton Abbot, Devon TO1 2 2JA (O626) 62836

11 HERCIES ROAD, HILLINGDON MIDDLESEX UB109 LS, ENGLAND TEL: UXBRIDGE 55399

RECHARGEABLE BATTERIES

AND CHARGERS
PRIVATE OR TRADE ENQUIRIES WELCOME FULL RANGE AVAILABLE SEND SAE FOR LISTS
£1.45 for booklet "Nickel Cadmium Power" - NEW ALL BRITISH MULTI CHARGER - NEW SEALED LEAD RANGE AVAILABLE -

SANDWELL PLANT LTD
2 Union Drive, Boldmere, Sutton Coldfield, West Midlands 021-354 9764 Southern Office 0462733254

WHY WRITE TO LONDON

When you can walk to the Midlands largest selection of DIY.
Plugs, sockets, connectors, cable, flex, leads, boxes, Aerials, styli, components, elements, semi-conductors, meters.
In fact the lot!
Spares and repairs for all electronic, electrical and audio.
H. G. Electronics Co.

1350 Stratford Road, Hall Green, Birmingham B28 9EH
Telephone: 021-777 2369

Elen Electronics
 DISCO

Tired of boring $3 \& 4$ channel lighting controllers. Then try our new 8 CHANNEL PATTERNMAKER for spotlights or lighting screens.

16 different sequential patterns including
Catherine Wheel, Screen Writer, Checker \& Light Train
Kit comprices PCB \& all components including 2 K PROM \& Monitor LEDs. Only £27.00 + VAT.
Hardware kit including case, 12 way socket \& matching plug, mains lead etc. Only £9.50 + VAT.
Please add 60p P\&P to order.
ELEN ELECTRONICS
Unit 1, Station Road, Madeley, Telford, Shropshire

MARCO TRADING GOT YOUR LATEST COPY YET???

Our 72 page fully illustrated catalogue includes speclal offerlists, order forms, and pre-paid envelopes and lots lots more.
To obtain your copy of Marco Trading's latest catalogue send 35 p plus 26 p postage to:
Orders may now be placed by telephone using your Access/ Barclaycard, phone us and we do the rest.
Marco Trading, Dept HB6, The Maltings, High Street, Wem, Shropshire, SY4 5EN. Tel: 093932763.

MASIHR THFGHPONICS NOW! The PRACTICAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following
Build a modern oscilloscope

- Recognise and handle current electronic components
- Read,draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. Hi Fi and microprocessor/computer equipment.

PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own' but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making avallable some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are avallable: if it isn't listed we can't supply it.

PCB FOIL PATTERNS

Above: The foil pattern of the Sinclair Sound Board.

Above: Track-side view of the Traffic Light Toy printed circuit board. The design can easily be transferred to stripboard if necessary.

Above: Make the Rap Latch printed circuit board from this foil pattern.

Above: The Bat Light PCB is small and compact, designed for convenient mounting under the dashboard.
Lineage:
$26 p$ per word (minimum 15 words)
Semi-display $£ 7.5$ per single column centimetre
Ring for information on series bookings/discounts
All advertisements in this section must be prepaid.
Advertisements are accepted subject to the terms and
conditions printed on the advertisement rate card (available on request)

FOR SALE

POWERFUL SW Medium FM portable radio, only $£ 14.95 p+$ p $£ 2.55$. Sharland Enterprises, 7 Mountview, Mill Hill NW7 3HT.

KIG RETURN AN AD No 7
Preamplifier . . . "Convert any amplifier to magnetic pickup capability"...£3.99 + Advert 7 . . 8 Cunliffe Road, IIkley.

BRASS DIMMER SWITCHES

Now available at only £14.99 plus 95 p p\&p. Overseas orders allow $£ 1.50$ p\&p on each item.
Send s.a.e. for our full price list on Brass Dimmers and Brass Switches.

Mr P. Kanbi
36 Wendover Road Harlesdon,
London NWío

ANYTHING TO SELL?

Then sell it quickly and cheaply
Phone ASP Classified
01-4371002 ext. 204

BOOKS \& PUBLICATIONS

ELECTRONICS
BOOKS.
International publishers. Lowest rates. Ask list. Business promotion. 376 Lajpatrai Market Delhi India.

PARAPHYSICS JOURNAL (Russian translations). Psychotronics, Kirlianography, heiliphonic music telekinetics. Computer software. SAC $4 x$ 9":-Parlab, Downton Wilts.

MACHINE CODE. If you are at all interested in learning more about this invaluable tool, then join the ZX machine code users club. Send $£ 1.00$ for trial issue of club magazine "Micro Arts" to: Toni Baker, 5 Dumergue Avenue, Queenborough, Kent ME11 5BT. Cheques payable to Micro Arts.

KITS

ELECTRONIC kits for sale: Morse Practice £4.10, Dice £8.10. SAE for details. Bee Micro, 33 Bevendean Crescent, Brighton, E Sussex.

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolac lightsensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35 p. Ferric chloride 55 p . Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick $£ 1.75$ sq. ft. Post/packing 75 p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

DIGITAL WATCH replacement parts, batteries, displays, backlights, etc. Also reports publications charts. S.A.E. for fullist: Profords Copners Drive, Holmer Green, Bucks HP15 6SGE.

COMPONENTS

BUMPER BOX OF BITS

wow!l We'vegot so many components in stock, we can't possibly list them all!! - So buy a box, in it you'll find resistors, capacitors, displays, switches, panels with transistors, diodes, IC's, etc., coils, pots ... and so on. All modern parts guaranteed at least 1000 thems. guaranteed at least 1000 tems.
Minimum weight 10 lbs . ONLY EB.50 Minim
inc.
ELECTRONICS WORLD 1F Dews hoad Salisbury Wilts SP2 7SN COMPONENTS

ALL NEW COMPONENTS

C-MOS 4012.8p, 4017.25p, 4019.14p, $4022-32 p, 4023-12 p, 4024-20 p, 4025$, $12 p, 4049-18 p_{1} \quad 4071-12 p, 4076-28 p$,
$4081-10 p \quad 4518-28 p \quad 4520-26 p, 4528$, $4081-10 p, 4518-28 p_{1} 4520-26 p_{1}, 4528$
$34 \mathrm{p}, 4557-140 p$ NE $67-38 \mathrm{p}$ SP $\times 6-20$ $34 p, 4557-140 p$, NE567-38p, SpX6-20p,
$314 A 223-4 p$ THL $7400-6 \mathrm{p}, 7404-80$, 314A223-4p.
$7412-8 p, 7419.14 p, 7414-20 p, 7416 F J$. 72p,7495-24p, 74L592-24p.

30p P\&P order under £6. No VAT Sussex BN3 14 QD. Tel (0273) 732419

MAIDSTONE ELECTRONIC components shop. Thyronics Control System, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

NOW OPEN in Newcastle, Waterloo Street: "Marlborough Electronic Components". For the best in electronic components. Test equipment etc. Tel: 618377.

01-437 1002 EXT 204

Send your requirements to: Jo James,
ASP Litd.,
145 Charing Cross Road,
London WC2H 0EF.

WANITLAND

Auto Electronics, 103 Coventry Street, Kidderminster
Tel: (0562) 2179
Brand new components by return post or ring with Access/Barclaycard number for same day despatch.
All manufacturers guaranteed new stock. All at most competitive prices. Catalogue available only 50 p. All prices inclusive of VAT.

COMPONENTS. Chassis mounting fuse holders $£ 0.11$: 20 mm Fuseholder. Screwdriver release 6.3A £0.93; 20 mm Fuses Mains from $£ 0.14$ Anti-surge from £0.17; Aerial Splitter/Combiner from $£ 3.33$ Diodes from £0.04; Capacitors from £0.10; Light Emitting Diodes 5 mm Round Lens, Red £0.09, Yellow £0.12, Green £0.11, Red/Green/Yellow £0.32; Resistors from £0.02; Transistors from £0.13. Postage \& Packing £0.50. Send S.A.E. for details to: R \& B Electique, 3 Shute End, Wokingham, Berks RG11 1BH. Mail order only.

Our readers search these columns for components. Make sure they find you.

Contact Jo James ASP Classified 01-4371002 Ext 204

PLANS 'N DESIGN

AMAZING

ELECTRONIC PLANS. Lasers, Superpowered Cutting Rifle, Pistol, Light Show, Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue £1 (refundable) - from Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

EQUIPMENT

CAPACITANCE METERS O500nF in four ranges requires PP3 £10 to: S. Neal, Old Hayes, Ham Lane, Elstead, Godalming, Surrey GU8 6HQ.

TVDX. VHF to UHF Convertor. Receive VHF DX signals on a UHF TV set, hundreds sold £13.50. VHF 2M, 4M, Airband Convertors. 10.7 MHz IF £9 Satellite TV equipment available. SAE Data, Lists H. Cocks, Cripps Corner, Robertsbridge, Sussex. Tel 058083-317.
U.V. Light exposer unit for use in prep. of Photo-resist P.C.B's. Attractive wooden construction with exposer area of $250 \times 150 \mathrm{~mm}$. Case $350 \times 250 \mathrm{x}-$ 95 mm 240 V operation. Only £37.00 p\&p. Send cheque to V.E.P. Ltd., 5 Hewens Road, Uxbridge, UB10 OFR.

CENTHEION ALARMS

We manufacture,

 you save E E E'sSend s.a.e. or phone for our Free list of professional D.I.Y. Burglar Alarm Equipment and accessories. Discount up to 20\% off list prices, eg. Control Equipment from £15.98, Decoy Bell Boxes from £5.95 inc.

BURGLAR ALARM EQUIP. MENT As used in the trade. JN Security Centre, 176 Sydenham Centre, 176 Sydenham Road, London SE26 5JZ Tel 01-7781111 Showroom open six days.

HIGH POWER MERCURY ION LASER, emits green/red light. Easily built by the amateur constructor. Ideal school project etc. comprehensive kit of plans, including source of all materials. $£ 5.25+25 p$ p\&p. Lastertech, 31 Mill Brow, Chadderton, Lancs.

NEW 1983 EDMUND SCIENTIFIC CATALOGUE NOW AVAILABLE

72 pages of:- Solar Energy. Health, Holography, Lab. Equipment, Astronomy, Fibre Optics, Photography, Motors,

Send for FREE copy to:- Dept HE 10 Send for FREE copy to:- Dept HE 10,
Rhelnbergs Sclences Lid., Soverelgn Way, Tonbridge, Kent TNS IRN or phone 0732357779

AERIAL AMPLIFIERS Improve weak television reception. Price E6.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BLO 9АЗ̆H.

JUPITER ACE RAMPACKS 16K - £27; 32K - £37. Upgrades from 16 K to $32 \mathrm{~K}-£ 14$. Âll fully tested and cased. For full range of our products send s.a.e. All prices inclusive. Essex Micro Electronics, 4 Hatch Road, Brentwood, Essex CM15 9PX. Mail order only.

BURGLAR ALARM EQUIPMENT. Please visit our 2,000 sq. ft . showrooms or write or phone for your free catalogue. C.W.A.S. Ltd. 100 Rooley Avenue, Bradford BD6 10 B . Telephone 0274-308920.

ADD ONS

Teletext (Oracle/Ceefax) add-on adaptors for any television. Only £ 149.95 inclusive. Also Prestel/Viewdata and Telesoftware. Cytel (HE), FREEPOST, Bristol BS10 6BR. (0272) 502008 anytime.

SOFTWARE GAMES

FANTASTIC 16 K ZX81. Adventure $£ 3$. Fight monsters and collect as many treasures as possible. Only from Softbus, 6 Aston Mead, Salisbury, Wilts.

SERVICES

T-SHIRTS ZX81 spectrum white, blue red $\mathrm{S} / / \mathrm{M} / \mathrm{L} / \mathrm{XL}$. £3.25. One per cent screens. 12 Star Lane Estate, Great Wakering, Essex.

AVOID WASTED

 RESPONSETo fill your vacancy cost effectively and quickly.
For details:
Phone ASP
Classified
$01-4371002$
Ext. 204

APPOINTMENTS

Design Engineers
 Satellite Communications

Major expansion of our Space Division has created numerous opportunities for engineers to be involved in some of the most technologically challenging work on meteorological and communications satellites.
Qualified Hardware and Software Design Engineers of various levels of experience are required for posts which vary from Engineering Manager/Group Leader to membership of a Design Team. Disciplines include

Spacecraft Systems

 Communications Systems Microwave Systems and Equipment Radar and Signal Processing Electronic Circuit Design Mechanical, Thermal and Dynamics Design Power Supplies Switch-ModeSalaries and benefits will reflect the importance we attach to the positions and relocation assistance is available if required.
Please write or telephone stating your qualifications, recent experience and area of interest to Jack Burnie, Marconi Space \& Defence systems limited. Browns Lane, The Airport, Portsmouth Hants. Tel (0705) 674019 Ref: BL 34.
(All posts are open to men and women)

Marconi

Space \& Delence Sysiems

HOBBY ELECTRONICS

CLASSIFIED ADVERTISEMENT - ORDER FORM If you have something to sell now's your chance! Don't turn the page - turn to us! Rates of charge: 26 p per word per issue (minimum of 15 words). and post to HOBBY ELECTRONICS, CLASSIFIED DEPT., 145 CHARING CROSS ROAD, LONDON WC2 PLEASE INDICATE HEADING REQUIRED

Please place my advert in HOBBY ELECTRONICS for
issues commencing as soon as possible.

I am enclosing my Cheque/Postal Order /International Money Order for: (delete as necessary) E.... (Made payable to A.S.P. Lid)

SIgnature
Date
All classified advertisements must be paia ror in advance.

Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/Miss/Ms)
Address (deielo accoraingly)

Get Antex technology at your fingertips

The most sophisticated range in soldering.
Irons, bits, kits, stands, stations and accessories everyone at the force front of soldering technology.

Take the new satin chrome bits, for example specially designed to give you 50% to 300% longer working life.

It's just one more advance from Antex
For the very latest in the science of soldering send for a catalogue now.

Please send literature and price list to:	Made in England.	
Name	Our products are	
widely distributed by		
Address	wholesalers and	
	retailers throughout	
telephone	the U.K. Please try	
your local dealer.		
Excluding V.A.T. $\{15 \%]$ and		

Excluding V.A.T. 115
and keep up to date with H.E.6 the science of soldering from ANTEX

400/800 SOFTWARE \& PERIPHERALS

Don't buy a T.V. game! Buy an Atari 400 personal computer and a game cartridge and that's all you'll need. Later on you can buy the Basic Programming cartridge (E35) and try your hand at programming using the easy to learn BASIC language. Or if you are interested in business applications, you can buy the Atari 800 - Disk Drive + Printer together with a selection of business packages.
Silica Shop have put together a full catalogue and price list giving details of all the peripherals as well as the extensive range of software that is now available for the Atari $400 / 800$. The Atari is now one of the best supported personal computers. Send NOW for Silica Shop's catalogue and price list as well as details on our users club.
THE FOLLOWING IS JUST A SMALL SELECTION FROM THE RANGE OF ITEMS AVAILABLE:

ACCESSORIES	Mountain Shoot	BUSINESS	DVNACOMP
Cables	Rearguard	Calculator	Alpha Fighter
Cassettes	Star Flite	Database Managemt	Chompelo
Diskentes	Sunday Golf	Decision Maker	Crvstals
Joysticks		Graph-It	Forest Fire
Le Stick - Joystick	AUTOMATED	Invoicing	Intruder Alert
Mise Supplies	Smmutations	Librarian	Monarch
Paddles	Crush Crumble Cmp	Mort \& Loan Anal	Moonprobe -
	Datestones of Ryn	Nominal Ledger	Moving Maze
ADVENTURE INT	Dragons Eye	Payroh	Nominoes Jigsaw
Scoti Adams Adv	Invasion Orion	Personal Finl Mgmt	Rings of The Emp
No 1 Adventureind	Hescue at Rigel	Purchase Ledger	Space Tilt
No 2 Pirate Adv	Ricochet	Sales Ledger	Space Trap
No 3 Mission Imp	Star Warrior	Statistics 1	Stud Poker
No 4 Voodoo Cast	Temple of Apshat	Stock Control	Triple Blockade
No 5 The Count	Upper Reaches Aps	Telelink 1	
No 6 Strange Ody		Visicalc	EDUCATION
No 7 Mystery Fun	B00kS	Weekly Planner	from APX
No 8 Pyramid of D	Basic Ref Manual	Word Processor	Algicalc
No 9 Ghost Town	Compute Atari Dos		Atias of Canada
No 10 Sav Island 1	Compute Bk Atari	CAYSTALWARE	Cubbyholes
No 11 Sav Island 2	Compute Magaz ine	Beneath The Pyram	Elementary Biolagy
No 12 Golden Voy	De Re Atari	Fantasyland 2041	Frogmaster
Angle Worms	DOS Utilities List	Galactic Quest	Hickory Dickor
Deflections	DOS2 Manual	House Of Usher	Inst Comprg Dem
Galactic Empire	Misc Atari Books	Sands Of Mars	Lemonade
Gaiactic Trader	Op System Listing	Waterioo	Letterman
Lunar Lander	Wiley Manual	World War III	Maoware

Jawbreaker
Mission Asteroid
Mouskattack Mission Aster
Mouskattack Threshold
Ulyses/Golden FI
Wizard \& Prin PROGRAMMING
 PERIPHERALS Pascal (APX) PERIPHERALS Pilos (Educator) Disk Drive
Eosom Print EDsom Printers
Program Recrat Program Recorder
RS232 Interface RS 232 Interface
Thermal Printer Thermal Printer
16 K Memory RAM
32 K Memory RAM PERSQNALINT Prom APX Adv Music System Banner Generator Blackiack Tutor
Gioing To The Dogs Kevboard Organ Morse Code Turor Personal Fitnes
Plaver.Piano Plaver.Pimno
Sketchpad

FOR FRE BrochURES-TEL: $01-3011111$

 SILICA SHOP LIMITED
 Dept HE 0683 1-4 The Mews, Hatheriey Aoad, Sidcup, Kent DA14 4DX Telephone $01-3011111$ or $01-3091111$

FREE LITERATURE

1 am interested in purchasing an Atari 400/800 computer and would ke to recelve copies or your bochure and lesh reporis as well as

Name.
Address.

[^0]: X for 1110 V . " 1 " in phace of X for 220 V , and "?" in place of X for 240 V .

[^1]: Comprehensive design
 details with calculations
 are included so that the kit is an excercise in power supply design. The kit, which uses quality components, is complete with instructions. Case punched and stove enameiled in attractive blue and grey with a printed front panel to give a professional finish.
 Excellent for the beginner, the experienced amateur and as a tutorial for schools and colleges.
 SEND CHEQUE OR P.O
 ALLOW 21 DAYS FOR DELIVERY

