

Project Electronics For Everyone

umbit INTERNATIONAL

THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULES IN THE WORLD \& THERE'S ONLY ROOM FOR A FRACTION HERE, GET THE CATALOGUE AND FIND THE REST CMOS-TTL

AND THERE'S PLENTY MORE IN THE CATALOGUE 70pinc
Coils, Filters: Toko, Murata, NTK, Cathodeon.

SFE6.0MA	0.80	CDA10.7MA	0.70	$10 \mathrm{M15D}$	14.50
CFSE10.7	0.80	SFE27MA	0.94	LFB4	1.95
SFE10.7MA	0.45	SAF10.7MC-Z	3.75	LFB6/CFU455H	1.95
CFSB10.7	0.50	MF45510AZ12118.55	LFB8	1.95	
SFE10.7MJ	0.50	MFL45501L	11.95	LFB10	1.95
SFA10.7MF	0.75	10M15A	1.99	LFB12/CFU455FF	1.95
SFE10.7ML	0.70	21M15A	3.45	LFH6S/	
SFE10.7MX	0.95	45M15A	5.95	CFW455HT	2.45
CFSH10.7M1	0.50	10M22D	17.20	LFH8S	2.45
CFSH10.7M2	0.50	10M8D	15.50	LFH12S/	
CFSH10.7M3	0.50			CFW455FT	2.45

TOKO FIXED VALUE CHOKES (E12 Values)
$\begin{array}{llll}\text { 7BA } 1 \text { to } 1000 u H & \text { 16p } & 10 R B-1 \text { to } 120 \mathrm{mH} & 33 \mathrm{p}\end{array}$

RETAIL SHOP OPJNING HOURS	NOW IN STOCK
Monday to Thursday $8.30-6.30$	MF10 - National's new Oual
Friday 8.30-8.30 Saturday $9.00-5.30$	$\begin{array}{l}\text { Switched - Capacitor Filter: } \\ \text { Price } £ 5.05\end{array}$

ALL PRICES SHOWN EXCLUDE VAT. P\&P 60p per order

ambit's new autumn/winter catalogue

ALL THE ‘USUAL' BITS (Rs, Cs, Tr's, ICs etc) + ALL THE TRICKY BITS
at all good newsagents or direct

* TOKO COILS, INDUCTORS, LC FILTERS
* PCM FILTERS, VHF/UHF HELICAL FILTERS
* UNELCO CAPACITORS
* PCI INTELLIGENT LCD MODULES
* TOKO SWITCHES : F SERIES/R7000 SERIES
* ALPS POTENTIOMETERS AND KEYSWITCHES
* TOYO-TSUSHO COAX RELAYS FOR TX/RX
* CRYSTAL FILTERS, CERAMIC FILTERS
* WELLER SOLDERING IRONS
* COOPER TOOLS
* TEST EQUIPMENT
* BOOKS, MANUFACTURERS' HANDBOOKS
* HARDWARE, CASES, PANELWARE, ETC
* MODULES, R\&EW KITS
* RF POWER DEVICES

ORDERS SUBMITTED USING STOCKCODES DESPATCHED WITHIN 8 WORKING HOURS

* PHONE ORDER SERVICE - (NO MACHINES!)

PLEASE NOTE OUR NEW PHONE SYYTEM AUTOMATICALLY STACKS CALLS
IN ORDER OF ARRIVAL SO PLEASE WAIT FOT ANSWERED MMEDATEIY
$8 \mathrm{AM}-7$ PM MON -SAT
0277230909

* COMPUTER ORDER SERVICE - 'REWTEL'

6 PM - 9 AM 300 BAUD/RS232
(IT MAY BE 24 HRS BY THE TIME YOU READ THIS)
0277230959

PROJECTS

* SWITCHED MODE POWER SUPPLY 15
Various voltages available
* DIGITESTERPART 23
The Chip Probe.
* POP AMPS No. 3 30
Single IC Millivoltmeter.* CBSELECTIVECALLER63
Come On!
FEATURES
* LIGHT AND POWERFROM DC SUPPLIES 10
Back up your batteries!
FAMOUSNAMES
20
20
Charles Wheatstone.
RADIO RULES 47
Introducing AM receivers.
- THE ELECTRONICREVOLUTION 52
Wireless at War. BOOK REVIEWS 68
Our literary tasters sample a selection of titles.
SPECIALS
* CUMULATIVEINDEX, 1978-1982. 35
Four years of Hobby Electronics comprehensively compiled * 1983 READER SURVEY 37
Helping to plan the year ahead.
REGULARS
Monitor 6
ERRATA 6
Points of View
33
Order Form 3
Buylines
45
45
PCB Service
59
59
LONDON HOME COMPUTER SHOW 67
HE Bookshelf 71
PCB Printout 72
Classified Advertisements 73

Clever Dick is on holiday lagain) but he insists that he will return next month.
Components For Computing Part 2, dealing with Random Access Memory chips, will appear in the February 1983 issue.

CUMULATIVE NDEX 1978-1982
 Editor: Ron Keeley

Editorial Assistant: Helen Armstrong Advertisement Manager: Gary Price Assistant Advert. Manager: Jolyn Nice Managing Editor: Ron Harris BSc Managing Director: T.J. Connell

electrowne
 ELECTRONIC IGNITION KIIS OR READY BUILT

IS YOUR CAR AS GOOD AS IT COULD BE?

- Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
* Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines max. (even with 8 cylinders).
\star is the PERFORMANCE SMOOTH. The more powerful spark of Total Energy Discharge eliminates the 'near misfires'whilst an electronic filter smooths out the effects of contact bounce etc.
* Do the PLUGS and POINTS always need changing to bring the engine back to its best. Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
Most NEW' CARS already have ELECTRONIC IGNITION. Update YOUR CAR with the most powerful system on the market - $31 / 2$ times more spark power than inductive systems $31 / 2$ times the spark power of ordinary capacitive systems, 3 times the spark duration.

Total Energy Discharge also features: EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, LED STATIC TIMING LIGHT, LOW RADIO INTERFERENCE, CORRECT SPARK POLARITY and DESIGNED IN RELIABILITY.

* IN KIT FORM it provides a top performance system at less than half the price of competing ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
FITS ALL NEGATIVE EARTH VEHICLES
6 or 12 volt, with or without ballast.
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS:
(Older current impulse types need an adaptor).

STANDARD CAR KIT	£15.90	
Assembled and Tested	£26.70	P.\&P. £1 (U.K.
TWIN OUTPUT KIT	£24.55	$\begin{gathered} \text { Prices } \\ \text { incluse } \\ \text { VAT } \end{gathered}$
For Motor Cycles and Cars with twin ignition systems		
Assembled and Tested	£36.45	

The basic function of a spark ignition system is often lost among claims for longer "burn times" and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark.
The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. However, a spark lasting $2000 \mu \mathrm{~S}$ at 2000 rev/min. spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.
The solution is a very high power, medium duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.
t SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.
\& HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to store twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
\star PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean

TYPICAL SPECIFICATION	Total Energy Discharge	Ordinary Capacitive Discharge
SPARK POWER (Peak)	140 W	90 W
SPARK ENERGY	36 mJ	10 mJ
STORED ENERGY	135 mJ	65 mJ
SPARK DURATION OUTPUT VOLTAGE (Load 50pF. equivalent to clean plugs) OUTPUT VOLTAGE (Load 50pF	$500 \mu \mathrm{~S}$	$160 \mu \mathrm{~S}$
+500k, equivalent to dirty plugs)	38 kV	26 kV
VOLTAGE RISE TIME TO 20kV (Load 50pF)	26 kV	17 kV

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

Making the Pulse

As an alternative to buying a digital pulse generator - build your own! Global Specialities Corporation, who already manufacture a popular pulser, are now doing it in kit form. Called, simply, DPK -1 , the kit costs $\mathbf{£ 5 . 7 5}$ plus VAT and comes complete with all parts, instruction and operating manual.

This pulser can deliver single pulses or a train of pulses at 100 per second, indicating with a LED when the pulse is delivered. A voltage monitoring circuit ensures that a pulse of the right polarity and level is delivered.

You can order, or obtain further information, from Global Specialities Corporation, Shire Hill Industrial Estate, Saffron Walden, Essex CB1 1 3AQ. Tel. 079921682

Second Hand News

Amongst the strangest of papers to arrive on Monitor's desk in recent months has been the news sheet from Barrett's of Croydon. Barrett's are proud to be specialists in used vacuum equipment all very well, but not likely to be of great interest to HE readers. Then a closer inspection of their Summer ' 82 Price Guide revealed a potential Aladdin's Cave; for there, just after the Vacuum Pumping Systems, Ovens and Cryogenics equipment, was quite a good range of second-hand electronic instrumentation.

The stock changes constantly, so if you're in the market for, say, a secondhand dual-trace oscilloscope for around f 80 you'd have to be quick off the mark. It's always best to 'phone before dropping in, to see what is and isn't still available, and have a good look at anything you do want to buy and a talk to the staff, to make sure you don't end up buying something you can't, or wouldn't want to, handle - after all second-hand gear doesn't come with a maker's guarantee! That said, buying used equipment is a very good way of building up your workshop at a fraction of the price you would have to pay for new. Contact Barrett's of Croydon, 1 Mayo Road, Croydon CRO 2QP. Surrey. Tel (01) 684 9917 for lists and information.

From The OK Corral

A nice pair from OK Machine and Tool (UK) Ltd., this month, in the form of OK's PRB-1 digital logic probe and PLS-1 pulse generator, two pieces of equipment which are almost a necessity for anyone doing regular work with logic circuits. And, of course, OK recommend this probe and pulser as ideal partners.

The PRB-1 digital logic probe can detect pulses down to 10 ns , has a frequency response better then 50 MHz and automatic pulse stretching to 50 ns . It is compatible with RTL, DTL, HTL, TTL, MOS, CMOS and micro logic families. The in/output impedance is $120 R$ and the normal supply voltage range is from 4 to

15 V , but an adaptor can be supplied for 15 to 25 V . It also has power lead reversal, and over-voltage, protection up to 200 V plus or minus. Price, $£ 33.24$.

The PLS-1 "pocket-sized, multimode, high-current pulse generator" is designed to superimpose either a continuous train of pulses (20 pps) or a single 2 ns pulse onto the part of the logic circuit to be tested. Effectively it isolates that section from the rest of the circuit, without unsoldering or cutting tracks, for the duration of the test, and it is capable of forcing saturated output transistors into the oppsosite logic state: quite a powerful piece of equipment! The price of the PLS-1 is $£ 43.13$.

Also from OK comes the PCBH - 50 PCB holder which will take boards up to $10 \times 12^{\prime \prime}(254 \times 305 \mathrm{~mm})$, incorporating a soldering iron holder and tip sponge. The left-hand end support slides to adjust for board width, and the board holders are spring-loaded so that the board can be removed and replaced without adjustment. The board can be rotated through 360° in the holders and locked at any angle, which should make it easy and comfortable to work on any part of the board.

You can get informaion on any OK products by contacting OK Machine \& Tool (UK) Ltd., Dutton Lane, Eastleigh, Hants SO5 4AA. Tel. 0703610944.

Microlog Errata

Last month's Microlog project (Hobby Electronics December '82, page 6, Figure 11) contained an error in the power supply circuit. The transformer output should be connected to the top corner of the bridge rectifier, BR1, not to the input of regulator IC3. The correct drawing is reproduced with this month's PCB Printouts, on page 72.

Up-Market Timer

When it comes to the switch'em on and leave'em to it approach to electrical appliances, an automatic timer control must be the best alternative to an expensive micro or a highly-trained white rat. Tek Marketing have produced a fully electronic plug-in timer which is accurate to within a few seconds funlike many mechanical timers) and can take loads of up to 3 kW , so that it can be used to control heating appliances, as well as tape recorders, radios, house lighting,
etc. Timetouch is push-button operated, and has a 24-hour LED display. There is a manual over-ride switch to turn on the appliance without disturbing the timing program. Timetouch costs $\mathbf{£ 2 5 . 0 0}$ from Tek Marketing, Burrel Rd., St. Ives, Huntingdon, Cambs PE1 7 4LE (Tel. St. Ives (0480) 62225).

Snap Out Of It

BFI Electronics is importing Mars-Alcatel Series 6010 miniature snap-in communications connectors, of a type which you might already have seen on some home telephones. Tiny plugs the four-way version measures only $6.6 \times 7.67 \times 13.3 \mathrm{~mm}$ - snap into a small socket which can be mounted anywhere. The plug is released by pinching a sprung release arm which is part of the plug. The plugs come in $2,4,8$ or 16 -way versions and the socket, which measures $10.2 \times 20.7 \times$ 15.4 mm (outside dimensions), offers a choice of wire terminations, length and colour. The plugs are made of transparent polycarbonate and the socket of moulded grey ABS.

This plug and socket system is in use in the French telephone network, and has phosphor-bronze contacts plated in nickel or gold, with a contact resistance of less than 30 mR (very low for such a small plug) and a current handling of 1.5 A (which is high). Insulation resistance between contacts is more than 10 MR and the isolation voltage better than 1000 V at 50 Hz . The plug is very easy and quick to use and is ideal for connecting telephone hand-sets into communications equipment and the inter-connection of portable or mobile test and monitor equipment. For further information and prices contact Mick Savage, BFI Electronics Ltd., 516 Walton Rd., West Molesey, Surrey KT8 OQF (Tel. (01) 9414066).

Check This One Out

Mikro-Gen have produced an advanced chess program specifically for the 48 k Sinclair Spectrum. One of the most powerful ZX chess programs available, the game, called 'Masterchess' , has been designed to provide a more adventurous, less defensive game and makes use of high-resolution graphics.
'Masterchess' gives a choice of ten
levels of play, can change levels, or sides, during a game, provides a history of moves and a graphic display of the board which can be copied onto a printer at any stage to give a complete record of moves (useful for postal chess or just for midgame arguments!). The board can be set to any configuration; player's and computer's moves can be displayed and the game can be saved at any stage. All legal chess moves can be played, and illegal moves are indicated. There is also a recommended move option with varying search depths according to the level of play, useful for the developing player. 'Masterchess' comes on cassette in a library case, and costs $£ 6.95$ plus 40 p p\&p from the makers, Mikro-Gen, 24 Agar Crescent, Bracknell, Berks.

Stick That In Your Lug!

OK Machine and Tool are now producing DIP plugs for standard DIP sockets with 14, 16 and 24 pins. These have glassfilled thermoplastic bodies, and can be connected to any number of cable strands (up to a the limit of the pins, of course) by solder lugs which are in one piece with the plug-in legs. The leg/lug is in gold-plated phosphor-bronze for a good connection between one board and another, and the plugs come packed in pairs complete with slotted top-entry covers. Prices are £ 1.80 (each, not per pair) for 14 -pin plugs, $£ 1.98$ for 16 pins and $£ 2.97$ for 24 pins. Further information from OK Machine and Tool (UK) Ltd., Dutton Lane, Eastleigh, Hants SO5 4AA (Tel. 0703 610944).

Multilingual Micro

The new 48k Oric I micro will be available with FORTH as its second language (the first, of course, being BASIC). This will be available as a free cassette with every Oric I unit. In the New Year, Oric Products are also planning to offer 'Extended BASIC', which has the equivalent power to BBC BASIC but is claimed to be more sophisticated, giving a structural programming capacity. Pascal will be available soon afterwards. Full information from Oric Products International, Cowarth Park, London Rd., Ascot, Berks SL5 7SE (Tel. (0990) 27641.

Getting The Games Bug

Micro software specialists Bug-Byte are expanding their range of micro games. For the VIC-20 (with 16 k expansion) comes a chess package which boasts 1,000 levels of play (that should keep you off the street for a bit!) for $£ 7.00$ plus VAT. For the BBC 32 k Acorn micro, there will be an adventure game called Dragon Quest shortly. Bug-Byte plan more than 30 games by the end of 1982, all under a 12 month guarantee.

Entertainment of a rather different kind comes from their Aspect Assembler package, which enables the user to write programs in machine code. The program
has a built-in error-detection system which Bug-Byte claim is foolproof now there's a challenge! Price is $\mathbf{£ 9 . 0 0}$ plus VAT.

Orders can go to Bug-Byte at 100 The Albany, Old Hall Street, Liverpool, or from one of their dealers around the country.

Turn It On Again

Indefatigible suppliers of electronic hardware, Stotron Ltd., have informed Monitor of three new products in their stock ranges.

From old favourites Boss Industrial Mouldings come new ranges of Bimbox construction boxes and small desk consoles. The Bimboxes are available in plastic, or plastic with metal lids or in aluminium in a full range of sizes, with 1.8 mm PCB slots.

The Desk Consoles come in various sizes, including a Eurocard size, and all have grey ABS bases and 1 mm -thick aluminium screw-down top panels. Some consoles have PCB slots, while some have ventilation slots in the base.

A series of good quality signal switches, both in momentary and alternate action types, come from Nietzche. With a choice of between two and eight poles, these switches will operate at $500 \mathrm{~mA} / 100 \mathrm{VAC}$ " $200 \mathrm{~mA} /$ 25 VAC and $1 \mathrm{~A} / 25 \mathrm{VDC}$, with a breakdown voltage of 500 V after one minute, operating temperatures of
between -20 and $+70^{\circ} \mathrm{C}$ and a very low contact resistance of less than 50 mR after 20,000 cycles. A power switch, buttons and panel mounting brackets are available in the same range.

Bulgin have produced a range of useful chassis-mounted plugs and cableend sockets. This includes a 6A/250V re-wireable AC chassis plug and free socket and an equivalent side-entry socket, a 10A free socket and chassis plug which meets BS4491 'Hot Condition' specifications, a mainsrelated moulded cord set with integral 13A plug and moulded connector with a 2.5 mm cable and changeable fuse. There is also a flush mounting 6 A 250 V AC fused appliance coupler designed to extra-high safety standards.

For prices and information on all of these, contact Stotron Ltd., Haywood Way, Ivyhouse Lane, Hastings, E. Sussex TN35 4PL (Tel. Hastings (0424) 442160).

LED There Be More Light

Hidden deep inside many electronic hobbyists (and not always very deep, either - but we won't name any names!) is a frustrated light-show director whose greatest joy, if he can't have a few kilowatts of spotlights to play with, is to cover his front panels with lights, illuminated switches and LEDs of every description. If you are one of these, your life will probably be eased by Boss Industrial Mouldings ingenious snap-in lenses for use with $\mathrm{TI} 3 / 4(5 \mathrm{~mm})$ LEDs.

The lenses come in round and square shapes, making a nice variation on the normal LED profile, and are moulded in red, green, amber, clear or yellow cellulose acetate butyrate. The mouldings incorporate Fresnel rings and striated lines, which increase apparent brightness by up to 125% and give viewing angles of up to 180°

The lenses are snapped into a 7.11 mm panel hole, and when the LED is in serted from the rear both are fixed firmly in place. The lenses will also protect other components from electrostatic discharges of up to 16 kV . Contact Boss Industrial Mouldings, James Carter Road. Mildenhall, Suffolk IP28 7DE.

BHPAK BARCAINS

TRIACS - PUASTIC

SAMP - 400 - TOPCO - TAG 1380			
1 GFF	10 OF	50 OFF	100 Oft
40	C3.75	¢17.50	630.00
8 AMP 400	- 50220	AG 425	
60p	55.75	627.50	¢50.00

SIIDER PITENTIOMETERS

Masist doap tame Mano AlL AT

51400250 Silcon Diodes-S Switching Iitied IN4148 00-35. All good-uncoded. Worth double our plice. $45 v 75 \mathrm{~mA} \quad £ 1.25$ S141 250 Silicon Olodes-General Purpose. like 0A200/202. BAx13/16. Uncoded. $\begin{array}{r}30-100 \mathrm{v} 200 \mathrm{~mA} 007 \text {. } £ 1.25 \\ \hline\end{array}$

144 105A SCR's TO64. 3 a 200 v . $2 \times 400 \mathrm{v}$. Super value less thro 2 200 v . $2 x 400 \mathrm{v}$. Super value less than the 5×5 price. 105 SCR's $0066.2 \times 50 \mathrm{v}, 2 \times 100 \mathrm{v}, 4 \mathrm{x}$ $200 \mathrm{v} .2 \times 400 \mathrm{v}$. All coded. Brand new. a - give away al

BI-PAK'S OPTO 83 SPECIAL
A selection of large \& Small size LED's in Red Green, Yellow and Clear, plus shaped.devices of diftereni types. 7 Segment displays; photo transistors, emitters and detectors. Types like MEL11, FPT100 etc. Plus Cadmium Cell ORP12 and germ. photo transistor OCP71.

MINIATURE TOOLS FOR HOBBYISTS

Culle ard serazad ims - msuctied
manales smach engith Civer No rour
nneurre caurd nose side curres
Noo roas
Unaive long nose pleers - nsulazed neardes S'minct lengit Oitrei Narra4

Mnature sener nose pltars - msubiled Hanctes 5 Strnch iengit

ill with insulated handles
 -даммрке? $=G \frac{1}{6}-2$

Gurch iong screwedruer with spring lasaded gnp on end to hoidd screws in position while reaching into 50.2 Cross paint mo. 95 Pect
inexpensive toots of immembe value Comaned wrie subpee, culler, crimper nel 25 ass.

 Q EXPERIWENTOR BOXES - ALUMINIUM plastic ALUMINIUM BOXES Made with Bright Aluminium foided consfiuction wind deep lid and screws S12E $\quad 1$

1.25
ga mut priver set
Sect of 5 BA sameer state olus viveral hande in rollup wale. Stres $0 \mathrm{BA} 2+688 \mathrm{BA}$. Oroer No T 1182

MEON SCREWDRIVER
7iln blade no NS 10. .efp oach
5zin bade no NS2 0.50 p aech

Luariantee

 always been 81 .PAK's GUARANIEE and it still is All these Sale items are in stock in quantity and we will despalch the same day as your order is received.
IC SOCKETS

The lowest price ever.
The more you buy the cheapert they co
Pin. 10 off 50 oft 100 oft

16 要 950
16 pin $\quad 95 \quad[4.00 \quad \mathbf{E 7 . 0 0}$

VOLTAGE REGULATORS T0220
 $\begin{array}{ll}\text { Positive }+ & \text { Nepative }+ \\ 7805-50 p & 7905-55\end{array}$ $\begin{array}{ll}7805-50 p & 7905-55 p \\ 7812-50 p & 7912-55 p\end{array}$ $7815-50 p \quad 7915-55 p$

MW39B NT-CAD CHARGER Universal N. . Cad battery charger. Alf plastic case with lift up hid. Charge/Test switch. LED indicators at each of the live charging points.
Charges:- Power

PP3 (9V)	$220-240 \mathrm{~V}$ AC
U12(1.5V penlule)	O.ms:-
U11(1.5V C")	$210 \times 100 \times 50 \mathrm{~mm}$
U2(1.5V D")	$\varepsilon 6.95$

POWER SUPPLY OUR PAICE © 3.25 Power suppiy lits directiy into 13 amp socket Fused tor safely. Polamy reversing socket Voltage switch. Lead with multi plug Input: - 240V AC 50H2 Output -3.45.6. 15.98 t 2 V DC Rating. -300 ma MWBB

1 Amp SILICON RECTIFIERS

 Glass Type simile IN4000 SERIES IN4COI-IN4004 50 - 500 - uncoo.s - you selact lor VITS MLL Dertect devices - NO duds Min 50y 50 tor $\mathrm{E1.00}$ - worth couble ORDER NO SX76 Sulton General Puppose NPN Transitors T0-18 Case Lock in heads - coder CV76a4 Similar 10 BC 147 - BC107 - $\$ 899$ ALL NEWI VCE 7OV IC500mA Silicon General Purdose PNP Iransislors T0-5 Case lock in leads coodod Cvos07 simila: 2N2905A to BF $\times 30$ VC 60 IC 600 mA Min He 50 ALL.NEW PRICE $\% 50$ ¢ $4.00 £ 19.00 £ 35.00$

Oroer as Cv9507

MULTITESTERS

h,000 opv Including test leads \& Batten ac votes: $0-15-150-500-1,000$ ${ }^{1}$ 'CC voles:- 0-15-150-500-1,000. DC currents:-0.1ma-150ma Resistance:- $0-2.5 \mathrm{~K}$ ohms 100 K ohms Dims. $90 \times 61 \times 30 \mathrm{~mm}$.

O/No.1322.0UR PRICE £6.50 ONLY
$30,000 \mathrm{opv}$ inclucing test leads and case. AC volts: $0.2 .5-10-25-100-250-560-1,000$ DC vols: - 0-0.25-1-2.5-10-25-100-250-1,000. OC current:- $0.50 \mathrm{ua} 0.5 \mathrm{ma}-50 \mathrm{ma} 0-12 \mathrm{mps}$. Resistance:- 0 - 6 K ohms-70K ohms-6meg ohms60 meg ahms
Decibels:- 20 db to plus 56 db . Shon test- Internal buzer. Dims - $150 \times 110 \times 50 \mathrm{~mm}$. 0) No. 1315. DUR PRICE ONLY £24.75 semiconductors lor the Amateur and Pralessianal you could hope to lind. There are no wasted pages of useless information so often included in Catalogues published nowadays Just soind facts i.e. price, description and individual features of what we have avallatle. But remember, Bi.Paki's policy has always deen to sell quality components at Compelifive pices and THAT WE STM 00.
B1.PAKS COMPLEIELY MEW CATALOGUE Is now ayalable to you. You will be amased how much you can save when you shop for flectionic Components mith airpalk Calalogue. Have one by you all the time-1t pays to buy 81-PAK.

To recerve your copy send $75 p$ plus $25 p p s p$.

100 FREE PROCRAMS FROM SILICA SHOP - WITH EVERY PURCHASE OF AN

 ATAR1800

ATARI PRICES REDUCED
We at Silica Shop are pleased to announce some fantastic reductions in the prices of the Atari 400/800 personal computers. We believe that the Atari at its new price will become the U.K.'s most popular personal computer and have therefore set up the Silica Atari Users Club. This club already has a library of over 500 programs and with your purchase of a 400 or 800 computer we will give you the first 100 free of charge. There are also over 350 professionally written games and utility programs, some are listed below. Complete the reply coupon and we'll send you full details. Alternatively give us a ring on 01-301 1111 or 01-309 1111.
$\underset{w_{\text {with } 16 \mathrm{~K}}}{\text { ATARI }} 400$ f199
ATARI 400 with 32 K £248 ATARI 800 with 16 K

400/800 SOFTWARE \& PERIPHERALS

Don't buy a T.V. game! Buy an Atari 400 personal computer and a game cartridge and that's all you'll need. Later on you can buy the Basic Programming cartridge (£35) and try your hand at programming using the easy to learn BASIC language. Or if you are interested in business applications, you can buy the Atari $800+$ Disk Drive + Printer together with a selection of business packages.
Silica Shop have put together a full catalogue and price list giving details of all the peripherals as well as the extensive range of software that is now available for the Atari $400 / 800$. The Atari is now one of the best supported personal computers. Send NOW for Silica Shop's catalogue and price list as well as details on our users club.
THE FOLLOWING IS JUST A SMALL SELECTION FROM THE RANGE OF ITEMS AVAILABLE:

ACCESSORES	Mountain Shoot	BUSIMESS	DYNACOMP	Maths. Tac. Toe			Slemzy Adventure	A	ROGBAMMIING
Cobles	Rearguard	Csicularor	Alpha Fighter:	Metric \& Prob Solvg	States a Capitais	Centurion	Solitare	Mission Asteroid	IDS from Ater
Cassettes	Star Flite	Database Managemt	Champelo	Mugwump	Touch Typing	Checker King	Space Chase	Mouskatiack	Assembler Editor
Diskertes	Sunday Golt	Decissoin Maker	Crvstals Forest Fire	Music Terms/Notatn		Chinese Puzzle	Space Trek	Threshoid Ulysses/Golden FI	Orembier (APX Microsolt Bastc
Joysticks		Graph-1t	Forest Fire	Musical Compuler		Codecracker	Sultans Palace Tact Trek	Ulysses/Golden FI Wizard \& Princess	Microsolt Bastc Pascal (APX)
Le Stick - Joystuck	Automated	Invoicing Librarian	Monarch	Number Blast	Cribbage/Dom	Oice Pok	,		Pilot (Consumer)
P Podites	Crush Crumble Cmp	Mort ${ }^{\text {a }}$ Loan Anal	Mconprobe	Polyealc	Darts	Dog Daze	Wizards Gold	PERIPHERALS	Pilot (Educator)
	Datestones of Ryn	Nominal Ledger	Moving Maze	Presidents of U.S.	European Sceme Jiolin	Domination	Wizards Rev	Cantronics Printers	Programming Kit
ADVENTURE INT	Oragons Eve	Payroli	Nominces Jhasaw	Quiz Ma	Mickory Dickory	Downhil		Disk Drive	
Scort Adsmi Ady	Invasion Orion	Personal Finl Mgmt	Fings of The Emp	Starware	Humpty Dumpty	Eastern Front	ENTEATAINMENT	Epsom Printers	SANTA CRUZ
No 1 Achenturelnd	Rescue at Rigel	Purchase Ledoer	Space Till	Srereo 30 Graph	Jumbo Jet Lander	Galasud \& Holy	$\frac{\text { Irom ATARI }}{\text { Asterals }}$	Progrmm Record	Bosics of Animation
No 2 Prate	Rica	Soles L	Space Truos	Three R Math Svs	Snooker s Billiart	Graphic	Asteroids	RS232 intefface	Oisplay Liste
No 3 No Mission Imp Voodoo Cast	Star Ware of Apshai	Stack Controt	Triple Blockade	Wordmaker	Super Cuben \& Tilt		Blackiock	16 K Memory R	Graphics Mact
No 5 The Count	Upper Reaches Aps	Teletink 1			Tournoment Pool	Lookaters	Contipede	32K Mernory RA	Kids 182
No 6 Strange Ody		Visicalc	duca	ducat		M	Ch		Horizontol
No 7 Mystery ${ }^{\text {f }}$	600ks	Wekly	n	Onv F		Mides Tour	Missile Commman		
No 8 Prromid of D	Basic Ret Manual	Word PIC	Algicale	Conv French	Alien Eg9	Outlew/HO	Pac Man	cic sviem	
No 10 Sov lyland 1	Computim Bk Alarl	CRYSTALWARE	Cubbyholes	Conv Iralian	Antill	Preschool Game	Space Invade	Banner Generato	Praver Missile Gr
No 11 Sav island 2	Compure Megazine	enesth The Prram	Elementary Biology	Conr Spanish	Attank	Probowting	Ster Rand	Blackiack Tutor	Plaver Piano
No 12 Golden Vov	De Re Azari	Fantasyland 2041	Frogmaster	En	Avalanche	Pushover	Sup	- The Dogs	Soun
Angle Worms	OOS URilities List	Galactic Quest	Hickory Dickory	Europesn C a Caps	8 8bel	Rabb		voos	Vertical Scrolling
Deflections	oos 2 Manual	隹	Inst Compig Dem	Hangman	Blackjack Cosino	Reversill			
	Misc Atari Books	Sands of	Lemonate	lnvit To P Pa Kingdom	Slock Em	747 Londing Simul	Crosslire	Plaver Piono	Silica clus
Lunar Lande,	Wiley Marual	III	+	Mustic Comporer	Bumper Po	Seven Gard Stud	Frogger	Skerchped	wrive for doplatu

FOR FREE BROCHURES -TEL: 01-301 1111

FREE LITERATURE

I am interested in purchasing an Atarl $400 / 800$ computer and would tine to receive copies of your brochure and test reports as well as Neme

Address.
Masen ar ry gemer ios pessene coppurers

IINUM, III

LIGHT AND POWER FROM DC SUPPL Les
 Roger Harrison

Generating light and power from batteries is fraught with many unrealised difficulties. Whether you want DC back-up to operate equipment when the mains goes 'off the air' or a wholly independent 240 VAC supply, you should know the problems.

THAT'S THE TROUBLE with Electricity Boards - they've insidiously crept into our lives and made us quite dependent on them. For those occasions when we cannot avail ourselves of their 'services', we have to rely on other sources to provide light and power. The old paraffin pressure lamp has its advantages - and disadvantages - but how on earth do you keep a disk drive running when the AC mains 'browns out'? As storage batteries are easy to obtain, the 12 V car battery in particular, it's natural that we turn to them to provide back-up and mains-independent supplies.

Back-up supplies

For equipment designed to be powered directly from a nominal 12 V DC source or from either 12 V DC or 230 VAC , back-up supplies are employed to maintain continuity of supply; the battery is kept charged from the mains, but acts to maintain power supply to the equipment in the event of mains failure. This sort of system is commonly installed with burglar alarms and amateur radio repeaters, for example.

The 'power budget' of such systems is carefully considered to provide maximum service period from the battery supply when mains is unavailable. Hence a single 12 V storage battery - generally a low maintenance type - is employed. Let's learn a bit about lead-acid batteries first.

The fully-charged, no-load terminal voltage of a lead-acid cell is between 2.3-2.4 volts. This drops under load to about $2.0-2.2$ volts. When discharged, the cell voltage is typically 1.85 volts.

The amp-hour capacity is determined from a 10 -hour discharge rate curve. The current required to discharge the battery to its end-point voltage of $1.85 \mathrm{~V} /$ cell is multiplied by this time; e.g: a 40Ah battery will provide four amps for 10 hours before requiring recharge. Note however that the amp-hour capacity varies with the discharge current. The same battery discharged at a rate of 10 amps will not last four hours; on the other hand if it is discharged at 1 amp it will last somewhat longer than 40 hours. The typical discharge characteristics of a (nominal) 12 V battery are shown in Figure 1.

The ideal initial charging current for the fully discharged battery (cell voltage under 2.0 V) should be about 20 amps per 100 amp-hours of capacity (i.e: 8 amps for a 40Ah battery). Once the electrolyte begins to gas rapidly, the terminal voltage
will be around 13.8 volts and rising rapidly. At this point, the charging current should be reduced to somewhere between 4-8 amps per 100Ah until charging is complete.

At the end of charging, terminal voltage may rise to about 15.6 volts or more, but this decreases slowly after the charger is removed, the terminal voltage then usually reading around 14.0 to 14.4 volts (see Figure 2).

Back-up supplies are generally of the 'trickle-charge' type or the 'battery condition' sensing type. A good example is shown in Figure 3. This circuit trickle charges a 12 V battery when the mains is on and provides automatic switchover when the power drops out. It's cheap and simple, but needs to be used for the batteries to stay in condition, so that they deliver their rated capacity when needed. Back-up supplies of this sort are only practical where the load on the supply is not too heavy - generally 20 W or so.

To drive a heavier load, upwards of 50W for example, it's best to power the equipment from the battery all the time and have a charger which senses the battery terminal voltage, charging the battery when the terminal voltage falls to a preset level and turning off when the terminal voltage rises to the desired operating level again. There is a slight element of luck involved as to how charged the battery will be at any one time, but the lower limit is usually set so that the equipment will operate for a specified period. Such a battery can drive a 10 A load at the 10-hour discharge rate - which effectively means it's a good back-up supply for equipment with a power budget of up

Figure 1. Discharge characteristics of a typical 12V (nominal) lead-acid battery.

Figure 2. Charging characteristics of a lead-acid battery; the 'kink' in the curve near the six hour point is explained in the text.
to 120 W mean consumption. This means that actual consumption can be greater than that from time to time, provided that consumption falls below the mean level for an equivalent period. An amateur VHF or UHF repeater is a good example. Whilst 'listening' only - no stations active on the input channel - consumption is quite low. When 'activated' by a station or stations, the repeater spends most of its time transmitting, and consumption can be four to ten times that during inactive periods, depending on the power output of the transmitter employed in the repeater.

As stated earlier, the major consideration with back-up supplies is the power budget of the equipment being supplied. If you anticipate the necessity of operating the equipment for periods exceeding, say, eight hours, then a battery of adequate ampere-hour capacity needs to be used. It is always prudent to choose a battery with 20-50\% more capacity than strictly necessary.

DC-AC Inverters

Like storage batteries, 240 V AC mainsoperated equipment is quite common. The huge variety of products have been designed to be convenient, thus making themselves necessary. Or so it seems. Why on earth anyone would want to take an electric razor on a camping expedition and expect to power it from an ersatz 240 V AC supply is beyond this writer but then I haven't had a shave in more than 15 years except when my appendix was removed, and then they didn't shave my face!

There are common approaches to providing 50 Hz AC power for mains operated appliances: provide square wave drive of the appropriate amplitude, or derive a sinewave (or pseudo sinewave) supply of appropriate amplitude. Both are fraught with hidden difficulties. If you want any substantial amount of power output - like 200W - you're in hot water - but probably unable to boil a kettle!

A square wave DC-AC inverter has the advantage of simplicity and efficiency depending somewhat on the design. Inverters generally take two forms: 'selfexcited', usually employing a feedback winding on the transformer, and 'driven', where an oscillator drives a switching circuit, generally with transformer output. Where the precise frequency of the AC output is unimportant, self-excited inverters are employed. Where a stable 50 Hz output is required, a driven inverter is necessary.

Lighting is one area where self-excited DC-AC inverters find application. The common tungsten filament incandescent light globe is a poor choice for lighting where a DC supply is employed. They have an efficiency of less than a fifth of that of a fluorescent light of the same power rating - viz: around 12 lumens/watt for the tungsten filament lamp versus better than 60 lumens/watt for a fluorescent tube. A 20W fluorescent tube would provide as much light output as a 100 W incandescent globe! Those figures are based on 50 Hz AC supply. Fluorescent tubes actually improve in efficiency when driven from a higher frequency supply. Figure 4 shows how the

Figure 3. The circuit of a simple back-up supply. It maintains a trickle charge to the battery when the mains is on, and switches automatically when the power cuts out. It can also be used for purposes other than lighting, provided the power consumption is not too high.

Figure 4. The light output of a fluorescent tube increases with frequency. This property is exploited by DC-AC inverter circuits to provide highly efficient lighting from DC supplies.

light output of a fluorescent tube increases with increasing supply frequency. Driving the tube from a supply frequency of 10 kHz or more will result in a 20\% increase in light output.

The circuit of a self-excited inverter driving a fluorescent tube is shown in Figure 5. It runs at around 2 kHz and employs a ferrite-cored transformer; consumption is 2.5 amps . An incandescent globe to provide a similar light output would draw around 10 amps ! Such inverters have one drawback - the transformer core 'sings', owing to the magnetostrictive forces on the core pieces (which generally come in two pieces). That can be solved in two ways - put the inverter in a 'soundproof' box or operate the inverter at a frequency above audibility. The first solution is inevitably only partially successful (though often acceptable).

When it comes to powering 240V AC equipment or appliances, a number of considerations have to be looked at. First, will the equipment operate from a square wave supply? Many appliances employing an $A C$ or $A C / D C$ motor will operate quite happily from a square wave supply. Such a supply, for example, can be used as a battery back-up for a computer's disk drives; supplying these with $240 \mathrm{~V}, 50 \mathrm{~Hz}$ square wave $A C$ from a driven inverter. The general arrangement is shown in Figure 6. A 100 Hz oscillator drives a flipflop, which drives a pair of HEXFETs connected in push-pull across the secondary of a toroidal transformer. Battery supply was 24 V . The transformer is operated 'back-to-front' here, where input is applied to the secondary and the load connected across the primary. Toroidal transformers perform much better in this application than conventional types, as core losses are lower and primary-tosecondary coupling is generally better. Some losses are involved, the saturation voltage of the HEXFETs generally being the greatest source. Hence the use of a 20-0-20 V winding and not a $24-0-24 \mathrm{~V}$ winding.

The saturation voltage loss in switching devices driving a transformer is an important consideration. One or two volts lost from a 24 V supply represents only about 4% to 8% loss, but at 12 V it's twice that! Any further losses only magnify the problem.

A square wave $A C$ supply is inherently rich in harmonics. These can play havoc with audio and digital equipment and it's often difficult to suppress interference generated by the supply. Then again, some equipment - particularly anything containing a transformer and rectifier will produce entirely different performance when it's operated from anything other than a sine wave supply. The problem arises because the peak and RMS values of a square wave are the same, whereas the peak/RMS ratio for a sinewave is 1.414 . To deliver the same work value as a sine wave supply, the peak output voltage of a square wave DCAC inverter is generally set at 240 V . When driving a motor or resistive load, the square wave supply will deliver the same amount of power as a sine wave supply; i.e: the same amount of work will be done (all else being equal). But, where the load
or equipment expects a peak voltage of 340 V las we have with the ordinary mains), then a square wave supply of a nominal 240 V output will not 'deliver the goods', as its peak voltage is still only 240 V .

So much for that; let's look at sinewave DC-AC inverters. At this stage, you might like to take a look at the letter from Mr. Channer in this month's Points Of View.

Requests of a similar nature arrive quite commonly, though this one is a little unusual, compared to most we receive! Many readers ask for a 1 kW or similarly rated inverter to run from a 12 V battery. The latter is impractical, for the following reasons.

Consider this: a sinewave DC-AC inverter needs to be of the driven type. Hence it generally consists of an oscillator driving a class B power amplifier - usually a push-pull type. The theoretical maximum efficiency obtainable with a class B power amplifier is 78%. With losses and power consumption of drive circuitry taken into account, the DC power input to AC power output efficiency of an inverter of this type is generally around 65-70\%. Thus a 1 kW DC-AC inverter to run from a 12 V battery would draw in excess of 120 amps at full loadl Few batteries would supply that sort of current for long! With currents of that magnitude, special arrangements have to be made for primary circuit conductors. A resistance of 5 milliohms (0.005 ohms) will result in a power loss of more than 70 watts. Then again, special consideration has to be given to heat dissipation in the power output stage. The devices used would dissipate something over 400W at peak load. No load dissipation would probably be in the vicinity of $40-50 \mathrm{~W}$, which is no mean amount to get rid of.

Apart from the weight of a heatsink, consider the weight of a 1 kVA (or 1000 W) transformer (assuming a single transformer is used). We'll leave the expense to your imagination.

The problems are reduced somewhat when a much higher DC supply voltage is available. However, in the latter case other techniques of DC to AC conversion present themselves - but that should be the subject of another article as it's a whole new ballgame.

Where a 12 V battery supply only is available, there is a practical limit to the maximum power of a DC-AC inverter, and that's probably around 300 W output. At typical efficiencies, the DC input power is around 450 W , or close to $35-40$ amps current from the battery.

As you would already appreciate, this brings its own special problems. A battery to supply that sort of power for any appreciable or worthwhile period would need to have a considerable ampere-hour capacity. Your typical 40-60Ah car battery would barely deliver an hour's worth of power. If the inverter is installed within the vehicle, or close by, and you are willing to keep the engine running during operation, then the battery will deliver the goods for quite a period, provided you can 'set' the throttle to suit so that battery charge is maintained. At this stage, I might point out that an alternator coupled to the motor would provide a more efficient energy conversion!

Figure 5. A circuit for a self-excited square wave inverter operating at 2 kHz and suitable for driving a 20W fluorescent tube.

Figure 6. Outline of a 'driven' DC-AC square wave inverter with a nominal 240 VAC output.

Figure 7. A Class B driven sine wave inverter for providing 240VAC from a DC supply.

To gain, say, four to six hours of operation for a 300W inverter, you would need a battery system of more than 200Ah capacity.

A more practicable power level for a sinewave DC-AC inverter would be around 120 W . Such an inverter would pull 12 to 15 amps from the battery, a much more manageable figure.

Having seen the primary side of the problem, let's consider the secondary side - the load. How many appliances do you have rated at less than 300 watts? Very few. The humble electric kettle is rated from 1 kW to 2.4 kW . Monochrome TV sets, particularly portables, may only consume 100 W , but a colour TV may draw three times that or more. A 'low power' (say, 30W/ch.) domestic hi-fi will
draw around 100 W , depending on how much equipment is in use and how loud you like it. Anything more ambitious has a proportionately larger consumption. A 300W DC-AC inverter is best considered where the full output is only required intermittently.

Conclusion

As can be seen, many factors have to be taken into account when considering obtaining light and power from a battery supply - whether it be in a back-up application, for lighting or 240 V AC substitution. The ubiquitous 12 V battery is not up to the job in some instances - in which case higher voltage DC systems are better considered.

NEW AND FREE FROM GSC.
NEW an exciting range of projects to build on the EXP300 breadboards.
NOW anybody can build electronic projects using "Electronics-by-numbers", its as "Easy as A, B, C with G.S.C!"
FREE project
MUSICAL DOORBELL OF THE 3RD KIND
You've seen the film, now haunt your visitors with the tune!
Each time the doorbell is pushed the eerie tune plays out, then switches off to conserve battery power.
HOW DO YOU MAKE IT.
Our FREE project gives you clear "step-by step" instructions. For example "take
Resistor No. 1 and plug it into hole numbers 845 and B47".
"Take IC No. 1 and plug it into hole numbers E35 to E42 and F35 to F42, (pin 1 on the IC goes into F35)"
"Take. . "Well! why not "clip-the-coupon" and get your FREE step-by-step instruction sheet and your FREE 12 projects with each EXP300 bought and your FRE E catalogue and.

EXPERIMENTOR BREADBOAROS
The largest range of bre actooards from GSC.
E ach hole is cidentified by a leter number syslem
GACH NICKEL SLIVE B CONT ACT CARAIES S LIEE TIME GUARANT
All modular construction means that any Expertmentor breadboard can be 'snap-locked' logesther to muild breadloards of any sue
 Takes 8, 14,16 and uoto to 22 pin IC's Has 130 contict poonts including 2 bus

Exp350 The 'bequnners. breadbosrca
for limired
D you can have FaEE 12 Electronics by Numbers' PROJECTS

EXP300

The most 'mudely troughe treathourd The most 'widely bought' breadboard Don't miss out or our 'NEW ANO FREE' projects

EXP600
The Hobbyrst mecroprocessor' board
EXP650
EXP650
The 'one chipernicroprocessor' board
Expab
Snaps on four extra thus bars
P86
The ultomate treadioard xit
P8 100
The most kit for the least monev

NEW AND FREE FROM G.S.C.
24 HOUR SERVICE
Tel (0799) 21682 wath your Accests. American Express, Barclaycard number and your order will be put in the post ummedately.
Goods dusparched within 48 hours
TO OROER JUST CLIP THE COUPON.

Experimentor Breadboards	Unit Price Inc. $P \& P+15 \%$ VAT	Quantity Required
Exp 325	£ 3.16	
Exp 350	f 4.83	
Exp 300	£ 8.05	
Exp 600	£ 9.48	
Exp 650	£ 5.75	
Exp 48	£ 3.73	
P8 6	£13.80	
P8 100	£17.53	

NAME
ADDRESS

I enclose cheque/PO for \mathbf{E}
Debit my credit card No. .
Expiry date
Please send tree catalogue Tick \square Dept 14P
GLOBAL SPECIALTES CORPORATION
globalspe
$\longrightarrow \longrightarrow$
GSC Unit S. Shre Hill ind Estate Tplephone $\{0799\} 21682$ Tplex 817477 14P

	$\begin{array}{c\|} \text { SELF } \\ \text { ASSEMBLY KIT } \end{array}$
3x 1000	- £12.95
SX 2000	$£ 49.95$
TX 1002	¢22.95
TX 2002	¢32.95
AT 80	¢32.95
VOYAGER	¢84.95
MAGIDICE	¢9.95

PRICES INC. VAT. POSTAGE A PACKING

Switched Mode Supply

DC supplies for all occasions.

THE APPLICATION of integrated circuit technology to modern electronics has produced a dramatic increase in the performance and sophistication of many electronic systems, yet it has also brought with it much more stringent demands on power supply performances. Fortunately, semic onductor manufacturers provide a wide range of integrated circuit 'regulators' which satisfy these requirements.

A 'regulator', in this context, is a device which provides a stable high performance voltage supply from a low performance or 'unregulated' DC supply of a higher voltage. Although internally complex, these devices are easy to use and low in cost, to the extent that they are employed in virtually every IC-based circuit around today.

The method of voltage regulation employed by almost all of these devices, known as 'series pass' regulation, suffers from one major disadvantage - it is very inefficient. An efficiency of less than 50% is not uncommon in these regulators, and thus a substantial amount of power is dissipated within the device itself. We are more concerned though, not by the 'scandalous' wastage of energy but by the necessity for bulky heatsinks, preventing the device from being destroyed by excess heat, and by the inevitably high running temperature.

Switch-mode regulation offers a high-efficiency alternative to series pass regulation for any applications where small physical size and low running temperatures are a premium. This type of voltage regulator is generally more complex but this is largely offset by the current availability of IC switching regulators.

Series Passed

A conventional series pass regulator is illustrated in Figure 1a. In this circuit, Ql attempts to maintain the output voltage (Vout) constant with respect to a reference voltage (Vref) against variations in the input voltage (Vin) and the load current. In so doing, a voltage drop appears across the collector-emitter terminals of OI which increases with Vin . For the regulating action of O to be effective, the input to output voltage difference must be a volt or so, at minimum, and in practice several

volts would be used to accommodate the worst case drop of Vin. However, it is precisely this voltage drop that is responsible for the high internal power dissipation, which is equal to the product of the voltage drop and the load current passed by QI.

There are also two modes of operation of the circuit, which are not usually relevant to series pass regulation, in which the device power dissipation is close to zero; in one case, Vout is almost as high as Vin (irrespective of current load) and hence Q I is switched 'fully on'; in the other, the output draws no load current and so Ql is switched off. Curiously enough, it is these states that enable switching regulators to operate with minimal power losses.

Switching Modes

A simple switched mode regulator is depicted in Figure 1b. The ganged switches SW1 a and b represent an active switch capable of connecting the point ' P ' to either Vin or to ground (OV). Suppose that we periodically switch between the two alternatives (1a on, 1b off; and 1 b on, 1 a off) so that the voltage at point ' P ' is a periodic square wave with a given mark to space ratio (that is, the ratio between the time spent at a high voltage to the duration at a low voltage). We know that the switches dissipate no power, if ideal, and in practice dissipate very little power even when a load resistance is connected between P and ground. Now the time-averaged voltage at ' P ' varies between the extremes of 0% and 100% of Vin as the mark to space ratio of the waveform varies from zero to in-
finity. The implication is that if a method can be found of averaging this waveform to a steady DC level, then we have the means of generating any DC voltage (lower than Vin) as a function of the mark to space ratio of the switch.

To express this another way, a waveform could be generated consisting of a DC component on which is superimposed an AC (square wave) component (if the DC component is removed the waveform remaining would be symmetrical about the zero volt axis). And if the AC component could somehow be removed or "filtered out', then a DC voltage will remain extracted without significant power loss.

As shown in Figure 1b, this is achieved with a simple LC filter. An LC filter (series inductance, parallel capacitance) is the simplest low pass filter that is lossless; its inclusion results in no additional power losses to those of a simple capacitor (which is really an RC filter): at all frequencies at and above the switching frequency, L presents a high impedance and C a low impedance, thus the potential divider action considerably attenuates the AC component of the waveform whilst allowing the DC component to pass.

The circuit as described is able to provide a stepped down DC voltage, with minimal power loss, with the ratio determined by the switch duty cycle (the mark-space ratio). However with a constant switching duty cycle, the output voltage is highly dependent on Vin, and to produce a regulating action a control circuit must be added to correct changes in the output by making corresponding shifts in the switch mark to space ratio. The basis for such a circuit is shown in Figure 2.

The main switching element of the regulator is Ql equivalent to switch SW 1a in the circuit of Figure 1b. Diode DI is known as a 'commutating diode', because it enables current flow in inductor L to be sustained while Q is

Figure 1a (above), A conventional series-pass regulator; (1b below) the basis of swltched-mode regulation.

Project

switched off; functionally, it is equivalent to switch SW1b.

Marking Spaces

The control circuit of the regulator consists of a variable duty cycle, fixing frequency oscillator, with a single voltage controlled input and, additionally, a difference amplifier. Basically, the amplifier compares a stable reference voltage with a feed-back portion of the output voltage (taken from the junction of R1/R2) and generates a difference or error signal to control the oscillator, which directly switches OI. If, for example, Vout exceeds (Vref X $(R 1+R 2) / R 2)$ to any extent, the error amplifier will provide a positive voltage to the oscillator which will have the effect of reducing the duty cycle of the switch, hence reducing the output voltage Vout. The converse applies, of course, if Vout falls.

This description is of a pure feedback system which will regulate the output voltage against any tendency to change. We will not attempt to describe the internal operation of the control elements of the variable oscillator because they are, in general, very complicated indeedl Anyway, the control circuit is usually contained within an IC and therefore there is no real need to understand it in detail.

Figure 3 reveals some of the waveforms to be found in the circuit of Figure 2, and analyses the operation of the filter components. The important points to notice are that the current flow in the inductor is essentially constant, with a gentle rise and decay as the voltage across L switches between two extremes, and, further, that the capacitor is being charged by this current at the same time as it is being discharged by the load current, and therefore shows a very small ripple voltage.

A crucial aspect of the design of switched power supplies is the choice of values for L and C, and the switching frequency. Ideally, to minimise the ripple on the output voltage, all three should have numerical values as high as possible. In practice, the frequency will be chosen somewhere in the range of 5 KHz to 50 KHz ; much lower than this, the inductor and capacitor will have unreasonably high values; much higher and the circuit becomes progressively less efficient, because the switching transistor is unable to operate properly at that speed. Another point to consider, in the selection of an inductor, is its saturation current. The material on which the inductor is wound is able to store only a limited level of magnetic energy ($1 / 2 L^{L}{ }^{2}$), after which the core is said to 'saturate'; when this happens, the filter becomes 'lossy' and the circuit will not operate efficiently. At frequencies of several kHz , a ferrite core material is usually used and this does allow a reasonable power to be handled with a fairly small coil.

Variations

In Figure 4 there are illustrations of two novel variations of the switching cir-

NOTE: COMPARATOR IS BUILT INTO THE TL497
Figure 2. Block schematic of a switched-mode regulator; most of the elements can be found in the TL497 chip (compare with Figure 5, below).

Figure 3. Some of the waveforms produced by the circuit of Figure 2.

(a)

(b)

Figure 4. Switching arrangements; (a) shows the configuration for step-up while (b) shows the step-down circult.

Figure 5. Pin-outs and logic diagram of the TL497.
cuit. With these curious rearrangements of the transistor, diode and filter components, one can generate a step up of voltage (a) or an inversion (b).

Looking at Figure 4a first of all, transistor Ol connects L1 across the input voltage supply as it is switched on. The current in the inductor builds up in this time to a maximum level, but lower than the saturation current. When OI turns off current continues to flow in L1, charging the output capacitor through the diode (the diode here is known as a 'blocking diode', as it prevents current flowing out of the capacitor during switch-on periods). By the time the current in L1 has decayed to zero (or much sooner) Ql again switches on, re-energising the inductor to its maximum level of current. Thus in

Project

Figure 6. Three practical circuits showing (a) Mode A (step-down); (b) Mode B (stepup) and (c) Mode C (invert). The differences are subtle, but significant.
successive on-periods, charge is pumped into the output capacitor at an average rate that should match the load current

The circuit of Figure 4b operates on very much the same principal except that the connection of the components allows a negative voltage (with respect to ground) to build up on the capacitor.

With both these circuits the output voltage is highly dependent on load current, making a feedback control circuit quite necessary. In fact under zero load conditions, these circuits are theoretically infinite voltage generators, in that they will continue to 'pump' their output capacitor with equal amounts of energy per switch period until something 'gives' - or a control circuit judiciously intervenes!

So far the switch-mode principle has been described in its role as a regulator but it has a second, essentially similar application as a so-called 'transformerless power supply'. This is especially useful as a mains convertor, as it eliminates the bulk of a transformer and large smoothing capacitor whilst increasing overall conversion efficiency. The basic principle is that the mains voltage is first rectified with a bridge rectifier and smoothing capacitor, providing some 330 VDC. Being a high voltage supply, it is required to supply a correspondingly small current for a given power requirement, and thus the smoothing capacitor may be small.

A switching regulator circuit, employing a high voltage transistor and
diode, is able to produce a high current low voltage supply with a high conversion efficiency. There is however one obvious disadvantage of this scheme, namely that there is no mains isolation. It is possible to provide this isolation by using a high frequency transformer in place of the inductor and, furthermore, by feeding back the error signal through opto-isolators; in this way the advantages of efficiency and small size are retained - but the cost of such a system may be considerable!

A Practical Circuit

The heart of the circuit is the TL497A IC by Texas Instruments Ltd, which contains all the active elements of a switching regulator, including the switching transistor, the commutating diode and the control circuit, as illustrated in Figure 5.

The transistor's collector and emitter connections and the diode are brought out on separate pins so that the three modes of step-up, step-down and inversion are possible, depending on the external wiring. The transistor is an NPN type but may be used with all three configurations, provided that the TL497 is operated from the same supply as that being switched. The three circuits are shown in Figure 6 and comparison may be drawn with the circuits presented earlier.

The TL497 differs from most switching regulators in that the oscillator has a fixed on-time but variable frequency output, resulting in a simplification of the internal circuitry and a reduction of the number of external components. The switch ontime is controlled by a single capacitor, connected from pin 3 to ground.

The device also has an on-chip reference voltage, which is a highly accurate band-gap reference of IV2. The output of the regulator, therefore, must be divided down by RI, R2 to 1 V 2 to be compared in the 'comparator'.

The sequence of operations in this device are explained as follows: the transistor has just completed its onperiod and the output capacitor has charged to a shade above the average DC output voltage. The comparator recognises that the voltage at the junction of R1 and R2 is slightly higher than the reference voltage, and therefore holds the oscillator off. As soon as the output voltage decays below its nominal level, due to the effect of the load current on the output capacitor, the comparator signals to the oscillator to switch on. The transistor thus conducts and will recharge the output capacitor to a higher level again. This is perhaps the simplest of control systems yet devised for switching regulators, but readers should be aware that it has its limitations - particularly in respect of ripple voltage performance.

Getting It Together

Following on from the discussion, we ${ }^{*}$ present a simple project for the evaluation of switching regulators. The unit is

Project

Figure 7. The PCB overlays for each of the circuits of Figure 5; (left) Mode A, (middle) Mode C and (right) Mode C.

Figure 7. Exploded drawing of the RM6 pot core. Some types appear to have only two connecting pins per side, but will nevertheless fit the PCB holes.

Parts List

RESISTORS

(All $1 / 4$ watt carbon film, 5\% E24 Series)
R1,2 see Table 1
R3.
1RO

CAPACITORS

C1
see Table 1 radial electrolytic*

100p
min ceramic
*Working voltage must be greater than the required output voltage.

SEMICONDUCTORS

IC1
TL749
switched mode regulator

MISCELLANEOUS

L1 see Table 1
Ferrite core former type RM6
PCB, wire etc.
BUYLINES 34
see Table 1 type RM6
.34

MODE	I/P	O/P	ImA	C1	L1	TURNS	SWG	R1	R2
A	5 V	3 V	250	50 u	50 uH	18	22	1 k 8	1 k 2
A	12 V	5 V	250	100 u	150 u	30	25	3 k 9	1 k 2
B	5 V	25 V	50	200 u	100 u	25	24	12 k	1 k 2
B	5 V	12 V	100	100 u	100 u	25	24	11 k	1 k 2
C	12 V	-12 V	100	100 u	250 u	40	25	1 k 2	11 k

Table 1: Mode A is step down; Mode B is step up; Mode C is invert. In general, the circuits will tolerate a small spread of input voltages leg, in Mode B, between 5 and 12 V in will still give 12 V out, though with reduced current capacity), but for precision, the value of R1 should be changed, as explained in the text.
capable of producing a wide range of fixed voltage supplies, however, and should be relevant to many practical applications.

The circuit is based on the TL497 IC switching regulator, which can operate in step-up, step-down or inverted modes, these being selected as required by a system of wire links on the PCB.

In step-down mode, the unit is particularly useful for the generation of 3 V for TTL-based projects in, for example, a car or caravan, where only a 12 V battery is available.

The step-up mode of operation will produce high voltages for applications requiring battery supplies, but eliminates the need to connect many batteries in series.

Sometimes there is a need to build an EPROM programmer into an existing microcomputer that has only +5 V available. Here again, a step-up switching regulator can generate the necessary 25 V programming voltage directly from the 5 V .

Many MOS devices, in particular dynamic rams, require a negative bias which may be conveniently provided by an inverting switch mode regulator. In general the inverting regulator can convert a single-ended supply to a double ended supply which is often required by op-amp circuitry.

Table 1 gives a set of component values for various voltage requirements in each of the three operating modes. If a supply is required that does not appear on the table, first select the example that is closest from the point of view of the input voltage (when working with modes B and C) or input-
output differential (Mode
A); to modify the output voltage required, recalculate R1 (R2 for mode C) according to the expression:

$$
\left(V_{\text {out }}-1.2\right) \mathrm{kR}
$$

The limitations, for the TL749, are 5 V to $12 \mathrm{~V}(15 \mathrm{amps}$ absolute maximum) on the input, and -25 V to +30 V on the output.

Assemble the PCB according to the appropriate component overlay (Modes $\mathrm{A}, \mathrm{B}, \mathrm{C})$ paying particular attention to the position of the wire links and the polarity of C2. The former, type RM6, is supplied as a kit; insulated copper wire should be wound, according to the specifications of Table 1, on the plastic former, and having scraped the insulation back $1 / 8^{\prime \prime}$ on each end, the ends should be soldered to one of the three pins at each side of the former, taking care that your soldering does not prevent the pins from being inserted in the PCB. The two ferrite halves should then be enclosed around the former, and the retaining lugs clipped over. These two lugs also fit through the PCB and are soldered in, to securely retain the core former. In case you're wondering why two sets of three pins are fitted, this is to allow the winding of more complicated transformers on the same former.

A number of applications for a switched mode regulator have already been mentioned - but having got this far, we're confident that you'll come up with many more. It's just a variation on Parkin son's Law - applications readily come to mind when the circuit
is available!

Charles Wheatstone Ian Sinclair
 \section*{A multi-talented Victorian scientist and inventor.}

One of the curious facts about the way we remember Charles Wheatstone is that the measuring system that bears his name, the Wheatstone Bridge, was not, in fact, his invention, nor did he ever lay any claim to it!

Charles Wheatsone was born in 1802 at Gloucester, and seems to have been educated at rather undistinguished schools, because we have no record of his progress in these days. There seems to have been little about his early life to connect him to electrical engineering, and the first impression he made on the world was in 1829, when he invented, of all things, the concertina, that miniature accordian which became the traditional accompaniment of singing sailors in the Victorian era. His interest was at that time intensely devoted to sound waves, and he is credited with the discovery that sound travels faster in glass or metal rods than in air.

In 1834, his research efforts were rewarded by his appointment as Professor of Experimental Philosophy at Kings College, and he continued his researches into sound. It was at this time, incidentally, that he coined a new word: "microphone" - though he didn't invent the device. His most important achievement, however, was the measurement of the speed of electric current along cables.

Not many details of the experiment survive, but from the hints that remain, we can reconstruct the method.

Two spark gaps were connected in series, one at the start of a very long length of cable, and the other at the end of the cable. The idea was that when a high voltage the seems to have used a capacitor charged from a Wimshurst Generator) is applied to one end of the cable, sparks will be produced across both gaps - but the spark at the far end of the cable will occur slightly later than the one at the start.

A Space in Time

The time difference is not large, however. If we assume, as we know now, that the speed of the current wave in the cable is around 200 million metres per second, or 200 m per microsecond, then it takes a 200 m length of cable to cause a delay of only one microsecond. That's not a lot even by todays standards, and it was unimaginably small in those days. Wheatstone used a method which had already been used to measure the speed of light - a revolving mirror.

The mirror was small, and turned at a very high, steady, measurable speed. The light from the first spark would reflect from the mirror, and so would the light from the second spark - but in the short interval between these sparks the mirror would have turned, so that the reflected images, which would coincide if the mirror had not turned, seemed to separate. The faster the mirror was rotated, the greater was the separation. From the
separation of these images, Wheatstone could work out the angle through which the mirror had turned and, knowing the rotating speed, he could also find the time it had taken to cover this angle. This was the time between the two sparks, and from this he could find the speed of the current in the cable.

The method worked (using several kilometres of cable) and Wheatstone was able to announce a value for the speed of electric current in a cable.

This work on the speed of current, however, led Wheatstone to become interested in sending signals through cables, the work which was to occupy him for the rest of his life. He was elected a Fellow of the Royal Society in 1836, at a time when he was working with William Fothergill Cooke on a telegraph system which was to be standard on railways all over the world for more than a century.

Getting the Needle

Wheatstone's aim was to produce a tele-

(b)

$$
V_{1}=E \frac{R 2}{R_{1}+R_{2}} \quad V_{2}=E \frac{R_{4}}{R_{3}+R_{4}}
$$

$$
V_{1}=V_{2} \text { if } E \frac{R 2}{R 1+R_{2}}=E \frac{R 4}{R 3+R_{4}}
$$

$$
\text { WHICH IS TRUE IF } \frac{R 1}{R 2}=\frac{R 3}{R 4}
$$

Figure 1. The 'Wheatstone Bridge'; (a) a simple potential divider; (b) Two dividers connected in a bridge formation:

Figure 2. Cable capers; (a) a long cable can be represented as a set of inductors, capacitors and resistors; (b) their effect is to smooth out pulse waveforms, and this limits the speed of transmission of information.
graph signalling system which could be used by relatively unskilled operators, but which could handle a lot of information. His first efforts used a 6 -wire system which operated three needles (using electromagnets), but this was quickly superseded by a 6 -wire, 5 -needle system.

Each of the five needles was operated by an electromagnet which was connected between one of the five signal wires and the sixth (earth return) wire. Current in one direction would turn the needle clockwise, current in the opposite direction would turn the needle anticlockwise; the needles were spring-loaded to ensure that they returned to the central position when the magnets were not energised, and also that the angle of deflection was proportional to the current passing through in the electromagnet. The principle was that a digit could be selected by pointing a needle at it, and a letter could be selected by pointing two needles so that they intersected. It may look slow and clumsy, but remember that it only needed looking at to receive the message and Morse code, which in any case needs a trained operator, was still a thing of the future.

Wheatstone and Cooke's telegraph system was eagerly adopted by railways all over the world as the railway boom of the 1840-1860 period got under way and, in this country at least, the name of Wheatstone became almost synonymous with telegraphy. Wheatstone then became deeply immersed in submarine telegraphy - the use of underwater cables - and this involved the measurement of large resistance values. The solution that he adopted actually was an in vention by Samual Christie to be known as the "Wheatstone Bridge".

The principle, like that of so many good inventions, was simple. If we connect two resistors in series, the voltage across one resistor depends on the ratio of its resistance to the total resistance of the pair. If we use two pairs of resistors, then the voltages at their junctions (Figure 1) are equal when the ratios of the resistances are equal. Since this equality, which determines that no current will flow between the points, is easy to detect, and can be detected using very sensitive instruments, it forms a much better system for measuring high-value resistors than the use of Ohm's law. The delightful point about the bridge system is that no measuring instrument is needed. All we need is a sensitive galvanometer (which need not be calibrated) to read zero when the voltages are equal, and some resistors of known value.

From cables to TV

Wheatstone's use of the bridge circuit was another step forward in telegraph technology and led to the first successful transatlantic cable being laid in 1866.

The original Cooke and Wheatstone five-needle telegraph, first used alongside the Euston-Camden railway.

This was a remarkable event, not simply because it linked the telegraph systems of two major continents, but because of the other advances which it sparked off. During his work on high resistance measure'ments, Wheatstone had used the element selenium as a resistor material, and found that its resistance value altered according to the brightness of the light striking it. This discovery set off the research on image transmission that led to TV. In addition, the integration effect of capacitance, inductance and resistance in a long cable (Figure 2) led to the analysis, by Oliver Heaviside (HE September '81), of the effect of capacitance and inductance on signals and particularly on pulses, in cables - work which was later to be of inestimable value in radar engineering.

Wheatstone was knighted in 1868, a just recognition of his pioneering efforts which covered a huge range of activities not mentioned here. One of these was the stereoscope, which allowed the viewer to see three-dimensional pictures. Another was the use of electromagnets as field magnets in dynamos, a development which changed the dynamo from laboratory device to engineering plant, and led to the large-scale use of electricity (a power source regarded at the time with as much superstitious dread as nuclear power is now).

Wheats tone also amused himself with ciphers, cryptographs and his first love, music. He died in Paris in 1875, too soon to see some of the most exciting results of his work, but with the satisfaction of knowing that he had made a lasting contribution to many fields.

HE PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of perts to enable you to contruct H.E. projects. Kits drilled and roller electronics and hardware needed. Printed circult boards (fully etched, article, we even include nuts, screws and 1.C course, included as specified in the enines otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do noi have the issue of H.E. which includes the project - you will need to order the instruction reprint at an extra 45p each.
Reprints available separately $45 p$ each + p. 8 p. 40p.

PHASE FOUR Dec $82 £ 18.71$
STEREO NOISE GATE Dec 82 £15. 35
TAPE/SLIDE SYNCHRONIZER Dec 82 f21.73
BIG EAR Dec 82 less pipe parts $£ 6.21$ MICROAMMETER ADAPTOR DEC 82 £4.98
ODOM
ODOMETER Nov. 82 E14.98 DIANA V.C.O. Nov 82 £4.89 'CB SQUELCH UNIT Oct $82 \mathbf{6 9 . 1 9}$ 'JUNNIOR' SLOT CAR CONTROLLER Sept 82 £5.60 less case.
ZX INTERFACE BOARD Sept 82 inc edge con $\mathrm{f11} 33$.
AUTO WAH June 82 £18.98 inc case or AUTO WA
$\mathbf{1} 2.28$ less case
AUTO GREENHOUSE SPRINKIER June 82 f15.38 less pump and pow supply (12V 2A)
TELEPHONE TIMER June 82 £33.42 less power supply (suitable type below). POWER SUPPLY DESIGN 12 V 500 mA June 82 £9.98
ECHO REVERB UNIT May 82. Less case c33.98. Economy case WB3 £3.76 extra DIGITAL THERMOMETER May 82 ex cluding case + bezel E16.90
AUDIO SIGNAL GENERATOR May 82
CABLE TRACKER May 82 e9.98 DIGITAL CAPACITANCE METER Apr 82 £21.37
SIGNAL TRACER Apr $82 £ 3.86$
BIKEALARM Apr 82 f 11.74
DIGITAL DICE Mar 82 £7.29
BICYCLE SIREN Mar 82 £ 10.89
NOISELESS FUZZBOX Feb 82 £10.45 DRUM SYNTHESIZER Dec 81 Full DRUM SYNTHESIZER Dec 81 . Full kit
G1.37 Dec 81 £3.72
IN CAR CASSETTE POWER SUPPLY Dec 81 f4.77
SCRATCH FILTER Nov B1 Mono $£ 5.82$ Stereo $£ 8.98$
LED VU METER Nov 81 less case $£ 4.87$ SIMPLE STYLUS ORGAN Nov 81 less case $\mathbf{6 4 . 9 8}$
METRONOME Nov 81 £12.71
TELEPHONE BELL REPEATER Oct 81 M13.67
Med linking wire extra 14p motr COMBINATION LOCK Oct 81 less solenoid f 18.65

MORE PROJECT KITS - SIMILAR STYLE TO H.E.

INSTRUCTIONS INCLUDED (SEPARATELY 45p EACH) PLEASE QUOTE REF. NO. WHEN ORDERING

日1 PEST CON

 scarer. 67.65日2 COMPONENT TESTER $£ 8.8$ B4 GUITAR NOTE EXPANDER $£ 17.98$ B5 CAMERA OR FLASH GUN B6 SIMPLE INFRA RED REMOTE CONTROL 117.20
B70-12V POWER SUPPLY E17.98
B9 SOUND TO LIGHT - single channel 28.42

B10 THREE CHANNEL SOUND TO UGHT f21.44

B11 IN SITU TRANSISTOR TESTER E6.98 WEIRD SOUND EFFECTS GENERATOR $£ 5.98$ B13 AUDIBLE VISUAL METRONOME 65.98

B14 ELECTRONIC DICE E5. 71 B16 MINI EGG TIMER £4.34 B18 LED JEWELLERY - Cross brooch E .77
$\mathbf{7 . 9 8}$
BABY ALARM Oct 81 £8.70, Fig 8 linking wire 7p metre
'DIANA' METAL LOCATOR Sept 81 REACTION TESTER GAME Sept 81 VARIABLE BENCH POWER SUPPLY Aug 81 £26.98
ULTRASOUND BURGLAR ALARM July 81 £19.98
ELECTRONIC DOOR BUZZER July 81
E5.98 E5.98
ELECTRONIC METRONOME July 81 CONT
CONTINUITY CHECKER June 81 E5. 71 ENVELOPE GENERATOR June 8 $£ 17.98$
AUDIO MIXER June 81 e5. 33
PUBLIC ADDRESS AMPLIFIER March 81 €19.48. Extras - horn speakers £6.83 FUZZBOX March 81 £10.98 WINDSCREEN WIPER CONTROLLER March 81 c8.20
STEAM LOCO WHISTLE March 81 E12.98
PHOTOGRAPHIC TIMER March 81 HEAR
HEARTBEAT MONITOR Feb $81 € 24.98$ TWO-TONE TRAIN HORN Feb B1 £5. 60 less case
medium wave radio Feb 81 c8.20 BENCH AMP Jan 81 £ 10.80
NICAD CHARGER Jan $81 \mathbf{8 8 . 2 0}$ CHUFFER Jan 81, less case $£ 7.53$ BATTERY CHARGE MONITOR Dec 82 B5.77
MEMORY BANK - MINI SYNTH-
ESISER NOV \& Dedc ESISER Nov \& Dedc 80 E29.98 TRANSISTOR TESTER Nov 81 e6.54 inc test leads
GUITAR PRE-AMP Nov 80 £6.65 Case (diecast) extra $£ 2.29$ TOUCH SWITCH \& contacts
GUITAR PHASER Sept 80 E16. 28 SOUND OPERATED FLASH TRIGGER July 80 no skt $£ 5.33$
FOG HORN June 80 e6,64
SPEED CONTROLLEH HUH H/L AprI GU £17.55 (less case\} £39.98
GUITAR TUNER Nov $79 £ 12.82$
-
1982 ELECTRONICS

COMPONENTS

IN OUR LISTS
REE PRICE LIST
orders or send sae (9×4) CONTAINS LOTS MORE KITS, PCBs \&
COMPONENTS

CATALOGUE

Illustrations, product descriptions, circuits all included. Up-to-date price list enclosed. All product Sends 80 p in stemps or add 80 p to order. MORE H.E. PLUS E.E. and E.T.I. PROJECT KITS IN THE PRICE LIST

MAGENTA gives you fast oelivery or quality components a kirs All products are stock line sand are new \& full specification. We oive personal service

MAGENTA ELECTRONICS LTD

HT32, 135 HUNTER ST, BURTON-ON-TRENT, STAFFS.
DE14 25T. 0283 65435. MON-FRI 9-5: MAIL ORDER ONLY IADD 45P P\&P TO ALI ORDERS PRICES INC VAT ACCESS and barclaycard (VISA) ORDERS ACCEPTED BY PHONE OR POST.
SAE ALL ENQUIRIES
Prices ínc. VAT OVFRS EAS. Payment must be in storling.
RISH REPUBLIC and BFPO: UK PRICES. EUROPE: UK PRICES plis 10\%

-OCNS	ADVENTURES WITH MICROELECTRONICS
ouc	Similar to 'Electronics' below
	IC.s. Includes dice, elec-
	board 1 bread board.
Mo Lecter Alamm Proje	Adventures with
BAEIC ELECTRONICS. Theory \& prac	Microelectronics. $¢ 2.55$
Ginners guide to builoing elect.	Component pack £29.64 less
NECTS	

ADVENTURES WITH ELECTRONICS

by Tom

An easy to follow book suitable for all 'ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Glves clear instructions with lots of plctures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component•pack includes an S-Dec breadboard and all the components for the projerts. less battery.

ADVENTURES WITH DIGITAL ELECTRONICS

[^0] provides a stepping stone to the microprocessor.
orovides a stepping stone to the microprocessor. The first electronics.
The second part gives details of how to build eight devices - - shooting gallery, 2 The second part gives details of how to build eight devices - shoo
way traffic lights, electronic adder, computer space invaders game etc. way traffic lights, electronic adder, computer space invaders game etc.
For each project there is an explanation of 'how it works' and also suggestions for For each proje
'things to try'.
No seldering - all circuits buit on 2 Bimboard 1 breadboards.
Adventures with Digital Electronics book $\mathbf{6 3} 25$. Component pack $£ 42.50$ ref EHDC. All the components needed including 2 breadboards and hexadecimal keyboard. A vailable less breadboards $£ 29.98$ ref EHDF. Both less battery.

The HE DigiTester...

> The HE DigiTester, as shown on this month's cover, is a modular system that can be built up a piece at a time to provide a device whose "whole is greater than the sum of its

Part l: Chip Probe

THE DIGITESTER, which will be revealed over the next half dozen issues of Hobby Electronics, is a complete digital test and breadboarding system built-up from simple, inexpensive components - yet providing a facility equal (in terms of use if not of 'class') to many highly priced commercial systems.

At this stage, the DigiTester has been planned to incorporate the following features (though of course since it is a modular system, there is no limit on the types of modules that can be added)...

1. Chip Probe - the basic module; a simple plug-in logic probe that can also be constructed as a stand-alone unit.
2. Power Supply - providing a number of useful power and logic voltage levels.
3. The Divider block provides two stages of 'divide by 1024' permitting clock frequencies of greater than 4 MHz to be resolved visually.
4. Variable Frequency Clock - this module provides two-phase outputs at frequencies between 2 and 4 MHz , continuously variable.
5. A general purpose monitoring module, which will consist of six
inverters, six buffers, four NAND gates and four NOR gates.
6. A set of four pulse generators, providing positive and negative edge triggered pulses with fixed timings of 1 ms and 1 s ; four de-bounced switches, positive and negative edge, can be used to trigger the pulse generators or used directly with circuits under development.
7. Two 8-bit latches, which can monitor up to 16 bits simultaneously, providing pulse-coincidence detection at a glance. The latchenable can be either manual, clocked, re-triggered or one-shot.
8. IC test sockets for 8,14 and 16 pin ICs - these can be used, together with the other facilities of the DigiTester, to check out most common logic and even special purpose ICs.
The entire system is built around a central core of sixteen 4 mm 'banana' sockets; each module, as planned, is a separate device with its own input and output sockets, and LED monitors. The various modules are simply patched into the equipment under test - or the circuit being developed - using an IC test clip, connected to the DigiTester by a length of 16 -way ribbon cable.

The description of the DigiTester
system starts with the most useful element - a simple logic tester or Chip Probe, which displays the logic state of any IC pin by lighting a LED whenever there is a logic ' 1 ' present on an input.

The Chip Probe Circuit

The circuit of the Chip Probe is based on CMOS technology, so that it can operate on a wide range of supply voltages - from $5-15 \mathrm{~V}$ - as the chips under test may be operating within the same range. Two flying leads from the unit must be connected to the same supply as the circuit under test, and these connect to the power lines of the Chip Probe's own circuitry.

There are three ICs within the Chip Probe, each a type CD4049. These devices contain six inverting buffers, so that there are a total of 18 buffers in the probe, though only 16 are used. Each of the 16 contacts of the IC test clip is connected to one of the buffers, which are therefore able to sense the logic state of each pin of the chip under test. It is important to note that, because the 4049 devices are supplied from the same voltage source as the chip under test, the defined logic levels (voltage representing logic ' O ' and logic ' 1 ') are the same for all devices, whether the chip is TTL or CMOS. The inverting

Project

The component side of the PCB; the resistors are mounted vertically to minimise the size of the board.
buffers have outputs at logic '1' for a logic ' O ' input, and outputs at logic ' O ' for a logic '1' input. Between each output and the positive supply is a LED in series with a resistor; when the output is a logic ' 1 ', ie close to $V+$ there is insufficient voltage across the LED to turn it on and therefore it is unilluminated.

However, when the output is at logic ' O ', ie close to OV, almost the full supply voltage appears across the LED and its resistor, which therefore conducts and illuminates. The series resistor limits the current in the LED at max supply voltage to 20 mA . Thus the LED lights if the input of the corresponding buffer is logic ' 1 ' or high and extinguishes when the input is at logic ' O '

The 47 k resistor placed across each input and ground is to hold the inputs low when the probe is 'floating' (unconnected) so that all the LEDs are off

It Stands Alone

As mentioned earlier, the Chip Probe can be used either as part of the DigiTester system or as a stand-alone logic probe. Most of the constructional details, this month, apply to when the device is to be used alone; instructions for fitting the DigiTester as part of the overall system will have to wait until a bit more of the system has been outlined in these pages!

The PCB layout (see Figure 2 and the

PCB Printout page) has been kept very tight, to reduce the size of the unit to the smallest possible dimensions. This is primarily for convenience when using it as a logic probe, where small size is absolutely necessary. In part, this has been achieved by placing the pull-down resistors (across the inputs) on the track-side of the board as shown in Figure 2b. (Once more, this is not recommended practice, but is tolerated here for reasons of compactness - Ed.)

Other than that, assembly of the PCB should not cause any trouble - just be careful to observe the correct polarity for the LEDs and, even if using 'static protected' ICs, it always pays to be careful when handling CMOS chips!

The tricky bits start when the PCB is to be fixed into its box. However, we've made things easier by drawing up Figure 3, a template which can be used to accurately drill the holes for the LEDs. After that, simply push the PCB down into the box so that the LEDs poke. through the holes. It's a little fiddly (you may need to enlarge the holes with a miniature file, and be careful not to bend the leads of the LEDs), but patience will be rewarded, in the end.

At this point, you can attach the two power leads to the appropriate PCB points; it's a good idea to tie a knot in the leads before soldering them in place, to provide a measure of strain relief, as shown in the internal photograph.

Now comes the really tricky bit modifying the IC test clip. One of these

Figure 1. The circuit consists of sixteen hex-inverters, each connected as showin on the right (on the PCB, the positions of the LED and current limiting resistor are transposed).

Figure 2. Above: The PCB overlay, viewed from the component side. Below: The track-side of the PCB, showing the positions of the pull-down resistors.

Project

Figure 3. Above: \mathbf{A} drilling template for the LED display.
Below: The gold pins of the IC test clip fit through these holes.

Parts List

RESISTORS

(All $1 / 4$ watt 5% carbon)
R1-16
470R
R17-32
47k

SEMICONDUCTORS

IC1,2,3, CD4048B
CMOShex inverters
LED 1-16 red LEDs standard 0,2" types

MISCELLANEOUS

Small black box, approx $3^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$ deep; IC test clip; ribbon cable (see text); PCB; wire, solder etc.

The underside of the PCB; solder the pull-down resistors across the tracks before connecting the ribbon cable!
readily available gadgets is quite handy when fault-finding on any circuit which uses DIL ICs. It clips over the IC so that of number of gold-plated pins make firm contact with the pins of the IC. The test-clip pins are lead up through the plastic housing to protrude through the top, making the IC pins readily accessible. The modification is required to allow a test-clip to be fitted to the box but sill pivot in the desired fashion.

First, take a small screwdriver or strong pin and push the black hinge pin so that it sticks out through one end. With a small pair of pliers, remove the hinge pin while holding the sides together (this ensures the clip does not suddenly spring apart all over the workroom) and place it carefully to one side. Then pull off the black 'pressure grip' and put it with the hinge pin.

Select either side of the clip and carefully remove the gold pins by pulling them out from the top with a pair of pliers; put aside the half with the pins still in it (be careful not to lose the spring). Next remove about 1 mm of plastic from the top of the half-clip; grip it firmly in a vice, if possible, and use a small, fine file to remove the plastic be very careful not to remove too much, as this will weaken the hinge.

Now smooth the burred edges of the plastic and, carefully, push the pins back into the clip from the top; they should finish up level with the bottom edge of the clip (use the other half as a guide). Reassemble the test clip, fitting the
halves together, replacing the pressure grip' and inserting the hinge pin.

The final stage (almost) is to drill the top of the box so that the modified test clip can be fitted and wired in. Once more, a template (Figure 5) makes this task easier. Once in place, connect short lengths of 8 -way ribbon cable from each test-clip pin to the input of an inverting buffer - but be careful to keep a one-to-one correspondence between the test pins and the inputs, or you won't know "which way is up", when trying to use the device

The only remaining task is to screw the lid on the box; the pressure of the bunched-up ribbon cable ensures that the PCB will not move about.

Part of the System

If the Chip Probe is to be used as part of the DigiTester system, the complicated procedure for modifying and mounting the test clip becomes unnecessary; the Chip Probe will be mounted with the other modules of the system and connected to the circuit under test by a long length of 16 -way ribbon cable, which terminates in a perfectly standard, unmodified test clip. However, limitations in time and space (take a bow, Mr. Einstein) prevent us from describing it in detail, this month

Technical Enquiries

First off, our sincere apologies to all those people who send us technical enquiries and SAEs - we really are going to reply as soon as we can. But due to the remorseless burden of toil and tears involved in getting out your Ten Project Xmas Special (flowers, messages of sympathy and money will be acceptable...) and the fact that your editor has been running things singlehanded for a while, we have got a bit behind with the enquiries.

However, now that your editor has a brand new assistant to help him out, rest assured that all letters will be answered as quickly as possible. Won't they?

Oh dear. The pile of letters seem to have fallen on the editor! Never mind. I'm sure you'll find something to keep you occupied in the following priceless gems of advice.

Electronic Pop Groups

Dear Sir,
I have been looking through a few back issues of HE INovember and December 1980) and I am interested in building the Mini-Synth but I would like a few more details.

Will the price from Magenta
Electronics still be the same at £28.50? I see that the kit includes the PCBs and IC holder, but are the wires included?

Is it possible for the synth to give some of the sounds produced by the "electronic pop groups" or is it like an electric organ? I wish to obtain the sort of sounds that modern pop groups produce. I know that for $£ 30$ it cannot compare with the expensive synths but I hope that it can mimic some of the sounds.
lan Meadows,
Wimborne,
Dorset.
Before answering this one we had to work out what an "electronic pop group" was (any suggestions?). Anyway, the Memory Bank Mini-Synth produces a wide range of sounds covering basic sythesiser tones and electronic organ notes. In fact, the best way of discovering the capabilities of the thing is to build one, and then experiment, which is what pop groups always claim to do. Sorry we can't be more explicit, but describing the way a musical instrument sounds is quite difficult. Perhaps we can arrange a demonstration at this year's
Breadboard exhibition. As for the cost of the kit, looking through the advertisements we found that it's gone down by 10 p - one in the eye for inflation! And yes, Magenta say their kits include all the hardware needed.

Audio Break Down

Dear Sir,
For the past few months I have desperately been searching for information on how to construct a particular electronics project - which simply consists of a small LED sound analyser! What I was looking for was a circuit which would receive information (audio) from a hi-fi system, break it down into three or four predetermined frequencies and then output the individual frequencies on a corresponding row of square LEDs, to get the effect of three or four rows of ten LEDs oscillating in accordance with the sound from the cassette or record.

My friends tell me the circuit / have in mind is one used for ordinary VU meters. Are they correct?

You will probably have gathered that my search was in vain. As a result I thought / would consult the experts perhaps you have published such a circuit in one of your past editions of HE. If this is the case then I would be extremely grateful if you would be kind enough to send me a copy of the circuit. If, this is not possible please point out the edition in question and where I may obtain it.

I would of course be willing to pay for any charges for postage etc. M. Nanra,

Greenford,
Middlesex.
A VU meter circuit provides a measure of the signal level over the entire radio bandwidth, so it would not provide the kind of display you want. What you are describing is a simple two or three band sound-to-llight unit, using a LED display panel. The last time we published a similar circuit was in September '79, but our Audio Spectrum Analyser (August and September issues, 1982) can suit the purpose. You could use different coloured LEDs to provide a more visually attractive display (watch the current consumption, though), and you might wish to use fewer than the full ten bands, which will reduce the cost.

It's Been Done Before

Dear Editor,

You will be pleased to hear that the project for the two watt amplifier has served me well for several months now, and I have no complaints so far, but I am hoping to expand a little. As you will already know, the two watt amplifier is only monophonic, because of the (LM380N) IC, and lam wondering if you have thought of designing a stereophonic amplifier using the LM381, which is a low noise
dual audio pre-amplifier capable of magnetic cartridge and metal tape and other inputs, and also offers tone control facilities. Supply voltage is roughly 9 to 40 V .

That is just an idea for the readers, but what l am really looking for is a small versatile stereo amp which offers bias, treble and balance control facilities and I would be most grateful if you could publish in HE a circuit diagram and parts list. If you think this is too expensive and impractical to publish in HE could you please send me a diagram and parts list.
P. G. Jones,

Stockton on Tees,
Cleveland.
The compliments seem to keep rolling in! What should interest Mr Jones is that we published (almost exactly) a project using the LM381 in a stereo amplifier design. This appeared in the October ' 79 issue, and by all accounts was quite popular. All those interested should contact our back numbers department forthwith.

Electric Currents

Does the idea of a waterwheel-driven electricity supply conjure up visions of flickering light bulbs and Bakolite wireless sets? Not a of bit it:

Dear Editor,
I am a new recruit to electronics and have recently started to take $H E$.

My house runs completely on 12 VDC from a waterwheel, and I am having difficulty in locating a supplier of inverters to give 24OVAC for use with fluorescent lights, video, telephone answering machines, etc. Alternatively, how about an article on building such an inverter?

I also need a 12 VDC oscilloscope, if you know of a supplier - I've already tried several of the names from the Directory in HE October '82.
Gordon Channer,
Relubbus,
Cornwall.
Just in time - see this month's feature on switched mode supplies and the accompanying project! The 12 VDC oscilloscope is another matter altogether - can any of our readers advise? If so, please contact us here and we'll print the reply.

Incidentally, this waterwheel business does remind me of the bloke who went into his local suppliers and asked for a couple of rechargeable batteries to fit the drain pipe he was carrying, but that's another story...

GET aic
 。 WEB

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever.

WE'RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP's tradition of entirely self-contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency flexibility, reliability, easy usage, outstanding performance, value for money.
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.

Module Number	Outpur Power Watis rms	$\begin{array}{\|c\|} \hline \text { Load } \\ \text { Impodance } \\ \Omega \end{array}$	$\begin{aligned} & \text { DIST } \\ & \text { T.H.D. } \\ & \text { TYp }{ }^{\text {TYO }} \\ & \text { TKHY } \end{aligned}$	ATION I.M.O. 60 Hz ! 7KHE 4: 1	Supply Voltase Typ	$\begin{aligned} & \text { Size } \\ & \text { mm } \end{aligned}$	$\begin{aligned} & \text { WT } \\ & \mathrm{gms} \end{aligned}$	Price inc. VAT
mr 30	15	4.8	0.015\%	<0.006\%	± 18	$76 \times 68 \times 40$	240	58.40
HY60	30	4.8	0.015\%	<0.006\%	± 25	$76 \times 68 \times 40$	240	¢9.55
HY6060	$30+30$	4 -8	0.015\%	<0.006\%	± 25	$120 \times 78 \times 40$	420	E18.69
HY124	60	4	0.01\%	<0.006\%	± 26	$120 \times 78 \times 40$	410	E20.75
HY128	60	8	0.01\%	<0.006\%	± 35	$120 \times 78 \times 40$	410	¢20.75
HY244	120	4	0.01\%	<0.006\%	± 35	$120 \times 78 \times 50$	520	E25.47
HY248	120	8	0.01\%	<0.006\%	+50	$120 \times 78 \times 50$	520	£25.47
HY364	180	4	0.01\%	<0.006\%	± 45	$120 \times 78 \times 100$	1030	¢38.41
HY36B	180	8	0.01\%	<0.006\%	± 60	$120 \times 78 \times 100$	1030	¢38.4

Protection: Full toad line. Slew Rate: $15 w / \mu s$. Risetime: 5 sus. S / N ratio: 100 db Input Impedance: $100 \mathrm{~K} \Omega$. Damping factor: $100 \mathrm{~Hz}>400$

Module Number	Module	Funetions	$\begin{aligned} & \text { Current } \\ & \text { Required } \end{aligned}$	Price inc VAT
Hy6	Mono pre amp	Mic/Mag. Cartrldge/Tunar/Tape/ Aux + Vol/Bass/Treble	10 mA	¢7.60
HY66	Stereo pre amp	Mic/Mag. Cartridge/Tuner/Tape/ Aux + Vol/Bass/Treble/Balance	20 mA	£14.32
HY73	Guitar pre amp	Two Guitar (Bass Lead) and Mic + separate Volume Bass Treble + Mix	20 mA	£15.36
HY78	Stereo pre amp	As HY66 less tone controls	20 mA	¢14.20

MasI preamp modules can be driven by the PSU driving the main power amp. A separate PSU 30 is available purely for pre amp modules if requited for £5.47 linc. VAT). Pre-amp and mixing modules in 18 different variation:
Please send for detail.
Mounting Boards
For ease of construction we recommend the $\mathrm{B6}$ for modules HY6-HY 13 E1.05finc. VATl and the 866 for modules HY66 HY78 £1.29 (finc. VAT).

MOSFET MODULES

Module Number	Output Pow Warts rms	$\begin{gathered} \text { Load } \\ \text { impedance } \end{gathered}$$\Omega$	distortion		Supply Voltapa TYp	Size	$\begin{aligned} & \text { WT } \\ & \text { oms } \end{aligned}$	Price inc. VAT
			T.H.D. Tros at 1 KHz	$\begin{aligned} & \text { I.M.D. } \\ & 7 \mathrm{KOHz} / \\ & 7 \mathrm{KHz} 4.7 \end{aligned}$				
MOS 128	60	4.8	<0.005\%	<0.006\%	± 45	$120 \times 78 \times 40$	420	¢30.41
MOS 248	120	4.8	<0.005\%	<0.006\%	± 55	$120 \times 78 \times 80$	850	¢39.86
MOS 364	180	4	<0.005\%	<0.006\%	± 55	$120 \times 78 \times 100$	1025	

Protection: Able to cone with complex loads without the need for very special
Slew rate: \quad Doverection circuiry lfuses will sufticel.
Frequency response (-3dB): $15 \mathrm{~Hz}-100 \mathrm{KHz}$. Inout
input impedance: $100 \mathrm{~K} \Omega$ Damping factor: $100 \mathrm{~Hz}>400$. 500 mV rms
NEW to ILP' In Cor Entertainments
Mono Power Booster Amplyler to increase the Dutput of your existing car radio
or cassetie player to a nominal 15 watts rms.
sy to use.
Robust construction.
£9. 14 (inc. VAT)
Mounts anywhere in cer
Automatic switch on
Output power maximum $22 w$ peak into 4Ω

S / N ratio (DIN AUDIO) 80 d , Load Impedance 3Ω
inpur semsivivity and impedance (seiectable) 700 mV rms into $15 \mathrm{~K} \Omega 3 \mathrm{~V}$ tms into 8Ω

C1515
Stereo version of C15.
£17.19 (inc. VAT)
Size $95 \times 40 \times 80$. Weighe 410 oms.

Model Number	For Use With	Proes ine. VAT	$\begin{aligned} & \text { Nodet } \\ & \text { Mumbin } \end{aligned}$	For Uso With	Pries inc. VAT	!	$\begin{aligned} & \text { Model } \\ & \text { Numper } \end{aligned}$	For Unew With	Price inc. VAT
PSU $21 \times$	1 'or 2 HY30	¢11.93	PSU 52x	2xHY124	¢17.07		FSU 72x	2xHy248	¢22.54
PSU $41 \times$	1 or 2 HY60, $1 \times$ HY6060, $1 \times$ HY 124	£13.83	PSU 53x	$2 \times \mathrm{MOS128}$	£17.66		PSU 73x	ix Mr364	¢22.54
PSU 42 x	1 \times HY1z8	E15.90	PSU 54x	$1 \times \mathrm{HY} 248$	¢17.86		PSU $74 \times$	if Mr368	¢24.20
PSU 43x	$1 \times \mathrm{MOS128}$	¢16.70	PSU 55x	$1 \times \mathrm{MOS248}$	${ }_{6} 19.52$		PSU 75x	$2 \times \mathrm{MOS} 248,1 \times \mathrm{MOS368}$	¢24.20
PSU 5:X	$2 \times$ HY $128.1 \times$ HY 244	¢17.07	PSU 71x	$2 \times \mathrm{HY} 244$	¢21.75				

Plosse note: X in part no. indicates primery voltage. Please insert " O " in place of

WITH ALOT OF
 MELP rnom

PROFESSIONAL HI-FI THAT EVERY ENTHUSIAST CAN HANDLE...
 Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, $(<0.01 \%)$, stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.
UNICASES

					Price Inc.
HIFI Separates				VAT	
UC1	Preamp				$£ 29.95$
UP1X	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Stereo	HiFi	$£ 54.95$
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	$£ 54.95$
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	$£ 54.95$
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	$£ 74.95$
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	$£ 74.95$
UP6X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	HiFi	$£ 64.95$
UP7X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	HiFi	$£ 84.95$
Power Slaves					
US1X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	$£ 59.95$
US2X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	$£ 79.95$
US3X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	$£ 69,96$
US4X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	$£ 89.95$

Please note X in part number denotes mains voltage. Please insert ' O ' in place of X for $110 \mathrm{~V} .{ }^{\prime} 1$ ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UC1 incorporate our own toroidal transformers.

TO ORDER USING OUR FREEPȮST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending vour order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Lid. if sending cash, it must be by registered post. To pay C.O.D. please add $\mathbf{£ 1 \text { to TOTAL value of order. }}$
PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

Project

POP AMPS

Simple measuring circuits based on operational amplifiers.

No. 3:
 Millivoltmeter

THE MILLIVOLTMETER is a circuit with a high input impedance, to allow you to measure potentials from just under 1 volt down to tenths of a millivolt.

In the diagram (Figure 1) the amplifier (represented by a triangle) has two inputs (+ ve and -ve) and one output. It needs a balanced power supply ($V+$ and $\vee-1$ provided by two PP3 batteries ($+9 \mathrm{~V},-9 \mathrm{~V}$). A mains power supply of +18 V can be used with the potential divider network of Figure 2, but better operation is obtained by using a regulator IC to provide a balanced supply from a single-rail such as the circuit described in the October issue of HoDby Electronics. All voltages are measured with respect to the common OV battery rail.

The 741 has two offest null terminals (pins 1 and 8) with which we can adjust the output voltage to exactly 0 V when both inputs are at equal voltage. The input terminals are temporarily connected together and RV1 is adjusted until the output at pin 6 is 0 V .

Voltage Amplifier

Like all op-amps, the 741 is an amplifier with the capability of very high gain. Without the feed-back resistor its gain (the open-loop gain) is as high as 200,000 or more. There is, of course, the limit that the output voltage cannot exceed the supply voltage in either direction. In practice, the output does not quite reach either supply voltage; the swing is approximately $\pm 8 \mathrm{~V}$. Within this range, a small input voltage is amplified so that it becomes large enough to be read on a low-cost multimeter.

The non-inverting (+ ve) input is tied to the 0 V rail through R4. The op-amp will have zero output voltage when its inverting (- ve) input (at pin 2) is also āt OV; in this state, no current flows through R5. When a voltage is applied to the positive input terminal, a current will fiow through one of the resistors R1-R3. Suppose the voltage here is OV5 and SW2 is in the position shown. With pin 2 at $O V$, the resulting current through R1 is 0.6 UA . The potential at pin 2 now begins to rise and the output of the op-amp swings negative, It continues to swing negative, pulling the entire current flowing through R1 and through R5 to the output terminal, thus maintaining a 'virtual earth' at the inverting input. To make a current of 0.6 uA flow through

R1 and through a 8 M 2 resistor requires a voltage of 5 volts, so, for an input of $0 V 5$, the output must swing to -5 V . This means that there is tenfold voltage amplification - but note that the output voltage is negative. However, the meter is connected to display this as a positive voltage.

With a feedback resistor in the circuit, the gain of the amplifier is precisely determined by the ratio of the feedback resistance to the input resistance. In the example above, $R 5 / R 1=10$, which gives ten-fold gain. If SW1 is switched, the gain becomes 100 or 1000 , respectively. If 5% tolerance resistors were to be used, one resistor might be up to 5% larger than its nominal value and the other might be 5% smaller. The ratio, and hence the calculator gain, could
therefore be up to 10% in error, in either direction, so to obtain reasonable accuracy, it is important to use 1% or 2% resistors.

The input impedance of this circuit is the value of the input resistor that is switched into circuit. With R1 in circuit, the maximum output voltage that can be read is about 8 V , equivalent to $0 V 8$ input. Thus the input impedance is just over 8 M 2 in parallel with 2 M (the input impedance of IC1), which gives 1 M 6 , or 2 MO per volt FSD, which is considerably higher than that of a low-cost multimeter; the same figure applies in the other ranges, so we have the twin benefits of greater sensitivity and high impedance. The advantage of high impedance is discussed in connection with Pop-Amp No. 4.

Using The Circuit

Connect the circuit to the multimeter, switched to 10 V or 15 VDC range. Connect the power supply to the circuit. If you have not already done so previously, adjust RV1 for zero output with pins 2

Figure 2. The Millivoltmeter component layout. The track cut positions are shown viewed from the top
and 3 shorted together. Switch SW2 to the position shown. The meter now covers the range 0-OV8. Read the meter and divide the reading by 10 to obtain the value of the input voltage. If the reading is low, switch to the second
(0-0V88) or third position (0-0V008). If batteries are used as the power supply, remember to switch off or disconnect them when the circuit is not being used!

74 SERIES
5

 -

 $7 \quad 30 \mathrm{p}$
 RUGBY ATOMIC CLOCK
This $\mathbf{Z 8 0}$ micro controlled clock/calender
receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided
Complete Kit.

MICRO COMPUTER
OFFICIAL DEALER
PBC Model A $\mathbf{£ 2 9 9}$ BBC Model B £399 (incl VAT) Carr £8/unit Model A to Model B upgrade kit $£ 50$ Fitting charge $£ 15$

BBC FLOPPY DISC DRIVES

Single drive $5 \not /{ }^{\prime \prime} 100 \mathrm{~K} £ 235+£ 6$ carr. Dual drive 5 \% $/$ " $800 \mathrm{~K} £ 799+£ 8$ carr. BBC COMPATIBLE DRIVES
These are drives with TEAC FD50 mechanism and are complete with power supply
SINGLE: 100K £190; 200K £260; $400 \mathrm{~K} £ 340$
DUAL: 200K £360; 400K £490; 800K $£ 610$

- 32K Ram - Hi-Lo Res Graphics
- REAL TIME CLOCK - COLOUR
- SOUND - PRINTER PORT
$\mathrm{£173}+£ 4 \mathrm{p}$ \& p
Wide Range of Software in stock.
Please phone for availability

MICRO TIMER

The programmable clock/timer is a 6502 based dedicated micro computer with memory and 4 digit 7 segment displays to form an extremely versatile timing device with following features:

- 24 hour 7 day timer
- 4 completely independent switch outouts
- 6 digit 7 segment display output to indicate real time turn-off times and reset times
- Individual outputs to day of week, switch and status LEDs
- Data entry through a simple matrix pad

Further details on request
Complete Kit
$\mathbf{C 5 6 . 0 0}+\mathbf{C 1 . 0 0 p \& p}$
PSU
Construction detaits supplied

Components Order Form

Use this convenient form to order components from suppliers advertising in Hobby Electronics!

Switched Mode Supply

Not many components required for this project - though most are a little out of the ordinary. First there is the single IC, a TL497, made by Texas Instruments. Depite it's obvious usefulness, it doesn't seem to be in demand. Still, it appears in the Verospeed catalogue, and can be ordered from most retail suppliers as well; Ace Mailtronix or Greenweld will let you have one if you ask them nicely.
Lastly, the coil L1. This requires a potcore type RM6, with an inductance factor (AL) of 160. A suitable type is listed in Electrovalue's catalogue, but the AL value must be specified in your order.

CHECK LIST

RESISTORS

(All $1 / 6$ watt 5% carbon, E24 range).
1×1 RO; R1,2 selected from Table 1 CAPACITORS
$1 \times 100 \mathrm{p}$ ceramic; C1 selected from Table 1
SEMICONDUCTORS
$1 \times$ TL497
miscellaneous
RM6 pot-core; PCB etc.

Chip Probe

All the parts are readily available except,
perhaps, for the IC test clip. Our prototype was from the RS catalogue, stock number 423-627, however we are reliably informed that an identical type is stocked by Watford Electronics; their price - $£ 2.00$.
The case should be just large enough to fit the PCB, or the Chip Probe becomes too top-heavy to use easily. The prototype was built in a box from Verospeed. Their part numbers are 75-1413E or 75-14692 for black or white respectively.

CHECK LIST

RESISTORS (All $1 / 4$ watt 5% carbon)
$16 \times 470 \mathrm{R}$; $16 \times 47 \mathrm{k}$ SEMICONDUCTORS
$3 \times$ CD 4049B; $16 \times 0.2^{\prime \prime}$ red LEDs. miscellaneous
Box, test clip (see above); PCB etc.

CB Selective Caller

The difficult component in this project is the relay. The prototype uses a hard-to-find variety, labelled "Hi-C d'Italia" which has a 320R coil. The nearest we can find is from the Brian J. Reed catalogue; it has equivalent lead-outs but is a 675 R type operating from 12-24VDC. Alternatively, a standard relay may be
used though the tracks will have to be modified.
The NE567 chips are readily available from, for example, Rapid Electronics, Technomatic or Hemmings Electronics. All other components are standard.

CHECK LIST

TRANSMITTER:
RESISTORS (All $1 /$ watt 5% carbon)
$2 \times 820 \mathrm{k} ; 6 \times 10 \mathrm{k}$; $1 \times 56 \mathrm{k} ; 1 \times 390 \mathrm{k}$;
$1 \times 470 \mathrm{k} ; 2 \times 100 \mathrm{k}$.
NB: R12,13 (both 100k) have been omitted from the Parts List.
POTENTIOMETERS
(All sub min PCB mounting presets) $3 \times 100 \mathrm{k}$.
CAPACITORS
3×10 ceramic; $2 \times 1 n$ tantalum;
$1 \times 2 \mathrm{u} 2$ tantalum.
SEMICONDUCTORS
$2 \times$ CD4011; 1×741.

RECEIVER

RESISTORS (All $1 / 4$ watt 5% carbon).
$6 \times 10 \mathrm{k} ; 2 \times 18 \mathrm{k} ; 1 \times 330 \mathrm{R} ; 2 \times 4 \mathrm{k} 7$;
$1 \times 100 \mathrm{R} 1 / 2$ watt.
POTENTIOMETERS
$1 \times 1 \mathrm{M}$

CAPACITORS

(All ceramic unless noted)
$3 \times 10 \mathrm{n} ; 3 \times 1 \mathrm{u}, 2 \times 2 \mathrm{u} 2$ tantalum;
$1 \times 100 n ; 1 \times 68 n ; 1 \times 22 n ; 1 \times 10 u$ electrolytic.
SEMICONDUCTORS
$1 \times$ BC109; $1 \times 741 ; 2 \times$ NE567;
$1 \times$ CD4001; 1×1 N914;
$1 \times$ BZY88C7V5.
MISCELLANEOUS
1×2-pole 4 -way rotary switch;
$1 \times 12 \mathrm{~V} 2$-pole changeover relay (see above); PCB etc.

SAFGAM OSCILLOSCDPES- $5 \mathrm{mV} /$ div sensitivity. Choice of Bandwidth $10, \mathrm{MHz}_{2}, 15 \mathrm{MHz}_{2}, 20 \mathrm{MHz}$. $1 \mathrm{~S} / \mathrm{div}-100 \mathrm{O}$ S/div. Cajlibrated timebase. Solid trigger with bright line auto, normal and TV. XY facility. Z modulation. Calibration output. Bright and clear display, Portability. Model DT410-10 MHz E205.85. Model DT415-15 MHz E217.35. Model DT420 20 MHz £228.85. Send S.A.E. FOR FULL spec.

THANDAR TM354 $31 / 2$ DIGIT LCD DIGITAL PDCKET MULTIMETER - DC volts 1 mV to 1000 V - AC volts 1 W to 500 V AC rms - DC current Na to 2 - Resistance 1 s2to $2 \mathrm{ms2}$ Diode checlly 2000 hrs - leads inc. - 845.94 - 40 KV Probe $£ 34.95$ - Universal test lead set $£ 12.95$.

KD55C LCD DIGITAL MULTIMETER

- $3 \frac{1}{2}$ digit - Auto zero - Autb polarity - Full overload protection 10 Meg input impedance - Over range and low battery in dication - DC volts $200 \mathrm{mV}-1000 \mathrm{~V} 5$ ranges - AC volts $200 \mathrm{mV}-700 \mathrm{~V} 5$ ranges - DC current $200 \mu \mathrm{~A} 10 \mathrm{~A} 6$ ranges - AC current 200μ - 10 A 6 ranges - Resistance $200 \mathrm{~A}-200 \mathrm{Megn}$ - Complete with batterv, test leads, spare fuse and carrying case £39.95

Thandar Scilo simgle trace low powder ${ }^{\prime \prime}$

OSCILLOSCOPE • Bandwidth DC to 10 Mhz - Sensitivity: $10 \mathrm{mV} /$ div to $50 \mathrm{~V} / \mathrm{div}$ - - Sweep speeds: 0.10 secs / diy to 0.5 secs/div - Power requirements $4-10 \mathrm{~V}$ DC 4 ' 'C' cells : Size \& weioht $2 \mathrm{Zm} \times 150 \times 40 \mathrm{~mm}: 800 \mathrm{gms} \mathrm{f} 171.35$ a truly portable and superb j instrument - Carrying case $£ 8.86$ • AC Adaptor $£ 5.69$ - Nicad BatL pack $£ 8.63$ - $\times 1$ probe $£ 9.78$ - $\times 10$ probe $£ 11.50$ Complete range of Thandar instruments available from stock S.A.E. for CAT. \& prices.

ELECTRONIC COMPONENTS AND TEST EQUIPMENT 35, HICH BRIDGE, NEWCASTLE UPON TYNE NE1 1EW TEL: 0632326729

G.S.C. SDLDERLESS BREADBDARDS - Accepts all components with leads up to -033" - Replaceable nickel-silver spring clip contacts. - Combines bus strip with board © Unlimited expansion e $\cdot 3$ " and $\cdot 6^{\prime \prime}$ centre chanels - Three free experimental circuits with every purchase

	Centre	Strip	Strip	Tie	Term	i.c.	
	Channe!	Length	Width	Points	Clips	Cpty,	Price
EXP-800	15 mm	152 mm	817mm	550	110	${ }^{3} 2 \mathrm{BpIn}$	87. 59
ExP-300	8 mm	152mm	53 mm	550	110	${ }^{6} 14 \mathrm{pln}$	58.90
Exp-48	n / a	152 mm	25 mm	160	32	n/a	0.73
EXP-650	15 mm	91 mm	. 61 mm	270	54	140 piń	[4.31
EXP-350	8 mm	91mm	53 mm	270	54	${ }^{3} 14$ pin	83.79
EXP-325	8 mm	48 mm	53 mm	130	25	${ }^{1} 22$ рifín	11.50

SABTRDNICS LCD MULTIMETER MDDEL 2033. © DC volts 100 uV1000V Accuracy $+5 \%$ - AC volts 100 NV - 1000 V Accuracy $\pm 1 \%$ - DC current 10, AA-2A Accuracy $\pm 1 \%$ - AC current $10, \wedge A-2 A$ Accuracy $\pm 1 \%$ Resistance $1 \Omega-20 \mathrm{MS}$ Accuracy $\pm 1 \%$ - $£ 42.27$. - Please send 30 p for full Sabtronic catalogue and price list

TMK 500 MULTIMETER • 30 kopv , AC volts 2.51025100250 5001000 V - DC volts 0.2512 .5102510251002501000 •DC current $50, \mathrm{aa} 5 \mathrm{MA} 50 \mathrm{MA} 12 \mathrm{amp}$ - Resistance $0-6 \mathrm{~K} 60 \mathrm{~K}, 60 \mathrm{meg}$. - Decibels -20 to $+56 \mathrm{~d} / \mathrm{b}$ - Buzzer continuity test - Size 160×110 $\times 65$ - Batteries and leads inc. 226.95

YN360 TR MULTIMETER • AC volts 10502501000 - DC volts $0.1,0.5,2.5,10 \mathrm{v} 150 \mathrm{v} 250 \mathrm{v}, 1000 \mathrm{v}$. - DC current 50 Na 2.5 MA , $25 \mathrm{MA}, 250 \mathrm{MA}$ - Resistance $0-2 \mathrm{~K} 20 \mathrm{~K} 2 \mathrm{M} \Omega, 20 \mathrm{M} \mathrm{\Omega}$, - Transistor check $-D B-10 \mathrm{db}-+22 \mathrm{db}$ §16.95

SCHOOLS, COLLEGES, UNIVERSITIES SUPPLIED, PHONE OR SEND YOUR aCCESS OR BARCLAYCARD nUMBER.
PRICES INCLUDE VAT. PLEASE ADD 75p POSTAGE TO ORDERS UNDER $\$ 10.00$

Index 1978-1982

See What You've Been Missing In The Last Four Years.

Title	Issue	Page
555 Projects	May 79	38
A Good Joint is Hard to Find	Feb 82	53
Aerials	Oct 81	15
AB Circuits	May 79	33
Aerial Tuners	May 79	60
Anatomy of a Space Shuttle	Apr 81	16
Beginners Guide to Construction	Aug 82	28
Beginnings of Real TV (The)	Mar 81	18
Binary Numbers	Jul 79	23
CA3130 Projects	Feb 79	38
Capacitors	Apr 79	29
Car Electronics (1)	Dec 81	14
Car Electronics (2)	Jan 82	60
Cassette Decks and Tape	Jul 79	13
Choosing a Calculator	Dec 78	60
Citizens Banned	Jun 78	38
Computer Glossary	Feb 79	57
Creative Recording	Apr 82	76
Crossing Your Bridges	Mar 79	13
Decibels	Jul 79	44
Deep Space Communications	Dec 78	13
Dictation Machines	Nov 81	54
Digital Counters and Timers	Jun 82	69
Digits on Display	Nov 81	14
Directory of Electronic Supplies	Oct 82	33
Display Techniques	Jun 79	13
Edison Effect, The	Nov 78	27
Electronic Aids for the Disabled	Jul 81	15
Electronic Espionage	Jul 80	28
Electronic Games	Oct 79	38
Electronic Housekeeping	Nov 82	26
Electronic Music (1)	May 79	19
Electronic Music (2)	Jun 79	43
Electronic Revolution, The	May 82	39
Electronic Timekeeping	Sep 79	50
Electronics from Scratch	Nov 78	9
Electronics in Diagnostic Medicine	Sep 81	15
Electronics in Musical Instruments	May 81	18
Electronics in Photography	Jul 80	15
Electronics in Warfare	Apr 79	38
Electronics on Wheels	Mar 80	38
Fault-Finding for Beginners	Oct 82	9
Feedback	Mar 82	36
FET Special	Sep 79	59
Fixed Resistors	Jul 79	28
Hands Off (Meter Review)	Sep 82	47
HC6010 DMM (Meter Review)	Dec 82	65
Hifi Specifications	Nov 78	41

Title	Issue	Page
History of Radioactivity	Feb 79	25
Holograms	Feb 79	46
Home Computers	Nov 78	60
Home Electronics	Oct 80	44
How a TV Receiver Works	Dec 81	61
How to Use an Oscilloscope	June 81	15
Jargon	Nov 78	70
In Car Entertainment	Aug 80	11
Inside Colour TV	Apr 82	16
Instant Circuit Layout	Feb 79	63
Intellivision TV Game	Sep 80	29
Internal Resistance	Jun 79	31
Introduction to Test Gear	Mar 79	33
Learning from the Microprofessor	Nov 82	54
Mail Order Catalogues	Apr 79	64
Making PCBs	Dec 78	54
Making Tracks	Feb 82	11
Metal Locators	Nov 78	66
Metertech DVM	Aug 82	37
Microwave Cooking	Oct 79	50
Models Galore at Sandown	Aug 81	20
Narrow Bandwidth Television (1)	Apr 80	40
Narrow Bandwidth Television (2)	May 80	54
New Look for Communications Satellites	Mar 79	63
Next Instalment (Multivibrators).	Apr 79	51
Oscilloscope, The	Feb 81	18
Oscilloscope Revisited, The	Mar 82	39
OST Rules OK	Feb 79	70
PETing it Together	Mar 80	24
Photocells	Dec 78	48
Piezo Electricity	Jul 80	56
Pinball Wizards	Jan 79	57
Project Daedelus	Jan 79	38
Power from Satellites	Aug 79	38
Power to the People	Feb 80	51
Radio (1)	Jun 81	24
Radio (2)	Jul 81	26
Radio Controlled Model Survey	May 80	20
Radio Control World	Sep 79	38
Radio Servicing Tips	Dec 78	51
Reverb Revealed	June 82	38
RF Breakthrough	Jun 80	37
Robots	Nov 78	34
Short Wave Aerials	Mar 79	41
SI Units	Jul 79	60
Solar Cells	Jul 82	9
Solder	Jan 79	63
Spacelab	Jan 80	38
Story Behind Stereo	Nov 80	18
Substi-Tutorial	May 81	28
Synthesiser Secrets	Oct 81	53
Synthesiser Secrets	Nov 81	28
		35

Title	Issue	Page	Title	Issue	Page
Synthesiser Secrets	Dec 81	29	Drill Speed Controller	June 79	68
Telephones	Apr 79	8	Doorbell Monitor	Apr 81	32
Tesla Controversy, The	Dec 78	70	Doorchime	Dec 81	66
Thyristors	Sep 79	14	Doorphone	Oct 81	10
Tools	Aug 78	33	Double Dice	Nov 80	65
Top Ten Electronic Games	Jan 81	19	Dual Engine Driver	Apr 82	11
Transducers in Audio	Nov 78	55	Drum Synthesiser	Dec 81	18
TV Aerials	Apr 79	19	Echo Reverb Unit	May 82	33
TV Shopping	Mar 79	45	Electronic Organ (1)	May 81	11
UOSAT Report	Aug 81	56	Electronic Organ (2)	Jun 81	43
UOSAT Report	Oct 81	59	Electronic Organ (3)	Jul 81	20
Understanding Bias	Dec 78	36	Electronic Organ (4)	Aug 81	42
Understanding Component Values	Jun 82	55	Envelope Generator	Jun 79	19
Valdemar Poulsen	Jan 79	14	Envelope Generator	Jun 81	5
Varicap Diodes	May 79	67	Equitone	Aug 80	21
V ariable Resistors	Aug 79	18	Graphic Equalizer, Guitar	Dec 81	10
Video Discs	Mar 82	24	Guitar Fuzz Box	Mar 81	54
Video Tape Recorders	Feb 79	12	Guitar Phaser	Sep 80	49
Viewdata	Jan 79	34	Guitar Preamplifier	Nov 80	35
View into Video Discs	Dec 80	18	Guitar Tremolo	Apr 81	39
PROJECTS			Hazard Flasher	Jul 80	62
			Heartbeat Monitor	Feb 81	13
			Hebot (1)	Jun 79	10
			Hebot (2)	Dec 79	25
Title	Issue	Page	Hebot (3)	Jan 80	56
			Hebot II	Nov 82	9
All Things Being Equal (Audio			High Impedance Voltmeter	Feb 81	26
Equalliser)	Jul 82	60	Hobbycom	Apr 80	17
Amplifier, 2 Watt	Jun 80	54	Infra-red Remote Control	Feb 80	27
Amplifier, 18 Watt Stereo	Jul 80	23	Injector/Tracer	Aug 79	48
Amplifier Module, 508025 Watt	Mar 80	11	Inteligent NiCad Charger	Jan 82	26
Analogue Audio Frequency Meter	Oct 79	45	Intruder Alarm	Oct 80	59
Audio Analyser (1)	Aug 82	53	Jack Lead Tester	Dec 80	49
Audio Analyser (2)	Sep 82	57	'Junior' Slot-Car Controller	Sep 82	9
Audio Millivoltmeter	May 81	67	LED Tachometer	Aug 79	24
Audio Power Meter	Dec 80	59	LED VU Meter	Nov 81	30
Audio Signal Generator	Feb 81	36	Light Beam Telephone	Nov 81	10
Audio Signal Generator	May 82	49	Light Chaser	Mar 79	7
Automatic Greenhouse Sprinker	Jun 82	48	Light Dimmer	Oct 80	33
Autoprobe	Sep 80	37	Linear Scale Ohmeter	Jul 79	20
Auto-Wah	Jun 82	25	Lofty	Dec 82	74
Baby Alarm	Jul 79	57	Low Cost Alarm	Dec 82	70
Baby Alarm	Oct 81	39	Low Power Pilot Light	Sep 81	21
Background Noise Simulator	Feb 81	42	Mains Adaptor	Sep 81	42
Battery Charge Monitor	Dec 80	28	Masthead Amplifier	Feb 82	42
Battery Eliminator	Nov 80	24	Medium Wave Radio	Feb 81	56
Bedside Radio	Nov 78	45	Metronome	Jun 80	32
Bench Amplifier	Jan 81	37	Metronome	Nov 81	61
Bench PSU	Sep 80	63	Microbe Radio Control System	Jun 80	11
Bicycle Speedometer	Mar 81	37	Microlog	Dec 82	9
Big Ear, The	Dec 82	80	Micromix	Sep 80	19
Bike Alarm	Apr 82	72	Miniboard Siren	Mar 80	54
Bike Siren	Mar 82	65	Miniclocks	May 80	13
Cable Tracker	May 82	65	Minisynth II	Dec 80	66
Car Alarm	Feb 79	66	Model Train Controller	Apr 79	15
Car Cassette Power Supply	Dec 81	49	Movement Alarm	Aug 80	49
Car Rev Counter	Jan 81	27	Negative Voltage Generator	Oct 79	24
Casanova's Candle	Mar 79	16	NiCad Battery Charger	Jan 81	50
CB Squelch Unit	Oct 82	58	Nobell Doorbell	Oct 80	67
Chuffer	Jan 81	54	Noisless Fuzzbox	Feb 82	26
Cistern Alarm	Apr 79	48	Odometer, The	Nov 82	46
Crosshatch Generator	Jan 80	31	Op-Amp Checker	Aug 81	62
Combination Lock	Oct 81	21	Parking-Meter Timer	May 79	27
Constant Volume Amplifier	Aug 79	61	Party Grenade	Nov 80	41
Continuity Checker	Jun 81	20	Passionmeter	Feb 80	10
Designing Power Supplies	Jun 82	12	Pass the Loop	Aug 80	41
Development Timer	Sep 80	53	Pedalboard Organ	Dec 81	32
'Diana' Metal Detector	Sep 81	10	Phase Four	Dec 82	37
'Diana' VCO	Nov 82	22	Photographic Timer	Mar 81	58
Digi-Die	Jan 80	47	Photon Probe	Dec 78	18
Digital Capacitance Meter	Apr 82	25	Planning for Success	Sep 82	49
Digital Clock	Nov 79	30	Pocket TV	Mar 82	32
Digital Die	Mar 82	11	Pop Amps 1: Microammeter	Jul 79	52
Digital Frequency Meter	Apr 80	33	Pop Amps 2: Follow and Hold	Dec 82	62
Digital Multivoltmeter	Aug 82	20	Power Amplifier (1)	May 81	10
Digital Speedometer (1)	Dec 80	13	Power Amplifier (2)	June 81	49
Digital Speedometer (2)	Jan 81	42	Preampifier (1)	Apr 81	11
Direct Reading Frequency Meter	Nov 81	38	Preamplifier (2)	May 81	59
Digital Thermometer	May 82	10	PSU Model (5080A)	Mar 80	19

READER'S SURVEY

Once again the January issue rolls around and it's time to ask Hobby readers what they think of our efforts over the past year. Not only does this give us the chance to collect lots of stamps, but it means we can try to please more of our readership more of the time by giving you what you want - as far as possible, that is.

By filling in the questionnaire overleaf you'll be helping us to plan Hobby in the months to come. If you feel moved to take up pen and postage stamp, then remember we appreciate honest comments. Philately will get you nowhere.

REQUIRED

HOBBY SURVEY, ARGUS SPECIALIST PUBLICATIONS LTD, 145 CHARING CROSS ROAD, LONDON WC2H OEE

So that we don't have to cope with staples, Sellotape or sealing wax, we've made things easier by designing this form to fold up quite neatly. Simply fold along the dotted lines and tuck the small bit into the bigger bit. You don't need an envelope, either!

19. Do you think a good sound system is worth having or are you content with a portable
19.
20.

\pm

•
21. Do you either own, or have the use of, a home computer or microprocessor system?

$$
\text { Have use but not interested } \square
$$

22. Are you likely to buy, or to gain access to a computer or microprocessor system during Buying \square Will have use
23. If you are a computer user, please indicate the type of system. Home computer (eg ZX, Apple, PET etc) \square Development system/trainer \square Disc Drivels) \square
Prer Precify
24. Please indicate the purpose for which you use your computer, (number in order of importance). Business \square
Education \square
Games \square
Programming \square
Interfacing external equipment \square Other.
25. If you are a computer owner, is it likely that you will be adding to your system during
1983 ?
26. If so, please indicate the expansions you would like, in the order in which you would like
to add them.
Other
27. If you are mainly interested in programming, please indicate the type of programs that Educational \square
External control \square you work on, in order of preference. Games \square
Discs \square

Extra memory \square Printer \square
Other

longer \square
how do think Hobby compares now
How many isues have you bought during 1982, then
If you have been a reader for longer than a year, how do you think Hobby compares now
much 2SIOM longer \square
no \quad slightly
worse
(Please tick the appropriate box).
6 months \square
N
much
better
slightly
better
\square
How long do you keep your copies of the magazine? 1 month $\square \quad 3$ months \square
Honths \square
28. How did you become a reader of Hobby Electronics?
mpulse buy in a newsagent
Saw an advertisement \square
Other reason (please specify)
1 year
How do you normally obtain your copies of Hobby Electronics? Purchase from local newsagent \square
Purchase from travel point \square (W.H. Smith, Menzies etc) \square
Purchase from High St. newsagent (W.H. Smith, Menzies etc) \square
Copy delivered to home \square
5b. Do you have difficulty purchasing copies of the magazine? Yes \square No \square
four \square
In general, when building a project, would you rather .
more \square
29. Are there any goods or services that you would like to see on offer in Hobby Elec-
Reader Survey
30. Do you, for preference, listento. Independentradio \square
31. Please indicate which of these magazines or papers you read (use the extra space pro-
vided to enter any titles we've missed that you also read regularly)

TITLE	READ REGULARLY	SOMETIMES	USED TO
Electronics Today International			
Wireless World			
Practical Wireless			
Practical Electronics			
Everyday Electronics			
Elektor			
Electronics and Music Maker			
Radio and Electronics Worid			
Electronics and Computing			
Computing magazines (any)			
Video magazines (any)			
CB magazines (any)			
Hifi magazines (any)			
The Guardian			
The Times			
The Telegraph			
Daily Mail			
Sun			
Mirror			
Daily Express			
Sunday Express			
Local paper(s)			

If it's any consolation, surveys are even more of a nuisance to write than to fill out, but they are very important in our efforts to produce a better magazine for you, our readers. Thank you for your time and patience.

Unemployed \square
3

29. Sex, if any
30. What is your marital status?

\square aw! \square मed \square aw! $\perp \| n_{\rfloor}$

Married \square
31. Please indicate your employment status.
Single \square
(YOP etc)
Training Scheme \square
32. What was your approximate income during 1982 ?
33. What is your job title?

[^1]39. Apart from electronics, what are your other interests, eg coarse fishing, skiing, raising whippets, drinking, filling in survey forms . . . ?

Title	Issue	Page
Push Button Volume Control	Apr 80	37
Push Button Speed Controller	Apr 80	29
Radio Timer	Aug 80	29
Railway Track Cleaner	May 80	45
Reaction Tester Game	Sep 81	58
Reaction Timer	Sep 80	25
Rev Counter	Jan 81	27
RPM Meter	Aug 81	52
Scratch and Rumble Filter	Feb 79	29
Scratch Filter	Nov 81	19
Shark	Jul 79	9
Short Wave Radio	Feb 79	8
Short Wave Radio	Mar 80	57
Solar Radio	Jul 82	20
Sound-Into-Light Module	Jan 81	11
Steam Loco Whistle	Mar 81	33
Stereo Amplifier (Hobit)	Nov 78	20
Stereo Bass Booster	Mar 82	52
Stereo Noise Gate	Dec 82	20
Switched-Tuned Radio	Jan 82	16
SWR Meter	Aug 82	48.
Sunburn Timer (Tanover)	Jul 82	14
Super-Regeneative VHF Receiver	Nov 81	40
Super Siren	Apr 81	25
Tantrum Stereo Amplifier	Oct 79	10
Tape/Slide Synchroniser	Dec 82	56
Telephone Bell Repeater	Oct 81	56
Telephone Timer (1)	Jun 82	9
Telephone Timer (2)	Jul 82	40
Temperature Controlled Soldering Iron	Oct 80	49
Thermometer	Aug 81	23
Three-Aspect Signal Lights	Sep 82	39
Ticking Eggtimer	Nov 81	39
TV Amp	Dec 82	25
TVI Filter	Jul 82	34
Two-Tone Train Horn	Feb 81	48
Ultrasound Burglar Alarm	Jul 81	11
Ultrasonic Switch	Sep 79	45
Universal Relay Driver	Feb 82	18
Variable Bench Power Supply	Aug 81	58
VariWiper	Jan 79	27
Voice Operated Switch	May 81	24
Volume Expander	Jan 82	54
Wah-Wah Pedal	Nov 78	37
White Noise Generator	May 79	63

Title	Issue	Page
	June 81	58
Audio Mixer	Sep 81	38
Car Light Delay	Jul 81	55
Electronic Metronome	Dec 81	27
Guitar Headphone Amplifier	Mar 82	45
Heads and Tails Game	Sep 81	28
Light/Water Alarm	May 82	55
Light Seeker	Oct 81	45
Seven-Segment Display	Nov 81	58
Simple Stylus Organ	Apr 82	34
Signal Tracer	Jan 82	35
Simple Timer	Jul 82	25
Solar Experiments	Feb 82	25
Sound Switch	Nov 81	64
Substitution Boxes	May 81	26
Two-Down-One		33

Title	Issue	Page
AF Millivoltmeter	Jun 79	49
AC Meter Booster	Sep 79	63
Audio Limiter	Jan 80	18
Automatic Fader	Feb 80	20
Basic Burglar Alarm	Jun 79	53

Title	Issue	Page
Bedside Radio	Oct 79	72
CA3080 VCA	Feb 79	32
Car Lights Delay	Sep 81	38
Car Cassette Power Supply	Jan 80	44
Cassette-Radio Booster	Jun 80	20
Christmas Tree Lights Flasher	Feb 80	21
Class A Amplifier	Apr 80	23
Clipping Amplifier	May 79	24
CMOS Logic Probe	Apr 79	26
CMOS Logic Probe	Jul 79	42
CMOS Monostable	Dec 79	50
Crystal Callibrator	Jun 80	56
Diode-Transistor Tester	Mar 81	46
Direct Reading Ohmeter	Apr 81	45
Doorbuzzer	Feb 80	17
Gas and Smoke Detector	Aug 79	57
General Purpose Amplifier	Feb 80	18
Guitar Practice Amplifier	Aug 79	28
HF TTL Oscillator	Jan 79	26
Headphone Amplifier	Sep 79	48
Home Intercom	Feb 79	28
Hum Notch Filter	Dec 78	52
Infra-Red Intruder Alarm	Jul 80	20
Insect Repellant	Jul 79	41
LED VU Meter	Apr 80	48
Lie Detector	Mar 79	50
Light Sensitive Switch	Dec 78	26
Linear Scale Ohmeter	Feb 79	36
Logic Lock	Jun 79	72
Low Frequency Ocillator	Jan 79	70
Low Power Flashing Light	Nov 78	71
Magic Candle	Jul 79	36
Mains Interference Suppression	May 79	58
Measuring Unknown Capacitors	Nov 78	44
Metronome	Feb 80	18
Morse Practice Oscillator	Feb 80	17
Nanoamp Meter	Apr 79	45
Nanoamp Meter	Jul 79	40
NiCad Charger	Sep 79	48
Noise Gate	Jan 80	70
Noise Limiter	Mar 79	29
Noise Limiter *	Jul 79	36
One Armed Bandit	Mar 80	72
Phase-Shift Oscillator	Jan 79	70
Power Supply with Transistor Regulation	Nov 78	64
Pre-Amp with Stepped Gain Control	Jan 79	70
Precision Half Wave Rectifier	Mar 79	19
Preselector, $10-30 \mathrm{MHz}$	Apr 30	23
Power Supply, 5-13V	Feb 79	65
PSU with IC Regulation	Jan 79	33
Radio 4 Tuner	Jun 80	36
Reaction Game	May 79	33
Regulation Booster	Dec 78	26
RIAA Stereo Pre-Amp	Jan 79	37
Scratch and Rumble Filter	Aug 79	50
Signal Injector/Tracer	Jul 79	35
Simple Ampifier	Mar 79	68
Simple SW Radio	Feb 80	16
Simple Timer	Mar 79	68
Single IC Organ	May 79	61
Single Op-Amp Oscillator	Jan 79	33
Sound Operated Switch	Mar 80	33
Sound-Triggered Flash	Jul 79	37
Speech Processor	Jul 80	26
Supply Splitter	Apr 80	48
Suppressor Tester	Feb 81	30
Sustain Unit	Sep 79	63
Table Lamp	Jul 80	42
Thermostat	Jan 80	52
Timer	Oct 79	56
Timer, ZN1034E	Mar 80	23
Touch Switch	Apr 79	33
Touch Switch	Jul 79	38
Transistor Checker	Jun 80	62
Transistor Tester	Nov 78	71
Transistor Tester	Mar 80	33
Transistor Power Amplifier	Nov 78	49
Treble Booster	Apr 79	50

Title	Issue	Page
Treble Booster	Jun 79	40
Tremolo Unit	Jun 79	11
Two Microphone Amplifiers	Jul 79	39
Two-Tone Alarm	Oct 79	56
Two Transistor Noise Source	Dec 78	17
Two Transistor Radio	Feb 79	32
Ultrasonic Receiver	Feb 80	19
Ultrasonic Transmitter	Feb 80	19
Unregulated PSU	Nov 78	64
Voice Operated Fader	Jul 80	45
Voltage Controlled Filter	Jul 79	38
Wah-Wah Unit	Jan 80	44
Water Alarm	Feb 80	20
Zener Diode Tester	Sep 79	58

POPULAR COMPUTING

Title	Issue	Page
	Mar 82	45
Affordable Computer, The	Mar 82	46
Components for Computing	Jul 82	57
Computer PSU (Project)	Apr 82	41
Computer Talk		54
Learning From the Microprofessor	Nov 82	26
(Review)	May 82	36
Micro-History	Ap 82	60
Micro Mania	Jun 82	52
Microtrainer (1) (Project)	Jul 82	57
Microtrainer (2)	Aug 82	25
Microtrainer (3)	Sep 82	
Microtraining	Aug 82	14
Spotlight On The Spectrum	June 82	65
(Review)	May 82	20
ZX81 64k RAM Pack (Review)	Sep 82	14
ZX81 Revisited (Review)	Aug 82	10

SERIALS

Into Digital Electronics

Part 1
Sep 80
Part 2
Oct 80
30
Part 3
Part 4
Part 5
Part 6
Part 7
Dec 80
Jan 81
Feb 81
Mar 81

Into Electronic Components

Part 1
Aug 81
Part 2
Sep 81
Oct 81
Part 4
Nov 81
Dec 81
Jan 82
Part 6
Part 7
Feb 82
Mar 82
Apr 82
May 82
Jun 82
Jul 82
47
Part 3

Part 8
Part 9
Part 10
Part 11
Part 12
Into Electronics

Part 1	Nov 78
Part 2	Par 3
Part 4	Jec 78
Par	
Part 5	Feb 79
Part 6	Mar 79

Greenbank
 Greenbank Electronics Dept EIH, 92 New Chester Road, New Ferry, Wirral, Mersevside L62 5AG
 Tel: 051-645 3391)

READ THIS IF YOU VALUE YOUR JOB
I am writing to a worried man (or woman). Iamwriling to you. Are you scared of computers?
Weil not scared of the computers themselves, but scared of what they can do. Protty well Weil not scared or the computers hemselves, but scared of whet they can do. Pretty well you seem more and more to be getting lett behind.
Do you have collegues wro are always spouting on and on about computers? Do you under-
stand a word of what they're saying? Be honest, do you? Do they understend a word of whial stand a word of what they're saying? Be honest. do you? Do they unders tend a word of whial
they're saying really, or are thay just speaking words they've read out of a magazine or heard on T.V.?
What you need is a friend, an honest friend, who will try to help you. I will be yourtriend I am
your friend. My name is David Parkins, why not write to me or 'phone me? (my number is 05\%-
B45 3391). I said I wo
in kif form, and I would like triend so l'Il begin now - I work for a firm which sells a computer now you, are going to buy computer kit of some sort very soon, because you just can'i let mings go on as they are 'Computing' is a club, and you're not a member yet. Worse atill you chips they may be but it will be a miracle if you can understend what they do by just looking a them.
What I want to sell you is not just the pieces. I want to sell you 'the knowledge'. Then you'll know as much as I do, and you won't need me anymore. All I ask from you is that when you
know what computing is really all about, that you treat others in the same way that you would lite to be treated. Don't sneer at them because they don't know the differnnce between PASCAL and BASIC, they don't know
Computers are bound to make our lives easier and happier (and richer) th they are used wisely, so it is vital that everyone be introduced to the 'Computer Cliub' as quickly as possible. Once everyone knows about computers we will be free to con tinue to make an honest living at the moment there are all sorts of people who are unscroupurously taking money from part of a business like that. Just read through a few advertisements, and think to yourself how Can they s/ll be the best?
When I said I am wanting to sell you the knowiedge" please don't think I am offering a correspondence course. In my view that's not a suitable way to learn - a cours has to
proceed in simple logical steps - how an 'AND gate' works, and what is a Hip-liop' and so on - microcomputars have left all that simple stuht behind long ago and you'll never catch uptha way.

Learning computing is a bit like learning to swim, but youve got no time to waste What Think you need is to be plunged in at the deep end - there's no time for splashing about in the o save you from drowning - that's what l'm here for.
Of course it's not like swimming in one important respect - you have to buy a computer first
before you can enter the water. Down at the shallow end this will cost you about $£ 50$ with a further $£ 50$ tor the necessary AAM (mamory). - at the deep end. where you'll find me the cos at least doublo.
I bet you're saying 'some friend this - ho's already wanting me to spend fwice as much as down to a price - the 'chip count' (number of integrated circuits used) has to be kept righ down, preterably to four or tive. There are two penaties to be paid. FIrstly, no real expansion can be accommodated - the systern will go so far then no further, secondly some specia pertormance out of the minimum resources. Don't get me wrong - some of the tricks are brilliant but the whole point in your buying a computer is so you can get an understanding yourself, not simply looking as a lump of sillicon (integrated circult) where all the skill is buried.
Once the design is 'encapsulated' in a master iniegrated circult there's no way you'll ever find out what's inside unless the designer chooses to tell you, and he's hardyl likely to tell you $\boldsymbol{-}$ he might want to use the same ides in the Mk II model next year
Some people gointo this with their 'eyes open' - buil think computing has come to pretty poor state of affairs th you have to be prepared to throw away a hundred pounda or so on a
system which cannot expand with you, but has to be replaced by the next model annually I would also ssy beware of commining the diametrically opposite mistake - gimmick computer. This is one which is all things to all men. You name it it ${ }^{2}$ got it. This processor, that processor as an option. Level 1 expands to level
which can easily be adapted for this or that Do you think the purchase of a computer learning is hard work. My computer (Interak is is ideal tor your pupposes I ass ume that you don't really know much about computers, you've probably got an interest in electronics, and with all the publicity that these micro chips are getting in magazines. TV. radto and give you some valuable information. There's too much going on for you to learn gverything and new information is being created every day at such a rate that the longer yo started, the harder it will be to cateh up.
you the way to obtisin sutficient knowiedge to use computers for your pleasure, your work, and so that you can, if you want to, help others. It's all very weil having a computar that has everything, but if you have too much hardware you"ll be like the old woman who lived in the shoe - you won' know what to do
Thave a friend who has bought an Interak 1 System, (1 say he's a friend but at the moment ho
thinks he's just a customer) and he's received a parcel, he's opened it and efiecked that he's got what we think we have sent him and I imaging he's ploughing his way through the manuals (yes one of the problems of being presented with a lot of information is having to read it all about, heill learn from reading the manuals how. Although he doesn't understand whar ir's al parts. and then how to make th work.
I've put a lot of time and effort into this Iriendship, writing the words, and dra wing, what I
think are helphul diagrams. I'm sure my friend will write to me with his oroblems and l'm siso sure he will be delighted with his computer and any helpful remarks I may make.
I admit some of my answers to his problems may take the form of application notes, in fact most of them will, but that's just the way that I cope with halping lots of triends (when Iget a letter with a problem or misunderstanding of something 've put in the manual, I write my can qutckly give a well thought out answer in an appllcation note with maybe just a covering
an ve got a problem at the moment, you've either got a computer and not been able to learn all you need to know. or you haver't got one yet. Don't just go out and buy the first computer
you see, or the biggest or the cheapest, buy the one that will heip you to solve your problems. Remember thal I'm here to help you, I've got a lestlet/dats sheet set. that will probably teil you everything you need to know about my Interak 1 System. Write to me at Greenbank
Electronics, using the above address and ask me lo send you my interak 1 leatiet. Now 1 warn you, there s quite a lot that 'lis send you (about 38 sides of A4-size paper). If θ typo-written, with some hand drawn Hlustrations of the various kits. Of course it costs quite a bit to send through ite post so an AASAE would be appreciated but as you are my friend. if you don't enclose on a
won't mind. By the way III probably enclose leatilats on some of the other thinge that my company sells but as I say to people I speak to. 'If I give you a leatlet you don't want please don't be offended
Im belng honest with you, I'm trying to make you into a Interak 9 user, because the more thats important.
You might not think that you are capable of building up a sophisticated computer system from component parts, but you need havo no worries on that score. You do of course hava to wincapable of doing the job. Some people need a blt of help, some people need more help than others, but the way llook at it Is that if you can't follow the instructions thave provided then it's my fault not yours. The same applies to testing the completed computer. If you make a board ill plug it into my own system and will soon get it going for you
Even if you don't buy the interak 1 System then I do urge you to buy some sort of computer as soon as you can. If you have any chicron this is even more important. Children need computers almost as much as they need food and drink, There never was a more nutritious are somenow mystical, children are in a far better position to learn than we mere adulte. So far I have only let you think that the Interak 1 System will cost you monay, but thare are plenty of ways it will bring money in. Obviously if you have your own business you will know sfandard where you can write your own programs and fix the syslem yourself nours thall will go wrong, you built it - remember) there won't be eny hidden overhads to de paid. Other ways you can make monay are writing programs that you can sell. or even writing a book, Dont think that you have to be particularly clever to do this. There may be thousands of peopie less waint will be some high faluting tome written by some lat-di-dah computer boffin. I look torward to hearing Irom you so I can tell you about my Interak 1 Computer. Write soon.

EXCLUSIVE MAIL ORDER FOR PRICE CONSCIOUS ENTHUSIASTS
Kelan Engineering, establised for over 12 years as manufacturers of high Quality Printed Circuit boards and the original innovators of the Positive Photo Resist System NOW INTRODUCE.

the complete Printed Circuit Workshop
\star Copper Clad Boards \star Veroboards
\star Breadboards \star Artwork materials
\star Hobbyboard Photo Resist System the simplest,cleanest method ensuring high quality PCB's EVERYTIME.
\star Plastic \& Die Cast Boxes \& Cases
\star Connectors \star Sockets
\star Terminals \star Screws, Nuts, Spacers etc. \star Workshop Tools

- Drills \& Machines.

Ł ZX81\&SPECTRUM INTERFACING SYSTEMS AND ACCESSORIES

SPECIAL OFFER

Complete - low cost introductory Hobbyboard Photo Resist Kit includes UV exposure lamp \& full instructions for DIY UV unit - all artwork, board \& chemical requirements + "Introduction to Circuit Making"

Please send me details of:-
Hobbyboard mail order catalogue
Hobbyboard Photo Resist System Hobbyboard ZX81/SPECTRUM SYSTEM Hobbyboard special offer
NAME
ADDRESS

I have completed \square electronic projects during the past 12 months

Age (if under 16)

KELAN (Hobbyboards) LTD North Works, Hookstone Park Harrogate, North Yorkshire. 80423-883672

COMING SOON TO . . . Earcitiontas ELECTRONIC KITS AND MODULES

The most comprehensive survey ever of what's on the market and where to get it. Whether it's test gear or a complete home-built hifi system, you'll find it all in our super survey of Electronic Kits and Modules!

INCREMENTAL TIMER

A timer with a switched 240VAC output, this project will find has 101 uses around the home, in the workshop or in a darkroom. The count-down is indicated by a LED-ladder display, allowing very flexible timing.

ELECTRONIC BOOKS SURVEY, 1983

A complete guide to electronics text and reference books for students and hobbyists of all ages and level of experience.

ALL ABOUT JFETS

Often used in our projects, these devices are easily understood - which is why we use them. (Yes, it was promised for this issue, but for reasons of space, it has had to be held over.

THE HE BASS-MAN

Essential equipment for a one-man band, this unit synthesises the sound of a bass guitar from a vocal input. Scooby Dooby Doo!

PLUS OUR USUAL SUPERB FEATURES ...

FAMOUS NAMES looks at the life and work of Herman Hollerieth, inventor of the computer card.
RADIO RULES investigates radio propagation and the properties of aerials.
THE ELECTRONIC REVOLUTION continues with the Birth of Broadcasting COMPONENTS FOR COMPUTING ROMs around inside memory chips, for the second time.

February issue on sale at your newsagent from 14th January Place your order now!

Although these articles are being propared for the next issue, circurnstances may alter the final content.

C12 BDX 88 A Darlington Power TO3
12 A 117 W Hfe $750 @ 6 \mathrm{~A} / 50$ C13 Nixie - Siemes $2 \mathrm{M} ~ 1336 \mathrm{~K}$, 14 mm di C14 8Y212-750 power switching rect, 800 V C15 GRO5R 50 V 5 A
C15 GRO5R 50 V 5 A switching fect. 4 for 50p C17KBL04 4A 400V bridge 50p C18 BSI 1 A 100 V bridge. 5 for f Previoue Months Now Items
N1 8085A CPU $£ .50$
N2 MC1417550
N3 LM380 55p
N5 6850 F 16 V Ax 15 p
N5 $6850{ }^{1000}$ MM2114
$\begin{array}{ll}\mathrm{C} 1 & 7912 \mathrm{CK} \text { (TO3 Case) } 750 \\ \mathrm{C} 2 & 3.579545\end{array}$
C2 3.579545 MHz Xtal HC6U case 50 p C5 fieed switches, 20 mm body SP make
$\begin{array}{ll}\text { C6 } & 12 \mathrm{~V} \text { reed relay, SP break } 40 \mathrm{p} \\ \mathrm{C7} \\ \mathrm{Ni} \text {-cads, } \mathrm{C} \text { size } 2 \mathrm{AH} \mathrm{E} 2,10 / \mathrm{f}\end{array}$
C8 68A00 CPU $\$ 1.50$
C9 UDN6116A display driver 50p
C10 Speedbloc ribbon cable: 10 way $30 \mathrm{p} / \mathrm{m}$;
20 way $60 \mathrm{p} / \mathrm{m} ; 40$ way $\mathrm{E} 1.20 / \mathrm{m}$

\section*{brand New verobloc

KITIII

KITIII

Just published by Babanl, Mr R. A. Penfolds new book" " PROJECT" this book features 30 different projects for assembly on a Verobloc, and the kit contains all parts necessary to make: Audio Amplifiers.
Light \& Dark Activated Switches \& Alarms Timers
Oscillators $\&$ Tone Generators
Warbling Door Buzzer
Two-tone Train Hom
Touch Switch
Round Activated Switch
Radio Receiver
Fuzz Unit . .

+ lots morel
The introduction shows all the different components and explains how to use the bread-
board. The Verobloc layout is shown for ever board. The Verobloc layout is shown for every
project together with the circuit diagram and an explanation of how it works. Ideal for beginners in electronics, but also suitable for more advanced students.
The complete kit is contained in an atreactive plastic case, which can be divided up into 15 compartments in which your components may
be stored.
Complete Kir, Including book, Verobloc 8 all carts E24.55
Book only $£ 2.25$

5 mm RED LED SCOOP

 Another company gone bust - to your advantagelll We've bought all their 5 mm red LED's $25 \mathrm{f} 1.95 ; 100 \mathrm{E6.00} ; 250 \mathrm{E} 13.50$; 1 k f 39.50 ; 5 k Add 30\% $\mathbf{1 8} 185$.1,000 RESISTORS £2.50
We've just purchased another 5 million preform-
d resistors, and can make a similar offer to that ed resistors, and can make a similar offer to that
made two years ago, at the same pricelll K523-1,000 mixed and $\frac{1}{2} \mathrm{~W} 5 \%$ carbon film resistors, preformed for PCB mntg. Enourmous
renge of preferred values. 1,000 for $\mathbf{£ 2 . 5 0}$; renge of preferred
$5,000 \mathrm{f} 10 ; 20 \mathrm{k} 536$.

FILAMENT DISPLAYS

26637 seg display 12.5 mm high. Ideal for TTL operation, taking $5 V 8 \mathrm{~mA}$ per seg. Std 14 OLL
package. Only EY e8ch, 4 for $\mathrm{E3} .00$. Data package.

ELECTRO-DIAL

Electrical combination lock for maximum securi ty, absolutely pick-proofll One million combinaleft to a second number, then right again to a third number. Only when this has been completed in the correct sequence will the electrical contacts close. These can be used to operate a relay or solenoid etc. Overall dia $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep. Finished in bright chrome. With combina-
tion the price is reduced to E 3.95 .

1982/3 CATALOGUE
Biggerl Betterll Buy onell Only 75 p inc. post - Look what you getll - Vouchers worth 60p

- 1st class reply paid envelope
- Wholesale list for bulk buyers - Huge range of components - Low, low prices

REGULATED PSU PANEL

Exclusive Greenweld design, fully variable
$0-28 \mathrm{~V}$ \& $20 \mathrm{~mA}-2 \mathrm{~A}$ -20 components except pots and transtormer. Ony
$\mathbf{7 5}$. Suitable transformer and pots $\mathrm{E6}$. Send SAE for fuller details.
SOLENOIDS AND RELAYS
We21 Solenoid rated 48 V ar 25% duty cycle, but work well on $24 \mathrm{~V}(700 \mathrm{gm}$ pull, 10 mm
travel) push or pull $27 \times 18 \times 15 \mathrm{~mm} 55$ p travell push or pull $27 \times 18 \times 15 \mathrm{~mm} 55 \mathrm{p}$
W922 Mains 240 V ac solenoid. 10% duty push or pull, 16 mm travel. $50 \times 20 \times 16 \mathrm{~mm}$. Only 51.50
WBes 9V DC relay 500 R SPCO $28 \times 24 \times 1950 \mathrm{p}$ W733 11 pin plug in relay. 240 V ac 3 PCO 5 A contacts 92.50 . Base 36 p
W838 700 R 24 V 4 PCO
$35 \times 30 \times 18$. Only 84 p . $10 / 6$
W847 37R 510 V relay. SP. W847 37R 510 V relay. SP 3 A contact. PCB
mntg $11 \times 33 \times 2095 \mathrm{p}$. $10 / \mathrm{CZ} .60$
W893 Omron LY4 mains relay, 4 PCO 5 A con Wess 0 Omron
tacts 5.50
tacts $\mathrm{C2} .50$
W 8966
24 V
W896 24 V ac coil, but works well on 6 V DC
30 Solderless
Breadboard
Project - Book 1
Recommended PA PENFOLD
Ric: BICC VERO

LIE DETECTOR

Not a toy, this precision instrument was originalty part of an 'Open University' course, used to measure a change in emotional balance, or as a given, and a circuit diagram. Supplied complete with probes, leads and conductive ielly. Needs 2 Iy $\mathbf{E 7 . 9 5}$ - wort that for the case and meter alonel

COMPONENT PACKS

K503 150 wirewound resistors from iW to 12 W , with a good range of values $£ 1.75$ KEOS 20 assorted potentiometers, all types in K511 200 small value poly. mica, ceramic cap from a few pF to .02 uF . Excellent variety $\mathrm{E1} .20$ K 514100 sitver mica caps from 5 pF to a fow thousand pF. Tolerances from 1% to 10% \& K 520 Switch Pack. 20 different rocker, COMPUTER BATTLESHIPS Probably one of the most popular electronic games on the market. Unfortunately the design ing it impractical to test the PCB as a workpertectly. Instead we have tested the sound chip, and sell the board for its component value only IPCB may be chipped or cracked) SN76477 sound IC; TMSI000 u-processor: \$1.50. Instruction book and circuit 30 p extra.
 140 mm Tube: OC to 20 mAZ : 5 mv sen silivivi: CH2 Inver CS1 820 Oelayed swern: 0.2 usee to 0.5
 Our Price $£ 420$ inc. VAT (UK $\left.C / 0 \sum 4\right\}$
 Our Price $£ 299$ inc. Vat (UK c/p $£ 4)$

SPEAKERS \& TWEETERS

TRIO 20 MHZ DUAL TRACE SCOPES PLUS FREE METFR! Seo above

HIF20ESM 4 ohm
Version $8^{\prime \prime} 84.95$ (UK c/p ह1.20)

CH38 Orb
3 way 8 ohm 15 watt crossover £1.25 crossover 1.1 .25

H1F878SM 4" 80 hm 30/50 watl midrange £4.95 (UK c/o 65pl

SN 30040 walt
£1.75
PH303. 8 ohm 15 wall tweeter $\mathbf{2 2 . 2 0}$
 HT315F $5^{\circ} \times 34_{4} 8$ ohm 50 watl tweoler

HIF2日ESM 8 ohm
30/50 watl 8ass/
Muranoce 8.85 .95 (UK C/PEE1.20)

HT25 21/" 8 ohm
15 watl tweet
$\$ 1.95$

ORDER BY POST OR PHONE OR CALL IN AND SEE FOR YOURSELF WELL WORTH A VISIT! ALL OFFERS LIMITED OUANTITIES E \& OE

AUDO 3 SCTRO NCS Cubegate Limiled

IEL: 01-7243564
301 EDGWARE ROAD. LONDON W2 1BN.
ALSO AT HENRYS RADIO.
404/40S EDGWARE ROAD, LONDON W2

RADIO RULES

Ian Sinclair

A M Receivers

Before we start to look at AM receivers, which are still the most frequently-used type of receivers, we'd better be clear about what modulation, and particularly Amplitude Modulation (AM), is. Modulation means making a carrier wave, which is a high frequency radio wave, carry a signal. This means that the low frequency signal, or modulating signal (usually Audio Frequency, or AF), has to be able to change some feature of the carrier signal. Amplitude modulation means that the amplitude of the carrier is controlled by the instantaneous voltage of the audio frequency signal.

Look at an example. Figure 1a represents a carrier wave, with a constant value of peak amplitude. This is an unmodulated wave. When an audio wave with a much lower frequency (Figure 1b) is used to modulate this carrier, the peak amplitude of the carrier rises and falls so that its size is proportional to the amplitude of the audio signal at each instant (Figure 1c). The carrier wave was symmetrical around the zero-volt line before modulation, meaning that the positive peak height was equal to the negative peak height, and it is also symmetrical after modulation, so that the outline of the modulated carrier signal is shaped like the audio wave on both positive and negative sections of the wave.

A Band on the Side

A perfect sinewave has just one single frequency, with no harmonics, and a good carrier wave should answer to this description. When we modulate a carrier wave, however, we change its shape the waves of the carrier are no longer identical because each one has a slightly different peak amplitude, due to the modulation. A modulated carrier therefore consists of more than one frequency, and when we analyse it we find that there is a range of frequencies that we call sidebands, some at frequencies higher than the carrier frequency and so called upper sidebands, and some at frequencies lower than the carrier, called lower sidebands.

The sideband frequencies very much depend on what audio wave has been used to modulate the carrier. If, for example, we modulate a 1000 kHz (which is 1 MHz) carrier with a 1 kHz sinewave, we find that the upper sideband is a single frequency of $1001 \mathrm{kHz}(1.001 \mathrm{MHz})$ and the lower sideband is a single frequency of $999 \mathrm{kHz}(0.999 \mathrm{MHz})$. The upper sideband frequency is the sum of the carrier frequency plus the audio frequency, and the lower sideband is the carrier frequency minus the audio frequency. When the audio signal is not a sinewave but a mixture of frequencies, like speech or music, then there will be a range of sideband frequencies. Figure 2 shows
what these sidebands look like on the screen of a spectrum analyser, which gives a cathode-ray tube display of peak wave amplitude plotted against frequency.

Normal amplitude modulation creates two sets of identically shaped (as seen on the spectrum analyser) sidebands. We have already seen that we can reduce the amount of power wasted in transmission by using one sideband only, but for this part we shall be dealing with the double sideband system only. Note that the fact

Figure 1. Amplitude modulation. (a) An unmodulated carrier wave. (b) The audio signal. (c) Amplitude-modulated carrier - note that the maximum amplitude of the modulated wave can be greater than the amplitude of the carrier.

Figure 2. Sidebands, as seen on a spectrum analyser. This is how the sidebands of a carrier modulated by a single sinewave look.
that there are two sidebands has nothing to do with the shape of the modulated wave as seen on an oscilloscope screen, with its two sets of modulation shapes. A wave with only one sideband looks pretty much the same on a 'scope, and the difference is apparent only when a spectrum analyser is used.

Receiver Principles

Long ago, all receivers were tuned radio frequency (TRF). This involved picking up the modulated carrier on the aerial, amplifying it through several stages of tuned amplifier circuits all tuned to the carrier frequency, demodulating (reversing the effect of modulation), and feeding the resulting audio wave to an amplifier (Figure 3). It's simple and obvious, but the principle is not used now except for a few cheap (and not always cheap!) and thoroughly unsatisfactory pocket receivers. There are many factors that make the TRF principle unsatisfactory for modern times, among them the problems of tuning several stages at once; selectivity; sensitivity; and feedback. With the small carrier separation that has to be used in today's crowded radio wavebands, a receiver must be able to select one carrier from neighbouring ones only a few kHz different. This calls for good selectivity, requiring a lot of tuned circuits. At the same time, to be able to pick up weak signals requires many stages of amplification. The snag is that if you amplify a radio frequency very muchit becomes difficult to prevent some of the amplified signal from finding its way back to the aerial input, creating feedback, which at some frequency or other will be positive and cause oscillation. The problem, which first became serious in the early '30s, was solved by Edwin Armstrong's invention of the superhet receiver.

Het and Superhet

Superhet stands for supersonic heterodyne, and the principle is a very ingenious one. A signal received from the aerial is changed to a lower frequency, one which will not radiate so easily, called the intermediate frequency. When this frequency changing operation is carried out,

Into Radio

the modulation of the new Intermediate Frequency (IF) signal is the same as the modulation of the carrier that was received from the aerial, because the shape of the modulation is not affected by the frequency-changing operation. The IF is now amplified and selected, because this is a fixed frequency which can use preset tuning, with no variable capacitors to be adjusted. Because of this, the IF stages can be shielded to prevent feedback, with no holes in the shielding for variable capacitors. In any case, if there is any feedback to the aerial, it is less likely to cause oscillation, because the aerial circuits are tuned to the frequency of the incoming carrier, and the IF is at a different, lower frequency. The scheme is shown in Figure 4, and we can analyse what is happening by considering each block separately.

Mix it a bit

The mixer stage is the key to the action of the superhet, because it is in this stage that the signals from the aerial, selected by a tuned circuit, are converted to the intermediate frequency. This is done, as the name suggests, by mixing the signal with a sinewave which has a different frequency. Now when we pass signals at two different frequencies into a linear amplifier, we get the same two frequencies out, and that's all.

If, however, we put two different frequencies into an amplifier which is not linear (meaning that ra graph of output plotted against input is not a straight line), then we get at the output two additional signals. One is at the different frequency, equal to the higher frequency minus the lower one, and the other is at the sum frequency, the higher frequency plus the lower one. This is a mixing action, and if it sounds rather like modulation that's not surprising, because the effects are pretty much the same. Mixing, like modulation, requires a device that can be made to work in a non-linear way. A transistor will do this when one of the signals into it is large, and a FET will do it very well indeed for almost any amplitude. of signal. The classic transistor mixer (Figure 5) uses the base as the input for the signal from the aerial (which may have been amplified by a" "preselector" stage), and the emitter as the input terminal for a sinewave signal of greater amplitude, the local oscillator signal, with which it is mixed.

The conventional method is to use an oscillator signal whose frequency is above the frequency of the input signal from the aerial, and to use as the IF the difference signal from the mixer. This difference signal will normally be at a much lower frequency than either of the inputs, and can easily be separated from them, even with a simple low-pass filter. There is very little gain in the mixer stage, because the signal that is used at the output is created from the non-linearity of the mixer rather than from its normal amplifying action. The important point, though, is that the difference frequency, which is the IF, will carry any modulation that appeared on the input waves. If the local oscillator waveform is a pure sinewave, then the IF will carry only the modulation of the original signal from the aerial. If the local oscillator waveform is

Figure 5. A transistor mixer, using a modulated signal into the base, and oscillator frequency into the emitter.

Figure 6. A double-gate FET used as a mixer - a feature of high-grade receivers.
not a perfect sinewave - it might, for example, be modulated by mains hum then the IF will carry both of these modulating signals.

Mixers in high-grade receivers (communications receivers) make use of separate oscillator circuits, which can be any of the conventional RF sinewave oscillators, or can be crystal controlled. One favourite technique for high-grade receivers is to use a double-gate FET as the mixer (Figure 6). Both gates affect the electron stream in the channel (assuming the use of N -channel), and the aerial signal can be applied to one gate, with the local oscillator signal applied to the other and the IF output obtained from the drain circuit. This type of mixer ensures excellent separation between the aerial signal and

Figure 4: Superhet principle. This block diagram shows a "communications" type of superhet with preselector and two IF stages.
the local oscillator - a very desirable feature when the frequencies are not very different, because a local oscillator can be "pulled", ie made to synchronise its frequency to the incoming signal, if there is much signal passed from the aerial input to the oscillator. This type of design is used in many VHF tuners.

A much less expensive option, with a much lower performance, is the selfoscillating mixer used in most mediumwave receivers. This uses a transistar whose collector and emitter circuits are arranged as an oscillator (Figure 7), so that signals coming in at the base will be mixed with signals present at the emitter. The use of a transistor for the two actions is possible, because the oscillator frequency is considerably different from the signal input frequency and IF. This means that tuned circuits for the oscillator have very little impedance at either of the other frequencies, so that the actions of the circuits are almost independent. A typical circuit is shown in Figure 7.

To put some figures to these ideas, imagine a medium-wave signal input at 1 MHz . For a 1 MHz signal from the aerial, we can run the oscillator at a frequency of 1.455 MHz , so that the IF is 455 kHz , the difference between these two. There's a lot of difference between these frequencies, so they are easy to separate at the output of the mixer, and a self-oscillating mixer gives an acceptable performance because its frequency is so different from that of the signals. Things look rather different if the input signal is on one of the amateur bands, around 28 MHz . The oscillator frequency would then have to be 28.455 MHz to get the IF of 455 kHz , and this oscillator frequency is very close to the frequency of the input signal. What really counts is the percentage difference, which is:

oscillator frequency-input frequency. input frequency

which is equal to:

intermediate frequency input frequency

and put into percentage terms by multiplying by 100 . In these terms, the percentage difference for the 1 MHz signal is 50%, but for the 28 MHz signal it's only 1.67%, a lot less. With this small differ-
ence, the self-oscillating mixer is not a good proposition.

When we look at the VHF bands, we find that the only way of keeping a reasonable percentage difference between oscillator frequency and input frequency is by using a higher IF. A 90 MHz signal on the VHF broadcast bands, for example, uses a 10.7 MHz IF, so that the percentage difference is around 12%, which makes separation rather easier and avoids pulling the oscillator frequency.

A very common way of getting around these difficulties is to use double conversion. A double conversion receiver (Figure 8) uses two IFs, converting the VHF input signals to some higher IF, and then converting again to a lower value communications receivers used to use 1.6 MHz and 455 kHz as their IFs, but higher first IF values are needed for the VHF bands.

The main problem that is involved at the mixer stage of a superhet is that of tracking. The oscillator frequency must always be the correct amount above the input frequency, whatever the frequency of the input happens to be, and this implies that the tuning of the local oscillator and the input circuits must be linked. The problem is that these two are working over different frequency ranges, so that if they produce an IF, of, say, 455 kHz at the middle of the tuning range, there is no guarantee that they will still be 455 kHz apart at the extremes of tuning. This is traditionally dealt with by using trimmers and padders (see Figure 9). Trimmers are small preset capacitors added to the main tuning capacitor of the oscillator in parallel, to increase its minimum capacitance, and padders are presets added in series to reduce the maximum capaci-
tance. By careful adjustment, it is possible to ensure that the correct If is generated at both extremes of the tuning range, and we can hope for the best in the middle. High-grade receivers can make use of coupled capacitors in which the vanes of the oscillator section are shaped to ensure that the two keep in track, and modern electronic tuning methods can make use of ICs which will control the frequency of the oscillator so that the IF is always correct.

The IF Factor

Once converted to IF, the modulated signal can be amplified, using transistors with parallel resonant circuits as loads. A more recent development is to use crystal filters or surface acoustic wave filters (SAWs) in place of parallel resonant circuits, because a very much higher Q value can be achieved with these devices. Using one filter of this type can often achieve all the selectivity we need for telephony, so that an IC can be used for amplification in place of separate transistors.

The IF stage (Figure 10), which may in fact be several stages all working at the same frequency, is very important, however, because it is here that all the selectivity and sensitivity of the receiver will be achieved. High quality receivers devote a lot of attention to good design of the IF stage, incorporating switched filtering for a variety of uses because, for example, the bandwidth that will be needed for $F M$, even narrowband $F M$, is much greater than will be needed for AM, which in turn is greater than will be needed for single sideband, which is in turn greater than will be needed for Morse (CW). Since it's important for the purpose of avoiding
interference to trim the bandwidth of the IF to the needs of the signals being received, a switch selection of bandwidth is a very valuable feature.

Demodulation and AGC

At the end of the IF stage, the signal is still a modulated high frequency signal. This will have no effect on earphones or on a loudspeaker because it is at too high a frequency, and even if it could affect these devices we still could hear nothing. What we have to do is to recover the low frequency audio signal from the varyingamplitude wave, and this is the task of the demodulator.

Dozens of demodulator circuits have been devised over the years, but receivers generally stick to the old-fashioned diode and reservoir capacitor method. This works in a similar way to the power supply circuit, but the time constant of the capacitor and the load (usually a volume control resistor) is critical. The time constant should be long compared to the time of one IF cycle, but short compared to one cycle of the highest frequency of AF that is to be demodulated. What happens is that the diode passes only the positive peaks of the modulated wave, allowing the capacitor to charge up to the positive peak voltage of each wave (Figure 11). Because the time constant is long compared to the cycle of IF, the voltage across the capacitor does not follow the AC wave voltage downwards, but keeps the diode cut off, losing only a small amount of voltage, until the next peak causes it to conduct again. The capacitor voltage therefore follows the peaks of the carrier signal, and since this involves tracing out the waveshape of the audio wave, the

Figure 7. A typical self-oscillating mixer, as used on domestic receivers.

Figure, 8. The double-conversion principle which is often used for VHF receivers of the communications type.

Figure 9. Using a trimmer and a padder to keep the oscillator frequency aligned.

(b)

Figure 10. IF stages (a) a simple transistor IF, (b) an IC IF. Solid-state resonators, such as transfilters or SAW filters can now be used in place of conventional IF transformers, with considerable gain in performance.
waveform across the capacitor is the audio waveform.

It's not a perfect audio wave, because it's made out of zig-zag pieces of IF wave, but with a little more smoothing it can be very close to the shape of the original audio wave - perhaps 5% distortion or so. This is good enough for most purposes, certainly good enough for speech, so there's little reason to look for demodulators with better performance. Hi-Fiuses FM, with very different types of demodulators in any case, and Terry Wogan sounds much the same with 0.5% distortion as he does with 10%.

In addition to the audio modulation across the capacitor of the demodulator, there will be a DC component present. The size of the audio signal depends on how much modulation is present, but the size of the DC component depends on what the peak amplitude of the IF is, and this in turn depends on the peak amplitude of the carrier at the input. If the carrier fades because of reflections in the ionosphere, then the DC component of the output at the demodulator will also drop, even if the modulation is unchanged, and if the carrier strength rises, so the DC voltage will rise, again unaffected by the modulation.

This effect is used in automatic gain control (AGC) circuits (see Figure 12) to control the gain of the IF and also for any amplifying stages that are used before the mixer (the mixer itself has enough to do without adding DC control signalsI). By using this DC signal, filtered free from any traces of AF and IF and amplified if neces-

Figure 11. Demodulation. A diode by itself (a) will remove half of a carrier wave, but adding a capacitor (b) will give a voltage which follows the peaks of the carrier. With a correctly chosen time constant (c), this can be used for demodulation.

Figure 12. Taking an AGC supply from the demodulator. A large
capacitor/resistor time constant is used to remove any trace of AF, leaving a DC signal whose size is proportional to the carrier amplitude.
sary, we can ensure that the output to the demodulator from the IF has an almostconstant amplitude, despite carrier fading and boosting, so that reception of signals over long distances is greatly improved. AGC greatly improves reception, but it can't work miracles, and if the carrier fades out completely, then you receive nothing but the noise of a receiver working at full gain. Similarly, if the amplitude of the carrier becomes so great that it overloads the first stage of the receiver (mixer or preselector) then the resulting distortion just has to be suffered.

All this, of course, assumes that we are listening to an $A F$ signal. If the signal is being received in CW , then the audio output consists of a set of clicks which are not easy to think of as Morse. To get around this, we can use another oscillator feeding into the demodulator. If we have a 455 kHz IF , and we make this other oscillator operate at 455 kHz , then the demodulator, being non-linear, will have a mixing action, and will cause the frequency with 1 kHz difference to be generated whenever the presence of a carrier causes an IF to be received. This 1 kHz can be amplified and passed to the loudspeaker to give a note that is much easier on the ear. The oscillator that is used for this purpose is called a beat-frequency oscillator (BFO) and is essential if you plan to listen to CW to any extent. Beating is an old term for signal mixing, and the 'beat frequency' in this example is the 1 kHz that we get by mixing 455 kHz with 456 kHz .

HE

 ER WIRING SYSTEM Using this low cost, simple technique, you will speed up your wiring times and produce a very professional result! Please take advantage of our special

Used extensively in industry this is a truly professional system ideal for the home engineer.

EXCLUSIVE INTRODUCTORY OFFERS TO H.E. READERS! EUROINTROKIT ROADRUNNER IRON

Consists: S/Eurocard, wiring pencil, 4 diff. coloured enamelled wire bobbins, TCW bobbin
10 glue strips, 30 press strips, 100 solder pins.

Spec - 240V 17W High temp iron, suitable for soldering enamelled wire.

Please ask for our 1982 catalogue These offers are fully inclusive of carriage, packing and VAT

We welcome orders using Access \& Barclaycard.

Rondrunner Electronic Products Itd. UNIT 3 THE HASLEMERE INDUSTRIAL ESTATE WEYDOWN ROAD, HASLEMERE, SURREY, ENGLAND. GU27 1BT. TEL: 042853850

Electronic manufacturers and distributors

Special

Although radio did not play a highly significant role in the First World War, it was the new equipment and techniques invented during the yëars 1914-1918, 4 under the pressure of war, which provided the springboard for the great communications breakthrough
anturamer : that was to follow.

σ

DURING the 19 th Century electricity advanced, from being a minor and useless scientific curiosity, to revolutionise communications more thoroughly than anything ince the invention of printing. In 1800, apart from a few expensive and unreliable government-operated semaphore relays, communication had only been as fast as a horse could gallop or β pigeon could fly or a despatch vessel could sail. By 190? however, when the trans-Pacific te' aph cable was finally linked up, it had jecome possible to send a message right around the world in a matter of seconds, provided that the automatic relays were all working properly. The telegraph, the steam printingpress and the railways tagether created the newspaper as we know it today. fostering mass semi-literacy and making it possible for the world at the turn of the century to he blessed with press-barons like Lord Northc iffe and Randolph Hearst. And, in a less spectacular way, the telephone was hanging business and social life in the last few years of the 19th Century. One by one, the uniformed messenger-boys (in fact sour-tempered and unreliable old men) employed by the Ministries in Whitehall were pensioned off, as it became possible for civil servant to speak directly to civill servant.
But the electronic revolution in com
munications was still only a partial one. Gommunication was virtually instant, whatever the distance involved, but it was still individual-to-individual until the information carried over the wires was printed in the newspapers and distributed to the public. More important, from the naval and military point-of-view, instant communication was still firmly tied up with copper wire. As armies and fleets grew in size from the mid-19th Century onwards, the generals and admirals, for all their instinctive dislike of anything new, began to hanker after some reliable means of controlling them from minute to minute in the field and at sea. It had been alright at Waterloo where Wellington could see most of his army from where he stood, but after the example of thé American-Civil War, with its mass-armies fighting on fronts miles across, it was becoming clear that couriers on horseback were getting to be less than adequate as a way of controlling them. Likewise at sear flag-signals might have been sufficien to manage fleets of wooden men-of-war under sail but they were dangerous but-of-date in the era of squadrons of ironclads steaming towards one another at a combined speed of 30 knots in a haze of coal-smoke! The electric telegraph had been put to military use ever since the Crimean War-when a cable
had been laid across the Black Sea to keep the Allied headquarters in touch with London and Paris - to the immense disgust of the commanders in the field who threatened on several occasions to resign if their governments didn't stop bothering them with orders and damnfool questions.

All at Sea

But the telegraph's use was still strategic rather than tactical. During the American Civi! War, the Union armies had experimented with field telegraph units, reeling out wire behind horse-drawn wagons to try and give commanders some control over the troops actually doing the fighting. The results seem to have been disappointing, though. The system worked well enough at sieges, where the armies weren't moving, but once they began to advance or retreat it became very difficult for the telegraph wires to keep up with them. At sea things were even worse, and right up to the end of the century a ship was on its own once it got out of sight of the nearest telegraph station: a state of affairs which was increasingly annoying to governments but far from unwelcome to ship's captains, who generally hated being told what to do by some clerk several thousand miles aw.ayl.

By the early 1880 s though even the most encrusted naval officers could see that there was a need for some form of allweather ship-to-ship communication, even if it was only over line-of-sight distances. So, as various experiments in various countries groped their way hesitantly towards wireless telegraphy, it was almost always the navy departments and the merchant shipowners and insurers who took most interest in what they were doing.

The idea of transmitting electric signals without wires was certainly not a new one. In 1842 Morse's experimental telegraph cable beneath New York harbour had been cut by an anchor, but still went on passing weak signals: an accident which prompted Morse to experiment later with copper plates dipped into the sea. Water relays were occasionally used when commercial telegraph wires beneath the sea were damaged, including one six-mile link between the Isle of Wight and the mainland in 1882 . Air-induction was also tried by a number of early experimenters like Preece, who succeeded in passing signals over 3 miles between parallel telegraph wires, and Edison, who developed a fairly successful system of inducing currents in lineside wires by means of a 500-foot coil running the length of a moving train. The induced currents were weak, though, and the wires extremely cumbersome, so this path of enquiry was not followed up. It was not until the early 1890 s that researchers began to look at the theoretical calculations of James ClerkMaxwell, dating from the 1860 s, and the experimental work of Hertz, twenty years later, on radiation of electro-magnetic waves from an oscillating circuit. Various observers as far back as the 1840 s had noticed that one spark in a circuit could cause a secondary spark some distance away - on one occasion when a pencil was held near a brass doorknob. During 1879-80 Hughes, in the UK, had come frustratingly close to discovering radio after noticing that sparks could cause crackling in a nearby telephone earpiece. He actually got as far as listening into these noises over a distance of 500 feet in a London street, until the scepticism of the learned physicists of the day caused him to give up - but not before he had unwittingly made later progress possible by inventing the first sensitive radio-wave detector, that crazily ingenious little device, the coherer. This was a glass tube with contacts at each end, and filled with metal filings which stuck together under the influence of electro-magnetic waves, thus allowing a current through the tube; the metal filings were then shaken apart by a clockwork-operated arm tapping the glass.
By the mid-1890s, a number of experimenters were hot on the trail of wireless telegraphy: Popoff in Russia, Righi in Italy, Ducretet in France, Slaby in Germany and Captain Jackson working for the Admiralty in Britain. It will never be known for sure who was the first to transmit an intelligible message, but for what it is worth, it seems that Popoff may have transmitted a signal over four miles from the Imperial Observatory in

Hughes 1880 Wireless apparatus. (Britsh Crown Copyright. Science Museum, London)

Lodge's Coherer, dating from about 1897. (Lent to the Science Museum by Sir Oliver Lodge, DSC, FRS)

St.Petersburg early in 1895. But Popoff was working for the Russian navy and thus bound by official secrecy, so it was left to Righi's young neighbour, Marconi, to pick up the ball and run with it.

On the Ball

And run he did! Though he had never had a job in his life, being the amateurscientist son of a wealthy Italian landowner, Marconi had a shrewd business head on his shoulders and soon realised that, with its huge navy and merchant fleet, Britain was the place to be as far as the development of wireless telegraphy was concerned. The choice turned out to be a good one when Marconi arrived in London in 1896. Maxwell's equations had predicted, and Hertz's experiments seem to have confirmed,
that radio waves behaved like light and therefore could reach no further than the eye could see. Marconi seems to have had intuitive doubts about this even in 1896, but as far as the GPO was concerned the opinion of the world's leading physicists was good enough: wireless telegraphy could never compete with the wiretelegraph so there was no need to oppose the new invention tooth-and-nail, as it had fought the telephone back in the 1880 s. As luck would have it, the old wireless telegraphy experimenter Preece was now Chief Engineer to the Post Office, so he naturally gave every encouragement to the young Italian. Even the Admiralty, which normally resisted every technological development, was mildly helpful: perhaps because it realised dimly that radio would make life easier for
the great battle-fleets while the other new gadgets of the late 1890 s llike submarines) could only threaten them. At any rate, Marconi was able to obtain his world-wide patents in 1897 , thus making the Marconi Company the object of envy throughout the wireless industry for the next quarter-century! And in the same year, during experiments for the Italian Navy, he was also able to prove what he had suspected for some time: that whatever the scientists might say, radiowaves did propagate over the hump of the Earth's surface. The way was clear for him to perform his most dramatic tour de force on 12 December 1901 when he sent a signal from Poldhu in Cornwall to a receiver on the coast of Newfoundland. Wireless now had the potential to rival the telegraph.

Tuning In

There was certainly a great deal of development work to be done at the turn of the century, though, before wireless could rival the telegraph in efficiency. The early plain-aerial spark transmitters made a raucous crackling which was often so coarse that individual morse dots were lost in the grain, as it were. Worse still, the bandwidth was so great that one signal either blotted out every other signal within range or merely merged with them

Above: Marconi's spark-gap generator, from about 1895.
Right: Marconi Trans-Atlantic Receiver, first used in 1901.
(both lent to the Science Museum by the Marconi Wireless Telegraph Co. Ltd.)

Above: Operating the Poulsen Arc Generator in 1909.
Right: Alexanderson's 200 kW
alternator.
(both photos, Science Museum, London)
into an unintelligible rasping. Operators frequently got their message through by the simple expedient of placing a brick on the morse-key until everyone else gave up and went off the air! The most urgent need was for separate tunable frequencies, and from 1901 onwards Marconi and the British Lodge-Muirhead firm started putting a variable capacitor and transformer into their aerial circuits to refine the oscillations; the method allowed switching between at first two and later eight separate "tunes". From the mid-1900s onwards the quality of radio transmissions increasingly improved, with inventions like Fessenden's toothed-wheel rotary sparkgap and the Poulsen arc, coupled with Alexanderson's 100,000 cycle per second alternator, narrower bandwidths, more regular waves and higher frequencies.'

At the receiver end, the coherer fell out of use as a detector and was replaced by Marconi's patent magnetised-wire sensor. In 1908 the Japanese researcher Torikata discovered that the resistance of zincite and bornite crystals in contact varied in the presence of radio-waves, and in this way the legendary crysta detector - ancestor of the modern transistor - was bom. During the years 1902-04. Fessenden and Latour in the United States discovered that a signal's
output could be greatly strengthened by superimposing it on a base-signal in the receiver, and in this way heterodyne reception came into being. Then in 1906 the most far-reaching discovery of all was made when DeForest stumbled on the thermionic valve. Progress in the theory and practice of radio was rapid in these years, but it was abruptly choked off in August 1914 when Europe went to war. Over the next four years, development was to be geared exclusively to military needs, and while this speeded up research in some areas it certainly slowed it down in others (like development of valves) which were of no particular interest to the warring nations.

Wireless at War

When the Great War broke out it was the world's navies which took up wireless telegraphy with the most enthusiasm. Back in the early 1900 s, ship's captains had generally made little secret of their distaste for being ordered around by radio, and had often shut their W/T operator away, alone and ignored in his wireless shack, to carry out whatever daft experiments he pleased while the ship went about its business. But the tactical value of radio was made obvious to even the most traditionally-minded naval officers during the war between Russia and Japan in 1904-05. Although

equipped with more primitive sets than the Russians, the Japanese had used them with great skill throughout the war, in particular when they located and destroyed the Russian 2nd Pacific Squadron at the end of its fateful journey halfway round the world to the Straits of Tsushima, in May 1905 . This highly impressive demonstration led to all the major navies working up their use of wireless into an exact drill over the next nine years, with strict rules of procedure and increasingly sophisticated codes to overcome the small problem that anyone within range could pick up a wireless signal.

It was this last inconvenience which was to do most to defeat the German Imperial Navy during the years 1914-18. The Germans knew perfectly well that their long-wave station at Nauen, near Berlin, could be listed to by the British and so they took good care to use it only for the most essential traffic and under elaborate ciphers. What they didn't realise though was that the mediumwave signals which they used for passing signals between ships anchored at Wilhelmshaven and Keil, and out in the Heligoland Bight, couid also be picked up on the East Coast of England. The experts had told them that it was impossible so that was the end of the matter. They used code of course, just in case, but the value of this precaution was reduced more than a little late in 1914, when the Russians sank a German cruiser,in the Baltic and picked up a brand-new code-book, which they very decently passed on to London. This book and the monitoring station set up at Hunstanton on the Norfolk Coast formed the basis of the Admiralty's famous Room 40 wireless cryptographic section which, throughout the entire war, kept the Royal Navy as well-informed as the Germans themselves about the intentions and movements of the High Seas Fleet. Every time the German fleet put to sea, the British battleships left Scapa to meet it, and by mid- 1916 the Germans had begun to suspect that something was not quite right.

They first suspected highly-placed traitors in Germany, and British intelligence was only too willing to provide scraps of information to add weight to this idea. The German Navy eventually set up its own monitoring station at Neumünster, but by then it was too late: having seen how easily security could be penetrated, the Royal Navy took good care to keep radio traffic to an absolute minimum right up until the end of the War. The end came dramatically। on the afternoon of 29 October 1918, as Room 40 listened to the fleet flagship at Wilhelmshaven giving orders to raise steam for a last Wagnerian suicide-raid on the Thames Estuary. Suddenly the air was filled with mostly unprintable signals in clear: the High Seas Fleet had mutinied and the war at sea was over.

On land, radio didn't do nearly as well. as it did at sea during the years 1914-18. The British Army had experimented with field radio as early as the Boer War in 1900, when three Marconi sets had gone to South A frica and proved total failures in the hilly, dusty, static-laden terrain. By 1914, all the world's major armies were

Marconi's Magnetic Detector, from about 1904.
(Lent to the Science Museum by Kings College, Strand, WC2)

Crystal Receiver from a German Battleship, 1912.
Lent to the Science Museum by the Institute of Electrical Engineers)

British Army "Front Transmitter", used in the trenches in 1917.
(British Crown Copyright. Science Museurn, London).
using radio for communication, at least to Divisional HQ level, and in August 1914 the Russian armies invading East Prussia brought disaster on themselves by their charming but incorrect belief that since wireless messages were invisible, there was no need to put them into code! At the front, though, (and partly, no doubt, because of this lack of privacy) the armies relied on the more traditional methods of signalling, supplemented by the field telephone. Much of the hideous, blundering carnage of the next four years on the Western Front can be put down to the fact that these methods were simply not up to the task of controlling the vast armies involved; huge, lumbering bodies with wretchedly inadequate nervous sytems. On that brilliant summer's morning of 1 st July 1916 many of the tens of thousands of British infantrymen who clambered out of their trenches north of the River Somme, and trudged forward to their rendezvous with a machine-gun bullet, were carrying the Boy-Scoutish signal equipment of the day among the 80-odd pounds of kit on their backs: pigeon-baskets, flares, semaphore flags, reels of white tape to lay out markers for spotter-aircraft and coils of telephone wire which was not only liable to be cut by every shell which landed nearby, but was also far from being as secure as the generals imagined. In at least one place, that morning, the Germans had been given two hours advance warning of the attack as a result of having managed to bury two copper grids near British trench-telephone wires, and as for the rest of the attacker's dsignalling arrangements that day, the results had been seen many times before and were to be seen many times again: units losing contact as soon as they had disappeared into the murk lat least one company was never seen again), artillery shelling its own men, wave after wave going forward to festoon the uncut wire because their commanders had no idea what was happening up-front, and those few units which managed to penetrate the German line being wiped out by counter-attacks, unsupported because nobody knew they had got that far.

Above: RAF pre-set signal board for aircraft.

Above right: A Mark III British aircraft receiver, dating from 1918.
Right: A 1918 RAF aircraft voice transmitter; the purpose of the fan (propellor?) is not known!
(All British Crown Copyright. Science Museum, London)

There had to be a better way but, during the Great War at least, no one was able to find it. Attempts were made to develop an effective man-portable radio set, but the technology of the day was not up to the task. Small transmitter/receiver sets were produced for use in the front line, but somehow they were never popular. Sticking an aerial up out of a trench merely invited a hail of grenades and mortar-bombs, while the arc-transmitter, though practically noiseless during the day, gave out an alarmingly noisy hiss in the silence of No Mans Land at night. Spark, arc and valve-equipment alike was simply too delicate to stand up for long to the mud and wet of the trenches and the concussion from shell-bursts, not to speak of ill-treatment at the hands of the soldiery. Neither side developed tactical ground radio very much and when the Germans broke through in France, in the spring of 1918, they relied on a bewildering array of multi-coloured rockets and flares which the British christened a 'Brock's Benefit.' It wasn't much good, but it was still the best means of communication going for a rapidly advancing army.

So ground radio made little progress during the war years, while at sea the navies merely worked at up-grading their pre-war spark and arc transmitters. Radio's real advance during the Great War - though it wasn't recognised as such at the time, was in voice-telephony, which was developed to serve the needs of the air forces. Experiments had been made with wireless sets in aircraft as early as 1908, and during the war, the German Navy unquestionably got excellent value from the Siemens transmitters fitted in its Zeppelins patrolling the North Sea. The static artillery-battles in France meant that, from about mid-1915 onwards, wireless sets were fitted into spotteraircraft as a regular practice. This was morse-key wireless telegraphy and as such it had serious drawbacks. The most obvious was that each aeroplane had to carry an observer to work the radio, since even the generals had to admit that it was

expecting rather a lot of the pilot to tap out messages with one hand while flying the plane with the other in a sky full of enemy fighters. There was also the matter of the 200-foot aerial wire which had to be trailed behind (often to wrap itself around the tailplane) and winched in sharpish if the Red Baron appeared. Also, it was soon found that the wire-gauze screens fitted around the engine and magneto, to cut down interference, had the unexpected side-effect of weakening the plug spark to the point where the engine cut out: inconvenient at any time but especially so at 12,000 feet without a parachute! The answer had to be valvetransmitted radio telephony using a microphone, damped down to cut out background noise, and by the summer of 1918 the RAF was fitting its aircraft with such sets, giving a range of about 30 miles air-to-ground and about 5 miles between aircraft. It came too late to have much influence on the course of the war, but radio-telephony was unquestionably the most momentous piece of radio development work done between 1914 and 1918, since it made broadcasting possible.

Military electronics advanced rapidly in the years between the Wars. On the one hand small, powerful shortwave voice radio sets made the Panzers of 1940 a possibility by allowing tanks to keep in touch with each other and with suppor.ing infantry, and also call up dive-bombe-s as a sort of flying artillery. On the other, the radar systems developed in the
early 1930s made it possible for Britain to survive in the summer of 1940 and beat the U-boats three years later. Enigma was to repeat Britain's radio intelligence achievements of the Great War - but on a much larger scale - while the needs of the European resistance movements led to intensive research into powerful beamed shortwave radio transmissions. As a minor but pregnant footnote, it seems that it was the requirements of service personnel selection during the 2nd World War which pushed forward the development of digital computers.
But the First World War really marks radio's coming-of-age. Original development work was slight and the influence of wireless on events was not great away from the NorthSea. However, the fire was lit beneath the boiler in a number of ways and in the years after 1918, the great engine of masscommunication began to move.

The first installment of this series appeared in the May 1982 issue of Hobby Electronics. The remaining installments have been held up until now because of difficulties in obtaining suitable illustrations. Part 3, next month, is "The Broadcasting Revolution".

Retall DIVISION distribution NOW OPEN!

WE HAVE OVER 4,000 ITEMS IN STOCK, SO WHEN YOU NEED:

${ }^{-6} \mathrm{OAAADS}^{\text {CAPACITORS }}$

LAMPs SEMICONDUCTORS

TRANSFORMERS SWITCHES RESISTORS ENCLOSURES HEATSINKS

AND LOTS MORE, COME AND SEE US FIRST. WE ARE OPEN 9-5 MONDAY TO SATURDAY (10-4), WITH AMPLE PARKING SOUTHFIELDS \& EARLSFIELD STATIONS
NEARBY, AND ACCESS \& BARCLAYCARD WELCOME
Send S.A.E. for further information

JEE DISTRIBUTION LTD.

[^2]

Dianetics: the bright new science of the mind you can use. Understand how to think clearly and learn the techniques to really help people. Dianetics gives you the confidence of real solutions, not just interesting information.
ss In Dianetics awareness is increased - without the use of drugs, hypnosis or any physical method- to the point at which the person can become aware of the source of his problems. 35 Encyciopadia of Altermative Medicine and Sell-Help
$£ 2.95$ from leading bookshops or for further information from Dianetics, St. Mary's College, Rottingdean, Brighton BN2 7FS FREEPOST 36 pp.
(1)

It's easy to complain about advertisements.

The Advertising Standards Authority. If an advertisement is wrong. we're here to put it right.

AS.A Lid. Brook House. Tornngton Place, London WCIE THN.

Lighting ELECTRONIC COMPONENTS

THE CHOICE IS YOURS - CALL AT OUR NEW SHOWROOM OR USE OUR VERY FAST MAIL ORDER SERVICE.
EITHER WAY WE'LL KEEP YOU HAPPY *****
Furthermore we promise if any part ordered by mail fails to please just return within 7 days for a full refund.
For a vast selection of electronic components \& equipment of all kinds. Here is just a selection of our stocks. Many more items listed in our catalogue available now 70p post paid.

LIGHTNING ELECTRONIC COMPONENTS

Showroom \& Mail Order Distribution Centre at: 18 Victoria Road, TAMWORTH, Staffs B79 7HR Telephone 0827-65767.

TYPE 161B DUAL POWER SUPPLY KIT

INCORPORATES A POSITIVE \& A NEGATIVE REGULATED SUPPLY
BOTH ARE ISOLATED \& ADJUSTABLE 1.3V TO 16V D.C.
Interconnect to give 2.6 V to 32 V or
$-1.3 \mathrm{~V} / 0 /+1.3 \mathrm{~V}$ to $-16 \mathrm{~V} / 0 /+16 \mathrm{~V}$
Output current 1 A at 16 V to 0.35 A at $1: 3 \mathrm{~V}$ Ripple is less than 1 mV

5450
 inc. P \& P and VAT

Built \& Tested E37.95 inc. PGP and VAT

Comprehensive design
details with calculations
are included so that the kit is an excercise in power supply design. The kit, which uses quality components, is complete with instructions. Case punched and stove enamelied in attractive blue and grey with a printed front panel to give a professional finish.
Excellent for the beginner, the experienced amateur and as a tutorial for schools and colleges.

SEND CHEQUE OR P.O
ALLOW 21 DAYS FOR DELIVERY

LITESOLD LC18H 240 v high performance iron, made to professional standards in our own works, filted with 3.2 mm bit. 2 alternative bits, 1.6 and 2.4 mm . Reel of 3 metres 18 swg flux-cored solder. Stainless steel tweezer. 3 soldering aids. Reel of 1.5 metres de-soldering braid. Packed in clear PVC presentation/storage wallet. Superb present - ideal for beginner or expert.
SPECIAL PRICE - £13.95 inc. VAT \& P.P
(normal resale value $£ 17.49$ inc.) IRON only- $£ 5.66$ inc, (normally $£ 6.92$).
Spares, accessories and after-sales service available from us.
16-page colour catalogue - 60p. Send cheque/P.0. to LITESOLD or ring for Access/
Barclaycard
sales.

LIGHT SOLDERING DEVELOPMENTS LTD.
Spencer Place, 97/99 Gloucester Road, Croydon CRO 2DN, Surrey. Tel: 01-689 0574.

Bigger and Better

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.
> * Lowest prices - Largest stocks *
> * Expert staff - Sound advice *
> * Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
> (Customer operated demonstration facilities)
> * Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps -or phone with your credit card number).

* Access - Visa - American Express accepted *
also Hifi Markets Budget Card.

35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Lightning service on telephoned credit card orders!

PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the !trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

October 80	
Nobell Doorbell	$£ 2.64$
Intruder Alarm	$£ 2.51$
Tug O' War	$£ 2.65$
November 80 Memory Bank Synth:. Mainboard PCB	
\quad Keyboard PCB	
Party Grenade (set of three)	$£ 3.31$
Double Dice	

August 81 RPM Meter Thermometer	$\begin{aligned} & \text { £ } 1.77 \\ & \text { £ } 1.67 \end{aligned}$
September 81	
Power Pack	£ 1.69
Reaction Tester Game	£1.71
'Diana' Metal Detector	£3.31
October 81 Combination Lock	£2.65
November 81 Sound Torch (Set of Two)	£5.31
December 81 Pedalboard Organ	$£ 5.97$
January 82	
Intelligent NiCad Charger	£3.04
February 82	
Relay Driver	£2.20
Mast-Head Amp	£1.31
March 82	
Digital Dice	£1.95
April 82	
Digital Capacitance Meter	£4.73
Dual Engine Driver	£3.37
Bike Alarm	£2.64
May 82	
Digital Thermometer	
(Set of Two)	$£ 5.31$
Echo-Reverb	¢5.81
Cable Tracker	£2.21
June 82	
Power Supply Design	£2.64
Auto-Wah	£3.58
Auto Greenhouse Sprinkler	£3.88

August 81
RPM Meter Thermometer

September 81
Power Pack
Reaction Tester Game
£ 1.71
£3.31
£2.65
5.31
5.97
£3.04
£2.20
£ 1.95
£4.73
£3.37
£ 1.67
4.64
£1.87
2.53
£6.00
Ultrasound Burglar Alarm $£ 2.53$

Telephone Timer (Set of Two)	£7.39
July 82	
Tanover	£2.31
TVI Filter	£2.17
Computer PSU	£8.72
Solar Radio	£2.15
August 82	
Digital Millivoltmeter	
(Set of Two)	£4.82
Audio Analyser	
(Set of Two)	£12.30
September 82	
Signal lights	
Main Module	£2.34
Junction Module	£2.27
ZX PCB	£3.75
Slot Car Controller	£1.99
October 82	
Flash Point Alarm	£2.31
Negative Voltage Generator	£1.57
Squelch Unit	£2.77
November 82	
Pedometer/Odometer	£2.31
December 82	
Phase Four	£3.18
Microlog	£4.28
Tape/Slide	$£ 5.48$
(two boards)	
TV Amp	£5.99
Lofty	£2.87

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.
HE PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE

I enclose a cheque/Postal Order made payable to ASP Ltd,
for the amount shown below Price.
OR
I wish to pay by Barclaycard. Please charge my account number

I wish to pay by Access. Please charge to my account number

SIGNATURE
NAME
(BLOCK CAPITALS)
ADDRESS
(BLOCK CAPITALS)

Please allow 21 days for delivery

Boards Required	Price

Sinclair ZX Spect

16K or 48K RAM... full-size movingkey keyboard... colour and sound.... high-resolution graphics...

 From only ± 125 !First, there was the world-beating Sinclair ZX 80 . The first personal computer for under £100.

Then, the ZX81. With up to 16K RAM available, and the ZX Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the $Z \times 81$ remains the ideal low-cost introduction to computing.

Now there's the $Z \times$ Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX 81 . But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around £60.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer - available now - is fully compatible with the $Z X$ Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232/network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K.

Full-size moving-key keyboard- all keys at normal typewriter pitch, with repeat facility on each key.

- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true high resolution graphics.
- ASCII character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASCII character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of holding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second, with average access time of 3.5 seconds. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum.

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $£ 50$.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-2000200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard. EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

To: Sinclair Research, FREEPOST, Camberley, Surrey, GUI5 3BR. Order

Oty	Item	Code	Item Price
	Total		
Sinclair ZX Spectrum -16K RAM version	100	125.00	
Sinclair ZX Spectrum -48K RAM version	101	175.00	
Sinclair ZX Printer	27	59.95	
Printer paper (pack of 5 rolls)	16	11.95	
Postage and packing: orders under $£ 100$	28	2.95	
orders over $£ 100$	29	4.95	

Please tick if you require a VAT receipt \square
*I enclose a cheque/postal order payable to Sinclair Research Ltd for $£$
*Please charge to my Access/Barclaycard/Trustcard account no.
*Please delete/complete
as applicable
Signature
PLEASE PRINT

Address
$1 \perp 1 \mid 1 \perp 1 \perp 1$

FREEPOST-no stamp needed. Prices apply to UK only. Export prices on application.

 SPECIALIST ELECTRONIC COMPONENT DISTRIBUTORS 325 Edgware Road, London W2 1BN Telephone: 01-7234242 Telex: 295441 BUSY B											
SEND LARGE SAE \& 75p TO ADDRESS BELOW											
Crimson Elektrik PROFESSIONAL AMPLIFIER MODULES						CPS 80 Power Supply CPS 800 Dual Power Supply CPS 150 Power Supply CPS 1500 Dual Power Supply CPS 250 Power Supply CPS 250D Dual Power Supply TS 70 Thermal Switch $70^{\circ} \mathrm{C}$ HS 50 50 mm Heatsink		$\begin{aligned} & 22.82 \\ & 27.63 \\ & 2.86 \\ & 31.65 \\ & 32.03 \\ & 39.43 \end{aligned}$	$\begin{aligned} & 3.42 \\ & 4.14 \\ & 3.88 \\ & 4.75 \\ & 4.80 \end{aligned}$	26.24 31.77 29.74 36.40 36.83	2.10 2.25 2.50 2.60 3.50
CODE	DESCRIPTION	Less,		INC VAT f	$\underset{(K)}{\text { WT }}$ (39.43 1.92 1.60	5.91 0.29 0.24	45.34 2.21 1.84	3.65 0.02 0.15
CE 608	Power Amplifier Module	18.26	2.74	21.00	0.16	HS 100	100 mm Hearsink	2.60	0.39	2.99	0.30
$\text { CE } 1004$	Power Amplifier Module	21.30	3.20	24.50	0.20	HS 150	150 mm Heatsink	3.65	0.55	4.20	0.45
CE 1008	Power Amplifier Module	23.90	3.60	27.50	0.21	FM 1	Fan Mounted on $2 \times$ HS 100	32.13	4.82	36.95	1.20
CE 1704	Power Amplifier Module	30.43	4.57	35.00	0.22	FM 2	Fan Mounted on $2 \times$ HS 150	36.10	5.42	41.52	1.50
CE 1708	Power Amplifier Module	30.43	4.57	35.00	0.22	CPR $1 \times$	Pre-Amplifier Module	31.30 20.00	4.70 3.00	36.00 23.00	0.15 0.07
CE 3004	Power Amplifier Madule	42.60	6.40	49.00	0.40	MC 2	Moving Coil Pre-Pre-Amplifier Module	20.00 8.09	3.00 1.21	23.00 9.30	0.07 0.07
BD 1	Bridge Driver Module	7.13 18.00	1.07	8.20 20.70	0.06 2.00	REG 1	Regulazed Power Supply 6VA Mains Transformer	8.09 2.87	1.21 0.43	9.30 3.30	0.07 0.21
TR 80 TR 150	Toroidal Transformer 80 VA Toroidal Transformer 150 VA	18.00 20.07	2.70 3.01	20.70 23.08	2.35	TR 6 $\times 02$	2 Way Crossover Module	17.39	0.61 2.61	20.00	0.07
TR 250	Toroidal TRansformer 250VA	25.43	3.81	23.24	3.35	X03	3 Way Crossover Module	26.09	3.91	30.00	0.07
TR 2500	Toroidal Tansformer (low noise)	33.20	4.98	38.18	2.80	MU 1	Muting Circuit for XO 2 or XO 3	8.35	1.25	9.60	0.04
86	Bridge Rectifier (6 amp)	0.99 1.80	0.15 0.27	1.14 2.07	0.02 0.03	CK 1010	Complete Pre-Amplifier Kit	78.26 103.48	11.74	90.00	2.50 7.30
B12 C4700/40	Bridge Rectifier (12 amp) Reservoir Capacitor and Clip	1.80	0.27 0.29	2.20	0.09 0.09	CK 1100	Complete 40 Watt Power Amplifier Kit Complete 100 Watt Power Amplifier Kit	129.56	19.44	149.00	7.30
C4700/63	REservoir Capacitor and Clip	2.40	0.36	2.76	0.11	MC 2 K	Add On Moving Coil Kit	21.74 17.39	3.26	25.00	0.12
C4300/63	Reservoir Capacitor and Clip	2.60	0.39	2.99	0.11	PSK	Pre-Amplifier Power Supply Kit	17.39	2.61	20.0	0.75

25 EDGWARE ROAD, LONDON W21 BN. TEL: 01-723 4242

Send for my CATALOGUE ONLY 75p
 (plus 25p post/packing)

My VAT and postpacking inclusive prices are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade.

See my prices on the following:
CAPACITORS . . . ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND \&HGH VOLTAGE, RESISTORS. 1/8th WATT TO 100 WATT; $\overline{0.1 \% ~ T O}$ 10% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRIMMERS, PRESETS, POTS . . . SINGLE, DUAL, SWITCHED, CARBON, CERMET AND WIREWOUND, SINGLE OR MULTITURN, ROTORY AND SLIDE. DIODES, RECTIFIERS, BRIDGES, CHARGERS, STYLII, SOCKETS, PLUGS, RELAYS, TRANSISTORS, ICS, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, COUPLERS, ISOLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VALVES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INDICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPLIES, HARDWARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VDR'S, INSULATORS, CASSETTES, METERS, SOLDER, HANDIES, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIOGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOARDS and others.

Prices you would not belleve before Inflation!

BRIAN J. REED
 TRADE COMPONENTS

ESTABLISHED 25 YEARS
161 St. Johns Hill, Battersea, London SW11 1TQ Open 11 am till 7 pm Tues. to Set. Telephone: 01.223 5016

KEMPSTON (MICRO) ELECTRONICS

SEE US AT THE MICROFAIR ZX SPECTRUM HARDWARE

available now - a 24 LINE INPUT/OUTPUT PORT, WHICH MAKES USE OF THE BASIC COMMANDS IN AND OUT ON THE SPECTRUM The Port is built around a M.O.S. chip which imposes virtually no D.C. load on the datalines. The device is Port Mapped and can be configured in a variety of modes dependent on the particular application. We must stress that this is not a modified ZX81 Port, but a purpose built unit designed exclusively for the Spectrum.
The prices for the above items are as follows:
ZX SPECTRUM USER I/O PORT
ZX 2 SLOT MOTHERBOARD $\mathbf{~} 16.95$ STACKABLE CONNECTOR. £5.50
The prices are inclusive of VAT, but postage must be added at 70 p for a single item, £1.00 for two or more items.

PLEASE NOTE NEW ADDRESS

Cheques/Postal orders made payable to: KEMPSTON ELECTRONICS, 180A BEDFORD ROAD, KEMPSTON, BEDFORD'
SAE FOR FURTHER DETAILS.
Delivery 21 days from recelpt of order

CB
 S SE Graham Brant
 An easily built add-on for a CB rig

 L EC TIVETHERE HAS been a profusion of CB selective call Units described by various sources recently. Most of these provide a large number of different codes in a complex digital format. For a large user this is very useful but for the average small operator the provision of 2000 plus codes is rather an overkill. The system described provides only threecodes, but for an average operator and a few friends, it is quite adequate. Total cost is about $£ 8-£ 9$ for each Receiver/Transmitter pair so this unit is considerably cheaper than using a custom chip.

First, though, what is a Selective Caller? Selective Call is an electronic system, usually consisting of an encoder and decoder, that generates a series of tones or pulses picked up on a specially adapted CB receiver. When the adapted CB receiver is left in the 'standby' mode, it will only respond when the correct tones or pulses are picked up. It shouldn't respond to any other signals or transmissions on the nominated channel - it's a little like a telephone; the bell won't ring unless the correct number is dialled.

In order to use selective calling certain conditions must be fulfilled:

1. The receiver must be left switched on.
2. The receiver and transmitter must be on the same channel.
3. Called stations must be within range of the transmitter.
4. The receiver/decoder must be set to respond to the correct combination.

In the Marketplace

Commercial selective call encoders and decoders come in three basic varieties.

The simplest, and most common, are the separate add-on units consisting of a hand-held bleeper and plug-in decoder which plugs into the rig's external speaker socket.

The second type is the purposebuilt unit that plugs into the back of specially modified rigs. This device usually has both the encoder and decoder built into the one box. A specially designed interface plug is fitted to the back of the rig during manufacture.

The third and last type of Sel-Call is built into the CB rig during manufacture. None are available in the UK at the moment.

All selective callers depend on an audible signal being transmitted and received. To this end a number of different systems have evolved over the past few years. One of the most common is the two-tone system. Two tones are simultaneously generated and transmitted and, providing the receiver and encoder are on the correct channel and calling frequency, the call will get through.

Providing even more flexibility is another kind of system using a five tone signal, allowing literally thousands of different combinations. The third system, which utilises digital pulse transmission, is the most sophisticated of all.

Our selective caller project, however, is much simpler - and less expensive! It is a selective caller of the second type - ie, it must be interfaced with the rig - and uses a simple system of single tones, used either alone or in combination. At the start of a transmission, the transmitter unit sends one or two tones of
approximately one second duration. By selecting either one or both tones, three diferent codes can be generated. A disadvantage of this system is that the decoder can be activated by a loud whistle on the channel; however, this is a small price to pay for the simplicity and low cost of our unit. The code transmitter is reset every time the Push-to-Talk (PTT) button is pressed, and therefore the tones are sent at the beginning of each and every transmission.

The receiver unit detects these tones and decides whether the correct code has been received. If this is the case, the audio line is connected by means of a relay which latches on and is only reset when the PTT button is operated. An open-code position is also provided to enable the receiver to operate with rigs not equipped with the code transmitter. The open position could also be used after the call has been established; however, since the tone transmission is only one second long, nothing much is gained by this additional procedure. In fact, the transmission of the code every time the PTT button is operated ensures that third parties are effectively cut out of your conversation (though they can still listen in, of course).

The Transmitter Unit

The tones are each generated by a pair of NAND gates, ICs 1a, 1b and 2a, 2b, connected as astable multivibrators. An Enable input to one gate of each astable allows the circuits to operate only when there is a logic ' 1 ' $\mathrm{V}+1$ present. This Enable signal is generated by a timer circuit consisting of two

Figure 1. The Transmit board circuit.

Project

more NAND gates, ICs 1c and 1d, connected as a monostable. The period of the monostable is set by R5, R6 and C5; the values shown give a tonetransmit time of about one second. The frequency of the transmitted tones is adjusted by means of a trim pot in each astable circuit. Finally, a 741 opamp is used as a buffer, with another trim pot to the output level to be adjusted so as not to produce distortion.

The $V+$ line for the transmit unit must be obtained from the rig itself; it must be taken from a point which has voltage present only when the rig is in transmit. When $V+$ is applied to the unit, one or both of the astables begin to operate, provided the appropriate Enable line is high. After about one second, though, the output from the timer circuit goes low and the oscillators will be inhibited. They can be reset only by removing $\mathrm{V}+$ and reapplying it, ie by starting another transmission.

The Receive Unit

The Receive circuitry consists of an input amplifier, two tone decoder chips, a relay driver and the code select circuitry.

The input amplifier is identical to the Transmit unit output amplifier, and needs no further description. The tone decoders are based on the NE 567 IC and will produce a logic 'O' output whenever the correct tone is present. The centre-frequencies of the tone decoders are set by R6, C5 and R8, C7 respectively; these frequencies can be altered, as will be described later. The bandwidth, or range of frequencies over which the decoders will still detect an input signal, is set by the values of C4 and C9 respectively.

The audio input to the Receive unit is taken from the rig, just before the
volume control. Power must also be supplied from the rig, but in this case $V+$ can be taken directly from the rig's power line.

When the correct tone is present, one or the other of the decoder outputs will go low; this information is itself decoded by IC4 and SW2, and the resultant signal is used to operate RLA1 via 01 if the correct code is received. A second contact on the relay is used to latch it on, by connecting the point which is at OV in receive only (though it can be at any voltage, or open circuit, when the rig is not receiving), thus ensuring that the audio line remains connected. When the PTT button is operated, however, the relay will un-latch, thus resetting the decoder. Selection of the 'open' switch position allows the receiver to be used in the normal way.

Construction

The two PCBs have been designed to be as small as possible, to allow them to be used in very cramped conditions. Ideally, they could be built into the rig itself, though this might involve some difficulty, particularly in installing the tone-select switch. The simplest method might be to fit them inside a small diecast box which can attach to the rig. In any case, take particular care when making connections to the rig!

Other points to watch are the links underneath the PCBs (not usually recommended, but acceptable in this case because of the need to keep things small), and the usual handling precautions (anti-static measures) must be taken with the CMOS ICs.

Interfacing

Similarly because of the great variety of $C B$ rigs, we cannot give too specific instructions regarding intefacing the Selective Call unit with any particular
rig. In general, though, the following signal and power lines are needed:

1. The Transmit unit $V+$ line must come from a point where voltage is present only when transmitting; this can usually be taken from the transmitter section supply line.
2. The output from the Transmit unit connects the microphone input.
3. The OV line for both the Transmit and Receive units can be taken from the main OV line.
4. The Receive unit $V+$ line also comes from the rig's power rail.
5. The Receive unit's audio input is obtained by breaking the rig's audio line just before the volume control (this is usually fairly easy to get at, as is the mic input terminal); the audio out of the Receive unit connects back to the volume control.
6. The relay latch OV line must come from a point which is switched to ground only when the rig is in receive; look around the mic input, where a OV line is often switched by the PTT button, or around the aerial changeover circuitry.
That makes a total of seven lines between the Selective Caller and the rig; if you have more or less, something is wrong somewhere!

Setting Up

Connect the Transmit and Receive units directly, connect the relay latch input to OV and apply power to both boards. Now temporarily enable both tone generators by connecting the Enable inputs to $V+$ and set the Transmit output level to about 100 mV using RV3. The next step is to adjust the tone generator frequencies so that the decoders give a logic ' O ' output; select the appropriate switch position and then adjust the trim pots RV1 and 2 until the relay operates. If a 'scope or

Figure 3. Above, the Receiver board component overlay; below, the overlay for the Transmit PCB.

audio frequency meter is handy, you should find that IC2 will respond to a tone around 1 kHz and IC3 should react to a 1 k 5 Hz tone.

Parts List

TRANSMITTER UNIT	
RESISTORS	POTENTIOMETERS
(All $1 / 3$ Watt 5\% Carbon) 820k	RV1 1 M
R2,4,8,9,10,11 10 k	
R5 56k	(All ceramic unless noted)
R6 390k	C1,6,10 10 n
R7 470k	C2,4,8 1 u
POTENTIOMETERS	tant bead
(All sub min pcb mounting presets)	C3,8 2 u 2
RV1,2,3.... 100k	C5 tant bead
CAPACITORS	C11 22 n
C1.3,6 10 n	C12.... 10 u
ceramic	electrolytic
C2,4 1nf	SEMICONDUCTORS
C5 2 e 2	T1 BC109
C5 $2 \mathrm{Lu2}$	IC1 741
	IC2,3 NE567
SEMICONDUCTORS	IC4 CD4001
IC1,2 CD4011	D1 1 N914
IC3 741	D2 BZY88C7V5
	MISCELLANEOUS
RECEIVER UNIT	SW1 2 pole 4-way
RESISTORS	rotary
(All $1 / 4$ Watt 5% carbon)	RLA1 12 V relay
R1, 2, 3,4,6,8 10 k	2-pole changeover . . PCB mounting
R5,7 18k	PCBs, wire, etc.
R9 330R	BUYLINES page XX

When both circuits are operating correctly, dismantle the temporary setup, install the boards in the required location and make the interface

R10,11
4 k 7
R12
1 M
CAPACITORS
(All ceramic unless noted)
C1,6,10 10 n tant bead ... 2 u

On
,

SEMICONDUCTORS
connections as described above. The transmitter unit audio output must now be adjusted to about 70 mV ; if a meter is not available, monitor your transmission on another rig and adjust RV3 so that the tone signal is not distorted. Finally, adjust the audio input level to the Receive unit so that with the tones present, the output from IC1 is about $100-200 \mathrm{mV}$; if the level is too high, the decoders will lose sensitivity.

Variations

As set up, the ast decoders respond to frequencies of 1 kHz and 1 k 5 Hz respectively, but this means that anyone who builds this unit and operates in your neighbourhood will be on your 'party line'l However, the decoder centre-frequencies are easily changed, but the two tones must not be harmonically related (do not use 1 kHz and 2 kHz , for example). The decoder centre frequencies are set by R6, C5 and R8, C7 to a frequency equal to $1 / 1.1 \mathrm{RC}$; with this information, itis a simple matter to set up the receive unit to personal calling frequencies. As given, the tone generation circuits can be adjusted between 100 Hz and around $3-4 \mathrm{kHz}$ using the trim pots. Changing the values of C1 and/or C3 will give a different range of frequencies, should this be neccessary.

Part of this article appeared in the April 1982 issue of Citizen's Band Magazine MS
as "Selective Call Explained".

XMAS ELECTRONICS SALE

MODERN DYNAMIC MOVING COIL MICROPHONES 200 ohms impedance. With switch. Fitted with lead and DIN plug. Used but in nice condition. Only $E 2$ each p.p 5Cp. MICROPHONE HEADPHONE length. $35 p$ each p.p $15 p$. 4 for EI .25 post free.
NUINE AFV TANK HEADSETS and MIKE E3.50, p.p. ©1, 2 pairs for 07 post free. HAVE YOU
SEEN THE GREEN CAT? 1000 s arices. Send 50 p and receive catalogue and FREE RECORD SPEED INDICATOR. Try a JUMBO PACK. Contains transistors, resistors, caps, pots, switches, radio and electronic items. Over E50 worth for โ11, carriage E2.50. MINI JUM BO PACK (E20 worth) €5, p.p. E1.50. BRIDGE REC TIFIERS (Phillips) 400 PIV at 4 ampls. Well made. Should be over E2 each. Our price 90 p, p.p. 20p SEMICONDUCTOR SALE ITT BCI83 transistors. 10 for 30 p or 4 p each. ITT IN4002 diodes $3 p$ Phe OP500 and OP50SSL series photo transistors. Our price 40 p . 3 for f1. $\mathrm{f1}$. power . Matched to
RIDICULOUS RESISTOR SALE, 1 watt carbon film resistors. 5% tolerance, High quality resistor nade under exacting conditions by automatic machines. E12 range IRO to 10MO. In lots of 1000 (25 Ger value). Only 68 per 1000 . Lots of 5000 for 235 .
GENUINE EX GOVT COLLAPSIBLE AERIALS. A fully adjustable highly efficient whip aerial in 5 sections. Length open ie metres. Closed 300 mm . Copper plated sections. As use
Manpacks. Brand new in makers boxes. E2.50 each, p.p. 75 p. 2 for E 5 post free. Please add 15% VAT to all orders including post packing and carrlage.

MYERS ELECTRONICS
(HE), 12/14 Harper Street, Leeds LS2 7EA. Leeds 452045
New retail premises at above address (opposite Corals). Callers welcome 9 to 5 Mon . to Sat. (Lunch
2.15 to 3.15 pm). Sunday open 10 to 3 pm .

DESOLDERING TOOL Make life easy with this superb anodised high suction desoldering tool. Essential for desoldering multi hyphen tead e.g. transistors IC's. Especially handy for the experimenter and service engineer.
VAT Spare teflon nose 85 +
LOW COT COST VERSATILE MULTIMETEA
The wid (fits into shirt
current range 100 mA . Resistance: two ranges $0-1 \mathrm{M}$ OHMS 160 OHMS CENTRE SCALE). DECIBELS - 10 to 22 DB mirror arc scale. Overload protection complete with battery leads and instructions. $55.66+($ OR
ORDER FORM IORDERS ON PLAIN PAPER ACCEPTED)
Name
 dub VAT
O. no.
enclose cheque no/P.O. no
Alternativety please credit my VISA/ACCESS/AMERICAN EXPRESS N
Signature -
his ofter applies to UK onily. Please allow 7 -10 days delivery. Overseas customers piase do not add
CRICKLEWOOD ELECTRONICS LTD.
40 Cricklowood Broadway, London NW2 3ET. Tel: 014520161

Phatorseh Senuices $\begin{aligned} & 8 \text { Tufnell Gdns., } \\ & \text { Mackworth. } \\ & \text { Derby DE3 4DY }\end{aligned}$
MAKE YOUR OWN CIRCUIT BOARDS with the $\begin{aligned} & \text { SPEClAL O } \\ & 860 \text { incl. } \end{aligned}$ Offer for limited period only - Reproduces direct from magazine circuits, etc. - Complete kit including film, exposing lamp, D/S fibreglass boards, printing/assembly frame, etc. - No darkroom or photographic experience needed - Full after sales service and consultancy Send loose stamp for free brochure

B.N.O.S.

ELECTRONICS
Don't miss the Christmas rush. Don't waste your money on throw away Dry cell batteries. Buy Ever Ready RECHARGABLE Nicad Batteries. Run your toys, radios, cassettes or even kitchen equipment. Each charge lasts as long as a dry cell, but you can re-charge them up a 1,000 times or more. So think of the money you can save at $1 p$ a charge.

BUY NOW

and have a set charged ready for Christmas.
(Available in four standard sizes)

NH-CAD	DRY CELL EQUIVALENT	CAPACITY	1-9	10-24	24-100
' A^{\prime} '	HP7	0.5 AH	0.90	0.85	0.82
'C'	HP11	2.2AH	2.40	2.30	2.20
SUB 'D'	HP2	1.5AH	2.30	2.15	2.00
'D'	HP2	4.0AH	3.40	3.20	3.05
PP3	PP3	0.11AH	3.90	3.65	3.40

Ni-Cad Battery Chargers

Type AC1 charges up to $4 \times$ AA cells at a time...
Type MC2 charges up to $4 \times$ AA, C, D cells \& also PP3's..f8.50 Postage FREE on Mainland UK orders SEND NOW your cheque/postal orders to

B.N.O.S. ELECTRONICS Dept. ETI,

 GREENARBOUR, DUTTON HILL, GT DUNMOW, ESSEX CM6 3PT TEL: 037184767Also ACCESS and VISA cards welcome

Goona

computer

 date
(and take along the wife and kids)

Have you ever fancied spending the day playing with an Atari, or a Sinclair, or an Apple computer?

Well, these plus a complete cross-section of the hard and software available to the home user, will be on display at the London Computer Show.

The emphasis is on the lower end of the price bracket, with computers from $£ 50-£ 300$.

You will be able to chat to the manufacturers and play with the computer before you buy.

So bring along the wife and kids (who'll probably be more of an expert on what you're buying than you).

Admission £1.50p (Children under 8 and O.A.P.s FREE)
And if you're a party of 20 or more, there's a 25% discount.

Friday 7th January '83 (10.00am-6.00pm) Saturday 8th January '83 (10.00am-6.00pm) Sunday 9th January '83 (10.00am-4.00pm)

THE LONDON HOME COMPUTER SHOW

Royal Horticultural Society's Old Hall, Vincent Square, London SW1
*For advanced bookings for parties of 20 or more, please send cheques payable to Argus Specialist Publications Ltd. (Dept. LHCS), 145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002.

THE HE BOOK REVIEWS

HE's literary tasters test the flavour of three books on the ZX81, and an introduction to the art of electronics.

The Explorers Guide to the $\mathbf{2 \times 8 1}$ by Mike Lord.
published by Timedata Ltd, 57
Swallowdale, Basildon, Essex
Reviewed by Tim Hartnell
This carefully-written book will be a boon to ZX8 1 users who already know the rudiments of programming in BASIC, but are not yet ready to tackle the intricacies of machine code. As well as information on how to write, improve and adapt programs, the book also has a useful hardware section.

I'll go through the chapters one by one, to give you an idea of their contents, and an impression of the value of each section.
Programming aids: The 1 K RAM supplied on the standard ZX8 1 makes great demands on programming ingenuity. This section contains a number of tricks to get the most out of your 1024 bytes. Mike Lord points out that both the display file and numeric constants eat up memory at an alarming rate, and gives some useful hints on how to minimise memory use when handling these. Among other things, he points out that, in certain circumstances, you can use a character array, rather than a numeric one, to save space.
Other BASICs: This section lists the main differences between ZX81 BASIC and the dialects used by other popular machines, pointing out ways of getting around the lack of READ, DATA and RESTORE in ZX BASIC, as well as ways of emulating such things as DEF FN and LEFT, MID, and RIGHT
Some games, and other novelties: This chapter is the lightest one of the book, both in intention and execution. There is a fair share of predictable pro-grams-Weekday, Dynamite (NIM), Sums Tester and Copycat (Simon) but as well there are programs with considerable more merit, including " ZX Sofft Shoppes", a simulation game in which you act as a software salesman; "'Decimal Peeker", to list the contents of any 22 consecutive memory locations and "Variable Peeker", to investigate the variables area of RAM. A RAMtesif and ROMtest program completes this section of the book.
Applications: This chapter discusses the possible uses of the $\mathrm{ZX81}$, other than for playing games, and then gives a number of programs, including one to
calculate the standard deviation of a series of items of data entered by the user, a "ladder analysis" programme which " calculates the gain (or loss), input impedance and output impedance over any range of frequencies for a passive ladder network of up to 10 series or parallel (shunt) branches" to illustrate how the ZX8 1 can be useful in the engineering field, and' 'G.P.G.P.'", a general purpose graph plotter to produce bar charts. A useful personal bank account program completes this section.
Machine language: While not pretending to be an extensive introduction to the use of machine code on the ZX81, this chapter covers a lot of ground in a small space and - for those unacquainted with the mysteries of USR and hexadecimal notation - it will repay careful reading. Written simply (considering the subject!) and well, this chapter covers the following: binary and hexadecimal representation of numbers; floating point binary; using USR (a discussion on the 280 processor, machine language, where to put your code); and four programs, "All Change"" "Birds"" "Alien Attack" and "Renumber"
Discovering the ROM: The fifth chapter of this book lists the starting addresses of a number of ROM routines which machine code programmers can use, as well as start addresses for several

tables in the ROM, including the keyboard table (from 01FA) and the graphics table (OOF3 to 0110). The way the display is generated is discussed at some length, complete with a diagram of the major circuit elements involved. The ROM routines which control the display are also listed and discussed.
Hardware: There is a shortage of useful information available on the hardware of the ZX81, and this chapter does much to remedy the problem. A number of ideas are given to improve the power supply, operation and display of the ZX81, along with a circuit to build your own add-on memory board. A circuit is also given that will allow you to run your ZX81 from a 12 volt car battery, along with circuits and diagrams showing how to connect up an external keyboard, add a reset button, and connect up a display monitor.

All in all, this is a worthwhile book, giving a lot of information in a clearlywritten, careful manner. It is well-bound and printed, and appears free of other than a few trivial errors (at one point, for example LET is spelt LAT). The hardware section, especially, makes the book a worthwhile purchase. If it is time you started exploring beyond BASIC, this book will be a useful guidel

Machine Language Programming Made

 Simple for Your SinclairPublished by Melbourne House, (1981), 160 pages, £8.95.

Reviewed by Roy N Green
The problem with writing a machine code programming book for the Sinclair $Z \times 80$ and $Z \times 81$ is that it is essentially a BASIC machine; there are no provisions for writing or running machine language programs. So, the author of this book is actually attempting a much more complicated task than is initially apparent (mysterious references in this review to 'the author' are no accident; the book is published anonymously, although various references in it suggest it was actually written by one of the 'little people'.)
The book attempts to simplify what is actually a very technical and intricate subject by using very simple English, and tries to liven it up by the use of a cartoon character. Although I liked the character, a friendly leprechaun-CPU chip, I thought the language tended
toward the childish, without really making things any easier to understand. For example,
"The CPU is no big mystery. I like to think of the CPU as a lonely little fellow, sitting in the middle of your Sinclair, being asked to do things all the time."
And,
"The CPU's hands and feet are called REGISTERS.'
OK, so lots of seven year olds do use the $\mathbf{Z X 8 0 / 1}$ - but bedtime stories about the CPU...!?

If you can put up with the style you will be taken through the range of instruction that the CPU can execute, what they are and what they do. There are listings of three useful little programs, one to display 100 bytes in HEX, a machine code editor and one to load code from rem line to array, but there is only one example of any size of an actual machine code program - a draughts program. This, however, is very well documented.

I'm not sure who this book would suit, because I find it difficult to imagine someone who would want to deal with such advanced topics in this makebelieve style. There is the danger that anybody who does rely on it may later find it a little difficult to hold a sensible conversation about machine codel Although all the important jargon is eventually introduced as the book progresses, it is possible to pick up some rather odd extra ideas, and even some idiosyncratic buzz words that are really nothing to do with machine code programming. All this in rather unfortunate, because I have the impression that, hidden inside this unsatisfactory volume, there is actually a very good explanation of $\mathrm{ZX80/81}$ machine code programming struggling to get out.
'Understanding your $\mathbf{~ Z X 8 1 ~ R O M ' ~ b y ~ D r ~}$
Ian Logan.
Published by Melbourne House, (1981), 162 pages, £8.95. Reviewed by Roy N Green

A rather misleading title this. The $\mathrm{ZX81}$ ROM is a long machine code program that many people would be interested in. In this book, however, Dr Logan attempts to teach machine code programming using the ZX81 ROM as a source of examples. Perhaps a more appropriate title would have been along the lines of "Learn to Program the Z80 via your 2×81 ROM". However his aim, to impart the ability to write short machine code programmes so that the reader can produce programmes of greater complexity that run faster, is a worthwhile one.

The first part of the book discusses the $\mathbf{Z 8 0}$ microprocessor and its instruction code: Chapter One is a short introduction to the book; Chapter Two examines the $\mathrm{Z80}$ microprocessor, giving details of its data and address buses, its registers etc; Chapter Three introduces binary and 2's complement arithmetic and hexadecimal coding, and chapter Four details the $Z 80$ machine code intsruction set. The second part of the book deals with actual machine code programs: Chapter Five presents 26 simple BASIC programmes which illustate the use of machine code instructions; Chapter Six examines the 8 K monitor program (extracts from which are given throughout the book and also in Appendix 1) and includes the BASIC command routine addresses; and Chapter Seven goes through the process of producing machine code routines, giving some well worked through examples.

In spite of all the detailed explanation, however, I still came away with the impression that Dr Logan's book would not enable readers, with only a knowledge of BASIC, to graduate to writing machine code. This is not so much a criticism of the book itself, however, as a recognition of the fact that machine code programming is very difficult to learn from books alone. You really have to try it out, and have someone you can turn to when you get stuck. As mentioned above, readers who already know how to program the $Z 80$ may be misled by the title, and hence disappointed not to find a complete listing of the monitor ROM in one place. It is true that many addresses of useful machine code routines are given, but I did not come away with the feeling that I'd "understood" my ZX81 ROM. I am, however, pleased to be able to report that Dr'Logan has recently made good these shortcomings with the publication of two new titles, on 2X81 ROM disassembly.

Beginner's Guide to Electronics

by Owen Bishop.
Published by Newnes Technical Books, 237 pages.
Reviewed by Paul Coster
When starting out on a new venture it is always a problem finding the right source of information. What's required is an introduction that is sufficiently detailed, but retains the readers' interest by keeping theory to a bare minimum. This is especially true of electronics; the book to be reviewed seems to have attained quite a good balance
between theory and interest.
'Beginner's Guide to Electronics" presents a thorough (in parts too thorough!) introduction to the field of electronics - with special bias toward the constructor. It also provides a valuable insight into several application areas including medicine, recording and communication. Most of the 240 pages are illustrated with diagrams, some with component values for practical circuit designs.

The book contains 13 chapters; the first three educate the reader in the fundamentals of electromics theory. This includes a wide range of topics and, although extremely comprehensive, does tend to assume a certain prior knowledge - the section developing atomic structure needed fairly concentrated study. However, this is not a major drawback since throughout the book, topics are restated and explained from a different viewpoint. Learning is therefore accomplished through a process similar to assembling a jig-saw puzzle - fit all the pieces and the picture becomes clear.
The next three chapters investigate a range of circuits, and include the practical application of those components already introduced. All of the material in this section is highly readable and well written, meeting the needs of beginner and experienced constructor alike - indeed the book is well worth buying for this part alone!
The remaining chapters are allocated to specific application areas, one chapter for each. These differed in approach, but were all worth reading more than once (a sign of good writing?). The chapter on test instruments was very easy to understand, but the introduction into computer electronics suffered slightly from over-zealous presentation. Particularly absorbing was the description of basic principles of magnetic recording - including some very up-todate video developments.
In conclusion, Owen Bishop's book is packed full of essential subjects. It is written in a lively and conscientious style with plenty of illustrative examples.

ME

SAVE fff's ON HOME HEATING BILLS UNIQUE DIGITAL THERMOSTAT POSSIBLE FUEL SAVINGS OF UP TO 25\%

Normally manufactured exclusively for the trade. Features: Continuous readout of ambient temp via 3 digit 7 segment display - LED indicates when pump is in operation $0.2^{\circ} \mathrm{C}$ Hysterises - 240v 3A control contacts - Switched set temperature Freeze protection setting High specification - Simple to calibrate Connect in place of existing thermostat Requires 240 v 2 VA supply - Kit includes all necessary components, Enclosure, diagrams and instructions.
Kit price only $£ \mathbf{5 9 . 9 0}$. Assembled Price $£ 49.90$
Prices include P\&P and VAT
Send cheque or PO to: DICON ELECTRONICS LIMITED Bond
Street, Bury, Lancs BL9 7DU Tel 061-797 5666 Telex 665362

Goodmans Fane Richard Allan Celestion Altai

Multimetera
Accessories UK P/P 65 p or $\mathbf{~} 1.00$ for two KRT 10012 range pocket $1 \mathrm{~K} /$ voit 4.95 NH55 10 2K/volt NH56R 22 NOK 22 range pocket $20 \mathrm{~K} /$ volt......... E10.95 YW360TR 19 range plus hfe
test 20K/volt....... $\mathbf{£ 1 4 . 9 5}$ test 20K/volt. $\mathbf{£ 1 4 . 9 5}$
5T303TR-21 range plus hfe test 20K/volt. ©17.95 TMK500 23 range plus 12 adc plus cont. buzzer $\mathbf{2 3 . 9 5}$

2 way

CROSSOVERS
2 way
3 way
100W 100W
80 w

Stockists of leading makes of Disco Units
\& Lighting Equipment.
CITRONIC. FAL, TK, ICE
OPTIKINETICS, PLUTO
SEND LARGE SAE FOR LIST
ALLOW 10 DAYS FOR DELIVERY

HA NEW FROM

 CAMEL PRODUCTS WN AN INNOVATIVE PRODUCT FOR YOUR ZX81
Faster than a Floppy

Easier than an EPROM

 MEMIC-81
HOW IT WORKS \& WHAT IT DOES

This useful accessory for 2×81 users is a 2 kilobyte (or 4 KB) memory module using chips fabricated in a remarkable technology. When not actually in use, these CMOS chips can be put into standby. They then take only a minute current to retain the data securely. The Lithium battery fitted in the unit will last for 5 to 10 years. Plug it into the $\mathbf{Z X 8 1}$ and flick a switch and the data is ready for retrieval.
MEMIC-81 resides in the $8-12 \mathrm{~K}$ area of $\mathbf{2 \times 8 1}$'s memory map. This area is not directly addressed by Basic, but Basic programs can easily be stored and retrieved by means of the tiny 12 byte routine provided. This can itself be stored in CMOS, so that Basic programs become available simply by entering. PRINT USR . . . Machine Code routines are directly accessible. Clear User Notes, Application Notes, Program Example and the necessary routines are provided with MEMIC-81, which comes cased and with an extender card at the back.
2kB MEMIC-81 $24.95+$ VAT
4kB MEMIC-81 E29.95 + VAT

OTHER CAMEL PRODUCTS

MEMIC T 2 kB Towerblock version for any System 29.95 Incl . MEMICL 2 kB Low Profile version with cabled connector $\quad \mathbf{2 9 . 9 5}$ incl. PIO-81 $8+8 \mathrm{Ch}$. latched Input/Output ZX81 card $\quad \mathbf{8 1 3 . 0 0}+$ VAT ROM-81 $2 \mathrm{kB}-8 \mathrm{kB}$ ROM/EPROM Unit for ZX81 $£ 14.95$ + VAT CRAMIC-81 16 K CMOS Rampack with Lith. battery DREAM-81 64K Rampack with 16K ROM SOCKET

?

MASHMR THTFGHRONICS NOW! The PRACHICATwey!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous
knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment

NewJob?NewCareer? NewHobby?Getinto Mlectronics Now!
FRME! \qquad NAME
ADDRESS

All backnumbers cost $£ 1.25$ each. For those of you who only want copies of articles, we do offer a photocopying service. Each copy costs $£ 1.25$ and information as to its title and publication date should be given. Ordering backnumbers and photocopies could hardly be easier, just fill in the coupon, cut it out and send it to:

Hobby Electronics, 145 Charing Cross Road, London WC2H OEE

Please remember to mark your envelope with the service you require,
BACKNUMBERS or PHOTOCOPIES,
otherwise our mailroom won't like you

HOBBY ELECTRONICS BACKNUMBER ORDER FORM

Please send me the following items:

NAME

ADDRESS
at $£ 1.25$ each

[^3]
HOBBY ELECTRONICS

 PHOTOCOPY ORDER FORMPlease send me the following items:
NAME
ADDRESS

Photocopies of
.in the
issue at $£ 1.25$ each
I enclose f
Cheques and Postal Orders should be made payable to ASP Ltd

Above; the corrected Microlog power supply circuit.

We regret that due to technical difficulties, we are unable to reproduce the foil patterns for the Selective Caller
in this issue.

Do yourself a favour. Make 1982 the year you start to take Hobby Electronics, regularly. Delivered fresh every month.

SUBSCRIPTION ORDER FORM

Cut ort and SEND TO : Hobby Electronics Subscriptions 513, LONDON ROAD, THORNTON HEATH, SURREY, ENGLAND.
Please commence my personal subscription to Hobby Electronics with the
issue.

SUBSCRIPTION PATES

(tick _- as appropriate)
$£ 10.75$ for 12 issues U.K £ 12.75 for 12 issues overseas surface £25. 70 for 12 issues Air Mail

I am enclosing my (delete as necessary) Cheque/Postal Order/International Money Order for $£$
(made payable to A.S.P. itd) OR
Debit my Access/Barclayrard ${ }^{\circ}$
('delete as necessary,)

Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/Miss)
delete accordingly
Address

ADVERTISEMENT B. A Semi-Display (min 2 cms) 1-3 insertions $\mathbf{£ 7 . 5 0}$ per $\mathbf{c m}$ $4-11$ insertions $\mathbf{£ 7 . 0 0}$ per cm $12+$ insertions $£ 6.50$ per cm Lineage 26 p per word (min 15 words) Box Nos. $£ 2.50$
 Closing date 2nd Friday of the month preceding publication date.
 All advertisements in this section must be prepard Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card lavallable on request)

 HOBBY ELECTRONICS CLASSIFIED

 HOBBY ELECTRONICS CLASSIFIED
 ADVERTISING, 145, CHARING CROSS RD, LONDON WC2H OEE

STEREOPOWER 120 WATT AMPLIFERS!! ($60+60 \mathrm{~W}$ protected). Case + controls. D.I.N. sockets. Fibreglass. Boxed + Data. £10.85. A. Law, 8 Cunliffe Road 1 Over. Incatile), llkley LS29 9DZ.

BURGLAR ALARM EQUIPMENT. Please visit our 2,000 sq. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd. 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274-308920.
H.E. ORGAN KITS $£ 99.50$ inc. p\&p. 61 note keyboards 532.00 . 13 note pedal boards $£ 25.00$ inc. p\&p. A.T. Hawkins, 23, Blenheim Road, St. Albans, Herts. AL1 4NS..

AMAZING ELECTRONICS PLANS. Lasers, Super-powered Cutting Rifle, Pistol, Light Show, Ultrasonic Force fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue £1 - From Plancentre, Unit 4, Bromyard Road, Industrial Estate, Ledbury.

7LBS ASSORTED Components f5. 10 lbs £6.50. 300, small components, transistors, diodes E2.20. Forty assorted 74 series ICs on Panel (s) $£ 2.20$. P.C.B.'s s/sided copper $11^{* \prime}$ $\times 8^{\prime \prime} 90$ p. $16^{\prime \prime} \times 11^{\prime \prime} \mathrm{£} 1.70$. Fibre glass $11^{\prime \prime}$ $\times 8^{\prime \prime} £ 1.50 .16^{\prime \prime} \times 8^{\prime \prime} \mathrm{E} 2.90$. Post paid. List $25 p$ refundable. J.W.B. Radio, 2, Barnfield Crescent, Sale, Cheshire M33 1 NL.

WANTED Electronic components, boards, connectors, test equipment, good prices paid. " Q " Services, 29 Lawford Crescent, Yateley 871048 Camberley Surrey.

AERIALL ÄMPLIFIERS Improve weak: television reception. Price £6.70. S.A.E. for leaflets. Eectronic Mailorder, Ramsbottom, Lancashire BL0 9AGH.

BIG BARGAIN BOX

 Our Big Bargain Box contains over a thousandcomponents - resistors, capacitors, pots, switches, diodes, transistors, panels, bits and pieces, odds and ohds. All useful stutf - would cost many times the price we are asking if bought se irately. Approx. weight 4lbs.
ONLY $E 5.00$ inc post - you're bound to come back for another!!!
ESP 147F FOUNDRY LANE, SOUTHAMPTON, SO1 3LS Lots of surplus bargains on our latest list - send an Lots of surplus bargains on our latest list
SAE for your coop now.

TELETEXT (ORACLE/CEEFAX) add-on adaptors for your existing television. Only £149.95 inclusive. Also Prestel and Telesoftware. Cytel (HE), FREEPOST, Bristol BS10 6BR. (0272) 502008 anytime.

PARAPHYSICS JOURNAL (Russian translations); Psychotronic Generators, Kirlianography, gravity lasers, telekinesis. Details: S.A.E. $4 \times 9^{\prime \prime}$ Paralab, Downton, Wilts.

ELECTONIC kits for sale: Electronic Organ E7. Dice $\mathbf{f 8 . 1 0}$. SAE for details. Bee Micro, 33 Bevendean Crescent, Brighton, E. Sussex.

DIGITAL WATCH REPLACEMENT parts. Batteries, displays, backlights etc. Also reports, publications, charts. S.A.E. for full list. Profords, Copnersdrive, Holmergreen, Bucks HP15 6SGE.

ELECTRONICS component shop in MAID. STONE, KENTI Thyronics Control Systems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

STEREO HEADPHONES - Quality good enough for $\mathrm{Hi}-\mathrm{Fi}$ use! Price good enough for any use! Fitted $1 / 2$ inch jack. $£ 3.25$ inclusive of VAT \& Post. Sammy North Supplies, 55 Grange Drive, Hinckley, Leicestershire. STOP-PRESS: 2 pairs only f6.00.

HAVEN Hardware. Spectrum fruit machine £4.95. UK101/Superboard products still available. ZX kits: repeat key $£ 3.95$. Inverse video $£ 3.45$. SAE for built prices/beeper/keyboard/software details. 4 Asby Road, Asby, Workington, Cumbria.

PRINTED CIRCUITS. Make vour own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.25$. Developer 35p. Ferric Chloride 550. Clear acetate sheet for master 14 p . Copper-clad fibregtass board, approx. 1 mm thick $£ 1.75$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

KEYBOARD Four octave, gold contacts, £35.00, AY-1-0212 top octave generator, $£ 5.00$, Woofers and tweeters, $£ 15.00,01-953$ 1838

ELECTRONICS BOOKS. International publishers. Lowest rates. Ask list. Business promotion. 376 Lajpatrai Market Delhi India.

MEDIUM SIZED COMPANY Hereford/ Gloucester borders wishes to contact person capable in electronics field to install Surveylance system (not visual). Please write in confidence Box No. HE100, ASP Ltd, 145, Charing Cross Rd, London WC2
MAPLIN 5600 S SYNTHESISER - Half built. 63 note keyboard, computer interface board. Wired to front panel. Teak cabinet. f200 ono, Riglar, Beaminster (Dorset) 0308862767 weekends.

> DON'T MISS THE FEBRUARY ISSUE OF HOBBY ELECTRONICS ON SALE FRIDAY THE 14th OF JANUARY FOR ALL YOUR CLASSIFIED REQUIREMENTS RING BRIDGETTE ON 01-437 1002

If you; have something to sell now's your chance! Don't turn the page - turn to us! Rates of charge: 26 p per word per issue (minimum of 15 words). Box Nos. £2.50 and post to HOBBY ELECTRONICS, CLASSIFIED DEPT., 145 CHARING CROSS ROAD, LONDON WC2

					$£ 3.90$
					$£ 6.20$
					$£ 7.80$
					$£ 9.10$
					$£ 10.40$
					$£ 11.70$

Please place my advert in HOBBY ELECTRONICS for issues commencing as soon as possible.

1 am enclosing my Cheque/Postal Order/International Money Order for: (delete as necessary) £.... (Made payable to A.S.P. Ltd)

All classified advertisements must be paid for in advance.

Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/Miss/Ms)
(delete accoraingly)
Address

SIgnalure.
Date
Daytime Tel. No.

ADVERTISERS INDEX
Aitken Bro
... .34
Ambit
Amtron........
Audio Elec
Bi-Pak
BK Elec
BNOS
Bradley Marshall
Bramine Mktg
Cambridge Micro
Cricklewood.
Dicon Elec Ltd
Electrolube -...........
Electrovize Desplies
Electro Sup
Expo Ltd..
Expo Ltd...
Flight Elec
Global Spec Corp.. 13
Greenbank

Greenweld
Grenson Elec....
Jee Dist
Keelan Eng. Ltd
Kempston 57

Lightning 62
Litesold.
Magenta
Musicraf
Myers

Rapid Elec

Brian J. Reed

Roadrunner
Silice Shop.
Sinclair Research
Sparkrite
Technomatic.
Thames Valley
TK Elec
Watford Elec
Wilmslow.
 IN ELECTRONICS, TELEVISION AND AUDIO

IN YOUR OWN HOME-AT YOUR PACE

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS quarantee pace and if you are studying ior al

City \& Guilds Certificates

Radio Amateurs
Basic Electronic Engineering (Joint C\&G/ICS)

Certificate Courses

TV and Audio Servicing
Radio \& Amplfier Construction
Electronic Engineering* and Maintenance
Computer Engineering* and Programming Microprocessor Engineering*
TV, Radio and Audio Engineering Electrical Engineering,* Installation
and Contracting *Qualify for IET Associate Membership
CACC Approvec by CACC Member of ABCC
POST OR PHONE TODAY FOR FREE BOOKLET
 Purposafully designed 40 watt R. M. S. and 30
Wart R.M.S. $\begin{aligned} & \text { ohm speaker systoms recently }\end{aligned}$ wert R.M.S. 8 ohm spaker systoms recently
developed by MULLARD'S specialist team in developed by MULLARD'S speciolist team in
Belgium. Kits comprise Mullard woofer 18 " or
 ${ }^{5}{ }^{5}$ Wuth tham toard ${ }^{3}$ hight power domed fwester. B.K.E. Mullara and high power domed fweiter. Bu...E.
buitr and tested crossover based on Mulard circuit, combining low loss components, glass fibre board and recessed loudspeaker termin aiss
SUPERB SOUNDS AT LOW COST. Kits suppled SUPERE SOUNDS AT LOW COST. Kits supplied
 $\times 216 \times 445 \mathrm{~mm}$
Price E 14.90 each + CZ.00 P \& P.
$5^{*} 30 \mathrm{~W}$ system - recommended cabinet size Price $\mathrm{E13} .90$ each +E 1.50 P \& P.
Designer approved flat pack cabinet kits, including grill fabric. Can be finished with iron on

STEREO CASSETTE TAPE DECK MODULE.
COmprising of a top panel and tape mechanism Comprising of t toop panel and date mechanisem coupled to
a record/play back printed board assembly. Supplied as
 on colmolet uni hoi horizontal unstaliation ond caw, ready Buit and testred.
Features:
Three
FFe日turs: : Three digit ape counter. Autostop. Six pinno
type keys, record, fewind, tass forward, play stop and type keys, record, rewnd, tast torward. play, stop and
eject. Automatic record level control. Main thous plus secondary inputs for stereo microphones. Inpur
 Output level: 400 mV to both left and right hand
channets. Output Impadance: tok. Slignal to noise Channes.
 leth and ripht hend stereo inputs and outputs are via individual screened leads. all rerminated with phono plugs
lohono sockets provided.) Dimensions: Top panel 5 in
in $x 11$ in. Clearance required under ioo panet 2 ilin.
Supolied complete with circuit diagram and connecting Supplieo Completerc with cerrevir diagram and connecting
diaglam. Attractive black and siver finish diagram. A.tractive black and siver finish.
Pricice $26.70+2.50$ postrage end pocking.
 transtormer, bridge recififir and smoothing capacitor) 6 piano type keys

NEW RANGE QUALITY POWER LOUD SPEAKERS (15, $12^{\prime \prime}$ and $8^{\prime \prime}$). These loudspeakers are ideal for both hifi and Nisco applications. Both the 12 and 15 units have heavy duty die-casl chassis and aluminium cenire domes. All three unis have white speaker cones and are (ground fin, sh) fixing escutchepons. Specification and Price

15* 103 watt R.M.S. Impedance 80 hm 59 oz. magnet, 2 aluminum voice coil Resonani Frequency 20 Hz R Frequency
Response to 2.5 KHz Sensitivity 970 dB . Price $£ 32$ each $£ 3.00$ Packing and Car-
12. 100 watt R.M.S. Impedance 8 ohm .5002 magnet. 2 aluminum voice coll. Resonant Erequency 25 Hz . Frequency Response to 4 KHz Sensitivity 95 तiB. Price 623.70 each. f3.00 Packing and Carriage each
$8^{* \prime} 50$ watt R.M.S. Impedance 8 ohms. $20 \mathrm{oz} .11 /{ }^{\prime \prime}$ aluminium voice coil, Resonant black cone fitted with black metal protective grill. Price: White cone $\mathbf{f 8} .90$ each. Black cone/grill 99.50 each. P \& P C1 25 each
PIEZO ELECTRIC TWEETERS MOTOROLA
Join the Piezo revolution. The low dynamic mass (ni) voice coil) of a Piezo iweeter produces an improved transient response with a lower disiurtion level than ordinary dynamic iweeters. As a crossover is not required these units can be added to exisfing speaker systems of up to 100 watls (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' 'KSN2036A) 3 ' rount with protective wire mesh, ideal for bookshelf and medium TYPE 'B' (KSN1005A) $3^{1}{ }^{\prime}{ }^{\prime \prime}$ super horn. Fo general purpose speakers disco and P.A systems elc. Price $\mathbf{£ 4 . 3 5}$ each.
TVPE 'C' IKSN6016A)2" 5 " wide dispersion horn. For quality $H_{1} \mathrm{l}_{1}$ systems and quality discos etc. Price $\mathbf{f} 5.45$ each.
TVPE 'D' (KSN1025A) 2" - 6 wide dispersion horn. Upper frequency response retaineत extending down to mid range $(2 \mathrm{KHz})$. Suitable for high quality $\mathrm{Hi} \cdot \mathrm{fi}$ systems and quality discos. Price $\mathbf{f} 6.90$ each.
TYPE 'E' (KSN1038A) $33 / 4$ " horn weeter with attractive silver tinish trim. Suitable for $\mathrm{Hi} \cdot \mathrm{fi}$ monitor systerns etc. Price $\mathbf{£} .35$ each.
TYPE 'F' (KSN1057A) Cased version of rype 'E'. Free standing satellite iweeter. Perfect add on tweeter for conventional loudspeake Systems. Price $f 10.75$ each.
U.K. post free (or SAE for Piezo leaflets).

ON

1000 MONO DISCO MIXER

A superb fully built and tested mixer/pre-amp with integral power supply. ${ }^{4}$
Inputs 2 turniables (ceramic cartridge). Aux. For tape deck etc., plus Mic. with override switch, all with individual level controls. Two sets of active tone controls override switch, all with individual level controls. Two sets of active tone controls
(bass and treble) for Mic. and main inputs. Master volume control. Monitor output with select switch and volune control.

BK ELECTRONICS
Prompt Deliveries VAT inclusive prices Audio Equipment Test Equipment
by
Thandar
and
Leader

1K.WATT SLIDE DIMMER

- Controls loads up to 1 KW
- Compact size.
$43 / 4^{\prime \prime} \times \frac{13}{16} 3^{\prime \prime} \times 2 \frac{1 / 2}{}{ }^{\prime}$
- Easy snap in fixing through
- Easy snap in fixing thro
- Insulated plastic case
- Full wave controł using 8arnp
- Conforms to BS800
- Suitable for both resistance and inductive loads. Innumerable applications industry, the home, and discos/ theatres etc.

BSR P256 TURNTABLE

MEMBRANE manufactured from a tough poly. Carbonate film mounted on 1 mm glass fibre printed circuit board assembly incorporating silver plated conracts.
 18 way numeric keyboard providing 0-9 and A-F functions. Size: $100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 2 \mathrm{~mm}$. Price: $\mathrm{Et} .99+35 \mathrm{p}$ pEip Alpha Numeric Keyboard fuil size 55 key non encoded kerboart with the commonly required functons in Owerty array. Matrix output via a 16 pin Owerty array DIL socket.
 Size: $350 \mathrm{~mm} \times 100 \mathrm{~mm} \times 2 \mathrm{~mm}$. Price: $\mathrm{Cl} 3.99+500 \mathrm{pEp}$

P256 turntable chassis © shaped tone arny

- Belt driven Aluminium platter Precision calibrated counter balance Alatter Anfiskate (bias device) Damped cueing lever - 240 volr AC operation (Hz) - Cut out Template supplier - Completely manual arm. designed primarily for disco and studio use where all the adivantages of a manual arm are

PUWER AMPLIFIER MODULES

100 WATT P
MODULES
Power Amplifier Modules with integral toroidal transtormer power supply, and hear sink. Supolied transtormer powet supply, and heat sink. Supplied
os one comptete buith and tested unin. Can be fited
in minutes. An LED Vu meter is availabile as an in minutes. An LED Vu meter is available as an SPECIFICATION
SPECIFICATION:
Max Output Power: 110 watts R.M.S. IOMP 100 Loads: Open and shor circuit R.M.S. 10 MP 300 Losds: Open and short circuit proot. 1.16 ohms.
Frequency Response: $20 \mathrm{~Hz}-25 \mathrm{KHz} \pm 3 \mathrm{~dB}$. Sensitivity for Max. Output: T.H.D.: Less than 0.10) upply: 240 V 50 Hz
Sizes: OMP $100360 \times 115 \times 72 \mathrm{~mm}$ Prices: OMP 100 £31.50 each $+\mathbf{E 2 . 0 0}$ P\&P OMP 100 £31.50 each +52.00 PE
OMP 300 E89.00 each +53.00 PG
Vu Meter $£ 6.50$ each +500 P\&P

Matching 3-way loudspeakers and crossover
Build a quality 60 watt RMS system 80 hms Build a quality 60 watt R.M.S. system

- $10^{\prime \prime}$ Woofer $35 \mathrm{~Hz}-4.5 \mathrm{KHz}$
- $3^{\prime \prime}$ Tweeter $2.5 \mathrm{KHz}-19 \mathrm{KHz}$
- 5" Mid Range $600 \mathrm{~Hz}-8 \mathrm{KHz}$
- 3-way crossover 6 dB /oct 1.3 and 6 KHz Recommended Cab-size $26^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime \prime}$ Fitred with attractive cast ahiminium fixing es removable enalling a unique choice of cabinet styling Can be mounter directly on to baffle with or without conventional speaker labrics
 All three units have aluminum centre domes and rolled foam surround. Crossover com bimes spring obaten louris Price £22.00 per kit $+£ 2.50$ postage and pack ing Avalable separately Irices on recumesi
$12^{*} 80$ watt R.M.S. Ioudspeaker.
A superb general purpose twin cone loud speaker 50 O2. magnet. 2 aluminium voice coil. Rolled surround Resonant fre quency 25 Hz . Frequency response to 13 KHz . Sensitivity 95 dB . Impedance 8 ohm Attractive blue cone with aluminium cente dome
Price £17.99 each + E3.00 P\&P

CMOS		TTL		TTL contd.		TTL LS con	ntd.	OPTO		OPTO contd.	Transistors \& Diodes				
4001	13p	7400	13p	74173	60p	74LS162	35p	LEDs		DISPLAYS	IN4001	4p			
4002	13p	7401	13p	74174	50p	74LS163	35p	0.2"		Bar Graph 295p	IN4007	6 p			
4006	60p	7402 7403	13p	74175 74180	50p	74LS164	45p	Red	10p	5"	N5401	13p	thames valle	Ectro	t50
4007	13p	7403	13p.	74180 74190	50p $60 p$	74LS165	50p	Green	14p	Common Anode	IN5404	16p			
4008	50p	7405	14 p	74191	60 p	74LS169	60p	Flashing		L.H. decimal point	IN5406	16p	CAPACITORS		
4010	30p	7406	$20 p$	74192	70p	74LS170	70p	Red	82p	Red 150p	IN4148	3p	Tant Beads 16v		
4011	13p	7407	24p	74193	60p	74LS173	40p	Rectangular		Green 248p	IN914	3 p	. 1 uf 11p	6.8uf	18p
4012	13p	7408	14 p	74194	60 p	74LS174	45p	LEDs		Yellow 260p	IN916	5 p	.22uf 11p	10uf	18p
4013	22p	7409	14p	74195	46p	74LS175	45p	Red	22p	Common Cathode	BZY88C2V7	8p	.47uf 11p	22uf	30p
4014	50p	7411	14p	74197	50p	74LS190	110p	Green	26p	R.H. decimal point	BZY88C3V3	8 p	2.2uf 14p	33uf	48p
4015	45p	7412	18p	74221	75p	74LS191	45p	Yellow	22p	Red 150p	BZY88C3V6	8p	$\text { 3.3uf } \quad 14 p$	47uf	$80 p$
4016	25p	7413	22p	74279	40p	74LS192	45p	Bi-Colour		Green 248p	BZY88C4V7	8p	4.701 180		1100
4017	40p	7414	26p	74290	60p	74LS193	45p		80p	Yellow 260p	BZY88C6V8	8 p	Tant Beads 35v		
4019	35p	7416	18p	74298	60p	74LS194	50p	O-			BZY88C8V2	8 p	.1uf 13p	1.00uf	5p
4020	48p	7420	22p			74LS196	35p	Red	11p	3'	BZY88C12	8 p	.15uf 13p	1.5uf	5p
4021	46p	7421	15p			74 LS 197	50p	Green	12p	Red 127p	BZY88C15	8 p	.22uf 13p	$2.2 \mathrm{uf}$	17p
4022	55p	7425	20p	TTL LS		74 LS240	70p	Yellow	12p	Green 196p	BC107	11p	.47uf 13p	4.7uf	20p
4023	13p	7426	27p	74LSO0	14p	74LS241	70p				BC107A/B	11p	.68uf 13p	6.8uf	20p
4024	42p	7427	15p	74LS01	14p	74LS244	70p			TOGGLE	BC108A/B	p		10.0uf	270
4025	13p	7430 7432	15p	$\begin{aligned} & \text { 74LS02 } \\ & \text { 74LS03 } \end{aligned}$	$14 p$ $14 p$	74LS245*	80p	LINEAR		SWITCHES	BC109A/B	2p	Plate Cerami	$63 v$	
4027	26p	7437	18p	74LS04	14 p	74LS247	60p	AM2533	280p	SPDT 48p	BC182	9 p	10pf 5p	47pf	5p
4028	40p	7438	18p	74LS05	14 p	74LS249	40p	LM324	45p	on/none/off	BC183	9 p	$\begin{array}{ll} 100 \mathrm{pf} & 5 \mathrm{p} \\ 150 \mathrm{pf} & 6 \mathrm{p} \\ \hline \end{array}$	220pf	$6 p$
4029	60p	7439	24p	74LS08	14p	74LS251	40p	LM339	65p	SPTD 52p	BC184.	9 p			
4030	13p	7440	16p	74LS09	14p	74LS253	35p	LM358	$75 p$	SPTD 52p	BC212	9 p	Disc Ceramics $.0150 v \quad 2 p$	$.150 \mathrm{v}$	5p
4035	66p	7442	24p	74LS10	14p	74LS256	55p	LM3900	55p		BCY70	17p			
4040	50p	7446	68p	74LS13	21p	74LS258	40p	LM317	200p		BCY71	18p	$\begin{aligned} & \text { Polystyrene } 1 \\ & 100 \mathrm{pf} \end{aligned}$	$\begin{aligned} & \text { Ov } \\ & 2200 \mathrm{pf} \end{aligned}$	8 p
4042	40p	7447	55p	74LS14	21p	74LS259	65p	MC1438	810p		BCY72	18p	$\begin{array}{ll} \text { 100pt } & 9 p \\ \text { 220pf } & 9 p \end{array}$	$3300 \mathrm{pf}$	p
4044	46p	7448	55p	74LS15	14p	74LS260	30p	MC1458	40p	/none/off	BFY50	28p	470pf 9p	4700pf	8 p
4047	50p	7450	15p	74LS20	14p	74LS266	22p	MC1488	61p	DPDT 60p	BFY51	28p	1000pf 9p	6800pf	8p
4049	20p	7451	$15 p$ $15 p$	74LS21	14 p	74LS273	60p	MC1489	80p	,	BFY52	28p			
4050	20p	7454	15p	74LS26	14p	74LS279	40p	MC1496	60p		P29/A	30p	PEC	-	,
4051	50p	7470	30p	74LS28	22p	74LS283	40p	MC3418	810p		TIP30/A	35p	while stocks	onl	
4052	60p	7472	25p	74LS30	14p	74LS290	34p	NE555	30p	2N 3055 10 for 450n	TIP31/A	45p	Resistors Car	n Film	watt
4053	50p	7473	25p	74LS32	14p	74LS293	34p	NE556	61p	Micro's Memories	TIP32/A	45p	RING OR PO	tal	ER
4066	28p	7474	22p	744LS33	14p	74LS295	52p	TBA800	88p	\& Specials	TIP/41A	50p	TO ADDRESS	BELO	
4069	13p	7476	22p	74LS38	14p	74LS299	83p	TBA810	95p	Z80ACPUPS550p	TIP42/A	50p			
4070	13p	7483	47p	74LS40	19p	74LS322	90p	TBA820	90p	Z80ACTCPS440p	2N708	24p			
4071	13p	7486	25p	74LS47	44p	74LS323	130p	TD		Z80APIOPS 440p	2N918	26p			
4076	50p	7490	26p	74LS48	44p	74LS347	55p	TD	$\begin{aligned} & 250 \mathrm{p} \\ & 250 \mathrm{p} \end{aligned}$	Z80ADARTPS	2N2218/A 2N2219/A	26p	MONDAY		
4081	13p	7491	45p	74LS51	14p	74 LS352	60p	TDA2020	320p	Z80ASIOPS 450p	$2 \mathrm{~N} 2221 / \mathrm{A}$				
4086	45p	7492	38p	74LS54	14p	74LS353	60p	TLO71CP	$320 p$ $32 p$	Z80ASIOPS 440p	$\begin{aligned} & \text { 2N2221/A } \\ & \text { 2N222/A } \end{aligned}$	$\begin{aligned} & 24 \mathrm{p} \\ & 28 p \end{aligned}$	pack of 10		
4093	30p	7493	28p	74LS84	18p	74 LS365	30p	TLL072CP	32p	$\begin{array}{ll}8080 \mathrm{~A} & 335 p \\ 8035 \mathrm{HL} & 500 \mathrm{p}\end{array}$	2N2904/A	29p	pack of 100		
4098	70p	7496	45p	74LS86	14p	74L.S366	35p	TL497	300p	$\begin{array}{ll}8035 \mathrm{HL} & 500 \mathrm{p} \\ 8085 \mathrm{~A} 4 & 500 \mathrm{p}\end{array}$	2N2905A	28p			
4503	42p	74107	25p	74LS90	30p	74 LS367	30p	UA741	18p	$8085 A 4$ $500 p$ $8202 A$ $2200 p$	2N2906A	28p			
4510	52p	74121	20p	74LS92	30p	74 LS368	30p	UA747	70p	$8202 A$ 2200 p 8253 750 p	2N2907A	28p			
4511	45p	74122	35p	74LS93	30p	74 LS373	75p	UA7805	45p	8253 750p	2N3053	28p	$\begin{aligned} & \text { 4pin } \\ & \text { 16pin } \end{aligned}$		
4512	50p	74123 74125	40p	74LS95	40p	74LS374	75p	UA7812	45p	8255 299p	2N3055	46p	$\begin{array}{ll} \text { 16pin } & 10 p \\ \text { 20pin } & 17 \mathrm{p} \end{array}$		
4516	60p	74126	38p	74LS112	30p	74 LS375	40p	UA7905	54p	8251	2N3442	130p			
4518	40p	74132	30p	74LS113	30p	74 LS377	70p		54p	8224 250p	2N3715		24 pin		
4520	60p	74145	50p	74LS125	28p	74 LS378	60p	UA793	54p	8228 250p		65 p	28pin 25p		
4528	64p	74150	90p	74LS126	28p	74LS379	60p	UA723	37p	ICL7106 795p	2N3716	$65 p$	40pin 28p		
4539	64p	74	40p	74LS 132	40p	74LS390	50p	U		ICL7107 975p			8.RC		
4555	45p	74	45p	74LS 133	25p	74LS393	50p			2732A-4 520p					
4556	45p	74155	75p	74LS136	20p	74LS395	48p			2114A(450ns)				250ns	
40014	50p	74157	35p	74LS139	30p	74LS447	45p	Bridge Rect	ifiers	100p				10p	
40085	70p	74158	30 p	74LS151	40p	74LS490	64p	50v 1.5A	23p	2716 340p	Connector		10 off	470p	
40097	60p	74161	45p	74LS153	40p	74LS502	80p	200\% 1.5A	22p	2764 1592p		mi.			
40098	60p	74163	45p	74LS155	45p	74LS503	90p	400V 1.5A	30p	M108 single chip	9	78p	Please add V	at 15	
40161	55p	74164	60 p	74LS156	45p	74 LS533	80p	600V 1.5A	32p	organ 1330p	15		Plus Postage	Packi	45p
40163	55p	74166	70p	74LS158	30p	74LS534	80p	800V 1.5A	35p		25 1.	1.600			
40175	60p	74167	120p	74LS160	35p	74LS540	80p			086 Tone	37	2.63	Go		
40193	60p	74170	120p	74LS161	35p	74LS670	100p			generator 300p	$501.97 p$	3.02p	establishments	orders a	ccept

PHONE US TO CHECK AVALLABILITY OF COMPONENTS MENTIONED IN THIS ISSUE

Thames Valley

[^0]: New book by Tom Duncan in the popular 'Adventures' series. This book of entertaining and instructive projects is designed for hobbyists, and students. It

[^1]: 38. Any comments, or suggestions for the future?
[^2]: 43 STRATHVILLE RD.
 LONDON SW18
 TELEPHONE: 01-870 0075

[^3]: I enclose $£$
 Cheques and Postal Orders should be made payable to ASP Lid.

