Project Electronics for Everyone

PROJECT SPECIE Ten Top Projects 10 Build For Christmas!

HE

Points Of View • Bylines Famous Names • Radio Rules Book Service
pofytilic comp components for computing New Series t

You should see Ambit's new Autumn Catalogue...

Another milestone in component supply...

If you've been wondering just what's been going on at Ambit lately, we are now taking the wraps off the most advanced and imaginative concept in component, tool, and information distribution since we launched WREE last year.

We have included new items and information to plug a few gaps, and we are just starting to implement a new interactive computerised system of service and information that simply cannot be overlooked by anyone interested in the communications, electronics, video and computing business.
\star Price on the page

* 24 Hour response
-Guaranteed
* Low prices
* High quality
* Export a speciality

128 Pages of the broadest component range in the business

24 HOURS A DAY, 7 DAYS A WEEK AUTUMN '82 WIR\&
 at YOUR NEWSAGENT - OR DIRECT FROM AMEBLT INTERIRATIONAL BRENTWOOD ESSEX CM14 4SG

Telephone (0277)230909, telex 995194 AMBITG, data RS232/300 baud (0277)230959*

* Dial (0277)230959, hook in your low cost modem and terminal (most personal computers can be configured to access REWTEL, details are being published in R\&EW over the next few months) and REWTEL will give you access to up to 5000 pages of background to the WR\&E catalogue, equivalents, news, updates, hot off-the-press product news, information, jobs being advertised in the industry. It's computing at its most versatile and worthwhile: why be satisfied with a 64 KMCU , when you can gain free access to the 70MByte + of the

REWTEL computer??

PROJECTS

* HE MICROLOG 9
The analog computer strikes back
* STEREO NOISE GATE 20
Taking the hiss out of audio.
- HETV AMP 25
Clearer sound for the slightly deaf. 37
A four stage audio phaser 52
A single op-amp microammeter.
* SLIDE-TAPE SYNCHRONISER 56
Audio visuals with added bleep. * POP AMPS No 2 62
Voltage follow-and-hold for meters.
* LOW COST ALARM 70
A security alarm that won't cost everything you've got.
\star HELOFTY 74
Don't hide your loft lights - turn them off!
* THEBIGEAR 80
An electronic eavsdropper for nature lovers.
FEATURES
FAMOUS NAMES 33
J. M.E. Baudot.
RADIORULES 43
Single sideband.
* COMPONENTS FOR COMPUTING 46
Part 1 gets into (and out of) I/O Ports.HC6010 DMM65
Digital multimeter reviewed.
Monitor 6
What's On Next 18
Points of View 31
Buylines 34
Clever Dick 51
HE Book Service 46
HE Backnumbers 74
PCB Service 63
PCB Printout 65
Classified Advertisements 81

Editor: Ron Keeley
Editorial Assistant: Helen Armstrong
Advertisement Manager: Gary Price
Assistant Advert. Manager: Jolyn Nice
Managing Editor: Ron Harris BSc
Managing Director: T.J. Connell
Hobby Electronics is normally published on the second Friday of the month prior to the cover date.
Hobby Electronics, 145 Charing Cross Road, London WC2H OEE, 01-4371002. Telex No 8811896 . Published by Argus Specialist Publications Lid. Design and Organisation by MM Design and Print Ltd, 145 Charing Cross Road, London WC2H OEE, 01-437 1002.

Distributed by S. M. Distribution Ltd, 16/18 Trinity Gardens, London SW9 8DX.
Printed by QB Lid, Colchester. Covers printed by Alabaster Passmore.
Notice: The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior written consent of the Company. All resonable care is taken in the preparation of the magazine to ensure accuracy, but Argus Specialist Pulications Ltd cannot be held responsible legally. ©Copyright 1982 Argus Specialist Publications Ltd. Member of Audit Bureau of Circulation.

TIInacicore
 fast \& reliable

Ersin Multicore

Ersin Multicore, solder contains 5 cores of noncorrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.
Comes in handy dispensers and tool box reels in two different alloys $40 / 60 \mathrm{tin}$ /lead for general purpose electrical soldering and $60 / 40$ tin/lead ideal for small components and fine wire soldering.

Size PC1 15 60/40 tin/lead £1.38 Handy pack 0.028 mm du

Multicore Savbit

Size 3 40/60 tin/lead £4.37 Per reel 1.6 mm dia
Size 10 60/40 tin/lead
\&4.37 Per reel 0.71 mm da

Multicore Saubit, solder increases the life of your soldering bit by 10 times, for better soldering efficiency and economy.
Comes in two handy dispensers and tool box reels.

£1.15 Per pack 1 2mm do

Size 12 Savbit 24.37 Per reel 1.2 mm dio

Size SV130 Savbit £1.73 Per pack 0.048 mm din

Multicore Alu-Sol
Multicore Alu-Sol. solder contains 4 cores of flux,

Multicore Solder Wick

Multicore Solder Wick, absorbs solder instantly from tags and printed circuits with the use of a 40 to 50 watt soldering iron.
Quick and easy to use, desolders in seconds.

Size AB10 Solder Wick £1.43 Per pack

Multicore Tip Kleen

Multicore Tip Kleen, soldering iron tip wiping pad. Replaces wet sponges.

Bib Wire strippers and cutters
Wire strippers and cutters, with precision ground and hardened steel jaws. Adjustable to most wire sizes. With handle locking-catch and easy-grip plastic covered handles.

Directory Update

The response to our Directory Of Electronic Component and Hardware Suppliers has been tremendous, from both readers and the suppliers themselves. The reaction has been particularly strong from those suppliers who, for one reason or another, were either not included in our listings - or those whose address/telephone number got scrambled.

Naturally, they will all be listed (correctly) in our next Directory, here are some more companies operating on the supply side of our hobby.
A.P.T. Radar Systems Limited,

Cybervox Language Laboratory
Division,
Unit B, Sprint Industrial Estate, Chertsey Road, Byfleet, Surrey KT14 7LA. Tel. 0932341331.

Specialists in the manufacture of tape recorders and related components together with headsets and spares.
Candis Electronics Ltd.
Highdown Works, Highdown Avenue, Worthing, West Sussex BN13 1PU. Tel. 0903690750.

Specialists in temperature sensing components of all kinds.

Electronic Hobbies Ltd.,

17 Roxwell Road, Chelmsford, Essex

 CM1 2 LY.The correct telephone number is 0245 62149.

Garland Bros. Ltd.

Chesham House, Deptford Broadway, London SE8 4QN. Tel. 016924412.
"We are an established retail firm (20 years) dealing in electronic components, audio equipment, in-car entertainment, and we also do a very large range of CB equipment. A repair service for audio and CB is also available".

Garland Bros. carry all the lines mentioned in the charts, but do not operate a mail order service.
Roadrunner Electronic Products,
116 Blackdown Rural Industries, Haste Hill, Haslemere, Surrey GU27 3AY. Tel. 042853850.
"Developed and manufactured in Hazlemere, our most well-known product is the Roadrunner prototype wiring system. This British product is already used extensively in industry and educational establishments, and is also ideal for the 'home engineer'.

Our hardware products range from packs of terminal pins to 19 " subracks. We also handle computer and wordprocessing products, from typewriter ribbons through to microcomputer systems.

With a combination of the right product, a competitive pricing structure and excellent service, we make customer satisfaction our priority".

Roadrunner are moving to new, larger premises in Haslemere, with the intention of improving overall service to the professional and hobby markets. Orders using Access or Barclaycard are welcomed, either by phone or letter. There is no minimum order level, although a 50p handling charge is made on orders under $£ 5$. Carriage and pack-
ing charges are 5% of the total order before VAT is added.
TK Electronics,
11 Boston Road, London W7 3SJ.
The middle two numbers of TK's "easy to remember" telephone number were inadvertently transposed, rendering it 'not so easy'. The number should be, of course, 5-6-7-8-9-10.
The Vintage Wireless Company, 64 Broad Street, Staple Hill, Bristol BS16 5NL. Tel. 0272565472.
"We are major stockists of obsblete electronic components, especially valves, and operate on a mail order business as well as personal calls to our premises. We try and offer a personal service, and also have a huge library of service data".

The range of services offered include: Sale of radio and television receivers, 1914 to 1954.
Sale of spare parts for the above.
Sale of radio, television and industrial valves.
Sale of service data, technical information, sales data, historical and other items of interest in vintage radio and TV. Restoration and overhaul (but not basic repairs of vintage equipment) of valve domestic and automobile radio of all types.
Sale of new and used books on the subject, plus second hand magazines, often dating back to the First World War!
Hire of radios and related props for theatrical purposes.
Sale of restored radios, with guarantee. Sale of restored vintage car radios.

The full range of stock and vintage radio news can be found in The Antique Wireless Newsheet, published by the company from the above address - contact them directly for subscription rates.

Credit card sales are offered via Access and Barclaycard, and credit card orders are accepted by 'phone.

Flash Point Alarm

As if by magic, we have had replies to our request for suppliers of the difficult bits for this project.

First, the ICL7611 CMOS IC is readily available from Rapid Electronics, Hill Farm Industrial Estate, Boxted, Colchester, Essex CO4 5RD. The telephone number is 020636412.

The other tricky item was the thermocouple, without which the project had very little point; the exact thermocouple required is stocked in vast lengths by Candis Electronics Ltd., Highdown Works, Highdown Avenue, Worthing, West Sussex BN 13 1PU. Tel. 0903690750 . Candis are specialists in the design and manufacture of temperature sensing equipment, and they carry a large stock of all kinds of thermal devices.

Add-Ons For The ZX Computers

Thurnall Electronics have produced a range of accessories for Sinclair's ZX 80 and 81 computers, with an adaptor system to fit the ZX Spectrum.

The range is based on a $16-$ line $1 / 0$ port, and the modular system allows different add-ons to be used simultaneously via an inexpensive motherboard.

Thurnall recommend their system as an ideal way of learning about inputting and outputting information . . .' from the computers. An analogue-todigital converter and an RS 232 interface are also promised. For details contact Thurnall Electronics, 95 Liverpool Rd., Cadishead, Manchester M30 5BG. A catalogue is available - but send an SAE with your enquiry.

A Little Luxury

More advance builders, especially of radio equipment, may find Centemp Instrument's hand-held digital capacitance meter useful, provided they can spare $£ 69$. The little MT-301 is small and robust and designed to travel. It comes complete with battery, alligator test clips, spare fuse and instructions all ready to go. A bold $1 / 2$-inch, $31 / 2$ digit liquid crystal reads out from $0 p 1$ to $200 u$ across eight separate ranges; the controls are all push buttons for easy onehand operation.

This is a slightly unusual piece of equipment, so anybody who feels the need of a digital capacitance meter could do worse than to start enquiring here. Incidentally, for the really rough rider, there's an optional "deluxe protective case" (fur-lined??) for an extra £6.00. Details from Centemp Instrument Co., 62 Curtis Rd., Hounslow, Middx. Tel. (01)8942723.

Hiding His Lights

Our apologies to Dr. D.L.H. Blomfield, who designed the Three-Aspect Signal Lights Controller project which appeared in our September '82 issue.

Dr. Blomfield has certainly earned our collective congratulations for his exceptional design, which has attracted high praise from several model rail enthusiasts.

We generally credit our designers where would we be without them - but due to an oversight in this case, Dr. Blomfield's name was omitted from the article.

Full Protection, But No Racket

Radio buffs going mobile should take a look at a low-noise 24 to 12 volt switched-mode voltage converter gives an output of $13.6 \mathrm{~V}(, 0.2 \mathrm{~V})$ at 6 A continuous current, has a low noise rating of 2 mV RMS below 1 MHz and 1 mVRMS above 1 MHZ , and is fully protected and operable up to $50^{\circ} \mathrm{C}$.

The 6A version is priced at $£ 39.95$ and is supplied with M4 bolts for bulkhead mounting if required. The unit is also available in a 10A version. For fur'ther information contact Davtrend Ltd., 89 Kimbolton Rd., Portsmouth, Hants PO3 6DA.

And we'd better add that the unit is sold in a proper case, and not open to the air as our picture shows it I

Little Boxes

Things for putting other things in may not provide the total answer to how to run an orderly workshop, but they certainly do help, so SSI Fix Equipment have come up with a new system of component storage modules known as Portafix 6.

Each Portafix unit (sounds like something out of Asterix the Gaul, doesn't it?) has 12 bin-shaped drawers, each $2 \times 4 \times 3^{\prime \prime}$ deep. The overall size is $14 \times 14 \times 4^{\prime \prime}$, with a tray area on top, integral carrying handle and (an unusual feature) optional hooks, for carrying tools, at either end of the unit.

The whole thing seems to be designed for absolute minimum spillability and, for travelling, this principle can be taken even further - any two units can be hinged together face to face and securely locked shut - no more drawers sliding out every time the car tilts! Each little bin has a transparent dust-cover which opens upwards and the modules themselves can be stacked.

A very handy bit of storage equipment for any kind of craft which uses small components, from cakedecorating to woodworking to ... well, electronics. At $£ 7.40$ for a single unit and f 14.80 for a double (hinged) unit, this could knock a few of your Christmas present problems on the head!

At the moment Portafix 6 is only available from SSI Fix Equipment Ltd., Kingsclere Rd., Basingstoke, Hants RG21 2UJ, and prices don't include postage and packing, so you will have to enquire about that: telephone 025626511

HE Microlog

K. Manison

WITHOUT DOUBT we are living in a rapidly expanding digital world; everything is going digital. Clocks and watches, once precise mechanical instruments with analogue dials, now consist of tiny electronic circuits displaying the time in digits accurate to a tenth of a second. The acceptance of digital technology can be seen in the rapid increase in the availability of women's digital watches; it is no longer a symbol of male technology!

Digits are also appearing in other areas, long the exclusive domain of analogue indicators, but display methods are not the only field to fall to digital techniques. Our telephone conversations are digitised and transmitted as serial bit streams and who, today, hasn't heard of digital hifi? And with the recent release of video disc systems, digital video has finally arrived.

One of the reasons for the digital revolution, of course, is cost. With the rapid advances of digital integrated circuits - and that superstar the microprocessor - it has become much cheaper to produce a silicon circuit with an LED or LCD display, than to make a complicated mechanical indicator.

In many cases, the increased accuracy and resolution is definitely required and digital systems may be used to excellent effect. In other cases, however, the older analogue systems have many advantages, and that is true also of the analogue computer.

The Analogue Computer

Remarkable though it may seem, the analogue computer, which need not have a single TTL or CMOS logic chip in the whole of its circuit, manges to perform calculations that many digital machines would find difficult. Analogue computers have been around for decades in one form or another. In fact, many of us have used a slide rule without even being aware that it is an analogue computer.

Whereas a digital computer performs its calculations directly, using numbers, an analogue computer will use some physical parameter to represent the values it is to manipulate. The slide rule, for example, uses length; the length is considered to represent the log of a number so that adding two lengths together is analogous to adding logarithms which, of course, is a method of performing multiplication.

Until the cheap digital calculator became available, the slide rule was dexterously manipulated by

generations of engineers and scientists, and it has in no way hindered the advance of technology! In fact, entering experimental results accurate to two decimal places into a calculator and getting out a result with eight places of decimals can be meaningless. If the data is limited to two place accuracy so is the result, and we have to round off the answer anyway. The slide rule, being accurate to two places, can in many cases produce answers that are just as valid as a calculator, and it is not much slower either! To further illustrate the difference between analogue and digital computation, let us look at a common problem. When changing a note for coins, the bank teller can count the money in one of two ways. The most obvious way is to empty a heap of 10 ps on to the table and count the required number. For small sums this is adequate, accurate and, for the experienced teller, remarkably fast. However, if a large sum has to be changed, the digital computing method becomes too slow and also increases the chance of error. So, the teller will weigh the coins and, the weight of a single 10 p piece being known, the scale can be graduated in pounds and pence. This is an analogue method in which weight is the analogue of value. In this case, the analogue method will be faster than physically counting each coin and, with an accurate scale, just as precise.

It is obvious that different applications are better suited to either digital or to analogue computation. For example, analogue computers have long been used for solving differential equations of the type frequently encountered in control theory and
servo systems. While these equations can be solved by digital means, it is a time consuming process and often expensive as well. However, an electronic analogue of the system can be constructed on an analogue computer, the stimulus then fed in and the output viewed in real time on an oscilloscope or chart recorder. Variables of the system can be changed independantly and the process run again and again.

It is the speed of computation, and the graphical output, that give the analogue computer the edge on this type of problem. So now let's look into an analogue computer and see what it consists of and how it can be used. For those that are interested in
experimenting with these machine, the Microlog is a simple and cheap analogue computer that can be used to try out some of these concepts.

Analogue Computing

An analogue computer performs the functions of summation (adding), multiplication, integration and differentiation. While a digital computer can perform all these functions, it can only do them one at a time. So, even though it works very fast it has to perform a series of calculations. Particularly where integration is concerned, many simple calculations have to be made to solve one integral, and, if the step size is kept small to increase accuracy or resolution, then more calculations are required and the time taken is increased.

Say, for example, the solution to the problem $\mathrm{X}=\mathrm{Y}+(\mathrm{V}+\mathrm{U}) / 2$ is required. A digital computer would tackle the problem like this: first, V and U would
be added together and stored as a variable; second, that variable would be divided by 2 ; last, it would be added to Y to give the required answer. A program, written in BASIC, to handle the problem may look like this:

10	INPUTU
20	INPUTV
30	LET $X=(U+V) / 2$
40	INPUT Y
50	LET $X=X+Y$
60	PRINT X
70	END

For a simple problem like this these steps take very little time, but if a large complicated formula were being calculated you can see that this sequential type of process may take a very long time indeed.

The analogue computer, however, uses separate modules to simultaneously perform each function required in the calculation, and the manner in which the modules are interconnected determines the formula being calculated. If two additions have to be performed then two summers will be used, one for each.

For the problem $\mathrm{X}=\mathrm{Y}+(\mathrm{V}+\mathrm{U}) / 2$, an electronic analogue computer would have modules connected together as shown in Figure 1. The triangle symbols are summers and produce the algebraic sum of the input voltages. The circle symbol is a coefficient multiplier, used to divide the sum of $V+U$ by 2 (multiplication by 0.5). You can see that as soon as the input voltages corresponding to Y, V and U are presented to the modules, X will be instantly available. Notice that the analogue computer is effectively performing all of its calculations in parallel, not one after the other. It is also performing an 'on-line' calculation in that the output X will continually follow the inputs. A digital machine would have to prompt for updated values, or interrogate $1 / O$ ports for them. This is what gives the analogue computer a speed advantage, in many cases. To find out how an analogue computer works, let us examine each of the building blocks; then we will determine how to put them together!

Computing Units

An analogue computer uses voltage and time to represent numeric values. For example, a voltage rising from 0 volts to 3 volts over a period of a minute could be used to represent the filling of a 300 gallon tank in the same time. In this case, 1 volt represents 100 gallons, and its variation with time shows the changing level in the tank. So, a plot of voltage against time will show the physical movement of the system we are simulating with the analogue computer. The analogue computer, therefor, needs devices that will sum, integrate and multiply electronic voltages. If we think of these devices as circuit elements, then we can connect them together as a circuit to produce the function we require.

Figure 1. The analogue solution to the equation.

Figure 2 (a). An analogue summing circuit (above); 2 (b) the graphic symbol used for a summer (below).

Figure 3. The circuit of an op-amp integrator.

Figure 4. Above (a), the integrator circuit modified for initial condition input; (b) the usual graphic symbol; (c) the representation used on Microlog's panel.

Figure 5. An op-amp differentiator.

Summers

If our computer is to use voltages to represent physical values then we need an electronic device to add two voltages together; it must produce a voltage which is the algebraic sum of two or more instantaneous voltages.

The simplest method is to use an opamp; if we add several inputs through resistors, we get an output proportional to the sum of the input voltages. A typical circuit is shown in Figure 2a. The summer circuit module is usually shown by the symbol of Figure 2b. The gains, normally 1 and 10, are shown for each input.

Integrators

We stated at the beginning that analogue computers are used to produce solutions to differential equations, and this means that integration and differentiation are involved. Integration is essentially the sum of all the instantaneous values of a function. Normally it is performed between definite limits, say between the times $\mathrm{t}=0$ and $\mathrm{t}=100$. Some initial condition must also be specified if the integration is to be valid. For example, when integrating a voltage signal V . the starting condition may be $V=2$ when $t=0$. Therefore, the integrator must also have an "'initial condition" input.

We can use an op-amp to integrate a voltage; consider the circuit shown in
Figure 3. The output is given as:

$$
V_{0}=-\frac{1}{R C} \int V_{i} d t
$$

Of course, we can integrate multiple inputs in exactly the same waythat we
summed several inputs, and it should also be clear that by changing the input resistors the integrator gains, expressed as $1 / C R$, can be independently set for each input.

Now to set the initial conditions: we must be able to set the output (by setting the charge on the capacitor) to a desired value. In effect, the circuit must behave as a summer up to time $\mathrm{t}=0$, but operate as an integrator after that time. We achieve this by means of two switches, as shown in the circuit Figure 4 a.

If switch SW2 is closed, you can see that you have a summer with only one input, VI \times R1/R2. The capacitor will also have this voltage across it and will be charged to the desired initial condition.

If switch SW2 is opened and SW1 closed, we have an integrator with three inputs. When both switches are open, the circuit acts as a 'hold' circuit - the output will remain at whatever the voltage was when SW2 was opened. This is dependent, of course, on the capacitor remaining charged, but as the input impedance of the opamp is very high, it can hold the voltage for an appreciable time.

In a large analogue computer, these switches are replaced by relays, which allows the machine to be switched from Reset to Compute repeatedly, and the response can be displayed on an oscilloscope. This mode of operation is called Rep-Op, short for Repetitive Operation.

Differentiators

We learn at school that integration is the opposite procedure to differentiation, so that the opposite

Figure 6. The complete Microlog circuit: (above)
 the power supply; (far left) the coefficient
notes:

m1 $=1000$ a centae zero

configuration, in the op-amp circuit, will produce a differentiator. The circuit in Figure 5 produces the differential of the input voltage, and once again we can have several inputs with independent gains.

Coefficient Multipliers

So far we have shown our summers, integrators and differentiators with fixed gains of, eg., 1, 10, or 100. We could, of course, set them to any value required - 2.375 for example - but we lose flexibility if the gains are set to such 'strange' values, as they will only be useful for a calculation that needs that particular number! However, if we have a device that will divide a voltage by $1 / .2375$ (ie. multiply by the coefficient, 0.2357) and then follow that by a summer with a gain of 10 , we have achieved our required gain of 2.375. So we need a voltage, or potential, divider - which is nothing else but a potentiometer!

For analogue computers, the potentiometers have to be precise and stable. Also, there must be some means of setting them to the required value. The way this is achieved is to connect them across an accurate, known voltage and measure the output while adjusting the pot until the desired coefficient is reached. In large machines, this may be done automatically by small servo motors connected to the wiper mechanism. For small machines, such as the one described in this article, the pot has to be set manually. In the example above, the potentiometer could be connected across 10 volts and adjusted until the output at the wiper measured exactly 2.375 volts.

The HE Microlog

Microlog stands for Micro-A nalogue Computer (we can't have digital machines claiming sole rights to the term 'Micro'!). It has been designed as a conceptual trainer to give you a feel for analogue computing and, therefore, accuracy has been traded for low cost and simplicity.

Microlog's patch panel shown in Figure 7 and from it you can see that it has four integrators, four summers and six pots (coefficient multipliers). The Initialise-Integrate-Hold selection is performed by the keyswitch labelled Reset-Run-Hold; no rep-op mode is available as that would entail the use of relays, increasing the cost. The complete circuit is built on one PCB and fits in a type 104 Verobox, with 2 mm plugs used for the patch connectors.
The most expensive item in the Microlog is the meter!

To keep everything simple, single chip voltage regulators are used for the 15 V power supplies and the reference supplies are simple zener diode regulators. Two 348 quad op-amps are used, one chip providing the four integrators and the other the four summers. One of the summers has a capacitor on one input to provide a differentiator function. The complete circuitry is shown in Figure 6.

Project

Figure 8. The front panel wiring diagram, showing the mounting positions of the components and the wiring points leg, point 'f' goes to PCB point ' 1 '; point ' g ' goes to the leverswitch terminal ' $1 a^{\prime}$ '). The switch terminal connections are shown in Figure 9.

The Patch Panel

Having designed the various computing elements that go to make up an analogue computer, we now require a method to interconnect them in order to solve problems. This is usually done by means of a patch panel. The inputs and outputs of each computing unit are brought out to sockets and jumper wires may then be used to connect the desired units to simulate a system or solve an equation.

Construction

The first thing is to drill the front panel of the Verobox for the 2 mm sockets, pots, switches and the meter. Then, using Letraset or similar rub-down lettering, mark out the patch panel and spray with a clear polyurethane lacquer so that the markings will not rub off after a little use. The full-sized patch panel is reproduced on page $x \times$ for use as a template in this operation.

Next, mount all the sockets and pots. When tightening the nuts on the 2 mm sockets, take care not to overdo it or you may strip the thread. Using the wiring diagram, Figure 8, as a guide, connect up the pots to their respective sockets. Again, he very careful when soldering to the 2 mm sockets, as the plastic body melts very easily!

The next step is to mount the input resistors on the correct sockets for the summers and integrators (mounting

Figure 7. The front panel of Microlog.
 BBLUE - OV Y YELLOW = INIIIAL CONOITION INPUTS
BI BLACK
R RED $=+10 \mathrm{~V}$
$M=$ WETER INAUP INPUES AND OUTPUTS

The final front panel wiring is that from the keyswitch to the sockets. Take special care that this wiring is correct, as it is easy to get confused with the connections on the keyswitch. Use the circuit diagram and Figure 9 and double check it when you've finished. It is easier to change incorrect wires then, than at a later stage in the

Figure 10. The PCB component overlay diagram; note the connection points.

construction.
Before the panel can be put back on the Verobox, you will have to remove the central plastic strip that crosses the panel aperture. Don't worry - it doesn't weaken the box in any way. Some time before the testing stage, too, you will have to make up about 20 patch leads with 2 mm plugs on each end; it is best to make assorted lengths, say 3,6 and 9 inches long.

Now you can start to mount the components on the PCB, using the Parts List and component layout Figure 10 to locate each part. First check the

Figure 9. The leverswitch (Keyswitch) wiring connections (left) and the on/off switch connections (above). Note that flipping from RUN to HOLD connects ' h ' to ' g ' etc, and in RESET, ' b ' is swltched to ' c ' and ' e ' to ' d '.
tracks, to ensure there are no breaks or bridges, and then install the IC sockets and solder them in. Do not plug in the op-amps until the check-out procedure, later. Next, install the resistors on the board and once they are soldered, mount the capacitors. Ensure that the orientation of the electrolytic capacitors is correct; the layout diagram shows the way. Finally, install the two voltage regulator ICs; these are mounted with the metal face against the PCB and held in position with a small screw lockwasher and nut, and be sure the regulators are in the right
places. One is a positive voltage regulator and the other negative and if you accidentally swap them around, they won't last a second when you switch on! Bend the leads down into their respective holes and solder them in. Go over the board, then, checking for any solder bridges or dry joints, touching up where necessary. Once the board is complete you can start wiring from the patch panel to the PCB connection points, using the wiring diagrams, Figures 8 and 9. This is where great care must be taken, as it is all too easy to get wires crossed. Give yourself enough length on the wires to be able to route them neatly. and to allow the panel or top. of the box to be taken off without pulling the wires!

The wiring from the PCB to the keyswitch can be done next, again taking care that the correct connections are made. The PCB is then mounted to the panel, using the screw terminals of the panel meter, which also provides the electrical connections to the meter.

The last part of the construction is the power supply unit (PSU). This is extremely simple, consisting of the small transformer, a bridge rectifier

Project

and two capacitors. They can all be mounted on the transformer as shown in the internal photograph. The final stage is the wiring from the PSU to the PCB, and to the ON/OFF switch. After that, you are ready for testing.

Testing

First make sure you have NOT inserted the ICs and that the ON/OFF switch is OFF. Plug Microlog into the mains, switch on and inhale strongly. No burning smell? So far so good! With a multimeter, check that you get plus and minus 15 volts at the correct pins of the IC sockets, and plus and minus 10 volts at the correct pins of the IC sockets, and plus and minus 10 volts at the patch panel red and blue sockets, respectively. None of these voltages are critical, and the 10 volt supplies may be a little out due to the tolerance of the Zener diodes. If any of these supplies are not present check the AC voltage out of the transformer. If this is present and you are getting good unregulated $D C$ from the diodes, then check the IC regulators. Hope you didn't swap them!

When all is well, patch from any red socket into the meter socket and adjust the trimpot on the PCB for a positive full scale deflection. This sets the meter to whatever voltage you get from the Zeners, and so eliminates the need for an absolute 10 volt reference. For completeness, you can then patch into a blue socket and see that you get negative full scale deflection.

Switch off, then, and plug in the op-amp (ICI) that is used for the summer circuits. Patch up the circuit shown in Figure 11, set RV1 fully anticlockwise and switch on. You should see an increasing negative meter deflection as you rotate the pot clockwise, showing that the op-amp is inverting correctly. A mid-range set ting on the pot should give a - 5 reading on the meter. Now patch into the $\times 10$ input; the same thing should happen, except that you can only move the pot about a tenth of its travel before you get a full-scale reading. Test the other summers in the same way.

Now for the integrators. Switch off and plug in the second op-amp, IC2. Patch up the circuit shown in
Figure 12, and make sure the keyswitch is set to Reset. Switch on and check that operating RV1 gives you a varying output on the meter; it should, in fact, behave just like the summers. Re-turn the pot to zero and switch to Run. If RV2 is also at zero, nothing should happen but if you turn RV2 up a little, the voltage output will slowly move towards negative full scale. Turn RV2 to zero and the ramp will stop. Now patch the input of RV2 into the negative reference (blue socket) and repeat the test; the voltage output should slowly ramp the other way. Switching the keyswitch to Hold should stop the ramp and hold the present value, while switching back to Run resumes the

Parts List
RESISTORS(All $1 / 4$ watt 5% carbon)R1-11, 20-27 1 M
R12-15, 28-39 ook
R16-19, 40-43 10k
R44470RR45,4610kPOTENTIOMETERSRV1-6
RV7
on 50k 50k
linear carbon
linear carbonlinear carbon trimpot
CAPACITORS
C1-4 680n C352* polyester
C5, 6
$47 u$25 V axial electrolytic
C7,8 $22 u$25 V axial electrolytic*C352 series replaces C280
SEMICONDUCTORSIC 1,2348
quad op-amp
ramp. This test should be repeated for the other integrators and be performed on each input. The speed of the ramp will be faster when you patch into the $\times 10$ inputs.

The last thing to check is the differentiator input on summer 3 . Set up according to the patch diagram of Figure 13. The output should be zero until you move RV4. Any movement in the pot, ie. change in the input voltage, will cause a change in output, but as soon as you stop moving the pot, the output will return to zero. A positive change in input will give a negative swing and a negative change will produce a positive swing.

If all of the above tests work out as described, you now have a working Microlog. If they don't work, check your wiring very carefully, especially the wiring to the keyswitch. If that is OK, then check that the op-amps are firmly inserted in their sockets. There is not much else that can be wrong!

IC3
IC4
BR1

- 15 V regulator 7915
+15 V regulator
bridge rectifier

MISCELLANEOUS
SW1
SW2. T1
M1
$240 \mathrm{~V} / 3 \mathrm{VA}$ transformer

Case (Vero type 104 or similar); $6 \times$ knobs; 2 mm sockets $(48 \times$ white, 4 x red, $5 \times$ blue, $4 \times$ black, $12 \times$ green, $4 \times$ yellow); 2 mm plugs (approx. 30); PCB, wire, solder etc

BUYLINES
page 34

Using Microlog

All being well, you are now the proud owner of an HE Microlog, the smallest analogue computer in the west! So what do you do with it? Well, the best way to describe its capabilities is to show some examples of problem solving using it.

Earlier in this discussion we mentioned using voltage as the analogue of water level in a tank, so lets use Microlog to solve that well known school problem: "How long will it take to fill a bath if water is flowing in at X gallons per minute and flowing out at Y gallons per minute." Working this out at school, you assumed a constant inflow, (reasonable) and a constant outflow. However, with the wisdom of advancing years, you now know that outflow will actually depend on the head (or level) of the water, so the problem is not quite as simple as it

Figure 11. Patch diagram for testing the summing amps.

Figure 13. Testing the differentiator.
first seemed. First, then, we shall look at the filling problem with no outflow all all.

If we fill the bath from the tap the inflow will be a constant, ' K ',
determined by the setting of the tap and the water pressure. The quantity poured in, 'di', during time interval 'dt' is:
$\mathrm{di}=K . d t$
Now the rise in level ' d h' for quantity 'di' is:
$\mathrm{dh}=1 / \mathrm{A} . \mathrm{di}$
where ' A ' is the area of the bath.
Rearranging to make 'di' the subject we get:

$$
\mathrm{di}=\mathrm{A} \cdot \mathrm{dh}
$$

Substituting this for 'di' and
rearranging we get:

Figure 14. Developing the bathtub circuit.

Figure 15. The bathtub completed.

Figure 12. The patch for testing the integrators.

Figure 16. Patching the bathtub.

So now we have a differential equation expressing the rise in level with time. The value ' K ' represents the amount by which the tap is turned on and the main water supply pressure.

Now about the emptying part; the amount of water that will flow out in time interval 'dt' we shall call 'do'. Therefore, 'do' will be equal to the head ' h ', multiplied by some constant ' C ', where ' C ' takes into account the size of the plug hole! Mathematically then:

$$
\mathrm{do}=\mathrm{C} . \mathrm{h} . \mathrm{dt}
$$

If the bath has a cross-sectional area of ' A ' then the fall in head will be equal to:

$$
d h=-\frac{1}{A} \text {. }
$$

The sign is minus because the level is dropping. Rearranging we get:

$$
\mathrm{do}=-\mathrm{A} \cdot \mathrm{dh}
$$

Substituting we get:
A.dh = - C.h.dt
or:

$$
\frac{d h}{d t}=\frac{-C \cdot h}{A}
$$

This, too, is a differential equation showing the change of head with time, but this time it is due to the bath emptying. Therefore, the change in level at any instant in time will be the sum of the filling and emptying. So, finally, we can write:

$$
\frac{d h}{d t}=\frac{K}{A}-\frac{C}{A} \cdot h
$$

This is a differential equation of the type that Microlog can solve with ease; let's set up the circuit. First we will need an integrator, so that if we
put 'dh/dt' in we will get ' - h ' out (which is what we want). So, we have to put voltage signals corresponding to the right hand side of our equation into the integrator, and we will then get out a voltage that will be the analogue of the water level at any instant in time. The circuit, then, will look like Figure 14. Notice that each input does in fact represent a term on the right of our equation and that, as the inputs are summed, the terms are added, just as in the equation.

To complete the picture we have to set the initial conditions of the system; in this case the initial condition is the level of the bath water before we start the filling and emptying process. We can set it to zero lan empty bath) or at any level up to full. The complete circuit is shown in Figure 15 and the Microlog patch diagram is shown in Figure 16

Now to run the program: first set Microlog to Reset and adjust RV2 to set the water level to full. That will be minus full scale deflection of the meter. Ensute that RV1 and 3 are turned fully off, anticlockwise, and switch to Run; the water level should remain constant. Now pull out the plug! You do that by turning up RV1: the value determines the size of the plug hole and thence the rate of outflow. Notice that the water level is dropping, as shown by the meter movement, and that the rate slows down as the bath empties. If we turn on the tap, RV3, you can fill the bath. Of course, the filling rate will have to
be greater than the emptying rate or the level will slowly drop. It is interesting to start with an empty bath and start pouring water in. If the plug is open, the level will start to rise until the increased head causes the outflow to equal the inflow. At this point the level will remain constant. Turn down the inflow rate a little and after a while a new equilibrium level will be found. The time taken is the 'response time' of the system that we have just modeled on our analogue computer!

So instead of doing lengthy calculations, or getting wet running an experiment, Microlog has allowed you to set up an analogue of the system under test. You can try various settings for all the pots to see how the result changes.

Let's look at another application. You may remember that integrating $\operatorname{SIN}(X)$ gives $-\operatorname{COS}(X)$, and integrating $\operatorname{COS}(X)$ gives $-\operatorname{SIN}(X)$

Again, this is a differential equation of the type easily set up on Microlog. Look at the circuit and patch diagram in Figures 17 and 20. If you patch this on Microlog, set the initial condition of integrator 1 to 10 volts and then switch to Run you will get out a sinewave or a 90 degree phase shifted sine wave (COS). Using pots RV1 and 2, you can slow down the frequency of oscillation (or by patching into the $\times 10$ inputs of the integrators you can speed it up). This makes quite a neat and simple very low frequency sinewave oscillator. Due to the tiny leakage of the capacitors and the small input currents of the op-amps the amplitude will decay eventually, but it will continue to oscillate for many minutes.

Loops and Bumps

Two areas in which analogue computers are often used are those of modeling dynamic systems and servo loops. These two problems require the solution of second order differential equations of the type:

$$
A \frac{d^{2} x}{d t^{2}}+\frac{B d x}{d t}+C x=0
$$

Let's take the front suspension of a car: what will happen if you hit a large pothole in the road and your shock absorbers are bad? Figure 19 is a simple representation of the type of system we are going to model, and the equation that describes the response of the system to a disturbance (a pothole) is:
$M \ddot{X}+D X+S X=0$
where $\dot{X}=\frac{d^{2} x}{d t^{2}}$ and $\dot{X}=\frac{d x}{d t}$
$M \ddot{X}$ is the inertial force due to the mass of the car, $D X$ is the viscous damping force produced by the shock absorber, and SX is the restoring force of your front spring. X, of course, is the displacement of the suspension system, and we want to see how quickly this will be restored to the original value.

To patch this on Microlog we first rearrange the equation so the \ddot{X} is the subject:

$$
\ddot{X}=-\frac{D X}{M}-\frac{S X}{M}
$$

Figure 17 (top left). The $\operatorname{Sin} X / \operatorname{Cos} X$ generator circult.
Figure 18 (top right). A model suspension.
Figure 19 (middle left). Suspension circuitry.
Figure 22 (middle right). Model of a closed-loop servo system.
Figure 23 (right). Response curves of a
 closed-loop servo.

Integrating \ddot{X} gives \dot{X}, and integrating \dot{X} gives X. These can then be summed according to the formula to give $\ddot{\mathrm{X}}$. The circuit and patch are shown in Figures 19 and 21. Pot RV1 is used to set the D/X term and RV2 determines S / X : Set them both to about mid range. But if we drive along a perfectly flat road the suspension will not move, so we have to simulate the bump. This is done by setting an initial condition into the integrators, to show that the suspension has been displaced.

Turn Microlog to Reset and set RV4
to about mid value and RV3 to give -50 on the meter - this is a medium sized pothole! Now switch to Run and watch the meter. It will return to zero (the original position) and then overshoot, then reverse direction but overshoot zero again, though not by so much this time. Eventually, it will settle down to a smooth ride again. Try playing around with RV1 and RV2; reducing RV2 reduces the effectiveness of the shock absorber and you will find the front end of your car bouncing up and down for the next few miles. Increase it, and it takes a

Figure 20. $\operatorname{Sin} X / \operatorname{Cos} X$ patch.

Figure 21. Pothole patch.
long time to return to the level condition again. If you increase RV1 you stiffen the spring. A high RV1 and RV2 setting simulates the rock hard suspension of a sports car, while a low setting for both (especially P1) gives you the ride of a big American Cadillac!

A closed loop servo system, of the type shown in Figure 22, also has a second order differential equation to describe its performance. In this case, instead of turning to the zero displacement position, the system must move to the position corresponding to the input signal Y.

Microlog can model this system too, and in fact it is very similar to the
car suspension problem. To change the patch to model the system shown in Figure 22, all you have to do is take the output of RV3 from the initial condition input of the integrator and plug it into the free summing input; this pot is now your position control. RV1 now sets the gain of the feedback loop and RV2 the inertia of the system. Switch Microlog from Reset to Run and then move RV3 to a new position; the meter output will follow but overshoot, and then come back. You can determine the best response by playing with the gain and inertia of the system, and if you have an oscilloscope you can plot the response and should be able to see the sort of
curves shown in Figure 23.
These are just a few of the possible systems and problems that can be solved with an analogue computer. Microlog is not designed to produce accurate numerical results; however, it can give a good idea of how a system will function, and give you a feel for analogue computing.

It can also be used to add signals, or the integrators can be set up to give you a very slow ramp. The differentiator input can be used to measure the slope of a ramp and it can also be used to detect drift in a circuit, so Microlog can be quite a useful lab instrument as well!

Go on. Build one!
HE

MODULES FOR SECURITY \& MEASUREMENT

LINTRUDER ALARM CONTROL UNIT
 CA 1250
 This exciting new module offers all the possible features likely to be requrred when building an intruder alarm system. Whether used with only 1 or intruder alarm system. Whether used with only 1 or 2 magnetic switches or In conjunction with several 2 mognetic switches or In conjunction with several ultrasonic alarm modules or infrared units, a really affective system can be constructed at a fraction of the cost of comparable ready-made units. Supplied installation straight forward, the module is fully installation straight guaranteed
 ested and guaranteed. - ovàiable in kit form $\mathrm{E16.95}+$ VAT
 - Builh-in electronic siren drives 2 loud speakers Provides exit and entrance delays together with fixed alarm time
 - Battery back-up with trickle charging facility
 Operates with magnetic switctes, w sonic or
 I.R. units
 - Ant-tamper and panic facility

DIGITAL VOLTMETER MODULE DVM 314

Fully built 8 tested

- Posinve eb negative volage with an FSD of 999 mV which is easily extended
Requlres only single supply 7.12 V
- High overall accuracy $\cdot 0.1 \%+1$ digr - Large bright 0.43" LED displays - Supplied with full apphications data

With this fully built and calibrated module a wide range of accurate equipment such as multimeters. thermometers, battery indicators ete. can be constructed at fraction of the cost of ready-made unita. Full Fully guaranteed, the unit has been supplied to electricity authorities. Government deparments. etc.

Temperature Measurement Kit DT. 10

£2.25 + VAT
Using the I.C. probe supplied. this kit provides a linear output of 10 mV C over the temperature range from $10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The unt is ideal for use in conjunction with the DVM module providing an accurate digital thermometer

Power Supply PS. 209

E4.95 + VAT
This fully built mains power supply provides two stabilised isolated outputs of $9 \mathrm{~V}, \mathbf{2 5 0} \mathbf{m A}$ each. The unit
is ideally suited for operating the DVM at Temperature Measurement module.

Power Supply \& Relay Units PS 4012
£ 4.25 + VAT
Provides a stabulised 12 V output and relay with 3A contacts. The unit is designed to operate one or two

Siren Module

SL 157
$£ 2.95+$ VAT
Produces a loud and penetrating sliding tone operating from 9-15V. Capable of druing 2 off 8 ohm speakers to SPL of 110 db at 2 M . Contains an inhibit facility for use with shod lihing loops etc. or other break to activate circuits

Add VAT \& 50p post and packing to all orders.
Shop hours $9.00-5.30$ p.m.
(Wed, $9.00-1.00$ p.m.)
Units on demonstration - callers
welcome. S.A.E. with all
enquiries.

Hardware Kit

HW 4012 E4.25 + VAT
A suitable ready-drilled case with the various mountDesigned to house the socket and nuts and bolic. ogether with its power supply. Size: $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$

* ACCESSORIES *

3-position Key Switch for use with
CA 1250 supplied with 2 keys
Magnetic switch (with magnet) 5- Horn speaker for use with CA1250

RISCOMP LIMITED

Dept: ETI/12,
21 Duke Street,
Princes Ristorough, Bucks.
Princes Risborough (084 44) 6326

COMING SOON TO

THE HE DIGITESTER

A complete digital test system which will grow into a complete testing and breadboarding facility. The series commences with the description of our Chip Pıobe, a simple logic tester that can also stand alone as a handy test instrument.

SWITCHED MODE POWER SUPPLIES

A complete explaination with a useful easy-to-build project includedl A must for CBer's and other users of mobile equipment.

CUMULATIVE INDEX, 1979-1982

Not only the best, but the whole of Hobby Electronics indexed for you in one issue (we're hoping it will cut down our mail!).

READER SURVEY, 1983

Yes, folks, once again it's the time of the year when WE ask YOU the questions. Come on, tell us what you think!

JFETS EXPLAINED

Often used in our projects, these devices are easily understood (which is why we use them).

January issue on sale at your newsagent from 10th December . Place your order now!

Who but the people who made the micro possible could help you understand it?

The Texas Instruments Electronic Library.

 An in-depth series in understanding today's world of electronics.

 An in-depth series in understanding today's world of electronics.}

The Understanding Electronics Series was specially developed and written to give you an in-depth knowledge of this world.

Each book is comprehensive, yet easy to understand. As informative for the electronics buff as for someone who's simply interested in what's going on today.

Together the library will give you the most complete range of titles available. Take advantage of our introductory offer and choose the book, or books you want from the titles below. You'll find whole new worlds of advanced technology unfolding before you

Everything you've always wanted to know about:

 1. Understanding Electronic Control of Energy Systems. Ist edition. Ref. LCB 6642. Covers motor, generator, power distribution, heating, air conditioning, inrernal combustion engine, solar and nuclear systems. Softbound 272 pages. £3.95.
2. Understanding Electronic Security Șystems.

lst edition. Ref. LCB 7201. A complete guide covering the basics of hard wired, photosensitive, infrared, ultrasonic and microwave systems and their use in different applications. Softbound 128 pages. $£ 3.95$.

3. Understanding Solid State Electronics.

3rd edition. Ref. LCC 336L. The principles of solid stare theory. It explains electrical movement, with intermediate tuition on the applications of solid state devices. Softbound 282 pages. £3.95.
4. Understanding Digital Electronics. Ist edition. Ref. LCB 3311. Describes digital electronics in easy-to-follow stages. It covers the main families of digital integrated circuits and data processing systems. Softbound 260 pages. £3.95.
5. Understanding Microprocessors. Ist edition. Ref. LCB 4023. An in-depth look at the magic of the solid state chip. What they are, what they do. Applications of 8 -bit and 16 -bit microprocessors; and design from idea to hardware. Softbound 288 pages. £3.95.
6. Understanding Computer Science. Ist edition. Ref. LCB 5471.

This book tells you in everyday English how today's computer has been developed, what goes on inside it, and how you tell it what to do. Softbound 278 pages. £3.95.

7. Understanding Communications Systems.

Ist edition. Ref. LCB 4521. An overview of all types of electronic communications systems. Softbound 282 pages. £3.95.
8. Understanding Calculator Maths. Ist edition. Ref. LCB 3321. Brings together the basic information-formulae, facts, and mathematical tools-you need to "unlock" the real power of the hand-held calculator. Softbound 230 pages. £3.95.

9. Understanding Optronics. 1st edition. Ref. LCB 5472.

Optronics is the application of light and electronics to perform a wide range of usefut tasks. From car headlights to missile guidance systems. Softbound 270 pages. $£ 3.95$.

10. Understanding Automotive Electronics.

1st edition. Ref. LCB 5771. Learn how electronics is being applied to automobiles. How the basic mechanical, electrical and electronic functions and the new microprocessors and microcomputers are being applied in innovative ways for vehicle drive train control, motion control and instrumentation. Softbound 288 pages. £3.95.

How to order

Fill in the coupon below or if someone else has already used it, simply: 1. List reference numbers and quantities required.
2. Calculate total order value. Add $£ 1.50$ for postage and packing. 3. Send the list, plus your cheque payable to Texas Instruments Ltd, PO Box 50, Market Harborough, Leicestershire. Allow 30 days for delivery.

Texas INSTRUMENTS
 朝

Stereo Noise Gate
 R.A. Penfold

Remove hiss and noise from your recordings! Mono or stereo, our noise gate deals with both.

Stereo Noise Gate

NOISE is present in every electronic circuit, and in audio circuits it results in the all too familiar background "hiss". Although modern electronics components have provided great improvements in noise performance in recent years, noise in audio circuits can still be very troublesome at times, and there can sometimes be a build-up of noise which results in a poor signal-tonoise ratio when using certain combinations of equipment. Rerecording material can also lead to a build-up of noise.

Two useful ways of combatting audio noise are to use either a noise gate or an expander. These two devices are very similar, but there is a very important distinction between them. A noise gate is rather like an automatic switch which normally allows the input signal to pass straight through, but cuts off the output when noise only is present at the input. Noise is most obtrusive during pauses in the main signal, and a noise gate can therefore give a large subjective improvement in performance.

An expander permits low level signals to pass normally but at medium and high signal levels, it gives a progressive boost to the processed signal. Thus the noise level remains the
same but the maximum volume level is increased; or, the noise level can be reduced with the maxirnum volume level remaining the same; or, a combination of the two, as desired. A simple volume expander was described in the January 1982 issue of Hobby Electronics.

Whether a noise gate or an expander is the best choice depends upon the particular circumstances in which the equipment will be used and, to some extent, on personal preferences. A disadvantage of an expander is that it alters the dynamic levels of the processed signal, whereas a noise gate simply cuts off the noise during breaks in the signal. A noise gate is therefore normally preferable for use where changes in dynamic level are undesirable. However, a gate is likely to be less satisfactory when the wanted signal may, at times, be almost lost in the noise, since it is then possible that the gate might cut off the signal. A noise gate is of most use when there is a fairly strong noise level, but the wanted signal is usually significantly above this level.

The unit described here is a stereo noise gate, although by using only one channel it can obviously be used in mono. Although expanders normally process each stereo channel separately
it is preferable for a stereo gate circuit to switch the two channels in unison, as it can be rather disturbing if one channel cuts out while the other is still presentl This circuit therefore switches the two channels on and off simultaneously - see How It Works for an over-view of the system.

The Circuit

The full circuit diagram of the Stereo Noise Gate is shown in Figure 1. It is based on an LM13600N integrated circuit, which is a dual operational transconductance amplifier. An operational transconductance amplifier has features common with an ordinary operational amplifier, but there are also a number of important differences - a transconductance amplifier provides an output current (rather than an output voltage), governed by the differential input voltage, and it also has an additional input which enables the gain of the amplifier to be controlled over a wide range, from zero up to about 20 dB. Note that a gain of less than one is equivalent to attenuation!

In order to make a transconductance amplifier operate as a voltage amplifier, it is merely necessu:y to add a load resistor at the ulutput; R20 is the load resistor for IC3a while R24 is the load for IC3b. The current flow into the

Figure 1. Circuit diagram of the Stereo Noise Gate. Note that both channels are included.
control input, rather than voltage, determines the gain of the amplifier. This is achieved by simply adding resistors (R15 and R25) in series with each control input so that the current flow is proportional to the applied voltage. Resistors R16 and R27 apply a small bias current to the control inputs; this gives the ri- - -uit about -20 dB of gain (ie, 20 dB attenuation) in the high attenuation mode, rather than completely cutting off the output signal, which usually gives more satisfactory results. The circuit can be made to operate as a true gate, if preferred, by simply omitting R16 and R27.

The LM13600N incorporates two Darlington Pair output stages which are used as emitter follower buffer stages, to give the VCAs a low output

Project

impedance. R21 and R29 are the iscrete load resistors for these stages. The LM13600N has 'linearizing diodes', which enable a higher input signal level to be handled for a given distortion level, and these diodes are given the appropriate bias by R17 and R28.

In order to operate as a voltage controlled amplifier, a transconductance amplifier must be used open loop (ie, without any negative feedback). R1, R2, and C1 form a centre tap on the supply rails and the inputs of the two transconductance amplifiers IC3a, b, biased to this voltage by R18,19,23 and 26. R13 and R22 are used to reduce the voltage gain through each section of the unit to about unity (with a high control voltage), and also to boost the input impedance to a little over 12 k .
The mixer stage is a conventional operational amplifier, IC1, and gives a voltage gain of about 47. Threshold control RV1 is a volume control type attenuator, and the output from this is coupled to a high gain common emitter amplifier based on Q1; the combined gain of Q1 and IC1 is needed in order to boost weak input signals to a high enough level to drive the subsequent circuitry.

The output of Q1 is coupled by C6 to a simple rectifier and smoothing circuit (D1, D2, C5 and R8) and RV2 controls the decay time of this circuit. Op-amp IC2 is used as a simple inverting trigger circuit, with positive feedback and hysteresis provided by R12;
'hysteresis' simply means that the input voltage at which the output triggers to the high state is lower than that at which it triggers back to the low state. This prevents instability when the input voltage is close to the switching threshold levels. D3 and R14 are used at the output of the trigger to very slightly slow the rise-time of the control
voltage, and to provide a slightly larger slowing of the fall-time. This prevents "clicks" from being introduced at the output as the gate changes state.

Construction

An aluminium and steel instrument case measuring about $152 \times 114 \times 44 \mathrm{~mm}$ is used to house this project - it is about

Figure 4. The intemal wiring and connections inside the case of the Noise Gate.

the smallest case that could be used to accommodate all the parts. The three controls are mounted on the front panel and four sockets are fitted on the rear panel of the case.

Apart from the battery, all the other components are mounted on the printed circuit board, and this is detailed in Figure 3. As IC2 is a MOS device, it should be fitted in an 8 pin DIL IC socket and the normal MOS handling precautions should be observed. Use Veropins where connections to offboard components will eventually be made.

The completed board is mounted on the base panel of the case using 6BA fixings, including 6.3 mm spacers to hold the connections on the underside of the board clear of the metal case. The unit is then completed by adding the point-to-point wiring, illustrated in Figure 4. Ordinary PVC covered multistrand connecting wire is used here; it is not necessary to use screened leads.

In Use

The unit is intended for use with a high level signal and can take inputs of 2 volts. RMS or so without serious distortion occuring. The threshold voltage at which the gate switches to the unity gain (zero attenuation) state can be varied from about 1 mV RMS (with RV1 set fully clockwise) to about 70 mV RMS. The best setting is likely to be such that the noise signal alone is not quite sufficient to trigger the circuit to the zero attenuation state, but it is worthwhile experimenting a little to find
the setting which gives the best subjective results.

The circuit will respond very rapidly to an input signal (fast attack), but the decay - the delay between the cessation of the main signal and the gate switching to the high attenuation state - can be varied from less than a
tenth of a second to more than two seconds. A fast decay time will often give best results, but it might sometimes be found that the gate tends to switch back and forth between the two states fairly rapidly; a slightly longer decay time should eliminate this problem.

Parts List

RESISTORS (All $1 / 4$ watt 5% car	
R1,2	5k6
R3,4	100k
R5	4M7
R6	47k
R7,12	1 M 8
R8,20,24	10k
R9	4 k 7
R10	470k
R11	.1M
R13,22	. 12k
R14	.1k2
R15,17,25,28	15k
R16,27	220k
R18,19,23,26	390R
R21,29	3k9
POTENTIOMETERS	
RV1	22k
RV2	1 M
	carbon

CAPACITORS (All axial electrolytics unless noted)
C1,12............100u10 10 V
C $2,3 \ldots 100 \mathrm{n}$ C280 polyester

clip, wire, solder etc.

BUYLINES page 34

How It Works

THIS Noise Gate design is a stereo type which uses a separate VCA (voltage controlled amplifier) to process each channel. With a low control voltage, each VCA gives a substantial amount of attenuation (about 20 dB - a 90% reduction in the signal voltage, in other words). A high control voltage gives unity gain (zero attenuation) through each VCA and the input signal is effectively allcwed to pass straight through.

Automatic: switching - to zero attenuation in the presence of a proper
input signal but high attenuation with only noise applied to the input - is achieved by first mixing the two input signals and then amplifying them. The amplified signal is then applied to a rectifier and smoothing circuit to produce a DC output level proportional to the strength of the combined input signals. this voltage is fed to a trigger circuit which has a high output voltage if the input voltage is above a certain threshold level, and a low voltage if it is not; this is the control voltage for the VCAs.

The circuit is adjusted so that with only background noise present at the input, the voltage fed to the trigger circuit is below the threshold voltage and the VCAs give a high attenuation level. With a high input signal, in addition to noise, the input voltage to the trigger circuit goes above the threshold level and the VCAs 'open' producing zero attenuation. Thus the required automatic attenuation of the noise-only input signal is obtained.

H
 N.D.N. Belham

 TVAmp

 TVAmp}

Specially designed to let Grandad hear the telly clearly without annoying the rest of the household, it will also double-up as a general-purpose bench amplifier.

ALTHOUGH we loved the old man and owed him a lot, Grandad was becoming a pest with his complaints that he couldn't hear the TV sound. For a while we did our best, though the volume was painful, but something obviously had to be done about it - if not for ourselves, then certainly for the sake of the neighbours! Fortunately our TV set is a modern one, with two headphone sockets built in, so when we bought him a pair of 'phones, we thought the problem had been solved - but it wasn't long before he refused to wear them because he didn't like the voices "inside his head" when they should have been coming from the screen. Anyway they became too

Figure 1. The response curve for the average person's sense of hearing latter Fletcher and Muson).
uncomfortable for him, after an hour or two. Another solution had to be found.

Grandad wasn't really deaf; he did not need a hearing aid, as he could carry on a normal conversation, but he did find it difficult to follow conversations on the telly. Strangely, it seemed to us, he preferred the sound from a small portable set to the one with full range hi-fi reproduction. Indeed, several factors seemed to be involved, some of a general nature and some peculiar to the elderly.

The diagram of Figure 1 shows the average frequency vs intensity response for an average person's hearing. Clearly, the energy required for a sound to be just audible varies greatly

Project

Figure 2. The circuit; the input is high impedance adn will accept any audio input of around 10 to 50 mV .

POTENTIOMETERS

PR1
miniature cermet preset

CAPACITORS
(All radial electrolytic unless stated) C1,5,7.

100n disc ceramic

SEMICONDUCTORS

IC 1
LM380 power amplifier 2N3819

BR1 FET transistor 50V1A

LED 1 bridge rectifier TIL2 11 $0.2^{\prime \prime}$ green LED

MISCELLANEOUS

SW 1
SPST
mains toggle switch
T1 6-0-6 1.2VA
Crystal microphone; centre-tapped transformer; speaker (see Buylines); Mains 'P' clip; mains lead and plug (2A fuse); case (see Buylines); $1 / 4^{"}$ jack socket (plastic); LED bezel; PCB, wire, solder etc.

BUYLINES \qquad
with frequency; very little sound energy is needed if it is at the right pitch, and the frequency range 2000 Hz to 4000 Hz is where the average ear is most sensitive.

Anyone who has worked in long range radio communication will know that restricting the audio bandwidth to between 500 Hz and 4000 Hz greatly improves the clarity of the transmission (especially in adverse atmospheric conditions), and this seems to indicate that, for speech, most of the essential information is contained in that frequency range.

Another factor, it seemed, was that the elderly find it difficult to concentrate on more than one sound at a time. They are easily put off by unwanted 'noise' - this is as much to do with the way in which sound is interpreted (psychoacoustics) as with

the sense of hearing. Hi-fi-quality sound, with its extended frequency range, produces too much 'noise' at the upper and lower limits of hearing which, for the elderly, masks the information in the mid-range frequencies. So, simply turning up the TV sound was not the solution because the unwanted frequencies are also boosted (this, also is why deaf aids are personally tailored to an individual's frequency response curve).

Grandad's Specifications

So, with these points in mind, we were able to write a specification for Grandad's TV amplifier:

- The output frequency must be tailored to peak at about 2000 Hz , with little response below 500 Hz or above 4000 Hz .
- The output should be directional, so that it could be directed at Grandad, not at us!
- The output level to be sufficient to allow it to be placed near the TV screen, to give it realistic 'TV sound'.

The first step was to select a small loudspeaker, which automatically restricted the frequency response to the specified limits and-also produced a degree of directivity. Unfortunately, the power available from a headphone socket is not sufficient to drive a loudspeaker, so an amplifier had to be designed and constructed. A single integrated amplifier, the LM380, proved adequate for the job, especially as it needs very few external components.

The price of batteries being what it is (expensivell, a simple mains power supply was built into the unit, together with an on/off switch and a LED power-on indicator. Since most TV sets do not have a headphone output, the circuit was adapted for general use by incorporating a microphone input. A crystal mic (use a short lead, because of its high impedance) is quite adequate, or a more expensive electret type can be used with a longer lead, if necessary. Dynamic microphones contain a coil which will respond to the varying magnetic field produced by the video scan, so they cannot be used here.

Figure 3. The PCB layout, viewed from the component side. Large areas of copper have been left to serve as a heatsink for the LM380 amplifier.

Grandad's Circuit

The microphone will give an output of a few tens of millivolts when placed fairly close to the loudspeaker with the volume control set for normal listening, and this is fed via coupling capacitor C1 to a FET amplifier, Q1. This provides the high impedance input required for the microphone and a voltage gain of between five and six.

A 4u7 capacitor, C3, couples the output of the FET stage to the preset volume control PR1, and C5 couples the signal to the inputs of IC1, the LM380 amplifier. This has an internally fixed gain of $34 \mathrm{~dB}(50 \mathrm{Vout} / \mathrm{Vin})$, but it is reduced to 20Vout/Vin by using a 'common mode' input, where part of the input voltage is coupled to the inverting input of the amplifier via the 100k resistor, R5.

Capacitor C6, connected to the bypass pin (pin 1) of IC1 de-couples the internal bias of the amp, preventing $A C$ ripple on the output, while C7 performs the same function on the supply line.

The output is fed to the speaker via C8; together, C8 and the speaker voice coil impedance form a high pass filter, rolling off the response below 200 Hz when an 8R speaker is used. The speaker itself is the main factor in shaping the frequency response; by choosing a small 4" diameter unit and monting it in an unsealed box, most of the lower frequencies are attenuated,
while the mechanical properties of the cone ensure that frequencies above about 4 kHz are also 'lost'.

Finally, the amp is powered from a simple DC supply derived from a $6 \mathrm{~V} / 100 \mathrm{~mA}$ centre-tapped transformer and a diode bridge; the ripple voltage is filtered out by C9. LED 1 is included to provide 'power-on' indication, with R6 to limit the current through the LED.

Construction

In order to improve the stability of the amplifier (reducing the chance of it becoming an oscillator), it is mounted on a PCB which has a very large area of copper. The unused pins of the IC are soldered directly to these areas - do not use an IC socket in this project! This method also provides an effective heat sink.

The layout shown in Figure 3 is designed for a preset volume control to be mounted on the PCB; should a fullsized pot be required as a front panel volume control, leads must be taken from the PCB to the potentiometer solder tags. The choice of preset or variable volume control is left to the constructor - perhaps the solutior. depends on how many "knobtwiddlers" there are in the house!

Grandad's TV Amp can be built into any enclosure large enough to hold the components, including the speaker. Our prototype was cased in a rather
classy custom-built box-from Newrad Instrument Cases Ltd (see Buylines for the ordering details); this also has a pre-drilled hole for a panel-mounted volume control.

Operation

The problem with any microphoneamplifying system is the risk of acoustic feedback, which will occur whenever the mic is picking up sound from the loudspeaker. Steps must be taken to prevent this from happening!

First, the best position for the TV Amp is on the floor, or on a low table in front of the TV set, so that the sound is coming from the same direction. Second, the mic should be placed as close to the TV speaker as possible, but without actually touching it. Then, the preset or volume control must be adjusted so that, at normal listening levels, there is no trace of whistling or "howl round" from the TV Amp.

In most cases, this arrangement will be quite satisfactory though for very deaf people, it may be necessary to place the Amp closer to the listener and to use a longer mic lead. If such is the case, a crystal microphone should not be used. with a lead longer than about three feet.

CASID MAGIC from TEMPUS

WORLD'S MOST VERSATILE WATCHES

10 alternative displays over 60 useful functions

	$\begin{array}{r\|r\|} \hline 83 \\ 92: 1400: 08 \\ \hline \end{array}$

AX-250
(left)
£21.50
AX-5
Resin
£19.95

WATER RESISTAN

Rugged, go anywhere sports watches. All have a full display of time and auto calendar. Alarm and selectable half-hourly time signal. Countdown alarm timer with repeat memory function, ideal for dinghy racing. Professional $1 / 100$ second stopwatch. Time is always on display, regardless of display mode. Amazing 5/7 year lithium battery life. 12/24 hour display.
Except for the W-35, the stainless steel case watches have a protective black bezel. ($2-450$, W-450C).

50 metre water rasistan

50 m W/R
100 m W/R

100 m W/R

Please also the J-30 under Jogging watches.

We also stock Citizen watches and Casio, Citizen and Seiko Divers watches

IF YOU SEE A BETTER OFFER WE WILL BEAT IT

ANALOG/DIGITAL
Analog time plus $12 / 24$ hour digital dual time, calendar, alarm, time signal, pro stopwatch.
AA-86 LCD hands. Also has C/D alarm timer f19.95
AQ-101 True analog hands, plus date memory £39.95

GAME WATCHES
Calendar, alarm, time signal, pro. stopwatch NEW

GOLF WATCH
CC-9 £17.95
When playing real golf
Counts strokes at each hole. Totals strokes over 9 holes.
When playing Game Par for each of 9 holes.
 Distance from hole indicator. Select golf out of bounds. Strok club. Select direction counter. Memorises of swing. Bunkers and lowest score.

GM-30 Destroyer/submarine sea battle game.
GM-40 Catch blocks from UFO and build pyramid.

GAME/CALCULATOR WATCHES
Calendar, alarm, time signal, pro.
stopwatch.
Popular DIGITAL INVADER game

ULTRA SLIM CALCULATOR WATCH CS-821 Specifications as CA-851, below centre, but without the game function. Only 6.6 mm thick
£24.95

MULTI-ALARM WATCHES

Daily alarm with pre-alarm; daily alarm with post-alarm; weekly alarm for extra daily alarm); hourly time signal; Calendar; pro. stopwatch.

CA-951

CA-951 Calculator, 2 melody alarms
CA-95 Resin version of CA-951 £19.95
MM-400 6 melodies. Monthly alarm or extra daily alarm. Dual time. Time is always on display.

JOGGING WATCHES
Calendar, alarm, time signal, pro. stopwatch. Pacer signal for jogging and rhythmic sports.

J-30 50 metre water resistant. Countdown alarm timer. Input data: Pacer signals. Output data: Elapsed time. $37.7 \times 31.4 \times 7.6 \mathrm{~mm}$ thick.
J-50 Countdown alarm timer. Input data: Pacer signals, length of stride. Output data: Elapsed time, distance covered.
$\mathrm{J}-100$ as $\mathrm{J}-50$ but with calculator function instead of countdown alarm timer. STANDARD WATCHES
Calendar, alarm, time signal, dual time, $1 / 10$ second stopwatch.

VALUE FOR MONEY GIFTS

FREE ACCESSORIES WORTH 10% of price on request with all CASIOTONE KEYBOARDS
The world's fastest selling keyboards GENERAL SPECIFICATIONS
All Casiotone keyboards (except VL-Tones) are polyphonic - up to 8 notes can be played simultaneously. They all have an integral amplifier and loudspeaker, plus output jacks for
headphones and external amplification.

DIGITAL SYNTHESISER

A RUNAWAY SUCCESS ALREADY

10 preset voices and 1,000 switchable sounds, with a protected memony for your 10 favourites. 5 -octave split keyboard; programmable arpeggio/real time sequencer;
transposition. $48 \times 36 \times 14 /$ inches. 22.51 bs .

BAR-CODE PROGRAMMABLE

The 345 (max) note steps and 201 (max) chord steps can be programmed by both Casio bar-coded music scores and/or manual entry via the keyboard
The Auto Play function, One-Key-Play function and Melody playl, can teach you to play your pryou the next note to "One of the finest reaching aids so far developed." EEMM.

Ст-701

5 octave, split keyboard. 20 preset sounds with variable vibrato and sustain. Fingered or auto chords with bass and arpeggio. 16 thythm accompaniments with fillin. Two
sound effects. $5 \times 371 \times 13 \frac{1}{2}$ inches. 27.6 bs . MINI-PROGRAMMABLE

A portable mini keyboard version of the CT-701. 4 octave (not split) keyboard. 10 thythm accompaniments. Without he two sound effects, it is otherwise very similar to the CT-701. Battery or mains powered, with optional mains adaptor. $23 \times 25 \times 7$ inches. 6 lbs .

PORTABLE 4 OCTAVE EASY-PLAY

f149 25 voices with sustain and vibrato. 8 rhythm accompaniments with 'Intro/fill-in' function. Easy-play auto chords, bass and arpeggio. $2\{\times 25 \times 7\}$ inches. 5.51 bs . Battery or mains.

OTHER CASIOTONES

CT-403 [275. MT-40 £99. MT-31 £69. VL-5 79.95. VL-1 [35.95. VL-10 $\mathbf{E 2 6 . 9 5 .}$

Price includes VAT, PGP. Delivery normally by return, subect to availability. Send cheques, PO, or phone your ACCESS IVISA number to:

TEMPUS

Dept HE, 38 Burleigh Street,
Cambridge CB1 1DG Cambriage CB1
Telephone 023312866

FREE 1982/3 CATALOGUE AVAILABLE ON REQUEST Don't forget -
IF YOU SEE A BETTER OFFER WE WILL BEAT IT!

ELECTRONIC GAMES

CG-100
Space Shuttle £12.95

CG-20
Money \& Bomb f12.95

CG-10 and CG-20 are powered by solar cells and do not re quire batteries. Two very skilful games.

BG-20 Boxing Game
f16.95

A new version of the very successful BG-15. Now has a full screen with the calculator at the side. Clock and alarm functions.

CA

MG-880 £10.95 MG-885 Digital Space Invaders

Mg-Tm f14.95

MG-77 3 games - A speed game, a game of skill and a gitine of chance. Built-in clock function. £14.95
MG -898 (not shown) compendium of $\mathbf{3}$ games $£ 10.95$

ALARM CLOCK COMPENDIUMS

BG. 15 Boxing Game. Clock, alarm, calculator E 14.95 FT. 7 Fortune Teller, Matchmaker, Calendar $£ 14.95$ BQ-1100 Biolator Alarm clock, calendar $£ 16.95$

MELODY ALARM CLOCK CALCULATORS

UC- $\mathbf{3 6 0} \mathbf{£ 1 9 . 9 5}$
3 melodies, universal calendar, date memories, 2 date alarms, daily alarm, countdown alarm/stopwatch, time memory. UC-365 wallet size. UC-360 card size.

PORTABLE COMPUTERS
Details on request
BASIC FOR BEGINNERS
CASIO

Now you can enter the exciting new world of computers with this easy to understand system.
FX-801P Casio's latest masterpiece. A high speed computer with integral micro-cassette data control and hard copy FX-700P NEW scientific OWERTY computer -................ 79.95 FX-702P The established favourite $\quad 79.95$ FX-7ARP PC-1500 BUSINESS COMPUTER

SCIENTIFIC CALCULATORS

Wallet size
FX-550 10d, 48f, SD, R/P, (6)) £15.95 SOLAR E17.95 FXE950 10d, 49f, SD, R/P, (115)]. H, b SOLAR $£ 19.95$

FX-8700 $8+2 \mathrm{~d}, 46$, SD, R/P. ((5)), H, b 1 year. Clock, calendar, $1 / 100$ stopwatch, alarm, hourly chimes and 2 countdown alarms. Wallet size

PROGRAMMABLE SCIENTIFICS

Wallet size, with wallet. Non volatile memory FX-3600P $10+2 \mathrm{~d}, 50 f, \mathrm{SD}, \mathrm{R} / \mathrm{P}$, ((18)), Integrals, Regres sion. 2 program areas, 38 program steps, 7 memories 22.95 sion. 2 program areas, 38 program steps, 7 memories $\mathbf{F X}$-602P Plus FREE Program Pack worth $£ 9.95569$ $10+2 d, 50 f, S D, R / P,(133)) .10$ program areas, up to 512 steps, up to 88 memories. Alpha/numeric

SINCLAIR SPECTRUM SOFTWARE

Professionat quality software from MICRO USE AND LEARN Vol. 125 BASIC PROGRAMS on cassette tape plus SUPERB 100 PAGE BOOK C9.95 USE AND LEARN VOI. 239 MACHINE CODE ROUTINES. On tape plus 50 PAGE BOOK THE DATABASE The best? 48 K only THE SPREADSHEET The besi? 48 K only | 19.95 |
| :--- |
| 9.95 |

BE AN AGENT
Sell our products to your friends and family and earn yourself 10\% commission

Dims: $19 \times 76.5 \times 149 \mathrm{~mm}$ Fx-78d, 23f, (13)) c9.95 (61)
E14.95

TEMPUS, 38 Burleigh Street, CAMBRIDGE CB1 1DG
Please supply/send details of

Total £enclosed, or debit my ACCESS/VISA card number
Name ...
Address
1

YOUR GUIDETOTHE WORLD OFMICROPROCESSORS MICRO-PROFESSOR

Alow cost tool for learning. teaching \& prototyping.

Mlcro-Professor is a low-cost $Z 80$ based microcomputer which provides you with an interesting and inexpensive way to understand the world of microprocessors.

Micro-Professor is a complete hardware and software system whose extensive teaching manual gives you detailed schematics and examples of programme code. A superb learning tool for students, hobbyists and microprocessor enthusiasts, as well as an excellent teaching aid for instructors of electrical engineering and computer science courses.

The Mllcro-Professor is much more than a teaching device. Use it for bread boarding and prototyping. designing your own custorn hardware and software applications with 280,8080 and 8085 compatable code.

The standard 2 K bytes of RAM is expandable to 4 K , and the standard $2 K$ bytes of ROM can be increased to 8 K .

All this plus built-in speaker, a cassette interface, and sockets to accept optional CTC/PIO. Bus is extendable

As well as being an exciting learning tool, the Micro-Professor is a great low-cost board for OEM's.

Micro-Professor

EPB-MPF EPROM Programming Board
ع84.95 + p8p
For all $+5 \mathrm{~V} / \mathrm{KP} / 2 \mathrm{~KB} / 4 \mathrm{~KB}$ EPROMS Read/Copy/Lisy verify Capability.
SSB-MPF Speech
Synthesizer Board
£69.95 + pep
A vocabulary of up to 400 words based on the TMS
5200 chip.
PRT-MPF Printer
Board 874.75 + peip
Memory dump
BASIC program Isting
280 disassembler

Micro-Professor is a trade mark of Multitech industrai Corporation $z 80$ is a trade mark of Zilog ine.

Feel like sounding off? Then write to the Editor stating your Point Of View!

New Devices for Old Effects

Dear Sir,
With regard to your Fuzz-Box project in the February ' 82 HE , please could you inform me where I can obtain the BC650 transistors, as I have been unable to find them listed in any catalogue.
Graham Walsh,
Pudsey.
When the Noiseless Fuzz-box was designed, the BC650 transisitor had only recently come on to the constructors' market. Consequently it was difficult to obtain (one source was, and still is, Magenta) and we had to do a lot of leg-work to seek out suitable suppliers. Now, however, it has proved to be quite popular and should be available from the larger semiconductor stockists. Incidentally, it does no harm to ask about a component that doesn't appear in a given advertiser's list. Once the enquiries start flooding in, most companies will obtain stocks from the distributors.

Echoes On The Line

Dear Sir,
I tried to 'phone you for clarification of the HE Echo-Reverb (May '82, pages
33-37) but apparently you are no longer on the phone (why not pay the bill?). Two points: the circuit and layout differ for the diodes, and the circuit and Parts List differ on the value of R15 Are there any other discrepancies?

Do pay the phone bill - it's such a long wait by Post Office Non
Communications system.
H. W. Fletcher,

Marlow Bottom,

Bucks.

The HE Gremlins chose our EchoReverb unit for their pièce de résistance - and they really did a job on it. The full list of errors are given in the reply to the following letter. Our apologies to all concerned; the Gremlins have been dealt with!

Our phone bill has been paid, but it won't help you - we cannot take enquiries and produce a magazine every month, and if we didn't produce the magazine, you'd have nothing to enquire about, would you?

Designer on the Dole

Dear Sir,
For an eight month old dole freak like myself, the HE Echo-Reverb met a very real need.

Some months ago I had scraped up the pennies and lashed out on two

TDA 1022 ICs with a view to designing my own phaser/flanger/chorus/echo/ reverb. Needless to say I found myself hopelessly out of my depth leven with the Mullard spec sheet to hand!! To cut a long story short, my courage has been rewarded by the appearance of your design (heaven-sent/).

Thanks! I now hope to proceed with. switchable clock timing capacitors for phase/flange/chorus/echo and possibly a sine-wave modulator for the VCO input of the 4046 clock. II fear a sawtooth oscillator would be prone to spikes and hence 'clicks' in the output.

Please keep up the cost pruning! Thanks again.
D.P. Allen

Wembley,
Middlesex
The Echo-Reverb (HE May '82) has been one of our more popular projects. For a modest outlay and with careful setting-up, the unit will produce varying degrees of reverberation and echo. However, as with some other projects of this standard, a few errors crept into the printed article. So, to all readers who've had a few problems, here's the list - exhausative, we hope! p. 34 Figure 1. RV2 wiper comes from pin 9 of IC 1. D2 is shown inverted (ie. cathode goes to OV).
p. 36 Figure 2. The end tags of RV2 are connected to +15 and OV supply rails. Transformer should be 9-0-9 V .
p. 37 Parts List

RV1 should be 47 K log.
RV4 should be 22 K
log.
The transformer
should be 9-0-9 V . R15 should be 27K.

A Better Building Block

Dear Sir,
I enjoyed the series of articles Into Electronic Components. As a now regular reader of your magazine, however, I must say the most interesting and informative articles to date are the "Building Blocks" - 1 would appreciate more of the same. Detailed information on ICs, etc. is of great value, too.
A. Easom (G4OPI),

Scarborough,
N. Yorkshire.

We are pleased that you appreciate the Building Blocks series. A great deal of work goes into researching the
information and presenting it in a form that is easy to understand. However, details of applications for ICs and general constructional info can also be found in our How It Works sections, and Breadboard pages. And in this issue we start a special Building Blocks series on ICs used in mirocomputers, called Components for Computing.

A Better Class of Meter

Dear Sir,
Having read copies of various electronic magazines, may / say that yours is very enjoyable and you can be sure that I will buy HE every month in future.

Is it possible to construct a voltmeter of range 0-16 V DC with a digital LED seven segment display, calibrated to read to a tenth of a volt?

If so I would be grateful if you could supply me with any relevant information including circuit diagrams, etc.
Paul Humphries,
Newcastle upon Tyne,
Co. Durham.
Thanks for the compliment, although we'll answer your questions (usually) even if you're rude about us! It's not only possible to build this voltmeter, but we have just done one in the August ' 82 issue, and with a better specification, at that.

A Little Ingenuity

Dear Sir,
In the Three-Aspect Signal Lights project (September '82) you suggest fitting microswitches to the points to obtain the required switching. Those modellers who have PECO points can use the PECO "accessory switch". This clips to the point motor (if fitted). see no reason why this neat unit cannot be fitted to other makes of points, with a little ingenuity. I think this project has been one of your best yet. It would be ideal for large club layouts where there is more than one operator.
Yours in electronics.
M. Wilkins,

Ipswich.
Suffolk.
A double thanks to Mr. Wilkins; first for the comments and second for the information on accessory switches. We are always happy to pass on tips from readers who can provide extra info about any of our projects! Thanks too, to Dr. D.L.H. Bloomfield, who designed that model project, but who was not properly credited in the article.

ELECTRONIC IGNITION Makes a good car beffer

TOTAL ENERGY DISCHARGE eiectronic
ignition gives all the well known advantages of the best capacitive discharge systems.

PEAK PERFORMANCE —— higher output voltage under all conditions:
IMPROVED ECONOMY no loss of ignition performance between services.
FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.
ACCURATE TIMING _ prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE _ immune to contact bounce and similar effects which can cause loss of power and roughness.
PLUS
SUPER POWER SPARK $31 / 2$ times the energy of ordinary capacitive systems $-31 / 2$ times the power of inductive systems.

OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.
BETTER STARTING \qquad full spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the 'ultimate insurance' of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM

 it provides a top performance electronic ignition system at less than half the price of competing readybuilt systems. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools.AS REVIEWED IN ELECTRONICS TODAY INTERNATIONAL June '81 Issue and EVERYDAY ELECTRONICS December' 81 Issue

FITS ALL NEGATIVE EARTH VEHICLES,
6 or 12 volt , with or without ballast
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE $£ 2.95$

STANDARD CAR KIT
 £15.90
 Assembled and Tested
 £26.70

TWIN OUTPUT KIT
£24.55
For MOTOR CYCLES and CARS with twin ignition systems Assembled and Tested : $\mathbf{£ 3 6 . 4 5}$
plus £ 1.00 U.K. P. \& P. Prices Include VAT.

ELECTRONIZE DESIGN

Dept.E, Magnus Road, Wilnecote Tamworth, B77 5BY Phone: (0827) 281000

TECHNICAL DETAILS

The basic function of a spark ignition system is often lost among claims for longer 'burn times' and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark.

The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. However, a spark lasting $2000 \mu \mathrm{~S}$ at $2000 \mathrm{rev} / \mathrm{min}$. spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.

The solution is a very high power, medium duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.

SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.

HIGH EFFICIENCY INVERTER A high power, regulated Inverter provides a 370 volt energy source - powerful enough to sture twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.

TYPICAL SPECIFICATION

SPARK POWER (PEAK)
SPARK ENERGY (STORED ENERGY) SPARK DURATION OUTPUT VOLTAGE ILOAD 50pF

EQUIVALENT TO CLEAN PLUGS)
TOTAL ORDINARY ENERGY CAPACITIVE DISCHARGE DISCHARGE

$$
140 \mathrm{~W} \quad 90 \mathrm{~W}
$$

$36 \mathrm{~mJ} \quad 10 \mathrm{~mJ}$
$135 \mathrm{~mJ} \quad 65 \mathrm{~mJ}$
$500 \mu \mathrm{~S} \quad 160 \mu \mathrm{~S}$
38 KV
26 KV
OUTPUT VOLTAGE (LOAD 50pF + $500 \mathrm{~K} \Omega$
EQUIVALENT TO DIRTY PLUGS) 26 KV 17 KV
VOLTAGE RISE TIME TO 20 KV
(Load 50pF)
$25 \mu \mathrm{~S} \quad 30 \mu \mathrm{~S}$

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

Jean Baudot

 A name to ring

 A name to ring bells with.

 bells with.}

Ian Sinclair

BAUDOT - the name might ring a few bells if you are into computing: drop the last two letters and you get baud, which is a unit for the speed of transfer of information. The old-fashioned teleprinter, for example, operates at a rate of 110 baud, but a modern cathode-ray terminal may work at 2400 baud or higher. Having established the connection, let's look at the story of J. M. E. Baudot.

Jean Baudot was born in 1845 at Magneaux in France, and you will search in vain for details of his early life, unless you are prepared to look through a fairly large library. You won't find his name mentioned, often; it's the usual problem - a brilliant engineer whose name has entered our language hardly gets a mention, even in his own country.

He seems to have had the conventional schooling of the French middle classes at the time, which was, incidentally, one of considerable social unrest, with minor revolutions breaking out all over Europe. His firm interest, from the time that he left school, was the growing technology of the electric telegraph, and it was to this that he turned his attention when the time came to earn his own living.

Dots and Dashes

In these early days, the universal code for telegraph use was Morse code, which relies on the use of two types of electric impulse, a long (dash) and a short (dot) - the form of the code is shown in Figure 1. Now there is nothing wrong with this as a code, and it is used, to a limited extent, to this day, but it was devised in 1832, long before electrical communications began to evolve into the systems that were beginning to be commonly used in the 1870 s . Baudot, in particular, thought that the use of Morse code was very restricting. In 1874, he was working on the development of what we now call time-multiplex telegraphy, which allo wed one telegraph line to carry several sets of messages between different sets of transmitters and receivers, with no interference between the signals. The system that he was working with was a completely mechanical one; each signal source was connected to a separate contact of a group arranged in a circle, over which a revolving contact, like the brush of a dynamo, revolved at high speed, connecting each contact in turn to the single telegraph line. The current return was through the earth, which is why we use the term "earth" to mean current return path to this day. At the receiving end, a similar arrangement was used to connect the signals from the telegraph line to the different receivers but obviously, the sytem could operate correctly only if the motors driving the rotating contacts were synchronised.

Another of the problems of using this
system with Morse code was that each dash was liable to be broken up, by the action of the rotating brush, into a series of dots, on different channels; unless the speed of the brush was varied, so that it spent more time on a contact transmitting a dash than on one transmitting a dot, it inevitably scrambled the message. Many other people, at the time, were trying to synchronise the movement of the rotating brushes to the varying dots and dashes of Morse code, but Baudot came up with a completely different answer.

Figure 2. Early multiplex telegraphy.

Figure 3. The modern 5 -bit code. The bipolar version (top) is preferred because the difference between signal levels is easier to detect. This signal later became standardised as RS232.

Digital Codes

His approach was to use an entirely different code, one which used what we would now call digital signals - on and off - as distinct from the Morse code signals of 'long' and 'short'. The impor tant point about Baudot's signals was that they were separated by equal time intervals. For example, if we take the two Morse signals, R (. -.) and S (...), the time between the first and last dots of each letter is not the same, because the middle dash of the R takes about three times as long as the middle dot of the S. Baudot devised a new 5 -digit code, using pulses and spaces of equal length, so that the time needed to transmit a five-character message was always the same. This was the breakthrough that multiplex systems needed because the speed of the rotating contact (commutator) could now be synchronised to the pulse rate of the code.

Baudot patented his five-unit code in 1874. Five digits gave a choice of 32 characters, so that the early Baudot codes allowed the transmission of the letters of the alphabet (upper case) plus a few punctuation marks and operator signals (eg, BELL), but no digits. A later version of the code used seven digits and it is this version which has evolved into the ASCII seven-bit code that is used almost universally in computers.

The Baudot code was a major step forward in telegraphy because, as well as permitting more efficient multiplexing, it also permitted the faster development of the logical accompaniment to multiplexing - mechanical methods of sending and receiving telegraph signals.

The transmitter was primitive - if the operator released the key too soon, the wrong character would be sent - but it was a step forward from manual transmission. It was soon superseded by other methods.

Baudot's equally ingenious receiver used a method that was to remain current right up to the time when fully electronic printers were developed. It can still be seen, with some modern improvements, in some Telex terminals. It all looks like a mechanical nightmare and anyone who has tried to get an oldstyle teleprinter going will agree that it is. Baudot's work vastly improved the rate at which data could be transmitted, and the principles which he established are in use to this day, although the methods have changed - for the better! Baudot code was not entirely logical and it was improved by Don Murray in 1903, so that the modern 5 -bit code and its 7 -bit successor are often known as Murraycodes rather than Baudot codes. The principles, nevertheless, are those of Baudot, and a good reason for immortalising his name in the term "baud rate"

Dept. C1 High March, Daventry, Northants NN11 4HQ. Tel: 032725523 Telex: 311245 GRENEL G.

Please add 50p per order postage and packing plus 15\% VAT on total. No VAT on overseas orders, postage at cost. Cheques and postal orders made payable to Emos Limited. Send large SAE for comprehensive catalogue.

HE Microlog
Our prototype was built into a standard Verocase, code 65-2523E, however because of the amount of drilling and marking involved, we had a chat with Newrad Instrument Cases, who have designed a suitable case for the Microlog. It is available from them (their address is printed elsewhere in this column) for $£ 7.90$ including VAT, p\&p, complete with screen printed front panel and all holes drilled and punched. The lever switch is a Post Office type 1000.

Tape/Slide Synchronizer

There should be no problem obtaining the parts for this project; just remember that the relay is a $12 \mathrm{~V}, 2$-pole subminiature (ie PCB mounting) type, and choose the jack sockets to fit your sound system.
Phase Four
If your local supplier does not stock the TL064, it is always available fromTechnomatic, who also stock the 2N5457 FETs; a TL084 can be substituted for the TL064, if you are willing to accept increased battery usage. Once again, the custom case for our prototype was made by Newrad Instruments (see elsewhere in this column for their address). Intruder Alarm
All the components contained on the PCB should be easy to obtain. The remainder will vary in availability according to the sort of system you envisage. However as a guide, suitable sirens can be bought from Greenweld.
A source for most of the other switches, mats and foils etc is Maplin.
Stereo Noise Gate
Most of the components are readily available and you should be able to get the thing working within a few hours.
The low voltage electrolytic is sold by Greenweld, who also stock a range of suitable cases. Other sources for a case are Lightning and West Hyde.

Big Ear

A complete list of parts for this project is available from Bewbush Audio, 26 Hastings Road, Pound Hill, Crawley, Sussex. The cost of the kit is $£ 15.00$, including VAT, post and packaging.

TV Amp

Newrad Instrument Cases

have produced a case for our prototype, as shown in the photograph; this is available for $£ 5.00$, plus posage. Newrad Instrument Cases are at Tiptoe Rd., Wootton, New Milton, Hants BH25 5SJ.

Components Order Form
Use this convenient form to order components from suppliers advertising in Hobby Electronics!

Paul Coster

A Four-stage audio phaser unit, based on last month's Breadboards design.

AN AUDIO PHASER is simply a circuit designed to produce a 'comb filter' (Figure 1). When the notches of the 'comb' are swept up and down the audio spectrum, the musical effect known as 'phasing' occurrs. One of the first times this trick was used on a recording was in 1968; the song was
"Pictures of Matchstick Men" by a group called Status Quo. Another was "Itchycoo Park", by the Small Faces.
As a slightly more interesting (and relevant) diversion, it is worth mentioning that 'phasing' is not the same as a similar musical effect called 'flanging'. Flanging depends on a reasonably long time delay - as much as, oh, a millisecond or so; mixing the delayed signal with an undelayed signal also results in a comb filter, but now the notch frequencies are spaced at musical intervals - thirds, fifths, flattened ninths and so on - and the effect so produced has a more "musical" quality, so it is said. Flanging was discovered by the American record producer, Phil Spector...but that's another story!

Shifting Circuits

The HE Phase Four, however, is a phaser. It is based on the circuit of Figure 2, a single stage phase shifter producing 90° of phase shift from input to output.

At zero frequency (DC), the input to the non-inverting pin of the op-amp is blocked by the capacitor, C1, so the circuit acts as an inverter with a gain of one; this, of course, is equivalent to a phase shift of 180°. At very high frequencies, though, the capacitor becomes a short circuit and so the opamp becomes a non-inverting amplifier, still with a gain of one; the phase shift now is 0°.
But at some intermediate frequency. set by the time constant (RC) of the
high-pass filter network on the noninverting input, the phase shift will be exactly 90°; the gain is still one! Essentially, the op-amp is buffering the phase-shift produced by the high-pass net work of C1 and R3, maintaining a constant gain of one.

If two of these units are cascaded the input signal passing through one, then the other - the total phase shift will be 180° at the frequency set by the RC time constant, and if the phaseshifted signal is then added to an un-

Figure 1. A comb filter forms a series of notches in the frequency response curve.

Figure 2. The basic phase shifting circuit.

Figure 3. The frequency-phase response of the circuit in Figure 2. The crossover point is set by the values of R3 and C1.

Figure 5. The Phase Four circuit consists of an input buffer (IC1a), four stages of phase shift (IC2), and an output buffer (IC1b). The triangle wave generator (left) drives the FET gates and consists of a square wave generator (IC3a) and an integrator (IC3b).

Parts List

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
RESISTORS \\
(All \(1 / 6\) watt, \(5 \%\) carbon)
\end{tabular}} \\
\hline \& 47k \\
\hline R3, 4, 6, 7, 9, 10, 11, 12 \& 0,11,12 82k \\
\hline R5, 8, 11, 14 \& 10k \\
\hline R15 \& 33k \\
\hline R16 \& 22k \\
\hline R17 \& 100k \\
\hline R18 \& 12 k \\
\hline R21 \& 8k2 \\
\hline R22 \& 1 k \\
\hline R.23 \& 68k \\
\hline R24 \& 120k \\
\hline \multicolumn{2}{|l|}{POTENTIOMETERS PR1} \\
\hline PR1 \& 470k \\
\hline \& iz. carbon prese \\
\hline RV1 \& 100k \\
\hline RV2 \& log carbon

.220 k

\hline \& log carbon

\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{| CAPACITORS |
| :--- |
| (All metallised poly carbonate, unless noted) |}}

\hline \&

\hline \&

\hline \multicolumn{2}{|l|}{C1,2 10 n}

\hline \& ceramic disc

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}}

\hline \&

\hline \multicolumn{2}{|l|}{16 V radio electro}

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C7.................... 150 n}}

\hline \&

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}}

\hline \&

\hline
\end{tabular}

SEMICONDUCTORS

IC1
TLO72

IC2	dual BIFET op-amp TL064
	quad BIFET op-amp
IC3	LF353
	dual J-FET op-amp
Q1-4	2N5457
	N-Channel FET

MISCELLANEOUS

BUYLINES
page 34
the same in either case.
The voltage sweep for the FETs is produced by ICs 3a,b, and LF353. The two op-amps are configured as a triangle-wave generator; in fact the sweep could be controlled by any slowly varying cyclic waveform, such as a sine wave or sawtooth, but the triangle shape works best in this application.

The circuit works in two stages: IC3a produces a square wave output and this is integrated by $3 b$ to give the triangle shape. RV2 controls the frequency, ie the sweep rate, between the limits of about 0.1 and 10 Hz , with the values

Figure 6. The PCB component overlay.

chosen. The values of C9 and C10 are not critical, but they must be connected as shown, to form a simulated bi-polar capacitor.

Construction

Assembly of this project is not particularly difficult; simply follow the component overlay (Figure 6), taking care that the ICs and electrolytic capacitors are correctly positioned. One point to note is that RV2. a potentiometer with a logarithmic characteristic, must be connected the right way round; otherwise, the variation
in sweep speed will all come at one end of the rotation

The ideal case for the Phase Four is the custom built job supplied by Newrad Instruments (see Buylines for details), though any case large enough to contain the PCB and batteries would do; it depends on how heavy-footed you are!

The only adjustment required is to set PR1 so that the gain through the phaser is the same as in the 'bypassed' condition. Simply set the depth control for minimum and adjust PR1, switching between effect and bypass, until the levels sound equal.

BFFAK AUDO $=$

HIGH QUALITY MODULES FOR STEREO MONO AND OTHER AUDIO EQUIPMENT
 been suppoiers to menetacturers of ligh quelity adio exipment throughout the wortd - to dete, well over 100.000 modues have been sodd - this is wity discerning amateur onthususts and protessonals atiterinsist on using BA PAK modues in then eacipmem.

They know ther every item is designed and tested to do the jablor which it is mitended bet ore it leaves the lactory. Whatever you are bulding there is a bit or modute in the BIPAK range to suit your every need

AUDIO AMPLIFIERS
510 warts (PMS)
AL20 5 wett Audio Amp Modde 22.30 V supdy 23.57 AL30A
sipply

POWER
SUPPLIES
PS12 24 Supply Sait: $2 \times$ AL10 $2 \times$ AL20 $2 \times$ AL30 8 PA12Sit3 E1. S5. SPMoo 32x Stabilsed spply Sut: 2 I ALEO PA100 to 15 wets EAM SPMI2045 45 v Sublised supply Sur: 2 : AL60 PA100 to 25 Soblised supply
 SPM12085 ©fo Statised supply Sut: $2 \times$ AL 120 PA2010 $1 \times$ AL250 E6. 30

MINIATURE FM

TRANSMITTER MODULE
Frea: $95-106 \mathrm{MHz}$ Range: 4 mile Sire: 45 mm $\times 20 \mathrm{~mm}$ Add 9v. batt. Not licensed in UK Ideal for: 007 -M19-fBI-CIA-KGB-etc. Price: $E 5.50$ MAGNETIC CARTRIDGE PRE-AMPLIFIER
Eyov the quabity of a megnefic carridge with your ceramic equipment using the MPA 30 which is 1 quabing preamp. enabling megnetic carmopes to be used wher preaifies exist for ceramic car undees only. With a ON inpar soctee \& tur, essy to tollow insructions
 - inper 35 mm Ourpar 100 mv E 327.

MONO PRE-AMPLIFIERS

 MMIOO sitrade for disco miner. MMIDOG sulable foThe MMITOO and Miniog mono promplifers are compartie with the ALGR M88 Al 120 and AL250 power amplifiers and ther associsest power supphes
 Microphore Mer outpur 500 mm E1242 murtog Supply voltage 40.65 in inuts 2 Guitus. Microphones Mar corput 550 mm
£12.43.

AUDIO AMPLIFIERS

 152530 watt IRNSI
AUDIO AMPLIFIER

Audio Ampifier, 50 W R.MS. with integra heat sink and chor acrait protection
Intsoducex to lutall the deminend for a luth proteciso
power amp, capobite to stiming nyin quabiry ppeater
ssslems at up to 50 w with distrom levest balow. 15%
 aggans, etc The genes oudy rated contponerts ensure continuous operation al hgh catpon leveds Alizo 50 wati Auctio Amp Mocule. 50.70 supody
£13.14.

AUDIO AMPLIFIER

185 went IPMSI, ALSO
A power ampitier providing an ourpur of up to 125 w RMS. into a 1 otm laad. Four 115 w tancistors in the output stage makes it ettrentily rugged molie damage from incorrect of short circcit loods is prevented of a four transistor provection oirait for use in many applicabons sach as disco unis, saund reinflacement srsiems, beckground music players etc. AL250 125 watl Audio Amp
f19.60. Modide 5080 V supply

STEREO

PRE-AMPLIFIERS Pa12 Supply voltege 22.32 in inpis sensitivity 300 mm Suit
 inputs. Tape Tuner Mag P.U. Sunt. ML601ALE $£ 17.65$.
 PU. Sur: NAOMA ITMAL250 51122

$2+8+s, 2$

The PAXOO is dasically our popular PA160 modifications being made to make it compative with the higher anpur amolifers ie. At 120 \& AL 250 the unit boasts six pusth button selectors giving a choice of 3 inputs. 2 finters, for both hagh and low frequencies and a steeo or mono button, all contining 10 give a top quabiry stergo preampifiee and tone contral.

Transtorners are not incuded wit

 power supplies SPM120 Range also requily reservoir and outpur capacitors
TRANSFORMERS

20341.7 mmp 35 s sit SPM80 fasa 20052 mm 55w Ex.E5 2050
 20112 amy $0.555_{6} 65$ Sut SPM12055
 30 c350 2013150 mA 150150 Surt SG30 6160

ACCESSORIES
139 Tem Cabiner Surl Stereo 30300×235 : 81 mm [700 140 Teud Cabmet Suir STAI5 425×200 z SSmm crase iploo font Pane for Palivo of
 PACOO E1 Ma GEIOFPP hom Panel for one

 Ampliferl ElV.50 PSzo Consists - 1 comacta of 4 dodes for constucring unsubliced power suppy for ALISD to 125 wate 2 se

B/-PAK's COMPLETELY NEW CATALOGUE

 Compietely re designed full of the type ol component, fon reaure olus some veir minteresting ones you will soon be using ann of cource the laigest ange of semiconduction tor the Amate,: and Piotes sional you could hope to lind There ale no wasted page: of usetess nhl: :mation so ot ten included in Catalugues pubbished nowadays Jusis solid factis ie price deschiplion ano individual lealures of what we have ayralable But temembet \&i Pah s poticy has alwars been to sell quality components at competitive prices and THAT WE STIUL 00.BI. PAK SCOMPLI ILIY MEW CATAL OGUL is now dralable to you You mill be amareo now nuch pou can save when you shop for tlectionic Components with a Br. Pak Catalogive Have one br you all the time-11 pays to buy Bl PAK

To recelve your copy send $\mathbf{7 5 p}$ plus $25 p$ p\&p

10 Channel Monopliser

Ony $155 \mathrm{~mm} \times 65 \mathrm{~mm}$ a 50 mm induding the $10 \mathrm{ar} 10 \mathrm{ax} \times 5 \mathrm{~mm}$ sifider polembomeless and knobs which we mounted an a bord above the circaity, in the renge of 31 Hz to laxite you can an and boost ± 12818 with the to shers eact with heawncy mert ed on the citcint board. The Ct 100 uses inctude mixers, PA ssstenss and duscos it will aso imerive the sand reproduction of vour eristing adio equipment Power supaty for GE100 ous SG30. Together with Transtarmet ne: 2013 GE100 MKII 10 Chamnel monograbhic E20.00

PUSH

BUTTON
ST.EREO FM
TUNER
Fried mit Phase locked loop decode
S153 Aondes insent propramme selection al the toch Ma buttion ensering accuate taning of 4 pre selected staiors, any of mich may be ahered as ofter as you choose, simply by chenging the settings of the preset contros Features inclute
stage, varicap tiode
stage, Varicap diode
nning.
£1200.

REGULATED

VARIABLE

STABILISED POWER SUPPLY

Variande foom 2.30 vatts and 0.2 Amps Kit midwes

$$
\text { VPS30 Maxile, } 1 \text { - } 25 \text { woit } 2 \text { amp ronstammar. }
$$

-0.50 Y^{*} Pane Mele $1-0.2$ mer r^{*} Pane Mere - 470 ohm wirewond poterionre tex, 1 - 4.7 okm wiewound potertiometer Wring Divgram inctuded vps 30 KIT $\mathbf{f 2 0}$.
SIREN ALARM MODULE
Amencan Potice sppe screamer powerted trom any 12 woll sugah imo 4 or 8 ohm syeaker. lieas for cas burylar alarm, freezer breas down and other security
pu poses gel 124 war 12 man -
Siren Alem Moode $£ 385$.
sumok 1×2000 tusistormei $2 \times$ coupling

 reservai capacior 2200 mifd 100 r and necesssary wiring dimgram $f 4575$.

Send your orders to Dept HE12 BI. PAK FD BOX 6 WARE HERTS SHOP AI 3 BALDOCX ST., WARE HERTS. O
TERMS, CASH WITH OROER, SAME DAY OTSPAİCH ACCISC BARCLAYCARD AISO ACCSPTED. TEL COS201 3182. GIRO 38872006 ADO ISv vat ano Sow per oroer postage and packing

Use peri ciedit card. Rene us on Ware 3182 mow ind
 Cus min.
Remember pou must add wor a 155° to trow acder Total Pesurge ado $5 \mathrm{SO}_{\mathrm{p}}$ pei Tout or ofer

BHPAK BARCANS

5721 SCREW DRIVER SET

6 precision screwdrivers in hinged plastic

5T31 NUT DRIVER SET 5 precision nul drvers in hinged plastic case Will lurring rod.
Sizes: - 3. 3.5. 4. 4. 5 and 5 mm . E1.75
STAI TOOL SET
5 precision instruments in hinged plastic case Crosspoint (Phillips) screwdrivers:
H 0 and H 1 Hex key wrenche
1.5 . 2 and 2.5 mm £1.75
STSI WRENCH SET
5 precision wrenches in hinged plastic case Sizes: - 4. 4.5. 5. 5.5 and 6 mm . $\mathbb{1} .75$ BUY ALL FOUR SETS: $5 T 21.5 T 51$ and get HEXKEY SET FREE HEX KEY SET ON RING HEX KEY SET ON RING.
Sizes: 1.5. 2. 2.5. 3 . Sizes: 1.5 .2 .2 .5 .3 .
4.5 .5 .5 and 6 mm . Made of hardened steel HX/1. £1.25
"IARESISTABLE AESISTOR BAROAINS"

 Pre lormed Resistors - watt Carbon Resistors 4. watt Carbon Resistors Hwatt Resistors 22 ohm 2 m 2 Mned 1 and 2 watt Resistors 22 $\begin{array}{lll}\text { SX15 } & 100 \quad 1 \text { and } 2 \text { watt Ressistors } 22 \quad \text { ohm- } 2 \mathrm{~m} 2 \text { Mired }\end{array}$ Pah ssorted values from 22 ohms to 2.2 meg. Save pounds on these resistor palts and have a full rante to cover yout propects.
-Quantities approumate. count by weight

25
 5 pieces of Audio Plugs, Sockets and Connectors to include oIN 180°-240 Inline

 and Mono etc Valued at well over £3normal Order No. SX25. Our Price 1.50 per pak.Guaranteed to save you money.
$\begin{array}{ll}\text { SX26 } & 3 \text { Prs of } 6 \text { pin } 240^{\circ} \text { DIN Plugs and } \\ \text { Chassis Sockets }\end{array}$ Chassis Sockets
SX27A 60 Assorted Polystyrene Bead Capacitors Type 9500 Series PPD SX28A 50 Assorted Silver Mica Caps. $5.6 \mathrm{pF}-150 \mathrm{pF}$
Sx29A 50 Assorted Silver Mica Caps. $180 \mathrm{pF}-4700 \mathrm{pF}$
SX30A 50 High Voltage Disc Ceramics 750 SX31A 50 Wirewound 9 watt (avg) Resistors 50 Wirewound 9 watt (avg)
Assorted values $10 \mathrm{hm}-12 \mathrm{~K}$

(8) TheThird and Fourth Hand..

but have never got "unill now" This helpful unit with Rod mounted horizontally on Heavy Base. Crocodile cllps attached to rod ends. Six ball \& socket foints give Infinite variation and positions through 360° also available attached to Rod a $2^{1 / 2}$ diam magnifier giving $2.5 \times$ magnification. Helping hand unit avallable with or wilhout magnilier Our Price with magnifier as illustrated ORDER NO. T402 §5.50 Without magnifier ORDER NO. T400 £4.75

BI-PAK SOLDER

DESOLDER KIT

Kit comprises ORDER NO. SX80
1 High Ouality 40 want General Purpose
L'ghtweighth Solderling Iron 240 v mains inc $3 / 16^{*}(4.7 \mathrm{~mm})$ bit.
10 uality Desoidering pump. High Suction with automatic ejection. Knurled. anti-corrosive casing and tellon nozzle.
1.5 metres ol De soidering braid on plastic dispenser.
2 yos (1.83 m) Resin Cored Solder on Card
t Heat Shunt tool tweezer Type.
Hear Shunt tool tweezer Type.
Total Retail Value over $\Sigma 12.00$
Total Retail Value over $£ 12.00$
OUR SPECIAL KIT PRICE $£ 8.05$

BI-PAK PCBETCHANT AND DRILL KIT

1 Expo Mini Drill 10.000RPM 12v DC incl 3 Coxpo Mini Drill 10.000RP
Collets \& $1 \times 1 \mathrm{~mm}$ Twist bit.
1 Sneet PCB Transters. $210 \mathrm{~mm} \times 150 \mathrm{~mm}$
. 1 Etch Resist Pen.
i $1 / 1 \mathrm{lb}$ pack FERRIC CHLORIOE crystals. 3 sheets copper clad board
2 sheeits Fibreglass copper clac board
Full instructions for making your own PCB, boards.
Retail value over £ 15.00 Retan value over 1515.00
OUR BI-PAK SPECIAL KIT PRICE $£ 9.75$ OROER NO. SXB1

BARGAINS

SI91 $20 \times$ Large $\mathbf{2 "}^{\prime \prime}$ RED LED
Su42 20 small 125 Red 160°
514310 Rectangular Gieen LEO"'s 30 Assorted lenel Diodes 250 mw 2 watt mixed voltages all cooded New.
Sx47 4 Blach instrument
Knobs-winged with pointer wo Standard screw. Fit size 29a 20 mm . "CAPABLE
CAPACITORPAKB"

	20.	Description	Price
5116	250	Capactiors Mixed Types	11
5117	200	Ceramic Capacitors Miniature	f1
5×18	100	Mred Ceramics Ipl. 560 p	1
5×19	100	Mured Ceramics 6 mol 0.5 smt	1
Sx20	100	As sorted Polyester/Potrsityrene Capactiors	¢1
\$ $\times 21$	60	Mined C280 type copacitors metal foil	
5122	100	Electroblics. all sorts	E1
S123	50	Quality Electrointics $50-1000 \mathrm{ml}$	
Sx24	20	Tamalum Beads. mixed	51

- Quantities approximate. counf oy welght.

BRAND NEW LCD

 DISPLAY MULTITESTER.
RE 188 m

LCD 10 MEGOHM INPUT IMPEDANCE
$3 \frac{1}{2}$ digit $\cdot 16$ ranges plus hFE test lacility for PNP and NPN transislors *Auto zero, auto polarity "Single-handed. pushbution operation "Over range indication * 12.5 mm ($1 / 2$-Inch) large LCD readout " Doode check - Fust circuit protection "Test leads. battery and instructions included.
Maxindication 1999 or -1999
Polarity indication Negative only.
Positive readings appear posilve reading
withoul + sign.
Input impedance 10 Megohms
Zero adjust Allomalic
Sampling,time $\quad 250$ miliseconds
Temperature range $-5^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$
Power Supply $1 \times$ PP3 or equivatent 9 " battery
Consumption 20 mW
Size
$0-2 \cdot 20-200 \cdot 1000 \mathrm{~V}$. Acc: 0.8% $0-2 \cdot 20-200 \cdot 1000 \mathrm{~V}$. Acc.
AC Vollage $0 \cdot 200-1000 \mathrm{~V}$.
Acc. 1.2% DC Current 0.200uA $0.2-20 \cdot 200 \mathrm{~mA}, 0-10 \mathrm{~A}$. Acc: 1.2% Resistance $0 \cdot 2 \cdot 20-200 \mathrm{~K}$ ohms
0.2 Megohms. Acc: 1%
§ 35.00 each
SINGLE SIDED FIBREGLASS BOARD

SX53 I Powel finned Heatsiak. This heatsink gives the greatest possible heat dissipation in the smatilest space owing to its unique staggeted lin design. pre drilled.
T0-3 Suze 45 mm squaren 20 ms high. 10 p Sx54 $\quad \mathrm{T} 0.66 \mathrm{size} .35 \mathrm{~mm} \times 30 \mathrm{~mm} \times 12 \mathrm{~mm}$. 35 p Sx55 1 Heal Efficiency Power Finned Healsink $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High. Drlled 10 take up to $4 x$ $0-3$ devices £ 1.50 each

5×52

-				
Order Mo.	Pieces	Size	Sq. Ins.	Price
F81		9×2\%"	100	51.50
FB2	3	1183"	100	51.50
F83	4	13×3 "	156	E2.00
DOUBLE SIDEO FIBREGLASS				
FBA	2	14×1 "	110	12.00

SILICOON POWER TRANSISTORS -T13
NPN like 2N3055 - but not full spec 100 watts 50 V min. 10 for E1.50 - Very Good Value 100s of uses - no duds Order No. Sliso

PROGRAMMABLE UNIJUNCTION TRANSISTOR

 PUT case TO106 plastic MEU22 Similar to 2N6027 16028 PNPN Silicon$\begin{array}{llll}\text { Price: } & 1-9 & 10-49 & 50-99 \\ 100-\quad \text { Normal Retaii }\end{array}$ Each: 20 p $180 \quad 15 p \quad 13 p \quad$ Price £ 0.35 each
SX33A 6 small (min (SOSTISPDT Toggle SX35A 6 small (min) Rocker Switches £1.00 SX32A 240 V 5 smo
12 Assorted Jack \& Phono plugs, $£ 1.00$ 12 Assorted Jack \& Phono plus
sockets and adaptors, 2.5 m . 3.5 mm and standard sizes SX71 50 BC108 "Fallouts" Manutac£1 00 turers our or spec on volts or \quad gl.00 A mixed bundle of Copper clad
Board Fibre glass and paper. Board Fibre glass and paper
Single and double sided Single and double sided. A fanfastic bargain

5 watt (AMSS Audio Amp

High Quality audio ampilier Module. Ideal lor use in recorc olayers lape recoiders, stereo amps and cossette plarers. etc. full data and bach-up ciagrams with each module.
Specilication

- Max Power Supply 30v* Power Output 5 watts RMS - Load Impedance 8-16 ohms - Frequency response 50 Hz to $25 \mathrm{KHz}-3 \mathrm{db}$ - Sensitivity 70 mv or full output e Input Impedance 50 k ohms e Siz $85 \times 64 \times 30 \mathrm{~mm}$ - fotal Harmonic

BI-PAK'S less than. 5%
$£ 2.25$ Vow covid not auld one
lor thes price.

TECAS:OTY

The Electronic Components and Semiconductor Bargain of the Year, A host of Electronic components including potentiometers - rotary and slider, presels - horizontal and vertical Resistors of mixed values 22 hm to to $2 \mathrm{M} 2-1 / 8$ to 2 Watt. A comprehensive range of capacifors including electrolytic and polyester types olus disc ceramics elcetera. Audio plugs and sockets of various types olus switches, fuses, heatsinks, wire, nuts boits. gromets, cable clips and tyes, knobs and P.C. Board Then add to that 100 Semiconductors $t 0$ include tiansistors, diodes. SCR's oplo's, all of which are current everyday usable devices In ah a Fanta stic Parcel. No rubbish all identiliable and
iver $£ 25.00$. Our Fight Against Inflaton Price -- Beat the Budgel JUST E6.50.

SX38 100 Silicon NPN Transistors-al perfect Coded mixed types wit data and eqvt sheet. No rejects. Reat value.
 SX39 100 Silicon PNP Transistors- $£ 3.00$ all perfect. Coded mixed tyoes wirh data and eqvt. sheet. No rejects. Fantastic value. $\quad £ 300$

233055 The best known Power Transistors in the World - 2N3055 NPN 115m.
Our 81 Pak Special
10 ofter Price:
50 $\begin{array}{lll}10 \text { of } & 50 \text { oft } & 100 \mathrm{oth} \\ \$ 3.50 & \$ 1600 & \$ 30.00\end{array}$

80312 COMPLIMENTARY PNP POWER TRAMSISTORS: TO 2 N3055. Equivalent M12955 - BD312 - 103 SPECINL PICE 50.70 wach

MORE BARGAINS!

SXSL 60 metres PVC conered Hook vo wire siagle and stranded. Mixed colours.
SX58 25 Assorted TL Gates 7400 Series 7401.7460 .
SX5s 10 Assorted fap flops and MSI
16020 Assorted Slider Potentiometers
\$152 40 Assorted Pre-Sets Hor/Vert etc.
10 Reed Switches - glass type 3 Micro Switches - with lever

Use pow gedit cuid ming us un ware 3182 MON dac wri rovi or cee ewe taster Goods marmally sent ind Class Mal

HE PROJECT KITS I.C.s TRANSISTORS CAPACITORS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to contruct H.E. projects. Kits include ALL the electronics and hardware needed. Printed circuit boards ffuly eiched, drilled and roller tinned) or Veroboard are, of course, included as specified in the original otherwise stated BATTERIES ARE NOT INCLUDED COMPONENT SHEET INCLUDED If you do not have the issue of H.E which includes the project - you will need to order the instruction reprint at an extra 45 p each.
Reprints a vailable separataly $45 p$ each + p. 8 p. 40 p.

ODOMETER Nov. $82 \mathbf{1 4} 198$ DIANA V.C.O. Nov $82 £ 4.89$ FLASH POINT A LARM Oct $82 \mathbf{5 1 9 . 9 8}$ CB SQUELCH UNIT Oct $82 \mathbf{6 9 . 1 9}$ -JUNIOR' SLOT CAR CONTROLLER Sept 82 f 5.60 less case.
ZX INTERFACE BOARD Sept 82 inc edge con Et1.33.
AUDIO ANALYSER Aug 82 less case
f63.97. c63.97
SWR METER Aug 82 c8. 95 .
T. V.I. FILTER July 82 £5,33

AUTO WAH June 82 E18.98 inc case or c12.28 less case.
AUTO GREENHOUSE SPRINKLER June $82 £ 15.38$ less pump and power TELEPHONET
TELEPHONE TIMER June 82 £ 33.42 less POWER SUPPLY DESIGN 12 V 500 mA June 82 £9.98
ECHO REVERB UNIT May 82. Less case E33.98. Economy case WB3 E3. 76 extra DIGITAL THERMOMETER May 82 ex cluding case + bezel E16.90
AUDIO SIGNAL GENERATOR May 82 E20.98.
CABLE TRACKER May 82 f 9.98

DIGITAL CAPACITANCE METER Apr | DIGITAL |
| :--- |
| 82 |
| 21.37 |

SIGNAL TRACER Apr 82 £3.86
SIKE ALARM ADr 82 f 11 f3.
BIKE ALARM Apr $82 £ 11.74$
BICYCLE SIREN Mar $82 £ 10.89$
NOISELESS FUZZBOX Feb $82 £ 10.45$ MASTHEAD AMPLIFIER Feb 82 §14.74 DRUM SYNTHESIZER Dec. 81. Full kit $€ 21.37$
GUITAR HEADPHONE AMPLIFIER Dec 81 E3.72
IN CAR CASSETTE POWER SUPPLY Dec 81 £4.77
SCRATCH FILTER Nov 81 Mono f5.82 Stereo f 8.98
LED VU METER Nov 81 less case $£ 4.87$ SIMPLE STYLUS ORGAN Nov 81 less case $£ 4.98$
METRONOMENOv 81 £12.71
TELEPHONE BELL REPEATER Oct 81 $£ 13.67$
Med linking wire extra 14 p metre COMBINATION LOCK Oct 81 less solenoid £18.65
BABY ALARM Oct 81 £8.70, Fig 8 linking BABY ALARM Oct 81 E8.70, Fig 8 linking

DIANA' METAL LOCATOR Sept 81 POWERPACK Sedt 81 E10.25
PEACTION TESTER GAME Sept 81 £12.81
VARIABLE BENCH POWER SUPPLY Aug 81 £26.98
ULTRASOUND BURGLAR ALARM July 81 f19.98
ELECTRONIC DOOR BUZZER July 81 ELEC
ELECTRONIC METRONOME July 81 CO 4.99
CONTINUITY CHECKER June 81 £5.71 ENVELOPE GENERATOR June 81 E17.98
PUBLIC ADDRESS AMPIIFIER March 81 £19.48. Extras - horn speakers $£ 6.83$ sach. PA MIC E4. 40
FUZZBOX March 81 £10.98
WINDSCREEN WIPER CONTROLLER March $81 £ 8.20$
STEAM LOCO WHISTLE March 81 f12.98
PHOTOGRAPHIC TIMER March 81 3.50

HEARTBEAT MONITOR Feb 81 E24.98 TWO-TONE TRAIN HORN Feb $81 \mathbf{5} .60$ ess case
nedium wave radio Feb 81 e8 20
BENCH AMP Jan 81 £10.80
NICAD CHARGER Jan 81 E8.20
BATTERY CHARGE MONITOR DEC 82 5.77

MEMORY BANK - MINI SYNTH. ESISER Nov \& Dedc $80 £ 29.98$ TRANSISTOR TESTER Nov $81 \mathbf{f 6 . 5 4 \mathrm { inc }}$ est leads
GUITAR PRE-AMP Nov 80 C6.65 case (diecast) extra © 2.29
INTRUDER ALARM Oct 80 E20.98 TOUCH SWITCH Sept 80 £ 2.75 less case a contacts
quitar phaser Sept 80 €16.28
SOUND OPERATED FLASH TRIGGER July 80 no skt £5. 33
OG HORN June 80 £6.64
SPEED CONTROLLER FOR R/C April 80 digital fass case)
DIGITAL FREQUENCY METER April 80 39.98

IGI-DICE Jan 80 ¢11.73
GUITAR TUNER Nov $79 £ 12.82$
CAR ALARM Feb $79 £ 12.91$

MORE PROJECT KITS - SIMILAR STYLE TO H.E.

 INSTRUCTIONS INCLUDED (SEPARATELY 45p EACH) PLEASE QUOTE REF. NO. WHEN ORDERING
scarer' $£ 7.65$

scarer' £7.65
B2 COMPONENT TESTER $\mathbf{8} 8.88$ B4 GUITAR NOTE EXPANDER £ 17.98 B5 CAMERA OR FLASH GUN TRIGGER infra red system f12.51
B6 SIMPLE INFRA RED REMOTE B6 SIMPLE INFR
CONTROL 17.20
B7 0-12V POWER SUPPLY $£ 17.98$
B9 SOUND TO LIGHT - single channel
B10 THREE CHANNEL SOUND TO UGHT £ 21.44

B11 IN SITU TRANSISTOR TESTER f 6.98
B12 WEIRD SOUND EFFECTS B13 AUDIBLE VISUAL METRONOME E5.98
B14 ELECTRONIC DICE E5. 71 B16 MINI EGG TIMER $\mathbf{6} 4.34$ B18 LED JEWELLERY - Cross brooch ${ }_{67.77}$ Star brooch $\mathbf{6 9 . 9 1}$ Spiral brooch

MORE KITS AND

 COMPONENTSIN OUR LISTS
FREE PRICE LIST
Price list included with
orders or send sae (9×4)
CONTAINS LOTS MORE
KITS, PCBs \&
COMPONENTS

1982 ELECTRONICS CATALOGUE
lilustrations, product descriptions, circuits all included. Up-to-date price list enclosed. All products are stock lines for fast delivery. Sends 80 p in stamps or add 80 p to order.
MORE H.E. PLUS E.E. and E.T.I. PROJECT. KITS IN THE PRICE LIST

MAGENTA gives you FAST DELIVERY OF OUALITY COMPONENTS \& KITS. all products are stock line s.and are new \& fut specification. We

MAGENTA ELECTRONICS LTD

HS31, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS. DE14 2ST. 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY ADD 45p P\&P TO ALL ORDERS PRICES INC VAT ACCESS and BARCLAYCARD (VISA) ORDERS ACCEPTED BY PHONE OR POST.
SAE ALL ENQUIRIES.

Prices inc. VAT
OFFICIAL OROERS WELCOME OVERSEAS. Payment must be in sterling.
IRISH REPUBLIC and BFPO UK PRICES. EUROPE: UK PRICES plus 10%.

SOLDERING / TOOLS

ANTEX X5 SOLDERING IRON 25W SOLDERING IROON STAND . £1.98 SPARE BITS. Small standard, large, 65p each. For X5 + X25 SOLDER. Handy size. SOLDER CARTON DESOLDER BRAID HEAT SINK TWEEZERS DESOLDER PUMP HOW TO SOLDER LEAFLET LOW COST CUTTERS LOW COST LONG NOSE PLIERS WIRE STRIPPERS \& CUTTERS .. $£ 268$
HELPING HANDS JIG $£ 6.30$
Heavy base. Six ball and socket joints allow infinite variation of clips through 360°. Has $21 / y^{\prime \prime}$ diameter
$(25 \times 1$ magnifier attached, used and $(25 x)$ magnifier attached, used and recommended by our slaf.
VERO SPOT FACE CUTTER .. $£ 1.49$
PIN INSERTION TOOL PININSERTION TOOL,
VEROPINS Iok of 10010 MULTIMETER TYPE 111.000 op 52 D MULTIMETER TYPE $2(20,000$ opv) with transistor tester. Very good CROCODILE CLIP TEST LEAD SET. 10 leads with 20 clips99p

MULTIMETER TYPE 2 YN360 TR, £14.75

RESISTOR COLOUR CODE CALCULATOR CONNECTING WIRE PACK ILLUMINATED
Small 2"'
Large $3^{\prime \prime}$ dia. $16 \times$ mag.) Large $3^{\prime \prime}$ dia. $14 \times$ mag)
CAST IRON VICE...... SCREWDRIVER SET SCREWDRIVER SET
POCKET TOOL SET DENTISTS INSPECTION MIR
JEWELLERS EYEGLAOSS PLASTIC TWEEZERS PAIR OF PROBES WITH LEADS

AC opv. Includes transistor tester. useful resistance ranges. We've used it and we like it.

ADVENTURES WITH ELECTRONICS $\begin{gathered}\text { by Tom } \\ \text { Duncan }\end{gathered}$

An easy to follow book sultable for all ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack Includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $£ 2.40$. Component pack $£ 18.98$ less battery.

ADVENTURES WITH DIGITAL ELECTRONICS

New book by Tom Duncan in the popular 'Adventures' series. This book of
entertaining and instructive projects is designed for hobbvists, and students. It provides a stepping stone to the microprocessor.
The first part deals with the properties of some basic ICs used in digital electronics.
The second part gives details of how to build eight devices - shooting gallery, 2 way traffic lights, electronic adder, computer space invaders game etc.
For each project there is an explanation of 'how it works' and also suggestions for 'things to try'
No soldering - all circuits built on 2 Bimboard 1 breadboards.
Adventures with Digital Electronlcs book $£ 3.25$. Component pack $£ 42.50$ ref EHDC. All the components needed including 2 breadboards and hexadecimal keyboard. Available less breadboards $£ 29.98$ ref EHDF. Both less battery.

RADIO RULES

Ian Sinclair
Single side band transmitters and receivers.

Single Sideband

IF you think back to amplitude modulation again, you may remember that business of sidebands. When a carrier is amplitude modulated, the output signal contains the carrier frequency and both sets of sidebands (sum and difference), all requiring power at the PA stage to transmit. All the information of the audio signal is carried in one sideband, however (either one), and none by the carrier, so that this well-worn doublesideband scheme is very wasteful of transmitter power. The solution is to use only one sideband, eliminating the other sideband and most of the carrier. This system is called single-sideband-suppressed-carrier, usually abbreviated to SSB, though this could also refer to systems that eliminate one sideband but retain most of the carrier.

Starting with transmitters this time, how do we achieve these two aims of removing one sideband and most of the carrier? Once again, there are several methods, but the most popular one consists of using a balanced modulator to remove the carrier, and filtering to remove the unwanted sideband. A balanced modulator is a circuit to which both carrier and audio signal can be applied. If there is no audio signal, then there is no output from the circuit, but adding an audio signal spoils the balance of the circuit and the sidebands of the modulated carrier form the output. There is very little trace of the carrier frequency in the output.

A simple type of balanced modulator is illustrated in Figure 1. This is a bridge or ring modulator and its action depends on the use of the audio signal to bias a set of diodes into conduction. Imagine that there is no audio signal, so that the audio input to the diode bridge at A is at earth voltage as far as signals are concerned. The carrier signal is injected at a point where the voltage lies exactly between the bridge outputs, so that the carrier signals to the transformer primary ends are in phase. In this condition, there is no output.

Now imagine that an audio signal is applied and that the audio voltage has reached its positive peak. Diodes D1, D2 will conduct when the carrier voltage is zero, putting a bias voltage onto the output line, at X. Now the carriér signal is no longer balanced because, when the carrier has its negative peak at X and its positive peak at Y, the diodes D1, D4 will conduct carrier signal, and D2, D3 will not conduct. This will cause some out-of-phase carrier signal to reach the transformer. The situation reverses when the audio signal at A goes to its negative peak. Now diodes D4, D3 conduct when the carrier voltage is zero, but when the carrier wave is positive at Y, negative at X , then D1, D4 don't conduct but D1, D2, D3 do, producing a signal to the transformer again. These signals to the transformer are of sidebands only because no carrier can pass, by itself.

The circuit works well, but needs carefull setting up. An alternative is to use a balanced-modulator IC - the Motorola MC1496G is an old favourite for this task. Even so, these methods can never totally remove all traces of carrier, but suppression of 30 to 50 db can be easily achieved.

The next part of single sideband modulation is the filtering system which removes one sideband. Unless you can test and adjust crystal filters, the filter units just have to be bought - these can be quartz crystal types or surface wave types. The filter characteristic can be arranged so that it contributes to the suppression of the carrier, as well as removing the unwanted sideband.

Figure 1. A bridge or Ring Modulator, which eliminates the carrier frequency from the output, is the first and most important stage in SSB transmission.

The combination of balanced modulator and filter is the complete single-sideband generator. The whole system can be designed around a low carrier frequency 455 kHz is a favourite - or at high frequencies such as 9 MHz - the choice is fixed by the availability of commercially-built filters. You don't, of course, transmit at either of these frequencies. To reach the actual transmitting frequency, you would normally think of using multiplier stages, but this step is taboo with SSB transmitter circuits because multiplying up the carrier frequency means multiplying up the bandwidth of the sidebands. The alternative is 'frequency mixing', using another mixer stage to obtain a signal which is the sum of the modulated frequency and another crystal-controlled frequency.

Once the correct frequency has been reached (and several mixings may be needed, particularly if the original modulation was at 455 kHz and the final frequency is VHF), power amplification must use Class A or Class B circuits rather than Class C , to avoid distortion. This will make the efficiency of the output stage lower, but the effective power of the modulated signal, as com-
pared to a double-sideband signal with full carrier is so much greater that the loss is acceptable. As a guide, if we assume that the output stage is 66.7% efficient (meaning that $2 / 3$ of the DC power fed to the output stage causes useful output), then the maximum allowed DC power of 150 W will cause an RF power of 100 W . This is all useful power however, so that the way in which we measure SSB power is in terms of what is called "peak envelope power". which is four times the actual output power (100 W in this example). This is an approximation, but it implies that the SSB signal is equivalent in transmitted power to a conventional AM signal of four times its output power.

Problems, problems

Problems start when we want to receive a SSB signal. To start with, the demodulator must be a balanced type, operating like the modulator in reverse, and it has to be fed with a carrier signal of the correct frequency and phase. This is most easily arranged if transmitter and receiver share the same oscillator in the form of a transceiver, as the oscillator section of the transmitter can then provide a signal of exactly the correct frequency and phase to the demodulator. However, all of this makes a singlesideband rig a very complicated piece of goods, particularly if it is to be used at several frequencies, because there is a convention that the lower sideband is used at frequencies below 10 MHz while the upper sideband is used at frequencies above 10 MHz . Not many readers are likely to get involved in SSB as a do-it-yourself project! It's advantages, however, make impressive reading, and even more impressive listening. To start with, the bandwidth of the SSB signal is the same as that of the audio signal, no more. This means that a lot more SSB rigs can use a band than conventional AM rigs. There is also a gain in range, because all of the output power of the SSB transmitter is concentrated on the one sideband which the receiver uses. In addition, SSB is much less liable to atmospheric disturbance effects, such as fading and blasting, than conventional AM or even FM. The advantages of SSB can be increased by using speechprocessing units which ensure that the modulation is always near the upper limit while you are speaking. SSB rigs of good quality are never cheap, but they represent just about the optimum in modern radio communications and a dream for every amateut licence holder to aspire to.

Due to space limitations in the November issue, this portion of Radio Rules was held over till December.

Next month we will back-track to examine AM Receivers.

AT-80

Electronic Car Security System

- Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape, CB equipment
- Programmable personal code entry system
- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen . Fits all 12 V neg earth vehicles - Over 250 components to assemble

5 povilit BRANDLEADING ELECTRONICS

 NOW AVAILABLE IN KIT FORM
0-

Electronic Ignition

- Inductive Discharge
- Extended coil energy
storage circuit
Contact breaker driven
- Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles

SX2000

Electronic Ignition

The brandleading system on the market today Unique Reactive Discharge
Combined Inductive and Capacitive Discharge - Contact breaker driven

- Three position changeover switch - Over 130 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles

VOYAGER Car Drive Computer

- A most sophisticated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Ltd. Affords 12 functions centred on Fuel. Speed, Distance and Time. Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously - Large 10 mm high $400 \mathrm{ft}-\mathrm{L}$ fluorescent display with auto intensity. Unique speed and fuel transducers giving a programmed accuracy of + or -1%. Large LOG \& TRIP memories, 2.000 miles. 180 gallons. 100 hours. Full Imperia and Metric calibrations. Over 300 components to assemble

TX1002

Electronic Ignition

- Contactless or contact triggered - Extended coil energy storage circuit - Inductive Discharge - Three position changeover switch Distributor
triggerhead adaptors included Die cast weatherproof case Clip-to-coil or remote mounting facility - Fits majority of 486 cyl . 12 V . neg. earth vehicles - Over 145 components to assemble.
 "FREE" MAGIDICE KIT WITH ALL ORDERS OVER $£ 45.00$

All. SPARKRITE products and designs are fully covered by one or more World Patents.

SPECIAL OFFER

2 Reforgis MAGIDICE
 - Not an auto item but great fun

Electronic Ignition

- The ultimate system - Switchable contactless. Three position switch with Auxiliary back-up inductive circuit Reactive Discharge. Combined capacitive and inductive. Extended coil energy storage circuit. Magnetic contactless distributor trigger. head. Distributor triggerhead adaptors included - Can also be triggered by existing contact breakers

Die cast waterprool case with clip-to-coil fitting e Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles - Over 150 components to assemble

- Total random selection
- Triggered by waving of harid
- Bleeps and flashes during a a second - Throw displayed for 10 seconds - Auto display of last throw 1 second in 5 - Muting and Oft switch on base - Over 100 componenis to assemble

SPARKRITE
82 Bath Street. Walsall, West Midlands, WS1 3DE England.

	SELF
ASSEMBLY KIT	
SX 1000	$£ 12.95$
SX 2000	$£ 19.95$
TX 1002	$£ 22.95$
TX 2002	$£ 32.95$
AT 80	$£ 32.95$
VOYAGER	$£ 64.95$
MAGIDICE	$£ 9.95$

PAICES INC VAT POSTAGE B PACKINO

ADDRESS

Amateur radio will becorme much clearer after 3 rd Dec.

The radio market has become more complex. Things have become more confused. Wires get crossed as new equipment floods onto the market.

At the end of the day, even the most avid enthusiast spends more time trying to find out about new equipment than on the airwaves using it.

As for the novice?
They stand little chance of picking anything up at all.

So we've decided to clear things up.

On December 3rd our new magazine Ham Radio Today begins.

Not a magazine you need a degree in electronics to decipher.

Or one that still calls your gear a wireless.

Rather a magazine that simply clarifies the vast range of electronic gadgetry available.

Lists new equipment, analyses its performance.

Thorough reviews, special features, news items and constructional projects.

In a clear and concise way that will give everyone a perfect $5+9$.

Ham Radio Today.
Tomorrow. . .tune in and find out, 73.

COMPONENTS

FOR COMPUTING

This is the first of a series of articles in which the components of microcomputer systems will be discussed. We will investigate the many aspects of each type of component, including general functions and areas of application, internal circuit operation, external circuits and the range of products on the market.

WE WILL START by describing Input/Output (I/O) port components. This may not seem entirely logical, but it follows from our Micro-Trainer series of earlier this year. Consequently, in this issue alone, there will be specific references to the Micro-Trainer when the programming of $1 / O$ ports is considered.

What Is An I/O Port?

A port, whether input or output, is a device that interfaces between the 'raw' hardware of a computer's central processing unit (CPU) and the external machinery of a control system. In its simplest form , a port consists of a data latch or register connected to the three busses (address, data and control) of the CPU. The diagram of Figure 1 shows an eight bit output port and an eight bit input port connected to a simple microprocessor system. The ports have an eight bit capacity simply because the microprocessor has an eight bit data bus, and can therefore transfer data eight bits at a timel

The output port has eight inputs connected to the data bus and eight separate outputs for connection to external circuits, and a strobe. The outputs follow the logic states of the inputs for as long as the strobe input is high; however when the strobe is taken low, the data at the outputs is frozen or 'latched' indefinitely. An IC of this sort is called an 'Octal Transparent Latch', and a 74LS373 is a typical example using TTL Technology in the microprocessor system of Figure 1, the strobe is derived from the $\overline{W R}$ signal of the control bus and the decoded address bus. Data will be latched into the port only when the MPU attempts to write to a specific address, as determined by the address-decode logic. This configuration is called "Memory-Mapped 1/O" because the port appears to the MPU as a single byte of memory, in this case a write-only memory location. Using simple 'store' instructions, the MPU is able to control the state of eight logical outputs, each of which can be interfaced to anything from a LED to a large industrial machine,
using no more than a few transistors and relays.

The input port, as shown in Figure 1. is also an octal latch but this time the outputs are wired to the data bus and the inputs are taken from the external circuit. For an input port, the latch must have (like the 74LS373) a control which can 'tri-state' the outputs to the data bus; this means that the outputs can go to a high impedance state, and thus have no effect upon the data bus when it is being used by other devices, such as RAM or ROM. The output control signal is decoded from the address bus and the $\overline{\mathrm{AD}}$ signal so as to 'map' the port to the desired memory location. The strobe to an input latch is not synchronised with the MPU as with the output port; it has to be provided by the external circuit to synchronise with incoming data. In certain applications (A/D conversion being the best example) the data presented to the MPU's input port may not be valid (true) at all times, which explains the reason for an external synchronising pulse.

However, the MPU is often required

Figure 2. The logic diagram and pin outs of the 74LS244. The OE inputs latch the outputs to the high impedence (off) state.

Figure 1. A simple microprocessor system with one output and one input port.

Figure 3. The logic diagram (above) and pin-outs (right) of the 74LS373. Data is latched by taking the E input low; a high on the OE input forces the outputs to the high impedance state.
only to sample the inputs periodically lif, for example, they connect to a set of logically independent switches) and in this case, latching of data is unnecessary; an "Octal Tri-State Buffer" (such as a 74LS244) will then be sufficient as an input port.

Memory mapped I/O is a system which can be readily applied to any microprocessor; yet there is a common alternative which is worth mentioning. "I/O Mapping" is a system which is unique for each type of microprocessor (some simply do not have the facility, eg. the 6800 and the 6502) because it requires specific sets of hardware and instructions. The 1802 has a three-bit address bus, separate from the normal address bus, which can be decoded to provide 'enables' for up to seven I/O devices; these addresses are generated only in response to special instructions (INP1 - INP7, OUT1 - OUT7).

Other processors (eg. the 280 and many other Intel products) place I/O addresses ($0-255$) on the usual address bus and have a separate control line to indicate whether the instruction is to be executed on memory or on I/O.

I/O ports can easily be constructed from a few TTL chips, however the manufacturers of all microprocessor types offer more 'clever' devices designed for flexibility in applications, in a
single low cost package, with each device type intended for a particular microprocessor. Most of these contain several ports within a chip, and can be programmed to behave either as input or output devices; many have other interesting facilities, as we shall see.

The 8255

It is impossible, in these few pages, to describe every I/O device on the market so we shall concentrate on just one the 8255 . This device is intended to interface with the Intel 8080 and 8085 family of microprocessors; however, it can be used readily with the $\mathbf{Z 8 0}$ and, of course, the 1802, as in the MicroTrainer. It is one of the most versatile PPIs (Programmable Peripheral Interface) available and has recently become very inexpensive.

Referring to the block diagram of Figure 4 and the pin diagram of Figure 5, you will see that the 8255 has three eight-bit ports within a 40 pin package. Port A (PAO-PA7) and Port B (PBO-PB7) can be separately programmed as either input or output, while Port C is logically divided into individually programmed upper (PC4-PC7) and lower (PCO-PC3) portions.

The 8255 possesses all the necessary signal inputs to interface directly to the CPU. Signals DO-D7 con-

Figure 4. The logic diagram of the 8255 PPI ; the ports are split into two groups for control purposes.
nect directly onto the data bus, for bidirectional transfer of data between CPU and the ports and, likewise, the signals $\overline{R D}$ and $W \bar{F}$ connect directly to the corresponding signal lines of the CPU. The control signal $\overline{C S}$ (Chip Select) is used to allow the CPU to use the 8255. For example, if $\overline{C S}$ is provided with a logic low, decoded from the address bus (the Micro-Trainer uses an address in the range 2000 H to 2003 H) the device will be 'enabled'.

The signals $A 0$ and $A 1$, the two least significant bits (LSBs) of the address bus, will select one of the four internal registers, according to the address; three of these registers are, obviously, the ports A, B and C, while the fourth is a control register used for programming the device. These addresses (summaris-

D7.D0	DATA BUS (BI-DIRECTIONAL)
RESET	RESET INPUT
$\overline{C S}$	CHIP SELECT
$\overline{R D}$	READ INPUT
$\overline{W R}$	WRITE INPUT
A0,A1	PORT ADDRESS
PA7.PA0	PORT A (BIT)
PB7•PB0	PORT B $(B I T)$
PC7-PC0	PORTC $(B I T)$
$V_{C C}$	45 VOLTS
GND	0 VOLTS

Figure 5. The pin-outs of the 8255 (top) and their meaning (bottom).

A			B		GROUP A			GROUP B	
D4	D3	D1	D0	PORT A	PORT C (UPPER)	$\#$	PORT B	PORT C (LOWER)	
0	0	0	0	OUTPUT	OUTPUT	0	OUTPUT	OUTPUT	
0	0	0	1	OUTPUT	OUTPUT	1	OUTPUT	INPUT	
0	0	1	0	OUTPUT	OUTPUT	2	INPUT	OUTPUT	
0	0	1	1	OUTPUT	OUTPUT	3	INPUT	INPUT	
0	1	0	0	OUTPUT	INPUT	4	OUTPUT	OUTPUT	
0	1	0	1	OUTPUT	INPUT	5	OUTPUT	INPUT	
0	1	1	0	OUTPUT	INPUT	6	INPUT	OUTPUT	
0	1	1	1	OUTPUT	INPUT	7	INPUT	INPUT	
1	0	0	0	INPUT	OUTPUT	8	OUTPUT	OUTPUT	
1	0	0	1	INPUT	OUTPUT	9	OUTPUT	INPUT	
1	0	1	0	INPUT	OUTPUT	10	INPUT	OUTPUT	
1	0	1	1	INPUT	OUTPUT	11	INPUT	INPUT	
1	1	0	0	INPUT	INPUT	12	OUTPUT	OUTPUT	
1	1	0	1	INPUT	INPUT	13	OUTPUT	INPUT	
1	1	1	0	INPUT	INPUT	14	INPUT	OUTPUT	
1	1	1	1	INPUT	INPUT	15	INPUT	INPUT	

A1	AO	$\overline{\mathrm{AD}}$	$\overline{W R}$	$\overline{\mathrm{CS}}$	INPUT OPERATION (READ)
0	0	0	1	0	PORT A = DATA BUS
0	1	0	1	0	PORT B = DATA BUS
1	0	0	1	0	PORT C = DATA BUS
					OUTPUT OPERATION (WRITE)
0	0	1	0	0	DATA BUS = PORT A
0	1	1	0	0	DATA BUS = PORT B
1	0	1	0	0	DATA BUS = PORT C
1	1	1	0	0	DATA BUS = CONTROL
					DISABLE FUNCTION
X	X	\times	\times	1	DATA BUS = 3-STATE
1	1	0	1	0	ILLEGAL CONDITION
\times	\times	1	1	0	DATA BUS = 3-STATE

> X = DONT CARE

Table 1 fright). The ports can be set up in any of 16 different ways.
Table 2 (above). Ports are addressed, as appropriate under program control. A WRite instruction to a port set up for Input will be ignored.
ed in Table 3) are used in the MicroTrainer to access the 8255.

In order to write data to a port, it is simply a matter of executing an 'STR' instruction to the appropriate address, eg:

LDI \$20	PHI R3
LDI \$01	PLO R3; R3 is pointer to
LDI \$OF	Port B
	STR (R3); data \$OF ap- pears on PBO-PB7

A1	AO	MICROTRAINER ADDRESS	REGISTER ENABLE
0	0	2000 H	PORT A
0	1	2001 H	PORT B
1	0	2002 H	PORT C
1	1	2003 H	CONTROL

Table 3. The Micro-Trainer I/O addresses.

Figure 6. The $1 / O$ Port circuits of the Micro-Trainer; IC4 is an 8255.

Data which has previously been written to an output port can also be read back from the same address - a feature which is not possible with the system of Figure 1.

We have not, so far, discussed how the ports are programmed - but there are no prizes for guessing that the control register is used for this. All the programming information is illustrated in Figures 7 and 8, but some explanation is also required.

Figure 7. The mode control word can be constructed from this diagram.
CONTROL WORD

Figure 8. Deriving the control word to set or reset bits of Port C.

The first step is to decide how the ports are to be configured (output or input) then, using the two diagrams, work aout a control word on a bit by bit basis. You may be confused by the references to Modes 0, 1 and 2; just assume these bits are set to zeroes. Our description of the 8255's operation are all in Mode 0; the other modes configure certain bits of Port C as 'handshake' lines and as this facility is little used we will not discuss it here!

As an example, suppose we require PAO-PA7 as outputs, PCO-PC3 as outputs and PB0-7, PC4-PC7 all as inputs. Figure 7 tells us that the required data is $10001010=8$ AH so, simply by storing 8 AH in the control register, our ports are set up as required. The contents of the control register may not be read back by the CPU. It is also well worth noting that each time a port is configured as an output, the contents are reset to zero.

During power-up, or reset of the MPU, it is normal to reset the 8255 also, using the hardware line RESET (pin 35). When this happens, all ports are configured as inputs in Mode 0 , so that the machine's software must initialise the control register, as required, after reset. Figure 8, shows how Port C an be conveniently operated on bit by bit, when programmed as an output. Here, by storing the appopriate data in the control register, a single line of Port C may be set or reset. As an example, again, PC7 has been interfaced to a transistor (Figure 6).
This forms the cassette interface for the Micro-Trainer. It is controlled by a routine in ROM which recognises a LOAD or SAVE instruction, configures Port C (upper) as required, and then toggles bit 7 to transfer the data.
The other seven bits of Port C are all configured as outputs, buffered by a ULN2003 (IC7 in Figure 6), which provides open collector outputs suitable for driving LEDs, relays etc. Each output can sink up to 500 mA .

Next month's installment will invest igate the hidden depths of memory - RAMs, ROMs, and the multivariate degrees of PROMs.

DVM/ULTRA SENSITIVE THERMOMETER KIT

 liauid crysrel dispoler. This kit will
form the besis of oblotel multiform the bosis of aligitel multi-
metor lonly feww adidionsl sistors and switches are requilrect-details supplied). reasing to $0.1^{2} C^{2}$. The basic kit has a sensitivity of 200 mv for afull scaie reacing, automatic polerity indication and an ultry low power equirament-giving a 2 year rypical banary life from a standar
when used 8 hours a dey, 7 days a week

Price $£ 15.50$

DISCO LIGHTING KITS

 sequence, speed of sequence
and frequency of direction change, being variable by means of potentiometers and incorporates a master dimming control. $\mathbf{£ 1 4 . 6 0}$
D 41000 K OLZ
A low A lower cost version of the above, featuring
undirectional channal sequencu with variable by means of a pre-set pot. Outputs switched only at mains zero crossing points to reduce radio interference to a minimum. Optional opto inpur DIA1 Only $\mathbf{£ 8 . 0 0}$ Allowing audio ("bast") -llght response. 60 p DL3000k This 3 channel sound to light kit featuress zero voltage switching, automatic level control \& built in mic. No connections to speaker or amp
required. No knobs to ediust - simply connect (1) meins supply \& lamps. Only $£ 11.95$
(1Kw/Channel) Add 55p posiage $\&$ packing $+15 \%$ Vat to tolal.
Overseas Customers;
 Send S. A.E. for furner STCK DETALS.
Goods by return zubioct to gvailability. OPEN

SHORT FORM CATALOGUE - send SAE ($6^{\prime \prime} \times 9^{\prime \prime}$). We also stock Vero, Books, Resistors, Capacitors, Semi-Conductors etc.

FIST SERYICE TOP QUALITY- LOW LOW PRICES

CHRISTMAS

STOCKING FILLERS

PACK (1) 650 Resistors $\mathbf{4 7}$ ohm to $\mathbf{1 0}$ Mohm - 10 per value $£ 4.00$ PACK (2) $40 \times 16 \mathrm{~V}$ Electrolytic Capacitors 10 uF to 1000 uF - 5 per value $£ 3.25$ PACK (3) 60 Polyester Capacitors 0.01 to $1 \mathrm{uF} / 250 \mathrm{~V}-5$ per value $\mathbf{£} 5.55$ PACK (4) 45 Sub-miniature Presets $\mathbf{1 0 0}$ ohm to 1 Mohm- 5 per value $£ 2.90$ PACK (5) 30 Low Profile IC Sockets 8, 14 and 16 - pin - 10 off each $£ 2.40$

1983
CATALOGUE now available

SEE US AT BREADBOARD STANDS 1 \& 2

PROBABLY THE LARGEST STOCK OF ICs \& TRANSISTORS IN THE SOUTH - TRY US FIRST!

SPECIALIST ELECTRONIC COMPONENT DISTRIBUTORS					
SEND LARGE SAE \& 75p TO ADDRESS BELOW					
Crimson Elektrik PROFESSIONAL AMPLIFIER MODULES					
PRICE LIST -ELECTRONIC MODULES \& ASSEMBLIES - APAIL 1981					
CODE	DESCRIPTION		$\begin{aligned} & \text { VAT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { INC } \\ & \text { VAT } \end{aligned}$	$\begin{gathered} \mathbf{W} \\ (\mathrm{Kg}) \end{gathered}$
CE 608	Power Amplifier Module	18.26	2.74	21.00	16
CE 1004	Power Amplifier Module	21.30	3.20	24.50	0.20
CE 1008	Power Amplifier Module	23.90	3.60	27.50	0.21
CE 1704	Power Amplifier Module	30.43	4.57	35.00	0.22
CE 1708	Power Amplifier Module	30.43	4.57	35.00	0.22
CE 3004	Power Amplifier Module	42.60	6.40	49.00	0.40
BD	Bridge Driver Module	7.13	1.07	8.20	0.06
TR	Toroidal Transformer 80VA	18.00	2.70	20.70	2.00
TR 150	Toroidal Transformer 150VA	20.07	3.01	23.08	2.35
TR 250	Toroidal TRansformer 250VA	25.43	3.81	29.24	3.35
TR 2500	Toroidal Tansformer (low noise)	33.20	4.98	38.18	2.80
86	Bridge Rectifier (6 amp)	0.99	0.15	1.14	0.02
81	Bridge Rectifier (12 amp)	1.80	0.27	2.07	0.03
C4700/40	Reservoir Capacitor and Clip	1.91	0.29	2.20	0.09
C4700/63	REservoir Capacitor and Clip	2.40	0.36	2.76	0.11
C4300/63	Reservoir Capacitor and Clip	2.60	0.39	2.99	
CPS 80	Power Supply	22.82	3.42	26.24	
CPS 80D	Dual Power Supply	27.63	4.14	31.77	2.25
CPS 150	Power Supply	25.86	3.88	29.74	2.50
CPS 1500	Dual Power Supply	31.65	4.75	36.40	2.60 3.50
CPS 2500	Power Pupply	39.43	$\begin{aligned} & 4.80 \\ & 5.91 \end{aligned}$	45.83	5
TS 70	Thermal Switch $70^{\circ} \mathrm{C}$	1.92	0.29	2.21	0.02
HS 50	50 mm Heatsink	1.60	0.24	1.84	0.15
HS 100	100 mm Heatsink	2.60	0.39	2.99	0.30
HS 150	150 mm Heatsink	3.65	0.55	4.20	0.45
FM 1	Fan Mounted on $2 \times$ HS 100	32.13	4.82	36.95	1.20
FM 2	Fan Mounted on $2 \times$ HS 150	36.10	5.42	41.52	1.50
CPR 1	Pre-Amplifier Module	31.30	4.70	36.00	0.15
MC 2	Moving Coil Pre-Pre-Amplifier Module	20.00	3.00	23.00	0.07
REG 1	Regulated Power Supply	8.09	1.21	9.30	0.07
TR 6	6 VA Mains Transformer	2.87	0.43	3.30	0.21
$\times 1$	2 Way Crossover Module	17.39	2.61	20.00	0.07
$\times \mathrm{XO} 3$	3 Way Crossover Module	26.09	3.91	30.00	0.07
MU 1	Muting Circuit for XO2 or XO3	8.35	1.25	9.60	0.04
CK 1010	Complete Pre-Amplifier Kit	78.26	11.74	90.00	2.50
CK 1040	Complete 40 Watt Power Amplifier Ki	103.48	15.52	119.00	7.30 730
CK 1100	Complete 100 Watt Power Amplifier	129.56	19.44	149.00	7.30
	Add On Moving Coil Kit Pre-Amplifier Power Supply Kit	$\begin{aligned} & 21.74 \\ & 17.39 \end{aligned}$	$\begin{aligned} & 3.26 \\ & 2.61 \end{aligned}$		
SOLE DISTRIBUTION BRADLEY MARSHALL Ltd OF EDGWARE 325 EDGWARE RD. LONDON W21 BN TEL: 01-723 4242					

A blast from the past

This seems to be a year for revivals musicals in the West End, old pop songs from the 50 s and 60 s reappearing in the Charts, and now

Dear Clever Dick,
I have "Experimenter" and "S-Dec" boards and I am wondering if you could devise projects for these for future editions of HE. I find it very difficult to get anything suitable.

P. Siddi.

Porthcawl,
Mid-Glam.

"Short Circuits" have been

 brought back, in the shape of a new page called "'Breadboards". Although these experimenter's circuits have been laid out and tested using Vero's Verobloc system, they can easily be adapted to any other breadboarding system.
Dear CD,

I have one short question; is there any errors in the shortwave Receivers veroboard diagram etc?

TChapman

Fareham
Hants
'Is there any errors' . . . it's enough to make you ask : is good grammar a thing of the past? Another question, which might be pertinent; which short wave receiver do you mean - we have published at least three?

However, passing over such minor considerations (it only took four times longer to sort things out), the receiver in question is probably that featured in September ' 81 issue. There were three errors discovered at the time; missing track cuts at F17 and G17, a missing link (not the . . . no it couldn't be) between F12 and G12 and no markings on D1 - the cathode should go to F7.

Dear CD,
I am eleven years old, and have been alarmed to find a mistake on the "Intruder Confuser". Capacitor (CI) has been connected (not across) but in the same direction as the copper strips and there is no break between the two terminals. Also laccording to the schemetic diagram) the integrated circuit has been connected the wrong way round, there is also another problem.... I have, nowhere to store my Hobby Electronics magazine Yours

Faithfully,

R Einstein

ipswich
Suffolk
(hint, hint). Life isn't all problems though, because I think your magazine's great

Correct on both points - though the issue was raised in a previous HE (June ' 82,1 think). As for the mag, I also think it's great too (especially this page), but then I am a little biased!

Dear CD.
I DO NOT WANT A BINDER!!!
I would, however, like to pick your amazingly intelligent brain. Way back in January '79. HE published a Touch Switch project. I find it works fine if the OV level is connected to the mains earth, but if I try to run it off batteries las you recommended, all those years ago) the operation becomes sporadic and unreliable.

So far as I can make out, the signal input level drops dramatically under certain conditions, depending on my posture (keep your remarks to yourself!!.

Please could you suggest a circuit mod or, failing this, are there any ICs which I could use, preferably with several switches on one chip?

I am designing a piece of equipment for use by small children so that a single touch-control switch is important, as, of course is the electrical safety.
Guy Inchbald,
Burnage,
Manchester.
The circuit is intended to be triggered by the 50 Hz hum voltage which we all carry around with us - effectively, the body acts as an antenna. Touching the contact transfers the voltage to the input of IC1, which amplifies it enormously. This is rectified by a diode and the resultant DC is used to switch another op-amp from low to high, thus turning on a LED, relay or whatever. Note, too, that this circuit does not latch up; it will turn off shortly after the finger is removed.

The unreliable operation is probably because the 50 Hz signal is being coupled to all parts of the circuit, (remember that a battery is a short circuit for $A C$, even at 50 Hz), so that the input op-amp is seeing similar 50 Hz voltages on both its inverting and non-inverting inputs. The easiest way to solve the problem is to physically isolate the touch plate from the circuitry; metal shielding may even be necessary. Alternatively, you could try increasing the sensitivity by increasing the gain of IC 1; reduce R2 by stages until you find a value where the operation becomes reliable. However, you may find that the circuit becomes unstable if R2 is taken too low.

Dear Richard,

I have had the HE watch dog intruder Alarm (Oct 80) working on a test basis for some months. But have found that it is triggered by an external source/s.

A 3 foot instant start fluorescent fitting and a portable TV that / know of, have, when switched off, bought on LED2 showing a short.

I don't know what electrical appliances my neighbours have but it has happened when I have only had a fridge working. Its only occasionally this happens, and after 2200 hrs , or the early hours of the morning.

The PB1 doesn't cancell LED 2 and RV1 has to be re-adjusted to cancel it then adjusted back to its normal position, which may take five minutes or more of adjusting. The circuit board lits not a printed circuit, they were not available) is mounted in a metal box and the box is bonded to earth. The only alteration to the circuit is in the window, where the $22 k$ resistor has been changed to 56 k . resister, to give a bigger window. But I find there is still only a small amount of movement of RV1, when adjusting, to equal door and window switches LED 1 before LED2 comes on.

The value of my switch resistors are 470 k . I have changed the ICs at different times but trouble always reappear's.

Have you had or heard of anyone having had this happen with the Intuder Alarm and how did you or they overcome it? My knowledge at the moment of electronics is limited so I'm hoping you can throw some light on to it for me.
N. Kilbey

Ilford
Essex
What can be deduced from this tale of woe? Gremlins in the alarm system not likely . . . well, how about spikes in the mains . . . ah, that sounds more like it-mains borne interference.

What can be done about it? Well, first of all try putting the unit on a PCB-it's amazing the increased stability you'll get. There are also some other steps you can take. One is to wire a 100 u capacitor across the supply rails; and try a 100 n in parallel to cut out HF spikes. Another filter can be made by wiring a 10 k resistor in series with the line from point X, followed by $4 u 7$ capacitor down to earth (try different positions around the board). If you want to make RV1 more sensitive, change it to 1 M and replace R2 with the original $22 k$ value . . and if all that fails, I hear Alsatians are also pretty effective!

Project

POP-AMPS

Owen Bishop

Simple measuring circuits based on operational amplifiers.

No. 1:
 Microammeter

THIS circuit adapts any ordinary voltmeter to measure currents in the microamp range. You can also use it with a multimeter, switched to a voltage-measuring range. The lowest current range on a typical multimeter is 0-250 uA, but with this circuit the range can be as small as 0-1 uA. Of course, if you have an FET multimeter, you will probably not need this circuit, as it is likely to be built in to your meter already.

Measuring Currents

An ammeter is always connected in series with the circuit which is to be tested, and the current to be measured flows from the test circuit, through the meter and back to the test circuit. For this reason, the ammeter must have as low a resistance as possible, so that the flow of current in the test circuit is not reduced by the resistance of the meter. A typical microammeter has a coil resistance of around 750R, though some microammeters have coils of considerably higher resistance. However in this circuit, when it is used on its 100 uA range, the resistance encountered by the current is only 100R, resulting in much greater accuracy. The improvement can be seen by taking a numerical example.

In Figure 1a, the current flowing through the 2 k 7 resistor is $0.2 / 2700$ $=74 \mathrm{uA}$. If we try to measure this using an ordinary microammeter (Figure 1 b), with a coil resistance of 750R, the total resistance becomes 3450R and the current is reduced to 58 uA . This is a 23% error!

Using the op-amp circuit (Figure 1c), the total resistance is much less affected. It becomes 2800R, reducing the current to 71 uA , and the error is now only 4%.

Some reduction of current is inevitable, for we can not avoid using power to drive the measuring instrument. The advantage of using the op-amp microammeter then, is that it needs very little power and so has a relatively small effect on the current you are trying to measure.

The Circuit

We will assume that the circuit is being used on its 100 uA range, when a current of 100 uA flows through R5, the potential difference between its two ends is $\left[V=I R=100 \times 10^{-6} \times\right.$
 The op-amp circuit (c) increases the accuracy of the measurement.

00000000000000000000000000 000000000000000000000000000000000

 0.00000000000001000100000000
 00000000000000000000000000000 0000000000000000000000000
 c 00000000000000000000000000 800000000000000000000000000000000 - 000000000000000000000000 -

Figure 3. Veroboard component overlay and track-side view.

Figure 4. Wiring up the off-board components.
$100=0.01 \mathrm{~V}$ [or 10 mV . 1 Thus, at full scale deflection (FSD), the noninverting input (+ve) of the op-amp is at 10 mV compared with the 0 V line. We can ignore the effects of R1/R2 and R3/R4, since these are relatively small resistances compared with the input impedance of the op-amp (the input impedance of a 741 is typically 2 M , so these resistors merely increase it to $2.0099 \mathrm{M}!$). If the non-inverting input is at +10 mV , the amplifier adjusts its output to try to bring the inverting input (- ve) to the same potential. This is a special feature of op-amps, and one that is made use of in several other of the circuits we shall be describing.

If the inverting input is to be at +10 mV , the junction of R6 and R7 must be brought to +10 mV . Since R6 and R7 form a potential-divider network, the output voltage if the op-amp has to rise to +1.01 V to achieve this, and this is
the voltage which is measured by the voltmeter. When measuring a current of 100 UA , the voltage reading is 1.01 V ; we can ignore the odd fraction of a volt and say that 1 V is equivalent to 100 uA. The currents equivalent to lower voltages are easy to calculate OV5 means 50 uA, OV 73 means 73 uA and so on, in proportion.

We work with a maximum potential difference of 10 mV on the other two ranges as well, so the reading obtained on the voltmeter is always between zero and 1 V . If the test circuit is connected to the 10 uA socket, the total resistance is 1 k . With 10 uA flowing through this, the potential difference across R3/R4/R5 is 10 mV , as before. Now, a reading of OV73 means a current of 7.3 uA . The 1 uA socket gives a total resistance of 10 k , with a PD of 10 mV when 1 uA flows. A reading of 0.73 V means a current of 0.73 uA.

Parts List

2.5 mm stripboard, $66 \times 33 \mathrm{~mm}$; 9 $\times 1 \mathrm{~mm}$ terminal pins; $2 \times 4 \mathrm{~mm}$ red sockets, $2 \times$ black; DPDT switch; 2 \times PP3 battery clips; optional case; wire; solder etc.
BUYLINES
page 34

Construction

Like all the circuits in this series, this one is built up on a single, small piece of stripboard (Figure 3). Whether you mount it in a case or not is a matter of preference. The circuit is powered by two PP3 batteries, giving the $\pm 9 \mathrm{~V}$ supply required, though it is possible to operate on other balanced supplies, such as $\pm 6 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$.

Construction presents no problems but be sure to make the track cuts, and check the position of all components. Note that two pairs of resistors are wired in series (R1/R2 and R3/R4) to obtain the values 900 R and 9 kR , as nearly as possible.

Setting Up

To set up the circuit, connect the voltmeter as shown in Figure 4. This should, preferably, be a 1 V FSD panel meter or a multimeter switched to the $1 \mathrm{~V} D$ range, but a 2 V or 3 V meter will do almost as well.

It does not matter if it is a cheap meter, with low coil resistance, since the op-amp is capable of supplying all the current required. If you can afford a meter for the purpose, there is no reason why you should not wire it to this circuit and mount it permanently in a case.

Now switch on the power; the meter will show a reading of some kind. Join the 1 UA input socket to the junction of R6 and R7, using a testlead; this connects the two inputs of the op-amp together. The reading on the meter should be 0 V , but if not, adjust the offset null potentiometer (RV1) until the needle of the meter comes to rest at zero. The temporary lead may now be removed, and the circuit is ready for use. This is a simple circuit, with no provision for adjusting full-scale deflection or range; it is assumed that the use of 1% tolerance resistors will have ensured all the accuracy required.

G ${ }^{2}$ a ;owni

(C)늠 Modular Amplifiers the third generation

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever

Alodule Number	Ouzput Power Wats rms	$\begin{array}{\|c\|} \hline \text { Lasd } \\ \text { Impedance } \\ \Omega \end{array}$		$\begin{aligned} & \text { OIST } \\ & \text { T.M.D. } \\ & \text { Typat } \\ & \text { IKHz } \end{aligned}$	ATION I.M.D. $60 \mathrm{~Hz}_{2}$ $7 \mathrm{KHz}_{2}$:	Supply Voltage Typ	$\begin{aligned} & \text { Sire } \\ & \mathrm{mm} \end{aligned}$		WT
T19:31]	15	n. ${ }^{\text {H }}$		1.015\%	<0.006\%	218	$76 \times 88 \times 40$		240
(17rein)	30	1. 8		1.015\%	<0.006\%	± 25	$76 \times 68 \times$	40	240
17vasio	(3) +34	1.4.		12.015\%	<0.006\%	± 25	120 * 78	$\times 40$	420
ivion	Ex)	1		0,01\%	<0.006\%	± 26	120×78	$\times 40$	410
hivis	60	H		0.01%	<0.006\%	± 35	120: 78	¢ 40	410
irvias	120	1		0.01\%	<0.006\%	± 35	120×78	$\times 50$	520
НҮрлн	120	B		-0.01\%	<0,006\%	± 50	120×78	$\times 50$	520
Hy:sma	186)	4		0.01\%	<0.006\%	± 45	120:78	- 100	1030
hrimes	164)	y		0.01\%	< 0.006%	± 60	120^78	$\times 100$	1030
Protection: Full load lime. Slew Rave: $15 \mathrm{v} / \mu \mathrm{s}$. Rlsetime: 5 Ss . S / N ratio: 100 db . Frequency response $(-3 \mathrm{~d} 8) 15 \mathrm{~Hz}-50 \mathrm{KMz}$. Input sensutivity: 500 mV rms. input Impedance: $100 \mathrm{~K} \Omega$. Damping Iactor: $100 \mathrm{~Hz}>400$.									
PAE-AMP SYSTEMS									
Machule Number	Module		Functions				$\begin{array}{\|c\|} \hline \text { Curremt } \\ \text { คequired } \\ \hline \end{array}$		
Hy6	Munu pre amp		Mak/Mag. Carividge/Tuner/Tspe/ Aux * Vol/Bass/Treble				10 ma		60
14V66	Stereu preamis		Mic/Mag. Cartridge/Tuner/Tapo/ Aux * Vol/Gass/Treble/Bolance				20 mA	$[14$. 32
HY73	Ciulda pre ump		Twa Guitar (Bass Lead) and Mic * separare Volume Bass Treble + Mix				20 mA	[15	. 36
HY78	Siereu preamp		seoarate Volume Bass Treble + Mix As HY66 tess tane controls				20 ma	¢14	20

Most pre amp modules can be driven by the PSU driving the main power amp.
A separale PSU 30 is avallable purely for pre amp modules if required for C5. 47 Iinc. VATI. Pre:amp and mixing modules in 18 different vatiations.
Please send for detais.
Mounting Boards
For ease ol construction we recommend the B6 for modules HV6-MY13 E1.05
(inc. VATI and the $\mathbf{B 6 6}$ for modules HY66-HV78 $\mathbf{£ 1} 29$ (inc. VAT).
POWER SUPPLY UNITS IIncorporating our own tocoidal wanstormers!

$\begin{aligned} & \text { Model } \\ & \text { Number } \end{aligned}$	For Uno with	$\begin{array}{\|c} \hline \text { Price inc. } \\ \text { VAT } \end{array}$	Model Number	For Use With	Pries inc. VAT	$\begin{array}{\|l\|l\|} \hline \text { Model } \\ \text { Number } \end{array}$	For Use With	Prica inc. VAT
PSU $21 \times$	lor 2 HY30	f11.93	PSU 52x	$2 \mathrm{kHY124}$	$\underline{17.07}$	PSU 72x	2× HY 248	${ }^{\text {c22.54 }}$
PSU 41 I	1 or 2 HY60, 1 ¢ HY6060. 1 ¢ HY 124	f. 13.83	PSU 53x	$2 \times \mathrm{MOS128}$	$£ 17.86$	PSU 73 x	1 \% HY364	£22.54
PSU 42x	© $x+H$ Y128	[15.90	PSU 54 X	ix HY248	$\underline{17.86}$	PSU $74 \times$	$1 \times \mathrm{HY368}$	C24.20
PSU 43x	$1 \times \mathrm{MOS128}$	[16.70	PSU 55x	$1 \times \mathrm{MOS248}$	£19.52	PSU 75x	$2 \times \operatorname{MOS} 248,1 \times \operatorname{MOS368}$	¢24.20
PSU $51 \times$	$2 \times$ HY128, $1 \times$ MY244	$¢ 17.07$	PSU 71x	2xHY244	¢21.75			

Plinase note: $\begin{aligned} X & \text { in part no. indicates primary voltage. Please invert "O"innolace of } \\ & X \text { for } 110 \mathrm{~V}, " 1 \text { " in place of } X \text { for } 220 \mathrm{~V} \text {, and " } 2 \text { " In place of } X \text { for, } 240 \mathrm{~V}\end{aligned}$

WITHALOT OF GELP mom ELECTRONIPS LTD

PROFFSSIINAL IIIFI THAT EVERYY ENTHUSIAST

 CAN HANDIL...
Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.

Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, $(<0.01 \%)$, stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hifi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fl series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format

UNICASES					
HIFI Separates					Price inc. VAT
UC1	Preamp				¢29.95
UP1X	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Stereo	HiFl	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	£54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	£54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	£74.95
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	Hifi	£74.95
UP6X	60W/4-8	MOS	Mono	HiFi	£64.95
UP7X	120W/4-8	MOS	Mono	HiFi	£84,95
Power Slaves					
USIX	$60 W / 4 \Omega$	Bipolar	Power	Slave	โ59.95
US2X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£79.95
US3X	60W/4-8	MOS	Power	Slave	£69,96
US4 X	120W/4-8ת	MOS	Power	Slave	£89.95

Please note X in par t number denotes mains voltage. Please insert ' O ' in place of X for 110 V , ' 1 ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UC1 incorporate our own toroidal transformers.

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write detals on a separate sheet of paper quoting the name and date of this journal. By sending vour order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D. please add $£ 1$ to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

Please send me the following

Total purchase price
-

I enclose Cheque \square Postal Orders \square Int. Money Order \square
Please debit my Access/Barclaycard No. .
Name-
Address
Signature1

Project

TAPE/SLIDE SYNCHRONIZER

R. A. Penfold

Keep your audio in sync with your visuals!

THERE ARE several different types of slide/tape synchroniser, but the function they all perform is to record short "bleeps" of tone, on a cassette or tape recorder, and then use these tones on playback to automatically operate the slide-change mechanism of the projector. In its most basic form, a unit of this type is simply used with a monophonic cassette or tape-recorder as a programmable slide timer, or in conjunction with stereo tape equipment the "bleeps" can be recorded on one channel while the other carries background music and (or) a commentary.

More sophisticated units enable the tone to be mixed with the music or commentary during records. Then, during playback, circuits in the unit operate the projector only when the "bleeps" of tone are detected and ignore other signals on the tape, so that spurious operations of the projector are avoided. This system has the advantage of enabling the slide show to have a monophonic accompaniment using a monophonic recorder, or a stereo accompaniment using a stereo recorder, but is not very satisfactory in practice since the "bleeps" are clearly audible to the audience, and are something of a distraction.

This problem can be overcome using the arrangement described above plus an additional stage which operates during playback to filter the "bleep"
signals from the output. The HE Slide/Tape Synchroniser is of this type, but it is reasonably simple and inexpensive and does not require any test equipment to enable it to be set up correctly for use. It would not be true to say that there is no loss of quality introduced by adding in the "bleeps" to one channel and then filtering them out again, but the loss of quality is not likely to be noticed, even if your slide shows are not quite as riveting as they
might be!
The bursts of tone are at quite a high frequency (about 5 kHz) and when these are filtered out, any signals at around this frequency in the music or commentary are also removed. This obviously gives a certain loss of audio quality but, as only a very narrow band of frequencies are seriously affected and the fundamental frequencies in music are usually below 5 kHz (so that only harmonics are attenuated by the

Figure 1. The Record section circuit.

How It Works

A MIXER and a tone generator are used to add bursts of high frequency tone to the input signal when a push button switch is briefly operated; the output is fed to the input of one channel of a tape recorder. Another circuit is used to process the signal when the tape is played back; the purpose of this circuit is to separate the bursts of tone and the main signal. The tone bursts are used to automatically operate the projector at the appropriate times, and this signal is filtered from the main signal using a bandpass filter tuned tio the frequency of the tone signal. The output of the filter is fed to a driver circuit which pulses a relay when the tone bursts are detected; a pair of relay contacts are used to operate the slide change mechanism of the projector.

On playback the output from the tape recorder is also fed to a notch filter which gives very high attenuation at the frequency of tone bursts, and thus eliminates them, but enables other frequencies to pass unhindered. In practice, the notch filter will actually remove some of the wanted signal, while the bandpass filter permits some of the main signal to pass through to the relay driver. However, the loss of quality is not serious, and breakthrough to the relay driver should not cause spurious operation of the unit.

The "bleeps" of tone are also fed to the bandpass filter and the Record Output so that the projector is operated when the push button is operated, so that the tone burst is added to the sound track as the projector is operated.

filtering) there is no drastic loss of quality. There is also, inevitably, a reduction in the signal-to-noise ratio, but this is marginal and is of no practical consequence.

The unit is powered from an ordinary 9 volt (PP6 size) battery, and it should be compatible with any normal cassette or reel-to-reel tape deck or recorder. It has unity voltage gain in both the recording and playback modes and should not introduce any problems of incompatibility between
the tape machine used and other items of equipment such as the amplifier used during playback.

The Circuit

If we consider the recording circuit first, (shown in Figure 1), IC1 is used as the tone generator. The oscillator configuration is a form of the Wien Bridge which is capable of giving a good quality sinewave output. The operating frequency is determined by

R2, RV2, C3, C4 and R4; adjusting RV2 permits the operating frequency to be varied from around 2 kHZ to 10 kHZ . In use, RV2 is adjusted to adjust the output frequency to give maximum attenuation from the notch filter in the playback circuit; this is nominally at 5 kHZ .

R3, D1 and D2 form a negative feedback network, RV 3 can be set to give gentle oscillation with a reasonably pure output. D1 and D2 help to stabilise the feedback at the correct level and make the adjustment of RV3 a little less critical.

IC2 is used as a standard operational amplifier mixed circuit having unity voltage gain. RV1 controls the volume of the tone signal fed through to the output socket, so that it can be set at a suitable level relative to the main signal; however the tone signal is only coupled through to RV1 when SW2 is operated.

The circuit diagram of the playback section of the unit is shown in Figure 2. C17 couples the input signal (from the recorder) to a notch filter, which is basically a twin-T type using C 18, 19 , 20, R17, 18, 19, and RV5.RV5 enables the attenuation of the filter to be peaked at a very high level (about 80 dB or more).

A problem with a simple, twin-T filter is that it tends, also, to significantly attenuate signals at frequencies well away from the centre frequency, and in this application the audio quality would be adversely affected. Typically, a twin-T filter gives about 10 dB attenuation at half and double the operating frequency. In this circuit, the response of the filter is improved by the negative feedback loop around IC4. The circuit may look a little confusing, due to the use of two negative feedback loops, but the effect of this is to stabilise the gain of the circuit at unity. This can only be achieved at frequencies where the losses through the twin-T network are fairly low, however, and at the operating frequency of the filter its losses are far too high to be significantly reduced by the negative

Figure 2. The Playback section; the tone filter circuit is on the right (IC4)

Figure 3. PCB overlay for the Record section circuit.

Figure 4. The PCB and component overlay of the Playback section.
feedback. Thus the response of the filter is improved, with reduced losses away from the operating frequency but with the deep attenuation notch being retained.

C15 couples the tape input signal to an emitter follower buffer stage which uses Q2, and this simply ensures that the next stage is fed from a suitably low source impedance. The next stage of the circuit is actually a standard operational amplifier bandpass filter using IC 3, tuned by RV4 to peak the response of the circuit at the correct

frequency

The output of IC3 is coupled to a smoothing and rectifier circuit which drives $\mathbf{Q 1}$ which, in turn, drives the relay coil. When the bursts of tone are present on the input signal, these produce a strong positive bias at the base of Q1, which is then switched on activating the relay and the projector's slide change mechanism via a set of normally open relay contacts

SW1 is the mode switsh; this couples the output of the tone generator through to the playback

Parts List

RESISTORS (All $1 / 4$ W 5\% Carbon)	
R1	270k
R3, 20	47k
R4	3k9
R5,6,13	4 k 7
R7,8,9,14,14	14 100k
R10,11,22,23	2315k
R12	680k
R16	22 k
R17,19	68k
R18,21	180k
R24	1 M
POTENTIOMETERS	
	k
. 1 Whorizontal preset	
	linear carbon
RV4 4k7	
	.1W horizontal preset
	linear carbon
CAPACI	
(All C280 polyester unless noted)	
C2,10,12C3,4,16100n10 n	
	10u
C11 25 V axial electrolytic	
C13,14 ${ }^{\text {polycarbonate }}$	
C15...................3n3 ${ }^{\text {ceramic }}$	
c17,22 ...6 63 V axial electrolytic	
C18,19,20,21… $\begin{array}{r}\text { polystyrene }\end{array}$	
SEMICONDUCTORS 741 C	
IC3,4 LF351	
Q1,2 ${ }^{\text {bC- } 650}$	
miscellaneous	
'RLA1 12 V 18.5 ncoi	
SW13 way 4 pole rotary	
SW 2 Push to make non-locking type B1 PR6 9 volt	
Case, about $203 \times 127 \times 51 \mathrm{~mm}$;	
battery clip (PP3 type); PCBs; three control knobs, wire, solder, etc.	

BUYLINES page 34
circuit when the unit is in the record mode (it also provides on/off switching for both circuits). Note that power is applied to the playback circuit when the unit is in the recording mode, so that the relay activates the projector to synchronise the slide-change with the sound track.

Construction

An aluminium case measuring about $203 \times 127 \times 51 \mathrm{~mm}$ will comfortably accommodate all the components, including the battery. The four controls

Figure 5. Connecting the unit for Record (left) or Playback (right).

are mounted on the front panel, although SW2 can be mounted in a separate small (hand held) case and connected to the main unit via a lead several feet long, if this will be more convenient in use. The lead would need to be terminated in a two way plug and SW2 would be replaced (on the front panel of the case) by a matching two way socket. Note that this socket should be a type which is insulated from the case, such as a plastic jack type or a two way DIN socket. SK 1 to SK5 are mounted along the rear panel
of the case; these are all 3.5 mm jacks on the prototype, but can be changed to any other type of socket, if this will be more convenient in use.

The other components are mounted on two printed circuit boards, one for the recording circuit and the other for playback. The component layouts and wiring are shown in Figures 3 and 4 respectively; use Veropins at points where off-board connections will be made. The specified relay will fit directly onto the printed circuit board, but other types will work provided they
have a coil resistance of about 185 ohms or more, will operate from about 6 volts, and have at least one set of normally open contacts rated at about 2 amps (AC) or more. However, if an alternative relay is used it will be necessary to alter the PCB to suit, or mount the relay off-board. Incidentally, the specified relay has two sets of changeover contacts, with four of its pins unused.

Setting Up

A quick initial check of the unit can be made by switching the unit to the recording mode and operating SW2. If the output of SK2 is monitored using an amplifier and loudspeaker (or even just a crystal earphone), a tone should be produced when SW2 is operated, provided that RV3 is set well into the anticlockwise position. RV1 should control the volume of the tone, with RV2 giving pitch control.

The next stage is to set RV5 at about half way and monitor the output from SK5. By adjusting RV2, it should be found that the tone is greatly attenuated at some setting that gives a fairly high pitch and, by repeatedly adjusting RV2 and RV5, it should be possible to eliminate the fundamental frequency of the tone. With the tone generator oscillating strongly there will be quite strong harmonics (multiples of the fundamental frequency) at the output although, due to the high frequency of the tone, probably only two harmonics will be audible. Setting RV3 further in a clockwise direction will produce more gentle oscillation but will alter the pitch of the tone slightly, and RV2 will need to be readjusted. A little experimentation with the settings of RV1 to RV3 should produce a reasonably pure tone, with the filter attenuating this to an insignificant level.

By adjusting RV4, it should be possible to get the relay to operate whenever SW2 is operated; at this stage RV4 should be set in the middle of the range. If suitable test equipment is available, this can be used to help peak RV4 at the correct frequency. In the absence of test gear, the best procedure is to make a recording of the tone signal (taking the output from SK2) at a recording level of about -12 dB to -18 dB and then play this back into SK4; adjust RV4 to give reliable operation of the relay.

It is just possible that the output of the recorder may be inadequate to operate the unit reliably, and in this case it is better to boost the sensitivity of the circuit by using a higher value for C15 than to use a higher recording level. Similarly if your recorder has an abnormally high output and the unit operates with a wide range of settings of RUG, it would be advisable to reduce the sensitivity of the circuit by making C15 lower in value. Otherwise the bandpass filter might be overloaded and give spurious operations of the projector.

Before using the unit it is a good idea to check that RV2 and RV5 are set for optimum attenuation of the tone signal (RV3 should need no further adjustment, once set correctly). RV1 is set to give a recording level of about -15 dB from the tone signal source,

having a substantially different signal source. Once set, RV1 should not need any readjustment unless a different signal source, having a substantially different output level, is used.

The normal way of making a tape using a synchroniser is to connect the unit to the projector and load the slides. The commentary and (or) music are fed through the synchroniser (which should be set to recording mode, of course) and into the tape recorder. SW2 is operated at the points where slide changes are required and this will operate the projector via the relay, as well as recording the tone bursts. To give maximum reliability, SW2 should
be depressed as long as necessary, but without causing a double slide change to occur, and a good quality tape should be used. This minimises the risk of tape 'drop-outs' causing a slide change to be missed and the tape having to be re-recorded.

If the unit is used with stereo equipment, the convention is that it is used in the left hand channel. Input and output sockets for the right hand channel could be added to the unit, but in practice this channel can simply be coupled direct from the program source of the recorder during record, and from the recorder to the amplifier during playback.
BOXES
 VEROBOX CASES

SWITCHES - Wavarang

 Puih button min 8531 make/8533 break $820 ; 8225$ DPDT $£ 1.34$ -
 thow $2 P$ SD2 5 S
100 SDSO 23.10.

METERS

Large range of typos
ieeds, accessories, etc
PANEL MOUNTING in $50,100,500 \mathrm{u}$: $1,5,10,50,100$

MULTIMETERS

ELECTROVALUE

OR SERVICE YOU CAN TRUST

	MORE IC SUPER SAVERS							
		Prices						
7400		${ }_{7489}^{7499}$	${ }^{159}$	${ }_{74 \mathrm{~L}}^{74}$	8			
7700	11	74791	35	94L		24LS		${ }^{5}$
740	1	7492	${ }^{2}$		14	74.51		
7403		${ }_{7494} 7493$	${ }_{30}^{28}$	74.5784	18	7415240	4020	
740	13	7495	35	${ }^{744575}$	${ }^{2}$	${ }^{744 \leq 241} 5$	${ }_{4022}^{4021}$	
${ }_{7}^{740}$	${ }_{20}$	7496	${ }_{4}$	${ }^{7} 7415157895$	198	${ }_{74452}^{74152}$	${ }_{4023}^{4022}$	
740		74104		74	20	74L5	4024	,
	14		2		27	74.		
74	${ }_{14}^{14}$	7412	24	74.592	${ }^{32}$	74.5	${ }_{4027}^{4026}$	0
		${ }_{74125}^{74123}$	3	${ }^{741515107}$	${ }^{\circ}$	74.5257	${ }^{4023}$	
	2	74126	3	74.5112	2	744.5259	${ }_{4030}^{4029}$	
7430	14	${ }^{7414151}$	51	7415125	20	${ }_{7415273}$	4041	
	14	7415	${ }^{50}$	74.5123		74.15279	${ }_{4043}^{404}$	
7443	60	${ }_{74156}^{74155}$	40	${ }^{7445136}$		${ }_{7415367} 3$	${ }^{4}$	
${ }_{7}^{7445}$	${ }_{36}^{60}$	74157 74150 7	30			${ }^{74} 71535388$	4046	
7448	40	74190 74192 105	${ }_{48}^{48}$	${ }_{7415}$		${ }_{7415374}$	4050	
	14	74193	${ }_{48}^{48}$	${ }^{7} 715145$		7415378 7415393 700	${ }_{4069}$	
${ }_{7453}$	1	74393	${ }^{56}$	${ }^{7415148}$		74 LS393 60	${ }_{4070}$	
7454	14	74LS		${ }^{7415153}$		CMO	4071	
7600 740	14.	74	11	74.5		4000 4001	${ }_{4081}^{4072}$	${ }_{\sim}^{\mu}$
		74L504	12.	${ }^{7415157}$		$4002 \quad 12$	4082	
${ }_{7474}$	83	${ }^{741505}$	12	7418		${ }^{40006} 10$	${ }_{4510}$	
7475	32	74.1510	12	74.		4008	4511	46
74776 7880	30	74LS				4009	4514	120
7482	¢	${ }_{741520}$				4011	4518	
	¢0	7445	12	741		4012	4520	${ }^{60}$
边	60	${ }^{744532}$		${ }^{74451756}$		${ }_{4014}$,	20

RESISTORS

1/4, $1 / 3,1 / 2,3 / 4$ wan- all 28 each. 10 of one value 15 p
 LARGE SAE BRINES IATEST Ip ENLARGER PRICE LST

POTENTIOMETERS

SLIDERS 58 mmn . Low cos: $10 \mathrm{~K}-1 \mathrm{M}$ log only 29 p . Std 58 mm mono

$4 \mathrm{~K} 7-1 \mathrm{M}$ lin or $\log 36 \mathrm{p}$, stereo marched $\mathrm{f1} .25$, Graduated bezels 36 p . PRESET min . 10 mm dia. Horizontal or vert. 100 ohms -1 M eal 13 p , Cerme | 10 mm dia. Horiz. or Vert. $100 \mathrm{D}-1 \mathrm{M}$ ea 24 . Cermet rectilinear type |
| :--- |
| $1008 \sim 1 \mathrm{M}$ |
| 1.06 . PLESSEY MPW moulded corbon $470-2 \mathrm{Ms}$ ea 590 . | - Normal Despatch within $2 e$ houre.

CAPACITORS

$5,7,10,12,15,18,22,27,33,39 \mathrm{pF}$ 12p; 47, 56, 68, 82, 100, 120, 150,
 2n7, 3n3, 3ng, 4n7 13p, 5n6, 6n8, 8n2 10p
 POL YESTER, SIEMENS LAYER-TVFE 7.5 mm lead soocing 100 V
$1 \mathrm{n}, 1 \mathrm{n5} 5,2 \mathrm{n} 2,3 \mathrm{n} 3,6 \mathrm{p} ; 4 \mathrm{n} 7.6 \mathrm{nB}, 8 \mathrm{n} 2,10 \mathrm{n}, 12 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n} .22 \mathrm{n}, 27 \mathrm{n}, 3 \mathrm{n}$
 25p: 390n, 470 n 17p; $560 \mathrm{n}, 680 \mathrm{n} 24 \mathrm{p} ; 10 \mathrm{~mm}$ spacing $1 \mu \mathrm{~F} 26 \mathrm{p} ; 15 \mathrm{~mm}$
spacing $2 \mu 235 ; 22.5 \mathrm{~mm}$ spacing $1 \mu \mathrm{~F} 400 \mathrm{~V} 47 \mathrm{p} ; 3.3 \mu \mathrm{~F} 100 \mathrm{~V}$ 69p; Inspacing 2,235
depth stocks.
ELIECTROLYTCS NON-polar (for $L 5 X$-overs) 50 V pealit 2uF 24p; 4.F 28p; 6, 8, 10, $16 \mu \mathrm{~F}$ 32p; 25 F F 37p; 40, $60 \mu \mathrm{~F} 59 \mathrm{p} ; 100 \mathrm{~F}$ 6sp POLARISEO, SIEMENS OR MULLARO (μ F/V) $1 / 63,2.2 / 63,4.7 / 63$
$6.8 / 40,10 / 25,22 / 10,10 p ; 10 / 40,22 / 25,47 / 1011 p ; 47 / 2512 p: 100 / 10$ 13p; 10/63, 22/40, 100/16 14p; 22/63, 47/40, 100/25, 100/40 15p: $220 / 10,220 / 1616 \mathrm{p} ; 220 / 25$ 18p; 220/40 20p: 470/10, 470/16, 470/25;
$100 / 1019 \mathrm{p} ; 470 / 40,100 / 1627 \mathrm{p} ; 1000 / 2536 \mathrm{p}: 1000 / 40,2200 / 1644 \mathrm{p} ;$ $1000 / 63$ 76p: 2200/40,4700/16 73p.
PLUGGAELE SIEMENS single anded
$1 / 63,2.2 / 63,4.7 / 6310 \mathrm{p}: 10 / 63.22 / 63 \mathrm{Bp}: 22 / 40,47 / 1610 \mathrm{p} ; 47 / 4012 \mathrm{p}:$
$47 / 6310 \mathrm{p}: 100 / 16,100 / 25,100 / 4010 \mathrm{p}: 100 / 63 \quad 20 \mathrm{p}: 220 / 1013 \mathrm{p}$ 220/16. 220/25 13p; 470/6.3 15p; 470/10 16p; 470/16 18p; 470/26 22p:
$470 / 40$ 26p; 1000/10 22p; 100/15 23p; 1000/25 $470 / 4026 \mathrm{p} ; 1000 / 1022 \mathrm{p}$; $1000 / 16 \mathrm{23p}$; 1000/25 40p. LARGE CANS - SIEMENS
 TANTALUM
$\begin{array}{llllllllll}10.1 / 35, & 0.22 / 35, & 0.47 / 35, & 1 / 35, & 2.2 / 16, & 13 p: & 2.2 / 35, & 2.2 / 16 & 13 p ; \\ 2.2 / 35, & 4.7 / 16 & 18 \mathrm{p} ; & 10 / 6.3 & 16 p ; 4.7 / 35, & 10 / 16, & 22 / 6.3, & 10 / 25\end{array}$ $2.2 / 35 ; 4.7 / 16,18 p ; 10 / 6.316 p ; 4.7 / 35$,

LOW Leakage all single ended

$0.1 / 50,0.22 / 50,0.47 / 50,4.7 / 3511 p ; 1 / 50,2.2 / 50,4.7 / 5011 p ; 10 / 16$,
$22 / 611 p ; 10 / 35,22 / 10,22 / 16,22 / 35,47 / 6,47 / 1012 p ; 47 / 16,100 / 6$
\qquad

CATALOGUE TOD POST FREE ING. T0p REFUND VOUCMER
ORDERS CAN BE
ACCEPTED BY MAIL
OR TELEPHONE

- VAT - additional at 15% on all UK orders

FREE POSTA GE and packing on UK CWO orders $55 . \pi$ inc. VAT and
wards. Under add 40 p inc. VAT. Normal despatch in 24 Wards. Under add 40 p inc. VAT. Normal despatch in 24 Hours.

- DIICCUNTS CWO orders over C33. $00-5 \%$, over $557.50-10 \%$ Oiscounts do not spphy to 'Not' tems (shown by N atter the price, or to
orders paid for by credit card)

ELECTROVALUE LTD

28G St Jude's Roed, Engle fiold Green, Egham, Surrey TWZO OHE
Telophone Egham (STD OT8; London 87) 33603; Tolvex $244 / 75$.
Northem Branch (personal shoppers only)
600 Burnage, Manchestor M19 1NA.
700 Burnage Lane, Manchester (061-4314866)

Project

POP-AMPS
 Owen Bishop

Simple measuring circuits based on operational amplifiers

No. 2: Voltage follow-and-hold circuit

ONCE in a while, and probably more often, it is necessary to measure a voltage which is changing rapidly but trying to follow the needle of the voltmeter by eye and read it at just the right instant is tension-generating, to say the least And, if your eye cannot follow the needle, it is likely that the needle cannot follow the rapidiy changing input voltage, either, so whatever reading you have struggled to obtain will be doubly in error. This circuit, however, gives your eve and the needle a breathing-space in which to catch up with the changing voltage. Pressing the button, it takes a sample of the input voltage at any instant; the circuit then holds the sampled voltage while the needle of the meter comes to rest, and your eye has time to take the scale reading with all the accuracy you need.

The Circuit

The output of the circuit (Figure 1) follows the input voltage as long as the button is held pressed. When the button is released, the output remains constant at whatever value it had at the instant of release. When the button is pressed again, the output immediately becomes the same as the input voltage. The operation of the circuit is diagrammed in Figure 2.

The op-amp is connected as an inverting amplifier with unity gain and with the button pressed, output follows input except that it is inverted.

Figure 1. The Follow and Hold circuit.

Figure 2 (above). How it works; (a) with +2 V on the input, a current of 200 uA flows into the op-amp output pin; (b) this causes voltage drops of 2 V across each resistor, so that the inverting input is at 0 V , the output at -2 V and the op-amp is stable; (c) in "hold". changes at the input cannot effect the op-amp output.

Project

Now an op-amp is stable when there is no potential difference between its two input terminals. But since the noninverting (+ve) input is wired to 0 V . the inverting input must also be at O V if the circuit is to be stable. So given an input of, say, +2 V , a current of 200 uA flows toward the inverting input, by way of the input resistor R1. The amplifier input has extremely high resistance, so almost no current enters it, but, instead, flows on through R2 and into pin 6 of the op-amp. Since R1 has the same value as R2, and the same current flows through each; the voltage difference across each resistor is the same (Figure 2b). Therefore, with a drop of 2 V across each resistor, the output potential is -2 V , the potential
at the inverting output is 0 V and the op-amp is stable. In this state, one side of capacitor C 1 is at 0 V and the other is at -2 V ; there is 2 V across it.

When the button is released, the circuit becomes as shown in Figure 2c. The input to the circuit may change, either increasing or decreassing in voltage, and a varying current may flow in either direction through R1, R2 and into or out of the output terminal of the op-amp - but the output of the opamp is entirely unaffected by this! The potential at its inverting input is held at 0 V because of C 1 and, since this is still the same as the potential at its non-inverting terminal, the amplifier is stable; it maintains an output potential of -2 V .

Figure 3. The Veroboard component overlay (top) and the track-side view (bottom), showing the positions where the strips are cut.

Figure 4. Wiring the external components to the Veroboard.

The capacitor retains its charge for a long time, since there is no way in which a large current can flow from one side of the capacitor to the other. The plates of C1 are effectively insulated from each other by the dielectric, which has a resistance of $20,000 \mathrm{M}$ or more, while leakage into the amplifier is very small too, since the input impedance is $10^{12} \mathrm{R}-\mathrm{a}$ million megohms - and this high input impedance is the reason for choosing a JFET op-amp for the circuit. With such high resistances, a charge of 2 V on C 1 takes 47 seconds to drop just a hundredth of a volt. This should give you (and the meter) plenty of time to copel

The circuit described has unity gain, so meter readings are equal to input voltages, though increasing the value of R2, you can make the circuit amplify the voltages as well as hold them. The amplification is set by the ratio R2/R1; for example, if you replace R2 with 100 k , the op-amp amplifies ten times.

The reason for choosing the 531 in preference to other JFET op-amps is that it has a very high slew rate (rate of change of output voltage) of $13 \mathrm{~V} / \mathrm{us}$, which compared with the rate of OV5/us for the 741, makes it a good device for sampling rapidly changing voltages.

Operating the multimeter on the 10 \checkmark range means that offset null adjustments (see Pop Amps No. 1 in this issue) are less important and an offset potentiometer is not needed.

Construction

There are so few components that construction of the circuit takes only a few minutes. The component layout is shown in Figure 3. Whether you decide to mount it in a case is a matter of preference. If you have a 10 V meter to spare, you can mount this on the case; it does not need to have a high coil resistance, so a cheap one will do. Otherwise, plug your multimeter into the circuit, using the two sockets indicated. This circuit, like No. 1, can also be used with the LED
Millivoltmeter featured in HE August 1982.

Parts List

RESISTORS

(All $1 / 4$ Watt 1% carbon)
R1,2
CAPACITORS
C1
SEMICONDUCTORS
IC1
7611
CMOS op-amp

MISCELLANEOUS

2.5 mm stripboard, $48 \times 25 \mathrm{~mm} ; 6$ $\times 1 \mathrm{~mm}$ terminal pins; $2 \times 4 \mathrm{~mm}$ red sockets, $2 \times$ black; push-to-make switch; DPDT switch; $2 \times$ PP3 battery connectors; optional case; wire, solder etc.
BUYLINES
page 34

ZX81 OWNERS
SPECIALISE PRODUCTS MODULAR EASY TO USE FOR HOMEINDUSTRY \& EDUCATION

TE10 INPUTIOUTPUT PORT - Easy to use. Fits berween $Z X$ \& RAM PACK/PRINTER (if required). No skill required to connect. Can be used for such things as:- motor control; sound/music generators, connection to printers/floppy discs/light pens/other computers, temperature monith 16 programmable $1 / 0$ lines and may be used without any electronics knowledge 16 programmable $1 / 0$ lines and may be used without any electronics knowedge to connect other add Mons. Merboard required ONLY when wo or more addOULIY ASSEMBLED
$£ 17.95$
$£ 14.95$
$-\quad 240 \mathrm{~V}$
KIT IWITHOUT CASE
TE12 \& CHANNEL RELAY BOX - To suit Port Contact rating: - 240 v $\mathrm{AC} / 1,5 \mathrm{~A}-24 \mathrm{~V}$ OC or 110 V AC/3A. Up to 4 units i.e. 16 relays can be $\mathbf{£ 1 4 . 9 5 .}$ TE15 BWAYTRANSISTOR DRIVER -
TE17 8 WAY SWITCH UNITIEDUCATIONAL) -
TE18 8 WAY INDICATOR UNIT (EDUCATIONAL) $\begin{array}{r}\mathrm{E} .95 \\ \hline\end{array}$ [12.95
TE20 JOYSTICK \& FREE GAME - 12 Joysticks may be connected via Motherborsd.)
TE30 MOTHERB OARD - Allows multiples combinations of add-ons - up to $161 / 0$ linesmay be used - $\quad \mathrm{Cl} 5.95$ TE126 POWER SUPPLY-6/7.5/9V DC at 300 mA - Aequired for use 64.95 add-ons TE12/15 \& 18
$23+23$ WAY ZX Edge Con $\mathbf{E 2} .85$. Contact cleaner $\mathbf{E 2} 30$. 16 WAY SINGLE SIDED EDGE CON f1.95. EXTENDED PIO NOTES 11 PAICES INCLUDE VAT Receipts atways provided: - Delivery normally ex-stock. AOD
$50 p$ towards p\&p on all orders under E20.00, with the exception of accessories, e. g. Edge on. Full instructions and examples with all products. FOR CATALOGUE. TELEPHONE ORDERS ACCEPTED.

TRACKER CAR COMPUTER

 computers that we have yet come across . . ." Practical Motorist

Economy - save petrol by improving your driving technique and improving the tuning of your car
Performance - dynamic checks on time to improve performance and economy

- Security - protect your car by disabling the ignition. Enter a personalised combination to restar
Attractive, easy to fit, easy to operate - comes complete with all parts needed. Full instructions provided
Imperial or metric read outs
The 'Tracker' car computer has been specifically designed as an integral part of your car dashboard. using highly accurate speed and petrol flow sensors it allows you to improve the fuel efficiency of your car by providing information on fuel consumption and tuning.
n. all over 30 functions including estimated time to arrival, fuel needed to complete a journey, speed needed to meet an arrival time, acceleration tests, standing quarter miles and many more
'Tracker' car computer available at $£ 88.50$ Or as an easy-to-assemble kit of parts at $\mathbf{£ 7 8 . 5 0}$ The ignition cut-out unit is optional at $£ 7.75$ All prices include VAT. Allow $£ 1$ post \& package. Goods by return.

PIMAC Systems Ltd

(Dept HE)
20 Bloomfield Road, Moseley, Birmingham B13 9BY Tel: 021-449 0384

Hemmings Electronics Ltd

Electronic Components \& Microcomputers 16 BRAND STREET, HITCHIN, HERTS, SG5 1JE Telephone: (0462) 33031

> An accurate and reliable DMM with some outstanding features.

WHEN I unpacked the HC6010 from its mustard coloured box, I could tell I was in for a few surprises. Described by the manufacturers as accurate and reliable, it is a digital multimeter with all the usual AC/DC current and voltage ranges and some extra ones not common to meters in this price range - for example, a basic DC accuracy of 0.5%. In use it was very robust - of the highest electronic standards of construction - and well thought out. In fact, my only real criticism was of an aesthetic nature rather than due to any great failing of the meter.

The 6010 multimeter is made by Hung Chang Products and distributed by Armon Products Ltd. The basic ranges are $\mathrm{AC} / \mathrm{DC}$ current and voltage (extending up to 1000 V and 10 ADC , and 750 V and 10 ADC) and two resistance - low and high output voltages. The display is $31 / 2$ digit LCD with auto-zero, auto-polarity and 'lobat' indicators. Range and scale selection is made via a series of push-buttons along the left-handside of the instrument. There are eight buttons in all, two for selecting AC/DC (or hi/lo resistance) and voltage/current/resistance and six for setting up the correct full scale deflection (FSD). For instance, to measure up to 20 mA AC you would press the top button (conveniently coded dark grey) for $A C$ and the fifth button to read up to 19.99 mA . However, there's no need to worry if the value is over range, since the meter is protected against overloads by sparkgap (voltage), inrush current limiter (current) and a 2 A fuse (current). Also protected are the battery eliminator input and resistance ranges and as if that isn't enough, the test lead sockets are recessed - not to make plugging and unplugging the leads as difficult as possible as I first thought, but to ensure there is no bare metal to give you any nasty shocks - as part of an overall philosophy of 'safety first'.

Accuracy on the current ranges is not as high as on the voltage, but since the worst case (2 A and 10 A AC) is still fairly good at $\pm 3 \%$ (reading +5 digits), I do not feel the 6010 is any poorer than the competition II was part ticularly impressed by the clear manner in which all the technical specifications were presented). Resolution on both AC and DC current is adequate at 100 nA ; but this meter, like others I have reviewed, would have benefitted from a lower limit of 10 nA, say - after all, isn't everyone interested in the current con sumption of their LCD calculator!

Resistance measurements are made by pressing the lowest button and then selecting either the 'hi' or 'lo' ohms scale. These two scales are present, as with other meters, to allow in-circuit readings to be made. However, unlike some other similar instruments, the lo output is low enough (280 mV) to facilitate testing around most semiconductors. Both outputs (hi and lo) have six ranges from 200 ohms up to 20 megohms, with resolution down to 100 milli-ohms on the 200R. Accuracy is very good on the four lower ranges 10.5% nominal) and creditable on the 2 M and 20 M settings (better than 2% nominal). The high range (up to 20 M) is quite rare for a unit of this type and I was pleased to see it included.

Specs And The Rest

Clearly A Better Meter

The voltage ranges are chosen by pressing the lowest of the (dark grey) buttons. Both AC and DC voltage scales have the same ranges (apart from maximum values of 750 VAC and 1000 VDC) and so AC or DC can be switched by a single button. Accuracy is quoted at $\pm 0.5 \%$ (reading +1 digit) DC and $\pm 1 \%$ (reading +5 digits) AC, which despite being a strange way of expressing the tolerances, is pretty good for a meter of this price range.

Sinusoidal voltages are measured with an averaging response, but the meter is calibrated to read RMS (though this is not as good as direct reading RMS) and resolution for both AC and DC is a very good 100 uV .

To measure current, you have to plug the red test lead into a different socket (slightly tedious with the safety measures mentioned earlier), and the two dark grey buttons operate in a similar manner as when reading voltage - upper for AC/DC. lower remains 'out'. In addition to this, if you want to take readings up to 10 A you must plug the red lead into a third socket. This was again a chore, but-when you consider that most other meters need a shunt to measure such large currents, perhaps it's forgivable.

The HC6010 DMM comes complete with an instruction leaflet, which is very clear but (sadly) not that well laid out whatever happened to those neat pocket-sized manuals that used to accompany most of the better meters! Even so, operation is easy to grasp and the leaflet is only necessary as a source of reference information. What I do commend Hung Chang for, is the inclusion of a circuit diagram and parts list it is always a good sign if a manufacturer is proud enough of his design work to want to make it public. However, it's a pity this pride doesn't extend to the fascia panel, on the front of the case, which has the lettering printed on it. Not only does this have a tendency to peel off, but it gives the meter a gimmicky appearance. A bit of time spent here (and on improving the shape of the case and buttons) would pay in the long run - designers of the 'Mark II' take note.

So, for those of you who are after a robust and accurate digital multimeter, that is easy to use and out-performs most others at the price, I can recommend the 6010. However, if you're after something to show off to your friends, then keep looking... and one final surprise, a price tag of $£ 34.44$. For further information contact Armon Products Ltd, 53-63 Wembley Hill Road, Wembley, Middlesex HA9 8BH.

CAMBRIDGE LEARNING

 SELF-INSTRUCTION COURSES

\star NEW! \star

DIGITAL COMPUTER DESIGN £8.50

Our latest, up-to-date course on the design of digital computers, both from their individual logic elements and from integrated circuits.

Digital Computer Design is the best way for you to understand how simple computers are. You are first shown the way in which simple logic circuits operate and then, through a series of exercises, arrive at a design for a working machine.

GSC SUPERKIT £19.90

The original Cambridge Learning Superkit, a practical digital electronics kit for beginners, now re-written for the popular GSC EXP300 breadboard. The kit comes complete with an instruction manual, components, and breadboard to teach you all the basics of digital electronics.

DIGITAL COMPUTER LOGIC \& ELECTRONICS
 $£ 6.00$

The theory course to support the practical Superkit, this 4 -volume set covers basic computer logic; logical circuit elements; the design of circuits to carry out logical functions: flipflops and registers. No prior mathematical knowledge other than arithmetic is assumed.
gUarantee No risk to you. If you are not completely satisfied, your money will be refunded upon return of the item, in good condition within 28 days of receipt. cambridge learning limited, unit 10 rivermill site, FREEPOST, ST IVES, CAMBS, PE 17 LBR. ENGLAND TELEPHONE: ST IVES (0480) 67446 . VAT No 313026022 All prices include worldwide postage (airmail is extra please ask for prepayment involce). Giro A/c No 2789159. Please allow 28 days for delivery in UK.

SUPERKIT(S) - £19.90
DIGITAL COMPUTER DESIGN(S) e £8.50
digital computer logic and electronics e 66.00
I enclose a *heque/po payable to Cambridge Learning Lid
for \&......... ("delete where applicable)
Please charge my:
*Access / American Express / Barclaycard /.Diners Club Eurocard / Visa / Mastercharge / Trustcard
Explry Date............ Credit Card No
 Overseas customers (including Eire) should send a bank draft in sterling drown on a London bank, or quote credit card number.

Name.
Address.

OSCILLOSCOPES

1C/P Dual 1 race E4.00: Hm 307 Shnople frace 10 MHz 5 5 sec. Prus suvilit n componen tis ster

3030 Single troce $15 \mathrm{MHz} .5 \mathrm{mV}: .5 \mathrm{~S}$ mlcro

Him203/4. At a bove but 2 mV + Algebralc

31310 Oual trace 15 mHz rifig.t 35 mHz 5 mv .0 .5 m mer sese. 130 mm whe plus componenen lester
model will component lesser Ouva 20 MHZ delayyed sweep: 1 ITi 1040 MWZ $5 \pi V 0.1$ micro sec 8×1 IOcm displiay (HAMEG) $£ 419.75$ [DDionil case E21 85$]$

AUDIO ELECTRONICS cimegrid

301 EOGWARE ROAD. LDNDOW W2 1BN. TEL: 01-7243564
ALSD AT HENRYS RADID.

FREQUENCY COUNTERS
IAll models batlery operated \{UK C/P ©I PFM 200a Pocket 8 dight LE
200 MHz 10 mV (THANO
max $5050 \mathrm{MH2} 6$ dig
Max 5506 digil
LEO Pockel [GSC]
8110A 8 digif LED 2 range 100 MHz 8ench $\sin 104$ Bindilic 8610 A 8 digli LED 3 range 600 MHZ Max $1005 \mathrm{~Hz}-100 \mathrm{MHz}$
8 digil Bench LEO [GSC]
861089 digit LEO 3 range 600 MHz 8ench ISABTRONICSI
8000 B 9 digin LED 3 range 1000 MHz TFO40 8 digit LCO 40 MHZ (THANDAR TF200 8 digit LCO 2 range 200 MH THAMOAR| calers lor any counter up to 200 ल TPGBO 600 MHz — TP 1000 with P/S I

DPTIONS

GENERATORS
 Audio (UK c / p §1)
 All models $220 / 240 \mathrm{~V}$ ac

QuDio 4 band Sine /SO output
TE220 Max distortion 1% 20HZ/200khZ LAG27 Max distortion
IERAERI 5 Hz-AMH2 SISI 2045 band 10 Hz .1 MHZ
LAGI 25 As LAGI2OA bul 002% dist [LEAOERI
AG203 10HZ.1 MHZ 5 tand 0.1% Sine/SO
OSCILLOSCOPE PROBE KITS
 $\begin{array}{rr}8 . \\ \times 1 \times 10 & £ 10.45 \\ \times 100 & £ 16.55\end{array}$
aO4/40G EOGWARE RDAD. IDNDON W2

LOW COST DIGITAL

 MULTIMETERS$3 y$ digli LCO Hand Held OMM's: ISW = Slide switch: PB = Push 8utton RS = Rotrery) (Models ${ }^{\circ}$ wilh carry case! UK $\mathrm{C} / \mathrm{p} 65 \mathrm{p}$ all models K.U25C 13 Aange 0.2 A. DC 2 megohm ISWI $£ 26.50$ - KD30C 26 Range 1A. AC/OC 200 megohm IASI £37.50 - 60126 Range 2 A AC/OC 20 megohm IPBI RSI E41.50 188 m 16 Range ICA OC (no ACI 2 menohm Plus HFE [transisiorj Yester inSj. 189m 30 Range 10:A AC/OC 20 megohm Plus HFE Tesler (TRS)

ANALOGUE MULTIMETERS

 GENERAL RANGELow cost reliable meters [All supplied with betis/leads (UK C/P 55pl
BANANA 15 range pocket ZOK/Vol
plus cont. buzzer
ST5 114 range 2 Krvoil Pockel
SH5 11 range pocket 4K/voli
NH3SOTR range pockel 20K/Volt KRT5001 is pange 10 him der ram/Vo KRT5001 16 range 10 amp OC range double $50 \mathrm{~K} /$ Voft \qquad £16.50
 AT1020 18 range Qeluxe 2KV and Hie Terter £23.95
plus cont buzzer $30 \mathrm{k} /$ Voff
168 M 36 range larne scale 10 AC/OC 50K/VOH ¢28.50
$3601 R 23$ range la rge scale 10 A AC/OC Hfe tesi 50 mear. ohm. IKV /0C $100 \mathrm{~K} /$ Volt c.36.95

Choose from UK's largest range
RF (all with Int/Exi mod. varlable ouipull TE200 100KHZ.100MHZ 6 band
[300 MHZ harm]
[SG17 100 KHZ - 150 MHZ |450 MHz hapm| LEAOEA
FUNCTIDA lall sine/SO/Triangle/TYL etc.| 5020 A 1 HZ -200KHZ (SABTRDAICS) TG100 1H2.100KHZ (THANOAR) GIIO2 0.2HZ-2MHZ (THAMOAR)
PULSE TG1055 (THANOAR) $£ 49.95$ £71.30 £90.00 $£ 90.85$
$\mathbf{f} 165.75$ 4001 Ulira-variable 0.5 HZ . 15 MHZ (GSC) $£ 97.75$

 Qu: CB

SC1 10A Mew model 10MHZ bittery poriable OmV D. I nsec τ 'trace Options: :arry case
Options: Larry case
171.00
71.00
8.84
85.69 ع8.631
\qquad

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">D</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">D</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">(O)</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">\square</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| D |
| :--- |
| D |
| (O) |
| \square |</table-markdown></div>

THE HE BOOKSHELF is the easiest way to build up your library of electronics books. Order today to have these top titles delivered
 DIRECT TO YOUR DOOR.

Sinclair ZX Spect

16K or 48K RAM... full-size movingkey keyboard... colour and sound... high-resolution graphics... From only £125:

First, there was the world-beating Sinclair ZX80. The first personal computer for under £100.

Then, the ZX81. With up to 16K RAM available, and the ZXPrinter. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the $\mathrm{ZX81}$ remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the $\mathbf{Z X 8 1}$. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your $2 \times$ Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of $Z \times$ Spectrum professional-level computing.

There's no need to stop there. The ZX Printer-available now - is fully compatible with the ZX Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM -16 K or 48 K
- Full-size moving-key keyboard - all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally $x 192$ vertically, each individually addressable for true highresolution graphics.
- ASCll character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASCII character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your $\mathbf{Z X}$ Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of holding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second, with average access time of 3.5 seconds. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum.

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $£ 50$.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard. EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

The first 21 software cassettes are N available directly from Sinclair. duced by ICL and Psion, subjects lude games, education, and business/ usehold management. Galactic asion ... Flight Simulation ...Chess . tory ...Inventions ...VU-CALC ...VU-3D 7 programs in all. There's something everyone, and they all make full use he Spectrum's colour, sound and phics capabilities. You'll receive a ailed catalogue with your Spectrum.

3232/network terface board

This interface, available later this ar, will enable you to connect your Spectrum to a whole host of printers, minals and other computers.
The potential is enormous. And the onishingly low price of only $£ 20$ is sible only because the operating tems are already designed into the M.

clair Research Ltd, Stanhope Road, mberley, Surrey GU15 3PS.
: Camberley (0276) 685311.

Low Cost Alarm System protection for any property.

Owen Bishop

THE COST of a professionally installed intruder detection system can be measured in hundreds of pounds so, with housebreaking on the increase, there is a lot to be said for a simple DIY system such as this. There are gains in the immediate savings on the considerable labour costs of installing the wiring, coupled with the fact that the commercially made 'box of electronic tricks' often seems to contain surprisingly little for the money. The electronic part of this system contains surprisingly little, too, but you will have to pay more than about $£ 13$ for all the components, including switches (but not including the case and battery). Perhaps this system does a little less than some of the more advanced of those commercially available, but it is straight forward in its action and there is virtually nothing to go wrong with it. Moreover it is not subject to false alarms caused by transients in the detector circuits, as are many of the simpler alarm systems. It has extremely low power consumption (only 0.75 mA) when quiescent, so it is ideally suited to battery power. A set of ' D ' dry cells will last for many months of operation, 24 hours a day. A set of
"AA" NiCad cells will last for 1 month on one charging. Thus, the system is independent of mains power failures or interruptions.

The noise generated by the solid state audible alarm is more than enough to wake the household or to rouse the attentions of neighbours. The alarm draws only 25 mA , yet emits a piercing warbling tone with a power of 95 dB at 1 m . Since its current requirements are low, it is feasible to wire two or more AWDs in parallel and site them in various parts of the house. But try using just one to begin with, for it is more than likley that you will find it does all that is needed.

The system has two kinds of detection circuit, the peripheral loop and the pressure mat system.

Peripheral Loop

This consists of normally closed switches mounted on all doors and windows, forming a loop which surrounds the area to be protected. The switches are in series so that, if any one switch is opened, the loop is broken and the alarm is sounded. It may be sufficient to protect ground-floor entry-points only, but upstairs windows should be protected too, if they are readily accessible from outside. Do not forget the less obvious points, such as coal-

shed doors, hatches and skylights.
It is best to use a magnetic switch specially made for the job. The switch consists of two parts (Figure 1). The reed switch itself is mounted on the frame of the door or window or may be concealed in a hole drilled in the frame. The other part contains a permanent magnet. This is mounted on or concealed in the door or window itself. When the door is shut, the magnet holds the reed switch closed. When the door is opened, even by only a centimetre or so, the switch opens and
the loop is broken.
The use of a normally-closed loop of this kind makes it difficult for an intruder to de-activate the system by cutting wires. A cut at any point on the loop sounds the alarm immediately. However, it is worth remembering that intruders do not always open doors or windows in the conventional way, in order to gain entry. especially if the door or window is securely locked or bolted. It may be easier for the intruder to quickly cut away the glass of a french door or picture

Figure 1a, b. Two methods for fixing reed switches in a door or window frame.
window, and enter through the hole. Another ploy is to cut an entry hole in the panel of a lightly-constructed door, or in the thin panelling which is often to be found alongside front-door units. Glass panes and thin panels may be protected by fixing strips of thin metal foil across them. Special window foil is sold for this purpose, together with terminal blocks for making connections to the end of the strip. These strips can be included as part of the peripheral loop.

Where the devices mentioned above are not suitable, it is usually easy to rig up a normally-closed microswitch which will be opened by an attempted break-in.

Pressure Mats

These are specially made mats which are placed beneath carpets or other floor coverings. They act as normally open switches, closing when stood on. If you have large pets loose in the house at night, or if any member of the family is a habitual sleep-walker, take care where you place them! Otherwise, they may be placed in strategic positions around the house, especially in areas such as the living room, where expensive equipment is likely to attract the intruder. The mats are wired in parallel, so that the circuit is completed when any one mat is stood on. This section of the system may also contain other normally-open switches. A valuable safety feature is to have a few push-buttons situated in the house where they can be used for sounding the alarm manually. This provides a quick and effective way of alerting the household in case of fire, for example. The wiring of this part of the system needs to be as carefully concealed as possible, for the system can easily be de-activated by cutting the wires, but since much of the wiring is beneath the carpets, this presents little difficulty. The wire used for the pressure mat system and the peripheral loop can be light-duty PVC covered wire $17 / 0.2 \mathrm{~mm}$ wire is cheap and perfectly satisfactory).

Circuit Details

The peripheral loop runs from the 12 V line, around the premises and back to the loop input terminal. If the loop is broken, the pull-down resistor, R2, causes the input voltage to IC 1 a to drop to OV . The other input to IC 1 a is held high (at 12 V) by R1. If any one mat is stood on, the input voltage falls to $\mathrm{O} V$ (low). With two high inputs, the output of the NAND gate is low; this is the quiescent state. If the loop is broken, or if a mat is stood on, the output goes high.

A high output causes a current to flow through D1 and R3, charging C1. If the output remains high for long enough (about 0.5 seconds) the voltage rises above 6 V , which is effectively a high input to IC 1 b . The output then changes from high to low. If the output of IC la is high for only a short time, as when a transient pusle appears on one of the inputs, C1 discharges through D2. Since there is no resistor in the return path, C1 discharges rather more rapidly than it charges, quickly eliminating the effect of the transient voltage. It would take an incredibly severe series of transients to break through this filter.

Figure 2. Circuit diagram of the alarm system.

Figure 3. The component overlay.

Gates IC 1c and d form a Set-Reset flip-flop. Its inputs are normally high and it is triggered to change state by a low pulse on one of the inputs. The Set input comes from IC 1 b . When this goes low, the flip-flop changes state, the output of IC ic changes from low to high and current flows to Q1, which is connected with Q 2 as a Darlington pair to give sufficient current gain to operate the AWD.

The Reset input to the flip-flop comes from the junction of R4 and C2; it is held high by the pull-up action of R4. but when SW1 is pressed, the input fails immediately to low, thus resetting the flip-flop. While this input is low, a break in the loop or pressure on a mat can cause the input of the IC 1c to go high and sound the alarm, but only for as long as the condition lasts, because the flipflop does not change state permanently. The input to IC1c rises very slowly from OV as C 2 charges through R4; it take about 30 seconds to reach 6 V , providing the delay which allows the alarm to be set when the house is to be left unoccupied. After that, the flip-flop is ready to be triggered permanently by a low pulse from IC1b.

SW2 switches out the peripheral loop, by connecting the loop input directly to the 12 V line. This switch is not an essential part of the system, but it may be useful to de-activate the loop if, for example, a member of the household plans to return home late at night when the other members are in bed. This allows the mats to provide some kind of protection in the meantime. SW3 disconnects the mat system, and this too
is useful but not essential. During the evening, when all doors and windows are shut and the family is engrossed in the TV, the mat system is probably best kept inactivated. The peripheral loop gives adequate protection against intruders, many of whom prefer to break in when everyone is settled in one room with the sound from the TV to mask the noise of breaking glass or splintering timber.

Construction

There should be no problems in assembling the board and getting it to work straight away. As already mentioned, this circuit is ideally powered by a battery of 8 dry cells, or Ni-Cad cells. These may be contained in two 4 -cell battery holders. Whether or not the circuit needs a case is a matter of opinion. It is preferable that the intruder should not be able to locate the circuit and cut off the power supply, so there is much to be said for hiding it away in a cupboard or drawer, eliminating the expense of a case.

The dead space below a table (Figure 5) is a good place to hide the circuit and batteries, though almost any other odd space will do; accessibility is not important, as you need renew the batteries so infrequently, provided that the switches can be reached easily. Concealed wiring should lead to the Reset/Delay button, hidden away in a convenient location fairly close to the door by which you normally enter the house. The AWD should be in some relatively inaccessible location, not beside the circuit itself. The wiring to it should be concealed as much as possible. The

Figure 4. Top, the circuit board and power supply can be conveniently hidden underneath a table top - but make sure the switches are easily accessible (bottom) as well as being hidden.

AWD could be mounted in the loft, where its sounds will readily be heard both inside and outside the house.

Maintainance

A power-on lamp is not provided, since this would consume 25 times as much current as the quiescent circuit, so check the batteries regularly; remember that flat batteries will run the quiescent circuit well enough but may fail to provide enough power for the AWD. The check should include sounding the alarm; check each window and door switch every few months, and also each pressure-mat.

How It Works

THE TWO detecting systems, peripheral loop and pressure mats, provide inputs to the system which are normally high $(12 \mathrm{~V})$ but go low (O V) when an intruder is detected. Since the wiring is many metres long and surrounds a houseful of electrical and electronic appliances, it frequently picks up transient electromagnetic signals. The switching on and off of equipment such as TV sets and refrigerators causes pulses to appear in the wires of detector systems, and these are often strong enough to trigger a flip-flop. The delay circuit filters out all these transients so that the alarm does not sound unless the detector circuit shows a low voltage for about half a second. It is not likely that an intruder could make an entry during so short a time, yet this is long enough for any transient to subside.

The action of the intruder triggers a flip-flop which sets off the alarm. This sounds continuously until the power supply is disconnected or the Reset/Delay button is pressed. Once the button is pressed, the flip-flop is inactive for a period of about 30 seconds. If the peripheral loop is broken during this period, the alarm sounds, but only for as long as the loop is broken. This delay is
essential if you are leaving the house empty, allowing the last person to remain in the house to press the Reset button and quickly leave by the front door. The alarm sounds very briefly as the door is opened and closed, but is silent after that. A few moments later the system becomes activated. On return to the house the alarm sounds but, if the first person in is prepared to act quickly and if the reset button is concealed not too far away from the door (on the inside, of course), it takes less than a second to silence the alarm. The delay operates similarly on the pressure-mat system, so there is no need to jump over the doormat on the way out.

Greenbank
 Dept $=124$ eenbank Electronlcs.
 New Ferry, Whral, Merseyester Road
 (Tel: 051-645 3391)

READ THIS IF YOU VALUE YOUR JOB

I am writing to a worried man (or woman). I am writing to you. Are you scared of computers? Well not scared of the computers themselves, but scared of what they can do. Pretty well overywhereat work, on TV, these micro-things are being seen more and more all the time and
you seem more and more to be getting left behind. Do you have collegues who are alwarss spouting on and on about computers? Do you under-
stand a word of what mey re saying? Ge honest. do you? Do they understend inord of what stand a word of what they re saying? Ae honest. do you? Do they understand a word of what
theyre saying really, or are they just speaking words they ve read out of a magesine or heard on T.V.?
What you need is a friend, an honest friend, who will try to help you I will be your friend, 1 am
your friend. My name is David Parkins, why not write to me or 'phone me? (my number is 051 G45 3391
I said I would be an honest friend so TH begin now - I work for a firm which sells a computer
in kit form, and I would like to sell you one. The name of the computer system is Interat 1 . in kit lorm, and I would like to sell you one. The name of the computer system in "nterak 1 ". I know you are going to ouy a computer ist of some sor very soon, because you just cant let
things go on as they are 'Computing is a club, and youre not a member yel. Worse still you may have bought a computer and tound you still haven't a clue what goes on insidde. Mirracle
chips they may de but ti will be a miracle if you can understand what they do by juil looking at

thom.

What I want to sell you is not just the pieces. I want to sell you the knowledge. Then you'll know as mutch as I do, and you won' need me anymore. All I ask from you is that when you
knot computing is really all about, that you treat olners in the same way that you would
like to be treated like to be treated. Don't sneer at them because thev don't know the differnce between
PASCAL and BASIC, they don't know what an AS 232 C interlace is, or how JART works. PASCAL and BASIC, they don't know
remember we all had to start somewhere.
Computers are bound to make our lives easier and happler (and richer) it they are used
wisely, so it is vital that everyone be introduced to the 'Computer Club' as quickly as possible wisely, so it is vital that everyone be introduced to the 'Computer Club' as quickly as possible. at the moment there are all sorts of people who are unscroupulously taking money from macent people by taking advantage of their ignorance, and I for one just don't want to be a can they all be the best?
When I shid I am wanting
When I said I am wanting to sell you "the knowledge" please don't think I am offering a
correspondence course. In my view that's not a sultable way to tearn - course has io cor respondence course. In my view that's not a sultable way to learn - a course has 10
proceed in smple logical steps - how an 'AND gate' works, and what is a 'flip-flop' and so on - microcomputers have left all that simple stulf oenind long ago and you'll never catch up that
way.
Learming computing is a bit like learning to swim, but you've got no time to waste. What I
think you need is to be plunged in at the deep end - there's no tinie to splashing abouln the Think you need is to be plunged in al the deep end - there's no tinie for splashing about in the
paddling pool learning a bit at a time. But If you're going in at the deep end youll need a triend to save you from drowning - inat's what I'm here for.
Of course it's not like swimming in one important respect
betore you can enter the watel. Down at the shallow end this will cost you about $E 50$ with a belore you can enter the wate, Down at the shallow end this will cosi you about C 50 with a
further £50 for the necessary RAM (memory). at the deep end, where youll flid me, the cost is at lees: double.
 thought. Well its true. I think you have got to, and here's why. The cheap systems are built
down to a price - the 'chip count' (number of integrated circuits used) has to pe kept right down to a price - the 'chip count' (number of integrated circuits used) has to be kept ripht
down. preferably to four or five. There are two penalites to be paid. Flrstly. no real expansion can be accommodated - the system will go so far then no further, secondly some special design 'tricks' have to be incorporated to make the chips do double outy and get the meximum
pertormance out of the minimum resources. Don't get me wrong - some of the tricks are performance out of the minimum resources. Don't get me wrong - some of the tricks are
brilliant out the whole point in your buying. computer is 20 you can get an understending oriliant but the whole point in your buying a computer is so you can get an understanding
yourself, not simply looking as a lump of silticon (integreted circuit) where all the sklil is buried Once the destin Is encapsulated 'in a master tntegrated circuit there's no way youll ever find out what's inside unless the designer chooses to tellyou, and he's
might want to use the same idea in the Mkk 11 model next yeart
poor state of atlairs it you have to be prepared to throw away a hund has come to a pretty poor state of arlairs if you have to be prepared to throw away a hundred pounds or so on a
system which cannot expand with you, but has to be replaced by the next model annually, I would also say beware of committing the diametricalty op posite mistake - a gimmily, computer. This is one which is ail which can easlly be adapted for this or thal
Do you think the purchase of a computer is going to solve your problems?, of course not,
learning is hard work. My computer (thiterak 1) is ideal for your purposes I assume that you don't really know much aboul computers, you've probably got an interest in electronics, and with all the publicity that these micro chips are gelting in magarines. TV, radio and give you some valuable information. Theres too much going on for you to learn everything
and new information is being created every day at such a rate hat the longer you leave if to get and new information is being created every day at such a cate that the longer you leave if to get
staned, the harcer it will be to catch up. started, the harder it will be to catch up
you the way to obtain sufficient knowledge to use computers for your pleasure, your work, and so that you can, if you want to, help others. It's all very well having a computer that has
everything. but it you have too much hardware you'll be like the old woman who lived the everything. but in you have too much hardware you'll be like the old woman who lived in the
shoe you won' know what to do. hinak i System, II say he's a friend but at the moment he thinks he's just a customer) and he's recelved a parcel, he's opened it and checked that he's got what we think we have sent hum and I imagine he's ploughing his way through the manuals (yes one of the probiems of being presented with alor or hormation is having io read it all - ill about, he'll learn from reading the manuals how to assemble the computar from its component parts. and then how to make it work.
Ive put a lot of time and affort into this triendship, writing the words, and drawing what I
think are helpful diagrams. l'm sure my friend will write to me with his problems and i'm also think are helpful diagrams. I'm sure my friend will write to mee with his problems and
sure he will be delighted with his computer and any helpful remarks I may make.
 most of them will. but that's jusi the way that I cope with helping lots of friends (when I gel a
letter with a problem or misunderstanding of something I've put in the manual, I write my lefter with a problem or misunderstanding of something l've put in the manual in write my
answer in the form of an application note. then if lim presented with the same problem again can qu
letter.)
You've got eproblem at the moment, you've etther got a computer and not been able to learn all you need to know, or you haven't got one yet. Don't iust go out and buy the first computer
you see. of the biggest or the cheapest. buy the one that will help you to soive your probiems. hemember that I'm here to help you. I've got a leaftel/data sheet set that will probably tell you everything you need to know about my Interak 1 System. Write to me at Greenbank Electronics, using the above address and ask me to send you my interak 1 leaflet. Now I warn
you. there's quite s lot that 'lll send you (about 38 sides of A4-size paper). It's type-writen, with you. there's quite atot that 'lil send you (about 38 sides of A4-size paper). It's type-writen, with
some hand drawn illustrations of the various kits. Of course It cosis quite a bito send through the post 50 an A4 SAE would be appreclated but as you are my friend, if you don't enclose one won' mina. By the way It1 probably enclose leatlets on some of the other things that my
company sells but as I say to people I speak to. Ill give you a leatlet you don't want please company sells bu
don't be offended
I'm being honest with you, t'm trying to make you into a Interak I user, because the more
people who have this system, the more people l'll be able to exchange my programs with, and that's important.
You might not think that you are capable of building up a sophisticated computer system from component parts, but you need have no worries on that score. You do of course have to incapabite of coing the jot. Some peopte need a bit of help, some people need more help than others, but the way I look at it is that if you can't foilow the instructions I have provided then ifte and you can't get II to work. I am here to help you - just pop the board into the post to me, and 'ill plug it into my own system and will soon get it going for you.
Even It you don't buy the Interak i System then I do urge you to buy some sort of computer as soon as you can. If you have any children this is even more important. Children need computers almost as much as they need food and drink. There never was a more nutritious
lood for a young mind than a digital computer. Without a preconceived feeling that computers are somehow mystical, children are in a far better position to learn than we mere adults. So far I have only let you think that the interak it System will cost you money, but there are
plenty of ways it will bring money in. Obviously it you have your won business you wall know plenty of ways it will bring money in. Obvlously if you have your own business you will know
how much time and money a computer will save. And 17 you have brought yourself up to a standard where you can write your own programs and fix the system yourself (not that it will go wrong. you buill it - remember) there won't be any hidden overheads to ${ }^{3}$ pald. Other ways you can make money are writing programs that you can sell. or even is ing a book. Don't
think that you have to be particularly clever to do this. There may be thousands of peopie less fortunate than you who will be dying to hear of another's experiences. The last thing t
want will be some high faluting tome written by some lah-di-dah computer boffin.
I look forward to hearing from you so I can tell you about my interak 1 Computer. Write soon,

7. Hughenden Road, Hastings, Sussex, TN34 3 TG
Telephone: Hastings 10424) 436004

ELECTRONIC KITS

 E. 21 inc. v.A.T.

${ }^{\text {KS160 }}$ Dark room ûmor. Timing ronge ive

Antonna amplifier for

Ks 300

 E44.73 anc diode tastor

UK 716
Thiras. way stervomixar

PLASTIC CABINETS

MODEL	OUTSIDE DIMENSIONS						PRICE IWC VAT
	WIDTH		HEIGHT		DEPT		
	INCH	mm	INCH	mm	INCH	mm	
00/3001.00	7.54	191.4	1.81	4	6.29	176	46.21
00/3001.00	7,54	197.4	2,36	\%		170	40.21
00/3001.04	7,54	191,4		74	6.88	175	55.8

CAUTION
 The 'Lofty' uses a transformerless power supply and, as a result, all parts of the circuit are at mains potential and are possibly lethal to touch. No metallic parts must be accessible when the unit is operational.

A handy loft-light alarm to build

RETURNING from a weekend away, not so long ago when the weather was still warm, we happened to meet our neighbours from across the street. The evening was balmy, though the light was fading fast as we exchanged pleasantries about the weather and Botham's batting while we unloaded the car; then our neighbour dropped his bombshell. "By the way", he said innocently, " did you know you left a light on in your loft? We can see it from our upstairs window". In fact, we could see it from across the street, shining brightly through narrow chinks between some of the tiles.

That rapidly put an end to the conversation as, feeling foolish, I hurried into the house thinking, as I climbed the ladder, of the electricity bill we were about to receive (without thanks, oh lord); those lights (two 150 watt bulbs) had been burning continuously for at least three weeks!

From that incident, Lofty was born a simple device that could be connected across the light switch and which would sound an alarm after a preset period, unless the light had been turned off. As finally constructed, Lofty actually has two alarms; a winking LED for visual warning and a two-tone beeper which, although not particularly loud, generates a penetrating tone that will be audible throughout a quiet house.

Another aim, when we designed Lofty, was to keep the size of the unit as small as possible, and to keep the cost low.

For these reasons, we used a novel transformerless power supply. As a result of this design, though, all parts of the circuit are at mains potential with respect to earth and are therefore possibly lethal to touch. No metallic parts must be exposed when the unit is operational, and particular attention must be taken in the construction to ensure that the unit is effectively insulated.

As an added precaution, it should be mounted in an inaccessable position, well out of the way of prying fingers! The method is perfectly safe provided these precautions are taken.

The Circuit

The transformerless power supply is based on C1; this has an impedance of 6 k 7 ohms at 50 Hz mains frequency. Therefore, the current through it at 240 $V A C$ is 36 mA . Although it is acting as a 'dropping resistor' and is passing a fairly high current, C1 does not dissipate any power; that is, it does not get hot.

The AC current through C1 is then rectified by the diode bridge, BR1, and charges C 2 to a maximum of 15 V , determined by ZD1; this is the power rail for most of the circuit. Resistor R1 drops the supply voltage further before it is fed to the internal shunt regulator in IC1, and C3 provides some additional filtering.

IC 1 is a ZN1034 precision timer IC made by Ferranti. It contains an oscillator, a 12 -bit counter and a regulator circuit. When power is applied to the chip, the counter is reset; 4095 oscillator cycles later, the output at pin 2 goes high

The time period is determined by the oscillator frequency; the higher the frequency, the longer the time period. The frequency is set by just two components - R2 and C4. The values used here give a period of around 45 minutes, but this can easily be altered, as described later.

While IC1 is still counting, the two sections of IC2, a dual 555 timer, are prevented from operating by the low output from pin 2 of IC1 on their reset inputs, pins 4 and 10. Then, when IC1 times out, its pin 2 goes high and enables both sections of IC 2 . It is now possible for LED1 to light, since its anode is no longer at OV .

IC 2 b will oscillate at a frequency of a few kilohertz, but the tone will be modulated from the output from IC 1a, which is generating a asymmetrical waveform at 1 or 2 Hz . As well as modulating the output from IC2b, this waveform also causes LED 1 to flash on and off. The output from IC2b is fed to the piezo-electric sounder, X1, which generates the audio tone.

Construction

Start by assembling the timer and tone generator components on the PCB; points to watch here are that the ICs
and the tantalum capacitor (C4) are correctly oriented. At this stage, the time period can be changed by altering the values of R2 and C4. The delay, in seconds, is equal to $0.7 \times 4095 \times \mathrm{R} 2 \times$ $C 4$, with R in megohms and C in microfarads; R2 should not be reduced below 10 k and C 4 must be between 10 n and 100 u .

Before proceeding with the power supply section (BR1, ZD1 and C2), test the timer and audio beeper by connecting a temporary $12-15$ volt supply to the unit. Naturally, you will have to wait 45 minutes (or whatever period you have set) to find out if all is well! If the unit does fail to work for some reason, first carry out the usual checks for solder bridges, dry joints and so on. The operation of IC 2 can be checked by first removing IC 1 , then applying about 3 V to the IC 1 pin 2 connection. This will enable both sections of IC2 and it should immediately burst into life unless there is a fault present. Testing IC1 will bemore difficult, although there is very little that can go wrong here. If you do need to check the IC, it would be best to change R2 and C4 to give a short time delay - 39 k and 10 n give a one second delay - otherwise fault-finding could take a very long timel

When the timer and audio generator are working, the power supply can be wired up. Before proceeding with this, however, check that the LED is bright enough to be seen. If not, reduce the value of R3, but not below 100R.

Power Supplied

The vital component in the transformerless power supply is C 1 ; this must be rated for $240 \mathrm{~V} / 50 \mathrm{~Hz}$ operation ie, at least 250 VAC, 600 VDC working. When it has been soldered in place, make sure C1 cannot vibrate by tying it down with two cable ties passed

Figure 1. The complete Lofty circuit - note that the mains earth lead is not connected.

Figure 2. The PCB component overlay. Capacitor C1 takes up most of the board space!
through the holes in the PCB. Next, mount the diode bridge, C2 and the Zener diode, then the fuse, FS1. This is included to protect against the possible failure of C 1 ; if it ever needs to be replaced, remember to totally disconnect the 'Lofty' before doing sol

Insulation

The last stage is to mount the piezo transducer and connect it to the appropriate points on the PCB. Use a stout piece of plastic film between $\times 1$ and the underside of the case to insulate the diaphragm of the transducer because, as explained earlier, this could be 'live' and thus potentially lethal to touch. Finally, mount the PCB in the case using M3 screws. It is now ready to be wired into the loft light circuit.

Wired Up

The unit should be placed near the loft opening, where it can easily be seen and the sound of the alarm will not be muffled. A length of ordinary two-core lighting flex is connected from the Lofty's mains input to the loft light, so that the unit is turned on with the lights. Forty five minutes later, the alarm will sound. If you are still working in the loft, reset the unit by briefly turning off the lights, initiating another timing period.

Parts List

RESISTORS

(All $1 / 4$ watt 5% carbon)	
R1	470R
R2,4,7	1 MO
R3	180R
R6	4M7
R8,9	100k

CAPACITORS

(All polycarbonate unless noted)

SEMICONDUCTORS

FS1

$$
250 \mathrm{~mA}
$$

20 mm fuse X1 PB2720 piezo-electric buzzer Chassis-type fuse holder; small cable gland; plastic LED bezel; Verobox enclosure (see Buylines); PCB; IC sockets; stout plastic film, $1^{\prime \prime} \times 1^{\prime \prime}$; M3 bolts; cable ties; wire, solder etc.

BUYLINES
page 34

All backnumbers cost $£ 1.25$ each. For those of you who only want copies of articles, we do offer a photocopying service. Each copy costs $£ 1.25$ and information as to its title and publication date should be given. Ordering backnumbers and photocopies could hardly be easier, just fill in the coupon, cut it out and send it to:

Hobby Electronics, 145 Charing Cross Road, London WC2H OEE

Please remember to mark your envelope with the service you require, BACKNUMBERS or PHOTOCOPIES,
otherwise our mailroom won't like you.

HOBBY ELECTRONICS BACKNUMBER ORDER FORM

Please send me the following items:
NAME
ADDRESS

Back issues . at $£ 1.25$ each

1 enclose f
Cheques and Postal Orders should be made payable to ASP Ltd.

HOBBY ELECTRONICS PHOTOCOPY ORDER FORM

Please send me the following items:

NAME

ADDRESS

Photocopies of .in the .issue at $£ 1.25$ each

I enclose \mathbf{f}
Cheques and Postal Orders should be made payable to ASP Ltd.

MARCO TRADING

Primary Secondary Currant $1+\quad 10+100+$ $\begin{array}{llllll}240 \mathrm{~V} & 4.5-0.4 .5 \mathrm{~V} & 400 \mathrm{~m} / \mathrm{s} & 50 \mathrm{p} & 45 \mathrm{p} & 36 \mathrm{p} \\ 240 \mathrm{~V} & 6-0.6 & 100 \mathrm{~m} / \mathrm{a} & 88 \mathrm{p} & 52 \mathrm{p} & 43 \mathrm{p}\end{array}$ $240 \mathrm{~V} \quad 6-0.6 \quad 500 \mathrm{~m} / \mathrm{a} \quad 85 \mathrm{p} \quad 60 \mathrm{p}$ 48p

Monufecturers note: We can supply OFF THE SHELF $1000+$ quantities of the above transformers.

These high quality British made European Adaptors are deal for driving radio's, cassette recorders. TV games. calculators etc etc.

These adaptors fit the UK shaver socker

| | | | $1+$ | $10+$ | $100+$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| E08 | $4.5 V D C$ | $200 \mathrm{~m} / \mathrm{a}$ | $50 p$ | $40 p$ | $32 p$ |
| EM3 | $6 V D C$ | $200 \mathrm{~m} / \mathrm{a}$ | $\mathrm{E1.00}$ | 80 p | $68 p$ |
| EO9 | 6 VDC | $40 \mathrm{~m} / \mathrm{a}$ | $\mathbf{8 1 . 6 0}$ | $\mathrm{E1.25}$ | $85 p$ |

MULTIMETER SPECIAL

Russian type U4324 20,000 O.P.V
DC Voltage: $06,1.2,3,12,30,60,120,600$, 1200.

AC Voltage: $3,6,15,60,150,300,600,900$ DC Intensity M/A: $0.06,0.6,6,60,600,3000$ AC Intensity M/A: $0.3,3,30,300,3000$ DC Resistance: $0.2,5,50,500,5000 \mathrm{~K}$. ge level dB: 10 to +12 .

Special Price $£ 15.00$ inc p/p and VAT
Send 25 p Now for our latest Catalogue. Fantastic Value it includes capacitors, diodes, resistors, transistors, LEDs, boxes, cable, prepaid envelopes and much, much more.

Please add 35 p postage and packing and 15% VAT to all orders. Send orders to:

MARCO TRADING (Dept HE12)

The Maltings, Hlgh Street.
Wom, Shropshire SY4 5EN
Telephone: WEM (0939) 32763
Every order receives our latest special offer lists. Or send SAE. All orders despatched by return of mail.

 $\substack{\text { ramve } \\ \text { zinve mini } \\ 20}$The Mini 20 is an ideal instrument for the constructor.
This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 10$ on the normal retail price.
The 28 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range position.
RANGES
d.c. V: $100 \mathrm{mV}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$
a.c. V: $15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$
d.c. $I: 50 \mu A, 600 \mu \mathrm{~A}, 6 \mathrm{~mA}, 60 \mathrm{~mA}, 600 \mathrm{~mA}$ a.c. I: $30 \mathrm{~mA}, 300 \mathrm{~mA}, 3 \mathrm{~A}$

Ohms: $2 \mathrm{k} \Omega, 2 \mathrm{M} \Omega$
(Accuracy: 2\% d.c. \& resistance, 3\% a.c.)
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$
Movement protected by internal diode and fuse.
For details of this and the many other exciting instruments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

Supplied complete with case, leads and instructions.

INCLUSIVE OF POST
PACKAGE - VAT
Goods despatched by return of post
 Instruments Ltd. $3 \frac{1}{2}$ DIGIT LCD MULTIMETER

* 12.5 mm DISPLAY
- lomo input impedance - automatic zero adjustment * AUTOMATIC POLARITV SWITCHING - over range indication - fuse circuit protection * BATTERY LOW INDICATION - hFE MEASUREMENT FACILITY
DIODE CONTINUITY CHECK
- accessories included - ACCESSORIES INCLUDED TEST LEADS. BATTERIES \& INSTRUCTION MANUAL
* SIZE $180 \times 90 \times 35 \mathrm{~mm}$
* WEIGHT 300 g
- SAMPLING TIME 0.25 sec

PLEASE SEE AUGUST EDITION HE FOR REVIEW OF THIS METER

DC VOLTAGE (5 ranges) 0.8% accuracy $100 \mu \mathrm{~V}$ to 1000 V AC VOLTAGE (2 ranges) 1.2% accuracy 100 mV to 1000 V DC CURRENT (5 ranges) 1.2% accuracy 100 nA to 10 A RESISTANCE (4 ranges) 1% accuracy 1Ω to $2 \mathrm{M} \Omega$ Price $£ 49.95$ includes VAT, postage \& packing. Optional accessories.

Deluxe protective case $\mathbf{£ 6 . 9 0}$ including VAT p\&p 10AC current shuint $\mathbf{£ 6 . 9 0}$ including VAT p\&p

62 CURTIS ROAD, WHITTON,
entemp HOUNSLOW, MIDDLESEX TW4 5PT

TEL (01) 8942723
B.N.O.S:

Don't miss the Christmas rush. Don't waste your money on throw away Dry cell batteries. Buy EverReady RECHARGABLE Nicad Batteries, run your toys, radios, cassettes or even kitchen equipment. Each charge lasts as long as a dry cell, but you can re-charge them up a 1,000 times or more, so think of the money you can save at 1 p a charge.

BUY NOW

and have a set charged ready for Christmas. (Available in four standard sizes)

NI.CAD	Dry Cell Equivalent HP7	Capacity	1.9	10.24	24.100
'AA'	O.5AH	0.90	0.85	0.82	
'C'	HP11	2.2 AH	2.40	2.30	2.20
SUB'D'	HP2	1.5AH	2.30	2.15	2.00
'D'	HP2	4.0AH	3.40	3.20	3.05
PP3	PP3	0.11AH	3.90	3.65	3.40

Ni-Cad Battery Chargers
Type AC1 charges up to $4 \times$ AA cells at a time $£ 5.90$ Type MC2 charges up to $4 \times$ AA, C, D cells \& also PP3's. 88.50 Postage FREE on mainland U.K. orders.

SEND NOW your cheque/Postal orders All prices include VAT
B.N.O.S. ELECTRONICS, DEPT H.E.,

GREENARBOUR, DUTON HILL. GT DUNMOW. ESSEX CM6 3PT TEL: 037184767

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p each BUY SIX PACKS AND GET A SEVENTH FREE

Please add 20p per pack postage
Please allow 7 days delivery.

MN2 $200 \pm \mathbb{1} \cdot$ Watt Resistors
MN3. $1001 \& 2$-watt Resistors
MN4. 50 Wirewound Resistors
MN5. 100 metal oxide Resistors. 1\%, 2\% and 5\%.
MN6. 12 asstd potentiomelers. . 50 assad skeleton preset hesistors. MNE. 50 asssd Electrolytic Capacitors. MN9. 100 assta Ceramic Capacitors Pire. disc. ub and monotrhic etc.
MN10. 100 mived capacitors. Polyester Polystyrene, Metallised, Rafial and Axiá typees. MN11. 20 asstd Siver Mica Capacitors. MN12. 8 Tantalum Bead Capacitors fuseful 4N13. 20 asstd Transistors. BC, 2 N Series Power etc.
MN14. 40 IN4148 Dimes
MN16. 20 min . wire ended Neons.
MN17. 2 12-volt Rolays. Ex nearty new equip. MN19. 15 P.C.B. mounting M.E.S. MN19. 15 P .
lamphotders.
MN20. 1 240.110 to 12 -volt 100 ma
Transformer.
MN21, 1 240-110 to 24 -volt 100 ma
Transformer.
 green.
MN23. 300 asstd screws, nuts, washers, selftappers etc.
MN25. 80 Assoc. rubber grommers.
MN29. 75 mts equipment, wire, asstd colours and sizes.
MN30. $3 \times 2 \mathrm{~mm}$ length, 3 core, mains cable.
MN32. 15 30 pF Reehive trimmers.
MN34. 25 min glass reed switch.

MN36. 10 assid switches, toggle, slide, micro etc.
MN36. 10 sub-min SP, C/O slide swich. MN37. 10 asstd audio connectors. Din phono

etc.

MN4O. 50 Polystyrene capacitors.
MN45. 35 asstd diodes Zener, rect, srgnal, switching.
MN46. 15 asstd Zener diodes
MN48. 200 items 4 BA asstd length screws.
nuts 8 washers.
MN4. 200 items 6BA assid length screws.
nuts 8 washers.
MN5O. 3 pieces of veroboard useful sizes, min rotal 35 minch.
MN51. 10×0.2^{-1} red LED.
MN52 $10 \times 0.125^{\circ}$ red LED.
MN53. $20 \times 0.1 \mathrm{mfd} 25 \mathrm{v}$ ceramic disc caps. MN54. 20×0.1 mid 25 v ceramic disc caps. MN55. 10 wat audio amp board with circuit MN56. 1014 pin low protile IC exI DIL MN56. 1014 pin low profile IC skI DIL MN57. 1016 pfn low profile IC skt DIL. MNEO. 10 asstd TTL IC's. M N63. 50 mixed polvester caps C280, Siemens etc.
MN64. 5 Press 10 make min switches. MN68. 200 asstd verophs, turret tags, PCB pins etc.
M N69. 4 min push to break switch.
MN70. PCB with push SW with attractive chrome plastic knobs $1 \times 80241,1 \times$ BC300,
$2 \times$ BC237. $\uparrow \times$ BC204, $4 \times$ IN4002, $2 \times$ CMOS $4025,200 \mathrm{~mm}$ fuse holder +22 resistors, capacitors, diodes etc. MN7T. IZN414 RADIO IC.

Lighsning

ELECTRONIC COMPONENTS

THE CHOICE IS YOURS - CALL AT OUR NEW SHOWROOM OR USE OUR VERY FAST MAIL ORDER SERVICE. EITHER WAY WE'LL KEEP YOU HAPPY ***** Furthermore we promise if any part ordered by mail fails to please just return within 7 days for a full refund. For a vast selection of electronic components \& equipment of all kinds. Here is just a selection of our stocks. Many more items listed in our catalogue available now 70p post paid.						
						$\begin{aligned} & \text { OIODS } \\ & \text { 1N4005 } \\ & \text { 1N5408 } \\ & \text { IN4 } 148 \\ & 100 \text { for } 2-50 \\ & \text { DA47 } \\ & \text { OA91 } \end{aligned}$

RESIS W iw 5\% 161% 100 0	STORS C.F. C.F. C.F. M.F. Mrices one		2p 5 S no mixin			$\begin{aligned} & \hline \mathrm{PO} \\ & \hline \text { Prase } \\ & \text { Srd si } \\ & \text { Sinil } \\ & \text { Sinat } \end{aligned}$		IOMETE	RS	
$\underset{\substack{\text { Min Plate } \\ \text { Ceramics }}}{\text { CAPA }}$			$\begin{aligned} & 47 \mathrm{FF} \\ & 202 \mathrm{pF} \\ & 100 \mathrm{op} \\ & 4700 \mathrm{pFF} \end{aligned}$	${ }_{5 p} \stackrel{\text { Disc }}{\text { Coramics }}$.01 uF 50 V ep 1100 for 25$\}$. IUF 50 V 10 p (100 for E5)				
			$\begin{aligned} & 6_{p} \\ & 7_{p} \\ & 8 p_{p} \end{aligned}$	the 0 to	OpF	ANTEX SOLDERING IRONS				
1200 pFF off any one type less 30%										
						15 wan	+430			
Electrolvtice - polys - Tants -									50	
TRAMSISTORS										
${ }^{\text {A }} 12128$		${ }^{802404}$		0.60	${ }^{80126}$		TPP3C			
AFY17	0.52		${ }^{0.60}$	BU208A	2.00	TiP34C	0.68	T1P2955	\%	
BC107	0	- 8 BF180	${ }^{0.300}$	MPSAO5	0.20		1.8			
BC107C	0	${ }_{882448}$	-29	M M 115003	4.05	T1P36C	\%			
BC108	0.10	${ }_{8}^{8824258}$	0.30	MJ15004		TPP1A	\%			
${ }^{\text {BC108 }}$	0.12		0.24	R2010日		TTP4TC	0.8	2N1309		
actos	0.1	${ }_{\text {8FRR49 }}$	024	${ }_{\text {TiP29A }}$		TTP62A	0		0.2	
BC109C	013	${ }_{\text {BrR64 }}$	${ }_{300}^{0.24}$	TiP29C	0.8			2 N3054	0.48	
	0.10	${ }_{\text {BRR64 }}^{8 \times R 79}$	(1200	TIP30A	-		08	2N3055		
8 C	0.10	${ }_{\text {BRRP80 }}$	0.20	TTP30C	0.45	T1P15	08			
			025	TP31A			099	37	2-\%	
8 C 2	0.10	${ }_{\text {BFY5 }}$	${ }_{0} 028$	TIP31C			0.98			
80112		BFrs	${ }_{0}^{0.85}$	Trazac			120			
80115	0.58 1.68	-8fY90	-140	${ }_{\text {THP32C }}$			1.20	40872		
(19el)										
We epecislise in eudio power transistors - epecisl prices evelleble to bulk buyers - SAE please.										
INTEGRATED CIRCUITS										
		CMOS		Leear						
N3Tm		4000		LF351N	0.49	LM386	0.900	tbasa0	62	
(1500	O. 0.12	4001	${ }^{0.14}$	${ }_{\text {LF3535 }}$	-098	LM3909	0.10	titas20	-188	
LSOB	0.15	4011 4013	-	${ }_{\text {LF356N }}$	${ }_{0}$	LM3914N	208	tBa800	0.8	
Lsio	0.15	4017	0.42	LM30 IAN	${ }_{0} .28$	LM3915N	2.15	T	20	
LS13	029	4022	$0 \cdot 6$	LM308	0.9	Lм3996	2-15	toaz		
LS20	$0 \cdot 16$	4046	0.7	[M311		MC1458	$0 \cdot 7$	556		
Ls30	0.18	4049	0.30	LM324N	0.50	Ne555	0.20			
	0	4066	0.35	LM398N	0 -85	NE55	9-80			
LS107	0.40	4070	0.25	LM380N	a\%	(Ne565	1-20			
Ls15	0.85	4093	0^{038}	LM381N	1.6	NE566	1.50	748	23	
${ }_{\text {LS } 244}$	0.80	40106	0.58	(M382	1.25		1.50 0.90			
LS386	0.23	4511	0.61	Lм384	140	tbal20				
V. REGULATORS (FIXED)						V. REGULATORS (VARIABLE)				
						LM317k		Amp	78	
	100 mA			79615 7815 9915	590	LM396K			[11.00	
-	1 Amp	${ }_{7905} 7805$			E0p	1723		DIL	50-6	
vo	1 Amp				\%	L123		99	1000	

PRINTED CIRCUIT BOARDS
 COMPONENTS

Postage \& Packing 50ρ per order (tree over (io) Pleas
Teiephone orders welcome by Access or Earclaycard

NEW GOODIES JUST ARRIVEDI

C12 K88A Darlington Power TO3 PNP 60 V 12A 117 W He 750@6A 7 pp
C13Nixie - Siemes ZM1 C13 Nixie - Siemes
height, overall 25 mm . Wire

. Wisk | height, overall 25 mm . Wire ended 50 p |
| :--- |
| C14 $\mathrm{Br212}-750$ power switching rect, |
| 000 V | C15 4 A. 4 for $£ 1.50$

C15 GROER 50V 5 A switching rect. 4 for 50 p
C1621PT5 50V 20A rect. 75 D
C17K8LO4 4A 400V bridge 50 p
C18BS1 1A 100V bridge. 5 for
Previous Months Now Iteme
N1 8085A CPU 93.50
$\begin{array}{cc}\mathrm{N} 2 & \mathrm{MC14175} 50 \mathrm{p} \\ \mathrm{N} 3 \\ \text { LM380 550 }\end{array}$
N4 1000uF 16 V Ax 15 p
N5 6850 100p
N6 MM5290 50p
N7 MM2114
E0
N7 MM2114 Gop
C1 7912 CK (TO3 Casel) Tho
C2 3.579545 MHz Xtal HC6U case 50 p C5 Reed switches, 20 mm body SP make

12 V reed relay, SP break 40 p
C7 Ni-cads, C size 2AH $ఇ, 10 / f 16$
C8 UNN6116A disolay
C910 Speedtlac display driver 50p
20 way $60 \mathrm{p} / \mathrm{m} ; 40$ way $\mathrm{E} 1.20 / \mathrm{m} \mathrm{m} / \mathrm{m}$

BRAND NEW VEROBLOC

 KITIII!Just published by Babani, Mr R. A. Penfolds new book, " 30 SOLDERLESS BREADBOARD PROJECT"̈ - this book features 30 different contains all parts necessary to make. Audio Amplifiers
Light \& Dark Activated Switches \& Alarms Timers
Metronome
Metronome
Oscilators \& Tone Generators
Twarbling Door Buzzer
Touch Switch
Reaction Game
Sound Activated Switch
Sound Activated
Radio Receivers
Fuzz Unit
The introduction shows all the different com ponents and explains how to use the bread board. The Verobloc layout is shown for every project together with the circuit diagram and an
explanation of how it works. Ideal for beginners explanation of how it works. Ideal for beginners
in electronics, but also suitable for more advanced sludenis.
the complete kit is contained in an attractive compartments in which your components ma be stored.
Complete
Comp Kit, including book, Verobloc 8 all parts $\mathbb{2 4 . 9 5}$
Book only $\sum 2$.
Kit without Veroblock $\mathbf{2 0} .45$
5mm RED LED SCOOP Another company gone bust - to your advan Gl type MV5754, and offer them as follows $25 \mathrm{£1.95;} 100 \mathrm{E6.00;} 250$ £ 13.50; 1k £39.50; 5k Add 30\% for 2-part $£ 185$.

1,000 RESISTORS

€2.50

We've just purchased another 5 million' preform
ed resistors, and can make a similar offer to tha ed resistors, and can make a similar offer to tha
made two years ago, at the same pricell made two years ago, at the same pricelll
$\mathrm{K} 523-1,000$ mixed and $3 \mathrm{~W} 5 \%$ carbon film resistors, preformed for PCB mntg. Enourmous
range of preferred values. 1,000 for $\mathbf{Q . 5 0}$ 5,000 £10; $20 \mathrm{k} £ 36$.

FILAMENT DISPLAYS
26537 seg display 12.5 mm high. Ideal for TTL package. Only El each, 4 for $\mathrm{Ez.00}$. Data supplied. ELECTRO-DIAL

Electrical combination lock for maximum security, absolutely pick-proofl! One million combine left to a second number, then right again to third number. Only when this has been com pleted in the correct sequence will the electrica relay or solenoid etc. Overall dia $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep. Finished in bright chrome. With combina tion the price is reduced to $£ 3.95$.

1982/3 CATALOGUE

Biggerl Berterl! Buy onell!
Bpinc. post - Look what you getl

- 1st class reply paid envelope

Whotesale list for bulk buyers
Bargain List with hundreds of surplus lines - Huge range of components

REGULATED PSU PANEL

Exclusive
$0-28 V$ Greenweld design, fully variable components except pots and transformer. Only 7.75. Suitable transformer and pots E6. Send SAE for fulier details.

SOLENOIDS AND RELAYS

W821 Solenoid rated 48 V at 25% duty eycte, bur work well on 24 V 1700 gm pull, 10 mm W922 Mains 240 V ac solenoid. 10% duty cycle push or pull, 16 mm travel. $50 \times 20 \times 16 \mathrm{~mm}$. On W895 9 V DC relay 500 R SPCO $28 \times 24 \times 1950$ WT33 11 pin plug in relay. 240 V ac $3 P C O 5 \mathrm{~A}$ | contacts $\mathbf{2} .50$. Base 36 p p |
| :--- |
| W838 700 R |
| 24 V 4 PCO | W838 700R 24 V 4 PCO $35 \times 30 \times 18.0 n y 88 \mathrm{p}$. $10 / \mathrm{ET}$;

W847 37 R 5 contact, PCB mntg $11 \times 33 \times 20$ 95p. $10 / 67.50$

4PCO 5A con racts 2.50
W896 24 V
10 A c/o contacts. Ex-equlp. only 60 p

30 Solderless

Breadboard Project - Book 1

LIE DETECTOR
Not a toy, this precision instrument was original y part of an 'Open University' course, used to measure a change in emotional balance, or as a given, and a circuit diagram. Supplied complete with probes, leads and conductive jelly. Needs 2 $4, V$ batts. Overall size $155 \times 100 \times 100 \mathrm{~mm}$. On ly $E 7.95$
alonel

COMPONENT PACKS

 K 503150 wirewound resistors from12 W , with a good range of values $\mathrm{E1.75}$ K505' 20 assorted potentiometers, all types in cluding single ganged, rolar mica ceramic cap K511 200 small value poly. mica, ceramic caps
from a few pF to .02 UF . Excellent variety $\$ 1.20$ K514 100 silver mica caps from 5 pF to a few thousand pF . Tolerances from 1\% to $10 \% \mathrm{E}$ $k 520$ Switch Pack. 20 different rocker, slide

COMPUTER BATTLESHIPS

Probably one of the most popular electronic games on the market. Unfortunately the design
makes it impractical to test the PCB as a working model, although it may well function perfectly. Instead we have tested the sound only (PCB me board chioped or cracked). SN76477 sound IC; TMS 1000 u-processor; batt clips, R's, Cs etc. Size $160 \times 140 \mathrm{~mm}$. Onl
f 1.50 . Instruction book and circuil 30 p extra.

A high gain, directional microphone, ideal for nature studies.

THIS is one project where the mechanical work is greater than the electronic! The Big Ear consists of an omnidirectional microphone insert mounted in a length of common, garden variety $2^{1 / 2^{\prime \prime}}$ PVC pipe, and a simple two-stage amplifier circuit. It was originally designed for recording or listening to the sounds of wildlife; however, the prototype has also proved useful as a stethoscope, and for listening in to distant conversations (be warned - the listener may not always like what he hears!)

The length of pipe serves two purposes; first, it acts as a resonant cavity with many resonant frequencies extending from a few hundred Hertz right up to the top of the audio band. Any pipe or tube has a fundamental resonant frequency which is a function of its length, and it is also resonant at overtones (harmonics) of the fundamental frequency. In general, the fundamental frequency, f, of a pipe which is closed at one end is approximately equal to $\mathbf{c} / 41$, where I is the length of the pipe and c is the velocity of sound (330 metres per second, for most purposes). Thus the fundamental frequency of a pipe 0.25 m long will be at 330 Hz ; the overtones produced by a closed pipe occur only at odd harmonics, therefore resonant peaks will also occur at 990 Hz (3f), 1650 Hz (5f), 2310 Hz (7f) and so on. The effect of these resonances is to accentuate any sound at those frequencies, increasing the gain of the system at specific points in the audio spectrum. The length of the

Figure 1. The directional response of the Big Ear.
pipe specified for this project has been arrived at after considerable experiment, and provides good results with minimum undesirable sideeffects.

Second, the pipe provides a useful measure of directivity, due to diffraction effects. Diffraction is simply the change in direction of sound when it passes around an obstacle. The degree of bending depends on the ratio of the wavelength of the sound to the size of the obstacle and is greatest when the size of the object approaches the wavelength of the sound. In general, long wavelengths (bass frequencies) bend more easily because few everyday obstacles are more than about one metre long (the wavelength of a 100 Hz note, for example, is about 3.3 m). The higher frequencies

Figure 2. The internal circuitry of the Big Ear.

Figure 3. The project is simple enough to build on Veroboard. The diagram shows the component layout and the track cuts viewed from the top.

bend less easily and therefore are more directional, since they are reflected by common-sized obstacles rather than bending around them.

In the Big Ear, the pipe tends to 'hear' only those mid-range and high frequency sounds coming from directly in front, whereas sounds from the sides or rear will be rejected because they cannot bend around the edges of the opening. At low frequencies, however, the tube has no effect and so the response of the system reverts to that of the microphone insert, ie omnidirectional. To prevent these frequencies from being transmitted through to the output, the response of the amplifier is rolled off at the bass end. Overall, this combination of techniques gives a back-to-front ratio of $2: 1$ (see Figure 1).

The Big Ear is designed to be handheld, and for this purpose, a standard $21 / 2^{\prime \prime}$ pipe clip serves quite well as a handle in normal use; it will also do as a tripod mount, should that be required.

The amplifier section has two outputs: a headphone socket for monitoring purposes and a $1 / 4$ jack
socket for connection to the line input of a tape recorder.

The Circuit.

The circuit (Figure 2) consists of two op-amps contained in a single TLO82 IC package. The circuit can be split into two sections: a voltage amplifier and an output buffer.

Starting at the input (where else?), notice that the microphone has three connections to it. This is because it is an electret insert which contains a FET preamplifier to provide a low impedance drive from the high impedance microphone source. Thus, it must be connected to the supply rail via R1.

The input from the mic is fed to the non-inverting (-ve) input of IC1a. The value of the coupling capacitor, C1, is chosen to filter out the very low frequencies generated by handling the unit. Otherwise, these would create low rumbling sounds which would seriously interfere with the performance, especially at high gain settings! The voltage gain of this stage, set by the ratio of the values of R4 and R5, is $\times 1000$.

The Big Ear was intended to be

Parts List

RESISTORS

CAPACITORS
C1,2 100n
C352* polyester
C3,4,5
100u
*Replaces C280 Series
SEMICONDUCTORS
IC 1
TLO82
dual op-amp

MISCELLANEOUS

SK $13 / 4^{\prime \prime}$ stereo socket
Small ABS case, approx. 80×60 $\times 40 \mathrm{~mm}$; omnidirectional electret microphone insert; 0.1' Veroboard, $50 \times 38 \mathrm{~mm}(20$ holes $\times 15$ strips); slide switch; PP3 battery clip; PVC pipe, $254 \times 63 \mathrm{~mm}$ $\left(10^{\prime \prime} \times 2^{1 / 2} 2^{\prime \prime}\right)$; wire, solder etc.
BUYLINES .
page 34
portable, and therefore a dual supply system, positive and negative rails, was not suitable because of the extra battery requirements. Instead, a halfsupply voltage reference is created by the resistive divider network R3 and R6. The junction of the two resistors is bypassed to OV by C3 to remove any noise from the signal.

The full gain of the first stage is not always required (the results could be ear-splitting), so the output from IC 1 a is coupled to the buffer stage, IC1b, via a volume control, RV1; coupling capacitor C2 is chosen to roll-off the bass response. IC 1 b is setup as a unity gain amplifier; its output is at a low impedance and is sufficient to drive an ordinary set of headphones or the input circuit of a tape recorder, via socket SK 1. Blocking capacitor C4 is included to prevent the DC level at the output of IC1b from reaching the load.

Construction

As the circuit is so simple, it was decided to build it on Veroboard; the usual precautions concerning layout, track cuts and solder bridges apply! Pay particular attention to the correct orientation of the electrolytic capacitors and the IC.

When the board is assembled, attach flying leads about $9^{\prime \prime}$ long to each of the off-board connection points. Next comes the mechanical assembly.

Mark out and drill the mounting holes as shown in Figure 4. These are easily made - but the slot for the slide-switch will cause greater problemsl Carefully drill $1 / 4^{\prime \prime}$ holes at each

Project

Figure 4. The mechanical details.
end of the slot, then file it to shape. A small flat file will be useful for finishing the task. Although the box cut-out for the microphone is shown as a square, this can be drilled out to $3 / 8^{\prime \prime}$ clearance, the size of the microphone insert.

Lastly, the wooden disc which holds the mic insert, and to which the length of $2 \frac{1}{2}{ }^{\prime \prime}$ pipe attaches, must be cut out; the dimensions are shown in Figure 4. Preferably, the disc should be cut from a solid piece of wood; the pipe is held by screws into the sides of the disc, and chipboard has a tendancy to fall apart if used in this fashion.

After the parts have been made, the Big Ear can be assembled. Mount the sockets, poteniometer and Veroboard; the mic insert should be a tight fit in the $3 / 8^{\prime \prime}$ hole through the centre of the wooden disc; glue it if you must, but the arrangement then becomes somewhat permanent! The disc itself is attached to the box by two small self-tapping screws, and the pipe can then be screwed onto the dise with three or four self-tappers. Finally, the flying leads should be connected as shown in Figure 3; the battery should be fixed to the base of the box with a piece of double-sided tape or Blu Tack, to prevent it rattling around inside.

At this point, the Big Ear is ready to use. Switch on and try it. There will be silence for a couple of seconds, then it should burst into life.

Why Not Experiment?

Although the final form of the Big Ear was arrived at after a considerable period of trial-and-error experiment, there are several other methods which could be used to improve the directional response.

The most effective would be to replace the omnidirectional mic insert with a directional type; however. these do not seem to be readily available and can probably only be had by dismantling a cheap directional electret mic of the type usually sold. with cassette recorders.

The next most important factor determining the directivity is the aperture of the pipe; decreasing the diameter will increase the directional response to high frequencies, at the expense of less directivity at lower frequencies. Another trick is to form many small resonant cavities, rather than one large one, by filling the pipe with ordinary plastic drinking straws; the overall response can be 'tuned' by cutting the straws to different lengths. The directional response can also be improved by isolating the mic insert from the case and pipe, as some of the sound from the sides and rear will otherwise be conducted through the solid material to the microphone.

Finally, there are alternatives to the resonant tube system; one method worth trying is to use a parabolic or dish reflector; a simple plastic bowl would be adequatel

Bigger and Better for 1982

the colourful Wilmslow Audio brochure -the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.
\star Lowest prices - Largest stocks *

* Expert staff — Sound advice *
* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities) * Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)

* Access - Visa - American Express accepted * alsó HiFi Markets Budget Card.

35/.39 Church Street, Wilmslow, Cheshire SK9 1AS
\square Lightning service on telephoned credit card orders!

How to keep your self-respect...

DESOLDERING TOOL Make life easy" with this superb anodised high suction desoldering toot. Essential for desoidering multi hyphen lead e.g transistors IC's. Especially handy for the experimenter and service engineer. Eliminating damage to PCB's and components. $\mathrm{EA} 46+$ APANESE TRANSISTORS VAT.
Write. COST VERSATILE MULTIMETER.
HE MIGHTY MINT MULTI-TESTEA. Ideal for beginner and service angineer current range 100 mA . Resistance: two ranges $\mathrm{O}-1 \mathrm{M}$ OHMS 160 OHMS CENTRE SCALE). DECIBELS -10 to 22 DB mirror arc Scale. Overioad protection.

Name..

TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO

 IN YOUR OWN HOME - AT YOUR PACEICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You sludy in your own home, in your own time and at your own pace and if you are studying for an examination ICS quarantee coaching until you are successful

City \& Guilds Certificates

Radio Amateurs
Basic Electronic Engineering (Joint C\&G/ICS)
Certificate Courses
TV and Audio Servicing
Radio \& Amplfier Construction
Electronic Engineering* and Maintenance Computer Engineering* and Programming Microprocessor Engineering* TV, Radio and Audio Engineering Electrical Engineering,* Installation and Contracting *Qualify for IET Associate Membership CACC

Approved by CACC
Member of ABCC
POST OR PHONE TODAY FOR FREE BOOKLET

CRICKLEWOOD ELECTRONICS LTD.
40 Cricklewood Broadway, London NW2 3ET. Tel: 01.4520161

Dianetics: the bright new science of the mind you can use. Understand how to think clearly and learn the techniques to really help people. Dianetics gives you the confidence of real solutions, not just interesting information.

66 In Dianetics awareness is increased - without the use of drugs, hypnosis or any. physical method- to the point at which the person can become aware of the source of his problems. 95

Encyclopaedia of Alternative Medicine and Self-Help
$£ 2.95$ from leading bookshops or for further information from Dianetics, St. Mary's College, Rottingdean, Brighton BN2 7FS FREEPOST 36 pp

Electronic kits for the thriftyl
EXPERIMENTERS'S PRINTED CIRCUIT KIT
Contenis: 4 assorted boards to suift the enclosed desions. Erching Powder, Ressist Paint, Solvent, Degreaser and Etching Instructions, also 50 Circuit diagrams, Chassis Pians, Ran Lyouts tor simple
 Testers, Gadgets. etc. You can build at negligible cost with 'Surplus' or reciaimed parts and tren. sistors you arready have. Price: $£ 2.50$. Postage and Packing 50p

PHOTOELECTRIC KIT

A kit ol basic parts to build a simple Infra-Red Sensitive Photoelectric Switch. Contents: PhorotramA kit or Transisiots, Diode, Resistors, Connector, Letchmag Relay, Chassis Board, Case, Scrows and Instructions. Price: £4.50. Postage and Packing 50p

OPTICAL KIT

A kin of parss to build an IR foiden-beam Proiectar and Raceiver to sult the above kit. Contennas: 2 Price: $£ 3.70$. Postage and Packing 30p Ooth kits tosether
EXPERIMENTAL ELECTRONICS
335 Battersea Park Road, London SW11 4SL Tel: 01-720 2683
Send SAE for full details of all kits and circuits

Send for my CATALOGUE ONLY 75p (plus 25p post/packing)

My VAT and post/packing inclusive prices are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade. See my prices on the following:

CAPACITORS . . . EIECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND HIGH VOLTAGE, RESISTORS. 1/8th WATT TO 100 WATT; 0.1\% TO 10% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRIMMERS, PRESETS, POTS . . . SINGIE, DUAL, SWITCHED, CARBON, CERMET AND WIREWOUND, SINGLE OR MULTITURN, ROTDRY AND SLIDE. DIODES, RECTIFERS, BRIDGES, CHARGERS, STYIII, SOCKETS, PLUGS, RELAYS, TRANSISTORS, ICS, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LEE'S, COUPLERS, ISOLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VALVES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INDICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPLIES, HARD WARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VOR'S, INSULATORS, CASSETTES, METERS, SOLDER, HANDLES, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOARDS and others.

Prices you would not believe before inflation!

BRIAN J. REED
 TRADE COMPONENTS

ESTABLISHED 25 YEARS
161 St. Johns Hill, Battersea, London SW11 1TO Open 11 am till 7 pm Tues. to Sat. Telephone; 01-223 5016

TYPE 161B Beromachin nut DUAL POWER SUPPLY KIT
incorporates a positive q a negative regulated supply
BOTH ARE ISOLATED \& ADJUSTABLE 1.3V TO 16V D.C. Interconnect to give 2.6 V to 32 V or $-1.3 \mathrm{~V} / 0 /+1.3 \mathrm{~V}$ to $-16 \mathrm{~V} / 0 /+16 \mathrm{~V}$
Output current 1 A at 16 V to 0.35 A at 1.3 V Ripple is less than 1 mV

225.99
 inc. P \& P and $V A T$

Built \& Tested
E37.95 inc. P\&P and VAT

Comprehensive design
details with calculations
are included so that the kit is an excercise in power supply design. The kit, which uses quality components, is complete with instructions. Case punched and stove enamelled in attractive blue and grey with a printed front panel to give a professional finish
Excellent for the beginner, the experienced amateur and as a tutorial for schools and colleges

SEND CHEQUE OR P.O.
ALLOW 21 DAYS FOR DELIVERY
BRANIME MARKETING LTD dept. E
balthane ind. est., ballasalla, IsLe of man

LB ELECTRONICS

Brand New $4 \frac{1}{2}$ " square mains fans, 115 volts AC £ 4.50 p/p 75p.
Brand new $3 \frac{1}{2}$ " square mains fans, 220 volts $\cdot A C$ £9.50 p/p 75p.
DC Power leads complete with power plug 3.5 mm to fit your calculators, micros etc $£ 1$ for 10 p/p 25p.
REJECT RED FLASHING LED (some flash, some don't, some stay on permanently). Pack of $25 £ 1,10$ packs for $£ 9 \mathrm{p} / \mathrm{p}$ free.
PCB Amplifier containing LM380 (or equivalent) 9 volt rail $\frac{1}{2}$ watt output, brand new $£ 1$ each p/p 35p.

PCB TA $6 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 9^{\prime \prime}$ Approx Alpha mumeric touch keyboard, ASC11, with Data $£ 7.95$ p/p 65p.

EPROMS 1702A £5.00p. 2708 £2.50p. 2516 (450NS), 5 Volts used once, erased and guaranteed by us $£ 1.95$ p. 10 for $£ 17.00$ p. 2732 £5.00, 2532 £6.00p.
RAM 2114L E1.25p (450NS), 4116 (200NS) £1.00p, 2114 (200NS) £1.35p p/p 35p.

CPU $8080 £ 2.50$ p, $6502 £ 4.50 \mathrm{p}, ~ Z 80 \mathrm{~A}(4 \mathrm{MHZ})$ f4.50p, $Z 8671$ (Basic/Debug) f21.00p.
LB ELECTRONICS
11 Hercies Road
Hillingdon
Middlesex
Tel. 089555399

> LITESOLD LC18H 240v high performance iron, made to professional standards in our own works, fitted with 3.2 mm bit. 2 alternative bits, 1.6 and 2.4 mm . Reel of 3 metres 18 swg flux-cored solder. Stainless steel tweezer. 3 soldering aids. Reel of 1.5 metres de-soldering braid. Packed in clear PVC presentation/storage wallet. Superb present - ideal for beginner or expert
SPECIAL PRICE - $£ 13.95 \mathrm{inc}$. VAT \& P.P.
(normal resale value $£ 17.49 \mathrm{inc}$.) IRON only - $£ 5.66$ inc. (normally $£ 6.92$). Spares, accessories and after-sales service available from us.
16 -page colour catalogue - 60p. Send cheque/P.0. to LITESOLD or ring for Access/ Barclaycard sales.

Spencer Place, 97/99 Gloucester Road, Croydon CRO 2DN. Surrey. Tel: 01-689 0574

HE
 PCB
 S
 SERVIC

 'Ready mPCB s For Readers!,
PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

October 80	
Nobell Doorbell Intruder Alarm	$£ 2.64$
Tug O' War	

August 81 RPM Meter Thermometer	$\begin{aligned} & \mathrm{f} 1.77 \\ & \mathrm{£} 1.67 \end{aligned}$
September 81	
Power Pack	£1.69
Reaction Tester Game	£1.71
'Diana' Metal Detector	£3.31
October 81	
Combination Lock	£2.65
November 81	
Sound Torch (Set of Two)	£5.31
December 81	
Pedalboard Organ	£5.97
January 82	
Intelligent NiCad Charger	£3.04
February 82	
Relay Driver	£2.20
Mast-Head Amp	£1.31
March 82	
Digital Dice	£1.95
April 82	
Digital Capacitance Meter	£4.73
Dual Engine Driver	£3.37
Bike Alarm	£2.64
May 82	
Digital Thermometer	
(Set of Two)	$£ 5.31$
Echo-Reverb	£5.81
Cable Tracker	£2.21
June 82	
Power Supply Design	£2.64
Auto-Wah	£3.58
Auto Greenhouse Sprinkler	£3.88

Telephone Timer	
(Set of Two)	$£ 7.39$
July 82	$£ 2.31$
Tanover	$£ 2.17$
TVI Filter	$£ 8.72$
Computer PSU	
Solar Radio	
August 82	
Digital Millivoltmeter	
(Set of Two)	$£ 4.82$
Audio Analyser	
(Set of Two)	$£ 12.30$

(Set of Two)
September 82
Signal lights
Main Module $£ 2.34$

Junction Module £2.27
ZX PCB
£3.75
Slot Car Controller £1.99
October 82
Flash Point Alarm $£ 2.31$
Negative Voltage Generator $£ 1.57$
Squelch Unit £2.77
November 82
Pedometer/Odometer £2.31
December 82
Phase Four $£ 3.18$
Microlog $£ 4.28$
Tape/Slide £5.48
(two boards)
TV Amp
£5.99
Lofty $\mathrm{£} 2.87^{2}$

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE

I enclose a cheque/Postal Order made payable to ASP Ltd,
for the amount shown below Price.
OR
I wish to pay by Barclaycard. Please charge my account number
OR Fint 隹
I wish to pay by Access. Please charge to my account number

SIGNATURE
NAME
(BLOCK CAPTTALS)
ADDRESS
(BLOCK CAPITALS)

Please allow 21 days for delivery

Boards Required	Price	
	Add 45pp\&p	

HE

Left: Both PCB patterns for the Tape/ Slide Synchroniser; top, the Recording board; bottom, the Playback board.

Right: The HE Phase Four PCB

HE Microlog PCB
 PCB pattern (right). Note that there are only two mounting holes.

Left: The PCB foil pattern for the Low Cost Alarm. The three large holes are for mounting bolts.

Photeasteah Senvices Mackworth. Derby DE3 4DY
MAKE YOUR OWN CIRCUIT BOARDS with the

- Reproduces direct from magazine circuits, etc.
- Complete kit including film, exposing lamp, D/S fibreglass boards, printing/assembly frame, etc.
- No darkroom or photographic experience needed
- Full after sales service and consultancy Send loose stamp for free brochure
XMAS ELECTRONICS SALE
Deduct 15\% discount on orders of $\mathrm{C15}$ and ow
MODERN DYNAMIC MOVING COIL MICROPHONES 200 ohms impodance. With swirch. Fit
$\begin{aligned} & \text { ted with lead and DIN plug. Used but in nice condition. Only } \ddagger 2 \text { each D.p } 50 \text {. MICROPHONE } \\ & \text { HEADPHONE EXTENSION LEADS Curly } 4 \text { core unscreened leads. High qualiny. Over } 1 \text { merro in }\end{aligned}$
of above headphones 600 ohms. All headorones firted with ex-Ministy flug. Standard new lack
$\begin{aligned} & \text { SEEN THE GREEN CATT } 1000 \text { of new componenis, radio, electionic, audio at Unbelievably low } \\ & \text { Orices. Send } 50 \text { D and Ieceive catalogue and FREE RECORD SPEED INDICATOR. Try a JUM }\end{aligned}$
SEMICONDUCTOA SALE ITT BC183 wansistois. 10 for 30 D or 4 p each. $1 T \mathrm{IT}$ IN4002 diodes 3 D
$\begin{aligned} & \text { each. } 10 \text { for 25D. OPTRON TYPE OP } 160 \text { INFRA RED DIODES High output power. Matched to } \\ & \text { the OPS00 end OP500SL series photo transistors. Our price } 40 \text { p. } 3 \text { for } 11 \text {. }\end{aligned}$
$\begin{aligned} & \text { the ops00 and. OPSOOSL series photo tranststors, Our price } 40 \text {. } 3 \text { For } \mathrm{C1} \text {. } \\ & \text { RIDICULOUS RESISTOR SALE. } \ddagger \text { watt carbon film resistors. } 5 \% \text { toterance. High qualiry resistors }\end{aligned}$
made under exacting conditions by automatic machines. E12 range 1RO to 10 MO. In lots of 1000 (25
per value). Only EP per 1000 Lots of 5000 for E 35 .
GENUINE EX GOVT COLLAPSIBLE AERIALS. A Tully adiustable highty efficien whip eriel in 5
$\begin{aligned} & \text { sections. Length open } 1 \text { O) metres. Closed } 300 \mathrm{~mm} \text {. Copper platod sections. As used on Ex. Gov } \\ & \text { Manpacks. Brand new in makers boxes. } £ 2.50 \text { each, p.p. } 75 \text {. } 2 \text { Ior } \mathrm{C5} \text { post free. }\end{aligned}$
MYERS ELECTRONICS
$\begin{aligned} & \text { (HEI, } 12 / 14 \text { Harper Street, Leeds LS2 TEA. Leeds } 452045 \\ & \text { New retai premises at above address lopoosite Corals) Callers welcome } 9 \text { to } 5 \text { Mon to }\end{aligned}$

MASHMR HTFGHRONICS NOW! The PRACHICAL Way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
Read, draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

CNC 10 PCB HOLDER

Ideal for small scale production, testing, research, service engineers, education and Ideal for smail scale p
The CNC 10 has a board capacity of $8^{\prime \prime} \times 8^{\prime \prime}$ and longer boards (maximum $8^{\prime \prime}$ wide) may be accommodated since they can project beyond the ends of the rails. may be accommodated since they can project beyond the ends of the rails. position by one central locking clamp. A further clamp enables the PCB, when in position, to be rotated through 360 degrees and locked in the required position.
An optional foam pad is available which enables a number of components to be $8^{\prime \prime}$.

CNC 10: $£ 16.10$ INC. VAT
FOAM PAD \& CLIP:
E5. 64 INC. VAT
Please add $£ 1.50$ to cover postage.
Available direct from the manufacturer:

CARLTON NICHOL \& CO. LTD.,

 GOLDKEY INDUSTRIAL ESTATE, KELVEDON, COLCHESTER, ESSEX
ELECTRONICS EMPORIUM

Easily reached from Leeds, Manchester, Yorks and Lancs
Open 8.30 to 5.30; Saturday 9 to 1 Vast range of bargains in stock includes Diodes, Heat Sinks, Thyristors, Bridge Rectifiers, Resistors, Capacitors, Terminals, Connectors, Relays, Switches, Wire and Cable, PCBs, Transformers, Measuring Instruments, Nibbler and other Hand Tools. Also ex-M.O.D. Surplus Test and other Equipment.
Some items by mail order - lists available.
A.C. TOWNLEY LIMITED

Harehill, Todmorden, Lancs OL14 5JY

NewJob? NewCareer?NewHobby?Getinto THectronics Now!

ADVERTISEMENT RATES semi Display (min 2 cmss) 1-3 insertions $\mathbf{£ 7 . 5 0}$ per cm $4-11$ insertions $\mathbf{£ 7 . 0 0}$ per cm $12+$ insertions $\mathbf{£ 6 . 5 0}$ per cm Lineage 26 p per word (min 15 words) Box Nos. $£ 2.50$
 Closing date 2nd Friday of the month preceding publication date.

All advertisements in this section riust be prepard
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card lavalable on requesi)

Send your sequitements and chetwe +O in

HOBBY ELECTRONICS CLASSIFIED ADVERTISING, 145, CHARING CROSS RD, LONDON WC2H OEE

AERIAL AMPLIFIERS Improve weak television reception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BL0 9AGH

ELECTRONICS component shop in MAIDSTONE, KENTI Thyronics Control Systems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

> Our Big Bargain Box contains over a thousand
> components resistors, capacitors, pots, switches, diodes, transistors, panels, bits and pieces, odds and ends. All useful stuff - would cost many times the price we are asking if bought separately. Approx. weight 4libs.
> ONLY E5.00 inc post - you're bound to come back for another!l!
> ESP 147F FOUNDRY LANE, SOUTHAMPTON, SO1 3LS Lots of surplus bargains on our latest list - send an SAE for your copy now.

7LBS ASSORTED Components $£ 5$. 10 lbs £6.50. 300, small components, transistors, diodes $£ 2.20$. Forty assorted 74 series ICs on Panel(s) f2.20. P.C.B.'s s/sided copper $11^{\prime \prime}$ $\times 8^{\prime \prime} 90$ p. $16^{\prime \prime} \times 11^{\prime \prime} \mathrm{£} 1.70$. Fibre glass $11^{\prime \prime}$ $\times 8^{\prime \prime} £ 1.50 .16^{\prime \prime} \times 8^{\prime \prime} £ 2.90$. Post paid. List $25 p$ refundable. J.W.B. Radio, 2, Barnfield Crescent, Sale, Cheshire M33 1 NL.

DIGITAL WATCH REPLACEMENT parts. Batteries, displays, backlights etc. Also reports, publications, charts. S.A.E. for full list. Profords, Copnersdrive, Holmergreen, Bucks HP15 6SGE.

REMOTE telephone bell kit, switches on your siren, buzzer bell, lamp etc when the phone rings. Battery operated micropower circuit draws negligible current from phone line. Complete kit including case and PCB only £9.95. Dept HE5, Unitech (Midlands). Freepost, Sutton Coldfield, West Midlands B74 2BR. (Not British Telecom Approved).

WANTED Automatic reset timer preferably 9 v supply, timer to run for 30 secs and then re-set itself. Cash by return post. Tel. 5508902

20 SIMPLE Electronic projects for your ZX81 by Stephen Adams, $£ 6.95$ including $p \& p$. Come and browse or send SAE for list. Watford Technical Books, 105 St Albans Road, Watford, Herts. Tel. 092323324.

SPECTRUM VENTURE. Exciting new game for the Spectrum. 17 games in 1). In colour, with sound $\mathcal{\&}$ fantastic screen effects. $16 \mathrm{~K} \&$ 48 K version supplied on one cassette for $£ 6$. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

TRANSISTORS GP PNP silicon type MPS6518 5p each. SAE to SM Enterprises, 28 Preston Gardens, Enfield, London.

KIA RETURN AN.AD No 3: . . . Free - 3 Ferranti ZTX107 Transistors11 ... Post + SAE. 8. Cunliffe Road, Ilkley.

BUY BULK - SAVE MONEY

All goods new full spee devices. zent by roturn
Posif 1 any qaiv. No VAT. SAE List
1N4148 £10/k. $1 \mathrm{~N} 4003 \mathrm{El6} / \mathrm{k} .1 \mathrm{~N} 4007 \mathrm{cez} / \mathrm{k}$. BC107 58/100,

 5 mm Aed LED EES/k, $55 / 100$. BC182L E4/100, $2 \mathrm{~N} 3904 \mathrm{EN/100}$

555 E13/100. LM 380 £ $40 / 100$.
PC ELECTRONICS
2 Thornhill, Romsay Road, Whiteparizh, Salisbury. Wilts
SP5 2 SO MAIL ORDER ONLY

SOLAR CELLS $3^{\prime \prime}$ dia. 900 mA at 0.45 V E7.59. Price lists 75p. Edencombe Lid., 34 Nathans Road, Wembley, Middx. HAO 3RX

PSUs 5V 1A £10.99. 5V 3A £11.99. 5V 5A £25.99. Adj $1.2-30 \mathrm{~V} 100 \mathrm{~mA} £ 14.99$. 1.5 A £24.99. 5A £32.99. Edwards Electrics, Unit 3, Mill Lane, Bridgwater, Somerset.

WANTED Electronic components, boards, connectors, test equipment, good prices paid. "Q" Services, 29 Lawford Crescent, Yateley 871048 Camberley Surrey

ELECTONIC kits for sale: Electronic Organ £7, Dice £8.10. SAE for details. Bee Micro, 33 Bevendean Crescent, Brighton, E. Sussex.
H.E. ORGAN KITS $£ 99.50$ inc. p\&p. 61 note keyboards $£ 32.00$. 13 note pedal boards £25.00 inc. p\&p. A.T. Hawkins, 23, Blenheim Road, St. Albans, Herts. AL1 4NS.

500W Dual Channel Flasher Unit in a mains plug.
Use for parties, Xmas lights, discos, low budget pop groups.
Variable speeds, fused, no interference $\mathbf{7} 7.95$ cheques/POs to

AMMK
11 Queensway, Sunbury-on-Thames, Middlesex TW16 6HA MAIL ORDER ONLY

SMALL reed switches 10p. Magnets 16 p . Small DC solenoids 35p. Postage 25p. Grimsby Electronic Components, Lambert Road, Grimsby, S. Humberside. Hundreds bargains at shop. SAE list.

SPECIAL OFFEAS All Capacitors $\&$ Diodes are packed in $10 s$ Price per pack of 10				220 uF 25 V 220 uF 70 V 70 uF	(1.90
diodes		2200 pF 50 V	20	${ }^{\text {470uF }} 16 \mathrm{~V}$	${ }^{6}$
1N3470 $\begin{aligned} & \text { 1N4001 }\end{aligned}$	${ }_{0} 0.25$	3000 pFF 50 V	. 20	ELECTROLTM	
1N4148	. 15	10 n 50 V	. 15	RADIAL	
1N4383	. 30 1.00	$47 n 25 V$ 100 V 50 V	: 35	4.7uF 50V PC 4.7uF 100 VPC	50.25
V.abgulators		ELECTROLYTIC		10 FF 25 VPC	.
${ }_{7924}^{78105}$	c0.25 28	capactiors		10uF 250 PPC 22 uFF loov PC	.90
LM723 DIL	30 ea	2.24 F 63 V	10.35	33 uF 25 VPC	30
12V WW Zeners	06 ea	4.7uF 35V	- 29	33 uF 160 PPC 100 uF 40 VPC	. 40
POLYSCITRERS		10uF 25 V	. 60	220uF 10 VPC	40
${ }^{1} 1000$ Pe $160 V$	20.40	47 HF FVV(P)	. 45	${ }^{330 \mathrm{LF}} \mathbf{6 . 3 \mathrm { V }}$	${ }_{40}$
CApactors		100uF 10V(P)	${ }^{45}$	330 uF 25 V	60
4.7 pF 50 V	50.25	100uF 16 V	. 60	470 OF 10 PPC 470 FF 16 VPC	${ }_{9}$
(120	. 25	760uF 25 V 220 uF 10 V		${ }_{2} 2200056.3 \mathrm{~V}$	1.00
1000 pF 50 V	20	220 FF 16 V	. 78	PC $=$ Short	
All devices brand new \& guaranteed. Orders despatched by return of post, Cash/Cheque/Postal Orders with order. Please add 60p p\&rp. MAll ORDER ONLY PLEASE					
A. M. ELECTRONMCS E/RETAIL SUPPLY OF ELECTRONIC COMPONENTS \& EQUIPMENT 5 Wilson Street, Leicester LE2 OBB					

ADVERTISERS INDEX

Aitken Bros 61
ICS 83
Alcon Inst Ltd 77
Ambit.2
A. M. Elec. 90
Amtron UK Ltd 73
Armon Elec 49
Audio Elec 66
BK Elec 91
Bib 4
Bi-Pak 40, 41
BNOS Elec 78
BNRS 88
Bradley Marshall 50
Bramine Mktg 84
Cambridge Learning 66
Carlton Nichol 88
Centemp 78
Chordgate 78
Cricklewood Elec 24, 83
Electronize Design 32
Electrovalue 60
Experimental 83
Flight Elec 30
Greenbank 73
Greenweld 79
Grenson Elec 34
Heath 50
Hemmings 64
ILP 54, 55
LB Elec. 84
Lightning Elec 79
Litesold84
Magenta 42
Marco Trading 7
Mercia Elec Lid 78
Myers Elec 88
New Era Publications 83
Photo Etc Systems. 88
Pimac. 64
Rapid 8
Relay A Quip 77
Brian J Reed 84
Riscomp Ltd 17
Roadrunner 61
Silica Shop 92
Sinclair Research 68,69
Sparkrite44
Technomatic 36
Tempus 28, 29
Texas Inst 19
TK Elec 49
Thumall (Elec) Eng 64
Townley AC 88
Watford Elec 5
Wilmslow Audio 83

THERMOCOUPLES for flash point alarm project available ex-stock $£ 1.00$ each inc p\&p. From Candis Electronics, Highdown Works, Highdown Avenue, Worthing, Sussex BN13 1PU. TeI. 0903690750.

BURGLAR ALARM EQUIPMENT. Please visit our $2,000 \mathrm{sq}$, ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd. 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274-308920.

CENTURION AlARAMS

We manufacture, you save £££'s Send s.a.e. or phone for our Frèe list of professional D.I.Y. Burglar Alarm Equipment and accessories. Discount up to 20% off list prices, e.g. Control Equipment from $£ 15.98$, Decoy Bell Boxes from $£ 5.95$ inc
trade enquiries welcome
O) 0484-21000 or 048435527 (24 hif .ans. CENTURION ALARMS (HE) 265 Waketield Roa Hudderstid 265 Wakelield Road. Hudderstield Access $\&$ Visa Access 6 Viss

HAVEN Hardware. Spectrum fruit machine £4.95. UK101/Superboard products still available. ZX kits: repeat key $£ 3.95$. Inverse video $£ 3.45$. SAE for buil prices/beeper/keyboard/software details. 4 Asby Road, Asby, Workington, Cumbria

PRINTED CIRCUITS. Make your own sim ply, cheaply and quickly! Golden Fotolac light-sensitive lacquer _ now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.25$. Developer 35p. Ferric Chloride 550. Clear acetate sheet for master 14 p . Copper-clad fibreglass board, approx. 1 mm thick f 1.75 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

STEREOPOWER 120 WATT AMPLIFERSII $160+60 \mathrm{~W}$ protected). Case + controls. D.I.N. sockets. Fibreglass. Boxed + Data. f10.85. A. Law, 8 Cunliffe Road $10 v e$ Incatile), Ilkley LS29 9DZ.

					$\mathbf{£ 3 . 9 0}$
					$\mathbf{£ 5 . 2 0}$
					$\mathbf{£ 7 . 5 0}$
					$\mathbf{£ 9 . 1 0}$
					$\mathbf{£ 1 0 . 4 0}$

Please place my advert in HOBBY ELECTRONICS for issues commencing as soon as possible.

I am enclosing my Cheque/Postal Order/International Money
Order for: (delete as necessary) £ (Made payable to A.S.P. Lid)

All classified advertisements must be paid for in advance.
SIgnature
Date
Daytime TeI. No

MULLARD SPEAKER KITS

A PURPOSELY DESIGNED 40 WATT R.M.S.
8 OHM SPEAKER SYSTEM RECENTLY DEVELOPED BY MULLARO'S SPECIALIST TEAM IN BELGIUM. Kit comprises a Mullard 8°
Woofer with foam surround and aluminium voice coil. Mullard 3° high power dome weeter. B.K.E. built and tested crossover.
based on Mullard circuit combining low loss based on M, glass fitre board and recessed components, glass hisre board and recessed size $240 \times 216 \times 445 \mathrm{~mm}$.
A superb sound at a relatively low cost.
Complete with instructions. Price $\mathbf{f 1 4 . 9 0}+$ c1.50 pもp per kit.
New 5* 30 watt mini verslon of above now available.

Price $£ 13.90+\mathbf{~} 1.00$ pupp per ki

StEREO CASSETTE TAPE DECK MODULE Comprising of a lop panel and tape mechan ism coupled to a record/play back printed board assembly. Supplied as one complet console of own choice. These units are brand new, ready built and tested.
Features: Three digit tape counter. Auto stop. Six piano type keys, record, rewind fast forward, play, stop and eject. Automatic record level control. Main inputs plus secondary inputs for stereo microphones Input Sensitivity: 100 mV to 2 V input im pedance: 68 K . Output level: 400 mV to both left and right hand channels. Output Im pedance: 10 K . Signal to noise ratio: 45 dB quirements: $18 \mathrm{~V} D \mathrm{C}$ at 300 mA Connections quirements: 18 VDC at 300 mA . Connections outputs are via individual screened leads, all terminated with phono plugs (phono sockets provided). Dimensions: Top panel $51 / 2 i n \times$ $111 / 4 i n$. Clearance required under top pane $21 / 4 \mathrm{in}$. Supplied complete with circuit dia gram and connecting diagram. Altractive black and silver fin ish.
Price $£ 26.70+£ 2.50$ postage and packing. Supplementary parts for 18 V D.C. power supply transformer, bridge rectifier and smoothing capacitorl $£ \mathbf{3 . 5 0}$.

NEW RANGE QUALITY POWER LOUD SPEAKERS ${ }^{1} 1^{\prime \prime} .12^{\circ}$ and $8^{\prime \prime}$). These loudspeakers are ideal for both hi-fi and disco applications. Both the 12 "and 15 units have heavy duty die-cast chassis units have white speaker cones and are fitted with attractive cast aluminium (ground finish) fixing escutcheons
Specification and Price
15" 105 watt R.M.S. Impedance 8 ohm 59 oz magnet, 2 aluminium voice coil Response to 25 KHz Sensitivity 97 dB Price E32 each E3.00 Packing and Car Price E32
riage each

100 watt R.M.S. impedance 8 ohm, 50 oz magnet. 2 aluminium voice coin Resonant. Frequency 25 Hz . Frequency Response to 4 KHz . Sensitivity 95 dB . Price $\mathbf{2 3 . 7 0}$ each. $\mathbf{£ 3 . 0 0}$ Packing and Carriage each
$8^{\prime \prime} 50$ watt R.M.S. Impedance 8 ohms. 20 Oz . $1 / 1 / 2$ aluminium voice coll, Resonan Frequency 40 Hz . Frequency Response to 6 KHz , Sensitivity 92 dB . Also available with black cone fitted with black metal protective grill. Price: White cone $\mathbf{£ 8 . 9 0}$ each. Black coneigrill $£ 9.50$ each. P \& P £ 1.25 each.
PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' KSN 2036 A) 3 ' round with protective wire mesh, ideal for bookshelf and medium sized Hi-fi speakers. Price $£ 3.45$ each
TYPE 'B' (KSN1005A) $3 \% "$ super horn. For general purpose speakers, disco and P.A. systems etc. Price $\mathbb{\$ 4 . 3 5}$ each.
TYPE 'C' (KSN6016A)2" - $5^{\prime \prime}$ wide dispersion horn. For quality Hi-fi systems and quality discos etc. Price $\mathbf{f} 5.45$ each.
TYPE 'D' IKSN1025A) 2" * $6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range ${ }^{2} \mathrm{KHzl}$. Suitable for high quality Hi-fi systems and quality
discos. Price $\mathrm{f6} .90$ each.
TYPE 'E' (KSN1038A) $3 \frac{1}{4}$ " horn tweeter with attractive silver finish trim. Suitable for Hi-fi monitor systems etc. Price $\mathbf{E} 4.35$ each.
TYPE 'F' IKSN1057AI Cased version of type 'E' Free standing satellite tweeter. Perfect add on iweeter for conventional loudspeaker systems. Price $\mathbf{£ 1 0 . 7 5}$ each.
U.K. post free (or SAE for Piezo leaflets).

d 1

1000 MONO DISCO MIXER

 A superb fully built and tested mixer/pre-amp with integral power supply. 4Inputs 2 turntables (ceramic cartridge). Aux. for tape deck etc., wus Mic. with
overide swlich all with indvidual level controls. Two sets of active tone controls override sass treblel for Mic. and main inputs. Master volume control. Monitor output with select switch and volune control.

BK ELECTRONICS
Prompt Deliveries VAT inclusive prices Audio Equipment Test Equipment by Thandar
and
Leader

1K.WATT SLIDE DIMMER
Controls loads up to 1 KW
 - Compact size
$43 / 4^{" 4} \times \frac{13^{\prime \prime}}{16} \times 21 / 2^{\prime}$

- Easy snap in fixing through panel/cabinet cut out
Insulated plastic case
- Full wave control using 8amp
- Conforms to 8S800

Suitable for both resistance and inductive loads
innumerable applications in industry, the home, and discos. heatres etc

(Any quantity)

BSR P256 TURNTABLE

256 turniable chassis . S shaped tone arm - Belt driven Aluminium platter Precision calibrated counter balance - Antiskate (bias device). Damped cueing lever - 240 volt AC operation 1 Hz l Cut-our This deck has a completely manual arm and is designed primarily for disco and studio use there all the advantages of a manual arm are Price: $\mathbf{£ 2 8 . 5 0 + \mathbf { C 2 } . 5 0 ~ P \& P ~}$
dp
POWER AMPLIFIER MODULES

 MODULES
Power Amplifier Modules with integral toroidal transformer power supply, and heat sink. Supplied
as one complete built and tested unit. Can be fitted as one complete built and tested unit. Can be fitte
in minutes. An LED Vu meter is available as a optional extra.
SPECIFICATION
Max Output Power: 110 watts R.M.S. IOMP 1003
310 watts R.M.S. IOMP 3001
Loads: Open and short circuit proof. $4-16$ ohms. Loads: Open and short circuit proof. $4-16$ ohms.
Frequency Response: $20 \mathrm{~Hz}-25 \mathrm{KHz} \pm 3 \mathrm{~dB}$. Sensitivity for Max. Output: IV af 10 K (OMP 300
500 mV at 10K (OMPP 100) .H.D.: Less than 0.1\%
Sizes: OMP 100360

OMP $300460 \times 115 \times 72 \mathrm{~mm}$
$163 \times 66 \mathrm{~mm}$

Matching 3-way loudspeakers and crossover
Build a quality 60 watt RMS system $80 h m s$ Build a quality 60 watt R.M.S. system
(10" Woofer $35 \mathrm{~Hz}-4.5 \mathrm{KHz}$
*" Tweeter $2.5 \mathrm{KHz}-19 \mathrm{KHz}$

- $5^{\prime \prime}$ Mid Range $600 \mathrm{~Hz}-8 \mathrm{KHz}$
* 3 -way crossover $6 \mathrm{~dB} /$ oct 1.3 and 6 KHz Recommended Cab-size $26^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime \prime}$ Fitted with atractive cast aluminium fixing es cutcheuns allu mesti protecuve gills which are emovable enabing a unique choice of cabinet with or without conventional speaker tabrics. All three units have aluminium centre domes and rolled foam surround. Crossover com hnes spring-loaded loudspeaker terminalis and ecessed mountina panel Price $\mathbf{〔} 22.00$ per kit $+\mathbf{\$ 2 . 5 0}$ postage and pack ing. Avarlable separately. prices on request
12' 80 watt R.M.S. Ioudspeaker.
A superb general purpose twin cone loud speaker. 50 oz. magnet. 2 aluminium voice coil. Rolled surround. Resonant fre quency 25 Hz , Frequency response to AKHz. Sensitivity 95dB. Impedance 8ohm Attractive blue cone with aluminium centre dome

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

[^0]
100 FREE PROGRAMS FROM SILICA SHOP－WITH EVERY PURCHASE OF AN

ATARI PRICES REDUCED

We at Silica Shop are pleased to announce some fantastic reductions in the prices of the Atari 400／800 personal computers．We believe that the Atari at its new price will become the UK．s most popular per sonal computer and have therefore set up the Silica Atari Users Club．This club already has a library of over 500 programs and with your purchase of a 400 or 800 computer we will give you the first 100 free of charge．There are also over 350 professionally writ－ ten games and utility programs，some are listed below．Complete the reply coupon and well send you full details．Alternatively give us a ring on 01－301 1111 or 01－309 1111

ATARAR40 $£ 199$

 ATARI 800 with 16 K

400／800 SOFTWARE \＆PERIPHERALS

Don＇t buy a T．V．game！Buy an Atari 400 personal computer and a game cartridge and that＇s all you＇ll need．Later on you can buy the Basic Programming cartridge（ $£ 35$ ）and try your hand at programming using the easy to learn BASIC language．Or if you are interested in business applications，you can buy the Atari $800+$ Disk Drive＋Printer together with a selection of business packages．
Silica Shop have put together a full catalogue and price list giving details of all the peripherals as well as the extensive range of software that is now available for the Atari $400 \% 800$ ．The Atari is now one of the best supported personal computers．Send NOW for Silica Shop＇s catalogue and price list as well as details on our users club．
THE FOLLOWING IS JUST A SMALL SELECTION FROM THE RANGE OF ITEMS AVAILABLE

ACCESS	Mountain S	BUSINESS	DYNACOMP	Maths－Tac－To	Scram	Castle	Sleazy Ad	Jaworeaker	Programming
Cables	Rearguard	Calculator	Alpha Fighter	Metric \＆Prob Solvg	States 8 Caoitals	Centurion	Solitaire	Astero	IOS from Ateri
Casselies	Star Flite	Darabase Managemt	Chompelo	Mugwump	Touch Typing	Checker King	Space Chave	Mouskatteck	，
Diskettes	Sunday Golt	Decisión Maker	Crystals	Music Terms／Notatn		Chinese Puzzie	Sosce Trek	areshold	sembler（APX）
Joysticks		Graph－ 1	Forest Fire	Musical Computer	EMI SOFTWARE	Codecracker	Sultans Pala	Lilvses／Golden Fi	Microsoft Besic
Le Stick Jovstick	AUTOMATED	Invoicing	Intruder Alers	My First Alphabet	日rhish Heritage	Comedy Disket	Tect Trek	Wizard APrincess	Pascal（APX）
Misc Supplies	CATIOMS	Librarian	Monarch	Number Blast	Cribbage／Dominoes	Dice Poker	Terry		Pilot（Consumer）
Paddies	Crush Crumble Cmp	Mort \＆Loan Anal	Maonprobe	Polycalc	Dars	Dag Oaze	Wizards Gold	PERIPMERALS	Plót（Educator）
	Datestones of Ryn	Nominal Ledger	Moving Maze	Presidents of U．S．	Eurodean Scene Jig	Domination	Wizards Reven	Centronics Printers	Programming Kit
AOVENTURE INT	Dragons Eve	Payrall	Nominoes Jigsaw	Quiz Master	Hiekory Dicko	Downhill		Disk Drive	
Scort Adamis Adv	Invasion Orion	Personal Finl Mgmt	Rings of The Emo	Starware	Humoty Dumpty	Eastern Front	ENTERTAINMENT	Epsom Printers	SANTA CRUZ
No ：Adventurelnd	Rescue ar Riget	Purchase Ledget	Space TTir	Stereo 30 Graphi	Jumbo Jet Landet	Galahad \＆Holy Gri	from ATARI	Progrsm Recorder	Basics of Animation
No 2 Pirrate Adv	Picocher	Sales Led	Soace Trap	Three A Marn	Snooker a billiards	Graphies／Sound	Asteroids	中S 232 Intertoce	Bobs Business
No 3 Mission Imp	Star Warrior	Statistics 1	Stud Poker	Video Math Flash	Submerine Commdr	Jax－O	Basketball	Thermal Printer	Display Llstis
No 4 Voodoo Cast	Termple of Apshai	Stock Control	Triple Blockade	Wordmaker	Super Cubes \＆Till	Jukebox	Biackiock	16 K Memory AAM	Gruphics Machine
No 5 The Count	Upoer Reaches Aps	Tetelink 1			Tournament Pool	Lookanead	Centipede	32 K Memory fAM	Kıds 182
No 6 Strange Ody		Visicalic	EDUCATION	education		Memory Match	Chess		Horizontal Scroiling
No 7 Mystery Fun	日00ks	Weekly Plannei	from APX	from ATAAI	ENTERTAINMENT	Midas Touch	Entertainment Kia	PERSOMALINT	Master Memory Mac
No 8 Prramio of 0	Basic Ret Manual	word Processor	Algicalc	Conv Frenen	from APX	Minotaur	Missite Com	from APX	Mini Word Processor
No 9 Ghost Town	Compure Atari dos		Allas of Canode	Conv German	Alien Egg	Outhaw／Howizer	Pac Man	Adv Music Svitem	Pege Flipping
No 10 Sav tsiand ！	Compute Bk Aturi	CAYSTALWARE	Cubby holes	Conv lialian	Anthlll	Preschoot Ga	Space Invader	Banner Generato	Player Misshle Gr
No 11 Sav istand 2	Compute Magazine	Beneath The Pyram	Elementary Bialogy	Conv Soanısh	Attank	Pro Bowling	Star Raicers	Breckiack Tutor	Plaver Plano
No 12 Goiden Voy	De Re Ateri	Fantasyland 2041	Frogmaster	Energy Caa	Avilanche	Pushover	Super Break	Going To The Dop	Sounds
Angle Worms	DOS Utilities List	Galactic Quest	Hickory Dickory	European C\＆Caps	Babel	Rabboti	Video Easel	Kevboard Orgen	Vertical Scrolling
Defiections	DOS2 Manual	House Of Usther	Inst Comptg Dem	Mangman	Blacklack Casino	Reversi If		Morse Code Tutor	
Galactic Empuire	Misc Arari Books	Sands Of Mars	Lemonade	Invit To Prop 1／2／3	Block Bust	Salmon Run	ON LINESYSTEMS	Personal Fitness Prg	Silica club
Galactic Teader	On Sustem Listing	Warerioo	Letterman	Kingaom	Biock＇Em	747 Landing Sumul	Crosslire	Piaver Piano	Over 500 progrem
Lunar Lander	Wiley Manual	World War III	Mapware	Music Composer	Bumper Pool	Seven Card Stud	Frageer	Sketchoed	write for detalls

FOR FREE BROCHURES－TEL：01－301 1111

onto

SILICA SHOP LIMITED
Dept HE E11082, 1-4 The Mewa, Hatherioy Rosd, Sidecup,
Kent DAT4 40X Tolephone $01-3011111$ or 01-309 1111

[^0]: \star SAE for current lists. \star Official orders welcome. \star All prices include VAT. Mail order only. \star All items packed (where applicablel in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572

