

Project Electronics For Everyone

NICADS:UK'S LOWEST PRICES

AMBIT'S NEW CONCISE COMPONENT CATALOGUE IS OUT NOW -

Ambit's new style catalogue continues to lead the market with low prices, new items, info, $3 £ 1$ discount vouchers. In a recent supplier survey, we were one of only two suppliers listed in all categories!
There's a few examples of some super low prices
$78 \times \times 1 \mathrm{~A} \quad 37 p$
BC237/8/9
8p
3SK51 54p
10 MHz XTALS
8 Pole 10.7 MHz XTAL filters

All the "usual" stuff at rock bottom prices + Toko coils, crystal and ceramic filters, micrometals toroids, Fairite ferrites, Alps switches, OKI LSI, Piezo sounders, RF, IF Modules + Kits etc.

CMOS

 CMO4000
4001 2 GHz coax relay 150W foax relay
£ 10.95

-

 ${ }_{4}^{4000} 4$ 4008
4009
4010
4010
401
40
4
 $x=8$

-
7aLs248

PROJECTS

* DIGITAL THERMOMETER 10
Reads Fahrenheit or Celsius. 33
\star HEECHO-REVERB
\star HEECHO-REVERB
49
* AFSIGNAL GENERATOR
A simple, useful test generator
* QUICK PROJECT 55
Light Seeker65
ネ CABLETRACKER.
An essential accessory for the DIY handyman
FEATURES
* POPULARCOMPUTING
THE ZX81 REVIEWED 20
Sinclair's micro-masterpiece reconsidered. A MICRO-HISTORY
* SCALING THE HIFI HEIGHTS 26
The final installment - adding a cassette deck
FAMOUS NAMES 53
Charles Babbage.
INTORADIO
* RADIORULES 57
Sines of the Times.
INTO ELECTRONIC COMPONENTS 61
Part 11: Digital Dealing.
SPECIALS
THE ELECTRONIC REVOLUTION 39
The Electric Society begins.
REGULARS
Monitor6
* BUYLINES 68
* POINTS OF VIEW 16
Clever Dick 30
HE Subscriptions 38
Backnumbers 56
Bookshelf 70
What's On Next 18
PCB Service 60
PCB Print Out 72
Index to Advertisers 73
Classified Advertisements 73
Editor: Ron KeeleyEditorial Assistants: Paul Coster BScTina Boylan
Senior Art Editor: Kieran Wade
Assistant Art Editor: Enzo Grando
Advertisement Manager: Gary Price
Managing Editor: Ron Harris BSc
Managing Director: T.J. Connell

20
 SIMPLE ELECTRONIC PROJECTS FOR THE ZX81 and other computers

by Stephen Adams

20 SIMPLE ELECTRONIC PROJECTS FOR THE ZX81

AND

OTHER COMPUTERS

Make the most of your micro with this great book of construction projects.
Projects include: a numeric keypad; giant sevensegment display; score board; light pen; thermometer; shift lock; computerised voltmeter; and an 'unbeatable' burglar alarm.

INTERFACE

Department HE,
44-46 Earls Court Road,
LONDON W8 6EJ
Please send me a copy of Stephen Adam's book 20 SIMPLE ELECTRONIC PROJECTS FOR THE ZX81. I enclose $£ 6.45$, plus 30 p p\&p

Name
Address

HEPROJECT KITS

Make us your No. I SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of parts to enable you to contruct H.E. projects. Kits include ALL the electronics and hardware needed. Printed circuit boards /fully etched, drilled and roller tinned) or Veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET INCLUDED. If you do not have the issue of H.E. which includes the project - you will need to order the instruction reprint at an extra 45p each.
Reprints avallable separately 45 p each + p. \varnothing p. 40 p.

CABLE TRACKER May $82 £ 9.37$ DIGITAL CAPACITANCE METER Apr 82 Z21.69
SIGNAL TRACER Apr 82 e3.6
BIKE ALARM Apr 82 £10.98
DUAL ENGINE DRIVER Apr $82 £ 48.78$ DIGITAL DICE Mar 82 £6.82 BICYCLE SIREN Mar 82 £10.18 NOISELESS FUZZBOX Feb 82 ع9.77 SOUND SWITCH Feb 82 E8.31 MASTHEAD AAMPLIFIER Feb $82 \mathbf{5 1 3 . 7 4}$ DRUM SYNTHESIZER Dec 81. Full ki f19.98
GUITAR HEADPHONE AMPLIFIER Dec 81 f3. 48
IN CAR CASSETTE POWER SUPPLY Dec 81 £4.46
SCRATCH FILTER Nov 81 Mono $£ 5.44$
Stereo E8. 40
LED VU METER Nov 81 less case $£ 4.5$ case 4.74
METRONOME Nov 81 E11.
TELEPHONE BELL REPEATER Oct 81 f 12.78
Med Linking wire extra 14p metre
COMBINATION LOCK Oct 81 less solenoid £17.43
BABY ALARM Oct 81 £8.14. Fig 8 linking
DIANA' METAL LOCATOR Sept 81 33.85

POWERPACK Sept 81 ²9.58
REACTION TESTER GAME Sept 81 f 11.98
VARIABLE BENCH POWER SUPPLY Aug $81 £ 25.35$
ULTRASOUND BURGLAR ALARM July 81 f18.67
ELECTRONIC DOOR BUZZER July 81 f5. 65
ELECTRONIC METRONOME July 8 E4.67
CONTINUITY CHECKER June 81 £5.3

ENVELOPE GENERATOR June 81 E16.85
AUDIO MIXER June 81 £4.99
PUBLIC ADRESS AMPLIFIER March 81 f1821, Extras - horn speakers f 6.83 ach, PA MIC $£ 4.40$
FUZZBOX March 81 £10.35
WINDSCREEN WIPER CONTROLLER March 81 E7.67
STEAM LOCO WHISTLE March 81
PHOTOGRAPHIC TIMER March 81
£3.28
HEARTBEAT MONITOR Feb 81 £23.40 AUDIO SIGNAL GENERATOR Feb 81
E18.93 WO-T
less case WAVE RADIO Feb 81 ¢7. 67
BENCH AMP Jan 81 f10. 10
NICARD CHARGER Jan $81 £ 7.67$
CHUFFER Jan 81, less case $\mathbf{E 7 . 0 4}$
BATTERY CHARGE MONITOR Dec 80 C5.40
MEMORY BANK - MINI SYNTHESISER Nov \& Dec $80 £ 28.40$
TRANSISTOR TESTER NOV $81 \mathbf{f 6 . 1 2} \mathrm{inc}$
est leads
GUITAR PRE-AMP Nov 80 E5.65 case diecast) extra $£ 2.29$

UERALARM Oct 80 £19.61
TOUCH SWITCH Sept $80 £ 2.57$ less case
contacts
GUITAR PMASER Sept $80 £ 15.22$
SOUND OPERATED FLASH TRIGGER
July 80 no skt $£ 4.99$
FOG HORN June 80 £6. 21
SPEED CONTROLLER FOR R/C April 80
16.41 (less case)

DIGITAL FREQUENCY METER april 80 £39.35
DIGI-DICE Jan 80 ¢10.97
GUITAR TUNER Nov 79 £ 11.99
CAR ALARM Feb $79 £ 12.07$

CABLETRACER Asfeatund

A SUPERB PROJECT FOR THE HOME MANDYMAN - PICKS UP NAILS, SCREWS, CABLES AND PIPES (and other buried metal objects).

QUICKLYSAVESITS FULL KIT
OWN COST
BESURE - BE SAFE
INCLUDES ALL
HARDWARE,
ELECTRONICS \&PCB $+P \& P$

MEMORY BANK SYNTHESISER

Miniature synthesiser featuring vibrato, envelope, tempo, volume + pitch controls. Uses 24 push button switches in a keyboard style layout. Based on a custom designed L.c. The accessible memory stores a 32 beat length sequence of notes + spaces. Can be played 'live'. Fitted with an internal speaker. Jack socket allows the use of an external amplifier if wished.

Memory Bank Synthesizer £28.40
Complete kit inc. case, pcb's etc. Reprint extra 45p. Available separately 45p + 45p p\&p.

MORE PROJECT KITS - SIMILAR STYLE TO H.E.

INSTRUCTIONS INCLUDED (SEPARATELY 45p EACH) PLEASE QUOTE REF. NO. WHEN ORDERING
B1 PEST CONTROL 'Ultrasonic cat scarer' £6.98
B2 COMPONENT TESTER £8.38
B3 ENLARGER TIMER - relay output $£ 26.99$
B4 GUITAR NOTE EXPANDER $£ 16.87$
B5 CAMERA OR FLASH GUN TRIGGER Infra red system $£ 11.98$
B6 SIMPLE INFRA RED REMOTE CONTROL £16.39
B7 0-12V POWER SUPPLY £16.99
B8 SOIL MOISTURE MONITOR $£ 4.23$
B9 SOUND TO LIGHT - single channel $£ 7.97$
B10 THREE CHANNEL SOUND TO LIGHT £19.98
B11 IN SITU TRANSISTOR TESTER $£ 6.73$
B12 WEIRD SOUND EFFECTS GENERATOR £5.68
B13 AUDIBLE VISUAL METRONOME £5.98 B14 ELECTRONIC DICE £5.71

1.C.s TOOLS CASE TRANSISTORS RESISTORS KITS CAPACITORS HARDWARE MAGENTA ELECTRONICS LTD.

SOLDERING/TOOLS

ANTEX XS SOLDERING IRON 25W f5. 48 SOLDERING IRON STAND $£ 2.40$ SPARE BITS Small, standard, large. For XS and X25 irons 65p each SOLDER Handy size 99p DESOLDER BRAID 69 P DESOLDER PUMP f6 4 HEAT SINK TWEEZERS 29p HOW TO SOLDER LEAFLET 12p LOW COST CUTTERS $£ 1.69$ LOW COST LONG NOSE PLIERS $£ 168$ WIRE STRIPPERS + CUTTERS $£ 2.69$ HELPING HANDS JIG E6.30
Heavy base. Six ball and socket joints allow infinite variation of clips through 360°. Has $2 / /^{\prime \prime}$ diameter ($2.5 \times$) magnifier attached. Used and recommended by our staff.
VERO SPOT FACE CUTTER $£ 1.49$ PIN INSERTION TOOL £1.98 VEROPINS (pk of 10010.1 " 52 p MUITIMETER TYPE 220000 OpV) E6.66 MULTIMETER TYPE 2. 20,000 opv with transistor tester. Very goad 14.75
dia ($5 \times \mathrm{mag}$) $\mathbf{E 1 . 1 4}$. Large $3^{\prime \prime}$ dia $(4 \times$ mag) Cz .40 DENTISTS INSPECTION MIRROR
£2.85 HAND MAGNIFIER $3^{\prime \prime} £ 2.99$ CAST IRON VICE (Small) [2.98 SCREWDRIVER SET $£ 1.98$ POCKET TOOL SET E3.98 PCBETCHING KIT E4.98

BOOKS . BOOKS . BOOKS


```
CONSTRUCTOR'S PROJECT BOOKS
Specially written for the electronics enthusiast. Each book contains a.coliection of.constructional
```



```
books.
ELECTRONIC GAME PROJECTS Rayer, CUCTTY Bisho 
EEECTRONIC PROJECTS IN AUDIO Penfold
ELECTRONICP PODJECTS IN MUSIC FIIN
ELECTRONIC PROJECTS IN PHOTOGRAPHY POnfold.
ELECTRONIC PROJECTS IN THE CAR George
PROJECTS IN RADIO AND ELECTRONICS Sinclal
ELCTCRONIC PROJECTS I HOBBEES Raver.
ELECTRONIC PROJECTS IN THE HOME B Shop
ELECTRONIC PROJECTSIN TME WORKSHOP Pentold
ELECTRONIC TEST EQUIPMENT PROJECTS AISSIC
MOMEL
```

PAPERMAC - ELECTRONIC PROJECTS
A 50 ot 4 books full of interesting circuls and project COST EFFECTIVE PROJECTS AROUND THE HOME WA WICES
PHOJECTSFOR HE CAR AND GARAGE BISTOD.
CTS Dixon

SEMICONDUCTOR DATA BOOK N NUnES
s.

POPULAR LOW COST BOOKS

RADIO CONTROL FOR BEGINNEAS Raver
INTERNATIONAL TRANSISTOR EQUVVAL ENTS GUIDE 320 pages. Michaels
ELECTRONIC PROJECTS FOR CARS AND BOATS
SECOND BOOK OF CMOS IC PROJECTS Penfold.
SECOND BOLK OF CMMS SC PROJEC
50
SIMPLEE. C. CRCUTS BOOK2.
ELECTRONIC MUSIC PROJECTS Panfold - ...
ELECTRONIC HOUSEHOLD PROJECTS Peniold
ELECTHONIC GAMES Penfold...
PROJECTS IN OPTO ELECTRO NICS Pentold .
52PROJECTS USINGIC 741 Redmer
ELECTRONIC TMMER PROJECTS RAyar
ELECTRONCTMMER PROJECTS RAY日er
POWER SUPPLY PROJECTS Penfold
REMOTECONTROLPROJECTS Bisho
SOLID STATE SHOPRWAVE RECEIVERS FOO BE GINNE ESS Penfold
BEGINNERS GUIDE TO BUILINEGELECTRONIC PROJECTS Penfoid
MODEL RIIWAYPOJECS Penfold
${ }^{4} \mathrm{C} 555$ PROJECTS Parr
ELECTHONIC MUSIC ANO CREATIVE TAPE RECORDING Berry.
PLP PULAR ELECTRONIC CIRCUITS BOOK 2 Penfold

,

MORE KITS AND

 COMPONENTSIN OUR LISTS
FREE PRICE LIST
Price ilist inclided with
dersor send sae (9 4)
CONTA
KITS, PCBS \&
COMPONENTS

1982 ELECTRONICS CATALOGUE

 Illustrations, product descriptions, circults alt in-cludud. Up-to-date pric Ilst enclosed. All products are stock IInes for fast delivery.
Send $70 p$ in stamps or add $70 p$ io order. Send 70 p in stamps or add 70 p to order. MÖRE H.E. KITS PLUS E.E. and E.T.I. PROJECT. KITS IN THE PRICE LIST.

ADVENTURES WITH MICROELECTRONICS

An easy to follow book suitable for all ages. Ideal for beginners. No soldering. Uses a Bimboard 1 breadboard, gives clear instructions with lots of pictures. 11 projects based on integrated clrcuits -includes dice, two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack includes a Bimboard 1 breadboard and all the components for the projects.
Adventures with Microelectronics $£ 2 \cdot 55$. Component pack $£ 29 \cdot 64$ Adventures

ADVENTURES WITH ELECTRONICS byy

An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects. battery

MAGENTA glves you FAST DELIVERY OF OUALITY CO All products are stock lines and are new \& full specification. We olve personal ssrvice \& quality products to all our customers-HAVE YOU TRIED US?

MAGENTA ELECTRONICS LTDD.

 HJ24, 135 HUNTER ST. BURTON-ON-TRENT, STAFFS. DE14 2ST. 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY. ADD 45p P\&P TO ALL ORDERS.OFFICIAL ORDERS WELCOME RISH REPUBLLC \& B.F.P.O. EUROPE: Ded
must bo in Sterling.
ACCESS and BARCLAYCARD (VISA)
ACCESS and BARCLAYCARD(VISA)
OROERS ACCEPTED BY PHONE OR
POST.
PASEALL ENQUIRES.
SAE ALL ENQUIRES.
Normal despatch by return of post

IT NEVER rains but it pours, quite often. This month's new releases include, for the first time, a selection of video monitors suitable for use as computer VDUs.

Most home computers are equipped with a 'video' output intended for use with ordinary domestic television sets. This output is, in fact, a frequency modulated RF signal which is tuned in on Channel Six. This system provides a cheap and convenient display, but the definition is not as good as it could be, due to lack of stability and bandwidth of most video modulators - and there is often a conflict over the use of the set! The simple solution to the second problem has been to buy or hire a monochrome TV which can be used solely as a VDU. Until now, however, there has been no easy, safe method of achieving improved display resolution (most domestic TVs cannot be safely modified to accept video input), so the appearence of a range of monitors designed for home computer users is especially welcome.

The most attractive of the new monitors is the $12^{\prime \prime}$ Monochrome Data Display Monitor (above) from Chable Electronics Limited. It operates from either 12 VDC or 240 V AC , measures a compact 370 x $290 \times 30 \mathrm{~mm}$ and can be lifted with one hand; the display area is 24×80 characters. However, the DDM's most appealing feature, to the home computer user, is it's price - $£ 85.68$ including VAT and carriage. For further information contact Chable Electronics Limited, 3A Commercial Street, Batley, West Yorkshire WF175HJ or 'phone (0924) 441128.

The range of monitors from Thandar (middle) are intended for professional users, although they are also suitable for the home user. The range starts with the TV2S, a $2^{\prime \prime}$ model, and extends through $5^{\prime \prime}, 9^{\prime \prime}$ to $12^{\prime \prime}$ types. They are supplied in chassis format, with a choice of B/W or green phosphor tubes and the option of standard or non-glare screens. Prices range from $£ 119$, including VAT, up to f 155 . Colour monitors, from $14^{\prime \prime}$ to 26", are also available on application. Thandar Electronics Limited are located at London Road, St. Ives, Huntingdon, Cambs PE17 4HJ; Tel. (O480) 64646.

Two new monitors (below right) from Stotron Ltd. are intermediate in price. The $12^{\prime \prime}$ model costs $£ 99.50$ and the $9^{\prime \prime}$ one, £92.75; both prices include VAT and carriage. The picture tubes are green phosphor, showing 1920 characters in 80×24 format and comply with DHEW regulations on X -radiation. Video input is via either RCA phono jack or SO-239 UHF connectors.

Another new product line from Stotron is a range of low-profile IC sockets (left), featuritg beryllium copper fourjaw gold plated contacts and insulation resistance of 10^{14} ohms. Full details of these and other new lines from Stotron appear in their 1982 catalogue, which is available from Stotron Ltd, Haywood House, Ivyhouse Lane, Hastings, East Sussex TN35 4PL; Tel. (0424) 442160.

The best of the test equipment releases, this month, is a new hand-held digital multimeter (above) made by Sabtronics International Inc., of Tampa Florida (they don't just grow oranges there, you know) and marketed in the UK by Black Star Ltd. The Model 2033 features 0.5 \% basic DC accuracy, a large $31 / 2$ digit LCD, pushbutton range and function switches and is powered by either a single PP3 battery or an optional AC adaptor. The 2033 will measure AC or DC voltages from 100 uV to 1000 V in five ranges, resistance from 1 RO to 20 M in five ranges and $A C$ or $D C$ current from 10 uA to 2 Amps in three ranges. It is supplied complete with test leads for $£ 42.26$ including VAT; a high voltage probe is available as an optional accessory. The Sabtronics 2033 is available from various distributors around the country or directly from Black StarLtd., 9A Crown Street, St, Ives, Huntingdon, Cambs PE17 4EB or 'phone (0480) 62440 for the location of our nearest dealer.

Readers of our new POPULAR COMPUTING section who are also owners of Sharp, Casio or similar pocket computers will be interested in a Manchester based mail order firm who specialise in pocket and portable computer systems. They are Elkan Electronics of 28, Bury New Road, Prestwich, Manchester M25 8LD. Their new catalogue, shortly to be released, will include the Sharp PC-1 211 and PC-1500 and Casio's FX-702P, together with new software and books.

Obtaining the mechanical parts for a project is often more difficult than actually constructing the circuit, so new sources for hardware are always welcome. Fieldtech Heathrow Limited are marketing a new range of midget toggle switches, both single and double-pole, with switching from basic ON/OFF to variations of ON/OFF/ON through, various retailers, nationwide. The new range, called Type 550, is also available direct from Fieldtech Heathrow at prices ranging from 32 pence to 51 pence each. Data sheets will be supplied to interested readers who write to Fieldtech Heathrow Limited, Components Division, Huntavia House, 420 Bath Road, Longford, Middx UB7 OLL; Tel. (01)8976446.

Still on the subject of cases, Adsum Ltd have a range of standard instrument cases designed to suit a wide variety of applications. They are made from ABS plastic in standard colours (black or grey) and supplied blank, with internal fixing points. Two sizes are made, with external dimensions of $170 \times 250 \mathrm{~mm}$ or $310 \times$ 250 mm , and a range of heights. The maximum PCB size is, in each case, 10 mm less than each of the external dimensions. Details are available from Adsum Ltd., Kiln Acre, Wickham Road, Fareham, Hants PO1 6 7ZH, Tel. (0329) 285858.

Latest news from the leading edge of technology concerns the introduction of stereo sound video machines. Leading the way will be Grundig, the West German manufacturers of almost everything electronic, with Philips and JVC not far behind. This long awaited land long overdue) innovation will be welcomed by all - but particularly those who have been disappointed by the quality of sound on video cassettes of pop music or spectacular movies such as Flash Gordon, Superman or Star Trek. Already, producers of video-pop are preparing sound versions of popular tapes, as they will almost certainly benefit most from the improved quality of stereo.

Still on the subject of hardware, OK Machine \& Tool (UK) Ltd have announced a new addition to their PacTec case range. The Series CLH (above) has a handle which doubles as a tilt-leg and is moulded from heavy weight ABS plastic. The basic size is $318 \times 296 \mathrm{~mm}$, with heights ranging from 115 to 146 mm . The cases accept a variety of mounting systems - PC card guides, mounting rails and other hardware - so allowing considerable flexibility for creating a number of internal configurations. The Series comes in four standard colours (blue, black, tan and grey) and can be supplied in kit form. The CLH Series is available direct from OK Machine \& Tool (UK) Ltd, Dutton Lane, Eastleigh, Hants SO5 4Aa (Tel. 0703 610944) or from Watford Electronics.

Grundig are also reported to be the first company ready to introduce stereo TV receivers to the UK. However, although stereo sound is broadcast in West Germany, it is unlikely to broadcast in the UK for some time, yet. True stereo TV will almost certainly come into general use when satellite television commences. Several European countries, notably West Germany and France, have their satellite TV systems well under way while, in the UK, a joint venture by three major companies, British Aerospace, British Telecom and Marconi Avionics, will put a UK satellite into orbit around 1986.

There are two possible methods by which satellite TV can be received directly, by a small dish antenna on the roof, or via cable from a central receiving station. The Government appears to favour the idea of cable distribution, so it is likely that cable and satellite TV will be closely linked in this country.

HE

BHPAK BARCAINS

AUDIO PLUOS，SOCKETE

 AND ACCESSORIES25 pieces ol audio Plugss，Sockets and connectors erinue Din 180.20° ．intine 3.6 Pin． Speaters．Phono．Jach．Stereo and Mono．etc etc．Valued t well over $\}$ noimal．Order No．SX25．Our Price E1．SO der pall Guaranteed to save you money．

Sezr 3 Pis al 6 pin 240° Din Plueg and Chassis

 Sockets227 I R Right Angle Stereo lack Plug 53 mm plus malching metal shassis mounting sochet． Sx2t 4 Phono plugs and 2 dual phono connector $5 \times 291 \times 2.5 \mathrm{~mm}$ Plug to 3.5 mm Sockel adaptor． P…Socket ada

BARGAINS

514220 small ． 125 Red LEO＇s 5xuc 30 Assarted Zene：Diodes all coded．New．
Sx47 Black Instument
knobs－winged with ponter the Standaid screw．Fit sure 29 x crew．hit suze 29 S449 20 Assorted Slider Knobs Blact／Chrome，etc． woltige and mairs－vacious types and colours－some panel mounting
＂IAAESISTABLE AESIETOR BAROAINS

	（0）${ }^{\circ}$	Descriptom
SX10	400	Maxed＂All Type＂Resistors
5×11	400	Preformed \％－1／watl Caboon Resistors
5112	200	－watl Carbon Resastors
5113	200	4，watl Caibon Resistors
5×14	150	h watl Resistors 22 ohm 2 m 2 Mrxed
5115	100	1 and 2 wall Resistors 22

Pahs 5×12.15 contain a ranze ol Cathon Film Resistor ol assorted values from 22 ohms to 2.2 meg Save pounds on these ressistor pats and have a full ianee cover your projects
Quanthies appoximate，count oy weight

＂CAPABLE

 CAPACITOR PAKSP出 Mo
5116 5×16

SH21
5122

5×23

el
Capacitors Mired Types tl Ceramic Capacitors Min a ature Mixed Mued Ceramics Iol．5Gipl Mixed Ceramics 6801.0 .5 mf Assorted Polyeste／／Polystyrene Capacitors
metal tal tyoe Lapacitors metal 10 In
Electrolytics．all sort
50.1000 mf

－Quantities appromimate．count by weight．

MORE BARGANSI

5251
60 melies PVC conered Hool－u wre single and stianded．Mineod

25 Assorted TIL Gates 7400 Series 7401.7460. IO Assorted flip Flops and MSI TI 20 Assorted Slidel Potentiomelers
5×5125 Assolted Potentiometers．
Rotary．Dual，etc．
40 Assorted Pre－Sets Hor Vet
72 10 R 10 Reod Switches－glass type
3 Micio Switches－with hywr

10312 COMPLIMENTARY PNP POW
TRANSISTORS：TO 2M3055
Equirslent M12955－80312－ 10
SPECIK PRICE C0．70 moch

（4．） $55.75 \quad 187.50$ twent

203055 The best known Power Transistors in the mono－2N3OJSNPN 115 m ．
Our BI－Pal Spocio OHer Prict
10 को 50 की 100 को L3 50 E16．00 $\$ 30.00$

10 की 65.50

TECASBOTY

The Electronic Components and Semiconductor Bargain of the Year．A host of Electronic components including potentiometers－rotary and slider，presets－horizontal and vertical Resistors of mixed values $220 \mathrm{hms} 102 \mathrm{M} 2-1 / 8102$ Want A comprehensive range of capacilors including electrolyic and polyester ypes plus disc ceramics elcetera． Audio plugs and sockets of various types plus switches．fuses．heatsinks．wire，nutsibolls． gromets．cable clips and tyes．knobs and PC Board．Then add to that 100 Semiconductors 10 include transistors．diodes．SCR＇s opto＇s．all of which are current everyday usabte devices． In ali a Fantasic Parcel No rubbish all identituable and valued in Current calaingues al well over fi25．00 Our Fight Againsi Inflation Price －Beal the Budget －Beat the Budget IDST \＆with Depression 50 ．
 －Beal the Budget

1 Amp SILICON RECTIFIERS

 Glass Type simitar IN4000 SERIES IN4001－N4004 50 － 500 N －uncoded－you select for VLALL perfect devices－NO duds Min 50 y 50 for $£ 1.00$－worth doubie ORDER NO $\$ \times 76$ Slicon General Purpose NPN Transitors T0－18 Case 镸 lock lii leads－coded CV7644 Similar to BC147 －BC107－ZTE9 ALL NEW VCE TOY IC500mA \begin{tabular}{l}
He $75-25050$ oh 100 of 500 off 1000 off

PRICE $£ 2.00 ~$

\hline

 Silicon Geneal Purdose PNP Transistors TO－5 Case Lock it lea0s cooed CV9507 sumilal $2 N 2905 A 10$ BF 130 VC 60 IC 600 mA Min He 50 ALL NEW PaICE：

50 \& of \& 100 of \& 500 oth \& 1000 of

\hline
\end{tabular}

ع1FREE ${ }_{\text {PAK }}$

Gel＇a EI FREE PACK Oiders over £． 10 excluding VaI． Choose E！Pach free（ 0 ： 2×50 ol）add it to your oider and save even more money
The other anly acolies to this sowertsemeent always been BI．PAK＇s GUARANTEE and it still is All these Sate items are in stock，in quantity and we will desparch the same day as you order is recelved

Silicon NPN＇L＇TypeTransitors TO－92 Plaslic centre collector Like BC182L－183L－184L
VCBO 45 VCEO 30 ICC200mA He $100-400$
ALL perfect devices－uncoded OROER AS SX183 50 of 100 of 500 on 1000 of $\begin{array}{llll}£ 1.50 & £ 2.50 & £ 10.00 \quad £ 17.00\end{array}$ PNP SILICON TRANSISTORS： Similar 27×500－2TK214－E－Line VCEO 40 VCBO 35 kC 300 mA Het $50-400$ Brand New－Uncoded－Pefect Devices 50 ofl 100 otl 500 ofl 1000 of

BI－PAK＇s OPTO BARGAIN OF TME YEARI

 －devices to onclute LED＇s Large and Smalli in iedo．Green，velow and Cliear． 7 Segment Disphars both Common Cathode and Common Anode PLUS bubble type displays－lite OL－33．Photo Transistors－similar to OCP 71 Photo Detectors－like MEL11－12．This whole pach of 25玉4－00 ANO we quarantee your money bach if you are not Order No．SXE 7.

E wett（RMS）Audlo Amp

High Quality audio amplifier Module．Ioeal for use record olayers，lape recorders，stereo amps and casselte plavers，elc full dala and bach－ud diaglams
with each module with each module

Specilication
－Power Output 5 watts RMS－Land Impedance 8.16 ohms－Prequency response $5 \mathrm{OHz}_{2}$ to $25 \mathrm{KHz}_{2}-300$－ Senstivily 70 mv for lull output ingut Impedance 50 kohms －Size $85 \times 64 \times 30 \mathrm{~mm}$－Total Mar monk
frow could not

BI－PAK＇E COMPLETELY NEW GATALOQUE

Completely re designed futul the type of components you require，plus some wery interesting ones you will soon be using and of course，the largest range of semiconductors ton the Amateur and Prolessional you could hope to find．

There are no wasted pages of useless information so olten included in Catalogues published nowadars Just solid facts i．e．price，description and Individual teatures of what we have araliable．But remember．Bi－Pak＇s polic has always been to sell quality components at compentive prices and TMAT W STLL 00.
B1．PAK＇S COMPLETELY MEW CATALOGUE is now a valable to you You will de amared how much you can save when you shop lor Electionic Components with a 8－Pall Catalogue Have one by you all the tume－H1 pays to buy 81．PAK

To receive your copy send 750 plus 250 pdp．

The Third and Fourth Hand．．．

Dut have never aot alway need This helptul unil with Rod mounted horizontally on Heavy Base Crocodile clips attached to rod ends Six ball \＆socket points give inlinte vatiation and postions inrough 360° also avallable atlached to Roc a $2^{1 / 2}$ diam magnifier giving $25 \times$ magnification Melping hand unt avalable with or withoul magnifier Our Price with magnitier as illustrated OROER NO T4O2 £5．50
Without magnitier ORDER NO P400 £4．75

Mw398 NI－CAD CMARGER

Universal N －Cad battery charger All plastic
case with lift up lio．Charge／Test switen LED
indicators al each of the five charging poinis
 －

POWER SUPPLY OUR PRICE £3．25

 Power supoly fits directly into 13 amp socke Fused for sately Polanity reversing socke Voltage switch．Lead with mulli plug Indut－240V AC 50H2 Outpul－3 is 6 $75.9 \& 12 \mathrm{VOC}$ Ratting．-300 ma MW8B8 BIt MICROPROCESSOR Nationa！INSB080AN 40 Pin DIL N Chanrel Silicon GATE MOS TECHNOLOGY As used in Nationals N8080 Micro Computer Family Insiruction Cycle Time z US Supplied with lunctional Block Diagram Block Diagram BRAND NEW－
NOT seconds or reclams Not seconds or reclams ］，
100% perlect 0 inipipil Normal Sell dice 5450 Sx080 DIIy Our Bl－pak Special Price E2． 10 SO MUARY－LIMITED STOCKS

40 Pin IC Sockel 10 tir Sx8080 Oner price

 ORDER NO 1609311Send your ciders to Dent HE5 BL－PAK PO BOX 6 WARE HERTS
SHOP AT 3 BALDOCK ST，WARE，HERTS
TERMS cash with order．SAME DAY OESPATCH，ACCESS
BARCLAYCARD ALSO ACCEPIEO TEL（OS20）J182．GIRO 398% AOO 15\％vat and 75p PER ORDER PUSTACE AND PACKING

Use your creinn card．Ring us on Ware 3182 NOW and get yow order even laster．Coods normally sent 2nd Class Mal．
Remember you must add VAT at 15% to your order Tout Postage add $75 p$ per Total arder．

Digital Thermometer
 Owen Bishop

A neat, compact project for indoor or outdoor use.

THIS PROJECT was designed as a battery-powered, digital thermometer giving a readout on a seven-segment LED display. Its neat appearance makes it equally at home in the study or the living-room, or it can be used for remote temperature sensing.

The sensor is an IC which generates a current proportional to the temperature of its surroundings. One useful feature of this IC is that the current is completely unaffected by the length of the wire connecting the sensor to the rest of the circuit. Changes in resistance of the connecting wire have no effect either. The project, therefore, is suitable for remote sensing of temperature. The sensor could easily be situated in the greenhouse, for example, allowing you to monitor the temperature from indoors and warning of the risk of overheating in summer, or of frost in winter.

Although weather forecasts, nowadays, are given in degrees Celsius (some people wrongly persist in calling it Centigrade - why not pay our respects to Celsius, the man who invented this scale?), many people still think in terms of degrees Fahrenheit, so this circuit can be built to measure temperature in either scale.

The Circuit

IC1 is a constant-current generator, the current being determined by the value of R1 and by the ambient temperature. The current flowing to R2 is given by:

$$
I=227 \times T / R,
$$

where I is in microamperes, R is the value of R1 in ohms, and T is the absolute temperature, in Kelvin. Absolute Zero, on the Kelvin scale is approximately equal to $-273^{\circ} \mathrm{C}$ or $-459^{\circ} \mathrm{F}$. A room temperature of $20^{\circ} \mathrm{C}$ is, therefore, $273+20=293 \mathrm{~K}$. Thus at room temperature, $1=227 x$ $293 / 220=302 \mathrm{uA}$. As this current flows through R2 it generates a potential of 3 VO 2 across it. Note that if IC1 is to be used as a remote sensor, R1 must be mounted as close to it as possible; the leads to $V+$ and V - may be as long as necessary. Current flowing
from V - is constant and all of it flows to R2. Hence the length of the lead and its resistance do not affect the voltage across R2.

IC2 is a CMOS phase-locked-loop IC, which is used because of the VCO it contains (among other functions). With a fixed capacitance across pins 6 and 7. the rate of oscillation at any given voltage is determined by the resistance at pin 11. The resistor at pin 12 determines the minimum (or offset) frequency. With no resistor at pin 12 , the rate is 0 Hz at OV . We choose minimum (offset) and maximum frequencies which correspond to the correct temperatures when the 'hundreds' digit is omitted. The scale maximum is, in practice, only 799 $\left(99^{\circ} \mathrm{F}\right.$) for Fahrenheit.

Timing for the system is under the control of IC 3 , a CMOS timer wired as an astable, operating at 0.5 Hz . The dual monostable (IC4) is wired to generate a short pulse at the beginning and end of each pulse from IC3. The count is 'enabled' as the output of IC 3 goes high and the counter is reset to zero, by the pulse from IC4a. When the high pulse from IC3 ends, the counter is disabled; simultaneously, the low-going pulse from IC 4 b to the drivers (ICs 6 and 7) stores the resulting count, which is then decoded and displayed.

IC5 contains two decade counters; the units counter (IC5b) is enabled whenever input ' $E N$ ' (pin 2) is taken
low. Its ' 8 ' output (pin 6) goes low whenever the count changes from 9 back to O ; this low-going edge triggers the other counter (IC5a) which is incremented and counts 'tens'. Enabling or disabling IC5 automatically has the same effect on IC5a. Note that the input to IC5b is the clock input (pin 1), which triggers a count on a positive-going edge; the input to IC5a is at its 'enable' input (pin 10) which is negativetriggered; its clock input (pin 9) is wired to $\mathrm{O} V$ to hold it permanently low.

To ensure that all the digits are equally bright, there should be a resistor in each lead between ICs 6 and 7 and the displays. We have economised by using only a single resistor (R9) in the common cathode line. When the displayed value alters, there is a small change in brightness because the number of illuminated segments has changed. In practice this is not worth bothering about, since the display does not change often.

The regulator circuit is fairly conventional. A constant voltage of 2 V 7 is maintained at the junction of Q_{2} and D 1 ; with the forward voltage drop across the base-emitter junction of Q2, the voltage at R12/R13 must be $2.7+$ $0.6=3$ V3. Since R12/R13 is a potential divider across the output, the circuit is only stable when the output voltage is 4 V 5 , giving 3 V 3 at the base of Q2. As the supply voltage or load varies, the negative feedback through

\triangle Figure 1. The complete Digital Thermometer circuit. Although it uses quite a few chips, all except the displays are mounted on one board. The sensor IC may be taken off-board for remote sensing of temperature.

Figure 2. Cut-away view of internal layout, showing the PCB mounted upside down.

Q2 (via R12, 13) will either turn Q1 on harder or turn it off slightly, to maintain an output of 4 V 5 . This circuit gives good regulation over the voltage range to be expected from batteries, as they gradually discharge.

Construction

The thermometer circuit is built on a single PCB mounted upside down in the top section of the case. The case we used has a built-in battery compartment, holding the four HP7 cells which provide the power supply of 6 V . The circuit will work directly from the batteries, but it is affected by falling voltage, as the cells age, as mentioned For this reason the simple voltage regulator is included, though it is not essential if you are willing to renew the cells fairly frequently. The regulator is mounted at the rear of the PCB, away from the sensor. It supplies only the sensor and oscillator, the remainder of the circuit being supplied directly from the battery.

The switch is a push-on/push-oft type, mounted on the bottom of the case, near the front; It also acts as a tilting leg, giving a better view of the display. To switch the thermometer on or off, simply place your hand on top of the case and press down!

Digital Thermometer

SEMICONDUCTORS

MISCELLANEOUS
 DISP1, DISP2.

7-segment LED display (2 off)
SW1 . Push-to-make/push-to-break switch, SPST

Battery instrument case (Vero type 2) 2.5 mm matrix stripboard, $127 \mathrm{~mm} \times 63 \mathrm{~mm}$ main board, $63 \mathrm{~mm} \times 25 \mathrm{~mm}$ for regulator, $55 \mathrm{~mm} \times 28 \mathrm{~mm}(20$ strips $\times 11$ holes) for displays; 1.0 mm terminal pins, (7 off); Small angle bracket, 4BA bolt and nut set (2 off); Selftapping screws for 2 mm holes (4 off).

BUYLINES
page 68

Figure 3. The component layout. Be careful to make the correct connections between the display board (right) and the main board.

It is more convenient if you leave mounting the board and wiring the switch until the thermometer board is complete and working. We strongly advise that sockets are used for the ICs, as this allows them to be removed, if necessary, when attempting to locate faults. Soldercon pins were used to mount IC1 and proved perfectly satisfactory. Since the circuit uses CMOS ICs, take the usual precautions to avoid static charges and wire up all the connections to each IC before inserting it

Begin by building the regulator board; this is very simple so there should be no problems. When the regulator is connected to the 6 V supply, its output voltage should be about 4 V5. Continue with IC1 and its resistors (R1, R2); use a heat sink when soldering this IC to the board. Test this section by switching on the power and measuring the voltage across R2. This should be about 3 V , whether you are using the 4V5 supply or the direct 6 V supply. Hold the IC between your finger-tips for a minute or two (or hold a warm soldering iron near it, but don't actually touch it); the voltage should rise. When the heat source is removed, the voltage should fall back to its original level.

Next, wire up IC3 (the CMOS timer), together with R5, R6, RV3, C2 and C3. To test this section you will need to take out IC1. The output of IC3 (pin 3) should rise and fall at approximately 0.5 Hz (2 seconds between successive pulses). Run it for one minute, counting the pulses. Use a 'scope', if you have one; if not, connect a high impedance earphone or audio probe between pin 3 and O V; you should hear a 'click' each time the edge of a pulse rises or falls. Adjust RV5 for 30 pulses per minute (60 clicks per minute); the pulses should have a 50% mark-space ratio ie, 1 Sec high, 1 Sec low.

Now you are ready to fit IC2, the voltage-controlled oscillator (VCO). At this stage, you need to decide whether
the thermometer is to read degrees Fahrenheit or Celsius, and to choose the appropriate values for C1, R3 and R4 Those given in the Parts List are for degrees Fahrenheit; for Celsius, change these to $100 \mathrm{n}, 10 \mathrm{k}$ and 56 k , respectively.

Next, mount PR1 and PR2 and, with IC 1 still out of the circuit and IC3 removed, look at pin 4 of IC2. A 'scope is preferable but, if you do not have one, the frequencies can be adjusted by matching them against audio tones from an accurately calibrated audio oscillator or, if you have a musical ear, from a piano or organ, using a high impedance earphone or probe, as before.

The 'offset' frequency of IC2, pin 4 should be 241 Hz (about B below Middle C) for the Fahrenheit scale or 127 Hz (C below Middle C) for reading Celsius; adjust PR2 for the correct frequency (PR1 is not adjusted at this stage). If you find it impossible to obtain the frequency, replace R4 with a higher or lower value, to reduce or increase the frequency accordingly.

Before going on to wire up the counting and display circuits we mus put together the pulse generators of IC4. The output of the leading-edge pulse generator (pin 6) is normally low (0 V), with a very brief (250 nS) high -going pulse as the output from IC3 goes low. If you have doubts that IC4 is working, connect a 100 n capacitor in parallel with C4 or C5, to stretch the pulses.

Now, replace all the ICs in their sockets and mount ICs 5, 6 and 7. The two LED digits are mounted on a small, separate PCB, plugged in to Soldercon pins. Run wires from the display board to the pins beside ICs 6 and 7, being careful to follow the wiring diagram (a goes to a, b^{\prime} goes to b^{\prime} and so on). Remember that the main board will be mounted upside down in the top of the case; the displays must be mounted with their upper edges nearest the main board. Securing the display board is

How It Works
The sensor produces a voltage which is proportional to its temperature and this is fed to a voltage controlled oscillator; the frequency of the VCO is therefore, proportional to temperature. When switched on, the counter is reset to zero, then allowed to count for a fixed length of time (approximately 1 second). At $0^{\circ} \mathrm{C}$ it counts to 400 , and at $40^{\circ} \mathrm{C}$ it counts to 440 - or, if the device has been built to operate on the Fahrenheit scale, it counts to 732 at $32^{\circ} \mathrm{F}$ and to 804 at $104^{\circ} \mathrm{F}$. The counter has only two stages, for units and tens; hundreds are ignored, so the counter actually shows ' 00^{\prime} at $0^{\circ} \mathrm{C}$ and ' 40^{\prime} at $40^{\circ} \mathrm{C}$ (or ' 32^{\prime} at $32^{\circ} \mathrm{F}$ and ' 04^{\prime} at $104^{\circ} \mathrm{F}$). The astable multivibrator is a slow oscillator which controls the timing of events in the system. It turns the counter on (enables it) for one second in every two. It is also connected to two pulse generators. One gives a rising pulse (high) to reset the counter, the other gives a falling pulse (low) to store the result, as counting finishes.

easy if you use the bolts on the LED bezel; if your budget can't afford these, you will have to mount the display board to the main board using small L-shaped angle brackets.

Assuming that all connections have been correctly made, and the ICs plugged in the display should show ' 00^{\prime} when first switched on. About one second later it should change to a number between ' 00 ' and ' 99 '. It will then remain at that number, or change by one or two as the temperature changes. To begin with, you will probably obtain a nonsensical reading, but don't panic - here are some things which may be wrong:

1) Both displays blank - check the power supply and the display connections.
2) Some segments never light -
faulty wiring between the display and IC6 or IC7.
3) Peculiar symbols - wires between IC6 and 7 and the display are crossed or shorted; you may have wired in the
decimal point instead of one of the segments.
4) Certain figures never displayed but a blank occasionally appears on one (possibly both) displays - wires crossed between IC5 and ICs 6-7. When the display is working properly, all that remains is to set the device to indicate the correct temperature. At average room temperature, the frequency from IC2 should be about 768 Hz (G in the octave above Middle C) for the Fahrenheit scale or 420 Hz (Ab above Middle C) for Celsius. Adjust PR1 to obtain this, but on no account re-adjust PR2. It is possible, though unlikely, that you may need to replace R3 at this stage, if the correct frequency cannot be obtained. The display should now be within range of the correct temperature, but could be as much as 30 or 40 degrees out, in either direction. Now adjust RV1 to bring the display reading to its correct value, using an ordinary room thermometer as reference. Both
thermometers will take several minutes to acquire the temperature of their surroundings - do not attempt this calibration until both have been at steady temperature for at least 10 minutes.

Before mounting the boards, drill the case to take the switch. Also drill plenty of ventilation holes to allow air to circulate to the sensor or, for greater accuracy and rapid response, drill a hole large enough to accept the package of the sensor IC and attach some leads so that it protrudes slightly out of the hole, into the air outside.

Secure the main board in the top half of the case, using self-tapping screws or 'Sticky Fixers'. Cut a rectangular opening in the front panel, level with the displays and slip the panel into its slots. If you're using the display bezel, drill two holes to take the mounting bolts. Before closing the case, read the display to check that PR1 and PR2 have not accidentally been altered. The HE Digital Thermometer is then completel

T.V. GAME CARTRIDGES

We specialise in the whole range of T.V. games and sell cartridges for the following games:
ATARI MATTEL ACETAONIC \star PHILIPS $\#$ DATABASE $\#$ ROWTRON $\#$ NTERTON \star TELENG let us know if you own any of these games and we will let you have detaits of the range of
Altention INTERTON \& ACE TRONIC owners we have over 75 assorted used cartridges in stock all We elso tiave number of secondhand games and cartridges.

ELECTRONIC CHESS

ELECTRONIC CHESS
为
GRADUATE CHESS

FIDELITY MINI-SENSORY CHESS COMPUTER

The very irst chess computer of its price 10 offer a portable computer with integral sensory board.
Battery 6.8 firs) or mains operated This is a modular game and additional plug-in modules are planned for 1982 for advanced chess, popular openings. grearest master games, draughts and

MINI-SENSORY COMPUTER WITH STANDARD CHESS MODULE WAS $£ 54.50$ NOW
249.95 INC

Stice Shop tee ane of the country's looding spocidistr in Chess Computers endnow stoch arengo ofmore
than 20 Chess Computers. including Chsilfenger $7110 /$ voice. Sensory ${ }^{\text {s end Sensary Voice Diplo }}$

TELLIVISION
the ultimate t.v. game OUR PRICE £156.48

6 NEW CARTRIDGES JUST RELEASEO ASTROSMASH * SNAFU *BOWLING SPACE ARMADA * BOXING TRIPLE ACTION different cartidges all at our special offer price of $£ 1795$. This game uses 16 -bit microprocessor giving 16 colours and itr ee.part harmony sound The picture quality is incre edible convert the Mattel into a full home computer with 16K AAM which will be inlly Spring 1982 to programmable in Microsoft Basic. Other accessor iss will be added later in the eapanabie and price of the Intellivision + tree soccer cartridge is $£ 229.95$ but our special offer price is $\delta 179.95$ nc. VAt savivo
MATTEL OWMERS CLUB - Why not foin our Mattel Owners Club and recive our regutar newsletters containing details of all the tatest cartridge re leases. Telephone us FREE 16 PAGE CARTRIDGE CATALOGUE - If you are interested in owning a Mattel, we now have available a 16 page catalogue describing the latest six cartridges to be released, as wett as a new Mattel colour teafter with brief descriptions of all 25 cartridges. Telephone us for further details
 EARTH NINVADEERS
 p.r.p. 226.95 NOW $£ 18.95$ me. vat

SPACE INVADERS

Based on one of the most popular arcade games. Space invadertu packs in lats of
action with muthi-shaped, brilliant LED vessels. Including attack ships, bombs. defenders, missite rockets and a beam force cannon, plus exciting electronic sound you manoourre the missile rockets - avoiding alien bombs - and destrov the automatic dighal scoting for ages 6 to adull
R.R.p. £24.95 NOW £16.95

NOW £16.95 inc. VAT

Clubbing Together

Dear Sir,
I became interested in electronics a few vears ago, just before your first issue came out, so I was pleased to see it appear on the shelves. Since then I have come a long way, with your help. I have every copy from Issue one on my bookshelf, although I must admit that some of the earlier ones are becoming a bit tatty, now. I also attended night school for two years and, between night school and your magazine, I have been able to build a lot of my own test equipment.

I sometimes pick out a couple of old issues and read through them. In September 1980 you printed a letter from a Mr. George Edwards, who asked about clubs. You replied that you would mention any clubs that wrote to you but, as you have not printed any lapart from the one mentioned in the reply), I take it that either no other clubs exist or that they are very secretive about their existence.

There must be thousands of people who're interested in electronics and who are pursuing the subject on their own, like myself. I would be very interested in contacting anyone in my area so that we can share ideas and help one another. Perhaps people interested in forming a club could write to you.
Then others in the area, whether they live in London or Edinburgh, would be able to contact them. Electronics is a fast-growing industry, but the hobbyist seems to be left out, to fend for himself.

I think the potential for this is endless - who knows what might be developed through the sharing of equipment and ideas? Perhaps you could spare a page of HE to be used for Club News and similar ideas?

Just one other thing - - what
happened to 'Short Circuits'? / used to enjoy experimenting with them.
R. Mitchell,

Portslade,
Sussex.

Mr. Mitchell is apparently correct in his assumption that no other electronics clubs exist - certainly, none have contacted us. The club mentioned in the September 1980 issue is still going strong, however. They are the British Amateur Electronics Club and interested readers should contact the Chairman, Mr. Cyril Bogod, at the BAEC.
'Dickens', 26 Forrest Road, Penarth, South Glamorgan. Tel: 0222707813. The BAEC is a national organisation and they should be able to put you in touch with other electronics hobbyists in your area.

We will shortly be re-introducing a new series of circuits for experimenters under the title "Breadboards". Look out for them in the June issue!

Reactions Tested

Dear Sir,
I have just completed the Reaction Tester (September '81 issue) and it doesn't work. The bottom LED lights up when switched on but pressing the "go' button has no effect whatsoever. I have checked everything I can think of, including the PCB and the two ICs.

Maplin recommended a C106 thyristor instead of the C103 - could they have different gate voltages and therefore be the cause? The 40171 bought has CD4017 printed on it could this be the fault?

The only other thing / can think of is that there is a mistake in the instructions. If there is, could you please advise me?
A. Bricknell,

Leigh-on-Sea,
Essex.
PS Keep up the good mag.
The 'CD' is simply the maker's code name for the IC - the type or 'generic' as it is sometimes called, is 4017; that's what counts. Since it appears that either the 555 IC is not oscillating, or the 4017 is not counting, indicated by the fact that is 'stuck' in reset condition (zero count), it's unlikely that the thyristor is at fault (the gate voltages are the same, anyway).

The circuit has no errors, other than that the IC types are interchanged (which should be immediately obvious), and the PCB layout seems correct. Having eliminated all those possibilities, we can only suggest that you check, very carefully, all the circuitry associated with the 555 astable and the input to pin 14 of the 4017.

Mast Head Amplification

Dear Sir,
I purchased your magazine this month for the first time and I find it excellent, but for one thing; no information on where to buy the kit for the TV Mast Head Amplifier (February '82 issue).
Who and where are RS Components, please?
Yours,
(signature indecipherable)
South Wigston
We're not even sure about the address, but hopefully the writer will recognise his own letterl Our misplaced comments about RS Components continue to haunt us - RS Components will accept orders only from "Full time industrial, educational and trade users..", however the mail order firm Crewe Allen, of 51 Scrutton Street, London EC2A 4PJ (Tel: 017394846) can supply components from the RS catalogue.

The TV Mast Head Amplifier is not available as a kit, as such, but Magenta

Electronics can supply all of the parts, including the double-sided PCB. Would Oliver Davis of Co. Donegal, Ireland and G. Inchbald in Manchester please copyl

Delay Time

Dear Sir,
I have been trying, without success, to obtain a circuit diagram for a solid state echo unit using Bucket Brigade Delay technology.

Can you suggest where I might obtain such a circuit?
D. Vanderwolf

Torpoint,
Cornwall.
This is one letter we are happy to answer without delay. Look no further, Mr . Vanderwolf! The circuit you seek is on page 41 - the HE Echo-Reverb project.

Overseas Mail

Dear Editor,

I have read with great interest your magazine, Hobby Electronics.
lam particularly interested in books about trouble-shooting in electronics these are particularly lacking on the $H E$ Bookshelf. I will be very glad if you could suggest any suitable books. I am very interested in regulators, audio, radio and test equipment.
R. Kimura,

Swaziland,
Southern Africa.
Trouble-shooting (fault-finding) is a very interesting topic - one that we will be giving detailed attention to, in the near future. However, Mr. Kimura and other interested readers might also like to read Ian Sinclair's book, "Electronics Fault Diagnosis", published by Keith Dickson (Publishing) Ltd., 17, Hendon Lane, London N3 1RT.

Satisfaction Guaranteed.

Dear Sir,
lown a stereo radio/cassette plaver which is still under guarantee and it has a very annoying defect; when recording from FM, especially from stereo FM, the motor causes definite distortion to the recording.

I have isolated the motor as the source of the interference by playing a tape while in the FM radio mode. While the motor was running the interference could be heard distinctly and as soon as it was stopped, the interference stopped. Obviously this should not happen, as it means I cannot get satisfactory recordings from the radio and this defeats my purpose in buying the machine. I wondered if there is anything / could do to remedy the situation or whether I should return it
under guarantee. I would be very grateful if you could give me your opinion.
E. Weeks,

Godalming,
Surrey.
We do not, normally, advise on anything to do with commercial equipment but this case is so clear that we decided to make an exception - also, it is an excellent example of fault-finding technique! Our opinion is: do not even think about. fiddling with it - return it at once.

Specifically Speaking

Dear Sir,
Recently I have been thinking of building your power amplifier from the March 1980 issue of Hobby Electronics, the System 5080A. The amplifier seems excellent but you did not supply the specifications - power output, distortion, frequency response, etc. I should be grateful to receive a copy of the specifications and, in future, I suggest that you supply them with the projects, as I am sure many people would be interested.
Yours,
P. Upton,

Salisbury,
Zimbabwe.
To the best of our knowledge, a set of specification figures for the 5080A was never produced - or if they were, they are now lost! However, the following information can be extracted from the text: the power output is 25 W per channel; distortion is "so low as to be inaudible" and the frequency response is "well above and below the human hearing range". As you say, it seems pretty good. Nevertheless, your suggestion is a good one, and in future we'll certainly publish the full specification figures for any quality audio project.

Famous Names

Dear Sir
The article Famous Names (HE, December 1981) paying tribute to the visionary Campbell-Swinton, contained a serious error. We read: "The unanimous rejection of Baird's 30-line system in favour of Schoenberg's 405-line system, in 1936, proved how right Campbell-Swinton was. "In fact, no such choice was ever made.

The Baird 30 -line system was started as early as 1929 and, by 1930, had become fairly refined. In 1931 the BBC took over all responsibility for the daily broadcasts as a light entertainment programme on the medium waveband receivable nationwide. This left Baird with time to develop his 120 and 180 line systems, which he broadcast on the seven meter band. Later, he developed a 240-line system.

So the contest of the two rival systems in 1936 (transmitted on alternate weeks) was between the Schoenberg 405-line system and the

Baird 240-line system. The BBC
(30-line) transmissions had actually ceased the previous year. The number 240 has been chosen, not by Baird directly, but by the Postmaster General's Television Committee, under the chairmanship of Lord Selsdon, which commenced sitting in May 1934 and gave its decision on recommended standards in February 1935. The choice may well have been influenced by the choice of 240 lines by RCA, in the United States of America, which was trying to develop Zworykin's Iconoscope camera, without much success.
J. L. Baird was not only the first person to demonstrate true television (ie, moving half-tone portraits of live subjects) anywhere in the world, but one of the quite small number of pioneers in the field of high-definition television.
D.B. Pitt,

Chairman,
Narrow Bandwidth Tele Vision Association, Nottingham.
lan Sinclair, the author of the Famous Names series, replies:
I regret that my efforts to compress a lot of information into a short phrase was the cause of a serious error of fact. As you rightly point out, the old experimental 30-line system had ceased by the time the dual broadcasts started. The Baird system had moved to higher definition and also to a more electronic system. Whether this would have been done but for the determined work of Schoenberg, Blumlien and McGee, on the completely electronic system, is a moot point.

At one time, in fact, the only way in which live TV could be transmitted on the Baird high-resolution system was by scanning the light source and, even by the time of the experimental broadcast, the Baird system could not cope well with live working. For that reason, he developed a fast film processor and it was usual to film each programme, then transmit from a flying-spot scanner a few minutes after the end of the show It was extremely dangerous to stand in the corridor after a concert because the whole orchestra, brandishing instruments, would come running from the studio to the processing rooms to see themselves on film as the programme was being transmitted. Some of this film was preserved, but the short processing cycle made most of it useless after a few months.

Thank you for your comments. This series has aroused a lot of interest and some most interesting personal recollections.

We certainly agree and would be most interested to hear from any other readers with personal knowledge of the pioneers or recollections of the early days of electronics.

Kit Fever

Dear Sir,
Please could you tell me if you can do a kit of the Bicycle Speedometer (March

81 issue)? I intend to build this as part of my course at Technical College.
A.E. Davis,

Weston-Super-Mare,
Avon.
M.A. Elatta, of Portsmouth and P. Longman, from Hull also wrote in with similar requests.

It seems to be a common misunderstanding, among some of our readers, that we supply kits for our projects; we don't. Kits are available for some projects, true, but not from us. If you have a copy of the issue in which the project appears, the Buylines make it clear whether or not there is a kit and, if so, who is supplying it and the cost.

Dear Sir,
I have been buying Hobby Electronics since the first issue and / am generally very impressed.

I was, therefore, annoyed to find that two projects in the December 1981 issue (Drum Synthesiser and Guitar Graphic Equaliser) had no PCB foil patterns printed in the magazine. They do seem to be available, but only as part of a full kit.

I stopped buying another electronics magazine a few years ago because it was becoming a 'kit catalogue' and I hope Hobby Electronics is not on the same downhill path.
Yours sincerely,
D. Squibb,

Weymouth, Dorset.

The issue of the PCBs for these projects has been dealt with in previous issues, but to clear up this matter once and for all:

We try to present, in Hobby Electronics, projects that are useful, interesting or instructive. To achieve this, we accept material from a number of sources; many of our contributors are private individuals, but some are small companies, designing and making up circuits for industry and private sale, as well as for magazines such as ours. In the past, several of these contributors have wished to retain the copyright acknowledgement to the relevant company. We also attempt to persuade the kit supplier to make PCBs - and any other special components - available separately.

While we would prefer no
restrictions whatsoever attached to our projects, the continual and difficult search for new, innovative ideas the kit supplier to make PCBs - and any other special components available separately.

While we would prefer no restrictions whatsoever attached to our projects, the continual and difficult search for new, innovative projects demands that we accept such projects whenever they become available, from whatever source. This new
arrangement, while less than ideal, at least permits the individual at home to make a project from the PCB upwards, as many of our readers prefer.

We hope that this long-winded explanation closes the subject!

WHAT'S ON NEXT? POPULAR COMPUTING

Next month we begin a brand new computer hardware project, the HE MicroTrainer. Based on the 1802 microprocessor, it is simple to construct and easy to operate, the perfect machine to introduce the 'nuts and bolts' of microcomputer technology. The MicroTrainer has been designed specifically for Hobby Electronics' readers, and offers a number of distinct advantages over other development systems:

* Low cost.
* Modulated video output for direct input to a domestic television receiver, permitting more information to be displayed than is possible with LED readouts. The 12 line $\times 12$ character display shows the complete set of 1802 registers or 32 bytes of program memory.
* Displays the current instruction, in mnemonic form.
* Unique single-step operation from RAM or ROM based software.
* Cassette tape storage of user programs.
* Twenty command functions, eg RUN, STEP, STOP, RESET, INTERRUPT, INSERT, DELETE, SAVE, LOAD,
* Twenty key keypad for direct input of Hexadecimal data or
command functions.
* Includes 1.5 KBytes of RAM for user programs.
* Optional 24 line I/O port
* High quality, double-sided through-hole-plated printed circuit board simplifies construction.

The HE MicroTrainer.

PROJECTS FOR EVERYONE

* Light-Operated Power Switch
* Auto-Wah Effect
* Greenhouse Monitor
* Telephone Timer
* Power Supply Design Project

PLUS
A New Feature Series
The Electronic Revolution
The development of electricity and electronics, from Vota to Video.

AND
All our regular stars.
MONITOR
POINTS OF VIEW
INTO RADIO CLEVER DICK

The June issue of Hobby Electronics will be in your newsagents on May 14th
DON'T MISS OUT PLACE YOUR ORDER NOW
Simply fill out the coupon and hand it to your
local newsagent so that your copy will be reserved for you.

POWER AMPS

PRE-AMP

 MODULES> SEND COUPON (NO STAMP NECESSARY) FOR YOUR FREF
> I.L.P. CATALOCUE AND OPEN UP TOA
> NEW WORLD OF QUALITY \& VALUE

It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

(

FREEPOST 6

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP
Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780
FREEPOST
Mark your envelope clearly FREEPOST 6 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.
I.L.P. are the world's largest designers and manufacturers of hi-fi audio modules?
I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal slability, mechanical protection and durability?
There are TWENTY power amplifiers from 15 to 240 watts RMS including the very latest super-quality Mosfets to choose from?
TWENTY pre-amp modules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal; Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee?

```
TO: I.L.P. ELECTRONICS LTD.
PLEASE SEND ME I.L.P. CATALOGUE,
POST PAID BY RETURN
    I HAVE/HAVE NOT PREVIOUSLY
    BUILT WITHI.L.P. MODULES


\title{
The ZX81 is a remarkable machine for many reasons - not the least of which is its price.
}

\author{
Phil Cohen
}
I.REMEMBER from \(m y\) adolescence ( 1 'm not as old as I feel) the first of the Sinclair devices to hit the British market. These included a matchbox sized radio, a calculator (which hit before the Japanese ones), a digital watch kit at a fraction of the cost of competitive ones, and so on.

Although these may raise a yawn nowadays, at the time they were at the forefront of the market. Imagine the reaction of the public to the first digita! watch, the first calculator - real 'Boys' OwnPaper' stuff.

Sinclair entered the computer market with a little development kit based on the SC/MP processor, then moved very quickly up-market with the \(2 \times 80\) (the forerunner of the ZX 81 ).

I remember my reaction on first seeing the \(2 \times 80\) advertised - 1 looked at the date of the magazine to see whether
it was an April edition. I really believed that it was a joke! I didn't think anyone could put so much into so small a package at so low a price.

The ZX80 had a couple of dozen chips and primitive BASIC capabilities. The ZX81 has as powerful a BASIC as many other machines on the market, and has five ICs (ignoring the three-terminal regulator).

\section*{Amazing!}

To look at, the \(2 \times 81\) seems to be a mock-up of itself - it weighs about as much as a paperback book, it has no moving parts, it has no trailing wires, its case is plastic.

The keyboard looks as if it has simply been printed onto the front of the case. In fact, it's 'elastometric', made up of a conductive rubber sheet over a set of printed circuit contacts. When you press
the sheet down, it makes contact with the circuit board. It's just difficult to believe that it is what it's claimed to be.

\section*{Hardware}

Input and output for the \(\mathrm{ZX81}\) could not be simpler - literally. Output is direct to a TV set (not a monitor), and there are a couple of sockets for connection of a cassette recorder for program and data storage.

The power for the \(2 \times 81\) comes from 9 V DC and that's it! Unless you want to add peripherals.

There is an exposed section of edge connector pads at the rear of the machine designed for the addition of the two peripherals so far released. One is a RAM pack which brings the total memory from its existing, rather limited, 1 K up to a more sensible 16 K . The other peripheral available is a printer. It features full alphanumerics plus graphics and prints 32 characters to the line, nine lines every 25 mm .

The processor used in the \(2 \times 81\) is a version of the ubiquitous \(2-80\). The keyboard is laid out in the normal typewriter 'OWERTY' manner although much smaller than a typewriter

\title{




}
keyboard. One user I heard from the's ten) said it was just the right size.

I, unfortunately, have normal sized adult hands, so it's a bit small for me. In fact, that's one of the few criticisms I have of the ZX81 - you can't type on it, you have to use it like a calculator.

In fact, there's no 'feedback' to tell you that you've pressed a key - so you have to keep moving your eyes from the screen to the keyboard and back again. After a while (particularly during program entry) this gets very tedious indeed, but I suppose that most of the buyers (myself included, if I'd bought one instead of being loaned one for review) would rather have the cash than a better keyboard. It's very tempting for reviewers to catalogue the facilities that are missing from a device while at the same time forgetting that if they had been included, the buyer would inevitably have to pay. The incredibly low price of the \(2 \times 81\) is one of its main attractions.

The other difference between ZX81 keyboard and those normally found on
computers is the fact that the key function don't stop at the letters of the alphabet.

\section*{Statement Entry}

This 'doubling up' of function is due to the extremely clever way in which Sinclair have arranged their program entry.

Say you want to enter the line " 10 PRINT \(A^{\prime \prime}\). In most computers, you would press the ' 1 ' key, then the ' 0 ' key. . .through to the ' \(A\) ' key at the end of the line. On the \(2 \times 81\) you start with the line number, then simply press the ' \(P\) ' key. Up on the screen comes " 10 PRINT"'. There's no need to type the rest of the word in. Then you press the ' \(A\) ' key (no need for a space - the computer supplies that).

The ZX81 BASIC is arranged so that the first word on each line is a keyword (like PRINT, FOR etc). So when you press the ' \(P\) ' key, the machine knows that you mean PRINT, because the next entry must be a keyword. On the keyboard, the word PRINT appears over the 'P' key.


A \(\mathbf{Z X 8 1}\) disassembled.

The ZX81's multi-function keyboard supports a very large number of operations. Graphics characters are called up by the GRAPHICS key (SHIFT/9); alternate characters \((+,=\), etc) by holding down the SHIFT key; functions (AND, etc) or any of the words printed beneath the keys are called by FUNCTION
(SHIFT/NEWLINE) while program keywords are entered automatically after entering a program line number. If all this sounds confusing - don't worry. The keys are all colour-coded (eg, SHIFT and SHIFTed keys are red) and the input mode is indicated by the cursor character.

In fact, nearly all of the keys have a keyword associated with them. One consequence of using this system is that the old 'LET' statement (introduced in the very first version of BASIC, nearly 20 years ago) is resurrected. Most systems these days allow you to miss out the word LET in an assignment statement.

Another consequence of the system is that the software doesn't have to check the spelling to see if it's a keyword. Each of the keywords is entered and stored as a single character falthough it appears spelt out on the screen). This is not only faster, it also saves memory.

There is also a SHIFT key, and a combination of other keys (FUNCTION and GRAPHICS) to select other options from the same letter key. In fact, some of the letter keys have five different functions crammed onto their ultra-small face!

The \(2 \times 81\) is not for those who have trouble with small print!

\section*{Display}

The display on the screen is rather unusual for two reasons: the first is that all characters are shown normally black on white. I found this a rather pleasant, and less of a strain on the eye than the normal white-on-black.

The second rather unusual feature is that there is no automatic scrolling of the display. In most systems, when the PRINT statements in the program have put enough lines out to fill the available space, the screen 'scrolls' up one leaving a blank line at the bottom for the next line of output. The \(\mathrm{ZX81}\) does not have this feature - and in fact, if the PRINT statements try to put too much onto the screen, an error will result and the program will halt!

There are two ways to get round this. One is a SCROLL statement, which moves the screen up one line. The second is the CLS statement, which clears the screen.

It is rather surprising that Sinclair have chosen not to implement the automatic scroll - perhaps they have some good reason. I can't think of one.

The character set consists of uppercase letters, numbers, and the very minimum of other symbols. In fact Sinclair have kept the character set so small that I think some users may run into problems. For example, the symbol for mulitplication is an asterisk '*', and the symbol for exponentiation (ie raising to a

\section*{The ZX81 Revisited}
higher power) is two asterisks Now, it is quite possible to put two of the multiplication symbols into line side by side. However, this is not interpreted by the computer as exponentiation. That has to be the special '* *' symbol. Unfortunately, there is no easy way that the user can tell the difference between the two on the screen. So it is quite possible to do as I did - to type two multiplication symbols to mean exponentiation, and then wonder why it didn't work.

\section*{Syntax Checking}

Each line of the program is checked for syntax as it is entered. Not only does this mean that problems will be shown up as they occur, but also that the machine doesn't have to check the syntax again as it runs the program.

The graphics symbols are fairly complete - allowing each character position to be split into four segments each of which can be black or white.

There are also symbols which allow shading of each character position, split horizontally into two segments (see photo of the keyboard). Each of the symbols in the alphanumeric set can be shown 'reversed', also.

As each line of program is entered, it appears on the screen in its correct position. So the normal method of looking at the program - a LIST command which scrolls the listing onto the screen - is not used.

Instead, the bottom couple of lines of the screen are an 'entry area', where the cursor appears. The top part of the screen then shows whatever part of the
program the last line was entered into.
In fact, this method of entry is very much easier to sue than the normal 'scroll' method. It means that you can actually see the program change as you enter lines - this is very useful for beginners, who sometimes have trouble visualising what is happening inside the machine.

There is also an EDIT facility - one of the already-entered lines can be called into the bottom part of the screen and modified, before being replaced in the main part of the program.

The operating system has a couple of features which are unique to the \(\mathrm{ZX81}\) - one of these is the ability to run in two modes - SLOW and FAST.

In the SLOW mode, the machine gives a 'flicker-free' display - the screen display is constant while calculations are in progress.

In the FAST mode labout four times as fast), the screen blanks while the machine is calculating, only coming on when it is paused for input (or during execution of the PAUSE command). This is because Sinclair are using the CPU to output the display!

The cassette saving routines have the ability to label the programs with an alphanumeric string, and to search for that string when the program is read off tape, on!y starting to load when they find the right program.

Another unusual feature is that when a program is saved, all the current variable values are saved, too. This is nice for fitting very 'tight' programs into the machine - the data initialisations do
not need to take up any memory. The only space they need would already be used by the variables themselves.

\section*{Manual}

The documentation that comes with the ZX81 is really excellent - the author, has taken a very down-to-earth approach, and the whole thing lover 200 pages of it) hangs together very nicely indeed. It is well peppered with explanatory examples, and is written in an easy style that will not confuse or frighten anyone. It's also spiral bound, so that it will lie flat while you copy programs from it!

The manual for a machine like the ZX81 is almost as important as the hardware itself - it is, after all, primarily a teaching machine.

The only thing that's missing from the manual is any sort of comprehensive hardware details. I suppose, though, that given the probable audience this would not be worth while.

The manual not only describes the ZX81 BASIC in loving detail, it also goes on to describe the internal software in some depth, including a full listing of the system variables and their interpretation, and a section on how to use machine code programs with BASIC.

\section*{Using it}

Now we come to the most important part - how the machine performs.

I didn't try any 'benchmark' programs on the ZX81 - there's not much point, because all they would show is that the


A sample page from the excellent manual which is supplied with the machine.
machine is significantly slower than almost any other on the market.

I say again - it's a teaching machine. So the speed doesn't really matter.

I wouldn't recommend the \(2 \times 81\) to someone who wants to do a lot of number-crunching, though - you'd be better off with a programmable calculator.

The display is sharp enough to be read without too much strain - even on my little portable. The characters are a little 'blocky', but not outrageously so.

Apart from the problem I mentioned earlier about the keyboard having no feedback, the only other major trouble in using the \(2 \times 81\) is that 1 K of RAM is really rather small - even with one character per keyword.

Then again - if it's the only computer that you can afford, and it's the first one that you've used, then it's not likely to trouble you.

\section*{ZX81 Basic}

Finally, I've included a list of the commands and features of the \(2 \times 81\) BASIC so that you can see that the \(2 \times 81\) 's language is every bit as comprehensive as that of other machines on the market. Variables may have an alphanumeric name of any length, starting with a letter continuing with letters and numbers and spaces! This is due to the unique keyword entry method.
Values are stored to 9 digits, with a range between about \(10^{-38}\) and \(10^{38}\).
Array names are a single letter, and arrays may have any number of dimensions of any size.
String arrays are allowed - but all of the strings in the array are the same length.
String variables are any length, but the string name is only a single letter.
Functions supported include: absolute value, arccos, AND, arcsin, arctan, CHR\$, CODE (the same as ASC in other BASICs - but it's not ASCII), cos, Xe. INKEY\$ lgets a key press from the keyboard), integer part of a numC in other BAISCS - but it's not ASCII), cos, \(X^{\ominus}\), INKEY \(\$\) (gets a key.press from the


The inside. That's all - true!
keyboard), integer part of a number length of a string, NOT, OR, PEEK, pi, random number, sign of a number, sin, square root, STR\$ tan, user machine code routine call, and VAL.

\section*{Statement types are:}

CLEAR deletes all variables
CLS clears the screen
CONT after 'break', continues execution COPY sends a copy of the screen contents to the printer
DIM dimensions arrays
FAST sets machine into fast mode (see text)
FOR . . .TO . . STEP forms a loop (the variable used must have only one letter in its name)
GOSUB sends program to a line number (line number may be expressed as an expression)
IF ... THEN allows changes in program flow - but multiple statements per line are not supported
INPUT allows the user to input a string or numeric characters


LET is required for assignment statements
LIST allows the user to call up any part of the program on the screen's display area LLIST sends it to the printer
LOAD searches for the program name on the tape, then loads it
LPRINT sends output to the printer
NEW initialises the whole system
NEXT ends a FOR loop
PAUSE stops the program for a set period from \(1 / 50\) of a second to about 10 minutes
PLOT makes one quarter of a character print in the position specified
POKE allows the program to alter memory directly
PRINT puts information onto the screen. Features supported are: comma (giving fixed tab), semi-colon (at the end of the statement, preventing line feed and carriage return) and \(T A B\)
RAND allows randomisation
RND variable sequence
REM for remarks
RETURN ends subroutine
RUN runs a program. RUN (line number) starts the program from the line number SAVE puts the program onto tape, with a name of any length
SCROLL moves all the lines in the display area up one
SLO puts the machine into slow mode (see text)
STOP halts execution
UNPLOT turns off one quarter of a character position, in the position specified

\section*{Summary}

The ZX8 1 is a very high value-for-money machine. It's designed as a teaching machine, and at a price of \(£ 49.95\) for the kit or \(£ 69.95\), ready assembled it is very well targeted.

It is not a machine for those who have number-crunching applications in mind. For that is rather slow and a bit awkward.

It does, however, have almost all the advanced features found on other BASIC systems. Having mastered the ZX81, you will be able to drive almost any other machine after a couple of days.

\title{
Sinclair 2X81 Personal Comp the heart of a system that grows with you.
}

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under \(£ 100\). Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just \(£ 69.95\) the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the \(Z X\) Software library is growing every day.
Lower price: higher capability With the \(Z \times 81\), it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the \(\mathbf{Z \times 8 0}\).

It uses the same micro-processor, but incorporates a new, more powerful 8 K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer.


Every ZX 81 comes with a comprehensive, specially-written manual - a complete course in BASIC programming, from first principles to complex programs

\section*{170 54020}

\section*{Higher specification, lower price -} how's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the \(\mathrm{Z} \times 80\) !
New, improved specification - Z80A micro-processor - new faster version of the famous \(Z 80\) chip, widely recognised as the best ever made.
- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tireso me typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops. - Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack. - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing \(18 \mathrm{ZX80}\) chips.

\section*{Builf: £69.95}

\section*{Kit or built -it's up to you!}

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.



Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by \(16!\)

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.


6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: (0276) 66104 \& 21282.

\title{
Available nowthe IX Printer for only £49.95
}

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

\section*{How to order your ZX81}

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs

And of course you can print out your results for permanent records or sending to a friend

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper ( 65 ft long \(x 4\) in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14 -day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.
\begin{tabular}{l} 
To: Sinclalr Research Ltd, FREEPOST, Camberley, Surrey, GU15 3BR. \\
Oty \\
\hline
\end{tabular} Item

\section*{Popular Computing}


Pictured above is ACE, the National Physical Laboratory's first computer. The vertical sliding panels are to allow access for maintainance - and also to provide better cooling for the racks of valves. (Courtesy NPL, Crown Copyright).

\title{
MICRO-HISTORY
}

\section*{A slice through the years, as we look at some of the men and machines that preceeded today's powerful computers.}

ALMOST every day, we read in the national press, or in other publications, that the age of computers is upon us. This is undoubtably true, but it is nevertheless worthwhile looking back at some of the developments which have led to the current 'state of the art', before the technology overwhelms us! In writing about computers, there is often a temptation to baffle readers with science - the jargon looks good, and sounds authoratative. In fact, we should be trying to do the opposite; explain exactly what computers are and how they effect our lives, in plain, simple language. So, let's
start at the beginning, and get the whole thing in perspective.

Looking at the names associated with early computers, three stand out as beacons of foresight and understanding.

Taking them in chronological order, which is logical, we first meet Blaise Pascal.

Born in France, in the Seventeenth Century, he was best known as a mathematician. His father was a tax collector, an unpopular occupation, even then, and the sight of his father spending long hours over columns of figures was young Blaise's first inspiration; he pro-
duced a mechanical engine that removed the drudgery of the work. The basic design was a success, which was a considerable feat of purely mechanical engineering, and it enjoyed a limited commercial success, too. The main disadvantage was that it was only capable of either addition or subtraction - one operation at a time.

This machine was called the 'Pascalline' and it is still, surprisingly, in use today, recording the mileage that your car has covered. Its improved successor, which was capable of multiplication, survived for nearly as long. Only the
first electronic calculators sent it to the Science Museum. If you should see it there, it's worth remembering that it was invented when the Inducalculators sent it to the Science Museum. If you should see it there, it's worth remembering that it was invented when the Industrial Revolution was still to come and that even simple mechanical parts could not be manufactured accurately. It was this difficulty that caused the failure of the next innovator in computer science.

\section*{The Difference Engine}

Charles Babbage (who is the subject of this month's Famous Names), also began life as a child prodigy and it was his early interest in tables of logarithms that inspired his life's work. His first achievement was to produce a machine for calculating log tables which were more accurate than those previously published. His next task, the construction of the Difference Engine, was more challenging, but after eleven years' work and a Gcvernment grant of \(£ 17.000\) (an enormous amount of money, in those days), the mechenical problems finally defeated him.

Despite this failure, he conceived an even more spectacuiar device, the great Analytical Engine, which incuiporated all of the concepts of the Difference Engine but was, in addition, programmable; it was intended to carry out mathematical operations as required, on whatever data was available. This was the first visualisation of the computer as we understand it today - it actually included most of the features incorporated in modern microcomputers. Once more, though, the inability to make presicion parts spelled
the doom of the Analytical Engine. Babbage died, aged 80, with not much left to his name except a pile of cogs and gear wheels. His son finally managed to put together a working model, which can be seen in the Science Museum.

\section*{Herman the Wise}

Less than twenty years later, the third great inventor in the history of computers, Herman Hollerith, made the final link in the chain of innovations that led to modern computers. His 'Tabulator' was designed as an entry in a competition to develop a system to analyse the mass of information collected for the 1890 American Census. It was an electromechanical device and completed the Census results in record time, making Hollerith a very rich man. Indeed, the company he founded (International Business Machines - IBM) is still one of the largest mainframe computer manufacturers and it is only recently that its dominance of the business has been challenged.

Hollerith's Tabulator was by no means an ideal computer; it was designed to do just one specific job and its 'programming' could not easily be changed. This was not the flexible, all-purpose machine conceived by Babbage. However, it is interesting to note that, following Babbage's adaptation of the punched cards used to control weaving machinery, Hollerith used similar cards to enter the Census data. These cards are still in use in many computer systems, today - some things never seem to change!

The breakthrough was made shortly after World War II. The development of ballistic computers and code-breaking
machines during the War produced some extremely sophisticated electromechanical devices but, like all such devices, they were 'dedicated' machines limited to a specific application. The first true electronic computer was, in fact, developed in Britain, in 1948 by a Manchester University team.

The development of the true electronic computer rested largely on the work of two mathematicians; Alan Turing, a Britain whose work on code-breaking laid the foundations and the American, John Von Neumann. Another vital step was the introduction of the binary numbering system. If Pascal or Babbage had designed their systems to use binary numbers they would have simplifed their problems by a factor of nine and it is possible that the world would have had steampowered computers before it had electricity.

Having made the key evolutionary leap, computers went from strength to strength. The first ones were monsters, its true (Ferranti's first commmercial computer stood 32 feet long, eight feet high and four feet deep, used 3,500 valves, 2,500 capacitors, 15,000 resistors and six miles of wire) and rejoiced in names such as UNIVAC, ENIAC and ACE, but they were true general-purpose, programmable computers, consisting of the same basic elements as are found in today's computers.

The growth of computers, since then has been by a series of steady refinements, rather than by revolutionary developments. The thermionic valve was a notoriously unreliable device, slow and costly in terms of power consumption and space and they were soon replaced

A first generation computer - thousands of circuit cards and transistors beyond counting!
(Courtesy NPL, Crown Copyright).



Pilot model of the NPL's ACE. (Courtesy NPL, Crown Copyright).
by the newly invented transistor. However, the replacement of valves by transistors did not involve any change in the basic design of computers.

The introduction of the transistor produced the 'second generation' of computers. A 'generation' in computer terms is loosely defined as a tenfold decrease in size with a tenfold increase in processing power at a tenth of the original cost. As the transistor became the descendent of the valve, so the chip or integrated circuit became the descendent of the transistor. In those days (some ten to twelve years agol, the first integrated devices consisted of perhaps a half dozen transistors on a single chip of silicon. Rapid advances were made and soon a new kind of computer was born.

\section*{The Minis}

Just as the Mini car revolutionised the way the world looked at motoring, so the minicomputer changed the face of computers. Up till the advent of the integrated circuitry there had been only 'computers'; now there were 'mainframes' and 'minis'. These were rigidly divided into sectors of operation - the mainframes were used for serious purposes, the minis were 'toys' used in research. Among the names of companies who were to make their fortunes producing minis was DEC who are, probably, still the world leader. Soon, the mini was to be found everywhere from research labs to classrooms and their spread was due simply to the fact that they were small, cheap and relatively easy to use. They were even built into pieces of equipment, such as machine tools. Indeed, it is fair to say that the mini paved the way for the micro, although the actual distinctions between them have been rapidly eroded.

Firms involved in the business of integrated circuit production tend to follow a natural progression in the devices that they make. First off the production line come the standard logic elements, the AND/OR type gates and, once the production of these is running at a profitable level, they attempt to squeeze a little more onto the slab of silicon. As soon as this stage is proved they take another leap forward and so on. In the terminology of the business, this is a progression from

SSI (Small Scale Intergration) with about 10-20 actual devices on the 'chip' through MSI (Medium Scale Integration), which has a dozen or so gates (rather than discrete elements) up to LSI (Large Scale Integration), which is taken as being greater than 100 gates on the chip. At this stage of the game we are still talking about, complex TTL type packages, the next jump is to VLSI which, believe it or not, stands for Very Large Scale Integration. We are now in the realm of memory devices and microprocessors.

If we take a look at Figure 1 we can see a generalised block diagram of a computer; what kind of computer is not important because they all have the same functional blocks within them, be they micro or mainframe. The common misconception is that the 'mighty chip' is a computer - far from it. Your average microprocessor still needs all the memory circuits, control circuits, mass storage devices and other components that even the old valve machines needed; they are merely smaller. The very first microprocessor came about in 1971 simply because it was realised that it would be possible to make a device of that complexity on a single chip. The device was called the 4004 and the company that made it was Intel. The next device they produced was the 8008 and that was followed by the microprocessor chip which, ten years after its initial introduction, still dominates the microcomputers of the world - ubiquitous 8080 .

The rest of the story is not history; since the 8080, new chips have been introduced almost every year and so the future is still wide open. Indeed, the future probably holds as many new and exciting developments as the past and another revolution in computer technology is still possible, considering the work currently being done on the 'biological computer'. We may yet see computing 'brains' which more closely live up to the description!


\title{
Lack of ZX81 memory giving you headaches..?
}


\section*{The Memotech 64K Memopak}

The growth of interest in computer use caused by the introduction of the Sinclair ZX81 has made new and exciting demands on the ingenuity of electronic engineers. At Memotech we have focused our attention on the design of an inexpensive, reliable memory extension

The Memopak is a 64 K RAM pack which extends the memory of the ZX81 by a further 56 K . Following the success of our 48 K memory board the new memory extension is designed to be within the price range expected by Sinclair users. It plugs directly into the back of the \(2 \times 81\) and does not inhibit the use of the printer or other add-on boards. There is no need for an additional power supply or for leads.

The Memopak together with the ZX81 gives a full 64 K , which is neither switched nor paged, and is directly addressable. The unit is user transparent and accepts such basic commands as 10 DIM A(9000) 0.8 K ...Sinclair ROM

8-16K...This section of memory switches in or out in 4 K blocks to leave space for memory mapping, holds its contents during cassette loads, allows communication between programmes, and can be used to run assembly language routines.
16.32K...This area can be used for basic programmes and assembly language routines.
\(32-64 \mathrm{~K} . .32 \mathrm{~K}\) of RAM memory for basic variables and large arrays.
With the Memopak extension the \(2 \times 81\) is transformed into a powerful computer, suitable for business, leisure and educational use, at a fraction of the cost of comparable systems.




HE1 TOTAL \(\qquad\)
To: Memotech Ltd., 3 Collins Street, Oxford, OX4 1XL Telephone (0865) 722102


\title{
Who is this mysterious person? Did Charles Dickens discover Hovis? Did Robert the Bruce discover Australia?
}

OK. Lets get it out of the way
Dear CD.
I am writing to you about your reply to Mr Belfield's letter in the March '82 issue of HE. You said that you would award next month's binder to anyone who could politely and in one sentence explain what chocolate digestives have to do with you.

I believe I have the answer - here goes. Chocolate digestives have the initials CD and C.D. = Clever Dick. 1 hope it is the right answer.
Paul Procter,
Chester.
PS Your mag is the best one out.
Dear CD,
I write to you claiming a binder, with no grovelling whatsoever. You offered a binder to anyone who could explain D. Belfield's PPS; well, here is the explanation.

Clever Dick (CD) and chocolate digestives (cd) both have the same initials, so by saying that his sister likes chocolate digestives, he is implying that she also likes you - is this grovelling?

Was that polite enough?
In expectation of a binder,
R. Hart,

Mansfield,
Notts.
PS Charles Dickens also has the intials \(C D\) - any relation?

\section*{Dear CD,}

In the March issue /we know that by now, thanks all the samel you asked for the connection between yourself and Mr Belfield's sister's craving for chocolate digestives.

Well, firstly you should be honoured to have the same initials as a Chocolate Digestive and, secondly, it is a clue to your real identity.

If you remove all the letters from Clever Dick that also occur in Chocolate Digestive, you are left with the letters R, K. This would therefore, suggest that you are in fact Ron Keeley, the Esteemed Editor.

I hope this answers your question and you wil keep your promise of an award?
I.M.A. Bruce.

PS I have been reading HE for almost three years and in that time have not only developed a warped sense of humour but also a very warped stock of HEs.

\section*{Dear Chocolate Digestives,} Isn't Mr Belfield's PPS obvious? He thinks that CD stands for Chocolate Digestives and his sister has fallen in love with you lbut then, which girl wouldn't).

Anyhow, down to business. Why are all these people complaining about the few mistakes made in HE? Don't they know that it is all done on purpose to keep us hobbyists on our toes? After all, how can two whole diagrams (Figures 9 and 10, page 43) in the ocilloscope article in the March issue be misplaced and then merely attributed to 'gremlins'.

I'm sure that the HE team, in their ultimate wisdom, know exactly what they are doing.
Yours, Can/haveabinderpleasingly, J. Sylvester,

IIkeston.
Derbyshire.

PS Why is it that, in some project component lists, it says, for example, " \(50 \mathrm{k}-5\) off" instead of " 5 off"? PPS I wouldn't mind a binder. PPPS If you send a binder, I might just get back in from this three-stories-high window ledge.
PPPPS Remember, if / do accidentally fall off (of?) this ledge, I won't be able to buy HE anymore!

Oh what clever, witty readers you are. I should have known that the question was far too easy for such erudite, intelligent and perspicacious people. Never mind. You can't win them all nor can all win. So.

Paul Procter is straight to the point, even blunt, one might say - but is that
polite? G. Adamson, I'm afraid, loses immediately. What a dreadful pun!

Mr R. Hart has a strong claim, but loses points for subdued grovelling if your going to do it, lad, do it properly, like. Besides, Charles Dickens is older than I am. I.M.A. Bruce came up with a very clever answer (although his 'name' is another dreadful pun) which, unfortunately for HIM, has nothing to do with ME. My real identity, sir, is the most closely guarded secret since Superman fell out of the 'phone box. Not even the Editor knows who' I really am - and sometimes I'm not too sure myself.

That leaves J. Sylvester (any relation to Victor?), who has probably jumped by now. Just in case he's still hanging about, a binder is on its way to him, awarded for the most concise answer to the question; his salutation was plain enough. A belated binder is also awarded to D. Belfield, together with a packet of Chocolate Digestives for his sister (but he'll have to write again, with his full address this time).

This late reply seems to have missed the point, though he's quick enough to claim the reward.

Dear CD,
In reply to D. Belfield's letter, the SAB0600 is, in fact, the IC used in the Doorchime project (December 81) and can be obtained from TK Electronics.

Now a suggestion for a project; how about a Flanger? I am interested in making electronic music - December's HE was excellent and I have built the Graphic Equaliser and the Drum Synth (with modifications) and they worked extremely well.



Don't forget the binder, thank you. S.C. Bonnell,

Wolverhampton.
PS Keep up the good work.
Right! The Doorchimel I knew I'd seen is somewhere. This is a good as time as any to remind you all that I can only give detailed replies to exact questions - the IC referred to could have been in any project published anytime in the past four years and I certainly don't have time to check them all!

The Flanger project is a good idea, which follows naturally from the HE Echo-Reverb in this issue. I'll see what I can do to push it, OK? As for the binder - sorry, you're too late.

It's always nice to receive 'love letters', but this one is just slightly dubious.

Dear CD,
loften buy decent magazines on electronics from my newsagent and often have a laugh at HE. Most of the projects are, to say the least, pathetic tea-break rejects.

But what was this I saw in the April ' 82 issue? A useful project! Amazing! I must congratulate you for the Digital Capacitance Meter lusually, any sensible projects are to be found in ETI). I actually bought the magazine and the last three pages weren't on CB! M. Garton,

Purveyor of Messy Writing,
(Address illegible).
He's right about the writing, if nothing else. All Hobby Electronics projects are designed to be useful for some purpose, even if the aim is only to instruct - we do have a number of readers who are just getting into electronics for the first time, you know

The next letter raises a most interesting question - is it 1984, already?

\section*{Dear Dick,}

I remember reading, some time ago, that a Japanese camera company fitted their remote control cameras with infra red control so they could get around the Wireless Telegraphy Act of 1947/1969. But, after reading the 1969 Act, I noticed that any form of transmission, including infra red, could only be considered legal if used by the Post Office or by people with licenses.

It seems that they do not yet have control over shouting or singing, but I expect that they're working on it. Is it true, Dick? Are these infra red cameras and remote control units against the law?
M.Scholes,

Telford,
Salop.
PS Why do all these people waste time buying or grovelling for binders? Have they no floors on which to pile their HEs? I keep mine in suitcases and old box files under the bed!

The implication, here, is that anyone who uses an infra red remote control system for any purpose (changing TV channels, for example), is breaking the law. That is not the case. The Act referred to defines Wireless Telegraphy (for which a license is required) as follows:

Wirelss Telegraphy means the emitting or receiving, over paths which are not provided by any material substance constructed or arranged for that purpose, of electromagnetic energy of a frequency not exceeding 3 \(\times 10^{6}\) Megahertz.

Fortunately for all of us, the infra-red band starts at \(3 \times 10^{6} \mathrm{MHz}\) and, therefore, operating an infra-red remote system does not require a license, under the Act. Imagine the trouble Buzby would have, if IR was illegal! He'd probably lose all his feathers from over-work.

Now here's a classic plea for HELP
Dear CD,
I have built the Power Pack ISeptember '81) and - 10 and behold - it worked. Yesterday I put in the fuse holder and, instead of 5 to 15 volts, I naw get 7V5 to 23 V and sparks jump between the carbon track and the connector. What have I done wrong?
C. Basnett,

Quarry Bank,
West Midlands.
See what I mean? On the face of it, this project is so simple that nothing should go wrong (so what do you mean, "Io and behold"'?). The only answer that occurs to me is that you've got a solder bridge between - or nearly between the PCB tracks and the mains voltage is arcing across. Check the board carefully for lumps of solder.

Sometimes, it seems, people just don't read the magazine - we go to an a wful lot of trouble to get all this information in. Why, of why won't you just READ IT!

\section*{Dear CD}

Please can you answer my simple question; where do you get the boxes for projects, ie Bike Alarm and Digital Capacitance Meter (April '82). Do you have to build them yourself?
C. Mathews,

Egham.
Surrey.
No, I certainly don't - and neither do you. The Buylines page is there to let you know where to obtain components and parts for all our projects - but you must read it, you know. If you had, you'd know that cases for both these projects are available from BICC Vero. OK?

Then, reading does not always lead to understanding.

\section*{Dear CD}

After reading lan Sinclair's Into Digital Electronics, I'm hooked on digital circuits and displays. The only thing is, I'd like to be able to check IC pins with a logic probe, for fault finding, but I'm not sure what the logic state of the pins should be in the first place. I wonder if you could help me?
K. Goonan,

Preston.
Lancs.
You may be beyond all help, buy l'll. try. Without repeating the series, the simple answer is that the logic state is a given IC pin will usually be either a 1 (high voltage) or a 0 (low voltage), but exactly which state the pin assumes depends on the type of IC (AND gate? OR gate? Timer? Counter?) and how it is connected. For example, a 555 may be wired as an astable multivibrator or as a monostable, to choose two common circuit configurations. Before you can know what the logic state of a pin should be, therefore, you must understand the circuit. I believe that a very special logic probe is being designed and will be published in the near future. Perhaps you will be able to use it to gain a better understanding of digital logic. In the meantime I can only suggest that you go back and read lan Sinclair's series from the beginning!

\section*{WATFORD ELECTRONICS \\ 35 CARDIFF ROAD，WATFORD，HERTS．，ENGLAND MAIL ORDER，CALLERS WELCOME．Tel．Watford \(4058 \%\)}

ALL DEVICES BRAND NEW，FULL SPEC．AND FULLY GUARANTEED．
ORDERS DESPATCHED BY RETURN OF POST．TERMS OF BUSINESS： CASHICHEQUEIP．OS OR BANKERS DRAFT WITH ORDER．GOVERNMENT AND EDUCATIONAL INSTITUTIONS＇OFFICIAL ORDERS ACCEPTED． AND EDUCATIONAL INSTITUTIONS＇OFFICIAL ORDERS ACCEPTED．
TRADE AND EXPORT INQUIRY WELCOME．PEP ADD 50 P TO ALI ORDERS．
VAT
We stock thousands more items．It pars to visit us．We are situated behind Watford Football Ground．Nearest
underground／BR Station：Watford High Street．Open Mondav to Saturday： 9 a．m．to 6 p．m．
POLYESTER CAPACTTOAS：Axial Losed Typ
400 V ： \(1 \mathrm{nf}, 1 \mathrm{n5}, 2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n}, 6 \mathrm{nB} 11 \mathrm{p} ; 10 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n} 12 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n} 16 \mathrm{p} ; 100 \mathrm{n}, 150 \mathrm{n} 20 \mathrm{p} ; 220 \mathrm{n}\) 30p； \(330 \mathrm{n} 42 \mathrm{p} ; 470 \mathrm{n} 52 \mathrm{p} ; 680 \mathrm{n}\) 60p；1uF 68p；2u2 B2p； \(4 \mu 7 \mathrm{B5p}\) ．
160V： \(10 \mathrm{nF}, 12 \mathrm{n}, 100 \mathrm{n} 110 ; 150 \mathrm{n}, 220 \mathrm{n} 17 \mathrm{p} ; 330 \mathrm{n}, 470 \mathrm{n} 30 \mathrm{p} ; 6 \mathrm{~B}\)

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
LVETER WADIALLEAO CAPACTTON8：280V： \\
nF，15n，22n，27n 6p：33n，47n，68n．100n 7p；150n，220n 10p． \\

\end{tabular} & ultrasonic transoucers 40 hH z \(395 \mathrm{p} / \mathrm{pm}\) \\
\hline
\end{tabular}





\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
 N \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\
พజN๙
\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} &  \\
\hline \begin{tabular}{l}
NNNNNNNNNNNNNNNNNNNNNNNNN刿动忈 \\

\end{tabular} &  \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
R \\
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
筑NNNNNN \\
 जN゙
\end{tabular} \\
\hline
\end{tabular}


AN ECHO-REVERB unit is an accessory that can be added to virtually any existing audio or electronic music system and used to impart new life to existing sounds. In any audio system, the unit is simply interposed between the output of the preamp and the input of the main amplifier, so that the audio signals have to pass through the echo-reverb unit on their way to the main amplifier.

Some modestly-priced echo-reverb units use a crude mechanical spring-line to create the time-delayed echo-reverb and provide only a single, fixed delay
time. Commercial (all electronic) echoreverb units can be rather expensive, but provide fully-variable delay times. Many use clocked CCD (charge-coupled device) analogue ICs to implement the delays (see How It Works). The best commercial units use digital techniques to implement the delays, but these are extremely expensivel

We have used the analogue CCD technique to implement the time delays and the HE Echo-Reverb gives a performance that is at least as good as some commercial units using CCDs. The
important thing about our unit, however, is that the design uses some cunning techniques to reduce the hardware costs of its circuitry, while at the same time enhancing the overall performance and facilities.

\section*{Echo-Reverb}

As the audio signals enter the echoreverb unit they spilt into two paths, which are re-united again near the output of of the unit via a built-in lowdistortion audio mixer. One of these

\section*{How It Works}

THE STAGES for producing the various reverb effects from the HE Echo-Reverb, are shown in the block diagram. The main signal path comes from the output of the first mixer and through a 7 kHz low-pass filter. This filter is necessary to limit the audio band width to less than half the clock frequency. because the audio input is being sampled at the clock frequency (variable, to change the length of delay), and it is a fundamental principle of sampling (Shannon's Law) that the sampling frequency must be at least twice the maximum input frequency. The filtered signal then passes through the delay line to a second low pass filter (at 15 kHz ), which removes any clock signal residuals. This second filter includes a buffer amplifier to give the unit an overall gain of one. The output then splits into two paths; one is sent back to the input, to provide the reverb effect, the other goes to a final mixer via a switch. In the other position, the final mix can be varied from 'straight through' to full reverberation.'

The delay circuitry comprises two charge coupled devices (CCD's) with 1024 delay stages. The diagram right shows'an example of the internal structure of a MOS CCD IC. The principle may be compared to a line of firemen

passing buckets of water from one end to the other - hence the name 'bucket brigade'. In electrical terms the 'buckets' are capacitors and the 'water' is an electric charge which is proportional to an instantaneous value of the input waveform - a sample. Each sample is stored briefly , then passed on to the next stage at the time of a clock pulse. Although each sample is stored for a very short time, at each stage, the time taken to 'clock' a sample from input to output can be as much as 50 mS .


paths is a direct link from the input of the echo-reverb to the input of the mixer stage; the other path is via a variable signal-delay network. By varying the signal delay and then the mixture of direct and delayed signals, a variety of interesting effects can be obtained. Here are a few ideas to try:
(1). With equal levels of direct and delayed signals, and a few milliseconds of delay, a 'double-
tracking' or 'mini-chorus' effect is obtained. This makes a single input sound like a pair of independent but time-synchronised outputs. Thus, a single violin can be made to sound like a duet and a duet is made to sound like a quartet.
(2). With a reduced level of delayed signal in the mix, and with a delay time of tens of milliseconds, a simple
echo effect is obtained. The audio sounds as if it were being played in a softly furnished room where there is a single hard wall or reflective surface, facing the sound source. The apparent size of this room is directly proportional to the milliseconds delay time of the echo unit, and is fully variable up to 50 feet ( 50 mS delay).

A standard feature of most echo units (including ours) is a Reverb facility. This allows a fraction of the output signal from the delay line to be fed back and added to the delay line input, so that you end up getting echoes of the echoes of echoes. By using only small amounts of feedback (often called 'Recirculation' or 'Regeneration' on commercial units), you get 'soft' reverb or, by adkling lots, of
feedback you get 'hard' reverb. A variety of impressive effects can be obtained from the reverb facility, as follows:
(3). When equal levels of mixing are used with maximum ( 50 mS ) delay and maximum feedback, the sounds seem as if they are being played in a large hard-faced cave or chamber. The apparent dimensions of this 'chamber' can be varied via the delay-time control, while the apparent 'hardness' of the chamber can be varied by altering either the mixing or reverb level controls. Thus, the apparent sounds can be varied from those of a hard cave, to a small church, or down to a large but softly furnished lounge.
(4). When equal levels of mixing are used with short (a few mS) delays and a large amount of feedback, all

audio signals sourid as if they are being played inside a small-diameter hard-faced pipe or drum. The apparent dimensions of the 'pipe' are variable via the time-delay controls and the apparent hardness of the 'pipe' is variable via the mixing or reverb controls. The sounds can therefore be varied from those of, say, a sewer pipe, to a dustbin or bucket!

\section*{The Circuit}

The principle of the echo-reverb unit is described in How It Works. Audio signals enter the unit via RV1 and split into two paths which are re-united again, near the output, via a lowdistortion audio mixer (IC7). One of these paths is virtually a direct link from the input of the unit (RV1 wiper) to one
input of the IC7 mixer, via level control RV4. Thus, by varying the delay time and the setting of RV4, a range of different echo times and characteristics can be added to the original audio signals.

A fraction of the buffered output of the delay line can be tapped of via RV3 and fed back to the input of the delay line via the IC2 mixer stage. This produces echoes of echoes of echoes, etc ('regeneration' or 'recirculation'). and is the standard characteristic of a reverb sound. The quality of the sound depends on the setting of RV3 (Reverb) and the delay time.

The delay line is formed by IC3 and IC4, a pair of series-connected TDA 1022 CCD (Charge-Coupled Device) "bucketbrigade" analogue ICs. They are clocked by a two-phase variable frequency
oscillator formed by IC5, a 4046B phase-locked-loop chip. The TDA 1022 s are 512 -stage delay lines, so our circuit uses a total of 1024 CCD stages. The delay time available from these chips is:
\[
D=\frac{P}{2} \times S
\]
where \(P\) is the clock-cycle period and \(S\) is the total number of delay stages in the line. Our prototype is set up so that the clock periods are fully variable (via RV2) from a minimum of \(2.5 \mathrm{uS}(400 \mathrm{kHz})\) to a maximum of \(60 \mathrm{uS}(16.6 \mathrm{kHz})\), thus giving a delay range of 1.28 mS to 30.7 mS . In practice, however, the delay times can be extended to 50 mS by adjusting PR2 to give a maximum clock period of \(97.6 \mathrm{uS}(10.24 \mathrm{kHz}\) ) if some clock-signal breakthrough is acceptable

\begin{tabular}{|c|}
\hline  \\
\hline POTENTIOMETERS \\
\hline  \\
\hline \begin{tabular}{l}
SEMICONDUCTORS \\
IC1......... 78L15 voltage regulator \\
IC2,6,7 . . . . . . . . . . . . 741 op-amp \\
IC3,4 . . . . . . TDA 1022 bucket bridge delay line \\
IC5 . . . . . . . . . . . . . 4046B CMOS phase locked loop \\
BR1. . . . . . . . 50V 1 A bridge rectifier \\
D1,2 . . . . . . . . . 1 n4148 signal diode
\end{tabular} \\
\hline \begin{tabular}{l}
MISCELLANEOUS \\
T1......... 15-0-15V 3VA PCB \\
SW1 . . . . . . . . . DPDT miniature mains \\
rocker switch \\
SW2 . . . . . . . . . SPDT miniature toggle \\
switch \\
Sk1,2 . . . . . . . . . . . Phono Sockets \\
Case, PCB, fixing bolts, knobs etc. \\
BUYLINES . \\
page 68
\end{tabular} \\
\hline
\end{tabular}


Figure 3. Circuit diagram of the regulated power supply.
on the output signal (see setting-up instructions, Max Delay Time).

When using CCD delay lines it is important that the clock frequency must be at least double the maximum audio signal frequency that will be used. The delay line output signal must be well filtered to cancel residual clock signals and the input to the delay line must be low-pass filtered, to avoid intermodulation problems by ensuring that the maximum input frequency is no higher than half the clock frequency. With these points in mind, the mixer IC2 with R7 and C7 are configured to give a 12 \(\mathrm{dB} /\) octave slope, rolling off at 7 kHz at the front of the delay line. IC6 acts as a 12 dB /octave, 15 kHz low-pass filter at the output of the line.

Final points to note about the circuit are that D1-D2-R15-R16 are configured to give a degree of selflimiting on the reverb signals. This protects the delay line against destructive reverb overloads. The entire circuit is powered from a regulated mains-derived 15 volt supply via IC 1 (Figure 3 above).

\section*{Construction}

Most of the circuitry for this project is built on a single PCB, and construction should, therefore present very few problems. Before you start, however, a word of warning: the circuit includes a high frequency clock generator which tends to produce a fair amount of RFI (Radio Frequency Interference). Consequently, you should build it into a metal box and take lots of care over RF screening.

Begin construction by fitting the seven wire links and the PCB-mounting mains transformer. Then proceed with the assembly of the remaining components, taking the usual care to observe component polarities, etc. Use sockets to mount the two delay-line chips (IC3 and IC4) and IC5; handle the chips with care, when fitting them into place.

When the PCB is complete, temporarily wire the unit to all control pots, switches and sockets, then set-up the pre-sets.

\section*{Setting Up Procedure}

The HE Echo-Reverb unit contains three pre-set pots which must be correctly adjusted to make the unit fit for use; once these have been set correctly initially, they require no further adjustment. The pre-sets (PR1, PR3 and

PR2) control the delay line biasing, the delay line loop gain and the maximum delay time, respectively. The setting up procedure is as follows:
Delay Line Biasing: With no input signal present, set all three pre-sets to zero, set SW2 to Echo Only, RV4 (Echo Level) to maximum and RV2 (Delay) to mid value. Connect a \(D C\) voltmeter between the +15 V line ( +ve ) and the wiper of PR1 \((-v e)\). Then adjust PR1 for a reading of precisely 5 volts. Remove the meter. Now connect an audio (voice or music) signal to the input and check that it can be played through the unit without excessive audible distortion (ie the sound never becomes harsh).
Delay Line Loop Gain: With RV2 (Delay) set to mid-range but with RV3 (Reveb) and RV4 (Echo Level) set to zero, connect a voice-range \((350 \mathrm{~Hz}\) \(-3 k 5 \mathrm{~Hz}\) ) input signal of about 1 V peak-to-peak and monitor the output signal. Switch SW2 between the Normal and Echo Only positions, adjusting PR3 so that equal output levels are obtained in both positons (this test can be done with test gear or simply 'by ear', using a tape or disc signal source). When this adjustment is complete, set SW2 to the Echo Only position. Pass a music/voice signal through the system and use RV2 to check the Reverb sound is satisfactory.
Max Delay Time: Set SW2 to Normal, RV3 (Reverb) to zero, RV4 (Echo Level) to maximum (wiper at zero volts). Adjust PR2 while monitoring the output of the unit and note that high-pitched tone (whistle) is produced when PR2 is turned beyond a certain point. Now pass a voice signal through the unit; note that the echo effect is obtained, then trim PR2 to find a compromise setting at which a good delay (echo) is obtained with minimum acceptable intrusion from the 'whistle' sound. Finally, check that the delay can be varied over a wide range (roughly 2 mS to 50 mS ) via RV2 and the reverb can be varied with RV3. The setting-up procedure is now complete and the unit can be cased and made ready for use, as already described.

\section*{Subscriptions}

\section*{we DeLiver!}

If you would like to ensure a regular supply of Hobby Electronics for the next twelve months, each issue lovingly wrapped and posted to you, nothing could be simpler. Just fill in the form below, cut it out and send it with your cheque or Postal Order (made payable to ASP Ltd) to:
```

Hobby Electronics Subscriptions,
513 London Road,
Thornton Heath,
Surrey CR4 6AR

```

Alternatively you can pay by Access or Barclaycard in which case simply fill in your card number, sign the form and send it off. Do NOT send your card.

Do yourself a favour. Make 1982 the year you start to take Hobby Electronics, regularly. Delivered fresh every month.

\section*{SUBSCRIPTION ORDER FORM \\ Cut out and SEND TO : Hobby Electronics Subscriptions 513, LONDON ROAD, THORNTON HEATH, SURREY, ENGLAND.}

Please commence my personal subscription to Hobby Electronics with the issue.

Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/Miss)
delete accordingly
Address

SUBSCRIPTION RATES
(tick \(\square\) as appropriate)
£10.75 for 12 issues U.K
\(£ 12.75\) for 12 issues overseas surface
£25.70 for 12 issues Air Mail

\title{
ELECTRONIC REVOLUTION
}

\section*{Part One of our new bi-monthly series following the history of the Electric Society - from Volta to Video.}

IF you had to name the great, central pillar of modern society, the one technological aid it couldn't do without, it would have to be electricity. Coal had its day back in the 19th Century and, though it seems to be having something of a renaissance now, this is only as a means of generating electricity. Oil rules the world's economy, but only because so few hands have the power to turn the taps off. Nuclear power is the coming force we are told, but it has been coming for the past quartercentury without showing much sign of actually arriving. Electricity is the great common thread which binds together the various primary sources of power. The world might survive an oil embargo, but just try to imagine the darkness and confusion that would fall on the face of the land if some genius hit upon a way of turning off the electricity worldwide: no lighting, very little heat, (even North Sea gas is driven by electric pumps), no radio, no TV, no computers, no telephones, no industry and very little agriculture. You only have to look at the few large partial supply failures of the past two decades to see the sort of chaos which would descend as the generators slowed down and stopped: the famous New York blackout one night in 1965, or the power cuts of February 1974 during the Miner's strike. Or, if you want a practical demonstration, try reading the rest of this article by the light of an unpressurised paraffin lamp, which is the best you would have had in most English villages until the late 1940s.
Try as they might, no one has come up with a cheaper, cleaner and more easily handled form of power transmission for applications other than road and air transport. Now, as we get towards the end of electricity's second century, the silicon chip and the society it is creating looks set to make us more, rather than less, dependent on the movements of electrons - invisible to all and still rather mysterious to most.

Few people these days, it is true, would go as far as James Thurber's aunt, who used to roam around the


Cooke and Wheatstone's five-needle telegraph, first installed alongside the Euston-Camden railway and later used by the Great Western Railway for communications between Paddington and West Drayton.
house sticking light-bulbs into empty sockets in case the electricity dripping out of them formed dangerous, invisible puddles on the floor. Nor are there quite as many people, as there once were, who replace fuses with stout copper wire saying that they can't understand why folk use that inferior silvery stuff you buy in Woolworths! But even if electricity is not regarded by people at large with the same superstitious horror as nuclear energy (though the author did once see a poster saying "Ban Electricity NOW") it is still a rather strange and unfathomable force - which makes you realise just how strange it must all have seemed when the first serious experimenters began their work, back at the beginning of the 19th Century.

Electricity has been with us, now, for just over a century as a public utility. But, it took a hundred years of trial and
error and laborious experimentation before that to turn it from a useless scientific curiosity into the driving force of the second Industrial Revolution. That movement, beginning in the 1880 s, turned the USA and Germany into great industrial powers because they hitched themselves to it but began Britain's long, slow decline because she took it up only halfheartedly and late. The century before 1880 produced some remarkably farsighted inventions, projects far ahead of their time like Davidson's electric locomotive or the transatlantic telegraph of 1858. But, on the whole, progress was slow, a hesitant, haphazard clearing of the runway for the great electrical take-off at the end of the century.

\section*{Myth and Magic}

Ever since men first began to wonder
about the world around them, they had noticed some inexplicable happenings which could best be put down to witchcraft or angry gods. Lightning was the most spectacular, of course, but the first Stone Age settlers in South America must soon have learnt to steer clear of a certain clumsy-looking, sluggish river-fish. As early as 321 BC, the Greek natural philosopher Theophrastus remarked on the strange attractive properties of amber - though he couldn't explain them. The Chinese seem to have used lodestone compasses about 800 AD and, by the 1560 s, scientists were familiar enough with large artificially-made permanent magnets for the surgeon Ambroise Pare to have had the brainwave of using one to extract a steel splinter from a patient's eye. It was, presumably, about this time, as seagoing ships grew larger, that shipwrights learnt the inadvisability of using copper fastenings near iron nails. But it was left to Elizabeth I's Court Physician, William Gilbert, to tie some of these phenomena together in his treatise "De Magnete" of 1600 in which he coins the word "electricity", associates static electricity with magnetism and divines that the Earth is a huge magnet. It also seems that Gilbert constructed the first recorded static generator, direct ancestor of the 50 -foot diameter Van der Graaf machine currently used in nuclear research at Harwell.
Speculation about the nature of electricity - or rather, "the electricities", since no one had yet linked static, magnetism and lightning conclusively together as aspects of the same thing - went on in a desultory way for the next two centuries. It was not until the last two decades of the 18th Century that serious investigation was able to begin and the Electric Machine became something more than a toy for amusing the ladies at a philosophical society lecture. Franklin made his famous kite-flying experiment to investigate lightning - and his less famous, inspired but incorrect guess at polarities, which has bedevilled electronics ever since. In Italy, the two Professors Galvani - the frog's legs man - and Count Volta worked away at the problem of chemical electricity until, in 1800, Volta was able to produce his first pile battery. The world's men of learning now had their first controllable, storable, measurable source of electricity and the experiments began in earnest.
Sir Humphry Davy gave his famous arc-light demonstration in 1809 and, eleven years later, in 1820, Professor Oersted of Copenhagen made the momentous discovery that a compass needle could be deflected by an electric current passing through a


Part of the Gauss and Weber telegraph system.
wire. It was left to Michael Faraday, in the summer and autumin of 1831 , to make the imaginative leap by standing Oersted's 'current + wire + magnet + movement \(=\) current'. It may seem obvious, now, but it was a stroke of genius at the time and Faraday's demonstration of a crude magneto-electric generator to the Royal Institution on 24 November 1831 marks the birth of the electronic age.

The child was born, perhaps, but it was remarkably slow a-growing during the half-century after Faraday's discovery. An increasingly powerful range of magneto generators were built in Europe and the USA during the 1830 s and 1840 s, but the trouble was that nobody really had much idea of what to do with the current they produced. Arc lighting developed slowly during the middle decades of the century and a breed of wandering electricity generators grew up (Samuel Crompton was one of the first), roaming Europe with mobile steam-driven apparatus to illuminate railway tunnelling work, circuses and fairgrounds. But arc lighting was too harsh and too expensive to rival colza oil or kerosene as a source of domestic illumination. A few avant-garde scrap-metal dealers invested in electro-magnets for lifting and Birmingham factory proprietors found electro-plating an excellent way of poshing up cheap and nasty tableware, while rheumatism sufferers were made momentarily forgetful of their aches by the even worse pains resulting from patent Therapeutic Electrical Machines (which could still be seen at country fairs in the 1930s) Of course, the demand for lighthouses pushed forward the development of large generators, like Clarkes 2 kW machine which supplied the one at the South Foreland, near Dover, in 1858, but it was all a primitive, haphazard business, this early public electricity supply.

The men of science were still only beginning to grope their way towards an understanding of this mysterious force, so it is hardly surprising that theoretical knowledge among the early practitioners was sketchy in the
extreme. It was not until the 1860s, for instance, that any idea began to emerge of there being a distinction between force and current - the power of the early generators was reckoned by the size of the spark, or the loudness of the howls, which they produced. Power requirements were judged, rule-of-thumb fashion, by the number of acid-cell batteries needed to make the thing work. Ammeters, where they existed, were simply calibrated by the man who built them without any reference to a common scale. As we have seen, it took a very long time to dispose of the notion of several different, independent kinds of electricity. Electricity supply was plagued well into the 1890 s by a persistent folk-belief that direct current was not only less dangerous than alternating but, in some curious way, a different kind of power altogether, a belief which led to all the early generators being fitted with commutators to convert their output to DC. In fact, some historians go so far as to say that the obsession with DC over AC held back the development of industry by a good halfcentury.
All the same, there were some remarkably far-sighted experiments made in these early days, projects like Davidson's battery-powered electric railway locomotive of 1842 which managed to reach 40 mph on a run between Edinburgh and Glasgow, only to be smashed up at the end of the journey by enraged steam-engine drivers who were frightened that it would take away their living. They need not have worried, though. Old King Coal was to remain unchallenged on his throne for another fifty years as the main source of power for the railways and factories. It was not until the self-taught Serbian inventor Nikolai Tesla developed phase-induction, at the end of the 1880s, that electric motors were able to start up under their own power and drive the tramcars which were to do so much to change the geography of European and American cities, around the turn of the century.

\section*{First Light}

If a public electricity supply industry was to develop, in the way gas had developed early in the 19th Century, it would have to find itself some simple domestic service which it could perform more cheaply than any of the alternative forms of energy then on offer. Domestic lighting was the obvious candidate and, throughout the late 1870s, Crompton and Swan, in Britain, and Edison in the United States worked feverishly to develop a cheap, mass-produceable incandescent liaht bulb. Thev fiddled
about with filaments of paper, horsehair, silk, bamboo and platinum until - just about simultaneously, in the autumn of 1879 - both Swan and Edison hit upon the trick of making a bulb which would last more than a few hours - exhausting the air in the bulb while the filament was hot, in order to get rid of the combustion gases. A vicious patents battle ensued - Edison was a devil for litigation - but from 1880 onwards, progress was as rapid as it had been sluggish over the previous fifty years. Edison, being a most unusual combination of inventive genius and shrewd businessman, set up his first public supply power station at Pearl Street, New York City, in September 1882. It served 85 buildings at first but, by the end of 1884 , no less than 60,000 lamps were connected up to the supply.

In Britain, things were done more haphazardly and Godalming, rather than London, had the honour of being the first town to go' electric, in September 1881. The local gas company had attempted an early OPEC - unilateral price-hike. The town council demurred and turned, instead, to a pair of wandering electrical entrepreneurs, Messrs. Calder and Barrett, who undertook to light the streets from a mobile steam generator and, later on, from an old water mill. The new arrangement was not a technical success. The lights were connected in series, like those on a Christmas tree, with the result that those nearest the generator were noticeably brighter than those further away, while a single blown bulb plunged the whole town into darkness. Nor was it much better off financially and in May 1884, it closed down, the brothers Siemens (who had taken over the contract) having been unable to find the 500 domestic subscribers, at \(£ 3\) per annum, who were necessary to make the project break even. Later, town supply systéms were more successful. London got its Grovesnor Gallery, Holborn and Kensington Court Power stations in the early 1880 s, each with an output of about 60 kW and equipped with standby batteries to provide off-peak power in the small hours, so that the machinery could be oiled and cleaned.

Despite gas lighting's new lease of life, thanks to the invention of the incandescent mantle in 1880, electric lighting caught on rapidly with the better-off and from the early 1880 s onwards, there appeared a succession of gadgets to make use of this new, clean, convenient form of power: kettles, flatirons; hotplates, and heaters, all ornately decorated in the fashion of the time and all guaranteed to cause today's BEAB safety inspec-
tors a collective heart attack. True, with the power supply pitched at 110 volts, in most cases, the danger wasn't too great, but a cavalier attitude to safety lasted well into the 240 volt era, in many countries. Most of Eastern Europe still does without earthing, which keeps the fire brigades busy, if nothing else, and the French were long famous for the nonchalance with which they stapled bare wires around the attics of their houses. Only a few years ago, a British engineer working on an Anglo-French joint construction project in the Middle East was watching a French electrician wiring up a street lamp. Horrified by what he saw, he remarked that if anyone broke into the control box they would be killed for sure. "Ah M'sieur" said the electrician, "You do not understand. In France, it is forbid the public to open these boxes."

\section*{AC/DC}

By the end of the 1880s in Europe and the USA, demand for electricity was fast outstripping what the small, city-centre power stations were able to supply. The answer was to build out-of-town, but this meant high transmission voltages, if the method was to be economically worthwhile. High voltage meant transformers, to step it down to domestic supply level, and transformers - unfortunately for Edison and the other champions of direct current - meant AC, unless they wished to tinker with alternators and commutators on either side of the iron core. The result was de Ferranti's Deptford power station, in 1891, which drove 10,000 volts an unprecedented 8 miles along underground cables to London's centre. Edison published pamphlets to warn the public that AC and DC were different things, the former being "fit only to power the electric chair", but the battle was lost, especially as Parsons steam turbines came to replace the inefficient and failureprone reciprocating engines in the power stations, making accurate frequency regulation possible for the first time. However, this all took time and, in the mid-1920s when the Government was trying to unify the electricity supply system, the UK still had over 200 DC town supply systems plus no less than 17 different \(A C\) frequencies. At the start of the First World War, only one British home in ten was on the mains and by the outbreak of World War Two the figure had barely reached one household in two.
So it was not in the area of public service supply that electricity established itself in the public consciousness during the 19th Century. Al-
though the power used was much smaller, it was the telegraph and its younger near-cousin, the telephone, that made the Victorian man-in-thestreet familiar with electricity and built up the manufacturing and operating skills which were to be drawn upon by power engineering at the end of the century. Where would the electricity supply companies have been in the 1880 s, for instance, if the telegraphs hadn't first inspired the factories which specialised in cables, insulated with that nowforgotten 19th Century wonder material, gutta-percha?
Where electric power supply was concerned, the trouble in the early 1830 s was that, while people knew more or less how to do it, they couldn't find any really convincing reason why, a question which would be answered only when Swan and Edison came along with the electric light bulb. But with the telegraph, things were very different; the need was there, ready-made, just waiting for electricity to come its way.

\section*{Long Distance Information}

Telegraphing information over long distances had excited a great deal of interest since the late 18th Century. In France, a semaphore telegraph system, developed by one M. Chappe, had been crucial during 1792-93 in enabling the Revolutionary government in Paris to move its raggle-taggle armies about the country to beat back the invading Allies. As is so often the case with inventors, they were so grateful to \(M\). Chappe afterwards, that the poor man cut his throat in despair. However, the British Admiralty was more appreciative and soon set up its own chain of telegraph towers which, on one famous occasion, got a message to Portsmouth and back in three minutes flat. But these telegraph systems were slow, useless in fog or at night and so expensive to man - one from Warsaw to Moscow neaded 1,300 men on duty at any one moment - that only the most urgent government business could justify them. They never really caught on though the Admiralty, conservative as ever, kept its semaphore network going well into the 1850 s on the ground that fiddling about with copper wires was damned un-seamanlike.

It had been known for some time that, among its many other properties, electricity travelled at amazing speeds. A French savant, had proved as much in the 1760 s , by connecting a circle of 200 Carthusian monks holding hands to a static generator (what a pity that photography had not been invented). So it is scarcely surprising that, by 1830 , some \(30-40\) different
electric telegraph systems had been invented; some were merely ingenious, like Soemmering's electrolytic telegraph of 1810 (the operator watched the lettered electrodes in a glass tank of water to see where the bubbles formed) and some very promising, like the Russian diplomat Baron Schilling's electo-magnetic telegraph of 1825, the first to use a simple code. What the telegraph needed, in order to become a practicable system, was a large-scale non-governmental user to furnish the sort of market which would make it worthwhile for someone to develop a cheap, fast, simple method. That customer materialised in the shape of the railways, which were spreading across Britain and the Eastern USA in the mid-1830s. They had soon found that they would need some quick and reliable method for all-weather, 24 -hour long-distance signalling if the countryside wasn't to resound with the crunch of colliding locomotives. They also needed (people often forget) common time for their trains to run to, something which simply hadn't existed in the pre-telegraph days when every time for their trains to run to, something which simply hadn't existed in the pre-telegraph days when every town set its clocks to its own midday, with the result that noon at Plymouth was 12.20 GMT. In Britain, the answer was provided by an invalided Indian Army subaltern and halfhearted medical student named William Cooke, who saw Schilling's telegraph at Munich and rushed home to team up with the scientist Charles Wheatstone in developing an electric telegraph to sell to the railways.
Though slow by later standards, their alphabetic needle-deflection apparatus could be used by an untrained operator. It was installed between Euston and Camden stations, in June 1937, and two years later a line was rigged up alongside the Great Western Railway between Paddington and West Drayton. Cooke and Wheatstone soon parted company amid great bitterness, but the idea of the electric telegraph remained, first coming into the headlines in January 1845, when a notorious murderer was arrested at Paddington after a message from the booking office at Slough station - "hanged by a copper wire" they said. The real breakthrough came, also in 1845, when the minor portrait painter Samuel Morse invented his code-based key telegraph which, in the end, did as much to open up the American West as the railways themselves (though you can't help wondering whether all the operators did, in fact, wear eyeshields and sleeve-bands as the TV Westerns portray them).


Baron Schilling's magnetic needle detector.

The first telegraph line was laid across the English Channel at the end of August 1850. So, the age of international telecommunications began - though it was cut off rather abruptly the next morning, when a fisherman. hauled up the fragile unarmoured wire that was fouling his anchor and hacked off a length of this queer, gold-filled seaweed for a souvenir. Later attempts were more successful and in 1855, the line laid beneath the Black Sea from the Allied HO in the Crimea to link up with the overland cable at Constantinople provided dramatic proof of the advantages of electric telegraphy. The British could get a message from Sebastopol to London in a couple of hours while the War Ministry in St. Petersburg had to wait weeks for news to come on horseback, across the steppes. In fact it is said that they ordered the London "Times" to find out what was going on at the front. It was only a matter of time before someone attempted a transatlantic link and, after several frustrating failures, the American entrepreneur Cyrus Field succeeded in laying a cable between Ireland and New. foundland in August 1858 - almost a miracle in view of the primitive technology and crude theoretical knowledge available to him. The link failed after less than a month of garbled, fitful operation, probably because the project's scientific adviser had insisted on using 2.000 volt spark coils to try to ram messages along the thin wire, thus burning out the insulation.

Further attempts were made, as business got back to normal after the American Civil War, and success was finally and permanently achieved on 27 July 1866, when the end of the cable was brought ashore from the vast, redundant passenger vessel the "Great Eastern" - the only ship in the world large enough to carry the amount
of cable necessary for the job. From then on, it was merely a question of extending the telegraph around the world. Technical improvements were few, until the advent of Frederick Creed and the telex machine in the early 1900s. In 1902, Creed found telegraph paper-tape messages being prepared, exactly as they had been in 1860 , by the operator pouding three metal plungers with a rubber-tipped stick held in each fist, a process which led to a crippling occupational illness called Telegraphist's Wrist.

\section*{Dirty Deeds}

The possibilities of the copper wire were not exhausted (for the time being) until the late 1870s when two inventors arrived - once again simultaneously - at a solution to the problem of transmitting human speech down the wire. This time it was a real photo-finish with. Alexander Graham Bell and Elisha Gray registering their reed-and-electro magnet telephone systems at the US Patents Office within hours of each other, on 14 February 1876. The result was a long and nasty lawsuit which was only resolved by the indefagitable Thomas Edison stealing both partys clothes with his carbon diaphragm mouthpiece, the ancestor of the modern telephone. The Strowger automatic telephone exchange was invented, some twenty years later, by a New York undertaker who had been brought to the verge of bankruptcy by an unscrupulous rival, who had bribed an exchange girl to route calls to Strowger through to his firm instead! With that, the telephone and telegraph systems had achieved very much the shape they still have, eighty years later, on the verge of the digital telecoms era.
The telegraph brought about drastic changes in the world. Newspapers, as we know them today, were built up around the telegraph office; the "Daily Telegraph" acknowledged as much in its title, when it was founded in 1855. In international relations, crises grew more difficult to handle, if anything, as the ambassador declined from being a minor potentate, acting on his own initiative, into a kind of decorative monkey at the end of a wire. The world grew a smaller place, but it still comes as something of a shock to remember that in September. 1914, Admiral vonSpees German Pacific squadron could be warmly greeted and sold supplies by the French community in the Marquesas Islands who, being hundreds of miles from the telegraph lines, were unaware that France and Germany had been at war for nearly two months. It was not until wireless telegraphy came along that instant worldwide communication began to make the Global Village, and Global Village Idiots, a possibility.

\section*{SUPER HI-FI SPEAKER} CABINETS
Made for an expensive Hi-Fi outfit - will sult any decor. Resonance \(21 /{ }^{\prime \prime}\) : tweeter. The front mater lat is Dacron. The completed unit is mos pleasing. Supplied in pairs, price E6.90 per pair (this is probably less han the original cost of one
cabinet) carriage \(£ 3,00\) the pair

\section*{GOODMANS SPEAKERS}
\(61 /{ }^{\prime \prime} 8\) ohm 25 wsit \(£ 4.50 .21 / /^{\prime \prime} 8\) ohm

tweeter. \(£ 2.50\). No extra for postage
ordered with cabinets. Xover \(£ 1.50\).
UNIVAC KEYBOARD BARGAIN
50 kevs, together with 5 miniature toggle switches all mounted on a p.c.b. together with 12 i.c. s, many
transistors and other part
\(\mathrm{E} 1350+\mathrm{cc}_{2} .00\) post.
Thls is far less than the value of the
switches alone. Diagram of this kev
board is available separately for \(£ 1\)


SOLENOID WITH PLUNGER
Mains operated \(£ 1.9\) \(10-12\) volts
operated \(£ 1.50\).

POPULAR K:TS
3. 30v VARIABLE VOLTAGE POWER SUPPLY UNIT With 1 amp DC oueput, for use on the bench, students,
inventors, service engineers, etc. Automatic short circuit inventors, service engineers, etc. Automatic short circuit front panel. Complete kit \(£ 13.80\)

IONISER KIT
Refresh your home, office, shop, work room, etc. with a negative ION generator. Makes you feel better and mork harder-comple
\(£ 11.95\) post \(£ 2.00\)

MORSE TRAINER
Coniplete kit \(£ 2.99\).
DRILL SPEED CONTROLLER
Complete kit \(£ 3.95\).
MAINS POWER SUPPLY
Gives any voltage from \(3 v\) to -16 v at up to 300 mA
Comple te klt less case \(\mathbf{E 1 . 9 5}\). Case 90 p .
OUR CAR STARTER AND CHARGER KIT has no doubr saved many motorlsts from embarrassment in an emergency you can star car off mains or bring vour battery up to full charge in a couple of bridge rectifiers, start/charge switch and full instructions. You can assernble this in the evening, box it up or leave it on the sheff in th garage whichever sults you best. Price \(£ 12.50+£ 3.00\) post

\section*{BUMPER BARGAIN PARCEL}

10 kilo of unused parts. Minimum 1000 items. Includes - relays. witches, motors, drils, taps and dies, thermostars, neoms, if at least one each of the following: panel meter, tlmer, thermal trip, and other expensive items. Indlvidually would cost well ove \(£ 100\). Yours for only \(£ 11.50+£ 3.00\) post.

MILLIONS OF HOMES WILL BE BURGLED THIS SUMMER - SAY THE EXPERTS
Don'r let yours be one of thern. Insiall our burgar alarm. Install our burglar alarm. Complete kit includes 6 external alarm bell, mains power unit conuol box with key switch 10 window/doo

TINIEST MICROPHONE
Not much bigger than a pea, 600 ohm condenser type, Ideal for
bugging and similar applications. 50 p each or 10 for \(£ 4.50\).

LEVEL METER
Size approximately y". square, scaled signal \(^{\text {sen }}\)
and power bur cover easily removable for rescaling. Sensltivity 200 UA . 75 p .


THERMOSTAT ASSORTMENT
10 different thermostats. 7 bl -metal types and 3 liquid types, There are the currert stats which will open the switch to protect in front of the element of a blow heater, the heat would trip the stat if the blower fuses; appliance stats, one for high temp eratures, others adjustable over a range of temperatures which could include \(0-100^{\circ} \mathrm{C}\). There is also a thermostatle pod which can be immersed, an oven stat, a calibrated boiler stat, finally an ice stat which, fitted to our waterproof hester element, up in the thermostats could cost around \(£ 15.00\)-. however, you can hav thermostats could co
the parcel for \(£ 2.50\).

\section*{3 CHANNEL SOUND TO LIGHT KIT}
ere kit o
par is for a
sound to light
unit controll. ing over 2000 watts of light ing. Use this
at home if


\section*{at home if
you wish but 1}

Is ptenty rugged enough for difco work. The unit is housed in an attractive two-tone metal case and has controls for each channel, and a master on/off. The audio inpur and outpur are by \(1 /{ }^{\prime \prime}\)
sockets and three panel mounting fuse holders provide thyristor protection. A four-pin plug and socket facilitate ease of connect ing lamps. Special snip.price is \(£ 14.95\) in kit form or \(£ 25.00\)

\section*{ULTRA SMALL 12v RELAYS}

Single pole gold plated contacts. Yubular construction, 17 mm
long 10 mm dia. Ideal for models. PCB or freemounting, \(£ 2.30\)

\section*{MINAITURE PLUG IN RELAYS}
\(12 v\) operated. 3 changeover. \(£ 2.45\), base 450
12 v operated. 2 changeover. \(£ 1.87\), base 35 p

\section*{THIS MONTH'S SNIPI}

ROTARY WAFER SWITCHES
5 amp silver plated contacts. X" shaf, 1 "" dia. water,
Single water types, 29 p each. as follows:
\(\begin{array}{lll}1 \text { pole } 12 \text { way } & 2 \text { pole } 6 \text { way } & 3 \text { pole } 4 \text { way } \\ 4 \text { pole } 3 \text { way } & 6 \text { pole } 2 \text { way } & 4 \text { pole } 3 \text { way }\end{array}\)
4 pole 3 way 6 pole 2 way 4 pole 3 way
Two wafer type, \(59 p\) each, as follows
2 pole 12 way 4 pole 5 way 4 pole 6 way
3 wafer types 99p ach
3 water types 99p each.
3 pole 12 way 6 pole 5 way 6 pole 6 way
9 pole 4 way \(\quad 12 p 3\) way \(\quad 18 p 2\) way

\section*{EXTRACTOR FAN} \(5^{-}\)'Woods extractor E5.75, Post \(£ 1.25\). Plannair extractor £6.50. Post \(£ 1.25\) \(\times 4^{\text {". Muffin }} 115 \mathrm{v}\). \(\times 4^{\circ}\) Mulfin 230 . E5.75. Post 75p.


8 POWERFUL BATTERY MOTORS For models, maccanos, drills remote con
etc. \(£ 2.95\).

\section*{TAPE PUNCH 8}

READER For controlling machine tools, exc, motorised 8 bit punch with matching tape reader. Ex-computers, be-
lieved in good working order, any not so lieved in good working order, any not so
would be exchanged. \(£ 17.50\) palr. Post £4.00.


MINI-MULTI TESTER Deluxe pocket slze precision mov ing coil instrument, Jewelled bearings - 2000 o.p.v. mirrored
11 instant range measures: DC volts \(10,50,250,1000\). AC volts \(10,50,250,1000\).
\[
D C \text { amps } 0-100 \mathrm{~mA}
\]


Continuity and resistance 0.1 meg ohims in two ranges. Complete with test prods and in-
struction book showing how to measure capaciry and inductance as well. Unbelievable value at only \(\mathrm{E} 5.75+60 \mathrm{p}\) post and insurance.
FREE Amps range kit to enble you to read Current from 0.10 amps, directly on the 0.10 scale. It's free if you purchase quickly, but of you alread
own a Mini-Tester and would like one, send \(£ 2.50\).

12V FLUORESCENT LIGHTING
For camping - car repairing - empergeny lighting rom a 12 z battery you can't beat fluorescent lighting. It will offer pl
distributed light and is
distributed light
offer an inverter
for \(21^{\prime \prime} 13\) watt
miniature fluores-
cent tube. \(£ 3.45\).
(tube not supplied).


413 OUR CURRENT BARGAIN LIST WILL BE ENCLOSED WITH ALL ORDERS.

\section*{TRANSMITTER SURVEILLANCE}

Tiny, easily hidden but which will enable conversation to be electronic parts and circuit. \(£ 2.30\). Inot licenceable in - all RADIO MIKE
Ideal for discos and garden parties, allows complete freedom of movement. Play through FM radio or tuner amp. \(\mathbf{E 6 . 9 0} \mathrm{comp}\). kit. (not licenceable in the U.K.).

\section*{FM RECEIVER}

Made up and working, complete with scale and pointer needs only headphones, ide.
or radio mike. \(\mathbf{E 5} .85\).


VENNER TIIVE SWITCH Mains operated with 20 amp switch, one on and one off per 24 hrs. repeats daily automatically correcting for the lengthen ing or shortening day. An expensive time These are withour cose bur we can supply a plastic base \(£ 1.75\) or metal case with window \(£ 2.95\). Also available is adaptor kit to convert this into a normal 24 hr . time switch but with the added advantage of up 1012 on/offs per 24 hrs. This makes n ideal controllerfor the immersion heater. Price of adaptor kit is \(£ 2.30\).

STEREO HEADPHONES
impedance, padded, term inating with saded, term: jack-plug E2.99 post 60 p.


TIME SWITCH BARGAIN large clear mains frequency controlled the correct time + start and ston swit es with dials. Complete with knobs. es with
e 2.50 .

\section*{DELAY SWITCH}

Mains operated - delay can be accurately set with pointers knob for periods of up to 2 1/hrs. 2 contacts sultable to switch 10 utes after 1 st contact \(£ 1.95\)


MOTORS FOR ROBOTICS
If its a toy robot you are making then one of our eight battery motors (see centre column) may do. It its a bigger one, however then see below If still not big enough then enqui.

12v MOTOR BY SMITHS Made for use in cars, these are series wound and they become more powerful as load increases. Size \(3 \mathrm{y}^{\prime \prime}\) long by \(3^{\circ "}\) dia. These have a good length of \(Y^{\prime \prime}\) spindle - price \(£ 3.45\).
Ditto, but double ended \(£ 4.25\).

\section*{EXTRA POWERFUL 12v MOTOR}
develops up to \(1 / \mathrm{h} . \mathrm{p}\)., so it could be used to power a go-kurt or to drive a


\section*{SPIT MOTORS}


These are powerful mains operated induction motors with gear box attached. The final shatt is a " \(/\) "rod with square hole, so vou have altern ative couplingmethods - final speed
is approx. 5 revs \(/ \mathrm{min}\), price \(£ 5.50\). is approx. 5 revs/min. price sotors with final speeds of \(80,100,160\) \& \(200 \mathrm{r} . \mathrm{p} . \mathrm{m}\). same price

REVERSIBLE MOTOR WITH CONTROL GEAR Made by the famous Framco Company this is a very robust motor size approximately \(7 \mathrm{~K}^{\prime \prime}\) long, \(3 \%{ }^{\prime \prime}\) dia. \(3 / 8^{\prime \prime}\) shaft, Tremendously powerful motor, almost impossible to stop. Ideal for operating stage curtains, sliding doors, ventilators etc., even garage doors if dequately counter-balanced. We offer the motor complete with control gear as follows

1 Frameo motor with gear box
1 manual reversing and on/off switch
2 limir auto transformer 1 push 10 start awitch

1 circult gliag. of connections. \(\mathbf{1 9 . 5 0}\) plus postage \(£ 2.50\).

\title{
SCALING the
Hi-Fi HEIGHTS Part5 \\ 
}

\section*{The final installment looks at adding a cassette deck to a basic system.}

CASSETTE RECORDERS appear in just about all rack systems, these days, and continue to outsell tuners as the most popular addition to a record player system. Home recording of LPs and singles (with the appropriate license of course!) is a widespread and popular method of enlarging a music collection; in addition there is the advantage of taping an LP-length selection of the best tracks of several records or artists. Miss out the boring bits, to order!

Reel-to-reel tape recorders have all but faded from the home hi-fi scene. There are only a handful of models remaining and these tend to be at the 'top-end' of the market, with prices in the \(£ 500+\) bracket. They are outside our scope at present, as they are an unlikely addition to a first system.

\section*{Basic Theory}

A music signal is recorded on to tape by the ppocess of magnetisation. It is mixed with a high-frequency sinewave, at around \(100-170 \mathrm{kHz}\), and fed to a coil and magnetic pole-piece arrangement, past which travels a magnetically coated plastic strip - the tape! The highfrequency signal is referred to as the 'bias', while the coil and poles form the 'recording head'.

Bias is required to ensure that the amount of magnetisation of the tape particles is directly proportional to the audio signal strength.

Even so, the music has to be passed through an equalisation stage, both before and after recording, to get a 'flat' response. This compensates for the varying sensitivity of the tape at different frequencies and - in theory, anyway - the equalisation circuitry produces the same result in all tape recorders, regardless of manufacture. Tapes recorded on one machine should be able to be replayed satisfactorily on another!

Years ago, the equalisation was set to produce large amounts of bass cut \((7 \mathrm{~dB}\) at 50 Hz ) but, with the ever increasing quality of tape and improved noise reduction systems, this has been substantially modified to suit the new, better quality tapes.

\section*{Biased View}

Too little bias, for a given tape, results in lacking of frequency extremes, ie bass and treble. As the amount of bias is increased, treble response improves rapidly followed by the bass, some dBs of bias strength later. Unfortunately, there is not a single level which optimises both HF and LF. To compound matters still further, distortion and some noise effects are also highly dependent upon bias level.

A compromise level is usually selected, but this still results in a considerably reduced HF level, a problem which is overcome by boosting the top end of the signal before recording (preequalisation).

\section*{Reducing Noise}

Partially because of this high frequency boost, signal-to-noise levels (ie, how much louder the music appears above the unwanted hiss and hum, etc) would be unacceptable by hi-fi standards without some method to control tape hiss.

The most popular system is the Dolby ' \(B\) ' noise reduction system, which is to be found on 99\% of all cassette machines sold today. It operates by 'sloping' the frequency response to a degree dependent upon the signal level, so that the treble signal is boosted still further before recording and and then cut by exactly the same amount upon replay. Since the noise added during recording is nearly all above 5 kHz , the cut in response upon replay will not only balance the boost in the recorded signal, but will cut down the added noise by the same amount usually around, 10 dB . The difference is
dramatic, and sufficient to take the cassette medium to an acceptable noise performance.

A recent development is the Dolby C System which is claimed to not only improve noise performance still further, but to also increase the dynamic range (the difference between the loudest and the softest signal replayable) of the recording machine.

Of late, the dbx company have been pushing their 'compressor' method of reducing noise on tape quite hard and have succeeded in having it adopted by some professional machine manufacturers. The system operates differently to the Dolby variations, in that it compresses, or squashes down, the entire signal before recording, considerably reducing the variations in signal level. Upon replay the original differences are restored to the signal (expansion) once more pushing tape noise down to irrelevant levels. Much greater reduction in noise is possible with dbx, but it continues to have problems producing a playback as smooth as that which went into the record headl

There have been variations upon these themes; Philips and JVC have both produced their own noise reductions sytems neither of which are compatible with Dolby B. Interestingly, the JVC machine carried the Dolby system alongside their own 'ANRS' system.

\section*{Performance Parameters}

There are a fair number of specifications connected with tape machines and very few are irrelevant. Some are accorded an importance they do not actually possess - much in the same manner that a particular feature of an amplifier, operating class for example, can be made into an advertising lead story for no other reason than that of convenience. We will be taking a brief look at the specs concerned with performance and working through


Figure 1. The frequency response generated by a tape head. This is the curve produced by recording a set of frequencies which have identical levels. As you can see, they don't stay that way!


Figure 2. This is the equalising response required by the tape pre-amp circuitry to compensate for the curve of Figure 1. This will also help reduce the noise generated by the machine.


Figure 3. The result of combining the responses of Figures 1 and 2. A much more linear signal is recorded onto the tape.
the pros and cons of the different tape types on the market.

Ratios of noise: With whatever noisereducer it has operating, a cassette machine should be able to better 65 dB (weighted) signal-to-noise ratio. What happens with the noise reduction out is really irrelevant, unless you happen to enjoy hiss!
Responding to frequencies: As the limits of human hearing are approximately \(20 \mathrm{~Hz}-20 \mathrm{kHz}\), it is the aim of all hi-fi equipment to reproduce this range as faithfully as possible. Early cassette machines and tapes could hardly better 10 kHz as an upper limit of performance. Nakamichi took the art to 20 kHz before anyone else, but have since been followed beyond 15 kHz by the majority of manufacturers with metal and/or \(\mathrm{C}_{2} \mathrm{O}_{2}\) tapes. A good tape deck, these days, should achieve 15 kHz without too much strain. When choosing a tape deck, pay particular attention to the manner in which it replays the extremes of the frequency specturm; all too often, an incorrectly adjusted machine will produce an uneven bass end.
Speedy Variations: Speed control of the tape itself is obviously of prime importance. Wow and flutter will be as noticeable on cassette machines as it is on record decks. On all but the most
budget of budget models there should be no audible speed variations. As long as the peak \(W+F\) lies below \(0.2 \%\), all will be well. (Wow is the term applied to long-term speed çharges and flutter refers to short-term, rapid oscillations in speed). Some of the better (ie higher priced) decks produce figures in the order of \(0.05 \%\), some four times better than the acceptable threshold.
Distorting the Truth: There are two types of distortion produced by a cassette deck; that generated by the electronics, and the odd harmonic distortions produced by the act of recording onto the tape itself - some intermodulation distortion (one frequency interfering with another) is also added to an signal by the process of recording. The electronics will add something of its own but, if the specified input levels are kept to, then the additions will be minimal. If they are exceeded, then, just like the freestanding amplifier, the deck will 'clip' the tops off the incoming waveform, distorting it badly. Acceptable total distortion figures - bearing in mind that results will vary with different types of tape - are anything less than \(1 \%\). Considerably more than for amplifiers, is it not? With the correct tape, and if the machine is set up perfectly, it is possible to better \(0.2 \%\), but it's a struggle!

\section*{Non-Facile Facilities}

Of all the many, many facilities you will be offered on decks these days, which are worth having? Not many, but these are worth consideration.

Variable bias: The most useful add-on you can have. It must be backed-up with test oscillators, which allow you to set up the correct level of bias for good results at both low and high frequencies. Setting up the correct bias will optimise noise, frequency response and distortion; simple switching for different tape types is not really sufficient, any longer.
Peak metering: Or as near to peak as you can get, anyway. It is imperative for best quality results that the meters read as close to signal peaks as they can. Those parts of the signal which exceed the recommended maximum recording level will be grossly distorted and heavily compressed. Not good for the aurals. Good metering is expensive so if you are serious about making your own tapes, look closely at what each machine in your price range offers. Don't assume that just because the display is electronic ,ie LCD, or LED, that the meters are brilliant. The circuitry behind the displays might not be set up to peak-read.
Three heads: Are not necessarily better


Figure 4. Without bias, distorion will ocurr when signals are recorded (above). Using high-frequency bias shifts the signal into a more linear region of the magnetisation curve. Result: less distortion.



Figure 5. Bias level has a critical point, beyond which, high frequencies are attenuated. Reduction of distortion has to be balanced against loss of treble.


Figure 6. Block diagram of the Dolby \(C\) noise reduction system. The top circuit is the encoder, the lower is the decoder.
than two. Without the third head monitoring what is actually being recorded on to the tape is impossible. The importance of this, however, depends upon your personal taste; it's nice to have, but unless you're making your own music, not essential. Don't spend on the extra peice of metal unless the rest of the package is right for you.
Two Speeds: Some decks are now offer ing another speed in addition to the universal \(17 / 8 \mathrm{ips}\). Not all manufacturers offer the same alternative, however. The excellent, but now deceased, Elcaset ran at \(33 / 4 \mathrm{ips}\) and obtained higher performance as a result. There are now machines to be bought which offer 15/16 ips - but with reduced performance, naturally. Their main usage is for background music
MPX Filters: FM radios employ a tone at 19 kHz and another at 38 kHz as part of their method of operation. These should be filtered out at the tuner itself, but might not be completely removed from the signal presented to the tape deck. As the bias signal is also a high frequency tone, if the two are in any way connected, ie one a whole number multiple of the other, they will interact and 'beat' like two tuning forks. An MPX filter is there to remove these multiplex (MPX) tones, ensuring clean recording. With the advanced state of tuner technology today, the MPX filter is probably a bit redundant, although it is good insurance to have one somewhere on the front panel, should you wish to make tapes off-air.

\section*{Tape Types}

There are four catagories of tapes available for cassette machines, nowadays and even manufacturers are beginning to refer to them as "groups

I-IV'". Bias controls can thus be labelled 1-4 to avoid any possible confusion. Tape packaging should carry either a bias/ equalisation setting or a simple "Group X" indication. The four types are: -
(i) Ferric (or normal)
(ii) Chromium dioxide
(iii) Ferri-Chrome (or \(\mathrm{Fe}_{\mathrm{e}} \mathrm{C}_{1}\) )
(iv) Metal (oriron)

Taking the four in order, lets have a look at the pros and cons of the different formulations.
Group 1: Ferric Oxide. These were the first tapes to be released and were set up by the Philips specification for equalisation, etc. A fairly severe bass roll-off was employed; the equalisation time constant associated with this was 120 uS. Setting the equalisation switch to ' 1 ' or 'Normal' achieves this figure.
Advantages: the tapes are cheap, widely available and compatible with cheap portable recorders.
Disadvantages: limited output levels, high noise (comparitively) and high frequency compression.
Generally not recommended for hi-fi usage.
Group 2: Chromium Dioxide. Introduced to overcome the drawbacks of ferric formulations, \(\mathrm{C}_{1} \mathrm{O}_{2}\) allowed a reduction in replay boost, thus cutting down perceived hiss considerably. The main drawback to chrome tapes is their low 'headroom' at mid-range frequencies - they will not take a high recording level at all; the particles 'saturate' and refuse to accept further magnetisation. Around 5 dB more bias must be used with \(\mathrm{C}_{\mathrm{r}} \mathrm{O}_{2}\) tapes, applied by switching to position ' 2 '. For several other reasons, their manufacture is being discontinued by some manufacturers; chrome tapes may soon be seen as a short term answer, since superseded.

Some manufacturers have produced tapes which are basically ferric oxide, in chemical make-up, but are designed for use at the higher bias and different equalisation settings of Group 2 tapes. Group 3: Ferrichrome. Since ferric oxide had problems and chrome tapes had failed to solve them, some bright spark had the idea of producing a tape using layers of both ferric and chrome - Ferrichrome! The idea was to overcome the need for excessive bias levels and provide a better noise performance. Ferric bias and Chrome equalisation settings were recommended, but quite a few machines have no position ' 3 ' - use half of ' 1 ' and half of ' 2 '! lm proved noise performance over ferric was achieved and some newer decks work well with these formulations.
Disadvantages: Increased mid-range distortions and higher cost.
Group 4: Metal. Iron is the most easily magnetised material of all and it follows, therefore, that if you could coat a tape with iron filings, it would hold a music signal beautifullyl Group 4 tapes are an attempt to gain the maximum possible performance by using this best of all materials. Very high bias currents are required to imprint the signal on to the iron coating of the material - some 9 dB more than for normal tapes, in fact. This has led to improvements in recording head technology, simply to accept all this extra bias signal. The early metal decks gave little, if any, improvement in replay quality over Ferrichrome, but this has changed dramatically recently and the latest models offer superlative performance with Group 4 formulations. Immediate advantages are an improved high frequency response, less noise and cleaner mid-range with lower distortion.
Disadvantages: Cost, cost and more cost. Very expensive approximation to perfection, this.. Try a couple on your machine before buying in any numbers.

\section*{Some Model Models}

Once more, we round off by offering a shopping list of units with which we have had some experience. All the decks listed herein have been tested by us at some stage and found to offer good value for money and high performance. All are worth a look.

\section*{Under \(£ 100\)}

Pioneer CT-320
Aiwa AD3100
£ 100 - £200
Technics RSM250
Pioneer CT-200
Trio KX-800
\[
£ 200-£ 300
\]

Sony TCK81
Nakamichi N480

\section*{Expensive}

Alpage AL300
NakamichiN1000XL Nakamichi N681Z


Figure 7. Dolby C actually operates in two stages. At no time is the signal processed by more than a single stage. Combined, the two stages produce \(\mathbf{2 0 ~ d B}\) noise reduction.



Figure 8. The dbx Type II noise reduction system in block diagram form. Although shown being used for a tape recorder, the system is equally applicable to disc.



\section*{Micro-processor} universal Timer

This incredibly versatile programmable timer can control up to 20 functions at accurately timed intervals over a period of a week. Originally developed for industrial and laboratory use it offers many interesting and exciting possibilities for the amateur constructor. Based on a pre-programme TMS 1000 Microprocessor, the unit provides a 24 hour clock with four independent relay controlled outputs with


THE VELLEMAN KIT RANGE
2.2 Watt mini amplifier

Mono VU using LED's
7 Watt amplifier
Dimmer 1000 Wat
Dimmer 1000 Wattldeparasite)
High precision stopwatch
Microprocessor Universal timer
20 Watt monolithic amolifier
FM oscillator
Stereo VU using LED's
Universal mono pre-amplifier
60 Wart power amplifier
Power supply 1 Amp
Power supply for stereo 60 Watt amplifier
Running light
Digital panel meter
Single digit counter
Transistor ignition
Complex sound generator
50 Hz crystal base
4 channel infra-red remote control ltransmitter or receiver)
Infra-red detection system Itransmitter or receiver)
Central alarm unit
FM stereo decoder
High quality FM tuner
Digital frequency counter for receivers
CB power supoly 3.5 Amp 12 V
Digital thermometer
FM stereo receiver ( 19 in . rack-mounting)
2 channel infra-red remote control light
dimmer (transmitter or receiver)
Infra-red receiver for tuner K2558
Infra-red transmitter for tuner K2558
Tape/slide synchronizer
3 channel coloured light organ
20 cm display (common anode)
20 cm display (common cathode)
Three tone bell
5-14V DC 1 Amp Universal power supply
Light computer
Universal stereo pre-amplifier
Stereo RIAA corrector amplifier
Universal 4 digit up/down counter with comparator
Microprocessor doorbell with 25 tunes
40 Watt audio amplifier
Electric drill speed contro
Microprocessor-controlled EPROM
programmer (kit form)
Microprocessor-controlled EPROM
programmer (built and tested)
Universal start/stop time
The programmable timer can provide central control of domestic electrical cooking, heating and entertainment equipment.
The possibilities are limited only by the imagination of the user Control of house lighting to discourage intruders; control of TV or audio equipment; sound or video recording control; automatic plant watering; automatic pet doors or feeding-are a few simple examples. For the professional or industrial user many uses in this area of process control will be found

\section*{TECHNICAL DATA:}

Power supply
Mounted on separate pcb with space for up to four outou control relays. Requires 12V/1A transtormer
CONTROL SWITCHING
Standard relays (one supplied with kit) will switch \(2 A\) Additional relays may be ordered separately.

National relay, order no. HT 12 V
Siemans relay, order no. AI INV12

MICROPROCESSOR
TMS 1000
DISPLAYS:
12 mm 7 segment LED numerical display. LED programme function indicators. DIFFICULTY GRADE: 3 KIT NUMBER: K1682

Repair Service available (for a nominal chargel if your soldering technique is not quite what it should be!

Any technical enquiries welcomed -in writing-and will be answered promptly by letter.

\section*{TRADE ENQUIRIES WELCOME}

P.O. Box 30. St. Leonards-on-Sea, East Sussex TN37 7NL Tel: Hastings (0424) 753246

\footnotetext{
Please send me your free catalogue of Velleman electronic kits.
}

Name


\section*{A useful and inexpensive addition to your workshop.}

IF you are interested in building, servicing, or perhaps even designing audio frequency (AF) equipment of any kind, you are unlikely to get very far without the aid of a few basic items of test equipment. One of the most essential is a signal generator. For most audio tests and measurements, what is required is a good quality sinewave signal at ăny frequency within the audio spectrum. It should provide an output level that can be adjusted from zero to at least 1 volt RMS and that does not change significantly with alterations of the output frequency.

Our design fulfills these requirements; as it covers a frequency range of approximately 20 Hertz to 30 kHz in three ranges \((20 \mathrm{~Hz}\) to 300 Hz , 200 Hz to 3 kHz , and 2 kHz to 30 kHz ) and has a built-in stabilisation circuit that allows no significant change in the output level over this range. It is important that the output should be reasonably pure sinewave since any distortion of the waveshape may produce unwanted frequencies at the output. These could rosult in misleading readings when making frequency response tests and similar measurements. The total noise and distortion on the output of our design is less than \(0.05 \%\), which is good enough for any normal audio testing.

The unit has a maximum output level of about 1.6 volts RMS and this is continuously variable down to zero by means of a potentiometer and a three position switched attenuator. The low output impedance of the unit helps to
maintain the output level under high load conditions.

\section*{The Circuit}

The full circuit diagram of the unit is shown in Figure 1. It is built around an audio power amplifier IC and, although this may seem an unusual choice, it is actually ideal for this for this application since it gives low levels of noise and distortion plus a low output impedance, so that loading of the output is unlikely to cause a significant reduction in the
output level or an increase in distortion.
The IC employed in the circuit is the TDA2006 which is similar to an ordinary operational amplifier IC, but has a high power output stage. This enables it to be readily used in a Wien Bridge oscillator, the configuration normally used in high quality sinewave generators. Like many operational amplifier circuits this one has dual balanced supplies, provided by two 9 volt batteries.


The internal view - not much of it, is there?

A Wien bridge oscillator uses two capacitors and two resistors to provide zero phase shift at the operating frequency of the circuit, but appreciable phase shift at all other frequencies. The Wien network, therefore, gives maximum positive feedback at its operating frequency and, provided the amplifier has sufficient voltage gain, oscillation occurs at this frequency. The loss through Wien network, at its operating frequency, is about 10 dB (three times), so the amplifier needs to have some voltage gain to sustain oscillation.

In this circuit the two capacitors in the Wien network are whichever two are switched into circuit by SW1; the use of three switched sets of capacitors gives the unit three ranges. One resistance of the Wien network is formed by R1 and RV1 a in series, while the other is formed by R3 and RV1b. By making the two resistances adjustable, the unit can be tuned over each of the three frequency ranges. The operating frequency of a Wien network, incidentally, is \(f_{0}=1 / 2 R C\).

The voltage gain provided by IC 1 is controlled by TH1 and R2, which form a simple negative feedback network; the voltage gain of the circuit is equal to the resistance of TH1 plus R2, divided by the resistance of R2. TH1 is a self heating, negative temperature coefficient thermistor. This simply means that it is enclosed in a glass envelope (in a vacuum) so that it is isolated from the surrounding temperature. It is intended to respond to the heating effect of a current passed through it, with a rise in temperature giving a reduction in resistance.

At switch-on TH1 will be 'cold' and will have a high resistance, giving IC 1 a high voltage gain. This results in the circuit oscillating very strongly and a fairly high current fed through TH1 and R2 from the output. This current has a strong heating effect, so that the resistance of TH1 drops sharply; IC1's voltage gain is reduced and the circuit oscillates gently, but reliably, giving a good output waveform. If loading on the output, or some other factor, should cause a reduction in the amplitude of the signal at the output, the current through TH1 will be reduced slightly, its resistance increases and the output signal level will be restored to its original level. If the output level should increase for some reason, the opposite effect occurs; the current through TH1 rises, the voltage gain of IC1 is reduced and the output signal level falls back down again. Thus the thermistor AGC circuit ensures a pure output signal of constant amplitude. The output of IC1 is coupled by C8 to variable attenuator (RV2) and then to a conventional three step switched attenuator attenuation factors of 0,20 , and 40 dB . Although this attenuator might seem to be excessive, with VR2 in the circuit, it is in fact useful for reducing the output level when a very low amplitude signal is required - adjustments using RV2 alone would otherwise become very critical and difficult!


Figure 1. The circuit diagram.

\section*{Construction}

Start by cutting the stripboard to size 113 strips by 24 holes) using a hacksaw, and drill the two mounting holes to take 6BA or M3 fixings (about 3.2 mm in diameter in either case). Next, solder the components into place (there are no breaks in the copper strips) following the component layout shown in Figure 2. TH 1 is mounted horizontally
on the board and should be treated reasonably carefully as it has a glass encapsulation. Splay the leadout wires of IC1 slightly to compensate for a different pitch to that of the board. Make sure, C8 is connected the right way round.

Now drill the front panel of the case to take the five controls and output socket. We used a sloping front case but you can of course, use an ordinary



\(\begin{array}{lllllllllllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24\end{array}\)
Figure 2. The component layout (top) and the solder 'dot pattern' (bottom). Note that there are no cuts in the Veroboard tracks.
type is you prefer. Mount C2, C3, C4, C5, C6 and C7 and R4, R5 and R6 on SW2, as shown in Figure 3. Then complete the rest of the wiring - this is also illustrated in Figure 3.

A couple of PP3 batteries are used to power the unit, and have a resonably long operating life. However, the current drain from each battery is about 15 mA , and it would be advisable to use larger batteries (say a couple of PP6s or PP7s) if the unit is likely to receive a great deal of use.


Figure 3 (top). One of the reasons the Veroboard layout is so straightforward is that most of the components are wired to the panel controls! Follow the diagram carefully, making sure that the wires go to the connection points indicated.

Figure 4 (bottom). Templates for the frequency scale (left) and the fine level control (right). They are not intended to be accurate, only to give an indication of the frequency or output level. The frequency scale is multiplied by one on Range 1 , by 10 on Range 2 and by 100 on Range 3.

\section*{How It Works}

The circuit is built around an audio power amplifer IC which, as usual, has two inputs - an inverting ( - ) input and a non-inverting ( + ) input. Positive feedback is applied from the output to the non-inverting input and it is made frequency selective so that the frequency of oscillation can be set. However, the circuit will oscillate only if the amplifier has sufficient gain. Excessive gain will result in the output waveform becoming distorted and producing unwanted frequencies, so the gain is maintained at just the right level by an AGC circuit in the negative feedback loop from the output to the inverting input. A switched attenuator at the output enables the amplitude of the signal to be reduced by a factor of 10 or 100; there is also a 'volume control' attenuator which enables the signal to be continuously varied from zero up to the maximum level permitted by the switched attenuator.


 basics - this revolutionary book represents a breakthrough in the understanding of electronics!


Fully illustrated in colour with easy to follow cartoons.


FREE circuit board for initial practical work.
The easy, entertaining way for beginners aged 7-70 to get started.

\section*{THERE'S NOTHING ELSE LIKEITORDER NOW!}

\title{
CHARLES BABBAGE
}

Charles Babbage was born in Teignmouth, South Devon, to wealthy parents who gave him that most precious gift a good education, with considerable encouragement to his mathematical talents. These were evident, as is often the case, at a very early age. By the age of 20 he had founded the Analytical Society, which was intended to encourage the teaching of mathematics in this country and, in particular, to make better known in Britain the developments in mathematics which were taking place across the Channel. His work earned him a place as a Fellow of the Royal Society in 1816 , making him one of the youngest men ever to have been elected as FRS.

By that time, he had started the work which was to win him a place in history. In 1812, he had been captivated by the thought that mathematical tables, such as logarithms, could be calculated mechanically instead of being laboriously computed by hand, as it were. During 1813, he constructed a small mechanical calculator, similar in principle to the kind of thing that is nowadays sold as a toy, but able to calculate values to eight decimal places. His work revealed several mistakes in earlier sets of tables, and led to a considerable improvement in the accuracy of engineering calculations.

The Industrial Revolution was accompanied by a demand for some method of coping with more complicated calculations, particularly for solving those problems in mechanical engineering which would be very laborious to carry out by traditional pen-and-paper methods. In 1823 Babbage was commissioned by the Government of the day to construct a mechanical calculator which would work to 20 decimal places, a task which he completed despite the formidable difficulties involved. The problem of backlash in gear trains, for example, was one that plagued any attempt to use mechanical methods for precision equipment. Remember that in 1823 the idea of using electricity for performing calculations was a century too early. It was, after all, in the same decade that Michael Faraday, demonstrating the first dynamo, was asked what use could possibly be made of it! Don't laugh - the opponents of electricity, then, used exactly the same arguments as the opponents of nuclear power do now.

By 1828 , Babbage's career was sufficiently distinguished to ensure his appointment as Lucasian Professor of Mathematics at Cambridge, a post which he held with distinction until 1839. It was in 1834 that he embarked on a scheme which, though doomed to failure by the inadequate technology of the time, was to prove his masterpiece. This was the 'analytical engine' - to us, us, a computer. His design owed a debt

a computer. His design owed a debt to an earlier engineer, Jacquard. Jacquard was a designer of looms for weaving complicated patterns and he had devised a system of loom control that can only be described as programming. A set of punched cards was fed into a controller and holes in the cards were detected by a set of rods which were then used to select the threads for the weaving. The Jacquard system was fast and accurate, once the program was correctly punched, and gave its users an enormous advantage over their competitors, putting thousands into work. Another demonstration of the fact that success comes by chasing new ideas, not by propping up old ones.

Babbage reasoned that Jacquard's loom system could also be used to control a calculating machine and he started work on a specification, for which he received another Government grant. His specification shows that he thoroughly understood all the ideas that we now deem essential in computing. He realised, for example, that there could be several types of inputs to the machine, which he called number codes (data, as we now callit), direction codes to control the movement of numbers (addressing), and operation codes to determine what would be done with a number (opcodes).

His anticipation of modern computing methods was complete. He made it clear, for example, that an essential operation of his analytical engine would be the conditional transfer - what we now call a branch or jump. The idea, then as now, was that when the result of an operation was well defined, Jike being
zero, negative, or positive, it could be used to decide what the next operation should be, choosing betwen two or more options. This, undoubtedly, is the feature that distinguishes the programmable calculator and the computer from the ordinary calculator and there is plenty of evidence to show that Babbage was well aware of its importance.

He also seems to have followed up the possibility that the results of a calculation could be used to change some of the operating codes, so that the program could modify itself -, even nowadays, this is considered as pretty advanced programming. Babbage's ideas were never very well circulated, and few among his contemporaries had any idea of what he was aiming at and how important his work would be. One notable exception was Ada, Countess Lovelace, daughter of the poet, Lord Byron. She goes down in history as the first computer programmet, because she seems to have grasped Babbage's designs well enough to write several programs for the machine - even though it was never completed.

All they needed was technology. There was simply no way that mechanical methods using gears, with all the problems of backlash, could cope. with such advanced designs and electricity was still a curiosity. By 1842, the Government, which had been remarkably patient, withdrew its support and the Babbage computer was never completed.

Another attempt to make a Babbage machine was made by a Swedish mathematician in Stockholm in 1855, but this too had to be abandoned. Babbage, disheartened, made no attempts to follow up his own work and died in 1871, in London, without having seen his dream fulfilled.

His working life was one of continual problem-solving and invention but few people realise, to this day, the extent of his work. It was Babbage who compiled the first actuarial tables lexpectance of life), on which all life insurance is based and these tables still give a better picture of our health than any other evidence. They show, for example, the remarkable rise in life expectancy over the past 100 years. If you think that the simple life is a healthy one, look up the actuarial tables for the 1860 s - they make chilling reading; the simple reason for the Victorian families of 10 to 20 children was the hope that one or two of them might actually survive to adulthood.) Babbage should be remembered,as the man who brought these awful statistics to our attention. He also invented the cowcatcher, used on US railway locomotives in the pioneer days, and the speedometer; but his pioneering effort on computers, rediscovered in 1937. are the greatest monument to his genius. MI

\section*{GREENWELD}

443F Millbrook Road, Southampton, SO1 OHX All prices include VAT at \(15 \%\) - just add 50 p post


\section*{LIE DETECTOR}

Not a tov, this precision Instrument was originally parn or an "apen University" course, used 10
measure a change in emotional belance, or as alie detector Full details of how to use it are given,
and a circuin diagram. Supplied complete with and a circuil diagram. Supplied complete with

AMAZINGI COMPUTER GAMES
PCBs FOR PEANUTSI! A bulk purchase of PCBs from several well-known
comouter games including Bartleshios. simon computer games including batiles hips. Simon
and Startird enable us to ofter these at incredible low prices:

COMPUTER BATTLESHIPS
Probably one of the most popular eiectronic games on the markel. Unfortunately the design
makos it impractical to tost the PCB as a working makos it impractical to test the PCB as a working
model, eithough it may well function pertectry. Instead we have tested the sound chip, and seli the boord for its component value. SNT7 SMT sound \(I C\) TMS 1000 -processor; bant clips, R's.
C'setc. Size \(160 \times 140 \mathrm{~mm}\).
Only EE1.50 - etc. Size \(160 \times 140 \mathrm{~mm}\).

\section*{STARBIRD}

Gives realistic angine sounds and flashing laser blasts - accelerating engine noise when module
is poimed up, is poimed up, oecelerating notse when pointed
down. Presss contact to see tlash and hear blast of lasers shooting. PCB tested and working


MICROVISION CARTRIDGES micro processo
the microvision chip, designed to plug in to the mucrovision
console. Onily snag is, we don's have any consolestI However. they can be used as an
osciinator with 4 difterent frea, outouts simply by connecting a batrery and speaker. Tested and working las an oscl with pin out data. PCB size

\section*{eachll}

\section*{'SIMON'}

The object of this game is to repeat correctly a longer and longer sequence of signals in \({ }^{3}\)
different games. (Instructions incluced) PCB contains chips, lamphoverers and lamps, and is lested working, complete with speaker. Neess
PP3 end \(2 \times\) HP11. PCB size \(130 \times 130 \mathrm{~mm}\) Only \({ }_{f}^{\text {PP3 }} 95\)

LOGIC 5 PANEL Tested Logic 5 now sold out - but we have some
PCB's with 10 LED's and chto on, but no keyboarch
Not

OPTO/REGS/OP-AMPS
FNA5220 2 digit \(1 / 2^{\prime \prime} 7\)-seg. display on PCB, 7 -seg displays: FND360, 367, 501, all 50p; 530, 847. 850, a11 11.50 .
Reos. 703 , 7924 1200, 7985 1000, 7808 1000p. \(7912100 \mathrm{p}, 78 \mathrm{CB}\) 230p. Others on B / / 13. Op-Amps: UA\&136 130p: UAㄱ76 145p: UATM 300p iuA318245p.
Isolators: FCD831, H 15 , TIL 118 , all 60 p
und \(A-F\). With dara, \(E 3.50\).

\section*{COMPONENT PACKS}
\({ }^{k 503} 150\) wirewound resistors from \(1 W\) to
 including single ganged, rotary and slider K511 200 small value poly, mica, ceramic cals \(\mathrm{E1.70}\) \(k 514\) a few pf to .02uF Excellen varient a thousand pF. Tolerances from \(1 \% 1010 \% \quad \mathrm{Ez}\) K 520 Switch Pack, 20 different, rocker, slide,
 K527 Healsh
\(200 \mathrm{~mm}, 500\)

\section*{PANELS}

2521 Panel with 16236 (2N3442) on small

 1.20 V can be used as LED fla sher 13 V min.). Supplied with connection data, suitabie R. C \&
 reeds, \(6 \times 25030\) or \(25230,6 \times 400 \mathrm{~V}\) rects + Rs
50 p 2529 Pack of ex-computer panels containing 14 series ics. Lors or different gates and com.
plex logic. Al lics are marked with
ype plex logic. Allics are marked with rype no. or
code for which an identification sheet is supplied. \(201 \mathrm{CE} 51 ; 1001 \mathrm{CS} \mathrm{Ef}\). A504 Black case \(50 \times 50 \times 78 \mathrm{~mm}\) with octal
base PCB inside has 24 V reed relay, 200V7A SCR. \(4 \times 5 A_{200 V}\) recis, etc

RELAY/TRIAC PANEL

\section*{2537 PCB \(100 \times 75 \mathrm{~mm}\) contering a wealth of} \(\times 12 \mathrm{~V}\) DPCO min. relays, \(2 \times 47 \mathrm{ut} 16 \mathrm{y}\) tants, SC146E 10A 500v triac, C112d 8A 400v SCR, 555 iner, \(10 \times 1\) in4001 diodes, \(2 \mathrm{~N} 5061,2 \times 3 \mathrm{~mm}\) leds \(3 \times 2 \mathrm{~N} 304\), also H s and C 's. would cost around f8il - Price for the panel usi

\section*{1W AMP PANELS}

Aorl Compact audio amp intended for recor plaver on panel 95.65 mm including vo control and switch, complete with knobs Apars irom amp circuitry bult around
LM380N or TBA820 M, there is a speed contro circurt using 5 transistors. 9V operation.
connection data supplied
ONLY 1.50

TOROIDAL TRANSFORMER 110 mm dia. \(\times 40 \mathrm{~mm}\) deep. \(110 / 240 \mathrm{~V}\) pri., sec.
18 V 4 A .6 .3 VV 1 A .240 V 0.3 AA Ideal lor scopes. Oin. VDUs atc. Reduced to 55.9

1,000 RESISTORS, \(£ 2.50\) We've just purchased another 5 million offer to that made two years ago. at the seme pricellil \(\mathrm{K} 523-1,000\) mixed \(1 / 4\) and \(1 / 2 \mathrm{~W} 5 \%\) carbon film resisiors. preformed for PCE \begin{tabular}{l} 
ming. Enormous range of preterr \\
1,000 tor \(22.50 ; 5,000 ~ \& 10 ; 20 \mathrm{t}\) \\
\hline 156 .
\end{tabular}

200 ELECTROLYTICS, £4 K524 Large variety of values/Voltagas, mostly croppad new full spec. components. no FILAMENT OISPLAYS 26537 seg display 12.5 mm high, Ideel for TTL package. Oniy th ech, flor t3.00. Data supplied RELAY

\section*{}

REGULATED PSU PANEL
Exclusive Greenweld design. fully variable o
28 V \& \(20 \mathrm{~mA} A\)-2A. Board contiains ali compu nents exceet pots and transformer Only E775. Suitable transiormer and pots \(\mathbf{6 6}\). Send
SAE for fuller details.


\section*{ELECTRO-DIAL}

Electrical combination lock - for maximum security - pick proof. 1 million combinations1
Dial is turned to the right to one number, left to second number, then right agatio 10 a third number. Orly when this has been completed in the correct sequence will the electrical contacts close these can be used to operate ar relay or
solenoid. Overail dia. \(65 \times 60 \mathrm{~mm}\) deep 0 Only 9.95 Also evaliable withour combination Only ع3.95

DEVELOPMENT PACKS These packs of brond new rop quality compo. These
nents are diesigned to give the constructor
complete rane so the right value is to hand nemplete range so the right value is to hand whenever required. Ther also give a substan tial seving over buying individual parts.
K001. 50 V ceramic plate capactiore 5\%, 10 o ach value 220F to 1.000 of F total 210. Ei: 30 . K002 Exterded range 22pf to 0.1. Volues over Cooopf are of a greater tolerance. 10 of each
value 2227333947566882100120150180 value 222733347566882100120150180
\(20270330390470560880820 \quad 10001500\) 22003300470068000 . 01.015 .022 .033 .047.1. PRICE: 77.28
\(R 003\) C 280
rex C280 or similar Polyester copacitors. 10 aach of the following: \(01,015,022,033\)
\(047,068,1,15, .22,33\) and 47,4, PRicE: koos Mylar copacitors. Small size. vertical mounting 100 V . \({ }^{10}\) each of the following \(.001, .0012, .0015, .0011, .0022 .0027,0033\),
\(.0039, .0047,0056, .0068, .0082, .01\), Total 130
 K007 Elertrolytic capaciors 25 V working small physicithl size axial or radtal teods. 10 each of the following: \(1,2,2,4.7,10,22,47\) 100uF. Total 70 capaciors' PRice: E3.59. K008 Extended rangee as above. also includ
ing 220.470 and 1000 F all at 25 V Total of 100 capaciors. PRICE: E8. \(35^{35}\)
K021 CR25 resistors or similar. miniature \(1 / 1\) wat carbon film 59 or as used in nearly all proiects 10 of each value from 10 ohms to
IM. \(E 12\) series. Total 610 resistors. PRICE:

KOH1 Zenor diodes \(400 \mathrm{mWW} 5 \%\). 10 of each of 11 the values from 2 V 7 to 36 V . Total 280 zen ers. PRicE: \(£ 15.95\). Kid LEDS - pack of 60 , comprising 10 each ether with clips. Vollow 3 mm

\section*{CAPACITOR BARGANS}

\section*{2200uF 100 V cans \(77 \times 35 \mathrm{~mm}\) dia - 75}



 lamm dio 40p; 10/c3; 100/270.


Learn how to become a radio amateur in contact
with the whole world. We give skilled preparation for the G.P.O. licence.
No previous knowledge required.
Brochure without obligation to
British National Radio
\& Electronic School
READING, BERKS. RG1 1BR
Name
Address

HE/5/815
BLOCK CAPS PLEASE

\section*{PCB HOLDERS}
- PCB's may be rotated through 360 degrees and locked at any angle
- Simple adjustment for different board sizes
- Foam pad available enabling a number of components to be inserted prior to soldering

\section*{CNC 6}

PCB Capacity: \(10^{\prime \prime} \times 7^{\prime \prime}\)
PCB's held by spring clips which also allow the holder to be used as a small soldering jig. PRICE: \(£ 13.80\) INC. VAT

\section*{CNC 9}

PCB Capacity: \(8^{\prime \prime} \times 8^{\prime \prime}\) PCB's held by adjustable Vee Clamps which eliminate the risk of damage to the face sides of the PCB and allow a high degree of accessibility.
PRICE: £15.95 INC. VAT


\section*{FOAM PAD}

Size: \(8^{\prime \prime} \times 8^{\prime \prime}\) Clips onto Holder. PRICE: £5.50 INC. VAT

AVAILABLE DIRECT FROM THE MANUFACTURER. PLEASE ADD E1.50 TO COVER POST AND PACKING

CARLTON NICHOL \& CO. LTD.,
GOLDKEY INDUSTRIAL ESTATE, KELVEDON, ESSEX

\title{
LIGHT \\ \\ The warning tone \\ \\ The warning tone means 'Shut the means 'Shut the door, quickly'!
} door, quickly'!
}

IF you've ever worked with photographic materials, you'll know how important it is to ensure that there is no light present when handling sensitised materials (ie light sensitive paper). This is not a problem if you can be there all the time. However, if you need to leave the room, it would be handly to have some means of protecting those valuable films.

One way of doing this is to use a device which provides an audible tone upon exposure to light - the Light Seeker circuit does this admirably. In fact it will produce a pulsed warbling tone that increases in frequency depending on the intensity of light present.

The circuit is a simple combination of two unijunction relaxation oscillators, one modulating the other. Relaxation oscillators are the most common application of unijunction transistors because very few external components are needed to get the thing oscillating (a single resistor and capacitor will do). In our design there are two oscillators; one produces around five pulses per second and this modulates the second one, which is oscillating at a frequency of about 300 Hz rising to 4000 Hz when bright light is shone on the LDR (light dependent resistor). The frequency of oscillation is determined by the resistor and capacitor networks connected across the supply lines and to the emitter of each transistor. For instance, the circuit around Q2 is composed of R3,R4 and C2. The resistor from b1 (base one of Q2) connects to ground via the current limiting resistor R4. The other two components effectively control the frequency of oscillations. Each time C2 charges up via R3, there is a point where the emitter of Q2 no longer acts as a high impedance and the capacitor discharges through R4. After discharging, b1 is zero volts and so the emitter again appears as a high impedance. This exponential charge/discharge cycle repeats at a rate determined by the values of R3 and C2 and produces a rounded sawtooth output. With two such oscillators, the seeker provides an audible pulsed tone, whose frequency is dependent on the resistance of LDR1, which in turn depends on the amount of light present. Resistor R2 acts to couple both oscillators to a degree which allows C1 and C2 to fully complete their respective charge/discharge cycles. Current consumption is about six milliamps, and so a PP3 should last quite some time.

\section*{S}


\section*{Parts List}

\section*{RESISTORS}
(All \(1 / 4\) W 5 \% carbon)


CAPACITORS
C1 . . . . . . 47 n polyester C280 PP3 clips, veroboard 111 strips, 11 \(\mathrm{C} 2 \ldots . \mathrm{Cl}^{2} 10\) u 10 V radial electrolytic holes), case, wire etc.

\section*{SEMICONDUCTORS}

Q1, Q2
TIS 43 See Buylines (page 68) for availability of unijunction transistor these components.

LDR1
. .
 light dependent resistor MISCELLANEOUS
12k SW \(1 \ldots\). SPST on/off toggle switch 56R LS1 . . . . . . speaker (64R or greater) B1 . speaker (64R or greater)
..... PP3 9 V Battery


\title{
RADIO RULES SINES OF THE TIMES
}

\title{
Part 2 of our new series introduces the most important building block in radio circuits.
}

\section*{Ian Sinclair}

IF YOU'VE DABBLED a bit in electronics construction, you've probably found out, by now, how easy it is to make oscillator circuits such as multivibrators, which generate square, or nearly square, waves. Generating sinewaves seems much more difficult, at low frequencies at least. It all seems a bit odd, when everyone tells you how important sinewaves are, that they should be so difficult

In the early days, no-one had any difficulty generating sinewaves. All you had to do was to rotate a coil of wire between the poles of a magnet and, behold, you had a sinewave at the ends of the wire! Add a pair of slip-rings to make the connections to the rotating coil (Figure 1) and you had an alternator. That's one of the reasons why the sinewave is important you can generate it mechanically. In the early days of radio, alternators like this were used, spinning at high speeds, to generate the carrier waves for Morse signals.

The use of alternators is fine so long as we don't need really high frequency signals, but is causes a bit of difficulty when wo want frequencies around 1 MHz . A large coil revolving one million times per second is a device no-one would want to be close to, so other methods are needed. The 'other methods' all end up with that useful circuit, an inductor in parallel with a capacitor - otherwise call-
ed a parallel resonant circuit. Now let's be clear about one thing right away. The paraliel resonant circuit doesn't, by itself, generate sinewaves. What it does is to grow sinewaves. Grow them? It's as good a description as any, for what happens. If, somehow, you start a current flowing in the inductor of a parallel resonant circuit then that current can't just keep on flowing, because it charges up the plates of the capacitor until the voltage builds up enough to make the current first fall to zero, then reverse direction. Then, the current builds up in the in the opposite direction until, once again, it has charged the capacitor to a voltage (the other way round now) which will make the current reverse. This cycle creates, (as naturally as the rotation of a coil between the poles of a magnet), a sinewave. It can't keep going, though, any more than the alternator coil can keep spinning, without some outside help. That help, as far as the parallel resonant circuit is concerned, is provided by a transistor, a valve or whatever else we can use to keep the current flowing.

There's the snag of course. We can make a transistor pass current between its collector and its emitter by bringing the voltage between the base and the emitter above about OV55. (that's the magic figure for a silicon transistor). Now this current is in one direction, from collector
to emitter if the transistor we use is an NPN type, but the current won't flow the other way. If we connect our parallel resonant circuit to the collector circuit of an NPN transistor, then, we can't just start the transistor conducting at any old time. The sinewave which is shaped by the parallel resonant circuit will have a definite frequency, whose value depends on the values of inductance and capacitance in the circuit. If we briefly made the transistor conduct by applying a short positive voltage to the base (a positive pulse), the parallel resonant circuit would oscillate - but only for a short time. Certainly, it oscillates for a lot longer than the time of the pulse at the base of the transistor (just as a bell rings for some time after it has been struck), but the oscillations die out - just as the sound of the bell does. Because of the similar behaviour, in fact, a circuit used in this way is called a 'ringing' circuit (Figure 3).

\section*{The Positive Answer}

To keep the oscillation going, we have to make the transistor conduct each time the current through the coil is flowing in the right direction - that is, from supply to earth. When the current reverses, the transistor has to shut off otherwise it will simply take all the current which should be going into charging the capacitor. The

(b)

(c)

(d)

(e)
© Figure 1. The alternator principle. As the wire loop rotates between the poles of the magnet, a sinewave signal is generated. The frequency of the sinewave is equal to the number of complete revolutions per second of the coil.

Figure 2. Charge and discharge in a parallel resonant circuit; (a) the circuit; (b) the capacitor discharge (c) causes current to flow through the coil and then the recharging of the capacitor (d); the process then reverses, reversing the direction of current through the coil (e).



4 Figure 3. The waveform produced by a 'ringing circuit'. A current pulse applied to a parrallel resonant circuit causes the charge/discharge cycle of Figure 2, but eventually the current dies away.
- Figure 4. To produce continuous oscillation, the ringing circuit needs to be 'stuck' by a succession of current pulses, at exactly the right moments. This is achieved by a positive feedback connection, via the parallel resonant circuit, arranged so that the amplifier conducts only when its output voltage is in phase with the voltage across the tuned circuit.
way we can ensure the base voltage of the transistor causes it to conduct at the right time is by feeding it with a bit of the sinewave generated by the parallel resonant circuit (Figure 4). This is a positive feedback connection; just as the current in the inductor starts to flow earthwards, the transistor starts to conduct, helping the current on its way and so generating a voltage which turns the transistor harder on, helping the action a bit more. When the current reverses, the voltage at the base of the transistor drops, cutting off the current and allowing the inductor to get on with the job. The result is a sinewave oscillator. Any sinewave oscillator which uses a parallel resonant circuit must include a circuit which feeds signal to the base of the transistor to provide the current drive for the oscillations. Seems simple enough but in fact there are a remarkable variety of sinewave oscillators, many of which carry names that date back to the very early days of radio.

A circuit for a sinewave oscillator - an old reliable favourite - is shown in Figure 5. Two windings are needed; one (L1) is part of the resonant circuit, while the other (L2) is a feedback winding which switches the base voltages of the transistor up and down as needed. To make the circuit self-starting, a little bit of bias is needed to start the transistor conducting and this is provided by R1, decoupled by C 1 . If the oscillator is to operate at a high
frequency, L1 may consist of a few turns of wire on a ferrite rod or a hollow former. L2 should have about \(1 / 4\) to \(1 / 5\) the number of turns of \(L 1\), as a rough rule-ofthumb. Lower frequency sinewaves can be generated if L1 and L2 are windings of a transformer with a ratio of around \(1: 5\), using the larger winding for L1. Sinewaves of 20 kHz or less can be generated when a capacitor of about Ou 1 is used to tune L1, but the windings must not have a high resistance, otherwise oscillation may not start.

\section*{Bright Idea}

When you make or use a pair of coils in this circuit, there's a 50:50 chance that the oscillator won't work - this is because you can seldom be sure about which way the currents flow in the windings. The easiest cure is the practical one - if it doesn't oscillate, reverse the connections to L2. But how do you know if it's oscillating, without using a 'scope? One old-fashioned way to find out if a high frequency oscillator is working is to use a low-wattage torch bulb, something using less than 60 mA at around 2 V 5 , connecting it to a few turns of a coil, as shown in Figure 6. Hold this lot near L1 and the bulb will light as the coil picks up the frequency generated by the oscillator. Don't go too close, though, otherwise the load on the oscillator may be enough to stop it working.

Another type of oscillator, called a Hartley after its inventor, is shown in Figure 7. There are several varieties of this design, all recognisable by the use of a tapped coil, and Figure 7 shows two of them. The one shown in Figure 7 (a) uses the tap on the coil to connect the supply line, and feedback is taken from the end of the coil opposite the collector connection. Because the collector and the base of the transistor cannot be allowed to be at the same DC voltage, a capacitor is used to couple the feedback to the base. The value of this coupling capacitor, C1, must be considerably greater than the value of capacitor C2, which is used to tune the coil. Another variety of the Hartley circuit is shown in Figure 7(b), with the feedback, this time, taken to the emitter of the transistor. A resistor must be connected between the emitter and the earthline, to avoid shorting out the signal or, as an alternative, an inductor called a radio frequency choke (RFC) can be used. Resistor R1 and R2 are used to bias the transistor, so ensuring that the circuit will start oscillating when it is switched on. The capacitor, C1, is also important; it ensures that no signal reaches the base of the transistor from the collector circuit. Any signal reaching the base will kill the oscillation, so that C1 is essential - it 'decouples' the base.

One version of a circuit called a Colpitts oscillator is shown in Figure 8. The coil, this time, is a single winding with no


Figure 5. An oscillator using a feedback coil, 12.

TWO TURN COIL

Figure 6. Detecting oscillation. Unless the oscillator is a powerful one, the bulb will have to be a miniature low-voltage, low current type. These are not easily obtainable, but an LED can be substituted if more turns of the coil are used.
tapping - a convenient arrangement! The tapping is still there, though, in the form of capacitors C2 and C3. The tuning

(a)
of the parallel resonant circuit is carried out by the combination of C2 and C3 in series while the signal to feed to emitter is

(b)

Figure 7. Two versions of the Hartley oscillator; (a) feedback to base; (b)
feedback to emitter.


Figure 8. One version of the Colpitts oscillator.


Figure 9. A crystal oscillator, one of a large number of circuits using the method of obtaining a precise and stable frequency.
tapped by C2 and C3 acting as a potential divider. Once again, capacitor C1 has the essential job of decoupling the base.

\section*{Crystal Gazing}

The best sinewaves, though, are shaped not be a conventional parallel resonant circuit but by a quartz crystal, connected as if it were an inductor. An example of a crystal oscillator which can generate a very precise and perfectly shaped sinewave, is shown in Figure 9.

It's not so difficult, then, is it? Well, no - not as long as you want high frequency oscillations, anyway. But what happens if you want low frequency oscillations - a few kHz or less? Then, inductors get large and expensive because of the large values you would need for operating these frequencies. Worse still, all that wire makes for high resistance, which causes the shape of the sinewave to distort. In fact we have to abandon parallel resonant circuits at low frequencies - but that's another storyl
In radio circuits, however, the parallel resonant circuit is vital. It crops up, in one form or another, in almost every 'block' of every radio. This month, we have had a broad look at parallel tuned circuits and how they work - soon, we will get to grips with the theory, showing how to work out the resonant frequency and other important factors. Later we will go onto look at oscillator circuits in more detail, together with the other basic blocks of radio circuitry.

HE

\section*{MASMHR THFCYRONICS NOW! The PRACHICAT way!}

\section*{This new style course will enable} anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:
-Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., \(\mathrm{Hi}-\mathrm{Fi}\) and microprocessor/computer equipment.


\section*{NewJob? New Career?NewHobby?Getinto Tlectronics Now!}


HE PCB SERVICE
PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design.and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.
\begin{tabular}{|c|c|c|c|c|c|}
\hline May 80 & & December 80 & & August 81 & \\
\hline 5080 Pre-amplifier & £3.50 & Stereo Power Meter & £2.12 & RPM Meter & £1.33 \\
\hline & & Digital Speedo (set of two) & ¢3.50 & Thermometer & E.1.25 \\
\hline June 80 & & & & & \\
\hline Fog Horn & £1.40 & January 81 & & September 81 & \\
\hline Egg Timer & £1.58 & Car Rev Counter & £2.24 & Power Pack & £1.27 \\
\hline & & & & Reaction Tester Game & £1.28 \\
\hline July 80 & & February 81 & & 'Diana' Metal Detector & £2.48 \\
\hline 18 W + 18 W Car Stereo & & Heartbeat Monitor & £1.90 & & \\
\hline Booster (two required for stereo) each & £1.20 & Audio Signal Generator & £1.85 & \begin{tabular}{l}
October 81 \\
Combination Lock
\end{tabular} & £1.99 \\
\hline & & March 81 & & & \\
\hline \begin{tabular}{l}
August 80 \\
Equitone Car Equaliser
\end{tabular} & & Steam Loco Whistle & ¢1.99 & November 81 & \\
\hline Pass The Loop Game & £1.798 & & & Sound Torch (Set of Two) & £3.98 \\
\hline & & April 81 & & & \\
\hline September 80 & & Super Siren & ¢1.48 & December 81 & \\
\hline Auto Probe & f1. 25 & Russian Roulette Game & £1.20 & Pedalboard Organ & £4.48 \\
\hline Guitar Phaser & £1.48 & & & & \\
\hline Development Timer & £1.35 & & & January 82 & \\
\hline Bench PSU & £2.20 & Voice Operated Switch & £1.25 & Intelligent NiCad Charger & £2.28 \\
\hline October 80 & & Organ 1 & £3.48 & February 82 & \\
\hline Nobell Doorbell & £1.98 & & & Relay Driver & £1.65 \\
\hline Intruder Alarm & £1.88 & June 81 & & Mast-Head Amp & £0.98 \\
\hline Tug O' War & £1.99 & Envelope Generator & £1.40 & March 82 & \\
\hline November 80 & & Organ 2 & £1.90 & Digital Dice & £1.46 \\
\hline Memory Bank Synth: & & & & April 82 & \\
\hline Mainboard PCB & ¢2.48 & July 81 & & Digital Thermometer & \\
\hline Keyboard PCB & ¢2.70 & Organ 3 & £4.50 & (Set of Two) & £3.98 \\
\hline Party Grenade (set of three) & £2.60 & Organ 4 & £4.50 & Echo-Reverb & £4.36 \\
\hline Double Dice & £2.20 & Ultrasound Burglar Alarm & £1.90 & Cable Tracker & £1.66 \\
\hline
\end{tabular}

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE


\title{
INTO ELECTRONIC COMPONENTS
}

THE FIRST ICs ever made were (mainly) digital types, and by far the majority of ICs manufactured today are digital ICs. The reason is that digital signals are peculiarly suited for ICs, and it is much easier to design complex digital ICs than equally complicated linear ICs.

A digital signal is an OFF or ON signal, without any state between. A square wave is a type of digital signal, because the voltage is either at a positive or negative peak; it spends only a negligible time getting from one to the other. Now why should this be important? Imagine for a moment a transistor with a load resistor of 500 R , operated from a 5 V supply. Suppose that the transistor is passing no current. The power dissipated in the transistor is then zero - no current means no watts. If we now suppose that the transistor is passing about 10 mA , then its collector voltage will be low (saturated at OV2) and the power dissipated by the transistor must also be low, only \(0.2 \times 10\) mW or 2 mW . If we had biased the transistor to half the supply voltage, as we do when we want linear amplification, then it would pass 5 mA at 2 V 5 and the power dissipation would then be \(5 \times 2.5 \mathrm{~mW}\) \((12.5 \mathrm{~mW})\), a lot more than it dissipates at full current. In a digital IC, no transistors are biased 'half-way'; they are either fully off or fully on. In this way, each transistor dissipates only a small amount of power, so large numbers of transistors can be packed together in an IC without causing the chip to run excessively hot.

Over the years of IC development there have been many digital types produced. By types, we mean the types of


Figure 10.1 Digital and analogue signals. The difference is that the digital signals have only two important voltage levels and the voltage switches very
rapidly between the two.
circuits that were used, rather than the jobs that the chips performed. For example, in old books you will find references to DTL, RTL and other long-forgotten types of ICs - some of these are now so completely forgotten that it is impossible to even get pinout diagrams for them. The only types worth considering today are TTL and CMOS chips; these are the ones we shall look at this month.

The most important differences between these two types of digital ICs are that TTL ICs are based on bipolar transistors (PNP and NPN types) and CMOS are based on MOSFETs, TTL has low input resistance and can pass currents of several milliamps, while CMOS has very high input resistances and can pass only small amouts of current, often less than a milliamp.

\section*{TTL Tale}

TTL digital ICs are intended to operate from a 5 V stabilised supply, whose voltage must be held close to 5 V at all times. Though the ICs will generally work in supply voltages as low as 4 V 5 , correct operation cannot be guaranteed unless the supply voltage is maintained within the limits of 4 V 75 to 5 V 25 . Voltages above 5 V 5 are risky because some TTL circuits will overheat at such levels, and most of them will be damaged if they are operated for any length of time at 6 V .

The reason for this fussiness about voltage is that the input stage of a TTL digital IC is a common-base transistor (Figure 10.2), whose base is connected to the supply voltage through a resistor of a few thousand ohms. This results in a feature of TTL circuits which many beginners find most confusing; the input of any TTL circuit is the emitter lead of a transistor. When this input is at logic level 1 \((+5 \mathrm{~V}\) for TTL\()\), the input transistor is cut off because both base and emitter are at the same +5 V level and the collector voltage is also high, around +5 V . When the input emitter is connected to logic level zero, which is earth, current will flow from base to emitter. The value of the resistor which connects the base to the +5 V supply ensures that the transistor is thoroughly saturated and passing enough base current to make the collector-toemitter path a very low-resistance one. In this condition, the collector voltage is low, and a current passes from the emitter to earth. The 'standard' TTL circuit will then pass 1.6 mA from its input terminal to earth.

Unlike most transistor circuits, then, in which a current has to pass into the input when it is taken positive, the TTL input passes current out from its input when the input is taken to zero volts. Any circuit which is connected to the input of a TTL

IC must therefore be able to pass this current - to sink this current, in the jargon of the TTL designers - when it forces the TTL input low. Because of this, an emitter-follower is not a good circuit for passing signals to (driving) a TTL IC. When the emitter-follower is cut-off, the IC current will have to pass through the emitter resistor of the emitter-follower (Figure 10.4), and the voltage across this resistor may be too high to guarantee that the IC will be at logic 0 .

For example, if the IC can pass 1.6 mA , and is guaranteed to behave correctly if the logic 0 voltage is below OV8, then an emitter-follower with a 1 k emitter resistor is completely unacceptable as a driver. With 1.6 mA flowing through 1 k , the voltage drop would be 1 V6, which is


Figure 10.2 The usual TTL input stage; (a) a common-base stage; multiple emitter contacts can be formed; (b) if more than one input is needed.


Figure 10.3 Why current passes out from input of a TTL IC at logic 0 input.


Figure 10.4 Using an emitter-follower to drive TTL is unsatisfactory.
much too high. It might work with a few ICs, but what counts is that it must work with allICs.

A common-emitter circuit (Figure 10.5), by contrast, is very much better. With the transistor cut-off, the load resistor connected to +5 V , will ensure that the input of the IC goes to +5 V . When the transistor is switched on, the collector-to-emitter circuit will easily pass 1.6 mA to earth, with a voltage drop of only about OV2 if the transistor is saturated.

Digital circuits make use of TTL ICs co nected together, so that we can expect to find the output of one IC connected to an input of another. This is possible only if the output of one IC can sink the input current of the next and, because the output of one IC may have to


Figure 10.5 Using a common-emitter amplifier circuit to drive TTL is much better.



Figure 10.7 A typical TTL output stage
drive several inputs, the manufacturers usually arrange the output circuit so that it can sink the current of ten intputs. If an input needs to pass 1.6 mA , for example, the output must be able to sink a current (pass current to earth) of 16 mA if it is to drive ten inputs. This requirement is called a 'fanout of ten'.

The usual output circuit uses two transistors in series with a diode (Figure 10.7), directly coupled to the collector and emitter leads of a driver transistor. First, imagine that the base of the driver transistor \(\mathbf{Q 1}\) is cut-off. This will make the emitter voltage zero and the collector voltage high, so that current will pass through R1 into the base of Q2, which passes current. This makes the output voltage high, though, because of the OV6 difference between base voltage and emitter voltage of \(\mathbf{Q} 2\), The emitter voltage of O 2 cannot rise above 4 V 4 which is 0 V 6 below 5 V ; the output voltage cannot rise above about 3 V 8 because of the OV6 drop across diode D1.

Now; say the base voltage of Q 1 is raised, so it is saturated. The collector voltage will be low, and the emitter voltage will rise, until O 3 is switched on. Because the base of O 3 is connected directly to the emitter of Q1, the emitter voltage will not be able to rise higher than OV6, and the collector voltage only will be about OV. 2 higher, at about OV8. This would, normally, be enough to switch 02 on, but the diode D1 prevents this la silicon diode needs about OV6 to conduct) so that the base voltage of 02 would have to be at least 1 V 2 above zero to make Q 2 conduct. Therefore, Q 3 conducts and this will make the voltage at the output about OV2, well within the guranteed voltage for a zerologic level.

The low voltage is really important, because it is only the low voltage which allows the input to pass current, which the output will have to sink. Because all of the transistors in the chip are made at the same time, and are therefore similar, the circuit can also pass current out from the output when the output voltage is high, around \(3 \vee 8\). This voltage cannot be guaranteed by the manufacturers, however, because if a lot of current is passed, the high voltage can fall quite noticeably, to less than \(3 V\). For experimental purposes, though, there is no objection to using an output to drive an LED like the circuit of Figure 10.8 (the recommended method is to use an additional IC, an inverter, in the circuit of Figure 10.9).


Figure 10.8 Using a TTL output to operate an LED - simple method.


Figure 10.9 The recommended circuit for driving LEDs.

This business of guaranteed voltage levels is important, because it affects trouble-shooting measurements. You cannot expect to read +5 V as the high voltage at an output unless there is a resistor, called a 'pull-up' resistor, connected between the output and the +5 V supply line. Neither can you expect to find a true zero reading at an output which is driving several inputs because there may be enough current flowing to raise the voltage to more than OV2. What you can expect, though, is that the voltage in the high state, logic 1 , will be above the manufacturer's guaranteed level (usually 2 V 4 ) and that the voltage in the low state will be below the manufacturer's guaranteed level (OV4 typically).

\section*{Identity Crisis}

There are several variations of TTL circuits which are still with us. The original range of TTL circuits, pioneered by Texas Instruments and also manufactured by many other suppliers, used code numbers starting with 74. These ICs employed the techniques described in this article, with input currents of 1.6 mA and output sinking capability of 16 mA , so that a fanout of ten could be achieved. For some computer applications, the speed of switching of standard TTL circuits, which is around 30 nanoseconds, is too slow, so a (smaller) range of high-speed TTL circuits, the 'S' series was manufactured. These used higher currents flowing inside the chips to achieve higher switching speeds. The chips carried numbers starting with 74S, so that a 7408 was a stan-


Figure 10.10 Using a pull-up resistor to ensure the logic 1 voltage.


Figure 10.11 The equivalent circuit of an LS type of TTL gate, using Schottky diodes, which have a very low forward voltage drop.
dard AND gate and the \(74 \mathrm{SO8}\) would be a high-speed AND gate.

Later on, a new principle, the lowpower Schottky circuit, was used to make a range of TTL-type circuits which combined lower currents with high-speed operation. These were distinguished by the 74LS type numbers, and are now the main type of TTL ICs. The 74L S series use input currents of 0.4 mA and output currents of only 4 mA for the same fanout of ten, but are as fast or faster than the standard range. The standard 74 range is now, in fact, no longer produced for new equipment, though stocks should last for some time to come.

\section*{Gather No MOS?}

CMOS ICs use MOSFETs, with entirely different circuitry. The circuits contain both N -channel and P -channel MOSFETs, arranged so that only one of the pair is ever turned on at a particular time. The range of power supply voltages that can be used is much more flexible than the TTL +5 V - in general CMOS circuits can operate with supplies in the range 3 V to 15 V . Practically no current is needed to hold the inputs at either voltage level, high or low, and only very small currents can be passed either out from, or into, the outputs. Most CMOS circuits which we see here are from the RCA series, bearing serial numbers from 4000 upwards, but National Semiconductor manufacture a range with type numbers starting with 74 C and which, very usefully, follow the same numbering system as TTL, so that a \(74 \mathrm{CO8}\) is a CMOS version of the 74 LSO8.

Early CMOS chips suffered from a reputation for being easily damaged by static and users were recommended to take remarkable precautions such as being chained to a metal bench, with wrist straps, to ensure discharging of static. Nowadays, CMOS ICs can be handled with few special precautions (unless you work in a room where static is a problem). One of these is that CMOS chips should never be plugged into or removed from a circuit which is switched on. Another is that an earthed soldering iron should
always be used - never use aniron which is not earthed, in any case!

By keeping any CMOS chip in its packing until ready for use, using holders and plugging in the chip only when the circuit is nearly complete - and with the + ve and - ve leads of the board shorted you șhould have no problems. The most important thing is that CMOS chips should be the last items put on the board and that each input should have a resistor connected either to earth or to the + ve supply line.

When you take a quick look at CMOS and TTL, you might find it difficult to see why CMOS has not completely superseded TTL. CMOS can, after all, use a much greater range of power supply voltages and pass much lower currents so that battery-operated circuits can be designed. What makes the difference is that a lot of circuits still require very fast operating times, so CMOS circuits do not generally find much application in computing or in digital control equipment where speed is important. For most home-constructed circuits, however, CMOS ICs or similar (PMOS, NMOS) are more likely to be sed.


Figure 10.12 Circuit of a CMOS
inverter, which uses both P- and Nchannel MOSFETs.

\section*{Open And Shut Case?}

We've called this series Into Electronic Components and we've tried to stick to components, and what they do, rather than become involved in circuit theory. Digital ICs, however, can't easily be separated from circuitry because each digital iC is itself a complete circuit. So, we now have to spend some time on the types of circuits built in to digital ICs, whether TTL or CMOS.

All digital ICs can be grouped into two types: combinational or sequential. The difference between the types is important. Combinational circuits have several inputs and one output, and each combination of inputs will give pre-determined output. For example, a chip which has two inputs can have four possible sets of input voltages; these are 0,\(0 ; 0,1 ; 1,0\); and 1,1 (where 1 means high voltage and 0 means low voltage). For each set of inputs there will be definite output voltage ( 0 or 1 ) and that chip can never produce any other result. The simplest combinational circuits are 'gates' and the easiest way of summarising their action is by using what are called 'truth tables'. A truth table is just a list of all the possible inputs to the gate, along with the output voltage ( 0 or 1) that is produced by each set of inputs. Different types of gates have dif-
\begin{tabular}{|c|c|c|}
\hline GENERAL COMPARISONS & TTL & cmos \\
\hline \begin{tabular}{l}
Supply Voltage \\
Fanout \\
Operating Temperature
\end{tabular} & \begin{tabular}{l}
4V75-5V25 \\
10 max. \\
0 to 70 deg. \(C\)
\end{tabular} & \begin{tabular}{l}
4 V .12 V \\
50 or more 40 to 80 deg. \(C\)
\end{tabular} \\
\hline \multicolumn{3}{|l|}{COMPARING 4INPUT NAND GATES} \\
\hline \begin{tabular}{l}
Input Current \\
Output Current (max) \\
Switching Time
\end{tabular} & \[
\begin{aligned}
& 40 \mathrm{UA}(1) .1 .6 \mathrm{~mA}(0) \\
& 30 \mathrm{~mA} \\
& 11 \mathrm{nS}
\end{aligned}
\] & \[
\begin{aligned}
& 10 \mathrm{pA} \\
& 0.25 \mathrm{~mA} \\
& 300 \mathrm{nS}
\end{aligned}
\] \\
\hline
\end{tabular}

Figure 10.13 CMOS and TTL compared.


Figure 10.14 Symbols and truth tables for gates.
ferent truth tables, and the types that are avialable in IC form are the AND, OR NOT, X-OR (Exclusive-OR) NAND (NOTAND) and NOR (NOT-OR). Their symbols and truth tables, for two-input gates, are shown in Figure 10.14.

It would be possible to build any type of gate circuit using only NAND or only NOR gates, but simpler circuits can usually be achieved by using the full range of gates though designers often prefer to make use of one type of gate as much as possible, just to simplify the parts list for a circuit.

A circuit for checking the action of logic gates is shown in Figure 10.15. The gate is placed on the Eurobreadboard and LEDs, along with current-limiting 1 k resistors are used to monitor the output (or outputs). The inputs are provided by DIL changeover switches, obtainable from Electrovalue and other suppliers. The switches must be wired so that the inputs of the gate are always connected either to 1 or 0 ; inputs should never be left 'floating', ie unconnected.

When several gates are connected, the truth table can be worked out trying all the combinations of inputs and observing the outputs (taking a lit LED as logic 1), as outlined above. The alternative is to draw


Figure 10.15 Checking the action of a gate or gate circuit by finding its truth table experimentally
an extended truth table (Figure 10.16). Each connecting line from an output to another input is labelled with a letter and the outputs of the first set of gates are then entered into the truth table. The next set of gates can then be treated, using the outputs of the first lot as inputs to the second, and so on until all the columns of the truth table have been filled in.

The other type of digital circuit is the sequential circuit, in which the sequence of inputs determines the output, rather than the combination of inputs. A counting flip-flop is a typical sequential circuit, and a sequence table for such a flip-flop is shown in Figure 10.17. The input consists of pulses which, in this example, are at regular intervals, qualifying for the name 'clock' pulses. The output of the circuit switches over for each clock pulse, so that one pulse will switch the output from 0 to 1 , the next will switch it from 1 to 0 . The action is rather like a 'push-on-push-off' light switch.

There is another type of flip-flop, the latching flip-flop, which uses the clock pulse to 'transfer' an input to the output terminals. Looking at a typical example of this type, Figure 10.18 , the voltage at the output is made equal to the voltage at the input on each clock pulse and is kept at the value until the next clock pulse arrives. All sequential circuits are based on flip-flops, just as all combinational circuits are based on gates.

Next month we move on from active components and take a look at transducers - devices for transforming other forms of energy into electrical signals.


Figure 10.16 Finding the truth table of a gate circuit by paperwork; (a) circuit; (b-d) stages in filling in truth table.

(b)

(c)

(d)

Figure 10.17 A sequence table for counting flip-flop.

\section*{Now our name means more,than ever before.}

If the name BICC-Vero sounds only half familiar, that's not the only difference you're going to notice.
Because not only have we added to our name we've also added to our technology. Building upon our well established industrial product range and incorporating the very latest ideas and techniques to ensure that you too are working at a state-of-the-art standard.
But you will of course still recognise the old favourites. Products like Veroboard, which pioneered in so many ways, today's thriving pastime of electronics.

Bigger means better in other respects. Being part of the giant BICC-Vero Electronics Group ensures that we're a major force in electronics technology. Our R and D scope is enlarged, and our supply and distribution facilities improved.

And because we're professionals we appreciate the very real professionalism of the hobbyist market - and service it accordingly.

Yes, we're sure you'll notice the difference. As well as that pleasantly familiar personal touch.

\section*{BICC-VERO ELECTRONICS LTD.}

Industrial Estate, Chandlers Ford, Easteigh, Hampshire SO5 3ZR.
Tel: Chandlers Ford (04215) 62829

\section*{Cable \\ }

\section*{A D-I-Y Useful}

THIS nifty little project is a must for the handyman - even if your Do-lt-Yourself experience is limited to the occasional shelf! Our Cable Tracker will detect not only cables, but also pipes and nails buried in wood, thus saving the extra work - and expense - that would result if you should accidentally drill into a central heating or water pipe. Safety is another important aspect of this project, as it will allow you to avoid live cables and gas pipes. Have you ever cut into a piece of wood with a saw and struck a hidden nail? Not much good for the blade, is itl Well, the HE Cable Tracker will also detect nails in wood, to a depth of at least 1 cm .

The Cable Tracker is very simple to use - just run it over the wall, about 1 cm from the surface, where you suspect there may be a hidden pipe or cable. We have used an audible output to indicate the presence of metal, which allows you to watch where you're going, rather than having to look at the Tracker.

\section*{The Circuit}

Transistors Q1 and Q2 are connected in an oscillator circuit using L1, C1 and C2 as a high ' Q ' tuned circuit resonant at 100 kHz . A high ' Q ' circuit is very efficient, producing a generous output at one specific frequency. If even a small piece of metal is brought close to the search coil (L1), however, the inductance of the coil will be altered, reducing the ' Q ' of the circuit and hence its output voltage. This change in voltage is detected by the remainder of the circuit.

The oscillator output is full-wave rectified by D2, 3, producing a steady DC voltage across C 5 . This voltage is AC coupled (so only sudden changes in the DC level will be passed) via C6 to the non-inverting ( + ) input of IC 1a. The inverting input is held at a fixed level by ZD1, R5 and R6 and, provided the voltage across C5 remains constant, the output of IC 1 a is held at 3 V 9 .

If the oscillator output falls, though, the change is amplified by IC 1 a and passed to the inverting input of IC1b, which is wired as a comparator. It compares the voltage at the inverting input with a reference voltage, from the sensitivity preset PR1. When the output from IC 1 a drops below this preset level, IC1b output goes high and switches on the audio oscillator, IC 1c. This drives the piezo transducer with a frequency of a few kHz , giving an audible warning that metal is present near the detector head.


NOTES
01.02
D1,D2.D3 ARE 1 AC4 148
2 Di IS BZY88C3V9
LI SEEPARTS LIST
\(\begin{array}{lll}\text { XTALI } & \text { IS PIEZO TRANSDUCER } \\ \text { IC1 } & \text { IS } & \text { TLOG4 }\end{array}\)
Figure 1. The Cable Tracker circuit diagram.


Figure 2 (above). Fitting the pipe in to the clips.

Figure 3 (below). Assembling the detector head. Don't forget to thread the wires through the hole in the pipe, then into the case. Grommets are used to seal both ends of the pipe, as shown.


\section*{Construction}

Assembly of the Cable Tracker is simplified by the use of a printed circuit board and a ready-wound coil.

Start with the 'detector head'. Using a suitable adhesive, stick the clips to the wooden blocks and drill a hole labout 5 mm ) through one of the clip/block assemblies. Position the pipe in the clips, as shown in Figure 2, and drill through the pipe, using the previously drilled hole as a guide. Now take the pipe out of the clips and glue the block/clip assemblies in position on the case - take care to put the one with the hole in it at the top, as shown. When the glue has set, drill through the case, again üsing the pre-drilled hole as a guide.

Other holes must be drilled near the resonator, to allow the sound out, and for the on/off switch. Remember to leave plenty of room below the switch for the assembled PCB.

Tape the coil in position on the ferrite rod, about 1 cm along from the end, with the coil tabs towards the centre of the rod. Solder two 150 mm lengths of wire to the coil and put a grommet on the 'coil end' of the ferrite rod to seal it into the pipe. Twist the coil wires together and push the ferrite rod down the pipe, at the same time threading the wires through the hole in the pipe as shown in Figure 3. Push the pipe into its mounting clips, remembering to thread the wires through the pipe clip into the case. Fitting the second grommet needs patience; lubricate it with washing-up liquid and gently push it into place using a screwdriver.

Next the PCB is astembled with the help of the PCB overlay, Figure 4. Start by soldering the terminal pins for the coil connections. Insert the resistors round and solder into place, then solder all the capacitors - all types in this circuit can go either way round. The preset may
also be soldered in place. Take care to insert and solder the diodes (the broad band is the cathcode end) and transistors the correct way round. Solder the IC socket with pin number 1 in the correct place, but leave out the IC until later.

Now solder the following; the black -lead (-ve) of the battery clip, the leads from the resonator and a length of wire ready to go to the switch. The PCB can now be fastened to the bottom of the case, using small pieces of double-sided adhesive tape. The ceramic resonator and battery can also be taped to the case - these are a snug fit, so position them carefully before fixing. The battery must also be fixed in position, to avoid interference with the detection circuit.

Fix the switch and solder the lead from the PCB, and the red lead from the battery clip, to it. Finally, solder the leads from the coil to the terminal pins on the PCB. The IC can now be inserted - take care, it must be the right way round.

\section*{Setting Up}

Connect the battery and move to an area away from the metal - this includes your watch and rings! Switch on; the circuit adjusts its sensitivity after switch on, so wait for approximately 10 seconds. Using a non-metallic trim tool, turn the preset clockwise until a bleep sounds, then turn it back approximately \(1 / 8\) th turn - this is the most sensitive position, but if you are using the tracker to find large objects you can lower the sensitivity. To use the tracker, hold the box and pass the detector tube over the wall. The optimum distance is about 1 cm away. Note that a very damp wall will interfere with the detection circuit.

Now you can put up your shelves or pictures - with the confidence that you will not need to rewire or replumb!

Figure 4. The PCB component overlay.
The foil pattern is reproduced on



Figure 5 (above). End view of the pipe, with grommet in place.
Figure 6 (left). Internal view of the completed Cable Tracker.
How It Works
The circuit for the HE Cable Tracker can be divided into six basic blocks (see diagram). The detector part of the circuit consists of a tuned oscillator; when even a small piece of metal is brought ' near the search coil, the output from the oscillator falls significantly. This change is amplified and compared with a preset reference level, set by the sensitivity control. The comparator detects any sudden change in the output of the oscillator and will switch on the audio oscillator, which drives the transducer.


\section*{Parts List}


\section*{POTENTIOMETERS}

RV1 . . . . . . 22k min horizontal preset

\section*{CAPACITORS}

C1 . . . . . . . . 3n3 polystyrene 63 V C2 . . . . . . . . . . . 470p ceramic (low temperature coeff) or polystyrene C3 . . . . . . . . ....... 1n ceramic C4 . . . . . . . . 100n C280 polyester C5 . . . . . . . . . 22n C280 polyester C6 . . . . . . . . . . . . . 14 multilayer \(\mathrm{C} 7,8 \ldots \min\) polyester (100 V)

\section*{SEMICONDUCTORS

\section*{SEMICONOUCTORS

\section*{SEMICONOUCTORS \\ Q1, Q2.... BC1 83 NPN transistors} D1, 2, \(3 \ldots 1\) N4 148 signal diodes ZD1 . . . . .BZY88C 3V9 zener diode IC \(1 . \ldots .{ }^{2}\) TLO64CN quad BIFET op-amp
X1 . . . . . . . . . . . . Piezo sounder
S1 . . . . . . . . min. slide switch SPST

\section*{MISCELLANEOUS}

L1 . . . . . . . \(100 \mathrm{~mm} \times 9.5 \mathrm{~mm}\) dia ferrite rod with long wave coil type CTL Printed circuit board; plastic case; plastic pipe \& clips; wood, grommets, and wire. 14 pin dil socket. PP3 battery clip.

BUYLINES
page 68



\section*{A Digital Thermometer}

THERE ARE two things to note about the thermometer project; first, it uses two separate boards and, second, if you buy our recommended case everything fits inside exactly. So, you will have to cut and shape the boards carefully and also make sure you mount them as shown in the diagrams.

The components are spaced on the main PCB to ensure that the temperature around the sensor (IC 1) is not influenced by any of them - wiring it off the board is even better. This component will probably be the most difficult to obtain, but you can get it from Crewe Allan \& Co. Ltd., of 51, Scrutton St., London.

The CMOS ICs (including the 7555) can be bought from Technomatic along with the seven-segment displays. You will generally find that Technomatic can supply most of the semiconductors used in our projects. So, if you want to save on postage you know where to go!

Another source for semiconductors, and some hardware items, is Watford Electronics. They stock the ZTX300 transistors and the low voltage Zener diode; you will also find a range of suitable presets in their catalogue.

The only other parts that might be hard to buy are all available direct from BICC-Vero. They make and supply the case with battery compartment, the two-digit LED bezel and the Veropins. If you want further details of any of their products, just drop them a line (enclosing an SAE).

The cost of components lexcluding case, PCBs and the optional bezel) should be under \(£ 13\).

\section*{Light Seeker}

THE Light Seeker is probably one of the simplest, yet most versatile quick projects, we've ever run. None of the component values are particularly critical, since oscillation occurs readily. Make sure you put the transistors in the right way round, though - they only work when base 1 is feeding the load. These unijunction transistors seem to be going out of fashion, sad to say, but they can still be bought from Electrovalue (T1S43) in their
catalogue), who also sell the 64 ohm speaker - don't use a lower impedance, as the transistors will overheat.

The light-dependent resistor is available from Maplin. We used the ORP61 with a side-on sensitive element, though the ORP60 will work just as well.

Due to the large tolerance of electrolytic capacitors, it may be worth buying a pack of ten, say, and choosing the one which gives a nice even 'warble'. A good bargain on these commonly used capacitors can be obtained from Delta Tech \& Co. Ltd., of 82, Naylor Road, London N2O OHN.

The cost of this Quick Project is around \(£ 4\)

\section*{Signal Generator}

THIS DESIGN must be one of the easiest signal generator circuits around, for the quality. It uses only a single IC! Most of the cost is in the switches and controls and the only hard-to-obtain component is the thermistor (RA53), which is sold by Maplin, or Watford's R53 type is a suitable equivalent.

The heart of the project, IC1 (TDA2006), is available from Technomatic, where you can also get the rotary switches (they call them wafer switches).

The resistors and potentiometers can be purchased from Watford or Electrovalue, who will be able to supply all the capacitors between them.

The case used on our prototype was a plastic type with a single metal panel on the top. This was used because of its neat appearance, but any small case can be used. A glance through the West Hyde catalogue will give you some idea of the wide range available.

The cost of this project, complete, is about \(£ 7\), depending on which case you choose.

\section*{Echo-Reverb}

THE HE Echo-Reverb is a single PCB project, making construction straightforward if you follow the instructions in the article carefully. The only component requiring special handling is the 4046 CMOS IC. Luckily, they are quite easy to obtain should you have to replace one.

The remaining semiconductors are quite a mixed bunch, but not unusual. The voltage regulator, bridge rectifier and signal diodes are stocked by Watford, who are also one source for the PCB mounting transformer. If you happen to get a type that doesn't fit our board, it is sometimes possible to change the position of the tags - but be careful you don't break the thin wires from the primary windings.

The delay line ICs (TDA 1022) are quite expensive and it's worth shopping
around a bit for the cheapest. Rapid Electronics offer them at a reasonable price, with the added bonus of a quick turn around for mail order customers.

The 1000 microfarad capacitor, though not an unusual component, will have to be chosen to fit on the PCB. Electrovalue supply the correct size capacitor, as well as the others in the project.

Most of the hardware and switches, etc are to be found in the BiPak catalogue, along with a good selection of knobs and the pots that go with them.

We used quite an expensive case for the prototype, to give it a professional finish. It also provided the necessary screening, being a totally enclosed metal box. A suitable alternative may be found in the range of instrument cases offered by BICC-Vero. If you leave out the case in estimating your total outlay, it should come to around \(£ 24\).


\section*{Cable Tracker}

The design feature of the Cable Tracker is its neat construction, enabling it to be hand-held. Some of the components were specially selected for the project and they may, therefore, be difficult to obtain. However, Magenta Electronics are offering a full kit of parts, including the PCB, for \(£ 9.37\) plus 45 p postage. They will also supply any individual components you can't get hold of, though most of them are generally available from mail order suppliers.

A good bet for the capacitors is always Electrovalue, but you must ensure that low temperature coefficient types are used where specified; an alternative to this is to use polystyrene types.

The semiconductors, including the transistors, diodes and IC, are available from Watford, Rapid or Technomatic.

This leaves the piezo transducer and the coil. Both these items were specially selected for the circuit, however, the transducer can be replaced with any device of high impedance (a few kilohms or so) and the coil can be any long wave type, though you may lose some sensitivity.

\section*{THCHNICRE TRAINING INELECTRONICS AND TELECOMMUNICRTIONS}

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful

\section*{City \& Cuilds Certificates}

Telecommunications Techuicians
Radio Anmateurs
Electrical Installation Work

\section*{Certificate Courses}

Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Ardio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET
To: International Correspondence Schools
```

Dept 262U, Intertext House, London SW8 4 UJ or telephone 6229911

```
chools

Subject of Interest

Name
Address

\section*{PARNDON ELECTRONICS LTD.}

Dept. No. 22, 44 Paddock Mexd, Harlow, Essex CMI8 7RR. Tel. 027932700

\section*{RESISTORS: \(1 / 4\) Watn Carbon Film E24 range \(\pm 5^{1 \%} \%\) tolerance. High quality resisiors made under strictly controlled conditions by automatic machines, Bandoliered and colour coded. \\ E1.00 per hundred mixed (Min 10 per value) E8.50 per thousand mixed, (Min 50 per value) Special stock pack 60 values. 10 off each \(£ 5.50\)}

DIODES: IN4 148 3p each. Min order quantity - 15 items
£ 1.60 per hundred
DIL SWITCHES: Gold plated contact in fully sealed base - solve thow
programming problem
4 Way 86 p each. 6 Way \(£ 1.00\) each. 8 Way \(£ 1.20\) each
DIL. SOCKETS: High quality. low profile sockers.
8 pin - 10p. 14 pin - 11p. 16 pin - 12p. 18 pin - 19p. 20 pin - 21p. 22 pin - 23p. 24 pin - 25p. 28 pin - 27p. 40 pin - 42p

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN. ORDER - UK. £1.00. OVERSEAS \&5, CASH WITH ORDER PLEASE

DESOLDERING TOOL Now everyone can afford one of these superb, blue anodised aluminium high pressure hand desoldering tools at nearly half our normal price. Normal Price E6.50 + VAT. With this \(8 d E 3.85+\) VAT. Spare Teflon screw-in noses 75p + VAT.

解 OW COST VERSATILE MULTIMETER
THE MIGHTY MINI MULTT.TESTER 2,000 ohrrs per volt. DC \& AC Resistance ohms \(\times 10 \times 100 \mathrm{db}\) from -10 db to +22 db . Mirror arc scale, overtasd protected, complete with battery, \({ }^{\text {tost }}\) leads
instructions. Usual price \(E 8.65+\) VAT; with this Ad: \(£ 495+\) VAT. ORDER FORM
Name.
Addres

> Desoldering tonis at E3

Spare Teflon noses at 75 p
Postage, packing and insurance at 50 per

> Sub rota Add \(15 \%\) VAT
enclose chequa nolp O. no
Alternatively please credit my VISA/ACCESS No
Signature
This offer applies to UK onily. Please allow \(7-10\) days delivery. Overseas customers olease do not add CRICKLEWOOD ELECTRONICS LTD.

\section*{ELECRRONIC IGNITION}

Makes a good car
betfer

TOTAL ENERGY DISCHARGE electronic ignition gives all the well known advantages of the best capacitive discharge systems.
PEAK PERFORMANCE \(\qquad\) higher output voltage under al conditions.
IMPROVED ECONOMY no loss of ignition performance between services.
FIRES FOULED SPAPK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.
ACCURATE TIMING prevents contact wear and arcing by reducing load to a fow volts and a fraction of an amp.
SMOOTH PERFORMANCE _- immune to contact bounce and similar effects which can cause loss of power and roughness.

\section*{PLUS}

SUPER POWER SPARK — \(31 / 2\) times the energy of ordinary capacitive systems \(-31 / 2\) times the power of inductive systems.
OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.

BETTER STARTING —ull spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarlity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY
an inherently more reliable circuit combined with top quality components - plus the 'ultimate insurance of a changeover switch to revert instantly back to standard ignition.
IN KIT FORM
it provides a top performance electronic ignition system at less than half the price of competing readybuilt systems. The kit includes everything needed, even a length of solder and a thy tube of heatsink compound. Detailed easy-to-follow instructions complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools
AS REVIEWED IN
ELECTRONICS TOOAY INTERNATIONAL June ' 81 Issue and EVERYOAY ELECTRONICS December ' 81 Issue

FITS ALL NEGATIVE EARTH VEHICLES 6 or 12 volt, with or without ballast

OPERATES ALL VOLTAGE INMPULSE TACHOMETERS Some older current impulse rypes (Smith's pre '74) require an adaptor PRICE \(£ 2.95\)
STANDARD CAR KIT £14.85
Assembled and Tested \(£ 24.95\)
TWIN OUTPUT KIT
£ 22.95
For Motor CYCLES and CARS with twin ignition systems
Assembled and Tested \(£ \mathbf{3 4 . 7 0}\)

\section*{ELECTRONIZE DESIGN}


Dept: D., Magnus Road, Wilnecote Tamworth, B77 5BY


\title{
Here is a small selection of the books available from HE's book service. New titles will appear each month
}

\author{
ELEMENTS OF ELECTRONICS by F A Wilson \\ This series of books covers the
} basics of electronics, in an easy to understand manner. The topics are written so that important concepts can be grasped by the beginner and yet they can also provide an in-depth reference solurce for the practising engineer.
Book 1: THE SIMPLE ELECTRONIC CIRCUIT AND COMPONENTS . . . £ 2.25
This book contains all the fundamental theory necessary to lead to a full understanding of the simple electronic circuit and its main components.
Book 2: ALTERNATING CURRENT TMEORY
£2.25
Sinewaves, complex waveforms, time constants, reactance, resonance and other important aspects of AC are covered.
Book 3: SEMICONDUCTOR TECHNOLOGY . . . . . . . ..... £2.25
From simple atomic structure models through to complex integrated circuits and the elements of computers.
Book 4: MICROPROCESSING SYSTEMS AND CIRCUITS .... £2.95 Starting with simple computer models, this book takes the reader up to complete microprocessing systems and theoretical circuits.
Book 5: COMMUNICATIONS . . £2.95 All aspects of communication systems such as channel bandwidth, transmission systems and signal processing, are discussed in this final book of the series.

\section*{A MICROPROCESSOR PRIMER} by EAParr . . .......... \(£ 1.75\) Newcomers to electronics and computing tend to be overwhelmed when first confronted with literature about microprocessors. This book helps to alleviate the problem by recounting the design of a simple computer in an easy to understand manner.

PRACTICAL COMPUTER EX PERIMENTS
by EAParr
£1.75 Readers of this book will find themselves involved in experiments which help to explain the inner workings of computers and microprocessors. All circuits and experiments use discrete logic circluts to demonstrate such things as 'adders', 'stores', 'arithmetic and logic units \({ }^{4}\) etc.

HOW TO MAKE WALKIE-TALKIES by F G Rayer . . . . . . . . . . . \(£ 1.50\) Low power hand-held, or portable, radio transmitting/receiving equipment need not be complicated - as this book shows. A book of great interest, not only to the licensed operator, but also to those enthusiasts without transmitting licences who wish to participate as
listeners with the described receiving equipment.

\section*{ELECTRONIC PROJECTS FOR BEGINNERS \\ by F G Rayer £1.35}

The newcomer to electronics will find this a very useful book. It contains a wide range of easily made projects including component and wiring layouts. A number of projects can be constructed without the use of a soldering iron.

\section*{POPULAR ELECTRONIC PROJECTS} by R A Penfold
£ 1.45 A collection of circuits and projects to interest most electronics constructors, covering four popular main areas: radio; at udio; household projects and test equipment.

\section*{INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE}

\section*{by \(\mathbf{A}\) Michaels}
£2.95
Transistors from over 100 international manufacturers are tabulated in this book in an easy to understand, cross-referenced format, to enable the reader to quickly locate equivalent devices from an alternative source. This book is an extremely useful addition to the electronics enthusiast's library.

To receive your books fill in the form below (or write the details on a sheet of paper) and send it, with your payment, to the address given.
Please wait 28 days for delivery. The offer applies to the UK only. Prices may be subject to change without notice.

\section*{513. LONDON ROAD.}

\section*{THORNTON HEATH, SURREY, ENGLAND.}

I enclose a cheque/postal order made payable to ASP Lid, for the amount shown below
OR
I wish to pay by Barclaycard/Access. Please charge to my account number
\begin{tabular}{|l|l|} 
Books Required & Price \\
\hline & \\
\hline Add 75p p\&p & 0.75 \\
\hline
\end{tabular}

Name .
(BLOCK CAPITALS)
Address
(BLOCK CAPITALS)


Signature

\section*{EXPO DRILLS}

\section*{KITS TOOLS ACCESSORIES}

TITAN DRILL AND STAND
Engineering in miniature, the most powerful British, 12 Volt D.C. drill made, producing 10,000 R.P.M., 1740 C.M.P. comes complete with tommy bar, allen key, steel chuck +4 collars, size zero, \(1 / 16,3 / 32,1 / 8\). Specially designed for drilling P.C. Board, mild steel, and many other uses in electronics, other crafts and hobbies.

\(25: 0\)
Expo Prices are approximately \(40 \%\) cheaper than all other makes. Distriburors, Wholesale, Retail and Export enquiries wetcome

Many other Expo drills, tools, kits available Send for vour copy of latest catalogue
and price list today
EXPO (DRILLS) LTD Unit 10, Sustanum Works Titchfield, Hants Tel Titchfield (03294) 41752


First the EuroBreadBoard Now the EuroSolderBoard


Design on a EuroBreadBoard - Instal on a EuroSolderBoard
First the EuroBreadBoard
Will accept \(0.3^{\prime \prime}\) and \(0.6^{\prime \prime}\) pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance ( \(<10 \mathrm{~m}\) ohms) nick el silver contacts
\(£ 6.20\) each or \(£ 11.70\) for 2

\section*{Now the EuroSolderBoard}

New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes.
£2.00 for set of three ESB's

\section*{And don't forget the EuroSolderSucker}

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only £ 7.25 including VAT \& PP

Snip out and post to David George Sales,
James Carter Road, Mildenhall, Suffolk IP28 7DE
David George Sales, HE3
James Carter Road, Mildenhall, Suffolk IP28 7DE Please send me:-
\begin{tabular}{lllll} 
& 1 EuroBreadBoard & \(@ £ 6.20\) & \(\bigcirc\) & \\
or 2 EuroBreadBoards & \(@ £ 11.70\) & \(\bigcirc\) & Please \\
or 3 EuroSolderBoards & \(@ £ 2.00\) & \(\bigcirc\) & Tick \\
or 1 EuroSolderSucker & \(@ £ 7.25\) & \(\bigcirc\) &
\end{tabular}

All prices are applicable from Jan. 1st, 1981 and include VAT and PP but add \(15 \%\) for overseas orders.
Name
Company
Address.

Tel. No
Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing

\section*{PCB FOIL PATTERNS}


Below: The two foil patterns for the Digital Thermometer. Some of the tracks on this board run quite close together, so make a thorough check of the underside before switching on! The main board fits snugly inside the case and must be made to fit - the small board's width must also be controlled, as there is a limited gap beneath the top of the case.


Above: PCB foil pattern for the HE Cable Tracker; don't forget to drill the three lead-out holes on the left

Left: The HE Echo-Reverb PCB foil pattern. This board will take the mains voltage inputs at the bottom left, so make sure all the copper is etched away. The tracks contain sharp angles at some places - be careful to check these have not been dissolved by the ferric chloride.


\section*{COMPONENTS IN BIRMINGHAM}

CMOS-LSTTL-LINEAR-ICs NOW!!! IN DEPTH STOCK From National Semiconductor:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Some Egs: & 4011 & 15p & 4013 & 34 p & 4017 & 42p \\
\hline & 4093 & 38 p & 40161 & 69p & & 134p \\
\hline & 74LS00 & 12p & 74LS90 & 33p & 74LS386 & 28p \\
\hline & LM380 & 75p & TBA120 & 90 p & TDA2640 & 216p \\
\hline
\end{tabular}

Full range list available + Quantity discounts. Ask for details PCBs. The FOTOway - Brochure on Request.
NEW BARGAIN Packs:

f1.10 6-Slide Switches.
\(\begin{array}{ll}\mathrm{f1} 10 & 100-1 / 8 \text { Watt Resistors } \\ 60.60 & 30-1 \text { Wat Resistors }\end{array}\) 5- Ex Equipment Bds

151 5-Large Elect Caps
\(\begin{array}{ll}\text { c1. } 20 & \text { 5- Large Elect Caps. } \\ \text { 4- Rotary Switches. }\end{array}\) \({ }_{60 \mathrm{p}}^{60 \mathrm{p}}\)
ost \& packing 60p per order. FREE over \(£ 10\) ALL PRICES + VAT
P.A.T.M. Electronic Services Wholesale + Retail 369 Alum Rock Road, Birmingham B8 3DR. Tel: 0213272339 Open 10 till 6 weekdays. 9.30 till 5 Saturdays Distributors for: Antex - Altai - Babani - Hills - Servisol - PATH FOTOway PATH Box - Safgan - Vero Electronics + MUCH MUCH MORE

\section*{JONT UP WHY: THWFOHD}

Litesold's new 'L' Series soldering iron - now at a bargain price. Outstanding performance. Lightweight. Easy to maintain. Elements are enclosed in Stainless Steel shafts. insulated with mica and ceramic. Non-seize interchangeable bits, choose from 'copper' or 'long life'. A very special tool at a very specia! 'direct' price. Just \(\$ 5.58\) for iron fitted with 3.2 mm Just \(\$ 5.58\) for iron fitted with 3.29
copper bit. Just \(£ 2.40\) for 3 spare copper bit. Just 2 f .40 for
copper bits (1.6; 2.4: 4.7). A mere 54.38 for professional spring stand! Or buy the lot for \(£ 11.121\) and save \(10 \%\). \(\frac{\text { and save } 10 \% \text { prices inc. VAT P.\&P? }}{}\)


LIGHT SOLDERING
Please allow 14 days delivery.
Write today. Send Cheque/P.O. to Litesold. 97-99 Gloucester Road, Croy don CR0 2DN or phone 01.6890574 for Barclaycard/Access sales.

\section*{Send for my CATALOGUE ONLY 75p}
(plus 25p post/packing)
My VAT and postpacking inclusive prices are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade.

\section*{See my prices on the following:}

CAPACITORS . . . ELECTROLYTIC; CAN; WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND HIGH VOLTAGE, RESISTORS. 1/8th WATT TO 100 WATT; \(0.1 \%\) TO 10\% CARBON, METAL ANO WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRIMMERS, PRESETS, POTS . . . SINGLE, DUAL, SWITCHED, CARBON, CERMET AND WIREWOUND, SINGLE OR MULTITURN, ROTORY AND SLIDE. DIOOES, RECTIFIERS, BRIOGES, CHARGERS, STYUI, SOCKETS, PLUGS, RELAYS, TRANSISTORS, ICS, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, COUPLERS, ISOLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VALVES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INDICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPIIES, HARDWARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VDRS, INSULATORS, CASSETTES, METERS, SOLDER, HANDLES, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOARDS and others.

\section*{Prices you would not believe before inflationl}

\section*{BRIAN J. REED}

TRADE COMPONENTS
ESTABLISHED 25 YEARS
161 St. Johns Hill, Battersea, London SW11 1TQ Open 11 am till 7 pm Tues. to Sat. Telephone: 01. 2235016


ADVERTISEMENT RATES semi-Display (min 2 cmss) \(1-3\) insertions \(\mathbf{£ 6 . 0 0}\) per cm \(4-11\) insertions \(£ 5.50\) per cm 12 + insertions \(\mathbf{£ 5 . 0 0}\) per \(\mathbf{c m}\)
Lineage 21p per word (min 15 words) Box Nos. \(£ 2.00\)
Closing date 2nd Friday of the month preceding publication date.
All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)
Send your requirements to:
HOBBY ELECTRONICS CLASSIFIED
ADVERTISING, 145, CHARING CROSS RD, LONDON WC2H OEE.

ANY SINGLE service sheet \(£ 1 /\) L.S.A.E. Largest stockists service/repair manuals. Named T.V. repair data \(£ 6.50\) (with circuits £8.50). S.A.E. pricelists. Free publications, quotations. Aushe, 76 Churches, Larkhall, Lanarkshire.

DIGITAL WATCH BATTERIES any type \(£ 1.20\) each. Send SAE or \(15 p\) with number or old battery to DISCLEC Y, 511 Fulbridge Road, Werrington, Peterborough.

CLOSE ENCOUNTERS GROUP Personal introductions and social events. Meet interesting, attractive people. Local, 051-931 2844 (24 hours).

16K \(2 \times 81\) SUPER INVADERS. Machine code sophistication, 54 manoeuvring aliens, saucers, defence bases, laser firing, onscreen scoring. On cassette with graphic HANGMAN, SWAT, GOLF and BREAKTHRO'. £3.50, J. Prince, 29 Brook Ave., Levenshulme, Manchaster M19.

LOTS OF USEFUL ITEMS for constructors. Cases, transformers, P.C.B.'s etc. S.A.E. for list. Mr. Hyde, 3 Rosebery Road, Smethwick Warley, West Midlands B66 3R7.

PRINTED CIRCUIT BOARDS \(41 / 2^{\prime \prime} \times 6^{\prime \prime}\) copper clad resin paper. 10 for \(£ 4.00\) including U.K. post. Hill, 22-26 Bath Road, Worcester WR5 3EL.

\section*{IONISER KIT (MAINS operated)}

This Negative lon Generator gives you the power to saturate your home or office with millions of refreshing ions. Withou? fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing. All parts, PCB and full instructions
A suhable case including front panel, neon switch, etc .
Barclaycard/Access welcome

\author{
T. POWELL \\ AOVANCE WORKS \\ 44 WALLACE ROAO, LONDON N. 1. \\ TEL: 01-226 1489 \\ Hours: Mon-Fri9-5p.m. Sat 9-4.30 p.m.
}

BOOKS BOOKS BOOKS. "Practical Computer Experiments BP78. Published by Babani. A highly recommended book for the newcorner to electronics and computing. Explanations about analogue digital circuits, logic, memories, triggers, control systems, digital arithmetic, encoders, adders, shift registers, computer architecture, A/D, D/A, converters and more. Also experimental circuits to construct. \(£ 1.75+35 p\) p\&p. Despatch within 24 hours. ALPHA BOOKS, Registered Office, 18 Connaught Close, Hemel Hempstead, Herts HP2 7AB.

REPLACE ANY 996 type battery with the \(X\) Cell Plus and improve equipment performance. Incorporates all circuitry to allow automatic recharging from almost any supply between \(8-300\) volts - Up to 3000 times. Fully Guaranteed. \(£ 19.95\) (inc VAT + p\&p). Nitech (Northern) Ltd, Gallowfields Trading Estate, Richmond, N. Yorks.

INDIVIDUAL POSTAL TUITION in Mathematics. R.D. Calver Ph.D., 6 Albany Road, Bexhill-on-Sea, E. Sussex.

ELECTRONICS component shop in MAIDSTONE, KENT! Thyronics control systems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

\section*{GUITAR/PA MUSIC AMPLIFIERS}

100 watt superb treble'thass overdtrive, 12 months guarantee. Unhbeatable at



 superb sound, overdme, sturdy constrvecion, castors, unbeazable, \(£ 100\) : twin channel E115: bess combo f111: speakers 15 15in 100 watt f56; 12 Iin 100 watt I24: 60 watt 18 18, mictophone sture unityn \(B 28\).

Send chequel PO. io: WILLIAMSON AMPLIFICATION
82 Thomelifiti Avenule. Dukinfielld. Cheshire. Tal. 0613082064

AMAZING ELECTRONICS PLANS. Lasers; Super-powered Cutting Rifle, Pistol, Light Show. Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Cata-logue 95p. - From Plancentre; \(16^{`}\) Mill Grove, Bilbrook, Codsall, Wolverhampton.

DIGITAL DESIGN DECK PLANS for breadboarding prototype - experimental circuits. Educational aid. £3. From R. Caunt, 16 Baggley Crescent, Mansfield, Notts. NG19 7DS.

AERIAL AMPLIFIERS Improve weak television reception. Price 66.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BL0 9AGH.

BURGLAR. ALARM equipment. Ring Bradford (0274) 308920 for our catalogue, or call at our large showrooms opposite Odsal Stadium. C.W.A.S. Ltd.

BUILT TRANSMITTERS £2.90. Receive on FM. Range 150 yds . Refund Guarantee. (Unlicensable): P. Faherty, 37 College Dr., Ruislip.

NEW 1982 ACE COMPONENT CATA. LOGUE Let your problems be our business. Be certain; have your components delivered quickly and efficiently and get that project working. Send 30 p now for the easy to use 1982 Catalogue to: Ace Mailtronix, Dept H.E.3A, Commercial Street, Batley, W. Yorks WF175HJ.

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolac ight-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 550. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick \(£ 1.75\) sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

PARAPHYSICS JOURNAL (Russian transfations): Psychotronic Generators, Kirlianography, gravity lasers, telekinesis. Details: S.A.E. \(4 \times 9^{\prime \prime}\) Paralab, Downton, Wilts.

CENTURION BURGLAR ALARM EQUIPMENT. Send S.A.E. for Free list or a Cheque/PO for \(£ 5.95\) for our Special Offer of a Full Sized Decoy Bell Cover, to: Centurion, Dept HE, 265 Wakefield Rd., Huddersfield, W. Yorkshire. Access \& Barclaycard. Telephone orders on 0484-35527.


\section*{LIGHTNING}

DO YOU NEED: Electronic components, Tools, Test Equipment, Cases, Cabinets and Hardware Etc. IN A HURRY?7? THEN YOU NEED:
LIGHTNING Electronic Components WHY?????

Express Despatch
All Low Prices
In Depth Stock
All New Guaraanteed Goods from Leading Manufacturer
With aall that going for us, going to you, can you really afford to be without a copy of our brand new exciting CATALOGUE

Many Prices Reduced - Many More Stock Lines
Sand for YOUR Copy Now ONLY 70p Posi Paid
LIGHTNING ELECTRONIC COMPONENTS
84 Birchmoor Road, Birchmoor, Tamworth, Staffs 878 1AB (NOTE New Address)


\section*{MULLARD SPEAKER KIT} 40 watt R.M.S. 8ohm DESIGNED IN BELGIUM comprising a Mullard \(8^{\prime \prime}\) woofer with foam rolled surround, Mullard \(3^{\prime \prime}\) high power dome tweeter and a cleverly designed B.K. Electronics crossover combining spring loaded loudspeaker terminals and recessed mounting panel. Supplied complete with assembly and cabinet details. Recommended cabinet size \(240 \times\) \(216 \times 445 \mathrm{~mm}\).
PRICE \(£ 13.90+£ 1.50\) P\&P per kit

fi я, m, rym kevs

STEREO CASSETTE TAPE DECK MODULE Comprising of a top panel and tape mechan ism coupled to a record/play back printed unit for hombly. Supplied as one complete console of own installation into cabinet or new, ready buitt and tested
Features: Three digit tape counter. Autostop. Six piano type keys, record, rewind fast forward, play, stop and eject. Automatic record level control. Main inputs plus secondary inputs Sensitivity 100 mV to 2 V Input pedance: 68 K . Output level: 400 mV to both pedance: 68 K . Output level: 400 mV to both pedance: 10 K . Signal to noise ratio: 45 dB pow and flutter: \(0.1^{\circ} \%\). Power Supply re quirements: 18 V DC at 300 mA . Connections the left and right hand stereo inputs and outputs are via individual screened leads, all terminated with phono plugs (phono sockets provided). Dimensions: Top panel \(51 / 2\) in \(\times\) \(111 / a i n\). Clearance required under top panel \(21 / \mathrm{ain}\). Supplied complete with circuit diagram and connecting diagram. Attractive Price \(526.70+⿷ 2.50\).
Price \(\mathbf{£ 2 6 . 7 0} \mathbf{+} \mathbf{£ 2 . 5 0}\) postage and packing Supplementary parts for 18 V D.C. power supply (transformer, bridge rectifier and smoothing capacitor) \(\mathbf{~} 3.50\)

NEW RANGE QUALITY POWER LOUD SPEAKERS \(11^{\prime \prime}, 12^{\prime \prime}\) and \(8^{\prime \prime}\). These loudspeakers are ideal for both hi-fi and
disco applications. Both the 12 and 15 disco applications. Both the 12 and 15 unit have heavy duty die-cast chassis units have white speaker cones and are fitted with attractive cast aluminium (ground finish) fixing escutcheons. Specification and Price:

15" 100 watt R.M.S. Impedance 8ohm 59 oz . magnet, \(2^{\prime \prime}\) aluminium voice coil. Resonant Frequency 20 Hz . Frequency Response to 2.5 KHz . Sensitivity 97 dB . Price £32 each. £2.50 Packing and Carriage each.

12. 100 watt R.M.S. Impedance 8 ohm, 50 or magnet. 2 aluminium voice cail Resonant Frequency 25 Hz . Frequency Response to 4 KHz . Sensitivity 95 dB . Price £23.70 each. £2.50 Packing and Carriage each
\(8^{\prime \prime} 50\) watt R.M.S. Impedance 8 ohms, \(20 \mathrm{oz} .11_{2}^{\prime \prime}\) aluminium voice coil. Resonant Frequency 40 Hz , Frequency Response to 6 KHz , Sensitivity 92 dB . Also available with conelgrill \(£ 9.50\) each. P \& P © 1.25 each.
PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic iweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER


TYPE 'A' IKSN2036A) 3' round with protective wire mesh, ideal for bookshelf and medium sized Hi -fi speakers. Price \(£ 3.45\) each.
TVPE 'B' (KSN1005A) \(31 / 2\) ' super horn. For


PRICE \(\mathbf{f 6 3 . 2 5}\)
UK Post FREE
1K.WATT SLIDE DIMMER

- Controls loads up to 1 KW - Compact size
\(43 / 4^{\prime \prime} \times \frac{13^{\prime \prime}}{16} \times 21 / 2\)
- Easy snap in fixing through panel/cabinet cut out
- Insulated plastic case
- Fullwave control using 8amp
- Canio
- Conforms to BS800
- Suitable for both resistance and inductive loads innumerable applications in industry, the home, and discos
thearres etc.
 (Any quantity)

\section*{BSR P256 TURNTABLE}

P256 turntable chassis - S shaped tone arm - Belt driven - Aluminium platter precision calibrated counter balance Anti - 240 volt AC operation \(\left(\mathrm{Hz}_{2}\right)\) - Cut-out template supplied Completely manual arm. This deck has a completely manual arm and is designed primarily for disco and studio use where all the advantages of a manual arm are Price: \(\begin{aligned} & \text { required. } \\ & \mathbf{2 8 . 5 0}+\mathrm{f}^{2} 2.50 \text { P\&P }\end{aligned}\)
power amplifier modules


Matching 3-way loudspeakers 'and crossover
Build a quality 60 watt RMS system 8ohms Build a quality 60 watt R.M.S. system.
* 10 Woofer
* \(3^{\prime \prime}\) Tweeter
* \(5^{\prime \prime}\) Mid Range

3-way crossover
Fitted with attractive cast aluminium fixing es cutcheons and mest protective grills which are

GENERAL PURPOSE 41/2" MINI SPEAKER
General purpose full range loudspeaker, ideal -Rolled fabric surround mini systems etc. - Rolled fabric surround -Twin cone \(\quad\) ohm -130z magnet © Frequency 1 " voice coil Price: f6.90 each +75 p PGP Price: \(\mathbf{E 6} .90\) each \(+75 p\) PGP SIGNAL GENERATOR
- 100 KHz to 100 MHtz in
five ranges
(Harmonics) Anternal modulation 1 KH external mod. input facirity - Power supply 240v AC Size - \(150 \times 250 \times 130 \mathrm{~mm}\) Price - \(£ 63.25\) - UK. Post Free

BK ELECTRONICS
Prompt Deliveries VAT inclusive prices Audio Equipment Test Equipment by Thandar and Leader


100 WATT R.M.S
Power Amplifier Modules with integral toroidal transformer power supply and heat sink. Supplied as one complete built and tested stabilised supply and drive circuit incorporated to power an L.E.D. V.u. meter, available as an optional exira.

\section*{SPECIFICATION:}

Max. output power 100 watts R.M.S. (OMP100) Loads: IOpen and short circuit proof) 416 ohms Frequency Response \(20 \mathrm{~Hz}-25 \mathrm{KHz} \pm 3 \mathrm{~dB}\) Sensitivity for 100 watts 500 mV at 10K T.H.D.

Size: \(360 \times 115 \times 80 \mathrm{~mm}\) Prices: OMP 100W \(£ 29.99\)
f2.00 PGP V.u. Meter \(\quad 66.50\)


general purpose speakers, disco and P.A systems etc. Price f4.35 each.
TYPE 'C' (KSN6016A) 2' * \(5^{\prime \prime}\) ' wide dispersion horn. For quality Hi-fi systems and quality discos etc. Price \(£ 5.45\) each
TYPE 'D' IKSN1025A) 2" - 6" wide dispersion horn. Upper frequency response retained extending down to mid range \(\left(2 \mathrm{KHz}_{2}\right)\). Suitable for high quality \(\mathrm{Hi}_{\mathrm{i}} \mathrm{fi}\) systems and quality discos. Price \(\mathbf{E} 6.90\) each,
TYPE 'E' (KSN1038A) 3 \(14^{* \prime}\) horn weeter with attractive silver finish trim. Suitable for Hi-fi monitor systems etc. Price \(£ 4.35\) each.
TVPE 'F' (KSN1057A) Cased version of type 'E'. Free standing satellite iweeter. Perfect add on iweeter for conventional loudspeaker systems. Price \(\mathbf{f} 10,75\) each.
U.K. post free for SAE for Piezo leaflets) removable enabling a unique choice of cabinet with or without conventional speaker tabrics All three units have aluminium centre domes and rolled foam surround Crossover cam bines spring loaded loudspeaker terminals and recessed mountina panel
Price \(£ 22.00\) per kit \(+£ 2.50\) postage and pack ing. Available separately. prices on request

12 " 80 watt R.M.S. loudspeaker.
A superb general purpose twin cone loud speaker. 50 oz. magnet. 2 aluminium voice coil. Rolled surround. Resonant fre Quency 25 Hz . Frequency response 10 13 KHz . Sensitivity 95 dB . Impedance 80 hm . Attractive blue cone with aluminium centre dome.
Price \(£ 17.99\) each \(+£ 2.50 \mathrm{PGP}\)
TYPE \({ }^{\circ}\)
B.K. ELECTRONCO

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY
\(\star\) SAE for current lists. \(\star\) Official orders welcome. \(\star\) All prices include VAT. \(\star\) Mail order only. \(\star\) All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572.

\section*{NOW AVAILABLE IN KIT FORM}

\section*{SX1000}

\section*{Electronic Ignition}
- Inductive Discharge
- Extended coil energy
storage circuit
Contact breaker driven Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles


\section*{SX2000}

Electronic Ignition
- The brandleading system on the market today - Unique Reactive Discharge - Combined Inductive and Capacitive Discharge Contact breaker driven - Three position changeover switch - Over 130 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg. earth vehicles


\section*{MAGIDICE Electronic Dice}

\section*{Not an auto item but great fun} for the family
Total random selection
Triggered by waving of hand
over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds
- Auto display of last throw 1 second in 5
- Muting and Off switch on base

Hours of continuous use from PP7 battery - Over 100 components to assemble
- Supplied in superb presentation gift box


\section*{TX2002}

\section*{Electronic Ignition}
- The ultimate system - Switchable contactless. Three position switch with Auxiliary back-up inductive circuit. - Reáctive Discharge. Combined capacitive and inductive. Extended coil energy storage circuit. Magnetic contactless distributor triggerhead. Distributor triggerhead adaptors included. - Can also be triggered by existing contact breakers. - Die cast waterproof case with clip-to-coil fitting 0 Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles. - Over 150 components to assemble

\section*{VOYAGER Car Drive Computer}
- A most sophisticated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Lid. Affords 12 functions centred on Fuel, Speed, Distance and Time. Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously. - Large 10 mm high \(400 \mathrm{ft}-\mathrm{L}\) fluorescent display with auto intensity. Unique speed and fuel transducers giving a programmed accuracy of + or - \(1 \%\). Large LOG \& TRIP memories. 2,000 miles. 180 gallons. 100 hours. Full Imperial and Metric calibrations. Over 300 components to assemble. A real challenge for the electronics enthusiast!

AT-80 i Cor Security System
Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape, CB equipment - Programmable personal code entry system

Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen - Fits all 12 V neg earth vehicles - Over 250 components to assemble
NAME ..... HE582ADDRESS
I ENCLOSE CHEQUE(S)/POSTAL ORDERS FOR
CHEQUE NO
PHONE YOURORDERWITHACCESS/BARCLAY```

