

For A Down-ro-Earth Approach To Electronics

Hoboy Dice

${ }^{8}$

A gadget for games of all kinds

By popular request:

Probing the Oscilloscope The instrument and how to use it

Btre Siren and Stereo Bass Booster projects, PCB feature and a/ our regular columns

HOW TO SUCGEED IN THE ELECTRONIGS BUSINESS:

Available at your
nemsagent or cof pap ins

INVEST GOp AND MAKE ©2.40 net profit

Buy Ambit's new concise component catalogue and get $£ 1$ vouchers. Use them for a $£ 1$ discount per $£ 10$ spent. But even without this, you will still find WR\&E offers the low prices, fast service and technical support facility second to none. Here are some examples from the current issue:

MARCH 1982
 Vol 4 No 3

PROJECTS

* DIGITAL DICEGive it a tumble.11
\star BIKE SIREN28It's a hoot(er)* QUICK PROJECTHeads or Tails?45
* BASS BOOSTERA super stereo enhancer . 52
FEATURES
SCALING THE HIFI HEISHTS
Part Four of our buyers-guide series 14
What it is and why we need it 36
\star THE OSCILLOSCOPE REVISITED 39
FAMOUS NAMES 47
INTO ELECTRONIC COMPONENTS 60
SPECIALS
VIDEODISCS
The entertainment medium of the future? 24
POCKET TV
The flat screen is here, now. 32
REGULARS

onito1820
HE PCB Service 38
Bookshelf56
HE Subscriptions65
Classified Advertisemerts 66

Editor: Ron Keeley
Editorial Assistants: Paul Coster BSc
Tina Boylan
Senior Art Editor: Andrew Sawyer
Layout: Enzo Grando
Advertisement Manager: Esme Dansiger
Managing Editor: Ron Harris BSc
Managing Director: T.J. Connell

MONITOR

Portable Music Power

The somewhat curiously named Yacht Boy 80 , from Grundig, is a four-band radio designed for maximum portability. It measures a mere $18 \times 12 \times 4 \mathrm{~cm}$ and will comfortably slip into a briefcase or handbag. The bands cover medium, longwave and shortwave plus FM, with a LED indicator to show optimum tuning on any frequency.

The Yacht Boy 80 is powered by either batteries or a separate mains adaptor and its output of 0.6 watts is adequate for comfortable listening without disturbing your neighbours on the beach!
Including carrying strap. the radio is available for about $£ 24$, including VAT, in a choice of either silver or brown finish.
For details, contact Grundig International Ltd., Newlands Park, London SE26 5NQ, 'phone 01 6592468.

Master Crafted

The quest for the highest-fi is never ending. Connoiseurs have long been aware of the superb quality of records produced from a 'half-speed master'; this is a variation of the normal recordcutting process in which both the stereo master tape and the cutting lathe are run at half the usual speed. The result is a more faithful transfer of information from tape to vinyl. Original Master Recordings are produced in America by a small company called MFSL and marketed in the UK by Zerostat Components Ltd. Their half-speed mastered recording of popular titles are produced to "the most exacting standards", with each title limited to a run of 200000 copies. Each disc is pressed onto vinyl specially developed by JVC and is perfectly flat. To preserve this quality, the packaging is particularly robust.

The titles include some of the best pop music of the last 10 years - Pink Floyd's "Dark Side Of The Moon", the Rolling Stones" "Sticky Fingers"" "Parallel Lines" from Blondie and Bowie's "Ziggy Stardust". In ad. dition there is a selection of classical titles, including Holst's "The Planets" and Beethoven's famous Ninth.

Full details of Original Master Recordings and the address of your local stockist can be had from Zerostat Componel.... Lid. 14 Edison Road, St lves, Huntingdon, Cambs PE17 4LE, 'phone (0480) 62225.

Calculate By Candle Power

Maintaining their position as one of the most inventive, innovative company in the consumer electronics market, Casio continue to astound and amaze us. This time, it's a candle-powered calculator: actually, it is powered by solar cells but they are so efficient that it really will run from the light emitted by a single candle. It works even better by daylight, of course, when it's less of a strain to read the eight-digit display

Designated the model SL801, it offers all the facilities of a normal four-function calculator, including square root, percent and independent memory.

Recommended retail price, including a leatherette wallet, is $\mathbf{£ 1 0 . 9 5}$. This price is the maximum anyone might expect to pay.

A similar calculator, the model SL701, is available in 'credit card' format, priced at £11.95.

Jogging Memories

Readers may recall an item in last month's Monitor about Casio's new Jogger's Watch. The picture, which we were unable to print last month, gives a more accurate idea of the facilities provided. About the only factor the model $\mathrm{J}-100$ (as it is called) won't calculate is the number of blisters-per-mile!

Mail Order Madness

Ace Mailtronix Lid ('Component supplies for electronic enthusiasts') have made a good start in 1982 with the early relesse of their new mail order catalogue.

New additions include low. leakage electrolytic capacitors. more cases and an expanded LED range, including rectangular and triangular types, indicators and bargraphs. The IC range has been considersbly improved both for linear and logic devices and the keyboard range now includes keybord switches and complete
keyboards.
Their development pack of resistors ought to be of interest to every electronic hobbyist; it consists of 600 resistors with values between 1 R and 10 M , in quantities of either 5, 10, 15 or 20 , depending on popularity.

The Ace Mail Order Electronic Component Catalogue may be obtained by sending 30p to Ace Mailtronix Ltd, 3A, Commercial Street, Batley West Yorks WF 17 5 HJ .

As a special service to hobbyists, Ace is prepared to look for components which the constructor cannot obtain elsewhere, on receipt of a stamped addressed envelope.

Velleman Discovers the UK

Velleman electronic kits, previously available only in other parts of Europe, have landed in the UK and are now svailable from Velleman UK Ltd.

The kits are designed to satisfy electronics enthusiasts, from the novice to the experienced kit-builder, with projects that range from a simple threetone bell to a microprocessorcontrolled EPROM programmer. Each kit is given a "degrae of difficulty" grading to help prospective constructors choose
an appropriate project; prices range from $£ 3$ to $£ 300$.

At present, the kits are available only from Velleman UK, however, they will be more generally available later in 1982. Write for a free catalogue to Velleman UK, PO Box 30, St. Leonards-on-Ses,East Sussex TN37 7NL or 'phone Hastings (0424) 753246. The range of kits is expanding rapidly and already new lines are being added to meet popular demand. Recent sdditions include a stereo input selector with DC control, a stereo volume and tone control unit and a "very specisl" microprocessor controlled timer. The technical details are available free on request from the above address.

Electronics Hobbyists

A new company, Electronic Hobbies Ltd., has been formed with the specific aim of providing hobbyists, experimenters and small companies with small-quantity orders of high technology electronics and computer products.
The product range includes production equipment and tools such as PCB exposure boxes, hand tools, soldering irons etc;test equipment (low cost oscilloscopes) and microelectronic products (for example, microprocessors and support devices, control circuits etc).
Sample prices are attractive 'scope prices range from £ 145 to 355, for example - and a full price list/catalogue is being prepared. The company is based at 17 Roxwell Road, Chelmsford, Essex

Atari Games

Ingersoll Electronics, UK distributors op the Atari 400 and 800 personal computers, have released a new selection of entertainment packages developed by Thorn EMI Video Programmes. Titles include puzzles with nursery rhyme themes, jigsaws and board games, plane and submarine-attack simulators and a schematic cube problem with 300 variations
All programs make full use of the Atari facilitier for full colour

SCHOOLS PRIZE

DASH - Distress Alarm for the Severely Handicapped is a project developed by Carlton Evans, from Brentwood, Essex. It monitors
graphics and animation, plus authentic sound effects the darts game, which offers 300 variations for up to four players, even simnulates the sound of a dart hitting a wire!!.
The new titles are available nationwide through the network of Atari dealers or through the rental companies DER, Radio Rentals and MultiBroadcast. For a full list of titles and prices (which range from $£ 14.95$ to $£ 29.95$), contact your local dealer or write to Ingersoll Electronics Ltd., 202 New North Road, London N1 7BL, 'phone 013590161.
skin response, indicating pain and stress, or relaxation. DASH has met with a favuorable response from the medical profession, who find it useful for showing the condition of patients otherwise unable to communicate.

Bi-Kits

The new S. 453 Stereo FM Tuner module from Bi-Pak Semiconductors offers push-button varicap tuning for four fequencies, phase-locked loop decoder for mono or stereo and provision for the addition of a LED stereo indicator, centre-zero tuning meter and a mono/stereo switch.
The tuning range is from 88-108 MHz with a sensitivity of 4 uV for 30 dB signal to noise ratio and the audio output is of the order of 200 mV ; operating voltage is in the range 18-25 V.

The module is carefully designed for stability and may be used in a wide range of applications. The price is $£ 21.85$ including VAT, plus $£ 0.50$ pEp, from Bi-Pak Semiconductors, PO Box 6. Ware, Herts SG1 2 9AG.

Tooling Up

Meanwhile, the carpenters are hard at work repsiring the damage to Monitor's Newsdesk caused by the arrival, with a resounding thump, of two Cooper Tools catalogues.

The Electronic Catslogue, 1981-82, covers the very extensive range of Weller soldering irons and Xcelite pliers and cutters, screwdrivers and nutdrivers and a variety of special tools leg tweezers and clamps - very useful for fine work).

The genersl catalogue contains, in addition, the complete range of Nicholson files, Lufkin measuring tapes (for long jobs), Crescent sdjustable wrenches and screwdrivers and, for those moments when it's sll too much, the range of Plumb hammers and axes.

Mr. Jonathan Bird of Cooper Tools Ltd., Sedling Road, Washington, Tyne and Wear NE38 9BZ (phone Washington (0632) 466063) will be pleased to supply further information on the Cooper Tools range.

Details Examined

Another now release from Stotron Lid is a pocket micro-
scope priced at under $£ 20 \mathrm{in}$ cluding stand. It provides $20 x$ magnification and would be a useful tool for laboratories, schools, workshops, service engineers and electronics enthusiasts.

It measures just 125 mm long, has a graticule for linear and argular measurements and is powered by stendard 1V5 'penlight' batteries.

A micro-stand, with springclips for sample slides, is
available, allowing it to be used like a conventional microscope. Stotron Lid are located at Unit 1. Haywood Way, Ivyhouse Lane, Hastings, East Sussex: write for a catalogue or phone Hastings (0424) 442160.

Hey, Good Looking

The almost universal use of printed circuit board or Veroboard has mede the "rats nest" syndrome (several yards of various. coloured wires snaking through the innards of a chassis) virtually obsolete. Nevertheless, most electronics projects require some off-board components which
must be wired to a PCB or Veroboerd and if neatness is important to you, some way must be found to keep those wires from tangling potentiometer shafts or snarling-up in a finned heatsink.

If you like your finished works to look good on the inside as well as the outside, Brandauer adhesive cable clips from Stoiron Ltd will keep internal wiring in i1s
proper place.
The range can handle single cables or bunches of wires, from a fen millimetres diameter up to $19 \mathrm{~mm}(\% / \mathrm{in})$ or even lengths of flat ribbon cable. The adhesive is instant and the polyethylene pads provide a high level of insulation from the mounting surface.

Apert from their usefulness to the electronics constructor, they would alse be handy for DIY wir-
ing jobs around the house.
Brandauer cable clips are available through Stotron's mail order service: write for a catalogue to Stotron Ltd. . Unit 1 , Haywood Way, Ivyhouse Lane, Hestings, East Sussex or phone Hestings (0424) 442160.

HE

Roll Them, bowl them!

THE DIGITAL DICE project is, as its titte suggests, an electronic replacement for those spotted cube-shaped things. However, instead of being thrown around, ours is operated by touching two screws mounted on the top. The resulting display of red dots show a number from one to six with an equal chance of any number 'turning up' -or , in this case, of turning on!

The unit is powered by a small nine volt battery, so there is no possibility of getting a shock - essential when there are children around. Also, the switch can be triggered by any area of skin, enabling the handicapped to use the dice.

Construction

The Dice is designed for ease of construction and reliability. The PCB contains only three ICs, all of which are CMOS and must be handled with care lif at alll). Use sockets and an insertion tool to mount them or, failing this, make sure you never touch the pins with our fingers.

All the off-board connections are made using PCB pins, following the overlay (Figure 2) very closely (note that IC2 is placed upside-down in relation to the others), and remember to check the polarity of the diodes. A nice touch is to mount the resistors with the tolerance band (gold, 5\%; silver, 10\%) at the bottom end; this looks neat and makes the values easier to read. The PCB slots neatly into the recommended box, eliminating the need for fixing bolts.

The box should be drilled and

assembled before soldering any wires to the board. Fit the LEDs to the lid first, following the layout in Figure 3. A tip for locating the holes is to use a piece of stripboard as a guide through which a pin is inserted to mark their positions. The holes can then be drilled using a 3 mm drill and the LEDs glued into place with epoxy resin (eg Araldite). The leads from the LEDs should be cropped to a reasonable length for soldering and wired up as shown
in Figure 3. Links on the PCB must be made using insulated wire, to avoid any chance of short circuits occuring. Our prototype used a special square switch, but any small slide switch may be substituted.

When all the wiring has been checked, the battery can be connected and the unit switched on and you're ready for a tumblel

Figure 1. The circuit uses only three ICs.

Like nearly all electronic circuits, this one may be understood if it is broken down into small blocks. This is called 'partitioning' and it is a technique used, for example, by engineers to test circuits bit by bit. From the block diagram it can be seen that there are five distinct blocks in the Digital Dice project.

The touch switch tells the counter when to count. It consists of only three parts; a resistor and two gates that are part of IC1. the inverter IC. One gate is kept at nine volts (high) by R1 and therefore its output is at zero volts (low) - it has been inverted. Placing a finger on the touch contacts causes the inverter to switch over because the resistance of 2 or 3 mm of skin is on average, much lower than R1 (10M).

Therefore, IC 1 a input is taken low and its output goes high. The second inverter flips the signal back over, to allow the counter to be switched on - it needs zero volts at its 'enable' input (pin 13) to begin counting.

The astable multivibrator, IC1c, d, supplies a very fast switching waveform to the counter via pin 14. Every time the astable goes from a low to a high state, the counter moves its output on to the next number. The process of changing on the transition from zero to nine volts, is called 'positive going edge triggering'. The gates of the astable are connected in series via R2 and C1 - the timing components. The time taken for one complete cycle is given by the product of the timing components, which is around 10 uS and corresponds to a clock
frequency of about 100 kHz , ensuring the numbers change too quickly to be predictable.

IC2 has the job of counting sequentially from zero to five, which is the same as counting from one to six. At each positive going edge from the astable one of the counter outputs goes high. Once the fifth output has been triggered, the count instantly returns to zerodue to output six (pin 5) being connected to the reset input, pin 15.

The decoder and buffer circuit, on the outputs of IC2, ensure the correct LED's are lit. Buffers precede each of the six outputs to prevent loading effects, on the counter, by the LEDs. The decoding circuit can be understood with the aid of a 'truth table' (Figure 5).

Figure 3 (right). Truth table showing how the counter outputs are decoded. For eaxmple, if Pin 3. " 0 ", is high (+9 V) then all other outputs will be low (0 V). Therefore: IC3a output is high, IC1e out is low and LEDs 1 and 7 are off; Pin 2 is low so IC3b output is low and its diode does not conduct - but the high on IC3a output is coupled via a diode to the input of IC1f, therefore IC1f out is low and and LEDs 3.5 are off; Pin 4 is low so IC3c out is low and its diode if off (there is a high on the cathode of the diode but this only reinforces the high on IC1f input); Pin 10 is low, IC3d out is low and its diode is off. but there is a high on IC3f input coupled. via the diodes, from IC3a, therefore IC3f output is high and LED 4 is turned ON: finally, Pin 1 is low, IC3e is low, LEDs 2 and 6 are off. Any other count can be decoded in a similar fashion.

Parts List

RESISTORS (all $1 / 4 \mathrm{~W}$ 10\%)R1R2CAPM

The components for the complete available from: Frank Mozer project including the case should Limited, 5 Angel Corner Parade, Edcost less than $£ 5$. The case is monton., order code HB1.

Buylines

Figure 2. The component overlay; note that IC2 is reversed, relative to ICs 1 and 3.

COUNT	IC2 OUTPUTS					LEDs				DISPLAY
	$\begin{aligned} & \text { PIN } 3 \\ & \text { "0" } \end{aligned}$	$\begin{gathered} \text { PIN } 2 \\ " 1 " \end{gathered}$	$\begin{aligned} & \text { PIN } 4 \\ & "_{2}^{\prime \prime} \end{aligned}$	$\begin{gathered} \text { PIN } 10 \\ \text { "4"" } \end{gathered}$	$\text { PIN } 1$	1,7	2,6	3,5	4	
0	+9V	0	0	0	0	-	-	-	ON	-
1	0	+9V	0	0	0	ON	-	-	-	
2	0	0.	+9V	0	0	ON	-	-	ON	- ${ }^{\circ}$
3	0	0	0	0	0	ON	-	ON	-	-
4	0	0	0	+9V	0	ON	-	ON	ON	\bullet
5	0	0	0	0	+9V	ON	ON	ON	-	-

Figure 4. Connection diagram for the LED's.

SCALING the Hi - Fi HEIGHTS Part 3

In may ways, loudspeakers are the most important components of a hi-fi system. After all, "What you hear is what you get".

CHOOSING THE SPEAKER for your hi-fi system involves a fair number of preliminaries. For a start, how much room can you allocate to the enclosures? If you're serious about hi-fi, then go for the most you can, as "the bigger the better" is the rule with speakers. The more air they can move, the better will be the bass and, generally, big boxes move more air than little 'uns.

Look around and decide whether you're going to use shelfmounted units or floor-standing enclosures (these will have to be allowed for in the budget don't forget). Either approach is a valid one. There are some excellent small speakers which lack nothing but that very bottom octave of gut-moving, window-rattling, bass extension. Does this matter to you? (Really?) Go through the kind of music you intend the boxes to play and make an honest judgement.

For the sake of peace, have the arguments before leaving home. You've no idea how silly it looks from the other side of the counter to see people - whatever relation to each other squabbling over whether teak or walnut finish will match grannies false teeth better, or if those huge Wharfedales will really go between the sideboard and the china leopard Aunt Jocasta sent from Kenya last year . . . salesmen are only human and patience is a virtue few of us have in abundance. You'll get better service if you appear organised and clear about your wants at the outset.

Two (or Three) into One

Most of the adverts you read for speakers make great play of the number of drive-units (ones) there are in the box, the tone controls on the back, the materials used, the lasers which dance across the design curves, the side of the forest the trees came from to make the veneer, how often the engineers clean their teeth, etc, etc, etc.

Well, that might be an exaggeration, but give the ad men a few years and you never know.

It is all quite pointless. Listen and forget the lot. If you begin by defining the physical requirements for the speakers as outlined above, then you can just settle back into the comfortable demoroom chairs and open up your ears.

At the risk of repetition, it's the sound you're interested in and not the maıner by which the speaker achieves it. Use the 'blurb' as an indication to guide you to the area you're interested in and no more.

Loudspeakers are the voice of the hi-fi system and yet remain the least technically refined. Every unit on the market has an individual character, which is clearly apparent if compared to another. Hence, extensive listening sessions are more vital than
ever. Anyone who buys a pair of loudspeakers without hearing three or four competitive models directly compared to them is gambling the cost of his entire system plus that of replacement speakers.

Elephants For Reviewers?

Comparisons have to be simultaneous, because a person's audio memory is very short - half an hour after you've heard a speaker is too late to listen to another and try to decide between them. Your mind will have 'enhanced' the earlier impressions, be they good or bad, and rendered the comparision pretty useless.

It takes training (ie a great deal of practicel) to be able to listen to a piece of hi-fi and retain objective criteria of its sound over even a short period of time. General impressions - poor bass, high distortion, etc, are easy, but fine detail such as depth of image, amount of detail in the sound, high frequency quality and the like cannot be accurately 'stored away' indefinitely. The more experienced a person becomes, the more reliable his memory banks will prove to be.

For this reason, have your demonstration of speakers set up in a comparator box which can switch from one set to another, while the music is playing. Also make sure the cartridge in use is the one you intend using at home. This is most important of all, but if you can arrange for the turntable and amplifier to match, so much the better.

Listening

What to listen for? Mainly those things in music which appeal to you! Some people consider it desperately important, for in-. stance, that a hi-fi has an excellent stereo image, ie that all the instruments and singers are spread out from the speakers and appear to have an exact position, from which they do not wander. Others will sacrifice this, to a varying extent, to get the particular sound balance they want - excellent bass, sharp highfrequencies, etc, etc.

There are some guidelines, however, which are fairly universal. A good speaker should stand the sound away from its wooden sides, so that you are not aware that the box is the source of the music.

It must also be all things to all frequencies and not stress any particular band. Units which fail this criteria will quickly become tiring at home and lead to dissatisfaction. Look also for the 'ease' with which the speaker lets the music out and lets you listen through it, to what is happening earlier in the system.

As to the type of sound, none is more correct than any other choose the one you prefer. Just make sure that the cartridge and speaker don't aggravate each other, exaggerating weaknesses in either, or both. Try to aim for a final result which gives you the impression that a spoken voice actually sounds like a person, not just a hi-fi playing a voice! Sounds simple does it not? If it were, there would be far fewer brands of stereo around!

One thing to be aware of is that lining up loudspeakers wall-towall in a showroom will invariably effect the performance of any and all of them. The bass cones of other speakers, in particular, will move in sympathy with the unit actually playing, modifying the sound you hear. Generally, the effect is to add warmth and remove detail. This can give a totally false impression of the sy ,iem.

The cure is easy, fortunately. The better dealers will move the pair you select out of the stack, if you ask nicely. Position them as you would in your room and listen again. If the result is what you want, sign the cheque - the salesman's earned it!

A loudspeaker is a transducer - that is, it converts one form of energy into another. In this case electrical energy from the amplifier output is converted into mechanical movements of the air in the listening room, ie sound.

This is achieved by use of the laws of electromagnetic induction and is exactly the same principle which lies behind electric motors - that if you pass an electric current through a wire which is close to a magnet, a force is exerted on the wire proportional to the current flowing through it.

In a loudspeaker, the wire is coiled around the end of a cone and is extremely close to a very powerful magnet. The audio current from the amplifier is passed through the coil, which moves under the influence of the magnet, taking the cone with it. The movement of the cone in turn creates sound waves in the surrounding air and these will be a good representation of the audio signal from the amplifier. How good depends on the quality of the

Figure 1a. Moving-coll drive unit. The voice coil (connected to the amplifier) sits centrally In the gap beiween the magnet poles and the longer the coll is made, the further it can move and still be controlled by the magnet, hence the unit can handle higher currents from the amp (higher power handling). This type of unit is used mainly for bass and mid-range frequencies, as there comes a point when the large cone will be unable to respond fast enough to replay the input accurately.

Figure 1b. Domed drive-unit for high frequencies. Here the cone is replaced with a curved 'dome' of material which is more rigid and much lighter, hence more able to respond quickly.
speakerl Figure 1 illustrates the basics of the moving-coil drive unit, as this type of speaker is termed.

Electro-Statics

There is only one other significant method of sound reproduction on the market and that is the electrostatic loudspeaker. Here the cone and coil are both replaced by the use of a very thin and light conductive plate. This is positioned between two grilles of metal connected to a very high voltage (-700 V) in such a way that it can move without contacting the grilles. The audio signal, which is to be replayed, is imposed upon the high voltage supply.

Once more, the varying signal imposes a force upon the conductive plate, this time electrostatically, which moves in sympathy, thus creating the required sound-waves. Figure 2 illustrates this principle. Note that here a transformer is used between amplifier and speaker, both to even out the load and to set correct voltage levels.

Units For All Seasons

Returning to the moving coil loudspeaker - which accounts for 99.9% of all units sold - Figure 1 shows that, as not all frequencies can be played equally well by one drive unit, most enclosures will contain two or three to handle the entire audio spectrum. The sound is split-up by the crossover network in to the bands suited to each unit so that, for example, the high-energy bass signals do not reach the more fragile high frequency drive unit.

Rarely are drive-units referred to as 'low frequency drive' or 'high frequency-moving-coil-loudspeakers'. For no good reason (other than that someone somewhere thought it amusing no

Figure 2. Electrostatic loudspeaker. The polarising voltage is to help maintain the position of the moveable plate, with a large input signal by 'offsetting' it. Note here that no magnets are used and that sound will be emitted in two directions (ie a dipole radiator).

Figure 3. A typical crossover circuit. In this case the unit is the ETI $V 3$ DIY loudspeaker which uses the three units (two of which are domed units) which provide a better spresd, or dispersion of sound, than a normal cone.
doubt), bass speakers are termed 'woofers', mid-range 'sqawkers' and high-frequency 'tweeters'.

No comment.
There are also three kinds of box (enclosure) in use for hi-fi: (i) Infinite baffle or acoustic suspension. (ii) Bass Reflex. (iii) Transmission Line or acoustic labyrinth. Figure 4 illustrates

Figure 4. Enclosure types. (i) Infinite Baffle (ii) Bass Reflex (iii) Transmission Line
(i) Infinite Baffle. Box is sealed tight and air trapped inside will act as 'suspension' for the woofer, increasing the unit's power handling. (ii) Bass Reflex. The vent or post in the front panel will, under the correct conditions, act as a supplimentary speaker unit, thereby raising the overall efficiency of the enclosure.
(iii) transmission line. Since the bass speaker is along way from the port (and assuming the correct choice of damping materials in the 'line'), it can be considered, for all intents and purposes, to be in an infinitely long pipe! No energy is reflected back on to the unit and the enclosure has virtually no effect on the final sound - an ideal situation.

the principles, but as they are largely irrelevant to how a speaker sounds, we are not going to spend too much time on the differences here. Bass reflex enclosures are more efficient than the others, but at the cost of bass output. Transmission lines give the best bass response of the three, but at the cost of larger enclosures.

Take It On Spec

There are comparitively few specifications to cope with for loudspeakers buyers, which means that quite often a manufacturer or dealer will attempt to confuse the issue with the most
amazing irrelevancies. As before, let your ears decide. The list below includes all the relevant technical points to watch.

Power Handling: Simply how many watts a unit can handle before disaster sets in. There are many ways of specifying this, with good old fashioned RMS still the most honest. The better manufacturers now specify a range of recommended amplifier power outputs for their units, taking into account the peak output capabilities. Try to place your amp in the centre of the range for safety. If a unit is specified only in terms of 'music' or 'programme' power, halve the figure to get a useful RMS equivalent.
Efficiency/Sensitivity: The former means how well a unit translates input into output with minimal losses and the latter means how much output is obtained for a given input. In other words, the two mean the same thing to a purchaser! Efficiency is usually specified in terms of percentage, ie 20\% efficient means that 80% of input is lost. Average loudspeakers - if such things exist - are around 0.3% efficientl So that 99.7% of input ends up as heat and electrical losses! Only horn loudspeakers, where a special method of coupling to the air is used, can exceed 1%. They manage 20% or so but cost the penalty of huge enclosures for bass. It is no exaggeration to say that to have a pair of full range horn speakers at home, you'd be living in them rather than with them . . . Commercial units are a compromise. Sensitivity is nowadays quoted as the sound output (in dB) for 1 W of full-range input, such as pinknoise. Each doubling of power then adds 3 dB to the output. (As 2 dB is about the smallest perceptable change the ear can detect, high-power amps become easier to appreciate at this point). As a guideline, 90 dB is loud, 96 dB about the point where your body begins moving to the music (who's dancing?) and 100 dB around the onset of pain. Look for a sensitivity figure above 85 dB and take care with the amplifier output figure. For example: speaker A has 88 dB sensitivity, amplifier 60 W RMS output and amplifier C 200 W output. Amp B can obtain around 106 dB from the speaker and Amp B could reach 108 dB , ie an imperceptible increase. But as the speaker power handling is only 40 W , both blow it to pieces a long way short Point made?
Impedance: There is no right or wrong for this spec. Nearly all modern units quote 8 ohms anyway and there is little to choose between, on paper. A more important point to note is that impedance is a nominal figure and the actual value will vary widely with frequency. A plot of impedance against frequency is the most useful measure - the nearer a straight line the better!
Frequency Response: As with any other hi-fi unit, this is a measure of linearity, ie how evenly the enclosure treats the audio spectrum. Ideally the output should be at the same level for a given value of input, regardless of frequency. Loudspeakers, being partly mechanical in nature, are not as precise as amplifiers, for example. In addition, the room in which the unit is used will limit bass response (unless it's the Albert Hall - in which case you're a squatter and we don't talk to them. . .) Look for $30 \mathrm{~Hz}-20 \mathrm{kHz} \pm 5 \mathrm{~dB}$ from a small enclosure and anything which boasts $100 \mathrm{~Hz}-20 \mathrm{kHz} \pm$ 2 dB is worth a second look!
Distortion: Regardless of type, modern enclosures have made great strides in recent years. Accept nought less than 3\% total, preferably 2% if THD is all that is quoted! Electrostatics and the top-end moving-coil types can better 1% from 100 Hz upwards.
Bass Resonance: Often quoted as some sort of 'figure-of-merit' but is, in fact, totally irrelevant. It will be given in Hertz, around $20 \mathrm{~Hz}-30 \mathrm{~Hz}$ and denotes the frequency at which the bass speaker is most efficient or resonant. Below this, the response drops off rapidly into unusability. Once the speaker is fitted into an enclosure, however, this will be compensated for by the box and the crossover network will smoothout the reponse. In other words - ignore it!
Crossover Frequencies: Nearly always given in specs, but not as a good or bad figure - which is a pity as a deal of potentially useful information can be extracted from these seemingly innocuous numbers! A crossover frequency is that point at which the sound output is changing from one drive unit to another. At this point, in theory, it is being played by two units at an equal level. Beyond, it will be quickly 'filtered out' from one, allowing the other to dominate. As the human ear is most
sensitive between 1 kHz and 3 kHz , it is best if only one unit replays this band, as even small shifts will be detectable, probably as roughness or brightness. Thus any crossover point between 1 kHz and 3 kHz should be mistrusted. The importance of the mid-range speaker is thus emphasised and ex-
nn perience has shown that the best sounding units can cover something like $500 \mathrm{~Hz}-5 \mathrm{kHz}$. With this in mind, look for a lower crossover above 100 Hz , but below 500 Hz and an upper changeover between 3 kHz and 7 kHz .
Phase Linear/Time Delay Compensated: In order for a loudspeake to sound as 'real' as possible it must reproduce all the aspects of a live sound accurately. Some years ago it was realised that while a musical instrument produces a wide frequency range effectively at one point in space, a multi-unit loudspeaker does not. This is due to the huge difference in physical size between bass drivers and tweeters. The point from which sound appears to radiate is well inside the enclosure for a cone woofer, but will be at the outside edge of the h.f. dome - difference of some 5-12". This is many times the wavelength of frequencies in question and is thus significant. Since sound travels at a constant speed, regardless of frequency, the low frequencies will arrive at the listener after the HF dome - a difference of some 5-12". This is many times the wavelength of frequencies in question and is thus significant. Since sound travels at a constant speed, regardless of frequency, the low frequencies will arrive at the listener after the HF even though they are supposedly from the same instrument. This is termed 'phase distortion' and is audible as a lack of sharpness or precision. The best phase-linear speakers, which 'stagger' the drivers (figure 5) to line-up the sound sources, can produce an uncannily believable stereo image and a beautifully clear and sharp sound overall. Units such as this are usually more expensive nowadays, as the fashion for lining up the units in this way has died out. Quite frankly this is probably because very few of the manufacturers evergot it right!
Next month our series concludes with a brief look at tape recorders and tuners - and instructions for installing your first hi-fisystem.

Figure 5. Lining up the sound sources to overcome phase distortion - otherwise known as time-delay compensation.

Figure 6. This revealing cutaway of the KEF 105 II loudspeaker shows the level of complexity that top-end designs can require The bottom enclosure contains the bass-driver and crossover while the pivoted 'head' carries the (cone) midrange and the (dome) high frequency units. You can see the protection circuitry, which makes this speaker virtually invulnerable, behind the rear of the head. This is a design in which practically all the parameters concerned with an enclosure have been optimised. Even the edges of the top enclosure are rounded off, to prevent sharp corners interfering with sound dispersion. In addition, the bass-driver is 'developed' from the box in such a way that vibrations from the framework are prevented from reaching the enclosure itself, where they would colour the output.

Figure 7. One recurring question is that of what to isten for in loudspeaker auditions. Try this: A single vocalist, ie Stevie Nicks, and a single (complex harmonic) instrument, ie a tambourine. Listen to the voice closely; can you pick out the singer clearly, whether the instrument is playing or not? Is the sound of the voice modified in any way by the instrument? Listen for expression in the voice - not what is being sung but HOW. The instrument should be sharp and distinct at all times and you should be able to shift your attention from voice to instrument, and back again, equally well without either one dominating. An exacting test - but they're the best kind!

WHAT'S ON NEXT?
 POPULAR COMPUTING No. 1

Our new computing supplement for budding hardware engineers leads gently into the world of bits and bytes, CPUs and I/O Ports. Our first feature explains these terms and many more. Then there's the special feature that separates publicity from practicality; there are many good reasons for owning a computer, but there are also many traps for first-time buyers. Once you've decided, though, our buyer's guide - a survey of the most popular budget-price computers on the UK market - will help you choose the best machine for your purposes.

INTO RADIO

Beyond the CB-Barrier lies a fascinating hobby - Amateur Radio. Every day, thousands of people, of all ages, from all walks of life and from countries all around the world, talk to each other by radio. How can you get into Amateur Radio? Easy. Just follow us

CREATIVE RECORDING

You don't have to be a rock superstar to get a recording contract - you can write your own and record yourself using one of the new multitrack recording systems developed in recent years. This new feature series untangles the recording chain, tells you what equipment you'll need and how to use it. The rest is up to you!

DUAL TRAIN CONTROLLER

We've done them in the past, but never has there been one with all the features of our Dual Engine Driver. Completely self-contained, it has separate controls for driving two engines, both with simulated inertia, including a realistic start-up. You can accelerate to the throttle setting, coast, or juggle the acceleration, coast and brake controls to stop right by a platform. It takes practice - but it can be done (using the emergency stop is cheating). If it's scale-accuracy you want, this is the controller you need!

DIGITAL CAPACITANCE METER

Our cousins at Electronics Today Internastional have theirs - but take a look at ours before you decide. It's easy to build, fast and accurate. What more could you need? BIKE ALARM
Following our Super-Hooter in this month's issue, we present an easy-to-build antitheft alarm.

INSIDE COLOUR TV

Most of us spend a considerable amount of time looking at the outside of a colour TV - ever wondered what goes on inside? Hobby Electronics' April issue has the full story - inside out, you might say.

That's just part of what's on in the April issue of Hobby Electronics. On sale 12th March.

EHPAK

CB users. Home base POWER SUPPLY 3A Rugged Powerful British Made FEaTuRES Sate 3 Amp oderation. 138 g Fully regulited Electirnice snon crecui \& overioad prolected I atest technology IC design - Anracive compaci case Compelifvely dockeo SPECIFICATIONS *inpul rolage-240 Vac 50ha - Outpul voliage - $13 \mathrm{gVOC}=1 \%$ Marimum mith mains inour varation : 10% load 0.25 A . Outpu
 full hoad Oimensions - $175 \mathrm{jg} \times 100 \mathrm{~m} \times 75 \mathrm{~h}(\mathrm{~mm})$ our paice only $£ 15.00$ orofa no 3 Ga CB Algs and Accessories in stock. Send S. A.E.for full listinge
S.

8 Blt MICROPROCESSOR National iNS808cAN 40 Pin DIL N Channei Silico N8080 Micto Computer Famuly Instruction Cycle Time Supplied with functiona Block Dlagram BRAND NEW
100% perteil ORDER ND S×8080 On/y

$$
\text { rmal Sell price } £ 450 \text { each }
$$ Our BI-PAK Special Price E?. 00 SO HUPRY - LIMITED STOCKS

Fantastic Audio Bargains

5 watt (RMS) Audio Amp
High Quality audio amplitier Module Ideal for use
record players, tape recordess, stereo amps and
cassette players. etc Full data and tach up diagrams
*ith each module
Specilicalion

- Power Oulput 5 watts RMS Load Impedance 8.16 ohms e Frequency response $50 \mathrm{~Hz}_{3}$ to $25 \mathrm{KH}_{2}-300$ Sensitivily 70 my lor full output input Impedance Soh ohms Suze $85 \times 64 \times 30 \mathrm{~mm}$ - Total Harmonic
± 2.25
You could nol Build one
to this price

COMPLETE

AUDIO CHASSIS
STEREO 30 Complere 1 watt po diannel Stem eo mm board - incudes mmps. prompe power supph, tront menel knots and Irenstarmer
Almost $1 / 2$ PRICE

1 Amp SILICON RECTIFIERS

 ALL Dentect Dences - NO duas Min sor

Sincon Genemil Pupls NPN Tanliof TO-18 Case
 - BC107- TI89 ALL MEW VCE TOU ICS500NA.
 Silicon General Pupoose PWP Trans storis To-5 Case Loch in leads coseo Cvasor simiar inve95a to BEX 30 VC 50 IC 500 mA MI He SO ALL MEW 50 of 100 of 500 of 1000 of
FICE $£ 2.50 \quad £ 4.00 \quad 19.00<35.00$

Silicon NPN'L'TypeTransitors T0-92 Plasitc centre collector
VCBO 45 VCEO 30 IC200mA HIe 100-400 * ALL periect devices - uncooed ORDER AS SX183
 PNP SILICON TRANSISTORS
 Brand New - Uncoded - Petect Devices
50 ofl 100 of $500 \mathrm{om} \quad 1000 \mathrm{om}$ $\begin{array}{llll} & \mathbf{2} .00 & £ 3.50 & £ 15.00 \\ £ 25.00\end{array}$ Oroe as $27 \times \mathrm{KPNP}$

Use yuur credricad hemp us on Wwe 3182 NOW and ger your uriet even laster. Gioods nomaliy send 2nd Closs Mall
Remember you must add VAT an ISW 10 your udes Total Postige wat Sop pee Toral under.

FOUCNT BEAT IPBPOMRPOWER MPSOR POW RADDPRICE

Get maximum power at minimum price, yet still with hi-t specifications and a wide choice of outputs. ILP Bipolar power amps. now with or without hearsinks are unbeatable value for domestic hi-fi - but lor disco. gutar amplitiers and PA choose the new range of heavy duty power amps. again with or without heatsinks. with protection against permanent short circuit. added satety for the disco or group user. Connection in all cases is stmple - via 5 pins
Every ilem has a 5 year no quibole guarantee and
Load impedance, all models. 4 ohm - infintity, Input impedance, all mocels took ohm. Inpu sensitivity, all models. 500 mV . Frequency response, all models $15 \mathrm{~Hz} \cdot 50 \mathrm{kHz}-3 \mathrm{db}$ BIPOLAR Standard, with heatsinks

Modet No	Outpul power Watts rms	$\begin{aligned} & \text { DISTC } \\ & \text { THD } \\ & \text { TyD } \\ & \text { at } 1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \hline \text { ORTION } \\ & \text { I M D } \\ & 50 \mathrm{~Hz} / 7 \mathrm{kHz} \\ & 41 \\ & 41 \end{aligned}$	$\begin{aligned} & \text { Supply } \\ & \text { voltage } \\ & \text { Typ/Max } \end{aligned}$	Size mm	$\begin{gathered} \mathrm{Wi} \\ \mathrm{gms} \end{gathered}$	Price inc VAT	Price ex VAI
HY 30	15w/4.89?	0015\%	$<0006 \%$	$\pm 18 \pm 20$	$76 \times 68 \times 40$	240	¢8 28	¢7 29
HY 60	30w/4.88	0015\%	$<0006 \%$	$\pm 25 \pm 30$	$76 \times 68 \times 40$	240	¢9 58	CB 33
Hy 120	60w/4.85t	001\%	$<0006 \%$	$\pm 35 \pm 40$	$120 \times 78 \times 40$	410	¢20 10	§17 48
HY 200	120w/4-852	001\%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 78 \times 50$	515	¢24 39	¢21 21
HY 400	240w/492	001\%	<0006\%	- 45 ± 50	$120 \times 78 \times 100$	1025	§3660	¢31 83

BIPOLAR Standard, without heatsinks

HY 120p	$60 \mathrm{~W} / 4.88$	001%	$<0006 \%$	$\pm 35=40$	$120 \times 26 \times 40$	215	$£ 1783$	$£ 1550$
HY 200p	$120 \mathrm{~W} / 4 \cdot 832$	009%	$<0006 \%$	$=45 \pm 50$	$120 \times 26 \times 40$	215	$£ 2123$	$£ 1846$
HY 400 P	$240 \mathrm{w} / 4 \Omega$	001%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 70$	375	$£ 3258$	$£ 2833$

Protection: Load line, momentary short cricuit (lypically 10 sec) Slew rate $15 \mathrm{~V} / \mu \mathrm{S}$ Rise time $S_{\mu \mu S} \mathrm{~S} / \mathrm{N}$ ratio 10000 b Frequency response $(-308) .15 \mathrm{~Hz}$ - 50 kHz . Input sensilivity 500 mV ins. Input mpedance $100 \mathrm{k} \Omega$ Dampong lactor $(8 \Omega / 100 \mathrm{~Hz})>400$

HEAVY DUTY with heatsink

Mocet No	Dutput power Watts rms	$\begin{aligned} & \text { DISTO } \\ & T H D \\ & \text { TyD } \\ & \text { at } 1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { ORTION } \\ & \text { IMD } \\ & 50-H 2 / 7 \mathrm{kH} 2 \\ & 41 \end{aligned}$	$\begin{gathered} \text { Supoly } \\ \text { voltage } \\ \text { Typ/ Max } \end{gathered}$	Size mir	$\left.\begin{gathered} \text { WI } \\ \mathrm{gms} \end{gathered} \right\rvert\,$	Price ine vat	$\begin{aligned} & \text { Price } \\ & \text { ex VAT } \end{aligned}$
HO 120	$60 \mathrm{w} / 4.888$	001\%	<0006\%	± 35.40	$120 \times 78 \times 50$	515	¢25 85	£22 48
HD 200	120w/4.882	001\%	<0006\%	$\rightarrow 45 \pm 50$	$120 \times 78 \times 60$	620	£3149	¢27 38
HD 400	240w/451	001\%	<0006\%	$\pm 45+50$	$120 \times 78 \times 100$	1025	¢44 42	[38 6

HEAVY DUTY without heatsinks

| HD 120P | $60 \mathrm{w} / 4.892$ | 001% | $<0006 \%$ | $\div 35 * 40$ | $120 \times 26 \times 50$ | 265 | $£ 2282$ | $£ 1984$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | HD 200P | $120 \mathrm{w} / 4.8 \mathrm{BI} 2$ | 001% | $<0006 \%$ | $.45 \pm 50$ | $120 \times 26 \times 50$ | 265 | $£ 2717$ | $£ 2363$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Protection: Load line. PERMANENT SHDRT CIRCUIT fideal lo disco/group use should evidence of short circull not be immediately apparent) The Heavy Duty range can claim additionat output power devices and complementary protection circuitry with pertormance specs as for standard types
How 10 order Freepost: Use this coupon, or a separate sheet of paper. 10 order these products or any producis from other ILP Electronics advertisements No slamp is needed if you address to Freepost Cheques and posial orders must be crossed and payable to ILP Electronics Ltd cash must be registered C. 0 D - add $£ 1$ to total order value. Access and Barclaycard weicome. All UK order's sent post iree wihinn 7 days of recempl of ofder Please send me the following ILP modules

Total purchase price
Ienclose Cheque $\square \quad$ PostalOrders $\square \quad$ Int Money Order \square
Please debitmy Access/BarclaycardNo
Name
Address

Post to ILP Etectronics Ltd Freepost? Graham Bell House Roper Close
Canterbury CT2 2EP Kent England
Teteohone (0227) 54778 Technical (0227) 6a723 Telex 965780
 STAYAMEAD.STAY WITHUS

This month, as promised, the Editor answers a selection of your letters querying projects from past issues.

The process of turning a designer's circuit diagram and component layout sketch into a work of art suitable for publication is one that is very sensitive. Errors can creep in at any one of the half-dozen or so stages involved.

Lately, however, it seems that the Gremlins (or 'bugs', if you prefer) have been having a field-day. The situation has been complicated by the fact that, due to the Christmas period, we have had to produce two issues in less time than we would normally take to do them. As a result, the collection of unanswered enquiries has grown to an alarming size.

We apologise to all those readers who have been anxiously awaiting a reply and assure you that, in future, all letters sent with an SAE will be answered by the publication date of the following issue.

Corrections, where necessary, will also be published in the very next issue - however, you can be sure that we will be doing our very best to ensure that the word "Errata" disappears from our Contents pagel

Doorphone

Dear Sir,
With reference to your "Doorphone" project, featured in the October 1981 issue; I followed your instructions but, on completion, I am sorry to report great frustrations. Discovering a discrepancy between the diagrams on pages 10 and 12 greatly soothed my mind but, before altering anything, perhaps you could advise me which is correct?
I. Merwitzer,

Salford.
Regular readers will be aware that our original title for this project was a registered trademark, hence we have re-named it the "Doorphone". To further complicate matters, several errors slipped through.

1. On the circuit diagram RV1 should be drawn with an arrow through it, ie a potentiometer with one end 'floating'; the battery voltage should be 12 V , not 9V.
2. R6 and LED1 should be interchanged.
3. On the component layout, the missing C5 should be inserted between points $\mathrm{B} 10(+)$ and B 12.
4. There should be a wire from point D1 to the top right of SW1 and a break in the Veroboard at D4.
5. It is not clear from the diagram that LED1 anode is connected to SW2. Another query on this project was received from Mr. F. W. Andrew of Newbury, Berks; we hope these corrections answer your questions.

Stylish Organ

Dear Sir,
In your November 1981 issue you published a circuit for a Simple Stylus Organ. Being interested in electronics but by no means fully conversant with circuit diagrams such as your Figure 1. I followed the illustration of Figure 2. After connecting all the components as in the upper drawing and making the breaks as in the lower drawing, the organ did not seem to work.

I checked the connections and, as far as I can see, there appears to be discrepencies between the two. Could you please check and inform me which drawing is correct?
E.J. Butler,

Sheffield.

In fact there are several errors in this Quick Project - and not just on the component overlay. On the circuit diagram, RV2 should NOT be connected to pin 6 of IC1 - it should, in fact, be shown as connected to pin 3. On the layout (Figure 2), the lead from RV2 should be connected at F4, NOT F11. Back on the circuit, RV3 should have been drawn with an 'arrow' through it.

In addition, there should be a link from D23 to A23; the link from F15 to 115 should NOT also connect to H 15 ; finally R5 (unlabelled) should connect to B14, not A14. On the underside of the Veroboard, connection points should have been shown at J14 and 16.

In Time, Out Of Place

Dear Sir,
Having just completed the Metronome project from the November (1981) issue, I have these points to make. 1. Veroboard track breaks - none are shown for IC1.
2. Battery, RV1/SW1 and battery leads are rather misleading in that the polarities appear to be reversed.
3. On the component layout, Q1 collector and emitter connections are reversed.
4. SW2 was supplied as a single-pole 12-way rotary.

This being the first project that I have attempted from your magazine (and also the first / have attempted with this IC) the ICs were the last items to be inserted (in sockets) before switching on. However, with SW2 at position 1, LEDs 1 and 2 flash and a tone is produced at every beat. With SW2 in position 2, 3, 4, or 5, LED 1 flashes with every beat, LED 2 flashes on every tenth beat and a tone is produced 4 or 5 times out of ten with a change in pitch when it coincides with LED 2.

Long distance diagnostics of the above symptoms will be quite difficult but I would welcome any suggestions. My assumption is that IC2, the 4017 , is unserviceable. I would also welcome your comments on the faults / have found.
J.F. Seaman,

Cornwall.
Long distance diagnostics are always difficult - we can but try! In this case, there are one or two other errors which, when corrected, may solve the problem. For the benefit of other readers who have been troubled by the Metronome, we'll list all the corrections, starting with the ones mentioned in Mr. Seaman's letter. 1. The missing track breaks are at U27, T27, S27 and R27.
2. RV1/SW1 (our artist's impression of a pot-switch); the battery leads should be reversed.
3. Q1 - ' e ' and ' c ' should be interchanged.
4. This should not make any difference.
5. Swap the leads at J2 and L2. 6. C3 should be connected between M33 and 133.
7. C1 should be between R24 and S24.
8. Remove the link between T29 and V29.
9. Resistor R1 should be R2 and connected between V33 and T33; resistor R2 should be re-labelled R1. 10. The wiper of RV1 should go to point S36.

Special caution is needed with this project because of the small size of the component layout; every connection on the Veroboard should be checked against the circuit diagram - which IS correct.

Understanding Diana

Dear Sir,
I have built the 'Diana' pulse induction metal detector (September, 1981), but it does not workl

Using an oscilloscope, I can get square pulses from IC2 and IC3 but IC4 seems quite "dead" - even a new one made no difference. Also, RV1 and RV2 do not alter the voltages as described.

R12 is not on the Parts List - is it 1 MO? I have built other metal detectors, but this one has me puzzled. Perhaps you can let me know where I have gone wrong?
H.J.Fisk,

Suffolk.
We published an Errata on the "Diana" in the November 1981 issue, which you may have missed: R11 should be 2 k 2 , not 2 M 2 , and R1 2 is 1 MO as you have correctly assumed. The correct
value of R1 1 will probably "revive" IC4.

Telephone Bell Repetition

Dear Sir,
I am very interested in the Telephone Bell Repeater described in the October 1981 issue of HE. However, after checking the design and building instructions I discovered three faults.

First, I failed to find R9 on the component overlay drawing, which leaves the emitter of Q3 open circuit. Second, the connection point of the loudspeaker is not shown. Third, the solder points on the Veroboard strip do not agree with the component overlay.
llook forward to seeing your comments on these points.
P. Smith,

Leics.
Dear Sir,
With reference to the Telephone Bell Repeater project, there are several errors:

1. R1 is shown as 47 k in the circuit and as $47 R$ in the Parts List. Which is correct, please?
2. R9 is omitted from the component layout on page 58.
3. Pin 11 of IC1 is not shown as soldered on the underside of the Veroboard on page 58.

May I suggest that, when you do have corrections to publish, they be given prominence and not left to be found in reader's letters?

C.R. Munro.

No doubt H.J. Holland of Salisbury, Wilts., and A.B. Ely of Kirkcudbright are also looking forward to seeing our comments on this projectl Our apologies for the delay; here they are (at last):
Figure 1, page 57: R1 should be 47R, as shown in the parts list.
There should not be a connection between C1 and R1.
Figure 2, page 58: Insert R9 between points L18 and S18.
C1 should be between points V3 and T3.
The loudspeaker, LS1, connects between V2 and W2.
The socket for IC 1 should have all its pins soldered.

Finally, concerning Mr. Munro's last point: We receive a large number of letters every month, many of them straight-forward technical enquiries but also a considerable number of queries on possible errors in projects. Where else can we reply, except in the Letters pages?

In future, however, we will draw your attention to corrections by an entry in the Contents referring to the page (or pages) on which Errata are to be found - as we have done in this and the previous issue.

Baby's Alarming

Dear Sir,
On page 39 of the October ' 81 issue of
HE you published a project for a Baby

Alarm. Under the component layout diagram, you mention that six breaks are needed in the Veroboard tracks but you fail to indicate where they should be.

Could you please tell me which track positions are to be broken?
P. Newstead,

Oxford.
We had many letters from readers concerned about these missing track breaks; at first we thought the error was in the text because the layout is such that the project should work without any track cuts at all! The solution was provided in a letter from Mr. Ko Yenlie of Singapore who very cleverly suggested that track breaks will be needed adjacent to the two mounting holes at the end of the board. Accordingly, if you are using or wish to use mounting screws, track breaks should be made at locations A22, B22. C22 and at H22, I22 and J22. The mounting screws should come after the breaks, at the end of the board. Our collective thanks to Mr. Kol

R.P.M. Meter

Dear Sir,
I have made up the above item, but I am surprised no correction or reader's letter has been published.

The overlay, which is very faintly printed and almost impossible to work from, is shown the same as the printed circuit pattern (on page 62), ie the parts would be mounted on the copper track side. Presumably the circuit foil pattern should have been a mirror image of the overlay outline.
Fortunately, by mounting the IC sockets on the foil face and other components as normal, all is well. Wish I'd spotted the error before I had etched the board, as I might have done had the overlay been clearer.

I.M. Tasker

Grantham, Lincs.
Murphy's Law strikes twice. Mr.
Tasker is perfectly correct; the PCB pattern on page 62 is shown from the top, that is, the component side. A solution to the problem is to trace the pattern on to clear paper, then flip it over to present the correct orientation for transfer to a blank PCB.

The track outline on page 54 is very faint indeed, but at least it is possible to refer to page 62 for a clearer picture!

Hobby Organ

Dear Sir,
Having made, and played, the HE
Organ (which, I might add, sounds pretty good to me), 1 am rather surprised by one of the items in the Errata box in the August 1981 issue. Referring to C3 in Figures 2 and 3, has it really been turned around?

Also your (Oops) in the June issue re. points 1, 2 and 3; 0 volts does not go to R2 - is this not the amplifier input?
E.G. Elliott,

Taunton, Somerset.

Quite obviously, the Gremlin-fixer has been fixed and the Errata printed in the August issue is itself - in error. The correct corrections are as follows: In Figure 2, C9 should be 220u, not 220 (the Parts List is correct). However, C1 2 can be 22n and C13 can be 10 n as neither is critical.

In Figure 2, C32 (not C3, as we said in August) should be turned around; that is, its positive plate should be at the bottom.

In Figure 3, the positive plate of C34 (not C3) should be at the righthand side and capacitors C28 and C32 should both be turned around.

Regarding "points 1, 2, and 3", we are unable to make out what 'oops' they are in reference to. Could you be a bit more specific?

Kitchen Timer

Dear Sir,

A few months ago 1 made up the Kitchen Timer described in the October 1980 issue of HE. However, I have never managed to get it to work. I have changed a number of components, checked connections and polarities and also checked resistors and joints with a multimeter. Are there any other checks I could make?

Hoping you can help.
A. Webb,

Glasgow.
Firstly, R17 should be 3 k 9 , NOT 82k, as shown on the circuit and in the Parts List. The incorrect value may well be the source of your troubles. If, after changing R17, the Kitchen Timer still fails to "do its thing", you can isolate the fault to either the timing section or the multivibrator by metering pin 3 of the 555; it should go high (+9 V) when the timing period is started and go low (OV) when the IC "times out". Then, at least, you will have narrowed the possibilities.

Mast-Head Amplifier

Dear Sir,
Would you please let me know where I can purchase the IC, OM355, for your Mast-Head Amplfier project? Also, am I right in saying that pin 1 goes towards the output socket and the aerial cable goes to the input socket of the amplifier?
H. Joyce,

Bembridge, I.W.

We made an error - there are other words for it - in giving RS
Components as a supplier for this IC. However, it is available from Magenta Electronics.

The last point is correct, but the data sheet for the OM355 clearly shows that pin 1 is the input, NOT the output, as suggested. Due to production problems last month (we'll spare you the horrifying details), the component overlay is somewhat difficult to read; pin 1 is to the right of the IC, ie the one that stands alone.

HE

何LNVESAGAIN!

From the past it came, growing daily, striking terror into the hearts of lesser publications, and spreading its influence across the country in its quest to infiltrate every town, every home, every mind
Not a horror story, but a success story. And if electronics theory strikes terror into you, then you need the help of Electronics - It's Easy. Originally a long-running series in Electronics Today Internatıonal, Electronics - It's Easy was printed as a set of three books. They sold out. It was reprinted as a single volume. It sold out. Now this phenominally successiul publicatıon is available again, in its third reprint. Electronics - It's Easy is a comprehensive and simply-written guide which explains the theory (and the practice) of electronics step by step. Every aspect of the subject is covered, starting with the basic principles and working through to the how and why of today's technology
You can obtain your copy of Electronics - It's Easy by mail order using the coupon below. Make cheques or postal orders payable to ASP Ltd; alternatively you may pay by Access or Barclaycard

Send to: Sales Office (Specials),
Argus Specialist Publications Ltd,
145 Charing Cross Road, London WC2H OEE
Please send me.....copies of Electronics It's Easy. I have enclosed f...... (£4.95 each | including p\&p).
I name
ADDRESS

Now for the next big date in the CB calendar...
 MARCH 19-21 1982 - ROYAL HORTICULTRAL HALLS LONDON
 1982 National Citizens' Band Show!
 TRADE/PRESS PREVIEW - MANUFACTURERS - IMPORTERS - WHOLESALE - RETAIL - ACCESSORIES - PUBLICATIONS

Advance details, floor plans and booking forms are now available. There are some very special terms for 'early bird' company's who reserve their stands - quickly! This is your chance to dispi=y, demonstrate and Sell your products to the national CB audience both trade and public
FULL DETAILS PHONE OR SEND COUPON TO: ROY PERRYMENT Citizens Band 01-437-1002

Send for my CATALOCUE ONLY 75p
 (plus 25p post/packing)

My VAT and postpacking inclusive prices are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade.

See my prices on the following:

CAPACITORS . . . ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE. COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND HIGH VOLTAGE, RESISTORS. 118th WATT TO 100 WAT; 0.1\% TO 10% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRIMMERS, PRESETS, POTS . . . SINGLE, DUAL, SWITCHED, CARBON, CERMET AND WIREWOUND, SINGLE OR MULTITURN, ROTORY AND SLIDE. DIODES, RECTIFERS, BRIDGES, CHARGERS, STYLII, SOCKETS, PLUGS, RELAYS, TRANSISTORS, ICS, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, COUPLERS, ISOLATORS, NEONS, OPTO'S, LEADS, CONNECTORS, VALVES, BOOKS, MAGAZINES, TERMINALS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INDICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPLIES, HARDWARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VDR'S, INSULATORS, CASSETTES, METERS, SOLDER, HANDLES, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOAROS and others.

Prices you would not believe before inflation!
BRIAN J. REED
TRADE COMPONENTS
ESTABLISHED 25 YEARS
161 St. Johns Hill, Battersea, London SW11 1 TQ Open 11 am till 7 pm Tues. to Sat Telephone: 01.2235016

SCIEN for indus	EDM ILLUSTRA At last this products is now and Ireland fro ES LIMITED. O ry, education and	UND SCIENTIFIC ED CATALOGUE famous range of w available in the m RHEINBERGS er 2000 products the enthusiast.
Microscopic Accessories Magnifiers a Microscopes Light	Solar Energy Optics Magnets	
Fibre Optics	Laboratory Equipment	
Motors \& Pumps intrared Products	${ }^{\text {Lasers }}$	
Polarizing Materital	Educational Kits	
Tools	Diffraction Gratings	
OEM	Holography	

WITRIIP roul: mer

Because ILP MOSFET power amps give you ultra- +i performance without costing big money. Performance you thought you couldn't afford at a price you know you can

All ILP modules are compatible with each other - you'll find many more in other ILP ads in this magazine Choose ILP MOSFET power amps when you need the tastest possible slew rate, low distortion at high frequencies, better thermal slability. MOSFET power amps work with complex loads without ditficulty and without crossover distortion. Connection is simpie - via 5 pins. With other ILP modules you can create almost any audio system, whatever your age or experience

ILP MOSFET power amps are now available with integral heatsink (no extra heatsink required). or ready for mounting on to your own heatsink or chassis. Full dissipation detail on data sheet avalable on request. Each carries a 5 year no quibble quarantee and comes with iul connection data

Send your order FREEPOST today on the coupon at the foot of this ad.

MOSFET Uitra-FI, with heatsinks

Model No	Outpul power Walls ims	$\begin{aligned} & \quad \text { DISTO } \\ & \text { THD } \\ & \text { TyD } \\ & \text { at } 1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \hline \text { ORTION } \\ & \text { I M D } \\ & 50 \mathrm{~Hz} / 7 \mathrm{kHz} \\ & 41 \end{aligned}$	Supply volrage Typ/Max	Size mm	$\left\|\begin{array}{c} W \\ g \mathrm{~ms} \end{array}\right\|$	$\begin{gathered} \text { Price } \\ \text { inc VAI } \end{gathered}$	$\left.\begin{array}{\|c\|} \text { Price } \\ \text { ex VAT } \end{array} \right\rvert\,$
MOS 120	$60 \mathrm{w} / 4.88$	<0005\%	<0006\%	* 45 ± 50	$120 \times 78 \times 40$	420	C29 76	¢25 88
MOS 200	120w/4.88	<0005\%	<0006\%	- 55 ± 60	$120 \times 78 \times 80$	850	โ38 48	¢ 33
MOS 400	240w/4』	<0005\%	<0006\%	+55+60	$120 \times 78 \times 100$	1025	E52 20	¢45 39

MOSFET Ultra-Fi without heatsinks

MOS 1200	60w/4-82?	<0005\% < 0006%	+ 43-50	$120 \times 26 \times 40$	215	£26 82	32
MOS 200	120w/4 8u?	<0005\% <	+5	$120 \times 26 \times 80$	420	£32 81	¢28
						โ44	

Protection:
Able to cope with complex loads. without the need for very special protection circuitry (fuses will suffice)
Ultra-fi specitications
Slew rate $20 \mathrm{~V} \mu \mathrm{~S}$. Rise time $3 \mu \mathrm{~S}$ S/N ratı 100 db . Frequency response (-3 dB) $15 \mathrm{~Hz} \cdot 100 \mathrm{kHz}$ input sensitivity 500 mV rms Input impedance 100k Damping lacior $8 \Omega / 100 \mathrm{~Hz} \mid>400$
How to order Freepost:
Use this coupon. or a separate sheet of paper, 10 order these products. or any products from other ILP Electronics advertisements. No stamp is needed it you address to Freepost Cheques and postal orders must be crossed and payable to ILP Electronics Lid cash must be registered C 0.0 - add \&1 to total or der value Access and Barclaycard welcome All UK orders sent post free within 7 days of receipt of order

Please send me the following
ILP modules
Total purchase price
Ienclose Cheque \square PostalOrders \square

Int. MoneyOrder Please debit my Access / Barclaycard No Name Address

Signature
Posito ilP Electronics Lid Freeposi 2 Granam Bell house Roper Close Canterbury CI2 7 EP Kent. England
telephone (0227) 54778 Technical (0227) 64723 Telex 965780
[HE 3/3 ELECTRONICS LTD STAYAHEAD.STAY WITHUS

Feature

Reflections on a Philips Videodisc.

The battle lines have been drawn and World War III (for the domestic videodisc market) is about to commence.

DISCS WERE WIDELY USED for audio recording long before magnetic tape recorders became widely available. The pattern has been completely reversed in video recording with video tapes and cassettes available whilst we still await the first commercially available videodiscs! However, the battle for the videodisc market is rapidly heating up.

The videodisc market is believed to be extremely attractive and more and more manufacturers are deciding to take part in its development. Indeed, US consultants forecast that, within three years, videodisc machine production should exceed that of video cassette recorders.

They expect that over half of American homes will have a video disc player by this time.

Laser Optics System

The Philips/MCA system has a price tag of US $\$ 750$. The surface of the $\left(12^{\prime \prime}\right)$ disc is covered with a reflective coating into which tiny pits are burned by a laser. A small heliumneon laser is used to read information from the spiral tracks of the disc on playback. Each disc has 54000 tracks and each track contains the information for a single picture frame. The disc rotates at 1800 rpm to provide a playing time of up to 30 minutes. However, it is possible to extend the playing time to one hour per side of the disc by adjusting the speed of rotation in proportion to the decreasing circumference, so that the laser tracks the disc at a constant velocity.

The Philips playback system requires precise tracking of the laser spot beam together with servo control and time base correction to account for any warping of the disc. It is
claimed that the laser modulated discs provide excellent picture resolution together with a long life, while the pits provide very high information storage density. The video bandwidth can exceed 8 MHz , and it seems likely that this system may offer sharper images than capacitive tracking systems.

RCA System

The RCA Selectavision system employs a metal electrode attached to the back of a diamond stylus. This stylus follows the track of a groove, cut in a vinyl disc, which is electrically conductive and uses the capacitance variations arising from small depressions (known as 'pits') at the bottom of the groove. These changes in capacitance modulate the amplitude of a carrier which is subsequently decoded and fed into the aerial terminals of a television receiver.

It is claimed that this capacitive stylus system offers the principal advantages of low cost and ease of manufacture. The selling price of the RCA type players has been forecast to be less than US $\$ 500$ in the world markets. This may make it the cheapest videodisc system to become available in the fairly near future.

The RCA system employs a 300 mm disc rotating at 450 rpm will provide up to an hour's playing time per side. No tracking control mechanism is required in this system. The main disadvantages are stylus wear, which is understood to limit the life of the capacitive pick-up to some 500 hours of playing time, and the relatively limited video and audio bandwidths.

The VHD system provides access to any point randomly chosen on a disc more quickly than those systems in which the stylus must follow some form of groove. It can provide special effects such as a still picture, fast or slow motion replay, etc. It is rather remarkable that the discs can be manufactured using existing audio disco pressing equipment.

In the recording process for the production of the master disc, a single laser beam is split into two parts, one half being used for recording the information and the other half being used to record the tracking signal. The master disc is made of glass coated with a photosensitive material and the recording must be carried out in a dust-free room. The laser beams are moved along a radius of the disc at constant speed, whilst the disc rotates at 900 rpm . Fine pits are thus recorded spiralIy on the glass disc which is then used to make a metallic master disc by the conventional process used for audio recordings.

The VHD discs sold to consumers are of conductive polyvinyl chloride (PVC) and have a life of some 10000 playings. A sapphire stylus is employed, mounted at the end of a cantilever arm with a magnet on the opposite end. Fixed coils are mounted near the magnet and a single coll is wound around (but not in contact with) the magnet. In addition, a pair of vertical coils are mounted on either side of the single coil in opposition to one another. This arrangement

The JVC VHD system videodisc player.

enables the stylus to be moved as the current flowing in the coils varies. The coil currents are controlled by the tracking error signals and timebase error signals. However, a command to move the stylus to a particular track can also be used to control the coil current.

JVC claim that their use of a relatively conventional disc production technique is a great advantage of their system over optically based videodisc systems.

Matsushita (who market Technics and Panasonic products) have decided to abandon their own videodisc system in favour of the JVC system and have now made an agreement with JVC. The original Matsushita system employed a direct contact stylus and a rigid disc.

Conclusions

It seems probable that the three incompatible videodisc systems will exist side by side at least in the early 1980s, so this could mean that people who want to be able to play any videodisc will be involved in expensive investments.

In spite of the current interest in videodiscs, one must remember that people may not want to replay their favourite videodisc as often as they play their favourite audio discs and this may well affect the chances of videodiscs attaining the widespread use essential for their success. However, if a wide range of material is available on disc at reasonable prices, it seems certain that there is a pretty good market for high quality systems.

The picture quality provided by videodiscs is certainly superior to that from domestic video cassette recorders. The most expensive videodisc system (Philips) will be cheaper than videotape systems (apart from its better quality pictures) and will be one of the most flexible disc systems. The JVC system offers the highest storage density of any of the videodisc systems.

It is interesting to note that videodiscs are no longer limited to the domestic consumer market. Videodiscs are very suitable for the storage of computer type information and it could well be that this application will help enormously to spur manufacturers to invest more heavily in videodiscs generally, since there is also an enormous potential market in the business and other data storage computer fields.

RCA's SelectaVision videodisc player

RCA's Selectavision system uses a metal diamond composite stylus running in modulated grooves on the disc. The stylus tip is only $\mathrm{S} \mu \mathrm{m}$ by $2 \mu \mathrm{~m}$ and the groove phtch is $2.6 \mu \mathrm{~m}$. Wear is said to be its biggest problem.
 tracking signals encoded on the disc providing information
to aservo system that drives the stylus across the disc.
Stylus life is sald to be around four times that of the RCA system. HE

TECMNICRL TRRINING IN ELECTRONICS RND TELECOMNUNICRTIONS

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantaqe of the many opportunsues open to the iraned man. You pace and if you are sludying for an examination ICS guarantee coaching untll you are successful

City \& Guilde Certificates

Telecommunications Techricians
Radio Amateurs
Electrical Installation Work

IT'S TRUE, you know - never again will you have to slam on the anchors or swerve to avoid jaywalkers who step from the pavement into the road ahead - but only if you build this project. All you'll need to do then is give a brief warning blast of the siren as you ride along and everyone will know you're coming!

The HE Push-Bike Siren makes a realistic sounding imitation of a wailing police-car siren - 'Starsky ' n 'Hutch' style. Its piercing - nay, irritating sound will make all but the doziest of 'peds' (ie, pedestrians) jump out of your path.

The siren sound is created by a combination of clever, but simple, electronic circuitry and a special solidstate audible warning device; the complete project is battery-powered a couple of PP3-sized batteries will last for many months, depending on usage.

Construction

Following the Veroboard layout shown in Figure 2, make all required track breaks. This should be done with either
the correct cutting-tool or, simply, a hand-held, small (about $1 /{ }^{\text {" }}$) drill bit. Press the cutting edge of the tool/bit against the hole in question and turn it back and forth until the copper is cut into a clean circular break. Make sure there is no loose copper swarf which can form electrical bridges between tracks.

Insert and solder all components individually into the board, starting with links, followed by resistors, capacitors and finally semiconductors. Links should be formed out of single-strand, tinnedcopper wire.

Use an IC socket to hold IC1 - this prevents the need to solder-in the clip, which is a CMOS type. Mark and drill the box to fit the push-button and the holes required to mount the solid-state warning device lie, one for the mounting-bolt, one for the connecting leads). Solder two leads (about $\mathbf{6 " ~ l o n g}^{\prime \prime}$ to the solid-state warning-device. Use a different colour for each lead, say red and black, because the device is polarised and must not be connected the wrong way round. Push the free ends of the two connecting leads

Figure 1. Circuit of the HE Push-bike Siren

Δ

Figure 2. Veroboard layout, showing underside track breaks and component locations, with connection detalls of the project.
through their holes and fasten the warning device to the box, using glue as well as the mounting bolt, to make the join between device and box lid as rainproof as possible.

Fasten the push-button to the box. Now, wire-up your project as shown diagramatically in Figure 2. Fasten the batteries and the circuit board to the bottom of the box using self-adhesive pads. Finally, bolt-on a suitably-sized Terry clip to the box base and fasten the whole project on the handlebars of your bike.

Buylines

The solid-state audible warning device is available from Magenta Electronics Ltd for £3.07. Please add 40p to cover p\&p. The box is type BOC430R from West Hyde Development Ltd.

All other components should be easily obtained. Approximate price of parts for the project (excluding box and batteries) will be f 6 .

How It Works

A low frequency (about 2 Hz) oscillator provides a sinewave control voltage. for a voltage controlled oscillator (VCO). Thus the VCO output frequency varies, up and down, at a rate of 2 Hz (ie, twice a second). The resultant output is used to switch on and off a solid-state audible warning device to produce a sound effect similar to American police car sirens.
Schmitt trigger NAND-gate, IC1a, is configured as an astable multivibrator. Resistor R1 and capacitor C2 define the overall frequency of this multivibrator: reducing the value of either of these components will increase the frequency; in-
creasing their value will reduce the frequency. With the values shown, the multivibrator frequency is about 2 Hz .

An astable multivibrator produces a squarewave output, but a sinewave is needed so, instead of using the voltage at the output of the multivibrator, the voltage across the capacitor C2 is used. This resembles a sinewave closely enough for our purposes.

NAND-gate IC1b, with associated components, form another astable multivibrator oscillator. Transistor Q1 is connected across C3, the multivibrator timing capacitor. The resistance of the transistor defines the charging rate of the capacitor and thus controls the overall
frequency of the multivibrator. Varying the voltage at the base of the transistor varies the transistor's resistance so, by applying the voltage obtained from the low frequency multivibrator to the transistor base, the second multivibrator frequency is controlled by the first.

Transistor Q2, a VFET, is switched on and off by the output of the voltage controlled multivibrator and powers the solidstate warning device to create a loud sound output. By setting the centre frequency of the voltage controlled multivibrator to the resonant frequency of the warning device, the sound output becomes particularly irritating!

Parts List

RESISTORS (All $1 / \mathrm{W}, 5 \%$)	
R1	6k8
R2	100k
R3	33k
R4	10k
R5	470k
R6	15k
R7	120 R
CAPACITORS	
C1	47u, 25 V electrolytic
C2	$100 \mathrm{u}, 16 \mathrm{~V}$ electrolytic
C3	100 n polyester
SEMICONDUCTORS	
	4093 quad, Schmitt trigger NAND-gate
Q1	BC1 184 NPN transistor
Q2	VN66AF VFET
	transistor
D1	1N4148 diode
MISCELLANEOUS	
SW1 single-pole push-button	
Solid-state audible warning device,$12 \mathrm{~V} 2 \times \mathrm{PP} 3$ sized batteries + clips	
Box to suit	
Terry clip	

GREENWELD

443F Millbrook Road, Southampton. SO1 0HX
All prices include VAT at 15% - just add 50 p post

LIE DETECTOR
Nor ory. mis poectison instrument was orgmaly

AMAZINGI COMPUTER

 GAMESPCBs FOR PEANUTSII
compuer haseses includring Batresthives. Simon

COMPUTER BATTLESHIPS

Probably one of the most ponuler thectronic

 model. although it may well function pertectly
Insted

 STARBIRD

 down. Presss conisect to sef flash and hear blast of
laters shooting. PCB tesied and working

MICRDVISION CARTRIOGES

oscilleror with dovererent yrea. outputs simply by connecting obattery and speaker . Yested and working las an oscl with pin out dotr. PCB stres
 ‘SIMON'

The obrect of tis sis iepeat correctly

LOGIC 5 PANEL

OPTO/REGS/OP-AMPS

FNAS220 2 dign $1 / 20 \quad 7 \cdot \mathrm{seg}$ display on PCB

 Megs. TOT case: $7924120 \mathrm{D}, 7885100 \mathrm{p} .7808$ Op Amps UA4i36 130p; UAㄱ76 145p: UA77

 and A.F Whth datale Ca. 50

COMPONENT PACKS
 $K 50520$ a sisoned potentometers, all types
including singlo ganged, forary and slider K 511200 small value poly, mica, ceramic chas
from a few pF to O2uF Excellent variery E 1.20
 K5020 Swi Pherances trom 20

PANELS

 L2527 Reed relay panel contains $2{ }^{2}$ \% $2529 \mathrm{P}_{\text {ack }}$ of ex-compurer panels contaning 74 series ice Lits of ditherent gates and com-
plen logic Allics sie marked with type no or coue for which an identitication sheel

 base PCB insice has 24 V re
SCR. $4 \times 5 \mathrm{~A}$ 200V rects, etc

RELAY/TRIAC PANEL components:

 Amazng valuell -
would cost around cill - Pricite for the panel lust IW AMP PANELS A011 Compact aucto amp intended for record
playel on parel $95,65 \mathrm{~mm}$ including vol control and swich, complete with roobs
Apart from amp cirtuitry built a found

TOROIDAL TRANSFORMER

1,000 RESISTORS, £2.50

 mmtg Enormous range of pefe

200 ELECTROLYTICS, E4 K526 Large vatiety of values/voliages, mostly
cropped leads for PCB mntg 11000 FF , 10 G3V All new 'ull spec. components. no FILAMENT DISPLAYS
 RELAY

REGULATED PSU PANEL

ELECTRD-DIAL

securtiy - oick ard 1 Nit maximum

 Dial is turned to the right to one number, tef to a econd number, then right sgain to it thrid

DEVELOPMENT PACKS

These packs of brand new top quality compo

 complete range so the fright vatue is to hand thel seving overir buying individual parts k001. 50V overamic plate capactori, 5\%. esch value 22DF to $1,000 \mathrm{DF}$. total 1210 . $\mathrm{K4.00}$ k002 Ertended range 22 pF 1001 . Values over value 22273339475668828100120150180 $220 \quad 270330 \quad 390470560 \quad 680 \quad 820 \quad 1000 \quad 1500$ $2200 \quad 33004700$ a47, .058, 1, 15, 22, 33 and $47 \mu \mathrm{~F}$ PRicE: C5,40
mounting 100 V 10 each of the following $.001,0012,0015, .0018, .0022 .0027 .0033$

 unsll physical size anisil or radial teadz 47 OOMF Tolal 70 capacitors. PAICE: C3.59 ing 220,470 and 1000 if atl at 25v. also includCopacitore. PRICE: RE 35.
021 CR25 resistors or sumilar, miniature $1 / 4$ properss. 10 of each value from 10 ohms io IM. E12 series. Total 810 resistors. PRiCE C5.95.
all the values from 2 V 7 10 36 V . Total esch of 280 zen ners PRICE: I 159
OO1 LEDs - pack of 60. comprising 10 each rec. green and Yellow 3 mm

CAPACTTOR BARGANS 2200 F
0/Es. 50.
 20.50.
 100uF 25 V axial 100/E3 $100 / 20$

MWYESTADERS VUWEIERDRIVERS ATDMORE ALCEWFROMILP!

Just some of the 28 new amazingly compact modules trom ILP Electronics, Bntain's leader in electronics modules - you'll lind more new products in the amps and pre-amps advertisements

All ILP modules are compatible with each other - you can combine them to create almost any audio system. Together they form the most exciting and versatile modular assembly system for constructors of air ages and experience.

Every item from ILP carries a 5 year no quibble guarantee and includes full connection data. So send your order on the Freepost coupon below today

Model No	Module	What in does	Current required	Price inc VA]	$\begin{aligned} & \text { Price } \\ & \text { ex VAT } \end{aligned}$
MY 7	Mono mixer	Maxes erght signats into one.	10 mA	£5.92	\$5.15
MY 8	Stereo maer	Two chamels, each muxing five signals into onie	10 mA	¢7 19	¢6 25
HY 11	Mono moxer	Moxes five signais into one - with base/treble controls.	10 mA	£8.11	$\varepsilon 750$
HY 68	Stereo moxer	Two channeis, exch muxing ten signals into one.	20 mA	¢9 14	8795
HY 74	Sterso moxer	Two channels, each ntwong five signats into one - with treble and bass controls.	20 mA	£13 17	¢11 45

ANO OTHER EXCITING NEW MOOULES

Mode: No	Module	What it does	Current required	Pruce inc VAT	$\begin{aligned} & \text { Price } \\ & \text { ex VAT } \end{aligned}$
HY 13	Mono VU meter	Programmabie gan/LED overloas ofiver.	10 mA	£684	¢5 95
HY 67*	Stereo nead phone driver	Will dive stereo headphones in the 4 ohm2 K ohm range.	80 mA	£14 20	£12 35
HY 72	vace operated stereo lader	Provides depth/delay effects	20 mA	£15 07	§13 10
HY 73	Guthar pre-amp	Handies two guitars (bass and lead) and mic with separate volume/bass/trebte and max	20 mA	§1409	£12 25
HY 76	Stereo swich matrox	Provides two channels, each swithing one of four signals into one	20 mA	lo be announced	
HY 77	Stereo VU meter drver	Programmabe gain/LED overload driver	20 mA	£10 64	5925

For easy mounting we recommend
86 mounting board for modules HY6 -HY13 \quad E0.90 inc VAT. (078 ex. VAT.)
66 mounting board for modules MY66-HY77 \&1. 12 inc VAT. (0.99 ex VAT.)
minmum $10+30 \mathrm{~V}$ maximum needing dropper resistors tor higer voltaes HY67 can be used onty 415 V PSU 30 Dower supoly unt Modules HY6 io HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$ HY66 to HY77 measure

FP 480 BRIOGING UNIT FOR DOUBLING POWER
esigned specially by ILP for use with any two power amplifiers of the same type to double the power output obtained and will function with any IL.P power supply. In totally sealed case. size $45 \times 50 \times 20 \mathrm{~mm}$ with edge connector, It thus becomes possible to obtain 480 watts rms (single channei) into 8Ω. Contributory distortion less than 0.005%. Price: $£ 5.51$ inc. VAT. (Ex. VAI L4.79.)
How to order Freepos
Use this coupon, or a separate sheet of paper, to order these products. or an products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to IL. PElectronics Lid: cash must be registered. C. 0.0 - add $£ 1$ to total order value. Access and Barclaycard welcome All UK orders sent post free within 7 days of receipt of order.

Please send me the following
ILP modules
Total purchase price
lencloseCheque \square
Postal Orders
\square
Int. Money Order
Please debit my Access/Barclaycard No
Name
Address

Signature
Canteroury CT2 7EP, Kent. England
Telephone (0227) 54778 Technical (0227) 64723 Telex 965780
.
HE 5/3
 STAYAHEAD.STAY WITHUS

The prototype Microvision pocket TV.

The new Microvision flat-screen TV, from Sinclair Research Ltd, will be going into production late in 1982.

THE pocket-sized computer system is now very close to being realised with the development of a new visual display unit which consumes little power and is roughly the size of a pocket calculator. It is now possible to construct a pocket computer with printer, central processor unit, visual display and printout on to photo-sensitive paper.
"The slim-line pocket TV is here and is going into production", says Clive Sinclair, founder and director of Sinclair Research Ltd. The company has been responsible for developing pocket calculators, small TVs, etc, and has now overcome the formidable problems of designing and producing a miniature (20 mm thick) cathode ray tube (CRT).

A manufacturing plant is being set up to produce a pocket TV/radio with a 75 mm diameter black and white screen. Mr. Sinclair expect this to be available late in 1982 and he predicts that a colour version will be produced shortly afterwards. Owing to the radical design of the flat CRT, the brightness of the screen is three times that of the conventional CRT. This makes it ideal for use in projection TVs with up to 1250 mm diameter wall-mounted screens.

A great deal of energy and money has been spent over the last decade to produce a miniature VDU which consumes low power. The announcement by Sinclair of a flat CRT, where the electron gun is mounted to the side of the screen, is a breakthrough because the development of a low cost solid state device still seems years away. It is certainly possible ta construct a complete screen from individual LEDs or liquid crystal elements, but the cost of manufacturing and the complex circuitry needed to control it is prohibitive at the
moment. In addition, such a system would inevitably give poor visual definition and, if liquid crystal displays were used, the contrast would be unsatisfactory.

The Sinclair CRT is shown in Figure 1. It measures $100 \times 50 \times$ 20 mm and is half the volume, three times as bright and consumes one quarter to one tenth the power of a conventional CRT of the same screen size. The device is constructed from a fairly conventional electron gun, collimator, and vertical and horizontal electrostatic deflection plates mounted at the side with the axis parallel to the phosphor screen. A positive electrode behind the screen, and a negative electrode inside the front face cause electrons to be deflected towards the screen. The negative electrode at the front is made of a tin oxide coating which is transparent to light. The vacuum enclosure is made of glass and a plastic Fresnel lens is mounted outside the front surface.

Although the design concept is very simple, the fact that the electron beam does not strike the screen at right angles means that one or two tricks are needed to produce images which are well-defined and undistorted. First of all, good definition of a picture requires that the electron beam spot should be circular and as small as possible. The situation without the electrostatic field is shown in Figure 2a. It can be seen that at point A the angle of incidence is greater than at point B, so that the beam spot is much less elliptical here. Figure 2b shows the situation when an electrostatic field is applied. The angle of incidence is constant across the screen and the spot is therefore of constant size.

Top: The man himself, Clive Sinclair, holding the prototype of the Microvision 2700.

Middle: Machinery for making flat CRTs it's a vacuum metaliser, used to deposit an aluminium backing surface for the tube screen.

Bottom: The flat CRT can easily be mass produced. This particular machine, at the company's pilot production plant at St Ives, Cambs., was designed by Sincliar engineers and produces 14 glass covers every 2 minutes.

Figure 1. General construction (simplified) of the Sinclair miniature flat screen picture tube (see also picture over the page).

NO ELECTROSTATIC FIELD
ANGLE A B GPEATER THAN ANGLE E
THEREFORE ELECTHOW FOCUS MAGE AT B IS MORE ELLIPTICAL THAN ATA

Figure 2(a). Simplified geometry of the defiection system. The electron focus is different at opposite sides of the screen.

The flat CRT - triumph of British ingenuity. They are now being mass-produced at the Timex factory,at Dundee, ready for assembly into complete units later this year.

Achieving an undistorted image is difficult because the distance from the collimator to the screen is comparable to the screen dimensions. Without correction the shape of the scan would be as shown in Figure 3a. A combination of optical and electronic methods is used to rectify this shape as much as possible.

The verticle deflection angle of the beam is reduced to make the resulting image more nearly rectangular and the vertical dimension is then magnified optically by the Fresnel lens in front of the screen. The horizontal dimension is unchanged.

A modulation voltage is applied to the vertical deflection plates during each frame to change the image as shown in Figure 3b. Image MNOP changes to $\mathrm{M}^{\prime} \mathrm{N}^{\prime} \mathrm{O}^{\prime} \mathrm{P}^{\prime}$, which is more nearly rectangular and distortions are therefore reduced to a minimum.
Sinclair point out that the construction of the CRT lends itself to mass production technology in that, for example, connections to the electron gun and deflection assembly are screen-printed on the inside of the faceplate and the assembly is attached in a single operation.

The feature that makes the CRT ideal for projection TV is that the image is viewed from the side of the phosphor that the electrons strike. This results in a much brighter image in comparison to the conventional CRT where the image is observed through the phophor layer. It can be seen that a heatsink placed directly on the backing plate of the screen allows the phosphor to be driven much harder by the electron beam without thermal damage.

In the future the miniature CRT could well be used in pocket oscilloscopes and other test equipment once the techniques of obtaining perfectly distortion-free images are mastered.

Figure 3(a). It no image correction system were applied the normally rectangular image would be distorted as shown on the top diagram, the side nearest the vertical deffection being shorter than that furthest from the vertical deflection.

Figure 3(b). By both reducing the deflection angle and suitably modulating the vertical deflection voltage waveform an image is produced that is more nearly rectanguler.

Design on a EuroBreadBoard - Instal on a EuroSolderBoard First the EuroBreadBoard
Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Tramistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or tettered for exact location indexing (ideal for educational projects)
Long life, low resistance ($<10 \mathrm{~m}$ ohms) nick el silver contacts
$£ 6.20$ each or $£ 11.70$ for 2

Now the EuroSolderBoand

Now 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dis fixing holes.
$\mathbf{£ 2 . 0 0}$ for set of three ESB's

And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pab pads and track. Primed and relessed by thumb, it costs only $£ 7.25$ including VAT \& PP

Snip out and post to David George Sales,
James Carter Road, Mildenhall, Suffolk IP28 7DE
David George Sales, HE3
James Carter Road, Mildenhall, Suffolk IP28 7DE
Ploase send me:-

	1 EuroBreadBoard	$£ 6.20$	O	
or 2 EuroBrasdBoards	$£ 11.70$	O	Please	
or	3 EuroSolderBoards	$£ 2.00$	O	Tick
or 1 EuroSolderSucker	$£ 7.25$	O		

All prices are applicable from Jan. 1st, 1982 and include VAT and PP but add 15% for overseas orders.

Name

Company.
Address.

Tel. No
Please make cheques/P.O. payable to David George Sales and allow 10 days for cheque clearance and order processing

THEY KEEP USING THIS WORD feedback, don't they? The amplifier you've just built sounds a bit loud and fuzzy and you're told it needs feedback. Another one just howls all the time, and you're told it's caused by feedback. OK, then, let's unwrap the mystery.

First of all, sort out what we mean by an amplifier. Whatever its made from, you can put a signal into it and you get a signal at the output which is a good copy of the input signal's shape but of much greater amplitude. When the input signal is a sine wave, its voltage amplitude (peak-to-peak) is the voltage difference between the opposite peaks. For example, a signal with its positive peak at 2 V and its negative peak at -2 V is a signal of 4 V peak-to-peak amplitude. It's this that an amplifier amplifies; a few types (called current amplifiers) are intended to amplify not the voltage but the current amplitude. The point is, though, that the amplifier doesn't miraculously cause amplitude to become greater; it actually creates a new waveform whose amplitude is greater than the signal input, and which is controlled by the signal input, so that it ought to be a good copy. If it isn't, we say that the output signal is distorted.

Now the signal at the output of an amplifier can be connected to other circuits and, if we're reasonably careful about it, these connections won't make much difference to the amplitude of the signal. The care we need to take is not to connect the signal onto a circuit with resistance much lower than that of the output of the amplifier. An amplifier that is designed to feed a loudspeaker can, for example, happily feed its signal into the low resistance of a loudspeaker but voltage amplifiers, which are not intended to feed loudspeakers, can't cope with low resistances. If we stick to fairly high resistance circuits, though, we can make connections to the output of a voltage amplifier without reducing the signal.

Figure 1. Voltage emplitude. This wave has a voltage emplitude of 4 V peak-to-peek.

Feedback Loops

Now this is where feedback comes in. Feedback is a connection made through a resistor, or through a set of resistors and capacitors called a network, which connects the signal at the output of an amplifier back to the input of the amplifier. This connection is called the feedback loop and, when a feedback loop is connected, the behaviour of the amplifier is considerably changed. The reason is that the amplifier is no longer making a copy just of the input signal, but of a mixture of signals - the input signal and the feedback signal. What happens now depends on how the mix is arranged.

One way of arranging it is to have the feedback signal in phase with the output. 'In phase' means that the signals are exactly alike (except for amplitude) with the peaks happening at exactly the same time. When the mixing of signals is done this way, the
feedback is said to be positive - the signal coming back through the feedback network or resistor looks just like the input signal and when we mix this with the genuine input signal the two add together to make a higher amplitude input for the amplifier. This in turn produces a greater amplitude of output which will result in more feedback signal and soon.

If we use an attenuating network in the feedback loop (remembering that an attenuator network reduces the amplitude of a signal) and we make sure that the attenuation of the feedback loop is more than the gain of the amplifier, the whole thing comes to balance; the amplifier behaves as if it had much more gain because the feedback is providing some of the input signal. At the same time, any distortion that the amplifier produces is greatly increased because the distorted signal is being fed back to be amplified again.

Earthy Problems

If, however, the gain of the amplifier portion is greater than the attenuation of the feedback network, then the output signal will provide enough feedback to the input to produce the output signal all by itself, with no other input needed. This arrangement makes an oscillator - it continually generates an output signal with no input. If an amplifier oscillates, it's because of positive feedback somewhere, perhaps from signals passed along the power supply line if the oscillation is at a low frequency. Even a careless arrangement of earth connections can cause oscillations, if the amplifier has a large amount of gain.

Positive feedback is used, therefore, to make oscillator circuits and to boost amplifier gain but, because it's difficult to control, high quality audio amplifiers avoid using positive feedback. Oscillator circuits control the positive feedback carefully so that it operates only at one frequency, the frequency of oscillation.

Negative Feedback

Negative feedback is the other option. Negative feedback is what we get if the feedback network is connected to an amplifier whose output signal is in antiphase with the input signal. An-

Figure 2. Feedback; (a) in phase, adding to the signal at the input (positive feedback); (b) in entiphase, subtrecting from the signal et the input (negative feedbeck).
tiphase means that the signals (apart from the differences in amplitude) look like mirror images of each other. When we add signals in antiphase, the effect is of subtracting one signal voltage from the other. The result of negative feedback, then, is to make the signal into the amplifier less than the genuine input signal. The amplifier is still doing its stuff, but there is less signal for it to work on so that it looks as if the gain of the whole arrangement is less than it was before the feedback was connected.

At first signt this doesn't look like a very good bargain. Gain, after all, is what we want from an amplifier and it doesn't seem to make sense to do anything that reduces gain. The advantages of negative feedback, however, greatly outweigh the small disadvantage of a loss of gain. Gain, after all, is easily obtained; if you want more gain you can use more transistors. What negative feedback does is to stabilise gain - a much more valuable feature. Think of it this way. Suppose you built twenty samples of two stage voltage amplifiers. There's precious little chance that all of them would have the same gain figure; because of the differences between transistors, we might find gain figures ranging from 500 to 8,000 . Now if these were all negative feedback amplifiers, we could design for a gain of 250 - and find values ranging from 230 to 260.

This is a much smaller spread of gain values and illustrates the value of negative feedback for the designer. It's possible, using negative feedback, to design an amplifier whose gain can be exactly calculated, whatever the tolerances of the transistors. The use of integrated circuit amplifiers makes negative feedback even more important because the gain of an IC amplifer simply cannot be closely controlled when the IC is manufactured.

How much gain can we expect from an amplifer fitted with negative feedback? If the amplifier has a large amount of gain before the feedback is added, the answer is fairly simple. Find the attenuation of the feedback network - this amount is then equal to the gain of the complete amplifier when feedback is added. For example, if the feedback network causes the output signal amplitude to be divided by 50 then the gain of the complete amplifier will be 50 times, provided that the original gain of the

Figure 3. Reducing frequency distortion by negative feedback; (a) Graph of gain plotted egainst frequency for an amplifier without feedback; (b) the effect of negative feedback is to reduce the gain, creating a flat portion of graph.
amplifier, before the feedback was added, was much more than 50 (perhaps 500 or more). This figure should remain fixed throughout the life of the amplifier, even if transistors are replaced.

Noise and Distortion

Being able to design for a definite gain figure, then, is one good reason for using negative feedback but it's certainly not the only one. Another compelling reason is the reduction of some types of distortion. Remember that what an amplifier does is to create a larger-scale copy of an input signal. Any difference, apart from the difference of amplitude, between output and input is distortion. One kind of distortion in this sense is noise - unwanted signals which are generated inside resistors, transistors and all other conductors by the movement of electrons. Because the noise generated inside an amplifier is not present as a signal at the input of the amplifier, the use of negative feedback reduces the noise by cancelling it with an antiphase signal at the input. Hum signals picked up from a poorly-smoothed supply line can be reduced in the same way.

Another type of distortion is frequency distortion. An amplifier may not treat signals of different frequencies in the same way; very often, the gain of the amplifier for signals of low frequencies (below 50 Hz) or high frequencies (above 10 kHz) is less than for 'mid-band' frequencies in the range $400 \mathrm{~Hz}-1 \mathrm{kHz}$. A negative feedback connection will reduce the gain but also make the lower value of gain one which holds true for a much greater range of frequencies. The effect is shown on the graph of Figure 3; the amplifier can cope with low and high frequencies at low values of gain and applying negative feedback brings the gain of the amplifier for the middle range of frequencies down to the same value.

Cure All?

Negative feedback is so useful that we fall into the habit of assuming that it can cure all sorts of nasty complaints which amplifiers are prone to. What we have to remember, though, is that negative feedback works according to the book only when

Figure 4. Effect of bias fauts. The graphs shows a region A-B in which there is no gain, so that negative feedback cannot operate.
the gain of the amplifier is very high in the first place. If the amplifier gain without feedback is low, then feedback has little or no effect. Would we use negative feedback on such an amplifier? In the normal course of events we wouldn't, but we sometimes forget that an amplifier can have low gain in patches. For example, Figure 4 shows the graph of signal-out plotted against signalin for an amplifier output stage which is not correctly biased. Most of the graph is fine, showing a healthy gain, but the small section marked $A B$ at the centre is not so good. In this section there is no output for a small range of input, so there is no gain and this means that negative feedback will not correct the distortion which this sort of shape also causes; and yet we often assume that this 'cross-over' distortion, as it's called, is removed by negative feedback. A good general rule is that negative feedback can make a good amplifier a bit better; but it can never make a lousy amplifier into a good one!

HE

H
 E

PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

Aprit 80		November 80		July 81	
Speed Controller For R/C	£1.60	Memory Bank Synth:		Organ 3	¢4.50
Digital Frequency Meter	£2.95	Mainboard PCB	£2.48	Organ 4	¢4.50
Hobbycom: Two-wire Inter-		Keyboard PCB	£2.70	Ulitrasound Burglar Alarm	£1.90
com (set of two)	£3.98	Party Grenade (set of three)	£2.60		
Electronic Ignition (CD)	¢2.98	Double Dice	£2.20	August 81 RPM Meter	£1.33
May 80		Decomber 80		Thermometer	£1.25
5080 Pre-amplifier	£3.50	Stereo Power Meter	£2.12		
		Digital Speedo (set of two)	£3.50	September 81	
June 80				Power Pack	£1.27
Fog Horn	£1.40	January 81		Reaction Tester Game	£1.28
Egg Timer	£1.58	Car Rev Counter	£2.24	'Diana' Metal Detector	£2.48
July 80 18 W + 18 W Car Stereo		February 81 Heartbeat Monitor		October 81 Combination Lock	
Booster (two required for stereo) each	£1.20	Audio Signal Generator	£1.85	Combination Lock	£1.99
August 80		March 81		November 81 Sound Torch (Set of Two)	£3.98
Equitone Car Equaliser	£1.79	Steam Loco Whistle	£1.99	ecember 81	
Pass The Loop Game	£1.98	Apri 81		Pedalboard Organ	£4.48
September 80		Super Siren	£1.48		
Auto Probe	£1.25	Russian Roulette Game	£1.20	Intelligent NiCad Charger	£2.28
Guitar Phaser	£1.48			Inteligent NiCad Charger	L2.28
Development Timer	£1.35	Voice Operated Switch		February 82	
Bench PSU	£2.20	Voice Operated Switch Organ 1	$\begin{array}{r} £ 1.25 \\ £ 3.48 \end{array}$	Relay Driver	£1.65
October 80 Nobell Doorbell	f198	June 81		Mast-Head Amp	£0.98
Intruder Alarm	£1.88	Envelope Generator	£ 1.40	March 82	
Tug O' War	£1.99	Organ 2	£1.90	Digital Dice	£1.46

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE

I enclose a cheque/postal order made payable to ASP Ltd, for the amount shown below OR	Boards Required	Price
I wish to pay by Barclaycard. Please charge to my		
account number sanclarcand		
VISA		
OR		
I wish to pay by Access. Please charge to my account number		
SIGNATURE		
NAME (BLOCK CAPTALS)		
ADORESS (BLOCK CAPTALSI		
...............................	Add 40p p \& p	0.40
........................	Total Enclosed	

> Since our articles on the subject in February and June last year - and the Special Offer which many readers found too good to refuse - we've had many requests for a follow-up describing, in greater detail, how to use this most useful tool of the electronics trade. Ready then? Here we go.

THE OSCILLOSCOPE is one of the most versatile and useful electronic test instruments ever invented (Allen B. Du Mont - the 'inventor' of the oscilloscope - is the subject of this month's Famous Names). It's true that they are not cheap (though second-hand bargains are available) and that you can do a lot of trouble-shooting without one, but it's equally true that some faults are virtually impossible to pinpoint without using a 'scope and that any sort of circuit design or modification work is just not on. Pulse circuits, in particular, are extremely difficult to troubleshoot without a 'scope because steady voltage readings are meaningless in pulse circuits - all you can check is whether an IC has a voltage supply or not. Let's take another look, then, at this remarkable instrument and how it's used.

The heart of a 'scope is, of course, a cathode-ray tube (CRT). The CRT has already been described in detail (HE, February 1981), but to refresh memories, the principle of the CRT (whether it's in oscilloscope or in a TV receiver) is that a beam of electrons can be generated by a heated cathode, focused in to a thin beam and made to travel towards a positively charged anode - the cathode and focusing mechanism together make up an 'electron gun'. The anode is a glass screen, coated with a material (phosphor) which gives off light when struck by the beam, making a spot of light on the screen. The brightness of the spot can be controlled but, more importantly, so can its position. The spot can be guided (deflected) to any part of the screen, or even pushed right off the edge, by applying a varying electric or magnetic field; oscilloscope tubes invariably use electrostatic deflection, while TV tubes use the magnetic method because it allows greater deflection to be obtained from a reasonably short tube. In a 'scope tube, guidance is achieved by the deflection plates - four of them altogether arranged in pairs called the X plates and the Y plates. As you look at the screen the Y plates deflect the spot vertically, up or down, while the X plates move it from side to side. The beam swings over towards the more positive deflection plate so that, by changing the voltages on the four plates, the beam can be positioned anywhere you like on the face of the screen. Unlike the needle of a meter, though, a beam of electrons has no mass to speak of, so it can be pushed around with incredible acceleration and made to trace out complicated patterns at very high speeds; that's the key to the oscilloscope.

Sweeping Up

Every oscilloscope contains a built-in oscillator, the timebase or horizontal sweep circuit. This circuitry generates a voltage waveform with a sawtooth shape and this is amplified and fed to the X plates. The result is that the spot on the tube face moves at a steady speed, from left to right as we look at the screen. The speed can be controlled and, even more important, measured; its value, in time per centimetre of movement across the tube face, can be read off the TIME/CM (sometimes labelled TIME/DIV) control on the front panel. During the time the spot is moving across the screen, a voltage fed to the Y plates will cause the spot to move vertically. If this voltage is a sinewave then the vertical movement of the spot, combined with its steady horizontal speed, will trace out the shape of the wave, in light, on the screen

the instrument and how to use it

(Figure 2). Adjusting the controls labelled SYNC or TRIG will produce a steady pattern on the screen, showing the waveshape of the voltage which is being fed to the Y-plates. An amplifier (the Y amplifier) is provided and its gain control is calibrated in volts per centimetre of (vertical) movement so that the peak-to-peak voltage of the waveform can be calculated easily. From such a display, then, you can see the waveshape, measure its frequency and also its peak-to-peak amplitude in volts, so that every measurement that can be carried out on a waveform is possible. Very useful - but how do we go about it?

Screen Test

Suppose you're sitting there in front of an oscilloscope, ready to switch on for the first time. Be patient; keep that main-switch finger away for the moment. Start with nothing - not even the mains plug - connected and take a look at the controls on the front panel. They might not look exactly like the exaniples we've shown here but the same controls have to be there somewhere. There has to be a BRILLIANCE (or INTENSITY) control and a FOCUS control, and there must also be X and Y POSITION (or DEFLECTION / controls. Find these and you're well on the way to knowing your way about - but there's one more. It may be labelled TRIG, SYNC or LEVEL. Whatever it's called, turn it fully clockwise (that's full on); if there is a STABILITY control with an AUTO position, set it to auto. Now make sure that the brilliance/intensity control is turned fully off (anticlockwise). Next step is to plug in and switch on. There may be a separate toggle switch for on/off or the mains switch may be combined with the brilliance/intensity control; if this control has to be turned (clock wise) to switch on, turn it only as far as is needed to click the switch - then leave the 'scope, for a minute so that the CRT heaters can warm up. Older oscilloscopes (which use valves) will also need this minute for the valve heaters to warm.

While the 'scope is warming up, set the volts/cm to the highest value of the range and the time $/ \mathrm{cm}$ to $1 \mathrm{~ms} / \mathrm{cm}$, or the nearest value to this. Adjust the vertical and horizontal position (deflection) controls to midway round their travel and, when warming-up is complete, gradually advance (clockwise) the setting of the brilliance/intensity control. If all is well, you should eventually see the horizontal line of the trace on the screen.

Figure 1. Schematic cross-section of a Cathode-Ray Tube (CRT).

Figure 2. (a) The timebase (sweep) waveform is a sawtooth wave. The voltage rises at a steady rate, then returns rapidly to its starting value: (b) The spot moves steadily from left to right, then rapidly returns with the 'flyback'.

Figure 3. The deflection waveforms, applied to the X and Y plates, cause the electron beam to sweep out a faithful replica of the Y-input waveform.

No trace of the trace? Don't panic just yet - it's surprising how difficult it can be to find the trace, even for an experienced operator! Modern oscilloscopes have a TRACE LOCATE pushbutton; pressing this useful 'twit-switch' produces a spot at the centre of the screen and, as the switch is released, the spot slow$l y$ moves off to wherever it was before. This way, you can recover a trace which was lost because the position/deflection
controls were badly set. If your oscilloscope doesn't have this humanitarian device, sort it out as follows:

1. Turn the brilliance/intensity right up and the timebase (time/cm) control to its slowest speed (but not off). You should now see some light appearing on the screen, moving slowly.
2. If there is still nothing to be seen, advance (clockwise) the trig/level control; a low setting can prevent the timebase from starting.
3. With something happening inside, twiddle the vertical position control until the trace appears; some adjustment of the horizontal position control may be needed as well.
If that lot doesn't produce some sort of trace then you have every right to start wondering if the thing is working - but unplug the mains and check the fuses before you do anything drastic!

Assuming that these actions have produced some sort of trace on the screen, we can start to lick it into shape for useful measurements. The first step is to centre the trace - with the time/cm control reset to $1 \mathrm{~ms} / \mathrm{cm}$ - using the vertical and horizontal position controls, so that the horizontal line starts just at the left-hand side of the screen and is along the centre-line. If there is a control marked TRACE EXPANSION or X-GAIN, it should be set so that the width of the trace is just enough to stretch across the screen, but no more.

Now reduce the brilliance/intensity setting to a comfortable level and adjust the focus control (sometimes labelled spot size) so that the line is as thin as possible. It's usually impossible to obtain a fine, focussed line if the brilliance/intensity control is set too high. If necessary, use the oscilloscope in a corner where there are no lights shining directly on the screen.

Now, sitting there with a working oscilloscope in front of you, how about looking at a waveform? You don't need a signal generator just yet because there's a waveform available literally at you fingertips - its the mains waveform which your body picks up from the wiring all around you. Set the time/cm control to $20 \mathrm{~ms} / \mathrm{cm}$ and the volts $/ \mathrm{cm}$ to $1 \mathrm{~V} / \mathrm{cm}$, or to a lower value if this is available. Now connect a probe or a lead to the Y input and hold the other end; you should see a 50 Hz mains waveform, a sinewave, probably with some distortion, on the screen. If the whole wave is moving, adjust the control labelled SYNC (on older 'scopes) or TRIG LEVEL (on more up-to-date models); this control is used to start the timebase at the same part of the waveform on each sweep, so that the trace appears stationary. If you simply can't get the trace to stay still ('locked'), check if there is a switch labelled TRIG INT-EXT (or SYNC INT-EXT). If there is, make sure that it is on the INT (for internal) setting. In this position the timebase is locked to the signal into the Y -input (TRIG, EXT or, on older models, the X-input). On a few oscilloscopes, a FINE TIME/CM control may have to be adjusted, to obtain perfect lock.

With the waveform locked on the screen, its vertical size can be changed by altering the volts/cm switch. Changing this to a more sensitive setting, such as OV2/cm will make the display look larger while changing to a less sensitive setting, such as $5 \mathrm{~V} / \mathrm{cm}$, will make the display look smaller. If the sensitivity is reduced too much, so that the vertical size of the pattern is less than 1 cm overall, the timebase lock will be affected and the pattern will start to shift horizontally. The best setting for the volts/cm switch depends to some extent on the size of the screen, but $4-5 \mathrm{~cm}$ overall is usually convenient.

All oscilloscopes worthy of the name allow measurements to be made on the displayed waveform. The usual method is to have an engraved plastic sheet, called the graticule, which fits snugly over the screen. The graticule is engraved with parallellines, 1 cm
apart, with small divisions on the centre lines to indicate 0.2 cm ; both horizontal and vertical lines are engraved, so that both time and voltage measurements are possible. On modern 'scopes, the graticule may be generated as a display.

For voltage measurements the method is to count the number of centimetres on the vertical scale from the negative peak to the positive peak, then to mulitply this number by the setting of the volts $/ \mathrm{cm}$ switch. For example, if the volts $/ \mathrm{cm}$ switch is set to 5 V / cm and the waveform measures 3.2 cm from peak-to-peak, the waveform voltage is $3.2 \times 5=16 \mathrm{~V}$ peak-to-peak. The time measurement we most often have to make is that of the time (period) of one complete cycle, so that we have to measure the horizontal distance between two identical points on neighbouring waves. This distance is then multiplied by the setting of the time/cm switch to calculate the period of one cycle. The inverse of this time (that is $1 /$ time) is the frequency of the wave. For example, if the peaks of the waveform are 2.5 cm apart and the time/cm switch is set to $100 \mathrm{uS} / \mathrm{cm}$, the time of one wave is 2.5 $x 100=250 u$ and the frequency is $1 / 250 u S=4 \mathrm{kHz}$.

It's usual, on modern 'scopes, to find a choice of AC or DC coupling, by means of an AC/DC switch at the Y-input. In the AC position, the signal on the Y -input is passed via a coupling capacitor and, therefore, any DC voltage also present in the signal is blocked. With the switch in the DC position, however, the Y amplifier is completely DC coupled from the input all the way to the plates; this is very useful. Connecting a 1 V 5 dry cell to the input will, for example, cause the whole trace tp shift vertically . If the volts $/ \mathrm{cm}$ switch is set to $1 \mathrm{~V} / \mathrm{cm}$ then the trace will shift by 1.5 cm for 1 V 5 . If the negative terminal of the cell is connected to the oscilloscope's earth and the positive terminal of the cell to the Y -input, the trace will shift upwards. If the connections are reversed, the trace will shift downwards; that is, positive voltages are represented by upward movements and negative voltages by downward movements. Now if you disconnect all signals from the front panel of the 'scope and short the Y -input to earth, the Y position/deflection control can be set so that the trace lies along one of the horizontal graticule lines - and this line will now represent earth voltage. Attach a signal now and you can measure the DC level of the signal relative to earth - a measurement you can't possibly make with a multimeter. With the input switched to AC, set some convenient part of the trace, such as a peak, to lie on one of the horizontal lines. Now switch to DC, and see how far up or down the peak shifts; the amount shifted represents the average DC level of the wave. The shift, in centimetres, is multiplied by the setting of the volts/cm switch as
usual.
For comparing waveforms, a double beam 'scope is essential. In a double beam 'scope two traces appear on the tube face, each using the same time-base and X deflection, but with separate Y -input controls. The two traces are separate and different waveforms can be displayed, but with the same timebase setting so that time/frequency differences between them can be measured.
Several different methods are used to obtain double beam displays and these include:
(a) beam splitting, in which the beam from an electron gun is split in two after it has passed the X plates but before reaching the Y plates.
(b) separate guns, in which two separate electron guns, mounted vertically one above the other are used, with the X-plates connected together but with separate Y plates.
(c) by beam-switching, using a single gunCRT.
The beam-splitting method was used in old double beam 'scopes and served well, providing you remembered that upwards meant postive on one beam and, negative on the other. Double guns made it easier to relate the waves to each other, but it was difficult to ensure that both beams were perfectiy focused and equally deflected by the timebase. Most modern double-beam scopes use beam switching and, since it's purely a circuit technique, a double-beam switch can be added to any normal singlebeam tube.

Beam-switching makes use of DC coupling into the 'scopes Y-amplifier. At the start of a timebase sweep, one of the two input signals is applied to the Y -input of the amplifier, with some DC level decided by a Y-shift control. On the next sweep, the other signal is applied to the Y-input but and at a different DC level, so that the traces are at a different vertical positions.

When this is done rapidly enough, it looks as if two traces are there simultaneously. The method doesn't work at low timebase speeds (a slow sweep speed means you see first one trace, then the other - but never both at once!), so a 'chopping' method of switching is used instead. In this switching system, input \mathbf{A} is displayed for a short time, then the trace is shifted up (or down) so that input B can be displayed. If the beam and the inputs are switched at a frequency many times that of the timebase sweep. each trace appears continuous. At high sweep speeds (approaching the 'chopping' frequency), however, the traces will appear as dashed lines!

Double beam arrangements are very useful when looking at circuits which make use of pulse triggering, synchronisation,

Feature

Figure 5. Front panel layout of a SCOPEX 4D 10A, a modern double-beam 'scope.

Figure 6. A 50 Hz waveform produced by touching the input of a 'scope.

Figure 7. Beam switching techniques produce a dual-beam oscilloscope: (a) Connecting the beam-switch to a 'scope: (b) The waveforms are added to the level parts of a squarewave and the DC voltage difference between the positive and negative levels produces the separation of the traces. The squarewave generator is triggered by the flyback of the timebase: (c) At high sweep speeds, the beam is switched on alternate traces: (d) At low sweep speeds, the beam is 'chopped' at a high frequency so that each waveform is traced out, alernately, in sections.

Figure 8. Comparing waveforms on a double-beam 'scope: (a) Sinewaves in phase: (b) Sinewaves out of phase.
phase sensitive detection or similar techniques. Remember, however, that unless the two sets of waveforms have the same frequency or are at related frequencies, it will be difficult (if not impossible) to get both traces 'locked' on screen. This is usually not a problem with pulse circuits or when phase-locked loops are used to synchronise sinewaves.

Another use for the oscilloscope is to compare frequencies and the method is particularly useful for comparing frequencies which are to be adjusted so as to be equal or in some simple relation. The method is an old one called 'Lissajou Figures'; the connections needed are shown in Figure 9. The method depends on being able to switch off the timebase and make a direct connec-

Figure 9. Lissajou figures: (a) Arrangement required for comparing frequencies: (b) Trace with frequencies equal and in phase (or 180° out of phase): (c) 90° out of phase: (d) Phase shift between 0° and 90°. If the pattern moves then the frequencies are not exactly equal.
tion to the X-amplifier.
If the two signals are sinewaves and are synchronised, the pattern produced by this arrangement will be stationary. For equal frequency sinewaves, the pattern can vary from a diagonal line to a circle. Why the difference? The reason is the phase difference between the waves - a difference of 90° produces the circle whereas 0° (or 180°) produces a straight linke. If the frequencies are not quite identical, then the pattern will change and the number of complete cycles of change per second is equal to the difference in frequency of the two signals. Suppose for example, that two signals are supposed to be equal at 1.075 MHz but the pattern 'rolls' at a rate of one complete changeover per second. This makes the frequency difference 1 Hz ! Using this method, we can detect frequency differences of less than one cycle per minute, so that an accuracy of 0.01 Hz is easily attainable. It is, for example, an excellent way of testing the frequency stability of one crystal, in an oscillator, as compared to another and it is also an excellent method of testing how well a phase-locked loop does its stuff. Another trick is to compare signal generator outputs with 50 Hz mains, or with the crystalcontrolled frequency picked up (by a search coil) from a digital watch.

For anyone working with fast repetitive pulses (TTL or CMOS) a very useful addition to a simple 'scope (often built-in to more expensive models) is a pulse delay. This consists of a mono-stable circuit which, when triggered by an input wave, delivers a sharp output pulse a short time later - the time delay can be adjusted, usually, in a range up to several milliseconds. How do we use it? The set-up is shown in Figure 10. The input signal is also used to trigger the delay and the delayed pulse in turn operates the EXT TRIG circuits of the 'scope. The delay and timebase controls are adjusted until the edge of the pulse can be seen, which lets you estimate the rise or fall time. The delay is needed because a triggered timebase cannot be started instantaneously; by the time a normal triggered timebase has started, the pulse you want to see is just about finished so that all you ever see even with a fast timebase is the end of the pulse. The delay prevents the timebase from starting until just before the next pulse is due, so that the timebase starts just before the next pulse. Obviously, this scheme cannot work with single pulses, but it is a very satisfactory method of looking at the leading or trailing edge of repetitive pulses, such as clock pulses.

Figure 10. (a) Using a delayed timebase: (b) The monostable is adjusted to produce a trigger pulse (which fires the 'scopes timebase generator) just before the next input pulse: (c) With no trigger delay, the pulse would appear as shown: (d) Adjusting the delay as described enables the leading edge to be seen.

If you want to read more about the 'scope, then the ETI book service can help you, but nothing quite beats the satisfaction of using an oscilloscope for yourself. Once you appreciate what this remarkable instrument can do, you'll never want to return to simple fault-finding routines again and you may very well feel confident enough to tackle design and modification work so have another look at the piggy-bank, and think of the gentle art of oscilloscopy!

H EADS and TAILS

This quick project takes the pain out of decision making - it's a heads and tails game which simulates the action of tossing a coin

DO YOU OFTEN get into a quandary, not knowing whether to do one thing or the other? Well, if you do, this super-simple Quick Project could be the device you've been waiting for. It uses a sevensegment LED display to display a letter ' h ' for heads or a 't' for tails.

To 'spin' the electronic 'coin' you press a button - when you release the button the 'coin' falls on one 'side' and the initial letter of that side is displayed.

No prizes for design complexity with this circuit. As you'll see in the diagram shown (Figure 1) it's so simple it's almost untrue!

NOR gates IC1a \& b are coupled together, along with capacitor C1 and resistor R1, as an astable multivibrator, oscillating at about 700 Hz . The frequency of oscillation of the astable is controlled by the values of components C1 and R1. If either component is increased in value, the frequency of oscillation decreases: if either component value is decreased, the frequency increases. Chosen frequency (ie 700 Hz) is not critical, incidentally, so don't be afraid to insert other values if you don't have the exact values specified

The squarewave output of the astable is applied, via push-button PB 1 , to a bistable multivibrator formed by NOR gates IC 1c \& d. The two bistable outputs are in antiphase ie one is on when the other is off, and they control LED segments c and d of the sevensegment display

LED segments e,f and g are coupled together, through a 680 R resistor to OV and are permanently on forming the letter ' b '; the seven-segment display will show the letters ' t ' or ' h ' only when the push-button is operated.

Construction is simple. The project is built-up on a 10 strip by 24 hole piece of Veroboard (as shown in Figure 2) and is powered by a PP3-sized 9 V battery. It shouldn't take more than a couple of hours to build.

Once you've finished it, all you'll have to do, when faced with a seemingly impossible choice, is to pull it out of your pocket, press and release the pushbutton - and there's your answer: heads you accept that drink you've been offered; tails you don't refuse it!

Now, if you could only make up your mind whether you should build it or not.

Figure 1. Circuit of the HE Heads and Tails Game

$\begin{array}{lllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ 2 & 2 & 23 & 24\end{array}$

Figure 2. Veroboard layout of the project, showing component locations and track breaks underneath the board

ATARI ${ }^{\text {Timime }}$
 OUR PRICE £78.22

vat

 The Alari is supplied with a liee mains adaptor. aponi stock tie new Acturision catriridges which ar £16.95 inc, VAT ataRI CARTRIDGES 20% OFF R.R.P Atarı Soccer $£ 29.95$ NOW £23.95 Activision Dragster $£ 18.95$ NOW 114.95 Aemor bain 41193 Now $£ 14.95$

ATARI OWNERS CLUB - Why not join our FREE Silice Atari Owners Club and receive our bi-monthly newsletter with speclal offers and details of the we will add your name to our computer mailing list.

T.V. GAME CARTRIDGES

We specualise in the whole range of TV games and sell cartridges for ine following games
ATARI MATTEL ACEIRONIC PAIIIPS $\#$ DATABASE AOWTRON A INERTON TIENG Let us know il you own any of these games and we will let you have delats of the range of Altenion INTE RTON ACE IRONIC cartridges avalable
ANTERTON \& ACE TRONIC owners we have over

ELECTRONIC CHESS GRADUATE CHESS ${ }^{1 \times 1}$ N GRADUATE CHESS Aden FIDELITY MINI-SENSORY CHESS COMPUTER The very firsi chess computer of us price to offer a portable computer with integral sensory board
Battery $i 6.8$ his or mains cperated This is a modular game and additional plug in modules are 'eversi STANDARD CHESS MODULE WAS $£ 54.50$ NOW $\mathbf{~} 49.95$ VAT

[^0]

\%/4 SPACE INVADERS

 dighal scoung For ages 6 to adult
ค.-я.р. $£ 24.95$ NOW £16.95

FAMOUS NAMES Allen B. Du Mont - an American engineer who developed the first commercially available oscilloscopes.

A modern oscilloscope, such as this Telequipment D51, offers the kind of facilities Allen \mathbf{B}. Du Mont must have dreamed of. The operation and use of 'scopes of this type is described in this month's feature article on page 39

Allen Balcon Du Mont was born in 1901, which makes him one of the first of our Famous Names to be wholly a product of the 20th Century. His engineering career started in 1924 when, as a freshly appointed graduate, he joined the Westinghouse Lamp Corporation in Bloomfield, New Jersey, as an engineer in the development laboratory. Since the invention of the triode valve (Audion) by Lee De Forest, many of the large electrical firms who had interests in both communications and in electric light had used their technical knowledge of lamp construction (particularly the use of tungsten filaments sealed into glass) to manufacture valves. The Westinghouse plant was one which had been partly converted to valve manufacture and in 1924, the great radio boom started when RCA pioneered the use of radio as an entertainment medium. Du Mont, like so many engineers in the field at that time, found himself in at the start of something big. He transferred to the radio valve division at Bloomfield and started to apply mass production techniques to valve manufacture. Mass production was only just beginning to make a mark on car production (thanks to the work of Henry Ford) and its use on articles which were thought of as delicate scientific instruments was unheard of. In parallel with this effort, he also started to develop the first large-scale test equipment for radio valves, the forerunners of our modern test rigs.

The results of this truly engineering, as distinct from scientific effort was felt all over the USA. An engineer, it is sometimes said, is one who can make for a penny what any fool could make for a pound. Du Mont's work raised the production of the Bloomfield works to a staggering 50 thousand valves of all types per day. This remarkable achievement established the young Du Mont as a production engineer of the first calibre and in 1928 he became Chief Engineer of the De Forest Radio Co. in Passmore, NJ, where his task was to modernise the plant and improve its productivity. This was no small job, because the Passmore plant was the 'oldest' radio valve manufacturing plant in the world; having been set up by Lee De Forest to manufacture the first ever triode radio valves - it was full of relatively old equipment.

Du Mont gave the De Forest plant the same thorough attention he had devoted to the Westinghouse factory but then turned his mind back to research, since he was convinced that the key to success in radio was continual research and development. He had been fascinated by the patents of Charles Jenkins, one of the US pioneers of TV in the '20s. Jenkins, like Nipkow in the 1870's and Baird in the '20s, used electro-
mechanical methods (involving rotating mirror drums) which produced very low-definition pictures. Du Mont set up a sound and vision system in 1930 but came to the conclusion that such a system could not possibly provide pictures comparable to film movies. Unlike others at the time, he was convinced that nothing eise but comparability with the movies would be good enough for public use and that only a fully-electronic system could provide the quality of picture needed. This remarkably logical conclusion led him to the most important step of his life.

In 1931, on his 30th birthday, Allen Du Mont set up his own business. It's never been difficult to set up business in the USA in boom years, because it tends to be a country more interested in starting things and seeing them through; compare this with our obsession with stopping things - for every Society for starting something, we have a hundred devoted to stopping something! The Allen B. Du Mont Laboratories existed to pursue a new technology - that of the Cathode-ray Tube - as far as was possible.

At the time, the cathode-ray tube was a fragile piece of experimental glassware, a curiousity with few applications. Its design, in fact, had hardly changed since it was invented by Braun at the turn of the century. It would be hard to imagine anyone better suited to convert this primitive piece of glass plumbing into a piece of modern mass-produced scientific equipment and Allen Du Mont flung himself into his selfappointed task with relish. He re-thought the design and construction of the cathode-ray tube with the same energy and thoroughness as he had shown in the Westinghouse plant. He not only improved the primitive design of the tube, he also devised methods of production which were still in use for making experimental storage tubes in 1956 . Seeing that no-one else in the States was better equipped to make use of the new tubes, he went on to design his own oscilloscope, and built another production line for that.

The Du Mont oscilloscope was a landmark in the history of electronic instruments. It was the first truly commerciallyavailable oscilloscope and was snapped up by laboratories all over the world. It had a good stable timebase, a Y-amplifier with a previously unheard of bandwidth of nearly 1 MHz and it was rugged and dependable. It was to prove, in fact, to be the most significant product of the Du Mont Laboratories, far outshining anything else, and in World War II the Du Mont oscilloscope was chosen by all three military services.

Meanwhile, however, Du Mont's work on the oscilloscope was financing TV receiver techniques. He was following closely the work of Zworykin at RCA, convinced that this line was going to result in the all-electronic TV system he had dreamed of. Zworykin, in the USA, and Schoenberg's team at EMI in England, both came up with the same answer - identical systems - in 1936 and Du Mont was able to manufacture TV receivers and offer them for sale to the public in 1937.

The glory was short-lived, however, because TV development was frozen by the outbreak of war. The Du Mont laboratories were turned over to the manufacture of radar tubes and other electronic equipment, while the production of oscilloscopes was trebled. The pioneering work on TV receivers was never resumed to any extent, despite Allen Du Mont's presence on the NTSC - the National Television Standards Committee - the body which, in the late ' 40 s , came up with the famous specification for a colour TV system. By the time the Committee saw its recommendations emerging in the shape of the first RCA colour receiver, Du Mont was a sick man. He died in 1956.

Allen Du Mont never attained the fame and glamour of some of our other subjects, but he was one of the engineers whose work laid the foundations for much that we take for granted today. For two generations of enthusiasts in the USA, the Du Mont oscilloscope was one of the attainable dreams, an instrument which made an amateur into a near-professional. For that alone, his name will be remembered. HE

It's easy
 to complain about advertisements.

The Advertising Standerde Authority. If an advertisement is wrons. wete here to put it right.

ASA Lid, Brook Holse. Tornngton Place, LOndon WCIE THM

JOIN UP WIMI THMFSOTD

Lesold's new 'L' Series aoldoring iron - now at a bargain price Outetending performance. Lightwoight. Essy to maintain. Blements are enclosed in Stainless Steol shafts. insulated with mica and ceramic. Non-seize interchangeable bits, choose from 'copper' or 'long life'. A very special tool at a very special 'direct' price. Just 85.22 for iron fitted with 3.2 mm copper bit. Just $\$ 2.27$ for 3 spare copper bits (1.6; 2.4;4.7)
A mere SA for profesaional spring profesalonal sprin
standl or bey the lot for 110.04 and avilo 10%.
All prices tnc. VAT P.seP

LIGHT SOLDERING DEVELOPMENTS LTD or phone 01.6890574 for Barclaycard/Access sales.

PARNDON ELECTRONICS LTD.

Dept. No. 22, 44 Paddock Mend, Harlow, Eseex CM18 7RR. Tei. 027932700
RESISTORS: $/ / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance High qua made under strietly controlled conditions by automatic machines Bandolitred and cotour coded
E1.00 per hundred muxed \{Min 10 per value] E8.50 per thousand mixed (Min 50 per value) Special stock pack 60 values 10 off each E5.50

DIODES: IN 148 3p each Min order quantury - 15 ,tem
$\$ 1.60$ per hundred
DIL. SWITCHES: Gold plated contact in fully sealed hare wilu then
4 Way 86 p each 6 Way $£ 1.00$ each 8 Wav $£ 1.20$ erach
DIL SOCKETS: High quality. luw prolle sockets
8 pin - 10p. 14 pin - 11p. 16 pin - 12p. 18 pin - 19p. 20 pin - 21 p 22 pin - 23p. 24 pin - 25p. 28 pin - 27p. 40 pin - 42p.

ALL PRICES INCLUDE V.A.T. POST \& PACKING - NOEXTRAS MIN ORDER - UK 1100 OVERSEAS 55 CASH WITH ORDER PLEASE

HEPROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Projects. We supply carefully selected sets of perts to meble you to contruct H.E. projects. Kite include ALL the electronics and hardware needed. Printed circuit boards (fully tched, drilled and roller tinned) or Veroboerd are, of course, included as specified in the originel article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES untees otherwise stated. 8ATTERIES ARE NOT INCLUDED, COMPONENT SHEET INCLUDED. If you do not have the iesue of H.E. which inchudee the profect - you will need to order the instruction reprint at an extre 40p each
Reprints availeble eepperately 45 p eech +p .8 p .40 p .

NOISELESS FUZZBOX Feb 8209.77 SOUND SWITCH Fob 8288.31
SOUND SWITCH Feb 828.31 Fob 82 f6.94 less case MASTHEAD AMPLIFIER Feb 82 £13.74 DRUM SYNTHESIZER Dec 81. Full kit 21.17

Dec 81 c3.48 Dec 81 C4. 48
SOUND TORCH Nov 81 less torch mic 117.98
SCRATCH FILTER Nov 81 Mono 55.4 Stereo $\mathbf{5 8 . 4 0}$
LED VU METER Nov 81 less case Ca.E6 SIMPLE STYLUS ORGAN Nov 81 lame case E4,74
METRONOME Nov 81 C11.8:
TELEPHONE BELL REPEATER Oct 81 12.78 ,

Mad Linking wire extre 14p metre
COMBINATION LOCK Oct 81 less solenoid £17.43

OM Oct 81 (leses sotenoid) ABY
BABY ALARM Oct 81 c8.14, Fig 8 linking wire 7p metre
TOUCH LAMP Oct 81. Bulb version DIANA METAL LOCATOR Sept 81 8335
LOWER POWER PILOT LIGHT Sept 81 , less case £1.30
LJGHTMATER ALARM Sept 81 c5.98 CAR LIGHTS DELAY Sept 81
SHORT WAVE RADIO Sept 81 E23.se.
REACTION TESTER GAME
E11.88
R.P.M. METER Aug 81, inc. probe C15.48
VARIABLE BENCH POWER SUPPLY Aug 81 E25.36
ULTRASOUND BURGLAR ALARM July 81 E18.67
ELECTRONIC DOOR BUZZER July 81
E5.65
ELECTRONIC METRONOME July 81
TREBLE BOOST July 81 £ 10.93
CONTINUITY CHECKER June 81 E5.34 ENVELOPE GENERATOR June 81 E16.85
AUDIO MIXER June 81 c4.gs
VOICE OPERATED SWITCH May 81 £10.37, Microphone extra $£ 1.41$
DOOREELL MONITOR April 81 E3.2s
WINDSCREEN WASHER ALARM april
81 E5.78
PUBLIC ADDRESS AMPLIFIER March 81 E18.21. Extras - horn speakers 88.83 anch, PA MIC E4. 40
FUZZBOX March 81 £10.30
WINDSCREEN WIPER CONTROLLER March 8157.67
STEAM LOCO WHISTLE March 81
12.20

PHOTOGRAPHIC TIMER March 81
E3. 28

GUITAR TUNER - SUPERB PROJECT

Featursed by us in E.T.I. Jen 82. Mighly satable internel reference. Microprocessor ponerite undsmented friquencias. Spacis gynctronout rectifier circuir comperes inpul trequency from guilu
 con pomon me
Complete hit inctudes emert case, pebe. panel meter etc. Ezis. Reprint extra 45p. Avamble apportaty 45p + 40p ptp.

TRAIN SET ACCESSORIES

MODEL RAILWAY SPEED CONTROLLER

From E.E. Sept. Fentures fully variabie speed control - from zero to full speed. Fonward/reverse switch. Auto start and stop for realism, 8 rake and speed boosi. Emergency stop. Use with the simple controller supplied with most trein sets. housed in an attractive 2 tone sloping front case. 8uilt on a printed circuit board. All parts included. Kin E13.44. Reprintinstructions extre 4ep.

TRAN SOUNDS - from H.E.
TWO TONE TRAN HORN Feb 81
c12.28 inc case
TWO TONE TRAIN HORN Feb 81
CHUFFER Jan 81
All 3 can be built into the whistle project case - or built as soparate units
BOOK - MODEL RAILWAY PROJECTS
by Penfoid E1.s5. Published Sopt. 1981

SOLDERING

ANTEX $\times 5$ SOLDERING IRON 25W £5 48
SOLDERING IRON STAND SPARE BiTS. Small standaid large. 65p each. For $\times 5+\times 25$. SOLDER. Handy size 99p. HOW TO SOLDER LEAFLET

12p
DESOLDER BRAID 69p HEAT SINK TWEEZERS 29p DESOLDER PUMP $\mathbf{£ 6 . 4 8}$ SOLDER CARTON £1.84 LOW COST CUTTERS £1-69 LOW COST LONG NOSE PLIERS £1.68 WIRE STRIPPERS \& CUTTERS

MORE KITS AND COMPONENTS IN OUR LISTS FREE PRICE LIST ordersor send see (9 ${ }^{\text {x }}$ 4)
CONTAINS LOTS MORE KITS. PCBS
COMPONENTS

1982 ELECTRONICS

 CATALOGUE Illustrations, product descriptions, elicuits all in-cluded. Up.io.date price 3 list enclosed. All producto cluded. MP-10.da Send 70p in stamps or add 70p io order
MŌRE H.E. KITS PLUS E.E. and E.T.I. PROJECT.

DRUM SYNTHESISER

From ETI April 81 thin superb intrument has two indeosendent percussion channels - each with pitch. noise, decay end level controus. The synthesiser contains a versatile in buti sequencer which enabies different beat sequences to be programmed using 8 way DHL switches. Beats outher channel may be individually programmed the sequence can be rephayed suramatically or manually as required. Manual and automatic operation are possibte together so that the unit can be played manually with an occasional iew bars of sutomatically sequenced thythm. A very versatile instrument. Orum Synthesiser Kit less case f 39.98 with case C 5356.
also H.E. Projects Dec 81 - another O

SOUND BENDER

Fom EII Oct 81. A very effective Ring
Modulator sound effects unit. Thiss design
incorporates its own variabbe frequency oscillator
with sine or triangular waveform, and a 44 quadrant

A mix control allows the modulated signal to be mixed with the straight through signal. Ideal for
outer space. voice and music effects Just outer space. voice and music effects Just
connect a signal source and a power amplifier and Deaker. Kl f20.75,

GUITAR NOTE

 EXPANDERFrom EYI Apnil B1, Not just another Fuzz/Sustain eftects which closely prect can pioduce overload enects which closely approach the sound of an Switch selection for 1. Overall overdrive
Overall compression Isustain)
3. H.F. compression for basss overdrive
5. Mia frequency expansion
6. H.F. expansion for M.F. accentuation
All fexceot overall
control, Guitar Note Expander Kif $£ 18.47$. less
control. Guizal
case fil 26.

HAND CLAP SYNTHESISER

controls enabaccompany different types of music. The "clapmay be fintiated by a push button switch or anyAlternatively triggering may be via a mictophoninput to the unit so that a slonal from a mic placed near to a snare drum will initiate the dap.Hand Clap Synthesiser Kir 29.98 . less case

Reprints of the Above 45p each

BOORS
BOM BOM

ADVENTURES WITH s. shom MICROELECTRONICS

An easy to follow book suitable for all ages. Ideal for beginners No soldering. Uses a Binboard 1 breadboard, gives clear instructions with lots of picfures. 11 projects based on integrated circuits -includes dice, two-tone doorbell, electronic organ, MW/LW radio, reaction timer, etc. Component pack includes a Bimboard 1 breadooard and all the components for the projects.
Adventures with Microelectronics $£ 2 \cdot 55$. Component pack $£ 29 \cdot 64$ less battery.

ADVENTURES WITH ELECTRONICS ByTom

An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-Dec breadboard. Gives clear instructions with lots of pictures. 16 projects-including three radios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics £2.40. Component pack £17-98 less battery. MAGENTA gives you FAST DELIVERY OF QUALITY COMPONENTS K KITS. MAGENTA ELECTRONICS LTD HT22, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS. DE14 25T. 0283 65435. MON.-FRI. 9.5. MAIL ORDER ONLY ADD 40p P. \& P. TO ALL ORDERS.

OFFICIAL ORDERS WELCOME
IRISH REPUBLIC \& B.F.P.O. EUROPE:
must be in Sterling. ACCESS ANd BARCLA YCARD (VISA)
OROERS ACCEPTED BY PHONE OR ORDERS ACCEPTED SAE ALL ENQUIRES. Normal despatch by return of pos

Here is a small selection of the books available from HE's book service. New titles will appear each month

ELEMENTS OF ELECTRONICS by F A Wilson
This series of books covers the basics of electronics, in an easy to understand manner. The topics are written so that important concepts can be grasped by the beginner and yet they can also provide an in-depth reference source for the practising engineer.
Book 1: THE SIMPLE ELECTRONIC CIRCUIT AND COMPONENTS
£2.25
This book contains all the fundamental theory necessary to lead to a full understanding of the simple electronic circuit and its main components.
Book 2: ALTERNATING CURRENT THEORY
£2.25
Sinewaves, complex waveforms, time constants, reactance, resonance and other important aspects of $A C$ are covered.
Book 3: SEMICONDUCTOR
TECHNOLOGY £2.25
From simple atomic structure models through to complex integrated circuits and the elements of computers.
Book 4: MICROPROCESSING SYSTEMS AND CIRCUITS£2.95 Starting with simple computer models, this book takes the reader up to complete microprocessing systems and theoretical circuits.
Book 5: COMMUNICATIONS
. $£ 2.95$
All aspects of communication systems such as channel bandwidth, transmission systems and signal processing, are discussed in this final book of the series.

A MICROPROCESSOR PRIMER by EA Parr
£ 1.75 Newcomers to electronics and compolting tend to be overwhelmed when first confronted with literature about microprocessors. This book helps to alleviate the problem by recounting the design of a simple computer in an easy to understand manner.

PRACTICAL COMPUTER EXPERIMENTS by EAParr
£ 1.75 Readers of this book will find themselves involved in experiments which help to explain the inner workings of computers and microprocessors. All circuits and experiments use discrete logic circuits to demonstrate such things as 'adders', 'stores', 'arithmetic and logic units' etc.

HOW TO MAKE WALKIE-TALKIES by F G Rayer
£ 1.50 Low power hand-held, or portable, radio transmitting/receiving equipment need not be complicated - as this book shows. A book of great interest, not only to the licensed operator, but also to those enthusiasts without transmitting licences who wish to participate as
receiving equipment.

ELECTRONIC PROJECTS FOR BEGINNERS
 by F G Rayer
 £1.35

The newcomer to electronics will find this a very useful book. It contains a wide range of easily made projects including component and wiring layouts. A number of projects can be constructed without the use of a soldering iron.

POPULAR ELECTRONIC PROJECTS

 by R A Penfold£ 1.45
A collection of circlits and projects to interest most electronics constructors, covering four popular main areas: radio; alldio; household projects and test equipment.

INTERNATIONAL TRANSISTOR

 EQUIVALENTS GUIDEby A Michaels
.......... £2.95
Transistors from over 100 international manufacturers are tabulated in this book in an easy to Inderstand, cross-referenced format, to enable the reader to quickly locate equivalent devices from an alternative source. This book is an extremely useful addition to the electronics enthusiast's library.

To receive your books fill in the form below (or write the details on a sheet of paper) and send it, with your payment, to the address given.
Please wait 28 days for delivery. The offer applies to the UK only. Prices may be subject to change without notice.

To: HE Bookshelf, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE.

I enclose a cheque/postal order made payable to ASP Ltd, for the amount shown below
OR
I wish to pay by Barclaycard/Access. Please charge to my account number
VISA .

Signature

Name

(block Capitals)
Address
(BLOCK CAPITALS)

Books Required	Price
Add 75p p\&p	0.75
Total enclosed $£$	

UNIVAC KEYBOARD BARGAIN
Ideal for use with $2 \times 80 / 81$. Mas 50 keys and many other paris
lor your speres box. Probabily cost in excess of $£ 100$. In very good used condition $£ 13.50 \$ E 2.00$ post. Diagram showing
how to connect to $Z \times 80 / 81-£ 2.00$ extle. COMPUTER DESK

Sire approx. work x tormica covered. Suitabie for housing work, the fon being formica covered. Surtabie for housing EXTRACTOR FANS Mains operated - ex.
$5^{\prime \prime}$ Woods extractor
Woods txtractor
E5.75 Post $£ 1.00$
6 Woods extractior
$\mathbf{8 6 . 9 0}$ Post $£ 1.25$
6" Plannair extractor
" $\times 4^{\text {"M Mulfin }} 115 \mathrm{v}$
E4.50 Post 500.
$4^{-1} \times 4^{\text {." Muffin } 2300}$
Muftin 230 v .
E5.75 Post 50 o
NTERRUPTEO BEAM

This kit enaties you to make o switch that will irigget when a steacy heam of infra red or ordinury light is broken. Mann com Circuit diagram but no case. Price $£ 2.30$
INSTRUMENT BOX WITH KEX
bottoml. This is byack graned effect, vinyl covered tory pleasing appearance. Internal dimensions $12 \%^{\prime \prime}$ Iong, $4 \mathrm{~K}^{\prime \prime}$ wide $6^{\prime \prime}$ deep. deal for carrying vour multi range meter snd small tools and for keeping them in a sate place. $£ 2$.
other goods, ot her wise $£ 1.00$
ROPE LIGHT
4 sets of colouted lamps in translucent plastic sube arranged to
give the anpearance of a funning or travelling light. With variable sped control box, ide el for disco or shoo window display.
Complete, made up, ready to plug into mains. $\$ 36.00+£ 2$ p

COMPUTER KEY SWITCHES (make your own keyboard) These are lor making up on a p.c.b. and consist of a verical moun ing compurer type reed switch, which makes circuit when a magne passes over it. The magnet is located in
the plastic plunger which in furn is
deoressed by a push rod,
 up in banks of 6, price E2.30
per bank of 6

OUR CAR STARTER ANO CHARGER KIT has no doubt saved many motorlsts from embarcassment in an emergency you can star hours. The kit comprises: 250 w mans transformer, two 10 amp bridge rectitiers, start/charge switch and full instructions. You can assemble this in the evening, box if up or leave it on the shelf

GPO HIGH GAIN AMP/SIGNAL TRACER In only $5 \operatorname{yon} \times 3 \%$ in $\times 1 \%$ in is an extremely high patn (70 dB) solid state amplifier dexigned for use as a signal tracer on GPO cables, With a radio it functions very well as a signal tracer. Bv connecting simple coll to the inpur socket a useful mains cable tracer can be and on-alf volume control, mounted flush on the top Many other uses include general purpose amp, cueing amp, etc. An sbsoluto
$5: 5$ OUR CURRENT BARGAIN LIST WILL BE ENCLOSED WITH ALL ORDERS.

is plenit rugged enough for disco work. The unit is housed in an attractive iwo-tone metal case and has controls for each chan
and s master on/off. The audio input and output are by Y_{4}." sockets and three panei mounting fuse holders provide thyrist protection. A four-oin plug and socket lacilitate ease of conne
ing lamps. Special snip price is $£ 14.95$ in kit form or $£ 25.00$ ing lamps. Snecial sni,

MULLARD UNILEX A mains operated 4 \& 4
system. Rated one of the
finest performers in the finest performers in the
stereo field this would make a wonder ful gift f
 modular form this should sell at about ©30 - but due to a spectal bulk buy and as on in tem complete at only $E 16,75$ including VAT and por FREE GIFT - buy this month and you will receive pair of

THERMOSTAT ASSORTMENT

10 different thermostats. 7 b-metal ivpes and 3 liquid types There ate the current stars which will open the swith to protect
dievices against overtoad, short circuits, etc. or when fitted say dievices against overtoad, short circuits, etc., or when fitted say
in front of the element of sblow heater, the heat would trip the stat if the blower fuses; appliance stats, one for high temp. eratures, others adjustable over ar range of temperatures which
could include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which could include $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which
can be immersed, an oven stat, calibrated boiler stat, finally an can be immersed, an oven stat, a calibrated boilet stat, finaliy 3 ,
ice stat which, fitted to our waterproof heater element, up in the ice stat which, fitted to our waterproor hester element, up thermostats could cost around $£ 15.00$ however, you can ha the parcel for $\mathbf{£ 2 . 5 0}$.
6 WAVEBANO SHORTWAVE RAOIO KIT
Bandspread covering 13.5 to 32 metres. Based on cricuit which appeared in a recent issue of Radio Constructor. Complete kit in-
cludes case mazerials, six urnsistors and diodes, condensers, resis ors, inductors, switches, etc. Nothing else to buy it you have an ample 1 er to connect th to or a pair of high resistance headp
Price $£ 11.95$. MEDIUM \& 2 SHORT WAVE CRYSTAL RAOIO All the parts to make up the beginner's model. Price EZ. 30 . Crystal
earpiece 65 . High resistance headphones (gives best results) c3.75. Kit includes chassis and tront but not case.
TRANSMITTER SURVEILLANCE
Tiny, easily hidden but which will enable conversation to be picked up with FM radio. Can be made in a matchbox - all el
parts and circuit. C2.30. (Not licencenble in the U.K.). RADIO MIKE
Ideal for discos and garden parties, allows complete freedom of movement, Ploy through FM radio or tuner amp. $\mathbf{6 6 . 9 0} \mathrm{comp}$, kit

RADIO STETHOSCOPE

Easy to faulf find - start at the defial and work rowsords the speaker MUGGER OETERRENT
A highinote bletip. nuth latching switch, plastic case and batery POPULAR SNIP - STILL AVAILABLE
And it still carries a free gift of a desoldering pump, which we are
currently selling at 66.350 . The snip currently selling at 66.35 . The nip is perthaps the most useful
breakuown parcel we have ever offered. it a a parcel of 50 nearly all different computer panels containing parts which must heve cost at least $£ 500$. On these boarch you will find over 300 IC's. Over 300 diodes, over 200 trensistors and several thousand other parts, resistors, conchensors, mulsi-turn pots, recitiers, SCR, etc.
eft. If you act promptly, you can have this parcel for only $\mathbf{E 8 . 5 0}$. which when you deducs the value of the vesoldering pump, work out to just a lotile
should not misst
should not miss!

BURGLAR ALARM CONTROL PANEL Contains labelled connection block, latching relay, lest switch a
removable key control switch. Simplifies the whole installation, all you have to do is to take wires to pressure pads and to alarm bell. Price $[7.95$, with complete diagram.
MINI MONO AMP on p.c.b., size $4^{\prime \prime} \kappa$ approx. Fitted volume control and a ho
for s tome control should you require tor sone control should yo
it. The amplifier has three
transistors and we estumate transistors and me estuma
the ouput to be 3 W ms. More technical data will be included with the amplifier. Brand new, perfect condition
offered at the very low price $\mathrm{£}, 15$ each, or 10 for $£ 10.00$. DELAY SWITCH set with painters knob for be accurately set with painters knob for periods of up
to 2 khirs. 2 contacts suitubbe to switch 10 amps - second contact opens a few min

TIME SWITCH BARGAIN
Large clear mauns frequency controlled
clock. which will always show you
the correct time + start and stop swita
es with dials. Complete with

LEVEL METER
Size approximately 1 " ${ }^{\prime \prime}$ square, scaled signal and powet but cover easily removabte
rescaling. Sensitivity 200 UA. 75p.
WATERPROOF HEATING WIRE
60 ohms per vard, this is a hearing element wound on a fibre glass pipes, under grow bowes in gloves and socks.
TANGENTIAL BLOW HEATER
2.5 Kw quiet, heating from
$230 / 240$ volt
23012. Kit consists

dlustrated, 2.5 KW

12V SUBMERSIBLE PUMP

Just join it to your car battery, drop it into the liould to be moved and up it comes, no messing sbout, no priming, etc, ond you get of

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs. repeats daily automatically correcting for the lengthenswitch but you can have it for only $£ 2.95$. These are without case, but we can
metal case with window $£ 2.95$. Also avallable is adaptor kit to convert
this into normal 24 hr time swite this into normal 24 hr . time switeh but
with the anded advantage of up to 12 on with the anded advaniage of up to 12 on
offs per 24 hrs . This makes sn ideal con.

12V FLUORESCENT LIGHTING

FIVE UNUUUAL SWITCHES
or inventors, experimenters, service engineers, students or in fact anyone interested in making electrical gadgets. The parcel
contains: - delay switch - motor driven swich - iwo war and off switch - polarity changing switch - and humidity switeh. O egular price for these switches bought separgtoly is over $£ 10$, bu
this month you can have the 8 for $£ 2.50$. SPIT MOTORS

These are powerful mains operated induction motors with gear box mith square hole, so you have altern. ative couplingme thods - final speed is approx. 5 revs $/ \mathrm{min}$, price $\mathrm{E5} .50$. -
Similar motors with final speeds of Similat motors with final spesds of
$80,100,160$ \& $200 \mathrm{r} . \mathrm{D} . \mathrm{m}$. same price.
COMPONENT BOARD
Ref. WO998
This is a modern libreglass board which contains o multitude of very usefut parts, most important of which are: 35 assorted diodes
and rectifiers including 43 mp 400 V types (made up in a briage) trsnsistors type BC 107 end 2 type BFY 51 electrolytic condensers. SCR rel 2N 5062, 25 Ouf 100v DC and 100 ul 25v DC and over 100 other parss including variabis, flxed and wife wound res
elecrolytic and other condensers. A rwal snip at $£ 1.18$.

J. BULL(Electrical) Ltd.

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under € 10,00 , add 60p service charge. Monthly account orders accepted from schools and public companies. Access \& Barclaycard orders phone Haywards Heath (0444) 54563. CALLERS: 10 Haywards Heath (closed Sat.). or 2. Bentham Road, Off Elm Grove, Brighton (closed Wed.). BULK ORDERS: Write for special quotation. Normally delivery is by return.

Explore the depths of your $\mathrm{Hi}-\mathrm{Fi}$ system!

ONE OF the major drawbacks with budget speakers, compared to the higher priced systems, is their relatively poor performance at low frequencies.
This region of the audio spectrum is covered by the bass driver, which can be of inferior quality in cheaper designs. Also, the cabinet is usually constructed with a small internal
volume that is sealed and filled with acoustically absorbent wadding - an infinite baffle enclosure. These factors raise the low frequency roll-off point which is the point at which the output level begins to fall as frequency is gradually decreased (see Figure 1).

Also, amplifiers within a similar price range tend to lack any form of equalisation apart from bass and treble controls; typically, these allow a boost/cut of around 10 dB at 100 Hz and 10 kHz but frequencies at a certain point below 100 Hz will be unaffected by the bass control and are therefore reproduced at a lower level. To compensate for this, some form of low frequency amplification is required which is where the HE Stereo Bass Booster comes into play. It provides an increased output for signals at the bottom end of the bass range.

The boost is applied to signals within a frequency band that is variable between limits of $50-150 \mathrm{~Hz}$. The amount of boost may also be varied (though not indeuendently of frequency) up to a maximum of about 6 dB . These changes are achieved through the use of two special potentiometers that vary four resistance each, in a single control. These pots are shown on the circuit diagram of Figure 2 as RV1a, RV1b.

RV1c and RV1d.
Our prototype was enclosed in a small aluminium case with a black PVC covering. However, since nearly all of the components are built onto the PCB,any metal case of suitable dimensions may be used. Plastic boxes, though easier to adapt, are not desirable because the booster will be processing low level signals and screening is therefore necessary. Power for the unit is obtained from a PP3 battery supplying around 10 milliamps.

Construction

As mentioned earlier, the single PCB for this project takes most of the components, leaving only the on/off switch and phono sockets to be externally wired. This makes construction a fairly simple task, though special attention should be being given to the two ICs, which are mounted in 8 -pin DIL sockets. Ensure all the polarised capacitors (eg electrolytic) are inserted the right way round and the link wires correctly positioned - just follow the overlay diagram of Figure 3.

The case may now be drilled to accept the switch, phono sockets and pot shafts. Also, four small holes are drilled in the base for the PCB fixing bolts
(see Figure 4). The main board is then bolted into the case (after being checked for errors).

The remaining hardware is fitted and wired up to the board as shown in Figure 3. and the internal view of the
prototype (Figure 5).
Finally, the top of the case is screwed into place and the booster is ready for use.

In Use

The Bass Booster is best placed between the pre- and power amp sections of the amplifier, if your amplifier has pre-out power in terminals. Alternatively, the tape monitor facilities provided on most hi- fi amplifiers can be used; the input for the Booster is taken from the 'Tape Out' ('Rec') socket and the Booster output is taken back to the 'Tape In' socket. The source - record player or tuner - is connected as usual; the Monitor/Source switch should be set to 'Monitor'.

Amplifiers without these facilities are less satisfactory since the booster will have to be placed in between the signal source the pre-amplifier. This will result in a decreased signal-to-noise ratio and some loss of treble - but the effect may not be too noticeable.

Setting the controls is quite straightforward but takes a bit of time. The booster is switched on and both boost controls advanced until the amount of bass appears to balance the other frequencies present. This is made easier if a familiar source (a favourite record or tape) is used. If you are using the tape monitor set-up you can perform an 'A-B Test' by switching between 'Source' and 'Monitor'. In any case the controls should never be set so that 'booming' or distortion is produced.

How It Works

The design of this circuit is fairly simple to understand since the two FET op-amps are wired in cascade (one follows the other), with identical shaping (tonal response) and feedback circuitry (effecting the gain). Each amplifier is arranged to produce a non-inverted output. This output is determined by the feedback loop from pin 1 to pin 2 (for IC1 a) and the series RC circuit of C3, R5 and RV1b. Varying RV1a and b alters the gain whilst simultaneously sweeping the roll-off frequency across a 100 Hz band, from 50 up to about 150 Hz . This results in a smooth transistion from no boost to the full 6 dB increase in output at the lower end of the sweep range.

Bias for both halves of the circuit is set by R1, R2, and C1; these hold pin 3 of ICs 1 and 101 (not shown in the circuit) at half the supply voltage. R3 is included to minimise interference between channels (crosstalk). Supply decoupling is achieved by C7, across each opamps supply pins,. Each input is coupled to pin 3 by a large capacitor.

Buylines

A complete kit of parts for this project may be obtained from Bewbush Audio, 26 Hastings Road, Pound Hill Crawley, Sussex. The cost, including postage, is $£ 18.95$. The pots may be ordered separately for $£ 1.80$ the pair and the PCB is available seperately for $£ 1.85$. Suitable cases can be had from West Hyde and other suppliers.

Figure 1. Typical bass response of a speaker system.

ALL MEASUREMENTS ARE IN mm

A Figure 2. Circuit diagram of one half of the Stereo Bass Booster.

Parts List

RESISTORS (all $1 / 4 \mathrm{~W}, 5 \%$)
R1,R2,R3,
R103 100 k
R4,R5,R6,R7,
R104,R105,
R106,R107 15 k
R8,R108 100 R
CAPACITORS
C1.C2,C3
C6,C102.
C103,C106
10 uF 16 V radial electrolytic
C4,C5,
C104, C105 100 nF C280 polyester
C7.C107 100 uF 16 V radial electrolytic
PONTENTIOMETERS
RV1,RV101 50 k linear quad ganged

SEMICONDUCTORS

IC1,IC101 TLO82 BIFET
dual op-amp

MISCELLANEOUS

SK1,SK2.
SK3,SK4
chassis mount phono socket S1 sub-miniature on/off switch
PCB,PP3 battery, PP3 clips, knobs, case, nuts, bolts etc.

Figure 3. The complete printed circuit

GIECTRONIC IGNITION SAVES PETROL

More and more new cars use electronic ignition to give the best performance and specificaion by fiming can up tor ENERGY DISCHARGE electronic system.
TOTAL ENERGY DISCHARGE
the advantages of the best capactive discharge ignition

- Penir Performance - higher output voltage
- Improved Economy - consistent high ignition performance
- Better Sterting-full spark power oven with low battery
- Accurtis Tirning-Drevents contact weer without contac

PLUS
SUPER HIGH POWER SPARK - $3 / 2$ times the energy of ordinary C. 0 systems.
OPTIMUM SPARK OURATION - to get the very best performance and economy with
today's lean carburetior setrings.
OESIGNEO IN RELIABILITY - with the "ultimate insurance" of a changeover switch to

TECHNICAL DETAILS

HIOH EFFICIENCY INVERTER. A high-power, high officiency, regulated inverter ther des a 400 -volt energy source-powerful enough to store twice the energy of olts.
SUPERE DISCHARGE CIRCUIT. A brand new technique prevents energy being reflected back to the storage capatior, giving $31 / 2$ times the spark energy and 3 timen the spark duration of ordinary C.D. systems. generating a spark powerfut onough to cause rapid ignition of even the weskest fuel mirtures without the ignition delay associated with lower power "long burn inductive systems. In addition this circuit mainains the correct output polarity, thereby preventing unnecessary stress on the M.T. system.

SOPHISTICATEO TRIGQER CIRCUIT. This circuit removes all unwanted signels caused by contact volt drop, contact shuffle, contact bounce. and external tramsients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is
almost eliminated by reducing the contact breaker current to a low level - just almost eliminated by reducing the
sufficient to teep the contacrs clean

IN MONEY-SAVING KIT FORM at $£ 14.85$
Also MOTORCYCLE TWIN OUTPUT KIT at £22.94
Alt you noed is a small soldering iron and a fow basic tools - everything else is supplied with easy-to-follow instructions

FITS ALL 6/12-volt NEGATIVE EARTH VEHICLES

LIMITED OFFER!

As an introduction CRICKLEWODD ELECTRONICS LTD.. (Marshall's Old Shopl. 40 Cricklewood DESOLDERINGTOOL

Sate Taflon scrow -in noses \%
JAPANESE TRANSISTORS
,
OW COST VERSATILE MULTIMETER
THE MIGHTV MINI MULTITESTER 2,000 ohms per vol. DC \& AC Voitage ranges: $10 \mathrm{v}, 50 \mathrm{~N}, 250 \mathrm{~V}, 1000 \mathrm{v}$. OC cutrent ranges 100 mA
Resislance ohms $\times 10 \times 100 \mathrm{~d}$ from $=10 \mathrm{db}$ to +22 db . Mivror are
 order form
Name..
Address
Desoldering rools at t3 85
Spare Teflon noses at 75p
Mighty Mini Testers at E495
Oslage, packing and insurance at 60 p per one
device, 250 for each anditional device
Sub total
Add 15% Vat
Add 15\% Vat
Athernatively please credir my VISA/ACCESS No.
Anternativel

$$
\begin{aligned}
& \text { Please mention HE } \\
& \text { when replying } \\
& \text { to advertisers }
\end{aligned}
$$

KITS,COMIPONENTS,MICROS \& PARTS

REMOTE CONTROL Published remote control
systems tend to be qulte
com complex,
difficult-to-ge equipped lab to components and wemto work. It this has put you off making your own system wo have just
the kits for you. Using Infra-fod, our KITS the kits for you. Using. Infla-red, our KITS
range from symple onfolt controllers to coded
transmilter/recelvers with 16 onloff oulpuls or three analogue out puts for controlling. e.p.id
TV or Hi-Fl systems. The kits are elit TV or HI-FI systems. The kits are easy to bulid and simple to set up - and they are extremely
versatile, controlling anything fom garage versatice controlling anything from garage
doors to room lighing, fuet by adding the required output circuits, i.e. relaye, triacs, etc.
li you can desion your own system If you can design your own system we stock a
wide range of remote conirol components at very competilive prices.
We have compiled a booklet on remote control, containing clrcuits, hinls, data sheels and detalis of our remole control kits
and components. So don't control yoursil'-
SEND US 30 p and envelope for your copy TODAYI

FAST SERVICE-TOP QUALTTY-IOW LOW PRICE8

No circuit is complete without a call to-
11 Boston Road London W7 3SJ

24 HOUR CLOCK/APPLIANCE TIMER KIT Switches any appllance up to 1 kW CT1000k Basic Kit
on and off at present times once per CT1000k with white box ($56 / 131 \times 71 \mathrm{~mm}$). day. Kit contains: AY-5-1230 IC, (Ready Built) 0. " $^{\text {. LED display, mains supply, }}$ display drivers, swliches, LEDs,
iriacs, PCBs and full Instructions.

THE PERFECT AID FOR "LAZYITIS"
 carpet weas alone would pay for this unit in approximately 1.3697 years or morel

814.90 $£ 17.40$

17.40
$\mathbf{8 2 2 . 5 0}$

TRIACS

6A with trigger 04006LT
BA 130
Oilac.

DO YOU LONG TO HEAR

 YOUR DOORBELL RING? Our latest kif gives CHIME Cnot a mictoprocessor
control
cer ouzz or the controlled buzz or the
sameo old ding dong) same oud ing dong
athtoch ol bution. This kuh bos sod on a ne Integatied clicculin is
Supplied complete
with
 loudipeaker and drilled box and requites only 9 g battery and push buttion It may also be switched by logic in such appilications as car arms, clocks, toys,
P. Aystems, etc. The unit produces a 150 mW output and draws less than one luA from a PP3 baltery when the lone ceases. Supplied complete with circuit and IDEAL PROJECT FOR BEGINNERS-Only $£ 5$

DVM/ULTRA SENSITIVE THERMOMETER KIT This new design is based on the
ICL7126 (a lower power version of The ICL7iO8 chip) and $31 / 2$ digit E 44] liquid crystal display. Th
form the basie of a digic -7y4] form the basis of a digital multi-
meter (onily a few additional resistors and switches are equired-delalis supplied), or sensitive digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to
$+150^{\circ} \mathrm{C}$) reading to $0.1^{\circ} \mathrm{C}$. The Dasickit has sensitivity of 200 mv for a full scale reading automatic polarity indication and an ultre low power equlrement-giving a 2 year typica battery life from a standard 9V PP3 when used
8 hours a day, 7 days a woek. Price $\{15.50$

C

This month's collection includes a variety of clever puns, pithy comment and witty sayings - plus, of course, the usual grovelling and boot-licking.

This is "Corrections Month", in which Our Esteemed Editor has asked me to reply to the backlog of enquiries concerning projects which, for many curious reasons, have failed to work as they should. Here's a typical example.

Dear CD.
I have just built the Quick Project
"Simple Stylus Organ" from the
November issue. I built it carefully and checked the circuit serveral times but when I connected it to the battery, nothing came out of the speaker. I found (if the circuit diagram is right) three mistakes in the Veroboard layout. I made some corrections but-still nothing. I would be most grateful if you could tell me what is wrong.

J.E. Hunt,

Bury, Lancs.
What were you expecting - bug-eyed monsters? As sometimes happens, there were errors in both the circuit diagram and the component layout for this project. You can find them listed, in a reply to another enquiry in "Your Letters"
Did someone mention puns?
Dear CD (Circuit Designer),
I have come up against some snags relating to the Metronome in HE , November '81. After having fitted all the links and most of the resistors I was prompted, for some reason, to check the circuit. Judging from the number of errors, IC someone has been LED astray.

Please come to my rescue! I wish to finish this project in "time" and fit it into a conventional case which I am making in walnut. This in itself presents enough problems without mistakes in the component diagram. I have already angled-off two corners of the Veroboard to make it fit - l'll have a fit myself if it doesn't!

Just one other thing; in the illustration of the case / would appreciate it if the young lady would remove her left thumb and forefinger from the control knob, so that / can see the notation.

In spite of a rum do, I trust you will take this in good spirit.

R.P. Dawe

Bedford.

PS If I don't finish this project I'll have to face the music with my wife.
PPS I see that the lady's pretty little hand is clear of the illustration on page 3, but I prefer to see her looking on the SUNny side of things.

They say that a good pun has to hurt well, you can believe that I'm in pain. I understand the Editor has already covered this project so, Mr. Dawe, if you'd like to refer to "Your Letters" you should find the solution to your problems with the Metronome. You'll have to see a doctor about your puns, though perhaps with the advances in medical science, you can have them surgically removed?
Ray Penn of Enfield and W.A. Burnell of St. Austell, down in Cornwall, will also find their answers in the Letter pages.
The next letter is quite alarming (that's one of the worst things about puns they're infectious).

Dear CD,

While I was flicking through the October ' 81 HE I noticed that no track breaks were shown in the Baby Alarm project. As I've only been doing electronics for a year, could you please tell me where the track breaks go?

Also, all my HEs, all four of them, are grotty and creased. GROVEL GROVEL.
Please can I have a binder?
Yours binderly.
D. Belfield,

Cheadle, Cheshire.
PS Where do you get the SAB0600 and how much?
PPS My sister likes chocolate digestives. PPS Binder.

This one comes under the heading "cryptic comment". What (or who) is an SABO600? I will happily award next. month's binder to anyone (exluding Mr. Belfield, naturally) who can explain, politely and in one sentence, what his sister or chocolate digestives have to do with me?

As to the track breaks, they are only needed if the board is mounted using screws or bolts; in that case the track should be cut at A22, B22, C22 and at H22, 122 and J22.
It's amazing the lengiths some people will go to just to get their greasy paws on one of my sparkling new binders.

Dear Intelligent "Superbrain ' 81 "
Richard (the most intelligent electronics expert ever known to we inferior human life-forms),
Wishing to construct the Fire Detector project from the November 1981 issue Supplement, I have found difficulty in obtaining the VA1056S Thermistors.
Please, please can you help?
A.J. Hilton.

Guildford, Surrey.

PS How about a project for an infra-red beam burgular alarm?
PPS Keep up the super mag and read my comments on the survey!
PPPS A BINDER would be usefull!II??
All true, of course - but naturally l'm too modest to say so myself. You'll also be happy to learn that type VA1056S Thermistors are listed in the Maplin catalogue and that a circuit for an InfraRed Intruder Alarm appeared in the latest issue of Electronics Digest, which should still be available from your local newsagent. I've read your comments, thank you very much, and I quite agree. There's far too much of it going on.

I realise that not everyone out there has a typewriter (or could use one) but please, at least try to write clearly!

Dear CD.
I wonder if you could tell me where | could obtain a 254715 transistor or an equivalent. I've tried my local stockist and all the companies advertising in HE but none of them stock it.
l enjoy the features in the mag but I wondered whether there might possibly be more variation in the projects? Yours Desperately,

F. Smieja,

Cheltenham
This letter presented a second-class puzzle - a guessing game with no prizes. After some considerable time spent checking all the catalogues, I came to the conclusion that there was no such animal as a "25A715". There is, however, a transistor designated 2SA715, made by Hitachi, and the European equivalent is a BD436. Another hour spent checking the catalogues failed to turn up a supplier for the device, though, so the puzzle is back in your hands, Mr Smeija (I think that's the name). Finally, the word "variation" took a while to de-code; the answer to the question (if that's what it was) is that you'll find plenty of variation in the months to come. If Mr Smieja's(?) writing was somewhat less than legible, the following, was, at lease, plain enough.

Dear CD.
I have never owned a copy of HE nor ever will.
Can I have a binder please?
Yours Sarcastically,
C. Bicky,

Walthamstow.

That's sarcasm? Sorry, I missed it. I would have thought an old salt like you could have done better than that. He certainly doesn't get a binder, either. My complaint in the January pages about nobody writing just to say "hello" prompted a flood of letters (well, two or three) from kind readers . . .

Dear Clever Dick.

HELLO.
P.A. Langley,

Stafford
Dear Clever Dick,
Hello.
N. Churchill,

Romford, Essex.
Some, however, couldn't resist a good grovel.

Dear clever, Clever Dick,
l'd like to say "hello". Well, you did ask, in the January issue - now isn't that obedient of me lgrovel, grovel, lick, lick).

Please can you tell me how you mount your speakers Il see you don't use any ugly nuts and bolts).

Also, can you please tell me when you are going to publish the article on large scale model aircraft, mentioned in the December ' 81 edition?

Lastly, where do I get transfers for
HE projects?
L. Arden,

Bracknell, Berks.
PS You must be fed up with grovellers so why don't you give in?
PPS Your mag is brilliant . . great . . fabulous (crawl, crawl).
PPS You have probably guessed by now can I have one? Yes, yes a binder that's it. PLEASE. I can't buy one because I have spent all my money on Hobby Electronics Projects. (Here follows more abject grovelling)

No, I never get fed up with groveling and crawling. I like to see how far you can go. I assume the reference to speakers is in connection with a Monitor item from the January ' 82 issue. Actually, my speakers are "mounted" on the floor! I am informed by our Esteemed Editor (EE, for short) that, regrettable as it might seem to some, John Greenfield's article will not be appearing. Hobby Transfers have also been discontinued but the PCBs for most projects are available from our PCB service - see page 38.
The Clever Dick Fan Club continues to grow - they even like me in Yugoslavia.

Dear CD.

I am in a very unpleasant position. I've lost my copy of HE with the Touch Switch project in it. Now that / want to make that project for my new stereo system, I'm "blind" 'cause I don't have the article.

Please, can you help me? I enclose a postal note and SAE for a photocopy. I'm sure you can help, 'cause you're clever! I need that project urgently! A. Karakasevic,

Zemun, Yugoslavia.

Dear Clever Dick,
I write with reference to your reply to A.M. Lawrence in February's issue. Should he fit anything like a decent aerial he will immediately short his chassis to 12 V positive and, if lucky, only blow his fuse; if unlucky goodbye car stereo.

There is only one safe way out of A.M. Lawrence's problem and the attached information is supplied for your future reference.
Yours Sincerely,
L.E. Thomas,

Plymouth, Devon.
The information kindly supplied by Mr. Thomas is too long to reprint here, but a copy has been sent to Mr. Lawrence, with our apologies. Briefly, though, the method applies to cars fitted with a dynamo and involves re-magnetising the pole-pieces. It cannot be used on cars fitted with an alternator or where existing electrical accessories such as a clock, tachometer, radio or tape player are already fitted. I will be happy to supply a copy of the method to anyone who cares to send in a stamped SAE.

Alternatively, there is a somewhat simpler method; connect a 1000 picofarad capacitor between the aerial earth braid and the car chassis. The drawback of this is that it may result in slightly increased interference on the radio.

One thing is certain about CB'ers they're not only dedicated, they're oneeyed.

Dear CD,
Note my disgust when I noticed a mistake in the January issue. The CB rig is a Fidelity 2000, not a 1000 as stated ltut tut!). The price is even wrong £89 instead of $£ 69$.

After putting you right, let me congratulate you on a great mag. 10-10 R. Neil,

Kent.
PS Keep up the good work.
PPS
For those who missed it, this complaint is yet another referring to a news item in January's Monitor which featured two rather stunning girls holding a CB rig. When informed, The Person Who Writes Monitor was, indeed, suitably disgusted.
'These CB nuts", he said II have censored some of his more colourful expressions). "Who else would look at the rig!'
And for those not familiar with Morse
Code, the PPS reads: "Can I Have a
Binder' ${ }^{\text {. }}$
Right, that's it for this month.
Clever Dick will now return to his cage. If you're all very good and write lots of letters, the EE will let me out again next month.
What's that? Who gets this month's binder? Oh.
No-one, that's who. Grovelling isn't everything you know.

INTO ELECTRONIC COMPONENTS

Part 8 is biased towards transistors.

BIPOLAR TANSISTORS can be regarded simply as devices that control the flow of current; a small amount of current passing between the base and the emitter will cause a much larger amount of current to flow between the collector and the emitter, provided that there is enough voltage present. Many circuits make use of just that simple idea. For example, Figure 8.1 shows a transistor used as a switch. Unless some base current flows, no current will flow between the collector and the emitter and the circuit controlled by this transistor is not switched on. Another very important feature of a transistor, however, is that it simply does not obey Ohm's law. This it true both of the voltage between, and the current through, emitter and base and of the voltage across and current through collector and emitter.

Figure 8.1 A transistor used to switch a circuit on or off.

If we pass a small amount of current through the base and the emitter of a transistor and then measure the current flowing between the collector and the emitter as we slowly raise the collector voltage (Figure 8.2), we find that the current shoots up but then remains almost unchanged, no matter how high we raise the collector voltage. This certainly isn't like the straightline graph we get from current through and voltage across a resistor so we can be sure that Ohm's law is not being obeyed here, which is why transistors, like diodes, are sometimes called "non-linear devices". What actually happens is that, provided there is enough voltage to keep current flowing between the collector and the emitter, the amount of this current is completely controlled by the amount of base current rather than by the amount of collector-emitter voltage.

We can show this even more clearly by plotting a whole set of graphs of collector current against collector voltage (Figure 8.3). The difference between the curves is that each one has

Figure 8.2 The effect of collector voltage on the collector current when the amount of base current is fixed. This graph is called a "characteristic curve" becuase it is peculiar to (ie characteristic of) a particular transistor.
been drawn for a different amount of base current. You can see that, apart from the steep change of current at the very lowest values of collector voltage, the collector current is affected much more by the base current value than by the collector voltage.

Figure 8.3 The family of graphs which is obtained when collector current is plotted against collector voltage for several different values of base current.

All this, as you might expect, is leading up to something important. Suppose we connect a resistor into the collector circuit of a transistor, as shown in Figure 8.4. The current through this resistor will be controlled not by the voltage to which it is connected, but by the base current of the transistor. When current does flow through the resistor, though, there will be a voltage across it and this voltage and the current, together, obey Ohm's law.

Figure 8.4 A resistor (the load resistor) connected into the collector circult of a transistor.

Let's investigate this further, with the aid of Figure 8.5. If no base current flows then no collector current flows, so, with no current flowing through the 1 k resistor there is (by Ohm's law) no voltage drop across it. That, in turn, means that we must have the same voltage at each end of the resistor. With no base current flowing through the transistor, therefore, the collector voltage is the same as the supply voltage, 9 V .

Suppose, now, that some base current is allowed to flow; perhaps because alarge-value resistor had been connected between the base and the supply. Imagine that enough base current flows to cause a 1 mA current to flow between the collector

Figure 8.5 A graph of collector voltage plotted against collector current for. a transistor with a load resistor, when the base current is varied.
and the emitter. A current of 1 mA through a resistance of 1 k produces a voltage drop of 1 V so that the collector end of the 1 k resistor must be at 1 V less than the power supply end, making the collector voltage 8 V . What happens if we increase the base current? Increasing the base current so that the collector current rises to 2 mA will cause the voltage drop across the resistor to rise to 2 V and the voltage at the collector of the transistor must now be 7 V .

A pattern is beginning to emerge; as the base current is increased, the voltage at the collector decreases. It can't continue like this forever though, because when the base current reaches a value such that the collector current is about 9 mA , there will be 9 V dropped across the 1 k resistor - there is nothing left across the transistor, so its collector voltage is zerol In practice, it never gets quite as low as zero but it comes to within a whisker of it, falling to about OV2. If we attempt to increase the current still further, only the base current will increase; the collector current cannot increase as it is limited by the resistor.

The resistor used in this example is called a "load resistor" and it has the effect of converting changes in current into changes of voltage. This brings us to the two most useful applications of transistors - voltage switching and voltage amplification. The key to understanding both is that base current (and therefore collector current) can be changed by a large amount by a very small change of base voltage.

Figure 8.6 A circuit for checking the effect of a load resistor.
Try it out by setting up the circuit of Figure 8.6 on the Eurobreadboard. The HE meter will have to be switched between ranges while you are taking measurements because it's going to be used to measure both base voltage (on the 2V5 scale) and collector voltage (on the 10 V scale). Make sure that potentiometer RV1 is set so that the base voltage will be zero when the circuit is first switched on. Connect the positive lead of the HE meter (switched to the 10 V scale) to the collector of the transistor and connect the battery. If the reading is 9 V then all is well; if not, check your connections and the potentiometer setting. If all looks correct then you probably have a leaky transistor - replace it!

With the HE meter reading 9 V on the collector, gradually alter the potentiometer setting until the collector voltage just starts to drop. Now unclip the HE meter's positive lead from the collector, switch to the 1 V range and connect it to the base. Don't alter the potentiometer setting, just change over the leads and the meter switch. Take a reading of base voltage as precisely as you can (remember to use the mirror on the scale of the HE meter to ensure that you are looking straight down) and note it down, entering it into a table which has headings of BASE VOLTAGE and COLLECTOR VOLTAGE. This first entry will be the base voltage for a collector voltage of 9 V .

Now disconnect the HE meter from the base, switch back to the 10 V range and connect to the collector again: adjust the potentiometer so that the collector voltage reads $8 \cdot \mathrm{~V}$. Disconnect the meter's positive lead, switch back to the 1 V range and measure the base voltage again, as precisely as you can. Note the value (it won't have changed much) of the base voltage for a collector voltage of 8 V .

Figure 8.7 Typical results from the circuit of Figure 8.6

Repeat this procedure for collector voltages of $7 \mathrm{~V}, 6 \mathrm{~V}$ and so on all the way down to 1 V . You will then have an idea of how small a change in the base voltage is needed to change the collector voltage by quite a large amount! The results of your table can be plotted on a graph, which looks something like the one in Figure 8.7. This shows that the collector voltage drops from 9 V to 1 V for a base voltage change, in this example, of OV56 to OV6. Now that's a very small change (0 V 4), but it causes the collector voltage to change by 8 V . It's this principle of a small change of base voltage causing a large collector voltage change which is behind switching and amplification. For switching, we need a circuit like that of Figure 8.8. Switching the input voltage between 0 V and 9 V (the 4 k 7 resistor is included to limit the base current) will switch the collector voltage between the same voltages but in the opposite direction, so that when the input voltage is zero, the output (collector) voltage is 9 V and when the input voltage is 9 V , the collector voltage is almost zero. It is like a relay; a change of voltage at the input causes a switchover at the output.

Figure 8.8 A switching circuit. The resistor in series with the base is essential to prevent excessive base current.

Making an amplifier is not quite as simple. Suppose that the voltage change from 9 V to 1 V at the collector is caused by a change from OV55 to OV71 at the base. The collector voltage 'swing' is 8 V for a change in base voltage of OV 16 . The quantity which we call voltage gain is defined as:

change of voltage at output change of voltage at input

and in this example will be 8/0.16, which is 50 times. What this means is that if we had an AC signal at the base, we could expect to get a signal of fifty times the amplitude at the collector.

It sounds good, but there are snags. One is that the signal at the base can't be the usual sort of AC signal centred around zero (Figure 8.9a); it must be a signal that will take the base voltage (using the figures in our example) between the limits of OV56 and OV71. If the base voltage exceeds these limits, even for an instant, it will no longer affect the collector voltage.

These voltages, OV56 to OV71 in our example, are the limits of what is called a "linear region" because it is within the range
of these voltages that the graph of Figure 8.7 is a sloping straight line. The transistor of our example will amplify, with a voltage gain of 50 , only if the input voltage stays within the limits of OV71 and OV56. Now an AC signal like this is not true $A C$; it is a mixture of $A C$ and DC as Figure 8.9 shows. In this case, it's a OV63 DC voltage with an AC voltage of OV08 peak added to it. We can easily create such a wave by setting the base voltage at 0V63 DC, and adding in the AC through a capacitor. The voltage at the base will then be the sum of the AC and the DC voltages; just the type of wave we need. We can use AC voltages of less than OVO8 peak if we want but we can't use more because the limits of base voltage (OV56 and OV71) would then be exceeded.
(a)

$A C+D C$
Figure 8.9 $\mathrm{AC}(\mathrm{a})$ compared to the mixture of AC and $\mathrm{DC}(\mathrm{b})$ which is needed at the input of a transistor amplifier.

Putting a $D C$ voltage on to a base so that we can add $A C$ to it is called 'biasing"'. A correctly biased transistor will act as an amplifier for AC signals at the input (the base), and the shape of the wave at the output (the collector) will be a perfect copy of the input wave but with greater amplitide - unless the input voltage is allowed to go outside the limits of OV56 and OV71. Notice, though, that the signal at the collector is inverted - as the input wave reaches its peak of positive voltage, the output wave reaches its lowest voltage. This is because of the load resistor; as the base voltage is increased, the base current and the collector current both increase so that the voltage drop across the load resistor increases and the collector voltage drops - then rises as the base voltage decreases.

This inversion does not alter the shape of the wave, any more than a flat mirror alters the shape of your face, but if the voltage at the input goes outside the limits shown on the graph, then the output wave will be distorted. This type of distortion is called 'clipping' - either the top of the wave or the bottom or both become flattened (Figure 8.10). Distortion of this type can be avoided only by a combination of correct biasing (correct DC

Figure 8.10 Distortion of a sinewave caused by incorrect bias or excessive signal ampliftude: (a) perfect sinewave; (b) clipped at the top (faulty bias - DC base cuprent too low): (c) clipped at the bottom (faulty bias - DC base current too high); (d) clipped top and bottom (bias correct but signal ampliftude too high).
voltage level) and correct AC voltagi input (not exceeding the limits).

A Biased View

Measuring voltages at the base of a transistor is a tricky business (as you may have noticed) because the voltages are so small. A much simpler way of deciding whether bias is correct is to measure the voltage at the collector of the transistor. The 'rule-of-thumb' here is that the no-signal voltage at the collector (the DC voltage when there is no AC signal at the base) should be about half of the supply voltage. This is a useful rule only when the load is resistor, but since this applies to so many transistor voltage amplifiers, it's very useful indeed.

How, then, do we get the collector voltage to half of the supply voltage? Well, Figure 8.11 shows one method; a resistor is simply connected between the base and the positive supply voltage. The snag is the value of the resistor - it has to be a large and precise value. For example, if we use a 1 kload resistor and a 9 V supply, the ideal collector voltage will be 4 V 5 , with another 4 V 5 dropped across the load, That means a collector current of $4.5 \mathrm{~mA}(4 \mathrm{~V} 5$ across 1 k , by Ohm's law) and if the transistor has a current gain value of 100 then the base current is just one hundredth of this, which is 45 uA . Now the base voltage will be somewhere around OV56 - we cannot be sure of the exact value - and the supply voltage is 9 V so the voltage drop across the resistor in Figure 8.11 will be 8V4, approximately. A resistor which passes 45 uA with 8 V 4 across it has a value (Ohm's law again) of arpund 186k. You can't actually get a 186 k resistor but its close enough to 180 k , which you can get, and it's odds on that 180 k might be near enough.

Trouble is, it doesn't really work out so nicely all the time. The resistor value usually has to be one which simply isn't obtainable except by using series or parallel combinations of resistors to make up the precise value that the circuit needs. We've also assumed that we know the exact value of current gain and we've made no allowance for the tolerance of the resistors.

Figure 8.11 A single-resistor bias circuit.

Try it for yourself and see if you can find a value (start with 100 k) which will give you a reading of 4 V 5 on the HE meter at the collector, using the circuit in Figure 8.12. If the collector voltage is low, you need a higher value; if the collector voltage is high, you need a lower value. Then, even if you do find a value that is suitable it's not likely to stay that way for long, because the heating of either the transistor or the resistor (but especially the transistor) will cause changes! Even old age (the components, not you) will cause the value of the resistor to 'drift', making this method unsuitable for all but a very few circuits.

Figure 8.12 Trying out a single-resistor bias circuit. Set the HE Meter to its 10 V range and try different values for Rb, starting with 100k.

Figure 8.13 The negative-feedback bias system.
A much better bias system is shown in Figure 8.13. It doesn't look so very different - all that has been done is to move one end of the resistor from the positive supply to the collector - but it behaves very differently.

This circuit is an example of feedback, by which we mean that, while the base voltage affects the collector voltage, the collector voltage also affects the base current. If the collector voltage rises there will be more current flowing through the resistor R1, but more current flowing through R1 means more base current and this causes more collector current which in turn causes the collector voltage to be reduced

The argument looks daft - a rise of collector voltage causes a fall of collector voltage - but what it means is that the circuit will oppose any change and that just the sort of thing that we need for a good bias circuit; we want to be able to set it and then leave it, relying on it not to change the bias voltage even if the current gain of the transistor changes or if the value of the resistor changes.

Figure 8.14 The negative feedback bias system in action; the HE Meter is set to its 10 V range. Suitable values for $R x$ lie between 68 k and 100 k .

Another benefit is that the resistor value we need for this type of bias circuit is smaller and we can take "next best" without upsetting the bias voltage too much. Suppose, for example, that we are using the usual 9 V supply and 1 k load (Figure 8.14). When the collector voltage is at 4 V 5 (the ideal setting) then the voltage across R 1 must be about 4.5 minus $0 \vee 6,10 \vee 56$ rounded up) which is $3 \vee 9$, which means we need a collector current of 3.9 mA . Now if we assume, once again, that the base current needs to be 45 UA for this amount of collector current then the value of R1 is, by Ohm'slaw, 3.9/.045k, which is 86 k 6 . In fact we could probably get away with as little as 68 k or as much as 100 k , but if we wanted to be fussy the 10% preferred value of $82 k$ would do very nicely.

Try it for yourself; with the HE meter used to measure the collector voltage, plug resistors into the R1 position on the Eurobreadboard until you have got a collector voltage of about 4 V5. Try the next preferred value up or down; certainly it'll shift the collector voltage, but the shift is nothing like as great as if we use, for bias, a resistor connected directly to the positive supply.

The ultimate bias system, used when we really need to keep things under tight control, is shown in Figure 8.15. Beginners often feel shy about using this system because they think it is more difficult to calculate the values. It's not so, but you do have to know what it's about!

As usual, it helps if we take an example and, since the 9 V supply 1 k load idea has served us well so far, we might as well continue to use it. To start, we need to connect the base to a potential divider which will supply about one volt. About? Yes, because we don't have to be precise! All we need is a potential divider will pass about 1 mA (not precisely, so long as the cur-
rent is a lot larger than the base current of the transistor) and keep the base at about 1 V . Suppose we make $R 2=1 \mathrm{k}$ and R1 $=8 \mathrm{k} 2-$ that should do nicely. What's that? You don't have an 8 k 2 ? Doesn't matter, we'll use a 6 k 8 - didn't 1 tell you that this circuit wasn't fussy?

Figure 8.15 The potential divider bias system; C1 is short circuit for $A C$ signals.

The combination of 1 k and 6 k 8 in the potential divider circuit with a 9 V supply leads to a base voltage, using the potential divider rule (Figure 8.16 if you've forgotten) of $9 \times 1 \div 7 V 8$, which is 1 V 15 . That's close enough for this calculation; in fact you could call it 1 V 1 and still be close enough. Now if the base voltage is 1 V 15 , the emitter voltage must be about 0 V 6 or so lower than this when the transistor is passing current, which makes the emitter voltage somewhere around OV55. How do we get this emitter voltage? Simple; we pass the emitter current through a resistor, R3. The collector current has to be 4.5 mA to give a 4V5 drop across R1 (1k) so, by Ohm-sweet-Ohm, the value of R 3 has to be $0.55 \div 4.5$, which is 0 k 12 or 120 ohms. And yes, we could probably get away with 100R or 150R without anything drastic happening.

Now try it. Whatever you're using as a transistor, use these value of resistors and see what the collector voltage is, using the HE meter. The value should not be far from 4 V 5 if you've used 120 for R3. To increase the collector voltage, use a larger value of R3; to decrease the collector voltage, use a smaller value of R3. That's all! You don't even have to make any assumptions about the value of the current-gain!

Figure 8.16 Recalling the potential-divider law.

Gain Some, Lose Some

Once we have biased a transistor correctly, we can use the transistor for amplification. To do this we feed a signal, through a capacitor, into the base circuit of the transistor and take the amplified signal from the collector circuit, also through a capacitor. The use of capacitors (coupling capacitors) avoids the problems we would have to face if we connected directly to the base or collector circuits. Other circuits would, if connected to the base, upset our bias arrangements and if connected to the collector, would upset the collector DC voltage.

How much gain can we expect to get from a transistor? Old textbooks are full of fearsome formulae but the universal use of silicon transistors has made the calculations very much simpler. Just measure the voltage drop across the load resistor and multiply this figure by 401 It's as easy as that. For example, if we have $4 \vee 5$ across the load resistor, then the maximum gain that you can expect is $40 \times 4.5=220$ times.

Let's be quite clear what this figure is; it's the maximum possible voltage gain of conventional common-emitter amplifier circuit such as that shown in Figure 8.17-and it's an 'ideal' figure which can never be reached in a practical amplifier. The ideal figure assumes that the amplifier is connected to an ideal voltage source, at the input, and to an ideal load at the output.

Unfortunately, this is not an ideal world! The effect of connecting less-than-ideal sources and loads to an amplifier is to reduce the gain of any amplifiér below the maximum, because of what are called "loading" effects. These result because the transistor, the device itself, has built-in input and output resistances. The input resistance is typically small, around 1 k or so, while the output resistance is usually around 30k, but both these figures can vary by as much as a factor of 5 .

Figure 8.17 The common-emitter amplifier circuit, complete.
By connecting a source, such as a microphone with an internal resistance of about 200 R , to the input of the amplifier of Figure 8.17, we are setting up a potential divider circuit (Figure 8.18) which reduces the effective voltage supplied to the base; in fact, the base voltage will only be equal to the voltage supplied by the microphone when the microphone resistance is zero - which, of course, is impossible. Similarly at the output, the internal resistance of the transistor and the resistance of a load, such as a pair of headphones, set up another voltage divider which reduces the voltage avialable to the headphones. As a result, the effective gain of an amplifier from source (microphone) to load (headphones) is somewhat less than the maximum that the 'rule-of-thumb' calculation produces. Just how much less depends on how closely the source and load resistances 'match' the input and output resistances. The rule-
of-thumb, here is that if the amplifier's input resistance is low, the source resistance should also be low. Similarly, the load resistance (this is not the same as the load resistorl) should 'match' the amplifier's output resistance.

Figure 8,18 Equivalent circuit of a common-emitter amplifier 'gain block' (shown within dotted lines) with a source (microphone) and a load (headphones) connected. The total gain is reduced below that of the gain block itself because the voltage delivered by the microphone is 'loaded' by the input resistance of the amplifier. Similarly, the voltage delivered to the load is reduced because of the output resistance of the amplifier.

Note that for most amplifier circuits which use a load resistor, we can take the output resistance as being equal to the load resistor; also, these comments apply only to the commonemitter type of amplifier. A common-collector amplifier (more often called an emitter-follower), for example, can have a high input resistance and a low output resistance and will always have a voltage gain of slightly less than one (unity gain); for this reason, an emitter-follower is often used as a 'buffer' amplifier matching a high resistance source to the low resistance input of a voltage amplifier.

In the next installment we'll move on to the new hot-shots of electronics - integrated circuits.

MASIMFR THTFGITRONICS NOW! The PRACHICAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following
Build a modern oscilloscope
Recognise and handle current electronic components
Read, draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'

- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. Hi Fi and microprocessor/computer equipment.
NewJob?NewCareer?NewHobby?GetintoElectronics Now!
FREK!
COLOUR BROCHURE
Please send your brochure without any obligation to NAME

ADDRESS

BLOCK CAPS PLEASE
I
British National Radio\&eElectuomes School Reading, Berks.RG17BR

Subscriptions

WE DELIVER!

If you would like to ensure a regular supply of Hobby Electronics for the next twelve months, each issue lovingly wrapped and posted to you, nothing could be simpler. Just fill in the form below, cut it out and send it with your cheque or Postal Order (made payable to ASP Ltd) to:

Hobby Electronics Subscriptions,
 513 London Road,
 Thornton Heath, Surrey CR4 6AR

Alternatively you can pay by Access or Barclaycard in which case simply fill in your card number, sign the form and send it off. Do NOT send your card.

Do yourself a favour. Make 1982 the year you start to take Hobby Electronics, regularly. Delivered fresh every month.

PCB pattern for the Bass Booster.
Copyright Bewbush Audio; reproduction for commercial purposes only by permission of Bewbush Audio.

SEND TO:- ETI/HE CLASSIFIED, 145, CHARING CROSS ROAD, LONDON : NC2H OEE. TEL: 01-437 1002 Ext. 50.

BURGLAR ALARM equipment. Ring Bradford (0274) 308920 for our catalogue, or call at our large showrooms opposite Odsal Stadium. C.W.A.S. Ltd.

GUITAR/PA MUSIC AMPLIFIERS

100 watl supent rrebteibess overdive. 12 months' guarmintee Unbeatabie at

 500 250 wan 570500 wot 1140 tur bores peat want $\mathrm{C1z}$ hass tum [12.95, overdriver furz with trebie end bass boosters. $\mathbf{E 2 8}, 100$ watt combo. supert sound. overdive, sturdy consituction, castors, unbearitite fl 100 . twin cromel f115: bass combo t118: speakers 15 in 100 wart 36 , 12 in 100 wati 28: 80 watl f 18 , microphone shule unicyn B f28.
send cheque P.O. to: WILLAMSON AMPLIFICATION

AMAZING ELECTRONICS PLANS. Lasers Super-powered Cutting Rifle, Pistol, Light Show. Ultrasonic Force Fields, Pocket De fence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Cata-logue 95p. - From Plancentre, 16 Mill Grove, Bilbrook, Codsall, Wolverhampton.

PRINTED CIRCUITS. Make your own sim,ply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. De- 2 veloper 35p. Ferric Chloride 550. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick £1.75 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

CLOSE ENCOUNTERS GROUP. Personal introductions/dances, parties, talks, social events. Meet interesting, attractive people. All areas. - Tel. (Liverpool) 051 9312844 (24 hours).
CLASSIFIED ADVERTISING PAYS A message like this will only cost you E3. 15 for 100,000 readers.

GET THE MESSAGEI

Now you can build your own telephone answering

machine for less than flour own telephone answering
Our advanced and well proven design uses readily
Our advanced and weil proven design uses readil available components and connects to any cassette recorder with little or no modification required Send only $£ 2.95$ for detailed circuit diagrams and construction detaits. Plans sent First Class return of posi. UNITECH (MIDLANDS)

UNITECH FREEPOST,
Sutton Coldfield, West Midlands B74 2BR
Sutton Coldield, Wes Midand
(No stamp required)

IONISER KIT (MAINs OPERATED)

This Negative lon Generator givee you the power to saturate your home or office with millions of refreshing ions. Without No them or moving pares if puts out a pleasent breaze. Ad pore forfully refreshing. room. The result? Your sir feels freah
A suitable case including front pand, neon switch, otc
Price includes Poet \& VAT
Bercloycard/Accese welcome
T. POWELL

ADVANCE WORKS
4 WALLACE ROAD, LONDON N. 1.
TEL: 01-228 1483
Hours: Mon-Fri 9-5 p.m. Sat 9-4.30 p.m.

HIGH QUALITY COMPONENTS: LOW profile sockets 24 pin 22p, 40 pin 30 p. Resistors $1 / 4$ W 5\% 100 mixed 90p. Cermet potentiometers 10 mixed £1.95. P\&P 40p. Large SAE for lists. T. Milner, 203 Goodman Park, Slough, Berkshire.

ZX81 Flicker-free games. 6 super games, each 1 K , plus free menu. All on cassette, plus frge listing, £3. Bobker, 29 Chadderton Drive, Usworth, Bury, Lancs.

16K ZX81 SUPER INVADERS On cassette with graphic Hangman, Swat, Golf and Breakthrough E3.50. J. Prince, 29 Brook Ave., Levenshulme, Manchester M19.

NEW 1982 ACE COMPONENT CATA. LOGUE Let your problems be our business. Be certain; have your components delivered quickly and efficiently and get that project working. Send 30p now for the easy to use 1982 Catalogue to: Ace Mailtronix, Dept H.E.3A, Commercial Street, Batley, W. Yorks WF175HJ.

BOOK BOOKS BOOKS

```
Prectical Computer Experments
E.A. Parr.
2 Prolects Using ic74
Rudi \& UWE Redmer.
Practical Introduction to Digital IC.
D.W. Easterling
eco. Ponto of CMOS Projects
Beginnert Buide to Digitel Techniques
Geginnert Buid
I.C. EJB Projects E.A. Parr
Eesential Theory for The Electronlcs Hobbyl G.T. Rubaroe
Radio Control For Beginner
F.G. Rayer.
Add only 30p P\&P to total order.
Orders over \(\mathbf{E 5} .00\) Poet Free.
```

"ALPHA BOOK8"
Reg. Office: 18 Conneught Close Aeg. Office: 18 Connought Close,
Hemel Hempeteed, Herts. HP2 7AB

ZX81 KEYBOARD SOUNDER Made from easily obrainable components. Send $£ 3$ for P.C.B. instructions and transducer or S.A.E. for details to: R. Mitchell, 20 Gorse Close, Portslade, Sussex.

AERIAL AMPLIFIERS Improve weak television reception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BLO 9AGH.

PARAPHYSICS JOURNAL (Russian translations); Psychotronic Generators, Kirlianography, gravity lasers, telekinesis. Details: S.A.E. $4 \times 9^{\prime \prime}$ Paralab, Downton, Wilts.

CENTURION BURGLAR ALARM EQUIP. MENT Send S.A.E. for Free list or a Cheque/PO for $£ 5.95$ for our Special Offer of a Full Sized Decoy Bell Cover, to: Centurion, Dept HE, 265 Wakefield Rd., Huddersfield, W. Yorkshire. Access \& Barclaycard. Telephone orders on 0484-35527.

FOR SALE: Sansui SR-222 record deck with Ortofon VMS20E 11 cartridge and 'Microsorber' feet - $\mathbf{£ 6}$. Phone: Billericay 3503.

POWER SUPPLIES Regulated 9 Volts, 1 amp. Can supply several circuits in parallel eliminating expensive batteries. Just $£ 15,00$ incl. Quantec Electronics, 67 Cranham Road, Hornchurch, Essex.

ADVERTISERS INDEX

Ambit International 2 Linton Electronics. 27
Bi-Pak Semiconductors 5 \& 19BK Electronics . 67
BNRS 6367
J. Bull (Electrical) Ltd 51
Cricklewood Electronics. 55
E.D.A. 44
Electronize Design 55
David George Seles 36
Greenweld Electronics 31
Health Electronics 13
ICS 27
ILP Electronics. $19,23,27,31$ \& 36
Litesold 48
Magenta Electronics. $48 \& 49$
Parndon Electronics. 48
P.A.T.H. Electronics. 23
Rapid Electronics 4
Brian J. Reed 23
Rheinbergs Sciences 23
Silica Shop 46
Technomatic 10
TK Electronics 55
Velleman (UK) Ltd. 68
Watford Electronics 9

ELEGTRIFY YOUR SALESI • CLASSIFIED ADVERTISEMENT

1	2	3
4	5	6
7	8	9
10	11	12
13	14	15

Advertiae nutionally in Electronice Today International/Hobby Electronics. Simply print your edvertisement in the coupon here (laft). indicating which magazine you require
Or telephone for more information.

Name

Address

\qquad

Tel. No. (Day)

Send, together with your cheque to: Jenny Naraine, ETI/HE,
145 Charing Cross Rd., London WC2H OEE.
Tel: 01-437 1002 Ext. 50.

Velleman U.K. present their list of electronic kits together with prices which include V.A.T. and postage and packing. They are listed in "difficulty grades", for beginners and experienced kit-builders, with the lower skill level at 1 , rising to 3 . All include high-quality components, full iristructions and technical data and come to you packaged in clear plastic boxes, ideal for component storage.

REMEMBER - We offer a free soldering iron with your first order over £10. Send today for the free Vellema.n Kit Journal.
\qquad
K1682
Wooden housing extra

$K 2557$

K2569

TRADE ENQUIRIES WELCOMED

Address

HE

[^0]: EARTH IN INADERS
 ря.р: f26.95 NOW £18.95

 The Matiel Intellivision is the most advanced TV.game in the world with a range of over 25 microplocessor giving 16 colours and three-part harmony sound The picture quality is incredible with 30 effects and realistic animation An add on keyboard will be avalable in the Spring 1982 to convert the Matter mich and programmable in Microsoft Basic Other accessories will be added later in the year The normal
 price of the Intellivision + Iree soccer cartrudge is $£ 22995$ but our special offer price is $£ 17995$

 MATTEL OWNERS CLUB - Why not join our Mattel Owners Club and recive our regular newsletters containing details of all the latest cartridge releases. Telephone us with your name and addresses and we will add your name to our computer maling list FREE 16 PAGE CARTRIDGE CATALOGUE - If you are interested in owning a Mattel, we now have available a 16 page catalogue describing the latest six cartridges to be released, as well as a new Mattel colour leaflet with briel descriptions of all 25 cartridges Telephone us for further details.

